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1. Introduction

The Fast Moving Consumer Goods industry (FMCG industry) is responsible for producing
goods of regular, often daily, need. Common FMCG products are e. g. food and dairy
products, glassware, paper products, pharmaceuticals, electronics, plastic goods, printing
goods, household products, photography, beverages etc. In 2010, consumer goods sales
had a gross revenue of 555 billion e in Germany alone. In 2009, Europe’s biggest
consumer goods producing company Nestlé’s worldwide gross revenue was 100 Billion
US-$1. The consumer goods industry is therefore one of the most important sectors in
today’s economy. Due to this big leverage increases in efficiency can, even if they appear
small in relative numbers, lead to great savings in absolute numbers.

Due to high competition in this sector, efficient management on all levels is paramount
for a company’s success. Customers often have frame contracts, which allow to adjust
order quantities to be flexible within certain ranges on short notice. Therefore it can
be challenging to meet the demands in time, however a high service level is generally
required to prevent loosing of customers in this competition-intense market. Production
systems need to retain flexibility to be able to produce the required quantities on time.
However, production systems are in most cases highly automated with capital-intense
machines, therefore it is generally difficult to keep sufficient capacities at bay to meet
with unexpected demands on short notice — it is important that capital intense resources
are highly utilized.
Most consumer goods industry face an increasing number of products and product

variants. E. g., where in yoghurt production a couple of decades ago there was only natural
flavor and perhaps a hand full of different flavors, today it is not only an increased number
of flavors, but diet variants with decreased sugar and/or fat, special variants for Lactose-
intolerant customers, variants based on soy milk for vegan customers, variants using
only biological produced ingredients and so on. Using modern production technology,
the production capacity of a single machine is usually much too high to be utilized by
a single variant, therefore several variants are produced on the same machines. This
requires changeover activities, also called setup activities, for cleaning and preparing
the machine to switch from one variant to another, comsuming time and therefore
reducing available capacity for production. Creating production plans which minimize
the capacity loss of expensive machines due to such changeovers is an important and
often difficult problem, especially if the required time for this changeover time depends
on both the predecessor and the successor product (this is commonly referred to as a
sequence-dependent changeover).

1Cf. Statista GmbH (2013)
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1. Introduction

This problem is treated in two planning steps: lot-sizing and scheduling. The term
lot-sizing describes the grouping of production orders, which are necessary to fulfill real
or forecasted product demands, into continuous production lots of the same product
which are to be produced without being interrupted by production of other products
on the same resource. In scheduling, the production lots are assigned to time windows
on specific resources. This two steps can be carried out successively, though this can
result in inferior solutions or even infeasibilities, e. g. if in the lot-sizing procedure the
defined production lots are large and for some products there is a limited time until
first demands occur, then it may not possible to produce the production lots for all such
products in time, where with smaller lots this would be possible. Due to this effect, in
many production environments there is an increasing tendency to solve the lot-sizing
and scheduling in a single integrated step. The drawback is the high complexity of this
problem, making it more difficult to find good or even optimal solutions.

While due to the high complexity early approaches were based on successively planning
the lot-sizes and then scheduling them, often by means of simple heuristics, computing
technology has developed rapidly in the last decades. On the hardware side, CPU power,
memory, network speed etc. have increased, and new and adapted software in regard
to databases, multi-tasking and mathematical solving were developed. Also, production
planners are more accustomed to using computing technology. These developments opens
new possibilities in production planning which were partly exploited by the development
of Enterprise Resource Planning software in the 1980s, and more recently the development
of Advanced Planning Systems (APS). However, APS still lack sophisticated procedures
for integrated lot-sizing and scheduling problems, especially for complex changeover
structures2.
In this thesis, the problem of lot-sizing and scheduling in the FMCG industry shall

be observed with focus on the impact of different changeover structures to the solution
process. This shall help practitioners and researchers to select appropriate basic methods
when developing solution methods for specific applications of (integrated) lot-sizing and
scheduling. In the following, in chapter 2 the specific properties of the FMCG industry
are discussed. Chapter 3 outlines approaches to treat the lot sizing and scheduling
problem. In chapter 4, three scenarios which differ by the changeover structure and some
related minor aspects as they are typical for the FMCG industry are defined and models
are developed based on different standard model formulations to solve the integrated
lot-sizing and scheduling problem for those scenarios. Then, in chapter 5 the different
modeling approaches are evaluated and compared to each other in regard to quality and
efficiency, and how they are impacted by problem size and the ratio of required and
available production time. Finally, chapter 6 draws conclusions from the previous results
and suggestions for further research and applications in real industry are given.

2Cf. Tempelmeier (2008, p. 423)
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2. Fast Moving Consumer Goods Industry

Production in today’s industry can have many appearances which need to be regarded
in all stages of management. The building of a bridge is different than designing and
manufacturing special machines, producing mass-customized cars or producing bottles
of fruit juice. Therefore, problems that arise in planning and production and methods
to treat them are not easily transferable from one type of industry to another. This
is especially true for the lot-sizing and scheduling problem. While this is neglected by
conventional Production Planning Systems, that are based on the Material Requirements
Planning (MRP) or Manufacturing Resource Planning (MRP II) concepts, which form the
base for industrial applications for production planning in Enterprise Resource Planning-
Systems (ERP-Systems)1, more modern Advanced Planning Systems (APS) often offer,
among other aspects, more industry-specific methods or interfaces to attach external
solution methods2. Therefore, when treating management problems it is necessary to
define the characteristics of the underlying industrial environment and adjust solution
methods to this environments.
The Fast Moving Consumer Goods industry (FMCG industry) covers a wide range of

products of daily use. According to Beck (2002) "the term Fast Moving Consumer Goods
Sector is used [. . . ] to mean those retailers and their suppliers who provide a range of
goods sold primarily through supermarkets and hypermarkets. The core of their business
is providing ‘essentials’ such as various fresh and processed foodstuffs, but they also stock
a wide selection of other goods as well, including health and beauty products, tobacco,
alcohol, clothing, some electrical items, baby products and more general household items."
Cooper et al. (1994) define Fast Moving Consumer Goods as "products sold for everyday
use in large quantities; applied to items such as processed foods, snacks, detergents,
toothpaste, and so on."
As can be seen from above definitions, the FMCG industry covers a large variety of

products. The perhaps most important examples are:

• Food (e. g. meat, fish, vegetables, fruits, dairy products, convenience food)

• Beverages (e. g. bottled water, soft drinks, fruit juices, alcoholic beverages)

• Tobacco products (e. g. cigarettes, cigars, cigarillos)

• Paper products (e. g. Newspapers and Magazines, print-out paper, cardboard
boxes)

• Chemical products (e. g. soaps, cleaning preparations, perfumes)
1Cf. e. g. Günther and Tempelmeier (2012, pp. 333–335)
2Cf. e. g. Günther and Tempelmeier (2012, pp. 359–373)
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2. Fast Moving Consumer Goods Industry

This industry forms a major part of today’s economy. For example, food industry
in Germany consists of 5970 enterprises of different sizes, employing 555,000 workers,
having a turnover of 169.3 billion e in 20123.

In literature, several case studies belonging to the FMCG industry have been regarded
under different aspects. For food processing industry, Van Donk (2001) gave an overview
of characteristics relevant for production planning, which he derived from five other
publications. The tobacco industry was treated e. g. by Van Dam et al. (1999), describing
the packaging process in a production plant. In paper industry, e. g. Bouchriha et al.
(2007) described a cyclic approach for lot-sizing. Ferreira et al. (2010), Christou et al.
(2007) and Bilgen and Günther (2010) gave some major aspects of the beverage industry.

Derived from these descriptions, the following characteristics are typical for most of
FMCG industry:

• Mass production of standardized products or product variants is common,

• usually several product variants require a similar task schedule/routing,

• products usually have a long life-cycle, product variants may have a long or short
life-cycle,

• customers are price-sensitive and profit margins are low due to a high competition
market.

This product profile encourages usage of mass production technology4, as is common
to be seen in today’s consumer goods industry. Usually, flow production systems are
established to mass produce one or, as the demand for one product often does not require
the full capacity of modern production lines, several product variants. The following
major aspects regarding the lot sizing and scheduling are therefore to be considered:

• Due to low profit margins and expensive, yet high productive machines, a high
utilization of the available resource capacity is paramount,

• capacities are limited and can usually not be expanded by overtime due to already
high utilization,

• while usually several production lines co-exist, often certain product types are
exclusively produced on one production line due to technical requirements or
decisions of the management,

• demands have to be met in time, as otherwise customers/retailers might switch to
a competitor5,

• since several products are to be produced using the same resources, changeover
activities are common which may require changeover costs, e. g. for residue cleaning,
and/or capacity consuming changeover time,

3Cf. Bundesvereinigung der Deutschen Ernährungsindustrie (2013, p. 11)
4Cf. e. g. Günther and Tempelmeier (2012, pp. 60–62))
5For applications where stockouts are acceptable, see e. g. Liu and Tu (2008)
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2. Fast Moving Consumer Goods Industry

• those changeover requirements are usually high for changeovers between different
product types and small for changeovers between product variants of the same
product type,

• production usually needs several processes to turn the input materials into the
desired products,

• in some cases, shelf-life of the products is limited, making high inventory levels
undesirable.

In the following, some of these aspects are treated more in detail. First, the production
environment is further explored regarding the necessities of production planning. Second,
the problem of dimensioning the capacities on a mid- to long-term basis is discussed.
Third, different kinds of setup structures as they are found in the FMCG industry are
explained. Then, the question of choosing an objective funtion, which decides which of
all possible feasibles plans should be chosen, is treated. The chapter is finished by a
short summary, outlining the most relevant aspects of the FMCG industry as they are
considered in the remainder of this research.

2.1. Production Environment
The production process in the FMCG industry is usually organized in flow production
systems with several variants of a product on each production line. While production
is in most cases a so called multi-level production, meaning several production steps
are required to transform the ingoing materials into the final product, in many FMCG
industry environments one dominant resource type can be identified. E. g., in bottling
companies, raw materials are a concentrate, plain water, and plastic bottle pre-forms. The
first production step is to mix the concentrate with plain water and perhaps additional
ingredients in an industrial mixer to create a fluid as intermediate product. The fluid
is then transported by pipe to a filling machine, which creates the bottles from the
pre-forms using a moulding device and directly fills the liquid into the bottle. Often
it is also labeling the filled bottles and packaging them, creating the final product to
be shipped to customers. Here, the industrial mixer is of minor importance from an
economical point of view. Adding capacity to the mixing step is fairly cheap, while
adding capacity to the filling machine is rather expensive. Therefore it is of paramount
importance to utilize the filling machines capacity as highly as possible. To achieve this,
the production line is usually designed in a way that the capacity of the mixer is never a
limiting factor (breakdowns excluded). Then, the line can be regarded as a single level
make-and-pack-production6 — the production plan for the filling machine is determined
and its requirements are propagated to the industrial mixer. This is a common concept

6Cf. Lütke-Entrup et al. (2005) give the following definition: ’In literature, a production environment
which is characterized by a single production stage and a subsequent packaging stage is named ’make
and pack production”
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2. Fast Moving Consumer Goods Industry

for flow production systems if they do not have a so called shifting bottleneck7. For other
production concepts like e. g. job shop production, usually multi-level production has to
be considered since the large product portfolio with changing demands does not allow
identifying a single dominant resource, but several capacities can become a restricting
bottleneck during a single day8. For the FMCG industry, in regard to production planning
a single-level make-ans-pack production system is common and will be considered in the
remaining of this thesis.

2.2. Capacity Dimensioning
In the mid-term production planning, the dimensioning of capacities is an important
problem impacting the options of subsequent planning steps. If no stochastic effects
like resource breakdowns should be considered, capacity is consumed by two activities:
process times and changeover times. Process times can roughly be distinguished being
either constant for a range of lot sizes or being constant per unit. In most FMCG
industries, constant process times per unit are given, as will be assumed in the following,
therefore the total capacity requirement for processing is given by the constant process
time per unit and the demands. Demand figures for specific products or product families
face two characteristics, the demand forecast accuracy and the demand levels:

• In production planning, future demands can stem from real customer orders (also
referred to as a Make-To-Order Production) and/or statistical demand forecasts
(also referred to as Make-To-Stock Production) or a combination of both. While in
environments where capacities are tight and stockouts or backorders are an option,
it can be reasonable to treat both differently and prioritizing real customer demands
over forecasted demands. In FMCG industry usually stockouts/backorders are to
prevented and all demands have to be fulfilled on time. While demand quantities
and delivery dates for real customer orders are usually known (though order
modification or cancellation can still incur some degree of uncertainty), demand
forecasts always face a degree of uncertainty. Since the modeling of distribution
functions for uncertain demands would result in highly complex models which are
hardly solvable, it is common to assume the demands forecasts are deterministic,
treating the degree of uncertainty in different ways like e. g. defining safety stocks
which can be used to satisfy demands which are higher than expected, leading to a
third source of demand figures, the adaption of expected inventory levels to the
safety stock levels. By this, other steps in production planning usually can assume
deterministic demand levels.

7A "shifting bottleneck" describes a multi-stage production environment, in which the capacity usage
of different process stages is so dependent on the production plan, that in different time windows
different resources form the bottleneck resource, limiting the capacity of the production line. In
such environments, the generation of a feasible production plan usually requires the modeling of the
capacitated multi-stage production process.

8Other publications consider multi-stage production environments, see e. g. Akkerman and Donk (2008)
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Figure 2.1.: Demand synchroneous production (left) vs. Demand anticipative production (right).

• Demand levels can be stable or varying over time. The degree of variability depends
on the product and market environments, but also on parameters like periodization9

or product aggregation10. Choosing appropriate period sizes and aggregation
methods is therefore of importance, but out of scope for this research. In case of
stable demands, dimensioning of capacities is trivial, however the more common
case are varying demand levels. Basically, there are two ways to meet varying
demands levels (illustrated in figure 2.1): first, production can match demands,
which means capacities need to be sufficient to meet high demand periods, which
is an attractive option if capacities are cheap or can easily be extended11; second,
capacities can be utilized at a more stable rate, building up inventory in low demand
periods to satisfy demands of later high demand periods.

So called lot-sizing and scheduling methods are implemented in the operative planning
level to generate production plans which can satisfy the given demands under limited
capacities under consideration of company goals like profit maximization/cost minimiza-
tion or retaining high flexibility. Since in the mid-term tactical planning level in which
decistions regading the capacity dimensioning ar made exact lot sizes and changeovers are
not known, but neglecting those would result in capacities to be sized to low, an estimate
for capacity loss due to changeover activities is necessary. It needs to be sufficient to
give the operative planning level not only to find feasible plans, but to give it enough
flexibitily to find economically desirable production plans, and of course it should not be
too high, as this would lead to expensive capacity not being utilized in an economical
sensible way anymore in the subsequent planning steps. In the FMCG industry, many
products face seasonal demands, e. g. demand for many beverages is higher in summer
than in winter. Even for products like print-out paper, which on the customer side has a
relatively stable demand, due to the bullwhip effect12, demands for production can vary
significantly over time. E. g., Zotteri (2013) reports in the personal care sector that in

9E. g., demands for periods of weeks may be stable, but highly variable if periods are individual days.
10E. g., the demand for a product group may be stable, but demands for different variants of the product

can be variable.
11E. g., if the capacity is limited by manpower, in Germany it is possible to hire "Leiharbeiter", or

temporary staff, to supplement manpower capacity in peak demand periods. They form a capacity
reserve that if not used cause no cost.

12Cf. e. g. Tempelmeier (2006, pp. 157–164)
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more than half of the analyzed cases the demand upstream (sell-in) is twice as variable as
the demand downstream (sell-out). Due to the low profit margins and capital intensive
resources, capacity dimensioning should aim at a high capacity utilization while at the
same time enable a high service level to satisfy customers in a high competition market.
Therefore, keeping capacity reserves for high demand periods is usually not viable in
the FMCG industry, but capacities need to be utilized highly in all periods. This faces
a number of problems as well: building up high inventories can cause significant costs,
especially if the shelf life of the products is limited13, and high production volumes of a
single product may use up required capacity for other products which are low on stock
due to unexpected high demands.

2.3. Changeover Structure
In the FMCG industry, usually several product variants are produced on the same
production line, therefore changeover activities (also called setup activities) have to be
carried out when switching from one product to another. While process activities usually
consume most of the available capacity for productive activities, changeover activities
form an unproductive capacity requirement which can often consume a highly relevant
amount of capacity, making it unavailable for revenue generating activities.
Since the capacity requirement of process times is usually given by deterministic

demands and constant processing times, they cannot be influenced by the planning. In
production planning in the mid to long term, the effects of the actual sequence in which
products are produced can often be neglected and average setup requirements based on
experience can be used, often directly reducing the available capacity. On the other hand,
as the number of changeovers depends on the number of lots and the required changeover
time can depend on the sequence in which the lots are produced, there is a potential to
safe expensive capacity time by proper methods in short term production planning. The
complexity of this problem is highly dependent on the changeover structure. Changeover
structures can be categorized into the following five basic types:

• In the simplest cases, changeover activities are sequence independent. The exact
sequence of the scheduled order is of no importance in regard to changeover
requirements, and can be neglected in big bucket models, which at most regard
the last setup state of a big bucket period for setup carryover. An extreme case
is where the changeover cost and times are negligible and therefore assumed to
be zero, in which case the problem of lot-sizing and scheduling is reduced greatly
and simple methods like prioritization regarding to the stock run out time can be
employed.

• Another type can be referred to as family changeover, in literature sometimes
referred to as coordinated setup. The machine is set up and can then produce
a part of the product portfolio, the product family, with only small or no setup
requirements for a changeover between different products belonging to the same

13For considering of shelf life, see e .g. Lütke-Entrup et al. (2005) or Bilgen and Çelebi (2013).
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family. In some environments, the setup activity can be done off-line, minimizing
the setup time on the production resource, e. g. in PCB-Assembly using trolleys
which are set up with a set of components required to produce a set of products.
The changeover activity on the production capacity is then simply changing the
trolley, which interrupts production only for seconds. Other environments require a
production stop while the changeover takes place, e. g. in beverage industry when
the moulding device for forming the bottles in a make-and-pack production line is
changed.

• With limited changeover environments are described, where changeovers for some
combinations of predecessor product and successor product are prohibited. This
can be the case for example in chemical industry, where properties of the production
process allow only for changes between similar products, or in pharmaceuticals,
where small quantities of a previous product could contaminate the succeeding
product.

• A natural sequence exists, when technically or from an economical point of view
only a certain sequence is feasible respectively reasonable and can be obtained in
advance. This is quite common in some process industries, especially food and
beverage industry, e. g. as described in Bilgen and Günther (2010) or Farahani
et al. (2012). For each product that is to be produced within its natural sequence,
there is a constant or product dependent minor changeover time, while changing
out of the sequence (going back in sequence or changing to a product which is not
part of the previous sequence at all) incurs a major changeover time. In today’s
industry, this concept is often found under the name Production Wheel and has
been regarded in several other publications, e. g. Lütke-Entrup et al. (2005). Note
that this is to some extend the opposite of approaches where first the lot sizes are
determined in advance and in a succeeding step the scheduling, and therefore also
the sequencing, is carried out.

• The most general type of changeover structure is the full sequence flexibility. Just
like in the independent case, the sequence of products can be chosen arbitrary, but
here the changeover times and/or costs depend on the sequence, i. e. both the
predecessor product and the successor product. While this type of sequence can be
used to reflect all other type of changeover structure, it is the most complex one,
requiring a quadratic increasing number of binary variables for reflecting changeover
activities with increasing number of products.

These basic types do not necessarily exclude each other, but can be combined to
form combined types. For example, a product families with a full sequence flexibility
changeover structure when changing between product families and a natural sequence
changeover structure for changeovers within a product family. In today’s FMCG industry
one can find very different kinds of setup structures.
Note that changeovers often do not only cause costs, e. g. for cleaning materiala,

but in many cases also capacity loss because the capacity cannot continue processing
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while the changeover activity takes place. While in literature most regarded problems
incur changeover costs, they often neglect changeover times. This is because including
changeover times into the models makes them a lot more complicated to solve, therefore
changeover costs are included to put some penalty to prevent unnecessary changeover
activities. In most cases, out-of-pocket costs for changeover activities can be neglected.
However, in cases where they are relevant for the production planning they can just as
well as changeover times be highly dependent on the changeover structure.

2.4. Production Plan Assessment
As a plan that cannot be executed or violates major goals of the planner is hardly of any
use, the paramount aspect of a production plan is its feasibility. The most important hard
constraints which must be met by a plan to be feasible are demand satisfaction, regarding
capacity limits and technical practicability. In today’s FMCG industry, in can be that
no feasible plan exists. This can then be met by relaxing the former hard constraints
to soft constraints as long as it does not affect the technical practicability. E. g., in
some cases capacities may be extended by adding extra shifts, delaying maintenance
activities to later periods, adding more personnel, in other cases demands may be partly
split up into several deliveries with some being postponed. This is usually not possible
without additional costs. For the remainder of this thesis, it is assumed that capacity
dimensioning is sufficient and feasible production plans exist.
Then, in most cases not only one but several feasible plans exist, making it necessary

to define a criterion to assess the plans, to chose the one best suited for achieving the
companies goals. This is done by defining an objective function which assesses the
plan. Possible objective functions can be distinguished in multi-objective functions and
single-objective functions:

• In multi-objective functions, two or more different objectives are taken into consid-
eration when evaluating the plan, e. g. minimizing the costs composed of changeover
costs and inventory holding costs and maximizing the service level. The is prob-
lematic, as in most cases the different objectives are interdependent on each other.
This can be treated by either defining some way of a trade-off possibility, or by
settling for finding a Pareto-optimal solution where no part of the objective func-
tion can be improved without worsening at least one other part. In integrated
lot-sizing and scheduling problems, Pareto-optimal solutions are only of minor
usability, since still it would be necessary for the many possible Pareto-optimal
solutions to decide which would be best. However, it would still be possible to
construct a Pareto-optimal front. For example in the fresh-food industry, it can
be advantageous to use multi-objective functions, see e. g. Arbib et al. (1999) or
Amorim et al. (2012). Defining trade-offs between different feasible solutions is
often hard in itself, even more so that usually such trade-offs would not be linear
and therefore even if definable, models using such objective functions are hardly
solvable.

10
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• In single-objective functions, there is only one objective that is taken into con-
sideration when evaluating the plan. In literature for lot-sizing and scheduling,
the most common objective function is the cost minimization. A cost value is
assigned to changeover activities and to inventory levels, the sum of those costs is
to be minimized. Costs assigned to changeover activities can reflect out-of-pocket
costs, like for cleaning material or lost residue raw materials and/or intermediate
products. Holding costs can impute real out-of-pocket costs for storage, but since
storage facility costs rarely depend on the inventory level those are rarely relevant
for production planning, or a decreasing value of the products over time, e. g. due to
the selling price being dependent on remaining shelf life, if shelf life is restricted14.
However, in most cases costs in such objective functions are more dependent on
imputed costs. This is done if using a multi-objective function or modeling addi-
tional restrictions would increase the model complexity beyond applicability for real
industry scenarios. For example, changeover costs are often included to circumvent
modeling of capacity usage by changeover activities. Some factor is determined by
the human planer by which the available capacity may be utilized for production,
reserving some for changeover activities, and another factor penalizes changeover
activities to keep capacity usage by changeovers low. However, this can easily lead
to infeasible plans overloading capacities in some periods, or to leaving free capacity
unused which could be used for an advantageous changeover activity.

