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Abstract

The construction of reduced order models for 
ow control via a direct discretization of
the input/output behavior of the system is discussed. The spatially discretized equations
are linearized such that an explicit formula for the corresponding input/output map can
be used to generate a matrix representation of the input/output map. Estimates for
the approximation error are derived and the applicability is illustrated via a numerical
example for the control of a driven cavity 
ow.

1 Introduction

In the research on 
ow control recently many promising results are obtained [33, 34]. Many
of these results are based on experimental setups, whereas the model based solution of 
ow
control problems is still at an early stage. Up to now, still best practice heuristic methods
have a practical advantage compared to mathematical approaches with guaranteed robustness
and convergence rates. This is mainly due to the fact that the simulation and optimization
of 
ows leads to very large nonlinear models, while numerical control algorithms perform
already very e�ciently on linear models of moderate size [46, 4].

To overcome this discrepancy one can use reduced order models that still capture the
essential dynamics, c.f. [1, 5]. These lower order approximations can be obtained using
physical insight [37, 39, 40] and/or mathematical techniques [1, 7, 38].

This paper proposes a model reduction method that focusses on the input/output behavior
rather than on the state dynamics. We consider the so called input/output (I/O) map that
describes a physical system equipped with actuators and sensors in terms of the relation
between an actuation (input) and the related output, c.f. Figure 1.

The approach that is presented here can be interpreted as a model identi�cation algorithm,
c.f. [43], and is well suited for black-box identi�cation [3, 29] in simulations and experiments.
Other approaches to an approximation of the I/O map are balanced truncation [20], moment
matching [16] and proper orthogonal decomposition [42]. In particular, balanced truncation
has been investigated for spatially discretized linearized Navier-Stokes equations (LNSE), see
[28, 45]. This strategy is motivated by the observation that control often acts locally in time,
and therefore the design of a controller based on an approximated linear model still promises
a good result.

To model the distributed control, the volume force in the Navier-Stokes equation is
extended by a control term that acts in a small region of the domain. The publications
[8, 11, 21, 22, 23, 24, 28, 31, 30, 32] represent a small selection of contributions to the opti-
mal control of Navier-Stokes equations. Results using linearized equations to set up control
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Figure 1: Schematic illustration of the I/O map for a physical system.
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schemes can be found in [41, 8, 15]. At this stage the extension of this approach to the
case that the 
ow is controlled via a source acting only at the boundary, i.e., via the bound-
ary conditions in the partial di�erential equation model, is much less established, see, e.g.,
[24, 31, 32].

Our new approach is based on a recently introduced general semigroup approach [27, 43]
for linear time invariant (LTI) systems of abstract ordinary di�erential equations. Here,
we will extend this approach to abstract di�erential-algebraic systems and with this the
applicability to 
ow control problems.

Consider model problems governed by the non-dimensional Navier-Stokes equation (NSE),
extended by terms accounting for the input and output,

Vt + (V � r)V +rP � 1

Re
4V =f + Bu; (1a)

r � V =0; (1b)

y =CV; (1c)

together with appropriate initial and boundary conditions. These equations describe the
relation between an input u and an output y, with respect to the evolution of the 
uid
velocity V and the pressure P for a time interval in a spatial domain.

A linearization of (1) along a reference velocity V1 leads to the linearized Navier-Stokes
equations (LNSE)

Vt + (V1 � r)V + (V � r)V1 +rP � 1

Re
4V =(V1 � r)V1 + f + Bu; (2a)

r � V =0; (2b)

y =CV: (2c)

This linear model, together with discrete input and output spaces, enables the construction
of a �nite dimensional discrete linear I/O-operator.

In this paper we discuss both general and particular aspects of the use of I/O maps in

ow control problems. Section 2 introduces the notion of an abstract optimal control problem
and points out the advantages of I/O maps in this setup. Section 3 explains how the I/O
map may be discretized and how a matrix representation is obtained. Section 4 introduces
a mathematical framework for di�erential-algebraic equations and establishes the I/O map
for the spatially discretized linearized NSE in an explicit form. As the central analytical
result, Theorem 4.2 formulates the necessary conditions on the regularity of the inputs. In
addition Lemma 4.2 quanti�es these conditions for a wide class of common �nite element
discretizations of the Navier-Stokes equations. The error analysis for the discrete I/O map
is derived in Section 5 and addresses mainly the I/O approximation error. The application
of this approach to the control of the 
ow in a driven cavity is demonstrated by a numerical
example in Section 6, studying the model for the I/O map, the discretization of the input
and output spaces and an experimental error analysis. The optimal control of such a 
ow
is illustrated by an numerical example in Section 7. Section 8 completes this work with
summarizing conclusions and an outlook on future research.

2 I/O Maps in PDE Constrained Control

The optimal control of Navier-Stokes equations (NSE) via the input/output map is a spe-
cial case of PDE constraint optimal control and �ts into the general framework of abstract
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optimization problems as de�ned e.g. in [21].
For the abstract formulation, the control variables and design parameters are typically

combined in the variable u, the output variables are denoted by y, and functions F (y; u) and
J (y; u) de�ne the constraints and the cost functional, respectively. Then the control problem
is to determine controls u that give outputs y such that

J (y; u)! min (3a)

subject to

F (y; u) = 0: (3b)

If the constraints F are given by a system of partial di�erential equations (PDE), describ-
ing for example the actuators, the behavior of the system and the sensors, the problem as
given in (3) is called PDE constrained optimization.

A conventional approach for the control of unsteady PDE systems is to approximate it
by a system of ordinary di�erential equations, derived from a spatial discretization. Here,
however, we focus directly on the I/O behavior of the original system. The construction of a
discretized I/O map leads to an e�ective treatment of the control problem in several respects.

Firstly, if the system is represented by an I/O operator G that maps the control u onto
the output y = Gu, then the formulation of a PDE constraint optimal control problem as
given in (3) simpli�es. Since G also implicitly contains the constraints, the optimal control
problem described above turns into an unconstrained minimization problem:

Determine controls u such that

J (Gu; u)! min :

In general, however, the computation of Gu during an optimization still requires an ex-
tremely large computational e�ort, since every evaluation of the map requires a forward solve
of the non-stationary NSE, so that an appropriate model reduction is important. For this
model reduction we propose to use a discretization of the I/O map and not of the forward
system. In the case of a linear PDE this leads to a matrix representation of the I/O map as
suggested in [43]. Then the computation of the system response for a given input reduces to a
matrix vector multiplication. In addition, for the application in control design and optimiza-
tion the use of discrete I/O maps is well suited for error estimation, adaptivity and practical
relevance.

Secondly, the error estimates for an I/O map as given in Section 5.1 are focused on the
relevant system response, whereas error bounds for the internal state variables often provide
only rough estimates for the error in the I/O behavior. The I/O map discretization allows
the easy use of goal oriented error estimation as has been shown in [43, Ch. 4].

Third, the use of hierarchical bases for the input and the output enables a straight-forward
enrichment or reduction of the model. Furthermore, a singular value decomposition of the
�nite dimensional I/O map directly identi�es the relevant input and output functions, which
can be used for an e�cient system speci�c formulation, see again [43].

