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Executive Summary 

The deliverable D4.7 concerns the work achieved by IRCAM until M36 for the “auto-
tagging of music”. The deliverable is a research report. The software libraries resulting 
from the research have been integrated into Fincons/HearDis! Music Library Manager or 
are used by TU Berlin. The final software libraries are described in D4.5. 

The research work on auto-tagging has concentrated on four aspects: 

1) Further improving IRCAM’s machine-learning system ircamclass. This has been done 
by developing the new MASSS audio features, including audio augmentation and audio 
segmentation into ircamclass. The system has then been applied to train HearDis! “soft” 
features (Vocals-1, Vocals-2, Pop-Appeal, Intensity, Instrumentation, Timbre, Genre, 
Style). This is described in Part 3. 

2) Developing two sets of “hard” features (i.e. related to musical or musicological concepts) 
as specified by HearDis! (for integration into Fincons/HearDis! Music Library Manager) 
and TU Berlin (as input for the prediction model of the GMBI attributes). Such features 
are either derived from previously estimated higher-level concepts (such as structure, 
key or succession of chords) or by developing new signal processing algorithm (such as 
HPSS) or main melody estimation. This is described in Part 4. 

3) Developing audio features to characterize the audio quality of a music track. The goal 
is to describe the quality of the audio independently of its apparent encoding. This is 
then used to estimate audio degradation or music decade. This is to be used to ensure 
that playlists contain tracks with similar audio quality. This is described in Part 5. 

4) Developing innovative algorithms to extract specific audio features to improve music 
mixes. So far, innovative techniques (based on various Blind Audio Source Separation 
algorithms and Convolutional Neural Network) have been developed for singing voice 
separation, singing voice segmentation, music structure boundaries estimation, and DJ 
cue-region estimation. This is described in Part 6.  
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1 Introduction 

The deliverable D4.7 concerns the work achieved by IRCAM until M36 for the task 4.2 
“auto-tagging of music”. According to Annex I, the objectives of this task are the following:  

1) Development of innovative algorithms for audio content-based auto-tagging for 
automatic recognition of music features as defined in T2.4 (‘hard’ and ‘soft’: 
instrumentation, tonality, bpm, genre, emotion), to be defined in WP3 and to be 
exemplified in T4.1. 

2) Algorithms for measuring the audio quality (real wav or up-cycled, stereo-spread, 
compression, bandwidth) are developed.  

3) Finally, specific audio content based features are developed in order to improve music 
transitions, such as estimating the whole metrical structure, beat, downbeat and 
pattern level, large scale music structure, intro/outro (cue regions) for DJ mixing, and 
vocal positions). The resulting algorithms are developed as feature modules for 
integration in T4.4. 

In this deliverable D4.7, we describe the research work related to these tasks achieved since 
the start of the project until M36. 

The developments achieved for the software libraries of Task 4.2 are described in D4.3 
Research Report and Software Libraries for Auto-Tagging of Music, chapter 7, and D4.5 
Final Software Libraries for Auto-Tagging of Music. Two development paths have been 
followed:  

1) Development for integration into the Music Library Manager imdABCDJ 

2) Development for computing the specific features of TU Berlin 
imdABCDJhardfeatures.py 

1.1 “Soft” and “Hard” Features 

In ABC_DJ, two terms are used to describe audio features:  

 “Soft” features refer to features that can be considered as partly subjective (such as pop-
appeal, intensity, genre, style). In ABC_DJ, these features are exemplified by a 
collection of audio files that allow the use of machine-learning to train algorithms.  

 “Hard” features are supposed to be non-subjective features and to relate to musical or 
musicological concepts 

An initial list of “Soft” and “Hard” features has been defined by HearDis! in D2.4 at M6. 
From this initial list, two lists of features have been derived. 

 

The first list of features is to be used directly by HearDis! within the Music Library 
Manager. This list contains  

 “Soft” features; which are exemplified by a dataset as provided by task 4.1. 

 Direct “hard” features (such as BPM, key or mode) as indicated in the DOW.  

The whole list of HearDis! features is indicated in the following table. In this table, green 
cells indicate features provided by IRCAM.  

The final status of development is the following: all HearDis! features have been developed 
by IRCAM. 
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 Feature Group Name Unit Source 

Hard Features 
BPM Float foobar/IRCAM 
Duration/Length Integer foobar (automatic) 

  Encoding/Codec String foobar (automatic) 

  
Low quality source 
(File history) 

Boolean IRCAM 

  Key 
String 

IRCAM: ICK_Key_KN 
  Mode IRCAM: ICK_Key_KM 

  Mono compatibility Boolean 
IRCAM: 
MonoCompatibility_Mean 

  Resolution Integer foobar (automatic) 
  Sampling Rate Integer foobar (automatic) 
  Loudness Float IRCAM 

(Basic) Soft 
Features 

Artist String foobar (manual/plugin) 
Composer String MLM (manual) 

  Orchestra String MLM (manual) 
  Conductor String MLM (manual) 
  Title String foobar (plugin) 
  ISRC String foobar (plugin?) 

  Album String foobar (plugin) 
  Tracknumber Integer foobar (plugin) 
  Totaltracks Integer foobar (plugin) 
  Release Year Integer foobar (plugin) 
  Source Media String foobar (manual) 
  Created String foobar (automatic) 
  Encoded By String foobar (automatic) 
  Website Artist String MLM (manual) 
  Replay Gain Float foobar (plugin) 
  Label String foobar (plugin) 
  Publisher String MLM (manual) 
  Terms of use String MLM (manual) 

(Advanced) Soft 
Features 

Instrumentation String IRCAM 

Vocals Boolean IRCAM 

  Vocal Style String IRCAM or MLM (manual) 

  Language String MLM (manual) 

  Lyrics String MLM (automatic?) 

  Explicit Lyrics Boolean MLM (manual) 

  Intensity Integer IRCAM 
  Conventionality Integer IRCAM 
  Pop Hit Integer MLM (manual) 
  Timbre String IRCAM 
  Genre String IRCAM 
  Main-Style String IRCAM 
  Sub-Styles String IRCAM 

  Time Reference String MLM (manual) 
  Comment String MLM (manual) 
  GMBI (level 2) 36 dimensions TUB 

  Target-Group ? TUB 

 

The second list of features is to be used by TU Berlin. These features are to be used as 
numerical values for the prediction of the GMBI attributes within WP3. This list contains 
“indirect” Hard features (i.e. features indirectly derived from Hard features, such as 
counting the number of II-V-I chord transitions, or minor second interval in the dominant 
melody) and Low-level audio features (such as statistics of MFCCs or features obtained 
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using the TimbreToolbox). No training or testing dataset is provided for these “indirect” 
Hard features.  

The final status of development at M36 is the following: Not all of TU Berlin features have 
been developed by IRCAM. 

This is due to several factors:  

 These features were defined after the start of the project (they were not indicated in the 
DOW); 

 Some of these features require very high-skill to be developed (such as the features 
derived from the dominant melody); 

 No training or testing dataset from the project can be used to develop them. 

However, some additional features have been added after the first feedback from TUB, that 
partly replace the missing features.  

1.2 Organization of the Deliverable 

The deliverable is organized as follows: 

 Part 3 describes the work achieved related to the estimation of “soft” features. 

 Part 4 describes the work achieved related to the estimation of “hard” features (as 
defined by HearDis! in part 4.1 and as defined by TU Berlin in part 4.2) 

 Part 5 describes the work related to the measurement of the audio quality 

 Part 6 describes the work related to the estimation of specific audio content based 
features in order to improve music mixes (including transitions) 
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2 Auto-Tagging System for “Soft” Features 

2.1 New Audio Features for Rhythm Description 

Executive Summary: We have developed new audio features dedicated to the 
description of the rhythm content of an audio track. These features have been evaluated 
on several reference datasets (Ballroom, Cretan dances) and allow to obtain the best results 
today for these tasks. A new dataset has been created for the purpose of our research on 
rhythm description, the Extended Ballroom dataset. Two papers [Marchand16A] 
[Marchand16B] have been published and presented describing these works.  

Within ABC_DJ, the MASSS rhythm feature is used within our machine-learning 
recognition system to estimate “soft” feature. It allows to increase its recognition rate. 

2.1.1 Introduction 

We propose two novel scale and shift-invariant time-frequency representations of the 
audio content. Scale-invariance is a desired property to describe the rhythm of an audio 
signal, as it will allow to obtain the same representations for same rhythms played at 
different tempi. This property can be achieved by expressing the time-axis in log-scale, for 
example using the Scale Transform (ST) [Cohen93]. Since the frequency locations of the 
audio content are also important, we previously extended the ST to the Modulation Scale 
Spectrum (MSS) [Marchand14]. However, this MSS does not allow the representation of 
the inter-relationship between the audio content existing in various frequency bands. To 
solve this issue, we propose two novel representations. The first one is based on the 2D 
Scale Transform, the second on statistics that represent the inter-relationship between the 
various frequency bands. We apply both representations to a task of rhythm class 
recognition and demonstrate their benefits. We show that the introduction of auditory 
statistics allows a large increase of the recognition results.  

2.1.2 The 2D Modulation Scale Spectrum 

In this method, we extend the idea of the MSS but represent the inter-relationship between 
the frequency bands using the 2D-Scale Transform of the modulus of the 2D-Fourier 
Transform instead of the independent 1D-Scale Transforms of independent auto-
correlation functions. The flowchart of the computation process of the 2DMSS is given in 
the Figure below.  

 

Figure: Computation of the 2D Modulation Scale Spectrum 

2.1.3 The Modulation Scale Spectrum with Auditory Statistics (MASSS) 

The previous 2DMSS representation provides a scale and shift invariant representation of 
the audio content and allows representing the inter-relationship between the various 
frequency bands. However, it also produces shift-invariance over frequencies, including 
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shift-invariance when circularly rotating the frequency axis. This property is not desired 
since it will correspond to consider as equivalent low (kick) and high (hi-hat) patterns. This 
is the reason why we propose here a second representation, which uses statistics (inspired 
by the auditory experiments of McDermott, cf. [McDermott11]) to represent the inter-
relationship between the various frequency bands.  

In [McDermott11], the authors show evidence that “the auditory system summarizes 
temporal details of sounds using time-averaged statistics”. They show that, in order to 
resynthesize sound textures, these statistics should include the statistics of each individual 
frequency band but should also include the cross-correlations between the temporal 
energy profiles within each frequency band.  

We therefore propose to add to the MSS the correlations between the onset-energy-
functions of the various frequency bands. The flowchart of the computation process of the 
MASSS descriptor is given in the Figure below. 

 

Figure: Computation of the Modulation Scale Spectrum with Auditory Statistics 

2.1.4 Experiments 

We compare the ability of the proposed descriptors to represent rhythm. For this we 
evaluate their performances for a task of rhythm class recognition.  

The task consists in correctly recognizing the rhythm class of an audio track. For this we 
use datasets annotated into rhythm classes. We evaluate the performances of the 2DMSS, 
the MSS alone, the cross-correlation coefficients ccc alone, and finally both together 
(MASSS=MSS+ccc). We compare them to the best results published in [2] [Holzapfel11] 
and [3] [Marchand14]. For all classification tasks, we use Support Vector Machines (SVM) 
with a radial basis function kernel. Parameters of the SVM are found using grid-search. 
The results are presented in terms of mean-over-classes recall using 10-fold cross-
validation.  
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Results are indicated in the Table above. First, it should be noted that the results of 
[Marchand14] on the Ballroom dataset (93.1%) were based on a MSS with many frequency 
bands. The new results presented as MSS (95.1%) are based on a reduced number of 
frequency bands, which seems beneficial. Over the two proposed new rhythm descriptors 
(2DMSS and MASSS), only the MASSS succeeded to outperform the MSS descriptor. For 
the Ballroom dataset, our MASSS descriptor outperforms (96,0%) state-of-the-art 
methods (93.1%) by 3%. On the Extended Ballroom dataset, our MASSS descriptor scores 
94,9%. No comparison with state-of-the-art method is possible since this dataset is new for 

the research community. While the results obtained on this new dataset are slightly lower 

than those on the standard Ballroom, it should be considered that not only the number of 

files is 5 times larger but also the number of classes is larger (9 over 8). Therefore 94.9% on 

9 classes is actually better than 96% on 8 classes. On the Cretan dances dataset, the MASSS 

descriptor has a mean-recall of 77,2% which is somewhat equivalent to state-of-the-art 

Holzapfel’s accuracy of 77,8%.  

2.1.5 Conclusion and Future Work 

We proposed two novel audio descriptors (2DMSS and MASSS) that allow representing in 
a shift and scale invariant way the time and frequency content of an audio signal and differ 
by the way they model the inter-relationship between the various frequency bands. The 

first one, named 2DMSS, is based on the application of the Scale Transform along the two 

dimensions of time and frequency. This method was not successful and led to lower scores 

than our initial results [Marchand14]. It can be explained as follows. While this 2D 

representation allows to represent the inter-relationship between the various frequency 

bands, it also produces shift-invariance over frequency, including invariance when circularly 

rotating the frequency axis. This means that low and high frequencies cannot be 

distinguished any more, which is not a desired property. For this reason, we proposed a 

second representation, which uses statistics to represent the inter-relationship between the 

various frequency bands [McDermott11]. This second descriptor, named MASSS, provides 

the new top-results for these datasets. We see that in each of the three experiments, adding 

the cross- correlation coefficients improves the classification result: 0,9% for the Ballroom, 

0,3% for the Extended Ballroom and 1,6% for the Cretan dances dataset. These are 

promising scores and future work will concentrate on testing MASSS as input to other 

classification tasks.  
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2.2 Extension and Adaptation of ircamclass for “Soft” Features 

Executive Summary: The IRCAM machine-learning system to perform auto-tagging is 
named ircamclassification. In the ABC_DJ project, we have extended it by including three 
new modules: the new audio features MASSS, the audio augmentation and the audio 
segmentation modules. Training datasets (i.e. the set of audio files with the corresponding 
“soft” tags annotations) corresponding to 8 different tag-families have been provided by 
HearDis! late October 2016. In this part, we present the results obtained by applying 
ircamclassification to automatically predict the “soft” tags annotations within each of the 8 
tag-families.  

