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Abstract. An L-length-bounded cut in a graph G with source s and sink ¢ is a cut that destroys
all s-t-paths of length at most L. An L-length-bounded flow is a flow in which only flow paths of
length at most L are used. We show that the minimum length-bounded cut problem in graphs
with unit edge lengths is N"P-hard to approximate within a factor of 1.1377 for L > 5 in the
case of node-cuts and for L > 4 in the case of edge-cuts. We also give approximation algorithms
of ratio min{L,n/L} in the node case and min{L,n*/L? /m} in the edge case. We discuss the
integrality gaps of the LP relaxations of length-bounded flow and cut problems, analyze the
structure of optimal solutions, and present further complexity results for special cases.

1 Introduction

In a classical article Menger [1] shows a strong relation between cuts and systems of disjoint
paths: let G be a graph and s,¢ two nodes of G, then the maximum number of edge-/node-
disjoint s-t-paths equals the minimum size of an s-t-edge-/node-cut (Menger’s Theorem).
Originally, Menger showed the result for node-disjoint paths and node-cuts, i.e., the cut is a
node set which is removed. The edge-disjoint version has later been formulated by Dantzig
and Fulkerson [2] for directed graphs and by Kotzig [3] for undirected graphs. A generalization
of the concept of edge-disjoint s-t-paths is an s-t-flow, which is a mapping f : Ps; — RT from
the set of all s-t-paths Ps; in G into the nonnegative real numbers. In 1956 both Ford and
Fulkerson [4] and Elias, Feinstein, and Shannon [5] generalized the theorem of Menger to
flows and they provided algorithms to find an s-t-flow and an s-t-cut both of the same value.
Throughout this paper we will refer to a path-based formulation of flows in contrast to the
more commonly used edge-based version of flows. This is due to the fact that we are interested
in flows with constraints on the flow carrying paths.

The first research for path related constraints we are aware of was done in 1978 by Lovész,
Neumann-Lara, and Plummer [6]. They consider the maximum length-bounded node-disjoint
s-t-paths problem. For length-bounds 2, 3, and 4 an analogous relation as Menger’s theorem
with a new suitable cut definition holds. For length-bounds greater than 4 they give upper
and lower bounds for the gap between the maximum number of length-bounded node-disjoint
paths and the minimum cardinality of a cut. Furthermore they provide examples showing
that some of the bounds are tight. The results were extended independently to edge-disjoint
paths by Exoo [7] and Niepel and Safarikové [8]. Length-bounded edge-disjoint s-t-paths can
be interpreted as 0, 1-valued length-bounded flows in unit-capacity graphs therefore they are
a special sub-problem of integral length-bounded flows.
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According to Bondy and Murty [9], Lovész conjectured that there is a constant C' such
that the size of a minimum L-length-bounded s-t-node-cut, i. e., a minimum node-set disjoint
to {s,t} which hits each L-length-bounded s-t-path, is at most a factor of C'- v/L larger than
the cardinality of a maximum system of node-disjoint s-t-paths of length at most L. Exoo
and Boyles [10] disprove this conjecture. They construct for each length-bound L > 0 a graph
and a node pair s, ¢, such that the minimum L-length-bounded s-t-node-cut has a size greater
than C - L times the maximum number of node-disjoint s-t-paths of length at most L; the
constant C' is roughly 1/4.

Itai, Perl, and Shiloach [11] give algorithms to find the maximum number of
node-/edge-disjoint s-t-paths with at most 2 or 3 edges; the node-disjoint case is also solved
for length-bound 4. On the complexity side they show that the node- and edge-disjoint length-
bounded s-t-paths problem is N'P-complete for length-bounds greater than 4. Instead of fixing
the path length, one can fix the number of paths and look for the minimal value bounding
all path lengths. Again both the node- and edge-disjoint version is already N P-complete for
two paths.

For fractional length-bounded multi-commodity flows in weighted graphs with edge lengths
in R* a fully polynomial time approximation scheme (FPTAS) has been given by Fleischer
and Skutella [12]: for each € > 0 one can find a fractional (1 + €)L-length-bounded multi-
commodity flow with a total flow value at least as large as the maximum fractional L-length-
bounded multi-commodity flow value. This FPTAS results in a polynomial time algorithm for
fractional length-bounded multi-commodity flows and fractional length-bounded edge-(multi-
)cuts in unit-length graphs.

Guruswami et al. [13] study the length-bounded edge-disjoint path problem for multiple
node pairs s;, t;, 1 < i <k, i.e. find a largest subset of node pairs that can be simultaneously
connected in an edge—disjloint manner. They show that, for any ¢ > 0 the problem is hard
to approximate within n27¢ (they actually claim m2~¢, which was corrected later) even in
undirected networks, and give an O(y/m)-approximation algorithm for it, where n denotes
the number of nodes and m the number of edges. For directed networks, they show that even
the s-t-case (i.e. find the maximum number of length-bounded paths between two nodes s
and t) is hard to approximate within n%*, for any € > 0.

Mahjoub and McCormick [14] present a polynomial algorithm for the 3-length-bounded
edge-cut in undirected graphs. Furthermore, they show that the fractional versions of the
length-bounded flow- and cut problem are polynomial even if L is part of the input and that
the integral versions are strongly N'P-Hard even if L is fixed.

Length-bounded path problems arise naturally in a variety of real world optimization
problems and therefore many heuristics for finding large systems of length-bounded paths have
been developed, e.g. see [15,16,17]. For instance, in the field of telecommunication networks
one is interested in the so called z-fault-distance, i.e., the maximal distance between two
nodes if any set of at most = nodes/edges is removed, see Hsu [18]. An z-(edge)-fault-distance
for nodes s and t of value greater than L implies the existence of an s-t-cut with respect to
a length-bound L of size at most x.

