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Abstract

The present work is concerned with the advancement of the relatively recent class of
local hybrid functionals. The first part of the work addresses the conjunction of local hy-
brid functionals with linear-response time-dependent density functional theory (TDDFT),
which is the most widely used quantum chemical method for excited-state calculations.
Besides a detailed derivation of the required formulas, the implementation into the quan-
tum chemical program TURBOMOLE is presented, which, due to the use of an efficient
semi-numerical integration scheme, exhibits even a higher efficiency than the previous
global hybrid TDDFT implementation. Based on the new implementation, the current
work also features the first evaluation of local hybrid functionals with respect to their
performance for vertical excitation energies. Here, local hybrid functionals have crystal-
lized as a promising approach for the description of many particularly difficult excitation
classes, e.g. core, Rydberg as well as triplet valence excitations.

The second part of the work addresses the development of new local hybrid function-
als. Besides the new semi-local pig and tpig type calibration functions, which have been
constructed on the basis of a novel derivation scheme, a new local mixing function and a
modified self-interaction-reduced LDA correlation functional, referred to as gt-LMF and
sirPW92*, respectively, have been proposed. This is accompanied by a novel optimization
procedure for the determination of suitable CF parameters. While the new CFs effectively
mitigate known issues caused by the gauge problem, the potential of the new LMF has
been illustrated with respect to thermochemical and vertical-excitation test sets. Espe-
cially atomization energies are significantly improved compared to standard global hybrids

and other local hybrid functionals.
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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der Weiterentwicklung von lokalen Hybridfunk-
tionalen auf dem Feld der Dichtefunktionaltheorie. Im ersten Abschnitt der Arbeit wird
auf die Verkniipfung von lokalen Hybridfunktionalen mit der zeitabhédnigen Dichtefunk-
tionaltheorie eingegangen, welche in ihrem linearen Responseformalismus die meistver-
wendete quantenchemische Methode zur Berechnung angeregter elektronischer Zustéande
darstellt. Neben einer detaillierten Herleitung aller benétigten Formeln wird die Imple-
mentierung in das quantenchemische Programm TURBOMOLE beschrieben, welche auf-
grund des verwendeten seminumerischen Integrationsschemas eine hohere Effizienz als die
bisherige Implementierung globaler Hybridfunktionale aufweist. Unter Verwendung der
neuen Implementierung wird zuséatzlich die erste detaillierte Untersuchung lokaler Hy-
bridfunktionale beziiglich ihrer Leistungsfihigkeit zur Beschreibung angeregter elektro-
nischer Zustdnde vorgenommen. Hierbei haben sich lokale Hybridfunktionale vor allem
als vielversprechender Ansatz zur Beschreibung schwieriger Anregungsklassen erwiesen,
so zum Beispiel fiir Kern-, Rydberg- und Triplettvalenzanregungen.

Im zweiten Abschnitt der Arbeit wird die Entwicklung neuer lokaler Hybridfunktionale
behandelt. Neben den neuen semilokalen Kalibrierungsfunktionen vom pig und tpig Typ,
welche auf der Grundlage eines neuartigen Herleitungsschemas entwickelt wurden, wurden
eine neue lokale Mischfunktion, die gt-LMF, sowie eine modifizierte Variante des selbst-
wechselwirkungsreduzierten LDA Korrelationsfunktionals, welches als sirPW92* bezeich-
net wird, vorgestellt. Zusétzlich wurde ein neuartiges Optimierungsschema zur Bestim-
mung geeigneter Kalibrierungsfunktionsparameter entwickelt. Wahrend die neuen Kalib-
rierungsfunktionen ermoglichen, Folgen des Eichursprungsproblems effektiv zu reduzieren,
wurde das Potential der neuen gt-LMF anhand thermochemischer Testsidtze sowie mit-
tels Anregungsenergietestsiatzen untersucht. Vor allem fiir Atomisierungsenergien konnte
hierbei eine signifikante Verbesserung im Vergleich zu herkommlichen globalen und an-

deren lokalen Hybridfunktionalen erzielt werden.
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1. Introduction

In modern quantum chemistry, time-dependent density functional theory (TDDFT) with-
in its linear-response formalism represents the method of choice, when it comes to the cal-
culation of excited states of large molecular systems. ! Besides an excellent ratio between
accuracy and computational effort,? TDDFT constitutes a robust black-box method,
which thus can be efficiently used in routine calculations to tackle chemical problems.
Therefore, TDDFT is applied in a wide range of different fields, ranging from material
research> 9 to biophysics.[!! Nevertheless, the quality of TDDFT calculations strongly
depends on the choice of the exchange-correlation (XC) functional, potential and kernel.
Apart from the usually applied adiabatic approximation for the kernel, which enables
the utilization of approximations to the ground-state XC functional, but allows only the
computation of singly excited states,[!! conventional semi-local XC functionals exhibit
substantial errors, for example for the description of core excitations, Rydberg states and
most charge-transfer (CT) excitations."*? Although state-of-the-art XC functionals, as
e.g. global and range-separated hybrid functionals, 1314 which feature a constant or an
interelectronic distance-dependent admixture of exact exchange, respectively, significantly
mitigate these issues, problems are not completely solved, yet.

Another relatively recent class of XC functionals are local hybrid functionals (local
hybrids), ®l which feature a real-space-dependent admixture of exact exchange employing
a so-called local mixing function (LMF). Despite the ambiguity arising due to the local
exact-exchange admixture, known as gauge problem,*! local hybrids have been shown
to be able to provide significant improvements over standard XC functionals concerning
ground-state properties, as e.g. atomization energies and barrier heights. '7¥] Regarding
excited-state calculations, for which local hybrids represent a potentially advantageous
approach, neither a TDDFT implementation nor a theoretical formulation of the adiabatic
local hybrid XC kernel have been available at the beginning of the present work, so that an
evaluation of local hybrids for their performance with respect to excited-state calculations
was not possible so far.

The main objective of the present work is to close this gap between local hybrid func-

tionals and TDDFT. Based on an introduction of the underlying theoretical background,
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in particular concerning TDDFT and local hybrid functionals, the adiabatic local hy-
brid XC kernel will be derived first, followed by a detailed description and evaluation of
the implementation of the local hybrid XC kernel into the quantum chemical program
package TURBOMOLE. " Here, special attention will be paid to an efficient implemen-
tation to retain the high efficiency provided by the existing TDDFT implementation of
TURBOMOLE. [ Based on the new implementation, the first evaluation of a broader
range of existing local hybrid functionals for the calculation of vertical excitation energies
will be presented, illustrating their performance in comparison to other successful XC
functionals. In the second part of the work, the development of local hybrid functionals
is expedited. In particular, this concerns the two integral parts of local hybrids, i.e. the
LMF, and the calibration function (CF),[QH which shall correct errors caused by gauge
issues. For both building blocks, new approaches regarding their construction as well as
suitable optimization procedures will be presented. Besides the conjunction of local hy-
brids and TDDFT, the present work thus also provides state-of-the-art developments of

local hybrid functionals.



2. Theoretical Background

In this chapter, the theoretical background required for the understanding of the deriva-
tion and implementation of the local hybrid exchange-correlation kernel and for the con-
struction of novel local hybrid functionals is described. Starting with some basic quantum
chemical concepts given by the Schrodinger equation and Hartree-Fock theory, concepts
and approximations in density functional theory will be described in detail, with a special
focus on local hybrid functionals, which respresent the main topic of the present work. Be-
ing directly related to the derivations and implementation, respectively, time-dependent
density functional theory and concepts of integral evaluation are also described. Through-

out the entire work, atomic units are used.

2.1. Fundamental Quantum Chemistry

2.1.1. Schrodinger Equation

The fundamental equation in non-relativistic quantum chemistry is the time-dependent
Schrédinger equation (SE),[?2l which describes the quantum dynamics of a many-particle
system represented by the wavefunction . For molecules, i.e. systems of Ny atomic nuclei

and N, electrons with the spatial coordinates R and r, respectively, it reads

H(r R, 1)U (r,R,t) = i%\l’ (r,R,1) , (2.1)

with the Hamilton operator 2324

A

H(r,R,t) =Ty (R) + T, (r) + Van (R) +
Vive (1, R) + Ve (r) + Vit (2) (22)

containing the kinetic energy operators T and the potential energy operators V. The
indices NV and e denote nuclei and electrons, respectively, while th stands for an ex-

ternal time-dependent potential, e.g. a laser pulse or an electromagnetic field. Vin and
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V.. thus describe nucleus-nucleus and electron-electron repulsion, while Ve denotes the
nucleus-electron attraction potential. Note that the three aforementioned potentials are
multiplicative, while the kinetic energy operators represent non-multiplicative differential

operators. This can be seen in a more explicit form of H

Nn Ny Ny

. 1 747
H(r,R,t):—ézA: VA——ZVTV +2A:;\RAA—§B!
>

e e

%z,m_rﬁz

i

> g V) (2.3

J>i

with the iteration variables A, B for nuclei and i, j for electrons as well as the nuclear
mass my4 and nuclear charge Z, (for the Ath atom). Without an external time-dependent
potential, i.e. Viwr = 0, H becomes time-independent, so that the wavefunction ¥ can
be separated into a time-independent part with a time-dependent oscillating prefactor of

constant frequency w
U (r,R,t) =e ¥ (r,R) , (2.4)
which leads to the time-independent Schréodinger equation for stationary states
H(r R)¥(r,R)=FE(,R)¥(r,R) , (2.5)

with E being the eigenvalue of H , thus describing the total energy of the system.

(2.5) can be further simplified applying the Born-Oppenheimer (BO) approximation,
also known as clamped-nuclei approximation.[?>26 It states that, due to the large differ-
ence between electron and atomic masses, the motion of electrons and atomic nuclei can
be separated. Pictorially, the electrons move in a field of fixed nuclei, while the nuclei move
in an averaged field of fast moving electrons. Formally, this is realized by the separation

of the Hamilton operator and the wavefunction into an electronic and a nuclear part

=
I
=
=
+
=
&

H (r, (2.6)
U (r,R) =", (r,R) Uy (R) , (2.7)
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with the nuclear and electronic Hamiltonians

Hy (R) =Tx (R) + Vi (R) (2.8)
He (r,R) =T, (r) 4+ Vee (r) + Vie (r,R) . (2.9)

For a set of fixed atomic coordinates, i.e. TN = (0 and VN N = const., one gets the electronic

Schrodinger equation

~

He (r;R) Ve (r;R) = E. (R) V. (1;R) (2.10)

with the electronic energy E, and a remaining parametrical dependency on the nuclear
spatial coordinates R (denoted by the separator ;). Note that the total energy of the
molecule (for fixed nuclei) is simply the sum of E, and the constant nucleus-nucleus
potential, both depending parametrically on R. This dependence gives rise to the popu-
lar concept of potential energy surfaces (PES).?”l Similar to the time-independent case,
the BO approximation can be applied to the time-dependent Schréodinger equation, thus

leading to the time-dependent electronic SE2829]

~ 0
H. (r,t; R)V (r,t; R) = iE\IJ (r,t;R) . (2.11)

Despite the reduction of the molecular SE to a pure electronic problem by the BO ap-
proximation, analytical solutions of the time-independent electronic SE (2.10) are only ac-
cessible for the hydrogen atom and for other one-electron systems. For all other molecules,

approximate solutions have to be found.