Within ABC_DJ, our machine-learning recognition system is used to predict the “soft” 
features of HearDis! The system is integrated into the MLM. The estimated “soft” tags are 
then used for the creation of playlists.  

 

2.2.1 Description of the Given Tasks 

ircamclassification allows to deal with three types of problems:  

 Single-label (an audio file is associated to a single tag/class within a tag family; 
tags/classes are therefore considered as mutually exclusive within a family),  

 Multi-label (an audio file is associated to several tags/classes within a tag family; 
tags/classes are therefore not mutually exclusive within a family),  

 Regression (tags/classes represent ranking. An example of this is the “pop-appeal” tag 
family with tags/classes 1-2-3-4-5). 

When receiving the training data set from HearDis!, the first task has been to determine 
the type of problem corresponding to each tag family. The data set represents 8 different 
tag families. 

Tag Family/ Dataset Description 

(a) Vocals-1 

 

This dataset contains 2 tags/classes: vocal and mixed (voice + 
instruments). They are relatively balanced (same number of examples 
for each tag/class), and have a total of 413 songs.  

(b) Vocals-2 This dataset contains 3 tags/classes: Male, Female and Male-Female, 
for a total of 633 files. Here the task is to recognize either the vocal 
gender, or if some singers with different genders are singing. 

(c) Pop-Appeal The 983 songs of this dataset are classified with 5 repertories, which 
are numbered from 1 to 5. This “pop-appeal” value represents the 
“pop” characteristic of the song. For example, the music of “Amon 
Tobin” has no pop-appeal, but the one of the “Jackson 5” has more 
pop-appeal. 

It should be remarked that this task is actually a regression task since 
all the “tags/classes” are sorted according a given criterion. 
Nevertheless, it can be treated as a single-label classification task. On 
one hand it makes possible the use of advanced classification 
techniques, but on the other hand, it does not take into account the 
order of the classes. 
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(d) Intensity This task concerns the “Intensity” property of a song. It appears as an 
integer number from 1 to 5. As the “Pop-Appeal” task, it should be 
treated as a regression problem, but for the same reason, it will be 
treated as a single-label classification problem. 812 songs are in the 
dataset. 

(e) Instrumentation 

 

This dataset contains 1983 files, which are stored in 13 instrument-
like tags/classes: Live-Drums, Choir, Acapella, Synthetic-Drums, 
Orchestral, Strings, Acoustic-Guitar, Electric-Guitar, Piano, 
Percussions, Brass-Final, Speechiness, and Whistle. 

The tags/classes describe the presence of a characteristic instrument 
or sound, which can be dominant or just present if it is quite rare. For 
example, most of the songs of the class/tag “Piano” have the piano 
as dominant instrument, but many of the songs of “Choir” just have 
a part with a choir. 

Note that this dataset should be treated as a multi-label task, but 
unfortunately for most of the songs, only one tag is informed. One 
typical example is the song “Led Zeppelin - Your Time Is Gonna Come”, 
which contains a drum, guitars and a choir, but it is only annotated as 
“Choir”.  

Consequently, a standard single-label classification task is applied 
here, and the songs with more than one annotated tags are 
automatically excluded (148 files). Nevertheless, this does not fully 
solve the problem, and the performances will be affected by this lack 
of annotations, see below. 

(f) Timbre For this dataset, 786 files are classified into 6 tags/classes, which 
describe the timbre of the songs: Hard, Dark, Cold, Bright, Warm and 
Soft. As for the Instrumentation, this problem is a multi-label 
classification problem, but it will be treated as a single-label 
classification problem (by removing the duplicates). Note that except 
the “Hard” timbre (which is over-represented), the classes are 
relatively balanced. 

(g) Genre This task contains 1897 files classified using 10 relatively uniform 
tags/classes. These tags/classes indicate the musical genre of the 
songs. They are: World-music, Pop, Soul-Funk, Folk, Dance, Rock, Hip-
Hop, Blues, Classical, and Jazz. 

(h) Style This dataset contains 9417 files stored in 61 tags/classes, which 
indicate the style of a song. They are for example: Balkan, Progressive-
Rock, Disco. Again, this is a multi-label classification problem, but it 
will be treated as a single-label classification problem (by removing 
the 1304 duplicates). That's why only 8113 files are used. 

Note that even if the number of files is relatively high, the number of 
different tags/classes is also really high, which does not facilitate the 
task. 
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2.2.2 Description of the Algorithms Used 

When applying ircamclassification to solve the 8 tag-family classification problems, we 
simultaneously tested some combinations of audio features and machine learning 
algorithms, including ARV Modelling (AutoRegressive Multi-Variate), Modulation 
Spectrum, GMM-UBM Super-Vectors with normalized MFCC or ARV-Filtering for the 
audio features, such as PCA (Principal Component Analysis), LDA (Linear Discriminant 
Analysis), or SVM (Support Vector Machine). Among all tested combinations, the best one 
will be chosen.   

Additionally, during the first year of the ABC_DJ we have extended ircamclassification by 
adding two new modules: audio augmentation and audio segmentation. Both have the 
ability to increase the size of the training set and make the trained models more robust. 
They can be combined together. 

2.2.3 Audio Augmentation 

Audio augmentation, which is commonly named “data augmentation”, consists in creating 
new audio data by modifying the original audio data. Both the original and the modified 
audio data are then used for training the machine learning system. 

We have developed a MATLAB toolbox, which can apply a lot of common sound 
modifications to an audio file, such as: equalizing, filtering, pitch shifting, noise addition, 
distortion, digital encoding, and dynamics compression. To derive a large number of 
possible modifications, this toolbox is able to apply the modifications in chain. 

The advantages of this approach are:  

 It increases the number of data for the training,  

 It allows to train models which are more robust compared to common audio 
modifications, 

 It may solve the problem of “uniform data”. For example, often, all the songs of a given 
dataset are encoded with the same MP3 codec. Then training a model with a unique 
codec, may provide unpredictable results when the classification is done on files 
encoded with a different codec (this problem has been observed). To solve this, the 
alteration toolbox makes possible to simulate different encoding algorithms, and the 
training set is therefore more representative of possible audio signals. 

Note that for the tag/class prediction of a song, only the original signal is used. 

2.2.4 Audio Segmentation 

A common approach in audio classification is to derive a single feature vector representing 
the whole song duration. This can be achieved by taking the mean of each component of 
the instantaneous feature vector over the song duration, or by modelling the components 
distribution (with a single Gaussian model or a GMM for example). With this approach, 
for a training set of N songs, the classifier is trained with no more than N feature vectors 
which can be too low.  

An alternative to this consists in operating the classification at the segment level (a 
segment is a 10 to 30 seconds extract of the song) rather than at the song level. Using M 
segments per song; the training set contains N×M feature vectors. For an unknown song, 
predicting its class is based on the computation of the segments class affinities. A unique 
class is derived for each song using a majority-voting rule. 
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The first advantage of this approach is that it significantly increases the size of the training 
set. The second advantage of this approach is that the classification is local in time. This 
allows for example time-varying classes such as occurring in radio streams for example. 

2.2.5 Results of Classification 

We present here the results of the classification for the 8 tag-families presented above.  

First, the combination of feature types providing the best results has been chosen for each 
task separately. And concerning the classification algorithms, we finally obtained the best 
results using an LDA on each feature type for the dimension reductions, and a well-tuned 
SVM for the classification of songs, or segments.  

The evaluation has been done using a 5 folds cross validation procedure (taking in turn 1/5 
of the dataset for testing and the remaining 4/5 for training). Therefore, each song is used 
for testing once, and 4 times for training. Also, in order to avoid the “artist effect” (songs 
from the same artist tend to be very close) we applied an “artist-filter” (all the songs from 
a given artist are either in the train or the test set but never in both). 

 

(a) Vocals-1 With 2 classes, a random decision would yield a result of 50%. 

The best configuration without audio augmentation and audio 
segmentation leads to a mean recall of 87%.  

Using audio augmentation and audio segmentation leads to 92.5%, 
i.e. a 5% gain. The use of those has therefore a significant impact.  

Note that, as it is usually observed, the segmentation results in a 
higher benefit compared to the audio augmentation. It should be 
noted that the evaluation results presented are obtained using only 
the original audio for testing. While the benefit of audio 
augmentation is less clear in this case, it makes the trained system 
more robust to any degradation.  

(b) Vocals-2 With 3 classes, a random decision would yield a result of 33%. 

The best configuration without audio augmentation and audio 
segmentation leads to a mean recall of 55%. 

Using audio augmentation and audio segmentation leads to 63.6%. 
The results are however quite disappointing compared to the random 
33%. 

A possible explanation for these low results comes from the way the 
training is performed. Actually, to train a “male” classifier the content 
of the whole track duration is used, whereas only segments of the 
track contain singing voice. The classifier therefore also used 
instrumental segments to train the “male” concept, which is 
nonsense. Actually, we do not have the information of the singing 
voice location inside the track. A possibility would be to use the 
“Vocals-1” classifier to obtain those. 

Another difficulty comes from the “mix” class (Male+Female) which 
is not clearly discriminated, even by human listeners. For example, 
most of the time a single singer performs the whole song, and only 
during a short amount of time (usually during the chorus) one or 
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several singers of different genders appear, cf. e.g. the song: “Barry 
White”. 

(c) Pop-Appeal With 5 classes, a random decision would yield a result of 20%. 

The best configuration without audio augmentation and audio 
segmentation leads to a mean recall of 38 %. 

Using audio augmentation and audio segmentation leads to 56.1%.  

Of course, using a real regression task should allow increasing the 
recognition score since the current single-label classification 
paradigm does not allow taking into account the proximity of the 
classes. 

(d) Intensity With 5 classes, a random decision would yield a result of 20%. 

Again, applying a classification task, the best result is obtained for 
segmentation, with 68.8%. Adding the augmentation, the result is 
lower, 67.4%, which is not significant because of the error margin. 
Without segmentation and augmentation the result is significantly 
lower, only 47%. 

Since the problem is originally a regression problem, the same remark 
as above can be done, cf. Pop-Appeal. 

(e) Instrumentation With 13 classes, a random decision would yield a result of 7.7%. 

Our prediction system provides a result of 53.2 %, with both audio 
augmentation and audio segmentation. Again, the benefit of the two 
approaches is significant because it is 37 % without them. 

In spite of the difficulties mentioned earlier, the result of classification 
(53.45%) is not bad in comparison to the value of random prediction 
(7.7%).  

(f) Timbre With 6 classes, a random decision would yield a result of 16.6%. 

The best result obtained is 45.7% with both audio augmentation and 
audio segmentation, whereas it is only 32% without.  

Note that the relative bad result of this task may be explained by 
three reasons: 

1) this kind of task is not always well defined, and even for human 
listeners a choice may not be consensual; 

2) the classes are usually based on cognitive properties, and most 
standard machine learning algorithms have some difficulties to 
treat them; 

3) this task has been actually designed for a multi-labelling task, 
some songs are stored in several categories. 

(g) Genre With 10 classes, a random decision would yield a result of 10%. 

In spite of the significant benefit of the audio augmentation and 
audio segmentation, we remark that the results are relatively 
disappointing compared to the literature.  



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  20 of 76 

Here the best results are 62.1%, this is largely better than random 
(10%) but relatively lower than the results of the literature on a 
similar dataset, such as the GTZAN dataset. 

(h) Style With 61 classes, a random decision would yield a result of 1.64%. 

The best result obtained is 45.7% with both audio augmentation and 
audio segmentation, whereas it is only 38% without.  

Compared to the result of a random decision (1,64%), the results 
obtained are good.   

Even if the dataset has a lot of songs, 8113 files without duplicates, 
the average number of song per class is only 133, increasing the size 
of the dataset then may lead to increasing results. 

 

The figures below illustrate the confusion matrices in percentage for five tasks.  

Concerning the tasks Pop-Appeal and Intensity, which are originally regression tasks, we 
noticed that in spite of the quite disappointing scores (56% and 67%), most of the wrong 
predictions are classified in neighbour levels. Consequently, the results of the prediction 
are coherent and meaningful.  

Figure: Confusion matrix for Pop-Appeal 

 

Figure: Confusion matrix for Intensity 

 

Figure: Confusion matrix for Genre 

 

Figure: Confusion matrix for Timbre 
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Figure: Confusion matrix for instrumentation 

 

 

For the confusion matrices of the tasks Genre and Instrumentation, we can also see 
meaningful confusions. For example, there are obvious similarities of confusion between 
Rock and Blues, or between Instrumental and Strings. 

Unfortunately, concerning the task Timbre we observed quite strong errors, with a mean 
recall of 45.7%. For example, the songs of the class Cold are most of the time recognized as 
Hard and rarely as Cold. Also, we can notice the high confusion between the classes Warm 
and Soft. As said above, these kinds of classification tasks are usually quite difficult.  

Nevertheless, as with Genre and Instrumentation, the confusion matrix of the task Styles 
with 61 classes and a score of 45.7%, not shown here, reveals really meaningful errors, i.e. 
most of the confusions are with neighbour classes: for example R&B and Soul, or Deep-
House, House and Tech-House. 

2.2.6 Conclusion 

In this part we presented the results obtained by applying ircamclassification and its two 
new extensions (audio augmentation and audio segmentation) to the prediction of the tags 
within the 8 tag-families/datasets. 

First, we showed that the prediction scores are largely above a random decision. For 
example, we achieved 45.7% for the tags of the style-family. This is 28 times better than a 
random classifier (1.64%). This proves the ability of our algorithm to classify the songs.  

Second, by examining the confusion matrices, we noticed that in case of errors, the wrongly 
predicted class is most of the time semantically similar to the ground-truth class. This 
reveals the strong coherence of the classification. 

We also showed that for all tag-families/datasets, the two proposed extensions (audio 
augmentation and audio segmentation) provided a significant benefit. 



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  22 of 76 

3 Auto-Tagging System for “Hard” Features 

Executive Summary: Within ABC_DJ, our system to estimate direct “hard” features is 
integrated into the MLM. The direct “hard” features are then used for the creation of 
playlists. The system to estimate the low-level audio features and the indirect “hard” 
features is used as input to TU Berlin model to predict the GMBI attributes which are also 
used for the creation of playlists. 

