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Abstract

Motivated by environmental, economic and technological aspects, the pene-

tration of renewable energy sources into the electrical networks is increasing

worldwide. This fact requires a paradigmatic change in power system oper-

ation. One solution to facilitate this change are microgrids. In the present

work, the problems of frequency stability, voltage stability and power shar-

ing in microgrids are considered. More precisely, control concepts that

address the aforementioned problems are investigated. The main contri-

butions of the present work comprise: (i) A generic modular model of an

uncontrolled microgrid is derived. (ii) A consensus-based distributed volt-

age control (DVC) is proposed, which guarantees a desired reactive power

distribution in steady-state. In contrast with other control strategies avail-

able thus far, the control presented in this work only requires distributed

communication among generation units, i.e., no central computing nor com-

munication unit is needed. (iii) Conditions for local asymptotic stability

of several microgrid configurations are derived. The considered networks

comprise inverter-based microgrids operated with frequency and voltage

droop control, as well as microgrids operated with frequency droop control

and the proposed DVC. The conditions are established via converse Lya-

punov theorems in combination with tools from linear algebra, as well as

port-Hamiltonian systems. Most conditions are derived under the assump-

tion of dominantly inductive power lines. (iv) Conditions are given under

which the frequency droop control, respectively the proposed DVC, solve

the problem of active, respectively reactive, power sharing in microgrids

with dominantly inductive power lines. The claims are established by com-

bining the aforementioned stability results with a design criterion for the

controller gains and setpoints of the frequency droop control, respectively

with the inherent properties of the DVC. (v) The analysis is validated via

simulation on a microgrid based on the CIGRE benchmark medium voltage

distribution network.





Kurzfassung

Aus ökologischen, ökonomischen und technologischen Gründen steigt der

Anteil erneuerbarer Energien in elektrischen Netzen seit mehreren Jahren

weltweit stetig an. Diese Entwicklung erfordert einen Paradigmenwechsel

im Betrieb elektrischer Energienetze. Eine potentielle Lösung hierfür sind

Microgrids. In der vorliegenden Arbeit werden die Probleme der Frequenz-

stabilität, der Spannungsstabilität sowie der Leistungsaufteilung in Micro-

grids betrachtet. Konkret werden Regelungskonzepte untersucht, die die

oben genannten Probleme lösen sollen. Die vorliegende Arbeit enthält hier-

zu folgende Beiträge: (i) Es wird ein modulares Modell eines ungeregelten

Microgrids hergeleitet. (ii) Es wird ein konsensbasiertes verteiltes Span-

nungsregelgesetz (VSR) vorgestellt, das eine gewünschte stationäre Blind-

leistungsaufteilung gewährleistet. Im Gegensatz zu anderen bisher verfüg-

baren Regelstrategien benötigt das vorliegende Regelgesetz lediglich verteilte

Kommunikation zwischen den Erzeugungseinheiten, d.h. es ist keine zen-

trale Kommunikationseinheit notwendig. (iii) Es werden lokale Stabilitäts-

bedingungen für verschiedene Microgridkonfigurationen hergeleitet. Die be-

trachteten Netze umfassen wechselrichterbasierte Microgrids, die mit Fre-

quenz- und Spannungs-Droop-Regelung betrieben werden, sowie Microgrids,

die mit Frequenz-Droop-Regelung und dem vorgestellten VSR betrieben

werden. Den meisten dieser Ergebnisse liegt die Annahme stark induk-

tiver Stromleitungen zugrunde. (iv) Es werden Bedingungen aufgezeigt,

unter denen die Frequenz-Droop-Regelung bzw. das vorgestellte VSR das

Problem der Wirk- bzw. Blindleistungsaufteilung in Microgrids mit stark

induktiven Stromleitungen löst. Hierzu werden die zuvor erwähnten Sta-

bilitätsbedingungen mit einem Entwurfskriterium für die Reglerparameter

der Frequenz-Droop-Regelung bzw. mit den inhärenten Eigenschaften des

VSR kombiniert. (v) Die Analyse wird anhand von Simulationen auf Basis

des CIGRE Benchmark Mittelspannungsverteilnetzes validiert.





To alicia.
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1

Introduction

1.1 Motivation

The commercial use of electricity dates back to the late 1870s [1]. Since that time, the

electric power industry has grown to become one of the world’s largest industries [1].

Nowadays, without doubt, electric energy is the most fundamental energy carrier in

modern industrialized societies [2, 3, 4].

Traditionally, the vast majority of the worldwide electricity generation has been

contributed by steam turbines in combination with synchronous generators (SGs) [1, 4,

5]. Such systems are called thermal power plants and their basic functioning is as follows

[5, 6]. A steam turbine converts thermal energy contained in pressurized steam into

rotational mechanical energy. Then, an SG further transforms this mechanical energy

into electrical energy via an electromagnetic process called induction. The required

steam is usually obtained from combustion processes, which often use fossil fuels as

heat sources. The most commonly used materials are coal, natural gas, nuclear fuel

and oil [5, 6].

It is well-known that fossil-fueled thermal power generation highly contributes to

greenhouse gas emissions [6, 7]. In addition, more and more scientific results, e.g.,

[8, 9, 10], substantiate claims that greenhouse gas emissions are one, if not the, key

driver for climate change and global warming. Furthermore, the largest share of the

greenhouse gas emissions is and has been contributed by developed countries [11].

As a consequence, many developed countries have agreed to reduce their greenhouse

gas emissions. The most prominent treaty in this context is the well-known Kyoto

Protocol to the United Nations Framework Convention on Climate Change from 1997

1



1. INTRODUCTION

[12]. The Kyoto Protocol sets emissions targets for developed countries that are binding

under international law [12, 13].

One possibility to reduce greenhouse gas emissions is the reduction of energy con-

sumption. This can be achieved, e.g., by changing consumption patterns or increasing

the efficiencies in production, transportation and consumption of energy. Another

mechanism to reduce greenhouse gas emissions is to shift the energy production from

fossil-fueled plants towards renewable energies [7]. Renewable energy is defined by

the International Energy Association as ”energy derived from natural processes (e.g.,

sunlight and wind) that are replenished at a faster rate than they are consumed”

[14]. Common sources of renewable energy are, e.g., solar, wind, geothermal, hydro or

biomass.

By now, most developed countries have set specific target goals regarding the share

of renewable energies within their total energy consumption [15]. An outstanding ex-

ample is the German ”Energiewende” (engl. energy transition), which targets a 35%

share of renewable generation by 2020 and a share of 80% by 2050 [16]. The European

Union aims at achieving a total share of 20% of renewable energy generation by 2020,

while at the same time reducing its greenhouse gas emissions by 30% compared to 1990

[17].

As a consequence of these political and environmental goals, the worldwide use

of renewable energies has increased significantly in recent years [7, 15]. However, the

increasing penetration of renewable energy sources not only changes the mix of the gen-

eration structure, but also strongly affects the power system structure and its operation

as a whole [7, 18, 19]. One main reason for this is detailed in the following.

Typically, a power system is composed of a high voltage (HV) transmission sys-

tem, as well as medium voltage (MV) and low voltage (LV) distribution systems. As

mentioned above, traditional power generation has been based around thermal power

plants, which are typically very large in terms of their generation power and therefore

connected to the HV level. From there, the power is transported across the transmis-

sion and distribution systems to the end-consumer, mainly located at the MV and LV

levels. Hence, traditional power system operation has mainly been concerned with a

relatively small number of large power plants connected to the HV transmission system

via SGs [6], as illustrated in Fig. 1.1a.

Unlike, fossil-fueled thermal power plants, most renewable power plants are rela-

tively small-sized in terms of their generation power. This smaller scale is mainly due
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to technical reasons. An important consequence of this smaller size is, that most re-

newable power plants are connected to the LV and MV levels. Such generation units

are commonly denoted as distributed generation (DG) units [20]. Furthermore, it is

obvious from the preceding discussion that a large number of DG units are required

to replace one large thermal power plant. Hence, an increasing amount of renewable

DG units not only reduces greenhouse gas emissions, but also highly affects the in-feed

structure of existing power systems, see Fig. 1.1b. This fact requires a paradigmatic

change in power system operation [7, 18, 19].

In addition, most renewable DG units are interfaced to the network via alternating

current (AC) inverters. The physical characteristics of such power electronic devices

largely differ from the characteristics of SGs. Therefore different control and operation

strategies are needed in networks with a large amount of renewable DG [7, 21].

One potential solution to facilitate the aforementioned paradigmatic change in

power system operation are microgrids [21, 22, 23, 24]. A microgrid gathers a combi-

nation of generation units, loads and energy storage elements at distribution level into

a locally controllable system, which can be operated either in grid-connected mode or

in islanded mode, i.e., in a completely isolated manner from the main transmission sys-

tem. The microgrid concept has been identified as a key component in future electrical

networks [18, 25].

Many new challenges arise in such networks. The present thesis is devoted to three

fundamental challenges in the operation of microgrids, namely (i) frequency stability,

(ii) voltage stability and (iii) power sharing. The relevance of the addressed problems

and their inherent relation is detailed in Chapter 3.

1.2 Contributions

The main contributions of the present thesis are given below.

(i) A modular model of an uncontrolled microgrid is derived. The model is suitable

for the purposes of network control design and subsequent stability analysis of the

resulting closed-loop system. Compared to SG-based conventional power systems,

inverter-interfaced DG units are the main generation units in microgrids. Hence,

a detailed model derivation of such plants is given.

(ii) A consensus-based distributed voltage control (DVC) is proposed, which guaran-

tees reactive power sharing in steady-state in meshed microgrids with arbitrary

line admittances. Opposed to most other related communication-based control

3
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(a) Power system structure with mere conventional generation represented by synchronous

generators (SGs)
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distribution system
Large loads
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DG
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...
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(b) Power system structure with large share of distributed generation (DG)

Figure 1.1: Change in power system structure due to increasing penetration of distributed

generation. The symbol ”SG” denotes conventional generation units; the symbol ”DG”

denotes distributed generation units. Fig. 1.1a illustrates the structure of a conventional

power system. The generation units are located at the HV transmission level. The energy

is transported one-directionally from the HV level to customers at the MV and LV levels.

As depicted in Fig. 1.1b, the availability of DG units at the lower voltage levels changes

the classical generation structure. Moreover, in such networks the energy flow may also be

reversed.
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concepts, e.g., [26, 27], the present approach only requires distributed communi-

cation among units, i.e., it neither requires a central communication or computing

unit nor all-to-all communication among the DG units. Furthermore, it is proven

that the choice of the control parameters uniquely determines the corresponding

equilibrium point of the voltage and reactive power dynamics under the proposed

DVC. The latter result is derived under the standard assumptions of dominantly

inductive power lines and small angle differences [1, 28, 29].

(iii) Conditions for local asymptotic stability of several microgrid configurations are

presented. In particular, the investigated networks include inverter-based micro-

grids operated with frequency and voltage droop control, as well as microgrids op-

erated with frequency droop control and the proposed DVC. Most conditions are

derived under the assumption of dominantly inductive power lines. The results

are established by using tools from linear algebra, as well as port-Hamiltonian

systems together with converse Lyapunov theorems.

(iv) It is shown that the problem of power sharing can be cast as an agreement prob-

lem. Furthermore, conditions are given, under which the frequency droop control,

respectively the proposed DVC, solve the problem of active, respectively reactive,

power sharing in microgrids with dominantly inductive power lines. The claims

are established by combining the aforementioned stability results with a selection

criterion on the gains and setpoints of the frequency droop control that ensures

a desired active power sharing in steady-state, as well as with the inherent prop-

erties of the DVC.

(v) The provided analysis is illustrated in extensive simulation studies based on the

Conseil International des Grands Réseaux Electriques (CIGRE) benchmark MV

distribution network.

The thesis is organized in six chapters and a common conclusion. The main con-

tents of each chapter are briefly outlined in the following.

Chapter 2 - Preliminaries in control theory and power systems. In this pre-

liminary chapter, a series of standard results, definitions and models from the fields of

control theory and power systems are reviewed. The given mathematical background

focuses on the control theoretic concept of stability and presents some standard con-

ditions for stability used to establish part of the results in this work. Furthermore,
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some basics of algebraic graph theory, consensus protocols and matrix analysis are in-

troduced. In addition, standard definitions and network models for AC three-phase

electrical power systems are detailed. Finally, the concept of stability in power systems

and microgrids is related to its control theoretic counterpart.

Chapter 3 - Problem statement. In this chapter, the microgrid concept is intro-

duced and a formal definition of a microgrid is given. It is illustrated that the increasing

penetration of DG units at the LV and MV levels leads to structural changes in today’s

power systems. The main associated technical challenges arising with these changes

are discussed. The potentials and key features of microgrids in this context are pointed

out and three fundamental problems in the operation of microgrids are introduced in

detail. These are frequency stability, voltage stability and power sharing. In particular,

the problem of power sharing is formulated as an agreement problem. The chapter is

concluded with a brief overview of a hierarchical control architecture for microgrids.

Chapter 4 - Modeling of microgrids. A model of a microgrid with distributed rota-

tional and electronic generation (MDREG), suitable for the purposes of control design,

as well as subsequent frequency and voltage stability analysis, is derived. Therefore,

unlike, e.g., in [30, 31, 32], a generic modular modeling approach is pursuit. The main

model components are generation units interfaced to the network via AC inverters or

SGs, as well as loads and power lines.

The modeling of SGs has a long history in the literature of power systems and is,

hence, well-studied, see, e.g., [1, 3, 6]. On the contrary, modeling of inverters for the

purpose of network stability analysis is a relatively young topic, see, e.g., [30, 33, 34, 35].

Therefore, in this chapter, a detailed model derivation of an inverter is provided. The

basic functionality of an inverter is briefly reviewed, followed by a description of the two

main operation modes of inverters in microgrid applications. The operation mode called

grid-forming mode is identified as the main relevant operation mode in the context

of network control and stability analysis. Hence, a suitable model of a grid-forming

inverter represented by a controllable AC voltage source is derived. The main modeling

assumptions are discussed and stated.

The model of an SG is introduced following standard modeling approaches from the

literature on power systems, see, e.g., [1, 3, 6]. Finally, the network interconnections

and loads are modeled based on the procedure outlined in Chapter 2 following the

classical approach in conventional power system studies [1, 3, 6, 36].
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Chapter 5 - Control concepts for microgrids and conditions for power shar-

ing. Control concepts to address the aforementioned problems of frequency stability,

voltage stability and power sharing are introduced. At first, the well-known droop con-

trol for SGs is reviewed [1, 6]. This control is widely used in SG-based power systems to

achieve the control objectives of frequency stability and active power sharing. Building

on the droop control for SGs, the frequency and voltage droop controls for inverter-

interfaced DG units are introduced. These control laws have been widely proposed

in the literature to operate grid-forming inverters in microgrids, see, e.g., [37, 38]. A

thorough physical motivation for these control laws is given. Furthermore, a selection

criterion on the setpoints and gains of the frequency droop controller is provided, which

ensures a desired steady-state active power sharing in an MDREG. Unlike previous re-

sults, see, e.g., [28], the criterion holds independently of the line admittances.

Moreover, it is discussed that the voltage droop control [37] does, in general, not

guarantee reactive power sharing. Consequently, a consensus-based DVC for inverter-

interfaced DG units is proposed. It is proven that the DVC does guarantee reactive

power sharing in steady-state independently of the line admittances. Furthermore, it

is shown that—via a suitable feedback linearization—the proposed DVC can also be

applied to SG-interfaced units in a straightforward manner.

Chapter 6 - Conditions for stability in microgrids. The closed-loop microgrid

dynamics resulting by combining the microgrid model derived in Chapter 4 with the

control laws introduced in Chapter 5 are undertaken a rigorous mathematical analysis.

More precisely, the main contributions of this chapter are: (i) a necessary and suffi-

cient condition for local frequency stability in a lossy1 MDREG with constant voltage

amplitudes is provided; (ii) a sufficient condition for global boundedness of trajecto-

ries of a lossy droop-controlled inverter-based microgrid with time-varying frequencies

and voltage amplitudes is given; (iii) for the same system and under the assumption

of lossless admittances, sufficient conditions for local asymptotic stability are derived

using a port-Hamiltonian framework; (iv) under the assumptions of dominantly induc-

tive power lines and small phase angle differences between the output voltages of the

DG units, it is proven that the equilibrium point of the closed-loop voltage and reac-

tive power dynamics of a microgrid operated with the DVC is uniquely determined by

the choice of the control parameters; (v) a necessary and sufficient condition for local

1A lossy MDREG is an MDREG with nonzero transfer conductances.
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exponential stability of this equilibrium point is given; (vi) a necessary and sufficient

condition for local exponential stability of a microgrid operated with frequency droop

control and DVC is provided. The latter result is established without the assumption

of small phase angle differences. Finally, (vii) solutions to the problems of active and

reactive power sharing are given by combining the results of the present chapter with

those of Chapter 5.

Chapter 7 - Illustrative simulation examples. The analytic results of the previous

chapters are illustrated via two extensive simulation studies based on the meshed CI-

GRE benchmark MV distribution network. At first, a simulation scenario in which all

grid-forming DG units are operated with the standard droop controllers is considered.

The study mainly serves to evaluate the following three aspects: (i) the conservative-

ness of the derived sufficient stability condition; (ii) its robustness with respect to

model uncertainties; (iii) the suitability of the droop controllers to achieve a desired

power sharing. In the second simulation study the performance of the voltage droop

control is compared to that of the DVC proposed in this work. This second study also

serves to evaluate the compatibility of the DVC with the usual frequency droop control.

Chapter 8 - Discussion and conclusion. The main results are summarized and

future research directions are discussed.

1.3 Related work

Today’s electrical power systems are very large, complex and highly nonlinear systems

[3, 4, 6]. They possess a huge variety of actuators and operational constraints, while

persistently being subjected to disturbances. Typical disturbances in power systems

are, e.g., changes in load, outages of power plants, or failures in transformer substations

and power lines [39]. Hence, the task of guaranteeing a stable, reliable and efficient

operation of a power system is tremendous. This fact becomes even more obvious by

noting that already a local instability can lead to a cascade of failures, which can cause

severe blackouts affecting millions of people [40, 41].

It is, therefore, not surprising that the stability analysis of power systems has a long

research tradition with its beginning dating back to the 1920s [42, 43]. Nevertheless, the

stability analysis of power systems and the design of stabilizing feedback controllers for

power systems are still open and very active research fields, see, e.g., the recent works
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[44, 45, 46, 47, 48, 49, 50, 51, 52]. An excellent review of the research history on power

system stability analysis is given, e.g., in [6, Chapter 1].

Compared to the physical system considered in the present work, all of the research

activities indicated above are restricted to power systems with SG-interfaced generation

units located at the transmission level. It is, however, important to note that the results

in, e.g., [45, 48], are established by means of the interconnection and damping assign-

ment passivity-based control approach [53]. The approach of [53] is also followed in

the present work to obtain a sufficient stability condition for a lossless droop-controlled

microgrid.

Furthermore, although the aforementioned frequency and voltage droop control laws

are widely discussed and promoted in the literature, see, e.g., [34, 38, 54], the available

results on performance of droop-controlled microgrids are limited in the following four

regards.

(i) Stability analysis of droop-controlled microgrids has traditionally been carried out

by means of detailed numerical small-signal analysis as well as extensive simula-

tions and experimental studies aiming to characterize a range for the droop gains

guaranteeing system stability [30, 33, 34, 55, 56, 57, 58, 59, 60, 61, 62].

(ii) So far, most research on stability and power sharing of microgrids has focused

on purely inverter-based systems, see, e.g., [28, 29, 63, 64] and all of the afore-

mentioned references. However, from a practical perspective, most present and

near-future applications concern networks of mixed generation structure including

SGs and inverter-interfaced distributed resources. Recall that such microgrids are

denoted by MDREGs in this work. In MDREGs, SGs may for example be used in

combination with diesel engines or gas turbines [65]. Stability and performance

of such systems remain largely unexplored from a system theoretic point of view.

In [30, 31] and [32], MDREGs that consist of two inverters and one to two SGs

are investigated via simulations complemented by a numerical small-signal sta-

bility analysis. Furthermore, the problems of frequency stability, power sharing

and optimal dispatch in radial MDREGs have recently been investigated in [66].

However, the analysis therein is restricted to first-order inverter and SG models,

as well as conducted under the assumptions of constant voltage amplitudes and

lossless line admittances.

(iii) As pointed out in [38], most work on microgrid stability has so far focused on mi-

crogrids with radial topologies, while stability of microgrids with meshed topolo-
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gies and decentralized controlled units is still an open research area. For radial

lossless microgrids, and under the assumption of constant voltage amplitudes,

analytic conditions for proportional active power sharing and synchronization of

lossless microgrids with first-order inverter models have been recently derived in

[28]. Note that, under the assumption of constant voltage amplitudes, the dynam-

ics of droop-controlled microgrids can be cast within the framework of complex

oscillators networks [66, 67, 68]. The aforementioned results in [28, 66], as well

as those in the related previous work [69], are established by exploring this fact.

Conditions for voltage stability for a lossless parallel microgrid with one common

load have been derived in [29].

For general meshed microgrids operated with frequency droop control, an iter-

ative numerical procedure to evaluate local stability has been proposed in [62].

This approach is based on bifurcation theory. In [70], the authors provide a de-

centralized LMI-based control design for lossy meshed inverter-based networks

guaranteeing overall network stability for a nonlinear model considering variable

voltage amplitudes and phase angles, while accounting for power sharing. Under

the assumptions of constant voltage amplitudes, lossless power lines and first-

order inverter models, sufficient conditions for frequency synchronization, i.e.,

convergence to one common frequency, are given in [63]. Furthemore, conserva-

tive sufficient conditions for frequency synchronization and voltage stability of

lossy droop-controlled microgrids with first-order inverter models are provided in

[64], by using ideas from [50].

(iv) The voltage droop control [37] exhibits a significant drawback: it does in general

not guarantee a desired reactive power sharing, i.e., it does, in general, not achieve

the desired control goal, as discussed, e.g., in [29, 71, 72, 73]. Moreover, to the

best of the author’s knowledge, no theoretically or experimentally well-founded

selection criteria are known for the parameters of the voltage droop control which

would ensure at least a guaranteed minimum (quantified) performance in terms

of reactive power sharing.

As a consequence, several other or modified (heuristic) decentralized voltage con-

trol strategies have been proposed in the literature, e.g., [29, 59, 72, 73, 74, 75, 76].

Most of this work is restricted to networks of inverters connected in parallel. More-

over, typically only networks composed of two DG units are considered. With

most approaches the control performance in terms of reactive power sharing with
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respect to the original control [37] is improved. However, no general conditions or

formal guarantees for reactive power sharing are given. A quantitative analysis

of the error in power sharing is provided in [72] for the control proposed therein.

Other related work is [77, 78], where a secondary voltage control scheme is pro-

posed that regulates all voltage amplitudes to a common reference value. In that

case, in general, no reactive power sharing is achieved. In [79, 80] distributed

control schemes for the problem of optimal reactive power compensation are pre-

sented. The study therein is limited to the steady-state behavior, i.e., the con-

sidered time-scale is much larger than in the present work. Furthermore, the DG

units are modeled as constant power or PQ buses. Hence, the units considered

in [79, 80] are operated as grid-feeding and not as grid-forming units, see, e.g.,

[35, 81].

As a consequence of the preceding discussion, conditions for stability of generic meshed

microgrids are derived in this work. The closed-loop systems considered in the analysis

comprise frequency-droop controlled MDREGs with constant voltage amplitudes, as

well as droop-controlled inverter-based microgrids with time-varying frequencies and

voltage amplitudes.

Furthermore, a consensus-based DVC, which guarantees reactive power sharing in

steady-state is proposed. Unlike in other related work on distributed voltage control,

e.g., [82, 83, 84], for the case of dominantly inductive power lines, a rigorous mathemat-

ical analysis of the closed-loop microgrid dynamics under the proposed DVC is carried

out in the present thesis.

The consensus protocol used to design the DVC is based on the weighted average

consensus protocol [85]. This protocol is closely related to the well-known average con-

sensus protocol [85]. It should, however, be noted that the average consensus protocol

has been extended in several other regards. These include, but are not limited to,

directed networks [86, 87], dynamic network topologies [88, 89], time-discrete protocols

[86, 90, 91], consensus under communication time-delays [88, 92, 93, 94, 95, 96, 97],

second-order protocols with homogeneous interaction topologies [98, 99, 100], second-

order protocols with heterogeneous interaction topologies [101, 102], nonlinear protocols

[97, 103, 104, 105] and higher-order agent dynamics [97, 99, 106, 107, 108]. Given the

vast amount of recent results on different types of consensus protocols for multi-agent

networks, the preceding list of references is by no means intended to be complete,
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but rather to offer a glimpse into the rich literature on consensus protocols. A recent

overview on progress in the study of multi-agent systems is given, e.g., in [109].

It is also worth noting that the network interconnection among the different loads

and generation units in a power system can typically be modeled by a graph. More-

over, the problem of frequency stability can be formulated as an output agreement

problem, see, e.g., [110, 111]. These two facts establish a natural link between the

theoretical framework provided by consensus protocols and the analysis and control of

power systems [112]. Therefore, consensus protocols have recently been applied to a

number of problems and applications in power systems and microgrids. For example, in

[50, 67, 68, 113, 114] conditions for frequency synchronization in power systems com-

posed of highly-overdamped SGs are derived. To establish their claims, the authors

make use, among others, of results on convergence of nonlinear consensus protocols

reported in [103]. Furthermore, assuming a linear power system model, second-order

consensus protocols have been applied in [115, 116] to address the problem of secondary

frequency control in large power systems. Ideas of consensus protocols are also used

in [117] to prove convergence of SG-based power systems. In addition, the authors of

[117] provide several estimates of the region of attraction of a given steady-state.

Likewise, the aforementioned works on conditions for stability in lossless inverter-

based microgrids [28, 69, 118] employ a graph-theoretic notation. In addition, in

[28, 118, 119] the problem of secondary frequency control in droop-controlled inverter-

based microgrids has been studied using tools of graph theory and consensus protocols.

Similarly, the previously mentioned secondary frequency and voltage control schemes for

inverter-based microgrids proposed in [77, 78, 120] are designed based on the weighted

average consensus protocol [85]. Also the author’s work [121] employs a graph theoric

notation to study the problem of frequency synchronization in microgrids in which the

agents have second-order dynamics.

The DVC proposed in this work further explores the illustrated links between con-

sensus protocols and the control of power systems. More precisely, it is shown that the

problem of power sharing can be cast as an agreement problem. However, unlike the

usual agreement problems in multi-agent systems discussed, e.g., in [85, 109], power

sharing is not a strict state nor output agreement problem. On the contrary, the agree-

ment subspace is spanned by a set of algebraic nonlinear state-dependent equations,

which describe the weighted steady-state power flows in the network.
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1.5 Outline

The thesis is organized as follows. Background information on the main mathematical

methods used to establish the results in this work, as well as on electrical engineering

are given in Chapter 2. The microgrid concept and the specific problem statement of

this work are discussed in Chapter 3. In Chapter 4, a suitable model of an uncontrolled

microgrid is derived. Control concepts for microgrids are presented in Chapter 5. A

rigorous mathematical analysis of the closed-loop microgrid dynamics, resulting by

combining the derived model with the proposed control schemes, is given in Chapter 6.

The theoretical analysis is illustrated via simulations in Chapter 7. In Chapter 8,

conclusions are drawn and future research directions are discussed.
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2

Preliminaries in control theory

and power systems

2.1 Introduction

This preliminary chapter is structured as follows. Basic notation used within the present

work is introduced in Section 2.2. Subsequently, relevant background information of

the field of control theory is given in Section 2.3 and some preliminaries in electrical

power systems are recalled in Section 2.4.

2.2 Notation

The set of positive natural numbers is denoted by N, the set of real numbers by R and

the set of complex numbers by C. It is convenient to define the sets N := {1, 2, . . . , n},
n ∈ N, R≥0 := {x ∈ R|x ≥ 0}, R>0 := {x ∈ R|x > 0}, R<0 := {x ∈ R|x < 0} and

T := {x ∈ R | 0 ≤ x < 2π}. For a set U, |U| denotes its cardinality. For a set of, possibly

unordered, positive natural numbers V = {l, k, . . . , n}, the short-hand i ∼ V denotes

i = l, k, . . . , n. For z ∈ C, ℜ(z) denotes the real part of z and ℑ(z) its imaginary part.

Let j denote the imaginary unit. Let x := col(xi) ∈ Cn denote a vector with entries

xi ∈ C, i ∼ N, 0n the vector of all zeros, 1n the vector with all ones, In the n×n identity

matrix, 0n×n the n×n matrix of all zeros and diag(ai), i ∼ N, an n×n diagonal matrix

with entries ai ∈ C. Likewise, blkdiag(Ai) ∈ Cn×n denotes a block-diagonal matrix with

entries Ai ∈ Cl×l. Let x ∈ Cn and y ∈ Cm, then v = col(x, y) ∈ Cn+m denotes the

column vector with entries vi = xi, i = 1, . . . , n and vn+k = yk, k = 1, . . . ,m. The

conjugate transpose of a matrix A ∈ Cn×n is denoted by A∗. A complex-valued matrix
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A is said to be Hermitian if A = A∗. If A = −A∗, then A is said to be skew-Hermitian.

A (skew)-Hermitian matrix, which has only real entries is said to be (skew)-symmetric.

A Hermitian matrix A ∈ Cn×n is said to be positive definite if x⊤Ax > 0 for all

x ∈ Cn \ {0n}. This property is also denoted by A = A∗ > 0. If x⊤Ax ≥ 0 for all

x ∈ Cn \ {0n}, A is said to be positive semidefinite, or, equivalently, A = A∗ ≥ 0. Note

that if A = A⊤ ∈ Rn×n, the condition x⊤Ax > (≥)0 for all x ∈ Rn \ {0n} implies that

A is positive (semi)definite. Furthermore, for x ∈ Cn, ∥x∥ denotes an arbitrary vector

norm, ∥x∥1 :=
∑

i∼N |xi| denotes the vector 1-norm and ∥x∥∞ := max(|x1|, . . . , |xn|)

the vector ∞-norm. The operator ⊗ denotes the Kronecker product. Unless specified

differently, t ∈ R denotes the time. Finally, ∇f denotes the transpose of the gradient

of a function f : Rn → R.

To simplify notation the time argument of all signals is omitted, whenever clear

from the context.

2.3 Preliminaries in control theory

In this section, some standard control theoretic concepts and results are recalled.

Namely, a brief introduction to nonlinear dynamical systems is given in Section 2.3.1;

Lyapunov stability is reviewed in Section 2.3.2; in Section 2.3.3, main properties of the

class of port-Hamiltonian systems are shortly discussed. The presentation of the afore-

mentioned topics is strongly oriented on [127, Chapter 2.3], [128, Chapter 4] and [129,

Chapters 3 and 4]. For further information on control theory, as well as for proofs of

the given mathematical statements, the reader is referred to, e.g., [127, 128, 129, 130].

In addition, the Routh-Hurwitz criterion for polynomials with complex coefficients

is introduced in Section 2.3.4. Subsequently, basics on algebraic graph theory and

consensus protocols for multi-agent systems are recalled in Section 2.3.5. A brief review

of relevant properties of the numerical range of a matrix is given in Section 2.3.6.

Note that the introduced basics on algebraic graph theory, as well as the numerical

range of a matrix do not strictly belong to the field of control theory. However, they

are used in this work as tools to derive control theoretic results and therefore included

in the present section.
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2.3 Preliminaries in control theory

2.3.1 Nonlinear dynamical systems

The class of systems relevant in the context of this work are dynamical systems modeled

by first-order ordinary differential equations (ODEs)

ẋ(t) = f(t, x(t), u(t)),

y(t) = h(t, x(t), u(t)),
(2.1)

with initial time t0 ∈ R, state signal x : [t0,∞) → X ⊆ Rn, input signal u : [t0,∞) →
U ⊆ Rp, output signal y : [t0,∞) → Y ⊆ Rm, as well as functions f : [t0,∞)×X×U →
Rn and h : [t0,∞)× X× U → Y.

A representation of a dynamical system in the form (2.1) is called a state-space

model. The state vector x represents the memory that the system (2.1) has of its past.

The input u represents exogeneous signals, which can be applied to the system (2.1),

for example, to influence its behavior. The output y denotes particular variables, e.g.,

physically measurable variables or meaningful variables for the performance evaluation

of the system (2.1). The output vector y is optional. Therefore, if not needed, the

output y is not specified in the following.

A special subclass of systems described by (2.1) is the class of dynamical systems,

where the function f does not explicitly depend on the time t and, in addition, no input

vector is present. Then, the system (2.1) (without output y) reduces to

ẋ(t) = f(x(t)). (2.2)

The system (2.2) is said to be an autonomous, or time-invariant, system. It is assumed

in the following that f is locally Lipschitz continuous, i.e., to each x ∈ X there exists a

neighborhood U0 of x and a constant k0 ∈ R>0, such that

∥f(x1)− f(x2)∥ ≤ k0∥x1 − x2∥,

for all x1 ∈ U0 and all x2 ∈ U0. This implies existence and uniqueness of solutions of

(2.2), at least for small times [128, Theorem 3.1]. The solution of (2.2) starting at x0

at time t0 is denoted by x(·;x0, t0), i.e., x(t0;x0, t0) = x0.

A particular property of autonomous systems is that their solutions are invariant to

a time shift, i.e., for all T ∈ R>0 and for all t ∈ [t0,∞), x(t+T ;x0, t0+T ) = x(t;x0, t0).

Therefore, without loss of generality, t0 = 0 is assumed and the notation x(·;x0) is used
instead of x(·;x0, 0).
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2. PRELIMINARIES IN CONTROL THEORY AND POWER SYSTEMS

An important concept associated with the system (2.2) is that of an equilibrium

point. A solution x(·;xs) is said to be an equilibrium point of (2.2) if x(t;xs) = xs for

all t ≥ 0. Clearly,

0n = f(xs).

Physically, an equilibrium may describe, for example, a desired operating point of

a dynamical system. The system (2.2) may possess one equilibrium point, several

equilibrium points or a continuum of equilibrium points. An equilibrium point is called

isolated if in its neighborhood there exists no other equilibrium point.

2.3.2 Lyapunov stability

Lyapunov stability is a widely used concept in control theory. In particular, Lyapunov

stability is an important property of an equilibrium point of a dynamical system. This

is formalized in the definition below.

Definition 2.3.1. Let xs be an interior point of X and an equilibrium point of the

system (2.2), i.e., f(xs) = 0n. Thus, x(t;x
s) = xs for all t ≥ 0. Let x0 ∈ X. The

equilibrium point xs is said to be

• stable, if for each positive real constant ϵ there is a real constant δ = δ(ϵ) > 0

such that

∥x0 − xs∥ < δ ⇒ ∥x(t;x0)− xs∥ < ϵ, ∀t ≥ 0,

• unstable, if it is not stable,

• asymptotically stable, if it is stable and there exists a real constant r > 0 such

that

∥x0 − xs∥ < r ⇒ lim
t→∞

x(t;x0) = xs,

• globally asymptotically stable, if X = Rn, xs is stable and

lim
t→∞

x(t;x0) = xs, ∀x0 ∈ Rn,

• exponentially stable, if there exist positive real constants α, γ and r such that

∥x0 − xs∥ < r ⇒ ∥x(t;x0)− xs∥ ≤ γe−αt∥x0 − xs∥, ∀t ≥ 0,

• globally exponentially stable, if X = Rn, xs is stable and there exist positive real

constants α and γ such that

∥x(t;x0)− xs∥ ≤ γe−αt∥x0 − xs∥, ∀x0 ∈ Rn, ∀t ≥ 0.
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2.3 Preliminaries in control theory

Remark 2.3.2. Let xs ∈ X be an equilibrium point of the system (2.2). If xs is

(asymptotically, exponentially) stable, but not globally (asymptotically, exponentially)

stable, then it is often called a locally (asymptotically, exponentially) stable equilibrium

point.

Any nonzero equilibrium point xs can be shifted to the origin by a change of vari-

ables, i.e., z = x− xs. Hence, without loss of generality, it is assumed in the following

that xs = 0n, i.e., the considered equilibrium point is the origin. The next result is

known as Lyapunov’s stability theorem.

Theorem 2.3.3. [128, Theorem 4.1] Let xs = 0n be an interior point of X and an

equilibrium point of (2.2). If there exists a neighborhood D ⊆ X of xs and a continuously

differentiable function V : D → R such that

V (0) = 0 and V (x) > 0 ∀x ∈ D \ {0}, (2.3)

V̇ (x) ≤ 0 ∀x ∈ D, (2.4)

then xs = 0n is a stable equilibrium point. Moreover, if

V̇ (x) < 0 ∀x ∈ D \ {0}, (2.5)

then xs = 0n is an asymptotically stable equilibrium point.

A function V : D → R satisfying conditions (2.3) is said to be positive definite [128,

Chapter 4]. It is said to be positive semidefinite, if it satisfies the (weaker) conditions

V (0) = 0 and V (x) ≥ 0 for all nonzero x ∈ D. Likewise, a function V (x) is said to

be negative (semi)definite, if −V (x) is positive (semi)definite. A function V : D → R

satisfying conditions (2.3) and (2.4) is called a Lyapunov function.

Situations may occur where V̇ (x) is only negative semidefinite. Then, Theorem 2.3.3

can not be applied to establish asymptotic stability of xs. The theorem below, known

as LaSalle’s Invariance Principle, allows to generalize the second part of Theorem 2.3.3

to cases where V̇ (x) is only negative semidefinite.

Definition 2.3.4. [128, Chapter 4.2] Let M ⊆ X. The set M is said to be positively

invariant with respect to (2.2) if

x0 ∈ M ⇒ x(t;x0) ∈ M, ∀t ≥ 0.
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2. PRELIMINARIES IN CONTROL THEORY AND POWER SYSTEMS

Theorem 2.3.5. [128, Theorem 4.4] Let B ⊆ X be a compact set that is positively

invariant with respect to (2.2). Let V : X → R be a continuously differentiable function

such that V̇ (x) ≤ 0 for all x ∈ B. Define E ⊆ B by E = {x ∈ B
⏐⏐ V̇ (x) = 0}. Let M be

the largest invariant set in E. Then, whenever x0 ∈ B, the solution x(t;x0) approaches

M as t→ ∞.

Combining Theorems 2.3.3 and 2.3.5 yields the following corollary, also known as

the theorem of Barbashin and Krasovskii.

Corollary 2.3.6. [128, Corollary 4.1] Let xs = 0n be an interior point of X and an

equilibrium point of (2.2). Suppose that there exists a neighborhood D ⊆ X of xs and a

continuously differentiable positive definite function V : D → R such that V̇ (x) ≤ 0 for

all x ∈ D. Let E = {x ∈ D | V̇ (x) = 0} and suppose that no solution can stay in E other

than the trivial solution x(t; 0n) = 0n for all t ≥ 0. Then, the origin is asymptotically

stable.

This section is concluded with a converse Lyapunov theorem for exponential stabil-

ity.

Definition 2.3.7. [128, Chapter 4.3] Let A ∈ Rn×n and denote the eigenvalues of

A by λi, i = 1, . . . ,m, m ∈ N, m ≤ n. Then, A is said to be Hurwitz if ℜ(λi) < 0,

i = 1, . . . ,m.

Theorem 2.3.8. [128, Corollary 4.3] Let xs = 0n be an interior point of X and an

equilibrium point of (2.2). Let

A =
∂f

∂x

⏐⏐⏐
x=xs

.

If and only if A is Hurwitz, xs is an exponentially stable equilibrium point of the non-

linear system (2.2).

2.3.3 Port-Hamiltonian systems

In this section, the class of port-Hamiltonian systems is briefly introduced. Further-

more, following [129, Chapters 3 and 4] some basic properties and notions associated

with port-Hamiltonian systems are presented.

The class of port-Hamiltonian systems comprises all dynamical systems, which can

be written in the following form

ẋ = (J(x)−R(x))∇H + g(x)u, x ∈ X ⊆ Rn, u ∈ Rm,

y = g⊤(x)∇H, y ∈ Rm,
(2.6)
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2.3 Preliminaries in control theory

where the matrix J(x) has entries depending smoothly on x and J(x) = −J(x)⊤, i.e.,
J(x) is skew-symmetric. Furthermore, the matrix R(x) satisfies R(x) ≥ 0 for all x ∈ X
and the entries of R(x) depend smoothly on x. Usually, J(x) is called interconnection

matrix and R(x) is called damping matrix. The continuously differentiable function

H : X → R is called Hamiltonian. Recall that ∇H denotes the transpose of the gradient

of the function H. Commonly, u and y are called the input, respectively output, port.

Calculating the time-derivative of the Hamiltonian H along the flow of the system

(2.6), yields the following power balance equation

Ḣ = ∇H⊤ẋ = ∇H⊤ ((J(x)−R(x))∇H + g(x)u)

⇔ Ḣ
stored power

= −∇H⊤R(x)∇H  
dissipated power

+ u⊤y
supplied power

≤ u⊤y.

In light of this fact, combining Theorems 2.3.3 and 2.3.5 yields the following well-known

result relating port-Hamiltonian systems and stability.

Lemma 2.3.9. [129, Lemma 3.2.4] Let H : X → R be a continuously differentiable

Hamiltonian function for (2.6). Suppose that xs is an interior point of X and a strict

local minimum of H(x). Then, xs is a stable equilibrium point of the unforced system

ẋ = (J(x)−R(x))∇H

with Lyapunov function V (x) = H(x)−H(xs) > 0 for all x ∈ D \ {xs} and V (xs) = 0,

where D ⊆ X is a neighborhood of xs. Furthermore, suppose that no other solution than

x(t;xs) = xs remains in {x ∈ D | Ḣ(x) = 0} for all t ≥ 0. Then, xs is an asymptotically

stable equilibrium point.

An alternative formulation of Lemma 2.3.9 can be stated by using the property of

zero-state detectability of a dynamical system.

Definition 2.3.10. [129, Definition 3.2.7] The system (2.6) is zero-state detectable if

u(t) = 0m and y(t) = 0m, ∀t ≥ 0, implies limt→∞ x(t) = 0n.

Lemma 2.3.11. Let H : X → R be a continuously differentiable Hamiltonian function

for (2.6). Suppose that xs is an interior point of X and a strict local minimum of H(x).

Suppose that the unforced system

ẋ = (J(x)−R(x))∇H

is zero-state detectable with output ȳ = R(x)∇H. Then, xs is an asymptotically stable

equilibrium point of the unforced system.
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Proof. The proof is based on that of [129, Lemma 3.2.8]. By Lemma 2.3.9, xs is a

stable equilibrium point of ẋ = (J(x)−R(x))∇H. Taking u = 0m in (2.6) yields

Ḣ = ∇H⊤ẋ = −∇H⊤R(x)∇H ≤ −ϵ∥ȳ∥

with ϵ ∈ R>0 and asymptotic stability follows by LaSalle’s Invariance Principle, since

Ḣ = 0 implies R(x)∇H = 0n, hence ȳ = 0n.

2.3.4 Routh-Hurwitz criterion for polynomials with complex coeffi-

cients

The Routh-Hurwitz criterion for a polynomial with real coefficients derived in [131, 132]

is a well-known mathematical test providing necessary and sufficient conditions for all

roots of the polynomial to have a negative real part. It is therefore frequently used in

the stability analysis of linear time invariant (LTI) systems.

The extension of the Routh-Hurwitz criterion to polynomials with complex coeffi-

cients given in [133] is less known. Nevertheless, it provides a simple test to establish

part of the results in this thesis. The results of [133] have also recently been used, e.g.,

in [134, 135, 136, 137, 138, 139]. The main result of [133] is as follows.

Theorem 2.3.12. [133, Theorem 3.2] Let P (z) denote the polynomial

P (z) = zn + α1z
n−1 + α2z

n−2 + . . .+ αn, n ≥ 0,

where αk = pk + jqk ∈ C, k = 1, . . . , n. The polynomial P (z) has all its zeros in the

open left-half plane if and only if the determinants

∆1 = p1 > 0,

∆k =

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

p1 p3 p5 . . . p(2k−1) −q2 −q4 . . . −q(2k−2)

1 p2 p4 . . . p(2k−2) −q1 −q3 . . . −q(2k−3)

0 p1 p3 . . . p(2k−3) 0 −q2 . . . −q(2k−4)

0 1 p2 . . . p(2k−4) 0 −q1 . . . −q(2k−5)

. . . . . .

0 . . . pk 0 . . . −q(k−1)

0 q2 q4 . . . q(2k−2) p1 p3 . . . p(2k−3)

0 q1 q3 . . . q(2k−3) 1 p2 . . . p(2k−4)

0 0 q2 . . . q(2k−4) 0 p1 . . . p(2k−5)

0 0 q1 . . . q(2k−5) 0 1 . . . p(2k−6)

. . . . . .

0 . . . qk 0 . . . p(k−1)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

, k = 2, 3, . . . , n,

where pr = qr = 0 for r > n, are all positive.
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In the case where qk = 0, k = 1, . . . , n, Theorem 2.3.12 reduces to the usual Hurwitz

criterion [133]. For the special case of a quadratic polynomial with complex coefficients,

Theorem 2.3.12 simplifies to the following corollary.