2.1.2. Hartree-Fock Theory

One of the most basic approximations for the solution of the time-independent electronic
Schrodinger equation (2.10) is the Hartree-Fock (HF) method, also known as mean-field
approximation.® In this approach, the electronic wavefunction is approximated as a
so-called Slater determinant ®, i.e. an antisymmetrized product of one-particle wavefunc-

tions, the spin orbitals ¢. For an N electron system, the normalized Slater determinant
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reads

¢1(x1) 1 (x2) -+ é1(xn)

qqu)(Xl,XQ’”"XN):\/% ¢2(:X1) ¢2(:X2) ¢2(:XN) ' (2.12)

ON (Xl) ON (Xz) e QN (XN)

By default, it provides the correct symmetry for the exchange of two electrons and obeys
the Pauli exclusion principle.®!l For the construction of ®, a set of M > N orthonor-
mal spin orbitals {¢,} is used, while only the NV occupied orbitals appear in the Slater
determinant. The spin orbitals themselves are products of a spin function and a spa-
tial wavefunction ¢ (r), the molecular orbital (MO). While the spin functions form an
orthonormal basis, which is represented by the functions « (s) and 5 (s), only spatial or-
bitals of same spin have to be orthonormal, since orthonormality of spin orbitals with
different spin is already ensured by the spin functions. Without restrictions for spatial
orbitals of different spin (unrestricted Hartree-Fock (UHF)), the spin orbitals are given
by

o= Ja®) e M
{op (%)} {ﬁ(s)%ﬁ(r) =1 o (2.13)

with ¢,, denoting the gth MO arising from a ¢ spin orbital. Hence, the one-electron

density matrices D7, in the MO basis* are given by

D7, = 5; (2.14)
Df, =Dg; = Dg, =0, (2.15)

thus satisfying the idempotency condition

Dg, =Y D5.D5,. (2.16)

As usual, the indices i, j,... are used for occupied, a,b,... for virtual and m,n,... for
general orbitals. The calculation of the energy expectation value of the Slater determi-

nant ® for the electronic Hamilton operator (2.9) then gives its energy in density matrix
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notation 33!
Esp=) Z oD + 5 Z > [ 950 — 95%.,) D2, + 90 Do | DS (2.17)
o o pqrs

which matches the Hartree-Fock energy only for the optimized set of spin orbitals. Note
that ¢’ is no separate spin variable, but denotes the opposite spin of o. The core Hamilton

matrix

g0 (r)dr (2.18)

o __ * T
hpq_/gopﬂ(r) [——V i Z\r—R |

contains the expressions for the kinetic energy and the electron-nucleus attraction, re-

spectively, while the electron-electron interaction is captured by the matrix

* (r o (1) @l (r2) psc (T
g = //SOp,o( 1) Pao (r1) 05 (T2) 0sc ( 2)dr1dr2, (2.19)

vy — 1y

which appears with normal index order g,,.s and exchanged index order g,s,,. After mul-
tiplication with the density matrix D, the former term respresents the classical Coulomb
repulsion of charged particles, while the latter one is the non-classical exchange interaction
arising due to the antisymmetry of the wavefunction.

While (2.17) gives the energy of a Slater determinant built from an arbitrary set of
orthonormal MOs, it provides no rule for the determination of the set of MOs giving the
lowest energy. Therefore, the energy (2.17) is minimized by variation®¥ with respect to
the molecular orbitals, resulting in the Hartree-Fock equations

> [FoDy, - D Fo] =0, (2.20)

pr—rq
T

with the Fock matrix elements F,,,, in the MO basis
DD (9500 = 9) DFs + 5 D5 | (2.21)
Additionally imposing the canonical condition
Fy = €0p, (2.22)

results in the canonical Hartree-Fock equations, which uniquely define an optimal set of

orthonormal molecular orbitals, occupied as well as virtual. Nevertheless, the Hartree-
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Fock equations cannot be solved directly, since the Fock matrix, which determines the
optimal density matrix and thus the MOs, depends itself on the density matrix. Hence,
(2.20) and (2.22) have to be solved in an iterative procedure until self-consistency for the
molecular orbitals is achieved. The eigenvalues € for the optimized set of MOs are then
interpreted as orbital energies of the pth MO and are related to the Hartree-Fock energy

via
Epp = - ZZ € +hg,| DY, . (2.23)

Note that the given equations for the unrestricted HF method reduce to the restricted HF
(RHF) equations in the case of a closed-shell singlet state (NN, = Ng) with equal spatial
orbitals for o and § spin. The introduction of a basis set, e.g. an atomic orbital basis (see
Sec. 2.5.1), leads to the well known Pople-Nesbet (unrestricted)® and Roothaan-Hall

(restricted) equations, respectively. 36371

2.1.3. Electron Correlation

One important concept in quantum chemistry, which is related to the Hartree-Fock
method, is the so-called electron correlation. *®#9 Assuming a product of single-particle

wavefunctions, i.e. the Hartree product

U (X1, Xy, ..., Xy) = H@ (xi) (2.24)

the electron-electron interaction reduces to the classical Coulomb interaction of electron
densities. Hence, in this independent particle model, every electron interacts only with the
averaged charge of all electrons, which is regarded as uncorrelated motion of the electrons.
As a consequence, two electrons are allowed to come close together and even have the same
spatial coordinates without being affected explicitly by each other’s charge, resulting in
a too large repulsive electron-electron interaction. The exact wavefunction on the other
hand considers the correlated motion of the electrons, thus preventing the electrons from
having the same position. According to the variational principle, ¥ the energy of the exact
wavefunction is thus lower than that of the independent particle wavefunction (2.24).
The difference between the independent and the correlated motion of electrons is known
as electron correlation, where the Fermi correlation incorporates effects caused by the
antisymmetry of the wavefunction, while the Coulomb correlation describes the explicit

charge interaction of the electrons.
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In the case of the Hartree-Fock method, the wavefunction is not approximated by the
independent particle wavefunction but a Slater determinant, which is an antisymmetrized
product of single-particle wavefunctions. In contrast to the Hartree product, the antisym-
metry of the electronic wavefunction is correctly described. As a consequence, the motion
of the electrons in the Hartree-Fock method is not completely uncorrelated. Regarding
(2.17), the classical Coulomb interaction is reduced by the exchange term in the case
of identical spins, describing correctly the Fermi correlation. Hence, the exchange term
also cancels the spurious Coulomb interaction of an electron with itself (orbital indices
p=q=r =s), known as self-interaction error.%4!l Since exchange is a direct result of
the antisymmetry of the wavefunction and is already described by a single determinant, it
is conventionally excluded from the term ’electron correlation’ and denoted as exchange,

which leads to the definition of electron correlation by Lowdin [l
Ecorr = Lezact — EHF . (225)

In this definition of the correlation energy, two different effects are included, the dynamical
and the static or non-dynamical correlation. 3 While the dynamical correlation describes
the Coulomb correlation explained before, static correlation refers to near-degeneracy
effects between different configurations, leading to strong interactions between them.

In wavefunction theory, both types of correlation can be captured by the inclusion of
more than a single determinant for the description of the wavefunction. This can be done
by expanding the wavefunction in terms of excited Hartree-Fock determinants, leading
to so-called single-reference methods!*? such as Mgller-Plesset perturbation theory (MP),
configuration interaction (CI) and coupled-cluster theory (CC).[*? Usually, the major part
of the dynamical correlation can be described by these methods, while CI and CC methods
also include parts of the static correlation. Note that a complete CI or CC expansion leads
to a numerically exact solution of the Schrédinger equation and thus covers all correlation
effects.

Nevertheless, in some cases Hartree-Fock orbitals are a poor description for the real sys-
tem, especially for systems with strong static correlation, where due to near-degeneracy
effects, the selection of a single Slater determinant according to the aufbau principle is not
sufficient. In these cases, which are usually called multi-reference systems, the spin orbitals
can be optimized for a multi-determinantal wavefunction. This multi-configurational self-
consistent field method (MCSCF) 2 is usually applied within a complete or a restricted
space of active orbitals, leading to the CASSCF or RASSCF method, respectively. While

these methods already describe the major part of the static correlation, the remaining
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dynamical correlation has to be determined by methods using the multi-determinantal
wavefunction as reference,!*?l e.g. complete-active-space perturbation theory (CASPT),
multi-reference CI (MRCI) or multi-reference CC (MRCC). For many of the methods
mentioned, extensions for the description of excited states exist, too, e.g. equation of mo-
tion coupled-cluster (EOM-CC), 3] multi-state MRCI (MS-MRCI)* and CASPT (MS-
CASPT).#

While wavefunction methods can be systematically improved by adding more determi-
nants to the description, the major bottleneck is their increasing calculation cost, which
has an unfavorable scaling with respect to system size, so that accurate calculations are

often restricted to small or medium sized molecules.

2.2. Density Functional Theory

2.2.1. Basics

An alternative approach for the solution of the electronic Schrodinger equation is provided
by density functional theory (DFT). 1% Instead of the wavefunction ¥, the electron density
p is used as basic quantity for the description of a system. It describes the probability of
finding an electron (with arbitrary spin) in an infinitesimal small volume element of real

space. For an N electron system, p thus integrates to the total electron number

/p(r) dr=N. (2.26)

In terms of the normalized wavefunction W, the electron density is thus defined as

pr)=p(r) = N/\I/* (X1, XN) U (xq, ..., xy) dsidxs ... dxy . (2.27)

While the wavefunction represents a rather complex object with a dependence on 4N
variables (3N spatial and N spin variables), the electron density depends only on the
three spatial coordinates. Furthermore, p is directly accessible by experiments, e.g. X-ray
diffraction or electron microscopy.

The first theoretical legitimization for the description of the energy as a functional of the
electron density was given by Hohenberg and Kohn in 1964. #7 In their first theorem, they
proved by reductio ad absurdum the one-to-one mapping between an external potential
and the ground-state electron density. Since the external potential, which is the electron-

nucleus attraction potential Vi, in the case of molecules (cf. (2.3) and (2.9)), also fixes the

10



2.2. Density Functional Theory

electronic Hamiltonian, the electronic energy is a unique functional of p, which is given
by

Eo = Epo] = T [po] + Eee [po] + Ene [po] (2.28)

for the ground-state electron density pg, where T'; F.. and Ey. denote the energy func-
tionals of the kinetic energy, the electron-electron repulsion and the electron-nucleus at-
traction, respectively. A variational principle for the determination of the ground-state
electron density po is provided by the second Hohenberg-Kohn theorem 47l and in a slightly
different formulation by the constrained-search approach of Levy.!*¥l In the formulation

of Levy, the variational search is given by

Bl =iy (U + [Tp(yar) (220
p—N
where the universal functional F' is defined by the constrained-search formula

Fp| :min<\Il ‘T—i—ffee

Y—p

@>. (2.30)

However, in DF'T, the universal functional F' is expressed as an explicit density functional
rather than a constrained search, so that the minimization in (2.29) depends only on the
electron density. Hence, the electron-electron interaction E.. and the kinetic energy T as

part of F' also have to be expressed as explicit density functionals
Flpl =T [p] + Eec[p] - (2.31)

A consequence of (2.29) is that the energy expectation value calculated with a trial density

p has to be larger than or equal to the energy obtained with the exact ground-state density
Ep] = Fp] + Ene[p) > E[po] , (2.32)

which is similar to the variational principle in wavefunction theory. ! Nevertheless, this
variational principle holds true completely only for the exact universal functional F', which,
unfortunately, is not known and thus has to be approximated. While (2.32) holds true
even for an approximated F', with py being its optimized ground-state electron density,
the energy expectation value E [pg] might be lower than the real ground-state energy Fj.
Hence, DFT is variational with respect to the electron density but not with respect to

the choice of the approximated universal functional.

11
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The central problem in conventional DFT is thus to find a viable approximation for the
universal functional. Unfortunately, besides the electron-nucleus attraction Ey., only the

classical Coulomb repulsion of the electrons J is known exactly
Ene Z d 2.33
== [ ‘r_RA‘r 23

// |r1_r2| p)ples) g, 1dry (2.34)

The remaining density functionals of the kinetic energy and of the non-classical electron-
electron interaction on the other hand have to be approximated, where the kinetic energy
represents the larger part with respect to the total energy. The application of model func-
tionals like the one of Thomas and Fermi[**5% revealed that the major problems, e.g. the
false prediction of unbound ground states of molecules, are related to the approximated
kinetic energy functional. While more elaborated explicit density functionals including
gradient corrections could reproduce the exact kinetic energy slightly more accurately, [°!
the alternative indirect approach of Kohn and Sham, ®? which circumvents the construc-
tion of an explicit density functional for the kinetic energy, became the standard approach

in today’s density functional theory.