3.1 Auto-Tagging System for HearDis! “Hard” Features 

The list of “hard” features defined by HearDis! has been processed in a straightforward 
way as follows: 

 BPM feature is provided by ircambeat [Peeters, 2011b] within imdABCDJ software. 

 Key and Mode features are provided by ircamkeymode [Peeters, 2006] within 
imdABCDJ software. 

 Loudness feature is provided by ircamdescriptor [Peeters, 2004] within imdABCDJ 
software. 

 MonoCompatibility and LowQualitySource features are provided as part of the new 
Audio Quality features [Fourer, 2017] within imdABCDJ software (see part 4 for a 
description of the algorithms). 

3.2 Auto-Tagging System for TU Berlin “Hard” Features 

Among the list of features defined by TU Berlin, we can distinguish two main types of 
features:  

1) Low-level audio features (such as statistics of MFCCs or features obtained from using 
the TimbreToolbox). 

2) Indirect “Hard” features (i.e. features indirectly derived from a previously estimated 
Hard features). An example of this is the “number of II-V-I chord transitions” which 
requires the previous estimation the Hard features “chord succession over time”. 

The whole list of TU Berlin features contains over 140 items. IRCAM has achieved the 
development to calculate over 80 of these features.  We also now use both the audio excerpt 
and the full audio track to better estimate the number of segments, and ported the Timbre 
Toolbox Matlab version to the python script imdABCDJhardfeatures.py. 

There were three main reasons that proved problematic for developing a feature, and that 
might limit its practical usefulness: 

1) The meaning of the features is unclear when applied to a polyphonic time-varying 
signal (such as music). This is the case of FundamentalFrequency or TemporalCentroid 
features. 

2) The previously estimated Hard features are not detailed enough to compute the 
Indirect “Hard” feature. This is the case of the “Ratio of sum of additional notes of all 
triads / total number of triads” which cannot be computed from ircamchord since this 
one only estimates major or minor chords. 

3) The previously estimated Hard features are not reliable enough to compute. This is the 
case of the “Ratio #minor seconds melodic interval divided by #melody notes” which 



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  23 of 76 

require the computation of a very clean dominant melody estimation which is not 
currently possible. 

In the following chapter we provide the details of the computed features for each feature 
family. 

For each family, green cells indicate features already implemented, red ones indicate 
features that are not implemented, yellow indicates new features that have been 
implemented additionally to the requirements after M18 according to feedback from TUB.  

3.2.1 Structure Features 

The following set of features is computed using the output of ircamsummary [Kaiser, 2013] 
within imdABCDJ software (which computes the temporal structure of a music track).  

Feature ID or Feature Group Definition / Analytic Function 

ICS_Part_Sequence Music Parts contained in sample defined by  
1) Label of music parts 
2) Start-Time of music parts 
3) End-Time of parts 

ICS_Part_Sequence_Total The total number of music parts contained in the sample 

ICS_Part_Sequence_Unique The total number of unique music parts contained in the sample 

3.2.2 Rhythm Features 

The following set of features corresponds directly to the output of ircambeat [Peeters, 
2011b] within imdABCDJ software. AccentStruct is not currently computed.  

Rhythm and Time Features   

IRC_Length Length of the musical excerpt 

ICB_Meter Time signature as defined within ICB_Meter (2/2 or 3/2). This feature is 

essential for Feature ID AccentStruc. 

ICB_BPM_Mean Tempo / Tempo Fluctuation in Beats per Minute 

ICB_BPM_SD Tempo / Tempo Fluctuation in Beats per Minute 

ICB_perc_norm Percussivity of Rhythm 

ICB_complex_norm Complexity of Rhythm 

ICB_speed_norm_A Speed of Track (A?) 

ICB_speed_norm_B Speed of Track (B?) 

ICB_periodicity Periodicity of rhythmic structure ("Fractalness") 

AccentStruc Accent Structure: Accentuation on semiquater notes (16tel), based on loudness 
and duration of note, BPM, bar recognition 

3.2.3 Key Features 

The following set of features is computed using the output of ircamkeymode [Peeters, 2006] 
within imdABCDJ software. Since ircamkeymode only estimates a global key/mode (not a 
time-varying one), it was not possible to implement the Key_Changes feature.  

Key Features   

ICK_Key_PC Key of music excerpt consisting of dominant key pitch class, dominant key note 
and dominant key mode (major/minor). 

ICK_Key_KN Key of music excerpt consisting of dominant key pitch class, dominant key note 
and dominant key mode. 

ICK_Key_KM Key of music excerpt consisting of dominant key pitch class, dominant key note 
and dominant key mode. 
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Key_Changes Total number of key changes. Value is based on succession of used Keys (e.g. C 
Maj --> A Min, --> C Maj) as specified in ICK_Key_NEW. Feature is essential for 
chord features. 

3.2.4 Chord Features 

The following set of features is computed using the output of ircamchord [Papadopoulos, 
2010] within imdABCDJ software. Since ircamchord only estimates Major and minor chord, 
and since it does not estimate the bass note, it was not possible to implement all TU Berlin 
features.  

Chord Features   

ICC_Chord Sequence Sequence of chords specified as chord symbol, pitch class, mode, degree, bass 
note, added notes, onset (time), offset (time), onset (beat), offset (beat), 
loudness. This chord sequence is the basis for all subsequent Chord Features 

Chords_Num_01 Total number of chords divided by track duration in seconds 

Chords_Num_02 Number of unique chords divided by track duration in seconds 

Chords_Mode_01 Ratio of minor chords / total number of chords 

Chords_Mode_02 Ratio of major chords / total number of chords 
If denominator is zero, the whole output should be set to zero 

Chords_Mode_03 Ratio of major chords / minor chords 

Chords_Mode_04 Ratio of non major or minor-based chords / total number of chords 
If denominator is zero, the whole output should be set to zero 

Chords_Add_01 Ratio of pure triads / triads with additional notes 

Chords_Add_02 Ratio of sum of additional notes of all triads /  total number of triads  
If denominator is zero, the whole output should be set to zero 

Chords_Func Ratio of functional chords / non-functional chords. Functional is defined as root 
note of the chord is on the degree I, ii, iii, IV, V or iv where song key mode is 
"major" or root note of chord is on degree i, III, iv, v, V, VI or VII where song key 
mode is "minor". 
If denominator is zero, whole output should be set to zero. 

Chords_Bass_01 Ratio of chords with root note as bass note /  chords with different note as bass 
note 

Chords_Bass_02 Ratio of chords with root note as bass note / chords with 3 (Third) as bass note. 
If denominator is zero, the whole output should be set to zero. 

Chords_Bass_03 Ratio of chords with root note as bass note / chords with 5 (Fifth) as bass note. 
If denominator is zero, the whole output should be set to zero. 

Chords_Bass_04 Ratio of chords with root note as bass note / chords with 7 (Seventh) as bass 
note. 
If denominator is zero, the whole output should be set to zero. 

Chords_Cad_01 Perfect cadence type 1: Ratio of total number of successions [5, 1] / total 
number of harmony changes (i.e. two subsequent chords having a different 
root note). 
If denominator is zero, the whole output should be set to zero. 

Chords_Cad_02 Perfect cadence type 2: Ratio of total number of root note successions [4, 5, 1] 
/ total number of harmony changes (i.e. two subsequent chords having a 
different root note). 
If denominator is zero, the whole output should be set to zero. 



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  25 of 76 

Chords_Cad_03 Perfect cadence type 3: Ratio of total number of root note successions [2, 5, 1] 
/ total number of harmony changes (i.e. two subsequent chords having a 
different root note) 

Chords_Turn_01 Turnaround "1625": Ratio of total number of root note successions [1,6,2,5] + 
[6,2,5,1] + [2,5,1,6] + [5,1,6,2] divided by total number of harmony changes (i.e. 
two subsequent chords having a different root note). 
If denominator is zero, the whole output should be set to zero. 

Chords_Turn_02 Turnaround "Blues": Ratio of total number of root note successions [1,4,1,5,4,1] 
/ total number of harmony changes (i.e. two subsequent chords having a 
different root note).  
If denominator is zero, the whole output should be set to zero. 

Chords_Turn_03 Turnaround "Pop": Ratio of total number of root note successions [I, V, ii, IV] / 
total number of harmony changes (i.e. two subsequent chords having a 
different root note).  
If denominator is zero, the whole output should be set to zero. 

Chords_TonicDist Tonic distance: Mean Number of chord changes (i.e. changes of root note or 
mode) until the next tonic (degree 1).  
If only the tonic is played, the Tonic distance is zero. If the tonic is never played 
(highly unlikely), the distance to the most frequent chord in the song should be 
calculated. 
 

3.2.5 Melody Features 

The initially developed melody features were based on 

 Transcoding an audio signal to the continuous signal of the dominant fundamental 
frequency. This is done using the state of the art MTG essentia-extractors-
v2.1_beta2/streaming_predominantmelody [Salamon, 2013]. 

 Converting this continuous signal of fundamental frequency to a sequence of discrete 
notes. This is done using a specifically developed hidden Markov model algorithm in 
which states are notes or notes with vibrato.  

 Computing TU Berlin features from this sequence of notes. 

The main difficulties encountered, which prevented the extraction to be performed, are: 

 Difficulty to track correctly the dominant melody when the melody is not in the 
foreground, 

 Difficulty to track only the dominant melody (and not to skip to other non-melodic 
parts),  

 Difficulty to distinguish automatically music tracks with melody and without (Rap 
music) 

 Difficulty to convert the fundamental frequency to pitch (especially when dealing with 
large vibrato and portamento) 

 Necessity to take note duration into account in the definition of the features  

Below is an example illustrating these difficulties. It shows the spectrogram of Track 03 of 
TU-Berlin corpus [Latin]. We can see that the melodies are interleaved, and thus difficult 
to estimate. 
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Note that in section 3.3 we describe research into a new algorithm for main melody 
extraction based on Convolutional and Recurrent Neural Networks which could in the 
future provide a more robust estimation of features derived from melody. 

Melody Features   

Melody_Suc Sequence/Matrix of melody notes as [pitch (e.g. "c4"), onset (time), offset 
(time), onset (beat), offset (beat), loudness, instrument] 

Melody_Compl_01 #different pitches 

Melody_Compl_02 #different pitch classes 

Melody_Compl_03 Ratio #different pitches divided by #melody notes 

Melody_Compl_04 Ratio #different pitch classes divided by #melody notes 

Melody_Compl_05 Ratio #scale notes divided by #non-scale notes 

Melody_Interval_01 Ratio #perfect unisons divided by #melody notes 

Melody_Interval_02 Ratio #minor seconds divided by #melody notes 

Melody_Interval_03 Ratio #major seconds divided by #melody notes 

Melody_Interval_04 Ratio #minor thirds divided by #melody notes 

Melody_Interval_05 Ratio #major thirds divided by #melody notes 

Melody_Interval_06 Ratio #perfect fourths divided by #melody notes 

Melody_Interval_07 Ratio #augmented fourths (trintoni) divided by #melody notes 

Melody_Interval_08 Ratio #perfect fifths divided by #melody notes 

Melody_Interval_09 Ratio #minor sixths by #melody notes 

Melody_Interval_10 Ratio #major sixths divided by #melody notes 

Melody_Interval_11 Ratio #of minor sevenths divided by #melody notes 

Melody_Interval_12 Ratio #of major sevenths divided by #melody notes 

Melody_Interval_13 Ratio #of perfect octaves divided by #melody notes 
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Melody_Interval_14 Ratio #small intervals (perfect unison up to major third) divided by #large 
intervals (perfect fourth up to perfect octave)  

Melody_Direction Ratio of #upwards intervals divided by #downwards intervals 

Melody_NoteLength Number of different types of note lengths within the melody (e.g. full, half, 
quarter, etc) 

3.2.6 Timbre Set-A Features 

The following set of features is computed using either 

 the output of ircamdescriptor [Peeters, 2004] within imdABCDJ software (sharpness, 
distribution of loudness) 

 or the output of a new algorithm based on the Harmonic, Percussive, Noise separation 
[Driedger , 2014] of the HPS of [Fitzgerald , 2010] (DecSinus/DecNoise/DecTrans) 

Timbre and Dynamic Features   

DecSinus The proportion of sinusoidal components (Decomposition of Recording) 

DecNoise The proportion of noise components (Decomposition of Recording) 

DecTrans The proportion of transient components (Decomposition of Recording) 

Timbre_Dissonance Harmonic distance of fundamentals and partials of sinusoidal signals to 
multiples of root note frequencies (based on sinusoidal component of 
example, not noise or transient components - as being defined in feature ID 

DecSinus). The idea is: 
1. Detect root note frequency of song (key) 
2. Determine root note frequencies of the remaining 11 pitch classes 
3. Measure the distance of partials to pitch class frequencies (or 
multiples) per new harmony (e.g. based on new chord symbol) 
4. Sum up distances of the partials to the respectively determined pitch 
class frequency (or multiple of it) 

Roughness_Mean Roughness of sample based IRCAM model 

Roughness_SD Roughness of sample based IRCAM model 

Sharpness_Mean Sharpness of sample  based IRCAM model 

Sharpness_SD Sharpness of sample  based IRCAM model 

Dist_Loud_Mean Estimation of dynamic range compressor parameters from sound recordings. 
Based on "Audio Quality Algorithm" 

Dist_Loud_SD Estimation of dynamic range compressor parameters from sound recordings. 
Based on "Audio Quality Algorithm" 

 

3.2.7 Timbre Set-B Features 

The following set of features was extracted using the TimbreToolbox [Peeters, 2011]. A 
specific python version has been developed within the project. 

