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Abstract
To date, the brain-computer interface (BCI) based on visual stimulation is by far the most investi-
gated. This makes a lot of sense given the excellent visual capabilities of humans, and it has been
a most successful approach. Nevertheless, a non-negligible part of the BCI end-user population
with advanced paralysis is incapable of directing their eye gaze or of seeing at all. Traditional
visual BCIs will rarely be a solution for these end-users and alternative paradigms are required
that rely on covert attention. Furthermore, though BCIs already benefit greatly from statistical
methods coming from the field of machine learning, a faster and robust performance is required
for adoption by the clinical community. This thesis contributes in two key facets in an attempt to
take a step towards full inclusion of all end-users.

First, an auditory alternative is proposed to address the intrinsic problems that exist with
BCIs based on the visual event-related potential (ERP). It is named AMUSE (short for Auditory
MUlticlass Spatial Event-related potential). Though it is not the first auditory BCI to be proposed,
it differs from the mostly binary contemporary solutions in a crucial aspect. Instead of relying
on pitch or other physical features of the stimuli to define the class membership, AMUSE targets
the human capability of spatial localization of sound sources. With AMUSE, stimuli can contain
physical differences but the main defining feature is the sound source or, more practically, the
loudspeaker position. Using this feature, the stimuli can be short, stimulation speed can be high,
and the number of classes can easily be increased by adding sources.

The fundamentals of AMUSE as a BCI paradigm are carefully validated, and an AMUSE-based
BCI speller is proposed with minimal reliance on the visual domain. The vast majority of the
tested healthy subjects is able to write a full sentence using this speller. The average performance
is high compared to contemporary covert attention-based BCIs, both in terms of the information
transfer rate (ITR) and the amount of written characters per minute (char/min).

Most BCI research is directed towards the final goal of successful end-user application. Accord-
ingly, the AMUSE-based speller is tested with five end-users with advanced paralysis. Up to four
online sessions are performed for each end-user, and performance is above chance on all but two
sessions. Nevertheless, the performance does not suffice for the end-users to gain meaningful
control over the AMUSE-based speller. This result is discussed in the context of the available
attention resources, which was pathologically low for at least one end-user.

The second important contribution of this thesis is a novel algorithm for performance opti-
mization in ERP-based BCI in general, called rank diff. ERP-based BCIs have an intrinsic trade-off
between the length of a trial and the accuracy of the resulting decision; longer trials typically result
in more accurate decisions. In literature, this trade-off is mostly ignored and the length of the trial
is simply fixed, leading to suboptimal performance. Rank diff uses the available calibration data
to estimate a threshold on the required evidence necessary for a correct decision. Online, a trial is
stopped as soon as this threshold is reached, leading to trials of varying length.

By including rank diff in the AMUSE-based speller, the performance increases by about 40% for
healthy subjects. As a result, the speller is competitive with covert attention-based visual spellers.
Rank diff is further validated on benchmark data along with several other methods, showing
the beneficial effect not only of rank diff, but of evidence accumulation methods in general. As
average performance increases as high as 78% are found, these methods can no longer be ignored.
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Zusammenfassung
Bis zum heutigen Tage hat sich die brain-computer interface (BCI) Forschung hauptsächlich auf
visuelle Paradigmen fokussiert. Dieser Ansatz war bisher sehr erfolgreich, da Menschen generell
über ausgezeichnete visuelle Fähigkeiten verfügen. Allerdings kämpft ein nicht vernachlässigbarer
Teil der Gruppe der Endnutzer mit Problemen bei der Ausrichtung der Augen oder mit Problemen
beim Sehen generell. Diese Probleme führen dazu, dass traditionelle visuelle BCI Paradigmen von
diesen Endnutzern nicht verwendet werden können. Stattdessen werden alternative Paradigmen
gebraucht die auf verdeckter Aufmerksamkeit beruhen. Hinzukommt dass, obwohl BCIs bereits
von statistischen Verfahren aus dem Bereich Maschinelles Lernen profitieren, schnellere und
robuste Anwendbarkeit erforderlich ist, um die klinische Gemeinschaft von ihrer Nützlichkeit zu
überzeugen. Diese Dissertation trägt in zwei wichtigen Aspekten dazu bei, einen weiteren Schritt
in Richtung vollständiger Inklusion von Endnutzern zu schaffen.

Erstens wird unter demNamen Auditory MUlticlass Spatial Event-related potential (AMUSE)
eine auditorische Alternative vorgestellt, die die intrinsischen Problememit visuellen, auf ereignis-
korrelierten Potentialen (ERP) basierten BCIs umgeht. AMUSE unterscheidet sich von den bisher
meistens binären, auditorischen BCIs in einem entscheidenden Aspekt. Anstatt sich für die
Klassenzuordnung ausschließlich auf Tonhöhe oder ähnliche physikalische Aspekte der Stimuli
zu verlassen, spricht AMUSE die menschliche Fähigkeit für räumliche Lokalisierung von Schal-
lquellen an. Bei AMUSE können die Stimuli solche physikalischen Unterschiede zwar haben, der
entscheidende Faktor ist aber die räumliche Position der Schallquellen bzw. der Lautsprecher.
Dieser Aspekt ermöglicht die Verwendung sehr kurzer Stimuli, woraus sich eine hohe Stimula-
tionsgeschwindigkeit ergibt. Darüberhinaus kann die Anzahl von Klassen durch Hinzufügen von
weiteren Schallquellen einfach erhöht werden.

Die Grundlagen von AMUSE als BCI Paradigma werden sorgfältig validiert und eine auf AMUSE
basierende Schreibanwendung wird vorgestellt welche nur minimal auf visuelle Fähigkeiten
zurückgreift. Der Großteil der gesunden Versuchspersonen waren in der Lage einen vollständigen
Deutschen Satz per BCI zu schreiben. Im Vergleich zu gegenwärtigen auf verdeckter Aufmerk-
samkeit basierenden BCIs arbeitet AMUSE sehr effizient, sowohl bezogen auf die Übertragungs-
geschwindigkeit (ITR) als auch auf die Anzahl von geschriebenen Buchstaben pro Minute (CPM).

Ein wichtiges Ziel der BCI Forschung ist eine erfolgreiche Anwendung bei Endnutzern. Dem-
entsprechend wurde die auf AMUSE basierte Schreibanwendungmit fünf Endnutzern mit fort-
geschrittener Lähmung getestet. Bis zu fünf Online-Sitzungen wurde mit jedem Endnutzer
durchgeführt. Mit Ausnahme von zwei Sitzungen konnte BCI-Kontrolle erreicht werden, die über
Zufallsniveau lag. Eine für die Endnutzer befriedigende Kontrolle konnte dennoch nicht erreicht
werden. Dieses Ergebnis wird im Kontext der zur Verfügung stehenden Aufmerksamkeitsres-
sourcen diskutiert, welche für mindestens einen Endnutzer nachweislich pathologisch waren.

Der zweite wichtige Beitrag dieser Dissertation ist die Vorstellung eines neuen Algorithmus
für die Optimierung von auf event-related potential (ERP) basierten BCIs, der als rank diff
bezeichnet wird. ERP basierten BCIs ist ein Kompromiss zwischen der Länge der Stimulation
und der Genauigkeit der Entscheidung inne. Längere Stimulation führt üblicherweise zu mehr
Genauigkeit. In der Literatur wird dieser Kompromiss oftmals ignoriert und die Länge der Stimula-
tion manuell gesetzt, was zu suboptimaler Leistung führt. Der hier vorgestellte Algorithmus rank
diff benutzt die vorhandenen Kalibrationsdaten um einen adaptiven Schwellwert zu bestimmen,
der überschritten werdenmuss bevor die Stimulation beendet wird.

Das Anwenden von rank diff steigert die Effizienz von AMUSE bei gesunden Versuchspersonen
um etwa 40%. Als Folge nähert sich die Leistung von AMUSE dem Niveau von auf verdeckter
Aufmerksamkeit beruhenden visuellen BCI-Schreibanwendungen. Desweiteren werden rank diff
und ähnlicheMethoden auf Benchmark-Daten validiert. Die Ergebnisse zeigen den verbessernden
Effekt nicht nur für rank diff, sondern auch für verwandte Methoden. Effizienzsteigerungen von
bis zu 78% zeigen, dass diese Art von Optimierung nicht länger ignoriert werden sollte.
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1. Introduction

Since the first report on the concept of a brain-computer interface (BCI), now 40 years ago, much
progress has been made on all fronts. This thesis builds on several discoveries made in those
40 years, and before, which are the topic of this chapter. First, the basic principles of a BCI and
applications thereof are introduced. Since the main goal of this thesis is to advance use of BCI as
an assistive technology (AT), the potential end-users of such a technology are then defined. Given
their clinical profile, the current state of the art in BCI does not provide a useful AT for at least a
subset of those end-users. With the focus on electroencephalography (EEG) for brain imaging and
the event-related potential (ERP) response, the current state of the art in BCI explicitly addressing
the needs of this subset is discussed. This thesis aims to contribute to the understanding of these
needs and the ways of addressing them. Before finally stating the scientific hypotheses of this
thesis, the typical BCI design process is introduced.

1.1. Introduction to Brain-Computer Interfaces

The term BCI was first introduced by Vidal in 1973. In his landmark work, Vidal wondered if the
small ERPs that result from external stimuli can be

“put to work as carriers of information in man-computer communication or for the
purpose of controlling such external apparatus as prosthetic devices or spaceships?”
(Vidal, 1973)

By then, ERP components had been investigated extensively (see Section 2.2.2). However, the
idea of using these in an online fashion, meaning that the brain signals should be processed
and interpreted as soon as they are recorded, was striking, not in the least because of the lack of
computing power in those days (see Figure 1.1). Nowadays, a BCI conveniently runs on a single
computer or smartphone, but the goal of current BCI research is still exactly that: to create a
direct connection between the brain and a device, bypassing the brain’s natural efferent pathways
altogether (Dornhege et al., 2007; Wolpaw et al., 2002). Useful application of such a connection
relies on the assumption that a person can willfully alter his brain state to express an intention.
This indeed is the case (Pfurtscheller et al., 1999; Sutton et al., 1965), thus allowing for direct
“communication and control” through thought (Wolpaw et al., 2002).

Converting a user expressed intention into ameaningful control signal that drives an application
requires several processing steps, roughly categorized into signal acquisition, preprocessing,
feature extraction, classification, evidence accumulation, and stimulation / feedback (Blankertz
et al., 2008; van Gerven et al., 2009; Mason et al., 2007; Schreuder, 2008b; Tomioka et al., 2010;
Wolpaw et al., 2002). Each of these steps have been the topic of active research over the past 40
years, thereby steadily increasing the achievable accuracy level and usability. As a BCI is typically
a linear system, its quality is only as high as its weakest element. Improvements at each step are
thus necessary to improve the system as a whole.
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1. Introduction

Figure 1.1.: Vidal’s original approach to BCI, as proposed in Vidal (1973). The limitations of the
hardware at his time are apparent from this single image, and underline the visionary
nature of his proposition for BCI . Image reprinted from Vidal (1973) with permission.

1.2. Applications of BCI

Since Vidal first introduced BCI, an array of applications has been investigated. The single most
prominent application that has fueled BCI research is that of an AT for the paralyzed (Birbaumer
et al., 1999; Millán et al., 2010). The thought of allowing the completely paralyzed another chance
at communication is compelling. With the BCI technology maturing, several other areas of
application have been added. Here, they are grouped into three categories, focussing exclusively
on human application.

1.2.1. BCI as an Assistive Technology

The term assistive technology (AT) refers to “any item, piece of equipment or product system
whether acquired commercially off the shelf, modified, or customized that is used to increase,
maintain or improve functional capabilities of individuals with disabilities” (Cook et al., 2008, and
references therein). AT is thus used to regain some of the lost functions such as activities of daily
living, sensation, communication, mobility, or manipulation. A recent survey including 77 AT
users, and potential BCI end-users, evaluated the types of AT they used and the areas where they
wished to increase their independence (Zickler et al., 2009). Not surprisingly, research into BCI as
an AT overlaps with these user needs.

The majority of users stated they wantedmore independence in mobility. Mobility has been
addressed by BCI through control over a wheelchair (Galán et al., 2008; Mandel et al., 2009), or
virtually, by remote controlling telepresence devices (Cincotti et al., 2008b; Escolano et al., 2012;
Escolano et al., 2010; LaFleur et al., 2013; Tonin et al., 2011). Users were least satisfied with their
current AT for manipulation. BCI research onmanipulation, often referred to as motor restoration
or motor substitution, has been particularly successful in invasive animal studies (Carmena
et al., 2003; Nicolelis, 2003). Nevertheless, progress has been made for human application too,

2



1.3. The End-User of BCI Assistive Technology

controlling a prosthetic device or a paralyzed limb through BCI (Birbaumer et al., 2007; Collinger
et al., 2013; Hochberg et al., 2006; Mattia et al., 2013b; Pfurtscheller et al., 2003; Rohm et al., 2013).

Five users stated that entertainment is amongst the most important contributions of AT, some-
thing that is only recently being addressed in the field of BCI (Blankertz et al., 2010; Holz et al.,
2013a; Münßinger et al., 2010; Tangermann et al., 2009). 17 users ranked access to the internet as
important; several BCI controlled browsers have been proposed in literature (Bensch et al., 2007;
Karim et al., 2006; Mugler et al., 2010; Yu et al., 2012). Additionally, many studies have investigated
the general BCI control over a computer cursor (Blankertz et al., 2003; Hill et al., 2006; Kübler
et al., 2005; Piccione et al., 2006; Silvoni et al., 2009; Wolpaw et al., 2004). Providing such direct
control over a cursor potentially gives access to many different AT applications. Another type of
AT application that has been investigated is domotic control (Aloise et al., 2011; Cincotti et al.,
2008b; Karmali et al., 2000), allowing end-users independent living.

However, the single most important research direction in BCI as an AT, and the one central to
this thesis, is BCI aided communication (Birbaumer et al., 1999; Blankertz et al., 2006; Combaz
et al., 2013; Donchin et al., 2000; Farwell et al., 1988; Kübler et al., 2009; Neuper et al., 2003; Nijboer
et al., 2008b; Sellers et al., 2006a; Sellers et al., 2010; Townsend et al., 2010). Communication is the
basis for several items in the AT survey (for instance “expression of thoughts” and “participate in
social life”) which collectively score high in areas where the AT users desired improvement. Users
thus express a real need for AT- or BCI-aided communication.

1.2.2. Clinical Applications of BCI

The concept of willful generation of a specific mental state, or brain pattern, has found appli-
cations outside of the area of AT. Recently, several studies have used BCI technology to detect
consciousness in vegetative state patients (Chatelle et al., 2012; Cruse et al., 2011; Lulé et al.,
2013; Müller-Putz et al., 2012; Owen et al., 2006; Pokorny et al., 2013), showing that a minority of
vegetative state patients retains at least some level of cognitive awareness. Furthermore, it has
been used to aid in proper rehabilitation (Daly et al., 2008; Dobkin, 2007), in particular during
stroke recovery (Ang et al., 2010; Broetz et al., 2010; Mattia et al., 2013a; Mattia et al., 2013b; Silvoni
et al., 2011). Using BCI technology, proper brain activity can be retrained on the affected motor
cortex during rehabilitation.

1.2.3. Non-Medical Applications of BCI

Non-medical uses of BCI technology have recently emerged; see Blankertz et al. (2010) for a
review. Amongst a large array of imaginable applications are mental state monitoring (Haufe et al.,
2011; Kohlmorgen et al., 2007; Müller et al., 2008; Schultze-Kraft et al., 2013; Zander et al., 2011a),
gaming (Finke et al., 2009; Krepki et al., 2007; van de Laar et al., 2010; Lalor et al., 2005; Nijholt
et al., 2009) and image clustering (Gerson et al., 2006; Hild ll et al., 2010). However, the limited
bandwidth of current BCIs has thus far prevented it from becoming a primary communication
channel for healthy users.

1.3. The End-User of BCI Assistive Technology

BCIs hold the promise of allowing those with (near-)complete paralysis another chance at com-
munication or (environmental) control. Such paralysis is called locked-in syndrome (LIS) if all
but oculomotor functions are compromised. If this last voluntary control is lost too, the condition
is called completely locked-in syndrome (CLIS) (Bauer et al., 1979). For both conditions, a BCI

3



1. Introduction

may be the only form of independent expression. But even for patients with less severe paralysis,
residual motor functions may fatigue quickly, and they may be augmented by BCI.

So far, BCI research has primarily targeted end-users suffering from late stage amyotrophic lat-
eral sclerosis (ALS) (Birbaumer et al., 1999; Marchetti et al., 2013; Nijboer et al., 2010; Nijboer et al.,
2008b; Riccio et al., 2013; Sellers et al., 2006a; Townsend et al., 2010), a neurodegenerative disease
with short life-time expectancy after diagnosis. The median survival time after tracheostomy, the
time were a BCI is most relevant, has been reported at 21 months (Vianello et al., 2011). For ALS,
the course of progression varies widely between patients, but the symptoms are rather similar.
In the final state, the patient loses all reliable, voluntary muscle control (Caroscio et al., 1987). It
was long assumed that cognitive functions remain largely untouched, but several recent findings
have challenged this concept (Phukan et al., 2012; Ringholz et al., 2005; Sarro et al., 2011). They
state that a range of cognitive changes are associated with ALS, although this is difficult to assess
systematically for patients in the locked-in state. Nevertheless, the symptoms largely overlap with
ALS patients.

Interestingly, the largest cause of LIS is brainstem damage caused by stroke or physical injury
such as traumatic brain injury (TBI) (Laureys et al., 2005). There is a large population of people
suffering from the consequences of stroke or TBI, for which a BCI may be desirable (León-Carrión
et al., 2002). The yearly mortality rate for TBI patients that survive the first six post-traumamonths
is estimated to be only 1.3 times higher than that of the general population (Brown et al., 2004).
For first-time stroke patients that survive the first 30 post-incident days, the mortality rate is
estimated at about 2.3 times that of the general population (Dennis et al., 1993). It is highest for
immobile patients, due to an increase in secondary causes of death, such as circulatory problems.
Still the life expectancy is in the order of decades once the chronic phase has been entered. In the
light of this it seems odd that end-users with LIS or CLIS due to stroke or TBI have thus far only
played a minor role in BCI research.

1.4. EEG-Based Brain-Computer Interfaces
Various neuroimaging techniques have been explored in BCI research. Impressive results are
obtained with invasive techniques such as intracortical recordings (Carmena et al., 2003; Collinger
et al., 2013; Nicolelis, 2003) and electrocorticoography (ECoG) (Leuthardt et al., 2004; Schalk et al.,
2008). They feature high spatial- and temporal resolutions due to their proximity to the brain,
but application is cumbersome as a surgical procedure is required. Non-invasive methods are
more straight-forward in their application. Though both functional magnetic resonance imaging
(fMRI) andmagnetoencephalograpy (MEG) have been investigated for BCI application (Buch et al.,
2008; Mellinger et al., 2007; Weiskopf et al., 2004), they are unpractical for end-user applications
due to their large size and high cost. Newer imaging methods such as functional near-infrared
spectroscopy (NIRS) have great end-user potential (Coyle et al., 2004; Fazli et al., 2012; Sitaram
et al., 2007), but have thus far played a minor role.

Therefore, the single most widely investigated neuroimaging method in BCI research is elec-
troencephalography (EEG) (Mason et al., 2007). It measures electrical potentials, generated in
the brain, on the surface of the scalp (see Section 2.2.1). EEG has a high temporal resolution, the
equipment is small and it is cost efficient. Themajor drawback of EEG is the relatively poor spatial
resolution; focal brain activation can be picked up by distant EEG sensors. As this limitation is
intrinsic to the EEG signal, it has to be dealt with methodologically (Blankertz et al., 2008; Cincotti
et al., 2008a; Haufe, 2011; Sannelli, 2012).

Despite these shortcomings, EEG-based BCIs have come a long way towards practical applica-
bility. In fact, most of the studies mentioned in Section 1.2 are EEG-based and have started to have
a real impact on the end-users’ life (Sellers et al., 2010; Vaughan et al., 2006). For healthy users,
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EEG-based BCIs were reported with communication speeds > 100 bits per minute (bits/min) (Bin
et al., 2011; Tonet et al., 2008) and >10 characters per minute (char/min) (Volosyak, 2011), clearly
demonstrating the potential of EEG as an imaging technology for BCI. Recent advances in EEG
hardware towards dry electrodes and wireless data transmission further increase the potential of
practical BCI applications based on EEG (Grozea et al., 2011; Popescu et al., 2007; Ruffini et al.,
2007; Zander et al., 2011b).

The work presented in this thesis is based on EEG and the discussion is therefore focussed on
EEG-based BCI.

1.4.1. ERP-Based BCI

BCI paradigms can roughly be divided by their dependence on exogenous stimulation. Highly
investigated paradigms, independent of such stimulation, are the motor imagery (MI) paradigm
and paradigms based on other imagination tasks (Blankertz et al., 2007; Cruse et al., 2011; Kübler
et al., 2005; Müller-Putz et al., 2005; Wolpaw et al., 2004). They rely on the reduction in syn-
chronicity of an active brain area, called event-related desynchronization (ERD) (Pfurtscheller
et al., 1999). MI-based systems provide an asynchronous, continuous output signal that is optimal
for applications such as motor control (Pfurtscheller et al., 2003; Rohm et al., 2013) and object
manipulation (Galán et al., 2008; LaFleur et al., 2013; Wolpaw et al., 2004). Unfortunately, they
often require elaborate training and are suboptimal for discrete tasks.

Communication, more concretely text writing, is one such tasks that allows for discretization.
Even though ERD has been successfully used to drive spellers (Blankertz et al., 2006; Müller et al.,
2006; Wills et al., 2006), ERP-based BCIs seem a more natural choice. They rely on exogenous
stimulation to elicit ERP responses in the subject’s brain that carry information on the subject’s
intention (see Section 2.2.2). Instead of a continuous output signal, a class decision is made after
a series of such stimuli, thereby delivering a discrete command signal.

The most widely investigated ERP-based BCI application is the visual matrix speller. It was
first introduced by Farwell et al. (1988), and popularized ERP-based BCI. In their classic spelling
application, the letters of the alphabet were displayed in a grid on the screen. Rows and columns
were (pseudo) randomly highlighted by simply increasing the brightness for a few hundred
milliseconds. The subject’s task was to attend to, and often gaze at, the symbol he wants to select
and count the number of times the attended symbol is highlighted. Each row and column were
intensified several times for one selection and the results were integrated. Though this repetition
reduces the number of selections that can be made per minute, it increases the accuracy (thus
exposing a trade-off that is intrinsic to ERP-based BCIs). In fact, it was estimated that just short of
90% of healthy subjects can control this interface with an accuracy >80% (Guger et al., 2009).

The basic concept behind the visual matrix speller has been adapted numerous times, changing
the interface (Cincotti et al., 2008b; Kaufmann et al., 2011; Kaufmann et al., 2013b; Münßinger
et al., 2010; Treder et al., 2011), stimulation pattern (Bießmann, 2007; Tangermann et al., 2011;
Townsend et al., 2010), or stimulation modality (Belitski et al., 2011; Furdea et al., 2009; Klobassa
et al., 2009; Kübler et al., 2009). Nevertheless, the focus has been on visual applications andmostly
employ overt attention; they allow the subject to gaze directly at the item they want to select.

Both rhythmic activity of the brain and ERP were already discussed in the context of BCI in
Vidal’s landmark paper (Vidal, 1973), but they were later popularized by other groups (Farwell
et al., 1988; Pfurtscheller et al., 1999). Thoughmore paradigms have been investigated, they are
mostly derived from these two classes of paradigms.
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Table 1.1.: State of the art in covert attention, ERP-based BCI. Caption continued on opposite
page.

Class Sel. Acc. ITR Symb/min Online End-user
Visual
Kelly et al. (2005) 2 79.5 4.60
Acqualagna et al. (2010) 30 90.0 3.96† 0.80†

Treder et al. (2010) 6 60.0+ 1.99† 0.09†

Liu et al. (2011) 36 96.3 5.38† 1.00¶ £
Treder et al. (2011) 6 97.1+ 9.15† 1.88† £
Aloise et al. (2012) 36 77.8 5.60† 1.75¶ £
Schaeff et al. (2012) 6 96.2+ 8.98† 1.85 £
Acqualagna et al. (2013) 30 93.6 7.00 1.43 £
Marchetti et al. (2013) 4 71.4 5.11 £ £

Tactile
Müller-Putz et al. (2006) 2 66.4 0.42† £
Zhang et al. (2007) 2 63.0 0.30†

Brouwer et al. (2010) 6 70.0¶ 3.71 £
van der Waal et al. (2012) 6 79.0 4.52† 0.97† £
Kaufmann et al. (2013a) 4 50.0 0.26† £ £

Auditory
Hill et al. (2004) 2 82.3 1.71†

Sellers et al. (2006a) 4 65.9 0.19† £
Farquhar et al. (2008) 2 64.3 0.72†

Kanoh et al. (2008) 2 65.0 0.79†

Furdea et al. (2009) 25 65.0+ 1.54 0.16 £
Guo et al. (2009) 8 89.1 2.80†

Kübler et al. (2009) 5 37.4 0.08† £ £
Klobassa et al. (2009) 36 59.4+ 1.25† 0.11† £
Halder et al. (2010) 2 76.5 1.70
Gao et al. (2011)‡ 5 80.0 2.06†

Höhne et al. (2011b)‡ 9 89.4 4.23 0.89 £
Kim et al. (2011b) 2 71.4 0.25† £
Hill et al. (2012b) 2 84.8 1.93† £
Hill et al. (2012a) 2 79.9 0.87† £
Lopez-Gordo et al. (2012) 2 69.0 1.49
Cai et al. (2013)‡ 8 70.5 4.40†

Käthner et al. (2013)‡ 25 66.0+ 2.76 0.37† £
Nambu et al. (2013)‡ 6 89.0 0.95†

de Vos et al. (2014) 2 71.0 1.07
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Table 1.1.: Caption continued from opposite page. Values with a † are not given in the original
article and are estimated from available data. If not explicitly stated, an overhead of five
seconds was assumed. Values with a ¶ are estimated from figures. Studies marked with
a ‡ includemore than two spatial locations as a key feature in their paradigm. Selection
accuracies (Sel. acc.) marked with a + indicate two-level spellers where the accuracy
was given on the character level; selection accuracy is typically higher. Only one result
per publication is given, and preference is given to end-user and online results. Results
are calculated for the full number of iterations, ignoring offline optimization by picking
an optimal number of iterations. Studies where neither the accuracy, the information
transfer rate (ITR), nor the symbols/minute were given or could be calculated are
omitted. For multiple publications of the same study only the first appearance is
included. Bold printed studies were published prior to the first contribution of this
thesis (Schreuder et al., 2009).

1.5. Covert Attention-Based BCI

The ERP-based BCIs mentioned so far are mostly based on the visual modality and overt attention.
They are by far themost investigated type of BCI and have been successfully applied in the clinical
setting. However, several recent studies have shown that they may not cover the full range of
end-user needs. Two basic studies showed that the performance on the visual matrix speller
breaks down severely for users that can not exert their overt attention, i.e. that can not direct
their eye-gaze (Treder et al., 2010; Brunner et al., 2010). The same was shown in a single end-user
case-study (RamosMurguialday et al., 2011). The findings of a large-scale survey, held under 61
end-users suffering from ALS further indicated that at least 26% of the end-users showed vision
impairment (Huggins et al., 2011). This warrants the need for alternative BCIs, based on covert
visual attention or on a different modality altogether.

Table 1.1 gives an overview of the current state of the art in covert attention, ERP-based BCI in
terms of their selection accuracy (see Section 2.6.2), bitrate (see Section 2.6.4) and, if applicable,
writing speed (see Section 2.6.5). As several entries were not provided by the original authors, they
were estimated from other available data or figures. It therefore serves as a rough indication of the
current state of the art only. The studies printed in bold represent the state of the art prior to the
first contribution from this thesis (Schreuder et al., 2009), and studies marked with ‡ use more
than two spatial locations in their paradigm. The majority of studies in Table 1.1 is reviewed in a
recent paper by Riccio et al. (2012a) (see also Treder (2012) and Brunner et al. (2013)).

Table 1.1 exposes several trends in research on covert attention-based BCIs. First and foremost,
of all studies, only four were tested with end-users. The fact that those studies reported relatively
low performances is a clear indication of the necessity to design BCIs for, and test them with
those end-users. Second, the performance in general is much lower than those reported for overt
attention-based BCIs (see Section 1.4.1). Third, covert visual paradigms typically score higher
than their tactile and auditory counterparts. Fourth, many auditory BCI studies are fundamental
in nature, and have not been applied online. And last, relatively little work is done on covert
attention-based BCI prior to the first contribution from this thesis (Schreuder et al., 2009).

Visual paradigms that rely on covert attention are typically achieved by placing all items around
a central fixation point, each with an equally small distance to that point (Aloise et al., 2012; Aloise
et al., 2013; Liu et al., 2011; Marchetti et al., 2013; Treder et al., 2010; Treder et al., 2011). That
way, all stimuli are represented equally on the fovea. Though this successfully negates the need to
foveate the target, it does require the user to maintain focus on a single point. This requirement
was partially lifted by the presentation of all items on the same, central position on the screen
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(Acqualagna et al., 2011; Acqualagna et al., 2013; Treder et al., 2011), thereby not biasing any class
in particular when drifts of eye gaze occur. Alternative visual paradigms use other stimulation
types such as steady-state visually evoked potentials (SSVEP) (Kelly et al., 2005; Zhang et al., 2010)
and motion visual evoked potential (MVEP) (Schaeff et al., 2012).

Other researchers have moved away from the visual domain altogether, using tactile or auditory
stimulation. Although artificial conditions could be conceived where overt attention is used for
these modalities, they typically are inherently covert in nature. Several studies proposed tactile
stimulation for eliciting ERPs (Brouwer et al., 2010; Kaufmann et al., 2013a; Ortner et al., 2013;
Thurlings et al., 2012; van der Waal et al., 2012), steady-state somatosensory evoked potentials
(SSSEP) (Müller-Putz et al., 2006; Zhang et al., 2007) and as feedback to other tasks (Chatterjee
et al., 2007; Cincotti et al., 2007). Though they have received relatively few attention, a recent case
study showed that a tactile paradigm actually outperformed visual and auditory paradigms offline
for a single locked-in patient (Kaufmann et al., 2013a).

1.5.1. Auditory BCI
Another modality for covert BCIs, and the one central to this thesis, is the auditory modality. In
visual spellers, the stimulus and the class (character) are equivalent; the mapping from stimulus
to class is explicit. Auditory BCI, as well as tactile BCI, often have the problem that this mapping
is only implicit; a character is represented by a tone, environmental sound or tactor location. In
the strict case it is up to the user to keep track of this mapping, which could increase the mental
demand (Riccio et al., 2012a).

Several studies used the auditory modality purely as feedback on an different task (Hinterberger
et al., 2004; Nijboer et al., 2008a; Pham et al., 2005; Rutkowski et al., 2006). They are not in the focus
of this thesis. Those studies that do use the auditory domain for stimulation can be categorized
as streaming or sequential (Hill et al., 2012b), depending on how the stimuli are presented. In
streaming paradigms, the stimuli for all classes are streamed in parallel, whereas stimuli for the
different classes are presented one after the other in sequential paradigms. As a rule of thumb,
ERP-based BCIs are sequential and BCIs based onsteady-state auditory evoked potentials (SSAEP)
are streaming.

Streaming Auditory BCI The first auditory BCI was reported by Hill et al. and used the stream-
ing principle (Hill et al., 2004; Hill et al., 2005). Two sequences of target and non-target stimuli
were presented, one to each ear. They could successfully classify to which of the two ears the
subjects were paying attention, resulting in a binary BCI. It was recently validated online (Hill et al.,
2012b) and a similar principle was used to drive a continuous BCI application (Hill et al., 2012a).
A comparable approach was taken by Kanoh et al. (2008). However, both streams were presented
to the same ear, relying on the human capacity for stream segregation to elicit discriminative
responses. Though these studies employed simple tonal stimulation, more complex stimuli such
as natural speech have also been tested in this context (Lopez-Gordo et al., 2012).

Other streaming paradigms rely on the SSAEP, also referred to as auditory steady-state response
(ASSR) (Desain et al., 2006; Farquhar et al., 2008; Hill et al., 2012b; Kim et al., 2011a; Kim et al.,
2011b; Lopez et al., 2008). The concept of SSAEP relies on the fact that if a subject is presented
with a continuous auditory tone, the frequency of that tone is enhanced in the spectrum of the
EEG (similar to SSVEP and SSSEP). By presenting several such tones in parallel, the user can
choose to direct his attention to one of them, thereby enhancing that frequency’s trace in the EEG
more in comparison to the remaining stimuli. The ability to classify this effect is fundamental to
SSSEP-based BCIs.

Though Kanoh et al. (2008) suggest that human stream segregation can deal with more than
two streams, to date no streaming auditory paradigm was published with more than two classes.
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In the context of communication, the resulting binary BCI is potentially too slow, as a multitude
of decisions is needed to effectively communicate a single character.

Sequential Auditory BCI Most of the work in auditory BCI has focused on sequential para-
digms. They are a variation of the typical oddball paradigm (see Section 2.2.2.1). Two or more
auditory stimuli differ on some defining property, allowing the user to pick a target and focus on
appearances of that target. These stimuli typically consist of tones that differ in pitch or loudness
(Halder et al., 2010; Höhne et al., 2010b; Höhne et al., 2011b; de Vos et al., 2014). The simplest
sequential paradigm that is BCI applicable is the two-target oddball paradigm (see Section 2.2.2.1),
leading to a binary BCI (Halder et al., 2010; de Vos et al., 2014). Binary sequential auditory BCI
are in fact used in the clinical setting to probe the inaccessible minds of vegetative state patients,
rather than for full communication purposes (Lopez-Gordo et al., 2011; Pokorny et al., 2013).
However, the true benefit of sequential auditory BCI lies in the fact that they are readily extended
to a multiclass setting by adding targets; effectively, all stimuli are then presented equally often
and each one can be selected as the target. Using this principle, the visual matrix speller (Farwell
et al., 1988) was transferred into the auditory domain (Furdea et al., 2009; Käthner et al., 2013;
Klobassa et al., 2009; Kübler et al., 2009). Other studies made use of the same principle using
a different spelling interface (Höhne et al., 2011b), or without any direct application (Cai et al.,
2013; Gao et al., 2011; Guo et al., 2010; Guo et al., 2009; Nambu et al., 2013). Apart from simple
tones, other defining features have been tested for the purpose of facilitating recognizability and
reducing mental workload. The introduction of one such features is the central theme of this
thesis.

1.6. The Typcial Design Chain in BCI
BCI research is a highly interdisciplinary field, with strong influences from engineering. Nev-
ertheless, until recently the design of a BCI has not followed any formalized design principles.
Still, there appears to be a consensus amongst researchers on a typical cascade of design steps.
Depending on the target population, two or three steps can be distinguished as follows.

Step 1: Offline Healthy Subject Tests - A BCI is typically defined as a closed loop system, providing
the subject with immediate feedback. Nevertheless, it is often possible to show a specific effect or
the feasibility of a particular paradigm in principle, without providing such immediate feedback.
It is often easier to implement and the experimental parameters can be better controlled. Such
an experiment is referred to as offline, because any analysis of the data typically is done after the
recording is finished.