Finally, in practical applications of 
ow control, the actuation often uses a �nite set of
inputs, as, e.g. various sine functions. Also the sensors measuring the output often deliver
discrete representations of the signal.
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3 Discrete I/O Mapping

The presented framework applies to linear time invariant (LTI) systems, that can be written
as an abstract di�erential-algebraic system

E _z(t) +Az(t) = f(t) +Bu(t); t 2 (0; T ] (4a)

z(0) = z0; (4b)

y(t) = Cz(t): (4c)

For �xed t 2 [0; T ] the state variable z is supposed to belong to a Hilbert space Z, e.g.
Z = L2(
) on a domain 
 � Rd
 , and the control u(t) and output y(t) are assumed to be in
Hilbert spaces describing the signal states, as e.g. U = L2(�) and Y = L2(�), respectively,
with domains � � Rd� and � � Rd� .

Furthermore, let B : U 7! Z and C : Z 7! Y be bounded linear operators. This allows
the treatment of problems with distributed control and observation, c.f. [6, 36, 43]. Provided
that the linear operators E;A are given in such a way, that for given z0; u the system (4) has
a unique solution, c.f. [47], it implicitly de�nes a mapping

G : U ! Y; u 7! y;

that associates an input u with the respective solution y of system (4), for inputs and outputs
from spaces

U := L2([0; T ];U) and Y := L2([0; T ];Y ):

Throughout this paper G is assumed to be linear and bounded, in a general context these
properties depend on the underlying system and have to be investigated.

For the analysis of the numerical methods and for the implementation, the spatial and
temporal discretization of the input u 2 U and output y 2 Y signals has to be discussed in
detail. Consider the four families fUh1gh1>0, fYh2gh2>0, fRk1gk1>0 and fSk2gk2>0 of subspaces

Uh1 � U; Yh2 � Y; Rk1 � L2([0; T ]); Sk2 � L2([0; T ]);

of �nite dimensions p(h1) = dimUh1 , q(h2) = dimYh2 , r(k1) = dimRk1 , s(k2) = dimSk2 .
Using a tensor product representation, we approximate the input and output signals by rep-
resentatives in subspaces Uh1k1 � U and Yh2k2 � Y of �nite dimensions dU and dY , de�ned
via

Uh1k1 = fu 2 U : u(t; �) 2 Uh1 ; u(�; �) 2 Rk1 for almost every t 2 [0; T ]; � 2 �g;
Yh2k2 = fy 2 Y : y(t; �) 2 Yh2 ; y(�; �) 2 Sk2 for almost every t 2 [0; T ]; � 2 �g;

respectively, where � � Rd� and � � Rd� denote the domains of control and observation.
We then consider the �nite dimensional map

GS := PY;h2k2GPU ;h1k1 ;

where PU ;h1k1 and PY;h2k2 denote the orthogonal projectors onto the respective �nite dimen-
sional subspaces. To obtain a matrix representation, four families of bases f�1; : : : ; �pg of Uh1 ,
f�1; : : : ; �qg of Yh2 , f�1; : : : ; �sg of Sk1 and f 1; : : : ;  rg of Rk2 with their corresponding mass
matrices

MU;h1 = [(�i; �j)U ]i;j=1;:::;p
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and analogously de�ned MY;h2 , MR;k1 and MS;k2 , are introduced. Then the discrete signals
u 2 Uh1k1 and y 2 Yh2k2 can be represented by means of the tensor product bases

u(t; �) =

pX
k=1

rX
i=1

uki �i(t)�k(�) and y(t; �) =

qX
l=1

sX
j=1

ylj j(t)�l(�); (5)

where uki are the elements of a block-structured vector u 2 Rpr containing p blocks of length
r and y 2 Rqs is de�ned similarly.

The mass matrices of the tensor product bases used in (5) have the form

MU ;h1k1 =MU;h1 
MR;k1 2 Rpr�pr and MY;h2k2 =MY;h2 
MS;k2 2 Rqs�qs:
They are positive de�nite and de�ne, for instance via

(v;w)Rprw = vTMU ;h1k1w; for v;w 2 Rpr;
weighted scalar products and induced norms, indicated by the subscript w. With respect to
the weighted norms the coordinate isomorphisms

�U ;h1k1 : Uh1k1 ! R
pr
w ; u 7! u and �Y;h2k2 : Yh2k2 ! R

qs
w ; y 7! y

are unitary mappings, since for u 2 Uh1k1 and y 2 Yh2k2 one has
kukU = kukRprw and kykY = kykRqsw :

Thus, the formulation of GS via the respective coe�cient vectors is given by

G = G(h1; k1; h2; k2) = �YPYGPU�
�1
U : Rpr ! R

qs:

Here we have partially omitted the dependencies on the discretization parameters h1; k1; h2; k2.
In the case of a linear I/O map an explicit matrix representation can be obtained via the real
valued elements of H :=MYG:

Hkl
ij = [MY�YPYG(�l; �j)]

k
i
= (�k i;G(�l; �j))Y ;

which is a block-structured matrix in Rqs�pr with q � p blocks Hkl 2 Rs�r.
The corresponding operator norm of G,

kGkL (U ;Y) = sup
u2U

kGukY
kukU ;

is then given by

kG(h1k1; h2k2)kqs�pr;w = sup
u2Rpr

kGukRqsw
kukRprw

:

The following lemma shows that G approaches G with a successive re�nement of the dis-
cretization, using a component-wise inequality of the discretization parameters (h01; k

0
1; h

0
2; k

0
2) �

(h1; k1; h2; k2). [[43, p. 44]] For all (h
0
1; k

0
1; h

0
2; k

0
2) > 0, one has

kG(h1; k1; h2; k2)kqs�pr;w = kGS(h1; k1; h2; k2)kL (U ;Y) � kGkL (U ;Y):

If the subspaces fUh1k1g and fYh2k2g are nested in the sense that

Uh0
1
;k0
1
� Uh1k1 ; Yh0

2
;k0
2
� Yh2k2 for (h01; k

0
1; h

0
2; k

0
2) � (h1; k1; h2; k2);

then kG(h1; k1; h2; k2)kqs�pr;w monotonically increases for decreasing discretization parame-
ters (h1k1; h2k2) > 0, and kG(h1k1; h2k2)kqs�pr;w is convergent for (h1; k1; h2; k2)& 0.
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4 I/OMaps for Semi-discretized Linearized Navier-Stokes Equa-
tions

In this section systems of LNSE as in (2c) are considered, that are already discretized in space,
as described for example in [19]. Interpreting them as a system of linear di�erential-algebraic
equations (DAE) of the form (4) with constant coe�cients, one can make use of the explicit
solution formulas as derived in [13] to obtain a state-space representation of the I/O map.

4.1 An explicit solution formula for DAEs

To describe the explicit solution formula, it is convenient to recall some facts about linear
DAEs with constant coe�cients. The style and the notation is consistent with [35]. Consider
a linear DAE initial value problem

E _x+Ax = f(t) for t 2 [0; T ]; (6)

x(0) = x0; (7)

de�ned by a matrix pair (E ;A), with E ;A 2 Rn�n and with a typically singular matrix E .
Such a matrix pair (E ;A) with E ;A 2 Rn�n is called regular, if det(�E +A) does not vanish
identically for all � 2 C.