Timbre Toolbox Features   

TTB_RMS_Energy_critical_bands_by 
ERBfft_Mean 

Frequency Spectrum and Frequency Spectrum Fluctuation. (Defined by 
TTB_RMS Energy Envelope  (critical bands by ERBfft) 

TTB_RMS_Energy_critical_bands_by 
ERBfft_SD 

Frequency Spectrum and Frequency Spectrum Fluctuation. (Defined by 
TTB_RMS Energy Envelope  (critical bands by ERBfft) 
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TTB_Fundamental Frequency_Mean Fundamental Frequency (Dominant Pitch) 

TTB_Fundamental Frequency_SD Fundamental Frequency (Dominant Pitch) 

TTB_RMS Energy_Envelope 
(technical, by STFT)_Mean 

Sound Level / Level Fluctuation / Level Compression (RMS-Energy Envelope, 
Peeters et al (2011), p. 2905  

TTB_RMS Energy_Envelope 
(technical, by STFT)_SD 

Sound Level / Level Fluctuation / Level Compression (RMS-Energy Envelope, 
Peeters et al (2011), p. 2905  

TTB_RMS Energy_Envelope 
(technical, by STFT)_Crest 

Sound Level / Level Fluctuation / Level Compression (RMS-Energy Envelope, 
Peeters et al (2011), p. 2905  

TTB_Frame_Energy_Mean Overall Sound Energy of Sample 

TTB_Frame_Energy_SD Overall Sound Energy of Sample 

TTB_Temporal_Centroid_Mean Center of Gravity in Terms of Sound Energy 

TTB_Temporal_Centroid_SD Center of Gravity in Terms of Sound Energy 

TTB_Spectral_Centroid_Mean Center of Gravity in Terms of Sound Spectrum 

TTB_Spectral_Centroid_SD Center of Gravity in Terms of Sound Spectrum 

TTB_Spectral_Spread_Mean Breadth of Sound Spectrum --> all spectral TTB features should use the ERBfft 
Auditory Model (Window Size 40ms) 

TTB_Spectral_Spread_SD Breadth of Sound Spectrum --> all spectral TTB features should use the ERBfft 
Auditory Model (Window Size 40ms) 

TTB_Spectral_Skewness_Mean Asymetry of Sound Spectrum (LowFreq vs. HighFreq Domininance) 

TTB_Spectral_Skewness_SD Asymetry of Sound Spectrum (LowFreq vs. HighFreq Domininance) 

TTB_Spectral_Kurtosis_Mean Flatness of Sound Spectrum 

TTB_Spectral_Kurtosis_SD Flatness of Sound Spectrum 

TTB_Spectral_Slope_Mean Slope of Sound Spectrum 

TTB_Spectral_Slope_SD Slope of Sound Spectrum 

TTB_Spectral_Decrease_Mean Slope of Sound Spectrum 

TTB_Spectral_Decrease_SD Slope of Sound Spectrum 

TTB_Spectral_Rolloff_Mean Slope of Sound Spectrum 

TTB_Spectral_Rolloff_SD Slope of Sound Spectrum 

TTB_Spectro-
temporal_variation_Mean 

Change in Overall Sound Color across Time 

TTB_Spectro-
temporal_variation_SD 

Change in Overall Sound Color across Time 

TTB_Spectral_Flatness_Mean Noisiness vs. Harmonicness 

TTB_Spectral_Flatness_SD Noisiness vs. Harmonicness 

TTB_Spectral_Crest_Mean Noisiness vs. Harmonicness 

TTB_Spectral_Crest_SD Noisiness vs. Harmonicness 

TTT_Enmi temporary energy envelope rms-envelope minimum in a 

TTT_Enme temporary energy envelope rms-envelope mean in a 

TTT_Enst temporary energy envelope rms-envelope standard deviation in a 

TTA_01mi audio signal autocorrelation band 1 minimum 
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TTA_01ma audio signal autocorrelation band 1 maximum 

TTA_02ma audio signal autocorrelation band 2 maximum 

TTA_02me audio signal autocorrelation band 2 mean 

TTA_08mi audio signal autocorrelation band 8 minimum 

TTA_08me audio signal autocorrelation band 8 mean 

TTA_12mi audio signal autocorrelation band 12 minimum 

TTA_12ma audio signal autocorrelation band 12 maximum 

TTF_Sdme ERBFFT spectral decrease mean 

TTF_Svma ERBFFT spectro-temporal variation maximum 

TTF_Svme ERBFFT spectro-temporal variation mean 

TTF_Femi ERBFFT frame energy minimum in i 

TTF_Fema ERBFFT frame energy maximum in i 

TTF_Feme ERBFFT frame energy mean in i 

TTF_Fest ERBFFT frame energy standard deviation in i 

TTF_Sfme ERBFFT spectral flatness mean 

TTG_Fema Timbre Toolbox  ERBgammatone Frame Energy  Maximum in I 

TTG_Feme Timbre Toolbox  ERBgammatone Frame Energy  Mean in I 

TTG_Fest Timbre Toolbox  ERBgammatone Frame Energy  Standard Deviation in I 

TTG_Skst Timbre Toolbox  ERBgammatone Spectral Kurtosis  Standard Deviation 

TTG_Ssme Timbre Toolbox  ERBgammatone Spectral Spread  Mean in F 

TTG_Svmi Timbre Toolbox  ERBgammatone Spectro-temporal Variation  Minimum 

TTG_Swme Timbre Toolbox  ERBgammatone Spectral Skewness  Mean 

TTG_Swst Timbre Toolbox  ERBgammatone Spectral Skewness  Standard Deviation 

TTH_Heme harmonic energy mean in a^2 

TTH_Noma noisiness maximum 

TTH_Nome noisiness mean 

TTH_Nost noisiness standard deviation 

TTH_F0st fundamental frequency standard deviation in hz 

TTH_Ihma inharmonicity maximum 

TTH_Ihst inharmonicity standard deviation 

TTH_Scmi Timbre Toolbox  Harmonic Spectral Centroid  Minimum in F 

TTH_Scst Timbre Toolbox  Harmonic Spectral Centroid  Standard Deviation in F 

TTH_Slma Timbre Toolbox  Harmonic Spectral Slope  Maximum in 1/F 

TTH_Slme Timbre Toolbox  Harmonic Spectral Slope  Mean in 1/F 

TTH_Slmi Timbre Toolbox  Harmonic Spectral Slope  Minimum in 1/F 
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TTH_Slst Timbre Toolbox  Harmonic Spectral Slope  Standard Deviation in 1/F 

TTH_Svme Timbre Toolbox  Harmonic Spectro-temporal Variation  Mean 

TTH_Svst Timbre Toolbox  Harmonic Spectro-temporal Variation  Standard Deviation 

TTH_Swmi Timbre Toolbox  Harmonic Spectral Skewness  Minimum 

TTH_T3me tristimulus 3 mean 

TTH_T3st tristimulus 3 standard deviation 

TTH_Hdma harmonic spectral deviation maximum in a 

TTH_Hdme harmonic spectral deviation mean in a 

TTM_Fema Timbre Toolbox STFTmagnitude Frame Energy Maximum in I 

TTM_Feme Timbre Toolbox STFTmagnitude Frame Energy Mean in I 

TTM_Fest Timbre Toolbox STFTmagnitude Frame Energy Standard Deviation in I 

TTM_Scme Timbre Toolbox STFTmagnitude Spectral Centroid Mean in F 

TTM_Sdmi Timbre Toolbox STFTmagnitude Spectral Decrease Minimum 

TTM_Sfma Timbre Toolbox STFTmagnitude Spectral Flatness Maximum 

TTM_Skme Timbre Toolbox STFTmagnitude Spectral Kurtosis Mean 

TTM_Slme Timbre Toolbox STFTmagnitude Spectral Slope Mean in 1/F 

TTM_Srme Timbre Toolbox STFTmagnitude Spectral Rolloff Mean in F 

TTM_Srst Timbre Toolbox STFTmagnitude Spectral Rolloff Standard Deviation in F 

TTM_Ssme Timbre Toolbox STFTmagnitude Spectral Spread Mean in F 

TTM_Ssmi Timbre Toolbox STFTmagnitude Spectral Spread Minimum in F 

TTM_Stma Timbre Toolbox STFTmagnitude Spectral Crest Maximum 

TTM_Stmi Timbre Toolbox STFTmagnitude Spectral Crest Minimum 

TTP_Fema Timbre Toolbox  STFTpower  Frame Energy  Maximum in I 

TTP_Femi Timbre Toolbox  STFTpower  Frame Energy  Minimum in I 

TTP_Fest Timbre Toolbox  STFTpower  Frame Energy  Standard Deviation in I 

TTP_Sdst Timbre Toolbox  STFTpower  Spectral Decrease  Standard Deviation 

TTP_Sfme Timbre Toolbox  STFTpower  Spectral Flatness  Mean 

TTP_Slme Timbre Toolbox  STFTpower  Spectral Slope  Mean in 1/F 

TTP_Srmi Timbre Toolbox  STFTpower  Spectral Rolloff  Minimum in F 

TTP_Ssmi Timbre Toolbox  STFTpower  Spectral Spread  Minimum in F 

TTP_Stmi Timbre Toolbox  STFTpower  Spectral Crest  Minimum 

TTP_Stst Timbre Toolbox  STFTpower  Spectral Crest  Standard Deviation 

TTP_Svmi Timbre Toolbox  STFTpower  Spectro-temporal Variation  Minimum 

TTP_Swst Timbre Toolbox  STFTpower  Spectral Skewness  Standard Deviation 
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3.2.8 Timbre Set-C Features 

The following set of features has been extracted using either 

 the output of ircamdescriptor [Peeters, 2004] within imdABCDJ software (sharpness, 
distribution of loudness) 

 or the output of the new Audio Quality features [Fourer, 2017] within imdABCDJ 
software (see part 4 for a description of the algorithms). 

Other Features    

MFCC Psychoacoustic spectrum which approximates the human auditory system's 
response more closely than the linearly-spaced frequency bands 

MFCC_Band_01_MEAN MFCC dimension / band 01  

MFCC_Band_01_SD MFCC dimension / band 01  

MFCC_Band_02_MEAN MFCC dimension / band 02 

MFCC_Band_02_SD MFCC dimension / band 02 

MFCC_Band_03_MEAN MFCC dimension / band 03 

MFCC_Band_03_SD MFCC dimension / band 03 

MFCC_Band_04_MEAN MFCC dimension / band 04 

MFCC_Band_04_SD MFCC dimension / band 04 

MFCC_Band_05_MEAN MFCC dimension / band 05 

MFCC_Band_05_SD MFCC dimension / band 05 

MFCC_Band_06_MEAN MFCC dimension / band 06 

MFCC_Band_06_SD MFCC dimension / band 06 

MFCC_Band_07_MEAN MFCC dimension / band 07 

MFCC_Band_07_SD MFCC dimension / band 07 

MFCC_Band_08_MEAN MFCC dimension / band 08 

MFCC_Band_08_SD MFCC dimension / band 08 

MFCC_Band_09_MEAN MFCC dimension / band 09 

MFCC_Band_09_SD MFCC dimension / band 09 

MFCC_Band_10_MEAN MFCC dimension / band 10 

MFCC_Band_10_SD MFCC dimension / band 10 

MFCC_Band_11_MEAN MFCC dimension / band 11  

MFCC_Band_11_SD MFCC dimension / band 11  

MFCC_Band_12_MEAN MFCC dimension / band 12  

MFCC_Band_12_SD MFCC dimension / band 12  

MFCC_Band_13_MEAN MFCC dimension / band 13  

MFCC_Band_13_SD MFCC dimension / band 13  

StereoSpread_Mean Stereo Spread of sample (Channel_Level_ Difference) 
Cross channel correlation, level differences, time delays 
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StereoSpread_SD Stereo Spread of sample (Channel_Level_ Difference) 
Cross channel correlation, level differences, time delays 

MonoCompatibility_Mean Mono compatibility (Cross-Channel Correlation). 

SamplingRate Sampling rate rate of sample 
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3.3 Main Melody Estimation with Recurrent Neural Networks 

In this task, we considered the automatic extraction of the main melody from audio files. 
We investigated neural network methods to improve on the state-of-the-art.  
Note that this task started at M24 and was scheduled to last until M36 as further 
prospective research, and was not to be integrated in the development output of the project. 

3.3.1 State of the Art  

The model introduced in [Bittner+2017] is a convolutional neural network architecture to 
analyze a harmonic constant-Q transform (CQT) representation of the audio signal in 
order to extract a salience representation. Using a peak-picking method on this 
representation, it achieves state-of-the-art performances.  

3.3.2 Method: Harmonic CQT  

The Harmonic CQT is a stack of k CQT representations of the same audio signal performed 
with k different minimum frequencies f0k, each f0k being twice the previous one:  

 

This way, each minimum frequency of each CQT representation share a harmonic relation 
to the minimum frequencies of all other CQT representations. As a result, the different 
CQTs provide a harmonic view of the frequency domain representation of the original 
signal. These are then stacked together so as to obtain a 3D tensor displaying a third axis 
where harmonically-related frequencies appear. This dimension can then provide some 
timbre information, carrying the relationship between different harmonics within the 
signal at each frequency f (see figure below). 
 

 

Figure 1: The harmonic CQT representation 
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Figure 2: State-of-the-art CNN network 

  

3.3.3 Deep Salience Representation with Convolutional Networks 

The model introduced in [Bittner+2017] uses convolutional layers to analyze the Harmonic 
CQT and extract a salience representation, as shown in figure 2. It analyzes chunks of 
590 ms of audio signal and outputs a 2D salience representation of it. The filters in the 
convolutional layers attempt to identify some patterns within the 590 ms signal, along the 
time axis as well as the frequency axis. The size of the filters in the first layers are chosen 
so as to be able to identify patterns over 5 ms and 1 semitone. Filters in a subsequent layer 
are larger along the frequency axis so as to accommodate for octave errors (notes detected 
at the wrong octave).  

3.3.4 Temporal Modelling with Recurrent Neural Networks  

The representation described above is used as input to train a recurrent neural network 
(RNN) classifier with 72 softmax outputs, one for each note across 6 octaves (C1 to C6).  
We use recurrent connections, as shown in figure 3, for each neuron, in order to build a 
temporal model over the sequence of inputs, as shown in figure 4. For memory reasons we 
train the network on sequences of 500 frames, which correspond to 5.8 s of audio. The 
temporal dependencies that the network learns are therefore limited to 6 s. This can of 
course be modified by training the network over longer sequences.  
 

 

Figure 3: Graph of a recurrent neuron 
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3.3.5 Modelling Long-Dependencies with Stateful RNN  

In order to account for long-term dependencies in the music, which in the case of dominant 
melody transcription equate to melodic patterns, it is possible to let the RNN’s memory 
run through entire songs during training. This way the RNN keeps track of recurring 
patterns across entire songs and can therefore detect melody patterns.  