In most of FMCG industry, to achiever a high capacity utilization and high service
level it is highly recommendable to explicitly model capacity usage by changeovers to
neither waste capacity nor to cause stock-outs due to capacity bottlenecks. The inventory
turnover rate is usually high, products are not kept on stock for a long time but shipped
in short time, inventories are merely regarded as buffers between the manufacturing
and distribution stage of the supply chain15. Production technology is usually designed
to minimize out-of-pocket changeover costs, e. g. the cleaning material for a bottling
line is relatively cheap. Therefore, the imputed costs of capacity usage are not relevant
since capacity usage should be directly modeled, while capital bonding costs and out-of-
pocket costs are of minor importance for short term production planning. Of much more
importance are goals like maximizing effective capacity utilization.
While future demands are assumed to be deterministically known for the planning

horizon in regard to production planning, in practical application demands can depend
on the planning result. For example, if capacity utilization in the planning horizon is low,
this opens opportunities to increase demands by marketing activities like promotions,
accepting additional orders or taking over production volumes from the market for trade
brands. In some cases, it may be advantageous to have a longer production stop than
several shorter capacity wastes, e. g. for doing time intensive maintenance or setting
manpower free. In such situations, it is advantageous to use a different objective function
like the Makespan minimization. The Makespan is defined in this thesis as the time until
all capacity consuming activities are finished, given production is sufficient to match
14Cf. e. g. Lütke-Entrup et al. (2005)
15Cf. Günther (2013)
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all demands. By preferring plans with a low Makespan, the company retains maximum
flexibility in regard to acquiring new economically effective capacity requiring activities,
maximizing the capacity utilization, and a degree of flexibility if real demands exceed
forecasted demands to be able to alter the production plan for achieving a high service
level.

2.5. Conclusions in Regard to Production Planning in FMCG
Industry

In this chapter, an overview was given regarding the relevant aspects in production
planning in the FMCG industry. While production usually consists of several production
steps, it was described that in many cases in regard to lot-sizing and scheduling only a
single Make-And-Pack production stage needs to be considered. It was pointed out that
the capacity dimensioning should focus on allowing for a high capacity utilization in all
periods while allowing demands to be met in time. In short-term production planning
and scheduling, capacity usage is distributed over the periods, while the capacity usage
by changeover activities is dependent on the generated production plan. Changeover
structures can be of varying types in the FMCG industry, featuring changeover times
dependent on the following product, times depending on both the predecessor und
the successor product, structures differentiating between product variants and product
groups, and/or prohibition of specific predecessor-successor relationships. Finally, ways
to assess feasible production plans are discussed, concluding the Makespan being a sound
objective which is of high practical relevance in today’s FMCG industry, at least where
deteriorating products are not of an issue.
In the remainder of this thesis the production planning in the FMCG industry as

outlined in this chapter shall be further explored. In the following chapter, methods
which can be applied in the short term production planning in the FMCG industry
shall be outlined, with focus on the lot-sizing and scheduling problem. Then, three case
studies from the FMCG industry are given, for which models are developed to perform
the integrated lot-sizing and scheduling. Those models are then compared in the fifth
chapter. The final chapter will give a conclusion regarding the importance of the setup
structure in integrated lot-sizing and scheduling in the FMCG industry.
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In last decades there has been a vast research regarding the development and implemen-
tation of methods which can help planners in solving lot-sizing and scheduling problems
for real industry. In this chapter, an overview about these methods shall be given and
discussed regarding their applicability in today’s FMCG industry.

3.1. Overview of Planning Concepts
The problem of production planning and control treats the planning, control and mon-
itoring of production activities in regard to the location of production, the timing of
production and the quantities of production. Since the real problem is too complicated
to be treated as a whole, it is usually divided in strategic decisions, tactical decisions
and operative decisions1:

• Strategic decisions cover a long time horizon and very highly aggregated prob-
lems, e. g. decisions regarding the network design of production locations and the
long term goals of the enterprise. They are usually the responsibility of the top
management of the enterprise.

• Tactical decisions are based on the decisions of the strategic planning and cover
a mid-term time horizon, usually from a couple of months to a couple of years,
on a highly aggregated view, e. g. which type of production resources should be
acquired, how the capacities in a plant should be dimensioned or how the layout
of the given production plants should be designed. The top management of the
respective plant is usually responsible for these decisions.

• On the operative level, detailed decisions are made, usually having a short time
horizon of a couple of weeks to months at most. They cover decisions like the
determination of the short term production plan, the usage of production factors
and production processes and more. They can be as detailed as to which product
should be produced in a specific time window on a specific machine, using a specific
production process and specific input materials. The problem of lot sizing and
scheduling is a planning problem typical for the operative level.

On the operative level, the Manufacturing Resource Planning, or MRP II, concept,
which is illustrated in figure 3.1, is the perhaps still most used planning concept in
industry. It evolved from MRP, or Material Requirements Planning, which is based on a
commercial database management package developed by IBM in the 1960s. While MRP

1Cf. e. g. Drexl et al. (1994)
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focused on determining quantities and timing of raw material purchases, MRP II extended
it to integrate all aspects of the manufacturing process, being included in many ERP
systems which were developed in the 1980s. However, neither the hardware nor software
nor database technology of that time was capable to run these systems in real-time and
the cost were prohibitive for most businesses2. Advances in these technologies allowed a
more wide spread of this technology in the last decades.

It is based upon the Push-Principle, where a central planning instance in each produc-
tion plant generates goals which are "pushed" into the production process of this plant.
In the Master Planning step, planned production quantities for final products or product
groups are determined based on customer orders and/or forecasted demands and perhaps
an aggregated mid-term production program to level seasonal demand fluctuations under
consideration of current inventory levels. Based on the previously determined production
plan, in Quantity Planning quantity requirements for input materials are determined
based on the Bill of Materials and requirement dates are determined by using experience
based lead times, while production quantities are grouped into production orders using
usually uncapacitated lot-sizing heuristics. The result are production orders which are
roughly assigned to time periods and resource groups according to their production pro-
cess requirements. In Schedule Planning those production orders are scheduled to specific
time windows on specific resources, usually using simple uncapacitated algorithms. If
resources are overloaded in some time windows, the Capacity Leveling tries to reschedule
production orders as a whole or parts of them to other time windows or resources to
generate a feasible plan. The result should be a feasible production plan which can then
be transferred to the production control level to execute and monitor the production
process.
However, industry practitioners found the results of MRP II based technology often

lacking, as capacity bottlenecks were common, leading to an insufficient service level
while having a high work in progress at the same time binding high amounts of capital.
In research this problem has been addressed, e. g. Drexl et al. (1994) point out that,
among other issues, the main problem of the MRP II concept is its lack of considering
the availability of resources.

Pochet and Wolsey3 argue that methods applied in the MRP and MRP II concepts and
the ERP systems are of heuristic nature and consider mathematical programming as a
means to generate better plans, though for problems of realistic size without abstraction
available computing power still can be a limiting factor. The major drawbacks mentioned
by these and other authors are:

• A decision level for a Supply Network Planning is not included in the MRP II
concept at all. While this may not have been necessary widely by the time the
MRP II concept was developed, in the last decades business environment evolved,
causing enterprises to have several production plants with a complex network
of supplier/consumer-relationships. Additional methods for assigning production

2Cf. Shum and Lin (2003)
3Cf. Pochet and Wolsey (2006, pp. 46–68)
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Figure 3.1.: MRP II planning concept, (cf. e. g. Günther and Tempelmeier (2012), p. 334).

quantities to plants and for sourcing decisions within the Supply Network are of
high importance.

• Due to the top-down sequence of decisions without a systematical consideration of
feedback from lower planning levels, in the MRP II planning concept goals defined
by superior planning levels for subsequent planning levels may not reachable. E. g.,
in Quantity Planning capacities are aggregated and a production plan is generated
while the amoutn of capacity that is consumed by changeover activities is not
known yet. To account for changeover activities, the theoretical available capacity
is reduced by some reduction factor based on experience, limiting the capacity usage
by production processes. If this reduction factor is to high, capacity may be wasted
or suboptimal lot-sizes may be generated, if it is to low the subsequent level may
have difficulties finding even a feasible plan without shortages when considering the
changeover capacity requirements. This problem is of course even more important
if capacities are not considered at all until the final scheduling planning level, which
is common in MRP II based planning due to a single-item decomposition, meaning
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the products are planned independently of each other, even if they share a scarce
production resource.

• In material requirements planning, lead times (the time from starting an order until
it is completed and outputs are available for further use) are based on experience
values from the past, while the actual required lead time is strongly dependent
on the generated plan. Often more than 85% of the lead time stem from waiting
times like e. g. queue times while waiting for a resource to become available, and
are therefore highly variable. Especially in multi-level production, when output
products of one process are required as input for the next process, it is common
to assume very pessimistic lead times for intermediate products to prevent later
productions steps to be postponed due to unavailability of the required input
material. While this may be necessary to achieve a reasonable utilization rate of
resources later in the production process and reasonable service levels, it leads
to triggering production of intermediate products even if the process requiring
those as input materials cannot be started for a significant time due to other
production orders or otherwise caused unavailability4, causing high work in process5

and therefore high unproductively bound capital and often additional logistical
issues regarding the storing and handling of the work in process material.

• Lot-sizing is carried out for each (intermediate or final) product independently of
other (intermediate or final) products, even if they are connected to each other by
requiring scarce capacity of the same resources or cost interdependencies. Also,
generated lot sizes may be disadvantageous in regard to the scheduling, e. g. two
lots requiring 6 units of capacity, with only 10 capacity units available per period,
would make it impossible to utilize a periods full capacity unless the lot-sizes are
changed which can have impact on the optimality of the then changed lot-sizes.

• It is a common problem that in scheduling capacity overloads are generated, which
are tried to be removed by the capacity leveling step, by forward rescheduling (i. e.
production orders are moved to an earlier time window) or backward rescheduling
(i. e. production orders are moved to a later time window). However, forward
rescheduling is often not possible due to lacks of available free capacity and especially
if a multi-level production process has to be considered forward rescheduling can be
limited by availability of the input products for the process. Backward rescheduling
is limited by the requirement dates. Often the only way to generate a feasible
production plan is to accept backorders, reducing the service level and therefore
leading to undesired effects on customer relationships.

• Methods applied in MRP II based concepts and ERP systems are often simple
heuristics, which do not guarantee an economically optimal plan even for the
relatively simple models. Using true optimization techniques can therefore even be
useful if the aforementioned issues are not relevant for a production environment,

4See e. g. Günther and Tempelmeier (2012, p. 338)
5Also often called work in progress, goods in process or in-process inventory
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while using modern technology such relatively simple problems can often be solved
in very short time to optimality.

These problems of the MRP II approach, especially high inventories and/or low service
level in capacity tight situations, led to several developments which will be discussed
briefly in the following.
One approach which is aimed mostly at reducing the high inventories is to replace

the Push-Principle based MRP II concept by a concept following the Pull-Principle. In
the Pull-Principle, production control is decentralized, e. g. production orders are not
generated by a planning instance, but by defined triggers in the work shop. Well known
examples are the KANBAN system and the CONWIP system. For example, in basic
KANBAN, the planning instance defines for each work station a number of containers
holding the required input materials for production and quantities of those per container.
When one of the containers is emptied in the production process, an information is given
to a source location that a new container needs to be provided, triggering the production
process of the input material. By this, production is only started if a specific process
demands for new input material as its stock is running low, therefore the total work in
process in limited. While this approach to production control can be very efficient in
some production environments, it should be noted that they have tight requirements,
most notably a high reliability of the capacities, a stable demand rate on intermediate
products and low capacity usage due to changeover activities.

Another answer to the problems of the MRP II based planning concept came from the
software industry. There, the MRP II concept is implemented in the Enterprise Resource
Planning Systems (ERP-Systems), and they usually employ additional methods based on
the Pull-Principle. For many environments, the results were not satisfying and customers
demanded for more advanced planning support tools. This led to the development
of the Advanced Planning Systems (APS), which are usually used to supplement the
ERP-Systems, e. g. for planning of important products in capacity tight situations. They
feature a couple of extensions compared to the ERP-systems, like additional modules
for e. g. Supply Network Planning, Collaborative Planning and Capable-to-Promise,
but also enabled the usage of capacitated planning methods and true optimization or
more advanced heuristics. For example, the SAP AG developed the Advanced Planner
and Optimizer, which features a capacitated MILP for Supply Network Planning and a
Genetic Algorithm (GA) for short term sequencing considering the available capacities
(the methods of GA and MILP are briefly described in subsection 3.4.1).

Paralelly to the develpment of the APS, the problems of the MRP II concept were
addressed in literature. Drexl et al. (1994) developed the so called Hierarchical Planning
Concept as a concept for operative capacity-oriented planning, still neglecting supply
network issues, which it was later extended to (see figure 3.2)6. One can find many
similarities to the APS, which to some extent incorporate the principles of the Hierarchical
Planning Concept.

6See e. g. Günther and Tempelmeier (2012, pp. 340–342)
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Figure 3.2.: Hierachical planning concept (based on figures in Drexl et al. (1994) and Günther
and Tempelmeier (2012, p. 342)).

In the aggregated Supply Network Planning, the production quantities for product types7

are assigned to the different production plants and, if necessary, demand fluctuations
over a relatively long time horizon are considered by building up stocks in lower demand
periods to be able to satisfy higher demand periods without overloading the capacities.
In the Master Planning of each plant, the required quantities for products are assigned to
more detailed periods and resource groups. Then in the detailed lot-sizing and scheduling
part, exact lot-sizes are determined and scheduled on specific machines. In the hierarchical
planning concept, it is pointed out that the applied methods are highly dependent on
the type of production and utilized production systems. This is also true for the next
level, the detailed planning and -control. The main differences between the Hierarchical
Planning Concept and the MRP II are two: first, the necessity for applying methods
considering the special aspects of each production system is pointed out, second and
perhaps even more importantly is that on all levels the limited capacities are taken into

7A product type consists of different products with similar cost and demand structures and similar
production processes. The combining of those into product types is usually necessary due to a very
high number of individual products and product variants (see e. g. Meyr (1999, p. 23))
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consideration. Since at higher planning levels the exact amount of required capacity is
not known yet, e. g. because sequence dependent changeover times cannot be determined
before the number and sequence of lots are determined, a bi-directional information flow
is an important feature of the concept, giving higher planning levels information about
capacity usage, while in the MRP II concept the information flow is top-down only.

As the FMCG industry requires a high capacity usage and high service levels, MRP II
based approaches are not suited for it. Pull-based concepts like KANBAN can hardly be
applied, since in most cases the prerequisites for them to work are not given. Therefore,
more advanced methods should be applied, considering capacities on all planning levels
and considering the special properties of the FMCG industry. This will be further
explored in this thesis for the lot-sizing and scheduling problem.

3.2. Classification of Lot-Sizing Models
Lot-sizing problems in production planning are highly dependent on the given production
infrastructure and process characteristics. To support the production planning process,
quantitative optimization models are a useful tool by giving support in finding and se-
lecting feasible plans under consideration of an objective function and given constraints8.
Defining an appropriate model to support decision makers is a challenging task, in which
the real problem needs to be abstracted to apply solution procedures which allow evalu-
ating the impact of decisions for the real problem. For lot-sizing and scheduling models
usually a mathematical model is defined as a minimization respectively maximization
problem for some objective function under consideration of constraints. Transforming the
real problem into a complete mathematical model is theoretically possible, but usually
only applied for describing the underlying problem, since developing and applying of
solution methods for these complete models is hardly possible due to the extremely high
complexity of such models. To make the mathematical model usable for decision support,
it is usually necessary to focus on a set of the most important characteristics.
Bahl et al. (1987) classified lot-sizing problems into four categories based on type of

production (single-level or multi-level) depth and presence of resource constraints (limited
capacity or unlimited capacity). These basic classification criteria’s were extended later,
e. g. by Domschke et al. (1997). The criteria relevant for this thesis are:

• Static / dynamic models: Static models reflect the simplifying assumption that
the demand level is static, i. e. forecasted demand quantities are constant in the
planning horizon and thereafter. This simplifies the modeling a lot, allowing usually
for continuous time lines where production can start at any chosen moment. In some
industries a rather static demand, besides random fluctuations, can be observed
at least in the typical planning horizon for production planning of at most a few
months. However, even for those industries effects like the bullwhip effect can
lead to fluctuations in demands, which in case of a make-to-order production or
production orders to refill safety stocks can lead to dynamic demands as well

8Cf. Scholl (2008)
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(compare section 2.2). Therefore, for the remainder of this thesis dynamic models
are assumed which can reflect changing demand quantities in the planning horizon.

• Deterministic / stochastic models: While deterministic models assume exactly given
parameters, e. g. demand figures or capacities, stochastic models include random
fluctuations like unreliable demand forecasts or resource breakdowns. Stochastic
models gained in scientific attention in the last decades9, however in spite of giving
a more accurate representation of reality, they are scarcely used in industry due
to the very high increase in complexity due to the stochastic effects in regard to
solvability of the models in comparison to a relatively small gain in accuracy. In
industrial practice, stochastic effects are considered by building up reserves like
safety stocks or some reserved capacity based on previous experience regarding the
expectable breakdown time. Therefore the deterministic modeling approach is still
dominant in most cases and will be further explored in the remainder of this thesis.

• Single-level /multi-level models: the production process can consist of only one
operation (single-level) or several operations (multi-level). For means of production
planning, these operations usually do not reflect each single required operation, but
only those that can have an impact on the plan, e. g. if they require a bottleneck
resource. For single-product problems, usually a single bottleneck stage can be
determined, leading to a single-product and single-level model. For multi-product
problems, if different products require different amounts of capacities, it may be
that depending on the production plan the bottleneck stage cannot be determined
in advance, sometimes even having different bottleneck stages in different time
periods (this is also known as a shifting bottleneck). As stated in section 2.1 a
Make-and-Pack-Production environment is common in today’s FMCG industry.
Therefore, while technically several opterations are required in the production
process, here it is assumed that the production plan is determined by one limiting
production operation on the most expensive resource, while the production plans
for the other operations follow this plan. In this thesis, such a Make-and-Pack
production is considered which is a type of single-level production.

• Single-product /multi-product models: A single-product production takes place if
there either only one product is produced in a production system or the products
are not interfering with each other, e. g. by technical connections (one product
being the input product for another product) or by competition for scarce resources
(where, if several products would be planned without regarding each other, each
would use up some of this capacity and all together could overload that capacity).
As in today’s FMCG the production of several products and variants using the
same resources is common, for the remainder of this thesis multi-product problems
are assumed.

• Capacitated / uncapacitated models: In uncapacitated production planning, it is
assumed that the capacities are not a limiting factor in the generation of a plan.

9Cf. e. g. Herpers (2009), Tarim and Kingsman (2004) or Sox (1997)
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This can be the case e. g. for static demands with sufficient capacities or a Master
Production Scheduling considering only a limited set of important products in a
first planning step which requirements do not exhaust available capacity in any
case. Because Make-and-Pack production in the FMCG industry usually requires
expensive resources, capacities are considered to be limited in the remainder of this
thesis.

Summarizing, for the remainder of this thesis deterministic, dynamic, multi-product,
single-level and capacitated models are considered. In the following subchapters, further-
more a differentiation of successive lot-sizing and scheduling and integrated lot-sizing and
scheduling is given, as well as solution procedures for the integrated lot-sizing problem
and some of the most renowned models for this problem.

3.3. Successive Lot-Sizing and Scheduling
The first method for lot-sizing was developed in by Harris (1913) and is known as the
Economic Order Quantity (EOQ) model. It gives the optimal lot-size as the square root
of the quotient of two times the stable demand level multiplied with the changeover cost
and the holding cost per unit and period. In it, the basic trade-off between higher lot-sizes
to save changeover costs and more production lots to save on inventory holding cost can
already be identified. The method requires a lot of assumptions, most importantly stable
demands and unlimited capacities. The lack of computing technology then hindered
further development in this area, until Wagner and Whitin (1958) formulated the Single-
Item Uncapacitated Lot-Sizing Problem (SIULSP) and developed an algorithm for treating
dynamic demands based on modeling of shortest-route-problems. For appliance in real
industry, employing the Wagner/Whitin Algorithm still required too much computing
power if a bigger number of products or a longer time horizon were to be considered10.
Heuristics like the Silver-Meal-Heuristic11 or Groff-Heuristic12 were developed. In today’s
ERP-Systems, such relatively simple methods are still employed which do not consider
limited capacities.

After the lot-sizes have been determined, the production orders are scheduled to time
windows on the available capacities in the successive lot-sizing and scheduling approach13.
Common in industrial practice is to execute a scheduling without consideration of limited
capacities and then, in a second step, to execute the so-called Capacity Leveling, in which
the capacity utilization of the resources are checked, and if a resource is overloaded
production orders are rescheduled. It is differentiated in forward or backward rescheduling.
In the first case, production orders are rescheduled to an earlier time window, if capacities
are still available, which is often not the case. Also other problems can arise, e. g. in

10Note that Evans (1985) reformulated the Wagner-Whitin Model for a more efficient implementation in
micro computers. Wagelmans et al. (1992) developed an algorithm that runs in linear time, enabling
a quick solving of very large problem instances.

11Silver and Meal (1973)
12Groff (1979)
13For an overview of scheduling methods see e. g. Allahverdi et al. (2008)
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Figure 3.3.: Successive lot-sizing and scheduling: infeasibility caused by large production lots.

multi-level production the input materials may not be ready to start production earlier,
so their production orders would have to be rescheduled as well, again limited by the
available capacity. In the second case, production orders are postponed to periods with
low capacity usage. This is usually limited by the date of the real or forecasted customer
orders, but as often no low capacity usage periods are available in time, this restriction
is violated leading to backorders and stock-outs. This can cause costs by lost sales or by
reducing the price to keep the customer content. Additionally it needs to be considered
that even if by this rescheduling a feasible plan can be found, it can easily be that it
is far worse than a different possible but unknown feasible plan, since the rescheduling
procedures are usually focusing on feasibility, not (cost) optimality.
The alternative to uncapacitated scheduling and capacity leveling are optimizing

procedures considering limited capacities in the sequencing step. However, since capacities
were not considered in the lot-sizing step, the lot-sizes may prohibit the finding of optimal
or even feasible solutions. A small example with two products where the lot-sizes prohibit
the finding of a feasible solution is given in figure 3.3. In the upper Gantt-Chart of
the figure, the lot-sizing procedure combined the demand elements for both products
into one production lot each. As it is impossible to schedule both to the first period,
no feasible schedule exists, that enables the satisfaction of both product’s demands in
the first period. As shown in the lower Gantt-Chart of the figure, a different lot-sizing
would enable a feasible schedule. Another example is given in figure 3.4. Here, in the
upper Gantt-Chart the combination of demand elements into lots made it impossible
to find a schedule which exhausts the first periods capacity. It is obvious that even
when considering only two products, the result may be unsatisfactory as the production
finish time is much later than possible, as can be seen in the lower Gantt-Chart which
illustrates a different lot-sizing result. This becomes even more significant, if a third
product is added, for example an additional unexpected customer order which is not
known until the end of the first period. Then, the wasted capacity of the first period
makes it impossible to satisfy this new demand without overloading the capacity, while a
different schedule that would not waste some of the first periods capacity retained the
flexibility to satisfy the new order.
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Figure 3.4.: Successive lot-sizing and scheduling: infeasibility caused by waste of capacity.

These issues make it necessary to change the previously determined lot sizes, hoping
the new lot sizes will allow feasible solutions, which is far from certain. Also, even if the
new lot sizes allow a feasible schedule, it can easily be that the so-found schedule is far
from optimal.

If in the lot-sizing step the limited capacities were already considered, then an optimizing
procedure in the scheduling step should lead to optimal solutions. This is true if the
changeover activities are independent on the sequence. If the changeover costs and/or
times depend on the sequence, carrying out an optimal lot-sizing procedure is not possible
since the values for changeover costs and/or times are not known yet. This is usually
treated by generating changeover costs based on previous experience or, to account for
changeover times, reducing the available capacity for the lot-sizing step by an experience
based value. Then, the scheduling is carried out using those lot-sizes. If the generated
changeover times were too low, it may be that no feasible schedule exists. If they were
too high, capacity utilization is bad. Regarding the costs, if the scheduling step generates
a sequence that substantially differs from those which formed the base for generating
the costs, it may be that the lot-sizes combined too many demand elements (generating
high holding costs) or too few (generating to high changeover costs). It is up to the
human planner to decide if the generated costs/times should be altered, restarting the
lot-sizing step and carrying out another scheduling step to find a hopefully better plan.
This try and error approach is likely to generate good solutions if the procedure used to
generate the costs/times are reasonable, the current planning situation is comparable to
past experience, and the human planner is highly competent. It is implemented in many
of today’s Advanced Planning Systems (e. g., SAP SCM-APO).
In environments which require a high capacity usage and a high service level like

today’s FMCG industry, applying a successive lot-sizing and scheduling approach is
likely to lead to the aforementioned problems which can have a significant impact on
the competitiveness and therefore the economical success of the enterprise. This close
relationship between lot-sizing and scheduling makes it imperative that both decisions
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are made simultaneously in order to use the available capacity efficiently14. Therefore,
for the remainder of this thesis the focus will be on integrated lot-sizing and scheduling
methods.

