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Zusammenfassung

Der Großteil der gängigen mathematischen Modelle für die Bewertung und Replikation
von derivativen Finanzinstrumenten beruht auf der impliziten Annahme, dass der
Preis einer gehandelten Position linear in der Positionsgröße wächst. Dies ist zum
Beispiel im wohlbekannten Black-Scholes Modell der Fall. Während diese Annahme
für kleine Handelsvolumina gerechtfertigt sein mag, sind darauf beruhende Modelle
unpassend in Situationen, in welchen die Transaktionsgröße signifikant im Verhältnis
zur Gesamtgröße des Marktes ist. In der vorliegenden Dissertation studieren wir ein
nichtlineares Modell für die Bewertung und Replikation von Derivaten, welches den
Preiseinfluss derartig großer Transaktionen berücksichtigt.

Wir betrachten ein Setting, in welchem ein Market Maker mit einem großen Investor
zu einem Preis handelt, der es dem Market Maker erlaubt, seinen Erwartungsnutzen
beizubehalten. Dies ist der sogenannte Marktindifferenzpreis. In diesem Modell
untersuchen wir die Zulässigkeit von Handelsstrategien und zeigen die Abwesenheit
von Arbitragemöglichkeiten. Überdies charakterisieren wir die Menge der erreichbaren
Contingent Claims und leiten asymptotische Approximationen für Hedginstrategien in
diesem illiquiden Markt her. Während der erste Teil der Dissertation sich mit Power-
Nutzenfunktionen befasst, ist der zweite Teil der Untersuchung von exponentiellen
Nutzenfunktionen gewidmet.

Die vorliegende Arbeit erweitert das Marktindifferenzpreismodell für einen großen
Investor von Bank und Kramkov [11, 14], in welchem die Autoren einen Nutzenindif-
ferenzansatz verfolgen, um den Preiseinfluss von großen Transaktionen an Finanzmärk-
ten zu beschreiben. Wir erweitern dieses Modell, indem wir die Bewertung und
Replikation von Contingent Claims untersuchen, die in [11, 14] nicht thematisiert
wurde. Überdies ergänzen wir den ursprünglichen Modellrahmen um zwei Aspekte:
Zum einen betrachten wir im ersten Teil dieser Dissertation Power-Nutzenfunktionen,
welche hyperbolische absolute Risikoaversion (HARA) besitzen, anstatt uns auf Nutzen-
funktionen mit beschränkter absoluter Risikoaversion zu begrenzen, welche in [11, 14]
betrachtet wurden. Zum anderen modellieren wir die Auszahlung des gehandelten
Wertpapieres als Endwert einer geometrischen Brown’schen Bewegung, welche in der
Analyse von Bank und Kramkov ausgeschlossen wurde, da nicht all ihre exponentiellen
Momente endlich sind.

Auf mathematischer Ebene ist das Herzstück unseres Modells eine hoch nichtlineare
stochastische Differentialgleichung (SDE), welche die Handelsdynamik bestimmt. Wir
formulieren sowohl die Zulässigkeit von Handelsstrategien als auch die Bewertung und
die Replikation von Derivaten als Fragen über die Existenz eines Kontrollprozesses für
diese SDE, welcher die Existenz von starken Lösungen mit bestimmten Endbedingungen
garantiert. Im vorliegenden Rahmen, in welchem das gehandelte Wertpapier mit Hilfe
einer geometrischen Brown’schen Bewegung beschrieben wird, beantworten wir diese
Fragen für Power-Nutzenfunktionen im ersten und für exponentielle Nutzenfunktionen
im zweiten Teil dieser Dissertation.

Unsere Untersuchung der Erreichbarkeit von Contingent Claims führt zu neuartigen



und überraschend subtilen Fragen über die Eigenschaften der Lognormalverteilung.
Während wir in der Lage sind ein Resultat über das asymptotische Verhalten der
Laplacetransformierten der Lognormalverteilung zu zeigen, formulieren wir zwei ver-
wandte Monotonieaussagen lediglich als Vermutungen. Obwohl die intuitive Korrek-
theit dieser Vermutungen von numerischen Experimenten untermauert wird, ist ein
analytischer Beweis bislang nicht erbracht, so dass einige unserer Resultate bedingt
auf diese Vermutungen formuliert werden müssen. Das anscheinend lückenhafte Ver-
ständnis der Eigenschaften dieser vielfach genutzten Verteilung ist überraschend und
die betreffenden Resultate und offenen Fragen könnten von unabhängigem Interesse
sein.
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Summary

The majority of mathematical models concerned with the pricing and replication of
derivatives in financial markets relies on the implicit assumption that the price for
a traded position is linear in the position size, as is the case, for instance, in the
famous Black-Scholes model. While suitable for small transactions, these models are
inadequate if transaction sizes are large enough to be significant in comparison to the
size of the market as a whole. In this thesis we study a nonlinear framework for the
pricing and replication of derivatives which incorporates the price impact of such large
transactions.

We consider a setting in which a market maker trades with a large investor at a
price that allows him to preserve his level of expected utility, the so-called market
indifference price. In this setting we investigate the admissibility of trading strategies
and show the absence of arbitrage. We further characterise the set of attainable
contingent claims and we derive asymptotic expansions for hedging strategies in this
illiquid market. While the first part of the thesis establishes these results for power
utility functions, its second part is dedicated to the case of exponential utilities.

The work at hand extends the model for a large investor trading at market
indifference prices proposed by Bank and Kramkov in [11, 14], in which the authors
follow a utility indifference pricing approach to study the price impact of large
transactions in a financial market. We extend this model by investigating the pricing
and replication of contingent claims in this setting which was not addressed in [11, 14].
Moreover, we extend the original framework in two other ways: Firstly, throughout the
first part of this thesis, we consider power utility functions with hyperbolic absolute
risk aversion (HARA) rather than utility functions with bounded absolute risk aversion
which were studied in [11, 14]. Secondly, we model the payoff of the marketed security
using geometric Brownian motion, which was excluded from the analysis by Bank and
Kramkov due to its failure to satisfy a finite exponential moments condition.

On a mathematical level, the heart of our model is a highly nonlinear SDE which
determines the dynamics of trading in our setting. The admissibility of trading
strategies as well as the pricing and hedging of derivatives are formulated as questions
about the existence of a control process for this SDE which ensures the existence of
strong solutions with certain terminal conditions. In the present framework, where
the traded security is modeled using geometric Brownian motion, these questions are
answered for both power- and exponential utility functions in the first and second
part of this thesis, respectively.

Our investigation of the attainability of contingent claims leads to novel and
surprisingly delicate questions about the lognormal distribution. While we are able
to prove a result concerning the asymptotic behaviour of its Laplace transform, two
related monotonicity assertions are merely stated as conjectures. Even though these
conjectures are strongly supported by numerical evidence and by intuition, an analytical
proof is yet outstanding and several of our results must be stated conditional on the
validity of these conjectures. The apparent lack of understanding of the properties



of this widely used distribution is quite surprising and the related results and open
questions may be of interest in their own regard.
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Introduction

Current methods for the pricing and replication of derivatives in financial markets
predominantly rely on the use of models in which the price of a traded position
increases linearly in the position size. In particular, the current derivative pricing
paradigm is dominated by the Black-Scholes model and its conceptual progeny. While
this undoubtedly powerful theory is suitable to describe pricing and replication in
liquid markets, a different approach is needed when we encounter market frictions as a
result of large transactions which are not easily absorbed by the market. Such orders
may possess a nonlinear impact on the price of the traded asset and hence on the
prices and replicating strategies for derivatives written on it. It is therefore desirable
to develop models which allow us to understand the shape and magnitude of such
(il)liquidity effects and which, at the same time, retain a high degree of mathematical
tractability.

One such model was recently proposed by Bank and Kramkov in [11, 14], where
the authors follow a utility indifference pricing approach to study the price impact
of large transactions in a financial market. The work at hand extends this model
in various ways and investigates the pricing and replication of contingent claims in
this setting. Before we discuss the focus and the contribution of this thesis in greater
detail, let us briefly outline its motivation and background.

Background

The rigorous mathematical treatment of derivative pricing was initiated in Bachelier’s
famous thesis in 1900 after which the theory remained widely disregarded for almost
seven decades. In 1965 Samuelson [47] expanded and refined Bachelier’s work and
introduced geometric Brownian motion as a mathematical model for the random
development of asset prices in financial markets. Building on these ideas, in the
1970s and early 1980s, the investigation of derivative pricing resurfaced and gained
critical mass with the seminal papers by Black and Scholes [17], Merton [40], Harrison
and Kreps [30] and Harrison and Pliska [31] which established the modern theory of
derivative pricing, including the famous Black-Scholes model, the idea of arbitrage
free pricing and its most important insight, the fundamental theorem of asset pricing.

1



2 Introduction

Since then, financial market participants have relied increasingly on mathematical
modelling rather than pursuing the old-fashioned, intuitive and non-formalised way
of trading and asset management. This mathematisation of finance introduced an
abundance of new financial products to the markets which derived their value from
the value of traditional assets and which could be fairly priced and replicated with
the help of those new methods.

Most of the models which have been in use and under scrutiny since then have been
generalised and extended in many important ways to capture empirically observed
market effects that had formerly not been accounted for, such as e.g. stochastic
volatility, stochastic interest rates and transaction costs. However, the vast majority
of derivative pricing models, much in the spirit of Bachelier’s original idea, specify the
price processes of assets in an exogenous manner, usually via a semimartingale that
allows for the use of Itô’s calculus. In particular, this implies the assumption that
asset prices do not depend on the actions of individual market participants. These
models, for the sake of analytic tractability, neglect the fundamental economic insight
that prices in a free market are formed via an equilibrium of supply and demand. This
neglect is justified as long as these models operate under the assumption of a "liquid
market" or, equivalently, of a "sufficiently small investor" whose actions are negligible
when compared to the market as a whole.

A different approach is needed when this is not the case. If a market participant
trades positions which are significant in relation to the size of the market, his actions
have an impact on the price of the traded asset. Moreover, this impact propagates to
influence the prices of financial instruments which derive their value from the price of
this asset and, consequently, to the respective hedging strategies for those instruments.

The term (il)liquidity, under which such effects are usually subsumed, is ubiquitous
in the financial market debate today, especially since the global financial crisis of
2008. The frequency with which this term is used and the importance unanimously
assigned to it, however, are in stark contrast with our degree of understanding and
our ability to model it. Most of the liquidity models which have been proposed
over the last two decades account for the price impact of sizeable transactions by
exogenously specifying a mathematically convenient functional relationship between
the size of a traded position and the price per share, usually referred to as a reaction
function, supply curve or demand pressure. By design, these exogenous solutions
neglect the fact that liquidity effects arise endogenously from the dynamics of supply
and demand. Moreover, in most of these models it is not clear how the proposed
price impact translates to replicating strategies for derivatives written on illiquid assets.

Let us briefly mention some of the various approaches to modelling market illiquidity
which have been pursued in the past. For a comprehensive and detailed survey of
liquidity models we refer to Gökay, Roch and Soner [28].

One frequently taken approach is to consider the situation where a large investor
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has to sell a high volume of shares over a small period of time. This is done in Bertsimas
and Lo [15], Almgren [5], Almgren and Chriss [6, 7] and Schied and Schöneborn [48].
While in [15] the authors seek to minimise the large investor’s expected execution cost
over all possible liquidation strategies, the model proposed in [5] and [6, 7] additionally
takes into account the large investor’s risk aversion. In [48], the authors generalise the
setting of [5] and find the liquidation strategy which maximises the large investor’s
expected utility from terminal wealth.

In the optimal execution models of Obizhaeva and Wang [41] and Alfonsi, Fruth
and Schied [1, 2] the large investor is, again, confronted with the problem of optimally
liquidating a sizeable position of a risky asset within a given time. However, rather
than modelling the price process directly, the authors model supply and demand in
the form of a limit order book which is depleted by the large investor’s orders and,
thereafter, slowly recovers. This results in a resilient temporary price impact.

A different approach is taken by Cvitanić and Ma [22] and Cuoco and Cvitanić
[21], where it is assumed that the drift and the volatility of the price process of a risky
asset depend exogenously on the large investor’s trading strategy.

Jarrow [33, 34] introduces a reaction function which explicitly describes the price
impact for the marketed security as a function of the large investor’s current holdings.
Frey [25] extends the setting of Jarrow to continuous time and studies an illiquid
market model in which option prices are obtained as solutions to a nonlinear partial
differential equation. Frey and Stremme [26], Platen and Schweizer [43], Papanicolaou
and Sircar [42] and Bank and Baum [10] use different instances of reaction functions
to model the feedback effects of hedging strategies on asset prices.

Çetin, Jarrow and Protter [18] investigate temporary liquidity effects by specifying
a stochastic field of supply curves which model the impact of the total order size on
the price per share. Gökay and Soner [29] study a discrete-time version of this supply
curve model and show that, in the limit, one recovers the setting of [18].

Roch [35] follows a limit order book approach in which he assumes that the
permanent price impact is given by a stochastic process. Jarrow, Protter and Roch
[36] use ideas from this setup to construct a liquidity-based model for asset price
bubbles by comparing the (exogenously specified) fundamental price process for a
traded security to the asset’s market price, which is endogenously determined by
trading activity.

The possibility of creating and exploiting arbitrage opportunities through liquidity-
based price manipulations is investigated in Jarrow [33, 34], Gatheral [27], Huberman
and Stanzl [32], Alfonsi and Schied [3] and Alfonsi, Schied and Slynko [4].

While these models provide valuable contributions to understanding market liq-
uidity, they are not free of shortcomings. In the models of Cvitanic and Ma [22] and
Cuoco and Cvitanic [21], for instance, the price process of the illiquid asset is not
affected even by big jumps in the investor’s trading strategy. The model of Çetin,
Jarrow and Protter [18] only captures temporary liquidity effects which completely
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disappear for absolutely continuous strategies. Moreover, option prices in this setting
are insensitive to liquidity effects. Finally, most of these models specify the price
impact exogenously and therefore fail to comply with the fundamental economic
principle of price formation by supply and demand.

In their recent papers [11, 14] Bank and Kramkov introduce a model for the price
impact of a large investor which is based on utility indifference pricing. This model,
rather than specifying an exogenous functional dependence of prices on demand pres-
sure, derives the price impact endogenously from economic equilibrium considerations.
A large investor trades with risk averse market makers at prices which allow the
market makers to preserve their pre-transaction levels of expected utility. In this
setting, Bank and Kramkov derive liquidity corrections for asset prices and describe the
post-transaction allocation of wealth among the market makers. While [11] introduces
the model for the single-period case, [14] establishes the continuous-time framework.

The benefit of the new approach by Bank and Kramkov consists in bridging the gap
between two asset pricing paradigms, namely the semimartingale approach of financial
mathematics on the one hand and the qualitative explanation of price formation
provided by economic equilibrium theory on the other. The model incorporates the
undeniably reasonable principle that prices are formed through an equilibrium of
supply and demand while, at the same time, it allows for the use of the plentiful
toolbox of stochastic analysis. As a result, the model possesses a high degree of
mathematical tractability while it adheres to fundamental economic principles.

In the setting of Bank and Kramkov, Said [46] investigates the replication of options
in the special case where the market makers possess exponential utility functions and
where the value at maturity of the traded security is given by the terminal value of a
Brownian motion. He shows that in this case the market is complete and he derives
explicit representations for the replicating strategy and for the wealth process of the
large investor. The use of Brownian motion for the value at maturity of the traded
asset suggests the interpretation of [46] as an illiquid Bachelier model.

The thesis at hand extends the ideas of [11, 14] and [46] in three ways: Firstly,
throughout the first part of this work, we consider power utility functions which
display hyperbolic absolute risk aversion (HARA) rather than utility functions with
bounded- or constant absolute risk aversion as were the object of study in [11, 14] and
[46]. Secondly, we specify the underlying security as the terminal value of a geometric
Brownian motion. This case was excluded from the previous three investigations due
to the fact that geometric Brownian motion fails to satisfy the finite exponential
moments condition imposed therein. Lastly, rather than analysing the price impact
for the traded asset itself, the focus of this work is to investigate the replication of
contingent claims as well as the liquidity effects on hedging strategies, neither of which
are addressed in [11, 14]. With the same reasoning with which we can view [46] as an
illiquid Bachelier model, we can consider the model presented in this thesis to be an
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illiquid Black-Scholes model.

Results

In Part I we establish the model and conduct an analysis of hedging and replication in
the case where the payoff at maturity of the traded security is modeled using geometric
Brownian motion and where the market maker’s preferences are given by a power
utility function. For this class of utility functions, the model displays very different
characteristics from those in [11, 14]. Most prominently, we observe the emergence of
position limits for trades which are the result of the market maker’s unwillingness to
assume net short positions in the traded security and in cash. As the upper trade size
bound is stochastic, this phenomenon increases the difficulty of the characterisation
of admissible trading strategies. In the continuous-time setting, for instance, it is
generally not true that a locally bounded predictable process is an admissible trading
strategy.

The admissibility of trading strategies is investigated in three consecutive steps:
For a single trade, for simple strategies and, lastly, for continuous-time strategies.
In all of these cases, admissible strategies are characterised with the help of the
so-called utility indifference principle, which formalises the preservation of the market
maker’s level of expected utility. In the single-period case and for simple trading
strategies this characterisation amounts to providing (stochastic) position limits for
admissible trade sizes. In the case of continuous-time strategies, we formulate a
nonlinear stochastic differential equation for the market maker’s process of expected
utility which governs the price formation and which implicitly determines the set
of admissible trading strategies. Due to the dynamic domain restrictions which we
encounter as a consequence of the aforementioned position limits, the question of
existence and uniqueness of solutions to this SDE is very delicate: It turns out that
the admissibility of a trading strategy depends on the interplay of the strategy itself
and the utility level it induces. As a result, a simple "buy today and sell tomorrow"
strategy may not be admissible. This is a consequence of the fact that the market
maker may not have sufficient funds to enable the large investor to liquidate his
position and it can be seen as a very severe form of illiquidity, culminating in a market
breakdown.

We move on to show that the market maker’s utility process is a (true) martingale.
In particular, this implies the absence of arbitrage in our model. Doubling- and suicide
strategies, which usually have to be excluded by imposing additional assumptions, are
not admissible in our model as they violate the dynamic position limits. The fact that
the market maker’s utility process is a (true) martingale in the case of power utility
functions constitutes a real difference to the settings of Part II of this thesis and of
[14], where we merely obtain the submartingale property.

Our understanding of the market maker’s utility process is used for the character-
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isation of the set of attainable contingent claims. For general contingent claims we
show that a claim is attainable if and only if the integrand in the Itô representation of
the utility process induced by the claim remains within certain bounds. In the special
case of a path independent contingent claim, whose payoff depends solely on the value
at maturity of the marketed security, this condition can be simplified to a boundedness
condition on the growth of the claim’s payoff function, where the bounds depend
on the market maker’s initial endowment. In particular, we show the attainability
of (limited positions) of call- and put options for suitable initial endowments of the
market maker. We further find that, if the market maker were to trade the contingent
claim itself rather than the underlying security, the claim’s market indifference price
would be equal to the (illiquid) replication price of the claim.

The replicating strategy in our setting is specified in a highly implicit manner
and there seems to be no hope to obtain a closed form solution. We therefore resort
to deriving asymptotic expansions for the replicating position for a small number of
contingent claims. We find that the first order approximation ∆ can be viewed as a
Black-Scholes delta in the sense that it is the sensitivity with respect to changes in
the underlying of the claim’s expected payoff under the marginal indifference pricing
measure Q. In our setting, this measure plays the role of the equivalent martingale
measure as the marginal price processes of attainable contingent claims and of the
marketed security are martingales with respect to Q. We show that the first order
approximation ∆ can be interpreted as the (liquid) replicating strategy of a small
investor who is trading at marginal prices and whose order sizes are negligible with
respect to the overall market size.

For a large investor, whose trading activity causes a price impact, the second order
approximation Λ becomes significant. It can be viewed as the liquidity correction for
the replicating strategy and can be expressed as a linear combination of hedge ratios of
auxiliary claims, i.e. as the sensitivities with respect to changes in the underlying of
the (risk aversion corrected) expected payoffs of auxiliary claims which are composed
of the claim itself and the traded security. This representation of the second order
approximation provides a "liquid recipe for an illiquid hedge" in the sense that a
portfolio manager who faces the task of replicating an option in our illiquid market
can be advised to execute several parallel delta hedges which, together, hedge his
liquidity risk.

We proceed to show that the liquidity correction Λ to the replicating strategy is
inversely proportional to a linear scaling of the market maker’s initial endowment
in which the scaling parameter can be interpreted as the market depth. As further
analytical statements about Λ are elusive, we present comparative statics for a call
option which reveal that, in this case, Λ is positive (meaning that higher positions have
to be taken when hedging) and unimodal with a maximum near the money. Moreover,
we find that, for a call option, Λ reacts to changes in the model parameters as one
would expect: It is increasing in the market maker’s risk aversion, in the volatility of
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the underlying and in the remaining time to maturity.

Note that the asymptotic expansions are established only for the case where the
market maker’s risk aversion parameter satisfies 0 < a < 1. This is due to the fact
that, for the validity of the expansions, we need to assert that the term

k1(p) , p
E[(pψ + 1)−aψ]

E[(pψ + 1)−a]

satisfies k′1(p) > 0 for p ≥ 0, where ψ is a lognormally distributed random variable.
While the proof of this fact is straightforward for 0 < a < 1, we are not yet able
to provide an analytical proof for a > 1 although numerical evidence as well as
intuition strongly support the validity of the statement also in this case. The as-
sertion for a > 1 is stated towards the end of the first part of this thesis as Conjecture 1.

In Part II we revisit the "illiquid Black-Scholes model" from Part I which uses
geometric Brownian motion to model the payoff at maturity of the underlying, albeit for
a different class of utility functions. While in Part I we consider power utility functions
which display hyperbolic absolute risk aversion (HARA), Part II investigates the model
for exponential utility functions with constant absolute risk aversion (CARA). As
before, we establish the admissibility of trading strategies for the three consecutive
cases of single-period trading, simple trading strategies and, finally, continuous-time
strategies. The methodology, as in Part I, relies on the utility indifference principle,
which formalises the preservation of the market maker’s expected utility from terminal
wealth.

The most prominent difference to Part I is the fact that, for exponential utilities,
we merely have a (deterministic) lower position limit on admissible trades as opposed
to the upper and lower trade bounds which we encountered previously. Informally
speaking, the power utility case is best described as "the market maker will never take
a short position, neither in stocks nor in cash", while the analog statement for the
case of exponential utility functions reads "the market maker will take short positions
in cash but not in stocks".

The stochastic differential equation by which we define admissible trading strategies
in the continuous-time case was observed to be nonlinear and highly unapproachable in
Part I due to its dynamic domain restrictions. In Part II, thanks to the cash invariance
of exponential utilities, it turns out to be a linear SDE. It is then easy to obtain the
existence and uniqueness of solutions to this SDE for square-integrable predictable
processes which are bounded from below by the market maker’s initial stock position.
Such processes, hence, are admissible trading strategies in the exponential utility
setting.

We proceed to investigate the large investor’s wealth process upon pursuit of an
admissible trading strategy which, contrary to the HARA case, is well defined for
exponential utility functions. In contrast to the vast majority of traditional models,
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the large investor’s wealth process does not play a central role in our analysis on a
technical level. In fact, it is more convenient to track the market maker’s process of
expected utility instead. The absence of arbitrage, as in Part I, is then obtained by
showing that the market maker’s utility process is a submartingale. However, contrary
to the case of power utilities, it is not clear whether it is also a (true) martingale.

The subsequent analysis of attainability of contingent claims, again, relies heavily
on the market maker’s utility process. We show that a contingent claim can be
replicated if and only if the integrand in the Itô representation of the utility process
induced by the claim is non-negative. For path independent claims with Lipschitz-
continuous payoff functions, this condition is equivalent to an easily verifiable condition
on the claim’s payoff function in relation to the market maker’s initial endowment.
This condition, in turn, can be used to show that (limited positions of) call- and put
options are attainable. Moreover, as was the case in Part I, the replication price of an
attainable claim coincides with the market indifference price which the claim would
possess if the market maker were to trade it.

A significant complication of the analyis of attainable contingent claims for ex-
ponential utility functions arises from the need to show that k2(θ)→∞ for θ →∞,
where

k2(θ) , θ
E[e−θψψ]

E[e−θψ]

for a lognormally distributed random variable ψ. Although it is well known that
E[e−θψψ]/E[e−θψ]→ 0 for θ →∞, the rate of this convergence is not clear. We devote
to the surprisingly lengthy proof of this result a separate section in which we also
show why traditional methods of coping with limits of this kind such as Abelian and
Tauberian theorems are not applicable. The result may be of interest in its own regard
as it extends our knowledge of the not very well understood Laplace transform of the
lognormal distribution; see for instance the very recent investigation by Asmussen,
Jensen and Rojas-Nandayapa [8].

The question of the replicating strategy for an attainable contingent claim, as in
Part I, is answered by providing asymptotic expansions for the replicating position for
a small number of claims. The first and second order approximations to the replicating
strategy admit representations which are structurally the same as those in the case of
power utilities. However, we can use the constant absolute risk aversion of exponential
utilities to obtain an alternative form for the second order approximation Λ which is
of conceptual interest.

It was mentioned above that in the case of power utilities the extendibility of the
expansions to the regime a > 1 is conditional on the validity of Conjecture 1. For
exponential utility functions we face a similar situation: The validity of the expansions
and all related results is conditional on the fact that k′2(θ) > 0 for θ ≥ 0. Again,
this statement is supported by numerical evidence and intuition and it is furthermore
consistent with the observations that k2(0) = 0 and that k2(θ) → ∞ for θ → ∞.
However, an analytical proof of this assertion is outstanding and we state it in the
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second part of this thesis as Conjecture 2.
Conditional on the validity of this conjecture, we proceed to show that the inter-

pretation of ∆ and Λ as a small investor’s replicating position and a large investor’s
liquidity correction, respectively, which we gave in Part I, remains valid for exponential
utilities.

As in the case of power utilities, the liquidity correction Λ for the replicating strategy
is hard to come by analytically and we resort once again to giving comparative statics.
We find that, as for HARA utilities, Λ reacts to changes in the model parameters as
one would expect: It is increasing in the market maker’s risk aversion, in the remaining
time to maturity and in the diffusion coefficient of the geometric Brownian motion that
models the terminal price of the traded security. The exponential case differs from the
case of power utilities insomuch as the cash invariance of exponential utilities renders
the market maker’s initial cash position irrelevant. In particular, we do not have the
convenient scaling property with respect to the market depth that we obtained in Part
I. Similarly to the case of power utilities, Λ decreases in the initial stock position of
the market maker.
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Introduction to Part I

In the first part of this thesis we investigate the price impact of large transactions in
an equilibrium pricing model with utility functions that display hyperbolic absolute
risk aversion (HARA). A market maker trades with a large investor at a price that
allows him to preserve his expected utility, the so-called market indifference price.
This market indifference price is nonlinear in the size of the traded position and we
interpret this nonlinearity as the price impact or liquidity effect caused by the size of
the transaction. In this illiquid market we investigate the replication of contingent
claims and we compute asymptotic approximations for (illiquid) hedge ratios.

The utility indifference approach to modeling the price impact of large transactions
is due to Bank and Kramkov [11, 14] where it is established for utility functions
with bounded absolute risk aversion and for traded securities with finite exponential
moments. Said [46] treats the special case of exponential utility functions, where the
traded security is modeled via Brownian motion. This suggests the interpretation of
the latter setting as an "illiquid Bachelier model".

The work at hand extends the ideas of [11], [14] and [46] to a different class
of utility functions and to a different marketed security: We consider power utility
functions with hyperbolic absolute risk aversion and we model the traded security
using geometric Brownian motion, which was not accommodated in the aforementioned
works due to its failure to satisfy the finite exponential moment condition requested
therein. In addition to these modeling differences, this work possesses a different focus
from the previous analyses insofar as it is mainly concerned with the replication of
contingent claims which has so far only been investigated in the special setting of [46].

A determining characteristic of our analysis when compared to those of [11], [14]
and [46] is the emergence of trade size bounds for admissible strategies. A market
maker whose preferences are modelled by a HARA utility function will never assume
net short positions, neither in the traded security nor in cash. In a single-period
setting this gives rise to a lower- and an upper bound on admissible trade sizes and
it merely means that the market maker will not accommodate any trade exceeding
these bounds. This phenomenon becomes more relevant when we extend our model
to dynamic trading: There, the large investor can find himself in a situation where
the upper bound on trade sizes is such that he cannot liquidate his asset position and
that he becomes "trapped" in a long position of the traded security.

13
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Chapter Overview

The first part of this thesis is structured as follows.
Chapter 1 establishes the notion of admissible trading strategies. This is done

in three consecutive steps: First in a single-period setting, then for simple strategies
(where only finitely many trades occur) and finally for continuous-time strategies.
Our model is set up in such a way that the trade dynamics are guided by a utility
indifference principle which formalises the idea of preservation of expected utility as
the principle of price formation. A trading strategy is then defined to be admissible if
it is such that the utility indifference principle can be adhered to.

Chapter 2 is dedicated to the proof of the absence of arbitrage in our model.
This is accomplished by showing that the market maker’s utility process is a (true)
martingale. Moreover, we show that – contrary to most conventional models – there
exists no well-defined profit and loss process for the large investor.

Chapter 3 establishes the setup for the replication of contingent claims in our
model. We show that, if a claim is attainable, its replication price is equal to its market
indifference price and we furthermore provide a necessary and sufficient condition for
the attainability of claims. For path independent claims this condition reduces to
an easily verifiable condition on the claim’s payoff function in relation to the market
maker’s initial endowment. In particular, we prove that call- and put options are
attainable under simple assumptions on the market maker’s initial endowment.

Chapter 4 contains an asymptotic analysis of hedge ratios in our illiquid market.
As there is no hope to obtain an explicit representation of the replicating position for
an attainable claim, we consider small positions of claims and derive first- and second
order approximations for the replicating position. While the first order approximation
resembles the Black-Scholes delta, the second order approximation can be seen as a
liquidity correction for hedge ratios in our model.

In Chapter 5 we conduct a numerical investigation of the shape and magnitude
of the liquidity correction term for the hedging position that was established in the
previous chapter.

Chapter 6 briefly highlights the particularities of logarithmic utility functions in
our model and explains why they are not included in our analysis.



Chapter 1

Admissible strategies

In this chapter we establish the notion of admissibility of trading strategies in our
model which is achieved in three consecutive steps: We will first give a definition of
admissible transaction sizes in a single transaction setting, where a trading strategy
consists of the mere choice of the number of shares in a single transaction. We will
then extend this notion to admissible simple strategies, where finitely many trades
occur. Finally, we will express the trade dynamics for continuous-time strategies via
an SDE for the market maker’s process of expected utility which will be the main tool
in defining admissible continuous-time strategies.

The way in which we establish these three notions of admissibility follows the same
underlying idea: After stating a utility indifference principle which determines the
trade dynamics in the respective setting, we will define the set of admissible trading
strategies as the set of strategies for which the utility indifference principle can be
adhered to. In the single-transaction setting and for simple strategies we will then
provide transaction size bounds which characterize the respective sets of admissible
strategies.

1.1 Model setup

Let us first introduce the main assumptions which define the setting of our model.
These assumptions will concern the market maker’s utility function and his initial
endowment as well as the distribution of the traded security.

The randomness in our model is treated in the conventional way: We consider
a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) satisfying the usual conditions and
denote by L0(R) the metric space of equivalence classes of all real-valued random
variables differing on a set of measure zero endowed with the topology of convergence
in probability. We write Lp(R), p ≥ 1 for the Banach-space of p-integrable random
variables. T is a finite maturity and FT = F . Furthermore for a σ-algebra A ⊆ F
and a set A ⊆ R we denote by L0(A, A) and Lp(A, A), p ≥ 1, the respective subsets

15
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of L0(R) and Lp(R) consisting of all A-measurable random variables with values in A.

A single market maker quotes prices for a marketed security ψ ∈ L0(R), where ψ
is understood to be the cash payoff at maturity. The market maker’s preferences are
modeled by a utility function u for terminal wealth which in the following will satisfy

Assumption 1.1. The market maker’s utility function u : (0,∞)→ R has the form

u(x) =
x1−a

1− a
, for some a > 0, a 6= 1.

We set u(0) , 0 for 0 < a < 1, u(0) , −∞ for a > 1 and u(x) , −∞ for x < 0.

Note that an agent who possesses such a utility function u has hyperbolic absolute
risk aversion R, i.e.

R(x) , −u
′′(x)

u′(x)
=
a

x
, x > 0.

Moreover, u is a strictly concave, strictly increasing, continuously differentiable func-
tion on (0,∞).

We will further make

Assumption 1.2. The marketed security ψ is given by the value at maturity ψ = ST of
a geometric Brownian motion (St)0≤t≤T which is governed by the stochastic differential
equation

dSt = St(µdt+ σdWt), (1.1)

where µ ∈ R, σ ∈ (0,∞), S0 ∈ (0,∞) and (Wt)0≤t≤T is standard Brownian motion
adapted to (Ft).

In the following we will denote the analytic solution of (1.1) with S0 = 1 by

Et , e(µ−σ
2

2
)t+σWt , t ≥ 0. (1.2)

The market maker further possesses an initial endowment Σ0 ∈ L0(R) which we will
assume to satisfy

Assumption 1.3. The market maker’s initial endowment Σ0 is given as a combination
of a position p ≥ 0 in the traded security ψ and a cash amount z ≥ 0, i.e.

Σ0 = pψ + z, p, z ∈ D , R2
+ \ {(0, 0)}.

For the introduction of market indifference prices in our model we require that the
market maker’s initial level of expected utility is finite, i.e. that the market maker’s
initial endowment Σ0 satisfies the integrability condition

E[|u(Σ0)|] <∞. (1.3)
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It is for this reason that we demand in Assumption 1.3 that at least one of p and z
be strictly greater than zero as otherwise the market maker’s initial level of expected
utility would be E[u(Σ0)] = −∞. Assumptions 1.1, 1.2 and 1.3 together provide a
setting in which (1.3) holds. Note that throughout this entire thesis we will assume
that interest rates are zero.

1.2 Single transaction setting

A single transaction is realised by the passing of q ∈ R shares as well as a complementing
cash amount x ∈ R from the large investor to the market maker. The market maker’s
total endowment changes from Σ0 = pψ + z to the post transaction endowment Σ1

given by
Σ1 = Σ0 + qψ + x.

The cash amount x is the price for the transaction q and is quoted by the market
maker in such a way that it allows him to preserve his expected utility, i.e. x satisfies
the utility indifference principle

E[u(Σ0)] = E[u(Σ0 + qψ + x)]. (1.4)

For a discussion of the economic reasoning behind this principle of price formation see
[11]. We will call x the market indifference price for a transaction of q shares. Note
that we will view the transactions q and x of securities and cash from the point of view
of the market maker; thus positive quantities of these variables denote an addition to
the market maker’s position, negative values a subtraction therefrom.

