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Abstract

Strong Field Ionisation has been an active research field for well over five decades, since the
pioneering work of L. V. Keldysh. It has offered an unprecedented insight into, and control
over, electron dynamics, not only in simple atoms but also in more complex molecular systems,
on a time scale down to a few tens of attosecond (1 attosecond = 10−18 sec). Analytical theories
have been an essential cornerstone for application and research in this subject. For about five
decades, one of the main theoretical problems has remained the development of a rigorous
analytical description of the interaction of a strongly laser-driven electron with the long-range
potential of the atomic or molecular core.

In this dissertation, attosecond dynamics initiated by atomic ionisation in strong, optical
to near-infrared laser fields is studied analytically, with the focus on long-range electron-core
interaction. The Analytical R-matrix (ARM) method is the central formalism developed rigor-
ously and used for describing ionisation by strong circularly and elliptically polarised long and
few-cycle laser pulses.

In particular, we analyse the principle of angular streaking, which maps electron detection
angles to instants of ionisation in (nearly) circularly polarised fields and provides the foundation
for the so-called attoclock set-up. Angular streaking provides a sensitive probe of attosecond-
scale dynamics in strong field ionisation. Establishing an accurate map between photoelectron
detection angle and ionisation time is therefore an essential requirement for the attoclock. We
discuss the calibration of the attoclock, especially the validity of the standard assumptions used
for interpreting current state of the art experiments. We show that these assumptions fail
conclusively at the level of accuracy commensurate with modern experiments.

We also propose and describe the Attosecond Larmor Clock – a new method for defining de-
lays in strong field ionisation. Our proposal takes advantage of the Spin-Orbit (SO) interaction.
The idea develops and extends the mapping of the phase of electron wave-function to ionisation
time from one-photon ionisation to the strong field regime. The evolution of the photoelectron
spin as well as the spin of the hole left in the parent atom during ionisation is used to time
the ionisation process. Using the example of a noble gas atom it is shown that electron-hole
entanglement leads to phase delays which cannot be directly mapped into ionisation time delays.
The conventional barrier penetration problem is compared with strong field tunnelling and the
role of the ionisation potential in the latter is discussed to define ionisation time delays.

With the aim to complete the general formalism of the ARM method, strong field ionisation
from bound atomic states of arbitrary symmetry is also rigorously derived for long-range poten-
tials and applied to noble gas atoms. After calibrating the attoclock setup for p−/p+ orbitals
in long-range potentials, it is shown that the sense of electron rotation in the initial orbital can
be recorded in the attoclock observables: angle- and energy-resolved photoelectron spectra. It
opens an exciting opportunity to detect ring currents excited in atoms and molecules using the
attoclock set-up.

Finally, we focus on the emission of spin-polarised electrons during ionisation from systems
with long-range electron-core interaction potentials. Ionisation by a few cycle, circularly po-
larised laser field is shown to lead to qualitatively different results for spin polarised electrons
produced in short- and long-range potentials. Specifically, we find that interaction with long-
range potentials induces asymmetry in the angular distribution of spin polarised electrons, in
contrast to the short-range case. Long-range potentials also further accentuate spin-polarisation
towards higher energy of direct photoelectron spectrum. The advantage of few-cycle pulses in
photoelectron spin polarisation is the control offered via the Carrier Envelope Phase (CEP)
phase of the laser pulse. It allows one to steer the direction of spin polarised electrons.
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Zusammenfassung

Starkfeldionisation ist seit über fünf Jahrzehnten ein aktives Forschungsgebiet, seit der Pionierarbeit von
L.V. Keldysh. Es hat einen noch nie dagewesenen Einblick in, und Kontrolle über die Elektronendynamik
in nicht nur einfachen Atomen sondern auch in komplexeren molekularen Systemen geboten, auf einer
Zeitskala von nur einigen zehn Attosekunden (1 Attosekunde = 10−18 s). Analytische Theorien sind ein
wesentlicher Grundstein für die Anwendung und Forschung in diesem Gebiet gewesen. Seit etwa fünf
Jahrzehnten ist eines der wichtigsten theoretischen Probleme die Entwicklung einer exakten analytischen
Beschreibung der Wechselwirkung eines vom Laserfeld getriebenen Elektrons mit dem weitreichenden
Potential des atomaren oder molekularen Kerns geblieben.

In dieser Dissertation wird die Attosekunden-Dynamik ausgelöst durch atomare Ionisation in starken,
optischen bis nahinfraroten Laserfeldern analytisch untersucht, mit dem Schwerpunkt auf Elektron-Kern-
Wechselwirkungen mit großer Reichweite. Die Analytische R-Matrix (ARM) Methode ist der zentrale
Formalismus, der konsequent entwickelt und zur Beschreibung von Ionisation durch zirkular und elliptisch
polarisierte lange und Einige-Zyklen Laserpulse angewandt wird.

Insbesondere analysieren wir das Prinzip des winkelaufgelösten Streaking, welches die Detektion-
swinkel der Elektronen auf die Zeitpunkte der Ionisation in (beinahe) zirkular polarisierten Feldern ab-
bildet und die Grundlage für den sogenannten Attouhr-Aufbau darstellt. Winkelaufgelöstes Streaking
stellt eine empfindliche Messmethode der Attosekunden-Dynamik in Starkfeldionisation dar. Die Feststel-
lung einer präzisen Abbildung des Photoelektron-Detektionswinkels auf die Ionisationszeit ist daher eine
wesentliche Voraussetzung für die Attouhr. Wir diskutieren die Kalibrierung der Attouhr, insbesondere
die Gültigkeit der üblichen Annahmen die für die Interpretation aktueller, hochmoderner Experimente
verwendet werden. Wir zeigen, dass diese Annahmen für den Grad der Genauigkeit der in den modernen
Experimenten erreicht wird ungültig sind.

Weiterhin schlagen wir die Attosekunden Larmor-Uhr vor – eine neue Methode um Verzögerungen
in Starkfeldionisation zu definieren. Unser Vorschlag nutzt die Spin-Bahn-Wechselwirkung aus. Die Idee
entwickelt und erweitert die Methode der Abbildung der Phase der Elektronwellenfunktion auf die Ionisa-
tionszeit vom Bereich der Einphotonenonisation hin zum Starkfeld-Regime. Die zeitliche Entwicklung des
Photoelektronspins sowie des Spins des Lochs, das im Mutteratom während der Ionisation zurückbleibt,
wird zur zeitlichen Bestimmung des Ionisationsprozesses genutzt. Am Beispiel eines Edelgasatoms wird
gezeigt, dass die Elektron-Loch-Verschränkung zu Phasenverzögerungen führt, die nicht direkt auf Ionisa-
tionszeitverzögerungen abgebildet werden können. Das herkömmliche Problem des Durchdringens einer
Barriere wird mit dem Starkfeldtunneln verglichen und die Rolle des Ionisationspotentials im letzteren
wird diskutiert um Ionisationszeitverzögerungen zu definieren.

Mit dem Ziel den allgemeinen Formalismus der ARM-Methode zu vervollständigen, ist die Stark-
feldionisation von gebundenen Atomzuständen mit beliebiger Symmetrie ebenfalls für Potentiale großer
Reichweite konsequent hergeleitet und auf Edelgasatome angewandt. Nach der Kalibrierung des Attouhr-
Aufbaus für p−/p+ Orbitale in weitreichenden Potentialen, wird gezeigt, dass die Richtung der Elektro-
nenrotation im Anfangsorbital in den Attouhr-Observablen erfasst ist: in den winkel- und
energieaufgelösten Photoelektronenspektren. Dies eröffnet eine hervorragende Möglichkeit um angeregte
Kreisströme in Atomen und Molkülen mittels des Attouhr-Aufbaus zu messen.

Schließlich konzentrieren wir uns auf die Emission von spinpolarisierten Elektronen während der

Ionisation von Systemen mit einem weitreichenden Elektron-Kern-Wechselwirkungspotential. Wir zeigen,

dass Ionisation durch ein zirkular polarisiertes Einige-Zyklen-Laserfeld zu qualitativ unterschiedlichen

Ergebnissen für spinpolarisierte Elektronen führt, abhängig davon ob die die Elektronen in kurzreichenden

oder weitreichenden Potentialen erzeugt werden. Im Besonderen finden wir, dass die Wechselwirkung mit

weitreichenden Potentialen eine Asymmetrie in der Winkelverteilung der spinpolarisierten Elektronen

hervorruft, im Gegensatz zum Fall der kurzreichenden Potentialen. Desweiteren heben Potentiale mit

großer Reichweite die Spinpolarisation zu höheren Energien in direkten Photoelektronspektren hervor.

Der Vorteil von Einige-Zyklen Pulsen für Photoelektronenspinpolarisation ist die Kontrolle, die sich

aus der Träger-Einhüllenden-Phase (CEP) des Laserfeldes ergibt. Diese erlaubt es die Richtung der

ultrakurzen spinpolarisierten Elektronenpakete zu steuern.
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Chapter 1

Introduction

Tunnelling of particles through a potential barrier is a purely quantum-mechanical phenomenon,
which has been studied extensively and thoroughly in various fields, including, but not limited to,
solid state physics, cosmology, nuclear physics, atomic and molecular optical physics, and high
energy physics. Even after several decades of research on this phenomenon, including several
real-world applications based upon it (e.g., scanning tunnelling microscope, tunnelling junctions
in semiconductors), there still are many active research domains, both from an academic and
commercial point of view, invested on this subject. Among them, tunnelling ionisation of atoms
and molecules under the influence of strong, ultrashort laser fields, with intensities in the range
of 1013−1020 W/cm2 and durations in pico- (10−12 s) to femtosecond (10−15 s), and in the recent
decade, even the sub-femtosecond domain, is one of rapidly evolving subfields, that studies the
concepts related to the dynamics and control of electrons in atoms and molecules on a timescale
commensurate with the rapid evolution of the system. A reliable and rigorous theoretical model
to understand the underlying physics of the process is essential to investigate, and eventually
control, the ionisation of photoelectrons which constitute the Above Threshold Ionisation (ATI)
spectrum, or their subsequent dynamics, either leading to recombination generating High-Order
Harmonics (High Harmonic Generation, HHG), or higher order scattering effects leading to
High-order Above Threshold Ionisation (HATI) [1].

Since the pioneering work of Keldysh [2], followed immediately by the detailed theory on
ionisation of atoms in intense, monochromatic, non-resonant laser fields by Perelomov, Popov,
Terentév, and Kuznetsov [3–6], strong field physics has progressed tremendously in experimental
and theoretical domains. Experimental developments have aided the theoretical pursuits in
better understanding the role of atomic or molecular core interaction with the ionising electron,
studying their imprints left on the ionisation process, and in turn, allowing for new methods to
study electron dynamics and interactions on an attosecond timescale.

We first consider the earlier work and theory of strong field ionisation in this chapter, and the
various motivating threads for this thesis. Atomic units are used throughout (me = e = ℏ = 1),
unless otherwise stated.

1.1 Keldysh Theory of Tunnelling Ionisation

Ionisation in the perturbative regime was the first step towards confronting the quantum nature
of radiation and matter, leading to the revolutionary ideas that laid the foundation for Quantum
Mechanics [7, 8].

Among the many new mathematical techniques developed for this new and counter-intuitive
perspective on natural phenomena [9], perturbation theory has been an essential tool for studying
light-matter interactions [10–12] and beyond, including quantum field theory and high-energy
physics [13]. But what happens when we approach the domain of intense sources of coherent
radiation, where the strength of the electric field is commensurate with the field strength found

7
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Electric
Field, E(ti).

Instant of
ionisation, ts.

Instant of
release,
ti = ℜ[ts].

(a)

Instant of
ionisation.

(b)

Figure 1.1: Schematic of Strong Field Ionisation. (a) The initial wavepacket rests in the valence
bound state of the core potential, which is then modulated by the strong laser field ( ).
Tunnelling ionisation occurs in the high-intensity, low-frequency domain (γ ≪ 1). The direction
of the field maximum, in the present case along the positive-x axis, depresses the potential
barrier sufficiently for the electron to escape into the continuum. The instant of ionisation is
complex-valued, ts, and is determined by Eq. (1.18). The electron emerges from under the
barrier at time instant ti = ℜ[ts], when the complex time transitions to the real time.
(b) Multiphoton ionisation is on the other end (γ ≫ 1) of possible ionisation pathways in strong
laser fields. In the weak field the ionisation proceeds through absorption of multiple photons.

within the atom? Does the traditional perturbation theory provide an accurate description
of the ionisation process? And what are the dominant pathways through which the electron
is liberated from the atom? These were the questions tackled by Leonid V. Keldysh in his
seminal paper [2] of strong field laser-matter interactions. The expressions for ionisation rates
obtained in [2] naturally led to identification of two ionisation regimes delineated by the Keldysh
parameter γ:

γ =
ω

ωt
=
ω
√
2Ip

E0
, (1.1)

where Ip is the binding energy of an electron, required to liberate the electron from the bound
state and launch into the continuum, E0 is the field strength and ω is the angular frequency of
the ionising field (for the case of solids, the expression is changed slightly, but that topic is out
of the scope of this work. See [2] for further details.). The Keldysh parameter is therefore a
measure of the rapidity with which the electron escaping from the atom responds to the changes
in the laser field during its cycle. Expressions for probability of ionisation were derived for
arbitrary γ, with physical pictures associated with important limits, γ ≪ 1 and γ ≫ 1, depicted
schematically in Fig. 1.1a and 1.1b, respectively.

In the former case, γ ≪ 1, the experimental set-up of the atom in a high intensity and non-
resonant, low-frequency field was considered. The intensity is sufficiently strong, manifesting
the high flux of the photons as a modulation to the classical core-potential barrier, resulting
in tunnelling ionisation, where the tail-end of the electron wavefunction burrows through the
modulated barrier created under the combined influence of the core and the laser field potential
interacting with the electron (Fig. 1.1a). Since the motion is effectively realised in a classical
forbidden region, the instant of ionisation ts, when the electron barges through the barrier, is
complex. On emerging from underneath the barrier into the continuum, which leads to the
time-scale settling along the real axis, the electron is assumed to be free. This assumption is
particularly valid for short-range potentials (SRPs) modelling core interaction with the ionising
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electron. It was noted in [2] that the influence of long-range potentials (LRPs), e.g. Coulomb-
type potentials, will lead to significant modification of the dependence of ionisation rate on field
strength compared to SRP results, following the results on ionisation in static fields [10].

For a frequency in resonance with an atomic transition, we will need to take into account
excitation pathways before tunnelling ionisation is realised, resulting in enhanced ionisation
rates. Further work for theoretical study of resonance excitation in strong fields was considered
in [14].

The other limit is multiphoton ionisation, with weak intensities and high frequencies, where
the ionisation process can be modelled as the simultaneous absorption of multiple photons
(Fig. 1.1b). Multiphoton ionisation is in itself a thoroughly developed and advanced field, both
in research and applications [15–19].

A general phenomenon known as Above Threshold Ionisation (ATI) was first experimentally
observed in [20] in the multiphoton regime. In these experiments it was found that the pho-
toelectrons are capable of absorbing more than the minimum number of photons required to
ionise the atom and promote the electron to the continuum. Interestingly, above-threshold
ionisation is predicted in the seminal paper of L. V. Keldysh, but this prediction had
not been noticed at the time.

It is a remarkable fact that the results for both ionisation regimes can be derived from the
same theory that lays emphasis on the quasiclassical pathways from the bound to continuum
state of the electron, be they traversing under the barrier, or through multiphoton ionisation
channels. However, for noble gas atoms, the separation between the ground and first excited
state in the neutral system requires frequencies in the VUV regime (∼ 10 eV), whereas we will
be considering mostly the optical and infrared domain of the spectrum (∼ 1 eV), that is, the
nonadiabatic and tunnelling ionisation regime (γ ≃ 1 and γ ≪ 1, respectively). In this regime
real excitations prior to tunnelling are negligible.

One of the crucial steps in deriving the ionisation rates made in [2] was of approximating the
ionising electron with Gordon-Volkov states [21, 22], which are accurate, quantum-mechanical
states of a free electron in a laser field. Historically, the appeal of such states for describing
strong-field phenomena has been demonstrated by H. Reiss [23, 24]. The argument for this
approximation was motivated by the dominance of the laser field in a region sufficiently far from
the core, especially if the core-potential falls of faster than a Coulomb potential, e.g. in the case
of a Short Range Potential (SRP). It was therefore assumed that the interaction of the electron
with the core would make insignificant contributions, at least to the exponential order, if not to
the prefactors.

The other, tacit approximation, was to discard the effects of the laser field on the initial
bound state of the electron. In the absence of any approximations for the final state of the laser
driven electron, including the effect of the laser field on the initial state is not required. However,
this is no longer true if the final state is approximated. Yet, even though the fields are strong,
they are weak within the precincts of the atom where the atomic field strength is significantly
stronger than the laser field strengths we will consider here. These approximations constitute
what is now known as the Strong Field Approximation (SFA), a very powerful theoretical tool
used ubiquitously to describe a plenitude of strong field phenomena [1].

Until the work by Keldysh, ionisation in strong fields was considered theoretically within
the domain of ionisation rates exceeding the frequency of the radiation field (the adiabatic
approximation [25]), allowing a very small window of ionisation near the peak of the field. One
of the essential conclusions in [25] was the fact that for an atom interacting sufficiently long
with a radiation field, ionisation was an inevitable consequence, whether direct or via excitation
to an intermediate state.

We consider ionisation of atoms in strong fields, and gaseous medium where the atom can
be modelled as an isolated system, free from the perturbations by and interactions with other
atoms. In the adiabatic limit, realised by the laser field frequency being much smaller than the
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response time of the electron, ω ≪ ωt, γ ≪ 1, the ionisation rates bear resemblance [2, 3, 5] to
the expressions for ionisation in a static field [10,26].

The typical ionisation amplitude in Keldysh theory to find the electron, initially bound in a
ground state |g⟩, with drift momentum p registered at the detector far away from the atom, is:

aSFA(p) = −i
∫ T

t0

dt
⟨
pGV(t)

⏐⏐⏐V̂int⏐⏐⏐g⟩eiIpt, (1.2)

where
⏐⏐pGV(t)

⟩
is the Gordon-Volkov (GV) continuum states, describing a free electron in a

laser field, Vint is the interaction potential operator that instigates the ionisation step, and Ip is
the ionisation potential to remove the electron from the ground state |g⟩ of the atom/molecule
under consideration. The time limits are defined as follows: t0 is a time sufficiently far away in
the past before the laser field was turned on and the atom was in a field-free state, and time
instant T is the moment of observation of the ionised photoelectron and is a time instant well
after the laser field is swtiched off and the electron is far away from the core to settle into the
drift momentum p at the detector.

The interaction potential term, V̂int, is the electron-laser interaction potential (in length
gauge, as originally used by Keldysh). Note that once the core potential is neglected, the theory
becomes gauge non-invariant: the results for ionisation rates are different in the length and
velocity gauges for all potentials, except zero-range potential with the initial s-state [27]. Only
the length gauge results reproduce the static limit in the case ω → 0. For atoms, length gauge
has been repeatedly espoused as the correct choice to make reliable predictions [28–31], and
so we will adhere to it in this thesis. But we note that velocity gauge is usually the better
choice when considering numerical studies of strong field ionisation [32–34], on account of the
fact that the canonical momentum is simply the drift momentum, obviating the wide excursion
amplitudes observed in trajectories derived from the length-gauge kinematic momentum vp(t),
which can be troublesome to contain in numerical calculations.

The bound state |g⟩, in which the electron is strongly ensnared by the atomic/molecular core,
is assumed to be affected feebly by the laser field, and hence we can use the field-free bound state.
The continuum GV electron is defined by the non-relativistic, quantum-mechanical wavefunction

⟨
r
⏐⏐pGV(t)

⟩
=

1

(2π)3/2
eivp(t)·r−iSGV(t), (1.3)

SGV(t) =
1

2

∫ T

t
dτ v2p(τ). (1.4)

SGV(t) is the temporal phase accumulated by the continuum electron from the time instant t,
when the interaction potential V̂int “kicks in” and drives the electron away from its bound atomic
state to the continuum state. No effect of the core potential is recorded by the electron after
time instant t, an approximation which is the most accurate for SRPs modelling core interactions
with the ionising electron, the delta-potential well being a special case. The laser-field velocity
is defined as vp(t) = p + A(t), where p is the drift momentum that will be registered at the
momentum detector long after the laser field is switched off, and A(t) is the vector potential
defining the laser field.

We are using the Göppert-Mayer gauge (see e.g. [35]), which is obtained from the Coulomb
gauge by the gauge transformation

ϕ′(r, t) = ϕ(r, t)− ∂χ(r, t)

∂t
, A′(r, t) = A(r, t) +∇χ(r, t) (1.5)

where χ(r, t) = −(r − r0) · A(r0, t), and r0 is the position of the nucleus. The Hamiltonian is
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transformed to:

Ĥ ′ =
1

2

(
p̂− qA′(r, t)

)2
+ VCoul(r̂) + q(r− r0) ·

∂A(r0, t)

∂t
(1.6)

=
1

2

(
p̂− qA′(r, t)

)2
+ VCoul(r̂)−D(r, t) ·E(r, t) (1.7)

for an arbitrary charge q, and the laser field E(r, t) = ∂A(r0, t)/∂t. In the dipole approximation,
it is reasonable to approximate the vector potential with its value at the nulceus, that is, A(t) ≡
A(r0, t). Thus, we can consistently define the electric field E(t) through the vector potential
A(t) from the expression:

E(t) = −∂A(t)

∂t
. (1.8)

The velocity of light, which in atomic units is the inverse of the fine structure constant, c =
1/α ≈ 137.036, is subsumed in the amplitude for the vector potential A(t).

We are interested in obtaining an analytical expression for Eq. (1.2). We will follow the
derivation presented in [27], as it allows us to follow pre-exponential factors in a more straight-
forward way than in the original Keldysh paper. Since V̂int = V̂F (t) in Keldysh theory, and we
know for the GV continuum states that

i
∂
⏐⏐pGV(t)

⟩
∂t

=

(
p̂2

2
+ V̂F (t)

)⏐⏐pGV(t)
⟩
, (1.9)

combining V̂int(t) with
⟨
pGV(t)

⏐⏐, we get

aSFA(p) = −i
∫ T

t0

dt

[
−i
∂
⟨
pGV(t)

⏐⏐
∂t

|g⟩ −
⟨
pGV(t)

⏐⏐⏐⏐ p̂2

2

⏐⏐⏐⏐g⟩
]
eiIpt. (1.10)

For the ground state |g⟩, we know that(
p̂2

2
+ V̂core

)
|g⟩ = −Ip|g⟩ = i

∂
(
|g⟩eiIpt

)
∂t

, (1.11)

from which, after interchanging the time-derivative in the first term of the integrand in Eq. (1.10),
we get

aSFA(p) = i

∫ T

t0

dt

(
Ip
⟨
pGV(t)

⏐⏐g⟩+⟨pGV(t)

⏐⏐⏐⏐ p̂2(t)

2

⏐⏐⏐⏐g⟩)eiIpt. (1.12)

For the second term, since p̂
⏐⏐pGV(t)

⟩
= vp(t)

⏐⏐pGV(t)
⟩
, and also realising that the inner

product
⟨
pGV(t)

⏐⏐g⟩, when resolved on spatial coorindates r, is simply the Fourier transform of
the bound state:

Φg(vp(t)) =

∫
dr e−ivp(t)·rΨg(r). (1.13)

the expression for ionisation amplitude simplifies to

aSFA(p) = i

∫ T

t0

dt

(
Ip +

v2p(t)

2

)⟨
pGV(t)

⏐⏐g⟩eiIpt. (1.14)

Substituting for the Gordon-Volkov continuum state
⟨
r
⏐⏐pGV(t)

⟩
, Eq. (1.3) and (1.4), in

Eq. (1.14), we get the ionisation amplitude:

aSFA(p) = −i
∫ T

t0

dt

(
Ip +

v2p(t)

2

)
e−iSSFA(t,p)Φg(vp(t)). (1.15)
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We have now defined the SFA action

SSFA(t,p) =
1

2

∫ T

t
dτ v2p(τ)− Ipt. (1.16)

The instant of ionisation t is distributed over the entire possible range of time, which is equivalent
to integrating over all possible paths allowable between the bound state of the electron and the
continuum state with drift momentum p [36].

We are finally left with one single time-integral to solve. This simplification of the combined
spatial and time-integral was possible due to the Strong Field Approximation, which decoupled
the continuum electron from any influence of the core potential, while at the same time the
bound state Ψg(r) is free from any time-dependent polarisation by the laser field. The overall
approximation is virtually (it still loses the Stark-shift of the bound state) exact for Short-
Range Potentials (SRPs), especially the delta-potential ∝ δ(r), but not reliable for Long-Range
Potentials (LRPs). This point will be further discussed in the next section after introducing the
PPT theory in LRPs. Another issue with using the Fourier transform Eq. (1.13) for LRP is the
higher-order pole encountered in the momentum domain while calculating the ionisation rates.
This point will become clear when discussing ionisation rates in PPT theory in SRP core.

We can apply the saddle point approximation to solve the time-integral in Eq. (1.15) [2,37].
Such an approximation is valid when the integrand has a rapidly varying in time phase term,
which in our case is SSFA(t) . The prefactor is the momentum representation of the bound state,
and varies slowly with time. The rapidly oscillatory term then acts as a type of filter for the
prefactor Φg(vp(t)), masking out all contribution far away from stationary point ts, which allows
us to approximate the prefactor with its value at the stationary point Φg(vp(ts)) and take this
term out of the time-integral.

Requiring that we expand the SFA action about the stationary point ts in a Taylor series,
where the saddle point is defined from the condition that the derivative of SFA action w.r.t.
time is zero, ∂SSFA(ts)/∂t = 0, the time-integral can be approximated as:

It = −
∫ T

t0

dt e−iSSFA(ts)−i
(t−ts)

2

2
∂2
t SSFA(ts)

(
Ip +

v2p(t)

2

)
Φg(vp(t)). (1.17)

In Eq. (1.17), ∂2t SSFA(ts) is the second derivative of SSFA w.r.t time. Further details, modifica-
tions and justification of the saddle point method can be found in [37]. The only step left now is
to set up the definitions of the time-instants t0 and T that would provide us with an analytical
expression of the integral in Eq. (1.17): since the second term is localized in time, we can extend
the integration limits setting t0 → −∞ and T → ∞.

If the time instant ts had been confined along the real axis, we would have simply settled
the action on its stationary point. However, on writing down the defining equation for ts, using
Eq. (1.16),

∂SSFA
∂t

≡ −
v2p(ts)

2
− Ip = 0, (1.18)

we find that the time instant ts is necessarily raised into the complex plane, leading to two
possible solutions to Eq. (1.18), one defining the steepest point of ascent and other of descent,
and form a complex conjugate pair. The one that can describe a physically plausible event like
ionisation is that for which the exponential in Eq. (1.19) does not blow up, that is, the point
of steepest descent with a positive imaginary part for ts. This constitutes the saddle point
approximation to solve the time-integral Eq. (1.17).

The time-integral in Eq. (1.17) is now solvable and is well-known, to give us:

It = −
√

π⏐⏐∂2t SSFA(ts)⏐⏐e−iSSFA(ts)

(
Ip +

v2p(ts)

2

)
Φg(vp(ts)). (1.19)



13 1.1. Keldysh Theory of Tunnelling Ionisation

Note that the prefactor Ip + v2p(ts)/2 cancels the pole in the Fourier transform of the ground
state wave-function for the short-range potential, yielding finite result for It.

A complex time of ionisation implies the trajectory to be complex-valued. Such a motion is
not possible classically, and can only be realised in a classically forbidden region, which in this
case is under the time-dependent potential barrier created by the combined effect of the core
and laser field. The bound state therefore tunnels through the laser-field modulated barrier into
a continuum state, as shown in Fig. 1.1a which is the snapshot of the time-dependent field at
one particular instant when it takes on its maximum value in one direction (towards positive-x
axis in the figure). For a monochromatic linearly polarised field, where there are two maxima in
each cycle around which the probability of ionisation is maximum and the electron wavepacket
is shot into the continuum, the field will provide two windows of ionisation in opposite directions
in each laser cycle. In a monochromatic circular field, where the field retains a constant strength
but changes direction axially, the ionisation window sweeps the entire plane of polarisation of
the field. In an enveloped field, i.e. for a few-cycle laser pulse, we see isolated instances of
ionisation which can then be used to time the ionisation events.

Complex trajectories are an essential part of quantum treatment. They affect the amplitudes
and thus influence the observables. In the present case, these trajectories arise after applying
the saddle point method for time. If time had been real, so would the trajectories, as is the case
with classical methods in strong field physics.

However, trajectories can be complex to begin with, if we consider methods like Complex
WKB and Bohmian Mechanics with Complex Action (BOMCA) [38–41], the latter being de-
veloped over Bohmian Mechanics (BM). Complex WKB follows the standard WKB method,
but takes into account the contribution of the amplitude term to evolution of the nonclassical
(and complex) trajectories. BOMCA applies the saddle point approximation to trajectories, by
expanding around near-classical paths. At this point, it departs from the conventional WKB
methods, and also allows to retain only leading order terms in complex phase while still main-
taing a high accuracy. For the interested reader, the details of this approach are presented in
the Appendix 1.A.

Returning back to the SFA method, the final expression of ionisation amplitude for the
photoelectron to end up in the continuum with final drift momentum p is:

aSFA(p) = i

√
π

S′′
SFA(ts)

e−iSSFA(ts)χg(vp(ts)), χg(vp(ts)) =

(
Ip +

v2p(ts)

2

)
Φg(vp(ts)). (1.20)

The ionisation amplitude so derived is reliable for expressing momentum distribution in experi-
ments for strong field ionisation from a SRP core, which is usually assumed for negative ions. In
noble gas atoms (He, Ne, Ar, Kr, etc.), a long-range potential (LRP) more accurately emulates
the core interaction with the valence electron that is removed. As was already emphasised by
Keldysh using the comparison with the known results for ionisation rates of hydrogen in static
field, and later discussed and further developed by PPT, results of type Eq. (1.20) are signifi-
cantly (by several orders of magnitude) inaccurate for LRP cores, and long-range interactions
with the electron become important to ascertain the right amplitude of ionisation. The explicit
expression for the prefactor in Eq. (1.20), which also depends on the geometry of the bound
state will be given in the next section where we discuss the issue of higher-order poles in LRP.
Accurate estimation of the prefactor requires additional correction to SRP ionisation amplitudes
associated with the presence of the long-range potential of the core.

We present next the PPT theory for strong field ionisation in monochromatic fields and
Coulomb-corrections introduced to SRP results [Eq. (1.20)].
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1.2 PPT Theory and Long-Range Effects

We consider here the theory of strong field ionisation developed by Perelomov, Popov, and
Teréntev (PPT), first presented in [3]. Following the theory of strong field ionisation for
hydrogen-like atoms in the ground state, ionisation rates for arbitrary quantum numbers were
derived by PPT, first for linear and circular polarisation [3] and subsequently arbitrary elliptical
polarisation [4], within the quasistatic limit for the field (ω ≪ ωt) and rates derived specifically
for the peak of the distribution using the saddle point method. With the PPT theory, accu-
rate derivation of prefactors for short-range potential was presented in detail; the important
influence of Coulomb-type potential in strong field ionisation under time-varying fields was con-
sidered in [5]. The Coulomb effects were already known to significantly modify the dependence
of ionisation amplitudes and rates on field strength by many orders of magnitude [2, 10, 42].
While the PPT derivation is virtually rigorous for short-range potentials, including Coulomb
corrections involved several ad-hoc steps in the derivation. For short-range potentials, either
Keldysh or PPT theory can be derived consistently, with requisite approximations defined under
SFA, using either the forward or reverse-time S-matrix formalism [43]. Our focus will be on the
first three papers [3–5] derived by PPT.

The PPT theory dealt with ionisation amplitudes which assume the ionisation step to be
completed as soon as the electron emerges from the under barrier, even in a LRP. The LRP
is a Coulomb-type potential approximation for non-hydrogen atoms, which is a valid approxi-
mation for radial range r ≫ 1/κ, where 1/κ is the characteristic dimension of the atom under
consideration which makes κ a parameter with dimensions of momentum. In the PPT theory
the terms describing the contribution of the ionisation rate from long-range interactions were,
strictly speaking, only valid for ionisation events at the peak of the linearly polarised laser field,
i.e., there were no sub-cycle dynamics reflected in such terms. These dynamics become cru-
cial for ionisation in few-femtosecond circularly polarised pulses, e.g., in the so-called attoclock
setup [44, 45]. As will be mentioned later, a nonadiabatic theory developed within the for-
malism of the so-called Analytical-R Matrix (ARM) method [46] allows one to overcome these
limitations and describe such dynamics [47].

One crucial development of PPT theory, which also becomes essential in deriving a dynamical
theory of strong field ionisation in LRP within the ARM method, was the boundary-matching
scheme which was based on the quasiclassical approximation [5]. What this method entails is
joining the asymptotic quantum wavefunction valid for r ≫ 1/κ to the continuum wavefunction
defined in the presence of the LRP (Coulomb-type potential) and the time-varying laser field
with the core potential treated quasiclassically as a pertubation to the continuum GV states.
The results obtained, however, cut off the core LRP effects as soon as the electron emerged
from the barrier, giving Coulomb corrections to rates and amplitudes applicable only near the
peak of the field where the highest ionisation rates are possible. The matching scheme was only
applicable in the quasistatic limit, and a more rigorous derivation will be presented in Chapter 2,
where we will present a matching scheme for frequencies in the nonadiabatic regime (γ ≳ 1).

The 3D bound state in a general LRP in the asymptotic limit κr ≫ 1 can be written as:

Ψ0(r, t) = Cκℓκ
3/2 e

−κr

κr
(κr)Q/κYℓm(θ, ϕ)e−iE0t, (1.21)

where Cκℓ is the state-specific constant for the field-free bound state of the atom, Q is the effective
LRP charge experienced by the ionising electron, κ =

√
2Ip is the characteristic momentum of

the electron in the bound state with ionisation potential Ip = −E0, and Yℓm is the spherical
harmonic with angular momentum quantum number ℓ and magnetic quantum number m. For
Q = 0 we get results for a SRP core, typically used for modelling ionisation from negative
ions. A tug-of-war exists in defining the appropriate range for the radial range r, between the
lower bound to validate the asymptotic expression Eq. (1.21) and the upper bound to validate
approximating the total polarised wavefunction with the field-free bound state wavefunction
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Eq. (1.21) (this approximation is only expected to be valid in the vicinity of the core): r ≫ 1/κ
to begin with for the asymptotic approximation, and r ≪ r∗, where:

r∗ =
κ

ω
ln

(
1 +

γ

γ∗

)
=

⎧⎨⎩
1

κ

√
F0

F
, for γ ≪ γ∗

κ/ω, for γ ≳ γ∗,

(1.22)

γ∗ = F0/F ≫ 1, after which distance the difference between polarised and bound state wave-
function starts to become significant (see Appendix in [6]).

We therefore need strong fields to make tunnelling the dominant mechanism for ionisation,
while at the same time not too strong to distort the wavefunction significantly in the region
near the core that feeds the continuum part of the wavefunction to ionisation. Typical intensity
range for these fields is 1013 − 1014 W/cm2, and wavelengths λ > 600 nm used in this estimate
to further suppress multiphoton ionisation pathways.

We first present the PPT derivation in Short-Range Potentials (SRPs) and then in Long-
Range Potentials (LRPs), comparing the points of similarities and differences in the two methods,
and discuss the assumptions that are essential to the PPT theory.

1.2.1 PPT theory in SRPs

The early results in the PPT approach [3,4] were derived for a SRP-core model, in the frequency
domain for ionisation rates. In a SRP model, there is only one bound state supported by the
core:

ΨSRP
0 (r, t) = Cκℓκ

3/2 e
−κr

κr
Yℓm(θ, ϕ)e−iE0t, (1.23)

with energy E0 = −Ip = −κ2/2, where Ip is the ionisation potential and κ the characteristic
momentum of the system. An advantage of the SRP-model is the direct cancellation of the
pole in momentum space in the Fourier transform of the bound-state wavefunction Eq. (1.23),
which is an asset in the derivation of ionisation amplitudes/rates, as we saw in Section 1.1 in
Eq. (1.20).

The total wavefunction, in the combined effect of the SRP-core and the time-varying laser
field, is defined by

Ψ(r, t) = −i
∫ t

−∞
dt′
∫
dr′GGV(r, t; r′, t′)VSRP(r

′)Ψ(r′, t′), (1.24)

where VSRP(r
′) is the SRP-core potential and GGV(r, t; r′, t′) is the Green’s function for the

continuum Gordon-Volkov (free) electron in a laser field:

GGV(r, t; r′, t′) =
1

(2π)3

∫
dk exp

[
i(vk(t) · r− vk(t

′) · r′)− i

2

∫ t

t′
dτ v2k(τ)

]
. (1.25)

In Eq. (1.24) we have omitted an extra term, which is irrelevant for the analysis of ionisation
rates.

We now approximate the total wavefunction in the integral in Eq. (1.24) by the field-free,
bound-state wavefunction for a SRP core [Eq. (1.23)]. This approximation is justified by the
assumption that the SRP limits the spatial integral in the expression for the wavefunction to the
very narrow region where the core potential dominates the laser field, the assumption particularly
appealing for a delta-function potential [3].

We therefore get:

Ψ(r, t) = −i
∫ t

−∞
dt′
∫
dr′GGV(r, t; r′, t′)VSRP(r

′)ΨSRP
0 (r′)e−iE0t′ . (1.26)
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From the Schrödinger equation for the field-free Hamiltonian in a SRP potential, we know that[
−1

2
∇2 + VSRP(r)

]
ΨSRP

0 (r) = −κ
2

2
ΨSRP

0 (r), or (1.27)

VSRP(r)Ψ
SRP
0 (r) =

(
1

2
∇2 − κ2

2

)
ΨSRP

0 (r), (1.28)

which when substituted in Eq. (1.26), gives us

Ψ(r, t) = −i
∫ t

−∞
dt′
∫
dr′GGV(r, t; r′, t′)

(
1

2
∇′2 − κ2

2

)
ΨSRP

0 (r′)eiIpt
′
. (1.29)

The advantage of this substitution is the fact that the Laplacian operator ∇′2 transforms into
a number, v2k(t

′), once it acts to the left, i.e. on the Green’s function GGV given by Eq. (1.25).
The expression for the Fourier Transform (FT) of the bound-state wavefunction is now needed,
and since we have a SRP, the FT for it is straightforward:

Φ0(vk(t
′)) =

rℓm
v2k(t

′) + κ2
Yℓm(v̂k(t

′)), (1.30)

where rℓm =
√
2κ/πCκℓ. We note a pole in the momentum representation of the bound-state

wavefunction at vk(t
′) = ±iκ. But, from the saddle point analysis of the time-integral, which

will be used in the PPT theory as well, we know from Eq. (1.18) that the instant of ionisation
is defined by vk(t

′
s) = iκ. Therefore, the pole arises exactly at the position of the saddle point.

However, in the PPT approach for SRP the pole cancels out as can be seen from the discussion
below. The expression for Ψ(r, t) now is

Ψ(r, t) =
i

(2π)3

∫ t

−∞
dt′
∫
dk e−ivk(t)·r− i

2

∫ t
t′ dτ v2k(τ)

1

2

(
v2k(t

′) + κ2
)
Φ0(vk(t

′))eiIpt
′
, (1.31)

and from Eq. (1.30), we know that the singularity exactly cancels out, but only for a SRP core;
in a LRP, even if we had somehow circumvented the other complications arising because of the
distortion of the wavefunction in the region κr′ ≳ 1, we would have ended up with a higher order
pole than in the case of the SRP [27]. In this case the recipe for the application of the saddle
point method should be modified [2, 48,49] and may lead to additional terms in the prefactor.

