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a b s t r a c t 

Deep learning requires large labeled datasets that are difficult to gather in medical imaging due to data 

privacy issues and time-consuming manual labeling. Generative Adversarial Networks (GANs) can allevi- 

ate these challenges enabling synthesis of shareable data. While 2D GANs have been used to generate 2D 

images with their corresponding labels, they cannot capture the volumetric information of 3D medical 

imaging. 3D GANs are more suitable for this and have been used to generate 3D volumes but not their 

corresponding labels. One reason might be that synthesizing 3D volumes is challenging owing to compu- 

tational limitations. In this work, we present 3D GANs for the generation of 3D medical image volumes 

with corresponding labels applying mixed precision to alleviate computational constraints. 

We generated 3D Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) patches with their corre- 

sponding brain blood vessel segmentation labels. We used four variants of 3D Wasserstein GAN (WGAN) 

with: 1) gradient penalty (GP), 2) GP with spectral normalization (SN), 3) SN with mixed precision (SN- 

MP), and 4) SN-MP with double filters per layer (c-SN-MP). The generated patches were quantitatively 

evaluated using the Fréchet Inception Distance (FID) and Precision and Recall of Distributions (PRD). Fur- 

ther, 3D U-Nets were trained with patch-label pairs from different WGAN models and their performance 

was compared to the performance of a benchmark U-Net trained on real data. The segmentation perfor- 

mance of all U-Net models was assessed using Dice Similarity Coefficient (DSC) and balanced Average 

Hausdorff Distance (bAVD) for a) all vessels, and b) intracranial vessels only. 

Our results show that patches generated with WGAN models using mixed precision (SN-MP and c-SN- 

MP) yielded the lowest FID scores and the best PRD curves. Among the 3D U-Nets trained with synthetic 

patch-label pairs, c-SN-MP pairs achieved the highest DSC (0.841) and lowest bAVD (0.508) compared to 

the benchmark U-Net trained on real data (DSC 0.901; bAVD 0.294) for intracranial vessels. 

In conclusion, our solution generates realistic 3D TOF-MRA patches and labels for brain vessel segmenta- 

tion. We demonstrate the benefit of using mixed precision for computational efficiency resulting in the 

best-performing GAN-architecture. Our work paves the way towards sharing of labeled 3D medical data 

which would increase generalizability of deep learning models for clinical use. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

The success of deep learning algorithms in natural image anal- 

sis has been leveraged in recent years to the medical imaging do- 

ain. Deep learning methods have been used for automation of 

arious manual time-consuming tasks such as segmentation and 

lassification of medical images ( Greenspan et al., 2016; Lunder- 

old and Lundervold, 2019 ). Supervised deep learning methods, 

pecifically, learn relevant features from images by mapping fea- 

ures in the input images to the label output. While the advantage 

f these methods is that they do not need manual extraction of 

eatures from the images, they do require large amounts of labeled 

ata. Here, a major challenge is that it is expensive and difficult 

o acquire and label medical data ( Yi et al., 2019 ). Yet, even when

abeled medical data is available, it usually cannot be shared read- 

ly with other researchers due to privacy concerns ( Clinical Prac- 

ice Committee, 20 0 0 ). Anonymization methods typically applied 

n medical imaging would not be beneficial in the case of neu- 

oimaging as the unique neuroanatomical features present in brain 

mages could be used to identify individuals ( Wachinger et al., 

015; Valizadeh et al., 2018 ). As a consequence, often small, siloed 

r homogenous datasets are used when proposing new deep learn- 

ng models in neuroimaging ( Willemink et al., 2020 ). 

A potential solution to this problem is the generation of syn- 

hetic medical imaging data. A very promising method for this pur- 

ose is Generative Adversarial Networks (GANs) ( Goodfellow et al., 

014 ). Various GAN architectures from the natural images domain 

ave gained popularity in medical imaging for image synthesis, 

upervised image-to-image translation, reconstruction and super- 

esolution ( Yi et al., 2019 ). For image synthesis, specifically, 2D 

ANs have been used in several works such as synthesis of Com- 

uted Tomography (CT) liver lesions ( Frid-Adar et al., 2018 ), skin 

esion images ( Baur et al., 2018 ), and axial Magnetic Resonance 

MR) slices ( Bermudez et al., 2018 ). GANs can be extended to gen-

rate the labels along with the synthesized images. For example, 

D GANs have been used to generate the corresponding segmenta- 

ion labels for lung X-rays ( Neff et al., 2018 ), vessel segmentation 

 Kossen et al., 2021 ), retinal fundus images ( Guibas et al., 2018 )

nd brain tumor segmentation ( Foroozandeh and Eklund, 2020 ). 

lthough these results are promising, the challenge remains that 

D GANs cannot capture important anatomical relationships in the 

hird dimension. Since medical images are often recorded in 3D, 

ANs generating 3D medical images are thus highly warranted. 3D 

ANs have been used to generate downsampled or resized MRI im- 

ges of different resolutions ( Kwon et al., 2019; Eklund, 2020; Sun 

t al., 2021 ). However, to our knowledge, there is no 3D GAN med-

cal imaging study that generates the corresponding labels, which 

s critical for using the data for supervised deep learning research. 

ne reason could be that synthesizing 3D volumes is still a chal- 

enge due to computational limitations. 

In our study, we generate high resolution 3D medical image 

atches along with their labels in an end-to-end paradigm for 

rain vessel segmentation which aids in identifying and studying 

erebrovascular diseases. From 3D Time-of-Flight Magnetic Reso- 

ance Angiography (TOF-MRA), we synthesize 3D patches together 

ith brain vessel segmentation labels. We implement and compare 

our different 3D Wasserstein-GAN (WGAN) variants: three with 

he same architecture but different regularizations and mixed pre- 

ision ( Micikevicius et al., 2018 ) schemes, and one with a modi- 

ed architecture - double filters per layer - owing to memory ef- 

ciency from mixed precision. Next to a qualitative visual assess- 
∗ Corresponding author at: CLAIM - Charité Lab for AI in Medicine, Charité Uni- 

ersitätsmedizin Berlin, Germany. 

E-mail address: tabea.kossen@charite.de (T. Kossen). 
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ent, we use quantitative measures to evaluate the synthesized 

atches. We further evaluate the performance of brain vessel seg- 

entation models trained on the generated patch-label pairs and 

ompare them to a benchmark model trained on real data. Addi- 

ionally, we also compare the segmentation performance on a sec- 

nd, independent dataset. 

To summarize, our main contributions are: 

1. For the first time to our knowledge in the medical imaging do- 

main, we generate high resolution 3D patches along with seg- 

mentation labels using GANs. 