Corollary 2.3.13. Let P (z) denote the polynomial

P (z) = z2 + α1z + α2,

where αk = pk + jqk ∈ C, k = 1, 2. The polynomial P (z) has all its zeros in the open

left-half plane if and only if

∆1 = p1 > 0, ∆2 =

⏐⏐⏐⏐⏐⏐⏐
p1 0 −q2
1 p2 −q1
0 q2 p1

⏐⏐⏐⏐⏐⏐⏐ = p21p2 + p1q1q2 − q22 > 0.

2.3.5 Algebraic graph theory and consensus protocols

Graph theory is mainly used in the present work as a tool to describe the high-level

properties of distributed communication networks. Therefore, some notation and pre-

liminary results from algebraic graph theory are recalled in Section 2.3.5.1. Further-

more, consensus protocols are introduced in Section 2.3.5.2. These offer interesting

possibilities for designing distributed control laws with the purpose of achieving an

agreement on certain variables in a network with different agents. Specifically, in this

work a consensus-based DVC is proposed, which achieves the objective of reactive power

sharing.

For further information on graph theory, the reader is referred to, e.g., [140] and

references therein. More details on consensus protocols for multi-agent systems are

given, e.g., in [85, 99, 141, 142] and references therein.

2.3.5.1 Algebraic graph theory

A weighted directed graph of order n ∈ N is a 3-tuple G := (V,E, w), where V :=

{1, 2, . . . , n} is the set of nodes, E ⊆ V × V is the set of edges, i.e., ordered pairs of

nodes (i, k) and w : E → R>0 is a weight function. In the case of multi-agent systems,

each node in the graph typically represents an individual agent. For the purpose of the

present work, an agent represents a DG unit. If there is an edge el = (i, k) from node

i to node k, then i is called the source and k the sink of the l-th edge, i.e., i can send

23



2. PRELIMINARIES IN CONTROL THEORY AND POWER SYSTEMS

information to k. It is assumed that the graph contains no self-loops, i.e., there is no

edge el = (i, i). The set of neighbors of a node k contains all i for which el = (i, k) ∈ E.

The node-edge incidence matrix B ∈ R|V|×|E| of a directed graph G is defined

element-wise as bil = 1, if node i is the source of the l-th edge el, bil = −1, if i is

the sink of el and bil = 0 otherwise. The |V| × |V| adjacency matrix A has entries

aik = w(i, k) if there is an edge el = (k, i) from k to i with edge weight wl = w(i, k)

and aik = 0 otherwise. The degree of a node i is given by di =
∑

k∼V aik. With

D := diag(di) ∈ Rn×n, the Laplacian matrix of a graph is given by L := D−A.

Based on their interconnection properties, graphs can be divided into two main

groups: undirected and directed graphs, the main properties of which are stated below.

Undirected graphs

In an undirected graph the set of edges is undirected. Therefore, the l-th edge con-

necting nodes i and k is denoted as el = (i, k) = (k, i) and its edge weight by

wl = w(i, k) = w(k, i). The node-edge incidence matrix B of an undirected graph

is obtained by associating an arbitrary ordering to the edges. The Laplacian matrix of

an undirected graph is symmetric positive semidefinite [140, Chapter 13]. A path in

an undirected graph is an ordered sequence of nodes such that any pair of consecutive

nodes in the sequence is connected by an edge. G is called connected if for all pairs

(i, k) ∈ V× V, i ̸= k, there exists a path from i to k. Given an undirected graph, zero

is a simple eigenvalue of its Laplacian matrix L if and only if the graph is connected.

Moreover, a corresponding right eigenvector to this simple zero eigenvalue is then 1n,

i.e., L1n = 0n [140, Chapter 13]. Furthermore, L = Bdiag(wl)B
⊤, l = 1, . . . , |E|.

Directed graphs

The diagonal entries of the Laplacian matrix L of a directed graph are nonnegative,

its off-diagonal entries are nonpositive and its row sums are zero. All eigenvalues of L

have nonnegative real part [141, Chapter 3]. In a directed graph, a path between two

nodes is an ordered sequence of nodes, such that each ordered pair (k, i) in the sequence

is adjacent, i.e., the corresponding entry aik in the adjacency matrix is nonzero. G is

called strongly connected if for all i ∈ V and k ∈ V, there exists a path from i to k

[141]. Given a weighted directed graph, zero is a simple eigenvalue of its Laplacian L

if the graph is strongly connected, but the converse is not true [142].
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The following lemmata on properties of Laplacian matrices are used in this work.

Lemma 2.3.14. [102] Let L ∈ Rn×n be the Laplacian matrix of a weighted directed

graph. There is no vector v ∈ Cn satisfying

Lv = 1n.

Lemma 2.3.15. Let L ∈ Rn×n be the Laplacian matrix of a weighted directed graph.

Then,

L

[
In−1 −1n−1

0⊤n−1 0

]
= L.

Proof. Recall that the row sums of a Laplacian matrix are zero, i.e.,
∑n

k=1 lik = 0,

where lik ∈ R are the elements of the i-th row of L. Hence,

col(lik)
⊤

[
−1n−1

0

]
= −

n−1∑
k=1

lik = lin, i ∼ N,

and the claimed equivalence follows immediately.

2.3.5.2 Consensus protocols

Consensus protocols for multi-agent networked systems have become an increasingly

popular research field in control theory during the past decade. This interest is not

the least due to the large area of potential applications of consensus protocols, which

include distributed formation control, synchronization in networks of oscillators and

flocking theory among others [85].

To reach consensus in a network of agents means that the agents ”reach an agree-

ment regarding a certain quantity of interest that depends on the state of all agents”

[85]. The interaction rule specifying the information exchange between an agent and

its neighbors is called consensus protocol (or algorithm) [85]. An important property of

consensus protocols is that, in general, they are distributed protocols. That is, in order

to reach an agreement among the agents neither a central communication or computing

unit nor all-to-all communication among the agents is required.

Consider a network formed by n ∈ N agents. Denote the set of network nodes by N.

Suppose the interaction topology of the network is described by an undirected weighted

graph G = (N,E, w). Suppose moreover that the graph is connected. Let the dynamics

of the i-th agent with state xi : R≥0 → R and input ui : R≥0 → R be given by

ẋi = ui, i ∼ N.
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Then, the most basic consensus protocol guaranteeing convergence to a common state

value is given by [85]

ẋi =
∑
k∼N

aik(xk − xi), i ∼ N, (2.7)

where aik denotes the (i, k)-th entry of the adjacency matrix A of the graph G. The

above consensus protocol can equivalently be written in matrix form as

ẋ = −Lx, (2.8)

where x = col(xi) ∈ Rn and L is the Laplacian matrix of the graph G. Recalling

that L1n = 0n and hence 1⊤nL = 0⊤n , reveals the following important property of the

consensus algorithm (2.8)

1⊤n ẋ = −1⊤nLx = 0⊤n x ⇒
∑
i∼N

ẋi = 0,

i.e., the sum of the states of all agents is invariant [85].

The preceding discussion leads to the following result.

Lemma 2.3.16. [85] Let G(N,E, w) be a connected undirected graph. Let x(t;x0) de-

note the solution of (2.8) with initial condition x0 ∈ Rn. Then, the algorithm (2.8)

asymptotically solves an average-consensus problem, i.e.,

lim
t→∞

x(t;x0) = α1n, α =
1

|N|
∑
i∼N

xi(0).

Let K ∈ Rn×n be a diagonal matrix with positive real diagonal entries ki, i ∼ N.

In the context of the present work, a relevant extension of the protocol (2.8) is the

weighted average consensus protocol given by [85]

ẋ = −KLx. (2.9)

Rewriting the consensus protocol (2.9) for the agent at the i-th node with γi := 1
ki

yields

γiẋi =
∑
k∼N

aik(xk − xi).

Hence, γi can be interpreted as a variable rate of integration [85]. Further properties

of the protocol (2.9) are discussed in Section 5.3, where the protocol (2.9) is used to

design a DVC guaranteeing reactive power sharing.
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2.3.6 Numerical range of a matrix

Based on [143, Chapter 1], the numerical range (or field of values) of a matrix together

with some useful properties relating the spectrum of a matrix to its numerical range

are introduced. For further information on matrix analysis, the reader is referred to,

e.g., [143, 144].

Definition 2.3.17. [143, Chapter 1] Let A ∈ Cn×n. The numerical range or field of

values of A is defined as

W (A) := {x∗Ax
⏐⏐ x ∈ Cn, x∗x = 1}.

For a matrix A ∈ Cn×n, let σ(A) := {λ ∈ C
⏐⏐ det(λIn−A) = 0} denote its spectrum.

It holds that σ(A) ⊆ W (A). If A is Hermitian, i.e., A = A∗, then W (A) ⊂ R and

min(σ(A)) ≤W (A) ≤ max(σ(A)). Let Asy = 1
2(A+A∗), respectively Ask = 1

2(A−A∗)

be the Hermitian, respectively skew-Hermitian, part of A. Then ℜ(W (A)) = W (Asy)

and ℑ(W (A)) =W (Ask).

The following result is used in this thesis.

Lemma 2.3.18. [143, Corollary 1.7.7] Let A ∈ Cn×n and B ∈ Cn×n, with B positive

semidefinite. Then,

σ(AB) ⊆W (A)W (B) := {λ = ab
⏐⏐ a ∈W (A), b ∈W (B)}.

2.4 Preliminaries in power systems

Worldwide, a very common method of AC power generation, transmission and distri-

bution is electric three-phase power [145]. Therefore, this work focuses on the analysis

of three-phase electrical systems operated with AC. For information on the history of

power systems, as well as on advantages of three-phase AC systems over other solu-

tions, such as, e.g., single-phase AC systems or direct current (DC) systems, the reader

is referred to, e.g., [4, 5, 145].

The present section aims at giving a comprehensive and compact overview of the

most relevant physical models, definitions, notions and assumptions used in this thesis

to model three-phase AC microgrids. The introduced contents apply equivalently to

the modeling of general three-phase power systems. As a matter of fact, the presented

modeling procedure and definitions are based on standard reference text books in power

systems and power electronics, e.g., [1, 3, 4, 5, 6, 15, 146, 147, 148, 149].
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The remainder of this section is outlined as follows. At first, relevant properties

and characteristics of three-phase AC power systems are presented in Section 2.4.1.

Subsequently, in Section 2.4.2 the dq0-transformation is introduced. Following [15,

147], instantaneous power is defined in Section 2.4.3 and a short overview of this, still

today, controversial research field is given. The fundamental network model describing

the current and power flows between units in an electrical network is presented in

Section 2.4.4. Finally, definitions of stability in power systems and microgrids are

given in Section 2.4.5. To a large extent, this section is taken from [126].

2.4.1 Three-phase AC electrical power systems

Some basic definitions for AC electrical networks are introduced.

Definition 2.4.1. [150] A signal x : R≥0 → R is said to be an AC signal if it satisfies

the following conditions.

1. It is periodic with period T ∈ R>0, i.e.,

x(t) = x(t+ nT ), ∀n ∈ N, ∀t ≥ 0.

2. Its arithmetic mean is zero, i.e.,∫ t+T

t
x(τ)dτ = 0 ∀t ≥ 0.

Definition 2.4.2. A signal x : R≥0 → R3 is said to be a three-phase AC signal if it is

of the form

xABC =

⎡⎢⎣xAxB
xC

⎤⎥⎦ ,
where XA : R≥0 → R, XB : R≥0 → R and XC : R≥0 → R are AC signals.

A special kind of three-phase AC signals are symmetric AC three-phase signals,

defined below.

Definition 2.4.3. [147, Chapter 2] A three-phase AC signal xabc : R≥0 → R3 is said

to be symmetric if it can be described by

xabc(t) =

⎡⎢⎣xa(t)xb(t)

xc(t)

⎤⎥⎦ = A(t)

⎡⎢⎣ sin(δ(t))

sin(δ(t)− 2π
3 )

sin(δ(t) + 2π
3 )

⎤⎥⎦ ,
where A : R≥0 → R≥0 is called the amplitude and δ : R≥0 → T is called the phase angle

of the signal.
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Clearly, from the preceding definition, a symmetric three-phase AC signal xabc can

be described completely by two signals: its angle δ and its amplitude A1.

Definition 2.4.4. [147, Chapter 2] A three-phase AC signal is said to be asymmetric

if it is not symmetric.

Definition 2.4.5. [149, Chapter 3] A three-phase AC electrical system is said to be

symmetrically configured if a symmetrical feeding voltage yields a symmetrical current

and vice versa.

Definition 2.4.6. [149, Chapter 3] A three-phase AC power system is said to be op-

erated under symmetric conditions if it is symmetrically configured and symmetrically

fed.

Examples of symmetric and asymmetric three-phase AC signals2 are given in Fig. 2.1.

The signals in Fig. 2.1a and Fig. 2.1b are symmetric, while the signal in Fig. 2.1c is

not, because the phases are not shifted equally by 2π
3 . The signal in Fig. 2.1d is also

asymmetric, since the different phases are superposed asymmetrically with signals oscil-

lating at higher frequencies. Such signals are, e.g., obtained by superposing a symmetric

three-phase signal with harmonic signals, which oscillate with a higher frequency than

the fundamental frequency. Such three-phase signals can, for example, be caused by

nonlinear loads, i.e., loads that draw nonsinusoidal currents [147].

Remark 2.4.7. Note that for any three-phase symmetric signal xabc

xa + xb + xc = 0,

i.e., a symmetric three-phase signal can be described in a two-dimensional space, see

also [148, Chapter 2.3].

Remark 2.4.8. The terms “balanced” and “unbalanced” are frequently used as syn-

onyms of “symmetric”, respectively “asymmetric” in the literature [4, 147].

Remark 2.4.9. Three-phase electrical power systems consist of three main conduc-

tors in parallel. Each of these conductors carries an AC current. A three-phase sys-

tem can be arranged in ∆- or Y-configuration, see Fig. 2.2. The latter is also called

wye-configuration. Frequently, in a system with Y-configuration an additional fourth

1Recall that to simplify notation the time argument of all signals is omitted, whenever clear from

the context. The same applies to the definition of signals, i.e., a signal x : R≥0 → R, is defined equally

as x ∈ R, whenever clear from the context.
2In this work only AC systems and signals are considered. Therefore, the qualifier AC is dropped

from now on.
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(d) Asymmetric three-phase AC signal re-

sulting of an asymmetric superposition of a

symmetric signal with signals oscillating at

higher frequencies

Figure 2.1: Symmetric and asymmetric AC three-phase signals. The lines correspond to

xa ’—’, xb ’- -’, xc ’· · · ’.
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vb

va

vc

ZY ZY ZY Z∆ Z∆ Z∆

Y-configuration ∆-configuration

Neutral point

Generation

Figure 2.2: Standard Y- and ∆-configurations of three-phase AC power systems based

on [149, Chapter 3].

grounded neutral conductor is used to reduce transient overvoltages and to carry asym-

metric currents [4, Chapter 2], see Fig. 2.2. Such systems are typically called three-

phase four-wire systems. Most three-phase power systems are four-wire Y-connected

systems with grounded neutral conductor [4, Chapter 2]. However, it can easily be

shown that, under symmetric operating conditions, this fourth wire does not carry any

current and can therefore be neglected [4, Chapter 2].

2.4.2 Dq0-transformation

An important coordinate transformation known as dq0-transformation in the literature

[3, 6, 15, 148, 151, 152, 153] is introduced.

Definition 2.4.10. [3, Chapter 4], [6, Chapter 11] Let x : R≥0 → R3 and ϱ : R≥0 → T.
Consider the mapping Tdq0 : T → R3×3,

Tdq0(ϱ(t)) :=

√
2

3

⎡⎢⎣cos(ϱ(t)) cos(ϱ(t)− 2
3π) cos(ϱ(t) + 2

3π)

sin(ϱ(t)) sin(ϱ(t)− 2
3π) sin(ϱ(t) + 2

3π)√
2
2

√
2
2

√
2
2

⎤⎥⎦ . (2.10)

Then, fdq0 : R3 × T → R3,

fdq0(x(t), ϱ(t)) = Tdq0(ϱ(t))x(t) (2.11)

is called dq0-transformation.

Note that the mapping (2.10) is unitary, i.e., T⊤
dq0 = T−1

dq0. From a geometrical point

of view, the dq0-transformation is a concatenation of two rotational transformations,
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see, e.g., [152] for further details. The variables in the transformed coordinates are

often denoted by dq0-variables. Since this transformation was first introduced (with a

slightly different scaling factor) by Robert H. Park in 1929 [151] it is also called Park

transformation [15, Appendix A].

The dq0-transformation offers various advantages when analyzing and working with

power systems and is therefore widely used in power systems and power electronics ap-

plications [3, 15, 147, 148, 152]. For example, the dq0-transformation permits, through

appropriate choice of ϱ, to map sinusoidal signals to constant signals. This simplifies the

control design and analysis in power systems, which is the main reason why the transfor-

mation (2.11) is introduced in the present case. In addition, the transformation (2.11)

exploits the fact that, in a power system operated under symmetric conditions, a three-

phase signal can be represented by two quantities, cf. Remark 2.4.7. To see this, let

xabc : R≥0 → R3 be a symmetric three-phase signal with amplitude A : R≥0 → R≥0 and

phase angle δ : R≥0 → T. Applying the mapping (2.10) with some angle ϱ : R≥0 → T

to xabc yields

xdq0 =

⎡⎣xdxq
x0

⎤⎦ = Tdq0(ϱ)xabc =

√
3

2
A

⎡⎣sin(δ − ϱ)
cos(δ − ϱ)

0

⎤⎦ . (2.12)

Hence, x0 = 0 for all t ≥ 0. In this work, only symmetric three-phase signals are

considered. Due to (2.12), it is therefore convenient to introduce the mapping Tdq :

T → R2×3,

Tdq(ϱ(t)) :=

√
2

3

[
cos(ϱ(t)) cos(ϱ(t)− 2

3π) cos(ϱ(t) + 2
3π)

sin(ϱ(t)) sin(ϱ(t)− 2
3π) sin(ϱ(t) + 2

3π)

]
, (2.13)

with ϱ : R≥0 → T. Applying the mapping (2.13) to the symmetric three-phase signal

xabc defined above yields

xdq =

[
xd
xq

]
= Tdq(ϱ)xabc =

√
3

2
A

[
sin(δ − ϱ)
cos(δ − ϱ)

]
. (2.14)

Remark 2.4.11. There are several variants of the mapping (2.10) available in the

literature. They may differ from the mapping (2.10) in the order of the rows and the

sign of the entries in the second row of the matrix given in (2.10), see, e.g., [3, 148, 153].

However, all representations are equivalent in the sense that they can all be represented

by Tdq0 as given in (2.10) by choosing an appropiate angle ϱ : R≥0 → T and, possibly,

rearranging the row order of the matrix Tdq0. The same applies to the mapping Tdq

given in (2.13).
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2.4.3 Instantaneous power

Power is one of the most important quantities in control, monitoring and operation of

electrical networks. The first theoretical contributions to the definition of the power

flows in an AC network date back to the early 20th century. However, these first

definitions are restricted to sinusoidal steady-state conditions and based on the root

mean square (RMS) values of currents and voltages. As a consequence, these definitions

of electric power are not well-suited for the purposes of network control under time-

varying operating conditions [147].

The extension of the definition of electrical power to time-varying operating condi-

tions is called “instantaneous power theory” in the power system and power electronics

community [15, 147]. The development of this theory already begun in the 1930s with

the study of active and nonactive components of currents and voltages [154]. Among

others, further relevant contributions are [155, 156, 157, 158, 159, 160, 161].

Today, it is widely agreed by reasearchers and practitioners [15, 158, 160] that the

definitions of instantaneous power proposed in [157] and contained in [147] are well-

suited for describing the power flows in three-phase three-wire systems and symmetric

three-phase four-wire systems. However, a proper definition of instantaneous power in

asymmetric three-phase four-wire systems with nonzero neutral current and voltage is

still a controversial open field of research [15, 147, 162, 163]. A good overview of the

research history on instantaneous power theory is given in [15, Appendix B].

Consider a symmetric three-phase voltage, respectively current, given by

vabc =
√
2V

⎡⎣ sin(α)
sin(α− 2π

3 )
sin(α+ 2π

3 )

⎤⎦ , iabc =
√
2I

⎡⎣ sin(β)
sin(β − 2π

3 )
sin(β + 2π

3 )

⎤⎦ , (2.15)

where α : R≥0 → T, respectively β : R≥0 → T, is the phase angle and
√
2V : R≥0 →

R≥0, respectively
√
2I : R≥0 → R≥0, the amplitude of the respective three-phase signal.

As shown in Section 2.4.2, applying the transformation (2.13) to the signals given in

(2.15) yields, cf. (2.14),

vdq =

[
Vd
Vq

]
=

√
3V

[
sin(α− ϱ)
cos(α− ϱ)

]
, idq =

[
Id
Iq

]
=

√
3I

[
sin(β − ϱ)
cos(β − ϱ)

]
. (2.16)

Based on the preceding discussion, the following definitions of instantaneous active,

reactive and apparent power under symmetric, but not necessarily steady-state, condi-

tions are used in this work.
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Definition 2.4.12. [147, 157] Let vqd(t) and iqd(t) be given by (2.16). The instanta-

neous three-phase active power is defined as

P (t) := v⊤dq(t)idq(t) = Vd(t)Id(t) + Vq(t)Iq(t).

The instantaneous three-phase reactive power is defined as

Q(t) := v⊤dq(t)

[
0 1

−1 0

]
idq(t) = Vd(t)Iq(t)− Vq(t)Id(t).

Finally, the instantaneous three-phase apparent power is defined as

S(t) := P (t) + jQ(t),

where j denotes the imaginary unit.

From the above definition, straight-forward calculations together with standard

trigonometric identities yield

P (t) = 3V (t)I(t) cos(α(t)− β(t)), Q(t) = 3V (t)I(t) sin(α(t)− β(t)).

It follows that whenever vabc and iabc given in (2.15) possess constant amplitudes, as well

as the same frequency, i.e., α̇ = β̇, all quantities P, Q and S are constant. Moreover,

then the given definitions of power are in accordance to the conventional definitions of

power in a symmetric steady-state [4, 5, 147]. For further information on definitions

and physical interpretations of instantaneous power, also under asymmetric conditions,

the reader is referred to, e.g., [15, 147, 158, 160, 164, 165].

Since this work is mainly concerned with dynamics of generation units, all powers are

expressed in “Generator Convention” [4, Chapter 2], also called ”Generator Reference

Arrow System”. That is, delivered active power is positive, while absorbed active power

is negative. Furthermore, capacitive reactive power is counted positively and inductive

reactive power is counted negatively.

Remark 2.4.13. In [147, 157] the instantaneous power is defined using representations

of voltage and current in alpha-beta-coordinates [147, 148]. The definitions of power

given in Definition 2.4.12 in dq-coordinates are equivalent to the representation in

alpha-beta-coordinates [3, 6, 15]. For the purposes of the present work, the definition

in dq-coordinates is more convenient.
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2.4.4 Modeling of electrical networks

This section is inspired by [1, 3, 5, 6, 146, 166] and presents the physical model used in

this work to describe the current and power flows among different nodes in a microgrid.

The model is derived from fundamental laws of physics and therefore also applies to

generic power systems. At first, some basic notation in electrical circuits is introduced.

Definition 2.4.14. [150] Let C ∈ R>0, L ∈ R≥0 and ω ∈ R>0 be constants denoting a

capacitance, an inductance and a frequency. The capacitive reactance is defined as

XC := − 1

ωC
∈ R<0.

The inductive reactance is defined as

XL := ωL ∈ R≥0.

Definition 2.4.15. [150] Let R ∈ R≥0 and X ∈ R be constants denoting a re-

sistance, respectively a reactance. The constant complex impedance Z is defined as

Z := R+ jX ∈ C. For Z ̸= 0, the constant complex admittance Y is defined as

Y :=
1

Z
=

R

R2 +X2
+ j

−X
R2 +X2

:= G+ jB ∈ C.

Furthermore, G = R
R2+X2 ∈ R≥0 is called conductance and B = −X

R2+X2 ∈ R is called

susceptance.

Remark 2.4.16. For ease of notation, also Y = 0 is employed at times, though the

above definition does not naturally comprise this case.

Remark 2.4.17. In power system analysis, currents and voltages are often expressed

as complex quantities (see, e.g., the model derivation in the next section). Then, the

impedance of an element of an electrical circuit represents the voltage-to-current ratio

of that element at a specific frequency ω.

2.4.4.1 Relation of voltage and current on a power line

The different components in a power system are usually connected via power lines. A

standard model for a power line is the π-model illustrated in Fig. 2.3a. The π-model

consists of a series RL element connected in parallel with R and C shunt-elements, i.e.,

grounded R and C elements [1, 4, 5, 146, 166]. For short power lines on the transmission

and distribution level the shunt-elements can often be neglected [1, 4, 5, 146, 166]. Then,

a power line can be modeled by a series RL element as shown in Fig. 2.3b.
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R1 L

R2 C C R2Va Vb

(a) π-model of a power line

R1 L

Va Vb

(b) RL model of a power line

Figure 2.3: Common power line models

The model given in Fig. 2.3b is also a valid representation of an equivalent circuit of

a power transformer under the standard assumptions of small core losses and small core

magnetization losses [4, Chapter 3], [167, Chapter 3]. Power transformers are used to

transform AC voltages and currents to suitable efficient levels for power transmission,

distribution and utilization [4, Chapter 3].

The analysis in this work is restricted to symmetric network operating conditions.

Moreover, in a microgrid the lines are typically short. Therefore, the following assump-

tion is made.

Assumption 2.4.18. All power lines and transformers can be represented by symmet-

ric three-phase RL elements.

In light of Assumption 2.4.18 and to ease presentation, the term power lines is solely

used to refer to the network interconnections in the following.

Consider a three-phase symmetric power line each phase of which is composed of

a constant ohmic resistance R ∈ R>0 in series with a constant inductance L ∈ R>0.

Recall the symmetric three-phase voltage vabc and current iabc defined in (2.15). Let

vabc denote the voltage drop across the line and iabc denote the current flowing over

the line. Then, the dynamic relation between vabc and iabc can be described by the

following ODE [3, Chapter 9]

L
diabc
dt

= −Riabc + vabc. (2.17)
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Recall the dq-transformation Tdq introduced in (2.13) and let ωcom be a real constant1.

Let

ϕ := mod2π (ω
comt) ∈ T, (2.18)

where the operator2 mod2π(·) is added to respect the topology of T. Applying the

transformation Tdq with transformation angle ϕ to the signals vabc and iabc in (2.17)

gives

v̂dq := Tdq(ϕ)vabc =

[
V̂d
V̂q

]
, îdq := Tdq(ϕ)iabc =

[
Îd
Îq

]
, (2.19)

where the superscript ” ·̂ ” is introduced to denote signals in dq-coordinates with respect

to the angle ϕ. This notation is used in the subsequent section, where a model of an

electrical network is derived by using several dq-transformation angles. Furthermore,

following standard notation in power systems, the constant ϕ̇ = ωcom is referred to as

“the rotational speed of the common reference frame”. Note that

dîdq
dt

=
dTdq(ϕ)

dt
iabc+Tdq(ϕ)

diabc
dt

= ϕ̇

[
−Îq
Îd

]
+Tdq(ϕ)

diabc
dt

= ωcom

[
−Îq
Îd

]
+Tdq(ϕ)

diabc
dt

.

Hence, (2.17) reads in dq-coordinates as

L
dîdq
dt

= −Rîdq + Lωcom

[
−Îq
Îd

]
+ v̂dq. (2.20)

For the purpose of deriving an interconnected network model suitable for stability

analysis, it is customary to make the following assumption [1, 3, 146].

Assumption 2.4.19. The dynamics of the power lines are negligible.

Assumption 2.4.19 is standard in power system analysis [1, 3, 4, 5, 6, 146]. The

usual justification of Assumption 2.4.19 is that the line dynamics evolve on a much

faster time-scale than the dynamics of the generation sources, i.e., 0 < L < ϵ, where

L is the line inductance and ϵ is a small positive real parameter. Therefore, the line

dynamics can be neglected in the network model [168, 169].

A theoretical legitimation of Assumption 2.4.19 can be given via singular pertur-

bation arguments [128, Chapter 11], [170]. If some of the time-derivatives of the states

of a model of a dynamical system are multiplied by a small positive real parameter,

then the model is said to be a ”singular perturbation model” [128, Chapter 11]. In

1In general, one could also choose a time-varying signal ωcom. However, for the subsequent model

derivation, it is more convenient to let ωcom be a constant.
2The operator mod2π{·} : R → [0, 2π), is defined as follows: y = mod2π{x} yields y = x− k2π for

some integer k, such that y ∈ [0, 2π).
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that case, the set of states the time derivatives of which are multiplied by the small

parameter are called ”fast” dynamics, while the remaining states are called ”slow” dy-

namics. The main idea of the singular perturbation approach is to analyze the system

dynamics on different time-scales. As a consequence and under certain conditions (see,

e.g., [128, Chapter 11] for details), the behavior of the ”slow” dynamics can then be

studied by approximating the ”fast” dynamics by their corresponding algebraic steady-

state equations. In the present case, the ”fast” dynamics represent the line dynamics

and the ”slow” dynamics are the dynamics of the generation units. A rigorous singular

perturbation analysis is, in general, technically very involved and therefore omitted

here. Instead, the reader is referred to [171] and, e.g., [146, 172, 173] for an in-depth

discussion of the application of the singular perturbation approach to power systems.

It should, however, be noted that Assumption 2.4.19 also applies to the model of

inverter-interfaced DG units derived in this work, i.e., the dynamics of the model of an

inverter-interfaced DG unit are typically slower than the power line dynamics (2.20)

(see also Section 4.2).

Furthermore, to the best of the author’s knowledge, although being pursued for long

time, up to day there are only very few well-funded results on stability of generic power

systems and, specifically, microgrids, which are not derived under Assumption 2.4.19.

Some existing results together with their limitations are reviewed in Section 8.2.

Under Assumption 2.4.19 and recalling the definition of a reactance given in Defi-

nition 2.4.14, the ODE (2.20) reduces to the algebraic equation

v̂dq = Lωcom

[
Îq
−Îd

]
+Rîdq = X

[
Îq
−Îd

]
+Rîdq. (2.21)

Note that the reactance X is calculated at the frequency ωcom, which, under Assump-

tion 2.4.19, should be chosen as the (constant) synchronous frequency of the network—

denoted by ωs ∈ R in the following1. Typically, ωs ∈ 2π[45, 65] rad/s. For ease of

notation, it is convenient to represent the quantities

v̂dq(t) =

[
V̂d(t)

V̂q(t)

]
∈ R2, îdq(t) =

[
Îd(t)

Îq(t)

]
∈ R2,

as complex numbers, i.e.,

V̂qd(t) := V̂q(t) + jV̂d(t) ∈ C, Îqd(t) := Îq(t) + jÎd(t) ∈ C. (2.22)

1Under Assumption 2.4.19, (2.21) is the equilibrium of the ”fast” line dynamics (2.20) [128, Chapter

11]. Hence, in order for the currents îdq and voltages v̂dq to be constant in steady-state, ωcom has to

be chosen equivalently to the synchronous steady-state network frequency, see also (2.14).
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By making use of (2.22), (2.21) can be expressed as

V̂q + jV̂d = (R+ jX)(Îq + jÎd), (2.23)

or, more compactly, with Z = R+ jX,

V̂qd = ZÎqd, (2.24)

which is an algebraic relation of the current flow Îqd and voltage drop V̂qd on a power

line with impedance Z.

The form (2.22) is a very popular representation in the power community and the

complex quantities V̂qd and Îqd are often denoted as phasors [3, 148]. Furthermore, by

using Euler’s formula [174], (2.22) can also be rewritten in polar form. Note, however,

that, unlike, e.g., [3, 148], other authors define a phasor as a complex sinusoidal quan-

tity with a constant frequency [4]. Therefore, in order to avoid confusions, the term

“phasor” is not used in this work.

2.4.4.2 Current and power flows in an electrical network

Building on the results of the previous section, a network model describing the current

and power flows between nodes in an electrical network is derived. These relations

are of further interest in the context of the present work, since the current and power

flows describe the interactions among different generation sources and loads in a power

system. The network model is elaborated under Assumptions 2.4.18 and 2.4.19 and,

hence, static. In general, the different DG units (and sometimes also some loads)

connected at the different nodes in the network are modeled by dynamical systems.

These models are discussed in detail in Chapter 4.

Consider an electrical network formed by n ∈ N nodes and denote the set of network

nodes by N = {1, 2, . . . , n} as defined in Section 2.2. Associate to each node i in the

network a symmetric three-phase voltage vabci : R≥0 → R3 with amplitude
√

2
3Vi :

R≥0 → R≥0 and phase angle αi : R≥0 → T, i.e.,

vabci =

√
2

3
Vi

⎡⎣ sin(αi)
sin(αi − 2π

3 )
sin(αi +

2π
3 )

⎤⎦ . (2.25)

In addition, associate to each node i ∈ N a symmetric three-phase current iabci :

R≥0 → R3, which represents the current injected by the generation unit, respectively

the current drawn by the load, at node i. A schematic representation of an exemplary
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Figure 2.4: Schematic single-phase representation of an electrical network with n ∈ N
nodes. The AC voltage sources vi : R≥0 → R, i ∼ N, denote either generation units or

loads with exogeneous AC current injection, respectively consumption, ii : R≥0 → R. In
addition, some loads are represented by shunt-impedances Z̄ii ∈ C, while power lines are

represented by the impedances Zik ∈ C, i ∼ N, k ∼ Ni.

electrical network is given in Fig. 2.4. Therein, some loads are represented by shunt-

impedances, i.e., impedances to ground—a commonly used load model in power system

studies [1, 4, 6].

Following [3, Chapter 9], a two-step procedure is carried out to obtain the network

equations that establish the desired relations between voltages and currents in the

network. These can subsequently be used to obtain the power flow equations. Typically,

the voltages are states of the individual dynamical subsystems connected at the network

nodes and representing generation units (or loads), while the currents are not. From

a control theoretic point of view, it is therefore desirable to describe the current and

power flows by means of the voltages, i.e., to describe the network interconnections by

means of the state variables of the different subsystems.

Recall the mapping Tdq given in (2.13) and perform the following two steps.

1. Transform each vabci , i ∼ N, into “local” dq-coordinates by means of the mapping

Tdq with some continuously differentiable transformation angle θi : R≥0 → T,
i ∼ N. This yields

vdqi =

[
Vdi
Vqi

]
= Tdq(θi)vabci = Vi

[
sin(αi − θi)
cos(αi − θi)

]
. (2.26)

Note that the factor
√

2
3 in the amplitude of the three-phase signal vabci vanishes
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when transforming the signal into dq-coordinates, i.e., the amplitude of the signal

vdqi is Vi. Furthermore, since the angles θi, i ∼ N, can be chosen arbitrarily for

each node, this first transformation step is usually referred to as a “transformation

to local dq-coordinates” and the angle θi is called “local reference angle“ [3]. Its

main purpose is to simplify the interconnection of the respective node voltage vdqi

at the i-th bus with the dynamic model of the unit connected at that bus. This

purpose typically also determines the choice of the angle θi, i ∼ N1.

Applying the same transformation to iabci , i ∼ N, yields

idqi =

[
Idi
Iqi

]
= Tdq(θi)iabci . (2.27)

It is convenient to define, cf. (2.22) and (2.24),

Vqdi := Vqi + jVdi , Iqdi := Iqi + jIdi , i ∼ N,

and denote the vectors of all currents and voltages in local dq-coordinates by

Vqd := col(Vqdi) ∈ Cn, Iqd := col(Iqdi) ∈ Cn. (2.28)

Note that from a control or network theoretic point of view vdqi and idqi , re-

spectively Vqdi and Iqdi , i ∼ N, represent the port variables of the respective

dynamical subsystem connected at the i-th node.

2. Transform all variables vdqi and idqi , i ∼ N, given in (2.26) and (2.27) to a

”common reference frame“. This second step seeks to describe all port variables

vdqi and idqi , i ∼ N, in one common coordinate system and, hence, to facilitate

the derivation of the power flows in the network by means of the variables vdqi ,

i ∼ N.

To this end, recall the rotational speed of the common reference frame given by

the real constant ωcom in (2.18) and set

δi := θ0i +

∫ t

0
(θ̇i − ωcom)dτ ∈ T, i ∼ N, (2.29)

where θi is the angle used in the transformation (2.26), θ̇i its time-derivative and

θ0i ∈ T its initial condition. For example, a typical choice for ωcom would be the

1If there are merely static components connected at the i-th node, e.g., in the case of a load

represented by a constant shunt-admittance, then it is convenient to set θi = αi.
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frequency of the operating point of interest. Let ϖ : R≥0 → T and consider the

mapping Tδ : T → R2×2,

Tδ(ϖ) :=

[
cos(ϖ) sin(ϖ)
− sin(ϖ) cos(ϖ)

]
, (2.30)

which applied to any x ∈ R2 represents a rotational transformation. Applying Tδ

with δi defined in (2.29) to the voltage vdqi at the i-th node gives

v̂dqi =

[
V̂di
V̂qi

]
:= Tδ(δi)

[
Vdi
Vqi

]
. (2.31)

Note that, by construction,

Tdq(ϕ) = Tδ(δi)Tdq(θi)

and, hence,

v̂dqi = Tdq(ϕ)vabci = Tδ(δi)Tdq(θi)vabci = Tδ(δi)vdqi = Vi

[
sin(αi − ϕ)
cos(αi − ϕ)

]
,

where vdqi is given in (2.26) and v̂dqi in (2.31), see Fig. 2.5. For ease of notation,

it is convenient to use the following equivalent representation of (2.31)

V̂qdi := V̂qi + jV̂di = (cos(δi) + j sin(δi))Vqdi = ejδiVqdi , (2.32)

where Vqdi = Vqi + jVdi . Equivalently, let

Îqdi := Îqi + jÎdi = ejδiIqdi . (2.33)

In the following, (2.32) and (2.33) are used to derive mathematical expressions

describing the current and power flows in the network as functions of the voltages Vqd

given in (2.26) and the angles δi, i ∼ N, defined in (2.29). To this end, it is convenient

to describe the network topology by an undirected graph with set of nodes N, see

Section 2.3.5.1. Denote the set of power lines interconnecting the different network

nodes i ∈ N by E. Associate to each power line el ∈ E a line current iℓ,abc,l : R≥0 → R3,

l = 1, . . . , |E|. With Assumption 2.4.18, consider a three-phase symmetric power line

el ∈ E connecting nodes i ∈ N and k ∈ N. Then, each phase of the power line el is

composed of a constant ohmic resistance Rl ∈ R>0 in series with a constant inductance

Ll ∈ R>0. Without loss of generality, an arbitrary order is associated to the edges el,
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vabci =
√

2
3Vi

⎡⎢⎣ sin(αi)

sin(αi − 2π
3 )

sin(αi +
2π
3 )

⎤⎥⎦ vdqi =

[
Vdi
Vqi

]
= Vi

[
sin(αi − θi)

cos(αi − θi)

]

v̂dqi =

[
V̂di
V̂qi

]
= Vi

[
sin(αi − ϕ)

cos(αi − ϕ)

]

Tdq(θi)

Tδ(δi)Tdq(ϕ)

Figure 2.5: Illustration of the different coordinate frames used to derive the model of an

electrical network given in (2.44). The signal vabci : R≥0 → R3 denotes the three-phase

voltage at the i-th bus with phase angle αi : R≥0 → T and amplitude Vi : R≥0 → R≥0,

i ∼ N, see (2.25). The mappings Tdq and Tδ are given in (2.13), respectively (2.30). The

angle δi : R≥0 → T is defined in (2.29). Note that, by construction, mod2π(θi − δi) =

mod2π (ω
comt) = ϕ, where the real constant ωcom denotes the speed of the common dq-

reference frame.

l = 1, . . . , |E|. Physically, this is equivalent to assigning an arbitrary direction to the

line currents iℓ,abc,l. By recalling (2.17), defining

vabc : = col(vabc,i) ∈ R3|N|, iabc := col(iabc,i) ∈ R3|N|, iℓ,abc := col(iℓ,abc,l) ∈ R3|E|,

L : = diag(Ll) ∈ R|E|×|E|, R := diag(Rl) ∈ R|E|×|E|

and denoting by B ∈ R|N|×|E| the node-edge incidence matrix of the electrical network,

the current flows in the network are given by

(L⊗ I3)
diℓ,abc
dt

= −(R⊗ I3)iℓ,abc + (B⊤ ⊗ I3)vabc. (2.34)

Furthermore, from Kirchhoff’s current law [4, Chapter 2]

iabc = (B⊗ I3)iℓ,abc, (2.35)

i.e., the sum of all currents at each node is zero.

Recall (2.20) and define the nodal voltages vabc and current injections iabc, as well

as the network line currents iℓ,abc in common dq-coordinates by v̂dq ∈ R2|N|, îdq ∈ R2|N|,

respectively îℓ,dq ∈ R2|E|. With

X := diag

(
Llω

com

[
0 −1
1 0

])
∈ R2|E|×2|E|, (2.36)
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(2.34) and (2.35) become in common dq-coordinates

(L⊗ I2)
dîℓ,dq
dt

= (−(R⊗ I2) + X) îℓ,dq + (B⊤ ⊗ I2)v̂dq,

îdq = (B⊗ I2)̂iℓ,dq.

(2.37)

Under Assumption 2.4.19, (2.37) reduces to the algebraic relation, see (2.21),

îdq = (B⊗ I2) ((R⊗ I2)− X)−1 (B⊤ ⊗ I2)v̂dq, (2.38)

or, equivalently, by defining X := diag(Xl) = diag(Llω
com) ∈ R|E|×|E| and using com-

plex notation (see (2.24))

Îqd = B (R+ jX)−1B⊤V̂qd. (2.39)

Define the admittance matrix of the electrical network by

Y := B (R+ jX)−1B⊤ ∈ C|N|×|N| (2.40)

and

Gii := ℜ(Yii), Bii := ℑ(Yii), Yik := Gik + jBik := −Yik, i ̸= k. (2.41)

Moreover, it follows immediately that

Yik =

{
0 if nodes i and k are not connected

−(Rl + jXl)
−1 if nodes i and k are connected by line l

(2.42)

and

Gii + jBii =
∑
l∼Li

(Rl + jXl)
−1, (2.43)

where Li denotes the set of edges associated to node i. Inserting (2.32) and (2.33) into

(2.39) yields

Iqd = diag
(
e−jδi

)
Ydiag

(
ejδi
)
Vqd. (2.44)

Recall that Vqd and Iqd defined in (2.26) and (2.27) are expressed in local dq-coordinates.

Hence, (2.44) is the desired relation between currents and voltages in the network. Via

straightforward calculations, (2.44) can be written component-wise as

Iqdi = Iqi + jIdi ,

Iqi(δ1, . . . , δn, Vd1 , . . . , Vdn , Vq1 , . . . , Vqn) = GiiVqi −BiiVdi

+
∑
k∼Ni

(Bik cos(δik)−Gik sin(δik))Vdk −
∑
k∼Ni

(Gik cos(δik) +Bik sin(δik))Vqk ,

Idi(δ1, . . . , δn, Vd1 , . . . , Vdn , Vq1 , . . . , Vqn) = GiiVdi +BiiVqi

−
∑
k∼Ni

(Gik cos(δik) +Bik sin(δik))Vdk −
∑
k∼Ni

(Bik cos(δik)−Gik sin(δik))Vqk ,

(2.45)
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i ∼ N, where, for ease of notation, angle differences are written as δik := δi − δk. Fur-

thermore, the power flows in the network can be derived in a straightforward manner

from (2.44), respectively (2.45), as follows. Recall that the instantaneous active and

reactive powers Pi and Qi at the i-th node are given, according to Definition 2.4.12, by

Pi =VdiIdi + VqiIqi ,

Qi =VdiIqi − VqiIdi .
(2.46)

Hence, inserting (2.45) in (2.46) gives

Pi(δ1, . . . , δn, Vd1 , . . . ,Vdn , Vq1 , . . . , Vqn) = Gii(V
2
di
+ V 2

qi)

−

⎛⎝∑
k∼Ni

Gik cos(δik) +Bik sin(δik)

⎞⎠ (VdkVdi + VqkVqi)

−

⎛⎝∑
k∼Ni

Bik cos(δik)−Gik sin(δik)

⎞⎠ (VqkVdi − VdkVqi) ,

Qi(δ1, . . . , δn, Vd1 , . . . ,Vdn , Vq1 , . . . , Vqn) = −Bii(V
2
di
+ V 2

qi)

+

⎛⎝∑
k∼Ni

Bik cos(δik)−Gik sin(δik)

⎞⎠ (VdkVdi + VqkVqi)

−

⎛⎝∑
k∼Ni

Gik cos(δik) +Bik sin(δik)

⎞⎠ (VqkVdi − VdkVqi) ,

(2.47)

which are the desired power flow equations corresponding to the i-th node.

2.4.4.3 Kron reduction of electrical networks

Consider an electrical network, in which some loads are represented by shunt-admittances,

see Fig. 2.4. Denote the set of network nodes by N, the set of nodes with shunt-

admittances by NL ⊂ N and that of all other network nodes by NR := N \NL. Denote

the nodal voltages and currents at nodes i ∼ NL in common dq-coordinates by

V̂L,qd = col(V̂L,qdi) ∈ C|NL|, ÎL,qd = col(ÎL,qdi) ∈ C|NL|.