As detailed in the next subsection, in the PPT theory, the Coulomb effects were included by
introducing the Coulomb correction to the electron action and adopting the prefactor coming
from the short-range theory. Therefore, in the PPT theory, we need to be careful with the
assumptions and approximations that were crucial to make an extension to the LRP case.

Equation (1.31) can be used to derive the ionisation rates in the PPT theory, as we present
in the Appendix 1.B. The final result for the total ionisation rate is a summation over partial
ionisation rates describing the process of the electron absorbing n-photons:

w(E , ω) =
∑
n≥n0

wn(E , ω), (1.32)

wn(E , ω) = 2π

∫
dp δ

(
1

2

(
p2 + κ2 +

κ2x

2γ2

)
− nω

)
|Fn(p)|2, (1.33)

Fn(p) =
1

2π

∫ π

−π
dα exp

[
−iω0

ω

∫ α

0
dβ

{
v2p(β)

κ2
+ 1

}]
1

2
[v2k(α) + κ2]Φ0(vp(α)), α = ωt′. (1.34)

Here, x = 1+ ε2, where ε is the ellipticity of the polarised field, and ω0 = κ2/2. The lower limit
for the summation in Eq. (1.32) represents threshold ionisation, giving the minimum number of
photons required to liberate the electron in the given laser field, and is defined as:

n0 =
ω0

ω

(
1 +

1 + ε2

2γ2

)
. (1.35)
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Figure 1.2: Events in optical tunnelling ionisation mapped onto the complex-time plane. The
instant the electron is “kicked” by the laser field into the nonclassical under-the-barrier region
is defined by a complex time ts [evaluated through Eq. (1.18)]. As long as the electron traverses
under the barrier, the time variable follows parallel to the imaginary time-axis, until it reaches
the instant ti = ℜ[ts], when the electron is defined to be “born” into the continuum and can be
described classically. The quantum-mechanical properties of the tunnelling process are retained
in the complex trajectory of the electron due to the complex instant of ionisation, ts.

The summation in Eq. (1.32) represents Above Threshold Ionisation (ATI) peaks, given by the
partial ionisation rates in Eq. (1.33) for n-photons absorbed by the photoelectron, which can go
beyond the minimum required threshold value of n0. To derive analytical expressions for the
ionisation rate, it is necessary to evaluate the integral for Fn(p). In PPT theory [3,4], additional
approximations were made in the components of the drift momentum p for this term, to derive
these expressions. We will, however, not need these approximations for calculations of ionisation
rates and amplitudes in the Analytical R-Matrix (ARM) approach defined in the next chapter.

1.2.2 PPT theory in LRPs

The application of the saddle point method within the PPT theory has led the authors to a simple
and intuitive physical model of strong field ionisation, which describes tunnelling in the time
domain. In this picture, tunnelling proceeds along one specific trajectory (defined for each final
electron momentum) evolving in complex time. The starting point of this trajectory is associated
with the instant when the electron is “kicked” into the classically forbidden under-the-barrier
region by the laser field. The time the electron reaches the barrier exit and emerges from under
the barrier is associated with the time instant when the time variable becomes purely real and
the trajectory further progresses along the real time axis, as in classical mechanics. (Fig. 1.2).
The imaginary action accumulated under the barrier along this trajectory gives the expression
for the exponential part of the ionisation rate. With this lucid model we get a clear insight
into the physical process, allowing a straightforward prescription to include Coulomb effects
to the ionisation amplitudes, while simplifying the original, frequency-domain formal approach
tremendously. This model is commonly known as the Imaginary Time Method (ITM) [50, 51],
which has been developed extensively to describe strong field ionisation processes in Coulomb
potentials over a wide range of the Keldysh parameter, from the original quasistatic domain [4,6]
to the high-frequency, multiphoton regime [52,53].

Motivated by this insight from ITM, the quasiclassical scheme for describing strong field ion-
isation in the presence of a Coulomb-type potential [5] was also developed within the adiabatic
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limit of PPT theory. The method provides an intuitive picture crucial for the subsequent devel-
opment of the PPT theory, but it was lacking rigorous justification in several aspects concerning
the inclusion of LRP interactions in the theory. In this subsection, we present the basic ideas
for those derivations which were pursued within PPT(K) theory in [5, 6], while expounding on
those steps in the derivation process that were not sufficiently detailed in the original papers,
and which we consider to be essential for a coherent presentation for its application.

The most important contributions of the Coulomb-type potential were expected to be realised
through an enhancement of the ionisation rates/amplitudes by 1-2 orders of magnitude, judging
from the results for the static case [10]. Keeping that in mind, along with the ITM approach,
PPT [5] considered the perturbation to the SRP action, SSRP, due to the Coulomb perturbation.
The starting point is the contracted action S:

S =

∫ 0

t′s

dt

[
ṙ2

2
− V (r, t)− κ2

2

]
= S0 + δS, (1.36)

V (r, t) = VL(r, t) + δVC(r), (1.37)

δVC(r) ≈ −Q
r
, for κr ≫ 1. (1.38)

Here S0 is the action for the short-range potential and δS is the Coulomb correction to the SRP
result. The prescription given here is valid for the optimal momentum (the final momentum cor-
responding to ionisation at the peak of the linearly polarised laser field within the optical cycle),
for which reason the upper limit of the time-integral is zero, as t′s at the optimal momentum
in linear fields is purely imaginary. For this optimal momentum, the trajectory is also real (no
imaginary component) in the continuum. For a monochromatic elliptical/circular field, at the
optimal momentum, the real part of the ionisation time is set to zero as well (or can be set to
zero in the circular field case, without loss of generality since the results are isotropic anyway).

The next step is to find an expression for the first-order variation of the action S, giving us:

δS =

∫ 0

t′s

dt [ṙ · δṙ−∇VL · δr− δVC ]−
[
ṙ2

2
− VL − κ2

2

]⏐⏐⏐⏐
t=t′s

. (1.39)

We next make a zero-order iteration on the trajectories r(t), by defining them solely in the laser
field potential: r̈L = −∇VL(r). Along with the condition that at the exit point of the barrier,
ṙL = 0 (which is also valid only for the peak of the linearly polarised laser field, but
not for any other instant of ionisation within the optical cycle; for circular fields it is also not
true even for the optimal momentum, see Fig. 2.6, in Chapter 2), we can write this as

δS = −
∫ 0

t′s

dt δVC(rL(t))−
[
ṙL · δṙL +

(
ṙL − κ2

2
− VL(rL(t), t)

)
δt

]⏐⏐⏐⏐
t=t′s

. (1.40)

Fixing the end-point of the perturbed trajectory, we have r(t′s + δt′s) = 0 (where δts is the
possible correction to the ionisation time t′s due to Coulomb potential. However, these corrections
were not considered explicitly and were only presented in the variational analysis), we get the
boundary condition on the zeroth-order trajectory:

δr(t′s) = −ṙ(t′s)δt
′
s, (1.41)

which gives after substitution in Eq. (1.40)[
ṙ · δṙ+

(
ṙ− κ2

2
− VL(r, t)

)
δt

]⏐⏐⏐⏐
t=t′s

= [E0 −HL(r, t)]|t=t′s
= 0, (1.42)

that is, the saddle point condition on t′s [Eq. (1.18)]. The final result for the perturbation to the
SRP action therefore is:

δS = −
∫ 0

t′s

dt δVC(r(t)), (1.43)
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where r(t) is the zeroth-order trajectory defined only by the laser-field potential VL(r, t).

We can now write the expression for the ionisation amplitude valid for the optimal momentum
of the photoelectron in a Coulomb potential:

a(p, t) =

√
2π⏐⏐S′′

SFA(t
′
s)
⏐⏐e−iSSFA(t′s,p)−i

∫ 0
t′s

dτ VC(rs(τ))Yℓm
(
θvp(t

′
s), ϕvp(t

′
s)
)
, (1.44)

where the trajectory entering into the Coulomb terms is defined as

rs(τ) =

∫ τ

ts

dζ vp(ζ). (1.45)

The immediate problem with this expression is apparent: a singularity at the lower-limit of
time τ = t′s for the Coulomb-correction term in Eq. (1.44), where the trajectory goes to zero
[Eq. (1.45)]. To obviate this singularity and obtain physically plausible results, the purpose
here is to transform the Coulomb correction in Eq. (1.43) by regularising the integral. The
issue arises because of limitation in the quasiclassical analysis near the quantum atom. In the
PPT approach, regularisation was accomplished by breaking the diverging part of the integral
away from the well-behaved region. The non-classical part was defined before an arbitrary point
r = a, beyond which the classical phase was used to represent the wavefunction accurately. The
time instant at which the trajectory reaches r = a is t′a. After this time, quasiclassical results
hold.

This implies the perturbation due to the core to be redefined as

δS = −iQ
κ
lnκa−

∫ 0

t′a

dt δVC(r(t)), a = r(t′a) (1.46)

The first term represents the long-range, asymptotic part of the ground state wave-function.
Therefore the field-free bound wave-function and its quasiclassical “tail” can be matched together
to avoid the singularity. This procedure allows us to establish the lower limit for the integral
in the second term, which cuts out the singularity, ”absorbing” it into the bound state wave-
function.

Using the asymptotic expression for the bound state in the long range potential in the final
expression for the prefactor of the ionisation rate derived only for the short range case is an
ad-hoc step made in the PPT theory. The ARM theory developed in this Thesis shows how
Coulomb effects can be included consistently, without ad-hoc assumptions, and is not limited to
the ionisation events that occur at the peak of the field, making it possible to consider sub-cycle
Coulomb effects. This becomes particularly important for few-cycle pulses and the analysis of
attosecond ionisation dynamics within the attoclock setup.

Below we show how the a-dependence in Eq. (1.46) can be cancelled in the quasistatic limit
(ω → 0, γ → 0) following the results of the PPT theory. We need to consider two cases of field
polarisation for this purpose, which was presented in PPT theory: linear and arbitrary elliptical
polarisation.

Linear Fields

In linear fields, assuming the vector potential time-variation to be A(t) = −A0 sinωt ẑ, the
momentum at which the ionisation amplitude is maximum (the optimal momentum) is defined
by the extremum of the SFA action, SSFA, which gives us

∂SSFA
∂p

= 0 ⇒ p0 = 0, (1.47)



Chapter 1. Introduction 20

simplifying the laser field trajectory on which the action is evaluated to:

zopt(t) =

∫ t

t′s

dτ vp,opt(τ) = p0(t− t′s) +
A0

ω
(cosωt− cosωt′s)

=
A0

ω
(cosωt− cosωt′s). (1.48)

The quasiclassical LRP integral is then analytically solvable [5]:∫ t′i

t′a

dτ VC(rs(τ)) =

∫ 0

iτ ′a

dτ

(
− Q

rs(τ ′)

)
= i

Q

A0

∫ ωτ ′a

0

d(ωτ ′)

coshωτ ′i − coshωτ

= i
Q

κ
ln

[
tanh(ωτ ′i/2) + tanh(ωτ ′a/2)

tanh(ωτ ′i/2)− tanh(ωτ ′a/2)

]
, (1.49)

where we have used the definition for τ ′i at optimal momentum, sinhωτ ′i = γ [3] and the qua-
sistatic approximation ω ≪ ω0 (implying γ ≪ 1).

Combining the quasiclassical LRP term with the asymptotic quantum term, we get:

δS(t′s, 0) = −iQ
κ
ln

[
(κa) sinh

(
αi + αa

2

)/
sinh

(
αi − αa

2

)]
. (1.50)

Since κa ≫ 1, we are in the quasiclassical domain to make use of the complex trajectory
expression Eq. (1.48):

a = zopt(t
′
a) =

A0

ω
(cosωt′a − cosωt′s) = 2

A0

ω
sinh

(
αi − αa

2

)
sin

(
αi + αa

2

)
, (1.51)

which simplifies Eq. (1.50) to:

δS(t′s, 0) = −iQ
κ
ln

[
2
A0

ω
sinh2

(
αi + αa

2

)]
. (1.52)

We now make use of the adiabatic approximation, γ ≪ 1 realised through an extremely slowly
varying field ω ≪ ω0 = κ2/2. Under this limit αa = ωτ ′a → αi = ωτ ′i ≈ γ near the optimal
momentum in linear fields. The final result for this boundary matching scheme is

δS(t′s, 0) = −iQ
κ
ln

(
2F0

F

)
, (1.53)

which leads to

exp(−ℑ[δS]) =
(
2F0

F

)Q/κ

, (1.54)

where F0 = κ3 is the characteristic atomic field strength, and F is the peak strength of the
monochromatic laser field.

The final result of the ionisation amplitude, independent of the boundary term r′ = a, is:

aLRP(p, t) =

√
2π

S′′
SFA(t

′
s)

(
2F0

F

)Q/κ

e−iSSFA(t′s,p0)Yℓ,m
(
0, ϕvp0

(t′s)
)
. (1.55)

Elliptical Polarisation

For an elliptical field, defined by the vector potential

Ax(t) = −A0 cosωt, Ay(t) = −εA0 sinωt, (1.56)
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where ε is the field ellipticity parameter defined in the range, −1 ≤ ε ≤ 1. The positive values
are for right-circularly polarised and negative values for left-circularly polarised field.

The direction of optimal momentum at the detector is defined perpendicular to the maximum
electric field strength. In present case of Eq. (1.56), the electric field maximum lies along the
positive x-axis, which results in the optimal momentum directed along the positive y-axis. The
detection angle aligns with the instant of ionisation, which gives us ωt′i = ϕp = π/2.

The magnitude of the optimal momentum is obtained by defining a parameter ζ, such that

sinhωτ ′i =

√
ζ2 + γ2

1− ζ2
, (1.57)

a relation which is valid for all ellipticities. From this, and using the fact that the real part of
the ionisation time t′s, is ωt

′
i = π/2, we get

p0 =
κ

γ
(ε− ζ0)

√
1 + γ2

1− ζ20
. (1.58)

The optimal momentum defined in terms of ζ is at a specific value ζ0, defined by the implicit
equation [4] (again derived from ∂S/∂p = 0):√

ζ20 + γ2

1 + γ2
= tanh

⎡⎣ ε

ε− ζ0

√
ζ20 + γ2

1 + γ2

⎤⎦. (1.59)

Therefore, Eq. (1.58) is an implicit equation in p0. The motion now being defined in two
dimensions, the prefactor has a new term [5]:

aLRP(p, ε) =

[
2F0

F
C(γ, ε)

]Q/κ

e−iSSFA(t′s,p0)Yℓm(π/2, ϕvp0
(t′s)), (1.60)

where

C(γ, ε) =
αi

2γ
exp

[∫ αi

0
dα

{
γ

F (γ, ε)
− 1

αi − α

}]
, (1.61)

F (γ, ε) =

√
(coshαi − coshα)2 − ε2α2

(
sinhαi

αi
− sinhα

α

)2

. (1.62)

In Eqs. (1.61) and (1.62), αi = ωτ ′i , where τ
′
i is the imaginary part of the complex ionisation

time t′s, and α = ωτ is the integration variable defined for the time domain corresponding to
motion of the electron under the barrier.

The boundary matching scheme in elliptical fields was again realised by taking the matching
point in the limit τ ′a → τ ′i , which is only valid for quasistatic fields ω ≪ ω0.

The PPT results for ionisation amplitude in LRP, Eqs. (1.55) and (1.60), fix the prefactor
correctly, especially taking into account the enhancement of ionisation rates by several orders
of magnitude in a LRP, compared to SRP. Equations (1.55) and (1.60) are valid only in the
adiabatic range when γ ≪ 1 due to the slow field frequency compared to the response time
of the unperturbed electron. Conventional and state-of-the-art experiments presently operate
in a frequency range within an order of magnitude of the characteristic frequency of the atom
[44, 45, 54–58]. The nonadiabatic motion of the barrier must therefore affect the ionisation
process, even as the electron propagates into the continuum once emerging from under the
barrier. Unlike the PPT theory, therefore, the ionisation process may not end right when the
electron is born into the continuum, and we need to consider in further detail nonadiabatic
ionisation in a LRP under a strong laser field. For the more general domain of nonadiabatic
field frequencies, where γ ≳ 1, we will present the ARM formulation in Chapter 2, with rigorous
generalisation described in Chapter 3 for a bound state with arbitrary (ℓ,m)-numbers.
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1.3 Floquet Theory in Strong Fields

While in the Keldysh and PPT theory, we ignore the polarisation of the bound states by the
strong laser field, modifications of the energy levels in the presence of strong fields could be
significant. In this section, we consider the effect of strong laser fields on the bound state energy
shifts and its relevance in the laser field parameter range we consider.

One consistent method to include the laser field effects completely on the bound state is the
Floquet theory [59–62] which is applicable for time-periodic Hamiltonians. We start with the
Schrödinger equation in the periodic, monochromatic field:

i
∂Ψ

∂t
= ĤΨ, (1.63)

with the periodic condition
Ĥ(t+ T ) = Ĥ, (1.64)

where T = 2π/ω is the time-period of the laser field with angular frequency ω.
From the Floquet theorem, the solution to Eq. (1.63) with the condition (1.64) defines the

Quasienergy State (QES):
Ψ(r, t) = e−iϵtΦϵ(r, t), (1.65)

where Φ(r, t) satisfies the periodicity condition

Φϵ(r, t+ T ) = Φϵ(r, t). (1.66)

The parameter ϵ is real and called the quasienergy of the system, in analogy with the concept
of quasimomentum in Bloch eigenstates for a spatially periodic system.

Substituting Eq. (1.65) into Eq. (1.63), we get the eigenvalue problem:

Ĥ (r, t)Φϵ(r, t) = ϵΦϵ(r, t). (1.67)

with Ĥ = Ĥ − i∂/∂t and periodicity condition in Eq. (1.66), from which we also observe that
if the system is in a QES with quasienergy ϵ, then it gives rise to a ladder of quasienergy
levels ϵ + nω (for arbitrary integer n, ℏ = 1). The quasienergies can be interpreted as the
“total” energy of the combined laser field and atomic system under consideration, with n often
referred to as the number of photons absorbed by the atomic system. The QES with different
quasienergies are orthogonal and serve the same purpose as bound states in time-independent
Schrödinger equation, with concomitant theorems and principles applicable (virial theorem,
variational principle, etc.).

The conventional Floquet approach is conveniently applicable only to bound state dynamics.
Indeed, for real-valued ϵ, the decay of the initially bound state can only be represented by a
superposition of a continuum of quasienergy states. On the other hand, adiabatic turn-on of the
laser field should transform a bound ground state into a single quasi-bound QES. To incorporate
ionisation consistently, we need to include the possibility of complex quasienergies. Two common
ways for this are:

1. complex scaling transformation [63–65], which involves promoting the spatial domain to
complex domain with r → r exp(iα), leading to a non-Hermitian Hamiltonian and complex
quaisenergies, or

2. quasi-stationary, quasi-energy states (QQES) [66–68], which allow for complex quasiener-
gies by using complex boundary conditions for an outgoing electron in a continuum state

What pertains to our analysis and review of theoretical methods in optical tunnelling in
a strong laser fields, is the validity of approximating the total wavefunction in the combined
effects of the core potential and the strong laser field by the laser field-free bound state and
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Figure 1.3: Energy shifts for Hydrogen atom (1s state), calculated from complex scaled QQES
approach by Chu [64, 65], for field strengths F = 0.01 a.u. ( ), F = 0.025 a.u. ( ), and
F = 0.075 a.u. ( ). The unperturbed energy of the bound state H-atom is at E0 = −0.5 a.u.

energy in the vicinity of the core. The real part of quasi-energies also include the AC Stark shift
of the unperturbed energy levels in the presence of strong fields, thus allowing us to gauge the
significance of this shift. From the complex scaling method [64], we know that the distortions
of the quasienergy states for field strengths in the vicinity of F = 0.01 − 0.10 a.u. is, at the
most, an order of magnitude smaller than the bound state energy, for laser field frequency range
0.18 < ω < 0.30 a.u. (Fig. 1.3).

In optical tunnelling regime, we consider frequencies at least an order of magnitude smaller
than the ones used in [64, 65], ω < 0.1 a.u., and field strengths at least one or two orders of
magnitude smaller than the atomic field strength, 0.01 < F0 < 0.075 a.u. typically. With the
general trend of field shifts of quasienergy states decreasing with decreasing field frequencies, we
can safely assume that the energy of the field-dressed state can be approximated to the bound
state, with the resulting error limited to less than 3 − 4 orders of magnitude in energy. This
conclusion is also corroborated by the QQES theory of Manakov et. al. (for circularly polarised
field, especially, see [69]).

For the QQES approach to model ionisation, we consider its application in the Time-
Dependent Effective Range (TDER) theory, which combines the QQES method to Zero-Range
Potential (ZRP) models used for describing ionisation in negative ions. ZRP models rely on
describing the core potential by a delta-type well, or a binding potential active in a finite region
of space. There are some limitations to this model, which we explain in the next section, and
present an outline of the TDER theory that surmounts these limitations to provide a generalised
theory of strong field detachment in anions.

1.4 Time-Dependent Effecive Range Theory

The zero-range potential model has been used extensively [3,4,70] to study strong field processes
in atoms, owing to its simplicity and efficacy in modelling core potential interaction of the
ionising electron in strong fields, at least qualitatively for atoms and quantitatively for negatively
charged ions. However, one limitation of ZRP models is that it supports exactly one bound state,
and an s-state only, to describe the bound electron [10]. But it is well known that the symmetry
of the initial bound state of the electron is crucial in deciphering the angular distributions of
the photoelectron in experiments and understanding the various strong field processes [71–76].

The Time Dependent Effective Range (TDER) theory provides a solution to this problem in
ZRPs, by combining the effective range theory [10] (with two modelling parameters) with the
QQES theory mentioned in the previous section, and allowing for a bound state of arbitrary
angular momentum. Within the TDER approach, the electron interaction with both the core
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and the laser field potential is treated non-perturbatively, and thus can be used to model a wide
range of strong field phenomena in short-range potentials supporting arbitrary angular quantum
numbers. Thus, the theory goes beyond the standard Keldysh Approximation (KA).

The starting point is defining a core potential U(r) to model the ZRP, but this time with
two parameters, the binding energy E0 and the asymptotic coefficient Cκℓ in the wavefunction
at large distances. For this we define the cut-off point for the potential, rc, such that,

U(r) = 0, for r ≳ rc. (1.68)

To harbour a shallow bound state in the field-free case in this potential, we require rc ≪ 1/κ.
In the asymptotic limit, κr ≫ 1, the radial part of the wavefunction can be approximated as

Rκℓ ≈ Cκℓ
e−κr

r
, (1.69)

and Cκℓ thus controls the definition of the core potential U(r).
The next step is to invoke the QQES formalism of the previous section. For this purpose, we

again solve the time-dependent eigenvalue problem satisfied by the time-periodic part of QQES:

Ĥ (r, t)Φϵ(r, t) = ϵΦϵ(r, t), (1.67)

but with complex values for quasienergy ϵ. As U(r) = 0 for r > rc, in that radial domain the
outgoing electron solutions are simply the free electron states (GV) in a laser field. To solve for
ϵ, we need to match these continuum states with the solution for Eq. (1.67) inside the potential
well.

The application of TDER for short-range potential systems as negative ions can be used
to study threshold effect of channel-closing in strong fields [77]. Channel closing refers to the
phenomenon of lost multiphoton ionisation channels due to increase in Stark shifts of the bound
states as well as the ponderomotive energy shift of the continuum threshold, as the laser field
intensity increases. The TDER theory captures this nonperturbative effect when plotting the
complex quasienergies as a function of intensity, where channel closing manifests as irregularities
in the energy shifts and discontinuities in detachment rates simultaneously.

Conversely, channel-opening effects can also be observed within the TDER theory by plotting
the complex quasienergies as a function of laser field frequency. In channel-opening, as the field
frequency increases, a new, lower-photon transition channel becomes available for detachment
of the electron into the continuum.

These two effects, along with other features of quasienergy variations with field intensity
and frequency, can be used to distinguish between the bound-state orbital magnetic number m
participating in the process. For example, the Stark shifts for m = 0 states are significantly
higher than for |m| = 1, due to unavailability of virtual electron transitions to s-state in the
latter case. Threshold effects are also more easily perceived in m = 0 states than for |m| ≠ 0,
due to sharper dependence of detachment cross section on the angular momentum for m = 0
than for |m| = 1. The effective range theory provides an exact solution for all strong field
phenomena for short-range potentials. Therefore it can be used to check the validity of various
approximations. For example, [30] shows that Keldysh (length gauge SFA) result is reproduced
in the effective range theory once the rescaterring effects are excluded.

1.5 Further Literature

A generalisaton of Keldysh theory was provided in the Keldysh-Faisal-Reiss (KFR) model
[78–81]. The difference between Keldysh and KFR theories, historical perspective on their de-
velopment, and further extension to include LRP effects over a wide range of Keldysh parameter
is detailed comprehensively in [82]. The extension of Keldysh theory to intensities and electron
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1,3

2

1. Electron is born into the continuum. Optimal
momentum electron satisfies zero initial velocity:
v(ti) = 0.

2. Electron propagates in the continuum
as a field free particle. Core interaction is
ignored during propagation.

3. Recombination/rescattering with the core,
leading to HHG/HATI respectively.

Figure 1.4: Classical three-step model for strong field ionisation. The non-classical tunnelling
under the barrier step is not included and the electron is assumed to be born into the continuum
as a free electron in laser field state.

energies approaching the relativistic limit was first presented by Nikishov and Ritus [83], and
later by Reiss in a thorough, comprehensive Physical theory of strong field ionisation [43, 84].
The subject of multiphoton ionisation [85–94], Above Threshold Ionisation (ATI) [95–101], Mul-
tielectron Processes [102–111], High Harmonic Generation (HHG) [112–129], have since been
thorougly expatiated in the literature. Below we outline some key results pertinent to the work
developed in this Thesis.

1.5.1 Simple models for strong field phenomena

An intuitive and easy to implement model prevalent in strong field ionisation is the three step
model [130], which was preceeded by a two-step model as a source for ATI [131], and posits a
classical, simpleman’s theory of strong field ionisation. See also [132, 133] for the model of an
“atomic antenna” and the quasistatic theory [96,134–136], along with the necessity of recollision
as the additional third step [137–140]. As the name suggests, the model consists of three steps:
(1) ionisation of the electron by the strong laser field through modulation of the core potential
barrier (Fig. 1.1a), (2) the propagation of the electron in the laser field ignoring distortions by
the core potential, and (3) either recombination or recollision with the parent ion resulting in
the production of HHG or higher energy electrons (HATI, E > 2UP ), as the electron is steered
back by the laser field. A schematic for the 3-step model is presented in Fig. 1.4. The ionising
electron is considered to be the sole active electron in what might be a complex collection of
several electrons and nuclei in a molecule. This supposition is the Single Active Electron (SAE)
approximation.

While this model has provided an invaluable and remarkably simple visualisation for a
wide array of strong-field phenomena, as we venture into studying more complex systems (e.g.,
molecules with multiple ionisation channels), or delve deeper into the region of energy spectrum
where the assumptions made in the Simple Man Model (SMM) are questionable, a more com-
prehensive theory is desired. For example, in the SMM, for phase (1), the electron is assumed to
emerge from under the barrier with a zero velocity. This adiabatic assumption at the very start of
the ionisation process has been called into question recently, both from theoretical [46,141–144]
and experimental [55, 57] point of view. In step (2), the effects of core potential on electron
dynamics is ignored, on account of the usually large energy imparted to the electron by the
laser field. This assumption is not valid for low-energy electrons in the ATI spectrum, where the
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core potential plays a prominent role in deciding the features observed in experiments [145–147].
Even for moderate energy, direct photoelectrons, core interactions have already been known to
significantly affect the ionisation rates and amplitudes from the early days of Keldysh and PPT
results. For the last event (3), it is implied that the electron recombines to the same state of
the ion, usually the ground state, in which it left it in the beginning. However, as shown in
recent studies on molecules [129,148], more than one channel can be active during the ionisation
process, and hence available on the recombination/recollision stage, explaining some of the most
crucial features in the HHG spectrum [129].

1.5.2 Numerical and Analytical methods: the pre-attosecond and attosecond
era

Coincident with the analytical approach, numerical methods have also been developed to study
strong field ionisation, beginning with the pioneering work of Kulander [149], followed by sev-
eral approaches developed [150, 151] within the Single-Active Electron (SAE) approximation,
where all but one electron in the system are considered to be ensconced in a placid state of
tranquillity from the agitations of the strong laser field, save for the screening effect that can be
imputed to the core electrons, so as to affect the effective charge felt by the ionising electron.
A numerical approach based on the Floquet theorem [152] for laser-dressed states, exploiting
the time periodicity of interaction between the ionising electron and the laser field, is also avail-
able [60,63,153–157].

With these developments, a basic theory of strong field ionisation was established, accom-
panied by simultaneous progress on the experimental front, beginning from the first study of
multiphoton (Ip/ℏω ≈ 7) ionisation of Xenon [158], the observation of above threshold ionisa-
tion (ATI) peaks [20, 159] which unequivocally signified the breakdown of lowest-order pertur-
bation theory (LOPT) for strong field ionisation, tunnelling ionisation in noble gas atoms [160],
high-harmonic generation (HHG) [112–129,161], the discovery of high-energy electron plateau in
ATI [97,162–165], electron-electron correlations in non-sequential (NSDI) [102,103,105,166–169]
and lately, sequential double ionisation (SDI) [55,56,170–173].

Starting from the first half of the new millennium, short-cycle, femtosecond pulses were
readily available with high peak intensity and optical field frequencies, which ushered in the
era of experimental studies of light-matter interaction towards the sub-femtosecond domain
[118, 174, 175], including the first stereo-ATI experiment [123, 176–178], which is essentially the
double-slit experiment performed in the attosecond domain, production of carrier-envelope offset
phase (CEP) stabilised light beams to study CEP effects on HHG [179], and resulting in routine
generation of attosecond pulses [54] opening the new era of attosecond dynamical imaging.
New imaginag techniques with high temporal and spatial resolution were introduced, such as
the attosecond streak camera [44], the attoclock [45], laser-induced electron diffraction [180–
182], tomographic imaging of molecular orbits [183, 184]. High harmonic spectroscopy has also
been developed, that focuses on studying the vibrational and multielectron dynamics in intense
fields. Intriguing questions about attosecond dynamics triggered by ionisation have also been
addressed, such as attosecond time-delay measurement in ionisation of noble gas atoms [44,
45, 55, 185, 186] and probing the hole dynamics in noble gas ions after strong field ionisation
[54, 187]. Furthermore, after nearly five decades, it was discovered that for the nonadiabatic
domain (γ ≃ 1), strong field tunnel ionisation by a circularly polarised radiation from valence
p-orbitals, specifically noble gas atoms, has a proclivity towards liberating electrons “rotating”
counter-clockwise relative to the field, i.e. with magnetic quantum number (mℓ) opposite to field
polarisation [142,143]. These and other new effects in strong field ionisation, such as observation
of Low-Energy Structures (LES) [145–147,188–195], time-resolving subcycle tunnelling dynamics
[44,45,55,196–199], have made the subject of early Keldysh and PPT works topical, while also
demanding significant upgrades of these and other existing theoretical methods.

First, the originally developed analytical theories were still lacking the dynamical aspects
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of the ionisation process, i.e., the rates derived applied for end-of-time observations but not
sub-cycle timescales.

Second, the conventional adiabatic theory of ionisation [2–6], and the generalisaton in the
Keldysh-Faisal-Reiss (KFR) theory [78,79,81] is suitable for deriving ionisation rates for long du-
ration, nearly-monochromatic fields, and accurately applicable for systems manifesting electron-
core interactions via short-range potentials, i.e., negative ions [29, 200–203]. In the presence of
long-range interactions, the usual theories working within the limits of SFA are not accurate qual-
itatively at times, let alone the issue of quantitative agreement. For example, the photoelectron
angular distributions exhibits no left-right or inversion symmetry predicted by SFA [204]. The
SFA approach also fails to account for the effects of Coulomb-singularity observed for transverse
distribution [205], and the Coulomb focussing effects [206, 207]. Since Keldysh [2] and PPT’s
work [5] it has been known that Coulomb-type corrections are crucial for the prefactor, and an
estimate was made in [5] of this correction enhancing the ionisation probability by 2 to 3 orders
of magnitude. Inclusion of Coulomb-correction to ionisation rates was carried out in a rather
adhoc, albeit physically intuitive manner, which lead to the idea of boundary-matching scheme
developed within the quasiclassical approximation method for non-stationary systems: an inge-
nious contrivance in predicting reliable theoretical expressions for ionisation rates in long-range
potentials, albeit in the quasistatic limit (ω → 0).

Third, as stronger and shorter field pulses have been generated at a remarkable pace over
the course of a few decades, we have ventured into the experimental domain where the Keldysh
paramter γ, which is a measure of the nonadiabaticity of the ionisation process, has explored
adiabatic tunnelling domain (γ ≪ 1), the strongly multiphoton ionisation pathways (γ ≫ 1),
and, most importantly, a hybrid of the two extremes for γ ≃ 1 [141], which has been the domain
of operation for recent experiments [55,57,187].

Fourth, ionisation models developed within the scope of SAE approximation also do not
take into account the interactions of the ionising electron with ensemble retained in the ion, or
interaction of these core electrons with the laser fields, and polarisation effects. Electron-electron
correlation specifically become important in Non-Sequential Double Ionisation (NSDI) and have
been shown to be important even in Sequential Double Ionisation (SDI) processes experimentally
[55,170] and expounded on theoretically [171–173], albeit in a classical framework.

These factors taken together create a demand for a theory, which is able to model sub-cycle
nonadiabatic Coulomb and multielectron effects faithfully.

The Intense-field Many-body S-matrix Theory (IMST) [208] is a quantum mechanical theory
to take into account electron-electron correlations in a perturbative scheme. The standard
KFR ionisation rate can be derived within the framework of IMST, by the right partition
of the total Hamiltonian and choice of the interaction potential. The first amplitude in the
series defined in different IMST approaches is equivalent to the SFA result, with subsequent
corrections provided by additional terms. This theory allows one to tackle double ionisation,
laser-induced electron diffraction and holography. Combining the main principles of this theory
with the method of quantum orbits [209], based on the Saddle Point Method (SPM), significant
progress in understanding attosecond dynamics in HHG [210,211], High-order Above Threshold
Ionisation (HATI) [212–218], X-ray atom scattering [150, 219–222], Laser-assisted electron-ion
recombination [223,224] or laser-assisted electron-atom scattering [225–228] and Non-Sequential
Double Ionisation (NSDI) [229–231], has been achieved.

A complimentary perspective is provided by numerical methods. The brute-force ab ini-
tio solution of the Time Dependent Schrödinger [232] Equation (TDSE) is presently limited to
two electron-systems (e.g., Helium) in a strong IR field. State of the art alternatives include:
time-dependent multi-configuration approaches in strong fields [233–236] time-dependent den-
sity functional methods (TDDFT) [237], the multichannel approach [238], the time-dependent
R-matrix method [239] and hybrid approaches combining quantum chemical and strong field
methods [240–247]. Except for approximate and semi-analytical approaches [240–242,245–247],



Chapter 1. Introduction 28

all these become computationally very expensive in the regime of intense mid-infrared laser
fields, which is extremely important for the dynamic imaging [248, 249] (for example, the elec-
tron holography experiments [250] have been done for light wavelength between 7 and 16 µm).
To overcome this obstacle, partitioning of the configuration space was suggested. It lies at
the core of the very successful new method for calculating strong field continuum dynamics in
two-electron systems (t-SURFF) [251,252]. This method combines solution of the TDSE in the
region of ∼ 100− 200 Bohr around the core, with analytical propagation of the electron in the
laser field outside this region using the Volkov functions. The family of new numerical methods
to describe multielectron dynamics in strong fields also includes the following very recent de-
velopments: the time-dependent generalized-active-space configuration interaction (TD-GASCI)
method [253], the B-spline algebraic diagrammatic construction [254] and periodic von Neumann
(PvB) method [255].

Including nonadiabatic, sub-cycle Coulomb effects is a central effort undertaken in this the-
sis. Coulomb-type corrections to the ionisation process, within the adiabatic limit, were first
proposed in [2,5]. Developing on the Imaginary Time Method (ITM) [5,6], Coulomb corrections
to ionisation rates and photoelectron angular distribution can be taken into account through
corrections to the quantum-orbits in the adiabatic and nonadiabatic domain [50–53]. The sub-
sequent approaches can be grouped as follows:

1. the ad-hoc methods, which assume that the effect of Coulomb and laser field interactions
can be factorised in the electronic wavefunction. This Coulomb-Volkov approximation for
the states of the continuum electron was an early attempt to take into account Coulomb-
phase distortions in the plane wave Volkov states [256]. This adhoc method performs
reasonably well for large excursion amplitudes of the free electron propagating in a strong
laser field with a comparatively weaker Coulomb potential, and it has been applied to
study Coulomb effects on ATI spectrum [192, 194, 257]. Several other methods to include
Coulomb-type potential effects on the ionisation amplitudes have also been proposed [258–
264]. These models are well-suited when the electron is removed by a highly energetic
photon, allowing the Coulomb effects to be taken into account only in the prefactor, and
exhibit no distortion of the spatial part of the phase. It is, however, not applicable in the
optical and infrared frequency regime [265] where the Coulomb-Laser field coupling effect
on the continuum electron cannot be ignored.

2. significant upgrade of the original PPT approach and extension to very large Keldysh
parameter γ has been detailed in [266].

3. the approach based on propagating an ensemble of classical trajectories born at the tunnel
exit, with initial conditions defined according to the PPT theory and corrected within
the Coulomb-Corrected SFA (CCSFA) approach of Popruzhenko-Bauer [51, 52] has lead
to significant progress in understanding Coulomb effects in ATI [249], and low-energy
structures [146].

Finally, with this thesis, we present the Analytical R-Matrix (ARM) method [46, 148, 267–
271], a quantum-mechanical framework to describe strong-field ionisation processes in systems
with arbitrary long-range potential profiles, with specific focus on accurately and rigorously
deriving the theory of Coulomb-Laser coupling for the ionising electron, as well as study in
detail the effects of correlation interactions leading to laser-induced nonadiabatic transitions
in ion during the ionisation process. The effect of the long-range core interaction with the
ionising electron is taken into account through a nonadiabatic quasiclassical method, with an
expression for the eikonal-Volkov electron [267] which models the distortions in the wavefront
by the core potential. Since the fundamental effect is on the phase of the continuum electron,
we can take into account long-range effects while the electron is tunnelling under the barrier,
and consider corrections to the ionisation times defined through the saddle point method, which
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will be subject of the next chapter. At high ellipticities of field polarisation, Coulomb-effects
are known to specifically modify the ionisation process at the tunnel exit [207], and we present
a theory to calibrate the time of ionisation through ARM method.

With recent experiments [55, 129, 187], it has become apparent that orbitals other than
the valence could partake in the ionisation dynamics. A multichannel theory of ionisation in
quantum mechanical regime is therefore indispensable in comprehending the complete dynamical
process. Multichannel theories focussing on hole dynamics upon ionisation have been proposed
in the recent years [143, 272, 273]. In the future we hope to apply multielectron theory of
ARM, developed in [148], to study correlation channels arising in noble gas atoms and ions,
with special empahsis on correlation effects in Sequential Double Ionisation (SDI), which have
recently gained attention in theoretical [171–173] as well as experimental [55,170] study of SDI
in noble gas atoms.

1.6 Thesis Outline

The outline for this thesis is as follows: in Chapter 2 we derive the Analytical R-Matrix (ARM)
formalism in circularly polarized fields. This approach allows one to take into account effects of
long range core potential on ionisation dynamics. The core potential is consistently included to
the first order of magnitude in its phase distortion of the continuum wavefunction of laser-driven
electron.