2. We utilize the memory efficiency provided by mixed precision 

to enable a more complex WGAN architecture with double the 

filters per layer. 

3. Our generated labels allow us to train 3D U-Net models for 

brain vessel segmentation on synthetic data in an end-to-end 

framework. 

. Methods 

.1. Architecture 

We adapted the WGAN - Gradient penalty ( Gulrajani et al., 

017 ) model to 3D in order to produce 3D patches and their cor- 

esponding labels of brain vessel segmentation. We implemented 

our variants of the architecture: a) GP model - WGAN-GP model 

n 3D b) SN model - GP model with spectral normalization in the 

ritic network c) SN-MP model - SN model with mixed precision d) 

-SN-MP model - SN-MP model with double the filters per layer. An 

verview of the GAN training is provided in Fig. 1 . 

For all models, a noise vector ( z) of length 128 sampled from 

 standard Gaussian distribution ( N (0 , 1) ) was input to the Gener-

tor G . It was fed through a linear layer and a 3D batch normal-

zation layer, then 3 blocks of upsampling and 3D convolutional 

ayers with consecutive batch normalization and ReLU activation, 

nd a final upsampling and 3D convolutional layer as shown in 

ig. 2 A. An upsample factor of 2 with nearest neighbor interpo- 

ation was used. The convolutional layers used kernel size of 3 and 

tride of 1. Hyperbolic tangent ( tanh ) was used as the final activa- 

ion function. The output of the generator was a two channel im- 

ge of size 128 × 128 × 64 : one channel was the TOF-MRA patch 

nd the second channel was the corresponding label which is the 

round truth segmentation of the generated patch. The function of 

he labels is to train a supervised segmentation model such as a 

D U-Net model with the generated data. 

Next, the critic D either took the generated 3D patch-label pairs 

G (z(i ))) or the real 3D patch-label pairs ( x ) as its input. The

atch-label pairs were fed through four 3D convolutional layers. 

 kernel size of 3 and stride of 2 was used in the convolutional 

ayers. After each convolutional layer, a 3D instance normalization 

ayer was used for the GP model as shown in Fig. 2 B. Here, for

he SN model, we used spectral normalization ( Miyato et al., 2018 ) 

fter each convolutional layer which acts as an additional regular- 

zation to gradient penalty as shown in Fig. 2 C. Leaky ReLU was 

sed as the activation layer after the normalization layers. The last 

ayer was linear that produced a scalar, coined as the critic’s score. 

he score indicates how similar the distribution of the generated 

atch-label pairs is to that of the real patch-label pairs. This indi- 

ectly ensures that the generated labels correspond to the vessels 

n the generated patches similar to how the real labels correspond 

o the vessels in the real patches. The loss function of the critic 

as: 

oss D (i ) = D (G (z (i ) )) − D (x ) + λ(‖∇ D ( ̂  x ) ‖ − 1) 2 (1)

here ˆ x = εx + (1 − ε) G (z (i ) ) , ε ∼ U[0 , 1] , λ = 10 and ∇ is gradient

f the critic. Here, the difference between the critic’s score for the 

mailto:tabea.kossen@charite.de
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Fig. 1. Structure of the workflow from training the 3D GAN to qualitative and quantitative assessments. Top: Overview of GAN training - Here, we illustrate our most complex 

model using spectral normalization and mixed precision (c-SN-MP), middle: Evaluation schemes, bottom: Segmentation performance evaluation. 

Fig. 2. Architectures of A. Generator of all models, B. Critic of GP model, and C. 

Critic of all SN models. 
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1 https://github.com/prediction2020/3DGAN _ synthesis _ of _ 3D _ TOF _ MRA _ with _ 

segmentation _ labels 
eal and generated data along with the gradient penalty is com- 

uted. The loss function of the generator based on the output of 

he critic was: 

oss G (i ) = −D (G (z (i ) )) (2) 
3 
This equates to maximizing the critic’s score for the generated 

mages by using the negative of the critic’s score as loss for the 

enerator. 

In the case of the SN-MP model, mixed precision was used 

or memory efficiency. The default precision used in deep learning 

ethods is 32 floating point (FP32). In mixed precision, both half 

recision (FP16) and FP32 are used depending on the precision re- 

uirements of a particular arithmetic operation. Here, FP16 is used 

or storing weights, activations and gradients while an FP32 mas- 

er copy of weights is used for optimizer updates. A loss-scaling 

actor is applied in order to maintain the performance equivalent 

o a fully FP32 network. Using mixed precision, allowed us to use 

ore filters per layer. Hence, c-SN-MP model was trained where 

ouble the filters were used in each layer of the SN-MP model. For 

mplementation details, see open source code 1 . 

https://github.com/prediction2020/3DGAN_synthesis_of_3D_TOF_MRA_with_segmentation_labels
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Fig. 3. Brain mask application for intracranial vessels analysis. Here, an axial slice 

is shown of A. TOF-MRA image with skull B. brain mask extracted using FSL-BET 

tool from TOF-MRA image C. ground truth segmentation label after brain mask ap- 

plication leading to skull-stripping i.e. removal of all vessels of face and neck with 

only intracranial vessels remaining. 
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.2. Data 

.2.1. Datasets 

TOF-MRA data of 137 patients with cerebrovascular disease 

rom two earlier studies, PEGASUS ( n = 72 ) and 10 0 0Plus ( n = 65 ),

ere used in this work. The 65 TOF-MRA data from the 10 0 0Plus 

tudy were used for additional validation as a second, independent 

ataset. The details of the studies can be found in ( Mutke et al.,

014 ) for PEGASUS and in ( Hotter et al., 2009 ) for 10 0 0Plus. The

maging was performed with the following parameters for both 

he studies: voxel size =0 . 5 × 0 . 5 × 0 . 7 mm3 ; matrix size =312 ×
84 × 127 ; TR/TE = 22 ms/3.86 ms; time of acquisition = 3:50 min,

ip angle = 18 degrees. 

The images were pre-segmented semi-manually with a stan- 

ardized pipeline using a thresholded region growing algorithm in 

he case of PEGASUS dataset, and a 2D U-Net segmentation model 

 Livne et al., 2019 ) in the case of 10 0 0Plus. Final ground truths

ere created following pre-defined manual correction steps first 

y junior and finally senior raters. Further details of the labeling 

ethodology can be found in ( Hilbert et al., 2020 ). 

