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Abstract

We present formulas for the construction of optimal H∞ controllers that can be implemented in a numerically robust way. We
base the formulas on the γ-iteration developed in [6]. The controller formulas proposed here avoid the solution of algebraic
Riccati equations with their problematic matrix inverses and matrix products. They are also applicable in the neighborhood
of the optimal γ, where the classical formulas may call for the inverse of singular or ill-conditioned matrices. The advantages
of the new formulas are demonstrated by several numerical examples.
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1 Introduction

The optimal infinite-horizon output (or measurement)
feedback H∞ control problem is one of the central tasks
in robust control, see, e.g., [13,18,21,22], but the devel-
opment of robust numerical methods for the H∞ con-
trol is unusually difficult [20]. The classic γ-iteration of-
ten used in optimal H∞ control computations encoun-
ters several finite precision arithmetic hazards that of-
ten limit its accuracy as a numerical method. A new nu-
merical method for the γ-iteration suggested in [6] has
significantly better robustness in the presence of round-
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ing errors. Based on this approach, this paper proposes
a numerical method for the implementation of the asso-
ciated optimal controllers. Note that another variant of
controller formulas based on the the γ-iteration from [6]
is suggested in [15]. Our approach differs in the deriva-
tion and form of the controller formulas. Moreover, we
have implemented our formulas and we will present nu-
merical results obtained with these formulas.

Consider the linear control system

ẋ=Ax+B1w +B2u, x(t0) = x0,

z =C1x+D11w +D12u, (1)

y =C2x+D21w +D22u,

where A ∈ Rn×n, Bi ∈ Rn×mi , Ci ∈ Rpi×n, and Dij ∈
Rpi×mj for i, j = 1, 2. (By Rn×k we denote the set of
real n × k matrices.) As usual, see [13,22], we assume
p1 ≥ m2 and m1 ≥ p2. In this system, x(t) ∈ Rn is
the state vector, u(t) ∈ Rm2 is the control input vec-
tor, and w(t) ∈ Rm1 is an exogenous input that may in-
clude noise, linearization errors and unmodeled dynam-
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ics. The vector y(t) ∈ Rp2 contains measured outputs,
while z(t) ∈ Rp1 is a regulated output or error.

The optimal H∞ control problem: Determine a dy-
namic controller

˙̂x = Âx̂+ B̂1y + B̂2û,

u = Ĉ1x̂+ D̂11y + D̂12û,

ŷ = Ĉ2x̂+ D̂21y,

(2)

with Â ∈ RN×N , B̂1 ∈ RN×p2 ,
B̂2 ∈ RN×q1 , Ĉ1 ∈ Rm2×N , Ĉ2 ∈ Rq2×N , D̂11 ∈ Rm2×p2 ,
D̂12 ∈ Rm2×q1 , D̂21 ∈ Rq2×p2 such that the closed-loop
system resulting from the combined system of (1) and
(2),

(1) is internally stable, i.e., the solution of the system
with w ≡ 0 is asymptotically stable, and

(2) the closed-loop transfer function Tzw from w to z
is minimized in the H∞ norm.

For a matrix valued rational function F (s) that is ana-
lytic in the open right-half plane, the H∞ norm is given
by ‖F‖∞ = supω∈R σmax[F (ıω)], where σmax[F (ıω)] de-
notes the maximal singular value of the matrix F (ıω).
If F (s) is the transfer function of a control system with
noise or disturbance inputs, then ‖F‖∞ is a measure of
the worst case influence of the disturbances on the out-
put. The solution of this problem is usually approached
via the modified optimal H∞ control problem:

The modified optimal H∞ control problem: Let Γ
be the set of numbers γ > 0 for which there exists an in-
ternally stabilizing dynamic controller (2) such that the
closed loop transfer function Tzw satisfies γ > ‖Tzw‖∞.
Determine γmo = inf Γ.

Because there may be no dynamic controller that leads
to a transfer function that actually achieves H∞ norm
equal to γmo, in general, one must use a controller whose
transfer function has larger H∞ norm, i.e., an inter-
nally stabilizing dynamic controller such that the closed
loop transfer function satisfies ‖Tzw‖∞ < γ for some
γ > γmo. Such a controller is usually called a suboptimal
controller. The γ-iteration is the iterative root finding
process of determining an approximation to γmo. Classi-
cal numerical methods for determining γmo are based on
the solution of Riccati equations or Lagrangian invari-
ant subspaces, see [11,13,14,18,22] and are implemented
in software packages like MATLAB R© or SLICOT, [7–9].
A more robust method for carrying out the γ-iteration
has recently been proposed in [6].

Once a sufficiently accurate approximation to γmo is de-
termined, a suboptimal controller can be constructed
using the mathematically correct, but numerically haz-
ardous formulas suggested in [14,22] which we recall in

Section 2, or by the more robust formulas that we present
in Section 3. We will demonstrate the quality of the new
formulas with several numerical examples in Section 4
and give some final remarks in Section 5.

