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Abstract

In this work we study the statistical models known as Gaussian mixtures from an
algebraic point of view.

First, we illustrate how algebraic techniques can be useful to address funda-
mental questions on the shape of Gaussian mixture densities, namely the problem
of determining the maximum number of modes a mixture of Gaussians can have,
depending on the number of components and the dimension.

We proceed to look at the statistical problem of estimation of the parameters of
a Gaussian mixture. We present and compare the prominent methods of maximum
likelihood estimation and moment matching, and from this study a fundamental
difference in algebraic complexity is revealed between the two approaches.

With the above statistical motivations, we introduce the algebraic objects that
will permit us to obtain statistical inference results, mainly on the identifiability
problem. These objects are Gaussian moment varieties and their corresponding
secant varieties. We study them by asking for their dimension, for their degree
and for the equations that define them. We provide many answers, conjectures
and open questions in this direction.

Finally, we explore further connections and analogues to algebraic geometry
from commonly used submodels of statistical interest. We compare what we learn
from the algebraic perspective to recent tensor decomposition methods in the ma-
chine learning community.

Throughout, we mention current research directions that continue the effort of
including Gaussian densities and their mixtures in algebraic statistics.





Zusammenfassung

In dieser Arbeit studieren wir die statistischen Modelle, die als zusammengeset-
zte Normalverteilungen oder auch als Gaußsche Mischverteilungen bekannt sind,
vom algebraischen Standpunkt aus.

Zunächst betrachten wir, wie algebraische Methoden dabei helfen können, grund-
legende Fragen über die Form der Dichte einer solchen Verteilung zu klären: Zum
Beispiel wollen wir die Anzahl lokaler Maxima bestimmen, die eine Mischung von
Gaußverteilungen, abhängig von der Anzahl der Komponenten sowie der Dimen-
sion, höchstens haben kann.

Anschließend beschäftigen wir uns mit der statistischen Fragestellung, wie man
die Modellparameter (Erwartungswerte und Varianzen der Komponenten sowie
deren Gewichte) bestimmen kann. Wir vergleichen die gängigen Methoden: die
Maximum-Likelihood-Methode und die Momentenmethode. Dieser Vergleich of-
fenbart einen grundlegenden Unterschied in der algebraischen Komplexität zwis-
chen den beiden Ansätzen.

Motiviert durch diese statistischen Erkenntnisse führen wir diejenigen algebrais-
chen Objekte ein, die uns statistische Ergebnisse – hauptsächlich zum Identifizier-
barkeitsproblem – liefern: die Gaußschen Momentenvarietäten und deren Sekan-
tenvarietäten. Wir untersuchen ihre Dimension sowie ihren Grad und die alge-
braischen Gleichungen, die sie definieren. Wir beantworten viele dieser Fragen
und formulieren weitere offene Fragen und Vermutungen.

Schließlich erforschen wir Verbindungen und Analogien zur algebraischen Ge-
ometrie aus gängigen Untermodellen, die von statistischer Relevanz sind. Wir
vergleichen unsere Erkenntnisse aus der Perspektive der algebraischen Geometrie
mit modernen Tensor-Zerlegungsmethoden aus dem Bereich des maschinellen Ler-
nens.

Wir verweisen durchgehend auf vielversprechende Forschungsfragen, die Nor-
malverteilungen und deren Mischverteilungen in die Algebraische Statistik mitein-
beziehen.
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1. Introduction

In Algebraic Statistics, methods from Algebraic Geometry, Commutative Algebra
and Combinatorics are used to address various problems in Statistics; these in
turn provide these areas with new interesting questions [DS+98, PRW00, PS05,
DSS08]. The study of these connections between algebra and statistics is made
possible thanks to many common statistical models being described by polynomial
equations and polynomial inequalities.

A particularly nice case is when the probability models are given by discrete ex-
ponential families, since these correspond geometrically to toric varieties [GMS+06,
MSUZ16]. However, this discrete case does not cover the most prominent contin-
uous distribution: the normal or Gaussian.

Definition 1.0.1. The n-dimensional multivariate Gaussian distribution has con-
tinuous probability density function

f(x) =
1√

det(2πΣ)
e−

1
2
(x−µ)TΣ−1(x−µ) (1.0.1)

where x, µ ∈ Rn and Σ is a symmetric positive definite n × n matrix. We call µ
the mean vector and Σ the covariance matrix.

If a random variable X follows a Gaussian distribution, we write X ∼ N(µ,Σ).
We recall one of the reasons that they are so essential in probability and statistics
(see e.g. [VdV00, Section 2.3], and [BR10, Chapter 3] for generalizations):

Theorem 1.0.2 (Central Limit Theorem). Let X1, X2, . . . be a sequence of inde-
pendent and identically distributed random vectors with mean µ and covariance Σ.
Then their centered scaled sum will converge in distribution as follows:

X1 +X2 + · · ·+Xn − nµ√
n

d−−−→
n→∞

N(0,Σ).

That is, the scaled and centered sequence of sample means X̄n = X1+X2+···+Xn

n
will

follow a Gaussian distribution as n → ∞:
√
n(X̄n − µ)

d−→ N(0,Σ) .

While the Gaussian distribution has appeared in Algebraic Statistics, it has
been mainly via the study of Gaussian graphical models with a focus on condi-
tional independence relations, as in [U+12] and [Zwi15]. In this thesis we will add
mixtures of Gaussians to the statistical models studied in Algebraic Statistics.
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1. Introduction
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Figure 1.0.1.: Standard univariate Gaussian distribution

We now introduce the concept of a mixture of Gaussians by presenting its actual
origin at the end of the 19th century [Pea94].

1.1. Pearson’s Crabs: Algebraic Statistics in 1894

In 1894, Karl Pearson wanted to explain the asymmetry observed in data measured
from a population of Naples’ crabs, believing it was possible that two subpopu-
lations of crabs were present in the sample. The corresponding statistical model
is known as a Gaussian mixture; in this case a mixture of two univariate Gaus-
sian distributions, each with its own mean and variance. In his seminal paper
[Pea94, p.72], Pearson writes:

“It may happen that we have a mixture of 2,3,...,n [we will use k in place of n
in what follows] homogeneous groups, each of which deviates about its own mean
symmetrically and in a manner represented with sufficient accuracy by the normal
curve”

The histogram corresponding to the observed data is shown in Figure 1.1.1.
Let us say that indeed we have k = 2 subpopulations of crabs distributed

N(µ1, σ
2
1) and N(µ2, σ

2
2), with proportions α and 1 − α respectively, so that 0 <

α < 1 (here and throughout we use the standard notation σ2 for the variance σ11

when n = 1). Sampling from this mixture distribution is the result of tossing a
biased coin with probability α of heads and then drawing from the first population

2



1.1. Pearson’s Crabs: Algebraic Statistics in 1894
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Figure 1.1.1.: Histogram for Crabs Data

if heads comes up, else drawing from the second. The probability density function
of the mixture is then a convex combination of the individual ones. That is,

fmixt(x) =
1√
2π

[
α

σ1

exp
(
−(x− µ1)

2

2σ2
1

)
+

1− α

σ2

exp
(
−(x− µ2)

2

2σ2
2

)]
. (1.1.1)

The main guiding question that Pearson faced was:

Problem 1. How can we fit a Gaussian mixture density fmixt to the given data
above? That is, how can we find appropriate parameters (α, µ1, µ2, σ1, σ2) so that
fmixt approximates the given frequency curve?

In order to solve this problem, Pearson introduced the method of moments,
which consists of matching the model density moments to the sample moments.
For example, the mean µ of the mixture density fmixt can be computed as

µ = αµ1 + (1− α)µ2.

This equation restricts the possible values of α, µ1, µ2 given µ. We can estimate the
value of µ by taking the mean of the observed sample. Explicitly, if x1, x2, . . . , xN

are the observed values (in the crabs data, N = 1000) then

µ̄ =
1

N

N∑
i=1

xi (1.1.2)

is the sample mean or first sample moment m̂1.

3



1. Introduction

In similar fashion, Pearson proposes the following system of equations for re-
covering the five parameters from the first five moments (details will be given in
Chapter 4):

α1µ1 + (1− α)µ2 = m1

α1(µ
2
1 + σ2

1) + (1− α)(µ2
2 + σ2

2) = m2

α1(µ
3
1 + 3µ1σ

2
1) + (1− α)(µ3

2 + 3µ2σ
2
2) = m3 (1.1.3)

α1(µ
4
1 + 6µ2

1σ
2
1 + 3σ4

1) + (1− α)(µ4
2 + 6µ2

2σ
2
2 + 3σ4

2) = m4

α1(µ
5
1 + 10µ3

1σ
2
1 + 15µ1σ

4
1) + (1− α)(µ5

2 + 10µ3
2σ

2
2 + 15µ2σ

4
2) = m5.

What is essential to note here is that the above system of equations is poly-
nomial. This beautiful fact will allow us to use algebraic geometry to study this
method for solving for the parameters.

After considerable effort and cleverness, Pearson managed to do elimination
and obtain a ninth degree polynomial in the single unknown x = µ1µ2,

24x9 − 28λ4x
7 + 36m2

3x
6 − (24m3λ5 − 10λ2

4)x
5 − (148m2

3λ4 + 2λ2
5)x

4

+(288m4
3−12λ4λ5m3−λ3

4)x
3+(24m3

3λ5−7m2
3λ

2
4)x

2+32m4
3λ4x−24m6

3 = 0, (1.1.4)

where λ4 = 9m2
2 − 3m4 and λ5 = 30m2m3 − 3m5.

This is the first step in a back-substitution procedure that will yield possible
solutions for the unknowns α, µ1, µ2, σ1, σ2. Indeed, Pearson can now substitute the
empirical moments from his numerical crabs data into (1.1.4), find the real roots
of this nonic and determine if they can correspond to a solution for the mixture
model. His approach can be seen as the first instance of Algebraic Statistics.

1.2. Fisher’s Approach and Hill-Climbing

Finding the roots of Pearson’s nonic (1.1.4), which we will call Pearson’s polyno-
mial, was certainly intimidating at the time. Several potential users of this method
were not enthusiastic. For instance, we have the following quote from Charlier in
1906 (see [MP04, p.3]):

“The solution of an equation of the ninth degree, where almost all powers, to
the ninth, of the unknown quantity are existing, is, however, a very laborious
task. Mr. Pearson has indeed possessed the energy to perform this heroic task in
some instances in his first memoir on these topics from the year 1894. But I fear
that he will have few successors, if the dissection of the frequency curve into two
components is not very urgent.”

A century later, we see how Gaussian mixture models have proven to be very

4



1.2. Fisher’s Approach and Hill-Climbing

useful in a wide range of applications, from image segmentation [GS98] to speech
recognition [RR95]. While only a few followed Pearson’s method of moments ideas
for this problem, many followed the idea of mixture modeling once an alternative
method gained wide popularity: the so-called EM algorithm (introduced in 1977
by Dempster, Laird and Rubin [DLR77]).

To understand the EM algorithm, which stands for Expectation-Maximization
algorithm, we go back to 1922 when Ronald Fisher had managed to convince most
of the world that maximum likelihood estimation is the method to be preferred
[A+97]. This attractive approach looks for parameter values among the ones that
maximize the likelihood of having observed a particular sample.

Definition 1.2.1. Let x1, x2, . . . , xN be sample data points and consider the
parametrized model density function f(x; θ) where θ ∈ Θ is a vector of parameters.
Then the likelihood function for the sample is:

L(x1, x2, . . . , xN ; θ) = f(x1; θ)f(x2; θ) · · · f(xN ; θ) (1.2.1)

and the log-likelihood function is ℓ(x1, . . . , xN ; θ) = logL(x1, . . . , xN ; θ).

If the points x1, x2, . . . , xN are drawn independently from the probability density
f(x; θ) for a given parameter θ, then L(x1, x2, . . . , xN ; θ) is indeed the likelihood
assigned to them in the joint density f(x1, . . . , xn; θ). However, we do not know θ,

so the proposed approach is that we find such a θ̂ that will maximize the likelihood
of having observed x1, x2, . . . , xN .

In this way, the maximum likelihood approach translates the parameter esti-
mation problem to an optimization problem: maximizing the likelihood function,
or equivalently, the log-likelihood function. This does not mean that this becomes
an easy problem to solve (one could argue the opposite), but gives way to appli-
cation of other techniques. In addition to desirable statistical properties such as
consistency and asymptotic normality, the philosophy of maximum likelihood is
equivalent to minimizing the so-called Kullback-Leibler divergence [Her05].

However, it is often the case that there are no closed form solutions for the
parameters in the critical equations coming from the gradient of the likelihood
function. The EM algorithm provides a way to overcome this situation. From a
starting parameter value, it iteratively updates them with the very nice property
that the likelihood never decreases with each step. Such local search methods are
sometimes labeled ‘hill-climbing’. Convergence will often lead to a local maximum
[Wu83]. We will give a more precise description in Chapter 3.

For Gaussian mixtures, the EM algorithm is particularly simple to implement
(see Section 3.3), and thus widely used. For instance, one could easily call the R

packages mclust [FR03], mixtools [BCHY09] or EMcluster [CMM12]. An imple-
mentation for the univariate case can be found in the Appendix.

5



1. Introduction

As one could expect, there are drawbacks to these methods. They usually
depend heavily on the starting point of the algorithm and there is no general
guarantee of converging to a global maximum. Even worse, for general Gaussian
mixtures the optimization problem is ill-posed: the likelihood can be an unbounded
function of the parameters! (see Remark 3.2.2)

One may ask, where is the algebra present in the maximum likelihood approach?
How can tools from algebraic geometry be useful in this case? In many frequently
used statistical models, including the parametric discrete exponential family and
log-linear models, computing the maximum likelihood estimate θ̂ is equivalent to
solving a system of polynomial (or rational) equations (similar to system (1.1.3)).
These are usually the critical equations that one obtains from equating the gradient
of the likelihood to zero ∇ℓ(x1, . . . , xN ; θ) = 0 and trying to solve for the param-
eters θ. For generic data, independent of the size N , the number of solutions to
these systems over the complex numbers is constant, and this is known as the ML
degree of the model [DSS08, Chapter 2]. The ML degree is an intrinsic invariant of
a statistical model, with interesting geometric and topological properties [HS14].
This number gives a measure of the algebraic complexity of solving the maximum
likelihood estimation problem. When the ML degree is moderate, exact tools are
guaranteed to find the optimal solution to the ML problem [BHSPR07,GDP+12].

However, the ML degree of a statistical model is only defined when the MLE is
an algebraic function of the data, so we will need to investigate if this is the case
for Gaussian mixtures, and we do so in Chapter 3. We refer to [CHKS06,ABB+17]
for more on ML degree.

1.3. Motivating Questions

“The equations for the dissection of a frequency-curve into k normal curves can
be written down in the same manner as for the special case of k = 2 treated in
this paper; they require us only to calculate higher moments. But the analytical
difficulties, even for the case of k = 2, are so considerable, that it may be questioned
whether the general theory could ever be applied in practice to any numerical case.”

-Karl Pearson [Pea94]

In this work we will address the following natural (and perhaps ambitious, if
we judge by the above quote) questions:

Problem 2. How does Pearson’s method generalize for a mixture of k > 2 Gaus-
sians? What about Gaussians in higher dimension n > 1?

Problem 3. How many moments are needed to recover the parameters for general
n, k? Is there an analogous polynomial to Pearson’s polynomial (1.1.4)? If so, what
is its degree?

6



1.3. Motivating Questions

Problem 4. Can we analyze algebraically Fisher’s method (maximum likelihood)
for mixtures of Gaussians? Specifically, is there an ML degree that indicates the
algebraic complexity of maximum likelihood estimation for Gaussian mixtures?

1.3.1. The Chapters

In Chapter 2 we aim to better understand the shape of Gaussian mixture densities,
statistical inference apart. We know that a single Gaussian has a unique global
maximum: its mode. Certainly, Gaussian mixtures with a common mean vector
will continue to have only one global maximum. But in general the number of
modes (local maxima) can grow depending on the Gaussian components of the
mixture. Can there be more modes than the number of components k? Is there
a maximum number of modes, maybe as a function that depends on n, k? We
describe what we know in this chapter.

In Chapter 3 we focus on Problem 4. We will ‘spoil’ early the main result: the
maximum likelihood estimates for Gaussian mixtures are transcendental functions
of the data. This means that the parameter estimation problem transcends in a
way the algebraic geometric techniques. As a consequence there will be no ML
degree but we will ask if there is an analogous number that could bound the
number of critical points in the likelihood function.

Starting from the results obtained in the previous chapter, in Chapter 4 we
revisit the idea of Pearson’s method of moments and study his approach from a
modern perspective. To lay the groundwork for partial solutions to Problems 2
and 3, we introduce moment varieties and study their properties. They encode
the moments of a single Gaussian distribution.

In Chapter 5 we go to the natural next step and study the secant varieties of
moment varieties, since they correspond to moments of Gaussian mixture distri-
butions. We study the first instances of both the one-dimensional case n = 1 with
k > 1, and the higher dimensional case when n > 1. Our results contrast both
situations in terms of identifiability of Gaussian mixtures from their moments up
to a certain order.

In Chapter 6 we describe the situation for some special submodels of Gaussian
mixtures with restricted structure; in particular, homoscedastic Gaussian mixtures
in which the components share a fixed covariance matrix. We explain how this
connects algebraically in a strong way to the celebrated Alexander-Hirschowitz
theorem, and we compare to recent techniques in the Machine Learning literature.

Finally, a conclusion briefly summarizes the main results and contributions of
this work. This includes the current status of the three problems presented at the
beginning of this section and some open questions that remain.

7





2. The Peaks of Mixture Densities

We begin by recalling the probability density function of an n-dimensional Gaus-
sian mixture with k components.

Given k mean vectors µi ∈ Rn, n × n positive definite covariance matrices Σi,
and mixture weights αi > 0, i = 1, . . . , k we have

f(x) =
k∑

i=1

αifi(x), (2.0.1)

where α1 + · · ·+ αk = 1 and

fi(x) =
1√

det(2πΣi)
e−

1
2
(x−µi)

TΣ−1
i (x−µi). (2.0.2)

A fundamental property of a probability density function is the number of modes,
i.e. local maxima, that it possesses. For Gaussian mixtures, this is especially
relevant in applications such as clustering [HMMR15]. For example, the mean
shift algorithm converges if there are only finitely many critical points [Wal13].

We will be interested in the maximal number m(n, k) of local maxima for n-
dimensional Gaussian mixtures with k components. Shockingly, it is not known
whether this maximal number is always finite for general Gaussian mixtures. The
main results of this chapter will be giving a lower bound (Theorem 2.3.1) and an
upper bound (Theorem 2.4.4) on this number.

Remark 2.0.1. Since a single Gaussian has a unique global maximum at its mean
µ, we have that m(n, 1) = 1 for all n ≥ 1.

2.1. Background

The simplest case when there is actually a mixture has n = 1 and k = 2: a mixture
of two univariate Gaussians X1 ∼ N(µ1, σ1) and X2 ∼ N(µ2, σ2), with mixture
parameter α ∈ (0, 1). It was observed historically that in this scenario the number
of modes was either 1 or 2, with the following heuristics:

• If the distance between the component means is small, then the mixture is
unimodal (independently of α).

9
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Figure 2.1.1.: A mixture of two univariate Gaussians with 2 modes

• If the distance between the component means is large enough, then there is
bimodality unless α is close to 0 or 1.

A.C. Cohen (1953) and Eisenberger (1964) obtained some first explicit condi-
tions in these directions [Eis64]. Notably, if α = 1

2
and σ1 = σ2 = σ, then the

mixture is unimodal (with mode at µ1+µ2

2
) if and only if |µ2−µ1| ≤ 2σ. A few years

later, J. Behboodian [Beh70] gives a proof that indeed m(1, 2) = 2 by showing the
number of critical points is at most three, and finds that

|µ2 − µ1| ≤ 2min(σ1, σ2)

is a sufficient condition for unimodality. Furthermore, if σ1 = σ2 = σ, then

|µ2 − µ1| ≤ 2σ

√
1 +

| log(α)− log(1− α)|
2

is again a sufficient condition for having only one mode in the mixture. Starting the
21st century, it was Carreira-Perpiñán and Williams who had particular interest
in the problem [CPW03b]. Using scale-space theory, they prove that m(1, k) = k;
any univariate Gaussian mixture with k components has at most k modes.

A natural conjecture is that m(n, k) = k for all n, k. However, this fails already
when n = k = 2, since a mixture of two bivariate Gaussians can have 3 distinct
modes (actually, we’ll see shortly that m(2, 2) = 3).

Remark 2.1.1. In June 2016, a discussion thread on the ANZstat mailing list (e-

10



2.1. Background
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Figure 2.1.2.: Sample from a mixture of two bivariate Gaussians

mail bulletin board for statistics in Australia and New Zealand) with the title “an
interesting counter-intuitive fact” referred to the fact that a Gaussian mixture can
have more modes than components.

Example 2.1.2. Consider X1 ∼ N (( 1
0 ) , (

1 0
0 0.1 )) and X2 ∼ N (( 0

1 ) , (
0.1 0
0 1 )), with

α = 1
2
. There are two modes close to the original means at (1, 0) and (0, 1) but

there is also a third mode near the origin. This situation is illustrated in Figure
2.1.2, with the two means marked in blue and the three modes marked in red.

Special attention can be paid to assumptions on the variances. A mixture is
said to be homoscedastic if all the variances in the components are equal: Σi = Σ
for i = 1, . . . , k. On the other hand, a mixture is said to be isotropic if Σi = σiI
for i = 1, . . . , k, so that covariances are scalar matrices and the densities have a
‘spherical’ shape. Note that, up to coordinate change, homoscedastic mixtures
are (homoscedastic) isotropic. Carreira and Williams conjectured in [CPW03b]

11



2. The Peaks of Mixture Densities

that if one is restricted to homoscedastic Gaussian mixtures, then the maximum
number of modes is actually k, and verified this numerically for many examples
in a brute force search. Denoting by h(n, k) this maximum number, they asserted
that h(n, k) = k for any n, k ≥ 1.

Remark 2.1.3. It holds that h(n, k) ≤ m(n, k) for all n, k, and h(n, k) is also the
maximum number of possible modes of a Gaussian mixture with all unit covari-
ances (by the note above and the fact that the number of modes remains invariant
under affine transformations)

However, later J.J. Duistermaat emailed the authors of [CPW03a] with a coun-
terexample in n = 2 with k = 3 isotropic components, each on the vertex of
an equilateral triangle. This configuration gives 4 modes for a small window of
parameters, disproving the conjecture.

Example 2.1.4. Consider an isotropic mixture with components

X1 ∼ N((1, 0), σI2) X2 ∼ N

(
(−1

2
,

√
3

2
), σI2

)
X3 ∼ N

(
(−1

2
,−

√
3

2
), σI2

)

with σ = 0.72 and α = (1
3
, 1
3
, 1
3
). There are three modes close to the original means

and there is also a fourth mode at the origin. This situation is illustrated in Figure
2.1.3, with the three means marked in blue and the four modes marked in red.

In terms of contribution to the study of the topography of Gaussian mixture
densities, S. Ray and B. Lindsay initiate a systematic study and ask interesting
questions in [RL05]. They consider the ridgeline function x∗ : ∆k → Rn given by

x∗(α) = [α1Σ
−1
1 + α2Σ

−1
2 + . . .+ αkΣ

−1
k ]−1[α1Σ

−1
1 µ1 + α2Σ

−1
2 µ2 + . . .+ αkΣ

−1
k µk]

and obtaining as its image the (k−1)-dimensional ridgeline manifold M = Im(x∗)
that contains all critical points of fX . This fact is useful, for example, in the case
of homoscedastic mixtures, whose critical points (and in particular all modes)
lie in the convex hull of the component means (a result that appeared first in
[CPW03b]). In the conclusion of [RL05], the following line appears: “one might
ask if there exists an upper bound for the number of modes, one that can be described
as a function of k and n”. Assuming this bound is finite, we answer this question
in the affirmative in Section 2.4 below.

2.2. Examples and Conjecture

The appearance of a possible extra mode in dimension n = 2 when having k = 2
components carries over to higher dimensions. In [RR12], it was proven that

12



2.2. Examples and Conjecture
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Figure 2.1.3.: Duistermaat’s counterexample: 4 modes for mixture of 3 bivariate Gaussians

m(n, 2) = n + 1. That is, one can get as many as n + 1 modes from just a two
component Gaussian mixture in dimension n. Looking for further progress, Ray
proposed the maximum number of modes problem for the 2011 AIM Workshop on
Singular Learning Theory, organized by Steele, Sturmfels and Watanabe [Ste11].
The problem was discussed, and it led to the following conjecture:

Conjecture 2.2.1. (Sturmfels, AIM 2011) For all n, k ≥ 1,

m(n, k) =

(
n+ k − 1

n

)
. (2.2.1)

This conjecture matches correctly all the known values for m(n, k) that we
have presented so far. In the next section we will show that for n = 2 there exist
Gaussian mixtures that achieve as many as

(
k+1
2

)
modes, showing that (2.2.1) is a
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2. The Peaks of Mixture Densities
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Figure 2.2.1.: Possible 7 modes for mixture of 3 bivariate Gaussians?

lower bound on m(2, k).
One could ask if there exists a counterexample to Conjecture 2.2.1 similar to

Duistermaat’s for an isotropic mixture. Specifically, let n = 2 and k = 3, where
we locate the

(
2+3−1

2

)
= 6 modes coming from the deformation of 3 lines arranged

in a equilateral triangle and means as the middle points on the 3 sides. Each of
the other 3 means lie near the corresponding triangle vertices. Could an extra
mode be formed at the origin for some values of the parameters? This would
give a total of 7 modes (see Figure 2.2.1). Note that by rotational symmetry, the
origin is a critical point. If the Gaussians are very concentrated on the lines (see
Figure 2.2.2), then everything points at the origin being a local minimum, but
if they diffuse enough, then it becomes a mode (the problem is that we lose the
other modes at the vertices). We argue that an intermediate scenario of a total
of 7 modes is actually impossible. Indeed, consider any height of the equilateral
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2.2. Examples and Conjecture
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Figure 2.2.2.: 4 modes for mixture of 3 bivariate Gaussians

triangle. Again by symmetry, the corresponding modes near the vertex and middle
point of the triangle lie on this height. Restricting the Gaussian mixture density to
that line, the components corresponding to the opposite sides project to the same
kernel; thus obtaining a combination of two Gaussian kernels. Since we know that
the number of modes is at most two in this case, not all three of the critical points
lying on the line can be modes.

