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Zusammenfassung

Schluckstörungen komplizieren für die Betroffenen jegliche Nahrungs- und Flüssigkeitsaufnahme
und können zu folgenschweren Erkrankungen führen. Durch den Verlust eines normalerweise
perfekt koordinierten Zusammenspiels derMuskulatur wird der Kehlkopf und das Zungenbein nicht
weit genug oder im falschen Augenblick nach oben und vorne gezogen. Dadurchwird der Zugang zu
den unteren Atemwegen nicht verschlossen und/oder der Zugang zur Speiseröhre nicht ausreichend
geöffnet. Es kommt zum Übertritt von Teilen des Speichels und/oder der Nahrung in die Atemwege
und folgenschwere Entzündungen in den unteren Atemwegen können hervorgerufen werden.
Durch das verborgene Zusammenwirken vieler Komponenten (26 Muskelpaare, fünf Hirnnerven
und drei Zervikalnerven) gestaltet sich das Erstellen einer exakten Diagnose schwierig. Obwohl
zuverlässige video-basierte Systeme zur Diagnose bereitstehen, kann durch die Entwicklung von
kleinen, preiswerten Sensoren, welche den Schluckvorgang in Echtzeit erfassen können, sowohl die
Therapie als auchDiagnose von Schluckstörungen entscheidend verbessert werden. Solche Sensoren
könnten längere Untersuchungen ermöglichen und Feedback zumPatienten undTherapeuten geben.
Eine zum Schluck synchronisierte, elektrische Muskelstimulation könnte ebenfalls durch solche
Sensoren ausgelöst werden.

Im Rahmen dieser Arbeit wurde ein Messsystem entwickelt, mit dem ein Elektromyogramm
(EMG) und eine Bioimpedanz (BI) am Hals gemessen wird. Es wurde eine automatisierte Schluck-
erkennung entwickelt und erfolgreich an Daten sowohl von gesunden Probanden als auch von
Patienten mit Schluckstörungen evaluiert. Es konnte gezeigt werden, dass die BI Messsignale mit
der Bewegung von Zungenbein und Kehlkopf korrelieren und somit die pharyngeale Schluckphase
abbilden. Mittels Messung von BI und EMG konnte die submentale Muskulatur zur Schluckunter-
stützung rechtzeitig zum Anfang der Hebebewegung von Zungenbein und Kehlkopf über elektri-
sche Stimulation unterstützt werden und somit der Schutz der Atemwege während des Schlucks
verbessert werden. An einem Patienten wurde gezeigt, dass die Muskelstimulation rechtzeitig zum
Schluckbeginn erfolgte und die Hebung verbessert wurde.

Die Ergebnisse aus dieser Arbeit legen den Grundstein für ein System zur automatisierten
Auswertung von erfassten Schlucken, welches als Biofeedback-Therapie eingesetzt werden könnte.

Es wurde gezeigt, dass die zeitgerechte Aktivierung einer elektrischen Muskelstimulation zur
Unterstützung des Schlucks möglich ist. Ein solches System würde Patienten helfen und könnte
auch außerhalb von Kliniken eingesetzt werden.





Abstract

Dysphagia (swallowing disorders) complicates any food and fluid intake for patients or makes them
impossible. Due to the loss of a normally coordinated interplay of muscles, the larynx, and the
hyoid bone are not moved properly. Thus, the bolus might not be prevented from entering the lower
airways and/or the entrance to the esophagus might not be opened sufficiently. The transfer of parts
of the saliva and food into the lower airway can cause aspiration pneumonia. Since swallowing is
triggered by a hidden interplay of numerous components (26 pairs of muscles, five cranial nerves,
and three cervical nerves), an accurate diagnosis is difficult. Although powerful video-based systems,
such as endoscopy and fluoroscopy, provide enough information for diagnosis, the development of
a small, inexpensive, and non-invasive sensor system, which could detect the swallowing process in
real-time, could drastically improve therapy and diagnosis of dysphagia. Such sensors could allow
longer examinations and could give feedback to the patient and therapist. Electrical stimulation
synchronous to swallowing could be triggered by such sensors.

In this work, a measurement system was developed which is able to measure electromyography
(EMG) and bioimpedance (BI) at the neck. An automated swallowing detection was developed and
successfully evaluated on data from healthy subjects and patients. It could be shown that the BI
measurement signal is correlated to the displacement of the hyoid bone and the larynx. In order
to support swallowing by functional electrical stimulation, algorithms have been developed which
are able to detect the onset of a swallow in the very beginning. This allows supporting the airway
protective displacement of hyoid bone and larynx by electrical muscle stimulation. It has been
shown on one patient that the developed methods based on BI and EMG measurements are able
to control functional electrical stimulation and that swallowing could be significantly improved by
this.

Based on the achieved results in this work, a system able to automatically analyze swallows was
developed that can be used for diagnosis and biofeedback therapy. It has been shown that triggering
of functional electric stimulation is possible in order to support swallowing. This system will help
patients suffering from dysphagia and can also be used outside a clinical environment.
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1
Introduction

This thesis is about the development and testing of new methods for diagnosis and treatment of
swallowing disorders. Measurement of electromyography (EMG) and bioimpedance (BI) at the
neck were made possible by the development of a measurement device. Automatic swallowing
detection algorithmswere developed and tested on the recordedmeasurement data of healthy people
and patients. The relationship between swallowing and EMG and BI measurements was analyzed
by performing videofluoroscopy (VF) on patients. It was possible to trigger functional electrical
stimulation (FES) of the muscles involved in swallowing in real-time such that the swallowing could
be supported.

This chapter introduces the basics of swallowing, dysphagia, EMG, BI, and FES. The structure of
this thesis is outlined and the main contributions by the author are given.

1.1 The Swallowing Process

Swallowing is a vital and complex process that is generated by complex movements of the jaw,
tongue, hyoid bone, larynx and esophagus. Swallowing is associated with ingestion and therefore
volitional initiated, but can also be reflexive triggered in order to protect the lower airways.
Swallowing can be divided into three sequential phases [1]. The first phase is referred to as the oral
phase and is sometimes divided in literature into an oral preparation phase and an oral absorption
phase. The entire oral phase is controlled voluntarily. The preparation phase includes the food or
fluid intake, size reduction and insalivation of the bolus. In the oral absorption phase, parts of the
food or fluid are separated by the tongue in order to form a bolus. Undulating movements of the
tongue transport the bolus into the posterior pharynx. In the transition to the pharyngeal phase of
swallowing, the bolus is pushed from the tongue dorsally towards the soft palate and the posterior
pharyngeal wall.

The pharyngeal phase is reflex controlled and the initial triggering of the swallowing reflex
is caused by irritation of the posterior oral cavity and pharynx. Although it is reflex controlled,
adaption to environmental conditions (e.g. drinking in headstand position) and compensating of
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Figure 1.1: Sagittal section of the head and neck. Anatomical illustration is from [2].

impairment is possible in the pharyngeal swallowing phase [3]. The swallowing reflex inhibits
respiration. The pharyngeal phase begins with the closing and the stabilization of the jaw by the
jaw muscles. This supports the suprahyoid muscles¹ by pulling the hyoid bone up- and forward
in direction of the jaw. Subsequently, the larynx (cf. Fig. 1.1) is raised by the infrahyoid muscles².
The suprahyoid and infrahyoid muscles are depicted in Figure 1.2. The access to the nasopharynx
is obstructed by muscular lifting and stretching of the soft palate in order to prevent a transfer
of bolus parts into the upper respiratory tract. By the up- and forward movement of the larynx
and the hyoid bone, the epiglottis passively tilts downwards over the entrance to the larynx and
seals the lower respiratory tract. Should parts of the bolus nevertheless reach the entrance to
the lower airways in height of the vestibular folds or below, a reflexive cough is triggered in
order to clear the lower airways. As additional protection, the vestibular folds and vocal cords
are rapidly closed when a small amount of liquid triggers the pharyngoglottal closure reflex [4].
The tongue is pushed back- and downwards into the pharynx, and the posterior pharyngeal wall
contracts towards the tongue. Beginning from the nasopharynx down to the esophagus, peristalsis

¹Suprahyoid muscles: mylohyoid, stylohyoid, digastric, and geniohyoid.
²Infrahyoid muscles: sternohyoid, sternothyroid, thyrohyoid, and omohyoid.
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Figure 1.2: Infrahyoid and suprahyoid muscles. Anatomical illustration is from [2].

of the pharyngeal muscles (cf. Fig. 1.3) propels the bolus into the esophagus by wave-like muscle
contractions. The pharyngoesophageal segment is opened by relaxation of the upper esophageal
sphincter which consists mainly of the lower part of the inferior constrictor. Counting from onset
of lingual peristalsis, the upper esophageal sphincter opens after 0.35 s to 0.85 s and closes after 0.9 s
to 1.2 s. The duration of upper esophageal sphincter opening is between 0.3 s to 0.6 s [5].

In the esophageal phase, which is mainly controlled by the enteric nervous systems, the bolus
enters the esophagus and is propelled downwards by peristalsis of the striated and smooth muscles.
Finally, the lower esophageal sphincter relaxes and the bolus is pushed into the stomach.

The swallowing phases are coordinated in an adult through the brain stem and cortical paths.
Four motor cranial nerve nuclei³ and their cranial nerves are involved in the complete swallowing
process in order to fire the respective motor neurons of the muscles involved. In the pharyngeal
phase, additionally the motor neurons arising from vertebras C1 to C3 are involved. Sensory
feedback is triggered during swallowing via the spinal trigeminal nucleus and the nucleus of the
solitary tract in the brain stem. The wave-like muscle activation pattern in the esophagus, which is
used in the esophageal phase in order to transport the bolus into the stomach, is controlled by the
enteric nervous system.

³Cranial nerve nuclei: spinal trigeminal nucleus, facial nerve nucleus, nucleus ambiguus, and the nucleus nervi
hypoglossi.
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Figure 1.3: Muscles of the pharynx. The middle constrictor muscle is not shown. Anatomical illustration
is from [2].

1.2 Dysphagia

Dysphagia (swallowing disorder) can be classified into oropharyngeal dysphagia and esophageal
dysphagia. In the following, only the oropharyngeal dysphagia is considered.

The complete closure of the larynx and its timing take a central role in safe swallowing. Besides
swallowing, the pharynx is used in respiration and speech. The air flow path and the bolus transport
path cross each other in the laryngopharynx. The lower airway and the nasopharynx must be
securely sealed during the pharyngeal phase of swallowing. In case of closure failure, which can be
caused by pharyngeal dysphagia, a transfer of saliva, liquid or food into the lower airway (aspiration)
takes place. Aggregated in the lung, bacteria from the bolus can cause acute aspiration pneumonia
which can be fatal. In general, swallowing disorders include difficulty to transport food or liquid
from the mouth to the stomach and can lead to dehydration, malnutrition, chronic lung disease and
acute aspiration pneumonia. Symptoms besides aspiration that are related to dysphagia are drooling,
leaking, nasal penetration, laryngeal penetration, retention and pharyngeal regurgitation [6].

Dysphagia may result from changes in the swallowing-related structures, caused by surgery,
cancer, infectious diseases, burns or trauma. Swallowing problems are common in patients who had
a stroke which is caused by a blockage of blood flow (ischemia) or internal bleeding (hemorrhage)
within the brain. Dysphagia may also be caused by any neurological diseases that effect swallowing
as cranial nerve dysfunction, myasthenia gravis, Guillain-Barré syndrome, multiple sclerosis, motor
neurone disease, Parkinson’s disease, or Alzheimer’s disease [7].
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Depending on the examination method, several studies have shown that 37% to 78% of acute
stroke patients show symptoms of dysphagia [8]. According to the World Health Organization⁴,
15 million people suffer a stroke each year. A pneumonia occurred in around 7% to 33% of stroke
patients with dysphagia [8]. Especially older people are at a greater risk for aspiration pneumonia
when they suffer from dysphagia [9]. Six month after an acute stroke, 17 of 67 patients (25%) with
initial swallowing abnormalities showed aspiration [10].

These numbers show that diagnosis of dysphagia, especially clinical dysphagia assessment, is
an important tool in order to decrease mortality and complications for patients. Based on diagnosis
of cause and development of each specific case of dysphagia, appropriate intervention techniques
have to be selected and evaluated on each patient. By this, the bolus transportation and airway
protection during swallowing should be improved. Otherwise, the airway has to be blocked by a
tracheotomy tube in order to prevent saliva aspiration [11].

Because of the complex anatomy, the overlapping muscular processes and the complex control,
the diagnosis of swallowing disorders is complex and significant differences are possible in the injury
patterns. Especially the detection of an existent aspiration is crucial for the patient’s prognosis and
the decision of further treatment steps in the underlying disease. In approximately 50% of the
patients who aspirate during swallowing, the aspiration triggers no physiological signs such as
coughing, face turning red or uncoordinated breathing [12]. This is also called silent aspiration and
means a significant risk of complications for the patient as the aspiration may remain undetected.

Both gold standards, videofluoroscopic swallowing study (VFSS) and fiber-optic endoscopic
evaluation of swallowing (FEES), for examination of the swallowing process are not real-time
capable. They can only be used for the assessment of very few swallows and have only a moderate
inter- and intra-rater reliability. A comparison of scores given by different raters for the same video
recording results in an inter- and intra-rater agreement of 50% to 75% [13], [14]. An automated
evaluation of the swallowing process and its phases is not possible with neither of the two methods.

Treatments of dysphagia are selected by a therapist based on the initial diagnosis. Due to the
high diagnosis effort of the gold standards VFSS and FEES, the therapeutic impact may not be
frequently reevaluated. Real-time measurement methods that are able to automatically evaluate
the swallowing process, and that utilize simply attachable, inexpensive and non-invasive sensors,
could improve the diagnosis and therapy of swallowing disorders. Such a system should robustly
detect swallows in the measurement signals even in presence of signal artifacts which could be
caused by noise, speech, coughing, or movement of tongue, neck, or head. The detected swallow in
the time series should then be classified into normal and abnormal swallows. Systems based on such
methods could also be used outside the clinical environment for diagnosis of swallowing disorders,
e.g. at home, at a retirement home or at a doctors office. Continuous long termmeasurements would
become possible that could be used for examination of the swallowing behavior during sleep or how
the swallowing behavior changes without supervision of therapists or doctors.

Besides the development and validation of new diagnostic tools, new therapies that utilize
real-time measurement systems could significantly improve the treatment of dysphagia. Standard
treatment of swallowing disorders uses dietary adjustments, compensatory techniques, sensory
stimulation or strengthening techniques including continuous electrical muscle stimulation. A real-

⁴http://www.who.int/whr/2002/en/
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time measurement method could be used for new therapeutic measures that are synchronized with
swallowing. Thus, instantaneous biofeedback would become feasible and would help the teaching of
compensatory swallowing techniques. Instead of an undirected and constant stimulation of sensory
or muscle fibers, stimulation could be precisely activated during swallowing. Such a measurement
system could be used for controlling functional electrical stimulation of swallowing related muscles
in order to increase elevation of hyoid bone and larynx as well as lower airway protection.

1.3 Electromyography

EMG is the recording of the electrical activity of muscle tissue and can be used to study activity
patterns. Aberrations produced by various diseases, especially upper motor neuron disorders, are
measurable with EMG [15].

A muscle is composed of many fibers which are activated by lower motor neurons (LMNs). A
motor unit (MU) consists of a single LMN cell body, its axon which innervates the corresponding
muscle fibers, neuromuscular junctions and all innervated muscle fibers. How many muscle fibers
belong to an MU depends on the specific muscle.

Every skeletal muscle is innervated by LMNs. The cell body of an LMN lays within the spinal
cord or in a somatic motor nucleus of the brain stem. The connection to the brain is accomplished
by the upper motor neurons which connect the motor area of the cortex with the appropriate level
in the spinal cord.

When a LMN is activated, a wave of depolarization is going down the axon to the neuromuscular
junctions and then to each connected muscle fiber causing depolarization which propagates along
the muscle fibers. The electrical potential which is associated with the activation of a single MU
is called motor unit action potential (MUAP). The muscle contraction depends on the number of
activated MUs and their activation rate. Muscle activity can be recorded by surface silver/silver-
cloride (Ag/AgCl) electrodes, hooked wire electrodes and needle electrodes.

Surface EMG measurements can be used to indicate which muscle or muscle group contracts at
the moment and provide an approximate measure of the contraction strength in comparison to the
maximal possible contraction [16]. Surface EMG is normally measured bipolarly with two identical
Ag/AgCl gel electrodes in direction of the muscle fibers. The measured signal is a composite of all
MUAPs occurring in the muscles underlying the skin between the electrodes.

Hooked wire electrodes are inserted into a muscle and are more selective. The activity of deep
muscles (e.g. the geniohyoid) can only be recorded with hooked wire electrodes.

Needle electrodes have only a very small contact area and are highly selective. Therefore, needle
electrodes can be used to analyze action potentials of a single or few motor units. Needle EMG is
mainly used for assessment of motor units in order to diagnose neuromuscular diseases[17].

As swallowing is not possible without muscle activity, EMG can be used as an indicator for
swallowing activity. During the oral phase of swallowing, the masseter muscle is active and remains
active during the pharyngeal phase in order to stabilize the mandible. Its activation can be recorded
with surface EMG electrodes. The suprahyoid muscle group⁵ whose activity can also be recorded
with surface EMG electrodes is then activated to initiate the pharyngeal swallowing phase by

⁵Mylohyoid, geniohyoid, stylohyoid, and anterior digastric muscles form the suprahyoid muscle group.
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elevating the hyoid and larynx. Vaiman et al. [18] showed in their work that surface EMG can
be used as a screening method for dysphagia. An overview over the usage of EMG in the field of
dysphagia can be found in Section 2.1.6.4.

1.4 Bioimpedance

The passive electrical properties of biological tissue can be grouped together under the term of
bioimpedance. Impedance is defined as the relation of voltage to current in terms of amplitude
and phase. In case that the load contains capacitive and/or inductive parts (e.g. tissue), both are
frequency-dependent. Bioimpedance depends on the type of tissue (e.g. bone ormuscle tissue) and is
the result of the conductivity of the intra- and extracellular space and the behavior of cell membranes.
Depending on the frequency range, tissue behaves more as a volume conductor (below 100 kHz) or
as a dielectric (over 50 kHz) [19]. As biological tissue has normally an inhomogeneous resistivity
across its volume, BI measurement can only collect the average impedance distribution in a certain
area.

Bioimpedance analysis (BIA) is used to determine the fat-free mass and total body water by
measuring BI of the whole body [20]. It is assumed that the tissue itself is time invariant during the
measurement period.

If bioimpedance is measured at a specific frequency, it can be used to measure the impedance
changes over time. For example, the stroke volume of the heart can be estimated by the maximum
rate of change of BI within the thorax in comparison to the measured average BI [21]. In the
following, the term BI refers to the measurement of a time dependent BI signal at a specific
measurement frequency.

Bioimpedance can be measured using two, three or four electrodes [19]. An alternating current
(AC) is applied between two electrodes and the resulting electrical potential is measured between
another pair of electrodes (tetrapolar), between one additional electrode and one current electrode
(tripolar) or between the current electrodes itself (dipolar).

In biological tissue, the impedance of the electrodes and the connection between electrodes and
tissue can be greater than the impedance of the tissue itself. In case of dipolar measurement, the
electrode impedance affects the measurement and cannot be separated from the tissue impedance.

Tetrapolar measurements allow to measure the potential from a different pair of electrodes
with a high resistance amplifier which reduces strongly the influence of the electrode impedance to
measurement results. Using four electrodes, one pair of electrodes is used for current injection into
the tissue and the other pair is measuring the resulting voltage. Themeasured voltage divided by the
applied current is called transfer impedance [19]. The term refers to the fact that the current flow
between the current electrodes is transferred through the tissue into a voltage across the voltage
measurement electrodes. A more detailed discussion about BI measurement methods will be given
in Chapter 3 of this thesis.

It was demonstrated by Kusuhara et al. [22] that a four-electrode transcutaneous BI measure-
ment at the neck area can capture swallowing induced movements. They used a measurement
frequency of 50 kHz. BI measurements seems to be convenient for swallowing assessment and
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should be further investigated. More details about the state of art in BI measurement can be found
in Section 2.1.6.7.

1.5 Functional Electrical Stimulation

Electrical stimulation of tissue is a technique by which an electrical field is created across cells
in order to release their action potential. In contrast to therapeutic electrical stimulation or
transcutaneous nerve stimulation, FES is applied on one or more muscles in order to generate
functional movements which partly compensate lost or impaired functions [23]. The stimulation
electrodes are attached near or in muscle tissue which is sufficiently innervated by LMNs such that
the applied electrical field triggers the action potential of several motor neurons.

Contrary to the natural motor nerve recruitment pattern, in which firstly smaller diameter
fibers that are weaker but more fatigue-resistant are contracting [24], [25], electrical stimulation
activates firstly the fast fatiguing and large diameter fibers at low stimulation intensities [26]. This
inverse recruitment order leads to faster fatigue in electrically activated muscles. The second reason
why FES leads to faster fatigue is that during FES all nearby motor neurons are synchronously
stimulated. In voluntary contraction, different motor neurons are activated asynchronously, which
allows fatigued fibers to recover and leads to a lower effective stimulation frequency for each fiber.

Different stimulus waveforms are possible. Mostly biphasic current-controlled waveforms are
used which consist of a positive and a negative square pulse. The current amplitudes of both squares
are equal and the negative square pulse follows after a delay of around 100 μs. A biphasic, charge
balanced stimulation pattern prevents migration of ions from the electrodes into the tissue and
allows muscle stimulation at both electrodes. The current amplitude is defined as the height of the
square waves. The pulse width is defined as the width of one square pulse and is normally in a range
from 10 μs to 500 μs. The stimulation frequency, by which the square pulse pattern is repeated, lays
in a range of 20Hz to 100Hz, and is usually constant. Instead of using one pair of stimulation pulses,
𝑁 closely spaced stimulation pulse pairs which are called 𝑁 -lets can be used for enhancing muscle
force produced by FES.

The relation between produced force and applied stimulation is nonlinear and time variant due
to the recruitment function and fatigue of the stimulated muscle fibers [27]. The recruitment level
and thus the produced muscle force depend nonlinear on the stimulus current amplitude and the
pulse width at a fixed stimulation frequency [28]. In order to produce amuscle contraction of desired
intensity, the stimulation intensity has to be tuned for each patient and can be controlled in order
to compensate nonlinearity and fatigue. Normally, either the current amplitude or the pulse width
is kept constant.

Most studies which are using electrical stimulation in therapy of dysphagia apply therapeutic
electrical stimulation with surface electrodes. During several sessions, the submental and laryngeal
muscles of a patient are stimulated for a defined duration. The stimulation does not produce
functional movements. The stimulation intensity is set manually to a maximum tolerated level at
which muscle contraction occurs. The swallowing related muscles are strained by this therapy,
which results in a better swallowing due to muscle strengthening. Some studies showed that the
outcome of this therapy is similar to the outcome of standard swallowing therapy [29]. It was shown
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that intramuscular stimulation is able to elevate the larynx [30] which is an important function
for swallowing and airway protection during swallowing. Using surface electrodes, the achieved
effect is lower and selective stimulation of the thyrohyoid muscle is impossible [31]. A study by
Humbert et al. [32] investigated ten different electrode positions in comparison with VF on healthy
adults. Only the submental stimulation did not decrease hyoid or larynx during swallowing in
comparison to swallowing without stimulation. However, the stimulation did not significantly
increase the elevation. The study was repeated on chronic dysphagic patients with therapeutic
electrical stimulation on the submental and laryngeal muscles [33]. The results showed that an
increase of elevation of the larynx and hyoid triggered by surface muscle stimulation could only
be observed in two patients whereas for the other eight patients the elevation of larynx and hyoid
decreased which led to an increased aspiration risk in these patients. Thus, therapeutic electrical
stimulation on the laryngeal muscles with surface electrodes may strengthen swallowing involved
muscles but generally increases the aspiration risk and does not elevate the hyoid bone or the larynx.
Therapeutic electrical stimulation on the submental muscles does not seem to have any negative
effects.

Besides surface stimulation, functional movement can be triggered by electrical nerve stimula-
tion and intramuscular stimulation. Hadley et al. [34] were able to show that selective stimulation
of the hypoglossal nerve could achieve highly laryngeal elevation in canines. By stimulating the left
recurrent laryngeal nerve, Broniatowski et al. [35] could achieve closure of the true vocal folds which
helps preventing aspiration. Burnett et al. [36] showed the feasibility of intramuscular stimulation in
order to achieve laryngeal elevation on healthy subjects. While these studies look very promising
for the future, there exists no satisfactory solution for automatically triggering such supporting
stimulation in the correct phase of swallowing.

In a study by Leelamanit et al. [37], the region around the thyrohyoid muscles is stimulated by
surface electrodes for one second whenever EMG activity of the posterior tongue could be measured.
The results are promising, but other studies showed that it is difficult to stimulate the thyrohyoid
muscle with surface electrodes [30], [31]. Secondly, EMG measurements of the suprahyoid muscles
are not truly swallowing specific and are timely inconsistent due to the varying relationship between
EMG threshold and swallowing onset. Healthy subjects seem to be able to self-trigger FES to
support their swallow [36]. To the best knowledge of the author, no other solutions for triggering
FES in order to improve swallowing have been proposed until now. Within this thesis, methods
are proposed, which utilize measurements of EMG and BI for triggering transcutaneous FES of
submental muscles during swallowing.

1.6 Main Contributions of this Thesis

In the presented thesis, a developed measurement device PhysioSense is described which allows
the measurement of BI through the neck by transcutaneous Ag/AgCl electrodes in order to gain
information about the swallowing process. The device additionally measures EMG over the same
electrodes. The presented measurement device consists of a protected amplifier circuit. It has the
ability to quickly recover after a stimulation pulse in order to allowmeasurements during active FES
which is applied tomuscles near themeasurement electrodes. Themeasured data samples are sent to
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a personal computer (PC) in real-time. Themeasurement system is able to trigger FES synchronously
with the onset of swallowing in order to assist the movement of hyoid bone and larynx.

The measurement signals are used to automatically detect swallowing events in recorded time
series of EMG and BI. An EMG activity detector was developed and implemented. The detector is
based on a double-threshold detector and extended with robust noise and disturbances estimation
in order to find the optimum detection threshold. Possible segments in the BI time series, which
are likely to contain a swallow, are found by a valley search algorithm. The heuristic algorithm
uses a piece-wise linear approximation of the BI signal. Only valleys that coincide with EMG
activity are then selected for feature extraction. Besides time, value and area based features,
symbolic approximations are generated for each possible swallow and directly used as features. The
classification of the extracted valleys is done by a support vector machine (SVM). The classifier has
been trained and tested on data from healthy subjects and patients.

The measurement principle is evaluated by correlating the EMG and BI time series to the
displacement of the hyoid bone and the laryngeal cartilage which were determined by VF. The
movement trajectory of hyoid bone and the laryngeal cartilage is extracted from 2828 VF images
which include 92 swallows from 17 patients.

Parts of the algorithms from the swallow detection are used in the swallow trigger algorithm
which is able to trigger functional electrical stimulation for improving elevation of hyoid bone
and larynx and lowering the risk of aspiration and penetration. Timely muscle activation by FES
requires an swallowing effort detection algorithm which is able to trigger the stimulation within
some hundred milliseconds. The stimulation system, which automatically triggers FES at the onset
of swallowing, was successfully tested on one patient.

In summary, it can be said that within this thesis a measurement device was developed and
evaluated that is able to capture the pharyngeal swallowing phase, delivers parameters which are
able to characterize the swallow, and allows the control of FES in order to support swallowing.

1.7 Outline of this Thesis

Besides the introduction, this thesis consists of five further chapters and is concluded by a discussion
and outlook.

In the second chapter, the state of art in swallowing diagnosis and therapy is presented. It is
pointed out that swallowing and swallowing disorders are complex and swallowing diagnosis as
well as therapy are challenging problems.

The developed measurement system PhysioSense, which utilizes EMG and BI for capturing
swallowing is described in the third chapter. Important parts of this measurement systems are
explained in detail.

The measurement system is used in a swallow detection algorithm which is presented in the
fourth chapter. The algorithms for EMG detection, BI approximation, heuristic valley searching,
and feature extraction are explained in detail. The influence of important parameters is evaluated.
Finally, a classifier based on an SVM is trained and tested on the extracted features from data of
healthy subjects and patients. The sensitivity and specificity of the complete approach is determined.
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The correlation between displacement of hyoid bone and larynx and the measured BI signal is
investigated within the fifth chapter. Based on VF videos of swallows from 17 patients, correlation
coefficients are calculated and interpreted.

In the sixth chapter, the algorithms are described which allow detection of voluntary swallowing
effort in real-time and are able to trigger FES for improving elevation of hyoid bone and larynx and
lowering the risk of aspiration and penetration. The system was evaluated on one patient. FES
was triggered based on the measured EMG and BI signals such that the patient swallows could be
successfully supported.

Finally, a conclusion about the results within this thesis is drawn and recommendations about
future work are given.
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2
State of the Art in Diagnosis and

Treatment of Swallowing Disorders
(Dysphagia)

2.1 Diagnosis of Swallowing Disorders

An analysis of a questionnaire regarding clinical examination of dysphagia byMathers-Schmidt et al.
[38] showed that most clinicians perform a clinical (e.g. bedside) examination of dysphagia prior to
an instrumental diagnostic procedure. This study was limited to clinicians from the western Wash-
ington state. For almost all clinicians, clinical examination contains the following points: history,
assessment of vocal quality, assessment of lip seal and dentition for chewing, ability to perform a
volitional cough, observation of oral movement and motor function, assessment of pharyngeal delay
and excursion, the patient’s perception and mental status. For specific hypothetical cases in which
the clinical examination did not lead to clear results, more than 80% of the clinicians agreed that
an instrumental evaluation is warranted. videofluoroscopic swallowing study (VFSS) was the most
recommended instrumental evaluation method and almost all clinicians had access to VFSS in their
local area.

The existence of accurate instrumental evaluation methods is important for the subsequent
diagnosis of patients who showed presence of clinically indicators that predict a risk of aspiration
and for monitoring of swallowing therapy.

There are various methods for assessing the swallowing process and still there is a need for
improving these methods. In literature, measurement methods are described which gain objective
information about timing, pressure, range, and strength of structural movements, bolus flow pattern,
bolus clearance and efficiency, airway protection, and sensation [39].
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2.1.1 Clinical Swallowing Tests

Clinical swallowing tests try to classify dysphagia and aspiration based on the response of the patient
on standardized food intake. The clinical swallowing tests utilize either water swallows, swallows
of different viscosity, measurement of oxygen saturation or water swallows combined with oxygen
saturation measurements [40]. The tests are intended to be a screening tool which is conducted
by therapists, is non-invasive and produces reliable results. A questionnaire is used in order to
categorize the severeness of a swallowing disorder into a numeric scale which can be used for dietary
recommendation. Especially nurses and therapists should be able to perform these tests as they play
an important role in observation and treatment of patient with dysphagia. As acute stroke patients
have a high risk to develop dysphagia in the first days after stroke and their risk to aspirate is high
[8], the swallowing functions of acute stroke patients should be checked as early as possible. This
can be done with bedside swallowing tests.

Ramsey et al. [41] compared bed side assessment with videoflouroscopy and found a sensitivity
of 47% and a specificity of 72%. Pulse oximetry was measured simultaneously and the combination
with oxygen saturation showed a sensitivity of 60% and 53% and a specificity of 41% and 67%
depending on the desaturation level. Ramsey et al. [41] concluded that a bedside swallowing
assessment cannot be used for identifying the presence or absence of aspiration as its sensitivity
and specificity is not high enough to be reliable.

In a study by Daniels et al. [42], six clinical indicators were used to identify patients with
moderate to severe dysphagia. 56 acute stroke patients were evaluated. 38 patients were identified
with at least two clinical markers which indicate a risk for dysphagia. In only 24 of these 38 (63%)
patients, moderate to severe dysphagia was confirmed by VFSS. None of the patients developed
pneumonia.

The Burke Dysphagia Screening Test (BDST) was used by DePippo et al. [43] for examination of
139 patients. 82 patients failed the BDST. 12 patients, fromwhich 11 (92%) failed the BDST, developed
pneumonia, upper airway obstruction or died.

The Toronto Bedside Swallowing Screening Tool (TOR-BSST) was evaluated by Martino et al.
[44]. 311 stroke patientswere evaluated and in one part of patients a subsequent VFSSwas performed.
In 4 of 32 (12.5%) patients which passed the TOR-BSST and received VFSS, dysphagia was found. In
22 from 36 (61%) patients which failed the TOR-BSST and received VFSS, dysphagia was diagnosed.

The Guggling Swallowing Screen (GUSS) was evaluated by Trapl et al. [45]. 49 stroke patients
were separated into two groups and evaluated by GUSS and fiber-optic endoscopic evaluation of
swallowing (FEES). In direct comparison to FEES, sensitivity of 100% and a specificity of 50% and
69%, respectively, could be achieved.

62 patients were evaluated by using the Bolus Swallow Test (BST) in combination with Saliva
Swallow Test (SST) by Schultheiss et al. [46]. In comparison to FEES, a sensitivity of 89.6% and
specificity of 72.7% was achieved.

These studies show that clinical swallowing tests cannot reach the accuracy of the gold standards
VFSS and FEES. Clinical swallowing tests are an alternative for assessing dysphagia in patients when
VFSS or FEES are not available.

14



2.1 Diagnosis of Swallowing Disorders

2.1.2 Videofluoroscopic Swallowing Study

The videofluoroscopic swallowing study (VFSS) utilizes videofluoroscopy (VF) which is a radiolog-
ical method (X-ray) for analysis of the location and severeness of swallowing dysfunctions in the
oropharyngeal or esophageal region. VFSS is also called “modified barium swallowing examination”
as a bolus containing barium is used for visualization of the swallowing process. The swallowing
process itself can be estimated by the movements of the bolus, bony, and cartilaginous structures
which are visible in the X-ray examination andwhich are recorded in real-time by videoradiographic
images. The swallowing process can be documented in two planes (frontal and lateral). The
slow-motion representation allows an accurate assessment of individual swallowing phases and
interference. In these images, the transportation of the bolus through oral cavity, pharyngeal cavity,
and esophagus can be observed. Presence and timing of aspiration, in which ingestedmaterial enters
through the level of the true vocal folds into the trachea, is visible [39]. Effects of various bolus
volumes, consistencies, and compensatory strategies can be observed [39].

The VFSS can be used to evaluate the severeness of aspiration or penetration by mapping the
occurrence of specific symptoms into numeric scales. The 8-point Penetration-Aspiration scale [47]
combines the level of airway invasionwith information about ejection of already entered bolus parts.
Each recorded swallow is manually mapped into the scale by experts. Rosenbek et al. [47] showed
that the inter- and intra-rater agreement for their 8-point Penetration-Aspiration scale lies in a range
between 57% and 84%. A different VFSS examination, by which the pharyngeal residue severity was
rated from none to severe by different raters, found an inter- and intra-rater agreement in a range
between 50% and 75% [13]. The Videofluoroscopic Dysphagia Scale (VDS) consists of 14 items that
can be observed by VFSS. Kim et al. [48] evaluated the inter-rater reliability on 100 patients. The
VDS score inter-rater reliability was found out to be low to moderate with an intra-class correlation
of 0.556.

VFSS is often considered as gold standard in diagnosis of dysphagia [49] and often the perfor-
mance of other swallowing diagnosis techniques is measured against the outcome of VFSS. The
advantage of videofluoroscopy is the possibility to assess of the entire swallowing process. A
description of the different stages, that can be observed in the VFSS, can be found with sample
images in [39]. The disadvantages are the significant technical complexity and radiation exposure
during the investigation, which makes frequent follow-up examinations inappropriate. The average
radiation exposure duration is around 3min to 5min [39]. Evaluation of saliva swallows is only
possible when they occur directly after a bolus swallow containing sufficient contrast agent.

2.1.3 Fiberoptic Endoscopic Evaluation of Swallowing

Fiber-optic endoscopic evaluation of swallowing (FEES) is performed by a transnasally introduced
flexible endoscope by which swallowing of saliva or food of different consistencies can be observed.
In comparison to the VFSS method, FEES is a safe nonradiologic alternative without any side effects
[50].

The disadvantage of the FEES method is that only a limited area can be observed by the
endoscopist. In order to detect penetration and aspiration, the endoscope has to be inserted
inferiorly into the larynx after each swallow. During the approaching of the tongue and posterior
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pharyngeal wall, the camera will only transmit a white image (“white out”-effect). This effect can be
used for determinewhether the aspiration occurred before swallow (bolus disappears in the pharynx
before swallow), during swallow (residue visible) or after swallow (patient aspirates as the airway
reopens).

The sensitivity of FEES is comparable to VFSS or even better in the following swallowing pa-
rameters: assessment of the delay in swallowing initiation, penetration, aspiration, and pharyngeal
residue [51]. FEES can also be used for patients who are unable to sit or stand during the examination.
The inter- and intra-rater agreement is in the same range as VFSS with an inter-rater agreement of
0.51 [13] or 0.35 to 0.46 [14] and an intra-rater agreement of 0.72 [13] or 0.53 to 0.78 [14].

2.1.4 Cervical Auscultation

Cervical auscultation is a method in which trained experts try to classify dysphagia in patients by
listening to the swallowing sounds during the pharyngeal phase using an amplifying instrument.
Zenner et al. [52] showed that the agreement between VFSS and auscultation has been moderate for
tracheal aspiration (76%) and oral delay (72%), whereas oral residuals (62%), pharyngeal delay (66%)
and pharyngeal residuals (42%) have been a lower agreement with VFSS. The inter-rater agreement
was found out to be at fair level (0.46) by Borr et al. [53]. Similar results were achieved by Leslie et
al. [54], who compared the experts ratings together with VFSS. The experts achieved a sensitivity
of 62% and a specificity of 66%. If only the consensus of all experts for each swallow was used for
classification, then the sensitivity was improved to 80% and the specificity was improved to 90%.
Cervical auscultation has been seldom used by clinicians [38].

2.1.5 Sonography

Sonography is of limited use for the assessment of swallowing disorders. The following analyses are
possible: observation of the tongue function within the oral phase of swallowing [55] and evaluation
of the movements of hyoid bone [56], [57], thyroid cartilage [58] as well as the distance between
hyoid and thyroid cartilage [59]. Caused by the various overlapping tissue types, movements in
the throat are not easy to differentiate and an automatic extraction of movement trajectories is not
possible. Detection of aspiration or penetration using sonography is hardly feasible as the position
of the bolus is not clearly visible.

2.1.6 Real-time Capable Measurement Methods

VFSS and FEES are currently themost important instrumental methods for diagnosis andmonitoring
of swallowing disorders. Both methods can only be carried out in a clinical environment and need
a subsequent evaluation of the recorded video by skilled experts. Repeated examinations with VFSS
should be avoided as the patient is exposed to radiation. Both methods are not always available due
to logistical problems.

An automated evaluation of swallowing and detection of dysphagia is not possible using VFSS or
FEES. This means that these methods are not usable for biofeedback applications, home monitoring
or as sensors in a neuro-prosthetic implant. To overcome these disadvantages, several alternative
methods have been investigated and are currently being researched. In the following sections,
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several methods are introduced which do not need bulky and expensive devices, as they use only
some easily attachable sensors. It is also possible to link these methods with digital signal processing
and artificial intelligence as discrimination tools. Currently, these methods are only rarely used in
the assessment of swallowing disorders in clinical routine.

2.1.6.1 Piezoelectric Sensors

In the study from Ertekin et al. [60], a piezoelectric sensor, which is able to detect laryngeal
movement under the sensor due to pressure changes, was used together with submental muscle
electromyography (EMG) to evaluate oropharyngeal dysphagia. Only timing information about the
laryngeal movement can be measured using a piezoelectric sensor.

2.1.6.2 Swallowing Sounds

Swallowing sounds can be measured using microphones. The method is similar to cervical aus-
cultation but uses digital signal processing and artificial intelligence / machine learning instead of
discrimination skills from an expert. The swallowing sound as a sensor signal is used in combination
with a trained classifier in some studies for automatic swallow detection and separation of normal
and abnormal swallows.

In order to monitor food intake, Sazonov et al. [61] used a microphone located over the
laryngopharynx for automatic swallow counting. The recorded microphone signal contained 9966
swallows from 20 healthy subjects. In addition, resting periods with noise and talking as well as
the intake of a meal were recorded. The data were divided into 70 visits containing measurements
of 20 minutes resting, one meal and another 20 minutes of resting. These datasets were used for
generating 70 different intra-visit models. Each model was trained and tested by applying three
folded cross-validation on 55 segments of a visit. The classifiers, which were trained to detect
presence of a swallow in time periods of 1.5 s, achieved an average weighted accuracy of 84.7%.

Amft et al. [62] recorded the signal of a microphone which was placed near the cricoid
cartilage together with the EMG of the infrahyoidal and submental muscles for classification of
swallowing, bolus volumes, and consistencies. Using the data of five healthy subjects, swallows
were automatically detected with a sensitivity of 65% and a specificity of 31%. The accuracy for
discrimination of low and high bolus volume and viscosity was around 70%. The same authors
repeated the study on six healthy subjects using a different sensor setup (EMGwas recorded directly
at the infra-hyoid throat position) [63]. By using sensor fusion between EMG and the microphone,
a sensitivity rate of 68% and a precision rate of 20% were achieved. A lot of false positive events
were received by the classification.

In the work by Aboofazeli et al. [64], [65], an automated classification of breathing sounds from
swallowing sounds was performed on manually segmented data of 15 healthy subjects (including
children) and nine cerebral palsy patients. Wavelet-based detection [64], recurrence plot features
[64], and hidden Markov models [65] were used. The latter achieved the best results of swallowing
sound detection with a false positive rate of 6.7% and 4.8% of missed swallows.

Lazareck et al. [66] used a microphone for classification of swallows from control subjects (12
children (3 to 16 years) and three adults (ages 35, 38, and 54 years)) and swallows without aspiration
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from patients with swallowing disorders (ages 16 to 25 years). 350 swallows of different viscosity
were recorded. The swallowing sounds were manually extracted from the recorded data based on
repeated listening and monitoring of the signal. The achieved accuracy of the trained classifier for
the test data, which were produced by the leave-one-subject-out method, depends on the viscosity of
the bolus. Normal swallows of thick liquid bolus was classified with an accuracy of 76.6% (semisolid:
58.0% and thin liquid: 84.6%) and an abnormal swallow of thick liquid bolus was classified with an
accuracy of 88.1% (semisolid: 84.9% and thin liquid: 63.3%). The classification results were improved
by excluding the two adult subjects in the control group, which leads to the question whether the
age of the subjects is more important than the presence of swallowing disorder.

On ten patients with dysphagia who showed silent aspiration during a FEES examination, a
microphone was used to record the swallowing and breathing sound, which was later manually
extracted from the recorded signal by Shirazi et al. [67]. 186 swallows without aspiration and 46
swallows with aspiration were recorded. An unsupervised classifier separated swallowing with
aspiration from normal swallows with an average accuracy of 82.3% (sensitivity of 84.8% and
specificity of 81.4%). By the same authors [68], a larger study with 50 dysphagic adult patients
was performed. Swallowing sound and breathing sounds were recorded with the same microphone
together with either VFSS or FEES which were used for manual swallowing sound separation. The
breathing sound of up to three breath phases was also selected for analysis. An support vector
machine (SVM) was used to distinguish swallowing with severe aspiration from swallowing with
mild or without aspiration. The classifier was trained and tested by the leave-one-subject-out
method and resulted in 91% sensitivity and 85% specificity.

A wearable acoustic sensor for recognition of swallowing water, eating and other activities
such as breathing, coughing, speaking, laughing, sighing, whispering, and whistling was developed
by Yatani et al. [69]. Features for classification were extracted from non-overlapping frames with
a length of 186ms. The leave-one-subject-out and leave-one-sample-out methods were used for
training and testing on the data of ten healthy subjects. Swallowing was classified with a sensitivity
of 35% (78% for the leave-one-sample-out method) and a precision of 27.8% (66.1% for the leave-
one-sample-out method) among twelve different activity classes.

Olubanjo et al. [70] recorded swallowing sounds from dry and water swallowing together with
other events such as cough, speech, chewing, clearing the throat, head tilts, and head turns from
four healthy subjects in two session. The first session was used for training and the data from the
second session were used for testing. The data were separated into non-overlapping 500ms window
frames from which features were calculated. In the test data set, the correctly detected swallows
were counted. A sensitivity rate of 79.9% and a precision rate of 67.6% were achieved.

2.1.6.3 Accelerometry

Swallowing accelerometry measures the movement and vibration which is caused by swallowing
and partially captures sound as it can be seen as an acoustic transducer [71]. An accelerometer has
the advantage that it can measure with two or three degrees of freedom and its signal to noise ratio
is slightly better in a noisy environment compared to a microphone [72].
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According to Reddy et al. [73], the maximum amount of acceleration correlates strongly with the
maximum amount of laryngeal elevation. 31 patients with a history of swallowing disorders took
part in this study. During each swallow, the maximum elevation of the larynx and the maximum
amplitude of the band-pass filtered acceleration signal were extracted and correlated. The product-
momentum correlation coefficient between both amplitudes was determined to be 0.807 for all
swallows.

Lee et al. [74] used a radial basis classifier to distinguish aspiration from normal swallows
in children with dysphagia, which were 64 males and 53 females (aged 6.0 ± 3.9). The single-
axis acceleration signal was extracted manually for 100 swallows and 94 aspirations which were
identified using VF. The results for the best two features were a sensitivity of 79.4% and a specificity
of 80.3%.

Using dual-axis swallowing accelerometry, Sejdić et al. [75] was able to automatically segment
swallows in the measurement signals on 20 healthy participants. In comparison to manual
segmentation of the same signal by human experts, the segmentation algorithmwas able to correctly
segment 94.6% of 295 recorded swallows. The measurement signals were completely free of any
disturbances as cough, speech, or excessive head movement. Swallowing duration was extracted
from the accelerometry signal and additionally analyzed. In [76], the same authors presented an
approach for removing vocalization and coughing on dual-axis swallowing accelerometry data.

Similar results were achieved by Lee et al. [77], who used dual-axis swallowing accelerometry, a
nasal airflow sensor, and a submental mechanomyography, which consists of a microphone. Manual
segmentation by two raters were conducted for 1292 swallows from 17 healthy subjects. 80% of the
data were used for training of a neural network, while the remaining 20% were used for testing.
The combination of all sensors resulted in an adjusted accuracy of 89.6% for swallow segmentation,
whereas the contribution from the accelerometer was most important.

Damouras et al. [78] developed an automatic online segmentation algorithm that uses dual-
axis accelerometry signals in order to segment swallows. 295 swallows from 20 healthy subjects
were automatically segmented with 90% sensitivity and 93% specificity in comparison to a manual
segmentation by two human raters. The performance of the segmentation algorithm was also
evaluated on 266 swallows from 37 dysphagic patients. VF was used as reference. The sensitivity
of the segmentation algorithm was 87%, whereas the specificity could not be measured as not all
swallows could be segmented through VF.

Combined measurement of the dual-axis accelerometry and the nasal airflow signals was used
from Lee et al. [79] on 24 patients with dysphagia (aged 64.8±18.62 years, 22 male) in comparison to
VF. Onset and offset of each swallow were marked by hand based on the VF images. Three different
classification problems were considered: 1) airway invasion in which material entered the airway
below the vocal folds, 2) residuals at the valleculae, 3) residuals at the pyriform sinuses. The training
data were randomly separated from the test data set. The performance of the classifier had the best
results in classifying problem 2) and 3). The adjusted accuracy of all achieved results laid in a range
around 74.7% to 84.2%.