Step 2: Online Healthy Subject Test - Though offline validation can in principle show a particular
effect, the loop was not closed and the subject did not receive feedback. Any psychological effect
of such feedback is thus not accounted for. For this reason, and for concerns over inproperly
executed offline data analysis, a large number of BCI researchers consider an online validation
the ultimate test for BCI technology. Though proper offline data analysis is of course possible, it
can not account for the subject’s behavior in a closed loop system.

Step 3: Online End-user Tests - The last step is testing the BCI with the envisioned target
population. As a fast majority of BCIs is proposed as an AT for severely paralyzed end-users, this
means that those end-users should be included in the testing protocol. Irrespective of the clinical
diagnosis, end-users should be as close to the state in which they would benefit from a BCI as is
practically possible. Due to the progressive nature of the disease, end-users that are in the early
phases of ALS may not represent those at a later stage particularly well. Similarly, a fully able
stroke or TBI patient is unlikely to use a BCI for communication, making him an inappropriate
subject for end-user tests.
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Step one and two could in principal be omitted, instead performing the tests with the end-users
directly. However, as the time with such end-users is often limited, step one and two are used for
prototyping a paradigm. Design decisions made at each step, including step three, can and should
be re-evaluated to optimize the performance. The design chain is therefore recurrent; often a step
is repeated several times to validated the adjusted design decisions.

Recently, the concept of user-centered design (formalized in ISO 9241-210, 2010) has entered
the field of BCI (Friedrich et al., 2013; Holz et al., 2013b; Schreuder et al., 2013b; Zickler et al., 2013).
Amongst other things, it states that a technology should be designed with a deep understanding of
the end-user, end-users should be involved in each step of the design process, the design should
be driven and refined by end-user evaluation, and the process should be iterative. This does not
mean that the introduced design chain becomes obsolete; in fact it already facilitates the iterative
process and the end-user can be involved in many ways, both quantitatively and qualitatively.
However, the BCI specific knowledge that is required for a deep understanding of any end-user is
largely missing. Step three of the above chain should therefore not only be used to test a particular
system, but also to generate this much needed information.

1.7. Scientific Hypotheses
The current state of the art in BCI, as described above, is the result of 40 years of research and
is starting to impact the lives of end-users. The most investigated overt attention-based, visual
ERP BCIs work well for healthy subjects and a subset of end-users. Nevertheless, they exclude a
particular subset of end-users that is unable to employ their overt visual attention. Thus, there is
a real need for alternatives that allow inclusion of these end-users.

Reports on such covert attention-based BCIs are few and far between. They are typically
binary in nature and provide a communication channel with very low capacity. Increasing the
number of classes can increase the efficiency of a communication channel, but it was thus far not
straightforward without relying on overt attention. Moreover, end-user tests are missing almost
entirely. This thesis proposes, and carefully validates, two key contributions that potentially
increase the usefulness of covert attention-based BCIs and ERP-based BCIs in general.

The first contribution is a new auditory BCI paradigm called AMUSE (short for Auditory MUlti-
class Spatial Event-related potential). It builds on the ability of human spatial hearing, to allow for
a truly multiclass, auditory BCI. The hypotheses for this contribution are as follows

i subjects can focus on one amongst several spatial stimuli,

ii spatial stimuli alone are sufficient to elicit binary-class discriminative ERPs,

iii with spatial stimuli, a covert attention-based, auditory multiclass BCI can be realized,

iv spatial stimuli allow for useful BCI performance in a strictly auditory setting for healthy
subjects and end-users.

The second contribution of this thesis addresses the trade-off between speed and accuracy
that is intrinsic to any ERP-based BCI (both overt and covert). A new method is proposed for
dynamically optimizing this trade-off (called rank diff) and it is validated online. Furthermore, it
is compared to several methods previously proposed in literature. Not only does this comparison
put rank diff in perspective, but it provides evidence for the value of such methods in general. The
hypotheses for this contribution are as follows

v properly dealing with the speed / accuracy trade-off increases performance significantly,

vi smart methods outperform simply picking an “optimal” number of stimuli.

These six hypotheses form the basis of this thesis and are carefully validated in several experiments.
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1.8. Outline of This Thesis
Following this introduction, the thesis is structured as follows. Chaper 2 first introduces the
fundamental concepts of spatial hearing and neurophysiology. It then continues by introducing
some notation and the BCI processing chain, along with several methods and metrics that are
used throughout the rest of the chapters. In Chapter 3, the fundamental concepts behind AMUSE
are carefully validated, both behaviorally and neurophysiologically, addressing hypotheses i and
ii. By measuring several conditions, the boundaries of the AMUSE paradigm are investigated, and
the unique contribution of the spatial feature is determined. All experiments in this chapter are
offline; subjects did not get direct feedback on their actions.

After having confirmed the usefulness of the spatial stimuli offline, AMUSE is validated online
with healthy subjects in a spelling application in Chapter 4. It addresses hypothesis iii and hypoth-
esis iv for healthy subjects. As the majority of healthy subjects is successful in communicating
with the AMUSE-based speller, the next step is to test the AMUSE-based speller with end-users
in Chapter 5. Five end-users are tested over several sessions, addressing the second part of hy-
pothesis iv. The results are put into context through a single-subject comparison with an overt
attention-based, visual BCI study.

The second contribution and hypotheses v and vi are addressed in Chapter 6. First, using a
similar setup as in Chapter 4, the rank diff method is validated online, showing a substantial
performance gain. Consecutively, it is tested in an offline comparison, along with several methods
proposed in literature, using artificial and pre-recorded EEG data. Results clearly show the benefit
of dynamic methods on the BCI performance.

Finally, the results are summarized and the impact of the work presented in this thesis is
addressed in Chapter 7.
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2. Fundamentals

This chapter introduces some of the fundamental principles that are used throughout this thesis.
First, two concepts that are essential to this thesis are explained in more detail, starting with the
human ability of spatial hearing and continuing with the fundamentals of (human) neurophysiol-
ogy. The latter is highly focussed on EEG as a brain imaging tool and includes an introduction of
the classical oddball paradigm.

After these conceptual descriptions, the concrete tools for interpreting the remaining chapters
are provided. First, a set of notations and terminology is introduced that is used throughout this
thesis. Subsequently, details are given on the typical BCI processing pipeline that forms the basis
for all experiments. In an attempt to reduce redundancy, only changes to this archetypical setup
are described in the methods section of each individual experiment. At the end of this chapter,
several methods andmetrics are introduced that are used throughout the rest of this thesis. At
such points where these are used, the reader is referred back to this chapter for details.

2.1. Human Spatial Hearing

The heavy bias in BCI research towards the visual modality in BCI research (see Section 1.4.1) is
understandable, as humans are highly visual creatures. Our ‘nominal’ visual resolution, also called
acuity, is about 1’ (or 1/60th of a degree) (Westheimer, 1965). This translates to distinguishing
two lines that are roughly 1.75mm apart, at 6 meters distance; a remarkable capability. In
comparison, the minimum audible angle (MAA) is about two orders of magnitude worse, with
the lowest recognizable differences being >1± (Blauert, 1996). This spatial resolution is found
only under optimal conditions and for displacements around the frontal direction, where the
spatial resolution is highest. Towards the lateral positions, this resolution worsens when tested
behaviorally (Makous et al., 1990; Mills, 1958).

Nevertheless, localization of sounds in space is one of the processes that our brain does con-
tinuously and with minimal mental effort, and it has been the topic of extensive research (for
in-depth reviews, see Middlebrooks et al. (1991) or Blauert (1996)). Furthermore, it was shown
that the spatial resolutionmight be improved if the user is cued about the location. When subjects
focus on a particular direction, their attentional resources appear to be distributed in a gradient
around that direction, with decreasing alertness when moving away from the attended direction
(Mondor et al., 1995; Teder-Sälejärvi et al., 1998). Furthermore, a recent EEG study shows that
the brain might register smaller differences for lateral positions, even when this does not show
behaviorally (Bennemann et al., 2013).

The location of a sound source in the spatial field around a listener (origin) is defined by three
dimensions (see Figure 2.1). The horizontal plane runs through both ear canal entrances and the
lower part of the eye sockets. The location on this plane is defined by the azimuth angle away
from the frontal direction, with the far right being defined as 90 ± azimuth. The vertical axis is
called elevation, which is measured by the angle between the source and the horizontal plane.
The third factor is the distance from the observer. In this thesis, all sources are on the horizontal
plane (zero elevation) and have equal distance within an experiment. They can thus be uniquely
described by their azimuth angle.
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2. Fundamentals

Figure 2.1.: Sound source locations are divided by three planes, crossing halfway between the
listener’s ear. Any source can be defined by its azimuth angle on the horizontal plane,
its elevation angle off the horizontal plane and its distance from the listener.

The localization of a source on the horizontal plane depends on bi- andmonaural cues. Binaural
cues are typically most salient for lateralization of a source (left vs. right). The interaural timing
differences (ITD) cue is based on the fact that the distance between a source and the ear is different
for both ears, for all sources that are off the median plane. This difference causes a phase-shift
in the signal perceived at each ear, which can be exploited mainly for low-frequent sounds (up
to 1-1.3KHz). At the same time, for sources that are off the median plane, either one of the ears
is (partially) shadowed by the head, causing a reduced intensity of the sound, called interaural
level differences (ILD). The ILD effect provides the localization information for higher frequencies,
roughly >3 KHz. This is often referred to as the “duplex theory” of sound localization and was
introduced as early as 1907 by Lord Rayleigh (Rayleigh, 1907).

Sources that have similar angular displacement around -90 ± or 90 ± azimuth (the frontal plane)
provide ambiguous binaural cues. For instance, sources at 80 ± and 100 ± azimuth have similar
ITD and ILD; the paths to both ears are each equal in length and the shadowing of the head is
similar. In fact, this ambiguity extends for positive- and negative elevations on a circle trough
these points and parallel to the median plane. The effect of this so-called “cone of confusion”
(Woodworth, 1938) is particularly strong for positions close to the frontal plane (Carlile et al.,
1997; Makous et al., 1990). Sources on the cone of confusion are resolved in different ways. First,
using slight head movements, the path lengths are changed and the ITD and ILD effects become
unambiguous (Thurlow et al., 1967; Wallach, 1940; Wightman et al., 1999). But even without such
headmovements, broadband sound sources on the cone of confusion that contain high frequency
components can be disambiguated by differences in the reflections on the outer ear (monaural
cues) for different source positions (Batteau, 1967; Hofman et al., 2003). Particularly important for
resolving front-back ambiguities are the components in the high frequency range (HFR) above
8 kHz (Langendijk et al., 2002).

Sounds with a complex spectrum containing high frequent noise are typically better localized
(Roffler et al., 1968), in particular when they have a sharp onset, causing attack transients (Hart-
mann, 1983; Rakerd et al., 2005). The latter was shown to trigger “the precedence effect” (Wallach
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2.2. Neurophysiology

Figure 2.2.: View on the left hemisphere of a model of the human brain. Indicated are the
rough division into four lobes and the cortical areas involved in primary audi-
tory processing. Image generated using BrainVoyager Brain Tutor (available at
http://www.brainvoyager.com/).

et al., 1949) for localization in reverberating environments.
In psychophysics, the goal is to understand the relationship between a physical stimulus and

the resulting perceptions and sensations. For human spatial hearing, the paradigms are tradi-
tionally designed to find the limits of the localization capacity, typically tested under artificially
optimal conditions such as anechoic chambers. For determining theMMA, two sounds are played
concurrently or in close temporal proximity and the subject is asked to judge if their sources
overlap or not (Mills, 1958; Perrott, 1984; Perrott et al., 1990). By varying a source around a
reference source, the MMA is determined for the reference source. In other paradigms, sounds are
played from varying sources and the subject is requested to indicate the perceived location of the
source. The angle between the true- and reported source is the measure of the spatial resolution
of human sound localization (Makous et al., 1990; Oldfield et al., 1984).

2.2. Neurophysiology
Neurophysiology is the study of the functioning of the brain and the nervous system at large.
The brain is a vastly complex organ that is involved in all but the most automatic tasks and
emotions. Here, only the fundamentals of neurophysiology are introduced that are necessary for
understanding EEG recordings. Due to the textbook nature of this section and Section 2.2.1, the
reader is referred to Kandel et al. (2012) or ten Donkelaar et al. (2011) for details and individual
references.

The nervous system can roughly be divided into seven parts, including the spinal cord, the
cerebellum and the brain stem. Here, the focus is on the cortical layer of the cerebrum, or simply
cortex, as the EEG almost exclusively reflects signals originating here. The cerebrum has two
hemispheres, and its cortical sheet is anatomically divided into four lobes (see Figure 2.2). These
four lobes also indicate a first rough functional division. For instance, the occipital lobe is almost
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2. Fundamentals

Figure 2.3.: Fundamentals underlying the generation of the EEG signal. A and B are early draw-
ings of Santiago Ramón y Cajal, showing an individual pyramidal neuron (A) and
the laminar organization of the cerebral cortex (B) roughly on the same scale. The
apical dendrites of the pyramidal cells are oriented perpendicular to the scalp (top),
explaining their contribution to EEG. C shows a schematical representation of the
origins of EEG resulting from an excitatory PSP. The pyramidal cell body lies in
layer V of the cortex and the apical dendrites extend into layer I. C is adapted from
http://quizlet.com/13012152.

exclusively involved in the processing of visual input. The remaining three lobes have more
diverse functions, often coinciding with differences in cytoarchitectual organization of the cortex
as reported by Brodmann (1909). The cortical areas responsible for the processing of auditory
events are located on the superior part of the temporal lobe (see Figure 2.2). The cortex forms the
outer layer of the cerebrum, and is closest to the skull. It is highly wrinkled, thereby increasing its
surface.

The primary functional units of the brain are neurons (see Figure 2.3-A). Neurons are electrically
charged cells that maintain a resting potential of roughly -70mV by actively pumping charged ions
across their cell membrane. Both the intra- and extracellular environment contain high amounts
of charged ions in different relative concentrations. The cell membrane, which is otherwise
impermeable to such ions, functions as a capacitor with ions of opposite polarity lining up along
the cell membrane due to their electrical attraction. A large portion of the neurons in the human
brain are located in the cortex in a laminar fashion (see Figure 2.3-B).

Neurons are interconnected through synapses, both inhibitory and excitatory. Communication
at the synapse is most commonly chemical; the presynaptic cell releases neurotransmitters into
the synaptic cleft, an area with close proximity to the postsynaptic cell. These neurotransmitters
activate ion channels in the cell membrane of the postsynaptic cell, allowing the exchange of
charged ions and causing a small, transient change in polarization of the postsynaptic cell called
postsynaptic potential (PSP). The PSP travels away from the synapse in the cell’s interior. A single
PSP lasts between 10 and 100ms. Importantly, PSPs can be inhibitory (causing hyperpolarization
of the postsynaptic cell) and excitatory (causing depolarization of the postsynaptic cell) and they
are spatially and temporally additive. Through these connections, the neurons form large-scale
networks, both local and distant.
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Neurons are roughly divided into three functional segments (see Figure 2.3-A). The dendrites
serve as the neurons antennas for incoming signals; the majority of synapses terminates on them.
All dendrites ultimately lead to the cell soma, or cell body, were all incoming PSPs are integrated.
Several excitatory PSPs in close temporal proximity increasingly depolarize the cell body until the
threshold potential of approximately -40 to -55mV is exceeded and an action potential (AP) is
fired. The AP rapidly travels through the axon by means of active propagation and lasts roughly
1ms. The axon terminals again form synapses, releasing neurotransmitters upon an incoming AP
and causing a PSP in the postsynaptic cell.

2.2.1. The Origins of Electroencephalography
The electrical nature of the brain was already investigated and described by Canton (1875). Us-
ing electrodes at the surface of rabbit- and monkey brains, he showed the presence of voltage
deflections, sparking a series of animal experiments. The recording of electroencephalography
(EEG) relies on these electrical potentials, but measures them at the surface of the scalp. The first
human EEG recording was described in a landmark paper by Berger (1929).

The generation of the EEG signal can be summarized as follows (Baillet et al., 2001; Gloor, 1985;
Wolters et al., 2007). The high impermeability of the neuron’s cell membrane to charged ions
divides the brain into the intracellular- and extracellular compartments. Arrival of an excitatory
AP at a distant synapse on the apical dendrite results in a local influx of positively charged ions
into the cell. As a result, the cell’s interior is locally less polarized than the cell body, causing a
primary current within the cell. By the same reasoning, the extracellular compartment locally
becomes more negatively charged, as positive ions are extracted. The primary current is not
measurable with EEG, but it causes a secondary, volume current. Because of the primary current,
the capacitive attraction over the cell membrane along the dendrite temporarily becomes less
strong, thereby freeing extracellular positively charged ions. The existence of both a negatively
charged (source) and a positively charged (sink) area in a conducting volume causes the volume
current. Though some of this volume current takes the shortest path between source and sink, it
also spreads throughout the entire conducting volume and onto the scalp (see Figure 2.3-C).

The volume current resulting from a single PSP is tiny and can probably not be measured at
the surface of the scalp. However, as can be seen in Figure 2.3-B, the cortex is neatly organized.
Many neurons, in particular pyramidal neurons of layer V, have an apical dendrite that is oriented
perpendicularly to the scalp and extends up to layer I. By the principle of co-activation, many of
these neurons receive input roughly at the same time, and their volume currents add up spatially.
Similarly, and due to the relatively long time course of the PSP, PSPs from consecutive APs
terminating on the same cell will add up temporarily. The EEG reflects the concerted activation of
several thousands to millions of neurons.

The combined activation of a patch of cortex is often summarized as a single dipole. The
electrical field on the scalp resulting from a single dipole has a positive and a negative peak. For
parts of the cortex that are on the surface and thus parallel to the surface of the scalp, the volume
current projects directly outwards to the scalp, causing one of the poles to be focal and directly
over the generator. On the other hand, cortical areas that are in a gyrus project to the scalp at an
angle, thus resulting in peak potential fields that are more diffuse and away from the generator.
Furthermore, the EEG always measures a linear mixture of many active sources. Therefore, a
particular scalp activation pattern (see Figure 2.4) can not simply be interpreted as originating
directly underneath the area of peak activation and inverse methods are required to make claims
about the origin of a signal (Haufe, 2011).
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Figure 2.4.: Basic ERP components of the EEG. Data are taken from a single subject from Ex-
periment 5. The first column displays the temporal features of the single channel
indicated in the top-right corner. The second and third columns show the spatial po-
tential distribution for target (second column) and non-target (third column) stimuli,
averaged over the shaded interval in the first column. Intervals are selected according
to Section 2.5.1. The fourth column shows the spatial distribution of binary-class dis-
criminative information for the same interval, as expressed in sAUC (see Section 2.6.3).
Columns two to four are plotted in top-down view, with the nose showing upwards.
In this particular plot, the rows represent different components. However, in the
following chapters they may also represent individual subjects, grand averages or a
mixture of both.

Practically, EEG is measured as the differential signal between two electrodes and thus bipolar.
However, EEG is often recorded unipolar, by recording all channels against a single (pair of) refer-
ence electrode(s). For reproducibility, recording electrodes are placed on the scalp according to a
fixed scheme, for which the extended 10-20 international system is commonly used. Traditional
recording equipment requires a conductive paste to establish an electrical connection between
the electrodes and the scalp, but recently dry electrode systems without the need for gel have
been proposed (Grozea et al., 2011; Popescu et al., 2007; Ruffini et al., 2007; Zander et al., 2011b).
EEG equipment is cheap in comparison to other imaging techniques. Because the volume current
is instantaneously, EEG can be recorded with high temporal resolution.

2.2.2. Event-Related Potentials
The term event-related potential (ERP) refers to a complex of deflections in the EEG following an
event. Many different endogenous or exogenous events can elicit an ERP response, for instance a
tone, visual cue, or motor action. ERPs are both time- and phase-locked to the event, meaning
that each component of the complex has a latency and polarity that is approximately the same
for repetitions of the event. Because of this, it is common practice to increase the signal-to-noise
ratio (SNR) of ERPs by simply averaging over the responses to multiple events, thereby canceling
out event unrelated background EEG.
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The different components of the ERP complex are typically named according to their polarity
(P for positive, N for negative) and their latency to the event onset in milliseconds (P300 or
N200) or ordinal number in de ERP complex (P3 or N2). Each component is characterized by its
spatial pattern and temporal dynamics (amplitude, polarity and latency), and each component is
typically associated with a different step in the processing of the event.

Under special recording conditions, several components can be measured already in the first
eight milliseconds after the onset of a sharp auditory click (Picton et al., 1974a). These very early
brainstem auditory evoked responses (BAER) are generated in the first relays of the auditory
pathway in the brainstem and are often used to asses the functioning of the auditory pathways
(Starr et al., 1975). They are substrates of the physical processing of the stimulus features, and are
mainly modulated by those features, and not attention. The corresponding components in the
visual modality are referred to as visually evoked potentials (VEP).

Where the early components reflect the processing of physical properties of the stimulus, later
components are increasingly cognitive in nature; they can be modulated by top-down processes
such as attention (Picton et al., 1974b). This is of paramount importance for any ERP-based BCI,
as they depend on the user being able to express his intention by focusing his attention to one of
several stimuli.

Somemajor ERP components are described below. It is important to note that each of these
components in fact has been divided into several subcomponents, depending on the experimental
conditions, stimulus modality and task. Each component in itself could warrant a full review; here
the most general understanding of these components is introduced.

Given the latency of the P3, an important component of the ERP complex, a stimulus onset
asynchrony (SOA) of at least one second is normally recommended to properly determine the
amplitude and latency of ERP components (Duncan et al., 2009). In the context of BCI the SOA is
almost always much smaller, and components clearly overlap (see Box 2.3 on page 23).

Box 2.1: Conventions
It is customary in psychology literature to reverse the y-axis for ERP plots, displaying negative
deflections upwards. As this convention is less common in BCI literature, positive deflections
are plotted upwards throughout this thesis.
Similarly, in psychology the absolute difference between target and non-target traces are often
taken, to emphasize the attention effect. Since absolute differences are less important for BCI
than discriminative differences, the absolute difference is substituted for a metric that measures
the difference, or separation, in terms of the variance on both traces. Examples of such metrics
are the pointwise biserial correlation coefficient (Blankertz et al., 2011) and the area under
the receiver-operator characteristic (ROC) curve (see Section 2.6.3). The temporal and spatial
characteristics of discriminative differences may differ from those of the absolute differences.

2.2.2.1. The Oddball Paradigm

Any perceived event is likely to elicit an ERP of some sort, given that they represent the process-
ing of such events. Experimentally, a particular paradigm has been used to specifically target
individual steps of the processing pathway, called the oddball paradigm (introduced by Squires
et al., 1975). The name refers to the fact that all versions of this paradigm introduce an infrequent
stimulus, called the “oddball” or “deviant”. The simplest oddball paradigm presents a single
stimulus at relatively long (> 1 second) intervals. The most typical version, normally referred to
simply as the oddball paradigm, presents a stream of standard stimuli where infrequently, and
randomly, a standard is swapped with a deviant. A third version, the three-stimulus oddball,
adds an additional deviant to the stream. Through task instructions, one of these deviants is
to be focussed, and the other is considered a distractor. Given such an active task, the deviant
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is often referred to as target and the standard stimuli are then referred to as non-targets. The
stimulus sequence is typically created at random to increase the surprise effect of the deviant.
However, it was recently shown that this may not be strictly necessary for oddball paradigms with
a greater number of classes (Tangermann et al., 2013; Tangermann et al., 2012). ERP components
are typically present without the need for training other than initial introduction necessary to
understand the task.

When the subject is instructed to passively perceive the stimuli, or even participate in a com-
peting task, a subset of ERP components is elicited. If the subject is instructed to actively pay
attention to the stimuli, for instance by counting the targets, an additional subset of components is
elicited, in particular by the target stimulus. Even when the instructions are to count the frequent
non-targets, it is the infrequent targets that elicit these additional components (Squires et al.,
1975). In the case of the three-stimulus oddball, the distractor stimulus elicits yet another subset
of ERP components.

Typically, the deviant and standard stimuli differ between them on some defining property, but
the stimuli are identical within each class. The task relevant difference is thus on the physical level.
However, it is also possible for the deviant and standard stimuli to differ on a higher cognitive
level. The “deviantness” may be defined purely by context; they may for instance be infrequently
presented male names in a stream of otherwise female names (Kutas et al., 1977). Though each
stimulus is unique in its physical properties, they differ on the semantic level.

To completely eliminate the confound of stimulus property choice on the attention effect, the
stimuli for deviants and standards are sometimes swapped on half of the trials.

Box 2.2: The “P300-speller” fallacy
The P3 component is often the largest and most discriminative of all components, leading
to the historical, but somewhat misleading name “P300 BCI” for ERP-based BCIs. It is now
accepted that other components contribute significantly to the classification task (Allison et al.,
2003; Bianchi et al., 2010). For instance, in visual spellers such as the one described by Farwell
et al. (1988), early components are very prominent and binary-class discriminative. A more
appropriate name for these BCIs is thus simply “ERP-based BCI”, a term that is used throughout
this thesis.

2.2.2.2. P3

The P3 (or P300) is a positive going component that is measurable on the vertex (Conroy et al.,
2007). It was first reported in 1965 by Sutton et al. (1965). The latency of the P3 response is
roughly between 250 and 500ms, and depends on “stimulus evaluation timing, is sensitive to
task processing demands, and varies with individual differences in cognitive capability” (Polich,
2007). In fact, it depends on many experimental factors, such as stimulus intensity, duration and
target-to-target interval (Allison et al., 2003; Gonsalvez et al., 2007; Picton, 1992; Polich, 1989). The
P3 response is the most prominent peak of the ERP complex, and has sparked the investigation of
ERP-based BCI (Farwell et al., 1988), to which it initially gave its name (see Box 2.2).

In psychophysiology literature, the P3 is typically subdivided in the P3a and P3b components,
a distinction first introduced by Squires et al. (1975). They showed that both components were
elicited by infrequent deviant stimuli. However, the frontal/central P3a was present after a deviant
stimulus, regardless of any task relevance, as was the case in their “ignore” condition – the subject
was reading a bookwhilst passively perceiving auditory stimuli. The P3a thus reflects an automatic
response, that is not attention dependent. The second subcomponent, the parietal P3b, was only
present when the deviants were relevant to the task at hand. Both when subjects were told to
count the deviant and the standard tones did the deviants elicit a P3b (Squires et al., 1975). The
P3b component is thus attention dependent. The P3b response is also consistently elicited by
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semantical deviants, such as the male names in the study described earlier (Kutas et al., 1977). In
BCI research, and in fact in psychophysiology in general, the P3b is typically meant when referring
to the P3, a common practice that is used in this thesis too.

In early work, the ERP components were typically measured with three electrodes (Fz,Cz or
vertex, and Pz). Given those channels, the peak amplitude of the P3b is typically largest over Pz,
and smallest for the frontal Fz channel (Johnson, 1993; Squires et al., 1975). P3 latency typically
increases from frontal channels (Fz) to parietal channels (Pz) (Mertens et al., 1997; Polich, 2007).

Box 2.3: Cranking up the Pace

BCI research differs from neurophysiological studies in its goals, in that it pursues the pragmatic
vision of efficient brain-based control. Several adjustments are therefore made to the oddball
paradigm, the traditional experimental paradigm of the neurophysiologists. The most promi-
nent change is the decrease in SOA, to allow for the recording of many epochs in limited time. In
the above figure, the left plot shows the ERP response to a standard oddball task as employed in
classical neurophysiology. With one second SOA, all peaks are clearly distinguishable, allowing
for analyses on peak amplitude and latency. The right figure represents the ERP response to
a BCI oddball paradigm, taken from the same subject. At 175ms, the SOA is almost six times
shorter, allowing for six times the amount of epochs per second. Classical peak analyses is
impossible, as the ERP components clearly overlap (but see Section 2.5.1). Furthermore, the
target and non-target responses are less distinct. As this leads to less discriminative information
per epoch, several repetitions are necessary in BCI to increase the SNR. The obvious trade-off
between the number of repetitions and the SNR is the topic of Chapter 6.

Habituation The stability of the P3 response within a trial, and over trials, has been investigated
extensively. Using an auditory oddball paradigm,Lammers et al. (1989) showed that the amplitude
of the deviant P3 decreased significantly over blocks of stimulation. But even within each block,
the P3 reduced as time passed. The P3 latency showed a similar effect, with an increase in latency
as time passed. A somewhat different result from Murphy et al. (2004) showed that with short
trials with a fixed number of iterations, the P3 response to the final targets increased again. This
rebound effect was diminished when the number of iterations was unknown to the subject, in
which case a negative linear trend was found, similar to that of Lammers et al. (1989).

Interestingly, several studies did not find such a habituation effect (Courchesne et al., 1978;
Ravden et al., 1998; Woods et al., 1986). These contradicting results are often explained by
differences in the experiment parameters. In particular, a longer SOA tends to cancel out the
habituation effect (Lammers et al., 1989), as do large breaks in between blocks (Ravden et al.,
1998). Both interrupt the internal task automation which would reduce the required attentional
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resources and thereby reduce P3 amplitude. But also the stimulation modality matters. Simple
visual tasks typically require more attentional resources than simple auditory tasks, and thereby
suffer less from habituation (Posner et al., 1976).

In BCI research, both the SOA and the breaks between blocks tend to be small, thus introducing
the risk of P3 habituation. As the P3 component is the primary contributor to the discrimination
task, such systematic changes in the P3 response could impact the classification performance;
discriminative features may loose strength, or worse, change their position or polarity over
time. This known feature of ERPs was the reason for developing a new method for evidence
accumulation (see Chapter 6).

2.2.2.3. N2

The negative going N2 (or N200) component, found around 200 ms after event onset, was first
described in the same paper as the P3 (Sutton et al., 1965). It is elicited by an infrequent, unex-
pected stimulus and it is thought to reflect a decision process, or target classification (Ritter et al.,
1979). The N2 can be subdivided into an automatic N2a, an attentional N2b and a classification
N2c component, depending on the task at hand (Näätänen et al., 1978; Pritchard et al., 1991).

The central N2a subcomponent, more commonly known as mismatch negativity (MMN), is
elicited by stimuli that are physically different from their predecessor, even when the stimuli are
perceived passively. It “is generated by the brain’s automatic response to any change in auditory
stimulation exceeding a certain limit roughly corresponding to the behavioural discrimination
threshold” (Näätänen et al., 2007). The central N2b subcomponent is elicited if the subject is
engaged in a discrimination task. Non-target stimuli elicit a larger N2b than do target stimuli
(Näätänen et al., 1982). It is typically followed by a P3a. Finally, the frontocentral auditory N2c
subcomponent is elicited by target stimuli and associated with the processing thereof (Pritchard
et al., 1991; Ritter et al., 1979). It is typically followed by a P3b, and it is of primary interest for BCI
applications (Halder et al., 2013).

2.2.2.4. N1

Components as early as the central N1 (or N100), around 100ms after event onset, have been
found to be attention dependent (Hillyard et al., 1973). Amongst other things, they are believed
to represent a gating process by which task relevant stimuli can be further processed, and non-
relevant stimuli are suppressed (Coull, 1998). Reports of such a component date back to Davis
(1939). The attention effect was explored in the context of BCI (Allison et al., 2003; Bianchi et
al., 2010), concluding that though it is less strong than that of the P3, it is significant and can
aid in the classification task. The amplitude and latency of the N1 are highly dependent on
stimulus properties such as stimulation frequency and in particular intensity (Näätänen et al.,
1987). Though Näätänen et al. (1987) describe a multitude of N1 subcomponents, they are highly
overlapping and will be considered as a single complex, collectively named N1.

2.3. Notations and Basic Definitions
Throughout this thesis, scalars are denoted by italic upper- and lower-case letters, vectors by bold
lower-case letters andmatrices by bold upper-case letters. Unless stated otherwise, vectors are
understood to be in columnar shape. The i th element of vector x is denoted by xi . The i th row of
matrixM is denoted asmi and the j th column of the samematrix asm, j . The matrix element at
the i th column and the j th row is denoted asmi , j . Matrices can be stacked in the third dimension
for time or epoch, forming a tensor which can be indexed by a third index (M ,,k ).
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Some variables are used consistently throughout this thesis. Their names are not introduced at
every occurrence, but rather introduced in Box 2.4. Notations that are only relevant in individual
cases are introduced in-situ. The usage of the word “class” is ambiguous, as it may refer to the
binary target and non-target classes or the task level classes. Examples of the latter are the rows
and columns in the visual matrix speller (Farwell et al., 1988). Throughout this thesis, binary-class
refers to the first and simply class refers to the second use.

Box 2.4: Basic notations

C : Number of classes; c indexes classes

E : Number of epochs; e indexes epochs

J : Number of iterations; j indexes iterations

T : Number of trials; t indexes trials

D 2RC£J£T : Tensor containing classifier outputs

D tr ain: Tensor containing the training classifier outputs

D test : Tensor containing the test classifier outputs

b 2ZE : Vector with the true binary-class labels

l 2ZT : Vector with the true task level class labels

2.3.1. Experimental Terminology in ERP-based BCI

As in any field of research, BCI comes with its own jargon, derived from psychology and neuro-
physiology. However, in BCI it is often used inconsistently. Throughout this thesis, the following
terminology will be used.

A study is the largest time window, and refers to a set of experiments sufficient to test a hypoth-
esis. A study may consist of several sessions, for instance to show an effect that is robust over time
or to test for a learning effect. A session refers to the time from putting on the cap until taking it
off again. During a session, an entire experimental protocol is performed, covering all conditions.
Typically, only one session is performed per subject and per day. A session consists of several
runs for different experimental conditions. Runs of different conditions are often interleaved to
prevent obvious time influences. In the case of online spelling, a run refers to the writing of a
single word.

A run consists of several trials. Each trial is a time window of uninterrupted task engagement,
preceded and followed by a short break. In BCI, a trial typically refers to performing a single
selection. Each trial consists of several iterations. During an iteration, all classes are stimulated
exactly once in a pseudo-random order, before proceeding to the next iteration. The number of
iterations is often fixed beforehand, but can be variable (see Chapter 6). Finally, both a single
stimulus event and the resulting EEG data are called an epoch. They form the smallest time entity
in an ERP-based BCI.

2.4. Basic BCI Pipeline

This section describes the typical processing steps that are performed in an ERP-based BCI. The
process of single-trial analysis of ERP data is aptly described in Blankertz et al. (2011), and the
methods used here closely follow the methods proposed in that paper.
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2.4.1. Preprocessing
The raw data is acquired and stored at 1KHz using BrainAmp amplifiers (BrainProducts). After
acquisition, the data are filtered between .33Hz and 40Hz with causal filters (Chebyshev low-pass
filter, Butterworth high-pass filter). To cancel out any phase shifts resulting from the filtering,
the filters are applied in both directions strictly for plotting purposes only. Reverse filtering is
omitted for (offline) classification purposes, as it does not transfer to an online setting; the effect
of the filter is no longer causal. After filtering, the data are typically downsampled to 100Hz for
efficiency, respecting the Nyquist rate. These preprocessed data are represented by X 2 RM£S ,
whereM is the number of recorded channels and S the number of recorded samples.

The data are then segmented for a pre-stimulus samples and b post-stimulus samples and
channel-wise baselined on the pre-stimulus interval, according to

x†
c,,e = xc,me°a,...,me+b °

1
a

aX

i=1
xc,me°i (2.1)

where m is a vector containing the stimulus onset timestamps and X † 2 RM£S£E . The third
dimension E on X † thus indexes over the epochs. For simplicity, the third dimension may not be
mentioned explicitly, indicating the spatio-temporal features of a single trial. Then, x†

i refers to a

row-vector with the temporal evolution of the i th channel, and x†
, j refers to a column-vector with

the spatial pattern over all channels at time j .
Additionally, mean subtraction and unit variance scaling are performed for each feature dimen-

sion separately. For cross-validation or online studies, the scaling factors are estimated from the
calibration data and stored for application to the unseen data.