3.4. Integrated Lot-Sizing and Scheduling
In integrated lot-sizing and scheduling, the generation of production lots and the schedul-
ing on time windows of the available capacities is done in one step. This guarantees that
the available capacities are not overloaded as well as preventing that the solution of the
non-integrated lot-sizing step is limiting capacity utilization (and therefore optimality)
or even feasibility. However, the drawback is that the interdependencies make finding of
feasible or optimal plans more complicated.
Since even in successive lot-sizing and scheduling the scheduling step is known to be

NP-hard15, meaning the difficulty to solve it is exponentially rising with the problem size,
and the integrated lot-sizing and scheduling being even more difficult, there were several
approaches developed to cope with lot-sizing and scheduling for industrial size problems.
For real applications with limited time for generating plans, it should still be considered
that in some cases a successive approach may, with all its drawbacks, still get better
results in a limited time than integrated approaches may in the same time. This can be
of high relevance especially in situations where generated plans cannot be carried out,
e. g. due to unexpected long machine-breakdowns, and a new plan has to be obtained in
short time. Such problems are then treated in the so called reactive-planning16 theory
and are not in the scope of this thesis.
The integrated lot-sizing and scheduling problem has gained a lot of attention in

research, especially in regard to sequence-dependent setups17, and different solution
procedure have been proposed in literature and industry, which will be discussed in the
following.

3.4.1. Solution Procedures
Procedures for generating solutions for specific problems in Operational Research can
be divided into methods that guarantee to find an optimal solution (though in practical
application the time needed for executing it may be prohibitively large) and Heuristics.
Heuristics in Operational Research are "’seeking’ method[s], as [they] cannot guarantee to
find anything"18. Heuristics are often problem-specific algorithms which do not follow a
general structure. However, a number of general heuristic approaches have been developed
which can be applied to solve a multitude of different problems.

When it comes to finding optimal solutions, usually a Mathematical Programming
approach is chosen. However, one can find many connections between methods to find

14Cf. Clark et al. (2011)
15Cf. e. g. Allahverdi et al. (2008, p. 989)
16Cf. e. g. Schöpperl (2013)
17Cf. e. g. Zhu and Wilhelm (2006)
18Reeves (1995, p. 6)
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optimal solutions and general heuristics. Mathematical Programming is based on a
mathematical representation of the problem and general heuristic methods are often
based on the same or similar mathematical problem representations. While optimizing
approaches try to solve the model optimally, heuristics may aim at finding a sufficiently
good solution, while requiring considerably less time than a true optimization. On the
other hand, optimizing procedures often make use of heuristics to improve the time
to find an optimal solution, like the relaxation that is used in the Branch-And-Bound
algorithm. Also, it is possible to combine different basic heuristic approaches into a new
heuristic, e. g. the Fix-and-Optimize heuristic as developed by Sahling (2009).
The basics of mathematical programming and some of the most commonly applied

heuristic methods will be described briefly in the following.

Mathematical Programming

In Mathematical Programming, a mathemtical model is developed that reflects the
relevant aspects of the real problem in an objective function and a number of constraints.
This model can then be implemented into a solution software that tries to find values for
the decision variables that meet all constraints while achieving an optimal or sufficiently
good objective value19.

The methods applied to solve the mathematical model depend on characteristics of the
model. In Linear Programming (LP), advanced methods of the Simplex-Algorithm are
applied. Basically the Simplex-Algorithm takes advantage of that it is known that the
optimal solution of a linear model has to be on the crossing of two or more constraints,
or in some cases that the optimal solutions lie on one constraint. Using modern hard-
and software, solving even quite complex linear programs is possible in short time.
In Mixed-Integer Linear Programming (MILP), some of the variables are not linear

but discrete. Since today, such models tend to be highly complicated in terms of solving,
depending on the number and kind of non-linear variables. Therefore it is recommendable
to keep the number of non-linear variables as low as possible. However, some logical
constraints have to be non-linear. One common case are variables that reflect the
changeover activity. In a specific period, a changeover happens or not, and by this
either production of the respective product is allowed or not and the changeover costs
or times have to be regarded or not. To reflect this in a mathematical model, a binary
variable is used that takes the value 1 if the changeover happens or 0 if not, all other
values are prohibited. To solve such mixed-integer programming problems, usually a
Branch-and-Bound algorithm20 is applied, which aims at systematically searching the
solution space for the optimal values of those binary variables.

The algorithm contains two steps, the Branching and the Bounding. In the Branching
part, the solution space of the problems binary variables is divided in disjunctive sub-
problems. The binary variables of such a sub-problem are then fixed to 0 or 1. Then, the

19If only a sufficiently good solution is aimed for, this method can also be seen as a heuristic. However,
while other heuristics usually cannot give information about how good a specific solution is, in this
approach this is usually possible.

20Cf. Dakin (1965)
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remaining sub-problem is solved, usually using LP-Relaxation, allowing the remaining
binary variables to take on continuous values between 0 and 1 (transforming the MILP
model into an LP Model for this step), or Lagrange-Relaxation. If the objective value
of the solution of the relaxed problem (the "lower bound" since no solution which does
not relax the binary restriction can be better) is worse (i. e. for a minimization problem
"higher" or "lower" for a maximization problem) than the solution of the best found
feasible solution so far, then it is certain that the optimal solution cannot be obtained
using the current values for the fixed binary variables and this combination can be
discarded. If it is better, by systematically adding or removing binary variables which
should be fixed to a value, the set of relaxed variables is narrowed down until either all
combinations have to be discarded or a feasible solution is found, which, if it is better
than the best found feasible solution so far, is the new reference (the "upper bound").

If the algorithm is given enough time and at least one feasible solution exist, it can always
find a feasible optimal solution. While searching the solution space systematically, for
bigger sized problems the required time can be, depending on the structure of the problem
and parameters for the algorithm, prohibitively large21. To improve the performance of
the Branch-And-Bound algorithm, several methods have been developed to strengthen
the lower bounds, the Cutting Plane22 procedure, the Branch&Cut procedure and the
Cut&Branch procedure, which add additional constraints in the Branch-And-Bound
algorithm allowing quicker disposal of inferior solution space23. While reducing the time
that is be required to solve a model to optimality, in many cases it still is prohibitively
large. It is therefore common in Branch-and-Bound applications to define one or several
stopping criteria, usually the execution time is limited and/or the algorithm is stopped
when a pre-defined MIP Gap, being the relative difference of the current lower and upper
bound, is reached.
Heuristics aim at generating good or potentially optimal solutions, but the generated

plans are not guaranteed to be optimal or even close to optimality. Heuristics can be of
very different kinds. In many cases, heuristics are very specific to a problem. However,
most follow a basic concept. In the following, some of the most used basic concepts
are described briefly. They can be modified or combined with other heuristics and/or
mathematical modeling in many applications.

Decomposition Based Heuristics

Decomposition based heuristics divide the problem into several sub-problems and then
solve the sub-problems independent of each other or successively by use of other heuristics
or mathematical modeling. E. g., the customers might be differentiated into different
groups, and in a first run only the top customers demands are considered, then in a
second run the remaining customers demands with the remaining capacity. However, to
ensure a feasible plan for the second run still exists, it might be necessary to include

21Cf. Domschke and Drexl (2007, pp. 133–138)
22Cf. Gomory (1958)
23Pochet and Wolsey (2006, pp. 101–107)
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some penalty onto to high capacity usage in the first run. The two plans would then be
combined into one plan for all orders.

The advantage is that by reducing the problem size the complexity is reduced, lowering
the time required to find solutions, so that in a given time window good solutions may
be found where a full model would perhaps be unable to find any feasible solution. The
drawback is that, while perhaps the plans for each single decomposition step are optimal,
the generated plan for the complete problem can be far from the true global optimum.

LP Relaxation

In LP Relaxation, a number of constraints of a mathematical model is "relaxed", that
means some of the logical constraints may be violated. For example, changeover operations
can happen or they do not happen, which in a mathematical model is reflected by binary
variables. The used binary variables which reflect if a changeover happens (= 1) or
happens not (= 0) can be relaxed to continuous variables which may get values between
0 and 1. This improves the solvability of the model substantially.

A common version is the Relax-And-Fix heuristic. A subset of the binary variables is
relaxed and the model is solved. Then, those binary variables that meet some criteria,
e. g. they were set to 0 or 1 even though other values would have been feasible for the
relaxed model, are fixed to that value. Then, the set of variables that are relaxed is
changed and a new planning run is started. This procedure is repeated by changing the
set of relaxed variables or constraints and/or changing the criteria to fix a variable to
a given value until the model is solvable without needing to relax any non-fixed binary
variables anymore.

Here, by changing hard constraints to soft constraints, the solvability of the model
can be drastically improved. While it is necessary to solve the model several times
with different subsets of relaxed constraints, due to the NP-hardness of the basic model
the time for executing the heuristic can be significantly reduced in comparison to the
complete model. The drawback is, that it is not guaranteed that the fixed variables
would have the same value in the optimal solution. Also, it can be that the fixing of
variables leads to infeasibilities in later iterations, unless a procedure is introduced that
"un-fixes" some binary variables.

Lagrange-Heuristics

In Lagrange-Heuristics, the solution is based on three steps: the Lagrange-Relaxation,
the updating of the Lagrange-Multipliers, and the generation of a feasible plan24. By
using optimal Lagrange-Multipliers the solution of the relaxed model should be close to
the true feasible optimum, which can then be constructed from the infeasible solution
within a few steps25. The three steps of one iteration of the Lagrange-Relaxation are:

1. In a first step, critical constraints are relaxed in that they may be violated. For
example, it is allowed that the required capacity to carry out production in some

24Cf. e. g. Reeves (1995, pp. 243–304)
25Cf. e. g. Geoffrion (1974), Fisher (1985) or Beasley (1995)
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period is bigger than the available capacity. To limit the amount of violation, the
amount of violation is multiplied with the Lagrange-Multiplicator and added (for
minimization problems) respectively subtracted (for maximization problems) to
the objective function. The relaxed problem should be fast to solve, generating a
plan that is close to the optimal plan, but may be infeasible.

2. In the second step (which does not strictly to have be carried out in each iteration),
the infeasible plan is altered to make it feasible. This can be a critical step, since
the procedure to change an infeasible plan to make it feasible can be difficult and
can have a large impact on the objective value of the generated plan. This is also
influenced by the parameters of the Lagrange-Multipliers used in the solving of the
relaxed model, therefore in the next step the Lagrange-Multipliers are adjusted.

3. In the third step, the Lagrange-Multipliers are modified using subgradient opti-
mization, which gives directions to change the Lagrange-Multipliers (increasing or
decreasing them) based on current constraint violations to achieve improvements
in the objective value26.

Solving the relaxed model with the new Multipliers generates a new, usually infeasible
plan, which can then be made feasible again. Ideally, the newly generated plan has fewer
infeasibilities and is easier to be changed into a feasible plan with a better objective value
of the feasible plan.

The procedure of defining and updating the Lagrange-Multipliers, solving the relaxed
model and generating feasible plans can be carried out several times, usually until some
stopping criteria (e. g., no more improvements on the objective value of the best generated
feasible plan for n iterations) is reached.

Local Search and Meta-Heuristics

Local Search and Meta-Heuristics usually contain two steps. In a first step, one or several
starting solutions are constructed. Depending on the underlying problem, the focus
can be on generating feasible start solutions, but this is not strictly necessary. Some
constraints can be relaxed and the violations are then penalized in the objective value of
the generated solutions. Those solutions are the basic set of reference solutions.

The second step is the improvement of the found solutions. New solutions are generated
based on the solutions in the reference set and a heuristic-specifc procedure and checked
for feasibility and the goodness of this solution according to the objective value. If the
new solutions are accepted, the set of reference solutions is updated and the next iteration
of the improvement step is started.

The procedures usually end when a stopping criteria is met, e. g. if for n iterations no
improvement for the best found objective value is found, no more new solutions can be
generated or if a given time limit is reached.

A basic example are the problem specific Greedy Heuristics. Greedy Heuristics can be
for constructing new solutions from an empty starting solution and/or to improve given
26Cf. e. g. Goffin (1977) or Sandi (1979)
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solutions. Construction heuristics start with an empty solution space and iteratively
add decisions based on some priority index. After a starting reference solution has been
generated, in improvement a neighboring solution is defined, which is usually a solution
that differs only in one decision and checks it for feasibility and the goodness of this
solution according to the objective value. The solution is then chosen as the new reference
if it is feasible and, according to the objective value, better than the previous one. If
not, it is discarded and a different neighboring solution is evaluated. If a new reference
solution is found, the procedure of generating neighbors and evaluating them is repeated
until all neighbors of the reference solution are infeasible or worse than the reference
solution. This can lead to the procedure getting stuck in a local minimum with no chance
of finding the true optimum. Which local optimum is reached depends on the starting
solution and the parameters of the heuristic. It is not possible to evaluate how good a
found solution is, therefore the local minimum found may be far worse than the true
global optimum. Several problem specific greedy heuristics have been developed for the
dynamic lot-sizing problem, e. g. the Silver-Meal-Procedure27.
Depending on the structure of the underlying problem, Greedy Heuristics can be

sufficient, if no local optima exist that are significantly worse than the global optimum.
Since this structure is not given for many problems, different ways to prevent getting
stuck in a local minimum have been developed, usually as so-called Meta-Heuristics.

Meta-Heuristics are based on two concepts, intensifying and diversification. Intensifying
is responsible for searching a promising part of the solution space, also called the
exploitation. Diversification is responsible for extending the solution space, especially if
no improvement of the best found objective value could be found for some time, also
called exploration28. Those Meta-Heuristics can be differentiated into Local Search based
Algorithms and Population Based Algorithms.

Local search based Meta-Heuristics, like e. g. Simulated Annealing (SA) or Tabu-Search
(TS), are similar to the aforementioned Greedy Heuristic. In the SA algorithm introduced
by Kirkpatrick et al. (1983)29, after a neighbor solution is defined and evaluated, there
is a probability that the solution is accepted as the new reference solution to allow
for an escape out of a local minimum. The probability of accepting worse solutions is
decreased over time of the execution of the algorithm so it converts to a greedy algorithm
over time. The TS algorithm was introduced by Glover (1986) and is named after the
implemented tabu list. In a very basic form of TS, starting from a reference solution a set
of neighboring solutions is generated and those solutions which are on the tabu list are
discarded. Then the best neighboring solution is selected as the new reference solution
and added to the tabu list. Then, a new set of neighours is generated and the procedure
repeated until some stopping criteria is met. In the procedure, old entries from the tabu
list are eliminated from it, allowing them again to be chosen. Depending on the length
of the tabu list, the reference solution can escape a local minimum. It is also possible to

27Cf. Silver and Meal (1973)
28Cf. Fink and Rothlauf (2006)
29See also Henderson et al. (2003)
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alter the length of the tabu list over time, expanding it increases the likelyness of leaving
a local minimum, decreasing it intensifies the search of the current (local) optimum.
Evolutionary Algorithms30 like the Genetic Algorithms31 (GA) belong to the population

based algorithms, the population being a set of solutions. It is based on the principles of
Charles Darwin’s natural selection. New child solutions are generated by combining parts
of two parent solutions (also called recombination) and can be randomly mutated. The
new child solutions are then checked for their fitness value (usually based on feasibility
and the objective value). The population for the next iteration (or generation) is then
chosen based upon the fitness value of the solutions. The procedure continues until a
stopping criterium is fulfilled, e. g. a maximum number of iterations or if for a given
number of iterations no improvements regarding the objective value could be achieved.
One main difficulty in using GA is to establish methods which make it likely to have
child solutions with good fitness values with a reasonable likelihood, especially regarding
the feasibility.
Another example would be the Ant Colony Optimization (ACO). It is based on the

swarm intelligence of ants when providing food to select the shortest route possible. The
basic concept here is that several ants choosing different ways, the one with the shortest
way will be back first. Since it leaves pheromones on the way, therefore the shortest route
has double the pheromone concentration early, making it for later ants starting likely to
chose it due to their preference of following the pheromone marked paths based on the
concentration. This leads to an exponential increase in the pheromone concentration in
the shortest path. Applications for this type of Meta-Heuristic can be found e. g. in the
Vehicle Routing Problem (VRP)32

Combined Heuristics

The aforementioned basic heuristic are not mutually exclusive, but can be combined to
achieve better results and/or performance. For example, the Fix-and-Optimize heuristic is
a relatively new heuristic which is a combination of the ideas underlying the Decomposition
and the Relax-and-Fix heuristics and was developed by Sahling et al. (2009) for the
multi-level capacitated lot-sizing problem. In it, the binary variables are divided into
sub-sets, and the mathematical model is then solved to optimize one of those sub-sets,
while keeping the other binary variables at an initial value. Then, the values determined
for this sub-set are fixed, replacing any initial value, and the set of variables to be
optimized is changed.

3.4.2. Mathematical Modeling
In literature, there has been a vast development on defining mathematical models for
lot-sizing, many of which are integrating the sequencing. A current overview of models
for dynamic lot sizing problems can be seen in Karimi et al. (2003), Jans and Degraeve

30For other algorithms belonging to the class of evolutionary algorithms, cf. e. g. Nissen (1994, p. 13)
31Cf. e. g. Nissen (1994) for a detailed description of the Genetic Algorithm procedure
32Cf. e. g. Yu et al. (2009)
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(2008) or Buschkühl et al. (2010). In the following, a short description of a selection of
these formulations is given.

CLSP

The Capacitated Lot-Sizing Problem (CLSP) is the extension of the Single Item Uncapac-
itated Lot-Sizing Problem (SIULSP) to reflect multiple products and capacity limitations.
It belongs to the so-called Big Bucket Models, which are characterized by dividing the
time horizon into macro periods in which several production lots for different products
can be produced as long as the capacity is sufficient. The sequence of production orders
within a macro period is not determined, therefore it is not an integrated lot-sizing and
scheduling model. Due to the non-considering of the sequence, setup states are lost at
the end of each macro period. Haase (1994) gives an extension to model the setup state
at the start and end of each macro period to allow for multi-period setup carryover.
Haase and Kimms (2000) extended the CLSP to the Lot-Sizing and Scheduling-Problem
with Sequence-Dependent Setup Costs and Times (LSPSD) by defining a set of possible
efficient sequences in a first step and then extending the CLSP to select one of the
pre-defined sequences in each macro period, resulting in an integrated lot-sizing and
scheduling model. Almada-Lobo et al. (2007) give two possible extensions of the CLSP
which incorporate sequence dependent setups and setup carryovers without the need to
pre-define possible sequences.
In practical application, when solving the CLSP in its standard formulation using

mathematical modeling and the Branch-And-Bound algorithm33, it faces the problem of
having very weak lower bounds, causing relatively high run times as inferior parts of the
solution space cannot be identified and discarded quickly. For this, several reformulations
of the CLSP were developed which allow for stronger lower bounds but make it more
challenging to adept the CLSP to reflect more complex problems34. The standard
CLSP-model is as follows:

Indices:

j ∈ J set of products
m ∈M set of macro periods

Data:

B sufficiently large number
Cm capacity of macro period m
djm demand of product j at the end of macro period m
hj holding cost per period and per unit of product j
ptj processing time unit of product j
scj cost for a changeover to product j

33Cf. Gelders et al. (1986)
34Cf. Barany et al. (1984)
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Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
qjm ≥ 0 quantity of product j to be produced in macro period m
yjm ∈ {0; 1} = 1, if product j is set up in macro period m, else 0

min
∑
j∈J

∑
m∈M

(scj · yjm + hj · Ijm) (3.1)

subject to

Ijm = Ij,m−1 + qjm − djm ∀ j ∈ J,m ∈M (3.2)∑
j∈J

qjm · ptj ≤ Cm ∀m ∈M (3.3)

qjm ≤ B · yjm ∀ j ∈ J,m ∈M (3.4)

DLSP

The Discrete Lot Sizing and Scheduling Problem (DLSP) was introduced by Fleischmann
(1990) and aimed at reducing the required time to find an optimal production plan
in comparison to the CLSP. In the DLSP, instead of macro periods which allow for n
products to be produced each period, the DLSP uses micro periods which allow only one
product to be produced per period. It has an all-or-nothing assumption, by that if a
product is produced in a period, then all of the periods capacity is used for production.
This is reasonable in environments with limited capacity, as due to the assumption of
only one product per period capacity would be wasted otherwise. One drawback is
that it can cause unnecessarily high inventories, depending on the relative length of the
micro periods to the required time to produce the quantities for a demand element. The
Continuous Lot-Sizing and Scheduling Problem (CSLP) is a variation of the DLSP which
gives up the all-or-nothing assumption of the DLSP. Another aspect of the DLSP is that
the setup state cannot be carried over idle periods.35

Fleischmann (1994) extended the DLSP to include sequence-dependent setup costs.
Salomon et al. (1997) developed an approach for solving the DLSP with sequence-
dependent set-up costs and set-up times by reformulating it to a Travelling Salesman
Problem with time windows. The basic DLSP-model is as follows:

Indices:

j ∈ J set of products
t ∈ T set of micro periods

35Cf. e. g. Drexl and Haase (1995)
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Data:

B sufficiently large number
ct capacity of micro period t
djt demand of product j at the end of micro period t
hj holding cost per micro period and per unit of product j
ptj processing time per unit of product j
qj quantity of product j that can be produced per micro period
scj cost for a changeover to product j

Variables:

Ijt ≥ 0 inventory of product j at the end of micro period t
yjt ∈ {0; 1} 1, if product j is set up in macro period t, else 0

min
∑
j∈J

∑
t∈T

(scj ·max (0, yjt − yj,t−1) + hj · Ijt) (3.5)

subject to

Ijt = Ij,t−1 + qj · yjt − djt ∀ j ∈ J, t ∈ T (3.6)∑
j∈J

yjt ≤ 1 ∀ t ∈ T (3.7)

PLSP

A further development of the DLSP and CLSP was introduced by Drexl and Haase (1995),
the Proportional Lot-Sizing and Scheduling Problem (PLSP). Contrary to the DLSP or
CSLP, it allows for producing two products in a micro period. It allows for at most one
product changeover per micro period, which does not have to be at the beginning of a
micro period. The PLSP has no all-or-nothing assumption and is advantageous compared
to the CSLP, as it does not have to waste capacity of a micro period if a production
lot does not use all of it but remaining capacity can be used for a changeover to a new
product and to start production. Still, if production times for the demands are small in
comparison to the length of a micro period, it can be that with two products a micro
periods capacity cannot be exhausted, causing remaining capacity to be lost.
This leads to a major issue regarding the PLSP, but also the DLSP and the CSLP:

there is no generally accepted procedure in literature to determine the length of the
micro period, but it is usually assumed to be given by some organization depending
charcteristic, e. g. the length of a shift. By selecting a large parameter for the micro
periods length, the problem mentioned before is obvious. On the other hand, selecting a
small micro period length other issues can arise. An obvious problem is that this results
in a high number of micro periods, which can quickly make the problem prohibitively
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large to be solved using mathematical optimizing, as Drexl and Kimms (1997) point out,
while mentioning that for common sense heuristics this is not true.