In [EFR13], a construction of a finite configuration of isotropic Gaussians with
many modes is presented. One considers products of triangles, using the coun-
terexample with 4 modes of Section 2.1 as the basic building block to obtain 4n

modes in dimension 2n with k = 3n components. This gives an example where
the number of modes is superlinear k1.261 in the number of components (however,
note that the dimension 2n = 2 log3 k also grows with k).

In the following section, we provide configurations for any choice of n and k
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2. The Peaks of Mixture Densities

having
(
k
n

)
+ k modes. If we let n grow logarithmically with k as in [EFR13], we

obtain superpolynomially (but subexponentially) many modes:(
k

log k

)
= klog k+O(log log k). (2.2.2)

2.3. Many Modes

In this section, we prove that Gaussian mixtures can have many modes. For n = 2,
this agrees with (2.2.1).

Theorem 2.3.1. Given k, n ∈ N, there is a mixture of k Gaussians in Rn with at
least

(
k
n

)
+ k modes.

Proof. Starting from a generic arrangement of k hyperplanes in Rn, we are going
to define a family Φ = Φδ of Gaussian mixtures depending on a parameter δ > 0.
Around each of the

(
k
n

)
intersection vertices p of the arrangement, we construct

neighborhoods Q = Q(p), also depending on δ, so that for δ small enough, we
have Φδ|∂Q < Φδ(p). This certifies the existence of a mode in Q. In addition,
there will be a mode near each of the k means. Consider a generic arrangement
H1, . . . , Hk of k hyperplanes in Rn. For each i = 1, . . . , k, denote by πi : Rn → Hi

the orthogonal projection, and pick an affine map ηi : Rn → R such that |ηi(x)| is
the distance from x to Hi. Further, choose means µi ∈ Hi outside the other Hj.
Then, our ith component will be a standard Gaussian with mean µi along Hi with
variance δ3 in the direction normal to Hi.

Φi(x) :=
1√

(2π)d δ3
exp

(
− 1

2 δ3
|ηi(x)|2 − 1

2
∥πi(x)− µi∥2

)
(2.3.1)

For the mixture, we take all coefficients to be equal: Φ = 1
k

∑
i Φi. Let p be one

of the intersection vertices; without loss of generality, {p} = H1 ∩ · · · ∩ Hn. For
δ > 0, we define the neighborhood Q of p to be

Q(p) = {x ∈ Rn |ηi(x)| ≤ δ, ∀1 ≤ i ≤ n}

(note that ηi(p) = 0). This is an affine cube with center p. Now we consider each
of its 2d facets F±

i , 1 ≤ i ≤ d, where

F±
i = {x ∈ Rn ηi(x) = ±δ, |ηj(x)| ≤ δ ∀j ̸= i} .

Along F±
i , we have that

Φi(x) ≤
1√

(2π)d δ3
exp

(
− 1

2 δ3
δ2
)

δ→0−−→ 0.
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2.4. Not Too Many Modes

At p, we have ηi(p) = 0. We have seen that, around the point p, as δ → 0,

√
δ3 max

x∈F±
j

Φi(x) → ϕi for i, j = 1, . . . , d, j ̸= i (2.3.2)

√
δ3 max

x∈F±
i

Φi(x) → 0 for i = 1, . . . , d (2.3.3)

√
δ3 max

x∈Q
Φi(x) → 0 for i = d+ 1, . . . , k (2.3.4)

where ϕi is the positive number

ϕi :=
1√
(2π)d

exp

(
−1

2
∥p− µi∥2

)
.

Adding up we get for Φ = 1
k

∑k
i=1 Φi that

√
δ3 max

x∈∂Q
Φ(x) → 1

k

k∑
i=1
i̸=j

ϕi (2.3.5)

√
δ3 Φ(p) → 1

k

k∑
i=1

ϕi (2.3.6)

where j = argminϕi. As the limit (2.3.5) is smaller (by ϕj > 0) than the
limit (2.3.6), there must be some δ⋆(p) > 0 so that for 0 < δ < δ⋆(p) we have
maxx∈∂Q Φ(x) < Φ(p). Then the point p′ where the continuous function Φ takes it
maximum over the compact set Q will be in the interior of Q, and hence is a local
maximum. Choosing δ⋆ to be the minimum over the δ⋆(p) over all intersection
vertices p, we obtain a mixture with at least

(
k
n

)
modes.

The argument for the existence of a mode near µi is similar, but much simpler.
Fix a compact neighborhood Q of µi which avoids the hyperplanes Hj for j ̸= i.
For small δ, the Φj for j ̸= i are negligible along Q. So the value of the mixture Φ
at µi will be bigger than the values along ∂Q, because this is true for Φi.

2.4. Not Too Many Modes

The main result of this section is to present an upper bound on the number of
modes of a Gaussian mixture: Theorem 2.4.4. We start by looking at the set of
critical points and we will use Khovanskii’s theory on Fewnomials, see [Kho91].

Theorem 2.4.1. For all n, k ≥ 1, the number of non-degenerate critical points
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2. The Peaks of Mixture Densities

for the density of a mixture of k Gaussians in Rn is bounded by

2n+(
k
2)(5 + 3n)k. (2.4.1)

This will follow from a Khovanskii-type theorem that bounds the number of
nondegenerate solutions to a system of polynomial equations that includes tran-
scendental functions. Such a version where the transcendental functions are expo-
nentials of linear forms was first presented by Khovanskii to illustrate his theory
of fewnomials [Kho91, p. 12]. In our case, however, we will be interested in expo-
nentials of quadratic forms.

Theorem 2.4.2. For 1 ≤ i ≤ n, let Fi ∈ R[x1, . . . , xn, y1, . . . , yk] be polynomials
of degree di and for 1 ≤ j ≤ k consider the exponential quadratic forms yj(x) =

e(x−µj)
TQj(x−µj), with µj ∈ Rn and Qj ∈ Rn×n. If gi : Rn → R are given by gi(x) =

Fi(x1, . . . , xn, y1(x), . . . , yk(x)) then the number of non-degenerate solutions to the
system g1 = g2 = · · · = gn = 0 is finite and bounded by

d1 · · · dn(5 + n+ d1 + . . .+ dn)
k · 2

k(k−1)
2 . (2.4.2)

In order to prove the theorem, Khovanskii gives first a sketch making simplifying
assumptions (and skipping technical details) and fills the theory in his next two
chapters. This sketch is also presented in [Sot11] and [BCS13], and we will present
the proof of our theorem in the same way. We will need the following lemma (for
a proof see e.g. Theorem 4.3 in [Sot11]).

Lemma 2.4.3 (Khovanskii-Rolle). Let C ⊂ Rn+1 be a smooth curve that inter-
sects H := xn+1 = 0 transversally, and v = (v1, . . . , vn+1) : C → Rn+1 a smooth
nonvanishing tangential vector field to C. Then |(C ∩ H)| < N + q, where N
is the number of points of C where vn+1 = 0 and q is the number of unbounded
components of C.

Proof. (of Theorem 2.4.2) By Induction on k. If k = 0, there are no exponentials
and the bound (2.4.2) reduces to the product of the degrees d1 · · · dn. This is the
well known Bézout bound for a multivariate system of polynomial equations.
Now we will give the sketch of the proof and mention how our estimates change if
the assumptions in the induction step do not hold. In any case, the final inequalities
needed to prove the bound (2.4.2) will hold.
For k ≥ 1, to reduce the number of exponentials to k − 1, we introduce a new
variable t such that the system with equations

ĝi(x, t) = Fi(x1, . . . , xn, y1(x), . . . , yk−1(x), tyk(x)) (2.4.3)

will have as solutions the ones from the original system when intersecting with the
hyperplane t = 1. We assume the system (2.4.3) defines a smooth curve C in Rn+1
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2.4. Not Too Many Modes

(this is the critical step that needs to be modified later), so that we can apply the
Khovanskii-Rolle Lemma. Indeed, a tangential vector field to C is

vr = (−1)n+1−r det
∂(ĝ1, . . . ĝn)

∂(x1, . . . , x̂i, . . . , xn, t)
. (2.4.4)

Thus, the bound for N is the number of solutions to the system in the n + 1
variables x1, x2, . . . , xn, u with u = tyk(x) and k − 1 exponentials

ĝ1 = 0, . . . , ĝn = 0, vn+1 = 0. (2.4.5)

Now, each
∂yj
∂xi

(x) = yj · lij(x) where lij is a linear function. Hence, ∂ĝi
∂xj

=

hij(x, y1(x), . . . , yk−1(x), u) where hij is a polynomial of degree at most di + 1.
Thus vn+1(x, u) is a polynomial of degree at most (d1+1)+ . . .+(dn+1) = n+D,
where D = d1 + . . .+ dn. By induction hypothesis,

N ≤ d1 · · · dn(n+D)(5 + (n+ 1) + (D + n+D))k−1 · 2
(k−1)(k−2)

2 (2.4.6)

In order to bound q, the number of unbounded components of C, one observes
that, since each component has two infinite branches, there are (counted with
multiplicity) 2q accumulation points on the sphere Sn, so a hyperplane sufficiently
far from the origin will meet C in at least q points. In other words, a hyperplane
can be chosen so that q can be bounded by the number of solutions of a system

ĝ1 = 0, . . . , ĝn = 0, λ1x1 + . . .+ λnxn + λn+1u+ µ = 0. (2.4.7)

for some λi, µ ∈ R. Under non-degeneracy of the solutions, we get by induction
hypothesis,

q ≤ d1 · · · dn · 1 · (5 + (n+ 1) + (D + 1))k−1 · 2
(k−1)(k−2)

2 (2.4.8)

So, in total,

N + q ≤ d1 · · · dn
[
(n+D)(6 + 2n+ 2D)k−1 + (7 + n+D)k−1

]
2

(k−1)(k−2)
2

< d1 · · · dn
[
(n+D)(5 + n+D)k−12k−1 + 5(5 + n+D)k−12k−1

]
2

(k−1)(k−2)
2

= d1 · · · dn(5 + n+D)k · 2
k(k−1)

2 .

as we wanted. This is the end of the sketch.
If the smoothness assumptions for the system after introducing t are not satis-

fied, the argument is modified via the Morse-Sard Theorem. The details of such
modifications can be found along [Kho91], although we find that for our theorem
these are better summarized in [BCS13, p. 293-295]. Essentially, one slightly per-
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2. The Peaks of Mixture Densities

turbs the system from ĝi = 0 to ĝi = ϵi (ϵ in a neighborhood of 0) to guarantee
obtaining a smooth curve C. The asserted bound (2.4.2) remains unchanged, and
the number of non-degenerate solutions of the perturbed system cannot be less
than the number for the original system.

Another change is that since the polynomial system might not define a proper
map, one adds an extra variable x0 with an extra equation

g0(x0, x1, . . . , xn) = x2
0 + x2

1 + . . .+ x2
n −R2 = 0 (2.4.9)

with R > 0 so that every preimage is now bounded. Morse-Sard now applies to
conclude the set of regular values of g = (g0, . . . , gn) : Rn+1 → Rn+1 is open and
dense. The number of non-degenerate solutions of the new system has twice the
number of non-degenerate solutions of the original system that lie in the open ball
of radius R centered at the origin . In terms of the bounding of the corresponding
N ′, q′, we now have

N ′ ≤ 2·d1 · · · dn ·(n+1+D)(5+(n+2)+(2+D+n+1+D))k−1 ·2
(k−1)(k−2)

2 (2.4.10)

(the extra 2 comes from the degree of 2.4.9, and we now have n+2 variables). For
q′, the bound becomes

q′ ≤ 2 · d1 · · · dn · 1 · (5 + (n+ 2) + 2 +D + 1)k−1 · 2
(k−1)(k−2)

2 (2.4.11)

(the extra 1 from the hyperplane equation). Since the R > 0 does not affect the
bound computation, it can be taken large enough to include all the solutions to
the original system. Thus N ′ + q′ is a bound for twice as many non-degenerate
solutions of said original system. Finally, this way the induction step inequality
can again be completed

N ′ + q′

2
≤ d1 · · · dn

[
(1 + n+D)(10 + 2n+ 2D)k−1 + (10 + n+D)k−1

]
2(

k−1
2 )

< d1 · · · dn
[
(1 + n+D)(5 + n+D)k−1 + 4(5 + n+D)k−1

]
2k−12(

k−1
2 )

= d1 · · · dn(5 + n+D)k · 2
k(k−1)

2 ,

as needed.

Now we can obtain Theorem 2.4.1 as a corollary of the above.

Proof. (of Theorem 2.4.1) Let fX(x) =
∑k

i=1 αifXi
(x) be a Gaussian mixture and

consider the system gi(x1, . . . , xn) given by the partial derivatives gi =
∂fX
∂xi

. These

can be interpreted as polynomials Fi(x1, . . . , xn, y1, . . . , yk) by taking yi as the
exponential kernel of fXi

. The system now has the form as in Theorem 2.4.2,
and note that the degree of each Fi is 2. The number of non-degenerate critical
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2.5. Future Work

points of fX is thus the number of non-degenerate solutions to the system of gi,
and according to (2.4.2), it is bounded by

2 · · · 2 (5 + n+ 2 + . . .+ 2)k · 2
k(k−1)

2 = 2n(5 + n+ 2n)k 2(
k
2) = 2n+(

k
2)(5 + 3n)k.

Finally, the promised upper bound on the number of modes of a Gaussian
mixture, provided it is finite.

Theorem 2.4.4. Consider a Gaussian mixture with n, k > 1 that has finitely
many modes. Then its number of modes is bounded by

2n+(
k
2)(5 + 3n)k. (2.4.12)

Proof. Let f(x) =
∑k

i=1 αifi(x) be a Gaussian mixture. If all of its modes are non-
degenerate, then Theorem 2.4.2 applies and we’re done. The difficulty stems from
considering possible degenerate modes. Note that by the finiteness hypothesis, all
of them are isolated so we may fix disjoint neighborhoods Qi ⊂ Rn over which
each mode is a global maximum.

For any linear function ℓ(x1, . . . , xn) = c·x, the function f+ℓ has a gradient that
differs by the constant vector c from ∇f . In particular, the system given by the
partial derivatives of f + ℓ are still polynomials Fi(x1, . . . , xn, y1, . . . , yk) of degree
2. By Theorem 2.4.1 we have the bound (2.4.1) on the non-degenerate modes of
f + ℓ. Since f : Rn → R is smooth, one of Morse’s Lemmas [MSS65, Lemma A,
p.11] states that for almost all c ∈ Rn (all except for a set of measure zero), f + ℓ
has only non-degenerate critical points.

Now, let c ∈ Rn in the complement of such measure zero set, with norm small
enough so that f + ℓ still has modes inside each of the neighborhoods Qi. Then,
f + ℓ may have fewer critical points than f but we know f + ℓ has at least as
many modes as f does. Since the modes of f+ℓ are bounded by (2.4.1), the result
follows.

Corollary 2.4.5. If every mixture of k Gaussians in Rn has finitely many modes,
then

m(n, k) ≤ 2n+(
k
2)(5 + 3n)k. (2.4.13)

2.5. Future Work

Are there finitely many critical points? This was the main goal sought in [Wal13]
but could only be proven for k = 2. As our bound (2.4.2) only bounds the number
of non-degenerate critical points of Gaussian mixtures, a final answer is still open.
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2. The Peaks of Mixture Densities

However, since non-degenerate critical points are isolated, we see that the set of
critical points of a Gaussian mixture is finite if and only if it consists of isolated
points, since this set is closed and bounded (compare [Gha15]).

Quantitatively, we do not expect our upper bound to be tight. Rather, proving
the lower bound

(
n+k−1

n

)
for all n, k will be the main focus of a forthcoming paper,

extending the technique used to prove Theorem 2.3.1 .
We observe that our lower bound can be extended to elliptical distributions, not

only Gaussians. A study of the number of modes for mixtures of elliptical distri-
butions, including t-distributions, is done in [AHR13]. This is done by extending
the concept of the ridgeline manifold to their densities (upper bounds are 2 or 3
modes for a mixture of two t-distributions with equal dispersion matrices or the
same degrees of freedom).

The main takeaway of this chapter is that Gaussian mixture densities can have
quite complex behavior. We should not expect to easily get results about them,
especially when we move to statistical aspects in the next chapters. However,
it is precisely the versatility of the mixture density that makes it attractive for
modeling. Therefore, we will make an effort and delve deeper into these models.
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3. Maximum Likelihood Estimation
and Transcendence

Suppose we have a random sample x1, x2, . . . , xN ∈ Rn that we know or believe
was generated from a mixture of k Gaussians in Rn. We would like to estimate all
the parameters: the means µi ∈ Rn, the positive definite n×n symmetric matrices
Σi and the weights αi for i = 1, . . . , k that generated the observed data.

From the Introduction, we know one central approach is via maximum likelihood
inference.

3.1. In Search of the ML Degree

Recall that we want to maximize the log-likelihood function

ℓ(x1, . . . , xn; θ) = log f(x1; θ) + log f(x2; θ) + · · ·+ log f(xN ; θ)

where for a Gaussian mixture, θ is the parameter vector consisting of the means
µi, the variances Σi and the weights αi, i = 1, . . . , k.

To illustrate the method, let’s compute the ML estimate for a single Gaussian
(that is, k = 1).

Example 3.1.1. Sample x1, x2, . . . , xN ∈ Rn from X ∼ N(µ,Σ). The likelihood is

l(x1, . . . , xN ;µ,Σ) =
N∏
i=1

1√
det(2πΣ)

e−
1
2
(xi−µ)TΣ−1(xi−µ)

and the log-likelihood is thus

ℓ(x1, . . . , xN ;µ,Σ) = −nN

2
log 2π − N

2
log detΣ− 1

2

N∑
i=1

(xi − µ)TΣ−1(xi − µ).

To find the maximizer (µ̂, Σ̂) of ℓ we solve the critical equations
∂ℓ

∂µ
= 0 and

∂ℓ

∂Σ
= O (that is,

∂ℓ

∂σij

= 0 for all 1 ≤ i, j ≤ n).
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3. Maximum Likelihood Estimation and Transcendence

∂ℓ

∂µ
=

N∑
i=1

(xi − µ)TΣ−1 = 0 ⇒ µ̂ =
1

N

N∑
i=1

xi = x̄

so the ML estimator for the mean is the sample mean. For the second equation,
we use the ‘trace trick’ to rewrite the log-likelihood:

ℓ(x1, . . . , xN ;µ,Σ) = −nN

2
log 2π − N

2
log detΣ− 1

2
tr

(
N∑
i=1

(xi − µ)TΣ−1(xi − µ)

)

= −nN

2
log 2π − N

2
log detΣ− 1

2

N∑
i=1

tr
(
(xi − µ)(xi − µ)TΣ−1

)
Using the matrix differentiation identities (see e.g. [PP+08]):

∂

∂A
log detA = A−T ∂

∂A
tr(BA) = BT

we get that

∂ℓ

∂Σ
= −N

2
Σ−1 +

1

2
Σ−1

(
N∑
i=1

(xi − µ)(xi − µ)T

)
Σ−1 = O

So the ML estimator for the covariance matrix is

Σ̂ =
1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)T ,

assuming it is full rank (for instance, if N > n then it is positive definite with
probability 1). To argue that this unique interior critical point is indeed the global
maximum, one can check that the log-likelihood approaches −∞ as Σ approaches
the boundary of the cone of positive definite matrices.

We see then that maximum likelihood estimates for k = 1:

µ̂ =
1

N

N∑
i=1

xi = x̄ Σ̂ =
1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

are rational functions of the data x1, . . . , xn ∈ Rn, even when the density function
for the Gaussian involves an exponential. Since there is a unique critical point,
this means the ML degree (cf. section 1.2) for the Gaussian model is 1.

What would be the ML degree, that is, the general number of solutions for the
critical equations, for k > 1? We asked this in Problem 4 and now we give an
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3.2. Reaching Transcendence

answer that will be the main result of this chapter.

Theorem 3.1.2. The maximum likelihood estimators of Gaussian mixture models
are transcendental functions. More precisely, there exist x1, x2, . . . , xN rational
samples in Qn whose maximum likelihood parameters for the mixture of two n-
dimensional Gaussians are not algebraic numbers over Q.

Theorem 3.1.2 means that there is no ML degree for Gaussian mixtures.

3.2. Reaching Transcendence

Transcendental number theory [Bak90, Gel15] is a field that furnishes tools for
deciding whether a given real number τ is a root of a nonzero polynomial in Q[t].
If this holds then τ is algebraic; otherwise τ is transcendental. For instance,

√
2+√

7 = 4.059964873... is algebraic, and so are the parameter estimates computed by
Pearson in his 1894 study of crab data [Pea94]. By contrast, the famous constants
π = 3.141592653... and e = 2.718281828... are transcendental. Our proof will be
based on the following classical result. A textbook reference is [Bak90, Theorem
1.4]:

Theorem 3.2.1 (Lindemann-Weierstrass). If u1, . . . , ur are distinct algebraic num-
bers then eu1 , . . . , eur are linearly independent over the algebraic numbers.

For now, consider the case of n = 1, that is, mixtures of two univariate Gaus-
sians. We allow mixtures with arbitrary means and variances. Our model then
consists of all probability distributions on the real line R with density

fα,µ,σ(x) =
1√
2π

·
[
α

σ1

exp
(
−(x− µ1)

2

2σ2
1

)
+

1− α

σ2

exp
(
−(x− µ2)

2

2σ2
2

)]
. (3.2.1)

It has five unknown parameters, namely, the means µ1, µ2 ∈ R, the standard
deviations σ1, σ2 > 0, and the mixture weight α ∈ [0, 1]. The aim is to estimate
the five model parameters from a collection of data points x1, x2, . . . , xN ∈ R.

The log-likelihood function of the model (3.2.1) is

ℓ(α, µ1, µ2, σ1, σ2) =
N∑
i=1

log fα,µ,σ(xi). (3.2.2)

This is a function of the five parameters, while x1, . . . , xN are fixed constants.
The principle of maximum likelihood suggests to find estimates by maximizing

the function ℓ over the five-dimensional parameter space Θ = [0, 1]× R2 × R2
>0.
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3. Maximum Likelihood Estimation and Transcendence

Remark 3.2.2. The log-likelihood function ℓ in (3.2.2) is never bounded above. To
see this, we argue as in [Bis06, Section 9.2.1]. Set N = 2, fix arbitrary values
α0 ∈ [0, 1], µ20 ∈ R and σ20 > 0, and match the first mean to the first data point
µ1 = x1. The remaining function of one unknown σ1 equals

ℓ(α0, x1, µ20, σ1, σ20) ≥ log

[
α0

σ1

+
1− α0

σ20

exp
(
−(x1 − µ20)

2

2σ2
20

)]
+ const.

The lower bound tends to ∞ as σ1 → 0.

Remark 3.2.2 means that there is no global solution to the MLE problem. This
is usually remedied by restricting to a subset of the parameter space Θ. In practice,
maximum likelihood for Gaussian mixtures means computing local maxima of the
function ℓ. These are found numerically by a hill climbing method, such as the
EM algorithm, with particular choices of starting values. See Section 3.3. This
method is implemented, for instance, in the R packages mclust [FR03], mixtools
[BCHY09] and EMCluster [CMM12]. In order for Theorem 3.1.2 to cover such
local maxima, we prove the following statement:

There exist samples x1, . . . , xN ∈ Q such that every non-trivial critical
point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) of the log-likelihood function ℓ in the domain Θ
has at least one transcendental coordinate.

Here, a critical point is non-trivial if it yields an honest mixture, i.e. a distribution
that is not Gaussian. By the identifiability results of [Tei63], this happens if and
only if the estimate (α̂, µ̂1, µ̂2, σ̂1, σ̂2) satisfies 0 < α̂ < 1 and (µ̂1, σ̂1) ̸= (µ̂2, σ̂2).

Remark 3.2.3. The log-likelihood function always has some algebraic critical points,
for any x1, . . . , xN ∈ Q. Indeed, if we define the empirical mean and variance as

x̄ =
1

N

N∑
i=1

xi, s2 =
1

N

N∑
i=1

(xi − x̄)2,

then any point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) with µ̂1 = µ̂2 = x̄ and σ̂1 = σ̂2 = s is critical.
This is the case of a single Gaussian distribution treated in Example 3.1.1, with
mean x̄ and variance s2, so it is trivial.