2.4.2. Artifact Rejection
Two simple artifact rejection methods are used. The first rejects epochs with a peak-to-peak
difference greater than 100µV over frontal channels. The second disregards epochs with high
variance on more than 20% of the channels. High variance is typically defined as three times the
distance between the 10th and the 90th percentile away from the 10th or 90th percentile. Both are
calculated on the raw data, and the union of artifactual epochs is removed afterwards.

For visual presentation, artifacts are removed from the entire dataset. During cross-validation
and in sessions with online runs, artifacts were only removed from the calibration data. Artifact
removal from online epochs is not straight-forward; omitting artifact rejection from the test data
in cross-validation thus increases the generalizability of the results.

2.4.3. Feature Extraction
The time- and phaselocked properties of ERPs allow for rather simple spatio-temporal feature
extraction (see Section 2.2.2). In fact, the data are often simply down-sampled further to around
20 Hz by averaging over regular intervalsT , and the remaining post-stimulus samples of each
channel are concatenated into a single feature vector. In literature, further pruning of features
is sometimes done by the sparse step-wise linear discriminant analysis (SWLDA) classifier (an
extension of regular linear discriminant analysis (LDA), as described in Section 2.4.4), which
determines a predefined number of features that contribute significantly to the classification task,
whilst setting the rest to zero (Farwell et al., 1988).

Here, two slightly different methods are used for interval selection, as visualized in Figure 2.5.
Though the intervals in T are typically regularly distributed over time, there is no particular
reason why they should be. Instead, discriminative intervals can be determined beforehand,
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Figure 2.5.: Two alternative ways of subsampling the EEG data for feature extraction are visualized.
A) a simple algorithm searches for the most discriminative intervals on the training
data, following some constraints, and B) using prior knowledge, a denser sampling is
taken for early components than for later components. Note that, although the inter-
vals in B) are plotted on top of a single subject’s discriminative data for visualization
purposes, they are the same for all subjects.

either by a-priori knowledge or by means of an algorithm. The first selects the intervals using
a-priori knowledge of the ERP time evolution, such that the faster early components are sampled
with a higher resolution (33 Hz, between 30 and 350 ms) than the slower late components (17 Hz,
between 360 and 800 ms), effectively resulting in 19 features per channel (see Figure 2.5-B). These
intervals are subject independent.

The obtain an even lower number of features per channel, a subject dependent set of intervals
can be pursued. For this, the signed pointwise biserial correlation coefficient (signed r 2) (Blankertz
et al., 2011) is calculated for each dimension in X † over all epochs. The result is a matrix of size
RM£S , which can be depicted as in Figure 2.5-A (background image). The algorithm then searches
for a number of stable peak signed r 2 values (positive and negative) as starting points. After
this initialization, the algorithm widens the intervals over the time dimension. This widening
is subject to some constraints, the most important of which is that the spatial patterns remain
constant, i.e. the sign of the signed r 2 remains the same onmost channel. In contrast to SWLDA,
the resulting intervals are defined over all channels.

The result of any such method is a set of intervalsT = [T1, . . . ,Tn]. The column vector contain-

ing the features for a single epoch is thus constructed as v ,e =
h
x†
,T1

>, . . . ,x†
,Tn

>
i>

, where x†
,T1

>

contains the channel-wise averages over intervalT1. Feature matrix V 2RG£E is then defined as
V =

£
v ,1, . . . ,v ,E

§>, wereG is the number of dimensions of a single feature vector v .

2.4.4. Classification
Based on V and the true binary-class labels b, a linear model can be trained that defines an
optimal hyperplane for dividing the elements of V into targets and non-targets (Müller et al.,
2008), according to

w = ß̂°1
c

°
µ̂2° µ̂1

¢
(2.2)
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where w is the projection vector, µi is the mean of the i th binary-class as calculated using the true
labels in b, and ß̂ is the pooled covariance matrix. Some form of regularization is typically advis-
able when the number of epochs is lower than, or on the same order as the number of dimensions
in the feature vector (Tomioka et al., 2010). Here, ß̂ is regularized using analytical shrinkage to
prevent under- and overestimation of the small- and large eigenvalues of the empirical covariance
matrix (Bartz et al., 2013; Blankertz et al., 2011; Ledoit et al., 2004).

Using the trained classifier, a decision value can then be assigned to unseen samples according
to

de =w>v,e +b (2.3)

where b is a constant bias and the binary-class membership is determined by sign(de ). The
separating hyperplane is defined by w>v + b = 0. Throughout this thesis, the classifier was
trained to assign more negative scores to target epochs than to non-target epochs. Though more
sophisticated discriminant functions exist (Müller et al., 2003), the assumptions of LDA appear to
be satisfied for ERP data (Blankertz et al., 2011).

2.4.5. Evidence Accumulation
For further processing, the classifier scores are sorted according to their class membership and
iteration, such that dc, j ,t is the classifier score belonging to class c in iteration j of trial t . Thus,
d c,,t is the vector of all classifier scores within a trial for a single class. The result is the matrix
D 2RC£J£T . Alternatively,D may be indexed asD tr ain orD test , where tr ain and test represent
disjoint sets of epoch indices, as is used during cross-validation (see Section 2.5.3).

The winning class cwj ,t for trial t at iteration j is then defined as

cwj ,t = argmin
c2[1,...,C ]

°
median

°
d c,1... j ,t

¢¢
(2.4)

finding the class that has the lowest median classifier score over all iterations of a trial. Though it
is typical in BCI literature to calculate cwj ,t at a fixed number of iterations j , there are good reasons
to dynamically determine the iteration at which to stop a trial (see Chapter 6).

2.5. Methods
Several of the methods and metrics that are used repeatedly in this thesis are introduced here. In
the following chapters, the reader is referred back to this section when needed.

2.5.1. Peak Picking
ERP components are typically defined by their polarity, latency to event onset, amplitude and
spatial distribution (see Section 2.2.2). Obtaining the latency and amplitude of a component is
done using prior knowledge (Duncan et al., 2009). Given a predefined latency window for each
component, the most positive- or negative voltage deflection is determined for a given channel.
This peak defines the latency and amplitude of the component. For obtaining a robust estimation
of the spatial distribution, several samples around the peak are averaged according to a preset
window width. The latency windows, window width, polarities and channels that are used for
finding the components of interest can be found in Table 2.1.

When the SOA is lower than approximately one second, components start to overlap (see Box 2.3
on page 23), and components can no longer be defined in the traditional way. In this case the
peaks are found on the basis of the discriminative information (see Section 2.6.3). Using the
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Table 2.1.: Settings used for finding the peak values of ERP components.

Component Latency window Polarity Channel Window width
P3 280 - 650ms + Pz 100ms
N2 210 - 350ms - Fz 40ms
N1 80 - 140ms - Fz 40ms

same latency window, polarity and channel, the peak in discriminative information is taken to be
the “component”. After obtaining the latency, the same procedure is followed for obtaining the
spatial distribution. For BCI purposes, this definition is a pragmatic solution, as the discriminative
information is of primary interest. However, they can not be interpreted as peaks in the traditional
sense, as the underlying assumptions are different.

2.5.2. Questionnaires
To truly asses the usefulness of a BCI, objective data measures are only one part of the story.
With a human in the loop who ultimately would operate the BCI for extended periods of time,
the subjective user experience is at least as important (Holz et al., 2013b; Kübler et al., 2013;
Pasqualotto et al., 2011). To asses this, and the overall cognitive state of the subjects, several
questionnaires are administered during each session of all online experiments (healthy subjects
and end-users).

Motivation and mood are scored at the start of each online session by means of a visual
analogue scale (VAS) between one and ten. Motivation is furthermore rated by means of the
questionnaire for current motivation in BCI (QCM-BCI), consisting of 18 statements to be rated
on a 7-point Likert scale and including four factors: mastery confidence, incompetence fear,
interest, and challenge (Nijboer et al., 2010). It is an adaptation of the original QCM questionnaire
(Rheinberg et al., 2001) to fit the BCI context. After each online session with feedback, the
multidimensional NASA Task Load Index (NASA-TLX) questionnaire is administered, assessing
perceived workload on a scale from 0 to 100 by means of six factors: mental demand, physical
demand, temporal demand, performance, effort and frustration (Hart et al., 1988; Riccio et al.,
2011). All questionnaires are applied in German (for healthy subjects) and Italian (for end-users).

To investigate condition differences, both VAS scores and all factors of the QCM-BCI and the
NASA-TLX questionnaires are compared independently. Visual inspection of the data warrants the
use of non-parametric statistics. The Kruskal-Wallis H test is used for between group comparisons
and the Wilcoxon singed rank test for paired comparisons. In the case of repeated measures
within a condition, a non-parametric Spearman’s rank correlation test is used to assess the impact
of time (session number) on the questionnaire factors.

2.5.3. Cross-validation
Cross-validation is a technique that is commonly used to estimate the predictive value of a model
in a way that generalizes to unseen data (Lemm et al., 2011; Müller et al., 2001). In order to
achieve an N-fold cross-validation, the available data is divided into N mutually exclusive sets. At
each fold, N-1 sets are used to estimate the parameters of the model, and the remaining set is
subsequently used to estimate the model’s prediction performance. As this performance estimate,
or test performance, is based on unseen data, it generalizes better to new data.

In the case of offline analyses, the above cross-validation scheme can not fully avoid over-fitting.
When using the same data over and over again, whilst changing or optimizing the model, the best
solution that is foundmight well over-fit the test data. Therefore, it is common consensus in BCI
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literature that an online experiment is the only ultimate proof of the validity and relevance of any
method.

There is, however, a way to properly prevent over-fitting on the test data by introducing an
additional dataset. This so-called validation set should be left untouched until the final model is
chosen, and its parameters trained. By applying the model to the validation set once, and only
once, an unbiased performance estimate can be obtained. For offline analyses of BCI data it is
good practice to use the calibration data for cross-validation, leaving the online data out as the
validation set.

2.6. Metrics
The following sections describe the metrics that are used throughout this thesis. Most of these
metrics can be calculated from the trial-level confusion matrixCM 2ZC£C with additional (ex-
perimental) parameters such as the SOA and time overhead. The confusion matrix provides
information about the prediction accuracy for the different classes.

2.6.1. Spatial Accuracy Quantification
From CM , the pairwise F -scores are calculated to assess the confusion between each pair of
classes. This exposes any systematic preference, if present.

Since not every class is necessarily the target equally often, each row of the confusion matrix is

first normalized according toCM†
i , j =

CMi , jPC
k=1CMi ,k

. Then, the sensitivity and precision for pairs of

classes i , j 2 {1, . . . ,C } are defined as follows

preci sion(i , j )=
CM†

i ,i

CM†
i ,i +CM†

j ,i § (C °1)
(2.5)

sensi t i vi t y(i , j ) =
CM†

(i ,i )

CM†
i ,i +CM†

i , j § (C °1)
(2.6)

with the constant C °1 compensating for the pairwise comparison. The matrix F 2 RC£C of
pairwise F -scores is then defined as

Fi , j = 2£
preci sion(i , j )§ sensi t i vi t y(i , j )
preci sion(i , j )+ sensi t i vi t y(i , j )

(2.7)

It is thus the harmonic mean of sensitivity (the ability to identify a target) and precision (the
ability to exclusively identify targets as targets). Since both sensitivity and precision range from 0
to 1, the F -score also ranges from 0 to 1.

Diagonal values are always 1. Other pairs (elements in F ) are marked as location neighbors (l),
sound neighbors (s) and locations that are symmetric in the front-back plane (fb) (see Section 3.2).
All are potential sources for a reduced separability.

2.6.2. Classification Accuracy
Two different accuracy measures are used throughout this thesis. First, the binary accuracy
assesses the performance of the classifier on the individual epochs. It assesses the ability to
separate target epochs from non-target epochs. Typically, binary accuracy refers to the overall
percentage of correctly classified epochs, irrespective of their binary-class membership. With
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Figure 2.6.: The ROC curve describes the ratio between sensitivity and 1-specificity for different
decision thresholds. The ROC curve can be summarized by a single value in different
ways. In this thesis the typical area under the ROC curve (AUC) is used to describe the
quality of a classifier, and the sAUC is used to describe the separability of individual
feature dimensions.

a similar number of epochs per binary-class, this is a valid approach. However, in the case of
unbalanced binary-classes sizes, this can lead to an overestimation of the actual performance.
For example, with one out of six epochs belonging to binary-class one, an accuracy of 83.3% can
be achieved by assigning all epochs to binary-class two. This is clearly a bad classifier. In this
case, the accuracy should be class-wise normalized. The binary accuracy is then calculated for
each binary-class separately, and the results are averaged. In the above case, this would lead to an
accuracy of 50% (0% on binary-class one and 100% on binary-class two). The chance level is thus
at 50%.

The second accuracy measure, the selection accuracy, is evaluated on the trial-level after
accumulating the evidence from the individual epochs (see Section 2.4.5). It measures how often
the class that was predicted by the BCI matches the correct class, as specified by the task. The
accuracy of an unbiased, random classifier (chance level) is on average 100%/C . With a six class
BCI, a random classifier would thus on average be correct on 16.7% of all trials.

Caution is to be taken in stating that a selection accuracy that is marginally larger than chance
level is meaningful. For example, in a six class BCI, an unbiased, random classifier would score a
selection accuracy >30%more than 22% of the time, when tested on 10 trials per try; a perfor-
mance that is almost double the chance level. As a rule of thumb, it is typically safe to assume a
meaningful result if consecutive measures consistently score above chance level.

2.6.3. Area Under the ROC Curve
The receiver-operator characteristic (ROC) curve is a graphical representation of the quality of a
binary classifier that is often used in signal detection theory (Fawcett, 2006), as shown in Figure 2.6.
Sensitivity is plotted as a function of 1°specificity, with each point on the line representing a
shift of the classifier bias. The ROC curve of perfectly mixed distributions is (approximately) the
diagonal line (gray line), and the ROC curve of perfectly separated distributions is a right angle
going from (0,0) either through (1,0) or through (0,1) to (1,1). In this thesis, the ROC curve is
summarized by the area under the ROC curve (AUC) in two ways.
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For assessing the quality of a classifier (in particular in Chapter 6), the classical AUC metric
is used, simply integrating the complete area under the ROC curve. In Figure 2.6, this refers to
the combined striped and plain colored areas for the solid black line. It ranges from 0 to 1, with
1 indicating perfect separation, 0 indicating perfect but inverted separation, and 0.5 indicating
complete binary-class overlap.

The AUC is also powerful in estimating the predictive power of individual features (Green et al.,
1966). In this case, one dimension of the feature vector is used to estimate the ROC curve and
the corresponding AUC. To include additional information on the order of target and non-target
means, the AUC is transformed into the sAUC, the striped area in Figure 2.6, as follows

sAUC= 2§ (AUC° .5) (2.8)

The sAUC ranges from -1 to 1, where 0 indicates complete binary-class overlap, -1 indicates
perfect separability with the mean of the targets being smaller than that of the non-targets, and 1
indicates perfect separability with reversed means order.

The sAUC can be plotted as a spatial map to visualize the distribution of discriminative infor-
mation over the scalp for a given time interval (see Figure 2.4, right column). For comparability,
all such scalp maps are plotted on a common scale throughout this thesis. Additionally, sAUC
values between -0.04 and 0.04 are colored gray uniformly to emphasize the zero-crossing. These
thresholds were chosen empirically to produce meaningful results on all plots.

The advantage of the AUCmetrices over methods like Fisher score (Duda et al., 2000; Müller et
al., 2004), Student’s t-statistic (Müller et al., 2004; Student, 1908), or pointwise biserial correlation
coefficient (Blankertz et al., 2011) is that it is non-parametric and does not rely on the assumption
that the distributions are Gaussian. Furthermore, though the smoothness of the ROC curve does
depend on the number of epochs (compare the dashed line with 2000 epochs in Figure 2.6 with
the dash-dotted line with 200 epochs), the AUC estimate does not systematically depend on this
number. It thus allows for a robust comparison across subjects with different number of trials.

2.6.4. Information Transfer Rate
In BCI, as in information theory, the amount of information transferred over a noisy channel can
be quantified by the information transfer rate (ITR) (Shannon et al., 1950). Various BCI specific
variations of the ITR were proposed, which were recently reviewed by Schlögl et al. (2007). In 2000,
Wolpaw et al. (2000) proposed a version, which has since widely been used in literature. Though
its assumptions may not always hold, andmore general versions have been proposed (Nykopp,
2001), this original version is used here for the sake of comparison. It is defined as

R = log2C +P · log2P + (1°P ) · log2(
1°P
C °1

) (2.9)

where R is the ITR in bits/selection and P is the selection accuracy. As a BCI has overhead on
each selection, and for a more interpretable result, the ITR is often expressed in terms of the bits
per minute (bits/min), defined as

bits/min=V ·R (2.10)

where V is the speed in selections/minute. Throughout this thesis, the latter definition of the
ITR is used. It is obvious that the ITR depends both on the accuracy and the selection speed.

2.6.5. Writing Speed
Though the ITR is a good theoretical performance measure, interpreting the practical relevance
of a given value remains difficult. For particular cases, more straight forward metrics exist. In
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an online speller setting, simply calculating the written characters per minute (char/min) is a
robust and interpretable metric. In the strictest version, the subject is instructed to copy a text
letter for letter, and any committed mistakes have to be corrected by the subject. In this case, the
char/min is simply defined as the number of letters written, divided by the elapsed time. For less
strict protocols where the subject is notified of, but does not need to correct any mistakes, the
char/min is often defined as the number of correct letters divided by the elapsed time. This may
overestimate the actual char/min, as correcting an error would add an additional time penalty.

For offline analyses, the char/min can be approximated by the symbols per minute (symb/min)
metric, which integrates BCI performance with application information such as overhead and
error handling strategy. For single-level spellers such as the visual matrix speller (Farwell et al.,
1988), a correct selection counts as +1 symbol. An erroneous selection counts as -1 symbol, to
account for the added effort of a necessary subsequent corrective action. Symb/min is then
defined as

effective correct= P °E (2.11)

symb/min=V §effective correct (2.12)

whereV and P are equal to Equations 2.9 and 2.10, and E is the classification error (1°P for single
level spellers).

In two-level spellers, errors can bemade on the group level (level one error) and on the character
level (level two error). In case of a level one error, the second level contains the possibility to
select an “undo” action, which cancels the previous selection. As no actual symbol is selected, it
counts as a 0 symbol selection. Level two errors always count as -1 symbol. P is now defined as
the selection accuracy on both levels, E as the percentage of erroneous selections on the second
level only, and V as the classification speed in selection pairs/minute. Note that the simplifying
assumption is made that the accuracy is the same for each symbol (similarly to the assumption of
the ITR).

The validity of symb/min as an approximation of char/min is investigated in Experiment 5.
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The first scientific contribution described in Section 1.7 introduces spatially distributed stimulus
sources, an aspect new to covert attention-based BCI that needs careful offline validation (see
Section 1.6). This chapter gives a detailed account of the fundamental concept of AMUSE and an
experimental validation of these principles is presented. Concretely, hypotheses i (subjects can
focus on one amongst several spatial stimuli) and ii (spatial stimuli alone are sufficient to elicit
binary-class discriminative ERPs) will be addressed. The results are discussed in the context of
contemporary covert attention-based BCIs.

Parts of this chapter are based on prior publications Schreuder (2008a), Schreuder et al. (2010a),
and Schreuder et al. (2009).

3.1. Prior Work
Covert attention-based BCIs have been realized in various domains and are summarized in
Section 1.5 (and in particular in Table 1.1). Early research on these BCIs was mainly binary in
nature, and the achieved accuracies were modest. This severely limits their usefulness in real
applications. Since then, the covert attention-based visual BCIs have been particularly successful
in increasing the number of classes and the achieved accuracy, resulting in high communication
rates of up to 9.15 bits/min (Schaeff et al., 2012; Treder et al., 2011). Nevertheless, other modalities
need to be investigated, as many end-users suffer from loss of sight (Huggins et al., 2011).

In a recent study by van der Waal et al. (2012), tactile stimuli to six fingers were used to suc-
cessfully elicit ERP responses. The achieved selection accuracy (79%) and re-estimated ITR
(4.52bits/min) mark an improvement over other tactile BCI. Kaufmann et al. (2013a) recently
showed the feasibility of patient application for such a BCI offline. Both studies relied on spatial
attention to tactile stimuli.

Recent years have seen a sharp increase in the number of studies on auditory BCI, which were
introduced extensively in Section 1.5.1. Selection accuracy is often lower than covert attention-
based visual BCI, but higher than tactile BCIs. From Table 1.1 it is apparent that studies that
simply used natural sounds to transfer the visual matrix speller directly to the auditory domain
have relatively low selection accuracy andmodest ITR (Furdea et al., 2009; Klobassa et al., 2009;
Kübler et al., 2009). Studies with less (non-spatial) classes did at times result in a higher selection
accuracy, but the ITR is reduced accordingly (Guo et al., 2009; Hill et al., 2004; Hill et al., 2012b).
As also suggested in Kübler et al. (2009), adding spatial information might be one way to increase
the number of classes whilst maintaining a high selection accuracy and ITR.

Several psychophysiological experiments have been described that investigate the influence
of the human capacity for sound localization on ERPs. Teder-Sälejärvi et al. (1998) essentially
presented seven oddball paradigms to the subject. An array of seven speakers, with 9± azimuth
angle between them, each presented a random stream of targets and non-targets. Subjects were
requested to attend left, front or right and only targets coming from the attended stream reliably
elicited a P3 response. In a similar study, Arnott et al. (2002) used three virtual sources with varying
azimuth angle between them, resulting in attention modulated N1 and P3 peaks. In these studies,
the spatial location was not used to separate non-targets from targets, but rather to separate
different streams, similar to Hill et al. (2004).
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3. AMUSE Proof of Principle

Figure 3.1.: Schematic representation of the different setups used in this thesis. A) High density
setup for the proof of concept, B) frontal half only setup, used for offline BCI testing
purposes, C) setup used in online spelling with healthy subjects, D) setup used in
online spelling with end-users, with extra space in the back to prevent obstruction by
the wheel-chair. From B) to C), the radius of the circle was reduced to improve the
discrimination.

A more recent study did use the spatial separation (albeit virtually through stereo headphones)
to set aside the non-targets (0±, straight ahead) from the targets (± 30± and ± 90± azimuth)
(Sonnadara et al., 2006). Because the subjects were engaged in a passive listening task whilst
watching a movie, no P3 responses were elicited; the goal was rather to elicit MMNs. However, it
does show that the spatial location can be a stimulus determining factor. A similar experiment
was performed in free-field with only 10± azimuth spatial separation (Deouell et al., 2006). An
oddball paradigm purely based on spatial location has been used in Rader et al. (2008), but
merely as a training for detecting stimuli from different locations in a later task. No behavioral- or
neurophysiological data for this condition are reported.

To date of the first contribution of this thesis (Schreuder et al., 2009), no auditory BCI employed
more than two spatial sources. However, in that same year, Rutkowski et al. (2009) proposed a
spatial auditory BCI paradigm similar to AMUSE, albeit in a preliminary state. It appears that
these paradigms were developed independently.

3.2. AMUSE Principles
The AMUSE paradigm builds on the classical oddball paradigm (see Section 2.2.2.1) and psy-
chophysiological paradigms (see above), which were altered in several ways.

To overcome some of the shortcomings in auditory BCI, and to create a high speed, multiclass
and auditory BCI, stimuli consisted of sounds played from different sources around the subject.
Stimuli from these sources are presented in rapid succession. Due to the human ability of spatial
hearing (see Section 2.1), this gives an intuitive task to the subject: to focus the attention to
one of several spatially distinct sound sources. The non-target binary-class then contains all
non-focussed stimuli, and the binary target and non-target classes are defined purely by the task
instructions (similar to the “names” oddball paradigm from Section 2.2.2.2).

An AMUSE setup can consist of any number of sources placed around the subject in free field,
keeping in mind the humanMMA (see Section 2.1). Though not necessary, in this thesis they were
placed on a circle around the subject at ear-height. Along this circle, placement can be equidistant
or irregular, and the number of sound sources can vary. Sound sources can all produce the same
sound or each source can be associated with a unique sound, the latter of which adds another
identifying property to the stimuli. The flexibility of the AMUSE paradigm is explored throughout
this thesis (see Figure 3.1). The AMUSE paradigm is defined by this spatial principle, with no
connection to any user application in specific.
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As in any ERP-based paradigm, stimulation is typically performed in random order. Following
Section 2.3.1, all sound sources are stimulated exactly ones in what is called an iteration, before
moving to the next iteration. After a certain number of iterations, either fixed or determined
dynamically (see Chapter 6), the trial is terminated. In online modus, the collected classifier
scores are then converted into a class decision according to Equation 2.4, before the next trial is
started.

As discussed in Section 2.2.2.1, formally the target and non-target stimuli should be swapped to
remove the confounding effect of stimulus properties from the attention effect. Since in AMUSE
the target is defined by the task instead of physical features alone, and the task requires a changing
target source, such a reversal is intrinsic. Any binary-class difference that is found is thus due to
the attention effect.

3.2.1. General Methodology
The following describes the basic AMUSE setup as it was used throughout this thesis; it is extended
by the methods description of individual experiments.

Subjects sit in a comfortable chair, facing a screen with a fixation cross. EEG is recorded in
a room that is not electromagnetically shielded and no special sound attenuation precautions
are taken. Speakers are calibrated to a common stimulus intensity of ª58 dB. If requested by the
subject, an initial round of stimuli is given before the actual experimental trials, to familiarize the
subject with the setup. Before the experiments, subjects are asked to minimize eye movements
and other muscle contractions during the experiment.

The stimulus presentation, the online Berlin Brain-Computer Interface (BBCI) system, and
the offline analyses are implemented in Matlab (Mathworks), making use of the Psychophysics
Toolbox for multichannel audio presentation (Brainard, 1997). In the online setting, the class
labels and BCI decision results are read to the subject using the open-source speech synthesis
systemMary (Schröder et al., 2003). Amultichannel, low-latency firewire soundcard fromM-Audio
(M-Audio Firewire 410) is used to individually control the low-budget, off-the-shelf computer
speakers (Genius SP-S100 for Experiments 1 to 4, and Sony SRS-A201 for Experiments 5 to 7).

EEG is recorded using a varying number of Ag/AgCl electrodes and channels are referenced
to the nose. The signals are amplified using BrainAmp amplifiers (Brain Products), sampled at
1 kHz and filtered by an analog bandpass filter between 0.1 and 250Hz before being digitized and
stored for offline analysis. Further analyses are done in Matlab (The Mathworks), according to
Section 2.4.

3.3. Experimental Validation
Though the concept of ERP-based BCIs is well known and the basis of many studies, the proposal
of the AMUSE paradigm introduces some new factors that warrant careful investigation (see
Section 1.6). To disentangle hypotheses i and ii from other effects, several experiments were
performed in two blocks. The following describes the methods that are used for all experiments in
this chapter, extending Section 3.2.1. Experiment specific methods and settings are described in
the respective sections.

3.3.1. Participants
The first block (Experiments 1 and 2) included seven healthy volunteers (five male, mean age 29.1
years, range 25-34 years). All subjects were volunteering groupmembers and had some previous
experience with BCI, mainly based onMI tasks. The second block (Experiments 3 and 4) included
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Figure 3.2.: A subset of the available channels was used for classification purposes in Experi-
ments 3 and 4. The subset was fixed for all subjects and is highlighted by the gray
circles.

five healthy volunteers (three male, mean age 32.4 years, range 22-55 years), out of which two
were paid subjects with no previous experience in BCI. They were compensated for their time
with eight euro per hour. Of the other three volunteering groupmembers, two also participated
in the first round. All subjects reported to be free of neurological symptoms and to have normal
hearing. However, two subjects (VPip and VPig) reported having difficulty with spatial localization
of sounds in natural situations and subject VPzq reported a high-pitched tinnitus in the right ear.

3.3.2. General Protocol
Procedures were positively evaluated by the Ethics Committee of the Charité University Hospital
(number EA4/073/09). All subjects provided verbal informed consent and subsequent analyses
and presentation of data were anonymized.

Subjects were surrounded by eight speakers at ear height. The speakers were spaced evenly
with 45± azimuth angle between them, at approximately one meter distance from the subject’s
ears (see Figure 3.1-A). At the start of the session, subjects were asked to subjectively judge the
equality of the loudness of all sources and alter these if necessary.

The first of two blocks consisted of two experiments to test for the feasibility of the paradigm
behaviorally (Experiment 1) and neurophysiology (Experiment 2), under high SOA conditions. The
second block consisted of two experiments under conditions that are realistic for BCI usage. With
lower SOAs, data were classified as they would be in a BCI setting in Experiment 3. Experiment 4
is the control condition, disentangling the influence of the spatial property from other effects.

3.3.3. Data Acquisition
After acquisition, the raw data was low-pass filtered with an order 10 Chebyshev II filter (40Hz
pass-frequency, 49Hz stop-frequency, 50dB damping), down sampled to 250Hz and high-pass
filtered with an order 4 Butterworth filter (.33Hz pass-frequency, .1Hz stop-frequency, 50dB
damping). Finally, the data were epoched between -150ms and 800ms relative to stimulus onset,
using the first 150ms as baseline. Estimates of the ERP component latencies and amplitudes
thus have a maximum resolution of 4ms. The data were further down-sampled to 100Hz for
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Table 3.1.: Behavioral performance for Experiment 1. Because the majority of stimuli are non-
targets, true negatives (no response to a non-target) are not reported and also not
considered in Equation 3.1. The total number of targets is equal to the sum of hits and
misses.

Subject Hits False alarms Misses Error

VPja 72 3 0 4%
VPiz 71 0 1 1.4%
VPip 72 1 0 1.4%
VPzq 71 5 1 7.8%
VPig 88 17 8 22.1%
VPjf 96 4 0 4%
VPjb 95 3 1 4%

Average - - - 6.4%

classification purposes, to resemble the typical settings used in the BBCI. Artifacts were removed
according to Section 2.4.2.

3.3.4. Classification

Data in Experiments 3 and 4 were classified to estimate the usefulness of AMUSE for BCI. In order
to obtain a fair comparison, all datasets were reduced to the maximum possible common number
of epochs (approximately 1500 epochs) and a subset of the available channels (see Figure 3.2).
Irregular feature intervals were selected using prior knowledge (see Figure 2.5-B) and classification
of the data was done using a 10-fold chronologically sampled cross-validation.

3.3.5. Experiment 1: Behavioral Responses

A potential reason for any BCI paradigm to not elicit the expected responses in the EEG is that
the task is simply too difficult. If the subject can not distinguish target from non-target, no large
differences are to be expected in the EEG, if any at all. To test that subjects are able to perform the
task at hand, the first experiment is a purely behavioral task and does not involve EEG.

3.3.5.1. Setting

Using an eight speaker setup (see Figure 3.1-a), the stimuli only differed in their spatial location.
The stimulus consisted of 75ms of band-pass filtered white noise (150-8000Hz) with 3ms rise
and fall, and was the same for all directions. Per trial, one of the eight sources was the target
(probability 12.5%), leaving the others as non-targets (probability 87.5%). The target was explicitly
indicated to the subject before the start of a trial, both visually on the screen and by presenting
the stimulus from that source.

Seven healthy subjects were asked to respond to the indicated target stimulus by pressing a
key on the keyboard. The SOA was set to 2000ms with a random jitter (mean 25ms, standard
deviation (SD) 14.4ms). This relatively high SOA allowed for the ERP response to be completed
before the following stimulus. Any response that fell within the 2000ms window after a target
stimulus was considered a true positive; the failure to produce a response was considered a false
negative. Any response not directly preceded by a target stimulus was considered a false positive.

39



3. AMUSE Proof of Principle

Confusing source

T
ar

g
et

 s
o

u
rc

e

 

 

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

fb

fb

fb

fb

fb

fb

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

F
−

m
ea

su
re

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 3.3.: The grand average source discrimination performance is depicted as a confusion
matrix containing F-scores (see Section 2.6.1). Lower F-scores indicate worse per-
formance. Sources with a front/back confusion (fb) are clearly more difficult to
separate. Sources with no degrading factor (no label) have near-perfect recognition
performance.

Error scores were calculated according to

error= miss+ false alarms
hits+miss+ false alarms

§100% (3.1)

The number of true negatives is excluded from this equation because its large number wouldmask
the error size. Between 576 and 768 epochs per subject were recorded. Blocks of this experiment
were interleaved with blocks from Experiment 2, as they took place in the same session.

3.3.5.2. Results

Recognition Performance Individual performance results can be found in Table 3.1. Although
no subject showed a perfect recognition, the number of errors was under 10% for all subjects but
VPig. Subject VPig, with an error rate of 22.1%, was one of two subjects who reported to have
difficulty with sound localization in natural settings. Subject VPip, who also reported this, had an
excellent performance, with an error rate of 1.4%.

Directional Preference The grouped performances of subjects on different directions can
be found in Table 3.2; the corresponding F -score matrix in Figure 3.3. The first observation to
be made is the confusion of the front speaker with the rear speaker. All eight false alarms on
the front trials were due to confusion with the rear speaker. Vice versa, the only false alarm
on the rear trials is a confusion with the front speaker. Several subjects also reported to have
difficulty with this distinction. The median F -score for speakers that share a front-back plane
is low (median: .80; inter-quartile range (IQR): 0.20; N: 6), compared to neighboring sources
(median: .93; IQR: 0.15; N: 16) and all remaining pairs (median: 1, IQR: -, N: 34). The latter two
show (near) perfect recognition rates. Bonferroni-corrected non-parametric Kruskall-Wallis H
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Table 3.2.:Grand average performance per direction. Errors for all subjects were averaged ac-
cording to the direction of the target stimulus. Types of errors made can be found in
Figure 3.3. Due to the random target assignment, not all directions are designated as
a target equally often. Source numbers correspond to the speaker locations given in
Figure 3.1-A.

Source Hits False alarms Misses Error

1 67 8 1 11.8%
2 40 1 4 11.1%
3 84 3 0 3.5%
4 83 10 1 11.7%
5 57 1 3 6.6%
6 51 4 1 8.9%
7 108 5 0 4.4%
8 75 1 1 2.6%

Average - - - 7.6%

tests (Æ= 0.008) confirmed that errors on front-back pairs were significantly more frequent than
on neighboring sources (¬2(1)= 7.19; p = 0.007) and all remaining pairs (¬2(1)= 20.57; p < 0.001).
Furthermore, recognition for neighboring sources was significantly worse than for the remaining
pairs (¬2(1)= 11.82; p = 0.001).

3.3.5.3. Summary

AMUSE was shown to be behaviorally feasible, with good overall recognition rates. Special care
is to be taken with stimuli that lie on the same cone of confusion as the target stimulus (see
Section 2.1); without any additional cues they may lead to front-back confusions.

3.3.6. Experiment 2: Neurophysiological Responses
The fact that a task is behaviorally feasible does not imply that it is useful for BCI. For it to be
applicable in the domain of BCI, target and non-target stimuli must result in ERP components in
the EEG with significantly different time courses. This difference would allow for the classification
between target and non-target, which drives any BCI. The following experiment was designed to
verify that indeed such ERP components are elicited by the proposed task.

3.3.6.1. Setting

The subjects that participated in Experiment 1 also performed the current experiment, to test
for the existence of binary-class related differences in the EEG. Runs of this experiment were
interleaved with those of Experiment 1.