2.2.2. Kohn-Sham DFT

In their approach of 1965, Kohn and Sham (KS) introduced a fictitious non-interacting
reference system of electrons moving in an effective, local potential, the KS potential, so
that it yields, by definition, the same electron density as the interacting system. [°24 Since
the wavefunction for a non-interacting system is known exactly, i.e. a Slater determinant

(2.12), its kinetic energy Ty and electron density can be calculated directly from the MOs
T, [{en)] = —5 3 I [ 60 0V Vi (1) (235)
- Zp" Z Z qugop’ 90% ( ) ) (236)

with the density matrices thus being defined as in (2.14) and (2.15). On the basis of
the non-interacting kinetic energy 7T, Kohn and Sham reexpressed the energy functional
(2.28) as

Elpl =T {ppt] + J o] + Ezc [p] + Ene [p] - (2.37)

12
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In contrast to conventional DFT, the problem of finding the exact ground-state density
is thus shifted to the problem of finding the orbitals of a non-interacting system, which
yields the exact ground-state density. The advantage of the KS approach is that the kinetic
energy of the non-interacting system T can be calculated exactly via (2.35), while it has to
be approximated in conventional DFT. The presumably small remaining difference to the
real kinetic energy T is then merged with the non-classical electron-electron interaction,

i.e. exchange and correlation, into the exchange-correlation (XC) functional

Ere[p] = T'[p] = Ts {pp}] + Eee [0] = J [p] - (2.38)

The XC energy defined in (2.38) has to be distinguished from the definition of exchange
and correlation in section 2.1.3. While the definition in wavefunction theory is based on
the Hartree-Fock approximation and thus the optimized HF orbitals, the XC energy is
calculated for a fictitious set of orbitals, called KS orbitals, which by definition gives the
exact ground-state density. Hence, the amount of exchange and correlation is different
from the definitions in wavefunction theory, although the considered effects are similar.
Besides the XC energy, all other parts of the total energy are calculated exactly in KS
DFT. In comparison to conventional DFT, a far lesser part of the total energy thus has to
be approximated, explaining the significantly enhanced accuracy of KS DFT. Neverthe-
less, the introduction of an orbital basis for the exact calculation of T, which is only an
implicit functional of the density, lifts the simplicity of dealing with explicit density func-
tionals, resulting in a higher computational cost. As for F' (cf. Eq. (2.31)) in conventional
DFT, knowledge of the exact XC functional gives the exact ground-state energy of the
system, rendering KS DFT an in principle exact theory. However, in real-life calculations,
approximations have to be made.

A generalization of the approach of Kohn and Sham was given by Levy and co-
workers. P°l Instead of constructing a non-interacting reference system, they introduced a
fully or partially interacting reference system, which can be described by a single Slater

determinant. Similar to KS DFT, an energy functional

Elpl =T {pp}] + J o] + Eze {p}] + Ene [p] (2.39)

can be formulated. In contrast to the KS approach, exact orbital exchange and correlation
contributions defined by the reference system may enter the energy functional, leading to
a possible explicit orbital dependence of the XC functional. Nevertheless, only the electron

density of the reference system equals the density of the fully interacting system, while

13
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MOs and thus the density matrix in general are not equivalent.!®®! In this sense, the HF
method can be regarded as a special case in the framework of generalized KS DFT, in

which complete exact orbital exchange

B el = YD B = 3 33 5, D5 %, (2.40)

o o pqrs

is used as approximate XC functional (without a correlation contribution). Nevertheless,
the generalized KS scheme simply reduces to the original KS approach in the case of a
non-interacting reference system.

In both approaches, KS as well as generalized KS DFT, a set of KS orbitals that gives
the minimal energy has to be found. Analogously to the HF method, the energy functional
has to be minimized with respect to the MOs rather than the electron density. Applying a
variation of the MOs thus simply reduces to the canonical single-particle equations (2.20)
and (2.22), which in the context of KS DFT are called Kohn-Sham equations. Equivalently,
the matrix F? is called Kohn-Sham matrix and, in the general case of orbital-dependent
XC functionals, is given by (cf. Eq. (2.21) for the HF case)

Fo =h? Z [gmm o+ gomes D% | + ;5;; . (2.41)
While derivatives with respect to the density matrix (or equivalently functional deriva-
tives with respect to molecular orbitals) are needed for the treatment of explicitly orbital-
dependent XC functionals within the generalized KS framework, a treatment within con-
ventional KS DFT or within the optimized effective potential (OEP) method®™ gives a
semi-local or local XC potential v,., i.e. the first functional derivative with respect to the
electron density. Derivatives with respect to the density matrix can thus be reexpressed

as

5= [ o 1L e (= [, 05 S . (242)

A detailed discussion of functional derivatives will be given in chapter 3.

2.2.3. Adiabatic Connection and Exchange-Correlation Hole

While KS DFT rigorously ensures the existence of the XC functional, it basically gives
no explicit expression or prescription for the construction of E,.. The latter was first

provided by the adiabatic connection (AC) formalism.®® %! Here, the non-interacting

14
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reference system of KS DFT is connected to the fully interacting system by means of a
coupling strength parameter A\ ranging between 0 and 1 and thus describing the amount
of explicit electron-electron interaction

Hy =T+ \V,, + V*

exr )

(2.43)

with a A-dependent external potential ‘A/efv Along this connection, the system is described
by the A\-dependent wavefunction ¥* giving the exact ground-state density of the in-
teracting system, irrespective of the coupling strength parameter. In this sense, the AC
formalism shows similarities to generalized KS, which also allows partially-interacting ref-
erence systems. Nevertheless, in the AC formalism, the wavefunction ¥? is generally not
restricted to a single Slater determinant. Connecting the limiting cases of the AC, i.e.
the non-interacting (A = 0) and the fully interacting (A = 1) system, leads to an explicit

expression for the XC functional

By lp] = E/Pczwg (ry,12) — p(r1) P(r2)dr1dr2 (2.44)

2 |I‘1 —I‘2|

in terms of the coupling-strength-averaged pair density 6%

1
ps Y (r1,12) = / p5 (r1,12) dX (2.45)
0

with the A-dependent pair density being defined as
P (r1,15) = N (N —1) / (0] C(xq, ., xN) N (xq, . xy) dsydsadxs . dxy . (2.46)

It should be mentioned that, although (2.44) defines the XC functional purely in terms
of a non-classical electron-electron interaction, the difference between the non-interacting
and the exact kinetic energy (see (2.38)) is implicitly included via the coupling strength
integration in (2.45).

An XC functional can also be directly introduced through the concept of the so-called

XC hole. %! Tt is defined as the conditional pair density associated with the difference in
(2.44)162

/fzwg (ri,12)

T () (2.47)

Pxec <r17 r2) =

15



2. Theoretical Background

and is related to the exchange-correlation functional via

E..lp] = 1/ p(x1) pre (11, I‘Q)drldrg : (2.48)
2 |r] — 1o
All non-classical effects considered by the XC functional can thus be attributed to the
XC hole. Hence, p,.(r1,r2) can be formally regarded as a non-classical density that re-
duces the electron density p (ry) around the reference electron at ry, so that the effective
density puc(ri,re) + p(re) interacting with the reference electron density p(r;) results
in the exact electron-electron interaction energy. While the problem of finding a suitable
approximation is simply shifted from the XC functional to p,., the formulation in terms
of the XC hole has the major advantage that some properties of the XC hole that have
turned out to be crucial for the performance of the resulting approximate XC functionals
are known exactly.'® Among others, the normalization of the XC hole to -1 for every

reference coordinate r; has proven to be of major importance

/pmc (I'l, I'Q) dI‘2 =-—1. (249)

This normalization, also known as sum rule, simply reflects the antisymmetry of the
wavefunction arising due to the Pauli principle. Hence, it is usually attributed as an effect
of exchange, which is described by the Fermi hole p,, while the remaining correlation
effects are included in the Coulomb hole p,, so that the complete XC hole is conveniently
decomposed into a sum of the Fermi and the Coulomb hole. As a consequence of this

separation, the Fermi and the Coulomb hole have to obey the sum rules

/px (ry,ry)dry = —1 (2.50)
/pc (1‘1, I'Q) dI‘Q =0 s (251)

respectively. In the case of the Fermi hole, further properties can be deduced from exact

orbital exchange (2.40). Hence, the Fermi hole has to exhibit the on-top value!®!

pe(rm) = —2p(n) | (2.52)

with a zero slope for vanishing interelectronic distances, i.e. r; = ry, while the exact

on-top value in the spin-resolved case is

Pao (T1,T1) = —po (r1) - (2.53)
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Furthermore, p, has to be negative over the entire space. In contrast, the Coulomb hole
has a cusp for vanishing interelectronic distances, %6 whereas the exact on-top value is
unknown. In addition, p. is not bound to negative values and even has to exhibit positive
values to satisfy the sum rule (2.51).

While the XC hole is a six-dimensional quantity in general, the electron-electron inter-
action operator Vie depends only on the distance of two electrons. Hence, it is sufficient
to consider a spherically averaged XC hole with a dependence on one electron coordi-
nate r; and the interelectronic separation coordinate |r; — ry|, with its properties being

essentially the same as for the original XC hole.

2.2.4. Approximate Exchange-Correlation Functionals

As already pointed out, the only unknown fragment in KS DFT is the XC functional. On
the basis of theoretical concepts as, e.g., the adiabatic connection 798! and the exchange-
correlation hole, (6455 various approximations have been developed during the last deca-
des. 16270 A categorization of these approximate XC functionals was first introduced by
Perdew and Schmidt,[™ who established the so-called Jacob’s Ladder of approximate
XC functionals. Starting from the Hartree world, i.e. the absence of an XC functional,
Perdew and Schmidt proposed five rungs of approximations with increasing accuracy and
complexity, peaking in the heaven of chemical accuracy. Meanwhile, extensions[™ of the
original scheme and classifications from a more implementational point of view[™ have
also been proposed.

Similarly to the XC hole, approximations to the XC functional are usually separated

into an exchange and a correlation functional E, and E., respectively
Euclp] = Ex [p] + Ec[p] - (2.54)

Conveniently, these functionals are either expressed as integrals of the energy density e, .

or the energy density per particle €,/,. multiplied by the electron density

Bue= [ o) exetw)dr = [ eqetrar. (2.55)

In the case of the exchange functional, it is known from exact orbital exchange (2.40) that

only electrons with same spin interact with each other, so that E, can be expressed as a
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functional of p, and ps that can be split into separate spin functionals

E, [pou :0,3] = Eﬂc,a [pa] + E;v,ﬁ [P,B] : (256>

The link between the exchange functional depending on the total density FE, [p] and
E, [pa, pp) is given by the spin scaling relation

. [pu 5] = & (Ee 200] + 2 209]) (2.57)

Due to this spin scaling relation, notations of the exchange functional as E, [p| and
E, [pa, ps) are equivalent, and both are in common use in the literature.l%? In the case
of the correlation functional, the predominant contribution usually stems from the in-
teraction of spin densities with opposite spin. The correlation functional can thus be
equivalently expressed as functional of the spin densities E. [pa, pg] or as functional of the

total electron density and the spin polarization E, [p, (] with

L) =0 ()

15}
pe @) T (1) (2.58)

Throughout this work, exchange and correlation are denoted as spin-resolved functionals
E. [pa, pp) and E.[pa, pg|, respectively. Consistent to the subject of the present work,
approximate exchange functionals are in the focus of the discussion.