 

Figure 4: RNN ’unfolding’ in time to illustrate the temporal dimension 

3.3.6 RNN Results 

The RNN model was run on Deep Salience representations of the MedleyDB dataset, with 
GRU units. Figure 5 gives an example illustration of the effect of the RNN on the input 
from the Deep Salience representation, which seems to be positive, as the melody line is 
clearly identifiable at the output of the RNN. However, this impact seems to be negative in 
terms of metrics. The final results on the test dataset, computed with the ’mireval’ python 
library [Raffel+2014] are slightly lower for our model (7) than the state-of-the-art results, 
shown in figure 6. To understand why, we provide our model’s confusion matrix in figure 9 
and compare it with state-of-the-art’s figure 8.  
It appears that the confusion matrix for our model displays many more errors in the 
immediate vicinity of the diagonal (semi-tone errors), even though there seem to be less 
errors further away from the diagonal.  
The exact count of errors is as follows:  

 semi-tone errors: 60610 (vs 9451 for sota)  

 tone errors: 4114 (vs 4423 for sota)  

 within octave errors (besides tone and semi-tone): 19826 (vs 20063 for sota)  

 rest of errors: 8724 (vs 13133 for sota)  

It seems that our model suffers from making many semi-tone errors, despite working well 
as a “smoother” since less mistakes are made outside the octave.  
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Figure 5: Comparison between input from deep salience representation, targets and 
output of RNN, on song “Night Owl” by ”A Classic Education” 

 

 

Figure 6: Results for State-of-the-art’s predictions 

Figure 5: Comparison between input from deep salience representat ion, targets

and output of RNN, on song ” Night Owl” by ” A Classic Educat ion”

6
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Figure 7: Results for RNN’s predictions 

 

Figure 8: Confusion matrix for state-of-the-art over entire test set 

Figure 7: Results for RNN’s predict ions

Figure 8: Confusion matrix for state-of-the-art over ent ire test set

8
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Figure 9: Confusion matrix for RNN over entire test set 

3.3.7 Stateful RNN  

Trying to identify long-term dependencies requires many songs in order to learn the 
evolution of melodies over each song. However, the Medleydb dataset only contains 128 
songs, of which 70 only are used for training. This comes down to showing only 70 samples 
of a category of data to a model and expecting it to learn some common structures inside 
these samples. For those reasons the results using this model were very poor, as shown in 
figure 10.  
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Figure 10: Results for Stateful RNN 
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4 Audio Quality Characterization 

Executive Summary: An intensive bibliographical study was completed and allowed us 
to build a new collection of about sixty audio quality features. These features have been 
evaluated on two classification tasks: audio alteration effect detection and music decade 
prediction. Our results are promising both in the supervised and in the unsupervised cases 
(the unsupervised approach is not detailed in this report and only concerns the detection 
of some audio degradation effects). For the decade prediction task (which consists in 
predicting the decade when a musical track was recorded), we obtain results comparable 
to a firstly proposed state-of-the-art method [Tard11]. A paper related to this work was 
accepted [Fourer17b] and an audio tagging software based on these results has been 
implemented in MATLAB. 

Within ABC_DJ, the audio quality characterization is integrated into the MLM. It can be 
used to create playlists with homogeneous quality or, when several occurrences of a track 
exist, select the one with the highest quality.  

4.1  Introduction 

Audio signal quality can be related to subjective and objective audio signal attributes 
resulting from a sophisticated digital signal processing chain. Despite a consistent 
definition of audio quality has not been offered yet, researchers agree that it depends on a 
combination of transformations applied to the audio signal from its studio recording (or 
pure synthesis) to the resulting final mix obtained after mastering [Duar13]. 

Knowing the audio quality of a music track is full of interest for applications such as music 
streaming or playlist generation since it allows to decide which sound file (when several 
occurrences of the same music track exist in a database) has better quality or should be 
discarded. Among the first works related to the objective description of audio quality, the 
standard ISO/IEC 15938-4 (MPEG-7 Audio) [Bitz02] proposes a set of informative 
features to describe the audio content and the signal quality. More recently, audio quality 
has re-gained interest. In 2011, [Tard11] and [Duar13] propose to use a set of audio quality 
features to estimate the decade during which a musical piece was recorded and help the 
navigation in large music collection. In 2015, [Wils15] performs a set of perceptual 
experiments in which users judge the audio quality through listening tests. This leads to 
an audio quality lexicon. [Kend15, Fazen15, Wils16] propose a set of audio quality features 
to predict the results of the perceptual experiments using a machine learning approach. 

In this document, we propose an extension of this approach, i.e. we propose an objective 
description of the audio quality. We aim at describing the audio signal content related to 
the mixing process and the signal quality. Hence, this approach is directly related to the 
audio signal reverse engineering problem [Reiss10, Gorl13], which finds applications in 
music description, audio branding [Bron09], automatic playlist generation or automatic 
music mixing [Barch09]. 

4.2  Overview of the Proposed Method 

A music audio signal is the result of the mixing of a set of effects and transformations 
applied on separated tracks (elementary signals) in order to obtain an artistic mixture 
[Barch09]. Furthermore, after studio mixing, audio signals can also be degraded by signal 
transformations resulting from user manipulation (e.g. remixing, resampling, lossy 
compression, etc.). Hence, the audio quality characterization problem addressed here 
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consists in either obtaining cues about the signal mixing process or (ideal case) recovering 
the exact signal properties related to the transformations, which have been applied to the 
signal. The solution proposed here is based on a machine-learning framework, which aims 
to predict the exact kind of transformation, which have been applied on a signal. 

4.3  Considered Audio Signal Alteration Effects 

In the present work we only consider a restricted set of signal alterations. Those however 
cover a wide range of commonly used audio transformations, as often addressed in the 
music processing literature. 

Alteration name Profiles # of 
classes 

Dynamic range control - Reference artistic studio mix 
- No compression (instantaneous mix) 
- Dynamic range compression (sox) 

1 
1 
5 

Spatialization - Reference artistic studio stereo mix 
- Mono mix 
- Amplitude panning 
- Phase panning 
- HRTF 

1 
1 
4 
4 
4 

Lossy compression - Original uncompressed WAV file 
- MP3 compression (LAME encoder) 

1 
4 

Content alteration - Resampling 
- Addition of a white Gaussian noise 

5 
5 

 

4.4  Audio Quality Features 

For the purpose of describing the audio quality, we collect previously proposed audio 
quality features from the literature. These features correspond to functions, which are 
directly applied to audio signal in order to obtain cues related to the audio quality. Some 
of these functions (DH, AS, CD, SE, BW) are summarized by a time series obtained by 
computing statistics (mean, standard deviation, inter-quartile range, median, skewness, 
entropy, etc.) on the output provided by the initially proposed function. 

Designation Feature name Label # of feat. 

Mixture dynamic range - Dynamic histogram 
- Average spectrum 
 

DH 
AS 

12 
12 

Stereo quality - Cochleagram difference 
- Spectral Stereo Phase Spread 
- Monophony detector 
- Cross-channel correlation 
- Relative delay 
- Balance 

CD 
SSPS 
isMono 
CCCor 
Rdelay 
Bal 

5 
1 
1 
1 
1 
1 
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Signal content - DC-offset 
- Root Mean Squared amplitude 
- Spectral Entropy 
- Frequency Bandwidth 
- Background noise level 

DCOff 
aRMS 
SE 
BW 
BNL 

1 
1 
10 
10 
1 

Total number of features 57 

 

4.5 Numerical Results 

To validate our proposed audio quality features in a machine-learning framework, two 
prediction tasks have been considered and evaluated on their respective annotated dataset. 

For the supervised classification tasks, we systematically compare the results respectively 
provided by the KNN (k-nearest neighbors), LDA (Linear Discriminant Analysis) and SVM 
(Support Vector Machines) with a radial basis kernel. The classification results for each 
class are expressed in term of recall and of accuracy, taking values in [0,1] range where the 
highest is the best. 

4.5.1 Audio Signal Alteration Prediction 

For this experiment, the MedleyDB database [Bittner14] has been used. A set of alteration 
effects has been applied on each musical piece (122) for which separated track and an 
artistic studio mixture is available. The supervised classification is evaluated using a 3-fold 
cross validation scheme separately on each class of alteration effect (dynamic range, 
spatialization, lossy compression and content alteration). 

 

Method Dynamic range control class name Accuracy 

No comp. Stud. speech stream Spe./mus. Mus1. Mus2.  

KNN 0.36 0.80 0.23 0.08 0.26 0.44 0.06 0.32 

LDA 0.72 0.98 0.65 0.48 0.89 0.96 0.27 0.71 

SVM 0.90 0.99 0.48 0.37 0.23 0.95 0.09 0.57 

 

Method Spatialization class name Accuracy 

Stud. mix mono Amp. pan. Phs. Pan. HRTF  

KNN 0.31 0.34 0.90 0.85 0.98 0.83 

LDA 0.94 1 0.97 0.57 1 0.86 

SVM 0.96 0.89 1 0.97 0.99 0.98 

 

Method Lossy compression class name Accuracy 

Orig. wav Mp3 320kbs Mp3 128kbs Mp3 64kbs Mp3 16kbs  

KNN 0.34 0.20 0.20 0.99 1 0.55 

LDA 0.73 0.80 0.85 1 1 0.88 

SVM 0.75 0.59 0.43 1 0.99 0.98 
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Method Content alteration class name Acc. 

8khz 16kHz 32kHz 44kHz 96kHz -15dB -5dB 10dB 20dB 45dB  

KNN 0.83 0.72 0.51 0.25 0.32 1 1 0.90 0.61 0.24 0.64 

LDA 0.87 0.89 0.81 0.55 0.68 1 1 0.98 0.94 0.77 0.85 

SVM 0.90 0.80 0.70 0.57 0.65 0.99 1 0.89 0.66 0.46 0.76 

4.5.2 Music Decade Prediction 

For this task, which aims to predict the decade when a track was recorded, we consider a 
previously annotated dataset used in [Tard11]. For the experiment, we use a supervised 
random 3-folds cross validation scheme, after applying an artist filter on each fold. Our 
results show an improvement of the overall classification accuracy compared to [Tard11] 
without the usage of MFCC (Mel-Frequency Cepstrum Coefficients) as a classification 
feature. 

Method Class name Accuracy 

60s 70s 80s 90s 2000s  

KNN 0.77 0.38 0.63 0.49 0.71 0.60 

LDA 0.69 0.43 0.62 0.52 0.77 0.60 

SVM 0.83 0.31 0.69 0.55 0.79 0.63 

4.6  Conclusions 

A set of audio features for the automatic characterization of audio signal quality has been 
proposed and evaluated on research databases. These results have been used to implement 
a new music auto-tagging software based on alteration effects detection and music decade 
prediction. These results pave the way for more sophisticated systems designed for 
automatic mixing, playlist generation or database indexing. Future work will consist in 
further investigating a larger set of “realistic” signal alterations and using audio quality 
annotated dataset as in [Wils16a, Wils16b]. 
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5 Specific Audio Content Based Features in Order to 
Improve Music Mixes 

5.1 Blind Audio Source Separation (BASS) for Singing Voice 
Characterization 

Executive Summary: We address here the audio source separation problem in the blind 
case (i.e. without trained model) which aims at estimating an arbitrary number of music 
sources from a single- or two-channel mixture. This configuration which is the most 
challenging one, requires to investigate new paradigms or to enhance existing ones. Thus, 
solving this configuration can theoretically enhance the foreground instrument signal (e.g. 
singing voice) and may improve the extraction of high-level features. 

For this purpose, we investigated three approaches: 

 The first approach, inspired by the Computational Auditory Scene Analysis (CASA) 
literature [Breg90], provides promising results for non-stationary sinusoidal modeling. 
The local estimation of amplitude modulation (AM) and frequency modulation (FM) are 
then used for blind source separation through time-frequency clustering. This work is 
based on very recent theoretical findings related to [Fourer17a] which were extended to 
audio signal and source separation in a recent published paper [Fourer17c, Fourer18b]. 

 The second approach directly operates in a time-frequency representation and uses 
image processing methods to apply source-specific filtering to recover the isolated sources, 
which compose a mixture. In our works, we focused on 3 promising methods:  

1) Kernel Additive Modeling (KAM) proposed in [Liutkus14],  

2) the Robust Principal Component Analysis (RPCA) [Candes11] and  

3) Jeong-Lee's method based on global optimization [Jeong14].  

A complete comparative evaluation of all three approaches was completed in 2018 and 
published as a preprint [Fourer18a]. 

 The third approach aims at improving the source separation quality by investigating 
the role of the used time-frequency representation of the mixture. To this end, we combine 
several new synchrosqueezing techniques to enhance the results of a state-of-the-art BASS 
method called DUET [Jourjine 00] which can separate an arbitrary number of source from 
a two-channel mixture. 

 

Within ABC_DJ, source separation can be used - either to increase the possibility of 
advanced mixing of the tracks in a playlist (by isolating completely the voice or removing 
it) – or to enhance a specific instrument in the mix to facilitate its detection and therefore 
improves the prediction of “soft” features. So far, only the second seems achievable in a 
short term. 

5.1.1  Introduction 

Since many years, the audio source separation problem has been addressed and remains 
intensively studied. While it aims to recover the isolated signal of each source (e.g. the 
instruments), which composes an observed mixture, it finds many applications like music 
remixing (karaoke, re-spatialization, isolated effects applied on a source), signal denoising 
(or signal enhancement) or polyphonic music processing. Here, we address the blind case 
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where several sources (2 or more) are present in a single-channel instantaneous mixture 
expressed as the sum of the composing sources signals. 

In a first approach, we propose to solve this problem thanks to local modulation estimation, 
which is used as a separation cue. This idea was developed for many years in the 
Computational Auditory Scene Analysis (CASA) methods [Breg90] assuming that a human 
ear can segregate sound sources signals because they have different evolution respect to 
time (e.g. common onset, common AM/FM parameters, etc.). This idea has very recently 
regained interest and has been validated in new experiments proposed in [Stoter16, 
Creag15, Creag16]. Here, we propose then a further investigation thanks to new advances 
in time-frequency analysis theory [Fourer17a]. 