.2.2. Data splitting and preprocessing 

TOF-MRA images from each study were denoised, and non- 

niformity correction was applied to improve image quality 

 Masoudi et al., 2021 ). For training the GANs, 47 of the patient data

f the PEGASUS study were used. For the downstream task of seg- 

entation, 12 were used as the validation set and 13 as the test 

et. The 10 0 0Plus study dataset was solely used as an independent 

est set ( n = 65 ) for evaluation of the trained segmentation model. 

Due to computational limitations, 3D patches of size 128 ×
28 × 64 were extracted from the whole brain TOF-MRA scans of 

he PEGASUS training set. For training of GANs, 50 patches of im- 

ges and their labels per patient were extracted - in part system- 

tically (18) to cover all parts of the image and in part randomly 

32) with the center voxel being a blood vessel in order to rep- 

esent sufficient vessels. This amounted to a total of 2,350 patch- 

abel pairs. In addition, 250 patches per patient were randomly 

xtracted with center voxel as blood vessel for the downstream 

egmentation model from the PEGASUS training and validation set 

eading to 11,750 and 3,0 0 0 patch-label pairs respectively. 

The image patches for the GAN training were normalized be- 

ween -1 and +1. The corresponding labels were stacked on the 

mage patch as a second channel for training the GANs. 

.3. Evaluation methods 

An overview of the evaluation methods is shown in Fig. 1 . 

he qualitative evaluation was done by visually assessing the im- 

ges, labels and the 3D vessel structure using ITK-SNAP 2 as a first 

tep. For a quantitative assessment, FID scores were computed 

rom the extracted features using MedicalNet following precedence 

 Sun et al., 2021 ). This is a 3D ResNet model pretrained on 23 dif-

erent medical datasets for segmentation ( Chen et al., 2019 ). We 

hose this network instead of the commonly used Inception-v3 

rained on ImageNet dataset ( Szegedy et al., 2016 ) for calculating 

he FID scores to better match our 3D medical data. 

While the FID measures the quality of the images, it does not 

ccount for mode collapse. Mode collapse happens when the gen- 

rator learns to output a small set of good quality images to get a 

ood critic’s score and does not learn further any new variations 

resent in the training data. In order to quantify both quality and 

ariety of modes captured in the synthetic data, we used Preci- 

ion and Recall for Distributions (PRD) ( Sajjadi et al., 2018 ). Preci- 

ion quantifies the quality of the image, and Recall amounts to the 
2 http://www.itksnap.org/pmwiki/pmwiki.php 

4 
ode collapse. We also computed the Area Under the Curve (AUC) 

f the PRD curves to extract a single score for a simple quantifica- 

ion. Here again, we compared the extracted features of the gener- 

ted and real patches from the pre-trained MedicalNet. It is impor- 

ant to note that both FID and PRD curves are based on the imag- 

ng patches alone and the labels are not taken into consideration 

or these performance measures. 

Next, we tested the generated data for brain vessel segmen- 

ation. 3D U-Nets were trained on the synthetic patch-label pairs 

roduced from the four different 3D GANs, and on the real data to 

ompare segmentation performance. The generated patches were 

escaled back to the real data range i.e. to 0–255 and the labels 

ade binary by using a threshold. The performance of all trained 

-Nets was evaluated on two independent test sets in two separate 

nalysis schemes: a) all vessels b) intracranial vessels. In the case 

f all vessels, the whole predicted segmentation label was consid- 

red for evaluation. For intracranial vessels, the segmentation la- 

els were processed so that only the intracranial vessels were con- 

idered. This was done by applying brain masks of corresponding 

OF-MRA images on the ground truth segmentation labels and the 

rediction labels from all the U-Net models. The brain masks were 

btained automatically using the FSL-Brain Extraction Tool 3 (BET) 

ith parameter f rac = 0 . 05 on the TOF-MRA images. A visual il- 

ustration of this post-processing of labels for intracranial vessels 

s shown in Fig. 3 . In each case, the U-Net model that performed

he best on the real validation set was selected to compute and 

eport the performance on the real test sets. This method of eval- 

ation not only signifies the utility of the synthetic data for the 

rain vessel segmentation use case but also provides information 

bout how well the generated labels reflect the vessel information 

n the generated patch as this is crucial for a good segmentation 

erformance. The segmentation performance was measured using 

ice Similarity Coefficient (DSC) and the balanced Average Haus- 

orff Distance (bAVD) ( Aydin et al., 2021b ). DSC is a commonly 

sed metric to evaluate segmentation performance, given by: 

SC = 

2 × T P 

2 × T P + F P + F N 

(3) 

here TP = True positive; FP = False positive; FN = False negative. 

 higher DSC indicates good segmentation performance. bAVD is a 

istance metric which has been shown to be a better metric for 

valuation of blood vessel segmentation ( Aydin et al., 2021a ). It is 

 modified average Hausdorff distance defined as: 

AV D = 

1 

2 

×
( 

1 

N G 

∑ 

g∈ G 
min 

p∈ P 
(d(g, p)) + 

1 

N G 

∑ 

p∈ P 
min 

g∈ G 
(d(p, g)) 

) 

(4) 

here G is the set of voxels in the ground truth, P is the set of

oxels in the predicted segmentation. The balanced directed av- 

rage Hausdorff distance from voxel set G to P is given by the 

um of all minimum distances from all points belonging to point 
3 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide 

http://www.itksnap.org/pmwiki/pmwiki.php
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/UserGuide
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Table 1 

FID scores and AUC of the PRD curves for 

synthetic data from different models. 

Data source FID PRD-AUC 

GP model 0.0381 0.80 

SN model 0.0322 0.82 

SN-MP model 0.0206 0.87 

c-SN-MP model 0.0244 0.86 

t

H

r

0

3

v

M

m

s  

c

r

l

i

F

v

et G to P divided by the number of points in G . Similarly, bal-

nced directed average Hausdorff distance from voxel set P to G 

s given by the sum of all minimum distances from all points be- 

onging to point set P to G divided by the number of points in

 . bAVD is the mean of the directed average Hausdorff distance 

rom G to P and directed average Hausdorff distance from P to G 

n voxels. A lower bAVD indicates good segmentation performance. 

e used the EvaluateSegmentation tool ( Taha and Hanbury, 2015 ) 

o calculate the DSC and bAVD for each patient prediction. The 

ean DSC and mean bAVD was then calculated across all the 

atients. 