29 pediatric patients (aged 6.8 ± 4.8 years, 20 male) were examined by Merey et al. [80] using
dual-axis accelerometry in comparison to VF. Periods with vocalization were removed and start
and endpoint of each swallow were manually adjusted based on VF images. Classification results
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were obtained using an 8-fold cross-validation. Each swallow was assigned to a safe swallow (no
aspiration / no penetration) or to an unsafe swallow (aspiration occurs) whereas swallows with
penetration were discarded. The classification of 638 swallows resulted in a sensitivity of 89.6%
and a specificity of 92.2%. Weaknesses of this study are that the training and testing set contained
swallows from the same patients and that swallows with penetration were removed.

Steele et al. [81] applied dual-axis accelerometry on 40 patients (mean age 67, 20 male subjects)
from which each swallow was classified using VF either as safe swallow (8-point Penetration-
Aspiration scale score less than 3) or as unsafe swallow (8-point Penetration-Aspiration scale score
greater than 2, with deeper entry of material into the airway without clearance). The swallows
were manually segmented using the images from VF. The testing of the classifier was done by the
leave-one-out-approach. The results for 154 swallows were good (sensitivity of 90% and specificity
of 77%). Using the exact same procedure for dual-axis accelerometry, Sejdić et al. [82] developed
an algorithm based on wavelets which resulted in even better results on 40 patients (sensitivity of
92.5% and specificity of 95.6%).

2.1.6.4 Electromyography

EMG can be used to measure the electrical activity of muscles and muscle groups. The EMG signal
provides information about the onset and the level of muscle activity. The EMG is suitable for the
diagnosis of neuromuscular diseases and can be used in biofeedback procedures. Normally, EMG is
normalized on the maximum voluntary contraction of the corresponding muscle. As swallowing
related muscles cannot easily be contracted voluntary, it is normally not possible to normalize
swallowing related EMG to maximum voluntary contraction. Therefore, timing information as
onset and offset and the measured voltage amplitude of swallowing related muscles can be used
for assessment of dysphagia.

Gupta et al. [83] recorded surface EMG at the left side near the thryoid cartilage on 35 healthy
subjects during dry and wet swallowing. The mean power differences of the EMG signal between
dry and wet swallowings were significant, but it could also be seen that the mean power varied
strongly from subject to subject.

Perlman et al. [84] used bipolar hooked wire electrodes which were placed in the following
muscles: submental region, superior pharyngeal constrictor, cricopharyngeus, and thyroarytenoid.
The onset, offset and duration of muscle activity was measured for saliva, a 5ml water and a 10ml
water swallow. He concluded that the pattern of muscle activity within subjects is highly consistent
and that the bolus volume leads to changes in the muscle activation pattern.

Vaiman et al. [18] used a large reference dataset of EMG recordings to identify abnormal
swallowing. Surface EMG was recorded from the masseter, submental muscle group, infrahyoid
muscle group, and from trapezius muscle. A test protocol was applied in which the patient has
to swallow water of different volume and saliva several times. The EMG recordings were then
compared to normal swallows from the database. In [85], this database was used to examine
psychogenic swallowing disorders. For 42 patients with suspected psychogenic dysphagia, EMG
was recorded as described above. It was found that the inter-rater reliability was high (88.2%).
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EMG has been combined with swallowing sounds (cf. Section 2.1.6.2) and accelerometry (cf. Sec-
tion 2.1.6.3).

2.1.6.5 Electroglottography

Electroglottography (EGG) is a two-electrode bioimpedance measurement method, in which pri-
marily the impedance changes in the vocal cord area during speech are examined [86], [87]. The
electrodes are placed on both sides next to the thyroid cartilage. Therefore, movements of the larynx
during the EGG also lead to changes in impedance in the frequency range below 10Hz. Sorin et al.
[88] and Perlman et al. [89], [90] investigated the suitability of an EGG in order to describe the timing
of laryngeal elevation during swallowing. Drawbacks of this method for swallowing evaluation are
that it does not work well with female subjects and that incorrect placement of the electrodes leads
to wrong measurements of the timing aspect of laryngeal movements [89]. However, the EGG was
used as a reference measurement for the beginning and end of laryngeal movement in some studies
[91], [92].

Kob et al. [93] developed an EGG device with a 2x3 electrode array that had a 2MHz carrier
frequency and allowed to measure EGG signals from a 36-channel combination with a frequency of
44.1 kHz. The authors described a possible way to measure the larynx position under the assumption
that the current path with the maximum conductivity is closest to the glottis. It is possible to
reconstruct the channel and the position of the maximum conductivity with a frequency of 1000Hz.
Studies with patients have not been carried out yet.

2.1.6.6 Impedance Tomography

Impedance tomography consists of numerous electrodes from which one pair is used as current
source and the impedance ismeasured by all other electrodes. The distribution of conductivity can be
determined by a rotary impedance measurement by which the current electrode pair is continuously
rotated. Hughes et al. [94], [95] examined the possibility for using an impedance tomography at the
neck for the examination of the bolus passage in the throat during swallowing. Videofluoroscopy
was used in both studies as a reference method. 16 electrodes were attached in a transverse plane
around the neck at the level of the thyroid cartilage and the third cervical vertebra.

Hughes et al. [94] correlated the timing of typical swallowing events, e.g. larynx closed, to
the time of peak in conductivity change. They concluded that the swallowing event with the best
correlation is the last apposition of anterior and posterior pharyngeal walls. Seven patients were
examined who had swallowing problems but could swallow 5ml in volume without problems.

In the second study [95], 13 patients with swallowing problems were examined. Only timing
information was extracted from the measurements and correlated with timings of swallowing
events which were measured using videoflouroscopy. Significant correlations were only found for
clearance time, duration of hyoid displacement, and duration of apposition of pharyngeal walls. The
low sampling rate of the impedance tomography and its low signal to noise ratio were identified as
problems of impedance tomography.
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2.1.6.7 Bioimpedance Measurement

A Japanese group studied the possibilities of a transcutaneous bioimpedance (BI) measurement at
the neck area in swallowing [22], [96], [97]. They used a four-electrode bioimpedance measurement
at a frequency of 50 kHz by which a current is applied through two electrodes and the resulting
voltage is measured at the other two electrodes. The authors described the measurement method as
an impedance pharyngography.

In a pilot study by Yamamoto et al. [98], the waveform of a bioimpedance measurement during
swallowing was compared for different consistencies and electrode positions. For shifts of the
voltage measurement electrode in a range of 1 cm, the bioimpedance waveform remained similar.
Different boluses did not lead to strong changes in the bioimpedance waveform. The resulting trace
was interpreted as a reflection of the entire swallowing process (oral, pharyngeal, esophageal phase)
caused by movement of the larynx, pharynx, throat, and esophagus. The end of the oral phase was
located at the beginning of the drop-off in the bioimpedance signal. The pharyngeal phase was
assigned to the entire drop-off. Finally, it was assumed that the bioimpedance signal was going
back to its baseline value during in the esophageal phase of swallowing.

The same measurement device was used by Morimoto et al. [99], in order to measure the
pharyngeal phase of swallowing in 38 patients suffering from dysphagia in comparison to ten
healthy control subjects. Besides the impedance pharyngography, the maximum tongue pressure
and swallowing sounds were recorded. Videofluoroscopy was used as reference measurement. It
was shown that specific features allowed classification of abnormal swallows from normal swallows.
Best results were achieved by maximum tongue pressure (sensitivity of 69% and specificity of
100%), followed by the duration from begin of the drop-off to the minimum point of the impedance
signal (sensitivity of 76% and specificity of 78%) and the number of valleys in the impedance signal
(sensitivity of 76% and specificity of 89%).

Ward et al. [100] used an impedance analyzer to measure BI at the neck during swallowing.
Electrode positions and measurement setup were similar to [98]. Shown BI time sequences during
swallowing, which were measured on a healthy subject, were similar to the presented measurement
curves from [98].

A two channel BI measurement at the neck was combined with a manometric measurement
inside the pharynx by Chester et al. [101]. BI was measured at two places using the four-electrode
measurement method with a frequency of 40 kHz and 70 kHz, respectively. Measurement signals
and some related features from a healthy and a dysphagic patient were shown, but the authors
admitted that the device needs further refinement and validation.

2.2 Therapy of Swallowing Disorders

The goal of any therapy of swallowing disorders is the rehabilitation of the disturbed swallowing
sequences and processes. Meanwhile, airway protection and nutrition have to be assured for the
patient. In cases of severe dysphagia, surgical procedures such as a tracheotomy or a percutaneous
endoscopic gastrostomy (PEG) system are necessary in order to prevent or minimize complications.
The swallowing process may be improved by therapeutic measures and the patient can carefully
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begin with food intake. Appropriate treatment options have to be individually selected based on
the severity and history of dysphagia for each patient.

Conservative treatments, such as dietary adaptation of food consistencies, are firstly used for
improving the swallowing process [102]. Supportive measures, such as posture changes during
swallowing, are a way to assist swallowing by enhancing the remaining capabilities of the patient
[103].

An important factor for restoring swallowing functions especially after cerebral injury is neural
plasticity [104] which describes the ability of the neural substrate to change their behavior and
relearn important functions such as swallowing. Neural plasticity can be stimulated by sensory
stimulation. Different stimuli (cold stimuli, electrical stimulation, etc.) are used to improve
sensitivity for triggering the swallowing reflex [105]. Methods of swallowing intervention utilize
repeated exercises with and without swallowing and try to strengthen swallowing involved muscles
and excite neural plasticity.

Sensors which autonomously access swallowing in real-time could be part of a biofeedback
based therapy. Furthermore, such measurement methods could be used as a sensor for a controlled
swallowing neuro-prosthesis which is essential for the treatment of chronic patients.

2.2.1 Strengthening Exercises and Compensatory Methods

Exercises, such as the Shaker exercise, Masako maneuver or the Mendelsohn-Maneuver, can be used
to strengthen swallowing related muscles and should be performed on regular basis over a longer
period.

In the study by Shaker et al. [106], 27 patients practiced the Shaker exercise three times per day.
In the Shaker exercise, the patient should lie flat and firstly perform three sustained head raisings for
one minute followed by 1 minute rest period and secondly raise his/her head 30 times. In contrast
to sham exercises, the real exercise showed significant improvements after six weeks. The Shaker
exercise can help to improve swallowing on patients with abnormal upper esophagus sphincter
opening.

Kang et al. [107] tested for two months the effectiveness of 30 minutes conventional swallowing
therapy combinedwith additional bedside exercise training of one hour per day against conventional
swallowing therapy of 30 minutes per day. Both groups contained 25 comparable patients. The bed-
side exercise program consisted of oral, pharyngeal, laryngeal, and respiration exercises, including
the Shaker exercise. The treatment outcome indicated that the additional exercises improved the
oral phase in the exercise patient group. Improvements at the pharyngeal phase were comparable
between both groups.

In a study by Wheeler-Hegland et al. [108], submental surface EMG and hyoid bone movements
were recorded on 25 healthy adults during Mendelsohn maneuver, effortful swallow, and expiratory
muscle strength training. EMG activity and the angle of hyoid elevation, which were measured
using videoflouroscopy, were increased in comparison to control swallows. They concluded that
these exercises induced additional muscle contractions which were able to strengthen the submental
muscles and were important for rehabilitation.
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McCullough et al. [109] utilized surface EMG biofeedback for assuring proper execution of
the Mendelsohn maneuver by 18 stroke patients who suffered from pharyngeal dysphagia. After
performing two weeks of two 45 to 60 minutes exercise sessions per day, significant improvements
in “duration of hyoid maximum anterior excursion” and “duration of hyoid maximum elevation”
were observed.

Bülow et al. [110] analyzed changes of the hypopharyngeal intrabolus pressure, during supra-
glottic swallowing, effortful swallowing or chin tuck swallowing in eight patients with pharyngeal
dysfunctions. Although no significant differences in intrabolus pressure using the different tech-
niques could be found, a tendency for an increased intrabolus pressure during the maneuvers was
observed. The authors believed that laryngeal elevation is the most important factor for a successful
pharyngeal swallow sequence.

Postural changes that have to be performed by the patient itself, as chin tuck, head turn, head
tilt, head back or chin tuck with head turn can improve swallowing and reduce or prevent aspiration.
Such techniques are especially used in isolated disorders which may be caused by surgeries. Rasley
et al. [103] showed that using postures such as chin tuck or head turn could avoid aspiration for
small bolus volumes of 1ml to 3ml in around 70% of all examined patients. Higher bolus volumes
of 10ml could successfully be swallowed by 25% of all patients. The effect of aspiration prevention
was examined on 165 patients.

2.2.2 Sensory Stimulation

The stimulation of oral and pharyngeal areas seems to be a promising method in order to help
patients with dysphagia. Mainly mechanical, thermal, gustatory, and electrical stimuli [111] are
used. Sensory stimuli can lower the threshold which evoke pharyngeal swallowing. As the
excitability of the central pathway can be enhanced by stimuli, swallowing can be improved by
sensory stimulation in patients. Sensory stimulation is used in neurological diseases associated
with changes in perception. In case of severe neurological diseases, increasingly complex therapies
are used (e.g. F.O.T.T. [112]).

In a pilot study with four stroke patients with dysphagia, Park et al. [113] applied an electrical
stimulation at 1 Hz on the soft palate during swallowing. The electrical stimulation electrodes were
attached on a palate prosthesis. A clinically significant improvement in the swallowing process was
observed on two out of four patients, whereas the total transit time was improved for all patients.

The recovery of swallowing functions in stroke patients is associated with the reorganization
of swallowing motor regions in the cortex of the intact hemisphere [114]. Therefore, pharyngeal
stimulation which increases the cortical representation of the pharynx could improve swallowing
recovery. Electrical sensory stimulation on the pharynx was applied by Hamdy et al. [115] on eight
healthy subjects for a duration of 10 minutes. For stimulation of the pharynx at 10Hz, a bipolar
ring electrode was attached on a transnasally inserted catheter. It was shown by transcranial
magnetic stimulation (TMS) that pharyngeal stimulation increases motor cortex excitability and
cortical representation of the pharynx which lasted for at least 30 minutes.

Fraser et al. [116] performed an initial experiment on eight healthy subjects for finding the
best parameters on pharyngeal sensory stimulation for changes in the excitability of the cortex.
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They suggested that pharyngeal stimulation at 5Hz and 75% of the maximum tolerated intensity
for 10 minutes produces the largest effects. These stimulation parameters for electrical pharynx
stimulation were then applied on 16 acute stroke patients. After one hour, significant changes in
size and excitability of the cortical representation of the pharynx in the unaffected hemisphere were
measured. Simultaneously pharyngeal transit time, swallowing response time and aspiration were
improved.

The same stimulation parameters were used for pharyngeal sensory stimulation by Jayasekeran
et al. [117] for a placebo controlled trial on 67 acute dysphasic stroke patients. The active group
showed a higher post-intervention reduction in aspiration than the placebo-stimulation group. The
actively stimulated patient group stayed a shorted period of days (median 21 days) in hospital post
intervention compared to the placebo-stimulation group (median 26 days).

Power et al. [118] examined the effect of unilateral stimulation of the faucial pillar on ten healthy
adults. Significant changes were measured in the pharyngeal response amplitude. This indicates
changes in the excitability of the cortical representation and the swallow response time. In a further
study by Power et al. [119] with sixteen stroke patients who suffered from dysphagia, electrical
stimulation of the faucial pillar was compared with sham stimulation. No significant differences
between stimulation and sham stimulation were observed.

2.2.3 Electrical Nerve Stimulation

Some of the nerves which are involved in swallowing can be electrically stimulated. Developments
towards implantable devices for improving swallowing and preventing aspiration are presented in
the following.

Miller et al. [120] applied electrical stimulation by which swallowing could be triggered by the
internal laryngeal nerve in 39 cats. The applied stimulation frequency correlated to the number of
achieved swallows.

Chi-Fishman et al. [121] investigated the effect of mechanical and thermal stimuli on swallowing
induced by electrical stimulation. In four cats, swallowing was triggered by electrical stimulation on
the internal laryngeal nerve. Thermomechanical stimuli seemed to be able to modulate the initiation
of oropharyngeal swallows induced by electrical stimulation.

In a pilot study on two patients with dysphagia, Broniatowski et al. [35] implanted a laryngeal
pacing device which stimulated the left recurrent laryngeal nerve with one channel to close the true
vocal folds which helps preventing aspiration during swallowing. The stimulation was manually
controlled. On both patients, aspiration was significantly reduced. In a further study [122], five
patients with aspiration were implanted the laryngeal pacing device. Statistically significant vocal
fold adduction was achieved in all patients. On four patients, pneumonia were prevented during a
period of six to twelve months.

Hyoid and laryngeal elevation were achieved in five canines by Hadley et al. [34] through
selective hypoglossal nerve stimulation. Direct stimulation of the nerve complex caused significant
higher laryngeal elevation than intramuscular stimulation. The elevation was comparable to the
elevation within normal swallowing. Selective stimulation of the geniohyoid and thyrohyoid
without triggering undesired tongue movement was possible.
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2.2.4 Intramuscular Stimulation

Burnett et al. [30] examined the possible larynx elevation generated by intramuscular stimulation
of the mylohyoid, geniohyoid, and thyrohyoid muscles in 15 healthy men (mean age 42 years).
In comparison to a 2ml water swallow, 50% of elevation and 80% of elevation velocity could be
achieved by a two channel stimulation. The stimulation was also applied to each muscle individually
which resulted in an elevation of around 30% and a velocity of 50%.

In order to improve airway protection during swallowing, such a stimulation must be syn-
chronized with swallowing. On nine healthy adults, it was examined by Burnett et al. [36] if the
stimulation could be triggered synchronized to swallowing. Functional electrical stimulation (FES)
was applied intramuscularly on one site of the neck and EMG was measured intramuscularly on
the other site. The volunteers were able to trigger the stimulation manually with a thumb switch
synchronized to their own swallowing. In comparison to EMG measurements, the thumb switch
occurred 239ms after an onset of mylohyoid activity. The measured EMG activity was not altered
by FES stimulation in comparison to foil stimulation.

Kagaya et al. [31] identified the motor points of the laryngeal elevation muscles. On two healthy
subjects, the motor points were stimulated by surface electrodes and implanted electrodes. The
achieved movements were greater with implanted electrodes.

2.2.5 Neuromuscular surface stimulation

Electrical stimulation can be applied by surface electrodes. The electrical field below the electrodes,
which is created by the voltage across the electrodes, releases action potentials of nearby motor
neurons. Depending on the electrode positions, more than one muscle may be activated during
stimulation.

Freed et al. [123] compared electrical surface stimulation at the neck on 63 patientwith dysphagia
to thermal-tactile stimulation (36 patient with dysphagia). Both therapies were given to the patients
for 60 minutes daily. The electrical stimulation with a frequency of 80Hz and a pulse width of
300 μs was increased until the participants felt a strong vibration around the electrodes. Two surface
electrodes were placed above the hyoid and the other two electrodes were placed on the larynx to
activate muscles in the submental and laryngeal region simultaneously. The electrical stimulator
Staodyn EMS +2 (Staodyn Inc, Longmont, Colorado) was used. A new, not widely accepted, swallow
function score (0 - aspirates saliva; 6 - normal swallow) was used for evaluating the outcome. The
mean initial swallow function score for both groups was 0.75. In the end, the patients who received
electrical stimulation therapy reached an increased swallow function score of 4.52, whereas the other
group that received thermal-tactile stimulation could only achieve a swallow function score of 1.39.
Afterwards, a commercial stimulator named VitalStim® with the same specification was developed
and suggested for the described therapy.

Blumenfeld et al. [124] tried to repeat the positive results from Freed et al. [123] using electrical
stimulation. The results of electrical stimulation were compared with standard dysphagia therapy
on two groups of 40 patients suffering from dysphagia. The daily given therapies lasted 30 minutes.
Both groups showed significant improvements, whereas the electrical stimulation group achieved a
higher score of 3.23 in comparison to 1.48 which was achieved by the standard therapy group.
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In a study by Oh et al. [125], eight patients with neurogenic dysphagia were stimulated similarly
to the study by Freed et al. [123]. Statistically significant improvements in swallowing were detected
using VF and FEES. In four patients, the cortical representations of the cricothyroid muscle were
expanded after electrical stimulation, which was measured using TMS.

The VitalStim® device was used in a study by Bülow et al. [29]. On 25 patients with dysphagia,
electrical stimulation was compared with standard therapy. The results after three weeks of therapy,
which was given for 60 minutes daily, showed no statistically significant differences between both
groups.

A similar study protocol as in [123] was applied by Lim et al. [126]. 36 patients with dysphagia
after strokewere divided into two groups fromwhich onewas treatedwith electrical stimulation and
the other group was given thermal-tactile stimulation. The treatment of one hour was repeated for
four weeks. The final penetration-aspiration scale showed significant improvement for the electrical
stimulation group, whereas in the other group the score did not improve.

The effect of electrical stimulation on the submental muscle activity was examined by Suiter
et al. [127]. Muscle activity was measured by surface EMG. Eight subjects were stimulated by
the VitalStim® device for one hour daily within two weeks. The change in EMG level was not
statistically significant.

The resulting movements and effects on swallowing triggered by the VitalStim® device were
investigated by Ludlow et al. [33]. The submental and laryngeal region were simultaneously
stimulated with two channels as described by Freed et al. [123]. On eleven patients, no significant
results on the movement of hyoid or larynx could be found, whereas on two participants the hyoid
bone was descending by 5mm to 10mm. The position of hyoid and larynx were assessed by VF.
On three participants, the stimulation resulted in a movement of the hyoid bone of around 5mm in
anterior-posterior direction. The larynx was moved 2mm to 3mm upwards in two participants by
the simulation. The 8-point Penetration-Aspiration (Pen-Asp) scale and the NIH-swallowing safety
scale (NIH-SSS) for swallowing with and without stimulation were determined. The results were
not significant. Then, the change in Pen-Asp scale due to the electrical stimulation were correlated
to the movement of the hyoid bone achieved by stimulation at rest. The improvement in the Pen-
Asp scale was significantly inversely related to the depression of the hyoid bone. It was assumed
that the stimulation of the sternohyoid pulled the hyoid downwards and therefore increased the
aspiration risk. The electrical stimulation was also applied on a sensory level which resulted in an
improvement in the NIH-SSS along the whole group of patients.

VitalStim® was used by Baijens et al. [128] for stimulating ten patients with the Parkinson’s
disease during swallowing with three different electrode setups. VF was used for measuring the
effect of stimulation during swallowing. In the first setup, the submentalmuscleswere stimulated. In
the second setup, two electrodeswere placed below the hyoid bone and finally in the third setup, four
electrodes from the first and second setup were used together. Statistically significant differences
between the three setups were observed only in the time duration from laryngeal vestibule closing
to its opening during swallowing and in the time duration from beginning of hyoid motion to the
maximum horizontal displacement. The observed changes could also be repeated in healthy control
subjects without any statistically significant differences.
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A study by Humbert et al. [32] investigated ten different electrode positions in comparison with
VF on healthy adults. From these ten setups in comparison to swallowing without stimulation, only
the submental stimulation did not descent hyoid or larynx during swallowing, which increases the
risk for aspiration. However, the submental stimulation did not significantly increase the elevation
either.

Soon et al. [129] used four channels formeasuring EMG and applying electrical stimulation to the
masseter muscle and to the digastric muscle at both sides on eleven patients with chronic dysphagia.
At the beginning, EMG on both muscles at both sides was recorded during swallowing of water (2,
5, 10 and 150ml). Then, each patient was stimulated for 32 minutes three times a week with a
fixed recurrent stimulation pattern. Each pattern consisted of stimulating the masseter muscle for 4
seconds. The submental stimulation channel was activated 2 seconds after the masseter stimulation
has been started for 4 seconds. After the stimulation was concluded, the patient had 10 seconds for
resting. The patient was asked to keep the mouth closed and swallowed together with the active
stimulation of the submental muscles. After the treatment, EMG was recorded during swallowing
and the improvement ratio was calculated. Significant reduction in EMG and swallowing time were
observed for drinking 150ml water. The authors assumed that due to the treatment the muscle
coordination in the patients was improved.

Aspiration can be prevented by closure of the true and false vocal folds. Therefore, Humbert et
al. [130] tried to achieve a change in the vocal fold angle by surface electrical stimulation on healthy
adults. TheVitalStim®with ten different electrodes placements on the neckwas used. Themeasured
changes in the fold angle were not significant and the authors concluded that it is not possible to
cause movements in the true and false vocal folds using surface electrodes.

Most published studies on surface stimulation used a fixed electrical stimulation pattern indepen-
dent from swallowing. Leelamanit et al. [37] tried to improve swallowing in patients with reduced
laryngeal elevation by synchronized electrical stimulation. Surface EMG of the posterior tongue
muscle was used for triggering the electrical stimulation of thyrohyoid muscle on both sides by two
pairs of surface electrodes for a duration of one second. Stimulation was applied four hours daily
until the criteria for an improved swallow were fulfilled or other intervention seemed necessary.
20 of 23 patients showed sufficient improvements in swallowing after a duration from two to 30
days. After successful treatment, patients were followed-up for a period of 3 to 33 months. In this
follow-up period, a second successful treatment was given to six patients. After therapy, improved
laryngeal elevation and a gain in body weight due to resumed oral diet were observed during the
latest follow-up visit. The therapeutic outcome was not compared to a control group.

2.3 Conclusions

A lot of studies deal with dysphagia and proposed solutions either in the field of diagnosis or therapy.
Instrumental gold standards for diagnosis are VFSS and FEES. Both are mainly used in the clinical
routine. Both methods need trained medical staff for retaining reliable results. Clinical evaluation
methods, such as bedside swallowing assessment, play an important role in the clinical environment
due to its low instrumental and training requirements and due to the fact that dysphagia screening
is important for a wide range of patients with neurological disorders (e.g. acute stroke, Parkinson’s
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disease, or multiple sclerosis). Bedside swallowing assessment has a lower accuracy than VFSS or
FEES for diagnosis of dysphagia and especially aspiration detection.

Alternative measurement methods which map the swallowing process into a time series, e.g.
swallowing sounds, accelerometry, or bioimpedance, could be used for accessing the swallowing
process. Such easily attachable sensors could be combined with other measurement signals and
could improve swallowing diagnosis and therapy. These systems could be used outside a clinical
environment and could improve long-term monitoring of dysphagia.

Swallowing sounds and accelerometry are used in many studies and are combined with au-
tomatic classification and online segmentation algorithms. Most of these studies use carefully
manually segmented data without any disturbances for swallowing classification by which in most
cases swallowing with aspiration is separated from normal swallowing. These classifiers may only
be useful for clinical practice when the manual segmentation by experts can be replaced by precise
automatic segmentation algorithms which are robust against disturbances in the measurement
signal.

Automatic segmentation algorithms using swallowing sounds, which took also disturbances into
account, were only considered in a few studies [63], [68], [69]. Sensitivity rates of around 80% could
be achieved and the measurement data were divided into non-overlapping frames (width of 125ms
to 500ms) which were then classified for a swallowing event inside. In order to be used for precise
segmentation for automatic swallowing classification, better and more accurate methods in terms
of sensitivity and time resolution have to be developed.

BI measurement of the swallowing process is only used in a small number of publications. To the
best knowledge of the author, automatic classification and segmentation algorithms using BI have
not been published until now. There exist no clues in the literature that the performance of BI for
accessing swallowing and swallowing disorders is inferior to other methods. Advantages of the BI
measurement method are its robustness against acoustical noise and that EMGmeasurement can be
performed with the same electrodes. Studies in the field of BI measurement during swallowing give
the evidence that the time series can be directly interpreted and mapped to a specific swallowing
phase.

Therapeutic sessions, which are repeated over a long period, try to utilize sensory stimulation
of areas involved in swallowing in order to excite neuronal plasticity. For increasing strength and
coordination of swallowing relatedmusculature, repeated activation of thesemuscles is used in other
kind of therapies. Several studies tried to utilize electrical stimulation. In daily therapeutic sessions,
electrical stimulation is either applied on a sensory level or on a stronger level by which muscle
contraction occurs. From the latter, the VitalStim® is the most commonly used device. Several
studies tried to find out if simple repeated hourly sessions by which electrical stimulation is applied
to the area around the hyoid and the larynx could be more effective than conventional therapy.
Contradictory results were published and there is a strong evidence that the applied stimulation
increases the risk of aspiration during the session.

Assessment of swallowing functions is normally applied before and after the treatment in order
to select appropriate treatments and then to evaluate the success of the therapeutic sessions. Besides
muscle strengthening, new swallowing techniques are taught to the patients, e.g. supraglottic
swallow, super-supraglottic swallow, Mendelsohn-Maneuver, effortful swallow, or swallowing with
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postural changes. Such techniques could help those patients who are able to learn new swallowing
techniques in order to improve the airway closure and the swallowing process. The most helpful
technique for the patient is selected by visual control through FEES or VFSS. Biofeedback based on
EMG measurement or tactile feedback of the therapists is partly used for supporting the patient in
adapting his swallowing act to these techniques.

Dysphagia may lead to penetration and aspiration due to reduced air way protection during
swallowing. FESmay help to improve the airway protection by improved hyoid and larynx elevation
or by closure of the vocal folds. Electrical nerve stimulation or intramuscular stimulation could
help patients in recovering swallowing function, but need the developed of an integrated device.In
those patients, who partly recovered their swallowing functions, also surface electrical stimulation
may support swallowing. The results of some studies imply that the only safe positions for surface
stimulation are the submental muscles and the masseter muscles, which can be stimulated in order
to improve swallowing. Pilot studies that applied such systems to patients were successful but
had triggered the stimulation manually or by unspecific EMG measurements which are sensitive to
tongue, jaw, or head movements. As the pharyngeal phase of swallowing is triggered by reflexes,
it is not a satisfactory solution to force the patient to manually trigger stimulation support at the
correct timing for each swallow he/she wants to make.

In this thesis, it is investigated how a combined BI/EMG measurement at the neck could be
used for precise and robust automatic swallowing segmentation as well as detecting an onset of
swallowing in real-time for applying FES. Such a system can be used in biofeedback for assisting
strengthening and compensatory swallowing therapies. Besides therapeutic sessions, the patient
can be monitored over a longer period in his/her normal environment which gives a better under-
standing of his/her swallowing performance. Assisted swallowing by FES support of submental
muscles could be realized by triggering the FES synchronized to the swallowing start, which is
determined by such a measurement system. As a robust triggering of FES during swallowing could
not be achieved until now, such a system could open up new possibilities for swallowing therapy.
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BI- and EMG-Measurement System

3.1 Summary

Aim: The development of a measurement system which is able to continuously measure elec-
tromyography (EMG) and up to two bioimpedances (BIs) using transcutaneous as well as needle
electrodes at the neck is necessary for researching the ability to assess the swallowing process
and is described in this chapter. The device should also operate during active functional electrical
stimulation (FES) at the neck.

Methods: BImeasurement is implemented by applying a sinusoidal current flow through the tissue
and measuring the resulting voltage. Two accurate current sources were developed which are able
to generate a stable sinusoidal current with a tunable current amplitude and a frequency of either
50 kHz or 100 kHz. The current sources were extended with safety elements and active voltage
monitoring for patient protection. Four bipolar voltage measurement channels were integrated. All
four channels contain protection elements such that a patient is protected against direct current
(DC) and that the measurement device can withstand high-voltage impulses which occur during
FES. Two channels are able to measure BI and EMG simultaneously. Analog filters and circuits
were designed for separating both signal contents. Extraction of the BI amplitude is performed by
accurate envelope detectors. All processed analog voltages are sampled with an accurate 24-bit
analog to digital converter (ADC). A micro-controller is used for configuration, supervision and
real-time transmission of the measurement data to a personal computer (PC) over a universal serial
bus (USB).

Results: A combined measurement system, named PhysioSense, was realized. The device fulfills
the following standards: IEC 60601-1:1998+A1:1991+A2:1995, IEC 60601-2-40, and IEC 60601-1-2:2007.
Therefore, the device can be used for studies with patients and healthy subjects. Using this device,
the two-electrode, three-electrode, and four-electrode measurement method for accessing BI can
be successfully established using both current sources at 50 kHz and 100 kHz, respectively. It was
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experimentally demonstrated that a BI/EMG measurement is possible between stimulation pulses
during active FES. An artifact recovery of less than 3ms was observed.

Conclusion: The developed measurement system PhysioSense can be used for assessing swal-
lowing. It is a safe, reliable, and complete integrated measurement device which complies with
the requirements in the clinical routine and can be used for scientific research. The presented
measurement device PhysioSense can be used in order to investigate the possibility of automatic
swallow detection in offline data (Chapter 4), to assess the correlation between hyoid / larynx
movement and BI (Chapter 5), and to trigger FES in the very beginning of a swallow by BI/EMG
measurement (Chapter 6).

Contribution: The author’s contribution consists in the conception and development of the
presented device as well as in the development of the algorithms for device calibration, failure
detection, and automatic device parameterization. Parts of this Chapter were published in [131],
[132].

3.2 Motivation

The difficulties in measuring BI are well known and many measurement devices were presented in
the literature. A challenge is still to develop a system that allows the synchronous measurement of
other bio-signals like EMG or electrocardiography (ECG) from the BI voltage recording electrodes at
a higher frequency for precise bio-signal analysis and digital signal processing for artifact reduction.
For the application treated in this work, i.a. EMG and BI processing, a sampling frequency of 4 kHz
is required.

A first measurement system which is able to measure BI and electroglottography (EGG) over the
same electrodes was presented by Li et al. [133]. However, the sampling rate of the BI signal was only
5Hz, which is too low for assessing swallowing. A second system, which is able to measure BI and
ECG via the same measurement electrodes, was introduced by Vuorela et al. [134]. The sampling
rate of this system was limited to 100Hz due to wireless data transmission. The bioimpedance
measurement device which was used by Kusuhara et al. [22] for evaluating swallowing had a cut-
off frequency of 25Hz. Therefore, this system was not able to assess the signal content for higher
frequencies than 25Hz. Systems which are able to measure at a higher sampling frequency can be
found in the field of electrical impedance tomography (EIT). But such devices are complex, expensive,
and designed for measuring exclusively BI circular on many electrodes.

A versatile measurement system, which is able to measure BI and EMG by means of surface
or needle electrodes also during active FES, is necessary in order to investigate the applicability
of combined EMG and BI measurements at the neck for swallowing assessment and FES-assisted
swallowing. In a first pilot study with the developed system PhysioSense, it was investigated if
passages of fluid through the larynx can be assessed by a BI measurement system. It was shown
on a prepared animal larynx, that BI, which was measured with needle electrodes at the larynx,
reacts to fluid passage through the larynx. Such an aspiration detection might only be possible
by using needle electrodes. Therefore, the possibility to use a combination of needle and surface
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electrodes is provided in the PhysioSense which requires an adjustable current and amplifier gain,
as the contact resistances are in different ranges for both types of electrodes. Although only one
BI and one EMG channel are used in this thesis to assess swallowing with surface electrodes, the
measurement system was developed to be able to measure BI at two different positions even with
mixed types of electrodes. Further investigations in this direction are planned but outside the scope
of this thesis.

The demand of performing combined EMG and BI measurements during active FES has to be
considered in the design of the measurement device. Due to the high voltage pulses, which are used
in the application of FES, and the immediate proximity of stimulation and measurement electrodes,
a measurement device must be developed which is protected against high voltages at all input and
output terminals. Since low-frequency high-pass filter would disturb the signals by its oscillating
impulse response, they were not used in PhysioSense. Furthermore, a high-resolution ADC with
a high sampling rate is provided for an accurate elimination of stimulation artifacts. By using such
high-resolution ADC, an instrumentation amplifier with low gain for voltage measurement can be
usedwhichminimizes the time inwhich the amplifier is saturated due to the high voltage stimulation
pulses.

3.3 Measurement Device PhysioSense

The measuring system PhysioSense allows two independent BI measurements and provides up
to four channels of EMG measurement. The device fulfills the following standards: IEC 60601-
1:1998+A1:1991+A2:1995, IEC 60601-2-40, and IEC 60601-1-2:2007. It includes protection under a
single fault condition and has a proven isolation of the patient from the mains electric supply. The
device was designed to be stimulation safe, which means that BI and/or EMG can be measured while
FES is active in the same area. It is possible to use either silver/silver-cloride (Ag/AgCl) surface
electrodes or monopolar needle electrodes. The developed device is able to be used in a wide range
of BI measurement setups.

The structure of the PhysioSense system is shown in Figure 3.2. The device consists of two
current sources CS1 and CS2. The sinusoidal current at 50 kHz and 100 kHz can be varied in a
range from 3.4 μA to 137 μA. The optimal currents are found by means of the fault detection
circuits FaultCS1 and FaultCS2 which monitor the output voltage of the current sources. Voltage
measurement can be performed by four bipolar input channels. Each channel consists of an
active shielding circuit AS, a switchable common mode rejection circuit CMRC, an instrumentation
amplifier IA, and a filter circuit FiltEMG for EMG measurement. The first bipolar measurement
channel CH1 additionally contains a reference driver RD, a demodulation circuit DemodBI1, by
which the amplitude of a measured voltage at 50 kHz can be extracted and the fault detection circuit
FaultBI1, which monitors the amplitude output of DemodBI1. The second channel CH2 contains
the demodulation circuit DemodBI2 which is switchable between 50 kHz and 100 kHz. This circuit
extracts the amplitude of themeasured voltage at a frequency of 50 kHz or 100 kHz, respectively. The
voltage output is monitored by FaultBI2. Both circuits DemodBI1 and DemodBI2 have switchable
gains. All filtered and processed voltages are converted into digital values by the ADC. These
digital values are filtered at the micro-controller and send together with the state of a galvanically
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3. BI- and EMG-Measurement System

Figure 3.1: Measurement system PhysioSense with all measurement cables. The system is connected
through USB to a notebook on which the measurement signals can be displayed and continuously saved.
The picture is also shown in [135] and [136].

isolated transistor-transistor logic (TTL) input to a PC over USB. The individual components of the
PhysioSense device will be explained in detail in the following sections.

A BI measurement consists of an insertion of current into the investigated tissue and a measure-
ment of the resulting voltage drop which corresponds to the impedance according to Ohm’s law.
Primarily, two different setups are used for measuring BI (cf. Fig. 3.3):

1) In the two-electrode measurement method, the voltage is measured directly across the
current electrodes. The current, which is induced into the tissue through the electrodes, causes
a voltage drop across the electrode-skin contact. As this resistance is time-variant, it will lead to
a measurement error. A second error source is the electrode polarization impedance which may
influence the measured BI [137].

2) Both undesirable effects of the two-electrode measurement method can be almost avoided
by using the four-electrode measurement method. Here, the voltage is recorded separately over
additional measurement electrodes by an instrumentation amplifier with high input impedance.
Since almost no current flows through the voltage measurement electrodes, no disturbing time-
varying voltage drop across the electrode-skin contact will be present and the electrode polarization
impedance is largely reduced. Themeasured impedance is a transfer impedancewhich is defined as
the ratio of applied current to the resulting measured voltage. The following equation (3.1) describes
how an inhomogeneous volume conductor with a resistivity distribution 𝜌 leads to the transfer
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Figure 3.2: Structure of the PhysioSense measurement system. The dash-dotted lines symbolize
isolation measures. The dotted connection lines at the electrodes are only present when measurering
BI with the two-electrode method. Only one pair of electrodes is used then by each BI measurement
channel. When measuring BI with the four-electrode method, the electrodes of the current source are
not connected with the electrodes from the measurement unit und two pair of electrodes are used by
each BI measurement channel. Connections for digital data transmission are symbolized by a dashed
line. (RD - reference driver; IA - instrumentation amplifier; CMRC - common mode rejection circuit; AS
- active shielding; CH - channel)

impedance 𝑍𝑡 [19]:
𝑍𝑡 = ∫𝜈

𝜌J′𝑐𝑐 ⋅ J′𝑟𝑒𝑐𝑖d𝜈 . (3.1)

The resistivity distribution 𝜌 is weighted by the dot product of the lead field of the voltage
measurement electrodes for unit reciprocal current J′𝑟𝑒𝑐𝑖 and the lead field of the current feeding
electrodes for unit current J′𝑐𝑐 and finally, integrated over 𝜈 , responsible for the measured transfer
impedance 𝑍𝑡 .

As described in detail byGrimnes andMartinsen [137], the transfer impedance between two pairs
of electrodes placed on a volume conductor depends on its sensitivity to react to the conductivity
change of all small volume elements in the volume. The sensitivity to a particular small volume
element depends on its position to the electrodes and can be seen as the scalar product of the
current density field from the current electrodes and the reciprocal current density field of the
voltage measurement electrodes that would be achieved if the current was injected into the voltage
measurement electrodes.

If the transfer impedance is almost zero, it does not necessarily mean that the tissue is a good
conductor; it can mean that the injected current results in a very low voltage drop across the
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Figure 3.3: BI measurement using the two- and four-electrode measurement method. On subplot a)
the two-electrode measurement method is shown by which a lead field through the current injection
electrodes arises. The sensitivity to small volume conductivity changes depends on the current density
in the same area.
For the four-electrode measurement method, which is shown in subplot b), two different lead fields from
each pair of electrodes are formed. The measured transfer impedance depends on the volume integral
of the dot product from the lead field of the voltage measurement electrodes and the lead field of the
current feeding electrodes across the complete volume (cf. Eq. (3.1)). Depending on the densities and
the angle between both fields, local resistivity changes contribute differently to the measured transfer
impedance. At position i) positive changes in the resistivity distribution in this area increase the
measured transfer impedance. Whereas at position ii) local changes in resistivity distribution do no
influence the measurement result and at position iii) positive local changes in the resistivity distribution
decreases the measured transfer impedance.

measurement electrodes (this could be caused by a bad electrode-skin contact of the measurement
electrodes). A second problem is that the sensitivity distribution is negative near the measurement
electrodes. This means that a positive change in conductivity in this volume would lead to a
higher transfer impedance. With different electrode positions, the transfer function is changing
and therefore the transfer impedance changes. This means that the transfer impedance is a
function which depends on the electrode position and on the tissue impedance itself. Therefore, BI
measurements can only be repeated if the electrodes are placed on the same anatomical landmarks.

As shown in Figure 3.2, the measurement system PhysioSense consists of four bipolar input
channels and two stable bipolar current outputs which operate at a frequency of 50 kHz and 100 kHz
respectively. EMG measurement is possible on all four bipolar channels. Active shielding is applied
on all input measurement cables in order to reduce noise. Themeasured commonmode voltage from
the first channel is used as input for the reference driver, by which common mode interferences
at all channels, which are connected to the skin through electrodes, are reduced. Whenever
a measurement channel is used for a different purpose, e.g., measurement of a piezoelectric
breathing sensor, a common mode rejection circuit CMRC can be connected to both terminals of the
corresponding bipolar input channel for reducing commonmode interferences. On the first channel,
voltage amplitudes at a frequency of 50 kHz can be measured in parallel to EMG by the means of a
demodulation circuit. The second channel contains a switchable demodulation circuit which allows
formeasurement of an amplitude at 50 kHz or at 100 kHz. Togetherwith the current sources, the two-
electrode and four-electrode measurement method at 50 kHz and 100 kHz can be realized. Besides
measuring BI independently at 50 kHz or/and at 100 kHz, it is possible to measure two transfer
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impedances at two different positions using a frequency of 50 kHz (using only one current source).
As BI measurement with Ag/AgCl surface electrodes and monopolar needle electrodes should be
possible, the current amplitude was made switchable in a range of root mean square (RMS) values
from 3.4 μA to 137 μA in eight steps (cf. Fig. 3.5). In order to increase the measurement resolution,
different gain settings were implemented into the demodulation circuit. The optimal current and
gain setting is chosen by monitoring the outputs of the fault detection circuits at the current source
and the demodulation circuit. Different current and gain settings are tested automatically for each
measurement until the current source and the demodulation circuit are in their preferred operating
range.

After 24 bit analog to digital conversion, digital signal processing is used for further filtering.
Together with the state of a galvanically isolated TTL input, all data are sent in real-time to the PC,
on which the digital words can be converted into physical units.

3.4 Current Sources

Different kinds of current sources are described in the literature which varies greatly in complexity
and performance. Generally, they can be divided into two groups by the type of load. The first group
is formed by single-ended current sources that drive a grounded load. The often used Howland
current source belongs to this group [138]. A floating load is driven by the second group of current
sources. The corresponding current sources are called floating current source and can be built by two
single-ended current sources at which the current is injected by one single-ended current source and
drained by a second inverted single-ended current source. An undesirable common mode voltage at
the output of a floating current source can be caused by an imbalance of both internal single-ended
current sources and can be reduced by a common-mode feedback (CMFB) circuit. This reduces the
later BI measurement error as the common-mode rejection ratio (CMRR) of the differential amplifier
for voltage measuring is limited (see next Section). Identical patient protection elements can be
added in series to both output terminals of the floating current source.

Two floating current sources with CMFB are used in the developed measurement device. Their
design is based on the patent US6501255B2 [139] and shown in Figure 3.4. The circuit design
was enhanced with additional DC blocking Y1-capacitors (𝐶𝑦 ) which are connected in series to
each output terminal. A Y1-capacitor is a fault-save capacitor whose dielectric can withstand very
high voltages. In a case of a single fault condition, dangerous currents (especially long-term DC
components are dangerous) are blocked by both Y1-capacitors. The output current 𝐼 is continuously
monitored for fault detection.

The output voltages of the CMFB (𝑉𝑐𝑚𝑟1 and 𝑉𝑐𝑚𝑟2) are slowly changing voltages which
counteract to a common mode voltage on the output terminals. A common mode voltage is mainly
caused by external interferences.
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Figure 3.4: Schematic of the floating current source CS (built by two single-ended grounded current
sources) containing the direct digital frequency synthesis chip DDS, which produces a stable sinusoidal
voltage signal, the active common-mode feedback circuit CMFB and the fault detection part FaultCS.
The output of the low-pass filter LPF 2 is used as virtual ground (VGND) inside both integrators. (LPF -
low-pass filter, HPF - high-pass filter)

The AC current amplitude of the output current 𝐼 depends on the programmable resistor 𝑅𝑘
(LTC1391, Linear Technology, USA) and the amplitude of the sinusoidal voltage 𝑉𝑖𝑛 (see Eq. (3.2)), as
𝑉𝑐𝑚𝑟𝑖 , 𝑖 = 1, 2, have no AC components in a frequency range around 50 kHz or 100 kHz:

𝐼 = 𝑉𝑜𝑢𝑡1 − 𝑉𝑆1
𝑅𝑘

= 𝑉𝑜𝑢𝑡1 − (𝑉𝑜𝑢𝑡1 + 𝑉𝑐𝑚𝑟1 − 𝑉𝑖𝑛)
𝑅𝑘

= −𝑉𝑐𝑚𝑟1 + 𝑉𝑖𝑛
𝑅𝑘

= −𝑉𝑐𝑚𝑟2 − 𝑉𝑖𝑛
𝑅𝑘

, (3.2)

where 𝑉𝑖𝑛 is generated by filtering the output of a direct digital frequency synthesis (DDS) chip
(AD9833, Analog Devices) through a band-pass consisting of a low-pass filter LPF 1 and a high-pass
filter HPF 1. The band-pass filter prevents DC components and dampens high-frequency noise. The
PhysioSense consists of two identical current sources by which the first DDS chip produces a stable
sinusoidal voltage at 50 kHz and the second one at 100 kHz.

The accuracy of the BI measurement depends strongly on the stability of the current amplitude
which is inserted into the tissue. High stability of the current amplitude can be achieved by a large
output impedance of the current source. The output impedance is mainly limited by the effect of
parasitic capacitances which shunt the current away from the patient. The output impedance 𝑍𝑠 of
the developed current source was measured according to [140]. In the described setup, the current
source was connected to a load 𝑅𝐿 which consisted of two serial resistors 𝑅1 = 100Ω and 𝑅2 = 500Ω.
The voltage 𝑈1 over 𝑅1 was measured while 𝑅2 was bypassed (𝑅𝐿 = 𝑅1). The voltage 𝑈2 across 𝑅1
and 𝑅2 was measured while 𝑅2 was not bypassed (𝑅𝐿 = 𝑅1 + 𝑅2). Then, the output impedance for
50 kHz and 100 kHz was determined according to:
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Figure 3.5: Maximum measurement ranges for measuring BI (absolute values) at 50 kHz. The range
is limited by the input range of the amplifier which depends on the gain. The measured voltage can
be amplified with a gain of 1x, 5x, 20x, or 100x. The input ranges (peak-to-peak voltages) are 4mV to
310mV (1x), 1mV to 59mV (5x), 0.25mV to 14mV (20x), and 0.04mV to 3.1mV (100x). The lower limit
of the measurement range is due to the precision (required minimally signal amplitude) of the later used
full wave rectification inside the device. The maximum load resistance curve shows the maximum load
which can be handled by the current source without going into saturation.