The most basic approximation, which represents the first rung on the Jacob’s Ladder,
is the local-density approximation (LDA), or local-spin-density approximation (LSDA) 6]
in the spin-unrestricted case. As model system, the three-dimensional uniform electron
gas (UEG), i.e. a system with constant electron density and a homogeneously distributed
positive background charge to ensure neutrality, is employed. The exchange functional for
the UEG, which is also known as Slater-Dirac exchange, can be derived exactly and is

given by [52,74,75]

LDA 3 3 1/3 4/3
By =5\ p, % (r)dr . (2.59)

In contrast, correlation functionals on the basis of the UEG, e.g. the functionals of Vosko,
Wilk and Nusair (VWNI7) and Perdew and Wang (PW92[") as the most popular ones,
could be only obtained by fitting analytic expressions to accurate reference data, e.g.
quantum Monte Carlo results. [™® The common characteristic of all LDA functionals, either

exchange or correlation, is the sole dependence on the electron density p, or the spin
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densities p, and pg in the spin-unrestricted case. Since the LDA bases on the UEG, it
works best for systems with an approximately homogeneously distributed electron density,
as e.g. simple metalic solids as sodium. ™! Nevertheless, even for inhomogeneous systems as
atoms and molecules, the LDA shows a reasonable behavior, 1] which could be attributed
to a correct normalization of the XC hole,’® a negatively bound Fermi hole with a
correct on-top value!® and the fact that only the spherically averaged XC hole, which is
reasonably well described by LDA, 63 enters the XC energy. Furthermore, the Coulomb
hole obeys the cusp condition, and the exchange functional (2.59) the correct homogeneous
coordinate scaling.®! On the other hand, LDA correlation functionals do not show the
exact homogeneous coordinate scaling, ¥ and the exchange functional (2.59) does not
cancel the spurious self-interaction of electrons (cf. Sec. 2.1.3). Although the LDA is a
large improvement over the HF method, 6% with errors for the thermochemical G2 /972!
test set being almost halved, it shows a systematic strong overbinding for molecules, [*3!
limiting the applicability of LDA for chemical problems.

A straightforward extension of the LDA is the gradient expansion approximation [*4
(GEA), which introduces a Taylor expansion of the XC energy in terms of the density
gradient, thus taking into account that atoms and molecules are not well represented by
the UEG. For the exchange functional, the second-order gradient expansion, simply fixed

by dimensional analysis, [®® is given by

ESEA = pEDA — gy~ T ) (2.60)
o Po (I‘)

with the square of the density gradient

Yoo (T) = VTPU (r) Vo (r) . (2.61)

In homogeneous regions, i.e. regions with a vanishing density gradient (Vp, (r) = 0),
(2.60) correctly reduces to the exact homogeneous limit, i.e. Slater-Dirac exchange. The
expansion parameter 3 can be either determined empirically!®! or deduced from the gra-
dient expansion of the Fermi hole.®l To second order, the expansion of the spherically
averaged spin-resolved Fermi hole is given by

1 Y50 (11)

(pro (T1,T2)) = —py (1) — é ViV, (r1) — 471, (r1) + 2 o (1)

|I'1 - I'2| ) (262)
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where

Z DV 0 (1) Vipgq (1) (2.63)

denotes the kinetic energy density. Substitution of 7 by a gradient expansion!®” with
respect to the electron density and subsequent partial integration leads to the expres-
sion for the GEA exchange (2.60) with 5 = 0.00293, which fits empirical findings fairly
well. 628588 Obviously, the GEA Fermi hole constitutes the exact on-top value. Neverthe-
less, it violates the normalization (2.50) and the negativity condition, which have been
found to be crucial for the reasonable performance of the LDA. %4 Furthermore, the GEA
exchange potential diverges in small density regions, as is the case in the exponential tails
of finite systems. [*®l Hence, results for real systems are typically worsened with respect to
the LDA.

In order to restore the exact hole constraints violated by the GEA, various approaches,
that are collectively known as generalized gradient approximation (GGA), have been
proposed. All of them have in common that they only depend on the spin densities and
their gradients. Two of the first approaches were introduced by Becke [*] and Perdew. [65:)
While Becke considered a model for the limit of large density gradients to introduce
correction terms via interpolation, Perdew used cut-off functions to restore the exact
hole constraints and refitted the functional to an analytical functional form. Simpler
approaches of Becke (B86!°! and B881°?) and Perdew et al. (PBE?) utilize a damping
function F'(s,) to ensure the exact hole properties. Based on the reduced spin density

gradient

2
s, (r) = L0or (1)

T 2,64
k pd/" (x) 200

with k = 2 (672)1/ * & 7.79555, the latter functionals can be expressed generally (although

differently denoted in the original works) as

B = BEDA [ 5 1) 52 (6) F (5,) i (2:69)

g
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where the damping functions for the two most popular GGA exchange functionals B88

and PBE are given by

B88 _ 51{:2
Fose) = 15768k, (v) asimb (hsy (1)) (2.66)
and
pop gy 3 (B)
F(s0) = 2 <47T> K+ ps2 (r) (2.67)

respectively. Note that, for a constant damping function, (2.65) simply reduces to GEA
exchange. For the determination of the free parameters, i.e. 3 for B88 as well as x and p
for PBE, Becke and Perdew followed two different philosophies. While Perdew fixed the
parameters with respect to theoretical constraints such as the Lieb-Oxford bound, 9394
Becke employed a fit to atomic exchange energies. Functionals of other authors, e.g. the
HCTH type functionals®®%! of Handy and co-workers, which use higher powers of the
reduced spin density gradient and thus include more parameters, are optimized with
respect to molecular test sets. Despite their formal difference, both approaches consider
the underlying physics and lead to adequate parametrizations. Nevertheless, Engel et
al.’"l could show that GGA exchange functionals, in general, are not able to provide
simultaneously the correct asymptotic behavior of the exchange energy density and the
exchange potential.

Similarly to the exchange functionals, various GGA correlation functionals have also
been proposed, predominantly by Perdew and co-workers. This includes Perdew’s corre-
lation functional from 1986 (P86!%l), which is an extension of the one by Langreth and
Mehl, I the PW91 correlation functional™®! as well as it’s successor PBE.!%! For their
construction, exact constraints as, e.g., the correct behavior in the limits of a slowly or
rapidly varying density and uniform coordinate scaling were used. The famous correlation
functional of Lee, Yang and Parr (LYP[101:102) is based on the Colle-Salvettil'®®l model
for the helium atom.

Due to the inclusion of the density gradient, GEA and GGA functionals contain addi-
tional information beyond locality. This is in contrast to the LDA, which considers only
purely local effects. Nevertheless, GGA and GEA functionals are not delocalized like ex-
act orbital exchange, i.e. corresponding energy densities at a given point in space depend
solely on the quantities evaluated at this point, and are thus usally called semi-local func-
tionals. Functionals at the GEA or GGA level represent the second rung on the Jacob’s
Ladder.
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2. Theoretical Background

As can be seen easily from the second-order gradient expansion of the spherically aver-
aged exchange hole (2.62), the gradient expansion of the XC energy does not only depend
on the density gradient but also on further quantities such as the Laplacian of the density
V1V p and the kinetic energy density 7. Functionals that include at least one of these two
quantities, for either exchange or correlation, are called meta-GGAs, thus constituting the
third rung in the categorization scheme of Perdew and Schmidt. Since the kinetic energy
density depends only implicitly on the electron density via the orbitals, meta-GGAs are
usually no explicit density functionals anymore. Nevertheless, they are usually considered
as semi-local functionals, too, because the dependence on the orbitals remains semi-local.
Recent meta-GGA functionals also include further quantities such as the density overlap
regions indicator (DORI),[104] which considers second derivatives of the electron density
beyond the Laplacian. With some exceptions, the construction of meta-GGAs generally
follows the concepts and philosophies of the GGA construction, presented above, and will
be not discussed in detail. Due to the higher flexibility, it is possible to satisfy more phys-
ical constraints. For example, one-spin orbital regions can be identified using the ratio
between the von Weizsicker kinetic energy density 7y 7 and the kinetic energy density

T

t (r) = e @) _

7o (1) éTa %Up(:) (2.68)

(r) po (r)

thus allowing for self-correlation-free functionals and a correct exchange energy for one-
electron systems. Amongst the numerous different functionals, there are again some of
Perdew and co-workers, namely PKZB, 19! its more advanced succesor TPSS[106:107 49
well as MVSI8 and SCAN. 1% Besides some models for strong correlation effects, 110:111]
Becke also proposed new approaches for meta-GGA functionals,[''?! often as part of hy-
brid functionals.[%™3] Only to mention a few, further functionals in common use are
B97D, 14 - HCTH[M® of Handy and co-workers as well as the highly parametrized semi-
local functionals of Truhlar and co-workers. %1171 Also, the Becke-Roussel['*®l model for
the exchange hole, which is exact for the hydrogen atom, can be regarded as meta-GGA
functional, although free parameters in the model have to be determined in an additional
optimization procedure, and the homogeneous limit is violated.

In comparison to the LDA, GGA and meta-GGA functionals represent a large im-
provement. Especially, errors for common atomization energy and reaction barrier height
test sets are significantly lowered below 10 kcal/mol. 62 Furthermore, the performance
for transition metal complexes is also improved. 'l Nevertheless, even for meta-GGA

functionals, the spurious self-interaction error in the exchange contribution to the XC

22
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functional remains and, despite the improvement, calculated atomization energies do not
reach chemical accuracy, i.e. 1 kcal/mol.

The next class of functionals on the Jacob’s Ladder are explicitly occupied-orbital-
dependent functionals, which basically means the inclusion of exact orbital exchange (2.40)
and a compatible correlation functional. In global hybrid functionals, first proposed by
Becke 2% on the basis of the adiabatic connection theorem (cf. Sec. 2.2.3), the admixture
of exact orbital exchange and a local or semi-local exchange functional ES is regulated

by a constant mixing parameter ¢, leading to the exchange functional
EST =, B8 + (1—¢,) EY, . (2.69)

In the original work, 12! Becke assumed, in a first approximation, a linear interpolation
between the interacting and non-interacting reference system, resulting in the half-and-
half theory, which fixes ¢, to 0.5. While in the originally proposed half-and-half functional,
based on LDA exchange and correlation, ¢, is also applied as prefactor to the local cor-
relation functional, in GGA-based follow-ups, such as the BHLYP functional, ¢, is only
used in the exchange functional. A quantification of ¢, by Perdew et al. on the basis of
the AC with additional considerations about perturbation theory gave a mixing param-
eter of ¢, = 0.25,1'21 which better fits empirical findings!"3l than the value of Becke.
Nevertheless, also the latter approach and related schemes!'?? rely mainly on empirical
observations. Since no additional physical constraints can be satisfied by partial admix-
ture of exact orbital exchange, empirical determination of ¢, becomes unavoidable. 123!
Representatives for simple global hybrids based on GGA or meta-GGA functionals are
TPSSh, 124 Bo5[113I and PBEO.!'?5 While the latter functional is constructed with the
value ¢, = 0.25 of Perdew et al., the former two functionals rely on an optimization
with respect to thermochemical properties as, e.g., atomization energies, barrier heights,
electron affinities or ionization potentials.

A popular extension of the global hybrid scheme (2.69) is given by the three-parameter

approach introduced by Becke 12!

EP =Y {EM* + ¢y (B, — EEDY) + cue AESSGA} + EFPA + 00 AESEY L (2.70)
Originally, this so-called B3 scheme was developed in combination with B88 exchange
and PW91 correlation, resulting in the thermochemically optimized parameters ¢, = 0.2,
Cniz = 0.72 and ¢, = 0.81. Nevertheless, it turned out that the same parameter set

combined with the LYP functional gives comparable performance, leading to the famous
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B3LYP functional.['?l Other popular global hybrid functionals, such as the hybrid variant
of the -HCTH functional, ['*! its descendant BMK, 28! and the Minnesota type function-
als of Truhlar and co-workers, 297132 incorporate many more empirical parameters than
the B3 scheme.