The settings for this experiment were largely the same as in Experiment 1, with some notable
differences. Subjects were now asked to mentally count the amount of target stimuli instead of
responding by key press, and the SOA was reduced to 1000ms, maintaining the same jitter. EEG
data were recorded for offline analyses. With 10 iterations per trial, 80 epochs were available per
trial. For each subject, 32 trials were recorded, changing the target with every trial, for a total of
2560 epochs (320 target epochs). The number of trials left after artifact rejection far exceeded the
recommendedminimum number (Duncan et al., 2009).
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Figure 3.4.: The P3 response is plotted in grand average (A) and for each individual subject (B).
The P3 response is largely typical and robust over subjects. See Figure 2.4 for a full
explanation of the figure elements.
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The N1 response is largely typical and robust over subjects. See Figure 2.4 for a full
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Table 3.3.: Stimulus properties for Experiments 3 and 4. Source numbers refer to the speaker
labels given in Figure 3.1-B. The stimuli consist of a tone (Base tone) with harmonics
and band-pass filtered white noise (Noise range).

Source Base tone (Hz) Noise range [KHz]

1 554 (cis) 0.54 - 4.2
2 622 (dis) 0.70 - 5.5
3 699 (f) 0.91 - 7.1
7 440 (a) 0.32 - 2.5
8 494 (b) 0.42 - 3.3

3.3.6.2. Results

Grand average and subject specific ERP responses and scalp topographies for all subjects can
be found in Figures 3.4, 3.5, and 3.6. Figure 3.4 focusses on the cognitive P3 response (see
Section 2.2.2), which typically contributes highly to the BCI performance. In grand average (top
row), the peak voltage deflection for target stimuli at channel Pz is 9.73µV, with 417ms latency
to stimulus onset. A prominent positive deflection is found over parietal channels for target
stimuli, resulting in binary-class discriminative information in the same region (right column).
This general pattern is found for most individual subjects, but two; VPig shows a much higher
than average peak latency (568ms), and VPjf shows an a-typical, off-center spatial distribution of
the discriminative information.

Figure 3.5 focusses on the earlier N2 component, in particular over channel Fz. In grand average,
the peak voltage deflection for target stimuli is -1.79µV with a latency of 279ms after stimulus
onset. Spatially, the discriminative binary-class information is found in frontal regions and around
channels F5 and F6, which lie close to the primary- and secondary auditory cortices (but see
Section 2.2.1). Both the latency and spatial distribution of the N2 are robust over subjects.

The N1 peak is shown in Figure 3.6, in particular over channel Fz. In grand average, the peak
voltage deflection for target stimuli is -3.96µV with a latency of 111ms after stimulus onset. Both
the target and non-target responses are most prominent over central electrodes, with low discrim-
inative information. However, for at least three subjects, the N1 has prominent discriminative
power. Latency and spatial distribution are mostly robust over subjects.

A one-way analysis of variance (ANOVA) revealed a significant effect of channel location (factors
Fz, Cz, Pz) on the P3 amplitude (F (2,15) = 11.01, p<0.01). A Tukey-Kramer post-hoc comparison
showed that channel Fz (mean: 3.91, SD: 1.85) significantly differs from channels Cz (mean: 7.68,
SD: 1.90) and Pz (mean: 9.73, SD: 2.68). Channels Cz and Pz did not differ significantly between
them. Average P3 latency increased from frontal- to parietal electrodes, peaking at 417ms (SD =
35.02), but this effect was not significant. Subject VPig was excluded from this analysis due to the
lack of a clear P3 peak. Neither the latency nor the peak of the N1 and N2 components interacted
significantly with electrode site.

3.3.6.3. Summary

Though individual difference exist, the grand average latency and location of all three compo-
nents are in line with what is to be expected from literature. AMUSE thus leads to typical ERP
components with good binary-class separability for most subjects; a fundamental requirement
for any BCI paradigm.
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3.3.7. Experiment 3: Realistic BCI parameters
Up to this point the parameters did not resemble a typical BCI system, but were rather chosen
to investigate the feasibility of the paradigm. BCI systems deal with a trade-off between the
speed of the system and the amount of discriminative information that is contained in each
individual epoch. One factor in this trade-off is the SOA. In Experiments 1 and 2, this was set to
high values, favoring themaximum discriminative information per epoch. For online BCI systems,
the SOA is typically set to values between 150 and 300ms. With such a low SOA, the discriminative
components that are important for classification start to overlap and (at least partially) cancel out,
leading to a reduction in SNR (see Box 2.3 on page 23). The current experiment investigates the
performance of the paradigm under realistic BCI conditions.

3.3.7.1. Setting

For this experiment, the paradigm was altered in several ways, based on findings from Experi-
ments 1 and 2 and to change to the typical settings of a BCI system. First, the amount of sources
was reduced to the front five to make the task easier and to avoid front-back confusions (see
Figure 3.1-B). Thus, the target was presented with 20% probability and non-targets with 80%
probability. It has been shown that this is rare enough to produce a robust P3 response (Sellers
et al., 2006b). All five speakers were each given a unique, complex 40ms stimulus, build from
band-pass filtered white noise and a tone overlay (see Table 3.3). The stimuli thus had two dis-
criminating features each: the physical sound properties and the source location. Latency jitter
was omitted. In order to explore the possibilities of the paradigm, two conditions with different
SOA were tested (condition C300: 300ms, and condition C175: 175ms).

A trial consisted of 75 epochs, 15 for each source. For both conditions, 40 of such trials were
recorded, making a total of 3000 epochs. Stimulus order now had an additional constraint: there
were at least two other stimuli between stimulation from any particular source to prevent overlap
of target ERPs.

Experiments 3 and 4 were recorded in the same session, and runs of both experiments were
interleaved.

3.3.7.2. Results

Physiology The grand average neurophysiological responses for both conditions are presented
in Figure 3.7 (P3 response) and Figure 3.8 (N1 response). Due to the superposition of different
components, the N2 lost most of its discriminative power and is not shown here.

As expected, the P3 response was superimposed on the early components that were rhythmi-
cally evoked by the physical processing of the stimuli. It caused the negative deflections to miss a
cycle in condition C175 (see Figure 3.7-B). Spatially, the discriminative information for the P3 in
condition C175 was foundmore frontally, centered over channel Cz. In condition C300, the P3
response had more time to develop, which resulted in a more typical positive going potential (see
Figure 3.7-A). It also resulted in stronger, andmore parietally centered discriminative information.
Clearly, the P3 carried more discriminative information for condition C300 than for condition
C175.

For both conditions, the N1 component was found over frontal electrodes, spreading to the
temporal electrodes covering the primary auditory cortices (see Figures 3.8-a and b). Interestingly,
the N1 component was similarly binary-class discriminative in both conditions.

Classification Performance Individual and averaged binary-classification performances can
be found in Table 3.4, along with the selection accuracy and the ITR. When considering all 15
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Figure 3.7.: The grand average P3 response is plotted for each condition of Experiments 3 and 4.
All three conditions result in discriminative information. The temporal response for
condition C175 is reduced due to the interruption by early components. See Figure 2.4
for a full explanation of the figure elements.
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and B). See Figure 2.4 for a full explanation of the figure elements.
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Table 3.4.: BCI performance results for Experiments 3 and 4. All scores were calculated using the
maximum of 15 iterations. All datasets were reduced to the size of the smallest dataset.

Subject
1 2 3 4 5 Average

Experiment 3
C300 Binary accuracy 66.4% 76.5% 71.3% 63.1% 71.4% 69.7%

Selection accuracy 90% 100% 90% 65% 90% 87%
ITR [bits/min] 3.6 5.1 3.6 1.5 3.6 3.5

C175 Binary accuracy 65.9% 77% 64.5% 67.8% 67.2% 68.5%
Selection accuracy 90% 100% 80% 95% 75% 88%
ITR [bits/min] 5.5 7.7 4 6.4 3.3 5.4

Experiment 4
C300s Binary accuracy 55.3% 68.4% 57% 53.2% 57.3% 58.2%

Selection accuracy 35% 90% 40% 45% 55% 53%
ITR [bits/min] 0.2 3.6 0.3 0.5 0.9 1.1

iterations, subjects performed similarly on condition C300 (mean binary accuracy: 69.7%; mean
selection accuracy: 87%) and condition C175 (mean binary accuracy: 68.5%; mean selection accu-
racy: 88%). On the contrary, in terms of ITR, condition C175 (mean: 5.4 bits/min) outperformed
condition C300 (mean: 3.5 bits/min) by about 54%.

Figure 3.9-A and B show the performance evolution over iterations in terms of ITR for conditions
C300 and C175. The performance for condition C300 peaked at iteration four with an average
of 7.7 bits/min. The performance for condition C175 also peaked at iteration four, but with
an average of 8.0 bits/min. From these initial peaks, performance dropped with additional
iterations for both conditions. The time added by performing more iterations (reducing V in
Equation 2.10) outweighed the slight increase in selection accuracy from that point on. Condition
C175 outperformed condition C300 on all but the first two iterations in terms of ITR, with similar
selection accuracies.

One subject outperformed all others on condition C175, with a peak ITR of 13.66 bits/min
(VPzq). This subject reported to regularly sing in a choir and to have a trained musical ear.

3.3.7.3. Summary

With the quicker BCI settings, the amount of discriminative information that is contained in each
single epoch is reduced. The relative contribution of the early N1 component increases, with the
P3 being interrupted by early components of following stimuli. Nevertheless, the task relevant
selection accuracy is good for both conditions (average >70%). The quicker C175 condition
performs best in terms of ITR on almost any number of iterations.

3.3.8. Experiment 4: Single Direction Control Condition
In Experiments 1 and 2, all stimuli consisted of the same band-pass filtered noise. The spatial
location was thus the only possible cue to elicit the ERPs. However, in the quicker Experiment 3, a
unique tone was added to each direction, providing a second discriminative cue. The ERPs were
thus elicited by a mixture of both cues. The current experiment investigates the contribution of
the spatial cue to the ERPs and classification performance.
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Figure 3.9.: The performance in terms of ITR is plotted against the number of iterations for
conditions C300 (A), C175 (B) and C300s (C) and for all subjects (grey lines). The black
lines represent the average performances. For conditions C300 and C175, using the
AMUSE principles, a sharp rise in ITR is present peaking at four iterations. Such a rise
is not visible for the control condition. The high performing subject in conditions
C175 is the same as in C300s.

3.3.8.1. Setting

For this experiment, a single condition was tested (C300s). Like condition C300 of Experiment 3, it
had a SOA of 300ms. However, all stimuli were presented through a single speaker (front), thereby
leaving the pitch properties of the stimuli as the only discriminating cue. All other parameters
remained the same as in condition C300. 20 trials of 75 epochs were recorded for this condition,
making a total of 1500 epochs. Experiments 3 and 4 were recorded in the same session, and blocks
of all conditions were interleaved.

3.3.8.2. Results

Physiology The grand average physiological responses are shown alongside those of Experi-
ment 3 in Figure 3.7-C and Figure 3.8-C, for the P3 and N1 component, respectively.

The temporal shape of the P3 component was similar to that of condition C300, with similar
latency and amplitude. Spatially, the discriminative information was located over the parietal
region. The discriminative power was largely reduced compared to that of condition C300. This
detrimental effect was even greater for the early N1 component. The temporal traces for target
and non-target epochs nearly overlapped, resulting in an almost complete loss of discriminative
information.

Classification Binary- and selection accuracy, as well as ITR, can be found in Table 3.4. With
an average binary accuracy of 58.2% and selection accuracy of 53%, condition C300s performed
considerably worse than the spatial condition C300. Even though the binary accuracy was only
marginally above the chance level of 50%, the selection accuracy rose well above the chance level
of 20% due to the accumulation of evidence. However, it is typically not sufficient for controlling
a BCI application. The ITR reflected this, with only 1.1 bits/min on average.

Despite the low average ITR, one subject managed to complete the task with very high accuracy
and a peak ITR of 6.8 bits/min. Not surprisingly, this was the same subject as the high performer
in condition C175 of Experiment 3 (VPzq), who had a trained musical ear. The spatial cue was of
less importance for this subject.
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3.3.8.3. Summary

By changing condition C300 on one key aspect, removing the spatial cue from the stimuli, the
contribution of the spatial property on the performance was investigated. All performance
measures dropped dramatically in comparison to condition C300. Physiologically, in particular
the early N1 component lost most of its discriminative power, with the P3 component being
strongly reduced. The resulting selection accuracy is unlikely to drive a BCI. The spatial feature is
thus key in enabling the multiclass auditory paradigm to control a BCI application.

3.4. Discussion
In this chapter, a new auditory BCI paradigm is proposed and its basic principles are carefully
validated with healthy subjects. In contrast to most contemporary auditory BCI paradigms
(Bentley et al., 2008; Farquhar et al., 2008; Furdea et al., 2009; Guo et al., 2009; Hill et al., 2005;
Hong et al., 2009; Kanoh et al., 2008; Klobassa et al., 2009; Kübler et al., 2009; Lopez et al., 2008;
Sellers et al., 2006a), AMUSE results in high performances, and at the same time it is intuitively
multiclass and can readily vary in the number of classes.

3.4.1. On Spatial Stimulation
FromExperiment 1 it is clear that the task is behaviorally feasible, with an average error rate over all
subjects of 6.4% on an eight class setup (see Table 3.1). Using an equidistant source distribution,
there is a 45 ± azimuth angle between any two neighboring speakers. The discrimination for such
neighboring sources was generally very good, with amedian F -score of .93. As several studies have
shown that the spatial acuity (MMA) of the human hearing system is about an order more precise
than 45 ±, even for azimuth positions that typically have a lower than optimal resolution (Blauert,
1996; Mills, 1958), this finding may seem trivial. However, important experimental differences
exist between the early psychophysics studies (see Section 3.1) and AMUSE.

For one, AMUSE was tested in a normal roomwithout extensive sound-attenuating measures,
whereas most psychophysical MMA experiments are performed in anechoic, sound dampened
chambers with minimal ambient noise (Bennemann et al., 2013; Brungart et al., 1999; Mills, 1958;
Wightman et al., 1999). Stimulus echo and in particular ambient noise can degrade localization
performance (Giguère et al., 1993; Good et al., 1996; Hartmann, 1983). Since they are both an inte-
gral part of any out-of-the-lab BCI, AMUSE has to deal with them. Results of Experiment 1 clearly
show that AMUSE is robust to such unfavorable conditions. The choice of stimuli (broadband
noise with sharp onset) possibly aided in the localization task by eliciting the precedence effect
(Wallach et al., 1949, or see Section 2.1), though the frequency spectrum could be broadened into
the HFR to facilitate monaural cues (Langendijk et al., 2002).

A second important difference is the stimulation sequence. In typical psychophysics studies,
a single (pair of) sound(s) is presented and subjects are requested to localize these. In ERP-
based BCI, and thus in AMUSE, stimulation consists of a rapid train of successive stimuli. This
requires extended attention and working memory resources, as the target needs to be kept in
memory during the entire sequence. This can result in reduced amplitude of the P3 component
(Kotchoubey et al., 1996), which was argued to lead to reduced performance in non-spatial
auditory BCI (Kübler et al., 2009). Though this claim can not formally be tested for AMUSEwithout
a control condition, the presence of strong grand average ERP components for Experiment 2
suggests that these required resources are available for most of the tested healthy users (see
Figures 3.4 to 3.6).

Experiment 1 clearly exposes an adverse effect for sources that lie on a cone of confusion (see
Figure 3.3). The cone of confusion is caused by ambiguities in binaural features. The user thus
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only has the less salient monaural features available for localization, and both stimuli may appear
to come from a common source (see Section 2.1). This is the case for source pairs 2 & 4 and 6 &
8, and in particular for 1 & 5 (see Figure 3.1-A). The severity of the latter pair was also reported
verbally by several subjects and contradicts previous findings (Carlile et al., 1997; Makous et al.,
1990). The F -score for pairs on the cone of confusion (median: .80) is significantly lower than
that for neighboring pairs. A simple remedy is to restrict all speakers to the frontal half, as done
in Experiment 3 and Belitski et al. (2011). When strictly adhering to the horizontal plane, this
leads to a decreased angle between neighboring sources. If a large number of sources is required,
sources with different elevation angles could be added to sustain the number of classes without
compromising the spatial resolution of human hearing. Even so, care has to be taken in placing the
sources, as the cone of confusion extends to elevated sources (see Section 2.1). Another remedy is
to introduce additional cues to the stimuli, as done in Experiment 3 and the next chapters.

Results of the control condition (Experiment 4) show a dramatic effect of removing the spatial
component, both on the resulting ERPs and on all performance metrics. Most subjects are unable
to accurately distinguish the stimuli without the spatial cue. Clearly, the spatial property adds
vital information to the quick, complex tone stimuli, allowing for a fast multiclass BCI. Other
studies have shown that a multiclass, covert attention-based BCI can also be achieved without
spatial cues, using natural sounds (Furdea et al., 2009; Guo et al., 2010; Guo et al., 2009; Klobassa
et al., 2009; Kübler et al., 2009; Sellers et al., 2006a; Yoshimoto et al., 2012). After the introduction
of AMUSE, yet others have investigated a combination of both spatial cues and natural sounds,
combining the best of both worlds (Gao et al., 2011; Höhne et al., 2012a; Ruf et al., 2013).

3.4.2. Neurophysiology
Stimulation in Experiment 2 lead to strong andmostly typical ERP components. The significant
reduction in P3 amplitude from parietal- to frontal channels that was found, has consistently
been reported throughout literature (Allison et al., 2006; Gonsalvez et al., 2007; Gonsalvez et al.,
1999; Squires et al., 1975). In grand average, the three investigated components were typical: a
parietal P3 (Squires et al., 1975), a fronto-central N2 (Halder et al., 2013; Pritchard et al., 1991),
and a central N1 (Davis, 1939). Though individual differences exist, the components were largely
stable over subjects.

In Experiment 2, target stimuli elicited P3 components with high amplitude and just over
400ms latency. The P3 component was highly binary-class discriminative. P3 latency appears
lower in both conditions of Experiment 3 (compare Figures 3.4 and 3.7). P3 latency is known to be
correlated with task difficulty, with more difficult tasks causing longer P3 latency (Polich, 1987). It
could thus indicate the beneficial effect of double cueing –as both spatial location and pitch were
now indicating a class– and the reduced class number. However, the interruption of normal P3
development by the early components of following stimuli, in particular the N1, is another likely
explanation for this latency shift. It is impossible to disentangle these causes based on the current
data . Interestingly, though the N1 shows no attention effect in condition C300s (see below), the
P3 component is still binary-class discriminative, albeit much reduced compared to condition
C300. Binary-class separation is thus largely a cognitive effort in Experiment 4.

As with the P3, Experiment 2 resulted in pronounced and highly discriminative N2 component.
Due to the latency, distribution, target dependency and experimental task it is most likely the
N2c subcomponent (Halder et al., 2013; Pritchard et al., 1991), reflecting target recognition
and processing. It was almost completely unrecoverable at the faster stimulation speeds in
Experiments 3 and 4, possibly due to the overlap with the P3 or N1 components from stimuli
directly before and after the epoch.

In Experiment 2, the N1 component is clearly visible. It is binary-class discriminative, though
less so than the later components. The N1 depends highly on physical stimulus properties such
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as pitch and in particular stimulus intensity (Näätänen et al., 1987). However, both pitch and
intensity were equal for all stimuli in Experiment 2, and the target changed with each trial. The
selective attention on spatial location alone thus induces binary-class discriminative differences
as early as the N1. Interestingly, much unlike the later component, the N1 keeps most of its
discriminative power for the faster conditions of Experiment 3, thus becoming increasingly
important for the classification task. The positive effect of faster stimulation on the selective
attention modulation of the N1 component was previously described (Näätänen et al., 1987;
Schwent et al., 1976). Though pinpointing this effect on faster stimulation is impossible here due
to several confounds (stimulus type, number of classes), the current findings are in line with these
early results. The N1 has completely lost its discriminative power in Experiment 4. In a multiclass
setting, spatial location thus provides a stronger physical feature for early selective attention than
does pitch alone (see also Höhne et al., 2012b).

It should be noted that in Experiment 2 the peaks were selected based on the timeseries
themselves, whereas for Experiments 3 and 4 the discriminative data were used (see Section 2.5.1).
Furthermore, though the N1 and P3 components have similar discriminative power for the
selected intervals in Experiment 3, the P3 component extends beyond the interval, whereas the N1
component is sharp. Averaging over broader intervals could lead to more robust discrimination
for the P3.

3.4.3. BCI Performance
After careful validation of the behavioral and physiological responses to AMUSE, the settings were
changed in Experiment 3, to resemble those typically found in a BCI. Conditions C300 and C175
resulted in similar performances, both in terms of binary- and selection accuracy. Average binary
accuracy is clearly above chance for both conditions (C300: 69.7%; C175: 68.5%). The evidence
accumulation introduced in Section 2.4.5 (specifically in Equation 2.4) increases the SNR and
improves the selection accuracy further (C300: 87%; C175: 88%). The selection accuracy is not
only above the chance level of 20%, but a selection accuracy >70% can likely support a BCI speller
application (Kübler et al., 2001). The SOA of condition C175 is almost half that of condition C300,
which results in a much higher ITR for condition C175 (C300: 3.5 bits/min; C175: 5.4 bits/min).

When AMUSE was introduced in 2009 (Schreuder et al., 2009), the results for condition C175
marked a sharp increase compared to contemporary BCIs, both in selection accuracy and ITR
compared to contemporary auditory BCI (Farquhar et al., 2008; Hill et al., 2004; Kanoh et al., 2008;
Sellers et al., 2006a). In fact, at the time of writing it is still competitive with current auditory BCI
(see Table 1.1 and Hill et al., 2012a; Hill et al., 2012b; Kim et al., 2011b; Lopez-Gordo et al., 2012;
de Vos et al., 2014). Interestingly, a number of studies included spatial location in their stimuli
after the introduction of AMUSE, most of which show higher than average ITR performances
(Belitski et al., 2011; Cai et al., 2013; Gao et al., 2011; Höhne et al., 2010b; Höhne et al., 2011b;
Käthner et al., 2013; Nambu et al., 2013; Ruf et al., 2013). This again indicates the vital information
that can be added to auditory stimuli by including spatial separation.

Given the selection accuracy and ITR, condition C175 appears to be most suited for BCI appli-
cations. Interestingly, several subjects reported that the lower SOA helped them focus on the task
at hand. This effect is known in psychophysics literature as stream segregation or streaming, and
is part of the human capacity of auditory scene analysis (Bregman, 1990). When confronted with
a repetitive stream of tones (for instance: high-low-high-high-low-high) at moderate speed, the
listener will perceive a single coherent “galloping” rhythm. However, by increasing the speed, the
listener will start perceiving two segregated streams, one of high and one of low tones (Bregman
et al., 2000). The same phenomena is likely to play a role for AMUSE; at increased speeds the
listener can start perceiving the targets as a single stream, making the task easier.

By looking at the selection accuracy at different number of iterations, the theoretical potential
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of AMUSE was estimated at 7.7 and 8.0 bits/min for conditions C300 and C175, respectively (see
Figure 3.9). Viewing the data in this manner is common practice in BCI literature (for some
examples, see Acqualagna et al., 2010; Furdea et al., 2009; Guo et al., 2009; Schaeff et al., 2012;
Treder et al., 2010), and even though it can over-estimate the true performance (see Chapter 6), it
clearly shows that less than 15 iterations could be sufficient. In fact, an ITR of 8.0 bits/min is close
to what is currently achievable with covert attention-based visual BCIs (though the latter would
likely benefit similarly from a post-hoc selection of the number of iterations).

The selection accuracy, the ITR and the number of classes of AMUSE are allmajor improvements
over contemporary covert attention-based BCIs (see bold printed studies in Table 1.1). Prior to
AMUSE, covert attention, ERP-based BCIs were mainly binary in nature, with the exception of the
four-class BCI in Sellers et al. (2006a). Here, AMUSE was proven to work under BCI conditions for
five classes, and clearly discriminable components were found for up to eight classes with higher
SOA. The highest achieved ITR for covert attention-based BCI before AMUSE was estimated to be
around 1.71 bits/min (Hill et al., 2004). The current results thus show a three-fold improvement
in terms of ITR. It is important to note again that the majority of ITR values in Table 1.1 were
recalculated to include overhead, something that is typically ignored in offline studies.
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The previous chapter shows the beneficial effect of spatially separated sources in principle. The
next step in the BCI design chain (see Section 1.6) is that of an online validation study. Therefore,
AMUSE is combined with a speller interface in online mode, to create an AT application for
communication. It allows a subject to write words by attending to spatially distributed stimuli,
mapped to the characters of the alphabet. Concretely, it addresses hypotheses iii (with spatial
stimuli, a covert attention-based, auditory multiclass BCI can be realized), and iv (spatial stimuli
allow for useful BCI performance in a strictly auditory setting for healthy subjects and end-users)
for healthy subjects only.

This chapter is based on previous publications, in particular Höhne et al. (2010a), Höhne et al.
(2011a), Höhne et al. (2011c), Schreuder et al. (2011c), Schreuder et al. (2010b), and Schreuder
et al. (2010c)

4.1. Prior Work

However important communication is, not all BCI paradigms are designed for this purpose.
Several studies have focussed on much simpler BCIs, aiming to elicit a low-bandwidth but robust
response (Halder et al., 2010; Hill et al., 2012b; Sellers et al., 2006a). Given their different purposes,
they will not be considered in this chapter. Furthermore, the focus will be on covert attention-
based BCIs.

The covert attention-based visual BCIs described before are mostly designed for spelling pur-
poses and tested online (Acqualagna et al., 2013; Aloise et al., 2012; Liu et al., 2011; Schaeff et al.,
2012; Treder et al., 2011). In accordance with their high selection accuracy and ITR, they achieve
writing performances of up to 1.88 char/min (Aloise et al., 2012; Schaeff et al., 2012; Treder et al.,
2011). Though this is lowwhen compared to current overt attention-based BCIs (see Section 1.4.1),
it is unparalleled by auditory or tactile spellers.

The only spelling application operated by a tactile BCI was recently reported on, achieving a
writing speed of roughly 1 char/min (van derWaal et al., 2012). Thus far, the result for auditory BCI
is still below that. Using natural sounds to represent the rows and columns of a spelling matrix,
Furdea et al. (2009) and Klobassa et al. (2009) achieved writing speeds of around 0.16 and 0.11
symb/min, respectively. Recently, Käthner et al. (2013) proposed a portable BCI-based on virtual
spatial cues, achieving a writing speed of roughly 0.37 symb/min. Clearly, the auditory spellers
perform worse than their tactile and covert attention-based visual contemporaries.

Höhne et al. (2011b) proposed an auditory BCI paradigm based on stimuli differing both in
virtual spatial location and pitch. Both features represented orthogonal dimensions in a 3£3
matrix, for a total of nine classes. Using a T9-based application intelligence for word prediction, a
writing speed of 0.89 char/min was achieved.

It is worth noting that the early work on BCIs based on slow cortical potentials (SCP), not relying
on overt attention, two end-users with advanced LIS were able to select a symbol in approximately
two minutes, or 0.5 char/min. Though they required between 220 and 260 training sessions, and
three other end-users did not reach sufficient control, it shows that most current non-visual covert
attention, ERP-based BCIs have progressed only marginally beyond this.
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Figure 4.1.: Visualization of the experimental protocol for online writing. Subjects wrote one of
two German sentences. The speller consisted of two levels. In the first level, a set of
characters was selected; an individual character of that set could be selected in the
second level. A fixed number of 15 iterations was used. The class labels and classifier
decisions were communicated to the subject verbally, using speech synthesis software
by Schröder et al. (2003).

4.2. Spelling Interface Principles

For online writing with AMUSE, an adapted version of the six class hex-o-spell speller (Blankertz et
al., 2006; Müller et al., 2006) was created, driven by six sound sources (see Figure 3.1-C). Characters
can be selected in two steps. First, a group of characters is selected (group ’F-J’ in Figure 4.1) by
focusing on the corresponding source. In the second step, the characters of this group are divided
over five of the sources and an individual letter can be selected. Choosing the sixth source takes
the subject back to the first selection step, which can be used to undo an erroneous decision in
the first step.

The copy text and writing progress were presented visually as support (see Figure 4.2). Which
(group of) letter(s) corresponded to each source, and which source had been selected, was read
out to the subject using speech synthesis software (Schröder et al., 2003). The application could
thus be operated with minimal reliance on the visual modality. The letters were distributed over
the sources in alphabetical order. From an information theory perspective there are more optimal
distributions imaginable, but they would increase the cognitive demand on the subject, as the
ordering would not be “logical”.

In contrast to most ERP-based BCI studies, the application did not operate in copy-spelling
mode, but rather in quasi-free mode. Subjects were given a sentence to write and any committed
errors had to be corrected. An erroneously selected group (level one error) could be undone by
a single ‘undo’ selection on level two. On the other hand, an incorrectly written letter (level two
error) required two additional selections for deletion. All selections are taken into account for
calculating the selection accuracy. However, the task relevant char/min metric only measures
howmany correct letters are spelled per time unit. Any corrective selections add time and thereby
decrease the char/min score, as no additional correct letters are written. This protocol is rather
conservative compared to the traditional copy-spelling mode, where errors are not corrected and
no corrective selections are considered for calculating the spelling speed.
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Figure 4.2.: Shown is the screen as the subject would see it during a run. Subjects did not receive
visual guidance during online writing, other than the word they had to write and their
progress. Additionally, a fixation cross is show; subjects were requested to focus the
cross during a trial.

4.3. Writing With AMUSE
The ultimate validation of a BCI is its online application. As AMUSE refers to the mere concept
of the spatially distributed stimuli, it was combined with a spelling interface to form a spelling
application. This compound system was validated online.

4.3.1. Experiment 5: A Fully Auditory Speller
AnAMUSE-based spelling applicationwas tested in onlinemodewith 21 healthy subjects. Subjects
received immediate feedback on the classifier’s interpretation of their intention, expressed through
their ERP responses. Such an online validation is important for at least two reasons: 1) as all
experimental parameters have to be fixed based on the calibration data, over-fitting on the online
run is prevented, and 2) it considers the subject in the loop, who adjusts hismental state according
to the feedback he receives. For these reasons, all reported performance measures are taken from
the online runs unless stated otherwise.

4.3.1.1. Setting

In addition to the basic settings described in Chapter 2 and Section 3.2.1, the experimental settings
were as follows.

Participants Participants were 21 BCI-naive subjects. They reported no current or prior neuro-
logical disorder and normal hearing. The latter was not formally tested. Subjects were financially
compensated for their participation with eight euro per hour. Age ranged from 20 to 57 (mean:
34.1; SD: 11.4). Procedures were approved by the Ethics Committee of the Charité University
Hospital. All subjects provided verbal and written informed consent and subsequent analysis and
presentation of the data was anonymized.

Stimulation A six source setup was used (see Figure 3.1-C). Sources were evenly distributed
in a circle, with 60± azimuth angle between them to stay well over the resolution of human
spatial hearing (see Section 2.1). The pseudo-random stimulus sequence was generated with two
constraints: (1) there were at least two other stimuli between two stimuli from one speaker, and (2)
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Table 4.1.: The stimulus for each source was a complex of a tone (Base tone) with harmonics and
band-pass filtered white noise (Noise range). The noise component extended into
the HFR for most components. The source numbers refer to the speaker locations in
Figure 3.1-C.

Source Base tone [Hz] Noise range [KHz]
1 762 3.6 - 9.2
2 528 3.2 - 8.0
3 1099 4.0 - 10.5
4 635 3.4 - 8.6
5 915 3.8 - 9.8
6 440 3.0 - 7.5

two successive stimuli never came from neighboring speakers. The SOA was set to 175 ms, which
emerged as the best setting in Experiment 3. The circle radius was reduced to ª65 cm, based on
subjective experience.

Stimuli consisted of a low frequency tone with seven harmonics and a high frequent, band-pass
filtered noise overlay (see Table 4.1) similar to those of Experiments 3 and 4. The noise component
of most sources now extended into the HFR (Langendijk et al., 2002). Though the six source setup
reintroduces the front-back confusions, it is counteracted by double cueing with the additional
tone.

Protocol Subjects were first familiarized with the sounds, after which about 30 minutes of
calibration data were recorded. Subjects performed 48 trials, eight for each source. At the start of
a trial, the target source was indicated both visually (one of six on-screen dots highlighted) and
auditorily (by playing the source-specific stimulus from the target source). After that, stimulation
was purely auditory and subjects were asked to mentally count and report the number of target
appearances. Each calibration trial consisted of 15 iterations. However, in order to have a varying
number of targets, and thus a more challenging task, a prequel of varying length (1-3 iterations)
was added.

After calibration, subjects were asked to write one of two sentences word for word: “FRANZ
JAGT IM TAXI DURCH BERLIN” or “SYLVIA WAGT QUICK DEN JUX BEI PFORZHEIM”. Sentences
were randomly assigned to the subjects. Trial length was fixed to 15 iterations and no prequel was
included. The stimulation sequence and the overhead of verbal label- and result presentation col-
lectively took around 34 seconds per trial. With a two step letter selection process, the maximum
theoretical writing speed is thus .89 char/min.

Data Acquisition EEG was recorded using a fixed set of 61 Ag/AgCl electrodes and BrainAmp
amplifiers (Brain Products, Munich, Germany). All impedances were kept below 15k≠. Only for
subject VPfce did the impedance exceeded this threshold at the end of the session.

The set of intervalsT that was used for classification was found using the algorithm described
in Section 2.4.3, andmanually adapted if necessary. Typically, a set of two to four intervals with
high discriminative information content were chosen, such that both early and late components
were represented. This resulted in an overall dimensionality of 112 to 224 features.

4.3.1.2. Results

Neurophysiology Online data of all subjects were pooled and the grand average ERP responses
were calculated, as shown in Figure 4.3 for all three components. Similar to Experiment 3, the
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Figure 4.3.: The grand average ERP response is plotted for Experiment 5. Each row represents a
different ERP component. Only the N1 and the P3 carry discriminative information.
See Figure 2.4 for a full explanation of the figure elements.

P3 response is superimposed on the rhythmic perturbations caused by the early components.
Discriminative information is centered around the centro-parietal region, and of similar strength
as in Experiment 3. Like for Experiment 3, the discriminative informations for the N1 is located
frontotemporal, and is similar in power to the P3 for the selected intervals. The N2 peak has again
lost most of its predictive power.

BCI Performance All performance results are summarized in Table 4.2. BCI selection accu-
racy did neither significantly correlate linearly with age (r (19) = °0.073; p = 0.76), nor did it
significantly differ with gender, as confirmed by a t-test (t (19)= 0.93; p = 0.36).

Selection accuracy and writing speed are visualized in Figure 4.4. Average selection accuracy
was 77.4%, as indicated by the black line in Figure 4.4-A. Of the 21 subjects, 16 subjects (or 76%)
had a selection accuracy higher than 70% and were able to write a full German sentence at first
try. The other five subjects got at most one word correct before their experiment was stopped.
Figure 4.4-B shows the writing proficiency in terms of char/min, for those subjects that were able
to write. The black line represents their average performance at .59 char/min.

Figure 4.5 shows the selection accuracy as a function of the word number for all subjects that
were able to write. Word number is taken as an approximation of time, with word one indicating
the first word that was written online. The slope of a linear least-squares fit between selection
accuracy and time (blue line) does not differ significantly from zero (r (110) = 0.096; p = 0.31),
indicating that the performance did not increase over time.

In terms of ITR, the average performance over all 21 subjects was 2.72 bits/min (maximum 4.82
bits/min), which includes also subjects that did not reach a performance level appropriate for
writing (see Table 4.2).
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Table 4.2.: Performance summary for Experiment 5. The performance measures selection accu-
racy (Sel. Acc.), char/min and ITR are given for all subjects and all sentences, along
with the age and gender of the subject. Subjects are sorted according to their selection
accuracy. Missing values for the char/min (-) indicate unfinished sessions.