Definition 1.4. A transaction size q ∈ R is called admissible if there exists a cash
amount x such that (1.4) is satisfied.

The following theorem provides a necessary and sufficient condition on the number
of shares in a trade q for the existence and uniqueness of the market indifference price.

Theorem 1.5. Let Assumptions 1.1, 1.2 and 1.3 hold. Then a market indifference
price x ∈ R exists if and only if the transaction size q satisfies

0 ≤ p+ q ≤
(
E[(pψ + z)1−a]

E[ψ1−a]

) 1
1−a

. (1.5)

Furthermore, if a market indifference price x exists, it is unique.

The "only if" statement in this theorem is proved by the following lemma.

Lemma 1.6. Let Assumptions 1.1, 1.2 and 1.3 hold. If there exists a cash amount
x ∈ R such that (1.4) holds then

(i) x+ z ≥ 0
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(ii) p+ q ≥ 0

(iii) p+ q ≤
(
E[(pψ+z)1−a]

E[ψ1−a]

) 1
1−a .

Proof. (ii) Assume that (p+ q) < 0. We will show that (1.4) does not possess a real
solution. We have

E[u(Σ1)] = E[u((p+ q)ψ + x+ z)]

= E[u((p+ q)ψ + x+ z)1{(p+q)ψ<−(x+z)}]

+ E[u((p+ q)ψ + x+ z)1{(p+q)ψ≥−(x+z)}].

In the first term, (p+ q)ψ + x+ z < 0 and thus u((p+ q)ψ + x+ z) = −∞. Taking
into account that ψ is lognormally distributed and since (p+ q) < 0, for any choice
of x ∈ R we have P((p + q)ψ < −(x + z)) > 0 and it follows that the first term is
−∞ while the second term is finite. By (1.3) we know that E[|u(Σ0)|] <∞, so (1.4)
cannot be satisfied.

(i) Note that if x+ z < 0 then with positive probability (p+ q)ψ+ x+ z < 0 since
ψ is lognormally distributed. Using this observation the result follows analogously to
the proof of (ii).

(iii) Let x, q ∈ R satisfy (1.4). Then

E[u(Σ0)] = E[u(Σ0 + x+ qψ)]

=
1

1− a
E
[(

(p+ q)ψ + x+ z
)1−a]

≥ 1

1− a
(p+ q)1−aE[ψ1−a]

where the last inequality holds due to (i). As Σ0 = pψ + z, it follows that

1

1− a
E[(pψ + z)1−a]

E[ψ1−a]
≥ 1

1− a
(p+ q)1−a

which implies (
E[(pψ + z)1−a]

E[ψ1−a]

) 1
1−a
≥ p+ q.

The three statements of Lemma 1.6 possess intuitive economic interpretations:
Equation (i) ensures that the market maker will never spend more cash than he
possesses, i.e. that he will never assume a short cash position, while (ii) states that
the market maker will never assume a short post-transaction position in the security
ψ.
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Equation (iii) constitutes an upper bound on the market maker’s post-transaction
position in ψ: The maximum transaction size that the market maker is able to
accomodate is given by

q̄(p, z) ,

(
E[(pψ + z)1−a]

E[ψ1−a]

) 1
1−a
− p. (1.6)

We formalise this observation in the following corollary to Theorem 1.5.

Corollary 1.7. Under the assumptions of Theorem 1.5 a transaction size q ∈ R is
admissible if and only if q ∈ [−p, q̄(p, z)].

Proof. The statement is an immediate consequence of Theorem 1.5.

The existence of these bounds on admissible trade sizes is a defining characteristic
of the model at hand and consitutes one of the main differences to the setting of [11],
[14] and [46].

Note that the prices quoted by the market maker for a transaction of size q do not
explode to zero or infinity when q approaches the boundary of the set of admissible
trade sizes [−p, q̄(p, z)]. Rather, −p and q̄(p, z) constitute a minimum and a maximum
transaction size, respectively, which both possess a (finite) market indifference price
and can therefore be accommodated. For any transaction size q /∈ [−p, q̄(p, z)], however,
the market maker will not quote an indifference price: The bounds in Theorem 1.5
are sharp in the sense that for q < −p and for q > q̄(p, z) equation (1.4) possesses no
solution, i.e. the indifference principle cannot be satisfied. Transactions of these order
sizes can therefore not be realised in this model.

In a single period setting these bounds on admissible trade sizes merely mean that
the market maker will not accept arbitrarily large orders. Later on, in the case of
dynamic trading, this issue will become more relevant: Then, it is possible that an
earlier transaction cannot be unwound at a later date, i.e. that the large investor gets
"trapped" in a long stock position which he cannot sell back to the market maker as
the resulting position would violate the position limits.

The quantity q̄(p, z) possesses a simple economic interpretation: Letting x(q)

denote the market indifference price for an order of size q, q̄(p, z) is the (unique)
number of shares which satisfies

x(q̄(p, z)) = −z,

i.e. q̄(p, z) is the number of shares which, when transferred from the large investor to
the market maker, must be complemented by the market maker’s entire initial cash
z. Hence, the existence of an upper bound on admissible transaction sizes is a direct
consequence of the market maker’s inability to assume a short cash position as a result
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of his HARA preferences. The highest transaction size that he will accommodate is
precisely that which he can afford to pay for without borrowing additional funds.

Remark 1.8. Note that the upper limit p+ q̄(p, z) on the market maker’s total post-
transaction position in the risky asset can also be expressed in terms of the market
maker’s initial utility level u0 , E[u(Σ0)] as

p+ q̄(p, z) =

(
u0

E[u(ψ)]

) 1
1−a

.

Let us now prove Theorem 1.5.

Proof of Theorem 1.5. It suffices to show the existence of an indifference price, i.e. of
x ∈ R which satisfies (1.4); its uniqueness then follows directly from the fact that u(y)

is strictly increasing for y > 0.
If an indifference price x exists, (1.5) follows directly from Lemma 1.6. To prove

the other direction, let us assume that (1.5) holds. Define h : [−z,∞)→ R ∪ {−∞}
by

h(x) , E[u((p+ q)ψ + x+ z)]− E[u(Σ0)].

Then h(x) = 0 if and only if x solves (1.4). By Assumption 1.1,

h(x) =
1

1− a
(
E[((p+ q)ψ + x+ z)1−a]− E[Σ1−a

0 ]
)
.

In the special case where p+ q = 0 we can see that for 0 < a < 1

h(−z) = − 1

1− a
E[Σ1−a

0 ] < 0

and for a > 1

h(−z) = lim
x↓−z

h(x) = −∞ < 0.

If p+ q > 0 then from inequality (1.5) we know that

1

1− a
(p+ q)1−a ≤ 1

1− a
E[(pψ + z)1−a]

E[ψ1−a]

which, using the definition of Σ0 = pψ + z, implies

h(−z) =
1

1− a
(
(p+ q)1−aE[ψ1−a]− E[Σ1−a

0 ]
)

≤ 1

1− a
(
E[(pψ + z)1−a]− E[Σ1−a

0 ]
)

= 0.

Furthermore,

lim
x→∞

E[((p+ q)ψ + x+ z)1−a] =

∞, 0 < a < 1,

0, a > 1,
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and
E[Σ1−a

0 ] > 0.

For x sufficiently large

sign(1− a) = sign(E[((p+ q)ψ + x+ z)1−a]− E[Σ1−a
0 ])

from which it follows that

lim
x→∞

h(x) = lim
x→∞

1

1− a
(
E[((p+ q)ψ + x+ z)1−a]− E[Σ1−a

0 ]
)
> 0.

In the special case where p + q = 0, h is continuous on (−z,∞). Otherwise h is
continuous on its entire domain. In either case the intermediate value theorem implies
the existence of a zero for h.

We conclude the section with the following proposition which collects the properties
of the market indifference price.

Proposition 1.9. Let Assumptions 1.1, 1.2 and 1.3 hold and let

x(·) : [−p, q̄(p, z)]→ R

denote the function which maps every admissible trade size q to its market indifference
price x(q). Then x(·) is strictly decreasing, strictly convex, positive for −p ≤ q < 0,
negative for 0 < q ≤ q̄(p, z) and x(0) = 0. Moreover, x(·) is twice continuously
differentiable on (−p, q̄(p, z)), the first and second order derivatives are given by

∂qx(q) = −E[u′(Σ0 + qψ + x(q))ψ]

E[u′(Σ0 + qψ + x(q))]
(1.7)

and

∂2
qx(q) = −E[u′′(Σ0 + qψ + x(q))(ψ + ∂qx(q))2]

E[u′(Σ0 + qψ + x(q))]
(1.8)

and both derivatives can be continuously extended to the boundary at q = −p and
q = q̄(p, z).

Proof. By definition x(q) solves (1.4) so that the differentiability assertions about x(·)
follow by the implicit function theorem. We differentiate both sides of (1.4) with
respect to q to obtain

E[u′(Σ0 + qψ + x(q))(ψ + ∂qx(q))] = 0

and we differentiate both sides once more to obtain

E[u′′(Σ0 + qψ + x(q))(ψ + ∂qx(q))2] + E[u′(Σ0 + qψ + x(q))∂2
qx(q)] = 0.

Rearranging these equations yields the desired terms for the first- and second order
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derivatives. With regard to Assumptions 1.1 and 1.2 it follows that, firstly, ∂qx(q) < 0

which implies that x(·) is strictly decreasing and that, secondly, ∂2
qx(q) > 0 which

implies that x(·) is strictly convex. The assertions about the regions where x is positive
and negative, respectively, are clear from (1.4) together with the strict monotonicity
of u and Assumption 1.2. Lastly, by dominated convergence the identities (1.7) and
(1.8) can be continuously extended to q = −p and q = q̄(p, z).

1.3 Some auxiliary regularity results for conditional ex-
pectations

Before we proceed to introduce the trade dynamics in continuous time let us state
some preliminary technical results.

The following lemma ensures that we have sufficiently "nice" versions of certain
processes which we will consider throughout this chapter.

Lemma 1.10. Let Assumption 1.2 hold and let f : (0,∞) → R be a continuous
function such that |f | is monotonic and that for all (p, z) ∈ D , R2

+ \ {(0, 0)} the
integrability condition

E[|f(pψ + z)|] <∞

is satisfied. Consider the random field K : D × [0, T ]→ L1(R) defined by

Kt(p, z) := E[f(pψ + z)|Ft]. (1.9)

Then there exists a version of K such that

(i) for fixed ω ∈ Ω and t ∈ [0, T ] the map

Kt(·, ·)(ω) : D → R, (p, z) 7→ Kt(p, z)(ω)

is continuous,

(ii) for fixed (p, z) ∈ D the martingale(
Kt(p, z)

)
0≤t≤T

is continuous.

Proof. (ii) is clear by the martingale representation theorem.

(i) Denote by D̊ and ∂D the interior and boundary of D, respectively. On D̊, (i) is
a direct consequence of Lemma C.1 in [13]. It remains to show that the extension of
the map Kt(·, ·)(ω) to the set

B , {(p, z) ∈ [0,∞)× [0,∞)|p = 0 or z = 0; p+ z > 0} = ∂D \ {(0, 0)}
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is continuous. Let (yn)n≥1 = (pn, zn)n≥1 be a sequence in D̊ converging to a point
y ∈ B. Then y is given either by y = (0, z) for some z > 0 or by y = (p, 0) for some
p > 0. In either case, there exist (p̂, ẑ), (p̃, z̃) ∈ D and an index N ≥ 1 such that for
all n ≥ N , p̂ ≥ pn ≥ p̃ and ẑ ≥ zn ≥ z̃. If |f | is increasing then

|f(p̂ψ + ẑ)| ≥ |f(pnψ + zn)|,

if |f | is decreasing then
|f(p̃ψ + z̃)| ≥ |f(pnψ + zn)|.

Thus, by the dominated convergence theorem, for y = (0, z) we have

lim
n→∞

Kt(pn, zn)(ω) = lim
n→∞

E[f(pnψ + zn)|Ft](ω) = f(z) = Kt(0, z)(ω)

and for y = (p, 0)

lim
n→∞

Kt(pn, zn)(ω) = E[f(pψ)|Ft](ω) = Kt(p, 0)(ω),

which proves the continuity of Kt(·, ·)(ω) on D.

For the remainder of this chapter we will always consider the "nice" versions of
Lemma 1.10 for stochastic fields of the form (1.9).

The next lemma will allow us to exchange the order of integration and differentiation
when needed. It is a corollary of Lemma C.1 in [13].

Lemma 1.11. Let N be an open subset of R and let η : N → L0(R) denote a random
field such that for almost all ω ∈ Ω the map

η(·)(ω) : N → R, x 7→ η(x)(ω)

is continuously differentiable and such that for any compact set C ⊂ N

E
[
sup
x∈C
|η(x)|

]
+ E

[
sup
x∈C
|η′(x)|

]
<∞.

Then there exists a version of the stochastic process

Kt(x) , E[η(x)|Ft], 0 ≤ t ≤ T, x ∈ N,

which has continuous sample paths and which is such that, for any (t, ω) ∈ [0, T ]× Ω,
the map

x 7→ E[η(x)|Ft](ω)
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is continuously differentiable with derivative

E[η′(x)|Ft](ω).

Proof. The statement follows directly from Lemma C.1 in [13].

The last technical lemma of this section ensures that we can differentiate Ft-
conditional expectations with respect to the value at time t of the process (St)0≤t≤T

from Assumption 1.2.

Lemma 1.12. Under Assumption 1.2 let f : (0,∞) → R be differentiable almost
everywhere (resp. twice differentiable almost everywhere) and such that it satisfies the
integrability condition

E[|f(ψ)|] + E[|f ′(ψ)ψ|] <∞

(resp.
E[|f(ψ)|] + E[|f ′(ψ)ψ|] + E[|f ′′(ψ)ψ2|] <∞).

Let further
h(t, s) , Et,s[f(ψ)] = E[f(ψ)|St = s] = E[f(sET−t)], (1.10)

so that h(t, St) = E[f(ψ)|Ft]. Then h ∈ C1,1([0, T )×(0,∞),R) (resp. h ∈ C1,2([0, T )×
(0,∞),R)),

∂sh(t, s) = E[f ′(sET−t)ET−t],(
∂2
sh(t, s) = E[f ′′(sET−t)E2

T−t]
)
,

and
∂th(t, s) = E[f ′(sET−t)ET−tZT−t],

where
ZT−t = − log(ET−t)

T − t
.

Proof. By Assumption 1.2,

h(t, s) =

∫ ∞
−∞

1√
2π
f

(
se
√
T−tσr+(T−t)(µ−σ

2

2
)

)
e
−r2

2 dr.

By an application of Lebesgue’s theorem, straightforward computations imply the
differentiability of h and yield the desired forms for its derivatives.

Note that under the assumptions of Lemma 1.12 one can even obtain the much
stronger result that h ∈ C1,∞. However, the reduced statement above suffices for our
purposes.

The integrability condition in Lemma 1.12 is clearly satisfied if f is such that
E[|f(ψ)|] < ∞ and f has bounded derivative. Throughout this work, we will often
use the notation

∂sEt,s[f(ψ)]|s=St , ∂sh(t, s)|s=St ,
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where h is given by (1.10). Note that, as a consequence of Lemma 1.12, for functions
f satisfying the conditions therein, we have

∂sEt,s[f(ψ)]|s=St =
1

St
E[f ′(ψ)ψ|Ft]. (1.11)

1.4 Simple strategies

We will now extend the model to a continuous-time setting which accommodates
successive trading between the market maker and the large investor. The single-period
case discussed above can then be viewed as the special case where the market maker
and the large investor enter into a single trade at time zero and make no further
transactions until maturity T = 1.

Trading between the market maker and the large investor is modelled by a pre-
dictable process (Qt)0≤t≤T , the trading strategy of the large investor, and a predictable
process (Xt)0≤t≤T , the cash balance process, which complements the trading. Qt and
Xt stand for the cumulative amount of stocks and cash, respectively, that have been
transferred from the large investor to the market maker up to time t. The initial
endowment of the market maker, as in the single-period case, is denoted by Σ0.

We will first consider simple trading strategies where trading occurs only finitely
often. We formalise this concept by giving

Definition 1.13. A simple trading strategy is a process (Qt)0≤t≤T with

Qt =
n∑
k=1

θk1(τk−1,τk](t), 0 ≤ t ≤ T, (1.12)

where 0 = τ0 ≤ · · · ≤ τn = T are stopping times and θk ∈ L0(Fτk−1
,R).

It is reasonable to assume that, if it exists at all, the cash balance process (Xt)0≤t≤T

which complements Q in terms of expected utility is of the same form and can be
written as

Xt =
n∑
k=1

ξk1(τk−1,τk](t), 0 ≤ t ≤ T, (1.13)

with ξk ∈ L0(Fτk−1
,R). Before any trading takes place, the market maker possesses

the initial endowment Σ0 and at any time after that, if X exists, his endowment is
given by

Σt , Σ0 +Qtψ +Xt.

For k ∈ {1, . . . , n}, let
Σk , Σ0 + θkψ + ξk,

then Σk = Στk . The principle that underlies the trading between the market maker
and the large investor and by which we define the admissibility of trading strategies is
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yet again the preservation of expected utility. In the case of simple strategies, we can
state the utility indifference principle as follows: For all k ∈ {1, . . . , n}

E[u(Σk)|Fτk−1
] = E[u(Σk−1)|Fτk−1

]. (1.14)

Definition 1.14. Let Q be a simple trading strategy. We call Q admissible if there
exists a complementing cash balance process X of the form (1.13) such that (1.14)
possesses a solution ξk for each k ∈ {1, . . . , n}.

Note that so far we are demanding that X be of the form (1.13). We will later
show that, whenever it exists, the complementing cash balance process of a simple
strategy is unique and that it must indeed be of that form. In order to make this
statement and its demonstration rigorous we will have to introduce some additional
notation which we shall do in the next section.

Let us now give a more tractable characterisation of admissible simple strategies.
We state and prove the following preparatory lemma which can be viewed as a
conditional version of Theorem 1.5.

Lemma 1.15. Let Assumptions 1.1, 1.2 and 1.3 hold. Let G denote a sub-sigma-
algebra of FT and let θ, π, ζ ∈ L0(G,R) such that π ≥ 0, ζ ≥ 0 and π + ζ > 0. Then
the following statements are equivalent:

(i) There exists a unique random variable ξ ∈ L0(G,R) such that

E[u((π + θ)ψ + ζ + ξ)|G] = E[u(πψ + ζ)|G].

(ii) We have
−π ≤ θ ≤ q̄G(π, ζ),

where

q̄G(π, ζ) ,

(
E[(πψ + ζ)1−a|G]

E[ψ1−a|G]

) 1
1−a
− π.

Proof. The result follows by a conditional version of the argument given in the proof
of Theorem 1.5.

The following proposition is the extension of Corollary 1.7 to a multi-period setting.

Proposition 1.16. Let Assumptions 1.1, 1.2 and 1.3 hold. Let Q be a simple trading
strategy and for k ∈ {1, . . . , n} let ∆θk , θk − θk−1. Then Q is admissible if and only
if almost surely

−(p+ θk−1) ≤ ∆θk ≤ q̄Fτk−1
(p+ θk−1, z + ξk−1)

for all k ∈ {1, . . . , n}.
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Proof. Let k ∈ {1, . . . , n} and let further ∆ξk , ξk − ξk−1. If Q is admissible then, by
(1.14),

E[u(Σk−1 + ∆θk + ∆ξk)|Fτk−1
] = E[u(Σk−1)|Fτk−1

].

By Lemma 1.15 this is equivalent to

−(p+ θk−1) ≤ ∆θk ≤ q̄Fτk−1
(p+ θk−1, z + ξk−1).

Remark 1.17. We can alternatively express the statement of Proposition 1.16 in terms
of the upper bound on the total stock position of the market maker. If, in the setting
of Lemma 1.15, we define

q̃G(π, ζ) ,

(
E[(πψ + ζ)1−a|G]

E[ψ1−a|G]

) 1
1−a

= q̄G(π, ζ) + π

then the condition in Proposition 1.16 becomes

0 ≤ θk + p ≤ q̃Fτk−1
(p+ θk−1, z + ξk−1).

We can see that even in the case of simple strategies the set of admissible trading
strategies is given in a very implicit manner. In particular, it is not true that all simple
trading strategies are admissible and it is not easy to check whether a given strategy
is admissible or not.

To illustrate this, consider the following example. Let the market maker’s initial
endowment be given by Σ0 = pψ + z and consider the simple trading strategy Q
defined, at any time t ∈ [0, T ], by

Qt , −p · 1(0,T
2 ](t) + 0 · 1(T2 ,T ](t),

i.e. in the notation of (1.12) θ0 = −p, θ1 = 0, τ0 = 0 and τ1 = T/2. Q is the strategy
where the large investor purchases all the stocks from the market maker at time zero
and seeks to sell them back to him at time T/2. Let x(−p) denote the indifference
price for the initial transaction of −p shares. Then, for t ∈ (0, T2 ],

q̃Ft(p+ θt, z + ξt) = q̃Ft(0, z + x(−p)) =
z + x(−p)

E[ψ1−a|Ft]
1

1−a
.

By Assumption 1.2, with positive probability we have

z + x(−p)
E[ψ1−a|FT

2
]

1
1−a

< p

in which case θ1 + p = p > q̃FT
2

(0, z + x(−p)). This means that the large investor
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cannot sell back his entire position p to the market maker and, in view of Remark
1.17, it implies that Q is not admissible.

This example can be generalised to show that any simple strategy with deterministic
coefficients θk which is not decreasing is not admissible.

1.5 Continuous-time strategies

We will from now on assume that the trading strategy (Qt)0≤t≤T is a (general)
predictable process. The market maker’s endowment at time t = 0 is yet again
denoted by Σ0 and at any time t thereafter by

Σt , Σ0 +Qtψ +Xt.

It turns out that the indifference principle in continuous time is best stated by keeping
track of the market maker’s level of expected utility rather than of the complementing
cash process X. Before we introduce the process that serves this very purpose, we
define the set

Dz,p , [−z,∞)× [−p,∞) \ {(−z,−p)}

which is a shifted version of the equally named set in Lemma 1.10. The set D will
ensure in future definitions that the market maker’s utility level does not reach minus
infinity.

In order to describe the time-evolution of the level of expected utility of the market
maker we introduce the static process of indirect utility F : D× [0, T ]→ L0(R) defined
by

F (x, q, t) , E[u(Σ0 + qψ + x)|Ft] = E[u((p+ q)ψ + x+ z)|Ft], (1.15)

where the second equality holds if we impose Assumption 1.3, in which case z denotes
the market maker’s initial cash and p his initial security position. In the following, we
will always consider a version of F which is nice in the sense of Lemma 1.10. Note that,
in view of Lemma 1.10 (ii), the process (F (x, q, t))0≤t≤T is a continuous martingale.
Furthermore, F possesses dynamics which are given in the following lemma.

Lemma 1.18. Under Assumptions 1.1, 1.2 and 1.3 let F be defined as in (1.15).
Then F admits the representation

F (x, q, t) = F (x, q, 0) +

∫ t

0
g̃(x, q, s)dWs, (1.16)

where the stochastic field g̃ : D × [0, T ]→ L0(R) is given by

g̃(x, q, t) , σSt∂shx,q(t, St) = σSt∂sEt,s[u(Σ0 + qψ + x)]|s=St
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and the smooth function hx,q : [0, T ]× R+ → R is given by

hx,q(t, s) , E[u((p+ q)sET−t + x+ z)].

Proof. By the Markov property of S,

F (x, q, t) = Et,s[u((p+ q)ST−t + x+ z)]|s=St = hx,q(t, St).

By Lemma 1.12 we know that hx,q is continuously differentiable in t and twice
continuously differentiable in s. An application of Itô’s formula to hx,q yields

dF (x, q, t) =
(
∂thx,q(t, St) + µSt∂shx,q(t, St) + 1

2σ
2S2

t ∂
2
shx,q(t, St)

)
dt

+σSt∂shx,q(t, St)dWt.

Since F is a martingale, the drift term vanishes and we obtain

dF (x, q, t) = g̃(x, q, t)dWt.

The process (F (x, q, t))0≤t≤T models the dynamics of the market maker’s indirect
utility level after a transaction (x, q) and it will serve as the main ingredient when
stating the indifference principle in continuous time. Before we come to that, let us
introduce some additional notation. We define the range of utilities Ũ ⊆ R by

Ũ , u
(
(0,∞)

)
= {u ∈ R | ∃r ∈ (0,∞) s.t. u(r) = u} =

(0,∞), 0 < a < 1,

(−∞, 0), a > 1,

and the (random) set of compatible pairs of utility levels and transaction sizes by

A(t, ω) , {(u, q) | u ∈ Ũ ,−p ≤ q ≤ q̄(u, t, ω)}, (1.17)

where the random field q̄ : Ũ × [0, T ]→ L0((−p,∞)) is given by

q̄(u, t) ,

(
u

E[u(ψ)|Ft]

) 1
1−a
− p. (1.18)

The set A(t, ω) is a crucial building block in our setup. It constitutes the unique set of
pairs of utility levels and transaction sizes for which our version of market indifference
pricing is technically possible. We will briefly discuss some properties and different
characterisations of A(t, ω) below.

Note that the expression (1.18) for the maximum transaction size q̄(u, t) is consis-
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tent with the ones in previous sections in the sense that for u = E[u(Σ0)]

q̄(u, 0) = q̄(p, z)

where q̄(p, z) is as in (1.6) and that for u = E[u(Σ0)|Ft],

q̄(u, t) = q̄Ft(p, z),

where q̄Ft(p, z) is as in Lemma 1.15 (ii). In the above definition of A(t, ω), fixing a
utility level u ∈ Ũ implies a range of transaction sizes q for which (u, q) ∈ A(t, ω), i.e.
for which (u, q) is a compatible transaction pair. We can define A(t, ω) equivalently
by

A(t, ω) , {(u, q) ∈ Ũ × R | q ≥ −p,u > umin(q, t, ω)}, (1.19)

where the random field umin : (−p,∞)× [0, T ]→ L0(Ũ) is given by

umin(q, t) , E[u((p+ q)ψ)|Ft], (1.20)

and umin(−p, t) , 0 if 0 < a < 1; umin(−p, t) , −∞ if a > 1. (The equivalence
of (1.17) and (1.19) is a consequence of Lemma 1.19 below.) In this case, a fixed
transaction size q ≥ −p implies a range of utilities u for which (u, q) is a compatible
transaction pair.

The set A(t, ω) is depicted in Figures 1.1 and 1.2 for a = 2 and a = 1
2 , respectively.

We further define the (random) set of compatible utility values of the market maker,
given a trade size q, by

U(q, t, ω) , {u ∈ U | (u, q) ∈ A(t, ω)}

and the (random) set of compatible transaction sizes, given a level of indirect utility of
the market maker u, by

Q(u, t, ω) , {q ∈ R | (u, q) ∈ A(t, ω)}.

Both sets can be expressed as intervals as follows:

U(q, t, ω) =

(umin(q, t, ω),∞) 0 < a < 1,

(umin(q, t, ω), 0) a > 1

and
Q(u, t, ω) = [−p, q̄(u, t, ω)]. (1.21)

Let us now introduce the family of maps (At)t∈[0,T ] which will serve as the main
tool in formulating the indifference principle that determines the trade dynamics in
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continuous time. For each t ∈ [0, T ], ω ∈ Ω, we define the (random) map

Aωt : A(t, ω)→ R

by Aωt : (u, q) 7→ x, where x solves

u = F (x, q, t)(ω). (1.22)

Hence, for every pair (u, q) ∈ A(t, ω), the value of Aωt (u, q) is given by the solution x
to

u = E[u
(
(p+ q)ψ + z + x

)
|Ft](ω). (1.23)

For notational convenience we will omit the superscript ω and merely write At. By
Lemma 1.15 we know that (1.23) (and therefore (1.22)) possesses a unique solution x
on the given domain.

Let us have a closer look at the family of maps (At). Fix ω ∈ Ω. At every time t,
for a fixed transaction size q, there is a 1-to-1 correspondence between utility levels
and cash amounts: Each utility level u corresponds to a unique cash amount x which
complements the transaction of size q by preserving the level of expected utility. The
map At reconstructs this very cash amount x from the utility level u. Analogously,
for a fixed utility level u, there is a 1-to-1 correspondence between transaction sizes q
and their complementing cash amounts x.

The following Lemma sheds light on the natural emergence of the quantities umin

and q̄. While the former corresponds to the minimal utility level that the market
maker must possess in order to be able to accomodate a transaction of size q, the latter
corresponds to the maximum transaction size that the market maker can accomodate,
given that he is currently at utility level u. The two constraints (on possible utility
levels and possible transaction sizes, respectively) are dual to each other in the sense
that they both arise from the fact that the market maker will never assume a short
position in cash.

Lemma 1.19. Let Assumptions 1.1, 1.2 and 1.3 hold and let q̄(u, t) and umin(q, t) be
defined as in (1.18) and (1.20), respectively. Then for (u, q) ∈ A(t, ω)

At(u, q) = −z iff u = umin(q, t) iff q = q̄(u, t). (1.24)

Proof. By definition of At we have At(u, q) = x if and only if

u = E[u((p+ q)ψ + x+ z)|Ft]. (1.25)

Substituting u = umin(q, t) into (1.25) implies x = −z. Conversely, for x = −z in
(1.25) we obtain u = umin(q, t). This proves the first equivalence. Considering x = −z
in (1.25) and rearranging it for q yields q̄(u, t) which proves the second equivalence.



1.5. Continuous-time strategies 33

Both statements of Lemma 1.19 possess intuitive economic interpretations. The
second equivalence means that u is the minimal utility level at which a transaction
of size q can be accomodated if and only if q is the maximal transaction that can
be accomodated when holding utility level u. The first equivalence means that in
this case the market maker has to assume a zero cash position to accomodate such
a transaction. In this sense umin(q, t) and q̄(u, t) describe the same phenomenon –
namely the situation in which the market maker enters into a transaction which causes
him to spend his entire cash – from different points of view. We define the level-set

A−z(t, ω) , {(u, q) ∈ A(t, ω) | At(u, q) = −z},

i.e. A−z(t, ω) contains all compatible pairs (u, q) of utility levels and transaction sizes
which would cause the market maker to assume a zero cash position. By Lemma
1.19 it is clear that the sets {(umin(q, t, ω), q)|q ∈ R} and {(u, q̄(u, t, ω))|u ∈ U} are
both identical to A−z(t, ω) and that they describe the "upper" boundary of the set of
compatible transaction pairs A(t, ω) in Figures 1.1 and 1.2.

We are now ready to describe the trade dynamics in the continuous-time setting
by formulating the principle of preservation of expected utility for continuous-time
strategies. This will be done in the form of an SDE for the market maker’s utility
process, following the approach of [14] and [12], where the analog SDE for utility
functions with bounded absolute risk aversion is introduced and analysed.

We define the market maker’s dynamic process of indirect utility (UQt )0≤t≤T when
the large investor is pursuing a trading strategy Q as the solution to the stochastic
differential equation

UQt = E[u(Σ0)] +

∫ t

0
F (As(U

Q
s , Qs), Qs; ds), (1.26)

provided the solution exists and is uniquely determined. Of course this also means
that the pair (Ut, Qt) takes values in At for any t ∈ [0, T ] such that the right hand
side of (1.26) makes sense. The nonlinear stochastic integral is to be understood in
the sense of [39] Section 3.2. In differential form this equation reads

dUQt = F (At(U
Q
t , Qt), Qt; dt) = g(UQt , Qt, t)dWt, (1.27)

where
g(u, q, t) , g̃(At(u, q), q, t) (1.28)

and g̃ is defined as in Lemma 1.18. The nonlinear stochastic differential equation
(1.26) formalises the principle of preservation of expected utility and can therefore be
viewed as the utility indifference principle in continuous time.

The dynamic process of indirect utility is linked to the static process of indirect
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utility by the relationship
UQt = F (Xt, Qt, t),

where, at any time t ∈ [0, T ], the cash balance process X is given by

Xt = At(U
Q
t , Qt).

In the following, we will refer to the market maker’s dynamic process of indirect utility
simply as his process of indirect utility.

Having established the utility indifference principle in continuous time, we are now
ready to define admissibility for general predictable strategies.

Definition 1.20. We will call a predictable process (Qt)0≤t≤T an admissible trading
strategy if it is such that (1.26) possesses a unique strong solution (UQt )0≤t≤T . We will
further call the (predictable) process (Xt)0≤t≤T given by

Xt = XQ
t , At(U

Q
t , Qt) (1.29)

for all t ∈ [0, T ] the complementing cash-balance process of the admissible trading
strategy Q.

If Q is an admissible strategy then in particular this means that all terms in (1.26)
are defined. In other words, for any admissible strategy Q, at any time t ∈ [0, T ],
(UQt (ω), Qt(ω)) must be an allowed transaction pair, i.e.

(UQt (ω), Qt(ω)) ∈ A(t, ω)

for all t ∈ [0, T ]. Equivalently we can say that at any time t ∈ [0, T ], the cumulative
security position Qt satisfies

Qt(ω) ∈ Q(UQt (ω), t, ω)

or, alternatively, at any time t ∈ [0, T ], the indirect utility level UQt satisfies

UQt (ω) ∈ U(Qt(ω), t, ω).

Thus, an admissible trading strategy and the indirect utility process it induces are
closely intertwined and cannot be investigated independently from one another.

These dynamic domain restrictions, of course, arise from the very same phenomenon
that gave rise to the trade size bounds in the cases of a single transaction and of
simple trading strategies: As the market maker will never assume a short position in
the traded security, admissible strategies are bounded from below by −p; as he will
never assume a short position in cash, admissible strategies are bounded from above
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by the dynamic upper trade size bound q̄(u, t) introduced in (1.18).
These upper and lower bounds for admissible trading strategies constitute a crucial

difference to the settings of [11], [14] and [46] and create significant technical obstacles.
As a result of these dynamic domain restrictions, the question of existence of solutions
to (1.26) is very delicate. In particular, it is not true that all locally bounded strategies
are admissible. It is therefore not straightforward to determine whether a trading
strategy Q is admissible or not and a tractable criterion which constitutes a sufficient
condition for admissibility would be desirable. Fortunately, the question of uniqueness
of solutions to (1.26) can be answered even in the absence of such a criterion as the
following theorem shows.

Theorem 1.21. Let Assumptions 1.1, 1.2 and 1.3 hold and let Q be a predictable
process. Then solutions UQ to (1.26) are unique up to indistinguishability, if they exist
at all.

Theorem 1.21 shows that we would not have needed to demand uniqueness in
Definition 1.20 as any solution to (1.26) is unique. Before we proceed to prove the
theorem, we will establish several lemmas.