2 Preliminaries

The formulas for designing optimal controllers are quite
technical and only hold under some suitable assump-
tions. In this section we review the classical formulas
and the assumptions under whichH∞ norm calculations
typically operate.

A typical set of assumptions for the solution of the mod-
ified optimal H∞ control is as follows [13,14,18,22]:

A1. The pair (A,B2) is stabilizable and the pair
(A,C2) is detectable, i.e., rank[A − λI,B2] =
rank[AT − λI, CT2 ] = n for all λ ∈ C with Reλ ≥ 0.

A2. D22 = 0 and both D12 and D21 have full rank.

A3. The matrix
[
A−ıωI
C1

B2

D12

]
has full column rank for

all real ω.

A4. The matrix
[
A−ıωI
C2

B1

D21

]
has full row rank for all

real ω.

Remark 2.1 The requirement that D22 = 0 (Assump-
tion A2) is for convenience. It is not a fundamental re-
striction, since systems that have a direct link from input
to output, i.e., for which D22 6= 0, can be synthesized by
first studying the problem without this term, see [22].

Following the notation in [22], we introduce the following
two symmetric matrices formed from the matrices Dij

and a parameter γ ∈ R,

RH(γ) :=

[
DT

11

DT
12

] [
D11 D12

]
−

[
γ2Im1

0

0 0

]
,

RJ(γ) :=

[
D11

D21

] [
DT

11 D
T
21

]
−

[
γ2Ip1 0

0 0

]
.

(3)

These matrices play an essential role in the theory of op-
timal H∞ control problems, see [14,22], and the classical
numerical methods require both RH(γ) and RJ(γ) to
be nonsingular. Under Assumption A2, there exist only
a finite number of nonnegative values γ for which (at
least) one of the matrices RH(γ) and RJ(γ) is singular.
Let γ̂ be the largest γ value for which this is the case. If
D11 = 0, then γ̂ = 0; otherwise, γ̂ is typically positive.
Note that by definition, γmo > γ̂.

Let

D12 = U12

[
0

Σ12

]
V T12, D21 = V21

[
0 Σ21

]
UT21, (4)
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be (slightly permuted) singular value decompositions
(see [12]) of D12 and D21 with real orthogonal matrices
U12, U21, V12, V21 and nonnegative diagonal matrices
Σ12, Σ21. The diagonal entries of Σ12 and Σ21 are the
singular values ofD12 andD21, respectively. Then define
D̄11, D̄12, and D̄21 in terms of D11, D12, D21 and (4) by[

D11 D12

D21 0

]
=[

U12 0

0 V21Σ21

][
D̄11 D̄12

D̄21 0

][
UT21 0

0 Σ12V
T
12

]
.

(5)

Note that by assumption D22 = 0 and the described
transformation does not change this. It follows from (4)

that D̄21 = [0, Ip2 ] and D̄12 =
[

0
Im2

]
. This induces a

finer partition of D̄11 so that

[
D̄11 D̄12

D̄21 0

]
=


D1 D2 0

D3 D4 Im2

0 Ip2 0

 . (6)

Now, under Assumption A2, for γ̂ as defined above, we
have

γ̂ = max

(
σmax

[
D1 D2

]
, σmax

[
D1

D3

])
,

where σmax(M) denotes the maximal singular value of
the matrix M .

The classical approach for the computation of γmo, see,
e.g., [21,22], employs the solution of algebraic Riccati
equations (AREs). Consider the Hamiltonian matrices

H(γ) =

[
H1(γ) H2(γ)

H3(γ) −H1(γ)T

]

=

[
A 0

−CT1 C1 −AT

]
(7)

−
[

B1

−CT1 D11

B2

−CT1 D12

]
R−1H (γ)

[
DT

11C1

DT
12C1

BT1
BT2

]
,

J(γ) =

[
J1(γ) J2(γ)

J3(γ) −J1(γ)T

]

=

[
AT 0

−B1B
T
1 −A

]
(8)

−
[

CT1
−B1DT

11

CT2
−B1DT

21

]
R−1J (γ)

[
D11B

T
1

D21BT1

C1

C2

]
,

and the associated γ-dependent AREs

H1(γ)XH(γ) +XH(γ)H1(γ)T

+XH(γ)H2(γ)XH(γ)−H3(γ) = 0,
(9)

and

J1(γ)XJ(γ) +XJ(γ)J1(γ)T

+XJ(γ)J2(γ)XJ(γ)− J3(γ) = 0.
(10)

Classically, one computes the unique symmetric positive
semidefinite (stabilizing) symmetric solutions XH(γ)
and XJ(γ) of (9), (10), respectively, or what is more
numerically stable, invariant subspaces of the associ-
ated Hamiltonian matrices, see [22, Ch. 16–17]. The
latter approach determines symmetric matrices XH , XJ

matrices such that

H(γ)

[
In

XH

]
=

[
In

XH

]
TH , J(γ)

[
In

XJ

]
=

[
In

XJ

]
TJ ,

for some n × n matrices TH and TJ , respectively, with
all their eigenvalues in the open left half complex plane.