For a regular matrix pair the analysis can be based on the Weierstra� canonical form, see
e.g. [17], since if (E ;A) is a regular matrix pair, then there exist nonsingular matrices P1; P2

of appropriate dimensions such that

(P1EP2; P1AP2) =

��
Id 0
0 N

�
;

�
J 0
0 Ia

��
;

where J is a matrix in real Jordan canonical form and N is a nilpotent matrix also in Jordan
canonical form. The index of nilpotency � of N is called the di�erentiation-index of the
corresponding DAE and denoted as ind(E ;A) := �.

If A is invertible, then one has ind(E ;A) = ind(E ; I) =: ind(E) and that � = ind(E) is the
smallest integer for which rank E�+1 = rank E� holds. In this case the di�erentiation index is
the matrix index of E .

To obtain the solution formula one needs the Drazin inverse, see [10], which for a matrix
E 2 Rn�n with ind(E) = k is the unique matrix X 2 Rn�n satisfying

(D1) EX = XE ;
(D2) XEX = X; (8)

(D3) XEk+1 = Ek:
The solution formula for (4) then is well-known [9, 35]. Let E ;A 2 Rn�n be a regular matrix
pair of commuting matrices. Furthermore, let f 2 C�(0; T ;Rn) with � = ind(E ;A). Then
every solution x 2 C1(0; T ;Rn) of E _x+Ax = f(t) has the form

x(t) = e�E
DAtEDEq+

t

s
0
e�E

DA(t�s)EDf(s)ds +

(I � EDE)
��1X
i=0

(�EAD)iADf (i)(t)

(9)
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for some q 2 Cn.
For the initial value problem (6) the above theorem implies that if q exists such, that

x0 = EDEq + (I � EDE)
��1X
i=0

(�EAD)iADf (i)(0) (10)

then there exists a unique solution, provided that (E ;A) form a regular pair of commuting
matrices and f is su�ciently smooth.

The commutativity requirement is no restriction for regular matrix pairs, since for a �̂ 2 C
chosen such that R(�̂) := (�̂E +A) is invertible, the matrices

Ê := R(�̂)�1E and Â := R(�̂)�1A
commute. Since the solvability properties of a DAE system are not a�ected by a simple
scaling from the left, the above results hold for general linear DAEs with a regular pair of
coe�cient matrices. To apply the solution formula directly for a general system, the matrices
E ;A and the inhomogeneity have to be substituted by

E  (�̂E +A)�1E ; A  (�̂E +A)�1A and f  (�̂E +A)�1f;

while the variable vector x remains unchanged.

4.2 Explicit Solution of a Semi-discretized LNSE System

In [13] it has been shown how to specialize the general solution formula (9) using the typical
structure of the spatial discretization of the linearized Navier-Stokes equations, which is given
by �

M 0
0 0

�
d

dt

�
v(t)
p(t)

�
+

�
D �JT
J Q

� �
v(t)
p(t)

�
=

�
f1(t)
f2(t)

�
; for t 2 (0; T ]; (11)

v(0) = v0 2 Rnv :
The functions v and p describe �nite dimensional coe�cient vectors representing the dis-
cretized velocity and pressure �eld of the 
ow and are assumed to take on values in Rnv

and Rnp , respectively. The coe�cient matrices M;D 2 Rnv ;nv , J 2 Rnp;nv and Q 2 Rnp;np
are constant. The inhomogeneities in the momentum and continuity equations are given by
f1(t) 2 Rnv and f2(t) 2 Rnp , respectively.

To make the coe�cients matrix pair commute, one can scale byA�1 :=

�
D �JT
J Q

��1

. The

invertibility of A is a reasonable assumption if the associated stationary problem possesses a
unique solution. If we assume further that D is invertible, which is related to the uniqueness
of the steady state solution [25] and given for example for the Stokes linearization, then one
can use the Schur complement S := Q+ JD�1JT and obtains a system with Â = I and

Ê =
�
E11 0
E21 0

�
:=

�
(I �D�1JTS�1J)D�1M 0

�S�1JD�1M 0

�
; (12)

The state vector

�
v

p

�
is not a�ected while the inhomogenity (using R0 := D�1JTS�1) can

be expressed as�
f̂1

f̂2

�
=

�
(I �D�1JTS�1J)D�1f1 +R0f2

�S�1JD�1f1 + S�1f2

�
=

�
E11M

�1f1 +R0f2
E21M

�1f1 + S�1f2

�
: (13)
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The explicit solution formula then depends on the index of the pair of coe�cients in (11)
which is usually � = 2 and thus the explicit solution formula for (9) is

x(t) = e�Ê
DtÊDÊq +

t

s
0
e�Ê

D(t�s)ÊDf̂(s)ds� (I � ÊDÊ)
1X
i=0

(Ê)if̂ (i)(t)

and still requires the computation of the Drazin inverse and the matrix exponential.
It has been shown in [13], that indE11 2 f1; 2g and that the solution of the semi-discretized

LNSE (11) equation on [0; T ] is given by

�
v(t)
p(t)

�
=

�
exp(�ED

11t)E
D
11E11qv

E21 exp(�ED
11t)(E

D
11)

2E11qv

�
+

Z t

0

�
exp(�ED

11(t� s))ED
11f̂1(s)

E21 exp(�ED
11(t� s))(ED

11)
2f̂1(s)

�
ds+

+

�
[I � ED

11E11]f̂1(t)

�E21E
D
11f̂1(t) + f̂2(t)

�
+

"
[E11 � ED

11E
2
11]f̂1

(1)
(t)

[E21 � E21E
D
11E11]f̂1

(1)
(t)

#
; (14)

assuming that the vector qv belongs to a given consistent initial value v0, c.f. (10).
Furthermore, the last summand can be expressed as"
[E11 � ED

11E
2
11]f̂1

(1)

[E21 � E21E
D
11E11]f̂1

(1)

#
=

�
[E2

11 � ED
11E

3
11]M

�1 _f1 + [E11 � ED
11E

2
11]R0

_f2
[E21E11 � E21E

D
11E

2
11]M

�1 _f1 + [E21 � E21E
D
11E11]R0

_f2

�
:

(15)
These results lead to the following results on the dependence of the solution on the (regularity
of the) input function. Consider the DAE formulation of the semi-discretized LNSE system
(11). If A and D are invertible and if k is the index of the matrix E11 in (12) then the
following assertions hold:

1. if k = 1, then _f1 does not appear in the solution and _f2 appears only in the second
component corresponding to the pressure, and

2. if k = 2, then _f1 only appears in the pressure solution.

If the inhomogeneity contains an input functions of low regularity, then to avoid impulses
in the solution it would be necessary that ind(E11) = 1. Lemma 10 in [13] gives a su�cient
condition for that if D is symmetric. For LNSE with nonsymmetric D one has the following
lemma: Consider the LNSE given in (11) and assume that M is positive de�nite, D is
invertible and Q is symmetric and semi-de�nite, [J Q] is of full row rank and imJ = kerQ.
Then indE11 = 1, where E11 := (I �D�1JTS�1J)D�1M and S := Q+ JD�1JT .