Remark 1.22. For a simple strategy Q which is admissible in the sense of Definition
1.14 the SDE (1.26) possesses a strong solution UQ. Thus, any simple admissible
strategy is also admissible in the sense of Definition 1.20. Furthermore, Theorem 1.21
implies that the complementing cash balance process X of a simple strategy is unique
(up to indistinguishability) and must therefore indeed possess the form (1.13) that we
had previously imposed.

Let us now state and prove several lemmas concerning the important maps At and
g.

Lemma 1.23. Let Assumptions 1.1, 1.2 and 1.3 hold. Then for any ω ∈ Ω, q ≥ −p
and t ∈ [0, T ] the map u 7→ Aωt (u, q) of (1.22) is twice continuously differentiable,
increasing and convex on its domain. Furthermore, we have

∂uAt(u, q) =
1

E[u′
(
Σ0 + qψ +At(u, q)

)
|Ft]

(1.30)

and

∂2
uAt(u, q) = −

E[u′′
(
Σ0 + qψ +At(u, q)

)
|Ft]

E[u′
(
Σ0 + qψ +At(u, q)

)
|Ft]3

. (1.31)

Proof. By definition of At(u, q),

u = E[u
(
Σ0 + qψ +At(u, q)

)
|Ft].

By Lemma 1.11 and the implicit function theorem At(·, q) is twice continuously
differentiable. After differentiating both sides once and twice, respectively, with
respect to u and rearranging the terms we obtain (1.30) and (1.31). Since u′ > 0 it
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follows that ∂uAt(u, q) > 0, thus At(·, q) is increasing. Since u′′ < 0 it follows that
∂2
uAt(u, q) > 0 which implies the convexity of At(·, q).

Lemma 1.24. Let Assumptions 1.1, 1.2 and 1.3 hold and let g be as in (1.28). Then
for any ω ∈ Ω, q ≥ −p and t ∈ [0, T ] the map

g(·, q, t, ω) : U(q, t, ω)→ R, u 7→ g(u, q, t, ω)

is twice continuously differentiable, positive and strictly decreasing. Furthermore, we
have

∂ug(u, q, t) = σE[u′′
(
Σ0 + qψ + x

)
(p+ q)ψx′|Ft]|x=At(u,q),x′=∂uAt(u,q) (1.32)

and

∂2
ug(u, q, t)

= σE[u′′′
(
Σ0 + qψ + x

)
(p+ q)ψx′2 + u′′

(
Σ0 + qψ + x

)
(p+ q)ψx′′|Ft]

|x=At(u,q),x′=∂uAt(u,q),x′′=∂uuAt(u,q).

Proof. By definition of g and by Lemma 1.12 we have

g(u, q, t) = σSt∂sEt,s[u
(
Σ0 + qψ + x

)
]|s=St,x=At(u,q)

= σEt,s[u′
(
Σ0 + qψ + x

)
(p+ q)ψ]|s=St,x=At(u,q).

Since u′ > 0 and (p+q)ψ > 0 it follows that g is positive. Differentiating this expression
once and twice, respectively, with respect to u yields the desired terms for the first
and second order derivatives. Since u′′ < 0 and, by Lemma 1.23, ∂uAt(u, q) > 0 it
follows that

∂ug(·, q, t) < 0

which implies that g(·, q, t) is strictly decreasing.

Lemma 1.25. Let Assumptions 1.1, 1.2 and 1.3 hold and let g be as in (1.28). Then
for any ω ∈ Ω, u ∈ Ũ and t ∈ [0, T ] the map

∂ug(u, ·, t, ω) : Q(u, t, ω)→ R, q 7→ ∂ug(u, q, t, ω)

satisfies

0 = ∂ug(u,−p, t, ω) > ∂ug(u, ·, t, ω) > ∂ug(u, q̄(u, t, ω), t, ω) = −σa.
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Proof. By (1.30) and (1.32) we have

∂ug(u, q, t) = σE[u′′
(
Σ0 + qψ + x

)
(p+ q)ψx′|Ft]|x=At(u,q),x′=∂uAt(u,q) (1.33)

=
σE[u′′

(
Σ0 + qψ + x

)
(Σ0 + qψ + x− (x+ z))|Ft]

E[u′
(
Σ0 + qψ + x

)
|Ft]

|x=At(u,q)

=
σ
(
− aE[u′

(
Σ0 + qψ + x

)
|Ft]− E[u′′

(
Σ0 + qψ + x

)
(x+ z)|Ft]

)
E[u′

(
Σ0 + qψ + x

)
|Ft]

|x=At(u,q).

= −σ

(
a+

E[u′′
(
Σ0 + qψ + x

)
(x+ z)|Ft]

E[u′
(
Σ0 + qψ + x

)
|Ft]

|x=At(u,q)

)
, (1.34)

where we use the fact that, by Assumption 1.1, xu′′(x) = −au′(x) for all x > 0. Since

0 ≥
E[u′′

(
Σ0 + qψ + x

)
(x+ z)|Ft]

E[u′
(
Σ0 + qψ + x

)
|Ft]

|x=At(u,q)

= −a
E[u′

(
Σ0 + qψ + x

)
x+z

(p+q)ψ+x+z |Ft]
E[u′

(
Σ0 + qψ + x

)
|Ft]

|x=At(u,q)

≥ −a,

it follows that
0 ≥ ∂ug(u, q, t) ≥ −aσ.

Furthermore, we can see from (1.33) that

∂ug(u,−p, t) = 0.

By Lemma 1.19 we have At(u, q̄(u, t)) = −z and thus (1.34) implies

∂ug(u, q̄(u, t), t) = −σa.

Given Lemma 1.25 the proof of uniqueness of solutions to (1.26) is now a straight-
forward adaptation of a classical Gronwall-argument:

Proof of Theorem 1.21. Let us assume that U and Û are both strong solutions to
(1.26) on [0, T ] and that U0 = Û0. We define the family of stopping times

τn , inf{t ∈ [0, T ] : |Ut| > n ∨ |Ût| > n}, n ≥ 1.

Then, using the notation of (1.27),

Ut∧τn − Ût∧τn =

∫ t∧τn

0

(
g(Us, Qs, s)− g(Ûs, Qs, s)

)
dWs.
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Applying the Itô isometry we obtain

E[|Ut∧τn − Ût∧τn |2] = E

[∣∣∣∣∫ t∧τn

0
g(Us, Qs, s)− g(Ûs, Qs, s)dWs

∣∣∣∣2
]

= E
[∫ t∧τn

0

∣∣∣g(Us, Qs, s)− g(Ûs, Qs, s)
∣∣∣2 ds] .

By the mean value theorem we know that for some ũs ∈ [min(Us, Ûs),max(Us, Ûs)]

we have

E
[∫ t∧τn

0

∣∣∣g(Us, Qs, s)− g(Ûs, Qs, s)
∣∣∣2 ds] = E

[∫ t∧τn

0
|∂ug(ũs, Qs, s)|2|Us − Ûs|2ds

]
and by Lemma 1.25

|∂ug(ũs, Qs, s)| ≤ σa.

It follows that

E
[∫ t∧τn

0
|∂ug(ũs, Qs, s)|2|Us − Ûs|2ds

]
≤ σ2a2

∫ t

0
E
[
|Us∧τn − Ûs∧τn |2

]
ds.

Hence,

E[|Ut∧τn − Ût∧τn |2] ≤ σ2a2

∫ t

0
E
[
|Us∧τn − Ûs∧τn |2

]
ds.

We apply Gronwall’s inequality to

f(t) , E[|Ut∧τn − Ût∧τn |2]

to obtain f(t) ≡ 0 which implies that U and Û are modifications of one another. Since
they are continuous it follows that they are indistinguishable.

We will now proceed to show that our model is free of arbitrage.



Chapter 2

Absence of arbitrage

The question that arises naturally is under which assumptions our model is free of
arbitrage. In this chapter we will consider the case of admissible trading strategies in
continuous time and we will prove that under Assumptions 1.1, 1.2 and 1.3 the model
is already free of arbitrage.

2.1 Profit and loss of the large investor

When the large investor pursues an admissible strategy Q the market maker’s process
of indirect utility UQ is given as the unique solution to (1.26). The profit and loss of
the large investor at maturity is then given by the FT -measurable real-valued random
variable GQ that satisfies

UQT = u
(
Σ0 −GQ

)
or, equivalently,

GQ = −(QTψ +XT ).

It would be a temptingly natural extension to define the P&L-process of the large
investor (GQt )0≤t≤T when following an admissible strategy Q as the unique solution at
any time t ∈ [0, T ] to

UQt = E[u
(
Σ0 −GQt

)
|Ft]. (2.1)

However, this solution does not necessarily exist at all times t < T .
To illustrate this, we will give an example. Let 0 < p̂ < p and consider an

admissible trading strategy Q for which the event A , {Σt = p̂ψ} occurs with positive
probability. Then, on A, GQt is given by the solution to

E[u
(
p̂ψ
)
|Ft] = E[u

(
pψ + z −GQt

)
|Ft].

Note that for GQt ≤ z we have

E[u
(
pψ + z −GQt

)
|Ft] ≥ E[u

(
pψ
)
|Ft] > E[u

(
p̂ψ
)
|Ft]

39
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and that for GQt > z

E[u
(
pψ + z −GQt

)
|Ft] = −∞.

Thus, there is no cash amount GQt which solves (2.1). From an economic point of
view, this situation corresponds to the case where, up to time t, the large investor
pursued a trading strategy Q which allowed him to obtain all of the market maker’s
initial cash z as well as a part p− p̂ of the market maker’s initial shares. In this case,
the market maker does not possess enough money to buy back the p − p̂ shares so
that the large investor cannot "cash in" his wealth before time T , when the traded
security pays out. In this sense, it is possible that the large investor gets "trapped"
in a long position of the traded security ψ. Note that, in this situation, the market
maker fails to fulfill his mandate since he does no longer actually "make a market".

We will thus consider the large investor’s profit and loss only at time t = T .

2.2 Proof of absence of arbitrage

In [14] the absence of arbitrage is deduced from the fact that the market maker’s utility
process is a submartingale. There, the submartingale property follows immediately
from the upper boundedness of the market maker’s utility function. While the same
reasoning can be applied for the case a > 1 in our setting, the case 0 < a < 1

necessitates a more involved argument which we present below.

We formalise the notion of an arbitrage as a riskless profit in the usual way and
give the following definition:

Definition 2.1. We say that a predictable process Q is an arbitrage if GQ ≥ 0 a.s.
and P(GQ > 0) > 0.

The following theorem ensures the absence of arbitrage in our model.

Theorem 2.2. Let Assumptions 1.1, 1.2 and 1.3 hold and let Q be an admissible
strategy. Then Q is not an arbitrage.

Before we proceed to prove this theorem at the end of this section, we will establish
several lemmas.

Lemma 2.3. Let Assumption 1.1 hold. If for an admissible strategy Q the process of
indirect utility UQ of the market maker is a submartingale then Q is not an arbitrage.

Proof. Assume that UQ is a submartingale and assume that the large investor’s P&L
satisfies GQ ≥ 0 a.s. It is sufficient to show that this implies P(GQ > 0) = 0. Recall
that GQ is defined implicitly by

UQT = u(Σ0 −GQ).
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Since UQ is a submartingale we have E[UQT ] ≥ UQ0 and hence

E[u(Σ0 −GQ)] ≥ E[u(Σ0)]. (2.2)

As u is strictly increasing and GQ ≥ 0 a.s. this implies that GQ = 0 a.s. and
consequently P(GQ > 0) = 0.

Remark 2.4. Under Assumptions 1.1, 1.2 and 1.3 let Q be an admissible strategy and
let UQ denote the market maker’s indirect utility process when the large investor is
pursuing Q. Then at all times t ∈ [0, T ]

(i)
Qt + p ≥ 0

(ii)
At(U

Q
t , Qt) + z ≥ 0.

Lemma 2.5. Let Assumptions 1.1, 1.2 and 1.3 hold. Let UQ denote the market
maker’s indirect utility process when the large investor is pursuing an admissible
trading strategy Q. Let umin be as in (1.20). Then for all t ∈ [0, T ] and ω ∈ Ω

UQt (ω) ≥ umin(Qt(ω), t, ω).

Proof. By definition of At(U
Q
t , Qt) we have

UQt = E[u
(
(p+Qt)ψ +At(U

Q
t , Qt) + z

)
|Ft]

and from Remark 2.4 we know that

At(U
Q
t , Qt) + z ≥ 0.

Since u is increasing, this implies

E[u
(
(p+Qt)ψ +At(U

Q
t , Qt) + z

)
|Ft] ≥ E[u

(
(p+Qt)ψ

)
|Ft].

Lemma 2.6. Let Assumptions 1.1, 1.2 and 1.3 hold. Then for ω ∈ Ω and t ∈ [0, T ]

we have

inf
q∈(−p,∞)

umin(q, t, ω) =

0, 0 < a < 1,

−∞, a > 1,

and this infimum is not attained on (−p,∞)× [0, T ]× Ω.
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Proof. The result follows immediately from

lim
q↓−p

umin(q, t, ω) = lim
q↓−p

E[u
(
(p+ q)ψ

)
|Ft](ω) =

0, 0 < a < 1,

−∞, a > 1.

Lemma 2.7. Let Assumptions 1.1, 1.2 and 1.3 hold. Let further b = (q, t, ω) ∈
(−p,∞)× [0, T ]× Ω. Then

g(umin(b), q, t, ω)

umin(b)
≡ σ(1− a).

In particular, the right hand side does not depend on b.

Proof. By definition of g and of umin, application of Lemmas 1.12 and 1.19 and by
Assumption 1.1 we have

g(umin(b), q, t, ω)

umin(b)
= σ

E[u′((p+ q)ψ + z +At(umin(b), q)
)
(p+ q)ψ|Ft](ω)

E[u
(
(p+ q)ψ

)
|Ft](ω)

= σ
E[u′((p+ q)ψ

)
(p+ q)ψ|Ft](ω)

E[u
(
(p+ q)ψ

)
|Ft](ω)

= σ
E[(p+ q)1−aψ1−a|Ft](ω)

(1− a)−1E[(p+ q)1−aψ1−a|Ft](ω)
= σ(1− a).

Lemma 2.8. Let Assumptions 1.1, 1.2 and 1.3 hold. Let further Q be an admissible
trading strategy and let UQ denote the associated utility process. Then, for all t ∈ [0, T ],∣∣∣∣∣g(UQt , Qt, t)

UQt

∣∣∣∣∣ ≤ |σ(1− a)|.

Proof. We have

g(UQt , Qt, t) = σE[u′(Σ0 +Qtψ +At(U
Q
t , Qt))(p+Qt)ψ|Ft]

and
UQt = E[u(Σ0 +Qtψ +At(U

Q
t , Qt))|Ft].

Since u′(x) · x = (1− a)u(x) for all x > 0 we have

g(UQt , Qt, t) = σE[u′(Σ0 +Qtψ +At(U
Q
t , Qt))×

×
(
(p+Qt)ψ + z +At(U

Q
t , Qt)− z −At(U

Q
t , Qt)

)
|Ft]

= σ(1− a)E[u(Σ0 +Qtψ +At(U
Q
t , Qt))|Ft]

−σE[u′(Σ0 +Qtψ +At(U
Q
t , Qt))

(
z +At(U

Q
t , Qt)

)
|Ft].
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We know that u′ > 0 and since by Remark 2.4 z +At(U
Q
t , Qt) ≥ 0, it follows that

σ(1− a)UQt − g(UQt , Qt, t)

= σE[u′(Σ0 +Qtψ +At(U
Q
t , Qt))

(
z +At(U

Q
t , Qt)

)
|Ft] ≥ 0.

Thus, for 0 < a < 1, we have

0 ≤ g(UQt , Qt, t)

UQt
≤ σ(1− a)

and for a > 1

0 ≥ g(UQt , Qt, t)

UQt
≥ σ(1− a).

Proposition 2.9. Let Assumptions 1.1, 1.2 and 1.3 hold and let Q be an admissible
trading strategy. Then the market maker’s process of indirect utility UQ is a (true)
martingale.

Proof. From (1.27) we know that the dynamics of the process UQ can be expressed as

dUQt = g(UQt , Qt, t)dWt, 0 ≤ t ≤ T,

where
g(UQt , Qt, t) = σE[u′

(
Σ0 +Qtψ +At(U

Q
t , Qt)

)
(p+Qt)ψ|Ft].

Thus, UQ is a local martingale. We recall the Novikov condition which implies that in
order to show that UQ is a (true) martingale it is sufficient to show that

E

exp

1

2

∫ T

0

∣∣∣∣∣g(UQt , Qt, t)

UQt

∣∣∣∣∣
2

dt

 <∞.
By Lemma 2.8 at all times t ∈ [0, T ]∣∣∣∣∣g(UQt , Qt, t)

UQt

∣∣∣∣∣ ≤ |σ(1− a)|.

Thus ∫ T

0

∣∣∣∣∣g(UQt , Qt, t)

UQt

∣∣∣∣∣
2

dt ≤
∫ T

0
σ2(1− a)2dt

= σ2(1− a)2T <∞,

which finishes the proof.
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We immediately obtain the absence of arbitrage in our model:

Proof of Theorem 2.2. By Proposition 2.9 UQ is a (true) martingale and thus a sub-
martingale. The result then follows by Lemma 2.3.

We already noted at the beginning of this chapter that in the regime a > 1 the
absence of arbitrage can be obtained immediately: There, the submartingale property
of UQ is a direct consequence of the fact that UQ is a local martingale which is
bounded from above (since the market maker’s utility function u is bounded from
above). However, we included the case a > 1 in Proposition 2.9 as we will later on
make use of the fact that UQ is a true martingale.

We will now turn our attention to the replication of contingent claims.



Chapter 3

Hedging and replication of options

In this chapter we will examine the replicability of a contingent claim H ∈ L0(R)

which is not traded in our financial market. Starting from an initial cash amount vrep,
the large investor seeks to attain the position H at time T by dynamically trading
the marketed security ψ with the market maker. Two questions arise naturally in this
setup: Firstly, which claims can be replicated in our model, i.e. what is the set of
attainable contingent claims? And, secondly, how is this replication accomplished, i.e.
what is the replicating strategy for a given claim H?

In what follows, we will first derive a necessary and sufficient condition for a claim
H to be attainable in the sense that there exists an admissible strategy Q which
ensures that the large investor’s wealth at time T is given by H. It turns out that, if
a claim is attainable, its replication price is equal to its market indifference price.

Once the question of attainability has been addressed, we will turn our attention
to the specific case of a call option and give an explicit criterion, namely a condition
on the market maker’s initial endowment, which constitutes a necessary and sufficient
condition for the replicability of a call option in our model. We then proceed to give a
necessary and sufficient condition for the attainability of path independent claims of
the form H = f(ψ). This easily verifiable condition is stated in terms of the claim’s
payoff function in relation to the market maker’s initial endowment. Lastly, we will
provide an example of a claim which possesses an indifference price but which is not
attainable in our setting.

3.1 Acceptable and attainable contingent claims

If a claim H ∈ L0(R) was traded in our financial market, we could apply the utility
indifference principle to determine the cash amount v that complements the trading
of H. Denoting the market maker’s initial endowment in the usual way by

Σ0 = pψ + z,

45
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we can see that if
E[u
(
Σ0 −H + vt

)
|Ft] = E[u(Σ0)|Ft]

for some vt ∈ L0(Ft,R) then vt is the market indifference price of H at time t.
In what follows, we will consider contingent claims H ∈ L0(R) which possess a

market indifference price at all times. More precisely, we will consider claims which
belong to the set H defined as follows.

Definition 3.1. We define the set of acceptable contingent claims

H , {H ∈ L0(R) | ∀t ∈ [0, T ] ∃vt ∈ L0(Ft,R) s.t.

E[u(Σ0 −H + vt)|Ft] = E[u(Σ0)|Ft]}.

We will call a contingent claim H ∈ L0(R) acceptable, if it belongs to the set of
acceptable contingent claims.

Proposition 3.8 and Remark 3.9 below show that, under weak assumptions on the
market maker’s initial endowment, H contains e.g. call and put options.

On various occasions it will be necessary to restrict our analysis to path independent
claims of the form H = f(ψ) ∈ H. We therefore introduce the set

H′ , {H ∈ H | H = f(ψ) for some f ∈ R} ⊂ H,

where R denotes the class of Lipschitz continuous functions on R. Note that functions
belonging to R, in particular, satisfy the integrability condition of Lemma 1.12.

We proceed to define attainability of claims in our setting.

Definition 3.2. Let GQ be defined as in Section 2.1. We will call a contingent claim
H ∈ H attainable if there exists an admissible trading strategy (QHt )0≤t≤T such that
almost surely

vrep +GQ
H

= H (3.1)

for some cash amount vrep ∈ R. In that case, we will call vrep a replication price of H
and QH a replicating strategy.

The question that arises naturally is under what conditions an acceptable claim
H is attainable and whether or not the replication price vrep of H coincides with its
utility indifference price at time zero, v0. Proposition 3.3 below sheds light on this
question.

Before we state and prove it, we introduce the process of indirect utility of the
market maker when selling H at time t = 0 at price v0. Denoting this process by
(UHt )0≤t≤T we define

UHt , E[u(Σ0 −H + v0)|Ft]. (3.2)
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Note that this process is merely an auxiliary process in the sense that the market
maker does not actually trade H. However, it is important to keep track of UH as it
will be the large investor’s aim to follow an admissible trading strategy Q such that
UQ coincides with UH . The following proposition makes this idea rigorous.

Proposition 3.3. Let Assumptions 1.1, 1.2 and 1.3 hold. Consider a contingent
claim H ∈ H and let v0 denote the utility indifference price of H at time zero. Then

(i) If there exists an admissible trading strategy (Qt)0≤t≤T such that almost surely

UHt = UQt ∀t ∈ [0, T ],

then v0 +GQ = H. In particular, this means that H is attainable with replicating
strategy QH = Q and replication price vrep = v0.

(ii) If H is attainable then vrep = v0 and almost surely

UHt = UQ
H

t ∀t ∈ [0, T ].

Proof. (i) Note that
UQT = u

(
Σ0 −GQ

)
and

UHT = E[u(Σ0 −H + v0)|FT ] = u(Σ0 −H + v0).

Since UQT = UHT and since u is strictly increasing and thus 1-to-1, we have

−GQ = −H + v0.

(ii) If H is attainable then there is an admissible trading strategy QH such that

vrep +GQ
H

= H.

Then by definition of G we have

QHT ψ +XT = −GQH = vrep −H,

which, due to the monotonicity of u, implies that UQ
H

T = UHT . Since UH is a martingale
and, by Proposition 2.9, UQH is a martingale as well, it follows that

UHt = E[UHT |Ft] = E[UQ
H

T |Ft] = UQ
H

t ∀t ∈ [0, T ].

Moreover, the equality of v0 and vrep follows from the monotonicity of u and the fact
that

E[u(Σ0 + v0 −H)] = E[u(Σ0)] = UH0 = E[UHT ] = E[u(Σ0 + vrep −H)].
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3.2 A criterion for replicability

In this section we will establish a criterion which constitutes a necessary and sufficient
condition for a claim H ∈ H to be attainable with replication price vrep = v0. We
begin with the following observation.

Remark 3.4. Let Assumptions 1.1, 1.2 and 1.3 hold and let H ∈ H. Let further
(UHt )0≤t≤T be defined as in (3.2). Then by the martingale representation theorem the
process UH , at any time t ∈ [0, T ], can be expressed as

UHt = UH0 +

∫ t

0
iHs dWs (3.3)

for some predictable process (iHt )0≤t≤T with∫ T

0
(iHt )2dt <∞.

If H = f(ψ) ∈ H′ then, by Itô’s formula and in view of (1.11), iHt is given by

iHt = σSt∂sEt,s[u(Σ0 −H + v0)]|s=St
= σE[u′(Σ0 − f(ψ) + v0)(p− f ′(ψ))ψ|Ft].

(3.4)

From Proposition 3.3 we know that a claim H can be replicated with replication
price vrep = v0 if and only if there exists an admissible trading strategy (QHt ) which
ensures that almost surely

UQ
H

t = UHt ∀t ∈ [0, T ].

This is the idea that we will exploit in order to prove the following proposition which
provides a necessary and sufficient condition for the attainability of an acceptable
claim H.

Proposition 3.5. Let Assumptions 1.1, 1.2 and 1.3 hold and let H ∈ H. Let g be
as in (1.28) and let UHt and iHt be as in Remark 3.4. Then H is attainable with
replication price vrep = v0 if and only if there exists an admissible trading strategy QH

such that almost surely for all t ∈ [0, T ]

iHt = g(UHt , Q
H , t). (3.5)

Moreover, such a strategy QH exists if and only if for all t ∈ [0, T ]

iHt ∈ [0, σ(1− a)UHt ]. (3.6)

Before we prove Proposition 3.5, we state and prove the following preparatory
lemma which gives the range of g from (1.28) when g is considered as a function of
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the transaction size q.

Lemma 3.6. Let Assumptions 1.1, 1.2 and 1.3 hold and let g be as in (1.28). Then
for ω ∈ Ω, u ∈ Ũ and t ∈ [0, T ] the range of the map g(u, ·, t, ω) : [−p, q̄(u, t, ω)]→ R,
q 7→ g(u, q, t, ω) is given by

im g(u, ·, t, ω) = [0, σ(1− a)u]. (3.7)

Proof. By definition of g and Lemma 1.12 we have

g(u, q, t) = σSt∂sEt,s[u
(
Σ0 + qψ + x

)
]|s=St,x=At(u,q)

= σE[u′
(
Σ0 + qψ + x

)
(p+ q)ψ|Ft]|x=At(u,q).

Thus, using the fact that by Assumption 1.1 xu′(x) = (1− a)u(x) for all x > 0,

g(u, q, t) = σE[u′
(
Σ0 + qψ + x

)
(p+ q)ψ|Ft]|x=At(u,q)

= σE[u′
(
Σ0 + qψ + x

)
((p+ q)ψ + x+ z − (x+ z))|Ft]|x=At(u,q)

= σ(1− a)E[u
(
Σ0 + qψ + x

)
|Ft]|x=At(u,q) (3.8)

− σE[u′
(
Σ0 + qψ + x

)
(x+ z)|Ft]|x=At(u,q).

From the first line it is clear that g is non-negative. The second term in (3.8) is
non-negative as well, which implies that the first term of (3.8) dominates g. Note that
due to the definition of At(u, q)

u = E[u
(
Σ0 + qψ +At(u, q)

)
|Ft].

Thus, the first term of (3.8) is equal to σ(1− a)u. Let us consider the second term.
For q = −p, the second term simplifies to

−σE[u′
(
Σ0 + qψ + x

)
(x+ z)|Ft]|x=At(u,q) = −σ(At(u, q) + z)1−a

so that (3.8) is equal to zero. By Lemma 1.19 we know that q = q̄(u, t) if and only if
At(u, q) = −z which implies that for q = q̄(u, t) the second term of (3.8) is equal to
zero. The continuity of q 7→ g(u, q, t) then implies (3.7).

Proof of Proposition 3.5. By Proposition 3.3 we know that the claim H is attainable
with replicating strategy QH and replication price vrep = v0 if and only if

UQ
H

t = UHt ∀t ∈ [0, T ].

Due to (1.27) and to Remark 3.4 we know that this is the case if and only if

iHt = g(UHt , Q
H
t , t) P⊗ dt− a.e.,
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which proves the first assertion. By Lemma 3.6 the range of the map g(UHt , ·, t) :

[−p, q̄(UHt , t)]→ R is given by [0, σ(1− a)UHt ], which proves the second assertion.

Remark 3.7. Note that for path independent claims H = f(ψ) ∈ H′ condition (3.6) in
Proposition 3.5 can be restated as a bounded elasticity condition. To this end, let

uH(t, s) , Et,s[u(Σ0 −H + v0)]

so that UHt = uH(t, St) for all t ∈ [0, T ] and that further, by Itô’s formula, iHt =

σSt∂su
H(t, St) for all t ∈ [0, T ]. Then (3.6) can be rewritten as

0 ≤ s

1− a
∂su

H(t, s)

uH(t, s)
≤ 1 ∀s > 0 ∀t ∈ [0, T ].

However, throughout this chapter we prefer to use (3.6) for the sake of simplicity of
computations.

Having established a necessary and sufficient condition for the attainability of an
acceptable claim H, we will now proceed to look at the specific case of a call option.

3.3 Hedging a call option

Let us consider H to be a call option on the marketed security ψ with strike price
K ∈ R+, i.e.

H = (ψ −K)+.

We are interested in whether or not it is possible to hedge H, i.e. whether or not it is
possible to find an admissible trading strategy QH which replicates H as described in
the previous section. We answer this question by stating

Proposition 3.8. Let Assumptions 1.1, 1.2 and 1.3 hold and let H = (ψ −K)+ be
a call option. Then ξH is attainable for any ξ ∈ [0, p], where p denotes the market
maker’s initial position in the risky asset ψ.

Proof. From Remark 3.4 we know that the dynamics of U ξH can be expressed as

dU ξHt = iξHt dWt, 0 ≤ t ≤ T,

for an appropriate iξHt . Furthermore, Proposition 3.5 tells us that ξH is attainable if
and only if almost surely

iξHt ∈ [0, σ(1− a)U ξHt ] ∀t ∈ [0, T ].

Hence it is necessary and sufficient to show that for all t ∈ [0, T ] and 0 ≤ ξ ≤ p

σ(1− a)U ξHt − iξHt ≥ 0 (3.9)
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and
iξHt ≥ 0. (3.10)

Let us first show (3.9). We know from Remark 3.4 that

iξHt = σSt∂sEt,s[u
(
Σ0 − ξ(ψ −K)+ + v0

)
]|s=St

which, after a straightforward calculation and with regard to Lemma 1.12, leaves us
with

iξHt = σE[u′
(
(p− ξ)sET−t + z + v0 +K

)
(p− ξ)sET−t1{sET−t≥K}]|s=St

+ σE[u′
(
psET−t + z + v

)
psET−t1{sET−t<K}]|s=St .

Let m , z + v0 +K. Since

U ξHt = E[u((p− ξ)sET−t +m)1{sET−t≥K}]|s=St
+ E[u(psET−t + z + v)1{sET−t<K}]|s=St

we can see that

σ(1− a)U ξHt − iξHt

= σE
[{
u((p− ξ)sET−t +m)(1− a)

−u′((p− ξ)sET−t +m)(p− ξ)sET−t
}
1{sET−t≥K}

]
|s=St

+ σE
[{
u(psET−t + z + v)(1− a)

−u′(psET−t + z + v)psET−t
}
1{sET−t<K}

]
|s=St

= σE
[{

((p− ξ)sET−t +m)1−a

−((p− ξ)sET−t +m)−a {(p− ξ)sET−t + (m−m)}
}
1{sET−t≥K}

]
|s=St

+ σE
[{

(psET−t + z + v)1−a

−(psET−t + z + v)−a {psET−t(z + v − (z + v))}
}
1{sET−t<K}

]
|s=St

= σE[m((p− ξ)sET−t +m)−a1{sET−t≥K}]|s=St
+ σE[(z + v)(psET−t + z + v)−a1{sET−t<K}]|s=St

> 0,

where the last inequality follows from the fact that ξ ≤ p. This proves (3.9). Further-
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more, (3.10) holds as, by Remark 3.4,

iξHt = σE[u′(Σ0 − f(ψ) + v0)(p− f ′(ψ))ψ|Ft] ≥ 0.

Here, the last inequality is due to the fact that u′ > 0 and f ′(ψ) = ξ1{ψ≥K} ≤ p.

From Proposition 3.8 it follows in particular, for ξ = 1, that a call option H is
attainable if the market maker possesses an initial endowment Σ0 with p ≥ 1. This
result illustrates the desire of the market maker to cover himself for the worst case
loss: For large terminal values of the risky asset ψ the market maker will only be fully
covered for the payout of the call option if he holds at least one unit of ψ. Since the
market maker possesses a power utility function, he will never accept the risk of being
left with negative terminal wealth and he must therefore have an initial endowment of
at least one underlying security ψ in order to allow the short selling of H. Hence, a
call option H which is attainable in our model is a so-called covered call.

Remark 3.9. Note that an analog result is true for put options H = (K −ψ)+. In this
case, the attainability of ξH is ensured by the condition 0 ≤ ξK ≤ v0 + z rather than
by 0 ≤ ξ ≤ p. Here, v0 denotes the market indifference price for H at time zero while
z, as usual, denotes the market maker’s initial cash position.

3.4 A more tractable condition for replicability of path
independent claims

The following proposition provides a sufficient condition for the replicability of path
independent contingent claims H = f(ψ) whose payoff at maturity only depends on
the value at maturity of the underlying.

Proposition 3.10. Let Assumptions 1.1, 1.2 and 1.3 hold. Consider a contingent
claim H = f(ψ) ∈ H′ and let v0 denote the utility indifference price of H at time zero.
Then H is attainable if and only if for almost all x > 0 the payoff function f satisfies

p ≥ f ′(x) ≥ f(x)− (z + v0)

x
, (3.11)

where p and z denote the market maker’s initial position in the marketed security ψ
and in cash, respectively.

Proof. By Proposition 3.5 we know that H is replicable if and only if

σ(1− a)UHt − iHt ≥ 0 ∀t ∈ [0, T ] (3.12)

and
iHt ≥ 0 ∀t ∈ [0, T ]. (3.13)
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By (3.4), in order for (3.13) to hold, it suffices that

p− f ′(x) ≥ 0 ∀x > 0

which is true due to the first inequality in (3.11). Let us now show (3.12). For the
sake of brevity in the ensuing computation let

η , Σ0 − f(ψ) + v0.

By Remark 3.4, using Assumption 1.1,

iHt = σEt,s[u′(η)(pψ − ψf ′(ψ))]|s=St
= σEt,s[u′(η)(η − (ψf ′(ψ) + z + v0 − f(ψ))]|s=St
= σ(1− a)Et,s[u(η)]|s=St − σEt,s[u′(η)(ψf ′(ψ) + z + v0 − f(ψ))]|s=St
= σ(1− a)UHt − σEt,s[u′(η)(ψf ′(ψ) + z + v0 − f(ψ))]|s=St .

Thus,

σ(1− a)UHt − iHt
= σEt,s[u′(Σ0 − f(ψ) + v0)(ψf ′(ψ) + z + v0 − f(ψ))]|s=St .

As u′ > 0 and ψ > 0, for the last line to be non-negative it is necessary and sufficient
that for almost all x > 0

xf ′(x) + z + v0 − f(x) ≥ 0.