Our Contribution. In this paper, we present various results concerning the complexity and
approximability of length-bounded cut and flow problems. In Section 3, we show that the
minimum length-bounded cut problem in graphs with unit edge lengths is NP-hard to ap-
proximate within a factor of at least 1.1377 for L > 5 in the case of node-cuts and for L > 4 in
the case of edge-cuts; see Table 1 for an overview of known and new complexity results. We also
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Table 1. Known and new (bold type) complexity results; e € R™ and ¢ € N are constants, € can be arbitrarily
small.

L node-cut edge-cut

1 — poly.

2 poly. poly.

3 poly. poly. [14] (undirected)

4 poly. [6] (undirected) inapprox. within 1.1377

(directed & undirected)

5...|n'"¢| inapprox. within 1.1377 inapprox. within 1.1377
(directed & undirected) (directed & undirected)

n—c poly. (directed & undirected)

give approximation algorithms of ratio min{L,n/L} in the node case and min{L,n?/L? \/m}
in the edge case. Furthermore, we show that the integrality gap of the LP relaxation can be
at least £2(y/n). Section 4 discusses the maximum length-bounded flow problem. For series-
parallel graphs with unit edge lengths and unit edge capacities, we show a lower bound of
Q2(y/n) on the integrality gap of the LP formulation. Furthermore, we show that edge- and
path-flows are not polynomially equivalent for length-bounded flows. That means, even if the
graph is outer-planar, there is no polynomial algorithm to transform an edge-flow which is
known to correspond to a length-bounded path-flow into a length-bounded path-flow. We
also analyze the structure of optimal solutions and show that there are instances where each
maximum flow ships a large percentage of the flow along paths with a very small flow value.
The fractionality of these maximum flows can be chosen arbitrarily small.

2 Preliminaries

Our graphs G = (V, E) are finite. V = V(G) is the node set of G and E = E(G) is the edge
set of G. The graphs can either be directed or undirected but they are always self-loop free.
A graph may contain multi-edges, i.e., parallel edges, in which case the graph will be called a
multi-graph. Sometimes, we call an edge simple to distinguish it clearly from multi-edges. The
graph G possesses two independent edge-weights, an edge-capacity function u : E — Qs and
a (primal) edge-length function d : E — Q>¢. If not stated otherwise we assume unit-length
and unit-capacity for our graphs.

2.1 Length-Bounded Cuts

An edge set C, of a graph G = (V, E) is called an edge-cut if G\ C. = (V, E \ C¢) has at
least one connected component more than G. If two nodes s and ¢ are in the same connected
component of G but in different connected components in G \ C. then s and ¢ are called
separated by Ce. C, is called a s-t-edge-cut and its value (or capacity) is the number of the
edges in C, (or the total capacity of the edges in C¢, if the edge capacities are not unit).
Similarly, a node set (), of G which separates s and t is defined as an s-t-node-cut and its
value is the number of nodes in C),.

The distance or length of an s-t-path is the sum of the lengths of all edges on the path,
both in the edge-cut case and in the node-cut case. We call a subset C of the edge set of



a graph G a length-bounded s-t-edge-cut with respect to the length-bound L, or L-length-
bounded s-t-edge-cut, if the nodes s and t have a distance greater than L in G\ CF. Similarly,
a subset CZ of the node set of G is called a L-length-bounded s-t-node-cut if it destroys all
s-t-paths of a length at most L. The value (or capacity) of a length-bounded cut is defined as
in the standard cut case. In the Minimum Length-Bounded Cut problem we are looking for a
length-bounded cut of minimum value. All of our cuts are s-t-cuts and therefore we will omit
the s-t-prefix. If the type of a cut is clear from the context, we will also omit the indices e, n,
or L of C.

In the linear programming relaxation of the minimum length-bounded edge-cut problem
one has to assign to each edge e a dual length £, such that the dual length of a shortest
s-t-path from P ;(L) is at least 1 (the LP relaxation for node-cuts is analogous):

min Zueﬁe s.t. Zﬁe >1 (PePsy(L)), >0 (e€E) (1)

ecl eeP

An integral solution of the linear program in (1) corresponds to a length-bounded s-t-cut,
and vice versa. In particular, the minimum length-bounded s-t-cut value and the value of a
minimum integral solution are equal. We will refer to feasible solutions of (1) as fractional
cuts since only a fraction of an edge’s capacity may be in the cut.

2.2 Length-Bounded Flows

Length-bounded flows are single- or multi-commodity path-flows in which each path used
must obey a length constraint. Let P, (L) denote the set of all s-t-paths with a length at
most L. Then, a L-length-bounded s-t-flow is defined as a function f : P (L) — R>( assigning
a flow value fp to each s-t-path P in G of length at most L > 0. The sum ZPeP@,t(L) fr
is called the s-t-flow value of f. The flow f is feasible if it respects edge capacities, i.e., for
each edge e € E the sum of the flow values of paths containing this edge must be bounded
by its capacity ue. If not stated otherwise our flows are s-t-flows. Therefore we will omit the
s-t-prefix.

A natural optimization objective is to find a feasible length-bounded s-t-flow such that
the flow value is maximal. We can formulate the problem as a linear program in the following
way:

max  »  fp  st. Y fe<u. (e€E), fp>0 (PePyuL) (2

PePs (L) P:ecP

We will refer to feasible solutions of (2) as path-flows. Note that the dual of the linear program
in (2) is the linear program in (1) for the minimum length-bounded cut problem. One way to
prove the maximum-flow minimum-cut equality for standard flows is to apply duality theory
of linear programming. In case of multiple commodities, a source- and sink-node pair (s;, ;)
and a length-bound L; > 0 is given for each commodity i = 1,..., k. An (L1, ..., Ly)-length-
bounded multi-commodity flow f is a set of L;-length-bounded s;-t;-flows f; for i =1,..., k.