User Gender Age Sel. Acc. [%] char/min ITR [bits/min]
VPfaz F 27 98.4 .83 4.79
VPfcc M 28 98.4 .84 4.82
VPkw F 57 97.0 .81 4.57
VPfca M 23 94.7 .77 4.18
VPfcd M 25 92.9 .77 4.02
VPfaw M 40 91.7 .73 3.82
VPfar M 31 85.6 .58 3.12
VPfav M 40 84.9 .59 3.04
VPfcb M 21 84.7 .49 3.01
VPfck M 43 83.2 .50 2.91
VPfau F 25 81.9 .50 2.78
VPfcj F 23 80.6 .41 2.65
VPfcg F 33 79.5 .40 2.57
VPfch M 55 79.3 .46 2.57
VPfcm M 51 78.3 .47 2.55
VPfax M 28 72.1 .32 1.97
VPfci M 28 58.6 - 1.21
VPfat F 25 54.1 - .96
VPfcl F 44 51.7 - .83
VPfce M 47 40.0 - .42
VPfas F 29 37.5 - .33
Means F:8/21 34.1 77.4 .59 2.72

Directional Preference Figure 4.6 displays the matrix of pair-wise F -scores (see Section 2.6.1).
Directions without any degrading factor had a median pairwise F -score of .84 (IQR: .023, N: 4).
F -scores for spatial neighbors (median: .88, IQR: .055, N: 12) and pitch neighbors (median: .83,
IQR: .022, N: 10) had similar F -scores, but the front-back confusion (median: .71, IQR: .083, N: 4)
appeared to have a degrading effect on the pairwise discriminability. Significance testing using
Bonferroni corrected Kruskal-Wallis H tests (Æ= 0.002) did not reveal significant differences.

From the pitch neighbors, the highest and lowest pairs were confused most often. Subjective
reporting of the subjects was in line with this result.

Questionnaires Subjects were in goodmood (VAS-mood, median: 8.2, IQR: 2.8) and were highly
motivated (VAS-motivation, median: 9.0, IQR: 1.23). Median overall workload was rated at 49.67
(IQR: 29.0), with the main contributions coming frommental demand (median: 20.0, IQR: 17.0)
and effort (median: 10.0, IQR: 14.67). Subjects rated the four motivation factors of the QCMBCI
questionnaire as follows: mastery confidence (median: 5.5, IQR: 2.06), incompetence fear (median:
1.8, IQR: 1.2), interest (median: 5.6, IQR: 2.2), and challenge (median: 5.0, IQR: 1.19).

Subjects were split in two groups, based on their ability to write, and all factors were compared
independently using Kruskal-Wallis H tests. Figure 4.7 shows the result of this split on the ques-
tionnaire scores. Overall workload was rated significantly higher (¬2(1) = 6.14, p = .01) by the
subjects that could not write (median: 75.33, IQR: 15.66) than by those that could write (median:
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Figure 4.4.: The online writing performance, as expressed in selection accuracy (A) and char/min
(B). The latter only includes subjects for which the char/min could be calculated. The
black lines indicate the average performance. For the char/min, the theoretical limit
is given, based on the SOA, overhead and number of iterations.

1 2 3 4 5 6 7
60

70

80

90

100

Se
le

ct
io

n
 a

cc
u

ra
cy

 [
%

]

Written word

 

 

Least squares fit

Figure 4.5.: The selection accuracy is given for all written words for all subjects that could write.
Word number is taken as an approximation of time, with word one referring to the
first word that was written online. The blue line indicates the least-squares fit over
these points. The non-significant slope indicates that no learning effect could be
found within the first session.

45.84, IQR: 20.17). Several factors contributed significantly to this increase in overall workload; Per-
formance (Write median: 4.0, IQR: 4.00; No write median: 16.0, IQR: 12.25; ¬2(1)= 3.97, p = 0.046),
Effort (Write median: 9.33, IQR: 9.16; No write median: 24, IQR: 7.5; ¬2(1)= 4.11, p = 0.043), and
Frustration (Write median: 1.33, IQR: 4.67; No write median: 8, IQR: 7.5; ¬2(1)= 6.02, p = .014).

Neither the VAS nor the QCM-BCI questionnaire showed any significant difference that could
explain the (in)ability to write.

Approximating the Online Char/min The relation between the selection accuracy, char/min,
and symb/minmetrics was investigated offline. In Figure 4.8-A, the online char/min scores are
plotted as a function of the selection accuracy for each subject (dots). Additionally, the theoretical
upper boundary (only level one errors, striped line), and the theoretical lower boundary (only
level two errors, striped-dotted line) on the symb/min are plotted, along with the case of equal
error distribution on both levels (solid line). The empirical char/min falls within the lower range
of the symb/min. The black line in Figure 4.8-A is the least-squares fit over the non-zero char/min
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Figure 4.6.: The grand average source discrimination performance is depicted as a confusion
matrix containing F-scores (see Section 2.6.1). Lower F-scores indicate worse perfor-
mance. Again, sources with a front/back confusion (fb) are clearly more difficult to
separate. Note that these data represent the results from EEG classification, and not
behavioral data.

performances as a function of their selection accuracy. Clearly, a selection accuracy that is at least
approximately 60% is needed to write with the spelling interface.

In Figure 4.8-B, the online char/min is plotted against the symb/min, as calculated post-hoc on
the same data. Though the symb/min overestimates the char/min performance, the fitted line is
parallel to the diagonal line, indicating a uniform bias over all values of char/min. Thus, though
slightly biased, the symb/min is a good estimator for the online char/min.

4.3.1.3. Summary

Using the AMUSE paradigm in an online setting resulted in similar, though less discriminative
ERP components as those found in Chapter 3. The speller based on this setup allowed 16 out of
21 subjects to write a complete German sentence. Subjects that were unable to write reported
a significantly higher perceived workload, in particular for the factors Performance, Effort, and
Frustration.

4.4. Discussion
In this chapter, the principles of AMUSE were coupled to a spelling interface. It allowed the
majority of healthy subjects to write a full sentence with an average speed of .59 char/min, thereby
confirming the validity of AMUSE as a BCI paradigm. This speed is competitive with contemporary
auditory BCI spellers (see bold printed studies in Table 1.1). For the sake of comparison, it is
important to once more emphasize the conservative, but realistic nature of the protocol; all
mistakes had to be corrected by the user, at the expense of time.

4.4.1. Directional Preference
Learning from Experiments 1 to 4, the stimuli were optimized by adding a unique tone to each
source. Additionally, the noise spectrum for most sources extended into the HFR to further
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NASA-TLX questionnaire and factor incompetence fear of the QCM-BCI questionnaire.
Higher is better for all other factors. Significant differences are indicated with an
asterix (* p < 0.05, ** p < 0.01).

facilitate separation (see Table 4.2). Unfortunately, these changes could not completely prevent
the cone of confusion effect; errors due to the front-back confusions were still most frequent. A
direct comparison between Figures 3.3 and 4.6 is difficult, as the first is based on behavioral data
and the second on the classifier scores based on EEG data. The intrinsically noisy EEG channel
adds to the confusion, resulting in lower overall F -scores. However, the reduction in F -scores
for front-back pairs compared to those of pairs without detrimental factors for Experiment 1
(20% reduction) and Experiment 5 (15.5% reduction) indicates an improvement in resolving
front-back pairs. Unfortunately, this can not be attributed to the improved stimuli alone, as
several confounds exist (number of classes, offline versus online, and increased workload due to
the spelling task).

It is known that for posterior sources, the power in the high frequencies is lower than for the
same sound from frontal sources (Blauert, 1996). However, the frontal sources (1 and 6) both
had lower frequency ranges in the stimulus complex than their respective confusers in the back
(sources 3 and 4), which may have contributed to the remaining confusion. Changing the order
of sounds to prevent this could lead to better separation. Furthermore, the equidistant source
distribution that was arbitrarily chosen for Experiments 1 to 5 led to sources on the cone of
confusion. By changing the angle between source pairs, a layout could be achieved that uses the
entire space around the subject, without putting sources on the cone of confusion.

4.4.2. Neurophysiology

Much like in Experiment 3, AMUSE elicited discriminative N1 and P3 components in the current
experiment. The N2 component is again unrecoverable. Given the high similarity in stimulation
between condition C175 of Experiment 3 and the current experiment, the similarity in ERP
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Figure 4.8.: Investigation of the quality of symb/min as an approximation of char/min. A) Both
the online char/min and the range of theoretically possible symb/min values are
plotted as a function of the selection accuracy. The symb/min is given as a range,
since errors can be made mostly on level 1 (striped line), level 2 (striped-dotted line)
or equally on both (solid line). B) The symb/min is estimated for each subject and
plotted as a function of the true char/min.

components may not be surprising. Nevertheless, Figure 4.3 is the grand average based on data
taken from online writing sessions. The task in Experiment 3 was simply to attend to a given target,
whereas the task in Experiment 5 included identification of the next target and keeping track of
the position in the sentence (though largely helped in both by the verbal and visual labels). It
was shown that workload can hamper the elicitation of ERP components (Ullsperger et al., 2001).
However, in the current experiment most of the added workload falls in between trials; the central
task of detecting the target (once identified) remains the same, explaining the high similarity in
ERP components between this experiment and Experiment 3.

4.4.3. Performance
By adding a spelling interface on top of AMUSE, 16 out of 21 subjects were able to write a full
German sentence. Only subjects that had a selection accuracy larger than 70% were able to write.
Interestingly, this threshold for communication was previously suggested by Kübler et al. (2001),
albeit for a very different setup (a binary tree speller based on SCP). Nevertheless, this threshold is
widely used in BCI literature for all sorts of paradigms. It appears to be roughly correct for the
AMUSE-based speller (though a linear regression suggests that selection accuracies higher than
60% would suffice).

Those subjects that could write, did so on average with 0.59 char/min, which is about 66%
of the theoretical maximum speed. To put it differently, they could write approximately one
symbol every 1:40 minute. Furthermore, the visual presentation of the speller interface, as done
in Furdea et al. (2009) and Klobassa et al. (2009), was replaced by auditory labels before each trials.
Though this increased the time needed per trial, the result is a speller that is almost completely
independent of the visual modality. The latter was confirmed by the successful participation of a
single blind person for demonstration purposes (she was not formally part of Experiment 5). The
high time overhead of verbal label presentation let to an average ITR that, with 2.72 bits/min, is
below the results obtained offline in condition C175 of Experiment 3. Nevertheless, individual
subjects obtain scores that come close to the average predicted ITR of 5.4 bits/min.

With 0.59 char/min, the online results for AMUSE represented an increase in performance over
most contemporary non-visual, covert attention-based BCIs (see Table 1.1). Nevertheless, the
tactile speller reported by van derWaal et al. (2012) and the T9-based extension of AMUSE reported
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by Höhne et al. (2011b) both resulted in higher writing performances. Both show the potential
for improvement on the current results, for instance by using application side intelligence (see
Chapter 6).

According to Guger et al. (2009), over 90% of participants are able to control their ERP-based
BCIs. While that may be true for the overt attention-based, visual paradigms they tested, it may
be a too optimistic estimate for ERP-based BCIs in general. Those BCI paradigms are still most
prevalent in literature, but they may not match fully with the needs and abilities of all end-users
(Ramos Murguialday et al., 2011; Treder et al., 2010; Brunner et al., 2010). Furthermore, the
learning effect is generally small for such overt attention-based ERP BCI paradigms, and average
performance is high and consistent over subsequent trials. However, Klobassa et al. (2009) showed
that the performance could increase significantly over sessions for their auditory ERP-based
paradigm. Such a learning curve was neither observed within Experiment 5 (see Figure 4.5), nor
between Experiments 5 and 8 (the latter included those subjects from Experiment 5 that could
write). Nevertheless, it is possible that the percentage of people able to use AMUSEwould increase
with more training.

4.4.4. Questionnaires
The result of the NASA-TLX is useful in comparing different systems, as its outcome can only be
interpreted in relative terms. Unfortunately, it has only recently been introduced in BCI research
as a tool to measure workload, and has been employed in a limited number of studies (amongst
which Aloise et al., 2012; Carlson et al., 2013; Combaz et al., 2013; Felton et al., 2012; Gürkök
et al., 2011; Holz et al., 2013a; Käthner et al., 2013; Legeny et al., 2013; Riccio et al., 2011; Rohm
et al., 2013; Zickler et al., 2013; Zickler et al., 2011). Though single subject / single session overall
workload as low as five has been reported (Zickler et al., 2013), the typical range of reported
workload scores does include the workload score for AMUSE.

To investigate the difference in the users’ state and perceived workload between subjects able
and unable to write, those groups were compared on each factor of the applied questionnaires
individually. The overall workload and three individual factors of the NASA-TLX questionnaire
differed significantly between these groups. Subjects that were unable to write reported a signifi-
cantly higher overall workload (median: 75.33) than those that were able to write (median: 45.84).
The large increase in workload was mainly due to the factors Performance, Effort and Frustration.
Käthner et al. (2013) found a negative correlation between accuracy and overall workload for their
auditory BCI. The current results indicate the same effect. However tempting, assuming a causal
relationship in either direction would be unsubstantiated without further experiments. Such
experiments would be of high value for the future design of BCIs.
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The concept of AMUSE was designed to increase the usefulness of covert attention-based BCI.
Results from the first two stages of the BCI design chain have confirmed the beneficial effect that
adding spatial information to the stimuli in auditory BCIs has on the performance. As covert
attention-based BCIs specifically target end-users with severe limitations in their daily living, the
next step in the BCI design chain is testing the paradigmwith this end-user population. Such a test
should not only assess AMUSE in its current form with the target population, but it should also
generate valuable end-user data for future designs following the user-centered design principles
(see Section 1.6).

In this chapter, AMUSE is tested with five end-users over several sessions, using a spelling
interface similar to that of Chapter 4. The obtained results of a single end-user are subsequently
put into context with data taken from a different study in which she was enrolled (Riccio et al.,
2012b; Schreuder et al., 2012a). The latter investigated an overt attention-based visual BCI, and
gives valuable complementary insights into her performance.

This chapter is based on previous publications, in particular Quek et al. (2012), Riccio et al.
(2012b), Schreuder et al. (2011b), Schreuder et al. (2012a), Schreuder et al. (2013b), and Tanger-
mann et al. (2011)

5.1. Prior Work
BCI has been heralded as the ultimate technology for locked-in patients, and the vast majority of
BCI literature states to serve this ultimate goal. Despite this, only a minority of published work
is actually tested with those end-users. Kübler et al. (2013) estimated that less than 10% of BCI
related publications involve end-users (for reviews on end-user studies, see Kübler et al. (2008)
andMak et al. (2011)). The majority of proposed BCI algorithms and paradigms thus do not pass
beyond the first two stages of the BCI design chain (see Section 1.6). This is likely due to the limited
access to such end-users that exists for many BCI research groups. It has lead to a translational
gap where the end-user relevance of proposed AT oriented BCIs remains unclear (Kübler et al.,
2013). But the importance of such tests goes beyond the validation of a novel method; end-user
tests produce invaluable data on the end-users’ needs and abilities that can be used for future
design decisions in BCI research.

Nevertheless, considerable evidence has been provided that BCIs can work for these end-users.
Using SCPs, Birbaumer et al. (1999; 2000) were able to provide severely paralyzed end-users with
a slow, but functional communication setup called the “Though Translation Device”. Several
end-users could independently use the system for writing with a speed of approximately 0.5
char/min. Because of the inherent slowness of this signal, researchers subsequently turned to
other brain signals to increase the writing speed.

Different degrees of successful control by end-users have been reported for oscillatory features
(ERD, Cincotti et al., 2008b; Holz et al., 2013a; Kübler et al., 2005; Neuper et al., 2003; Pfurtscheller
et al., 2003; Rohm et al., 2013; Tonin et al., 2011; Wolpaw et al., 2004), (mainly visual) ERP (Donchin
et al., 2000; Escolano et al., 2010; Hoffmann et al., 2008; Kaufmann et al., 2013a; Marchetti et al.,
2013; Mugler et al., 2010; Münßinger et al., 2010; Nijboer et al., 2008a; Piccione et al., 2006; Sellers
et al., 2010; Silvoni et al., 2009; Townsend et al., 2010; Zickler et al., 2011) and SSVEP (Combaz
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et al., 2013). Furthermore, BCI technology is slowly moving out of the lab and into the end-users’
home (Münßinger et al., 2010; Sellers et al., 2010; Vaughan et al., 2006).

Still, those studies that directly compared healthy users and end-users, consistently found a
drop in performance for end-users (Cincotti et al., 2008b; Donchin et al., 2000; Mugler et al., 2010;
Münßinger et al., 2010; Piccione et al., 2006; Sellers et al., 2006a). In some studies, the achieved
control level could not sustain the intended task (Combaz et al., 2013; Hill et al., 2006; Kübler et al.,
2009; Ortner et al., 2013).

With some exceptions, the studies included end-users that had only low or moderate impair-
ment in daily life. Success in studies that tested end-users in CLIS has been limited (Kübler et al.,
2008). The needs and abilities of this group of end-users that require a BCI the dearest may
differ from end-users with LIS or even less impairment (Ramos Murguialday et al., 2011). Covert
attention ERP-based BCIs were intended specifically for this end-user group, but only a handful
has thus far been tested with any group of end-users, LIS or CLIS.

Marchetti et al. (2013) recently showed that their covert attention-based visual BCI could be
operated by all ten end-users diagnosed with ALS. However, the level of impairment was minor
for eight end-users and moderate for the remaining two. The four choice tactile BCI presented in
Kaufmann et al. (2013a) resulted in discriminative features that could be classified offline with
an average selection accuracy of 90% on two conditions. Unfortunately, results in a preliminary
online test were poor. The single near-LIS end-user that was included had only transient thumb
and vertical eye movement remaining after brainstem stroke. Similarly, Sellers et al. (2006a)
reported a four class auditory BCI tested with three end-users diagnosed with ALS that suffered
from a varying degree of disability (though not in LIS). End-users achieved an average selection
accuracy of 65.9% for the auditory condition, relying on spoken stimuli. Finally, Kübler et al. (2009)
reported on an auditory speller that was tested with four end-users diagnosed with ALS. Two
end-users were nearly in LIS whilst the other two had residual motor control. Average selection
accuracy for the first two end-users was 0%, whereas the latter two had an average selection
accuracy of 25% and 23.52%. Stimuli consisted of spoken numbers.

The above results indicate the importance of testing a paradigmwith the end-user, in particular
with end-users that are in a state that requires a BCI-based AT, to identify and mitigate the
weaknesses of the paradigm.

5.2. AMUSE End-user Validation
Two experiments constitute the end-user tests for AMUSE. First, in Experiment 6, a speller similar
to the one introduced in Chapter 4 is tested with five end-users with a high degree of paralysis. In
Experiment 7, the AMUSE data is compared to a visual paradigm for a single end-user, along with
a set of neuropsychological assessments, creating a rich account of the needs of such end-users
for future BCI designs.

5.2.1. Experiment 6: End-user Validation of Online Writing
End-user tests for AMUSE were done in collaboration with the group of Dr. Donatella Mattia, head
of Clinical Neurophysiology at the Fondazione Santa Lucia rehabilitation clinic in Rome, Italy.

5.2.1.1. Setting

For reasons given in Section 1.3, the patient trials included five end-users with different levels
of advanced physical impairment. See Table 5.1 for a summary of the end-users demographics.
Inabilities were caused by stroke (N: 2) and TBI (N: 3). At the time of the trials, four end-users were
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Table 5.1.:Demographic and Clinical Data for End-users

ID Syndrome Age Months post
incident

Speech
impaired

Movement
impaired

VPro20ma TBI 34 54 Able Hemiplegic
VPgl29ma TBI 34 192 Mute Spastic

tetraplegic
VPan09ma TBI 21 30 Anarthric Spastic

tetraplegic
VPeg02ma Ischemic stroke 46 24 Mute Tetraplegic
VPda07ma Hemorrhagic

stroke
20 8 Mute Paraplegic

in the chronic state and end-user VPda07mawas in the acute state. Given the level of disability,
three out of five end-users could directly benefit from a robust BCI system in their daily activities.
In other words, they are a true representation of the potential end-user of BCI technology.

The AMUSE speller setup was kept mostly as used in Experiment 5, with minor adaptations.
First, the speaker positioning was slightly adjusted to compensate for the use of a headrest by
several end-users and in an attempt to further reduce the front-back confusions (see Figure 3.1-D).
Second, the SOA was increased to 300ms, both at the request of the end-users and to allow the P3
component to develop beyond that of the faster condition (as was found in Experiment 3).

Furthermore, the complexity of the feedback was slowly increased within and over sessions.
That way, the end-users could get familiar with the interface, without being faced with too
many errors in the beginning; a modification that was done to prevent perceived failure and
demotivation (Kleih et al., 2010). Three online modes were introduced. First, a no feedbackmode
was used. The online BCI was running in the background, but was not providing the user with any
feedback. It allowed the experimenter to have an objective online performance estimate. Then, a
mask feedbackmode was used. It resembled the normal feedback from Experiment 5, but handles
misinterpretations differently. Instead of displaying an incorrectly written letter, it displayed 1) the
correct letter in white if both selections were correct, 2) the correct letter in light gray if only one of
the two selections was correct, and 3) only a dot if both selections were wrong. The feedback thus
focussed on the positive results, masking any errors from explicit display. Lastly, a free feedback
mode was added, where all letters are displayed as interpreted, thus showing misspelled letters. It
operated in copy-spelling mode and misspelled letters did not have to be corrected. The feedback
modes, in order of complexity, were thus no feedback,mask feedback and free feedback. The point
of transition to a more complex feedback was decided by the experimenter, and was done in any
case if the user reached a selection accuracy >70%.

A total of five sessions were intended with each end-user. Sessions were at a one week interval
unless the end-user was prevented, for instance due to illness. The first session was used for
introducing the AMUSE paradigm to the user and recording initial calibration data. In each of the
following sessions, additional calibration data could be acquired. However, since all online tasks
were essentially a version of the copy-spelling task, labels were available for the online data as well.
Given the limited time that was available per user and session, these online data were typically
used to recalibrate the classifier. A shrinkage regularized classifier was trained on features found
by the algorithmic method (see Section 2.4).

A variable number of online runs was performed per session; each run consisted of copy-
spelling a single word. The exact number depended on the available time. In addition to the
questionnaires (see Section 2.5.2), the end-users were subjected to several neurophysiological and
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Figure 5.1.: The grand average end-user source discrimination performance is depicted as a
confusion matrix containing F-scores (see Section 2.6.1). Lower F-scores indicate
worse performance. The general darkness on this scale reflects the poor recognition
performance. End-users did not need to correct committed mistakes. As source six
was therefore almost never the target, it was excluded from further analysis.

-psychological tests (see Experiment 7 for details). BAERs were recorded once for the assessment
of the brainstem function and the evaluation of the hearing ability; results were in the normal
range.

Standard Auditory Oddball During the first and last session, each user additionally performed
a standard, non-spatial auditory oddball task. It consisted of a two-tone discrimination task
(target: 1000Hz, 20% probability; non-target: 500Hz, 80% probability). A total of 400 tones
were recorded, with an SOA of 1000ms. The end-user was instructed to focus on and count
the high pitched targets. Both target and non-target tones came from source six (front-left, see
Figure 3.1-D). These settings follow the recommended clinical protocol (Duncan et al., 2009).

5.2.1.2. Results

Most of the included end-users participated in parallel to their normal therapy, which greatly
limited the amount of time that was available per session. On average, around 40 minutes of
recording time was available per session (range: 5-75 minutes). Furthermore, some end-users
were very tired during the experiments, due to the extensive physiotherapy they received during
the rest of the day. For this reason, end-user VPan09ma discontinued his participation after four
sessions. All other end-users performed five or more sessions.

Directional Preference Though formally no sources lied on a cone of confusion, subjects
indicated the presence of a front-back confusion between source pairs 1 & 3 and 4 & 6. For
comparison with previous experiments, the matrix with pairwise F -scores is given in Figure 5.1.
Clearly, performance on all speaker pairs is heavily impaired, as indicated by the overall ‘darkness’
of the plot on this scale. Median F -scores ranged from 0.32 to 0.38. Group-wise testing using
Bonferroni corrected Kruskal-Wallis H tests did not reveal significant differences. As no errors had
to be corrected, the sixth direction was virtually never the target. The sixth row in the matrix in
Figure 5.1 is empty due to this lack of data.
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Figure 5.2.: Shown is the standard oddball N1 response for all end-users. All available datasets are
collapsed for each end-user. Given the heterogeneity of the group, no grand average
is presented. See Figure 2.4 for a full explanation of the figure elements.

Physiology Figures 5.2 and 5.3 show the ERP responses to the standard oddball task for the N1
and P3 components, respectively. Given the heterogeneity of the end-users’ clinical profiles, no
grand averages were calculated. All available standard oddball data were collapsed per end-user
to increase the SNR, even if those data were recorded on different sessions.

The N1 component was visible for all subjects, but the distribution and power of the discrimina-
tive information varied greatly between end-users. For subject VPro20ma it was strongly binary-
class discriminative, with a diffuse distribution. But also end-users VPeg02ma and VPgl29ma
had a binary-class discriminative N1. Additionally, the N2 component was highly discriminative
for subjects VPda07ma, VPro20ma, VPan09ma and (positively) subject VPeg02ma (not shown).
Only end-users VPeg02ma and VPan09ma showed a component that, based on timing, polarity
and spatial distribution, resembled a P3 component. For these end-users, the P3 was also highly
binary-class discriminative. Target and non-target ERP responses for end-user VPgl29mawere
highly overlapping for all components. All end-users were enrolled in the full AMUSE protocol.

Figure 5.4 is similar to Figure 5.3, but displays the AMUSE calibration data for each subject,
collapsed over sessions. As with the results from the standard oddball trials, responses from

71



5. AMUSE End-user Tests

E

D

C

B

A

V
P

d
a0

7m
a

10 µV

0.8s

Pz
Timeseries Target Non−target

V
P

ro
20

m
a Pz

V
P

eg
02

m
a Pz

V
P

g
l2

9m
a Pz

V
P

an
09

m
a Pz

 

 

Target

Non−target

µV
−6 0 6

µV
−6 0 6

sAUC

sAUC
−0.2 0 0.2

Figure 5.3.: Shown is the standard oddball P3 response for all end-users. All available datasets are
collapsed for each end-user. Given the heterogeneity of the group, no grand average
is presented. See Figure 2.4 for a full explanation of the figure elements.

VPeg02ma and VPan09ma contained a component that temporally and spatially resembled a P3,
though it lost most of its discriminative power. Additionally, for end-user VPda07ma a diffusely
distributed positive target response is found. The strong complex of early components found for
subject VPgl29ma contained no binary-class discriminative information. In fact, the N2 again
lacked binary-class discriminative information for all subjects, and the N1 contained low and
diffuse binary-class discriminative information for subject VPro20ma only (both not shown).

BCI Performance Given the six class BCI, chance level for the selection accuracy is at 16.7%
(see Section 2.6.2). Figure 5.5 shows the selection accuracy per session for all end-users. Though
most end-users consistently performed above chance level, the performance was poor and only
reached a score larger than 60% on one occasion (a score that is strictly required for writing with
the AMUSE paradigm, according to Figure 4.8).

An increase over sessions is visible on the average performance line, but no conclusions can be
drawn due to the low statistical power of five end-users. However, at least two end-users followed
this trend (VPan09ma and VPeg02ma). They were the same end-users that have a relatively typical
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Figure 5.4.: Physiological responses for the AMUSE training trials are shown for all end-users. All
available datasets are collapsed for each end-user. Given the heterogeneity of the
group, no grand average is presented. See Figure 2.4 for a full explanation of the figure
elements.

ERP response to AMUSE. Note that end-user VPan09ma only had three BCI sessions, and the
average for the fourth BCI session was thus calculated over the remaining subjects. Any additional
sessions by other end-users were not considered.

End-users were advanced to the feedback runs without reaching the 70% limit, such that they
could experience online feedback. End-users mainly used the no feedback andmask feedback
mode. Figure 5.5 shows the data collapsed over all modes. Performances were not statistically
different between the no feedbackmode (mean: 33.7%; SD: 13.9%) and themask feedbackmode
(mean: 42.6%; SD: 18.6%), as confirmed by a paired t-test (t (10)=°1.76; p = 0.11).

Further offline analysis of the data did not increase the performance substantially.

Questionnaires The following questionnaire results were taken from the first session where
the end-user performed a trial with online feedback. End-users indicated to have average mood
(VAS-mood, median: 6.90, IQR: 5.82) andmotivation (VAS-motivation, median: 5.80, IQR: 6.08).
Median overall workload was rated at 42.0 (IQR: 48.91), with the main contributions coming from
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Figure 5.5.: Average online selection accuracy is given per EEG session for all end-users, alongwith
the session average. Three out of five end-users performed above chance consistently;
the remaining two end-users performed below chance on at most one session.

mental demand (median: 23.3, IQR: 20.0) and performance (median: 10.0, IQR: 6.0). End-users
rated the four motivation factors of the QCM-BCI questionnaire as follows: mastery confidence
(median: 5.5, IQR: 1.5), incompetence fear (median: 2.0, IQR: 3.3), interest (median: 4.8, IQR: 1.25),
and challenge (median: 6.5, IQR: 0.81).

Figure 5.6 shows the end-user questionnaire results, together with those of the healthy subjects
from Experiment 5. Factor-wise comparisons revealed a significant change in the challenge factor
of the QCM-BCI questionnaire (¬2(1)= 6.99, p < 0.01), with end-users rating the motivation by
challenge significantly higher than healthy users (median: 5.0, IQR: 1.19). Similar results were
found if questionnaire data from the very first available session were taken.

None of the factors showed a significant correlation with time (session number) for any end-
user.

5.2.1.3. Summary

Despite good results with healthy users, none of the five end-users was able to write with the
AMUSE paradigm combined with the spelling interface. Physiological results showed atypical
patterns for most end-users. Given the low performance, no real directional preference could
be established, though subjective reports indicated the persistence of a front-back confusion.
End-users drewmore motivation from the challenge of participating than did healthy users.

5.2.2. Experiment 7: Single Subject Case-Study
The following experimentwas published in an article jointly authoredwith Angela Riccio (Schreuder
et al., 2013b), and this section would not have existed without her expert input.

A second round of end-user experiments was conducted about one year after Experiment 6,
again in collaborationwithDr. Mattia’s Lab in Rome, Italy. This time, a novel visual applicationwas
tested, which was based on the visual matrix speller (Farwell et al., 1988). Though the full results
of that study are beyond the scope of this thesis, the fact that end-user VPeg02ma participated in
both studies gives valuable insight into her results in Experiment 6. The current experiment thus
combines data from both Experiment 6 and the visual study, in order to give an account of the
needs and abilities of such an end-user (in accordance with Section 1.6).

For a better understanding of these results, a more detailed profile of end-user VPeg02ma is
required. She is a 48 year old Italian woman. At age 44 she suffered from an ischemic stroke in the
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questionnaire and factor incompetence fear of the QCM-BCI questionnaire. Higher
is better for all other factors. Significant differences are indicated with an asterix (*
p < 0.05, ** p < 0.01).

area of the basilar artery, after which she showed a clinical picture characterized by tetraplegia and
severe dysarthria. Her impairment thus led to a major lack in communication. AnMRI scan, ac-
quired ten days after the ischemic event, showed an altered signal intensity in the infero-posterior
area of the left cerebellar hemisphere, in the upper area of the right cerebellar hemisphere, in
the cerebellar vermis, and in the midbrain with greater extension on the left. It also showed a
small hemorrhagic rift within the left cerebellar hemisphere lesion and in the central pontine area.
Twenty days after the ischemic stroke, VPeg02mawas alert and able to localize sound stimuli by
turning her eyes towards the sound source. Reasonable changes in facial expression were present.
Her motor disability was characterized by motor tetraplegia with hypotonia and symmetrical
generalized hyperreflexia. She was thus diagnosed with LIS. Immediately after the diagnosis, a
low-tech binary model of communication was set up, exploiting eye gaze. VPeg02mawas trained
to communicate by focusing her gaze on an item on an alphanumeric communication board,
which she still used at the time of the experiments.

Before her stroke, VPeg02maworked in the field of graphic arts and played the drums in a band.
She was confident with using computers and other technology. At the time of testing, VPeg02ma
had the ability to perform inaccurate movements with the right arm and the head, had preserved
facial expressions and had precise eye movements. The communication of primary needs was
only possible with the support of her communication board. In addition, she could acknowledge
requests by a button press. VPeg02mawas curious andmotivated to participate in BCI studies.
During her participation in Experiment 6 she was 46 years old; one year later she joined the visual
experiment.
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5.2.2.1. Setting

For comparison with the results obtained in Experiment 6, the Photobrowser setup was used
(Quek et al., 2012; Riccio et al., 2012b; Schreuder et al., 2012a; Tangermann et al., 2011). The
Photobrowser is an extension of the visual matrix speller (Farwell et al., 1988). Here, the principles
of the matrix speller were used for driving an application that allows the user to receive, view
and share photos with friends via the internet. It is a social application that puts the end-user
back in the center of his own group of significant persons. For this purpose, the characters were
exchanged for objects such as images, folders and function buttons. The social aspect of the
Photobrowser application was inspired by recent findings that about 20% of end-users rank
’independent participation in social life’ amongst the three most important things that would
increase their quality of life (see Section 1.2, or Zickler et al., 2009).

On top of the simple brightness highlighting from Farwell et al. (1988), more complex stimuli
were available that were found to be particular salient in prior experiments (Tangermann et al.,
2011). VPeg02ma chose to use the complex stimulation and an SOA of 220ms. She was able and
allowed to direct her gaze at the target image.

Two preparation sessions and six online EEG sessions were performed. Informed consent was
given during the first preparation session, and aspects of her quality of life and her use of AT were
assessed by questionnaires. The second preparation session was used to introduce her to the
paradigm and to collect initial calibration data. Data from this session were recorded with the
same equipment as that in Experiment 6. Based on this initial recording, an optimal channel set
was used for all further sessions (Fz, Cz, CP5,1,z,2,6, P5,1,2,6, PO7,z,8, O1,2), which was recorded
with a g.USBamp EEG amplifier (g.Tec, Graz, Austria).

VEPs were recorded in order to detect possible lesions or inflammations of the optical nerve;
the results were within the normal range.

Standard Visual Oddball A standard visual oddball assessment was applied before the first,
and after the last session, using eight channels from the g.USBamp EEG amplifier (channels:
Fz, Cz, P3,z,4, Oz, PO7,8). The standard visual oddball consisted of a set of symbols (X and O)
that were serially presented in the middle of a computer screen (white on black), with an SOA
of 2100ms. The end-user was told to focus on one particular symbol (X) and count the number
of occurrences, whilst ignoring the other symbol (O). Target probability was the same as for the
auditory oddball (20% target, 80% non-target). A total of 500 stimuli were recorded.

Neuropsychological Assessment In the context of a standard clinical diagnosis process, end-
user VPeg02ma was subjected twice to a neuropsychological assessment of general cognitive
impairment, attention, memory, working memory and executive functions. The first assessment
took place about four months before the start of Experiment 6 and the second assessment around
six months after the last Photobrowser session. The test battery was administered in a quiet room
and over several days to prevent fatigue. During both assessments, the end-user was motivated
and cooperative.