𝑍𝑠50kHz ≈ Δ𝑅𝐿
𝑈1
Δ𝑈𝐿

= 𝑅2
𝑈1

𝑈2 − 𝑈1
= 500Ω

42.155mV
0.111mV

= 189.9 kΩ , (3.3)

𝑍𝑠100kHz ≈ 𝑅2
𝑈1

𝑈2 − 𝑈1
= 500Ω

42.95mV
0.309mV

= 69.5 kΩ . (3.4)

The electrode-skin impedance of a wet ECG electrode at a measurement frequency of 50 kHz
and 100 kHz lays around 100 kΩ [19]. A single stainless steel monopolar needle electrode has an
impedance of around 1 kΩ at 50 kHz [141]. The expected load impedance is much lower than the
measured output impedance of 190 kΩ and 70 kΩ and should therefore be sufficient for accurate BI
measurements [140].

The BI measurement range which is achieved with a RMS current of 137 μA lays around 1 kΩ
and has not enough safety margins for measuring with needle electrodes (see Figure 3.5). Lowering
the current amplitude would increase the maximally possible load but would also reduce the
measurement accuracy for wet electrodes. A configurable current amplitude allows the usage of
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surface and needle electrodes with the optimal current amplitude and consequently with optimal
resolution. The current amplitude 𝐼𝑒𝑓 𝑓 can be set bymeans of the resistor 𝑅𝑘 to one of eight available
settings in the range 3.4 μA to 137 μA which results theoretically in a maximal load resistance
between 23 kΩ (𝐼𝑒𝑓 𝑓 = 137 μA) to 935 kΩ (𝐼𝑒𝑓 𝑓 = 3.4 μA). This wide range enables the applicability
of the measurement system for different electrode positions and types. As the measurement range
of the instrumentation amplifier is limited, the achievable measurement range is smaller than the
maximally possible one. Figure 3.5 shows the measurement ranges for all current amplitudes and
gain settings of the voltage measurement (cf. Section 3.6) which are realizable at a measurement
frequency of 50 kHz. The measurement ranges at 100 kHz are slightly different, as the voltage
measurement part has different input ranges and gain factors at this frequency.

3.5 Voltage Measurement

Rin

IA

Active

Reference electrode

Measurement electrodes

OP1

OP2

Reference driver RD

Rin

CMRCshielding AS

𝑉𝑜𝑢𝑡

Figure 3.6: The circuit design is used in all four bipolar voltage measurement channels. Input elements
consist of 𝑅𝑖𝑛 and diodes ensure protection of the instrumentation amplifier IA and protection of the
patient in cases of a failure. The cables are actively shielded by AS in order to ensure good signal quality.
Common mode disturbances in the measurement area are reduced by a reference driver RD which is
connected to the first channel. In order to reduce power supply interferences by voltage measurements
of external sensors, the common mode rejection circuit CMRC can be individually activated for each
channel. (OP - operational amplifier)

Figure 3.6 shows the amplifier design of the bipolar voltage measurement channels. The
instrumentation amplifier IA (INA128, Texas Instruments, USA) is connected through 100 kΩ high
precision resistors (𝑅𝑖𝑛) to the electrodes in order to achieve patient safety. In a case of a failure, the
maximal current is limited by these resistors to 50 μA. The instrumentation amplifier is protected
against high voltages by four diodes (BAV199, Infineon Technologies AG, Germany). This allows
applying FES in the vicinity of the BI/EMG measurement electrodes.
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3.5 Voltage Measurement

The measured input impedance of the instrumentation amplifier is 3MΩ. The amplifier gain of
IA is 10.26. This low gain makes it possible to measure EMGwithout high-pass filtering (input range
is [-150mV, 150mV]). The sinusoidal carrier wave at 50 kHz or 100 kHz which is used for assessing
BI can be measured simultaneously and the measurement range of BI is increased due to the large
input range.
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Figure 3.7: The CMRR of the first EMG channel was measured by applying a sinusoidal voltage with an
amplitude of 500mV across the amplifier ground to both mutually connected input terminals. A - the
reference driver was connected to the input terminals; B - the reference driver was disconnected, while
the common mode rejection circuit (CMRC) on the amplifier inputs was active.

The measurement cables, which connect the amplifier with the electrodes, are shielded in order
to reduce the effect of external noise and electrostatic interference. As carbon coated shielded
cables (Mind Media BV, Roermond-Herten, Netherlands) have been used, cable movement artifacts
are strongly reduced. The additional parasitic capacitance between shield and amplifier input is
reduced by using active shielding in which the shield is driven to the average potential of both input
terminals using the unity gain buffer OP1. One common reference signal generator (consisting of
operational amplifier OP2) is used for all channels in order to reduce common mode disturbances
in the measurement area. The reference signal is equal to the low-pass filtered average signal of the
first channel. Thus, the first channel must always be used for measurement with wet electrodes on
the skin.

While using needle electrodes, the reference generator may drive the amplifier into saturation
due to the voltage difference between the potential on the needles and the reference electrode on
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the skin. In order to be able to measure using needle electrodes, the reference generator can be
replaced by the CMRC (see Fig. 3.6) which is connected through solid state relays with MOSFET
output (AQW210, Panasonic EW, Japan) to both instrumentation amplifier inputs behind 𝑅𝑖𝑛. The
relays are optically isolated (PhotoMOS). When both switches were active, CMRC reduces common
mode voltages at the amplifier input. Normally, the switches are in an off-state and the reference
generator from the first bipolar input channel is used for reducing common mode voltages. It is
possible to activate CMRC individually for each channel except the first channel, which should
be connected to the skin for achieving a working reference generator. By using CMRC, it is also
possible to connect sensors with a high output impedance to the measurement system and reduce
common mode voltages, especially at 50Hz. Such sensors can be piezo or thermocouple sensors for
measuring respiration. The CMRC is based on the work of Dobrev et al. [142]. Disadvantages of this
circuit in comparison to the reference generator, are the not flat amplitude response (drop of 3 dB
from 10Hz to 1 kHz, see Fig. 3.17) and its reduced common mode rejection ratio (52 dB at 50Hz, see
Fig. 3.7).

TheCMRRwasmeasured bymutually connecting both input terminals and applying a sinusoidal
voltage with an amplitude of 500mV against amplifier ground. The frequency of the sinusoidal
voltage was varied from 10Hz to 4000Hz. The results are displayed in Figure 3.7. The best CMRR
was achieved for case A, by which the reference driver was connected to the short-circuited input
terminals. The measured CMRR at the important main supply frequency of 50Hz is then 96 dB.

3.6 Analog Signal Processing

3.6.1 EMG Filtering

LPF E1 FFDA ADC

FiltEMG

𝑉𝑜𝑢𝑡

Figure 3.8: The filter and amplifier block FiltEMG is used in all four input channels for EMG signal
processing. 𝑉𝑜𝑢𝑡 is the measured voltage from the instrumentation amplifier shown in Figure 3.6. (LPF -
low-pass filter; FFDA - feedback fully differential amplifier; ADC - analog to digital converter)

Whenever the device simultaneously measures EMG and BI, the output signal of the instrumen-
tation amplifier is a mixture of the amplitude modulated BI signal, EMG, and noise. The EMG signal
has normally a frequency range of 10Hz to 450Hz [143] while the amplitude modulated BI signal
has a different range around 50 kHz or 100 kHz respectively. Analog filter circuits consisting of
operational amplifiers are used for separating both sinusoidal carrier waves and EMG from each
other. The multiple feedback (MFB) filter structure is mostly used in the following as this filter
structure has a low sensitivity to component variations [144].

The EMG signal is separated from the BI frequency content using a fourth-order MFB low-
pass filter E1 with Butterworth characteristics as such a filter has the flattest possible pass-band
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Figure 3.9: Simulated frequency responses of the filter characteristics of EMG1, BI1, and BI2. The signal
characteristics of the EMG signal are shown without the low-pass filter of the ADC and the finite
impulse response (FIR) filter within the micro-controller. The carrier frequency of 50 kHz / 100 kHz
for BI measurement is damped with 54.8 dB / 84.7 dB.
EMG signal components in a range up to 1 kHz are damped by at least 40 dB for the BI1 measurement
input. The separation between both carrier frequencies could be achieved. The frequency response of BI1
around 50 kHz is shown from 48 kHz to 52 kHz. Around 100 kHz, the frequency response of BI2 is shown
separately from 98 kHz to 102 kHz. In both areas around the carrier frequencies, an almost constant
descent could be observed which is necessary for an accurate amplitude demodulation. Frequencies
higher than 2 kHz will be removed after demodulation by the anti-aliasing low-pass filters.

magnitude response. The cut-off frequency was set to 13 kHz¹, which was the highest possible cut-
off frequency in order to damp the carrier frequency of 50 kHz or 100 kHz sufficiently. The feedback
fully differential amplifier FFDA (THS4521, Texas Instruments, USA) is used in order to convert the
analog signal to a differential signal, which reduces the analog to digital conversion error in the
ADC. The FFDA has a first-order low-pass characteristics with a cut-off frequency of 13 kHz.

The FiltEMG signal processing block (cf. Fig. 3.8) reduces the amplitude modulated BI signal (at
a carrier frequency of 50 kHz or 100 kHz) by 54.8 dB and 84.7 dB respectively (see Fig. 3.9).
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Figure 3.10: Structure of FiltBI1 for filtering and extracting the amplitude of the measured BI signal. 𝑉𝑜𝑢𝑡
is the measured voltage from the instrumentation amplifier shown in Figure 3.6. B1 to B3 form a band-
pass filter with switchable gain for extracting the BI carrier wave at 50 kHz. B4 and B5 are used as an
envelope detector for amplitude demodulation. The FFDA converts the signal to a differential signal for
accurate analog to digital conversion. FaultBI1 is used for monitoring the RMS voltage at the output of
B3. (LPF - low-pass filter; HPF - high-pass filter; ADC - analog to digital converter)

3.6.2 BI Filtering for Measurement at 50 kHz

In order to extract the sinusoidal carrier wave, the filters B1 and B3 is used in FiltBI1 (cf. Fig. 3.10).
A fourth-order MFB Chebychev (ripple of 0.5 dB) low-pass filter B1 (fcut-off = 50 kHz) is used to
separate the carrier wave of 50 kHz from the second BI measurement frequency of 100 kHz. The
frequency content at 100 kHz is damped by 30 dB, which was only possible by using Chebychev
filter parameters.

In the next step, the signal is amplified (1x, 5x, 20x, or 100x) using a programmable amplifier
B2 (LTC6910, Linear Technology, USA). Then, a second-order Butterworth high-pass filter B3 with
a Sallen-Key topology (fcut-off = 26 kHz) is used to suppress noise and the EMG signal content. This
filter prepares the signal for a full wave rectifier, which can only produce a rectified voltage when
all DC components are removed from the signal. The high-pass filter B3 suppresses signal content
below 1 kHz by 57 dB, which separates the BI signal content at 50 kHz sufficiently from the EMG
signal. A bode diagram, which displays the filter characteristics at the output of B3, is shown in
Figure 3.9. The envelope detector containing B4 and B5 is described in Section 3.6.4. The amplifier
FFDA is described in Section 3.6.1.

3.6.3 BI Filtering for Measurement at 100 kHz

The second channel is able to measure BI either at a frequency of 50 kHz or at a frequency of 100 kHz.
An electrical switch is used in order to select either the B1 or the B6 filter structure at the beginning
of FiltBI2 (cf. Fig. 3.11). For measurements at 50 kHz, at which a second transfer impedance can be
measured in parallel to the first channel using the same current source, the low-pass filter B1 is used.
FiltBI2 has the same filter characteristics as FiltBI1 (see Section 3.6.2).

¹Due to the over-sampling ratio of 64 and digitally low-pass filtering within the ADC, the selected cut-off frequency
is sufficient for sampling with 12 kHz later in the ADC. A high sampling rate is necessary for accurately blanking of
stimulation artifacts when measuring during active FES.
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Figure 3.11: Structure of FiltBI2 for filtering and extracting the amplitude of the measured BI signal at the
second measurement channel. 𝑉𝑜𝑢𝑡 is the measured voltage from the instrumentation amplifier shown
in Figure 3.6. B1 + B2 + B3 and B6 + B2 + B3 are used for extracting the BI carrier wave at 50 kHz and
100 kHz respectively. B4 and B5 are used as an envelope detector for amplitude demodulation. The FFDA
converts the signal to a differential signal for accurate analog to digital conversion. FaultBI2 is used for
monitoring the RMS voltage at the output of B3. (LPF - low-pass filter; BPF - band-pass filter; HPF -
high-pass filter; FFDA - feedback fully differential amplifier; ADC - analog to digital converter)

For measuring BI at 100 kHz, a second-order MFB band-pass filter B6 with a resulting center
frequency of 97 kHz and a Q factor of 16 is used. This band-pass filter dampens the carrier wave
at 50 kHz of the first BI measurement by 45.4 dB. Thus, two independent BI measurements can
be performed by the Physiosense device. The resulting amplitude and phase diagram is shown in
Figure 3.9. The components B2 and B3 are described in Section 3.6.2, while details about the envelope
detector (B4 and B5) are given in Section 3.6.4.

3.6.4 Amplitude Demodulation

Rectifier B4

Output

Input

Figure 3.12: Circuit layout of the high precision full-wave rectifier B4 which is used in the envelope
detector.

The measured and filtered BI carrier signal 𝐶(𝑡) at time instance 𝑡 behind the high-pass filter B3
can be written as

𝐶(𝑡) = 𝐵𝐼 (𝑡) sin (𝜔𝑐𝑡 + 𝜙𝑐) , (3.5)

where 𝐵𝐼 (𝑡) is a time-variant amplitude, 𝜔𝑐 is a fixed frequency at either 2𝜋50 ⋅ 1 × 103 rad/s or
2𝜋100 ⋅ 1 × 103 rad/s, and 𝜙𝑐 is an initial phase, which can be neglected. It is assumed that 𝐵𝐼 (𝑡)
does only contain frequency components up to frequency 𝜔𝑚 < 0.5𝜔𝑐 where 𝜔𝑚 = 2𝜋2000 rad/s is
assumed as a maximum frequency content of 2 kHz within the BI measurement signal. In case that
only one frequency component is present, 𝐵𝐼 (𝑡) can be written as cosine with a constant amplitude
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3. BI- and EMG-Measurement System

𝑀 , a phase 𝜙, and an offset 𝑀0:

𝐵𝐼 (𝑡) = 𝑀 cos (𝜔𝑚𝑡 + 𝜙) + 𝑀0 . (3.6)

The measured voltage 𝐶(𝑡) at the carrier frequency 𝜔𝑐 can then be written as

𝐶(𝑡) = (𝑀 cos (𝜔𝑚𝑡 + 𝜙) + 𝑀0) sin (𝜔𝑐𝑡) . (3.7)

The equation can be expanded to the following equation:

𝐶(𝑡) = 𝑀0 sin (𝜔𝑐𝑡) +
𝑀
2 [sin ((𝜔𝑐 + 𝜔𝑚)𝑡 + 𝜙) + sin ((𝜔𝑐 − 𝜔𝑚)𝑡 − 𝜙)] . (3.8)

The rectification is obtained by a multiplication with the carrier wave 𝑠𝑖𝑛(𝜔𝑐𝑡):

𝐶(𝑡) =𝑀0
2 (1 − cos (2𝜔𝑐𝑡)) +

𝑀
2 cos(𝜔𝑚𝑡 + 𝜙) (3.9)

− 𝑀
4 [cos ((2𝜔𝑐 + 𝜔𝑚)𝑡 + 𝜙) + cos ((2𝜔𝑐 − 𝜔𝑚)𝑡 − 𝜙)] .

Ideal low-pass filtering results in (all frequencies greater than 𝜔𝑐 are removed):

𝐵𝐼 ∗(𝑡) = 𝑀0
2 + 𝑀

2 cos(𝜔𝑚𝑡 + 𝜙) = 1
2𝐵𝐼 (𝑡) . (3.10)

The amplitude modulated signal is transmitted in a frequency range from 𝜔𝑐 − 𝜔𝑚 to 𝜔𝑐 + 𝜔𝑚. The
frequency response 𝐻𝐵𝐼 for a BI measurement should fulfill the condition

|𝐻𝐵𝐼 (𝑗(𝜔𝑐 − 𝜔𝑚)| + |𝐻𝐵𝐼 (𝑗(𝜔𝑐 + 𝜔𝑚)|
2 = |𝐻𝐵𝐼 (𝑗𝜔𝑐)| = 1, 0 < 𝜔𝑚 < 𝜔𝑚 (3.11)

in order to allow the amplitude accurate demodulation. In other words |𝐻𝐵𝐼 | should be constant or
linear and symmetrically around 𝜔𝑐 in the range 𝜔𝑐 −𝜔𝑚 to 𝜔𝑐 +𝜔𝑚. It can be verified in Figure 3.9
that the latter is true of the applied BI filter characteristics in the PhysioSense device.

As shown in Equations (3.9) and (3.10), an ideal amplitude demodulation can be achieved
with an ideal rectification followed by low-pass filtering. This approach has been used inside the
PhysioSense device. The precision full wave rectifier B4 and the fourth-order MFB Butterworth
low-pass filter B5 (fcut-off = 13 kHz) form an envelope detector by which 𝐵𝐼 ∗(𝑡) (a scaled version
of the bioimpedance 𝐵𝐼 (𝑡)) can be determined. This analog demodulation requires a precision full
wave rectifier that is able to rectify sine waves with amplitudes in the range from about 50mV up
to the supply voltage. Any precision rectifier which uses diodes should compensate the forward
voltage drop across the diodes as well as possible. The used rectifier (see Fig. 3.12 for a detailed
circuit diagram) utilizes diodes (BAV199, Infineon Technologies AG, Germany)with very low leakage
current (max. 5 nA) and is able to rectify the peak voltages of a sine wave at a frequency of 50 kHz
down to an amplitude of 25mVwith an appropriate precision. At a frequency of 100 kHz, the rectifier
is able to process amplitudes higher than 50mV. Figure 3.13 shows the input and output of the
rectifier for different amplitudes of a 50 kHz sine wave at the input. The remaining minor errors in
the rectification for amplitudes above 25mV (or 50mV for 100 kHz) can be reduced by a non-linear
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Figure 3.13: Simulated output of the full wave rectifier B4 with a sine wave of 50 kHz as input. It can be
seen, that the rectifier is not able to fully rectify the input signal for amplitudes of 10mV. A non-linear
behavior can be seen, as the first part of the rising sine wave is not correctly rectified.

amplitude dependent correction (calibration) of the rectifier output. Details on this will be given in
Section 3.9.

An initial automatic BI measurement configuration (see Section 3.7) ensures that the amplitude
of the sinusoidal rectifier input does not go below the threshold of 25mV for 50 kHz (50mV for
100 kHz), assuming no large changes in the assessed BI measurement range. Unforeseen changes
in the BI measurement range or electrode contact problems, that may lead to amplitudes below
the reported threshold, will be reported by a fault detection (see Section 3.7). A detected fault will
automatically lead to a stop of a running measurement.

3.7 Fault Detection and Automatic BI Configuration

The device is able to detect whenever the available measurement ranges (see Fig. 3.5) are left.
Therefore, the RMS output voltage of the filter B3, which is part of the signal processing chain
filtBI1 and filtBI2, and the RMS voltage across the output terminals of each current source during BI
measurement are continuously monitored. A fault is detected if any of these voltages exceed or fall
below pre-defined thresholds. After a fault is detected, the running BI measurement will be stopped
and afterward restarted with adjusted current and gain settings. If it is not possible to find suitable
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3. BI- and EMG-Measurement System

settings, the measurement will be permanently stopped. The latter is the case if an electrode has
fallen off or if the electrode contact is too bad, because the electrode becomes lose.

gain=1

decrease

𝐹𝐵𝐼 or 𝐹𝐶𝑆

BI > 0.9𝐵𝐼 𝑔𝑎𝑖𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(NOT 𝐹𝐵𝐼 ) ∧ gain < 4

BI > 0.9𝐵𝐼 𝑔𝑎𝑖𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡

current=8

current by 1

decrease
current by 1

increase
gain by 1

decrease
gain by 1

decrease
gain by 1

if gain > 1 ∧ 𝐹𝐵𝐼

if gain > 1

if current > 1

if current > 1

𝐹𝐵𝐼 or 𝐹𝐶𝑆

stop

start measurement

Figure 3.14: Automatic configuration for finding the optimal current amplitude and gain setting. The
highest current amplitude setting (current=8) corresponds to 137 μA, while current=1 means that a
current of 3.4 μA should flow between the electrodes. The lowest gain setting (gain=1) corresponds to
a gain of 1x, while the highest gain (gain=4) means that the signal is amplified by a factor of 100. See
Figure 3.5 for all available gain and current settings.

Measuring smaller impedances than the BI measurement range allows, results in too small
voltage amplitudes which cannot sufficiently be processed and demodulated. Too small voltage
amplitudes at the current sources are denoted as 𝐹𝐶𝑆 and are identified by monitoring the RMS
voltage across the output terminals of each current source. 𝐹𝐶𝑆 is triggered when this RMS voltage
goes below a pre-defined threshold. A second related error 𝐹𝐵𝐼 is triggered when the RMS output
voltage of the filter B3 falls below a pre-defined threshold. Small voltage amplitudes might be the
result of small transfer impedances which can be caused by too narrow placed current electrodes
(leading to 𝐹𝐶𝑆 ) or too narrow placed voltage measurement electrodes (leading to 𝐹𝐵𝐼 ).

On the other hand, measuring impedances above the predefined BI measurement range leads to
too high voltages within the current source and voltage measurement circuits which are too close
to the supply voltages. This leads to saturation effects which falsify the measured BI values. Too
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high voltages at the current source are monitored by assessing the RMS voltage across the output
terminals. An exceeding will lead to an error 𝐹𝐶𝑆 which indicates that the load impedance is too
high. This error might be triggered during a measurement when one of the current electrodes falls
off. Too high voltages at the measurement circuits are prevented by monitoring the RMS output
voltage at the filter B3. The related error 𝐹𝐵𝐼 is triggered whenever the transfer impedance is too
high which could be caused during a measurement by a bad electrode-skin contact. The errors 𝐹𝐶𝑆 ,
𝐹𝐵𝐼 , 𝐹𝐶𝑆 , and 𝐹𝐵𝐼 are transmitted immediately to the PC. The measurement is halted and the current
source is switched off.

The fault detection is also used in the beginning of each measurement in order to find the best
combination of current and gain for the current measurement setup. As the device is mainly used
for the four-electrode BI measurement with separate current sources for each BI measurement, the
current amplitude and the amplifier gain are optimized for this type of setup. The current amplitudes
for CS1/2 are set initially to the maximally possible value and the amplifier gain for filtBI1/2 are
set to the lowest value. By setting the current amplitude to the highest value, it can be assured
that the highest possible current amplitude is used in order to have the best possible signal quality.
The amplifier gain is set to the lowest value in order to optimize the gain independent from the
current amplitude as the lowest gain leads to the highest measurement range. After finding a current
amplitude by decreasing the current step by step and stopping at this point at which 𝐹𝐶𝑆 and 𝐹𝐵𝐼
are not triggered (including the highest current), the gain is increased until 𝐹𝐵𝐼 is triggered or the
maximally possible gain is reached. If 𝐹𝐵𝐼 was triggered and the gain was increased, the gain is set
to the next lower value. As soon as a current or gain setting has been selected, it is checked whether
the measured BI value is too close to the highest possible measurable value 𝐵𝐼 𝑔𝑎𝑖𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 for the
selected current and gain. Thus, the current amplitude and also the gain value is decreased when
𝐵𝐼 > 0.9𝐵𝐼 𝑔𝑎𝑖𝑛,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 . When no sufficient current and gain value could be found, the measurement
is stopped with an informative error message. The optimizing procedure for finding the best current
amplitude and gain setting is shown in detail in Figure 3.14.

3.8 Digital Signal Processing

A 24-bit ADC (ADS1278, Texas Instruments, USA) is used to simultaneously sample up to four EMG
and two BI inputs at a sampling frequency of 12 kHz. An FFDA (THS4521, Texas Instruments, USA)
is used in order to convert each analog signal to a differential signal before sampling. The amplifier
is part of FiltEMG, FiltBI1, and FiltBI2. The differential signals from all inputs are fed to the ADC. By
using such signal conversion, the signal quality improves as a differential signal is robust against
electromagnetic interference and the non-linear conversion error of the ADC is smaller for such
signals. The FFDA has a first-order low-pass characteristics with a cut-off frequency of 13 kHz. The
chosen cut-off frequency is sufficient due to the over-sampling and anti-aliasing filtering within the
ADC. The over-sampling ratio is 64 and the signals are then sampled with 768 kHz. The digitally
low-pass filter within the ADC damps all frequency above the Nyquist frequency of 6 kHz with more
than 100 dB. Finally, the down-sampled data are send with the output sampling frequency of 12 kHz
to the microcontroller.
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Figure 3.15: A fast Fourier transform (FFT) is performed and shown for the recorded measurement data
of a sine-wave signal near full scale at a frequency of 100Hz. For obtaining an FFT for the BI channel, an
amplitude modulated sine wave with a modulation degree of 80% at 50 kHz with a frequency of 100Hz
is used. The signal-to-noise ratio (SNR) is now defined as the distance between the fundamental signal
to the non-harmonic part of the remaining spectrum. For comparison, the signal-to-quantization-noise
ratio (SQNR) for 21 bit and 19 bit are plotted.

In order to check the minimally necessary sampling resolution, the SNR was once measured by
an FFT analysis (see Fig. 3.15). A sine wave with a frequency of 100Hz at the maximum input level
was applied to a bipolar input channel, filtered through the EMG filters and sampled by the ADC
with 24 bit. Harmonic distortions of multiple of 100Hz were mixed with power supply interferences
at 50Hz and multiple of it. As the level of harmonics at the multiple of 100Hz did not differ from
the harmonics at the multiple of 50Hz, it can be assumed that almost all harmonic distortions were
caused by the power supply interferences which are reduced in real measurements by the reference
driver.

Figure 3.15 shows the ratio of the fundamental signal to the noise spectrum in dB. The SQNR of
a sinusoidal signal excludes all harmonic frequencies and is defined as

𝑆𝑄𝑁𝑅𝑤 = 6.02𝑤 + 1.76 [dB] , (3.12)

where 𝑤 is the resolution of the ADC. The SQNR of an effective resolution of 21-bit is 128.18 dB. It
can be clearly seen that the SNR within the measured data almost corresponds to the SQNR for an
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ideal 21-bit sampling. Thus, it is sufficient to transmit only the first 21 bits of EMG measurement
data. The EMG measurement resolution is then 0.15 μV for an input range of ±150mV.

In a second investigation, a sine wave with a frequency of 100Hz was amplitude modulated by a
carrier frequency of 50 kHz and applied to the first bipolar input channel. After analog demodulation
by the BI filter and processing stage, the voltage is sampled with the 24-bit ADC.The measured SNR
of the BI channel corresponded to an SQNR of an ideal 19-bit ADC, which is 116.24 dB (cf. Eq. (3.8)).
The effective resolution of 19 bits for the BI measurement results for a two-electrode measurement
(𝐼𝑒𝑓 𝑓 = 137 μA, gain = 1𝑥) on a load resistor of 100Ω in an effective measurement resolution
of 0.2mΩ. Harmonic distortions at the multiple of 50Hz which are caused by power supply
interferences and 100Hz are visible in a range up to −40 dB (cf. Fig. 3.15). Harmonic distortions
at the multiple of 100Hz show a higher level than the harmonics between them, which indicates
a non-linear behavior of the envelope detector. In real measurements with electrodes, harmonic
distortions which are caused by power supply interferences will be reduced by the reference driver.

The micro-controller (STM32F103RET6, ST microelectronics, Switzerland) collects the data via
a serial peripheral interface (SPI) from the ADC and reduces the bit-resolution for all measurement
data to a resolution of 21 bits by keeping the first 21 most significant bits. The EMG and BI
measurement data are reduced to the same bit-resolution in order to simplify the transmission
protocol. Additionally to the data of the input signals, a galvanically isolated TTL input is available
and its state is transmitted to the PC together with the other measurement data. In order to send
the data over a galvanically isolated serial USB converter (FT232RL, FTDI) to the PC, a universal
asynchronous receiver transmitter (USART) bus is used. The transmission bit rate of the USART
bus is limited; maximal 16000 Samples per second with a resolution of 21 bits can be transmitted to
the PC.Therefore, the sampling rate is reduced to 4 kHz for each signal, when using up to 4 channels,
and reduced to 2.4 kHz, when using 5 or 6 channels before passing the data from the microcontroller
to the PC. As the sampling frequency of the ADC cannot be changed digitally, down-sampling has to
be implemented in themicrocontroller. As the used sampling frequency is 12 kHzwhich is a multiple
of 4 kHz and 2.4 kHz only proper digital anti-aliasing filter are necessary for down-sampling.

In order to avoid aliasing by the down-sampling, by which higher frequent signal content would
be mapped to lower frequency bands, two different FIR filters for both output sampling frequencies
of 2.4 kHz and 4 kHz were designed, respectively. Both FIR filters have an impulse response length
of 10 time steps and are implemented on the microcontroller using fix-point calculation. The FIR
filter coefficients are symmetrical and are chosen in such a way that the resulting rounding error is
minimized. The coefficients for the FIR filter which is used at 4 kHz are calculated from a Hanning
window function at a cut-off frequency of 2 kHz. The coefficients are approximated by fractions
with 256. The root mean square error to the original coefficients is 0.0258729. If five or six channels
should be transmitted, a similar FIR filter is used with a cut-off frequency of 1.2 kHz. The root
mean square error for approximated coefficients is then 0.0165650. An amplitude and phase plot in
a frequency range from 10Hz to the internal Nyquist frequency of the ADC of 6 kHz is shown for
both FIR filters in Figure 3.16. The coefficients and the output of the digitally implemented FIR filters
are determined by using Scilab 5.4.0².

²https://www.scilab.org
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Figure 3.16: Frequency response of the digitally implemented anti-aliasing FIR filters which are used
for down-sampling from 12 kHz to 4 kHz and 2.4 kHz, respectively. The bode plot goes from 10Hz
to the Nyquist frequency of 6 kHz. The FIR filters have a impulse response length of 10. Although
the coefficients are rounded to multiples of 1

256 , proper damping for avoiding aliasing effects could be
achieved.

A transmitting protocol was developed. It consists of a header, a body and a seven-bit cyclic
redundancy check. The leading bit of each byte is used for marking the beginning of a package.
The header byte characterizes the package. The measurement data from all channels are packed
into the body of the package. Other package types are failure report, configuration, and actions
as reset, start and stop. In order to check the status of the PC, the PC has to continuously send
a package to the device. In the case of any PC failure, the device will stop to measure and goes
into a secure mode. All transmitted measurement data are saved in the BDF+³ format on the PC
side. BDF+ is the 24-bit version of the EDF+ [145] file format. The measured frequency response
of the PhysioSense device including analog filters and digital FIR filters is shown in Figure 3.17.
EMG and BI measurement channels show a flat amplitude response with small damping near the
Nyquist frequency. The CMRR circuit which is used as an alternative to the reference driver for e.g.
respiratory measurements has a slightly damped amplitude response (2.5 dB at 500Hz).

³http://www.biosemi.com/faq/file_format.htm
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Figure 3.17: Measured frequency response of the PhysioSense device including digital FIR filters using
an Agilent 33522A frequency generator. The measurement data were transmitted to the PC with a
sampling frequency of 4 kHz. The frequency response of both BI channels was measured by applying
a modulated sine wave with the corresponding carrier frequency of 50 kHz and 100 kHz. EMG and BI
measurements have a flat amplitude response while using the reference driver which was connected to
one input terminal (3 dB drop at 1.5 kHz). The activated CMRC leads to slightly decreasing amplitude
response while the reference driver was disconnected (2.5 dB at 500Hz).

3.9 Calibration

All measured data samples which are arriving at the PC are continuously transformed into physical
units.

3.9.1 Voltage Calibration for EMG Measurement

All four EMG measurement channels are calibrated separately using an external reference voltage.
For each channel 𝐶ℎ = {1, 2, 3, 4}, the ADC output 𝑜𝑢𝑡𝐶ℎ is stored in 𝑜𝑢𝑡𝐶ℎ after applying a DC
voltage of 145mV. Then a DC voltage of −145mV is applied and the ADC output is saved in 𝑜𝑢𝑡𝐶ℎ.

The calibration is performed once and the stored parameters 𝑜𝑢𝑡𝐶ℎ and 𝑜𝑢𝑡𝐶ℎ are loaded in the
beginning of each measurement. During a measurement, each sample 𝑜𝑢𝑡𝐶ℎ is converted to an EMG
voltage signal 𝐸𝑀𝐺𝐶ℎ by
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3. BI- and EMG-Measurement System

𝐸𝑀𝐺𝑛𝑜𝑟𝑚
𝐶ℎ = (𝑜𝑢𝑡𝐶ℎ − 𝑜𝑢𝑡𝐶ℎ)/(𝑜𝑢𝑡𝐶ℎ − 𝑜𝑢𝑡𝐶ℎ) , (3.13)

𝐸𝑀𝐺𝐶ℎ = (𝐸𝑀𝐺𝑛𝑜𝑟𝑚
𝐶ℎ (145mV + 145mV)) − 145mV . (3.14)

3.9.2 Impedance Calibration for BI Measurement
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Relative linearity error

𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
1,1 − 𝑖𝑛𝑛𝑜𝑟𝑚1,1

𝑜𝑢𝑡𝑛𝑜𝑟𝑚1,1 − 𝑖𝑛𝑛𝑜𝑟𝑚1,1

𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
1,5 − 𝑖𝑛𝑛𝑜𝑟𝑚1,5

𝑜𝑢𝑡𝑛𝑜𝑟𝑚1,5 − 𝑖𝑛𝑛𝑜𝑟𝑚1,5

𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
1,20 − 𝑖𝑛𝑛𝑜𝑟𝑚1,20

𝑜𝑢𝑡𝑛𝑜𝑟𝑚1,20 − 𝑖𝑛𝑛𝑜𝑟𝑚1,20

𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
1,100 − 𝑖𝑛𝑛𝑜𝑟𝑚1,100

𝑜𝑢𝑡𝑛𝑜𝑟𝑚1,100 − 𝑖𝑛𝑛𝑜𝑟𝑚1,100

𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
1,100 − 𝑖𝑛𝑛𝑜𝑟𝑚1,100

𝑜𝑢𝑡𝑛𝑜𝑟𝑚1,100 − 𝑖𝑛𝑛𝑜𝑟𝑚1,100

Figure 3.18: Impedance calibration of the BI measurement. Shown is the error between normalized
input voltage 𝑖𝑛𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 and normalized output voltage. The normalized output voltages 𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 for the
channel 𝐶ℎ and the 𝑔𝑎𝑖𝑛 is obtained by linear mapping. Using spline interpolation, the normalized
output voltage 𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒

𝐶ℎ,𝑔𝑎𝑖𝑛 can be obtained. The linearity error is smaller for the latter.

The current sources and the BI measurement channels are calibrated separately. First, both BI
measurement channels 𝐶ℎ = {1, 2} are calibrated at each available gain setting 𝑔𝑎𝑖𝑛 = {1, 5, 20, 100}
using an external reference sinusoidal signal with a frequency of 50 kHz for channel 1 and 100 kHz
for channel 2. Please note that the second channel could also be calibrated for measurements at
50 kHz following the same procedure; for simplicity, this case is not described in the following.

The measured output 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 from each BI channel 𝐶ℎ and available gain setting 𝑔𝑎𝑖𝑛 is
stored while the sinusoidal voltage input with amplitude 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 is applied. First, the minimally
possible amplitude 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 and the maximal possible amplitude 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 is fed to the device input
and the resulting outputs 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 and 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 are stored.
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Based on these two measurements, a normalized output 𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛, which is always in the
interval between zero and one, can be calculated for the output 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛

𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 = (𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛)/(𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛) . (3.15)

Additionally, the input 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 is normalized by

𝑖𝑛𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 = (𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛)/(𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛) . (3.16)

Due to the non-linear behavior of the full-wave rectifier (cf. Fig. 3.13), a maximum linearity error
of 0.3% to 1% can be observed between 𝑖𝑛𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 and 𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 depending on the gain. This non-
linearity yields amaximum absolute error of 10Ω to 30Ω, depending on the selected gain and current
amplitude. As the measurement ranges for different gain settings are overlapping, such that the
next range begins in the center of the previous range, this non-linearity behavior would also lead to
jumps in the BI signal when the gain is changed although the BI of the tissue remains constant. E.g.,
a change of the gain from 1x to 20x at a load impedance of 30Ω and a measurement current of 137 μA
would lead to a jump in the measured BI of 0.2Ω. As the expected changes during a swallow lie in a
range of 0.5Ω to 3Ω, the previously described non-linearity is not tolerable and must, therefore, be
reduced, e.g., by using cubic spline interpolation. The linearity error for measuring 30Ω with a gain
of 20x and a current of 137 μA is reduced from 0.2Ω to almost zero (𝑖𝑛𝑛𝑜𝑟𝑚20,1 = 0.3) when cubic spline
interpolation is used. Figure 3.18 shows the linearity error of the first channel for all gain settings
and the improvement by cubic spline interpolation.

For calculation of the cubic spline interpolation, measurements at only four specific input
voltages 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 for each gain and channel are needed. Together with the already measured
outputs 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛and 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 at the minimum and maximum input voltage amplitudes 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛
and 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛, two measurements at input voltage amplitudes of 1/3(𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛) and
2/3(𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛−𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛) have to be performed. The results of these four measurements are collected
in a vector out𝐶ℎ,𝑔𝑎𝑖𝑛 ∈ ℝ4 and the applied input amplitudes are stored into the vector in𝐶ℎ,𝑔𝑎𝑖𝑛 ∈ ℝ4.
Both vectors will be normalized by the following equations:

out𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 = out𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛
𝑜𝑢𝑡𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑜𝑢𝑡𝑔𝑎𝑖𝑛,𝐶ℎ

, (3.17)

in𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 = in𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛
𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝑔𝑎𝑖𝑛,𝐶ℎ

. (3.18)

Four cubic polynomials are fitted such that out𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 is mapped to in𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 for each channel
and gain separately:

𝑓𝑐𝑢𝑏𝑖𝑐𝑠𝑝𝑙𝑖𝑛𝑒 (out𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛, 𝜃𝐶ℎ,𝑔𝑎𝑖𝑛) = in𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 , (3.19)

where 𝜃𝐶ℎ,𝑔𝑎𝑖𝑛 is the parameter vector of the cubic spline interpolation which maps out𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 to
in𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 such that Equation (3.19) is fulfilled.

Using cubic spline interpolation, the calibrated voltage amplitude 𝑣𝑐𝑎𝑙𝑖𝑏𝐶ℎ,𝑔𝑎𝑖𝑛 is obtained from the
normalized measured output 𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 as follows
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𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
𝐶ℎ,𝑔𝑎𝑖𝑛 = 𝑓𝑐𝑢𝑏𝑖𝑐𝑠𝑝𝑙𝑖𝑛𝑒 (𝑜𝑢𝑡𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛, 𝜃𝐶ℎ,𝑔𝑎𝑖𝑛) , (3.20)

𝑣𝑐𝑎𝑙𝑖𝑏𝐶ℎ,𝑔𝑎𝑖𝑛 = 𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
𝐶ℎ,𝑔𝑎𝑖𝑛 (𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 − 𝑖𝑛𝑔𝑎𝑖𝑛,𝐶ℎ) + 𝑖𝑛𝐶ℎ,𝑔𝑎𝑖𝑛 , (3.21)

where 𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
𝐶ℎ,𝑔𝑎𝑖𝑛 is the corrected normalized output voltage using spline interpolation. It can be

seen in Figure 3.18, that the difference between 𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒
𝐶ℎ,𝑔𝑎𝑖𝑛 and 𝑖𝑛𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 is zero at the supporting

points 0, 1/3, 2/3, and 1. Between these points, the difference is almost zero which shows that the
relation between 𝑜𝑢𝑡𝑛𝑜𝑟𝑚,𝑠𝑝𝑙𝑖𝑛𝑒

𝐶ℎ,𝑔𝑎𝑖𝑛 and 𝑖𝑛𝑛𝑜𝑟𝑚𝐶ℎ,𝑔𝑎𝑖𝑛 is almost linear due to the cubic spline interpolation.
The resulting current 𝐼𝑙,𝐶𝑆 of the current source 𝐶𝑆 = {1, 2} is measured across reference resistors

using the two-electrode measurement method for each programmable current level 𝑙 = 1, … , 8.
Finally, the BI amplitude 𝐵𝐼𝐶ℎ can be calculated by dividing the calibrated voltage amplitude

𝑣𝑐𝑎𝑙𝑖𝑏𝐶ℎ,𝑔𝑎𝑖𝑛 by the applied current 𝐼𝑙,𝐶𝑆 :

𝐵𝐼𝐶ℎ =
𝑣𝑐𝑎𝑙𝑖𝑏𝐶ℎ,𝑔𝑎𝑖𝑛
𝐼𝑙,𝐶𝑆

. (3.22)

3.9.3 BI and EMG Response on High Voltage Pulses

Current source electrodes

Voltage electrodes for BI/EMG

Stimulation electrodes

Figure 3.19: Electrode position for measuring BI/EMG on the forearm while FES is active. The arm
picture is from [146].

The ability of the measurement system to recover after stimulation artifacts was investigated at
the forearm of a healthy subject, on which higher stimulation intensities than on the neck can be
applied. The electrode positions are similar to the experiment described in Nahrstaedt et al. [146],
where BI wasmeasured by the author with a predecessormeasurement device while FESwas applied
to the forearm muscles. As shown in Figure 3.19, the current BI electrodes were attached to the skin
near the wrist and above the elbow joint on the upper arm. The BI/EMG measurement electrodes
were placed in a line between the BI-current electrodes. The hydro-gel electrodes for FES (∅ 32 mm,
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KRAUTH+TIMMERMANN GmbH, Germany) were placed on the musculus extensor carpi radialis
longus/brevis parallel to the measurement electrodes.
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Figure 3.20: EMG and BI measurement at the left forearm while a biphasic electrical stimulation with
a frequency of 20Hz was active. FES electrodes were placed at a distance of 3 cm to the BI/EMG
measurement electrodes. In the EMG signal, the M-wave is visible shortly after the stimulation artifact
disappears.

Figure 3.20 shows the BI/EMG response after stimulation pulses with a stimulation current
amplitude of 6mA were applied. The pulse width was varied from 100 μs to 400 μs. Due to fast
recovery from stimulation artifacts, measurement of BI and EMG is possible after 2ms to 3ms. The
EMG recordings show the M-wave (FES-evoked muscle activity). Volitional muscle activity was not
present in this test, but could certainly be assessed from the EMG recording between the simulation
pulses

3.10 Video Reference System

In order to compare the BI/EMG-measurements with endoscopic and videofluoroscopic recordings,
a synchronous video stream needs to be saved. A USB video grabber (Grabby, TerraTec, Germany)
is used to convert the analog video output into a digital video stream in real-time. A time stamp is
immediately written into each frame which arrives on the PC.This time stamp is also saved together
with the current time from the PhysioSense system.
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The delay of the video frame conversion was measured. A square wave with a frequency of 1 Hz
was generated and displayed on an oscilloscope and at the same time recordedwith the PhysioSense
device. Simultaneously, an analog camera was filming the screen of the oscilloscope. An analog
camera was used, as the endoscopic and videofluoroscopic camera systems in the clinic are analog
ones or have an analog video signal output. Slopes in the square wave were marked in the video
and in the measured signal. The video stream was saved with a frame rate of 10 frames per seconds.
An average delay of 500ms was measured between the captured video stream and the electrically
measured square wave. A jitter error of around 100ms was measured for the time points in which
the slope should be visible in the video frames. This jitter corresponds to the video frame rate of
10Hz. By compensating the average delay of 500ms for the recorded data, the video stream can be
used as a reference system.

3.11 Conclusions

A measurement device was developed, which can be used for measurement of EMG and BI at
the neck for the examination of swallowing. The device layout is highly versatile for answering
several questions regarding BI measurements in the field of swallowing disorders. It also allows the
investigation of controlled FES for supporting swallowing, as measurement is possible while FES is
actively used.

Bipolar surface and needle EMG can be independently recorded at four channels in a range
of ±150mV with a 21-bit effective resolution up to a frequency of 4 kHz. The device has two
BI measurement channels by which BI can be measured either with the two-, three-, or four-
electrode measurement method. Two controlled current sources are used for generating a sinusoidal
current at a frequency of 50 kHz and 100 kHz, respectively. Both current sources are implemented
as dual single-ended current source with guaranteed common mode reduction for the means of
patient protection from DC components. As the current amplitude and the measurement gain are
switchable, a measurement range from 0.3Ω to 30 kΩ could be realized with 19-bit effective ADC
resolution. This wide range allows the usage of needle and transcutaneous electrodes. Separation
of the EMG signal content from the BI signal could be achieved with analog filters and therefore
simultaneous measurement of BI and EMG over the same voltage measurement electrodes is
possible.

The implemented fault detection senses a low electrode-skin contact at the BI measurement
and current electrodes. In case that a fault has been triggered, a better measurement range is
automatically searched. The fault detection circuit is also used for finding the best current amplitude
automatically and measurement gain settings individually for a subject at the beginning of each
measurement. It has been shown in practice, that sensing bad electrode-skin contact is an important
feature for avoiding faulty measurements. Possible reasons are that old electrodes with gel dried
out, the skin was not prepared optimally, the skin becomes to sweaty, or measurement cables are
broken.

An optional common mode reduction circuit can be activated individually for each voltage
measurement channel. This circuit causes a slightly falling amplitude response but is useful for the
case that the output voltage of sensors should be measured. Such sensors could be a hand switch or
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sensors for measuring respiration (e.g. respiration belt). As they are not connected to the skin, the
reference circuit is, contrary to the common mode reduction circuit, not able to reduce the CMRR
for these measurement channels.

All measurement data were sent continuously in real-time to the PC and a synchronization with
a USB based video-grabber is possible. The video-stream of a videofluoroscopy and of an endoscopy
could successfully be synchronized with BI and EMG measurements.

The device is protected against high voltages. It is possible to measure EMG and BI shortly
after a stimulation impulse was applied through transcutaneous electrodes in the same area. The
measurement device can therefore be used for triggering supportive electrical stimulation.
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4
Automatic Segmentation and
Classification of Swallowing

4.1 Summary

Aim: Investigation of a bioimpedance (BI)/electromyography (EMG) segmentation algorithmwith
subsequent classification for automatic detection of swallowing events in recorded data.

Methods: TheBI signal is assumed to correlating to the movement of anatomical structures during
the pharyngeal phase of swallowing. Muscle activity is a prerequisite for the laryngeal movement.
A swallow results in a typical reproducible temporary drop in the BI amplitude with EMG activity
in the begin of the valley. Algorithms for robust detection of EMG activity and finding valley like
shapes in the approximated BI signal are presented. Only BI valleys that coincide with EMG activity
are potential candidates for swallowing events and selected by this combined BI/EMG segmentation
algorithm. Specific features are calculated from the BI and EMG signal for each valley. A support
vector machine (SVM) classifier is used to decide if a valley represents a swallow or a different event,
e.g., tongue, head, or neck movement artifacts.