Specifically, this Chapter extends the Analytical R-Matrix (ARM) method to the case of
strong field ionisation by circularly and elliptically polarized laser fields. An application high-
lighting the importance of the nonadiabatic character of the ionisation process in long-range
potentials is then presented, with the discussion of the attoclock setup and its improved calibra-
tion to take into account the electron interaction with the core potential. The usual assumptions
of adiabaticity for the ionisation process is shown to be inaccurate in the regime of present day
experiments.

The results of this Chapter were published in the paper: J. Kaushal and O. Smirnova,
Nonadiabatic Coulomb effects in strong-field ionisation in circularly polarised laser fields, Phys.
Rev. A, v. 88, 013421, (2013).

Next, in Chapter 4, we use and expand the ARM results of Chapter 2, to propose a new
clock which is able to time the ionisation dynamics in strong laser fields. This clock exploits the
spin-orbit interaction in noble gas atoms. This new “attoclock” has the inherent advantage of
being “built-in” to the atom under investigation and provides a natural way to study delay times
in strong field ionisation. Theoretically, we develop a consistent map which links the rotation
of the electron or hole spin with ionisation time delays, from one-photon to multi-photon /
tunnel ionisation regimes. Essential to deriving these time delays are expressions for phase
delays induced through the (model) long- and short-range interactions between the outgoing
electron and the core. We also analyse the similarities and difference between the standard
barrier problem and strong field tunnel ionisation, elucidating the role of ionisation potential Ip
through a concise expression for time delays associated with long-range interactions.

The results of this Chapter were published in the paper: J. Kaushal, F. Morales, L. Torlina,
M. Ivanov, and O. Smirnova, Spinorbit Larmor clock for ionisation times in one-photon and
strong-field regimes, J. Phys. B, v. 48, 234002, 2015.

One of the cornerstones of the R-matrix theory is the need to match the wavefunction ob-
tained in the so-called “inner” and “outer” regions, at the boundary of the R-sphere surrounding
the ionic core. The issue of boundary-matching for bound states with arbitrary quantum num-
bers is discussed in Chapter 3, where we present a rigorous derivation and generalisation to
the effectively adhoc approach developed by PPT [3–6]. With this generalised and rigorous
boundary-matching scheme, we also show a method to include modification of the electron mo-
mentum distribution due to electron-core interactions right from the very instant the electron
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plunges into the non-classical region. This matching scheme is a crucial step required to include
the effects of Long-Range Potential (LRP) interactions on ionisation dynamics.

We also present in this chapter a general derivation of Coulomb-corrected complex ionisation
times, which unifies the Larmor clock delay times [Chapter 4] and the numerical validation of
delay times presented in [269,270].

The results of this Chapter were published in the paper: J. Kaushal, F. Morales, and
O. Smirnova, Opportunities for detecting ring currents using an attoclock setup, Phys. Rev. A,
v. 92, 063405, (2015).

Effects of spin-orbit interaction on spin polarisation of electrons emitted during strong-field
ionisation is presented in Chapter 5. Spin polarised sources of electrons is a thoroughly studied
subject and is a research field in itself [274]. However, the possibility of spin polarisation in
strong field ionisation has been predicted only recently [144,273]. This chapter is motivated by
the study of spin polarisation during strong field ionisation from short-range potentials [144,273].
We include the Coulomb effects and study in detail the response of noble gas atoms, as well as
alkali ions, in strong laser fields. We also consider the effects of long range interactions on the
magnitude and directional properties of the spin-polarised electrons. A comparison with the zero
range potential results shows subtle distortions in the degree and direction of spin polarisation,
evincing signs of symmetry breaking in the process, besides the usual asymmetries induced in
photoelectron angular distributions [204].
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1.A Complex WKB and BOMCA

There have been many attempts at elucidating the counter-intuitive nature of quantum mechan-
ics through graspable ideas of trajectories. Using the standard ansatz for a wavefunction:

Ψ(r, t) = A(r, t) exp

(
i

ℏ
S(r, t)

)
(1.70)

with a real amplitude A(r, t) and real phase S(r, t), which, after substituting into the Schrödinger
equation, gives us two coupled equation in real amplitude A and phase S:

∂S

∂t
+

(∇S)2

2m
+ V =

ℏ2

2m

∇2A

A
, (1.71)

∂A

∂t
+

∇A · ∇S
m

+
A∇2S

2m
= 0. (1.72)

The standard, quasiclassical WKB approach is to write a series in powers of Planck’s con-
stant ℏ, which allows us to interpret the wavefunction being defined through a (semi-)classical
trajectory. In the Feynman Path Integral formulation, this corresponds to a saddle point ap-
proximation over all the paths available.

While this method is reliable in estimating the character of several physical processes, includ-
ing strong field ionisation, to probe the quantum mechanical nature of atomic phenomena, we
need a truly quantum mechanical theory. One of the limiting features of quasiclassical methods
is its failure at the nodes of a wavefunction, which manifest as caustics in the classical trajec-
tories. We need to go beyond the classical approach to accurately define the wavefunction at
these points.

Recently, two new and closely related methods have been developed to tackle these issues:
Complex WKB and Bohmian Mechanics with a Complex Action (BOMCA) [38, 40, 41]. Both
Complex WKB and BOMCA start out with the same ansatz for the wavefunction:

Ψ(r, t) = exp

(
i

ℏ
S(r, t)

)
, (1.73)

from which we get a single quantum Hamilton-Jacobi (HJ) equation:

∂S

∂t
+

(∇S)2

2m
+ V =

iℏ
2m

∇2S. (1.74)

Here, S(r, t) is complex. From this point on, both methods diverge in two different groups.

1.A.1 Complex WKB

For Complex WKB, we first make use of the conventional series expansion in ℏ, S(r, t) =∑∞
n=0 Sn(r, t)ℏn. After following the standard rule of collecting all the terms for a given ℏn and

setting them individually to zero, we get the following set of equations for Sn(r, t):

∂tS0 +
1

2m
(∇S0)2 + V (r) = 0, (1.75)

∂tSn +
∇S0
m

· ∇Sn = − 1

2m

n−1∑
m=1

∇Sm · ∇Sn−m +
i

2m
∇2Sn−1, n = 1, 2, . . . (1.76)

While in conventional WKB, we are limited to only first few terms in Sn, in complex WKB we
have the possibility of going to high orders in the expansion series of S by following the evolution
of second derivatives of the form appearing in Eq. (1.76) upto a given n. This entails knowing
derivatives up to order 2n.
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Complex WKB struggles with the same limitations that the quasiclassical WKB methods
suffer from: caustics. It is, however, possible to regularize these singularities to integrate through
the system of equations in Eqs. (1.75)–(1.76). We still are working with equivalent of classical
trajectories, and we still have to relay on the power expansion approach of quasiclassical method.

BOMCA is a formalism based on the trajectory-based methods that employ the saddle point
approximation around a near-classical path. This new approach allows us to consider deviation
from the classical methods and consider a more effective formulation of trajectory-based quantum
mechanics.

1.A.2 BOMCA

The essential difference between Complex WKB and BOMCA is that in former, we use the
conventional WKB approach of adding more terms to get better accuracy, while in latter, we
attain higher order accuracy by manipulating the paths on which the approximations are applied.
Both make use of complex trajectories defined through the initial wavefunction. The flexibility in
choosing paths in BOMCA allows to achieve a faithful quantum mechanical description through
near-classical trajectories, while still easing the computational overhead by limiting to leading
order terms.

In the quasiclassical WKBmethods, the influence of the quantum potential, Q = ℏ2/2m∇2A/A
is usually ignored, allowing us to define classical characteristic trajectories. In Bohmian Me-
chanics (BM), this is the crucial term leading to “quantum trajectories” and nonlocality that is
characteristic of quantum mechanics. The apparent difference in conventional BM and BOMCA
is that the amplitude part is subsumed into the phase, giving us a single, complex phase.

In BM, we use the full, quantum trajectories, defined through the expression:

ṙ =
ℏ
m
ℑ[∇ logΨ(r, t)], (1.77)

whereas the trajectories implemented in BOMCA are perturbations around the classical trajecto-
ries. This is an advantage in favour of BOMCA: the velocities derived from quantum trajectories
diverge at nodes of the wavefunction. With BOMCA we can gradually study the process around
these and similar points where classical methods fail (e.g., due to caustics) while still retaining a
sufficiently faithful representation of the wavefunction through these near-classical trajectories.

Compared to conventional, classical WKB-type analysis in initial step, BOMCA emphasises
on the inclusion of the quantum potential, which is the essential ingredient of BM. Within
BOMCA, a large number of coupled ODEs are solved to estimate the wavefunction. This is
achieved by defining the equations of motion:

dr

dt
= v, where, v =

∇S
m
, (1.78)

which, along with Eq. (1.74), defines the evolution equations:

dv

dt
= − 1

m
∇V (r) +

iℏ
2m2

∇2(∇S), and (1.79)

dS

dt
=

1

2m
v2 − V (r)− iℏ

2m
∇2S. (1.80)

The nonlocality due to the quantum potential, iℏ∇2S/2m, deters any closed-form solutions to
these equations.

The approach in BOMCA is to gather information on evolution of the Laplacian and higher
derivative in Eqs. (1.80) and (1.79), through higher spatial derivatives of Eq. (1.80), until a
specific order n that truncates all terms beyond differential order 2n.

Since we are now considering complex trajectories, the wavefunction and associated action
are analytically continued to the complex plane. It is shown that using a small set of trajectories
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sufficiently reproduces the exact wavefunction once this quantum force term is also taken into
account within the formalism of BOMCA [38]. This has applications in Strong Field Physics,
where saddle point analysis was used to isolate a small set of trajectories to describe the physical
processes [36].

1.B Ionisation Rates in PPT theory

We present here a succinct derivation of ionisation rates in SRP core within the PPT theory.
The starting point is the expression for total wavefunction from Eq. (1.31):

Ψ(r, t) =
i

(2π)3

∫ t

−∞
dt′
∫
dk e−ivk(t)·r− i

2

∫ t
t′ dτ v2k(τ)

1

2

(
v2k(t

′) + κ2
)
Φ0(vk(t

′))eiIpt
′
. (1.31)

We present here results for ionisation rates in an arbitrary elliptically polarised fields, linear and
circular polarisation being special cases. The results will be derived with the approximations
of the PPT approach [4] in mind. A more accurate derivation for ionisation rates, taking into
account LRP core and for circular polarisation (which is straightforward to extend to elliptical
polarisation) will be presented in Chapter 2.

The ionisation rate is defined as the flux of the probability current j through a plane at
infinity perpedicular to the polarisation of the laser field. For an arbitrary elliptical field, with
plane of polarisation set along the xy-plane and the direction of propagation set along the z-
axis, this plane at infinity is a curved surface set at radius r → ∞. Since we know the formal
expression for the wavefunction in spatial domain from Eq. (1.31), the probability current is

j(r, t) ≡ i

2
(Ψ∇Ψ∗ −Ψ∗∇Ψ)

=
1

2(2π)3

∫
dk2dk1 [vk1(t) + vk2(t)]Iℓm(k1, t)

∗Iℓm(k2, t)×

exp

[
i(k2 − k1) · (r− ξ(t))− i

2
(p22 − p21)t

]
,

(1.81)

where,

Iℓm(k, t) =

∫ t

−∞
dt′

1

2

(
v2k(t

′) + κ2
)
Φ0(vk(t

′)) exp

[
− i

2

∫ T

t′
dτ vk(τ) +

κ2

2
t′
]
. (1.82)

The plane at infinity, to be chosen for elliptically polarised field defined as

F(t) = F0(cos(ωt) x̂+ ε sin(ωt) ŷ), (1.83)

is a cylinder of radius R → ∞ with its axis along the z-axis. The integral of the probability
current j(r, t) through this cylinder is represented by J (R, t), and using the relations:∫ ∞

−∞
dz

∫ 2π

0
dϕR exp{i(k1 − k2) · r}(vk1(t) + vk2(t)) · r̂ = 4π2iδ(k1z − k2z)×(

v2k1(t)− v2k2(t)
)RJ1(R∥k1ρ − k2ρ∥)

∥k1ρ − k2ρ∥

(1.84)

lim
R→∞

RJ1(R∥k1ρ − k2ρ∥)
∥k1ρ − k2ρ∥

= 2πδ(k1ρ − k2ρ), (Appendix 1.C) (1.85)

we get

lim
R→∞

J (R, t) =
i

2

∫
dk1dk2 δ(k1 − k2)

[
v2k1

(t)− v2k2
(t)
]
I∗ℓm(k1, t)Iℓm(k2, t). (1.86)
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Applying the delta-function rightaway would have given zero result because vk1(t) = vk2(t);
it is the singularity in Iℓm that will remove the zero in the integrand of Eq. (1.86). For the
elliptical field defined by Eq. (1.83), using Fourier series expansion of the periodic integrand in
Eq. (1.82), we get:

Iℓm(k, t) = −i
∞∑

n=−∞
Fn(k)

exp(iΩnt)

Ωn − iδ
, δ → 0+ (1.87)

Ωn =
k2

2
+
κ2

2

(
1 +

1 + ε2

2

)
− nω, (1.88)

the Fourier coefficients, Fn(k) are the crucial element to the whole derivation scheme in PPT
theory, and is defined as

Fn(k) =
1

2π

∫ π

−π
dα exp

[
−iω0

ω

∫ α

0
dβ

{
v2k(β)

κ2
+ 1

}]
1

2
[v2k(α) + κ2]Φ0(vk(α)), α = ωt′. (1.89)

Substituting Eq. (1.87) in Eq. (1.86), we get:

lim
R→∞

J (R, t) =
i

2

∫
dk1dk2 δ(k1 − k2)

∞∑
n1,n2=−∞

[
v2k1

(t)− v2k2
(t)
]

(Ωn1 + iδ)(Ωn2 − iδ)
F ∗
n1
(k1)Fn2(k2). (1.90)

After interchanging the infinite (n1, n2)-summation with the (k1,k2)-integral on account of the
integrand being convergent, and solving the (k1z, k2z)-integral with the delta function δ(k1z−k2z)
(k1z = k2z = kz), and similarly for the (ϕ1k, ϕ2k)-integral (i.e., ϕ1k = ϕ2k = ϕk), we are left with

w(E , ω) =
∞∑

n1,n2=−∞

i

2

∫
dkzdϕk

∫ ∞

0
dk1ρ k1ρ

F ∗
n1
(k1ρ, ϕk, kz)

(Ωn1 + iδ)
×

∫ ∞

0
dk2ρ k2ρδ(k1ρ − k2ρ)

[
v2k1ρ

(t)− v2k2ρ
(t)
]

(Ωn2 − iδ)
Fn2(k2ρ, ϕk, kz), (1.91)

where we have used the property of delta function:

δ(k1ρ − k2ρ)|ϕ2k=ϕ1k
= lim

k2ρ→k1ρ

k1ρ − k2ρ
∥k1ρ − k2ρ∥

δ(k2ρ − k1ρ)

⏐⏐⏐⏐
ϕ2k=ϕ1k

= δ(k2ρ − k1ρ) (1.92)

For convenience, we rewrite and define some terms for the denominator:

Ωni =
k2ρ
2

+
k2z
2

+
κ2

2

(
1 +

1 + ε2

2γ2

)
− niω =

1

2
(k2ρ +Ki) (1.93)

Ki = k2z + κ2
(
1 +

1 + ε2

2γ2

)
− 2niω, i = 1, 2. (1.94)

The (k1ρ, k2ρ)-integral can now be written as:

w(E , ω) = 2i

∞∑
n1,n2=−∞

∫
dkzdϕk

∫ ∞

0
dk1ρ k1ρ

F ∗
n1
(k1ρ, ϕk, kz)

(k21ρ +K1 + iδ)
×∫ ∞

0
dk2ρ δ(k1ρ − k2ρ)

[
v2k1ρ

(t)− v2k2ρ
(t)
]Fn2(k2ρ, ϕk, kz)

(k22ρ +K2 − iδ)
. (1.95)

We will first solve the k2ρ-integral, treating the product of delta “function” with other functions
as a regular function, and use the complex residue method for the k2ρ-integral. Therefore, we
start with

Ik2ρ =

∫ ∞

0
dk2ρ δ(k1ρ − k2ρ)(k1ρ − k2ρ)(k1ρ − k2ρ − 2A(t) · k̂1ρ)

Fn2(k2ρ, ϕk, kz)

(k22ρ +K2 − iδ)
, (1.96)
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where we have expanded
[
v2k1ρ

(t)− v2k2ρ
(t)
]
with the condition that ϕ1k = ϕ2k that makes the

directional vectors k̂1ρ = k̂2ρ. After solving the k2ρ-integral, the zero provided by (k1ρ − k2ρ)
in the numerator of Eq. (1.96) should cancel out with the pole of (k21ρ + K1 + iδ) to ensure
a non-zero result. This requirement provides us with a way to choose the right poles for the
integrand of k2ρ, as well as fix the summation indices (n1, n2).

Now, if K2 ̸= K1, then n1 ̸= n2, which implies that the pole in k1ρ will not cancel with
any zero from k2ρ [after solving Eq. (1.96)]. Therefore, we need n2 = n1 = n. Furthermore, if
Ki > 0, then the poles for k2ρ lie along the imaginary axis with equal and opposite contributions
to the residue. This makes the ionisation rate again zero. Hence, we need Ki < 0. From these
two conditions, we get the lower bound on the summation index n:

n ≥ n0 =
1

ω

[
k2z
2

+
κ2

2

(
1 +

1 + ε2

2γ2

)]
, (1.97)

since this condition holds for all kz, it necessarily is true for kz = 0, which gives us the absolute
lower bound for threshold ionisation:

n0 ≡
κ2

2ω

(
1 +

1 + ε2

2γ2

)
=
ω0

ω

(
1 +

1 + ε2

2γ2

)
. (1.98)

Expanding out the second-order poles in Eq. (1.96) to two first order ones, and carrying out
the summation through the two residues (k2ρ = ±

√
−K ± iδ/2

√
−K), we get:

w(E , ω) = 2π
∑
n≥n0

∫ ∞

−∞
dkz

∫ 2π

0
dϕk

⏐⏐⏐Fn

(√
−K,ϕk, kz

)⏐⏐⏐2
= 2π

∑
n≥n0

∫
dk |Fn(k)|2δ

[
k2

2
+
κ2

2

(
1 +

1 + ε2

2γ2

)
− nω

]
, (1.99)

which is the required expression for ionisation rates in SRP in PPT theory.

1.C Ancillary Expressions

We derive here the result

lim
ρ→∞

ρJ1(ρd(k1ρ,k2ρ))

d(k1ρ,k2ρ)
= 2πδ(k1ρ − k2ρ), (1.100)

where d(k1ρ,k2ρ) = ∥k1ρ − k2ρ∥ is the distance operator. We start from the integral

Iρ =

∫ 2π

0
dϕ

∫ ρ

0
dρ′ ρ′ei(k1ρ−k2ρ)·ρ′ . (1.101)

This integral can be written as

Iρ =

∫ 2π

0
dϕ

∫ ρ

0
dρ′ ρ′ei(k1ρρ

′ cos(ϕ−ϕ1k)−k2ρρ′ cos(ϕ−ϕ2k))

=

∫ 2π

0
dϕ

∫ ρ

0
dρ′ ρ′

∞∑
n1=−∞

in1Jn1(k1ρρ
′)ein1(ϕ−ϕ1k)

∞∑
n2=−∞

(−i)n2Jn2(k2ρρ
′)e−in2(ϕ−ϕ2k)

= 2π

∫ ρ

0
dρ′ ρ′J0(ρ

′d(k1ρ,k2ρ)).

In going from step 2 to step 3, we first perform the integral over ϕ and then use the Graf
generalization of Neumann summation. The integral over ρ′ is simple:∫ ρ

0
dρ′ ρ′J0(k1ρ,k2ρ) =

ρJ1(ρd(k1ρ,k2ρ))

d(k1ρ,k2ρ)
. (1.102)
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Therefore

Iρ = 2π
ρJ1(ρd(k1ρ,k2ρ))

d(k1ρ,k2ρ)
. (1.103)

Now, by definition,

(2π)2δ(k1ρ − k2ρ) =

∫ 2π

0
dϕ

∫ ∞

0
dρ′ ρ′ei(k1ρ−k2ρ)·ρ′

= lim
ρ→∞

∫ 2π

0
dϕ1k

∫ ρ

0
dρ′ ρ′ei(k1ρ−k2ρ)·ρ′

= lim
ρ→∞

2π
ρJ1(ρd(k1ρ,k2ρ))

d(k1ρ,k2ρ)
.

And we get

lim
ρ→∞

ρJ1(ρd(k1ρ,k2ρ))

d(k1ρ,k2ρ)
= 2πδ(k1ρ − k2ρ), (1.104)

which is the desired result.



Chapter 2

Analytical R-Matrix

The Anayltical R-Matrix (ARM) method is a new technique [46, 148, 268] developed to incor-
porate, in a rigorous and consistent manner, the effects of long-range potential interactions of
the core with the ionising electron. In this chapter, we introduce the formalism for the method
and develop the theory for strong field ionisation in a Coulomb binding potential, for circularly
polarised fields.

2.1 Formalism

For an N -electron system, the evolution of the N -electron state,
⏐⏐ψN

⟩
under the influence of

the Coulomb Potential VC and Laser Field Potential VL can be written as

i
∂

∂t

⏐⏐ψN (t)
⟩
= ĤN (t)

⏐⏐ψN (t)
⟩

(2.1)

where ĤN (t) is the N -electron Hamiltonian in the Laser-field dressed atom/molecule.
We consider here the case of a Single Active Electron (SAE) approximation, wherein all but

a single electron in the valence shell are assumed to be frozen and thereafter the corresponding
dynamics of the system is defined from the interaction of this single active electron with the
laser field and the Coulomb potential.

Equation (2.1) is therefore reduced to the Schrödinger equation for a single electron, under
the influence of an arbitrary long-range potential V̂C and the laser field potential V̂L(t),

i
∂

∂t
|ψ(t)⟩ = Ĥ(t)|ψ(t)⟩ (2.2)

|ψ(t)⟩ defines the state vector in Hilbert space of the one-electron system under the SAE ap-
proximation. Here Ĥ(t) = p̂2/2 + V̂C + V̂L(t) is the effective Hamiltonian of the one-electorn
system in the non-relativistic limit.

We now introduce the a mathematical construct partitioning the configuration space through
a 3-dimensional sphere. We use this sphere as a demarcation of the configuration space into
a Core-dominated Inner Region (Region I) and a Field-dominate Outer Region (Region II)
(Fig. 2.1).

In the Core-dominated region, the influence of the core-potential, V̂C is stronger than the
laser field, such that the laser field effects of state-polarisation, channel-coupling etc. can be
ignored. In the Field-dominated region, the electron wavefunction is primarily defined by the
Volkov-electron defining a free electron in the laser field, along with the Core-potential effects
included in the quasiclassical limit taking into account the phase distortion of the electron
wavefunction due to the core. This is the Eikonal-Volkov approximated (EVA) electron [267].

With this partitioning scheme, we provide a rigorous and consistent approach to define the
mathematical formalism with which we can reliably take into account the influence of the core

37
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r
=
a

Inner Region
VC(r) ≫ VL(r, t).

Outer Region
VC(r) ≪ VL(r, t).

Electric
Field, E(ti).

ts ta

Instant of
release,
ti = ℜ[ts].

r = a

Figure 2.1: The Analytical R-Matrix (ARM) method to partition the configuration space, via
the mathematical construct of a R-sphere at radius r = a, into a core-dominated (inner) region
and field dominated (outer) region. The electron crosses the R-sphere at the time instant ta,
which is required to be close to the instant ts when the electron launches into the barrier. The
proximity of the two time instants ensures that approximating the total, polarised wavefunction
by the field-free bound state for r < a is sufficiently accurate, and also provides a consistent
boundary-matching scheme that is essential to produce expressions for physical observables,
like ionisation rates and momentum spectrum, that are independent of parameters defining the
R-sphere.

potential on the ionising electron. The mathematical construct of the R-sphere also allows us
to rigorously derive a boundary matching scheme that ensures the final results for physical
observables like ionisation rates, amplitudes, momentum distributions etc. are independent
from the value of the R-sphere. In the PPT approach, discussed in the previous Chapter, we
had observed ad-hoc treatment of this issue when taking into account LRP (Coulomb-type)
interactions of the ionising electron with the core. The primary aim of ARM is to provide
a consistent formalism for such systems, where the coupling between the core and laser field
potential cannot be approximated in a series perturbation in either of these interactions.

Mathematically, this partition into a core- and field-dominated region is achieved by adding
and subtracting the Bloch operator L(+)(a) defined as

L(+)(a) = δ(r − a)

(
d

dr
+

1

r

)
, (2.3)

to the Hamiltonian in Eq. (2.2). This operator is necessary to ensure that the Hamiltonian of
the system is Hermitian in the Core-dominated region defined in the radial domain 0 < r < a
(see Appendix 2.A).

Similarly, to ensure that the Hamiltonian in the Field-dominated region is Hermitian, we
need to add the outer-Bloch operator L(−)(a) (for the domain a < r <∞) to the Hamiltonian,
defined as

L(−)(a) = −L(+)(a) = −δ(r − a)

(
d

dr
+

1

r

)
, (2.4)

The second term in parenthesis in either Eq. (2.3) or (2.4) is already Hermitian and so the
Hermiticity of the Hamiltonian is left unaffected for an arbitrary constant term multiplied to
it. We will use this fact to simplify our calculations for the current flux and probability density
for strong field ionisation, in particular by using a constant term Q/κ, where Q is the effective
charged of the atomic/molecular species under consideration, and κ is the effective momentum
of the active electron corresponding to it’s ground state energy level.
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The exact solution for Eq. (2.2) can be written as:

|Ψ(t)⟩ = Û(t, t0)|Ψ(t0)⟩. (2.5)

here t0 is the time instant marking the evolution of the system in the absense of the Laser field,
usually in the distant past, and t is the present time instant parametrising the state of the
electron, |Ψ(t)⟩. Û(t, t0) is the unitary operator defining the evolution of the complete Atom +
Laser field system, and is evaluated from the equation

i
∂Û(t, t0)

∂t
= Ĥ(t)Û(t, t0) (2.6)

The use of the Bloch operator effectively allows us to carry out Dyson-series expansion in
alternating configuration spaces outlined by the operator. In this way, our ARM approach
differs from other series expansions, where the interacting term is a physical potential, while
here it is a geometric operator. This fact allows for a robust method to extend the short-range
theory of Perelomov, Popov and Terentév (PPT) to arbitrary core-potentials.

We now make the first Dyson series expansion of Eq. (2.5), with the first step being the
evolution from the Core-dominated region to the Bloch sphere at r = a, that is,

Û(t, t0) = U
(+)
B (t, t0) + i

∫ t

t0

dt′ U(t, t′)L(+)(a)U
(+)
B (t′, t0) (2.7)

Here Û
(+)
B (t, t0) defines the evolution operator in the Core-dominated region, it’s evolution

goverened by the “inner” Hamiltonian H
(+)
B = Ĥ + L(+)(a), which is Hermitian for 0 < r < a,

and thus leads to a unitary evolution. The first term defines the evolution of the system confined
specifically to the inner region, and so this term does not contribute to the ionisation flux. The
second term entails the evolution of the wavefunction in Region I through the interactions con-
fined only in that domain, until it reaches the Bloch sphere at r = a at time instant t′, following
which the electron evolves according to the complete system of Core and Laser field potentials
acting on the electron.

Since only the second term in Eq. (2.7) contributes to the ionisation current, we consider
only that term for Eq. (2.5), giving us the wave function contributing to ionisation current as

|Ψ(t)⟩ = i

∫ t

t0

dt′ Û(t, t′)L(+)(a)Û
(+)
B (t′, t0)|Ψ(t0)⟩. (2.8)

We now consider a second expansion, on the full evolution operator Û(t, t′), which traverses the
complete spatial domain, specifically the radial: 0 < r < ∞. Since after reaching the Bloch
sphere, we are considering only that electron flux that contributes to ionisation, the second
expansion on Û(t, t′) in Eq. (2.8) confines the evolution solely to the Field-dominated region via
the expansion

Û(t, t′) = Û
(−)
B (t, t′) + i

∫ t

t′
dt′′ Û(t, t′′)L̂(−)(a)Û

(−)
B (t′′, t′). (2.9)

The second term defines the moment when the electron returns back to the Bloch sphere, from
outside, and is of no concern to us here, although it can play an important role for describing
High Harmonic Generation (HHG).

The final expression, defining the outgoing electron wavefunction contributing to strong-field
ionisation, can therefore be written as

|Ψ(t)⟩ = i

∫ t

t0

dt′ Û
(−)
B (t, t′)L(+)(a)Û

(+)
B (t′, t0)|Ψg(t0)⟩. (2.10)
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We have also made here the additional approximation of equating the exact wave function
at time t0, |Ψ(t0)⟩, to the ground state wave function of the atomic/molecular species under
consideration, in the absence of the laser field.

Physically, this expansion and approximation of the wave function implies that we consider
the evolution of the electron wave function in the Region I, confining it geometrically to the
Core-dominated space to define it’s dynamics, ignoring the effects of the outer, Laser-dominated
region. This is a reasonable assumption, as in the Core-dominated region the effects of the
Laser field intensities that we are considering are significantly smaller compared to the overall
wave function defined in the field-free case. After reaching the Bloch sphere, we consider the
dynamics of the electron primarily defined in the strong Laser field in Region II, with the
Coulomb interaction included perturbatively as defined by EVA [267].

We will use Eq. (2.10) in subsequent discussions to derive the ionisation rates and amplitudes
for electron dynamics in strong laser fields, in the presence of long-range core-potentials.

2.2 Ionisation Amplitudes

We consider noble-gas atoms or similar species, where the energy separation between the ground
states, and first and subsequeny excited states is large enough, resulting in exponential suppres-
sion of any pathway that might proceed from excitations through these levels.

This allows us to approximate the evolution operator for Core-dominated space by the
Laser-free atomic/molecular evolution operator confined to only the ground state till time t′

in Eq. (2.10), thus giving us

|Ψ(t)⟩ = i

∫ t

t0

dt′ Û
(−)
B (t, t′)L(+)(a)|Ψg(t

′)⟩. (2.11)

We consider tunnelling ionisation to be the dominant mechanism here, for the intensity (1013 <
I < 1014 W/cm2) and frequency range (800 < λ < 3200 nm) we are considering. The ionisation
process is thus governed by the exponentially decaying tale of the wave function, tunnelling out
under the barrier thinning along the direction of suppression by the laser field vector.

Therefore, the long-range tail, usually Coulomb-like, is sufficient for describing the wave func-
tion profile in the region we are interested in, that is, under the barrier, from which the ionisation
flux emerges. The atomic/molecular wave function with a Coulomb tail is (asymptotically):

Ψg(r, t) = ⟨r|Ψg(t)⟩ = φκℓ(r)Yℓm(θ, ϕ)eiIP t = Cκℓκ
3/2 e

−κr

κr
(κr)Q/κYℓ,m(θ, ϕ)eiIP t (2.12)

where Cκℓ is the asymptotic state-specific coefficient for the radial part of the wave function, Q is
the effective charge of the species under consideration, IP is the ionisation potential, κ =

√
2IP

is the characteristic momentum corresponding to the ground energy level, (ℓ,m) are the angular
quantum numbers associated with the level. For molecules or other multi-electron atoms, the
valence orbital wave function is usually described by a linear sum of atomic wave functions of
the type described by Eq. (2.12).

As was mentioned in the previous section, the second term in parenthesis of the equation
defining the inner Bloch operator L(+)(a), Eq. (2.3) is invariant under multiplication by a con-
stant factor, and we use the term (−Q/κ + 1) for this constant factor. This allows us, using
Eq. (2.12), to write the product L(+)(a)|Ψg(t

′)⟩ as

L(+)(a)⟨r′|Ψg(t
′)⟩ = δ(r′ − a)

(
d

dr′
− Q/κ− 1

r′

)
Ψg(r

′, t′)

= −κδ(r′ − a)Ψg(r
′, t′)

(2.13)



41 2.2. Ionisation Amplitudes

The ionisation amplitude is now defined by projectng the final state |Ψ(T )⟩ over the momentum
space:

a(p, T ) = ⟨p|Ψ(T )⟩ = −iκ
∫ T

−∞
dt′
∫
dr′
⟨
p
⏐⏐⏐Û (−)

B (T, t′)
⏐⏐⏐r′⟩δ(r′ − a)Ψg(a, θ

′, ϕ′, t′) (2.14)

Since we consider the propagator Û (−)(t, t′) to be active in the Laser-field domain (Region II),
approximating it with the EVA propagator [268] is valid. The projection of the EVA porpagator
between the momentum and co-ordinate space can be derived to be⟨

p
⏐⏐⏐Û (−)

B (T, t′)
⏐⏐⏐r′⟩ ≈

⟨
p
⏐⏐⏐ÛEVA(T, t′)

⏐⏐⏐r′⟩
=

1

(2π)3/2
exp

[
−ivp(t

′) · r′ − i

2

∫ T

t′
dτ v2p(τ)− iGC(p, T ; r, t)−

iG0p(rL(T ; r,p, t))] (2.15)

after assuming that the field-free distortions G0p(rL(T ; r,p, t)) vary slowly at large distances,
and where T is the time at which the laser field is switched off. The core-potenatial phase,

GC(p, T ; r, t) = −
∫ t

T
dτ U(rL(τ ; r,p, t)) (2.16)

is the phase accumulated by the electron on account of travelling in the potential of the core,
along the trajectory rL(τ ; r,p, t) = r +

∫ τ
t dζ vp(ζ) defined solely by the strong laser field in

Region II.
Since the time T for the turn off of the laser field occurs when the free electron wavepacket

is sufficienty far from the core, the phase-front distortion G0p → 0 as T → ∞.
Unlike the case of linear fields [46], the momentum p is prominent in two dimensions, which

means the Coulomb correction is also ϕ′-dependent due to the dot product between r′ and vp(t),
where ϕ′ is the azimuthal angle and θ′ is the polar angle in the spherical coordinate system.

By construction, the Coulomb correction is a small perturbation to the electron-Laser in-
teraction in the continuum. Therefore, we can approximate the argument rL(τ ; r

′,p, t′) of the
Coulomb correction by expanding it about the classical trajectories corresponding to tunnelling.
The direction for these trajectories is set by the stationary point of the phase term a · vp(t

′),
which defines spatial dependence in the SFA action. A physical interpretation for this saddle
point becomes apparent once we use the stationary phase method to fix the ionisation time t′s.

The stationary point ϕ′s is for the highly oscillating part in equation (2.14):

F
(
ϕ′
)
= a · vp(t

′) = a ·
(
p+A(t′)

)
= a

[
pρ cos(ϕ

′ − ϕp)−A0 cos(ϕ
′ − ωt′)

]
sin θ′ + apz cos θ

′

We then get:

∂F

∂ϕ′
= −a

[
pρ sin(ϕ

′ − ϕp)−A0 sin(ϕ
′ − ωt′)

]
= 0

⇒ tanϕ′s =
kρ sinϕk −A0 sin(ωt

′)

kρ cosϕk −A0 cos(ωt′)
= tanϕv(t

′)

(2.17)

and,

∂F

∂θ′

⏐⏐⏐⏐
ϕ′=ϕ′

s

= a
[
pρ cos(ϕ

′
s − ϕp)−A0 cos(ϕ

′
s − ωt′)

]
cos θ′ − apz sin θ

′ = 0

⇒ tan θ′s =
vρ(t

′)

pz
= tan θv(t

′)

(2.18)
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which gives us: ∫ t′

T
dτ U

(
rL(τ ; r,p, t

′)
)
→
∫ t′

T
dτ U

(
rL(τ ; a, θv(t

′), ϕv(t
′),p, t′)

)
(2.19)

As we will see later, this dependence on time t′ of the saddle points θ′s, ϕ
′
s can be used to

interpret it as the tunnelling angle. Thus, by selecting Coulomb correction along ϕ′s only, we are
focussing on the classical tunnelling trajectories. Deviations from these trajectories are met with
exponential suppression and hence don’t contribute significantly. Vector a can now be written
as:

a = a(sin θ′s(t
′) cosϕ′s(t

′) x̂+ sin θ′s(t
′) sinϕ′s(t

′) ŷ + cos θ′s(t
′) ẑ)

=
a

v(t′)
v(t′)

(2.20)

The saddle point in time is given by the combined SFA action along with the boundary term
a · v(t′) that arises because of the R-matrix sphere:

∂SSFA

∂t′
+ a · ∂vp(t

′)

∂t′
= −1

2

(
v2p

(
t′(0)a

)
+ κ2

)
+ a · ∂t′vp

(
t′(0)a

)
= 0 (2.21)

The saddle point t′a can be considered as a correction over the SFA saddle point t′s that is
commonly used. We consider this “correction” to only first order in the R-matrix sphere a, by
expanding the terms in Eq. (2.21) about the SFA saddle point to only first order in a, which
gives us: (

t′(0)a − t′(0)s

)
=

a · ∂t′v
(
t
′(0)
s

)
v
(
t
′(0)
s

)
· ∂t′v

(
t
′(0)
s

) (2.22)

Using Eq. (2.20), and the fact that v
(
t
′(0)
s

)
= iκ, we get:

t′(0)a − t′(0)s =
a

iκ
(2.23)

We can now expand the long-range action GC around the saddle point r
′(0)
s ≡ (a, θ′s(t

′), ϕ′s(t
′)),

upto quadratic terms:

GC(p, T ;a, t
′) = GC

(
p, T ; r′(0)s , t′(0)a

)
+
(
a− r′(0)s

)
· ∇GC

(
p, T ; r′(0)s , t′(0)a

)
+

(t′ − t′(0)a )∂t′GC

(
p, T ; r′(0)s , t′(0)a

)
+

1

2

(
t′ − t′(0)a

)
∂2t′GC

(
p, T ; r′(0)s , t′(0)a

)
(2.24)

The term involving the mixed derivative
(
a− r

′(0)
s

)(
t′ − t

′(0)
a

)
∇∂t′GC

(
p, T ; r

′(0)
s , t

′(0)
a

)
is omit-

ted from Eq. (2.24) as a higher order correction, since ∇GC

(
p, T ; r

′(0)
s , t

′(0)
a

)
is multiplied to(

t′ − t
′(0)
a

)
∝ O(GC). The term involving the second derivative w.r.t. the spatial coordinates

on the surface of the sphere, 1
2

(
a− r

′(0)
s

)2
∇2GC

(
p, T ; r

′(0)
s

)
, is equal to 0 for a Coulomb-type

potential tail, since ∇U(r) = δ(r), and the argument of the potential U is a trajectry starting
at the surface of the sphere and propagating outside it: this trajectory never reaches the origin,
and hence its contribution is zero.

Substituting this expansion back into Eq. (2.14), we get

a(p, T ) = − iκa2

(2π)3/2
φκℓ(a)Nℓm

∫ T

−∞
dt′
∫
dϕ′
∫
dθ′ sin θ′ e−ivp(t′)·a×

e
−iSSFA

(
p,T ;r

′(0)
s ,t′

)
−iGC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
−
(
a−r

′(0)
s

)
·∇GC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
×

e
−i

(
t′−t

′(0)
a

)
∂t′GC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
Yℓm(θ′, ϕ′) (2.25)
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We note here that the gradient of GC is nothing but the momentum shift, ∆p induced due to
the interaction of the ionising electron with the long-range core potential,

∆vc
p(t

′) = −∇GC

(
p, T ; r′(0)s , t′(0)a

)
(2.26)

Thus, we introduce a momentum shift term in the phase factor through a rigorous derivation.

Usually, at this point, some approximations are evoked to solve the spatial integrals over
(θ′, ϕ′). However, we will perform an exact analysis for these integrals, using the integral relations
of Bessel functions and associated Legendre polynomials [275].