3 Length-Bounded Cuts

3.1 Gap: Length-Bounded Disjoint Paths vs. Cut

It follows from linear programming duality that the maximum fractional length-bounded
flow value equals the minimum fractional length-bounded cut value. For standard flows this
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Fig. 1. Example of a large integrality gap for the linear program of the minimum length-bounded cut. The
straight s-t-path (in gray) contains 2k + 1 edges. Each of these edges is accompanied by k + 1 parallel paths
of length 2 .

equality holds for (integral) cuts as well. In the presence of a length-bound, the maximum
flow value and the minimum cut value may be different. This is an immediate consequence of
the integrality gap we state in the following theorem.

Theorem 1. For (un-)directed series-parallel graphs the ratio of the minimum fractional
length-bounded edge-/node-cut value to the minimum integral one can be of order 2(y/n).

Proof. We give the construction for edge-cuts and note in the end how to adapt it to node-cuts.
We construct a family {G} }ren of order 2k? 4+ 5k + 3 graphs with a fractional length-bounded
edge-cut value less than 2 and an integral length-bounded cut value k + 1. The graph G}, is
generated from an s-t-path containing 2k 4+ 1 edges; we call them ground edges. Parallel to
each ground edge we add k + 1 paths of length 2, see Figure 1 for the undirected case. Note
that the proof goes through for directed edges as well (direct edges from left to right).

Consider a graph Gy, for arbitrary k and let L = 3k + 1. A minimum fractional edge-
cut has value less than 2. This can be seen as follows. For a fractional edge-cut we have
to assign a dual edge-length to each edge, such that the dual length of each s-t-path with
at most L = 3k + 1 edges is not less than 1. An s-t-path with at most 3k + 1 edges must
contain at least k + 1 ground edges. Thus, assigning all ground edges a dual length of k%_l
and assigning 0 to the remaining edges yields a fractional cut of value 2];%11 < 2.

Now we give a lower bound of k + 1 on the size of an (integral) edge-cut. If we take a
non-ground edge, we must take at least k+ 1 non-ground edges. Otherwise for any non-ground
edge in the cut there would always be another equivalent length 2 path which is not cut and
thus the non-ground edges could be removed from the cut without invalidating it. A cut
containing only ground edges must have size greater than k, otherwise an s-t-path of length
L = 3k + 1 remains. Since k + 1 is in ©(y/n) this completes the proof.

For node-cuts one can simply take the line graph (replace each edge by a node, connect
two nodes, if the corresponding edges shared a node) of the above construction. This gives
the ©(y/n) lower bound on the integrality gap in undirected and directed (direct edges from
left to right) graphs. O

Corollary 1. For (un-)directed series-parallel graphs the ratio of the minimum length-

bounded edge-/node-cut size to the mazximum number of length-bounded edge-disjoint paths
can be of order 2(y/n).

3.2 Complexity and Polynomially Solvable Cases

Table 1 shows an overview of known and new results concerning the complexity, inapprox-
imability, and polynomially solvable cases of the length-bounded cut problems. Furthermore,
we give an N'P-hardness proof for the edge version in weighted series-parallel & outer-planar
graphs. Note that the polynomial algorithms for L equals 2,3 and 1,2 for the node and



edge version, respectively, are easy exercises for both directed and undirected graphs (for the
case L = 3 node-cut or L = 2 edge-cut: after directly cutting length 2 or length 1 paths,
respectively, Theorem 5 can be applied).

Node-Cuts We first state our result concerning an easy polynomial time algorithm for
length-bounded node-cuts with L = n — ¢, where ¢ € N is an arbitrary constant and then
present the inapproximability result, which is the main result of this section.

Theorem 2. For L = n—c, where ¢ € N is an arbitrary constant, a minimum length-bounded
node-cut can be computed in polynomial time in (un-)directed graphs.

Proof. We enumerate all V! C V with |V’| < ¢. We return the smallest V’ which is a length-
bounded node-cut, if there is any. Otherwise we know that any length-bounded node-cut V'
contains > ¢ nodes and therefore less than n — ¢ nodes remain. This gives that the longest
remaining path must have a length of less than n — ¢ and therefore V' actually cuts all s-t-
paths. In this case returning a standard minimum node-cut suffices. a

Theorem 3. [t is N'P-hard to approximate the length-bounded node-cut in an (un-)directed
(simple) graph for L € {5,...,|n'=¢|} within a factor of 1.1377, for an arbitrarily small
constant € € RT.

Proof. We reduce the well known VERTEX COVER problem: a vertex cover for an undirected
graph Gye = (Vie, Eye) is a subset of the nodes V, C V. such that for each edge {u,v} € Fy.
at least one of the nodes w, v is in V.. The problem to find a minimum vertex cover has been
shown N'P-hard to approximate within ~ 1.3606 [19]. We now describe in detail how to reduce
a given VERTEX COVER instance Gy. to a length-bounded node-cut instance G = (V, E)
for L = 5 and G directed, then we show how to generalize to other values of L, and finally
we note why the construction also works for undirected graphs.

Let nye = |Vic| denote the number of nodes in the given instance. Start with V' = {s,t}
and no edges. For each node v € Vi we add a node gadget to G consisting of seven nodes
which are interconnected with s,¢ and themselves as shown in Figure 2 (left)—the nodes in
the bottom half surrounded by a gray box. For each edge {u,v} € E\. we add an edge gadget
consisting of four nodes and six edges connecting them to the node gadgets corresponding to
u and v as shown in Figure 2 (left). The following lemma will be helpful.

Lemma 1. From a vertex cover V.. in Gy of size x one can always construct a node-cut V'
in G of size nye + x and vice versa, for r < nyec.