Note that the attainability of calls and puts could alternatively have been obtained
as a corollary of Proposition 3.5: For a call option H = f(ψ) with f(x) = (x−K)+,
for almost all x > 0, we have

f ′(x) = 1{x≥K} ≤ 1 (3.14)

and

xf ′(x) + z + v0 − f(x) = x1{x≥K} + z + v0 − (x−K)1{x≥K}

= K1{x≥K} + z + v0

> 0,

so that, in view of (3.14), a call option is attainable if and only if p ≥ 1.

Similarly, for a put option H = f(x) with f(x) = (K − x)+, for almost all x > 0,
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we have
f ′(x) = −1{K≥x} ≤ 0

and

xf ′(x) + z + v0 − f(x) = −x1{K≥x} + z + v0 − (K − x)1{K≥x}

= z + v0 −K1{K≥x},

so that a put option is attainable if and only if z + v0 ≥ K.

3.5 A claim which is acceptable but not admissible

The following example shows that there are claims which possess an indifference price
but which cannot be replicated in our model.

Let the market maker’s initial endowment be given by Σ0 = ψ, let a = 2 and
choose µ and σ in (1.1) in such a way that

µ̂ ,

(
µ− σ2

2

)
T > 0.

Consider the claim H = f(ψ) with f : R+ → R given by

f(x) = px− 1

x
,

where p denotes the market maker’s initial stock position; i.e. here, p = 1. We will
now show that H is acceptable but not attainable.

H is acceptable. The indifference price v0 of H is given as the solution to

E[u(Σ0 −H + v0)] = E[u(Σ0)],

which here simplifies to
E[u(ψ−1 + v0)] = E[u(ψ)]. (3.15)

As a = 2, it follows that u(x) = −x−1 so that the left hand side of (3.15), for v0 = 0,
reduces to

E[u(ψ−1)] = −E[ψ] = −eµ̂+σ2

2

while the right hand side is given by

E[u(ψ)] = −E[ψ−1] = −e−µ̂+σ2

2 .

Since µ̂ > 0 it follows that
E[u(ψ−1)] < E[u(ψ)].
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On the other hand, for v0 →∞ the left hand side of (3.15) converges to 0. The mean
value theorem then implies the existence of a solution v0 to (3.15) which, in turn,
implies that H ∈ H.

H is not attainable. Note that

f ′(x) = p+
1

x2
> p ∀x > 0

so that the claim H does not satisfy the condition presented in Proposition 3.10. It
follows that H is not attainable. Another way to see this is to note that

p− f ′(ψ) = − 1

ψ2
< 0.

In view of (3.4) this implies that iHt < 0 and, by Proposition 3.5, it follows that H is
not attainable.

This concludes our investigation of the attainability of contingent claims. We will
now turn our attention to the analysis of replicating strategies.





Chapter 4

Asymptotic analysis of price
processes and hedging strategies

In the previous chapter we derived conditions which ensure that a contingent claim
H ∈ L0(R) can be replicated and we proved that call- and put options are attainable
under easily verifiable conditions on the market maker’s initial endowment. In this
chapter we address the question of how this replication is accomplished and investigate
a claim’s replicating strategy QH .

Note that QH is specified only implicitly by the arguments in the previous chapter
and that no closed form solution seems to exist, not even for simple products like
the call option. We will therefore resort to an asymptotic analysis in which we look
at the replication of small positions εH of an attainable claim. This enables us to
compute first and second order approximations to the replicating position QεHt . We
find that the first order approximation can be viewed as a Black-Scholes delta while
the second order approximation, which can be interpreted as the liquidity correction
for the replicating strategy, is given as a linear combination of risk-adjusted hedge
ratios of auxiliary claims in some frictionless model.

Before we begin our examination of hedging strategies, we briefly investigate
marginal prices and liquidity corrections for prices in our model which we will need
for the ensuing asymptotic analysis.

4.1 Marginal prices, liquidity corrections and the marginal
indifference pricing measure

In this section we will determine the prices that occur when small quantities of as-
sets and contingent claims are traded. To this end, we compute the marginal price
processes of the traded security ψ and of contingent claims H, i.e. we investigate
the market indifference prices of εψ and εH for ε ↓ 0. We then introduce the so-
called marginal indifference pricing measure Q under which marginal price processes
are martingales and which will enable us to express marginal prices as expected payoffs.

57
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Note that due to the nonlinear nature of our financial market it is not evident that
the attainability of a claim H implies the attainability of smaller positions εH, ε < 1.
It is for this reason that we introduce the set

H′′ , {H ∈ H′ | εH is attainable ∀ε ∈ [0, 1]}

By Proposition 3.8 and Remark 3.9 it is clear that call- and put options belong to
the set H′′ for a suitable initial endowment of the market maker. Moreover, it is easy
to verify that any claim of the form H = f(ψ) with f satisfying the conditions of
Proposition 3.10 belongs to H′′.

Let now H ∈ H′′ be a contingent claim. Then the utility indifference price of a
number of claims εH at time t ∈ [0, T ] is given by the unique cash amount vεt (H)

which solves
E[u(Σ0)|Ft] = E[u

(
Σ0 − εH + vεt (H)

)
|Ft]. (4.1)

Note that v0
t (H) = 0 and that v1

0(H) = v0 is the market indifference price of H at
time zero.

Since we cannot hope to obtain a closed-form representation for vεt (H), we examine
the price of a small quantity of claims and do a Taylor expansion around zero, i.e. we
write

vεt (H) = ε∂εv
ε
t |ε=0(H) +

ε2

2
∂2
εv
ε
t |ε=0(H) + o(ε2).

The first order approximation
∂εv

ε
t |ε=0(H)

is the marginal utility indifference price of H at time t while the second order approxi-
mation

∂2
εv
ε
t |ε=0(H)

can be viewed as the (nonlinear) liquidity correction that arises in our model. For
notational convenience we will merely write vεt rather than vεt (H) from now on. The
following proposition shows that the first and second order derivatives of vεt and,
consequently, the Taylor approximation exist.

Proposition 4.1. Under Assumptions 1.1, 1.2 and 1.3 let H ∈ H′′. Then for any
ω ∈ Ω and t ∈ [0, T ] the function

v
(·)
t (ω) : [0, 1]→ R, ε 7→ vεt (ω),

defined implicitly in (4.1), which maps a quantity ε of the contingent claim H to
its market indifference price, is twice continuously differentiable. Furthermore, its
derivatives can be extended continuously to ε = 0 and ε = 1 and in ε = 0 they are
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given by

∂εv
ε
t |ε=0 =

E[u′(Σ0)H|Ft]
E[u′(Σ0)|Ft]

(4.2)

and

∂2
εv
ε
t |ε=0 = −E[u′′(Σ0)(∂εv

ε
t |ε=0 −H)2|Ft]

E[u′(Σ0)|Ft]
. (4.3)

Proof. The indifference price vεt of H at time t ∈ [0, T ] is defined implicitly via (4.1).
Since H ∈ H′′, Lemma 1.11 together with the implicit function theorem implies the
existence of the derivatives ∂εvεt and ∂2

εv
ε
t on (0, 1). Differentiating both sides of (4.1)

with respect to ε yields

0 = E[u′(Σ0 − εH + vεt )(∂εv
ε
t −H)|Ft];

differentiating both sides of this equation once again with respect to ε yields

0 = E[u′′(Σ0 − εH + vεt )(∂εv
ε
t −H)2 + u′(Σ0 − εH + vεt )∂

2
εv
ε
t |Ft].

Rearranging both equalities with respect to ∂εvεt and ∂2
εv
ε
t , respectively, yields

∂εv
ε
t =

E[u′(Σ0 − εH + vεt )H|Ft]
E[u′(Σ0 − εH + vεt )|Ft]

and

∂2
εv
ε
t = −E[u′′(Σ0 − εH + vεt )(∂εv

ε
t −H)2|Ft]

E[u′(Σ0 − εH + vεt )|Ft]
.

The dominated convergence theorem implies the existence of continuous extensions of
these identities to the boundary points ε = 0 and ε = 1. The desired expressions (4.2)
and (4.3) then follow for ε = 0.

We will now turn our attention to the indifference price of a small position of the
traded security εψ. Due to our convention of considering transfers of both the traded
security and the complementing cash from the point of view of the market maker, we
consider H = −ψ in (4.1) which thus becomes

E[u(Σ0)|Ft] = E[u(Σ0 + εψ + vεt (−ψ))|Ft]. (4.4)

This results in a change of sign in the marginal price of ψ (when compared to the
marginal price of H). In order to emphasize this difference, we will from now on
denote the indifference price of a position of claims εH by vεt while we will denote the
indifference price of a position of the traded security εψ by

xεt , vεt (−ψ). (4.5)
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Analog arguments to those in the proof of Proposition 4.1 yield

∂εx
ε
t |ε=0 = −E[u′(Σ0)ψ|Ft]

E[u′(Σ0)|Ft]
(4.6)

and

∂2
εx

ε
t |ε=0 = −E[u′′(Σ0)(∂εx

ε
t |ε=0 + ψ)2|Ft]

E[u′(Σ0)|Ft]
(4.7)

for the continuous extensions of the first and second order derivatives of xεt to the point
ε = 0. The form of marginal prices in our model suggests the following definition.

Definition 4.2. We define the marginal indifference pricing measure Q as the proba-
bility measure given by

dQ
dP

,
u′(Σ0)

E[u′(Σ0)]
. (4.8)

Remark 4.3. When considered with respect to the marginal indifference pricing measure
Q, marginal prices assume the form

∂εv
ε
t |ε=0 = EQ[H|Ft]

and
∂εx

ε
t |ε=0 = −EQ[ψ|Ft].

In particular, the processes (∂εv
ε
t |ε=0)0≤t≤T and (∂εx

ε
t |ε=0)0≤t≤T are Q-martingales.

Moreover, the liquidity correction terms can be written as

∂2
εv
ε
t |ε=0 = EQ[(∂εv

ε
t |ε=0 −H)2R(Σ0)|Ft]

and
∂2
εx

ε
t |ε=0 = EQ[(∂εx

ε
t |ε=0 + ψ)2R(Σ0)|Ft],

where
R(Σ0) = −u

′′(Σ0)

u′(Σ0)

denotes the market maker’s risk aversion as introduced in Assumption 1.1.

The form of the second order terms ∂2
εv
ε
t |ε=0 and ∂2

εx
ε
t |ε=0 further motivates the

introduction of the probability measure R defined by

dR
dP

,
u′′(Σ0)

E[u′′(Σ0)]
.

Note that the Radon-Nikodym densities of the measures Q and R with respect to one
another are given by the market maker’s (normalised) risk aversion R(Σ0) and his
(normalised) risk tolerance τ(Σ0) , R−1(Σ0), respectively; i.e.

dR
dQ

=
R(Σ0)

EQ[R(Σ0)]
(4.9)
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and
dQ
dR

=
R−1(Σ0)

ER[R−1(Σ0)]
=

τ(Σ0)

ER[τ(Σ0)]
. (4.10)

Under the measure R, we have

∂2
εv
ε
t |ε=0 = ER[(∂εv

ε
t |ε=0 −H)2|Ft]EQ[R(Σ0)|Ft]

and
∂2
εx

ε
t |ε=0 = ER[(∂εx

ε
t |ε=0 + ψ)2|Ft]EQ[R(Σ0)|Ft].

The measure R will be used later on to express the second order approximation to the
replicating position.

Remark 4.4. By definition of the measures Q and R we have

EQ[R(Σ0)K|Ft] = −E[u′′(Σ0)K|Ft]
E[u′(Σ0)|Ft]

= ER[K|Ft] EQ[R(Σ0)|Ft]

for all K ∈ L0(R) for which these expectations exist.

Remark 4.5. Let σ(ψ) denote the sigma algebra generated by ψ = ST . Since
Z , dQ/dP is σ(ψ)-measurable and, consequently, for any bounded measurable
f : (0,∞)→ R,

EQ[f(ψ)|Ft] = E[Zf(ψ)|Ft] = Et,s[Zf(ψ)]|s=St = EQ
t,s[f(ψ)]|s=St ,

the process (St)0≤t≤T from Assumption 1.2 retains the Markov property under the
marginal indifference pricing measure Q. By the same reasoning S is Markov under
the measure R.

4.2 Asymptotic analysis of the replicating strategy

In this section we compute the first and second order approximations to the replicating
strategy (QεHt )0≤t≤T for a small quantity of claims εH, ε > 0. The large investor
seeks to replicate εH by dynamically trading the marketed security ψ with the market
maker. In view of Proposition 3.3, this is accomplished if the large investor follows an
admissible trading strategy QεH such that almost surely

U εHt = UQ
εH

t ∀t ∈ [0, T ].

This equation, however, defines the replicating strategy QεH in a strongly implicit
manner and there seems to be no hope to find a closed form description of QεH .
We will therefore investigate QεH asymptotically by considering its Taylor expansion
around zero, i.e.

QεHt = ε · ∂εQεHt |ε=0 +
ε2

2
· ∂2

εQ
εH
t |ε=0 + o(ε2).
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The rest of this section will be devoted to calculating the first and second order
approximations ∂εQεt |ε=0 and ∂2

εQ
ε
t |ε=0. We first state several preparatory lemmas.

The following two lemmas establish the differentiability of the important maps At
and g from (1.22) and (1.28) with respect to the transaction size q.

Lemma 4.6. Let Assumptions 1.1, 1.2 and 1.3 hold. Let ω ∈ Ω, t ∈ [0, T ], u ∈ Ũ
and let Aωt be as in (1.22). Then the map

Aωt (u, ·) : [−p, q̄(u, t, ω)]→ R, q 7→ Aωt (u, q)

is strictly decreasing, strictly convex and twice continuously differentiable on the interior
of its domain. Furthermore, its derivatives are given by

∂qAt(u, q) = −E[u′(Σ0 + qψ +At(u, q))ψ|Ft]
E[u′(Σ0 + qψ +At(u, q))|Ft]

(4.11)

and

∂2
qAt(u, q) = −E[u′′(Σ0 + qψ +At(u, q))(ψ + ∂qAt(u, q))

2|Ft]
E[u′(Σ0 + qψ +At(u, q))|Ft]

(4.12)

and both of them can be continuously extended to the boundary points q = −p and
q = q̄(u, t).

Proof. The differentiability is a result of Lemma 1.11 together with the implicit
function theorem. Implicit differentiation once and twice, respectively, in (1.23) yields
the identities (4.11) and (4.12). By the dominated convergence theorem these identities
can be continuously extended to the boundary points q = −p and q = q̄(u, t). Since
u′ > 0, it follows that ∂qAt(u, ·) < 0 which implies that At(u, ·) is strictly decreasing.
Finally, since u′′ < 0, it follows that ∂2

qAt(u, ·) > 0 which implies that At(u, ·) is
strictly convex.

Lemma 4.7. Let Assumptions 1.1, 1.2 and 1.3 hold. Let g be as in (1.28). Then for
any ω ∈ Ω, u ∈ Ũ and t ∈ [0, T ] the map

g(u, ·, t, ω) : [−p, q̄(u, t, ω)]→ [0, σ(1− a)u], q 7→ g(u, q, t, ω)

is twice continuously differentiable on the interior of its domain. Furthermore, its
derivatives can be extended continuously to the boundary points −p and q̄(u, t) where
the first derivative takes the values

∂qg(u, q, t)|q=−p = σE[u′(At(u,−p) + z)ψ|Ft] = σ(At(u,−p) + z)−aE[ψ|Ft] (4.13)

and

∂qg(u, q, t)|q=q̄(u,t) = σE[u′((p+ q̄(u, t))ψ)ψ|Ft] = σ(p+ q̄(u, t))−aE[ψ1−a|Ft]. (4.14)
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Moreover, for 0 < a < 1, g(u, ·, t) is strictly increasing.

Proof. By definition
g(u, q, t) = g̃(At(u, q), q, t),

where g̃ and At are as in Lemma 1.18 and in (1.22), respectively. By Lemma 1.11 the
function

g̃(x, q, t) = σE[u′(Σ0 + qψ + x)(p+ q)ψ|Ft]

is twice continuously differentiable in q. Moreover, by Lemma 4.6, At(u, q) is twice
continuously differentiable in q which implies the differentiability assertions for g(u, ·, t).
For notational convenience let

η(q) , (p+ q)ψ + z +At(u, q).

Then, using the fact that by Assumption 1.1 xu′′(x) = −au′(x),

∂qg(u, q, t)

σ
= E[u′′(η(q))(p+ q)ψ(ψ + ∂qAt(u, q)) + u′(η(q))ψ|Ft]

= E
[
u′(η(q))

{
−a
η(q)

(p+ q)ψ(ψ + ∂qAt(u, q)) + ψ

} ∣∣∣Ft]
= E

[
u′(η(q))

{
(1− a)(p+ q)ψ +At(u, q) + z − a(p+ q)∂qAt(u, q)

η(q)

}
ψ
∣∣∣Ft] .

Since At(u, q)+z ≥ 0 and, by Lemma 4.6, −∂qAt(u, q) > 0 it follows that for 0 < a < 1

the fraction in the last line is positive and hence g(u, ·, t) is strictly increasing. From
a straightforward computation we obtain

∂2
qg(u, q, t)

σ
= E[u′′′(η(q))(p+ q)ψ(ψ + ∂qAt(u, q))

2

+u′′(η(q))ψ(2ψ + ∂qAt(u, q) + (p+ q)∂2
qAt(u, q))|Ft].

The dominated convergence theorem implies the existence of the desired continuous
extensions of ∂qg and ∂2

qg to the boundary points q = −p and q = q̄(u, t).

The next lemma shows that the replicating position QεHt for a small number of
claims is differentiable with respect to ε and that, consequently, the Taylor approxi-
mation ansatz from the beginning of this section is justified.

Lemma 4.8. Let Assumptions 1.1, 1.2 and 1.3 hold and let 0 < a < 1. Let further
H = f(ψ) ∈ H′′ and let (QεHt )0≤t≤T denote the replicating strategy for εH, ε ∈ [0, 1].
Then there exists a version of QεH such that for any (t, ω) ∈ [0, T ]× Ω the map

ε 7→ QεHt (ω)

is twice continuously differentiable. Furthermore, the first and second order derivatives
can be continuously extended to the boundary points ε = 0 and ε = 1.
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Proof. We saw in Proposition 3.5 that, at any time t ∈ [0, T ], QεHt is the replicating
position for εH if and only if QεHt satisfies

iεHt = g(U εHt , QεHt , t),

where
iεHt = σE[u′(Σ0 − εf(ψ) + vε0)(p− εf ′(ψ))ψ|Ft]

is as in (3.4). By Proposition 4.1 we know that the map ε 7→ vεH0 is twice continuously
differentiable which, together with Lemma 1.11, implies that there exists a version
of iεH such that for any (t, ω) ∈ [0, T ]× Ω the map ε 7→ iεHt (ω) is twice continuously
differentiable.

By Lemma 4.7, for fixed u ∈ Ũ and t ∈ [0, T ], the map q 7→ g(u, q, t) is twice
continuously differentiable as well as strictly increasing and therefore 1-to-1. Hence,
the implicit function theorem implies that the map ε 7→ QεHt is twice continuously
differentiable on [0, 1].

The next preliminary result ensures the differentiability with respect to ε of the
complementing cash amount XQεH

t for the replicating position QεHt .

Lemma 4.9. Let Assumptions 1.1, 1.2 and 1.3 hold, let 0 < a < 1, let H ∈ H′′ and
let (QεHt )0≤t≤T be the replicating strategy for εH, ε ∈ [0, 1]. Let (XQεH

t )0≤t≤T denote
its complementing cash balance process. Let vεt and xεt as defined in (4.1) and (4.5)
denote the indifference prices of εH and εψ, respectively. Then there exists a version
of XQεH such that for any (t, ω) ∈ [0, T ]× Ω the map

ε 7→ XεH
t (ω)

is twice continuously differentiable on (0, 1). Furthermore, its first and second order
derivatives can be continuously extended to the boundary points ε = 0 and ε = 1. In
ε = 0, they are given by

∂εX
QεH

t |ε=0 = − (∂εv
ε
t |ε=0 − ∂εvε0|ε=0) + ∂εx

ε
t |ε=0∂εQ

εH
t |ε=0

and

∂2
εX

QεH

t |ε=0 =
E[u′′(Σ0){(∂εvε0|ε=0 −H)2 − (∂εQ

εH
t |ε=0ψ + ∂εX

QεH

t |ε=0)2}|Ft]
E[u′(Σ0)|Ft]

+
E[u′(Σ0){∂2

εv
ε
0|ε=0 − ∂2

εQ
εH
t |ε=0ψ}|Ft]

E[u′(Σ0)|Ft]
.

Proof. The complementing cash position XQεH is defined implicitly, at any time
t ∈ [0, T ], by

E[u(Σ0 +QεHt ψ +XQεH

t )|Ft] = E[u(Σ0 − εH + vε0)|Ft]. (4.15)
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Since, by Lemma 4.8, there exists a version of QεH for which the map ε 7→ QεHt (ω)

is twice continuously differentiable on (0, 1) for all (t, ω) ∈ [0, T ] × Ω, the implicit
function theorem together with Lemma 1.11 implies that there also exists a version of
XQεH such that the map ε 7→ XεH

t (ω) is twice continuously differentiable on (0, 1) for
all (t, ω) ∈ [0, T ]× Ω. Differentiating both sides of (4.15) with respect to ε yields

E[u′(Σ0 +QεHt ψ +XQεH

t )(∂εQ
εH
t ψ + ∂εX

QεH

t )|Ft]
= E[u′(Σ0 − εH + vε0)(∂εv

ε
0 −H)|Ft].

(4.16)

Differentiating both sides once again with respect to ε yields

E[u′′(Σ0 +QεHt ψ +XQεH

t )(∂εQ
εH
t ψ + ∂εX

QεH

t )2

+ u′(Σ0 +QεHt ψ +XQεH

t )(∂2
εQ

εH
t ψ + ∂2

εX
QεH

t )|Ft] (4.17)

= E[u′′(Σ0 − εH + vε0)(∂εv
ε
0 −H)2 + u′(Σ0 − εH + vε0)∂2

εv
ε
0|Ft].

After rearranging (4.16) for ∂εX
QεH

t we obtain

∂εX
QεH

t =
E[u′(Σ0 − εH + vε0)(∂εv

ε
0 −H)|Ft]

E[u′(Σ0 +QεHt ψ +XQεH

t )|Ft]

− E[u′(Σ0 +QεHt ψ +XQεH

t )∂εQ
εH
t ψ|Ft]

E[u′(Σ0 +QεHt ψ +XQεH

t )|Ft]

and, rearranging (4.17) for ∂2
εX

QεH

t , we obtain

∂2
εX

QεH

t =
E[u′′(Σ0 − εH + vε0)(∂εv

ε
0 −H)2 + u′(Σ0 − εH + vε0)∂2

εv
ε
0|Ft]

E[u′(Σ0 +QεHt ψ +XQεH

t )|Ft]

− E[u′′(Σ0 +QεHt ψ +XQεH

t )(∂εQ
εH
t ψ + ∂εX

QεH

t )2|Ft]
E[u′(Σ0 +QεHt ψ +XQεH

t )|Ft]

− E[u′(Σ0 +QεHt ψ +XQεH

t )∂2
εQ

εH
t ψ|Ft]

E[u′(Σ0 +QεHt ψ +XQεH

t )|Ft]
.

The dominated convergence theorem together with Lemma 4.8 implies that these
identities can be extended continuously to the boundary points ε = 0 and ε = 1.
Evaluating both terms at ε = 0 and using the representation of ∂εvεt |ε=0 which is given
in Proposition 4.1 we obtain the desired forms for ∂εX

QεH

t |ε=0 and ∂2
εX

QεH

t |ε=0.

The last preliminary result shows that the denominator in Theorem 4.12 below is
strictly positive.

Lemma 4.10. Let Assumptions 1.1, 1.2 and 1.3 hold and let 0 < a < 1. Then the
function

h : [0, T ]× (0,∞)→ (0,∞), (t, s) 7→ EQ
t,s[ψ]
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is continuously differentiable with respect to s and ∂sh(t, s) > 0.

Proof. By Lemma 1.12 h is continuously differentiable in s and, after a straightforward
computation, we obtain

s∂sh(t, s) =
Et,s[u′(Σ0)ψ]

Et,s[u′(Σ0)]
− ap

(
Et,s[u′′(Σ0)ψ2]

Et,s[u′(Σ0)]
− Et,s[u′(Σ0)ψ]Et,s[u′′(Σ0)ψ]

Et,s[u′(Σ0)]2

)
.

Using the fact that, by Assumption 1.1, u′′(x) = −au′(x)/x for all x > 0, we rearrange
these terms to obtain

s∂sh(t, s) =
1

Et,s[u′(Σ0)]
Et,s

[
u′(Σ0)ψ

{
(1− a)pψ + z + apEQ

t,s[ψ]

pψ + z

}]
.

As 0 < a < 1 and since EQ
t,s[ψ] > 0 this implies that ∂sh(t, s) > 0.

Remark 4.11. In order to show that ∂qg > 0 in Lemma 4.7 and ∂sh > 0 in Lemma 4.10,
respectively, we assumed that the market maker’s risk aversion parameter a satisfies
0 < a < 1. This is due to the fact that, as can be seen by following straightforward
computations, both these derivatives are strictly positive if and only if k′1(p) > 0 for
all p ≥ 0, where the map k1 : [0,∞)→ R is defined by

k1(p) , p
E[(pψ + 1)−aψ]

E[(pψ + 1)−a]
.

While for 0 < a < 1 this is easy to see, this seemingly simple assertion is surprisingly
elusive for a > 1. Even though numerical experiments suggest its correctness, we
have not yet found an analytical proof. The expansions of Theorem 4.12 below as
well as the ensuing results related to these expansions are therefore stated only for
the case 0 < a < 1. The extendability of all these results to the regime a > 1 is
conditional on the validity of this assertion: Once it is proven, all the current proofs for
0 < a < 1 hold verbatim for the case a > 1. We state this missing link as Conjecture
1 below. The proof of this conjecture and, consequently, the analytic vindication of
the expansions of Theorem 4.12 for the regime a > 1 is highly desirable.

Conjecture 1. Let ψ be a lognormally distributed random variable and let a > 1.
Consider the function k1 : [0,∞)→ R defined by

k1(p) , p
E[(pψ + 1)−aψ]

E[(pψ + 1)−a]
.

Then
k′1(p) > 0 ∀p ≥ 0. (4.18)

We are now ready to state and prove the following theorem which constitutes one
of the main results of this chapter. It provides some insight into the replication of
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claims in our illiquid market by giving the first and second order approximations to
the replicating strategy QεH for a small position εH of claims.

While in a liquid model perfect (delta-) replication of a claim is achieved by
dynamically rebalancing ones portfolio so that at any time ones position in the risky
asset is equal to the delta of the replicated claim, in our setting it becomes necessary
to additionally account for liquidity effects. Theorem 4.12 identifies ∆̃ and Λ̃ in the
Taylor approximation

QεHt = ε∆̃t +
ε2

2
Λ̃t + o(ε2).

The first order term ∆̃ is a liquid hedging strategy (in a sense which is made precise by
Proposition 4.13) while Λ̃ can be viewed as the liquidity correction to the replicating
position that arises in our illiquid market.

We find that we can express both ∆̃ and Λ̃, and thus the approximation of the
replicating position in our (nonlinear) illiquid market, in terms of objects pertaining
to a (linear) liquid market, namely one in which assets are valued according to the
marginal indifference pricing measure Q and where the measure Q plays the role of
the equivalent martingale measure.

In this sense, Theorem 4.12 provides a liquid hedging recipe for an illiquid world : It
specifies how (approximate) replication is achieved in an illiquid market by decomposing
the replicating strategy into a portfolio of objects whose liquid replication will "do
the trick".

Theorem 4.12. Let Assumptions 1.1, 1.2 and 1.3 hold, let 0 < a < 1 and let H ∈ H′′.
Let further (QεHt )0≤t≤T denote the replicating strategy for the attainable claim εH and
let

Ĥ , H − EQ[H],

ψ̂ , ψ − EQ[ψ].

Then

(i) the first order approximation to QεH is given by

∂εQ
εH
t |ε=0 = −

∂sEQ
t,s[H]|s=St

∂sEQ
t,s[ψ]|s=St

=: ∆̃t, 0 ≤ t ≤ T, (4.19)

(ii) and the second order approximation to QεH is given by

∂2
εQ

εH
t |ε=0 =

∑4
i=1 ci(t, St)∂sE

Q
t,s[R(Σ0)Ki]|s=St

∂sEQ
t,s[ψ]|s=St

=: Λ̃t, 0 ≤ t ≤ T, (4.20)
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where the random variables Ki, i ∈ {1, . . . , 4} are given by

K1 = Ĥ2,

K2 = ψ̂2,

K3 = ψ̂,

K4 = 1

and the coefficients ci, i ∈ {1, . . . , 4} are given by

c1(t, St) ≡ −1,

c2(t, St) = ∆̃2
t ,

c3(t, St) = −2∆̃t(∆̃tEQ
t [ψ̂] + EQ

t [Ĥ]),

c4(t, St) = (∆̃tEQ
t [ψ̂] + EQ

t [Ĥ])2.

The first order term ∆̃ reminds us in its appearance of the Black-Scholes delta as
it is the sensitivity with respect to changes in the underlying of the expected payoff of
the claim H under the probability measure Q. Proposition 4.13 below will show that
it can be interpreted as the hedging strategy of a small investor who is trading in our
illiquid market.

The second order term Λ̃, which can be viewed as the liquidity correction to the
replicating position, can be expressed as a linear combination of hedge ratios (i.e.
sensitivities with respect to changes in the underlying of the risk-aversion-corrected
expected payoffs) of certain claims Ki which are given as functions of both the
underlying ψ and the claim H. Later on, in Chapter 5, we provide comparative statics
which give an intuition of the shape, magnitude and term structure of Λ̃.

Proof. Let (U εHt )0≤t≤T as in (3.2) denote the utility process of the market maker
when selling εH at time zero and let (UQ

εH

t )0≤t≤T denote his utility processes when
the large investor is pursuing the replicating strategy QεH . Since QεH is a replicating
strategy we know by Proposition 3.3 that

U εHt = UQ
εH

t ∀t ∈ [0, T ]. (4.21)

By (1.27) and Remark 3.4 the dynamics of these processes are given by

U εHt = U εH0 +

∫ t

0
iεHs dWs (4.22)

and

UQ
εH

t = UQ
εH

0 +

∫ t

0
g(UQ

εH

s , QεHs , s)dWs. (4.23)

Since
U εH0 = UQ

εH

0 ,
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it follows from (4.21), (4.22) and (4.23) that P⊗dt-almost everywhere

iεHt = g(UQ
εH

t , QεHt , t). (4.24)

By Proposition 4.1 and Lemmas 4.8 and 4.9 the functions ε 7→ vε0, ε 7→ QεHt and
ε 7→ XQεH

t are twice continuously differentiable with respect to ε on (0, 1) and their
derivatives can be continuously extended to the boundary point ε = 0.

In order to compute the first and second order derivatives of the left hand side
and right hand side of (4.24) with respect to ε, we introduce the auxiliary notation

η̃0 , vε0,

η̃1 , ∂εv
ε
0,

η̃2 , ∂2
εv
ε
0,

δ̃0 , (QεHt , XQεH

t ),

δ̃1 , (∂εQ
εH
t , ∂εX

QεH

t ),

δ̃2 , (∂2
εQ

εH
t , ∂2

εX
QεH

t ).

Furthermore, we let

ηi , η̃i|ε=0,

δi , δ̃i|ε=0

for i ∈ {1, 2}. Note that η̃0|ε=0 = 0 and δ̃0|ε=0 = (0, 0). The first order derivatives are
then given by

∂εi
εH
t (ω) = σSt∂sEt,s

[
u′(Σ0 − εH + v)(v′ −H)

]
|(s,v,v′)=(St,η̃0,η̃1) (4.25)

and

∂εg(Ut(Q
εH), QεHt , t, ω) (4.26)

= σSt∂sEt,s
[
u′(Σ0 + qψ + x)(q′ψ + x′)

]
|(s,(q,x),(q′,x′))=(St,δ̃0,δ̃1).

The second order derivatives are given by

∂2
ε i
εH
t (ω) (4.27)

= σSt∂sEt,s
[
u′′(Σ0 − εH + v)(v′ −H)2

+ u′(Σ0 − εH + v)v′′
]
|(s,v,v′,v′′)=(St,η̃0,η̃1,η̃2)
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and

∂2
εg(Ut(Q

εH), QεHt , t, ω) (4.28)

= σSt∂sEt,s
[
u′′(Σ0 + qψ + x)(q′ψ + x′)2

+ u′(Σ0 + qψ + x)(q′′ψ + x′′)
]
|(s,(q,x),(q′,x′),(q′′,x′′))=(St,δ̃0,δ̃1,δ̃2).

Let us now prove (i). We differentiate both sides of (4.24) with respect to ε and
evaluate in ε = 0. Using (4.25) and (4.26) this yields

∂sEt,s[u′(Σ0)(v′ −H)]|(s,v′)=(St,η1) (4.29)

= ∂sEt,s[u′(Σ0)(q′ψ + x′)]|(s,(q′,x′))=(St,δ1).

From Lemma 4.9 we know that

∂εX
QεH

t |ε=0 = (∂εv
ε
0|ε=0 − ∂εvεt |ε=0) + ∂εx

ε
t |ε=0∂εQ

εH
t |ε=0,

which we use to solve (4.29) for q′ = ∂εQ
εH
t |ε=0. This leaves us with

∂εQ
εH
t |ε=0 =

∂sEt,s[u′(Σ0)]|s=St∂εvεt |ε=0 − ∂sEt,s[u′(Σ0)H]|s=St
∂sEt,s[u′(Σ0)]|s=St∂εxεt |ε=0 + ∂sEt,s[u′(Σ0)ψ]|s=St

. (4.30)

Recall that, by definition of Q, for a path independent contingent claim K = k(ψ) ∈ H′

we have
EQ
t,s[K]|s=St =

Et,s[u′(Σ0)K]

Et,s[u′(Σ0)]
|s=St .

Thus,

∂sEQ
t,s[K]|s=St = ∂s

(
Et,s[u′(Σ0)K]

Et,s[u′(Σ0)]

)
|s=St

=
∂sEt,s[u′(Σ0)K]Et,s[u′(Σ0)]− Et,s[u′(Σ0)K]∂sEt,s[u′(Σ0)]

Et,s[u′(Σ0)]2
|s=St .