Proof. The symmetry and semi-de�niteness of Q imply the existence of an orthogonal matrix

V 2 Rnp�np such that Q = V
�
�k 0
0 0

�
VT . Here, k is the rank of Q and �k is a diagonal

matrix of the nonzero eigenvalues. According to this partition of Q we can write V = [V W ],
where V spans the image and W spans the kernel of Q, respectively. Since imJ = kerQ,
there exists a X 2 Rnp�k�nv with full rank and J = WX. De�ning SX := XD�1XT the
Schur complement S and its inverse can be written as

S = Q+ JD�1JT = [V W ]

�
�k 0
0 SX

� �
V T

W T

�
and S�1 =

�
V T

W T

� �
�k 0

0 S�1
X

�
[V W ];
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respectively. With this, we can rewrite E11 as

E11 = (I �D�1XTW T

�
V T

W T

� �
�k 0

0 S�1
X

�
[V W ]XW )D�1M = (I �D�1XTS�1

X X)D�1M:

Since X has full rank, there exists an orthogonal matrix U 2 Rnv�nv , such that X =
�
G 0

�
U

with G invertible. Then de�ne ~D := UD�1UT and ~M := UMUT and the block decomposition
according to XT :

~D =

�
~D11

~D12
~D21

~D22

�
and ~M =

�
~M11

~M12
~M21

~M22

�
:

With this, the inverse of SX is given by

(XD�1XT )�1 =
��
G 0

�
~D

�
GT

0

���1
= G�T ~D�1

11 G
�1;

and one can compute E11 via

(I �D�1XTS�1
X X)D�1M = (D�1 �D�1UT

�
GT

0

�
G�T ~D�1

11 G
�1
�
G 0

�
UD�1)M

= UTU(D�1 �D�1UT

�
~D�1
11 0
0 0

�
UD�1)UTUM

= UT (

�
~D11

~D12
~D21

~D22

�
�
�
~D11

~D12
~D21

~D22

� �
~D�1
11 0
0 0

� �
~D11

~D12
~D21

~D22

�
)UM

= UT (

�
0 0
0 S ~D

�
)UM;

with S ~D := ~D22 � ~D21
~D�1
11

~D12 invertible, since ~D11 and ~D are invertible. Thus, one obtains
that E11 is similar to the matrix

~E11 =

�
0 0
0 S ~D

�
UMUT =

�
0 0

S ~D
~M21 S ~D

~M22

�
;

which is of index 1, since ~M22 as a submatrix of a positive de�nite matrix is invertible and
therefore rank ~E2

11 = rank ~E11.

Lemma 4.2 includes the case of stable �nite element schemes where J has full rank and
Q = 0, c.f. [19], and unstable schemes with a minimal stabilization, c.f. [12].

4.3 Explicit Representation of the I/O Map for LNSE

We can directly imply the formulas in the control context by setting

f1(t) f1(t) +B1u(t) and f2(t) f2(t) +Bu2(t);

where B1; B2 denote bounded operators that map the control into the source terms. For the
output the operator C is applied to the solution. Hence, the system of constraints in the
optimal control problem has the form�

M 0
0 0

�
d

dt

�
v(t)
p(t)

�
+

�
D �JT
J Q

� �
v(t)
p(t)

�
=

�
f1(t) +B1u(t)
f2(t) +B2u(t)

�
; (16)

y(t) = C

�
v(t)
p(t)

�
for t 2 (0; T ]: (17)
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We will consider only the case B2 = 0, since a perturbation of the continuity equation would
necessitate a change of the underlying model from incompressible to compressible 
ow as
treated, e.g., in [14]. Following the arguments of Section 4.2 one obtains a representation of
an I/O map for (16) via the a�ne linear map

y(t) =

C

��
exp(�ED

11t)E
D
11E11qv

E21 exp(�ED
11t)(E

D
11)

2E11qv

�
+
R t
0

�
exp(�ED

11(t� s))ED
11f̂1(s)

E21 exp(�ED
11(t� s))(ED

11)
2f̂1(s)

�
ds

+

�
[E11 � ED

11E
2
11][M

�1f1(t) + [I � E11E
D
11]R0f2(t)]

E21[I � ED
11E11]M

�1f1(t) + [S�1 � E21E
D
11R0]f2(t)]

�

+

�
[E11 � ED

11E
2
11]R0

_f2(t)

E21[E11 � ED
11E

2
11]M

�1 _f1(t) + [E21 � E21E
D
11E11]R0

_f2(t)

��

9>>>>>>>>=
>>>>>>>>;

:= y0

+ C

�R t
0

�
exp(�ED

11(t� s))ED
11E11M

�1B1u(s)
E21 exp(�ED

11(t� s))(ED
11)

2E11M
�1B1u(s)

�
ds +

+

�
[E11 � ED

11E
2
11]M

�1B1u(t)
E21[I � ED

11E11]M
�1B1u(t)

�
+

�
0

E21[E11 � ED
11E

2
11]M

�1(B1u)
(1)(t)

��
9>>>=
>>>;

:= Gu(t):

(18)

The linear I/O map is de�ned via G : U ! Y; u 7! Gu, by subtracting the vector y0.
To obtain a well-de�ned I/O map, one needs B1u(0) to be consistent with the initial

condition v0, c.f. (10), and the function B1u : [0; T ]! Rnv has to be su�ciently smooth. Since
B1 as a bounded operator maintains regularity, one can infer from (18) and Proposition 4.2
the regularity requirements

1. U � C1([0; T ]; U) in the case that indE11 = 2 or

2. U � C([0; T ]; U) if indE11 = 1 or if only the velocity is considered for the output .

In both cases the output space Y is a subspace of C([0; T ]; Y ).
In the next section, we use the explicit solution formula to construct error bounds.

5 Error Analysis for the I/O Map

The overall error in the computation of a discretized I/O map consists of the signal approxi-
mation error �S and the dynamical approximation error �D. The signal approximation error
arises from the approximation of G by GS in �nite dimensional signal spaces. The dynam-
ical approximation error arises from the actual realization GDS of the map that takes into
account the numerical approximation of the system dynamics. In a suitable operator norm
this decomposition is formally obtained via the estimate

kGDS �Gk � kGS �Gk+ kGDS �GSk =: �S + �D: (19)

Since we have assumed that the system is already spatially discretized, only the time
integration error is addressed in this section. However, the framework of I/O maps is also
well suited for the derivation of goal oriented error estimates and application of corresponding
mesh re�nement techniques, as discussed in [2, 43].
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The error estimates in the following subsections are valid for a concrete spatially discretized
LNSE control system and use a notation in line with the previous chapters. An overview is
given in Table 1.

1-dim. system disc. I/O spaces time disc. system

G : U ! Y GS : Uh1k1 ! Yh2k2 GDS : Uh1k1 ! Yh2k2
G : U ! Y Gh1h2k1k2 : Uh1k1 ! Yh2k2 GD;h1h2k1k2 : U ! Y

or G�1�2 : U�1 ! Y�2 G;H : Rpr ! Rqs

Table 1: Discretized I/O maps. The �rst line contains the operators for a general system, the
second line lists the respective realizations for the LNSE, the simpli�ed subscript notation
and their matrix representations.