In a second approach, this problem is solved through morphological filtering in the time-
frequency domain. This approach is based on the observation that each source type has a 
specific time-frequency structure, which can be used for separation. The KAM approach 
[Liutkus14] uses median filtering with a source-specific kernel as illustrated below (cf. 
Figure taken from [Liutkus14]). For example, a percussive source can be described by the 
kernel (a) and a harmonic source can either be described by (b) or (d) if it has some 
modulations. The kernel (c) will fit for repetitive sources such as the musical background 
accompaniment. This idea is also used by Jeong-Lee approach but with a different 
mathematical formulation [Jeong14]. In [Candes11], RPCA is used to isolate the musical 
background accompaniment from the singing voice since they correspond to distinct 
matrices: the musical background spectrogram is a low-rank matrix and the singing voice 
spectrogram corresponds to a sparse full-rank matrix. 

 

5.1.2  Approach 1: Source Separation by AM-FM Time-Frequency Clustering 

We propose now an extension of the method proposed in [Fourer17a][Fourer18b] which 
allows a more accurate estimation of AM (amplitude modulation) and FM (frequency 
modulation) parameters at each time-frequency coordinate. This novel approach is based 
on the partial derivatives respect to time and to frequency, of the considered time-
frequency representation: here we consider the STFT (Short-Time Fourier Transform of 
the input signal) used to compute a spectrogram. 

We also propose to apply these results in order to obtain a more accurate audio analysis-
synthesis framework based on sinusoidal modeling. The overall proposed blind source 
separation method can be illustrated as follows where a time-frequency representation is 
computed from the input signal x(t) and is then clustered using the local modulations AM 
and FM estimated at each coordinate of the time-frequency plane. 

The analyzed mixture is first expanded into a sum of sinusoidal components, which are 
then grouped according to the Coherent Amplitude Modulation (CAM) and the Coherent 
Frequency Modulation (CFM) features. In order to preserve the time continuity of each 
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source, the spectral centroid and the CFM computed at each frame are connected to the 
closest candidate of the previous adjacent frame. 

5.1.2.1 Audio signal modelling and local modulation estimation 

 

The new proposed AM and FM estimators denoted k1, k3, t2, t4, w2, w3, r2 and r3 have 
been compared to the state-of-the-art ones [Mar08, Mar12]. The figure above shows a 
major improvement of these estimators, measured in term of the MSE (Mean Squared 
Error) as a function of the SNR (signal-to-Noise Ratio) when the input signal is merged 
with a white Gaussian noise. This improvement allows a better signal analysis based on 
sinusoidal modeling as illustrated in the figure below which compares the signal 
Reconstruction Quality Factor of a sinusoid merged with a white Gaussian noise with a 
SNR varying from -10 dB to 80 dB. 
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5.1.2.2 Blind source separation of synthetic signals 

 

 

The figures above show a separation example of two 5-seconds long sounds with different 
frequency modulation as illustrated in the first figure. The estimated sources can then be 
compared to the oracle (the ground truth solution). This result was obtained after a 
frequency tracking of each component and a local unsupervised clustering (k-mean) 
applied on the estimated sinusoidal components using the coherent local modulation 
features (CAM and CFM) estimated from the signal. This interesting result can be of 
interest for the separation of unison sounds (when 2 instruments play the same pitch). 
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5.1.2.3 Blind source separation of real-world music mixture 

The following table shows the separation results on a real-world mixture made of two audio 
sources (guitar + singing voice). The separation results are measured in terms of 
Reconstruction Quality Factor (RQF) as defined in [Fourer17c], Signal-to-Interference-
Ratio (SIR), Signal-to-Artifact-Ratio (SAR) and Signal-to-Distortion-Ratio (SDR) as 
proposed by Vincent et al. in the BSS_EVAl [Vincent06]. Our results show different 
separation quality depending on the used features through k-means algorithm (used for 
unsupervised clustering). 

 

Method RQF (dB) SIR (dB) SDR (dB) SAR (dB) 

Oracle 11.67/10.33 23.84/26.86 11.41/9.91 11.69/10.01 

MFC-
kmeans 

5.42/7.42 9.31/12.65 3.97/6.60 5.96/8.06 

MAC-kmeans 0.67/2.64 0.60/12.26 -0.47/0.23 8.80/0.76 

MFC/MAC-
kmeans 

0.78/2.73 0.67/13.01 -0.28/0.78 9.40/1.26 

5.1.2.4 Application to harmonic/percussive source separation (HPSS) 

In [Fourer 19], we propose a novel HPSS method based on the recently introduced local 
AM-FM estimators. We show that these estimators can also be used to discriminate the 
harmonic part from the percussive part of a music audio mixture. This method blindly 
operates in the time-frequency plane and assigns each point to a source according to its 
local modulation rate that is expected to be higher for percussive sounds than for harmonic 
components. This technique offers a simple and elegant mathematical formulation of the 
HPSS problem and can provide competitive results outperforming state-of-the-art 

methods when comparatively evaluated on a music dataset. Our results (presented in the 
figure below) compare our proposed algorithm (using estimators t2, w2) with the 
Fitzgerald median Filtering (FMF) HPSS [Fitzgerald10] and the Jeong Lee (JL) HPSS 
methods [Jeong14]. Our proposal obtains comparable and sometimes better results, 
especially for estimating the harmonic part as measured in terms of BSSEval [Vincent06]. 
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5.1.2.5 Conclusion and Future Work 

The main contribution of this research can be summarized as follows.  

1) new enhanced estimators for local modulation (AM and FM) have been proposed and 
obtain a better accuracy than the state-of-the art methods.  

2) a first application of these new estimators has been applied to audio sinusoidal 
modeling. The new methods obtain informal promising perceptual results and better 
objective results (measured in term of RQF) for audio signal analysis-synthesis (audio 
results here: http://www.fourer.fr/publi/spl18).  

3) we obtain promising results for single-channel blind audio music source separation 
method based on local modulation. Two methods were developed: one allowing the 
separation of an arbitrary number of harmonic sources [Fourer18b]. The second 
allowing the separation of the harmonic part from the percussive part [Fourer19]. 

5.1.3  Approach 2: Source Separation through Time-Frequency Representation 
Morphological Filtering 

This method assumes that the foreground voice and the instrumental music background 
have significantly different time-frequency regularities, which can be exploited to affect 
each time-frequency point to a source. To illustrate this idea, vertical lines are visible in a 
drum spectrogram due the spectral regularities at each instant, contrarily to a harmonic 
source which has horizontal lines due to the regularities over time at each active frequency 
(i.e. the partials). A recent comparative study [Lehner15] leads us to three very promising 
approaches, which can be summarized as follows. 

1) Jeong and Lee [Jeong14] propose a total variation approach and minimize a convex 
auxiliary function, related to the temporal continuity (for harmonic sources), the 
spectral continuity (for percussive sounds) and the sparsity for the leading singing voice. 
The solutions provide estimates of the spectrogram of each source. 
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2) In [Candes11], the authors propose a voice/music separation using Robust Principal 
Component Analysis (RPCA) to decompose the mixture spectrogram into two matrices: 
a low rank matrix associated to the spectrogram of the repetitive musical background, 
and a sparse matrix associated to the lead instrument which plays the melody. 

3) In [Liutkus15], the authors introduce the Kernel Additive Modelling (KAM) framework 
which unifies several approaches: - REPET [Rafii13], - Harmonic Percussive Source 
Separation (HPSS) through median filtering [Fitzgerald10]) using the specific 
regularities of the TFR associated to a source. In this framework, each source is 
characterized by a kernel, which models the vicinity of each time-frequency point in a 
spectrogram. This allows estimating each source through median filtering based on its 
specific kernel. This idea was extended through other source-specific kernels in 
[Liutkus14], [Liutkus15], [Kim16]. 

 
Hence, each method can be used in the following scheme as a Blind Audio Source Separation 
(BASS) step to obtain a singing voice detection system. This system can then work with or 
without a trained voice model as an unsupervised or a supervised singing voice method: 

 
The first proposed implementation uses KAM with a REPET model combined with a 
threshold applied on the energy ratio between the signal associated to the voice signal and 
the signal associated to the music accompaniment (also called Voice-to-Music Ratio or 
VTMR). 

5.1.3.1 Towards a training method for supervised KAM-based source separation 

Despite the KAM framework providing promising source separation results, this approach 
depends on the choice of the kernel and its parameters. However, to the best of our 
knowledge, no method exists in order to choose the best source-specific kernel to use. 
 
First, we investigated through a grid search the parameters (dimensions w and h of the 
kernels), which provide the best separation results according to BSS_EVAL, when they are 
applied on a typical source separation problem (here the separation of a singing voice, from 
a drum set for which the kernels are known). 
In the figure below, the red areas correspond to the best score (RQF, SIR, SAR and SDR) 
obtained as a function of the width w and the height h of the used source-specific kernels. 
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Furthermore, we also proposed a new algorithm which can provide a source-specific kernel 
from a previously computed time-frequency representation (i.e. a spectrogram). The main 
idea consists in computing the vicinity map corresponding to an averaged and reduced 
spectrogram after visiting each time-frequency point of a time-frequency representation. As 
a result, we can obtain kernels as the ones illustrated below respectively (from the left to the 
right) for a singing voice, a keyboard synthesizer and a drum set. 
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5.1.3.2 Source separation results through morphological clustering 

For this evaluation, we compared the separation results on a mixture made of 3 sources 
(singing voice, piano and drum) sampled at 16kHz using the best parameters for each 
method (according to their respective paper). 

1) Jeong-Lee's method (with and without drum separation) 

 

 

2) RPCA 

 

3) KAM (proposed trained and manually corrected set of kernels [Fourer17d], and REPET 
kernels voice/music [Liutkus15]) 

 

 

 

5.1.3.3 Conclusion and Future Work 

In this work, we provided three main contributions: 

1) A comparative study of 3 robust sources separation methods based on morphological 
filtering 

2) A new algorithm for kernel training designed for the KAM approaches 

3) A new singing voice detection method, which allows unsupervised classification. 

A journal paper is in preparation including a further study [Fourer18a]. 
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5.1.4 Approach 3: Blind Source Separation of Stereo Mixtures Using 
Synchrosqueezing 

This approach revisits the Degenerate Unmixing Estimation Technique (DUET) for blind 
audio separation of an arbitrary number of sources given two mixtures through a 
recursively computed and adaptive time-frequency representation. Recently, 
synchrosqueezing was introduced [Daubechies 11] [Fourer 17] as a promising signal 
disentangling method which provides reversible and sharpen time-frequency 
representations. Thus, it can reduce overlaps between the sources in the time-frequency 
plane and can improve the sources’ sparsity that is exploited by source separation 
techniques. 
Another innovative part of this contribution consists in extending the synchrosqueezing 
method using the Levenberg-Marquardt algorithm to allow the computation of adaptive 
and adjustable time-frequency representations. As a result, our method improves the 
quality of the source separation process while remaining suitable for real-time applications. 
 

5.1.4.1 Synchrosqueezing transform 

Synchrosqueezing [Daubechies 11] is a sharpening technique which improves the 
readability of a time-frequency representation while admitting a signal reconstruction 
formula. It is a post-processing technique which uses the frequency reassignment 
operators [Auger 95] to map values of a transform (here the short-time Fourier transform 
is considered) to new coordinates closer to the real support of the original signal in the 
time-frequency plane. 

It results an increase of the readability of the time-frequency representation as illustrated 
below where the classical spectrogram of a music signal is compared to the squared 
modulus of the corresponding synchrosqueezed short-time Fourier transform. 
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A second improvement first proposed in [Auger12] [Fourer 16] allows to make the 
synchrosqueezing transform adjustable through a damping parameter µ by applying the 
Levenberg-Marquardt algorithm of the reassignment operators. The result can be 
illustrated below where lower values for µ leads to a better energy concentration but with 
an increase of the sensibility to noise. 

 

5.1.4.2 Numerical results 

We comparatively evaluated the separation results on the freely available Bach10 music 
dataset (http://music.cs.northwestern.edu/data/Bach10.html) which contains 10 
mixtures made of 4 instrumental sources. After generating random stereo mixtures from 
the isolated stems, we compare the results provided by our modified DUET algorithm 
[Jourjine 00] when combined with the proposed time-frequency representation 
computation methods. This experiment compares the results provided by recursive 
synchrosqueezing and recursive LM-synchrosqueezing with classical and recursively 
computed STFT.  

The results show that the best separation results measured in terms of BssEval [Vincent 06] 
are provided by the LM-synchrosqueezing with µ=0.06. This optimal value for µ was 
empirically tuned in order to obtain the best disjoint-orthogonality of the 4 composing 
sources in the overall dataset. 
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5.1.4.3 Conclusion and future works 

We have proposed new extensions of the DUET  source separation algorithm using a 
recursive implementation of the Levenberg-Marquardt synchrosqueezed STFT . We have 
shown that synchrosqueezing can provide a sharpen and reversible time-frequency 
representations which improve the disjoint orthogonality between the sources. It results 
in a significant improvement of the source separation results in comparison with classical 
TFRs (an increase of the SIR of about +5dB in average). Future works will investigate new 
source separation methods based on time-frequency masking when they are combined 
with synchrosqueezing technique (e.g. CNN, NMF). 
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5.2 Convolutional Neural Network (ConvNet) for Singing Voice  

Executive Summary: We address here the audio singing voice segmentation problem 
from a polyphonic mixture. The goal is to propose a method that can label each time 
segment of an audio signal as containing or not containing a singing voice.  

For this purpose, two approaches were investigated: 

1) A new unsupervised method based on Blind Audio Source Separation (BASS), which 
uses the estimated signals associated to the singing voice and the one associated to the 
music accompaniment. 

2) A recent state-of-the-art supervised method based on Convolutional Neural Networks 
(ConvNet) first proposed by [Schluter15], improved in [Schluter16] and currently 
investigated in the PhD-work of Alice Cohen-Hadria at IRCAM. 

Within ABC_DJ, singing voice detection is used for “soft” auto-tagging and therefore 
playlist generation. Singing voice segmentation is used as part of the temporal description 
of the track which is to be used to facilitate automatic mixing between two tracks. 

 

5.2.1 Unsupervised Method based on Blind Audio Source Separation 

 

This method uses a BASS method as a preliminary step to recover a singing voice signal 
through different source assumption (non-repetitive, full-rank sparse matrix, etc.). 