Proof. We start with the easier direction “=": Let V. C Vi, be a vertex cover with |V | = .
For each node v € V. we add [, and 7, to our cut V' C V and for each node u € Vi \ Vi,
we add m,, to V' (see Figure 2 for an example). Clearly this gives |V'| = ny. + x. To see that
no path remains after removing V' from G, first consider the node gadgets for each v € V.
individually. In case m, was added to the cut, no path remains in the gadget. In case [, and
r, were added, the only remaining path (via m,) has length 6, which is greater than the
length-bound L. Now consider an edge gadget for the edge {u,v} € Ey. and assume that an
s-t-path remains. Then either [,, and r, are not in the cut or [, and r, are not in the cut. By
construction this means that both w and v were not in V., which is a contradiction to V..
being a vertex cover. This gives that for none of the edge gadgets paths remain and therefore
altogether no path of length at most L remains in G after removing V”.



G for node-cut: Gy : G for edge-cut:
node gadget for u node gadget for u
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node gadget for v node gadget for v

Fig. 2. Gadgets for the reduction of VERTEX COVER to length-bounded node-cut (left) and length-bounded
edge-cut (right), respectively. Both correspond to two connected nodes w,v of the given VERTEX COVER
instance, shown in the middle. The highlighted nodes (edges) are in the cut / vertex cover

Now we come to direction “<”: Let V/ C V be a node-cut with |V'| = ny. + 2. With two
simple transformations we ensure that V'’ only contains nodes from the node gadgets and for
each node gadget either the m-type node is contained or both the /- and the r-type nodes.

No Nodes from Edge Gadgets in Cut. Consider an edge gadget, say for edge {u,v} € Ey., for
which at least one of its four nodes is in V'. The edge gadget consists of two paths, one from
l, to 7, and one from I, to 7,. If an inner node of the l,-r,-path (l,-r,-path) is in V', we
replace it by I, (). This introduces no new paths and does not increase the size of the cut.

In Node Gadget: Either “m” Node or ‘1”7 € “r” Nodes. Consider the node gadget for v € Vie.
First note that at least one node of the gadget must be in V', otherwise three s-t-paths of
length at most L remain (for this gadget). If only one node of the gadget is in V', it must
be m, otherwise at least one path remains. If two or more nodes of the gadget are in V', we
replace them by [, and r,. Thereby no paths are made possible in the node gadget (only the
path of length 6 via m, remains) and all potential paths via edge gadgets connected to this
node gadget are cut.

The two transformations clearly do not increase the size of V. Let us assume for now that
they also do not decrease the cut size, i.e., |V'| = ny. + z still holds.

A vertex cover V.. can easily be derived from the transformed V’: add all nodes v € Vi,
to VY, for which both I,,7, € V'. Assume some edge {u,v} € F\. remains uncovered, then
both m, and m, are in the cut V' (and no other nodes of the two node gadgets). Hence,
two s-t-paths via the edge gadget connecting I, and r, / [, and r, remain, which gives a
contradiction to V' being a cut. Since there are always either one or two nodes of each node
gadget in the cut, there can be at most |V’| — ny. = = gadgets which contain two cut nodes.
This yields |V/.| = z, as desired.

If the size of V’ was decreased by the above transformations to, say, ny. + 2/, we simply
add x — 2’ nodes to the vertex cover V. to ensure that its size is exactly z; note x < ny. and
' > 0. O

The proof of Theorem 1.1 in [19] gives the following gap. There are graphs Gy, for which
it is N'P-hard to distinguish between two cases: the case where a vertex cover of size ny - (1 —
p+¢’') exists and the case where any vertex cover has size at least ny. - (1 —4p3 + 3p* — '), for
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Fig. 3. Replacing s by a path of length L — 5.

any ¢ € RT and p = (3 — v/5)/2. If we plug this into the result of Lemma 1, we have shown
that the length-bounded node-cut is hard to approximate within a factor (there is an &’ € R
for which the inequality holds): (1ye +nye - (1—4p> +3p* —£)) /(Nye + e - (1 —p+e’)) > 1.1377.

For other values of L € {5,...,|[n'"¢]}, we modify the construction of G as follows: (1)
Add a path of length L — 5 from a new source node s’ to s. Let s’ be our new source. (2)
Stepwise replace each node on this path after s’ and until s (inclusive) by a group of ¢ - ny.
nodes, for some constant c. For each of these groups connect all new nodes with all neighbors
of the replaced node (see Figure 3).

(1) ensures the desired path lengths. (2) ensures that none of the new nodes appear in a
node-cut computed by a ¢/2-approximation algorithm: a group must be taken completely or
not at all; if only a few nodes of the group are in the cut, we can remove these nodes without
invalidating the cut. If all nodes of a group are in the cut, this cannot be a ¢/2-approximation.
By taking the [- and r-type nodes of all node gadgets but one and taking the m-type node
of the last node gadget, we obtain a cut of size 2n . — 1. Comparing this with the size of a
group yields a factor greater than ¢/2. Thus, we know that any ¢/2-approximation algorithm
for length-bound L will still compute a cut in the original construction. The total number of
nodes in G depends on L and is n = O(L - nyc + Nye + Mye), where mye = |Eyc|. Therefore,
we can create instances for which L is as large as |[n'~¢], for arbitrarily small e € R*.

To see that the reduction also works for undirected graphs, observe that by removing the
edge directions in the gadgets, no new undirected paths of length less than L are introduced.

O

Edge-Cuts The polynomial time algorithm for node-cuts with length-bound n — ¢ does not
carry over for the edge version of the problem, since by removing ¢ edges one cannot guarantee
that computing a standard cut suffices. The inapproximability result does carry over, as stated
in the following theorem. It can be shown analogously to the proof of Theorem 3 with the
difference that the adapted gadgets given in Figure 2 (right) should be used, which already
work for length-bound L = 4.