Remark 2.2 The columns of the matrices
[
In
XH

]
and[

In
XJ

]
form unique Lagrangian invariant subspaces. Un-

der some further assumptions, see [10,19], such unique
Lagrangian invariant subspaces still exist, even when
eigenvalues are on the imaginary axis.

In terms of XH , XJ (we leave off the dependency on γ in
the following) and the original data we then define the
matrices

F = −R−1H

([
DT

11

DT
12

]
C1 +

[
BT1

BT2

]
XH

)
=:

[
F1

F2

]
,

(11a)

L = −
(
B1

[
DT

11 D
T
21

]
+XJ

[
CT1 CT2

])
R−1J (11b)

=:
[
L1 L2

]
,

Z =
(
In − γ−2XJXH

)−1
, (11c)

where RH and RJ are defined in (3). Once γmo, the
optimal value of γ, has been determined, then for
all γ > γmo, one has (see [6,22]) that RH(γ), RJ(γ)
are nonsingular; the matrices XH , and XJ exist; and
γ2 > ρ(XJXH), where ρ(XJXH) is the spectral radius
of XJXH . Therefore, for every γ > γmo, the matrices
F,L, Z are well defined.

Then, for a given number γ ≥ γmo, a suboptimal con-
troller (2) is usually constructed by using the following
formulas ([22, Theorem 17.1]).
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(a) D̂11 = −V12Σ−112 ·(
D3D

T
1

(
γ2I −D1D

T
1

)−1
D2 +D4

)
Σ−121 V

T
21,

(b) D̂12D̂
T
12 = V12Σ−112 ·(

Im2
−D3

(
γ2I −DT

1 D1

)−1
DT

3

)
Σ−112 V

T
12,

(c) D̂T
21D̂21 = V21Σ−121 ·(
Ip2 −DT

2

(
γ2I −D1D

T
1

)−1
D2

)
Σ−121 V

T
21,

(d) B̂2 = Z(B2 + L1D12)D̂12,

(e) B̂1 = Z[(B2 + L1D12)D̂11 − L2],

(f) Ĉ2 = −D̂21(C2 +D21F1),

(g) Ĉ1 = F2 − D̂11(C2 +D21F1),

(h) Â = A+
[
B1 B2

]
F − B̂1(C2 +D21F1).

(12)

The basis for the robust method derived in [6] to com-
pute γmo is to avoid all inversions, matrix products and
sums, as well as solutions to AREs, that are used in
the classical γ-iteration. For this, the eigenvalue prob-
lems for the Hamiltonian matrices H(γ) and J(γ) are
first replaced by generalized eigenvalue problems for the
following two even (skew-symmetric/symmetric) matrix
pencils that only contain original data from (1):

λN −MH(γ) :=

λ



0 In 0 0 0

−In 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


−



0 −AT 0 0 −CT1
−A 0 B1 B2 0

0 BT1 γ2Im1
0 DT

11

0 BT2 0 0 DT
12

−C1 0 D11 D12 Ip1


,

λN −MJ(γ) :=

λ



0 In 0 0 0

−In 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


−



0 −A 0 0 −B1

−AT 0 CT1 CT2 0

0 C1 γ2Ip1 0 D11

0 C2 0 0 D21

−BT1 0 DT
11 DT

21 Im1


.

Denote by γ̂I the largest γ value for which at least one
of these pencils has a purely imaginary eigenvalue. It
has been shown in [6] that if the assumptions A1–A4 are
satisfied, then for all γ > γ̂I , the pencils λN−MH(γ) and
λN−MJ(γ) each have a unique n-dimensional deflating
subspace corresponding to the eigenvalues in the open
left half plane and for γ → γ̂I there still exists a unique

n-dimensional deflating subspace corresponding to the
eigenvalues in the closed left half plane.

If the columns of the matrices

QH =


n

n QH,1
n QH,2
m1 QH,3
m2 QH,4
p1 QH,5

, QJ =


n

n QJ,1
n QJ,2
p1 QJ,3
p2 QJ,4
m1 QJ,5


span these unique deflating subspaces, then the columns
of the submatrices[

QH,1

QH,2

]
,

[
QJ,1

QJ,2

]

span the desired Lagrangian invariant subspaces of the
Hamiltonian matrices H(γ) in (7) and J(γ) in (8), re-
spectively, i.e., QTH,1QH,2 = QTH,2QH,1 and QTJ,1QJ,2 =

QTJ,2QJ,1, see [6,10,19]. Furthermore, the symmetric pos-

itive semidefinite (stabilizing) solutions of the AREs (9)
and (10), if they exist, can be expressed as

XH = QH,2Q
−1
H,1, XJ = QJ,2Q

−1
J,1.