.4. Training 

The models were implemented in PyTorch, and trained using 

n Nvidia TITAN RTX GPU for 100 epochs each. We used two time- 

cale update rule ( Heusel et al., 2018 ) with different learning rates 

f 0.0 0 04 and 0.0 0 02 for the critic and the generator respectively

nstead of having more updates for the critic within each epoch. 

dam optimizer ( Kingma and Ba, 2014 ) with β1 = 0 and β2 = 0 . 9

as used. The batch-size for all models was 4. For mixed preci- 

ion, the Automatic Mixed Precision (AMP) package from PyTorch 

as used. A threshold of 0.3 was set for binarizing the generated 

abels except in the case of SN model where 0.2 was used. All the 

bove hyperparameters were chosen based on the performance of 

he validation set in the segmentation task. The training times and 

he memory used for each GAN variant were recorded. 
ig. 4. Sets of samples of the mid-axial slice of the patch and label, and the correspond

isualizations were obtained using ITK-SNAP for illustrative purposes only. 

5 
For segmentation, the published 3D U-Net architec- 

ure and framework implemented in TensorFlow from 

ilbert et al. (2020) was utilized with the default hyperpa- 

ameters. These were Adam optimizer with a learning rate of 

.0 0 01 and β1 = 0 . 9 , β2 = 0 . 999 , and batch size of 8. 

. Results 

In the visual analysis, the synthetic patches, labels and the 3D 

essel structure from the complex mixed precision model (c-SN- 

P) appeared as the most realistic ( Fig. 4 ). The patches from the 

ixed precision models (SN-MP and c-SN-MP) had the lowest FID 

cores ( Table 1 ), and the best PRD curves ( Fig. 5 ). Based on the PRD

urves, the precision of c-SN-MP outperformed SN-MP where the 

ecall values are higher while the precision of SN-MP is higher for 

ower recall values. Based on the AUC of the PRD curves shown 

n Table 1 , SN-MP and c-SN-MP patches performed similarly. In 
ing 3D vessel structure from A) GP B) SN C) SN-MP D) c-SN-MP and E) real. The 
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Table 2 

Total number of trainable parameters, memory consumption and training times of vari- 

ous 3D GAN models. Note that c-SN-MP, which is our complex mixed precision model, 

uses twice the number of filters per layer leading to doubling of the trainable parame- 

ters compared to non-complex models. The memory consumption increased by 1.5 times 

compared to the SN model allowing it to be accommodated in the limited memory of 

our computational infrastructure. The training time also increased by 2.5 times but it 

was not a constraint in our study. 

Model Trainable parameters (million) Memory (MB) Time (hours) 

GP model 145 15,085 78 

SN model 145 14,333 77 

SN-MP model 145 9,013 77 

c-SN-MP model 308 21,351 192 

Table 3 

The mean DSC and mean bAVD (in voxels) across all the patients in the test set for 2 

different datasets PEGASUS and 10 0 0Plus. The value in brackets is the standard deviation 

across patients. A) All vessels is done on the entire prediction with the entire ground truth 

as reference, and B) Intracranial vessels is done on skull-stripped prediction with skull- 

stripped ground truth as reference. 

Data source PEGASUS 10 0 0Plus 

Mean DSC Mean bAVD Mean DSC Mean bAVD 

A) All vessels 

GP model 0.793 (0.024) 2.648 (1.189) 0.807 (0.03) 1.895(1.061) 

SN model 0.804 (0.019) 2.425 (1.505) 0.796 (0.029) 1.855 (0.929) 

SN-MP model 0.782 (0.020) 2.334 (1.122) 0.778 (0.032) 1.746 (0.894) 

c-SN-MP model 0.820 (0.017) 1.859 (1.038) 0.809 (0.031) 0.858 (0.91) 

Real 0.906 (0.016) 0.339 (0.139) 0.883 (0.023) 0.554 (0.221) 

B) Intracranial vessels 

GP model 0.827 (0.015) 0.639 (0.132) 0.829 (0.019) 0.701 (0.195) 

SN model 0.833 (0.013) 0.606 (0.141) 0.811 (0.023) 0.716 (0.213) 

SN-MP model 0.804 (0.020) 0.784 (0.125) 0.785 (0.027) 0.822 (0.211) 

c-SN-MP model 0.841 (0.016) 0.508 (0.083) 0.817 (0.028) 0.611 (0.18) 

Real 0.901 (0.019) 0.294 (0.077) 0.880 (0.024) 0.507 (0.126) 

Fig. 5. PRD Curves of synthetic data from the four different models with real data 

as reference. Precision and Recall in GANs quantify the quality and modes captured 

by the models respectively. 
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g

able 2 , the memory consumption and the training duration of 

ach of the GAN variants is shown. Using mixed precision im- 

roved the memory efficiency by approximately 40%. 

The test set performance of the 3D U-Net trained on generated 

ata from different models and on real data is shown in Table 3 .

ere, Table 3 A shows the performance when all vessels are con- 

idered. The U-Net trained with c-SN-MP synthetic data outper- 

ormed all the U-Nets trained on other synthetic data for the PE- 
6 
ASUS test set (mean DSC 0.820; mean bAVD 1.859). In the case 

f the external dataset 10 0 0Plus, the performance of U-Net trained 

n synthetic data from GP model and c-SN-MP model were the 

ame in terms of mean DSC with 0.810 whereas the performance 

f U-Net trained on data from c-SN-MP was the lowest in terms of 

ean bAVD with 1.301. In comparison, the performance of the 3D 

-Net trained with real data on PEGASUS test set was overall still 

he highest (mean DSC 0.906; mean bAVD 0.339), and on 10 0 0Plus 

est set (mean DSC 0.887; mean bAVD 0.622). 

Next, Table 3 B shows the performance for intracranial vessels 

lone. Here, the U-Net trained with c-SN-MP synthetic data outper- 

ormed all the U-Nets trained on other synthetic data for the PE- 

ASUS test set (mean DSC 0.841; mean bAVD 0.508). For the exter- 

al test set from the 10 0 0Plus dataset, the U-Net trained on gen- 

rated data from GP was the highest in terms of mean DSC with 

.830 whereas the U-Net trained on generated data from c-SN-MP 

as the lowest in terms of mean bAVD with 0.639. The perfor- 

ance of labels with only intracranial vessels from the 3D U-Net 

rained with real data on the PEGASUS test set was still the high- 

st (mean DSC 0.901; mean bAVD 0.294), and on the 10 0 0Plus test 

et (mean DSC 0.880; mean bAVD 0.541). 

Box-whisker plots of the prediction performance of various 

odels on the two test sets are plotted in Fig. 6 which shows the 

nter-patient spread in performances for all vessels ( Fig. 6 A) and 

or intracranial vessels ( Fig. 6 B). The error maps of segmentation 

f two example patients, one from each of the two datasets, are 

hown in Fig. 7 for all vessels and for intracranial vessels. 