5.1 Signal Approximation Error

The investigation of the error �S caused by discretization of the input and output signals uses
the framework and the notation introduced in Section 3. We �rst recall the main elements
and introduce some simplifying notations.

The signals u 2 U and y 2 Y are approximated by means of �nite dimensional subspaces
Uh1k1 and Yh2k2 and corresponding orthogonal projectors PU ;h1k1 and PY;h2k2 . To simplify
the notation we introduce the abbreviations �1 := h1k1 and �2 := h2k2. Then, for signals
u 2 U and y 2 Y, the corresponding approximations are given by

u�1 := PU ;�1u and y�2 := PY;�2y:

Combining the projectors with the I/O map G, we obtain the formal approximations as
described in Table 1. We have

G�2 := PY;�2G and G�1�2 := PY;�2GPU ;�1 :

Using this notation, the signal approximation error �S , describing the deviation in the obser-
vation between the actual G and the discretized I/O map G�1�2 for an u 2 U in the Y-norm
is given by

kG�1�2u�Guk2Y =

Z T

0
kG�1�2u(t)�Gu(t)k2Y dt:

In the following estimates the explicit dependency on t is dropped for convenience. Inserting
G�1u and de�ning

eu;�1 := u�PU ;�1u and ey;�2 := PY;�2Gu�1 �Gu�1 ;

the approximation error can be expressed by means of the interpolation errors:

kG�1�2u�GukY = kG�1�2u�G�1u+G�1u�GukY � key;�2kY + kGeu;�1kY :

The interpolation errors ey;�2 and eu;�1 are estimated with respect to the concrete dis-
cretization scheme, as e.g. �nite elements in space and wavelets in time.
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The explicit representation of the operator G then is helpful to get a better estimate of the
transferred input error than kGeu;�1kY � kGkkeu;�1kU , with a possibly rough approximation
of kGk.

Consider for example the case that the output is extracted only from the velocity solution
via an output operator Cv. According to the de�nition of the I/O map, one then obtains G
as de�ned in (18) with C =

�
Cv 0

�
. Using the simplifying notation

E1(�) := e��E
D
11ED

11M
�1 and E2 := [E11 � ED

11E
2
11]M

�1;

a general estimate for the term kGeu;�1k2Y delivers

kGheu;�1k2Y = kCv

nZ t

0
E1(t� s)Beu;�1ds+ E2Beu;�1

o
k2Y

� kCvk2� k
Z t

0
E1(t� s)Beu;�1ds+ E2Beu;�1k2Rnv ;

with k�k� denoting an operator or matrix norm.
The properties of the scalar product and the Cauchy-Schwarz inequality then lead to the

terms kR t0 E1(t� s)�eu;�1dskRnv and kE2Beu;�1kRnv . The latter can be estimated by

kE2�eu;�1kRnv ;w � kE11 � ED
11E

2
11k�kM�1Beu;�1kRnv ;

while the �rst term requires some further treatment.

k
Z t

0
E1(t� s)Beu;�1dskRnv = k

Z t

0
e�(t�s)ED

11ED
11M

�1Beu;�1dskRnv

�
Z t

0
ke�(t�s)ED

11ED
11k�kM�1Beu;�1kRnvds

�
�Z t

0
e(t�s)kE

D
11
k�kED

11k�ds
� 

sup
s2[0;t]

kM�1Beu;�1kRnv
!

=
�
etkE

D
11
k� � 1

�
sup
s2[0;t]

kM�1Beu;�1kRnv :

Collecting all the above estimates we obtain the following error estimate. Consider the I/O
map (18) de�ned by the semidiscretized LNSE (16) with C = [Cv 0]. Let eu;�1 and ey;�2 be
the interpolation errors in the input and output space for time t 2 [0; T ], respectively. Then,
the following assertions hold.

1. The error in the observation caused by the signal discretization satis�es

kG�1�2u�GukY � key;�2kY + kGeu;�1kY :

2. For the response of the input approximation error one has

kGeu;�1kY � c
p
TkCvk� sup

t2[0;T ]
kM�1Beu;�1kRnv ;

with a constant
c =

�
eTkE

D
11
k� � 1 + kE11 � ED

11E
2
11k�

�
:
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5.2 Time Discretization Error

The time integration error, caused by the numerical integration of the spatially discretized
state equations, is not of primary interest for the investigation of the I/O behavior. Nev-
ertheless, to ensure meaningful and reliable numerical results, it should be kept small or at
least well balanced with respect to the signal approximation error.

Instead of using the explicit solution formula, in the practical treatment the underlying
DAE is solved via a numerical integration scheme. Since the spatially discretized system is a
DAE of di�erentiation index 2, one has to use suitable time integration algorithms. For the
time discretization of 
ow problems the literature provides a vast amount of well understood
and investigated schemes as well as only partly proven, but \working" approaches. Most of
them more or less explicitly carry out an index reduction of the DAE system, c.f. [48]. After
index reduction, in the present case of a semi-explicit system, there exist several Runge-Kutta
methods and backward di�erence schemes that are suitable to integrate the equations directly.
These methods and proofs of their convergence order can be found in [26].

As an example, for s-stage Runge-Kutta methods of type Radau IIa the global error is of
order �2s�1 in the velocity and of � s in the pressure component, where � denotes the time
step size. These orders of convergence, however, are only guaranteed for su�ciently smooth
solutions, which require additional regularity of the inhomogeneity, c.f. Section 4.3.

6 Numerical Tests

To demonstrate the described approximation scheme, we have implemented a model problem
of a driven cavity 
ow with Reynolds number 1333 in a two-dimensional square domain,
subject to a distributed control and observations that are extracted from the velocity �eld.
The behavior of the 
uid is modeled by the LNSE, spatially discretized by stabilized Q1�P0

�nite elements, which are piecewise linear for the velocity and piecewise constant for the
pressure, on a uniform 128� 128 grid. The resulting, still time dependent linear DAE system
is integrated numerically using a projection method as introduced in [18].

All numerical tests are carried out in Matlab [46]. The open source toolbox IFISS
[44] is used as the basis for several routines especially for the spatial discretization and the
visualization of the 
ow �eld.

6.1 Distributed Control of the Driven Cavity

In order to control the 
ow in the driven cavity, an input term is added to the spatially
discretized LNSE. Also an output has to be de�ned, along with suitable domains and func-
tion spaces. Let 
 = (�1; 1)2 be the domain of the driven cavity, let 
c := (�0:2; 0:2) �
(�0:7;�0:5) denote the subdomain where the control is active, and let 
m = (�0:1; 0:1) �
(0; 0:6) denote the subdomain where the velocity �eld is observed, c.f. Figure 1.

With Y = L2([0; 1])
2 and U = L2([0; 1])

2, we de�ne C 2 L (L2(
)
2; Y ) and B1 2

L (U;L2(
)
2) by

(CV )(�) =

Z 0:1

�0:1

V (x1; �m�)

0:2
dx1; (B1u)(x1; x2) =

(
u(�cx1); (x1; x2) 2 
c;

0; elsewhere,
(20)

where �m : [0; 1] ! [0; 0:6] and �c : [�0:2; 0:2] ! [0; 1] are a�ne linear mappings, that
adjust the spatial extensions of the signal spaces to the respective domains 
c and 
m. By
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Figure 2: Schematic illustration of a 2D driven cavity 
ow and the domains of control and
observation, 
c and 
m, respectively.

de�nition, B1 maps the two input signal components into the control domain such that they
are homogeneous in x2-direction. The output is extracted as the average in x1-direction of
the velocity within the observation domain and V denotes the weak velocity solution of the
underlying 1-dimensional system.