Denote the remaining nodal voltages and currents at nodes i ∼ NR in common dq-

coordinates by V̂R,qd ∈ C|NR|, respectively ÎR,qd ∈ C|NR|. With Assumptions 2.4.18

and 2.4.19, let Ȳii = Ḡii + jB̄ii ∈ C be the shunt-admittance at the i-th node, i ∈ NL,

and define

Ȳ := diag(Ȳii) ∈ C|NL|×|NL|. (2.48)
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Then, the following relation holds (in ”Generator convention“, see Section 2.4.3)

ÎL,qd = −ȲV̂L,qd.

Recall the electric admittance matrix Y ∈ C|N|×|N| defined in (2.40). Partition Y in

accordance to the sets NL and NR, i.e.,[
ÎR,qd

ÎL,qd

]
=

[
ÎR,qd

−ȲV̂L,qd

]
=

[
YNRNR

YNRNL

Y⊤
NRNL

YNLNL

] [
V̂R,qd

V̂L,qd

]
. (2.49)

Suppose that YNLNL
+ Ȳ is nonsingular. This assumption holds for most electrical

networks [175]. In particular, the lemma below shows that this assumption holds for

all networks with RL power lines (i.e., the class of networks considered in this work),

which are connected in a graph-theoretical sense, see Section 2.3.5.1.

Lemma 2.4.20. Let Y ∈ Cn×n be the admittance matrix of an electrical network sat-

isfying Assumption 2.4.18. Let Y be partitioned as in (2.49) and Ȳ be given by (2.48).

Suppose that the network is connected. Then, YNLNL
+ Ȳ is nonsingular.

Proof. Recall the definition of Y in (2.40). With Assumption 2.4.18, all lines are com-

posed of RL elements. Therefore, (2.41) - (2.43) together with the fact that the network

is connected by assumption imply that (see (2.40))

ℜ(Yii) = −
∑
k∼N

ℜ(Yik) > 0, i ∼ N,

that

x⊤ (Y+ Y∗)x > 0, ∀x ∈ Rn \ {γ1n}, γ ∈ R, (2.50)

and that YNRNL
̸= 0NR×NL

. Consequently,

ℜ(Yii) ≥ −
∑
k∼NL

ℜ(Yik), i ∼ NL,

with strict inequality for at least one i ∈ NL. This, together with (2.50), implies that

x⊤
(
YNLNL

+ Y∗
NLNL

)
x > 0, ∀x ∈ RNL \ {0NL

}.

It is straightforward to see that

x⊤
(
Ȳ+ Ȳ∗)x ≥ 0, ∀x ∈ RNL \ {0NL

}.

Thus,

x⊤
((
YNLNL

+ Ȳ
)
+
(
YNLNL

+ Ȳ
)∗)

x > 0, x ∈ RNL \ {0NL
},

and, by the properties of the numerical range of a matrix, see Section 2.3.6,

ℜ
(
σ
(
YNLNL

+ Ȳ
))

⊂ R>0,

completing the proof.
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For YNLNL
+ Ȳ being nonsingular, solving the second row of (2.49) for ÎL,qd and

inserting the result in the first row of (2.49), yields

ÎR,qd =
(
YNRNR

− YNRNL

(
YNLNL

+ Ȳ
)−1

Y⊤
NRNL

)
V̂R,qd := YRV̂R,qd.

This network reduction is called Kron reduction [1, 176] and YR is the admittance

matrix of the Kron-reduced network. Kron reduction is frequently used in power sys-

tem analysis, since it allows to equivalently represent a system of differential-algebraic

equations (DAEs) as a set of pure ODEs. For this purpose, the Kron reduction is also

employed in the present work.

2.4.5 Stability in power systems and microgrids

The notions of stability used within the power systems community often differ sig-

nificantly from those in the control systems community presented in Section 2.3.2.

Moreover, even within the power systems community different types and notions of

stability are used incoherently [39]. Therefore, the problem of stability definition and

classification in power systems has been adressed in [39]. In accordance with [39], the

following definition of power system stability is employed in this work.

Definition 2.4.21. [39] Power system stability is the ability of an electric power sys-

tem, for a given initial operating condition, to regain a state of operating equilibrium

after being subjected to a physical disturbance, with most system variables bounded so

that practically the entire system remains intact.

With respect to the control theoretic definition of stability given in Definition 2.3.1,

Definition 2.4.21 is to be understood as follows [39]. Consider a power system and sup-

pose that it is subjected to a physical disturbance. Examples for typical disturbances in

a power system are load changes, loss of generation units or short circuits. The system’s

response to the disturbance may include the disconnection of some system components

from the system (e.g., by protection relays). Hence, the system topology after the dis-

turbance may not be identical to that before the disturbance. If after the disturbance

has occured, almost all system components remain connected with their corresponding

variables being bounded and the power system reaches a—typically new—operating

equilibrium1, then the power system is said to be stable. Thus, Definition 2.4.21 is

1Often, the qualifiers prefault, fault and postfault are used to refer to a power system before, during

and after a fault [6]. Faults (e.g., a short circuit or a line tripping) are a particular class of disturbances

in power systems.
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consistent with the definition of asymptotic stability given in Definition 2.3.1, in that

the new equilibrium point (if it exists) is required to be asymptotically stable in the

sense of Definition 2.3.1. In the remainder of this work a generic microgrid is said to

be stable if it satisfies Definition 2.4.21.

Due to the high complexity and nonlinearity of power systems, it is in general

convenient to further classify different types of instability that a power system may

undergo as a consequence of different types of disturbances. The following definitions

of frequency, rotor angle and voltage stability are used in this work.

Definition 2.4.22. [39] Frequency stability refers to the ability of a power system

to regain a steady frequency following a severe system upset resulting in significant

imbalance between generation and load.

Definition 2.4.23. [39] Rotor angle stability refers to the ability of synchronous ma-

chines of an interconnected power system to regain synchronism after being subjected

to a disturbance.

Definition 2.4.24. [39] Voltage stability is the ability of a power system to regain

steady voltages at all buses in the system after being subjected to a disturbance from a

given initial operating point.

It is important to stress that the given definitions are usually made in order to facil-

itate the stability analysis of power systems by reducing the complexity of the problem

[39]. However, the different types of defined stability are not necessarily independent

from each other. It is therefore fundamental to consider different types of stability,

when assessing the overall system stability [39].

A detailed review of further classifications of power system stability is given in [39].

However, many of the classifications therein are tailored to large HV power systems

operated with SGs and may therefore not apply directly to MDREGs or purely inverter-

based microgrids. For this reason, no further classification of different types of microgrid

stability is pursued here.

2.5 Summary

In this chapter basic notation used throughout this work has been introduced. Fur-

thermore, relevant background information on the employed mathematical notions and

tools has been provided. More precisely, the given overview has comprised stability for

dynamical systems, as well as graph theory, consensus protocols, the numerical range of
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a matrix and an extension of the Routh-Hurwitz criterion for polynomials with complex

coefficients.

In addition, main characteristis of three-phase AC power systems together with a

standard definition of instantaneous power and a standard algebraic network model

describing the current and power flows among different nodes in a power network have

been presented. The chapter has been concluded with a definition of stability of power

systems, which is consistent with the usual definition of asymptotic stability in control

theory.
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3

Problem statement

3.1 Introduction

As discussed in Chapter 1, the increasing penetration of renewable DG units leads to

significant changes in the generation structure of power systems. To successfully ad-

dress these structural changes and the resulting challenges, new operation strategies are

needed [21]. In this chapter, the microgrid concept is introduced as one approach to ad-

dress these issues and facilitate the integration of renewable DG units into the electrical

grid. Furthermore, the potentials and key features of microgrids are highlighted.

In addition, three key challenges arising in microgrids are introduced in detail.

These are frequency stability, voltage stability and power sharing. In particular, it is

shown that the problem of power sharing can be formulated as an agreement problem.

Furthermore, the separation of the control tasks in a microgrid into several control

layers is motivated. The most common hierarchical control scheme for microgrids is

discussed and related to the hierarchical control scheme in conventional power systems.

Finally, the aforementioned main problems addressed in this work are classified within

the presented control hierarchy.

The remainder of this chapter is structured as follows. Based on [126], the microgrid

concept is presented in Section 3.2. Three fundamental challenges in microgrids, to

which this work is devoted to, are introduced in Section 3.3. The chapter is concluded

in Section 3.4 with a brief review of the predominant hierarchical control scheme for

microgrids available in the literature.
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3.2 The microgrid concept

3.2.1 Definition of a microgrid

Microgrids have attracted a wide interest in different research and application commu-

nities over the last decade [23, 28, 34]. However, the term “microgrid” is not uniformly

defined in the literature [4, 21, 22, 23, 24, 177]. Based on [21, 23], the following definition

of an AC microgrid is employed in this work.

Definition 3.2.1. An AC electrical network is said to be an AC microgrid if it satisfies

the following conditions.

1. It is a connected subset of the LV or MV distribution system of an AC electrical

power system.

2. It possesses a single point of connection to the remaining electrical power system.

This point of connection is called point of common coupling (PCC).

3. It gathers a combination of generation units, loads and energy storage elements.

4. It possesses enough generation and storage capacity to supply most of its loads

autonomously during at least some period of time.

5. It can be operated either connected to the remaining electrical network or as an

independent island network. The first operation mode is called grid-connected

mode and the second operation mode is called islanded, stand-alone or autonomous

mode.

6. In grid-connected mode, it behaves as a single controllable generator or load from

the viewpoint of the remaining electrical system.

7. In islanded mode, frequency, voltage and power can be actively controlled within

the microgrid.

According to Definition 3.2.1, the main components in a microgrid are DG units,

loads and energy storage elements. Typical DG units in microgrids are renewable

DG units, such as photovoltaic (PV) units, wind turbines, fuel cells (FCs), as well as

microturbines or reciprocating engines in combination with SGs. The latter two can

either be powered with biofuels or fossil fuels [4, 178]. Some DG units may also be

operated as combined heat and power (CHP) plants allowing to recover part of the

waste heat generated in the combustion process [4].
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Typical loads in a microgrid are residential, commercial and industrial loads [22,

24, 178]. It is also foreseen to categorize the loads in a microgrid with respect to their

priorities, e.g., critical and non-critical loads. This enables load shedding as a possible

operation option in islanded-mode [22, 178].

Finally, storage elements play a key-role in microgrid operation [4, 178]. They are

especially useful in balancing the power fluctuations of intermittent renewable sources

and, hence, to contribute to network control. Possible storage elements are, e.g., bat-

teries, flywheels or supercapacitors. The combination of renewable DGs and storage

elements is also an important assumption for the inverter models used in this work, see

Section 4.2.

Most of the named DG and storage units are either DC sources (PV, FC, batteries)

or are often operated at variable or high-speed frequency (wind turbines, microturbines,

flywheels). Therefore, they have to be connected to an AC network via AC or DC-AC

inverters [15, 21]. For ease of notation, such devices are simply called “inverters” in

the following. An illustration of an exemplary microgrid is given in Fig. 3.1.

Given the early stage of research and development on control concepts for mi-

crogrids, to the best of the author’s knowledge, worldwide no commercial microgrid

with large amount of renewable DG exists up to date. However, there are several

test-sites and experimental microgrids around the globe, see, e.g., the survey papers

[23, 178, 179, 180].

Remark 3.2.2. While not comprised in Definition 3.2.1, true island power systems are

sometimes also called microgrids in the literature [23]. This can be justified by the fact

that islanded power systems operating with a large share of renewable energy sources

face similar technical challenges as microgrids. Nevertheless, an island power system

differs from a microgrid in that it can not be frequently connected to and disconnected

from a larger electrical network [21].

Remark 3.2.3. Microgrids can also be implemented as DC systems [181, 182, 183].

Definition 3.2.1 can easily be adapted to this scenario by removing the property “fre-

quency control” in item 7. Recent reviews of the main differences and challenges for

AC and DC microgrids are given, e.g., in [180, 184, 185].

3.2.2 Microgrid characteristics and challenges

Microgrids represent a promising solution to facilitate the local integration of DG units

into the electrical grid [18, 22, 23, 24]. The following three points are among the main

motivating facts for the need of such concepts.
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Figure 3.1: Schematic representation of a microgrid. The microgrid is composed of several

DG units, loads and storage devices. The DG units are inverter-interfaced photovoltaic

(PV), fuel cell (FC) and wind power plants. In addition, a power generation unit is

connected to the network via a synchronous generator (SG). The point of connection of

the microgrid to the main network is denoted by point of common coupling (PCC).
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(i) The penetration of renewable energy sources into the electrical networks is increas-

ing worldwide. This process is motivated by political, environmental, economic

and technological aspects [7, 18].

(ii) Most renewable sources are intermittent small-scale DG units connected at the

LV and MV levels, while conventional power plants are mostly located at the HV

level [21, 23, 24].

(iii) A large portion of these DG units are connected to the network via inverters.

The physical characteristics of inverters largely differ from the characteristics of

conventional electrical generators, i.e., SGs [21, 24].

These facts have the following implications for power system control and operation.

(i) The power generation structure is moving from large, centralized plants to a mixed

generation pool consisting of conventional large plants and smaller DG units.

(ii) Several DG units are required to replace one large conventional power plant.

Hence, the number of generation units in the power system increases.

(iii) Especially, the number of generation units present in the network at LV and MV

level increases drastically.

(iv) With increasing penetration of inverter-based sources accompanied by a reduction

of conventional power plants, ancillary services [186], such as frequency and volt-

age control, have to be provided, at least partially, by inverter-interfaced sources.

(v) The control and operation strategies have to take into account the physical char-

acteristics of inverters, as well as the intermittency of many renewable sources.

In summary, with higher penetration of renewable sources, the power generation

structure becomes far more complex and the dynamics of the generation units change.

Additionally, power generation becomes more uncertain and takes increasingly place

at the LV and MV levels. Hence, new solutions and strategies to operate the electric

power system that ensure a reliable and stable operation by taking into account the

characteristics of renewable inverter-interfaced DG units are needed [21].

In this context, the microgrid concept has been identified as a key component in

future electrical networks [4, 18, 19]. As detailed in Definition 3.2.1, a microgrid is a

cluster of a larger electrical network. The main operation strategy for a microgrid is

as follows [22, 23]. During normal operating conditions, the microgrid is connected in

parallel to the remaining electrical power system. In the case of a disturbance, e.g., a

short circuit or an outage of a large generation unit, the microgrid disconnects from the

rest of the electrical power system and keeps operating in islanded-mode. Whenever
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the disturbance is cleared, the microgrid may be reconnected to the main network.

In addition, the microgrid can also be disconnected if the power quality1 in the main

grid falls below certain thresholds. This process is called intentional disconnection or

islanding.

Hence, the microgrid concept offers various features to contribute to a successful

integration of a large share of inverter-based DG units into the electrical network. Some

of the key properties of microgrids in this context are listed below [4, 18, 23, 24, 25].

(i) Power quality is increased, e.g., by locally controlling the frequency and voltage

in the microgrid or by intentional islanding.

(ii) The control burden on the higher voltage levels can be reduced by performing

control actions already locally.

(iii) Local power balancing reduces network losses.

(iv) Clustering a large electrical network into several microgrids reduces the com-

plexity of the individual systems in consideration. This simplifies control and

operation tasks.

(v) In grid-connected mode, different microgrids forming an electrical network are

coupled with each other. Then, as illustrated in Fig. 3.2, each microgrid represents

a single entity from the point of view of all other microgrids in the network.

This simplifies the coordination of several interconnected microgrids within one

electrical network.

In order for microgrids to be able to reliably and safely provide the aforementioned

services, several technical, economic and regulatory challenges have to be met [4, 18,

21, 22, 23, 24, 38]. Given the technical character of this thesis, the listing of challenges

presented next is limited to technical aspects. For further information on market and

regulatory challenges, the reader is referrred to, e.g., [4, 24, 38]. Among the most

relevant technical tasks to be considered are:

(i) Frequency stability;

(ii) Voltage stability;

(iii) Desired power sharing in steady-state;

(iv) Operational compatibility of inverter-interfaced and SG-interfaced units;

(v) Seamless switching from grid-connected to islanded-mode and vice-versa;

1 Power quality is a measure for the fitness of electrical power delivered to consumers. It com-

prises the following criteria: continuity of service, variation in voltage magnitude, frequency stability,

unbalances and harmonic content [187].
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Figure 3.2: Example of an electrical network composed of several interconnected micro-

grids (MGs). Large units, such as, e.g., hydro power plants or pump storage plants, may be

connected at the HV level and are represented by synchronous generators (SGs). Note that

by Definition 3.2.1, the switch between a microgrid and the main grid is defined as part

of a microgrid. Nevertheless, the switches are shown explicitly in the above illustration to

emphasize their role in a coupled network of interconnected microgrids. In grid-connected

operation, the switch at each microgrid is closed. Then, each microgrid is seen as a single

load or generator from all other microgrids. In case of a severe disturbance in the network,

each microgrid can disconnect itself from the main network and operate in stand-alone

mode.
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(vi) Protection systems and provision of short-circuit current by inverter-interfaced

sources;

(vii) Robustness with respect to uncertainties;

(viii) Optimal dispatch.

In this work, the challenges (i)-(iii) are addressed, while also taking challenge (iv)

into account. These problems together with their practical relevance are detailed in

the next section.

3.3 Stability and power sharing

As mentioned above, three key problems in microgrids to which this thesis is devoted

to are introduced and motivated in detail in this section. More precisely, the addressed

problems are (i) frequency stability, (ii) voltage stability and (iii) power sharing. The

presentation of these problems is based on [1, 3, 39, 71, 122].

3.3.1 Frequency and voltage stability

In conventional power systems, power generation sources are connected to the network

via SGs. The main task of SGs in AC electrical networks is to transform rotational

mechanical energy into electrical energy. This energy conversion process is achieved via

electromagnetic induction, i.e., the rotation of the magnetic field of the rotor (driven

by a mechanical input) induces a three-phase voltage within the stator winding.

As a consequence, SGs provide an AC voltage at their terminals. Recall from

Section 2.4.1, that a symmetric three-phase voltage can be described completely by

two variables: its angle and its amplitude. If an SG is operated in such way that

it actively sets the values of the frequency, i.e., the time-derivative of the angle, and

the amplitude of the voltage at its terminals, then the SG is said to be operated as a

grid-forming unit [81]. Alternatively, an SG can also be controlled in such way that it

injects a prespecified amount of active and reactive power into the network. An SG

operated in such way is called a grid-feeding or PQ unit [35, 81].

Grid-forming units are essential components in power systems. They have the task

to provide a synchronous frequency and a certain voltage level at all buses in the net-

work, i.e., to provide a stable operating point. Analyzing under which conditions such

an operating point can be provided and maintained, naturally leads to the problems of

frequency and voltage stability, see Definitions 2.4.22 and 2.4.24.

58



3.3 Stability and power sharing

If all SGs in an AC electrical network rotate at the same speed, then the network

is said to be synchronized. If the network is synchronized, then the rotor field and the

field at the machine terminal of each SG in the network rotate at the same speed with a

constant phase difference between both fields. The angle describing this phase difference

is usually called rotor angle or power-angle in the literature [1, 3, 39]. Clearly, if the

network is synchronized, then the rotor angle of each SG in the network is constant.

Therefore, in AC electrical networks with conventional power generation units, the

problem of rotor angle stability [39] is of great relevance, see Definition 2.4.23. The

problem of rotor angle stability after a large disturbance in the network is often called

the problem of transient stability [39].

Note moreover that it is usually not desired that the voltages at all terminals syn-

chronize to exactly the same three-phase signal. On the contrary, it is desired that all

terminal voltages synchronize to a common frequency, but exhibiting phase differences

between each other. Manipulation of these phase differences, e.g., via a suitable control,

allows to shape the power flows in the network, cf. (2.47).

As discussed previously, in microgrids a large number of renewable DG units are

typically interfaced to the network via inverters and only a small amount, if any, of

generation sources is connected to the network via SGs. Therefore, in microgrids grid-

forming capabilities have often also to be provided by inverter-interfaced sources [24,

35].

Given the different physical characteristics of inverters in comparison to SGs, new

control concepts for microgrids guaranteeing (under certain conditions) a stable oper-

ating point are needed. These concepts have to be compatible to the operation of SGs

and, since the microgrid has to be able to operate in grid-connected mode, also to the

operation of larger electrical networks.

In addition, in grid-connected mode, control actions and power demand in the

microgrid can be supported by the main grid. However, in islanded-operation mode,

all control capabilities have to be provided by units within the microgrid. Moreover,

in islanded power systems, any kind of disturbance causing a substantial change of

load or generation can affect frequency stability [39, 188]. Hence, the problems of

frequency and voltage stability become especially crucial in microgrids operated in

islanded-mode. Therefore, the stability analysis carried out in this thesis focuses on

microgrids in islanded-mode.
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3.3.2 Power sharing

Besides frequency and voltage stability, power sharing is an important performance cri-

terion in the operation of microgrids [21, 24, 35, 81]. Here, power sharing is understood

as the ability of the local controls of the individual generation sources to achieve a

desired steady-state distribution of the power outputs of all generation sources relative

to each other, while satisfying the load demand in the network. The relevance of this

control objective lies within the fact that it allows to prespecify the utilization of the

generation units in operation, e.g., to prevent overloading [24]. In addition, thereby

high-circulating currents in the network can be avoided [38].

The concept of proportional power sharing is formalized via the following definition.

Definition 3.3.1. Consider an AC electrical network, e.g., an AC microgrid. Denote

its set of nodes by N = {1, 2, . . . , n}, n ∈ N. Consider two units connected at nodes

i ∈ N, respectively k ∈ N. Let γl and χl denote constant positive real weighting fac-

tors and P s
l , respectively Q

s
l , the steady-state active, respectively reactive, power flow,

l ∈ {i, k}. Then, the units at nodes i and k are said to share their active, respectively

reactive, powers proportionally according to γi and γk, respectively χi and χk, if

P s
i

γi
=
P s
k

γk
, respectively

Qs
i

χi
=
Qs

k

χk
.

Remark 3.3.2. A practical choice for γi and χi would, for example, be γi = χi = SN
i ,

where SN
i ∈ R>0 is the nominal power rating of the DG unit at node i ∈ N.

The problems of active and reactive power sharing can be formalized as follows.

Problem 3.3.3. Consider an AC electrical network, e.g., an AC microgrid, and denote

its set of nodes by N = {1, 2, . . . , n}, n ∈ N. Let the associated vectors of phase angles

and voltages be given by δ ∈ Tn, respectively Vqd ∈ Cn, cf. (2.28). Let NG ⊆ N denote

a set of nodes, such that at each node i ∈ NG a generation and/or storage unit is

connected. Recall from (2.47) that Pi(δ, Vqd) denotes the active power flow associated

to the i-th unit, i ∈ NG. Furthermore, let PG = col(Pi) ∈ R|NG|, i ∼ NG. Associate

to each unit a positive real weighting coefficient γi, i ∼ NG. Let U = diag(1/γi). The

problem of active power sharing is said to be solved for the |NG| units if and only if

PG(δ, Vqd) is bounded and

lim
t→∞

UPG(δ, Vqd) = υ1|NG|, (3.1)

with real constant υ.
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Problem 3.3.4. Consider an AC electrical network, e.g., an AC microgrid, and denote

its set of nodes by N = {1, 2, . . . , n}, n ∈ N. Let the associated vectors of phase angles

and voltages be given by δ ∈ Tn, respectively Vqd ∈ Cn, cf. (2.28). Let NG ⊆ N denote

a set of nodes, such that at each node i ∈ NG a generation and/or storage unit is

connected. Recall from (2.47) that Qi(δ, Vqd) denotes the reactive power flow associated

to the i-th unit, i ∈ NG. Furthermore, let QG = col(Qi) ∈ R|NG|, i ∼ NG. Associate

to each unit a positive real weighting coefficient χi, i ∼ NG. Let D = diag(1/χi). The

problem of reactive power sharing is said to be solved for the |NG| units if and only if

QG(δ, Vqd) is bounded and

lim
t→∞

DQG(δ, Vqd) = β1|NG|, (3.2)

with real constant β.

Combining Problems 3.3.3 and 3.3.4, yields the power sharing problem.

Problem 3.3.5. Consider an AC electrical network, e.g., an AC microgrid, and denote

its set of nodes by N = {1, 2, . . . , n}, n ∈ N. Let NG ⊆ N denote a set of nodes, such

that at each node i ∈ NG a generation and/or storage unit is connected. The problem

of power sharing is said to be solved if and only if the Problems 3.3.3 and 3.3.4 are

solved jointly for the |NG| units.

Suppose δ and Vqd are states (or outputs) of agents—each represented by a dy-

namical system—connected at the nodes of the considered network. In a microgrid,

agents typically represent DG units (or loads). It then follows from the formulation

of Problem 3.3.5, that the problem of power sharing is an agreement problem, see

Section 2.3.5.

Two important aspects, when considering the practical interest of power sharing

are: (i) the power losses over a power line are given by Ri⊤i, where i : R≥0 → R3 is

the current flowing on the line and R ∈ R>0 is the resistance of the line; (ii) the larger

the line impedance is, the larger the voltage difference at two connected buses has to

be in order to have a significant effect on the power flows.

Because of (i), power sharing is only a relevant control objective in networks with

relatively small resistances between the different nodes in the network, since with in-

creasing line resistances the power losses also increase. To illustrate the second claim,

consider a dominantly inductive power line with admittance Yik ∈ C connecting two

nodes i ∈ N and k ∈ N. Let the voltage amplitudes and phase angles at these

nodes be given by Vqdi = Vqi + j0 : R≥0 → R≥0 and δi : R≥0 → T, respectively
Vqdk = Vqk + j0 : R≥0 → R≥0 and δk : R≥0 → T, cf. Section 2.4.4. Suppose the phase
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angle difference is small, i.e., ∥δi − δk∥ < ϵ for some small real constant ϵ. Then, with

δik = δi − δk, the following approximations can be made

Yik = Gik + jBik ≈ jBik, sin(δik) ≈ δik, cos(δik) ≈ 1 (3.3)

and the active and reactive power flows given in (2.47) between nodes i and k simplify

to

Pik = −BikVqiVqkδik,

Qik = −BikV
2
qi +BikVqiVqk = −BikVqi(Vqi − Vqk).

(3.4)

Moreover, the voltage amplitudes are usually required to remain within a certain

range—typically 0.9 < |Vqi | < 1.1 pu and 0.9 < |Vqk | < 1.1 pu for normalized voltage

amplitudes, see, e.g., [189]. Hence, the active power flow Pik is mainly influenced by

the phase angle difference δik and the reactive power flow Qik by the voltage difference

Vqi − Vqk .

In HV transmission systems, typically the power lines are dominantly inductive and

relatively long. Hence, the resistance between generation units is relatively small and

the inductance is rather large, i.e., |Bik| ≪ 1. In that case, it follows from (3.4) that a

significant voltage difference Vqi −Vqk is required in order to obtain a significant change

in the reactive power flow. Thus, the criterion 0.9 < |Vqi | < 1.1 pu may be violated and

controlling the reactive power flow by manipulation of the voltage difference Vqi − Vqk

is not feasible. Therefore, in transmission systems usually only active power sharing

is a desired control objective, while reactive power sharing is not a feasible target. A

similar reasoning can be made for active power sharing in dominantly resistive networks

with large resistances, e.g., by inspection of the power flow equations (2.47) for such a

scenario.

In microgrids, however, the electrical distance between units is typically small. Con-

sequently, active and reactive power sharing are, in general, relevant control objectives

[21, 24, 35, 81]. Close electrical proximity usually implies close geographical distance be-

tween the different units, which facilitates the practical implementation of a distributed

communication network. This fact is explored in Section 5.3, where a consensus-based

DVC for reactive power sharing in microgrids with dominantly inductive power lines is

proposed based on [122, 125].
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3.4 Control hierarchies in microgrids

Given the complexity, for example, in terms of the number of network components,

time-scales of dynamics and operational goals in microgrids, an evident approach is

to separate the individual control tasks into several hierarchical control levels. This

is also the standard approach in the control of conventional power systems. Since the

available hierarchical control concepts for microgrids are strongly inspired by those of

conventional power systems, the hierarchical control architecture of the latter is briefly

reviewed.

In conventional power systems, the set of controls the main task of which is to

achieve rotor angle and frequency stability is called frequency control. Frequency con-

trol is typically divided into several control hierarchies and performed at the HV level

by SGs. The frequency control hierarchies presented next are based on the current

grid-code of the European Network of Transmission System Operators for Electricity

(ENTSO-E) [190].

• Primary control (also: droop control). Decentralized proportional control aiming

at frequency stabilization and achievement of an active power balance.

• Secondary control. Distributed communication-based control with integral behav-

ior to eliminate stationary frequency deviations, as well as power flow imbalances

between the different control areas.

• Minute reserve/tertiary control. Replacement of secondary control in the event

of a long-standing power imbalance.

Note that, depending on the grid code of the respective network operator, the minute

reserve/tertiary control level is not always considered part of the frequency control

hierarchy, see, e.g., [4, 6]. In addition, the term “tertiary control” is sometimes used in

the literature to denote the economic dispatch problem, see, e.g., [6, 66].

Voltage control is typically carried out by taking local control actions—on the HV

level by adjusting the excitation voltage of the SGs; on the MV and LV level by means

of transformers or compensation devices [1].

Inspired by the hierarchical control layers for conventional power systems, there is

ongoing effort on establishing a similar hierarchical control architecture in microgrids

[35, 38, 180, 191, 192]. It is worth noting that a definition of a control hierarchy for

a microgrid is not necessary for the present work, since the considered problems of
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frequency and voltage stability, as well as the achievement of a desired power balance

are usually associated with primary control tasks [38, 180, 191, 192]. Nevertheless, a

classification suggested by the authors of [38, 120, 191, 192] is given in the following

for the sake of completeness, see Fig. 3.3 for an illustration.

• Primary control. Frequency and voltage stability; achievement of a desired power

distribution to reduce circulating active and reactive power flows; mimic the be-

havior of SG-dominated networks.

• Secondary control. Compensation of frequency and voltage amplitude deviations

caused by the primary control.

• Tertiary control. Optimal dispatch; additionally, in grid-connected mode: elimi-

nation of power flow imbalances between the microgrid and the main grid at the

point of common coupling (PCC).

Note that the optimal dispatch problem is included in the control tasks associated

with the tertiary control layer. Also, it is worth pointing out that, given the fairly

recent interest in microgrids and the lack of commercially implemented microgrids,

there is not yet an equivalent uniformly accepted definition of a hierarchical control

architecture for microgrids. For example, the recent work [66] suggests to relax the

strict separation of control tasks and time-scales in microgrid operation.

The author of the present work expects that further research and standardization

efforts of academics and practitioners together with regulatory institutions are needed

to establish a rigorous definition of control hierarchies and their respective tasks in

microgrids, see also the discussion on this aspect in [193].

3.5 Summary

In this chapter the microgrid concept has been introduced and the main problems

addressed in this work have been formulated. More precisely, a microgrid has been

defined as a locally controllable subset of a distribution system. Furthermore, it has

been shown that microgrids possess numerous key features, which help to face the

ongoing structural changes of power systems worldwide. Two of these features are that

microgrids facilitate the integration of large amounts of DG units and, at the same

time, reduce the control burden of the main grid.
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Figure 3.3: Example of a hierarchical control architecture for microgrids based on [38,

180, 191, 192]. The definition of the control layers and their associated control tasks is

strongly inspired by the hierarchical control architecture for frequency control in large

transmission systems, see, e.g., [4, 6, 190].

65



3. PROBLEM STATEMENT

Furthermore, it has been argued that inverter-interfaced DG units have to con-

tribute to frequency and voltage regulation in microgrids by operating as grid-forming

units. However, the physical characteristics of inverters largely differ from those of SGs,

which are used in conventional power systems as grid-forming units. As a consequence,

new control concepts for microgrids are needed.

In this context, three fundamental challenges arising in microgrids and addressed in

this work have been discussed, namely (i) frequency stability, (ii) voltage stability and

(iii) power sharing. In particular, it has been shown, that power sharing essentially is

an agreement problem.

Finally, it has been argued that the complexity—regarding components and time-

scales—of microgrids, motivates a hierarchical control design. A possible control hier-

archy of microgrids has been presented based on the state-of-the-art in the literature.

Within the framework of this hierarchal control architecture, all control problems ad-

dressed in this thesis are located at the primary control level.
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Modeling of microgrids

4.1 Introduction

In the previous chapter, the relevance of microgrids in the context of electrical networks

with large share of renewable DG units has been discussed. Furthermore, some of the

most relevant associated challenges have been pointed out. Building on this discussion

and based on [126], the main contribution of the present chapter is the derivation of a

suitable mathematical model of an uncontrolled microgrid. Compared to related work

on modeling of MDREGs, e.g., [30, 31, 32], a generic modular modeling approach is

taken. This makes the derived model amenable for control design and straightforward

derivation of closed-loop model representations for network analysis.

Based on Section 3.2, the derived model consists of several main components. More

precisely, these are inverter-interfaced DG and storage units, DG units connected to

the network via SGs, as well as loads and power lines.

The remainder of this chapter is outlined as follows. At first, the model of an inverter

is derived in Section 4.2. Subsequently, the model of an SG is given in Section 4.3. This

modeling chapter is concluded in Section 4.4 with the network and load models.

4.2 Inverter model

This section is dedicated to the model derivation of an inverter in a microgrid. Recall

that a large share of renewable DG units are DC power sources or operated at high

or variable frequency and, therefore, connected to an AC network via inverters [21].

Consequently, as outlined in Section 3.2, inverters are key components of microgrids.
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The basic functionality of an inverter is illustrated in Fig. 4.1. The main elements

of inverters are power semiconductor devices [167, 194]. An exemplary basic hardware

topology of the electric circuit of a two-level three-phase inverter constructed with

insulated-gate bipolar transistors (IGBTs) and antiparallel diodes is shown in Fig. 4.2.

The conversion process from DC to AC is usually achieved by adjusting the on- and

off-times of the transistors. These on- and off-time sequences are typically determined

via a modulation technique, such as, e.g., puls-width-modulation (PWM) [167, 194].

To improve the quality of the AC waveform, e.g., to reduce the harmonics, the gener-

ated AC signal is typically processed through a low-pass filter constructed with RLC

elements. Further information on the hardware design of inverters and related controls

is given, e.g., in [148, 167, 194].

The remainder of this section is structured as follows. The main operation modes

of inverters in microgrids are reviewed in Section 4.2.1. Then, based on [70, 71, 126]

a suitable model of a three-phase inverter is derived in Section 4.2.2. More precisely,

at first, the model of a single inverter is given and the main modeling assumptions

are outlined. Subsequently, the validity of the proposed model with respect to the

effect of clock drifts of the digital signal processor (DSP) used to operate the inverter

is discussed. Finally, in Section 4.2.3, the proposed model is transformed into dq-

coordinates, cf. Section 2.4.2, in order to interconnect it with a network composed of

several units.

4.2.1 Common operation modes of inverters in microgrids

In microgrids, two main operation modes for inverters can be distinguished [81, 184]:

grid-forming and grid-feeding mode. The latter is sometimes also called grid-following

mode [24] or PQ control [35], whereas the first is also referred to as voltage source

inverter (VSI) control [35]. The main characteristics of these two different operation

modes are as follows [24, 35, 81, 184].

1. Grid-forming mode (also: VSI control).

The inverter (shown in Fig. 4.2) is controlled in such way that its output voltage

vabc : R≥0 → R3, vabc = col(va, vb, vc) can be specified by the designer. This is

typically achieved via a cascaded control scheme consisting of an inner current

control and an outer voltage control as shown in Fig. 4.3 based on [81]. The feed-

back signal of the current control loop is the current through the filter inductance
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Figure 4.1: Schematic representation of a DC-AC voltage conversion by a DC-AC in-

verter. The DC signal vDC : R≥0 → R on the left side is converted into an AC signal via

power semiconductor devices. The generated AC signal vAC,1 : R≥0 → R3 at the output

of the power electronics is not sinusoidal. Therefore, an LC filter is connected in series

with the power electronics to obtain a sinusoidal ouput voltage vAC,2 : R≥0 → R3 with low

harmonic content.
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Figure 4.2: Typical circuit of a two-level three-phase inverter with LC output filter to

convert a DC into a three-phase AC voltage. The inverter is constructed with insulated-

gate bipolar transistors (IGBTs) and antiparallel diodes. The DC voltage is denoted by

vDC : R≥0 → R, the three-phase AC voltage generated by the inverter with vabc : R≥0 →
R3, vabc = col(va, vb, vc) and the three-phase grid-side AC voltage by vG,abc : R≥0 → R3,

vG,abc = col(vGa
vGb

, vGc
). The components of the output filter are an inductance Lf ∈ R>0,

a capacitance Cf ∈ R>0 and two resistances Rf1 ∈ R>0, respectively Rf2 ∈ R>0. Typically,

the resistance Rg ∈ R>0 and the inductance Lg ∈ R>0 represent a transformer or an output

impedance. At the open connectors denoted by “o“ the circuit can be grounded if desired.

if,abc : R≥0 → R3 and the inverter output voltage is the feedback signal of the

voltage control loop. The inner loop of the control cascade is not necessary to

control the output voltage of the inverter and can also be omitted. Nevertheless,

it is often included to improve the control performance and to ensure the current

limitations of the inverter are not violated.

2. Grid-feeding mode (also: grid-following mode, PQ control).

The inverter is operated as power source, i.e., it provides a prespecified amount

of active and reactive power to the grid. The active and reactive power setpoints

are typically provided by a higher-level control or energy management system,

see, e.g., [79, 81, 195]. Also in this case, a cascaded control scheme is usually

implemented to achieve the desired closed-loop behavior of the inverter, as illus-

trated in Fig. 4.4. As in the case of a grid-forming inverter, the inner control loop

is a current control the feedback signal of which is the current through the filter

inductance if,abc : R≥0 → R3. However, the outer control loop is not a voltage,

but a power (or, sometimes, a current) control. The feedback signals of the power

control are the active and reactive power provided by the inverter.
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Figure 4.3: Schematic representation of an inverter operated in grid-forming mode based

on [81]. Bold lines represent electrical connections, while dashed lines represent signal

connections. The current through the filter inductance is denoted by if,abc : R≥0 → R3

and the inverter output voltage by vabc : R≥0 → R3. Both quantities are fed back to a

cascaded control consisting of an outer voltage and an inner current control. The reference

signal vref : R≥0 → R3 for the voltage controller is set by the designer, respectively a

higher-level control. The IGBTs of the inverter are then controlled via signals generated

by a modulator. The control structure can also be reduced to a pure voltage control.
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Figure 4.4: Schematic representation of an inverter operated in grid-feeding mode based

on [81]. Bold lines represent electrical connections, while dashed lines represent signal

connections. As in Fig 4.3, the current through the filter inductance is denoted by if,abc :

R≥0 → R3 and the inverter output voltage by vabc : R≥0 → R3. In grid-feeding mode,

both quantities are fed back to a cascaded control consisting of an outer power and an

inner current controller. The reference active and reactive powers Pref ∈ R, respectively
Qref ∈ R, are set by the designer or a higher-level control.
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In both abovementioned operation modes, the current and voltage control loops

are, in general, designed with the objectives of rejecting high frequency disturbances,

enhancing the damping of the output LC(L) filter and providing harmonic compensa-

tion [34, 59, 196, 197]. Furthermore, nowadays, most inverter-based DG units, such as

PV or wind plants, are operated in grid-feeding mode [81]. However, as discussed in

Section 3.3, grid-forming units are essential components in AC power systems, since

they are responsible for frequency and voltage regulation in the network. Therefore,

in microgrids with a large share of renewable inverter-based DG units, grid-forming

capabilities often also have to be provided by inverter-interfaced sources [24, 35].

Remark 4.2.1. Some authors [81, 184] also introduce a third operation mode for

inverters called grid-supporting mode. According to [81], a grid-supporting inverter

participates in frequency and voltage regulation by adjusting its power output. In [184]

a grid-supporting inverter is defined as an inverter, which not only provides power to the

grid, but also ancillary services. The latter include voltage and frequency regulation

[186]. Nevertheless, this last category is not necessary to classify typical operation

modes of inverters in microgrids in the context of this work, since grid-supporting

inverters are grid-forming inverters equipped with an additional outer control-loop to

determine the reference output voltage. Such outer control-loops are discussed and

designed in Chapter 5. Therefore, the term “grid-supporting inverter” is not used in

the following.

Remark 4.2.2. In addition to the two control schemes introduced above, there also

exist other approaches to operate inverters in microgrid applications. For example,

[198, 199, 200] propose to design the inverter control based on the model of an SG

with the aim of making the inverter mimic as close as possible the behavior of an

SG. However, to the best of the author‘s knowledge, these approaches do not consider

additional aspects, such as harmonic compensation or improved damping. Furthermore,

to the best of the author‘s knowledge, they are not as commonly used as the control

schemes shown in Fig. 4.3 and Fig. 4.4.

4.2.2 Model of a single grid-forming inverter

As described in Section 3.3, the derivation of control concepts for grid-forming inverters

in microgrids together with the provision of conditions under which a desired stable

operating point can be achieved is a very intriguing and challenging problem to which

a large part of this thesis is devoted. Therefore, with respect to the operation mode

of inverters, the focus in this work is on inverters operated in grid-forming mode. The
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power, respectively current, injections of DG units operated in grid-feeding mode are

considered as negative loads in this work, see Chapter 7 for details.

4.2.2.1 Model of a single grid-forming inverter as AC voltage source

A suitable model of a grid-forming inverter for the purpose of control design and sta-

bility analysis of microgrids is derived. There are many control schemes available to

operate an inverter in grid-forming mode, such as PI control in dq-coordinates [34],

proportional resonant control [201, 202] or repetitive control [203, 204] among others.

An overview of the most common control schemes with an emphasis on H∞ repetitive

control is given in [148]. For a comparison of different control schemes, the reader is

referred to, e.g., [205].

Due to the large variety of available control schemes, it is difficult to determine

a standard closed-loop model of an inverter operated in grid-forming mode together

with its inner control and output filter. Therefore, the approach taken in this work

is to represent such a system as a generic dynamical system. Note that the operation

of the IGBTs of an inverter occurs typically at very high switching frequencies (2-20

kHz) compared to the network frequency (45-65 Hz). It is therefore common practice

[21, 34, 35, 59, 203, 206] to model an inverter in network studies with continuous

dynamics by using the averaged switch modeling technique [194, 207], i.e., by averaging

the internal inverter voltage and current over one switching period.

Consider an inverter located at the i-th node of a given microgrid. Denote the

three-phase symmetric output voltage provided by the inverter by vabci : R≥0 → R3

with phase angle αi : R≥0 → T and amplitude
√

2
3Vi : R≥0 → R≥0, i.e.,

vabci =

√
2

3
Vi

⎡⎣ sin(αi)
sin(αi − 2π

3 )
sin(αi +

2π
3 )

⎤⎦ . (4.1)

Furthermore, denote by ωi := α̇i the frequency of the voltage vabci . Denote the state

signal of the inverter with its inner control and output filter by xIi : R≥0 → Rm, its

input signal by vrefi : R≥0 → R3 and suppose its output signal is vabci , see Fig. 4.3.

Furthermore, let the grid-side current be given by iabci : R≥0 → R3. Note that iabci

represents a disturbance for the inner control system of the inverter. Let fi : Rm ×
R3×R3 → Rm and hi : Rm×R3 → R3 denote continuously differentiable functions and

νi denote a nonnegative real constant. Then, the closed-loop inverter dynamics with
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inner control and output filter can be represented in a generic manner as

νiẋIi = fi(xIi , vrefi , iabci),

vabci = h(xIi , vrefi).
(4.2)

As mentioned previously, one key objective of this work is to design suitable higher-

level controls to provide a reference voltage vrefi for the system (4.2). Within the

hierarchical control scheme discussed in Section 3.4, this next higher control level cor-

responds to the primary control layer of a microgrid. Let zIi : R≥0 → Rp denote the

state signal of this higher-level control system, uIi : R≥0 → Rq its input signal and

vrefi its output signal. Furthermore, let gi : Rp × Rq → Rp and wi : Rp × Rq → R3

be continuously differentiable functions. Then, the outer control system of the inverter

can be described by

żIi = gi(zIi , uIi),

vrefi = wi(zIi , uIi).
(4.3)

Combining (4.2) and (4.3) yields the overall inverter dynamics

żIi = gi(zIi , uIi),

νiẋIi = fi(xIi , wi(zIi , uIi), iabci),

vabci = hi(xIi , wi(zIi , uIi)).

(4.4)

The following assumptions on the inverter represented by (4.4) are made.

Assumption 4.2.3. νi = 0 in (4.4). Furthermore, vabci = wi(zIi , uIi).

Assumption 4.2.4. Whenever the inverter connects an intermittent renewable gener-

ation source, e.g., a photovoltaic plant or a wind plant, to the network, it is equipped

with some sort of fast-reacting storage (e.g., a flywheel or a battery).

Assumption 4.2.4 implies that the inverter can increase and decrease its power

output within a certain range. This is necessary if the inverter should be able to

provide a controllable voltage for all t ≥ 0. Furthermore, since the storage element is

assumed to be fast-reacting, the DC-side dynamics can be neglected in the model.