Proof. (of Theorem 3.1.2) First, we treat the univariate case n = 1. Consider the
partial derivative of (3.2.2) with respect to the mixture weight α:

∂ℓ

∂α
=

N∑
i=1

1

fα,µ,σ(xi)
· 1√

2π

[
1

σ1
exp
(
−(xi − µ1)

2

2σ2
1

)
− 1

σ2
exp
(
−(xi − µ2)

2

2σ2
2

)]
. (3.2.3)
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3.2. Reaching Transcendence

Clearing the common denominator

√
2π ·

N∏
i=1

fα,µ,σ(xi),

we see that ∂ℓ/∂α = 0 if and only if

N∑
i=1

[
1

σ1

exp
(
−(xi − µ1)

2

2σ2
1

)
− 1

σ2

exp
(
−(xi − µ2)

2

2σ2
2

)]
×
∏
j ̸=i

[
α

σ1

exp
(
−(xj − µ1)

2

2σ2
1

)
+

1− α

σ2

exp
(
−(xj − µ2)

2

2σ2
2

)]
= 0. (3.2.4)

Letting α1 = α and α2 = 1− α, we may rewrite the left-hand side of (3.2.4) as

N∑
i=1

⎡⎣ 2∑
ki=1

(−1)ki−1

σki
exp
(
−(xi − µki)

2

2σ2
ki

)⎤⎦∏
j ̸=i

⎡⎣ 2∑
kj=1

αkj

σkj
exp
(
−
(xj − µkj )

2

2σ2
kj

)⎤⎦ . (3.2.5)

We expand the products, collect terms, and set Ni(k) = |{j : kj = i}|. With this,
the partial derivative ∂ℓ/∂α is zero if and only if the following vanishes:

N∑
i=1

∑
k∈{1,2}N

exp

⎛⎝− N∑
j=1

(xj − µkj )
2

2σ2
kj

⎞⎠(−1)ki−1α|{j ̸=i:kj=1}|(1−α)|{j ̸=i:kj=2}|

⎛⎝ N∏
j=1

1

σkj

⎞⎠
=
∑

k∈{1,2}N
exp

⎛⎝− N∑
j=1

(xj − µkj )
2

2σ2
kj

⎞⎠⎛⎝ N∏
j=1

1

σkj

⎞⎠ N∑
i=1

(−1)ki−1α|{j ̸=i:kj=1}|(1− α)|{j ̸=i:kj=2}|

=
∑

k∈{1,2}N
exp

⎛⎝−
N∑
j=1

(xj − µkj )
2

2σ2
kj

⎞⎠⎛⎝ N∏
j=1

1

σkj

⎞⎠αN1(k)−1(1−α)N2(k)−1

[
N1(k)(1−α)

+N2(k)(−α)

]

=
∑

k∈{1,2}N
exp

⎛⎝− N∑
j=1

(xj − µkj )
2

2σ2
kj

⎞⎠⎛⎝ N∏
j=1

1

σkj

⎞⎠αN1(k)−1(1− α)N−N1(k)−1(N1(k)−Nα).

Let (α̂, µ̂1, µ̂2, σ̂1, σ̂2) be a non-trivial isolated critical point of the likelihood
function. This means that 0 < α̂ < 1 and (µ̂1, σ̂1) ̸= (µ̂2, σ̂2). This point depends
continuously on the choice of the data x1, x2, . . . , xN . By moving the vector with
these coordinates along a general line in RN , the mixture parameter α̂ moves
continuously in the critical equation ∂ℓ/∂α = 0 above. By the Implicit Function
Theorem, it takes on all values in some open interval of R, and we can thus choose
our data points xi general enough so that α̂ is not an integer multiple of 1/N .
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3. Maximum Likelihood Estimation and Transcendence

We can further ensure that the last sum above is a Q(α)-linear combination of
exponentials with nonzero coefficients.

Suppose that (α̂, µ̂1, µ̂2, σ̂1, σ̂2) is algebraic. The Lindemann-Weierstrass Theo-
rem implies that the arguments of exp are all the same. Then the 2N numbers

N∑
j=1

(xj − µ̂kj)
2

2σ̂2
kj

, k ∈ {1, 2}N ,

are all identical. However, for N ≥ 3, and for general choice of data x1, . . . , xN as
above, this can only happen if (µ̂1, σ̂1) = (µ̂2, σ̂2). This contradicts our hypothesis
that the critical point is non-trivial. We conclude that all non-trivial critical points
of the log-likelihood function (3.2.2) are transcendental.

In the multivariate case, the model parameters comprise the mixture weight α ∈
[0, 1], mean vectors µ1, µ2 ∈ Rn and positive definite covariance matrices Σ1,Σ2 ∈
Rn. Arguing as above, if a non-trivial critical (α̂, µ̂1, µ̂2, Σ̂1, Σ̂2) is algebraic, then
the Lindemann-Weierstrass Theorem implies that the numbers

N∑
j=1

(xj − µ̂kj)
T Σ̂−1

kj
(xj − µ̂kj), k ∈ {1, 2}N ,

are all identical. For N sufficiently large and a general choice of x1, . . . , xN in Rn,
the 2N numbers are identical only if (µ̂1, Σ̂1) = (µ̂2, Σ̂2). Again, this constitutes a

contradiction to the hypothesis that (α̂, µ̂1, µ̂2, Σ̂1, Σ̂2) is non-trivial.

Many variations and specializations of the Gaussian mixture model are used
in applications. In the case n = 1, the variances are sometimes assumed equal,
so σ1 = σ2 for the above two-mixture. This avoids the issue of an unbounded
likelihood function (as long as N ≥ 3). Our proof of Theorem 3.1.2 applies to
this setting. In higher dimensions (n ≥ 2), the covariance matrices are sometimes
assumed arbitrary and distinct, sometimes arbitrary and equal, but often also have
special structure such as being diagonal. Various default choices are discussed in
the paper [FR03] that introduces the R package mclust. See also Chapter 6. Our
results imply that maximum likelihood estimation is transcendental also for all of
these models.

Example 3.2.4. We illustrate Theorem 3.1.2 for a specialization of (3.2.1) ob-
tained by fixing three parameters: µ2 = 0 and σ1 = σ2 = 1/

√
2. The remaining

two free parameters are α and µ = µ1. We take only N = 2 data points, namely
x1 = 0 and x2 = x > 0. Omitting an additive constant, the log-likelihood equals

ℓ(α, µ) = log
(
α · e−µ2

+ (1− α)
)

+ log
(
α · e−(µ−x)2 + (1− α) · e−x2)

. (3.2.6)
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3.2. Reaching Transcendence

Figure 3.2.1.: Graph of the log-likelihood function for two data points x1 = 0 and x2 = 2.

For a concrete example take x = 2. The graph of (3.2.6) for this choice is
shown in Figure 3.2.1. By maximizing ℓ(α, µ) numerically, we find the parameter
estimates

α̂ = 0.50173262959803874... and µ̂ = 1.95742494230308167... (3.2.7)

Our technique can be applied to prove that α̂ and µ̂ are transcendental over Q.
We illustrate it for µ̂.

For any x ∈ R, the function ℓ(α, µ) is bounded from above and achieves its
maximum on [0, 1]× R. If x > 0 is large, then any global maximum (α̂, µ̂) of ℓ is
in the interior of [0, 1] × R and satisfies 0 < µ̂ ≤ x. According to a Mathematica

computation, the choice x ≥ 1.56125... suffices for this. Assume that this holds.
Setting the two partial derivatives equal to zero and eliminating the unknown α
in a further Mathematica computation, the critical equation for µ is found to be

(x− µ)eµ
2 − x + µe−µ(2x−µ) = 0. (3.2.8)

Suppose for contradiction that both x and µ̂ are algebraic numbers over Q. Since
0 < µ̂ ≤ x, we have −µ̂(2x − µ̂) < 0 < µ̂2. Hence u1 = µ̂2, u2 = 0 and
u3 = −µ̂(2x − µ̂) are distinct algebraic numbers. The Lindemann-Weierstrass
Theorem implies that eu1 , eu2 and eu3 are linearly independent over the field of
algebraic numbers. However, from (3.2.8) we know that

(x− µ̂) · eu1 − x · eu2 + µ̂ · eu3 = 0.

This is a contradiction. We conclude that the number µ̂ is transcendental over Q.
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3. Maximum Likelihood Estimation and Transcendence

Table 3.3.1.: Seven critical points of the log-likelihood function in Theorem 3.3.1 with K = 7.

k α µ1 µ2 σ1 σ2 log-likelihood
1 0.1311958 1.098998 4.553174 0.09999497 1.746049 -27.29187821475
2 0.1032031 2.097836 4.330408 0.09997658 1.988948 -28.63974638055
3 0.07883084 3.097929 4.185754 0.09997856 2.06374 -29.15502775347
4 0.06897294 4.1 4.1 0.1 2.07517 -29.28589815510
5 0.07883084 5.102071 4.014246 0.09997856 2.06374 -29.15502775347
6 0.1032031 6.102164 3.869592 0.09997658 1.988948 -28.63974638055
7 0.1311958 7.101002 3.646826 0.09999497 1.746049 -27.29187821475

3.3. Many Critical Points

Theorem 3.1.2 shows that Gaussian mixtures do not admit an ML degree. This
raises the question of how to find any bound for the number of critical points.

Problem 5. Does there exist a universal bound on the number of non-trivial crit-
ical points for the log-likelihood function of the mixture of two univariate Gaus-
sians? Or, can we find a sequence of samples on the real line such that the number
of non-trivial critical points increases beyond any bound?

We shall resolve this problem by answering the second question affirmatively.
The idea behind our solution is to choose a sample consisting of many well-
separated clusters of size 2. Then each cluster gives rise to a distinct non-trivial
critical point (α̂, µ̂1, µ̂2, σ̂1, σ̂2) of the log-likelihood function ℓ from (3.2.2). We
propose one particular choice of data, but many others would work too.

Theorem 3.3.1. Fix sample size N = 2K for K ≥ 2, and take the ordered sample
(x1, . . . , x2K) = (1, 1.2, 2, 2.2, . . . , K,K+0.2). Then, for each k ∈ {1, . . . , K}, the
log-likelihood function ℓ from (3.2.2) has a non-trivial critical point with k < µ̂1 <
k + 0.2. Hence, there are at least K non-trivial critical points.

Before turning to the proof, we offer a numerical illustration.

Example 3.3.2. For K = 7, we have N = 14 data points in the interval [1, 7.2].
Running the EM algorithm (as explained in the proof of Theorem 3.3.1 below)
yields the non-trivial critical points reported in Table 3.3.1. Their µ1 coordinates
are seen to be close to the cluster midpoints k + 0.1 for all k. The observed
symmetry under reversing the order of the rows also holds for all larger K.
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Our proof of Theorem 3.3.1 will be based on the EM algorithm. We first recall
this algorithm. Let fα,µ,σ be the mixture density from (3.2.1), and let

fj(x) =
1√
2π σj

exp
(
−(x− µj)

2

2σ2
j

)
, j = 1, 2,

be the two Gaussian component densities. Define

γi =
α · f1(xi)

fα,µ,σ(xi)
, (3.3.1)

which can be interpreted as the conditional probability that data point xi belongs
to the first mixture component. Further, define N1 =

∑N
i=1 γi and N2 = N −N1,

which are expected cluster sizes. Following [Bis06, Section 9.2.2], the likelihood
equations for our model can be written in the following fixed-point form:

α =
N1

N
, (3.3.2)

µ1 =
1

N1

N∑
i=1

γixi, µ2 =
1

N2

N∑
i=1

(1− γi)xi, (3.3.3)

σ1 =
1

N1

N∑
i=1

γi(xi − µ1)
2, σ2 =

1

N2

N∑
i=1

(1− γi)(xi − µ2)
2. (3.3.4)

In the present context, the EM algorithm amounts to solving these equations
iteratively. More precisely, consider any starting point (α, µ1, µ2, σ1, σ2). Then
the E-step (“expectation”) computes the estimated frequencies γi via (3.3.1). In
the subsequent M-step (“maximization”), one obtains a new parameter vector
(α, µ1, µ2, σ1, σ2) by evaluating the right-hand sides of the equations (3.3.2)-(3.3.4).
The two steps are repeated until a fixed point is reached, up to the desired numer-
ical accuracy. The updates never decrease the log-likelihood. For our problem it
can be shown that the algorithm will converge to a critical point; see e.g. [RW84].

Proof. (of Theorem 3.3.1) Fix k ∈ {1, . . . , K}. We choose starting parameter
values to suggest that the pair (x2k−1, x2k) = (k, k + 0.2) belongs to the first
mixture component, while the rest of the sample belongs to the second. Explicitly,
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we set

α =
2

N
=

1

K
,

µ1 = k + 0.1, µ2 =
K2 + 1.2K − 2k − 0.2

2(K − 1)
,

σ1 = 0.1, σ2 =

√
1
12
K4 − 1

3
K3 + (k − 43

75
)K2 − (k2 − k + 14

75
)K + 0.01

K − 1
.

We shall argue that, when running the EM algorithm, the parameters will always
stay close to these starting values. Specifically, we claim that, throughout all EM
iterations, the parameter values satisfy the inequalities

1

4K
≤ α ≤ 1

K
, 0.09 ≤ µ1 − k ≤ 0.11, 0.099 ≤ σ1 ≤ 0.105, (3.3.5)

K

2
+ 0.1 ≤ µ2 ≤

K

2
+ 1.1, (3.3.6)√

K2

12
− K

6
+ 0.01 ≤ σ2 ≤

√
K2

12
+

K

12
+ 0.01. (3.3.7)

The starting values proposed above obviously satisfy the inequalities in (3.3.5),
and it is not difficult to check that (3.3.6) and (3.3.7) are satisfied as well. To
prove the theorem, it remains to show that (3.3.5)-(3.3.7) continue to hold after
an EM update.

In the remainder, we assume that K > 22. For smaller values of K the claim
of the theorem can be checked by running the EM algorithm. In particular, for
K > 3, the second standard deviation satisfies the simpler bounds

K√
12

−
√
3

5
≤ σ2 ≤

K√
12

+

√
3

12
. (3.3.8)

A key property is that the quantity γi, computed in the E-step, is always very
close to zero for i ̸= 2k − 1, 2k. To see why, rewrite (3.3.1) as

γi =
1

1 + 1−α
α

f2(xi)
f1(xi)

=
1

1 + 1−α
α

σ1

σ2
exp

{
1
2

(
(xi−µ1

σ1
)2 − (xi−µ2

σ2
)2
)} .

Since α ≤ 1/K, we have 1−α
α

≥ K − 1. On the other hand, σ1

σ2
≥ 0.099

K/
√
12+

√
3/12

.

Using that K > 22, their product is thus bounded below by 0.3209. Turning to
the exponential term, the second inequality in (3.3.5) implies that |xi−µ1| ≥ 0.89
for i = 2k − 2 or i = 2k + 1, which index the data points closest to the kth pair.
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Using (3.3.8), we obtain(
xi − µ1

σ1

)2

−
(
xi − µ2

σ2

)2

≥
(

0.89

0.105

)2

−
(

K/2 + 0.1

K/
√
12−

√
3/5

)2

≥ 67.86.

From e33.93 > 5.4 ·1014, we deduce that γi < 10−14. The exponential term becomes
only smaller as the considered data point xi move away from the kth pair. As
|i− (2k − 1/2)| increases, γi decreases and can be bounded above by a geometric
progression starting at 10−14 and with ratio 10−54. This makes γi with i ̸= 2k, 2k−1
negligible. Indeed, from the limit of geometric series, we have

s1 =
∑

i̸=2k−1,2k

γi < 10−13, (3.3.9)

and similarly, s2 =
∑

i̸=2k−1,2k γi(xi − k) satisfies

|s2| = |γ2k−2(−0.8) + γ2k+1(1) + γ2k−3(−1) + γ2k+2(1.2) + . . .| < 10−13. (3.3.10)

The two sums s1 and s2 are relevant for the M-step.
The probabilities γ2k−1 and γ2k give the main contribution to the averages that

are evaluated in the M-step. They satisfy 0.2621 ≤ γ2k−1, γ2k ≤ 0.9219. Moreover,
we may show that the values of γ2k−1 and γ2k are similar, namely:

0.8298 ≤ γ2k−1

γ2k
≤ 1.2213, (3.3.11)

which we prove by writing

γ2k−1

γ2k
=

1 + y exp(z/2)

1 + y
,

and using K > 22 to bound

y =
1− α

α

σ1

σ2

exp

{
1

2

((
k − µ1

σ1

)2

−
(
k − µ2

σ2

)2
)}

,

z =
0.4(k − µ1) + 0.04

σ2
1

− 0.4(k − µ2) + 0.04

σ2
2

.

Bringing it all together, we have

µ1 =
1

N1

N∑
i=1

γixi = k +
0.2γ2k + s2

γ2k−1 + γ2k + s1
.
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3. Maximum Likelihood Estimation and Transcendence

Using γ2k + γ2k−1 > 0.5 and (3.3.10), as well as the lower bound in (3.3.11), we
find

µ1 − k ≤ 0.2γ2k
γ2k−1 + γ2k

+
s2

γ2k−1 + γ2k
≤ 0.2γ2k

0.8298γ2k + γ2k
+ 10−12 ≤ 0.11.

Using the upper bound in (3.3.11), we also have 0.09 ≤ µ1 − k. Hence, the second
inequality in (3.3.5) holds.

The inequalities for the other parameters are verified similarly. For instance,

1

4K
<

0.2621 + 0.2621

2K
≤ γ2k−1 + γ2k + s1

2K
≤ 0.9219 + 0.9219 + 10−13

2K
<

1

K

holds for α = N1

N
. Therefore, the first inequality in (3.3.5) continues to be true.

We conclude that running the EM algorithm from the chosen starting values
yields a sequence of parameter vectors that satisfy the inequalities (3.3.5)-(3.3.8).
The sequence has at least one limit point, which must be a non-trivial critical point
of the log-likelihood function. Therefore, for every k = 1, . . . , K, the log-likelihood
function has a non-trivial critical point with µ1 ∈ (k, k + 0.2).

3.4. Further Discussion

We showed that the maximum likelihood estimator (MLE) in Gaussian mixture
models is not an algebraic function of the data, and that the log-likelihood function
may have arbitrarily many critical points. Hence, in contrast to the models studied
so far in algebraic statistics [BHSPR07,DSS08,GDP+12,SU10], there is no notion
of an ML degree for Gaussian mixtures. However, certified likelihood inference
may still be possible, via transcendental root separation bounds, as in [CCK+06,
CPPY06].

Remark 3.4.1. The Cauchy-location model, treated in [Ree85], is an example where
the ML estimation is algebraic but the ML degree, and also the maximum number
of local maxima, depends on the sample size and increases beyond any bound.

Remark 3.4.2. The ML estimation problem admits a population/infinite-sample
version. Here the maximization of the likelihood function is replaced by mini-
mization of the Kullback-Leibler divergence between a given data-generating dis-
tribution and the distributions in the model [Her05]. The question of whether
this population problem is subject to local but not global maxima was raised in
[Sre07]—in the context of Gaussian mixtures with known and equal variances.
Examples where this can actually happen have been given in [JZB+16], meaning
estimation is not that easy even in simple submodels. Further, it is known that the
Kullback-Leibler divergence for such Gaussian mixtures is not an analytic function
[Wat09, §7.8]. Readers of Japanese can find details in [Wat04].
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3.4. Further Discussion

However, in the introduction we saw that Pearson’s classical method of moments
only involved the solution of polynomial equation systems. Thus, this approach
will be in the scope of algebraic geometry. This will be the main focus of the
next chapter. In Section 4.3 we illustrate the behavior of Pearson’s method for the
sample used in Theorem 3.3.1.

35





4. Method of Moments and
Moment Varieties

In the previous chapter we saw that while the ML estimates for a Gaussian are
algebraic, this breaks down with an honest Gaussian mixture (k > 1). The method
of moments seems to be more appropriate algebraically, for these and for any model
with moments that are polynomial in the parameters [BS15]. In this chapter we
take a closer look at the Gaussian moments and revisit Pearson’s method from
a computational algebra point of view. We also introduce the algebraic varieties
that will encode the moments of Gaussians.

4.1. Moments and Cumulants

Let us first recall what moments are.

Definition 4.1.1. Let f(x) : Rn → R be the probability density function for a
random vectorX = (X1, X2, . . . , Xn). Themoment with indices i1, i2, . . . , in ≥ 0 is

mi1i2···in = E(X i1
1 X i2

2 · · ·X in
n ) =

∫
Rn

xi1
1 x

i2
2 · · · xin

n f(x1, x2, . . . , xn)dx1dx2 · · · dxn

With compact notation i = (i1, i2, . . . , in):

mi =

∫
Rn

xif(x)dx.

The integer i1 + i2 + · · ·+ in is the order of the moment. Note that m00···0 = 1.

Example 4.1.2. Let n = 1. The first moments of a Gaussian X ∼ N(µ, σ2) are:

m1 = µ

m2 = µ2 + σ2

m3 = µ3 + 3µσ2

m4 = µ4 + 6µ2σ2 + 3σ4

m5 = µ5 + 10µ3σ2 + 15µσ4

m6 = µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6.

37



4. Method of Moments and Moment Varieties

We note that each of them is a polynomial in the parameters µ, σ2. We will see
this is true in general.

It is also relatively easy to generate the higher order moments from lower order
ones:

Lemma 4.1.3. Let n = 1 and X ∼ N(µ, σ2), then its moments satisfy the recur-
rence relation:

mi+1 = µmi + iσ2mi−1

for i ≥ 1. In particular, every mi is a polynomial in Z[µ, σ2].

Proof. This follows from an adequate application of integration by parts:

mi−1 =

∫ ∞

−∞
xi−1 1√

2πσ2
e−

(x−µ)2

2σ2 dx

=
1√
2πσ2

∫ ∞

−∞

[
xi

i

]′
e−

(x−µ)2

2σ2 dx

=

[
xi

i
e−

(x−µ)2

2σ2

]x=∞

x=−∞
+

1√
2πσ2

∫ ∞

−∞

xi

i

(x− µ)

σ2
e−

(x−µ)2

2σ2 dx

= 0 +
1

iσ2
mi+1 −

µ

iσ2
mi

Multiplying by iσ2 gives the desired result.

Remark 4.1.4. The classical Hermite polynomials Hn(x) are recovered as Hn(µ) =
mn when substituting the negative ‘variance’ σ2 = −1.

Example 4.1.5. Let n = 2:

X ∼ N

((
µ1

µ2

)
,

(
σ11 σ12

σ12 σ22

))
.

Then one can compute:

• moments of order 1: m10 = µ1 , m01 = µ2

• moments of order 2: m20 = µ2
1 + σ11 , m11 = µ1µ2 + σ12 , m02 = µ2

2 + σ22

• moments of order 3: m30 = µ3
1 + 3µ1σ11 , m21 = µ2

1µ2 + 2µ1σ12 + µ2σ11 ,
m12 = µ1µ

2
2 + 2µ2σ12 + µ1σ22 , m03 = µ3

2 + 3µ2σ22

One useful way to obtain and represent the moments is as the coefficients of a
generating function.
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4.1. Moments and Cumulants

Definition 4.1.6. Let X ∼ N(µ,Σ), then its moment generating function is

MX(t) = et
Tµ+ 1

2
tTΣt. Writing out the entries we have that MX(t1, t2, . . . , tn) is

given by

∑
i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · tinn = exp

( n∑
r=1

µrtr

)
· exp

(
1

2

n∑
i,j=1

σijtitj

)
(4.1.1)

In this way, a Taylor series expansion of MX(t) reveals the moments mi1i2···in .

There is another coordinate system that is also used to measure properties of a
distribution: cumulants. It can simplify many expressions. For this reason we will
frequently present expressions in them. Here is the definition.

Definition 4.1.7. Let MX(t1, t2, . . . , tn) be a moment generating function. Then
the cumulant generating function is given by KX(t) = log(MX(t)). Its expansion

KX(t1, . . . , tn) =
∑

i1,i2,...,in≥0

ki1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · tinn (4.1.2)

gives the cumulant ki1i2···in of index i1i2 . . . in.

Note that m00..0 = 1 implies k00..0 = 0.

Example 4.1.8. Let n = 1. The first six cumulants in terms of the first six
moments are:

k1 = m1

k2 = m2 −m2
1

k3 = m3 − 3m1m2 + 2m3
1

k4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1

k5 = m5 − 5m1m4 − 10m2m3 + 20m2
1m3 + 30m1m

2
2 − 60m3

1m2 + 24m5
1

k6 = m6 − 6m1m5 − 15m2m4 + 30m2
1m4 − 10m2

3 + 120m1m2m3

− 120m3
1m3 + 30m3

2 − 270m2
1m

2
2 + 360m4

1m2 − 120m6
1

(4.1.3)

Remark 4.1.9. If the assumption m1 = 0 is made, then the first three cumulants
and the first three moments coincide: k1 = m1, k2 = m2, k3 = m3.

Remark 4.1.10. In Pearson’s polynomial (1.1.4) (where m1 = 0), the simplifying
expressions λ4 = 9m2

2 − 3m4, λ5 = 30m2m3 − 3m5 are precisely the cumulant
multiples −3k4 and −3k5. In the next section we will derive Pearson’s polynomial
entirely in cumulants, simplifying expression (1.1.4) further.
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4. Method of Moments and Moment Varieties

One can always express moments of order ≤ d as polynomials in cumulants of
order ≤ d, and vice versa, via the generating function identities:

MX(t) = exp(KX(t)) and KX(t) = log(MX(t)). (4.1.4)

Finally, we mention a very important property of the Gaussian distribution with
respect to its cumulants.

Example 4.1.11. For the Gaussian X ∼ N(µ,Σ) we have the moment generating

function MX(t) = et
Tµ+ 1

2
tTΣt, so the cumulant generating function K = log(M) is

simply:

KX(t) = tTµ+
1

2
tTΣt.

Thus, all Gaussian cumulants ki1i2...,in of order greater than 2 vanish!

4.2. The Pearson Polynomial

Recall that the method of moments in statistics was introduced by Pearson in his
1894 paper [Pea94]. In our view, this can be regarded as the beginning of Algebraic
Statistics. In this section we revisit Pearson’s computation and related work of
Lazard [Laz04], and we extend them further.

Pearson’s method of moments identifies the parameters in a mixture of two
univariate Gaussians. In order to simplify the use of subindices in the derivations
that follow, in this section we will denote the two Gaussians as: N(µ, σ2) and
N(ν, τ 2) (instead of µ1, µ2 and σ1, σ2).

Suppose the first five moments m1,m2,m3,m4,m5 are given numerically from
data. Pearson [Pea94] solves the corresponding five equations

m0 = 1
m1 = αµ+ (1− α)ν
m2 = α(µ2 + σ2) + (1− α)(ν2 + τ 2)
m3 = α(µ3 + 3µσ2) + (1− α)(ν3 + 3ντ 2)
m4 = α(µ4 + 6µ2σ2 + 3σ4) + (1− α)(ν4 + 6ν2τ 2 + 3τ 4)
m5 = α(µ5 + 10µ3σ2 + 15µσ4) + (1− α)(ν5 + 10ν3τ 2 + 15ντ 4)

(4.2.1)

for the five unknowns α, µ, ν, σ, τ .
As mentioned in the previous section, we will prefer to work in cumulants. We

can obtain numerical values for k1, k2, k3, k4, k5 from the formulas in (4.1.3). We
will derive a simplified version of Pearson’s polynomial (1.1.4) in cumulants.