Results: The SVM classifier has been trained and tested on data from 31 healthy subjects and 41
patients with oropharyngeal swallowing disorder. The dataset contained 3661 manually marked
swallows of different bolus sizes and consistency and was affected by movements and speech. The
combined BI/EMG segmentation algorithm detected 97.9% of all swallowing events but included
also 12656 non-swallowing related events. The subsequently applied classifier was tested by cross-
validation and showed a sensitivity of 89.9% and a specificity of 91.5%.

Conclusion: The results show that EMG and BI recording at the neck can be used for swallowing
segmentation. Even in the presence of disturbances such as speaking, head, tongue, or jaw
movements, good sensitivity and specificity values could be achieved. Thus, long-term monitoring
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of swallowing and swallowing assessment in an uncontrolled environment seem to be possible. The
beginning and end point of the pharyngeal swallowing phase can be accurately determined.

Contribution: The author contributed the presented signal processing methods, the improvement
of the EMG activity detector, the algorithms for piece-wise linear approximation of the BI signal,
the BI valley detection algorithm, and the methods for feature extraction.

Parts of this chapter were published by the author in [132], [147], and [148].

4.2 Motivation

Systems with small and inexpensive sensors for automatic detection of swallowing and evaluation
of swallowing performance in clinical and non-clinical settings would greatly improve diagnosis
and therapy of swallowing disorders.

Two gold standards (videofluoroscopic swallowing study (VFSS) and fiber-optic endoscopic
evaluation of swallowing (FEES)) are used for evaluation of dysphagia and mapping of dysphagia
severeness into different scales is performed by the examiners. The outcome depends strongly on
the experience of the examiner which is reflected in a moderate inter- and intra-rater agreement for
both methods [13], [14]. An automatic swallowing evaluating tool could estimate several swallow
related parameters, such as the level and speed of laryngeal elevation, and could enhance established
clinical swallowing scales. The automatic detection and evaluation of swallowing events could play
an important role in assisting inexperienced examiners during a VFSS or FEES.

First approaches used dual-axis swallowing accelerometry signals. The work by Lee et al. [74],
[79], Merey et al. [80], and Steele et al. [81] utilized a classifier to determine the severeness of
dysphagia and compared the results to the outcome of VFSS. Using an aspiration scale, an agreement
of up to 90%with manual examination was achieved. However, in all studies a manual segmentation
of clearly recognizable swallows was performed based on videofluoroscopy (VF) recordings.

Other accelerometry studies had put their focus on swallow segmentation. The studies from
Sejdić et al. [75] and Damouras et al. [78] used accelerometry recordings of 295 swallows from
healthy subjects. All disturbances as vocalizations, coughing, and excessive head movements were
completely excluded from the data. In comparison to manual segmentation, the segmentation
algorithm by Sejdić et al. [75] was able to recognize swallows with a sensitivity of 94.5% and a
precision of 94%. Damouras et al. [78] developed an automatic real-time segmentation algorithm,
which was able to detect swallows from the same dataset with 90% sensitivity and 93% precision.
The algorithm used a window length of one second which limited the time resolution of the
swallowing detector. The performances of both algorithms were also evaluated on a second dataset
which contains 266 swallows and vocalization from 37 dysphagia patients [78]. The swallow
segmentation algorithm from Sejdić et al. [75] resulted in a sensitivity of only 39% and a precision
of 54%. A sensitivity of 87% and a precision of only 40% was achieved by the algorithm proposed
by Damouras et al. [78].

In a study by Sazonov et al. [61], swallowing sounds were used as measurement signals. 70
measurement session from 20 healthy subjects containing resting periods and talking as well as
meal intake were recorded. The measurement signal was divided into small fragments which were
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called epochs of lengths from 0.375 s to 3 s. Optimal results were obtained by epoch lengths of 1.5 s.
Swallowing was segmented with an average accuracy of 84.7%. The weakness of this study is that
the classifier was individually trained for each session and subject. In addition, the classifier had
only a time resolution of 1.25 s. A higher time resolution of 0.25 s was achieved by Amft et al. [63]
but with a lower accuracy (sensitivity of 68% and a precision of 20%).

Aboofazeli et al. [65] used hiddenMarkovmodels to detect the onset and end point of swallowing
with a delay of less than 100ms. The dataset contained swallowing measurements of 15 healthy
children and nine young adult cerebral palsy patients. A false positive rate of only 6.7%was achieved,
whereas 4.8% of swallows were missed by the detector. The effects of disturbances caused by head
turning, speaking, or coughing were not investigated.

To the best knowledge of the author, nobody tried to apply automatic swallowing detection
based on BI and EMG in order to determine onset and duration of the pharyngeal phase of swallow.
Such a solution could be able to robustly detect swallows even in the presence of disturbances.
Methods for signal preprocessing, swallowing segmentation, and finally swallowing classification
based on the combined EMG and BI measurement at the neck are investigated in this chapter.

4.3 Methods

4.3.1 Signal Acquisition

The developed measuring system PhysioSense, which is described in detail in Chapter 3, is used
for measuring BI and EMG at the neck. The four-electrode measurement method¹ at a frequency of
50 kHz is used for BI measurement. EMG is recorded at the BI voltage measuring electrodes while a
reference electrode is also attached to the skin. A battery powered hand switch is connected to the
second bipolar voltage measurement input. Its state is saved together with the BI and EMG signal
during each session. The sampling frequency is set to 4 kHz for all measurement channels.

4.3.2 Study Procedure

The measurement electrodes are placed carefully at the neck by the examiner and BI and EMG
are recorded during the examination. The electrodes of the current source are placed bilaterally
on the upper onset of the sternocleidomastoid muscle below the mastoid insertion. The voltage
measurement electrodes are placed laterally on the gap between hyoid bone and the thyroid cartilage
symmetrically on both sides. Lastly, the reference electrode is attached to the cheek. The electrode
positions are schematically visualized in Figure 4.1. Blue Sensor N-00-S ECG electrodes (Ambu A/S,
Denmark) are used for all measurements.

¹The four-electrode measurement method consists of a bipolar current source and a bipolar voltage measurement. The
current source applies a constant sinusoidal current at a fixed frequency through one pair of electrodes (current electrodes)
to the tissue. The resulting voltage is measured by additional voltage measurement electrodes and the resulting transfer
impedance can be calculated.
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Figure 4.1: Electrode positions for measuring BI/EMG at the neck (C - current electrodes, V - voltage
measurement electrodes, R - reference electrode). Anatomical illustrations are from [2].

4.3.3 Signal Preprocessing of EMG and BI

First, jumps and spikes in the EMG signal are detected and removed. This is performed by calculating
the discrete difference {𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖)} of the EMG time series by:

𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖) = 𝐸𝑀𝐺(𝑖) − 𝐸𝑀𝐺(𝑖 − 1), 𝑖 = 1, … , 𝑁 , (4.1)

where 𝐸𝑀𝐺(𝑖) is an EMG sample at time instance 𝑖 and 𝑁 is the number of available samples. It
is assumed that the sequence 𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖) is an almost stationary Gaussian process with zero mean.
The sample standard deviation 𝑠𝑑𝑑𝑖𝑓 𝑓 is calculated from the data of the first five seconds from the
sequence 𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖). Figure 4.2 shows the histogram of an exemplary measurement together with
the estimated Gaussian distribution.

A spike or jump in the original signal is detected if the corresponding value in the absolute
difference sequence {|𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖)|} is at least 12 times greater than the previously defined standard
deviation 𝑠𝑑𝑑𝑖𝑓 𝑓 . The corresponding thresholds are visualized in Figure 4.2 as black dashed vertical
lines. It is assumed that the sequence {𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖)} follows a normal distribution with standard
deviation 𝑠𝑑𝑑𝑖𝑓 𝑓 . The probability that a difference of two subsequent EMG samples exceeds the
threshold is then 2 ⋅ 10−32.

In order to decide if a spike or jump is present, the EMG value before the sequence {𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖)}
exceeds the threshold is stored. The length of the disturbance is estimated by finding the time
position after the disturbance in which its EMG value passes the stored EMG value. If the EMG
signal is going up or down after the disturbance such that it crosses the stored value within one
second, a spike is assumed and all samples of the EMG signal within the spike are set to the stored
value before the spike. Otherwise, a jump is assumed, and the height of the jump is subtracted from
all subsequent EMG samples. The height of the jump is estimated by subtracting the mean EMG
value before and after the disturbance. Removing of a spike is exemplarily shown in Figure 4.3.
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Figure 4.2: The histogram of the discrete difference sequence {𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 (𝑖)} from an EMG recording is
shown together with the estimated probability densitiy function (PDF) of a Gaussian distribution in the
first sub-plot. The thresholds which separate spikes or jumps from normal EMG data are shown as
black dashed lines. In the second sub-plot, spikes which cause occurrences greater than zero outside the
thresholds can be seen in the unnormalized histogram.

In the next step, a non-causal elliptic infinite impulse response (IIR) high-pass filter of third order
with the cut-off frequency of 10Hz is applied to the EMG signal. This filter removes low frequent
movement artifacts. The supply voltage causes disturbances at the first and third harmonics around
50Hz and 150Hz, respectively. Therefore, a non-causal elliptic IIR band-stop filter of third order with
cut-off frequencies at 47Hz and 53Hz and a second similar band-stop filter with cut-off frequencies
at 140Hz and 160Hz were additionally applied. All three filter are implemented as zero-phase filter
realization, by which the signal is filtered forward and then backward.

The BI signal is mainly disturbed by noise. A heuristic comparison between low-pass filtering
and wavelet denoising has shown that wavelet denoising can almost completely reduce noise
without changing the signal and is therefore preferable. Wavelet denoising applies a signal
transformation into wavelet coefficients. Adaptive shrinkage is performed on these coefficients
[149]. The denoised signal is then found by reconstructing the signal from the wavelet coefficients.

A db4 wavelet is used for discrete wavelet transformation of the BI signal. Wavelets coefficients
were calculated up to a level of eight. The noise variance is estimated from the first level of wavelet
coefficients. The “minimax” threshold [149] multiplied with the estimated noise is then used as
threshold for soft thresholding on all wavelet coefficients.
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Figure 4.3: Unfiltered and filtered EMG signal with and without removal of spikes. In each subplot,
two versions of the same signal are compared. The blue line shows the signal without applying a spike-
removing algorithm whereas the red line is showing the signal with applied spike removal. In subplot
a) the unfiltered EMG signals and in b) the filtered EMG signals are shown.

The coefficients of the wavelet transform are saved in a filter bank structure [150]. Each level
represents a high-pass and a low-pass filtering step, where high-frequency coefficients are called
detail coefficients and low-frequency coefficients are called approximation coefficients. Each filter
output is down-sampled by two. Only the highest level of coefficients in the filter bank contains
approximation and detail coefficients. All lower levels contain only approximation coefficients at
the specific level. The approximation coefficients at level eight represent the signal content with
frequencies up to 𝑓𝑛/28 = 7.81Hz, where 𝑓𝑛 = 2 kHz is the Nyquist frequency of the signal. The
detail coefficients at level eight contain the signal content from 𝑓𝑛/28 to 𝑓𝑛/27 = 15.62Hz. The
approximation coefficients of the next level (𝑙𝑒𝑣𝑒𝑙 = 7) represent the frequency content of the signal
from 𝑓𝑛/27 to 𝑓𝑛/26 = 31.25Hz. Finally, the approximation coefficients at level one represent the
signal frequency content from 𝑓𝑛/2 to 𝑓𝑛.

In order to be able to down-sample the BI signal to 250Hz, all coefficients representing
frequencies greater than 125Hz will be set to zero. As the filter bank consists of the eight levels
and the Nyquist frequency is 2 kHz, all approximation coefficients corresponding to a level of four
or lower will be set to zero. Finally, the BI signal is reconstructed from all wavelet coefficients and
down-sampled to 250Hz by keeping only each eighth sample.
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Exemplary, Figure 4.4 shows the unprocessed EMG and BI signals in comparison to the
preprocessed signals.
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Figure 4.4: EMG and BI recording of a water swallow from a healthy subject before and after the
preprocessing. The figure is based on Fig. 2 from [132].

4.3.4 Segmentation of EMG Activity Periods

4.3.4.1 Introduction to the Double-Threshold Detector

Periods of muscle activation are detected by using a double-threshold detector with automatic
threshold adaption based on the estimated noise and disturbance levels within the EMG signal. This
algorithm uses an auxiliary sequence {𝑧(𝑖)} in which the EMG activity is detected. The auxiliary
sequence is calculated by

𝑧(𝑖) = 𝑥(𝑖)2 , (4.2)

where 𝑥(𝑖) is the preprocessed and whitened measurement sample at sampling instance 𝑖 with a
sampling time 𝑇 𝐸𝑀𝐺𝑠 . Whitening is a signal processing step in which non-stochastic components
were removed. The Stulen-De Luca filter [151] is used as model for myoelectric activity:

𝐻𝑠𝑓 (𝑠) =
𝑘𝑠(2𝜋𝑓ℎ)2

(𝑠 + 𝜌2𝜋𝑓ℎ)(𝑠 + 2𝜋𝑓ℎ)2
, (4.3)
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where the scaling factor is 𝑘 = 7, the high cut-off frequency is set to 𝑓ℎ = 120 and the low cut-off
frequency 𝑓𝑙 = 𝜌𝑓ℎ is defined by 𝜌 = 2/3. The Stulen-De Luca filter is z-transformed and is inverted
in order to be used as whitening filter for EMG. A further pole at zero is added in order to make the
filter causal.

The resulting amplitude response of the inverted filter is damped for low frequencies by a 2-
order IIR high-pass filter 𝐻𝐻𝑃 with a cut-off frequency of 40Hz as the inverted filter has a strongly
increasing amplitude response for low and high frequencies. The large gain for frequencies near the
Nyquist frequency is reduced by a 2-order IIR low-pass filter 𝐻𝐿𝑃 with a cut-off frequency of 700Hz.
The resulting whitening filter is

𝐻𝑤ℎ𝑖𝑡𝑒𝑛𝑖𝑛𝑔(𝑧) = 𝑔
𝐻−1𝑠𝑓 (𝑧)

𝑧 𝐻𝐿𝑃 (𝑧)𝐻𝐻𝑃 (𝑧) , (4.4)

where the gain 𝑔 of𝐻𝑤ℎ𝑖𝑡𝑒𝑛𝑖𝑛𝑔(𝑧) is set to 𝑔 = 1.8 such that a variance of Gaussian noise is preserved,
after applying the Stulen-De Luca filter and the whitening filter.
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Figure 4.5: Frequency response of the whitening filter 𝐻𝑤ℎ𝑖𝑡𝑒𝑛𝑖𝑛𝑔(𝑧) in comparison to the Stulen-De Luca
filter 𝐻𝑠𝑓 (𝑧).

It is assumed that preprocessed and whitened surface EMG can be modeled as Gaussian process.
Thus, elements of the auxiliary sequence {𝑧(𝑖)} are equal or greater than zero and the sequence can
be modeled by a 𝜒2 (chi-squared) distribution with one degree of freedom. The knowledge about the
distribution of {𝑧(𝑖)} is used for optimally estimating parameters of the double-threshold detector.
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EMG activity is detected for sampling instance 𝑖 for all 𝑁 samples by

𝑎𝑐𝑡𝜁 (𝑖) =
𝑖
∑

𝑘=𝑖−𝑚+1
{1, if 𝑧(𝑖) > 𝜁
0, otherwise

, 𝜁 ∈ ℝ+, 𝑚 ∈ ℕ∗, 𝑖 = 𝑚,… , 𝑁 , (4.5)

𝑎𝑐𝑡𝑟0(𝑖) = {
1, if 𝑎𝑐𝑡𝜁 (𝑖) ≥ 𝑟0
0, otherwise

, 𝑟0 ∈ ℕ∗, 𝑟0 ≤ 𝑚, 𝑖 = 𝑚,… , 𝑁 . (4.6)

The number of samples from the auxiliary sequence {𝑧(𝑖)}which exceed 𝜁 (the first threshold) within
the sliding window of 𝑚 samples are counted and assigned to 𝑎𝑐𝑡𝜁 at the sample index 𝑖 which is
located at the endpoint of the sliding window (cf. Eq. (4.6)). When 𝑟0 (denoted as second threshold)
samples from a sliding window of the auxiliary sequence {𝑧(𝑖)} were above 𝜁 , EMG activity is
assumed and the variable 𝑎𝑐𝑡𝑟0(𝑖) is set to one instead of zero.

After onset of a period of continuous EMG activity in which all samples of {𝑧(𝑖)} are above
threshold 𝜁 , 𝑎𝑐𝑡𝑟0 toggles to one within a delay of 𝑟0 samples. At the end of such a continuous EMG
activity period, 𝑎𝑐𝑡𝑟0 goes back to zero with a delay of 𝑚 − 𝑟0 + 1 samples. As an exact onset time
identification is important for the subsequent swallow segmentation, the detected activity will be
shifted 𝑟0 − 1 samples to the left such that the detected onset is exactly at the begin of the activity:

𝑎𝑐𝑡(𝑖) = 𝑎𝑐𝑡𝑟0(𝑖 − 𝑟0 + 1), 𝑖 = 𝑚 + 𝑟0 − 1,… , 𝑁 + 𝑟0 − 1 . (4.7)

An example for detecting EMG activity is presented in Figure 4.6. The window length of the
double-threshold detector is exemplarily set to 𝑚 = 10 and the second threshold is set to 𝑟0 = 2.

The performance of the detector is defined by the false-alarm probability 𝑃𝑓 𝑎 , which defines how
likely Gaussian noise and disturbances are misclassified as EMG activity. The detection probability
𝑃𝑑 describes how likely real EMG activity will be correctly classified as EMG activity. The ratio
between 𝑃𝑓 𝑎 and 𝑃𝑑 for a given signal-to-noise ratio (SNR) can be improved by increasing the
window length 𝑚 or by increasing the degree of freedom of the 𝜒2 distribution by building the
auxiliary sequence with more than one EMG sample.

In literature, two different approaches to create the auxiliary sequence {𝑧(𝑖)} were proposed.
Bonato et al. [152] tried to improve the relation between 𝑃𝑓 𝑎 and 𝑃𝑑 by forming the auxiliary
sequence from the sum of two squared successive, whitened EMG samples by which the degree
of freedom of the 𝜒2 distribution is increased to two. This detector was compared with other EMG
onset detectors by Staude et al. [153] with good results (99.9% detected onsets and a mean detection
delay of 4ms).

Bonato et al. [152] had calculated the threshold 𝜁 depending on the estimated noise variance
from a manually selected signal window and a given false-alarm probability. They found out, that
the sliding window with length 𝑚 should be as large as possible in order to increase the detection
probability. However, a larger value decreases the time resolution of the detector. Bonato et al. [152]
limited thewindow length to𝑚 = 5 for having a time resolution of 10ms. They had shown that 𝑟0 = 1
for 𝑚 = 5 gives the best relation between detection probability and false-alarm probability.

An improved version of the double-threshold detector from Bonato et al. was presented by
Severini et al. [154]. The noise variance was estimated by sample variance calculation from the
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Figure 4.6: Demonstration of the double-threshold detector on 40 measurement samples from which
the auxiliary sequence {𝑧(𝑖)} is plotted in the upper subplot. The sliding window of length 𝑚 = 10 is
shown at sample position 𝑖 = 12 in which two samples exceed the threshold 𝜁 . In the middle subplot, the
number of samples which exceed 𝜁 are plotted. At which samples the double-threshold detector detects
EMG activity is shown in the third subplot. The output of the detector is shifted by 𝑟0 − 1 samples to
the left, as this is the latest possible position of activity. In this example, samples at position eleven and
twelve are above 𝜁 . When the window slides to position 𝑖 = 12, the second threshold 𝑟0 = 2 is reached
and an onset is detected at position eleven.

samples between two EMG bursts. An EMG burst is an interval in which the double-threshold
detector detects EMG activity for all samples within. This approach has the disadvantage that the
output of the detector is used for triggering a new noise variance estimation. If the noise variance
is initialized wrongly, convergence to the real noise variance may never happen or is at least slow.

The onset detector by Xu et al. [155] build the auxiliary sequence from the squared sum of
independent EMG trials. These trials were taken from several EMG recordings of different muscles
from the leg during running on a treadmill. The recordings were synchronized using a food switch.
By taking the sum of several squared and aligned EMG signals, the detector accuracy could be
improved and a whitening filter could be omitted, but is only applicable on cyclic activities such as
walking, running, or cycling. The auxiliary sequence with one degree of freedom corresponds to
the auxiliary sequence {𝑧(𝑖)} used within this work.

In both studies (Bonato et al. [152] and Xu et al. [155]), the sampling frequency of the EMG
signal was limited to 1 kHz by the experimental setup. A time resolution of the detector of 10ms
was demanded. This resulted in a specific window length𝑚 = 5. In Figure 4.7, the curves which are
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Figure 4.7: Receiver operating characteristic (ROC) curve of the double-threshold detector presented by
Bonato et al. [152] (𝑚 = 5) in comparison to the ROC curve of the approach which is used within this
thesis (𝑚 = 10). The SNR was set to 3 dB.

spanned by 𝑃𝑓 𝑎 and 𝑃𝑑 are plotted for the approach by Bonato et al. [152] (𝑚 = 5) and the approach
which is used in this thesis (𝑚 = 10, one degree of freedom). The performance of the detector by
Bonato et al. [152] is slightly worser for 𝑃𝑓 𝑎 < 0.1 than the onset detector presented in this work
with 𝑚 = 10 and 𝑟0 = 2. Thus, summing up two neighbored samples in order to increase the degree
of freedom of the 𝜒2 distribution does not increase the performance for low 𝑃𝑓 𝑎 values which are
desired. Higher sampling frequencies than 1 kHz would allow larger sliding windows in term of
samples without decreasing the time resolution of the detector.

The 𝜒2 distribution of the auxiliary sequence {𝑧(𝑖)} presented in this work has one degree of
freedom. In order to still obtain acceptable values for 𝑃𝑓 𝑎 and 𝑃𝑑 , a higher sampling frequency for
EMGwill be applied that allows sliding windows of short time duration and large sample number𝑚.
In the following, an iterative method for tuning 𝑚, 𝑟0 and 𝜁 of the double-threshold detector based
on the statistical properties will be presented. Finally, results of benchmarks will be shown.

4.3.4.2 Statistical Properties of the Double-Threshold Detector

In the following it is assumed that the preprocessed andwhitened EMG signal 𝑥(𝑖) at sample instance
𝑖 can be modeled as a zero-mean Gaussian process. 𝑥(𝑖) consists of an independent Gaussian noise
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𝑛(𝑖) ∼ 𝒩 (0, 𝜎2𝑛)², an independent non-stationary Gaussian disturbance 𝑑(𝑖) ∼ 𝒩 (0, 𝜎2𝑑 (𝑖)) which
models components that are not related to EMG activity with the disturbance variance 𝜎2𝑑 (𝑖) =
[0, 𝜎2𝑑 ] for all 𝑖 and a non-stationary Gaussian process 𝑠(𝑖) ∼ 𝒩 (0, 𝜎2𝑠 (𝑖)) which correlates with the
real EMG signal. 𝑠(𝑖) reflects muscle activity with signal variance 𝜎2𝑠 (𝑖) = [0, �̃�2𝑠 (𝑖)] for all 𝑖, where
0 < 𝜎2𝑠 ≤ �̃�2𝑠 (𝑖) ≤ 𝜎2𝑠 and 𝜎2𝑠 is the smallest EMG activity that shall be detected.

The following assumptions are made: The signal 𝑥(𝑖) contains at least one continuous sequence
of at least 𝑁�̂�2𝑛 samples with 𝑥(𝑖) ∼ 𝒩 (0, 𝜎2𝑛), i.e. this sequence contains only noise without any
disturbances (𝜎2𝑑 (𝑖) = 0) or EMG activity (𝜎2𝑠 (𝑖) = 0). Furthermore, 𝑥(𝑖) contains at least 𝑡ℎ𝜎𝑑 ⋅ 𝑁
samples (not required to be successive) with 𝑥(𝑖) ∼ 𝒩 (0, 𝜎2𝑛 +𝜎2𝑑 ), where 𝑁 is the number of samples
of 𝑥(𝑖) and 0 < 𝑡ℎ𝜎𝑑 < 1. The parameters 𝑁�̂�2𝑛 and 𝑡ℎ𝜎𝑑 are important for estimating 𝜎2𝑛 and 𝜎2𝑑 and
explained later in detail. The SNR from noise and disturbances to EMG activity is

𝑆𝑁𝑅(�̃�2𝑠 ) = 10log10 (
�̃�2𝑠 (𝑖)

𝜎2𝑑 + 𝜎2𝑛
) . (4.8)

The worst-case SNR is 𝑆𝑁𝑅(𝜎2𝑠 ) = 𝑆𝑁𝑅𝑚𝑖𝑛 for which 𝑆𝑁𝑅𝑚𝑖𝑛 > 0 must be hold in order to
detect EMG activity sufficiently. The worst-case SNR 𝑆𝑁𝑅𝑚𝑖𝑛 is set by observation for the specific
application.

As 𝑛(𝑖), 𝑑(𝑖), and 𝑠(𝑖) are independent random variables that are normally distributed, 𝑥(𝑖) is
also normally distributed with 𝑥(𝑖) ∼ 𝒩 (0, 𝜎2𝑛 + 𝜎2𝑑 (𝑖) + 𝜎2𝑠 (𝑖)) = 𝒩 (0, 𝜎2𝑖 ). For a more compact
presentation, 𝑥𝑖 = 𝑥(𝑖) and 𝑧𝑖 = 𝑧(𝑖) will be used in the following. Given the assumed Gaussian
distribution𝒩 (0, 𝜎2𝑖 ) at sampling instance 𝑖, the non-stationary probability density function of 𝑥𝑖 is
defined as:

𝑓 (𝑥𝑖) =
1

√2𝜋𝜎2𝑖
𝑒−

𝑥2𝑖
2𝜎2𝑖 . (4.9)

The probability density function ̃𝑓 for the previously defined auxiliary time series {𝑧(𝑖)} (cf.
Eq. (4.2)) is:

̃𝑓 (𝑧𝑖 , 𝜎2𝑖 ) =
𝑓𝜒2,𝜈=1(𝑧𝑖/𝜎2𝑖 )

𝜎2𝑖
=
( 𝑧𝑖
𝜎2𝑖
)
1/2−1

𝑒−
𝑧𝑖
2𝜎2𝑖

𝜎2𝑖 21/2Γ(1/2)
, (4.10)

where 𝑓𝜒2,𝜈=1 is the probability density function of a 𝜒2 distribution (based on Gaussian distribution
𝒩 (0, 1)) with one degree of freedom (𝜈 = 1) and Γ(𝑡) = ∫∞0 𝑥 𝑡−1𝑒−𝑥𝑑𝑥 is the gamma function. ̃𝑓 can
now be used for calculating the probabilities that 𝑧𝑖 exceeds threshold 𝜁 .

²𝒩 (𝜇, 𝜎 2) this is a short notation for a Gaussian distribution with mean value 𝜇 and variance 𝜎 2.
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The probability 𝑃𝑧𝑖>𝜁 that a specific signal sample exceeds the first threshold 𝜁 is calculated as
follows:

𝑃𝑧𝑖>𝜁 = 𝑃[𝑧𝑖 > 𝜁 , 𝑥𝑖 ∼ 𝒩 (0, 𝜎2𝑖 )] , (4.11)

𝑃𝑧𝑖>𝜁 = ∫
∞

𝜁
̃𝑓 (𝑧, 𝜎2𝑖 ) d𝑧 , (4.12)

𝑃𝑧𝑖>𝜁 = 1 − ∫
𝜁

0
̃𝑓 (𝑧, 𝜎2𝑖 ) d𝑧 . (4.13)

(4.14)

Then, the probability density function (4.10) can be inserted into Equation (4.14) yielding

𝑃𝑧𝑖>𝜁 = 1 − ∫
𝜁

0

( 𝑧
𝜎2𝑖
)
1/2−1

𝑒−
𝑧

2𝜎2𝑖

𝜎2𝑖 21/2Γ(1/2)
d𝑧 . (4.15)

The subsequent variable substitution 𝑦 = 𝑧
𝜎2𝑖

results in

𝑃𝑧𝑖>𝜁 = 1 − ∫
𝜁
𝜎2𝑖

0
𝑦1/2−1𝑒

−𝑦
2

21/2Γ(1/2)d𝑦 . (4.16)

By using the lower incomplete gamma function with 𝛾(𝑎, 𝑥) = ∫𝑥0 𝑡𝑎−1𝑒−𝑡d𝑡 , the Equation (4.16) can
be rewritten as

𝑃𝑧𝑖>𝜁 = 1 − 1
Γ(1/2)𝛾 (1/2,

𝜁
2𝜎2𝑖

) . (4.17)

The terms of (4.17) can be easily calculated using standard numerical software packages. In order
to solve Equation (4.17) for 𝜁 , Equation (4.16) will be further reformulated. Using the 𝜒2 probability

density function 𝑓𝜒2,𝜈=1(𝑦) = 𝑦1/2−1𝑒
−𝑦
2

21/2Γ(1/2) , we can write (4.16) as

𝑃𝑧𝑖>𝜁 = 1 − ∫
𝜁
𝜎2𝑖

0
𝑓𝜒2,𝜈=1(𝑦)d𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹𝜒2,𝜈=1(

𝜁
𝜎2𝑖

)

. (4.18)

The integral in (4.18) represents the cumulative distribution function 𝐹𝜒2,𝜈=1.
In the next step, the second threshold 𝑟0 is included into the probability analysis. 𝑃𝑟 is the

probability that 𝑟 samples out of 𝑚 are above the first threshold 𝜁 and can be calculated by using
repetitions of Bernoulli trials:

𝑃𝑟 = (𝑚𝑟 )𝑃
𝑟
𝑧𝑖>𝜁 (1 − 𝑃𝑧𝑖>𝜁 )

𝑚−𝑟 . (4.19)
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The probability 𝑃𝑟>=𝑟0 that at least 𝑟0 samples out of 𝑚 are above the threshold 𝜁 can be calculated
by the following sum:

𝑃𝑟>=𝑟0 =
𝑚
∑
𝑘=𝑟0

(𝑚𝑘 )𝑃
𝑘
𝑧𝑖>𝜁 (1 − 𝑃𝑧𝑖>𝜁 )

𝑚−𝑘 . (4.20)

The parameters of the double-threshold detector are optimized for a worst-case scenario where
disturbances are always present and where only EMG activity at the lowest intensity (𝜎2𝑠 ) is present.

The false-alarm probability 𝑃𝑓 𝑎 is defined as the probability that the detector wrongly classifies
𝑥(𝑖) with noise and disturbances (𝜎2𝑑 (𝑖) = 𝜎2𝑑 ) and without any EMG activity (𝜎2𝑠 (𝑖) = 0) as EMG
activity:

𝑃𝑓 𝑎 ≔ 𝑃𝑟>=𝑟0 for 𝑥(𝑗) ∼ 𝒩 (0, 𝜎2𝑛 + 𝜎2𝑑 ), 𝑗 = 𝑖 − 𝑚 + 1,… , 𝑖 . (4.21)

The probability 𝑃𝜁 defines the probability that a sample exceeds the threshold 𝜁 for the same
distribution of 𝑥(𝑖):

𝑃𝜁 ≔ 𝑃𝑧𝑗>𝜁 for 𝑥(𝑗) ∼ 𝒩 (0, 𝜎2𝑛 + 𝜎2𝑑 ) . (4.22)

The detection probability 𝑃𝑑 describes the lower bound of the probability that the time series at
instant 𝑖 with 𝜎2𝑠 (𝑖) = 𝜎2𝑠 > 0 , 𝜎2𝑑 (𝑖) = 𝜎2𝑑 and noise is correctly classified as EMG activity:

𝑃𝑑 ≔ 𝑃𝑟>=𝑟0 for 𝑥(𝑗) ∼ 𝒩 (0, 𝜎2𝑛 + 𝜎2𝑑 + 𝜎2𝑠 ), 𝑗 = 𝑖 − 𝑚 + 1,… , 𝑖 . (4.23)

As mentioned earlier, 𝜎2𝑠 is the lowest intensity of all EMG activities that shall be detected. For the
same distribution of 𝑥(𝑖), the probability that a sample exceeds the threshold 𝜁 is named 𝑃𝑑𝑘 :

𝑃𝑑𝑘 ≔ 𝑃𝑧𝑗>𝜁 for 𝑥(𝑗) ∼ 𝒩 (0, 𝜎2𝑛 + 𝜎2𝑑 + 𝜎2𝑠 ) . (4.24)

It is assumed that𝒩 (0, 𝜎2𝑖 ) is constant within the sliding window for the instances 𝑗 = 𝑖 −𝑚+1,… , 𝑖
in order to be able to calculate the relation between 𝑃𝑟>=𝑟0 and 𝑃𝑧𝑗>𝜁 .

For a given probability 𝑃𝜁 , the threshold 𝜁 can be calculated depending on the noise variance 𝜎2𝑛
and the disturbance variance 𝜎2𝑑 by rewriting Equation (4.18):

𝜁 = (𝜎2𝑑 + 𝜎2𝑛)𝐹−1𝜒2,𝜈=1(1 − 𝑃𝜁 ) , (4.25)

where 𝐹−1𝜒2,𝜈=1 is the inverse 𝜒2 cumulative distribution function with one degree of freedom.
According to Equation (4.17), the integral for calculating 𝑃𝑑𝑘 can be written as

𝑃𝑑𝑘 = 1 − 1
Γ(1/2)𝛾 (1/2,

(𝜎2𝑑 + 𝜎2𝑛)𝐹−1𝜒2,𝜈=1(1 − 𝑃𝜁 )
2(𝜎2𝑠 + 𝜎2𝑑 + 𝜎2𝑛)

) , (4.26)

= 1 − 1
Γ(1/2)𝛾 (1/2,

𝐹−1𝜒2,𝜈=1(1 − 𝑃𝜁 )
2(1 + 10𝑆𝑁𝑅(𝜎2𝑠 )/10)

) , (4.27)

where 𝑆𝑁𝑅(𝜎2𝑠 ) ≥ 𝑆𝑁𝑅𝑚𝑖𝑛 is defined as the ratio of the minimal EMG signal variance to the noise
and disturbance variances (cf. Eq. (4.8)).
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4.3.4.3 Method for Tuning the Double-Threshold Detector

The following procedure is applied to optimally tune the double-threshold detector:

1. For a predefined 𝑆𝑁𝑅𝑚𝑖𝑛 value, a given false-alarm probability 𝑃𝑓 𝑎 and a desired offset-
detection latency 𝑡𝑟𝑚𝑎𝑥 , values for𝑚 and 𝑟0 are calculated such that the detection probability
𝑃𝑑 at 𝑃𝑓 𝑎 is maximally.

2. Measurement data is divided into windows of length 𝑁�̂�2𝑛 from which their specific variances
are calculated. The smallest variance is taken as estimation of the noise variance 𝜎𝑛 and named
�̂�𝑛.

3. A value ̂𝜁 for the first threshold of the detector that yields a desired 𝑃𝑓 𝑎 also in the presence of
disturbances is determined in the next step. Since the disturbance variance 𝜎2𝑑 is not known
a-prioro, an iterative data-based procedure is performed. Starting from a calculated initial
̂𝜁𝜎2
𝑑=0 (assuming no disturbance and taking into account the estimated noise variance �̂�𝑛), the

threshold ̂𝜁 will be stepwise increased until the desired 𝑃𝑓 𝑎 is achieved. The 𝑃𝑓 𝑎 is determined
as follows: First, windows of step 2 that have a variance lower than the 𝑡ℎ𝜎2

𝑑
percentile of all

the variance values are selected. Then, 𝑁 ̂𝜁 /𝑚 windows of length 𝑚 are randomly taken from
the selected windows and the data are shuffled. The double-threshold detector is applied. The
windows which have more than 𝑟0 samples over ̂𝜁 are counted and the false-alarm probability
𝑃𝑓 𝑎 is estimated for the given ̂𝜁 .

4. In a last step, the SNR values are determined and it is checked if the assumption of an minimal
SNR value 𝑆𝑁𝑅𝑚𝑖𝑛 was justified. The SNR is calculated based on the estimated noise and the
estimated disturbance variance which is calculated from ̂𝜁 . In case of a negative result, the
complete dataset will be rejected.

4.3.4.4 Optimization of the Parameters 𝑟0 and 𝑚
For finding optimal values for parameter 𝑟0 and for 𝑚, a new approach is presented. An iterative
procedure is used to find values for 𝑚 and 𝑟0 such that 𝑃𝑑 is maximized at a desired 𝑃𝑓 𝑎 for a given
worst case 𝑆𝑁𝑅𝑚𝑖𝑛 and a desired maximal allowed offset-detection latency 𝑡𝑟𝑚𝑎𝑥 of the detector.
A feasible offset-detection latency of the double-threshold detector for detecting EMG activity is
10ms as proposed by Bonato et al. [152]. The detector output 𝑎𝑐𝑡(𝑖) is shifted such that the onset of
a continuous EMG activity is correctly estimated without latency. Thus, the onset-offset transition
is detected in the worst case 𝑚 − 2𝑟0 + 1 time instances too late. The worst-case offset-detection
latency 𝑡𝑟 of the detector is defined as the maximum time difference between the true onset-offset
transition time and the detected onset-offset transition time for a period of continuous activity. The
window length 𝑚 and the threshold 𝑟0 must fulfill

𝑚 − 2𝑟0 + 1 ≤ 𝑡𝑟
𝑇 𝐸𝑀𝐺𝑠

≤ 𝑡𝑟𝑚𝑎𝑥
𝑇 𝐸𝑀𝐺𝑠

, 𝑡𝑟 mod 𝑇 𝐸𝑀𝐺𝑠 = 0 , (4.28)

where the largest possible window length𝑚 is preferred as this maximizes the detection probability
𝑃𝑑 . Optimization of 𝑟0 and 𝑚 includes the following steps:
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1. Use of an initial value of 𝑚 = 𝑡𝑟𝑚𝑎𝑥
𝑇 𝐸𝑀𝐺𝑠

+ 1 and 𝑟0 = 1 which fulfills condition from Eq. (4.28).

2. Calculate 𝑃𝑑 at the given 𝑃𝑓 𝑎 for 𝑟0 = 1, … ,𝑚 using Equations (4.27) and (4.20). Select 𝑟0 that
gives the largest detection probability 𝑃𝑑 .

3. Use new 𝑚 = 𝑡𝑟𝑚𝑎𝑥
𝑇 𝐸𝑀𝐺𝑠

+ 2𝑟0 − 1 (cf. Eq. (4.28)), and go to step 2 until 𝑟0 convergences.

Optimally results for 𝑚 and 𝑟0 are obtained in a few iteration steps and can be stored for later use.
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Figure 4.8: ROC of the double-threshold detector for different values of 𝑟0 and a window length of 𝑚 =
60 and an SNR of 3 dB. Optimization of 𝑟0 is performed by selecting the value which gives the highes
detection probability for a given false-alarm probability 𝑃𝑓 𝑎 = 0.01. The highest detection probability 𝑃𝑑
is achieved for 𝑟0 = 9.

Figure 4.8 shows exemplarily the selection of 𝑟0 for a fixed window length𝑚 = 60 and 𝑆𝑁𝑅𝑚𝑖𝑛 =
3 dB. A value of 𝑟0 = 9 maximizes 𝑃𝑑 at 𝑃𝑓 𝑎 = 0.01 and is therefore selected as second threshold 𝑟0.

4.3.4.5 Determination of an Optimal Threshold ̂𝜁
In order to calculate an optimal threshold ̂𝜁 , the true noise variance 𝜎2𝑛 is estimated by �̂�2𝑛 from the
measurement data. The noise variance is estimated by finding sufficient small signal parts of length
𝑁�̂�2𝑛 where the disturbance variances is zero (𝜎2𝑑 = 0). In order to automatically estimate the noise
variance �̂�2𝑛 , the complete time series {𝑥(𝑖)} with length 𝑁 is reshaped into a matrix

X(𝑖, 𝑗) = 𝑥 ((𝑖 − 1)𝑁�̂�2𝑛 + 𝑗) , 𝑗 = 1, … , 𝑁�̂�2𝑛 , 𝑖 = 1, …𝑁 /𝑁�̂�2𝑛 , 𝑁 mod 𝑁�̂�2𝑛 = 0 , (4.29)
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where the column size 𝑁�̂�2𝑛 should be large enough in order to allow a robust variance estimation
and small enough in order to find signal parts without EMG activity and disturbances. The variance
of each row 𝑖 is calculated by:

VAR𝑥 (𝑖) =
1

𝑁�̂�2𝑛 − 1

𝑁�̂�2𝑛
∑
𝑘=1

(𝑋(𝑖, 𝑘) − 1
𝑁�̂�2𝑛

𝑁�̂�2𝑛
∑
𝑙=1

𝑋(𝑖, 𝑙))
2

, 𝑖 = 1, …𝑁 /𝑁�̂�2𝑛 . (4.30)

It is assumed that at least the variance of one row 𝑖 is almost equal to the true noise variance. The
variance �̂�2𝑛 can now be estimated by taking the smallest variance value from all rows:

�̂�2𝑛 = minVAR𝑥 (𝑖), 𝑖 = 1, …𝑁 /𝑁�̂�2𝑛 . (4.31)

The disturbance variance 𝜎2𝑑 is not known a-priori. In order to estimate the threshold 𝜁 an
iterative data-based procedure is performed by which a value ̂𝜁 for the first threshold of the detector
is determined such that the desired false-alarm probability 𝑃𝑓 𝑎 can be observed in the presence of
disturbances. Finally, a disturbance variance �̂�2𝑑 which is the estimation of the true variance 𝜎2𝑑 can
be calculated from ̂𝜁 .

Firstly, the estimated noise variance �̂�2𝑛 is used for calculating an initial value for the threshold

̂𝜁𝜎2
𝑑=0 = �̂�2𝑛𝐹−1𝜒2,𝜈=1 (1 − 𝑃𝜁 ) . (4.32)

Then, the 𝑃𝑓 𝑎 is determined by randomly taking parts of the measurement data and counting
windows of length 𝑚 which have more than 𝑟0 samples over ̂𝜁 . Beginning from the initial value
̂𝜁𝜎2
𝑑=0,

̂𝜁 is increased until the measured 𝑃𝑓 𝑎 is close to the given one.
In order to be able to select parts of the measurement data which contains only noise and

disturbances, a ratio between VAR𝑥 (𝑖) and the estimated noise variance �̂�2𝑛 is defined as

R ̂𝜁 (𝑖) = 10log10 (
VAR𝑥 (𝑖)

�̂�2𝑛
) . (4.33)

A percentage share 𝑡ℎ𝜎𝑑 of signal parts with disturbances and without real EMG activity is defined
a-priori based on the observed activity. Parts of the measurement data with a variance VAR𝑥 (𝑖)
smaller than a threshold R𝑚𝑎𝑥

̂𝜁 which is derived from 𝑡ℎ𝜎𝑑 are then assumed to contain not any real
EMG activity. The threshold R𝑚𝑎𝑥

̂𝜁 is set to the corrected 𝑡ℎ𝜎𝑑 percentile of all R ̂𝜁 :

R𝑚𝑎𝑥̂𝜁 = percentile (R ̂𝜁 , 𝑡ℎ𝜎𝑑) + ppt (0.999, 0, 𝑒
−0.5

2√2 ) − ppt (𝑡ℎ𝜎𝑑 , 0,
𝑒−0.5
2√2 ) , (4.34)

where percentile(R ̂𝜁 , 𝑡ℎ𝜎𝑑 ) gives percentile of vector R ̂𝜁 at 𝑡ℎ𝜎𝑑 and ppt(𝑝, 𝜇, 𝜎) is the percent point
function for a given probability 𝑝 of a Gaussian distribution with mean 𝜇 and standard deviation 𝜎 ³
[156].

³The standard deviation which is used in both percent point functions increases percentile(R ̂𝜁 , 𝑡ℎ𝜎𝑑 ) in a way that
almost all samples from the Gaussian process which describes noise are below R𝑚𝑎𝑥

̂𝜁 and are used for estimating the
disturbance variance.

77



4. Automatic Segmentation and Classification of Swallowing

Randomly taken rows of X that have a ratio R ̂𝜁 (𝑖) smaller than R𝑚𝑎𝑥
̂𝜁 are merged into a new

matrix X ̂𝜁 until the number of elements is 𝑁 ̂𝜁 . By taking not all possible rows, computation time of
estimating ̂𝜁 is significantly reduced.

0 20 40 60 80 100
Percentage of Samples with 𝜎𝑑(𝑖) > 0, where 𝜎 2

𝑑 = 1𝜎 2𝑛 (%)

0.0

0.2

0.4

0.6

0.8

1.0

𝜎2 𝑑/𝜎
2 𝑑

Variance calculation
̂𝜁 estimation 𝑚 = 10, 𝑟0 = 2
̂𝜁 estimation 𝑚 = 30, 𝑟0 = 5
̂𝜁 estimation 𝑚 = 60, 𝑟0 = 8
̂𝜁 estimation 𝑚 = 80, 𝑟0 = 11

Figure 4.9: On a time series containing 10000 Gaussian samples from which one part has a variance 𝜎 2𝑛
and the other part has a variance of 𝜎 2

𝑑 + 𝜎 2𝑛 , the disturbance variance 𝜎 2
𝑑 should be estimated when 𝜎 2𝑛 is

already known. It can be seen that estimation of 𝜎 2
𝑑 depends on the window length 𝑚 and the number

of disturbance samples in the signal. The proposed ̂𝜁 estimation leads to better results in comparison to
direct variance calculation.

Beginning from the initial threshold ̂𝜁𝜎2
𝑑=0,

̂𝜁 is step-wised increased until the estimated false-
alarm probability ̂𝑃𝑓 𝑎 is at least 𝑃𝑓 𝑎 or a predefined threshold of ̂𝜁𝜎2

𝑑=0(1 + 𝜅𝑚𝑎𝑥 ) is reached:

̂𝜁 = ̂𝜁𝜎2
𝑑=0(1 + 𝜅), 𝜅 = 0, 𝜅𝛿 , 2𝜅𝛿 , … , 𝜅𝑚𝑎𝑥 . (4.35)

𝜅𝑚𝑎𝑥 and 𝜅𝛿 have to be chosen accordingly such that the desired 𝑃𝑓 𝑎 can be achieved by applying ̂𝜁 to
the double-threshold detector. In practice, a value for 𝜅𝑚𝑎𝑥 of around 25 has proven to be sufficient.
𝜅𝛿 is set to a value which results in around 500 iterations which gives an accurate estimation of ̂𝜁
in recorded EMG data during swallowing. For each iteration step, the double-threshold detector is
applied on each row of X ̂𝜁 . The number of rows where more than 𝑟0 samples are above ̂𝜁 are saved
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into 𝑜𝑛𝑠𝑒𝑡𝑠 ̂𝜁 . The false-alarm probability ̂𝑃𝑓 𝑎 is calculated by:

̂𝑃𝑓 𝑎 =
𝑜𝑛𝑠𝑒𝑡𝑠 ̂𝜁 ⋅ 𝑚

𝑁 ̂𝜁
, 𝑚

𝑁 ̂𝜁
< 𝑃𝑓 𝑎 . (4.36)

If ̂𝑃𝑓 𝑎 is less or equal to the desired false-alarm probability 𝑃𝑓 𝑎 , the current value of ̂𝜁 is then taken
as optimal value for the first threshold 𝜁 . Otherwise, ̂𝜁 is increased by 𝜅𝛿 and the described steps
are repeated.