Assumption 4.2.3 is equivalent to the assumption that the inner current and voltage

controllers track the voltage and current references ideally, meaning fast and exact.

Usually, the current and voltage controllers in (4.2) (see also Fig. 4.3) are designed

such the resulting closed-loop system (4.2) has a very large bandwidth compared to the

control system located at the next higher control level represented by (4.3) [33, 35, 59].
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Figure 4.5: Simplified idealized representation of an inverter operated in grid-forming

mode as ideal controllable voltage source. Bold lines represent electrical connections, while

dashed lines represent signal connections. Typically, the switching frequency of the tran-

sistors is high (2-20 kHz) compared to the network frequency (45-65 Hz). In addition, the

current and voltage controllers displayed in Fig. 4.3 are tuned such that their bandwidth

is relatively large. Hence, with Assumptions 4.2.4 and 4.2.3 the system shown in Fig. 4.3

can be modeled as a controllable ideal AC voltage source.

If this time-scale separation is followed in the design of the system (4.4), the first

part of Assumption 4.2.3 can be mathematically formalized by invoking the singular

perturbation theory [128, Chapter 11], [170], see also Section 2.4.4. The second part of

Assumption 4.2.3 expresses the fact that the inner control system (4.2) is assumed to

track the reference vrefi = wi(zIi , uIi) exactly, independently of the disturbance iabci .

Typical values for the bandwidth of (4.2) reported in [34, 59] are in the range of 400−

600 Hz, while those of (4.3) are in the range of 2− 10 Hz. Note that Assumption 4.2.3

also further justifies Assumption 2.4.19, i.e., that the line and transformer dynamics

can be neglected in the modeling and analysis, since these are typically at least as fast

as those of the internal inverter controls (4.2), see, e.g., [33, 34].
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Under Assumptions 4.2.4 and 4.2.3, the system (4.4) reduces to

żIi = gi(zIi , uIi),

vabci = wi(zIi , uIi).
(4.5)

The model (4.5) represents the inverter in grid-forming mode at the i-th node as an AC

voltage source, the amplitude and frequency of which can be defined by the designer.

The system (4.5) is a very commonly used model of a grid-forming inverter in microgrid

control design and analysis [21, 24, 28, 29, 35, 81, 208]. The model simplification from

(4.4) to (4.5) is illustrated in Figure 4.5.

In the remainder of this work, a particular structure of (4.5) is used. As discussed in

Section 2.4.1, a symmetric three-phase voltage can be completely described by its phase

angle and its amplitude. In addition, it is usually preferred to control the frequency of

the inverter output voltage, instead of the phase angle. Hence, a suitable model of the

inverter at the i-th node with output voltage vabci is given by [70, 71]

α̇i = ωi = uδi ,

Vi = uVi ,

vabci = vabci(αi, Vi),

(4.6)

where vabci is given in (4.1) and uδi : R≥0 → R and uVi : R≥0 → R are control signals. It

is also assumed that the active and reactive power output is measured and processed

through a filter [33, 34]

τPiṖ
m
i = −Pm

i + Pi,

τPiQ̇
m
i = −Qm

i +Qi,
(4.7)

where Pi and Qi are the active and reactive power injections of the inverter, Pm
i :

R≥0 → R and Qm
i : R≥0 → R their measured values and τPi ∈ R>0 is the time constant

of the low pass filter.

The model (4.6) together with (4.7) is the particular inverter model used in this

work. Note that whenever the measured and filtered power signals are used as feed-

back signals in the controls uδi , respectively u
V
i , the bandwidth of the overall control

system is limited by the bandwidth of the measurement filter. This is the case for all

control laws investigated and designed in the present work. Hence, if τPi ≫ νi, then

Assumption 4.2.3 is justified [33, 59].
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4.2.2.2 Comments on the model of a single grid-forming inverter as AC

voltage source

Before proceeding, a fundamental aspect regarding the inverter model (4.6), (4.7) has to

be discussed. Consider a microgrid with purely inverter-based grid-forming units, i.e.,

grid-forming units represented as ideal fully controllable AC voltage sources. Suppose

you are given the problem of controlling these voltage sources such that the network

synchronizes. An obvious straightforward approach is to set the inputs of all voltage

sources to a common frequency and a constant, possibly non-uniform, amplitude. Then,

by simple laws of physics and mathematics, the network is synchronized already at its

initialization and will remain synchronized for all times. Moreover, the steady-state

current and power flows in the network are determined by the choices of the amplitudes,

as well as the initial conditions of the phase angles and the network parameters.

Hence, one may ask whether the problems of frequency and voltage stability in such

a microgrid are essential at all. If the assumption that all grid-forming inverters are

ideal voltage sources would exactly match the real world, the answer would be negative.

However, in practice this is not true and even if it would be true, such an operation is

not desirable from a practical point of view. The main reasons for this are three-fold.

First, in many practical setups, each individual inverter is operated with its own

processor. It is well-known that the clocks used to generate the time signals of the

individual processors differ from each other due to clock drifts [209, 210, 211]. As a

consequence, it has been argued in [38, 81, 212] that apart from sensor uncertainties, the

presence of clock drifts is the main reason why inverters operated with fixed electrical

frequency cannot operate in parallel—unless the network possesses a very accurate clock

synchronization system, which is often not the case in practice [38]. An example of two

three-phase voltage sources with non-synchronized clocks connected in parallel over an

RL-line is given in Fig. 4.6a. Both voltage sources Va and Vb are operated with a fixed

amplitude of one and a desired electrical frequency of ωd = 2π50 rad/s. Both initial

angles are set to zero. The frequency of each DSP used to control the voltage sources is

assumed with 10 kHz. Furthermore, it is assumed that the clock of the voltage source

Va exhibits a relative drift of 10−6 [213]. The active power flow between both sources is

shown in Fig. 4.6b. Clearly, the power oscillates drastically. Since the power flows are

functions of the angles, see (2.47), this behavior is due to the fact that the frequencies

of the voltage sources are not synchronized.
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Second, by fixing frequency, voltage amplitudes and initial conditions of the phase

angles to constant values, the network operator looses all controllability over the current

and power flows in the network. Hence, the control objective of power sharing can, in

general, not be achieved. Moreover, as mentioned previously, such an operation may

lead to very high uncontrolled current flows in the network.

Third, from a practical consideration, most present and near-future applications

concern MDREGs, i.e., networks of mixed generation structure including SGs and

inverter-interfaced distributed resources. Consequently, the operation mode of inverters

in grid-forming mode has to be compatible to that of SGs. The operation of SGs

with constant fixed speed, or equivalently frequency, is called isochronous operation

[1, Chapter 11]. However, in practice it is not possible to operate several SGs in one

network in isochronous mode due to sensor and actuator inacurracies [1, Chapter 11].

4.2.2.3 Model of a grid-forming inverter with inaccurate clock

Due to its relevance in terms of synchronization and stability, the problem of clock drifts

is discussed more in detail. This discussion is mainly taken from [124]. In a practical

setup, the dynamics (4.6), (4.7) together with the controllers generating the signals uδi

and uVi are implemented on a processor by means of numerical integration. After each

integration step, the generated values of the angle δi and the voltage amplitude Vi are

passed to the internal controllers of the inverter at the i-th node. These internal controls

then ensure that the inverter provides the desired three-phase sinusoidal voltage at its

terminals, see (4.4) or Fig. 4.3.

For each unit in the network, the time step used to perform this numerical inte-

gration stems from the internal clock of the processor of that same unit. Following

standard terminology and to avoid confusions with the electrical frequency, we denote

by clock rate the frequency at which the processor is running. The clock rate is usually

determined by some sort of resonator, e.g., a crystal oscillator. Almost all resonators

suffer from precision inaccuracies [209, 213, 214, 215], which are typically classified into

short- and long-term inaccuracy. While many resonators generally exhibit an excel-

lent short-term accuracy, they do suffer from long-term effects, such as aging [214].

Furthermore, in general, no two resonators generate the exact same clock rates. Ad-

ditionally, the clock rates are affected by environmental changes, such as pressure or

temperature [215]. As a consequence, the clocks of different units in the network are
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not synchronized per se. In particular, this implies that the numerical integration re-

quired to implement (4.6), (4.7) is carried out using different integration times at the

different units in the network.

In the following, an equivalent model to (4.6), (4.7) is derived for the case of an

inverter with a processor with an inaccurate clock. For an illustration of the influence

of the clock inaccuracy on the numerical integration of (4.6), (4.7), consider the well-

known Euler method [216] as an exemplary numerical integration method1. Let x ∈ Rn,

f : R× Rn → Rn and consider the ODE

ẋ(t) = f(t, x(t)), x(t0) = x0.

Fix an initial time t0 ∈ R and an integration step size h ∈ R>0. Let k ∈ N be the k-th

integration step. Then

tk = t0 + kh (4.8)

and the integration step of the Euler method from tk to tk+1 = tk + h is given by [216]

xk+1 = xk + hf(tk, xk). (4.9)

Recall that every inverter in a microgrid is operated using its own local clock, i.e.,

at each inverter the integration (4.9) is carried out using the time signal provided by

the local clock. As outlined above, almost all real clocks exhibit a certain (though

often small) inaccuracy. In usual data-sheets, this clock drift is specified relative to the

nominal clock rate [213]. To see how such a relative clock drift affects the time signal

provided by a processor clock, denote an exemplary nominal clock rate by fc ∈ R>0

and its relative drift by υ ∈ R. Typically, |υ| ≤ 10−5 [213]. Then, the actual sampling

interval ∆tc ∈ R>0 with respect to the nominal sampling interval ∆t̄c = 1/fc of the

corresponding processor is given by

∆tc =
1

fc(1 + υ)
=

(
1− υ

1 + υ

)
∆t̄c = (1 + ϵ)∆t̄c,

ϵ : = − υ

1 + υ
.

(4.10)

Note that both the step size h in (4.8) and the time signal provided by the processor

(given, e.g., by (4.8)) are multiples of the sampling time ∆tc in (4.10). Denote by t ∈ R
the nominal network time, by t0 ∈ R the nominal network initial time, by h ∈ R>0 the

1The model derivation applies equivalently to other numerical integration methods, at the cost of

a more complex notation.
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step size in nominal time, by ti ∈ R the local time of the clock of the i-th inverter,

by ti0 ∈ R its initial time and by hi ∈ R>0 its step size. Furthermore, denote the

relative drift of the clock of the i-th inverter by the parameter υi ∈ R. Due to the

good short-term accuracy of many resonators, it is assumed in the following that υi is

a small, but unknown constant parameter satisfying |υi| ≪ 1. Furthermore, a possible

constant local clock offset ζ̄i ∈ R is taken into account. Without loss of generality, it

is convenient to write ζ̄i as ζ̄i = t0ϵi + ζi, ζi ∈ R. Hence, with (4.10), ti0 and hi can be

expressed as

ti0 = t0 + ζ̄i = t0(1 + ϵi) + ζi, hi = h(1 + ϵi).

Then

tki = ti0 + khi = tk(1 + ϵi) + ζi,

with tk given in (4.8). It follows that, for sufficiently fast sampling times, the clock drift

of the processor of the i-th inverter can formally be included in the continuous-time

model (4.6), (4.7) by an appropriate time-scaling, i.e.,

ti = (1 + ϵi)t+ ζi. (4.11)

Note that the clock model (4.11) is identical to that used to investigate clock synchro-

nization in [210, 211]. Furthermore,

d(·)
dti

=
1

(1 + ϵi)

d(·)
dt

= (1 + υi)
d(·)
dt

. (4.12)

Suppose the time derivatives in (4.6), (4.7) are expressed with respect to the local time

ti of the i-th inverter. Inserting (4.12) in (4.6), (4.7) yields

(1 + υi)α̇i = uδi ,

(1 + υi)τPiṖ
m
i = −Pm

i + Pi,

Vi = uVi ,

(1 + υi)τPiQ̇
m
i = −Qm

i +Qi,

vabci = vabci(αi, Vi),

(4.13)

where the time derivatives are now expressed with respect to the nominal time t.

Furthermore, without loss of generality, the local clock offset ζi can be included in

the initial conditions of the system (4.13).

All control laws introduced in this work are—to a certain extent—robust with re-

spect to the uncertain parameter υi. Here, robustness is understood in the sense that
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Figure 4.6: Example of the effect of clock-drifts between two voltage sources in parallel

the control goals (stability and power sharing) can still be achieved for small (in mag-

nitude) values of υi. Therefore, the nominal model (4.6), (4.7) is used instead of the

model (4.13) in the following to represent the inverter at the i-th node. Whenever

necessary, the claimed robustness property is pointed out. In particular, for the results

in Section 6.4, a detailed proof is given in [124].

Remark 4.2.5. Besides clock drifts, digital control usually introduces time delays

[217, 218, 219]. According to [219], the main reasons for this are 1) sampling of control

variables, 2) calculation time of the digital controller and 3) generation of the pulse-

width-modulation. The reader is referred to, e.g., [219] for further details. These

time delays may have a deteriorating effect on the control performance of a microgrid.

Motivated by this phenomenon, recently the input-to-state stability (ISS) theory for

multistable systems [220] has been extended to multistable systems with delay [221].

Based on the proposed approach, also some preliminary results in form of a condition

for asymptotic phase-locking in a microgrid composed of two droop-controlled inverters

with delay are derived in [221]. The analysis is conducted for a simplified inverter

model under the assumptions of constant voltage amplitudes and ideal clocks, as well

as negligible dynamics of the internal inverter filter and controllers. In that scenario,

the delay merely affects the phase angle of the inverter output voltage. The authors of

[221] plan to extend the analysis conducted in [221] to more complex inverter models

with delays and, e.g., time-varying voltages or internal filter and controllers.

4.2.3 Model of a grid-forming inverter connected to a network

The interconnection of the inverter model (4.6), (4.7) with the network equations (2.44)

is established by proceeding as outlined in Section 2.4.4. Hence, at first, the node
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4.2 Inverter model

voltage vabci is transformed into local dq-coordinates. To this end, recall the mapping

Tdq defined in (2.13) and let

θi := αi,

where αi is the phase angle of the three-phase voltage at the i-th node defined in (4.1).

Then, the bus voltage vabci in local dq-coordinates is given by (cf. (2.26))

vdqi := Tdq(θi)vabci =

[
Vdi
Vqi

]
= Vi

[
0
1

]
∈ R2 (4.14)

or, equivalently, by

Vqdi := Vqi + j0 = Vi ∈ R≥0.

Second, Vqdi is transformed to a common reference frame. Let

δi := α0i +

∫ t

0
(α̇i − ωcom) dτ = α0i +

∫ t

0
(ωi − ωcom) dτ ∈ T, (4.15)

where the real constant ωcom denotes the rotational speed of the common reference

frame and α0i ∈ T the initial condition of αi. On the common reference frame, the

voltage is then given by (cf. (2.32))

V̂qdi := V̂qi + jV̂di = ejδiVqdi = ejδiVi.

Consequently, the model (4.6), (4.7) can be represented on the common reference frame

by

δ̇i = ωi − ωcom = uδi − ωcom,

τPiṖ
m
i = −Pm

i + Pi,

Vi = uVi ,

τPiQ̇
m
i = −Qm

i +Qi.

(4.16)

With Vdi = 0 and Vqi = Vi, cf. (4.14), the active and reactive power flows Pi and Qi

are given from Definition 2.4.12 by1

Pi = VqiIqi = ViIqi ,

Qi = −VqiIdi = −ViIdi .

Remark 4.2.6. Consider a microgrid and suppose it possesses a desired steady-state

motion at some constant frequency ωs ∈ R>0. For the purpose of stability analysis of

this steady-state motion, a typical choice for the common reference speed is ωcom = ωs.

1As detailed in Section 2.4.4.2, the power flows describe the interactions between nodes in an

electrical network. For the particular models of DG units derived in this chapter, an explicit expression

of the power flow equations is given in Section 4.4 based on (2.47).
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4.3 Synchronous generator model

As outlined in Chapter 1 and detailed in Section 3.2, from a practical consideration,

most present and near-future applications of microgrids concern networks of mixed gen-

eration structure including SGs and inverter-interfaced distributed units. Such systems

are called MDREGs in this work.

Generally speaking, an SG consists of two main components, a rotor and a stator,

see Fig. 4.7. The rotor is driven by a mechanical torque, which in MDREGs is typically

provided by a diesel engine or gas turbine [65]. Usually, the rotor possesses a field

winding, which carries a DC current supplied by an excitation system. The resulting

rotating magnetic field induces AC voltages in the stator windings. The stator windings

are distributed such that a magnetic field, which rotates at a constant speed, induces

a symmetric three-phase voltage. Based on [6], in Fig. 4.7, the field winding is denoted

by F1,2, while the stator windings are denoted by a1,2, b1,2 and c1,2.

The usual model derivation of an SG in the literature, see, e.g., [1, 3, 6, 146], follows

that of an inverter outlined in Section 4.2, i.e., at first the model of a single SG is derived

in local dq-coordinates and then this model is subsequently transformed to a common

reference frame in order to be able to connect it to a network composed of several units.

Since modeling of SGs is a well-studied topic, see, e.g., [1, 3, 6, 146], a detailed model

derivation is omitted here and a standard third-order model of an SG is directly given

on a common reference frame. In addition, as commonly done in stability analysis of

power systems, the dynamics of the mechanical part of the power generation unit are

neglected [1, 3, 6, 146].

At first, the main relevant variables to describe the dynamics of an SG are intro-

duced. Consider an SG connected at the i-th node of a given microgrid. Let the cor-

responding symmetric three-phase voltage at that node be given by vabci : R≥0 → R3.

This voltage is usually called terminal voltage. Note that unlike for an inverter, in the

case of an SG the phase angle of the terminal voltage vabci is, for physical reasons, not

a feasible control variable.

Furthermore, it is convenient to introduce the electromotive force (EMF) eabci :

R≥0 → R3 of the SG. Recall that an EMF is the voltage developed by a source of

electrical energy [222]. In the case of an SG, the term EMF is typically used to describe

the electrical voltage induced in the stator winding of the SG through rotation of the

magnetic field of the rotor [6, Chapter 11].
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4.3 Synchronous generator model

Associate an angle θi : R≥0 → T to the SG and call this angle ”shaft angle” [3, 6].

Furthermore, let ωi := θ̇i denote the rotational speed of the rotor of the SG. Recall the

mapping Tdq defined in (2.13). Following Section 2.4.4, denote the terminal voltage,

respectively the EMF, in local dq-coordinates by (cf. (2.26))

vdqi : = Tdq(θi)vabci ∈ R2, edqi := Tdq(θi)eabci ∈ R2

Vqdi : = Vqi + jVdi ∈ C, Eqdi := Eqi + jEdi ∈ C.

For the presentation of a third-order model of an SG, the following standard as-

sumption is made [3, 6].

Assumption 4.3.1. Edi = 0 for all t ≥ 0, i ∼ NSG.

Assumption 4.3.1 is, generally, justified by the fact that the EMF of the SG acts

mainly along the q-axis [3, Chapter 4]. Furthermore, for ease of notation let

Vi := Eqi , i ∼ NSG. (4.17)

Next, Eqi = Vi is transformed to a common reference frame. As done for the inverter

model in Section 4.2.3, let

δi := θ0i +

∫ t

0

(
θ̇i − ωcom

)
dτ = θ0i +

∫ t

0
(ωi − ωcom) dτ ∈ T, (4.18)

where the real constant ωcom denotes the rotational speed of the common reference

frame and θ0i ∈ T the initial condition of θi. On the common reference frame, the EMF

is then given by (cf. (2.32))

Êqdi := Êqi + jÊdi = ejδiEqdi = ejδiVi.

An illustration of the stator and rotor of an SG is given in Fig. 4.7 based on [6,

Chapter 11]. The figure shows the axes denoting the abc-coordinates corresponding to

the three-phase stator armature winding, the dq-axes, as well as the shaft angle θi. Note

that the positioning of the dq-axes and the denomination of the angles is not uniform

in the literature, see, e.g., [3, 146].

Recall that the network equations have been derived in Section 2.4.4 in terms of

the terminal voltage in local coordinates Vqdi . The following relation between Vqdi and

Eqi = Vi, see (4.17), is useful [1, 3, 6, 146][
Vdi
Vqi

]
=

[
−Ri −X ′

qi
X ′

di
−Ri

] [
Idi
Iqi

]
+

[
0
Eqi

]
, (4.19)
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a1

a2
+

b2+

c1

c2+
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+F2
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a-axis

b-axis

c-axis

d-axis

q-axis

θi

Figure 4.7: Representation of the axes and the shaft angle of an SG based on [6]. The

abc-axes correspond to the abc-coordinates of the voltages and currents of the three-phase

stator armature winding. The excitation winding is denoted by F1,2, while the stator

windings are denoted by a1,2, b1,2 and c1,2. The dq-axes denote the rotating axes of the

dq-frame corresponding to the transformation Tdqi(θi). The angle θi moves at the speed of

the rotor of the i-th SG.

where Idi : R≥0 → R is the d-axis current, Iqi : R≥0 → R the q-axis current, Ri ∈ R>0

the resistance of the symmetric stator phases, X ′
di

∈ R>0 the d-axis transient inductance

and X ′
qi ∈ R>0 the q-axis transient inductance. By transforming the relation (4.19) to

the common reference frame and including it in the network admittance matrix Ŷ(δ)

given in (2.44), the network interconnection of the SG is represented in terms of the

EMF Eqi = Vi in local dq-coordinates. Whenever an SG is connected to the network,

it is assumed that this process has been carried out.

Then, the SG at the i-th node can be represented by the following standard third-

order model [1, 3, 6, 146]

δ̇i = ωi − ωcom,

Miω̇i = −Di(ωi − ωd) + PMi − Pi,

τd0i V̇i = −Vi + (Xdi −X ′
di
)Idi + Efi ,

(4.20)

where PMi : R≥0 → R is the mechanical power, Pi the electrical power, Mi ∈ R>0

the inertia coefficient, ωd ∈ R the nominal speed and Di ∈ R>0 a damping term.

Furthermore, τd0i ∈ R>0 is the d-axis transient open-circuit time constant, Xdi ∈ R>0

the d-axis inductance and Efi : R≥0 → R the excitation voltage. Here, PMi and Efi

are control inputs.
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Neglecting transient saliency, i.e., the effects of the rotor saliency on the active

power, [3, 6, 146], the instantaneous active power Pi can be expressed according to

Definition 2.4.12 as

Pi = ViIqi .

The model (4.20) is widely used in stability analysis of power systems, see, e.g.,

[36, 48, 51, 223, 224, 225, 226, 227, 228, 229, 230, 231]. For a detailed derivation of

the model (4.20), as well as the underlying assumptions and limitations, the reader is

referred to standard power systems text books, e.g., [1, 3, 6, 146].

4.4 Network and load model

The load model considered in this work is discussed in Section 4.4.1. The network

model of a generic meshed microgrid is derived in Section 4.4 following the procedure

depicted in Section 2.4.4.

4.4.1 Load model

Accurate load modeling is a very important, but also very difficult task in power system

analysis [1, 232]. The main reason for this is that there are typically many different

kinds of loads connected within one power system or microgrid, see, e.g., [1, Chapter 7].

As a consequence, often simplified load models are employed in power system studies [1,

Chapter 7]. Commonly, load models are classified into static and dynamic load models

[1, 6, 232, 233]. Into which category a particular load belongs can, e.g., be determined

as follows [232, Chapter 4]. Most often, the power consumed by a load depends on the

voltage. This dependence can be permanent, then the load is purely static, or it may

change over time, then the load is dynamic. The frequency-dependency of a load can

be determined in an equivalent fashion.

The analysis in this work follows the classical approach in conventional power sys-

tem studies [3, 6, 36, 146] that loads are represented by constant impedances, i.e., a

particular class of static loads is considered1. According to [1, 6], in the absence of

detailed load information, this is the most commonly accepted static load model for

1The author is aware that different types of loads may have different effects on network stability and

that not all loads can be accurately represented by constant impedance loads. Therefore, the presented

results may be inaccurate for other type of load models, such as dynamic loads [232]. Stability analysis

of microgrids under consideration of other load models is discussed as a future direction of research in

Section 8.2.
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reactive power. The same references agree that the active power is most commonly

represented as a constant current load1.

4.4.2 Network model

Modeling loads as impedances leads to a set of (nonlinear) DAEs, where the differential

equations describe the dynamics of the generation units, while the algebraic equations

correspond to the loads. Then, a standard network reduction (called Kron reduction,

see Section 2.4.4.3) can be performed to eliminate all algebraic equations corresponding

to loads and to obtain a set of differential equations. In the following, it is assumed

that this process has been carried out and the Kron-reduced network is used.

The Kron-reduced microgrid is formed by n := n1 + n2 ≥ 1, n1 ∈ N, n2 ∈ N,
nodes, of which NI := {1, . . . , n1} represent DG units interfaced via inverters modeled

by (4.16) and NSG := {(n1 + 1), . . . , n} are DG units interfaced via SGs modeled by

(4.20). As before, the set of network nodes is denoted by N := NI ∪NSG.

Recall from Section 2.4.4 that two nodes i and k of the microgrid are connected via

a complex nonzero admittance Yik := Gik + jBik ∈ C with conductance Gik ∈ R>0 and

susceptance Bik ∈ R<0 and that Yik := 0 whenever i and k are not directly connected.

Furthermore, recall that the set of neighbors of a node i ∈ N is denoted by Ni :=

{k
⏐⏐ k ∈ N, k ̸= i , Yik ̸= 0}. The representation of loads as constant impedances in

the original network leads to shunt-admittances at at least some of the nodes in the

Kron-reduced network, i.e., Ȳii = Ḡii+ jB̄ii ̸= 0 for some i ∈ N, where Ḡii ∈ R>0 is the

shunt-conductance and B̄ii ∈ R denotes the shunt-susceptance. The assumption below

on the shunt-susceptances is made.

Assumption 4.4.1. B̄ii ≤ 0, i ∼ N.

The restriction to inductive loads, i.e., B̄ii ≤ 0, i ∼ N, is justified as follows. The

admittance loads in the Kron-reduced network are a conglomeration of the individual

loads in the original network, see Remark 2.4.4.3. Therefore, assuming purely inductive

loads in the Kron-reduced network can be interpreted as assuming that the original

network is not overcompensated, i.e., that the overall load possesses inductive character.

Furthermore, capacitive shunt-admittances in distribution systems mainly stem from

capacitor banks used to compensate possibly strong inductive behavior of loads. In

conventional distribution systems, these devices are additionally inserted in the system

1An extension of the results derived in this work to constant current loads is under current inves-

tigation.
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to improve its performance with respect to reactive power consumption [1, 234]. This

is needed because there is no generation located close to the loads. However, in a

microgrid the generation units are located close to the loads. Hence, the availability of

generation units at distribution level is likely to replace the need for capacitor banks,

see also [234].

The admittance matrix of the electrical network (see Section 2.4.4.2) is denoted by

YR ∈ Cn×n with entries

YRii := Ḡii + jB̄ii +
∑
k∼Ni

(Gik + jBik) := Gii + jBii, YRik := −Gik − jBik, i ̸= k.

Hence, with Assumption 4.4.1,

Gii ≥
∑
k∼Ni

Gik, |Bii| ≥
∑
k∼Ni

|Bik|, i ∼ N. (4.21)

In addition, the following assumption on the network topology is made.

Assumption 4.4.2. The microgrid is connected, i.e., for all pairs (i, k) ∈ N×N, i ̸= k,

there exists an ordered sequence of nodes from i to k such that any pair of consecutive

nodes in the sequence is connected by a power line represented by an admittance.

Assumption 4.4.2 is reasonable for a microgrid, unless severe line outages separating

the system into several disconnected parts occur.

Recall the active and reactive power flows in an electrical network given in (2.47).

Moreover, recall that for the inverter model (4.16) Vdi = 0 and Vqi = Vi, i ∼ NI ,

respectively for the SG model (4.20) Edk = 0, Eqk = Vk, k ∼ NSG. Moreover, recall

that, with Assumptions 2.4.18 and 4.4.1, Bii < 0 and Bik ≤ 0, i ∼ N, k ∼ N. Finally,

recall that ωi denotes the absolute frequency of the voltage generated by the inverter,

respectively the rotational speed of the SG, at the i-th node and that δi, i ∼ N, is given

by (4.15), respectively (4.18), as

δi = δ0i +

∫ t

0
(ωi − ωcom) dτ ∈ T, i ∼ N,

where δ0i ∈ T is a constant. Then, the expressions for the currents Iqi and Idi at the

i-th node given by (2.45) reduce to

Iqi(δ1, . . . , δn, V1, . . . , Vn) = GiiVi −
∑
k∼Ni

(Gik cos(δik) +Bik sin(δik))Vk,

Idi(δ1, . . . , δn, V1, . . . , Vn) = BiiVi +
∑
k∼Ni

(Gik sin(δik)−Bik cos(δik))Vk.
(4.22)
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Furthermore, with Vdi = 0 and Vqi = Vi, i ∼ NI , respectively Edk = 0 and Eqk = Vk,

k ∼ NSG, the active and reactive power flows at the i-th node, i ∈ N, given in (2.47)

simplify to

Pi(δ1, . . . , δn, V1, . . . , Vn) = ViIqi

= GiiV
2
i −

⎛⎝∑
k∼Ni

Gik cos(δik) +Bik sin(δik)

⎞⎠ViVk,

= GiiV
2
i −

⎛⎝∑
k∼Ni

Gik cos(δik)− |Bik| sin(δik)

⎞⎠ViVk,

Qi(δ1, . . . , δn, V1, . . . , Vn) = −ViIdi

= −BiiV
2
i −

⎛⎝∑
k∼Ni

Gik sin(δik)−Bik cos(δik)

⎞⎠ViVk,

= |Bii|V 2
i −

⎛⎝∑
k∼Ni

Gik sin(δik) + |Bik| cos(δik)

⎞⎠ViVk.

(4.23)

It is convenient to rewrite the power flows given by (4.23) in a more compact form. To

this end, let the admittance magnitude |Yik| and the admittance angle ϕik be given by

|Yik| :=
√
G2

ik +B2
ik ∈ R≥0, ϕik := arctan

(
Gik

Bik

)
∈ T, i ∼ N, k ∼ Ni.

Let β ∈ T and a, b, c be real constants. Then, by making use of the following trigono-

metric identities

a sin(β) + b cos(β) =
√
a2 + b2 sin

(
β + arctan

(
b

a

))
, a > 0,

arctan(−c) = − arctan(c),

sin
(
β +

π

2

)
= cos(β),

arctan

(
1

c

)
= sign(c)

π

2
− arctan(c), c ̸= 0,

the power flows (4.23) at the i-th node can be expressed compactly as

Pi(δ1, . . . , δn, V1, . . . , Vn) = GiiV
2
i +

∑
k∼Ni

|Yik|ViVk sin(δik + ϕik),

Qi(δ1, . . . , δn, V1, . . . , Vn) = |Bii|V 2
i −

∑
k∼Ni

|Yik|ViVk cos(δik + ϕik),
(4.24)

which is a very common form of the power flow equations.
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4.5 Summary

In this chapter a comprehensive mathematical model of a microgrid suitable for network

control design and network analysis has been derived. The model comprises individual

dynamic models of inverter-interfaced DG units, SG-interfaced DG units, as well as a

network model containing loads.

In particular, the basic physical structure of an inverter has been reviewed. It

has been shown that, typically, inverters in microgrids are operated either in grid-

forming or in grid-feeding mode. Both operation modes have been described in detail.

Subsequently, inverters in grid-forming mode have been identified as key components

in microgrids with large share of renewable DG units. As a consequence, a model of an

inverter in grid-forming mode has been derived. Furthermore, it has been shown that,

under certain assumptions, a grid-forming inverter can be modeled as an AC voltage

source. This model of a grid-forming inverter is used in the remainder of this work.

In addition, the standard one-axis model of a SG has been introduced following

the usual modeling procedure in the literature, see, e.g., [3, 6]. Finally, based on

Section 2.4.4, a suitable network model of a microgrid has been derived, in which loads

are represented as constant impedances.
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5

Control concepts for microgrids

and conditions for power sharing

5.1 Introduction

As discussed in Chapter 3, the present thesis is devoted to three main problems in the

operation of microgrids: frequency stability, voltage stability and power sharing. In the

previous chapter, an appropriate model of a microgrid to investigate these problems

has been derived. Based on this model, control concepts to address the aforementioned

problems are introduced, respectively designed, in the present chapter.

The theoretical analysis in this chapter is focused on the control objective of power

sharing. For a rigorous mathematical analysis of the closed-loop microgrid dynamics

under the different control schemes introduced in the following, the reader is referred

to Chapter 6. In particular, therein conditions for frequency and voltage stability are

derived. Furthermore, the performance of the different control schemes is illustrated

and compared via extensive simulation studies in Chapter 7.

The main contributions of the present chapter are two-fold.

(i) Droop control for SGs and inverters

The popular droop control laws are introduced. More precisely, by using the

traditional droop control for SGs [1, 3, 6] as point of departure, the most com-

monly employed frequency and voltage droop controls for inverter-interfaced DG

units—originally proposed in [37]—are motivated and presented.

Furthermore, it is shown that the dynamics of a regulated SG and an inverter

equipped with the typically proposed frequency droop control combined with a low

pass filter, e.g., for power measurement [33, 34], are equivalent. Altough several
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authors have proposed to make inverters resemble the input/output behavior of

SGs [198, 200], to the best of the author’s knowledge, this observation has first

been stated in the author’s work [121] in a mathematically rigorous fashion. Based

on this result, compact closed-loop representations of an MDREG, as well as a

purely inverter-based microgrid, both operated with droop control, are derived.

Moreover, based on [71, 121, 123], a selection criterion on the droop gains and

setpoints, similar to the one given in [28], is provided, that ensures active power

sharing in steady-state. Compared to [28], the proof is extended to lossy networks,

i.e., networks with nonzero conductances.

(ii) Distributed voltage control (DVC) for reactive power sharing

A main limitation of the voltage control proposed in [37] is discussed. Namely,

this voltage droop control does in general not guarantee a desired reactive power

sharing [29, 71, 73]. Recall from Section 1.3, that also for modified voltage control

schemes reported in the literature, e.g., [29, 59, 72, 73, 74, 75, 76], no general

conditions or formal guarantees for reactive power sharing are given.

Therefore, based on [122, 125], a consensus-based DVC for inverter-based micro-

grids is proposed. Moreover, following [235], it is shown that the DVC can also be

applied to SGs via an appropriate feedback linearization, as previously used, e.g.,

in [51, 231]. Subsequently, a closed-loop representation of a microgrid operated

with frequency droop control and the suggested DVC is derived. Finally, it is

proven that the proposed DVC does indeed guarantee reactive power sharing in

steady-state.

The remainder of this chapter is outlined as follows. The droop control laws for

SGs and inverters are presented and motivated in Section 5.2. The DVC is introduced

in Section 5.3.

5.2 Frequency and voltage droop control

The contents of this section are as follows. The droop control schemes are introduced in

Section 5.2.1 for SGs and in Section 5.2.2 for inverters. Furthermore, in Section 5.2.3,

closed-loop representations of droop-controlled microgrids are derived by combining the

droop controls with the microgrid model presented in Chapter 4. In Section 5.2.4, a

selection criterion for the control parameters of the frequency droop controls for SGs

and inverters is provided, which ensures a desired active power sharing in steady-state.

The presentation below is based on [71, 121].
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5.2.1 Droop control for synchronous generators

A control technique widely used to address the problems of active power sharing and

frequency regulation in conventional power systems is droop control, also referred to

as power-speed characteristic [1, Chapter 11]. In droop control, the current value of

the rotational speed of each SG in the network is monitored locally to derive how

much mechanical power each SG needs to provide. From a control perspective, droop

control is a decentralized proportional controller, where the control gain (known as

droop gain) specifies the steady-state power distribution in the network. The qualifier

“decentralized” is used here to emphasize that only local measurements are used as

feedback signals.

Recall the model of an SG given in (4.20). Suppose an SG is connected at the

i-th node of a microgrid, i ∈ NSG. If the turbine is connected to a governing system

allowing to set the turbine mechanical power output PMi , then the SG is called a

regulated machine. Assuming a linear relationship between the valve position and the

mechanical power as well as ideal governor dynamics and noting that the mechanical

speed ωMi : R≥0 → R is connected to the electrical frequency ωi via ωi = (pi/2)ωMi

with pi ∈ R>0 being the number of machine poles, droop control can be represented as

uGi : R≥0 → R [1, Chapter 11], [6, Chapter 2]

uGi = PMi = P d
Mi

− 1

k̃Pi

(
ωi − ωd

)
, (5.1)

where ωd ∈ R>0 is the nominal (reference) frequency and the constant P d
Mi

∈ R>0 is

the reference setpoint for the mechanical power. Hence, (5.1) is a proportional control

law with input signal (ωi − ωd), gain 1/k̃Pi ∈ R>0 and output PMi .

Remark 5.2.1. The desired power setpoint for the mechanical power P d
Mi
, i ∼ NSG,

is assumed to be transmitted to each SG by a higher-level control, i.e., typically a

secondary control or energy management system. See Section 3.4 for further details on

control hierarchy in power systems and microgrids.

5.2.2 Droop control for inverters

Inspired by the droop control (5.1) employed for SGs, researchers have proposed to

apply a similar control scheme to inverters, see [37] and, e.g., [30, 33, 54, 55, 56, 60, 61,

236]. The main motivation for this is two-fold. First, and as discussed above, droop

control is a decentralized proportional control, which uses the network frequency as an
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implicit communication (respectively feedback) link to adjust the active power outputs

of the different SGs in a network. It, hence, is a modular and easy to implement

plug-and-play-like control scheme, in the sense that no centrally coordinated network

control design is required. Second, differently from SGs, inverters do not have an

inherent physical relation between frequency and generated active power, see, e.g., the

model of an inverter given in (4.16). The frequency droop control aims at artificially

creating such a relation, since it is desired in many applications [212].

Furthermore, in large SG-based HV transmission systems droop control is usually

only applied to obtain a desired active power distribution, while the voltage amplitude

at a generator bus is regulated to a nominal voltage setpoint via an automatic voltage

regulator (AVR) acting on the excitation system of the SG [6, Chapter 2.3.2.2]. Un-

like in HV transmission systems, in microgrids the power lines are typically relatively

short. Then, the AVR employed at the transmission level is, in general, not appropriate

because slight differences in voltage amplitudes can cause high power flows, see also

Section 3.3.2. Therefore, droop control is typically also applied to set the voltage with

the objective to achieve a desired reactive power distribution in microgrids. The most

common (heuristic) approach is to set the voltage amplitude via a proportional con-

trol, the feedback signal of which is the reactive power generation relative to a reference

setpoint [37, 38]. Hence, this control is usually called voltage droop control.

The rationale behind the frequency and voltage droop controllers is as follows [37,

38]. For small angular deviations δik, it follows that sin(δik) ≈ δik while cos(δik) ≈ 1.

Hence, as discussed in Section 3.3.2, for dominantly inductive networks, i.e., Gik ≈ 0,

from the power equations (4.24) it is clear that the reactive power is mostly influenced

by changes in the voltage, while the active power depends “more directly” on angular

deviations. Consequently, the frequencies ωi and voltage amplitudes Vi of the inverters

(i ∼ NI) are modified depending on the deviations (with respect to a desired value) of

the active and reactive powers, respectively.

Recall the model of an inverter given in (4.16). Suppose an inverter is connected at

the i-th node of a microgrid, i ∈ NI . Following the heuristics outlined previously, sim-

ple proportional controllers, called frequency, respectively voltage, droop control

hereafter, are then implemented as

uδi = ωd − kPi(P
m
i − P d

i ),

uVi = V d
i − kQi(Q

m
i −Qd

i ),

(5.2)

(5.3)
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where ωd ∈ R>0 is the desired (nominal) frequency, V d
i ∈ R>0 the desired (nominal)

voltage amplitude, kPi ∈ R>0, respectively kQi ∈ R>0, the frequency, respectively

voltage, droop gain, Pm
i : R≥0 → R and Qm

i : R≥0 → R are the measured active and

reactive powers and P d
i ∈ R and Qd

i ∈ R their desired setpoints.

From the preceding discussion, it is clear that the control laws (5.2)-(5.3) are heuris-

tic control laws derived under the assumption of a dominantly inductive network, i.e.,

for power lines with small R/X ratios. They are (by far) the most commonly used ones

in this scenario. However, if the network lines possess large resistive components, the

standard droop control laws (5.2)-(5.3) exhibit limitations [38]. In this case, several

modified droop controls [72, 237, 238] have been proposed. Even in the presence of

non-negligible line resistances the application of the droop controls of [33, 37] can be

justified, on one hand, via the virtual impedance approach [239] while, on the other

hand, by invoking their analogy to conventional droop control [212] of SG-based grids,

cf. (5.1). The latter fact implies that the control laws (5.2)-(5.3) are well compatible

with the operation of conventional power systems [212]. Recall from Section 3.2 that

this is an important criterion in the operation of microgrids. Therefore, the analy-

sis in this work is restricted to the control laws (5.2)-(5.3), commonly referred to as

“conventional droop control”.

Note that, from a control theoretic perspective, the design of the droop controls

(5.2)-(5.3) is very similar to a common control design approach for multiple-input

multiple-output (MIMO) systems. Namely, to reformulate a MIMO control design

problem as a set of decoupled single-input single-output (SISO) control design prob-

lems by identifying suitable input/output-pairings of the plant under consideration.

This parallel is further discussed in Section 6.6.

Remark 5.2.2. As stated in Remark 5.2.1 for the case of SGs, the desired power set-

points for active and reactive power P d
i and Qd

i , i ∼ NI , are assumed to be transmitted

to each inverter by a high-level control, i.e., typically a secondary control or energy

management system, see, e.g., [79, 195].

Remark 5.2.3. Since an inverter may connect a pure storage device, e.g., a battery, to

the network, P d
i , i ∈ NI , can also take negative values. In that case, the storage device

is charged depending on the excess power available in the network and thus functions

as a frequency and voltage dependent load. In the sequel, such an operation mode is

referred to as charging mode.
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5.2.3 Closed-loop microgrid under droop control

The closed-loop models for a droop-controlled inverter and a droop-controlled SG are

derived based on the models and controls introduced previously. In addition, based on

[121] the equivalence of the dynamics of a regulated SG and an inverter equipped with

the typically proposed frequency droop control (5.2) combined with a low pass filter,

e.g., for power measurement [33], is established.

5.2.3.1 Closed-loop microgrid with distributed rotational and electronic

generation under frequency droop control

In the case of droop-controlled MDREGs, the focus of the analysis in the present section

and in Chapter 6 is on the dynamics of the DG units with respect to active power and

frequency. For that scenario, the assumption below is made.

Assumption 5.2.4. All voltage amplitudes Vi, i ∼ N, are positive real constants for

all t ≥ 0.

Note that Assumption 5.2.4 is a standard assumption in stability analysis of power

systems and microgrids, see, e.g., [28, 36, 50, 113, 121, 176, 240]. Under Assump-

tion 5.2.4 the closed-loop model of the frequency droop-controlled inverter at

the i-th node, i ∈ NI , is obtained by replacing (5.2) in (4.16) as

δ̇i = ωd − kPi(P
m
i − P d

i )− ωcom,

τPiṖ
m
i = −Pm

i + Pi,
(5.4)

where Pi(δ1, . . . , δn) is given by (4.24). Moreover, under Assumption 5.2.4 and by

defining

kPi :=
k̃Pi

1 + k̃PiDi

,

the closed-loop model of the droop-controlled SG at the i-th node, i ∈ NSG, is

given by combining (4.20) and (5.1) as

δ̇i = ωi − ωcom,

Miω̇i = − 1

kPi

(ωi − ωd) + P d
Mi

− Pi,
(5.5)

where Pi(δ1, . . . , δn) is given by (4.24).

In the following, it is shown—via an affine state transformation—that the input-

output dynamics of a droop-controlled SG given by (5.5) and a frequency droop-

controlled inverter given by (5.4) are identical with respect to the input-output pair
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(Pi, δi). To see this, define the states, input and output of the frequency droop-controlled

inverter (5.4) as

xInv,i :=

[
δi
Pm
i

]
, uInv,i := Pi, yInv,i := δi,

and write the constants ωcom, ωd and kPiP
d
i in vector form as

dInv,i :=

[
ωcom

ωd + kPiP
d
i

]
.

Define the corresponding quantities for the droop-controlled SG (5.5) as

xSG,i :=

[
δi
ωi

]
, uSG,i := Pi, ySG,i := δi, dSG,i :=

[
ωcom

ωd + kPiP
d
Mi

]
. (5.6)

Then, (5.4) can be written as

ẋInv,i = AInv,ixInv,i +BInv,iuInv,i +DInv,idInv,i,

yInv,i = CInv,ixInv,i
(5.7)

with

AInv,i =

[
0 −kPi

0 − 1
τPi

]
, BInv,i =

[
0
1
τPi

]
, DInv,i =

[
−1 1
0 0

]
, CInv,i =

[
1 0

]
.

Likewise, (5.5) can be written as

ẋSG,i = ASG,ixSG,i +BSG,iuSG,i +DSG,idSG,i,

ySG,i = CSG,ixSG,i

(5.8)

with

ASG,i =

[
0 1
0 − 1

MikPi

]
, BSG,i =

[
0

− 1
Mi

]
, DSG,i =

[
−1 0
0 1

MikPi

]
, CSG,i =

[
1 0

]
.