In order to avoid explicitly forming XH , XJ , in [6] the
following technique was introduced. Let the columns of[

XH,1

XH,2

]
,

[
XJ,1

XJ,2

]
(13)

form orthonormal bases of the Lagrangian invariant sub-

spaces
[
QH,1

QH,2

]
,
[
QJ,1

QJ,2

]
, respectively. These may be de-

termined by QR factorization or the modified Gram-
Schmidt process [12]. Note again that we have dropped
the explicit γ dependency in XH,i, XJ,i, i = 1, 2.

Introduce the symmetric matrix

Y(γ) :=

[
γXT

H,2XH,1 XT
H,2XJ,2

XT
J,2XH,2 γXT

J,2XJ,1

]

=

[
XT
H,2 0

0 XT
J,2

][
γXH,1 XJ,2

XH,2 γXJ,1

]
.

If γ ≤ γ̂I , then the pencils λN−MH(γ) and λN−MJ(γ)
may or may not have a unique n-dimensional deflating
subspace corresponding to the eigenvalues in the closed
left-half plane. If for a particular γ ≤ γ̂I , such unique
deflating subspaces do not exist, thenY(γ) is not defined.
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The optimal value γmo is then determined in [6] and [22,
Theorem 16.16] by detecting a rank change in the ma-
trix Y(γ). For this and for the formulas in Section 3 we
need the following well-known lemma on the CS decom-
position.

Lemma 2.3 [17] If X1, X2 ∈ Rn,n and the columns of[
X1

X2

]
form an orthonormal basis of a Lagrangian sub-

space, i.e., XT
1 X2 = XT

2 X1, then there exist orthogonal
matrices U ∈ Rn×n and V ∈ Rn×n such that UTX1V =
C and UTX2V = S are both diagonal and C2 + S2 = I.

If for a given value of γ we apply Lemma 2.3 to
[
XH,1

XH,2

]
,[

XJ,1

XJ,2

]
, then we get

UTHXH,1VH = CH

=:


rH kH n− tH

rH 0 0 0

kH 0 ΣH 0

n− tH 0 0 I

, (14a)

UTHXH,2VH = SH

=:


rH kH n− tH

rH I 0 0

kH 0 ∆H 0

n− tH 0 0 0

, (14b)

UTJ XJ,1VJ = CJ

=:


rJ kJ n− tJ

rJ 0 0 0

kJ 0 ΣJ 0

n− tJ 0 0 I

, (14c)

UTJ XJ,2VJ = SJ

=:


rJ kJ n− tJ

rJ I 0 0

kJ 0 ∆J 0

n− tJ 0 0 0

, (14d)

where kH + rH = tH , kJ + rJ = tJ , ΣH , ∆H , ΣJ and
∆J are diagonal, nonsingular and satisfy Σ2

H + ∆2
H = I

and Σ2
J + ∆2

J = I.

The following theorem then is the basis of the variant
γ-iteration introduced in [6].

Theorem 2.4 [6] For all γ > γmo, the matrix Y(γ) is
positive semidefinite and rankY(γ) = kH + kJ is con-
stant. For all γ̂ < γ < γmo, either Y(γ) is not defined,
or rankY(γ) < kH +kJ , or Y(γ) is not positive semidef-
inite.

The problem of finding γmo thus reduces to the prob-
lem of finding the largest value of γ(≥ γ̂) at which Y(γ)
changes rank or fails to exist. This can be done, see [6],
by applying a one-variable root-finding procedure to the
eigenvalues of Y(γ). In this way a good approximation
of γmo can be determined without explicitely forming
the Hamiltonian matrices H(γ), J(γ), while still using
structure preserving methods [5]. Once γmo has been de-
termined, it remains to construct a corresponding con-
troller.

In order to avoid the hazards of solving ill-conditioned
systems of equations, we will transform the formulas for
the optimal controllers (12). For this, we will make fre-
quent use of the following refactorization, that can be
computed without forming explicit inverses or matrix
products, [1–4].

Proposition 2.5 Given a matrix product MP−1 with
M ∈ Rη×µ and P ∈ Rµ×µ, there exist P ∈ Rη×η and
M∈ Rη×µ such that

MP−1 = P−1M, (15)

where the rows of [P,M] span the η-dimensional left null

space of
[
−M
P

]
.

To construct a refactorization as in (15), observe that
MP−1 = P−1M if and only if PM = MP or, equiva-
lently,

[P,M]

[
−M
P

]
= 0.