Indeed, to solve the system (4.2.1) the crucial first step is to find the roots of
the following univariate polynomial of degree 9 in p.
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4.2. The Pearson Polynomial

Proposition 4.2.1. The product of normalized means p = (µ−m1)(ν −m1) is a
root of the polynomial

8p9 + 28k4p
7 + 12k2

3p
6 + (24k3k5 + 30k2

4)p
5 + (148k2

3k4 − 6k2
5)p

4

+(96k4
3 + 9k3

4 − 36k3k4k5)p
3 + (−21k2

3k
2
4 − 24k3

3k5)p
2 − 32k4

3k4p− 8k6
3.

(4.2.2)

Proof. We first prove the identity (4.2.2) under the assumption that the empirical
mean is zero:

m1 = αµ+ (1− α)ν = 0. (4.2.3)

In order to work modulo the symmetry that switches the two Gaussian com-
ponents, we replace the unknown means µ and ν by their first two elementary
symmetric polynomials:

p = µν and s = µ+ ν. (4.2.4)

In [Pea94], Pearson applies considerable effort and cleverness to eliminating the
unknowns µ, ν, σ, τ, α from the constraints (4.2.1),(4.2.3),(4.2.4). We here offer a
derivation that can be checked easily in a computer algebra system. We start by
solving (4.2.3) for α. Substituting

α =
−ν

µ− ν
. (4.2.5)

into k2 = α(µ2+σ2)+(1−α)(ν2+τ 2), we obtain the relation k2 = −R1−p, where

R1 =
σ2ν − τ 2µ

µ− ν
. (4.2.6)

This the first of a series of semi-invariants Ri that appear naturally when trying
to write the cumulant expressions in terms of p and s. In the next instance, by
letting

R2 =
σ2 − τ 2

µ− ν
(4.2.7)

we can write k3 = −(3R2 + s)p. In a similar way, we obtain

k4 = 3R3 + p(p− s2)− 3k2
2

k5 = 5R4p− sp(s2 − 2p)− 10k2k3
k6 = 15R5 − p(s4 − 3s2p+ p2)− 15k3

2 − 15k2k4 − 10k2
3

(4.2.8)
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4. Method of Moments and Moment Varieties

where

R3 = (µσ4 − ντ 4 + 2µν2τ 2 − 2µ2νσ2)/(µ− ν)
R4 = (3τ 4 − 3σ4 + 2ν2τ 2 − 2µ2σ2)/(µ− ν)
R5 = (µ4νσ2 − µν4τ 2 + 3µ2νσ4 − 3µν2τ 4 + νσ6 − µτ 6)/(µ− ν).

(4.2.9)

It turns out that R3, R4, R5 are not independent of R1, R2. Namely, we find

R3 = R2
1 + 2pR1 − 2spR2 − pR2

2

R4 = 2sR1 + 6R1R2 + 2(p− s2)R2 − 3sR2
2

R5 = −R3
1 − 3pR2

1 + (s2p− p2)R1 + 6spR1R2 + 3pR1R
2
2

+(2sp2 − s3p)R2 + (3p2 − 3s2p)R2
2 − spR2

2.

(4.2.10)

We now express the three right hand sides in terms of p, s, k2, k3 using the relations

R1 = −k2 − p and R2 = −s

3
− k3

3p
. (4.2.11)

Plugging the resulting expressions for R3 and R4 into the first two equations of
(4.2.8), we get

−2p2s2 − 4spk3 + 6p3 + 3k4p+ k2
3 = 0,

−2p2s3 + 4p3s+ 5sk2
3 − 20p2k3 + 3k5p = 0.

(4.2.12)

Pearson’s polynomial (4.2.2) is the resultant of these two polynomials with respect
to s.

The proof is completed by noting that the entire derivation is invariant under
replacing the parameters for the means µ and ν by the normalized means µ−m1

and ν −m1.

Remark 4.2.2. Gröbner bases reveal the following consequence of the two equations
in (4.2.12):

(4p3k3−4k3
3−6pk3k4−2p2k5)s+4p5+14p2k2

3+8p3k4+k2
3k4+3pk2

4−2pk3k5 = 0.

This furnishes an expression for s as rational function in the quantities k3, k4, p.
Note that this expression and (4.2.2) do not depend on k2 at all. The second
moment m2 is only involved via k4.

Once the Pearson polynomial has been obtained, the method of moments for
k = 2, n = 1 works as follows. From the data, compute the empirical moments
m1, . . . ,m5, and derive the cumulants k3, k4, k5 via (4.1.3). Next compute the nine
complex zeros of the Pearson polynomial (4.2.2). We are only interested in zeros
p that are real and non-positive, because (µ −m1)(ν −m1) ≤ 0. All other zeros
get discarded. For each non-positive zero p of (4.2.2), compute the corresponding
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4.2. The Pearson Polynomial

s from the equation in Remark 4.2.2. By (4.2.4), we obtain µ and ν as the two
zeros of the equation x2 − sx + p = 0. The mixture parameter α is given by
(4.2.5). Finally, since R1 and R2 are now known by (4.2.11), we obtain σ2 and τ 2

by solving an inhomogeneous system of two linear equations, (4.2.6) and (4.2.7).
Note that what we described above computes µ −m1, ν −m1, so we should add
m1 to recover µ and ν.

The algorithm in the previous paragraph works well when m1,m2,m3,m4,m5

are general enough. For special values of the empirical moments, however, one
might encounter zero denominators and other degeneracies. Extra care is needed
in those cases. We implemented a complete method of moments (for n = 1, k = 2)
in the statistics software R. See Appendix C for the corresponding code and scripts.

Pearson [Pea94] applied his method to measurements taken from crabs in the
Bay of Naples. His data set is the histogram presented in Figure 1.1.1.
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Figure 4.2.1.: Approximation of crabs data by a mixture of two Gaussians.

Pearson computes the empirical moments from the crab data, and he takes these
as the numerical values for m1,m2,m3,m4,m5. The resulting nonic polynomial
(4.2.2) has three real roots, two of which are non-positive. One computes the
model parameters as above. At this point, Pearson has two statistically meaningful
solutions. To choose between them, he computes m6 in each case, and selects the
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4. Method of Moments and Moment Varieties

model that is closest to the empirical m6. Pearson’s method gives the parameters
µ = 0.633, σ = 0.018, ν = 0.657, τ = 0.012, α = 0.414. The resulting probability
density function scaled to match the histogram and its mixture components are
shown in Figure 4.2.1.

Suppose the moments m1, . . . ,m6 are measured exactly from a mixture of two
univariate Gaussians. Pearson’s experiment suggests that if we add the equation
for the sixth moment m6:

m6 = α(µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6) + (1− α)(ν6 + 15ν4τ 2 + 45ν2τ 4 + 15τ 6),

to the polynomial system (4.2.1), the parameters that created the 6 moments will
be the unique solution of the new system. In fact, we can obtain a single relation
among the first six moments that identifies mixtures of two univariate Gaussians.

Theorem 4.2.3. There exists an irreducible polynomial relation of degree 39 in
m1,m2,m3,m4,m5,m6 with 31154 terms that vanishes on the six moments of a
mixture of two univariate Gaussians. This polynomial has degrees 33, 32, 23, 17, 12, 9
in m1,m2,m3,m4,m5,m6 respectively.

Proof. Using (4.2.10) and (4.2.11), the last equation in (4.2.8) translates into

5sk3
3 − 144p5 + (72s2 − 270k2)p

4 + (90s2k2 + 180sk3 − 4s4)p3+
(−135k2k4 + 180sk2k3 − 30s3k3 − 90k2

3 − 9k6)p
2 − 30k2

3(s
2 + 3

2
k2)p = 0.

(4.2.13)

We now eliminate the unknowns p and s from the three equations in (4.2.12)
and (4.2.13). After removing an extraneous factor k3

3, we obtain an irreducible
polynomial in k3, k4, k5, k6 of degree 23 with 195 terms. This polynomial is also
mentioned in [Laz04, Proposition 12].

We finally substitute the expressions in (4.1.3) to get an inhomogeneous poly-
nomial in m1,m2, . . . ,m6 of degree 39 with 31154 terms. At this point, we check
that this polynomial vanishes at the parametrization (4.2.1). The degree in each
moment mi is read off by inspection.

We will come back to this result and make it more precise in terms of secants
of moment varieties in Chapter 5.

4.3. Comparison to Maximum Likelihood

To make a first comparison between the two methods, we now note what happens
when we already apply the Method of Moments (MOM) when k = 1:

Example 4.3.1. Sample x1, x2, . . . , xN ∈ Rn from X ∼ N(µ,Σ). The vector of
first order moments is given by M1 = µ and the matrix of second order moments
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4.3. Comparison to Maximum Likelihood

is M2 = µµT + Σ. Thus, the method of moments equations are:

M̂1 = µ̂ M̂2 = µ̂µ̂T + Σ̂

which give immediately the solutions:

µ̂ = M̂1 Σ̂ = M̂2 − M̂1M̂1
T
,

where the sample moments are:

M̂1 =
1

N

N∑
i=1

xi M̂2 =
1

N

N∑
i=1

xix
T
i .

This means that the MOM estimates are given by

µ̂ =
1

N

N∑
i=1

xi = x̄

Σ̂ =
1

N

N∑
i=1

xix
T
i − x̄x̄T =

1

N

N∑
i=1

(xi − x̄)(xi − x̄)T

We see then the nice fact that the method of moments estimates for k = 1
coincide with the ones from maximum likelihood (Example 3.1.1)!

Remark 4.3.2. Here we arranged the first order moments in a vector M1 and the
second order moments into a matrix M2. In general, in dimension n, all moments
of order d can be arranged naturally in a symmetric tensor of order d with format
n × n × · · · × n. For a friendly introduction to tensors and their eigenvectors see
[Stu16]. Of particular interest are tensors that admit an orthogonal decomposition,
as is the case of real symmetric matrices for d = 2 [Rob16]. We will come back to
this point of view in Section 6.1.

In Section 3.3, the sample consisting of the following N = 2K data points was
examined:

1, 1.2, 2, 2.2, 3, 3.2, 4, . . . , K, K + 0.2 (for K > 1). (4.3.1)

Its main purpose was to illustrate that, unlike most models studied in Algebraic
Statistics, there is no notion of ML degree for a mixture of two Gaussians. In
fact, the particular sample in (4.3.1) has the property that, as K increases, the
number of critical points of the log-likelihood function grows without any bound.
We proved in Theorem 3.3.1 that for each ‘cluster’ or pair (k, k + 0.2), one can
find a non-trivial critical point (α̂, µ̂, ν̂, σ̂, τ̂) of the likelihood equations such that
the mean estimate µ̂ lies between them.
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4. Method of Moments and Moment Varieties

Now let’s apply Pearson’s method of moments to this sample. The special
nature of the data raises some interesting considerations. As we shall see, the even
spacing of the points in the list (4.3.1) implies that all empirical cumulants of odd
order ≥ 3 vanish:

k3 = k5 = k7 = k9 = · · · = 0. (4.3.2)

Let us analyze what happens when applying the method of moments to any sample
that satisfies (4.3.2). Under this hypothesis Pearson’s polynomial (4.2.2) factors
as follows:

8p9 + 28p7k4 + 30p5k2
4 + 9p3k3

4 = 8p3
(
p2 +

3

2
k4

)2(
p2 +

1

2
k4

)
= 0. (4.3.3)

Recall that p represents p = (µ − m1)(ν − m1). The first root of the Pearson
polynomial is p = 0. This implies m1 = µ or m1 = ν. Since m1 is the weighted
average of µ and ν, we conclude that the means are equal: m1 = µ = ν. However,
the equal-means model cannot be recovered from the first five moments. To see
this, note that the equations for cumulants k1 = 0, k3 = 0 and k5 = 0 become
0 = 0, yielding no information on the remaining three parameters.

If we assume that also the sixth moment m6 is known from the data, then the
parameters can be identified. The original system (4.2.1) under the equal-means
model µ = ν = 0 equals

m2 = ασ2 + (1− α)τ 2

m4 = 3ασ4 + 3(1− α)τ 4

m6 = 15ασ6 + 15(1− α)τ 6.
(4.3.4)

After some rewriting and elimination:

α(σ2 − τ 2) = k2 − τ 2

5k4(σ
2 + τ 2) = 10k2k4 + k6

15k4(σ
2τ 2) = 3k2k6 + 15k2

2k4 − 5k2
4.

(4.3.5)

Assuming k4 ̸= 0, this system can be solved easily in radicals for α, σ, τ .
If k4 ≥ 0 then p = 0 is the only real zero of (4.3.3). If k4 < 0 then two other

solutions are:

p = −
√

−3

2
k4 and p = −

√
−1

2
k4. (4.3.6)

Note that p must be negative because it is the product of the two normalized
means.

The mean of the sample in (4.3.1) is m1 = K/2 + 3/5. The central moments
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4.3. Comparison to Maximum Likelihood

are

mr =
1

2K
·
( K∑

i=1

(
i−m1

)r
+

K∑
i=1

(
i−m1+

1

5

)r)
for r = 2, 3, 4, . . . (4.3.7)

This expression is a polynomial of degree r in K. That polynomial is zero when
r is odd. Using (4.1.3), this implies the vanishing of the odd sample cumulants
(4.3.2). For even r, we get

m2 =
1

12
K2 − 11

150
, m4 =

1

80
K4 − 11

300
K2 +

91

3750

m6 =
1

448
K6 − 11

800
K4 +

91

3000
K2 − 12347

656250
.

These polynomials nicely simplify to binomials when we substitute the moments
into (4.1.3):

k1 =
K

2
+0.6, k2 =

K2

12
− 11

150
, k4 = −K4

120
+

61

7500
, k6 =

K6

252
− 7781

1968750
. (4.3.8)

These are the sample cumulants. If our purpose were to estimate the cumulants,
these are biased estimators, and k-statistics may be preferable. However, we are
estimating the moments so we shall use (4.3.8) in our derivation.

Since K ≥ 1, we have k4 < 0 in (4.3.8). Hence the Pearson polynomial has
three distinct real roots. For p = 0, substituting (4.3.2) and (4.3.8) into (4.3.5)
shows that, for every value of K, there are no positive real solutions for both σ
and τ . Thus the method of moments concludes that the sample does not come
from a mixture of two Gaussians with the same mean.

Next we consider the two other roots in (4.3.6). To recover the corresponding
s-values, we use the system (4.2.12) with all odd cumulants replaced by zero:

p(6p2 − 2s2p+ 3k4) = 0
2sp2(2p− s2) = 0

(4.3.9)

For p = −
√

−3
2
k4, the first equation gives s ̸= 0, and the second yields a non-real

value for s, so this is not viable. For p = −
√

−1
2
k4, we obtain s = 0, and this is

now a valid solution.
In conclusion, Pearson’s method of moments infers a non-equal-means model

for the data (4.3.1). Using central moments, i.e. after subtracting m1 = K/2+3/5

from each data point, we find µ = −ν = 4

√
−k4
2
. These values lead to α = 1

2
and
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4. Method of Moments and Moment Varieties

σ = τ . The final estimate is (α, µ, σ2, ν, τ 2) =(
1

2
, m1 −

4

√
−k4
2

, k2 −
√

−k4
2

, m1 +
4

√
−k4
2

, k2 −
√

−k4
2

)
. (4.3.10)

We are now in a position to compare this estimate to those found by maximum
likelihood.

0 2 4 6 8

0.
05

0.
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0.
15

0.
20

Gaussian mixture model for sample with K=7

 

Figure 4.3.1.: The sample data forK = 7 (in blue) is approximated by a mixture of two Gaussians
via the method of moments. The parameter values are derived in Example 4.3.3.

Example 4.3.3. (sample from Theorem 3.3.1 with K = 7) The sample consists of
the 14 data points 1,1.2,2,2.2,3,3.2,4,4.2,5,5.2,6,6.2,7,7.2. The method of moments
estimator (4.3.10) (α, µ, σ, ν, τ) evaluates to(

1

2
,
41− 4

√
100001

10
,

√
401−

√
100001

10
,
41 + 4

√
100001

10
,

√
401−

√
100001

10

)
.

For general k3, k4, k5, Pearson’s equation (4.2.2) of degree 9 cannot be solved in
radicals, as its roots are algebraic numbers with Galois group S9 over Q. However,
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4.4. Varieties of Moments

for our special data, the algebraic degree of the solution drops, and we could write
the estimate in radicals.

The situation is dramatically different for likelihood inference. It was shown in
Chapter 3 that the critical points for the likelihood function of the mixture of two
Gaussians with data (4.3.1) have transcendental coordinates, and that the number
of these critical points grows with K.

It is thus interesting to assess the quality of our solution (4.3.10) from the
likelihood perspective. The probability density function for the Gaussian mixture
with these parameters is shown in Figure 4.3.1. The corresponding value of the
log-likelihood function is −28.79618895.

If the estimate (4.3.10) is used as starting point in the EM algorithm, then it
converges to the stationary point

(α, µ, σ, ν, τ) = (0.500000, 2.420362, 5.77968, 1.090329, 1.090329).

That point has a log-likelihood value of approximately −28.43415. Comparing
to Table 3.3.1, this value is only beaten by the critical points associated to the
endpoints k = 1 and k = 7.

We make the following observation: of all the critical points listed in Table 3.3.1,
the middle clusters get the lowest log-likelihood. Hence an equal-means model is
not very likely for this sample. This is further confirmed by the method of moments
(MOM) since, as mentioned above, the equal-means model is inconsistent with our
polynomial equations.

Behavior similar to Example 4.3.3 is observed for all K ≥ 2. The MOM esti-
mate separates the sample into two halves, and assigns the same variance to both
Gaussian components. The exact parameter estimates are obtained by substitut-
ing m1, k2, k4 from (4.3.8) into (4.3.10). For K = 20, the estimate computed by
the EM algorithm with the MOM estimate as starting point beats in likelihood
value all K critical points listed in Theorem 3.3.1. For K > 20, the likelihood
value of the MOM estimate itself appears to be already better than the critical
points listed in Theorem 3.3.1. In other words, the MOM produces good starting
points for maximum likelihood.

4.4. Varieties of Moments

We have got this far without really getting into the algebraic theory that we will
need to study the method of moments. We will do so in this section.

Recall from Section 4.1 that the n-dimensional Gaussian distribution is defined
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4. Method of Moments and Moment Varieties

by the moment generating function

∑
i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · tinn = exp

( n∑
r=1

µrtr

)
· exp

(
1

2

n∑
i,j=1

σijtitj

)
. (4.4.1)

The model parameters are the entries of the mean µ = (µ1, . . . , µn) and of the co-
variance matrix Σ = (σij). The unknowns µi have degree 1, and the unknowns σij

have degree 2. Thenmi1i2···in is a homogeneous polynomial of degree i1+i2+ · · ·+in
in the n+

(
n+1
2

)
unknowns.

Definition 4.4.1. Let PN be the projective space of dimension N =
(
n+d
d

)
− 1

whose coordinates are all N +1 moments mi1i2···in with i1 + i2 + · · ·+ in ≤ d. The
closure of the image of parametrization (4.4.1) is a subvariety Gn,d of PN . We call
this the Gaussian moment variety of order d.

Note that the dimension of Gn,d equals n+
(
n+1
2

)
. In this section we will discuss

this variety and its defining polynomials. Let us examine the Gaussian moment
varieties Gn,d, starting with the case n = 1. The moment variety G1,d is a surface
in Pd. Its defining polynomial equations are as follows:

Proposition 4.4.2. Let d ≥ 3. The homogeneous prime ideal of the Gaussian
moment surface G1,d is minimally generated by

(
d
3

)
cubics. These are the 3 × 3-

minors of the 3× d-matrix

Hd =

⎛⎝ 0 m0 2m1 3m2 4m3 · · · (d− 1)md−2

m0 m1 m2 m3 m4 · · · md−1

m1 m2 m3 m4 m5 · · · md

⎞⎠ .

Proof. Let Id = I(G1,d) be the vanishing ideal of the moment surface, and let Jd
be the ideal generated by the 3× 3-minors of Hd. Now, by Lemma 4.1.3, we know
that the moments of the univariate Gaussian distribution satisfy the recurrence
relation

mi = µ mi−1 + (i− 1)σ2mi−2 for i ≥ 1. (4.4.2)

Hence the row vector (σ2, µ,−1) is in the left kernel of Hd. Thus rank(Hd) = 2,
and this means that all 3× 3-minors of Hd indeed vanish on the surface G1,d. This
proves Jd ⊆ Id.

From the previous inclusion we have dim(V (Jd)) ≥ 2. Fix a monomial order
such that the antidiagonal product is the leading term in each of the 3× 3-minors
of Hd. These leading terms are the distinct cubic monomials in m1,m2, . . . ,md−2.
Hence the initial ideal satisfies

⟨m1,m2, . . . ,md−2⟩3 ⊆ in(Jd). (4.4.3)
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4.4. Varieties of Moments

This shows that dim(V (Jd)) = dim(V (in(Jd))) ≤ 2, and hence V (Jd) has dimen-
sion 2 in Pd.

We next argue that V (Jd) is an irreducible surface. On the affine space Ad =
{m0 = 1}, this holds, even ideal-theoretically, because the minor indexed by 1, 2
and i expresses mi as a polynomial in m1 and m2. Consider the intersection of
V (Jd) with Pd−1 = {m0 = 0}. The matrixHd shows thatm1 = m2 = · · · = md−2 =
0 holds on that hyperplane at infinity, so V (Jd)∩{m0 = 0} is a curve. Every point
on that curve is the limit of points in V (Jd) ∩ {m0 = 1} = V (Id) ∩ {m0 = 1},
obtained by making (µ, σ) larger in an appropriate direction. This shows that
V (Jd) is irreducible, and we conclude that V (Jd) = V (Id).

At this point we only need to exclude the possibility that Jd has lower dimen-
sional embedded components. However, there are no such components because
the ideal of maximal minors of a 3 × d-matrix of unknowns is Cohen-Macaulay
(see Theorem 18.18 in [Eis13]), and V (Jd) has the expected dimension for an in-
tersection with Pd. This shows that Jd is a Cohen-Macaulay ideal. Hence Jd has
no embedded associated primes, and we conclude that Jd = Id as desired.

Corollary 4.4.3. The 3×3-minors of the matrix Hd form a Gröbner basis for the
prime ideal of the Gaussian moment surface G1,d ⊂ Pd with respect to the reverse
lexicographic term order.

Proof. The ideal Jd of G1,d is generated by the 3 × 3-minors of Hd. Our claim
states that equality holds in (4.4.3). This can be seen by examining the Hilbert
series of both ideals. It is known that the ideal of r × r-minors of a generic
r × d-matrix has the same numerator of the Hilbert series as the r-th power of
the monomial ideal ⟨m1,m2, . . . ,md−r+1⟩ (see e.g. [BV06, Remark 9.20]). Since
that ideal is Cohen-Macaulay, this Hilbert series numerator remains unchanged
under transverse linear sections. Hence our ideal Jd has the same Hilbert series
numerator as ⟨m1,m2, . . . ,md−2⟩3. This implies that the two ideals in (4.4.3) have
the same Hilbert series, so they are equal.

The argument above tells us that our surface has the same degree as the ideal
⟨m1,m2, . . . ,md−2⟩3:

Corollary 4.4.4. The Gaussian moment surface G1,d has degree
(
d
2

)
in Pd.

We go one step further and determine the singular locus on the Gaussian mo-
ment surface.

Lemma 4.4.5. The singular locus of the surface G1,d is a single line. It is defined
by ⟨m0,m1, . . . ,md−2⟩.

Proof. Let L be the line defined by ⟨m0,m1, . . . ,md−2⟩ and S = Sing(G1,d). We
claim L = S.
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4. Method of Moments and Moment Varieties

We first show that S ⊆ L. Consider the affine open chart {m0 = 1} of G1,d.
On that chart, the coordinates mi are polynomial functions in the unknowns
m0, . . . ,mi−1, for i ≥ 3. Indeed, the 3 × 3-minor of Hd with column indices
1, 2 and i has the form mi − h(m0, . . . ,mi−1). Hence G1,d ∩ {m0 = 1} ≃ A2, and
therefore S ⊂ {m0 = 0}. Next suppose m0 = 0. The leftmost 3 × 3-minor of Hd

implies m1 = 0. Now, the minor with columns 2, 3, 4 implies that m2 = 0, the
minor with columns 3, 4, 5 implies that m3 = 0, etc. From the rightmost minor
we conclude md−2 = 0. This shows that G1,d ∩ {m0 = 0} = L, and we conclude
S ⊆ L.

For the reverse inclusion L ⊆ S, we consider the Jacobian matrix of the cubics
that define G1,d. That matrix has d+1 rows and

(
d
3

)
columns. We claim that it has

rank ≤ d− 3 on L. To see this, note that the term mim
2
d−1 appears in the minor

of Hd with columns i, d − 1, d for i = 2, . . . , d − 2, and that all other occurrences
of md−1 or md in any of the 3× 3-minors of Hd is linear. Therefore the Jacobian
matrix restricted to L has only d − 3 non-zero entries, and so its rank is at most
d − 3. This is less than d − 2 = codim(G1,d). We conclude that all points on the
line L are singular points in the Gaussian moment surface G1,d.

It is natural to ask whether the nice determinantal representation extends to
the varieties Gn,d when n ≥ 2. The answer is yes and no. Let us explain. For
n ≥ 2 it is difficult to compute the prime ideal of the Gaussian moment variety
Gn,d in PN , so one approach is to work on the affine open set AN = {m00···0 = 1}.
We define the affine Gaussian moment variety to be the intersection of Gn,d with
the the affine chart AN = {m00···0 = 1} in PN .

On that affine space, Gn,d is a complete intersection defined by the vanishing of
all cumulants ki1i2···in whose order i1 + i2 + · · ·+ in is between 3 and d. Why?

The transformation (4.1.4) between moments and cumulants is an isomorphism.
Under this isomorphism, the affine Gaussian moment variety is the linear space de-
fined by the vanishing of all cumulants of orders 3, 4, . . . , d. Indeed, recall Example
4.1.11. This implies:

Remark 4.4.6. The affine moment variety Gn,d∩AN is an affine space of dimension
n+

(
n+1
2

)
.