. Discussion 

To the best of our knowledge, this is the first work to present 

enerative adversarial network models that generate realistic 3D 
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Fig. 6. Segmentation performance (DSC and bAVD) of 3D U-Net models trained with 4 different generated data and PEGASUS training data on the 2 datasets PEGASUS and 

10 0 0Plus of A) all vessels B) intracranial vessels. The horizontal line of the box-whisker plots indicates the median, the box indicates the interquartile range and the whiskers 

the minimum and maximum. 
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OF-MRA volumes along with segmentation labels in medical 

maging. We showed that utilizing mixed precision aids in achiev- 

ng the highest image quality of synthetic data. Additionally, the 

ynthetic data from our complex model maintained a substan- 

ial amount of predictive properties of the original volumes re- 

ected by the good segmentation performance on real test data. 

hese findings also held true on a second, independent dataset. 

he results showcase the potential of utilizing memory efficiency 

rovided by mixed precision in designing a complex architecture. 

ncreasing the complexity is required in order to generate high- 

esolution fine grained structures such as brain vessels in 3D TOF- 

RA volumes from noise along with the corresponding segmenta- 

ion labels. This work sets an important step towards sharing la- 

eled 3D medical images that would facilitate better research in 

he medical imaging domain. 

The segmentation performance of the 3D U-Net trained on syn- 

hetic data from our complex mixed precision model, c-SN-MP, 

howed the best performance compared to the other models based 

n synthetic data in terms of both metrics DSC and bAVD. Here, 

oubling the filters per layer in the GAN architecture is likely to 

ave helped to capture the vessel structure in the training data. 

lso, visually it can be seen in Fig. 4 that c-SN-MP labels ( Fig. 4 D)

ook connected and most similar to real vessel structures ( Fig. 4 E). 

n the contrary, the labels of synthetic data from the simpler 

ixed precision model, SN-MP ( Fig. 4 C), are sparsely connected 

hich explains the worst performance in terms of the DSC of the 

-Net trained on SN-MP data. This seems plausible as the vessels 

re more relevant for segmentation than the background. The same 

an be observed in patch-label pairs from our most basic model, 

P. Here, the segmentation performance was better than SN-MP in 

erms of DSC even though visually Fig. 4 A shows that patch quality 

f GP is not as sharp as the other generated images. 

In terms of quantitative measures of patch quality, the FID 

cores and PRD curves, the mixed precision models, both simple 

nd complex, were rated to be of much better quality and variety 

hen compared to models not using mixed precision (GP and SN 

odels). However, the U-Net trained with the simpler mixed pre- 

ision model, SN-MP, patch-label pairs had the lowest segmenta- 

ion performance. A possible reason for this could be that FID and 

RD curves, which are based on the features extracted only from 

he patches, might focus not only on the vessel structure but also 
7 
he quality of the background. In contrast, the U-Net performance 

s more focused on recognizing the vessel structure. This is con- 

rmed when looking at Fig. 4 C where the patches seem realistic, 

ut the vessel structures look disconnected. We see the reverse of 

his in the case of GP, where the patches look less realistic, but the 

essel structures look more connected. This could explain why the 

P model fared poorly in FID and PRD curves and yet did well in 

egmentation when used to train a U-Net. Looking more closely at 

he PRD curves ( Fig. 5 ), the simpler mixed precision model, SN-MP, 

atches had good quality at lower recall values, while patches from 

ur complex mixed precision model, c-SN-MP, had better quality 

hen the recall values increased. This implies that c-SN-MP is ca- 

able of generating patches of slightly reduced quality but with 

igher variety, and thus, is better at handling mode collapse which 

s indicated by recall. While the FID and PRD curve provide in- 

ights regarding the image quality and variety, these metrics do 

ot necessarily align with the performance in the vessel segmen- 

ation task. This emphasizes the importance of generating labels 

long with the image to determine the best generated data for the 

pecific use case. 

Overall, the FID and PRD curves indicated that more regular- 

zations have a positive effect on the image quality and variety. 

he mixed precision models, SN-MP and c-SN-MP are the best per- 

orming models in terms of these metrics. They are both regular- 

zed with gradient penalty ( Gulrajani et al., 2017 ) and spectral nor- 

alization ( Miyato et al., 2018 ). These methods have been individ- 

ally proposed to bound the critic by ensuring Lipschitz continuity 

hich has been found to stabilize GAN training. Gradient penalty 

oes this by applying a gradient based constraint to the objec- 

ive function of the critic. With spectral normalization, the critic is 

ound by directly constraining its weight matrices by normalizing 

hem with their spectral norm. Using the two methods together 

as proposed to be beneficial in the study that introduced spec- 

ral normalization in GANs ( Miyato et al., 2018 ) and using them to- 

ether has been shown to improve performance in another study 

 Kossen et al., 2021 ). In addition to these methods, we also used 

ixed precision for memory efficiency in the case of SN-MP and 

-SN-MP models. Mixed precision has been found to act as yet an- 

ther form of regularization ( Micikevicius et al., 2018 ). Unlike FID 

nd PRD curves, the segmentation performance does not always 

enefit from synthetic data generated by more regularized mod- 
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Fig. 7. Segmentation error map of an example patient each from PEGASUS test set and 10 0 0Plus test set for all vessels and for intracranial vessels. Top to bottom maps from 

3D U-Net model trained on: A. GP synthetic data B. SN synthetic data C. SN-MP synthetic data D. c-SN-MP synthetic data E. real data. True positives are shown in red, false 

positives are in green and false negatives in yellow. 
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ls. When looking at the test DSC and bAVD of the U-Nets trained 

n synthetic data from the simpler models, GP, SN and SN-MP, it 

s difficult to rank the overall performance due to the varied dif- 

erences in the two segmentation performance metrics across the 

wo test sets. One possible explanation for the differences might 

e that regularization might positively impact the patches but not 

ecessarily the binary segmentation labels that are much simpler 

o generate. To draw conclusions on how regularizations in GANs 

ffect the two segmentation metrics and the generalizability to the 

dditional set, a more systematic analysis would be required in 

urther research. For the c-SN-MP model, we increased the model 

omplexity which could better utilize the multiple regularizations 

nd thus showed good segmentation performance as well as good 

mage quality. An additional argument in favor of multiple reg- 
8 
larizations is that it has been found to make models less vul- 

erable towards membership inference attacks ( Truex et al., 2019; 

hen et al., 2020 ). Such attacks are used by malicious parties to 

nd out if a particular patient’s data was used to train a model 

 Shokri et al., 2017 ). This is crucial to consider when sharing the 

ynthetic data or the generator model. While regularization has 

een found useful to mitigate some attacks, applying differential 

rivacy (DP) ( Dwork and Roth, 2014 ) to the training process, by 

onstruction, puts an upper bound on the privacy leakage of the 

raining data. DP is challenging to implement especially in a 3D 

AN architecture, as it introduces a substantial number of param- 

ters to an already overwhelming amount of parameters. This leads 

o high computational cost in terms of both memory and pro- 

onged training time while reducing the test performance consider- 
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a

p

bly. To showcase this, we have included preliminary results with 

P using Rényi divergence ( Mironov, 2017 ) in 3D on a simplified

AN architecture in the appendix. 