Consider the affine state-transformation

x̄Inv,i = TInv,ixInv,i +

[
0 0
0 1

]
dInv,i, TInv,i =

[
1 0
0 −kPi

]
. (5.9)

In the coordinates x̄Inv,i, (5.7) becomes

˙̄xInv,i = ĀInv,ix̄Inv,i + B̄Inv,iuInv,i + D̄Inv,idInv,i,

yInv,i = CInv,ix̄Inv,i
(5.10)
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with

ĀInv,i = TInv,iAInv,iT
−1
Inv,i =

[
0 1
0 − 1

τPi

]
, B̄Inv,i = TInv,iBInv,i =

[
0

−kPi
τPi

]
,

D̄Inv,i = −ĀInv,i

[
0 0
0 1

]
+ TInv,iDInv,i =

[
0 −1
0 1

τPi

]
+

[
−1 1
0 0

]
=

[
−1 0
0 1

τPi

]
.

Furthermore, by defining

τPi := kPiMi, P d
i := P d

Mi
, i ∼ NSG, (5.11)

the dynamics (5.8) take exactly the form (5.10). Hence, the input-output dynamics

of a droop-controlled SG and a frequency droop-controlled inverter are identical with

respect to the input-output pair (Pi, δi). Consequently, (5.10) is used in the following

to describe either of the abovementioned closed-loop systems. Furthermore, in analogy

to (5.6), the second element of the state vector x̄Inv,i is denoted by ωi, i ∼ NI .

To simplify notation let

δ :=col(δi) ∈ Tn, ω := col(ωi) ∈ Rn,

P d :=col(P d
i ) ∈ Rn, P := col(Pi) ∈ Rn,

T :=diag(τPi) ∈ Rn×n,KP := diag(kPi) ∈ Rn×n
>0 .

(5.12)

Then, the system given by (5.10) can be compactly written as

δ̇ = ω − 1nω
com,

T ω̇ = −ω + 1nω
d −KP (P − P d),

(5.13)

with power flows P (δ) given in (4.24). Furthermore, a power rating SN
i ∈ R>0, i ∼ N,

is associated to each generation source.

Remark 5.2.5. It follows from (5.10) that if one main control design intention for

an inverter operated in grid-forming mode is to achieve a behavior with respect to

frequency similar to that of an SG, the rather simple structure given in (5.4) is sufficient

and no additional components are required. Moreover, (5.10) together with (5.11)

reveal that the time constant τPi of the low pass filter can be used as additional design

parameter to shape the desired ”virtual” inertia coefficientMi of the inverter. Methods

to emulate additional characteristics of SGs are proposed, e.g., in [198, 199, 200].
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Figure 5.1: Block diagram of a droop-controlled inverter at node i ∈ NI modeled by

(5.14). Bold lines represent power connections, while dashed lines represent signal con-

nections. The parameters are as follows: ωd ∈ R>0 is the desired (nominal) frequency,

V d
i ∈ R>0 the desired (nominal) voltage amplitude, kPi

∈ R>0, respectively kQi
∈ R>0,

the frequency, respectively voltage, droop gain, Pm
i : R≥0 → R and Qm

i : R≥0 → R are the

measured powers and P d
i ∈ R and Qd

i ∈ R their desired setpoints.

5.2.3.2 Closed-loop inverter-based microgrid under droop control

In the previous section, a model of an MDREG has been derived under the assumption

of constant voltage amplitudes. Next, this assumption is dropped and a model of

an inverter-based microgrid, i.e., N = NI , containing inverter models with variable

frequencies, as well as variable voltage amplitudes is derived.

The closed-loop model of the droop-controlled inverter at the i-th node,

i ∈ N, is obtained by replacing (5.2) and (5.3) in (4.16) as

δ̇i = ωd − kPi(P
m
i − P d

i )− ωcom,

τPiṖ
m
i = −Pm

i + Pi,

Vi = V d
i − kQi(Q

m
i −Qd

i ),

τPiQ̇
m
i = −Qm

i +Qi,

(5.14)

where Pi(δ1, . . . , δn, V1, . . . , Vn) and Qi(δ1, . . . , δn, V1, . . . , Vn) are given by (4.24). A

block diagram of an inverter modeled by (4.16) and controlled with the droop control

(5.2) and (5.3) is shown in Fig. 5.1.

Based on (5.14), (5.9) and (5.10), the closed-loop model of a droop-controlled in-

verter used for the analysis, is also established via a change of coordinates. To this

end, note that the system (5.14) can be viewed as being composed of two subsystems,
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the first of which is given by

δ̇i = ωd − kPi(P
m
i − P d

i )− ωcom,

τPiṖ
m
i = −Pm

i + Pi

(5.15)

with states (δi, P
m
i ), input Pi(δ1, . . . , δn, V1, . . . , Vn) and output δi, and the second of

which is given by

Vi = V d
i − kQi(Q

m
i −Qd

i ),

τPiQ̇
m
i = −Qm

i +Qi,
(5.16)

with state Qm
i , input Qi(δ1, . . . , δn, V1, . . . , Vn) and output Vi.

By noting that (5.15) is identical to (5.7), the coordinate transformation (5.9) is

employed to perform the change of coordinates of the subsystem (5.15). This yields

(5.10). In a similar manner, define for the second subsystem (5.16)

xV,i := Qm
i , uV,i := Qi, yV,i := Vi, dV,i := V d

i + kQiQ
d
i

and write (5.16) as

ẋV,i = AV,ixV,i +BV,iuV,i,

yVi = CV,ixV,i +DV,idV,i,
(5.17)

where

AV,i = − 1

τPi

, BV,i =
1

τPi

, CV,i = −kQi , DV,i = 1.

With the affine change of coordinates

x̄V,i = TV,ixV,i + dV,i, TV,i = −kQi ,

(5.17) reads

˙̄xV,i = ĀV,ix̄V,i + B̄V,iuV,i + D̄V,idV,i,

yVi = C̄V,ix̄V,i,
(5.18)

where

ĀV,i = TV,iAV,iT
−1
V,i = AV,i, B̄V,i = TV,iBV,i = −

kQi

τPi

,

C̄V,i = CV,iT
−1
V,i = 1, D̄V,i = −TV,iAV,iT

−1
V,iDV,i =

1

τPi

.

Hence, (5.14) can equivalently be written as

δ̇i = ωi − ωcom,

τPiω̇i = −ωi + ωd − kPi(Pi − P d
i ),

τPi V̇i = −Vi + V d
i − kQi(Qi −Qd

i ),

(5.19)
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which is the model of a droop-controlled inverter used in the subsequent analysis. To

simplify notation recall N = NI , as well as (5.12) and let

V :=col(Vi) ∈ Rn
≥0, V d := col(V d

i ) ∈ Rn
>0

Qd :=col(Qd
i ) ∈ Rn, Q := col(Qi) ∈ Rn,

KQ :=diag(kQi) ∈ Rn×n
>0 .

(5.20)

Then, the system given by (5.19) and (4.24) can be compactly written as

δ̇ = ω − 1nω
com,

T ω̇ = −ω + 1nω
d −KP (P − P d),

T V̇ = −V + V d −KQ(Q−Qd),

(5.21)

with power flows P (δ, V ) and Q(δ, V ) given in (4.24). Furthermore, a power rating

SN
i ∈ R>0, i ∼ N, is associated to each generation source.

5.2.4 Active power sharing under frequency droop control

In [28], a criterion on the frequency droop gains and setpoints has been derived such

that the generation units share the active power according to their power ratings in

steady-state. This is a desired control goal in many applications. However, it has been

argued in [62] that system operators may not always seek to achieve a power sharing in

proportion to the power ratings of the units. Instead, they may also wish to take into

account other technical, economic or environmental criteria, such as fuel consumption,

generation costs or emission costs, see also [241].

In this regard, the ideas derived in [28] are easily applied to proportional active

power sharing with respect to a user-defined criterion, cf. Definition 3.3.1. Compared to

[28], the proof is extended to lossy networks, i.e., networks with nonzero conductances,

as well as to MDREGs. It turns out that the same criterion ensures that storage devices

in charging mode, i.e., P d
i < 0 for some i ∈ NI , are charged proportionally.

Lemma 5.2.6. Consider the system (5.13), (4.24), respectively (5.21), (4.24). Assume

that it possesses a steady-state motion with constant frequency ωs ∈ R. Then all genera-

tion units the power outputs of which satisfy1 sign(P s
i ) = sign(P s

k ), achieve proportional

active power sharing if the gains kPi and kPk
and the active power setpoints P d

i and P d
k

are chosen such that

kPiγi = kPk
γk and kPiP

d
i = kPk

P d
k , (5.22)

i ∼ N and k ∼ N.
1Recall from Definition 3.3.1 that the superscript s denotes signals in steady-state.
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Proof. The claim follows in a straightforward manner from [28], where it has been

shown for first-order inverter models and γi = SN
i , P

d
i > 0, P s

i > 0, i ∼ N. For a

constant steady-state frequency ωi = ωs, i ∼ N, it follows from (5.13), (4.24) that

ω̇i = 0 = −ωs + ωd − kPi(P
s
i − P d

i ), i ∼ N.

Hence, under conditions (5.22), along the steady-state motion,

P s
i

γi
=

−ωs + ωd + kPiP
d
i

kPiγi
=

−ωs + ωd + kPk
P d
k

kPk
γk

=
P s
k

γk
,

where i ∈ N and k ∈ N with sign(P s
i ) = sign(P s

k ).

Remark 5.2.7. The conditions in Lemma 5.2.6 also imply that storage devices in

charging mode are charged proportionally.

Remark 5.2.8. In the present case, active power sharing can be achieved without the

need of any explicit communication exchange. This is explained by the fact that the

frequency serves as an implicit communication signal.

Remark 5.2.9. Note that proportional active power sharing is achieved by Lemma 5.2.6

independently of the admittance values of the network. However, in a highly ohmic

network, the droop control laws (5.2)-(5.3) may induce high fluctuating currents due to

the stronger coupling of phase angles and reactive power, see (4.24). Then, additional

methods such as the virtual output impedance [239] or alternative droop control laws

[72] could be employed instead of (5.2)-(5.3).

Remark 5.2.10. Recall the inverter model (4.13), which takes into account the drift

of the internal clock of the inverter at the i-th node, i ∈ NI . It is easy to see that (5.10)

and, equivalently, the (δ, ω)-dynamics of (5.19) then become

(1 + υi)δ̇i = ωi − ωcom,

(1 + υi)τPiω̇i = −ωi + ωd − kPi(Pi − P d
i ),

(5.23)

where υi denotes the constant1 relative drift of the clock of the i-th inverter. Suppose

that the constant synchronization frequency of the system (5.23), (4.24) is given by

ωN ∈ R>0. As shown in [124], it follows from inspection of (5.23) that under the

presence of a clock drift

δ̇si =
ωs
i − ωcom

(1 + υi)
= ωN ⇒ ωs

i = ωcom + (1 + υi)ω
N , i ∼ NI , (5.24)

Hence, (5.24) shows that if inverters with clock drifts are modeled by (5.23), then the

internal synchronization frequencies ωs
i , i ∼ NI , of the inverters are scaled by the factors

(1 + υi) with respect to the network synchronization frequency ωN .

1Over large periods of time, i.e., several weeks or months, the relative clock drift υi may vary

depending, e.g., on the ambient temperature or aging effects.
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Remark 5.2.11. The presence of unknown constant clock drifts also has a deteri-

orating effect on the active power sharing accuracy. To see this, consider a micro-

grid in which the inverters are modeled by (5.23), (4.24). Consider a pair of nodes

(i, k) ∈ NI × NI , i ̸= k, the power outputs of which satisfy sign(P s
i ) = sign(P s

k ) and

the parameters of which have been selected according to (5.22). Recall that υi and

υk denote the nonzero constant unknown clock drifts. Suppose the network possesses

a synchronized motion with constant synchronization frequency ωN ∈ R>0. Then, to-

gether with (5.24), the ratio of the weighted active power outputs of the two inverters

along a synchronized motion is given by

P s
i /γi

P s
k/γk

=
(−ωs

i + kPiP
d
i + ωd)kPk

γk

(−ωs
k + kPk

P d
k + ωd)kPiγi

=
−υiωN + c

−υkωN + c
̸= 1, (5.25)

where c := kPiP
d
i + ωd − ωN − ωcom = kPk

P d
k + ωd − ωN − ωcom. However, since in

general |υi| ≪ 1 and |υk| ≪ 1, (5.25) also shows that the introduced error in power

sharing is negligible in most practical scenarios. Therefore, the selection criteria (5.22)

seem also appropriate in the presence of clock drifts.

5.3 Distributed voltage control and reactive power shar-

ing

As described in Section 5.2.2, the voltage droop control law (5.3) follows a similar

heuristic approach as the frequency droop control law (5.2), aiming at obtaining a de-

sired reactive power distribution in a steady-state. Recall that the physical motivation

for the control laws (5.2) and (5.3) is based on the power flow over a dominantly induc-

tive power line. However, even in this scenario, the voltage droop control (5.3) does, in

general, not achieve a desired reactive power sharing, see, e.g., [29, 71, 72, 73]. This,

possibly unexpected, behavior of the voltage droop control (5.3) is explained as follows.

The conditions for proportional active power sharing in Lemma 5.2.6 are derived using

the fact that the frequency of a steady-state motion of the system (5.13), (4.24) is equal

all over the network, i.e., ωs
i = ωs

k = . . . = ωs, and serves thus as a common communi-

cation signal. This is not the case for the voltage, since, in general, V s
i ̸= V s

k for i ∈ N,

k ∈ N. In addition, V s
i , i ∼ N, are not known beforehand and change depending on the

load demand in the network (if set with the voltage droop control (5.3)).

Therefore, a consensus-based DVC, which guarantees reactive power sharing in

steady-state is proposed in the following. The suggested DVC has originally been

introduced in [122, 125] for grid-forming inverters. In addition, based on [235], it is
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shown that, via a suitable partial feedback linearization, the proposed DVC can easily

be extended to SGs.

The remainder of this section is based on [122, 125, 235] and outlined as follows. The

communication topology is depicted in Section 5.3.1. The proposed DVC for an inverter

is presented in Section 5.3.2. Given the different dynamics of SGs compared to inverters,

the DVC is adapted to SGs in Section 5.3.3. The closed-loop microgrid dynamics

obtained by combining the inverter, respectively SG, model with the corresponding

frequency droop control and DVC are given in Section 5.3.4. Finally, it is proven in

Section 5.3.5 that the proposed DVC guarantees reactive power sharing in steady-state.

5.3.1 Communication topology

The proposed voltage control is distributed and requires communication among gener-

ation units in the network. To describe the high-level properties of the communication

network, a graph theoretic notation—as introduced in Section 2.3.5—is used.

It is assumed that the communication network is represented by an undirected,

unweighted and connected graph G = (V,E). Furthermore, it is assumed that the graph

contains no self-loops, i.e., there is no edge el = (i, i), i ∼ N. Recall that a node

represents an individual agent. In the present case, this is a power generation source.

If there is an edge between two nodes i and k, then i and k can exchange their local

measurements with each other. The set of neighbors of the i-th node is denoted by

Ci. The nodes in the communication and in the electrical network are identical, i.e.,

N = V. Note that the communication topology may, but does not necessarily have to,

coincide with the topology of the electrical network, i.e., it is allowed that Ci ̸= Ni for

any i ∈ V.

5.3.2 Distributed voltage control for inverters

Recall that, as discussed in Section 3.3.2, for dominantly inductive networks, i.e., Gik ≈
0, and for small angular deviations, i.e., δik ≈ 0, the reactive power flow of the i-th

node Qi given in (4.24) reduces to Qi : Rn
≥0 → R,

Qi(V1, . . . , Vn) = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk. (5.26)

Clearly, the reactive power Qi can then be controlled by controlling the voltage ampli-

tudes Vi and Vk, k ∼ Ni. Therefore, inspired by consensus-algorithms, see Section 2.3.5
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or, e.g., [85], the following distributed voltage control (DVC) uVi is proposed for

an inverter at node i ∈ N

uVi (t) := V d
i − ki

∫ t

0
ei(τ)dτ,

ei(t) :=
∑
k∼Ci

(
Qm

i (t)

χi
−
Qm

k (t)

χk

)
=
∑
k∼Ci

(Q̄i(t)− Q̄k(t)),
(5.27)

where V d
i ∈ R>0 is the desired (nominal) voltage amplitude and ki ∈ R>0 is a feedback

gain. For convenience, the weighted reactive power flows Q̄i := Qm
i /χi, i ∼ N, have been

defined. Recall that Ci is the set of neighbor nodes of node i in the graph induced by

the communication network, i.e., the set of nodes that node i can exchange information

with. The control scheme is illustrated for an inverter at node i ∈ N in Fig. 5.2. It

is proven in Section 5.3.5 that the control (5.27) does guarantee proportional reactive

power sharing in steady-state.

Note that opposed to the voltage droop control (5.3), the control law (5.27) does

not require setpoints Qd
i , i ∼ NI , for the reactive power output, which, as discussed

previously, are difficult to obtain in practice.

Remark 5.3.1. The proposed voltage control law (5.27) is a distributed control, which

requires communication exchange. Most control approaches proposed so far to achieve

proportional reactive power sharing, e.g., [26, 27], require a central control and/or com-

munication unit or all-to-all communication among all inverters. On the contrary, for

the control (5.27) proposed here, the only requirement on the communication topology

is that the graph induced by the communication network is connected.

Remark 5.3.2. Consider a scenario in which there exists a high-level control that can

generate setpoints Qd
i ∈ R, i ∼ NI , for the reactive power injections. A possible high-

level control is, for example, the one proposed in [80]. The control (5.27) can easily be

combined with such high-level control by setting ei given in (5.27) to

ei =
∑
k∼Ci

(
(Qm

i −Qd
i )

χi
−

(Qm
k −Qd

k)

χk

)
. (5.28)

This implies that the inverters share their absolute reactive power injections with re-

spect to individual setpoints in steady-state.

Remark 5.3.3. In addition to reactive power sharing, it usually is desired that the

voltage amplitudes Vi, i ∼ NI , remain within certain boundaries. With the above

control law (5.27), where the voltage amplitudes are actuator signals, this can, e.g., be

ensured by saturating the control signal uVi . For mathematical simplicity, this is not

considered in the present analysis.
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Figure 5.2: Block diagram of the proposed DVC (5.27) for an inverter at node i ∈ NI .

Bold lines represent power connections, while dashed lines represent signal connections.

Vi : R≥0 → R≥0 is the voltage amplitude, V d
i ∈ R>0 its desired (nominal) value, Qm

i :

R≥0 → R is the measured reactive power and Q̄i : R≥0 → R the weighted reactive power,

where χi ∈ R>0 is the weighting coefficient to ensure proportional reactive power sharing

and ki ∈ R>0 is a feedback gain. Furthermore, Q̄l, . . . , Q̄k are the weighted reactive power

measurements of the inverter outputs at the neighbor nodes Ci = {l, . . . , k} provided by

the communication system.

Remark 5.3.4. Communication delays or failures, such as package losses, are not

considered in this work. As in any communication-based control, such events can be

critical. In the present case, the voltage amplitude is an actuator signal. Hence, it

could, for example, be set to a constant value in case of a severe communication failure.

The closed-loop model of a grid-forming inverter modeled by (4.16) operated with

the frequency droop control (5.2) and the suggested DVC (5.27) is obtained as follows.

By differentiating Vi = uVi with respect to time, combining (5.27) and (4.16) and

recalling (5.10), the closed-loop dynamics of the inverter at the i-th node,

i ∈ NI , are given by

δ̇i = ωi − ωcom,

τPiω̇i = −ωi + ωd − kPi(Pi − P d
i ),

V̇i = −kiei = −ki
∑
k∼Ci

(
Qm

i

χi
−
Qm

k

χk

)
,

τPiQ̇
m
i = −Qm

i +Qi,

(5.29)

and the interaction between nodes is modeled by (4.24). Note that Vi(0) = V d
i is

determined by the control law (5.27).
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5.3.3 Distributed voltage control for synchronous generators

Based on [235], it is shown how the DVC for grid-forming inverters given in (5.27) can

also be applied to SGs modeled by (4.20). The key idea of the approach is to render

the voltage dynamics of an SG given by (4.20) identical to those of an inverter modeled

by (4.16) via a partial feedback linearization. Then, identical mathematical tools as

employed for the analysis of purely inverter-based microgrids in [122, 125] can be used

to analyze the dynamics of MDREGs under the DVC.

Partial feedback linearization is widely employed in control design of SGs, see, e.g.,

[51, 224, 225, 227, 228, 231]. Following [51, 231], the assumption below is made.

Assumption 5.3.5. The parameters Xdi , X
′
di

and τd0i are exactly known, i ∼ NSG.

Moreover, Vi and Idi are measurable, i ∼ NSG.

The validity of Assumption 5.3.5 is justified as follows. Usually, the values for Xdi ,

X ′
di

and τd0i are provided by manufacturers of SGs in the respective data-sheet. Hence,

these values are tpyically available. The output current and voltages at the terminals

of the SG are typically also measured. Furthermore, the shaft angle θi can also be

measured. Hence, Idi can be made available1. The EMF, denoted here by Vi, can not

be measured directly. However, if θi is measured, Vi can be calculated from the terminal

voltage by means of (4.19) since the values of Ri and X
′
qi are usually also provided by

the manufacturer.

Consider the following partial linearizing feedback

Efi := Vi − (Xdi −X ′
di
)Idi + τd0iϑ

V
i , (5.30)

with ϑVi : R≥0 → R. Applying the control law (5.30) under Assumption 5.3.5 to the SG

dynamics (4.20) yields

δ̇i = ωi − ωcom,

Miω̇i = −Diωi + PMi − Pi,

V̇i = ϑVi .

(5.31)

1The quantity Idi describes the current flow along the d-axis of the i-th machine. Note that the

expression for Idi given in (4.22) is a function of the variables δi, and Vi, i ∼ N, where each δi is

expressed on the common network reference frame. This is done in order be able to interconnect the

i-th machine with the network model, cf. Section 2.4.4. However, in practice, if the shaft angle θi and

the three-phase current iabci at the machine terminal are measured, then Idi can directly be computed

as Idqi = Tdq(θi)iabci .
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For the purpose of reactive power sharing and as done in the case of an inverter, cf.

(4.16), it is assumed that reactive power output is measured and processed through a

filter, i.e.,

τQiQ̇
m
i = −Qm

i +Qi, (5.32)

where Qi is the reactive power output of the SG at the i-th node, Qm
i : R≥0 → R its

measured value and τQi ∈ R>0 is the time constant of the low pass filter.

Following (5.27), a DVC for an SG with dynamics given by (5.31) is proposed as

ϑVi := −kiei = −ki
∑
k∼Ci

(
Qm

i

χi
−
Qm

k

χk

)
= −ki

∑
k∼Ci

(Q̄i − Q̄k), (5.33)

where ki ∈ R>0 is a feedback gain, χi and χk are weighting coefficients and Ci denotes

the set of neighbors of node i in the communication network.

Combining (5.31), (5.32) and (5.33), as well as recalling (5.10) to simplify notation,

yields the following closed-loop model of the SG with droop control (5.1) and

DVC (5.33) at the i-th node

δ̇i = ωi − ωcom,

τPiω̇i = −ωi + ωd − kPi(P
d
i − P d

i ),

V̇i = −kiei = −ki
∑
k∼Ci

(
Qm

i

χi
−
Qm

k

χk

)
,

τQiQ̇
m
i = −Qm

i +Qi,

(5.34)

which is identical to the closed-loop inverter dynamics (5.29). Furthermore, Pi and Qi

are given by (4.24).

Note that opposed to the case of an inverter, for an SG Vi(0) is, in general, not a

control parameter. However, it is practically feasible to make the following assumption.

Assumption 5.3.6. The operator can determine positive initial conditions Vi(0) =

V d
i ∈ R>0 for the voltages Vi, i ∼ NSG.

Assumption 5.3.6 is feasible, because in a practical scenario an SG is at first syn-

chronized to an existing and running network via a specific synchronization control unit.

Typically, this control not only synchronizes the SG speed to the network frequency,

but also regulates the voltage amplitude at the generator terminals to a desired value.

After this synchronization process, the DVC would be switched on by the operator and

from there on set the EMF (represented by V̇i in (5.34)) of the SG, e.g., to react to
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disturbances such as changes in load. Furthermore, recall that the EMF of the SG is

related to its terminal voltage by (4.19). Consequently, Vi(0) = V d
i ∈ R>0 is a control

parameter under Assumption 5.3.6.

Remark 5.3.7. It is emphasized that the feedback linearization (5.30) is merely in-

troduced for mathematical convenience, i.e., to facilitate the mathematical analysis of

the closed-loop system carried out in Section 6.5. A DVC for SGs, which does not

require such—sometimes delicate—partial feedback linearization is a subject of current

investigation.

5.3.4 Closed-loop microgrid dynamics under frequency droop control

and distributed voltage control

To compactly write the closed-loop system given by (5.29), (5.34) and (4.24), it is

convenient to recall (5.20) and introduce

TP :=diag(τPi) ∈ Rn1×n1 , TQ := diag(τQi) ∈ Rn2×n2 , TF := diag (TP , TQ) ∈ Rn×n,

D :=diag(1/χi) ∈ Rn×n, K := diag(ki) ∈ Rn×n.

(5.35)

Furthermore, denote by L ∈ Rn×n the Laplacian matrix of the communication network.

Then, the system given by (5.29), (5.34) and (4.24) can be compactly written as

δ̇ = ω − 1nω
com,

T ω̇ = −ω + 1nω
d −KP (P − P d),

V̇ = −KLDQm,

TF Q̇
m = −Qm +Q,

(5.36)

with power flows P and Q given in (4.24). Furthermore, as done in the previous

section, a power rating SN
i ∈ R>0, i ∼ N, is associated to each generation source.

Recall that under Assumption 5.3.6 the initial conditions for each element of V are

determined by the control law (5.27), i ∼ NI , respectively by the operator i ∼ NSG,

i.e., V (0) = V d := col(V d
i ), i ∼ N.

5.3.5 Reactive power sharing and a voltage conservation law

The next result proves that the proposed DVC does indeed guarantee proportional

reactive power sharing in steady-state. The claim below holds independently of the

line admittances.
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Claim 5.3.8. Consider the closed-loop system (5.36), (4.24). It achieves proportional

reactive power sharing in steady-state in the sense of Definition 3.3.1.

Proof. Set V̇ = 0 in (5.36). Note that, since L is the Laplacian matrix of an undirected

connected graph, it has a simple zero eigenvalue with a corresponding right eigenvector

β1n, β ∈ R \ {0}. All its other eigenvalues are positive real. Moreover, K is a diagonal

matrix with positive diagonal entries and from (5.36) in steady-state Qs = Qm,s. Hence,

for β ∈ R \ {0} and i ∼ N, k ∼ N,

0n = −KLDQs ⇔ DQs = β1n ⇔ Qs
i

χi
=
Qs

k

χk
. (5.37)

Remark 5.3.9. Because of (5.37), all entries of Qm,s = Qs(V s) must have the same

sign. For dominantly inductive power lines and loads, only Qm,s = Qs(V s) ∈ Rn
>0 is

practically relevant.

Remark 5.3.10. Note that Claim 5.3.8 holds independently of the specific choice of

K and independently of possible clock drifts (see Section 4.2).

The following fact reveals an important property of the system (5.36), (4.24).

Fact 5.3.11. The flow of the system (5.36), (4.24) satisfies for all t ≥ 0 the conserva-

tion law

∥K−1V (t)∥1 =
n∑

i=1

Vi(t)

ki
= ξ(V (0)), (5.38)

where the positive real parameter ξ(V (0)) is given by

ξ(V (0)) = ∥K−1V (0)∥1 =
n∑

i=1

V d
i

ki
. (5.39)

Proof. Recall that L is the Laplacian matrix of an undirected connected graph. Con-

sequently, L is symmetric positive semidefinite and possesses a simple zero eigenvalue

with corresponding right eigenvector 1n, i.e., L = L⊤ and L1n = 0n. Hence, 1
⊤
nL = 0⊤n .

Multiplying the third equation in (5.36) from the left with 1⊤nK
−1 yields

1⊤nK
−1V̇ = 0⊤nDQ

m ⇒
n∑

i=1

V̇i
ki

= 0. (5.40)

Integrating (5.40) with respect to time and using (5.39) yields (5.38).
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Fact 5.3.11 has the following important practical implication: by interpreting the

control gains ki as weighting coefficients, expression (5.38) is—up to a scaling factor—

equivalent to the weighted average voltage amplitude V̄ (t) in the network, i.e.,

V̄ (t) :=
1

n

n∑
i=1

Vi(t)

ki
.

By Fact 5.3.11, it then follows that for all t ≥ 0

V̄ (t) := V̄ (0) =
ξ(V (0))

n
=

1

n

n∑
i=1

V d
i

ki
. (5.41)

Hence, the parameters V d
i and ki, i ∼ N, offer useful degrees of freedom for a prac-

tical implementation of the DVC (5.27), respectively (5.30) and (5.33). For example, a

typical choice for V d
i would be V d

i = VN , i ∼ N, where VN ∈ R>0 denotes the nominal

voltage amplitude. By setting ki = 1, i ∼ N, (5.41) becomes

V̄ (t) :=
1

n

n∑
i=1

Vi(t) = VN , (5.42)

i.e., the average voltage amplitude V̄ (t) of all generator buses in the network is for all

t ≥ 0 equivalent to the nominal voltage amplitude VN .

Remark 5.3.12. Note that achieving (5.42) for t → ∞ is exactly the control goal

of the distributed voltage control proposed in [82], Section IV-B. As has just been

shown, for V d
i = VN , ki = 1, i ∼ N, the DVC (5.27), respectively (5.30) and (5.33),

not only guarantees compliance of (5.42) for t → ∞, but for all t ≥ 0. In addition,

by Claim 5.3.8 the DVC (5.27), respectively (5.30) and (5.33), guarantees a desired

reactive power sharing in steady-state.

Remark 5.3.13. Note that the possible clock drifts discussed in Section 4.2 would

merely appear as additional scaling parameters in (5.42).

5.4 Summary

In this chapter, feasible control laws for microgrids to address the problem of power

sharing, as well as those of frequency and voltage stability have been discussed. At

first, the droop control for SGs has been introduced. This control law is widely used

in conventional power systems to address the problems of frequency control and active

power sharing. Furthermore, the most common frequency and voltage droop control

laws for inverter-interfaced DG units have been presented and the physical heuristics
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motivating these control laws have been outlined. In addition, a selection criterion on

the gains and setpoints of the droop control ensuring active power sharing in steady-

state has been provided. The condition is independent of the line admittances.

Moreover, it has been discussed that the voltage droop control does, in general, not

achieve the control objective of reactive power sharing. As a consequence, a consensus-

based DVC for inverter-interfaced DG units has been proposed. It has been proven

that the DVC does indeed guarantee reactive power sharing in steady-state. Finally, it

has been shown that the proposed DVC can easily be applied to SG-interfaced units

via an appropriate feedback-linearizing control law.
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6

Conditions for stability in

microgrids

6.1 Introduction

This chapter is devoted to the stability analysis of microgrids operated with the control

laws presented in Chapter 5. As in any conventional power system, stability is under-

stood in the sense of achieving asymptotic synchronization of the frequencies of all

DG units and asymptotic convergence of their voltage amplitudes to constant values,

cf. Section 2.4.5. Most results of the present chapter are based on or taken from the

author’s works [71, 121, 122, 123, 125].

In light of the limitations of available stability results for microgrids discussed in

Section 1.3, the main contributions of the present chapter are three-fold.

(i) Conditions for frequency stability in MDREGs

A necessary and sufficient condition for local frequency stability of a generic

meshed islanded MDREG operated with the frequency droop controls (5.1), re-

spectively (5.2), is derived. Transfer conductances are explicitly considered, while

voltage amplitudes are assumed to be constant.

Since the synchronization frequency is the same for all DG units and their dy-

namics depend on the angle differences, it is possible to translate—via a time-

dependent coordinate shift—the synchronization objective into a (standard) equi-

librium stabilization problem. This approach is adopted in the present work.

Furthermore, by combining the obtained stability results with Lemma 5.2.6, a

solution to Problem 3.3.3, i.e., the problem of active power sharing, in lossless

MDREGs is provided.
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The given results are based on the author’s work [121]. Moreover, the analysis

is inspired by the recent interest in graph theory and second-order consensus al-

gorithms for multi-agent systems. It is, hence, carried out using tools of linear

algebra. Second-order consensus algorithms have been used to study synchroniza-

tion of harmonic oscillators [242] and have recently also been applied to frequency

restoration in conventional power systems [115, 116].

(ii) Conditions for stability of inverter-based droop-controlled microgrids

with variable frequencies and voltages

Sufficient conditions on the control parameters that ensure local stability of loss-

less droop-controlled inverter-based microgrids operated with the control laws

given in (5.2)-(5.3) are derived. Hereby, networks with general meshed topol-

ogy and third-order inverter models with variable frequencies as well as variable

voltage amplitudes are considered.

Recall that the frequency synchronization objective can be transformed into a

(standard) equilibrium stabilization problem. By taking this approach, the in-

dicated results are established by means of the interconnection and damping as-

signment passivity-based control approach of [53]. More precisely, the lossless

microgrid is represented in port-Hamiltonian form, see Section 2.3.3. This allows

to easily identify the energy-Lyapunov function and give conditions for stability

of the synchronization equilibrium state.

In contrast to [28, 29, 121], no assumptions of constant voltage amplitudes or

small phase angle differences between the output voltages of the DG units are

made.

(iii) Closed-loop analysis of inverter-based droop-controlled microgrids op-

erated with frequency droop control and DVC

Since the voltage droop control (5.3) does, in general, not achieve a desired reac-

tive power sharing, a novel distributed consensus-based DVC has been proposed

in this work, see (5.27). Unlike in other related work on distributed voltage

control, e.g., [82, 83, 84], a rigorous mathematical analysis of the closed-loop volt-

age and reactive power dynamics under the proposed DVC is carried out in the

present case. More precisely, based on [122, 125], it is proven that the choice of

the control parameters uniquely determines the corresponding equilibrium point.

Furthermore, a necessary and sufficient condition for local exponential stability of

that equilibrium point is given. The two latter results are derived under the stan-
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dard assumptions of lossless line admittances and small angle differences [1, 29].

In addition, by combining these results, a condition is provided, under which the

DVC solves Problem 3.3.4. Recall that Problem 3.3.4 is the problem of reactive

power sharing. Then, the assumption of small angle differences is dropped and

a necessary and sufficient condition for local exponential stability of a microgrid

operated with the frequency droop control (5.2) and the DVC (5.27) is derived.

The latter result is used to provide a solution to Problem 3.3.5 (the problem of

joint active and reactive power sharing).

The remainder of the present chapter is outlined as follows. Some preliminary as-

sumptions on the microgrid models used at several points in this chapter are discussed in

Section 6.2. Under the assumption of constant voltage amplitudes, conditions for stabil-

ity of lossy MDREGs operated with frequency droop control are derived in Section 6.3.

Section 6.4 is devoted to the analysis of droop-controlled inverter-based microgrids

with time-varying voltages and frequencies. Finally, a detailed closed-loop analysis of

an inverter-based microgrid operated with frequency droop control and DVC is given

in 6.5.

6.2 Preliminaries

Within this chapter, only DG units with positive voltage amplitudes Vi : R≥0 → R>0,

i ∼ N, are considered. This is motivated by the fact that Vi = 0 implies that the i-th

DG unit does not provide any power to the network, see (4.24). Hence, Vi = 0 can be

interpreted as if the i-th DG unit was not connected to the network. In that case, the

network with set of nodes N \{i ∈ N |Vi = 0} is considered instead of the network with

set of nodes N and Vi = 0, i ∈ N.

Most of the results in this chapter are derived for lossless microgrids. The assump-

tion of lossless line admittances may be justified as follows [28, 71, 122, 125]. In MV

and LV networks, the line impedance is usually not purely inductive, but has a non-

negligible resistive part. On the other hand, the inverter output impedance is typically

inductive (due to the output inductor and/or the possible presence of an output trans-

former). Under these circumstances, the inductive parts dominate the resistive parts

in the admittances for some particular microgrids, especially on the MV level.

Only such microgrids are considered whenever lossless admittances are assumed and

the inverter output admittances (together with possible transformer admittances) are

absorbed into the line admittances, while neglecting all resistive effects.
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More precisely, to establish the stability results in Section 6.4, the following as-

sumption on the network admittances is made1.

Assumption 6.2.1. Gik = 0 and Bik ≤ 0, i ∼ N, k ∼ N.

By making use of Assumption 6.2.1, the power flow equations (4.24) reduce to

Pi =
∑
k∼Ni

|Bik|ViVk sin(δik),

Qi = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk cos(δik).
(6.1)

Remark 6.2.2. The need to introduce the, sometimes unrealistic, assumption of loss-

less admittances has a long history in power systems studies. It appears in transient

stability studies, where the presence of transfer conductances hampers the derivation of

energy-Lyapunov functions [36]. Although there has been progress in addressing this

issue [44, 50], to the best of the author’s knowledge, no analytic solution for power

systems with variable frequencies as well as variable voltage amplitudes is available.

See also [48] for an illustration of the deleterious effect of line losses on field excitation

controller design.

Remark 6.2.3. In the case of the Kron-reduced network, the author is aware that, in

general, the reduced network admittance matrix does not permit to neglect the con-

ductances and the given stability results might, therefore, be inaccurate [36]. Alterna-

tively, one could consider the idealized scenario in which part of the inverter-interfaced

storage devices are being charged, hence acting as loads and all constant impedance

loads are neglected. Another approach is to use other, possibly dynamic, load mod-

els instead of constant impedances in the so-called structure preserving power system

models. However, in the presence of variable voltages, the load models are usually,

somehow artificially, adapted to fit the theoretical framework used for the construction

of energy-Lyapunov functions, see, e.g., [47, 243].

Unlike in Section 6.4, the linearization of the power flow equations is used in Sec-

tion 6.3.4 and Section 6.5 to derive conditions for local stability in microgrids with

dominantly inductive power lines. In that case it is feasible to slightly relax Assump-

tion 6.2.1 and allow Gii ̸= 0 for all or some i ∈ N. Recall that a shunt conductance

Gii represents a load in the Kron-reduced network. Hence, the following assumption is

employed2.

1Recall that Assumption 2.4.18 together with Assumption 4.4.1 implies that Bik ≤ 0, i ∼ N, k ∼ N.

For clarity of presentation, this implication is also included in Assumption 6.2.1.
2Recall that Assumption 2.4.18 together with Assumption 4.4.1 implies that Bik ≤ 0, i ∼ N, k ∼ N.

For clarity of presentation, this implication is also included in Assumption 6.2.4.
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Assumption 6.2.4. Gik = 0, i ̸= k and Bik ≤ 0, i ∼ N, k ∼ N.

Under Assumption 6.2.4, the power flow equations (4.24) reduce to

Pi = GiiV
2
i +

∑
k∼Ni

|Bik|ViVk sin(δik),

Qi = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk cos(δik).
(6.2)

Furthermore, the following standard decoupling assumption, see, e.g., [1, 29, 125],

is used to establish part of the results in Section 6.51.

Assumption 6.2.5. δik(t) ≈ 0 ∀t ≥ 0, i ∼ N, k ∼ Ni.

Under Assumption 6.2.5, cos(δik(t)) ≈ 1, for all t ≥ 0 and i ∼ N, k ∼ Ni. Conse-

quently, together with Assumption 6.2.1, the reactive power flow at node i ∈ N reduces

to Qi : Rn
>0 → R,

Qi(V1, . . . , Vn) = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk. (6.3)

This preliminary section is concluded with the following lemma, used at various

occasions within the present chapter. Let T : Tn → Rn×n with

(T(δ))ii := −Bii,

(T(δ))ik := Bik cos(δik), i ̸= k.
(6.4)

Lemma 6.2.6. Consider the mapping T(δ) defined in (6.4) with Assumptions 2.4.18

and 4.4.1. Then, v⊤T(δ)v > 0 for all v ∈ Rn \ {0n} and all δ ∈ Tn.

Proof. Recall that Bik = Bki. Hence, T(δ) is symmetric. Furthermore, recall that

Bii = B̄ii +
∑

k∼Ni
Bik and (4.21). Let δs ∈ Tn such that δsik = 0 for all i ∼ N, k ∼ Ni.

It is then easily verified that, with the standing assumptions, the matrix

T(δs)− diag(|B̄ii|),

is a symmetric weighted Laplacian matrix. Recall that the microgrid is connected by

assumption. Consequently, T(δs) − diag(|B̄ii|) possesses a simple zero eigenvalue with

a corresponding right eigenvector 1n and all its other eigenvalues are positive real, i.e.,

for any v ∈ Rn \ {β1n}, β ∈ R,

(
T(δs)− diag(|B̄ii|)

)
1n = 0n, v⊤

(
T(δs)− diag(|B̄ii|)

)
v ∈ R>0. (6.5)

1These results in Section 6.5 also hold for arbitrary, but constant angle differences, i.e., δik(t) := δik

∀t ≥ 0, δik ∈ T, but at the cost of a more complex notation.
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Furthermore, recall that B̄ii ̸= 0 for at least some i ∈ N. Hence, T(δs) is positive

definite, i.e.,

v⊤T(δs)v > 0, ∀v ∈ Rn \ {0n}.

Moreover, from (6.4), for any δik ̸= 0 (modulo 2π), i ∼ N, k ∼ Ni,

|(T(δ))ik| < |Bik|.

Hence, if δik ̸= 0, then

(T(δ))ii >
∑
l∼N

|(T(δ))il|, (T(δ))kk >
∑
l∼N

|(T(δ))kl|.

This, together with (6.5) implies that v⊤T(δ)v > 0 for any v ∈ Rn \ {0n} and any

δ ∈ Tn, completing the proof.

6.3 Conditions for frequency stability of droop-controlled

microgrids with distributed rotational and electronic

generation (MDREGs)

The main contribution of this section is to provide a necessary and sufficient condition

for local frequency stability of a lossy MDREG, i.e., an MDREG with nonzero transfer

conductances. The presence of transfer conductances leads to non-symmetric network

interconnections, complicating significantly the derivation of analytic stability condi-

tions. To establish the results, no assumptions on the power line characteristics nor the

voltage levels are made, but, as sometimes used in analysis of lossy conventional power

systems [244], uniform damping is assumed. See Section 6.3.3 for details regarding this

assumption. The provided analysis is based on [121].

The remainder of this section is structured as follows. In Section 6.3.1, the desired

synchronized motion is defined. An error system for the stability analysis is constructed

in Section 6.3.2. A necessary and sufficient condition for local exponential stability of

a lossy MDREG is given in Section 6.3.3. Subsequently, in Section 6.3.4, the aforemen-

tioned results are applied to analyze frequency stability in lossless microgrids. In the

latter case, the network interconnections are symmetric and the assumption of uniform

damping is dropped. In Section 6.3.5, the obtained stability condition is then combined

with Lemma 5.2.6 to give a condition, under which the frequency droop control (5.1),

respectively (5.2), solves the problem of active power sharing in a lossless MDREG.

Recall that the problem of active power sharing has been formulated in Problem 3.3.3.
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6.3.1 Synchronized motion

To state the main results of this section, the following natural power-balance feasibility

assumption is needed. Recall the system (5.13) with power flows Pi given in (4.24).

Assumption 6.3.1. There exist constants δs ∈ Θ and ωs ∈ R, where

Θ :=
{
δ ∈ Tn

⏐⏐ − π

2
< δik + ϕik <

π

2
, i ∼ N, k ∼ Ni

}
,

such that

1nω
s − 1nω

d +KP [P (δ
s)− P d] = 0n. (6.6)

Under Assumption 6.3.1, the motion of the system (5.13), (4.24) starting in (δs, 1nω
s)

is given by

δ∗(t) = mod2π

{
δs + 1n

(
ωst−

∫ t

0
ωcom(τ)dτ

)}
,

ω∗(t) = 1nω
s,

(6.7)

where the operator1 mod2π{·} is added to respect the topology of the system. This

desired motion is called synchronized motion and ωs is the synchronization frequency.

Remark 6.3.2. Clearly, the synchronized motion lives in the set Θ× 1nω
s.

Remark 6.3.3. There is not a unique desired synchronized motion of the system (5.13),

(4.24) associated to the flow given in (6.6), but any solution with ω∗(t) as given in (6.7)

and δ∗(t) = mod2π{δs + 1n(α+ ωst−
∫ t
0 ω

com(τ)dτ)}, α ∈ R, is a desired synchronized

motion.

Remark 6.3.4. For a given constant vector δs, the corresponding synchronization

frequency ωs is obtained by adding up all nodes in the network. From (4.23) and (6.6)

this yields

∑
i∼N

ω̇i

kPi

= 0 ⇒ ωs = ωd +

∑
i∼N

(
P d
i −GiiV

2
i −

∑
k∼Ni

ViVkGik cos(δ
s
ik)
)∑

i∼N
1

kPi

. (6.8)

6.3.2 Error dynamics

The main result of this section is to give conditions on the gains of the droop controllers

(5.1) and (5.2) such that the synchronized motion (6.7) is locally asymptotically stable,

1The operator mod2π{·} : R → [0, 2π), is defined as follows: y = mod2π{x} yields y = x− k2π for

some integer k, such that y ∈ [0, 2π), see Section 2.4.4.
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i.e., such that all solutions of the system (5.13), (4.24) starting in a neighborhood of

col(δs, 1nω
s) converge to the synchronized motion (6.7) (up to a uniform shift of all

angles).