(4.31)

Using this fact for K = ψ and K = H and recalling that, by Proposition 4.1 and (4.6),

∂εv
ε
t |ε=0 =

Et,s[u′(Σ0)H]

Et,s[u′(Σ0)]
|s=St

and
∂εx

ε
t |ε=0 = −Et,s[u′(Σ0)ψ]

Et,s[u′(Σ0)]
|s=St ,

we obtain from (4.30) that

∂εQ
εH
t |ε=0 = −

∂sEQ
t,s[H]|s=St

∂sEQ
t,s[ψ]|s=St

.
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We proceed to prove (ii). We differentiate both sides of (4.24) twice with respect
to ε and evaluate in ε = 0. Using (4.27) and (4.28), this yields

∂sEt,s[u′′(Σ0)(v′ −H)2 + u′(Σ0)v′′]|(s,v′,v′′)=(St,η1,η2)

= ∂sEt,s[u′′(Σ0)(q′ψ + x′)2 + u′(Σ0)(q′′ψ + x′′)]|(s,(q′,x′),(q′′,x′′))=(St,δ1,δ2).

(4.32)
From Lemma 4.9 we know that

∂2
εX

QεH

t |ε=0 =
E[u′′(Σ0){(∂εvε0|ε=0 −H)2 − (∂εQ

εH
t |ε=0ψ + ∂εX

QεH

t |ε=0)2}|Ft]
E[u′(Σ0)|Ft]

+
E[u′(Σ0){∂2

εv
ε
0|ε=0 − ∂2

εQ
εH
t |ε=0ψ}|Ft]

E[u′(Σ0)|Ft]
,

which we use to solve (4.32) for q′′ = ∂2
εQ

εH
t |ε=0. This leaves us with

∂2
εQ

εH
t |ε=0 =

(
∂sEt,s[u′(Σ0)ψ]Et,s[u′(Σ0)]− ∂sEt,s[u′(Σ0)]Et,s[u′(Σ0)ψ]

)−1
|s=St ×

×
(
∂sEt,s[u′′(Σ0){(v′ −H)2 − (q′ψ + x′)2}]Et,s[u′(Σ0)]

−Et,s[u′′(Σ0){(v′ −H)2 − (q′ψ + x′)2}]∂sEt,s[u′(Σ0)]
)
|(s,v′,(q′,x′))=(St,η1,δ1).

Considering K = ((v′ −H)2 − (q′ψ + x′)2)u
′′(Σ0)
u′(Σ0) in (4.31) we can see that

∂2
εQ

εH
t |ε=0 =

∂sEQ
t,s[{(v′ −H)2 − (q′ψ + x′)2}u

′′(Σ0)
u′(Σ0) ]|(s,v′,(q′,x′))=(St,η1,δ1)

∂sEQ
t,s[ψ]|s=St

. (4.33)

Note that

∂sEQ
t,s[(v

′ −H)2 u
′′(Σ0)
u′(Σ0) ]|(s,v′)=(St,η1)

∂sEQ
t,s[ψ]|s=St

= −
∂sEQ

t,s[R(Σ0)Ĥ2]|s=St
∂sEQ

t,s[ψ]|s=St
.

Thus, it remains to show that

−∂sEQ
t,s

[
(q′ψ + x′)2u

′′(Σ0)

u′(Σ0)

]
|(s,(q′,x′))=(St,δ1) =

4∑
i=2

ci(t, St)∂sEQ
t,s[R(Σ0)Ki]|s=St .



72 Chapter 4. Asymptotic analysis of pricing and hedging

It is

− ∂sEQ
t,s

[
(q′ψ + x′)2u

′′(Σ0)

u′(Σ0)

]
|(s,(q′,x′))=(St,δ1)

= −∂sEQ
t,s

[
(q′ψ̂ + q′EQ[ψ] + x′)2u

′′(Σ0)

u′(Σ0)

]
|(s,(q′,x′))=(St,δ1)

=
(

(q′)2∂sEQ
t,s[R(Σ0)ψ̂2] + 2q′(x′ + q′EQ[ψ])∂sEQ

t,s[R(Σ0)ψ̂] (4.34)

+ (x′ + q′EQ[ψ])2∂sEQ
t,s[R(Σ0)]

)
|(s,(q′,x′))=(St,δ1).

By definition of ∆

∂εQ
εH
t |ε=0 = ∆t

and by Lemma 4.9 and Remark 4.3

∂εX
QεH

t |ε=0 = (∂εv
ε
0|ε=0 − ∂εvεt |ε=0) + ∂εx

ε
t |ε=0∂εQ

εH
t |ε=0

= −∆tEQ
t [ψ]− EQ

t [Ĥ],

so that
∂εX

QεH

t |ε=0 + ∆tEQ[ψ] = −(∆tEQ
t [ψ̂] + EQ

t [Ĥ]).

Substituting this term into (4.34) yields the desired result.

Note that, with regard to Remark 4.4, we can alternatively write the second order
term Λ̃ in the theorem above as

Λ̃ =

∑4
i=1 ci(t, St)∂s(E

Q
t,s[R(Σ0)]ER

t,s[Ki])|s=St
∂sEQ

t,s[ψ]|s=St
. (4.35)

The following proposition illustrates the relationship of the marginal price processes
of a claim H and the underlying ψ. In particular, it shows that the first order
approximation ∆̃ to the replicating position for a large investor can be interpreted as
the replicating strategy for a small investor trading in our illiquid financial market: An
investor whose order sizes are negligible compared to the market maker’s endowment
will not move the market maker’s price quotation with his trading activity. The prices
that he observes and which he trades at are therefore the marginal prices of H and ψ.

Consider such a small investor who seeks to attain a terminal position Ĥ =

H − EQ[H] by dynamically trading the marketed security ψ. We can view Ĥ as
the small investor’s replication target. The proposition below shows that pursuing
the trading strategy ∆̃ replicates the marginal price process of H and, in particular,
achieves the small investors replication target Ĥ.

Proposition 4.13. Let Assumptions 1.1, 1.2 and 1.3 hold and let 0 < a < 1. Let
H = f(ψ) ∈ H′′ and let ∆̃ be as in Theorem 4.12. Let (S̃t)0≤t≤T , defined by

S̃t , −EQ[ψ|Ft]
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and (πt)0≤t≤T , defined by
πt , EQ[H|Ft]

denote the marginal price processes of underlying ψ and claim H respectively. Then
for all t ∈ [0, T ]

πt = π0 +

∫ t

0
∆̃sdS̃s.

In particular, for t = T ,

H − EQ[H] =

∫ T

0
∆̃sdS̃s.

Proof. Let

h1(t, s) , −Et,s[u′(Σ0)ψ]

Et,s[u′(Σ0)]

and
h2(t, s) ,

Et,s[u′(Σ0)f(ψ)]

Et,s[u′(Σ0)]
.

By Remark 4.5 the process (St)0≤t≤T from Assumption 1.2, defining ψ via ψ = ST , is
Markov under Q. Hence,

h1(t, St) = −Et,s[u′(Σ0)ψ]

Et,s[u′(Σ0)]
|s=St = −EQ[ψ|Ft] = S̃t

and
h2(t, St) =

Et,s[u′(Σ0)H]

Et,s[u′(Σ0)]
|s=St = EQ[H|Ft] = πt.

Since H ∈ H′′, Lemma 1.12 implies that h1 and h2 are both differentiable with respect
to s. The processes S̃ and π are Q-martingales and their respective dynamics can be
expressed via Itô’s formula by

dS̃t = σSt∂sh1(t, St)dWt = −σ∂sEQ
t,s[ψ]|s=StdWt (4.36)

and
dπt = σSt∂sh2(t, St)dWt = σ∂sEQ

t,s[H]|s=StdWt. (4.37)

Rearranging (4.36) yields

dWt =
dS̃t

σSt∂sh1(t, St)

which, substituted into (4.37), leaves us with

dπt =
∂sh2(t, St)

∂sh1(t, St)
dS̃t = ∆̃tdS̃t.

The following proposition provides the complementing cash balance process for
the small investor’s replicating strategy ∆̃.
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Proposition 4.14. Let Assumptions 1.1, 1.2 and 1.3 hold and let 0 < a < 1. Let
H = f(ψ) ∈ H′′, let the trading strategy (∆̃t)0≤t≤T be as in Theorem 4.12 and let
(X∆̃

t )0≤t≤T denote its complementing cash balance process. Then

X∆̃
t = −EQ[Ĥ|Ft]− ∆̃tEQ[ψ|Ft], 0 ≤ t ≤ T.

Proof. By Lemma 4.9, the complementing cash balance process for the trading strategy
∆̃ = ∂εQ

εH |ε=0, at any time t ∈ [0, T ], is given by

∂εX
QεH

t |ε=0 = −(∂εv
ε
t |ε=0 − ∂εvε0|ε=0) + ∂εx

ε
t |ε=0∂εQ

εH
t |ε=0.

The result follows with the representations ∂εvεt |ε=0 = EQ[H|Ft] and ∂εx
ε
t |ε=0 =

−EQ[ψ|Ft] from Remark 4.3.

The interpretation of ∆̃ as a small investor’s replicating strategy allows for an
alternative interpretation of Λ̃, the second order term in Theorem 4.12. In the notation
of that theorem and of Proposition 4.14 let

ξ(t) , ∆̃tψ +X∆̃
t ∈ L0(FT ,R).

The quantity ξ(t) can be viewed as a small investor’s net replicating position for H,
composed of the stock position ∆̃tψ and its complementing cash amount X∆̃

t . Then

Λ̃t =

∂
∂s

{
−EQ

t,s[R(Σ0)]
(
ER
t,s[Ĥ

2]− ER
t,s[(q

′ψ + x′)2]
)} ∣∣∣

s=St,q′=∆̃t,x′=X∆̃
t

∂sEQ
t,s[ψ]|s=St

,

which we write, in a slight abuse of notation, more concisely as

Λ̃t =

∂
∂s

{
−EQ

t,s[R(Σ0)]
(
ER
t,s[Ĥ

2]− ER
t,s[ξ

2(t)]
)}
|s=St

∂sEQ
t,s[ψ]|s=St

. (4.38)

This form for the second order term Λ̃ is obtained immediately from (4.33). It suggests
the following heuristic interpretation: Λ̃ is the sensitivity with respect to changes in
the underlying of the difference of the second moments of the net replicating position
and the replication target. In other words, Λ̃ measures how changes in the underlying
ψ influence the difference of the second moments of the target position and the net
replicating position.

The following remark shows why – for power utilities – it is difficult to make this
interpretation more rigorous by formulating it in terms of the variances of Ĥ and ξ(t).

Remark 4.15. By definition of the variance and the measures Q and R, for all t ∈ [0, T ],
s > 0,

VarRt,s[Ĥ]−VarRt,s[ξ(t)] = ER
t,s[Ĥ

2]− ER
t,s[ξ

2(t)]−
(
ER
t,s[Ĥ]2 − ER

t,s[ξ(t)]
2
)
.
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In view of Remark 4.4, this equation can be rewritten as

ER
t,s[Ĥ

2]− ER
t,s[ξ

2(t)] = VarRt,s[Ĥ]−VarRt,s[ξ(t)] +
EQ
t,s[R(Σ0)Ĥ]2 − EQ

t,s[R(Σ0)ξ(t)]2

EQ
t,s[R(Σ0)]2

.

Moreover, by definition of ξ and by Proposition 4.14, we have ξ(t) = ∆̃tψ−(∆̃tE
Q
t [ψ]+

EQ
t [Ĥ]) and, consequently, taking the Ft-conditional expectation with respect to Q on

both sides,
EQ
t [ξ(t)] = −EQ

t [Ĥ]. (4.39)

We will see in Chapter 2 that, formally, the same calculations hold for exponential
utility functions where the market maker’s absolute risk aversion R(Σ0) is constant.
In that case, due to (4.39), the term

EQ
t,s[R(Σ0)Ĥ]2 − EQ

t,s[R(Σ0)ξ(t)]2

in the expression above vanishes and the difference of the second moments of Ĥ and
ξ(t) in (4.38) coincides with the difference of their variances under R.

4.3 The influence of market depth on the approximations
to the hedging position

In this section we will consider initial endowments of the form

Σ0(d) , d(pψ + z), d > 0,

where Σ0 = pψ + z satisfies Assumption 1.3. Clearly, Σ0(d) also satisfies Assumption
1.3. The scaling parameter d determines the size of orders which can be accommodated
by the market maker and we will hence refer to it as the market depth. The following
proposition describes the relationship between the market depth and the first and
second order approximations to the hedging position from Theorem 4.12.

We observe that the first order approximation, corresponding to the replicating
position of a small investor (as highlighted in Proposition 4.13), does not depend
on the market depth, while the second order approximation, which is the liquidity
correction to the large investor’s replicating position, is inversely proportional to d.

Proposition 4.16. Let Assumptions 1.1 and 1.2 hold and let 0 < a < 1. Let further
∆̃t(d) and Λ̃t(d) be the quantities in (4.19) and (4.20), computed with respect to the
initial endowment Σ0(d) = d(pψ + z), d > 0. Then, at any time t ∈ [0, T ],

∆̃t(d) = ∆̃t(1) (4.40)

and
Λ̃t(d) =

1

d
Λ̃t(1). (4.41)
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Proof. Let Q(d) denote the probability measure defined by

dQ(d)

dP
,

u′(dΣ0)

E[u′(dΣ0)]
,

By Assumption 1.1 we have

dQ(d)

dP
=

u′(Σ0(d))

E[u′(Σ0(d))]
=

u′(Σ0)

E[u′(Σ0)]
=
dQ(1)

dP
, (4.42)

so that for all d > 0 the measures Q(d) and Q = Q(1) coincide. Hence,

∆̃t(d) = −
∂sE

Q(d)
t,s [H]|s=St

∂sE
Q(d)
t,s [ψ]|s=St

= −
∂sE

Q(1)
t,s [H]|s=St

∂sE
Q(1)
t,s [ψ]|s=St

= ∆̃t(1)

which proves (4.40). By Assumption 1.1,

R(Σ0(d)) =
a

d(pψ + z)
=

1

d
R(Σ0)

and, by (4.40) and (4.42), the coefficients ci(t, St) in (4.20) do not depend on d. Using
these observations together with (4.42) we deduce that

Λ̃t(d) =
1

d

∑4
i=1 ci(t, St)∂sE

Q(1)
t,s [R(Σ0)Ki]|s=St

∂sE
Q(1)
t,s [ψ]|s=St

=
1

d
Λ̃t(1).

By the same reasoning by which we interpret d as the market depth, we can
interpret its inverse

ρ ,
1

d

as the relative size of the large investor in comparison to the market maker. For
d→∞ the size of the large investor ρ vanishes in comparison to the market maker
and, in the limit, the large investor becomes the small investor from Proposition 4.13.
Proposition 4.16 implies that

Λ̃t(d)

∆̃t

=
1

d

Λ̃t(1)

∆̃t

= ρ
Λ̃t(1)

∆̃t

.

Hence, depending on the market depth d (respectively on the size of the large investor
ρ), the relative size of the liquidity correction Λ̃ in relation to the small investor’s
replicating position ∆̃ can be of any order of magnitude. In other words, the liquidity
correction Λ̃ for the hedge ratio can become vast if the large investor is large and it
can become negligible if the large investor is small.



Chapter 5

Comparative statics for hedge
ratio corrections

In the asymptotic analysis of the previous chapter we presented the approximation

QεHt = ε∆̃t +
ε2

2
Λ̃t + o(ε2)

to an investor’s replicating position QεHt for a claim εH. Recall that by our convention
positions in both the marketed security and in cash are denoted from the point of
view of the market maker. Throughout this chapter it is convenient to consider the
quantities

∆ , −∆̃ and Λ , −Λ̃

which shift the point of view to that of the large investor. Note further that all those
numerical experiments in this chapter for which a > 1 are to be viewed conditional on
the validity of Conjecture 1 in Chapter 4.

We saw that the first order term ∆ can be interpreted as the replicating strategy
for H which a small investor, who is trading at marginal prices, would pursue in our
market. As the small investor’s trading activity does not have a price impact, he finds
himself in a "liquid world" and his hedge ∆ can be viewed as "liquid replication". In
Figure 5.1 we depict ∆t for a call option H = (ψ −K)+ for various times to maturity
and we observe that, unsurprisingly, its shape and term structure resemble that of the
delta in the classical Black-Scholes model.

Let us now consider a large investor whose trading activity has a price impact
as described in our model. Such an agent will have to account for liquidity effects
by adjusting his replicating position in accordance with the second order term Λ,
the liquidity correction for the hedge ratio. The term Λ constitutes the difference
between the "liquid replicating position" of a small investor and the "illiquid replicating
position" of a large investor and can be seen as an indicator of the (il)liquidity of the
market.

77
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Figure 5.1: Term structure of ∆ for a call option with strike K = 1; model parameters:
a = 2, p = 1, z = 1, σ = 0.2, µ = 0, T = 1

In what follows, we will present numerical results which give an idea of the shape
and the order of magnitude of the liquidity correction Λ for a call optionH = (ST−K)+

as well as of its dependence on changes in the parameters defining our model. We will
investigate the term structure of Λ, i.e. its behaviour upon approaching maturity, as
well as its reaction with respect to changes in the market maker’s initial endowment p
and z, his risk aversion a and the parameters µ and σ defining the price evolution of
the marketed security.

5.1 Positivity, unimodality and term structure

Figure 5.2 displays the term Λt for a call option in dependence on St (from Assumption
1.2) for an exemplary non-degenerate set of parameters at various times t ∈ [0, T ].
We observe that for the call option Λ is strictly positive. This means that, in order
to account for liquidity effects, the large investor needs to assume a position in the
underlying which is strictly greater than the replicating position ∆t of the small
investor. Moreover, we can see that Λ is unimodal with a unique global maximum
near the money. This means that, as intuition suggests, the liquidity effect is stronger
when prices are close to the money and weaker when prices are far away from the
money.

Moreover, we can see that Λ decays as we approach maturity. This time evolution
of the liquidity correction is, again, in line with what one would expect: As the
remaining time – and therefore the degree of uncertainty – decreases, the liquidity
correction term decreases in magnitude.
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Figure 5.2: Term structure of Λ for a call option with strike K = 1; model parameters:
a = 2, p = 1, z = 1, σ = 0.2, µ = 0, T = 1

5.2 Variability with respect to the market maker’s initial
endowment and risk aversion

In order to highlight the relation between the market maker’s initial endowment
Σ0 = pψ + z and the liquidity correction term Λ it is convenient to consider the
reparametrisation of Σ0 that is defined by p = db and z = d(1− b), where d > 0 and
b ∈ [0, 1]. Rearranging these relations for d and b yields

d = p+ z ∈ (0,∞),

b = 1− z

p+ z
∈ [0, 1].

With respect to these coordinates, the initial endowment Σ0 = pψ + z is given as

Σ0 = d(bψ + (1− b)).

Here, d > 0 is the market depth from Section 4.3 and b ∈ [0, 1] is the portfolio balance
parameter which indicates the fraction of the portfolio that is invested in securities,
while 1− b corresponds to the fraction that is invested in cash.

As we have already understood the (inversely proportional) dependence of Λ on
the market depth d in Proposition 4.16 it suffices to consider the case d = 1 and to
investigate the variability of Λ with respect to b. Let us denote by Λ(b) the liquidity
correction term Λ computed with respect to the initial endowment Σ0(b) = bψ+(1−b).
The dependence of Λ(b) on b is visualised in Figure 5.3. We can see that the maximal
liquidity correction maxSt>0 Λ(b) attains a global minimum for some b ∈ (0, 1) and
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that
max
St>0

Λ(0.01) > max
St>0

Λ(0.99),

which means that the liquidity correction is higher when the market maker possesses
an initial endowment composed almost exclusively of cash than if he possesses one
almost exclusively composed of shares.

1.0 1.5 2.0
St

0.05

0.10

0.15

0.20

Lt

Η=0.01

Η=0.25

Η=0.5

Η=0.75

Η=0.99

Figure 5.3: Liquidity correction Λ for various values of the portfolio balance parameter
b; model parameters: d = 1, σ = 0.2, µ = 0, t = 0, T = 1

Let us now consider the relation between the market maker’s risk aversion a and
the liquidity correction Λ. As is to be expected, a higher risk aversion necessitates
a greater liquidity correction. Figure 5.4 illustrates this. It is not clear whether the
exact relationship between the risk aversion a and the size of the liquidity correction
Λ can be expressed in closed form. However, numerical experiments suggest that
the dependence is roughly (but not precisely) linear, i.e. that Λt(a) ≈ aΛt(1), where
Λ(a) denotes the liquidity correction term Λ computed for a market maker with risk
aversion a.

5.3 Variability with respect to the parameters defining
the process S

Recall the geometric Brownian motion (St)0≤t≤T from Assumption 1.2 which models
the payoff at maturity of the marketed security ψ = ST . In this section we will
investigate the dependence of Λ on the drift coefficient µ and the diffusion coefficient
σ of S.

Contrary to the Black-Scholes model, the drift term µ has an influence on prices
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Figure 5.4: Liquidity correction Λ for various values of the market maker’s risk
aversions a; model parameters: p = 1, z = 1, σ = 0.2, µ = 0, t = 0, T = 1

and on hedge ratios appearing in our model. In a Black-Scholes world µ plays no
role as perfect replication renders the actual price development of the underlying
irrelevant for the pricing of a contingent claim written on it. The irrelevance of µ
in the Black-Scholes model is therefore a direct consequence of the agent’s ability to
hedge his exposure to changes in the price of the underlying. In our model, the market
maker does not hedge. He merely takes the positions requested by the large investor
and may therefore be fully exposed to the terminal value of ψ. It is natural that this
exposure causes the market maker to incorporate his beliefs about the development of
the process S into his price quote.

The effect of µ is visualised in Figure 5.5. We can see that the magnitude of Λ is
not affected by changes in µ. Moreover, we observe that, in comparison to µ = 0, Λ

becomes "narrower" as µ grows large and that it becomes "wider" as µ becomes small
(i.e. as |µ| becomes large for µ < 0). This effect is simply due to exponential scaling.
Note that, disregarding this exponential scaling effect, µ does not actually change the
magnitude or shape of Λ (and ∆) but merely translates them along the S-axis. It can
thus be viewed as a simple "discounting" applied by the market maker according to
his believes about the future development of the process S. In other words, changes
of µ have the sole effect of shifting the location of "at the money".

The relation between the liquidity correction term Λ and the diffusion coefficient σ
is visualised in Figure 5.6. As is to be expected, the liquidity correction Λ is increasing
in σ. Moreover, we observe that with increasing σ the location of the maximum of Λ

tends to the right. This effect is a result of the 1
2σ

2-term in (1.2). It can be interpreted
as a discounting by the market maker in a similar sense to the discounting with respect
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Figure 5.5: Liquidity correction Λ for various values of the drift coefficient µ; model
parameters: a = 2, p = 1, z = 1, σ = 0.2, t = 0, T = 1

to µ explained above.

Summarising the observations of these numerical experiments we conclude that the
liquidity correction to the replicating position Λ for a large investor who is hedging
a call option in our illiquid market is coherent with our expectations: It is strictly
positive, it attains a unique maximum near the money and it depends on the model
parameters in an intuitive way. In particular, it is increasing with respect to parameters
which reflect a higher degree of risk, i.e. in the market maker’s risk aversion a, in the
diffusion coefficient σ and in the remaining time to maturity T − t. Moreover, we saw
that Λ is smallest when the market maker possesses an endowment which is balanced
between stocks and cash and that, furthermore, Λ is inversely proportional to the
market depth, which in our setting is a linear scaling parameter for the market maker’s
initial endowment.
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Figure 5.6: Liquidity correction Λ for various values of the diffusion coefficient σ;
model parameters: a = 2, p = 1, z = 1, µ = 0, t = 0, T = 1





Chapter 6

Logarithmic utilities

Throughout Part I of this thesis we restricted our analysis to the cases where the market
maker’s risk aversion coefficient a satisfied either 0 < a < 1 or a > 1, deliberately
leaving out the case a = 1 which corresponds to a logarithmic utility function. We did
this for several reasons.

The terms and formulas throughout Part I are, in most cases, identical for the
regimes 0 < a < 1 and a > 1 but differ for a = 1. A logarithmic utility function
therefore necessitates different arguments throughout the analysis and a significant
amount of our proofs would need to be modified for the case a = 1. In some cases, it
is not clear how our arguments need to be changed to accommodate the case a = 1.

In particular, our arguments do not prove that the market maker’s utility process
is a (true) martingale when a = 1 and not even that it is a submartingale. This leads
to the possibility that the model is not free of arbitrage in this case, which, however,
seems unlikely.

Another consequence of the absence of a proof for the martingale property of the
market maker’s utility process in the case a = 1 is that one direction of Proposition
3.3 does not necessarily hold. As a result we cannot say anymore whether for every
attainable claim H there exists an admissible trading strategy Q such that UQt = UHt .

A further complication in the case of logarithmic utilities is the fact that the
logarithm takes both positive and negative values so that the market maker’s expected
utility may occasionally be zero. As we frequently consider quotients of expected
utilities in our analysis, this issue would have to be addressed in order to avoid dividing
by zero.

Some basic observations, however, are quickly made for logarithmic utility functions.
First of all, we find that the existence of trade size bounds persists. In a single period
setting, a trade size q is admissible, i.e. q can be complemented by a cash amount x
in such a way that (1.4) is satisfied, if and only if

−p ≤ q ≤ q̄(p, z),
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where
q̄(p, z) , exp

(
E
[
log

(
Σ0

ψ

)])
− p.

As before, the upper bound on admissible trade sizes q̄(p, z) can be written in terms
of the market maker’s initial utility level u0 , E[log(Σ0)] as

q̄(p, z) = exp (u0 − E[logψ])− p,

which is consistent with Remark 1.8.

These observations render it likely that many of the results presented in Part I of
this thesis possess an analogue in the case a = 1. A thorough analysis of our model
for logarithmic utility functions would be a desirable extension.
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Exponential utility functions
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Introduction to Part II

In the second part of this thesis we will revisit the model from Part I, albeit for a
different class of utility functions. Instead of power utilities with hyperbolic absolute
risk aversion (HARA), we will consider exponential utility functions which display
constant absolute risk aversion (CARA). As in Part I, we will model the value at
maturity of the traded security using geometric Brownian motion.

In the context of our model, exponential utility functions have been used by Said
[46], where an analysis of pricing and hedging is conducted for an illiquid Bachelier
model in which the price process of the underlying is modeled by Brownian motion
rather than geometric Brownian motion. The more general case of utility functions
with bounded absolute risk aversion and weak assumptions on the distribution of the
traded security is examined by Bank and Kramkov [11, 14]. However, the case of
geometric Brownian motion is covered in none of the previous three analyses as GBM
fails to satisfy the finite exponential moments condition required therein.

Moreover, the analysis at hand has a different focus from those previous works
as it is mainly concerned with the replication of contingent claims under illiquidity
which has not been addressed in [11] and [14].

Part II of this thesis can thus be seen as an extension of the ideas in [46], [11] and
[14] to Black-Scholes-type price dynamics in the form of geometric Brownian motion
with an emphasis on the question of replication of options.

When comparing the results in Part II to those in Part I, it turns out that for
exponential utility functions some aspects of the analysis are significantly easier than
for power utilities. In particular,

• we obtain a closed form expression for the market indifference price;

• there is no upper bound for admissible trading strategies;

• the absence of arbitrage can be obtained immediately as the market maker’s
utility function is bounded from above;

• we can define a (meaningful) wealth process for the large investor.

In some aspects, however, the exponential utility case proves to be more troublesome
than the power utility case. In particular,
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• the market maker’s process of indirect utility is a local martingale but not
necessarily a (true) martingale;

• the derivation of a sufficient condition for attainability of contingent claims is
more involved;

• the validity of the asymptotic expansions for the hedging strategy is conditional
on the yet unproven Conjecture 2.

Chapter Overview

In the second part of this thesis, we proceed as follows.
Chapter 7 is dedicated to the concept of admissibility of trading strategies. We

first consider single-period trading which we then extend to the case of simple strategies
where finitely many trades are allowed and, ultimately, to the case of continuous-time
strategies. As in the power utility case the trade dynamics are guided by a utility
indifference principle which, corresponding to the different types of strategies, comes
in three different manifestations. A trading strategy is then said to be admissible if
the respective utility indifference principle can be adhered to. We finish the chapter
by showing that the model, without the need to impose further assumptions, is free of
arbitrage.

In Chapter 8 we introduce the large investor’s wealth process when he is pursuing
an admissible trading strategy. We then investigate its dynamics and highlight some
of its properties. In contrast to the majority of classical models, the wealth process
does not play a central role in our analysis.

Chapter 9 establishes the notion of attainability of claims. There, we provide a
necessary and sufficient condition on the payoff function of a claim which guarantees
that the claim can be replicated in our model. We achieve this aim by following
two different approaches: Firstly, via replicating the market maker’s utility process
and, secondly, by tracking the large investor’s wealth process. Finally, we prove the
replicability of (limited quantities of) call- and put options in our model.

In Chapter 10 we conduct an asymptotic analysis to derive liquidity corrections
to replicating strategies in comparison to Black-Scholes-type models. To this end,
we consider small positions of claims which allow us to express liquidity corrections
for hedge ratios as a second order approximation to the replicating position. The
results in this chapter as well as the numerical investigation of the subsequent chapter
are conditional on the validity of a monotonicity assertion which we introduce as
Conjecture 2. Even though this seemingly simple statement is strongly supported by
numerical evidence and intuition, an analytical proof is yet oustanding.

Chapter 11 contains comparative statics for the liquidity correction to the hedge
ratio that was established in the previous chapter. We give an idea of its shape and
magnitude in the case of a call option and we provide numerical evidence which shows
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that the liquidity correction reacts to changes in the model parameters in such a way
as one would expect.

In Chapter 12 we address some questions related to the lognormal distribution.
We first prove a limit theorem for the Laplace transform of the lognormal distribution
which is needed to establish the notion of attainability of contingent claims in Chapter
9 and whose proof turns out to be surprisingly lengthy. We then briefly discuss
Conjecture 2 whose validity is required for the validity of the asymptotic expansions
of Chapter 10.





Chapter 7

Admissible strategies

In this section we will investigate the admissibility of trading strategies. We will
introduce this notion in a single-period setting, then extend it to simple trading
strategies and finally to continuous-time strategies.

7.1 Model setup

The general setup of this model as well as the trading dynamics therein are identical
to those in Part I and we will restrict ourselves to highlighting the differences. Most
prominently, Assumption 1.1 will be replaced by

Assumption 7.1. The market maker’s utility function u : R→ R has the form

u(x) = −1

a
e−ax for some a > 0.

Note that an agent who possesses such a utility function u has constant absolute
risk aversion R, i.e.

R(x) , −u
′′(x)

u′(x)
= a.

Furthermore, note that u is a strictly concave, strictly increasing, twice continuously
differentiable function on R.

Throughout Part II we will continue to make use of Assumption 1.2 which we
restate as

Assumption 7.2. The marketed contingent claim ψ is given by the value at maturity
ψ = ST of a geometric Brownian motion (St)0≤t≤T which is governed by the stochastic
differential equation

dSt = St(µdt+ σdWt), (7.1)

where S0 > 0 is constant and (Wt)0≤t≤T is standard Brownian motion adapted to
(Ft).
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We will again denote the analytic solution of (7.1) with S0 = 1 by

Et , e(µ−σ
2

2
)t+σWt . (7.2)

Moreover, we will impose

Assumption 7.3. The market maker’s initial endowment Σ0 is given as a combination
of a position p in the traded security ψ and a cash amount z, i.e.

Σ0 = pψ + z for some p ≥ 0, z ∈ R.

Note that Assumption 7.3 is slightly weaker than Assumption 1.3 in the power
utility case since we only demand that p ≥ 0 and z ∈ R rather than p+ z > 0.

The assumption p ≥ 0 is crucial to our analysis as otherwise, for p < 0, we have

E[u(pψ)] = −1

a
E[e−apψ] = −∞,

which makes it impossible to introduce a market indifference price for ψ as done
further below. This problem with the exponential moments of ψ is the reason for
which geometric Brownian motion was excluded from the analyses in [46], [11] and [14].
However, we will see that we can overcome this obstacle and conduct a meaningful
investigation as long as we ensure that the market maker is left with a total long or
neutral position in the traded asset ψ at all times. As in Part I, we will assume that
interest rates are zero.

7.2 Single transaction setting

As in the power utility case, we will call a transaction size q ∈ R admissible if there is
x ∈ R which solves the equation

E[u(Σ0)] = E[u(Σ0 + qψ + x)].

Such an x will be called a market indifference price of the transaction q. Proposition
7.4 below is the exponential utility analog of Theorem 1.5. It turns out that the market
indifference price x for an order of size q ≥ −p possesses an explicit representation
and that, unlike in the power utility case, admissible trade sizes q are not bounded
from above. The lack of an upper bound is due to the fact that, contrary to the case
of power utilities, a market maker with constant absolute risk aversion will accept
negative cash positions to allow for the purchase of further stocks. However, the lower
bound −p remains valid: If it is violated, i.e. for p+ q < 0, we have −a(p+ q) > 0

and consequently the market maker’s expected utility explodes.
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Proposition 7.4. Under Assumptions 7.1, 7.2 and 7.3 a market indifference price
x ∈ R exists if and only if the transaction size q satisfies

p+ q ≥ 0. (7.3)

In that case the market indifference price is given by

x =
1

a
log

(
E[u((p+ q)ψ)]

E[u(pψ)]

)
=

1

a
log

(
E[e−a(p+q)ψ]

E[e−apψ]

)
. (7.4)

Proof. The market indifference price x is given as the solution to

E[u(Σ0)] = E[u(Σ0 + qψ + x)],

or, equivalently, to

−1

a
E
[
e−a(pψ+z)

]
= −1

a
E
[
e−a((p+q)ψ+z+x)

]
,

which after rearranging yields (7.4). As a > 0 and as ψ is the value at maturity of a
geometric Brownian motion and thus lognormally distributed, E[e−a(p+q)ψ] is finite
if and only if p + q ≥ 0. Hence, an indifference price x ∈ R exists if and only if
p+ q ≥ 0.

We conclude from Proposition 7.4 that the set of admissible trade sizes in the
single-period case is given by the interval [−p,∞).

Proposition 7.5 below enlists the properties of the market indifference price x. In
order to state and prove it, we introduce the marginal indifference pricing measure
Q(r) of the market maker when he is holding r ∈ [0,∞) stocks defined by

dQ(r)

dP
,

u′(rψ)

E[u′(rψ)]
=

e−arψ

E[e−arψ]
.

The measure Q(r) derives its name from the fact that, when the market maker holds
r stocks, the marginal price of the traded asset ψ is given as its expected payoff under
Q(r) as will be detailed in Section 10.1.