The U-Net trained on real data still outperforms all those 

rained on generated data. Here, Fig. 7 (All vessels) shows that 

ll U-Net models trained with synthetic patches also segment 

lood vessels that are not brain blood vessels but rather vessels 

n the face and neck area, i.e. false positives. In contrast, the U-Net 

rained on real patches of the same size recognized if a vessel be- 

onged to the brain and did not segment vessels outside the brain. 

his highlights that while the GANs learned to segment blood ves- 

els, they did not learn to take the anatomical context of the ves- 

els into account, i.e. the resulting models could not differentiate 

etween face, neck and brain blood vessels. A possible explana- 

ion for this could be that the loss function for GANs focuses on 

he quality of the generated data and not the segmentation perfor- 

ance of the generated patch-label pairs compared to real patch- 

abel pairs. A potential solution would be to generate labels with a 

rst GAN similar in distribution to the real ground truth segmenta- 

ion labels, and then a second GAN could be used to generate the 

orresponding image in inference mode with a 3D image-to-image 

ranslation GAN architecture that was trained with real labels and 

he corresponding images. However, training two 3D GANs sepa- 

ately would increase the overall training time substantially and 

as not feasible with our hardware infrastructure. We utilized an 

lternative solution where we applied the test image brain mask 

n a post-processing step leading to the removal of face and neck 

essels. This is a valid post-processing approach since many clini- 

al use cases only require segmentation of intracranial vessels. The 

erformance of the 3D U-Net trained with generated data then im- 

roved, bringing it closer to the performance of the U-Net trained 

n real data as shown in Table 3 B, Figs. 6 B, 7 (Intracranial vessels).

Generating 3D data is more complex and computationally ex- 

ensive compared to 2D. Yet, the best performing U-Net model 

rained on synthesized 3D data (DSC 0.841) is comparable to the 

est performing U-Net model trained on synthesized 2D data (DSC 

.848) for the same use case of intracranial vessel segmentation 

 Kossen et al., 2021 ). Here, the number of voxels that are gen-

rated is increased by a factor of 100 approximately. Meanwhile, 

nly quarter of the number of filters per layer were used for all 

ur non-complex 3D GAN models owing to memory limitations. In 

rder to double the number of filters per layer for our complex 

odel (c-SN-MP), we used mixed precision. Next, we also used 

psampling instead of convtranspose to alleviate the checkerboard 

rtifacts which increased the memory consumption substantially. 

dditionally, the training of WGAN requires the discriminator to 

e updated more often than the generator. Since this would lead 

o much longer training times, the current work utilized the Two 

imescale Update Rule (TTUR). Here, the learning rate of the dis- 

riminator is set to be higher than that of the generator. These 

hanges were crucial to cope with the special challenges of syn- 

hesis in 3D. Even with these restrictions, a similar segmentation 

erformance of 3D in comparison with 2D underlines the impor- 

ance of generating data in 3D to capture the contextual informa- 

ion within the third dimension for this 3D use case. It is likely 

hat the segmentation performance of the U-Net trained with gen- 

rated 3D data could surpass the performance of 2D data with 

ore computational capacity, when more filters can be utilized in 

he 3D GAN architecture. 

A different strategy with regards to data privacy is Federated 

earning (FL). Here, sharing of data is avoided by locally computing 

pdates for a global model that is then aggregated to be utilized by 

he participating clients. The results thus far are promising. How- 

ver, standard FL does not create new data that can be made pub- 

ic for other research groups to access and improve model archi- 

ectures. This is especially important in the case of rare patholo- 
9 
ies where the data is scarce. Here, GANs can be used to generate 

ata of such pathologies by research groups that have access to 

he data which can then be made publicly available. Additionally, 

here are technical and collaborative hurdles in FL such as picking 

 model-aggregation policy, standardization of hardware and soft- 

are across multiple organizations among others ( Ng et al., 2021 ). 

hese challenges are more acute in the case of deep learning re- 

earch. The organizational and collaborative effort s involved might 

ot be feasible for research groups with limited resources. Since 

ynthetic data from GANs can be shared, it provides easy and eq- 

itable access to all research groups investigating deep learning in 

edical imaging. FL, on the other hand, is more suitable for clin- 

cal application of well-established architectures with distributed 

raining. It should be noted that both FL and GANs are suscepti- 

le to information leakage from the model weights even if the real 

ata itself is not shared. This makes both methods open to pri- 

acy threats ( Sheller et al., 2020; Chen et al., 2020 ). Here, DPGAN 

as been found useful ( Xie et al., 2018 ). DP algorithms incorpo- 

ate random noise into the model making them resilient towards 

nformation leakage ( Shokri et al., 2017 ). FL and DPGANs could be 

aken together to combine their strengths as was done in FedDP- 

AN ( Zhang et al., 2021 ). In our work, we focus on the challenges

f generating 3D medical imaging along with corresponding labels 

ince labeling generated images is time and labour intensive. This 

s an important step before inclusion of DP into the GAN architec- 

ure. We have provided preliminary results using DP on a simple 

DGAN architecture in the appendix. 

The main limitations of our study are computational in nature. 

irst, we have not employed DP in the presented GAN architectures 

hich would provide an upper bound on the information leakage 

hen the generated data and/or generated model is shared. The 

omputational load resulting from applying DP would have made 

he study unfeasible with the available computing infrastructure. 

econd, we did not use more novel GAN architectures validated 

n natural images such as Progressive GANs ( Karras et al., 2018 ) 

r Multi-Scale-Gradients GANs ( Karnewar and Wang, 2020 ). This is 

ecause of the multi-fold computational requirements of these ar- 

hitectures, especially in 3D. Patches of much smaller size could 

till be generated ( Eklund, 2020 ), but they would not be very use- 

ul for the downstream task of vessel segmentation. Third, we gen- 

rated patch-labels pairs and not whole volume-label pairs due to 

omputational limitations. While a recently introduced hierarchical 

emory-efficient approach ( Sun et al., 2021 ) might help to over- 

ome the computational constraints, this would come at the cost 

f much longer training times considering 2 GANs of different res- 

lutions are trained along with encoders in an end-to-end manner. 

dditionally, architectures that use data reconstruction are more 

usceptible to membership inference attack ( Chen et al., 2020 ). 

wo of the recent studies ( Kwon et al., 2019; Sun et al., 2021 ) gen-

rating 3D images alone use encoders in their architectures which 

ake them less useful for the purpose of privacy-preserving data 

haring. Lastly, we trained and tested our GAN architectures on one 

maging modality, i.e. TOF-MRA. While we expect generalization 

f our results to other modalities that may not be high contrast- 

o-noise modalities like TOF-MRA, this should be verified in fu- 

ure studies. For that, we encourage other researchers to utilize 

ur publicly available code. Our findings for TOF-MRA can be re- 

arded as a first proof-of-concept that GAN architectures are able 

o synthesize realistic looking 3D volumes with corresponding seg- 

entation labels. 