Finally, the disturbance variance �̂�2𝑑 can be calculated from the optimal threshold ̂𝜁 :

�̂�2𝑑 =
̂𝜁

𝐹−1𝜒2,𝜈=1 (1 − 𝑃𝜁 )
− �̂�2𝑛 . (4.37)

Figure 4.9 shows the performance of the presented ̂𝜁 -estimation in comparison to variance
calculation of data samples. A Gaussian disturbance 𝜎2𝑑 (𝑖) with 𝜎2𝑑 = 𝜎2𝑛 is added to a noise vector,
which contains 20000 samples with Gaussian noise (noise variance is 𝜎2𝑛 ). The percentage of the
20000 data samples on which 𝜎2𝑑 (𝑖) > 0 is varied between 0% to 100%. The disturbance variance �̂�2𝑑
is calculated from the estimated threshold ̂𝜁 according to Equation (4.37). The threshold ̂𝜁 is chosen
such that the resulting ̂𝑃𝑓 𝑎 is at least 𝑃𝑓 𝑎 which is set to 1%. The estimated �̂�2𝑑 values are plotted
against the percentage on which 𝜎2𝑑 (𝑖) > 0.

The procedure is repeated for different window length from 𝑚 = 10 to 𝑚 = 80 for which the
corresponding 𝑟0 is set to the particular optimal value. It can be seen that �̂�2𝑑 increases nonlinear with
a greater slope in the beginning. Thus, �̂�2𝑑 can be robustly estimated although only parts of the signal
are influenced by disturbances. It can be seen that the presented ̂𝜁 -estimation is slightly dependent
on the window length 𝑚 and provides a better estimation for greater window length 𝑚. For e.g.
when only 20% of disturbances are present, a �̂�2𝑑 value which correspond to 0.8𝜎2𝑑 is estimated for
window lengths𝑚 ≥ 60. The presented ̂𝜁 estimation can estimate disturbances more accurately than
a direct variance calculation, which estimates only a disturbance variance corresponding to 0.2𝜎2𝑑
when only 20% of disturbances are present.

4.3.4.6 Performance Benchmark Tests

The double-threshold detector benchmark from Severini et al. [154] is applied which consists of
several trials with different noise, EMG, and disturbance signal realizations. The presented double-
threshold detector is applied on each trial and its ability to estimate noise and disturbances is
investigated.

Each trial of the benchmark consists of 60000 Gaussian noise samples modeling noise, dis-
turbances and EMG activity. The length of each trial corresponds to 20 s as sampling time
𝑇 𝐸𝑀𝐺𝑠 = 1/4000 s is used. It is shown in Figure 4.10 how the variances of noise, disturbances and
EMG vary over time. The disturbance sequence with 𝜎2𝑑 (𝑡) > 0 starts at time point 𝑑𝑠𝑡𝑎𝑟𝑡 which is
randomly chosen for each trial in a range from 0.5 s to 1 s. The time distance between two Gaussian
disturbance periods is set to 𝑑𝑝𝑒𝑟𝑖𝑜𝑑 such that 75 disturbance periods fit into one trial. The length
𝑑𝑙𝑒𝑛𝑔𝑡ℎ of a disturbance is set randomly for each trial to a value in a range from 27ms to 60ms. The
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𝜇𝑡𝑖

𝜎 2
𝑠 = 10𝑆𝑁𝑅𝑚𝑖𝑛/10(𝜎 2𝑛 + 𝜎 2

𝑑)

𝜎 2𝑠 = 10𝑆𝑁𝑅𝑖/10(𝜎 2𝑛 + 𝜎 2
𝑑)

𝛼𝑖𝜎 𝑡𝑖

𝜎 2𝑠 (𝑡) = 𝑘𝑓𝐺(𝑡, 𝜇𝑡𝑖 , 𝜎 𝑡𝑖 )

𝑑𝑠𝑡𝑎𝑟𝑡

𝑑𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑝𝑒𝑟𝑖𝑜𝑑

Time

𝜎 2
𝑑(𝑡) + 𝜎 2𝑛𝜎 2

𝑑

𝜎 2𝑛

𝜎 2𝑠

Figure 4.10: Exemplary variance profile of a trial. Each trail consists of Gaussian noise with variance 𝜎 2𝑛 ,
Gaussian disturbances 𝜎 2

𝑑(𝑡) and EMG bursts 𝜎 2𝑠 (𝑡). Each trial contains 75 Gaussian disturbances. The
resulting variance for each disturbance is 𝜎 2𝑛 +𝜎 2

𝑑 . EMG activity is simulated by bursts of Gaussian shape.
The minimal SNR of each bursts is 𝑆𝑁𝑅𝑚𝑖𝑛, whereas the maximal SNR varies randomly from 6 to 12 dB.
The SNR values are calculated related to noise and disturbances.

total length of all disturbance periods corresponds to 10% to 30% of the complete trial duration. The
disturbance variance 𝜎2𝑑 is set to 1𝜎2𝑛 , 2𝜎2𝑛 , and 3𝜎2𝑛 .

In each of the resulting 3000 trials, ten Gaussian shaped bursts of EMG activity with different
SNR values have to be detected by the double-threshold detector. Each burst 𝑖 has its peak at the
time point 𝜇𝑡𝑖 and a total duration of 2𝛼𝑖𝜎 𝑡𝑖 seconds. The shape is modulated by a Gaussian function

𝑓𝐺 (𝑡𝑖 , 𝜇𝑡𝑖 , 𝜎 𝑡𝑖 ) =
𝑒−(

𝑡𝑖−𝜇𝑡𝑖
2𝜎𝑡𝑖

)
2

𝜎 𝑡𝑖 √2𝜋
, 𝑡𝑖 = 𝜇𝑡𝑖 − 𝛼𝑖𝜎 𝑡𝑖 , … , 𝜇𝑡𝑖 + 𝛼𝑖𝜎 𝑡𝑖 , (4.38)

where the time support 𝑡𝑖 has a sampling resolution of 𝑇 𝐸𝑀𝐺𝑠 . The center 𝜇𝑡𝑖 is chosen such that
ten bursts are produced within the trial length of 20 s. Each burst 𝑖 is multiplied by a scaling factor
𝑘 which is chosen such that 𝜎2𝑠 = 𝑘𝑓𝐺(𝜇𝑡𝑖 − 𝛼𝑖𝜎 𝑡𝑖 , 𝜇𝑡𝑖 , 𝜎 𝑡𝑖 ) corresponds to a SNR of 𝑆𝑁𝑅𝑚𝑖𝑛. The
SNR is calculated in relation to the sum of the noise variance 𝜎2𝑛 and the disturbance variance 𝜎2𝑑 .
The amplitude of the peak at 𝜇𝑡𝑖 is also influenced by 𝛼𝑖 which is set to a value such that the peak
correspond to a SNR value 𝑆𝑁𝑅𝑖 . The maximal SNR 𝑆𝑁𝑅𝑖 is randomly set to 6 dB, 9 dB, or 12 dB.
Additionally, 𝜎 𝑡𝑖 is set randomly to 50ms, 100ms, or 150ms. The resulting width of a burst lays in a
range from 0.119 s to 0.611 s for all possible combination of 𝑆𝑁𝑅𝑖 and 𝜎 𝑡𝑖 .

It is assumed that noise, disturbances, and EMG bursts have their sources inside the tissue.
According to Stulen et al. [151], the spectrum of a EMG signal will be shaped by recording it through
surface electrodes. Shaping of the signal spectrum is simulated by filtering the complete sequence by
the Stulen-De Luca filter (see Eq. (4.3)). Then, the double-threshold detector is applied to the signal
after applying the whitening filter, estimating noise variance, and finally finding the best value for
the threshold ̂𝜁 (cf. Section 4.3.4.5). This procedure is repeated for each trial.

The results of the benchmark tests are shown in Table 4.1. For 𝑡𝑟𝑚𝑎𝑥 = 0.01 s and 𝑃𝑓 𝑎 = 0.01,
the window length 𝑚 = 66 and threshold 𝑟0 = 9 are obtained by optimization (cf. Section 4.3.4.4)
and used for all trials. The mean and the standard deviation of the difference between the detected
EMG onset and the true EMG onset for different 𝑆𝑁𝑅𝑖 levels are displayed. The same calculation
is performed for the offset times. For each of the three disturbance levels, the ratio of estimated to
true noise and the ratio of the sum of true noise and disturbance variance to the estimated ones are
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Figure 4.11: Signals of the double-threshold detector benchmark. Exemplary, the beginning of three trials
is shown in different sub-plots for three different disturbance variance levels. In each sub-plot, only the
first three bursts are shown. Normally, the 𝑆𝑁𝑅𝑖 value and the parameter 𝜎 𝑡𝑖 are randomly selected. For
better illustration, in this plot, the 𝑆𝑁𝑅𝑖 value of the first burst is set to 6 dB, then to 9 dB and for the
third burst to 12 dB. In the first sub-plot, the parameter 𝜎 𝑡𝑖 is set to 50ms, in the second sub-plot to 100ms
and in the third sub-plot to 150ms. The signals are shown after applying the Stulen-DeLuca filter as well
as the whitening filter.

displayed. Finally, the obtained probabilities 𝑃𝑑 and 𝑃𝑓 𝑎 are presented in the table for each of the
three disturbance levels. For the false-alarm probability 𝑃𝑓 𝑎 , a second estimated value 𝑃 ∗𝑓 𝑎 is shown,
which is the result of the a double-onset detector with exactly the same parameters applied on a
trial with the same noise and disturbance sequence but without any EMG bursts.

It could be shown that a double-threshold detector with optimally chosen threshold ̂𝜁 is able
in detecting all bursts with high accuracy. Furthermore, disturbances are introduces into the
benchmark which leads to adaption of the threshold ̂𝜁 such that the false-alarm probability 𝑃𝑓 𝑎
remains almost equal to the desired 𝑃𝑓 𝑎 of 1%. The false-alarm probability 𝑃 ∗𝑓 𝑎 which is recorded
on only noise and disturbances with the same double-onset detector and the same threshold ̂𝜁
indicates that the threshold ̂𝜁 is optimally chosen. The resulting 𝑃𝑓 𝑎 of all trials is higher than
1% as the Stulen-Deluca filter and the whitening filter leads to time delays and broadening of the
bursts. Furthermore, previous samples are influencing the output of the double-threshold detector
and leading to an increased 𝑃𝑓 𝑎 after each burst.
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Table 4.1: Results of the double-threshold detector benchmark. The mean and the standard deviation
of the difference between the detected onset / offset and the true onset / offset at different 𝑆𝑁𝑅𝑖 levels
and disturbances are shown. Each trial contains bursts of all SNR levels. The detection probability 𝑃𝑑
and the false-alarm probability 𝑃𝑓 𝑎 are calculated across all 𝑆𝑁𝑅𝑖 levels. For comparison, the equivalent
false-alarm probability 𝑃 ∗

𝑓 𝑎 is calculated on a trial with pure noise and disturbance without any EMG
bursts. The quotient �̂� 2𝑛

𝜎 2𝑛
between true and estimated noise variance and the quotient �̂� 2𝑛+�̂� 2

𝑑
𝜎 2𝑛+𝜎 2

𝑑
between the

true and estimated sum of noise and disturbances are displayed. �̂� 2
𝑑

�̂� 2𝑛
is the quotient between estimated

disturbance variance and noise variance. The sampling rate is set to 𝑇 𝐸𝑀𝐺𝑠 = 1/4000 s. The results in
this table where obtained with the presented detector using 𝑡𝑟𝑚𝑎𝑥 = 10ms, 𝑆𝑁𝑅𝑚𝑖𝑛 = 3 dB, 𝑃𝑓 𝑎 = 0.01,
𝑁 ̂𝜁𝑇 𝐸𝑀𝐺𝑠 = 8 s, 𝑁�̂� 2𝑛𝑇 𝐸𝑀𝐺𝑠 = 0.2 s, and 𝑡ℎ𝜎 2

𝑑 = 0.3.

𝜎2
𝑑

𝜎2𝑛
SNR Onset error Offset error �̂�2𝑛

𝜎2𝑛
�̂�2
𝑑

�̂�2𝑛
�̂�2𝑛+�̂�2

𝑑
𝜎2𝑛+𝜎2

𝑑
𝑃𝑓 𝑎 /
𝑃 ∗𝑓 𝑎

𝑃𝑑

1.0 12 2.85 ± 1.68 ms 9.14 ± 3.21 ms
0.98 1.12 1.04 1.65 %

1.03 % 99.03 %1.0 9 3.29 ± 2.49 ms 8.15 ± 2.05 ms
1.0 6 3.05 ± 1.91 ms 8.34 ± 1.95 ms
2.0 12 3.16 ± 2.69 ms 7.99 ± 2.41 ms

1.05 1.81 0.98 1.78 %
1.29 % 98.95 %2.0 9 3.49 ± 1.91 ms 9.12 ± 3.45 ms

2.0 6 3.39 ± 2.60 ms 8.92 ± 3.25 ms
3.0 12 3.20 ± 1.80 ms 8.39 ± 1.93 ms

0.98 3.14 1.01 1.71 %
1.09 % 98.98 %3.0 9 3.38 ± 2.14 ms 8.24 ± 1.92 ms

3.0 6 2.65 ± 1.35 ms 8.27 ± 2.67 ms

This effect can also be seen on the mean onset and offset times. A mean onset error of around 3
to 4 ms is observed. As the previous samples influence the detection result, the mean offset error is
around 10 ms. Both mean error differences are below the requested offset-detection latency 𝑡𝑟𝑚𝑎𝑥 .

Larger disturbances 𝜎2𝑑 lead to higher thresholds ( ̂𝜁 ) such that the EMG bursts are correctly
identified and the onset and offset times are independent from the disturbance level. The detection
probability 𝑃𝑑 remains almost constant across the different disturbance levels.

The estimated noise variance �̂�2𝑛 is close to the true variance. The disturbance variance �̂�2𝑑 could
also be accurately estimated such that the quotient �̂�2𝑛+�̂�2

𝑑
𝜎2𝑛+𝜎2

𝑑
is close to one. The quotient of the sum of

estimated noise and disturbance variance to the true sum of noise and disturbance variance is also
almost one.

4.3.5 Piece-wise Linear Approximation of BI

Due to the observation that the swallowing process causes EMG activity and a valley shaped
deflection in the BI signal, a valley search algorithm seems a meaningful approach for finding all
swallowing events in the measurement data. In order to perform a heuristic valley search, the
complexity of the BI time series has to be reduced. Otherwise, each small deflection in the BI signal
could be marked as valley.

Several time series representations have been introduced in the last years, including discrete
Fourier transform (DFT) [157], discrete wavelet transform (DWT) [158], piece-wise linear approxi-
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mation (PLA) [159], piece-wise aggregate approximation (PAA) [160], adaptive piece-wise constant
approximation (APCA) [161], and singular value decomposition (SVD) [162]. Figure 4.12 shows a
comparison of these approximation methods. The SVD approximation is not shown, as this method
can not be applied to a one-dimensional time series. The complete time series has a length of
28 seconds, from which two seconds around a swallow are displayed. The compression ratio⁴
of all considered approximation methods was set to 350. Only the PLA method can sufficiently
approximate the swallow in such a way that begin, minimum, and end position are preserved in
time and value.
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Figure 4.12: Comparison of different approxmiation methods with the same compression ratio of
350. The root mean square error of the complete sequence (duration is 28 s) is comparable for all
approximation methods (PLA: 271.2, PAA: 321.4, DWT: 413.2, APCA: 295.4, DFT: 215.36).

Motivated by this pre-analysis, the PLA method which is described by Keogh et al. [159] is
applied to the pre-filtered (de-noised and down-sampled) BI measurement signal. Using this method,
the time series is approximated by several lines of different lengthswhich are always an integer of the
sampling time 𝑇𝐵𝐼𝑠 . The parameters of a specific line can be either determined by linear interpolation
or linear regression. If linear interpolation is used, start and end points of all segments are sub-sets of
the time series and each line is therefore defined by two sampling instances. Increasing the length
of a segment is computational inexpensive as the end point is set to the next sampling instance

⁴The compression ratio is the ratio of the original time series length to the number of data points after applying the
compression.

83



4. Automatic Segmentation and Classification of Swallowing

of the time series. If a line would be determined by linear regression instead, its start and end
points are optimized by minimizing the sum of the squared error between the line and the time
series. Generally, linear regression leads to a lower approximation error in comparison to linear
interpolation but has higher computational cost. Therefore, linear interpolation is used within this
thesis due to its lower computational demands.

For a time series with 𝑁 𝐵𝐼 elements: {𝐵𝐼 } = {𝐵𝐼 (1), 𝐵𝐼 (2), … , 𝐵𝐼 (𝑁 𝐵𝐼 )}, the line segments 𝑃𝑙 , 𝑙 ∈
{1, … , 𝑁 𝑃 } line up an approximated time series {𝐵𝐼 𝑃 }. A line segment 𝑃𝑙 is defined by its first sampling
instance 𝑎𝑙 and its last sampling instance 𝑏𝑙 . Each segment can be written as:

𝑃𝑙 = [𝑏𝑙 − 𝑎𝑙 , 𝐵𝐼 (𝑎𝑙), 𝐵𝐼 (𝑏𝑙)], 𝑙 ∈ {1, … , 𝑁 𝑃 }, 𝑎𝑙 ∈ ℕ>0, 𝑏𝑙 ∈ ℕ>0 ,

𝑎𝑙 = {∑
𝑙−1
𝑘=1 𝑃𝑘(1) + 1 if 𝑙 > 1

1 if 𝑙 = 1.
, 𝑏𝑙 =

𝑙
∑
𝑘=1

𝑃𝑘(1) ,
(4.39)

where 𝑃𝑙(1) = 𝑏𝑙 −𝑎𝑙 defines the length of the segment in samples, 𝑃𝑙(2) is the first value and 𝑃𝑙(3) is
the last value of the line segment. The time distance between the end and the start of two adjacent
lines is the sampling time (𝑎𝑙+1 = 𝑏𝑙 +1, 𝑙 ∈ {2, … , 𝑁 𝑃 }). A line segment 𝑃𝑙 approximates the subset
{𝐵𝐼 [𝑎𝑙 , 𝑏𝑙]} which contains the time series from 𝐵𝐼 (𝑎𝑙) to 𝐵𝐼 (𝑏𝑙). {𝐵𝐼 𝑃𝑙 [𝑎𝑙 , 𝑏𝑙]} is reconstructed in
between 𝑎𝑙 and 𝑏𝑙 as follows:

𝐵𝐼 𝑃𝑙 (𝑘) = 𝐵𝐼 (𝑎𝑙) +
𝑘 − 𝑎𝑙
𝑏𝑙 − 𝑎𝑙

(𝐵𝐼 (𝑏𝑙) − 𝐵𝐼 (𝑎𝑙)) , 𝑘 = 𝑎𝑙 , … , 𝑏𝑙 . (4.40)

To determine the segments a bottom-up algorithm is used as suggested by Keogh et al. [159]. It
will be explained in detail after this paragraph. Beside the bottom-up algorithm, other algorithms
as the top-down algorithm or the sliding window algorithm can be applied in order to calculate
the approximating line segments. The top-down algorithm starts with one line segment for
approximating the complete time series. Then, the algorithm recursively splits the segments until all
segments have an approximation error below a defined threshold 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 . This algorithm has a
quadratic complexity which is higher than the logarithmic complexity of the bottom-up and sliding
window approach [159]. The sliding window approach does not optimize the segments globally
and can therefore be better used for online PLA. In the sliding window approach, each segment is
consecutively obtained such that the length of the current segment is repeatedly extended by one
sampling instance until the sum of the squared error between this line and the time series exceeds
a pre-defined threshold 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 . Then, the current segment is stored and a new segment is
initialized. Keogh et al. [159] have shown that the bottom-up algorithm has the best performance in
comparison to the sliding window and the top-down algorithm.

The implementation of the bottom-up algorithm is shown in Figure 4.13. The algorithm starts
with the maximal number of segments (each segment contains only two sampling instances). For
all pairs of adjacent lines the merge costs are calculated and saved into a vector. The merge costs are
defined as the squared error sum between the measurement data and the merged line segment from
the beginning of the first line to the end of the second line. Thus, the merge cost vector contains the
information which line merging leads to the lowest increase in approximation error. The squared
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1: procedure PLA_BOTTOM_UP( {𝐵𝐼 })
2: 𝑗 ← 1
3: for 𝑖 ← 1 ∶ 2 ∶ 𝑁 𝐵𝐼 − 1 do ▷ Time series {𝐵𝐼 } has length 𝑁 𝐵𝐼
4: 𝑃𝑗 ← [2, 𝐵𝐼 (𝑖), 𝐵𝐼 (𝑖 + 1)] ▷ Create initial fine approximation.
5: 𝑗 ← 𝑗 + 1
6: end for
7: ▷ 𝑁 𝑃 is now 𝑗 − 1
8: for 𝑖 ← 1 to 𝑁 𝑃 − 1 do ▷ Find the cost of merging...
9: 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡(𝑖) ← CALCULATE_ERROR(MERGE(𝑃𝑖 , 𝑃𝑖+1)) ▷ For each pair of segments.
10: end for
11: while min(𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡) < 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 AND 𝑁 𝑃 > 1 do
12: 𝑖 ← arg min(𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡) ▷ Find line pair with the lowest merge cost.
13: 𝑃𝑖 ← MERGE(𝑃𝑖 , 𝑃𝑖+1)
14: remove element 𝑃𝑖+1 ▷ 𝑁 𝑃 decreases by one.
15: remove element of 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡 at i
16: if 𝑁 𝑃 >= 𝑖 + 1 then
17: 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡(𝑖) ← CALCULATE_ERROR(MERGE(𝑃𝑖 , 𝑃𝑖+1))
18: end if
19: if 𝑖 > 1 then
20: 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡(𝑖 − 1) ← CALCULATE_ERROR(MERGE(𝑃𝑖−1, 𝑃𝑖))
21: end if
22: end while
23: return 𝑃𝑙 ▷ 𝑙 = 1, … , 𝑁 𝑃
24: end procedure

Figure 4.13: Implementation of the bottom-up algorithm. The bottom-up algorithm returns the piece-
wise linear approximation 𝑃𝑙 for the time series {𝐵𝐼 }. The parameter 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 is the maximal allowed
squared error.

error sum 𝑒𝑖 for a line segment 𝑖 is calculated by the following equation

𝑒𝑖 = CALCULATE_ERROR(𝑃𝑖) =
𝑏𝑖
∑
𝑘=𝑎𝑖

(𝐵𝐼 (𝑘) − 𝐵𝐼 𝑃𝑖 (𝑘))2 , (4.41)

where 𝑎𝑖 is the first sampling instance of segment 𝑃𝑖 and 𝑏𝑖 is the last sampling instance of this
segment. Merging of adjacent segments means that a new segment 𝑃 ̃𝑖 is created by the combination
of the segment 𝑃𝑖 and the adjacent segment 𝑃𝑖+1. As linear interpolation is used, merging does not
cost much computational time:

𝑃 ̃𝑖 = MERGE(𝑃𝑖 , 𝑃𝑖+1) = [𝑃𝑖(1) + 𝑃𝑖+1(1), 𝑃𝑖(2), 𝑃𝑖+1(3)] . (4.42)

After initializing the 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡 vector, the pair of lines with the lowest merging cost are
merged and the number of lines and the elements within 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡 are reduced by one. The
merging costs of the newly merged line with respect to its preceding line and its successive line
have to be recalculated. The merging of line segments with partly recalculation of 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡 is
repeated as long as the lowest cost in 𝑚𝑒𝑟𝑔𝑒_𝑐𝑜𝑠𝑡 does not exceed the maximal allowed squared
error 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 .
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The valley detection involves a searching of local minima within the BI time series. The time
distance between the line end point 𝑃𝑙(3) and the start point 𝑃𝑙+1(2) of the subsequent line is only
one sampling instance. The values between the last sampling point of a line and starting point of the
subsequent line are usually very similar. Therefore, a further approximation is applied where the
time instance of the ending point of a line segments is set to the starting point of the subsequent line.
The new point is named connection point. The time instances of all connection points are stored
separately in a vector which is defined as

𝑃𝐼 (𝑘) =
⎧⎪
⎨⎪
⎩

1 if 𝑘 = 1
1 + 𝑏𝑘−1 = 1 + ∑𝑘−1

𝑙=1 𝑃𝑙(1) if 𝑘 = 2, … , 𝑁 𝑃

𝑏𝑘−1 = ∑𝑘−1
𝑙=1 𝑃𝑙(1) if 𝑘 = 𝑁 𝑃 + 1

, 𝑃𝐼 ∈ ℕ𝑁 𝑃+1 . (4.43)

The values at the newly defined connection points are set to the average of the original end and
start points. The vector which contains all connection point values is then defined as

𝑃𝐶(𝑘) =
⎧⎪
⎨⎪
⎩

𝑃1(2) if 𝑘 = 1
(𝑃𝑘−1(3) + 𝑃𝑘(2))/2 if 𝑘 = 2, … , 𝑁 𝑃

𝑃𝑁 𝑃 (3) if 𝑘 = 𝑁 𝑃 + 1
, 𝑃𝐶 ∈ ℝ𝑁 𝑃+1 . (4.44)

Finally, 𝑃𝑆 ∈ ℝ𝑁 𝑃 contains the slope of each segment:

𝑃𝑆(𝑙) =
𝑃𝐶(𝑙 + 1) − 𝑃𝐶(𝑙)
𝑃𝐼 (𝑙 + 1) − 𝑃𝐼 (𝑙)

, 𝑙 = 1…𝑁 𝑃 . (4.45)

The connection point vector 𝑃𝐶 can then be used to easily find all local minimum values.
Muscle activity is a physiological requirement for swallowing. Thus, the presence of EMG

activity will be an indicator for a potential swallow and only valleys which coincide with EMG
activity should be segmented⁵. To assign EMG activity to the BI line segments, a vector 𝑃𝐸𝑀𝐺 with
𝑁 𝑃 entries is created.

Around the starting point of each line segment 𝑙, the number of samples with detected EMG
activity (output 𝑎𝑐𝑡 of the double-threshold detector) will be counted in a time interval [𝑃𝐼 (𝑙)𝑇𝐵𝐼𝑠 −
VS𝑒𝑚𝑔 , 𝑃𝐼 (𝑙)𝑇𝐵𝐼𝑠 + VS𝑒𝑚𝑔]. The parameter VS𝑒𝑚𝑔 ⁶ describes the width of the interval. If VS𝑜𝑛𝑠𝑒𝑡
percentage of samples in this interval indicate EMG activity, the vector entry 𝑃𝐸𝑀𝐺(𝑙) is set to one:

𝑃𝐸𝑀𝐺(𝑙) =
⎧⎪
⎨⎪
⎩

1 if (∑
𝑃𝐼 (𝑙)𝑇𝐵𝐼𝑠 +VS𝑒𝑚𝑔

𝑇𝐸𝑀𝐺𝑠
𝑘= 𝑃𝐼 (𝑙)𝑇𝐵𝐼𝑠 −VS𝑒𝑚𝑔

𝑇𝐸𝑀𝐺𝑠

𝑎𝑐𝑡(𝑘)) >= 2VS𝑒𝑚𝑔VS𝑜𝑛𝑠𝑒𝑡
𝑇 𝐸𝑀𝐺𝑠

0 otherwise

, 𝑙 = 2…𝑁 𝑃 . (4.46)

The parameters VS𝑒𝑚𝑔 and VS𝑜𝑛𝑠𝑒𝑡 are optimally chosen when almost all swallowing related valleys
are found and most of the non swallowing related valley are rejected.

⁵Marking all potential swallows in the measurement data is called segmentation in this context.
⁶VS stands for valley search.

86



4.3 Methods

4.3.6 Segmentation of Swallowing by a Heuristic Valley Search

It is assumed that swallowing leads to a valley shaped deflection in the BI measurement signal while
EMG activity is present. It is furthermore assumed that the PLA preserves the valley in the BI signal
during a swallow, whereas the starting point of the first line segment marks always the beginning
of a swallow induced valley and the ending point of a subsequent line segment marks the ending of
this valley.

A valley in the approximated BI signal consists of a starting point 𝑖 with 0 < 𝑖 < 𝑁 𝑃 − 1 of a line
segment and an ending point 𝑗 with 𝑖 + 1 ≤ 𝑗 ≤ 𝑁 𝑃 +1which is related to a subsequent line segment.
The line segments from 𝑖 to 𝑗 form a valley when the following conditions are fulfilled:

1. the first line has a negative and the last line has a positive slope,

2. the valley contains only one minimum,

3. the time duration of the valley is within a given bound VS𝑏𝑜𝑢𝑛𝑑 = [𝑣𝑠, 𝑣𝑠] which consists of a
lower bound 𝑣𝑠 and an upper bound 𝑣𝑠,

4. the first line of the valley shows sufficient EMG activity at the beginning (indicated by a one
in 𝑃𝐸𝑀𝐺(𝑖)),

5. a connection from the beginning to the end of the valley does not cross any other line segment.

Within the approximated BI signal, all valleys which fulfill these conditions are searched within
the vectors 𝑃𝑆 , 𝑃𝐼 , 𝑃𝐸𝑀𝐺 , and 𝑃𝐶 . All valley combinations are stored into an upper triangle matrix
𝑇 ∈ ℕ𝑁 𝑃×𝑁 𝑃 . If the conditions for a valley are fulfilled between 𝑃𝐼 (𝑖) and 𝑃𝐼 (𝑗), the corresponding
segment connection number 𝑚 of the corresponding minimum is written into 𝑇(𝑖, 𝑗); otherwise,
𝑇(𝑖, 𝑗) is set to 0. Thus, for 𝑇(𝑖, 𝑗) = 𝑚 > 0 with row index 𝑖 ∈ {1…𝑁 𝑃 } and column index 𝑗 ∈
{𝑖 …𝑁 𝑃 }, a valley is defined by the following segment interconnection points: start point 𝑉𝑠𝑡𝑎𝑟𝑡 = 𝑖,
minimum point 𝑉𝑚𝑖𝑛 = 𝑚 and end point 𝑉𝑒𝑛𝑑 = 𝑗. All minimum points which belong to a valley are
additionally stored into the vector 𝑀 ∈ ℕ>0.

Table 4.2: Matrix 𝑇 and vector 𝑀 from the example in Fig. 4.14.

𝑇 𝑗=1 2 3 4 5 6 7 8 9 10
𝑖=1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 5 0 0 0 0
4 0 0 5 0 0 0 0
5 0 0 0 0 0 0
6 0 0 7 0 0
7 0 0 0 0
8 0 0 0
9 0 0
10 0

𝑀
5
7

Thedefinition for a valleymay lead to different possible start and end points which have the same
local minimum. This can easily be seen from the example (Fig. 4.14 and Table 4.2). The sequence
notation is (𝑉𝑠𝑡𝑎𝑟𝑡–𝑉𝑚𝑖𝑛–𝑉𝑒𝑛𝑑 ). For the second minimum (𝑚 = 7), only one sequence of segments
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Figure 4.14: Numbered line segments of a BI measurement around a swallow. Within this time interval,
two minima are found at the connection time points 5 and 7. Possible valleys are (3–5–6, 4–5–6) for the
minimum 5 and (6–7–8) for the minimum 7. Possible valley combination are written into the matrix 𝑇
and shown in Table 4.2.

can be found (6–7–8); whereas for the first minimum (𝑚 = 5), two possible sequences of segments
exist (3–5–6 and 4–5–6).

Subsequently, the best start and end point is selected by maximizing an utility function with
respect to all detected valleys for the corresponding minimum 𝑚 within 𝑀 . The utility function is
chosen heuristically in such a way that valleys with large area and short distance between the start
and end point are preferred. The utility function 𝑓 (𝑖, 𝑗) is maximized in order to find the best valley
to minimum point 𝑚

argmax𝑖,𝑗 𝑓 (𝑖, 𝑗), 𝑓 (𝑖, 𝑗) = 𝑎𝑟𝑒𝑎(𝑖, 𝑗)
𝑙𝑒𝑛𝑔𝑡ℎ(𝑖, 𝑗) ,

subject to 𝑇(𝑖, 𝑗) = 𝑚 ,
𝑖 = 1, … , 𝑁 𝑃 , 𝑗 = 𝑖, … , 𝑁 𝑃 , 𝑚 ∈ 𝑀 ,

(4.47)

where 𝑎𝑟𝑒𝑎(𝑖, 𝑗) is the area enclosed by the approximated BI segments from 𝑃𝐼 (𝑖) to 𝑃𝐼 (𝑗) and the
closing line of the valley which has the length

𝑙𝑒𝑛𝑔𝑡ℎ(𝑖, 𝑗) = √((𝑃𝐼 (𝑗) − 𝑃𝐼 (𝑖))𝑇𝐵𝐼𝑠 )2 + (𝑃𝐶(𝑗) − 𝑃𝐶(𝑖))2 . (4.48)
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All other entries in 𝑇 which correspond to the minimum point 𝑚 but are not the optimal points 𝑖
and 𝑗 are overwritten with 0.

Annotation 1

Annotation 2
BI

𝐵𝐼𝑠𝑡𝑎𝑟𝑡 = 𝑃𝐼 (𝑉𝑠𝑡𝑎𝑟𝑡) 𝑃𝐼 (𝑉𝑒𝑛𝑑)

𝐵𝐼𝑒𝑛𝑑

𝑃𝐼 (𝑉𝑚𝑖𝑛)𝐵𝐼𝑚𝑖𝑛
(𝐵𝐼 (𝐵𝐼𝑠𝑡𝑎𝑟𝑡) − 𝐵𝐼 (𝐵𝐼𝑚𝑖𝑛))𝑉 𝑆𝑑𝑖𝑓 𝑓

Figure 4.15: Adjustment of minimum and end point of a swallow. Each swallow was manually marked
by a hand switch and labeled by the investigator. Based on these information, a start and stop annotation
was set for all recorded swallows. The manually added annotations mark the begin and end of a swallow
related valley and are used for training and testing of a classifier. The figure is based on Fig. 4 from [132].

After finding one optimal valley for each minimum point 𝑚 in 𝑀 , the previously found start,
minimum, and end points (𝑉𝑠𝑡𝑎𝑟𝑡 , 𝑉𝑚𝑖𝑛, and 𝑉𝑒𝑛𝑑 ) of each valley are improved in a post-processing
step. The post-processing starts with the first valley within the BI time series. The revised points
of the valley are the sampling points 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 , 𝐵𝐼𝑚𝑖𝑛, and 𝐵𝐼𝑒𝑛𝑑 (cf. Fig. 4.15). For the recalculation
of these points, the original BI signal is analyzed between the sampling instances 𝑃𝐼 (𝑉𝑠𝑡𝑎𝑟𝑡) and
𝑃𝐼 (𝑉𝑒𝑛𝑑 ). The start point 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 is set to 𝑃𝐼 (𝑉𝑠𝑡𝑎𝑟𝑡 ). 𝐵𝐼𝑚𝑖𝑛 is set to the local minimum of the non-
approximated BI signal between 𝑃𝐼 (𝑉𝑠𝑡𝑎𝑟𝑡) and 𝑃𝐼 (𝑉𝑒𝑛𝑑 ):

𝐵𝐼𝑚𝑖𝑛 = argmin𝑘 𝐵𝐼 (𝑘), 𝑃𝐼 (𝑉𝑠𝑡𝑎𝑟𝑡 ) < 𝑘 < 𝑃𝐼 (𝑉𝑒𝑛𝑑 ) . (4.49)

The end point 𝐵𝐼𝑒𝑛𝑑 is located after 𝐵𝐼𝑚𝑖𝑛 and is defined as the sampling instance where the BI
recovers to 0 < VS𝑑𝑖𝑓 𝑓 < 1 of the swallow-related drop:

𝐵𝐼𝑒𝑛𝑑 = argmin𝑘
((𝐵𝐼𝑠𝑡𝑎𝑟𝑡 − 𝐵𝐼𝑚𝑖𝑛)VS𝑑𝑖𝑓 𝑓 − (𝐵𝐼 (𝑘) − 𝐵𝐼𝑚𝑖𝑛)) , 𝑘 > 𝐵𝐼𝑚𝑖𝑛 . (4.50)

The parameter VS𝑑𝑖𝑓 𝑓 determines the position of 𝐵𝐼𝑒𝑛𝑑 and should be set to at least 0.5 as otherwise
the end point will located to near to the minimum point 𝐵𝐼𝑚𝑖𝑛.

The newly found valley with the sampling instances 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 , 𝐵𝐼𝑚𝑖𝑛, and 𝐵𝐼𝑒𝑛𝑑 is stored. All
remaining valleys in 𝑇 are checked weather they are coincide with the interval starting from
𝐵𝐼𝑠𝑡𝑎𝑟𝑡 to 𝐵𝐼𝑒𝑛𝑑 . All valleys which begin or end in this interval are removed from the matrix 𝑇
by overwriting the corresponding entry with zero. All minimum points in 𝑀 which do not have
any corresponding entry within 𝑇 are removed from 𝑀 .

Post-processing is proceeded with the next remaining entry in 𝑀 which belongs to the next
nearest valley until all entries have been processed.

4.3.7 Feature Extraction

The preprocessed but not whitened EMG signal is high-pass filtered by a non-causal fourth-order
high-pass filter with a cut-off frequency of 40Hz. Then the signal is rectified and filtered by a non-
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causal low-pass filter of 4th order with a cut-off frequency of 10Hz. The filter parameters were
chosen such that the filter output approximates the envelope of the rectified EMG signal. Finally,
the rectified and filtered EMG sequence is down-sampled to 250Hz. This signal is used for feature
extraction and denoted as 𝑠𝐸𝑀𝐺.

For each segmented valley 𝑖 in the BI signal, the sampling instances 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 , 𝐵𝐼𝑚𝑖𝑛,𝑖 , and 𝐵𝐼𝑒𝑛𝑑,𝑖
are given. The corresponding EMG activity is defined as the interval from 𝑠𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡,𝑖 to 𝑠𝐸𝑀𝐺𝑒𝑛𝑑,𝑖
of the signal 𝑠𝐸𝑀𝐺. The EMG intervals are extracted from the double-threshold detector output
𝑎𝑐𝑡 . 𝑠𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡,𝑖 and 𝑠𝐸𝑀𝐺𝑒𝑛𝑑,𝑖 are set to that EMG interval which is nearest to the starting point
𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 . 𝑠𝐸𝑀𝐺𝑚𝑎𝑥,𝑖 is set to the sampling instance of the maximum value of 𝑠𝐸𝑀𝐺 in this interval.

BI𝑆𝑀 is defined as the BI measurement vector of length 𝑁𝑆𝑀 from 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 to 𝐵𝐼𝑚𝑖𝑛,𝑖 . BI𝑀𝐸
is defined as the BI measurement vector of length 𝑁𝑀𝐸 containing all measurement samples from
𝐵𝐼𝑚𝑖𝑛,𝑖 to 𝐵𝐼𝑒𝑛𝑑,𝑖 . In the following, the upper index 𝑉 refers to the value and the upper index 𝑇 to
time of a BI or EMG point of a valley (cf. Fig. 4.16). Using this convention, the following features
which are related to time and amplitude can be calculated:

• 𝑡𝑚𝑖𝑛,𝑖 = 𝐵𝐼𝑇𝑚𝑖𝑛,𝑖 − 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 , 𝑡𝑒𝑛𝑑,𝑖 = 𝐵𝐼𝑇𝑒𝑛𝑑,𝑖 − 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡,𝑖
• 𝑡𝑒𝑚𝑔𝑑𝑖𝑓 𝑓 ,𝑖 = 𝑠𝐸𝑀𝐺𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 − 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡,𝑖
• 𝑡𝑒𝑚𝑔𝑚𝑎𝑥,𝑖 = 𝑠𝐸𝑀𝐺𝑇𝑚𝑎𝑥,𝑖 − 𝑠𝐸𝑀𝐺𝑇𝑠𝑡𝑎𝑟𝑡,𝑖

• 𝑡𝑒𝑚𝑔𝑒𝑛𝑑,𝑖 = 𝑠𝐸𝑀𝐺𝑇𝑒𝑛𝑑,𝑖 − 𝑠𝐸𝑀𝐺𝑇𝑠𝑡𝑎𝑟𝑡,𝑖

• Δ𝑚𝑖𝑛,𝑖 = 𝐵𝐼𝑉𝑚𝑖𝑛,𝑖 − 𝐵𝐼𝑉𝑠𝑡𝑎𝑟𝑡,𝑖
• 𝑠𝐸𝑀𝐺𝑉𝑚𝑎𝑥,𝑖

The slope 𝑆1,𝑖 is defined as the steepest slope in the range from 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 to 𝐵𝐼𝑚𝑖𝑛,𝑖 and the slope 𝑆2,𝑖
is set to the steepest slope from 𝐵𝐼𝑚𝑖𝑛,𝑖 to 𝐵𝐼𝑒𝑛𝑑,𝑖 . 𝑆1,𝑖 and 𝑆2,𝑖 are included as features. The slope 𝑆1,𝑖
is calculated by

𝑆1,𝑖 = min𝑘

BI𝑉𝑆𝑀 ((𝑘 + 1) 𝑁𝑆𝑀
𝑁𝑠𝑙𝑜𝑝𝑒

) − BI𝑉𝑆𝑀 (𝑘 𝑁𝑆𝑀
𝑁𝑠𝑙𝑜𝑝𝑒

)

BI𝑇𝑆𝑀 ((𝑘 + 1) 𝑁𝑆𝑀
𝑁𝑠𝑙𝑜𝑝𝑒

) − BI𝑇𝑆𝑀 (𝑘 𝑁𝑆𝑀
𝑁𝑠𝑙𝑜𝑝𝑒

)
, 0 < 𝑘 < 𝑁𝑠𝑙𝑜𝑝𝑒 − 1 , (4.51)

where 𝑁𝑠𝑙𝑜𝑝𝑒 defines in how many parts the vector BI𝑆𝑀 is fragmented. For each part, the slope is
calculated and finally the steepest is taken for 𝑆1,𝑖 . The second slope can be found as follows:

𝑆2,𝑖 = max
𝑘

BI𝑉𝑀𝐸((𝑘 + 1) 𝑁𝑀𝐸
𝑁𝑠𝑙𝑜𝑝𝑒

) − BI𝑉𝑀𝐸(𝑘
𝑁𝑀𝐸
𝑁𝑠𝑙𝑜𝑝𝑒

)

BI𝑇𝑀𝐸((𝑘 + 1) 𝑁𝑀𝐸
𝑁𝑠𝑙𝑜𝑝𝑒

) − BI𝑇𝑀𝐸(𝑘
𝑁𝑀𝐸
𝑁𝑠𝑙𝑜𝑝𝑒

)
, 0 < 𝑘 < 𝑁𝑠𝑙𝑜𝑝𝑒 − 1 . (4.52)

For determining the slopes during swallowing, a value 𝑁𝑠𝑙𝑜𝑝𝑒 = 25 has been found to give good
results. Areas (𝐴) which are determined by the BI and 𝑠𝐸𝑀𝐺 signals are also used as features.
Figure 4.16 shows the areas that are used and here defined.

The areas under the 𝑠𝐸𝑀𝐺 curve are calculated as sum of the measured samples multiplied by
the sampling frequency. The area 𝐴𝑠𝐸𝑀𝐺𝑑𝑖𝑓 𝑓 ,𝑖 is the area from 𝑠𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡,𝑖 to 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 . The next area
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𝐸𝑀𝐺𝑒𝑛𝑑

𝐴𝐸𝑀𝐺𝑔𝑒𝑠 = 𝐴𝐸𝑀𝐺1 + 𝐴𝐸𝑀𝐺3

𝐴2 = 𝐴21 + 𝐴23

Time (s)0.5

𝐸𝑀𝐺𝑚𝑎𝑥

𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡
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𝐴𝐸𝑀𝐺3
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Figure 4.16: Definition of area (𝐴) based features. The elevation of the larynx takes place between 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖
and 𝐵𝐼𝑚𝑖𝑛,𝑖 . The figure is based on Fig. 5 from [132].

is area 𝐴𝑠𝐸𝑀𝐺1,𝑖 which goes from 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 to 𝐵𝐼𝑚𝑖𝑛,𝑖 . And finally, the area 𝐴𝑠𝐸𝑀𝐺3,𝑖 is calculated from
𝐵𝐼𝑚𝑖𝑛,𝑖 to 𝐵𝐼𝑒𝑛𝑑,𝑖 .

In addition, the symbolic aggregate approximation (SAX) [163] of the BI and the EMG curves
is used as features. SAX is a technique for efficient reduction of time series in order to preserve
the essential characteristics of the signal. The method is widely used in time-series pattern analysis.
Wang et al. [164] used SAX for feature extraction in combination with an SVM for online word
segmentation and recognition. SAX words were used as features for classifying different drilling
operation by Esmael et al. [165]. Another field of application is pattern matching by which
computational complexity can be reduced by the SAX method. This allows indexing and searching
of large datasets [166] and can be used for finding repeated patterns [167].

For each valley 𝑖, the pre-processed BI signal (cf. Section 4.3.3) is analyzed within the interval
from 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 − 0.4 s with a length 𝑇𝐵𝐼𝑆𝐴𝑋 = 2 s. The interval was chosen such that swallow
induced changes are included. The BI sequence is normalized within these ranges (zero mean
value, standard deviation of one). The resulting sequence 𝐵𝐼𝑛𝑜𝑟𝑚,𝑖 is down-sampled by piece-wise
aggregate approximation (PAA) by which the sequence is subdivided in equally spaced segments
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Figure 4.17: Features generated by the SAX method from the normalized BI sequence of a recorded
swallow. As parameters 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8 and 𝑁 𝐵𝐼𝑃𝐴𝐴 = 20 were used. The figure is based on Fig. 6 from [132].

along the time axis and each segment is approximated by itsmean value. The normalized BI sequence
𝐵𝐼𝑛𝑜𝑟𝑚,𝑖 with 𝑇𝐵𝐼𝑆𝐴𝑋 /𝑇𝐵𝐼𝑠 samples is reduced to the number of PAA coefficients 𝑁 𝐵𝐼𝑃𝐴𝐴:

𝐵𝐼𝑃𝐴𝐴,𝑖(𝑘) =
1

𝑤𝑃𝐴𝐴

𝑤𝑃𝐴𝐴𝑘
∑

𝑗=𝑤𝑃𝐴𝐴(𝑘−1)+1
𝐵𝐼𝑛𝑜𝑟𝑚,𝑖(𝑗) ,

𝑤𝑃𝐴𝐴 = 𝑇𝐵𝐼𝑆𝐴𝑋
𝑇𝐵𝐼𝑠 𝑁 𝐵𝐼𝑃𝐴𝐴

∈ ℕ, 𝑘 = 1, … , 𝑁 𝐵𝐼𝑃𝐴𝐴 .
(4.53)

The pre-processed (cf. Section 4.3.3) EMG signal is filtered by a zero-phase low-pass filter of
fourth order with a cut-off frequency of 250Hz. The filtered EMG signal is down-sampled to 500Hz
in order to reduce the necessary storage which is needed to store all EMG sequences. The EMG
sequence for valley 𝑖 starts from 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡,𝑖 − 0.8 s and has a length of 𝑇 𝐸𝑀𝐺𝑆𝐴𝑋 = 3.6 s. The interval was
chosen such that EMG activity are included.

Then, the EMG sequence is normalized (zero mean value, standard deviation of one). Addition-
ally, each normalized EMG sequence 𝐸𝑀𝐺𝑛𝑜𝑟𝑚,𝑖 is squared, as otherwise an approximation with the
PAAwould not give any useful results. The normalized and squared EMG sequence 𝐸𝑀𝐺2𝑛𝑜𝑟𝑚,𝑖 with
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Figure 4.18: Features generated by the SAX method from a normalized and squared EMG sequence of a
recorded swallow (𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 = 16 and 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 = 20).