So, each basis of the left nullspace gives rise to such a
refactorization. A convenient way to calculate such a left
null space and refactorization that was used in [1] (and

in this paper) is to use a QR factorization of
[
−M
P

]
, i.e.

[
Q11 Q12

Q21 Q22

][
R

0

]
=

[
−M
P

]

with R ∈ Rµ×µ, Q11 ∈ Rη×µ, Q21 ∈ Rµ×µ, Q12 ∈ Rη×η,
and Q22 ∈ Rµ×η. A suitable left null space is the row
space of [QT12, Q

T
22] — one may use P = QT12,M = QT22.

3 Formulas for the (Sub)optimal Controller

This section discusses the construction of (sub)optimal
H∞-controllers as in (2) from γmo or an approximation
γ > γmo to it. The new approach is to reorganize the
controller formulas (12) that use the computed data in
(11a)–(11c) into a descriptor system form by avoiding
numerical hazards where possible.
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Using (4) and (5), we introduce

WH =

[
U21 0

0 V12Σ−112

]
, WJ =

[
U12 0

0 V21Σ−121

]
, (16)

and

B̄1 = B1U21, B̄2 = B2V12Σ−112 ,

C̄1 = UT12C1, C̄2 = Σ−121 V
T
21C2.

(17)

Note that in these formulas the inverses of the diago-
nal matrices Σ12 and Σ21 occur. These inverses can be
formed in a numerically stable way. Ill-conditioning of
these matrices, however, indicates that the resulting ro-
bust controller may be itself sensitive to small perturba-
tions.

Using (5), we define R̄H and R̄J by

R̄H = WT
HRHWH =

[
D̄T

11

D̄T
12

][
D̄11 D̄12

]
−

[
γ2Im1

0

0 0

]
,

R̄J = WT
J RJWJ =

[
D̄11

D̄21

][
D̄T

11 D̄
T
21

]
−

[
γ2Ip1 0

0 0

]
,

and let
[
XH,1

XH,2

]
,
[
XJ,1

XJ,2

]
be the orthonormal matrices

defined in (13). Using (14a)–(14d) in Lemma 2.3, the
unique symmetric positive semidefinite (stabilizing)
ARE solutions XH , XJ can be expressed as ([22, Theo-
rem 17.1])

XH =XH,2X
−1
H,1 = UHSHC

−1
H UTH = UHC

−1
H SHU

T
H ,

XJ =XJ,2X
−1
J,1 = UJSJC

−1
J UTJ = UJC

−1
J SJU

T
J .

Here, again, ill-conditioning of the diagonal matrices
CH , CJ may indicate high sensitivity of the controller.
See [6] for more details.

With the quantities defined in (5) and (17) we introduce

FM = −

[
D̄T

11

D̄T
12

]
C̄1UHCH +

[
B̄T1

B̄T2

]
UHSH ,

LM = −CJUTJ B̄1

[
D̄T

11 D̄
T
21

]
+ SJU

T
J

[
C̄T1 C̄T2

]
.

The matrices F , L, and Z in (11a)–(11c) can then be

expressed as

F = WH F̂ , where F̂ = R̄−1H FMC
−1
H UTH =:

[ n
m1 F̂1

m2 F̂2

]
,

(18a)

L = L̂WT
J , where L̂ = UJC

−1
J LM R̄

−1
J =:

[ p1 p2

L̂1 L̂2

]
,

(18b)

Z = UHCH Ẑ
−1CJU

T
J , where

Ẑ = CJU
T
J UHCH − γ−2SJUTJ UHSH . (18c)

Then the coefficient matrices Â,B̂1,B̂2,Ĉ1,Ĉ2 in the con-
troller (2) can be expressed as

B̂2 =Z(B̄2 + L̂1D̄12)Σ12V
T
12D̂12,

B̂1 =Z[(B̄2 + L̂1D̄12)(Σ12V
T
12D̂11V21Σ21)−L̂2]Σ−121 V

T
21,

Ĉ2 =−D̂21V21Σ21(C̄2 + D̄21F̂1),

Ĉ1 = V12Σ−112 [F̂2 − (Σ12V
T
12D̂11V21Σ21)(C̄2 + D̄21F̂1)],

Â=A+
[
B̄1 B̄2

]
F̂ − B̂1V21Σ21(C̄2 + D̄21F̂1).

Note that in these formulas still some unwanted inverses
arise which we like to avoid. To do this, using Propo-
sition 2.5, we can refactor the products R̄−1H FM and

LM R̄
−1
J as

R̄−1H FM = FMR̄−1H , LM R̄
−1
J = R̄−1J LM .

Using the same notation as in [22], we partition LM and
FM as

LM = [

p1 −m2 m2 p2
LM,11,∞ LM,12,∞ LM,2,∞ ],

FM =

[
m1 − p2 FM,11,∞
p2 FM,12,∞
m2 FM,2,∞

]
.