Another problem is that changeover activities have to be finished in a micro period,
they cannot be split up between adjacent micro periods. This can result in wasted
capacity or sub-optimal sequences if the remaining capacity after finishing a production
lot in a micro period is not sufficient to complete the changeover to the next product of
the optimal sequence. This problem arises at most if the changeover times are highly
sequence-dependent. In some cases, it can even be that some changeover times would be
so high in the (unknown) optimal solution that a complete micro periods capacity would
not be sufficient, which would lead to sub-optimal results or even infeasibilities. While
Haase (1994) gave an extension to the PLSP to reflect period overlapping changeover
times, Suerie (2006) pointed out that Haase’s formulation was mathematically incorrect
and gave two variants of the PLSP which correctly model period overlapping setup times.
However, their mathematical complexity is so high that only very small instances could
be solved to optimality in acceptable time. The basic PLSP-model is as follows:

Indices:

j ∈ J set of products
t ∈ T set of micro periods

Data:

B sufficiently large number
ct capacity of micro period t
djt demand of product j at the end of micro period t
hj holding cost per period and per unit of product j
ptj processing time unit of product j
scj cost for a changeover to product j

Variables:

Ijt ≥ 0 inventory of product j at the end of micro period t
xjt ∈ {0; 1} 1, if a changeover to product j takes place in micro period t, else 0
yjt ∈ {0; 1} 1, if product j is set up at the end of micro period t, else 0

min
∑
j∈J

∑
t∈T

(scj · xjt + hj · Ijt) (3.8)

subject to

Ij,t−1 + qjt − Ijt = djt ∀ j ∈ J, t ∈ T (3.9)∑
j∈J

yjt = 1 ∀ t ∈ T (3.10)
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xjt − yjt + yj,t−1 ≥ 0 ∀ j ∈ J, t ∈ T (3.11)
B · yjt +B · yj,t−1 − qjt ≥ 0 ∀ j ∈ J, t ∈ T (3.12)∑
j∈J

ptj · qjt ≤ ct ∀ t ∈ T (3.13)

GLSP

The General Lot-Sizing and Scheduling Problem (GLSP) by Fleischmann and Meyr (1997)
can be seen as a next evolutionary step of the aforementioned model formulations. It
does not use micro periods of a fixed length, but instead uses a combination of macro
periods and micro periods. Demand elements are linked to the macro period and each
macro period consists of a given number of micro periods. To each micro period at most
one product is assigned, the length of the micro period is determined by the assigned
production quantity.
They also show that the GLSP can be transformed into the CLSP, DLSP, CSLP or

PLSP by adding additional constraints restricting the time structure of the solution.
They state that the solution quality improves from DLSP to GLSP, the CLSP being an
exception since it cannot be compared due its lack of modeling the production sequence
within a macro period. It is pointed out, that the GLSP with non-zero minimal lot sizes
is a very complex combinatorial problem for which even the finding of a feasible solution
is NP-complete, and therefore they present heuristic solution procedures. However,
modeling of non-zero minimal lot sizes is only necessary if the triangle inequality is not
true for changeover costs (the same for changeover times), i. e. that in regard to the
objective function it would be preferable to change from product A to B to C without
producing any positive quantity of B than to directly change from A to C. As will be
seen later in this thesis, without the need of modeling minimal lot sizes, the GLSP is
relatively efficiently solvable. The basic GLSP-model is as follows:

Indices:

j, j′ ∈ J set of products
m ∈M set of macro periods
t ∈ T set of micro periods
t ∈ T (m) set of micro periods that belong to macro period m

Data:

Cm capacity of macro period m
djm demand of product j at the end of macro period m
mlsj minimum lot size of product j
ptj processing time per unit of product j
scj′j cost for a changeover from product j′ to product j
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Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
qjt ≥ 0 quantity of product j to be produced in micro period t
xj′jt ∈ {0; 1} 1, if a changeover from product j′ to product j takes place in micro

period t, else 0
yjt ∈ {0; 1} 1, if product j is set up in micro period t, else 0

min
∑
j∈J

∑
m∈M

hj · Ijm +
∑
j′∈J

∑
j∈J

∑
t∈T

scj′j · xj′jt (3.14)

subject to

Ijm = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (3.15)

∑
j∈J

∑
t∈T (m)

ptj · qjt ≤ Cm ∀m ∈M (3.16)

qjt ≤
Cm

ptj
· yjt ∀ j ∈ J, t ∈ T (3.17)

qjt ≥ mls · (yjt − yj,t−1) ∀ j ∈ J, t ∈ T (3.18)∑
j∈J

yjt = 1 ∀ t ∈ T (3.19)

xj′jt ≥ yj′,t−1 + yj′t − 1 ∀ j′ ∈ J, j ∈ J, t ∈ T (3.20)

Note that the m in Cm is not defined in equation 3.17 as given by Fleischmann and
Meyr (1997), therefore it should be corrected to:

qjt ≤
Cm

ptj
· yjt ∀ j ∈ J,m ∈M, t ∈ T (m) (3.21)

Block Planning

The Block Planning approach is a relatively new concept in mathematical modeling,
first developed by Günther et al. (2006). It is based on a common practice in industrial
application also known under the name of Production Wheel (compare section 2.3).
Similar to the GLSP, it has two time grids. The first time grid is a discrete representation
of macro periods, to which the demand elements are assigned. Within the macro periods
is a continuous time grid on which the production lots are scheduled. To each macro
period, one block36 is assigned which has to be finished at the end of the corresponding
macro period at the latest and depending on the block planning being rigid or flexible,
a block either cannot start before the beginning of the macro period (rigid) or it can
36A "block" is a sequence of production orders, while individual orders within a block may be skipped.
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start at any time (flexible), providing it does not overlap with another block. In a
block, production lots are then sequenced following a given Natural Sequence. While it is
possible to skip lots in a block, saving the changeover cost/time for this lot, it is generally
not possible to go back in sequence within one block. If any production is assigned to a
block, a major changeover cost/time is applied.

Similar to the LSDSP, it is possible to define several sequences or blocks and choosing
one block for each macro period if not only one specific natural sequence exists. The
advantage of defining blocks in advance is that the complexity of the model is significantly
reduced, providing the number of choosable blocks is kept low. Modeling sequence-
dependent changeovers is however challenging.
Another issue can, especially in flexible block planning, be that inventories produced

by production in a block are only added to the inventory at the end of the corresponding
macro period. If out-of-pocket inventory holding costs are high this can lead to higher
realized costs than expected by the plan. The basic Block Planning model as given by
Günther et al. (2006) is as follows 37:

Sets:

j ∈ J set of products
m ∈M set of macro periods (note that this equals the number of blocks, as

to each macro period one block is assigned)
o ∈ O sequence of production orders over all blocks (0 = 1, ...|O|)
o ∈ O(j,m) set of production orders in period (block) m which can produce

product j

Parameters:

B sufficiently large number
dk quantity of demand element k
hj holding cost per period and per unit of product j
L length of a macro period
pto variable processing time per unit of production order o
sco changeover cost for production order o
stf capacity required for starting a block
sto capacity required for a changeover to any production order o

Variables:

αo ≥ 0 start time of production order o (α1 given)
δo ≥ 0 duration of production order o
Ijm ≥ 0 inventory of product j at the end of macro period m (Ij0 given)

37Note that most later applications of the block model planning forfeited the inventory balance for
a direct assignment of production quantities to demand elements, as will be done in the models
presented in chapter 4.
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xo ≥ 0 size of production order o
yo ∈ {0, 1} 1, if production order o produces a positive quantity, else 0

min
∑
o∈O

sco · yo +
∑
j∈J

∑
m∈M

hj · Ijm (3.22)

subject to

xo ≤ B · yo ∀ o ∈ O (3.23)
δo = sto · yo + pto · xo ∀ o ∈ O (3.24)
αo ≥ αo−1 + δo−1 ∀ o ∈ O (3.25)
αm·J + δm·J ≤ L ·m− stf ∀m ∈M (3.26)
Ijm = Ij,m−1 + xo(j,m) − djm ∀ j ∈ J,m ∈M (3.27)

3.4.3. Simulation
Simulation in the context of integrated lot-sizing and scheduling can be used as a means
to evaluate available production plans and as a supporting method in generating them.
The advantage of simulation is that it is relatively easy to implement a model that is very
close to the real production environment, for which a plan would be extremely difficult to
find, while keeping the computing requirements for running the simulation at bay. The
procedures which were treated before, while trying to find very good or optimal solutions,
usually aim at finding solutions in reasonable time with a higher abstracted model of the
real production environment than necessary for simulation. Simulation models can then
be used to reflect the production environment more detailed and assess the generated
plans on it.

E. g., Almeder et al. (2009) give a framework for operational decisions for supply chain
networks using a combination of an optimization model and descrete-event simulation.
They use a simplified LP model to determine values for parameters that are then given to
the simulation, while the simulation gives a feedback regarding the cost parameters that
are used in the LP model. This is especially helpful if the cost parameters are non-linear,
which would require much more complex MILP models instead of a simple LP model.
They show that in reasonable time the cost parameters used in the LP model converge
with the costs in the simulation model.

Another possible application of simulation is in the context of robust planning. As
usually methods to generate production plans are based on determinstic data, while
the reality is usually stochastic, it is often necessary to ajust plans to account for
differences between the deterministic data and the realized data, like different customer
demands or processing times. Such adjustments usually imply costs associated with
system nervousness, like for starting additional production lots or increasing production
capacity by temporary staff38. While mathematical modeling is capable of integrating
38Cf. e. g. Tunc et al. (2013)
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stochastic aspects, the practical applicability of such models is limited, as due to the
high complexity only small instances are solvable in realistic time. Simulation can be
used to simulate different realizations of such stochastic data and analyze the effect on
the generated production plan, assessing for costs caused by the system nervousness.

Additionally, simulation can work as a proof for the correctness of the model, by testing
if a production plan with the given parameters could be realized or if the procedure
for generating the plan is faulty. Especially in real industry it is common to test new
concepts in simulations first, before implementing them in a real production system, as
the cost for a faulty implementation in the real production system can be very high.

3.5. Conclusions for Production Planning in the FMCG
Industry

Considering the characteristics of the FMCG industry as given in chapter 2, it is recom-
mendable to invest time and effort into the generation of high performance production
plans. Therefore, an integrated approach of lot-sizing and scheduling is of advantage. How-
ever, several basic model formulations were developed in an evolving process. Nonetheless,
and there is no general method for deciding which model formulation is most promising
for further development in a more specific production environment and this was not
subject to research so far. To close this research gap, in the next chapter the mathe-
matical models that form the last steps of the development, the PLSP, GLSP and Block
Planning, are extended to represent the integrated lot-sizing and scheduling problem
as it is common in the FMCG industry. In practical applications, it may be necessary
to apply heuristic methods as outlined above. However, the scope of this thesis is on
comparison of mathematical models for the FMCG industry, since heuristics performance
can vary highly depending on the chosen heuristic parameters, the application of mathe-
matical programming to evaluate the performance of different model formulations seems
reasonable. Also, it seems reasonable to assume that basic model formulations which are
efficient in mathematical programming are likely to be efficient in heuristic approaches
as well, though this cannot be said with certainty until further research evaluates the
relative performance of heuristics based on the underlying model formulation.
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As outlined in the previous chapter, the remainder of this thesis is on the usability of the
PLSP, GLSP and Block Planning models in the FMCG industry under consideration of
different changeover structures. For this, three scenarios are described in the following.
They are derived from typical current production environments in the FMCG industry and
mainly differ to each other by a specific changeover structure related characteristic. For
each scenario, a brief description is given, followed by the extended model formulations to
reflect the requirements of the scenario. In the following chapter, the result of numerical
investigations are given for each model and scenario.
Since the scenarios shall mainly differ in the type of changeover structure, in the

following aspects that should be identical to all of them are outlined:

• For all scenarios, a planning horizon of several weeks is considered. This is reasonable
in the FMCG industry since the shelf life of products is often restricted, either by
perishable products or because of short life cycles or inaccurate mid-term demand
forecasts of the products, e. g. season-only products in food industry, which makes
building up stocks to cover high demand periods which lie further in the future
economically undesirable.

• Available capacity is generally a limiting factor which has to be addressed. While
generally in the FMCG industry a high capacity utilization is important, for some
industries with seasonal demand patterns and limited possibilities to built up stock
it is possible that the capacity utilization cannot always be high. To reflect this, in
the following chapter two capacity load scenarios will be defined for each industry
scenario.

• Changeover activities require capacity time, reducing the capacity that is available
for production activities. The required time differs depending on the changeover
structure and will be addressed more in detail later. The GLSP and BP models
restrict changeover times to be less than a macro periods length, which usually
is not problematic as macro periods usually consider weeks and are much longer
than any changeover time, at least in the FMCG industry. Therefore for modeling
purpose it is assumed that changeover times are less than a macro period. However,
the PLSP in its standard formulation requires changeover activities to finish in
the same micro period as they start. While Haase gives a formulation with long
changeover times, Suerie (2006) showed that this formulation was mathematically
incorrect and produced suboptimal or infeasible solutions in some cases. While
Sürie formulated two new formulations to cope with long changeover times, due
to the high complexity of those formulations only very small instances without
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sequence dependent changeover times could be solved optimally. However, there is
no general accepted way of defining the length of micro periods for the PLSP. This
will be further addressed to in chapter 5. For this thesis it is therefore assumed
that all changeovers times are less than a micro periods length to enable finding of
feasible solutions with the PLSP without period overlapping changeover times1.

• Production cannot carry on over the weekend and all setup states are lost at the end
of each week due to cleaning or maintenance activities. This is often true in FMCG
industry, but not always. However, it is relatively easy to allow for changeover
carryover in the models, since it only requires removing or slight alteration of given
restrictions. It does not increase or decrease the complexity of the models to an
extent where a substantial difference in relative performance is to be expected.

• As described in chapter 2, in regard to the lot-sizing and scheduling problem the
production process can often be reduced to a single-level production. Also, it is
assumed that only one capacity needs to be considered, i. e. there are not several
parallel machines to which the same production lots can be assigned. This is often
true in industry when products are assigned to a specific resource, e. g. due to
technical requirements of those products.

• It is assumed that several products exist with demands occurring at the weeks ends.
Without limiting the general validity of the models, it is assumed that demand
elements are given in required capacity required to produce them instead of physical
units with different production coefficients. Those demands have to be covered
completely in time, stockouts are not allowed. While the forbidding of stockouts is
quite common for many industries to achieve a high service-level, the attaching of
the demands to the end of the weeks is not without problem. In industry with very
short shelf life, e. g. fresh food industry, it may be infeasible to produce a product
which is ordered for Thursday already in the previous week. For such environments
it may be necessary to model a finer time grid to attach the demand elements
to, e. g. days. While this is possible for all models, e. g. Bilgen and Günther
(2010) did this for the BP model, it leads to significant more complex models. The
exception here is the PLSP, which is using a fine time grid anyway - however as will
be seen later, this leads to considerable problems regarding the required solving
time. For such environments with daily demands and more than just a few days
of planning horizon, it may be necessary to employ heuristic approaches in the
foreseeable future. This thesis focuses on the modeling and solving of MILP models
and therefore this is out of scope for the remainder of this thesis.

1However, it is not possible to use part of a period for production and start a new changeover to
complete it in the next micro period which can in some instances of the numerical investigation lead
to infeasibilities if capacities are very tight, as it may cause a waste of capacity. As will be seen in
the numerical investigation, even on low load scenarios the PLSP has trouble finding good or even
feasible solutions for all but the smallest instances, even though the made assumption here allows for
a less complex model.
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Many of those aspects can be represented using the basic model formulations of the
PLSP, GLSP and Block Planning as given in subsection 3.4.2. The major aspects that
need to be incorporated into modified models are:

• the makespan needs to be defined as the new objective to be minimized and
constraints are required to determine the makespan,

• the loss of the setup state at the end of the macro periods needs to be modeled,
as for the PLSP and the GLSP a setup carry-over is generally allowed. In the
Block Planning model, it is not included, however in the so called flexible block
planning, like the basic model given in chapter 3, production blocks can overlap
macro period boundaries. Block planning models that disallow this are called rigid
block planning,

• the different sequence related aspects of the scenarios need to be implemented.
Those will be treated more in detail in the respective sections.

4.1. Full Flexibility Scenario
The most general case in regard to production sequences is the Full Flexibility Scenario
(FF Scenario). This scenario is able to reflect many different production environments
and can be regarded as a general case able to reflect all kinds of setup structures (e. g.,
for natural sequences or limited changeovers this can be done approximately by setting
the changeover times for prohibited changeovers prohibitively high). However, due to the
high complexity, finding efficient solutions for this scenario using mathematical modeling
is very difficult. Therefore more problem specific modeling approaches should, if possible,
be considered, especially in realistic problem sizes, as will be seen in section 5.1.

4.1.1. Scenario Description
The FF Scenario is not defined by a case study with a specific changeover structure, but
by the absence of any specific natural sequences and that all changeovers are allowed.
Therefore, it can be regarded as a general reference case. The changeover times are
sequence dependent and do not necessarily follow any pattern. This is illustrated in
figure 4.1 for a small case of 3 Products. For example, st12 denotes the changeover time
from product 1 to product 2. They are independent of each other, as long as the triangle
inequality holds (e. g., st12 + st23 ≥ st13). Therefore there is no need to model minimum
lot sizes. This is the more common case in the FMCG industry, however if minimum
lot sizes have to be modeled, restrictions to include those are presented in the Limited
Changeover scenario.

4.1.2. Model Development
In this section possible extensions to the three basic models PLSP, GLSP and Block
Planning will be given for the FF Scenario as PLSP-FF, GLSP-FF respectively BP-
FF. The FF Scenario models require modifications to represent sequence dependent
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Figure 4.1.: Changeover structure of the Full Flexibility Scenario.

changeovers between products, the makespan as the objective to be minimized and the
loss of setup state between macro periods require. The loss of setup state over macro
period boundaries can be represented by an initial setup state that is defined by including
an additional dummy product (Product 0).

PLSP-FF

The major aspects that need to be incorporated into the PLSP to reflect the properties
of this scenario are: first, the sequence dependent setup times need to be modeled, this
is done here by adapting the formulation given by Haase2 for sequence dependent setup
costs. Second, a new objective function in minimizing the makespan MS is introduced
and the constraints necessary to determine it. Third, a set of macro periods is introduced
for two reasons: first, an additional dummy product is introduced to reflect the initial
setup state at the beginning of each macro period caused by the loss of setup state
between different macro periods; second, as demand elements only occur at the macro
periods boundaries, the inventory balance needs to be tracked only for those, not for
each single micro period.

Sets:

m ∈M set of macro periods
t ∈ T set of micro periods
t ∈ T f subset of micro periods that are the first of any macro period
t ∈ T (m) subset of micro periods belonging to macro period m
j ∈ J set of products (j = 1, . . . , J)
j′ ∈ J ′ set of products including dummy product (j′ = 0, . . . , J)

Data:

αm start time of macro period m
c capacity of each micro period
djm demand of product j at end of macro period m
stj′j capacity required for a changeover from product j′ to j
st maximum of all setup times

2Haase (1994)
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Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qjt ≥ 0 quantity of product j produced in micro period t
STjt ≥ 0 capacity required for changeover to product j in period t
um ∈ {0; 1} 1, if macro period m is used, else 0
yjt ∈ {0; 1} 1, if product j is set up in micro period t, else 0

The objective to be minimized is the makespan.

minMS (4.1)

subject to

The makespan is given by the finishing time of the last utilized periods production.

MS ≥ um · αm +
∑
j∈J

∑
t∈T (m)

(qjt + STjt) ∀m ∈M (4.2)

The inventory needs to be tracked only at the macro periods boundaries. To ensure
demand satisfaction, it may not become negative. Production in the macro and stock
carryover from the previous macro period add to the inventory of a product, while
demand is the only decreasing factor.

Ij,m = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.3)

Production in a micro period can only occur if the required setup state exists at the
start of the micro period or at the end of the micro period, as in the PLSP only two
setup states are allowed per micro period. Due to the loss of the setup state at the macro
period boundaries, in the first micro periods of each macro period production can only
take place if a changeover to the respective product takes place and therefore the setup
state exists at the end of that micro period.

qjt ≤ c · (yjt + yj,t−1) ∀ j ∈ J, t ∈ T \ T f (yj0 = 0) (4.4)
qjt ≤ c · yjt ∀ j ∈ J, t ∈ T f

The time required for a sequence dependent changeover activity in a specific micro
period can be determined using the following restriction adapted from Haase (1994).
It’s advantage is that it does not require binary variables with two indices, one for the
preceding and one for the subsequent setup state, but only one index for the setup state
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at the end of a micro period, which greatly saves on model complexity, but identifies the
required changeover time directly based on the setup state at the end of the current and
the end of the previous micro period.

STjt ≥ st · yjt −
∑

j′∈J ′

(st− stj′j) · yj′,t−1 ∀ j ∈ J, t ∈ T \ T f (4.5)

STjt ≥ st0j · yjt ∀ j ∈ J, t ∈ T f

At the end of each micro period, at most one setup state can exist.

∑
j∈J

yjt ≤ 1 ∀ t ∈ T (4.6)

Finally, to determine the makespan it is necessary to determine which micro periods
have to be utilized. This is the case if the period was used for any production or
changeover activity. Additionally, the following restriction ensures that no micro periods
capacity is overloaded by changeover or production activities.

um ·
∑

t∈T (m)
c ≥

∑
j∈J

∑
t∈T (m)

(qjt + STjt) ∀m ∈M (4.7)

GLSP-FF

To extend the basic GLSP to reflect sequence dependent setup times, the modification
given by Meyr (2000) for a GLSP with sequence dependent setup times for minimizing
costs is used as a basis. It is modified by introducing the makespan as the objective
and the required constraints to determine it. Also, a modification is necessary as the
setup state cannot be carried over between different macro periods. A dummy product is
introduced that reflects the initial setup state.
As the GLSP needs a predetermined number of micro periods per macro period, to

ensure this does not prohibit the finding of the optimal solution, the number of micro
periods per macro periods is set to be the number of products plus one (for the dummy
product), allowing theoretically to produce every single product in each macro period.

Sets:

m ∈M set of macro periods
t ∈ T set of micro periods over all macro periods
t ∈ T (m) set of micro periods belong to macro period t
t ∈ T f set of micro periods that are the first of a macro period
h, j ∈ J set of products (J = {1, . . . , J})
j′ ∈ J ′ set of products including dummy product (J ′ = {0, . . . , J})
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Data:

αm start time of macro period m
C capacity of each macro period
djm demand of product j at end of macro period m
stj′j capacity required to changeover from product j′ to j

Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qjt ≥ 0 quantity of product j produced in micro period t
um ∈ {0; 1} 1, if macro period m is used, else 0
yj′jt ∈ {0; 1} 1, if product j is set up in micro period t by a changeover from

product j′, else 0

The objective to be minimized is the makespan.

minMS (4.8)

subject to

The makespan is given by the finish of the last utilized macro periods production.

MS ≥ αm · um +
∑

t∈T (m)
(

∑
j′∈J ′

∑
j∈J

stj′j · yj′jt +
∑
j∈J

qjt) ∀m ∈M (4.9)

The inventory needs to be tracked only at the macro periods boundaries. To ensure
demand satisfaction, it may not become negative. Production in the macro and stock
carryover from the previous macro period add to the inventory of a product, while
demand is the only decreasing factor. The inventory balance ensures demand satisfaction.

Ijm = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.10)

In each macro period, a limited capacity is available that may not be overused by
changeover or production activities.

∑
j∈J

∑
t∈T (m)

(qjt +
∑

j′∈J ′

stj′j · yj′jt) ≤ C ∀m ∈M (4.11)

Production can only take place if a changeover to the respective product was executed
in the corresponding macro period. A setup carryover from the precious macro period is
not possible.
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qjt ≤
∑

j′∈J ′

yj′jt · C ∀ t ∈ T (4.12)

In each micro period but the first of a macro period, a specific predecessor-successor
changeover can be executed only if in the previous micro period a changeover to the
predecessor was executed, the exception being the initial setup state. Note that a
changeover from the initial setup state is only possible in the first micro period of each
macro period.
Only one product can be produced per micro period.

∑
h∈J

yjht ≤
∑

j′∈J ′

yj′,j,t−1 ∀ j ∈ J, t ∈ T \ T f (4.13)

∑
j∈J

y0jt = 0 ∀ t ∈ T \ T f

Macro periods are utilized if a changeover from the initial setup state to any other is
executed. At the same time, the following restriction ensures that it is impossible to
start a changeover from any other product in the first micro period of any macro period,
enforcing the first changeover to use the initial setup state as the predecessor.