While the admixture of exact orbital exchange mitigates the problem of spurious
Coulomb self-interaction, only a mixing parameter of ¢, = 1.0 provides a complete cor-

rection. Furthermore, full exact orbital exchange also ensures the correct r—*

asymptotic
behavior of the potential. On the other hand, 100% exact orbital exchange is less fa-
vorable for the description of bonding regions, where semi-local exchange functionals
mimicking a certain amount of static correlation are the better choice. Additionally, the
exact-exchange Fermi hole is fully delocalized, while the semi-local Coulomb hole is not,
providing a less favorable error compensation for the complete XC hole in stretched-bond
situations. Hence, only a few, either highly parametrized '3 or rather complicated 133134
occupied-orbital-dependent functionals use 100% exact orbital exchange everywhere.

Another way of managing the balance between self-interaction correction and static
correlation through semi-local exchange is provided by orbital-specific global hybrid func-
tionals, 135136l which apply different hybrid schemes for different types of orbitals. For
example, a distinction between core, valence and Rydberg orbitals lead to the orbital-
specific variants of the B3LYP functional of Nakai and co-workers. 371381 However, such
functionals lack invariance to orbital transformations and are not size consistent.

A more popular extension of global hybrids are the so-called range-separated (RS)
hybrid functionals. 131391421 Ag the basic step, the electron interaction operator is decom-
posed with respect to the interelectronic separation coordinate |r; — rs|, usually choosing

the standard error function as splitting operator

1 T—erf(u-|r; —ry) +erf(p-]rl—rgl)

- 2.7
m =i B EE &)
The first and second term on the right-hand side of Eq. (2.71) represent the short- and
long-range part of the electron interaction, respectively. The transition between both parts

[142] short-range

is regulated by the RS parameter p. In the most simple RS hybrid scheme,
exchange is described by a semi-local functional, thus considering static as well as dynamic
electron correlation in bonding regions, whereas exact orbital exchange is used in the long-
range to ensure the correct asymptotic r~! behavior and to avoid spurious self-interaction
in one-electron regions. More advanced RS hybrids!143144 combine the RS scheme with
the global hybrid scheme (2.69), leading to an additional inclusion of short-range exact

orbital exchange needed, e.g., for the description of core states. Functionals that use
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2.2. Density Functional Theory

short-range exact orbital exchange without applying long-range exact exchange 145146 are
usually referred to as screened hybrid functionals. Subsequent extensions proposed, e.g.,
an increased number of RS parameters, 147 a modified RS scheme, ['48] orbital specific RS
parameters ! or non-empirical tuning of the RS parameter.[1°0152 Ag for global hybrid
functionals, highly parametrized functionals were also developed. [144:153-15%]

The inclusion of exact-exchange contributions, either in global or RS hybrids, to the
XC functional has led to a significant improvement over conventional semi-local function-
als, with mean absolute errors being below 5 kcal /mol for common thermochemical test
sets. 92 More advanced functionals achieve even better results with mean absolute errors
around 2-3 kcal /mol and may reach chemical accuracy for selected test sets. 13 However,
in comparison to semi-local functionals, calculations using occupied-orbital-dependent
XC functionals are significantly slower due to the inclusion of exact orbital exchange, in
particular for many applications with periodic boundary conditions. Computation times
are comparable to those of the HF method, but include correlation effects, which in
wavefunction theory can be considered only using expensive correlation methods such as
coupled-cluster theory. One important part, which is still missing in hybrid functionals, is
long-range correlation as, e.g., dispersion. A pragmatic solution to retain the good ratio
between computational cost and accuracy of hybrid functionals is the a posteriori addi-
tion of an empirical force-field-like dispersion correction, as done by Grimme. ['*6l But also
several density-based approaches have been developed. ['57-163]

The last step on Jacob’s Ladder finally allows the inclusion of unoccupied orbitals in
the XC functional, which mainly concerns exact correlation contributions of wavefunction
theory and thus the correlation functional. Hence, also long-range correlation effects are
considered explicitly. The simplest approach is the partial addition of correlation deter-
mined by second-order perturbation theory, equivalent to MP2. Popular representatives

of these so-called double-hybrid functionals are B2PLYP [164165] and B2GPPLYP. 6] The
inclusion of electron correlation within the random phase approximation (RPA) 167179
and within the so-called ab initio DET!8 framework is also in active development. Nev-
ertheless, computational costs in all cases significantly exceed those of hybrid functionals,

in particular when looking beyond single-point energies.
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2.3. Local Hybrid Functionals

2.3.1. Functional Form

A relatively recent class of exchange-correlation functionals on the fourth rung of the Ja-
cob’s Ladder of density functional approximations, which is the main topic of the present
work, are local hybrid functionals (local hybrids, LHs).[">!8! In contrast to global hy-
brid functionals, local hybrids feature a local real-space-dependent admixture of exact
exchange managed by the local mixing function (LMF) g,. This has to be also contrasted
to range-separated hybrid functionals, which enable a variable exact-exchange admixture
depending on the interelectronic separation. Local hybrid functionals are thus another
natural extension of the common global hybrid scheme (2.69), exhibiting the exchange-

correlation energy functional (in its most general formulation)
Bl =) / 9o (r) - €55, (r)dr + ) / 1= go()] - [eo(r) + Go()] dr + Y, (272)

where ei{o and E*! denote a semi-local exchange energy density and correlation functional,
respectively, while G, is a calibration function (CF, see Sec. 2.3.3). The exact exchange

energy density in its conventional gauge?!l is given by

1 s (0)pso(r)pl (r)pgo(r
e () — —§ZD§qu’s/ .o (0)Ps0 (1) 07, ()P0 (X) | (2.73)

pars r =

While the LMF enables a variable amount of exact exchange in different regions of real
space, leading to a higher flexibility in comparison to global hybrid functionals, local mix-
ing of exchange in Eq. (2.72) requires the mixing of exchange energy densities rather than
integrated exchange energies. Due to an ambiguity in the definition of energy densities in
general, !9l this local mixing thus gives rise to the so-called gauge problem, which will be
discussed in detail in Sec. 2.3.3.

As for global hybrid functionals,"123 the local hybrid XC functional (2.72) can be
reformulated in terms of a non-dynamical and dynamical correlation correction to exact

orbital exchange!!82:183l

EMH —per L pLA 4 pst (2.74)
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where the local hybrid non-dynamical correlation functional is defined as
Ept = / 1= go(r)] - [0 (r) — €55 (r) + Go(r)] dr . (2.75)

While local hybrid dynamical correlation is simply determined by a semi-local correlation
functional, the exchange energy density difference as well as the LMF and the CF enter
the local hybrid non-dynamical correlation functional (2.75). The latter two ingredients
represent exclusive building blocks of local hybrid functionals and thus will be discussed

in detail in the following sections.

2.3.2. Local Mixing Functions

While the idea of mixing exchange energy densities had been in discussion for some
time, ™1 it took some years before the first explicit forms for local mixing functions were
introduced. ™! Since then, a considerable variety of LMFs has been suggested.

Obviously, as they determine the amount of exact-exchange mixing, all LMFs have to
satisfy the necessary condition 0 < g, < 1, as it is also the case for the mixing constant c,
in global hybrid functionals. Besides, other properties of the LMF can be anticipated by
identifying exchange-dominated regions, '3 in which exact exchange should be employed
to reduce erroneous self-interaction of the semi-local exchange functional, i.e. one-electron
and non-uniform high density regions as well as in the rapidly varying limit. In nearly
homogeneous regions, as e.g. chemical bonds, vanishing exact exchange contributions
should be used to benefit from mimicked static correlation contributions of semi-local
functionals.

As a first approach, Jaramillo et al.!'! thus proposed the ratio between the von Weizsé-
cker kinetic energy density 7y and the kinetic energy density 7, known as inhomogeneity
parameter ¢, in the framework of meta-GGA functionals (cf. Eq. (2.68)). While satisfying
the abovementioned properties and thus improving results for model systems, atomization
energies of the G2 test set are worsened significantly in comparison to common global hy-
brid functionals (this LMF had been used initially with GGA exchange-energy densities).

Hence, in continuing attempts, empirical parameters have been introduced to improve
the performance of this simple LMF. While the consideration of different powers of ¢, [184

did not improve the performance significantly, the introduction of a linear scaling param-

27



2. Theoretical Background

eter, leading to the so-called t-LMF [189]

o (r)

090 (0 (276)
led to atomization energies comparable with those of global hybrid functionals, if combined
with LDA exchange.'”l Note that the t-LMF features only a fraction (depending on the
parameter a) of exact exchange in its upper limit and thus violates the physical constraint
for one-electron regions described above. Improved results can thus be partially attributed
to some kind of error compensation, as is the case in many global hybrid functionals.
Besides, it is noteworthy that, in contrast to the original approach, ™! only simple LDA
exchange and correlation are employed. Better performance in comparison to GGA-based
local hybrids could be attributed to a less pronounced gauge problem in the case of Slater-
Dirac exchange.!'®?l Hence, many subsequently developed local hybrids are also based on
LDA exchange.

Besides the meta-GGA iso-orbital indicator t,, other inhomogeneity parameters have
also been investigated as ingredients of simple local mixing functions. This includes LMFs
based on the reduced spin density gradient (2.64). In contrast to t¢,, s, does not exhibit
values between 0 and 1. While being always positive, s, tends to infinity in low-density
regions. Hence, a suitable mapping had to be introduced for use as ingredient of a LMF.

Amongst others, '8 an error function has been proposed, giving the LMF

go (r) =erf (5 -5, (1)) , (2.77)

which will be labeled as s-LMF in the present work. Note that in the original work '8¢ a
slightly different definition of s, was used, thus changing the definition of the empirical
parameter 5. The same error function mapping has been employed in a recently proposed
LMF %7 (labeled as z-LMF) based on the parallel spin correlation length

Zoo (T) = Coo * €2, (T )|7 (2.78)

introduced by Becke.[''?l Both, the s-LMF and z-LMF feature the correct behavior in
one-electron regions, i.e. 100% exact orbital exchange. Nevertheless, in high-density re-
gions, e.g. at atomic cores, only low exact-exchange admixture is exhibited, which is in

contradiction with the constraint mentioned above. Another LMF developed by de Silva
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et al.'®8 considers the function
512
Voo (r)
[V<mw>]
<Vpa(r)>6 .
po(r)

of the DORII as underlying inhomogeneity parameter. A suitable mapping and intro-

0, (r) = (2.79)

duction of an empirical parameter then resulted in the local mixing function (labeled here
as ©-LMF)

1

QA”ZT?KERE' (2.80)

Like the t-LMF with a = 1, the ©-LMF shows the correct behavior for one-electron,
homogeneous and high density regions. In contrast to the iso-orbital indicator ¢, a
reasonable behavior is even guaranteed in the vicinity of orbital nodal planes, since no
explicitly orbital-dependent quantities like the kinetic energy density are employed. 188!
Combined local and global hybrid mixing schemes, which can be regarded as local hybrids
employing a LMF providing a partial constant amount of exact exchange mixing, are also
under development. 191l

The original formulation of local hybrid functionals (2.72) suggests that the LMF g,
should depend only on spin quantities (’spin-channel LMFs’), i.e. the LMF scaling the o
part of exchange depends only on o quantities. To satisfy the spin scaling relation (2.57),
the reformulation (2.74) in terms of non-dynamical correlation formally allows also a
consideration of quantities of opposite spin ¢’ (indicated by prime), since correlation
does not have to satisfy the spin scaling relation (2.57). Additional cross-terms arising
in the XC functional in comparison to spin-channel LMFs can be thus interpreted as
opposite-spin non-dynamical correlation contribution. Accordingly, local mixing functions
explicitly considering spin polarization (2.58) have been proposed. 1521921 Another, more
straightforward and simple approach for the inclusion of opposite-spin quantities is the
concept of so-called "common LMFs’.['8l Here, spin quantities of spin-channel LMFs are
replaced by their total counterparts, e.g. p, is substituted by p = p, + pos. For example,

this results in the common t-LMF

Yoo () + 2950" (T) + Yoror (T)
7o (v) + 700 (1)] - [po (¥) + por (v)]

ga(r)==a-t(r)==a-%[ (2.81)
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For the construction of a ’common’ version of the spin-channel s-LMF (2.77), the reduced
spin density gradient (2.64) has to be replaced by the reduced density gradient

o) = 5 (1) = L D () 20000 () 200 () (2.82)

K [0 (x) + por (1)]'?

with & = 2 (37?2)1/3 ~ 6.18734, to ensure that the spin-channel LMF and its 'common’
LMF counterpart coincide in the spin-restricted case. While the additional dependence on
spin polarization improved atomization energies and slightly deteriorated the performance
for reaction barrier heigths, '3 common LMFs in general show a significant improvement
for both, but especially for barrier heights, which is partially related to larger exact-
exchange admixtures compared to corresponding spin-channel LMFs. [l

A highly sophisticated approach for the mixing of exact and semi-local exchange energy
densities, based on the TPSS meta-GGA, 196197 i5 the one of Perdew et al..['83 In their
PSTS functional, so-called normal and abnormal regions are defined on the basis of the
considerations presented above. Utilizing sophisticated inhomogeneity parameters based
on exchange-correlation energy densities, the TPSS Gorling-Levy high-density limit, 19!
and the exact-exchange energy density in the TPSS gauge (details see Sec. 2.3.3), allowed
the identification of these regions and so the construction of a LMF. Together with a small
set of empirical parameters optimized against the G2 test set, a performance comparable
to that of global hybrid functionals could be achieved for atomization energies, while
barrier heights are improved significantly.