Then, in (18a)–(18c) we obtain new factors

F̂1 =

[
FM,11,∞

FM,12,∞

]
R̄−1H C−1H UTH ,

F̂2 =FM,2,∞R̄−1H C−1H UTH ,

L̂1 =UJC
−1
J R̄

−1
J

[
LM,11,∞ LM,12,∞

]
,

L̂2 =UJC
−1
J R̄

−1
J LM,2,∞.

Let

D1 = Ũ1

[
Σ1 0

0 0

]
Ṽ T1
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be the singular value decomposition of D1 in (6). Define

D̄1, D̄2, D̄3, D̄4, ∆13, ∆23, ∆31 and ∆32 in terms of Ũ1,
Ṽ1, D1, D2, D3 and D4 in (6) by

[
D̄1 D̄2

D̄3 D̄4

]
=

[
ŨT1 0

0 I

][
D1 D2

D3 D4

][
Ṽ1 0

0 I

]

=


Σ1 0 ∆13

0 0 ∆23

∆31 ∆32 D4

 .

If d1 = rankD1, then Σ1 ∈ Rd1,d1 , ∆13 ∈ Rd1,p2 , ∆23 ∈
Rp1−m2−d1,p2 , ∆31 ∈ Rm2,d1 and ∆32 ∈ Rm2,m1−p2−d1 .
Using these factorizations, we can rewrite

D̃11 :=−(D3D
T
1

(
γ2I −D1D

T
1

)−1
D2 +D4)

= −(D̄3D̄
T
1 (γ2I − D̄1D̄

T
1 )−1D̄2 +D4)

and define D̃12 and D̃21 via the Cholesky factorizations

D̃12D̃
T
12 = Im2

−D3(γ2I −DT
1 D1)−1DT

3

= Im2 − D̄3(γ2I − D̄T
1 D̄1)−1D̄T

3 ,

D̃T
21D̃21 = Ip2 −DT

2 (γ2I −D1D
T
1 )−1D2

= Ip2 − D̄T
2 (γ2I − D̄1D̄

T
1 )−1D̄2.

By these factorizations and using M+ to denote the
Moore-Penrose pseudoinverse of M , we obtain

(a) D̃11 = −∆31Σ1(γ2I − Σ2
1)+∆13 +D4,

(b) D̃12D̃
T
12 = Im2

−∆31(γ2I −Σ2
1)+∆T

31− γ−2∆32∆T
32,

(c) D̃T
21D̃21 = Ip2−∆T

13(γ2I − Σ2
1)+∆13 − γ−2∆T

23∆23.

(19)
Note that it is not necessary to use Cholesky factoriza-
tions, mathematically, any factorizations satisfying (19)

(b)–(c) can be used for D̃12 and D̃21.

In (19) we have replaced the inverses on the diagonal
matrix γ2I−Σ2

1 by Moore-Penrose generalized inverses.
This allows to use the formulas even when for some γ
value the matrix becomes singular.

By using (19) and the forms D̄12 =
[

0
Im2

]
and D̄21 =

[0, Ip2 ], we then have the reformulation of (11c) as

Z =UHCH Ẑ
−1CJU

T
J ,

where Ẑ = CJU
T
J UHCH − γ−2SJU

T
J UHSH , and (12)

becomes

(a) D̂11 = V12Σ−112 D̃11Σ−121 V
T
21,where

D̃11 = ∆31Σ1(γ2I − Σ2
1)+∆13 +D4,

(b) D̂12 = V12Σ−112 D̃12,where

D̃12D̃
T
12 = Im2

−∆31(γ2I−Σ2
1)+∆T

31−γ−2∆32∆T
32,

(c) D̂21 = D̃21Σ−121 V
T
21,where

D̃T
21D̃21 = Ip2−∆T

13(γ2I − Σ2
1)+∆13−γ−2∆T

23∆23,

(d) B̂2 = Z(B̄2 + L̂1D̄12)D̃12 = UHCH Ẑ
−1R̄−1J ·

(R̄JCJUTJ B̄2 + LM,12,∞)D̃12,

(e) B̂1 = Z[(B̄2 + L̂1D̄12)D̃11 − L̂2]Σ−121 V
T
21

= UHCH Ẑ
−1R̄−1J [(R̄JCJUTJ B̄2

+LM,12,∞)D̃11 − LM,2,∞]Σ−121 V
T
21,

(f) Ĉ2 = −D̃21(C̄2 + D̄21F̂1)

= −D̃21(C̄2UHCHR̄H+FM,12,∞)R̄−1H C−1H UTH ,

(g) Ĉ1 = V12Σ−112 [F̂2 − D̃11(C̄2 + D̄21F̂1)] = V12Σ−112 ·
[FM,2,∞ − D̃11(C̄2UHCHR̄H+FM,12,∞)]·
R̄−1H C−1H UTH ,

(h) Â = A+
[
B̄1 B̄2

]
F̂ − (B̂1V21Σ21)(C̄2 + D̄21F̂1)

=
{
AUHCHR̄H +

[
B̄1 B̄2

]
FM −(B̂1V21Σ21)·

(C̄2UHCHR̄H +FM,12,∞)} R̄−1H C−1H UTH .