We start with the ϕ′-integral. The relevant integral Iϕ′ is,

Iϕ′ =

∫ 2π

0
dϕ′ e−iavcp(t

′)[sin θ′ sin θcv(t
′) cos(ϕ′−ϕc

v(t
′))]eimϕ′

(2.27)

where vc
p(t

′) = vp(t
′) + ∆vc

p(t
′) is the long-range (usually Coulomb-like) corrected velocity

that enters into the phase factor, and hence the prefactor of our formulation of the ionisation
amplitude.

We now use the Jacobi-Anger relation [275] to expand the first ϕ′-dependent exponential
term using:

eiz cosϑ =
∞∑

n=−∞
inJn(z)e

inϑ (2.28)

and then solving Eq. (2.27) for the only non-zero term possible in it over the summation index
n in Eq. (2.28), we get

Iϕ′ = 2π(−i)meimϕc
v(t

′)Jm
(
avcp(t

′) sin θcv(t
′) sin θ′

)
(2.29)

this leaves us with the θ′-integral,

Iθ′ = 2π(−i)meimϕc
v(t

′)

∫ π

0
dθ′ sin θ′Jm

(
avcp(t

′) sin θcv(t
′) sin θ′

)
Pm
ℓ (cos θ′)e−iakz cos θ′ (2.30)

for which we use the result from [275] regarding the integral of the product of a Bessel function
and associated Legendre polynomials of the type in Eq. (2.30), to get:

Iθ′ = 4π(−i)ℓ(−1)meimϕc
v(t

′)Pm
ℓ (cos θcv(t

′))jℓ
(
avcp(t

′)
)

(2.31)

where jℓ is the spherical Bessel function of order ℓ. With this result, we complete the spatial
integrals and are only left with the time-domain integral in Eq. (2.14)

a(p, T ) = (−i)ℓ(−1)m+1 2iκa
2

√
2π

φκℓ(a)Nℓme
iGC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
+r

′(0)
s ·∆vc

p(t
′)×∫ T

−∞
dt′ eimϕc

v(t
′)Pm

ℓ

(
cos θcv(t

′)
)
jℓ
(
avcp(t

′)
)
e
−iSSFA

(
p,T ;r

′(0)
s ,t′

)
×

e
−i

(
t′−t

′(0)
a

)
∂t′GC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
(2.32)

For the time-integral, we use the saddle point approximation to evaluate the integral. This is
a standard method employable for the atom and laser field paramteres under consideration for
optical tunnelling in strong field ionisation [3–5].

Since the core-potential correction to the SFA saddle point should not be comparable to the
SFA saddle point itself, it is reasonable to assume that the speed of the electron at the modified

saddle point, expressed as t
′(1)
a , is still close to vp

(
t
′(0)
s

)
= iκ. But the radius of the R-matrix
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sphere is so adjusted that κa≫ 1, thus allowing us to approximate the spherical Bessel function
jℓ(avp(t

′)) for the large argument case:

jℓ
(
avcp(t

′)
)
≈ 1

2avcp(t
′)

(
ei(av

c
p(t

′)−(ℓ+1)π/2) + e−i(avcp(t′)−(ℓ+1)π/2)
)

(2.33)

The two terms correspond to contributions from the diametrically opposite points on the bound-
ary surface a, from where we propagate the electron outwards. The point farther from the detec-
tor by a distance of 2a compared to the point nearer causes an additional exponential decay for
propagation from the former. Such a term did not appear in [46], as there saddle-point analysis
on the k integral was used, thus isolating one particular trajectory. Not using the saddle point
in our case will naturally lead to interference effects between the contribution from the two
points, but under the given condition (κa ≫ 1) those effects will be exponentially small. This
way, an interference will be produced on every point throughout every circular disk for different
θ on the sphere r′ = a. The contribution of each is weighed by the momentum distribution,
encoded in eimϕc

v(t
′)Pm

l (cos θcv(t
′)). The maximum contribution comes from the region around

the saddle point. However, our analysis keeps all contributions, and also takes into account
non-zero perpendicular momenta (pz ̸= 0).

Taking the second term in Eq. (2.33), which is exponentially the dominant one, we can
expand the exponential term as,

e−i(avcp(t′)−(ℓ+1)π/2) ≈ e−i(avp(t′)−a∆vc
p(t

′)·vp(t′)/vp(t′)−(ℓ+1)π/2)

= e−i(avp(t′)−(ℓ+1)π/2)eir
′(0)
s ·∆vc

p(t
′)

(2.34)

The last exponential in Eq. (2.34) cancels with the spurious term arising from the Taylor ex-
pansion of the long-range core potential phase term.

The final terms in the phase factor contributing towards the modified saddle point is SSFA+(
t′ − t

′(0)
a

)
∂t′GC + 1

2

(
t′ − t

′(0)
a

)2
∂2t′GC − avp(t

′). The core-potential modified saddle point is

therefore defined as

∂t′S
SFA + ∂t′GC +

(
t′ − t′(0)a

)
∂2t′GC + a∂t′vp(t

′) = 0 (2.35)

We consider here corrections of only first order in GC , and hence after taking into account the

boundary dependent, SFA-type saddle point, t
′(0)
a , the correction attributed to the core-potential

to this saddle point is,

∆t′(0)a = −
∂t′GC

(
t
′(0)
a

)
∂2t′S

SFA
a

(
t
′(0)
a

) (2.36)

where SSFA
a = SSFA + avp(t

′) is the SFA-equivalent, but also R-matrix boundary-dependent,
action. The additional approximation in the second step is validated from the fact that the
resulting error is second order in R-matrix sphere radius a, which is the domain of the polar-
isation of the wavefunction by the external field, effects that are being ignored in the current
analysis. Note that there is a boundary-dependence in the long-range core-potential correction,

∆t
′(0)
a , due to the numerator, as well as the avp(t

′) term in the denominator of Eq. (2.36).

The final saddle point, t
′(1)
a = t

′(0)
a + ∆t

′(0)
a , that enters the pre-factors in Eq. (2.32) finally

gives us the boundary-dependent ionisation amplitude for long-range core potential systems:

a(p, T ) = (−i)ℓ(−1)m+1Nℓm
φκℓ(a)a√
S′′
(
t
′(1)
a

)eimϕc
v

(
t
′(1)
a

)
Pm
ℓ

(
cos θcv

(
t′(1)a

))
×

e
−iSSFA

(
p,T ;r

′(0)
s ,t

′(1)
a

)
−iGC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
(2.37)

We now need to eliminate the inherent dependence of this expression on the R-matrix boundary
sphere at r = a, in order for it to have a real, physical significance.
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2.2.1 Boundary Matching

Boundary dependence of saddle point correction

We consider here the crucial issue of obtaining physical results free of R-sphere boundary at
r = a. In this chapter, the method presented is limited in two ways:

1. We are only considering the question of boundary matching for the phase of the wavefunc-
tion. Boundary matching for higher order terms, e.g. gradients of phase, will be presented
in Chapter 3. There we will also present a more generalised approach to boundary match-
ing, for arbitrary final momentum of the photoelectron.

2. We are only considering boundary matching for the optimal momentum, and for ℓ = 0
bound states. A more rigorous and general approach to studying sub-cycle dynamics for
arbitrary (ℓ,m) bound states will be presented in Chapter 3.

The saddle point correction, ∆t
′(0)
a , using the relation for the partial time derivative of

GC [267]:
∂t′GC = −vp · ∇GC − U(r), (2.38)

and the fact that SSFA
a = SSFA + avp(t

′), can be written as

∆t′(0)a =
−vp

(
t
′(0)
a

)
·∆vp

(
t
′(0)
a , T

)
+ U(a)

E
(
t
′(0)
a

)
· vp

(
t
′(0)
a

)
+ a∂t′vp

(
t
′(0)
a

) , (2.39)

after using the relation ∆vp(t
′, T ) = −∇GC .

Starting from the numerator, the first point to note is that vp

(
t
′(0)
a

)
≈ vp

(
t
′(0)
s

)
, on account

of the fact that since it is in a dot product with the boundary-dependent momentum shift, any
error incurred for the above approximation will be of the order of O(a2), and hence can be
ignored.

For the denominator, we start by Taylor-expanding ∂2t′S
SFA
a

(
t
′(0)
a

)
around t

′(0)
s upto first

order in a,

∂2t′S
SFA
a

(
t′(0)a

)
= ∂2t′S

SFA
a

(
t′(0)s

)
+
(
t′(0)a − t′(0)s

)
∂3t′S

SFA
a

(
t′(0)s

)
. (2.40)

Now, ∂2t′S
SFA
a = E(t′) · vp(t

′) + a∂2t′vp(t
′), and

∂3t′S
SFA
a (t′) = ∂3t′S

SFA(t′) + vp(t
′) ·E(t′)

∂t′vp(t
′)

vp(t′)
− a

vp(t′)
∂t′
(
vp(t

′) ·E(t′)
)
. (2.41)

When evaluated at t
′(0)
s , the last term in Eq. (2.41) cancels with the one in Eq. (2.40) [upto

terms of the order of O(a2)]. The second term in Eq. (2.40) is of the order of O(E2), and hence
is dropped.

Therefore, to within O(a2) and O(E2), we have,

∂2t′S
SFA
a

(
t′(0)a

)
= ∂2t′S

SFA
(
t′(0)s

)
, (2.42)

and the saddle point time correction can thus be written as

∆t′(0)a = −
∂t′GC

(
t
′(0)
a

)
∂2t′S

SFA
a

(
t
′(0)
s

) . (2.43)

For the numerator, we first use Eq. (2.38),

∂t′GC

(
t′(0)a

)
= −vp

(
t′(0)a

)
· ∇GC

(
t′(0)a

)
− U(a). (2.44)
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To remove the R-matrix boundary sphere dependence for this term, we first consider the match-
ing technique along the short-range equivalent optimal momentum, as outlined in [268]. Due to
the cylinderical symmetry inherent in the ionisation of an atom by a monochromatic, circularly
polarised field, without loss of generality, we can consider the boundary matching method for
one specific detection angle, which for our discussions we take to be ϕp = 0.

In the polarisation plane, the optimal momentum popt = (popt cosϕp, popt sinϕp) is given
from the implicit relation [142]:

popt = A0

√
1 + γ2

√
1− ζ0
1 + ζ0

, (2.45)

for any angle ϕp. The parameter 0 ≤ ζ0 ≤ 1 satisfies the equation
√

ζ20+γ2

1+γ2 = tanh 1
1−ζ0

√
ζ20+γ2

1+γ2

[3, 142, 143]. Note that ζ0 ≃ γ2/3 for γ ≪ 1, and ζ0 ≃ 1 − 1/ ln γ for γ ≫ 1 [3]. An alternative
expression for popt is

popt = A0
sinhωτ

′(0)
i

ωτ
′(0)
i

, (2.46)

where τ
′(0)
i = ℑ

[
t
′(0)
s

]
, is the imaginary part of the saddle-point solution for time, also known

as the “tunnelling time.” The advantage of the second expression is that it provides a compact
connection between the optimal momentum and the tunnelling time, however, one has to keep

in mind that in a circular field τ
′(0)
i depends on the final radial momentum p [3, 142,143]:

ωτ
′(0)
i = cosh-1 η, η(p) =

A0

2pρ

[(
p

A0

)2

+ γ2 + 1

]
, (2.47)

and thus, in Eq. (2.46), τ
′(0)
i depends on popt itself.

Since the time t
′(0)
a is complex, the momentum ∆p

(
t
′(0)
a , T

)
will also be complex:

∆py

(
t′(0)a , T

)
= ∆prey (a) + i∆pimy (a), (2.48)

∆px

(
t′(0)a , T

)
= ∆prex (a) + i∆pimx (a). (2.49)

After some algebra (see Appendix 2.B.1) we obtain:

∆pimy (a) ≃ O
(

1

κa

)
→ 0, (2.50)

∆prex (a) = ∆prex , ∆prey (a) = ∆prey , (2.51)

∆pimx (a) ≃ O
(

1

κa

)
→ 0, (2.52)

where the boundary-independent momentum is

∆pre = −
∫ T

ℜ
[
t
′(0)
s

] dτ ∇U
(
r′(0)e +

∫ τ

ℜ
[
t
′(0)
s

] dζ vpopt(ζ)

)
, (2.53)

and the coordinate r
′(0)
e , known as the coordinate of exit from the tunnelling barrier, is defined

as

r′(0)e =

∫ ℜ
[
t
′(0)
s

]
t
′(0)
s

dζ vpopt(ζ). (2.54)



47 2.2. Ionisation Amplitudes

Substituting Eqs. (2.50), (2.51), (2.52), and (2.53) for ∆p
(
t
′(0)
a , T

)
from the previous section

into Eq. (2.39) and taking into account that in our geometry

Ey

(
t′(0)s

)
= Ere

y , Ere
y = E0 coshωτ

′(0)
i , (2.55)

Ex

(
t′(0)s

)
= iEim

x , Eim
x = −E0 sinhωτ

′(0)
i , (2.56)

vy
(
t′(0)s

)
= ivimy , vimy = −A0 sinhωτ

′(0)
i , (2.57)

vx
(
t′(0)s

)
= vrex , vrex = popt −A0 coshωτ

′(0)
i

=
a0

τ
′(0)
i

(
sinhωτ

′(0)
i − ωτ coshωτ

′(0)
i

)
,

(2.58)

where a0 = E0/ω
2 is the electron oscillation amplitude, yielding

E
(
t′(0)s

)
· vpopt

(
t′(0)s

)
= ipoptE0 sinhωτ

′(0)
i = ivimy poptω, (2.59)

we obtain

ℜ
[
∆t′(0)a

]
=

−vrex ∆pimx /vimy −∆prey
poptω

, (2.60)

ℑ
[
∆t′(0)a

]
=
vrex ∆prex /v

im
y − U(a)/vimy −∆pimy

poptω
. (2.61)

Since U(a)/vimy ≃ ∆pimy ≃ O
(

1
κa

)
→ 0 (see Appendix 2.B.1), ∆pimx ≃ O

(
1
κa

)
→ 0, we ob-

tain a boundary-independent correction to the real ionisation time ℜ
[
∆t

′(0)
s

]
= ℜ

[
∆t

′(0)
a

]
and

imaginary ionisation time ℑ
[
∆t

′(0)
s

]
= ℑ

[
∆t

′(0)
a

]
:

ℜ
[
∆t′(0)s

]
= −

∆prey
poptω

= −
∆prey
E0

ωτ
′(0)
i

sinhωτ
′(0)
i

, (2.62)

ℑ
[
∆t′(0)s

]
=

∆prex v
re
x

vimy poptω
= −∆prex

E0

sinhωτ
′(0)
i − ωτ coshωτ

′(0)
i

sinh2 ωτ
′(0)
i

, (2.63)

where the subscript “s” denotes that the results for corrections to the SFA saddle point t
′(0)
a are

now independent of the boundary r′ = a. Thus we can write the saddle point as

t′(1)s = t′(0)s +∆t′(0)s . (2.64)

Matching for the tunnelling angle is now trivial, since all variables entering for ϕcv

(
t
′(1)
a

)
are now

proved to be boundary independent:

tanϕcv

(
t′(0)a +∆t′(0)a

)
=
vy

(
t
′(0)
s

)
−∆py −∆t

′(0)
s Ey

vx

(
t
′(0)
s

)
−∆px −∆t

′(0)
s Ex

. (2.65)

Boundary Matching for the Prefactor

The required boundary matching of the present solution for the ionisation amplitude, valid in
the range a < r < ∞, to the region 0 < r < a has to be achieved by removing the dependence
on the R-matrix boundary in several steps.
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First, we consider the terms φκℓ(a)a e
iGC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
, with r

′(0)
s = av̂p

(
t
′(0)
a

)
. Recalling

the expression for the asymptotic radial part of the bounded wavefunction, Eq. (2.12), we can
rewrite it as,

φκℓ(a) = Cκℓκ
3/2 e

−κa

κa
(κa)Q/κ = Cκℓκ

3/2 e
−κa

κa
e
i
∫ t

′(0)
κ

t
′(0)
a

dτ U

(∫ τ

t
′(0)
s

dζ iκ

)
. (2.66)

and as needed, we define the complex time t
′(0)
κ = t

′(0)
s −i/κ2. We have assumed here a Coulomb-

type potential, which is a valid approximation at distances κa ≫ 1. Also, we assume in the

second step that the speed of the electron under the barrier for the complex time between t
′(0)
κ

and t
′(0)
a is nearly constant at the value of iκ.

For the core-potential phase term, GC

(
p, T ; r

′(0)
s , t

′(0)
a

)
, because of the small time interval

between the complex time instants t
′(0)
s and t

′(0)
a = t

′(0)
s − ia/κ, we can approximate the saddle-

point co-ordinate as

r′(0)s = a
vp

(
t
′(0)
a

)
vp

(
t
′(0)
a

) ≈
∫ t

′(0)
a

t
′(0)
s

dζ vp(ζ), (2.67)

giving us,

GC

(
p, T ; r′(0)s , t′(0)a

)
= −

∫ t
′(0)
a

T
dτ U

(
r′(0)s +

∫ τ

t
′(0)
a

dζ,vp(ζ)

)

≈ −
∫ t

′(0)
a

T
dτ U

(∫ τ

t
′(0)
s

dζ,vp(ζ)

)
. (2.68)

Comparing the result of this approximation, Eq. (2.68), with Eq. (2.66), we finally get the
boundary-independent core-potential phase factor:

(κa)Q/κe
−iGC

(
p,T ;r

′(0)
s ,t

′(0)
a

)
= e

i
∫ t

′(0)
κ

T dτ U

(∫ τ

t
′(0)
s

dζ vp(ζ)

)
. (2.69)

The 1/κa factor in Eq. (2.66) removes the extra a term present in Eq. (2.37) along with φκℓ(a).

For the SFA action being evaluated at t
′(1)
a (there is no r

′(0)
s -dependence in SSFA, but it is

mentioned in its parenthesis for the sake of symmetry with the long-range core potential phase

factor GC), we note that the substitution of t
′(1)
a by the long-range core potential corrected SFA

saddle point, t
′(1)
s , incurs errors of the order of O(a2), which we have already ignored on account

of the polarisation effects of the wavefunction by the strong laser field becoming relevant in that
range. Therefore, we have

S
(
p, T ; r′(0)s , t′(1)a

)
= S

(
p, T ; r′(0)s , t′(1)s

)
+O

((
t′(1)a − t′(1)s

)2)
. (2.70)

Similarly, we remove the boundary-dependence in the velocity angles θcv

(
t
′(1)
a

)
, ϕcv

(
t
′(1)
a

)
, with

the core-potential corrected saddle point t
′(1)
s :(

θcv

(
t′(1)a

)
, ϕcv

(
t′(1)a

))
=
(
θcv

(
t′(1)s

)
, ϕcv

(
t′(1)s

))
+
(
O(a2),O(a2)

)
. (2.71)

We finally have the boundary-independent ionisation amplitude for the case of a long-range core
potential:

a(p, T ) = (−i)ℓ(−1)m+1CκℓNℓm

√
κ⏐⏐⏐S′′
(
t
′(1)
s

)⏐⏐⏐eimϕc
v

(
t
′(1)
s

)
Pm
ℓ

(
cos θcv

(
t′(1)s

))
×

e
−iSSFA

(
p,T ;r

′(0)
s ,t

′(1)
s

)
−iGC

(
p,T ;r

′(0)
s ,t

′(0)
κ

)
. (2.72)
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We see another advantage of the ARMmethod here: we now do not have a complicated radial
r′ integral and the corresponding higher order pole in the momentum-space representation of
the wave function. The upshot of the analysis in short-range potentials [142] was that the pole
in the momentum-space representation of the wave function was canceled with the zero in the

momentum integral at the same point v
(
t
′(0)
s

)
= iκ. However, for wave functions corresponding

to long range potentials, we would have had a (Q/κ + 1)-order pole in the momentum space,
leaving a (Q/κ)-order pole in the final momentum integral. Using the ARM method, the Bloch
operator isolates the wave function at the boundary r′ = a through a δ function, making that
integral straightforward, thus bypassing the pole encountered if the integral was performed over
the whole radial domain. At the same time we also get a more robust result, taking into account
the Coulomb correction for the ionisation rate both during and after ionisation.

2.3 Physical picture of ionisation in long range potentials

In circularly polarized fields, the electron liberated at different times will be “directed” by the
laser field into different angles. This idea is called “angular streaking” and the corresponding
“time-to-angle” mapping is unique for nearly single-cycle pulses with a stable carrier-envelope
phase, underlying the idea of the attoclock [44,45,55,57]. The angular streaking principle makes
single and double ionisation in circularly polarized strong laser fields a sensitive probe of the
attosecond dynamics [44,45,55,57,170,187].

However, reconstruction of this dynamics requires the calibration of the attoclock, i.e., es-
tablishing the mapping between the direction of the laser polarisation vector at the time of
ionisation and the direction of the electron momentum at the detector. When one strives to
achieve the accuracy of, say, 10 as, using an 800-nm carrier as a clock, one needs to know this
mapping with an accuracy of about 1◦.

Simple analytical calibration can be made if one neglects the electron interaction with the
long-range core potential during and after ionisation. For short-range potentials the mapping is
illustrated in Fig. 2.2. For the laser field defined as

E(t) = E0(− sin(ωt) x̂+ cos(ωt) ŷ), (2.73)

the connection between the real part of the ionisation time and the observation angle is [3,143]:

ωt
′(0)
i = ωℜ

[
t′(0)s

]
= ϕp + 2π(r − 1), r ∈ N. (2.74)

The detector placed along the positive direction of the x axis will detect the electron liberated

at t
′(0)
i = 0, i.e., when the laser field E(t) = E0ŷ is pointing towards the positive direction of

the y axis. The electron exits the barrier in the negative direction of the y axis, corresponding

to the angle −π/2. The velocity at the exit, vy

(
t
′(0)
i

)
= 0, vx

(
t
′(0)
i

)
= popt −A0, and vx

(
t
′(0)
i

)
,

tends to 0 in the tunnelling limit (γ ≪ 1): vx

(
t
′(0)
i

)
=
√
2Ipγ/6. Thus, the angle between the

direction of the field at the moment of ionisation and the electron momentum at the detector is
π/2.

How is this mapping affected when the interaction with the long-range core potential is taken
into account?

2.3.1 Coulomb correction to the ionisation time, initial electron velocity

Even in the tunnelling limit, our analysis shows that due to the effects of the long-range potential,
the electron has nonzero velocity (−∆prey ) in the negative direction of the y axis when the field is
pointing in the positive y direction, i.e., at t = 0 in our notations. This is by no means surprising
and the corresponding velocity has a very simple explanation: it is required to overcome the
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x

y

E
(
t
′(0)
i

)

α(0)

vp

(
t
′(0)
i

)
v⊥,in = vx,in = vp

(
t
′(0)
i

)
v∥,in = vy,in = 0

p

(a)

x

y

E
(
t
′(1)
i

)
∆α

α(1)

v⊥,in

v∥,in

vp

(
t
′(1)
i

)
v⊥,in = vx,in cos∆α− vy,in sin∆α
v∥,in = vx,in sin∆α+ vy,in cos∆α

p

(b)

Figure 2.2: Kinematics of electron tunnelling through the rotating barrier. The right circularly
polarized laser field E creates a tunnelling barrier rotating counter-clockwise. (a) Short-range
potential: The electron observed at the detector placed along the x axis, exits the barrier along
the negative direction of the y axis at angle α(0) = −π/2. (b) Long-range potential: The electron
observed at the detector placed along the x axis, exits the barrier at the angle α(1) = −π/2−∆α,

∆α =
⏐⏐⏐ω∆t′(0)i

⏐⏐⏐, and ∆t
′(0)
i < 0.

attraction of the Coulomb potential, which the electron will experience all the way towards the
detector. Had the electron been born with zero velocity the in long-range potential, it would
never have reached the detector placed in the positive direction of the x axis. One expects
the same result within the adiabatic tunnelling picture. The question is: Is the magnitude of
∆prey consistent with the adiabatic ionisation model, which would suggest that the electron was
liberated slightly before t = 0 but with zero velocity?

To answer this question, we need to analyze the changes in the ionisation time due to the
effects of the long-range potential. The corrections to ionisation times associated with electron
interaction with the long-range potential are given by Eqs. (2.63) and (2.62). The shift of the

saddle point in time ℜ
[
∆t

′(0)
s

]
corresponds to the shift in the direction of the force of the electric

field −E(t) from −π/2 to −π/2 + ωℜ
[
∆t

′(0)
s

]
.

Let us first discuss the initial conditions for the electron continuum dynamics in the tunnelling
limit γ ≪ 1. In this limit, the electron moves in static electric field [E(t) = E0 ŷ] and the
momentum shift is accumulated along the electron trajectory,

ytun(t) = −
[
Ip
E0

+
1

2
E0

(
t− t

′(0)
i

)2]
ŷ, (2.75)

where ytun
(
t
′(0)
i

)
= −Ip/E0 is the coordinate of the exit point in the tunnelling limit. Taking

into account that U = −Q/(−y), ∇U = −Qŷ/y2 and substituting this trajectory into the
expression for ∆p, Eq. (2.53), we obtain

ℜ[∆py] = −Q
∫ T

t
′(0)
i

dτ

(ytun)2
= −0.78

√
2

I
3/2
p

QE0. (2.76)
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Figure 2.3: Initial velocity corresponding to the center of the velocity distribution: v⊥ [dashed
(green) line] [Eq. (2.82)] and v∥ [dot-dashed (blue) line] [Eq. (2.83)] vs. frequency for E0 =

3 × 1010 V/m (= 0.06 au and I0 = 2.6 × 1014 W/cm2) and Ip = 14 eV. vSFA⊥ [solid (red) line]
shows the result arising in the nonadiabatic short-range theory (the PPT theory; see [3,142,143])
and in the length-gauge SFA.

It is easy to see that Eq. (2.62) in the tunnelling limit yields ℜ
[
∆t

′(0)
s

]
= −∆prey /E0, thus we

obtain from Eq. (2.76):

∆t
′(0)
i = −0.78Q

√
2

I
3/2
p

≈ −I3/2p . (2.77)

From Eq. (2.77), we find that the correction to the ionisation time ℜ
[
∆t

′(0)
s

]
is negative, the

electron is born before E(t) points down, and the Coulomb corrected angle −π/2 + ωℜ
[
∆t

′(0)
s

]
has a negative value. At this (earlier) ionisation time the electron velocity is lower than at t

′(0)
i ,

and in the tunnelling limit:

vx = popt −A0 cos
(
ωt

′(0)
i + ωℜ[∆t′(0)s ]

)
−∆px

≈ popt −A0 +O(G2
C) ≈ γ

√
2Ip/6 +O(G2

C),
(2.78)

vy = −∆py −A0 sin
(
ωt

′(0)
i + ωℜ[∆t′(0)s ]

)
= −∆py −A0ωℜ[∆t′(0)s ] ≈ 0 +O(G2

C). (2.79)

Thus, in the tunnelling limit γ → 0, the electron velocity indeed tends to 0 at the exit from
the barrier. The effect of the Coulomb potential is reduced to the modification of the angle

between the direction of the laser field at the moment of exit E
(
t
′(0)
i

)
and the direction of the

final electron momentum p, registered at the detector. For short-range potentials this angle is

π/2, and for long-range potentials this angle is larger; in the tunnelling limit it is π/2+ωI
−3/2
p ,

(see Fig. 2.2).
However, most of the experiments are currently performed in the regime of nonadiabatic

ionisation, when the Keldysh parameter γ is not that small. In this regime the exit velocities

(with t
′(0)
i = 0),

vx = popt −A0 cos
(
ωℜ[∆t′(0)s ]

)
−∆px, (2.80)

vy = −∆py −A0 sin
(
ωℜ[∆t′(0)s ]

)
, (2.81)

become significant already for small γ. The longitudinal electron velocity v∥ along the direction
of the field and the transverse electron velocity v⊥ orthogonal to the field are also non-zero
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(Fig. 2.3). The longitudinal and transverse velocities are obtained from Eqs. (2.80) and (2.81)

(∆α =
⏐⏐⏐ω∆t′(0)i

⏐⏐⏐):
v⊥ = vx cos(∆α)− vy sin(∆α), (2.82)

v∥ = vx sin(∆α) + vy cos(∆α). (2.83)

Ignoring the non-zero initial velocity of the electron will generally lead to errors in the two-
step reconstruction of time delays in the angular streaking method. In the next section we
illustrate the degree of uncertainty that can arise in reconstructing the time from the attoclock
measurement using examples of Ar and He atoms.

2.3.2 Calibration of the attoclock

The attoclock observable is the angular offset. This angular offset either can appear due to
electron interaction with the core potential ∆α, as described above, or can be associated with
other delays, e.g., delays accumulated due to nontrivial tunnelling, polarisation, or excitation
dynamics, ∆αU (the superscript U stands for “unknown,” since the respective ∆αU is associated
with the dynamics that we may not know). Since the attoclock can only measure the total offset
∆αT = ∆αU +∆α, to get access to the unknown (e.g., tunnelling) times one has to calculate the
offset ∆α and subtract it from the measurable offset ∆αT . The uncertainty in the calculation
of ∆α will lead to the corresponding uncertainty in reconstructing, say, the tunnelling time.

In this section we consider the angular offset ∆α and analyze the associated uncertainties in
the time reconstruction for three models.

i. The two-step adiabatic model. This model assumes that the peak of the photoelectron dis-
tribution corresponds to the electron trajectory with specific initial conditions, namely, the
initial coordinate defined according to the quasistatic tunnelling picture for short-range

potentials, or in the limit of a sufficiently thick barrier (4E0 ≪ I2p ): xqse
(
t
′(0)
i

)
= 0,

yqse
(
t
′(0)
i

)
= −Ip/E0. The initial electron velocity is 0 (both transversal and longitudinal):

vqsx
(
t
′(0)
i

)
= 0, vqsy

(
t
′(0)
i

)
= 0.

ii. The two-step nonadiabatic model. The peak of the photoelectron distribution corresponds
to the electron trajectory. The initial coordinate is defined according to the PPT theory

y
′(0)
e =

∫ ℜ
[
t
′(0)
s

]
t
′(0)
s

dζ [popt +Ay(ζ)] [see also Eq. (2.54)]. The initial electron velocity is nonzero

in the direction orthogonal to the field polarisation at the time of exit: vx

(
t
′(0)
i

)
= popt−A0,

vy

(
t
′(0)
i

)
= 0 [see Eq. (2.46) for the definition of popt]. This nonzero velocity reflects the

presence of a “cross-wind”: the effect of the second component of the circuarly polarized
field. Note that, both orthogonal components of the circular field are always non-zero in
sub-barrier region, when electron trajectory evolves in complex time.

iii. ARM model. The ARM model is a consistent quantum approach which does not require
the knowledge of the “initial conditions” to calculate the offset angle. However, since the
ARMmethod naturally incorporates the concept of trajectories, the initial conditions can be

obtained within the ARM model, as discussed in the previous sub-section. Both vx

(
t
′(0)
i

)
and vy

(
t
′(0)
i

)
are nonzero due to the nonadiabatic Coulomb effects [see Eqs. (2.80) and

(2.81)].

To ensure that all three models use the same level of approximation for the electron con-
tinuum dynamics, in two-step models we propagate the trajectories from the point of exit to
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Figure 2.4: Calibration of the attoclock for an Ar atom with Ip = 15.7 eV. (a) Initial velocities
vx [solid (red) curve] and vy [dashed (green) curve] resulting from the ARM theory and vx [dot-
dashed (blue) curve] from the nonadiabatic short-range theories [3, 142, 143] for the geometry
specified in Fig. 2.2. (b) Initial coordinate (exit point) in the ARM and the PPT [3, 142,
143] theories [solid (red) curve], and Ip/E0 in the adiabatic theory [dashed (blue) curve]. (c)
Angular offset ∆α corresponding to the ARM [solid (red) curve], nonadiabatic short-range
[dashed (green) curve] and adiabatic [dot-dashed (blue) curve] theories. (d) Uncertainty in the
calibration of time in the attoclock corresponding to (i) the nonadiabatic two-step model [solid
(red) curve] and (ii) adiabatic two-step model [dashed (blue) curve].

the detector using the EVA instead of solving Newton’s equations exactly. Formally, this means
that the classical equation for Coulomb plus laser field (used in the two-step model),

dr

dt
= v(t),

dv

dt
= −E(t)− Q

r3(t)
r(t), (2.84)

r(t) = (x(t), y(t)), is solved iteratively. The zeroth-order trajectory (neglecting the Coulomb
term) is used in the argument of the Coulomb potential. For the two-step adiabatic model, we
obtain

vADB
x = A0 +∆pADB

x , vADB
y = ∆pADB

y , ∆αADB = tan-1

(
vADB
y

vADB
x

)
, (2.85)
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where ∆pADB
x and ∆pADB

y are defined as (ϕ = ωt, ϕT = ωT , T → ∞)

∆pADB
x = −Qω

A2
0

∫ ϕT

0
dϕ

xADB(ϕ)[
(xADB(ϕ))2 + (yADB(ϕ))2

] 3
2

, (2.86)

∆pADB
y = −Qω

A2
0

∫ ϕT

0
dϕ

yADB(ϕ)[
(xADB(ϕ))2 + (yADB(ϕ))2

] 3
2

, (2.87)

xADB(ϕ) = − sinϕ+ ϕ, (2.88)

yADB(ϕ) = cosϕ− 1− γ2/2. (2.89)

For the two-step nonadiabatic model, we obtain

vPPTx = popt +∆pPPTx , vPPTy = ∆pPPTy , ∆αPPT = tan-1

(
vPPTy

vPPTx

)
, (2.90)

where ∆pPPTx and ∆pPPTy are defined as

∆pPPTx = −Qω
A2

0

∫ ϕT

0
dϕ

xPPT(ϕ)[
(xPPT(ϕ))2 + (yPPT(ϕ))2

] 3
2

, (2.91)

∆pPPTy = −Qω
A2

0

∫ ϕT

0
dϕ

yPPT(ϕ)[
(xPPT(ϕ))2 + (yPPT(ϕ))2

] 3
2

, (2.92)

xPPT(ϕ) = − sinϕ+
popt
A0

ϕ, (2.93)

yPPT(ϕ) = cosϕ− η(popt). (2.94)

and η(popt) is given by Eq. (2.47). Note that xADB(ϕ), yADB(ϕ) and xPPT(ϕ), yPPT(ϕ) are
the respective trajectories in units of E0/ω

2. While this approximation can slightly affect the
absolute values of the offset angles ∆α, the error is essentially identical for all three models.
Thus, the time uncertainty, determined by the relative offset given by the two-step models with
respect to the ARM method, is virtually unaffected.

Figure 2.4c shows the angular offsets for Ar atoms for all three models. The discrepancy
between the models increases with the decrease in the laser intensity, reaching δα ≈ 4.5o relative
offset between the adiabatic model and the ARM model (for E0 = 0.0267 a.u., corresponding to
0.5 × 1014 W/cm2). The discrepancy is due to the different initial conditions in these models.
We stress that the ARM theory does not require knowledge of the initial conditions to obtain
∆α, because it does not need to split the entire quantum process into two steps. However, the
initial conditions can be obtained from the ARM theory, if needed.

Figure 2.4a compares the initial velocities resulting from the ARM and the nonadiabatic
short-range theories [3, 142,143] for the geometry specified in Fig. 2.2. For the adiabatic model
both vx and vy are 0 [not shown in Fig. 2.4a]. The difference in the initial coordinates in the
nonadiabatic theory for short-range potentials and the adiabatic model is shown in Fig. 2.4b.
The initial coordinate in the ARM model is essentially the same as in the nonadiabatic short-
range theory, since the respective Coulomb correction is an order higher than the first-order
Coulomb effects considered in the current implementation of the ARM method. The difference
in the offset angle δα maps into uncertainty in the delay time: δtd = δα/ω [Fig. 2.4d]. The
uncertainty in the reconstruction of the time delay becomes less significant at higher intensities
and ranges from 30 as for low fields to 3 as near the barrier suppression intensity [Fig. 2.4d].
The uncertainty δtd strongly decreases if nonadiabatic initial conditions are used in the two-step
model, ranging from 5 as for low intensities to 2 as for high intensities.
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Figure 2.5: Calibration of the attoclock for a He atom with Ip = 24.6 eV. (a) Initial velocities
vx [solid (red) curve] and vy [dashed (green) curve] resulting from the ARM theory and vx [dot-
dashed (blue) curve] from the nonadiabatic short-range theories [3, 142, 143] for the geometry
specified in Fig. 2.2. (b) Initial coordinate (exit point) in the ARM and the PPT [3, 142,
143] theories [solid (red) curve], and Ip/E0 in the adiabatic theory [dashed (blue) curve]. (c)
Angular offset ∆α corresponding to the ARM [solid (red) curve], nonadiabatic short-range
[dashed (green) curve] and adiabatic [dot-dashed (blue) curve] theories. (d) Uncertainty in
time reconstruction associated with the nonadiabatic [solid (red) curve] two-step model and the
adiabatic two-step model [dashed (blue) curve].

Qualitatively we find the same picture for He atoms (Fig. 2.5), however, quantitatively the
discrepancy between the different models is smaller and the time uncertainty is almost negligible
for the highest intensities. For He atoms, using nonadiabatic initial conditions in the two-step
model reduces the uncertainty to 1.5 as and even less for higher intensities.

2.3.3 Coulomb correction to the electron “tunnelling angle”

The complex tunnelling angle characterizes the direction of the electron velocity at the com-

plex ionisation time t
′(1)
s : tanϕv

(
t
′(1)
s

)
=

vy
(
t
′(1)
s

)
vx

(
t
′(1)
s

) . The ionisation rate is proportional to the

imaginary part of the tunnelling angle w ∝ e2mℑ[ϕv(t
′(1)
s )], where m is the magnetic quantum

number. In the case of a spherically symmetric initial state (s state) m = 0 and the ionisation
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rate does not depend on the tunnelling angle, because the electron density in the initial state is
the same in all directions. For p states, however, the direction of electron tunnelling, defined by
the tunnelling angle, becomes important. In particular, it leads to the sensitivity of ionisation
to the sense of rotation of the electron in the initial state. For short-range potentials this effect
was predicted and analyzed in [142, 143]. In this section we discuss the nonadiabatic Coulomb
corrections to the tunnelling angle and show how the results in [142, 143] are affected by the
electron interaction with the long-range core potential.

The tunnelling angle in the case of short-range potentials is

tanϕv

(
t′(0)s

)
=
py −A0 sin

(
ωt

′(0)
s

)
px −A0 cos

(
ωt

′(0)
s

) . (2.95)

The Coulomb potential leads to two equally important effects: (i) the modification of the complex

ionisation time (t
′(0)
s +∆t

′(0)
s in the long-range potential vs. just t

′(0)
s in the short-range potential),

and (ii) the momentum shift due to the deceleration of the electron by the long-range potential
of the core (see derivation in Sec. 2.2.1):

tanϕcv(t
′
s) =

vy

(
t
′(0)
s

)
−∆py −∆t

′(0)
s Ey

vx

(
t
′(0)
s

)
−∆px −∆t

′(0)
s Ex

. (2.96)

In this section we focus on the imaginary part of the complex tunnelling angle ϕcv(t
′
s) =

tan-1(x+ iy), since it contributes to the ionisation probability. The imaginary part of ϕcv(t
′
s)

can be cast in the form

ℑ[ϕcv(t′s)] = −1

4
ln
((

1− x2 − y2
)2

+ 4x2
)
+

1

2
ln
(
(1 + y)2 + x2

)
. (2.97)

Note that the real part x ≃ O(GC) is of the first order with respect to long-range potential and
therefore the x2 terms have to be omitted. The ratio between ionisation rates for p− and p+

orbitals is

wp−

wp+
=

⏐⏐⏐⏐⏐e−i2ϕc
v(t

′(1)
s )

ei2ϕc
v(t

′(1)
s )

⏐⏐⏐⏐⏐ = e4ℑ[ϕc
v(t

′(1)
s )] =

(
1 + y

1− y

)2

, (2.98)

y =
vimy −ℑ[∆t′(0)s ]Ere

y

vrex −∆prex + ℑ[∆t′(0)s ]Eim
x

. (2.99)

Finally,

y =
vimy +∆prex v

re
x /[popt tanhωτ ]

vrex −∆prex +∆prex v
re
x /popt

. (2.100)

Figure 2.6 shows how the nonadiabatic Coulomb effects change the ratio between the ionisation
rates for the p+ and p− orbitals. Modifications come solely from the alteration of the tunnelling
angle. The nonadiabatic Coulomb corrections (WC1 and WC2) do not contribute to the ratio of
the ionisation rates, as also noted in [142]. The decrease in the p−/p+ ratio at high frequencies in
long-range potentials is consistent with the opposite propensity rules in one-photon ionisation,
where p+ is preferred over p− for right circularly polarized fields.