∑
j∈J

y0jt + 2 ·
∑
j′∈J

∑
j∈J

yj′jt ≤ um ∀m ∈M, t ∈ T (m) ∩ T f (4.14)

BP-FF

The Block Planning model needs some more important changes to enable it to account
for sequence dependent setup times. The major characteristic of the continuous time line
can be held onto, but unlike the other Block Planning based models, here the macro
periods are explicitly modeled. For each macro period, here it is necessary to define
as many blocks as products plus one for the initial setup state for each macro period.
The products are assigned to the blocks and depending on this assignment, the sequence
dependent setup times are determined. In this special case each block consists only of at
most one product, therefore eliminating the need to use binary variables for each block
to model its usage to be able to assign one or more products to it. Modeling the macro
periods explicitly allows for using binary variables to reflect usage of any block in a macro
period, which leads to a smaller number of binary variables than modeling usage of each
block.

Other changes are, like for the other models, the introduction of the makespan as the
objective to be minimized, constraints to determine it and the loss of setup state at the
macro period boundaries, as well as the assignment of production quantities to demand
elements instead of an inventory balance..
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Sets:

m ∈M set of macro periods
j ∈ J set of products
j′ ∈ J ′ set of products (0, . . . , |J ′|) including a dummy product 0
k ∈ K set of demand elements
i ∈ I set of blocks over all macro periods (1, . . . , |I|)
i ∈ I(m) set of blocks belonging to macro period m
i ∈ I(k) set of blocks including those that can be used to satisfy demand

element k
i ∈ If subset of blocks that are the first of each macro period

Data:

αm, αm end time respectively start time of the macro period m
dk quantity of demand element k
j(k) product, to which demand element k refers
stj′j capacity required for a changeover from product j′ to product j

Variables:

αi ≥ 0 start time of block i
δi duration of block i (not strictly necessary)
MS makespan
qik ≥ 0 quantity of demand element k that is satisfied from production in

block i
um ∈ {0; 1} 1, if macro period m is used, else 0
yij′j ∈ {0; 1} 1, if a changeover from product j′ to product j is performed at the

beginning of block i, else 0

The objective to be minimized is the makespan.

minMS (4.15)

subject to

The makespan is the start time of the last block plus its duration for changeover and
processing.

MS ≥ αi + δi ∀ i ∈ I (4.16)

Instead of using an inventory balance, in the block planning model production quantities
are assigned directly to demand elements to satisfy them.
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∑
i∈I(k)

qik = dk ∀ k ∈ K (4.17)

Production in a block for a products demand element can only take place, if a changeover
to the respective product did take place in the respective block.

qik ≤ dk

∑
j′∈J ′

yij′j(k) ∀ k ∈ K, i ∈ I(k) (4.18)

The following restriction ensures the initial setup state exists only at the beginning
of each macro period (note that, if changeover times from this initial setup state are
generally high, this restriction may become obsolete).

∑
j∈J

yi0j = 0 ∀ i ∈ I \ If (4.19)

The first changeover of each used macro period has the initial setup state as its
predecessor.

∑
j∈J

yi0j = um ∀m ∈M, i ∈ If ∩ I(m) (4.20)

The following constraint models the changeover structure.

∑
j∈J

yihj ≤
∑

j′∈J ′

yi−1,j′,h ∀h ∈ J, i ∈ I \ If (4.21)

To each block only one product’s setup state can be assigned. Also, if to any block
of a macro period any product’s setup state is assigned, the macro period is used for
production.

∑
j′∈J ′

∑
j∈J

yij′j = um ∀m ∈M, i ∈ I(m) (4.22)

The duration of a block is the time required for the changeover in this block and for
production in this block. Note that this restriction is, like in all block planning models,
only for convenience.

δi =
∑

j′∈J ′

∑
j∈J

yij′j · stj′j +
∑
k∈K

qik ∀ i ∈ I (4.23)
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A block may not start before its earliest start date, that is the start of the corresponding
macro period in a rigid block planning model. Note that for macro periods where no
production takes place the start date of the block may be set to any low value, so they
do not affect the makespan.

αi ≥ αm · um ∀m ∈M, i ∈ I(m) (4.24)

Production blocks may not overlap to prevent overloading of the available capacity.

αi ≥ αi−1 + δi−1 ∀ i ∈ I(α0 = 0) (4.25)

Finally, each block has to end at the respective macro periods length at the latest, to
ensure that no stockouts happen.

αi + δi ≤ αm ∀m ∈M, i ∈ I(m) (4.26)

4.2. Limited Changeover Scenario
A common special type of sequence restriction is the Limited Changeover (LC), as e. g.
in chemicals production or specialty steel production. Small lots of highly customized
products are produced. These products can be grouped according to a dominating setup
requirements into product families (or clusters). The changeover is limited, in that it is
not possible or economically undesirable to do a changeover directly from certain families
to other specific families. This implies the need to produce at least a minimal quantity
of a product family if it is set up for.

4.2.1. Scenario Description
The LC Scenario is derived from a case study featuring a single-stage production of special
chemical products. Small quantities of products are produced based on specifications
of the customer. Beside the quality of the products, short lead times are of paramount
importance. Due to a high number of potential product variants, production on stock
for forecasted demands is not reasonable, making this is a typical case for make-to-order
production. The primary objective is to satisfy the customer demands on time and
a secondary objective to be flexible for accepting new orders, while holding costs or
changeover costs are by comparison negligible in production planning.

In this case study, the dominant setup requirement is the required temperature range
inside the reactor. Products can be grouped into families according to their required
processing temperature in the reactor. The changeover between families is limited, e. g.
switching from a high temperature directly to a low temperature is not allowed without
producing some product (either being one specific product or several products of the
respective family) in the middle temperature range, since otherwise a high amount of
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Figure 4.2.: Changeover sequence structure of the Limited Changeover Scenario.

waste would be produced in the heating process and production time would be wasted.
This implies the need to model minimum lot sizes for the families. Changeovers between
products of different families are restricted, allowing changeovers only between products
of adjacent families or of the identical family. Since this limited changeover shall be the
main aspect of this scenario, it is assumed that changeovers between products of the
same family require a standard minor setup time and changeovers between products of
different families require an additional major setup time. This is illustrated in figure
4.2 for a case of 3 families with 3 products per family: e. g., a direct changeover from
product1 is possible to products 2 or 3 for a changeover time of stp, to products 3, 4 or 5
for a total changeover time of stp + stf , and impossible to products 7, 8 or 9.
At the end of weeks, the resources are cleaned and maintenance activities can be

performed. It is assumed that the reactor can be prepared to allow a changeover to
any first product family at the beginning of each week, requiring the standard family
changeover time.

4.2.2. Model Development
In this section possible extensions to the three basic models PLSP, GLSP and Block
Planning will be given as models PLSP-LC, GLSP-LC respectively BP-LC to be able
to reflect the special requirements of the LC Scenario such as the existence of product
families, the limitation of changeovers between product families and the minimum lot
sizes for families if a family is set up. Also, the makespan as the new objective function is
introduced and the loss of setup state between macro period boundaries is implemented.
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PLSP-LC (Limited changeover)

In the basic PLSP, no product families exist, therefore those have to be added here.
There is also no limitation on the set of possible changeovers, which is added to the
model here as well. Then, macro periods are required to model the loss of setup state
between macro period boundaries and to limit the inventory balance to consider those
micro periods that can have demand elements assigned to. Also, the makespan as a new
objective function has to be formulated as well as constraints to determine it.

Sets:

m ∈M set of macro periods
t ∈ T set of micro periods
t ∈ T f set of micro periods that are the first of any macro period
t ∈ T (m) set of micro periods belonging to macro period m
f ∈ F set of families
ϕ ∈ P (f) set of families which can be predecessor of family f
j ∈ J set of products
j ∈ J(f) set of products belonging to family f

Data:

αt start time of micro period t
c capacity of each micro period
djm demand of product j at the end of macro period m
mls minimum family lot size
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qjt ≥ 0 quantity of product j produced in micro period t
ut ∈ {0; 1} 1, if micro period t is used, else 0
Xft ∈ {0; 1} 1, if a changeover to family f takes place in micro period t, else 0
xjt ∈ {0; 1} 1, if a changeover to product j takes place in micro period t, else 0
Yft ∈ {0; 1} 1, if family f is set up at the end of micro period t, else 0
yjt ∈ {0; 1} 1, if product j is set up at the end of micro period t, else 0

The objective to be minimized is the makespan.

minMS (4.27)
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subject to

The makespan is given by the finish of the last utilized periods production.

MS ≥ ut · αt +
∑
j∈J

(qjt + stpxjt) +
∑
f∈F

stfXft ∀ t ∈ T (4.28)

The inventory needs to be tracked only at the macro periods boundaries. To ensure
demand satisfaction, it may not become negative. Production in the macro and stock
carryover from the previous macro period add to the inventory of a product, while
demand is the only decreasing factor.

Ijm = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.29)

Production in a micro period can only occur if the required setup state exists at the
start of the micro period or at the end of the micro period. Due to the loss of the setup
state at the macro period boundaries, in the first micro periods of each macro period
production can only take place if a changeover to the respective product takes place and
therefore the setup state exists at the end of that micro period.

qjt ≤ c · (yjt + yj,t−1) ∀ t ∈ T \ T f , j ∈ J (4.30)
qjt ≤ c · yjt ∀ t ∈ T f , j ∈ J

At most one product setup state can exist at the end of each micro period.

∑
j∈J

yjt ≤ 1 ∀ t ∈ T (4.31)

Also, at most one family setup state can exist at the end of each micro period.

∑
f∈F

Yft ≤ 1 ∀ t ∈ T (4.32)

A product setup state can only exist at the end of a micro period if a changeover to it
has been executed or the setup state existed at the end of the previous micro period. For
the first micro period of each macro period, the setup state cannot be carried over from
the previous micro period.

xjt − yjt + yj,t−1 ≥ 0 ∀ t ∈ T \ T f , j ∈ J (4.33)
xjt − yjt ≥ 0 ∀ t ∈ T f , j ∈ J
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The same is true for the family setup state.

Xft − Yft + Yf,t−1 ≥ 0 ∀ t ∈ T \ T f , f ∈ F (4.34)
Xft − Yft ≥ 0 ∀ t ∈ T f , f ∈ F

Here, product and family setup state are linked together.

∑
j∈J(f)

yjt ≤ Yft ∀ f ∈ F, t ∈ T (4.35)

The limited changeover between the product families needs to be considered.

Yft ≤
∑

ϕ∈P (f)
Yϕ,t−1 ∀ f ∈ F, t ∈ T \ T f (4.36)

The capacity limitation of each period has to be considered, and if capacity is used the
micro period is considered as being utilized for determination of the makespan.

c · ut ≥
∑
j∈J

(qjt + stpxjt) +
∑
f∈F

stfXft ∀ t ∈ T (4.37)

Finally, the minimum lot sizes for a family are modeled here.

∑
t∈T (m)

∑
j∈J(f)

qjt ≥
∑

t∈T (m)
Xft ·mls ∀ f ∈ F,m ∈M (4.38)

GLSP-LC (Limited changeover)

As for the other models, the basic GLSP requires modifications to account for the aspects
of this scenario. Product families are not represented in the basic GLSP and need to
be added, together with the constraints restricting the changeover possibilities. The
makespan needs to be introduced as the objective functions with constraints to determine
it. Lastly, the loss of setup state between macro period boundaries has to be considered.

Sets:

m ∈M set of macro periods
t ∈ T set of micro periods
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t ∈ T f set of micro periods that are the first of any macro period
t ∈ T (m) set of micro periods belonging to macro period m
f ∈ F set of families
ϕ ∈ P (f) set of families which can be predecessor of family f
j ∈ J set of products
j ∈ J(f) set of products belonging to family f

Data:

αm start time of macro period m
C capacity of each macro period
djm demand of product j at the end of macro period m
mls minimum family lot size
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qjt ≥ 0 quantity of product j produced in micro period t
um ∈ {0; 1} 1, if micro period m is used, else 0
Xft ∈ {0; 1} 1, if a changeover to family f takes place in micro period t, else 0
Yft ∈ {0; 1} 1, if family f is set up in micro period t, else 0
yjt ∈ {0; 1} 1, if product j is set up in of micro period t, else 0

The objective to be minimized is the makespan.

minMS (4.39)

subject to

The makespan is given by the finish of the last utilized periods production.

MS ≥ umαm +
∑

t∈T (m)
(

∑
f∈F

Xftst
f +

∑
j∈J

(yjtst
p + qjt)) ∀m ∈M (4.40)

The inventory needs to be tracked only at the macro periods boundaries. To ensure
demand satisfaction, it may not become negative. Production in the macro and stock
carryover from the previous macro period add to the inventory of a product, while
demand is the only decreasing factor. The inventory balance ensures demand satisfaction.

Ij,m = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.41)
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In each macro period, a limited capacity is available that may not be overused by
changeover or production activities.

∑
j∈J

∑
t∈T (m)

(qjt + stpyjt) +
∑
f∈F

∑
t∈T (m)

stfXft ≤ C ∀m ∈M (4.42)

A setup to a product in a micro period is required to enable production of the respective
product in this micro period.

qjt ≤ C · yjt ∀ j ∈ J, t ∈ T (4.43)

Only one product can be produced per micro period.

∑
j∈J

yt ≤ 1 ∀ t ∈ T (4.44)

Only one product family can be assigned to a micro period. At the same time, this
constraint identifies which macro periods are utilized.

∑
f∈F

Yft = um ∀m ∈M, t ∈ T (m) (4.45)

A family setup state can be carried over from the previous micro period if no macro
period boundary causes loss of the setup state, or can result from a changeover to this
family in the respective micro period.

Yft ≤ Yf,t−1 +Xft ∀ f ∈ F, t ∈ T \ T f (4.46)
Yft ≤ Xft ∀ f ∈ F, t ∈ T f

A setup state for a product can only exist, if the family setup state matches that
products family. Note that this also ensures that only one product can be produced per
micro period like equation 4.44, however implementing both restrictions led to a better
performance of the GLSP-LC model.

∑
j∈J(f)

yjt ≤ Yft ∀ f ∈ F, t ∈ T (4.47)

The following constraint ensures that only changeovers between families that are
allowed take place.

Xft ≤
∑

ϕ∈P (f)
Yϕ,t−1 ∀ f ∈ F, t ∈ T \ T f (4.48)
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Finally, the minimum lot sizes for a family are modeled here.

∑
t∈T (m)

∑
j∈J(f)

qjt ≥
∑

t∈T (m)
Xft ·mls ∀ f ∈ F,m ∈M (4.49)

Block Planning-LC (Limited changeover)

Due to the necessity of modeling minimum lot sizes here, it can be that a positive
inventory is held for some products at the end of the planning horizon which needs
to be included in the model. Also, the makespan, product families and the limited
changeover need to be included, as well as the assignment of production quantities to
demand elements instead of an inventory balance. Note that one block needs to be
defined for each family and each macro period.

Sets:

k ∈ K set of demand elements
i ∈ I set of blocks over all macro periods
k ∈ K(i) set of demand elements which may be satisfied from production in

block i
i ∈ If subset of blocks that are the first of any macro period
i ∈ I(k) set of blocks which can be used to satisfy demand element k
f ∈ F set of families
ϕ ∈ P (f) set of families which can be predecessor of family f
j ∈ J set of products
j ∈ J(f) set of products belonging to family f

Data:

αi,αi start respectively end time of the macro period of block i
dk quantity of demand element k
j(k) product, to which demand element k refers
mls minimum family lot size
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

αi ≥ 0 start time for block i
δi ≥ 0 duration of block i
eij ≥ 0 inventory of product j at the end of the planning horizon built up by

production in block i
MS makespan
qik ≥ 0 quantity of demand element k satisfied by production in block i
Y ′i ∈ {0; 1} 1, if all blocks until block i are used, else 0

57



4. Modeling of FMCG Industry Scenarios

yij ∈ {0; 1} 1, if product j is set up in block i, else 0
zfi ∈ {0; 1} 1, if family f is assigned to block i, else 0

The objective to be minimized is the makespan.

minMS (4.50)

subject to

The makespan is the start time of the last block plus it’s duration for changeover and
processing.

MS ≥ αi + δi ∀ i ∈ I (4.51)

Instead of using an inventory balance, in the block planning model production quantities
are assigned directly to demand elements to satisfy them.

∑
i∈I(k)

qik = dk ∀ k ∈ K (4.52)

Production in a block for a products demand element can only take place, if a changeover
to the respective product did take place in the respective block.

qik ≤ dkyi,j(k) ∀ i ∈ I, k ∈ K (4.53)

A setup state for a product can only exist, if the family setup state matches that
products family.

∑
j∈J(f)

yij ≤ zfi · |J(f)| ∀ i ∈ I, f ∈ F (4.54)

The following constraints gives information about which blocks are within the makespan.

∑
f∈F

zfi ≤ Y ′i ∀ i ∈ I (4.55)

Y ′i ≤ Y ′i−1 ∀ i ∈ I(Y ′0 = 1) (4.56)

The duration of a block is the time required for the changeover in this block and for
production in this block. Note that this restriction is, like in all block planning models,
only for convenience.
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δi =
∑
f∈F

stfzfi +
∑
j∈J

(stp · yif + eij) +
∑

k∈K(i)
qik ∀ i ∈ I (4.57)

A block may not start before the start time of the corresponding macro period due to
the loss of the setup state at the macro period boundaries. Blocks that are outside the
production horizon are not considered so they do not affect the makespan.

αi ≥ αiY
′

i ∀ i ∈ I (4.58)

Blocks may not overlap.

αi ≥ αi−1 + δi−1 ∀ i ∈ I(α0 = 0) (4.59)

The end time of a block may not exceed the end of the corresponding macro period.

αi + δi ≤ αi ∀ i ∈ I (4.60)

The following constraint ensures that only changeovers between families that are
allowed take place.

zfi ≤
∑

ϕ∈P (f)
zϕ,i−1 ∀ i ∈ I \ I ′, f ∈ F (4.61)

Finally, the minimum lot sizes for a family are modeled here.

∑
k∈K(i)

xik +
∑
j∈J

eij ≥
∑
f∈F

zfi ·mls ∀ i ∈ I (4.62)

4.3. Natural Sequence Scenario
The Natural Sequence Scenario (NS Scenario) will explore an environment typical for
example in beverage production. The product portfolio can be grouped into product
families which resemble in the major production characteristic in regard to setup require-
ments. Changeovers within such a family require only a minor changeover time as long
as they follow a given natural sequence3.

3In literature, the following of a pre-defined production sequence is often described using the term
"Production Wheel".
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Figure 4.3.: Changeover sequence structure of the Natural Sequence Scenario.

4.3.1. Scenario Description
This scenario is derived from the beverage industry. Like in many other real applications,
the capacity of the production line is limited by one expensive bottleneck resource (e. g.
in beverage industry the combined bottle molding and filling machine). Often, the
production lines are independent of each other due to technical specifications (e. g. the
basic type of bottle that can be filled). Therefore, each line produces only one product
group and can be planned independently of the others.
The product portfolio for each line can be furthermore grouped into product families,

determined by the necessity of a major setup activity when changing between product
families (e. g. changing the bottle size). In each product family, sequence dependent
setups can be observed, however following a certain natural sequence. This sequence
should be followed, for reversing the sequence is unattractive due to high setup activities
(e. g. producing light-tasting variants before stronger variants, and diet variants before
standard variants). By following this sequence, only a standard setup activity (e. g. a
standard cleaning procedure) is required as long as the product family is the same. This
changeover structure is illustrated in figure 4.3 for a small case of 3 products. This is
also true if a product in sequence is skipped.
Since at the end of weeks extensive cleaning operations are necessary, setup states

are lost at the end of macro periods. Unless the shelf-life of the products is very short,
demand elements are usually on a weekly time scale. Therefore, the families can be
regarded as being in a natural sequence as well for modeling - changing the sequence of
families of the models result is possible if required without effect on any variables.

4.3.2. Model Development
In this section three possible extensions to the three basic models PLSP, GLSP and
Block Planning will be given as models PLSP-NS, GLSP-NS respectively BP-NS to be
able to reflect the special requirements of the Natural Sequence Scenario, the product
families, the natural sequence within families, the loss of setup state between macro
period boundaries and the makespan as the new objective function.

PLSP-NS

The PLSP has to be extended to be able to reflect changeover times within a family
or between families and additionally the natural sequence needs to be enforced. Note
that for the following notation the setup times need to be shorter than the length of any
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micro period. Also, macro periods are introduced to reflect the loss of setup states and to
limit the necessity of inventory balance to those micro periods where demands can occur.
Finally, the new objective of makespan minimization requires a couple of modifications.

Sets:

m ∈M set of macro periods
t ∈ T set of micro periods
t ∈ T f subset of micro periods that are the first of any macro period
t ∈ T (m) set of micro periods belonging to macro period m
f ∈ F set of families
j ∈ J set of products in the natural sequence, 1 being the first, |J | the last
j ∈ J(f) set of products belonging to family f

Data:

αt start time of micro period t
c capacity of each micro period
djm demand of product j at the end of macro period m
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qst ≥ 0 units produced using the setup state s in micro period t
ut ∈ {0; 1} 1, if micro period t is used, else 0
Xft ∈ {0; 1} 1, if a changeover to family f takes place in micro period t, else 0
xjt ∈ {0; 1} 1, if a changeover to product j takes place in micro period t, else 0
Yft ∈ {0; 1} 1, if family f is set up at the end of micro period t, else 0
yjt ∈ {0; 1} 1, if product j is set up at the end of micro period t, else 0

The objective function to be minimized is the makespan.

minMS (4.63)

subject to

The makespan equals the last used periods start time plus the required changeover
and processing time of that period.

MS ≥ ut · αt +
∑
j∈J

(qjt + stpxjt) +
∑
f∈F

stfXft ∀ t ∈ T (4.64)

61



4. Modeling of FMCG Industry Scenarios

The inventory balance has been adapted to reflect that demands only occur at those
micro periods that mark the end of any macro period.

Ij,m = Ij,m−1 +
∑

t∈T (m)
qjt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.65)

The following constraint links production to the setup state while considering the loss
of the setup state at the end of each macro period.

qjt ≤ c(yjt + yj,t−1) ∀ t ∈ T \ T f , j ∈ J (4.66)
qjt ≤ c · yjt ∀ t ∈ T f , j ∈ J

It needs to be ensured that the capacity of a period is not overloaded by production
and changeover activities, and that the capacity is unavailable if the period shall not be
used at all.

c · ut ≥
∑
j∈J

(qjt + stpxjt) +
∑
f∈F

stfXft ∀ t ∈ T (4.67)

At most one product setup state can exist at the end of a period, however allowing
micro periods to have no product setup state, which is relevant at the macro period
boundaries.

∑
j∈J

yjt ≤ 1 ∀ t ∈ T (4.68)

At most one family setup state can exist at the end of a period, however allowing micro
periods to have no family setup state, which is relevant at the macro period boundaries.

∑
f∈F

Yft ≤ 1 ∀ t ∈ T (4.69)

The following constraint links product changeover and product setup states, modified
to reflect the loss of the product setup state at the end of macro period boundaries.

xjt − yjt + yj,t−1 ≥ 0 ∀ t ∈ T \ T f , j ∈ J (4.70)
xjt − yjt ≥ 0 ∀ t ∈ T f , j ∈ J

The following constraint links family changeover and family setup states, modified to
reflect the loss of the family setup state at the end of macro period boundaries.
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Xft − Yft + Yf,t−1 ≥ 0 ∀ t ∈ T \ T f , f ∈ F (4.71)
Xft − Yft ≥ 0 ∀ t ∈ T f , f ∈ F

The link between product setup state and family setup state is introduced in the
following constraint.