𝑇 𝐸𝑀𝐺𝑆𝐴𝑋 /𝑇 𝐸𝑀𝐺𝑠 samples is approximated by

𝐸𝑀𝐺𝑃𝐴𝐴,𝑖(𝑘) =
1

𝑤𝑃𝐴𝐴

𝑤𝑃𝐴𝐴𝑘
∑

𝑗=𝑤𝑃𝐴𝐴(𝑘−1)+1
𝐸𝑀𝐺2𝑛𝑜𝑟𝑚,𝑖(𝑗) ,

𝑤𝑃𝐴𝐴 = 𝑇 𝐸𝑀𝐺𝑆𝐴𝑋
𝑇 𝐸𝑀𝐺𝑠 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴

∈ ℕ, 𝑘 = 1, … , 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 ,
(4.54)

where 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 is the number of PAA coefficients.
In a next step, the SAX method maps the PAA coefficients to SAX symbols. This step reduces

the resolution across the BI/EMG-coordinate. All PAA coefficients that belong to the same interval
on the BI/EMG-axis are mapped to the same SAX symbol.

Breakpoints 𝛽𝐵𝐼𝑙 define to which symbol a certain BI sample is mapped. The alphabet size for the
BI sequence is called 𝑁 𝐵𝐼𝑠𝑦𝑚. 𝑁 𝐵𝐼𝑠𝑦𝑚 different breakpoints 𝛽𝐵𝐼𝑙 are defined as a sorted list such that an
area under an 𝒩 (0, 1) Gaussian curve from 𝛽𝐵𝐼𝑙 to 𝛽𝐵𝐼𝑙+1 is 1/𝑁 𝐵𝐼𝑠𝑦𝑚. The first and the last breakpoints
are defined as 𝛽𝐵𝐼0 = −∞ and 𝛽𝐵𝐼𝑁 𝐵𝐼𝑠𝑦𝑚

= ∞. By using the inverse cumulative distribution function of
the normal distribution 𝐹−1𝑛𝑜𝑟𝑚, which is defined over the cumulative distribution function with

𝑥 = 𝐹−1𝑛𝑜𝑟𝑚(𝑝, 𝜇, 𝜎) = {𝑥 ∶ 𝐹𝑛𝑜𝑟𝑚(𝑋 ≤ 𝑥, 𝜇, 𝜎) = 𝑝} (4.55)
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with mean 𝜇 = 0 and standard deviation 𝜎 = 1, the breakpoints can be numerically estimated:

𝛽𝐵𝐼𝑙 = 𝐹−1𝑛𝑜𝑟𝑚(𝑙/𝑁 𝐵𝐼𝑠𝑦𝑚, 0, 1), 𝑙 = 2, … , 𝑁 𝐵𝐼𝑠𝑦𝑚 − 1 . (4.56)

Using these breakpoints, mapping from the PAA approximation 𝐵𝐼𝑃𝐴𝐴,𝑖 to 𝐵𝐼𝑆𝐴𝑋 ,𝑖 is performed for
each valley 𝑖 according to Lin et al. [163] by:

𝐵𝐼𝑆𝐴𝑋 ,𝑖(𝑘) = 𝛼𝐵𝐼𝑙 if 𝛽𝐵𝐼𝑙−1 ≤ 𝐵𝐼𝑃𝐴𝐴,𝑖(𝑘) < 𝛽𝐵𝐼𝑙 , 𝑘 = 1, … , 𝑁 𝐵𝐼𝑃𝐴𝐴 , (4.57)

where the set 𝛼𝐵𝐼 contains 𝑁 𝐵𝐼𝑠𝑦𝑚 symbols with a defined ranking. The SAX symbols are defined as
follows:

𝛼𝐵𝐼𝑙 = 𝑙, 𝑙 = 1, 2, … , 𝑁 𝐵𝐼𝑠𝑦𝑚 . (4.58)

Figure 4.17 illustratively shows the features generated by the SAX method from the normalized BI
sequence using 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8 and 𝑁 𝐵𝐼𝑃𝐴𝐴 = 20.

The squared EMG signal has a 𝜒2 distribution. In order to produce symbols which are equally
distributed for a 𝜒2 distributed input, the breakpoints 𝛽𝐸𝑀𝐺

𝑙 are chosen such that the area under a
𝜒2 cumulative distribution function with one degree of freedom from 𝛽𝑙 to 𝛽𝑙+1 is 1/𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 , where
𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 is the alphabet size. The first and the last breakpoints are defined as 𝛽𝐸𝑀𝐺0 = 0 and 𝛽𝐸𝑀𝐺

𝑁 𝐸𝑀𝐺𝑠𝑦𝑚
= ∞.

By using the inverse cumulative distribution function of the 𝜒2 distribution, which is defined over
the cumulative distribution function with

𝑥 = 𝐹−1𝜒2 (𝑝, 𝜈) = {𝑥 ∶ 𝐹𝜒2(𝑋 ≤ 𝑥, 𝜈) = 𝑝} (4.59)

with degree of freedom 𝜈 = 1, the breakpoints can be numerically estimated:

𝛽𝑙 = 𝐹−1𝜒2 (𝑙/𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 , 1), 𝑙 = 2, … , 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 − 1 . (4.60)

Using these breakpoints, mapping the approximated EMG sequence 𝐸𝑀𝐺𝑃𝐴𝐴,𝑖 to 𝐸𝑀𝐺𝑆𝐴𝑋 ,𝑖 for each
valley 𝑖 is performed by:

𝐸𝑀𝐺𝑆𝐴𝑋 ,𝑖(𝑘) = 𝛼𝐸𝑀𝐺
𝑙 if 𝛽𝐸𝑀𝐺

𝑙−1 ≤ 𝐸𝑀𝐺𝑃𝐴𝐴,𝑖(𝑘) < 𝛽𝑙 , 𝑘 = 1, … , 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 , (4.61)

where the set 𝛼𝐸𝑀𝐺 contains 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 symbols and is defined by

𝛼𝐸𝑀𝐺
𝑙 = 𝑙, 𝑙 = 1, 2, … , 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 . (4.62)

An exemplary EMG sequence with corresponding SAX symbols is shown in Figure 4.18.
For each segmented valley 𝑖, a SAX sequence is generated for the related BI and EMG time series.

In total, the feature vector has a length of 17 + 𝑁 𝐵𝐼𝑃𝐴𝐴 + 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 . The first 17 features are related to
times, distances and areas.
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4.3.8 Support Vector Machine

In the previous sections, it is described how valleys are segmented in the BI and EMG measurement
data. A C-support vector maschine (C-SVM) is used for classifying these valleys in swallows and
non-swallowing related valleys. As the C-SVM outperformed all other kinds of classifier, it was
decided to focus on the C-SVM. A C-SVM was firstly described by Cortes et al. [168] and within this
thesis the C-SVM realization by Chang et al. [169] is used.

For each valley 𝑖, a feature vector⁷ x𝑖 and the corresponding class membership 𝑦𝑖 are defined by

x𝑖 = [EMG𝑆𝐴𝑋 ,𝑖 ,BI𝑆𝐴𝑋 ,𝑖 , t𝑖 ,A𝑖 , Δ𝑖 , 𝑒𝑚𝑔𝑚𝑎𝑥,𝑖] , (4.63)

𝑦𝑖 = {1 if valley 𝑣 is marked as swallow

−1 otherwise
, (4.64)

where 𝑖 is the index of the valley from the feature vector and class membership is calculated.
The vector t𝑖 contains all time related features for valley 𝑖, A𝑖 consists of all area based features

of valley 𝑖 and Δ𝑖 contains all value difference features of valley 𝑖. EMG𝑆𝐴𝑋 ,𝑖 and BI𝑆𝐴𝑋 ,𝑖 contain the
SAX words of the EMG and BI time series around the valley 𝑖. The corresponding class membership
𝑦𝑖 is found by checking each valley weather it coincide with the manually set swallow annotations.
The swallow annotations are set based on the state of a hand switch which is manually pressed
during all recorded swallows.

Within a C-SVM, the feature vector x𝑖 is transformed to a higher-dimensional feature space by
the featuremap 𝜙(x𝑖)which is derived from a kernel function𝐾 which holds𝐾(x𝑖 , x𝑗) ≡ 𝜙(xi)𝑇𝜙(xj).
As implementation of the C-SVM, LIBSVM [169] with a radial basis function (RBF) kernel function
is used. A RBF kernel function is defined as:

𝐾(x𝑖 , x𝑗) = 𝑒−𝛾∥x𝑖−x𝑗 ∥2 ≡ 𝜙(xi)𝑇𝜙(xj), 𝛾 > 0 , (4.65)

where 𝛾 is the kernel width of the RBF kernel function and 𝜙 is the mapping vector function which
is found by taylor series expansion.

The higher-dimensional feature space is split by a hyperplane which is defined by a normal
vector w and an offset 𝑏. The membership of valley 𝑖 is determined by calculating on which site of
the hyperplane the transfered feature vector 𝜙(x𝑖) lays:

𝑦𝑝𝑟𝑒𝑑𝑖 = sgn (w𝑇𝜙(x𝑖) + 𝑏) , (4.66)

where sgn is the sign function. The hyperplane is optimally chosen when the predicted class
membership 𝑦𝑝𝑟𝑒𝑑𝑖 is equal to the true membership 𝑦𝑖 for almost all valleys.

The actual class membership 𝑦𝑖 is compared with the predicted membership 𝑦𝑝𝑟𝑒𝑑𝑖 for all 𝑖 and
written into a 2x2 confusion matrix. The trained C-SVM is evaluated by the sensitivity, specificity,
precision and accuracy which are obtained by the confusion matrix according to Table 4.3.

⁷In order to avoid numerical problems, the feature vector is normalized to a range of [−1, 1]. The normalization
parameter are calculated from the training data and later applied to the test data.
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Table 4.3: Accuracy, sensitivity, and specificity can be calculated from the confusion matrix. TP - The
number of swallows which were correctly identified as swallow. FP -The number of non swallow related
events which were incorrectly identified as swallow. TN - The number of non swallow related events
which were correctly identified as non-swallow. FN - The number of swallows which were incorrectly
identified as non swallow related events (non-swallows).

Predicted
Swallows Non-swallows

Actual Swallows TP FN
Non-swallows FP TN

Sensitivity: 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁 )
Specificity: 𝑇𝑁 /(𝑇𝑁 + 𝐹𝑃)
Precision: 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)
Accuracy: (𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)

Given 𝑙 valleys together with the training set {(x1, 𝑦1), … , (x𝑙 , 𝑦𝑙)} containing feature vector x𝑖
and the corresponding membership 𝑦𝑖 for 𝑖 = 1, … , 𝑙, the C-SVM can be trained by solving the
following optimization problem⁸:

minimize
𝑤,𝑏,𝜉

1
2w

𝑇w + 𝑊 −𝐶
𝑙
∑
𝑘=1

{𝜉𝑘 , if 𝑦𝑘 = −1
0, if 𝑦𝑘 = 1

+ 𝑊 +𝐶
𝑙
∑
𝑘=1

{0, if 𝑦𝑘 = −1
𝜉𝑘 , if 𝑦𝑘 = 1

subject to 𝑦𝑖 ⋅ (w𝑇𝜙(x𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 ,
𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙 .

Minimizing the first term 1
2w

𝑇w corresponds to maximizing the margin 2
‖w‖ which is defined as

the distance between the hyperplane and the nearest correctly classified feature 𝜙(x). As it is not
always possible to findw and 𝑏 that satisfy 𝑦𝑖 ⋅(w𝑇𝜙(x𝑖)+𝑏) ≥ 1, an error term 𝜉𝑖 which is needed for
solving the optimization problem together with w and 𝑏 is introduced. The number of all 𝜉𝑖 which
are zero correspond to the number of correctly classified training data. The learning parameter 𝐶
has to be chosen by the user. Increasing 𝐶 means that penalizing misclassified training data become
more important than maximizing the margin between the hyperplane and the nearest feature vector
𝜙(x).

For some classification problems the number of both classes are unbalanced, the classification
penalty parameter 𝐶 can be differently weighted by both classes by𝑊 − and𝑊 +. Normally𝑊 − and
𝑊 + is equal to one. Depending on the selected segmentation parameters, both used classes may be
become unbalanced as the number of non-swallows may be greater than the number of swallows.
The in-homogeneous number of data in both classes can be compensated by using class dependent
weighting parameters𝑊 + and𝑊 −. Each weighting parameter is set to the inverse frequency of the

⁸In order to solve the optimization problem efficiently, an equivalent lower dimensional optimization problem is solved
which leads to a solution of the original optimization problem [169].
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corresponding class such that the sum of 𝑊 + and 𝑊 − is always two:

𝑊 + = 2
𝑙

𝑙
∑
𝑘=1

{1, if 𝑦𝑘 = −1
0, if 𝑦𝑘 = 1

, (4.67)

𝑊 − = 2
𝑙

𝑙
∑
𝑘=1

{0, if 𝑦𝑘 = −1
1, if 𝑦𝑘 = 1

, (4.68)

where 𝑙 is the number of valleys in the training data.
The training parameters 𝐶 and 𝛾 have to be optimized for each specific classification problem

by a grid search. The parameter 𝐶 = 2𝑛, which is related to the cost for false classification, and the
parameter 𝛾 = 2𝑝 , which is the kernel width, should be varied such that 𝑛 and 𝑝 are linearly spaced.
The parameter 𝑛 is normally searched in a range from -5 to 15, whereas the parameter 𝑝 is searched
in a range from -15 to 5. The parameter combination which leads to the the best cross-validation
result according to a k-fold cross validation should then lead to the best classification results for the
specific problem.

4.3.9 Validation of the Support Vector Machine

The C-SVM was trained and tested by the leave-one-subject-out approach. The complete data for a
subject are removed from the training set and the trained classifier is then tested on the data from
this subject. For each valley 𝑖 the corresponding subject 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖 ∈ {1, … , 𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 } is denoted, where
𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡 is the number participating subjects. The training parameters 𝐶 and 𝛾 are kept constant, in
order to have equal condition for each subject 𝑠.

Thus, the training set which excludes all data from subject 𝑠 becomes

{(x𝑖 , 𝑦𝑖 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖 ≠ 𝑠)}, 𝑖 = 1, … , 𝑙 . (4.69)

The training set contains 𝑙 valleys. The remaining valleys are in the testing set

{(x𝑗 , 𝑦𝑗 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑗 = 𝑠)}, 𝑗 = 1, … ,𝑚 . (4.70)

The testing set consists of 𝑚 valleys.
The prediction 𝑦𝑝𝑟𝑒𝑑𝑗 , which is obtained by applying the trained C-SVM on the test set, is

compared with the true class membership 𝑦𝑗 for all valleys which are recorded from subject 𝑠. A
confusion matrix

𝑐𝑚𝑠 = ( 𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁 ) (4.71)

according to Table 4.3 is calculated.
Training and testing is performed for all subjects by the leave-one-subject-out approach and the

resulting confusion matrix 𝑐𝑚 is the sum of all obtained confusion matrices from all subjects:

𝑐𝑚 =
𝑁𝑠𝑢𝑏𝑗𝑒𝑐𝑡
∑
𝑠=1

𝑐𝑚𝑠 . (4.72)
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Table 4.3 shows how sensitivity, specificity, and accuracy can be calculated from the finally obtained
confusion matrix 𝑐𝑚.

4.4 Results

4.4.1 Data Collection

Healthy subjects without any swallowing disorder and patients with oropharyngeal swallowing
disorder were examined at the Technische Universität Berlin and the Unfallkrankenhaus Berlin in
collaboration with Rainer O. Seidl and Corinna Schultheiss from the Unfallkrankenhaus Berlin⁹. The
exclusion criteria were: pregnancy, implanted cardiac pacemaker or defibrillator, metallic implants,
or central venous catheters. All subjects had given informed consent and were informed about the
used methods. This study was approved by the ethic board at the Charité Berlin (EA1/019/10 and
EA1/161/09).

Table 4.4: Number of recorded swallows, movements, recordings, and complete recording duration of
the datasets I, II, III, and IV.

Dataset Subjects Mean age Swallows Movements Duration

I 20 (12 ♂, 8 ♀) 30.5 ± 7.7 862 331 3.70 h
II 15 (11 ♂, 4 ♀) 29 ± 4.5 1912 0 7.13 h
III 9 (2 ♂, 7 ♀) 38.6 ± 9.4 139 0 0.21 h
IV 41 (26 ♂, 15 ♀) 63.4 ± 13.8 748 0 2.51 h

20 healthy subjects participated in the first study yielding dataset I, in which the effects of
head and tongue movements, electric conductivity of liquid, and different bolus volumes on BI
measurements have been investigated. One subgroup of the participating subjects was asked to
swallow 20ml water while their head was oriented in a specific position, move their head without
swallowing, speak, and apply pressure with their tongue and jaw. A second subgroup was asked to
swallow saliva and 200ml of liquid in 20ml portions. A third subgroup swallowed saliva, eat yogurt
and bread in 5 g portions. A fourth subgroup of subjects should swallow liquid in 5ml, 10ml, 20ml,
and 30ml portions. Finally, a fifth subgroup swallowed water with different conductivity.

For the second dataset II, 15 subjects should drink 200ml of water in their own speed. Ten
subjects of dataset II underwent four measurements within one day while using newly placed
electrodes for each measurement. Four measurements were conducted on four successive days on
all 15 subjects of dataset II.

⁹The collected measurement data are also described in the doctoral thesis of Corinna Schultheiss [135] and a related
paper [147]. For the analysis in [135] and [147], the collected measurements were segmented by the heuristic valley search
algorithm presented in this thesis (cf. Section 4.3.6), and swallowing related valleys were selected based on the manually
added annotations. Time, value and area based features which have been described in Section 4.3.7 have been statistically
analyzed, to evaluate the reproducibility of the measurements, differences between swallowing and head movements,
and the influence of various factors such as gender, bolus amount, consistency, conductivity, repeatability, and intra-rater
reliability.
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Nine healthy subjects were included in the third dataset III which was recorded by four different
investigators on every subject in order to compare the influence of different investigators. The
participants swallowed water with a bolus size of 20ml.

In datasets I to III, each swallow or movement was manually marked by a hand switch and
labeled by the investigator. The mean age and the gender of the participating subjects can be seen
in Table 4.4. In total, 31 healthy subjects¹⁰ (15 female, 16 male) were examined in the datasets I, II,
and III. The age of the healthy subjects ranged from 24 to 51 years while the mean age was 32.5 ± 7.8.
2913 swallows and 331 non-swallowing related movements were recorded and labeled resulting in a
complete recording time of 11 hours and 4 minutes.

41 patients¹¹ (15 female and 26 male) suffering from swallowing disorder were recruited for the
dataset IV. The age was in a range from 24 to 93 years (mean age 63.4 ± 13.8). 24 patients suffered
from neurological diseases while 17 had ear, nose, and throat (ENT) specific disorders. Depending
on the ability of the patient, swallows of saliva, small portions of dyed water, green jelly, or bread
were recorded. Patients were evaluated by FEES in an upright position in combination with BI
and EMG measurements. A physician, proficient in FEES, evaluated all endoscopic examinations,
marked all swallows in the BI and EMGmeasurements andmapped the swallows into swallows with
and without penetration¹². In total, 748 swallows were recorded which consists of 163 times saliva,
239 times a small portion of colored water, 242 times a semisolid bolus, and 99 times a solid bolus.
Additionally, five clearing post-swallows were marked. From these 748 swallows, 85 were marked
by the investigator as swallows with penetration.

4.4.2 Detection of EMG Activity Periods

The double-threshold detector (cf. Section 4.3.4) was used for automatic EMG activity detection in
all datasets. The desired offset-detection latency was set to 𝑡𝑟𝑚𝑎𝑥 = 10ms and a 𝑃𝑓 𝑎 of 0.01 was
requested, assuming a minimal SNR 𝑆𝑁𝑅𝑚𝑖𝑛¹³ of 3 dB.

In order to achieve a high accuracy, noise, and disturbance variances have been estimated
individually for each recorded EMG measurement. In Section 4.3.4.6, a synthetic benchmark was
used for evaluating the performance of the detector. Based on this analysis, the parameters of the
noise and disturbance estimation were set to 𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 = 0.2 s and 𝑁 ̂𝜁𝑇 𝐸𝑀𝐺𝑠 = 8 s. In swallowing
activity recordings a value of 𝑡ℎ𝜎𝑑 = 0.25¹⁴ produced good results and is therefore used for all
datasets.

According to Section 4.3.4.4, optimization of the double-threshold detector yields 𝑚 = 56 and
𝑟0 = 8.

¹⁰The 31 healthy subjects are described in the thesis of C. Schultheiss [135] in table B.4.
¹¹The patients are described in the thesis of C. Schultheiss [135] in table B.5 and are named by the following codes: 113,

114, 115, 116, 117, 118, 131, 132, 133, 138, 139, 141, 142, 143, 144, 147, 148, 150, 152, 153, 154, 155, 158, 159, 165, 166, 167, 176, 194,
198, 199, 200, 201, 203, 205, 206, 208, 209, 210, 211, and 212.

¹²Penetration describes the observation that the bolus enters the glottis up to the vestibule above the true vocal folds.
The act of a bolus passing the true vocal folds is described as aspiration. Aspiration could not be observed in any patient
and is not considered.

¹³The worst-case SNR is 𝑆𝑁𝑅𝑚𝑖𝑛 = 10log10 (
𝜎2𝑠

𝜎2𝑑+𝜎2𝑛
) for which 𝑆𝑁𝑅𝑚𝑖𝑛 > 0 must be hold in order to be able to detect

EMG activity.
¹⁴The percentage share 𝑡ℎ𝜎𝑑 of signal parts with disturbances and without real EMG activity is defined a-priori based

on the observed activity.
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4.4.3 Piece-wise Linear Approximation of BI

Table 4.5: Datasets I, II, III, and IV were used for comparing the influence of 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 on the PLA
of the BI signal. The root mean square error is calculated between the original and the approximated
BI time series between all manually marked swallows. The mean compression 𝑁 𝐵𝐼

2𝑁 𝑃 show the data point
reduction by the PLA.

𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 𝑁 𝐵𝐼

2𝑁 𝑃 Maximum root mean square error

0.1 34.76 ± 12.38 0.06 ± 0.02Ω
0.5 54.02 ± 20.28 0.11 ± 0.03Ω
1.0 66.15 ± 26.04 0.14 ± 0.04Ω
2.5 87.42 ± 36.12 0.18 ± 0.06Ω
5.0 109.00 ± 46.37 0.23 ± 0.08Ω
8.5 130.28 ± 55.99 0.27 ± 0.09Ω
10.0 137.65 ± 59.16 0.28 ± 0.10Ω
15.0 159.06 ± 69.05 0.32 ± 0.11 Ω
25.0 191.96 ± 85.14 0.36 ± 0.14Ω
50.0 251.31 ± 113.90 0.43 ± 0.17 Ω

The parameter 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 influences the number of the segments which were obtained by PLA
on the filtered and de-noised BI measurement. The number of obtained line segments influences the
number of found valleys. More segments means that it is more likely that more valleys are found
be the subsequent heuristic valley search. All valleys that were found by the valley search must
then be classified into swallows and non-swallowing events. A higher number of valleys, whereas
the number of swallow related valley remains constant, increases the demands on the later applied
classifier. Thus, it is important to keep the number of found valleys as small as possible without
excluding valleys which are caused by swallowing.

It is known from previous investigations that a BI valley has a difference of 1.52 ± 0.56Ω between
the start point and the minimum point [147]. Thus, the maximal error between the original BI time
series and the approximated time series must be smaller than 1Ω. In Table 4.5, different𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟
values have been investigated on the datasets I, II, III, and IV. For each parameter value, the
compression and the maximum root mean square error between the original and the approximated
time series for all manually marked swallows are shown. A good compromise for a compression
rate above 100 and a root mean square error below 0.25Ω is achieved for 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 = 5.

4.4.4 Segmentation of BI Data by a Heuristic Valley Search

After finding and segmenting all valleys in the BI time series, it is not known which of these
valleys are related to swallowing. A subsequently applied classification has to reject all non-
swallowing related valleys in order to be able to automatically detect swallows with high specificity.
The classification accuracy can be improved a-priory by reducing the number of segmented non-
swallowing events. The number of segmented swallows and non-swallowing events depends
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Figure 4.19: Influence of VS𝑜𝑛𝑠𝑒𝑡 and VS𝑒𝑚𝑔 on segmentation is exemplarily shown on measurement data
from datasets I, II, and III. On the first sub-plot, the percentage of correctly segmented swallows is plotted.
The ratio of segmented non-swallows to segmented swallows is shown on the second sub-plot.

strongly on VS𝑜𝑛𝑠𝑒𝑡 ¹⁵ and slightly on VS𝑒𝑚𝑔 ¹⁶ . In Figure 4.19, the percentage of segmented swallows
and the ratio of non-swallowing events to swallows are plotted depending on VS𝑜𝑛𝑠𝑒𝑡 and VS𝑒𝑚𝑔 .
Datasets I, II, and III were used for this comparison. The same procedure was repeated on the dataset
IV and is shown in Figure 4.20.

It can be seen that a higher VS𝑜𝑛𝑠𝑒𝑡 almost linearly reduces the ratio of non-swallowing valleys
to swallowing valleys. On the other hand, a higher VS𝑜𝑛𝑠𝑒𝑡 value leads to a lower number of
successfully segmented swallows. A good trade-off between a low number of non-swallow events
and a low number of missed swallows is achieved for VS𝑜𝑛𝑠𝑒𝑡 = 0.3 and VS𝑒𝑚𝑔 = 0.35 for all datasets
I, II, III, and IV. This combination leads to approximately 1% of missed swallows and reduces the
ratio of non-swallow events to swallow to 3.5 for healthy subjects. For patients (dataset IV), 5% of
missed swallows and a ratio of non-swallow events to swallow of 4.05 is obtained by the selected
parameters.

The parameters VS𝑑𝑖𝑓 𝑓 and VS𝑏𝑜𝑢𝑛𝑑 were not further optimized. The parameter VS𝑑𝑖𝑓 𝑓 is
heuristically set to 0.5, which leads successfully segmentation of all swallowing related valleys. It is
not likely that varying this parameters lead to a different number of segmented swallows or reduces

¹⁵The parameter VS𝑜𝑛𝑠𝑒𝑡 defines the minimal EMG activity percentage in the beginning of a valley.
¹⁶The parameter VS𝑒𝑚𝑔 describes the width of the interval around the beginning of a valley in which EMG activity must

be present.
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Figure 4.20: Influence of VS𝑜𝑛𝑠𝑒𝑡 and VS𝑒𝑚𝑔 on segmentation is exemplarily shown on measurement data
from dataset IV. On the first sub-plot, the percentage of segmented swallows is plotted. The ratio of the
number of segmented non-swallows to segmented swallows is shown on the second sub-plot.

the number of non-swallowing events. This can also be assumed for the lower and upper bound
parameter VS𝑏𝑜𝑢𝑛𝑑 = [𝑣𝑠, 𝑣𝑠]¹⁷ which is set to 𝑣𝑠 = 0.2 s for the lower bound and to 𝑣𝑠 = 3.6 s for the
higher bound. This chosen parameter values of VS𝑏𝑜𝑢𝑛𝑑 leads to inclusion of all recorded swallows.

4.4.5 Swallowing Segmentation

The segmentation algorithm with the parameter set listed in Table 4.6 was applied to all datasets.
2879 (98.8%) from 2913 marked swallows could be successfully segmented from the datasets I, II,
and III which contains the measurement data from healthy subjects. Simultaneously, 9762 non-
swallowing related valleys are included as segmented valleys. Within the dataset IV (containing
data from patients), 705 (94.3%) from 748 marked swallows could be segmented, while 2894 non-
swallowing valleys were also segmented by the algorithm.

The numbers show that almost all swallows are included by the segmentation. The results show
also that a swallow segmentation based on EMG and BI measurement is not sufficient in separating
swallows from non-swallowing events with EMG activity. Thus, a subsequent classification inwhich
the segmented valleys are classified into swallows and non-swallows is necessary.

¹⁷The time duration of a swallowing valley is within a given bound VS𝑏𝑜𝑢𝑛𝑑 = [𝑣𝑠, 𝑣𝑠] which consists of a lower bound
𝑣𝑠 and an upper bound 𝑣𝑠.
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Table 4.6: List of the parameters for the swallowing segmentation of datasets I, II, III, and IV.

Name Default Reason for parameter choice

𝑡𝑟𝑚𝑎𝑥 10ms desired offset-detection latency of the double-threshold detector
𝑃𝑓 𝑎 0.01 results in a sufficiently high detection probability 𝑃𝑑

𝑆𝑁𝑅𝑚𝑖𝑛 3 dB minimal EMG that shall be detected
𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 0.2 s sufficient window length for estimating �̂�2𝑛
𝑁 ̂𝜁𝑇 𝐸𝑀𝐺𝑠 8 s sufficient measurement data length for estimating ̂𝜁
𝑡ℎ𝜎2

𝑑
0.25 expected percentage of periods in the EMG signal without activity

𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 5 good ratio between approximation error and compression
VS𝑏𝑜𝑢𝑛𝑑 [0.2, 3.6] s decreases the number of non-swallow valleys
VS𝑑𝑖𝑓 𝑓 0.5 leads to a reasonable valley end point
VS𝑒𝑚𝑔 0.35 s results in a high percentage of segmented swallows
VS𝑜𝑛𝑠𝑒𝑡 0.3 results in a high percentage of successfully segmented swallows

4.4.6 SVM and Feature Parameter Optimization

A C-SVM with RBF kernel was trained on manually categorized valleys. The hand switch for the
datasets I, II, and III and the FEES for the dataset IV were evaluated and a group vector was created
for all valleys by which all valleys have been classified into swallows and non-swallowing events.

Remaining parameters which have to be optimized and are not already defined in Table 4.6 are
the parameters of the SAX features¹⁸ and the learning parameter¹⁹ of the C-SVM. As this represents a
nonlinear multi-dimensional optimization problem which is not solvable within an acceptable time
frame by a complete grid search approach, the following strategy was applied to find an approximate
solution.

At first, the best parameter set (word length and alphabet size) for the SAX based feature
generation were estimated by a grid search by using default learning parameters for the C-SVM.
Due to the unbalanced data and as the learning parameters are not yet optimized, the area under
the ROC curve (AUC) metric should be used for evaluating the classifier performance, as proposed
in [170].

Then the obtained SAX parameter set was used to generate the feature vectors for all valleys
and the learning parameters were optimized by sensitivity in a second grid search.

The ROC curve is a two-dimensional measure of the classifier performance by which the true
positive rate is plotted against the false positive rate. Each point in the ROC curve represents one
realization of the trained classifier by which the hyperplane of the C-SVM is shifted by varying its
offset. The most commonly used measure for characterizing the ROC curve is area under the ROC
curve (AUC). A maximum value of one can be achieved by the AUC measure which means that the

¹⁸From each segmented valley, the BI time series are transformed into a SAX word with the specific SAX word length
𝑁 𝐵𝐼𝑃𝐴𝐴 and alphabet size 𝑁 𝐵𝐼𝑠𝑦𝑚 . Within the same time interval, the EMG time series is also transformed into a SAX word
with length 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 and alphabet size 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 . These parameters directly influence the feature vector which is generated for
each valley.

¹⁹The learning parameters 𝐶 and 𝛾 are influencing the training process of the classifier and have to be optimized
individually for each problem.
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Figure 4.21: Shown is an exemplary ROC curve of a trained classifier. The straight ROC curve of a
random classifier is shown as comparison.

classification error is zero. The worst performance is achieved by a random classifier which leads to
a AUC of 0.5. An exemplary ROC curve is shown in Figure 4.21.

For the first grid search, default values 𝐶 = 1, 𝛾 = 1/𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 for training the C-SVM
have been used, where 𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 is the dimension of the feature vector. As the swallowing
and the non-swallowing class were unbalanced, the weighting parameters within the C-SVM were
set to the inverse frequency of the corresponding class according to the Equations (4.67) and (4.68).
A five-fold cross-validation²⁰ was carried out for 𝑁𝑃𝐴𝐴 in a range from 5 to 85 and for 𝑁𝑠𝑦𝑚 in a
range from 4 to 64. The word length and the alphabet size were independently set for the SAX
words and all possible combinations were tested. The AUC was then calculated from the mean ROC
curve which has been obtained for each specific SAX parameter configuration. The SAX parameter
configurationwith the highest AUC is then selected. The highest AUCwas 0.95728 andwas obtained
with the SAX parameters 𝑁 𝐵𝐼𝑃𝐴𝐴 = 40, 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 = 40, 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8, and 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 = 16. The ten best SAX
parameter combinations are shown in Table 4.7. The resulting SAX words of all valleys from the
healthy subjects (datasets I, II, and III) are shown in Figure 4.23. The same SAX parameters were
applied to the patient dataset IV, which is shown in Figure 4.24.

²⁰The dataset is randomly divided into five equal parts with the same number of swallows in it. Then, a C-SVM is
evaluated five times on different combinations using four parts for training and the remaining data part for testing. For
each trained C-SVM, a ROC curve is calculated. Finally, a mean ROC is calculated from all five testing results.
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Table 4.7: Cross-validation AUC for the ten best SAX parameter combinations. Data from datasets I, II,
III, and IV were used.

𝑁 𝐵𝐼𝑃𝐴𝐴 𝑁 𝐵𝐼𝑠𝑦𝑚 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 AUC

40 8 40 16 0.95728
40 8 25 8 0.95724
40 8 55 8 0.95720
40 16 25 8 0.95719
25 16 25 8 0.95717
25 8 25 8 0.95716
25 64 25 8 0.95715
40 64 25 8 0.95708
40 32 25 8 0.95708
25 32 25 8 0.95708

After obtaining optimal SAX parameters, it was evaluated if the complete feature vector leads
to the best results. In addition to both SAX words of the BI and EMG sequence, 17 further features
which are based on certain areas, timing intervals, slopes and amplitudes of the extracted valley
and the corresponding EMG activity were used (cf. Section 4.3.7). In Table 4.8, the contribution of
these additional used features is reviewed by a five-fold cross-validation on the datasets I, II, III, and
IV. The AUC was again used as performance indicator. The best results were obtained by using the
complete feature vector which has a length of 97 entries.

Table 4.8: Cross-validation AUC for different feature vectors. Data from datasets I, II, III, and IV were
used. SAX parameters were set to 𝑁 𝐵𝐼𝑃𝐴𝐴 = 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 = 40, 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8, and 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 = 16. The learning parameter
were set to default values 𝐶 = 1 and 𝛾 = 1/𝑛𝑢𝑚_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠. Included features are marked by an “x”.

SAX - BI SAX - EMG Valley features ROC AUC
x x x 0.95728
x x 0.95046

x x 0.94062
x x 0.92638

x 0.91718
x 0.91325

x 0.87763

The second grid search was performed on the learning parameters 𝐶 and 𝛾 of the C-SVM with
RBF kernel. As the learning parameters are optimized in this grid search, sensitivity was used as
a performance indicator for the classifier. A five-fold cross-validation was carried out for each
parameter pair and the mean sensitivity was calculated. Finally, the parameter set was selected
which leads to the highest sensitivity value. Based on some exemplary performed training and
testing sessions, it was decided to search for 𝐶 in a range from 20 to 212 and for 𝛾 in a range from
2−12 to 20. The best performance was achieved for 𝐶 = 21.5 and 𝛾 = 2−5.5. The results of the grid
search are shown in Figure 4.22.
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Table 4.9: SAX and training parameters used for swallowing classification of datasets I, II, III, and IV.The
weighting parameters𝑊 + and𝑊 − are set to the inverse frequency of the corresponding class according
to the Equations (4.67) and (4.68).

SAX parameters C-SVM parameters

BI EMG
𝑁𝑃𝐴𝐴 40 40 𝐶 21.5
𝑁𝑠𝑦𝑚 8 16 𝛾 2−5.5

𝑊 + 1.559
𝑊 − 0.441
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Figure 4.22: Grid search for finding the best learning parameters for datasets I, II, III, and IV. The mean
sensitivity of a five-fold cross-validation is shown for different learning parameters 𝐶 and 𝛾 .
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Figure 4.23: SAX-features for EMG and BI of 2879 swallows (a) and 9762 non-swallowing events from
datasets I, II, and III (𝑁 𝐵𝐼𝑃𝐴𝐴 = 40, 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 = 40, 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8, and 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 = 16).
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Figure 4.24: SAX-features for EMG and BI of 705 swallows (a) and 2894 non-swallowing events (b) from
dataset IV. (𝑁 𝐵𝐼𝑃𝐴𝐴 = 40, 𝑁 𝐸𝑀𝐺𝑃𝐴𝐴 = 40, 𝑁 𝐵𝐼𝑠𝑦𝑚 = 8, and 𝑁 𝐸𝑀𝐺𝑠𝑦𝑚 = 16).
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4.4.7 Classification Performance

As described in Section 4.3.6, valleys were extracted from the recorded EMG and BI time series
by the presented heuristic valley search algorithm. Although almost all swallow related valleys
could be segmented, several valleys with EMG activity which are not related to swallowing were
also segmented. This classification problem is solved by applying the trained C-SVM to the feature
vectors of all valleys which are classified into swallowing related valleys and non-swallowing related
valleys. The used parameters for feature calculation and training the C-SVM are summarized in the
Tables 4.6 and 4.9.

The performance of the classifier was evaluated by the leave-one-subject-out approach. The
leave-one-subject-out approach has the advantage that all patients/subjects are equally used to
evaluate the performance of a classifier for handling unknown measurement data. In this approach,
all valleys of one patient/subject are excluded from training and exclusively used for testing. This
was repeated for all patients/subjects (datasets I, II, III, and IV) and the test results of all the
individually trained C-SVM were summed up in a confusion matrix²¹.

The classification results are shown as confusion matrix in Table 4.10. The results of all
patients/subjects were obtained by applying the leave-one-subject-out approach on the datasets I, II,
III, and IV. The testing results for all datasets as well as parts of the testing results containing only
healthy subjects or only patients are presented as confusion matrices. The leave-one-subject-out
approach was also applied exclusively on the dataset IV in order to evaluate the performance of the
classifier and its features when only patient data are used for training. The classification results are
also plotted individually for each patient/subject in Figure 4.25.

Table 4.10: Performance of the classifier on the datasets I, II, III, and IV. The results are obtained
by the leave-one-subject-out approach by which every time the data from all datasets except one
patients/subjects are used for training. The confusion matrices are then the sum of all testing results.
The confusion matrix containing the number of correctly classified swallows (Sw.) and non-swallows
(Non-Sw.) is shown for the complete data, only for the data of the healthy subjects (datasets I - III) and
twice for the data of the patients (dataset IV). The classifier was trained by the leave-one-subject-out
approach on all datasets (I - IV) and only on the dataset IV. The results are obtained with the parameters
defined in the Tables 4.6 and 4.9.

Trained on: I, II, III, and IV I, II, III, and IV I, II, III, and IV IV
Tested on: I, II, III, and IV I, II, and III IV IV

Predicted
Sw. Non-Sw. Sw. Non-Sw. Sw. Non-Sw. Sw. Non-Sw.

Actual Sw. 3219 365 2742 137 477 228 577 128
Non-Sw. 1082 11574 909 8853 173 2721 379 2515

Sensitivity: 89.9% 95.2% 67.7% 81.8%
Specificity: 91.5% 90.7% 94.0% 86.9%
Precision: 74.8% 75.1% 73.4% 60.4%
Accuracy: 91.1% 91.7% 88.9% 85.9%

²¹The number of correctly classified swallows (TP), correctly classified non-swallows (TN), wrongly as swallow
classified non-swallows (FP), and wrongly as non-swallow classified swallows (FN) are calculated for each tested
patient/subject by comparing predicted and actual swallows and non-swallows. The confusion matrix is then obtained
by counting TP, TN, FP, and FN across all tested patients/subjects.
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Figure 4.25: The sensitivity, specificity, and accuracy are plotted for each subject/patient. The results are
obtained by testing the data of one subject/patient on the C-SVM which is trained on the datasets I, II,
III, and IV (see Table 4.10). The testing results for datasets I, II, and, III are shown in the left subplot. The
results for testing the dataset IV by the leave-one-subject-out approach are shown in the right subplot.

The testing results for the different types of recorded swallows and movements for the healthy
subjects of datasets I, II, and III are summarized in Table 4.11. Beside the number of recorded and
segmented events, the testing output of the trained classifier is shown by the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) counts.

The number of correctly segmented and classified swallows for dataset IV trained on datasets I,
II, III, and IV is shown for all different kind of swallowing consistencies in Table 4.12. The results for
training exclusively on the dataset IV are shown in Table 4.13. The different swallowing consistencies
are divided into swallows in which an expert determined a penetration and into swallows without
penetration. Beside the number of recorded and segmented events, the testing output of the trained
C-SVM is shown by the true positive (TP) and false negative (FN) counts.
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Table 4.11: Performance of the classifier on the datasets I, II, and III (healthy subjects). The results were
obtained by the same parameter set and classifier as used in Table 4.10. Beside the number of recorded
and segmented events, the testing output of the trained classifier is shown by the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) counts.

Type Recorded Segmented C-SVM trained on
datasets I - IV
TP TN FN FP

Saliva 928 925 856 0 69 0
Clearing post-swallow 152 146 135 0 11 0
5 ml water 28 28 28 0 0 0
10 ml water 95 95 94 0 1 0
20 ml water 922 898 867 0 31 0
30 ml water 29 29 29 0 0 0
Yogurt 397 397 387 0 10 0
Bread 71 71 66 0 5 0
20 ml water at different
conductibility

131 131 126 0 5 0

Swallowing in different head
positions

120 120 118 0 2 0

Mendelsohn maneuver 40 39 36 0 3 0
Sum swallowing 2913 2879 2742 0 137 0
Speaking 28 28 0 28 0 0
Head movements 219 63 0 51 0 12
Tongue / jaw movements 84 27 0 21 0 6
Sum movements 331 118 0 100 0 18
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Table 4.12: Achieved performance of the trained classifier for different bolus types of dataset IV. The
results were obtained by the same parameter set and the classifier which was trained on the datasets
I, II, III and IV as used in Table 4.10. The different consistencies are grouped into swallows where a
penetration occurred and into swallows where no penetration was observed by the expert. The testing
output of the classifiers is shown by the true positive (TP) and the false negative (FN) counts.

Type Recorded Segmented C-SVM trained on
datasets I - IV
TP FN

Clearing post-swallow 5 5 2 3
Saliva 130 115 83 32
Water 226 211 143 68
Semisolid 204 197 135 62
Bread 98 97 64 33
Sum of swallows without
penetration

663 625 427 198

Saliva with penetration 33 31 13 18
Water with penetration 13 13 12 1
Semisolid with penetration 38 35 24 11
Bread with penetration 1 1 1 0
Sum swallows with penetration 85 80 50 30

Table 4.13: Performance for different bolus types of the classifier trained and tested on the dataset
IV by the leave-one-subject-out approach. The results were obtained by the same parameter set and
the classifier which was trained on the dataset IV as used in Table 4.10. The different consistencies
are grouped into swallows where a penetration occurred and into swallows where no penetration was
observed by the expert. The testing output of the classifiers are shown by the true positive (TP) and the
false negative (FN) counts.

Type Recorded Segmented C-SVM trained on
dataset IV
TP FN

Clearing post-swallow 5 5 3 2
Saliva 130 115 99 16
Water 226 211 172 39
Semisolid 204 197 159 38
Bread 98 97 81 16
Sum of swallows without
penetration

661 625 514 111

Saliva with penetration 33 31 21 10
Water with penetration 13 13 13 0
Semisolid with penetration 38 35 28 7
Bread with penetration 1 1 1 0
Sum swallows with penetration 85 80 63 17
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4.5 Conclusions

It is shown that BI and EMG measurement data which are recorded at the neck can be used for
automatic detection of swallowing events. Recorded data from healthy subjects and patients who
suffered from oropharyngeal dysphagia are used for evaluating the developed algorithms. In total,
several hours of recorded EMG and BI time series from more than 70 different subjects could be
successfully processed by the presented algorithms such that swallows could be found in the time
series with high sensitivity and specificity.

Due to the observation that swallowing is initiated by EMG activity and followed by a deflection
in the BI signal, the problem of finding all swallows in the measurement data is solved as follows:
Firstly, EMG activity is detected. Then, all valleys in the BI measurement signal which coincide with
EMG activity at the beginning are segmented. Finally, a C-SVM is used to distinguish valleys with
EMG activity which are caused by swallowing from all other valleys.

EMG activity is detected by an optimally tuned double-threshold detector. The window length
𝑚 and the second threshold 𝑟0 are estimated based on the desired false-alarm probability 𝑃𝑓 𝑎 ,
a worst-case SNR 𝑆𝑁𝑅𝑚𝑖𝑛, and the desired offset-detection latency 𝑡𝑟𝑚𝑎𝑥 . On each recorded
EMG measurement, noise, and disturbance variance are automatically estimated and the optimal
threshold ̂𝜁 is calculated. The feasibility of this approach was successfully demonstrated on a
performance benchmark test.

In order to sufficiently and robustly segment all valleys in the BI signal, a PLA algorithm is
applied on the BI signal. It is shown that this approximationmethod can sufficiently approximate the
BI signal such that the dimensionality is reduced and the maximal error is lower than the expected
mean drop (1.52 ± 0.56Ω) in the BI signal during a swallow. By setting the 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 = 5 in the
PLA algorithm, the root mean square error is below 0.25Ω which ensures that all swallows will be
approximation by at least two segments.

A heuristic valley search algorithm is introducedwhich segments all valleys in the approximated
BI time series. A valley consists of a starting line segment with negative slope and an ending line
segment with a positive slope. It is also demanded that enough EMG activity around the starting
point exists and that only one minimum exists in the approximated BI time series. Almost all valleys
which are caused by swallowing were found. Besides, several valleys which do not belong to any
swallow were also segmented.

It is shown that the ratio between segmented swallows and non-swallows is strongly influenced
by the parameter VS𝑜𝑛𝑠𝑒𝑡 which defines how much EMG activity must be present in the beginning
of a valley. By increasing this parameter, the ratio of the expected occurrence of non-swallowing
related valleys to swallows could be reduced to 3.40 for healthy subjects and 4.11 for patients. The
parameter VS𝑜𝑛𝑠𝑒𝑡 influences also the detection rate. For healthy subjects, the ratio of segmented
swallows to all recorded swallows is only slightly reduced to 98.9%. For the patient dataset IV, the
resulting ratio is 94.3%.

Finally, all segmented valleys are classified into swallows and non-swallows by a trained
classifier. In order to achieve good classification performance, meaningful features are selected.
Features are derived from the valley itself such as value and time differences, areas and slopes.
Furthermore, features that are related to EMG activity as the area under the envelope and time
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differences to the BI valley are used. It has been found that symbolic aggregate approximation (SAX)
words from the BI and EMG time series around the corresponding valley are additional meaningful
features. Each time series part is normalized and translated into awordwith fixedword and alphabet
size.

In order to calculate SAX words for the EMG time series, the method from Li et al. [163] was
extended for signals with a 𝜒2 distribution like the squared and preprocessed EMG time series.
Optimal alphabet sizes and word lengths have been determined by a grid search. From all used
features, both SAX words are the most important features.

Segmented valleys which belong to swallowing are separated from non-swallowing related
valleys by applying a trained classifier on the corresponding feature vectors. In this work, only
a C-SVM with RBF basis function is evaluated for classifying swallow related valleys. A grid search
for finding optimally learning parameter values have been performed. Both considered classes,
swallows and non-swallows, are not well balanced. Weighting depending on the class frequency
is therefore applied.

It was observed that the swallowing patterns are strongly correlated within the same sub-
ject/patient. For that reason, approaches which just divide the dataset into equal parts for training
and testing would benefit from this intra-subject correlation. The same would be held for a simple
80% / 20% split where the unsolvable question remains which part of the dataset should be used
for testing. In order to evaluate the performance of the C-SVM in a more fair way, the leave-
one-out approach is modified to the leave-one-subject-out approach. An own classifier for each
subject/patient without using the specific data from this patient/subject is trained and only tested
on the data from this patient/subject. By repeating this for each patient/subject and summing up all
results, it is evaluated how good the classifier can correctly classify swallow related valleys for an
unknown subject/patient.