It follows from inspection of (6.7) and the model derivation in Section 2.4.4, that,

for the purpose of stability analysis, a suitable choice of ωcom is ωcom = ωs, since then

δ∗(t) = δs is a constant vector. Moreover, it is convenient to study the stability of the

synchronized motion (6.37) in the coordinates col(δ̃(t), ω̃(t)) ∈ Rn × Rn with

ω̃(t) := ω(t)− 1nω
com = ω(t)− 1nω

s,

δ̃(t) := δ(0)− δs +

∫ t

0
(ω − 1nω

s)dτ = δ(0)− δs +

∫ t

0
ω̃(τ)dτ.

(6.9)

In addition, the following important observation is made. The dependence with respect

to δ of the dynamics (5.13), (4.24) is via angle differences δik. This immediately leads

to the following implication. Convergence of the dynamics (5.13), (4.24) to the desired

synchronized motion (6.7) (up to a uniform shift of all angles) is not determined by the

value of the angles, but only by their differences. Consequently, to study convergence

to the synchronized motion (6.7), one node, say node n, can be arbitrarily chosen as a

reference node and the remaining δ̃i for all i ∈ N \ {n} can be expressed relative to δ̃n

via the state transformation

θ : = Rδ̃, R :=
[
In−1 −1n−1

]
,

δ̃ = R̄

[
θ

δ̃n

]
, R̄ =

[
In−1 1n−1

0⊤n−1 1

]
.

(6.10)

This leads to a reduced system of order 2n − 1 with θ = col(θ1, . . . , θn−1) replacing δ̃.

In the reduced coordinates, the active power flows Pi given in (4.24) read

Pi(δ̃(θ)) := GiiV
2
i + ViVn|Yin| sin(θi + δsin + ϕin) +

∑
k∼Ni,k ̸=n

ViVk|Yik| sin(θik + δsik + ϕik),

Pn(δ̃(θ)) := GnnV
2
n −

∑
k∼Nn

VnVk|Ynk| sin(θk + δskn − ϕnk), i ∼ N \ {n}.

(6.11)

Furthermore, written in the new coordinates col(θ, ω̃) ∈ Rn−1 × Rn, the dynamics

(5.13), (4.24) take the form

θ̇ = Rω̃,

T ˙̃ω = −ω̃ −KP (P (δ̃(θ))− P d) + 1n

(
ωd − ωs

)
.

(6.12)
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The reduced system (6.12), (6.11) lives in the set Rn−1×Rn. Note that this system has

an equilibrium at

col(θs, ω̃s) = 0(2n−1),

the local asymptotic stability of which implies asymptotic convergence of all solutions of

the system (5.13), (4.24) starting in a neighborhood of col(δs, 1nω
s) to the synchronized

motion (6.7) up to a uniform shift of all angles.

The following relation is used in the remainder of this section. Consider the vector

P defined in (5.12) together with (6.9) and let L̃ be given by

L̃ :=
∂P

∂δ̃

⏐⏐
δ̃s

∈ Rn×n, (6.13)

with entries

l̃ii =
∑
k∼Ni

|Yik|V s
i V

s
k cos(δsik + ϕik), l̃ik = −|Yik|V s

i V
s
k cos(δsik + ϕik).

Clearly, from (6.10) and (6.11),

L̃R :=
∂P (δ̃(θ))

∂θ

⏐⏐
θs

=

(
∂P

∂δ̃

∂δ̃

∂θ

)⏐⏐
θs

= L̃

[
In−1

0⊤n−1

]
∈ Rn×(n−1). (6.14)

6.3.3 Frequency stability in lossy MDREGs

A necessary and sufficient condition for local exponential stability for lossy frequen-

cy-droop-controlled MDREGs is derived. A related work is [50], wherein, under the

assumption of small inertia-over-damping ratios, conditions for frequency synchroniza-

tion of a nonlinear lossy SG-based power system have been derived. The microgrid

(5.13), (4.24) is very similar to the model used in [50]. The authors of [50] obtain their

results via a singular perturbation approach that leads to reduced first-order dynamics

of (5.13), (4.24). For the model (5.13), (4.24), the perturbation assumption of [50]

reads

max
(
max
i∼NI

τPi , max
i∼NSG

MikPi

)
≪ 1.

Another assumption sometimes used in analysis of lossy power systems is uniform

damping [244]. In the present notation, this assumption reads

τPi = τPk
= . . . =MlkPl

=MmkPm , i ∼ NI , k ∼ NI , l ∼ NSG,m ∼ NSG.

None of the two assumptions is valid for generic lossy power systems, see [50] and

the discussion therein. Since, in the present case, τPi and kPi represent free design
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parameters, the latter assumption can be enforced for the frequency stability analysis

of a lossy MDREG. Moreover, unlike in [50], the local approximation of the reduced

second-order model (6.12) corresponding to the dynamics (5.13), (4.24) is considered

in the sequel.

Assumption 6.3.5. The parameters τPi and τPk
, i ∼ NI , k ∼ NI , as well as k̃Pl

and

k̃Pm , l ∼ NSG, m ∼ NSG, are selected such that τ = τPi = τPk
= . . . =MlkPl

=MmkPm.

Remark 6.3.6. The droop gains of the inverters kPi , i ∼ NI , are not restricted by

Assumption 6.3.5.

Remark 6.3.7. In practice, the low-pass filters are typically implemented in order to

filter the fundamental component of the power injections [34]. Hence, Assumption 6.3.5

is usually satisfied for inverters in microgrids.

Under Assumption 6.3.5, the microgrid dynamics (6.12), (6.11) can be represented

in a small neighborhood of the equilibrium col(θs, ω̃s) = 0(2n−1) as[
θ̇
˙̃ω

]
=

[
0(n−1)×(n−1) R

− 1
τKP L̃R − 1

τ In×n

]
  

:=AMDREG

[
θ
ω̃

]
. (6.15)

The main result of this section is given below.

Proposition 6.3.8. Consider the system (5.13), (4.24) satisfying Assumption 6.3.1.

Fix ωd and P d. Select τ > 0 and KP such that Assumption 6.3.5 is satisfied. Let

µi = ai + jbi be the i-th nonzero eigenvalue of KP L̃. Then, 0(2n−1) is a locally expo-

nentially stable equilibrium point of the system (6.12), (6.11) if and only if

τb2i < ai (6.16)

for all µi. Moreover, the equilibrium 0(2n−1) is locally exponentially stable for any τ if

and only if KP L̃ has only real eigenvalues.

Proof. Recall that, with the standing assumptions, the system (6.12), (6.11) is locally

equivalent to the system (6.15). Thus, the claim is established by deriving the spectrum

of AMDREG defined in (6.15).

Let λ be an eigenvalue of AMDREG with a corresponding right eigenvector v =

col(v1, v2), v1 ∈ Cn−1, v2 ∈ Cn. Then,

Rv2 = λv1,

−1

τ

(
KP L̃Rv1 + v2

)
= λv2.

(6.17)
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At first, it is proven by contradiction that zero is not an eigenvalue of AMDREG. There-

fore, assume λ = 0. Then,

Rv2 = 0n−1,

KP L̃Rv1 = −v2.
(6.18)

Multiply the second equation of (6.18) from the left by R. Then, the first equation of

(6.18) implies that

RKP L̃Rv1 = −Rv2 = 0n−1. (6.19)

From the definition of R given in (6.10), it follows that (6.19) can only be satisfied for

v1 ̸= 0n−1 if

KP L̃Rv1 = 1n.

By recalling (6.14) and the fact that KP is a diagonal matrix with positive real diagonal

entries, this is equivalent to

L̃Rv1 = L̃

[
In−1

0⊤n−1

]
v1 = L̃w1 = 1n, w1 :=

[
In−1

0⊤n−1

]
v1. (6.20)

It is easily verified that, under the standing assumptions, L̃ is the Laplacian matrix of

a directed strongly connected graph. Hence, according to Lemma 2.3.14, there exists

no w1 ̸= 0n satisfying (6.20). Consequently, (6.17) can only hold for λ = 0 if v1 = 0n−1

and v2 = 0n. Therefore, zero is not an eigenvalue of AMDREG.

In the following, conditions under which all eigenvalues of AMDREG have negative

real part are established. Since λ ̸= 0, (6.17) can be rewritten as

λ2v2 +
1

τ
λv2 +

1

τ
KP L̃RRv2 = 0n. (6.21)

It follows from the definition of R given in (6.10) together with (6.14) and Lemma 2.3.15

that

L̃RR = L̃

[
In−1

0⊤n−1

]
R = L̃

[
In−1 −1n−1

0⊤n−1 0

]
= L̃.

Hence, (6.21) is equivalent to

τλ2v2 + λv2 +KP L̃v2 = 0n. (6.22)

This implies that v2 must be an eigenvector of KP L̃. Recall that, under the standing

assumptions, L̃ is the Laplacian matrix of a strongly connected directed graph. Since

KP is a diagonal matrix with positive diagonal entries, KP L̃ is also a Laplacian matrix

of a strongly connected graph. Hence, KP L̃ possesses a simple zero eigenvalue with a

corresponding right eigenvector 1n and all its other eigenvalues have positive real part,
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see Section 2.3.5 and also, e.g., [121, 140]. For KP L̃v2 = 0n, (6.22) has solutions λ = 0

and λ = −1/τ. Recall that zero is not an eigenvalue of AMDREG. Hence, an eigenvalue

(with unknown algebraic multiplicity) of the matrix AMDREG is λ1 = −1/τ.

Now, the remaining 0 < m ≤ 2n−2 eigenvalues of the matrixAMDREG ∈ R(2n−1)×(2n−1)

are investigated. Denote the nonzero1 eigenvalues of KP L̃ by µi ∈ C. Let a corre-

sponding right eigenvector be given by wi ∈ Cn, i.e., KP L̃wi = µiwi. Without loss of

generality, choose wi such that w∗
iwi = 1. By multiplying (6.22) from the left with w∗

i ,

the remaining m eigenvalues of AMDREG are the solutions λi1,2 of

τλ2i1,2 + λi1,2 + µi = 0. (6.23)

First, consider real nonzero eigenvalues, i.e., µi = ai with ai > 0. Then, clearly,

both solutions of (6.23) have negative real parts, e.g., by the Hurwitz condition (see

Theorem 2.3.12). Next, consider complex eigenvalues ofKP L̃, i.e., µi = ai + jbi, ai > 0,

bi ∈ R \ {0}. Then, it follows from (6.23) that

λi1,2 =
1

2τ

(
−1±

√
1− 4τ(ai + jbi)

)
. (6.24)

Let αi := 1 − 4aiτ , βi := −4biτ and recall that the roots of a complex number
√
αi + jβi, βi ̸= 0, are given by ±(ψi + jνi), ψi ∈ R, νi ∈ R, [245] with

ψi =

√
1

2

(
αi +

√
α2
i + β2i

)
.

Thus, both solutions λi1,2 in (6.24) have negative real parts if and only if√
1

2

(
αi +

√
α2
i + β2i

)
< 1

or, equivalently, √
α2
i + β2i < 2− αi.

Inserting αi and βi gives √
(1− 4aiτ)2 + 16b2i τ

2 < 1 + 4aiτ,

where the right hand side is positive. The condition is therefore equivalent to

τ <
ai
b2i
,

1Neither the algebraic nor the geometric multiplicities of the nonzero eigenvalues of the matrix

product KP L̃ are known in the present case. However, this information is not required, since, to

establish the claim, it suffices to know that ℜ(σ(KP L̃)) ⊆ R≥0. This follows from the facts that, under

the standing assumptions, L̃ is the Laplacian matrix of a strongly connected graph and that KP is a

diagonal matrix with positive diagonal entries.
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which is condition (6.16) for bi ̸= 0. Hence, AMDREG is Hurwitz if and only if (6.16)

holds for all µi. Finally, by Theorem 2.3.8, the equilibrium point 0(2n−1) is locally

exponentially stable if and only if AMDREG is Hurwitz.

Condition (6.16) has the following immediate physical interpretation. The magni-

tudes of the eigenvalues µi of KP L̃ depend on the magnitudes of the droop gains kPi .

Therefore, increasing all gains contained in KP by a factor κ, where κ is a positive real

parameter, implies that all eigenvalues µi are increased by the same factor κ. Hence,

condition (6.16) states that, in order to ensure local asymptotic stability, the larger the

parameter τ is, the lower the feedback gain has to be chosen. Therefore, for the prac-

tical operation of droop-controlled inverters modeled by (5.4), condition (6.16) implies

that the slower the power measurements are processed, i.e., the larger τ is, the lower

the droop gains have to be chosen.

Note that, in general, a variation in KP leads to a different synchronized motion

(6.7). As a consequence, the physical interpretation of condition (6.16) given above is

only valid under the assumption that a variation of the gains does not have a significant

effect on the matrix L̃ defined in (6.13). By continuity, this is, e.g., the case for small

variations of the gains.

Remark 6.3.9. Condition (6.16) can also be derived via the Routh-Hurwitz criterion

for polynomials with complex coefficients given in Theorem 2.3.12, respectively for

quadratic polynomials in Corollary 2.3.13. This alternative approach is illustrated

when establishing the claim of Proposition 6.5.6.

Remark 6.3.10. Recall the inverter model (5.23), (4.24) which takes into account the

drift of the internal clock of the inverter at the i-th node. Clearly, therein the clock

drifts υi, i ∼ N, appear as scaling parameters. The analyis conducted in this section is

based on the converse Lyapunov theorem 2.3.8, which ensures the existence of a strict

Lyapunov function [128, Chapter 4]. From this Lyapunov function some robustness

properties, e.g., against parameter uncertainties, can be inferred [128, Chapters 4 and

9]. The clock drifts |υi| ≪ 1 [213], i ∼ N, represent parameter uncertainties. Hence,

Proposition 6.3.8 ensures local stability for small enough |υi|, i ∼ N. Similar arguments

apply to the analysis carried out in the remainder of this work. Consequently, the

effect of possible clock drifts on microgrid stability is not further discussed within this

chapter. For the results in Section 6.4, a detailed proof is given in [124].
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6.3.4 Frequency stability in lossless MDREGs

As discussed in Section 6.2, a microgrid with inductive lines and second-order dynamics

is obtained from (5.13), (4.24) by setting Gik = 0, respectively ϕik = 0 for all i ∼ N,

k ∼ Ni (see Assumption 6.2.4). Recall that then the power flows (4.24) simplify to

(6.2). Moreover, under Assumption 6.2.4, the reduced dynamics (6.12), (6.11) can be

represented in a small neighborhood of the equilibrium col(θs, ω̃s) = 0(2n−1) as[
θ̇
˙̃ω

]
=

[
0n×n R

−T−1KP L̃R −T−1

]
  

:=AMDREG,LL

[
θ
ω̃

]
, (6.25)

with L̃R as defined in (6.14). Local exponential stability follows as a corollary to

Proposition 6.3.8.

Corollary 6.3.11. Consider the system (5.13), (6.2) satisfying Assumption 6.3.1. Fix

ωd, P d, KP and T. Then, 0(2n−1) is a locally exponentially stable equilibrium point of

the system (6.12), (6.11).

Proof. Following the proof of Proposition 6.3.8, the claim is established by deriving the

spectrum of AMDREG,LL defined in (6.25). Let λ be an eigenvalue of AMDREG,LL with

a corresponding right eigenvector v = col(v1, v2), v1 ∈ Cn−1, v2 ∈ Cn. Then,

Rv2 = λv1,

−T−1
(
KP L̃Rv1 + v2

)
= λv2.

(6.26)

As before, it is first proven by contradiction that zero is not an eigenvalue of AMDREG,LL.

Therefore, assume λ = 0. Then, (6.26) becomes identical to (6.18) and the proof of

Proposition 6.3.8 implies that zero is not an eigenvalue of AMDREG,LL.

To see that under Assumption 6.2.4 all eigenvalues of AMDREG,LL have negative real

part, note that for λ ̸= 0, (6.26) can be rewritten as

Tλ2v2 + λv2 +KP L̃RRv2 = 0n.

Recalling that L̃RR = L̃ and premultiplying with v∗2K
−1
P yields

v∗2K
−1
P Tv2λ

2 + v∗2K
−1
P v2λ+ v∗2L̃v2 = 0. (6.27)

Recall that KP and T are diagonal matrices with positive diagonal entries. Moreover,

Assumption 6.2.4 implies that ϕik = 0, i ∼ N, k ∼ N and it is easily verified that L̃

defined in (6.13) is a symmetric Laplacian matrix of a connected graph. Hence,

L̃β1n = 0n, w∗L̃w ∈ R>0 ∀w ∈ Cn \ {β1n}, β ∈ C. (6.28)
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Furthermore,

w∗K−1
P Tw ∈ R>0, w∗K−1

P w ∈ R>0 ∀w ∈ Cn \ {0n}. (6.29)

Consequently, for w = β1n, β ∈ C, (6.27) becomes

λ
(
w∗K−1

P Twλ+ w∗K−1
P w

)
= 0,

which has the solutions λ = 0 and

λ = −
w∗K−1

P w

w∗K−1
P Tw

< 0.

Recall that zero is not an eigenvalue of AMDREG,LL. In addition, from (6.28), (6.29)

together with the Hurwitz condition, both solutions λ1,2 of (6.27) have negative real

parts for any w ∈ Cn \ {β1n}, β ∈ C. This implies that AMDREG,LL is Hurwitz and the

claim follows from Theorem 2.3.8.

Remark 6.3.12. Assumption 6.3.5 is not needed to prove local stability in a network

with inductive power lines, since L̃ is a symmetric Laplacian matrix if δs ∈ Θ and

ϕik = 0, i ∼ N, k ∼ N.

6.3.5 A solution to the problem of active power sharing in lossless

MDREGs

The contribution of this section is to give a condition under which the active power

sharing problem, i.e., Problem 3.3.3, is solved. The provided solution is established

for an MDREG with dominantly inductive power lines operated with frequency droop

control (5.1), respectively (5.2). The result follows as a corollary to the stability result

in the previous section in combination with Lemma 5.2.6.

Corollary 6.3.13. Consider the system (5.13), (6.2) satisfying Assumption 6.3.1. Fix

ωd and T. Furthermore, following Definition 3.3.1, select positive real constants γi,

i ∼ N. Let U = diag(1/γi). Set KP = ςU and P d = ψU−11n, where ς and ψ are real

nonzero constants. Then Problem 3.3.3 is solved locally, i.e., for all initial conditions

in a neighborhood of col(δs, 1nω
s).

Proof. The claim is established by combining the results of Corollary 6.3.11 and Lemma

5.2.6.

First, it is shown that the suggested selection of control parameters restricts the

steady-state active power flows associated with the synchronized motion (6.7) to the

129



6. CONDITIONS FOR STABILITY IN MICROGRIDS

desired manifold defined in Problem 3.3.3. Recall from the definition of Problem 3.3.3

that this manifold is given by

UP (δs) = υ1n, υ ∈ R,

with P given by (6.2). From (5.13), (6.2) with ω̇ = 0 it follows that, along the synchro-

nized motion (6.7),

ω̇ = 0n = −(ωs − ωd)1n −KP (P
s − P d),

which by inserting KP = ςU and P d = ψU−11n is equivalent to

ω̇ = 0n = −(ωs − ωd)1n − ςU(P s − ψU−11n)

= −(ωs − ωd)1n − ς(UP s − ψ1n).
(6.30)

It follows that

UP s =
(−ωs + ωd + ςψ)

ς
1n

⇔ UP s = υ1n, υ :=
(−ωs + ωd + ςψ)

ς
,

(6.31)

which implies active power sharing in steady-state.

Finally, under the standing assumptions, the claimed convergence result follows

directly from Corollary 6.3.11. This completes the proof.

Remark 6.3.14. Note that the selection criterion for the parameters of the frequency

droop controller given in Lemma 5.2.6 is only sufficient and not necessary to achieve a

desired active power sharing. For example, for a known value of υ ∈ R in (6.31), there

obviously exist infinitely many other choices of P d
i and kPi , i ∼ N, ensuring a desired

power sharing in steady-state for the particular synchronized motions given by (6.7),

which satisfy UP s = υ1n. The advantage of the selection criterion given in Lemma 5.2.6

is, however, that it ensures a desired power sharing in steady-state for any synchronized

motion (6.7).

6.4 Conditions for stability of droop-controlled inverter-

based microgrids

The main contribution of the present section is to give conditions on the parameters

of the droop control (5.2)-(5.3) that ensure stability of droop-controlled inverter-based

microgrids with general meshed topology and inverter models with variable frequencies,

as well as variable voltage amplitudes. In contrast to [28, 29, 66, 121], no assumptions
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of constant voltage amplitudes or small phase angle differences are made. In this more

general scenario, the methods from graph theory and linear algebra employed in the

aforementioned papers are not directly applicable. The same holds for the mathematical

tools used in the previous section.

Instead, a classical Lyapunov-like approach for analysis of stability of equilibria and

boundedness of trajectories is adopted. Following the interconnection and damping

assignment passivity-based control approach [53, 123], the lossless microgrid system is

represented in port-Hamiltonian form [129] to identify the energy-Lyapunov function

and give conditions for stability of the frequency synchronization equilibrium state.

The remainder of this section is taken from [71, 123] and organized in two subsec-

tions. First, Section 6.4.1 presents conditions for global boundedness of trajectories.

Second, sufficient conditions for stability for lossless inverter-based microgrids are es-

tablished in Section 6.4.2.

6.4.1 Boundedness of trajectories of droop-controlled inverter-based

microgrids

Consider a droop-controlled inverter-based microgrid given by (5.21), (4.24). Recall

that the system (5.21), (4.24) lives in the set

M := Tn × Rn × Rn
>0. (6.32)

The proposition below gives conditions for global boundedness of the trajectories

of the system (5.21), (4.24) and is mainly due to Alessandro Astolfi. The formulation

is taken from [71].

To establish the result, recall that Assumption 2.4.18 together with Assumption 4.4.1

implies that Bik ≤ 0, i ∼ N, k ∼ N.

Proposition 6.4.1. Consider the system (5.21), (4.24) with Assumptions 2.4.18 and

4.4.1. The set M defined in (6.32) is positively invariant and all trajectories of (5.21),

(4.24) are bounded if V d
i , kQi and Q

d
i are chosen such that

V d
i + kQiQ

d
i > 0, i ∼ N. (6.33)

Proof. From (5.19), (4.24), write τPi V̇i = f3i(δ, V ), for some function f3i : Tn ×Rn
>0 →

R. Note that

f3i(V, δ)|Vi=0 = V d
i + kQiQ

d
i ,
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which, under condition (6.33), is positive. Hence, the following implication is true

Vi(0) > 0 ⇒ Vi(t) > 0,

for all t ≥ 0. This proves that the set M is positively invariant, cf. Definition 2.3.4.

To establish boundedness of solutions define the matrix Γ := diag(τPi/kQi), i ∼ N

and the function W : Rn
>0 → R>0

W(V ) = ∥ΓV ∥1 =
∑
i∼N

τPi

kQi

Vi.

Then,

Ẇ =
∑
i∼N

(
1

kQi

(−Vi + V d
i )− (Qi(δ, V )−Qd

i )

)
≤ −κ1W+ κ2 − V ⊤T(δ)V,

where

κ1 := min
i∼N

{
1

τPi

}
, κ2 :=

∑
i∼N

(
1

kQi

V d
i +Qd

i

)
and T(δ) as defined in (6.4). Here, the fact has been used that, as Gik = Gki, (4.23)

implies that ∑
i∼N

Qi =
∑
i∼N

⎛⎝−BiiV
2
i +

∑
k∼Ni

BikViVk cos(δik)

⎞⎠ ,

which are the reactive power losses in the network.

Recall that, with the given assumptions, Lemma 6.2.6 implies that

T(δ) ≥ nκ3Γ
2,

for some κ3 > 0. Hence,

Ẇ ≤ −κ1W+ κ2 − κ3W
2,

where the third right hand term follows from the fact that1

√
n∥x∥2 ≥ ∥x∥1, ∀x ∈ Rn

1Let x ∈ Rn, y ∈ Rn and 1 ≤ l < ∞, 1 ≤ q < ∞, such that 1
l
+ 1

q
= 1. Then, the Hölder inequality

implies that
∑n

k=1 |xkyk| ≤
(∑n

k=1 |xk|l
) 1

l
(∑n

k=1 |yk|q
) 1

q [144]. Consider any x ∈ Rn and any p-norm

∥x∥p =
(∑n

i=1 |xi|p
) 1

p , 1 ≤ p < ∞. Let l = r
p
and q = 1

1−p/r
with 1 ≤ p < ∞, 1 ≤ r < ∞. Then,

by the Hölder inequality, ∥x∥p =
(∑n

i=1 |xi|p1
) 1

p ≤
((∑n

i=1 (|xi|p)r/p
) p

r
(∑n

i=1 1
1/(1−p/r)

)1− p
r

) 1
p

=

n

(
1
p
− 1

r

)
∥x∥r [144]. The inequality

√
n∥x∥2 ≥ ∥x∥1 follows with p = 1 and r = 2. Also, the inequalities

can be extended to the case p = ∞ by defining 1
∞ = 0.
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and, hence,

nV ⊤Γ2V = n∥ΓV ∥22 ≥ ∥ΓV ∥21 = W2(V ).

The differential equation

ż = −κ1z + κ2 − κ3z
2, z(0) = z0,

is a scalar differential Riccati equation with constant coefficients, which has the solution

z(t) =
2κ2

(
−1 + eκ4t

)
+ z0

(
κ1
(
1− eκ4t

)
+ κ4

(
1 + eκ4t

))
κ1 (−1 + eκ4t) + κ4 (1 + eκ4t) + 2κ3z0 (−1 + eκ4t)

, (6.34)

with κ4 :=
√

4κ2κ3 + κ21. Furthermore,

lim
t→∞

z(t) =
2κ2 + z0 (−κ1 + κ4)

κ1 + κ4 + 2κ3z0
. (6.35)

From the Comparison Lemma [128, Chapter 3] it then follows that for W(V (0)) ≤ z0∑
i∼N

τPi

kQi

Vi(t) ≤ z(t),

hence, together with (6.35), V ∈ L∞. This, together with (4.24), implies that P ∈ L∞.

Finally, ω ∈ L∞ follows from (5.19), which shows that ωi is the output of an LTI

asymptotically stable system with bounded input.

Remark 6.4.2. Condition (6.33) in Proposition 6.4.1 has a clear physical interpreta-

tion. From the dynamics of Vi in (5.19) it follows that the equilibrium voltage is given

by

V s
i = V d

i − kQi(Q
s
i −Qd

i ),

where Qs
i is the reactive power injected in steady-state to the i-th bus. Hence, (6.33)

requires that the gains kQi and the setpoints V d
i and Qd

i of the voltage droop control

(5.3) are chosen such that V s
i > 0 , even if there is zero reactive power injection to the

i-th bus. Note that condition (6.33) is satisfied for all kQi if Q
d
i ≥ 0.

6.4.2 Conditions for stability of lossless droop-controlled inverter-

based microgrids

In this section conditions for frequency and voltage stability for lossless microgrids, i.e.,

Gik = 0, i ∼ N, k ∼ N, are derived. The assumption of lossless admittances is further

justified for the present analysis, since the droop control laws introduced in (5.2)-(5.3)

are mostly used in networks with dominantly inductive, i.e., lossless, line admittances

[38, 238]. Recall that under Assumption 6.2.1, the power flow equations (4.24) reduce

to (6.1).
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6.4.2.1 Synchronized motion

In the spirit of Section 6.3.1, the following natural power-balance feasibility assump-

tion is needed to state the main result of this section. Recall the set Θ defined in

Assumption 6.3.1.

Assumption 6.4.3. There exist constants δs ∈ Θ, ωs ∈ R and V s ∈ Rn
>0 such that

1nω
s − 1nω

d +KP [P (δ
s, V s)− P d] = 0n,

V s − V d +KQ[Q(δs, V s)−Qd] = 0n.
(6.36)

Under Assumption 6.4.3, the motion of the system (5.21), (6.1) starting in (δs, 1nω
s, V s)

is given by

δ∗(t) = mod2π

{
δs + 1n

(
ωst−

∫ t

0
ωcom(τ)dτ

)}
,

ω∗(t) = 1nω
s,

V ∗(t) = V s,

(6.37)

Following the notation of Section 6.3, this desired motion is called synchronized motion

and ωs is the synchronization frequency1.

Remark 6.4.4. Recall (6.8). Note that under Assumption 6.2.1, it is possible to

uniquely determine ωs. Towards this end, recall the well-known fact that under As-

sumption 6.2.1 ∑
i∼N

P s
i = 0.

Thus, replacing the synchronized motion (6.37) in (5.19) and adding up all the nodes

yields ∑
i∼N

ω̇i

kPi

= 0 ⇒ ωs = ωd +

∑
i∼N

P d
i∑

i∼N

1
kPi

.

It follows that i ∼ N

1

kPi

(ωs − ωd)− P d
i =

∑
k∼N,k ̸=i

(
1

kPk

(ωd − ωs) + P d
k

)
⇔ ωs − ωd − kPiP

d
i =

∑
k∼N,k ̸=i

kPi

kPk

(
ωd − ωs + kPk

P d
k

)
.

(6.38)

Remark 6.4.5. Clearly, the synchronized motion lives in the set Θ× 1nω
s × Rn

>0.

1 As stated in Remark 6.3.3, the desired motion (6.37) is only unique up to a uniform shift of all

angles.
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6.4.2.2 Error dynamics

The main result of this section is to give conditions on the setpoints and gains of

the droop controllers (5.2)-(5.3) such that the synchronized motion (6.37) is locally

asymptotically stable, i.e., such that all solutions of the system (5.21), (6.1) starting in

a neighborhood of col(δs, 1nω
s, V s) converge to the synchronized motion (6.37) (up to

a uniform shift of all angles).

To this end, recall the matrix R defined in (6.10). Also recall from Section 6.3 the

fact that the power flows P and Q in (5.12) are invariant to a uniform shift of all angles.

Hence, δ∗ is only unique up to such a shift and convergence to the desired synchronized

motion (6.37) (up to a uniform shift of all angles) does not depend on the value of the

angles, but only on their differences.

Recall the definition of the error states of the angles and frequencies given in (6.9).

By following the approach taken in Section 6.3, it is convenient to study the stability of

the synchronized motion (6.37) in the coordinates col(δ̃(t), ω̃(t), V (t)) ∈ Rn×Rn×Rn
>0.

Furthermore, in the present case, this leads to a reduced system of order 3n − 1 with

θ = col(θ1, . . . , θn−1) replacing δ̃.

For ease of notation, the following constants are introduced

c1i := ωd − ωs + kPiP
d
i , c2i := V d

i + kQiQ
d
i , i ∼ N. (6.39)

Furthermore, let the constant θn be given by1

θn := 0.

and let

θik := θi − θk,

which clearly verifies θik = δ̃ik for k ̸= n and θin = θi.

Written in the new coordinates col(θ, ω̃, V ) ∈ Rn−1×Rn×Rn1
>0 the dynamics (5.21),

(6.1) take the form

θ̇i = ω̃i − ω̃n,

τPi
˙̃ωi = −ω̃i − kPi

∑
k∼Ni

ViVk|Bik| sin(θik + δsik) + c1i , (6.40)

τPi V̇i =−Vi− kQi

(
|Bii|V 2

i −
∑
k∼Ni

ViVk|Bik| cos(θik + δsik)
)
+ c2i ,

1The constant θn is not part of the state vector θ.
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i ∼ N \ {n}. The dynamics of the n-th node, which serves as a reference, are given by

τPn
˙̃ωn = −ω̃n + kPn

∑
k∼Nn

VnVk|Bnk| sin(θk + δskn) + c1n ,

τPn V̇n = −Vn − kQn

(
|Bnn|V 2

n −
∑
k∼Nn

VnVk|Bnk| cos(θk + δskn)
)
+c2n.

(6.41)

The reduced system (6.40)-(6.41) lives in the set M̃ = Rn−1 × Rn × Rn1
>0. This system

has an equilibrium at

xs := col(0n−1, 0n, V
s). (6.42)

As discussed in the previous section, local asymptotic stability of xs implies asymptotic

convergence of all solutions of the system (5.21), (6.1) starting in a neighborhood of

col(δs, 1nω
s, V s) to the synchronized motion (6.37) (up to a uniform shift of all angles).

6.4.2.3 Main result

To streamline the presentation of the stability result, it is convenient to introduce the

matrices L ∈ R(n−1)×(n−1) and W ∈ R(n−1)×n with entries

lii :=
n∑

m=1

|Bim|V s
i V

s
m cos(δsim), lik := −|Bik|V s

i V
s
k cos(δsik),

wii :=
n∑

m=1

|Bim|V s
m sin(δsim), wim := |Bim|V s

i sin(δsim),

(6.43)

where i ∼ N \ {n}, k ∼ N \ {n} and m ∼ N, as well as

F := diag

(
c2m

kQm(V
s
m)2

)
= diag

(
V d
m + kQmQ

d
m

kQm(V
s
m)2

)
∈ Rn×n. (6.44)

Also recall the matrix T defined in (6.4) and denote by T(δs) its evaluation at δs with

entries

tii = |Bii|, tik = −|Bik| cos(δsik), i ̸= k, i ∼ N, k ∼ Ni.

Recall that it follows from Lemma 6.2.6, that T(δs) is positive definite.

Lemma 6.4.6. Consider the system (5.21), (6.1) with Assumption 6.4.3. Then, L > 0.

Proof. Recall L̃ defined in (6.13). Clearly, from (6.43) and under the standing as-

sumptions, l̃ii = lii and l̃ik = lik for k ̸= n. Furthermore, recall that the microgrid is

connected by assumption. In addition, recall from the proof of Corollary 6.3.11 that
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under the given assumptions L̃ is a symmetric Laplacian matrix of a connected graph

with the properties [140], see also, e.g., [28, 121],

L̃γ1n = 0, v⊤L̃v > 0, ∀v ∈ Rn \ {v = γ1n}, γ ∈ R. (6.45)

Recall the matrix R defined in (6.10), let r :=
[
0⊤n−1 1

]
and note that

L̃

[
R

r

]−1

= L̃

[
In−1 1n−1

0⊤n−1 1

]
=

[
L 0n−1

b⊤ 0

]
, (6.46)

where b = col(l̃in) ∈ Rn−1, i ∼ N \ {n}. It follows from (6.45) and (6.46) that for any

ṽ := col(ϑ, 0) ∈ Rn, ϑ ∈ Rn−1 \ {0n−1}

ṽ⊤L̃

[
R

r

]−1

ṽ = ṽ⊤L̃ṽ = ϑ⊤Lϑ > 0. (6.47)

Moreover, L is symmetric. Hence, L > 0.

It follows from (6.47) and the properties of spectra of symmetric matrices, see, e.g.,

[144], that, under the standing assumptions of Lemma 6.4.6,

σ(L) ⊆ σ(L̃) \ {0} ⊂ R>0, (6.48)

with L̃ given in (6.13). Note that the matrices L, respectively L̃, correspond to the

linearization of the active power flows at nodes i ∼ N \ {n} in the reduced system

(6.40)-(6.41), respectively to the linearization of the active power flows at all nodes

i ∼ N in the original system (5.21), (6.1). Hence, L, respectively L̃, represent locally

the network coupling strengths between the phase angles and the active power flows.

Consequently, (6.48) states that the local coupling strengths between the phase angles

and the active power flows in the reduced system (6.40)-(6.41) are contained within

the local coupling strengths between the phase angles and the active power flows in the

original system (5.21), (6.1).

The main result of this section is given below.

Proposition 6.4.7. Consider the system (5.21), (6.1) with Assumption 6.4.3. Fix ωd,

τPi , kPi and P
d
i , i ∼ N. Select V d

i , kQi and Q
d
i such that

F + T(δs)−W⊤L−1W > 0. (6.49)

Then, the equilibrium xs = col(0n−1, 0n, V
s) of the system (6.40)-(6.41) is locally

asymptotically stable.
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Proof. The claim is established following the interconnection and damping assignment

passivity-based control approach [53]. More precisely, the system (6.40)-(6.41) is rep-

resented in port-Hamiltonian form to identify the energy-Lyapunov function. Defining

x := col(θ, ω̃, V ), the system (6.40)-(6.41) can be written as

ẋ = (J −R(x))∇H, (6.50)

where the Hamiltonian H : Rn−1 × Rn × Rn
>0 → R is given by

H(x) =
n∑

i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i ln(Vi)) +
1

2
|Bii|V 2

i

− 1

2

∑
k∼Ni

ViVk|Bik| cos(θik + δsik)
)
−

n−1∑
i=1

c1i
kPi

θi (6.51)

and the interconnection and damping matrices are

J =

[
0(n−1)×(n−1) J

−J⊤ 02n×2n

]
, R(x) = blkdiag(0(n−1)×(n−1), Rω, RV ) (6.52)

with

J =
[
JK −kPn

τPn
1n−1 0(n−1)×n

]
, JK = diag

(
kPk

τPk

)
∈ R(n−1)×(n−1),

Rω = diag

(
kPi

τ2Pi

)
∈ Rn×n, RV = diag

(
kQiVi
τPi

)
∈ Rn×n,

k ∼ N \ {n}, i ∼ N. Note that J = −J⊤ and R(x) ≥ 0. Consequently,

Ḣ = −(∇H)⊤R(x)∇H ≤ 0. (6.53)

Therefore, by Lemma 2.3.11, xs is a stable equilibrium of system (6.40)-(6.41) if H(x)

has a strict local minimum at the equilibrium xs. To ensure the latter it is shown that

∇H(xs) = 0(3n−1) and
∂2H(x)
∂x2

⏐⏐
xs > 0. Now,(

∂H

∂θ

⏐⏐⏐
xs

)⊤
= col

(
ai −

c1i
kPi

)
∈Rn−1,

(
∂H

∂ω̃

⏐⏐⏐
xs

)⊤
= 0n,(

∂H

∂V

⏐⏐⏐
xs

)⊤
= col

(
−bl + |Bll|V s

l +
1

kQl

(
1− c2l

V s
l

))
∈Rn,

where i ∼ N \ {n}, l ∼ N and

ai :=
∑
k∼Ni

V s
i V

s
k |Bik| sin(δsik), bl :=

∑
k∼Nl

V s
k |Blk| cos(δslk).

Hence, ∇H(xs) = 0(3n−1).
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The Hessian of H(x) evaluated at xs is given by

∂2H(x)

∂x2
⏐⏐
xs =

⎡⎢⎣ L 0(n−1)×n W
0n×(n−1) Υ 0n×n

W⊤ 0n×n F + T(δs)

⎤⎥⎦ ,
with L, W, F and T(δs) as defined in (6.43), (6.44), respectively (6.4), and Υ :=

diag(τPi/kPi) ∈ Rn×n. Since Υ is positive definite, the Hessian is positive definite if and

only if the submatrix [
L W
W⊤ F + T(δs)

]
(6.54)

is positive definite. Recall that Lemma 6.4.6 implies that, under the standing assump-

tions, L is positive definite. Hence, the matrix (6.54) is positive definite if and only

if

F + T(δs)−W⊤L−1W > 0,

which is condition (6.49).

By Lemma 2.3.11, recalling (6.53) and the fact that R(x) ≥ 0, to prove asymp-

totic stability it suffices to show that—along the trajectories of the system (6.50)—the

implication

R(x(t))∇H(x(t)) = 0(3n−1) ∀t ≥ 0 ⇒ lim
t→∞

x(t) = xs (6.55)

holds. From (6.55) it follows that

∂H

∂ω̃
= 0n,

∂H

∂V
= 0n,

where the first condition implies ω̃ = 0n. Hence, θ is constant. The second condition

implies V constant. Therefore, the invariant set where Ḣ(x(t)) = 0, ∀t ≥ 0, is an

equilibrium. To prove that this is the desired equilibrium xs recall that xs is an iso-

lated minimum of H(x). Consequently, there is a neighborhood of xs where no other

equilibrium exists, completing the proof.

Condition (6.49) has the following physical interpretation. The droop control laws

(5.2)-(5.3) establish a feedback interconnection linking the phase angles δ, respectively

θ, with the active power flows P, as well as the voltages V with the reactive power flows

Q.

The matrices L and T(δs) represent then the network coupling strengths between

the phase angles and the active power flows, respectively, the voltages and the reactive

power flows. In the same way, W can be interpreted as a local cross-coupling strength

originating from the fact that the active power flows P are not mere functions of δ and
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the reactive power flows Q are not mere functions of V, but that the active and reactive

power flows are functions of both δ and V.

Condition (6.49) states that to ensure local stability of the equilibrium xs defined in

(6.42) the couplings represented by L and T(δs) have to dominate the cross-couplings

of the power flows contained in W. If that is not the case the voltage variations have

to be reduced by reducing the magnitudes of the gains kQi , i ∈ N.

Another possibility is to adapt Qd
i and V d

i . This does, however, not seem as ap-

propriate in practice since these two parameters are typically setpoints provided by

a supervisory control, which depend on the nominal voltage of the network and the

expected loading conditions, see Remark 5.2.1.

Remark 6.4.8. To see that (6.50) is indeed an equivalent representation of (6.40)-

(6.41), note that the part of the dynamics of ω̃n in (6.41) resulting from J∇H is

kPn

τPn

1⊤n−1

(
∂H

∂θ

)⊤
=
kPn

τPn

n−1∑
i=1

( ∑
k∼Ni

ViVk|Bik| sin(θik + δsik)−
c1i
kPi

)

=
kPn

τPn

( ∑
k∼Nn

VnVk|Bnk| sin(θk + δskn)−
n−1∑
i=1

c1i
kPi

)
,

since
∑n−1

i=1

∑
k∼Ni,k ̸=n ViVk|Bik| sin(θik + δsik) = 0. Furthermore, it follows from (6.38)

that

c1n = ωd − ωs + kPnP
d
n = −

n−1∑
i=1

kPn

kPi

c1i .

Finally, the remaining term in ω̃n is contributed by the dissipation part R(x)∇H.

Remark 6.4.9. The analysis reveals that the stability properties of the lossless micro-

grid (5.21), (6.1) are independent of the frequency droop gains kPi , the active power

setpoints P d
i and the low pass filter time constants τPi , and only condition (6.49) is

imposed on V d
i , kQi and Q

d
i . In that regard, the result is identical to those derived for

lossless first-order inverter models in [28] and lossless second-order inverter models in

Section 6.3.11, respectively in [121], both assuming constant voltage amplitudes.

Remark 6.4.10. In a similar fashion to Corollary 6.3.13, a solution to Problem 3.3.5,

i.e., the problem of active power sharing, can be formulated by combining the stability

result given in Proposition 6.3.8 with Lemma 5.2.6. Establishing this result follows

in a straightforward manner from the proof of Corollary 6.3.13 and is therefore not

conducted explicitly. Furthermore, Problem 3.3.5 is considered in the next section.
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Remark 6.4.11. The above given physical interpretation of the stability condition in

Proposition 6.3.8 can, for example, be derived by analyzing the numerical range of the

matrix condition on the left of (6.49), cf. Section 2.3.6. To see this, let v ∈ Rn, v⊤v = 1

and multiply the matrix condition on the left of (6.49) from the left with v⊤ and from

the right with v, which yields

v⊤
(
F + T(δs)−W⊤L−1W

)
v = v⊤ (F + T(δs)) v − v⊤

(
W⊤L−1W

)
v > 0. (6.56)

Without loss of generality, let w := Wv ∈ Rn−1. Then, w⊤w = v⊤W⊤Wv = γ, where

γ ∈ R≥0, since the product of a matrix with its transposed is always positive semidefi-

nite. Furthermore, (6.56) becomes

v⊤ (F + T(δs)) v − w⊤L−1w > 0. (6.57)

Clearly, γ = 0 implies Wv = w = 0n−1 and the above inequality is then always true,

since F and T(δs) are positive definite matrices. Hence, assume γ ̸= 0 and let
√
γb := w,

b ∈ Rn−1. Replacing w by b in (6.57) gives

v⊤ (F + T(δs)) v − γb⊤L−1b > 0. (6.58)

Finally, by noting that

v⊤ (F + T(δs)) v = v⊤Fv + v⊤T(δs)v ≥ min (σ (F )) + min (σ (T(δs))) > 0,

0 < b⊤L−1b ≤ max
(
σ
(
L−1

))
= (min (σ(L)))−1 ,

a (conservative) sufficient condition for the matrix inequality (6.49) to be satisfied is

min (σ(F )) + min (σ (T(δs)))− γ (min (σ(L)))−1 > 0

⇔ (min (σ(F )) + min (σ (T(δs))))min (σ(L)) > γ,

where the product min (σ (T(δs)))min (σ(L)) can be interpreted as a lower bound for

the network coupling strength represented by L and T(δs) and γ can be interpreted as

the cross-coupling strength corresponding to W.