Vt + (V1 � r)V + (V � r)V1 +rP � 1

Re
4V =(V1 � r)V1 +B1u;

r � V =0;

y =CV;

with initial and boundary conditions V jt=0= V1 and V j@
= g.
Here, g denotes the boundary conditions for the driven cavity which are homogeneous

Dirichlet conditions on the whole boundary except at the upper lid, where a constant velocity
is applied. The reference velocity and initial condition V1 is chosen as the corresponding
stationary solution.

6.2 Discretization of the Signal Spaces

In the abstract framework, the discretizations are parameterized by characteristic length
scales k1; k2; h1; h2 that tend to zero with a re�nement of the discretization. However, in this
concrete setup it is more convenient to call on parameters H1; H2;K1;K2 2 N that correspond
directly to the dimensions of the signal approximation spaces. In the current case we have
that the characteristic length scales are related to the dimension parameters via

k1 =
1

2K1

; k2 =
1

2K2

; h1 =
1

2H1 + 1
and h2 =

1

2H2 + 1
: (21)

The temporal discretization is carried out by approximating the signal components in
L2(0; 0:1) by piecewise constant functions. The �nite dimensional interpolation spaces R(k1)
and S(k2) are de�ned by means of the Haar-wavelet basis, i.e.,

R(k1) = span
�
'i
	2K1
i=1

and S(k2) = span
�
'j
	2K2
j=1

; K1;K2 2 N; (22)
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with 'l denoting the l-th Haar-wavelet basis function in [0; 0:1], illustrated in Figure 2.
This special choice equips the bases of R(k1) and S(k2) with the useful properties of

orthogonal and hierarchical bases. The hierarchy of bases allows to re�ne or coarsen the
signal discretization by simply adding or removing basis functions, to change e.g. the number
of degrees of freedom in R(k1) from 2K1 to 2K1+1.

The restriction of the levels of approximation to dimR 2 f2k; k 2 Ng ensures a uniform
resolution on the whole time scale.

(a)

0 0.05 0.1
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t

(b)

0 0.05 0.1

−5
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t

(c)

0 0.05 0.1

−5

0

5

t

(d)

0 0.05 0.1

−5

0

5

t

Figure 3: Orthonormal Haar wavelet basis of the L2([0; 0:1]) subspace of piecewise constant
functions: (a) '1, (b) '2, (c) '3; '4, (d) '5; '6; '7; '8

For the spatial discretization of the spaces U = Y = [L2([0; 1])]
2 a hierarchical basis of

piecewise linear functions is chosen. This yields

U(h1) = span

��
�k
0

�
;

�
0
�k

��2H1+1

k=1

and Y (h2) = span

��
�l
0

�
;

�
0
�l

��2H2+1

l=1

for H1; H2 2 N and scalar basis functions �i as illustrated in Figure 3. Note that the chosen
basis functions do not have local support, such that the corresponding mass matrix is not
sparse. However, the possibility to construct a hierarchy of spaces is more important for our
purpose.

This approach can easily be extended towards di�erent bases for input and output as well
as for the separate components.

In view of the notation in Section 3 the dimensions of the subspaces are abbreviated via

dimUh1 = p(h1); dimYh1 = q(h1); dimRk1 = r(k1) and dimSk2 = s(k2):

Recalling the identities (21), one obtains the explicit dependencies of H1; H2;K1 and K2, as
for example

p(h1) = 2 � 1
h1

= 2 � (2H1 + 1) and s(k2) =
1

k2
= 2K2 : (23)
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Figure 4: Hierarchical basis of piecewise linear functions of a L2([0; 1]) subspace: (a) �1; �2,
(b) �3, (c) �4; �5, (d) �6; �7; �8; �9

6.3 Discretized I/O Map for the Driven Cavity

Using the mathematical framework of Section 3, the matrix representation of the I/O map is
established by computing the system response for the basis functions in the input space Uh1k1
and testing them against all basis functions of the output space Yh2k2 . Identifying

span

��
�k
0

�
;

�
0
�k

��2H1+1

k=1

with span
�
�l
	2�(2H1+1)

l=1
;

for the input and output space one has

Uh1k1 = span
�
�k'i : k = 1; : : : ; p; i = 1; : : : ; r

	
(24a)

and

Yh2k2 = span
�
�l'j : l = 1; k = 1; : : : ; q; j = 1; : : : ; s

	
; (24b)

respectively. With these basis functions one can compute the block-structured matrix

H =
h
Hkl

i
k=1;:::;p
l=1;:::;q

; with Hkl = [(�k'i; G(�l'j))Y ]i=1;:::;r
j=1;:::;s

;

which maps the input signal coe�cient vector uh1k1 2 Rp�r onto MYyh2k2 , where MY denotes
the mass matrix corresponding to the discretization of Yh2k2 and where yh2k2 2 Rq�s is the
coe�cient vector of the discretized system response.

The system response y = G(u) to the input signal is computed by numerical integration
of the semi-discretized state equations, i.e., y is a vector containing the function values at
discrete points within the time interval. The time integral of the inner product (y;Gh(u))Y
and the norm kykY are approximated using piecewise the trapezoidal rule, which causes an
inaccuracy of order 2 with respect to the time step used in the time integration. Recalling
that the projection algorithms produce a time integration error of �rst order, c.f. [18], this
error may be neglected.
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6.4 Experimental Analysis of the Convergence in the Signal Approxima-
tion

The numerical convergence in the signal approximation is investigated for the test signal
û(t; �) = [sin(10�t) sin(10��) 0]T and its system response y = Gû. The error is expressed via
the relative deviation ky� ~ykYkûkU with ~y = Gh1h2k1k2 û for varying discretization parameters
H1; H2;K1;K2, c.f. Equation (21). As predicted by Proposition 4.2 the error behaves like the
error for piecewise constant or piecewise linear interpolation, c.f. Figure 4. In particular it
decays linearly with a re�ned time resolution (a) and quadratically if the time discretization
is �xed while the spatial resolution is successfully re�ned (b). However, the space resolution
error cannot go beyond the error in the time discretization, as is indicated in the breakdown
of the quadratic convergence rate for �ne resolutions. Thus, for an e�ective discretization of
the I/O map a proper balance of space and time resolution is indispensable.
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Figure 5: Relative output errors ky � ~ykYkûkU with ~y = Gh1h2k1k2 û. Errors for (a) varying
h1 = h2, i.e., varying dimUh1 = dimYh2 and �xed dimR(k1) = dimS(k2) = 32 and (b) for
varying k1 = k2 and �xed dimUh1 = dimYh2 = 2 � 33.