Her general cognitive level was tested by means of the mini mental state examination (MMSE)
(Magni et al., 1996). The two subtests of the scale that were not applicable due to VPeg02ma’s
physical condition (spontaneous writing subtest and constructive praxis ability subtest) were not
presented to her. Missing tests were scored with the maximum score. The attention capacities
were evaluated using tests of divided attention and selective attention, taken from a computerized
test battery (Zimmermann et al., 1995). In the latter tests, VPeg02ma was asked to provide an
answer by pressing a key. The forward and backward digit-span tasks (Orsini, 2003) were utilized to
assess verbal short-termmemory and working-memory, respectively, and Corsi block-tapping test
(CBTT) and Corsi supraspan block-tapping test (CSBTT) (Corsi, 1972; Spinnler et al., 1987) were
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Figure 5.7.: VPeg02ma’s questionnaire results for both the AMUSE and the Photobrowser sessions,
over all EEG sessions. Factors that change significantly over sessions are indicated
with an asterix (* p < 0.05). The NASA-TLX score for session three of the AMUSE
experiment is missing due to time restrictions. The dotted line interpolates between
the scores of sessions one and three.

used to assess visuo-spatial working memory. VPeg02mawas alert and able to pay attention even
for prolonged periods of time. Also administered were the Wisconsin card sorting test (WCST)
(Grant et al., 1948; Heaton et al., 1993; Heaton et al., 2000) to assess executive functions, and the
N-back test (Zimmermann et al., 1995) to assess the control of information flow and the updating
of information in working memory.

The computerized tests provide normative values for reaction times as well as for accuracies.
However, only scores of accuracy were considered in drawing the neuropsychological profile,
due to the slowness of VPeg02ma’smotor response. As the end-user was unable to give a verbal
response, the backward and forward digit span tests were administered by asking her to point to a
series of numbers on her communication board.

5.2.2.2. Results

Questionnaires Figure 5.7-C shows that VPeg02ma was comparably motivation over the 5
sessions for both paradigms, as measured by the four factors of the QCM-BCI questionnaire. The
difference between the scores never exceeded 1.2 points (out of 7). Though VPeg02ma found both
paradigms to be highly challenging, her confidence inmastering them was equally high and fear
of incompetence was minimal for both. She was moderately interested in both paradigms. These
results thus give no systematical explanation for any performance difference. Figure 5.7-A shows
that VPeg02ma scored the perceived overall workload, as measured by the NASA-TLX, higher for
the AMUSE-based speller than for the Photobrowser for all sessions.
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Figure 5.8.: The grand average ERP response to the standard auditory oddball is plotted for end-
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Figure 5.9.: The grand average ERP response to the standard visual oddball is plotted for end-user
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are particularly binary-class discriminative. See Figure 2.4 for a full explanation of the
figure elements.
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Figure 5.11.: The grand average ERP response to the Photobrowser is plotted for the calibration
data of end-user VPeg02ma. Each row represents a different ERP component. The
P3 and N2 remain binary-class discriminative, as is the additional P2 compenent.
See Figure 2.4 for a full explanation of the figure elements.
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Figure 5.12.: VPeg02ma’s average online selection accuracy is given for five sessions for both
the Photobrowser and the AMUSE-based speller. Additionally, the chance levels
are given for both BCI systems. She had near perfect performance with the Photo-
browser, much in contrast to AMUSE.

A non-parametric Spearman’s rank correlation was calculated to address the relationship
between time (session number) and 1)motivational factors ratedwith the QCM-BCI questionnaire
and 2) overall workload and its factors obtained through the NASA-TLX questionnaire, as was
done in (Nijboer et al., 2010). Significant results are indicated with a asterix (*) in Figure 5.7. Only
for the Photobrowser did the results show a significant negative correlation between the session
number and 1) factor incompetence fear (rho =°0.95; p = 0.01) from the QCM-BCI questionnaire,
and factors 2) overall workload (rho = °0.90; p = 0.04), 3) performance (rho = °.90; p = 0.04),
and effort (rho =°0.95; p = 0.014) from the NASA-TLX questionnaire.

Physiology Figures 5.8 and 5.9 showVPeg02ma’sphysiological response to the standard auditory-
and visual oddball, respectively. The data are taken from the recording closest to the BCI sessions.
Highlighted are the N1, N2 and P3 interval. For both modalities, typical early negative (N1 and
N2) and late positive (P3) components could be evoked. For the visual oddball, the early N1
and N2 components over the occipital channels were particularly pronounced and loaded with
discriminative information. In contrast, the auditory oddball resulted in a strong parietal P3
component and very little discriminative power in the early components.

Similarly, Figures 5.10 and 5.11 represent the BCI calibration data of the first EEG session
for AMUSE and the Photobrowser, respectively. Discriminative information for the AMUSE
paradigmwas highly reduced, and low binary-class discriminative information between the target
and the non-target ERPs was only found for the P3. In contrast, the visual ERP detected for
the Photobrowser paradigm was characterized by strong differences between target and non-
target epochs, especially in the early components. In addition to the strong N2, an occipital P2
component was clearly visible and highly discriminative.

BCI Performance VPeg02ma’s online performance for both experiments can be found in Fig-
ure 5.12. The performance line for AMUSE is the same as that in Figure 5.5, with one additional
session. The difference in performance between both experiments was remarkable. For the
Photobrowser, online selection accuracy was 100% in four out of five sessions, with the remaining
session reaching 93.2% (chance level below 3%). VPeg02ma thus had near-perfect control over
the Photobrowser application. The performance for the AMUSE paradigm is above chance level
in four out of five sessions, but never allowed VPeg02ma to write.
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Table 5.2.: Results of the neuropsychological assessment for end-user VPeg02ma, and their re-
spective cut-off values below which a score is marked as pathological with an asterix
(*).

Experiment 6 Visual Experiment Cut-off
MMSE 30 30 22
Attention

Selective attention 45 45 5
Divided attention 3§ 3§ 5

Memory Digit span
Forward 8 6 5
Backward 10 10 5

CBTT 2 0§ 0
CSBTT 0§ 0§ 0
N back (2 back) 1§ 1§ 5
WCST + +

Neuropsychological Assessment The scores obtained by VPeg02ma in both neuropsycholog-
ical evaluations, and the thresholds for all tests, are reported in Table 5.2. VPeg02ma was alert,
fully cooperative, and well oriented in time and space during both evaluations. She performed
normally in theMMSE, showing a normal general cognitive level. With regard to attention abilities,
her level of performance was comparable between the two assessments when considering the
accuracy scores. The scores obtained in the tests were reported in percentiles, and to detect the
presence of an attention impairment, a fifth percentile cut-off point was used (Pero et al., 2006;
Zoccolotti et al., 2000).

VPeg02ma performed above the fifth percentile for the selective attention task, showing retained
capacity to select target stimuli and to inhibit the response to non-target stimuli. On the contrary,
she performed below the cut-off on the tasks for divided attention, which is required to process a
visual and an auditory task in parallel.

With regard to the memory abilities, both her verbal short term span (forward digit-span task;
(Orsini, 2003)) and her verbal working memory span (backward digit-span tasks; (Orsini, 2003))
were within the normal range, though the first showed a decrease from the first to the second
assessment. However, even if the scores obtained by VPeg02ma in both the forward and the
backward digit span task did not fall in the pathological range, they were in the lower limit of the
normal range (between the fifth and tenth percentile).

VPeg02ma’s performance on the visuo-spatial CBTT taskwas normal during the first assessment.
During the second assessment, a decrease of performance was observed, leading to a pathological
score. Furthermore, VPeg02ma showed an impairment on the CSBTT task and in the 2-back test.
Scores obtained in the WCST task were in the normal range.

Summary Contrary to her performance in Experiment 6, end-user VPeg02ma had near perfect
control over a visual paradigm. Her motivation on both paradigms was similar, but the perceived
workload was consistently higher for the AMUSE paradigm. VPeg02ma’s cognitive profile was
characterized by deficits in divided attention, the visuo-spatial learning ability and in the capability
to control the information flow and to update information in working memory. In the second
assessment, a deficit of visuo-spatial memory span was also found.
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5.3. Discussion
Unfortunately, AMUSE’s success in the first two steps of the BCI design chain (Experiments 1
to 5) could not be transfer directly to the end-users tests. Despite several improvements to the
paradigm, none of the five end-users was able to use the AMUSE driven spelling interface with
the current settings. As discussed in Section 1.6, and in particular because of the success with
healthy users, such an initial attempt is the start of a revision process to further adapt AMUSE to
the needs and abilities of the end-users. Accordingly, the needs and abilities of a single end-user
are exposed in Experiment 7 for future designs.

The included end-users differ from the cases most often described in BCI literature, where
end-users suffering from the effects of ALS are typically tested. The latter is a difficult user group
in itself, as the impact of ALS extends beyondmotor impairment; a large number of patients also
shows cognitive impairment (Woolley et al., 2010). The same is true for patients that suffer from
the effects of a stroke or TBI (Schretlen et al., 2003; Tatemichi et al., 1994). Both groups may thus
have limited cognitive resources available for controlling a BCI, which was the very reason for
drawing on the ability of human spatial hearing (as also suggested in Kübler et al., 2009). The
reasons why AMUSE did not succeed in this particular experimental setting are discussed in the
following sections, and suggestions for future modifications are provided.

5.3.1. Directional Preference
Despite additional improvements with respect to Experiment 5, the discrimination of all source
pairs was heavily reduced. Since no behavioral tests for spatial localization were performed
for the end-users, it remains unclear if this is due to an actual inability to separate the sound
sources, or the lack of discriminative ERPs in the EEG. As the standard auditory oddball task also
resulted in a-typical ERP components for most subjects, the latter reason seems to explain the
poor performance at least in part. Under this overall poor performance, no differences are found
between the types of source pairs.

The SOA was set to 300ms in the current experiment by the end-users’ request and to allow for
the P3 to develop completely. The larger P3 that was found for condition C300 than for condition
C175 in Experiment 3 supported this decision. However, the reduced speed may have prevented
the end-users from segregating the stimulation sequence into separate target and non-target
sequences (Bregman et al., 2000, and Section 3.4).

5.3.2. Neurophysiology
In the standard oddball task, the target and non-target stimuli differed in pitch and not spatial
location. The pitch difference that was used was recommended for clinical application (Duncan
et al., 2009) and the task can be considered easy for healthy subjects. Nevertheless, the standard
auditory oddball ERP responses for end-users in Experiment 6 were characterized by visible N1
components with low binary-class information, and a clear and discriminative P3 component for
only two out of five end-users.

For BCI applications, any kind of discriminative information in the EEG is useful for binary-class
separation, whether in early- or late components. Unfortunately, most of this information is lost
in the faster AMUSE calibration data. Though early components are still clearly visible, even in
channel Pz, the target and non-target response overlap and do not aid the classification. The
positive P3 response is visible for three subjects, but also with limited binary-class discriminative
information. As the data is taken from calibration trials, there is no additional workload such
as discussed in Section 4.4. The reduction of discriminative information is thus due to 1) the
increased number of classes, 2) the faster SOA, or 3) the spatial stimulus placement. Furthermore,
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the end-users’ engagement on the task may have been different. All are plausible causes for a
reduction in binary-class discriminative information. Unfortunately it is impossible to disentangle
these effects.

From the single-subject comparison, it is clear that the visual paradigm relies heavily on early
components. In the visual standard oddball, all components have a similar sAUC; they contribute
approximately equally to the class separation task. For the Photobrowser paradigm, the early N2
and an additional P2 component are particularly discriminative, with the P3 losing in power. The
reliance of overt attention-based, visual BCIs on early components, of which the Photobrowser is
a variation, is well known (Allison et al., 2003; Bianchi et al., 2010).

Early components where shown to be much less powerful binary-class predictors for covert
attention-based paradigms (Brunner et al., 2010; Treder et al., 2010), of which the auditory
standard oddball and AMUSE are instances. They thus rely more on the contribution of later,
endogenous components such as the P3. Accordingly, the early components carry very limited
information for end-user VPeg02ma in the standard oddball task, and virtually none for AMUSE.
Any classification would thus be based on the P3, which is highly discriminative for the standard
oddball but heavily reduced for AMUSE. As will be discussed in Section 5.3.5, the end-users
(VPeg02ma in particular) could possibly not afford the cognitive resources that are needed for
producing a P3 under the higher workload of AMUSE (Riccio et al., 2012a).

5.3.3. Questionnaires
End-user questionnaires, taken from the first session with an online run, were compared to those
of the healthy users in Experiment 5 (see Figure 5.7). Despite the poor performance, end-users
reported a similar (tending to lower) perceived overall workload on the NASA-TLX questionnaire.
For a one dimensional MI-based BCI, Felton et al. (2012) too found no significant difference
between healthy subjects and end-users. No further BCI studies comparing healthy subjects
and end-users have thus far assessed workload through the NASA-TLX. Based on Felton et al.
(2012) and the comparison of Experiments 5 and 6, it can tentatively be derived that both groups
perceive the workload of BCI similarly, despite the difference in performance. Whether the
cognitive resources that are needed to deal with such workload are available is another question
entirely, and a matter of current investigation (see Section 5.3.5).

Where healthy subjects consistently showed high motivation andmood on the VAS question-
naires, the end-users showed considerably more variability in their response. Though this did not
lead to a significant reduction on either scale, it did reflect the end-users’ state well; they were
often exhausted from prior therapy which noticeably effected their attitude towards the session.
Kleih et al. (2010) found a significant positive correlation between the VASmotivation score and
amplitude of the P3 at electrode Cz, on 33 healthy subjects. Nijboer et al. (2010) also suggested
that “motivational factors may be related to performance ... in some participants and should be
monitored in standard BCI protocols”. As discussed earlier, the P3 is an important component for
classification in covert attention-based BCI. The reduced motivation may thus partially account
for the poor performance, but only on some sessions and for some subjects.

The only significant difference between healthy subjects and end-users was found for the
challenge factor of the QCM-BCI questionnaire. Since the QCM-BCI questionnaire was always
applied before each session, healthy users were BCI naïve upon rating. End-user data were taken
from the first session with an online run. They thus had experienced several BCI sessions already,
which may influence their feedback. However, comparing the healthy user data with the end-user
data taken from the very first available recording session gave a similar result; only the challenge
factor differed significantly. Thus, the challenge of controlling a BCI was a stronger motivational
factor for end-users than for healthy subjects.
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The single-subject comparison showed a significant negative correlation between session
number and overall workload, performance and effort of the NASA-TLX questionnaire, and in-
competence fear for the QCM-BCI questionnaire, but only for the Photobrowser. VPeg02ma thus
clearly got more comfortable with operating the Photobrowser over time, perhaps driven by her
consistent (near-)perfect performance. The same was not true for the AMUSE paradigm, where
no significant correlation was found. Unfortunately, the NASA-TLX questionnaire scores for
session three were missing due to time restrictions, which likely influenced the statistical power.
Nevertheless, visual inspection of the remaining four samples did not identify a linear trend. Her
gradual increase in performance over sessions (see Figure 5.5) thus did not coincide with her level
of comfort in operating the AMUSE-based speller.

5.3.4. Performance
Selection accuracy for AMUSE was consistently above chance level for three subjects. For the
remaining two, at most one session was below chance level (see Figure 5.5). However, in contrast
to the healthy users in Experiment 5, the end-users were unable to consistently control the spelling
interface through AMUSE. For this reason, no ITR or char/min were calculated.

The difficulty in (directly) transferring a paradigm from healthy subjects to the end-user is
unfortunately not new in BCI literature. Furdea et al. (2009) introduced an auditory speller, using
spoken numbers to represent the rows and columns of the visual spelling matrix (Farwell et al.,
1988), only to report on an unsuccessful attempt to apply it to end-users that same year (Kübler
et al., 2009). In fact, they attributed the poor performance to the excessive cognitive demand of
their auditory BCI, suggesting that improvements such as adding spatial features to the stimuli
might alleviate part of this demand. Münßinger et al. (2010) included both healthy users and
end-users in their first test of the Brain Painting application. End-user control was considerably
less accurate, but enough to sustain the application. Similarly, end-users and healthy subjects
trained to control a binary BCI differed considerably in their performance in Cincotti et al. (2008b).
They are only several examples of the translational issues that exist with current BCI. However, as
suggested in Section 1.6, disappointing performance on an initial attempt should be used to drive
future modifications.

Covert attention, ERP-based BCIs such as AMUSE have the potential to increase performance
over MI-based, binary BCIs. They typically require little to no training, making them a convenient
alternative. However, to date they have hardly been validated with the end-users for which they
are intended. Unfortunately, for the few cases where this is done, the result showedmuch room
for improvement (Kaufmann et al., 2013a; Kübler et al., 2009; Sellers et al., 2006a). This is often
attributed to the lack of explicit mapping of stimulus to class (Brunner et al., 2013; Riccio et al.,
2012a). The lack of explicit mapping in auditory BCI has been addressed in particular by using
spoken words that directly represent the class instead of artificial or natural sounds that are not
directly mapped (Hill et al., 2014; Höhne et al., 2014; Sellers et al., 2006a). Unfortunately, unlike
the visual matrix speller (Farwell et al., 1988), it is virtually impossible to present multiple letters
at once, making the selection a lengthy process (but see Höhne et al. (2014) for how spatial cues
can help here).

5.3.5. Comparison to a Visual Paradigm
Using data from a visual study that was performed in close temporal proximity to Experiment 6,
and included one overlapping end-user, allowed for the direct comparison of a single subject.

VPeg02ma is affected by a brainstem ischemic stroke, causing tetraplegia with severe dysarthria
which lead to a serious communication deficit. BCI technology could provide her with a realistic
communication AT. In parallel to both studies, she was screened for attention, memory and
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executive capabilities. Her cognitive profile was characterized by a deficit of divided attention,
visuo-spatial learning ability, the ability to control the information flow and to update information
in workingmemory. Her scores for short-termmemory and verbal workingmemory also fell in the
lower limit of the normal range. She showed highly binary-class discriminative components for
the standard visual- and auditory oddball task. Unfortunately, VPeg02ma did not gain sufficient
control over the AMUSE spelling application, much in contrast to the Photobrowser application
where she had near perfect control. This result is not uncommon, as previous literature already
described reduced performance for end-users with auditory BCIs when compared to visual BCIs
(Kaufmann et al., 2013a; Kübler et al., 2009). However, in this case it can partially be explained by
the clinical profile of VPeg02ma.

As found in Experiment 5 and underlined in Riccio et al. (2012a), a multiclass paradigm like
AMUSE can feature high ITRs in comparison to binary auditory paradigms (Halder et al., 2010;
Hill et al., 2005). This higher ITR comes with a trade-off, as an increased demand is put on the
subject’s attention and working memory to accomplish the task. Since AMUSE by design relies
exclusively on the auditory modality, the user has to keep a mapping of the target symbol to the
attended direction in mind. The mapping is presented to the user verbally in a sequential fashion
before each trial, and the user has to memorize the tone and location of his target stimulus. This
requires a greater involvement of working memory, the capacity to temporarily maintain and to
manipulate the information necessary for solving such cognitive tasks. During an ongoing trial,
the user is required to identify the target when it is presented in a random sequence together
with five competing tones. Though the spatial feature of AMUSE reduces the difficulty of this
task (see Chapter 3), it is still cognitively more demanding than a binary BCI. VPeg02ma’s clinical
profile shows deficits in exactly those key abilities. She is thus not able to afford a more cognitively
demanding task like the AMUSE paradigm.

The Photobrowser application, on the other hand, makes use of visual, overt attention: the user
is allowed to gaze at the target directly. Though this may not always be accessible for end-users
(Ramos Murguialday et al., 2011; Treder et al., 2010; Brunner et al., 2010), it works well for those in
possession of gaze- and eyelid control (Münßinger et al., 2010; Nijboer et al., 2008b; Silvoni et al.,
2009; Zickler et al., 2013). For such overt visual spellers, the class to stimulus mapping is explicit,
i.e. the class label itself is the stimulus. Allowing the subject to gaze directly at his target reduces
the need for keeping the target in memory; once a target is picked, the user simply keeps it locked
in gaze. This relies less on those cognitive functions where VPeg02ma shows clinical deficits, and
allowed her to have near perfect control over the visual application.

5.3.6. Future Directions for AMUSE
AMUSEhas proven to increase performance for healthy subjects in a direct comparisonwith a non-
spatial setup in Experiments 3 and 4, and improved the state of the art in covert attention-based
BCI. Though the initial attempt at transferring this success to end-user tests was unsatisfactory, it
revealed several key targets for improvement of AMUSE to better fit the needs and abilities of the
end-users. In particular the clinical profile of end-user VPeg02ma provided invaluable input for
future revisions of the AMUSE paradigm for end-user application. To mitigate the performance
drop for end-users such as VPeg02ma, the following aspects of AMUSE should at least be revised
to reduce the draw on the limited cognitive resources.

Direct mapping - So far, the stimuli consisted of spatially distributed, artificial tones. While this
provides some benefits in terms of signal processing, it forces the user to maintain an implicit
mapping of stimulus to class. In order to reduce the cognitive demands of auditory BCI, a range
of other stimulus defining features has been tested in BCI literature. Many studies use natural
sounds such as speech (Furdea et al., 2009; Gao et al., 2011; Guo et al., 2010; Guo et al., 2009;
Höhne et al., 2012a; Kübler et al., 2009; Lopez-Gordo et al., 2012; Sellers et al., 2006a; Yoshimoto
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et al., 2012) and environmental sounds (Heo et al., 2013; Klobassa et al., 2009; Ruf et al., 2013),
which may have several benefits. First, human listeners are tuned to process these sounds, which
may reduce the mental strain (Höhne et al., 2012a). Second, the mapping from stimulus to class
can be made explicit (Höhne et al., 2014). In combination with the spatial aspect of AMUSE, such
direct mapping could lower the cognitive demand.

Reduced number of classes - Taking six sources and two levels (6£2 design) is a design decision
that worked out well for healthy subjects. With an undo action on the second level it results in 30
classes, enough to encompass the entire alphabet and some punctuation symbols. Alternatively,
reducing the number of sources to four and increasing the number of levels to three (4£3 design)
would give a total of 36 classes, assuming an undo action on the second and third level. Though
this adds an additional selection to a character, each selection itself is less complex which too
could reduce the cognitive demand.

Removing front-back confusions - In particular in combination with the above adaptation, the
front-back confusions should be removed entirely by only using frontal sources. Experiment 2
showed that this is possible for five sources; higher densities of frontal sources were not tested.
Therefore, at least the 4£3 design should be feasible in the frontal half only.

Changing the SOA - As discussed above, the greater SOA of 300msec that was used for the
end-users may have hampered their ability to segregate the target- from the non-target stream.
Lowering the SOA again to 175msec may engage the end-users’ stream segregation abilities much
like the healthy users reported it did for them.

It is my firm believe that through these and further modifications, AMUSE will proof useful for
end-users.
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Optimization

The development of new paradigms, based on new end-user understanding, can lead to an
increase of both performance and usability. The AMUSE paradigm is one of several of such
recent advances toward covert attention-based BCI (Acqualagna et al., 2013; Höhne et al., 2011b;
Kaufmann et al., 2011; Treder et al., 2011). Improvement can, however, also be gained on other
aspects such as better recording equipment, smarter artifact removal tools, informed feature
extraction, or state of the art classifiers. In particular for ERP-based BCIs there is a further
opportunity for optimization.

As described in Section 2.3.1, a trial typically consists of several iterations. This repeated
stimulation is done in order to improve the relatively low SNR of the individual epochs, and to
thereby increase the accuracy of the decision. However, as each additional iteration prolongs the
length of a trial, it introduces a trade-off between accuracy and speed, which allows for data-driven
optimization. Longer stimulation duration typically means higher accuracy but lower selection
speed, whereas a shorter stimulation duration may result in lower accuracy but higher speed. The
optimum in this trade-off of course depends on the SNR of the ERPs, but is to a large part also
determined by application factors such as the number of trials needed for correcting a wrong
decision, the number of trials needed to write a character and automatic error correction features
of the application. All these should be taken into account when fine-tuning this trade-off.

Typically, the above trade-off is not dealt with during the online use of a BCI, and an arbitrary
number of iterations is fixed beforehand. Subsequently, offline post-hoc analyses on the online
data are used to generate performance curves over the number of iterations, given somemetric
(for an example, see Figure 3.9). The peak performance is then taken as a measure of the possible
performance of the system. This simple strategy of determining an “optimal” number of iterations
is widely used in BCI literature, but generalization might be troublesome due to the post-hoc
nature. The determined number of iterations would have been optimal in retrospect, but this
does not necessarily hold for future data, as EEG is prone to changes reflecting all sorts of user
states. Such post-hoc analyses thus tend to over-fit the true performance andmay give an overly
optimistic estimate of the true performance.

Ultimately, a BCI should be able to determine on the fly if enough evidence is gathered. The
length of any trial would not be set beforehand, but depends on the current data. This optimization
problem is the focus of this chapter. A framework is introduced that encompasses the definition
of previously proposed stopping methods. Using this framework, a newmethod is proposed and
validated. In Experiment 8 it is applied in a spelling application of AMUSE similar to Experiment 5,
and in Experiments 9 to 11 it is benchmarked offline on artificial and real BCI datasets, comparing
it against several previously proposed methods.

Parts of this chapter are based on prior publications Schreuder et al. (2013a), Schreuder et al.
(2011a), and Schreuder et al. (2011c).
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6.1. Prior Work

The simplest way of dealing with the aforementioned trade-off is to learn the optimal number
of iterations from the calibration data and fix this for online use. This will be referred to as fixed
stopping. Once trained, it does not adapt to changes in the online data. However, EEG signals are
non-stationary and the covariance structure changes over time. The distribution of the online
data may thus differ from the calibration data, and this may be increasingly so as time passes.

For this reason, dynamic methods have been proposed in literature (Höhne et al., 2010b; Jin
et al., 2011; Kindermans et al., 2014b; Kindermans et al., 2013; Lenhardt et al., 2008; Liu et al.,
2010; Throckmorton et al., 2013; Verschore et al., 2012). For successful application, such methods
are trained on a limited amount of calibration data and they should be robust against distortions
that are commonly observed in EEG data. They are mostly trained on the classifier scores that
stem from the calibration data, and do not need the raw EEG data. In online mode, a trial is then
stopped at any point if enough evidence (in the form of classifier scores) has been accumulated
for a correct decision, i.e. if the trained threshold is surpassed.

Possibly the simplest approach to this problem is by Jin et al. (2011). Their threshold simply
requires the online trial to come to the same decision in a number of consecutive iterations;
a number that can be optimized on the calibration data. Contrary, Höhne et al. (2010b) run a
number of one-sided t-tests after each iteration (one class versus the rest, for each class), and the
trial is stopped if a pre-trained Æ level is reached. Liu et al. (2010) rely on the sample distance to
the separating hyperplane; by summing these distances over iterations, the first class to reach the
threshold is considered the target and the trial is terminated. Lastly, Lenhardt et al. (2008) rely on
the fact that the difference between target and non-target classifier scores should be maximized;
after normalizing the scores, thereby pushing target scores to one and all others to zero, the sum
of the scores should be below a pre-trained threshold.

Obviously, Bayesian methods could deal with this problem efficiently (Throckmorton et al.,
2013). One such method was not explicitly designed for the purpose of dynamically stopping
a trial, but rather to distinguish between control and non-control states (Zhang et al., 2008).
With slight adaptations, it can however be used for the early stopping task. Recently, another
method was introduced that combines both a dynamic stopping method and an unsupervised
classification scheme, thus adapting to the ongoing data even further (Kindermans et al., 2014a;
Kindermans et al., 2013; Verschore et al., 2012).

Technical details on some of the above methods are described in Appendix A.1, where they are
reformalized in the proposed framework (see below). Full details on each method can be found in
the original manuscripts.

Box 6.1: Dynamic Stopping Framework Notations

°: Paradigm parameters (SOA, overhead,C )

©: Hyperparameter of the stopping method that should be optimized

£: Set of trained parameters of a stopping method

L: Training function which returns parameters£

F : Online decision function

M : Sub-function describing the data
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6.2. A Dynamic Stopping Framework
Dynamic stopping is a rather new line of investigation in BCI literature. Nevertheless, the above
methods share certain principles, that lead to the formulation of a framework for describing them.
The terminology for all methods was unified for easier comparison.

On top of the notations already given in Box 2.4 on page 25, the framework requires some
additional notation that is listed in Box 6.1 on page 88. It is important to note that the framework
assumes that classifiers are trained to assign (more) negative scores to target epochs.

By definition, all methods have access toD tr ain , l and ° for calibration purposes; for testing
purposes only D test , ° and £ are available. D tr ain and D test contain the classification scores
for disjoint sets of trials, sorted according to class and iteration (see Section 2.4.5). ° is a set
of parameters describing the application that the data come from, such as SOA, the number of
classes, and the number of selections necessary for writing a single character, l contains the true
labels of the data and£ is the set of hyper-parameters as returned by L and trained onD tr ain . As
there is no access to raw EEG data, the methods are implemented as a module between the BCI
and the application. This ensures maximum compatibility with existing processing pipelines.

Given the training data D tr ain , all dynamic stopping methods are trained with a function L,
such that

£= L
≥
D tr ain , l ,°

¥
(6.1)

The type and number of parameters contained in£ differ for each method. Given£, function
F is called after each iteration of an online trial. It is defined for the current trial t at iteration j by

F
°
D test ,£, t , j

¢
=

(
cwj ,t if stop possible

;, otherwise
(6.2)

where cwj ,t indicates the winning class, and the empty set ; indicates that no early stop should
be taken. In case a trial reaches the maximum number of J iterations without triggering an early
stop, the winning class is calculated and returned. Unless defined directly by the method, the
winning class cwj ,t is calculated according to Equation 2.4. In most cases, function F relies on a
subfunction M , which summarizes the data. These functions are at the core of each dynamic
stopping method.

6.3. Rank diff - A Dynamic Stopping Method
Several methods for dealing with the above optimization problem were already introduced. They
all have their own set of merits and characteristics. However, as was shown in literature, the
P3 response is not always stable over trials, or even within a trial, as habituation can occur
(see Section 2.2.2.2). As the P3 contributes considerably to the classification task, the resulting
classifier scores can be assumed to vary systematically over the course of a trial. This is not
explicitly modeled in the methods mentioned previously. For some of those it may not pose a big
problem, due to the nature of the method (Jin et al., 2011). However, a too large fluctuation of the
distributions within a trial could have detrimental effects on others (Höhne et al., 2010b; Lenhardt
et al., 2008; Liu et al., 2010).

Therefore, rank diff was designed specifically with this effect in mind. By using several thresh-
olds, one for each iteration, the goal was to create a method that deals well with habituation.

Using the above framework, rank diff is based onM
°
D , t , j

¢
, defined for iteration j and trial t as

M(D , t , j )= min
c§6=cwj ,t

≥
median

≥
Dcwj ,t ,1... j ,t

¥
°median

°
Dc§,1... j ,t

¢¥
(6.3)
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where cwj ,t is found using Equation 2.4 and c§ runs over all other classes. A larger value forM means

a better separation of the class medians, and thus more confidence in a decision. £=
©
¢1, . . . ,¢J

™

contains J iteration dependent thresholds ¢. To determine ¢ j (the threshold for iteration j ),
L

°
D tr ain , l ,°, j

¢
calculatesM

°
D tr ain , t , j

¢
at iteration j for each training trial. These are assigned

to one of two vectors, depending onwhether the estimated class label was correct (~+ j ) or incorrect
(~° j ) according to Equation 2.4. To implement a security margin that prevents too optimistic early
stops, ¢ j is then defined as

¢ j =max
©
max

°
~° j

¢
,© ·median

°
~+ j

¢™
(6.4)

For online use, decision function F is then defined as

F
°
D test ,£, t , j

¢
=

(
cwj ,t ifM

°
D test , t , j

¢
>¢ j

;, otherwise
(6.5)

Hyperparameter © is set globally over all iterations, and could be set using prior knowledge.
For example, a threshold with©= 1 is rather conservative, as it is biased away from false positives
(incorrect early stops). Such a conservative threshold would be useful when a false positive is
costly. For instance, in the AMUSE-based speller described in Experiment 5, correcting an error
takes up to four additional selections. For applications where a false selection is less costly, the
threshold can be set less conservative by taking a smaller value for©.

6.4. Online Validation
As discussed in Section 2.5.3, the most conclusive way of validating a method is to apply it in an
online BCI session. To validate the rank diff method, such an online experiment was performed,
using a spelling interface that was otherwise similar to Experiment 5.

6.4.1. Experiment 8: Online Validation of Rank Diff
For a within subject comparison, a subset of subjects from Experiment 5 were tested in a slightly
modified setup, including the rank diff method for dynamic stopping.

6.4.1.1. Setting

Subjects who were able to successfully write the full sentence with the AMUSE system in Exper-
iment 5 were asked to come back for a second session. This session consisted of a calibration
phase, equal to that of Experiment 5, and the online writing of two German sentences. The first
sentence was the remaining sentence from Experiment 5, whereas the second sentence could be
chosen by the subject but should be at least five words long.

The protocol was adjusted in several ways, the main change being the introduction of rank diff
for dynamic stopping of trials. Rank diff was set to terminate a trial after at least 4 and up to 15
iterations when enough evidence for a correct selection was found, i.e. whenM

°
D test , t , j

¢
>¢ j .

As an additional change, subjects were requested to learn the selections that are needed for any
character by heart before the session. They were no longer provided with auditory labels prior
to a trial, which reduced the trial time by about 6.2 seconds. The maximum theoretical writing
speed with 15 iterations was thus 1.10 char/min.

During the first sentence, subjects got visual information on the labels to familiarize them again
with the interface. During the second sentence this was turned off, thus relying exclusively on
the auditory sense. During both sentences, subjects still received auditory information after a
selection to know their current location in the spelling tree.
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Figure 6.1.: Results for all factors of the questionnaires are compared between healthy subjects
using the AMUSE-based speller with rank diff or without (Experiment 5). Lower is
better for all factors of the NASA-TLX questionnaire and factor incompetence fear
of the QCM-BCI questionnaire. Higher is better for all other factors. Significant
differences are indicated with an asterix (* p < 0.05, ** p < 0.01). Note that this is a
within subject comparison.

Note on Rank diff in Experiment 8 During the online validation, a preliminary version of
rank diff was used, which differed slightly from the final method that was introduced in Section 6.3
and used in Experiments 9 to 11. Here,©was fixed to 1 and a third-order polynomial was fitted
to the maximum values of~° for smoothing, such that f = fit3

°£
max(~°1), . . . ,max(~°J )

§¢
, with f

°
j
¢

being the smoothed value at iteration j . Equation 6.4 then reads as follows:
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Setting© to 1 effectively allows early stops only for trials whereM
°
D , t , j

¢
is at least larger than

the median M score at iteration j of all training trials that resulted in a correct decision at that
iteration.

Furthermore, for finding the decision thresholds ¢, the trained classifier was reapplied to the
complete calibration data on which it was trained, instead of using cross-validation. Although
this can be considered overfitting and might lead to an overestimation of the class distances, it is
not consider as a caveat when searching for a conservative threshold.

6.4.1.2. Results

Of 15 returning subjects, 14 wrote both full German sentences. Subject VPfchwas able to write
the first sentence, but took so long that the session had to be aborted after this. Subject VPfax was
unable to return for this experiment, although he was successful in the first session. Unless stated
otherwise, the statistical testing was done using two-sided paired t-tests.

Questionnaires Questionnaire results can be found in Figure 6.1. The results for the subjects
that were able to write in Experiment 5 is given for comparison. Subjects were in good mood
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Figure 6.2.: BCI performance in terms of selection accuracy (A) and char/min (B) is presented
for both sentences. Data from Experiment 5 is included for comparison. Average
performance is represented by the gray line and is calculated only for those subjects
that finished all sentences. Excluded subjects are marked with a star. (A) The red,
dotted line shows the selection accuracy when only four iterations are considered. (B)
The increase in the theoretical maximum is due to the omitting of spoken labels.