A C-SVM with RBF kernel and optimally chosen learning parameters and feature weights can
classify swallows and non-swallowing related valleys with good sensitivity and specificity. By
evaluating the datasets I, II, III, and IV (healthy subjects and patients) with the leave-one-subject-out,
method a high sensitivity (88.9%) and specificity (91.5%) could be obtained. This balanced sensitivity
and specificity could be achieved by weighting the feature vectors depending on the number of
swallows and non-swallows. Due to the high number of non-swallowing related valleys (12656) in
comparison to segmented swallows (3584), the obtained precision (74.8%) is slightly lower than the
sensitivity and the specificity. When the number of not successfully segmented swallows is taken
into account (77 of 3661 swallows could not be successfully segmented and are not included in the
classification), the sensitivity is slightly reduced from 89.9% to 87.9%.

The individual performance for each subject and patient is shown in Figure 4.25. The sensitivity
for four healthy subjects and seven patients is below 50%. For all other 27 subjects and 34 patients a
better swallowing detection performance could be achieved. The achieved accuracy is at least 80%
for all subjects and 70% for all patients.

The obtained classification results have been analyzed separately for the healthy subjects, for
which a sensitivity of 95.2% and a specificity of 90.7% could be achieved. The sensitivity which is
obtained when the missing swallows are taken into account (34 from 2913 could not be segmented)
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remains high with 94.1%. In the following the sensitivity²² for different kinds of swallowing is
reported: saliva swallows (92.2%), clearing post-swallows (88.8%), 5mlwater swallows (100%), 10ml
water swallows (98.9%), 20ml water swallows (94.0%), 30ml water swallows (100%), yogurt (97.4%),
bread (93.0%), swallows of water with different conductibilities (96.2%), swallowing in different
head positions (98.3%), and Mendelsohn maneuvers (90.0%). The sensitivity of all different types
of swallows is at least 88%, where clearing post-swallows and bread swallows show the least best
performance. Due to the low number of recorded swallows for some types, 100% could be reached.

A clearing post-swallow, which is observed in some subjects as an immediately executed second
swallow, is not an entirely voluntary swallow. Some features depend on the EMG and the BI signal
in the period before the beginning of a swallow. Thus, a clearing post-swallowmay contain deviated
features which differ from all other kinds of swallows and may therefore not be sufficiently detected
by the classifier.

A Mendelsohn maneuver differs from all other kinds of swallows as the total swallowing time
is significantly larger than normal swallowing time. Several features are affected by the length of
a swallow. Thus, the sensitivity is expected to be lower than for detecting Mendelsohn maneuvers.
Nevertheless, the observed performance of the C-SVM is surprisingly good in detectingMendelsohn
maneuvers.

Movements can be distinguished from swallows with a specificity of 94.6%. All marked
movements except twenty tongue and jaw moments could be correctly classified. Tongue and jaw
movements lead to a deflection in the BI signal, but contrary to swallowing such movements lead
to temporary rising within the BI signal. Between two peaks which are caused by tongue or jaw
movements, a valley with EMG activity may segment in some cases. Thus, the specificity is slightly
reduced for tongue and jaw movements.

For the dataset IV (patients) a sensitivity of 67.7%, specificity of 94.0%, and precision of 73.4%
could be achieved. Whereas the achieved precision and specificity are good, the sensitivity is low.
The sensitivity drops down to 63.8%when the results are compared to the total number of swallows
and not only on the number of segmented swallows. The following sensitivity values are defined
with respect to the total number of swallows. The C-SVM can classify swallows with penetration
(sensitivity of 58.8%) almost as good as swallows without penetration (sensitivity of 64.4%). The
different bolus consistencies are almost equally classified: Saliva (58.9%), water (64.9%), semisolid
(65.7%) and bread (65.7%).

For the previously presented results, a C-SVM was trained on the complete datasets I, II, III, and
IV except for the tested subject/patient. When only the dataset IV was used for training and testing,
a sensitivity of 81.8%, a specificity of 86.9% and a precision of 60.4% were achieved. Thus, the
sensitivity was improved by using only data from dataset IV. When the number of swallows which
could not be segmented is included, the sensitivity becomes 77.3%. In the following, the sensitivity
is defined with respect to the total number of swallows. Swallows with penetration and without
penetration are again almost equally classified with a sensitivity of 77.6% for swallows without
penetration and 74.1% for swallows with penetration. Saliva could be classified with a sensitivity of
73.6%, water swallows with 77.4%, semisolid swallows with 77.3%, and bread swallows with 82.8%.

²²The sensitivity is calculated by comparing the correctly classified swallows to the total number of recorded swallows.
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The presented methods for finding the positions of recorded swallows could be used for enhanc-
ing FEES examination. When EMG and BI is additionally recorded at the neck, the examiner would
have access to all recorded swallowing positions. This could significantly improve the reliability
of FEES for an inexperienced examiner. Swallowing can then be analyzed in the pharyngeal phase
where the video of the FEES shows mainly a “white-out”.

Swallowing therapy could be improved by continuously recording all swallows and giving
feedback of the last recorded swallows back to the patients and therapist. Specific characteristics
which are calculated from the BI and EMG time series during swallowing could be represented
in reference of recorded mean values. Spontaneous swallowing frequency of the patient could be
measured which could be an important feature in indicating dysphagia [171].
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Assessment of Pharyngeal Swallowing

by Bioimpedance and EMG

5.1 Summary

Aim: The correlation between bioimpedance (BI) / electromyography (EMG) measurements at the
neck and the displacements of the hyoid bone and the laryngeal cartilage during swallowing is
evaluated.

Methods: BI and EMG measurements at the neck were performed simultaneously to a videofluo-
roscopy (VF) of the swallowing process. The displacements of the hyoid bone and the laryngeal
cartilage in superior and anterior direction were extracted from the recorded VF frames. The
displacement directions were aligned to the coordinate system which is spanned by the vertebrae
from C2 to C4. Additionally, start and stop times of bolus flow through the upper esophagus
sphincter were obtained by VF. Recorded swallows were automatically segmented in the EMG and
BI time series, and segmented swallows which coincide with bolus transit were selected for analysis.
Pearson’s correlation coefficients were calculated for maximal displacement amplitudes and the
resulting change in BI related to the swallowing start. In a further step, Pearson’s correlation
coefficients were calculated for the displacement trajectories and the BI time series during all
selected swallows. The inter-patient variability was assessed by calculating Pearson’s correlation
coefficients for each patient individually.

Results: In total, 92 swallows with bolus passage were segmented from the recorded measurement
of all 17 patients. All patients had a disturbed pharyngeal swallowing phase. The Pearson’s corre-
lation coefficient between the maximum amplitude change in BI and the maximum displacement
of the larynx in anterior direction was −0.55 ± 0.17. A correlation of −0.7 ± 0.14 was found for the
superior direction. For the maximum displacement of the hyoid, a Pearson’s correlation coefficient
of −0.52 ± 0.16 in the anterior direction and −0.64 ± 0.15 in the superior direction was obtained.
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The Pearson’s correlation coefficients for the complete hyoid trajectory and the BI time series was
−0.65 ± 0.05 in anterior direction and −0.65 ± 0.04 in superior direction, respectively. For the larynx,
the obtained correlation was −0.6 ± 0.05 in anterior direction, whereas in superior direction a value
of 0.71 ± 0.03 was observed. The mean value of the correlation coefficients, which were individually
calculated for each patient, between BI and the hyoid displacement was −0.72 ± 0.21 in anterior
direction and −0.46±0.45 in superior direction. Mean Pearson’s correlation coefficients of −0.6±0.36
and −0.7 ± 0.23 were obtained for the laryngeal displacement in anterior and superior direction,
respectively.

Conclusion: A deeper understanding of the underlying effects, which cause a deflection within
the BI time series during swallowing, was developed. The results imply that BI measurements at
the neck reflect the pharyngeal phase of swallowing. As BI is mostly correlated to the superior
displacement of hyoid bone and larynx, it may be a meaningful measurement method for therapy
and diagnosis of dysphagia.

Contribution: The author contributed all the presented methods for extracting the position of
hyoid bone and the laryngeal cartilage in the recorded videofluoroscopic frames and performed the
statistical data analysis. The recorded videofluoroscopy and the recorded EMG and BImeasurements
were analyzed independently using different methods in [172], [135], and [147].

5.2 Motivation

As described in Section 2.1.6.7, a four-electrode transcutaneous BI measurement at the neck was
firstly used by Kusuhara et al., Nakamura et al., and Yamamoto et al. [22], [96], [97] in order to assess
swallowing induced movements. They observed that swallowing causes a repeatable deflection in
the BI signal. The measured BI signal was interpreted by Kusuhara et al. [22] as a reflection of the
entire swallowing process (oral, pharyngeal, esophageal phase) caused by movement of the larynx,
pharynx, throat, and esophagus. The end of the oral phase is indicated by the begin of the drop-off
in bioimpedance, followed by the pharyngeal phase which ends at the lowest measured BI value.
Finally, the bioimpedance is going back to its baseline during the esophageal phase. However, they
did not verify their assumption on a gold standard as VF.

Decreased hyoid and laryngeal movements within the pharyngeal swallowing phase may lead to
disturbances in oropharyngeal filling, bolus transport, airway closure, and upper esophagus sphinc-
ter (UES) opening [173]. Thus, insufficient hyoid and laryngeal displacement may lead to penetration
or aspiration. Steele et al. [174] scaled the hyoid and laryngeal displacement of 28 patients with
respect to their specific C2-C4 distance. The anterior and superior displacement was measured
in percentage of the C2-C4 distance and correlated to the presence of penetration/aspiration and
post-swallow pharyngeal residuals. A significant higher occurrence of penetration/aspiration was
found in patients which had an anterior movement of the hyoid lower than the 25% percentile.
Post-swallow pharyngeal residuals were found to be associated with patients with an anterior
laryngeal displacement which is lower than the 25% percentile of all measured anterior laryngeal
displacements.
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The work of Steele et al. [174] shows that a significant correlation between reduced hyoid and
laryngeal displacement and penetration/aspiration exists. Thus, other measurement methods which
sensor output correlates to the hyoid and laryngeal displacement may be used to estimate the risk
for penetration/aspiration and post-swallow pharyngeal residuals.

5.3 Methods

5.3.1 Subjects

Patients were recruited who required a videofluoroscopic swallowing study (VFSS) for examination
of their swallowing ability. All patients were given an explanation and signed a consent. The
exclusion criteria were pregnancy, implanted cardiac pacemaker or defibrillator, stent, or central
venous catheter. All subjects were awake and could sit upright during the examination. This study
was approved by the ethic board at the Charité Berlin (EA1/160/09).

5.3.2 Measurement Setup

Each subject was sitting while a lateral VF (Pulsera, Philips, 15 frames/seconds) of their neck area
was performed. BI and EMG were simultaneously measured at the neck. The EMG and the BI
measurement signals were continuously recorded by a personal computer (PC). The analog video
stream was converted to a digital video stream by a universal serial bus (USB) video grabber and
finally saved on the same PC together with a time stamp for each received frame for synchronization.

The patients were asked to take a contrast agent (Gastrografin®) of 10 ml into their mouth and
swallow it on command after the recordingwas started. The recordingwas stoppedwhen the patient
successfully swallowed the liquid or the maximal recording time of 10 seconds was reached. In
average three recordings were performed by each patient.

For the measurement of the trans-pharyngeal BI at the neck, the four-electrode method at a
frequency of 50 kHz was used. Additionally, EMG was measured across both voltages measuring
electrodes. For this, Blue Sensor N ECG electrodes (Ambu A/S, Denmark) were used. The electrode
positions which are used for all measurements are defined as follows (see also Fig. 4.1):

• The current electrodes are placed bilaterally on the upper onset of the sternocleidomastoid
muscle below the mastoid process.

• The voltage measurement electrodes are placed laterally on the gap between hyoid bone and
the thyroid cartilage symmetrically on both sides.

5.3.3 Extraction of Hyoid and Laryngeal Displacement

Structures which should be tracked across all frames are hyoid bone, larynx, C2 vertebra, and C4
vertebra (see Fig. 5.1). The point 𝑃ℎ𝑦𝑜𝑖𝑑 is set to the most anterior-inferior point of the hyoid bone.
The point 𝑃𝑙𝑎𝑟𝑦𝑛𝑥 is set to the most anterior-inferior point of the laryngeal cartilage. The reference
points 𝑃𝐶2 and 𝑃𝐶4 are the most anterior-inferior points of both vertebral bodies.
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The video clips were processed by the software tool Kinovea¹ for structural movement tracking.
The software contains a semi-automatic tracking function for manually marked pixels. Beginning
from the manually set start position, each marker is automatically transferred to the next frame to
the position which has the same brightness distribution as in the frame before. The automatically
proposed position is then manually reviewed and corrected if necessary. The position data of all
tracked structures are exported with sub-pixel accuracy. A conversion of pixel coordinates into
metric length measurements was carried out individually for each recording based on the known
diameter (12mm) of the used round electrodes, which are visible in the VF. Additionally, frames
were marked in which the UES opened and trans-UES flow was visible.

The orthogonal coordinate system with C4 as origin and the C2-C4 line as one axis is used for
measuring hyoid and laryngeal displacements [175]. The points 𝑃ℎ𝑦𝑜𝑖𝑑 and 𝑃𝑙𝑎𝑟𝑦𝑛𝑥 are transformed
from the camera aligned 𝑥-𝑦-coordinate system (with origin 𝑃𝐶4) into the �̃�-�̃�-coordinate system
which is rotated such that the �̃� axis goes through the point 𝑃𝐶2. The notion in the C2-C4 coordinate
system is ̃𝑃ℎ𝑦𝑜𝑖𝑑 and ̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥 .

reference electrode

current source electrodes voltage measurement electrodes

𝑦

𝑥
�̃�

𝜙

�̃�
𝑃𝐶2
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𝑃𝐶4
𝑃𝑙𝑎𝑟𝑦𝑛𝑥

𝑃𝐶4

𝑃𝐶2

�̃�
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Figure 5.1: Definition of the tracking points and their coordination system. ̃𝑃ℎ𝑦𝑜𝑖𝑑 and ̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥 are finally
extracted from the VF with respect to the coordinate system defined by 𝑃𝐶2 and 𝑃𝐶4. The recorded VF
image is also shown in [172] and used in Fig. 3.4 from [147].

All four points were tracked by two experts (𝑒 = {1, 2}) across all available frames 𝑘 = 1, … , 𝑁𝑘 ,
where 𝑁𝑘 is the number of recorded frames. The obtained time series are denoted as {𝑃𝐶2,𝑒(𝑘)},
{𝑃ℎ𝑦𝑜𝑖𝑑,𝑒(𝑘)}, and {𝑃𝑙𝑎𝑟𝑦𝑛𝑥,𝑒(𝑘)}². In the next step, the angle 𝜙𝑒(𝑘) between the C2-C4 oriented
coordinate system and the video frame related coordinate system is calculated. The angle 𝜙𝑒(𝑘)
is calculated for each frame 𝑘 and the calculation is repeated for each expert 𝑒:

𝜙𝑒(𝑘) = atan2(𝑃𝑥𝐶2,𝑒(𝑘), 𝑃𝑦𝐶2,𝑒(𝑘)) , 𝑘 = 1, … , 𝑁𝑘 . (5.1)

¹http://www.kinovea.org
²Each obtained point consists of a 𝑥 and 𝑦 component. The point {𝑃𝐶4} is the origin of the coordinate system and

therefore always zero.
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The coordinate system is changed in each frame by rotating all points towards the C2-C4
coordinate system using the rotation matrix:

𝑟𝑜𝑡𝑒(𝑘) = [ cos(𝜙𝑒(𝑘)) − sin(𝜙𝑒(𝑘))
sin(𝜙𝑒(𝑘)) cos(𝜙𝑒(𝑘))

] , 𝑘 = 1, … , 𝑁𝑘 . (5.2)

The rotation matrix is multiplied with the tracked points of larynx and hyoid in order to transform
all points into the new coordination system.

[
̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑒(𝑘)
̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑒(𝑘)

] =𝑟𝑜𝑡𝑒(𝑘) [
𝑃𝑥ℎ𝑦𝑜𝑖𝑑,𝑒(𝑘)
𝑃𝑦ℎ𝑦𝑜𝑖𝑑,𝑒(𝑘)

] , (5.3)

[
̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑒(𝑘)
̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑒(𝑘)

] =𝑟𝑜𝑡𝑒(𝑘) [
𝑃𝑥𝑙𝑎𝑟𝑦𝑛𝑥,𝑒(𝑘)
𝑃𝑦𝑙𝑎𝑟𝑦𝑛𝑥,𝑒(𝑘)

] , 𝑘 = 1, … , 𝑁𝑘 . (5.4)

Then, both independently obtained trajectories are combined by taken the mean value:

̃𝑃ℎ𝑦𝑜𝑖𝑑 = (( ̃𝑃ℎ𝑦𝑜𝑖𝑑,𝑒=1(𝑘) + ̃𝑃ℎ𝑦𝑜𝑖𝑑,𝑒=2(𝑘)) /2 , (5.5)
̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥 = (( ̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥,𝑒=1(𝑘) + ̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥,𝑒=2(𝑘)) /2 , 𝑘 = 1, … , 𝑁𝑘 . (5.6)

{ ̃𝑃ℎ𝑦𝑜𝑖𝑑 } consists of { ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑 }, which is the anterior movement of the hyoid bone and { ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑 },
which is the superior movement of the hyoid bone. { ̃𝑃𝑙𝑎𝑟𝑦𝑛𝑥 } consists of { ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥 } and { ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥 },
respectively. The movement definitions of �̃� and �̃� for the larynx are the same as for the hyoid bone.

5.3.4 Signal Pre-processing of EMG and BI

In order to apply the swallow segmentation algorithm to the measurement data, the pre-processing
from Section 4.3.3 is applied to the recorded EMG and BI.

Additionally, the BI signal is filtered by a non-causal low pass of fourth order with a cut-off
frequency of 7Hz and resampled to the time stamps of the corresponding video frames from the
VF. Therefore, one BI measurement sample at each recorded video time stamp is saved together
with the three positions ( 𝑃ℎ𝑦𝑜𝑖𝑑 , 𝑃𝑙𝑎𝑟𝑦𝑛𝑥 , and 𝑃𝐶2) of the corresponding video frame. Recorded and
preprocessed data are exemplarily shown in Figure 5.2.

5.3.5 Swallow Segmentation

Possible swallow positions in the measurement data are selected by the swallow segmentation
algorithm (see Section 4.3.6). At first, all EMG activity periods are extracted by the double-threshold
onset detector. Used parameters for the detector were 𝑡𝑟𝑚𝑎𝑥 = 0.01 s, 𝑆𝑁𝑅𝑚𝑖𝑛 = 3 dB, and 𝑃𝑓 𝑎 = 0.01.
The noise variance 𝑁�̂�2𝑛 and the first threshold ̂𝜁 are estimated for each recording as described in
Section 4.3.4.4 using the parameters 𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 = 0.2 s and 𝑁 ̂𝜁𝑇 𝐸𝑀𝐺𝑠 = 8 s.

The piece-wise linear approximation (PLA) is performed on the BI data using the bottom-up
algorithm with 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 = 5. Valleys containing EMG activity are searched and their start and
end times are saved. The following parameters were used for the valley search algorithm: VS𝑏𝑜𝑢𝑛𝑑 =
[0.2, 3.6], VS𝑜𝑛𝑠𝑒𝑡 = 0.3, VS𝑒𝑚𝑔 = 0.25 s, and VS𝑑𝑖𝑓 𝑓 = 0.5. Finally, the values 𝐵𝐼𝑠𝑡𝑎𝑟𝑡,𝑖 , 𝐵𝐼𝑚𝑖𝑛,𝑖 ,
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𝐵𝐼𝑒𝑛𝑑,𝑖 , 𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡,𝑖 , and 𝐸𝑀𝐺𝑒𝑛𝑑,𝑖 are extracted for swallow 𝑖 which describes the corresponding
EMG activity and BI valley (cf. Fig. 4.16).

5.3.6 Data Processing

All valleys are neglected which are shorter than the duration of three frames or do not contain any
trans-UES bolus flow at all. The remaining valleys are considered as swallows. From each swallow
sequences the first value is subtracted in order to remove the offset of themeasurementwhich should
not be considered in the analysis. The time series for changes in BI measurement during swallow 𝑖
are written as

{Δ𝐵𝐼𝑖} = 𝐵𝐼𝑖(1) − 𝐵𝐼𝑖(4), … , 𝐵𝐼𝑖(𝑁𝑖) − 𝐵𝐼𝑖(4) , 𝑖 = 1, … , 𝑆 , (5.7)

where 𝑆 is the number of segmented swallows, 𝐵𝐼𝑖(4) is defined as 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 , and 𝐵𝐼𝑖(𝑁𝑖) is defined as
𝐵𝐼𝑒𝑛𝑑 of swallow 𝑖. Thus, three frames before 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 are considered, as the movement trajectories
sometimes start a little bit earlier than 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 . The displacement trajectories of swallow 𝑖 are build
from the recorded points { ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑 } and { ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑 } and stored into {𝐻 �̃�𝑖} and {𝐻 �̃�𝑖} beginning from three
frames before 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 to the valley endpoint 𝐵𝐼𝑒𝑛𝑑 . The same was done for { ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥 } and { ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥 }
and the resulting displacement trajectories for swallow 𝑖 are denoted as {𝐿�̃�𝑖} and {𝐿�̃�𝑖}.

{𝐻 �̃�𝑖} = ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(1) − ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(4), … , ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(𝑁𝑖) − ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(4) , (5.8)

{𝐻 �̃�𝑖} = ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(1) − ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(4), … , ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(𝑁𝑖) − ̃𝑃 �̃�ℎ𝑦𝑜𝑖𝑑,𝑖(4) , (5.9)

{𝐿�̃�𝑖} = ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(1) − ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(4), … , ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(𝑁𝑖) − ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(4) , (5.10)

{𝐿�̃�𝑖} = ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(1) − ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(4), … , ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(𝑁𝑖) − ̃𝑃 �̃�𝑙𝑎𝑟𝑦𝑛𝑥,𝑖(4) , (5.11)

where 𝑖 = 1, … , 𝑆.
The linear relationship between the extracted displacement trajectories and the corresponding

changes in BI measurements is analyzed using the Pearson correlation coefficient 𝑟 . The swallow
sequences are stringed together in order to be able to calculate a correlation. For BI, a time series is
build by

{Δ𝐵𝐼 } = {Δ𝐵𝐼1}, … , {Δ𝐵𝐼𝑆} . (5.12)

The same procedure is repeated for all four displacement trajectories which results in the time series
{𝐻 �̃�}, {𝐻 �̃�}, {𝐿�̃�}, and {𝐿�̃�}.

The minimum of {Δ𝐵𝐼𝑖} (maximal BI drop) is correlated to the maximum of the hyoid and laryn-
geal displacement in anterior and superior direction for each swallow 𝑖. The Pearson correlation
coefficient 𝑟 is then calculated for the extracted minimum and maximum values across all swallows.
The largest drop in BI during swallow 𝑖 is found by

𝐵𝐼 𝑑𝑟𝑜𝑝𝑖 = argmin𝑘 Δ𝐵𝐼𝑖(𝑘) , 1 < 𝑘 < 𝑁𝑖 . (5.13)
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Figure 5.2: Pre-processed BI measurement data during a swallow together with the extracted displace-
ment trajectories of hyoid and larynx. The timing of the observed trans-UES bolus flow is shown by the
blue area. The time at 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 is defined as zero.

For all of the four movement trajectories, the corresponding maximum displacement during a
swallow is extracted (𝐻�̃�𝑚𝑎𝑥𝑖 , 𝐻�̃�𝑚𝑎𝑥𝑖 , 𝐿�̃�𝑚𝑎𝑥𝑖 , and 𝐿�̃�𝑚𝑎𝑥𝑖 ):

𝑇𝑚𝑎𝑥𝑖 = argmax
𝑘

𝑇𝑖(𝑘) , 1 < 𝑘 < 𝑁𝑖 , (5.14)

where 𝑇𝑚𝑎𝑥𝑖 is standing for the four displacements 𝐻�̃�𝑚𝑎𝑥𝑖 , 𝐻�̃�𝑚𝑎𝑥𝑖 , 𝐿�̃�𝑚𝑎𝑥𝑖 , and 𝐿�̃�𝑚𝑎𝑥𝑖 . The values
of the maximum BI amplitude drop and displacement amplitudes during each swallow are merged
into a single set which results in {𝐵𝐼 𝑑𝑟𝑜𝑝}, {𝐻 �̃�𝑚𝑎𝑥 }, {𝐻 �̃�𝑚𝑎𝑥 }, {𝐿�̃�𝑚𝑎𝑥 }, and {𝐿�̃�𝑚𝑎𝑥 }.

5.3.7 Statistical Analysis across all Patients

The linear relation between the displacement of hyoid and larynx and the measured BI values
is expressed by the Pearson’s 𝑟 . Additionally, slope and intercept values are calculated. As the
true distribution is unknown, the 95% confidence interval of 𝑟 is estimated by bootstrapping
[176]. All statistical values are calculated³ with 10000 bootstrapping iterations. Considered are the
complete time series {Δ𝐵𝐼 }, {𝐻 �̃�}, {𝐻 �̃�}, {𝐿�̃�}, and {𝐿�̃�} as well as the BI drop {𝐵𝐼 𝑑𝑟𝑜𝑝} and maximal
displacement amplitudes {𝐻 �̃�𝑚𝑎𝑥 }, {𝐻 �̃�𝑚𝑎𝑥 }, {𝐿�̃�𝑚𝑎𝑥 }, and {𝐿�̃�𝑚𝑎𝑥 }.

³The R project (http://r-project.org) with the boot package (https://cran.r-project.org/web/packages/
boot/) are used for statistically calculations.
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5.3.8 Individual Statistical Analysis for each Patient

The time series of all swallows belonging to patient 𝑝 are grouped. The resulting time series are
{Δ𝐵𝐼 𝑝}, {𝐻 �̃�𝑝}, {𝐻 �̃�𝑝}, {𝐿�̃�𝑝}, and {𝐿�̃�𝑝}. For each patient 𝑝, Pearson’s correlation coefficient 𝑟𝑝 is
calculated from the time series {Δ𝐵𝐼 𝑝} to all displacement time series.

The method from meta-analysis according to [177] can be used to calculate weighted mean
coefficients across all patients. The weighted mean correlation 𝑟 is calculated by:

𝑟 =
∑𝑘

𝑝=1 𝑁𝑝𝑟𝑝
∑𝑘

𝑝=1 𝑁𝑝
, (5.15)

where 𝑁𝑝 is the number of data points of patient 𝑝, 𝑘 is the number of patients, and 𝑟𝑝 is the
correlation coefficient of the patient 𝑝. The variance of sample effect sizes can be calculated by:

𝜎2𝑟 =
∑𝑘

𝑝=1 𝑁𝑝(𝑟𝑝 − 𝑟)2

∑𝑘
𝑝=1 𝑁𝑝

. (5.16)

The sampling error variance is calculated by

𝜎2𝑒 = (1 − 𝑟2)2
𝑁 − 1 . (5.17)

The variance in population effect size �̂�2𝑝 = 𝜎2𝑟 − 𝜎2𝑒 can be used to calculate the 95% confidence
interval:

Confidence Interval = 𝑟 ± 1.96√�̂�2𝑝 . (5.18)

5.4 Results

5.4.1 Test Subjects

19 patients participated in this study. Due to synchronization problems between BI/EMG measure-
ment and VF recording in two patients, 17 patients (mean age = 67.4 ± 10.5, 15 male, 2 female) were
finally included in the analysis⁴ . All patients showed abnormalities in the pharyngeal swallowing
phase.

5.4.2 Correlation and Regression Analysis

The complete data set contained 2828 samples composed of VF, BI, and EMG measurements. The
automatic segmentation algorithm found 238 valleys. In 92 from 103 manually marked trans-UES
bolus flow sequences, an appropriate BI valley with EMG activity which contained at least three VF

⁴The patients are listed with more details in the thesis from C. Schultheiss [135] in table B.5. The corresponding
codes of the patients are 130(1), 136(2), 137(3), 145(4), 146(5), 160(6), 162(7), 163(8), 164(9), 174(10), 175(11), 183(12), 207(13),
213(14), 214(15), 215(16), and 218(17). The recorded data from the patients with the codes 135 and 161 are not included in
the analysis performed within this thesis as the recorded BI signals from both patients are not in phase with the extracted
displacements of hyoid and larynx. It was concluded that during the recording synchronization problems must have
occurred. The inclusion of the data from both excluded patients would have lead to outliers.

124



5.4 Results

frames was found. The final data set with all 92 swallow sequences contained 1333 data samples. All
swallow sequences started three VF frames before 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 and ended at 𝐵𝐼𝑒𝑛𝑑 ⁵.
Table 5.1: Time difference between the swallow related events 𝐵𝐼 𝑇𝑠𝑡𝑎𝑟𝑡 , 𝐵𝐼 𝑇𝑚𝑖𝑛, 𝐵𝐼 𝑇𝑒𝑛𝑑 , 𝐸𝑀𝐺𝑇𝑠𝑡𝑎𝑟𝑡 , 𝐸𝑀𝐺𝑇

𝑒𝑛𝑑 ,
and the onset 𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 of the trans-UES flow. In the last row, the mean values across all swallows are
displayed. All times are denoted in milliseconds.

p 𝐸𝑀𝐺𝑇𝑠𝑡𝑎𝑟𝑡 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡 𝐸𝑀𝐺𝑇𝑚𝑎𝑥 𝐵𝐼𝑇𝑚𝑖𝑛 𝑡𝑈𝐸𝑆𝑒𝑛𝑑 𝐵𝐼𝑇𝑒𝑛𝑑 𝐸𝑀𝐺𝑇𝑒𝑛𝑑
−𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 −𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡

1 -898 -514 18 10 359 950 351
2 -931 -731 -192 29 543 852 695
3 -1783 -486 171 102 335 725 1805
4 -605 -544 -197 -115 449 333 515
5 -628 -328 165 231 414 554 49
6 -526 -126 156 154 368 551 487
7 -2348 -504 272 118 336 546 568
8 -784 -244 68 130 350 440 821
9 -1351 -292 93 307 246 785 877
10 -461 -167 180 379 336 708 15
11 -497 -394 71 25 365 489 397
12 -879 -431 -224 237 371 660 430
13 -1802 -361 -146 49 290 373 1238
14 -244 -103 469 317 313 534 693
15 -333 -52 169 413 452 928 525
16 -883 -295 31 52 400 196 712
17 -461 -417 67 41 433 141 -109
∅ -811 -315 62 130 335 514 530

In the following, the upper index 𝑉 refers to the value and the upper index 𝑇 to the time of
a specific point. 𝐸𝑀𝐺𝑠𝑡𝑎𝑟𝑡 and 𝐸𝑀𝐺𝑒𝑛𝑑 are set to the associated EMG interval; 𝐸𝑀𝐺𝑚𝑎𝑥 is set to
the maximum in this interval. For each patient, the mean times of the BI valleys, EMG activity and
offset of trans-UES bolus flow are extracted. The time differences of the related events with respect
to the onset 𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 of the trans-UES bolus flow are shown in Table 5.1.

The bolus needs around 0.34 s for passing the laryngeal cartilage. The begin of a swallow based
on the valley begin in the BI time series was found to be 0.32 s before any bolus was visible. The
position of the minimum in the BI valley is around 0.13 s after a bolus flow was visible and 0.21 s
before the bolus disappeared. The end point 𝐵𝐼𝑇𝑒𝑛𝑑 lays around 0.51 s after 𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 and 0.18 s after
𝑡𝑈𝐸𝑆𝑒𝑛𝑑 . The mean BI valley has a duration of 0.83 s. An EMG activity could be observed around
0.81 s before 𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 and thus 0.5 s before 𝐵𝐼𝑇𝑠𝑡𝑎𝑟𝑡 . The maximal EMG activity is located 0.1 s after
𝑡𝑈𝐸𝑆𝑠𝑡𝑎𝑟𝑡 . The mean EMG activity duration is 1.3 s.

Pearson’s 𝑟 were calculated between the largest drop in BI and the maximum displacement of
hyoid bone and larynx in �̃� and �̃� direction. The results are summed up in Table 5.2. The correlation
is also visualized as scatter plot (see Fig. 5.3) in which all data pairs are plotted together with the fitted
linear slope. The regression parameters of these slopes are shown in Table 5.2. The best correlation

⁵Each data sample corresponded to a single VF frame. 𝐵𝐼𝑠𝑡𝑎𝑟𝑡 and 𝐵𝐼𝑒𝑛𝑑 were estimated for each swallow based on the
swallow segmentation algorithm which is presented in Chapter 4 and associated to a VF frame.
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Table 5.2: Pearson correlation coefficients of the correlation between the maximum drop in BI ({𝐵𝐼 𝑑𝑟𝑜𝑝})
and themaximal displacement of the hyoid bone ({𝐻 �̃�𝑚𝑎𝑥 }, {𝐻 �̃�𝑚𝑎𝑥 }) and larynx ({𝐿�̃�𝑚𝑎𝑥 }, {𝐿�̃�𝑚𝑎𝑥 }) during
all 92 swallows (N = 92) from 17 patients (�̃� - anterior direction and �̃� - superior direction).

{𝐻 �̃�𝑚𝑎𝑥 } {𝐻 �̃�𝑚𝑎𝑥 } {𝐿�̃�𝑚𝑎𝑥 } {𝐿�̃�𝑚𝑎𝑥 }
Pearson’s 𝑟 −0.55 ± 0.17 −0.7 ± 0.14 −0.52 ± 0.16 −0.64 ± 0.15
Slope [mm/Ω] −3 −7.9 −2 −10
Intercept [mm] 2.7 1.2 1.4 3.5

Table 5.3: Pearson correlation coefficients of the correlation between the BI time series {Δ𝐵𝐼 } and the
displacement trajectory of the hyoid bone ({𝐻 �̃�}, {𝐻 �̃�}) and the larynx ({𝐿�̃�}, {𝐿�̃�}) during all 92 swallows
(N = 1333) (�̃� - anterior direction and �̃� - superior direction).

{𝐻 �̃�} {𝐻 �̃�} {𝐿�̃�} {𝐿�̃�}
Pearson’s 𝑟 −0.65 ± 0.048 −0.65 ± 0.044 −0.6 ± 0.046 −0.71 ± 0.034
Slope [mm/Ω] −4.2 −8.4 −2.5 −13
Intercept [mm] 0.63 −0.88 0.27 0.52

was found between the drop in BI during a swallow and the maximal displacement of the larynx in
�̃� direction. The Pearson’s 𝑟 is -0.69 with a bootstrap confidence interval of ±0.11.

In Table 5.3, a regression analysis was performed on all data samples of all patients. For {𝐻 �̃�},
{𝐻 �̃�}, {𝐿�̃�}, and {𝐿�̃�}, similar regression parameters were found as on the maximal value correlation
(see Table 5.2).

In Table 5.4, a linear regression analysis was performed individually for each patient. The
regression coefficients between the change in BI {Δ𝐵𝐼 𝑝} to the displacement trajectories {𝐻 �̃�𝑝},
{𝐻 �̃�𝑝}, {𝐿�̃�𝑝}, and {𝐿�̃�𝑝} are displayed in this table. In the last row, the weighted mean correlation
coefficients with 95% confidence interval of all patients are given.
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Table 5.4: Correlation coefficients of the correlation between the change of BI ({Δ𝐵𝐼 𝑝}) and displacement
trajectory of hyoid bone (𝐻 ) and larynx (𝐿) for each patient 𝑝 (�̃� - anterior direction and �̃� - superior
direction). 𝑆𝑝 is the number of recorded swallows and 𝑁𝑝 the number of stored data points for patient 𝑝.
In the last row, the weighted mean correlation coefficients with 95% confidence interval of all patients
are given.

{𝐻 �̃�𝑝} {𝐻 �̃�𝑝} {𝐿�̃�𝑝} {𝐿�̃�𝑝}
𝑝 𝑆𝑝 𝑁𝑝 𝑟𝑝 𝑟𝑝 𝑟𝑝 𝑟𝑝
1 4 58 -0.501 -0.757 -0.507 -0.761
2 3 60 -0.806 -0.845 -0.872 -0.869
3 6 116 -0.869 -0.825 -0.754 -0.809
4 3 29 -0.681 -0.754 -0.708 -0.779
5 8 109 -0.605 -0.315 -0.578 -0.748
6 5 58 -0.824 -0.248 0.099 -0.733
7 2 36 -0.789 -0.0577 -0.575 -0.564
8 22 271 -0.74 -0.189 -0.579 -0.637
9 8 154 -0.607 -0.37 -0.428 -0.608
10 3 42 -0.632 -0.188 -0.563 -0.346
11 6 81 -0.757 -0.642 -0.743 -0.771
12 4 83 -0.817 -0.575 -0.759 -0.893
13 5 60 -0.371 -0.621 -0.554 -0.752
14 4 55 -0.774 -0.341 -0.774 -0.528
15 3 55 -0.85 -0.734 -0.863 -0.857
16 3 30 -0.783 -0.375 -0.405 -0.386
17 3 36 -0.853 -0.83 -0.801 -0.857
𝑟 −0.72 ± 0.21 −0.46 ± 0.45 −0.6 ± 0.36 −0.7 ± 0.23
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Figure 5.3: The scatter plot shows the relationship of the largest drop in BI ({𝐵𝐼 𝑑𝑟𝑜𝑝}) to the maximal
displacement of the hyoid bone ({𝐻 �̃�𝑚𝑎𝑥 }, {𝐻 �̃�𝑚𝑎𝑥 }) and larynx ({𝐿�̃�𝑚𝑎𝑥 }, {𝐿�̃�𝑚𝑎𝑥 }) for all 92 swallows.
The slope and interception of the regression line can be found in Table 5.2.
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Figure 5.4: The scatter plot shows the relationship of the change in BI to the displacement trajectory
of the hyoid bone ({𝐻 �̃�}, {𝐻 �̃�}) and larynx ({𝐿�̃�}, {𝐿�̃�}) during all 92 swallows (N=1333) (�̃� - anterior
direction and �̃� - superior direction). The slope and interception of the regression lines can be found in
Table 5.3.
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5.5 Conclusions

In a VF swallowing examination, all movements during the swallowing process can be observed.
The movements of the tongue and mouth floor muscles can be estimated particularly by means of
the movement of the bony and cartilaginous structures which are visible in an X-ray examination.
The swallowing process itself can be estimated by the coordination of these movements and by the
flow of the bolus which is entirely visible due to contrast agents. Thus, VFSS is one gold standard
in the diagnosis of swallowing disorders.

It was evaluated in which way the typically observed drop-off in BI during swallowing is linked
to the displacement of hyoid bone and larynx. Therefore, displacements of hyoid bone and larynx
were extracting by performing a VFwhile BI and EMGmeasurements were simultaneously recorded.

With the combination of EMG and BI measurement, it is possible to measure the muscular
activation which induces a swallow and the hyolaryngeal movements during a swallow. The muscle
activity which is necessary to swallow can be measured using EMG. Changes in the tissue which
are caused by the swallow effect itself (lifting of the larynx and constriction) can be recorded using
BI.

The connection between the displacement of hyoid bone and larynx and the measured BI was
investigated using correlation analysis. The drop in BI during a swallow correlates moderately to
strongly negative to the maximum displacement of hyoid and larynx during a swallow. The best
correlation coefficients could be found between the drop in BI and the hyoid displacement in superior
direction with 0.7. The second best correlation is observed between the drop in BI and the laryngeal
displacement in superior direction with 0.64.

A correlation analysis between all measurement samples across all patients between the change
in BI and the displacement trajectories of hyoid bone and larynx shows similar results. The
best correlation is observed between the change in BI and the larynx displacement in superior
direction with 0.71. The second best correlation is achieved between the change in BI and the hyoid
displacement in anterior and superior direction each with a value of 0.65.

Better correlation results could be obtained for a correlation analysis individually for each
patient. For some patients, a strong correlation between BI and one movement trajectory could
be observed. The best mean correlation across all patients was achieved at the hyoid displacement
in anterior direction with 0.72 and at the laryngeal displacement in superior direction with 0.7.

The presented results show that BI measurements are at least moderately correlated to the
displacement of hyoid bone in anterior and superior direction and larynx cartilage in anterior and
superior direction. Although the behavior of the bolus cannot be measured by BI and it is not
possible to map the trajectories of BI measurements back to movement trajectories of hyoid and
larynx, BI measurement can be used to describe the pharyngeal phase of swallowing. A steep
gradient of the BI valley indicates a fast movement of the larynx and the hyoid bone. A valley
with a large drop in BI suggests a great movement amplitude of hyoid bone and larynx.

The drop in BI during swallowing correlates to the movements of hyoid and larynx, which
defines the beginning of the pharyngeal swallowing phase. Strong and sufficient fast elevation
of hyoid and larynx are a condition for lower airway protection and safe swallowing. The begin of
the esophageal phase is set to the point when the bolus is pulled behind the UES. Extracted timing
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information of all swallows indicates that the end of the extracted BI valley coincides with the end
of trans-UES bolus flow. Thus, BI and EMG measurement characterize mainly the pharyngeal phase
of the swallowing process. Therefore, it may be used for diagnostic and therapy in pharyngeal
swallowing disorders.

Swallowing accelerometry and swallowing sounds are somehow correlated to the movement of
the larynx. In these measurement methods, the time series curve can not be easily interpreted (it
shows either the amount of acceleration or the loudness during a swallow). The BI time series is
directly correlated to the movement of hyoid and larynx and for this reason to the complex closing
mechanism of the pharynx during swallowing. This allows the calculation and usage of deducted
variables as timing information, displacement speed and the maximal deflection in swallowing
diagnostic. Furthermore, EMG can be measured on the voltage measurement electrodes without
further effort.

Melfenter et al. [178] showed the large variability of hyoid and laryngeal displacement assess-
ment using VF. VF is a gold standard in evaluating swallowing, but using it for measuring the
displacement of structures as hyoid and larynx is time-consuming and error-prone. Furthermore,
the method is costly and the patient is contaminated by radiation during the examination. BI mea-
surement at the neck in optimal conditions (exactly defined electrode position and the patient does
not do any movement except swallowing during the examination) could be a measurement method
for the structural movement during swallowing. It is difficult to obtain precise measurements as
correlation is only moderate, but changes in a patient over therapy might be good monitored.

Fiber-optic endoscopic evaluation of swallowing (FEES) examinations have the disadvantage
that the pharyngeal phase is crossfaded by the “white-out” which is caused by constricting of the
pharynx. BI/EMG measurement could provide missing information about the pharyngeal phase.
In combination with swallowing segmentation algorithms, it could improve the average inter-rater
reliability of the FEES examination.

Bio-feedback based swallowing therapy could use BI/EMG measurement for giving real-time
information about the last swallow to the patient. Speed and amount of drop in BI could be used to
inform the patient about his/her current swallowing intensity and could encourage the patient to
improve his/her swallowing performance.

BI/EMG measurement may also be used in a controlled swallowing prosthesis, in which a
electrical stimulation is triggered by EMG activity detection and the beginning of a drop in BI. The
stimulation intensity may be controlled by the drop in BI which is correlated to the movement of
hyoid and larynx and the speed of BI changes which is correlated to the movement speed of hyoid
and larynx.

In further studies, the reliability and validity of this method have to be investigated. It should
be examined how dysphagia and aspiration can be assessed using BI and EMG.
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6
BI- and EMG-Based Control of FES For

Supporting Swallowing

6.1 Summary

Aim: It is investigated if a combined bioimpedance (BI) and electromyography (EMG) measure-
ment can control a supportive functional electrical stimulation (FES) at the neck in order to improve
and secure swallowing.

Methods: BI and EMG are measured at the neck. Algorithms are presented which robustly detect
EMG activity and changes in the BI signal to enable a detection of swallow onsets as early as
possible. A hand switch is used for activation of the swallow onset detection. Parameters for
swallow detection need to be tuned for every patient based on one baseline swallow. Whenever
a swallow onset is detected by the algorithms and the hand switch is pressed, FES of the submental
muscles is activated in order to support swallowing.

Results: It was demonstrated in a case study with one chronic stroke patient that the amount
and speed of larynx and hyoid elevation can be improved by controlling FES based on EMG and
BI measurements. The evaluation of the impaired elevation of larynx and hyoid was assessed by
BI measurements. In comparison to healthy subjects, the drop in BI during swallowing could be
improved from 37% (−0.56Ω) to 74% (−1.12Ω). The change in BI at the beginning of a swallow
increased from 29% (−1.87Ω/s) to 47% (−3.03Ω/s).

Conclusion: The presented algorithms are able to detect a swallowing event early enough such
that an FES can be applied to the submental muscles in order to give a biofeedback to the patient
and to increase the lower airway protection by raising hyoid and larynx faster and higher. It could
be shown that FES of the submental muscles was synchronized to voluntarily induced swallowing.
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Contribution: All presented algorithms were developed by the author. Parts of the presented
algorithm and the results were presented in [179] and [180]. The case study was performed in
cooperation with the Unfallkrankenhaus Berlin (ukb).

6.2 Motivation

In the majority of studies, which were dealing with neuromuscular electrical stimulation (NMES) for
the purpose of treating swallowing disorders, surface electrical stimulation was applied for several
minutes in order to strengthen the muscles which are involved in swallowing. The NMES is thereby
not functional as the stimulation is not applied timely correlated to swallowing itself. NMES of
swallowing involved muscles was introduced by Freed et al. [123]. In this study, a fixed swallowing-
independent electrical stimulation protocol was applied to patients 60 minutes per day. This
stimulator was later made available under the name VitalStim®. This protocol was used in several
successive studies with contradicting results [181]–[183]. It was shown by Ludlow et al. [33] and
Humbert et al. [32] that NMESwith the laryngeal electrode positions suggested in [123] can increase
the risk of aspiration in some cases. Only the submental electrode positions cause no negative effect
and lead to slight elevation of the laryngeal structures. Kagaya et al. [31] determined the positions
of the motor points for the mylohyoid muscle / anterior belly of the digastric, geniohyoid muscle,
and thyrohyoid muscle. Stimulation of the motor points for the mylohyoid muscle / anterior belly
of the digastric and geniohyoid muscle leads to a superior and anterior movement of the hyoid and
larynx. They also showed that surface electrical stimulation of the thyrohyoid motor points, which
correspond to the laryngeal electrode position proposed by [123], leads to an inferior movement of
the hyoid bone and the larynx. This electrode position should, therefore, be avoided as aspiration
may be induced by it. The position of the stimulation electrodes used by the VitalStim® device and
the motor points are shown in Figure 6.1.

Burnett et al. [36] showed that healthy subjects are able to trigger FES which was applied
intramuscularly synchronized to their swallows by pressing a switch. However, it is questionable
if patients are able to support all of their swallows by manually triggering FES. Leelaminit et al.
[37] designed a study in which patients with reduced laryngeal elevation were stimulated at the
thyrohyoid muscle. The stimulation was synchronized to EMG activity from the posterior tongue.
This submental EMG, which is only an unspecific indicator for the pharyngeal phase, was used to
trigger the stimulation. The study showed promising results, however, the patients had to be treated
for 4 hours per day. The used stimulation electrode position may also lead to an inferior movement
of the hyoid and larynx which increases the risk for aspiration as shown in [31]–[33]. The electrode
position corresponds to the laryngeal position proposed in [123] and is shown in Figure 6.1.

In a study by Soon et al. [129], patients should swallow synchronized to a fixed stimulation
pattern of the masseter muscle followed by a stimulation of the digastric muscle in the submental
region. The electrode positions are also shown in Figure 6.1. The authors showed that the time,
which the patients needed for drinking a certain amount of water, reduced in all patients. Thus,
significant improvement in swallowing function can be gained over time when swallowing is
performed synchronized to a fixed stimulation pattern. However, to swallow at fixed time points is
demanding for patients and eventually even not possible for patients with cognitive difficulties.
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Figure 6.1: A) Electrode setup by Soon et al. [129]. Channel 1 and 2 (not shown) stimulate the masseter
muscle on both sides. Channel 3 and 4 (not shown) stimulate the digastric muscle. B) Electrode setup by
Leelaminit et al. [37] for stimulating the thyrohyoid muscle. Only one electrode of the pair of electrodes
is shown. C) VitalStim® stimulation setup which is used in [32], [33], [123] and several other studies.
Channel 1 stimulates muscles in the submental region and channel 2 stimulates in the laryngeal region.
Channel 2 correspond to setup B). D) Motor points investigated by Kagaya et al. [31]. Anatomical
illustrations are from [2].