Further approaches established a direct connection between semi-local functionals and
the local mixing function. For example, Arbuznikov et al.l%! derived a scheme based on
a local version of the adiabatic connection, showing a direct link between the semi-local
correlation functional and the LMF. While these AC type LMFs can be obtained non-
empirically from any semi-local correlation functional (originally done for PW91 and PBE
correlation), reasonable performance could be only achieved after the introduction of an
empirical downshift. A local AC scheme for the construction of a local hybrid has also
been used in more recent work. "4 Local mixing functions of Janesko et al.,[1%>1%] based
on density matrix similarity metrics, on the other hand, use a relation of the LMF to the
underlying exchange functional.

While various approaches for the derivation of local mixing functions have been devel-
oped during the last years, it crystallized that the performance of both, LMFs based on
simple inhomogeneity parameters as well as more complex LMFs established on theoretical

concepts, strongly rely on the introduction of empirical parameters, usually determined
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with respect to atomization energy and barrier height test sets, as is the case for global
hybrid functionals. Similarly, it is fair to state that a reasonable parameter set and thus
empiricism is unavoidable to obtain practically useful LMFs and thus local hybrid func-
tionals.

In the context of local mixing functions, a specialized correlation functional developed
by Arbuznikov et al.['® should be mentioned in detail due to its close relation to the local
hybrid approach. While the LMF in local hybrid functionals scales locally the amount
of exact orbital exchange, the correlation functional is not affected. On the other hand,
the reasonable performance of semi-local functionals strongly relies on an error compen-
sation between exchange and correlation functional. Within the local hybrid scheme, this
advantageous error compensation is now locally mitigated by the LMF'. In detail, in re-
gions of 100% exact exchange, artefacts, e.g. erroneous one-electron self-correlation, of
the correlation functional cannot be compensated by the semi-local exchange functional.
Accordingly, Arbuznikov et al.!'®! proposed a local removal of short-range (SR) correlation
in these regions to reduce self-correlation, leading to the self-interaction-corrected (sic)

PW92 correlation functional

BV, (r), ps(r)] = EPV2[pa(r), ps(r)] =AY / to(r) - € [pg (r), O]dr
(2.83)

srPW92
c

with e being the SR part of the PW92 correlation energy density and A an additional
empirical parameter. The good performance of this approach for thermochemistry and
barriers in combination with a common t-LMF can be related to a more efficient error
compensation featured by the partial removal of self-correlation, which is similar to the
mitigation of the self-interaction error in the exchange functional. In combination with

the t-LMF, self-interaction-corrected PW92 correlation generally allows larger prefactors
a (cf. Eq. (2.76)).

2.3.3. The Gauge Problem

As mentioned in Sec. 2.3.1, local hybrid functionals feature a local admixture of exchange
energy densities rather than exchange energies as in global hybrid functionals. Unfortu-
nately, energy densities, in contrast to the integrated energies, are not unambiguously
defined. 6181 That is, a so-called calibration function (CF) G, satisfying the condition

/G,, (r)dr =0, (2.84)
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can be added to any energy density without changing the integrated quantity. Usually,
differing energy densities integrating to the same energy are considered as constituting
different gauge origins (briefly referred as gauges). While unambiguous schemes for the
extraction of energy densities from energies on the basis of the potential have been de-
veloped for the purpose of comparing different energy densities, ' standard notations
of usual exchange and correlation functionals do not follow this definition. Furthermore,
the general ambiguity in the definition of XC energy densities remains. That is, although
being unambiguously defined, it cannot be guaranteed that energy densities of different
energy functionals exhibit the same gauge origin, whose definition is indeed also rather
ambiguous. In the case of common exchange-correlation functionals, which do not con-
sider a local mixing of energy densities, as e.g. semi-local and global hybrid functionals,
the gauge origin of the underlying XC energy densities has no influence on the XC energy
at all and can thus be chosen arbitrarily without changing the XC energy. Local hybrids

including calibrated energy densites on the other hand exhibit the additional integral [197]

/gg (r) G, (r)dr #£0, (2.85)

which in contrast to the integral over the CF itself (cf. Eq. (2.84)), is not zero in general.
Since this additional energy contribution originally has been regarded as main obstacle for
their development, the ambiguity of exchange energy densities in local hybrid functionals
is often referred to as gauge problem. Note that the CF G, occuring in Egs. (2.75) and
(2.85) does not aim to guarantee the correct gauge for the semi-local and exact exchange

sloand ef*

x x )

energy density, e respectively, but only corrects for their difference. That is,
it aims to ensure the same gauge for both exchange energy densities. It is exactly this
difference in the gauges of the mixed exchange energy densities that affects the local hybrid
XC functional. Regarding the local hybrid formulation (2.75), the CF and thus the gauge
problem can be regarded as part a proper description of non-dynamical correlation. On
the other hand, the gauge origin of the total local hybrid XC energy density itself remains
ambiguously defined.

While Eq. (2.84) fixes the fundamental property of calibration functions, it provides no
distinct rule for their construction. One possible approach, employed by Tao et al.,?! is

the construction via the divergence of a vector field W,

Gy(r) =V W, (1), (2.86)
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where W, is constructed so that GG, satisfies the most basic properties of exchange energy
densities (since the CF may be considered as one of these), i.e. being totally symmetric,
invariant with respect to unitary orbital transformations and origin-independent, as well as
exhibiting proper coordinate scaling (uniform and/or non-uniform), finiteness everywhere
and a sufficiently fast decay in asymptotic regions. 241971 Accordingly, one particular form

for such a vector field was proposed [2!!

W, (1) = po (1) - gw (r) ' {pg Yoo (T)

CE e 20 | <r>] Vel (@87

with the negative exact-exchange energy density per particle

ro (r) = ———— .
P (r)
and the three empirical parameters a, b and ¢. Another approach, proposed in the same
work, 2! is the use of an exact-exchange energy density, obtained by a coordinate trans-

formation of the exact-exchange hole. ¥ Given the coordinate transformation parameter

0 <w <1, an w-dependent exact-exchange energy density

ex(w ]' o o @*,U(r{f)gpsya(r(f)@:,a(r%))gp 70(1‘3))
e (1) =5 > quDm/ P m 2720 qu | (2.89)
pqrs

with ¥ = r+ (w— 1)u and r§ = r + wu being auxilliary w-dependent space variables,
can be defined. Obviously, e (r) integrates to the exact-exchange energy (2.40) irre-
spective of w. While w = 1 and w = 0 give the exact-exchange energy density in its
conventional gauge (2.73), w = 0.5 represents the most localized exact-exchange hole. 18!
The substitution of the exact-exchange energy density in the conventional gauge by its

coordinate-transformed counterpart can be equivalently expressed as calibration function
Gy (r) = e (r) — e (r) (2.90)

within the usual local hybrid formulation (2.72). Both approaches have been evaluated
in combination with the TPSS meta-GGA exchange functional. It was assumed that, in
atoms with a non-degenerate electron configuration, the semi-local and the exact-exchange
energy density should be close for every point in space, so that the free parameters of
both calibration functions could be directly obtained by a fitting procedure with respect
to energy densities. Although both approaches effectively reduced differences of the ex-

change energy densities, both the coordinate-transformed exchange energy density as well
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as the proposed vector field (2.87) require the calculation of computationally expensive
quantities, e.g. the gradient and the Laplacian of the exact-exchange energy density.

Another calibration function considering only semi-local quantities such as the electron
density and its spatial derivatives, which is thus computationally much less expensive
than the previous approaches, was proposed by Arbuznikov et al..!"7l Also constructed
on the basis of the divergence of a vector field (2.86) under the consideration of basic
properties of exchange energy densities (see above), the vector field

W, (r) = a- F(s,) - Lo (®) (2.91)

po? (r)

with the damping function
F (s,) = e Hs®) (2.92)

was proposed. Being directly optimized together with the LMF with respect to thermo-
chemical test sets, after fixing the damping function parameter by considerations about
non-dynamical correlation energies, " local hybrid functionals based on GGA exchange
and correlation could be obtained, while without calibration LDA-based local hybrids
show the best results. It could be shown in addition that these calibrated local hybrids
effectively reduce the amount of erroneous non-dynamical correlation in Pauli-repulsion
curves of noble-gas dimers in comparison to their uncalibrated counterparts. In combi-
nation with an empirical dispersion correction, ™ local hybrids being competitive to
the best-performing global hybrid functionals for the large GMTKN30 test set could be

obtained. [200-202]

2.4. Time-Dependent DFT

2.4.1. Runge-Gross Theorems

Based on the first Hohenberg-Kohn theorem, DFT as described in Sec. 2.2 constitutes
a pure ground-state theory. However, since many chemically relevant problems concern
excited states, which are thus usually not accessible within ’traditional’ DFT, extensions
to excited states have been proposed. Besides approaches like ASCF, 293204 which is
restricted to states giving stable solutions of the KS equations such as pseudo ground

states separated by symmetry, and constricted variational DFT, 295206 time-dependent
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DFT (TDDFT) 207 has become the most popular scheme for the calculation of excited
states within a density functional framework.

The basic equation to be solved in TDDF'T is the time-dependent electronic Schrodinger
equation (2.11). Instead of the time-dependent wavefunction, the quantum dynamics of

the many-particle system are described by the time-dependent electron density
p(r,t)=p(ry,t) = N/ U (X9, .., XN ) U (X, .0, Xy, E)dsidxy . odxy . (2.93)

The formal legitimization of using the time-dependent electron density as basic descrip-
tor was given 1984 by Runge and Gross.[?°8! They showed by reductio ad absurdum
that two time-dependent electron densities arising from a common initial state under
the influence of two time-dependent external potentials differing by more than a purely
time-dependent function always differ, thus providing a one-to-one mapping between the
time-dependent electron density and potential as well as the representability of the wave-
function as functional of the density. This first Runge-Gross theorem can be thus regarded
as time-dependent analogue to the first Hohenberg-Kohn theorem.