∑
j∈J(f)

yjt ≤ Yft ∀ f ∈ F, t ∈ T (4.72)

To enforce the natural sequence, the following constraint is added, forbidding a step
back in the natural sequence unless a family changeover activity is performed, which
would start a new sequence. Note this restriction only exists for micro periods that are
not first of any macro period – for those, no previous setup state exists and it is assumed
that the sequence can start with any setup state.

xjt ≤ 1−
∑

i∈J(f)
i>j

yi,t−1 +Xf
ft ∀ f ∈ F, j ∈ J(f), t ∈ T \ T f (4.73)

GLSP-NS (natural sequence)

Each macro period can produce the products of several product families. When a family
is set up, all products within this family can be produced, but only in a given sequence.
However, it is possible to skip products of a product family. The (small) changeover in
the same family from one product to a later one in sequence is constant, as is the (big)
changeover between product families.Due to the given sequence of products within a
family and the implicit sequence of the families, the assignment of products to micro
periods by using variables as made in the standard GLSP is not necessary. Each macro
period is split into one micro period per product (for all families), so each micro period
can be fixed to one specific product.

Other changes to the basic model are the restrictions used to reflect the family setups
and family setup states, the introduction of the makespan and the modeling of the loss
of setup states at the end of macro periods.

Sets:

j ∈ J set of products
m ∈M set of macro periods
f ∈ F set of product families
t ∈ T set of micro periods
t ∈ T f subset of micro periods that are the first of any macro period
t ∈ T (f) set of micro periods belonging to family f
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t ∈ T (f,m) set of micro periods belonging to family f and macro period m
t ∈ T (j,m) set of micro periods that can produce product j and belong to macro

period m
t ∈ T (m) set of micro periods belonging to macro period m

Data:

C capacity of each macro period
djm demand of product j at the end of macro period m
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

Ijm ≥ 0 inventory of product j at the end of macro period m
MS makespan
qt ≥ 0 quantity produced in micro period t
um ∈ {0; 1} 1, if macro period m is used, else 0
Xft ∈ {0; 1} 1, if a changeover to family f takes place in micro period t, else 0
Yft ∈ {0; 1} 1, if micro period t is set up to family f , else 0
yt ∈ {0; 1} 1, if micro period t is set up to the corresponding product, else 0

The objective to be minimized is the makespan.

minMS (4.74)

subject to

The makespan is defined be the finish time of the last used macro periods production.

MS ≥ um · αm +
∑

t∈T (m)
(st · yt +

∑
f∈F

XftSF + qt) ∀m ∈M (4.75)

The inventory needs to be tracked only at the macro periods boundaries. To ensure
demand satisfaction, it may not become negative. Production in the macro and stock
carryover from the previous macro period add to the inventory of a product, while
demand is the only decreasing factor. The inventory balance ensures demand satisfaction.

Ij,m = Ij,m−1 +
∑

t∈T (j,m)
qt − djm ∀ j ∈ J,m ∈M (Ij0 given) (4.76)

In each macro period, a limited capacity is available that may not be overused by
changeover or production activities.
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∑
t∈T (j,m)

(qt + stp · yt) +
∑
f∈F

∑
t∈T (m)

Xft · stf ≤ C ∀m ∈M (4.77)

A setup to a product in a micro period is required to enable production of the respective
product in this micro period.

qt ≤ C · yt ∀ t ∈ T (4.78)

The following constraint links the product setup state to the family setup state.

yt ≤ Yft ∀ f ∈ F, t ∈ T (f) (4.79)

The family setup state can be carried over from the previous period, unless a macro
period boundary prevents the setup carry over, or set anew.

Yft ≤ Yf,t−1 +Xft ∀ f ∈ F, t ∈ T \ T f (4.80)
Yft ≤ Xft ∀ f ∈ F, t ∈ T f

Only one family setup state can exist in each micro period.

∑
f∈F

Yft ≤ 1 ∀ t ∈ T (4.81)

Finally, a macro period is used if one or more families are assigned to micro periods of
that macro period, as this is only required if production takes place.

um · |J | ≥
∑
f∈F

∑
t∈T (f,m)

Yft ∀m ∈M (4.82)

BP-NS

The BP-NS model is extended for reflecting product families, the makespan and restric-
tions to determine it, the loss of setup state at the end of macro periods and the direct
assignment of production quantities to demand elements. To each macro period, one
block per family is assigned, with each of them starting earliest at the beginning of the
macro period and ending at the latest at the macro periods end. Since it is one optional
block for each family and demand elements are assigned to the end of macro periods,
modeling a dynamic assignment of families to the blocks is not necessary here.
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Sets:

i ∈ I set of blocks over all macro periods
j ∈ J set of products
k ∈ K set of demand elements
i ∈ I(k) set of blocks which can be used to satisfy demand element k (preceding

and matching the family of the product)
j ∈ J(i) set of products belonging to the family of block i

Data:

αi, αi start respectively end time of the macro period of block i
dk quantity of demand element k
j(k) product to which demand element k refers
stf capacity required for a changeover to any family
stp capacity required for a changeover to any product

Variables:

αi ≥ 0 start time for block i
δi ≥ 0 duration of block i
MS makespan
qik ≥ 0 quantity of demand element k satisfied by production in block i
Yi ∈ {0; 1} 1, if block i is used, else 0
yij ∈ {0; 1} 1, if product j is set up in block i, else 0

The objective to be minimized is the makespan.

minMS (4.83)

subject to

The makespan is the start time of the last block plus its duration for changeover and
processing.

MS ≥ αi + δi ∀ i ∈ I (4.84)

Instead of using an inventory balance, in the block planning model production quantities
are assigned directly to demand elements to satisfy them.

∑
i∈I(k)

qjk ≥ dk ∀ k ∈ K (4.85)

Production blocks may not overlap to prevent overloading of the available capacity.
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αi ≥ αi−1 + δi−1 ∀ i ∈ I(α0 = 0) (4.86)

Production in a block for a products demand element can only take place, if a changeover
to the respective product did take place in the respective block.

qik ≤ dkyi,j(k) ∀ i ∈ I, k ∈ K (4.87)

A block may not start before the start time of the corresponding macro period due to
the loss of the setup state at the macro period boundaries. Blocks that are outside the
production horizon are not considered so they do not affect the makespan.

αi ≥ αiYi ∀ i ∈ I (4.88)

The end time of a block may not exceed the end of the corresponding macro period.

αi + δi ≤ αi ∀ i ∈ I (4.89)

The duration of a block is the time required for the changeover in this block and for
production in this block. Note that this restriction is, like in all block planning models,
only for convenience.

δi = stf · Yi +
∑
j∈J

stp · yij +
∑
k∈K

qik ∀ i ∈ I (4.90)

Finally, the following constraint ensures that changeover (and therefore production)
activities can only occur in blocks that are within the production horizon.

∑
j∈J(i)

yij ≤ Yi · |J(i)| ∀ i ∈ I (4.91)
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In this chapter, the model formulations developed in the previous chapter shall be
evaluated using numerical tests. For this, a general experimental design is outlined,
followed by subchapters for each scenario (Full Flexibility, Limited Changeover and
Natural Sequence) which extend this design where necessary and present the results of
the adopted models.

The main research question which should be answered by these numerical tests is, how
different changeover structures in integrated lot sizing and scheduling can be modeled
using the three given basic model formulations. For this, three subordinate questions are
to be answered:

• How efficient are those model formulations in regard to generating an economi-
cally advantageous production schedule and in regard to computational effort to
determine these schedules?

• How strong is the influence of the problem size, e. g. the number of products, on
the economical and computational performance of the given model formulations?

• How strong is the influence of the capacity load on the economical and computational
performance of the given model formulations?

5.1. Experimental Design
To answer these questions, three problem sizes Small (S), Medium (M) and Large (L) are
defined which give general parameters for all three changeover structure scenarios and
differ mainly by having different number of products to be planned (4/9/25 products).
While in industry the number of product variants that are to be produced on a single
line often exceed these numbers by far, in such cases it is common that very similar
product variants are merged for production planning purposes into product groups with
a pre-optimized sequence within each of this product groups. The planning horizon is
assumed to be four weeks long.
Two capacity load scenarios will be given, reflecting a total capacity requirement

by production and changeover activities to be 70% (90%) for the low (high) capacity
load scenario. From industrial experience it is known that commonly five to twenty
percent of production time is consumed by changeover activities. It seems reasonable that
usually more products mean more changeover activities and therefore a higher capacity
consumption by changeovers. Therefore, for the three problem sizes S/M/L, total capacity
consumption by changeover activities is assumed to be 5/8/15% of available production
time (20% for an additional scenario in section 5.4). As the number of products increases
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Table 5.1.: Basic scenario parameters.

Problem Size S M L
Planning Horizon (weeks) 4 4 4
Products 4 9 25
Average Changeover Time Per Product (CU) 2.5 1.778 1.2
Capacity Load Low High Low High Low High
Total Capacity Usage (%) 70 90 70 90 70 90
Capacity Usage by Changeovers (%) 5 5 8 8 15 15

relatively more than the capacity consumption by changeover between the scenarios, the
average changeover time between products is smaller for scenarios with more products,
which matches the reasonable assumption that more products mean a higher similarity
and that if changeovers are more frequent the used technology is more focused on reducing
changeover times. Under the assumption that on average half of the product portfolio is
produced per week, the average changeover time (ACT) per product is then for example
for scenario S:

ACT = 100% · 0.05 [total changeover requirements]
2 [average number of changeovers] = 2.5%

of available capacity per week. With a normalized capacity of 100 capacity units (CU)
per week, this leads to 2.5 CU as average setup time per product for this problem size.
The complete values for all problem sizes are given in table 5.1.

To generate demand elements, a product is selected randomly, the demand element
size (in capacity units needed for production) are drawn from the uniform distribution d
in [0.5 ·D, 1.5 ·D], with D being the total available capacity over all weeks multiplied
with the capacity usage for production (without changeovers) and then divided by the
number of product/week combinations, and the demand element is randomly assigned to
one of the weeks. If the generated demand element belongs to an in advance randomly
determined half of the products1 and the demand element would be assigned to the first
week, it is assumed to be fulfilled from starting inventory and therefore removed. If the
created demand element would cause an exceeding of the effective capacity load limit, it
is resized to the maximum size where it does not exceed the capacity load limit2. This
procedure of generating demand elements is repeated until the effective capacity load
limit until the end each of the weeks is reached.

1In the Limited Changeover Scenario and the Natural Sequence Scenario, not single products are
randomly selected but whole product families.

2For example, the effective capacity load limit until the end of the second macro period in
the S scenario with low capacity load is 2 [number of macro period] · (70 [Total capacity usage] −
5 [capacity usage by changeovers]) = 130 [CU ]. Therefore, the demand elements assigned to the first
two weeks should not exceed 130 CU. How those are distributed between those two weeks does not
matter here.
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For each changeover structure scenario, problem size and capacity load, ten sets of
demand elements and, where needed, changeover structure parameters are generated and
solved using the respective model formulations3.

A specific issue with the PLSP models is the length of the micro periods, which has to
be determined in advance. In literature, there is no generally accepted way to determine
those, therefore a practical approach is chosen here, setting the micro period length to
half of a standard shift time of 8 hours, leading to 4 hours or 5 CU. By this, it is ensured
that changeover times never exceed the length of one micro period4, while having a
moderate number of micro periods (80 for 4 weeks of 100 CU each).
For the numerical investigation, for each combination of scenario, problem size and

capacity load, ten instances of demand elements and, where applicable, changeover times
have been generated and solved using OPL Studio 6.3 with CPLEX 11. Computers
with an AMD Athlon Dual Core Processor 4050e (2,1 GHz) and 2 GB RAM, using
Windows XP were used. In OPL, a MIP Gap of 1% were tolerated, otherwise the standard
configuration was used. The optimization run times were limited to one hour (3600
seconds).

In each of the following subchapters, for each scenario the required additional procedures
and the numerical results are given, structured as follows:

• The procedures for generating the changeover parameters are outlined.

• Then, a table showing the performance indicators of the models for the different
problem sizes by averaging the values for the 10 instances of different demand
values and, where applicable, setup structure parameters, is given. The percentage
of instances in which a feasible solution was found is presented, as well as the
percentage of found and proven optimal solutions (a feasible solution that is proven
to be less than 1% worse than the true optimum is sufficient for being considered
optimal in this evaluation) and for instances solved to optimality the average run
time ("n/A" if no optimal solutions are found). For those instances that were not
solved to optimality, the average MIP Gap between the best found solution and
the corresponding non-integer solution is given ("n/A" if no non-optimal feasible
solutions were found). Finally, to compare the solution quality, for instances where
all models found at least one feasible solution, the average increase over the best
found objective value is given as the performance indicator "Avg. derivation from
best (%)" (taking the value of "n/A" if for no instance at least one feasible solution
was found by each model).

• To support analyzing of the performance of individual models, in specific problem
size/capacity load combinations graphical representations of the results are given if
they are of specific relevance. A complete set of graphical representations for all
scenario/size/capacity load combinations as well as tables with the detailed results

3The procedure for determining the changeover time parameter depends on the scenario and is therefore
described in the respective subhcapters.

4In the procedures for determining the changeovers described in the following subchapters, the changeover
time never exceeds 5 CU.
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Table 5.2.: Performance indicators of the Full Flexibility Scenario.

Problem Size S M L
Model Capacity Load 70% 90% 70% 90% 70% 90%
PLSP-FF Optimal Solutions Found (%) 40 10 0 0 0 0

∅ Optimal Solution Time (s) 2830 64 n/A n/A n/A n/A
Feasible Solution Found (%) 100 100 100 100 100 100
∅ MIP Gap (%) 2.0 2.3 12.2 7.3 33.3 23.4
∅ Derivation From Best (%) <0.1 <0.1 0.6 1.1 22.2 n/A

GLSP-FF Optimal Solutions Found (%) 100 100 80 100 0 0
∅ Optimal Solution Time (s) <1 <1 35.8 291.4 n/A n/A
Feasible Solution Found (%) 100 100 100 100 70 30
∅ MIP Gap (%) n/A n/A 1.3 n/A 10.0 11.1
∅ Derivation From Best (%) <0.1 0.1 <0.1 <0.1 <0.1 n/A

BP-FF Optimal Solutions Found (%) 100 100 100 100 0 0
∅ Optimal Solution Time (s) 1 1 89 89 n/A n/A
Feasible Solution Found (%) 100 100 100 100 90 30
∅ MIP Gap (%) n/A n/A n/A n/A 8.8 5.4
∅ Derivation From Best (%) 0 0 0 <0.1 1.5 n/A

for all instances is given in the appendix A. Also, an explanation on the design of
the figures is given in the appendix.

• The major aspects of the numerical results are outlined and an interpretation of
the numerical results is given for reach problem size for both capacity loads.

• Finally, a summary is given and the effect of the problem size on the models
performance is discussed.

5.2. Full Flexibility Scenario
For the Full Flexibility Scenario, product changeover times between different products and
from an initial setup state are generated by drawing values from the uniform distribution
d in [0.5;1.5]. Then, triangle inequality is ensured by lowering direct changeovers from
a product to another product to the minimum of all potential ways of changeover, if
such exist. Finally, the resulting values are normalized to an average value of 1 and then
multiplied by the average changeover time per product as given in table 5.1.
The results are summarized in table 5.2 by averaging the values for 10 instances of

different demand values and changeover times. In the following, for each scenario size a
detailed comparison of the results of the three model formulations shall be given for the
Full Flexibility Scenario. At the end of this subchapter, a summary of the results for the
Full Flexibility Scenario is given.
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Small problem size (4 products)

As can be easily seen, the BP-FF and GLSP-FF had no difficulties for the small problem
size with low capacity load, finding optimal solutions within a neglectable run time of 1 to
2 seconds. The PLSP-FF model encountered problems in finding an optimal solution in
most of the instances, and even in cases where it found an optimal solution the run time
needed to find this solution was on average 2830 seconds. As can be seen in the detailed
results shown in the appendix, for no instance the run time was less than 1950 seconds
(cf. appendix A). Even for instances where all models found an optimal solution, the
PLSP-FF models objective value is often higher, e. g. in instance 10, than for the other
two models. However, the difference is minor and might not be caused by a problem of
the model formulation itself, but by an effect of the MIP Gap5. This will not be true for
other scenario, problem size and capacity load combinations and be discussed at that
point more in detail.
For the small problem size, the capacity load only notably effects the PLSP-FFs

solution time, which interestingly improves with the higher capacity load. It is likely
that this effect is caused by a smaller number of possible feasible combinations, so the
Branch-and-Bound algorithm can cut of parts of the solution space more quickly.

Medium problem size (9 products)

In the medium problem size, the PLSP-FF still was able to find feasible solutions in
all instances, however with a significant MIP Gap in most times. When comparing the
BP-FF and the GLSP-FF model, while both models almost always found an optimal
solution, there is no clear advantage of one model over the other that can be observed.
The GLSP-FF found in the low capacity load instances optimal solutions in shorter
time than the BP-FF, though in two instances it did was not able to find an optimal
solution in two instances within the time limit of 3600 seconds6. In the detailed results
as given in the appendix it can be seen that in the majority of instances it found an
optimal solution in slightly shorter time than the BP-FF. On the other hand, the BP-FF
always found an optimal solution for each instance in 325 seconds in the low capacity
load instances respectively 346 seconds in the high capacity load instances at most. In

5For explanation, let’s assume a true optimal (MIP Gap = 0%) value would be 297. With a MIP Gap
threshold of 1%, the solution process might be stopped as soon as the objective value reaches a value
of 300, if the linear relaxation gave a lower bound that equals the true optimal value. Two different
models could therefore stop at different objective values, which is not necessarily a problem of the
models, but resulting from the MIP Gap threshold.

6Note that due to the serious problems in solving the GLSP-FF in these two instances while other
instances were solved quickly, several runs were executed for further testing (only the results from the
first run were included in this thesis results). When setting "parallel mode" in CPLEX to deterministic,
leading to an identical search of the solution tree, the results were identical. Without this, the run
time was most of the time much shorter and optimal solutions could be found within a couple of
minutes. So here it seems likely, that the solution space in the GLSP-FF can have a structure that,
depending on minor parameters of the mathematical solver, causes the solver to be searching in
an inferior solution space for a relatively long time before identifying it as inferior and therefore
discarding it.
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Figure 5.1.: Detailed results of the Full Flexibility Scenario, Size L, Low Capacity Load.

most applications, the higher stability of the BP-FF results and only slightly worse run
time in some instances than the GLSP-FF is likely to be of higher importance than a
chance of a slightly shorter run time, which depends on the specific demand distribution.
Regarding the effect of the capacity load, it is noteworthy that the BP-FF models

results are not affected by it for the given two different loads. For the GLSP-FF results,
the higher capacity load increased the duration to find optimal solutions significantly.
The PLSP-FF had a lower MIP Gap for the high load capacity, however in both capacity
loads it failed to find optimal solutions.

Large problem size (25 products)

In the large problem size, the limits of the given model formulations can be observed.
For this problem size, a more detailed analysis is given, based on figure 5.1 and figure
5.2, which show the detailed results for both capacity loads.
While the PLSP-FF is still able to find feasible solutions for all instances, which the

other two models fail to, it can be seen that the MIP Gaps are very high, being on average
33.3% in low capacity load instances and 23.4% in the high capacity load instances. As
can be seen in the detailed results in the appendix, for no iteration the MIP Gap was
less than 21.4%. In the low capacity load instances, the BP-FF found in nine instances
a feasible solution, whereas the GLSP-FF found a feasible solution only in 7 instances.
Additionally, the MIP Gap of the BP-FF solutions was generally smaller. On the other
hand, as can be seen in figure 5.1, for those instances where both models found an optimal
solution, the GLSP-FF required a little less time and, in instances where all models
found a feasible solution, the objective values of the GLSP-FF were slightly better than
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Figure 5.2.: Results of the Full Flexibility Scenario, Size L, High Capacity Load.

those of the BP-FF. This is interesting, since both models should, given enough time, be
able for each instance to find the same optimal solution, and a higher MIP Gap usually
indicates a higher potential for further improvement of the best found solution so far. In
this comparison, obviously the potential for improvement up to the true optimum is of
course higher if the best found solution so far is worse, so the BP-FF with worse objective
values should be expected to have higher MIP Gaps. This is not the case here, which
indicates a numerical advantage of the BP-FF: as a higher MIP Gap indicates a higher
required additional time to close the Gap and find an optimal solution, even though the
best found solution objective value at the time limit of 3600 seconds, there is a reasonable
possibility that with longer run times the BP-FF gains an advantage over the GLSP-FF
in terms of the objective value. However, to explore this additional numerical tests would
be necessary. For the high capacity load scenario (illustrated in figure 5.2), a comparison
of the BP-FF and the GLSP-FF is not possible, as for no instance both models found a
feasible solution. However, for those instances where a feasible solution was found, it
was better than the PLSP-FFs best found solution, while the PLSP-FF has as already
mentioned the advantage of having found feasible solutions for all instances.
The capacity load for the PLSP-FF had a similar effect as for the medium problem

size, reducing the MIP Gap for the high load instances. For the GLSP-FF, difficulties
in finding a feasible solution increased strongly, while the MIP-Gap was not increased
significantly. The BP-FF however, while having been relatively unaffected in the medium
problem size, did encounter high problems with finding a feasible solution in the high
load instances as well. This leads to the conclusion that the BP-FF ability to find optimal
solutions is not strongly influenced by the capacity load, however when finding feasible
solutions gets problematic, the BP-FF is similarly affected like the GLSP-FF.
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Summary

As could be seen, the Full Flexibility Scenario puts a challenge to the mathematical mod-
eling approach, as the difficulty of finding feasible or optimal solutions rises exponentially
with the problem size. However, in the small and medium problem sizes the BP-FF and
GLSP-FF models still achieved very good results (with the BP-FF model being slightly
ahead of the GLSP-FF model), while the PLSP-FF model performed only mediocre
in the small problem size and struggled with the medium problem size. For the large
problem size, results are a little bit more complicated. The BP-FF and GLSP-FF models
faced difficulties in finding feasible solutions for some instances, especially in the high
capacity load instances. For those, where feasible solutions were found, the MIP-Gap
was still relatively high after the solution time limit was exhausted. The PLSP-FF model
interestingly found feasible solutions for all instances. However, the found solutions were
far from optimal, as can be seen by the MIP Gap and even more definitive in those
instances where all three models found feasible solutions, the best solutions found by the
PLSP-FF model were significantly worse in quality than the best solutions found by the
other two models. Therefore, in applications where finding a feasible solution is sufficient,
the PLSP-FF model might be the best to choose. However, it seems possible that this
advantage of the PLSP-FF is less caused by an inherent advantage of the model, but by
the method employed by the default CPLEX solver to search the discrete solution pattern.
Developing and applying better suited search patterns might nullify this advantage of
the PLSP-FF model.

5.3. Limited Changeover Scenario
The limitation of changeover is here motivated by a dominating property of the production
process like a required temperature for processing a product family. The number of
product families for the three scenarios S/M/L is set to 3/4/5, with the products being
evenly distributed between the families. For this numerical investigation, it is assumed
that the products are split evenly across the families (e. g. 2/1/1 for 4 products and 3
families). Due to technical limitations, it is not possible to directly change from a low
temperature family to a high temperature family, or it would incur very high costs (e. g.,
stop of production while the processor is in the heating/cooling process). Therefore, here
it is assumed that the families are in an order and only changeovers to direct neighbors
are allowed. E. g., for the S-Scenario, from family 1 only family 2 can be reached, from
family 2 both other families can be reached, and from family 3 only family 2 can be
reached. To allow to go from family 1 to family 3, it is necessary to make a changeover
to family 2 and produce a minimal quantity of products belonging to family 2. This
minimal quantity is assumed here require 10% of the available weekly capacity divided
by the number of families, as a larger number of families makes it reasonable that the
differences of the dominating property of the production process like temperature is more
similar between the families if there are more product families.

The duration of a changeover between different families is, if it is feasible, assumed to
require 2 CU additionally to the product changeover time. This leads under consideration
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Table 5.3.: Performance indicators of the Limited Changeover Scenario.