2.4 Subcycle Ionisation Amplitude: General Formalism

We now consider the case of subcycle ionisation amplitudes in time domain, to replace T → t.
The formalism presented here can only be apploed for ℓ = 0 bound states of the atom. This
limitation will be overcome in Chapter 3.
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Figure 2.6: Ratio of ionisation rates from p− and p+ orbitals for a Ne atom (Ip = 21.5645 eV)
and E0 = 7.7 × 1010 V/m (= 0.15 a.u. and I0 = 1.6 × 1015 W/cm2), with wp−/wp+ for a right
circularly polarized field: short-range potential [solid (red) curve] [142], and long-range potential
[dashed (blue) curve].

The subcycle ionisation amplitude is defined as

ap(t) = −i
∫
a
dr ⟨p+A(t)|r⟩ψ(r, t). (2.101)

Back-propagating the solution ψ(r, T ), we can write ψ(r, t) as

ψ(r, t) =

∫
a
dr′G(r, t; r′, T )ψ(r′, T )− i

∫ t

T
dt′
∫
a
dr′G(r, t; r′, t′)δ(r′ − a)B(a, θ′, ϕ′, t′). (2.102)

The second term represents that part of the wave function that remains bounded within the
confines of the Coulomb potential near the atom after ionisation. But the wave function con-
tained in that region after ionisation is negligible compared to the current flux in continuum,
thus making the contribution from the former almost 0. So we can write equation (2.101) as

ap(t) = −i
∫
a
dr ⟨p+A(t)|r⟩

∫
a
dr′GEVA(r, t; r′, T )ψ(r′, T )

= i

∫
a
dr

∫
a
dr′
∫
dk

e−i(p+A(t))·r

(2π)3/2
ei(k+A(t))·r−ik·r′

(2π)3
e−i

∫ t
T dτ U(rL(τ ;r,k,t))e−

i
2

∫ t
T dτ v2(τ)ψ(r′, T )

=
1

(2π)3

∫
a
dr

∫
dk ei(k−p)·r− i

2

∫ t
T dτ v2k(τ)e−i

∫ t
T dτ U(rL(τ ;r,k,t))ak(T ).

Before we can perform the integration on r, we need to address the (r,k) dependence of the
Coulomb correction in the above equation. Similarly to Sec. 2.2, we expand the Coulomb phase
term GC(r, t;k, T ) =

∫ t
T dτ U

(
r+

∫ τ
t dζ vk(ζ)

)
, about the appropriate saddle point rs up to

quadratic terms in deviation (a− rs). We need the saddle point for the phase term:

SSFA(r,k, t) = (k− p) · r− 1

2

∫ t

t′s

dτ v2k(τ). (2.103)

Therefore,

∇kS
SFA = 0 ⇒ k(0)

s =
r− r0

t− t
′(0)
s

(2.104)

and

∇rS
SFA
(
r,k(0)

s (r)
)
= 0 ⇒ r(0)s =

∫ t

t
′(0)
s

dτ [p+A(τ)]. (2.105)
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So the classical trajectory can be written as

r(0)s =

∫ t

t′s

dτ vp(τ). (2.106)

After expanding the Coulomb phase term GC(r, t;k, T ) about the saddle points
(
r
(0)
s ,k

(0)
s

)
as

in Sec. 2.2, we can write the subcycle transition amplitude as

ap(t) =
1

(2π)3

∫
dk

∫
dr ei(k−p)·r− i

2

∫ t
T dτ v2k(τ)−iGC(rs,t;p,T )−i(r−rs)·∇GC(rs,t;p,T )ak(T ). (2.107)

Note the argument p in GC : the phase term is evaluated for the asymptotic momentum p
and hence the corresponding momentum shift from this Taylor expansion ∆p = −∇GC is also
evaluated for the asymptotic momentum p and not for the intermediate momentum k on which
we have to perform the integration.

Following our analysis, we first propagate the electron till the detector after ionisation, and
to find the momentum shifts at any point of time during this motion, we propagate it back
through the EVA Green’s function and thus have information on sub-cycle momentum shifts
also.

We can now write∫ t

T
dτ U

(
r+

∫ τ

t
dζ vk(ζ)

)⏐⏐⏐⏐
r=rs,ks=p

=

∫ t

T
dτ U

(∫ τ

t′s

dζ vp(ζ)

)
. (2.108)

And we can combine this with ∫ t
′(0)
κ

T
dτ U

(∫ τ

t
′(0)
s

dζ v(ζ)

)
, (2.109)

in ap(T ) Eq. (2.72), to get∫ t

T
dτ U

(∫ τ

t
′(0)
s

dζ v(ζ)

)
+

∫ T

t
′(0)
κ

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ)

)
=

∫ t

t
′(0)
κ

dτ U

(∫ τ

t
′(0)
s

dζ v(ζ)

)
, (2.110)

which solves the Coulomb correction for ap(t). The integral on r in Eq. (2.107) yields (2π)3δ(k−
p−∆p(t, T )), and the integral on k then gives k = p+∆p(t, T ). The Coulomb shift ∆p(t, T )
is now added instead of being subtracted, which is due to the back-propagation of the electron
from the detector with observable (k, T ) to (r, t). We finally get

ap(t) = (−1)m+1CκℓNℓm

√
γ

ωpρ
√
η2 − 1

e
−i

∫ t

t
′(0)
κ

dτ U
(∫ τ

t′s
dζ vp(ζ)

)
e
− i

2

∫ t

t
′(0)
s

dτ v2p+∆p(τ)+iκ2t
′(0)
s /2

×

eirs·∆pPm
ℓ

⎛⎝ pcz

vpc

(
t
′(1)
s

)
⎞⎠eimϕc

v

(
t
′(1)
s

)
, (2.111)

where we have ignored corrections of the order of O(G2
C) and greater, which would arise from

the Coulomb phase and the Coulomb-shifted velocity phase ϕcv after taking k = p + ∆p(t, T ).
Expanding

∫ t

t
′(0)
s

dτ v2p+∆p(τ) up to first order in ∆p, it will cancel the spurious term rs · ∆p.

Also, pc is defined as pc = p−∆p
(
t
′(0)
a , t

)
≃ p−∆p

(
t
′(0)
i , t

)
, (from discussions in Sec. 2.B.1)

and hence is boundary independent. The final expression for the sub-cycle transition amplitude
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is:

ap(t) = (−1)m+1CκℓNℓm

√
γ

ωpρ
√
η2 − 1

e
−i

∫ t

t
′(0)
κ

dτ U
(∫ τ

t′s
dζ vp(ζ)

)
e
− i

2

∫ t

t
′(0)
s

dτ v2p(τ)+iκ2t
′(0)
s /2

×

Pm
ℓ

⎛⎝ pcz

vpc

(
t
′(1)
s

)
⎞⎠eimϕc

v

(
t
′(1)
s

)
. (2.112)
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2.A Bloch Operator and Hermiticity in finite spaces

Here we show how the Bloch operator can be used to ensure an arbitrary Hamiltonian, Ĥ,
defined by

Ĥ =
p̂2

2
+ V̂ , (2.113)

remains Hermitian in a finite region demarcated by the R-matrix sphere.
We take the radius of this R-sphere at r = a, for which the “inner” Bloch operator is

L̂(+)(a) = δ(r − a)

(
d

dr
+
b0
r

)
, (2.114)

where b0 is some arbitrary constant that we can fix as fits the problem at hand. Introducing
this Bloch operator to the Schrödinger equation, we get:

ı
∂|Ψ⟩
∂t

= Ĥ|Ψ⟩ (2.115)

=
[
Ĥ + L̂(+)(a)

]
|Ψ⟩ − L̂(+)(a)|Ψ⟩ = Ĥ(+)|Ψ⟩ − L̂(+)(a)|Ψ⟩, (2.116)

and we have defined the reduced Hamitlonian: Ĥ(+) = Ĥ + L̂(+)(a). We now have to show
that within the spatial domain 0 < r < a, this reduced Hamiltonian Ĥ(+) is indeed Hermitian,
ensuring Unitary evolution of the wavefunction |Ψ⟩ within that region of space.

To that end, we evaluate the difference of the inner product

I =
(⟨

Ψ
⏐⏐⏐Ĥ(+)

)
|Φ⟩ − ⟨Ψ|

(
Ĥ(+)

⏐⏐⏐Φ⟩), (2.117)

for arbitrary state vectors (|Ψ⟩, |Φ⟩) in the Hilbert space H.
Resolving on the configuration basis |r⟩, we have to solve the following integral:

I =

∫ a

0
dr
[
Ĥ(+)∗Ψ∗(r)Φ(r)−Ψ∗(r)Ĥ(+)Φ(r)

]
. (2.118)

The potential operator, V̂ in Eq. (2.113), is assumed to strictly depend on the spatial coordi-
nate r, and therefore is Hermitian by default. We need to test the Hermiticity of Ĥ(+) in its
derivative operators, i.e., for p̂2/2 and the derivative in L̂(+)(a), which will make finite, non-zero
contributions at the integral limit r = a. Furthermore, since the Bloch operator involves a ra-
dial derivative (d/dr), the reduced Hamiltonian is Hermitian in angular-(θ, ϕ) coordinates, since
p̂2/2 is Hermitian. We are therefore left to establish Hermiticity only for the radial coordinate
r.

Expanding out the terms involving radial derivatives we get:

I =

∫ a

0
dr r2

[{(
p̂2r
2
Ψ∗(r)

)
Φ(r)−Ψ∗(r)

(
p̂2r
2
Φ(r)

)}
+{

δ(r − a)

(
∂

∂r
Ψ∗(r)

)
Φ(r)−Ψ∗(r)δ(r − a)

(
∂

∂r
Φ(r)

)}]
= I1 + I2. (2.119)

Since p̂2r = − 1

r2
∂

∂r

(
r2
∂

∂r

)
, after expanding the terms in the first braces in Eq. (2.119), and

then using the integration rule for products twice, we will get

I1 =

∫ a

0
dr r2

{(
p̂2r
2
Ψ∗(r)

)
Φ(r)−Ψ∗(r)

(
p̂2r
2
Φ(r)

)}
=

− a2
∂Ψ∗

∂r

⏐⏐⏐⏐
r=a

Φ(a) + a2Ψ∗(a)
∂Φ

∂r

⏐⏐⏐⏐
r=a

. (2.120)
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But from the terms in the second braces of Eq. (2.119), we see clearly that

I2 =

∫ a

0
dr r2

{
δ(r − a)

(
∂

∂r
Ψ∗(r)

)
Φ(r)−Ψ∗(r)δ(r − a)

(
∂

∂r
Φ(r)

)}
=

a2
∂Ψ∗

∂r

⏐⏐⏐⏐
r=a

Φ(a)− a2Ψ∗(a)
∂Φ

∂r

⏐⏐⏐⏐
r=a

= −I1, (2.121)

which proves that the reduced Hamiltonian Ĥ(+) is Hermitian within the R-sphere 0 < r < a.
Similarly, the reduced Hamiltonian Ĥ(−) = Ĥ + L̂(−)(a) is Hermitian outside the R-sphere
a < r <∞.

2.B Supplementary information for boundary matching

2.B.1 Complex momentum shifts at the boundary

The goal of this section is to calculate the momentum shift at the matching point a,

∆p(a) = −
∫ T

t
′(0)
a

dτ ∇U
(
r′(0)s +

∫ τ

t
′(0)
a

dζ vp(ζ)

)
, (2.122)

and show that it does not depend on the position of the boundary under the matching conditions.
We first split the integral into two parts:

∆p(a) = −
∫ ℜ[t

′(0)
s ]

t
′(0)
a

dτ ∇U
(
r′(0)s +

∫ τ

t
′(0)
a

dζ vp(ζ)

)
−∫ T

ℜ[t
′(0)
s ]

dτ ∇U
(
r′(0)s +

∫ τ

t
′(0)
a

dζ vp(ζ)

)
. (2.123)

Physically, these two parts can be interpreted as accumulated before,

∆pub(a) = −
∫ ℜ[t

′(0)
s ]

t
′(0)
a

dτ ∇U
(
r′(0)s +

∫ τ

t
′(0)
a

dζ vp(ζ)

)
, (2.124)

and after,

∆pic(a) = −
∫ T

ℜ[t
′(0)
s ]

dτ ∇U
(
r′(0)s +

∫ τ

t
′(0)
a

dζ vp(ζ)

)
, (2.125)

where the superscripts “ub” and “ic” stand for “under-the-barrier” and “in-continuum”, respec-

tively. The tunnel exit defined as the coordinate at the time ℜ
[
t
′(0)
s

]
,

r′(0)e =

∫ ℜ[t
′(0)
s ]

t
′(0)
s

dζ vp(ζ), (2.126)

is a straightforward extension of Eq. (2.54). The second part, ∆pic(a), does not depend on the
boundary. In the following we show that the first part ∆pub(a) is negligible under the matching
condition κa≫ 1.

We first note that ∆puby (a) is purely imaginary, while ∆pubx (a) is purely real. In the same

geometry that we use in the text, t
′(0)
a = iτ

′(0)
a , and the complex under-the-barrier trajectory is

R = r+ iρ:

r = −a0
[
coshϕ

′(0)
i − coshϕ

]
ŷ = −a0r̄ŷ, (2.127)

ρ = a0

[
ϕ

ϕ
′(0)
i

sinhϕ
′(0)
i − sinhϕ

]
x̂ = a0ρ̄x̂, (2.128)
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where ϕ
′(0)
i = ωτ

′(0)
i , ϕ = ωξ, a0 = A0/ω, and ξ is imaginary integration time variable. The

Coulomb potential takes the form (details of the analytical continuation of the Coulomb potential
to the complex plane will be addressed in our subsequent publication [47]):

U(R) = − Q√
r2 − ρ2

. (2.129)

The purely imaginary ∆puby (a) is

∆puby (a) = i
Qω

A2
0

∫ 0

ϕ
′(0)
a

r̄ dϕ

(r̄2 − ρ̄2)3/2
. (2.130)

The purely real ∆pubx (a) is

∆pubx (a) = −Qω
A2

0

∫ 0

ϕ
′(0)
a

ρ̄ dϕ

(r̄2 − ρ̄2)3/2
, (2.131)

and in both cases, ϕa = ωτ
′(0)
a . Also, since for the optimal trajectory r ≫ ρ,

∆pubx (a) ≃ −Qω
A2

0

∫ 0

ϕ
′(0)
a

ρ̄ dϕ

r̄3
. (2.132)

As ρ = 0 at the tunnel entrance
(
ϕ = ϕ

′(0)
s = ωt

′(0)
s

)
and ρ = 0 at the tunnel exit (ϕ = 0),

the integral is accumulated in the vicinity of τ
′(0)
a . We make linear expansion of the integrand

around this point,

∆pubx (a) ≃ vrex

(
t′(0)s

)∫ τ
′(0)
a

0
dξ

τ
′(0)
a − ξ{

κ
(
τ
′(0)
a − ξ

)
+ a
}3 = −C

vrex

(
t
′(0)
s

)
κ

Q

κa
, (2.133)

where C is a numerical factor:

C =

∫ ∞

0

zdz

(z + 1)3
. (2.134)

So far we have considered ∆p(a) defined through its outer-region value. We can also estimate
∆p(a) using its inner-region value. The inner region value of ∆p(a) can be calculated using

a static approximation (or short-time propagation), since the time interval from t
′(0)
s to t

′(0)
a is

very small. It is convenient to estimate ∆puy(a) by evaluating its inner region value. In a static

field, the momentum in the inner region piny (a) is defined through the energy conservation:

− Ip =
(piny (a))

2

2
− Q

a
− E0a. (2.135)

Thus, piny (a) = −i
√

2(Ip − E0a−Q/a) ≃ −i
√

2(Ip − E0a)(1 + Q/(2a(Ip − E0a))), yielding

piny (a) = −iκ(a) − iQ/κ(a)a. The first term is the SFA velocity at the boundary κ(a) =√
2(Ip − E0a) ≃ κ; the second term is the respective correction associated with Coulomb effects.

Thus, ∆piny (a) ≃ O(1/κa). The vanishingly small value of the correction at the boundary is not
surprising, since the boundary is placed in the region where the Coulomb modification to the
barrier is already very small.
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2.C N-Photon Ionisation Rate

To compare our results with the PPT theory [3, 4] and the recent results on nonadiabatic ioni-
sation rates in SRP [142], we derive in this section the n-photon ionisation rate.

Following steps similar to the ones outlined in Appendix 1.B of previous Chapter, but this
time derived rigorously within the ARM framework for an arbitrary (long-range) core potential,
we find the n-photon partial ionisation rates to bear the expression:

wn(E , ω) = 2π

∫
dk |Fn(k, ω)|2δ

[
1

2

(
k2 + κ2

(
1 +

1

γ2

))
− nω

]
= |Cκℓ|2ωκ

2ℓ+ 1

8π2
(ℓ− |m|)!
(ℓ+ |m|)!

(
1− (−1)ℓe−2κa

)2 ∫ ∞

−∞
dkz

∫ 2π

0
dϕk

∫ ∞

0
dkρ×

e
−2mℑ

[
ϕc
v

(
t
′(1)
s

)]⏐⏐⏐⏐⏐⏐Pm
ℓ

⎛⎝ kcz

vk

(
t
′(1)
s

)
⎞⎠⏐⏐⏐⏐⏐⏐

2

e
− 2A0kρη

ω

(
tanh−1

√
1− 1

η2
−
√

1− 1
η2

)
A0η

√
1− 1

η2

×

e2WC1+2WC2δ

[
1

2

(
k2 + κ2

(
1 +

1

γ2

))
− nω

]
. (2.136)

Using the Delta function, the integral over kρ is easily done by substituting kρ =
√
k2n − k2z ,

where k2n = 2nω−κ2
(
1 + 1

γ2

)
. We modify the definition of ζ =

(
2n0
n − 1

)
, used in [5] to include

the contribution from the trajectory perpendicular to the plane of polarisation to give

ζeff =
2neff0
n

− 1, (2.137)

where 2neff0 ω = κ2eff

(
1 + 1

γ2
eff

)
, κ2eff = κ2 + k2z , and γeff = κeff/A0. The corresponding values for

different functions of k appearing above are as follows:

η(kn) =

√
1 + γ2eff
1− ζ2eff

, (2.138)√
1− 1

η2(kn)
=

√
ζ2eff + γ2eff
1 + γ2eff

, (2.139)

kρn =
√
nω(1− ζeff), (2.140)

A0 =

√
nω(1 + ζeff)

1 + γ2eff
, (2.141)

A0kρnη(kn)

ω
= n =

2neff0
1 + ζeff

=
2n0
1 + ζ

. (2.142)

For kz ≪ k, we can make the approximation

tanh-1
√

1− 1

η2
−
√
1− 1

η2
=

1

2
ln

1 +
√
1− 1

η2

1−
√
1− 1

η2

−
√
1− 1

η2

≈ tanh-1

√
ζ2 + γ2

1 + γ2
−

√
ζ2 + γ2

1 + γ2
+

√
ζ2 + γ2

1 + γ2
k2z
2k2n

. (2.143)

And since we are comparing our result with [142], we make the following approximation on the
Coulomb-corrected angle ϕcv: as the corrections ∆kx and ∆ky are generally small, we can expand
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to first order in these deviations to write ϕcv as a sum of the SFA velocity phase ϕv, and a small
correction δ defined as

tan δ =
ϵ tanϕv

1 + (1 + ϵ) tanϕv
, (2.144)

where ϵ = ∆kx
vx

− ∆ky
vy

. This way we can split the exponential e
−2mℑ

[
ϕc
v

(
t
′(1)
s

)]
,

e
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[
ϕc
v

(
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s

)]
= e

−2mℑ
[
ϕv

(
t
′(1)
s

)]
e
−2mℑ

[
δ
(
t
′(1)
s

)]
. (2.145)

A further expansion of ϕv

(
t
′(1)
s

)
can be achieved around ∆t

′(0)
s to get

e
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[
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(2.146)

As the probability of escape of the electron in the direction perpendicular to the field is
exponentially suppressed, we can make the approximation kz ≪ kn, which gives us(

kρ −A0e
− cosh-1 η

kρ −A0ecosh
-1 η

)m
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)2|m|
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to first order in kz and ε(kz) =
k2z
k2n

(
1−ζ2

γ2+ζ2

)
.

The second term in Eq. (2.146), when expanded in powers of kz, has a fourth-order depen-
dence on kz:

ζeff − γ2eff
1 + ζeff

=
ζ − γ2

1 + ζ

(
1− k4z

A2
0(1 + γ2)2

)
. (2.148)

Finally, we are left with

wn(E , ω) = |Cκℓ|2
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up to second order in kz. The Coulomb correction is taken out of the integral, on account of its
extremely weak dependence on the kz component of the momentum. The above result is valid
for all values of ℓ and m. An m-dependent correction due to the Coulomb potential is also seen

to manifest through its effect on the SFA saddle point t
′(0)
s .

To compare with [142], we consider the case of ℓ = 1,m = ±1, for which we have Pm
ℓ

(
kz
±iκ

)
=

−
√
1 + k2z

κ2 . To first approximation, we ignore the k2z
κ2 term in the prefactor, and note that since

n≫ 1, we can approximate the integral as:∫ kn
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which gives
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The main difference from Eq. (19) in [142] is the incorporation of Coulomb correction, starting
from the tunnelling region and into the continuum until the electron is registered at the detector,
and an orbital-dependent Coulomb correction, a result that was not expected. To derive results
that apply throughout the photoelectron momentum spectrum, we need to consistently define the
boundary matching scheme for momentum shifts ∆p induced by the core (Coulomb) potential
for arbitrary final momentum p of the ionising electron. This issue will be considered in detail
in Chapter 3.
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Chapter 3

Detecting Ring Currents Using the
Attoclock Set-up

In this chapter, we consider ionisation from noble gas atoms in the presence of strong laser fields.
Essential to that investigation is the extension of the ARM theory for strong field ionisation
from bound states with arbitrary angular momentum (ℓ,m)-numbers, which requires a careful
consideration of the boundary matching scheme in Long-Range Potentials (LRPs) for not just
the phase, as was first attempted in [4,5], but also for the (complex) momentum-shifts induced by
LRP core-interaction of the ionising electron, right from the instant it is launched into the non-
classical, under-the-barrier domain. This chapter thus further extends the method of boundary
matching presented in Chapter 2, to include the effects of distortion in the wavefunction wave
front due to Coulomb potential, for the entire photoelectron spectrum.

3.1 Introduction

Interaction of matter with strong, ultrashort laser fields offers new insights into phenomena
that occur on the attosecond time-scale [1], providing new opportunities for probing electron
dynamics [55,185], structure of molecules [180,181,276], and deciphering the dynamics of laser-
induced optical tunnelling [44,45,56,187].

The enticing opportunity to detect tunnelling times during strong field ionisation relies on
attosecond angular streaking principle [44, 45, 56, 57], which provides the link between electron
detection angle and its time of ionisation in strong infra-red circularly polarised fields. The
application of ultra-short few-cycle pulses allows one to realize this principle experimentally in
the so-called attoclock setup [44, 45, 56, 57]. Attoclock-based attosecond chronoscopy of strong
field ionisation can only be realized once the protocol for converting the attocklock observable –
the most probable electron detection angle – into ionisation time is clearly established [270]. For
a benchmark system, hydrogen atom, ionisation time can be reconstructed using the combination
of numerical and analytical approaches, leading to zero tunnelling delays [270]. However, such
delays may become non-zero when several electrons are actively involved in the ionisation process
[270], so that correlation-driven excitations during tunnel ionisation [148] are non-negligible.

New interesting questions that can be addressed by the attoclock include its sensitivity to
internal electron dynamics prior to ionisation. Perhaps the simplest example is the possibility
of angular separation of photoelectrons originating from strong field ionisation of two different
orbitals carrying stationary currents. This is the case for, e.g., p+ and p− orbitals in the ground
states of noble gas atoms (Ar, Kr, Xe, etc.). Indeed, one would expect that when a co-rotating or
a counter-rotating electron tunnel out, the rotating laser field will spun them away differently, as
they have different initial velocities orthogonal to tunnelling direction [142]. Interaction with the
core potential should reveal this disparity in the initial conditions as it will affect the deflection
angle, leading to angular separation of the photoelectron signals coming from the two orbitals.
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Here we demonstrate that this is indeed the case.

Since the seminal work of Keldysh [2], the extended treatment by PPT [3–6] and subsequent
theoretical efforts [51] to include the combined effects of the long-range core-potential and the
strong laser field on the ionisation process, several theoretical methods have been proposed to
describe the nonadiabatic and nonlinear character of strong field ionisation. Examples include
the non-perturbative expansion techniques of Keldysh-Faisal-Reiss [2, 78, 79] and the Coulomb-
Corrected Strong Field Approximation (CCSFA) method [51,52,249]. The latter, in particular,
relies on the imaginary time method (ITM) [4] to develop a trajectory-based description of
the ionisation process including the Coulomb corrections to quantum trajectories. The CCSFA
method, however, requires assumptions regarding initial conditions for these trajectories.

Here we develop further our AnalyticalR-Matrix (ARM) method [46,47,148,268], a quantum-
mechanical, gauge invariant approach which does not require any a − priori assumptions re-
garding initial conditions for electron trajectories. The approach takes into account Coulomb
interaction of the outgoing electron with the core within the time-dependent version of the
Wentzel-Kramers-Brillouin (WKB) method. The concept of trajectories emerges naturally from
the development of the theory and manifests in physically observable effects in the photoelectron
spectrum [47].

We present a theoretical description of attosecond angular streaking in long range potentials
for orbitals carrying stationary current, extending our previous results [270] beyond s-orbitals.
To explore theoretically the ionisation from p− and p+ orbitals in the attoclock setup, we extend
our earlier long-pulse results [268] to the domain of short pulses. General theoretical analysis is
complemented with additional results that include explicit expressions for momentum shifts due
to the electron interaction with the Coulomb potential, for arbitrary final electron momentum,
and detailed derivation of ionisation delays in strong field ionisation.

Crucially, for finite frequency of the ionising circular field, the tunnelling direction is not
parallel to the laser field direction at the moment of ionisation. The associated ’tunnelling
angle’ is determined by the direction of electron velocity at the complex-valued moment of
time associated with the beginning of the tunnelling process. This angle is also complex-valued.
Mathematically, unusual properties of strong field ionisation from p− and p+ states arise precisely
from the contribution of the complex-valued ’tunnelling angle’ to ionisation rates, as shown
in [142] for short-range potentials. Notably, this contribution is absent for angle-independent
s-states.

While the tunnelling angle for p− and p+ orbitals can be trivially found for short-range
potentials [142], the short-range model is unable to catch the key physics underlying the attoclock
setup, manifest via the long-range electron-core interaction. Within ARM, the key step in finding
this angle is to establish the link between the final electron momentum p at the detector and the
initial electron velocity that leads to this momentum p, where the initial electron velocity is taken
at the complex time associated with the beginning of the tunnelling process. This link must
include electron interaction with both the laser field and the Coulomb potential. We present
a scheme that establishes such a link throughout the whole tunnelling process, thus providing
consistent treatment of long-range potential effects on photoelectron distributions from orbitals
with arbitrary (ℓ,m) quantum numbers.

The knowledge of tunnelling angle for long range potential requires the knowledge of dis-
tribution of initial momenta at the complex instant of time associated with the beginning of
the tunnelling process. Each point in this distribution is uniquely linked to the electron final
momentum. In our previous work [268] we have established such link for the so-called optimal
momentum, which corresponds to the peak of the photoelectron distribution in long laser pulses.
This was sufficient for describing long-pulse ionisation dynamics discussed in [268]. However,
for nearly single-cycle pulses and for states with non-zero angular momentum this is no longer
sufficient, even for the peak of the photoelectron spectrum, because such peak no longer corre-
sponds to the “optimal” momentum established for the nearly-monochromatic fields. Thus, to
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obtain the attoclock spectra for p− and p+ orbitals we need to refine our theory and establish the
Coulomb corrections to the tunnelling angle for every final momentum present in the attoclock
spectrum.

The paper is organized as follows. Section 3.2 describes key ideas that we have used to extend
our ARM method to the case of short pulse ionisation from the states with arbitrary (ℓ,m) in
long-range potentials. Section 3.3 describes our results. Appendices 3.A and 3.B describe the
key steps of our derivation. Particularly important are the derivations of the initial electron
velocity and of the Coulomb correction to ionisation time. Section 3.4 concludes the work.

3.2 Key ideas of derivation

Along the steps in deriving the long-pulse result in [268], we encounter the following spatial
integral [Eq. (18) in [268], see also Eqs. (2.14) and (2.25)]:

aARM(p, IP ) =
iκa2

(2π)3/2

∫ T

−∞
dt′
∫
dΩ′ e−ivp(t′)·a−iSSFA(p,T ;t′)−iGC(p,T ;a,t′)φκℓ(a)×

NℓmP
m
ℓ (cos θ)eimϕ. (3.1)

Here κ =
√
2Ip, φκℓ(a) is the radial wave-function at the R-matrix sphere of radius r = a

that separates the inner and outer R-matrix regions (see [268]), Nℓm is the spherical harmonic
normalization coefficient, SSFA is the well-known action in the Strong Field Approximation
(SFA) [2–6] for a free electron in a laser field and GC is the complex Coulomb phase correction,
as introduced in [47, 268], vp(t) is electron velocity in the laser field. This result also holds for
arbitrary field polarisation and time profiles of the laser field envelope. In Eq. (3.1) the integral is
performed over solid angle of the sphere with radius a, where the outgoing wavefunction outside
the R-matrix sphere (in the so-called ’outer region’) should match the wavefunction inside the
R-matrix sphere (in the so-called ’inner region’). The boundary matching process has to ensure
that the result is independent of the sphere radius a. In [268] this problem was solved for s-
states, while for p-states it was only solved for an optimal momentum popt, which corresponds
to the maximum of the photoelectron distribution in long pulses.

To find the matching scheme valid for any momentum p, we write down the radial part of
the asymptotic ground-state wavefunction

φκℓ(r) = Cκℓκ
3/2e−κr(κr)Q/κ−1 = Cκℓκ

3/2e−iSC(r), (3.2)

where, SC(r) = −i(κr − Q/κ lnκr) = Ssr
C + Slr

C , represents the complex, quantum-mechanical
action derived through the Schrödinger Equation in the asymptotic region κr ≫ 1, Cκℓ is
the standard coefficient, determining the asymptotic behaviour of the radial wave-function.
Ssr
C (r) = −iκr is the short-range part of SC , responsible for generating the complex momentum

∇Ssr
C = −iκ r̂ in the classically forbidden region. Finally, Slr

C provides the long-range potential
correction to it, ∇Slr

C(r) = iQ/(κr) r̂, where r̂ is a unit vector of electron displacement. The main
idea of wavefunction matching performed at the boundary a of the R-matrix sphere (boundary
matching) is to relate this long-range part of the action to the quasiclassical (WKB) action at
every point on the R-matrix sphere, and at any time.

Along the lines of the derivation performed in [268], we expand GC(p, T ;a, t) and its long-
range counterpart in SC(a) [Slr

C(a) defined above], in a Taylor series around the SFA saddle
points of integral Eq. (3.1): t′s = ta, θ

′
s, ϕ

′
s [see Eqs. (20)-(22) of [268]]. As discussed in [268], the

saddle-point angles ϕ′s(t
′), θ′s(t

′) describe the direction of electron velocity at the time t′, and
ta describes the time at which the electron trajectory crosses the R-matrix sphere boundary.
Thus, there is a preferred direction along which the electron crosses the R-matrix sphere. This
direction is given by the angles ϕ′s(t

′), θ′s(t
′), or simply by the vector:

r(0)s (t) = av̂p(t), (3.3)
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where v̂p(t) is a unit vector along the direction of electron velocity. This vector can be written
in the equivalent form

r(0)s =

∫ ta

ts

dtvp(t), (3.4)

where ts is the SFA saddle point, which is a solution of equation ∂SSFA/∂t
′ = 0. The only

non-negligible terms in a Taylor series around the spatial saddle points (as discussed in [268]),
up to order O(a2) and O(Q2), are the following:

Slr
C(a) +GC(p, T ;a, t) ≃

[
Slr
C

(
r(0)s

)
+GC

(
p, T ; r(0)s , ta

)]
+(

a− r(0)s

)
· ∇
[
Slr
C(r) +GC(p, T ; r, ta)

]⏐⏐⏐
r=r

(0)
s

. (3.5)

Boundary matching for the first group of terms has been performed in [268] and it simply
yields:

WC(ts,p) ≡
[
Slr
C

(
r(0)s

)
+GC

(
p, T ; r(0)s , ta

)]
=

∫ T

ts−iκ−2

dτ U

(∫ τ

ts

dξ vp(ξ)

)
. (3.6)

The value of the lower limit of the integral tκ = ts − i/κ2 plays a key role in our ability
to match the asymptotic “tail” of bound wave-function Slr

C(a) at the R-matrix sphere with the
continuum “tail” GC(p, T ;a, t) and absorb them into one common expression, continuous across
the matching boundary. This term represents the phase WC(ts,p) of electron wave function
accumulated as it travels from the atom to the detector.

Boundary matching for the momentum term requires a new approach, and is described in the
Appendix 3.A.1. This approach generalizes the matching procedure for arbitrary order of terms
in the Taylor series expansion Eq. (3.5), and gives us closed-form expression for the Coulomb
correction to the electron velocity vp(ts) in a short-range potential:

−∆vC ≡
[
∇Slr

C(r
(0)
s ) +∇GC(p, T ; r

(0)
s , ta)

]
=

∫ T

ts−iQκ−3

dτ ∇U
(∫ τ

ts

dξ vp(ξ)

)
+ vp(ts), (3.7)

Note different value for the lower limit of the integral, tQ ≡ ts−iQ/κ3. Equation (3.7) represents
the Coulomb correction to electron velocity vp(ts), which takes into account the contributions of
both the Coulomb and the laser fields at the complex time associated with the beginning of the
tunnelling process. We need to subtract ∆vC from the SFA velocity vp(ts) to find the correction
to initial velocity due to the long-range interactions, for a fixed momentum p measured at the
detector.

It might seem peculiar at first, as we first extend the domain of momentum generated by
long-range potential deep under the barrier, and then subtract the short-range component in
Eq. (3.7). The final velocity term contributing to the photoelectron angular distribution is
vpc(tcs) = vp(t

c
s) −∆vC ; this is to be contrasted with the case of the standard PPT [3–6] and

KFR [2, 78, 79] theory, where the short-range SFA velocity vp(ts) is the only source for the
angular distributions and the prefactors in the ionisation amplitudes/rates.

The fact that the matching time for momentum, tQ = ts − iQ/κ3, depends directly on the
charge Q in the zeroth order (unlike other complex times ta, tκ and ts, which can only depend
on Q through higher-order Coulomb corrections, and not in the zeroth order), is a manifesta-
tion of the short-range contribution through a long-range potential expression in Eq. (3.7). In
Appendix 3.A.2, we further discuss this point, and show how ∆vC vanishes in the limit Q→ 0,
which expresses the idea that physically, short- and long-range contributions are not separable
effects, but need to be considered together to define the appropriate velocity generated in a
Coulomb-laser coupled system.

The matching instant is different for the phase and its gradient (to wit, tκ and tQ, respec-
tively), which is not surprising, as different matching instants arise from different quantum
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boundary conditions: quasicalssical action, GC , is matched to the action in the asymptotic
limit, Slr

C , for the quantum mechanical wave function, whereas the gradient of the quasicalssical
action, ∇GC , is matched to the gradient of the action stemming from the long-range part of the
quantum mechanical wave function, ∇Slr

C . A detailed derivation of boundary matching for the
two cases is discussed in the Appendix 3.A and 3.B.

After achieving the boundary matching for the momentum of the photoelectrons, we can
resume the derivation scheme outlined in [268], to end up with the final ionisation amplitude:

aARM(p, IP ) = (−1)mCκℓNℓm

√
κ⏐⏐SSFA

tt (tcs)
⏐⏐e−iSSFA(tcs,p)−iWC(tcs,p)Pm

ℓ

(
pcz

vpc(tcs)

)
eimϕc

v(t
c
s), (3.8)

which is applicable to any arbitrary final momentum p, short pulses of arbitrary polarisation,
and initial states of arbitrary symmetry [arbitrary (ℓ,m) values], for a long-range interaction
with the ionic core. The final Coulomb-corrected velocity entering into the prefactors is vpc(tcs) =
vp(t

c
s)−∆vC .
The Coulomb-corrected complex tunnelling angle is: ϕcv(t

c
s) ≡ arctan[vypc(tcs)/v

x
pc(tcs)]. The c

in the superscript of tcs denotes the Coulomb-corrected saddle point tcs ≡ ts +∆tcs [270], which
we derive in the Appendix 3.B and present another equivalent form for it:

∆tcs = − dWC(ts,p)

dIp

⏐⏐⏐⏐
κ=const

≡ − vp(ts) ·∆vC

vp(ts) ·E(ts)
. (3.9)

The first equality in Eq. (3.9) has been used in [270], and independently derived through the pro-
posd spin-orbit Larmor clock in [271]. The expression for ∆vC , given by Eq. (3.7), is rigorously
derived in Appendix 3.A.1, the essential point being that we can now describe the modifica-
tions of electron velocity due to long-range interactions under the barrier as the electron tunnels
through.

3.3 Results

Fig. 3.1a and 3.1b show the photoelectron spectra for strong-field ionisation of p−/p+ orbitals
of a Kr atom, i.e. for the Coulomb potential and the binding energy of Kr in Eq. (3.8). We used
right circularly polarised field, rotating in the positive direction (counter-clockwise). The pulse
was defined by its vector-potential A(t) as

A(t) = −E0
ω

cos2
(
ωt

2Ne

)
[cos(ωt) x̂+ sin(ωt) ŷ], (3.10)

with the envelope containing two full laser cycles base-to-base (Ne = 2) and the field envelope
is modeled by a cos2-profile. The laser wavelength was set to λ = 800 nm, and the peak field
strength was set to E0 = 0.05 a.u. In these spectra, we can already identify several distinguishing
features between ionisation from the p− and p+ orbitals.

Most important is the angular off-set between the peaks of photoelectron distributions corre-
sponding to ionisation from the p− and p+ orbitals. Figure 3.1 shows that for the p− orbital, the
spectrum is considerably offset, in the counter-clockwise direction, from the peak of the electron
spectrum associated with the p+ orbital. The difference between the offset angles is ∆ϕoff ≈ 3.9
degrees, which is an observable shift. Note that ionisation from short range potentials does not
lead to angular off-set between these two spectra, where we would obtain the peak angle at
ϕoff = 0 degrees for both p− and p+ orbitals.