Proposition 7.5. Let Assumptions 7.1, 7.2 and 7.3 hold and let

x(·) : [−p,∞)→ R, q 7→ x(q) ,
1

a
log

(
E[e−a(p+q)ψ]

E[e−apψ]

)

denote the function which maps every admissible trade size q to its market indifference
price x(q). Then x(·) is strictly decreasing, convex, positive for −p ≤ q < 0, negative
for q > 0 and x(0) = 0. Moreover, x(·) is twice continuously differentiable on (−p,∞)
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and both derivatives can be extended continuously to the boundary point q = −p. Its
first and second order derivatives are given by

∂qx(q) = −E[e−a(p+q)ψψ]

E[e−a(p+q)ψ]
= −EQ(p+q)[ψ] (7.5)

and

∂2
qx(q) = a

(
E[e−a(p+q)ψψ2]

E[e−a(p+q)ψ]
− E[e−a(p+q)ψψ]2

E[e−a(p+q)ψ]2

)
= aVarQ(p+q)[ψ]. (7.6)

Proof. The differentiability assertions about x(·) follow by dominated convergence;
the terms for the first and second order derivatives are obtained by straightforward
computations and by definition of the measure Q(·). By Assumption 7.2 it is apparent
from (7.5) that ∂qx(q) < 0 from which it follows that x(·) is strictly decreasing. As
the second order derivative can be expressed as a variance, it is clear that ∂2

qx(q) > 0,
which implies the convexity of x(·). By the dominated convergence theorem both
derivatives can be continuously extended to the boundary point q = −p. Finally, the
assertions about x(0) as well as the positivity and negativity of x(·) are clear from the
definition of x(·) and the properties of the logarithm.

7.3 Simple strategies

As in the corresponding section in Part I, we consider simple strategies where trades
occur at only finitely many points in time, i.e. we consider processes (Qt)0≤t≤T of the
form

Qt =
n∑
k=1

θk1(τk−1,τk](t), 0 ≤ t ≤ T, (7.7)

where 0 = τ0 ≤ · · · ≤ τn = T are stopping times and θk ∈ L0(Fτk−1
,R). It is

reasonable to assume that the cash balance process (Xt)0≤t≤T which complements Q
in terms of expected utility, if it exists at all, is of the same form and can be written as

Xt =
n∑
k=1

ξk1(τk−1,τk](t), 0 ≤ t ≤ T, (7.8)

with ξk ∈ L0(Fτk−1
,R). As before, for k ∈ {1, . . . , n}, we write

Σk , Σ0 + θkψ + ξk

and we say that a simple trading strategyQ is admissible if there exists a complementing
cash balance process X of the form (7.8) such that

E[u(Σk)|Fτk−1
] = E[u(Σk−1)|Fτk−1

] (7.9)
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possesses a solution ξk ∈ L0(Fτk−1
,R) for all k ∈ {1, . . . , n}. The following proposition

characterises admissible simple strategies in terms of a lower trade bound. As in the
single-period case treated in the previous section and in contrast to the case of power
utilities, there is no upper bound for admissible simple strategies.

Proposition 7.6. Let Assumptions 7.1, 7.2 and 7.3 hold and let Q be a simple trading
strategy. Then Q is admissible if and only if

θk ≥ −p ∀k ∈ {1, . . . , N}.

In that case, the process X of form (7.8) defined by

ξk =
1

a
log

(E[u(Σ0 + θkψ)|Fτk−1
]

E[u(Σk−1)|Fτk−1
]

)
, k ∈ {1, . . . , N},

complements Q in the sense of (7.9).

Proof. Solving
E[u(Σk)|Fτk−1

] = E[u(Σk−1)|Fτk−1
]

for the Fτk−1
-measurable random variable ξk yields

ξk =
1

a
log

(E[u(Σ0 + θkψ)|Fτk−1
]

E[u(Σk−1)|Fτk−1
]

)
,

which proves the second assertion. Moreover, for k = 1 we obtain

ξ1 =
1

a
log

(
E[u((p+ θ1)ψ)]

E[u(pψ)]

)
,

so that, by Proposition 7.4, |ξ1| <∞ if and only if θ1 ≥ −p. The result then follows
by induction.

We will see later on that if a process X complements an admissible simple strategy
Q in the sense of (7.9) then that process is unique and therefore necessarily given by
the process X in Proposition 7.6.

7.4 Continuous-time strategies

We will from now on assume the trading strategy (Qt)0≤t≤T to be a general predictable
process. The market maker’s endowment at time t = 0 is yet again denoted by Σ0

and thereafter at any time t by

Σt , Σ0 +Qtψ +Xt,

where the predictable process (Xt)0≤t≤T is the complementing cash process for the
strategy Q. As in the case of power utilities, it turns out that, in order to formulate a
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utility indifference principle for continuous-time strategies, it is advisable to track the
market maker’s utility process rather than the complementing cash process X. We
introduce some additional notation for this purpose.

In order to describe the time-evolution of the level of expected utility of the market
maker, we introduce the static process of indirect utility F : R× [−p,∞)× [0, T ]→
L0(R) defined by

F (x, q, t) , E[u(Σ0 + qψ + x)|Ft] = −1

a
E[e−a((p+q)ψ+x+z)|Ft], (7.10)

where again z denotes the market maker’s initial cash and p his initial security position.
By construction (F (x, q, t))0≤t≤T is a martingale. In the following, we will always
consider a version of F which is nice in the sense of Lemma 1.11. Similarly to the
power utility case, F possesses dynamics which are given by the following lemma.

Lemma 7.7. Under Assumptions 7.1, 7.2 and 7.3 let F be defined as in (7.10). Then
F possesses the representation

F (x, q, t) = F (x, q, 0) +

∫ t

0
g̃(x, q, s)dWs, (7.11)

where the stochastic field g̃ : R× [−p,∞)× [0, T ]→ L0(R) is given by

g̃(x, q, t) = σSt∂shx,q(t, St) = σ(p+ q)e−a(x+z)E[e−a(p+q)ψψ|Ft]

and the function hx,q : [0, T ]× R+ → R is given by

hx,q(t, s) = Et,s[u((p+ q)ψ + x+ z)] = −1

a
e−a(x+z)E[e−a(p+q)sET−t ]

Proof. The proof is analog to that of Lemma 1.18.

Because
E[e−a(pψ+z)|Ft] = e−azE[e−apψ|Ft], (7.12)

the preferences of agents with exponential utility functions display cash invariance in
the sense that the solution x to

E[u((p+ q)ψ + z + x))|Ft] = E[u(pψ + z)|Ft]

is the same as the solution x to

E[u((p+ q)ψ + x))|Ft] = E[u(pψ)|Ft],

i.e. x does not depend on z. In the model at hand, this implies that the market
maker’s risk preferences, and therefore the utility indifference price x, do not depend
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on his current cash position. Moreover, note that

g̃(x, q, t) = e−axg̃(0, q, t). (7.13)

In analogy to (1.23) in the power utility case, we define the family of maps At :

(−∞, 0)× [−p,∞)→ L0(R), t ∈ [0, T ],

(u, q) 7→ −1

a
log

(
u

E[u(Σ0 + qψ)|Ft]

)
=: x, (7.14)

which, as their equivalent in the power utility case, reconstruct the complementing
cash amount x for a given utility level u and transaction size q ≥ −p at time t ∈ [0, T ];
i.e. x = At(u, q) solves

u = E[u(Σ0 + qψ + x)|Ft].

These maps will serve as a tool in formulating the utility indifference principle in
continuous time.

Without encountering the dynamic domain issues that we were facing in the power
utility case, we define the market maker’s dynamic process of indirect utility (UQt )0≤t≤T

when the large investor is pursuing a trading strategy Q ≥ −p as the strong solution
to

UQt = E[u(Σ0)] +

∫ t

0
F (As(U

Q
s , Qs), Qs; ds), (7.15)

provided the solution exists and is uniquely determined. The nonlinear stochastic
integral, as before, is understood in the sense of [39] Section 3.2. The SDE (7.15) can
be viewed as the indifference principle in continuous time. In differential form this
equation reads

dUQt = F (At(U
Q
t , Qt), Qt; dt) = g(UQt , Qt, t)dWt, (7.16)

where
g(u, q, t) , g̃(At(u, q), q, t) (7.17)

and g̃ is defined as in Lemma 7.7. As in the power utility case, we will say that a
predictable process Q is an admissible trading strategy if Q is such that the SDE (7.15)
possesses a unique strong solution. However, unlike in the power utility case, it turns
out that we can state an easily verifiable sufficient condition to ensure the admissibility
of a trading strategy. This is done in Theorem 7.10 below.

The following proposition shows that (7.15) is really of a much simpler form,
namely a linear SDE.

Proposition 7.8. Let Assumptions 7.1, 7.2 and 7.3 hold. Then the SDE (7.15) can
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equivalently be written as

dUQt

UQt
= −aσ(p+Qt)EQ(p+Qt)[ψ|Ft]dWt (7.18)

with initial condition UQ0 = E[u(Σ0)].

Remark 7.9. The notation EQ(p+Qt)[ψ|Ft] is meant to denote the predictable process
(EQ(p+q)[ψ|Ft]|q=Qt)0≤t≤T given, at each time t ∈ [0, T ], by

EQ(p+q)[ψ|Ft]|q=Qt =
E[e−a(p+q)ψψ|Ft]|q=Qt
E[e−a(p+q)ψ|Ft]|q=Qt

.

By Lemma 1.11, there are smooth versions of these parametrised conditional expecta-
tions. In what follows, we will always consider these "nice" versions.

Proof of Proposition 7.8. Note first that, with regard to (7.13),

g(u, q, t) = e−aAt(u,q)g̃(0, q, t). (7.19)

Using the definitions of At and F , this allows us to rewrite (7.15), resp. (7.16), as

UQt = E[u(Σ0)] +

∫ t

0
UQs

g̃(0, Qs, s)

F (0, Qs, s)
dWs,

or, equivalently, as
dUQt

UQt
=
g̃(0, Qt, t)

F (0, Qt, t)
dWt.

Observe further that

g̃(0, q, t)

F (0, q, t)
= −aσ(p+ q)EQ(p+q)[ψ|Ft],

which finishes the proof.

Note that, by the arguments in the proof of Proposition 7.8, it is apparent that
the function g defined by (7.17) admits the representation

g(u, q, t) = −aσu(p+ q)EQ(p+q)[ψ|Ft]. (7.20)

Let us introduce some further notation. For two random variables α and β we
denote the Ft-conditional covariance with respect to a probability measure L by

CovL
t [α, β] = EL

t [αβ]− EL
t [α]EL

t [β],

whenever it is defined, and the Ft-conditional variance with respect to a probability
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measure L by
VarLt [α] = CovL

t [α, α].

We will denote by CovL
t,s and VarLt,s the corresponding quantities with respect to the

expectation EL
t,s.

Having identified (7.15) as a linear SDE, we are now ready to prove the following
theorem which shows that the set of admissible trading strategies includes all square
integrable predictable processes which are bounded from below by −p.

Theorem 7.10. Let Assumptions 7.1, 7.2 and 7.3 hold and let Q be a predictable
process with Qt ≥ −p for all t ∈ [0, T ] which satisfies∫ T

0
Q2
tdt <∞. (7.21)

Then Q is an admissible trading strategy.

Proof. We have to show the existence and uniqueness of solutions to the SDE (7.15),
which we saw can be expressed equivalently as (7.18). It is well known that a linear
SDE of this form possesses a unique strong solution if∫ T

0

(
−aσ(p+Qt)EQ(p+Qt)[ψ|Ft]

)2
dt <∞. (7.22)

For q = −p we have
EQ(p+q)[ψ|Ft] = E[ψ|Ft]

while for q > −p, using Lemma 1.11, we find

∂

∂q
EQ(p+q)[ψ|Ft] = −aVar

Q(p+q)
t [ψ] < 0,

so that EQ(p+q)[ψ|Ft] is decreasing in q. Hence, for q ∈ [−p,∞) we have

0 ≤ EQ(p+q)[ψ|Ft] ≤ E[ψ|Ft].

Using Assumption 7.2 and (7.21), it follows that∫ T

0
(p+Qt)

2EQ(p+Qt)[ψ|Ft]2dt ≤
∫ T

0
(p+Qt)

2E[ψ|Ft]2dt

≤ e2µT

∫ T

0
(p+Qt)

2S2
t dt <∞.

This implies (7.22) and finishes the proof.

Remark 7.11. As a direct consequence of Theorem 7.10 we know in particular that
for a simple trading strategy Q of form (7.7) the complementing cash process X is
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unique and therefore, by Proposition 7.6, necessarily of form (7.8).

7.5 Absence of arbitrage

The absence of arbitrage in the case of exponential utilities is obtained significantly
easier than in the power utility case. In [14] it was observed that the upper bound-
edness of the market maker’s utility function implies the absence of arbitrage as in
this case his utility process is a submartingale. We will show below that the same
argument can be used in our setting.

As in the beginning of Section 2.1, let GQ ∈ L0(FT ,R), defined by

UQT = u
(
Σ0 −GQ

)
,

denote the large investor’s profit and loss at maturity T upon pursuit of an admissible
trading strategy Q. As UQT = u(Σ0 +QTψ +XT ), GQ can be equivalently expressed
as

GQ = −(QTψ +XT ).

Furthermore, we define an arbitrage as in Definition 2.1.

Lemma 7.12. Let Assumption 7.1 hold. If for an admissible strategy Q the process of
indirect utility UQ of the market maker is a submartingale then Q is not an arbitrage.

Proof. Analog to the proof of Lemma 2.3.

Proposition 7.13. Let Assumptions 7.1, 7.2 and 7.3 hold and let Q be an admissible
strategy. Then Q is not an arbitrage.

Proof. Since the market maker’s utility function u is bounded from above, so is the
market maker’s process of indirect utility UQ. As UQ is a local martingale, the
boundedness implies that UQ is a submartingale and thus Lemma 7.12 implies that Q
is not an arbitrage.

We conclude this section by briefly summarising what we have found. A predictable
process (Qt)0≤t≤T is called an admissible trading strategy in our setting if it is such
that the SDE (7.15) possesses a unique strong solution U . Equation (7.15) serves as
the indifference principle in the context of continuous-time strategies. For Q to be
admissible it is sufficient that Qt ≥ −p for all t ∈ [0, T ] and that further∫ T

0
Q2
tdt <∞.

Moreover, if a strategy is admissible, it is not an arbitrage.
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The set of admissible strategies constitutes one of the crucial differences between
the exponential and power utility cases. While in the power utility case, the notion
of admissibility is essentially explained by “borrowing cash is not acceptable and
borrowing stocks is not acceptable”, the analog idea in the case of exponential utility
functions can be expressed as “borrowing cash is acceptable, borrowing stocks is not”.





Chapter 8

The wealth process of the large
investor

8.1 Wealth dynamics

While in the power utility case we found that there are admissible trading strategies
which do not allow the definition of a wealth process at all times t ∈ [0, T ], the
exponential case brings with it no such limitations. We define the wealth process of
the large investor (GQt )0≤t≤T when following an admissible trading strategy Q, at any
time t ∈ [0, T ], as the (unique) Ft-measurable solution GQt to

UQt = E[u(Σ0 −GQt )|Ft],

which can be rearranged to obtain

GQt =
1

a
log

(
UQt

E[u(Σ0)|Ft]

)
.

Note that GQT = −(QTψ +XT ) which is consistent with the definition of GQ in the
last section of the previous chapter and in the power utility case.

In order to describe the dynamics of the large investor’s wealth process it is
notationally convenient to introduce the family of functions Pt(·) : [0,∞) → [0,∞)

defined by
Pt(r) , rEQ(r)[ψ|Ft].

We can think of Pt(r) as the marginal price of the total stock position r, i.e. as
the money received if all stocks were sold off at their marginal (post-transaction)
price EQ(r)[ψ] (see Section 10.1 for details on marginal prices). The following lemma
describes the dynamics of the large investor’s wealth process GQ.

Lemma 8.1. Let Assumptions 7.1, 7.2 and 7.3 hold and let Q be an admissible trading
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strategy. Then the dynamics of the large investor’s wealth process GQ are given by

dGQt = aσ2

(
Pt(p+Qt)

(
Pt(p+Qt)− Pt(p)

)
+

1

2

(
Pt(p+Qt)− Pt(p)

)2)
dt

− σ
(
Pt(p+Qt)− Pt(p)

)
dWt. (8.1)

Proof. Recall the stochastic fields g̃ and F from Lemma 7.7 and g from (7.17). Define
the auxiliary process (G̃t)0≤t≤T by

G̃t ,
E[u(Σ0)|Ft]

UQt

and let further g̃(t) , g̃(0, 0, t) and Ft , F (0, 0, t) = E[u(Σ0)|Ft]. Then by Itô’s
quotient rule we have

dG̃t

Ft/U
Q
t

=

(
g̃(t)

Ft
− g(UQt , Qt, t)

UQt

)
dWt +

(
g(UQt , Qt, t)

2

(UQt )2
− g̃(t)g(UQt , Qt, t)

FtU
Q
t

)
dt.

An application of Itô’s Lemma to GQ = − 1
a log(G̃) then yields

dGQt =
1

a

(g(UQt , Qt, t)

UQt
− g̃(t)

Ft

)
g(UQt , Qt, t)

UQt
+

1

2

(
g(UQt , Qt, t)

UQt
− g̃(t)

Ft

)2
 dt

+
1

a

(
g(UQt , Qt, t)

UQt
− g̃(t)

Ft

)
dWt.

Using the cash invariance of exponential utility functions we compute

g̃(t)

Ft
=
σE[e−apψpψ|Ft]
− 1
aE[e−apψ|Ft]

= −aσPt(p) (8.2)

and similarly

g(UQt , Qt, t)

UQt
=
σE[e−a(p+Qt)ψ(p+Qt)ψ|Ft]
− 1
aE[e−a(p+Qt)ψ|Ft]

= −aσPt(p+Qt). (8.3)

Substituting these terms in the equation above yields

dGQt = aσ2

(
Pt(p+Qt)

(
Pt(p+Qt)− Pt(p)

)
+

1

2

(
Pt(p+Qt)− Pt(p)

)2)
dt

−σ
(
Pt(p+Qt)− Pt(p)

)
dWt.

Using the notation P̂Qt , Pt(p + Qt) − Pt(p), we can alternatively write the
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dynamics of the large investor’s wealth process as

dGQt = aσ2

(
Pt(p)P̂

Q
t +

3

2
(P̂Qt )2

)
dt− σP̂Qt dWt. (8.4)

We can see that in the case where, at a certain time t ∈ [0, T ), the large investor
liquidates his entire stock position and decides to trade no more, i.e. where Qs = 0

for all s ∈ (t, T ], we have P̂Qt ≡ 0 so that the dynamics of his wealth process vanish
and hence GQs is constant for s ∈ (t, T ], as one would expect.

8.2 Some observations regarding the large investor’s wealth
process

In this section we present several identities related to the large investor’s wealth
process along with their economic interpretations. As these are not central to our
analysis, the eager reader may skip this part and proceed directly to Chapter 9.

Denote by (U0
t )0≤t≤T , U0

t , E[u(Σ0)|Ft] = F (0, 0, t), the market maker’s utility
process in the absence of trading and recall the family of maps (At)t∈[0,T ] from (7.14).

Lemma 8.2. Let Assumptions 7.1, 7.2 and 7.3 hold. Then the P&L-process of
the large investor GQ upon pursuit of an admissible trading strategy Q, at any time
t ∈ [0, T ], is given by

GQt = −At(UQt , Qt) +At(U
0
t , Qt). (8.5)

Proof. We rearrange

E[u(Σ0 −GQt )|Ft] = E[u(Σ0 +Qtψ +Xt)|Ft]

and use the fact that Xt = At(U
Q
t , Qt) to obtain

GQt =
1

a
log

(
e−aAt(U

Q
t ,Qt)

E[u(Σ0 +Qtψ)|Ft]
E[u(Σ0)|Ft]

)
= −At(UQt , Qt)−

1

a
log

(
E[u(Σ0)|Ft]

E[u(Σ0 +Qtψ)|Ft]

)
.

The result then follows by the definition of

At(u, q) = −1

a
log

(
u

E[u(Σ0 + qψ)|Ft]

)
.
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Note that equivalent formulations of (8.5) are given by

GQt =
1

a
log

(
UQt

E[u(Σ0 +Qtψ)|Ft]

)
− 1

a
log

(
U0
t

E[u(Σ0 +Qtψ)|Ft]

)
and by

GQt =
1

a
log

(
F (Xt, Qt, t)

F (0, Qt, t)

)
− 1

a
log

(
F (0, 0, t)

F (0, Qt, t)

)
.

We can view (8.5) as a decomposition of the large investor’s profit and loss into the cash
component −At(UQt , Qt) which is the cumulative cash amount which he received up
to time t due to his trading with the market maker, and the position value component
At(U

0
t , Qt) =: x. This second component is the certainty equivalent x in the fictional

trade
E[u(Σ0 +Qtψ + x)|Ft] = E[u(Σ0)|Ft];

i.e. it is the indifference price of a transaction of size Qt at time t which the market
maker would quote if, at that time, he would be holding the endowment Σ0. Hence,
from the large investor’s point of view, (8.5) reads:

wealth = cash received already + value of my stock position.

Of course either or both of these amounts can be negative. The profit and loss of the
large investor at time t is zero if and only if these amounts have the same absolute
value but different signs, i.e. when the market indifference price of the large investor’s
stock position is equal to the amount that the large investor has paid so far – this
case corresponds to the situation where UQt = U0

t .

Note that by rearranging

E[u(Σ0 −GQt )|Ft] = UQt

we can alternatively express the large investor’s wealth purely in terms of the market
maker’s indirect process of utility, namely as

GQt =
1

a
log

(
UQt
U0
t

)
= −At(UQt , 0). (8.6)

Here, we express the profit and loss up to time t as the liquidation price of the stock
position Qt; i.e. −At(UQt , 0) is the cash amount which the large investor retains upon
closing his position in ψ at time t.

Remark 8.3. Lemma 8.2 together with (8.6) implies the identity

−A(UQt , 0) = −A(UQt , Qt) +A(U0
t , Qt), (8.7)
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of which both sides are equal to GQt by (8.5) and (8.6).





Chapter 9

Hedging and replication of options

In this chapter we investigate the attainability of a non-traded contingent claim
H ∈ L0(R). As in the power utility case, the large investor, starting from an initial
cash amount vrep, seeks to attain the position H at time T by trading the marketed
security ψ with the market maker.

We approach the question of the replicability of H from two different angles: First,
in Section 9.2, we use an argument which relies on tracking the market maker’s utility
process. Then, in Section 9.3, we present an alternative approach which is based on
the large investor’s wealth process.

We will see that we can guarantee the attainability of a path independent claim
of the form H = f(ψ) by imposing a simple condition on the claim’s payoff function
f . In particular, this allows us to prove the replicability of (limited positions of) call-
and put options.

9.1 Acceptable and attainable contingent claims

As in the power utility case, we introduce the following set of eligible candidates for
attainable claims.

Definition 9.1. For any time t ∈ [0, T ], we define the set of acceptable contingent
claims

Ht ,
{
H ∈ L0(R)|∃vt ∈ L0(Ft,R) s.t. E[u(Σ0 −H + vt)|Ft] = E[u(Σ0)|Ft]

}
and we say that a claim H is acceptable at time t ∈ [0, T ] if it belongs to the set Ht.

The quantity vt in the above definition can be viewed as the market indifference
price of the claim H at time t. The following lemma gives a more easily verifiable
condition for a claim H to belong to the set Ht. Moreover, it shows that a claim which
is acceptable at one time remains acceptable at any time thereafter. In particular, a
claim which is acceptable at time zero remains acceptable at all times.
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Lemma 9.2. Let Assumptions 7.1, 7.2 and 7.3 hold and let t0 ∈ [0, T ]. Then H ∈ Ht0
if and only if

EQ(p)[eaH |Ft0 ] <∞.

Moreover, in that case, we have H ∈ Ht for all t ∈ [t0, T ].

Proof. Let H ∈ Ht0 . Rearranging the equation in the definition of Ht0 yields

vt0 =
1

a
log

(
E[e−a(pψ−H)|Ft0 ]

E[e−apψ|Ft0 ]

)
=

1

a
log
(
EQ(p)[eaH |Ft0 ]

)
(9.1)

which implies that, firstly, vt0 > −∞ and that, secondly, vt0 < ∞ if and only if
EQ(p)[eaH |Ft0 ] <∞. In that case,

∞ > EQ(p)[eaH |Ft0 ] = EQ(p)
[
EQ(p)[eaH |Ft]

∣∣Ft0] ∀t ≥ t0,

which implies the second assertion.

As of now, we will consider the set H , H0 which, by the previous lemma, contains
those claims which are acceptable at all times. Moreover, we will call a contingent
claim H ∈ L0(R) acceptable, if it belongs to the set H. Note that the situation here
differs from the case of power utilities where the acceptability of a claim at a time t0
does not imply its acceptability at any time t > t0 thereafter.

Recalling Definition 3.2 we will call a claim H ∈ H attainable if there is an
admissible strategy (QHt )0≤t≤T such that almost surely

vrep +GQ
H

T = H

for some cash amount vrep ∈ R, where GQH denotes the large investor’s wealth process
which we introduced in the previous chapter. In this case, we refer to vrep as a
replication price of H and to QH as a replicating strategy.

In order to derive a tractable condition for the attainability of claims, we will
restrict most of our analysis to those claims in H which are path independent with
sufficiently integrable payoff functions. To this end, we introduce the set

H′ , {H ∈ H | H = f(ψ), f ∈ R},

where R, as in Part I, denotes the class of Lipschitz continuous functions on R.

In the following two sections we will introduce two different approaches to charac-
terising the set of attainable claims belonging to H′.
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9.2 Replication via the market maker’s utility process

In this section we will replicate an option via replicating the market maker’s process
of indirect utility. Proposition 9.3 will justify this approach by showing that any claim
for which this can be done is attainable. In addition to the notion of attainability
introduced above, we will call a claim H ∈ H utility replicable if there exists an
admissible trading strategy (QHt )0≤t≤T such that almost surely

UHt = UQ
H

t ∀t ∈ [0, T ],

where (UHt )0≤t≤T ,

UHt , E[u(Σ0 −H + v0)|Ft], 0 ≤ t ≤ T, (9.2)

as in Part I, denotes the market maker’s dynamic utility process induced by the claim
H and v0 denotes the market indifference price of H at time zero; i.e. v0 is such that

E[u(Σ0 −H + v0)] = E[u(Σ0)].

For power utilities the concepts of attainability and utility replicability coincide while
for exponential utility functions we know merely that any utility replicable claim is
attainable, as the following proposition shows. This, however, is sufficient for our
purposes.

Proposition 9.3. Let Assumptions 7.1, 7.2 and 7.3 hold. Consider a contingent
claim H ∈ H and let v0 denote its utility indifference price at time zero. If H is utility
replicable with replicating strategy Q then

v0 +GQT = H.

In particular this means that H is attainable with replicating strategy QH = Q and
replication price vrep = v0.

Proof. The proof is analog to the proof of part (i) of Proposition 3.3.

Utility replicability constitutes a sufficient condition for the attainability of a claim
H ∈ H, albeit not a very tractable one. Theorem 9.5 below provides a characterisa-
tion of the set of utility replicable claims inH′ by providing an easily verifiable criterion.

Before we proceed, observe that the market maker’s dynamic utility process UH

induced by a claim H ∈ H′, using Assumptions 7.2 and 7.3, can be written as

UHt = uH(t, s)|s=St (9.3)
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at any time t ∈ [0, T ], where the function uH ∈ C1,2 is given by

uH(t, s) = Et,s[u(pψ + z −H + v0)]. (9.4)

By Assumption 7.2, this expression can be further simplified to

uH(t, s) = E[u(psET−t + z − f(sET−t) + v0)].

The following remark gives the dynamics of UH which we will use in the proofs of
Theorems 9.5 and 9.12. In order to state it, we recall the notation ∂sEt,s[f(ψ)]|s=St
introduced subsequent to Lemma 1.12.

Remark 9.4. Under Assumptions 7.1, 7.2 and 7.3 , by the martingale representation
theorem, the process UH , at any time t ∈ [0, T ], can be expressed as

UHt = UH0 +

∫ t

0
iHs dWs, (9.5)

for some predictable process (iHt )0≤t≤T with∫ T

0
(iHt )2dt <∞.

Moreover, if H = f(ψ) ∈ H′ is path independent with Lipschitz continuous f , an
application of Itô’s Lemma to UHt = uH(t, St) from (9.4) yields

iHt = σSt∂su
H(t, s)|s=St = σSt∂sEt,s[u(Σ0 −H + v0)]|s=St . (9.6)

As f ∈ R, using Lemma 1.12, this expression can also be written as

iHt = σE[u′(Σ0 − f(ψ) + v0)(p− f ′(ψ))ψ|Ft]. (9.7)

The following theorem provides the desired condition to ensure that a claim H is
utility replicable and hence attainable.

Theorem 9.5. Let Assumptions 7.1, 7.2 and 7.3 hold and let H ∈ H′. Then H = f(ψ)

is utility replicable if and only if the function

s 7→ ps− f(s)

is increasing on (0,∞).

We will prove this theorem with the help of the following three lemmas.

Lemma 9.6. Let ψ denote a lognormally distributed random variable. Then

lim
θ→∞

{
θ
E[e−θψψ]

E[e−θψ]

}
=∞. (9.8)
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Even though it is well known that E[e−θψψ]/E[e−θψ]→ 0 for θ →∞, the rate of
this convergence is not clear. In particular, the proof of the seemingly simple assertion
of Lemma 9.6 is surprisingly lengthy and therefore deferred to Section 12.1. There, we
will also see that the statement of Lemma 9.6 is equivalent to

lim
θ→∞

{
θ
LX(eσ

2
θ)

LX(θ)

}
=∞, (9.9)

where LX(r) , E[e−rX ] denotes the Laplace transform of a lognormally distributed
random variable X = eσN+µ, N ∼ N (0, 1). The result, therefore, possesses an interest
of its own as it sheds light on the properties of the not very well understood Laplace
transform of the lognormal distribution.

The next lemma establishes the range of the function g from (7.17) by which we
express the diffusion term in the dynamics of the market maker’s utility process UQ.

Lemma 9.7. Let Assumptions 7.1, 7.2 and 7.3 hold. Let further u < 0, t ∈ [0, T ]

and let g be the function defined in (7.17). Then the map g(u, ·, t) : [−p,∞) → R
possesses the range

g(u, [−p,∞), t) = [0,∞).

Proof. From (7.20) we know that g admits the representation

g(u, q, t) = −aσu(p+ q)EQ(p+q)[ψ|Ft].

For q = −p, we have g(u, q, t) = 0. Moreover, since −u > 0, for q > −p, we have
g(u, q, t) > 0. By Lemma 9.6, using the definition of Q(·) and denoting θ , a(p+ q),
we obtain

lim
q→∞

{
a(p+ q)EQ(p+q)[ψ|Ft]

}
= lim

θ→∞

{
θ
E[e−θsET−tsET−t]

E[e−θsET−t ]
|s=St

}
=∞.

Since g(u, ·, t) is continuous and non-negative on [−p,∞), it follows that its range is
given by the interval [0,∞).

Lemma 9.8. Let Assumptions 7.1, 7.2 and 7.3 hold. Let further H ∈ H′ and let uH

be as in (9.4). Then H is utility replicable if and only if the function uH satisfies

0 ≤ ∂suH(t, s) <∞ ∀t ∈ [0, T ), s > 0. (9.10)

Proof. Let H ∈ H be utility replicable. Then there exists an admissible strategy Q
such that

UQt = UHt ∀t ∈ [0, T ].
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The dynamics of UQ are given by (7.16) as

dUQt = g(UQt , Qt, t)dWt

and those of UH are given in Remark 9.4 as

dUHt = σSt∂su
H(t, St)dWt.

It follows that uH satisfies

σSt∂su
H(t, St) = g(uH(t, St), Qt, t) P⊗ dt− a.e., (9.11)

which implies that

σs∂su
H(t, s) = g(uH(t, s), Qt, t) ∀t ∈ [0, T ), s > 0.

As Q is admissible, we know that Qt ∈ [−p,∞) for all t ∈ [0, T ]. Hence, by Lemma
9.7,

0 ≤ ∂suH(t, s) <∞ ∀t ∈ [0, T ), s > 0.

Assume now that (9.10) holds. Since g = g(u, q, t) is continuous in q and, for any
t ∈ [0, T ], u = UHt , its range for varying q is given by [0,∞) (see Lemma 9.7), there
exists a predictable process Q which solves the equation

g(UHt , Qt, t) = σSt∂su
H(t, St)

at any time t ∈ [0, T ). Hence, Q is an admissible trading strategy satisfying

dUQt = dUHt ∀t ∈ [0, T )

and consequently UQt = UHt for all t ∈ [0, T ], so that H is utility replicable.

We proceed to prove Theorem 9.5.

Proof of Theorem 9.5. By Lemma 9.8 we know that H = f(ψ) is utility replicable
if and only if (9.10) holds. As f is differentiable almost everywhere with bounded
derivative, by Lemma 1.12 we obtain

∂su
H(t, s) = ∂sEt,s[u(pψ − f(ψ) + z + v0)]

=
1

s
Et,s[u′(pψ − f(ψ) + z + v0)(p− f ′(ψ))ψ].

Hence, as u′ > 0 and since |f ′| is bounded, it is clear that (9.10) holds if the map
s 7→ ps− f(s) is increasing on (0,∞).
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Now assume, conversely, that (9.10) holds. As (∂su
H(t, St))0≤t≤T is a continuous

martingale, for t→ T , we have

∂su
H(t, St)

a.s.−−→ ∂su
H(T, ST )

and hence
∂su

H(T, ST ) = u′(pψ − f(ψ) + z + v0)(p− f ′(ψ)) ≥ 0.

As u′ > 0 it follows that p− f ′(s) ≥ 0 for almost all s ∈ (0,∞) which implies that the
map s 7→ ps− f(s) is increasing on (0,∞).

By similar arguments to those brought forward in Section 3.2, we can use our
observations from Lemma 9.7 about the range of g to obtain a necessary and sufficient
condition for the utility replicability of acceptable claims H ∈ H which are not
necessarily path independent.

Proposition 9.9. Let Assumptions 7.1, 7.2 and 7.3 hold and let H ∈ H. Let further
g be as in (7.17), UH as in (9.2) and iH as in Remark 9.4. Then H is utility replicable
if and only if there exists an admissible trading strategy QH such that for all t ∈ [0, T ]

iHt = g(UHt , Q
H , t). (9.12)

Moreover, such a strategy QH exists if and only if for all t ∈ [0, T ]

0 ≤ iHt <∞. (9.13)

Proof. By definition the claim H is utility replicable with replicating strategy QH and
replication price vrep = v0 if and only if

UQ
H

t = UHt ∀t ∈ [0, T ]. (9.14)

By Lemma 7.7 and Remark 9.4, (9.14) is equivalent to

iHt = g(UHt , Q
H
t , t) P⊗ dt− a.e.,

which proves the first assertion. By Lemma 9.7 the range of the map g(UHt , ·, t) :

[−p,∞)→ R is given by [0,∞), which proves the second assertion.