Scenario Size S M L
Model Capacity Load 70% 90% 70% 90% 70% 90%
PLSP-LC Optimal Solutions Found (%) 50 40 0 0 0 0

∅ Optimal Solution Time (s) 795.2 1452.3 n/A n/A n/A n/A
Feasible Solution Found (%) 100 90 100 40 40 0
∅ MIP Gap (%) 3.1 3.3 15.8 12.7 49.2 n/A
∅ Derivation From Best (%) 1.3 1.1 13.8 10.4 40.5 n/A

GLSP-LC Optimal Solutions Found (%) 100 100 100 70 0 0
∅ Optimal Solution Time (s) 1.4 2.0 503 1088 n/A n/A
Feasible Solution Found (%) 100 100 100 100 100 80
∅ MIP Gap (%) n/A n/A n/A 1.6 5.2 6.0
∅ Derivation From Best (%) 0 0 0 0 4.7 n/A

BP-LC Optimal Solutions Found (%) 100 100 100 100 100 100
∅ Optimal Solution Time (s) <1 <1 1.5 2.9 14.4 35.7
Feasible Solution Found (%) 100 100 100 100 100 100
∅ MIP Gap (%) n/A n/A n/A n/A n/A n/A
∅ Derivation From Best (%) <0.1 <0.1 0 <0.1 0 n/A

of the average changeover times for the S/M/L scenarios and assuming production of
averagely half of the portfolio per period to capacity requirements for a changeover
between different products of the same family of 1/0.889/0.5 CU. E. g. for the S Scenario:

5 [total changeover]− 0.5 · 3 · 2 [required for family changeover]
0.5 · 4 [average number of product changeovers] = 1

The results are summarized in table 5.3 by averaging the values for 10 instances of
different demand values.

Small problem size (4 products)

The PLSP-LC struggles with the small problem sizes instances much more than the
PLSP-FF for similar sized instances. It was not able to find optimal solutions in more
than half of the instances, and if it did it required a relatively long time, almost 800
seconds on average for the low capacity load instances and about 1500 seconds for the
high capacity load instances. In comparison, both the GLSP-LC and the BP-LC models
achieved very good results by finding optimal solutions in two or less seconds (for the
BP-LC even less than one second).
The results worsen with increased capacity load for the PLSP-LC and GLSP-LC

models. The GLSP-LC still has very good results, however by comparison it requires an
about 33% longer run time to find an optimal solution. The PLSP-LC found one less
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optimal solution than in the low capacity load instances, and even failed to find a feasible
solution for one instance. The run time for the PLSP-LC also worsens, requiring almost
double the time on average to find an optimal solution. In those instances where it did
not find an optimal solution, the MIP Gap stays roughly the same. For the BP-LC, no
effect of the capacity load could be identified for this problem size.

Medium problem size (9 products)

The BP-LC model shows clear advantages here compared to both other models. It
found optimal solutions for all instances in less than three seconds for all instances of
both capacity loads. The GLSP-LC did in the low load capacity instances still show a
good performance, requiring on average less than 10 minutes to find an optimal solution.
However, in the high capacity load instances it was not able to find an optimal solution
within the time limit for three instances, and where it found an optimal solution, the
required time doubled. The PLSP-LC is struggling, while in the low capacity load
scenario it was at least able to find feasible solutions for all instances, in the high capacity
load it was not able to find those in all instances anymore. Also, the MIP Gap to the
optimal solution was high with over 12% for all instances. Comparing the best solutions
found by the PLSP-LC to the best of all three models, its objective value was more than
10% higher on average.

The effect of the capacity load is pretty similar for all models here. Where optimal
solutions were found, the required time to find those roughly doubled. Also, for the
GLSP-LC finding optimal solutions became much more difficult, failing three times, and
for the PLSP-LC finding of even feasible solutions was becoming difficult, failing six
times while failing zero times in the low capacity load instances.

Large problem size (25 products)

Even in the large problem size scenarios, the BP-LC still was able to find optimal solutions
in perfectly reasonable time, of about 15 seconds on average in the low capacity load
instances and a little more than 30 seconds on average in the high capacity load instances.
The GLSP-LC was not able to cope with this scenario size anymore in a satisfying way,
as no optimal solutions could be obtained anymore within the time limit. The MIP
Gap and the difference to the optimum as determined by the BP-LC was more than
5%, and in the high capacity load instances it failed two times to find an even feasible
solution. The PLSP-LC is hardly able to find any feasible solutions anymore, only in the
low capacity load instances it found four of them, and for those the MIP Gap and the
relative makespan increase was more than 40%, making these plans very poor in regard
to the objective value.
Comparing the two capacity loads, it can be seen that the BP-LC did just like in the

medium problem size require roughly double the time to find optimal solutions in the
high capacity load instances. The GLSP-LC and PLSP-LC both had more problems
finding feasible solutions, failing more often. In the high capacity load instances, the
PLSP-LC was not able to find a single feasible solution anymore.
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Summary

The results show that the PLSP-LC is not suited to solve problems of industry relevant
size. Even in small problem instances it found an optimal solution in only about half
of the instances, and required a relatively high running time. For the medium size
scenario, in the low capacity load scenario, it was still able to find feasible solutions
for all instances, however with a high MIP Gap and, where a comparison was possible,
considerable suboptimal objective value. In the high capacity load instances it did
struggle to find feasible solutions, as well as in the large scenario sizes. The GLSP-LC
and the BP-LC models were both able to cope with scenarios of medium or smaller size.
However, the BP-LC outperformed the GLSP-LC clearly. While the GLSP-LC required
a relatively high running time to find optimal solutions in the medium sized problems,
in the large sized problems it was only able to find feasible solutions, and in the high
capacity load scenario in a few instances not even a feasible solution could be found. The
BP-LC was able to find optimal solutions in all problem sizes and capacity load instances
in a very reasonable time of averagely no more than 36 seconds. This makes the BP-LC
a viable approach to cope with industry sized problems and is, considering the BP model
was originally developed for a more specific changeover structure, a very good result.

Regarding the effects of the capacity load, it can be seen that all models require about
double the run time to find optimal solutions, in those instances where optimal solutions
could be found. Additionally, the models did find less optimal solutions in the high
capacity load instances. An influence on the MIP Gap of best found feasible solutions
cannot be identified clearly. These results show that the capacity load has an important
influence on the performance of the given model formulations, however the dominating
factor is the problem size.

5.4. Natural Sequence Scenario
In the natural sequence scenario, similar products, which can be grouped into product
families, follow a predefined sequence. Changeover times when changing between products
following the natural sequence are relatively small and can be considered constant in
many cases, e. g. a standard cleaning procedure. For a changeover to a product of another
family, or to go back in sequence, a high changeover time is needed, e. g. changing the
equipment. The number of product families for the three scenarios S/M/L is set to
2/3/5, with the products being evenly distributed between the families. The duration
of a changeover between different families is assumed to require 4 CU additionally to
the product changeover time. This leads under consideration of the average changeover
times for the S/M/L scenarios and assuming production of averagely half of the portfolio
per period to durations for changeovers between different products of 0.5/0.444/0.4. E. g.
for the S Scenario:

5 [total changeover]− 0.5 · 2 · 4 [required for family changeover]
0.5 · 4 [average number of product changeovers] = 0.5
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Table 5.4.: Performance indicators of the Natural Sequence Scenario (S, M, L sizes).

Scenario Size S M L
Model Capacity Load 70% 90% 70% 90% 70% 90%
PLSP-NS Optimal Solutions Found (%) 90 30 0 0 0 0

∅ Optimal Solution Time (s) 687 1587 n/A n/A n/A n/A
Feasible Solution Found (%) 100 100 100 0 0 0
∅ MIP Gap (%) 2.0 2.2 24.8 n/A n/A n/A
∅ Derivation From Best (%) 0.6 0.8 14.6 n/A n/A n/A

GLSP-NS Optimal Solutions Found (%) 100 100 100 100 100 100
∅ Optimal Solution Time (s) <1 <1 <1 <1 1.6 3.4
Feasible Solution Found (%) 100 100 100 100 100 100
∅ MIP Gap (%) n/A n/A n/A n/A n/A n/A
∅ Derivation From Best (%) 0 0 0 n/A n/A n/A

BP-NS Optimal Solutions Found (%) 100 100 100 100 100 100
∅ Optimal Solution Time (s) <1 <1 <1 <1 <1 1.4
Feasible Solution Found (%) 100 100 100 100 100 100
∅ MIP Gap (%) n/A n/A n/A n/A n/A n/A
∅ Derivation From Best (%) 0 <0.1 0 n/A n/A n/A

The results are summarized in table 5.4 by averaging the values for 10 instances of
different demand values.

Small problem size (4 products)

In the small problem size, both GLSP-NS and BP-NS achieved very good results, finding
an optimal solution in less than a second. The PLSP-NS however did struggle even in
this small scenario. In the low capacity load instances, it was not able to find an optimal
solution in one test instance, and in the high capacity load instances it failed three times.
If it found an optimal solution, it required a relatively long time of roughly 10 to 20
minutes.
The influence of the capacity load cannot be measured here for the GLSP-NS and

BP-NS model. In the PLSP-NS model however, the required run time to find an optimal
solution doubles.

Medium problem size (9 products)

The GLSP-NS and BP-NS did also for the medium problem size achieve very good results,
not notably worse than for the small problem size. The PLSP-NS did already fail to find
optimal solutions anymore, in the high capacity load instances it did even fail to find
feasible solutions. Obviously, the PLSP-NS does not benefit from the trivial sequencing
in this scenario, but results are even slightly worse than for the PLSP-LC.
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Table 5.5.: Performance indicators of the Natural Sequence Scenario L, XL and LHV.

Scenario Size L XL LHV
Model Capacity Load 70% 90% 70% 90% 70% 90%
BP-NS ∅ Optimal Solution Time (s) <1 1.4 1.2 2.0 <1 1.2
GLSP-NS ∅ Optimal Solution Time (s) 1.6 3.4 9.6 16.9 2.8 2.9

The influence o the capacity load is not measurable for the GLSP-NS and the BP-NS in
the medium sized problem. For the PLSP-NS, the higher capacity load made it impossible
to find any feasible solutions anymore, while in the lower capacity load feasible, though
no optimal solutions were still found for all instances.

Large problem size (25 products)

Even for the large problem size, both GLSP-NS and BP-NS achieved very good results.
An advantage of the BP-NS over the GLSP-NS can be seen, however the results are
not clear enough to identify a pattern so far. The PLSP-NS failed to find any feasible
solutions and is obviously unsuited for larger problem sizes.

A first impact of the capacity load for the GLSP-NS and the BP-NS can be identified,
as solution times increase with the higher capacity load.

Regarding the GLSP-NS and the BP-NS, for the Natural Sequence Scenario the results
were very good, instances of all sizes and capacity loads were solved to optimality within
a few seconds. To allow for a comparison between these two models, two additional
subscenarios XL ("eXtra Large") and LHV ("Large with High demand Variation") are
defined based on the L size scenario. For XL, the number of products is increased to 60
and the total capacity consumption by changeover activities is increased to 20%. For
LHV, the variation of the demand elements size is increased: Demand elements are drawn
with a likeliness of 40% from uniform distribution da in [0.5 ·D; 1.5 ·D], with a likeliness
of 40% from dl in [0; 0.5 ·D] and with a likeliness of 20% from dh in [1.5 ·D; 3.5 ·D].

The results are summarized in table 5.5, including the L scenario size as reference. As
all instances found an optimal solution, only the time until it was found is given. Note
that, as the PLSP-NS was not able to find any feasible solutions in the L scenario, it was
not considered in this additional tests.

Extra large problem size (60 products)

The GLSP-NS and the BP-NS still achieved a very good performance in this problem
size. Especially the BP-NS was still able to find optimal solutions in just two seconds
on average (at most three seconds in some instances). By comparison, the GLSP-NS
performed now significantly worse, requiring about six times the run time. Perhaps
even more noteworthy is that in the L scenario size, the run of the GLSP-NS was at
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most about 2.5 times (on average) that of the BP-NS, meaning that apparently the
relative advantage of the BP-NS over the GLSP-NS gets higher the bigger the problem
size is. This might put a limit to the applicability of the GLSP-NS in bigger industry
sized problems where the number of products is a medium three digit value or more,
whereas the BP-NS is likely to be able to achieve a very good performance in any realistic
problem size. However, as the XL scenario already has a realistic number of products for
most of FMCG industry, the GLSP-NS is also a viable choice, as long as no additional
constraints, like e. g. a multi-level production or several parallel capacities, which impact
the difficulty of the problem have to be considered. For those, it seems more promising
to base a model extension on the BP-NS than on the GLSP-NS, as long as the aspect of
the given Natural Sequence holds.
The high capacity load instances require a little less than double the time of the low

capacity load instances to be solved to optimality for both the GLSP-NS and the BP-NS.
This is in compliance with most of previous results.

High demand variability (25 products)

In the high demand variability model, the opportunity was taken to identify how strong
those two model formulations react to a higher or lower variation of demand element sizes.
However, for the given higher demand variability, no clear effect on the performance of the
models could be identified. The perfomance is similar to the large scenario with standard
demand variation. Only the GLSP-NS in the low capacity load instances performed
significantly worse in the LHV than in the L subscenario. The combination of a relatively
loose capacity, meaning more different solutions being feasible, and larger demand element
variation put therefore an additional challenge to the GLSP-NS in finding an optimal
solution and closing the MIP Gap to prove it. However, results are still very good so this
does not limit the applicability of the GLSP-NS in relatively large problem sizes.

Summary

From these results, it is clear that the PLSP-NS is inferior to the GLSP-NS and BP-NS.
Only in the small size scenario, it was able to find the optimal solution in the given time
limit, however it required even in these small instances significant time, whereas the other
two models solved it practically instantly. In the medium size scenario, it was able to
find feasible solutions if the capacity load was low, in the high load instances it failed to
even find a feasible solution. It is noteworthy that the PLSP-NS performed worse than
the PLSP-LC, though the Natural Sequence Scenario should be easier as the sequencing
practically does not exist in it. The PLSP-NS differs from the PLSP-LC in three points:
the constraints of the PLSP-LC which limited the family changeover and the constraint
to ensure minimum lot sizes were removed, while the constraint for ensuring the natural
sequence was added. The likely explanation for the relatively bad performance is, that
the products still had to be assigned to the single micro periods. The BP-NS and the
GLSP-NS performed very good in all scenario sizes and demand variations. As can be
seen, the increase in demand variability had no clear effect on the solution time for both
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the GLSP-NS and BP-NS. This shows that variability of the demand quantities is not a
critical issue for both models and make them usable in real industry environments with
different demand fluctuation levels. All together, the BP-NS outperformed the other two
models, which shows its strength in the environment where it was originally developed
for – the existence of a natural product sequence.

Similarly to the Limited Changeover Scenario, the high capacity load instances increased
the run time for finding an optimal solution to about twice that of the low capacity load
instances, making the capacity load an important factor, which is however less important
than the problem size.
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In this thesis, specific characteristics regarding the production planning in the Fast
Moving Consumer Goods industry have been discussed.
In chapter 2, the Fast Moving Consumer Goods Industry was characterized in com-

parison to other types of industry. It was outlined that most models in literature for
lot-sizing and scheduling are still focusing on minimizing of planned costs, while those
costs are rarely out-of-pocket costs, but disputed costs of questionable relevance in a fast
paced environment like the FMCG industry. Therefore, the Makespan as an objective
to maximize more relevant goals like retaining flexibility of the production system has
been introduced. It was shown that in many industries of the FMCG industry, for means
of lot-sizing and scheduling the production process can be simplified to a single-stage
production, known as Make-And-Pack production. The high relevance of considering a
limited capacity for production planning and high utilization was discussed. A specific
focus was put on the effect of different setup structures which can be identified in the
FMCG industry. Five general types of changeover structures were identified, the inde-
pendent changeover, family changeover, limited changeover, natural sequence and full
flexibility.

In chapter 3, the problem of production planning in the FMCG industry was discussed.
The development of concept for tackling this problem has been outlined, and a focus
was set on the issue of lot-sizing and scheduling, showing the advantages of integrating
these two often successively treated planning steps. This was followed by an overview of
different approaches to solve the integrated lot-sizing and scheduling problem, with a
focus on the evolution of mathematical models.

Then, in chapter 4, the most current models of PLSP, GLSP and Block Planning have
been modified and extended to be able to reflect the integrated lot-sizing and scheduling
problem for three different changeover structure scenarios which incorporate different
aspects of the five mentioned general changeover structures. More detailed aspects, like
e. g. minimum lot size or product groups have been regarded in the scenarios where they
are thought to be most appropriate. However, modeling techniques to regard those can,
if necessary, be applied to other scenarios as well.

A quantitative comparison of the different modeling techniques for the different scenarios
has been carried out in chapter 5 to compare the different modeling techniques to each
other in regard to their performance. For each scenario, three (for the natural sequence
scenario five) scenario sizes were defined which increased in difficulty, mainly differing by
the number of products to be planned. For each scenario size, additionally two capacity
load variations have been given to represent different planning situations, e. g. different
seasons in seasonal demand patterns, fluctuations in available capacity due to holiday
times or regular long-time machine maintenance and so on. To ensure that the models
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performance is measured in a couple of different planning situations, ten instances of
different realistic demand and, where appropriate, changeover values were determined by
using of a specifically designed algorithm.

The results of the numerical tests allowed for a number of conclusions in regard to the
research questions as formulated in chapter 5:

• Some major differences in the performance of the three model formulations could
be observed. The most clear result is that the PLSP based models performed
relatively poorly. Only in the smallest test instances it was able to find optimal
solutions. In most more realistically sized test instances, it had problems finding
feasible solutions, and where it did they were far from the optimal solutions (if
those have been found by the GLSP and/or Block Planning based models) and had
high MIP Gaps. However, interestingly in the theoretically most complex scenario,
the Full Flexibility Scenario, it was able to find feasible solutions for all instances,
whereas the Block Planning and GLSP based models had problems finding feasible
solutions in the large sized instances. In the two scenarios with more limitations
in regard to sequence possibilities, it struggled more than the Block Planning and
GLSP based models, while the Block Planning based model was slightly superior to
the GLSP based models. Therefore, for problems where finding feasible solutions is
paramount and having no limitations on possible sequences, the PLSP might be
a reasonable model. However, the quality of the found solutions is hard to judge,
especially since the PLSP model requires much time to close the MIP Gap. The
smaller size scenarios result hint that the Block Planning and GLSP based models
are able to close the MIP Gap much quicker than the PLSP. So the likely conclusion
is, that in the Full Flexibility scenario the PLSP is superior in finding a feasible
solution, whereas the other two models are superior in closing the MIP Gap to
find good or optimal solutions. This result might be of use in further research, as
for sequence dependent changeovers and realistic problem sizes, it is likely that
in the foreseeable future heuristic methods will have to be applied to generate
sufficiently good solutions. For example, local search based heuristics might make
use of a feasible solution generated by a PLSP model and improve it iteratively,
decomposition based heuristics might make use of the BP or GLSP based models to
solve relatively small subproblems to optimality (results from this research would
hint that the GLSP based model is more efficient in scenarios with a mediocre
capacity load, while the Block Panning based model is superior in models with a
high capacity load).
In the scenarios with limitations on the possible sequences, the PLSP-NS was
outperformed clearly by both other models. In the Natural Sequence scenario,
the BP-NS and GLSP-NS models were so efficient in all sizes S, M and L, that
additional problems were defined to allow for a comparison of the models, one
increasing the size significantly, the other changing the demand element structure
to have a higher variance. It could be observed that the higher demand variance
only had a mediocre negative impact on the efficiency on the GLSP-NS model in
the high capacity load, while for the low capacity load and for the BP-NS model
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in general no negative impact was observed. In all problem sizes, the BP-NS and
GLSP-NS model proved to be very efficient, with the BP-NS model outperforming
the GLSP-NS by requiring up to eight times less run time than the GLSP-NS. This
is not surprising, as the BP model was originally developed to exploit this specific
changeover structure, however it shows some significant advantage by designing
models to exploit specific problem structures. On the other hand, the GLSP showed
to be highly efficient as well – in industry it will be necessary to decide whether the
advantage of more specific models outweighs the cost to develop those, or adaption
of existing models is to be preferred.
More surprisingly, in the Limited Changeover Scenario the BP-LC model out-
performed the GLSP-LC model clearly. This hints at that the Block Planning
model, while originally developed to follow natural changeover sequences, has some
more deep advantages. Concluding from this research, it is likely that the Block
Planning model is very strong if changeover times do not depend on the sequence of
production orders (which otherwise would be contrary to the scenario assumptions
the Block Planning model was originally developed for), making the scheduling of
production orders within a macro period trivial as long as demand elements are
assigned to the end of macro periods, due to its direct assignment of production
quantities to demand elements. An interesting further research opportunity would
be to develop different model formulations which are not specifically designed for a
natural sequence but refrain from using inventory balances for reflecting demand
fulfillment but direct assignment of production orders to demand elements. Also,
the effect of allowing stockouts on the relative performance of formulations using an
inventory balance versus those assigning production directly to demand elements
might prove an interesting research opportunity.
Another interesting further research opportunity would be to compare model
formulations in environments where the time grid to reflect demand elements needs
to be more precise. Here, the PLSP might have an advantage in that it already is
designed to consider micro periods for its inventory balance, so as long as the time
grid for the demand elements is not more detailed as the time grid of micro periods,
no substantial modifications would be necessary, while the GLSP and BP model
would need adjustments (e. g. Bilgen/Günther1 introduced in a Block Planning
model so called Heavy-Side variables to track the completion of production orders
on a time grid finer than the production blocks). This can be also interesting in
regard to the analyzing of the BP-LC model, as the combination of non-sequence
dependent changeover times and the demand elements being at the end of macro
periods leads to a trivial scheduling problem within a macro period which might
be of essence for its relative strong performance.
Summarizing it can be said, that the PLSP is not very promising for further usage
as a mathematical model to find optimal solutions in most environments, especially
when taking into account the inherent problems of the PLSP model caused by the

1Bilgen and Günther (2010)
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limitation of one changeover per micro period which also has to be completed in
that period and the problem of choosing an "appropriate" micro period length2, to
which no generally accepted approach exists up to today to the best of the author’s
knowledge. More flexible models like the GLSP or Block Planning are likely to
achieve better results, being it in true optimization or as optimizing procedures for
subproblems in heuristic approaches.
However it should be noted that the model adaptions were designed with relatively
straight-forward extensions. It may well be that more sophisticated model adaptions
exist, that increase the performance of the models in certain scenarios compared
to the adaptions presented here. Especially the PLSP comes to mind here, as in
the theoretically most complex case, the Full Flexibility Scenario, it performed
better than in the simpler Limited Changeover Scenario and in the most simple
case, the Natural Sequence Scenario, it performed worst – a contrary development
compared to the GLSP and BP models. However, it is unlikely that, given similar
effort is invested in improving the model formulations, models that perform poorly
now would outperform the other models. Additional research would be required to
strengthen this point.

• As can be seen, for all scenarios and models the problem size is of major importance
for the efficiency of the given model formulations. In the more complex scenarios
Full Flexibility and Limited Changeover, the computational requirements increase
exponentially with the problem size. This is in compliance with many previous
research results. However, in the Natural Sequence Scenario, the computational
requirement scales approximately linearly with the number of products for the Block
Planning and GLSP based models, while for the PLSP based models the results hint
to an exponential increase for this scenario as well. As in real industry applications
problem sizes will be more likely to be similar to the larger problem sizes L and
XL, the PLSP based model is therefore not practically usable. The Block Planning
and GLSP based models are likely to be usable in many real industry environments
which match the basic scenario assumptions. Also, for real cases where additional
aspects need to be considered in the modeling, it is much more likely to achieve
satisfying results using one of these models, with the Block Planning based model
offering the best chances. This illustrates the advantage of using problem specific
characteristics to simplify the underlying planning problem, like a natural sequence
in both relevant steps: the formulation of relevant aspects of the real problem that
needs to be considered, and the effort to develop specific modeling approaches to
make best use of those aspects.