(20)

Theorem 17.1 in [22] states that the optimal controllers
of the H∞ control problem are obtained by composing

˙̂x= Âx̂+ B̂1y + B̂2û,

u= Ĉ1x̂+ D̂11y + D̂12û, (21)

ŷ = Ĉ2x̂+ D̂21y,

with a system

˙̃x= Ãx̃+ B̃ŷ,

û= C̃x̃+ D̃ŷ,

whose transfer function Q(s) has H∞ norm less than
γ. In any application, some such controllers are likely
to be more robust, or less expensive, or more elegant,
or otherwise more desirable than others. A convenient
choice is Q(s) = 0, the “central controller” discussed in
[22, Ch. 16–17] and [14].

This suggests the following procedure to avoid the re-
maining explicit matrix inverses. Refactor CH Ẑ

−1R̄−1J
as

CH(R̄J Ẑ)−1 = E−1CH ,
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as described in Proposition 2.5. Set x̌ = R̄−1H C−1H UTH x̂

and multiply the first equation in (21) by CHR̄J ẐC−1H UTH
to obtain the descriptor system

Ě ˙̌x= Ǎx̌+ B̌1y + B̌2û,

u= Č1x̌+ D̂11y + D̂12û, (22)

ŷ = Č2x̌+ D̂21y,

where D̂11, D̂12, and D̂21 are as in (20), and

(a) Ě = ECHR̄H ,
(b) B̌1 = CH [

(
R̄JCJUTJ B̄2 + LM,12,∞

)
D̃11−LM,2,∞]·

Σ−121 V
T
21,

(c) B̌2 = CH
(
R̄JCJUTJ B̄2 + LM,12,∞

)
D̃12,

(d) Č1 = V12Σ−112 ·
[FM,2,∞ − D̃11(C̄2UHCHR̄H + FM,12,∞)],

(e) Č2 = −D̃21(C̄2UHCHR̄H + FM,12,∞),

(f) Ǎ = EUTH
(
AUHCHR̄H +

[
B̄1 B̄2

]
FM

)
−(B̌1V21Σ21)(C̄2UHCHR̄H + FM,12,∞).

(23)
A descriptor system expression for the central controller
as suggested in [22, Ch. 16–17] and [14] is then of the
form

Ě ˙̌x= Ǎx̌+ B̌1y

u= Č1x̌+ Ď11y, (24)

where Ď11 = D̂11.

In this section we have presented new formulas for op-
timal H∞ conrollers that avoid unnecessary numerical
hazards. In the next section we illustrate the quality of
the new formulas via several numerical examples.

4 Numerical examples

This section demonstrates the robustness of (22) in form-
ing the suboptimal control for γ close to γmo. Note that
in the presented examples for the computed values of
γmo typically the solutions to the associated AREs do
not exist, and as a consequence, the classical controller
formulas cannot be applied. This is also the reason, why
we do not present comparisons with other approaches.
Unfortunately, we were also not successful in compar-
ing our results for the examples presented here with the
formulas presented in [15], since our implementation of
these formulas did not produce correct results.

Example 4.1 This is Example 6.1 from [6] which first

appeared in [22, p. 461]:

A =



−a 0 1 −2 1

0 −100 0 0 0

0 0 0 −2a a

0 0 0 0 1

0 0 0 3 2


, B1 =



1

0

a

0

0


, B2 =



0

−90

0

0

1


,

C1 =

 1 0 0 0 0

0 1 0 0 0

 , D11 =

 0

0

 , D12 =

 0

1

 ,
C2 =

[
0 0 1 −2 1

]
, D21 =

[
1
]
, D22 =

[
0
]
.

In this example, γmo is independent of the choice
of a. Using a = 1 and the variant γ-iteration de-
scribed in [6], our experimental program determined
γmo = 7.853923684022. With γ = 7.8541, our MAT-
LAB implementation returns the central suboptimal
controller (24) as

Ě =



0.1843 −0.1737 −0.0414 −0.1018 −0.0341

−0.1460 0.1434 0.4586 −0.0903 −0.0900

0.1083 −0.0368 0.0465 0.0126 0.0453

0.2221 0.4605 −0.1595 0.0046 0.0315

0.2766 −0.0515 0.1694 0.1360 0.2079


,

Ǎ =



−3.7597 9.6660 0.0414 −3.6630 8.3078

5.7528 −14.9391 −0.4586 5.8541 −12.5123

−2.3836 5.3517 −0.0465 −1.9928 4.5766

9.7209 −26.6163 0.1595 10.2078 −22.4336

−6.4265 16.2923 −0.1694 −6.5070 13.7647


,

B̌1 =
[
−0.2857 0.2052 −0.1335 0.0756 0.5193

]T
,

Č1 =
[

0.0937 0.2055 −0.0000 0.1356 −0.7939
]
,

Ď11 = [0].