. Conclusion 

In this study, we generated high resolution TOF-MRA patches 

long with their corresponding labels in 3D employing mixed 

recision for memory efficiency. Since most medical imaging is 
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ecorded in 3D, generating 3D images that retain the volumetric 

nformation together with labels that are time-intensive to gener- 

te manually is a first step towards sharing labeled data. While 

ur approach is not privacy-preserving yet, the architecture was 

esigned with privacy as a key aspiration. It would be possible to 

xtend it with differential privacy in future works once the compu- 

ational advancements allow it. This would pave the way for shar- 

ng privacy-preserving, labeled 3D imaging data. Research groups 

ould utilize our open source code to implement a mixed precision 

pproach to generate 3D synthetic volumes and labels efficiently 

nd verify if they hold the necessary predictive properties for the 

pecific downstream task. Making such synthetic data available on 

equest would then allow for larger heterogeneous datasets to be 

sed in the future alleviating the typical data shortages in this do- 

ain. This will pave the way for robust and replicable model de- 

elopment and will facilitate clinical applications. 
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Table A.1 

The mean DSC and mean bAVD (in voxels) across a

datasets PEGASUS and 10 0 0Plus using model traine

used as data augmentation. The value in brackets is 

vessels is done on the entire prediction with the ent

nial vessels is done on skull-stripped prediction with

Data source PEGASUS 

Mean DSC Mean

A) All vessels 

Real + GP model 0.902 (0.046) 0.333

Real + SN model 0.906 (0.016) 0.385

Real + SN-MP model 0.903 (0.013) 0.359

Real + c-SN-MP model 0.907 (0.012) 0.399

Real 0.906 (0.016) 0.339

B) Intracranial vessels 

Real + GP model 0.897 (0.018) 0.323

Real + SN model 0.905 (0.017) 0.318

Real + SN-MP model 0.900 (0.017) 0.328

Real + c-SN-MP model 0.905 (0.016) 0.306

Real 0.901 (0.019) 0.294
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ppendix A. Data augmentation 

An additional analysis to complement the evaluation of our syn- 

hetic data is to use it to augment the training data for the down- 

tream brain blood vessel segmentation task. Here we trained seg- 

entation models with PEGASUS training data and augmented it 

ith synthetic data from the 4 GAN models separately for ad- 

itional analysis. Table A.1 summarizes the segmentation results 

or all vessels ( Table A.1 A) and intracranial vessels ( Table A.1 B).

ig. A.1 is a box-whisker plot to visualize the spread in the seg- 
ll the patients in the test set for 2 different 

d with real data along with generated data 

the standard deviation across patients. A) All 

ire ground truth as reference, and B) Intracra- 

 skull-stripped ground truth as reference. 

10 0 0Plus 

 bAVD Mean DSC Mean bAVD 

 (0.151) 0.862 (0.029) 0.65 (0.271) 

 (0.145) 0.878 (0.021) 0.558 (0.199) 

 (0.133) 0.883 (0.02) 0.511 (0.145) 

 (0.204) 0.891 (0.02) 0.564 (0.222) 

 (0.139) 0.883 (0.023) 0.554 (0.221) 

 (0.073) 0.855 (0.029) 0.626 (0.199) 

 (0.075) 0.874 (0.022) 0.546 (0.148) 

 (0.078) 0.877 (0.02) 0.518 (0.121) 

 (0.091) 0.884 (0.02) 0.557 (0.129) 

 (0.077) 0.880 (0.024) 0.507 (0.126) 

https://doi.org/10.13039/501100002347
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Fig. A.1. Segmentation performance (DSC and bAVD) of 3D U-Net models trained with PEGASUS training data together with 4 different generated data as data augmentation 

on the 2 datasets PEGASUS and 10 0 0Plus of A) all vessels B) intracranial vessels. The horizontal line of the box-whisker plots indicates the median, the box indicates the 

interquartile range and the whiskers the minimum and maximum. 
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entation performance between patients for all vessels ( Fig. A.1 A) 

nd intracranial vessels ( Fig. A.1 B). 

Using synthetic data from c-SN-MP model to augment the 

eal data for training segmentation model provided slightly bet- 

er mean DSC on both test sets (PEGASUS and 10 0 0Plus) for the 

wo cases of A) all vessels and B) intracranial vessels when com- 

ared to using only real data or using synthetic data from other 

AN models along with real data. While data augmentation is a 

alid application of our synthetic data, the additional value from 

hem is limited as can be seen from the results. This could be be-

ause the predictive properties captured by the synthesized data is 

v

ig. B.1. Sets of samples of the mid-axial slice of the patch and label, and the correspo

≈ 10 6 D) real. Note that lower the ε higher the privacy. The visualizations were obtaine

11 
imilar to the real data. This was also the case in the study with 

D GAN ( Kossen et al., 2021 ) where data augmentation with 2D 

enerated data did not lead to substantial difference in the seg- 

entation performance. 

ppendix B. 3D differentially private GAN 

Differential privacy (DP) is a natural mitigation strategy against 

embership inference threats. Using DP to synthesize data would 

llow accounting of the level of possible re-identification thus pro- 

iding privacy guarantees of the generated data. In order to illus- 
nding 3D vessel structure from A) DPGAN ε ≈ 10 2 B) DPGAN ε ≈ 10 3 C) DPGAN 

d using ITK-SNAP for illustrative purposes only. 
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Table B.1 

The mean DSC and mean bAVD (in voxels) across all the patients in the test set for 2 

different datasets PEGASUS and 10 0 0Plus using model trained with generated data from 

3D DPGAN with different ε values - starting from low ε value indicating high privacy to 

the high ε value indicating low privacy. The value in brackets is the standard deviation 

across patients. A) All vessels is done on the entire prediction with the entire ground 

truth as reference, and B) Intracranial vessels is done on skull-stripped prediction with 

skull-stripped ground truth as reference. 