For instance, the 5-dimensional affine variety G2,3 ∩ A9 is isomorphic to the
5-dimensional linear space defined by k30 = k21 = k12 = k03 = 0. Each such
cumulant is a polynomial in the moments, as explained in section 4.1. The ideal
of Gn,d is then obtained from the ideal of cumulants by saturating with respect
to m00···0. In that way, the affine Gaussian moment variety is still determinantal
when n > 1 but this does not hold necessarily for Gn,d.

Actually, the determinantal representation for Gn,d does not hold even in the
first nontrivial case, when n = 2 and d = 3:
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4.4. Varieties of Moments

Proposition 4.4.7. The 5-dimensional variety G2,3 has degree 16 in P9. Its ho-
mogeneous prime ideal is minimally generated by 14 cubics and 4 quartics, and the
Hilbert series equals

1 + 4t+ 10t2 + 6t3 − 4t4 − t5

(1− t)6
.

Starting from four of the cubics, the ideal can be computed by a saturation:

⟨ 2m3
10 − 3m00m10m20 +m2

00m30 , 2m01m
2
10 − 2m00m10m11 −m00m01m20 +m2

00m21,
2m2

01m10−m00m02m10−2m00m01m11+m2
00m12, 2m

3
01−3m00m01m02+m2

00m03 ⟩ : ⟨m00⟩∞

The four special cubics above are the cumulants k30, k21, k12, k03 when expressed
in terms of moments.

Remark 4.4.8. We want to stress the moment-cumulant relation (4.1.4). Either
moments or cumulants can serve as an affine coordinate system on the PN whose
points are inhomogeneous polynomials of degree ≤ d in n variables. To be precise,
the affine space AN = {m00···0 = 1} consists of those polynomials whose constant
term is nonzero. Hence the formulas (4.1.4) represent a non-linear change of vari-
ables on AN . This was called Cremona linearization in [CCM+16]. We agree with
the authors of [CCM+16] that passing fromm-coordinates to k-coordinates usually
simplifies the description of interesting varieties in PN .

We next exhibit an alternative representation of Gn,d ∩ AN as a determinantal
variety. This is derived from Willink’s recursion in [Wil05]. Recall from Remark
4.1.4 that the classical Hermite polynomials are very closely related to the mo-
ment polynomials for a univariate Gaussian. What Willink does is to look at the
multivariate Hermite polynomials, known to satisfy certain recurrence relations.
Translating back to multivariate Gaussian moments, he can obtain analogous re-
currences for them. These are [Wil05, eqn (13)]:

mi1···ir+1···in = µr ·mi1···ir···in +
n∑

j=1

σrj · ij ·mi1···ir−1···in , (4.4.4)

for each index r = 1, . . . , n. When n = 1 we recover Lemma 4.1.3.
In this way, we can generalize the matrix Bd in Proposition 4.4.2. We de-

fine the Willink matrix Wn,d as follows. Its rows are indexed by vectors u ∈
Nn with |u| ≤ d − 1. The matrix Wd,n has 2n + 1 columns. The first en-
try in the row u is the corresponding moment mu. The next n entries in the
row u are mu+e1 , mu+e2 , . . . , mu+en . Finally, the last n entries in the row u
are u1mu−e1 , u2mu−e2 , . . . , unmu−en . Thus the Willink matrix Wn,d has format(
n+d−1
d−1

)
× (2n+ 1) and each entry is a scalar multiple of one of the moments. For

n = 1, the d×3-matrix W1,d equals the transpose of the matrix Bd after permuting
rows.
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Proposition 4.4.9. The affine Gaussian moment variety Gn,d ∩ AN is defined by
the vanishing of the (n+ 2)× (n+ 2)-minors of the Willink matrix Wn,d.

Proof. Suppose that the matrix Wn,d is filled with the moments of a Gaussian
distribution on Rn, and consider the n linearly independent vectors(

µi, 0, . . . , 0,−1, 0, . . . , 0, σ1i, σ2i, . . . , σni

)T
for i = 1, 2, . . . , n. (4.4.5)

Here the entry −1 appears in the (i+ 1)st coordinate. By (4.4.4), these n vectors
are in the kernel of Wn,d. Hence the rank of Wn,d is ≤ n+1, and the (n+2)-minors
are zero.

Conversely, let m be an arbitrary point in AN for which the matrix Wn,d has
rank ≤ n + 1. The square submatrix indexed by the rows 1, 2, . . . , n + 1 and the
columns 1, n+ 2, . . . , 2n+ 1 has determinant equal to mn+1

00···0 = 1. Hence the rank
of Wn,d is exactly n+1. The kernel of the submatrix given by the first n+1 rows
is an n-dimensional space for which we can pick a basis of the form (4.4.5). The
entries can be interpreted as the mean and the covariance matrix of a Gaussian
distribution. The rank hypothesis onWn,d now ensures that the n vectors in (4.4.5)
are in the kernel of the full matrix Wn,d. This means that the higher moments
satisfy the recurrences in (4.4.4), and hence the chosen point m lies in Gn,d.

Example 4.4.10. Consider the moments of order at most four for a bivariate
Gaussian (n = 2, d = 4). The variety G2,4 has dimension 5 in P14. Its Willink
matrix has format 10× 5:

W2,4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m00 m01 m10 0 0
m01 m02 m11 0 m00

m10 m11 m20 m00 0
m02 m03 m12 0 2m01

m11 m12 m21 m01 m10

m20 m21 m30 2m10 0
m03 m04 m13 0 3m02

m12 m13 m22 m02 2m11

m21 m22 m31 2m11 m20

m30 m31 m40 3m20 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The ideal of 4×4-minors ofW2,4 is minimally generated by 657 quartics. Saturation
with respect to the coordinate m00 yields the prime ideal of G2,4, and we describe
it next.

The affine moment variety G2,4 ∩ A14 is defined by the vanishing of the nine
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cumulants of order 3:

k03 = 2m3
01 − 3m01m02 +m03

k12 = 2m2
01m10 − 2m01m11 −m02m10 +m12

k21 = 2m01m
2
10 −m01m20 − 2m10m11 +m21

k30 = 2m3
10 − 3m10m20 +m30

k04 = −6m4
01 + 12m2

01m02 − 4m01m03 − 3m2
02 +m04

k13 = −6m3
01m10 + 6m2

01m11 + 6m01m02m10 − 3m01m12 − 3m02m11m03m10 +m13

k22 = −6m2
01m

2
10+2m2

01m20+8m01m10m11+2m02m
2
10−2m01m21−m02m20−2m10m12−2m2

11+m22

k31 = −6m01m
3
10 + 6m01m10m20 + 6m2

10m11 −m01m30 − 3m10m21 − 3m11m20 +m31

k40 = −6m4
10 + 12m2

10m20 − 4m10m30 − 3m2
20 +m40

The ideal of the projective variety G2,4 is obtained from these nine polynomials
by homogenizing and saturating with a new unknown m00. The result of this
computation is as follows.

Proposition 4.4.11. The 5-dimensional variety G2,4 has degree 102 in P14. Its
prime ideal is minimally generated by 99 cubics, 41 quartics, and one quintic. The
Hilbert series equals

1 + 9t+ 45t2 + 66t3 − 27t4 + 13t5 − 8t6 + 4t7 − t8

(1− t)6
.

Remark 4.4.12. The Gaussian moment variety G2,5 has dimension 5 in P19, and we
found its degree to be 332. However, at present, we do not know a generating set
for its prime ideal.

We close this section by reporting the computation of the first interesting case
for n = 3.

Proposition 4.4.13. The Gaussian moment variety G3,3 has dimension 9 and
degree 130 in P19. Its prime ideal is minimally generated by 84 cubics, 192 quartics,
21 quintics, 15 sextics, 36 septics, and 35 octics. The Hilbert series equals

1+10t+55t2+136t3−26t4−150t5+139t6−127t7+310t8−449t9+360t10−160t11+32t12−t13

(1−t)10

Remark 4.4.14. As seen from negative coefficients in the Hilbert series, the corre-
sponding ideals when n > 1 are in general no longer Cohen-Macaulay.

In this chapter we have seen the algebraic advantage of using the method of
moments for parameter inference of Gaussian mixtures. With our moment varieties
Gn,d well defined by moments of a single Gaussian, we are ready to move in the
next chapter to moments of mixtures.

55





5. Secants and Algebraic
Identifiability

In the previous chapter we have introduced the Gaussian moment variety Gn,d as

a subvariety of PN , where N =
(
n+d
d

)
−1. Its points are the vectors of all moments

of order ≤ d of an n-dimensional Gaussian distribution, parametrized birationally
by the entries of the mean vector µ = (µ1, . . . , µn) and the covariance matrix
Σ = (σij). The variety Gn,d is rational of dimension n(n+ 3)/2 for d ≥ 2.

However, we want to deal with moments of mixtures of Gaussians, not only
Gaussians. Thankfully (as we have seen already with Pearson’s method in n =
1, k = 2), the moments of a mixture are easy to compute from the moments of
the individual components. Since the expectation is linear, if we have a mixture
f = α1f1+α2f2+· · ·+αkfk, then the momentmi of f is just the convex combination
of the ith moments of f1, . . . , fk, with weights α1, . . . , αk respectively.

The algebraic concept that we need is the secant variety [Ådl87]:

Definition 5.0.1. Let X be algebraic variety and k ≥ 1, the kth secant variety
of X, Seck(X) is the Zariski closure of the union of all linear spaces spanned by
collections of k points on X.

• If k = 1, we recover the original variety X.

• If k = 2, we have the union of the secant lines to the variety X.

With the general definition in mind, we now focus on our Gaussian moment
variety case:

Definition 5.0.2. The kth secant moment variety Seck(Gn,d) is the Zariski closure
in PN of the set of vectors of moments of order ≤ d of any probability distribution
on Rn that is the mixture of k Gaussians, for k ≥ 2.

In short, Seck(Gn,d) is the projective variety that represents mixtures of k Gaus-
sians. These varieties are the main object of study in this chapter.

The parametrization of Seck(Gn,d) is given by replacing the right hand side of
(4.4.1) with a convex combination of k such expressions. The number of model

parameters is k ·
[
n+

(
n+1
2

)]
+ k − 1.
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Example 5.0.3. Consider the familiar case n = 1 and d = 6. We know from
Proposition 4.4.2 that the Gaussian moment variety G1,6 is a surface of degree 15
in P6 that is cut out by 20 cubics. For k = 2 we obtain the variety of secant lines,
here denoted Sec2(G1,6). This represents mixtures of two univariate Gaussians. It
has the parametric representation from (4.2.1) (with the extra equation for m6):

m0 = 1
m1 = αµ+ (1− α)ν
m2 = α(µ2 + σ2) + (1− α)(ν2 + τ 2)
m3 = α(µ3 + 3µσ2) + (1− α)(ν3 + 3ντ 2)
m4 = α(µ4 + 6µ2σ2 + 3σ4) + (1− α)(ν4 + 6ν2τ 2 + 3τ 4)
m5 = α(µ5 + 10µ3σ2 + 15µσ4) + (1− α)(ν5 + 10ν3τ 2 + 15ντ 4)
m6 = α(µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6) + (1− α)(ν6 + 15ν4τ 2 + 45ν2τ 4 + 15τ 6)

(5.0.1)

The variety Sec2(G1,6) is five-dimensional, so it is a hypersurface in P6. This is
when the computation we did for Theorem 4.2.3 now becomes very relevant, and
takes a new meaning as promised then.

Theorem 5.0.4. The defining polynomial of Sec2(G1,6) is a sum of 31154 mono-
mials of degree 39. This polynomial has degrees 25, 33, 32, 23, 17, 12, 9 in the un-
knowns m0,m1,m2,m3,m4,m5,m6 respectively.

Proof. In the proof of Theorem 4.2.3, after checking that the polynomial vanishes
at the parametrization (5.0.1), to pass from affine space A6 to projective space
P6, we introduce the homogenizing variable m0. This is done by replacing mi

with mi/m0 for i = 1, 2, 3, 4, 5, 6 and clearing denominators. The degrees for
the unknowns remain unchanged, and the new degree for m0 is also read off by
inspection.

We see in particular that m6 can be recovered from m1,m2,m3,m4 and m5

by solving a univariate equation of degree 9. This number rings a bell for us.
Indeed, we should remember Pearson’s result in [Pea94] that one can find the five
parameters in (4.2.1) by solving an equation of degree 9 if the first five moments
are given (as we carefully verified in Section 4.2). The two occurrences of the
number 9 are equivalent, in light of Lazard’s result [Laz04] that the parameters
α, µ, ν, σ, τ are rational functions in the first six moments m1, . . . ,m6.

Remark 5.0.5. The elimination in the proof above can be carried out by computing
a Gröbner basis for the ideal that is obtained by adding (4.2.13) to the system
(4.2.12). Such a Gröbner basis reveals that both p and s can be expressed as
rational functions in the cumulants. This confirms Lazard’s result [Laz04] that
Gaussian mixtures for k = 2 and n = 1 are rationally identifiable from their
moments up to order six. We stress that Lazard [Laz04] does much more than
proving rational identifiability: he also provides a very detailed analysis of the real
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structure and special fibers of the map (α, µ, ν, σ, τ) ↦→ (m1,m2,m3,m4,m5,m6)
in (5.0.1).

In order to understand Seck(Gn,d), we would really like to know its dimension, its
degree and its defining equations. We did this description for n = 1, k = 2, d = 6
in the example and theorem above. By looking at the complexity of that case, we
can already expect that this may be a very difficult problem.

Since the first fundamental invariant is the dimension, our aim now is to de-
termine the dimension of the secant variety Seck(Gn,d). That dimension is always
bounded above by the number of parameters, so we have

dim
(
Seck(Gn,d)

)
≤ min {N , kn(n+ 3)/2 + k − 1 } . (5.0.2)

The right hand side is the expected dimension.
Since Gaussian mixtures are identifiable [YS68], this secant variety eventually

has the expected dimension:

dim(Seck(Gn,d)) = k ·
[
n+

(
n+ 1

2

)]
+ k − 1 for d ≫ 0. (5.0.3)

If equality holds in (5.0.2), then Seck
(
Gn,d) is nondefective. If this holds, and

N ≥ 1
2
kn(n+3)+ k− 1, then the Gaussian mixtures are algebraically identifiable

from their N moments of order ≤ d. Here algebraically identifiable means that the
map from the model parameters to the moments is generically finite-to-one. This
means parameters can be recovered by solving a zero-dimensional system of poly-
nomial equations. The term rationally identifiable is used if the map is generically
one-to-one (identifying label-swapped parameters), so that the Gaussian mixture
density is unique. In this section we only study algebraic identifiability. For ratio-
nal identifiability see Remark 6.1.4.

Thus, the fundamental problem of determining the dimension of Seck(Gn,d)
translates into knowing if we can identify our model parameters from given mo-
ments up to order d. In other words, we want to know whether the method of
moments can even succeed for given k, n, d.

The main result of this chapter contrasts the cases n = 1 and n ≥ 3.

Theorem 5.0.6. Equality holds in (5.0.2) for n = 1 and all values of d and k.
Hence all moment varieties of mixtures of univariate Gaussians are algebraically
identifiable. The same is false for n ≥ 3, d = 3 and k = 2: here the right hand
side of (5.0.2) exceeds the left hand side by two.

Remark 5.0.7. The points on Gn,d where the covariance matrix is zero correspond
to the classical Veronese varieties. Defective Veronese varieties are classified by
the celebrated Alexander-Hirschowitz Theorem [AH00,BO08]. It may be relevant
for our study since the Gaussian moment variety is a ‘noisy’ version of the former,
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5. Secants and Algebraic Identifiability

and Veronese varieties are naturally contained in corresponding Gaussian moment
varieties. We will come back to these considerations in Chapter 6.

Our result for d = 3 is a Gaussian analogue of the infinite family (d = 2)
in the Alexander-Hirschowitz classification (Theorem 6.2.7) of defective Veronese
varieties. Many further defective cases for d = 4 are exhibited in Table 5.2.2 and
Conjecture 5.2.10. Extensive computer experiments (up to d = 24) suggest that
moment varieties are never defective for bivariate Gaussians (n = 2).

Conjecture 5.0.8. Equality holds in (5.0.2) for n = 2 and all values of d and k. In
particular, all moment varieties of mixtures of bivariate Gaussians are algebraically
identifiable.

The rest of the chapter is organized as follows. In the next section we focus on
the case n = 1. We review what is known classically on defectivity of surfaces.
Based on this, we then prove the first part of Theorem 5.0.6. In section 5.2 we
study our problem for n ≥ 2. We begin with the parametric representation of
Seck(Gn,d), we next establish the second part of Theorem 5.0.6, and thereafter we
study the defect and we examine higher moments. The last section discusses what
little we know about the equations and degrees of the varieties Seck(Gn,d). Both
Sections 5.2 and 5.3 feature many open problems.

5.1. One-dimensional Gaussians

The moments m0,m1,m2, . . . ,md of a Gaussian distribution on the real line are
polynomial expressions in the mean µ and the variance σ2. These expressions
will be reviewed in Remark 5.1.1. They give a parametric representation of the
Gaussian moment surface G1,d in Pd.

The 3 × d-matrix Gd has entries that are linear forms in d + 1 unknowns
m0, . . . ,md. That matrix may be interpreted as a 3-dimensional tensor of for-
mat 3 × d × (d + 1). That tensor can be turned into a d × (d + 1) matrix whose
entries are linear forms in three unknowns x, y, z. The result is what we call the
Hilbert-Burch matrix of our surface G1,d. It equals

Bd =

⎛⎜⎜⎜⎜⎜⎜⎝

y z 0 0 · · · 0
x y z 0 · · · 0
0 2x y z · · · 0
0 0 3x y · · · 0
...

...
...

...
...

0 0 · · · (d− 1)x y z

⎞⎟⎟⎟⎟⎟⎟⎠ . (5.1.1)

Its maximal minors generate a Cohen-Macaulay ideal, defining a scheme Zd of
length

(
d+1
2

)
supported at the point (1 : 0 : 0). Consider the map defined by the
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5.1. One-dimensional Gaussians

maximal minors of Bd,
ϕ : P2 99K Pd.

The base locus of the map ϕ is the scheme Zd and its image is the surface G1,d.

Remark 5.1.1. The parametrization ϕ onto G1,d is birational. It equals the familiar
affine parametrization, as in (4.4.1), of the Gaussian moments in terms of mean
and variance if we set

x = −σ2 , y = µ and z = 1. (5.1.2)

The image of the line {x = −σ2z}, for fixed value of the variance σ2, is a rational
normal curve of degree d inside the Gaussian moment surface G1,d. It is defined by
the 2× 2-minors of a 2-dimensional space of rows in the matrix Gd. The singular
line L ⊂ G1,d is the tangent line to this curve at the point (0 : · · · : 0 : 1). In
particular, the image of the line {x = 0} is the rational normal curve defined by
the 2× 2-minors of the last two rows of Gd.

We now come to our main question, namely whether there exist d and k such
that G1,d is k-defective in Pd. Theorem 5.0.6 asserts that this is not the case.
Equivalently, the dimension of Seck(G1,d) is always equal to the minimum of d and
3k − 1, which is the upper bound in (5.0.2).

Curves can never be defective, but surfaces can. The prototypical example is
the Veronese surface S in the space P5 of symmetric 3 × 3-matrices. Points on
S are matrices of rank 1. The secant variety Sec2(S) consists of matrices of rank
≤ 2. Its expected dimension is five whereas the true dimension of S is only four.
This means that S is k-defective for k = 2.

The following well-known result on higher secant varieties of a variety X allows
us to show that X is not k-defective for any k by proving this for one particular k
(see [Ådl88]):

Proposition 5.1.2. Let X be a k′-defective subvariety of Pd and k > k′. Then
X is k-defective as long as Seck(X) is a proper subvariety of Pd. In fact, the
defectivity increases with k:

(dim(X)+1)·k−1−dim(Seck(X)) > (dim(X)+1)·k′−1−dim(Seck′(X)). (5.1.3)

Proof. By Terracini’s Lemma, the dimension of the secant variety Seck(X) is the
dimension of the span of the tangent spaces to X at k general points. Since X
is k′-defective and k′ < k, the linear span of k − k′ general tangent spaces to
the affine cone over X must intersect the span of k′ such general tangent spaces
in a positive-dimensional linear space. The dimension of that intersection is the
difference of the left hand side minus the right hand side in (5.1.3).

Corollary 5.1.3. If a surface X ⊂ Pd is defective, then X is k-defective for some
k ≥ (d− 2)/3.
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5. Secants and Algebraic Identifiability

Proof. We proceed by induction on k. If the surface X is (k − 1)-defective and
k < (d − 2)/3, then dim(Seck(X)) < 3k + 2 < d. So X is also k-defective, by
Proposition 5.1.2.

Our main geometric tool is Terracini’s 1921 classification of all k-defective sur-
faces:

Theorem 5.1.4. (Classification of k-defective surfaces) Let X ⊂ PN be a reduced,
irreducible, non-degenerate projective surface that is k-defective. Then k ≥ 2 and
either

(1) X is the quadratic Veronese embedding of a rational normal surface Y in Pk;
or

(2) X is contained in a cone over a curve, with apex a linear space of dimension
≤ k − 2.

Furthermore, for general points x1, . . . , xk on X there is a hyperplane section tan-
gent along a curve C that passes through these points. In case (1), the curve C
is irreducible; in case (2), the curve C decomposes into k algebraically equivalent
curves C1, . . . , Ck with xi ∈ Ci.

Proof. See [CC02, Theorem 1.3 (i),(ii)] and cases (i) and (ii) of the proof given
there.

Chiantini and Ciliberto offer a nice historical account of this theorem in the
introduction to their article [CC02]. A modern proof follows from the more general
result in [CC02, Theorem 1.1].

Corollary 5.1.5. If the surface X = G1,d is k-defective, then statement (2) in
Theorem 5.1.4 holds.

Proof. We need to rule out case (1) in Theorem 5.1.4. A rational normal surface
is either a Hirzebruch surface or it is the cone over a rational curve. The former
is smooth and the latter is singular at only one point. The same is true for the
quadratic Veronese embedding of such a surface. By contrast, our surface G1,d

is singular along a line, by Lemma 4.4.5. Alternatively, a quadratic Veronese
embedding of a surface contains no line.

Our goal is now to rule out case (2) in Theorem 5.1.4. That proof will be much
more involved. Our strategy is to set up a system of surfaces and morphisms
between them, like this:

Sd → S̄d ⊂ PNd

↓ ↓
P2 G1,d ⊂ Pd

(5.1.4)
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5.1. One-dimensional Gaussians

The second row in (5.1.4) represents the rational map ϕ : P2 99K G1,d that is given
by the maximal minors of Bd. Above P2 sits a smooth surface Sd which we shall
construct by a sequence of blow-ups from P2. It will have the property that ϕ lifts
to a morphism on Sd. Curves of degree d in P2 specify a divisor class Hd on Sd.
The complete linear system |Hd| maps Sd onto a rational surface S̄d in PNd where
Nd = dim(|Hd|). The subsystem of |Hd| given by the d+1 maximal minors of Bd,
then defines the vertical map from S̄d onto G1,d. Our plan is to use the intersection
theory on Sd to rule out the possibility (2) in Theorem 5.1.4.

Lemma 5.1.6. Suppose that we have a diagram as in (5.1.4) and X = G1,d satisfies
statement (2) in Theorem 5.1.4. Then, for any k general points x1, . . . , xk on
the surface Sd, there exist linearly equivalent divisors D1 ∋ x1, . . . , Dk ∋ xk and
there exists a hyperplane section of G1,d in Pd, with pullback Hd to Sd, such that
Hd − 2D1 − 2D2 − · · · − 2Dk is effective on Sd.

Proof. By part (2) of Theorem 5.1.4, there exist algebraically equivalent curves
C1, . . . , Ck on X that contain the images of the respective points x1, . . . , xk, and
there is a hyperplane section HX of X which contains and is singular along each
Ci. Let H ⊂ Sd be the preimage of HX , and let Di ⊂ Sd be the preimage of Ci.
Then xi ∈ Di for i = 1, . . . , k. Furthermore, the divisor H has multiplicity at
least 2 along each Di. Finally, since Sd is a rational surface, linear and algebraic
equivalence of divisors coincide, and the lemma follows.

We now construct the smooth surface Sd. Let Vd denote the (d+1)-dimensional
vector space spanned by the maximal minors of the matrix Bd in (5.1.1). When d
is odd these minors are

bd,0 = zd,
bd,1 = yzd−1,
bd,2 = y2zd−2 − xzd−1,
bd,3 = y3zd−3 − 3xyzd−2,

· · · · · · · · · · · · · · · · · ·
bd,d−1 = yd−1z −

(
d−1
2

)
xyd−3z2 + . . .+ a( d−3

2
,d−1)x

d−3
2 y2z

d−1
2 + a( d−1

2
,d−1)x

d−1
2 z

d+1
2 ,

bd,d = yd −
(
d
2

)
xyd−2z + a(2,d)x

2yd−4z2 + . . . + a( d−1
2

,d)x
d−1
2 yz

d−1
2 .
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5. Secants and Algebraic Identifiability

When d is even, the maximal minors of the Hilbert-Burch matrix Bd are

bd,0 = zd,
bd,1 = yzd−1,
bd,2 = y2zd−2 − xzd−1,
bd,3 = y3zd−3 − 3xyzd−2,

· · · · · · · · · · · · · · · · · ·
bd,d−1 = yd−1z −

(
d−1
2

)
xyd−3z2 + . . .+ a( d−4

2
,d−1)x

d−4
2 y3z

d−2
2 + a( d−2

2
,d−1)x

d−2
2 yz

d
2 ,

bd,d = yd −
(
d
2

)
xyd−2z + a(2,d)x

2yd−4z2 + . . . + a( d
2
,d)x

d
2 z

d
2 .