Theorem 4. [t is N'P-hard to approzimate the length-bounded edge-cut in an (un-)directed
(simple) graph for L € {4,...,|n'=¢|} within a factor of 1.1377, for an arbitrarily small
constant € € R,

Lemma 2. For a series-parallel €& outer-planar (un-)directed graph with edge-capacities and
lengths it is N'P-hard to decide whether there is a length-bounded edge-cut of size less than a
given value.

Proof. We will show a reduction of 2-PARTITION to the length-bounded cut problem. We are
given an arbitrary 2-PARTITION instance ai,...,ar € N. We have to decide if there exists a
partition Ay, Az of the ground set Ay UAg = {a1,...,a;} suchthat 3, 4 a; =3 ;c s ai =B
holds.



0/ay 0/as 0/an

a1/oo  ag/o0 ap, /00
Fig. 4. Reduction of 2-PARTITION to the length-bounded cut problem. The labels denote length/capacity.

Graph G is a single s-t-path with k& multi-edges; each multi-edge consists of two parallel
simple edges, see Figure 4. All k upper edges have length 0 and successively ai,...,a; as
capacity. The lower edges get successively aq,...,a; as length and capacity oo. Note that to
obtain a simple graph, we can simply subdivide one of the parallel edges, which still yields
a series-parallel & outer-planar graph. For the directed version simply direct the edges from
left to right.

Let the length-bound be L = B — 1. We will show that there is an edge-cut of size at most
B if and only if the instance of 2-PARTITION is a yes-instance.

7«<": Given a solution A, As to the 2-PARTITION instance, we take the upper edges
corresponding to set A; as our edge-cut. Clearly only s-t-paths of length at least B remain
and the cut has size B.

7?=": We start by showing that any edge-cut must have size at least B. Assume C'is a cut
of size less than B, then the path which takes the upper edges complementary to C' will have
length less than B, which gives a contradiction. Thus, a given edge cut of size at most B has
size exactly B and yields a two partition in the obvious way. a

A Note on Fractional Length-Bounded Edge-Cuts. We will show in Theorem 8 that it is N/P-
hard to decide whether a fractional length-bounded flow of given flow value exists even if the
graph is outer-planar. Since the primal and dual programs have identical optimal objective
function values, the same holds for the fractional length-bounded edge-cut problem.

3.3 Approximation algorithms

If the length-bound L is so large that the system of L-length-bounded s-t-paths contains the
set of all s-t-paths (Ps (L) = Ps.), then length-bounded cuts and flows reduce to standard
cuts and flows. The maximum-flow minimum-cut equality holds and there are many efficient
algorithms to compute minimum cuts and maximum flows exactly. Another extreme case
is if the length-bound equals the distance between s and ¢, denoted by dist(s,t). Lovész,
Neumann-Lara, and Plummer [6] show a special version of the following theorem in the
context of length-bounded node-disjoint paths.

Theorem 5. In weighted (un-)directed multi-graphs with edge lengths in RY, for L =
dist(s,t) the minimum length-bounded edge-/node-cut and the mazimum length-bounded flow
problem can be solved efficiently. In particular, the max flow value and the min cut value
coincide if L = dist(s, ).

Proof. We first consider directed graphs. Let G be such a graph with edge-capacities and
edge-lengths and let L = dist(s,t). First we generate the sub-graph G induced by all edges
which are contained in at least one shortest s-t-path in GG. This sub-graph can be found with a
slightly modified Dijkstra-labeling algorithm; one has to remember for each node all incoming
edges generating the smallest label at this node. G is acyclic (i.e., a DAG). In particular, each
s-t-path in G is a shortest s-t-path in G. Therefore, a standard minimum cut and a maximum
flow in G corresponds to a minimum length-bounded cut and a maximum length-bounded
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Fig. 5. Left: Graph family showing that the performance ratio is asymptotically tight. Except su all edges

n

have capacity 1. Right: Example of the + gap between the standard and the length-bounded cut.

flow in G. The theorem follows from standard flow theory. For undirected graphs we replace
each edge by two antiparallel directed edges with the capacity and length of the original edge.
The modified Dijkstra algorithm again yields a DAG and any cut or flow in this DAG directly
translates into a length-bounded cut or flow in the original graph. O

For suitable length functions, like unit-edge-lengths, we obtain from Theorem 5 an approx-
imation algorithm for the minimum length-bounded cut problem with a performance ratio
and complexity depending on the length-bound. For unit-edge-lengths a restricting length-
bound is less than the graph’s node cardinality and thus polynomially bounded by the input
size.

Corollary 2. In (un-)directed multi-graphs one can find an (L+1—dist(s, t))-approzimation
to the minimum L-length-bounded cut by at most L + 1 — dist(s,t) standard minimum cut
calculations.

Proof. Removing a minimum dist(s, t)-length-bounded cut from the graph increases the dis-
tance of s and t by at least 1. Repeating this iteratively increases the s-t-distance to L + 1
within at most L+ 1—dist(s, t) iterations. Since each intermediate cut is minimum an optimal
L-length-bounded cut cannot be smaller than any of them. Thus, their union has a size at
most L + 1 — dist(s, ¢) times the optimal L-length-bounded cut value. O

The performance ratio bound is tight, as shown by the example in Figure 5 (left). The
next theorem establishes bounds on the absolute difference between the sizes of standard
minimum cuts and length-bounded minimum cuts.

Theorem 6. Let G = (V, E) be a (un-)directed multi-graph. A minimum node-cut in G is
larger than a minimum length-bounded node-cut by at most 7. If G is a simple graph, a

minimum edge-cut is larger than a minimum length-bounded edge-cut by at most O(E_z)

Proof. Our arguments apply to directed and undirected graphs in the same way, so we do not
distinguish between them.