We conclude this section by noting that, in view of Proposition 9.3, a utility
replicable claim is, of course, attainable. Theorem 9.5 therefore provides a sufficient
condition for the attainability of contingent claims H ∈ H′; Proposition 9.9 provides
one for contingent claims H ∈ H.
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9.3 Replication via the large investor’s wealth process

In the previous section we derived a condition which is sufficient for the attainability of
a path independent claim H = f(ψ) by replicating the market maker’s utility process
induced by H. Alternatively, we can approach the replication of H by considering the
large investor’s wealth process GQ.

This approach yields a criterion for replicability which is implied by Theorem 9.5
and therefore redundant from a mathematical point of view. However, this criterion
is obtained without the detour of utility replicability and we include it in order to
provide an additional perspective on replication, namely one in terms of the large
investor’s wealth dynamics rather than the market maker’s utility dynamics.

For a claim H ∈ H we introduce the process (GHt )0≤t≤T , defined at any time
t ∈ [0, T ] as the (unique) Ft-measurable solution to

UHt = E[u(Σ0 −GHt )|Ft],

which, by definition of UH , is given by

GHt =
1

a
log

(
E[u(Σ0 + v0 −H)|Ft]

E[u(Σ0)|Ft]

)
. (9.15)

Here, as in the definition of UH , v0 denotes the indifference price of H at time zero.
The process GH measures the wealth that the large investor would hold if he had
purchased the claim H from the market maker at time zero in exchange for the cash
amount v0. The large investor’s aim is to replicate GH via trading only in the marketed
security ψ; i.e. he needs to find an admissible trading strategy Q such that almost
surely

GHT = GQT .

To this end, let us investigate the dynamics of GH .

Lemma 9.10. Let Assumptions 7.1, 7.2 and 7.3 hold and let H ∈ H′. Recall the
notation iH from Remark 9.4 and let g̃t , F (0, 0, t). Then

dGHt =
1

a

(
iHt
UHt

(
iHt
UHt
− g̃t
Ft

)
+

1

2

(
iHt
UHt
− g̃t
Ft

)2
)
dt+

1

a

(
iHt
UHt
− g̃t
Ft

)
dWt. (9.16)

Proof. Define the auxiliary process (G̃t)0≤t≤T ,

G̃Ht ,
E[u(Σ0)|Ft]

E[u(Σ0 −H + v0)|Ft]
, 0 ≤ t ≤ T.
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By Itô’s quotient rule we obtain

dG̃Ht
G̃t

=

(
g̃t
Ft
− iHt
UHt

)
dWt +

(
(iHt )2

(UHt )2
− g̃ti

H
t

FtUHt

)
dt.

An application of Itô’s formula to GH = − 1
a log(G̃H) yields the desired result.

For notational convenience we introduce the probability measure H associated
with a claim H ∈ H′, defined by

dH
dP

,
u′(pψ −H)

E[u′(pψ −H)]
.

Remark 9.11. If H = f(ψ) ∈ H′ then, in view of Remark 9.4 and Lemma 1.11 and
since the market maker’s utility function u satisfies u′(·) = −au(·), we have

iHt
UHt

= −aσEH[pψ − ψf ′(ψ)|Ft] ∀t ∈ [0, T ]. (9.17)

We are now ready to state and prove a condition which ensures that a claim
H ∈ H′ is attainable.

Theorem 9.12. Let Assumptions 7.1, 7.2 and 7.3 hold and let H = f(ψ) ∈ H′. If

0 ≤ EH[pψ − ψf ′(ψ)|Ft] < ∞ ∀t ∈ [0, T ] (9.18)

then H is attainable.

Proof. Let (9.18) hold. At time zero, for any admissible trading strategy Q, we have

UH0 = UQ0 = E[u(Σ0)]

so that GH0 = GQ0 . We will now construct an admissible trading strategy Q such that

dGHt = dGQt ∀t ∈ [0, T ] (9.19)

and consequently GQT = GHT .

Recall the predictable field Pt(·) introduced prior to Lemma 8.1. Observe that
Pt(0) = 0 and that, by Lemma 9.6,

lim
q→∞

Pt(p+ q) =∞.

The continuity and non-negativity of the map q 7→ Pt(p+ q) on [−p,∞) thus imply
that its range is given by [0,∞). Hence, by (9.18), it follows that there exists a



120 Chapter 9. Hedging and replication of options

predictable process Q which satisfies

EH[pψ − ψf ′(ψ)|Ft] = Pt(p+Qt) (9.20)

at all times t ∈ [0, T ].
Comparing the terms for dGQ and dGH given in (8.1) and (9.16), respectively, we

find that for our choice of Q, in view of Remark 9.11, they are identical.

9.4 Hedging call- and put options

In this section we will show that call- and put options are utility replicable and
therefore attainable in our model. For the sake of convenience we first state the
following corollary to Theorem 9.5 which simplifies the ensuing proofs in this section.

Corollary 9.13. Let Assumptions 7.1, 7.2 and 7.3 hold and let H ∈ H′. Then a
position ξ ·H, ξ ∈ R, is utility replicable if and only if the function

s 7→ ps− ξ · f(s)

is increasing on (0,∞).

Proof. The result follows immediately upon considering H̃ , ξf(ψ) in Theorem
9.5.

Using this result, we easily obtain the attainability of (limited positions of) call
options and put options presented in the following two corollaries.

Corollary 9.14. Let Assumptions 7.1, 7.2 and 7.3 hold and let H = (ψ−K)+ denote
a call option. Then a position ξH is attainable if and only if ξ ≤ p.

Proof. Consider the payoff function f(s) = (s−K)+ of a call option. We can see that

s 7→ ps− ξf(s) = ((p− ξ)s+ ξK)1{s≥K} + ps1{s<K}

is increasing on (0,∞) if and only if ξ ≤ p. The result then follows from Corollary
9.13.

Corollary 9.15. Let Assumptions 7.1, 7.2 and 7.3 hold and let H = (K−ψ)+ denote
a put option. Then a position ξH is attainable if and only if ξ ≥ −p.

Proof. Consider the payoff function f(s) = (K − s)+ of a put option. We can see that

s 7→ ps− ξf(s) = ((p+ ξ)s− ξK)1{s≤K} + ps1{s>K}

is increasing on (0,∞) if and only if ξ ≥ −p. The result then follows from Corollary
9.13.
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Note that for the attainability of a position ξH of calls or puts, respectively, the
bounds stated in the two corollaries above are both sufficient and necessary: No posi-
tion of calls or puts not satisfying these bounds can be replicated. This is immediately
clear from the fact that positions violating these bounds are not acceptable (in the
sense of Definition 9.1).

We observe that the number of call options which can be replicated in this model
is bounded from above by the market maker’s initial security position p while the
number of put options that can be replicated is bounded from below by −p. In other
words, the market maker’s risk preferences imply that he would agree to write an
arbitrarily large number of put options or buy an arbitrarily large number of call
options while he would write a maximum of p call options or buy a maximum of p put
options, respectively, were he to engage in the trading of options at all.

This phenomenon is due to the fact that in our model the market maker is willing
to “borrow cash to buy stocks” while he will never “short stocks to obtain cash”. The
former behaviour, of course, is akin to the writing of a number of put options whose
total liability lies beyond the coverage by his initial cash z, while the latter is akin to
the writing of a number of call options which surpasses his initial stock position p.

Thus, the one-sided boundedness of attainable call- and put positions is a result of
the market maker’s refusal to take total short positions in the traded asset ψ and is
therefore closely related to the one-sided boundedness of admissible trading strategies
as detailed in Section 7.4.

9.5 A BSDE view of the hedging problem

Our analysis of the attainability of contingent claims was based on keeping track of
the market maker’s level of expected utility. Alternatively, it is possible to formulate
the question of the attainability of a contingent claim H ∈ H as a BSDE problem.
Recall the processes (Pt(r))0≤t≤T and (P̂Qt )0≤t≤T , defined by

Pt(r) , rEQ(r)[ψ|Ft]

and P̂Qt , Pt(p+Qt)− Pt(p), respectively, which were introduced in Section 8.1. Let

Zt , σP̂Qt , 0 ≤ t ≤ T, (9.21)

and
f(t, Zt) , aσ2(Pt(p)Zt + 3

2Z
2
t ). (9.22)

Then, in view of (8.4), the fact that Q is a hedge for H can be expressed as

Yt = YT −
∫ T

t
f(s, Zs)ds+

∫ T

t
ZsdWs, YT = H. (9.23)
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This equation can be interpreted as a quadratic BSDE and the existence of a solution
(Y, Z) to (9.23) can be obtained with e.g. the arguments in [38]. However, the existence
of a solution to the BSDE is not the main concern: The actual problem consists in
showing that, given a solution (Y,Z) to (9.23), there exists an admissible strategy
Q which "induces" Z in the way of (9.21). Hence, the BSDE formulation of the
problem of attainability is merely another way to express a question which we have
answered above by keeping track of the market maker’s utility process and using Itô’s
representation theorem.

This concludes our investigation of the attainability of contingent claims. The
question that follows naturally and that we shall devote our attention to in the next
chapter is how the replication of a claim is accomplished in our model.



Chapter 10

Asymptotic analysis of price
processes and replicating strategies

In the previous chapter we derived conditions which guarantee that a path independent
claim H is attainable. However, the corresponding replicating strategy QH was given
only implicitly and it seems that no closed-form solution for QH exists; not even in
the case where H is, e.g., a call option.

Hence, in order to investigate hedging strategies, we will conduct an asymptotic
analysis where we consider small positions of an attainable contingent claim H in
order to calculate first and second order approximations to the hedging strategy QH .
We will see that the first order term, as in the power utility case, can be interpreted
as the replicating strategy in a liquid setting while the second order term can again
be viewed as a liquidity correction to the hedge ratio.

It turns out that the first and second order approximations are both structurally
similar to their counterparts in Part I. However, in the case of exponential utilities,
the market maker’s absolute risk aversion

R(Σ0) = −u
′′(Σ0)

u′(Σ0)
= a

is constant, which, together with the cash invariance of exponential utilities, allows
for significant simplifications of the expansions. In particular, we will see that the
measures Q and R, which were introduced in the power utility case, coincide in the
exponential utility setting. This will allow us to express the second order approxima-
tion to the replicating position in a shorter and more intuitive form.

In Section 10.1 we briefly discuss marginal prices and liquidity premia for claims
as well as for the traded security ψ as these will be needed for our asymptotic analysis
of hedging strategies in Section 10.2.

Note that, as yet, the results in this chapter as well as the comparative statics in

123
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the following chapter are conditional on the validity of a monotonicity assertion related
to the Laplace transform of the lognormal distribution which we state as Conjecture 2
further below. Although this conjecture is strongly supported by numerical evidence,
an analytical proof has yet to be found.

10.1 Marginal prices for contingent claims and for the
traded security

In this section we will determine the prices that occur when small quantities of
assets and contingent claims are traded. We compute the first and second order
approximations to the indifference prices of the traded security ψ and of acceptable
contingent claims H. While it is well known that the first order approximation is
the marginal price of the respective financial instrument, we will interpret the second
order approximation as a (nonlinear) liquidity correction arising in our model.

Recall the marginal indifference pricing measure Q(·) introduced in Section 7.4.
This measure owes its name to the fact that the marginal prices of claims H and of
the traded security ψ are given as their respective expected payoffs under the measure
Q(p). As we will be dealing exclusively with Q(p) for the remainder of this chapter,
we will omit the dependence on p and merely write Q.

Throughout this chapter we will mostly consider contingent claims belonging to
the set

H′′ , {H ∈ H′ | εH is utility replicable ∀ε ∈ [0, 1]}.

As a consequence of Corollary 9.13 it is immediately clear that positions εH, 0 ≤ ε ≤ 1,
of utility replicable claims are utility replicable, so that we can write H′′ equivalently
as

H′′ = {H ∈ H′ | H is utility replicable}.

Let now H ∈ H be a contingent claim. Then the utility indifference price of a
number of claims εH at time t ∈ [0, T ] is given by the unique cash amount vεt (H)

which solves
E[u(Σ0)|Ft] = E[u

(
Σ0 − εH + vεt (H)

)
|Ft].

Solving this equation for vεt (H) yields the familiar expression

vεt (H) =
1

a
log

(
E[u(Σ0 − εH)|Ft]

E[u(Σ0)|Ft]

)
=

1

a
log

(
E[e−a(pψ−εH)|Ft]

E[e−apψ|Ft]

)
. (10.1)

Note that v0
t (H) = 0 and that v1

0(H) = v0 is the market indifference price of H at
time zero. For notational convenience we will merely write vεt rather than vεt (H) from
now on. The following proposition gives the first and second order derivatives of vεt
with respect to ε.
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Proposition 10.1. Under Assumptions 7.1, 7.2 and 7.3 let H ∈ H′′. Let further
(vεt )0≤t≤T denote the stochastic field defined by (10.1). Then there exists a version of
vε such that for any ω ∈ Ω, t ∈ [0, T ] the function

ε 7→ vεt (ω),

which maps a quantity ε of the contingent claim H to its market indifference price, is
twice continuously differentiable on (0, 1). Furthermore, its derivatives can be extended
continuously to ε = 0 and ε = 1 and in ε = 0 they are given by

∂εv
ε
t |ε=0 =

E[u′(Σ0)H|Ft]
E[u′(Σ0)|Ft]

= EQ
t [H] (10.2)

and

∂2
εv
ε
t |ε=0 = −E[u′′(Σ0)(∂εv

ε
t |ε=0 −H)2|Ft]

E[u′(Σ0)|Ft]
= aVarQt [H]. (10.3)

Proof. Since H ∈ H′′, by Lemma 1.11 we can choose a version of vε which has
twice continuously differentiable sample paths. Differentiating vεt once and twice,
respectively, with respect to ε yields

∂εv
ε
t =

E[e−a(pψ−εH)H|Ft]
E[e−a(pψ−εH)|Ft]

,

and

∂2
εv
ε
t = a

(
E[e−a(pψ−εH)H2|Ft]
E[e−a(pψ−εH)|Ft]

− E[e−a(pψ−εH)H|Ft]2

E[e−a(pψ−εH)|Ft]2

)
.

The dominated convergence theorem implies the existence of continuous extensions
of these identities to the boundary points ε = 0 and ε = 1. The desired expressions
(10.2) and (10.3) then follow for ε = 0.

The first order approximation ∂εvεt |ε=0 is the marginal utility indifference price
of H at time t while the second order approximation ∂2

εv
ε
t |ε=0 can be viewed as the

(nonlinear) liquidity correction that arises in our model.

We now turn our attention to the marginal price of the traded security ψ. In
accordance with our convention of viewing transfers of both the traded security ψ
and the complementing cash from the point of view of the market maker, we consider
H = −ψ in (10.1) which thus becomes

vεt (−ψ) =
1

a
log

(
E[u(Σ0 + εψ)|Ft]

E[u(Σ0)|Ft]

)
=

1

a
log

(
E[e−a(p+ε)ψ)|Ft]
E[e−apψ|Ft]

)
. (10.4)

In order to emphasize the difference between the marginal prices of H and ψ, we will
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denote the marginal price of the traded security ψ by

xεt , vεt (−ψ).

Analog arguments to those presented in the proof of Proposition 10.1 yield

∂εx
ε
t |ε=0 = −E[u′(Σ0)ψ|Ft]

E[u′(Σ0)|Ft]
= −EQ

t [ψ] (10.5)

and

∂2
εx

ε
t |ε=0 = −E[u′′(Σ0)(∂εx

ε
t |ε=0 + ψ)2|Ft]

E[u′(Σ0)|Ft]
= aVarQt [ψ] (10.6)

for the first and second order derivatives of xεt . Again, the first order term xεt is the
marginal price of the traded security ψ and the second order term ∂2

εx
ε
t |ε=0 can be

interpreted as a liquidity correction for the price of ψ.

The liquidity correction terms (10.3) and (10.6) both take the shape of a variance
and are therefore positive. This means that the market maker will pay less for the
acquisition, respectively charge more for the sale, of an additional ε shares than the
marginal price suggests. The premium that he charges for taking on additional risk
increases linearly in the variance of ψ (under the marginal indifference pricing measure
Q) and in his risk aversion a.

Remark 10.2. In Chapter 4 we introduced the measure R with Radon-Nikodym density
dR , u′′(Σ0)/E[u′′(Σ0)] dP in order to express the analogs of the second order terms
(10.3) and (10.6). For exponential utilities we have

dR
dP

=
u′′(Σ0)

E[u′′(Σ0)]
=

u′(Σ0)

E[u′(Σ0)]
=
dQ
dP

,

so that the measure R coincides with Q.

Remark 10.3. By an analog argument to the one presented in Remark 4.5, the state
process (St)0≤t≤T from Assumption 7.2 retains the Markov property under the marginal
indifference pricing measure Q.

10.2 Liquidity correction for hedge ratios

As in the power utility case, our aim is to compute the first and second order
approximations to the replicating position QεHt for a small position of claims εH ∈ H′′.
More precisely, we will compute the terms ∂εQεHt |ε=0 and ∂2

εQ
εH |ε=0 in the Taylor

expansion

QεHt = ε∂εQ
εH
t |ε=0 +

ε2

2
∂2
εQ

εH |ε=0 + o(ε2). (10.7)

Theorem 10.8 below shows that the first and second order approximations ∂εQεHt |ε=0

and ∂2
εQ

εH |ε=0 are of a similar form to that in the power utility case.
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Before we proceed to state and prove the theorem, we establish several preparatory
lemmas. The first lemma shows that the important map g from (7.17) is sufficiently
differentiable for our purposes and strictly increasing in the order size q. Its proof
relies on the validity of the following conjecture.

Conjecture 2. Let ψ be a lognormally distributed random variable. Let further

k2(θ) , θ
E[e−θψψ]

E[e−θψ]
.

Then
k′2(θ) > 0 ∀θ ≥ 0.

Despite being strongly supported by numerical evidence, this conjecture has not
yet been proven analytically. As a consequence, the validity of the expansions of
Theorem 10.8 and of all related results is yet conditional on the validity of Conjecture
2. For a more detailed discussion of this conjecture see Section 12.2.

Lemma 10.4. Let Assumptions 7.1, 7.2 and 7.3 hold and assume that Conjecture 2
is true. Let g be as in (7.17). Then for any ω ∈ Ω, u ∈ (−∞, 0) and t ∈ [0, T ] the
map

g(u, ·, t, ω) : [−p,∞)→ [0,∞), q 7→ g(u, q, t, ω)

is twice continuously differentiable on the interior of its domain and its derivatives can
be extended continuously to the boundary point q = −p, where the first order derivative
takes the value

∂qg(u, q, t, ω)|q=−p = −aσuE[ψ|Ft](ω). (10.8)

Moreover, g(u, ·, t) is strictly increasing.

Proof. By (7.17), (7.13) and (7.14) we have

g(u, q, t) = g̃(At(u, q), q, t) = e−aAt(u,q)g̃(0, q, t),

where
At(u, q) = −1

a
log

(
u

E[u(Σ0 + qψ)|Ft]

)
.

By Lemma 1.11 the sample paths Aωt (u, q) and g̃(0, q, t, ω) are twice continuously
differentiable in q which implies that the map g(u, ·, t, ω) is twice continuously differ-
entiable. By the dominated convergence theorem the derivatives can be continuously
extended to the boundary point q = −p. Using (7.20), we compute

∂qg(u, q, t) = −aσu
(
EQ(p+q)
t [ψ]− a(p+ q) Var

Q(p+q)
t [ψ]

)
,

which, for q = −p, yields (10.8). It is left to show that g(u, q, t) is strictly increasing
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in q. By (7.20) we know that g can be expressed as

g(u, q, t) = −aσu(p+ q)EQ(p+q)[ψ|Ft] = −aσu(p+ q)
E[e−a(p+q)ψψ|Ft]
E[e−a(p+q)ψ|Ft]

.

Since −σu > 0, denoting θ , a(p+q), it follows that g = g(u, q, t) is strictly increasing
in q if and only if

k2(θ) , θ
E[e−θψψ|Ft]
E[e−θψ|Ft]

is strictly increasing in θ. This statement, in turn, is implied by Conjecture 2.

The next lemma shows that the replicating position QεHt for a small number of
claims is differentiable with respect to ε.

Lemma 10.5. Let Assumptions 7.1, 7.2 and 7.3 hold and assume that Conjecture 2
is true. Let further H = f(ψ) ∈ H′′ and let (QεHt )0≤t≤T denote the replicating strategy
for εH. Then there exists a version of QεH such that for each ω ∈ Ω, t ∈ [0, T ] the
function

ε 7→ QεHt (ω)

is twice continuously differentiable on (0, 1). Furthermore, the first and second order
derivatives can be continuously extended to the boundary point ε = 0.

Proof. We saw in Proposition 9.9 that, at any time t ∈ [0, T ], QεHt is the utility-
replicating position for εH if and only if QεHt satisfies

iεHt = g(U εHt , QεHt , t),

where
iεHt = σE[u′(Σ0 − εf(H) + vε0)(p− εf ′(ψ))ψ|Ft]

is as in (9.7). By Proposition 10.1 we know that there exists a version of vεH0 such
that for any ω ∈ Ω the map ε 7→ vεH0 (ω) is twice continuously differentiable which,
together with Lemma 1.11, implies that there exists a version of iεH such that for any
ω ∈ Ω, t ∈ [0, T ], the map ε 7→ iεHt (ω) is twice continuously differentiable.

For fixed u ∈ [0,∞) and t ∈ [0, T ] Lemma 10.4 implies that the map q 7→ g(u, q, t)

is twice continuously differentiable as well as strictly increasing and therefore 1-to-1.
Hence, there exists a version of QεH which is such that, by the implicit function
theorem, the map ε 7→ QεHt (ω) is twice continuously differentiable on [0, 1].

The next preparatory lemma provides representations for the first and second
order approximations to the complementing cash position XQεH

t for the replicating
position QεHt .

Lemma 10.6. Let Assumptions 7.1, 7.2 and 7.3 hold, let H ∈ H′′ and assume
that Conjecture 2 is true. Let (QεHt )0≤t≤T be a replicating strategy for εH and let
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(XQεH

t )0≤t≤T denote its complementing cash-balance process. Let further vεt and xεt ,
as defined in Section 10.1, denote the indifference prices of claim H and underlying ψ,
respectively. Then there exists a version of XQεH such that for any ω ∈ Ω, t ∈ [0, T ],
the map

ε 7→ XQεH

t (ω)

is twice continuously differentiable on (0, 1). Furthermore, its first and second order
derivatives can be continuously extended to the boundary points ε = 0 and ε = 1. In
ε = 0, they are given by

∂εX
QεH

t |ε=0 = − (∂εv
ε
t |ε=0 − ∂εvε0|ε=0) + ∂εx

ε
t |ε=0∂εQ

εH
t |ε=0

and

∂2
εX

QεH

t |ε=0 =
E[u′′(Σ0){(∂εvε0|ε=0 −H)2 − (∂εQ

εH
t |ε=0ψ + ∂εX

QεH

t )2}|Ft]
E[u′(Σ0)|Ft]

+
E[u′(Σ0){∂2

εv
ε
0|ε=0 − ∂2

εQ
εH
t |ε=0ψ}|Ft]

E[u′(Σ0)|Ft]
.

Proof. By definition of XQεH we have

E[u(Σ0 +QεHt ψ +XQεH

t )|Ft] = E[u(Σ0 − εH + vε0)|Ft]. (10.9)

By Lemma 10.5, there exists a version of QεH such that for any ω ∈ Ω, t ∈ [0, T ] the
map ε 7→ QεHt (ω) is twice continuously differentiable on (0, 1). The implicit function
theorem together with Lemma 1.11 thus implies the existence of a version of XQεH

such that, for any ω ∈ Ω, t ∈ [0, T ], the map ε 7→ XQεH

t (ω) is twice continuously
differentiable on (0, 1). The existence of continuous extensions of the derivatives to
the boundary points ε = 0 and ε = 1 as well as the desired terms for the first and
second order approximations are obtained by analog arguments and computations to
those in the proof of Lemma 4.9.

The last preliminary lemma shows that the denominator for the expansions in
Theorem 10.8 is strictly positive.

Lemma 10.7. Let Assumptions 7.1, 7.2, 7.3 hold and assume that Conjecture 2 is
true. Then the function

h : [0, T ]× (0,∞)→ (0,∞), (t, s) 7→ EQ
t,s[ψ]

is continuously differentiable with respect to s and ∂sh(t, s) > 0.

Proof. Upon explicit computation of ∂sh(t, s) one can see that ∂sh(t, s) > 0 if and
only if Conjecture 2 holds.
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We are now ready to state the following theorem which constitutes one of the main
results of the second part of this thesis. Just like its analog in Part I, the theorem
identifies the terms ∆̃ , ∂εQ

εH |ε=0 and Λ̃ , ∂2
εQ

εH |ε=0 in the Taylor approximation

QεHt = ε∆̃t +
ε2

2
Λ̃t + o(ε2).

While we find that these terms possess representations which are structurally the
same as in the case of power utilities, we will show later on that the second order
approximation Λ̃ can be further simplified for exponential utility functions.

Theorem 10.8. Let Assumptions 7.1, 7.2 and 7.3 hold and assume that Conjecture
2 is true. Let further H ∈ H′′ and let (QεHt )0≤t≤T be the replicating strategy for εH.
Moreover, let

Ĥ , H − EQ[H],

ψ̂ , ψ − EQ[ψ].

Then

(i) the first order approximation to QεHt is given by

∂εQ
εH
t |ε=0 = −

∂sEQ
t,s[H]|s=St

∂sEQ
t,s[ψ]|s=St

=: ∆̃t, 0 ≤ t ≤ T, (10.10)

(ii) and the second order approximation to QεHt is given by

∂2
εQ

εH
t |ε=0 =

a
∑3

i=1 ci(t, St)∂sE
Q
t,s[Ki]|s=St

∂sEQ
t,s[ψ]|s=St

:= Λ̃t, 0 ≤ t ≤ T, (10.11)

where the random variables Ki, i ∈ {1, . . . , 4} are given by

K1 = Ĥ2,

K2 = ψ̂2,

K3 = ψ̂

and the coefficients ci, i ∈ {1, . . . , 4} are given by

c1(t, St) ≡ −1,

c2(t, St) = ∆̃2
t ,

c3(t, St) = −2∆̃t(∆̃tEQ
t [ψ̂] + EQ

t [Ĥ]).

Proof. Having established Lemmas 10.5, 10.6, and 10.7 the proof is analog to that of
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Theorem 4.12.

The benefit of Theorem 10.8, as of its analog in the power utility case, consists
in providing a "liquid-world answer" to the question of replication under illiquidity.
The first order approximation (10.10) is akin to the Black-Scholes delta and can
be computed with similar means while the second order approximation (10.11) is
expressed as a linear combination of hedge ratios of auxiliary claims which, again, can
be computed using the same methods as for the Black-Scholes delta.

This provides a "liquid recipe for illiquid replication" in the sense that a portfolio
manager who finds himself presented with the task to replicate the claim εH in our
model could (roughly) be advised to act as follows: "Delta-hedge the claim εH with
respect to the marginal indifference pricing measure Q rather than the risk neutral
measure and, additionally, delta-hedge a position of size ε2 of these auxiliary claims
which will offset your liquidity risk."

In Chapter 4, we saw that the first order approximation ∆̃ can be interpreted as
the replicating strategy of a small investor who trades the marketed security ψ at its
marginal price. The same interpretation is valid in the exponential utility setting, as
the following proposition shows.

Proposition 10.9. Let Assumptions 7.1, 7.2 and 7.3 hold, let H ∈ H′′ and assume
that Conjecture 2 is true. Let further (πt)0≤t≤T , defined by

πt , EQ[H|Ft]

and (S̃t)0≤t≤T , defined by
S̃t , EQ[ψ|Ft]

denote the marginal price processes of the claim H and the marketed security ψ. Then

πt = π0 +

∫ t

0
∆̃sdS̃s.

In particular, for t = T ,

H = π0 +

∫ T

0
∆̃sdS̃s.

Proof. The proof is analog to that of Proposition 4.13.

The small investor’s replicating strategy ∆̃ is complemented by the cash balance
process which is given by the following proposition.

Proposition 10.10. Let Assumptions 7.1, 7.2 and 7.3 hold, let H = f(ψ) ∈ H′′

and assume that Conjecture 2 is true. Let further (∆̃)0≤t≤T be as in Theorem 10.8
and ∂εXQεH |ε=0 as in Lemma 10.6. Then the complementing cash balance process
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(X∆̃
t )0≤t≤T , defined by

X∆̃
t , ∂εX

QεH

t |ε=0, 0 ≤ t ≤ T,

is given by
X∆̃
t = −EQ[Ĥ|Ft]− ∆̃tEQ[ψ|Ft], 0 ≤ t ≤ T.

Proof. The proof is analog to the proof of Proposition 4.14.

In the exponential utility setting, the liquidity correction term Λ̃ can be expressed
in a form which allows for a more intuitive interpretation than was the case in Part I.
The following proposition shows that Λ̃ is the sensitivity with respect to changes in
the underlying of the difference of variances of the claim H and a small investor’s net
replicating position for H under the measure Q.

Proposition 10.11. Let Assumptions 7.1, 7.2 and 7.3 hold, let H ∈ H′′ and assume
that Conjecture 2 is true. Then

Λ̃t =
∂
∂s{VarQt,s[H]− ∆̃2

t VarQt,s[ψ]}|s=St
∂sEQ

t,s[ψ]|s=St
, 0 ≤ t ≤ T. (10.12)

Proof. Let
ξ(t) , ∆̃tψ +X∆̃

t .

We will prove that

Λ̃t =

∂
∂s{VarQt,s[Ĥ]−VarQt,s[q

′ψ + x′]}|
s=St,q′=∆̃t,x′=X∆̃

t

∂sEQ
t,s[ψ]|s=St

,

which, in a slight abuse of notation, we write as

Λ̃t =
∂
∂s{VarQt,s[H]−VarQt,s[ξ(t)]}|s=St

∂sEQ
t,s[ψ]|s=St

. (10.13)

As VarQt,s[Ĥ] = VarQt,s[H] and VarQt,s[ξ(t)] = ∆̃2
t VarQt,s[ψ], (10.13) then implies (10.12).

Analog computations to those leading up to (4.33) in the proof of Theorem 4.12
yield

Λ̃t =

∂
∂s

{
−EQ

t,s[R(Σ0)]
(
ER
t,s[Ĥ

2]− ER
t,s[ξ

2(t)]
)}
|s=St

∂sEQ
t,s[ψ]|s=St

.

Note that, for exponential utility functions, Q = R. Moreover, for all t ∈ [0, T ], s > 0,

VarQt,s[Ĥ]−VarQt,s[ξ(t)] = EQ
t,s[Ĥ

2]− EQ
t,s[ξ

2(t)]− (EQ
t,s[Ĥ]2 − EQ

t,s[ξ(t)]
2).
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By Lemma 10.6, we have ξ(t) = ∆̃tψ − (∆̃tE
Q
t [ψ] + EQ

t [Ĥ]) and, consequently,

EQ
t [Ĥ] = −EQ

t [ξ(t)].

This implies that
EQ
t,s[Ĥ]2 − EQ

t,s[ξ(t)]
2 = 0

and thus
VarQt,s[Ĥ]−VarQt,s[ξ(t)] = EQ

t,s[Ĥ
2]− EQ

t,s[ξ
2(t)].

In the case of exponential utility functions the term (10.10) for the first order
approximation ∆̃ admits an equivalent representation which we present in Proposition
10.12 below. Before we state and prove this proposition, note that for any K ∈ H′′ we
have

∂sEQ
t,s[K]|s=St = ∂s

(
Et,s[u′(Σ0)K]

Et,s[u′(Σ0)]

)
|s=St

=
∂sEt,s[u′(Σ0)K]Et,s[u′(Σ0)]− Et,s[u′(Σ0)K]∂sEt,s[u′(Σ0)]

Et,s[u′(Σ0)]2
|s=St .

(10.14)

Proposition 10.12. Under the assumptions of Theorem 10.8 let ∆̃ be as in (10.10).
Assume further that H = f(ψ) ∈ H′′. Then

∆̃t = −EQ
t [f ′(ψ)ψ]− apCovQ

t [H,ψ]

EQ
t [ψ]− apVarQt [ψ]

.

Proof. By (10.14) we have

∂sEQ
t,s[H]|s=St =

∂sEt,s[u′(Σ0)H]Et,s[u′(Σ0)]− Et,s[u′(Σ0)H]∂sEt,s[u′(Σ0)]

Et,s[u′(Σ0)]2
|s=St .

Furthermore, we have
∂sf(sET−t) = f ′(sET−t)ET−t

and, by Assumption 7.1,

∂su
′(psET−t + z) = −apET−tu′(psET−t + z).
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Thus, we can compute

∂sEQ
t,s[H]|s=St

=
Et,s[u′(Σ0)(−aps Hψ + 1

sf
′(ψ)ψ)]

Et,s[u′(Σ0)]
|s=St −

Et,s[u′(Σ0)H]Et,s[u′(Σ0)(−aps ψ)]

Et,s[u′(Σ0)]2
|s=St

=
1

s

Et,s[u′(Σ0)f ′(ψ)ψ]

Et,s[u′(Σ0)]
|s=St

−ap
s

(
Et,s[u′(Σ0)Hψ]

Et,s[u′(Σ0)]
− Et,s[u′(Σ0)H]

Et,s[u′(Σ0)]

Et,s[u′(Σ0)(ψ)]

Et,s[u′(Σ0)]

)
|s=St

=
1

s

(
EQ
t,s[f

′(ψ)ψ]− apCovQ
t,s[H,ψ]

)
|s=St .

Note that this computation, in particular, holds for H = ψ, i.e. f(x) = x, in which
case the last line can be further simplified to

∂sEQ
t,s[H]|s=St =

1

s

(
EQ
t,s[ψ]− apVarQt,s[ψ]

)
|s=St .

The result then follows by applying this computation to both the numerator and
denominator in

∆̃t = −
∂sEQ

t,s[H]|s=St
∂sEQ

t,s[ψ]|s=St
.

Although we have established two different representations of the liquidity correc-
tion term for the hedge ratio Λ̃, it is not easy to investigate the term analytically. We
will therefore resort to comparative statics in order to obtain an idea of the effect and
magnitude of Λ̃. This is the subject of the next chapter.



Chapter 11

Comparative statics for hedge
ratio corrections

In the previous chapter we found the approximation to the replicating position

QεHt = ε∆̃t +
ε2

2
Λ̃t + o(ε2), 0 ≤ t ≤ T,

for a small number of claims εH. We saw further that ∆̃ can be interpreted as a small
investor’s hedging strategy for H, while the second order approximation Λ̃ can be seen
as the liquidity correction for the replicating position of a large investor. Throughout
this chapter we will investigate the properties of Λ̃ numerically. We will deviate from
our initial convention of viewing positions of both the traded security and cash from
the point of view of the market maker. Instead, we will adopt the perspective of the
large investor by considering the quantities ∆ , −∆̃ and Λ , −Λ̃.
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Figure 11.1: Term structure of ∆ for a call option with strike K = 1; model parameters:
a = 1, p = 1, σ = 0.2, µ = 0, T = 1
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Similarly to the power utility case we find that, for a call option, the first order
approximation ∆ resembles the Black-Scholes delta. It is depicted for various times to
maturity in Figure 11.1.