This results can be understood as follows. Co-rotating and counter-rotating electrons are
spun away by the attoclock differently, since they have different initial velocities orthogonal
to tunnelling direction. Interaction with the core potential reveals this disparity in the initial
conditions: the slower counter-rotating electron stronger sinteract with the Coulomb field and
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Figure 3.1: Angle-resolved spectrum for p− and p+ electrons removed from a Kr atom by a
2-cycle, right circularly-polarised field, for the peak intensity I0 = 1.75×1014 W/cm2 (E0 = 0.05
a.u.), λ = 800 nm

is therefore deflected stronger. The co-rotating electron exits the barrier with higher lateral
velocity, moves away faster, and is less affected by the Coulomb field. This leads to angular
separation of the photoelectron signals from the two orbitals.

This picture is further confirmed by the shift of the peak energy for the two orbitals, which
is also substantial, ∆E = 3.4 eV, with p+ electrons peaked at higher energy than p−. For the
present case of right-circularly polarised laser fields, the p+ (or co-rotating, in general) electrons
are always detected with higher energy than the p− (counter-rotating electrons) as discussed
above. A similar energy off-set has been found in the case of long pulses and short-range
potentials [142].

We can now explore the angular profile of photoelectron distributions in more detail, and
study the distinguishing features of ionisation from different orbitals. These features are deter-
mined by the long-range electron-core interaction. The distribution for p− is more stretched out
along the azimuthal angle ϕp, but is more compact along the radial momentum pρ, as compared
to the corresponding distribution in p+. The spectrum spreads out in angle in case of p− orbital,
because of the prominence of the low momentum electrons in that case, which leads to stronger
Coulomb attraction and larger deflection angles.

The width of the distribution in energy E for the p+ electron is greater than for the p−

electron. This effect is related to the dominance of high energy electrons and specific energy
dependence of the Coulomb effects. For high energies, the Coulomb effects weakly decrease with
increasing energy, thus preserving the original Gaussian-like distribution for the p+ spectra,
characteristic of ionisation from short-range potentials. In contrast, photoelectrons emitted
from p− orbitals “pile up” at lower energies due to Coulomb attraction.

A comparison of the ratio of angle-integrated ionisation rates for p− and p+ electrons, rX =

wp−

X /wp+

X , is shown in Fig. 3.2, for SFA (red solid) and ARM (blue dashed).

The green dashdotted curve is the photoelectron spectrum for the (dominant) p−-orbital, in
arbitrary units, and the black thin, solid line represents the unity level in the ratio. We observe
considerable suppression of the signal from the p+ orbital (nearly 2 to 6 times in the range from
25 to 15 eV, and more for lower energies), versus the signal from the p− orbital. Thus, when
both orbitals are equally populated as is the case of the neutral Kr, the signal from the p−

orbital will dominate the total spectrum.

The dominance of the p− electron has the same origin as the one described in [142] for
short-range potentials and long pulses. However, here the effect is further amplified due to the
Coulomb effects. Low to medium energy photoelectrons are enhanced more strongly for p− than
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Figure 3.2: Ratio of ionisation rates for p− to p+ orbitals, in SFA (red solid) and ARM blue
dashed). The green dash-dotted curve is the photoelectron spectrum for the (dominant) p−-
orbital, the magenta dotted curve shows the spectrum for the p+-orbital (in arbitrary units).
The black thin solid line represents the unity level in the ratio. The calculations are for a
Krypton atom at the peak intensity I0 = 1.75 × 1014 W/cm2 (E0 = 0.05 a.u.), λ = 800 nm,
2-cycle, right-circularly polarised laser field.

for p+: for 16 eV electron energy, around 30 % more in the Coulomb potential compared to
the short-range potential. The region of dominance for p− orbital is slightly extended to higher
energies, indicating the enhancement of nonadiabatic dynamics in the long-range potential.
In [142], it was expected that Coulomb corrections would nearly cancel out and thus have no
impact on the ratio wp−(E)/wp+(E), which we find to be true for higher energy photoelectrons,
but not for low to medium energy.

The dominance of counter-rotating electrons over co-rotating ones implies that the former
will give the prominent contributions to the ionisation yields and angular distributions measured
experimentally. In Fig. 3.3a and 3.3b we show intensity scan of the offset angle and peak energy
for Argon atom. The offset angles and peak energies for an s-orbital calculated with the same
ionisation potential of Argon would have appeared approximately in the middle between the
graphs presented in Fig. 3.3a and 3.3b.

3.4 Conclusions

We have extended our ARMmethod to include the effects of the long-range potential interactions
on the outgoing electron with the core, for ionisation from atomic orbitals of arbitrary symmetry,
going beyond s-orbital case considered in [270]. We have studied the effects of the initial orbital
momentum on the observed final angle-and energy-resolved photo-electron distribution.

We have shown the sensitivity of the attoclock observables to the internal dynamics in the
initial state. The difference between the attoclock off-set angles for p+ and p− orbitals is about
3 − 4 degrees for Ar and Kr in typical experimental conditions. Experimentally, the attoclock
set-up has been applied to study ionisation from p-states in Ar atom [57]. The resulting off-set
angles have been used to extract the spatial coordinate corresponding to the position of the exit
from the tunnelling barrier. Our results suggest that corrections at the level of about 2 degrees
might be required for this mapping, since the off-set angle for an s-orbital is about 2 degrees
smaller than for the dominant p−-orbital.

We expect that the attoclock set-up could be used for detecting ring currents, excited in
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Figure 3.3: (a) Offset Angle and (b) Peak energy variation for p− and p+ electrons with peak
intensity, for an Argon atom, IP = 15.76 eV. Field Parameters: λ = 800 nm, 2-cycle, cos2-
envelope, right-circularly polarised.

atoms or molecules. Ring currents of opposite direction are expected to increase or decrease the
attoclock off-set angle relative to the value detected in a system, in which such currents have
not been excited in the initial state.

The direction of the stationary current in the initial state is also mapped onto the strength
of the signal, with the signal from a current counter-rotating with respect to the laser field
dominating over the co-rotating one.

To increase the sensitivity of detecting the current direction, one can also measure angular
and energy dependent photoelectron dichroism. It amounts to detecting the attoclock spectra
in left and right circularly polarised fields and taking the ratio of the difference to the sum of
such spectra. The resulting CD attoclock spectra will have opposite off-set angles for opposite
directions of ring currents.

Finally, we note that energy separation of p+ and p− signals in long pulses leads to spin-
polarisation [143], thus angular separation should lead to additional opportunities to create short
spin-polarised electron bunches.
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3.A Boundary matching for the gradient of EVA phase

3.A.1 Initial velocity and tunnelling angle

We first derive Eq. (3.7). Since ∇GC

(
r
(0)
s , ta

)
is to be matched to ∇Slr

C

(
r
(0)
s , ta

)
, we have:

∇Slr
C

(
r(0)s , ta

)
+∇GC

(
r(0)s , ta

)
= i

Q

κa
v̂p(ts) +

∫ T

ta

dτ ∇U
(∫ τ

ts

dξ v(ξ)

)
. (3.11)

We have used that ∇Ssr
C = −iκ r̂, and r

(0)
s is given by Eq. (3.3). The change of the unit vector of

velocity v̂p(ta) in ∇Slr
C to v̂p(ts) is validated by the fact that the first order term proportional

to (ta − ts) has exactly zero contribution to the matching point, regardless of the duration and
envelope profile of the field. The second order corrections are ∝ E2, effects which we exclude as
they require consideration of the polarisation of the bound state [277]. We require

∇Slr
C

(
r(0)s , ta

)
=

∫ ta

tm

dτ ∇U
(∫ τ

ts

dξ vp(ξ)

)
+ f , (3.12)

where tm is an unknown complex matching time instant that we have to establish. Once we

derive the expression for tm, we can combine ∇SC
(
r
(0)
s , ta

)
+∇GC

(
p, T ; r

(0)
s , ta

)
into a single

term:

∇SC
(
r(0)s , ta

)
+∇GC

(
p, T ; r(0)s , ta

)
=

∫ T

tm

dτ ∇U
(∫ τ

ts

dζ vp(ζ)

)
+ f . (3.13)

Here we have made allowance for an additional, constant vector f that will aid us in our
matching scheme. The idea of the matching scheme is to redistribute the contributions from the
terms appearing in the RHS of Eq. (3.11) in a boundary-independent form, to which purpose the
constant vector f is introduced. The choice of f depends on the choice of the matching instant
tm, which as will be shown, we are free to decide upon; however, a specific choice of tm leads to
a clear physical interpretation, and hence is favoured.

First, we note that we can rewrite the integral on the RHS of Eq. 3.12 using the short-time
approximation for the argument of U(r) = −Q/∥r∥, which is justified since time instants ts and
ta are very close to each other by construction: |ts− ta| = a/κ≪ |ts|. For any τ between ts and
ta this approximation yields:∫ τ

ts

dζ vp(ζ)

 ≈ ∥vp(ts)∥(τ − ts) = iκ(τ − ts) =

∫ τ

ts

dζ iκ, (3.14)

using ∥vp(ts)∥ ≡ vp = iκ. From Eq. (3.14) we obtain:∫ ta

tm

dτ ∇U
(∫ τ

ts

dξ vp(ξ)

)
= Q

vp(ts)

v3p(ts)

∫ ta

tm

dt′
1

(t′ − ts)2
, (3.15)

We therefore obtain the condition for the matching point tm, using Eqs. (3.11) and (3.15) to
rewrite Eqs. (3.12) as:

i
Q

κa

v(ts)

v(ts)
= −Q v(ts)

v3(ts)

[
1

ta − ts
− 1

tm − ts

]
+ f . (3.16)

Using the definition of ta = ts − ia/κ, the first term on the RHS cancels with the expression on
the LHS, giving us the following definition for the time instant tm:

f =
Q

κ2
1

tm − ts
v̂p(ts) ⇒ tm = ts +

Q

κ2f · v̂p(ts)
. (3.17)
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The first and most obvious choice of a suitable vector f we can consider is what we see time and
again in strong-field ionisation: f = vp(ts) (the SFA velocity), which gives us

tm = tQ ≡ ts − i
Q

κ3
. (3.18)

With this definition of matching point, the boundary-independent momentum contribution from
long-range part is also clearly stated:

−∆vC ≡ ∇Slr
C +∇GC =

∫ T

tQ

dτ ∇U
(∫ τ

ts

dξ vp(ξ)

)
+ vp(ts), (3.19)

∆vC = vC
p (ts)− vp(ts), (3.20)

vC
p (ts) = −

∫ T

tQ

dτ ∇U
(∫ τ

ts

dξ vp(ξ)

)
. (3.21)

vC
p (ts) describes the electron velocity that includes coupled contributions of ”laser-free” bound

velocity and ”laser-driven” continuum velocity.
The part associated with the contribution from the long-range potential obtains by subtract-

ing the SFA velocity vp(ts) from vC
p (ts). We have also defined, along with our matching scheme,

a clear definition of momentum shifts induced by long-range interaction, and, the crucial point
of all, taking into account the contributions from under the barrier motion to the momentum
shifts induced by the Coulomb potential.

Substituting this value of tm into Eq. (3.13) we obtain Eq. (3.7). Tunnelling angle is obtained
from Eq. (3.7) as described in the main text.

3.A.2 Obtaining the SFA velocity from vC
p (ts) in the limit Q → 0

We underscore the peculiarity of the matching time tQ: it is the only complex time discussed
here that explicitly depends on the charge Q in zeroth order; ta, tκ and ts are all independent
of the effective long-range charge. The expression Eq. (3.7) not only contains the long-, but
also the short-range contribution, which is the source of the complex velocity vp(ts) = iκ v̂p(t).
Therefore, in the limit of a short-range potential (Q → 0), the long-range contribution in
Eq. (3.7) should converge to zero.

To demonstrate that this is indeed the case, we divide the integral in Eq. (3.7) into two
parts: the integral from tQ till the matching point ta, up to which time we use the asymptotic,
quantum action SC for the wavefunction, and beyond which the quasiclassical action is used
leading to the eikonal-Volkov [267] phase contribution. With Q → 0 this latter part converges
to zero as it is directly proportional to Q. From the former, we get:

lim
Q→0

vC
p = − lim

Q→0

∫ ta

tQ

dτ ∇U(rL) ≈ lim
Q→0

Q
vp(ts)

v3p(ts)

[
1

ta − ts
− 1

tQ − ts

]
(3.22)

after approximating the trajectory by its first (linear) order term in time, on account of the
proximity of tQ and ta in the complex-time plane.

In Eq. (3.22), the first term goes to zero, since there is no dependence on charge Q in ta or
ts. If we were considering higher order corrections to ta, ts, even then the first term in Eq. (3.22)
would converge to zero, since the zeroth order term (independent of Q) will prevail in that case
over the higher order correction (dependent on Q), leading to finite contribution from the first
term even when Q→ 0.

The same is not true for the second term in the rectangular brackets of Eq. (3.22), because
of tQ = ts − iQκ−3, and using this definition of tQ, we get:

lim
Q→0

vC
p = − lim

Q→0
Q
vp(ts)

v3p(ts)

iκ3

Q
= vp(ts) (3.23)
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which is the SFA velocity, and is precisely what we have intended to prove in the limit of Q→ 0.
This term then cancels with vp(ts) in Eq. (3.7) to give ∆vC = 0 in the short-range limit.

3.B Derivation of Coulomb correction to ionisation time

We start with Eq. (35) of [268] for the Coulomb correction to the saddle-point time ta, corre-
sponding to the moment of time when trajectory crosses the boundary of the R-matrix region:

∆tca = −
∂tGC

(
r
(0)
s , ta

)
∂2t S

SFA
(
r
(0)
s , ta

) =
−vp(ts) ·∆vC(ta, T ) + U(a)

E(ts) · vp(ts)
(3.24)

We can rewrite this equation as

∆tca =
vp(ts) ·

∫ T
ta
dτ ∇U

(∫ τ
ts
dξ vp(ξ)

)
+ U(a)

E(ts) · vp(ts)
. (3.25)

The following is true for any tm between ts and ta:

vp(tm) ·
∫ ta

tm

dt∇U
(∫ t

tm

dτvp(τ)

)
≃ Q

vp(ts)

[
1

ta − ts
− 1

tm − ts

]
=

Q

iκ(tm − ts)
− Q

a
, (3.26)

on account of the short-time approximation as outlined above, see Eq. (3.14). Taking into
account that Eq. (3.26) yields:

U(a) = −Q
a

= vp(tm) ·
∫ ta

tm

dt∇U
(∫ t

tm

dτvp(τ)

)
− Q

iκ(tm − ts)
, (3.27)

we can rewrite Eq. (3.25) as:

∆tca =
vp(ts) ·

∫ T
tm
dt∇U

(∫ t
ts
dτvp(τ)

)
+ U

(∫ tm
ts

dτvp(τ)
)

E(ts) · vp(ts)
, (3.28)

Here tm denotes any arbitrary complex moment of time that has to be established. Note that
now the Coulomb correction ∆ta to saddle point time ta given by Eq. (3.28) does not depend
on the position of the boundary, but depends on time tm.

We now have a similar freedom in choosing tm for the phase, as we had for the momentum.
At present, we consider the equivalent expressions obtained from two different choices of tm.

Taking tm = tκ, the time instant for phase matching (as derived in Appendix 3.B.1), we get:

∆tcs =
vp(ts) ·

∫ T
tκ
dt∇U(

∫ t
ts
dτvp(τ)) + U(

∫ tκ
ts
dτvp(τ))

E(ts) · vp(ts)
(3.29)

Note that Eq. (3.29) can be written in a compact form:

∆tcs = − dGC(p, T, rs, tκ)

dIp

⏐⏐⏐⏐
κ=const

, (3.30)

which is derived in Chapter 4 using different arguments, taking advantage of the Spin-Orbit
interactions in partially filled noble gas atom shells.

This form has been applied in [270], where we have used notation

WC(ts,p) ≡ GC

(
p, T, r(0)s , tκ

)
=

∫ T

ts−i/κ2

dτU

(∫ τ

ts

dζ vp(ζ)

)
. (3.31)
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The time instant tκ is when the electron is at a distance of 1/κ from the entrance point of the
tunnelling barrier.

With another choice of tm = tQ, we however get:

∆tcs =
vp(ts) ·

∫ T
tQ
dt∇U

(∫ t
ts
dτ vp(τ)

)
+ U

(∫ tQ
ts
dτ vp(τ)

)
E(ts) · vp(ts)

(3.32)

Using the fact that U
(∫ tQ

ts
dtvp(t)

)
≈ iκv̂p, we can rewrite Eq. (3.32) in an equivalent form:

∆tcs = − vp(ts) ·∆vC

vp(ts) ·E(ts)
. (3.33)

We have used here the definition of ∆vC derived in Appendix 3.A.1. A similar result was
derived for the optimal momentum in [268], however that result was limited to the SFA optimal
momentum and only for ℓ = 0 bound states. To go beyond and generalise to arbitrary states,
we see that finding a boundary matching scheme for the gradient was an essential requirement.
The momentum shift term ∆p defined in Chapter 2 was real, whereas here we get complex
momentum shifts from LRP interactions for two reasons: first, the trajectories can be complex;
secondly, and more importantly, we have included effects of momentum shifts from under the
barrier, which will always ensure complex momentum shifts, even for the optimal momentum
(the optimal momentum does have imaginary component, but only under the barrier).

Now with the matching scheme presented here (which is a general procedure for matching
to arbitrary orders of atomic charge Q), we have a rigorous derivation valid for arbitrary final
momentum p at the detector. We stress that for the hydrogen atom, where Q = 1 and κ = 1,
both expressions are equivalent, since tQ = tκ.

3.B.1 Boundary matching for the Coulomb phase

Here we reproduce the boundary matching for the Coulomb phase term GC

(
p, T ; r

(0)
s , ta

)
, as

done in [268], and present a generalization for the matching scheme for the phase as well.

The idea of matching for the phase is very similar to the idea of matching for its gradient
discussed above. To emphasise this similarity we will use the same steps in our derivation,
and show the flexibility in choosing the matching time instant tm for the phase, as we did for
momentum.

Recalling that

GC

(
p, T ; r(0)s , ta

)
=

∫ T

ta

dτ U
(
rL

(
τ, r(0)s ,p, ta

))
, (3.34)

where

rL

(
τ, r(0)s ,p, ta

)
= r(0)s +

∫ τ

ta

dξ vp(ξ) =

∫ τ

ts

dξ vp(ξ), (3.35)

and r
(0)
s =

∫ ta
ts
dτ vp(τ), we require that

Slr
C

(
r(0)s

)
=

∫ ta

tm

dτ U

(∫ τ

ts

dξ vp(ξ)

)
+Φ, (3.36)

where tm is an unknown complex matching time instant, that we have to establish by fixing Φ

along with it. Once it is found, we can combine Slr
C

(
r
(0)
s , ta

)
+ GC

(
p, T ; r

(0)
s , ta

)
into a single

term:

Slr
C

(
r(0)s

)
+GC

(
p, T ; r(0)s , ta

)
=

∫ T

tm

dτ U

(∫ τ

ts

dξ vp(ξ)

)
+Φ. (3.37)
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Expanding the RHS of Eq. (3.36) using the proximity of ta and tm to ts, we get

i
Q

κ
ln(κa) = i

Q

κ
ln

(
a

κτm

)
+Φ, (3.38)

from which we can derive the general relation between matching time tm and arbitrary constant
Φ:

Φ = i
Q

κ
ln
(
κ2τm

)
(3.39)

Here we have made use of the fact that ta = ts− ia/κ and defined the imaginary time difference
between ts and tm as iτm = ts − tm.

If we take tm = tκ (τm = 1/κ2), as was derived in [268], we get Φ = 0, and

Slr
C

(
r(0)s

)
+GC

(
p, T ; r(0)s , ta

)
=

∫ T

tκ

dτ U

(∫ τ

ts

dξ vp(ts)

)
. (3.40)

However, with tm = tQ (τm = Q/κ3), Eq. (3.36) will lead to

Slr
C

(
r(0)s

)
+GC

(
p, T ; r(0)s , ta

)
=

∫ T

tQ

dτ U

(∫ τ

ts

dξ vp(ts)

)
+ i

Q

κ
ln

(
Q

κ

)
. (3.41)

Equation (3.40) and (3.41) are equivalent. In both cases, the long-range contribution of the
asymptotic, Coulomb action Slr

C , matches with the long-range part of the quasiclassical eikonal-
Volkov phase GC , to give the final result independent of the mathematical construct of the
R-matrix sphere radius. In the latter case, the second term will end up in the prefactor in the
form (Q/κ)Q/κ (note that the co-ordinate rQ at time instant tQ is Q/κ2), which is just the
long-range prefactor term (κr)Q/κ at coordinate rQ = Q/κ2. In the short-range limit, Q → 0,
this prefactor converges to unity.

Similar scheme for matching the Coulomb phase, used in the PPT method [3–6], is derived
for the quasistatic domain ω → 0 – and subsequent approaches [51, 277], the former using the
imaginary time method (ITM) to derive ionisation rates, the latter based on the partial Fourier
transform scheme – but the idea of introducing an arbitrary new constant was not considered
in the way we have introduced here, especially the application to boundary matching for the
momentum. See also recent review by Popruzhenko [82] for a comprehensive discussion of the
multitude of theoretical approaches in Strong Field Ionisation, including study of Coulomb
corrections to the short-range SFA and KFR theories.
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Chapter 4

Attosecond Larmor Clock

4.1 Introduction

In the previous two chapters, we have developed the Analytical R-Matrix (ARM), which has
shown us that instants of ionisation in a Long-range type potential (e.g. Coulomb) are signif-
icantly different than for Short-range type potentials. The latter SRP models have been used
extensively to describe strong field ionisation, in systems where they are not valid. For a fixed
final momentum, the electron has to ionise earlier in a LRP compared to SRP core. This implies
a certain delay in the ionisation process in Coulomb-type systems. Estimating these tunnelling
delays is a crucial goal in Physics in general.

To define the ionisation time for one-photon and multiphoton ionisation regimes within the
same protocol, we extend the idea of the Larmor clock, originally introduced in [278] to define
the time it takes an electron to tunnel through a barrier (see e.g. [279–281]). The Larmor clock
as proposed by Baz [278] measures rotation of the electron spin in an external homogeneous
magnetic field acting exclusively inside the barrier. The angle of rotation is the hand of the clock.
Here, we introduce the analogue of this clock, which is based on the spin-orbit interaction and
is naturally built into many atoms. Physically, the spin-orbit interaction can be understood by
considering an electron with angular momentum ℓ orbiting around the nucleus. In the reference
frame associated with the electron, the nucleus rotates around it and creates a current. The
current creates the magnetic field. Precession of the electron spin in this field records time.

This Larmor clock should be applicable for arbitrary systems where spin-orbit interactions
can be used as a reliable method to measure time delays, and importantly is applicable for a
wide range of laser field parameters, from the multiphoton, weak field regime (characterised by
the Keldysh Parameter γ ≫ 1) to the adiabatic tunnelling domain (γ ≪ 1), with a crucial bridge
in between the two domains where γ ≃ 1.

Through this Attosecond Larmor Clock (ALC), we provide a rigorous derivation for time
delays, which naturally extend the idea of Wigner-Smith (WS) time in one photon ionisation,
to arbitrary photon ionisation. We also show how the rigorous derivation for time delays due
to Coulomb interactions presented in the previous Chapter is in agreement with the WS time
delay derived here after considering precession of the electron spin in the magnetic field induced
by Spin-Orbit interactions.

4.2 Spin-orbit Larmor clock for one-photon ionisation: calibra-
tion of the clock

Quantum mechanics uses operators to predict an outcome of a measurement. However, some
figures of merit, e.g. the phase of quantum electromagnetic field or the times of quantum tran-
sitions are not associated with operators. Their measurement has to rely on the operational
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approach, i.e. a measurement protocol yielding a particular observable at the detector. Mea-
suring ionisation times with attosecond accuracy has been the focus of several recent experi-
ments [44, 185, 186, 196, 198, 282], using different measurement protocols in different ionisation
regimes.

For one-photon ionisation the definition of ionisation time τWS, referred to as Eisenbud-
Wigner-Smith time, is established [283,284] and verified in the analysis [186,285–288] of recent
experiments [185,186]. This definition links τWS to the phase of the photoelectron wave-function
ϕ through its derivative with respect to electron energy: τWS = −dϕ/dE. Establishing such a
link between the classical concept of time and the parameters of a quantum wave-function in
the regime of strong field ionisation is the goal of this chapter.

To illustrate how the clock works, consider a Gedanken one-photon ionisation experiment,
where an s-electron is removed from an atom (e.g. Cs) by a right circularly polarised light
field, see Fig. 4.0a. There is no spin-orbit interaction in the initial state–the ground state of a
Cs atom. Spin-orbit interaction turns on upon photon absorption, since the electron angular
momentum changes from ℓ = 0 (s-state) to ℓ = 1 with its projection on the laser propagation
direction mℓ = 1. Thus, photon absorption turns on the Larmor clock: the electron spin starts
to precess. Spin-orbit interaction is short-range, localised near the core. Once the freed electron
leaves this area, spin precession stops and the clock turns off.

However, the original Larmor clock [278] used homogeneous magnetic field and hence the
clock hand rotated with constant speed. In our case, the spin-orbit interaction is inhomogeneous,
requiring calibration of the clock: the mapping between the angle of rotation and the ionisation
time. To calibrate the clock we consider rotation of electron spin during one-photon ionisation,
where the ionisation time τWS is well established.

Let us prepare the electron in the initial spin-polarised state, |sin⟩ = (1/
√
2)[| − 1/2⟩ +

eiφ|1/2⟩], with the phase φ characterising the initial orientation of the spin in the polarisation
plane, and calculate the angle of rotation of the electron spin in this plane during ionisation. The
final state, for the final orbital momentum mℓ = 1, is |sfin⟩ = (1/

√
2)[a↓| − 1/2⟩ + a↑e

iφ|1/2⟩],
where the a↑ and a↓ are the ionisation amplitudes for the spin-up and spin-down ionisation
pathways. The spin has rotated by the angle ∆ϕSO = arg[a↑a

∗
↓], equal to the phase delay

between the spin-up and spin-down ionisation pathways.

The amplitudes a↑, a↓, have been originally derived by U. Fano [289]: a↑ = R3, a↓ =
1
3(R3+2R1), where R1,3 are the radial transition matrix elements into the degenerate continuum
states with total angular momentum j = 1/2 and j = 3/2.

To find the phase difference we need to find arg[a↑a
∗
↓]:

a↑a
∗
↓ =

[
R3

(
1

3
(R∗

3 + 2R∗
1)

)]
=

1

3

(
|R3|2 + 2|R1||R3|(cos(ϕR3 − ϕR1 ) + i sin(ϕR3 − ϕR1 ))

)
, (4.1)

∆ϕSO = arg

[
R3

(
1

3
(R∗

3 + 2R∗
1)

)]
= arctan

2|R1||R3| sin(ϕR3 − ϕR1 )

|R3|2 + 2|R1||R3| cos(ϕR3 − ϕR1 )
, (4.2)

Equation (4.2) yields:

tan∆ϕSO =
sin(−∆ϕ13)

0.5|R3|/|R1|+ cos(ϕ13)
, (4.3)

where the phase difference ∆ϕ13 is defined as ∆ϕ13 = ϕR1 − ϕR3 , the relative phase between
R1,3(E). Their dependence on electron energy E is very similar, up to a small off-set ∆ESO

due to the spin-orbit interaction in the ionisation channel: R3(E) = R1(E − ∆ESO) [289].
The phases are shifted accordingly: ϕR3 (E) = ϕR1 (E − ∆ESO)

1 Using Taylor expansion, we

1The photoionisation matrix elements we discuss here are complex, and we deal with their phases. The phase
lag in a real-valued radial wave-function, corresponding to a given ionisation channel j = 3/2 or j = 1/2 discussed
in [289], translates into the phase of the complex-valued photoionisation matrix element, leading to the phase
difference ∆ϕ13 of the corresponding photoionisation matrix elements discussed here.
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Figure 4.1: Gedanken experiment for calibrating the spin-orbit Larmor clock in one-photon
ionisation. (a) Cartoon of the experiment, for a Cs atom: a circularly polarised field re-
moves an electron from the valence 5s shell, prepared in a coherent superposition of the spin-
up and spin-down states. In the final state, the electron spin has rotated by angle ∆ϕSO.
(b) The spin-orbit clock operating on the electron viewed as an interferometer, a simpli-
fied view. The two arms correspond to the spin-up and spin-down pathways, with phase
difference ∆ϕSO; Formally, the interferometer describes the following interfering pathways:⟨
m′

ℓ,m
′
s, f
⏐⏐⏐R̂ Ξ̂

⏐⏐⏐mℓ,ms, g
⟩

∝
∑

ms

⟨
m′

ℓ,m
′
s, f
⏐⏐⏐R̂⏐⏐⏐mℓ = 1,ms, g

⟩
, where R̂ is the radial part of

the dipole operator, Ξ̂ is the angular part of the dipole operator, g, f are the radial parts of the
initial and final state wavefunctions. We have used that Ξ̂|mℓ = 0,ms⟩ ∝

∑
ms

|mℓ = 1,ms⟩. (c)
Detailed view of the spin-orbit interferometer. The spin-down path is itself a double arm, since
the spin-down electron (ms = −1/2) and the final orbital momentum mℓ = 1 can proceed via
both j = 1/2 and j = 3/2 continua. The single (spin-up) arm and the double (spin-down) arm
interfere in the final continuum state with mℓ = 1. Formally, it corresponds to the following

interfering pathways:
∑

ms,j,mj

⟨
m

′
ℓ,m

′
s, f
⏐⏐⏐R̂⏐⏐⏐j,mj

⟩
⟨j,mj |mℓ = 1,ms, g⟩.
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find ∆ϕ13 = ϕR1 (E) − ϕR1 (E − ∆ESO) ≃ −τWS∆ESO, where τWS = −dϕR1 /dE is the Wigner-
Smith ionisation time [283,284,286]. Thus, we have connected the angle of spin rotation during
ionisation ∆ϕSO to the Wigner-Smith ionisation time, calibrating our clock,

tan∆ϕSO =
sin(τWS∆ESO)

0.5|R3|/|R1|+ cos(τWS∆ESO)
. (4.4)

The inhomogeneous character of the spin-orbit interaction makes the relationship between ∆ϕSO
and τWS nonlinear, introducing the extra term 0.5|R3|/|R1| in the denominator, but does not
invalidate the clock.

How does the spin-orbit interaction measure the ionisation time? The spin-orbit clock works
like an interferometer, see Figs. 4.0b and 4.0c. The angle of rotation is given by the relative phase
between the spin-up (parallel to the orbital momentum) and spin-down pathways. The spin-up
pathway proceeds only via the j = 3/2 continuum. The spin-down pathway is a double arm: it
can proceed via both the j = 3/2 and j = 1/2 states. The spin-orbit interaction introduces the
phase delay ∆ϕ13 in the double arm. This small perturbation records the ionisation time, with
Eq. (4.4) connecting ∆ϕSO and τWS .

4.3 Strong-field ionisation

We now turn to strong-field ionisation in intense IR fields–the regime of recent experiments
[44, 198] aimed at measuring ionisation times and focus on the definition of the ionisation time
in this regime.

To address this problem, consider ionisation of a Kr atom (Fig. 4.1a). The ground state
of Kr+ is spin-orbit split by the energy ∆ESO = 0.665 eV into the P3/2 and P1/2 states with
total angular momentum J = 3/2, 1/2. Both will be coherently populated by ionisation [54]
in a few-cycle intense IR laser pulse, with coherence approaching 90% for nearly single-cycle
pulses [54]. The loss of coherence arises when photo-electron spectra, correlated to two different
core states, do not overlap or overlap only partially.

Figure 4.3 shows nearly complete overlap of these spectra for the ultrashort circularly po-
larised pulse used in our ab-initio calculations, see Appendix 4.A for the numerical details,
confirming nearly 100% coherence of the hole motion in this case. Note that the lack of 100%
coherence affects the amount of the coherently moving charge in the ion, but not the timing
of its dynamics. Thus, even for coherences below 100%, one is still able to use the rotation of
the spin of the hole, triggered by the spin-orbit dynamics of the electron charge in the ion, as a
clock.

At the same time, the spin-orbit interaction in the ionisation channels becomes completely
negligible in strong fields. The importance of this effect can be gauged using the Analyti-
cal R-matrix Approach (ARM) [46, 47, 148, 268, 270], which has been verified against ab-initio
simulations in [269, 270]. Application of ARM to calculating ionisation phases is described in
Appendix 4.B. In the tunnelling limit, ARM yields the following expression for the relative phase
between two degenerate continuum states associated with electron total momentum j = l+1/2

and j
′
= l − 1/2: ξSO ∼ 0.21α2F 2/I

5/2
p ∼ 2.3 × 10−7rad, which is completely negligible. Here

α is the fine structure constant. For the estimates we used typical values of ionisation potential
Ip ≃ 0.5 a.u. and the strength of the laser field F = 0.06 a.u. (see Appendix 4.B for the details
of the derivation).

The formal description of the spin-orbit interferometer in Fig. 4.1b is similar to the one-
photon case in Fig. 4.0c. There is no spin-orbit interaction in the ground state of Kr: the filled
valence 4p6-shell has equal number of p− and p+ electrons ‘rotating’ in opposite directions. Ion-
isation by a nearly single-cycle, right-circularly polarised IR pulse breaks the balance between
the co-rotating and counter-rotating electrons: intense right-circularly polarised IR pulse pref-
erentially removes the p− electron [142,144,290]. This starts the clock. The angle of rotation of
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Figure 4.2: Gedanken experiment for measuring ionisation time in strong-field ionisation. (a)
Cartoon of an experiment, for a Kr atom: Intense circularly polarised field removes a p− electron
from the valence 4p6 shell via absorption of many photons, creating a rotating hole in the ionic
core. (b) The spin-orbit clock operating on the ionic core as an interferometer, for an electron
removed with mℓ = −1 and the ionic core left with ML = 1. As in Fig. 4.0c, the spin-down
path is a double arm, since for ML = 1 the spin-down pathway (MS = −1/2) can proceed via
both J = 1/2 and J = 3/2 core states. The ionisation amplitudes, up to the angular coefficients
relating the orbital momentum L, spin S, and the total angular momentum J , are T3 (for
J = 3/2) and T1 (for J = 1/2). The relevant angular (Clebsch-Gordan) coefficients for each
pathway are also indicated separately.

the core spin at a time-delay τ after the IR pulse is (see Appendix 4.C):

tan∆ϕSO =
sin(∆ESOτ −∆ϕ13)

0.5|T−
3 |/|T−

1 |+ cos(∆ESOτ −∆ϕ13)
. (4.5)

The dependence of the ionisation dynamics on the IR pulse intensity, duration, shape, etc, is
fully encoded in the matrix elements T−

3 and T−
1 (Fig. 4.1b) describing strong-field ionisation
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Figure 4.3: Strong-field ionisation of Krypton by a a single-cycle, circularly polarised IR pulse.
Angle and momentum-resolved photo-electron spectra calculated numerically for the two ioni-
sation potentials corresponding to the two ground states of Kr+, P3/2 (Ip = 14.0 eV) and P1/2

(Ip = 14.67 eV). Red solid contours correspond to P3/2, blue dashed contours correspond to P1/2.
The inner-most contour corresponds to 0.9 level, other contours shown in steps of 0.1. The pulse
had a vector-potential AL(t) = −(E0/ω) cos4(ωt/4)(cosωt x̂ + sinωt ŷ) with E0 = 0.05 au and
ω = 0.057 au. The radial coordinate gives the electron momentum in atomic units.

amplitudes for the removal of mℓ = −1 electron, leaving the hole in P3/2 and P1/2 ionic states
correspondingly, for a given final electron momentum p at the detector. The phases of T3,1 are
ϕT3 and ϕT1 , ∆ϕ13 = ϕT1 −ϕT3 . For the p+ electron (mℓ = 1) the expression is similar, except that
T1,3 are different. The tiny phase shift between spin-down and spin-up ionisation amplitudes
correlated to the P3/2 state of Kr+ due to spin-orbit interaction in ionisation channels has the

same estimate as above, ξSO ∼ 0.21α2F 2/I
5/2
p ∼ 2.3× 10−7rad, and is also negligible.

The clock angles in Eqs. (4.3), (4.5) are virtually identical, except for the term ∆ESOτ
describing the hole dynamics [273] upon ionisation. The analogy in angle-time mapping in
Eqs. (4.3) and (4.5) allows us to establish the definition of strong-field ionisation time. Indeed,
Eq. (4.3) calibrates the clock and establishes the mapping between the angle of spin rotation
and the ionisation time. Eq. (4.5) contains the same mapping. Thus, the time of hole formation
is encoded in ∆ϕ13 = ϕT1 − ϕT3 , accumulated in the second (double) arm of the interferometer.
We shall now analyse these phases to extract the strong-filed ionisation time.

The phases ϕT1 , ϕ
T
3 encode the electron interaction with the potentials U1,3 of the core states

P1/2 and P3/2. These potentials have two contributions, U1,3 = U c + Ud
1,3. Here U c is common

for both states and is dominated by the long-range Coulomb potential, while Ud
1,3 are different

for the two core states, reflecting different spatial distributions of their electron densities, see
Appendix 4.D. Thus, ϕT1,3 = ϕc1,3 + ϕd1,3.

For the same final kinetic momentum p of the continuum electron, in the strong-field ionisa-
tion regime, the difference between ϕc1 and ϕc3 comes from slightly different ionisation potentials
into the P1/2 and P3/2 states: ϕc1 = ϕc(Ip) and ϕ

c
3 = ϕc(Ip −∆ESO), see Appendix 4.B. Hence

∆ϕc13 = ϕc1−ϕc3 ≃ ∆ESOdϕ
c/dIp and one should convert ∆ϕc13 into time, dividing by the energy

of spin-orbit splitting [note the ‘minus’ sign in Eq. (4.5)]:

τSI = − ∆ϕc13
∆ESO

= −dϕ
c
1

dIp
. (4.6)
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Equation (4.6) defines ionisation time in the strong-field regime.
The second part of the relative phase, ∆ϕd13 = ϕd1 − ϕd3, results from the different core

potentials for the P3/2 and P1/2 core states, e.g. due to the different angular structure of the
electron density. It does not depend on ∆ESO, i.e. the period of the clock, and hence can not
be converted into the time-delay in the formation of the hole.

We note that the derivation presented here is not applicable in the weak-field regime. Firstly,
the neglected spin-orbit interaction in ionisation channel may become important in weak fields.
However, it is a rather standard approximation to ignore spin-orbit interaction in the ionisation
channel compared to the spin-orbit interaction for the core electrons (see e.g. [272]), since the
core electrons are plenty and stay near the core, where the spin-orbit interaction is strong, while
the sole continuum electron leaves the core region. Secondly, the explicit dependence of phases
ϕ1,3 on ionisation potential, used in deriving Eq. (4.6), arises naturally only in the strong-field
regime, see Appendix 4.B. Therefore, the expression Eq. (4.6) may not hold in the weak field
regime.

4.4 Reading spin-orbit Larmor clock in strong-field regime

In the Gedanken experiment described in Section 4.3, Eq. (4.5) is sufficient to introduce the
strong-field ionisation time τSI by comparing it to Eq. (4.4) which has calibrated the clock. In
contrast to the one-photon case, where the clock stops as soon as the liberated electron leaves
the range of the spin-orbit interaction potential, the discussion in Section 4.3 does not involve
stopping the clock. Indeed, the clock operates on the states of the ion P3/2 and P1/2. The hole
spin periodically rotates after ionisation is completed. Thus, the clock continues to count time
after it has recorded the rotation angle related to the ionisation time. To stop the clock and
read the information out we can apply the second pulse. It allows us to get direct access to the
phase ∆ϕ13, which records time in the spin-orbit interferometer shown in Fig. 4.1b.