The MATLAB robust control toolbox function
normhinf [9] reports that the closed loop H∞ norm is
7.8540366769208774.
The MATLAB function hinfsyn computes γ = 7.8545
and constructs the controller accordingly.

Example 4.2 This is Example 3.1 and Example 6.2
from [6]. Consider the system


A B1 B2

C1 D11 D12

C2 D21 0

 =



−1 0 0 0 1

0 −1 0 0 1

1 0 1
2

0 0

0 1 0 1
2

1

1 1 0 1 0


.

The variant γ-iteration described in [6] determined
γmo = γ̂ = .5000000000000 which agrees with the
theoretical value to thirteen significant digits. With
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γ = 0.50001, our implementation returns the central
suboptimal controller (24) as

Ě =

 −0.448419067323971 0.986059138740681

−0.047683732968496 0.379074901512008

× 10−4,

Ǎ =

 −0.097230000237421 0.087478934743184

−0.180766934371941 0.162712715362113

 ,
B̌1 =

 −0.193452124650871

−0.359503744256900

 ,
Č1 =

[
−0.2514183866414180.226354558822012

]
,

Ď11 = [−0.5].

The function normhinf [9] reports that closed loop H∞
norm is 0.500009995.
The MATLAB function hinfsyn computes γ = 0.50625
and constructs the controller accordingly.

Example 4.3 This is Example 6.3 in [6]. Consider the
system in Example 4.2 with the (2, 2) element of B1 set
to one, i.e.,


A B1 B2

C1 D11 D12

C2 D21 0

 =



−1 0 0 0 1

0 −1 0 1 1

1 0 1
2

0 0

0 1 0 1
2

1

1 1 0 1 0


.

The variant γ-iteration described in [6] reports γmo =
0.8062257748299. With γ = 0.80623, our implementa-
tion returns the central suboptimal controller (24) as

Ě =

 −0.116338530296271 −0.308766348091874

0.187484278723965 −0.137335303455170

 ,
Ǎ =

 0.188596106770156 0.745011728081016

−0.103219543410531 0.479206276745429

 ,
B̌1 =

 0.066440383622532

−0.376057188147526

 ,
Č1 =

[
−0.005120459018602 −0.213142135493424

]
,

Ď11 = [−0.5].

The function normhinf [9] reports that closed loop H∞
norm is 0.80622598.
The MATLAB function hinfsyn computes γ = 0.80878
and constructs the controller accordingly.

Example 4.4 This is Example 6.4 in [6]. Let


A B1 B2

C1 D11 D12

C2 D21 0

 =



2 0 0 1 −1

0 −1 0 1 −2

1 0 3 0 0

0 1 0 −1 1

4 −2 0 1 0


.

In this example, γ̂ = γmo = 3. With γ = 3.0001, our im-
plementation returns the central suboptimal controller
(24) as

Ě =

 0.205571073196335 0.034158098463962

−0.402143396055301 −0.066598384223367

 ,
Ǎ =

 −0.616633677960107 −0.102994497996504

1.210370083410015 0.174898262642715

 ,
B̌1 =

 −0.235063370281313

0.459795474769660

 ,
Č1 =

[
1.752972656836075 0.265994049023116

]
,

Ď11 = [1].

The function normhinf [9] reports that the closed loop
H∞ norm is 3.00000006.
The MATLAB function hinfsyn computes γ = 3.00645
and constructs the controller accordingly.

Our last example is a standard textbook example.

Example 4.5 We consider a four-disk control system
taken from [22]. Due to space limitations, we refer to [22,
Example 19.4] for the data matrices. In [22] the optimal
H∞ norm is given as γopt = 1.1272 and a controller is
computed for γ = 1.2. The MATLAB function hinfsyn
computes γ = 1.1292 and constructs the controller ac-
cordingly. Our experimental code computes γ = 1.1267
and is able to construct a controller for that value.

5 Conclusion

In this paper we have introduced new formulas for com-
puting optimal H∞ controllers, that avoid all explicit
matrix inverses (except for some diagonal matrices, i.e.,
row or column scalings) and many potential numerical
difficulties that classical formulas may face. The formu-
las are based on the formulation used for the variant
version of the γ-iteration presented in [6]. Since this γ-
iteration has recently been extended to descriptor sys-
tems [16] we expect that these formulas can also be ex-
tended in a similar way. We have demonstrated the nu-
merical properties of the new formulas with several nu-
merical examples.
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