First, consider the case of node-cuts. Note that the size of a minimum node-cut is equal
to the maximum number of node-disjoint s-t-paths by Menger’s theorem. Let OPT denote
the size of a minimum length-bounded node-cut. Let C* be a minimum node-cut. We will
construct a node-cut C' of size at most OPT +%. This implies |C*| < OPT +7.

Let C1 be an optimal length-bounded node-cut, |Ci| = OPT. In G \ C1, all s-t-paths
have length at least L + 1. The number of node-disjoint s-t-paths in G \ C is at most
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(n—2)/L <n/L, as each such path contains at least L internal nodes and no two such paths
contain the same node. Therefore, a minimum node-cut in G \ C; has cardinality at most
n/L. Let Cy be such a cut. Then C' = C; U Cy is a node-cut in G of the desired cardinality.

Now, consider the case of edge-cuts. Note that the size of a minimum edge-cut is equal
to the maximum number of edge-disjoint s-t-paths by the edge version of Menger’s theorem.
Let OPT denote the size of a minimum length-bounded edge-cut. Let C* be a minimum
edge-cut. We will construct an edge-cut C of size at most OPT —i—(’)(g—z). This implies |C*| <
OPT +O(%).

Let C; be an optimal length-bounded edge-cut, |C;| = OPT. In G \ C, all s-t-paths have
length at least L + 1. It follows from [20] that if a (directed or undirected) simple graph
contains k edge-disjoint s-t-paths, the shortest of these has length O(n/v/k). Therefore, if all
s-t-paths have length at least L + 1, we know that L+ 1 = O(n/vk) and thus k = O(n?/L?).
Consequently, the number of edge-disjoint s-t-paths in G'\ C} is at most O(n?/L?). Therefore,
a minimum edge-cut in G'\ C has cardinality at most O(n?/L?). Let Cy be such a cut. Then
C = C1 Uy is an edge-cut in G of the desired cardinality. a

Figure 5 (right) gives an example showing that the bound of # on the gap between
standard and length-bounded node-cuts given in Theorem 6 is tight. In this example, s and ¢
are connected by one path of length L and by "_TL_I ~ 7 paths of length L +1. A minimum
L-bounded node-cut has size one, while the minimum standard node-cut needs to cut all
paths and has size approximately 7. As minimum cuts can be computed in polynomial time,

Theorem 6 leads to the following corollary.

Corollary 3. For (un-)directed multi-graphs G = (V, E) there exists an O(})-approzimation
algorithm for the min. length-bounded node-cut problem. For (un-)directed simple graphs
G = (V, E) there exists an O(Z—z)—approm'mation algorithm for the min. length-bounded edge-
cut problem.

Now we show that there are approximation algorithms with ratio O(y/n) for length-
bounded node-cuts and with ratio O(y/m) for length-bounded edge-cuts. This then gives
the following theorem.

Theorem 7. For (un-)directed graphs G = (V,E) there exists an O(min{L,n/L,\/n})-
approzimation algorithm for the minimum length-bounded mnode-cut problem and an
O(min{L,n?/ L%, \/m})-approzimation algorithm for the minimum length-bounded edge-cut
problem.

Proof. The upper bounds of min{L,n/L} in the node case and min{L,n?/L?} in the edge
case follow from Corollaries 2 and Corollary 3. Furthermore, we have min{L,n/L} < \/n, so
the claimed ratio for length-bounded node cuts follows directly.

It remains to show that ratio O(y/m) can be achieved for length-bounded edge-cuts. The
algorithms for directed and undirected graphs are essentially the same, so we do not need to
distinguish these cases.

We use the following approach. Let OPT denote the size of a smallest length-bounded
edge-cut. If L < /m, we simply apply the algorithm from Corollary 2. If L > /m, we
repeatedly find an s-t-path of length at most [\/m], add all its edges to the cut, and remove
these edges from the graph. This process ends when no such path exists in the remaining
graph. Let C denote the set of edges added to the cut in this process. If G\ C does not
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contain an s-t-path of length at most L, we output C. Otherwise, we compute a minimum
edge-cut C' in G and output that as the solution.

We analyze the algorithm as follows. Let OPT denote the size of an optimal length-
bounded edge-cut. Let k be the number of iterations the algorithm has executed in the
computation of C';. The number of edges added to the cut C; by the algorithm is at most
k[+/m]. Furthermore, the optimal length-bounded edge-cut must contain at least k edges,
since there are k edge-disjoint paths of length at most [y/m] in G. Therefore, |Ci| < (v/m +
1)-OPT. If G\ Cy does not contain an s-t-path of length at most L, the algorithm outputs Cy
and produces a (y/m-+1)-approximation. Otherwise, the algorithm computes a minimum edge-
cut C in G and output that as the solution. We claim that C' is an O(y/m)-approximation
in this case. We show this by proving the existence of an edge-cut of cardinality at most
|Cy| + v/m. Let V; denote the set of nodes at distance i from s in G \ Cy. Note that the
distance from s to ¢t in G\ C is at least [v/m]| + 1. Let E; be the set of edges in G \ C with
tail in V; and head in V;;1. Let j be such that F; has minimum cardinality among the sets
E; for 0 <i < [/m] —1. Observe that |E;| < m/[y/m] < \/m. Hence, C; U Ej is an edge-cut
of cardinality at most |Cy| 4+ v/m < 2y/m - OPT. 0

4 Length-Bounded Flows

4.1 Edge-Based vs. Path-Based Flows: Complexity

Choosing infinity as a length-bound reduces the length-bounded flow problem to the corres-
ponding standard flow problem. In most cases one does not use the linear program in (2) for
standard flows since the number of paths and thus the number of variables may be exponen-
tial in the input size. It is more common to use an edge-based formulation, since this always
uses a polynomially bounded number of variables. However, for length-bounded flows we do
not know an edge-flow formulation.