Here is how it works. Consider the pump-probe experimental scheme shown in Fig. 4.3a.
The pump, which starts the clock, is a nearly single cycle right circularly polarised IR pulse. The
probe, which stops the clock, is a left circularly polarised attosecond XUV pulse. It comes with an
attosecond-controlled delay τ and promotes the core into an excited S-state, where the spin-orbit
splitting is absent, e.g. 4s4p6 or any other suitable state. Broad bandwidth of the attosecond
probe pulse couples both P3/2 and P1/2 to the same final S-state, as in [54]. As opposed to
the Gedanken experiment above, in laboratory experiments the initial spin-up and spin-down
components of the ground state are incoherent, and the single arm of the interferometer yields
background for the interference in the double arm in Fig. 4.3b. Left-polarised probe ensures
that the final S-state can be reached only if the electron missing in the Kr core after ionisation
is the p− electron.

The population w of the final state is (see Appendix 4.E):

w = |A1|2 + |A3|2 + 2|A1||A3| cos(∆ESOτ −∆ϕ13(p)) + |Ã3|2. (4.7)

Here, A1 = T−
1 (p)d1/2Fω(Ω1)

√
2/27π and A3 = T−

3 (p)d3/2Fω(Ω3)
√

1/27π are the transition
amplitudes for the two interfering pathways corresponding to the removal of the spin-down
p− electron. In addition to the multi-photon ionisation matrix elements T−

1,3(p) they include
the real-valued radial transition matrix elements d1/2 and d3/2 between the P1/2, P3/2 and the
final S-state of Kr+, and the spectral amplitudes of the attosecond pulse, Fω(...), at the ex-
citation energies Ω3,1 from the P3/2,1/2 states to the final S-state. The background |Ã3|2,
Ã3 = T̃−

3 (p)d3/2Fω(Ω3)
√

1/27π, corresponds to the removal of the spin-up p− electron (See
Appendix 4.E for details of derivation). Modulation of w vs. pump-probe delay τ yields the
phase ∆ϕ13(p) between A1 and A3. It can be measured, e.g. using attosecond transient absorp-
tion [54]. The sensitivity of the phase ∆ϕ13(p) to the final momentum p, and the errors that it
can introduce into the transient absorption measurement of ionisation time, are discussed below.
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The phase ∆ϕ13 includes two contributions: (i) the relative phase due to the same core
potential in both ionisation pathways, ∆ϕc13, which can be translated into time-delay and (ii)
the phase ∆ϕd13, related to the different electron-core potentials in the two ionisation channels.
This phase reflects correlation between the electron and the core and can not be translated into
time. If an experiment does not distinguish between these two contributions to ∆ϕ13, the phase
∆ϕd13 related to the electron-hole correlation will look like a time shift.

Figure 4.5a shows how the total phase (red squares), which can be measured by transient
absorption, and its two separate parts ∆ϕc13 (blue circles) and ∆ϕc13 (green triangles), depend
on the laser wavelength, i.e. the minimum number of photons N = Ip/ω required to reach the
ionisation threshold, for fixed laser intensity. Figure 4.5b shows τSI (blue circles) and apparent
time delays τeh = −∆ϕd13/∆ESO (green triangles). The apparent delay τeh is not negligible for
P3/2 and P1/2 states of Kr.

To obtain results in Figs. 4.5a and 4.5b, we have calculated the phases accumulated due
to the Coulomb potential and the short range components of the core potential for the two
ionisation channels, corresponding to the ionic states P3/2 and P1/2.

Note that the short-range potentials in these two channels are different, see Appendix 4.D.
To obtain time-delays, we have divided the relative phases by the difference in the ionisation
potentials, ∆ESO. The phases were calculated using the ARM method [46, 47, 148, 268, 270],
for the characteristic momentum of the photo-electron distribution p0 = A0 sinh(ωτT )/(ωτT ),
where A0 is the amplitude of the field vector potential and τT ≡ Im[ts(p0)] is the so-called
‘Keldysh tunnelling time’, the imaginary part of the saddle point ts(p0), see Appendix 4.C. For
this momentum, which is very close to the peak of the distribution for the short laser pulse, the
ionisation phases have simple analytical expressions in the tunnelling limit:

∆ϕc13 ≃ −∆ESO/I
3/2
p , (4.8)

∆ϕd13 ≃ −0.4F 2/I5/2p . (4.9)

Note that ∆ϕc13 is proportional to ∆ESO and therefore leads to proper time-delay, while the
phase ∆ϕd13 accumulated due to the different short-range potentials does not scale with ∆ESO

and cannot be translated into proper time. Thus, every time is phase, but not every phase is time.

Since transient absorption experiments do not detect the final energy (or the momentum)
of the electron, we have also checked that the phases and the resulting times are only very
weakly sensitive to the final electron momenta within the region surrounding the peak of the
photo-electron signal. This analysis is presented in Fig. 4.6, where the ionisation time-delays
are overlayed with the electron spectrum generated by the single-cycle pump pulse with the
vector-potential AL(t) = −A0 cos

4(ωt/4)(cos(ωt) x̂ + sin(ωt) ŷ), with A0 = E0/ω, E0 = 0.05
a.u. and ω = 0.0465 a.u. The difference in ionisation times within the full width at the half-
maximum of the distribution is ±5 asec. This number provides an estimate for possible errors
in transient absorption measurements of ionisation delays caused by averaging over the photo-
electron distribution. Note that such measurements will also inevitably include the apparent
delays τeh = −∆ϕd13/∆ESO associated with the phase ∆ϕd13. For the specific example shown in
Fig. 4.5b τeh ∼ 10 asec. Importantly, in the tunnelling limit τSI is intensity-independent while
the apparent delay τeh is proportional to the laser intensity, see Eq. (4.9). This factor might be
used to separate these two contributions.

Results presented in Fig. 4.5b show that, as we increase the laser wavelength λ and hence the
number of photons N = Ip/ω required for ionisation, the ionisation time in Fig. 4.5b decreases.
This dependence has simple explanation. As λ decreases, the laser frequency ω increases, ionisa-
tion becomes less adiabatic and the electron splashes out of the potential well closer to the core,
see Figs. 4.5c and 4.5d. From there, it runs to the detector, accumulating the phase and con-
sequently the time-delay τSI . The closer the electron is launched, the larger is the accumulated
phase. Note that no delay is accumulated under the barrier, see Section 4.6 for details.
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Figure 4.4: Schematic of a laboratory pump-probe experiment implementing the spin-orbit Lar-
mor clock for strong-field ionisation, for Kr atom. (a) Cartoon of the experiment. Multiphoton
ionisation with a strong, right-circularly polarised infrared pump pulse creates a P -hole in the
ion and starts the clock. Attosecond extreme ultraviolet probe fills the P -hole by promoting
an electron from the inner S-shell. This transition stops the spin-orbit clock, since spin-orbit
interaction for S-states is absent. (b) Analysis of the experiment as a two-path interferometer.
Two pathways via the J = 1/2 and J = 3/2 P -states of the ion interfere in the final S-state of
the Kr+.
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Figure 4.5: Analysis of time delays in strong-field ionisation. (a) Calculated phase ∆ϕ13 for
the pump-probe experiment, as a function of the minimum number of photons required for
ionisation, N = Ip/ω, Ip is ionisation potential, ω is laser frequency. The calculations were
done for a Kr atom and the circular field intensity 2.5× 1014W/cm2. Red triangles ( ) show
phase associated with the actual time-delay. Green squares ( ) show the phase that does not
correspond to time-delays but is a leftover from the electron-hole correlation. Total phase ( )
is shown as blue circles. (b) Real ( ) and ‘apparent’ ( ) ionisation delays as a function of
the number of photons required for ionisation, N . (c,d) Physical picture underlying the results:
N -dependence of the electron exit position from the potential well (see Appendix 4.B) (c) and
the cartoon of the ionisation process (d).

4.5 Attoclock measurements of strong-field ionisation delay

The spin-orbit Larmor clock has offered us a general procedure for defining ionisation times in
both one-photon and strong field ionisation regimes. Using the same general procedure we have
arrived at two different expressions in the weak-field one-photon ionisation regime and in the
strong-field regime. In the weak field regime we found the Wigner-Smith ionisation time. In the
strong-field regime we found an expression which agrees with the result of a completely different
derivation described in [270]. Importantly, while we have derived ionisation times using spin-
orbit interaction, our results do not depend on it. Therefore, the detection of the strong-field
ionisation time does not have to rely on the spin-orbit interaction.

Consider, for example, the so-called attoclock setup [44, 57], which measures angle-resolved
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Figure 4.6: Dependence of ionisation delays τSI on the electron momentum at the detector,
for Hydrogen atom. The inner-most contour in the electron spectrum corresponds to 0.9 level,
other contours are shown in steps of 0.1. The color bar shows τSI in attoseconds. The pulse had
a vector-potential AL(t) = −(E0/ω) cos4(ωt/4)(cos(ωt) x̂ + sin(ωt) ŷ) with E0 = 0.05 a.u. and
ω = 0.0465 a.u. Results are obtained using the ARM theory.

electron spectra produced in nearly circular, few-femtosecond IR pulses. Such pulses send elec-
trons released at different instants of time in different directions, providing the link between
the direction of electron velocity at the detector and the time of its release. Nearly single-cycle
pulse creates preferred direction of electron escape, from which the ionisation delay can be re-
constructed [44,57,270]. The angle ϕmax at which the majority of electrons are detected, relative
to the detection angle expected in the absence of the core potential, is called the off-set angle.
We now show that ϕmax can measure the ionisation delay τSI derived above, provided that
effects leading to transient population trapping of released electrons and “negative” ionisation
times [270] are negligible. In particular, such regime can be achieved in the long wave-length
limit (but is not limited to it).

To this end, we consider the benchmark system–the hydrogen atom, where fully ab-initio
simulation of ionisation dynamics in the strong circularly polarised IR field is possible. We solve
the time-dependent Scrödinger equation numerically exactly and use results of the numerical
experiment to find ϕmax. Details of the calculation are described in Appendix 4.A. Red circles in
Fig. 4.7 show the ionisation delay ∆t = (ϕmax−δθ)/ω extracted from the ab-initio photoelectron
spectra, where ω is the laser frequency and the small correction δθ to the off-set angle ϕmax is
introduced by the rapidly changing pulse envelope of the nearly single-cycle laser pulse we have
used [270]. The blue curve with squares, which shows τSI Eq. (4.6), lies on top of the ab-initio
results. To calculate τSI analytically, we have used the ARM theory [270].
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Figure 4.7: Attoclock measurements of strong-field ionisation delay. (a) Red circles show nu-
merically calculated envelope-free offset angle ϕmax − δθ. The small correction δθ to the off-set
angle ϕmax is introduced by the rapidly changing pulse envelope of the nearly single-cycle laser
pulse [270] and is subtracted from ϕmax to present envelope-free results for the offset angle. The
blue squares connected by the blue line show ω|τSI |, the offset angle corresponding to time-delay
|τSI |, ω is the laser frequency. (b) Red circles show the ionisation delay ∆t = (ϕmax − δθ)/ω
extracted from the ab-initio photoelectron spectra. The blue squares connected by the blue
line show τSI . All calculations were done for a hydrogen atom and the circular field intensity
1.75× 1014W/cm2.

We stress that the definition of τSI is not restricted to the long-wavelengths limit shown
in Fig. 4.7. It is only the ability of the attoclock set-up to measure exclusively this time de-
lay, without additional contributions associated with transient population trapping in Rydberg
states leading to negative ionisation times [270], that has restricted our consideration to the
wavelength regime shown in Fig. 4.7. Nevertheless, it is important to demonstrate at least one
example, where the time delay τSI derived from the idea of the spin-orbit Larmor clock can be
experimentally or numerically detected.

4.6 Strong-field ionisation delay and tunnelling delay

Strong-field ionisation is often viewed as tunnelling through the barrier created by the binding
potential and the laser electric field. While our analysis has never relied on the tunnelling
picture, our definition is consistent with the Larmor time −∂ϕ/∂V for tunnelling through a
static barrier of height V [279, 280], equal to Ip in our case (see Figs. 4.8a and 4.8b). However,
Figs. 4.8a and 4.8b emphasise the difference in the two processes, which is in the boundary or
initial conditions for the tunnelling dynamics. In Fig. 4.8a, the electron current is incident on
the barrier and it can lead to the appearance of tunnelling delays, i.e. phase and time delays
accumulated during the motion under the barrier. In Fig. 4.8b the tunnelling starts from the
real-valued wave-function of the bound state. It is a plausible assumption that in this case and
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Figure 4.8: Cartoon illustrating the analogy and the difference between (a) the standard barrier
penetration problem, and (b) optical tunnelling through the barrier created by the laser field
and the core potential in strong-field ionisation.

for the low-frequency laser field, the polarized bound state carries negligible current incident on
the barrier, and that tunnelling would occur from the tail of the initial wave-function already
present under the barrier. Since the initial wave-function is real-valued in the barrier region,
the phase in Eq. (4.3) may get no contribution from the tunnelling region, leading to no delay
associated with the under-barrier part of the electron motion. Indeed, the analytical calculation
of the phase in Eq. (4.3) yields no contribution from the under-barrier region, at least in the
regime of Fig. 4.7. As it follows from excellent agreement between analytical and numerical
results in Fig. 4.7(a,b), the analytical calculation of the phase is accurate, and optical tunnelling
is not associated with time delay. The delay τSI is only due to electron interaction with long-
range core (Coulomb) potential and is explicitly accumulated after the exit from the barrier.

4.7 Conclusions

We have illustrated the concept and the meaning of time delays in strong field ionisation. In
one electron systems, these delays are related to electron interaction with the nucleus. In the
tunnelling limit, comparison of numerical and analytical results unambiguously demonstrates
the absence of tunnelling delays. Non-equilibrium charge dynamics excited in a many electron
atom or a molecule by the laser field and the electron-electron correlations [148,291] could lead
to additional phase δϕ [129] and additional delays δτSI = −dδϕ/dIp contributing to τSI . Our
work shows why and how ionisation delays provide a window into such dynamics in complex
systems.

Production of a coherent superposition of many ionic states and hence of coherent hole
dynamics is the key aspect of interaction with ultra-short light pulses. Any pump-probe exper-
iment resolving these dynamics aims to find phases between the coherently populated states.
As a result of electron-core correlations, not all phases are mapped into time: the formation of
the hole wavepacket is characterised not only by the overall time-delays, but also by additional
phases accumulated during the ionisation process due to the different core potentials for the
different final states of the ion.

What do these phases mean? Given that the electron wavepackets correlated to different
core states overlap at the detector, the hole presents a coherent wavepacket characterised by
the relative phases of its different spectral components. Analysis of spectral phase is common
in characterisation of ultrashort pulses in optics. Linear spectral phase records the arrival time,
while non-linear phase is associated with pulse dispersion. Such dispersion is the closest analogue
of the phase shifts related to electron-core correlations.
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4.A Ab-initio calculations

The numerical procedure and the code are described in detail in [151,270]. The method has been
monitored for convergence by changing the maximum angular momentum up to Lmax = 300,
the radial grid size was increased up to rmax = 2500 a.u., and by varying the step size of the
radial grid δr down to 0.05 a.u. In the presented calculations, the step size of the radial grid was
δr = 0.15 a.u., the time-step was δt = 0.04 a.u., the box size was 1500 a.u., and Lmax = 150.

For Hydrogen atom, the spectrum was obtained by projection on the exact field-free contin-
uum states of the H-atom after the end of the laser pulse. The photoelectron spectra include
the volume element ∝ p2, both in numerical and analytical calculations. The volume element
shifts the position of the peak of the distribution and thus affects the off-set angle, however, in
the exact same way for numerical and analytical spectra. In these both numerical and analytical
calculations we define the laser field FL(t) = −∂AL(t)/∂t via the vector-potential AL(t):

AL(t) = −A0f(t)(cos(ωt) x̂+ sin(ωt) ŷ), (4.10)

where f(t) is the pulse envelope and ω is the carrier frequency,

f(t) = cos4(ωt/4). (4.11)

For Kr atom, the calculations have been performed using the effective one-electron model
potential

UKr(r) =
1 + (36− 1) exp(−η r)

r
+ U0, (4.12)

based on the DFT potential used by D. Bauer and co-workers [51]. We follow the recipe described
in [151], using the additional tuning potential U0 which is added only at the first radial grid
point r1 = 0.5 (the radial grid step was ∆r = 0.05 a.u.) and is equal to zero everywhere
else. The parameter η = 2.64343586965 a.u. has been adjusted to yield the correct ionisation
potential of Kr for the lowest J = 3/2 ionic state, with additional fine-tuning achieved by setting
U0 = 0.0249a.u., giving Ip = −0.5145022731 a.u. For the J = 1/2 core state the tuning potential
was adjusted to U0 = 22.7629 a.u., yielding Ip = −0.5389895221 a.u.

The photoelectron spectrum was calculated by propagating the wavefunction for sufficiently
long time after the end of the laser pulse (typically 2 cycles, the convergence has been monitored
up to 10 cycles), then applying a spatial mask to filter out the central part of the wavepacket
within 100 Bohr from the origin, and performing the Fourier transform of the remaining part
of the wavepacket. We have independently validated this procedure using the Hydrogen atom,
where it has been calibrated against the projection of the wavefunction on the exact scatter-
ing continuum states for Hydrogen. The mask radius was chosen based on this calibration in
Hydrogen.

4.B Calculation of the phase accumulated due to interactions
in ionisation channels

4.B.1 Definition of the strong-field ionisation phase accumulated due to in-
teractions in ionisation channels

To evaluate the relative phase between the two ionisation channels in Kr, we use the R-matrix
based method (ARM) [46,148] generalised for the case of circularly polarised fields [47,268,270].

The ARM method allows one to obtain an analytical expression for the total phase accumu-
lated in each ionisation channel:

ϕJ(p, ts(p, Ip)) =

∫ T

ts−iκ−2

dtUJ

(∫ t

ts

dζ v(ζ)

)
, (4.13)
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where UJ(r) is the potential defining the interaction, κ =
√

2Ip, Ip is the ionisation potential,
v(t) = p+A(t), A(t) is vector-potential of the laser field, T → ∞ is the observation time and
p is the electron final momentum at the observation time.

The time ts(p, Ip) (see [268,270]) is the complex-valued solution of the saddle point equations
for the ionisation in circularly polarised field:

∂SV(T,p, ts)

∂ts
= Ip, (4.14)

where SV (T,p) is the Volkov phase accumulated by the electron in the laser field only:

SV (T,p, ts) =
1

2

∫ T

ts

dt [p+A(t)]2. (4.15)

The coordinate of exit presented in Fig. 4.5(c) of the main text is:

r0 =

∫ Re[ts]

ts

dζ v(ζ). (4.16)

Since ts(p, Ip) depends on Ip, the phase ϕJ(p, ts(p, Ip)) also depends on Ip. The phase difference
in the two channels is accumulated due to the different Ip’s: the difference in ionisation potentials
leads to slightly different ts and thus slightly different trajectories in the two channels. These
trajectories are the arguments of UJ in Eq. (4.13). The common part of the phase is accumulated
due to the Coulomb potential. The channel-specific part is accumulated due to the channel-
specific core potential discussed in Appendix 4.D. The phase accumulated due to spin-orbit
interaction in the ionisation channel is negligible and is estimated below.

4.B.2 The phase accumulated due to spin-orbit interaction in ionisation chan-
nel

We estimate the relative phase between the two ionisation channels corresponding to spin-up
and spin-down ionisation pathways, with orbital momentum ℓ and two values of electron total
momentum: j = ℓ+ 1/2, and j′ = ℓ− 1/2. We use the spin-orbit interaction potential:

VSO(r) = −j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)

4c2r3
, (4.17)

where c = 1/α ≈ 137, in atomic units, s = 1/2 is electron spin (α being the fine-structure
constant). The phase difference ξSO is expressed via the difference between the potentials
corresponding to j and j′:

∆VSO(r) = −ℓ+ 1/2

2c2r3
, (4.18)

We now calculate the phase difference using Eq. (4.13) connecting the phase to the potential.
Substituting the electron trajectory in the tunnelling limit r = r0 + Ft2/2, where r0 = Ip/F , F
is the field strength, we obtain the following integral:

ξSO = −(ℓ+ 1/2)

2c2r30

∫ ∞

0

dt

(1 + Ft2

2r20
)3
, (4.19)

where l, the electron angular momentum along the trajectory, remains constant in the pure
tunnelling limit. Evaluating the integral:∫ ∞

0

dt

(1 + Ft2

2r20
)3

=

√
2r0F

F

∫ ∞

0

dx

(1 + x2)3
= 0.59

√
2Ip

F
, (4.20)
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we obtain:

ξSO = −(ℓ+ 1/2)

2c2r30
0.59

√
2Ip

F
= −0.42

(ℓ+ 1/2)

c2
F 2

I
5/2
p

. (4.21)

Note that in general the angular momentum of the electron l is changing with time and should
be included in the integrand. However, the integral is accumulated in the vicinity of the core and
therefore for estimates in the tunnelling limit we can use the value of angular momentum l0 when
the electron exits the tunnelling barrier. In the tunnelling limit ℓ0 → 0, since when the electron
exits the tunnelling barrier its velocity is parallel to electron displacement. Thus, for typical

field strength F = 0.06 a.u. and Ip = 0.5 a.u. the phase difference ξSO ∼ 0.21F 2/(c2I
5/2
p ) ∼

2.3× 10−7 rad. and is completely negligible.

4.C Rotation of the core spin in strong field ionisation: Gedanken
experiment in Kr atom

Consider Kr atom in its ground state. There is no spin-orbit interaction in the ground state
of the neutral Kr: the P -shell is filled by 6 p-electrons, with equal number of p− and p+

electrons ‘rotating’ in opposite directions. Ionisation by strong, circularly polarised IR laser
field breaks the balance between p− and p+ electrons [142] and starts the spin-orbit Larmor
clock. Intense right-circularly polarised IR pulse prefers to remove the p− electron [142,290], i.e.
mℓ = −1. Let us set the initial spin state to be |sin⟩ = α| − 1/2⟩+ eiϕβ|1/2⟩, where α, β are real
numbers and the phase ϕ characterises the initial orientation of the spin. Once the p− electron
is removed, the quantum state of the core acquires uncompensated angular momentum ML = 1
and uncompensated spin. The spin state of the core is |sin⟩ = α|1/2⟩ + eiϕβ| − 1/2⟩, since the
spins and the angular momenta of the core and the electron are antiparallel at the moment of
separation. As this state is not an eigenstate of the Hamiltonian, the core spin starts to precess.

We shall now calculate the angle of rotation of the core spin. The final spin state for the
fixed orientation of the final orbital momentum ML = 1 is |sfin⟩ = a↓α| − 1/2⟩ + a↑e

iϕβ|1/2⟩,
where the a↑ and a↓ are the strong field ionisation amplitudes for the spin-up and spin-down
ionisation pathways. We first specify our notations and introduce the ionisation amplitude
T−(Ip) corresponding to the removal of p− electron, where Ip is the ionisation potential, in the
absence of the spin-orbit splitting of the core state. The amplitudes T3 and T1, which include
the spin-orbit splitting, are defined as follows: T−

3 = T−(Ip) and T−
1 = T−(Ip + ∆ESO), and

they correspond to the removal of the p− electron [142,273].

Full ionisation amplitudes into the ionic eigenstates P3/2 and P1/2 include the projections

⟨LML, SMS |JMJ⟩ given by the Clebsch-Gordan coefficients, CJMJ

LML,
1
2
MS

, with ML = 1. To find

the final core spin state forML = 1 at a time t, we will need the projections ⟨LML, SMS |JMJ⟩ =
CJMJ

LML,
1
2
MS

, since the Clebsch-Gordon coefficients are real. Taking these projections into account,

we find that the amplitude of ionisation into the state J = 3/2, MJ = 3/2 is T−
3 . The amplitude

of ionisation into the state J = 3/2, MJ = 1/2 is
1√
3
T−
3 , the amplitude of ionisation into the

state J = 1/2, MJ = 1/2 is

√
2

3
T−
3 . Now, we project these states back onto the |LML, SMS⟩

basis to find a↑ and a↓. This yields the amplitude to find the core angular momentumML = 1 and
MS = 1/2 at time t, a↑ = T−

3 e
−iE3/2t, while the amplitude to find the core angular momentum

ML = 1 and MS = −1/2 at the time t is a↓ = 1
3

(
2T−

1 e
−iE1/2t + T−

3 e
−iE3/2t

)
. Here E3/2 is the

energy of the ground state, E1/2 = E3/2 +∆ESO.

To establish the rotation angle we need to find arg[a↑a
∗
↓]:

a↑a
∗
↓ =

1

3

[
|T−

3 |2 + 2|T−
1 ||T−

3 |
{
cos(ϕT3 − ϕT1 +∆ESOt) + i sin(ϕT3 − ϕT1 +∆ESOt)

}]
, (4.22)
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arg

[
T3

(
1

3
(T−∗

3 + 2T−∗
1 )

)]
= arctan

2|T−
1 ||T−

3 | sin(ϕT3 − ϕT1 +∆ESOt)

|T−
3 |2 + 2|T−

1 ||T−
3 |(cos(ϕT3 − ϕT1 +∆ESOt)

. (4.23)

Equation (4.23) yields:

tan∆ϕSO =
sin(∆ESOt−∆ϕ13)

0.5|T−
3 |/|T−

1 |+ cos(∆ESOt−∆ϕ13)
, (4.24)

where the phase difference ∆ϕ13 is defined as ∆ϕ13 = ϕT1 − ϕT3 .

4.D Core potentials in two different ionisation channels

To illustrate the effect of electron-hole correlations on definition and measurement of time, we
consider the contribution of the channel specific core potential VLJMJ

(r), that arises from the
Coulomb interaction between the electron and the core. This potential has the following form:

VLJMJ
(r) =

∫
dr′

ρtrion(r
′)

∥r− r′∥
=

∫
dr′

1

∥r− r′∥
⟨ϵJMJ |r′⟩⟨r′|ϵJMJ⟩ =∑

ML,M
′
L,MS ,M

′
S

CJMJ

LM ′
L,

1
2
M ′

S

CJMJ

LML,
1
2
MS

⟨
1

2
M ′

S

⏐⏐⏐⏐12MS

⟩∫
dΩY ∗

LM ′
L
(θ′, ϕ′)YLML

(θ′, ϕ′)×

∞∑
L1=0

PL1(cosβ)

[∫ r

0
dr′r′2

r′L1

rL1+1

⏐⏐R(ϵJMJ ; r
′)
⏐⏐2 + ∫ ∞

r
dr′r′2

rL1

r′L1+1

⏐⏐R(ϵJMJ ; r
′)
⏐⏐2], (4.25)

where, L = J±1/2, is the orbital angular momentum fixed for a given spin-orbital, β is the solid
angle between the vectors r and r′, and can be written as cosβ = r̂ · r̂′, ϵ represents the effective
principle quantum number corresponding to the energy of the spin-orbital under consideration,
and R(ϵJMJ ; r) is the radial part of the wavefunction associated to the said spin-orbital.

Including all terms together, we have:

VLJMJ
(r) =

∑
ML,M

′
L

MS

CJMJ

LML,
1
2
MS
CJMJ

LM ′
L,

1
2
MS

∞∑
L1=0

4π

2L1 + 1

L1∑
ML1

=−L1

Y ∗
L1ML1

(θ, ϕ)⟨RL1⟩×

∫
dΩY ∗

LM ′
L
(θ′, ϕ′)YLML

(θ′, ϕ′)YL1ML1
(θ′, ϕ′). (4.26)

Here ϕ is the angle in polarisation plane, θ is the angle calculated from the laser propagation
direction, and ⟨RL1⟩ is the expectation value of the radial component, as calculated using the
Roothaan-Hartree-Fock (RHF) orbitals, defined as:

RL(r) =
∑
p,q

cipciq

[
1

rL+1
γ((κip + κiq)r) + rLΓ((κip + κiq)r)

]
, (4.27)

where, cip , ciq are the coefficients for the Slater-Type Orbitals (STO) and ip, iq the corresponding
indices defining the nodes in the wavefunction under consideration, used for the RHF calculations
[292], and γ is the lower, whereas Γ is the upper incomplete-gamma function. Taking into account
Wigner 3j-coefficients from the integral:∫

dΩY ∗
LM ′

L
(θ′, ϕ′)YLML

(θ′, ϕ′)YL1ML1
(cos θ′) = (−1)M

′
L(2L+ 1)

√
2L1 + 1

4π
×(

L L1 L
ML ML1 −M ′

L

)(
L L1 L
0 0 0

)
, (4.28)
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we obtain the selection rules. For L1, the selection rules are: (a) 2L+L1 is even (so only L1 even
are allowed in the summation over L1) and (b) the triangle inequality |L − L1| ≤ L ≤ L + L1

which gives 0 ≤ L1 ≤ 2L. For all other cases the integral is zero, and M ′
L =ML +ML1 .

Taking L1 = 2L′, the expression for VLJMJ
is:

VLJMJ
(r) = (2L+ 1)

∑
ML,MS

L∑
L′=0

2L′∑
M2L′=−2L′

(−1)ML+M2L′CJMJ

LML+M2L′ , 12MS
CJMJ

LML,
1
2
MS

×

√
4π

4L′ + 1

(
L 2L′ L
ML M2L′ −M ′

L

)(
L 2L′ L
0 0 0

)
Y ∗
2L′M2L′ (θ, ϕ)⟨R2L′⟩. (4.29)

From the Clebsch-Gordan coefficients, we have two conditions on ML and MS for a given MJ :

ML +M2L′ +MS =MJ , (4.30)

ML +MS =MJ , (4.31)

which can only be possible if M2L′ = 0. The final expression is:

VLJMJ
(r) = (2L+ 1)

∑
ML,MS

L∑
L′=0

(−1)ML

⏐⏐⏐⏐CJMJ

LML,
1
2
MS

⏐⏐⏐⏐2
√

4π

4L′ + 1

(
L 2L′ L
ML 0 −ML

)
×

(
L 2L′ L
0 0 0

)
Y ∗
2L′0(θ, ϕ)⟨R2L′⟩ (4.32)

Using the definition of Y2L′0, we can simplify further to give:

VLJMJ
(r) = (2L+ 1)

∑
ML,MS

L∑
L′=0

(−1)ML

⏐⏐⏐⏐CJMJ

LML,
1
2
MS

⏐⏐⏐⏐2( L 2L′ L
ML 0 −ML

)
×

(
L 2L′ L
0 0 0

)
P2L′(cos θ)⟨R2L′⟩. (4.33)

Note that L′ = 0 corresponds to Coulomb potential, common in both channels. Consider the
case when ionisation liberates the p+ electron (L = 1) populating the core states J = 3/2, 1/2
and MJ = −1/2 (the result for p− is the same). For the calculation of the difference between
two core potentials we use the same trajectory with averaged Ip. The corrections associated
with the difference in the trajectories are of higher order and are not included here.

The difference in core potentials for this trajectory is:

V1,3/2,1/2(r)− V1,1/2,1/2(r) = 3
1∑

L′=0

(
1 2L′ 1
0 0 0

)
P2L′(cos θ)⟨R2L′⟩×⎡⎣ ∑

ML,MS

(−1)ML

⏐⏐⏐⏐C3/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2( 1 2L′ 1
ML 0 −ML

)
−

∑
ML,MS

(−1)ML

⏐⏐⏐⏐C1/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2( 1 2L′ 1
ML 0 −ML

)⎤⎦. (4.34)

As expected for the common Coulomb potential, the difference for L′ = 0 is zero:

∑
ML,MS

(−1)ML

(
1 0 1
ML 0 −ML

)[⏐⏐⏐⏐C3/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2 − ⏐⏐⏐⏐C1/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2
]
=

(
1 0 1
0 0 0

)[
1

3

]
+ (−1)

(
1 0 1
1 0 −1

)[
−1

3

]
= −

√
1

3

1

3
+

√
1

3

1

3
= 0. (4.35)
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The only term left is the one corresponding to L′ = 1, which gives

V1,3/2,1/2(r)− V1,1/2,1/2(r) = 3

(
1 2 1
0 0 0

)
P2(cos θ)⟨R2⟩×

∑
ML,MS

(−1)ML

(
1 2 1
ML 0 −ML

)[⏐⏐⏐⏐C3/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2 − ⏐⏐⏐⏐C1/2 1/2

1ML,
1
2
MS

⏐⏐⏐⏐2
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, (4.36)

since for θ = π/2, P2 = −1/2. The expression for ⟨R2⟩ is:

R2 =

∫ r

0
dr′r′2

r′2

r3
|R(ϵL; r′)|2 +

∫ ∞

r
dr′r′2

r2

r′3
|R(ϵL; r′)|2 = 1

r3
⟨r′4⟩r0 + r2

⟨
1

r′

⟩∞

r

, (4.37)

which can be found from the incomplete gamma functions. The difference between the two core
potentials is: V1 3/2 1/2(r) − V1 1/2 1/2(r) ≃ −4.444/(10r3), since ⟨R2⟩ = 4.444 a.u. for Kr [293]
and the contribution of the second term in Eq. (4.37) vanishes for r → ∞. To calculate the
respective relative phase ∆ϕd13, we use Eq. (4.13) and substitute the difference in short range
core potentials given above.

4.E Pump-probe signal: the details of derivation

The goal of this section is to derive population in the final S-state of the Kr ion at the end of
the pump-probe experiment, see Eq. (4.4) of the main text.

For a laboratory experiment, we need two requirements. First, we want to turn on and
turn off the clock on demand, i.e. we need to stop the rotation of the core spin on demand.
Second, we would like to measure the phase ∆ϕ13 directly. The second condition is satisfied
automatically, since the initial superposition of spin up and spin down states is incoherent and
therefore the single arm of the interferometer (in Fig. 4.1b) will not interfere with the double
arm in a real experiment. Thus, the laboratory experiment will only record the interference in
the double arm, and the single arm will give background. To start the clock, we apply a nearly
single-cycle right circularly polarised IR pulse to create a p-hole. To stop the clock, we apply a
left circularly polarised laser field to induce a transition from the s-shell of the Kr atom, filling
the hole in the p-shell and leaving the hole in s-orbital. There is no angular momentum in
the s-hole, and there is no SO splitting. Thus, the left-circular probe stops the clock that was
started by the right circular pump.

For a fixed final state of the continuum electron, characterised by momentum p at the
detector, the population S =

⏐⏐σ1/2,ML=0

⏐⏐2 + ⏐⏐σ−1/2,ML=0

⏐⏐2 in the final s-sate can be obtained
using the following equation:

σMS ,ML=0 =

∫
dt
⟨
Ψfin(t)

⏐⏐⏐d̂⏐⏐⏐Ψion(t)
⟩
Easec(t). (4.38)

where Ψion =
∑

J,MJ
aJMJ

ψJMJ
e−iEJ t is the coherent superposition of the two core states,

created after ionisation, for a given final momentum of the electron at the detector. Here aJMJ

is the complex amplitude of ionisation into core state |J,MJ⟩. The wavefunction Ψfin(t) =
ψfin(r)e

−iESt represents the final S-state of the core.

It is convenient to express ψJMJ
and ψfin(r) as a product of angular and radial wave-functions:

ψJMJ
= |ψJ(r)⟩|JMJ⟩, ψfin(r) = ψS(r)|LML, SMS⟩. Taking into account that L = 0, ML = 0,

S = 1/2 in the final state, we obtain: ψfin(r) = ψS(r)|0 0, 1/2MS⟩.
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The dipole operator can be factorised into the radial and angular parts, d̂ = r̂ Ξ̂ξ, where
ξ = 1 corresponds to the right polarised pulse, ξ = −1 corresponds to the left polarised pulse:
Ξ̂ξ = dx + iξdy. Evaluating the integral over t, we rewrite the equation in equivalent form:

σMS ,ML=0 =
∑

J,MJ ,ML,M
′
S

Fω(ES − EJ)aJMJ
dJ×

⟨
0 0, 1/2MS

⏐⏐⏐Θ̂ξ

⏐⏐⏐1ML, 1/2M
′
S

⟩⟨
1ML, 1/2M

′
S

⏐⏐JMJ

⟩
. (4.39)

Here, Fω(ES − EJ) is the Fourier image of the probe pulse Fasec(t) taken at the transition
frequency. The real-valued radial matrix element dJ = ⟨ψS(r)|r̂|ψJ(r)⟩ describes the tran-
sition from the core state |JMJ⟩ to the final S-sate. For the left circularly polarised field,
the angular part of the dipole operator ⟨0 0, 1/2MS |Θ̂ξ|1ML, 1/2MS⟩ = δMS ,M

′
S
Iξ(ML) is

I−1(ML) =
√
N
√
M2

L +ML, N = 1/3π. Thus, we obtain

σMS ,ML=0 =
∑

J,MJ ,ML

IξdJFω(ES − EJ)⟨1ML, 1/2MS |JMJ⟩aJMJ
. (4.40)

The Clebsch-Gordan coefficients CJMJ
LML,SMS

= ⟨LML, 1/2,MS |JMJ⟩ are equal to:

C
3/2,3/2
L=1,1,S=1/2,1/2 = 1, C

3/2,1/2
L=1,1,S=1/2,−1/2 = 1/

√
3, C

1/2,1/2
L=1,1,S=1/2,−1/2 =

√
2/3. They specify the

amount of each ML component in the core state |JMJ⟩. These components are probed by the
delayed circularly polarised attosecond probe pulse.

Left polarised pulse picks up ML = 1 component, right polarised pulse picks-up ML = −1
component, linearly polarised pulse picks up ML = 0. Thus, if right circularly polarised pulse
is used as a pump, left circularly polarised probe will probe ionisation of p− electron, whereas
right circularly polarised probe will probe ionisation of p+ electron. Linearly polarised probe
will probe both p+ and p− pathways at the same time. For the left-circularly polarised probe
we obtain: ⏐⏐σ1/2,0⏐⏐2 = N

9
d23/2

⏐⏐T−
3

⏐⏐2|Fω(Ω3)|2, (4.41)

and

⏐⏐σ−1/2,0

⏐⏐2 = N

9
d23/2

⏐⏐T−
3

⏐⏐2|Fω(Ω3)|2 +
4N

9
d21/2

⏐⏐T−
1

⏐⏐2|Fω(Ω1)|2+

4N

9
d1/2d3/2

⏐⏐T−
1

⏐⏐|Fω(Ω1)|
⏐⏐T−

3

⏐⏐|Fω(Ω3)| cos(∆ESOτ −∆ϕ13), (4.42)

where TD is the time of arrival of the attosecond pulse, Ω3 = ES − E3/2, Ω1 = ES − E1/2,
ES is the energy of the final S-state. Transform limited attosecond pulse is assumed for this
calculation. The population in S-state is S =

⏐⏐σ1/2,ML=0

⏐⏐2+⏐⏐σ−1/2,ML=0

⏐⏐2, and can be measured
by transient absorption of the XUV probe.



Chapter 5

Spin Polarisation in Coulomb-Laser
coupling

5.1 Introduction

Since the remarkable proposal of electron spin as an instrinsic property, by Uhlenbeck and
Goudsmit [294] with the first analysis of spin-orbit splitting of the stationary states [294, 295],
to the first attempts for direct experimental observation [296] and subsequent prediction and
confirmation of Mott scattering [297, 298], the first theoretical proposition for production of
polarised electrons from spin-polarised atoms [299], and the invigorated activity provided by
studies in high energy physics in late 50’s [300], along with extensive study of low-energy electron-
atom collisions [301], spin-polarisation of electrons ejected from collisions and ionisation has
developed into a rich and thoroughly studied subject [274]. Exciting applications have already
been developed. They include, for example, application of spin-polarised electrons for SLAC
[302], applications in nuclear physics [303], where high degree of spin polarisation is a highly
desirable property for the electron source (≈ 80%), the production of spin polarised electrons in
semiconductor heterostructures [304], in surface science and 2D magnetism [305], in high-energy
physics to study the structure of nucleons and to probe electroweak interactions. Spin polarised
electrons are used to study nuclear resonance transitions [306]. Last but not least, control and
sustenance of spin polarisation in quantum dots in strong magnetic fields [307], and in quantum
gases [308] is an important research direction.