(VAS-mood, median: 7.3; IQR: 1.78) and motivation (VAS-motivation, median: 8.5; IQR: 1.1).
According to the NASA-TLX questionnaire, median overall workload was rated at 58.34 (IQR;
24.0), with the main contributions from mental demand (median: 25.16; IQR: 8.33) and effort
(median: 14.0; IQR: 6.0). Subjects rated the four motivation factors of the QCM-BCI questionnaire
as follows: mastery confidence (median: 5.5; IQR: 1.12), incompetence fear (median: 2.2; IQR: 1.25),
interest (median: 5.4; IQR: 1.35) and challenge (median: 5.25; IQR: 1.19). In comparison with data
from Experiment 5, a paired Wilcoxon signed-ranks test confirmed a marginally significant effect
for factor incompetence fear of the QCM-BCI questionnaire (Z=-2.05, p = .04) and the overall
workload of the NASA-TLX questionnaire (Z=-2.67, p = 0.05).

Accuracy Individual performance measures for each participating subject can be found in
Figure 6.2 and Table 6.1. Average selection accuracy per sentence was 84.3% and 86.1% for
sentence 1 and 2, respectively. The increase in accuracy when compared to Experiment 5 is
due to the drop out of less-performing subjects. When recalculating the mean for Experiment 5
and sentence 1 over only those subjects that finished all three sentences (N=14), this difference
disappears (represented by the gray line in Figure 6.2-A). For further analysis, only those 14
subjects are regarded.

No significant difference existed (t(13)= 0.041; p = 0.97) between selection accuracy in sen-
tence 1 (mean: 86.1%; SD: 7.8) and 2 (m=86.1%; SD: 11). The difference between these conditions
is that for sentence 2 the visually presented support labels were switched off. This shows that the
spelling tree can easily be learned and thus does not need visual presentation.

As the number of iterations varied in the current experiment, an offline analysis was performed
to objectively assess any learning effect that might remain from Experiment 5. For each sentence,
the online classification scores of only the first four iterations were used to calculate the selection
accuracy. The red, dotted line in Figure 6.2-A shows the result. Clearly, no systematic learning
effect was present. As there was also no significant difference in accuracy (t(13)= 0.88; p = .40)
between Experiment 5 (mean: 88.0%; SD: 7.3) and sentence 2 (gray line), it can thus be concluded
that rank diff did not introduce additional errors.

Writing Proficiency Figure 6.2-B presents the writing proficiency for each subject in terms
of char/min for the current experiment, and for Experiment 5 for comparison. The gray line
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Table 6.1.: Performance summary for Experiment 8. The performance measures selection accu-
racy [%], char/min and ITR [bits/min] are given for all subjects and both sentences,
along with age and gender. Subjects are sorted according to their selection accuracy
on Experiment 5 for comparison. Missing values indicate that the sentence was not
written by the user (x).

Sentence 1 Sentence 2
User Gender Age Sel. Acc. char/min ITR Sel. Acc. char/min ITR
VPfaz F 27 95.9 1.26 6.93 100.0 1.41 8.19
VPfcc M 28 85.1 .88 4.41 88.6 .88 5.01
VPkw F 57 86.5 .94 4.98 86.5 .95 5.09
VPfca M 23 97.0 1.30 7.36 94.2 1.14 6.38
VPfcd M 25 91.3 1.10 5.66 97.9 1.35 7.56
VPfaw M 40 92.7 1.01 5.58 94.3 1.03 5.94
VPfar M 31 89.8 .96 5.16 83.3 .76 4.20
VPfav M 40 88.3 1.01 5.57 96.8 1.38 7.44
VPfcb M 21 81.7 .65 4.02 85.1 .75 4.84
VPfck M 43 78.0 .61 3.27 68.5 .40 2.39
VPfau F 25 93.4 1.03 5.92 83.9 .74 4.33
VPfcj F 23 75.3 .50 3.07 69.3 .65 2.50
VPfcg F 33 77.8 .92 3.80 88.5 1.06 5.57
VPfch M 55 57.9 .36 1.68 x x x
VPfcm M 51 73.4 .51 2.85 68.1 .61 2.43
Means F:5/15 34.8 84.3 .87 4.68 86.1 .94 5.13

represents the sentence-wise average for only those subjects that finished all sentences (N=14),
which will be considered for further analyses.

As expected from the selection accuracy, there is no significant difference in char/min (t (13)=
0.6; p = 0.57) between sentence 1 (mean: 0.91 char/min; SD: 0.25) and sentence 2 (mean: 0.94
char/min; SD: 0.31). However, when comparing sentence 2 with Experiment 5 (mean: 0.62
char/min; SD: 0.16), a significant increase of 52% can be observed (t(13) = °4.7; p < 0.01).
Given the similar selection accuracy, the increase must be due to improvements in the interface’s
efficiency. These were twofold: 1) dynamic stopping was introduced and 2) the verbal labels were
omitted. To assess the influence of the dynamic stopping method independently, the 6.2 seconds
time gain from the latter modification was re-added to sentence 2 in an offline simulation. A
significant increase of 37% remains (t (13)= 4.05; p < 0.01) from Experiment 5 to the simulated
sentence 2 (mean: 0.85 char/min; SD: 0.26).

The average ITR in Experiment 5 was 2.72 bits/min (maximum 4.82 bits/min). When consider-
ing only those subjects that were able to write in Experiment 5 and this experiment, the average
ITR over Experiment 5 was 3.49 bits/min. With the two improvements, this increased by 46% to
an average of 5.13 bits/min, with a maximum of 8.19 bits/min.

Robustness Over all subjects, a total of 3297 online trials were recorded in this experiment.
Rank diff produced early stops on 41.3% of these trials. The maximum number of 15 iterations
(full trial) was reached in the remaining 58.7% of the trials. This was in cases where the threshold
was not exceeded in iterations four to 14.

About 12.6% of early stops resulted in an incorrect decisions, which is 5.2% of the overall
number of trials. This reflects the conservative threshold policy as described in Section 6.3. At
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Figure 6.3.: Frequency of errors on early stops and full trials. (A) Data is collapsed over all subjects
that participated in Experiment 8. The number of correctly and incorrectly classified
trials are plotted as a function of the iteration in which a trial was stopped. (B)
The same data is plotted separately for each subject and both sentences. The black
markers indicate the minimum number of selections necessary for writing a sentence.
Subject VPfch did not perform sentence 2.

23.5%, the percentage of errors was almost twice as high for full trials. As depicted in Figure 6.3-A,
the majority of early stops is performed directly at the fourth iteration, with the number of stops
decreasing until finally all remaining trials are stopped at the 15th iteration. At each individual
iteration the percentage of incorrect decisions is lower than for full trials.

Figure 6.3-B depicts the frequency of the four possible decision types for each subject. It again
shows that the error rate for early stops is relatively low, and similar for all subjects. Only subject
VPfch had such a high error rate – both for early stops and full trials – that there was no time
left for writing the second sentence. The black lines indicate the minimum number of decisions
necessary for writing the particular sentence.

An obvious explanation for the good performance of rank diff is that mostly the “difficult-to-
decide-trials” reach the full number of iterations, which would in fact be by design. Figure 6.4-
A displays the separability of data taken from Experiment 5, as expressed in AUC calculated
at iteration four and 15. As no dynamic stopping was performed in Experiment 5, all trials
reached the full 15 iterations. Correctly classified trials mostly reside in the top left corner,
at high AUCs, whereas erroneous trials have lower AUC both at four and 15 iterations. More
importantly, a correlation exists between the AUC at iteration four and 15, as indicated by the gray
line (r (362)= 0.639;p < 0.01). The AUC at iteration four can thus serve as an approximation of the
final quality of a trial.

Figure 6.4-B displays the same data for Experiment 8, which includes rank diff for dynamic
stopping; Figure 6.4-C summarizes B over the x-axis. Trials are marked as correct or erroneous on
stopped or full trials. Indeed, the trials that were stopped correctly are those with high AUC at
iteration four; trials with average AUC typically reach the full number of 15 trials. Erroneously
stops occur on trials with the lowest AUC. The latter effect is due to a wrong class triggering rank
diff and leading to an AUC below 0.5. Note that the class labels are required for calculating the
AUC, and that these are not available online. For the sake of clarity, the total number of trials was
reduced randomly by a factor four for Figure 6.4-A and B, keeping the relative group size in tact.

6.4.1.3. Summary

Rank diff was validated in an online experiment. The performance increased significantly due to
rank diff when compared to the fixed number of iterations that was used in Experiment 5. Rank
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Figure 6.4.: The quality of a trial determines its length. (A) The quality of trials from Experiment 5
as expressed in terms of the AUC at iterations four and 15. (B) Similar to (A) but for
data of Experiment 8 with dynamic stopping. Correctly stopped trials have the highest
AUC at iteration four. (C) Summary of the x-axis of (B). The number of trials for (A)
and (B) was randomly reduced by a factor four, maintaining relative group sizes.

diff did not reduce the accuracy with the conservative settings that were tested, and correctly
stopped trials with highly separable target and non-target binary-classes.

6.5. Benchmark Comparison
To test and compare rank diff against some of the methods previously proposed in literature, a
selection of these methods was implemented. Without marginalizing the contributions of all
the authors on the original articles, they are referred to with the name of the lead author as
Liu (Liu et al., 2010), Jin (Jin et al., 2011), Lenhardt (Lenhardt et al., 2008),Höhne (Höhne et al.,
2010b), and Zhang (Zhang et al., 2008). Condensed details on each method can be found in
Appendix A.1. All methods were validated both on artificial data, checking for common data
distortions (Experiment 9), and on real EEG data of several paradigms (Experiments 10 and 11).
All stopping methods were provided with the output of a linear classifier for training and testing
purposes. Althoughmore sophisticated classifiers are sometimes used (outputting for instance
probabilities), the most widely used classifier in ERP-based BCI remains LDA. For this reason, all
methods were restricted to work with data obtained from a regularized LDA. Preprocessing was
similar to the pipeline described in Section 2.4. Each stimulus was classified independently, and
the accumulation of the evidence was left to the stopping methods. This ensures the applicability
of the results, as the methods can be realized as a simple module between the existing BCI and
the application.

All analyses were performed offline, but maximum generalization was ensured by leaving out
all online data for validation (see Section 2.5.3 for a discussion). The experimental protocol is
depicted in Figure 6.5 and followed these four steps:

1. EEG data are split into training and test epochs (see conditions below).

2. Training epochs are transformed into classifier scores through two-fold cross-validation.
Additionally, a classifier is trained on all training epochs and applied to the test epochs.
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Figure 6.5.: The validation procedure is the same for both the offline and the quasi-online condi-
tions, and for EEG- and artificial data. The number of training trials (x) was changed
to evaluate the robustness of the methods. For all other analyses 21 training trials
were used.

3. The classifier scores from the cross-validation are used to obtain £ for each stopping
method. The trained stopping methods are then applied to the classifier scores from the
test epochs, to determine the stopping point for each trial.

4. Selection accuracy and stimulation duration are transformed into symb/min. The symb/min
obtained from the validation data is used throughout this manuscript, unless stated other-
wise.

Two conditions need to be distinguished. Offline: the above procedure takes place inside an
eight-fold cross-validation. All data come from the original calibration data only, and at each fold
21 trials are used for training and three trials are used for testing. All parameters are estimated
within the cross-validation procedure. Quasi-online: this condition was performed once, after
the optimization procedures were fully debugged and produced plausible results on the offline
data. Here, epochs from 21 trials of the calibration data were used as training data, and the test
trials consisted of all online data.

The procedures were the same for the artificially generated data, with the addition that the
experiments were run 40 times per condition. All reported performance gains are calculated with
the no stopping condition as a baseline condition, by subtracting the no stopping performance.
Negative performance gains thus mean that the stopping method results in a performance that is
worse than when no stopping was applied.

Under the framework, all methods have one or more hyperparameters©, which allows the user
to influence the trade-off between speed and robustness. It requires some form of optimization
within the training function L. Interestingly, most of the original publications do not provide a
way to properly estimate the value of this hyperparameter.

Therefore, hyperparameter© is optimized using a resampling procedure on the classifier scores
obtained from a two-fold cross-validation on the training epochs (see Figure 6.5). Two thirds of the
classifier scores are randomly selected to estimate the necessary data statistics (for instance the
intensities in Lenhardt or the priors, means, and variances in Zhang). Given these statistics, the
remaining training data is used to optimize hyperparameter© for symb/min, using a simple linear
search. This procedure is repeated 15 times and the median hyperparameter is subsequently
applied to the test trials.

Somemethods – (Fixed) optimal,Höhne, Jin – do not require such a compound optimization,
and could be calculated directly. However, they too are estimated using the resampling procedure
for extra robustness and better comparability. In these cases the hyperparameter is optimized on
the larger two-thirds data split directly. In the case of two mutually dependent hyperparameters
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(Jin and Lenhardt), these are estimated simultaneously by extending the linear search to a two
dimensional grid search.

6.5.1. Experiment 9: Artificial Data
Themost important requirement for themethods is that their performance should at worst drop to
the baseline performance of the no stopping strategy whenever data become difficult to separate.
In other words, they should gracefully degrade. Several artificial datasets were constructed to
test the robustness of the stopping methods for data distortions that are typically observed in
classifier outputs during BCI online sessions (see Figure 6.6).

6.5.1.1. Setting

Unless stated otherwise, data are sampled from two normal distributions (target and non-target)
with unit variance. They represent the classifier outputs directly, and not the EEG data or features
thereof. A training set and a validation set were generated independently. For the calculation
of the symb/min metric, all of the following datasets were assumed to have an SOA of 200 ms,
six classes, a two-level interface, and an overhead of ten seconds per step. The influence of the
following distortions types were investigated (but not interactions between them):

Separation Tomimic data that is generally difficult to classify, the distance between the target
and non-target binary-class mean is varied, effectively changing the AUC from 0.5 for no separa-
bility, to one for perfect separability. This is done equally for both training and validation data.
Based on the results, all other datasets were constructed with an AUC value of 0.85.

Outliers Artifacts in the EEG create outliers in the classifier outputs. These can generally be
removed from the calibration data before training the classifier. Particularly during longer use, the
number of artifacts in the online phase will be larger and removing them is not straightforward.
Thus, between 0% (no outliers) and 65% (many outliers) are introduced to both binary-classes,
but in the validation data only. Outliers are sampled randomly from a uniform distribution on [-3,
3].

Confusions A typical phenomenon in some BCIs is a systematical confusion, where one partic-
ular non-target is mistaken for a target more often than other non-targets (Höhne et al., 2012a).
This leads to a partial overlap of non-target and target classifier scores. To simulate this, one
non-target class was shifted from the non-target distribution (normal separation) towards the
target distribution (no separation) in several steps. This is a special case of the separation dataset,
where only one non-target class is affected by bad separability. It is applied to both training and
validation data.

Datasets with changes in terms of drift, scale, distribution and number of classes were also
tested. Since their influence on the performance was minimal, they are not described fully, but
only depicted in Figure 6.6.

6.5.1.2. Results

All methods were robust to most types of data distortion. The largest performance deteriorations
were caused by the binary-class separation, outliers and systematical confusions, which are shown
in Figure 6.7-B. Results are summarized by their mean performance gain over the no stopping
condition (see Figure 6.7-A) over the given parameter space. The gain of a specific setting was
considered significant if at least 90% of the 40 simulations yielded an output on the same side of
the baseline (black bars). Bars are gray where no such significance was found.

Separation - Most methods behave well for data that is difficult to separate, meaning that they
do not decrease performance below the no stopping baseline when data separation goes to zero.
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Figure 6.6.: Sample distributions of classifier scores for artificial datasets are shown. The “Train
set” columns represent the distribution of the classifier outputs of training data
on arbitrary scales; the “Validation set” columns display the classifier outputs for
online data on the same scales. (A) shows the standard sample without distortions
between training and validation data. B-G depict specific forms of data distortions
that were tested in Experiment 9. Whenever the data are distorted in B-G, the standard
distribution is indicated by the faded lines. The 7th dataset only changes the number
of non-target classes (not shown here).

Liu clearly struggles with data as it becomes difficult to separate, as it severely undershoots the
baseline performance. This is reflected in the relatively low average gain. To a lesser extend,
Jin suffers from the same effect for the most difficult data. For difficult data, Rank diff shows a
constant tiny, but significant reduction. Zhang is exceptionally resilient to inseparable data, with
a significant performance gain for all but the most inseparable data.

Outlier - All methods have severe problems in dealing with outliers. None of the methods
reached a positive average gain over the given parameter space. Though Liu performs worst again,
here the picture is not that clear. In fact, all methods severely deteriorate performance compared
to baseline whenmany outliers are present, though the level of tolerance changes slightly between
methods. It is important to note that the number of outliers went as high as 65%, and that these
outliers were not observed in the calibration data.

Confusion - All methods are influenced by systematic confusions, but they degraded gracefully
to the baseline. Interestingly, also Liu does not show any significant performance reduction from
baseline, even though confusion is a special case of separation.

Rank diff was amongst the top three in terms of average gain for the above three datasets. The
results on the other datasets can be found in the Appendix, Figure A.1. It is worth noting that Liu
is the only method that is clearly not robust against drifts, showing a performance peak around
the no-drift parameter and falling off to both sides with positive and negative drifts. Furthermore,
Liu, Rank diff, and Zhang show reduced performance gain when the data is downscaled. For all
other methods, and for upscaling only marginal influences were found. An increased number of
classes reduced the gain for all methods, and a more skewed distribution showed higher gains for
all methods.
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Figure 6.7.: Results on artificial data sets. The three artificial datasets that had particular influ-
ence on the early-stopping methods are displayed. A) To indicate the effect size, the
baseline performance of no stopping is shown. B) The bars indicate the absolute per-
formance gain over the no stopping condition, and are averaged over 40 simulations.
Bars are black if 90% of the 40 simulations result in the same sign, and gray otherwise.
The plotted numbers indicate the average gain over the depicted parameter space of
each distortionmethod and stopping strategy, with larger positive numbers indicating
a more robust behavior of the stopping strategy.

6.5.1.3. Summary

Using artificial data, the robustness of different dynamic stopping methods was compared. Most
methods behave well in the sense that they do not reduce performance beyond the baseline of
no stopping. Only for a high number of outliers did all methods degrade beyond this baseline.
Method Liuwas prone to almost all data distortions. Rank diff was consistently amongst the top
three in performance.
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Table 6.2.:Dataset parameters. Given are the number of subjects (N ), number of channels, modal-
ity (A = auditory, V = visual), number of classes, levels (number of trials per character),
the maximum number of iterations in the original data, the SOA [ms] and the over-
head [s]. AMUSE data is taken from Experiment 5 where the labels were read out to the
user, explaining the large overhead.

Dataset N Channels Modality Class Levels Max. It. SOA Overhead
Experiment 5 16 61 A 6 2 15 175 18.25
Hex-o-spell 13 63 V 6 2 10 217 6
Center speller 13 63 V 6 2 10 217 8.25
Cake speller 13 63 V 6 2 10 217 6
RSVP speller 12 55 V 30 1 10 83 12
MVEP speller 16 57 V 6 2 10 266 11.7

6.5.2. Experiment 10: BCI Data Analyses
As artificial data can only go so far in estimating the usefulness of any method, all methods were
additionally validated on pre-recorded EEG data from BCI experiments. The datasets represented
a variety of covert attention-based BCI paradigms, as they were available within the BBCI group.
However, as will be discussed in Section 6.6.5, any improvement in the AUC of a classifier results
in better gains for most dynamic stopping methods. With overt attention-based BCIs typically
resulting in data with better binary-class separation, the results on the datasets used here can be
considered a lower estimate of the performance gain on overt attention-based BCIs.

6.5.2.1. Setting

EEG data from 83 sessions were taken, originating from Experiment 5 and five visual ERP para-
digms: the rapid serial visual presentation (RSVP) speller (Acqualagna et al., 2011), the MVEP
speller (Schaeff et al., 2012), and the ERP-basedHex-o-spell, center speller and cake speller (Treder
et al., 2011). Datasets were previously recorded for the respective publications. All datasets con-
sisted of an offline calibration part and an online spelling part; in all the original studies the users’
task was to write text. Details on the datasets can be found in Table 6.2. All calibration datasets
were reduced to 24 trials. Due to the varying number of classes and iterations per trial, there was
still a discrepancy between datasets. Since it is not the primary goal here to compare datasets, this
was not considered a problem. All online results are based on 21 training trials for calibration, to
resemble the amount of data available in one cross-validation fold. Only results explicitly testing
the influence of training data had a varying number of training trials.

All data were high-pass filtered above 0.1 Hz during recording. For the current analyses they
were further low-pass filtered below 30Hz (order eight Chebyshev II filter, 30Hz pass-band, 42Hz
stop-band, 50dB damping) before being downsampled to 100Hz and segmented according to the
stimulus onset. Single epochs were baselined to the interval 150 ms prior to the stimulus onset.
For feature extraction, data were further downsampled using the unevenly spaced intervals based
on prior knowledge (see Section 2.4.3). The linear classifier described in Section 2.4.4 was used.

6.5.2.2. Results

While the results on the artificial data give an intuition of the properties of the various methods,
the truly relevant question is their behavior on real BCI data, which are summarized in Figure 6.8.
On average over all datasets, all methods improved the performance. However, this did not hold
when observing the paradigms individually.
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Figure 6.8.:Quasi-online performance. Averaged symb/min performance is given for all stopping
methods (columns) and experimental paradigms (dots). The connected black dots
represent the averages over experimental paradigms. It was calculated over all subjects
directly and accounts for the different number of subjects per paradigm. An asterix
marks the significance level of a performance increase over no-stopping (* p < 0.05; **
p < 0.01), as found by a Bonferroni corrected paired t-test.

All methods significantly increased the performance on two datasets (center speller and RSVP
speller), and all methods but fixed and fixed optimal managed to increase the performance on the
cake speller dataset (for significance levels see Figure 6.8). Performance on the hex-o-spell speller
dataset was significantly increased by all but Liu. Significant performance increase for the MVEP
speller dataset was found for rank diff, Zhang, and Lenhardt. None of the methods significantly
increased (or decreased) performance on the AMUSE speller dataset.

In summary, no method increased performance significantly on all datasets. Rank diff, Zhang,
and Lenhardt did so for five datasets, Höhne and Jin for four datasets, and fixed, fixed optimal,
and Liu for three datasets.

Figure 6.9 shows the average gain over no stopping for each stoppingmethod, accumulated over
datasets. Over all datasets,Höhne, Lenhardt, and Zhang performed particularly well, as indicated
by the high cumulative average gain (4.17, 4.14, and 4.47 respectively). Directly after these three
methods, Jin and rank diff followed with cumulative gains of 3.11, and 3.49. The cumulative gain
for Liu was competitive (2.83), in particular for the “easier” RSVP- and center speller datasets.
When subtracting the negative gain for the AMUSE- andMVEP spellers it reduced to 2.60.

Both of the fixed methods (fixed and fixed optimal) showed a cumulative gain over no stopping
(2.08 and 2.36 after subtraction negative paradigms). However, their gains were clearly smaller
when compared to most dynamic methods. A full image depicting individual gains for all subjects
and all stopping methods can be found in the Appendix, Figure A.2. In absolute terms, the fixed
methods and Liu reduced performance for about 26.5% to 30% of the subjects, against 8.4% to
15.7% for the dynamic methods.

Required Training Data Figure 6.10 shows the effect of the training set size on the estimated
online performance, as averaged over all datasets. Shown is the additional upper bound method,
along with the previously introduced methods. The upper bound method uses the true labels,
and is therefore only shown to indicate the highest achievable performance (see Appendix A.1).
With the minimum number of three training trials, all methods but Jin and Lenhardt decreased
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Figure 6.9.: Cumulative gain. The y-axis shows the cumulative average gain over no-stopping
for each of the stopping methods. The height of a segment indicates the average
performance gain which was realized for a particular dataset. Negative average
performance gains are displayed below the zero line. It is interesting to note that the
performance metric is symb/min, and thus directly interpretable.

the performance with respect to no stopping, on average. With 12 training trials or more, all
methods increased performance over the no stopping condition, on average. Performance for
the no stopping condition converged after about 12 trials, as the accuracy saturated to 100% for
several paradigms. For all stoppingmethods, the relative gain increased substantially during these
first four conditions (three to 12 training trials). After 12 training trials, most dynamic methods
kept increasing in performance until trial 21. Indeed, the upper bound also kept increasing until
21 trials, showing a performance gain that would be impossible without such stopping methods.

Importantly, on average all dynamic methods, except for Liu, consistently outperformed the
fixed and fixed optimal method from six training trials upwards. Most dynamic approaches could
thus exploit the data better than simply fixing a number of iterations, even with small amounts of
training data. Liu needed on average 15 trials or more to outperform fixed (optimal). Though the
effect size varied, the average findings largely transfer to the individual datasets.

6.5.2.3. Summary

All tested methods increased the spelling performance over no stopping on average. As could
be expected from Experiment 9, Liu struggles on two datasets, for which it in fact decreased the
average performance. The fixed (optimal) methods also improved performance, but they are
clearly outperformed by the dynamic stopping methods. With as little as 12 training trials, all
methods showed positive performance gains compared to no stopping.

6.5.3. Experiment 11: Approximating the Hyperparameters

The proposed scheme for estimating hyperparameter©workse well, but it may pose a hurdle for
some. However, approximations of this optimal©may exist, which would simplify the estimation
process and potentially increase adoption of these methods in BCI literature.
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Figure 6.10.: Influence of the number of training trials on the performance of stopping methods.
With low number of training trials, most dynamic methods deteriorate the perfor-
mance with respect to no stopping. When increasing the number of training trials,
the dynamic methods start outperforming no stopping. Their performance increase
converges at larger number of trials, indicating a gain which is impossible to achieve
without using dynamic methods.

6.5.3.1. Setting

The size and heterogeneity of the datasets in Experiment 10 can be used to find a proxy for the
optimization of hyperparameter ©. For this purpose, the optimized values of © for all training
sets were investigated for dependencies on data features. Any resulting independent variable
should be chosen such, that it can easily be derived from a calibration dataset. As the AUC of the
training data highly correlated with© (see Appendix A.2, Figure A.3), and it is independent of the
sample size, it was chosen as the independent variable. Dependent variable©was then linearly
fitted to the AUC of the training data. Fitting was done using iteratively re-weighted least squares
analysis (Holland et al., 1977) to reduce the influence of outliers. This gives two coefficients for
each method, which transform the AUC of a dataset into a corresponding hyperparameter ©†,
which approximates©. All EEG datasets were reanalyzed using this approximation by©†, and the
performance was compared to the optimized variant. In the case of multiple hyperparameters,
the hyperparameter with the highest correlation coefficient was approximated whilst fixing the
other. For Jin, jmean was fixed to the minimum of two iterations, and for Lenhardt, S1 was fixed to
1.

6.5.3.2. Results

Even across different paradigms, with all the different settings, the optimized © was a rather
robust function of the AUC (see Appendix, Figure A.3). Settings such as the SOA and overhead thus
appear to play a minor role. The black line in Figure A.3 shows the fit of all the data; the gray lines
fit the data each with one dataset left out. Only for method Jin did these fits not clearly overlap,
which is likely due to the fixing of jmean in the online case, the inherent discrete nature of the
hyperparameters and the small parameter range. All other methods had a robust fit, regardless of
the aforementioned factors and the paradigm fitted. The resulting coefficients can be found in
Table 6.3 and can be used to approximate© according to the equation

©† = a ·AUC+b (6.7)

The result of reanalyzing all data, using Equation 6.7 to determine©† from the training data,
can be found in Figure 6.11. Results are summarized by their median, 25 and 75 percentiles
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Figure 6.11.: Performance comparison between optimized hyperparameter © and a global ©†,
the latter of which was estimated by linear regression. The optimized © boxplots
are the quasi-online performance results of each method, when trained using the
subject specific optimization (©). The global©† boxplots indicate the results, when
themethods are rerun and©† is directly estimated from the AUC of the training data,
using the coefficients in Table 6.3. Performance differences are not significant, as
confirmed by a Bonferroni corrected paired t-test.

and minimum and maximum gain. Though the use of ©† significantly decreased the training
performance for several methods when compared to the optimal© (not shown), it did not signifi-
cantly change the online performance for any method. Significance was tested using a Bonferroni
corrected, paired t-test.

6.5.3.3. Summary

Using a simplifying approximation of the optimization scheme, similar performance gains could
be achieved. The provided coefficients transform the AUC of a training dataset into approxima-
tions of hyperparameter© for each method in a straightforward manner.

6.6. Discussion
Increase in performance due to any dynamic stopping method is promising, but has been largely
neglected in literature. Though several methods have been introduced before, they seldomly find
their way into online studies. Rank diff was validated online, and benchmarked against other
methods on a large body of EEG data.

6.6.1. Online Validation of Rank diff
By reducing the overhead, introducing rank diff and inclusion of only those subjects that were
able to write, the ITR jumped from 2.72 bits/min in Experiment 5 to 5.13 bits/min in Experiment 8.
When considering only those subjects from Experiment 5 that completed sentence 2 of Exper-
iment 8, the ITR is adjusted to 3.49 bits/min. The reduced overhead and rank diff still resulted
in an increase of approximately 46%, to bring the ITR to the level that was predicted offline in
Experiment 3.

Importantly, both the average ITR and the char/min represent an improvement in performance
for auditory BCI even to date. In fact, it is similar to the tactile BCI reported in van der Waal et al.
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Table 6.3.:Optimization approximation. Given the tested datasets, hyperparameter©was found
to correlate with the AUC of the training data. Coefficients of the linear fit are given
here for each method. The approximated©† can be recovered from the training data
using Equation 6.7, which can form a starting point for new experiments or further
optimization.

Method a b
Fixed optimal -21.96 22.03
Liu -4.58 5.46
Jin -7.90 8.86
Rank diff -1.97 1.77
Zhang 0.80 -0.30
Höhne 0.10 -0.04
Lenhardt -1.07 1.07

(2012) and approaches the writing performance of some covert attention-based visual spellers
(Acqualagna et al., 2013; Liu et al., 2011).

Performance in traditional visual ERP applications is generally good even at a low number of
iterations. However, things get more difficult when overt attention is impossible; the performance
breaks down and a quality check as provided by a dynamic stopping methodmay be desirable.
The same can be said for auditory paradigms, where covert attention is the standard and the
resulting ERPs are less strong. Here, a decision is enforced after 15 iterations, but an additional
benefit of dynamic stopping methods could be to refrain from any decision if no threshold is
surpassed. It might prove useful to allow for trials were no decisions is made, to implement a
no-control state or to simply refrain from taking uncertain decisions. This could be particularly
useful in long-term use of a system, where at times the user may not want to interact with the
system (Huggins et al., 2011).

Interestingly, questionnaire results show that the returning subjects reported a slight increase in
incompetence fear on the QCM-BCI questionnaire, despite the fact that they all mastered the task
in Experiment 5. It is likely that the expectation they expressed in Experiment 5, as BCI novices,
was adjusted in the current experiment after having had first hand experience with BCI.

Subjects furthermore reported a higher perceived overall workload on the NASA-TLX ques-
tionnaire for the AMUSE driven speller with rank diff. As this questionnaire was in both cases
assessed at the end of the session, and the effect size is considerable, it likely reflects a real increase
in workload. To formally assess the source of this increase, a control group would have been
necessary, to control for the session factor; subjects could simply have expected to improve more
than they did. Nevertheless, it is possible that the changes resulted in additional workload. Since
the verbal labels before a trial were omitted, the subject was required to mentally prepare for the
next trial by recollecting the next target frommemory. Even though subjects were perfectly able
to do so, it may require more attentional resources. Rank diff too may have caused additional
workload; according to subjective reports, an erroneous early stop was particularly frustrating.
Though objectively rank diff did not introduce more errors, such events could cause the subject to
get distracted and shortly loose focus, adding to the perceived workload.

With an early decision in 41% of all trials and a false positive rate of 5%, rank diff can be consid-
ered a conservative yet effective method for dynamic stopping. When compared to Experiment 5
where no dynamic stopping was applied, early stops by rank diff did not lead to a difference in
accuracy. Consequently, rank diff alone boosted the average writing speed by 37%. It therefore
validates the claim that rank diff can produce valuable performance gains.
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6.6.2. Benchmarking with Existing Datasets
Several methods for dynamic stopping have been proposed in literature, but a direct performance
comparison has so far been difficult due the variety of paradigms, preprocessing steps, timings
and evaluation metrics. Here, several of such methods were systematically tested within the same
theoretical framework, on the same datasets and under the same conditions. Artificial data were
generated and evaluated to test the methods’ performance under strictly controlled conditions.
Subsequently, their performance was evaluated on pre-recorded real EEG data from a variety of
different BCI experiments. The goal was not only to compare rank diff to other methods; this
evaluation strategy allows to draw conclusions on the benefits and drawbacks of these methods
in general.

It can be said that early stopping, be it dynamic or fixed, increased the performance in the
majority of cases. This was particularly true when a paradigm resulted in highly discriminative
classifier scores, with average performance gains of up to 1.19 symb/min for the RSVP speller data
with the stopping method of Zhang, representing a 78% performance increase over no stopping.
Note that, due to the use of the symb/min metric, this can be interpreted in a straightforward
manner: on average 1.19 more characters can be written eachminute. The covert attention-based
visual spellers that already perform well can thus be further optimized using dynamic stopping.

Most methods could be applied even when the classifier scores were less discriminative; though
they might no longer increase the performance, they reduced to the baseline performance at
worst. Artificial data (Figure 6.7) showed that this was the case for all methods but Liu and – in
case of very difficult data – also for Jin. Thinking about patient application of stopping methods,
this is an important feature, as patient data is typically less clean and more difficult to classify.
Most methods can thus be applied without worrying about performances degradation.

Adding a robust early stopping module to the ERP-based BCI is a good idea, provided that
enough data is available. Training an early stopping method on top of the classifier effectively
means estimating more parameters from the same amount of data. This can pose a problem, as
data is often limited. However, over all datasets, a number of nine to twelve training trials sufficed
for the methods to increase the online performance on average. Given the difference in epochs
per trial between datasets, the actual numbermay vary for different paradigms. Though nine trials
is an amount that is normally available for training, the more difficult the data are, the more trials
may be needed. For difficult datasets (such as the MVEP- or AMUSE speller datasets), dynamic
stopping methods need more data to perform reliably.

Before additional modules are added to a complex BCI system, another aspect needs to be
taken into consideration: the tested methods have a different implementation complexity. The
fixedmethods are obviously the simplest. Taking the best performing methods Lenhardt, rank
diff,Höhne and Zhang, arguably the simplest method isHöhne, given that the needed statistical
tests are part of most data analysis toolboxes. The Bayesian statistics behind Zhang could be
considered more complex and requires a custom implementation. Rank diff and Lenhardt are
rather simple to implement, and fall somewhere between them. All methods showed runtime
performances that are well in the range of what would be applicable online (typically between
3 and 27 ms per decision). As the methods were not optimized for runtime performance, these
values can most likely be reduced.

6.6.3. Dynamic Versus Fixed Methods
Early stoppingmethods allow the BCI to adapt to the current state of the user. In doing so, they can
reduce the time that is necessary for a selection, and thus increase the performance of the system.
This seems to be particularly true for dynamic methods, since they can adapt to changes in the
data. Though fixed and fixed optimal are the simplest methods and require very little adaptation
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of the BCI system, they are not dynamic; during online application the number of iterations is
fixed regardless of the data coming in.