The estimated signal for the singing voice is then reinforced through a band-pass filtering 
in the range [120Hz, 3000Hz] and by applying a harmonic comb mask (obtained after 
estimating the fundamental frequency using the YIN algorithm [Cheveigne02]).  

Finally, a decision is made based on a user-defined threshold, which is applied on the 
Voice-to-Music Ratio (VTMR). The VMR is defined as the energy ratio between the two 
signals through a sliding window. 

5.2.2 Supervised Method based on ConvNet 

This approach uses a classical supervised machine-learning framework where a ConvNet 
is trained on annotated samples before applying the classification on the testing samples 
using the trained model. We re-implement here the architecture of the network proposed 
in [Schluter16] using Log-Spectrogram as input. The architecture of the network is 
indicated in the Figure below.  



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  60 of 76 

 

5.2.3 Results 
For this evaluation, we used three annotated datasets the audio tracks of which have a 
Creative Commons license. Each dataset has been split into a training-set and a test-set 
such as: 

 JA: Jamedo [Ramona08]: 93 tracks (train:61, test:16) 

 MI: MIR1K [Hsu10]: 1000 tracks (train: 828, test: 172) 

 ME: MedleyDB [Bittner14 :  122 tracks (only 60 with voice) (train: 62, test: 34) 

We considered a frame duration of 46 ms with a hop size of 16 ms. 

The results are given in terms of mean recall (defined as the average between the voice and 
the non-voice recall). 

The two tables below correspond respectively to two different experiments.  

The first experiment considers each dataset independently. For each dataset, we indicate 
the results obtained by training the system on its training-set (except for the unsupervised 
approach which doesn't use training) and testing it on its testing-set.   

In this experiment, the unsupervised approach corresponds to the KAM BASS method 
using a REPET kernel [Liutkus14 ,Liutkus15] combined with the proposed VTMR criterion 
(the drum was not previously separated and a F0-filter was not applied). 

Dataset Unsupervised ConvNet 
JA-train 0.56 (JA-test) 0.89 (JA-test) 

MI-train 0.59 (MI-test) 0.90 (MI-test) 

ME-train 0.73 (ME-test) 0.86 (ME-test) 
 

The second experiment corresponds to a cross-dataset experiment. We only test here the 
ConvNet approach and test if this supervised approach can lead to over-fitting. For this we 
compare the results obtained by 

 Self-dataset: training on the train parts of A + B, testing on the test parts of A+B 

 Cross-dataset: training in the train parts of A+B, testing on the test part of C 

 

Datasets Self-dataset Cross-dataset 

JA-train + MI-train 0.89 (JA-test + MI-test) 0.75 (ME-test) 

JA-train + ME-train 0.86 (JA-test + ME-test) 0.65 (MI-test) 

ME-train + MI-train 0.84 (ME-test + MI-test) 0.77 (JA-test) 
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As one can see, when the dataset of the test part differ from the dataset of training part 
(cross-dataset) the mean-recall significantly decreases.  

The results of the ConvNet from Table 1 ME-train/ME-test is 0.86; from Table 2 JA-
train+MI-train/ME-test is only 0.75. 

5.2.4 Conclusions and Future Work 

The supervised singing voice method based on ConvNet obtains very promising results, 
which correspond to the state-of-the-art (in 2017). The unsupervised method shows its 
capability to obtain good results, as illustrated for the ME-test (0.73), which is comparable 
to the cross-dataset results with ConvNet (0.75). 

Since the unsupervised approach has the advantage to not rely on any training (which is 
often computationally expensive and can lead to models that overfit the data), we still 
consider it as an interesting option. Future works will therefore consist in improving it. 
Especially we will optimize the choice of the kernels through a further comparative study 
in a both BASS/VD framework (cf. Paper [Fourer18a] published as preprint). 
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5.3 Convolutional Neural Network (ConvNet) for Music Structure 
Boundaries  

Executive Summary: We address here the problem of estimating the temporal 
boundaries of music structure. We extend a previously proposed method based on 
Convolutional Neural Network. More precisely, we propose a new input representation 
(the time-time Self Similarity Matrix) and we propose to use the depth of the input layer 
of a ConvNet to represent various viewpoints of the audio signal content (MFCC and 
Chroma). Our proposals allow to estimate the music structure boundaries more precisely 
than what can be achieved using current state-of-the-art methods.  

Within ABC_DJ, music structure boundaries estimation is used as part of the temporal 
description of the track which is to be used to facilitate automatic mixing between two 
tracks. 

5.3.1 Introduction 

Music structure discovery (MSD) is a recent research field, which aims at estimating 
automatically the temporal structure of a music track by analysing the characteristics of its 
audio signal over time. Such structure can be used for interactive browsing within a track 
or automatic summary generation, automatic DJ or computational musicology. 

In MSD, the temporal structure of a music track is represented as a succession of segments. 
Such segments can correspond to  

 Homogeneous audio content (also named “states”),   

 Repeated audio content (also named “sequences” when they are non-homogeneous) or   

 Non-homogeneous non-repeated content (in this case they are only defined as the 
temporal segment between two novelty boundaries).  

In pop music, such segments can correspond to the verse, chorus or bridge parts of a song. 
In an MSD representation, each segment is characterized by its temporal boundaries and 
a label indicating its similarity with the other segments. In the present work, we only 
consider the problem of estimating the boundaries, i.e. the positions of the t0, t1, t2… in 
the following figure. 

  

 

Research related to the automatic estimation of music structure started in 1999 with the 
work of Foote [Foote, 2000]. Until the accessibility of large annotated datasets, the 
methods used to estimate the music structure were mostly based on unsupervised learning 
algorithms: clustering or hidden Markov model applied to audio signal features, dynamic 
time warping, non-negative matrix factorization or singular value decomposition applied 
to a self-similarity matrix.  Recently, large datasets of music annotated in structure have 
appeared (such as RWC, INRIA, SALAMI) allowing the use of supervised learning 
algorithms.   
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Following what happened in other domains (such as text or image recognition), neural 
networks with many hidden layers, a.k.a. deep learning, have allowed to largely increase 
the recognition results in various music audio recognition tasks (onset, beat, downbeat or 
music structure boundaries estimation).  Various types of units were proposed to apply a 
network to an audio signal representation. [Boeck, 2011] or [Boeck, 2012] first proposed 
to use Bi-directional Long-Short-Term-Memory (BLSTM) units [Ullrich, 2014] or [Grill, 
2015] later proposed to use the more tractable Convolutional units with even better 
recognition results. In this work, we will rely on Convolutional units. In this case, the 
network is named a Convolutional Neural Network (CNN or ConvNet).  

5.3.2 Proposed Method 

In this work, we extend the work of [Grill, 2015] which propose to use ConvNet to estimate 
music boundaries. The full details of our method are described in our paper [Cohen-Hadria, 
2017]. We only summarize its main points here and the differences with [Grill, 2015]. 

For the input layer of the network, we propose to use the succession over time of the 
square-sub-matrices centred on the main diagonal of a (time-time) Self-Similarity-Matrix 
(SSM). [Grill, 2015] proposed to use a (time-lag) SSM. In the case of homogeneous 
segments, the (time, time) SSM provides much sharper edges at the beginning and ending 
of segments than the lag-matrix. This representation was already used by Foote [Foote, 
2000] to estimate music structure boundaries (by convolving it with a single predefined 
checker-board kernel) or by Kaiser and Peeters [Kaiser, 2013] (using several predefined 
kernels). We believe that using ConvNet on this representation will allow us to find even 
better kernels. This is illustrated in the following figure. 

     

For the input layer of the network, we also propose to use its depth to represent various 
view-points on the audio content. Indeed, when computing a SSM, the choice of the signal 
representation plays a crucial role. Using Mel-Frequency-Cepstral-Coefficient (MFCC) or 
chroma as audio signal representation will lead to two different SSMs highlighting possibly 
two different temporal structures. We therefore propose to combine several SSMs using 
the depth of the input layer. Such depth is usually used in computer vision to represent the 
R, G, B colours of an image. This is illustrated in the following figure. 
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As in [Grill] we also use Mel-Log-Spectrogram as a third representation. A dedicated 
ConvNet is trained on it which is then merged (late-fusion) with the joint SSM(Chroma) 
and SSM(MFCC) network. This is illustrated in the following figure. 

 

 

The output of the last neuron of the network gives a value between 0 and 1 indicating the 
likelihood of being a structure boundary. Based on this value, we tested two methods to 
decide on a boundary:  

1) applying directly a threshold on the neuron value,  

2) applying a peak-picking algorithm on the temporal sequence of neuron values. 

5.3.3 Evaluation of the Proposed Method 

We evaluate our structure boundary estimation method on the SALAMI dataset. For 
measuring the performances we used the Precision/Recall and F-Measure with two 
temporal precision windows (of 0.5s and 3s). We also used the AUC (Area Under the ROC 
Curve). This curve represents the True Positive rate versus the False Positive rate for all 
possible choices of threshold. The area under this curve represents the discriminative 
power of the method independently of the choice of a specific threshold. 

It should be noted that we only had access to a part of the SALAMI dataset. Also, it should 
be noted that [Grill, 2015] used an additional private dataset for training their system in 
their [19] publication. In order to be able to compare our proposals to the method of [Grill, 
2015] we therefore re-implemented [19] and tested it on our dataset. As one can see our 
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re-implementation (0,246, row④ in the Table below) did not reach the published results 

of [19] (0,523, row⑤). 

 

We first compare the use of a (time, lag) SSM (0.246 at row ④) to our proposal of (time, 

time) SSM (0.273 at row ①). The use of a (time, time) SSM seems beneficial at least for a 
precision window of 0.5s.  
We then compare the early-fusion (using the depth of input layer) of a MFCC and Chroma 

(time, time) SSM (0.291 at row③) to the use of them individually (0.273 at row ① and 

(0.270 at row ②). Again, the early-fusion (using the depth of input layer) seems beneficial 
for both precision windows of 0.5s and 3s. 
We finally compare the performances obtained using a peak-picking algorithm on the 

output neuron value (0.211 at row③) to ones obtained applying a peak-picking algorithm 

(0.291 at row ③’). The peak-picking algorithm improves a lot the results obtained for a 

precision window of 0.5s but not that much at 3s. 
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5.4 Cue Point Estimation 

This task concerns the proposition of the cue-regions in the tracks where the fade-in and 
fade-out has to happen for the cross-fade to the next track in the automatic mix in the ISP. 
The automatically estimated proposition saves time for the human annotators of new 
tracks. It is thus related to Task T4.3 Algorithms for sound design and feature 
developments for audio player, because  it is important for automatic mixing.  
The proposed algorithm detailed below is based on the song structure estimation by the 
IrcamSummary module from T4.2, which determines significant parts of song, including 
the intro and outro sections which are used to place the cue-regions. This research has 
been presented at the Sound and Music Computing conference 2018 [Schwarz+2018]. 

The work is based on input provided by project partner HearDis!. Their music experts 
provided heuristic rules and an example database of tracks with cue points. The rules were 
then verified with the examples and those rules that could be realised computationally 
were implemented in a prototype automatic annotation software. The software was run on 
the example tracks and the results evaluated computationally and by human experts. Their 
feedback gave rise to adaptations in the algorithm, which improved the quality of the 
annotations. By following this structure, the chapter will also give an account of the 
informal iterative design process that allowed to keep the end users closely in the loop. 

Also note that the project context is not DJ mixing for clubs or performance, but point-of-
sale (PoS) automatic mixing in shops, based on semi-automatic music annotation and 
generated playlists. However, the automatically produced mixes should retain club-DJ 
quality (beat synchronicity, cross-fades). 

Cue points define the regions where tracks in a DJ mix fade in or out to blend with other 
tracks (see [fig:cuepoints]). 

DJs will usually choose them by hand according to the context of the current DJ set, based 
on their experience and familiarity with the specific track. However, when computer 
support or automation of DJ mixing is called for, we have to devise heuristics and an 
algorithm that can analyse the music content of a track in order to come close to the human 
decision. 

 
[fig:cuepoints] Cue points and cue-regions with the resulting volume fade curve for one 
track in a DJ mix. 

In our context of PoS automatic mixing, the automatically estimated cue-region 
proposition saves time for the human annotators of new tracks to be included in new 
automatically generated playlists, who only have to verify the automatic annotation and 
correct it if necessary. 

5.4.1 Human Expert Rules 
In order to get a high-level framing of the problem of cue point estimation from the point 
of view of the users, project partner HearDis! provided the content- and context-based 
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criteria below for the choice of cue-regions for the aim of PoS automatic mixing. The 
concern in that case is to decide if the song can start immediately, or if the intro has to be 
shortened, possibly because it is an extended club-DJ-friendly version, and if the end has 
to be shortened because in-store music needs to change more often than club music in 
order to achieve a higher level of variety. 
 

 Track is too long in general (more than 6 to 7 minutes) 

 Intro is too repetitive (especially DJ-friendly versions) 

 Intro is too quiet for too long (more than 4 to 8 bars) until track is of discernible 
loudness (at the PoS) EXCEPTION: Artist is already singing 

 Intro is too noisy/non-musical 

 Outro is too repetitive 

 Loudness drops significantly but outro lasts longer than 4 to 8 bars EXCEPTION: Artist 
is still singing 

 Outro is too noisy/non-musical 

 Generally silence at the beginning and end of a track should be shortened to a minimum 

We can already see that many of these points are dependent on audio and musical content 
(repetition, presence of voice) and even cultural context (what is too noisy or non-
musical?). 
The key point of the ensuing work was to find out which of these criteria were 
computationally feasible with the current tools, and whether the rate of errors with regard 
to the unfeasible criteria not modeled in our algorithm was acceptable. 

5.4.2 Ground Truth Database of Cue Points 

HearDis! provided a set of 30 example tracks in MP3 format, each in two versions: 
 

1. the full-length track 

2. the track shortened according to human-decided cue-in and cue-out regions with fades 
applied to them 

We then annotated the start and end points of the cut regions, and the durations and kinds 
of fades or cuts by hand in text label format as produced by Audacity1. This does provide 
example cases of shortening and fade times. The results of a statistical analysis of the 
annotations are given in [tab:mean]–[tab:duration]. Statistics of cue-region durations are 
always given with the zero-duration regions removed, since they correspond to “cut” 
transitions (no cross-fade). 