6.4.2.4 A relaxed stability condition

Condition (6.49) is imposed to ensure H(x) given in (6.51) is a positive definite function

and, therefore, qualifies as a Lyapunov function candidate. This condition can be

removed if, instead of Lyapunov theory, LaSalle’s invariance principle (which does not

require positive definiteness) is invoked, see Theorem 2.3.5. Indeed, from the proof

of Proposition 6.4.7 it follows that the function H(x) is still non-increasing and via

LaSalle it can be concluded that all bounded trajectories converge to an equilibrium.
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The qualifier “bounded” is, of course, critical, and its establishment is stymied by

the presence of the linear term in θ contained in H(x) given in (6.51). The inclusion

of this term destroys the natural topology of the system, e.g., with θ ∈ Tn−1, and

instead the system (6.40)-(6.41) with θ evolving in Rn−1—which is not a bounded

set—has to be considered. See Remark 7 of [49] for further discussion on this point

that, unfortunately, is often overlooked in the literature.

Fortunately, due to the structure of the system, there is a particular choice of the

controller gains that allows to remove this disturbing term, still preserving a port-

Hamiltonian structure. It turns out that this choice of gains is of interest because

it solves Problem 3.3.5, i.e., it guarantees a desired steady-state active power sharing

according to Lemma 5.2.6.

The discussion above is formalized in the following corollary of Proposition 6.4.7.

Corollary 6.4.12. Consider the system (5.21), (6.1). Fix ωd, τPi , kQi and Q
d
i , i ∼ N.

Select

kPiP
d
i = ξ, (6.59)

i ∼ N and some real constant ξ. Then, all trajectories of the system (6.40)-(6.41)

converge to an equilibrium.

Proof. Under condition (6.59), it follows from Remark 6.4.4 that

ωs = ωd +

∑
i∼N P

d
i∑

i∼N
1

kPi

= ωd +
ξ
∑

i∼N
1

kPi∑
i∼N

1
kPi

= ωd + ξ

and hence from (6.39) that c1i = 0 for all i ∈ N. Consequently, it is possible to define

the state z := col(θ, ω̃, V ) in the set D : Tn−1 × Rn × Rn
>0 and represent the system

(6.40)-(6.41) in port-Hamiltonian form as

ż = (J −R(z))∇H,

with Hamiltonian H : Tn−1 × Rn × Rn
>0 → R given by

H(z) =
n∑

i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i ln(Vi)) +
1

2
|Bii|V 2

i

− 1

2

∑
k∼Ni

ViVk|Bik| cos(θik + δsik)
)

(6.60)

and matrices J and R(z) as defined in (6.52). Similarly to (6.53) it follows that

Ḣ = −(∇H)⊤R(z)∇H ≤ 0

142



6.5 Conditions for stability of lossless microgrids with distributed voltage
control

and in analogy to (6.55) it holds that the invariant set where Ḣ(z(t)) = 0, ∀t ≥ 0,

is an equilibrium set. Moreover, it follows from Proposition 6.4.1 that the state z =

col(θ, ω̃, V ) ∈ D is globally bounded. Hence, by LaSalle’s invariance principle, see

Theorem 2.3.5, all trajectories of the system (6.40)-(6.41) converge to an equilibrium.

Note, however, that the claim critically relies on the fragile assumption that c1i = 0,

i ∼ N. In the presence of small perturbations or model uncertainties, such as, for

example, the presence of small conductances, the synchronization frequency is given by

ωs = ωd+ξ+ ϵ, where ϵ is some small real nonzero constant. In that case c1i ̸= 0 under

condition (6.59) and the proof of Corollary 6.4.12 is not applicable. Moreover, as usual

in LaSalle’s-based analysis, the absence of a bona fide Lyapunov function hampers the

possibility of invoking a continuity argument to accommodate small disturbances.

6.5 Conditions for stability of lossless microgrids with dis-

tributed voltage control

This section is dedicated to the analysis of a microgrid operated with the DVC (5.27).

Specifically, the main contributions are the following. Under the assumption of small

angle differences [1, 29], it is shown that (i) the choice of the control parameters uniquely

determines the corresponding equilibrium point of the closed-loop voltage and reactive

power dynamics and that (ii) there exists a necessary and sufficient condition such that

this equilibrium point is locally exponentially stable. In addition, by combining both

aforementioned results, (iii) a solution to Problem 3.3.4, i.e., the problem of reactive

power sharing, is given. Moreover, (iv), a selection criterion for the control parameters

is provided, which not only ensures reactive power sharing in steady-state, but also that

the average of all voltage amplitudes in the network is equivalent to the nominal voltage

amplitude for all t ≥ 0. In addition, (v) the assumption of small angle differences

is dropped and a necessary and sufficient condition for local exponential stability of

a microgrid operated with the frequency droop control (5.2) and the DVC (5.27) is

derived. By combining the latter stability result with Claim 5.3.8 and Lemma 5.2.6,

(vi) a solution to the power sharing problem (Problem 3.3.5) is given.

It is assumed throughout this section that the power lines are dominantly inductive.

Furthermore, for ease of notation, the analysis presented here is restricted to inverter-

based microgrids. However, the results directly extend to MDREGs if the frequency
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droop gains of the SGs are selected according to Assumption 6.3.5 and the EMFs of

the SGs are controlled with the control law given by (5.30) together with (5.33).

The remainder of this section is outlined as follows. The results on existence and

uniqueness properties of equilibria of the closed-loop voltage and reactive power dy-

namics under the DVC are given in Section 6.5.1. The corresponding stability result is

presented in Section 6.5.2. The two aforementioned results are taken from [122, 125]

and derived under the assumption of small angle differences. By combining these re-

sults, a solution to Problem 3.3.4 (the problem of reactive power sharing) is given in

Section 6.5.3. The assumption of small angle differences is dropped in Section 6.5.4,

where a condition for exponential stability of an equilibrium point of a microgrid oper-

ated with frequency droop control and DVC is provided. The section is concluded by

providing a solution to the power sharing problem (Problem 3.3.5) in Section 6.5.5.

6.5.1 Existence and uniqueness of equilibria

Recall the closed-loop model of an inverter-based microgrid, i.e., N = NI , with fre-

quency droop control (5.2) and DVC (5.27) given with Assumption 6.2.4 by (5.36),

(6.2). Furthermore, recall that under Assumption 6.2.5, the influence of the dynamics

of the phase angles on the reactive power flows can be neglected. Moreover, the DVC

given in (5.27) does only use reactive power measurements. Hence, by making use of

Assumption 6.2.5, the voltage and reactive power dynamics of (5.36), (6.2) with N = NI

can be analyzed independently of the angle and frequency dynamics. Therefore, the

model below is considered in the following

V̇ = −KLDQm,

T Q̇m = −Qm +Q,
(6.61)

where Qi = Qi(V ) is given by (6.3) and the initial conditions for each element of V are

determined by the control law (5.27), i.e., V (0) = V d := col(V d
i ), i ∼ N.

To streamline the presentation of the main result within this subsection, it is con-

venient to recall the matrix T(δ) ∈ Rn×n defined in (6.4) and, with slight abuse of

notation, denote by T its evaluation at δik = 0, i ∼ N, k ∼ Ni, with entries

Tii := |Bii|, Tik := −|Bik|, i ̸= k. (6.62)

The proposition below proves existence of equilibria of the system (6.61), (6.3). In

addition, it shows that by setting K = κK, where κ is a positive real parameter and
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K ∈ Rn×n a diagonal matrix with positive real diagonal entries, the control parameters

V (0) = V d, D and K uniquely determine the corresponding equilibrium point of the

system (6.61), (6.3). It is demonstrated in the simulation study in Section 7.4 that the

tuning parameter κ allows to easily shape the performance of the closed-loop dynamics.

Proposition 6.5.1. Consider the system (6.61), (6.3). Fix D and a positive real

constant α. Set K = κK, where κ is a positive real parameter and K ∈ Rn×n a diagonal

matrix with positive real diagonal entries. To all initial conditions col(V (0), Qm(0))

with the property

∥K−1V (0)∥1 = α, (6.63)

there exists a unique positive equilibrium point col(V s, Qm,s) ∈ R2n
>0. Moreover, to any

α there exists a unique positive constant β such that

∥K−1V s∥1 = α, Qs = Qm,s = βD−11n. (6.64)

Proof. To establish the claim, it is first proven that to each Qs ∈ Rn
>0 satisfying (6.64)

there exists a unique V s ∈ Rn
>0. To this end, consider (5.37). Clearly, anyQ

s = βD−11n,

β ∈ R>0 satisfies (5.37) and is hence a possible vector of positive steady-state reactive

power flows.

Fix a β ∈ R>0. Because of

Qs
i = |Bii|V s2

i −
∑
k∼Ni

|Bik|V s
i V

s
k , i ∼ N, (6.65)

no element V s
i can then be zero. Hence, (6.65) can be rewritten as

− Qs
i

V s
i

+ |Bii|V s
i −

∑
k∼Ni

|Bik|V s
k = 0, i ∼ N,

or, more compactly,

F (V s) + TV s = 0n, (6.66)

where F (V s) := col(−Qs
i/V

s
i ) ∈ Rn and T is defined in (6.62). Recall that according

to Lemma 6.2.6, T is positive definite. Consider the function f : Rn
>0 → R,

f(V ) :=
1

2
V ⊤TV −

n∑
i=1

Qs
i ln(Vi),

which has the property that (
∂f(V )

∂V

)⊤
= F (V ) + TV.
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Hence, any critical point of f, i.e., any point V s ∈ Rn
>0 such that(

∂f(V )

∂V

)⊤ ⏐⏐
V s = 0n,

satisfies (6.66), respectively (6.65). Moreover,

∂2f(V )

∂V 2
= diag

(
Qs

i

V 2
i

)
+ T > 0,

which means that the Hessian of f is positive definite for all V ∈ Rn
>0. Therefore, f

is a strictly convex continuous function on the convex set Rn
>0. Note that f tends to

infinity on the boundary of Rn
>0, i.e.,

f(V ) → ∞ as ∥V ∥∞ → ∞,

f(V ) → ∞ as min
i∈N

(Vi) → 0.

Hence, there exist positive real constants m0 ≫ 1, r1 ≪ 1 and r2 ≫ 1, such that

E := {V ∈ Rn
>0 | min

i∈N
(Vi) ≥ r1 ∧ ∥V ∥∞ ≤ r2},

V ∈ Rn
>0 \ E ⇒ f(V ) > m0,

∃V ∈ E such that f(V ) < m0.

Clearly, E is a compact set. Hence, by the Weierstrass extreme value theorem [246], f

attains a minimum on E. By construction, this minimum is attained at the interior of E,
which by differentiability of f implies that it is a critical point of f . Consequently, the

vector V s := arg minV ∈E(f(V )) is the unique solution of (6.66) and thus the unique

positive vector of steady-state voltage amplitudes corresponding to a given positive

vector of steady-state reactive power flows Qs. This proves existence of equilibria of

the system (6.61), (6.3). Moreover, it shows that to a given Qs ∈ Rn
>0, there exists a

unique corresponding V s ∈ Rn
>0.

Next, it is proven by contradiction that the constant α uniquely determines the

positive equilibrium point col(V s, Qs) ∈ R2n
>0 corresponding to all initial conditions

col(V (0), Qm(0)) with the property (6.63). Assume that there exist two different pos-

itive equilibrium points col(V s
1 , Q

s
1) ∈ R2n

>0 and col(V s
2 , Q

s
2) ∈ R2n

>0 with the following

property

∥K−1V s
1 ∥1=∥K−1V s

2 ∥1 = α. (6.67)

It follows from (5.37) that the vectors Qs
1 and Qs

2 are identical up to multiplication by

a positive real constant ϑ, i.e.,

Qs
2 = ϑQs

1.
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The uniqueness result above implies ϑ ̸= 1, i.e., Qs
1 ̸= Qs

2. Otherwise V s
1 and V s

2 would

coincide and the two equilibrium points would be the same.

Clearly, if col(V s
1 , Q

s
1) satisfies (6.65), then col(V s

2 , Q
s
2) = col(

√
ϑV s

1 , ϑQ
s
1), ϑ > 0,

also satisfies (6.65) and, because of the uniqueness result, V s
2 =

√
ϑV s

1 is the unique

steady-state voltage vector corresponding to Qs
2. As ϑ ̸= 1, it follows immediately that

(6.67) is violated. The proof is completed by recalling that Fact 5.3.11 implies that

∥K−1V (t)∥1 = ∥K−1V (0)∥1

for all t ≥ 0.

The following corollary follows immediately from the proof of Proposition 6.5.1.

This result reflects the fact that the reactive power flows Qi given in (6.3) are quadratic

functions of the voltage amplitudes Vi, i ∼ N.

Corollary 6.5.2. Consider the system (6.61), (6.3). Fix D and positive real con-

stants α, β and ϑ. Set K = κK, where κ is a positive real parameter and K ∈ Rn×n

a diagonal matrix with positive real diagonal entries. Assume col(V s, Qm,s) ∈ R2n
>0 is

an equilibrium point of the system (6.61), (6.3) with the properties Qs = βD−11n
and ∥K−1V s∥1 = α. Then, the unique equilibrium point corresponding to all ini-

tial conditions col(V (0), Qm(0)) with the property ∥K−1V (0)∥1 =
√
ϑα is given by

col(
√
ϑV s, ϑQm,s).

Proof. The last part of the proof of Proposition 6.5.1 implies that

col(V s
2 , Q

m,s
2 ) = col(

√
ϑV s

1 , ϑQ
m,s
1 )

is also an equilibrium point of the system (6.61), (6.3). Moreover, Fact 5.3.11 implies

that

∥K−1V2(0)∥1 = ∥K−1V s
2 ∥1 =

√
ϑ∥K−1V s

1 ∥1 =
√
ϑα.

This completes the proof.

Remark 6.5.3. Fix a real constant α. Consider a linear first-order consensus system

with state vector x ∈ Rn and dynamics

ẋ = −Lx, x(0) = x0, (6.68)

where L ∈ Rn×n is the Laplacian matrix of the communication network. It is well-

known, see, e.g., Section 2.3.5 or [85], that if the graph model of the communication

network is undirected and connected, then

xs =
1

n
1⊤n x01n =

1

n

(
n∑

i=1

xi(0)

)
1n.
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Hence, to all x0 with the property
∑n

i=1 xi(0) = α, there exists a unique xs with∑n
i=1 x

s
i = α. Proposition 6.5.1 shows that the nonlinear system (6.61), (6.3) exhibits

an equivalent property.

6.5.2 Voltage stability

In this section a necessary and sufficient condition for local exponential stability of

equilibria of the system (6.61), (6.3) is established. To this end, the following important

observation is made. It follows from Fact 5.3.11 that the motion of an arbitrary voltage

Vi, i ∈ N, can be expressed in terms of all other voltages Vk, k ∼ N \ {i} for all

t ≥ 0. This implies that studying the stability properties of equilibra of the system

(6.61), (6.3) with dimension 2n, is equivalent to studying the stability properties of

corresponding equilibria of a reduced system of dimension 2n− 1.

For ease of notation and without loss of generality, it is convenient to express Vn as

Vn = knξ(V (0))−
n−1∑
i=1

kn
ki
Vi, (6.69)

with ξ(V (0)) given by (5.39). Furthermore, let the reduced voltage vector VR ∈ Rn−1
>0

be given by

VR := col(V1, . . . Vn−1), (6.70)

and denote the reactive power flows in the reduced coordinates by

Qi(V (VR)) = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk,

Qn(V (VR)) = |Bnn|V 2
n −

∑
k∼Nn

|Bnk|VkVn,
(6.71)

where Vn = Vn(VR) = Vn(V1, . . . , Vn−1) and i ∼ N \ {n}.
By defining the matrix LR ∈ R(n−1)×n

LR :=
[
In−1 0n−1

]
KL, (6.72)

the system (6.61), (6.3) can be written in the reduced coordinates col(VR, Q
m) ∈ Rn−1

>0 ×
Rn as

V̇R = −LRDQ
m,

T Q̇m = −Qm +Q(V (VR)),
(6.73)

with Q(V (VR)) := col(Qi(V (VR))) and Qi(V (VR)), i ∼ N, given in (6.71).
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6.5.2.1 Error states and linearization

Recall Proposition 6.5.1. Clearly, the existence and uniqueness properties of the system

(6.61), (6.3) hold equivalently for the reduced system (6.73), (6.71) with Vn given in

(6.69).

Let col(V s, Qm,s) ∈ R2n
>0 be a positive equilibrium point of the system (6.61), (6.3)

and col(V s
R, Q

m,s) ∈ R(2n−1)
>0 be the corresponding equilibrium point of the system

(6.73), (6.71). It follows from (6.69) that

∂Vn(V1, . . . , Vn−1)

∂Vi
= −kn

ki
, i ∼ N \ {n}.

Consequently, the partial derivative of the reactive power flow Qk(V (VR)), k ∼ N, given

in (6.73), (6.71) with respect to the voltage VRi = Vi, i ∼ N \ {n}, can be written as

∂Qk(V (VR))

∂VRi

=
∂Qk

∂Vi

∂Vi
∂VRi

+
∂Qk

∂Vn

∂Vn
∂VRi

=
∂Qk

∂Vi
− kn
ki

∂Qk

∂Vn
, i ∼ N \ {n}. (6.74)

Hence, by introducing the matrix

N :=
∂Q

∂V

⏐⏐⏐
V s

∈ Rn×n

with entries (use (6.3))

nii :=2|Bii|V s
i −

∑
k∼Ni

|Bik|V s
k , nik :=−|Bik|V s

i , i ̸= k, (6.75)

as well as the matrix Z ∈ Rn×(n−1)

Z :=

[
In−1

−g⊤
]
, g := col

(
kn
k1
, . . . ,

kn
kn−1

)
, (6.76)

and by making use of (6.74), it follows that

∂Q(V (VR))

∂VR

⏐⏐⏐
V s
R

= NZ. (6.77)

To derive an analytic stability condition, it is convenient to assume identical low

pass filter time constants as stated in Assumption 6.3.5.

Furthermore, let the deviations of the system variables with respect to the equilib-

rium point col(V s
R, Q

m,s) ∈ R(2n−1)
>0 be given by

ṼR := VR − V s
R ∈ Rn−1,

Q̃m := Qm −Qm,s ∈ Rn.
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Linearizing the microgrid (6.73), (6.71) at this equilibrium point and making use of

(6.77) together with Assumption 6.3.5 yields[
˙̃VR
˙̃Qm

]
=

[
0(n−1)×(n−1) −LRD

1
τNZ − 1

τ In

]
  

:=ADVC

[
ṼR
Q̃m

]
. (6.78)

Note that

ZLR = Z
[
In−1 0n−1

]
KL =

[
In−1 0n−1

−g⊤ 0

]
KL

= K

[
In−1 0n−1

−1⊤n−1 0

]
L = KL,

(6.79)

where the last equality follows from Lemma 2.3.15 together with the fact that L = L⊤,

and that

Z⊤K−11n = 0n−1. (6.80)

6.5.2.2 Main result

The main contribution of this section is to give a necessary and sufficient condition for

local exponential stability of an equilibrium point of the system (6.73), (6.71).

Lemma 6.5.4. For Qs, V s ∈ Rn
>0, all eigenvalues of N have positive real part.

Proof. Dividing (6.65) by V s
i > 0 yields

Qs
i

V s
i

= |Bii|V s
i −

∑
k∼Ni

|Bik|V s
k > 0. (6.81)

Furthermore, from (4.21) it follows that

|Bii|V s
i ≥

∑
k∼Ni

|Bik|V s
i . (6.82)

Hence, with nii and nik defined in (6.75) we have that

nii = 2|Bii|V s
i −

∑
k∼Ni

|Bik|V s
k > |Bii|V s

i ≥
∑

k∼N\{i}

|nik|.

Therefore, N is a diagonally dominant matrix with positive diagonal elements and the

claim follows from Gershgorin’s disc theorem [144, Chapter 6].

Lemma 6.5.5. For Qs, V s ∈ Rn
>0, the matrix product NDLD has a zero eigenvalue

with geometric multiplicity one and a corresponding right eigenvector βD−11n, β ∈
C \ {0}; all other eigenvalues have positive real part.
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Proof. The matrix D is diagonal with positive diagonal entries and hence positive def-

inite. Furthermore, L is the Laplacian matrix of an undirected connected graph and

therefore positive semidefinite. In addition, L has a simple zero eigenvalue with a corre-

sponding right eigenvector β1n, β ∈ C \ {0}, see Section 2.3.5. Moreover, Lemma 6.5.4

implies that N is nonsingular. Consequently, for any nonzero v ∈ Cn,

NDLDv = 0n ⇔ LDv = 0n ⇔ v = βD−11n, β ∈ C \ {0}.

Hence, NDLD has a zero eigenvalue with geometric multiplicity one and a correspond-

ing right eigenvector βD−11n, β ∈ C \ {0}.
In addition, DLD is positive semidefinite and by Lemma 2.3.18 it follows that

σ(NDLD) ⊆W (N)W (DLD) := {λ = ab
⏐⏐ a ∈W (N), b ∈W (DLD)}. (6.83)

By the aforementioned properties of D and L, we have thatW (DLD) ⊆ R≥0. To prove

that all nonzero eigenvalues have positive real part, it is shown that ℜ(W (N)) ⊆ R>0.

Clearly, from (6.83), this also implies that the only element of the imaginary axis in

W (N)W (DLD) is the origin. Recall that the real part of the numerical range of N is

given by the range of its symmetric part, i.e.,

ℜ(W (N)) =W

(
1

2

(
N +N⊤

))
.

The symmetric part of N has entries

n̄ii := nii, n̄ik := −1

2
|Bik|(V s

i + V s
k ),

where nii is defined in (6.75). From (6.81) it follows that

|Bii|V s
i >

∑
k∼Ni

|Bik|V s
k .

Hence, together with (6.82) it follows that

|Bii|V s
i >

1

2

∑
k∼Ni

|Bik|(V s
i + V s

k ) =
∑

k∼N\{i}

|n̄ik|

and

n̄ii = 2|Bii|V s
i −

∑
k∼Ni

|Bik|V s
k > |Bii|V s

i >
∑

k∼N\{i}

|n̄ik|.

Consequently, the symmetric part of N is diagonally dominant with positive diagonal

entries and by Gershgorin’s disc theorem its eigenvalues are all positive real, completing

the proof.
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The main result within this section is given below. It establishes a necessary and

sufficient condition for local exponential stability of an equilibrium point of the system

(6.61), (6.3).

Proposition 6.5.6. Consider the system (6.61), (6.3). Fix D and positive real con-

stants α and τ. Set τPi = τ, i ∼ N and K = κD, where κ is a positive real param-

eter. Let col(V s, Qm,s) ∈ R2n
>0 be the unique equilibrium point of the system (6.61),

(6.3) corresponding to all V (0) with the property ∥D−1V (0)∥1 = α. Denote by xs =

col(V s
R, Q

m,s) ∈ R(2n−1)
>0 the unique corresponding equilibrium point of the reduced sys-

tem (6.73), (6.71).

Let µi = ai + jbi be the i-th nonzero eigenvalue of the matrix product NDLD with

ai ∈ R and bi ∈ R. Then, xs is a locally exponentially stable equilibrium point of the

system (6.73), (6.71) if and only if the positive real parameter κ is chosen such that

τκb2i < ai (6.84)

for all µi. Moreover, the equilibrium point xs is locally exponentially stable for any

positive real κ if and only if NDLD has only real eigenvalues.

Proof. The proof is very similar to that of Proposition 6.3.8. With τPi = τ, i ∼ N,

the linear system (6.78) locally represents the microgrid dynamics (6.73), (6.71). The

proof is thus given by deriving the spectrum of ADVC, with ADVC defined in (6.78).

Let λ be an eigenvalue of ADVC with a corresponding right eigenvector v = col(v1, v2),

v1 ∈ Cn−1, v2 ∈ Cn. Then,

−LRDv2 = λv1,

1

τ
(NZv1 − v2) = λv2.

(6.85)

As done in the proof of Proposition 6.3.8, it is first shown by contradiction that

zero is not an eigenvalue of ADVC. Therefore, assume λ = 0. Then,

LRDv2 = 0n−1. (6.86)

From the definition of LR given in (6.72), it follows that (6.86) can only be satisfied if

KLDv2 =

[
0n−1

a

]
, a ∈ C.

The fact that L = L⊤ together with L1n = 0n implies that 1⊤nK
−1KLDv = 0 for any

v ∈ Cn. Therefore,

1⊤nK
−1KLDv2 = 1⊤nK

−1

[
0n−1

a

]
=

a

kn
= 0.
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Hence, a must be zero. Consequently, v2 = βD−11n, β ∈ C. Inserting λ = 0 and

v2 = βD−11n in the second line of (6.85) and recalling K = κD yields

NZv1 = βD−11n = βκK−11n. (6.87)

Premultiplying with v∗1Z
⊤ gives, because of (6.80),

v∗1Z
⊤NZv1 = 0.

As, according to the proof of Lemma 6.5.5, ℜ(W (N)) ⊆ R>0, this implies

Zv1 = 0n. (6.88)

Hence, because of (6.87), β = 0 and v2 = 0n. Finally, because of (6.76), (6.88) implies

v1 = 0n−1. Hence, (6.85) can only hold for λ = 0 if v1 = 0n−1 and v2 = 0n. Therefore,

zero is not an eigenvalue of ADVC.

Next, conditions are derived under which all eigenvalues of ADVC have negative real

part. Since λ ̸= 0, (6.85) can be rewritten as

λ2v2 +
1

τ
λv2 +

1

τ
NZLRDv2 = 0n. (6.89)

Recall from (6.79) that ZLR = KL. Moreover, K = κD. Hence, (6.89) is equivalent to

λ2v2 +
1

τ
λv2 +

κ

τ
NDLDv2 = 0n. (6.90)

This implies that v2 must be an eigenvector of NDLD. Recall that Lemma 6.5.5 implies

that NDLD has a zero eigenvalue with geometric multiplicity one and all its other

eigenvalues have positive real part. For NDLDv2 = 0n, (6.90) has solutions λ = 0 and

λ = −1/τ. Recall that zero is not an eigenvalue of ADVC. Hence, λ1 = −1/τ is the first

eigenvalue (with unknown algebraic multiplicity) of the matrix ADVC.

To investigate the remaining 0 ≤ m ≤ 2n − 2 eigenvalues of the matrix ADVC ∈
R(2n−1)×(2n−1), denote the remaining1 eigenvalues of NDLD by µi ∈ C. Let a corre-

sponding right eigenvector be given by wi ∈ Cn, i.e., NDLDwi = µiwi.Without loss of

generality, choose wi such that w∗
iwi = 1. By taking v2 in (6.90) as wi and multiplying

(6.90) from the left with w∗
i , the remaining m eigenvalues of ADVC are the solutions

λi1,2 of

λ2i1,2 +
1

τ
λi1,2 +

κ

τ
µi = 0. (6.91)

1Neither the algebraic multiplicities of the eigenvalues of the matrix product NDLD nor the geo-

metric multiplicities of its nonzero eigenvalues are known in the present case. However, this information

is not required, since, to establish the claim, it suffices to know that ℜ(σ(NDLD)) ⊆ R≥0. This fact

has been proven in Lemma 6.5.5.
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First, consider real nonzero eigenvalues, i.e., µi = ai with ai > 0. Then, clearly,

both solutions of (6.91) have negative real parts, e.g., by the Hurwitz condition. Next,

consider complex eigenvalues of NDLD, i.e., µi = ai + jbi, ai > 0, bi ∈ R \ {0}. Then,
(6.91) is a quadratic polynomial with complex coefficients. Recall that 1/τ is positive

real. Hence, according to Corollary 2.3.13, both roots of (6.91) have negative real parts

if and only if for τ >, κ > 0,

1

τ2
κai
τ

− κ2bi
τ2

> 0 ⇔ ai − κτb2i > 0, (6.92)

which is condition (6.84). Hence, ADVC is Hurwitz if and only if (6.84) holds for all

µi. Finally, by Theorem 2.3.8, the equilibrium point xs is locally exponentially stable

if and only if ADVC is Hurwitz.

The following three observations are made with respect to Proposition 6.5.6. First,

equilibria of (6.73), (6.71) are independent of the parameters τ and κ. Hence, selecting

κ according to the stability condition (6.84) does not modify a given equilibrium point

col(V s
R, Q

s
m).

Second, condition (6.84) shows the same trade-off between the magnitude of the

feedback gains (expressed by κ) and the time constant of the low pass filters (represented

by τ) as does the stability condition for a lossy frequency-droop-controlled MDREG of

Proposition 6.3.8. That is, the slower the power measurements are processed, the lower

the feedback gains have to be chosen in order to ensure stability.

Third, for K = κD and a fixed α and making use of (6.69), the deviation of the

voltage at the n-th node with respect to its equilibrium value V s
n can be expressed

independently of the parameter κ as

Ṽn := Vn − V s
n = −

n−1∑
i=1

χi

χn
Ṽi,

which, in accordance to Fact 5.3.11 and Proposition 6.5.1, implies that

Ṽn(0) = −
n−1∑
i=1

χi

χn
Ṽi(0).

Remark 6.5.7. The selection K = κD is suggested in Proposition 6.5.6 based on

Lemma 6.5.5, which states that ℜ (σ(NKLD)) ⊆ R≥0 if K = D. This condition is

sufficient, not necessary. Hence, there may very well exist other choices of K for which

an equilibrium xs of the system (6.61), (6.3) is stable.
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6.5.3 A solution to the problem of reactive power sharing in lossless

microgrids

In this section, a condition is given under which the reactive power sharing problem

(Problem 3.3.4) is solved. The result follows as a corollary to Propositions 6.5.1 and

6.5.6.

Corollary 6.5.8. Consider the system (6.61), (6.3). Fix D and positive real constants

α and τ. Set τPi = τ, i ∼ N and K = κD, where κ is a positive real parameter.

Let col(V s, Qm,s) ∈ R2n
>0 be the unique equilibrium point of the system (6.61), (6.3)

corresponding to all V (0) with the property ∥D−1V (0)∥1 = α. Choose κ such that the

conditions of Proposition 6.5.6 are satisfied. Then, Problem 3.3.4 is solved locally, i.e.,

for all initial conditions in a neighborhood of col(V s, Qm,s) satisfying ∥D−1V (0)∥1 = α.

Proof. The claim is established by combining the results of Propositions 6.5.1 and 6.5.6.

The result of Proposition 6.5.1 implies that, to the chosen α, there exists a positive real

β, such that the equilibrium col(V s, Qm,s) of the system (6.61), (6.3) satisfies

DQm,s = DQs(V s) = β1n,

which is equivalent to reactive power sharing as defined in Problem 3.3.4. Furthermore,

under the standing assumptions, the claimed convergence result follows directly from

Proposition 6.5.6. This completes the proof.

6.5.4 Frequency and voltage stability

This section is devoted to the stability analysis of inverter-based microgrids with arbi-

trary meshed topologies and dominantly inductive power lines, in which the inverters

are controlled via the usual frequency droop control given in (5.2) together with the

proposed DVC defined in (5.27). For such networks, a necessary and sufficient con-

dition for local frequency and voltage stability is given. Unlike in Section 6.5.2, no

assumption on small angle differences is made, i.e., Assumption 6.2.5 is not used.

To establish the result, recall the closed-loop model of an inverter-based microgrid

operated with the frequency droop control (5.2) and the DVC (5.27) given by (5.36),

(4.24) with N = NI , as well as Assumptions 6.2.4 and 6.3.5. Furthermore, recall that

under Assumption 6.2.4, the power flow equations (4.24) simplify to (6.2).
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6.5.4.1 Synchronized motion

Similar to the previous sections, the following natural power-balance feasibility assump-

tion is made. Recall the set Θ defined in Assumption 6.4.3.

Assumption 6.5.9. There exist constants δs ∈ Θ, ωs ∈ R, V s ∈ Rn
>0 and Qm,s ∈ Rn

>0,

β ∈ R>0, such that

0n = (ωd − ωs)1n −KP (P (δ
s, V s)− P d),

Qm,s = βD−11n,

0n = −Qm,s +Q(δs, V s),

(6.93)

Under Assumption 6.5.9, the motion of the system (5.36), (6.2) starting in

col(δs, 1nω
s, V s, Qm,s) is given by

δ∗(t) = mod2π

{
δs + 1n

(
ωst−

∫ t

0
ωcom(τ)dτ

)}
,

ω∗(t) = 1nω
s,

V ∗(t) = V s,

Qm,∗(t) = βD−11n.

(6.94)

As before, this desired motion is called synchronized motion and ωs is the synchroniza-

tion frequency.

Remark 6.5.10. The synchronized motion (6.94) lives in the set Θ×1nω
s×Rn

>0×Rn
>0

and is only unique up to a uniform shift of all angles.

6.5.4.2 Error states and linearization

Recall from Section 6.3 that the dependence with respect to δ of the dynamics (5.36),

(6.2) is via angle differences δik. Also recall the definition of the angle and frequency

error states given in (6.9) and the matrix R defined in (6.10). For the present analysis

and with slight abuse of notation, it is convenient to define the relative frequency

deviation between the i-th node and the reference node n as

θ̇i = ωi − ωn := ω̃i, i ∼ N \ {n}. (6.95)

Regarding the voltage dynamics, the same procedure as in Section 6.5.2 is followed and,

by means of Fact 5.3.11, the voltage at the n-th bus is expressed as

Vn = knξ(V (0))−
n−1∑
i=1

kn
ki
Vi,
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see (6.69). Furthermore, recall the constant θn = 0, the reduced voltage vector VR ∈
Rn−1
>0 defined in (6.70) as

VR = col(Vi), i ∼ N \ {n},

as well as (6.71).

The active and reactive power flows Pi, respectively Qi, given in (6.2) read in the

new coordinates as

Pi(δ̃(θ), V (VR)) = GiiV
2
i +

∑
k∼Ni

|Bik|ViVk sin(θik + δsik),

Pn(δ̃(θ), V (VR)) = GnnV
2
n +

∑
k∼Nn

|Bnk|VnVk sin(θnk + δsnk),

Qi(δ̃(θ), V (VR)) = |Bii|V 2
i −

∑
k∼Ni

|Bik|ViVk cos(θik + δsik),

Qn(δ̃(θ), V (VR)) = |Bnn|V 2
n −

∑
k∼Nn

|Bnk|VkVn cos(θnk + δsnk),

(6.96)

where Vn = Vn(V1, . . . , Vn−1) and i ∼ N \ {n}. By defining

KP :=diag(kPi) ∈ R(n−1)×(n−1), ω̃ := col(ω̃i) ∈ Rn−1,

i ∼ N \ {n}, rearranging the system equations, and recalling the definition of the

reduced voltage and reactive power dynamics given in (6.73), the overall microgrid

dynamics (5.36), (6.2) with Assumption 6.3.5 can be written in reduced coordinates

col(θ, VR, ω̃, Q
m) ∈ Rn−1 × Rn−1

>0 × Rn−1 × Rn compactly as

θ̇ = ω̃,

V̇R = −LRDQ
m,

τ ˙̃ω = −ω̃ −KP

[
In−1 −K−1

P kPn1n−1

] (
P (δ̃(θ), V (VR))− P d

)
,

τ Q̇m = −Qm +Q(δ̃(θ), V (VR)).

(6.97)

The main contribution of this section is to give a condition for local exponential

stability of the equilibrium col(0n−1, V
s
R, 0n−1, Q

m,s) of the system (6.97), (6.96). Recall

that an exponentially stable equilibrium point is isolated. Hence, local exponential

stability of col(0n−1, V
s
R, 0n−1, Q

m,s) corresponding to the reduced dynamics (6.97),

(6.96) implies convergence of all trajectories of the original system (5.36), (6.2) starting

in a neighborhood of col(δs, ωs1n, V
s, Qm,s) to the synchronized motion (6.94) (up to

a uniform constant shift of all angles). See also [247] for a discussion on the number of

157



6. CONDITIONS FOR STABILITY IN MICROGRIDS

states required to completely describe the dynamics of conventional SG-based power

systems.

For ease of notation, it is convenient to introduce the matrices

A1 : = In−1 +K−1
P kPn1n−11

⊤
n−1 ∈ R(n−1)×(n−1),

A2 : = blkdiag(KPA1,−In) ∈ R(2n−1)×(2n−1),

A3 : = blkdiag(In−1,−LRD) ∈ R(2n−2)×(2n−1),

A4 : =
[
In−1 −K−1

P kPn1n−1

]
∈ R(n−1)×n,

A5 : = blkdiag(In−1,Z) ∈ R(2n−1)×(2n−2),

N2 : =
∂Q

∂V

⏐⏐⏐
(δs,V s)

∈ Rn×n,

(6.98)

with Qi given in (6.2), Z given in (6.76) and LR given in (6.72). In analogy to (6.77),

it follows that

∂Q(δ̃(θ), V (VR))

∂VR

⏐⏐⏐
(θs,V s

R)
=

(
∂Q

∂V

∂V

∂VR

) ⏐⏐⏐
(θs,V s

R)
= N2Z.

Similarly,

[
In−1 −K−1

P kPn1n−1

] ∂P (δ̃(θ), V (VR))

∂VR

⏐⏐⏐
(θs,V s

R)
= A4

(
∂P

∂V

∂V

∂VR

) ⏐⏐⏐
(θs,V s

R)

= A4
∂P

∂V

⏐⏐⏐
(θs,V s

R)
Z.

Recall L̃ defined in (6.13) and L defined in (6.43). Note that, under the made assump-

tions, ϕik = 0, i ∼ N, k ∼ N, in (6.13). Hence, with (6.14), one obtains

[
In−1 −K−1

P kPn1n−1

] ∂P (δ̃(θ), V (VR))

∂θ

⏐⏐⏐
(θs,V s

R)
= A4

(
∂P

∂δ̃

∂δ̃

∂θ

)⏐⏐⏐
(θs,V s

R)

= A4L̃

[
In−1

0⊤n−1

]
= A4

[
L
b⊤

]
=
(
L−K−1

P kPn1n−1b
⊤
)
,

(6.99)

where b = col(l̃in) ∈ Rn−1, i ∼ N \ {n}, see also (6.46). By noting that

b⊤ = −1⊤n−1L,

(6.99) can be written as

[
In−1 −K−1

P kPn1n−1

] ∂P (δ̃(θ), V (VR))

∂θ

⏐⏐⏐
(θs,V s

R)
=
(
In−1 +K−1

P kPn1n−11
⊤
n−1

)
L = A1L.
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Let

B :=

[
L A−1

1 A4
∂P
∂V

∂Q
∂θ N2

] ⏐⏐⏐
(θs,V s)

∈ R(2n−1)×(2n−1), (6.100)

where Pi and Qi are given in (6.2). Finally, recall Assumption 6.5.9 and, following

Section 6.5.2, let

ṼR := VR − V s
R ∈ Rn−1,

Q̃m := Qm −Qm,s ∈ Rn.

By denoting the vector of the error states in the reduced coordinates by ζ, i.e.,

ζ := col(θ, ṼR, ω̃, Q̃
m) ∈ R(4n−3),

the microgrid dynamics (6.97), (6.96) can be represented in a small neighborhood of

the equilibrium col(θ, ṼR, ω̃, Q̃
m) = 0(4n−3) as

ζ̇ =

[
0(2n−2)×(2n−2) A3

− 1
τA2BA5 − 1

τ I(2n−1)

]
  

:=M

ζ. (6.101)

6.5.4.3 Main result

To streamline the main result within this section, the following lemma is useful.

Lemma 6.5.11. Select K = D. If the matrix B + B⊤ is positive definite, then the

matrix product A2BA5A3, the matrix components of which are defined in (6.98) and

(6.100), has a simple zero eigenvalue with a corresponding right eigenvector col(0n−1,

βD−11n), β ∈ C \ {0} and all other eigenvalues have positive real part.

Proof. The proof is established along the lines of the proof of Lemma 6.5.5. At first,

consider the matrix A2 defined in (6.98). Note that

KPA1 = KP + kPn1n−11
⊤
n−1.

Since KP is a diagonal matrix with positive diagonal entries and kPn1n−11
⊤
n−1 is sym-

metric positive semidefinite [144, Example 1.3.23], KPA1 is positive definite. This

implies that A2 is symmetric and invertible. Hence, via a similarity transformation

with A2, the spectrum of A2BA5A3 is equivalent to that of BA5A3A2. Recalling (6.79)

and K = D, yields

A5A3A2 = blkdiag
((

KP + kPn1n−11
⊤
n−1

)
, DLD

)
, (6.102)

where the first block-diagonal entry is positive definite and the second is positive

semidefinite. Consequently, by Lemma 2.3.18,

σ(BA5A3A2) ⊆W (B)W (A5A3A2),
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where W (A5A3A2) ⊆ R≥0. Moreover, since KP + kPn1n−11
⊤
n−1 is positive definite and

L is the Laplacian matrix of a connected undirected graph, the matrix product A5A3A2

has a simple zero eigenvalue with a corresponding right eigenvector col(0n−1, βD
−11n),

β ∈ C \ {0}. All its other eigenvalues are positive real.

Hence, if

ℜ(W (B)) ⊆ R>0,

which is equivalent to B+B⊤ being positive definite, then the matrix product BA5A3A2

has a simple zero eigenvalue with a corresponding right eigenvector col(0n−1, βD
−11n),

β ∈ C \ {0} and all its other eigenvalues have positive real part. This completes the

proof.

Remark 6.5.12. Recall that with Assumption 6.5.9, Lemma 6.4.6 implies that L is

positive definite. Positive definiteness of the symmetric part of N2 follows directly from

the proof of Lemma 6.5.5 with Assumption 6.5.9. Hence, there clearly exist choices of

the control parameters KP , P
d, ωd, V d, K and D leading to a synchronized motion of

the system (6.97), (6.2) such that B +B⊤ is positive definite.

Remark 6.5.13. Note that without introducing the relative frequencies ω̃ in (6.95),

the linearization of the microgrid dynamics would be very similar to the one given in

(6.101). However, in that case the positive semidefinite Laplacian matrix L̃ defined in

(6.13) would be contained in the matrix B rather than the positive definite matrix L
defined in (6.43). It can then easily be verified, e.g., via the Schur complement, that

with L̃ being the upper left entry of the matrix B, there exists no choice of control

parameters such that B+B⊤ is positive definite. However, the stability result derived

next strongly relies on the fact that all nonzero eigenvalues of A2BA5A3 have positive

real part. Therefore, the taken procedure to derive a suitable error system—although

involving some rather lengthy calculations—is necessary in the present case to establish

the stability claim.

Note that requiring B + B⊤ to be positive definite is very similar to the stability

condition derived in Section 6.4 for inverter-based microgrids in which the inverters are

controlled via the typical droop controls given in (5.2) and (5.3). More precisely, the

matrix B + B⊤ being positive definite has the following physical interpretation: the

control laws (5.2) and (5.27) establish a feedback interconnection linking the phase an-

gles δ, respectively θ, with the active power flows P, as well as the voltages V with the

reactive power flows Q. Recall the definition of B given in (6.100). The block-diagonal

components of B are the matrices L and N2 defined in (6.43), respectively (6.98). The

matrices L and N2 locally represent the network coupling strengths between the phase
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angles and the active power flows, respectively, the voltages and the reactive power

flows. In the same way, the off-block-diagonal elements of B + B⊤ can be interpreted

as a local cross-coupling strength originating from the fact that the arguments of the

functions P, respectively Q, are not merely the angles, respectively the voltage ampli-

tudes, but that the arguments of both P and Q are both the angles and the voltage

amplitudes. Hence, B + B⊤ being positive definite implies that the couplings repre-

sented by L and N2 have to dominate the cross-couplings of the power flows contained

in the off-diagonal-block elements of B +B⊤, see also Remark 6.4.11.

The similarity of the condition stated in Lemma 6.5.11 to condition (6.49) (ensuring

stability of inverter-based microgrids operated with the droop controls (5.2) and (5.3))

is explained by the following two facts. First, both voltage controllers, the DVC (5.27)

and the voltage droop control (5.2), establish a feedback interconnection of the voltages

V with the reactive power flows Q. Second, the frequency droop control (5.2), which

establishes a feedback interconnection between the phase angles and the active power

flows, is used in both cases.

The main result of this section follows as a corollary to Proposition 6.5.6.

Corollary 6.5.14. Consider the system (5.36), (6.2) under Assumption 6.5.9. Fix

ωd, KP , P
d, V d and D. Set τPi = τ ∈ R>0, i ∼ N and K = D. Denote the cor-

responding equilibrium point of the reduced system (6.97), (6.96) with the chosen set

of control parameters by zs = col(0n−1, V
s
R, 0n−1, Q

m,s). Let µi = ai + jbi be the i-th

nonzero eigenvalue of the matrix product A2BA5A3 with ai ∈ R and bi ∈ R. Assume

that B + B⊤, with B defined in (6.100), is positive definite. Then, zs is a locally

exponentially stable equilibrium point of the system (6.97), (6.96) if and only if the

parameter τ is chosen such that

τb2i < ai (6.103)

for all µi. Moreover, the equilibrium point zs is locally exponentially stable for any

positive real τ if and only if A2BA5A3 has only real eigenvalues.

Proof. Following the proof of Proposition 6.5.6, the claim is established by deriving the

spectrum of M defined in (6.101). Let λ be an eigenvalue of M with a corresponding

right eigenvector v = col(v1, v2), v1 ∈ C(2n−2), v2 ∈ C(2n−1). Then,

A3v2 = λv1,

−1

τ
(A2BA5v1 + v2) = λv2.