Besides swallowing therapy, immediate improvement in swallowing function may be achieved
by NMES synchronized to the elevation of hyoid bone and larynx. As such a swallowing event-
triggered stimulation recovers swallowing functions, it can be called FES. Applying FES in the very
beginning of a swallow could improve lower airway protection by increasing the elevation of the
hyoid bone and the laryngeal cartilage. Without appropriate elevation, aspiration may take place
in which parts of the bolus may enter the airway. Recent studies [184], [185] showed a positive
effect on motor relearning when FES is applied synchronously to voluntarily induced movements.
In order to perform further studies in which FES is applied on patients with dysphagia, methods
have to be developed that can be used to detect the beginning of a swallow. The detection has to be
performed in real-time and should trigger FES such that the force output of the stimulated muscles
is within the pharyngeal elevation period. The delay between stimulation onset and the force output
of the stimulated muscle lays in a range of a few hundred milliseconds. As swallowing induced EMG
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activity can be measured before the swallow starts, it is a good trigger for FES and was already used
by Leelaminit et al. [37]. The disadvantages of using submental EMG as a trigger are that the EMG
threshold changes the stimulation timing and that FES would be also triggered by nearby muscle
activity (e.g. tongue-, masseter-, or head movements).

In Chapter 4, a swallowing detection has been presented which utilizes BI and EMG mea-
surements at the neck. The presented algorithms for EMG activity detection and line segment
approximation of the BI signal were optimized for recorded data. In this chapter, these algorithms
are adapted such that EMG activity and changes in the BI signal are immediately detected. Finally,
algorithms are presented which are able to trigger FES in the very beginning of a swallow, such that
swallowing can be timely supported by FES.

6.3 Methods

6.3.1 Experimental Setup

The measurement system PhysioSense, which has been described in detail in Chapter 3, was used
for measuring BI and EMG at the neck. An electrical alternating current (AC) current at a frequency
of 50 kHz was applied via two silver/silver-cloride (Ag/AgCl) electrodes and the resulting voltage
was measured via an additional pair of Ag/AgCl electrodes. The EMG and BI measurement signal
is then extracted from the measured voltage signal and send to the personal computer (PC). Blue
Sensor N ECG electrodes (Ambu A/S, Denmark) were used. This setup and the electrode position
have been described in detail in Section 4.3.2.

R

SAL

V
C

CC
V V

11

1 2

2 2

SAR SAL

Figure 6.2: Electrode positions for electrical stimulation and BI/EMG measurements (C - current elec-
trodes, V - voltagemeasurement electrodes, R - reference electrode, SAL / SAR - stimulation electrodes for
the left/right anterior part of the submental muscles). The SAL and the SAR stimulation area consists of
two (illustrated by 1 and 2) stimulation channels, which are activated always simultaneously. Anatomical
illustrations are from [2].

For applying FES, one pair of surface stimulation electrodes (SAL/SAR) was attached to the
submental region near the suprahyoid muscles. The electrodes were placed symmetrically around
the median plane below the mandible and above the hyoid bone (cf. Fig. 6.2). Round hydro-gel
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stimulation electrodes (∅ 32mm, KRAUTH+TIMMERMANN GmbH, Germany) were used. The
positions of the stimulation electrodes and the BI/EMG measurement electrodes are shown in
Figure 6.2.

A RehaStim device (HASOMED GmbH, Germany), in which the maximal available current
amplitude of the stimulation pulses was limited to 25mA, was used for applying electrical pulses to
the suprahyoid muscles. The stimulator delivers bi-phasic pulses with a pulse width up to 500 μs and
is able to generate doublets, that consists of two subsequent bi-phasic stimulation pulses with a very
short inter-pulse interval of 5ms. The stimulator can send a transistor-transistor logic (TTL) trigger
signal that is synchronized to the start and end of each stimulation pulse/doublet. This TTL signal
was fed to the Galvanically isolated synchronization input of the measuring system PhysioSense
and was transmitted to the PC simultaneously with all other measurement signals. This signal was
used for blanking stimulation artifacts in the EMG and BI measurement signal.

The state of a manual hand switch was also recorded with the PhysioSense device. The manual
switch was used for enabling the control of the FES.

6.3.2 Stimulation Artifact Removing and Preprocessing of EMG and BI

During active FES the recorded EMG and BI signals are disturbed by the high voltage stimulation
pulses. As described in Chapter 3, the measurement device PhysioSense was designed to enable
the measurement of EMG and BI also in between stimulation pulses. After a stimulus, the
measurement amplifier goes shortly into saturation and is able to measure again after 1ms to
2ms. The corresponding FES-evoked EMG activity is named M-wave. It starts directly after the
stimulus and lasts for about 10ms in the current setup. The amplitude of the M-wave depends on
the stimulation intensity (defined by the product of current amplitude and pulse-width) and the
muscle state [186]. The remaining EMG signal (after the M-wave has declined and until the next
pulse/doublet will arrive) mainly contains normal volitional EMG activity which we are interested
in.

Whenever a stimulation pulse is applied, the TTL-signal from the stimulator changes its level.
A stimulation frequency of 20Hz was used. The trigger signal arrives around 2ms before any
stimulation artifacts are visible in the signals and is registered by the PhysioSense device. The
last BI- and EMG-values are held for 2ms to 12.5ms after the first trigger arrives. Thus, spikes
induced by FES are suppressed from the BI and EMG signal by blanking.

The spike-free EMG signal is filtered by an elliptic infinite impulse response (IIR) high-pass
filter of third order with a cut-off frequency of 80Hz. This filter removes low frequent movement
artifacts and supply voltage noise around 50Hz. The selected cut-off frequency of 80Hz minimizes
the filter transients caused by the stimulation pulses and signal muting, as the step response time is
sufficiently small. The normal frequency range of EMG lays in a range from 5Hz to 400Hz [187]. It
is therefore accepted that the high-pass filter reduces the EMG signal power by approximately two
[187], as a sufficient amount of EMG signal power remains.

In order to increase the signal to noise ratio and to reduce the sample rate, a PAA is applied
to the BI signal. The PAA divides the signal into equally spaced segments of 25 samples and uses
the mean value as new sample value for each segment. Applying the PAA method to the BI signal
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Figure 6.3: Signal processing of BI/EMG signals during active FES. In the upper left subplot, an EMG
recording is shown in which stimulation artifacts are visible. By transmitting the TTL output of the
simulator synchronized to the BI/EMG signal to the PC, the time positions of the stimulation artifacts
are known and the stimulation artifacts can be muted. In the upper left subplot, a EMG recording with
visible stimulation artifacts is displayed. In the upper right subplot, the result after muting and high-
pass filtering with a cut-off frequency of 80Hz is shown. In the lower left subplot, the BI recording with
visible stimulation artifacts is displayed. The result after muting and approximation with piece-wise
aggregate approximation (PAA) is shown in the lower right subplot. By applying PAA, the resulting
sampling frequency is reduced from 4 kHz to 160Hz.

reduces the sampling rate from 4 kHz to 160Hz. The signal processing of BI/EMG signals during
electrical stimulation is exemplarily shown in Figure 6.3.
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6.3.3 Online Detection of EMG Activity Periods
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Withening filter including a high-pass filter (cut-off = 80 Hz)

Figure 6.4: Step response of the modified online EMG filter including whitening and high-pass filter
(cut-off frequency of 80Hz). For comparison, the step response of the complete offline EMG high-pass
filter with an additional whitening is shown.

Muscle activity periods are detected by using a modification of the double-threshold detector
that is described in Section 4.3.4. The modified version is able to detect EMG activity on streamed
EMG measurement data in real-time.

As described in Section 4.3.4, a whitening filter (cf. Eq. (4.3)) is applied to the pre-processed
EMG signal in order to give the measured EMG signal Gaussian characteristics. Figure 6.4 shows a
comparison of two EMG filter step responses. One is the offline version fromChapter 4.3.4 including
the filters from pre-processing together with the whitening filter. The other is the modified online
version including also the filters from pre-processing together with the whitening filter which is
introduced in this chapter. By increasing the cut-off frequency of the high-pass and removing both
stop-band filters, the transit time of the step response could be successfully decreased.

Any EMG activity at the current measurement sample 𝑥 is detected and detector output 𝑎𝑐𝑡 is
set to one if in the previous𝑚 samples 𝑟0 (called second threshold) samples of the auxiliary sequence
𝑧(𝑖) = 𝑥2(𝑖) are above the first threshold ̂𝜁 . The current detector output 𝑎𝑐𝑡 is set to zero when less
than 𝑟0 samples from the previous 𝑚 samples are above ̂𝜁 .

Similar to Section 4.3.4.3, the following procedure is applied to find the optimal parameters 𝑚,
𝑟0 and ̂𝜁 for the online double-threshold detector:
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1. The parameters 𝑚 and 𝑟0 of the double-threshold detector are optimized once before the
detector is applied to the measurement data. The optimization is performed as described
in Section 4.3.4.4 for a desired false-alarm probability 𝑃𝑓 𝑎 , a given worst case 𝑆𝑁𝑅𝑚𝑖𝑛 and
a pre-defined offset-detection latency 𝑡𝑟𝑚𝑎𝑥 of the detector.

2. The measurement data are stacked up in windows of length 𝑁�̂�2𝑛 (cf. Eq. (4.29)). Whenever a
new window is filled up with measurement data, the window index 𝑘 is increased by one and
its variance VAR𝑥 (𝑘) is calculated according to Equation (4.30):

VAR𝑥 (𝑘) =
1

𝑁�̂�2𝑛 − 1
𝑛
∑

𝑖=𝑛−𝑁�̂�2𝑛

(𝑥(𝑖) − 1
𝑁�̂�2𝑛

𝑛
∑

𝑙=𝑛−𝑁�̂�2𝑛

𝑥(𝑙))
2

, (6.1)

where 𝑥(𝑛) is the newest sample with 𝑛 > 𝑁�̂�2𝑛 . The minimum of all variances of windows
within the last 𝑇𝑣𝑎𝑟 seconds is taken as estimate for �̂�𝑛.

3. At the time point 𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 , the first variance estimation took place and an initial threshold
̂𝜁𝜎2
𝑑=0 (assuming no disturbance and taking into account the estimated noise variance) is

calculated according to Equation (4.32):

̂𝜁𝜎2
𝑑=0 = �̂�2𝑛𝐹−1𝜒2,𝜈=1 (1 − 𝑃𝜁 ) . (6.2)

𝑇 𝐸𝑀𝐺𝑠 is the sampling time of the EMG signal. Thus, the online double-threshold detector can
be applied to the measurement data after 𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 seconds.

4. Disturbance estimation for improving the threshold ̂𝜁 is started after 𝑁 ̂𝜁 > 𝑁�̂�2𝑛 measurement
samples have been collected. As described in Section 4.3.4.5, the threshold ̂𝜁 will be stepwise
increased until the desired 𝑃𝑓 𝑎 is achieved. The optimal ̂𝜁 is determined as follows:

The ratio R ̂𝜁 (𝑘) of the previously calculated variances VAR𝑥 (𝑘) to �̂�2𝑛 as shown in Equa-
tion (4.33) is calculated. The index 𝑘 goes from the oldest windowwithin the last 𝑇𝑣𝑎𝑟 seconds
to the newest one. All windows with R ̂𝜁 (𝑘) lower than threshold R𝑚𝑎𝑥

̂𝜁 which is calculated
by using 𝑡ℎ𝜎𝑑 (cf. Eq. (4.34)) are then selected. Then, 𝑁 ̂𝜁 samples are randomly taken from
the selected data. Beginning from ̂𝜁𝜎2

𝑑=0,
̂𝜁 is increased and applied to the randomly selected

data set. The onsets are counted which have more than 𝑟0 samples over ̂𝜁 . The false-alarm
probability ̂𝑃𝑓 𝑎 is estimated according to Equation (4.36). ̂𝜁 is increased by 𝜅𝛿 (cf. Eq. (4.35))
until the estimated false-alarm probability ̂𝑃𝑓 𝑎 reaches the desired false-alarm probability 𝑃𝑓 𝑎
or 𝜅𝑚𝑎𝑥 is reached. Optimization of ̂𝜁 is repeated whenever 𝑁�̂�2𝑛 samples arrive.

6.3.4 Online Segmentation of BI Measurements

In order to detect changes in the BI signal, which are caused by swallowing, a piece-wise linear
approximation (PLA)¹ is applied to the BI time series. The bottom-up algorithm which was used in

¹In Chapter 4, the bottom-up algorithm was used for approximating the BI time series by line segments. These line
segments were used in the presented valley detection algorithm, which was able to find all swallowing induced signal
changes.
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Chapter 4 cannot be used without modification, as this algorithm needs the complete data sequence
for signal approximation. Thus, an online capable version is required in which the BI signal is
successively approximated.

The Sliding Window And Bottom-up (SWAB) segmentation algorithm, which is described by
Keogh et al. [159], has a better performance than a sliding window approach. It combines the
sliding window approach with the bottom-up algorithm. Similar to the sliding window approach,
the segments are consecutively created such that the squared error sum between each line to the
corresponding time series is equal or is smaller than a predefined value.

In the beginning of each swallow, the BI signal starts to drop due to the movement of hyoid
bone and larynx. In order to guarantee that a drop in the BI signal is detected as fast as possible,
a modification of the SWAB algorithm is proposed. This modified PLA-method allows to detect
changes within the BI signal with only a small delay.

The modified SWAB algorithm approximates gradually the time series with the segments
𝑃𝑙 , 𝑖 = 1, 2, … , 𝑁 𝑃 by iteratively applying the following steps while the number of line segments
𝑁 𝑃 increases with time:

1. Newly arrived measurement data are buffered until the squared error sum between a tem-
porary line to the corresponding time series exceeds just a predefined error 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 .
Additionally, the maximum length of a segment is bounded by 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ and the value
difference of the same segment is bounded by 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 . The algorithm that checks these
conditions is called the BEST_LINE function (cf. Fig. 6.5). Thus, a new temporary line is created
when the BEST_LINE function returns.

A buffer 𝑤 with varying length is filled up with data samples from the original pre-processed
time series whenever such a new temporary line is created. The number of data samples which
are added to 𝑤 is defined by the length of the temporary line.

2. The bottom-up algorithm (cf. Fig. 4.13) is applied to the data within the buffer 𝑤 and creates
𝑁 𝑃𝑤 new line segments 𝑃𝑤𝑗 , 𝑗 = 1, 2, … , 𝑁 𝑃𝑤 approximating the data in the buffer 𝑤 . The
slope of the most recent line segment is named 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒 and is used later as a feature for the
swallow onset detection.

The number of lines is reduced to𝑚𝑎𝑥_𝑠𝑒𝑔 and only the newest𝑚𝑎𝑥_𝑠𝑒𝑔 lines are remaining
in the buffer. The modified SWAB function continuously gives back all line segments within
the buffer which exceed the number of lines 𝑚𝑎𝑥_𝑠𝑒𝑔. The oldest 𝑁 𝑃𝑤 − 𝑚𝑎𝑥_𝑠𝑒𝑔 segments
are appended to the segment list 𝑃𝑙 , 𝑙 = 1, 2, … , 𝑁 𝑃 . The data samples in 𝑤 which correspond
to these first 𝑁 𝑃𝑤 − 𝑚𝑎𝑥_𝑠𝑒𝑔 lines are removed from the buffer 𝑤 .

If𝑚𝑎𝑥_𝑠𝑒𝑔 is set to zero, the modified SWAB algorithm converts to the sliding window algorithm. If
𝑚𝑎𝑥_𝑠𝑒𝑔 is set to infinity, the results of the SWAB-algorithm are equal to the results of the bottom-
up algorithm. The implementation of the modified SWAB algorithm is shown in Figure 6.6.

The BEST_LINE function uses the CALCULATE_ERROR function for calculating the squared
error sum 𝑒𝑖 of the samples 𝐵𝐼 𝑃𝑖 (𝑘) of line segment 𝑃𝑖 and the BI signal 𝐵𝐼 (𝑘) between the starting
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1: procedure BEST_LINE({𝐵𝐼 }, 𝑖) ▷ streaming time series {𝐵𝐼 }, time series index 𝑖
2: 𝑗 = 𝑖 + 2
3: 𝑃 = [𝑗 − 𝑖, 𝐵𝐼 (𝑖), 𝐵𝐼 (𝑗)]
4: while CALCULATE_ERROR(𝑃) <= 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 AND data at input do
5: 𝑗 ← 𝑗 + 1
6: 𝑃 = [𝑗 − 𝑖, 𝐵𝐼 (𝑖), 𝐵𝐼 (𝑗)]
7: end while
8: return 𝑃 ▷ line segment 𝑃 for which the squared error sum from 𝑖 to 𝑖 + 𝑃(1) of {𝐵𝐼 } just

exceeds 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 .
9: end procedure

Figure 6.5: Implementation of the BEST_LINE function. The CALCULATE_ERROR function is defined
in Equation (6.3). The parameter 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 is the maximal allowed squared error.

point 𝑎𝑖 of the line segment and the ending point 𝑏𝑖 :

𝑒𝑖 = CALCULATE_ERROR(𝑃𝑖)

=
⎧⎪
⎨⎪
⎩

𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 + 𝜖 if (𝑃𝑖(3) − 𝑃𝑖(2)) ≥ 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓
𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 + 𝜖 else if 𝑃𝑖(1) ≥ 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ
∑𝑏𝑖

𝑘=𝑎𝑖 (𝐵𝐼 (𝑘) − 𝐵𝐼 𝑃𝑖 (𝑘))2 otherwise

.
(6.3)

The squared error sum 𝑒𝑖 is set to𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 +𝜖 ² for a segment 𝑖 with length equal to or greater than
𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ or for a value difference between the starting point and the ending point equal to or
greater than 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 , where 𝜖 > 0 is a small number. Both measures prevent lines with a length
greater than 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ and a value difference greater than 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 . The maximum size of the
buffer 𝑤 is bounded by the product 𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ ⋅ 𝑚𝑎𝑥_𝑠𝑒𝑔 which bounds also the computational
complexity.

When𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 is set smaller than the BI valley height during swallowing, the modified SWAB
algorithm will create several line segments in the beginning of a swallow when the BI starts to drop.
Without defining a difference value boundary 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 , the algorithm may return only one line
segment from the starting point to the minimum point. As only at the end of a line segment its
slope is known, FES can only be activated at the end of a line segment. When line segments end at
the minimum point of a swallow, it would be too late for supporting the swallow with FES. Thus, a
bounded line difference by using 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 leads to more lines in the beginning of a swallow and
the detection algorithm is able to start the swallowing support by FES in time.

In Figure 6.7, the influence of the 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 parameter on the online slope detection is shown.
The threshold 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 and the number of segments 𝑚𝑎𝑥_𝑠𝑒𝑔 is set to one. The 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓
parameter is set to 0.25Ω and to infinity. It is shown at which time points slope informations
(𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒) are available, beginning from the swallow start. Whenever the 𝐵𝐸𝑆𝑇_𝐿𝐼𝑁𝐸 function
gives back that a new segment can be created from the most recent measurement data, the bottom-
up algorithm is called and the data within the buffer is approximated by segments. The slope of the
most recent segment in the buffer is called 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒. In the second and third subplot, the 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒
is plotted whenever the bottom-up algorithm function was called and more than one segment was

²An error greater than 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 stops the approximation process immediately.

142



6.3 Methods

1: procedure SWAB({𝐵𝐼 }) ▷ streaming time series {𝐵𝐼 }
2: 𝑤𝑒𝑛𝑑 ← 0 ▷ buffer 𝑤 contains data from 1 to 𝑤𝑒𝑛𝑑
3: repeat
4: 𝑃𝑆𝑊 ← BEST_LINE({𝐵𝐼 }, 𝑤𝑒𝑛𝑑 + 1)
5: 𝑤𝑒𝑛𝑑 ← 𝑤𝑒𝑛𝑑 + 𝑃𝑆𝑊 (1)
6: 𝑃𝑤𝑗 ← PLA_BOTTOM_UP(𝐵𝐼 [1, 𝑤𝑒𝑛𝑑 ]) ▷ 𝑗 = 1, … , 𝑁 𝑃𝑤

7: until 𝑁 𝑃𝑤 < 𝑚𝑎𝑥_𝑠𝑒𝑔 AND 𝑤𝑒𝑛𝑑 < 𝑁 𝐵𝐼 ▷ The buffer 𝑤 contains at least 𝑚𝑎𝑥_𝑠𝑒𝑔 line
segments within 𝑃𝑤𝑗 .

8: 𝑤𝑠𝑡𝑎𝑟𝑡 ← 1 ▷ buffer 𝑤 contains data from 𝑤𝑠𝑡𝑎𝑟𝑡 to 𝑤𝑒𝑛𝑑
9: repeat
10: while 𝑁 𝑃𝑤 > 𝑚𝑎𝑥_𝑠𝑒𝑔 do
11: 𝑃𝑙 ← CONCAT(𝑃𝑙 , 𝑃𝑤1 ); ▷ Add segment 𝑃𝑤1 to 𝑃𝑙 , 𝑙 = 1, … , 𝑁 𝑃 .
12: 𝑤𝑠𝑡𝑎𝑟𝑡 ← 𝑤𝑠𝑡𝑎𝑟𝑡 + 𝑃𝑤1 (1) ▷ Remove entries from 𝑤 .
13: remove first segment 𝑃𝑤1 from 𝑃𝑤
14: end while
15: 𝑃𝑆𝑊 ← BEST_LINE({𝐵𝐼 }, 𝑤𝑒𝑛𝑑 + 1) ▷ Waits for enough data samples.
16: 𝑤𝑒𝑛𝑑 ← 𝑤𝑒𝑛𝑑 + 𝑃𝑆𝑊 (1)
17: 𝑃𝑤𝑗 ← PLA_BOTTOM_UP(𝐵𝐼 [𝑤𝑠𝑡𝑎𝑟𝑡 , 𝑤𝑒𝑛𝑑 ]) ▷ 𝑗 = 1, … , 𝑁 𝑃𝑤

18: 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒 ← slope of the last segment of 𝑃𝑤
19: until data at input {𝐵𝐼 }
20: 𝑃𝑙 ← CONCAT(𝑃𝑙 , 𝑃𝑤𝑗 ) ▷ add remaining segments to 𝑃𝑙 , 𝑙 = 1, … , 𝑁 𝑃
21: return 𝑃𝑙 ▷ 𝑙 = 1, … , 𝑁 𝑃
22: end procedure

Figure 6.6: Implementation of the modified SWAB algorithm. The algorithm returns the piece-wise
linear approximation of {𝐵𝐼 }. While the algorithm is running, the segments 𝑃𝑙 , 𝑙 = 1, … , 𝑁 𝑃 and the
most recent line segment 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒 are used as features for the swallow onset detection. The CONCAT
function is used for merging segments to 𝑃𝑙 by appending them. The number of segments 𝑁 𝑃 is then
increased by the number of appended segments. The BEST_LINE function is described in Figure 6.5.
The parameter 𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 is the maximal allowed squared error and 𝑚𝑎𝑥_𝑠𝑒𝑔 is the maximal allowed
number of segments in the buffer 𝑤 . The PLA_BOTTOM_UP function is shown in Figure 4.13.

calculated. It can be seen that the 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 parameter decreases the time delay from 40ms to
16ms as the 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 parameter forces the 𝐵𝐸𝑆𝑇_𝐿𝐼𝑁𝐸 function and the bottom-up algorithm to
create more segments when the signal changes.

6.3.5 Control of FES

The algorithm for controlling FES for supporting swallowing should detect the voluntary intention
of swallowing far before the minimum in the BI signal is reached. The algorithm should robustly
ignore all other kinds of artifacts such as jaw, tongue, or head movements.

Whenever EMG activity has been detected by the double-threshold detector and a sufficient drop
in the BI signal is sensed, a stimulation of the submental muscles may be activated until the BI signal
increases again. This allows supporting the movement of hyoid bone and larynx by means of FES
within the pharyngeal swallowing phase.

The line segments 𝑃𝑤𝑗 , 𝑗 = 1, … , 𝑁 𝑃𝑤 within the buffer 𝑤 and the line segments 𝑃𝑙 , 𝑙 = 1, … , 𝑁 𝑃

outside the buffer can be used for feature calculation. Whenever the 𝐵𝐸𝑆𝑇_𝐿𝐼𝑁𝐸 function creates
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Figure 6.7: The real-time performance of the modified SWAB algorithm for detection of slope changes
is shown on exemplary data. Besides the number of segments (𝑚𝑎𝑥_𝑠𝑒𝑔 = 1) in the buffer 𝑤 and
the maximal approximation error (𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 = 1), the modified SWAB algorithm has an additionally
parameter 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 . The influence of this parameter is compared by setting it to 0.25Ω and to ∞.
This parameter ensures that a new segment is created whenever the difference of the start point to the
end point exceeds 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 . The BI signal is shown in the first subplot. In the second and the third
subplot, the slope of the most recent segment in the buffer, which is called 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒, is plotted whenever
more than 𝑚𝑎𝑥_𝑠𝑒𝑔 segments were calculated within the buffer. Two segments were firstly calculated
after 40ms after the begin of the swallow by setting the parameter 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 to infinity, whereas the
algorithm with 𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 = 0.25Ω could give out a slope after 16ms after the swallow start.

a new temporary line by which the buffer 𝑤 is increased and the line segments 𝑃𝑤𝑗 and 𝑃𝑙 changes,
FES is activated when following conditions are fulfilled:

• EMG activity must be present. This is the case if the output 𝑎𝑐𝑡 from the online double-
threshold detector is continuously one for at least 𝑒𝑚𝑔𝑀𝐼𝑁𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 seconds within the newest line
segment 𝑃𝑤𝑁 𝑃𝑤 in the buffer 𝑤 .

• The slope 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒 of the newest line segment 𝑃𝑤𝑁 𝑃𝑤 fulfills 𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 < 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒 <
𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 and

• the slope value 𝑝_𝑠𝑙𝑜𝑝𝑒 of the newest line segments 𝑃𝑁 𝑃 fullfils 𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 < 𝑝_𝑠𝑙𝑜𝑝𝑒 <
𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 .

The threshold values 𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 , 𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 , 𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 , and 𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 are individually adjusted for
each patient by recording one swallow and fitting all four thresholds such that an FES would have
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been successfully activated in the beginning of this swallow. The algorithms from Section 4 are used
to detect the exact start point of the recorded swallow. Then, the line approximation is applied to the
BI measurement signal and the slopes of the lines before and after the swallow onset are calculated.
The threshold values 𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 and 𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 are fitted to the slope of the first line slope after the
swallow onset such that the distance between both thresholds and the slope itself is sufficient. The
thresholds 𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 and 𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 are fitted to the slope of the first line segment before the swallow
in an analogous manner.

When the conditions for activating FES are fulfilled and the manual switch is pressed by the
therapist, FES is activated. The FES is set inactive again at the first positive value of 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒.
It is assumed that a change in the slope indicates that hyoid bone and larynx have reached their
maximum elevation and moving back to their rest position. Therefore, additionally stimulation
support is normally not useful. For some patient, a longer stimulation could be helpful when e.g.
the esophagus sphincter opens delayed. In these cases, the FES is extended by a fixed time period
beginning from the first positive value of 𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒.

6.4 Results

One post stroke patient (62 years, male), who is still suffering on the locked in syndrome and had
difficulties in swallowing such that his trachea had to be blocked by a tracheal cannula participated
in this study. The trial was performed at the Unfallkrankenhaus Berlin in collaboration with Rainer
O. Seidl.

The swallowing performance of the patient with and without FES support was investigated. The
patient was given an explanation and he signed a consent. The study was approved by the ethic
board at the Charité Berlin (EA1/160/09).

The stimulation electrode setup with two stimulation channels as shown in Figure 6.2 was
applied to the patient. The biphasic stimulation pattern with doublets (inter-pulse-interval of 5ms)
was set to a pulse width of 200 μs and a stimulation frequency of 20Hz. These simulation parameters
were fixed during the whole experiment for both stimulation channels. In the beginning, the
maximally tolerated stimulation current was determined. The applied current amplitudes were
carefully chosen for each channel such that the patient felt comfortable and a clearly visible
movement of the stimulated muscles could be observed. Both stimulation channels were activated
and deactivated simultaneously.

The switch was operated by a therapist. Whenever the patient had prepared the bolus, the
therapist pressed the switch and asked the patient to swallow. The control of FES was activated
when the switch was pressed. The switch did not control the FES itself. This was necessary, as
patients may have a long preparation phase in which head, jaw, or tongue movements could lead to
a similar drop in BI with EMG activity as swallowing.

FES was then automatically activated as soon as EMG activity was present and the BI began
to decrease until the BI was rising again. In Figure 6.8, an FES-supported swallow is compared to
swallow without stimulation.

In total, the BI drop and the slope during the swallow onset were calculated from 24 recorded
swallows from which 19 were supported by controlled FES based on EMG and BI measurements.
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Table 6.1: List of parameters for the online swallowing segmentation.

Name Default Reason for parameter choice

𝑡𝑟𝑚𝑎𝑥 11ms good offset-detection latency of the detector
𝑃𝑓 𝑎 0.01 results in a sufficiently high detection probability 𝑃𝑑

𝑆𝑁𝑅𝑚𝑖𝑛 3 dB minimal EMG that shall be detected
𝑁�̂�2𝑛𝑇 𝐸𝑀𝐺𝑠 0.25 s good window length for estimating �̂�2𝑛
𝑁 ̂𝜁𝑇 𝐸𝑀𝐺𝑠 2 s good window length for estimating ̂𝜁
𝑇𝑣𝑎𝑟 10 s results in a good adaption of ̂𝜁 and �̂�2𝑛
𝑡ℎ𝜎𝑑 0.3 results in a good adaption of ̂𝜁

𝑒𝑚𝑔𝑀𝐼𝑁𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 30ms smallest possible muscle activation period
𝜅𝑚𝑎𝑥 2.2 limits computational time sufficiently
𝜅𝑑𝑒𝑙𝑡𝑎 0.1 leads to sufficient ̂𝜁 estimation

𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 0.02 leads to good BI approximation
𝑚𝑎𝑥_𝑑𝑖𝑓 𝑓 0.02 reduces the time delay for slope estimation

𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ 𝑇 𝐸𝑀𝐺𝑠 1 s bounding the maximum line segment length
𝑚𝑎𝑥_𝑠𝑒𝑔 1 decreases time delay much as possible
𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 -0.5 leads to sufficient swallow onset detection
𝑡ℎ𝑎𝑐𝑡_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 -10 prevents stimulation on data outliers
𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑢𝑝𝑝𝑒𝑟 -0.59 leads to sufficient stimulation in the onset of a swallow
𝑡ℎ𝑝_𝑠𝑙𝑜𝑝𝑒𝑙𝑜𝑤𝑒𝑟 -10 leads to sufficient swallow onset detection

Table 6.2: Effect of different stimulation currents for the first stimulation channel 1 and the second
stimulation channel 2 during swallowing stimulation patterns with doublets (inter-pulse-interval of
5ms), a pulse width of 200 μs and a frequency of 20Hz. The electrode setup is shown in Figure 6.2.
Stimulation is only activated during the elevation of the larynx. The normative values of healthy people
are provided as a comparison. The given percentages show the relation between the patient data and
the normative values of healthy people. ** - significant level p = 0.01. The results were also presented in
[179] and [180].

healthy patient

Pulse current Ch. 1 without without 7.1mA 9.4mA 11.8mA
Pulse current Ch. 2 0mA 7.1mA 7.1mA

Number of swallows 328 5 6 9 4
Drop in BI (Ω) −1.52±0.56 -0.56

(37%)
-0.55
(36%)

-0.78
(51%)

-1.12**
(74%)

Rate of change (Ω/s) −6.43±2.57 -1.87
(29%)

-2.56
(40%)

-2.82**
(44%)

-3.03**
(47%)

The patient was fed with thickened liquid. Three different stimulation intensities were applied
to the patient. The lowest applied stimulation current did not lead to an increase in the BI drop
and the slope increased only slightly; the highest applied stimulation intensity caused larger and
faster BI drops during swallowing. The measured drop and slope of each swallow related BI valley
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are displayed in Table 6.2. Additionally, the normative values of healthy people are provided as a
comparison [147]. For the highest applied stimulation current, 74% of the BI drop of healthy people
and 47% of the rate of change from healthy people could be achieved.

6.5 Conclusions

The previously developed algorithms for the swallowing detection from Chapter 4 could be adapted
for automatically activating FES in the very beginning of a swallow in real-time. Signal processing
for the EMG signal had to be reduced to a high-pass filter. During active stimulation, artifacts could
be muted as the stimulation periods were transmitted simultaneously to the PC. The BI is processed
by a PAA reduction, which is used as a simple low-pass filter. The double-threshold detector could
be applied, but the estimation of the noise variance and the parameter ̂𝜁 had to be adapted. The
valley detection algorithm which was successfully used in the swallowing segmentation could not
be utilized as FES should be triggered at the beginning of the valley. A modified Sliding Window
And Bottom-up (SWAB) algorithm was proposed and was able to estimate the slope of the BI signal
such that directly after the onset of a swallow an FES could be activated.

On one patient it has been shown, that the presented system is able to detect the beginning of
a voluntarily induced swallow. The time point in which FES was activated was set early enough
in respect to the swallow onset in order to stimulate the submental musculature for achieving a
positive effect regarding elevation and acceleration of hyoid and larynx. The patient easily adapted
to the stimulation system.

It can be seen that due to the stimulation a significant faster and deeper decrease in the BI
measurement signal could be produced. As shown in Chapter 5, BI correlates to the movement of
hyoid and larynx. A greater and a faster decrease in the BI signal can, therefore, be interpreted as a
wider and faster movement of hyoid and larynx in anterior and superior direction.

As the system was only tested on one patient, a study with a larger number of patients should
be performed in the future. The stimulation parameters and placement of the stimulation electrodes
have to be optimized. The methods from Chapter 4 could be used for segment already recorded
swallows. Thus, the classification thresholds for FES control could be adapted from swallow to
swallow.

In the presented approach, control of the stimulation was only activated after the patient had
prepared the bolus andwas ready to swallow. Amore robust control which does not react to chewing
and head movements could greatly improve the application. This could be accomplished by adding
additional sensors.

It has been shown that increasing the stimulation intensity has also a positive effect on the BI
drop during swallowing and the elevation speed. Thus, a feedback system could be implemented
by which the stimulation intensity is automatically controlled to maintain the desired elevation of
larynx and hyoid.
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7
Conclusion and Future Work

A measurement device has been developed which can be used for recording electromyography
(EMG) and bioimpedance (BI) at the neck for the assessment of the pharyngeal swallowing phase
in patients with swallowing disorders (dysphagia). A heuristic BI valley search algorithm was
presented in order to find all swallows in the measurement data. The algorithm for segmenting
all valleys in the BI data is based on an efficient piece-wise linear approximation (PLA) which is
an approximation of the time series into linked line segments of different length. The obtained line
segments were combined with the extracted EMG activities which are detected by a robust and
adaptive double-threshold detector. All line segments which form a valley and coincide with EMG
activity are marked as possible swallows. From these valleys, a feature set is extracted and a trained
support vector machine (SVM) could separate non-swallowing related artifacts from swallows. The
offline approach was tested on the data from healthy subjects which results in a very good accuracy
regarding sensitivity and specificity. The swallowing detection algorithm was also successfully
tested on data from patients.

By applying the valley search algorithm on measurement data which were recorded parallel to a
videofluoroscopy (VF), the correlation between BI and the movement of hyoid bone and larynx was
investigated. It was shown that the movement of both structures correlates to BI during a swallow.

By rendering the previously developed offline methods real-time capable, control of functional
electrical stimulation (FES) based on BI and EMG measurements could be realized. It was possible
to activate FES correctly timed to voluntary evoked swallows. An electrode position for effectively
stimulating the pharyngeal muscles was found. EMG and BI could be measured also during active
stimulation with the presented measurement system as all stimulation artifacts in the measurement
data could be muted. In a pilot study, FES of the pharyngeal muscles controlled by the developed
algorithm could successfully improve swallowing on a single post-stroke patient.

Future Work

It could be shown that a combined BI/EMG measurement at the neck can be used for automatic
segmentation of swallows. In combination with a video-based diagnostic system, such as fiber-
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optic endoscopic evaluation of swallowing (FEES), a more powerful system can be created to support
the examination of swallowing disorders. Periods in the recorded video in which the patient had
swallowed could be automatically selected and presented to the examiner. It would be possible to
automatically collect all passages which an examiner could use for diagnostic purposes. Due to the
automatic segmentation of swallows, database-based machine learning approaches for evaluating
the video images would become feasible.

Swallowing parameters could be extracted from recorded BI/EMGmeasurements promptly after
the swallow by using the presented segmentation algorithms. Thus, biofeedback of the swallowing
performance could be provided to the patient for training purposes. In combination with a deep
image camera, posture correction together with swallowing segmentation could help patients in
training swallowing in different head positions and swallowing maneuvers. Due to the easily
attachable sensor concept, the outcome of therapeutic measures could be regularly monitored.
Systems based on BI/EMG measurements could be utilized also outside of a clinical environment.

As it could be shown that the measurement setup is feasible for controlling FES accurately timed
for swallowing support, a combined measurement/stimulation system could be used for swallowing
therapy and long-term swallowing support.
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A
Component Lists for

PhysioSense
A.1 Current Source for BI Measurement

DDS
50/100 kHz

RMS1

LPF 2

LPF 1

HPF 1

𝐶𝑦−𝐼𝑅𝑘

𝑅𝑘 𝐶𝑦𝐼

𝐼

load

R1

R1

Sum1

Sum1

Int1

Int1

Comp1

Comp1

G1
C1

IA1R2
OP1

OP1

OP1

OP3

OP2

R3

R5
R4

VGND

VGND

Figure A.1: Circuit layout with components of the floating current source from Figure 3.4. The output
of the low pass LPF 2 is used as virtual ground (VGND) inside both integrators. The operating voltages
are −5 V and 5V.
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A. Component Lists for PhysioSense

Table A.1: Component list for the floating current source.

Name Description Parameters Type / Manufac-
turer

R1 resistor 10 kΩ, 1%
R2 resistor open
R3 resistor 10 kΩ, 1%
R4 resistor 100 kΩ, 1%
R5 resistor 10 kΩ, 1%
C1 capacitor 0.1 μF

DDS programmable
waveform
generator

set to sinusoidal oscillation with a
frequency of either 50 kHz or 100 kHz

AD9833BRMZ,
Analog Devices

𝑅𝑘 analog multiplexer switching to either 2.7 kΩ, 3.3 kΩ,
4.7 kΩ, 6.8 kΩ, 8.2 kΩ, 27 kΩ, 56 kΩ,
or 110 kΩ.

LTC1391CGN#PBF,
Linear Technology

OP1 operational
amplifier

LM6144BIM,
National Semi-
conductor

𝐶𝑦 Y1 safety capacitor 440LD47, Vishay
IA1 instrumentation

amplifier
INA128UAE4,
Texax Instruments

RMS1 RMS-to-DC
converter

operating voltages are −2.5 V and
2.5 V

LTC1968, Linear
Technology

OP2 operational
amplifier

LT6221CS8#PBF,
Linear Technology

OP3 operational
amplifier

LT6220CS5#PBF,
Linear Technology

Comp1 comparator LTC1440CS8#PBF,
Linear Technology

LPF 1 low-pass filter 3. order, fcut-off = 1MHz, Bessel, MFB
single ended, gain = 10

LT1800, Linear
Technology

LPF 2 low-pass filter 1. order, fcut-off = 160Hz, gain = 1 LM6144, National
Semiconductor

HPF 1 high-pass filter 2. order, fcut-off = 20Hz, Butterworth,
Sallen-Key, gain = 1,

LT6221CS8#PBF,
Linear Technology

Int1 integrator 𝜏 = 0.1ms LT6221CS8#PBF,
Linear Technology

Sum1 differential
amplifier

gain = 1 LM6144, National
Semiconductor

G1 amplifier gain = 0.56 LT6221CS8#PBF,
Linear Technology
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A.2 Voltage Measurement

A.2 Voltage Measurement

IA1

OP1

OP2

R1

R1
R5
R5

R2

R3

R4

R3

R3 R6 R7
R7

C2
OP1 OP1

R7
R6R7

C1

C2

D1D1

S1 S1

𝑉𝑜𝑢𝑡

Figure A.2: The circuit design of the voltage measurement input stage with the active shielding AS,
the reference driver RD and the common mode rejection circuit CMRC in detail from Figure 3.6. The
operating voltages are −5 V and 5V.
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A. Component Lists for PhysioSense

Table A.2: Component list for the voltage measurement input stage.

Name Description Parameters Type / Manufacturer
R1 resistor 100 kΩ, 0.1%
R2 resistor 100Ω, 1%
R3 resistor 10 kΩ, 1%
R4 resistor 400 kΩ, 1%
R5 resistor 2.7 kΩ, 1%
R6 resistor 300 kΩ, 1%
R7 resistor 620 kΩ, 1%
C1 capacitor 0.1 μF
C2 capacitor 6.8 nF
D1 low-leakage double diode BAV199, Infineon Technologies AG
S1 Photomos solid state relay AQW210EHA, Panasonic EW
OP1 operational amplifier OPA2131UJ, Texas Instruments
OP2 operational amplifier MAX492CSA, Maxim integrated
IA1 instrumentation amplifier INA128UAE4, Texas Instruments

A.3 Analog Signal Processing

A.3.1 EMG Filtering

LPF E1 FFDA1 ADC1
𝑉𝑜𝑢𝑡

Figure A.3: The filter and amplifier block FiltEMG in detail from Figure 3.8. The analog to digital
converter ADC1 also used within Figures A.4 and A.5. The operating voltages are −5 V and 5V.
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A.3 Analog Signal Processing

Table A.3: Component list for the filter and amplifier block FiltEMG.

Name Description Parameters Type / Manufac-
turer

LPF E1 low-pass filter 4. order, fcut-off = 13 kHz, Butterworth,
MFB single ended, gain = 1

OPA2131UJ, Texas
Instruments

FFDA1 feedback fully
differential low-
pass filter

1. order, fcut-off= 13Hz, Bessel, MFB
fully differential, gain = 0.5

THS4521, Texas
Instruments

ADC1 analog digital
converter

24-bit, sampling frequency 12 kHz ADS1278, Texas
Instruments

A.3.2 BI Filtering for Measurement at 50 kHz

RMS1

LPF B5LPF B1 RectifierHPF B3
B2

FFDA1B4

ADC1

G1 C2

OP1

OP1

R2

R1

R1

R3R2 Comp1

Comp1

𝑉𝑜𝑢𝑡

C1

𝐹𝐵𝐼

𝐹𝐵𝐼

R1

Figure A.4: The filter and amplifier block FiltBI1 and the fault detection block FaultBI1 in detail from
Figure 3.10. The analog to digital converter ADC1 is also used within Figures A.3 and A.5. The operating
voltages are −5 V and 5V.
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A. Component Lists for PhysioSense

Table A.4: Component list for the filter and amplifier block FiltBI1 and the fault detection block FaultBI1.

Name Description Parameters Type / Manufac-
turer

R1 resistor 10 kΩ, 1%
R2 resistor 1 kΩ, 1%
R3 resistor 240 kΩ, 1%
C1 capacitor 0.1 μF
C2 capacitor 0.1 μF
OP1 operational

amplifier
OPA2131UJ, Texas
Instruments

RMS1 RMS-to-DC
converter

operating voltages are −2.5 V and
2.5 V

LTC1968, Linear
Technology

Comp1 comparator LTC1442, Linear
Technology

LPF B1 low-pass filter 4. order, fcut-off = 55 kHz, Chebychev
with ribble of 0.5 dB, MFB single
ended, gain = 1

LT1801, Linear
Technology

B2 programmable
amplifier

gain = 1x, 5x, 20x, or 100x LTC6910, Linear
Technology

LPF B3 high-pass filter 2. order, fcut-off = 26 kHz, Butter-
worth, Sallen-Key, gain = 1

LT1679, Linear
Technology

B4 rectifier described in Section A.3.4 LT1679, Linear
Technology

LPF B5 low-pass filter 4. order, fcut-off= 13 kHz, Butterworth,
MFB single ended, gain = 1

OPA2131UJ, Texas
Instruments

FFDA1 feedback fully
differential low-
pass filter

1. order, fcut-off = 13Hz, Bessel, MFB
fully differential, gain = 0.5

THS4521, Texas
Instruments

ADC1 analog digital
converter

24-bit, sampling frequency 12 kHz ADS1278, Texas
Instruments

G1 amplifier gain = 0.42 LT6221CS8#PBF,
Linear Technology
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A.3 Analog Signal Processing

A.3.3 BI Filtering for Measurement at 100 kHz

RMS1

LPF B5LPF B1 RectifierHPF B3
B2

FFDA1B4

ADC1

G1 C2

OP1

OP1

R2

R1

R1

R3R2 Comp1

Comp1

𝑉𝑜𝑢𝑡

BPF B6

C1

𝐹𝐵𝐼

𝐹𝐵𝐼

R1

Figure A.5: The filter and amplifier block FiltBI2 and the fault detection block FaultBI2 in detail from
Figure 3.11. The analog to digital converter ADC1 is also used within Figures A.3 and A.4. The operating
voltages are −5 V and 5V.
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A. Component Lists for PhysioSense

Table A.5: Component list for the filter and amplifier block FiltBI2 and the fault detection block FaultBI2.

Name Description Parameters Type / Manufac-
turer

R1 resistor 10 kΩ, 1%
R2 resistor 1 kΩ, 1%
R3 resistor 240 kΩ, 1%
C1 capacitor 0.1 μF
C2 capacitor 0.1 μF
OP1 operational

amplifier
OPA2131UJ, Texas
Instruments

RMS1 RMS-to-DC
converter

operating voltages are −2.5 V and
2.5 V

LTC1968, Linear
Technology

Comp1 comparator LTC1442, Linear
Technology

LPF B1 low-pass filter 4. order, fcut-off = 55 kHz, Chebychev
with ribble of 0.5 dB, MFB single
ended, gain = 1

LT1802, Linear
Technology

B2 programmable
amplifier

gain = 1x, 5x, 20x, or 100x LTC6910, Linear
Technology

LPF B3 high-pass filter 2. order, fcut-off = 26 kHz, Butter-
worth, Sallen-Key, gain = 1

LT1679, Linear
Technology

B4 high-precision full-
wave rectifier

described in Section A.3.4 LT1679, Linear
Technology

LPF B5 low-pass filter 4. order, fcut-off= 13 kHz, Butterworth,
MFB single ended, gain = 1

OPA2131UJ, Texas
Instruments

HPF B6 band-pass filter 2. order, fcenter = 100 kHz, 𝑄 = 16, gain
= 2.3

LT1802, Linear
Technology

FFDA1 feedback fully
differential low-
pass filter

1. order, fcut-off = 13Hz, Bessel, MFB
fully differential, gain = 0.5

THS4521, Texas
Instruments

ADC1 analog digital
converter

24-bit, sampling frequency 12 kHz ADS1278, Texas
Instruments

G1 amplifier gain = 0.42 LT6221CS8#PBF,
Linear Technology
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A.3 Analog Signal Processing

A.3.4 Amplitude Demodulation

R1 R1 R1

R2

R1

D1

D1

R1

OP1OP1

Figure A.6: Circuit layout with components of the high-precision full-wave rectifier B4 shown in Figure
3.12. The operating voltages are −5 V and 5V.

Table A.6: Component list for the high precision full-wave rectifier.

Name Description Parameters Type / Manufacturer
R1 resistor 10 kΩ, 1%
R2 resistor 20 kΩ, 1%
D1 low-leakage

double diode
BAV199, Infineon
Technologies AG

OP1 operational
amplifier

LT1679, Linear Technol-
ogy
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