Electron spin-polarisation due to Spin-Orbit (SO) Interaction during one-photon ionisation
was first proposed by Fano [289]. This seminal work has led to experimental and theoretical
activity, including in-depth studies in for the multiphoton ionisation regime, both theoretical
[309–313] and experimental [314–317].

Interesting question regarding spin-polarisation arises in the strong-field ionisation regime.
On the one hand, the intrinsic spin of an electron is a purely quantum mechanical concept. On
the other hand, strong field ionisation is very often, and very successfully, described semiclassi-
cally. The interplay of these two perspectives, the intrinsically quantum and the semiclassical,
can provide a unique perspective into the quantum-classical correspondence on the subatomic
scale.

Very recently, in [143], Spin-Orbit effects in strong field tunnelling ionisation were shown to
produce spin-polarised photoelectrons. The results presented in [143] were obtained for a mono-
chormatic, nonresonant, intense circularly polarised fields and short-range potentials. These re-
sults naturally raise questions on the role of SO effects in ultrashort pulses. Indeed, application
of such pulses raises the opportunity for creating ultrashort bursts of spin-polarised electrons.
Moreover, such fields offer additional control parameters. For example, one can expect the ef-
fect of varying the Carrier-Envelope offset Phase (CEP) on the efficiency of spin-polarisation.
Potential opportunities may also arise due to the different response to various, controlled, pulse

101
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shapes.

Finally, the interaction of the liberated electrons with a long-range core potential must be
addressed, since, in contrast to the short-range binding potential, in the long-range potentials
the ionisation process is not yet completed as soon as the electron emerges from the barrier [47].

In this Chapter, we consider spin polarisation resulting from ionisation by short-pulse, cir-
cularly polarised fields, taking into account the effects of long-range core interaction on the
liberated electron. For the present case, it is shown that spin polarisation in a long-range core
potential, and in a few-cycle, circularly-polarised fields is somewhat more efficient compared to
the case of monochromatic fields. Due to the asymmetry instigated by the long-range interac-
tion in the final photoelectron spectrum registered at the detector, the bursts of spin polarised
electrons are also emitted in a preferred direction.

We develop the theory within the framework of the Analytical R-Matrix (ARM) [46, 47,
268], and consider the effect of the long-range potential on the velocity components through
the additional methods developed in [271]. The photoelectron spectra demonstrate the high
sensitivity of the ionisation process to the CEP of the laser field [318]. Deciphering the CEP
in extremely short pulses is another avenue of research in the bustling field of ultrafast science
[176, 319–326]. When photo-electron spectra are used for this purpose, it is the high-energy
electrons that provide a reliable means to measure CEP of the laser field, due to the diminished
influence of the long-range core potential. With ARM, we have a rigorous approach to including
long-range interactions of the ionising electron.

Section 5.3 gives the theory involved, section 5.4 discusses the results for spin polarisation
and section 5.5 finally concludes the results of this Chapter. We begin, however, with the
physical picture underlying spin polarisation during strong-field ionisation, following the original
discussion in [143].

5.2 Physical mechanism of spin polarisation in strong-field ion-
isation

Since the spin-orbit interaction is a relativistic effect, one might expect that spin polarisation
should be negligible in non-relativistic conditions. However, Fano [289] has shown that, at least
for one-photon ionisation, it is not always the case. But the effect predicted by Fano requires
that the matrix elements of one-photon ionisation go through a zero, known as the Cooper
minimum. When photo-ionisation is suppressed, weak effects of spin-orbit interaction in the
continuum can manifest themselves. In one-photo ionisation, near the Cooper minimum, 100
percent spin polarisation can be achieved, but only for selected energy.

However, strong-field ionisation opens a completely new avenue for achieving high degree
of spin polarisation, which does not rely on the Cooper minima or spin-orbit interaction in
the continuum state. Instead, it takes advantage of spin-orbit interaction in the ionic core. It
results from the interplay of the correlation between the electron and the core and the sensitivity
of ionisation in circularly polarised fields to the initial electronic orbital, specifically to the
projection of its angular momentum on the laser propagation direction (colloquially speaking,
the sense of electron rotation relative to the sense of rotation of the ionising field).

Let us assume that the right circularly polarised field propagates in positive z-direction.
Consider a noble gas atom such as Krypton, where the outer shell has six p electrons. The total
angular momentum of the initial state is equal to zero and hence the spin-orbit interaction is
absent. Correlation between the liberated electron and the ionic core dictates that at the instant
of ionisation the projection of the total angular momentum of the electron mj and the core MJ

on z-axis satisfy the following relationship: |mj | = |MJ | .
Since the electron is removed, the spin-orbit interaction arises in the ion, leading to the two

final ionic states with the total angular momentum J = 1/2 and J = 3/2. Their energies are
split by the spin-orbit interaction by about 0.67 eV.



103 5.3. Theory

Consider first ionisation that leaves the ion in the excited state P 2
1/2. For this state |MJ | =

1/2. In the strong-field regime, the circularly polarised field will preferentially remove a counter-
rotating electron ml = −1 (for right circularly polarised field) [142]. Therefore, for the electron
correlated to this state of the ion |mj | = 1/2 and since it is leaving with ml = −1, the only
possibility for the electron spin is to satisfy ms = 1/2. Thus, if we would assume 100% selec-
tivity of ionisation to the sense of rotation of the ionising orbital, we would obtain 100 % spin
polarisation provided that the ion is left in the state P 2

1/2.

Following similar logic one can see that in the case of P 2
3/2 final state the more likely di-

rection of the electron spin is given by ms = −1/2. However, under the same conditions,
spin-polarisation would be less than 100 %, since the total momentum of this final state J = 3/2
allows both projections |mj | = 3/2 and |mj | = 1/2 of the electron.

Thus, it is qualitatively clear that spin-polarisation should be observed if the electron spin
is measured in correlation with the final ionic state. But since the directions of the electron
spin in these two ionisation channels are opposite, it is not clear what the total spin polarisation
would be. This is where strength of the spin-orbit interaction becomes crucial, as it determines
differences in the ionisation potentials for the two ionisation channels. Strong-field ionisation
is very sensitive to the ionisation potential. Hence, ionisation into the lower ionic state P 2

3/2 is
generally preferred, especially for stronger spin-orbit interaction, opening the door to total spin
polarisation. We now proceed to the quantitative description of the effect.

5.3 Theory

The ionisation amplitude in the Single Active Electron (SAE) approximation, taking into account
long-range potential effects of the core on the liberated electron in a circular field can be written
as (see Chapters 2 and 4) and [271]:

aSAE(p, IP , T ) = (−1)mCκℓNℓm

√
κ⏐⏐SSFA

tt (tcs)
⏐⏐e−iSSFA(tcs,p)−iGC(tcs,p,rL)×

Pm
ℓ

(
pcz

vpc(tcs)

)
eimϕc

v(t
c
s), (5.1)

where, Cκℓ is the effective principal quantum number coefficient, Nℓm is the Spherical Harmonic
normalisation coefficient, SSFA is the Strong Field Approximation (SFA) action for a free electron
in a laser field andGC is the complex Coulomb phase correction, as introduced in [46,47,267,268].
The terms here are evaluated at the Coulomb corrected saddle point time concordant with [270],
and the long-range effects are taken into account in the photoelectron velocity through the
method developed in [271].

Due to Spin-Orbit (SO) interaction, the ground state of a singly-charged noble gas ion, say
Kr+, is split into the lower lying Kr+ 2P3/2 and the excited Kr+ 2P1/2. Thus, the ionisation
is possible from either channel. The wavefunction of the remaining ion system is then summed
over the different final states, weighed by the ionisation amplitude for that channel [143],

|Ψms(p, T )⟩ =
∑
J,MJ

aJMJms(p, T )|2PJMJ
⟩. (5.2)

|Ψms(p, T )⟩ is the final state of the ion at time T , when the electron is far from the core
and ionisation can be assumed to be complete, |2PJMJ

⟩ is the relativistic state of the ion,
aJMJms(p, T ) is the corresponding probability amplitude to end in this state, with the ionising
electron having final asymptotic momentum p and spin ms. The above result was derived
in [143] for short-range potentials and can be extended to long-range potentials easily.
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Each of the amplitudes for reaching the relativistic ionic states, aJMJms can be written in
terms of the probability amplitudes for the correspondng spin-orbitals, through the Clebsch-
Gordan coefficients [143],

aJMJms(p, T ) = CJ,−MJ

1−MJ−ms,
1
2
ms
a
p−MJ−ms

ARM

(
p, IJP , T

)
e−iIJPT . (5.3)

5.4 Results

5.4.1 Spin polarisation in Long-range potential

The results for the attostreak maps for non-relativistic p-orbitals, discussed in [271], can be
used to decipher the attostreak maps for the spin-up and spin-down electrons, summed over all
the contributions from different channels. For this we only need the equivalent of expressions
derived in [143], for long range potentials with Coulomb correction to saddle point time:⏐⏐⏐a(u)ARM(p)

⏐⏐⏐2 = 2

3

⏐⏐⏐ap−ARM

(
p, I

1/2
P , tcs

)⏐⏐⏐2 + 1

3

⏐⏐⏐ap−ARM

(
p, I

3/2
P , tcs

)⏐⏐⏐2 + ⏐⏐⏐ap+ARM

(
p, I

3/2
P , tcs

)⏐⏐⏐2 (5.4)

⏐⏐⏐a(d)ARM(p)
⏐⏐⏐2 = 2

3

⏐⏐⏐ap+ARM

(
p, I

1/2
P , tcs

)⏐⏐⏐2 + 1

3

⏐⏐⏐ap+ARM

(
p, I

3/2
P , tcs

)⏐⏐⏐2 + ⏐⏐⏐ap−ARM

(
p, I

3/2
P , tcs

)⏐⏐⏐2 (5.5)

where superscripts u and d denote spin-up and spin-down electrons, respectively, and p− corre-
sponds to electrons with azimuthal projection of angular momentum quantum numbermℓ = −1,
and p+ to mℓ = 1.

The corresponding attostreak maps are shown in Fig. 5.1a and 5.1b. The calculations have
been performed for an ultrashort pulse defined through its vector-potential A(t) as follows:

A(t) = −E0
ω

cos2
(
ωt

2Ne

)
[cos(ωt) x̂+ sin(ωt) ŷ], (5.6)

with the envelope containing two full laser cycles base-to-base (Ne = 2) and the field envelope
is modelled by a cos2-profile.

Both maps look very similar, as the dominant contribution is from the p− orbital with
j = 3/2. The only noticeable difference is that the signal from spin-down electrons is somewhat
stronger than the signal from the spin-up electrons. This result is the combination of two factors.
First, the Clebsch-Gordan coefficients corresponding to the dominant p− (j = 3/2) orbital yield
a greater contribution of spin-down rather than spin-up electrons. Second, in the nonadiabatic
domain, ionisation of electrons with angular momentum opposite to laser field polarisation is
preferred over the co-rotating electrons [142].

The offset angle for both cases is around 10 degrees from the expected SFA peak, which lies
along the zero degree line. This is the consequence of the long-range electron-core interaction.

Integrating over the detection angle ϕp, we can obtain the Spin-polarisation (SP) of the
generated photoelectron burst as a function of its energy using the standard expression:

SP =
w

(d)
ARM(Ep)− w

(u)
ARM(Ep)

w
(d)
ARM(Ep) + w

(u)
ARM(Ep)

, (5.7)

where, Ep = p2/2 is the drift energy of the photoelectron, and wARM is the ionisation rate
evaluated through the ARM method, then we can directly compare the energy- and channel-
resolved spin polarisation in long- and short-range potentials (Fig. 5.2a). The zero-point of
spin polarisation is moved further in the long-range potential, preferring greater polarisation
even for higher energies. This effect is a manifestation of the long-range interaction with the
liberated -electron, even after the electron leaves the tunnelling barrier. The counter-rotating
electron sees a longer ionisation window compared to the co-rotating electron during its motion
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Figure 5.1: Attostreak maps for (a) spin-down and (b) spin-up electrons for Krypton atom by a
2-cycle, right-circularly polarised field with I = 1.75×1014 W/cm2, λ = 800 nm. Note somewhat
different scales on the two panels.

in the continuum, which is another manifestation of the nonadiabatic character of the ionisation
process.

On the other hand, integrating over the energy range considered, we get a better view of
the effects of long-range potentials on Spin polarisation (Figs. 5.2b, 5.2c, and 5.2d), through its
dependence on the detection angle.

For the case of ionisation in a short-range potential, the spin polarisaiton is symmetric about
the maximum value for each channel, whereas long-range interactions induce an asymmetry in
the polarisation as a function of detection angle. Depending on the polarisation of the ionising
field, one direction is preferred over the other. For the present case of a right circularly polarised
field, the polarisation increases in the counter-clockwise direction, i.e. along the first quadrant
of the detection angle (ϕp > 0). Naturally, for a clockwise field, the effect would be reversed,
giving us greater polarisation in the fourth quadrant (ϕp < 0).

Additionally, we get an increase in the production of spin-down electrons over spin-up for ev-
ery channel, when comparing ionisation in long- to short-range potentials. The greatest increase
is seen for 2P1/2 channel (green diamond curves, Fig. 5.2c).

5.4.2 Control via CEP Phase

Using a few-cycle laser pulse, we can harness an extra degree of control over the ionisation
process through the carrier-envelope (CEP) phase offset, ϕCEP. Varying the CEP allows us to
control the direction of maximum spin polarisation. Fig. 5.3 shows the energy-integrated plots
for spin-polarisation from different channels versus the electron detection angle ϕp, for different
values of the CEP offset. We use here a left-circularly polarised laser field, hence the dominance
of spin-down electrons over the spin-up electrons for j = 1/2 (Fig. 5.3b).

While the variation of spin polarisation with energy remains virtually the same for any CEP
offset, the CEP offset shifts the spin-polarisation profile over the detection angles.

Another effect we see clearly is the asymmetry induced in Spin Polarisation by the long-range
interaction of the ionising electron with the ionic core. In the case of a short-range potential,
the spin polarisation variation about the peak of the photoelectron distribution would have been
symmetric. However, this symmetry is relinquished in the long-range potential, favouring the
direction of polarisation of the electric field vector. Since, for Fig. 5.3, the field is right-circularly
polarised, i.e., it rotates from the fourth quadrant towards the first, we see a similar preference
of the first quadrant over the fourth in the spin polarisation.
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Figure 5.2: Comparison between short-range (dashed lines) and long-range (solid lines) (a) angle-
, and (b,c,d) energy-integrated, channel-resolved Spin polarisation for Krypton atom. Laser
Field Parametres: peak intensity I0 = 8.77× 1013 W/cm2 (E0 = 0.05 a.u.), λ = 800 nm, 2-cycle,
right-circularly polarised field.

S
p
in

P
ol
ar
is
at
io
n
%

−200−100 0 100

−36

−39

−42
−200−100 0 100

72

77

83

−200−100 0 100

−17

−20

−23

Detection Angle, ϕp (deg)
(a) (b) (c)

Figure 5.3: Channel-resolved variation of Energy-integrated Spin-polarisation versus the detec-
tion angle ϕp, for Krypton atom and different CEP offsets: ϕCEP = 0 for solid lines, ϕCEP = π/4
for dashed lines and ϕCEP = π/2 for dash-dotted lines. (a) j = 3/2, (b) j = 1/2 and (c) to-
tal spin-polarisation. Field peak intensity is 1.75 × 1014 W/cm2 (E0 = 0.05 a.u.), wavelength
λ = 800 nm, 2-cycle, right-circularly polarised field.

5.4.3 Channel-resolved spectra

We now consider channel-resolved momentum distributions. For monochromatic fields, the
distribution is isotropic with respect to the electron detection angle, unlike the case for the few-
cycle pulses. Here we integrate the spectrum generated by the few-cycle pulse over all detection
angles.

A comparison of the channel-resolved electron spectra for the case of short- and long-range
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Figure 5.4: Channel-resolved ionisation signals in (a) short- and (b) long-range potentials for
Krypton atom with ionising peak field intensity of I0 = 8.77 × 1013 W/cm2 (E0 = 0.05 a.u.),
λ = 800 nm, 2-cycle, right-circularly polarised field.
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Table 5.1: Ionisation channels and amplitudes contributing to emission of spin-up (ms = 1/2)
electron.
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Table 5.2: Ionisation channels and amplitudes contributing to emission of spin-down (ms =
−1/2) electron.
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Figure 5.5: Normalised, channel-resolved ionisation yields in (a) short-range potential, (b) long-
range potential with Q = 1, and (c) long-range potential with Q = 2, for peak intensity I0 =
1.72 × 1014 W/cm2 (E0 = 0.07 a.u.), λ = 1600 nm, for the ionisation potentials of a Krypton
atom. Red solid with circles for ionisation from p3/2,−3/2 orbital, red dashed with circles for
p3/2,3/2, blue solid with squares for p3/2,−1/2, blue dashed with squares for p3/2,1/2, green solid
with diamonds for p1/2,−1/2, and green dashed with diamonds for p1/2,1/2.
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Figure 5.6: Normalised, channel-resolved ionisation yields in (a) short-range potential, (b) long-
range potential with Q = 2, at peak intensity I0 = 1.72 × 1014 W/cm2 (E0 = 0.07 a.u.),
λ = 800 nm for Rubidium (Rb+) ion. Red solid with circles for ionisation from p3/2,−3/2 orbital,
red dashed with circles for p3/2,3/2, blue solid with squares for p3/2,−1/2, blue dashed with squares
for p3/2,1/2, green solid with diamonds for p1/2,−1/2, and green dashed with diamonds for p1/2,1/2.

potentials is shown in Figs. 5.4a and 5.4b. Assuming near-zero contribution from mℓ = 0
projection of p-orbital, each spin-orbital has one specific spin of the electron contributing, as
shown in Tabs. 1 and 2 of [273] and reproduced here for reference. Thus, signals resolved on
both j and mj provide complete information for the analysis of spin polarisation.

Figs. 5.4a and 5.4b show that, for the long-range Coulomb potential, the relative strength
of ionisation signals correlated to j = 3/2 is greater than for j = 1/2, when compared with the
short-range potential. In other words, while there is an overall greater preference for ionisation
into j = 3/2 rather than j = 1/2, this preference is further accentuated in long-range potentials.

Within j = 3/2, emission of the spin-down electron is the dominant one. This can be
seen by comparing the ionisation yields for p3/2,3/2 with p3/2,−3/2 for short- and longe-range
potentials, for example: p3/2,3/2 has only contribution from spin-up electron, while p3/2,−3/2

only from spin-down. From Fig. 5.4a (short-range potential), the ratio of ionisation yields
wp3/2,−3/2/wp3/2,3/2 ≈ 4, whereas for long-range potential from Fig. 5.4b wp3/2,−3/2/wp3/2,3/2 ≈ 5.
Likewise, for a left-circularly polarised field, the spin-up electron would have the advantage.
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As we approach the adiabatic limit with the Keldysh parameter γ → 0, the channel resolved
spectra exhibit a variation in the dominance of some channels over others. To illustrate this
point, Figs. 5.5a and 5.5b show the energy-weighted spectra calculated for the Krypton atom,
comparing short-range and long-range potentials. From Fig. 5.5a, we note that the signal from
the p3/2,mj

orbital is almost the same as from the p1/2,mj
orbital, for the same mj . Continuing

further in intensity would lead to dominance of j = 1/2 orbitals over j = 3/2, whereas a decrease
in intensity would allow j = 3/2 to again prevail.

Thus, for the short-range potential, we see that as the wavelength is increased, the ionisation
yields for electrons with similar spin are almost independent of the channel they arise from. This
can be seen from the distribution for the two pairs of 1) the spin-down electrons p3/2,−1/2 (blue
solid with squares) and p1/2,−1/2 (green solid with diamonds), and 2) the spin-up electrons
p3/2,1/2 (blue dashed with squares) and p1/2,1/2 (green dashed with diamonds).

Including the long-range interaction, as done for Fig. 5.5b, still seems to maintain this overlap
in the signals for different channels corresponding to similar spin orientation. But if we take
Q = 2, as is done for Fig. 5.5c, we see that this is no longer the case. Interestingly, ionisation
from j = 1/2, corresponding to higher ionisation potential, starts to dominate over ionisation
from j = 3/2, which corresponds to lower ionisation potential, for the same ms (either 1/2 or
-1/2). Note, however, that the angular momentum of the liberated electron is different in these
cases, counter-rotating in the former case and co-rotating in the latter.

Thus, for a hypothetical, positively charged ion, that maintains its ground and excited,
doubly-charged states corresponding to the energy levels of Kr+ ion, the field strength at which
the ionisation yields from j = 3/2 and j = 1/2 overlap is lowered, compared to the field strength
for the same phenomenon in short-range potentials.

The strength of spin-up electron ionisation rates wanes as the effective charge of the core
increases, which is expected according to our previous discussions.

We next consider ionisation from closed shell of positive charged ions, i.e., alkali ions. Due
to the high ionisation potential required to reach the ground state of Rb2+ (2P3/2) ion, Ip = 1
a.u., ionisation remains in the nonadiabatic domain of γ ≃ 1 for longer wavelengths towards the
infrared regime. As non-adiabatic ionisation dynamics in the long-range potential favours emis-
sion of counter-rotating electrons, channels with contributions from mℓ = −1 are the stronger
ones. Figures 5.6a and 5.6b show a comparison similar to Figs. 5.4a and 5.4b, for positively
charged ions (Q = 2), for short- and long-range potentials, respectively, for laser intensity of
I = 8.77 × 1013 W/cm2 and wavelength λ = 800 nm for Rubidium ion. As the nonadiabatic
character of the ionisation process increases, with a commensurate increase in the value of the
Keldysh paramter γ, production of spin-up electrons is greatly suppressed in comparison to the
spin-down electrons.

While the three channels which have contribution frommℓ = −1 projection roughly maintain
the same relative strength relative to the strongest channel (p3/2,−3/2 in present case), the
channels with contribution from mℓ = 1 are additionally suppressed in the case of the long-
range interaction (Fig. 5.6b) compared to the short-range case (Fig. 5.6a).

5.5 Conclusion

We have discussed the effects of long-range interaction on spin-polarisation in few-cycle, cir-
cularly polarised fields, and compared the spectra from different spin-orbit channels involved.
We find that strong field ionisation from long-range potential leads to higher degree of spin
polarisation compared to the case of the short-range potential.

Additionally, long-range interaction induces asymmetry in angle-resolved spin-polarisation,
which we found for all ionisation channels.

Controlling the CEP of the ionising pulse allows one to control the direction in which spin
polarised electrons are emitted, whether channel resolved or considered as a total.
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Strong field ionisation of alkali ions with noble gas configuration is shown to exhibit nonadi-
abatic effects even in the infrared wavelength regime, with a strong preference of ionisation from
channels with a specific angular momentum mℓ contribution, depending on the polarisation of
the laser field. Thus, these ions appear to be better sources of spin-polarised electrons generated
via strong-field ionisation.



Chapter 6

Conclusion and Future Work

In this thesis, the primary purpose has been to establish a rigorous formulation and description
of strong field ionisation from atoms modelled with a Long-Range Potential (LRP), using the
Analytical R-Matrxi (ARM) method [46, 148, 268, 270, 271] and Eikonal-Volkov Approximation
(EVA) electrons [267]. The conventional approach to treating ionisation in LRP core rely on the
Imaginary Time Method (ITM) [4, 50] derived from the PPT theory [4, 5]. There were several
ad hoc assumptions underlying that prescriptive method, and were applicable for the adiabatic
limit (ω → 0).

With the ARM formalism, expatiated in detail in Chapter 2, we present a new, more widely
applicable theory of strong field ionisation in LRP, specifically in the nonadiabatic range of
the Keldysh paramter (γ ≳ 1), where the core potential dynamics cannot be ignored and the
ionisation process is not immediately completely right when the electron emerges from under
the barrier, as is posited by conventional theories [2, 3, 78, 79, 130]. Signs of these nonadiabatic
dynamics are imprinted on the initial electron velocity and offset of photoelectron spectrum
peak [270]. Conventional attoclock setup [44, 45] relies on the time-momentum angle mapping
to ascertain the dynamical aspects of the ionisation process. Calibration of this mapping is
essential for an accurate model of the phenomenon, which we presented in Chapter 2 and 3.

The spin of the photoelectron can also be used to define measurement times in the ionisation
process. In Chapter 4, we present a link between the phase accumulated during the ionisation
process, from one-photon to multi-photon regime, and the corresponding Wigner-Smith time
τWS, through a generalisation of the Larmor clock idea [278]. The magnetic field is provided by
Spin-Orbit (SO) interaction activated after the removal of the photoelectron from the closely
filled shell of a noble gas atoms. As a result, this Attosecond Larmor Clock is an inbuilt timing
mechanism to decipher the time delays associated with tunnelling ionisation processes through
evolution of spin of the photoelectron. We find two sources of ionisation phase delays with
this clock: the expected LRP interaction-induce delays, as discusse in Chapter 2, common to
both final states of the ion, and a short-range potential (SRP) contribution to the phase that
does not translate into ionisation time delays. A suitable pump-probe scheme can be set-up
to record the ionisation signal in a transient absorption spectroscopy. With this Attosecond
Larmor Clock setup, we have found zero phase delays accumulated under the barrier. The SRP
component of phase-delays arising from electron-core interactions is most closely an analogue of
pulse dispersion in optics.

One of the expressions derived in Chapter 4 was a succinct equation to define the ionisation
time delays induced by Coulomb-type potentials for a fixed final electron momentum. An analogy
between the standard barrier penetration and optical tunnelling ionisation was presented, to
define the role of the ionisation potential Ip in the latter case similar to the potential barrier
height V in the former case. In Chapter 3, we provide a rigorous derivation of this term for
arbitary final electron momentum and initial bound state configuration. This exact method
for boundary matching completes the essential framework of ARM method, and allows us to
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provide an accurate model to study strong field, tunnelling ionisation in for arbitrary atomic
states. Momentum shifts incurred by the photoelectron while traversing under the barrier was
a consequent result from this derivation scheme. It allows us to clearly define a generalised
boundary matching scheme for the ARM formalism. We presented angle and energy resolved
photoelectron spectra in LRP core under a circularly polarised field, highlighting the essential
features of ionisation to the two SO-split, singly charged ionic states in noble gas atoms. It was
shown that the ionisation rates in LRP enhance the nonadiabatic affinity to counter-rotating
electrons discussed for SRP in [142, 143]. Based on the offset angles and peak energies, it was
shown how it might be possible, in the future, to differentiate ionisation from different orbitals.
This indicates preference of ring currents in one particular direction over the other, after removal
of the electron. By scanning the offset angle and/or peak energies of the photoelectron spectra
for the two electron spins, it would be possible to ascertain which spin orientation is favoured,
as was discussed in Chapter 3.

Building on the results of the previous chapter, in Chapter 5 we take on the question of
spin polarisation of photoelectrons in strong field ionisation. The first results for the tunnelling
domain were discussed recently in [144], but for SRP core in a monochromatic laser field. We
generalise the results for a Coulomb-type potential and enveloped fields, detailing the differences
between the degree of Spin polarisation in SRP vs LRP core. An essential result of this chap-
ter is the asymmetry induced by LRP interactions for Spin Polarisation as a function of final
momentum detection angle ϕk. An advantage of enveloped field is the extra degree of control
offered via the Carrier Envelope Phase (CEP) offset of the laser pulse. Through this CEP offset,
we can steer the direction of spin polarised electrons.

We have limited this dissertation to model the LRP-Laser coupling of the continuum electron
under the eikonal approximation, resulting in the eikonal-Volkov approximated (EVA) states
[267], on which the ARM formalism is based. For low-energy electrons, as well as forward and
backscattering electrons in a LRP, the eikonal approximation fails, and the momentum generated
by the LRP potential becomes the main driving momentum for the ionising electron, leading to
features bearing characteristic mark of the core potential, for example the Low Energy Structures
(LES) as discussed in Section 1.5. With an aim to outline a rigorous derivation to include LRP
interactions to arbitrary orders in continuum states, which may be called the Exact Core-Laser
(EXCL) electron states. These states can be derived within the quasiclassical approach followed
for EVA [267], but without any approximation on the magnitude of the momentum imparted
by the core potential to the ionising electron in comparison to that by the laser field. Hence,
these states provide a much more accurate description of the continuum states of the electron,
especially in the low-energy spectrum of ATI. The formal derivation for EXCL electrons will
the course for future work, including the new difficulties arising in the analytical continuation
of these states to describe tunnelling in complex time domain, as is usually encountered in
saddle-point analysis [2, 3]. Since these states take into account the LRP core exactly (within
the quasiclassical approximation), the trajectories emerging naturally in the derivation posses
caustic singularities [327]. These states will be the foundation for future research work to be
pursued in providing a comprehensive, anayltical theory of strong field tunnelling ionisation in
long-range potentials, completing an important step in the 50-year long enterprise pioneered by
the Keldysh and PPTK papers.
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[14] D. F. Zaretskĭi and V. P. Krăinov. Resonance excitation of atomic levels in a strong
electromagnetic field. Zh. Eksp. Teor. Fiz., 66:537, 1974.

[15] N. B. Delone. Multiphoton ionization of atoms. Usp. Fiz. Nauk, 115:361, 1975.

[16] G. Mainfray. Multiphoton Ionization of Atoms. J. Phys. Colloques, 46:C1–113 – C1–125,
1985.

[17] R. Shakeshaft. Theory of multiphoton ionization of atoms by intense laser fields. J. Opt.
Soc. Am. B, 4:705, 1987.

113



Bibliography 114

[18] G. Mainfray and C. Manus. Multiphoton ionization of atoms. Rep. Prog. Phys., 54:1333,
1991.

[19] N. B. Delone and V. Krainov. Multiphoton Processes in Atoms. Number 13 in Springer
Series on Atomic, Optical, and Plasma Physics. Springer, 2nd edition, 2000.

[20] P. Agostini et al. Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms.
Phys. Rev. Lett., 42:1127, 1979.

[21] W. Gordon. Der Comptoneffekt nach der Schrdingerschen Theorie. Z. Phys., 40:117, 1926.
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[215] D. B. Milošević, G. G. Paulus, and W. Becker. Above-Threshold Ionization with Few-Cycle
Laser Pulses and the Relevance of the Absolute Phase. Laser Phys., 13:948, 2003.
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[227] A. Čerḱıc and D. B. Milošević. Plateau structures in potential scattering in a strong laser
field. Phys. Rev. A, 70:053402, 2004.
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[259] J. Z. Kamiński, A. Jaroń, and F. Ehlotzky. Coulomb effects in multiphoton above-threshold
ionization. Phys. Rev. A, 53:1756, 1996.
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[261] D. B. Milošević and F. Ehlotzky. Coulomb and rescattering effects in above-threshold
ionization. Phys. Rev. A, 58:3124, 1998.

[262] A. Becker et al. Total ionization rates and ion yields of atoms at nonperturbative laser
intensities. Phys. Rev. A, 64:023408, 2001.

[263] G. L. Yudin, S. Chelkowski, and A. D. Bandrauk. Coulomb continuum effects in molecular
interference. J. Phys. B, 39:L17, 2006.

[264] G. L. Yudin et al. Attosecond photoelectron interference in the separable CoulombVolkov
continuum. J. Phys. B, 40:F93, 2007.

[265] O. Smirnova et al. Coulomb–laser coupling in laser-assisted photoionization and molecular
tomography. J. Phys. B, 40:F197, 2007.

[266] S. V. Popruzhenko et al. Strong Field Ionization Rate for Arbitrary Laser Frequencies.
Phys. Rev. Lett., 101:193003, 2008.

[267] O. Smirnova, M. Spanner, and M. Ivanov. Analytical solutions for strong field-driven
atomic and molecular one- and two-electron continua and applications to strong-field prob-
lems. Phys. Rev. A, 77:033407, 2008.

http://arxiv.org/abs/1502.05165


127 Bibliography

[268] J. Kaushal and O. Smirnova. Nonadiabatic Coulomb effects in strong-field ionisation in
circularly polarised laser fields. Phys. Rev. A, 88:013421, 2013.

[269] L. Torlina et al. Ab initio verification of the analytical R-matrix theory for strong field
ionisation. J. Phys. B, 47:204021, 2014.

[270] L. Torlina et al. Interpreting attoclock measurements of tunnelling times. Nat. Phys.,
11:503, 2015.

[271] J. Kaushal, F. Morales, and O. Smirnova. Opportunities for detecting ring currents using
an attoclock setup. Phys. Rev. A, 92:063405, 2015.

[272] N. Rohringer and R. Santra. Multichannel coherence in strong-field ionization. Phys. Rev.
A, 79:053402, 2009.

[273] I. Barth and O. Smirnova. Hole dynamics and spin currents after ionisation in strong
circularly polarised laser fields. J. Phys. B, 47:204020, 2014.

[274] J. Kessler. Polarized Electrons. Springer Atoms and Plasmas, 1976.

[275] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press,
1922.

[276] M. Spanner et al. Reading diffraction images in strong field ionization of diatomic
molecules. J. Phys. B, 37:L243, 2004.

[277] R. Murray, W. K. Liu, and M. Yu. Ivanov. Partial Fourier-transform approach to tunnel
ionization: Atomic systems. Phys. Rev. A, 81:023413, 2010.

[278] I. Baz. Lifetime of intermediate states. Yadern. Fiz., 4:252, 1966.

[279] R. Landauer and Th. Martin. Barrier interaction time in tunneling. Rev. Mod. Phys.,
66:217, 1994.

[280] E. H. Hauge. Tunneling times: a critical review. Rev. Mod. Phys., 61:917, 1989.

[281] A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao. Measurement of the single-photon tun-
neling time. Phys. Rev. Lett., 71:708, 1993.

[282] A. L. Cavalieri et al. Attosecond spectroscopy in condensed matter. Nature (London),
449:1029, 2007.

[283] E. P. Wigner. Lower Limit for the Energy Derivative of the Scattering Phase Shift. Phys.
Rev., 98:145, 1955.

[284] F. T. Smith. Lifetime Matrix in Collision Theory. Phys. Rev., 118:349, 1960.

[285] M. Ivanov and O. Smirnova. How accurate is the attosecond streak camera? Phys. Rev.
Lett., 107:213605, 2011.

[286] J. M. Dahlström, A. L’Huillier, and A. Maquet. Introduction to attosecond delays in
photoionisation. J. Phys. B, 45:183001, 2012.

[287] R. Pazourek, S. Nagele, and J. Burgdorfer. Time-resolved photoemission on the attosecond
scale: opportunities and challenges. Faraday Discuss., 163:353, 2013.

[288] A. Maquet, J. Caillat, and R. Taieb. Attosecond delays in photoionisation: time and
quantum mechanics. J. Phys. B, 47:204004, 2014.



Bibliography 128

[289] U. Fano. Spin orientation of photoelectron ejected by circularly polarised light. Phys.
Rev., 178:131, 1969.

[290] T. Herath et al. Strong-Field Ionization Rate Depends on the Sign of the Magnetic
Quantum Number. Phys. Rev. Lett., 109:043004, 2012.

[291] Z. Walters and O. Smirnova. Attosecond correlation dynamics during electron tunnelling
from molecules. J. Phys. B, 43:161002, 2010.

[292] C. F. Bunge, J. A. Barrientos, and A. V. Bunge. Roothaan-Hartree-Fock Ground-State
Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for
Z = 2− 54. At. Dat. Nucl. Dat. Tab., 53:113, 1993.

[293] A. A. Radzig and B. M. Smirnov. Reference Data on Atoms, Molecules, and Ions, vol-
ume 31 of Springer Series in Chemical Physics. Springer, 1985.

[294] G. E. Uhlenbeck and S. Goudsmit. Ersetzung der Hypothese vom unmechanischen Zwang
durch eine Forderung bezglich des inneren Verhaltens jedes einzelnen Elektrons. Naturw.,
13:953, 1925.

[295] G. E. Uhlenbeck and S. Goudsmit. Spinning Electrons and the Structure of Spectra.
Nature, 117:264, 1926.

[296] R. T. Cox, C. G. Macilwraith, and B. Kurrelmayer. Apparent Evidence of Polarization in
a Beam of β-Rays. Proc. Nat. Acad. Sci. USA, 14:544, 1928.

[297] N. F. Mott. The Scattering of Fast Electrons by Atomic Nuclei. Proc. Roy. Soc. A,
124:425, 1929.

[298] N. F. Mott. The Polarisation of Electrons by Double Scattering. Proc. Roy. Soc. A,
135:429, 1932.

[299] E. Fues and H. Hellmann. Phys. Z., 31:465, 1930.

[300] H. Frauenfelder and A. Rossi. Meth. Exp. Phys., 5, 1963.

[301] P. S. Farago. The Polarization of Electron Beams and the Measurement of the g-Factor
Anomaly of Free Electrons. Adv. Electron. Electron Phys., 21:1–66, 1965.

[302] ed by M. Chatwell. Proc. of the Workshop on Photocathodes for Polarized Sources for the
Accelerators. SLAC, 1993.

[303] J. L. McCarter et al. A low-voltage retarding-field Mott polarimeter for photocathode
characterization. http://arxiv.org/abs/1003.5577, 2010.

[304] A. V. Subashiev et al. Spin-Polarized Electrons: Generation and Applications. http:

//www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-8035.pdf, 1998.

[305] H. C. Siegmann. Surface and 2D magnetism. J. Phys. Cond. Matt., 4:8395, 1992.

[306] ed A. Boudard and Y. Terrien. 7th International Conference on Polarization Phenomena
in Nuclear Physics. 1990.

[307] B. Kaestner et al. Single-parameter quantized charge pumping in high magnetic fields.
App. Phys. Lett., 94:012106, 2009.

[308] V. Galitski and I. B. Spielman. Spinorbit coupling in quantum gases. Nature, 494:49,
2013.

http://arxiv.org/abs/1003.5577
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-8035.pdf
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-8035.pdf


129 Bibliography

[309] P. Lambropoulos. Spin-Orbit Coupling and Photoelectron Polarization in Multiphoton
Ionization of Atoms. Phys. Rev. Lett., 30:413, 1973.

[310] P. Lambropoulos. On producing totally polarized electrons through multiphoton ioniza-
tion. J. Phys. B, 7:L33, 1974.

[311] M. R. Teague and P. Lambropoulos. Three-photon ionization with spin-orbit coupling. J.
Phys. B, 9:1251, 1976.

[312] S. N. Dixit, P. Lambropoulos, and P. Zoller. Spin polarization of electrons in two-photon
resonant three-photon ionization. Phys. Rev. A, 24:318, 1981.

[313] T. Nakajima and P. Lambropoulos. Electron spin-polarization in single-, two- and three-
photon ionization of xenon. Europhys. Lett., 57:25, 2002.

[314] E. Reichert and H. Deichsel. Spinpolarisation durch elektronen-resonanzstreuung an neon.
Phys. Lett. A, 25:560, 1967.

[315] G. Busch, M. Campagna, and H.-C. Siegmann. Photoemission of Spin-Polarized Electrons
from Ferromagnets. J. Appl. Phys., 41:1044, 1970.

[316] H. Boersch, R. Schliepe, and K. E. Schriefl. Polarized electrons by Mott scattering at bulk
targets. Nucl. Phys. A, 163:625, 1971.

[317] M. Spieweck et al. High-resolution experimental determination of the angular distribution
and spin polarization of xenon 7d and 9s photoelectrons and comparison with theoretical
results. Phys. Rev. A, 58:1589, 1998.

[318] G. G. Paulus et al. Measurement of the phase of few-cycle laser pulses. J. Mod. Opt.,
52:221, 2005.

[319] T. Barbec and F. Krausz. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev.
Mod. Phys., 72:545, 2000.

[320] S. T. Cundiff. Phase stabilization of ultrashort optical pulses. J. Phys. D, 35:R43, 2002.
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