Here the a(i,j) are rational constants. The point p = (1 : 0 : 0) is the only common
zero of the forms bd,0, . . . , bd,d. All forms are singular at p, with the following lowest
degree terms:

zd, yzd−1, zd−1, yzd−2, . . . , z(d+1)/2, yz(d−1)/2 when d is odd; (5.1.5)

zd, yzd−1, zd−1, yzd−2, . . . , yzd/2, zd/2 when d is even. (5.1.6)

Consider a general form in Vd. Then its lowest degree term at p is a linear com-
bination of z(d+1)/2 and yz(d−1)/2 when d is odd, and it is a scalar multiple of zd/2

when d is even.
The forms bd,0, . . . , bd,d define a morphism ϕ : P2\{p} → Pd that does not extend

to p. Consider any map π : S ′ → P2 that is obtained by a sequence of blow-ups at
smooth points, starting with the blow-up of P2 at p. Let E ⊂ S ′ be the preimage of
p. The restriction of π to S ′\E is an isomorphism onto P2\{p}, and so ϕ naturally
defines a morphism S ′\E → Pd.

We now define our surface Sd in (5.1.4). It is a minimal surface S ′ such that
S ′\E → Pd extends to a morphism ϕ̃ : S ′ → Pd. Here “minimal” refers to the
number of blow-ups, and we do not claim Sd is the unique such minimal surface.

Let Hd be the strict transform on Sd of a curve in P2 defined by a general form
in Vd. The complete linear system |Hd| on Sd defines a morphism Sd → PNd , where
Nd = dim|Hd|. Let S̄d ⊂ PN be the image. Then ϕ̃ : Sd → Pd is the composition
of Sd → PN and a linear projection to Pd whose restriction to S̄d is finite. Thus
we now have the diagram in (5.1.4).

Relevant for proving Theorem 5.0.6 are the first two among the blow-ups that
lead to Sd. The map ϕ is not defined at p. More precisely, ϕ is undefined at p and
at its tangent direction {z = 0}. Let Sp → P2 be the blow-up at p, with exceptional
divisor Ep. Let Sp,z → Sp be the blow-up at the point on Ep corresponding to the
tangent direction {z = 0} at p, with exceptional divisor Ez. To obtain Sd we need
to blow up Sp,z in s further points for some s.

Now, Sd is a smooth rational surface. Let L be the class of a line pulled back
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5.1. One-dimensional Gaussians

to Sd, and let Ep, Ez, F1, . . . , Fs, be the classes of the exceptional divisors of each
blow-up, pulled back to Sd. The divisor class group of Sd is the free abelian group
with basis L,Ep, Ez, F1, . . . , Fs. The intersection pairing on this group is diagonal
for this basis, with

L2 = −E2
p = −E2

z = −F 2
1 = · · · = −F 2

s = 1. (5.1.7)

The intersection of two curves on the smooth surface Sd, having no common com-
ponents, is a nonnegative integer. It is computed as the intersection pairing of
their classes using (5.1.7).

Lemma 5.1.7. Consider the linear system |Hd| on Sd that represents hyperplane
sections of G1,d ⊂ Pd, pulled back via the morphism ϕ̃. Its class in the Picard group
of Sd is given by

Hd = dL− d
2
Ep − d

2
Ez − c1F1 − c2F2 − · · · − csFs when d is even,

Hd = dL− d+1
2
Ep − d−1

2
Ez − c1F1 − c2F2 − · · · − csFs when d is odd.

Here c1, c2, . . . , cs are positive integers whose precise value will not matter to us.

Proof. The forms in Vd define the preimages in P2 of curves in |Hd|. The first
three coefficients are seen from the analysis in (5.1.5) and (5.1.6). The general
hyperplane in Pd intersects the image of the exceptional curve Fi in finitely many
points. Their number is the coefficient ci.

Proof of the first part of Theorem 5.0.6. Suppose that X = G1,d is k-defective for
some k. By Corollary 5.1.3, we may assume that 3k + 2 ≥ d. By Corollary
5.1.5 and Lemma 5.1.6, the class of the linear system |Hd| in the Picard group of
the smooth surface Sd can be written as

Hd = A + 2kD,

where A is effective andD is the class of a curve on Sd that has no fixed component.
According to Lemma 5.1.7, we can write

D = aL− bpEp − bzEz −
s∑

i=1

c′iFi,

where a = D ·L is a positive integer and bp, bz, c
′
1, . . . , c

′
s are nonnegative integers.

Assume first that a ≥ 2. We have the following chain of inequalities:

0 ≤ L · A = L ·Hd − 2k(L ·D) = d− 2ka ≤ d− 4k ≤ 2− k.

This implies k ≤ 2. The case k = 1 being vacuous, we conclude that k = 2 and
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hence d ≤ 8. If d ≤ 5, then Sec2(G1,d) = Pd is easily checked, by computing the
rank of the Jacobian of the parametrization. For d = 6, we know from Theorem
5.0.4 that Sec2(G1,6) is a hypersurface of degree 39 in P6. If d ∈ {7, 8}, then the
secant variety Sec2(G1,d) is also 5-dimensional, by the computation with cumulants
in Proposition 5.3.1.

Next, suppose a = D · L = 1. The divisor D is the strict transform on Sd of
a line in P2. The multiplicity of this line at p is at most 1, i.e. 0 ≤ D · Ep ≤ 1.
Furthermore, D ·Ez = 0 because D moves. Suppose that D ·Ep = 0 and d is even.
Then we have d ≥ 4k because

d/2 = Hd · Ep = A · Ep ≤ A · L ≤ d− 2k.

Since d ≤ 3k + 2, this implies k = 2 and d = 8. This case has already been
ruled out above. If D · Ep = 0 and d is odd, then the same reasoning yields
(d+1)/2 = A ·Ep ≤ d− 2k. This implies 3k+2 ≥ d ≥ 4k+1, which is impossible
for k ≥ 2.

It remains to examine the case D · Ep = 1. Here, any curve linearly equivalent
to D on Sd is the strict transform of a line in P2 passing through p = (1 : 0 : 0).
Through a general point in the plane there is a unique such line, so it suffices to
show that the doubling of any line through p is not a component of any curve
defined by a linear combination of the bd,i. In particular, it suffices to show that
y2 is not a factor of any form in the vector space Vd.

To see this, we note that no monomial xryszt appears in more than one of the
forms bd,0, bd,1, . . . , bd,d. Hence, in order for y2 to divide a linear combination of
bd,0, bd,1, . . . , bd,d, it must already divide one of the bd,i. However, from the explicit
expansions we see that y2 is not a factor of bd,i for any i. This completes the proof
of the first part in Theorem 5.0.6.

5.2. Higher-dimensional Gaussians

We begin by recalling the general definition of the moment variety for Gaussian
mixtures. The coordinates on PN are the momentsmi1i2···in . The variety Seck(Gn,d)
has the parametrization∑

i1,i2,...,in≥0

mi1i2···in
i1!i2!···in!t

i1
1 t

i2
2 · · · tinn =

∑k
ℓ=1 αℓ · exp

(∑n
r=1 trµℓr +

1
2

∑n
i,j=1 σℓijtitj

)
(5.2.1)

This is a formal identity of generating functions in n unknowns t1, . . . , tn. The
model parameters are the kn coordinates µℓi of the mean vectors, the k

(
n+1
2

)
entries

σℓij of the covariance matrices, and the k mixture parameters αℓ. The latter satisfy
α1 + · · · + αk = 1. This is a map from the space of model parameters into the
affine space AN that sits inside PN as {m00···0 = 1}. We define Seck(Gn,d) ⊂ PN as
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the projective closure of the image of this map.

Remark 5.2.1. The affine Gaussian moment variety Gn,d ∩ AN is isomorphic to an
affine space (cf. 4.4.6). In particular it is smooth. Hence the singularities of Gn,d

are all contained in the hyperplane at infinity. This means that the definition of
Seck(Gn,d) is equivalent to the usual definition of higher secant varieties: it is the
closure of the union of all (k − 1)-dimensional linear spaces that intersect Gn,d in
k distinct smooth points.

In this section we focus on the case d = 3, that is, we examine the varieties
defined by first, second and third moments of Gaussian distributions. The following
is our main result.

Theorem 5.2.2. The moment variety Gn,3 is k-defective for k ≥ 2. In particular,
for k = 2, the model has two more parameters than the dimension of the secant
variety, i.e. n(n+3)+ 1 − dim

(
Sec2(Gn,3)

)
= 2. If n ≥ 3 and we fix distinct first

coordinates µ11 and µ21 for the two mean vectors, then the remaining parameters
are identified uniquely. In each of these statements, the parameter k is assumed
to be in the range where Seck(Gn,3) does not fill PN .

This proves the second part of Theorem 5.0.6. We begin by studying the first
interesting case.

Example 5.2.3. Let n = d = 3 and k = 2. In words, we consider moments
up to order three for the mixture of two Gaussians in R3. This case is special
because the number of parameters coincides with the dimension of the ambient
space: N = 1

2
kn(n+ 3) + k − 1 = 19. The variety Sec2(G3,3) is the closure of the

image of the map A19 → P19 that is given by the expansion of (5.2.1).
A direct computation shows that the 19× 19-Jacobian matrix of this map has

rank 17 for generic parameter values. Hence the dimension of Sec2(G3,3) equals 17.
This is two less than the expected dimension of 19. We have here identified the
smallest instance of defectivity.

Let m = (mijk) be a valid vector of moments. Thus m is a point in Sec2(G3,3).
We assume that m ̸∈ G3,3. Choose arbitrary but distinct complex numbers for µ11

and µ21, while the other 17 model parameters remain unknowns. We note that,
if µ11 = µ21, then m300 = 3m100m200 − 2m3

100. This is not satisfied for a general
choice of 19 model parameters.

What we see below is a system of 19 polynomial equations in 17 unknowns. We
claim that this system has a unique solution over C. Hence, if µ11, µ21 ∈ Q and
the left hand side vector m has its coordinates in Q, then that unique solution has
its coordinates in Q.
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m100 = αµ11 + (1− α)µ21

m010 = αµ12 + (1− α)µ22

m001 = αµ13 + (1− α)µ23

m200 = α(µ2
11 + σ111) + (1− α)(µ2

21 + σ211)
m020 = α(µ2

12 + σ122) + (1− α)(µ2
22 + σ222)

m002 = α(µ2
13 + σ133) + (1− α)(µ2

23 + σ233)
m110 = α(µ11µ12 + σ112) + (1− α)(µ21µ22 + σ212)
m101 = α(µ11µ13 + σ113) + (1− α)(µ21µ23 + σ213)
m011 = α(µ12µ13 + σ123) + (1− α)(µ22µ23 + σ223)
m300 = α(µ3

11 + 3σ111µ11) + (1− α)(µ3
21 + 3σ211µ21)

m030 = α(µ3
12 + 3σ122µ12) + (1− α)(µ3

22 + 3σ222µ22)
m003 = α(µ3

13 + 3σ133µ13) + (1− α)(µ3
23 + 3σ233µ23)

m210 = α(µ2
11µ12 + σ111µ12 + 2σ112µ11) + (1− α)(µ2

21µ22 + σ211µ22 + 2σ212µ21)
m201 = α(µ2

11µ13 + σ111µ13 + 2σ113µ11) + (1− α)(µ2
21µ23 + σ211µ23 + 2σ213µ21)

m120 = α(µ11µ
2
12 + σ122µ11 + 2σ112µ12) + (1− α)(µ21µ

2
22 + σ222µ21 + 2σ212µ22)

m102 = α(µ11µ
2
13 + σ133µ11 + 2σ113µ13) + (1− α)(µ21µ

2
23 + σ233µ21 + 2σ213µ23)

m021 = α(µ2
12µ13 + σ122µ13 + 2σ123µ12) + (1− α)(µ2

22µ23 + σ222µ23 + 2σ223µ22)
m012 = α(µ12µ

2
13 + σ133µ12 + 2σ123µ13) + (1− α)(µ22µ

2
23 + σ233µ22 + 2σ223µ23)

m111 = α (µ11µ12µ13 + σ112µ13 + σ113µ12 + σ123µ11)
+ (1− α)(µ21µ22µ23 + σ212µ23 + σ213µ22 + σ223µ21)

By solving the first equation, we obtain the mixture parameter α. From the
second and third equation we can eliminate µ12 and µ13. Next, we observe that
all 12 covariances σijk appear linearly in our equations, so we can solve for these
as well. We are left with a system of truly non-linear equations in only two
unknowns, µ22 and µ23. A direct computation now reveals that this system has a
unique solution that is a rational expression in the given mijk.

Our computational argument therefore shows that each general fiber of the
natural parametrization of Sec2(G3,3) is birational to the affine plane A2 whose
coordinates are µ11 and µ21. This establishes Theorem 5.2.2 for the special case of
trivariate Gaussians (n = 3).

Remark 5.2.4. The second assertion in Theorem 5.2.2 holds for n = 2 because
there are 11 parameters and Sec2(G2,3) = P9. However, the third assertion is not
true for n = 2 because the general fiber of the parametrization map A11 → P9 is
the union of three irreducible components. When µ11 and µ21 are fixed, then the
fiber consists of three points and not one.

Proof of Theorem 5.2.2. Suppose n ≥ 4 and let m ∈ Sec2(Gn,3)\Gn,3. Each mo-
ment mi1i2···in has at most three non-zero indices. Hence, its expression in the
model parameters involves at most three coordinates of the mean vectors and a
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5.2. Higher-dimensional Gaussians

block of size at most three in the covariance matrices. Let µ11 and µ21 be ar-
bitrary distinct complex numbers. Then we can apply the rational solution in
Example 5.2.3 for any 3-element subset of {1, 2, . . . , n} that contains 1. This leads
to unique expressions for all model parameters in terms of the moments mi1i2···in .
In this manner, at most one system of parameters is recovered. Hence the third
sentence in Theorem 5.2.2 is implied by the first two sentences. It is these two we
shall now prove.

In the affine space AN = {m000 = 1} ⊂ PN , we consider the affine moment
variety GA

n := Gn,3 ∩ AN . This has dimension M = 1
2
n(n + 3). The map from

(5.2.1) that parametrizes the Gaussian moments is denoted ρ : AM → AN . It is an
isomorphism onto its image GA

n .
Fix two points p = (µ, σ) and p′ = (µ′, σ′) in AM . They determine the affine

plane

A(p, p′) =
{
(sµ+ (1− s)µ′, tσ + (1− t)σ′) | s, t ∈ R

}
⊂ AM .

Its image ρ(A(p, p′)) is a surface in GA
n ⊂ AN . The restrictions mi1...in(s, t) of the

moments to this surface are polynomials in s, t with coefficients that depend on the
points p, p′. Since i1+· · ·+in ≤ 3, every momentmi1...in(s, t) is a linear combination
of the monomials 1, s, t, st, s2, s3. Linearly eliminating these monomials, we obtain
N−5 linear relations among the moments when restricted to the plane A(p, p′).
These relations define the affine span of the surface ρ(A(p, p′)). This affine space
is therefore 5-dimensional. We denote it by A5

p,p′ .

The monomials (b1, b2, b3, b4, b5) = (s, t, st, s2, s3) serve as coordinates on A5
p,p′ ,

modulo the affine-linear relations that define A5
p,p′ . The image surface ρ(A(p, p′))

is therefore contained in the subvariety of A5
p,p′ that is defined by the 2× 2-minors

of the 2× 4-matrix (
1 b2 b1 b4
b1 b3 b4 b5

)
=

(
1 t s s2

s st s2 s3

)
. (5.2.2)

This variety is an irreducible surface, namely a scroll of degree 4. It hence equals
ρ(A(p, p′)).

Let σ̄ denote the covariance matrix with entries σ̄ij = (µi − µ′
i)(µj − µ′

j). We
define

A3
p,p′ =

{
(µ′ + s(µ− µ′), σ′ + t(σ − σ′) + uσ̄) | s, t, u ∈ R

}
.

Setting u = 0 shows that this 3-space contains the plane A(p, p′). We claim that

ρ(A3
p,p′) ⊆ A5

p,p′ . (5.2.3)

On the image ρ(A3
p,p′), each moment is a linear combination of the eight monomials
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5. Secants and Algebraic Identifiability

1, s, s2, s3, t, st, u, su. A key observation is that, by our choice of σ̄, these expres-
sions are actually linear combinations of the six expressions 1, s, s2+u, s3+3su, t, st.
Indeed, the coefficient of s2 in the expansion of (µ′

i + s(µi − µ′
i))(µ

′
j + s(µj − µ′

j))
matches the coefficient σ̄ij of u in the expansion of second order moments. Like-
wise, s2 and u have equal coefficients in the third order moments. Analogously,
the coefficient of the monomial s3 in the expansion of

(µ′
i + s(µi − µ′

i))(µ
′
j + s(µj − µ′

j))(µ
′
k + s(µk − µ′

k))

is (µi−µ′
i)σ̄jk = (µj−µ′

j)σ̄ik = (µk−µ′
k)σ̄ij, which coincides with the corresponding

coefficient of 3su in the expansion of third order moments. From this we conclude
that (5.2.3) holds.

Since ρ is birational, ρ(A3
p,p′) is a threefold in A5

p,p′ . Since p and p′ are arbi-

trary, these threefolds cover GA
n . Through any point outside ρ(A3

p,p′) there is a

2-dimensional family of secant lines to ρ(A3
p,p′). The same holds for GA

n . Hence
the 2-defectivity of Gn,3 is at least two.

To see that it is at most two, it suffices to find a point q in Sec2(Gn,3) such that
the variety of secant lines to Gn,3 through q is 2-dimensional. Let G2,3(1, 2) denote
the subvariety of Gn,3 defined by setting all parameters other than µ1, µ2, σ11, σ12, σ22

to zero. The span of G2,3(1, 2) ∩ AN is an affine 9-space A9(1, 2) inside AN . Con-
sider a general point q ∈ A9(1, 2). Then q ̸∈ GA

n . We claim that any secant to GA
n

through q is contained in A9(1, 2).
A computation with Macaulay2 [GS02] shows that this is the case when n = 3.

Explicitly, if q is any point whose moment coordinates vanish except those that
involve only µ1, µ2, σ11, σ12, σ22, then µ3 = σ13 = σ23 = σ33 = 0. Suppose now
n ≥ 4. Assume there exists a secant line through q that is not contained in A9(1, 2).
Then we can find indices 1, 2, k such that the projection of that secant passes
through the span of the corresponding GA

3 ⊂ GA
n . In each case, the secant lands

in A9(1, 2), so it must already lie in this subspace before any of the projections.
This argument proves the claim.

In conclusion, we have shown that the 2-defectivity of the third order Gaussian
moment variety Gn,3 is precisely two. This completes the proof of Theorem 5.2.2.

We offer some remarks on the geometry underlying the proof of Theorem 5.2.2,
or more precisely, on the 2-dimensional family of secant lines through a general
point q on the affine secant variety Sec2(G

A
n ). The entry locus Σq is the closure of

the set of points p ∈ GA
n such that q lies on a secant line through p. This entry

locus is therefore a surface. We identify the Zariski closure of this surface in PN .

Proposition 5.2.5. The Zariski closure in Gn,3 of the entry locus Σq of a general
point q ∈ Sec2(G

A
n ) is the projection of a Del Pezzo surface of degree 6 into P5 that

is singular along a line in the hyperplane at infinity.
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5.2. Higher-dimensional Gaussians

Proof. According to Example 5.2.3, the 2-dimensional family of secant lines through
a general point q ∈ Sec2(G

A
3 ) is irreducible and birational to the affine plane. If

we consider GA
3 as a subvariety of GA

n and q ∈ Sec2(G
A
3 ), then we may argue as

in the proof of Theorem 5.2.2 that any secant line to GA
n through q, is a secant

line to GA
3 . We conclude that the 2-dimensional family of secant lines through a

general point q ∈ Sec2(G
A
n ) is irreducible.

On the other hand, if q is on the secant spanned by p, p′ ∈ GA
n , then, in the

notation of the proof of Theorem 5.2.2, the point q lies in A5
p,p′ . There is a 2-

dimensional family of secant lines to ρ(A3
p,p′) through q. This family must coincide

with the family of secant lines to GA
n through q. The entry locus Σq therefore

equals the double point locus of the projection

πq : ρ(A3
p,p′) → A4

from the point q. We shall identify this double point locus as a surface of degree 6.
In fact, its Zariski closure in P5 is the projection of a Del Pezzo surface of degree
6 from P6.

Consider the maps

τ : A3
p,p′ → A6 : (s, t, u) ↦→ (s, t, st, s2, s3 + 3su, u),

π : A6 → A5
p,p′ : (a1, . . . , a6) ↦→ (a1, a2, a3, a4 + a6, a5).

The image τ(A3
p,p′) in A6 is the 3-fold scroll defined by the 2 × 2 minors of the

matrix (
1 a2 a1 a4 + 3a6
a1 a3 a4 a5

)
. (5.2.4)

The composition π ◦ τ is the restriction of ρ to A3
p,p′ . Hence ρ(A3

p,p′) is also a

quartic threefold scroll. To find its equations in A5
p,p′ , we set a4 = b4 − a6 and

ai = bi for i ∈ {1, 2, 3, 5}, and then we eliminate a6 from the ideal of 2× 2-minors
of (5.2.4). The result is the system

b1b2− b3 = 2b1b
2
3+ b22b5− 3b2b3b4 = 2b21b3+ b2b5− 3b3b4 = 2b31− 3b1b4+ b5 = 0.

Let Xp,p′ be the Zariski closure of τ(A3
p,p′) in P6. It is a threefold quartic scroll,

defined by the 2× 2 minors of the matrix(
a0 a2 a1 a4 + 3a6
a1 a3 a4 a5

)
. (5.2.5)

The projection π, and the composition of π and the projection πq from the point
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5. Secants and Algebraic Identifiability

q ∈ A5
p,p′ , extend to projections

π̄ : Xp,p′ → P5 and π̃ : Xp,p′ → P4.

By the double point formula [Ful13, Theorem 9.3], the double point locus Σπ̃ ⊂
Xp,p′ of π̃ is a surface of degree 6 anticanonically embedded in P6. This is the
desired Del Pezzo surface.

Similarly, the double point locus of π̄ is a plane conic curve in Xp,p′ , that
is mapped 2: 1 onto a line in P5. The plane conic curve is certainly contained
in the double point locus Σπ̃, so π̄(Σπ̃) ⊂ P5 is singular along a line. In the
above coordinates, the conic is the intersection of Xp,p′ with the plane defined by
a0 = a1 = a2 = a3 = 0, i.e. a conic in the hyperplane {a0 = 0} at infinity. The
entry locus Σq is clearly contained in π̄(Σπ̃). In fact, the latter is the Zariski closure
of the former in P5 and the proposition follows.

We now come to the higher secant varieties of the Gaussian moment variety
Gn,3.

Corollary 5.2.6. Let k ≥ 2 and n ≥ 3k − 3. Then Gn,3 is k-defective.

Proof. This is immediate from Theorem 5.2.2 and Proposition 5.1.2.

Based on computations, like those in Table 5.2.1, we propose the following
conjecture.

Conjecture 5.2.7. For any n ≥ 2 and k ≥ 1, we have

dim(Seck(Gn,3)) =
1

6
k
[
k2 − 3(n+ 4)k + 3n(n+ 6) + 23

]
− (n+ 2), (5.2.6)

for k = 1, 2, . . . , K, where K + 1 is the smallest integer such that the right hand
side in (5.2.6) is larger than the ambient dimension

(
n+3
3

)
− 1.

For k = 1 this formula evaluates to dim(Gn,3) = n(n+3)/2, as desired. Conjec-
ture 5.2.7 also holds for k = 2. This is best seen by rewriting the identity (5.2.6)
as follows:

1

2
kn(n+3)+k−1 − dim

(
Seck(Gn,3)

)
=

1

2
(k−1)(k−2)n − 1

6
(k−1)(k2−11k+6).

This is the difference between the expected dimension and the true dimension of
the kth secant variety. For k = 2 this equals 2, independently of n, in accordance
with Theorem 5.2.2.

Conjecture 5.2.7 was verified computationally for n ≤ 15. Table 5.2.1 illustrates
all cases for n ≤ 10. Here, exp = min(par, N) is the expected dimension, and
δ = exp− dim is the defect.
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5.2. Higher-dimensional Gaussians

n k d par N exp dim δ par-dim
3 2 3 19 19 19 17 2 2
4 2 3 29 34 29 27 2 2
5 2 3 41 55 41 39 2 2
5 3 3 62 55 55 51 4 11
6 2 3 55 83 55 53 2 2
6 3 3 83 83 83 71 12 12
6 4 3 111 83 83 82 1 29
7 2 3 71 119 71 69 2 2
7 3 3 107 119 107 94 13 13
7 4 3 143 119 119 111 8 32
8 2 3 89 164 89 87 2 2
8 3 3 134 164 134 120 14 14
8 4 3 179 164 164 144 20 35
8 5 3 224 164 164 160 4 64
9 2 3 109 219 109 107 2 2
9 3 3 164 219 164 149 15 15
9 4 3 219 219 219 181 38 38
9 5 3 274 219 219 204 15 70
10 2 3 131 285 131 129 2 2
10 3 3 197 285 197 181 16 16
10 4 3 263 285 263 222 41 41
10 5 3 329 285 285 253 32 76
10 6 3 395 285 285 275 10 120
11 2 3 155 363 155 153 2 2
11 3 3 233 363 233 216 17 17
11 4 3 311 363 311 267 44 44
11 5 3 389 363 363 307 56 82
11 6 3 467 363 363 337 26 130
11 7 3 545 363 363 358 5 187
12 2 3 181 454 181 179 2 2
12 3 3 272 454 272 254 18 18
12 4 3 363 454 363 316 47 47
12 5 3 454 454 454 366 88 88
12 6 3 545 454 454 405 49 140
12 7 3 636 454 454 434 20 202

Table 5.2.1.: Moment varieties of order d = 3 for mixtures of k ≥ 2 Gaussians
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5. Secants and Algebraic Identifiability

We also undertook a comprehensive experimental study for higher moments of
multivariate Gaussians. The following two examples are the two smallest defective
cases for d = 4.

Example 5.2.8. Let n = 8 and d = 4. The Gaussian moment variety G8,4 is
11-defective. The expected dimension of Sec11(G8,4) equals the ambient dimension
N = 494, but this secant variety is actually a hypersurface in P494. It would be
very nice to know its degree.