Another property of the system becomes evident in the asymmetry depicted in the Ta-
bles 2 and 3. These tables show the evolution of the signal approximation error when the
discretization of the input and output signals is changed independently. The imbalance in

K1nK2 2 3 4 5

2 1.00000 0:55114 0.37103 0.25052
3 0.97709 0.50776 0.30652 0.15711
4 0.97619 0.50545 0.30363 0.16634
5 0.97626 0.50519 0.30235 0.17153

Table 2: Relative errors eK1;K2
:=

ky�G
ĥ1;ĥ2;k1;k2

ûkY

ky�G
ĥ1;ĥ2;k1=2;k2=2

ûkY
for a �xed space resolution Ĥ1 =

Ĥ2 = 5 and varying K1 and K2

Table 2, in the sense that ei;j > ej;i for i > j, illustrates the fact that, with respect to the
time resolution, it is better to do a re�nement in the output space rather than in the input
space.

In Table 3 one can observe that a re�nement of the space resolution of the signals is more
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H1nH2 2 3 4 5

2 1.00000 0.99878 0.99871 0.99870
3 0.21177 0.20530 0.20488 0.20485
4 0.09981 0.08516 0.08414 0.08408
5 0.08679 0.06945 0.06819 0.06811

Table 3: Relative errors eH1;H2 =
ky�G

h1h2k̂1k̂2
ûkY

ky�G
h1=2;h2=2:k̂1k̂2

ûkY
for a �xed space resolution K̂1 = K̂2 =

5 and varying H1 and H2.

e�ective in the input than in the output space.

7 Application to Optimal Flow Control

We illustrate the use of a discretized I/O map G for the approximate solution of an optimiza-
tion problem

J (u;Gu)! min; for u 2 U ; (25)

with a cost functional J : U�Y ! R of the form J (u;Gu) = 1
2ky0+Gu�yDk2Y+�kuk2U . Here

yD 2 Y is a desired output and � > 0 is a regularization parameter that penalizes the energy
of the input u. This optimization aims at an input u that causes an output ya := y0 + Gu

that is close to a target state in the norm of Y, while the control e�ort kuk2U is not too large.
Recall that the actual output of the system is recovered by adding the a�ne component y0
to Gu, c.f. (18).

Following the notation in Section 6 we de�ne the discrete signal spaces Uh1;k1 and Yh2;k2 .
With the vector representations of the approximations yD := �Y;h2;k2PY;h2;k2yD and y0 :=
�Y;h2;k2PY;h2;k2y0 we de�ne the discrete cost functional

�J : Rpr � Rqs ! R; �J (u;Gu) = 1

2
kGu+ y0 � yDk2Rqsw + �kuk2

R
pr
w
: (26)

Then a solution of (25) can be approximated by the solution �u = argminf �J (u;Gu) : u 2 Rqsg
given by

(GTMYG+ �MU )�u = GTMY(yD � y0): (27)

For the special choice of H1 = H2 = K1 = K2 = 4 the linear system (27) has a system
matrix G of dimension 34 � 16 � 34 � 16. Using the standard routines of Matlab [46], the
solution of (27) takes 0:0334 seconds on a standard desktop PC equipped with OpenSuse 11.0
and an Intel dual core processor with 2 GHz.

As an application example we consider the driven cavity as described in Section 6.1 and
the task of �nding inputs that cause a prescribed output yD in the domain of observation via
the solution of (27). Figure 5 shows the result for yD � [1 0]T . This choice for yD is supposed
to force a 
ow �eld in the domain of observation, that is 1 in the x1 component and zero in
the second component, c.f. the construction of the output in (20). Figure 6 illustrates the
result for yD � [0 1]T aiming at a zero x1 component and a 1 in the x2 component in the
velocity �eld across the domain of observation.
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Figure 6: Illustration of the system response for an input �u that was computed via (27) to
match an output yD = [1 0]T . (a) and (b) show the time evolution of the output signal at
three distinguished points in the domain of observation. Plot (c) shows the velocities and the
stream lines of the corresponding 
ow �eld.

8 Summary and Outlook

Using the explicit solution (14) formula for the spatially discretized linearized Navier-Stokes
equations (LNSE) we have obtained a closed formula for the relation between the input and
the output for a distributed control of LNSE. Error estimates using hierarchical bases of �nite
dimensional in- and output spaces were derived and conditions for the necessary regularity
of the input functions have been established. One observation is that in the general case
one can use functions of low regularity like Haar-wavelets and lower order �nite elements for
the discretization of the input, if only the velocity component is considered. The numerical
results back the theoretical error bounds and show the applicability of the chosen approach.

From the theoretical point of view it remains to analyze the regularity conditions for the
input with respect to the spatial discretization schemes and how to characterize adequate
initial conditions. Another important question is to extend the approach to problems with
boundary control and the fully nonlinear Navier-Stokes equations. Furthermore the presented
approach has to be checked for e�ciency and robustness against other approaches, like em-
pirical black box schemes or model predictive control.
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Figure 7: Illustration of the system response for an input �u that was computed via (27) to
match an output yD = [0 1]T . (a) and (b) show the time evolution of the output signal at
three distinguished points in the domain of observation. Plot (c) shows the velocities and the
stream lines of the corresponding 
ow �eld.

References

[1] A.C. Antoulas, Approximation of large-scale dynamical systems (Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, 2005).

[2] W. Bangerth and R. Rannacher, Adaptive �nite element methods for di�erential equa-
tions (Birkh�auser, Basel, 2003).

[3] R. Becker, M. Garwon, C. Gutknecht, G. B�arwol�, and R. King, Robust control of
separated shear 
ows in simulation and experiment, J. of Process Control 15, 691{700
(2005).

[4] P. Benner, V. Mehrmann, V. Sima, S. Van Hu�el, and A. Varga, SLICOT|a subroutine
library in systems and control theory, in: Applied and computational control, signals,
and circuits, Vol. 1, , Appl. Comput. Control Signals Circuits, Vol. 1 (Birkh�auser Boston,
Boston, MA, 1999), pp. 499{539.

[5] P. Benner, V. Mehrmann, and D. Sorensen (eds.), Dimension Reduction of Large-Scale
Systems (Springer, 2005).

[6] A. Bensoussan, G. Da Prato, M.C. Delfour, and S.K. Mitter, Representation and
control of in�nite dimensional systems. Volume I. (Birkh�auser, Boston, MA, 1992).

20



[7] G. Berkooz, P. Holmes, and J. L. Lumley, The proper orthogonal decomposition in
the analysis of turbulent 
ows, in: Annual review of 
uid mechanics, Vol. 25, (Annual
Reviews Inc., Palo Alto, 1993), pp. 539{575.

[8] T.R. Bewley, R. Temam, and M. Ziane, A general framework for robust control in 
uid
mechanics, Physica D 138(3-4), 360{392 (2000).

[9] S. L. Campbell, Singular Systems of Di�erential Equations I (Pitman, San Francisco,
CA, 1980).

[10] S. L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations (Pit-
man, San Francisco, CA, 1979).

[11] K. Deckelnick and M. Hinze, Semidiscretization and error estimates for distributed con-
trol of the instationary Navier-Stokes equations, Numer. Math. 97(2), 297{320 (2004).

[12] H.C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers:
with applications in incompressible 
uid dynamics (Oxford University Press, Oxford,
UK, 2005).