Data source PEGASUS 10 0 0Plus 

Mean DSC Mean bAVD Mean DSC Mean bAVD 

A) All vessels 

DPGAN ε ≈ 10 2 0.085 (0.012) 4.509 (0.903) 0.083 (0.016) 4.116 (0.743) 

DPGAN ε ≈ 10 3 0.562 (0.050) 6.307 (2.406) 0.567 (0.041) 4.624 (1.608) 

DPGAN ε ≈ 10 6 0.581 (0.048) 5.05 (2.267) 0.568 (0.041) 3.962 (1.591) 

Real 0.906 (0.016) 0.339 (0.139) 0.883 (0.023) 0.554 (0.221) 

B) Intracranial vessels 

DPGAN ε ≈ 10 2 0.081 (0.013) 4.77 (1.081) 0.077 (0.015) 4.595 (0.878) 

DPGAN ε ≈ 10 3 0.586 (0.045) 3.141 (0.514) 0.569 (0.045) 2.698 (0.604) 

DPGAN ε ≈ 10 6 0.604 (0.048) 2.201 (0.413) 0.572 (0.048) 2.001 (0.445) 

Real 0.901 (0.019) 0.294 (0.077) 0.88 (0.024) 0.507 (0.126) 

Fig. B.2. Segmentation error map of an example patient each from PEGASUS test set and 10 0 0Plus test set for all vessels and for intracranial vessels. Top to bottom maps 

from 3D U-Net model trained on: A. DPGAN ε ≈ 10 2 B. DPGAN ε ≈ 10 3 C. DPGAN ε ≈ 10 6 D. real data. True positives are shown in red, false positives are in green and false 

negatives in yellow. 

12 
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rate this, we utilized the Opacus package from PyTorch to apply 

P-SGD algorithm with Rényi divergence on a 3D adapted version 

f the WGAN ( Arjovsky et al., 2017 ). Henceforth, we refer to this

odel architecture as 3D DPGAN. Here, we clipped the weights 

f the critic with a clipping parameter of 0.01. We had to halve 

he number of filters per layer in both the critic and the genera- 

or in order to be able to train the 3D DPGAN within our compu- 

ational infrastructure. We trained the 3D WGAN with Rényi dif- 

erential privacy accountant which translates to ( ε, δ)-DP guaran- 

ees. The ( ε, δ) pairs quantify the privacy properties of DP-SGD. 

is the measure of privacy loss at a differential change in data 

ith δ probability that the privacy constraint of ε does not hold 

rue. A smaller ε value leads to better privacy. For comparing syn- 

hetic data with different privacy guarantees, the noise multiplier 

alues were set to different values [0.1, 0.3, 0.5] which each provide 

values [ ≈ 10 6 , 10 3 , 10 2 ] respectively. It should be noted that since

he training samples consist of 3D patch-label pairs from the TOF- 

RA image-segmentation label pairs, the guarantees showcased 

ere also pertain to the patch-label pair data rather than the whole 

OF-MRA image of a patient. We set δ to the inverse of the number 

f training samples following convention ( Torkzadehmahani et al., 

019 ). The maximum gradient norm value of 1 was applied for 

lipping gradients. Adam optimizer with a learning rate of 0.0 0 01 

or both the critic and the generator was used instead of the TTUR 

ethod as the training time was reasonable with 5 updates of 

ritic for every update of the generator. All the GANs were trained 

or 100 epochs. The threshold of 0.7 was applied on the generated 

abels from DPGAN ε ≈ 10 6 and 0.6 for DPGAN ε ≈ 10 2 and ε ≈ 10 3 

hosen based on the segmentation performance on the validation 

et. The code for the same is also made available in the GitHub 

epository that has already been provided. 

The generated patch-label pairs and the 3D vessel structure 

ynthesized with different ε values are shown in Fig. B.1 along 

ith the real patch-label pairs for a qualitative comparison. With 

ecreasing ε values the generated data quality reduces. In other 

ords, higher privacy guarantees come with lower quality. This 

s also supported quantitatively with lower segmentation perfor- 

ance of those U-Nets trained with generated data from lower 

DPGAN and vice-versa. Table B.1 shows the results of the test 

egmentation performance on 2 datasets trained with generated 

atch-label pairs from DPGANs with different ε values for A) all 

essels and B) intracranial vessels only. Synthetic data used from 

PGAN with ε ≈ 10 6 has the best performance in the case of 

ll vessels (mean DSC 0.581) and in the case of intracranial ves- 

els (mean DSC 0.604; mean bAVD 2.201). bAVD of U-Net trained 

ith synthetic data from DPGAN with ε ≈ 10 2 is unexpectedly 

ower (mean bAVD 4.509) than that trained with ε ≈ 10 6 (mean 

AVD 5.05). This is because the metric bAVD penalizes false posi- 

ives more than false negatives. This explanation is corroborated in 

ig. B.2 which visualizes the error masks of segmentation of two 

xample patients, one from each of the two datasets for all vessels 

nd intracranial vessels. Fig. B.2 A (PEGASUS) - All vessels shows 

he segmentation error maps from U-Net trained on synthetic data 

rom the highest privacy guarantee of ε ≈ 10 2 . The network misses 

lmost all the vessels and yet the bAVD is lower than bAVD of U- 

et trained on data from DPGAN ε ≈ 10 6 ( Fig. B.2 C (PEGASUS) - 

ll vessels) which has far less false negatives but relatively more 

alse positives owing to vessels from neck and face area. This is 

urther confirmed when these vessels are removed for analysis by 

he post-process skull-stripping of the labels. Then, the bAVD of 

-Net trained with DPGAN ε ≈ 10 6 (mean bAVD 2.201) improves 

uch more than that of U-Net trained with DPGAN ε ≈ 10 2 (mean 

AVD 4.77). 

Our results for the 3D DPGAN show that the generated data 

ith the largest epsilon ε ≈ 10 6 yielded the best performance 

mean DSC 0.604). While this model provided an upper bound of 
13 
rivacy, it should be noted that ε ≈ 10 6 is a very large value and 

he resulting privacy bounds are thus too loose. Moreover, the per- 

ormance of our DPGAN with ε ≈ 10 6 is quite low compared to the 

erformance of our generated data without any privacy guarantees 

mean DSC 0.841). Therefore, we conclude that finding the right 

alance between privacy and utility remains a challenge for differ- 

ntial privacy to be used even in a very simple 3D GAN architec- 

ure. 

upplementary material 

E-supplementary data of this work can be found in online ver- 

ion of the paper. 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.media.2022.102396 . 
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