Example 5.2.9. Let n = 9 and d = 4. The moment variety G9,4 is 12-defective
but it is not 11-defective. Thus the situation is much more complicated than that
in Theorem 5.2.2, where defectivity always starts at k = 2. We do not yet have
any theoretical explanation for this.

Table 5.2.2 shows the first few defective cases for Gaussian moments of order
d = 4. It suggests a clear pattern, resulting in the following conjecture. We verified
this for n ≤ 14.

Conjecture 5.2.10. The Gaussian moment variety Gn,4 is (n+3)-defective with
defect δn+3 = 1 for n ≥ 8. Furthermore, for all r ≥ 3, the (n+ r)-defect of Gn,4 is
equal to δn+r =

(
r−1
2

)
, unless the number of model parameters exceeds the ambient

dimension
(
n+4
4

)
− 1.

5.3. Towards Equations and Degrees

Our problem is to study the higher secant variety Seck(G1,d) of the moment surface
G1,d ⊂ Pd whose equations were given in Proposition 4.4.2. The hypersurface
Sec2(G1,6) was treated in Theorem 4.2.3. In the derivation of its equation in the
previous section, we started out with introducing the new unknowns s = µ+ν and
p = µν. After introducing cumulant coordinates, the defining expressions for the
moments m4,m5,m6 in (4.2.1) turned into the three equations (4.2.12),(4.2.13) in
k2, k3, k4, k5, k6, s, p, and from these we then eliminated s and p.

The implicitization problem for Sec2(G1,d) when d > 6 can be approached
with the same process. Starting from the moments, we derive polynomials in
k2, k3, . . . , kd, s and p that contain kd linearly. The extra polynomial that contains
k7 linearly and is used for Sec2(G1,7) equals

16p3s5 − 126k2p
3s3 + 42k3p

2s4 − 148p4s3 + 252k2p
4s− 126k3p

3s2

+216p5s+ 315k2k
2
3ps− 1260k2k3p

3 − 35k3
3s

2 + 210k2
3p

2s− 378k3p
4

+189k2k5p
2 + 35k3

3p+ 315k3k4p
2 + 9k7p

2.
(5.3.1)
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n k d par N exp dim δ par-dim
8 11 4 494 494 494 493 1 1
9 12 4 659 714 659 658 1 1
9 13 4 714 714 714 711 3 3
10 13 4 857 1000 857 856 1 1
10 14 4 923 1000 923 920 3 3
10 15 4 989 1000 989 983 6 6
11 14 4 1091 1364 1091 1090 1 1
11 15 4 1169 1364 1169 1166 3 3
11 16 4 1247 1364 1247 1241 6 6
11 17 4 1325 1364 1325 1315 10 10
12 15 4 1364 1819 1364 1363 1 1
12 16 4 1455 1819 1455 1452 3 3
12 17 4 1546 1819 1546 1540 6 6
12 18 4 1637 1819 1637 1627 10 10
12 19 4 1728 1819 1728 1713 15 15
12 20 4 1819 1819 1819 1798 21 21
13 16 4 1679 2379 1679 1678 1 1
13 17 4 1784 2379 1784 1781 3 3
13 18 4 1889 2379 1889 1883 6 6
13 19 4 1994 2379 1994 1984 10 10
13 20 4 2099 2379 2099 2084 15 15
13 21 4 2204 2379 2204 2183 21 21
13 22 4 2309 2379 2309 2281 28 28
13 23 4 2414 2379 2379 2378 1 36

Table 5.2.2.: A census of defective Gaussian moment varieties d = 4

The extra polynomial that contains k8 linearly and is used for Sec2(G1,8) equals

20p4s6 + 336k2p
4s4 − 112k3p

3s5 + 124p5s4 − 3780k2
2p

4s2 + 2520k2k3p
3s3 − 6048k2p

5s2

−420k2
3p

2s4 + 2128k3p
4s3 − 2232p6s2 − 7560k2

2k3p
3s+ 11340k2

2p
5 + 2520k2k

2
3p

2s2

−15120k2k3p
4s+ 12096k2p

6 − 280k3
3ps

3 + 2940k2
3p

3s2 − 7056k3p
5s+ 3564p7

+1890k2
2k

2
3p

2 + 5670k2
2k4p

3 − 420k2k
3
3ps+ 7560k2k

2
3p

3 + 35k4
3s

2 + 280k3
3p

2s
−1260k2

3p
4 + 756k2k6p

3 − 35k4
3p+ 1512k3k5p

3 + 945k2
4p

3 + 27k8p
3

(5.3.2)

Proposition 5.3.1. The ideals of the 5-dimensional varieties Sec2(G1,7)∩A7 and
Sec2(G1,8)∩A8 in cumulant coordinates are obtained from (4.2.12), (4.2.13), (5.3.1)
and (5.3.2) by eliminating s and p.

The polynomials above represent a sequence of birational maps of the form
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Sec2(G1,d) 99K Sec2(G1,d−1), which allow us to recover all cumulants from earlier
cumulants and the parameters p and s. In particular, by solving the equation
(4.2.2) for p and then recovering s from the expression in Remark 4.2.2, we can
invert the parametrization for any of the moment varieties Sec2(G1,d) ⊂ Pd. If
we are given m1,m2,m3,m4,m5 from data then we expect 18 = 9 × 2 complex
solutions (λ, µ, ν, σ, τ). The extra factor of 2 comes from label swapping between
the two Gaussians. In that sense, the number 9 is the algebraic degree of the
identifiability problem for n = 1 and k = 2.

We next move on to k = 3. There are now eight model parameters. These are
mapped to P8 with coordinates (m0 : m1 : · · · : m8), and we are interested in the
degree of that map.

Working in cumulant coordinates, and using the Gröbner basis package FGb in
maple, we computed the degree of that map. It turned out to be 1350 = 3! · 225.

Theorem 5.3.2. The mixture model of k = 3 univariate Gaussians is algebraically
identifiable from its first eight moments. The algebraic degree of this identifiability
problem equals 225.

We also computed a generalized Pearson polynomial of degree 225 for k =
3. Namely, we replace the three means µ1, µ2, µ3 by their elementary symmetric
polynomials e1 = µ1 + µ2 + µ3, e2 = µ1µ2 + µ1µ3 + µ2µ3 and e3 = µ1µ2µ3. This
is done by a derivation analogous to (4.2.7)-(4.2.12). This allows us to eliminate
all model parameters other than e1, e2, e3. The details and further computational
results will be presented in a forthcoming article.

We compute a lexicographic Gröbner basis G for the above equations in the
polynomial ring R[e1, e2, e3], with generic numerical values of the eight moments
m1, . . . ,m8. It has the expected shape

G =
{
f(e1), e2 − g(e1), e3 − h(e1)

}
.

Here f, g, h are univariate polynomials of degrees 225, 224, 224 respectively. In
particular, f is the promised generalized Pearson polynomial of degree 225 for
mixtures of three Gaussians.

For general k, the mixture model has 3k− 1 parameters. By Theorem 5.0.6 we
know it is algebraically identifiable, with a finite number of solutions. Based on
what we know for k = 2 and k = 3, we offer the following conjecture concerning
the degree of algebraic identifiability, along with our belief of when we can obtain
rational identifiability.

Recall that the double-factorial is the product of the smallest odd positive in-
tegers:

(2k − 1)!! = 1 · 3 · 5 · · · · (2k − 1).
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Conjecture 5.3.3. When algebraically identifying a mixture of k univariate Gaus-
sians by the moments of order ≤ 3k − 1, the degree of this identifiability problem

equals
(
(2k−1)!!

)2
. Moreover, this model is rationally identifiable by the moments

of order ≤ 3k.

The double-factorial part of the conjecture is nothing but a wild guess. We do
not even know the degree of the hypersurface Sec3(G1,9) ⊂ P9.

Computations for k = 4 appear currently out of reach for Gröbner basis meth-
ods. If our wild guess is true then the expected number of complex solutions for
the 11 moment equations whose solution identifies a mixture of k = 4 univariate
Gaussians is 1052 × 4! = 264, 600.

Current work is using techniques in Numerical Algebraic Geometry [SVW96,
BHSW06] to confirm or refute this number [AR16, Example 5.3]. The main ap-
proach is to try to exploit the symmetry of the solution set to these systems of
equations, so that tracking the number of solutions becomes less costly computa-
tionally.

Example 5.3.4. Let n = 1, k = 2 and d = 7. The following results were ob-
tained using methods from numerical algebraic geometry. The 5-dimensional vari-
ety Sec2(G1,7) has degree 105 in P7. The eight coordinate projections, defined alge-
braically by eliminating each one of m07,m16, . . . ,m70 from the ideal of Sec2(G1,7),
are hypersurfaces in P6. Their degrees are 85, 99, 104, 95, 78, 66, 48 and 39 re-
spectively. This suggests that there are no low degree generators in the ideal of
Sec2(G1,7). In fact, a state-of-the-art Gröbner basis computation by Jean-Charles
Faugère shows that the smallest degree of such a minimal generator is 25.

One would expect that it is even more difficult to describe the prime ideals of
the secant varieties Seck(Gn,d) for n ≥ 2, k > 1. With ideal generators out of reach,
we first ask for the degrees of our secant varieties.

Conjecture 5.3.5. For fixed k and n, the function d ↦→ deg Seck(Gn,d) is a poly-
nomial in d, starting from the smallest value of d where the secant variety does
not fill the ambient space.

The numerical Macaulay2 [GS02] package NumericalImplicitization.m2, de-
veloped by Chen and Kileel [CK16], was very useful for us. It was able to compute
the desired degrees in some interesting cases. These data points led us to Conjec-
ture 5.3.5 and to the following result.

Proposition 5.3.6. Suppose that Conjecture 5.3.5 holds for k = 2 and n = 1.
Then, for all d ≥ 6, the degree of the dth moment variety for mixtures of two
univariate Gaussians equals

deg Sec2(G1,d) =
(d+ 7)(d− 4)(d− 3)(d− 2)

8
. (5.3.3)
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Proof. Let Xd be a general variety defined by a Hilbert-Burch matrix Bd as in
(5.1.1). Here ‘general’ means that the entries in Bd are generic linear forms in
x, y, z. Using the double point formula in intersection theory [Ful13, Sec. 9.3] for
a general projection Xd → P4, we compute

deg Sec2(Xd) =
(d− 4)(d− 3)(d2 + 5d− 2)

8
. (5.3.4)

Since G1,d is singular, the degrees of its secant varieties are lower than (5.3.4), with
a correction term accounting for the singular line in Lemma 4.4.5. The assumption
that Conjecture 5.3.5 holds in our case implies that d ↦→ Sec2(G1,d) is a polynomial
function of degree at most 4. Our numerical computation shows that the degrees
of Sec2(G1,d) for d = 6, . . . , 10 are 39, 105, 225, 420 and 714. These are enough to
interpolate, and we obtain the polynomial in (5.3.3).

Remark 5.3.7. The zeroes of (5.3.3) at d = 2, 3, 4 were not part of the interpolation
but they are not unexpected. Also, substituting d = 5 into (5.3.3) recovers our
famous Pearson degree 9 for identifying mixtures of two univariate Gaussians!
Using NumericalImplicitization.m2, we verified the correctness of (5.3.3) up
to d = 11.

Following this train of thought, and using the Le Barz classification formulas
in [LB87], we compute an analogous formula to (5.3.4) for trisecants (k = 3) of a
general surface Xd:

deg(Sec3(Xd)) =
(d− 6)(d5 + 3d4 − 57d3 − 43d2 + 752d− 512)

48
.

Conjecture 5.3.5 now suggests that d ↦→ deg Sec3(G1,d) is a polynomial function
of degree 6. Unfortunately, we do not yet have numerical evidence for this. For
instance, we do not even know the degree of Sec3(G1,9). The formula yields the
upper bound deg(Sec3(X9)) = 2497.

We close with two more cases with n ≥ 2 for which we were able to compute
the degrees.

Example 5.3.8. Let n = 2 and d = 4. The 5-dimensional moment variety G2,4 has
degree 102 in P14. It is not defective. Its secant variety Sec2(G2,4) has dimension
11 and degree 538.

Example 5.3.9. We return to Example 5.2.3, so n = d = 3. The Gaussian mo-
ment variety G3,3 has dimension 9 and degree 130 in P19. We had found the number
130 already in Proposition 4.4.13. This variety is 2-defective. Its secant variety
Sec2(G3,3) has dimension 17 and degree 79. We do not know its ideal generators.
As in Example 5.3.4, we studied the degrees of its coordinate projections. The 20
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5.3. Towards Equations and Degrees

coordinates on P19 come in seven symmetry classes. Representatives are

m000,m100,m200,m110,m300,m201,m111.

By omitting these coordinates, one at a time, we obtain hypersurfaces in P18 whose
degrees are

58, 63, 34, 42, 25, 34, 40

respectively.

Our geometric study of secants of Gaussian moment varieties in this chapter
suggests there is a rich theory behind them, with much yet to be discovered.
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6. Submodels and Tensor
Decomposition

So far we have dealt with general Gaussian mixture models. However, one of-
ten encounters certain submodels that assume natural constraints on the param-
eters. We already encountered examples of this in Chapter 2 with isotropic and
homoscedastic mixtures, and in Chapter 4 with equal means. We gather these
definitions now.

Definition 6.0.1. AGaussian mixture with defining parameters {(αi, µi,Σi)}i=1...,k

is said to be

• homoscedastic if all the covariances are equal: Σi = Σ for all i.

• isotropic if the all the covariances are spherical : Σi = σiI for all i.

• centered if all the means are equal: µi = µ for all i.

• uniform if all the weights are equal: αi =
1
k
for all i.

For example, a homoscedastic isotropic mixture is closely related to the k-means
clustering problem, where we can think of each group or cluster as corresponding to
a different component of the Gaussian mixture. See [Bis06, Chapter 9] for details.
The main connection is that when updating parameters in a common algorithm for
k-means, one assigns each data point to a cluster in a ‘hard’ definite manner, while
the EM algorithm allows for a ‘soft’ assignment (the probabilities γi of (3.3.1) in
Section 3.3). In fact, having the common σ → 0 in the equation updates for the
EM algorithm will give the equation updates for such k-means algorithm.

As another example, Srebro’s conjecture [Sre07] asks whether a uniform ho-
moscedastic isotropic mixture can have a likelihood function with local maxima
that are not global in the infinite sample limit (with data sampled from the distri-
bution). One can further assume the common variance is just the identity matrix.
The hope is that in this ‘simple’ model, mixtures of the above type cannot exist,
so the EM algorithm can be guaranteed to not get stuck in local maxima and con-
verge to a global maximum (permutations of the true parameters). Unfortunately
for such hopes, it was recently shown in [JZB+16] that there are examples for each
k ≥ 3 such that the conjecture is false. Even worse, EM will converge with ran-
dom initialization to these ‘bad’ critical points with high probability. This kind

81



6. Submodels and Tensor Decomposition

of result motivates further to look at alternative estimation methods, such as the
method of moments. We explore recent strategies based on MOM in the coming
section.

6.1. Machine Learning and MOM Reawakening

As we have mentioned, the EM algorithm introduced in 1977 by Dempster, Laird
and Rubin [DLR77] popularized the use of Gaussian mixtures. In order to avoid
the main drawback of getting stuck at local maxima, alternatives were sought by
several people. Of worthy mention is the line pioneered by Dasgupta [Das99], with
the use of spectral methods by Vempala and Wang. Their focus was on finding
polynomial time algorithms for clustering.

The real method of moments reawakening comes from the work of Moitra,
Kalai and Valiant [KMV10,MV10]. They realize that the polynomial equations
from Pearson’s method are much more tractable than EM. They propose to solve
the parameter estimation problem in n > 1 by considering projections that reduce
to solve the n = 1 case treated by Pearson. Furthermore, unaware that [Laz04]
already proved that the first six moments really uniquely identify a mixture of two
univariate Gaussians, they set out to prove this fact. Their result gives a bound on
rational identifiability for n = 1. Since this is very relevant for us (cf. Conjecture
5.3.3), we present this result and their technique.

Proposition 6.1.1. ([KMV12, Section 4.2]) Let f and g be two mixtures of k
Gaussians over R. Then f−g is either identically zero or has at most 4k−2 zeros.

Their proof is based on induction on k and the main ingredient is a theorem
by Hummel and Gidas [HG84] in the context of the heat equation. The assertion
is that if one convolves a Gaussian with an analytic function f : R → R with at
most m zeros, then the resulting convolution still has at most m zeros.

With the proposition, we get the following important corollary.

Corollary 6.1.2. If f and g are two univariate mixtures of k Gaussians that
match in the first 4k − 2 moments, then necessarily f = g. Thus, the minimum
order d needed for rational identifiability is ≤ 4k − 2.

Remark 6.1.3. Note that for k = 2, we have 4 × 2 − 2 = 6, coinciding with what
we know from Lazard [Laz04].

Proof. Assume h = f−g is not identically zero. Let p(x) : R → R be a polynomial
of degree 4k − 2 that matches the same sign as h(x). Note this is possible since

by Proposition 6.1.1, h has at most 4k− 2 zeros. Thus, writing p(x) =
∑4k−2

j=1 cjx
j
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6.1. Machine Learning and MOM Reawakening

we have that

0 <

∫ ∞

−∞
p(x)h(x)dx =

4k−2∑
j=1

∫ ∞

−∞
cjx

jh(x)dx =
4k−2∑
j=1

cj

∫ ∞

−∞
xj(f(x)− g(x))dx

=
4k−2∑
j=1

cj(mj(f)−mj(g)).

Since the right hand side has to be positive, we conclude that there must exist a
j ∈ {1, . . . , 4k − 2} such that the jth moments mj(f) and mj(g) differ.

Knowing this, they propose in [KMV12, Section 3] that to generalize Pearson’s
sixth moment test to k > 2, one should compute the first 4k − 2 sample moments
and try to return the parameters that most closely match these. This gives a ‘poly-
nomially robust identifiable’ algorithm for learning Gaussian mixtures. Indeed,
their main Theorem 2 in [KMV12] shows that if two parameter sets for mixtures
f and g differ by ϵ, then their first 4k − 2 moments have a poly(ϵ) discrepancy.
Later Hardt and Price would prove optimality with respect to sample complexity
[HP15]. They claim their result can be interpreted as showing that ‘Pearson’s
original estimator is in fact an optimal solution to the problem he proposed’.

Remark 6.1.4. Let drat(k) be the minimum order d needed so that mixtures of k
univariate Gaussians are rationally identifiable from the first d moments. Recall
that this means that generically there is at most one Gaussian mixture density
with any sequence of such moments. Combining our algebraic identifiability result
in Theorem 5.0.6 with the corollary above, we conclude that

3k − 1 ≤ drat(k) ≤ 4k − 2.

When the degree of algebraic identifiability is greater than 1 we can claim that
the first inequality is strict. In this way, for k = 2 we recover drat(2) = 6, and
for k = 3 we can say 8 < drat(3) ≤ 10 so that drat(3) is either 9 or 10. We have
conjectured in Conjecture 5.3.3 that drat(k) = 3k.

Recently, an MIT Summer Program for Undergraduate Research (SPUR) project
[GBW16] proposed by Ankur Moitra explored the upper bound 4k − 2. The au-
thors observe that there do exist pairs of distinct univariate Gaussian mixtures
that have identical first 4k − 3 moments. However, their examples are from the
equal-means submodel. After centering at µ = 0, all the odd order moments are 0,
so in this case one needs the first full 4k− 2 = 2(2k− 1) moments (the first 2k− 1
even moments) to determine the k unknown variances and the k − 1 independent
mixture weights. For the general unequal means model they also arrive at our
conjecture of 3k.
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At the same time that Kalai, Moitra and Valiant were proposing a return to the
method of moments, Belkin and Sinha [BS10, BS15] realized that the nice poly-
nomial structure extends to any distribution such that its moments are given by
polynomials in the parameters. In terms of identifiability, Hilbert’s Basis Theo-
rem implies that there always exists a finite drat that will uniquely identify the
parameters from sufficiently enough moments. Another important consequence
of the semialgebraic nature of the moments and parameters is that one can ob-
tain again polynomial poly(ϵ) discrepancies in the moments from ϵ discrepancy
of the parameters. This is a nice application of the Tarski-Seidenberg Theorem
from Real Algebraic Geometry [BCR13, Section 1.4]: semialgebraic sets are closed
under projections.

Hsu and Kakade follow the method of moments revival trend and consider the
learning of mixtures of isotropic Gaussians from the moments up to order d = 3
[HK13]. In order to solve the moment equations, they propose to find orthogonal
decompositions of the second and third order moment tensors that reveal the
mixture parameters. See Remark 4.3.2. More precisely,

Theorem 6.1.5. (Theorem 1, [HK13]) Assume the means µi ∈ Rn of an isotropic
Gaussian mixture span a k-dimensional subspace and all αi > 0. Then the aver-
age variance σ̄ :=

∑k
i=1 αiσi is the smallest eigenvalue of the covariance matrix

E[(x − E[x])(x − E[x])T ]. Furthermore, let v ∈ Rn be any unit norm eigenvector
corresponding to the eigenvalue σ̄. Define

M1 := E[x(vT (x− E[x]))2] ∈ Rn,

M2 := E[x⊗ x]− σ̄I ∈ Rn×n,

M3 := E[x⊗ x⊗ x]−
n∑

i=1

(
M1 ⊗ ei ⊗ ei + ei ⊗M1 ⊗ ei + ei ⊗ ei ⊗M1

)
∈ Rn×n×n

Then

M1 =
k∑

i=1

αi σiµi, M2 =
k∑

i=1

αi µi ⊗ µi, M3 =
k∑

i=1

αi µi ⊗ µi ⊗ µi.

One key aspect is that an orthogonal tensor decomposition when d > 2 is
unique [BDHR15]. The main technique to find such a tensor decomposition is via
the tensor power method, which extends the usual power method for matrices. The
behavior is quite different from the matrix case: any eigenvector is a stable fixed
point of the power map (not only the one corresponding to the largest eigenvalue).
We refer to [Rob16,ASS17] for details.

While this method will cover a range of situations, note that the critical hy-
pothesis that the means span a k-dimensional subspace in Rn implies k ≤ n. Thus,
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6.2. Veronese Subvarieties and the Alexander-Hirschowitz Theorem

it is not applicable even in the one-dimensional case n = 1 (where all mixtures are
automatically isotropic).

Why would we expect the mixtures in Theorem 6.1.5 to be identifiable from
moments up to order d = 3? An n dimensional isotropic mixture of k components
has k(n+1)+(k−1) unknown parameters. On the other hand, there are

(
n+3
3

)
−1

moments up to order 3. So if k ≤ n:

k(n+ 1) + (k − 1) ≤ n2 + 2n− 1 <
n3 + 6n2 + 11n

6
.

That is, we have O(n2) parameters versus O(n3) moments, with growing difference
as n → ∞. The same holds for the simpler submodel of homoscedastic isotropic
mixtures with σ1 = σ2 = . . . = σk = σ that they also consider (see [AGH+14, The-
orem 3.2]). The tensor decomposition method is applicable to some other models
with latent variables, as explored in [AGH+14].

More recently, Ge, Huang and Kakade discuss the possible polynomial learn-
ing complexity for general mixture of Gaussians without assuming isotropic, in
[GHK15]. However, as their title ‘Learning Mixtures of Gaussians in High Dimen-
sions’ suggests, their method works in a very large ambient space where n ≥ 100k2.
They measure the moments of orders d = 3, 4 and 6 and rely on a smoothed anal-
ysis setting [ST04] to estimate perturbed parameters.

It is not uncommon to find in these sorts of methods that identifiability assump-
tions are made. Based on the polynomial nature of the moments of many common
distributions, in [WCL15] the authors propose semidefinite programming (SDP)
approximations with linear moment constraints to approach learning parameters
from any mixture model of a polynomial family (in the sense of Belkin and Sinha
[BS15]). However, for mixtures of k univariate Gaussians [WCL15, Example 2.1]
they propose to take only the first 6 moments and state that their framework can
recover the parameters. They note that the 6 moments they use have been shown
to be sufficient for k = 2 (incorrectly attributed to Pearson [Pea94]) and assume
throughout that in their models, the number of observation functions that they
consider uniquely identify the model (up to permutation of the components). It is
very important for us to test the validity of these assumptions.

6.2. Veronese Subvarieties and the
Alexander-Hirschowitz Theorem

In Remark 5.0.7 we observed that if we set σij = 0 for all 1 ≤ i, j ≤ n in the
parametrization of the Gaussian moment variety Gn,d, then we recover the familiar
Veronese variety Vn,d in Algebraic Geometry. Such a choice degenerates the Gaus-
sian distribution to a Dirac point mass. Points on its secant variety Seck(Vn,d)
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represent moments of finitely supported signed measures on Rn.
Our interest in these varieties is two-fold. On the one hand, as subvarieties of our

somewhat complex moment varieties, they may shed some light on their properties.
On the other hand, statistically they correspond to some of the submodels in the
previous section, as we will see in Proposition 6.2.6.

Example 6.2.1. The moment variety G2,4 contains the quartic Veronese surface
ν4(P2). While we know from Proposition 4.4.11 that the former is not determinan-
tal, the latter is. This surface is defined by 75 binomial quadrics in P14, included
in the 2× 2-minors of the matrix⎛⎜⎜⎜⎜⎜⎜⎝

m00 m01 m02 m10 m11 m20

m01 m02 m03 m11 m12 m21

m02 m03 m04 m12 m13 m22

m10 m11 m12 m20 m21 m30

m11 m12 m13 m21 m22 m31

m20 m21 m22 m30 m31 m40

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.2.1)

As observed in [CCM+16, Section 4.3], this is just a linear coordinate space in
cumulant coordinates:

ν4(P2) ∩ A14 = V (k20, k11, k02, k30, k21, k12, k03, k40, k31, k22, k13, k04)

= V (k20, k11, k02) ∩ G2,4.