While there exists no minimum principle for the time-dependent Schrodinger equation
like for the time-independent case, several formulations of an action principle based on

the quantum chemical action integral

t1
- [ (s
to

have been proposed, where ty and t; denote the limits of the considered time interval.

ot

2 (r,R, t)’ \1/> dt (2.94)

Regarding the first Runge-Gross theorem, the action integral (2.94) can be then expressed

as density functional

A =Bl = [ (0| (r R + Vo (0] W)t (2.95)

t1
to

where B [p] is the universal functional

Bmzﬂﬁw

containing the operator for time evolution, the electronic kinetic energy and the electron-

.0 A ~
1§ —T(r) = Ve (r)

\1/> dt (2.96)

electron interaction, respectively. In their work of 1984,12%! Runge and Gross then pro-
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posed the stationarity condition

=0, (2.97)

so that the exact time-dependent electron density represents a stationary point of the
action integral. Nevertheless, it could be shown that in this definition the action inte-
gral leads to a paradox, 2972092101 § ¢ it cannot fulfill the symmetry property of second

functional derivatives

2 2
dp (x,t)op (x/,t")  op(x/,t')op (r,t)
and the causality requirement
2
AL _vmD o ey oy (2.99)

Sp(r,t)Sp(x/,t))  Sp(r/,t)

simultaneously. 2!l One solution to resolve this paradox proposed by van Leeuwen [2%)
introduces a reformulation of the action principle in terms of a Keldysh formalism. A more
recent formulation of the action principle by Vignale 2! rehabilitated the original action
principle of Runge and Gross by properly taking boundary conditions into account. 27

This has resulted in the Runge-Gross-Vignale action principle

AL (o)
dp (r,t) dp (r,t) '

(2.100)

which often leads to the same conclusions as the original action principle of Runge and
Gross. 297210 Since this is particularly the case in the linear-response regime (see Sec.
2.4.2) used in the present work, the use of the original Runge-Gross action principle is
retained here for simplicity.

Analogous to ground-state theory, time-dependent single particle equations in the sense
of Kohn-Sham DFT (for details see Sec. 2.2.2) can be established. [?®®! Introducing a non-
interacting time-dependent reference system, the time-dependent electron density is given
by

Po (Tt) = Y Py (1) 9 (1) 000 (1) (2.101)

with P? being the time-dependent density matrix in the basis of stationary MOs. The

universal functional By [p] for such a system is exactly known, it is the implicit density
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functional

ZZ/ / t) ¢k, (r) VIV, (r) drdt+
ZZ/ /8p0 po (T) 90 (r) drdt . (2.102)

Then the action integral of the interacting system reduces to

Alpl =B ——Z/ //”" r_p;r ) dedr’dt—

Z/t / VN@ (I‘, R) + Vext (t)] Po (I‘, t) drdt — A,. [p] ’ (2‘103)

with

Agelp) = B, [p] — ——Z / / / o ( r_p;,|r 1) dedrar (2.104)

being defined as the exchange-correlation part of the action integral. Similarly to the
ground-state theory, it contains all non-classical electron-electron interactions as exchange
and correlation as well as the difference between the kinetic energy of the interacting
system and the non-interacting reference system. As in DFT, the XC action integral in
TDDFT is not known exactly, and approximations have to be made. While the exact XC
action integral is non-local in time and thus considers so-called memory effects, 297 usually
the adiabatic approximation, which assumes locality in time, is applied. As a consequence,
approximations derived for ground-state DFT (see Sec. 2.2.4 and 2.3) can be transferred
to the TDDFT framework. [!

The application of the stationary action principle (2.97) finally gives a set of
time-dependent single-particle equations, the time-dependent KS (TDKS) equations, [1:28]
which in density matrix notation read (cf. Eq. (2.20) for time-independent single-particle

equations)

Z{ — P () F5. (1)} = 1%13;;( t) (2.105)
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with the time-dependent KS matrix being defined as

o o 5‘4900 [p] o
Eon +Z [gmm ) + Goors P ()| + 5Pr (1) +g, (1) . (2.106)

Integrals over the external time-dependent potential th are denoted as

o7 (1) = / Vet (1) 95, () o (1) dr (2.107)

While the TDKS equations can be directly used for the calculation of the time prop-
agation of the density matrix in the field of the time-dependent KS matrix, leading to
so-called real-time TDDFT approaches, 22213 response formalisms operating in the fre-
quency domain represent the more popular approach. 27l Both schemes can be utilized to
calculate electronic excitation energies of molecular systems. In particular, the calculation
of excitation energies within the linear-response formalism, which represents one of the

main topics of the present work, will be outlined in the next section.

2.4.2. Linear Response TDDFT

In linear-response TDDFT, 214218l electronic excitation energies are calculated by con-
sidering the linear response of the electron density to a perturbation induced through
a time-dependent external electric field. Initially, i.e. before the external electric field is
applied, the molecular system is assumed to be in its ground state. Hence, it can be de-
scribed by the time-independent (static) KS equations (see Sec. 2.2.2). Switching on the
time-dependent perturbation then induces a time-dependent change of the electron den-
sity. To first order, i.e. linear response, the time-dependent density matrix is then given
by the sum of the ground-state density matrix D? and the time-dependent first-order
change AP (t)11:219:220]

P2, (t) = D2, + AP, (t) . (2.108)

Similarly, the time-dependent KS matrix is given as sum of the static KS matrix and a

linear-response term

Fo () = B + AFD (1) (2.109)
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where the linear response of the KS matrix
o 0F7 . N o
AE, Z 5P 2o W A ps ¢yt + o, 1 (2.110)

includes the reaction of the time-dependent KS matrix to changes of the time-dependent
density matrix as well as the time-dependent perturbation through the external electric

field, respectively. Within the popular adiabatic approximation (cf. Sec. 2.4.1), which will

be used throughout this work, the former term is substituted using>'*!

SFC (t)  OFC
o ~ mn5 t—t 2.111
AR 2

thus allowing the use of approximated XC functionals of time-independent DF'T. Insertion
of (2.108) and (2.109) into the time-dependent KS equations (2.105) and consideration of

first-order perturbation theory then results in

d
Z {FAPS (t) — AP (t) Fo + AFS, (t) DS, — DS AFS (1)} = i APL(1) - (2112)

The frequency-dependent linear response of the density matrix AP? (w) can be obtained
by inserting Eq. (2.110) into (2.112) and taking the Fourier transform of the resulting

equation, which yields within the adiabatic approximation

WAPS (w) =) {F" AP? (

q

Zd pQAPC +?~10( )] D;Tr_
st,S

oF, qUTAP< (w) + 7%, (w) (2.113)
5D, o | |

APS (w) F,. — Dy,

st,8

where 7, (w) denotes the Fourier-transformed perturbation through the electric field.
Considering idempotency of the time-dependent density matrix P?, restricts the form of

AP? via the relation 1220l
APy (W) =) [Dp, AP () + AF (w) Dy ] (2.114)
q

in such a way that only occupied-virtual blocks APZ and virtual-occupied blocks AP are
non-zero. Additionally taking into account Eqs. (2.14), (2.15) and (2.22), i.e. diagonality

and integer occupation of the ground-state density matrix as well diagonality of the KS
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matrix in the canonical MO basis, respectively, allows a reformulation of Eq. (2.113) into

FO’
AP (@) =7AP, ()~ AP ()¢ — | Y SrEAR @) i @) (2119
L bjis bj .
o o o o o _ 6ng S ~0 ]
WAPCLZ' (LU) :EaAPai (CU) - AP&Z’ ((U) € + 5D2A‘ij (LU) + Vai (CU) : (2116>
L bj,s J J

Applying an infinitesimally small perturbation v¢, ~ 0 and v, ~ 0, which corresponds to
the poles of the density matrix response, ??%l the excitation frequencies w;,, (the elements

of the diagonal matrix w, ) are then determined as eigenvalues of the spin-resolved Casida’s

L,. M, X . 0\ (X,
N A =" , (2.117)
—\ M, L )\ Y. 0 —w, )\ Y,

where the standard notation X7, = AP?Z and Y7 = APZ for the density matrix responses,

also named transition density matrices, is used.

equations/?16l

For a real wave function, which can be assumed in the absence of a magnetic field and
of spin-orbit coupling, L, and M, . are real-valued matrices, so that Eq. (2.117) reduces

to a set of linear equations
Vi=w(XFY), , (2.118)

where the so-called matrix-vector product V= is defined by

Vi=) (L+M), (X+Y), . (2.119)
S
The matrices (L + M), and (L — M), , i.e. the electric and magnetic orbital rotation
Hessian, respectively, are given by
(L + M)iaa,jbg :5ij5ab60'§ (EZ - ) +2- gmb] + mb] + zajb (212())
(L - M)iaa,jbg :5ij5ab50§( Z ) + za,bj z'c;;b ’ (2121>

where the four-center integrals g7 . are defined as in Eq. (2.19). The XC kernel integrals

(within the adiabatic approximation) are given as second derivative of the XC energy
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with respect to the ground-state density matrix

E
g8 — = 2.122
pqrs 5ng5D§s ) ( )

which for semi-local XC functionals is equivalent to (see chapter 3 for details)

52
Ec ! ") drdr’ . 2.12
pqrs //sppa 90(10' >5PU( )5pg( )Sorg( )SDS& (I‘) rar ( 3)

Choosing exact orbital exchange without any correlation (cf. Eq. (2.40)) as XC func-
tional, Eq. (2.117) simply reduces to the time-dependent Hartree-Fock (TDHF) equa-
tions, 2221222l which have the XC kernel integrals

o _ _§

oS
pqrs oc " Gpsrq

(2.124)

and will thus be labeled as exact-exchange kernel integrals throughout this work. Note that
this has to be distinguished from the frequency-dependent exact-exchange kernel based on
the OEP method,???l also referred to as time-dependent OEP (TDOEP) method, which
is not used in the present work. Hence, in the generalized KS framework, TDHF can be
regarded as linear-response TDDFT with a distinct choice of the XC functional. Similarly,
the CI singles (CIS) method for the calculation of excitation energies is directly related
to linear-response TDDFT. Assuming the matrix M, to be 0, i.e. the Tamm-Dancoff
approximation (TDA) to TDDFT, 2?4 and employing the exact-exchange kernel (2.124)
simply results in the CIS equations. !l The performance of different XC functionals within
the linear-response formalism will be highlighted in chapter 5 in comparison to local
hybrid functionals, whose TDDFT implementation is one of the main objectives of the

present work.

2.5. Evaluation of Molecular Integrals

2.5.1. Basics

Molecular integrals as, e.g., the one- and two-electron integrals (2.18) and (2.19), re-
spectively, are an inherent component in molecular electronic structure calculations, for
example in HF, KS DFT and linear response TDDFT. While so far having been generally
formulated in terms of molecular orbitals, the implementation in computer programs re-

quires a suitable numerical representation of the MOs. Besides other approaches, 22°-22]
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MOs of molecular systems are most commonly expanded in a set of atom-centered atomic

orbitals (AOs), which is known as LCAO (linear combination of atomic orbitals) ansatz ¢!
Npr
Poo (1) =, Xu(r) (2.125)
I

with Ngr being the number of basis functions within the basis set and Cou the expansion
coefficient of the pth MO of o spin in the uth basis function x,. The atomic orbitals
themselves are usually represented as Cartesian harmonics, either described by Slater-

type (STOs) or more often Gaussian-type orbitals (GTOs)
Xu (r) = 2yt - S (2.126)

with 3, being a fixed exponent determined by the basis set as well as k, [ and m being
integer numbers determining the angular momentum quantum number of the basis func-
tion. Note that common basis sets often also include fixed linear combinations of primitive
basis functions (2.126), so-called contracted basis functions, for an improved description
of molecular orbital shapes without extending the dimensionality of the variational space,
which nonetheless only increases the combinatorial complexity of the integral evaluation
problem, while the underlying concepts remain unchanged.