(6.104)

As before, it is first shown by contradiction that zero is not an eigenvalue of M. There-

fore, assume λ = 0. Then,

A3v2 = 0(2n−2). (6.105)
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It follows from the definition of A3 given in (6.98) and the fact that LR is given by, see

(6.72),

LR =
[
In−1 0n−1

]
KL,

that (6.105) can only be satisfied if[
In−1 0(n−1)×n

0n×(n−1) KLD

]
v2 =

[
0(2n−2)

a

]
, a ∈ C.

Clearly, this implies that

v2 = col(0n−1, v̄2), v̄2 ∈ Cn. (6.106)

Furthermore, from L = L⊤ and L1n = 0n, it follows that 1⊤nK
−1KLDv̄2 = 0 for any

v̄2 ∈ Cn. Hence, for any v2 satisfying (6.106),[
1⊤n−1 1⊤nK

−1
] [ In−1 0(n−1)×n

0n×(n−1) KLD

]
v2 =

a

kn
= 0.

Thus, a must be zero and v2 = col(0n−1, βD
−11n) ∈ C(2n−1), β ∈ C \ {0}. Hence, if

λ = 0, the second equation in (6.104) must satisfy

A2BA5v1 = −v2 = −

[
0n−1

βD−11n

]
. (6.107)

Recall the definition ofA2 given in (6.98). Moreover, recall that the proof of Lemma 6.5.11

implies that A2 is invertible. Hence, multiplying (6.107) from the left with A−1
2 gives

BA5v1 = −A−1
2 v2 = v2. (6.108)

By recalling K = D together with (6.80), multiplying (6.108) from the left with v∗1A
⊤
5

finally yields

v∗1A
⊤
5 BA5v1 = v∗10(2n−2) = 0,

which implies w∗
1Bw1 = 0 for w1 := A5v1. Since B+B⊤ is positive definite by assump-

tion, 0 /∈ W (B). Hence, v1 = 0n−1 and, consequently, λ = 0 is not an eigenvalue of

M.

That under condition (6.103) all eigenvalues of M have negative real part is a direct

consequence of the following two facts. First, for λ ̸= 0, note that (6.104) can be

rewritten as

λ2v2 +
1

τ
λv2 +

1

τ
A2BA5A3v2 = 0(2n−1).

Second, recall that, under the standing assumptions, Lemma 6.5.11 implies that all

nonzero eigenvalues of the matrix product A2BA5A3 have positive real part. Hence,

the claim follows in a straightforward manner from the proof of Proposition 6.5.6.
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The stability condition (6.103) is in the same spirit as the previously derived stability

conditions for a lossy frequency-droop-controlled MDREG in Proposition 6.3.8 and

for a microgrid operated with the DVC under Assumption 6.2.5 in Proposition 6.5.6.

Mainly, all conditions can be interpreted in the following way. The slower the power

measurements are processed, i.e., the larger the parameter τ is chosen, the lower the

feedback gains have to be chosen in order to ensure stability. Or, by invoking the

argument from the opposite direction, the conditions state that the larger the controller

gains are chosen, the faster the power measurements have to be processed in order to

guarantee stability.

To see this in the present case, recall from the proof of Lemma 6.5.11 that the

spectrum of the matrix product A2BA5A3 is, via a similarity transformation, equivalent

to that of BA5A3A2. Furthermore, recall from (6.102) that

A5A3A2 = blkdiag(KP + kPn1n−11
⊤
n−1, DLD).

Clearly, the eigenvalues µi of the matrix product A2BA5A3 depend on the controller

gains KP , kPn and D. Hence, by increasing all gains by a constant factor κ, all eigenval-

ues µi of the matrix product A2BA5A3 are increased by the same factor. Consequently,

τ may then have to be decreased in order for condition (6.103) to be satisfied. As dis-

cussed in Section 6.3.3 for the case of an MDREG, the above interpretation is only

valid under the assumption that a variation of the gains has only a negligible effect on

the entries of the matrix B defined in (6.100). By continuity, this is, e.g., the case for

small gain variations. Note, however, that for N = NI , a variation of τ does not affect

equilibria of the system (6.97), (6.2).

6.5.5 A solution to the problem of power sharing in lossless microgrids

The contribution of this section is to give a condition under which the power sharing

problem, i.e., Problem 3.3.5, is solved. The provided solution is established for a

microgrid with dominantly inductive power lines operated with frequency droop control

(5.2) and DVC (5.27). The result follows as a corollary to the stability result in the

previous section in combination with Lemma 5.2.6 and Claim 5.3.8.
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Corollary 6.5.15. Consider the system (5.36), (6.2) under Assumption 6.5.9. Fix

ωd, V d, D and positive real constants ς and ψ. Set τPi = τ ∈ R>0, i ∼ N and

K = D. Furthermore, following Definition 3.3.1, select positive real constants γi,

i ∼ N. Let U = diag(1/γi). Set KP = ςU and P d = ψU−11n. Suppose the conditions

of Corollary 6.5.14 are satisfied. Then, Problem 3.3.5 is solved for all initial condi-

tions of the system (5.36), (6.2) in a neighborhood of col(δs, 1nω
s, V s, Qm,s) satisfying

∥D−1V (0)∥1 = ∥D−1V s∥1.

Proof. The proof follows in an analogous manner to those of Corollaries 6.3.13 and 6.5.8

and is therefore omitted.

6.6 Summary

This chapter has been dedicated to the problems of frequency and voltage stability in

microgrids. Several conditions have been derived for stability of microgrids operated

with the different control laws presented in Chapter 5, i.e., the droop controls (5.1), (5.2)

and (5.3), as well as the DVC (5.27). To establish these results mainly mathematical

tools from linear algebra, as well as port-Hamiltonian systems have been used. In all

cases, the stability condition has been obtained via converse Lyapunov theorems.

More precisely, it has been shown that for all analyzed control schemes there exist

selections of the control parameters and setpoints such that the closed-loop microgrid

possesses a locally asymptotically stable synchronized motion. Note that most of the

derived conditions are necessary and sufficient. In addition, under the assumption of

small angle differences, it has been proven that the choice of the control parameters of

the DVC uniquely determines the equilibrium point of the voltage and reactive power

dynamics.

Furthermore, a condition has been derived, under which the problem of active power

sharing, i.e., Problem 3.3.3, is solved in a microgrid with dominantly inductive power

lines by means of the frequency droop control. This latter claim has been established

by combining the derived stability results with the selection criterion for the frequency

droop control parameters provided in Lemma 5.2.6. In a similar fashion, a condition

has been derived under which Problem 3.3.4, i.e., the problem of reactive power sharing,

is solved by the DVC in microgrids with dominantly inductive power lines. A solution

to Problem 3.3.5 (the problem of joint active and reactive power sharing) has been

provided by combining both aforementioned approaches.
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In the case of inverter-based microgrids operated with frequency droop control and

DVC, the derived necessary and sufficient stability conditions can be interpreted as:

“the slower the power measurements are processed, i.e., the larger the low pass filter

time constants are, the lower the feedback gains have to be chosen”. Recall that both,

the low pass filter time constants and the feedback gains, are design parameters, which

can be set by the operator.

The sufficient stability condition derived for the case of a lossless droop-controlled

inverter-based microgrid states that local asymptotic stability is independent of the

choice of the controller gains and setpoints of the frequency droop controller as well as

of the low pass filter time constants, but does depend on the choice of the controller

gains and setpoints of the voltage droop controller. This coincides with the result

obtained for frequency stability of frequency droop-controlled lossless MDREGs under

the assumption of constant voltage amplitudes.

Moreover, the following conclusion can be drawn from the analysis of microgrids

with variable frequencies and voltages operated either with the droop controls or the

frequency droop control and the DVC. The analyzed control laws have in common that

they establish a feedback interconnection of the voltage amplitudes with the reactive

power flows and of the phase angles with the active power flows. These specific pairings

have been chosen on the basis of the physical relation of the power flows with the phase

angles and voltage amplitudes in the corresponding electrical network. However, both

the active and the reactive power flows are nonlinear functions of the phase angles and

the voltage amplitudes. Therefore, the derived stability conditions state that, in order

to ensure local stability, the local coupling-strengths between the active power flows and

the phase angles, as well as between the reactive power flows and the voltage amplitudes

have to dominate the cross-couplings originating from the common dependence of the

power flows from both variables, i.e., from phase angles and voltage amplitudes.

The obtained results show two parallels to classical control design methods for

MIMO systems. A common procedure in MIMO control design is to seek a decomposi-

tion of the MIMO control design problem into several decoupled SISO control problems.

Typically, such a design procedure is feasible if it is possible to identify input-output

pairings of the open-loop system, which exhibit a strong coupling between each other,

but are only loosely coupled with the remaining inputs and outputs of the system. Two

popular and traditional representatives of such methods are the Dynamic Nyquist Array
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[248] and the Relative Gain Array [249, Chapter 10]. As has been described in Chap-

ter 5, the frequency and voltage droop controls (5.2) and (5.3), respectively the DVC

(5.27), are derived following the exact same goal, i.e., to formulate a MIMO control

design problem as a set of decoupled SISO control design problems. The main differ-

ence in the design of the controls (5.2), (5.3), respectively the DVC (5.27), compared

to standard control theory methods is that the input-output couplings are determined

by a heuristic inspection of the power flow equations over a power line, rather than by

analyzing the frequency response of a MIMO plant.

The second parallel to classical MIMO control design is as follows. If decoupled SISO

controllers have been designed for an LTI MIMO system, then asymptotic stability

of the equilibrium of the resulting closed-loop system can, e.g., be verified via the

generalized Nyquist theorem in combination with the concept of generalized diagonal

dominance, see e.g., [250, 251, 252]. Roughly speaking, one requirement for stability

is then, that the diagonal elements of the closed-loop system dominate over the off-

diagonal elements. As has been discussed above, this requirement is similar to the

stability conditions for microgrids with variable frequencies and voltages obtained in

this chapter.
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7

Illustrative simulation examples

7.1 Introduction

The theoretical analysis is illustrated via simulation examples based on the three-phase

islanded Subnetwork 1 of the CIGRE benchmark medium voltage distribution network

[253, 254]. Following the outline of the previous chapter, at first a simulation study for a

microgrid operated with the droop controls (5.2) and (5.3) is conducted. Subsequently,

the performance of the voltage droop control (5.3) with respect to the control objective

of reactive power sharing is compared to that of the DVC (5.27) proposed in this work.

As discussed in Section 5.2, the voltage droop control (5.3) is mainly used for

inverter-interfaced units. Therefore, the considered system for the simulations is a

purely inverter-based microgrid. Recall, however, that an SG operated with frequency

droop control (5.1) and the voltage control law given by (5.30) together with (5.33) has

equivalent dynamics to an inverter with the respective controls.

All simulations are carried out in Plecs [255]. Compared to the representation of

the power flows given by (4.24) used for the analysis, the inductances are represented

by first-order ODEs in the model used for the simulations rather than constants as

in (4.24), see also Section 2.4.4. Hence, the simulations also serve to evaluate (i) the

validity of the model (5.21), (4.24), respectively (5.36), (4.24) and (ii) the robustness

of the stability conditions derived in Chapter 6 with respect to model uncertainties.

This chapter is based on [71, 125] and structured as follows. The model setup is

described in Section 7.2. The simulation results for droop-controlled microgrids are

discussed in Section 7.3. Finally, the performance of the proposed DVC is evaluated in

Section 7.4.
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7.2 Benchmark model setup

The benchmark microgrid is a meshed network and consists of 11 main buses, see

Fig. 7.1. The following two modifications are made compared to the original system

given in [253, 254]: first, at bus 9b the combined heat and power (CHP) diesel generator

is replaced by an inverter–interfaced CHP fuel cell (FC). Second, since the original

network given in [253] stems from a distribution network connected to a transmission

system, the power ratings of the generation units are scaled by a factor four compared

to [253], such that the controllable units (CHPs, batteries, FC) can satisfy the load

demand in autonomous operation mode at least during some period of time.

Furthermore, it is assumed that the PV units connected at buses 3, 4, 6, 8 and

11 are not equipped with any storage device. It is therefore assumed that these PV

units are not operated in grid-forming, but in grid-feeding mode. This is standard

practice and means that the PV units are controlled in such way that they deliver a

fixed amount of power to an energized grid, see Section 4.2 or, e.g., [81]. Since the PV

units can then not be represented by (4.16), they are denoted as non-controllable units.

Hence, the network in Fig. 7.1 possesses a total of six controllable generation sources

of which two are batteries at buses 5b (i = 1) and 10b (i = 5), two are FCs in households

at buses 5c (i = 2) and 10c (i = 6) and two are FC CHPs at buses 9b (i = 3) and

9c (i = 4). It is assumed that all controllable generation units are equipped with the

frequency droop control given in (5.2). The voltage is controlled either by the DVC

(5.27) or the voltage droop control (5.3) depending on the simulation scenario. To

each inverter its power rating SN
i ∈ R>0, i ∼ N, is associated and, for simplicity, it is

assumed that the transformer power rating is equivalent to that of the corresponding

generation source. The transformer impedances of the generation units are modeled

based on the IEEE standard 399-1997 [256]. Since the apparent power ratings of the

generation sources are not specified in [253], SN
i is set to the maximum active power

given for each source in Table 2 of [253]. The main system data are given in Table 7.1.

The loads at nodes 3-11 represent industrial and household loads as specified in

Table 1 of [253], besides the load at node 1, which is neglected. It is assumed that

all PV units work at 50% of their nominal power with cos(ϕ) := P/S = 0.98 and are

treated as negative loads, while the wind power plant is not generating any power1.

1The nominal power of the wind power plant at node 8 is equivalent to approximately 79 times

the installed load at that node. Hence, in order to be able to compute an equivalent impedance

corresponding to the sum of generation and load at that node, the wind power plant would have to be

operated below 1.2% of its rated power. Therefore, the wind power plant is assumed to not generate
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Table 7.1: Main test system parameters

Base values Sbase = 4.75 MVA, Vbase = 20 kV

SN
i [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu

The corresponding shunt-admittance representing a load at a node is computed at

nominal frequency and voltage and by summing the load demand and the PV generation

at each node. Then, in the corresponding Kron-reduced network all nodes represent

controllable DGs, see Section 2.4.4.3.

The line parameters and lengths are as given in [253]. The total length of the lines

is approximately 15 km. As outlined in Section 6.2, the transformer impedances of the

inverters are merged with the line impedances. The largest R/X ratio of an admittance

in the network is then 0.30. For HV transmission lines it is typically 0.31 [212]. Hence,

the assumption of dominantly inductive admittances is satisfied.

7.3 Droop-controlled microgrids

To illustrate the analysis carried out in Section 6.4, an extensive simulation study of a

droop-controlled microgrid is performed. The study mainly aims at (i) evaluating the

conservativeness of the sufficient stability condition (6.49) and (ii) demonstrating that

the frequency droop control (5.2) achieves the objective of active power sharing if the

corresponding parameters are chosen according to Lemma 5.2.6. More precisely, the

following two scenarios for droop-controlled microgrids are considered.

1) Lossless scenario. All loads and uncontrollable generation sources (PV, wind

turbine) of the test system given in Fig. 7.1 are neglected. Also in that case the largest

R/X ratio of an admittance in the network is 0.30. Consequently, the droop control

laws given in (5.2) are adequate and the stability analysis of Section 6.4 applies.

The batteries at nodes 5b and 10b are operated in charging mode, hence functioning

as loads. The frequency droop gains and setpoints of the inverters are designed accord-

ing to Lemma 5.2.6 with χi = SN
i , P

d
i = αiS

N
i pu and kPi = 0.2/SN

i Hz/pu, i ∼ N,

where pu denotes per unit values with respect to the common system base power Sbase

given in Table 7.1. Hence, the inverters should supply the requested power, respectively

any power at all in the considered simulation scenarios.
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Figure 7.1: 20 kV MV benchmark model adapted from [253] with 11 main buses and

several inverter-interfaced DG and storage units. The controllable units are located at

buses 5b, 5c, 9b, 9c, 10b and 10c. The sign ↓ denotes loads. PCC denotes the point

of common coupling to the main grid. The switch at the PCC is open and, hence, the

microgrid is operated in islanded-mode. The numbering of the main buses is according to

[253].
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be charged, in proportion to their power ratings. It is assumed that the power setpoints

have been provided by some sort of high-level control or energy management system,

see Remark 5.2.1, with αi = 0.3 for inverters in generation mode (i = 2, 3, 4, 6) and

αi = −0.4 for inverters in charging mode, i.e., i = 1, 5.

The reactive power setpoints are set to Qd
i = βiS

N
i pu with βi = 0.025, i ∼ N, to

account for the inductive behavior of the lines. The voltage droop gains are chosen in

the same relation as the frequency droop gains, i.e., kQi = 0.1/SN
i pu/pu and V d

i = 1,

i ∼ N. The low pass filter time constants are set to τP = col(τPi) = 0.2[1, 2, .5, 3, 4, 1] s,

i ∼ N. This choice is motivated by the fact that for a European grid with nominal

frequency fd = 50 Hz, this is equivalent to τ = 10/fd = 0.2 s.

The simulation results are shown in Fig. 7.2. After a transient the frequencies

synchronize and the voltage amplitudes become constant. The latter satisfy the usual

requirement of 0.9 < V s
i < 1.1 for V s

i in pu and i ∼ N. The initial conditions have been

chosen arbitrarily. Condition (6.49) is satisfied and, hence, the synchronized motion is

locally asymptotically stable.

Furthermore, the batteries are charged in proportion to their power ratings with

the active power also being supplied proportionally, as stated in Lemma 5.2.6. Hence,

the simulation confirms that the frequency droop control, as given in (5.2), is suited to

achieve the desired objective of active power sharing. But, as discussed in Section 5.3,

the reactive power is not shared proportionally, limiting the overall performance of the

voltage droop control law (5.3).

The obtained experience in numerous simulations with large variety of control gains,

setpoints, low pass filter time constants and initial conditions is that whenever the solu-

tions of the system converge to a synchronized motion as defined in Assumption 6.4.3,

the latter is locally asymptotically stable by condition (6.49). However, there exist

gain settings such that the solutions of the system exhibit limit-cycle behavior. As

one would expect, this is the case for very large control gains and low pass filter time

constants.

2) Scenario with constant impedance loads. In this simulation scenario the

robustness of the stability condition (6.49) with respect to loads represented by constant

impedances is evaluated. The system setup is as described in Section 7.2. The control

gains are chosen as specified in the lossless scenario with αi = 0.6 and βi = 0.25, i ∼ N.

Hence, all inverters operate in generation mode. The voltage setpoints and low pass

filter time constants are as in the lossless case.
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The simulation results are displayed in Fig. 7.3. All trajectories converge to a syn-

chronized motion satisfying condition (6.49), indicating that the condition is robust—

to a certain extent—to the presence of transfer and load conductances. The inverters

share the active power demand of the loads as stated in Lemma 5.2.6. Compared to

the lossless scenario, all inverters provide positive reactive power. However, as in the

lossless scenario, the reactive power sharing is not proportional among all units since

in steady-state the voltage amplitudes are not equal at all buses.

Furthermore, numerous simulations with different parameters indicate that the sta-

bility condition (6.49) is satisfied in all cases in which the solutions of the system

converge to a synchronized motion. As in the lossless case, there are gain settings such

that the solutions of the system do not converge to a desired synchronized motion as

defined in Assumption 6.4.3, but show a limit cycle behavior. This is typically the case

for very large control gains and/or large low pass filter time constants.

7.4 Microgrids with frequency droop control and distri-

buted voltage control

In this section the performance of the proposed DVC (5.27) is demonstrated via sim-

ulations. The main purpose of the simulation analysis is four-fold: (i) to evaluate the

performance of the DVC (5.27) compared to the voltage droop control (5.3); (ii) to

investigate the ability of the DVC to quickly achieve a desired reactive power distribu-

tion after changes in the load; (iii) to test the compatibility of the DVC (5.27) with

the frequency droop control (5.2); (iv) to analyze the influence of control design pa-

rameters on convergence properties of the closed-loop system. These are main criteria

for a practical implementation of the DVC (5.27). To this end, a large number of sim-

ulations with a variety of initial conditions, control parameters and load changes have

been performed.

Recall that the DVC is a distributed control, which requires communication. The

graph model of the distributed communication network required for the implementation

of the DVC (5.27) together with the electrical network is depicted in Fig. 7.4. Nodes

that are connected with each other exchange their local reactive power measurements.

Note that the communication is not all-to-all and that there is no central unit. Fur-

thermore, to obtain a practically relevant setup, it is assumed that the phase angles

of the inverters are controlled by the typical frequency droop control given in (5.2).

Hence, the closed-loop system is of the form (5.36), (4.24).
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Figure 7.2: Simulation example of a droop-controlled microgrid - lossless scenario. Tra-

jectories of the power outputs Pi and Qi in pu, the power outputs relative to source rating

Pi/S
N
i and Qi/S

N
i , the internal relative frequencies ∆fi = (ωi − ωd)/(2π) in mHz and the

voltage amplitudes Vi in pu of the controllable sources in the microgrid given in Fig. 7.1,

i = 1, . . . , 6. The active power is shared by the generating sources in proportion to their

ratings in steady-state, i.e., P s
i /S

N
i = P s

k/S
N
k for i, k = 2, 3, 4, 6, while the batteries are

charged in proportion to their ratings, i.e., P s
1 /S

N
1 = P s

5 /S
N
5 . The lines correspond to the

following sources: battery 5b, i = 1 ’–’, FC 5c, i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP

9c, i = 4 ’* -’, battery 10b, i = 5 ’△ -’ and FC 10c, i = 6 ’o-’. The initial conditions have

been chosen arbitrarily.
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Figure 7.3: Simulation example of a droop-controlled microgrid - scenario with con-

stant impedance loads. Trajectories of the power outputs Pi and Qi in pu, the power

outputs relative to source rating Pi/S
N
i and Qi/S

N
i , the internal relative frequencies

∆fi = (ωi − ωd)/(2π) in mHz and the voltage amplitudes Vi in pu of the controllable

sources in the microgrid given in Fig. 7.1, i = 1, . . . , 6. The active power is shared by

the sources in proportion to their ratings in steady-state, i.e., P s
i /S

N
i = P s

k/S
N
k for all

i, k = 1, . . . , 6. The lines correspond to the following sources: battery 5b, i = 1 ’–’, FC 5c,

i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4 ’* -’, battery 10b, i = 5 ’△ -’ and FC

10c, i = 6 ’o-’. The initial conditions have been chosen arbitrarily.
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Figure 7.4: 20 kV MV benchmark model adapted from [253] with 11 main buses and

inverter-interfaced DG units. The controllable units are located at buses 5b, 5c, 9b, 9c,

10b and 10c. The sign ↓ denotes loads. PCC denotes the point of common coupling to

the main grid. The switch at the PCC is open and, hence, the microgrid is operated in

islanded-mode. The numbering of the main buses is according to [253]. The communication

infrastructure is connected. The communication is not all-to-all, neither is there a central

unit.
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The following representative scenario is considered to illustrate the results obtained

in Section 6.5: at first, the system is operated under nominal loading conditions; then,

at t = 0.5 s there is an increase in load at bus 9; at t = 2.5 s, the load at bus 4 is

disconnected. The magnitude of each change in load corresponds to approximately

0.1Sbase. From a practical point of view, this represents a significant change in load.

Furthermore, the total length of the power lines connecting bus 5 and 9, i.e., the

two most remote nodes with grid-forming units, is 2.15 km with a total impedance of

0.014+j0.005 pu (without considering the transformers). Hence, the electrical distance

between the buses is small and the requirement of reactive power sharing is practically

meaningful in the considered scenario.

The gains and setpoints of the frequency droop controllers are selected as in the

previous section. The same holds for the parameters of the voltage droop control (5.3).

For the DVC (5.27), the nominal power rate of each source is selected as weighting

coefficient, i.e., χi = SN
i , i ∼ N (see also Remark 3.3.2) and, following Proposition 6.5.6,

K is set to K = κD with κ = 0.04. For both voltage controls, the voltage setpoint is

chosen as V d
i = 1 pu, i ∼ N. To satisfy Assumption 6.3.5, the low pass filter time

constants are set to τPi = 0.2 s, i ∼ N.

The simulation results are shown for the system (4.16), (4.24) operated with the

voltage droop control (5.3) in Fig. 7.5a and with the DVC (5.27) in Fig. 7.5b. The sys-

tem quickly reaches a steady-state under both controls, also after the changes in load

at t = 0.5 s and t = 2.5 s. Local exponential stability of the reduced-dimension closed-

loop system (6.97), (6.96) operated with the controls (5.2) and (5.27) is confirmed for

both operating points via condition (6.103) given in Corollary 6.5.14. Moreover, the

conservativeness of the sufficient condition in Lemma 6.5.11 has been evaluated in nu-

merous further simulations with different parameters and load changes. The condition

of the lemma has been satisfied in all performed simulations. This indicates that (i)

the condition is practically applicable and that (ii) it is robust with respect to model

uncertainties, e.g., the presence of transfer conductances.

As already observed in the previous section, under the voltage droop control (5.3),

the reactive power is not shared by all inverters in the desired manner, i.e., in the

present case in proportion of their ratings. On the contrary and as predicted, the DVC

(5.27) does achieve a desired reactive power distribution in steady-state. Moreover,

when the system is operated with the DVC (5.27), the voltage levels remain very close
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to the nominal value V d = 1 pu. This is not the case if the system is operated with the

voltage droop control (5.3).

Consider for example the voltage trajectories after the load step at t = 0.5 s. There,

all voltage amplitudes are decreased under the voltage droop control (5.3), while the

DVC (5.27) merely causes small variations in the voltage amplitudes in order to satisfy

the increased reactive power demand by the loads. This additional undesired behavior

of the voltage droop control (5.3) is explained as follows: the voltage droop control

is a proportional control the input of which is the deviation of the reactive power

injection with respect to a desired setpoint. Ideally this setpoint would correspond

exactly to the reactive power injection of the inverter to supply the load demand.

However, as mentioned earlier, such setpoint is difficult—if even possible—to obtain

in practice. Furthermore, the network considered here is dominantly inductive with

inductive loads. In general, the reactive power injection of the sources is positive in

such networks, see Fig. 7.5. Hence, any increase in reactive power demand beyond the

magnitude of the chosen setpoint Qd
i may lead to a significant decrease in magnitude

of the voltage amplitudes. This is not desired in operation. Therefore, [27, 82, 83]

propose the use of a secondary control loop with an integrator to restore the voltage

amplitudes to acceptable values.

The DVC (5.27) does not produce such undesired large decreases in voltage am-

plitudes. This is an indication that no additional control is necessary to restore the

voltage amplitudes within a desired range—a clear advantage over the voltage droop

control (5.3). Furthermore, this fact also explains why the overall power demand is

higher if the network is operated with the DVC (5.27), instead of the voltage droop

control (5.3).

In addition, the simulation results show a good compatibility of the DVC (5.27)

and the frequency droop control (5.2). Recall that the frequency droop control (5.2) is

a proportional control, the input of which is the deviation of the active power injection

relative to a desired setpoint. Hence, a higher active power demand leads to a lower

synchronization frequency, as can be seen in Fig. 7.5. Under each of the voltage controls,

the active power is shared in a desired proportional manner.

Numerous further simulation scenarios confirm that the voltage droop control does

not achieve a desired reactive power sharing. The obtained experience shows that the

relative deviations of the weighted reactive powers Q̄i, i ∼ N, in a steady-state, i.e.,

maxi∼N Q̄
s
i

mini∼N Q̄
s
i

,
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can be as low as a few percent, but also go beyond 30% for control parameters chosen

within a practically reasonable range. The specific value depends on the selection of the

control parameters, as well as the initial conditions and location of simulated changes

in load.

In contrast and as predicted, the DVC (5.27) achieves a desired reactive power

sharing in the sense of Definition 3.3.1 in steady-state. Furthermore, with the choice of

κ = 0.04 a steady-state is typically reached within a few seconds. The exact convergence

time depends on initial conditions, as well as magnitude and location of the changes

in load. As outlined in Section 6.5.2, there exist other meaningful choices for K, for

example, K = κI. Overall, the best performance has been obtained with K = κD and

0.05 < κ < 0.15.

Furthermore, κ is a very intuitive tuning parameter. In analogy to linear SISO con-

trol systems, low values of κ lead to relatively long settling times, but little overshoot.

On the contrary, the larger κ is chosen, the shorter is the settling time at the cost of a

higher overshoot and a broader error band. This effect is illustrated for different values

of κ in Fig. 7.6.

Moreover, the robustness with respect to the presence of transfer conductances of

the closed-loop microgrid operated with the frequency droop control (5.2) and the DVC

(5.27) has been evaluated in numerous simulations. More precisely, the R/X ratios of

the power lines have been varied in a range of [0.3, 3]. In all simulated cases, the trajec-

tories of the closed-loop microgrid converge to a synchronized motion. Furthermore, a

desired active and reactive power sharing is always achieved and the voltage amplitudes

remain close to the nominal value of 1 pu. Hence, the simulations demonstrate that

the investigated control scheme is also well-suited for networks with larger R/X ratios.

In addition, the convergence speed depends on the connectivity properties of the

communication network, as well as on the physical characteristics of the electrical net-

work. A detailed evaluation of the influence of these two points is subject of future

research.

7.5 Summary

The analysis performed in the previous chapters has been illustrated via simulation

examples based on the the CIGRE benchmark MV distribution network. In the case of

a droop-controlled microgrid, the derived stability condition is satisfied and a desired
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Figure 7.5: Comparison of voltage droop control and DVC. In both cases, the system

reaches quickly a steady-state after a change in load. However, as can be clearly seen, the

proposed DVC (5.27) achieves the objective of reactive power sharing, while the voltage

droop control (5.3) does not. Trajectories of the power outputs relative to source rating

Pi/S
N
i and Qi/S

N
i , the voltage amplitudes Vi in pu and the internal relative frequencies

∆fi = (ωi − ωd)/(2π) in mHz of the controllable sources in the microgrid given in Fig. 7.4,

i = 1, . . . , 6. The lines correspond to the following sources: battery 5b, i = 1 ’–’, FC 5c,

i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4 ’* -’, battery 10b, i = 5 ’△ -’ and FC

10c, i = 6 ’o-’.
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Figure 7.6: Responses of the voltage amplitude V5 and the weighted reactive power

Q5/S
N
5 of the inverter 5 at bus 10b to a load step at bus 9 for different values of κ :

κ = 0.005 ’- -’, κ = 0.02 ’-+’, κ = 0.07 ’-*’, κ = 0.15 ’–’.

steady-state active power distribution is achieved in simulation for a wide selection of

different control gains, setpoints, low pass filter time constants and initial conditions.

The simulations also show that, despite the observation that meshed microgrids

with droop control possess a locally stable synchronized motion for a wide range of

control gains, the conventional voltage droop control does, in general, not guarantee

proportional reactive power sharing. This observation has been confirmed in a second

simulation study in which the performance in terms of reactive power sharing of the

usual voltage droop control has been compared to the DVC proposed in Section 5.3.

Furthermore, it has been demonstrated that, as predicted, the DVC achieves reac-

tive power sharing and, hence, clearly outperforms the usual voltage droop control. In

addition, the simulations show good compatibility of the proposed voltage control with

the typical frequency droop control. Furthermore, some intuition for the choice of the

control parameters of the proposed DVC has been provided. Overall, the evaluation of

the simulation results together with the experiences from numerous further simulation

scenarios lead to the conclusion that the DVC is a well-suited control scheme for voltage

control and reactive power sharing in microgrids.
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8

Discussion and conclusion

8.1 Summary

The microgrid concept, introduced in Chapter 3, represents a promising solution to

facilitate the integration of renewable DG units into the electrical grid. In this work

three fundamental challenges in microgrids have been considered: (i) frequency stabil-

ity, (ii) voltage stability and (iii) power sharing. As in any system, stability is a basic

criterion for a reliable and secure operation. The relevance of power sharing is given

by the fact that it permits to prespecify the utilization of the diverse generation units

in the network. Furthermore, it has been shown, that power sharing essentially is an

agreement problem.

As a basis for the analysis and control design, a generic modular model of an

uncontrolled microgrid has been derived in Chapter 4. The main model components

are generation units interfaced to the network via AC inverters or SGs, as well as loads

and power lines. Inverters are modeled as controllable AC voltage sources. A detailed

derivation of this model representation of an inverter together with the main underlying

assumptions is given in Section 4.2. SGs, power lines and loads are modeled following

standard procedures in power system stability studies.

Based on the derived microgrid model, suitable control schemes to address the

aforementioned control objectives are discussed in Chapter 5. One important contribu-

tion of this work is the design of a consensus-based distributed voltage control (DVC),

which ensures a desired reactive power sharing in steady-state. The control design is

motivated for microgrids with dominantly inductive power lines. However, it is proven

in Section 5.3 that the DVC achieves reactive power sharing in steady-state indepen-

dently of the line admittances. Furthermore, frequency and voltage droop control are
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discussed. In particular, a selection of control parameters for the frequency droop con-

troller is given, which ensures desired active power sharing in steady-state. As in the

case of the DVC, this criterion is also independent of the line admittances.

The main contributions of this thesis are conditions for frequency and voltage sta-

bility of microgrids operated with the aforementioned control schemes. The derived

results have been established in Chapter 6 by using tools of linear algebra, as well

as port-Hamiltonian systems in combination with converse Lyapunov theorems. Most

of the results are derived under the assumption of lossless line admittances. Further-

more, conditions are given, under which the frequency droop control, respectively the

proposed DVC, solve the problem of active, respectively reactive, power sharing in

microgrids with dominantly inductive power lines. These results are derived by com-

bining the obtained stability conditions with the aforementioned selection criterion for

the parameters of the frequency droop controller, respectively the inherent properties

of the DVC.

For lossless microgrids with inverters with variable frequencies and voltage ampli-

tudes, the derived stability conditions have the following common physical interpreta-

tion. The analyzed control schemes share the property that they establish a feedback

interconnection of the voltage amplitudes with the reactive power flows and of the phase

angles with the active power flows. The derived stability conditions state that—in order

to ensure stability—the local coupling-strengths between the active power flows and the

phase angles, as well as between the reactive power flows and the voltage amplitudes

have to dominate the cross-couplings originating from the common dependence of the

power flows from both variables, i.e., from phase angles and voltage amplitudes. In

the case of lossless droop-controlled inverter-based microgrids, this is sufficient for local

stability. In the case of lossless microgrids operated with frequency droop control and

DVC, the control parameters and the time constants of the low-pass filters can then be

chosen such that local stability is ensured.

The analysis has been illustrated via extensive simulation studies in Chapter 7. The

derived stability conditions for the different investigated network configurations are

satisfied and a desired steady-state active power distribution is achieved in simulation

for a wide selection of different control gains, setpoints, low pass filter time constants

and initial conditions.

The simulations also show that, despite the observation that meshed microgrids

with droop control possess a locally stable synchronized motion for a wide range of

182



8.2 Future research directions

control gains, the conventional voltage droop control does, in general, not achieve

proportional reactive power sharing. On the contrary, it has been demonstrated that

the DVC proposed in this work does guarantee reactive power sharing. In addition, the

simulations show good compatibility of the proposed DVC with the typical frequency

droop control. Furthermore, some intuition for the choice of the control parameters of

the proposed DVC has been provided. Overall, the evaluation of the simulation results

together with the experiences from numerous further simulation scenarios lead to the

conclusion that the DVC is a well-suited control scheme for voltage control and reactive

power sharing in microgrids.

In summary, models, control solutions and stability conditions for a wide spectrum

of microgrid configurations have been elaborated in this thesis. The considered net-

works comprise frequency droop-controlled MDREGs, droop-controlled inverter-based

microgrids and microgrids operated with frequency droop control and the DVC pro-

posed in this work.

8.2 Future research directions

The focus of this work is on the problems of frequency stability, voltage stability and

power sharing in microgrids. In this section, extensions of the presented results are

indicated. At first, proximate extensions are described. Then, more distant research

directions are outlined.

Most of the stability conditions in this work have been derived under the assumption

of dominantly inductive admittances. The results have been established via Lyapunov

theory, from which some robustness properties can be inferred. A case of particular

interest is robustness in the presence of conductances. However, robustness-based anal-

ysis usually only allows to consider small perturbations. Hence, a nearby extension of

the present work is the explicit consideration of conductances in the analysis. As dis-

cussed in Section 6.2, this is a long-standing problem in power system analysis, see, e.g.

[36, 44]. Recent work [50, 64] provides a partial solution to this problem. However, the

results of [50, 64] are derived for first-order models of SGs, respectively inverters. In

addition, the authors of [50] assume constant voltage amplitudes, while the results of

[64] are very conservative.

Another direction of research in which the derived results should be extended is with

regards to the considered load models. In this work, it has been assumed that all loads

can be represented by constant impedances. While this assumption is frequently used
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in power system stability analysis [3, 4, 6], it does, in general, not permit to accurately

describe all possible loads. The main reason for this is that, as discussed in Chap-

ter 4, there usually is a large variety of different loads connected within one microgrid.

Hence, the individual loads may have very different characteristics. An extension of

the presented results to constant current loads seems straight-forward and is currently

being investigated by the author. An extension to constant power loads seems more

difficult, since in that case it is not possible to work with the Kron-reduced network

representation. Therefore, in that scenario, the microgrid model to be considered is

a DAE system. Analytical stability analysis of such systems is mathematically very

challenging, see, e.g., [257]. This is one reason why researchers have pursued model-

ing loads as dynamical systems. Another reason is that load dynamic response may

have a strong effect on power system stability and, in particular, on voltage stability

[232, 258]. Frequency- and voltage-dependent dynamic load models are discussed, e.g.,

in [1, 6, 232, 233, 240, 258, 259, 260]. However, the derivation of stability conditions for

power systems with dynamic frequency- and voltage-dependent load models is rather

complicated. As a consequence and as pointed out in Chapter 6, the load models are

usually, somehow artificially, adapted to fit the theoretical framework used for the con-

struction of energy-Lyapunov functions, see, e.g., [47, 243]. Hence, the investigation of

power system and, in particular, microgrid stability using more detailed load models is

a close-by open direction of research.

Furthermore, the DVC proposed in this work also offers room for several proximate

extensions. One such extension, which is currently under investigation, is the design of

a DVC for SG-interfaced units that does not require a feedback linearization. More-

over, the DVC is a communication-based control, which requires information exchange

over a network. In practice, this often implies the presence of some sort of feedback

delay, which can severely affect the control performance [85, 88]. Conditions for con-

vergence of consensus protocols for multi-agent systems under the presence of delays

have been widely investigated in the literature, see, e.g., [95, 96, 97, 104, 105]. The

effect of communication delays on the convergence properties of the average consensus

protocol used to design the DVC has been analyzed for uniform delays, e.g., in [88],

and for heterogeneous time-varying delays, e.g., in [92, 93]. One conclusion of the re-

sults derived in [88] is that there is a trade-off between the degree of the nodes and

the robustness with respect to delays. However, all of the aforementioned results are

restriced to purely multi-agent systems, while in the present case an additional physi-
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cal layer corresponding to the electrical network has to be considered in the analysis.

Therefore, it is interesting to extend the analysis of a microgrid operated with the

DVC conducted in this thesis to communication networks with time-delay. Also, the

present control approach is derived under the assumption that only the power outputs

of the DG units can be measured instantaneously. Yet, it is foreseen that in future

power networks instantaneous measurements of the load consumption will be available,

too [18]. Extending the DVC to incorporate load measurements would, e.g., allow to

determine the desired reactive power distribution in dependency of the load demand

and its electrical distance to the respective DG units. This is a relevant criterion, since

the load demand usually changes over time. An exemplary scenario, in which such an

extension could be beneficial, is the following. Consider a microgrid, where the load

demand is concentrated at one specific location in the network at a point in time t0 ∈ R.

Suppose that at t1 ∈ R, t1 ≫ t0, the main load demand shifts to another location in the

network. If this information would be available, the weighting gains of the respective

DG units could be adapted to the new situation. This would, e.g., allow to minimize

losses.

The abovementioned difficulties regarding conditions for stability in networks with

highly resistive power lines also raise the question of whether the controls discussed

in this work are well-suited for such networks. Highly resistive power lines may, for

example, appear in small microgrids at the LV level. Inspired by the droop control

laws discussed in this work, controls for inverter-interfaced units in networks with

highly resistive power lines have been proposed, e.g., in [72, 237, 238, 261]. However,

no thorough network stability analysis has been carried out. Hence, the design of

specific control laws together with corresponding conditions for stability in microgrids

with highly resistive power lines is a further promising field of research.

Another relevant direction of future research is the extension of the present analysis

to more detailed microgrid models, e.g., networks with time-varying power line models.

Only very recently there have been some partially successful reports on this topic

[175, 262, 263, 264, 265, 266, 267]. However, to the best of the author’s knowledge,

all these results are restricted to very special cases. For example, in [262] a port-

Hamiltonian model of a power system with SGs is derived. Yet, the stability analysis

is restricted to the special case of an SG connected to a constant linear load. A similar

approach is followed in [264, 265], where a sufficient condition for global asymptotic

stability of a generic SG-based power system is derived. Building on [262], the authors
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of [264, 265] also follow a port-Hamiltonian modeling approach to establish their result.

However, the main stability claim in [264, 265] critically relies on the assumption of a

constant field winding current, as well as on the definition of a very specific value for

the mechanical torque of each SG in the system. This torque not only depends on the

constant field current, but also on an arbitrarily chosen synchronization frequency and

arbitrarily prespecified steady-state terminal voltages for all SGs.

In [263, 266] the problem of synchronization of DG units with identical dynamics

connected to a single load over a dynamic parallel network with identical power lines is

considered. To derive their synchronization result, the authors of [263, 266] model all

DG units as nonlinear oscillators and introduce a new mathematical framework named

passivity with respect to manifolds.

Similarly, [175, 267] provide synchronization conditions in networks with identical

node dynamics using L2 methods. The node dynamics are modeled as nonlinear circuits

consisting of a passive impedance connected in parallel to a nonlinear voltage-dependent

current source. Hence, practically the approach is restricted to networks with inverter-

based generation sources. Furthermore, the synchronization conditions provided in

[267] are restricted to networks with star topology, i.e., to parallel networks. The

more recent work [175] extends the results of [267] to networks with general topology.

However, the synchronization results therein are restriced to networks with identical

power lines or with power lines, which share a uniform line impedance per length and

the lengths of the lines may vary. In addition, the authors of [175] themselves conclude

that their approach cannot be extended to more general heterogeneous networks using

the methods employed in [175].

Moreover, [175, 263, 266, 267] have in common that the analysis and provided

solutions are limited to the problem of network synchronization, while other practically

relevant performance criteria such as power sharing are not considered. In addition,

as done explicitly in [263, 266] and implicitly in [175, 267], modeling a grid-forming

inverter as a controllable voltage source may not be adequate, when considering fast

line dynamics. This latter observation follows from the fact that typically the dynamics

of the internal inverter controls together with the inverter output filter are slower than

the line dynamics, see the model derivation in Chapter 4 for details. Hence, in summary,

the problem of stability analysis in microgrids with heterogeneous generation pool and

time-varying power line models is still a challenging open problem.
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8.2 Future research directions

Furthermore, based on the hierarchical control architecture for microgrids described

in Section 3.4, the investigated problems in this work are associated with the primary

control layer. The control actions and associated dynamics at the higher control layers,

i.e., secondary and tertiary control, have not been considered in this work. The perfor-

mance analysis of interactions of the primary control layer with higher control layers is

therefore a further interesting direction of future research.

Control schemes for secondary frequency control are, e.g., proposed in [28, 77, 78,

119]. The problem of optimal dispatch, i.e., tertiary control, is considered, e.g., in

[7, 79, 195, 268]. In [28, 119] the interaction of the primary and secondary frequency

control levels are also considered. But, the analysis therein is conducted under the

assumptions of first-order inverter models, lossless admittances, as well as constant

voltage amplitudes. Under equivalent assumptions, the recent work [66] further unter-

takes the aforementioned endeavor by extending the analysis of [28, 119] to additionally

consider the tertiary control layer. Yet, the analysis therein is restricted to active power

flows. Furthermore, neither load nor generation uncertainties nor storage capacities are

considered.

Finally, the hierarchical control architecture presented in Section 3.4 following

[38, 191, 192] is strongly influenced by the well-established hierarchical control ar-

chitecture in large transmission systems, see, e.g., [6, 190]. However, as discussed in

Section 3.2, the properties of microgrids clearly differ from those of conventional large

power systems. Another relevant question, also raised, e.g., in [66] and Section 3.4,

therefore is, whether the hierarchical control architecture proposed in [38, 191, 192] is

adequate to assess the operational objectives and constraints in microgrids.

In conclusion, there are many challenging open questions regarding a reliable, safe

and efficient operation of microgrids, as well as generic power systems with large amount

of renewable DG. The author hopes that the work conducted in this thesis may help

to answer some of these questions and serve as a base for a large variety of challenging

future research directions.
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lay robustness in consensus problems. Automatica,

46(8):1252–1265, 2010. 11, 184

[97] U. Münz, A. Papachristodoulou, and F. Allgöwer. Ro-
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