When looking at a given length-bounded flow, we can infer from linear programming
theory the existence of a corresponding path-decomposition of small size, where all paths
fulfil the length-bound.

Proposition 1. Given a length-bounded (multi-commodity) path-flow in a graph with m
edges. There exists a length-bounded (multi-commodity) path-flow with the same length bound
and the same flow value per edge and commodity, that uses at most m paths for each com-
modity.

The proof of Proposition 1 follows from the fact, that the linear program in (2) has
only m linear constraints. Therefore, the rank of the linear program for a single commodity
is at most m. Consequently, there has to be a solution using no more than m paths. We
can modify the edge-capacities appropriately and apply this argument to each commodity
one after another. The same argument can simultaneously be applied to all commodities of a
length-bounded flow. Hence, provided a suitable linear program, a length-bounded flow always
possesses an optimal path-flow solution using no more than |E| + k paths in total. However,
this transformation in general changes the edge-flow values of the individual commodities
with respect to the given flow. Consider the graph in Figure 6.

As shown above, the theory of linear programming can be used to show that there is always
a path-flow of maximum flow value which has a small size. Nevertheless, linear programming
cannot be used to find maximum fractional length-bounded flows efficiently, unless P = N'P.
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Fig. 6. The graph shown possesses no small multi-commodity path-flow corresponding to a prescribed edge-
flow. As set of terminals we choose all 9 pairs (a4, b;), 4,7 = 1,2, 3. The capacity of all 24 edges is set to 1. For
each commodity (a4, b;), the prescribed edge-flow for this commodity assigns to all edges with a; as tail node
or b; as head node a flow value of 1/3 and to the remaining edges the value 0 is assigned. This is a feasible
multi-commodity edge-flow sending % flow units per commodity. However, there is only one path-flow which
corresponds to this edge-flow. This path-flow has to use for each terminal pair (a;,b;) all four a;-b;-paths.
Hence, the path-flow uses all 36 paths which is greater than |E| + k = 33.

Theorem 8. For a single-commodity length-bounded flow problem in an undirected outer-
planar graph it is N'P-complete to decide whether there is a fractional length-bounded flow of
given flow value.

Proof (Sketch.). To prove the theorem one can show that 2-PARTITION can be reduced to the
integral length-bounded flow problem for a flow of value 2. In a second step one shows that
a fractional flow of value 2 in this special graph induces an integral flow of value 2. O

Finding a maximum length-bounded flow is computationally more difficult than finding a
standard maximum flow. As we have mentioned already, standard flows are usually modeled
as edge-flows. Each flow in a path formulation can be transformed into an edge-flow. For
standard flows the reverse transformation is also possible and only a polynomial number
of paths are needed, see [21]. If length-bounds are present, one may try to use an edge-
flow formulation, too. But, as the following theorem shows, edge- and path-flows are not
polynomially equivalent for length-bounded flows. More precisely, even if we are given an
edge-based flow and we know that there is a length-bounded path-decomposition of it, it is
hard to find an path-decomposition. This can be shown by a reduction of 2-PARTITION and
is stated in the following Theorem.

Theorem 9. Unless P = NP, there is no polynomial algorithm to transform an edge-flow
which is known to correspond to a length-bounded path-flow into a length-bounded path-flow,
even if the graph is outer-planar.

4.2 Structure of Optimal Solutions and Integrality Gap

So far, we mostly considered the difference between standard and length-bounded flows with
respect to complexity issues. Now we turn our attention to the structure of optimal solutions.
For standard single-commodity flows with integral capacities there is always an integral max-
imum flow. Again, the situation is completely different in the presence of length constraints.
We will not only show that there need not exist an integral maximum flow, but also that there
are instances where each maximum flow ships a large percentage of the flow along paths with
very small flow values. The fractionality of these maximum flows can be chosen arbitrarily
small.

Theorem 10. There are unit-capacity outer-planar graphs of order n such that every mazx-
tmum length-bounded flow ships more than one half of the total flow along paths with flow
values O(1/n).
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Proof. We construct a family {G}ren of unit-capacity and unit-length outer-planar graphs
such that G has order 3k +4 and a maximum fractional Lg-length-bounded s-t-flow of value
less than 2, for a certain length-bound Lj € ©(k). The unique maximum Lyg-length-bounded
flow in GG} contains k + 1 paths each with flow value k+r1

The graph G}, consists of a sequence of k + 1 triangles preceded by a path of length &k + 1
and a single edge that is parallel to the path; see Figure 7.

k+1 At

Fig. 7. Graph G} in which each maximum length-bounded flow has to send more than one half of the flow
along paths with small flow values.

In G, we consider a maximum fractional (2k+2)-length-bounded s-t-flow, i.e., Ly = 2k+2.
There is only one s-t-path P of length at most 2k+2 that contains the s-u-path of length k-+1.
Indeed, this path has length exactly 2k+2 and contains the unique shortest u-t-path. To obtain
a total flow value larger than 1, path P has to be used. For simplicity we call the edges in
the shortest u-t-path ground edges.

All s-t-paths of length at most 2k + 2 except P contain the edge su and at least one of
the ground edges. Consider the s-t-paths of length exactly 2k + 2 that contain edge su. There
are k + 1 of those paths, one corresponding to each ground edge. Routing a fraction of #1
units along each of them yields a feasible flow of value 1. Each ground edge is contained in
exactly one of these paths and has therefore a residual capacity of 1— k%rl Thus, along path P
we can route further 1 — %H units of flow and obtain a feasible 2k + 2-length-bounded s-t-flow

1
k+1°

Sending 1 unit of flow along path P blocks each other path containing a ground edge,
i.e., each further feasible s-t-path. Assume, 1 — § units of flow are sent along path ]5, for
an arbitrary 0 < § < 1. Then all remaining paths have a flow value not greater than ¢ each
and thus altogether at most min{1, (k + 1)0}. Therefore, the maximum flow value dependent
on ¢ is h(d) := 1 — 6 + min{l, (k + 1)0}. This function h(d) reaches its unique maximum
forO0<d<latd= ﬁ Hence, 2 — k%q is the maximum fractional s-t-flow value for the
given length-bound and the above constructed flow is unique. O

of value 2 — We claim that this flow is maximum and unique.