[13] E. Emmrich and V. Mehrmann, Analysis of a class of operator di�erential-algebraic
equations arising in 
uid mechanics. Part 1. The �nite dimensional case, Tech. rep., TU
Berlin, 2010.

[14] E. Feireisl, Dynamics of viscous compressible 
uids (Oxford University Press, Oxford,
UK, 2004).

[15] E. Fern�andez-Cara, S. Guerrero, O.Y. Imanuvilov, and J. P. Puel, Remarks on exact
controllability for Stokes and Navier-Stokes systems, C. R., Math., Acad. Sci. Paris
338(5), 375{380 (2004).

[16] R.W. Freund, Model reduction methods based on Krylov subspaces, Tech. rep., Bell
Laboratories, Lucent Technologies, 2001.

[17] F.R. Gantmacher, The theory of matrices. Vol. 1. Transl. from the Russian by K.
A. Hirsch. Reprint of the 1959 translation (AMS Chelsea Publishing, Providence, RI,
1998).

[18] P.M. Gresho and S.T. Chan, On the theory of semi-implicit projection methods for
viscous incompressible 
ow and its implementation via a �nite element method that
also introduces a nearly consistent mass matrix. II: Implementation, Int. J. Numer.
Methods Fluids 11(5), 621{659 (1990).

[19] P.M. Gresho and R. L. Sani, Incompressible 
ow and the �nite element method. Vol.
2: Isothermal laminar 
ow (Wiley, Chichester, UK, 2000).

[20] S. Gugercin and A.C. Antoulas, A survey of model reduction by balanced truncation
and some new results, Internat. J. Control 77, 748{766 (2004).

[21] M.D. Gunzburger, Perspectives in 
ow control and optimization (Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2003).

21



[22] M.D. Gunzburger, L. Hou, and T. Svobodny, Analysis and �nite element approximation
of optimal control problems for the stationary Navier-Stokes equations with distributed
and Neumann controls, Math. Comput. 57(195), 123{151 (1991).

[23] M.D. Gunzburger and S. Manservisi, Analysis and approximation of the velocity track-
ing problem for Navier-Stokes 
ows with distributed control., SIAM J. Numer. Anal.
37(5), 1481{1512 (2000).

[24] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes

ows with boundary control, SIAM J. Control Optimization 39(2), 594{634 (2000).

[25] W. Hackbusch, Elliptic di�erential equations: theory and numerical treatment
(Springer, Berlin, Germany, 1992).

[26] E. Hairer, C. Lubich, and M. Roche, The numerical solution of di�erential-algebraic
systems by Runge-Kutta methods (Springer, Berlin, Germany, 1989).

[27] J. Heiland, V. Mehrmann, and M. Schmidt, A new discretization framework for in-
put/output maps and its application to 
ow control, in: Active Flow Control. Papers
contributed to the Conference "Active Flow Control II 2010", Berlin, Germany, May
26 to 28, 2010, edited by R. King (Springer, Berlin, 2010).

[28] M. Heinkenschloss, D.C. Sorensen, and K. Sun, Balanced truncation model reduction
for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci.
Comput. 30(2), 1038{1063 (2008).

[29] L. Henning, D. Kuzmin, V. Mehrmann, M. Schmidt, A. Sokolov, and S. Turek, Flow
control on the basis of a Feat
ow-Matlab coupling, in: Active Flow Control. Papers
contributed to the Conference "Active Flow Control 2006", Berlin, Germany, September
27 to 29, 2006, edited by R. King (Springer, Berlin, 2006).

[30] M. Hinze, Instantaneous closed loop control of the Navier-Stokes system, SIAM J.
Control Optimization 44(2), 564{583 (2005).

[31] M. Hinze and K. Kunisch, Second order methods for boundary control of the instation-
ary Navier-Stokes system, ZAMM, Z. Angew. Math. Mech. 84(3), 171{187 (2004).

[32] L. S. Hou and T.P. Svobodny, Optimization problems for the Navier-Stokes equations
with regular boundary controls, J. Math. Anal. Appl. 177(2), 342{367 (1993).

[33] R. King (editor), Active 
ow control. Papers contributed to the conference `Active 
ow
control 2006', Berlin, Germany, September 27{29, 2006 (Springer, Berlin, Germany,
2007).

[34] R. King (editor), Active 
ow control II. Papers contributed to the conference `Active

ow control II 2010', Berlin, Germany, May 26{28, 2010 (Springer, Berlin, Germany,
2010).

[35] P. Kunkel and V. Mehrmann, Di�erential-algebraic equations. Analysis and numerical
solution (European Mathematical Society Publishing House, Z�urich, Switzerland, 2006).

22



[36] J. L. Lions, On the controllability of distributed systems, Proc. Natl. Acad. Sci. USA
94(10), 4828{4835 (1997).

[37] D.M. Luchtenburg, B. G�unter, B.R. Noack, R. King, and G. Tadmor, A generalized
mean-�eld model of the natural and actuated 
ows around a high-lift con�guration, J.
Fluid Mech. 623, 283{316 (2009).

[38] V. Mehrmann and T. Stykel, Balanced truncation model reduction for large-scale sys-
tems in descriptor form, in: Dimension Reduction of Large-Scale Systems, edited by
P. Benner, V. Mehrmann, and D. Sorensen (Springer, Heidelberg, 2005), pp. 83{115.

[39] B.R. Noack, M. Schlegel, B. Ahlborn, G. Mutschke, M. Morzynski, P. Comte, and
G. Tadmor, A �nite-time thermodynamics of unsteady 
uid 
ows, J. Non-Equilib. Ther-
modyn. 33(2), 103{148 (2008).

[40] M. Pastoor, L. Henning, B.R. Noack, R. King, and G. Tadmor, Feedback shear layer
control for blu� body drag reduction, J. Fluid Mech. 608, 161{196 (2008).

[41] M. Po�sta and T. Roub���cek, Optimal control of Navier-Stokes equations by Oseen ap-
proximation, Comput. Math. Appl. 53(3-4), 569{581 (2007).

[42] C.W. Rowley, Model reduction for 
uids, using balanced proper orthogonal decompo-
sition, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 997{1013 (2005).

[43] M. Schmidt, Systematic Discretization of Input/Output Maps and other Contributions
to the Control of Distributed Parameter Systems, PhD thesis, TU Berlin, Fakult�at
Mathematik und Naturwissenschaften, Berlin, Germany, 2007.

[44] D. J. Silvester, H.C. Elman, and A. Ramage, IFISS software package [
http://www.maths.manchester.ac.uk/~djs/ifiss/], University of Manchester, UK,
2006.

[45] T. Stykel, Balanced truncation model reduction for semidiscretized Stokes equation,
Linear Algebra Appl. 415(2-3), 262{289 (2006).

[46] The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick, MA, Matlab,
matlab version 7.11.0 (r2010b), 2008.

[47] C. Tischendorf, Coupled systems of di�erential algebraic and partial di�erential equa-
tions in circuit and device simulation, Habilitationsschrift, HU Berlin, 2003.

[48] J. Weickert, Applications of the theory of di�erential-algebraic equations to partial
di�erential equations of 
uid dynamics, PhD thesis, TU Chemnitz, Fakult�at f. Mathe-
matik, Chemnitz, Germany, 1997.

23