The secant variety Sec2(ν4(P2)) comprises all ternary quartics of tensor rank
≤ 2. It has dimension 5 and degree 75 in P14, and its homogeneous prime ideal is
minimally generated by 148 cubics, namely the 3 × 3-minors of the 6 × 6 Hankel
matrix in (6.2.1). Also this ideal becomes much simpler when passing from mo-
ments to cumulant coordinates. Here, the ideal of Sec2(ν4(P2)) ∩A14 is generated
by 36 binomial quadrics, like k2

31 − k22k40 and k30k31 − k21k40, along with seven
trinomial cubics like 2k3

20 − k2
30 + k20k40 and 2k11k

2
20 − k21k30 + k11k40.

Example 6.2.2. The hypersurface in P6 described in Theorem 5.0.4 contains a
familiar threefold, namely the determinantal variety Sec2(ν6(P1)) defined by the
3× 3-minors of the 4× 4-Hankel matrix⎛⎜⎜⎝

m0 m1 m2 m3

m1 m2 m3 m4

m2 m3 m4 m5

m3 m4 m5 m6

⎞⎟⎟⎠ . (6.2.2)

This can be seen by setting σ = τ = 0 in the parametrization (4.2.1). Indeed, if
the variances tend to zero then the Gaussian mixture converges to a mixture of

86



6.2. Veronese Subvarieties and the Alexander-Hirschowitz Theorem

the point distributions, supported at the means µ and ν. The first d+1 moments
of point distributions form the rational normal curve in Pd, consisting of Hankel
matrices of rank 1. Their kth mixtures specify a secant variety of the rational
normal curve, consisting of Hankel matrices of rank k.

We now present the main result of this chapter. It is a complete classification of
algebraic identifiability for homoscedastic Gaussian mixtures with known variance.

Theorem 6.2.3. Consider the statistical model given by the homoscedastic mixture
of k > 1 Gaussians in Rn with known covariance Σ. Let d > 1 such that the number
of moments is at least the number of parameters:

(
n+d
d

)
≥ (n+1)k. Then the model

is always algebraically identifiable from the moments up to order d, except in the
following cases:

• d = 2

• d = 3, n = 4, k = 7

• d = 4, n = 2, k = 5

• d = 4, n = 4, k = 14

Remark 6.2.4. For the homoscedastic (isotropic) case of Theorem 6.1.5, as it ap-
pears in [AGH+14, Theorem 3.2], Theorem 6.2.3 applies as soon as the variance is
estimated from the covariance matrix (that is, from the moments of order d = 1
and d = 2). Since we have in this case d = 3 and k ≤ n, no exceptions apply and
we can confirm algebraic identifiability for these submodels.

In order to prove Theorem 6.2.3, we first define the corresponding moment
subvariety and then prove that it is actually isomorphic to the Veronese. That
is, Seck(Vn,d) not only represents mixtures of point mass distributions but also
homoscedastic Gaussian mixtures with a fixed covariance. Even if the mixture is
not homoscedastic, as long as the covariances Σi are known (also a statistically
relevant model), there is an algebraic object representing the mixture moments,
namely the join of Veronese varieties.

Definition 6.2.5. Let GS
n,d ⊂ Gn,d ⊂ PN the homoscedastic Gaussian moment

variety with fixed covariance S ≻ 0. We say that the corresponding secant moment
variety Seck(GS

n,d) ⊂ Seck(Gn,d) is algebraically identifiable when the map from the
model parameters {αi, µi}i=1,...,n to the moments up to order d is generically finite-
to-one.

Proposition 6.2.6. The moment variety GS
n,d is isomorphic to Vn,d under a linear

change of coordinates in PN . In particular, dimSeck(GS
n,d) = dimSeck(Vn,d), for

all n, d, k ≥ 1.
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6. Submodels and Tensor Decomposition

Proof. The result follows by inspecting the moment generating function (4.1.1):

∑
i1,i2,...,in≥0

mi1i2···in
i1!i2! · · · in!

ti11 t
i2
2 · · · tinn = exp

(
µ1t1+µ2t2+. . .+µntn

)
·exp

(
1

2

n∑
i,j=1

sijtitj

)
All sij are constants so we may multiply the moment generating function by

exp
(
−1

2

∑n
i,j=1 sijtitj

)
. This will cause a linear change of coordinates in the

mi1i2···in on the left hand side, while the expansion of the right hand side becomes
precisely the Veronese embedding.

The heart behind Theorem 6.2.3 is the Alexander-Hirschowitz Theorem [AH00].

Theorem 6.2.7 (Alexander-Hirschowitz). [BO08, Theorem 1.2] The secant vari-
ety Seck(Vn,d) has the expected dimension min

{
k(n+ 1),

(
n+d
d

)}
− 1 for all values

of k, n, d ≥ 1 except for the following cases:

• d = 2, 2 ≤ k ≤ n

• n = 2, d = 4, k = 5

• n = 3, d = 4, k = 9

• n = 4, d = 3, k = 7

• n = 4, d = 4, k = 14

Proof. (of Theorem 6.2.3) By Proposition 6.2.6, considering defectivity of GS
n,d is

equivalent to considering defectivity of Vn,d. Given that we have more moments
that parameters by our choice of d, algebraic identifiability will fail if and only if
the secant variety Seck(Vn,d) is defective. We now go through the possible cases:

• All cases for d = 2 are defective. Indeed, since (n + 1)k ≤
(
n+2
2

)
we must

have k ≤ n+2
2

≤ n for all n > 1 (and n = 1 is impossible since k > 1), so the
first sequence of exceptions applies.

• For n = 2, d = 4, k = 5 we have
(
n+d
d

)
=
(
2+4
4

)
= 15 = 5(2 + 1) = k(n+ 1) so

the exception applies.

• For n = 3, d = 4, k = 9 we have
(
n+d
d

)
=
(
3+4
4

)
= 35 < 36 = 9(3+1) = k(n+1)

so we do not consider this exception.

• For n = 4, d = 3, k = 7 we have
(
n+d
d

)
=
(
4+3
3

)
= 35 = 7(4 + 1) = k(n+ 1) so

the exception applies.

• Finally, for n = 4, d = 4, k = 14 we have
(
n+d
d

)
=
(
4+4
4

)
= 70 = 14(4 + 1) =

k(n+ 1) so the last exception applies.
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6.2. Veronese Subvarieties and the Alexander-Hirschowitz Theorem

We end this section with a couple of explorations of the centered submodel,
that is, equal means. In that case we get the secant varieties of varieties of powers
of quadratic forms.

Proposition 6.2.8. The equal-means submodel of Sec2(G2,3) = P9 has dimension
5 and degree 16. It is identical to the Gaussian moment variety G2,3 in Proposition
4.4.7 so the mixtures add nothing new in P9. The equal-variances submodel of
Sec2(G2,3) has dimension 7 and degree 15 in P9. Its ideal is Cohen-Macaulay and
is generated by the maximal minors of the 6× 5-matrix⎛⎜⎜⎜⎜⎜⎜⎝

0 0 m00 m10 m01

0 m10 m20 m30 m21

m01 0 m02 m12 m03

0 m00 2m10 2m20 2m11

m00 0 2m01 2m11 2m02

m10 m01 2m11 2m21 2m12

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.2.3)

Since the number of parameters for these submodels are 9 and 8 respectively, both
of these models are not identifiable.

This proposition is proved by a direct computation. That the equal-means
submodel of Sec2(G2,3) equals G2,3 is not so surprising, since the parametrization
of the latter is linear in the variance parameters s11, s12, s22. This holds for all
moments up to order 3. The same is no longer true for d ≥ 4. On the other hand,
it was gratifying to see an occurrence, in the matrix (6.2.3), of the Hilbert-Burch
Theorem for Cohen-Macaulay ideals of codimension 2.

Example 6.2.9. ([AFS16, Example 21]) The following concrete example was
worked out with some input from Giorgio Ottaviani. Consider the mixture of two
bivariate Gaussians that are centered at the origin. This model has 7 parameters:
there is one mixture parameter, and each Gaussian has a 2× 2 covariance matrix,
with three unknown entries. We consider the variety V that is parametrized by all
moments of order exactly d = 6. This variety has only dimension 5. It lives in the
P6 with coordinates m06,m15, . . . ,m60. This hypersurface has degree 15. Its points
are the binary octics that are sums of the third powers of two binary quadrics.
Thus, this is the secant variety of a linear projection of the third Veronese surface
from P9 to P6.

The polynomial that defines V has 1370 monomials of degree 15 in the seven
unknowns m06,m15, . . . ,m60. In fact, this is the unique (up to scaling) invariant of
binary sextics of degree 15. It is denoted I15 in Faa di Bruno’s book [dB76, Table
IV 10], where a determinantal formula was given. A quick way to compute V by
elimination is as follows. Start with the variety Sec2(ν3(P2)) of symmetric 3×3×3-
tensors of rank ≤ 2. This is defined by the maximal minors of a Hankel matrix
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of size 3×6. It has degree 15 and dimension 5 in P9. Now project into P6. This
projection has no base points, so the image is a hypersurface of degree 15.

Example 6.2.10. ([AFS16, Example 22]) Consider n = k = 2 mixtures of two
bivariate Gaussians that are centered at zero. As in [GHK15] let us consider the
moments of orders d = 3, 4, 6. The odd order moment d = 3 is zero, but let us
examine the corresponding variety for d = 4 and d = 6. This lives in the P12 with
coordinates

m00,m40,m31,m22,m13,m04,m60,m51,m42,m33,m24,m15,m06.

We start with the variety X that is parametrized by the 4th and 6th powers of
binary quadrics. This variety has dimension three and degree 27 in P12. We are
interested in the secant variety Sec2(X). This secant variety has the expected
dimension 7, so the model is algebraically identifiable. We do not know whether
Sec2(X) is rationally identifiable. A relation of lowest degree is the following
quartic:

6m15m22m
2
31 − 10m13m24m

2
31 − 2m06m

3
31 + 10m04m

2
31m33 − 9m15m

2
22m40 + 15m13m22m24m40

+2m13m15m31m40 + 3m06m22m31m40 − 5m04m24m31m40 − 10m2
13m33m40 −m06m13m

2
40

+m04m15m
2
40 + 10m2

13m31m42 − 15m04m22m31m42 + 5m04m13m40m42 − 6m2
13m22m51

+9m04m
2
22m51 − 2m04m13m31m51 −m2

04m40m51 + 2m3
13m60 − 3m04m13m22m60 +m2

04m31m60

The takeaway from the last examples should be that there are many possibilities
to explore. One can fix a particular order of moments, as in Example 6.2.9 or
one can take moments of two orders as in Example 6.2.10. Another instance
could be moments of order d = 2 and d = 3 as considered in [HK13]. It would
be interesting to determine the algebraic relations for general restricted sets of
moments. Geometrically, even for small values of k we would expect to obtain
interesting varieties.
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7. Conclusion

Throughout this thesis we presented Gaussian mixture models and parametric
inference for them from an algebraic perspective, and successfully obtained relevant
results tying back to the statistical applications by applying algebraic techniques.

On the maximum number of modes that a mixture of k Gaussians in Rn can
achieve, we proved a lower bound (Theorem 2.3.1) that matches for n = 2 a
conjecture by Bernd Sturmfels (Conjecture 2.2.1). We also gave the first upper
bound (assuming finiteness of the modes) in terms of n, k (Theorem 2.4.4), thus
answering a question first posed in [RL05].

On the maximum likelihood approach to estimate the Gaussian mixture pa-
rameters from data, we proved that these functions are transcendental (Theorem
3.1.2), therefore surpassing a finite algebraic complexity. As a consequence, there
is no notion of ML degree and furthermore there is no bound on the number of
critical points that the log-likelihood of a Gaussian mixture can have (Theorem
3.3.1).

We revisited Pearson’s method of moments and asked in general about iden-
tifiability of parameters from a set of moments up to order d. We distinguished
between algebraic identifiability and rational identifiability and proceeded to suc-
cessfully apply algebraic techniques to shed light on this problem. Indeed, we
showed that the first 3k− 1 moments suffice to algebraically identify a mixture of
univariate Gaussians (Theorem 5.0.6). This was possible thanks to the language
of secant varieties of moment varieties and the concept of nondefectivity. Further,
we saw that for k = 3 the corresponding identifiability degree to Pearson’s 9 is
225, and conjectured how these grow with k (Conjecture 5.3.3).

For higher dimensional Gaussians, we warned that there are cases where method
of moments will fail to recover the parameters from the expected number of mo-
ments (Theorem 5.0.6). These cases are linked to defective secant varieties and we
explored all the small instances of defectivity (Tables 5.2.1 and 5.2.2).

The learning problem of Gaussian mixtures and their submodels remains an
active research topic in Computer Science and Machine Learning. We drew some
parallels between results in these areas and the results presented here (Remarks
6.1.4 and 6.2.4). Further, we applied the celebrated Alexander-Hirschowitz The-
orem of Algebraic Geometry to solve the algebraic identifiability problem for ho-
moscedastic Gaussian mixtures with known variance (Theorem 6.2.3).

In summary, the study of moments of mixtures of Gaussians leads to many
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7. Conclusion

interesting projective varieties, whose geometry is still largely unexplored. We
believe there is still plenty of fertile ground for investigations by algebraic geome-
ters. On the statistical side, it is most interesting to understand the fibers of the
natural parameterization of the variety Seck(Gn,d), which includes the method of
moments. Problem 3 (cf. Section 1.3) serves as a guiding question. In the case of
algebraic identifiability, we are always interested in finding the algebraic degree of
the parametrization, and in effective methods for solving for the model parameters.

We hope that by adding mixtures of Gaussians to the models studied in Alge-
braic Statistics, the interest for both these models and this area will spread even
more and further connections will be developed.
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[Ådl87] Ådlandsvik, Bjørn: Joins and higher secant varieties. Mathemat-
ica Scandinavica, 61:213–222, 1987.
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vanishing theorem for generic unions of multiple points. Inventiones
Mathematicae, 140(2):303–325, 2000.

93



Bibliography

[AHR13] Alexandrovich, Grigory, Hajo Holzmann and Surajit Ray:
On the number of modes of finite mixtures of elliptical distributions.
In Algorithms from and for Nature and Life, pages 49–57. Springer,
2013.

[AR16] Améndola, Carlos and Jose Israel Rodriguez: Solving pa-
rameterized polynomial systems with decomposable projections. arXiv
preprint arXiv:1612.08807, 2016.
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[CPW03a] Carreira-Perpinán, MÁ and CKI Williams: An isotropic
Gaussian mixture can have more modes than components. Institute
for Adaptive and Neural Computation, 2003.

[CPW03b] Carreira-Perpinan, Miguel and Christopher Williams: On
the number of modes of a Gaussian mixture. In Scale Space Methods
in Computer Vision, pages 625–640. Springer, 2003.

[Das99] Dasgupta, Sanjoy: Learning mixtures of Gaussians. In Founda-
tions of Computer Science, 1999. 40th Annual Symposium on, pages
634–644. IEEE, 1999.
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The following pages contain computer code in the language R, which was used in
some chapters of this thesis. They explore several aspects of univariate Gaussian
mixtures.

• In Appendix A we give a short note about correct sampling from Gaussian
mixtures and present basic code for achieving this.

• In Appendix B we present an implementation of the EM algorithm for Gaus-
sian mixtures.

• In Appendix C we provide a general Pearson’s method of moments imple-
mentation for fitting a mixture of two univariate Gaussians to data.

107





A. Sampling

We present a basic script to sample from a Gaussian mixture given as input its
parameters and the sample size.

One important pitfall to avoid is that to sample from

fX = α1fX1 + . . .+ αkfXk

where Xi ∼ N(µi,Σi) are the Gaussian components, it does not suffice to sample
from each Xi individually and then setting X = α1X1+ . . .+αkXk. This is wrong
and would instead create a Gaussian distribution again (Gaussian convolution).

Instead, the right way of sampling from a mixture is to sample first from a
discrete distribution with probabilities given by the vector of α. This will indicate
the component Xi and now we can sample from this Gaussian. In other words,
one samples from Xi with probability αi.

The function below, ‘sampleMixt.R’ relies on R’s function rnorm that samples
from a single univariate Gaussian. It also plots the corresponding data density.

sampleMixt <- function(N,means,variances,alphas){

k = length(means);

class <- sample(1:k,prob=alphas,size=N,replace=TRUE);

data <- rnorm(n=N,mean=means[class],sd=sqrt(variances[class]));

plot(density(data),main="Gaussian mixture density")

return(data);

}

If we want to sample from a multivariate Gaussian mixture, rnorm does not
work. However, there are R packages that will have the corresponding multivariate
version. Indeed, we can use the function ‘mvrnorm’ from the package MASS or the
function ‘rmvnorm’ from the package mvtnorm.
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B. EM Algorithm

The main function is ’EMalgorithm.R’, which receives as input a vector of data
and parameter starting values. It calls ‘Estep.R’ and ‘Mstep.R’. The former is the
Expectation step, which takes the input and assigns a probability to each data
point. Then the latter, being the Maximization step, takes this probability vector
and computes the maximum likelihood estimates for the parameters, updating
their values. The process repeats until convergence.

EMalgorithm <- function(x,params){

TOL = 1e-8;

iter = 1;

ITMAX = 100;

change = 1;

while(change > TOL && iter<ITMAX){

#print(iter)

iter = iter + 1;

result = Estep(x,params);

probs = result$probs;

loglik = result$loglik;

#print(probs)

#print(loglik)

paramsnew = Mstep(x,probs);

#print(params)

change = sqrt(sum((paramsnew - params)^2));

params = paramsnew;

}

#print(probs)

return(list(params = params, probs = probs, loglik = loglik))

}

——————————————–

Estep <- function(x,params){

alpha=params[1];

mu1=params[2];

mu2=params[3];

sigma1=params[4];
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B. EM Algorithm

sigma2=params[5];

probs = alpha*dnorm(x,mu1,sigma1)/(alpha*dnorm(x,mu1,sigma1)

+ (1-alpha)*dnorm(x,mu2,sigma2));

loglik = sum(log(alpha*dnorm(x,mu1,sigma1)

+ (1-alpha)*dnorm(x,mu2,sigma2)));

return(list(probs = probs, loglik = loglik))

}

——————————————–

Mstep <- function(x,probs){

N=length(x);

N1=sum(probs);

N2=N-N1;

alpha = N1/N;

mu1 = sum(probs*t(x))/N1;

mu2 = sum((1-probs)*t(x))/N2;

sigma1 = sqrt(sum(probs*t((x-mu1)^2))/N1);

sigma2 = sqrt(sum((1-probs)*t((x-mu2)^2))/N2);

params = c(alpha,mu1,mu2,sigma1,sigma2)

return(params)

}
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C. Pearson’s MOM

The main function is ‘PearsonMOM.R’, which receives as input a vector with the
6 (sample) moments m1,m2,m3,m4,m5,m6. Then it will apply Pearson’s method
of moments and produce the estimates. It calls the function ‘toCumulants.R’
(which just transforms moments into cumulants) and in some cases it also calls
‘mixtmoms.R’ which computes the moments for a mixture of two Gaussians with
specified parameters (this is particularly useful for generating input for tests).

PearsonMOM <- function(moms){

cums = toCumulants(moms);

k1 = cums[1];

k2 = cums[2];

k3 = cums[3];

k4 = cums[4];

k5 = cums[5];

k6 = cums[6];

sols = 0;

if (k3==0 & k5==0){

if(k4==0){

print(cat("Data resembles a single Gaussian with mean ",k1,"

and variance ",k2,". No honest mixture.","\n"));

sols =1;

}

else {

if(k4>0){

print(cat("Data is consistent only with an equal means model."

, "\n"));}

else{

print(cat("Data displays symmetry, different means alternative

still explored.","\n"));}

e2 = k2^2 - k4/3 + k2*k6/(5*k4);

e1 = 2*k2 + k6/(5*k4);

d = e1^2 - 4*e2;

if ((e1>0 & e2>0) & d>0 ){

v1 = (e1 - sqrt(d))/2;

v2 = (e1 + sqrt(d))/2;
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a = (v2 - k2)/ (v2 - v1);

print(cat("(alpha,mu1,mu2,sigma1,sigma2)=

",c(a,k1,k1,sqrt(v1),sqrt(v2)),"\n"));

sols = 1;

}

else {

print(cat("Negative variance found, discarding equal means."

, "\n"));}

}

}

rootsp = polyroot(c(-8*k3^6,-32*k3^4*k4,-21*k3^2*k4^2-24*k3^3*k5,

96*k3^4+9*k4^3-36*k3*k4*k5,148*k3^2*k4-6*k5^2,

24*k3*k5+30*k4^2,12*k3^2,28*k4,0,8));

rootsord = rootsp[sort.list(abs(Im(rootsp)))];

print(cat("Pearson’s polynomial roots: ", rootsord,"\n"));

rootsreal = subset(rootsord, abs(Im(rootsord))<0.01 & Re(rootsord)<0);

print(cat("Pearson’s polynomial appears to have ",length(rootsreal),"

negative real roots.", "\n"));

if (length(rootsreal)>0){

p = Re(rootsreal);

s = (2*k3^3+6*k3*k4*p+3*k5*p^2-8*k3*p^3)/(p*(4*k3^2+3*k4*p+2*p^3));

m1 = (s-sqrt(s^2-4*p))/2;

m2 = (s+sqrt(s^2-4*p))/2;

R1 = p + k2;

R2 = (k3/p + s)/3;

var1 = R1 - m1*R2;

var2 = R1 - m2*R2;

sigma1 = sqrt(ifelse(var1>=0,var1,NA));

sigma2 = sqrt(ifelse(var2>=0,var2,NA));

alpha = m2 / (m2-m1);

mu1 = m1 + k1;

mu2 = m2 + k1;

sixth = Inf*p;

for (i in 1:length(rootsreal)){

if (is.na(sigma1[i]) | is.na(sigma2[i])){

print(cat("Negative variance found, removing root.", "\n"));}

else{

print(cat("(alpha,mu1,mu2,sigma1,sigma2)=

", c(alpha[i],mu1[i],mu2[i],sigma1[i],sigma2[i]),"\n"));

sixth[i] = abs(mixtmoms(c(alpha[i],mu1[i],mu2[i],

sigma1[i],sigma2[i]))[6] - moms[6]);
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sols = sols + 1; }

}

}

if(sols > 1){

j = which.min(sixth);

print(cat("Of the ",sols," statistically meaningful solutions, the

closest to the sample’s sixth moment is",

"(alpha,mu1,mu2,sigma1,sigma2)=

", c(alpha[j],mu1[j],mu2[j],sigma1[j],sigma2[j]), "\n"));

} else{

if(sols == 1){

print("Unique statistically meaningful solution found.")}

else {

print("No solutions, the data does not come from a mixture

of two Gaussians.");}

}

}

—————————————-

toCumulants <- function(moms){

m1 = moms[1];

m2 = moms[2];

m3 = moms[3];

m4 = moms[4];

m5 = moms[5];

m6 = moms[6];

k1 = m1;

k2 = m2 - m1^2;

k3 = m3 -3*m1*m2 + 2*m1^3;

k4 = m4 - 4*m1*m3 - 3*m2^2 + 12*m1^2*m2 - 6*m1^4;

k5 = m5 -5*m1*m4 -10*m2*m3 + 20*m1^2*m3 + 30*m1*m2^2 - 60*m1^3*m2

+ 24*m1^5;

k6 = m6 - 6*m1*m5 - 15*m2*m4 + 30*m1^2*m4 - 10*m3^2 + 120*m1*m2*m3

-120*m1^3*m3 +30*m2^3 -270*m1^2*m2^2 + 360*m1^4*m2 -120*m1^6;

cums = c(k1,k2,k3,k4,k5,k6);

return(cums)

}

—————————————-

mixtmoms <- function(params){

alpha = params[1];

mu1 = params[2];
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mu2 = params[3];

sigma1 = params[4];

sigma2 = params[5];

m1 = alpha*mu1 + (1-alpha)*mu2;

m2 = alpha*(mu1^2 + sigma1^2) + (1-alpha)*(mu2^2 + sigma2^2);

m3 = alpha*(mu1^3 + 3*mu1*sigma1^2)

+ (1-alpha)*(mu2^3 + 3*mu2*sigma2^2);

m4 = alpha*(mu1^4 + 6*mu1^2*sigma1^2 + 3*sigma1^4)

+ (1-alpha)*(mu2^4 + 6*mu2^2*sigma2^2 + 3*sigma2^4);

m5 = alpha*(mu1^5 + 10*mu1^3*sigma1^2 + 15*mu1*sigma1^4)

+ (1-alpha)*(mu2^5 + 10*mu2^3*sigma2^2 + 15*mu2*sigma2^4);

m6 = alpha*(mu1^6 + 15*mu1^4*sigma1^2 + 45*mu1^2*sigma1^4 + 15*sigma1^6)

+ (1-alpha)*(mu2^6 + 15*mu2^4*sigma2^2 + 45*mu2^2*sigma2^4

+ 15*sigma2^6);

moms = c(m1,m2,m3,m4,m5,m6);

return(moms)

}

116


	Title Page
	Acknowledgements
	Abstract
	Zusammenfassung
	Declaration of Authorship
	Contents
	1 Introduction
	1.1 Pearson's Crabs: Algebraic Statistics in 1894
	1.2 Fisher's Approach and Hill-Climbing
	1.3 Motivating Questions
	1.3.1 The Chapters


	2 The Peaks of Mixture Densities
	2.1 Background
	2.2 Examples and Conjecture
	2.3 Many Modes
	2.4 Not Too Many Modes
	2.5 Future Work

	3 Maximum Likelihood Estimation and Transcendence
	3.1 In Search of the ML Degree
	3.2 Reaching Transcendence
	3.3 Many Critical Points
	3.4 Further Discussion

	4 Method of Moments and Moment Varieties
	4.1 Moments and Cumulants
	4.2 The Pearson Polynomial
	4.3 Comparison to Maximum Likelihood
	4.4 Varieties of Moments

	5 Secants and Algebraic Identifiability
	5.1 One-dimensional Gaussians
	5.2 Higher-dimensional Gaussians
	5.3 Towards Equations and Degrees

	6 Submodels and Tensor Decomposition
	6.1 Machine Learning and MOM Reawakening
	6.2 Veronese Subvarieties and the Alexander-Hirschowitz Theorem

	7 Conclusion
	Bibliography
	List of figures
	List of tables
	Appendix
	A Sampling
	B EM Algorithm
	C Pearson's MOM