In Section 4.1 we showed (in contrast to standard single-commodity flows) it is N"P-hard to
find a maximum length-bounded path-flow even if an edge-flow corresponding to a maximum
length-bounded path-flow is given. For integral length-bounded flows there is a structural
difference between path- and edge-flows which is stated in Theorem 11.

Theorem 11. An integral (maximum) edge-flow corresponding to a (fractional) length-
bounded flow in an undirected graph with unit-edge-lengths does not need to have an integral
path decomposition.

Proof. Consider the graph in Figure 8. All edges except vt have length and capacity 1, edge vt
has capacity 3 and length 1. The length-bound is 6. Assume there is an integral 6-length-
bounded s-t-flow of value 4. Then all edges except vt must have flow value 1 and vt has flow
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value 3. Since s and v have distance 3, each s-t-path not using edge vt must contain one of
the two shortest s-v-paths. An integral 6-length-bounded s-t-flow of value 4 must send one
unit of flow along this path. Assume this path uses the upper half of the graph. Then each
additional path in the upper half of the graph has length 7 and is therefore infeasible. Thus,
no integral 6-length-bounded s-t-flow has value 4.

Fig. 8. The graph shown possesses an integral edge-flow that corresponds to a maximum fractional 6-length-
bounded path-flow but which has no integral 6-length-bounded path-flow.

It remains to show, that there is a fractional 6-length-bounded s-t-flow of value 4. Along
each of the two feasible paths not using edge vt send half a unit of flow. All remaining paths
contain edge vt and may use up to two detours from the shortest s-v-paths. Consider only
paths using exactly two detours. There are three of them using the upper left side part and
three using the lower left side part of the graph. In each triple two of them share a detour
and no edge from the shortest s-v-paths. It is feasible to send along each path half a unit of
flow. Thus there is a half-integral 6-length-bounded s-t-flow of value % = 4. a

Hence Theorem 11 shows that, even if there is a length-bounded decomposition of a
maximum (non-bounded) flow, an integral length-bounded decomposition for this flow does
not have to exist.

In [12] it was shown that the length-bounded flow problem can be approximated within
arbitrarily precision. Having this in mind, it becomes interesting how far the value of such a
fractional solution is away from the corresponding integral solution. Theorem 12 gives a lower
bound on this value.

Theorem 12. For unit-capacity graphs with n nodes, the integrality gap of the integer pro-
gram in (2) can be of order 2(\/n) even for unit-edge-lengths and planar graphs. The length-
bound used is of order ©(y/n).

Proof. We construct a graph with n nodes, integral length-bounded flow value 1, and half-
integral flow value of order £2(y/n). The construction is inspired by Guruswami et al. [13].

The basic structure is half of a k by k grid, see Figure 9. There are k nodes s1,..., Sk
vertically, all connected to the source s and k nodes t1,...,t; horizontally, all connected to
the sink ¢. Each grid node (dashed ellipse) is split into two nodes connected by a single edge.
Furthermore, there are diagonal edges connecting the ”rightmost grid nodes” of each pair of
successive rows as shown in the figure. The new adjacency for the split nodes is also illustrated
in the figure. All edges have capacity 1. We assign to all diagonal and splitting edges (dashed)
length 0 and 1 to the remaining edges not adjacent to s or . The edges ss; and tt;_; get
length i for i = 1,..., k. As length-bound we choose L := 2k — 1.

Consider an s-t-path P of length-bounded by L. Assume P does not contain a diagonal
edge. Let ss; and t;t be edges of P. Thus, P has to skip k+ 1 — ¢ rows and j columns from s;
to reach t;. If P does not use a diagonal edge of length 0 it has to pay for each skip at least 1
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Fig. 9. Example-graph for a large integrality gap for the maximum integral length-bounded s-t-flow.

length unit. Together with the lengths of the edges ss; and ¢;¢ path P must have length at
least i + (k+1—14)+j+ (k—j) =2k+ 1> L, a contradiction.

Fach L-length-bounded s-t-path must contain a diagonal edge. Therefore, there are no
two edge disjoint s-t-paths having a length bounded by L.

The i-th canonical path via ss; horizontally to the row end, one diagonal edge, and ver-
tically up to ¢ via t;t has length exactly L. Since each pair of such canonical paths shares a
different single edge we can feasibly sent along each of them half a unit. That is, there is a
fractional L-length-bounded s-t-flow of value k/2.

Since there is no pair of edge-disjoint L-length-bounded s-t-paths the gap between a
maximum integral and a maximum half integral flow is at least k/2. Since k is of size ©(y/n),
this shows the lemma for integral edge-lengths. If we subdivide each edge of length ¢ into a
path of length ¢ + 1, we increase the number of nodes by a constant factor only and obtain
the same result for unit-edge-lengths. a

The big integrality gap in Theorem 12 is tied to the unit-capacities of the graph used in the
proof. In fact, rising the edge capacities in this graph up to 2 brings the integrality gap down
to 2. Indeed, the integrality gap is constant for high capacity graphs. This can be shown by
randomized rounding, a constructive technique introduced by Raghavan and Thompson [22].

Theorem 13. Consider a graph with minimal edge-capacity of at least clog |E|, for a suitable
constant c. Using randomized rounding one can convert a (mazximum) fractional solution into
an integral solution, which is feasible and has a value that is at most a constant factor smaller
with high probability. In particular, the integrality gap is constant for high capacity graphs.
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