• As for the last question regarding the impact of the capacity load on the performance
of the given model formulations, the results are varying. The PLSP based model
for the Full Flexibility Scenario was, contrary to what could be expected, increasing
in performance with the capacity load. This may be explainable by the effect, that
a higher capacity load causes more tree nodes in the Branch-and-Bound algorithm

2Cf. subsection 3.4.2
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to be cut off due to proven infeasibility in the high capacity load scenario, allowing
the PLSP-FF model to search the tree faster. As the other results shown issues of
the PLSP based models in searching the tree quickly and closing the MIP Gap, this
seems plausible. The GLSP-FF behaved more like expected, in that with higher
capacity load the performance decreased (though still being much better than the
PLSP-FF model), while the BP-FF’s efficiency was unaffected by the capacity load.
In the Limited Changeover and Natural Sequence scenarios, the impact of higher
capacity load was as expected, increasing the difficulty with higher capacity load. It
can be seen that in most cases the Block Planning based models were less affected
than the other models. Additionally it can be seen that the increase in capacity
load increases the problem difficulty especially in finding not only feasibly but good
solutions, however the impact of a higher problem size in regard to the number
of products was significantly higher, as could be expected from previous research
results.
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In this appendix, the results of the numerical tests are given more in detail for futher
reference. First, tables are given which show the detailed results of all tested instances.
Run Time is the time after the solver finished, either by closing the MIP Gap to less
than 1% or by exhausting the run time limit of 3600 seconds, whichever is first. Objective
Value gives the best found objective value. If no feasible solution was found, it is given as
None. MIP Gap gives the relative difference between upper and the lower bound on the
objective value. If it was less than 1%, the solution was conisdered to be optimal and the
solution process was stopped. If no feasible solution was found, the MIP Gap is given as
n/A.

Second, figures with graphical representations of the detailed results are given. Each
figure displays the results for a specific scenario size (S/M/L for the Full Flexibility
scenario and Limited Changeover scenario, S/M/L/XL/LHV for the Natural Sequence
scenario) and capacity load (low/high) combination. The left parts of the figures show for
which instances (1 to 10) the three scenario specific model formulations found an optimal
solution (i. e. the MIP Gap was 1% or less) and how much run time was needed to find
it. For example, the red "5" in figure A.2 gives that the BP-FF model required 2 seconds
of time to find an optimal solution (problem size small, high capacity load) for instance
5. The right parts of the figures show for each model and each instance if a feasible (but
no optimal) solution was found, the objective value of the best found solution and the
remaining MIP Gap. For example, the blue "8" in figure A.2 gives that the PLSP-FF
models best solution for instance 8 had an objective value of 361.6 while still having a
MIP Gap of 1.8% (problem size small, high capacity load). Note that instance/model
combinations that did not find a feasible solution at all are not included in the figures.
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Table A.1.: Results of the FF Scenario, problem size S.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3569 2 2 3600 <1 <1

1 Objective Value 276.8 274 274 364 359.5 359.5
Mip Gap (%) 2.5 <1 <1 2 <1 <1
Run Time (s) 3599 <1 1 3600 2 2

2 Objective Value 276.6 271.9 271.9 362.1 360.4 360.2
Mip Gap (%) 2.4 <1 <1 2 <1 <1
Run Time (s) 3595 <1 2 3600 1 1

3 Objective Value 277.6 275.8 275.5 359.8 358.1 356.4
Mip Gap (%) 2.3 <1 <1 2.1 <1 <1
Run Time (s) 3248 <1 <1 3600 <1 2

4 Objective Value 273.7 273.7 273.7 362.1 354.9 355.1
Mip Gap (%) <1 <1 <1 3.3 <1 <1
Run Time (s) 3572 1 2 3600 2 2

5 Objective Value 273.8 273.5 273.5 365.1 357.6 357.7
Mip Gap (%) 1.3 <1 <1 3.4 <1 <1
Run Time (s) 3600 1 <1 3600 <1 1

6 Objective Value 273.8 273 271.9 360.5 354.1 354.1
Mip Gap (%) 1.4 <1 <1 2.4 <1 <1
Run Time (s) 3166 1 1 3600 1 <1

7 Objective Value 272.9 271.9 271.9 358.4 357.4 357.4
Mip Gap (%) <1 <1 <1 1.3 <1 <1
Run Time (s) 2949 <1 1 3600 <1 1

8 Objective Value 271.3 270.7 270.7 361.6 358.4 358.4
Mip Gap (%) <1 <1 <1 1.8 <1 <1
Run Time (s) 3599 <1 1 64 <1 <1

9 Objective Value 277.5 275.3 275.3 351.5 352.4 350.8
Mip Gap (%) 2.2 <1 <1 <1 <1 <1
Run Time (s) 1956 <1 <1 3600 1 1

10 Objective Value 272.8 271.8 271.8 364.6 359.5 359.1
Mip Gap (%) <1 <1 <1 2.6 <1 <1

89



A. Appendix

Table A.2.: Results of the FF Scenario, problem size M.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3600 6 28 3600 249 28

1 Objective Value 301.4 263.9 264 362.4 348.5 348.5
Mip Gap (%) 16.4 <1 <1 7.8 <1 <1
Run Time (s) 3600 22 14 3600 1910 82

2 Objective Value 301.9 267.6 267.6 362.9 350.1 350.1
Mip Gap (%) 16.3 <1 <1 7.7 <1 <1
Run Time (s) 3600 10 12 3600 542 346

3 Objective Value 274.3 265.5 265.1 358.4 348.1 348.1
Mip Gap (%) 7.9 <1 <1 6.5 <1 <1
Run Time (s) 3600 48 195 3600 35 57

4 Objective Value 278.1 264.2 264.2 369.2 351.9 351.7
Mip Gap (%) 9 <1 <1 9.3 <1 <1

5 Run Time (s) 3600 3600 78 3600 41 53
Objective Value 277.8 264.3 264.2 363.6 352.9 353
Mip Gap (%) 9.2 1.2 <1 7.9 <1 <1
Run Time (s) 3600 96 72 3599 16 20

6 Objective Value 306.7 266 265.8 359 348.1 348.6
Mip Gap (%) 17 <1 <1 6.7 <1 <1
Run Time (s) 3600 3600 325 3600 20 38

7 Objective Value 272 265.2 264.8 356.8 345.7 346.5
Mip Gap (%) 6.7 1.5 <1 6.7 <1 <1
Run Time (s) 3600 16 46 3600 24 78

8 Objective Value 273.8 265.5 265 356.6 348.4 348.6
Mip Gap (%) 7.8 <1 <1 6.3 <1 <1
Run Time (s) 3600 15 49 3600 55 35

9 Objective Value 302.4 265.1 264.6 360.4 350.4 350.2
Mip Gap (%) 16.2 <1 <1 7 <1 <1
Run Time (s) 3600 73 66 3600 22 152

10 Objective Value 300 264 264 358.2 347.9 347.2
Mip Gap (%) 15.9 <1 <1 6.6 <1 <1
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Table A.3.: Results of the FF Scenario, problem size L.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3600 3600 3600 3600 3600 3601

1 Objective Value 295 256.5 255.7 392.6 358.3 None
Mip Gap (%) 31.3 11.4 5.7 27.4 13.6 n/A
Run Time (s) 3600 3600 3600 3600 3600 3601

2 Objective Value 285 252.4 255.1 396.3 None 345.7
Mip Gap (%) 27.3 8.5 5.3 23.2 n/A 4.3
Run Time (s) 3600 3600 3600 3600 3600 3601

3 Objective Value 360 None None 380 339.2 None
Mip Gap (%) 43.1 n/A n/A 22.4 8.6 n/A
Run Time (s) 3600 3600 3600 3600 3600 3600

4 Objective Value 323.8 255.3 259.3 398.5 None None
Mip Gap (%) 47 10.8 7 23.6 n/A n/A
Run Time (s) 3600 3601 3600 3600 3600 3600

5 Objective Value 280 None 256.4 386.3 None None
Mip Gap (%) 21.4 n/A 5.2 21.3 n/A n/A
Run Time (s) 3600 3600 3600 3600 3600 3600

6 Objective Value 279.1 249 267.9 396.3 None 361.3
Mip Gap (%) 24.7 7.8 10.3 23.3 n/A 7.6
Run Time (s) 3600 3600 3601 3600 3600 3600

7 Objective Value 356.4 None 344.8 396.3 None 337.6
Mip Gap (%) 46.5 n/A 29.4 23.4 n/A 4.4
Run Time (s) 3600 3600 3600 3599 3601 3600

8 Objective Value 305 261.6 252.2 382.1 None None
Mip Gap (%) 39.9 12.6 5.4 22.8 n/A n/A
Run Time (s) 3600 3600 3601 3600 3600 3601

9 Objective Value 281.6 253.5 254.6 386.2 346 None
Mip Gap (%) 26.3 8.7 5.1 21.3 11.1 n/A
Run Time (s) 3600 3600 3600 3600 3600 3600

10 Objective Value 285 257.8 256.5 396.1 None None
Mip Gap (%) 25.8 10.5 5.1 25.6 n/A n/A
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Table A.4.: Results of the LC Scenario, problem size S.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3597 1 <1 1579 1 <1

1 Objective Value 279.7 276 277 364.3 364 364
Mip Gap (%) 1.7 <1 <1 <1 <1 <1
Run Time (s) 232 <1 <1 3592 1 <1

2 Objective Value 277.8 276 276 None 369 369
Mip Gap (%) <1 <1 <1 n/A <1 <1
Run Time (s) 1135 <1 <1 3600 2 <1

3 Objective Value 276 276 276 363 362 363
Mip Gap (%) <1 <1 <1 1.3 <1 <1
Run Time (s) 3599 1 1 824 <1 <1

4 Objective Value 306.3 282 282 360 360 362
Mip Gap (%) 9.3 <1 <1 <1 <1 <1
Run Time (s) 3477 7 2 3461 2 <1

5 Objective Value 278.9 278.9 278.9 367 360 360
Mip Gap (%) 1.4 <1 <1 2.7 <1 <1
Run Time (s) 521 1 <1 3462 3 1

6 Objective Value 277.4 277 277 363 362 362
Mip Gap (%) <1 <1 <1 1.6 <1 <1
Run Time (s) 3228 2 <1 963 <1 <1

7 Objective Value 277.9 276 276 359.8 359.8 359.8
Mip Gap (%) 1 <1 <1 <1 <1 <1
Run Time (s) 1101 <1 <1 3453 1 1

8 Objective Value 277.8 276 276 375 366 366
Mip Gap (%) <1 <1 <1 4 <1 <1
Run Time (s) 987 <1 <1 3600 8 1

9 Objective Value 277.6 276 276 387.5 369.1 369.1
Mip Gap (%) <1 <1 <1 7.1 <1 <1
Run Time (s) 3600 2 <1 2443 2 <1

10 Objective Value 281.1 279 279 359.2 359 359
Mip Gap (%) 2.2 <1 <1 <1 <1 <1
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Table A.5.: Results of the LC Scenario, problem size M.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3596 245 1 3595 3063 3

1 Objective Value 305.4 272.7 272.7 None 363.6 363.6
Mip Gap (%) 14.9 <1 <1 n/A <1 <1
Run Time (s) 3595 248 1 3595 2605 11

2 Objective Value 307.1 274.7 274.7 386.6 359.3 359.3
Mip Gap (%) 15.3 <1 <1 11.1 <1 <1
Run Time (s) 3600 646 1 3597 632 1

3 Objective Value 335 273.6 273.6 None 368 368
Mip Gap (%) 22.4 <1 <1 n/A <1 <1
Run Time (s) 3594 150 1 3596 3597 1

4 Objective Value 360.4 272.7 272.7 None 373.6 373.6
Mip Gap (%) 27.6 <1 <1 n/A 1.2 <1
Run Time (s) 3459 565 1 3591 473 1

5 Objective Value 318.4 274.7 274.7 399.5 356.4 356.7
Mip Gap (%) 16.8 <1 <1 13.9 <1 <1
Run Time (s) 3460 1967 5 3579 3206 4

6 Objective Value 297.3 272.7 272.7 None 363.3 363.3
Mip Gap (%) 12.5 <1 <1 n/A 2.1 <1
Run Time (s) 3458 10 1 3443 14 1

7 Objective Value 309.2 271.4 271.4 390 354.4 355.6
Mip Gap (%) 15.1 <1 <1 12.1 <1 <1
Run Time (s) 3458 348 2 3446 221 <1

8 Objective Value 283.3 271.8 271.8 None 360.2 360.2
Mip Gap (%) 8.2 <1 <1 n/A <1 <1
Run Time (s) 3600 269 1 3600 3600 4

9 Objective Value 291.5 274.7 274.7 None 374.3 373.4
Mip Gap (%) 10.8 <1 <1 n/A 1.5 <1
Run Time (s) 3600 583 1 3600 607 3

10 Objective Value 305.4 275.6 275.6 398.6 355.6 355.6
Mip Gap (%) 14.9 <1 <1 13.6 <1 <1

93



A. Appendix

Table A.6.: Results of the LC Scenario, problem size L.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3594 3594 3 3594 3594 4

1 Objective Value 368.5 259.5 255 None 340.5 339.5
Mip Gap (%) 57.2 8 <1 n/A 4.2 <1
Run Time (s) 3595 3596 27 3594 3594 34

2 Objective Value 280.5 252 251.1 None 354 351.5
Mip Gap (%) 23.4 4.9 <1 n/A 7.8 <1
Run Time (s) 3597 3595 7 3596 3591 7

3 Objective Value 385 258 256 None 357 353
Mip Gap (%) 54.4 5.7 <1 n/A 6.4 <1
Run Time (s) 3597 3598 5 3595 3595 72

4 Objective Value 389.5 250.5 250.5 None 348 348.5
Mip Gap (%) 61.8 4.6 <1 n/A 6.1 <1
Run Time (s) 3448 3482 5 3591 3439 6

5 Objective Value None 250 250 None None 348
Mip Gap (%) n/A 3.8 <1 n/A n/A <1
Run Time (s) 3458 3448 8 3181 3591 50

6 Objective Value None 250.5 250.5 None 344.5 342
Mip Gap (%) n/A 2 <1 n/A 6.3 <1
Run Time (s) 3591 3591 65 3438 3424 14

7 Objective Value None 255.9 252 None 347 338.5
Mip Gap (%) n/A 6.2 <1 n/A 5.8 <1
Run Time (s) 3450 3247 5 3413 3439 59

8 Objective Value None 255 255 None 346 345
Mip Gap (%) n/A 5.3 <1 n/A 5.6 <1
Run Time (s) 3600 3600 8 3601 3600 51

9 Objective Value None 257.5 250.5 None None 356.5
Mip Gap (%) n/A 6.7 <1 n/A n/A <1
Run Time (s) 3600 3600 11 3599 3600 60

10 Objective Value None 255.5 255.5 None 345 342.5
Mip Gap (%) n/A 5 <1 n/A 5.6 <1
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Table A.7.: Results of the NS Scenario, problem size S.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 290 <1 <1 3599 <1 <1

1 Objective Value 280 279.5 279.5 370.7 368.5 369
Mip Gap (%) <1 <1 <1 2.3 <1 <1
Run Time (s) 372 <1 <1 3600 <1 <1

2 Objective Value 280 279.5 279.5 383.5 373 373.5
Mip Gap (%) <1 <1 <1 4.7 <1 <1
Run Time (s) 467 <1 <1 3600 <1 <1

3 Objective Value 280 279.5 279.5 373.5 369 369
Mip Gap (%) <1 <1 <1 1.3 <1 <1
Run Time (s) 3600 <1 <1 736 1 <1

4 Objective Value 285.8 279.5 279.5 370 369 369
Mip Gap (%) 2 <1 <1 <1 <1 <1
Run Time (s) 372 <1 1 3479 1 <1

5 Objective Value 280.3 279.5 279.5 375 373.5 373.5
Mip Gap (%) <1 <1 <1 1.3 <1 <1
Run Time (s) 2663 1 <1 1233 <1 1

6 Objective Value 282.5 279.5 279.5 364.8 364.5 364.5
Mip Gap (%) <1 <1 <1 <1 <1 <1
Run Time (s) 197 1 <1 3547 <1 <1

7 Objective Value 279.5 279.5 279.5 379 373 373.5
Mip Gap (%) <1 <1 <1 2.4 <1 <1
Run Time (s) 374 <1 <1 3539 <1 1

8 Objective Value 281.9 279.5 279.5 376.3 373.5 373.5
Mip Gap (%) <1 <1 <1 2 <1 <1
Run Time (s) 748 <1 <1 2793 <1 1

9 Objective Value 282.2 279.5 279.5 369.8 369 369
Mip Gap (%) <1 <1 <1 <1 <1 <1
Run Time (s) 703 <1 <1 3600 <1 <1

10 Objective Value 280 279.5 279.5 373.5 373.5 373.5
Mip Gap (%) <1 <1 <1 1.5 <1 <1
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Table A.8.: Results of the NS Scenario, problem size M.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3594 <1 1 3597 <1 <1

1 Objective Value 310 278.2 278.2 None 368.9 368.9
Mip Gap (%) 23.1 <1 <1 n/A <1 <1
Run Time (s) 3597 <1 1 3598 <1 <1

2 Objective Value 316.5 278.2 278.7 None 383.5 385.8
Mip Gap (%) 24 <1 <1 n/A <1 <1
Run Time (s) 3600 <1 1 3600 1 <1

3 Objective Value 334.4 279.1 279.1 None 368.9 368.9
Mip Gap (%) 28.6 <1 <1 n/A <1 <1
Run Time (s) 3600 1 <1 3600 <1 <1

4 Objective Value 291.6 277.8 277.8 None 368.9 369.8
Mip Gap (%) 18.3 <1 <1 n/A <1 <1
Run Time (s) 3484 1 1 3456 1 <1

5 Objective Value 339 277.8 277.8 None 364 364
Mip Gap (%) 29.6 <1 <1 n/A <1 <1
Run Time (s) 3461 <1 <1 3591 <1 <1

6 Objective Value 315.4 273.8 273.8 None 379.1 379.5
Mip Gap (%) 24.8 <1 <1 n/A <1 <1
Run Time (s) 3531 1 1 3543 1 <1

7 Objective Value 304 277.8 277.8 None 364.4 365.3
Mip Gap (%) 21.8 <1 <1 n/A <1 <1
Run Time (s) 3544 <1 <1 3541 <1 <1

8 Objective Value 309.4 277.8 277.8 None 384 384
Mip Gap (%) 23 <1 <1 n/A <1 <1
Run Time (s) 3600 <1 <1 3600 <1 2

9 Objective Value 311.3 277.8 277.8 None 364 364.9
Mip Gap (%) 23.3 <1 <1 n/A <1 <1
Run Time (s) 3600 <1 <1 3600 1 1

10 Objective Value 350.4 279.1 279.1 None 368.9 368.9
Mip Gap (%) 31.3 <1 <1 n/A <1 <1
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Table A.9.: Results of the NS Scenario, problem size L.

Capacity Load (%) 70 90
Model PLSP GLSP BP PLSP GLSP BP

Iteration Performance Indicator
Run Time (s) 3597 <1 <1 3597 4 1

1 Objective Value None 267.2 267.4 None 362.4 362.4
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3597 2 1 3597 1 1

2 Objective Value None 265.2 265.2 None 357.2 357.2
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3600 <1 <1 3600 2 1

3 Objective Value None 266.4 266.4 None 374.8 374.4
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3600 <1 <1 3600 5 1

4 Objective Value None 260.8 260.8 None 369.2 368.8
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3591 <1 1 3452 <1 1

5 Objective Value None 270.8 270.8 None 365.2 364.4
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3187 4 1 3450 4 <1

6 Objective Value None 270.8 270.8 None 384.8 384.8
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3591 3 1 3354 7 1

7 Objective Value None 264.8 264.8 None 363.2 363.6
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3591 5 1 3484 9 6

8 Objective Value None 264.4 264.4 None 390 389.6
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3600 1 <1 3600 1 1

9 Objective Value None 261.2 262 None 380.8 380.8
Mip Gap (%) n/A <1 <1 n/A <1 <1
Run Time (s) 3600 1 <1 3600 1 1

10 Objective Value None 267.2 267.2 None 371.6 371.6
Mip Gap (%) n/A <1 <1 n/A <1 <1
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Table A.10.: Results of the NS Scenario, problem size XL.

Capacity Load (%) 70 90
Model GLSP BP GLSP BP

Iteration Performance Indicator
Run Time (s) 15 2 18 2

1 Objective Value 252.3 252.3 355.3 355.3
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 3 1 11 2

2 Objective Value 248 248 362.3 364
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 8 1 6 3

3 Objective Value 253.6 254.3 350 348.6
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 11 1 3 3

4 Objective Value 248.3 248.3 358.6 362.1
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 11 2 20 2

5 Objective Value 255.6 255.6 361 361
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 17 2 83 1

6 Objective Value 254.3 254.3 372 381.3
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 8 1 5 2

7 Objective Value 254.6 254.6 365.3 353
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 11 1 3 1

8 Objective Value 256 255.6 368.6 369
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 7 <1 6 1

9 Objective Value 250.3 251 362 362
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 5 1 14 3

10 Objective Value 249 249.6 361 361.3
Mip Gap (%) <1 <1 <1 <1

98



A. Appendix

Table A.11.: Results of the NS Scenario, problem size LHV.

Capacity Load (%) 70 90
Model GLSP BP GLSP BP

Iteration Performance Indicator
Run Time (s) 3 1 5 1

1 Objective Value 269.2 269.2 362 362.4
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 2 <1 1 1

2 Objective Value 270.4 270.4 357.6 357.6
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 3 1 4 2

3 Objective Value 270 270.4 377.6 378
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 1 1 3 1

4 Objective Value 265.6 266 367.6 368
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 3 1 4 1

5 Objective Value 266.4 266.4 366.8 366.4
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 2 1 1 1

6 Objective Value 260.4 260.8 362 361.6
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 7 1 4 1

7 Objective Value 264 264 361.6 362.4
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 5 2 1 2

8 Objective Value 264.8 264.8 384 384.4
Mip Gap (%) <1 <1 <1 <1
Run Time (s) <1 <1 2 1

9 Objective Value 260.4 260.4 357.2 357.6
Mip Gap (%) <1 <1 <1 <1
Run Time (s) 2 <1 4 1

10 Objective Value 265.2 265.2 362.8 362.8
Mip Gap (%) <1 <1 <1 <1
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Figure A.1.: Detailed results of the FF Scenario, problem size S, low capacity load.

Figure A.2.: Detailed results of the FF Scenario, problem size S, high capacity load.
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Figure A.3.: Detailed results of the FF Scenario, problem size M, capacity load LCL.

Figure A.4.: Detailed results of the FF Scenario, problem size M, high capacity load.
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Figure A.5.: Detailed results of the FF Scenario, problem size L, capacity load LCL.

Figure A.6.: Detailed results of the FF Scenario, problem size L, high capacity load.
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Figure A.7.: Detailed results of the LC Scenario, problem size S, low capacity load.

Figure A.8.: Detailed results of the LC Scenario, problem size S, high capacity load.
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Figure A.9.: Detailed results of the LC Scenario, problem size M, low capacity load.

Figure A.10.: Detailed results of the LC Scenario, problem size M, high capacity load.
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A. Appendix

Figure A.11.: Detailed results of the LC Scenario, problem size L, low capacity load.

Figure A.12.: Detailed results of the LC Scenario, problem size L, high capacity load.
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Figure A.13.: Detailed results of the NS Scenario, problem size S, low capacity load.

Figure A.14.: Detailed results of the NS Scenario, problem size S, high capacity load.
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Figure A.15.: Detailed results of the NS Scenario, problem size M, low capacity load.

Figure A.16.: Detailed results of the NS Scenario, problem size M, high capacity load.
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A. Appendix

Figure A.17.: Detailed results of the NS Scenario, problem size L, low capacity load.

Figure A.18.: Detailed results of the NS Scenario, problem size L, high capacity load.
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A. Appendix

Figure A.19.: Detailed results of the NS Scenario, problem size XL, low capacity load.

Figure A.20.: Detailed results of the NS Scenario, problem size XL, high capacity load.
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Figure A.21.: Detailed results of the NS Scenario, problem size LHV, low capacity load.

Figure A.22.: Detailed results of the NS Scenario, problem size LHV, high capacity load.
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