                                                   
1 http://audacity.sourceforge.net 



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  68 of 76 

 

[tab:mean] Statistics of start time and duration of ground truth cue-regions for the 30 
example tracks in seconds. 

 

[tab:duration] Statistics of minimum/maximum start and duration of ground truth cue-
regions for the 30 example tracks in seconds. 

Furthermore, the examples revealed other content-based decisions, such as, in one track, 
removing one repetition of the exposition of a synth line by cutting the intro in half, or 
removing redundancy in long end parts of songs. 

5.4.3 Comparison of Ground Truth Cue Points with Music Structure Analysis 

The audio-based music structure analysis algorithm [Kaiser2013] implemented in 
IrcamSummary divides a piece of music into its significant parts, and organises them into 
classes (e.g. corresponding to intro, outro, chorus, verse). This is done on multiple cue-
points levels, where, from the lowest to the highest level, the structural segments are fused 
into larger classes. 
Our hypothesis was that the intro and outro segments would stand out and could be a good 
basis for cue-regions. We verified this by calculating two versions of automatic structural 
analysis, using the tool IrcamSummary, on the full-length example tracks. 

The first version, state mode, is based on a fusion of homogeneous state and sequence 
repetition segmentations. The second version, NSMF mode [Kaiser2012], uses non-
negative matrix factorisation (NMF) of similarity matrices as a mid-level representation to 
classify the structure. This mode is called NSMF for Non-negative Similarity Matrix 
Factorization. 

We then compare the structural segments with the human suggestions of cue-regions. The 
plots in [fig:structure-state] and [fig:structure-nsmf] show the ground truth cue-regions of 
the example tracks overlaid with multi-level structure analysis regions. Each level’s 
segment boundaries are shown on one horizontal line as coloured dots, from lower levels 
in violet to higher levels in cyan, which proceed by fusing lower-level segments. Right-
pointing triangles show the cue-in fade region, or cut, when only one triangle is visible 
(length of zero). Left-pointing triangles show the cue-out region and end point of the full-
length example. Tracks are sorted by length, for easier observation of maximum final track 
length. 

Figure 1. Cue points and cue regions with the resulting volume fade curve for one track in aDJ mix.

The novelty function is computed by convolving a self-

similarity matrix with acheckerboard kernel [17].

3. CUE POINT ESTIMATION

Cuepointsdefine theregionswheretracks in aDJmix fade

in or out to blend with other tracks (see figure1). DJs will

usually choose them by hand according to the context of

the current DJ set, based on their experience and familiar-

ity with the specific track. However, when computer sup-

port or automation of DJ mixing is called for, we have to

deviseheuristics and an algorithm that can analyse themu-

sic content of a track in order to come close to the human

decision.

In our context of PoS automatic mixing, the automati-

cally estimated cue region proposition saves time for the

human annotators of new tracks to be included in new au-

tomatically generated playlists, who only haveto verify the

automatic annotation and correct it if necessary.

3.1 Human Expert Rules

In order to get a high-level framing of the problem of cue

point estimation from thepoint of view of theusers, project

partner HearDis! provided the content- and context-based

criteria in table 1 for the choice of cue regions for the aim

of PoS automatic mixing. The concern in that case is to

decide if the song can start immediately, or if the intro has

to be shortened, possibly because it is a prolongued club

DJ-friendly version, and if the end has to be shortened be-

cause in-store music needs to change more often than club

music in order to achieve ahigher level of variety.

We can already see that many of these points are depen-

dent on audio and musical content (repetition, presence of

voice) and even cultural context (what is too noisy or non-

musical?). The key point of the ensuing work was to find

out which of these criteria were computationally feasible

with the current tools, and whether the rate of errors with

regard to the unfeasible criteria not modeled in our algo-

rithm wasacceptable.

3.2 Ground Truth Database of Cue-Points

HearDis! provided a set of 30 example tracks in MP3 for-

mat, each in two versions:

1. the full length track

1. Track is too long in general (more than 6 to 7 minutes)

2. Intro is too repetitive (especially DJ-friendly versions)

3. Intro is too quiet for too long (more than 4 to 8 beats)

until track is of discernible loudness (at the PoS). Ex-

ception: Artist is already singing

4. Intro is too noisy/non-musical

5. Outro is too repetitive

6. Loudness drops significantly but outro lasts longer than

4 to 8 bars. Exception: Artist is still singing

7. Outro is too noisy/non-musical

8. Generally silence at the beginning and end of a track

should beshortened to aminimum

Table1. Expert-provided criteria for choiceof cueregions.

segment mean / median mean / median / number

start time of non-zero durations

cue in 13.6 / 8.9 1.3 / 0.9 / 23

cue out 290.0 / 316.7 8.4 / 9.2 / 4

track end 369.1 / 363.0 n/a

Table2. Statistics of start timeand duration of ground truth

cue regions for the 30 example tracks in seconds.

2. thetrack shortened according to human-decided cue-

in and cue-out regions with fades applied to them

We then annotated the start and end points of the cut

regions, and the durations and kinds of fades or cuts by

hand in text label format as produced by AUDACITY 4 .

This does provide example cases of shortening and fade

times. The results of a statistical analysis of the anno-

tations are given in tables 2–3. Statistics of cue region

durations are always given with the zero-duration regions

removed, since they correspond to ”cut” transitions (no

cross-fade).

Furthermore, the examples revealed other content-based

decisions, such as, in onetrack, removing onerepetition of

theexposition of asynth line by cutting the intro in half, or

removing redundancy in long end parts of songs.

4 ht t p: / / audaci t y. sour cef or ge. net



Final Research Report on Auto-Tagging of Music  D4.7 

© ABC_DJ Consortium, 2018  69 of 76 

 
[fig:structure-state] Ground truth cue-regions of the example tracks (black) overlaid 
with IrcamSummary multi-level structure analysis regions in state mode (violet to cyan 
dots), and cue points estimated by final algorithm (red). 

 
[fig:structure-nsmf] Ground truth cue-regions of the example tracks (black) overlaid 
with IrcamSummary multi-level structure analysis regions in NSMF mode (violet to cyan 
dots), and cue points estimated by final algorithm (green). 
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These plots reveal that, first, the lowest (most detailed) level state mode summary in 
[fig:structure-state] is more pertinent, since it has a segment structure better coinciding 
with the annotations (it is also beat-synchronous, unlike the NSMF mode summary in 
[fig:structure-nsmf]), and, second, that almost half of the songs were not shortened at the 
beginning: 

 14 cue-in start points are cuts at song start 

 16 cue-in start points are within the first structure segment 

 only 3 cue-in segments are longer than 1 second2 

 the cut-off point for long tracks is mostly between 5:30 and 6:00, with 3 tracks going 
until 7 minutes 

5.4.4 Cue Point Estimation Heuristic Algorithm 

The first proposed algorithm detailed below is solely based on the song structure 
estimation by the IrcamSummary module, which determines significant parts of the track, 
including the intro and outro sections which are used to place the cue-regions. For this first 
iteration, we wanted to see how far we would come only with song structure information, 
without taking the audio content into account. 
The above observations from the example tracks suggest the following heuristic algorithm 
for the cue-region estimation (always of 10 s length): 
 

 

[fig:algorithm] Cue point estimation heuristic algorithm in pseudo-code. 

                                                   
2 The frequent presence of cuts instead of fade regions are due to the fact that the existing 
PoS playout system at HearDis! does not yet do cross-fade mixing, so that the experts are 
trained to find cue points where tracks can cut from one to the next. 
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5.4.5 First Evaluation of Cue Point Detection 

We created cue-region estimations for the tracks in the cue point example database. To 
facilitate evaluation, we also exported the example tracks faded at the estimated cue points. 
These examples were evaluated by music annotators at HearDis! in order to validate the 
heuristics. (But keep in mind that the cue point estimation is always only a starting point 
for a human annotator who solely is in the position to correctly judge the content and 
context of the tracks.) 
Nevertheless, the numerical comparison between the estimated cue points and the hand-
annotated ground-truth cue points from the test database in [fig:cuehist] shows that over 
50% of estimated cue points are within 10 seconds from the manual choice and for two 
thirds of the examples the absolute time differences are smaller than 20 seconds. The two 
outliers with cue-end estimation differences over 60 s are due to a more flexible 
interpretation of the shortening rule by the human annotators (some tracks were left at 
much longer than the cutoff rule of 6 minutes). 

 

[fig:cuehist] Histogram of the time difference between hand-annotated ground-truth cue 
points and cue points estimated based on state mode 

A subjective but systematic evaluation of the automatically faded example tracks was 
carried out by the human music experts at HearDis!. They provided precise feedback in 
the form of screenshots with the 3 versions of each track aligned (original, human-cut, 
automatically cut) and remarks for the problematic cases (see [fig:evalex]). 
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[fig:evalex] Example of subjective feedback: The human expert hand-aligned the original 
track (bottom), the manually cut and faded track (top), and the automatically cut and 
faded track (middle) to evaluate and comment on important differences. 

The feedback was positive about the algorithmic choice of cue points, with the remark that, 
for PoS applications, it is always OK to cut more than a human annotator at beginning and 
end. There were only 5 problematic cases, listed in [tab:feedback]. 

The remarks show the limits of our simple algorithm, where the human decision mobilises 
deep content- and context-dependent knowledge up to the cultural level (e.g. that applause 
is a special noise that marks the end of a performance). 

 

position evaluator remark computable observations 

end end applause should be faded 
out 

no music continues during applause 

end just noises? no free guitar + voice 

end too noisy and weird no fade in of 2sec of Morse code 

start intro too long? yes intro very low volume -24dB 

end outro too long yes outro -15 dB (last struct segment 
silence) 

[tab:feedback] Feedback on individual tracks in the first version of cue point detection 
output by human expert, and assessment of computability. 

5.4.6 Second Iteration 

Based on the above feedback, we chose to implement the only computationally feasible 
content-based criterion for cue-in/cue-out estimation of loudness. From an analysis of the 
example tracks shown in [fig:rms], we could determine that a threshold of -9 dB relative 
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to the max loudness of the track catches all the cases where an intro or outro had been 
considered as too quiet, without introducing false positives.3 

 
[fig:rms] Examination of the RMS values of the ground truth example tracks. 

We then shift the cue-region until its minimum loudness is larger than -9 dB relative to the 
max loudness of the track. Loudness of a segment is calculated as the max peak RMS 
energy in 2s windows. 

The second evaluation results, shown in [fig:cuehist2], slightly improve the difference 
between estimated cue-regions and manual choice, and has been approved by the human 
experts. The numeric evaluation also confirms our initial decision to choose state mode 
over NSMF mode: The found cue points are also shown in [fig:structure-state] and 
[fig:structure-nsmf]. 

Musically, the decision to place the cue-in region at the end of a song-structure region work 
very well, since at the end of the fade in of the new track, just when it has reached full 
volume, and the previous song has just vanished, there is a clear change in content (as 
predicted by the song structure), that catches the ear and clearly signals the start of the 
track. 

                                                   
3 Note that our algorithm will only ever encounter professionally produced music that is 
optimised for being loud and punchy to stand out in radio or streaming listening conditions, 
so we’re fairly confident that that threshold will be generalisable. 
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[fig:cuehist2] Histogram of the time difference between hand-annotated ground-truth 
cue points and estimated cue points with loudness criterion. 

5.4.7 Implementation and Data Format for Cue Points 

After a final validation by the music experts at HearDis!, the heuristic algorithm has been 
ported to C++ and released as part of imdABCDJ v2.1.0. 
We defined an XML representation for the estimated cue-in/-out markers, to be integrated 
into the next version of the auto-tagging modules, with XML output as segment type (Task 
4.4). Here is an example extract of a musicdescription XML file, defining cue-regions as 
segment descriptor number 15 (these definitions have been formalised in the 
musicdescription XML schema version 1.4.1): 

    <descriptiondefinition id="15"> 
        <type>cuetype</type> 
        <generator name="imdABCDJ" version="1.2.1" date="2017-11-16" /> 
        <dictionary> 
            <label name="cue-in" /> 
            <label name="cue-out" /> 
        </dictionary> 
    </descriptiondefinition> 
 
    <segment time="10.0000000000" length="7.2500000000" sourcetrack="0"> 
        <cuetype id="15" value="cue-in" type=“intro”/> 
    </segment> 
    <segment time="180.0000000000" length="10.25" sourcetrack="0"> 
        <cuetype id="15" value="cue-out"  type=“shorten”/> 
    </segment> 
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5.4.8 Conclusions of Cue Point Estimation 

We presented a heuristic algorithm to estimate cue points for generating DJ-like mixes 
based on automatic annotations by state of the art MIR methods of music structure 
segmentation, coupled with domain knowledge of human experts, and backed by a 
database of example tracks. The iterative design process created a close feedback loop 
between researchers, developers, and expert users, quickly reaching a satisfactory solution 
for their specific needs of in-store music playout and audio branding. 
In future work, we could examine which of the criteria in the human expert rules are 
possibly detectable by content descriptors and classifiers available in MIR research, e.g. 
voice detection, or develop specific descriptors and classifiers for the “music-ness” of audio. 
However, this would need many more annotated tracks to train the method. Before this 
effort is made, feedback should be gathered about the number of problematic cases in real-
world usage of the existing system. 
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6 Summary and Conclusion 

Within Task 4.2, IRCAM is responsible for the estimation of a wide extent of features: from 
low-level audio features (such as derived from the TimbreToolbox, ircamdescriptor or newly 
developed ones based on HPSS), musical attributes (such as bpm), musicological 
attributes (such as the number of II-V-I within the estimated chords) to machine-learning 
based attributes (the “soft” features). 

The goal of IRCAM has been two-fold: 

 As technology provider for the other partners of the project, we need to guarantee that 
features are computed and this whatever the way they are estimated. This is done by 
first developing base-line technologies for all features. 

 As research institution, we compare existing strategies and develop new ones to 
estimate these features with new innovative methods. For example, within ABC_DJ we 
tested for the same features (singing voice detection) several strategies: classical 
machine-learning method (improved by developing new audio features, data 
augmentation and data segmentation), deep-learning method (using Convolutional 
Neural Network) and recent source separation algorithms (using Blind Audio Source 
Separation algorithms such as Common Fate, KAM or RPCA method). 
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