As in the corresponding chapter in Part I, the quantitiy of interest throughout
this chapter is the liquidity correction for the replicating position Λ. In what follows,
we will investigate the shape and magnitude of Λ for a call option H = (ψ −K)+.
In particular, we will consider its term structure and its variability with respect to
changes in the parameters defining our model, namely the market maker’s risk aversion
and initial endowment as well as the parameters defining the process S of Assumption
7.2.

Remark 11.1. Recall that in the case of power utilities we found that ∆ was unaffected
by changes in the size of the market maker’s initial endowment. For exponential utility
functions, this is not the case, as we can see in Figure 11.2. As the market maker’s
inventory p increases, the small investor’s hedging position ∆ flattens out and "moves
to the right", i.e. the location of "the money" is shifted upwards.
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Figure 11.2: Liquidity correction term Λ for a call option with strike K = 1 for various
values of the market maker’s initial stock position p; model parameters: a = 1, σ = 0.2,
µ = 0, t = 0, T = 1

This difference between the cases of exponential utilities and power utilities is
due to the fact that, for exponential utility functions, marginal prices display cash
invariance while for power utility functions, they display scale invariance: Denoting
by Qexp(p, z) the measure Q with respect to the market maker’s initial endowment
Σ0 = pψ + z in the exponential utility case and by Qpow(p, z) its analog in the power
utility case, we have

EQexp(p,z)[ψ] = EQexp(p,0)[ψ]
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as a result of the cash invariance of exponential utilities, while we have

EQpow(dp,dz)[ψ] = EQpow(p,z)[ψ], ∀d > 0,

by Proposition 4.16. Hence, in the case of power utilities, ∆ is not affected by a linear
scaling d > 0 of the market maker’s endowment while, for exponential utilities, ∆ is
merely invariant with respect to changes in the market maker’s initial cash position z
but not with respect to changes in his initial stock position p.

Recall that the validity of the expansions ∆ and Λ and consequently of this entire
chapter is conditional on the validity of Conjecture 2 from Chapter 10.

11.1 Positivity, unimodality and term structure

For a call option, the liquidity correction to the replicating strategy Λ is visualised
in Figure 11.3 for different times to maturity. We can see that it has a similar shape
to the one observed for power utility functions. Most notably, it is strictly positive,
meaning that the large investor has to assume a replicating position which is strictly
greater than the replicating position in a liquid market. Moreover, we can see that Λ

is unimodal with a unique global maximum near the money and that the liquidity
effect becomes negligible far away from the money. This is in accordance with what
one would expect: The uncertainty is greatest near the money, while the replicating
position deep in the money and deep out of the money is much less volatile. Upon
approaching maturity, the liquidity correction term Λ vanishes. This, too, is natural,
as the "remaining uncertainty" decreases with diminishing time to maturity.
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Figure 11.3: Term structure of the liquidity correction term Λ for a call option with
strike K = 1; model parameters: a = 1, p = 1, µ = 0, t = 0, T = 1
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11.2 Variability with respect to the market maker’s initial
endowment and risk aversion

Note that, as a result of the cash invariance of exponential utility functions, the
liquidity correction term Λ does not depend on z. This is clear from the fact that the
measure Q in the definition of Λ in (10.11) does not depend on z.

As is to be expected, Λ is decreasing in the market maker’s stock position p: When
the market maker’s initial endowment is large, the size of the large investor is less
significant in relation to the total size of the market. His price impact decreases, and
so does the liquidity correction term Λ; see Figure 11.4. Moreover, we can see that, as
for ∆, an increase in the market maker’s initial stock position p shifts the location of
"the money" upwards.
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Figure 11.4: Liquidity correction term Λ for a call option with strike K = 1 for various
values of the market maker’s initial stock position p; model parameters: a = 1, σ = 0.2,
µ = 0, t = 0, T = 1

For power utilities, we saw that Λ was inversely proportional to a scaling parameter
for the market maker’s initial endowment. It thus displayed a self-similarity in the
sense that the liquidity correction pertaining to a smaller initial endowment could
be obtained by multiplying the liquidity correction for a larger initial endowment
by the scaling parameter which expressed the quotient of the two endowment sizes.
Hence, the shape of Λ was solely affected by the balance between stocks and cash in
the market maker’s initial endowment. Contrary to that, in the case of exponential
utilities, the market maker’s initial cash is irrelevant and the shape and magnitude
of Λ are determined solely by the market maker’s initial stock position p, as noted above.
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The reaction of Λ with respect to changes in the market maker’s risk aversion
parameter a is, again, in line with what we would expect: As in the power utility case,
a higher risk aversion induces a higher liquidity correction for the replicating position.
This is illustrated in Figure 11.5. We observe that, similarly to the power utility case,
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Figure 11.5: Liquidity correction term Λ for a call option with strike K = 1 for various
values of the market maker’s risk aversion a; model parameters: p = 1, σ = 0.2, µ = 0,
t = 0, T = 1

this relationship is roughly (but not precisely) linear for the maximal value of Λ, i.e.
that

Λ(a) ≈ aΛ(1),

where Λ(a) denotes the liquidity correction term Λ as a function of the market maker’s
risk aversion a. In fact, such a "roughly linear relationship" is already hinted at by
the multiplicative factor a in (10.11).

11.3 Variability with respect to the parameters defining
the process S

The reaction of Λ to changes in the coefficients µ and σ of Assumption 7.2 is the same
as in the power utility case: An increase in the volatility σ leads to an increase of
the liquidity correction Λ, which is illustrated in Figure 11.6. This means that, as
we would expect, the liquidity correction is higher when the risk associated with the
marketed security is higher.

The changes in Λ with respect to changes in the drift coefficient µ can be under-
stood as a discounting applied by the market maker according to his believes about the
future evolution of S as was already explained in the corresponding Section 5.3 of Part
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Figure 11.6: Liquidity correction term Λ for a call option with strike K = 1 for various
values of the diffusion coefficient σ; model parameters: a = 1, p = 1, µ = 0, t = 0,
T = 1

I. Variations in µ merely move the location of "the money", while the magnitude of the
liquidity correction Λ remains unaffected; see Figure 11.7. The changing "width" of
Λ is due to the same exponential scaling effect that we already observed in Section 5.3.

Summarising our observations, we can see that the shape, magnitude and behaviour
of the liquidity correction for the replicating position Λ for exponential utilities are
similar to those in the case of power utilities. In particular, Λ is strictly positive,
unimodal and maximal near the money. It is decreasing with decreasing time to
maturity and it is increasing in the market maker’s risk aversion a and in the diffusion
coefficient σ which corresponds to a higher degree of risk associated with the marketed
security. The most notable difference between the exponential- and power utility cases
is the reaction of Λ with respect to changes in the market maker’s initial endowment:
For power utilities, Λ is inversely proportional to a linear scaling of the market maker’s
initial endowment and the influence of the market maker’s initial endowment on the
shape of Λ depends solely on the balance between the market maker’s initial security
and stock positions. For exponential utilities, the cash term is irrelevant and the
influence of the market maker’s initial endowment on the shape of Λ is determined
only by his initial stock position.
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Figure 11.7: Liquidity correction term Λ for a call option with strike K = 1 for various
values of the drift coefficient µ; model parameters: a = 1, p = 1, σ = 0.2, t = 0, T = 1





Chapter 12

Some questions regarding the
lognormal distribution

In this chapter we address some questions related to the lognormal distribution which
arise during our investigation of the replication of contingent claims in the exponential
utility setting. To the best of our knowledge, the answers to these questions are not
available in the literature. This apparent lack of understanding of the properties of
the lognormal distribution is quite surprising and the questions and results in this
chapter may be of interest in their own regard.

The term whose behaviour we seek to understand throughout this chapter is

k2(θ) , θ
E[e−θψψ]

E[e−θψ]
, θ ≥ 0.

In Section 12.1 we show that k2(θ) → ∞ for θ → ∞, which is, as we will see, an
asymptotic result for the Laplace transform of the lognormal distribution. Subsequently,
in Section 12.2, we state as a conjecture the fact that k′2(θ) > 0. Even though this
statement is intuitively convincing as well as strongly supported by numerical evidence,
we have not yet been able to find an analytical proof.

12.1 A limit theorem for the lognormal Laplace transform

In this Section we will prove that

lim
θ→∞

{
θ
E[e−θψψ]

E[e−θψ]

}
=∞, (12.1)

which we stated earlier as Lemma 9.6. It is somewhat surprising that the proof of this
result requires such considerable effort. Although it is well known that the fraction
E[e−θψψ]/E[e−θψ] converges to zero for θ →∞, the rate of convergence is not obvious.
In fact, Tauberian and Abelian theorems as can be found e.g. in [16] and [24], which
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usually constitute powerful tools for investigating limiting behaviour of this kind, are
not applicable. This is a consequence of the fact that the cumulative distribution
function of the lognormal distribution

F (t) =

∫ t

0

1

r
√

2πσ
e−

(log r−µ)2

2σ2 dr

is not regularly varying. Recall that a function f is called regularly varying at zero if
there exists ρ ∈ (0,∞) such that

lim
t→0+

f(tx)

f(t)
= xρ ∀x > 0.

For the sake of simplicity, let us assume that F is the lognormal distribution function
induced by a standard normal with µ = 0 and σ = 1. As F (t)→ 0 for t ↓ 0, we can
apply L’Hôpital’s rule to obtain

lim
t→0+

F (tx)

F (t)
= lim

t→0+

1

x
e−

1
2(2 log t log x+(log x)2) =


∞, x > 1,

1, x = 1,

0, 0 < x < 1.

In particular, F is not regularly varying at zero and, consequently, the conditions of
e.g. Karamata’s, Feller’s and de Bruijn’s Tauberian theorems are not satisfied. Note
that an analog argument for t→∞ shows that F is not regularly varying at infinity
either.

Before we prove (12.1), let us briefly outline our strategy which relies on several
auxiliary results. First, we will present an approximation L̃ to the Laplace transform
L of the lognormal distribution which is introduced in [8]. We will then show that
we can, without loss of generality, consider ψ = eσN in (12.1), where N ∼ N (0, 1),
σ > 0. Using this simplifying assumption, we proceed to show that the quotient L/L̃
of the Laplace transform and its approximation is bounded by constants above and
below, so that, in particular, we can control the asymptotics of L with those of L̃.
As L̃ is expressed most conveniently in terms of the Lambert W function, we will
establish several of this function’s properties which we will subsequently use to show
a convergence result for L̃. Finally, we will use Girsanov’s theorem to express the
terms in (12.1) as a quotient of Laplace transforms and combine the auxiliary results
to show the desired convergence (12.1).

Note that the idea for the approximation L̃ which we will use to prove (12.1) as well
as the expression of L̃ in terms of the Lambert W function are due to [8]. Among other
things, the authors show that L(θ) = L̃(θ)(1 +O(log(θ)−1)), so that, in particular, L
and L̃ are asymptotically equivalent. This very recent result could have been used in
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our proof of (12.1) instead of Lemma 12.2 below. However, it was not available at the
time at which our proof was completed and we took a different approach from that in
[8], obtaining – in the form of Lemma 12.2 – a somewhat different result.

Before we establish the auxiliary lemmas for the proof of (12.1) let us introduce
some additional notation. Let ψ = eσN+µ, N ∼ N (0, 1), µ ∈ R, σ > 0, be a
lognormally distributed random variable and denote its Laplace transform by

Lψ(θ) , E[e−θψ] =

∫ ∞
0

1

x
√

2πσ
exp

(
−θx− (log x− µ)2

2σ2

)
dx.

For k = 0, 1, 2, . . . , consider

E[ψke−θψ] =

∫ ∞
0

xk−1

σ
√

2π
exp

(
−θx− (log x− µ)2

2σ2

)
dx

=

∫ ∞
−∞

1

σ
√

2π
exp

(
−θey + ky − (y − µ)2

2σ2

)
dy,

where we used the substitution y = log(x). Laplace’s method for approximating
integrals of the form ∫ b

a
eMf(x) dx

for some twice differentiable f , large M and a, b possibly infinite, now suggests to
replace the expression

−θey + ky − (y − µ)2

2σ2
(12.2)

by a Taylor approximation of second order around the value ρk which maximises
(12.2), i.e. by

−θeρk
(

1 + (y − ρk) +
(y − ρk)2

2

)
+ ky − (y − µ)2

2σ2
,

where the maximising constant ρk is obtained to be

ρk = −L(θσ2ekσ
2+µ) + kσ2 + µ.

Here, L : [−e−1,∞) → R is the Lambert W function (for real numbers), defined
implicitly for any z ∈ [−e−1,∞) by

z = eL(z)L(z).

The resulting Gaussian integral

L̃ψ(θ) ,
1

σ
√

2π

∫ ∞
−∞

exp

(
−θeρk

(
1 + (y − ρk) +

(y − ρk)2

2

)
+ ky − (y − µ)2

2σ2

)
dy
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can be calculated explicitly and we obtain

L̃ψ(θ) =
1√

L(θσ2ekσ2+µ) + 1
×

× exp

(
−L(θσ2ekσ

2+µ)2 + 2L(θσ2ekσ
2+µ)− 2kσ2µ− k2σ4

2σ2

)
.

For k = 0 this term simplifies to

L̃ψ(θ) =
1√

L(θσ2eµ) + 1
exp

(
−L(θσ2eµ)2 + 2L(θσ2eµ)

2σ2

)
and for µ = 0 to

L̃ψ(θ) =
1√

L(θσ2) + 1
exp

(
−L(θσ2)2 + 2L(θσ2)

2σ2

)
. (12.3)

The first preliminary lemma simplifies ensuing computations by allowing us to
assume without loss of generality that µ = 0.

Lemma 12.1. Let N ∼ N (0, 1), σ > 0 and µ ∈ R. Then

lim
θ→∞

{
θ
E[e−θψψ]

E[e−θψ]

}
=∞

for ψ = eσN+µ, if and only if

lim
θ→∞

{
θ
E[e−θψ

′
ψ′]

E[e−θψ′ ]

}
=∞

for ψ′ = eσN .

Proof. Observe that for θ′ , θeµ we have

θ
E[e−θψψ]

E[e−θψ]
= θ

E[e−θe
µ+σN

eµ+σN ]

E[e−θeµ+σN ]
= θ′

E[e−θ
′eσN eσN ]

E[e−θ′eσN ]
.

The next lemma shows that the approximation L̃ψ to Lψ is sufficiently good for
our purposes.

Lemma 12.2. Let N ∼ N (0, 1), σ > 0, ψ = eσN and let θ0 > 0. Then, there exists a
constant C(σ, θ0) > 0 such that for all θ ≥ θ0

1

2
≤
Lψ(θ)

L̃ψ(θ)
≤ C(σ, θ0).
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Moreover, C(σ, θ0) is decreasing in θ0.

Proof. Let

fθ(y) ,

√
L(θσ2) + 1√

2πσ
exp

(
− y2

2σ2
− θey +

L(θσ2)2 + 2L(θσ2)

2σ2

)
and note that, by (12.3),

Lψ(θ)

L̃ψ(θ)
=

∫ ∞
−∞

fθ(y)dy.

It is our aim to show that

1

2
≤
∫ ∞
−∞

fθ(y)dy ≤ C(σ, θ0) ∀θ ≥ θ0.

Consider the density of an N (−L(θσ2), σ2

L(θσ2)+1
)-distributed random variable

gθ(y) ,

√
L(θσ2) + 1√

2πσ
exp

(
−(y + L(θσ2))2

2σ2

(
L(θσ2) + 1

))
.

Note that both gθ and fθ attain their unique global maxima in ρ0 = −L(θσ2) and
that

gθ(ρ0) = fθ(ρ0) =

√
L(θσ2) + 1√

2πσ
.

Note further that, in what follows, we will often use the identity

xe−L(x)+r = L(x)er ∀x > 0 ∀r ∈ R,

which is implied directly by the definition of L.

Lower bound. We compute

fθ
gθ

= exp

(
− y2

2σ2
− θey +

L2(θσ2) + L(θσ2)

2σ2
+

(y + L(θσ2))2

2σ2
(L(θσ2) + 1)

)
.

Using the substitution y = −L(θσ2) + r we obtain

fθ
gθ

= exp

(
L(θσ2)

σ2
(1 + r +

r2

2
− er)

)
.

By differentiating the exponent twice with respect to r we find that

(1 + r +
r2

2
− er) > 0 iff 1− er > 0 iff r < 0. (12.4)

The case r = 0 corresponds to y = −L(θσ2), the value at which fθ and gθ attain their
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common global maximum. Observe that (12.4) implies

fθ(y) > gθ(y) ∀y < −L(θσ2),

which, in turn, implies the lower bound∫ ∞
−∞

fθ(y)dy >

∫ −L(θ)

−∞
fθ(y)dy >

∫ −L(θ)

−∞
gθ(y)dy =

1

2
,

where we made use of the fact that gθ is symmetric about −L(θσ2) and its integral
over the real line is normalised to one.

Upper bound. We consider the change of variable y = −L(θσ2)− r which yields∫ ∞
−∞

fθ(y)dy =

∫ ∞
−∞

√
L(θσ2) + 1√

2πσ
exp

(
− r2

2σ2
+
L(θσ2)

σ2
(1− r − e−r)

)
dr.

Let us denote this new integrand by

f̃θ(r) ,

√
L(θσ2) + 1√

2πσ
exp

(
− r2

2σ2
+
L(θσ2)

σ2
(1− r − e−r)

)
.

f̃θ attains its maximum in r = 0. Let f rθ , f
l
θ ∈ C∞([0,∞)), defined by

f rθ : r 7→ f̃θ(r),

and
f lθ : r 7→ f̃θ(−r),

denote the integrand’s branches to the right and to the left of r = 0, respectively,
where the latter is reflected to the positive half line. We find

f rθ (r)

f lθ(r)
= exp

(
L(θσ2)

σ2
(−2r − e−r + er)

)
= exp

(
2L(θσ2)

σ2
(sinh(r)− r)

)
,

from which it is apparent that, for r > 0,

f rθ (r) > f lθ(r)

and, consequently, ∫ ∞
−∞

f̃θ(r)dr < 2

∫ ∞
0

f̃θ(r)dr.

It remains to show that there is a constant C(σ, θ0) > 0, decreasing in θ0, such that

2

∫ ∞
0

f̃θ(r)dr ≤ C(σ, θ0) ∀θ ≥ θ0.
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To this end, we will split the integral at r = 1. Let ϑ ,
√
L(θσ2) + 1. Then∫ ∞

1
f̃θ(r)dr =

∫ ∞
1

√
L(θσ2) + 1√

2πσ
exp

(
− r2

2σ2
+
L(θσ2)

σ2
(1− r − e−r)

)
dr

=

∫ ∞
1

ϑ√
2πσ

exp

(
− r2

2σ2
+
ϑ2 − 1

σ2
(1− r − e−r)

)
dr

<

∫ ∞
1

ϑ√
2πσ

exp

(
−(r + ϑ2 − 1)2

2σ2
+

(ϑ2 − 1)2

2σ2
+
ϑ2 − 1

σ2

)
dr,

where the last inequality is due to neglecting the −e−r-term. Hence,∫ ∞
1

ϑ√
2πσ

exp

(
−(r + ϑ2 − 1)2

2σ2
+

(ϑ2 − 1)2

2σ2
+
ϑ2 − 1

σ2

)
dr

≤
∫ ∞

1

r + (ϑ2 − 1)

1 + (ϑ2 − 1)

ϑ√
2πσ

exp

(
−(r + ϑ2 − 1)2

2σ2
+

(ϑ2 − 1)2

2σ2
+
ϑ2 − 1

σ2

)
dr

=
σ√

2πeσ−2ϑ
.

By definition, ϑ ≥ 1 so that

σ√
2πeσ−2ϑ

≤ σ√
2πeσ−2

<
σ√
2π
.

Observe now that∫ 1

0
f̃θ(r)dr =

∫ 1

0

√
L(θσ2) + 1√

2πσ
exp

(
− r2

2σ2
+
L(θσ2)

σ2
(1− r − e−r)

)
dr

<

∫ 1

0

ϑ√
2πσ

exp

(
ϑ2 − 1

σ2
(1− r − e−r)

)
dr,

where the inequality is due to neglecting the − r2

2σ2 -term. Choose c > 0 in such a way
that

−cr2 ≥ 1− r − e−r ∀r ∈ [0, 1].

Then∫ 1

0

ϑ√
2πσ

exp

(
ϑ2 − 1

σ2
(1− r − e−r)

)
dr ≤

∫ 1

0

ϑ√
2πσ

exp

(
−r2c

ϑ2 − 1

σ2

)
dr.

Since ∫ ∞
−∞

ϑ√
2πσ

exp

(
−r2c

ϑ2 − 1

σ2

)
dr =

1√
2c

ϑ√
ϑ2 − 1

=
1√
2c

√
L(θσ2) + 1

L(θσ2)
,

we obtain ∫ 1

0

ϑ√
2πσ

exp

(
−r2c

ϑ2 − 1

σ2

)
dr <

1√
2c

√
L(θσ2) + 1

L(θσ2)
.
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Hence, for θ ≥ θ0,∫ ∞
0

f̃θ(r)dr =

∫ 1

0
f̃θ(r)dr +

∫ ∞
1

f̃θ(r)dr <
1√
2c

√
L(θ0σ2) + 1

L(θ0σ2)
+

σ√
2π

so that

C(σ, θ0) , 2

(
1√
2c

√
L(θ0σ2) + 1

L(θ0σ2)
+

σ√
2π

)
satisfies the lemma’s assertion. As L(0) = 0 and L is increasing, it follows that C(σ, ·)
is decreasing in θ0.

The third preliminary assertion highlights several properties of the Lambert W
function.

Lemma 12.3. Let L denote the Lambert W function and let λ > 1. Then

(i)
L(λθ)

L(θ)
= λeL(θ)−L(λθ),

(ii)

L(θ)− L(λθ) = log

(
L(λθ)

L(θ)

)
− log(λ),

(iii)
L(λθ)

L(θ)
↓ 1, θ →∞,

(iv)
L(θ)− L(λθ) ↓ − log(λ), θ →∞.

Proof. From the definition of L it is apparent that

L(λθ)

L(θ)
=
λθe−L(λθ)

θe−L(θ)
,

from which (i) and (ii) are obtained by simple algebraic transformations. Note that

∂

∂θ
log(L(θ)) =

L′(θ)

L(θ)
.

Using this observation, we compute

log

(
L(λθ)

L(θ)

)
= logL(λθ)− logL(θ) =

∫ λθ

θ

L′(x)

L(x)
dx =

∫ λ

1

1

y(1 + L(θy))
dy,

where the last equality is due to the change of variables x = θy and the fact that

L′(x) =
L(x)

x(1 + L(x))
.
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The last integral above converges to zero for θ →∞ and it follows that

lim
θ→∞

log

(
L(λθ)

L(θ)

)
= 0

which, as L(λθ) > L(θ), implies (iii). Finally, (iv) is a direct consequence of (ii) and
(iii).

The fourth and last preliminary result shows that the approximation L̃ψ displays
the desired convergence.

Lemma 12.4. Let N ∼ N (0, 1), σ > 0 and ψ = eσN . Then

lim
θ→∞

{
θ
L̃ψ(eσ

2
θ)

L̃ψ(θ)

}
=∞.

Proof. Using the representation (12.3) we compute

θ
L̃ψ(eσ

2
θ)

L̃ψ(θ)
= θ

√
L(θσ2) + 1

L(eσ2θσ2) + 1
×

× exp

(
−L(eσ

2
θσ2)2 + 2L(eσ

2
θσ2)

2σ2
+
L(θσ2)2 + 2L(θσ2)

2σ2

)
.

Note that

exp

(
−L(eσ

2
θσ2)2 + 2L(eσ

2
θσ2)

2σ2
+
L(θσ2)2 + 2L(θσ2)

2σ2

)

= exp

(
1

2σ2

(
L(θσ2)− L(eσ

2
θσ2)

)(
L(θσ2) + L(eσ

2
θσ2)

))
×

× exp

(
1

σ2

(
L(θσ2)− L(eσ

2
θσ2)

))
.

By Lemma 12.3 (iv) and the fact that L(eσ
2
θσ2) > L(θσ2), we have

0 > L(θσ2)− L(eσ
2
θσ2) > − log(eσ

2
) = −σ2

which implies that

θ exp

(
1

2σ2

(
L(θσ2)− L(eσ

2
θσ2)

)(
L(θσ2) + L(eσ

2
θσ2)

))
≥ θ exp

(
−1

2

(
L(θσ2) + L(eσ

2
θσ2)

))
.
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Moreover, as L(eσ
2
θσ2) > L(θσ2) > 0, it follows that

θ exp

(
−1

2

(
L(θσ2) + L(eσ

2
θσ2)

))
≥ θ exp

(
−L(eσ

2
θσ2)

)
=
L(eσ

2
θσ2)

eσ2σ2
,

where the last equality follows from the definition of L. Finally, by Lemma 12.3 (iv)

we know that

exp

(
1

σ2

(
L(θσ2)− L(eσ

2
θσ2)

))
→ 1

e
, θ →∞,

and by Lemma 12.3 (iii) that√
L(θσ2) + 1

L(eσ2θσ2) + 1
→ 1, θ →∞,

so that, combining these observations, we obtain

lim
θ→∞

{
θ
L̃ψ(eθ)

L̃ψ(θ)

}
≥ lim

θ→∞

√
L(θσ2) + 1

L(eσ2θσ2) + 1

L(eσ
2
θσ2)

eσ2σ2
e
L(θσ2)−L(eσ

2
θσ2)

σ2 =∞.

We are now ready to assemble the pieces and prove (12.1).

Proof of Lemma 9.6. It is our objective to show that

lim
θ→∞

{
θ
E[e−θψψ]

E[e−θψ]

}
=∞ (12.5)

for any lognormally distributed random variable ψ. Lemma 12.1 allows us to assume
without loss of generality that ψ is given as ψ = eσN , where N ∼ N (0, 1), σ > 0.
Note that, by the Girsanov Theorem, a change of measure yields

E[e−θψψ] = e
1
2
σ2
E[e−θe

σN
eσN−

1
2
σ2

] = e
1
2
σ2
EL[e−θe

σÑ+σ2

],

where the Radon-Nikodym derivative of L is given by

dL
dP

= eσN−
1
2
σ2

and the random variable Ñ L∼ N (0, 1) is normally distributed with respect to the
measure L. Note that

EL[e−θe
σÑ+σ2

] = EL[e−θe
σÑeσ

2

] = Lψ(eσ
2
θ),

where Lψ denotes the Laplace transform of ψ. Hence, the fraction in (12.5) can be
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expressed as
E[e−θψψ]

E[e−θψ]
=
e

1
2
σ2Lψ(eσ

2
θ)

Lψ(θ)
.

Let C(σ, 1) denote the constant in Lemma 12.2 for θ0 = 1. Then, for θ ≥ 1, we have

θ
e

1
2
σ2Lψ(eσ

2
θ)

Lψ(θ)
= θ

e
1
2
σ2L̃ψ(eσ

2
θ)

L̃ψ(θ)

Lψ(eσ
2
θ)/L̃ψ(eσ

2
θ)

Lψ(θ)/L̃ψ(θ)
≥ e

1
2
σ2

2C(σ, 1)
θ
L̃ψ(eσ

2
θ)

L̃ψ(θ)
,

where the last inequality is a consequence of Lemma 12.2. An application of Lemma
12.4 concludes the proof.

Note that the statement of Lemma 9.6, alternatively, can be expressed in terms of
the elasticity of the Laplace transform of the lognormal distribution: As the following
lemma shows, the fraction of Laplace transforms of interest throughout this section
can equivalently be written as

E[e−θψψ]

E[e−θψ]
=
Lψ(eσ

2
θ)

Lψ(θ)
e

1
2
σ2

= −
∂θLψ(θ)

Lψ(θ)
. (12.6)

For the first equality, see the proof of Lemma 9.6; the second equality is implied by
the lemma below.

Lemma 12.5. Let ψ = eσN , where N ∼ N (0, 1), σ > 0. Then

∂n

∂θn
Lψ(θ) = (−1)ne

n2

2
σ2L(enσ

2
θ).

Proof. We will prove by induction that

∂n

∂θn
Lψ(θ) = (−1)n

n∏
k=1

e
2k−1

2
σ2L(enσ

2
θ).

This will imply the desired result as
∑n+1

k=1(2k − 1) = n2. Note first that

∂θLψ(θ) = −E[e−θψψ] = −e
1
2
σ2
E[e−θe

σN
eσN−

1
2
σ2

].

Similarly to the argument in the proof of Lemma 9.6, an application of Girsanov’s
Theorem yields

E[e−θe
σN
eσN−

1
2
σ2

] = EL[e−θe
σÑ+σ2

] = Lψ(eσ
2
θ),

where dL
dP = eσN−

1
2
σ2

and Ñ L∼ N (0, 1). This implies the correctness of the formula
for n = 1. Using a similar argument for ∂θLψ(enσ

2
θ), we compute

∂

∂θ

(
(−1)n

n∏
k=1

e
2k−1

2
σ2Lψ

(
enσ

2
θ
))

= (−1)n+1
n+1∏
k=1

e
2k−1

2
σ2Lψ

(
e(n+1)σ2

θ
)
,
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which verifies the validity of the induction step and hence the result.

12.2 Discussion of the monotonicity conjecture

The asymptotic expansions of Chapter 10 and all related results as well as the
comparative statics of Chapter 11 were derived conditional on the validity of the
following conjecture.

Conjecture 2. Let ψ be a lognormally distributed random variable. Let further

k2(θ) , θ
E[e−θψψ]

E[e−θψ]
.

Then
k′2(θ) > 0 ∀θ ≥ 0.

Even though this assertion is strongly supported by numerical evidence and
intuition, an analytic proof eludes us as yet. Let us consider the statement of
Conjecture 2 from an economic point of view. Recalling the marginal indifference
pricing measure Q, we can interpret the quantity E[e−θψψ]/E[e−θψ] as the marginal
price of ψ when the market maker is already holding θ units of ψ. Conjecture 2
then states the economically very reasonable fact that the mark-to-market value of a
position of θ shares (i.e. the "marginal price for a total position of size θ") is strictly
increasing in θ for all θ ≥ 0.

This intuition is reinforced by numerical evidence: Figure 12.1 displays the map
θ 7→ k2(θ) for varying values of σ > 0 when considering ψ = eσN , N ∼ N (0, 1). We

10 20 30 40 50 60 70
Θ
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50
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k2HΘL
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Σ=0.6

Σ=0.3

Σ=0.1

Figure 12.1: The map θ 7→ k2(θ) vor varying values of σ

can see that k2 appears to be strictly increasing in θ. Moreover, we observe that the
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rate at which k2 increases depends strongly on σ: As σ becomes large, k2 becomes
almost "flat" (but, of course, still converges to ∞; see Lemma 9.6). In fact, this
behaviour is to be expected. In the previous section we saw that, using Girsanov’s
theorem, k2 can equivalently be expressed as

k2(θ) = θ
e

1
2
σ2Lψ(eσ

2
θ)

Lψ(θ)
.

In particular, when σ is close to zero, we have

Lψ(eσ
2
θ)

Lψ(θ)
≈ 1,

so that in this case k2 is "almost linear" in θ. If, on the other hand, σ becomes large,
the discrepancy between the arguments of the numerator and denominator of the
fraction of Laplace transforms grows at the rapid rate of eσ2 and k2 is "pushed down"
severely.

Note that Conjecture 2 seems to be related to Conjecture 1 from Part I, albeit not
in a very tangible way. Recalling the notation

k1(p) = p
E[(pψ + 1)−aψ]

E[(pψ + 1)−a]

of Conjecture 1 and slightly modifying the notation k2 of Conjecture 2 as

k̃2(ap) , ap
E[e−apψψ]

E[e−apψ]

we can see from the power series representation of the exponential function that

k̃2(ap) = ap
E[(1 + pψ +R(p, ψ))−aψ]

E[(1 + pψ +R(p, ψ))−a]
,

where

R(p, ψ) ,
∞∑
k=2

(pψ)k

k!
.

In particular, R(p, ψ) becomes insignificant for p→ 0, so that, for small p,

k1(p) ≈ k̃2(ap)

a
.

However, it is not clear whether the validity of either conjecture implies the validity
of the other.





Index of Notation

∆̃ first order approximation to replicating position pp. 67 and 130
Λ̃ second order approximation to replicating position pp. 67 and 130
ψ marketed security pp. 16 and 93
Σ0 market maker’s initial endowment pp. 16 and 94
a market maker’s risk aversion parameter pp. 16 and 93
At cash-recovering map pp. 32 and 99
At set of compatible pairs of utility levels and p. 29

transaction sizes
b balance parameter in reparametrisation of Σ0 p. 79
d market depth paramter in reparametrisation of Σ0 p. 79
E analytic solution of SDE defining the GBM S p. 16
F static process of indirect utility pp. 28 and 98
g̃ Itô integrand of F pp. 28 and 28
g Itô integrand of UQ pp. 33 and 99
GQ P&L (process) of the large investor pp. 39 and 105
H contingent claim written on underlying ψ pp. 45 and 111
H set of acceptable contingent claims pp. 46 and 111
H′ set of claims in H which are path independent with pp. 46 and 112

Lipschitz continuous payoff functions
H′′ set of claims in H′ of which small positions pp. 58 and 124

are attainable
it Itô integrand of UH pp. 48 and 114
p market maker’s initial security position pp. 16 and 94
P real world measure p. 15
q̄ maximal allowed transaction size pp. 19, 26 and 29
Q marginal indifference pricing measure pp. 60 and 95
Q trading strategy of the large investor pp. 25, 28, 96 and 97
Qu,t set of compatible transaction sizes p. 30
R real line or probability measure p. 60 and 123
R class of Lipschitz continuous functions pp. 46 and 112
R market maker’s absolute risk aversion pp. 16 and 93
S GBM which models payoff of ψ at maturity pp. 16 and 93
T maturity p. 15
u market maker’s utility function pp. 16 and 93
U = UQ dynamic process of indirect utility pp. 33 and 99
Uq,t set of compatible utility levels p. 30
Ũ range of utilities p. 29
vrep replication price of contingent claim H pp. 46 and 112
vεt market indifference price of εH at time t pp. 58 and 124
xεt market indifference price of εψ at time t pp. 59 and 126
X = XQ complementing cash process for a trading strategy Q pp. 25, 34, 96 and 97
z market maker’s initial cash position pp. 16 and 94
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