On average the fixed methods do increase the performance with respect to no stopping. Unfor-
tunately, their performance gains leave much room for improvement, which is observed both in
artificial data and real EEG data.

6.6.4. User-optimized © Versus Global ©†

As most of the original manuscripts do not specify how to find an appropriate value for hyper-
parameter©, a general optimization scheme is proposed. With the symb/min, it uses a realistic
metric as objective function and leads to considerable performance gains. To optimize©, realistic
simulations for the online performance for different values of© are required, which can be time
consuming and error-prone to implement. For the BCI practitioner, a simpler way of estimating
©would be convenient. For instance, a regression function would help to determine an at least
suitable hyperparameter for a new BCI user, given some collected training data. The empirical
observation that © is highly correlated with the AUC of the training data, led to a set of coeffi-
cients that translate a given AUC into an approximation of ©, called ©†. Using ©†, the online
performance gains were similar to the performance gains using©.

Apart from an interesting basic finding, this result has practical relevance. The AUC can be
estimated reliably with a relatively low amount of data, say a few trials. Using the regression
coefficients, the problem with training on a low number of training trials may thus be overcome.
But even with an appropriate amount of training data, they alleviate the practitioner of the task of
running simulations to optimize S. They thereby reduce the barrier for using stopping methods in
similar paradigms.

6.6.5. General Remarks
As discussed in Section 2.5.3, the danger of over-fitting the data is always luring in offline analyses,
and online validations are considered to be the last conclusive evidence. Such evidence was
provided for rank diff in Experiment 8, but is not feasible for large scale comparisons such as
those in Experiments 9 to 11. In this case, the protocol was kept strict to mimic such a validation,
leaving the online data untouched until the very end. Such a quasi-online protocol bypasses
the need for online validation, whilst keeping the validity of the test in tact. However, one clear
difference is that the human is not in the loop. Potentially, and as observed in Experiment 8,
shortening the trials can impact the perceived workload. This study showed the principle validity
of the tested methods. Influences of such methods on the human in the loop remain an open
topic, though at least for Jin (Jin et al., 2011), Lenhardt (Lenhardt et al., 2008), and of course rank
diff (Experiment 8) there is online evidence.

Method Liu differed slightly from the original implementation, to comply with the testing frame-
work. The linear kernel support vector machine (SVM) originally employed is very similar to the
LDA used here. This design difference is not likely to be the cause for the poor performance. The
effect of temporal smoothing the features, as proposed by Liu, could result in cleaner data. At the
same time it introduces strong dependencies between samples, which violates the assumptions
of most classifiers. The influence of this on the current results is unclear.

For the sake of comparability, the current analyses were done using an LDA, themost prominent
classifier in ERP-based BCI literature. However, given that for all methods the gained performance
depends on the AUC of the classifier data, it could be expected that any improvement made to
the classifier (and thus the AUC) could pay off double: it improves the classification performance
in itself and additionally benefits more from the stopping methods. The influence of different,
potentially non-linear methods remains an open question.
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The term BCI was introduced by Vidal (1973) and has been the topic of extensive investigation
ever since. Visual ERP-based BCIs have been particularly successful, both with patients and with
healthy users. However, they rely to a large extend on overt attention, i.e. eye gaze. Therefore, they
only serve a subset of the end-users that are in need of BCI as an AT. Covert attention-based BCIs
could remedy this shortcoming.

Work on covert attention-based BCIs arguably started with a series of papers by Hill et al. (2004;
2005). However, the urgency of such covert attention-based BCIs was emphasized recently by
several studies showing the detrimental effect of visual impairment on the traditional visual BCIs
(Ramos Murguialday et al., 2011; Treder et al., 2010; Brunner et al., 2010). This sparked additional
interest in covert attention-based BCIs. Unfortunately, successful visual paradigms can not simply
be transferred to the tactile or auditory domains. Special paradigms are needed to account for the
lack of direct mapping and lower number of classes. In addition, ERP based BCIs, covert and overt
the like, have an intrinsic optimization parameter that influences the accuracy and speed of the
system: the number of iterations. This parameter is almost never optimized, and the same fixed
number of iterations is used for all subjects.

The work presented in this thesis contributed to both these challenges, thereby significantly
increasing the applicability of ERP-based BCIs.

In Chapter 3 an alternative auditory paradigm was introduced and successfully tested offline
with healthy subjects. By using spatially distributed stimuli, a multiclass covert attention-based
BCI was realized, called AMUSE. Subjects were able to focus their attention to a single target
direction in a stream of target and non-target stimuli differing only in their spatial location. When
asked to respond to target stimuli with a key press, they did so with high accuracy, thus confirm-
ing hypothesis i – subjects can focus on one amongst several spatial stimuli. The resulting ERP
responses were typical and ERP components contained discriminative information for separating
the target stimuli from the non-target stimuli for up to eight classes. Components as early as
the N1 were attention modulated for spatial cues but not for pitch cues, clearly showing the
vital information that is added by the spatial location. Hypothesis ii – spatial stimuli alone are
sufficient to elicit binary-class discriminative ERPs could thus be confirmed. The performances
achieved with AMUSE, as estimated from offline analysis, represented a major jump forward
compared to contemporary alternatives. This performance brakes down almost entirely without
the spatial properties of the stimuli. Care is to be taken with sources that are placed on the cone
of confusion. The loss of information in the binaural cues for spatial localization (ITD and ILD)
cause a reduction in the recognition, as shown behaviorally.

In BCI research, a new paradigm is often considered validated if it works in an online setting.
This evidence was provided in Chapter 4. AMUSE was used to drive a two-leveled spelling
application using six sound sources. The vast majority of healthy subjects was able to write a
full German sentence at first try, thus confirming hypothesis iii – with spatial stimuli, a covert
attention-based, auditory multiclass BCI can be realized. Contrary to many other auditory BCIs,
the AMUSE-based speller did not rely on visual instructions, as they were given verbally using
text synthesis software. It could thus be operated with minimal reliance on the visual domain.
Using the practical char/min metric for writing speed, AMUSE set a new performance standard
for non-visual covert attention-based BCI, and rivaled the performance of the covert attention-
based visual paradigms at the time of introduction. Thus, hypothesis iv – spatial stimuli allow for
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useful BCI performance in a strictly auditory setting for healthy subjects and end-users – could be
confirmed for healthy subjects.

As the focus of covert attention-based BCIs, and thus of AMUSE, is on end-user AT applications,
the next step was testing AMUSE with a population of end-users. This was done with five end-
users with advanced paralysis over five sessions in Chapter 5. End-users perceived the workload
induced by the speller in a similar way as did healthy subjects. Nevertheless, none of the end-users
was able to successfully operate the same spelling setup that was successfully controlled by healthy
subjects. Hypothesis iv – spatial stimuli allow for useful BCI performance in a strictly auditory
setting for healthy subjects and end-users – could thus not be confirmed for end-users. As most
other covert attention-based BCI, AMUSE lacks the explicit class mapping from the visual matrix
speller (Farwell et al., 1988) and its derivates. It could be shown for at least one end-user, that
the additional cognitive resources that this requires may not be available. Suggestions for future
modifications of AMUSE are given that should make it less cognitively demanding. Reducing the
draw on cognitive resources poses a real challenge for the future design of covert attention-based
BCIs.

Performance improvements can not only be achieved through better paradigm design. BCI
research relies heavily on state of the art methods from statistics and machine learning for artifact
rejection, feature extraction and classification. Only recently has there been more focus on
evidence accumulation and dynamic decision making, despite the tremendous impact they can
have. Chapter 6 introduces rank diff, a newmethod for addressing this last step in the processing
chain. It successfully increased the online writing performance with AMUSE for healthy subjects
by almost 40%, confirming hypothesis v – properly dealing with the speed / accuracy trade-off
increases performance significantly. Due to rank diff, AMUSE approaches current visual solutions
for covert attention-based BCI both in terms of ITR and char/min. In a direct comparison with
several other (non-)dynamic methods, rank diff performed competitively amongst the top three
for artificial data. For real data, rank diff is often conservative (by design), resulting in a low
number of subjects for whom the performance was reduced, at the expense of less gain than
other methods. However, the key result is that most methods (including rank diff) do increase the
performance significantly and they do so with relatively little training data. They also consistently
outperform a fixed number of iterations, even if this number was optimized on the calibration
data, confirming hypothesis vi – smart methods outperform simply picking an “optimal” number
of stimuli.

In the presented work, confirmation was successfully found for all hypotheses for healthy
subjects. One key hypothesis – spatial stimuli allow for useful BCI performance in a strictly
auditory setting for healthy subjects and end-users (iv) – could unfortunately not be confirmed for
end-users. In fact, this hypothesis is quite bold, as it represents the holy grail of the majority of
BCI research: successful end-user application of a BCI paradigm. This difficulty in transferring a
successful paradigm to end-users is unfortunately not new in BCI research. Nevertheless, it adds
valuable information about end-user translation to the relatively small body of end-user literature.
Furthermore, a partial explanation for the poor performance was formulated, aiding the future
design of covert attention-based BCI.

The fundamental concept of AMUSE has triggered several further studies, both internally in the
BBCI group (Höhne et al., 2010b; Höhne et al., 2011b; Rost et al., 2010; Schreuder et al., 2012b) and
in other labs (Belitski et al., 2011; Cai et al., 2013; Ferracuti et al., 2013; Gao et al., 2011; Käthner
et al., 2013; Nambu et al., 2013; Ruf et al., 2013; Webb, 2013).
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List of Terms and Abbreviations

ALS – Amyotrophic Lateral Sclerosis
Rapidly progressing neurodegenerative disease, causing muscle weakness in the initial
phase and complete loss of motor control in the final state, resulting in LIS or CLIS. Most
patients die of respiratory failure before entering CLIS, but the lifetime can be extended
through tracheotomy. ALS has been the main drive of the AT application of BCI.
Detailed description: Section 1.3
See also: CLIS, LIS, TBI

AMUSE – Auditory MUlticlass Spatial Event-elated potential
The paradigm that is the central topic of this thesis. Core to AMUSE is the use of spatially
separated auditory sources to allow for a multiclass, auditory BCI.
Detailed description: Section 3.2

ANOVA – Analysis of Variance
(Set of) parametric statistical test(s) for the analysis of differences between groupmeans.

AP – Action Potential
An action potential is the efferent signal of neurons passing through the axon and stimulat-
ing the release of neurotransmitters into the synaptic cleft.
Detailed description: Section 2.2
See also: PSP

AT – Assistive Technology
Name for the collection of technologies that support people with disabilities in regaining
the ability to perform tasks that they are unable to do, or with greater than normal difficulty,
due to their disability.
Detailed description: Section 1.2

AUC – Area Under the ROC-Curve
The area under the ROC curve summarizes the ROC curve in a single value.
Detailed description: Section 2.6.3
See also: ROC

Azimuth
Name for the angle that defines the location of a sound source on the horizontal plane.
Detailed description: Section 2.1

BAER – Brainstem Auditory Evoked Response
A complex of ERPs within the first ten milliseconds after an auditory stimulus, mainly
originating in the brainstem.
Other names: Auditory Brainstem Response (ABR)
See also: ERP, VEP

BBCI – Berlin Brain-Computer Interface
BBCI refers to the BCI research group at the Berlin Institute of Technology, as well as the
in-house developed toolbox of that group.
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BCI – Brain-Computer Interface
A BCI establishes a direct connection between the brain and a computer or other device.
It allows the user to convey his intent without using any of the brain’s natural efferent
pathways.
Detailed description: Section 1.1

bits/min
Unit of the ITRmetric.
Detailed description: Section 2.6.4
See also: ITR

CBTT – Corsi block-tapping test
A psychological test for the assessment of visuo-spatial short term working memory (Corsi,
1972).
Detailed description: Section 5.2.2.1
See also: CSBTT

Char/Min – Characters per Minute
Ametric for measuring the practical relevance of a BCI-based speller, indicating the actual
number of characters that a user can write, or has written per minute.
Detailed description: Section 2.6.5
See also: Symb/min

Classifier
An algorithm for separating data into two or more classes, based on their statistical proper-
ties.
Detailed description: Section 2.4.4
See also: LDA, SVM, SWLDA

CLIS – Completely Locked-In Syndrome
A clinical condition where the patient is aware and awake, but unable to communicate due
to complete paralysis. In contrast to LIS, a patient with CLIS has lost control over the eyes,
which are often the last remaining communication possibility.
Other names: totally locked-in syndrome
Detailed description: Section 1.3
See also: LIS

Cone of confusion
The cone of confusion describes the effect that sound sources that have similar distances to
each ear are difficult to separate due to the limited information contained in the binaural
cues.
Detailed description: Section 2.1

Covert
Attention can be divided into covert and overt attention. Covert attention refers to the
mental orienting of attentional resources. As an example, in visual attention it refers to the
shift of attention to a particular part of the visual field, without redirecting the eye-gaze to it.
See also: Overt

CSBTT – Corsi supraspan block-tapping test
A psychological test for for the assessment of visuo-spatial short term working memory
(Corsi, 1972).
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Detailed description: Section 5.2.2.1
See also: CBTT

ECoG – Electrocorticography
Electrical neuroimaging method using recording electrodes that are inside the skull, but do
not penetrate the cortical surface. ECoG is commonly used to determine the focus of in-
tractable epilepsy and most ECoG-based BCI studies originate from this patient population.

EEG – Electroencephalography
Electrical neuroimaging method using recording electrodes on the scalp.
Detailed description: Section 2.2.1

EOG – Electro Oculography
Electrical recording of the eye movements, typically performed with two bipolar channels
for vertical- and horizontal movements.

Epoch
The smallest time unit in an ERP-based BCI; the single stimulus. Additionally, epoch refers
to the chunk of EEG data recorded for a single stimulus.
Detailed description: Section 2.3.1

ERD – Event-Related Desynchronization
The brain oscillates at rest, as is visible from the EEG. Directly after an event, the brain region
responsible for initiating that event, or processing it, shows a reduction in synchronicity
called ERD. ERDs are time- but not phaselocked.

ERP – Event-Related Potential
Brain response to external- or internal events, as measurable in the EEG. ERPs are both
time- and phaselocked.
Detailed description: Section 2.2.2
See also: BAER, MMN, MVEP, N1, N2, P3, VEP

fMRI – Functional Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is a brain imaging technique that offers high spatial
resolution and can target the subcortical structures. It is used to obtain anatomical images
of the brain. With a particular modification, the oxygenation of the blood can be visualized,
allowing for functional imaging (fMRI).

HFR –High Frequency Range
Upper range of the frequency spectrum that is audible to the human ear (roughly 8-20Khz).

Hyperparameter
A free parameter of a method or model that is set by the user. Often, hyperparameters are
set using cross-validation to find an optimal value, given the data.

ILD – Interaural Level Differences
One of the ears is partially masked by the head for sound sources that are off the median
plane, and are thereby reduced in intensity. This is one of two binaural cues that the brain
uses to localize sounds in space.
Detailed description: Section 2.1
See also: ITD
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IQR – Inter-Quartile Range
Data descriptive summarizing the data in their distance between the 25% and the 75%
percentiles. This measure is often used for data that is not Gaussian distributed, as it is a
better estimator than the alternative standard deviation.
See also: SD

ITD – Interaural Timing Differences
Sounds have different path lengths to the ears for sound sources that are off the median
plane, resulting in phase differences between the perceived sound in both ears. This is one
of two binaural cues that the brain uses to localize sounds in space.
Detailed description: Section 2.1
See also: ILD

Iteration
An iteration refers to the consecutive stimulation ofC unique stimuli, whereC refers to the
number of classes in the paradigm.
Detailed description: Section 2.3.1

ITR – Information Transfer Rate
Theoretical metric for measuring the quality of data transmission over a noisy channel,
which is often used in BCI literature.
Detailed description: Section 2.6.4
See also: Bits/min

LDA – Linear Discriminant Analysis
Linear classifier algorithm often used in BCI literature.
Detailed description: Section 2.4.4
See also: Classifier

Likert scale
A discrete psychometric response scale. Typically, a statement is evaluated by the respon-
dent with a fixed set of possible responses. For instance, the respondent could be asked to
indicate how strongly he (dis)agrees with a statement, choosing from the following possible
answers: strongly disagree, disagree, neither agree nor disagree, agree, or strongly agree.
This constitutes a 5-point Likert scale.
Detailed description: Section 2.5.2
See also: VAS

LIS – Locked-In Syndrome
A clinical condition where the patient is aware and awake, but unable to communicate due
to near-complete paralysis. In contrast to CLIS, a patient with LIS has (residual) control
over the eyes.
Detailed description: Section 1.3
See also: CLIS

MAA –Minimum Audible Angle
The minimum angle between two sources that allows a human listener to distinguish both
sources uniquely.
Detailed description: Section 2.1

MEG –Magnetoencephalograpy
Magnetic neuroimaging method, using extremely sensitive magnetic sensors to measure
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the electromagnetic fields produced by currents in the brain. The magnetic fields travel
through the head without resistance, resulting in a better spatial resolution than EEG.

MI –Motor Imagery
A paradigm often used to elicit ERD, which relies on the fact that imagining a movement
results in a desynchronization pattern that is similar to that when the movement is actually
performed.
See also: ERD

MMN –Mismatch Negativity
A component of the ERP complex in the range of the N2. TheMMN is an automatic response
to changes in the stimulation pattern.
Detailed description: Section 2.2.2.3
See also: ERP, N2

MMSE –Mini Mental State Examination
A short questionnaire to assess the cognitive functioning that is often used in clinical settings
(Magni et al., 1996)

MVEP –Motion Visual Evoked Potential
VEP evoked specifically by the moving of a stimulus.
See also: ERP, VEP

N1
Negative ERP component peaking around 100ms after stimulus onset.
Detailed description: Section 2.2.2.4
See also: ERP

N2
Negative ERP component peaking around 200ms after stimulus onset.
Detailed description: Section 2.2.2.3
See also: ERP, MMN

NASA-TLX –NASA Task Load Index
A questionnaire for assessing the overall perceived workload on six factors: mental demand,
physical demand, temporal demand, performance, effort, and frustration (Hart et al., 1988).
Detailed description: Section 2.5.2

NIRS –Near-Infrared Spectroscopy
Neuroimaging method using the absorption pattern of near-infrared light by the brain
to estimated the oxygenation of the brain area underlying the transmitters and receivers
placed on the scalp.
See also: fMRI

Non-target
The stimuli that are to be ignored in an oddball paradigm.
Other names: standard
Detailed description: Section 2.2.2.1
See also: Target

Overt
Attention can be divided into covert and overt attention. Overt attention refers to the
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orienting of attentional resources by physically shifting the sensor. As an example, in visual
attention it refers to the shift of attention to a particular part of the visual field by redirecting
the eye-gaze.
See also: Covert

P3
Positive ERP component peaking around 300ms after stimulus onset.
Detailed description: Section 2.2.2.2
See also: ERP

PSP – Postsynaptic Potential
The transient potential deflection in a postsynaptic cell resulting from the release of neuro-
transmitters by a presynaptic cell. PSPs are the primary source of the EEG signal.
Detailed description: Section 2.2
See also: AP

QCM-BCI –Questionnaire for Current Motivation in Brain-Computer Interfaces
Aquestionnaire for assessing the subject’smotivation on four factors: mastery confidence, in-
competence fear, interest, and challenge. Introduced by Rheinberg et al. (2001) and adapted
for use in BCI by Nijboer et al. (2010).
Detailed description: Section 2.5.2
See also: NASA-TLX

Rank diff
Newmethod for optimizing the trade-off between accuracy and speed in ERP-based BCI, as
introduced in this thesis.
Detailed description: Section 6.3

ROC – Receiver-Operator Characteristic
Graphical representation of the performance of a binary classifier.
Detailed description: Section 2.6.3
See also: AUC, Classifier, Signed r 2

RSVP – Rapid Serial Visual Presentation
Psychophysics paradigm in which images, symbols or characters are presented in rapid
temporal succession. It is often used to study phenomena such as the attentional blink, but
was more recently used as a BCI paradigm.

Run
A logical collection of trials within one session, sharing the same experimental condition.
For online BCI spellers, a run typically refers to the writing of a single word or sentence.
Detailed description: Section 2.3.1

SCP – Slow Cortical Potential
Gradual changes in the EEG potential, lasting up to several seconds. After training, the SCPs
can be initiated by the subject without external stimulus.

SD – Standard deviation
Statistical property of a Gaussian distribution, describing its width. 68.2% of the data in the
distribution is contained within one SD above and below the sample mean.
See also: IQR
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Session
A collection of experimental tasks that is performed on one day, and in one go. In BCI, it
typically refers to the putting on- and removing of the cap and everything in between.
Detailed description: Section 2.3.1

Signed r 2

The pointwise biserial correlation coefficient (r 2) is a statistical method for describing the
correlation between a continuous and a dichotomous variable. The signed version is often
used in BCI literature to estimate the predictive power of individual features. It is obtained
by multiplying the r 2 with the sign of r .
See also: ROC

SNR – Signal-to-Noise Ratio
Ameasure of the ratio of the power of a desired signal to that of the background noise.

SOA – Stimulus Onset Asynchrony
The time between the onsets of two consecutive stimuli, typically measured in milliseconds.

SSAEP – Steady-State Auditory Evoked Potentials
The phenomenon that a continuous auditory stimulus with a particular frequency resonates
in the brain, causing a power increase in that frequency band in the brain region responsible
for processing the stimulus.
Other names: Auditory Steady State Response (ASSR)
See also: SSSEP, SSVEP

SSSEP – Steady-State Somatosensory Evoked Potentials
The phenomenon that a continuous somatosensory stimulus with a particular frequency
resonates in the brain, causing a power increase in that frequency band in the brain region
responsible for processing the stimulus.
See also: SSAEP, SSVEP

SSVEP – Steady-State Visually Evoked Potentials
The phenomenon that a continuous visual stimulus with a particular frequency resonates in
the brain, causing a power increase in that frequency band in the brain region responsible
for processing the stimulus.
See also: SSAEP, SSSEP

SVM – Support-Vector Machine
A particular instance of a classifier, maximizing the margin between the samples of two
classes. SVMs can be linear or non-linear, the latter of which is achieved by applying the
kernel trick.
See also: Classifier

SWLDA – Step-wise Linear Discriminant Analysis
Extension of the LDA classifier. SWLDA includes an additional preprocessing step, selecting
a subset of the features that significantly aid the classification task. All other features are set
to zero, before applying standard LDA. SWLDA thus results in a sparse classifier.
See also: classifier, LDA

Symb/Min – Symbols per Minute
Ametric measuring the performance of a communication BCI in terms of the number of
correctly spelled symbols it produces per minute. It evaluates both the BCI and the control
strategy as a whole. In contrast to the char/minmetric, it approximates the performance
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using the average accuracy and the time per trial.
Detailed description: Section 2.6.5
See also: Char/min, ITR

T9
Word prediction algorithm often used in older mobile phones for faster text input. Using a
dictionary and word prediction, words are written using only nine keys and one keystroke
per character.

Target
The stimulus that is to be attended amongst other stimuli.
Other names: deviant, oddball
Detailed description: Section 2.2.2.1
See also: Non-target

TBI – Traumatic Brain Injury
A clinical condition where the brain is traumatically damaged by an external force. TBI is a
major cause of death and severe paralysis worldwide, causing LIS and CLIS.
Detailed description: Section 1.3
See also: ALS, CLIS, LIS

Trial
A series of stimuli, collectively leading to a single class decision. In two leveled spellers such
as proposed in Experiment 5, two trials are required for writing a single character.
Detailed description: Section 2.3.1

User-centered design
ISO standard, formalizing the design process of technology around a user (ISO 9241-210,
2010). Key aspects are that the end-users has to be included at all stages of the design
process and that all design decisions should be made with a deep understanding of the
end-user.
Detailed description: Section 1.6

VAS – Visual Analogue Scale
A continuous psychometric response scale. Both ends of a line indicate an extreme response
to a question, and respondents are requested to answer by making a mark on the line
between the two extremes.
Detailed description: Section 2.5.2
See also: Likert scale

VEP – Visually Evoked Potential
Brain potentials that are evoked by visual stimuli. More specifically, VEP is typically used to
refer to the early responses, associated with the physical processing of visual stimuli. VEPs
can be used to assess the functioning of the optical nerve.
Detailed description: Section 5.2.2.1
See also: BAER, ERP

WCST –Wisconsin card sorting test
Neuropsychological test for the assessment of executive functions.
Detailed description: Section 5.2.2.1
See also: QCM-BCI
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A.1. Technical Details for Dynamic Stopping Methods
All early stopping methods are described here conceptually within the framework introduced
in Section 6.2. A more detailed description is given if the implementation deviates from the
original implementation. For a full account, the reader is referred to the original publications.
All evaluations are done in the context of a text spelling application and thus by optimizing
hyperparameter © of each stopping method for symb/min. The optimization procedure is the
same as described in Section 6.5.

A.1.1. No Stopping
In this condition, no early stopping is performed. It uses all available iterations and is therefore the
performance baseline. No parameters need to be estimated. Formally, this means that£= {J }, the
maximum number of iterations possible. F

°
Dtest ,£, t , j

¢
returns cwj ,t (according to Equation 2.4)

when j = J .

A.1.2. Fixed (Optimal)
The simplest way of optimizing the BCI is to estimate an optimal fixed number of iteration on the
calibration data and to apply this for the online data. Because the number of iteration can be set in
virtually any BCI system, thismethod requires no implementation effort. The number of iterations
j † which results in the highest symb/min on the training data is selected for online use. £ is thus
defined as £ =

©
j †

™
. As j † is directly optimized it equals ©. During online use, F

°
Dtest ,£, t , j

¢

returns cwj ,t (Equation 2.4) when j = j †. For the fixed condition, the optimal number of iterations
is estimated once from all training data; it serves as a evaluation of the post-hoc estimation of BCI
performance which is generally given in BCI literature (see also Figure 3.9). For the fixed optimal
condition, the resampling scheme is used to increase robustness.

A.1.3. Liu
This approach simply sums the outputs of a linear classifier per class and over iterations (Liu et al.,
2010). M is defined by

M
°
D , t , j

¢
=min

c

√
jX

j 0=1
Dc, j 0,t

!

(A.1)

for trial t and iteration j , thus taking the most negative class. The average of all target classi-
fication scores in D tr ain , called d̃ , is taken as the initialization for optimizing ¢ =© d̃ . £ then
contains this threshold ¢ for online use.

During online operation, the decision for an early stop is taken as follows:

F
°
D test ,£, t , j

¢
=

(
cwj ,t ifM

°
D test , t , j

¢
<¢

; otherwise
(A.2)
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where cwj ,t is the class with the most negative summed score.
In the original work, EEG features from iteration i are smoothed together by averaging them

with features from iterations i ° 1 and i ° 2 before classification. As here only access to the
instantaneous classifier output is given by design, this preprocessing step is left out.

A.1.4. Jin
This method sets a minimum number of consecutive iterations ( jmin) which must result in the
same class prediction (Jin et al., 2011). To measure this, M

°
D , t , j

¢
is defined as 1+n, where n

denotes the number of iterations directly prior to iteration j which all lead to the same decision as
j does, according to Equation 2.4. The original paper performs an additional preprocessing step
onD to giveD§ whereD§

c, j ,t =
1
j
P j

j 0=1Dc, j 0,t for each j ∏ jmean . Since it only includes processing

the classifier outputs, the same is done here. Both values of£=
©
jmin , jmean™

are themselves the
hyperparameters (©1 = jmin and©2 = jmean); they are optimized directly.

In the online case, the decision function F looks as follows:

F
°
D§,test ,£, t , j

¢
=

8
>><

>>:

cwj ,t ifM
°
D§,test , t , j

¢
∏ jmin

and j ∏ jmean

;, otherwise

(A.3)

Here, both jmin and jmean were bound between 2 and 5. As there are no decisions taken before
j < jmean , the earliest possible stop is at iteration jmean + jmin .

A.1.5. Lenhardt
This method was originally proposed for a visual speller, and defines two thresholds (Lenhardt et

al., 2008). For both thresholds,D is first transformed intoD§ byD§
1...C , j ,t =norm

≥P j
j 0=1°D1...C , j 0,t

¥
,

where norm(X )= X°min(X )
max(X°min(X )) , a vector normalization over the class dimension. Lenhardt re-

quires the binary target class to havemore positive labels. Since the binary target class was defined
negative in this framework, a sign reversal is done within this transformation.

The first threshold is based on a measure called the “intensity”, orM1, defined for iteration j
and trial t as

M1
°
D§, t , j

¢
=

CX

c=1
D§

c,t , j (A.4)

M1 is thus simply the sum of all values inD§
1...C ,t , j . The second threshold is based on a slightly

different measureM2, defined as

M2
°
D§, t , j

¢
= 1°

D§
k2,t , j

D§
k1,t , j

(A.5)

where k1 = argmaxc
≥
D§

c,t , j

¥
and k2 = argmaxc 6=k1

≥
D§

c,t , j

¥
. M2 is thus the ratio of the highest to

the second highest value inD§
1...C ,t , j .

To find both thresholds, the training function L
°
D§,tr ain , l ,°

¢
first calculates the intensity

M1
°
D§, t , j

¢
for the earliest possible stop which leads to a correct decision (according to Equa-

tion 2.4). This is done for each training trial, and the average of these intensities, ĩ , serves as an
initialization for optimizing¢1 =©1 ĩ . The second threshold, ¢2, is optimized on the training data
directly (¢2 =©2), which leads to£= {¢1,¢2}.
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Online decision for an early stop are taken by F as follows:

F
°
D§,test ,£, t , j

¢
=

8
>><

>>:

cwj ,t ifM1
°
D§,test , t , j

¢
<¢1

andM2
°
D§,test , t , j

¢
>¢2

;, otherwise

(A.6)

The original publication calculates the thresholds using data of several subjects. Here, it is
restricted to the more common case of only having the calibration data of a single subject.

A.1.6. Höhne
This method was proposed for an auditory speller paradigm (Höhne et al., 2010b). A t-test with
unequal variances (also referred to asWelch’s t-test) is calculated onD1... j for each class against all
other classes, according to

t (X1,X2)=
X 1°X 2r

s21
N1

+ s22
N2

(A.7)

where X i , s2i ,Ni are sample mean, sample variance and sample size, respectively. In order to
account for a varying number of data points, the t-test statistic t

°
Dc,1... j ,t ,D c̃,1... j ,t

¢
is transformed

into a p-value. This transformation is part of any statistics toolbox. M
°
D , t , j

¢
is then defined as

this p-value.
The natural threshold on such a p-value is the significance level, or£= {Æ}. It is optimized for

symb/min on the training data directly, with Æ=©. During online operation, the decision for an
early stop is taken according to the following

F
°
D test ,£, t , j

¢
=

(
cwj ,t ifM

°
D test , t , j

¢
<Æ

;, otherwise
(A.8)

where cwj ,t is the class with the smallest value ofM .

A.1.7. Zhang
This method proposes a probabilistic approach to continuously tracking whether a BCI user is in
control or non-control state (Zhang et al., 2008). The core of the algorithm is the formulation of a
joint likelihood function, which accumulates the evidence for being attended for each stimulus
over iterations. Here, this evidence is used as a criterion for early stopping.

The method requires that the distributions of the classifier outputs for target and non-target
stimuli, fa and fu, are known. In practice, they are estimated from the training data. Here, uni-
variate normal distributions for the classifier outputs are assumed, which are fully characterized
by their means and variances µa/u and æ2

a/u. Note that this assumption is compatible with the
assumption of multivariate normal distributed datamade by the LDA classifier.

Making the further simplifying assumption that the EEG data are independent across iterations,
as well as across stimulations within one iteration, the joint likelihood of observing the classifier
outputs of the first j iterations given that stimulus c is attended is

f
≥
~Dtest

1...C ,1... j ,t |c
¥
=

jY

j§=1
fa

≥
~Dtest

c, j§,t

¥ Y

c§6=c
fu

≥
~Dtest

c§, j§,t

¥
(A.9)

According to Bayes’ theorem, the posterior probability of stimulus c being attended after the first
j iterations is given by
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A. Appendix

P
≥
c |~Dtest

1...C ,1... j ,t

¥
=

f
≥
~Dtest

1...C ,1... j ,t |c
¥
P (c)

PC
c̃=1 f

≥
~Dtest

1...c,1... j ,t | c̃
¥
P (c̃)

(A.10)

where P (c), c = 1, . . . ,C denote the prior probabilities with which theC classes are selected by the
user. These probabilities may be estimated in the training phase or, e. g., derived from a language
model in spelling applications. If all classes are assumed to be equally likely, uniform priors
P (c)= 1/C , c = 1, . . . ,C are used. Note that in practice, numerical inaccuracies may occur when
evaluating Equations A.9 and A.10 due to excessively small values of the joint likelihood function.
Therefore, all computations are carried out on log probabilities, as in the original publication
(Zhang et al., 2008).

The joint likelihoods and posterior probabilities of each class are updated after each iteration.
The functionM

°
D test , t , j

¢
is defined as the maximum of the posterior probabilities of all classes,

M
°
D test , t , j

¢
= max

č=1,...,C
P

≥
č |~Dtest

1...C ,1... j ,t

¥
(A.11)

A natural stopping condition is attained, if Equation A.11 exceeds 1°Æ, where Æ=© is a hyper-
parameter to be optimized based on the training data. Thus, £=

©
{P (c)}Cc=1 ,µa/u,æ2

a/u,Æ
™
. The

decision at iteration j then reads

F
°
D test ,£, t , j

¢
=

(
cwj ,t ifM

°
D test , t , j

¢
∏ 1°Æ

;, otherwise
(A.12)

where cwj ,t = argmaxč=1,...,C P (č |~Dtest
1...C ,1... j ,t ).

A.1.8. Upper bound
The upper bound method uses knowledge about the class labels and is not applicable for normal
online use. It is applied for comparison reasons and to deliver an upper bound on the performance
of any of the other stopping methods. It simply stops a trial at the first iteration which leads to a
correct decision. If a trial does not result in the correct decision at any iteration, the full number
of iterations is applied.

A.2. Additional Results Experiments 9 and 10
On the following pages, Figures A.1 to A.3 provide the full results for Experiments 9 to 11.
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A.2. Additional Results Experiments 9 and 10

Figure A.1.: Full early stopping results on artificial datasets. A) To indicate the effect size, the
baseline performance of no stopping is shown. B) Shown is the performance gain over
the no stopping condition for all methods, on several artificially created datasets. With
many outliers in the online data, all methods reduce the performance. All methods
show a similar dependency on data separation, and apart from Liu and, to a much
lesser extend, Jin and Rank diff, all methods reduce to baseline for inseparable data.
Liu as the only method is susceptible to all sorts of data distortion, including drifts
and scaling.
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A. Appendix

Figure A.2.: Full early stopping results on EEG datasets. A) To indicate the effect size, the baseline
performance of no stopping is shown. B) Shown are for each subject and each stop-
ping method the achieved gains over the no stopping condition. Numbers indicate
the average gain per method per paradigm. Negative gains mean that a method
reduced the performance for a subject (negative bar) or on average over an entire
paradigm (negative number).
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A.2. Additional Results Experiments 9 and 10

Figure A.3.: Regression results for©†. The individually optimized scaling parameter© is plotted
against the AUC of the training data. High linear correlations are found between these,
which leads to a set of coefficients for each methods that allow the direct estimate of
©† from the training data. The black line indicates the linear fit for all data, using an
iteratively reweighted least squares fit. The gray lines indicate the fit of all but one
dataset, showing high resemblance with the overall fit. Note that the Æ values for
Höhne and Zhang are plotted on a log scale, given the nature of the parameter.
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