In general, electronic structure calculations require the determination of three types
of different integrals, i.e. a) simple integrals as the kinetic energy, basis function overlap
or dipole integrals, b) integrals over the Coulomb operator r~! and c¢) integration of
the XC energy densities. In the case of Cartesian GTOs as MO-LCAO representation,
which is the most common choice for molecules and will thus be used for illustration,
the Gaussian product rule, factorizability of the three-dimensional integrals into separate
one-dimensional integrals as well as several recurrence relations between GTOs of different
angular-momentum quantum number simplify integral evaluation significantly. 23 As a
consequence, simple integrals such as the ones mentioned before, just reduce to integrals
of the kind 23]

/_OO f (@) e dz (2.127)

where f(z) is a polynomial arising due to the angular-momentum quantum numbers
of the involved GTOs as well as due to the type of the calculated molecular integral.
High precision numerical solutions for this kind of integrals can be obtained simply with

standard Hermite-Gauss quadrature and will thus not be discussed further. In contrast,
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integrals over the Coulomb operator, i.e. (2.19) and the second term of (2.18), in general

require the additional Laplace transformation of the r~! operator 23!
1 —u2r2
T = /e du . (2.128)
r

Applying several further integral transformations!?3!l finally allows the reduction of the

integrals to the calculation of Boys functions of different orders n
! 2
F,(r) = / e TPt (2.129)
0

The two most famous methods for relating integrals over the Coulomb operator to nth
order Boys functions are the Obara-Saika[?®? and the McMurchie-Davidson scheme. [233]
While the former is directly based on recurrence relations of Cartesian Gaussian func-
tions, in the latter, auxilliary Hermite Gaussian functions and expansion coefficients into
Cartesian Gaussian functions are introduced to circumvent direct recurrences of Cartesian
Gaussian functions. The Boys functions themselves are usually obtained by a combina-
tion of pre-tabulation, fitting and use of shifting techniques. ?**236 An alternative direct
approach for the calculation of integrals over the Coulomb operator is provided by the
Gauss-Rys quadrature, 237240 which is based on the calculation of roots and weights of
orthogonal Rys polynomials determined through the weighting function e~** within the
integration ranges 0 and 1, with a being a positive parameter depending on the involved
GTOs. In practice, roots and weights of these polynomials are commonly determined by
the Christoffel formula, ?*!l finally allowing the calculation of integrals over the Coulomb
operator via a numerical quadrature formula.

While generally based on numerical techniques, explicitly via Gauss quadrature or im-
plicitly through the Boys functions, the former integration techniques are commonly re-
ferred to as analytical integration, since results usually close to machine precision are
obtained. In the case of one-electron integrals, analytical integration has to be performed
separately for each pair of basis functions, while two-electron integrals already require a
calculation for each basis function quadruple. Formally, the analytical evaluation of these
integrals thus scales as N3, and Njp, respectively, where integrals over the Coulomb
operator in general are more expensive due to the higher computation complexity. Hence,
determination of the two-electron integrals (2.19) represents the most expensive part
within integral evaluation during a HF, KS DFT or linear-respons TDDFT calculation.

Several prescreening techniques!?*?l have been developed, reducing the scaling of these
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four-center integrals in the asymptotic limit to N%; or less in the case of exact-exchange
integrals. 243!

In contrast, due to their complex functional form, XC functionals, representing the last
class of occuring molecular integrals, cannot be calculated with the analytical integration
techniques presented so far. Instead, XC functionals are generally determined by numerical

integration on a molecular grid [244-247]

Eqpe = / eae (1) dr & Y w; - ege (1) (2.130)

where w; denotes the weight of the ¢th grid point with Cartesian real-space coordinates
r;. While the molecular grid is conveniently constructed as superposition of atomic grids,
appropriately merged via a partitioning function, 24! numerical integration for the atoms
is generally performed by separate radial and spherical Gauss quadrature schemes. The
most popular choices for the spherical grid are the ones based on a scheme of Lebedev 248!
and Gauss-Lobatto quadrature,?*"2* where the former shows a higher efficiency, while
the latter represents an open-ended integration scheme.?*¥ Although the integration in-
terval for the radial grid is 0 < r < oo, related Gauss quadrature schemes as Gauss-
Laguerre quadrature do not offer any advantages due to the complex structure of the
integrands. ?*7l Hence, one common procedure is the use of Gauss quadrature within the
interval 0 < r <1 as Gauss-Legendre or Gauss-Chebychev quadrature with a subsequent
mapping onto the interval 0 < r < oo, introducing a mapping parameter £ optimized for
each atom type. 244

Having appropriately set up the numerical molecular grid in real space, which defines
n grid point coordinates with their related weights, XC functionals presented in Secs.
2.2.4 and 2.3 can be determined using Eq. (2.130). Therefore, the XC energy density and
all associated quantities such as the electron density and the kinetic energy density have
to be calculated for every grid point. Assuming an atomic orbital basis, the latter two

quantities are given by

po(r) =Y D7, xu(r) X, () (2.131)
o (r) = %Z D2, VT, (1) Vi (1) | (2.132)
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respectively, with

D;,=> e, - DY, (2.133)

CpuCav
Pq

being the density matrix within the AO basis. Formally, computation of these quantities

thus scales as N3 . for every grid point, so that the scaling of the XC energy is determined

by n - N%,. Nevertheless, due to the locality of these quantities, scaling of the XC energy

reduces to n in the asymptotic limit. In comparison to the expensive four-center integrals,

computation cost of the XC functional is thus largely negligible.

2.5.2. Resolution of the Identity

One famous method for the reduction of the calculation cost of the four-center integrals
is the resolution of identity (RI) method,?°252 also known as density fitting. 2532581 The
basic idea of the method consists in the expansion of basis function pairs, occuring, e.g.,

in the four-center integrals (in contrast to Eq. (2.19) in the AO basis)

Gur = / / X (1) X (1) X (1) X0 () g g (2.134)

r—r’\

in a set of N, auxilliary basis functions x

Nauz

Xu(®)xw (X)) = Y ), X () (2.135)

where c , denotes the corresponding expansion coefficients. The latter can be determined

by minimization with respect to a distinct metric, usually the Coulomb norm 25

// o e e () ey (2.136)

or the overlap norm 2%

/R;w (r)dr, (2.137)

with

Nauz

Ry (r) = xu (1) X0 (1) = D ch - X (1) (2.138)
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being a residue function, describing the difference between the exact and the fitted basis
function pair. Application of the Coulomb norm, which is the natural choice for the
approximation of integrals over the Coulomb operator and consequently shows the best

performance, %% replaces the analytical evaluation of the four-center integral by
guunA ~ Zguuo : gn)\v : [E_ILU . (2139)

Hence, integral evaluation is reduced to the calculation of the auxilliary three- and two-

center integrals

X ) X (')
G = / / i |r_r,| drdr’ (2.140)

X (1) X () 0
2.141

respectively. Consequently, the overall scaling of the AO integral evaluation within the
RI method in comparison to standard analytical schemes (cf. Sec. 2.5.1) is reduced to
N2, - Naue, which is determined by the computation of the three-center integrals.

Based on the RI approximation of the four-center integrals within the AO basis, Cou-

lomb and exact exchange integrals are given by

Z g#’/"@)\ D Dn)\ ~ Z g,ulxoD/u/ Z gmv (2142)

UVRA
Z}\guz\/w e D"ANZ g ] U.ZDW.ZA%AO@KW o (2.143)
LUK uv K

respectively. Due to the multiplication with AO density matrices, in the following also
called contraction, additional steps influencing the overall scaling behavior of the RI
method have to be considered. In the case of the Coulomb integrals (2.142), each three-
center integral is only contracted with one density matrix, so that contraction has to
be done only once for each auxilliary basis function. Accordingly, an overall scaling of
N2, - Nuue is achieved. In contrast, the two three-center integrals are connected by the
density matrices in the case of exact exchange integrals (2.143). Hence, multiplication of
the three-center integrals with the density matrices has to be performed for each pair of
auxilliary basis functions, leading to a scaling of N3, - N2, . Note that direct use of the

expansion coefficients ¢}, instead of the AO density matrix leads to a slightly different but

similar formal scaling, which also depends on the number of occupied orbitals Ny, 221252
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While application of the RI method to Coulomb integrals, called RI-J method, thus
provides a reduced scaling compared to analytical integration schemes, application to ex-
act exchange, known as RI-K method, does not provide an improved scaling behavior.
Furthermore, it could be shown that RI-K additionally requires larger auxilliary basis
sets to ensure adequate accuracy. RI-K nonetheless reduces the calculation cost com-
pared to analytical schemes, which is related to a smaller prefactor arising mainly due
to the reduced scaling of the integral evaluation within the AO basis. **!l Hence, the RI
method is predominantly used for the approximation of Coulomb integrals. Especially in
KS DFT%0.251 apd linear-response TDDFT calculations?**26% employing semi-local XC

functionals, overall calculation costs are significantly reduced by the RI-J method.

2.5.3. Semi-Numerical Integration

Another approach aiming for a reduced computation cost of four-center integrals is the
pseudospectral (PS) method introduced by Friesner. 27264 In the PS method the four-
center integrals are factorized in a way that the integration can be done in two different

spectral representations, i.e. in electronic and in real space,
Guve ~ Z wy - Qu (rz) An)\ (rl) Xv (rz) . (2144)

While the real-space integration in (2.144) is done numerically as for the integration of

XC functionals, elements of the A matrix

Aoy (1) = / Mdr , (2.145)

r; — 1|

which represents two-center integrals calculated for a distinct real-space coordinate r;,
are evaluated analytically (cf. Sec. 2.5.1). The transformation between both integration

spaces is handled by the transformation vector

Qu(r) = Sue- [Q”LA X (1) (2.146)
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where
Sy = /Xu (r) x, (r)dr (2.147)
S = Y wy - X (1) X0 (1)) (2.148)

J
denote the elements of the analytically and numerically evaluated overlap matrix, re-
spectively. To account for the incompleteness of both integration spaces, the basis set
is augmented by orthogonal, so-called de-aliasing functions. Scaling of the PS method
is determined by the calculation of the A matrix and its multiplication with the basis
functions, which both have to be done for every grid point and thus formally scale as
n-N3p.

A simplification of the PS method is achieved by applying the transformation vector

Qu (rz) = Xu (rz> . (2149)

Evaluation of four-center integrals within the AO basis is then reduced to

Guvrx = Z Wy Xp (I‘z) Xv (I‘Z) Ay (I‘z) , (2150)

usually referred to as semi-numerical integration, which accordingly exhibits the same
formal scaling as the PS method. Coulomb and exact-exchange integrals within the semi-

numerical scheme are thus given by

Zguwﬁ)\ D D,@,\Nzwz pa rz ZA;W r7, (2151)

LUK
S G - DS D%sz S () DY, A (1) - Do ()« (2.152)
BVEA LUK

respectively. While the contraction of the A matrix with the density matrices in both
cases formally scales as n - N3, it becomes more obvious for the exact exchange, if the
summation over the four basis function indices is split into several separate steps, i.e. the

contraction of the density matrix with the basis functions

ZD,U,Z/ Xv rl ) (2153)
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the contraction of B with the A Matrix
GZ (rz) = Z Auu (rz) . Bf,f (rz) (2154)

and finally the scalar product of B and G°

> G - D5, DI~ wi- Y By (ry) - GY () (2.155)
i W

UUVRA

which results in the exact-exchange integral (2.152). While the latter step only scales as
n- Npr, the former two also have to be done for every grid point and thus scale as n- N3,
which thus determines the overall scaling of the density matrix multiplication.

Together with the AO integral evaluation, the semi-numerical as well as the PS method
thus exhibit an overall scaling of n- N . Similar to analytical integral evaluation (cf. Sec.
2.5.1), this scaling can be reduced in the asymptotic limit. Introducing integral screenings
with respect to basis function overlap and the density matrix, called S- and P-junctions,
respectively, lead to the 'chain-of-spheres exchange’ (COSX) method, 2952671 which uses
the semi-numerical integration scheme exclusively for the calculation of exact exchange. In
the asymptotic limit, scaling is reduced to n and is thus in the same order of magnitude as
low-scaling analytical integration schemes like the ’linear-scaling exact exchange’ (LinK)
method. 243l

Besides the PS method, semi-numerical evaluation of Coulomb integrals is not in wide
use. As shown by van Wiillen, 208! this is predominantly caused by problems related to
the more long-range character of Coulomb compared to exact-exchange integrals, which
requires the inclusion of additional basis functions at the atoms to achieve sufficient
accuracy and numerical stability. This is related to the procedure in the PS method of
adding dealiasing functions. To circumvent the bottleneck of analytical Coulomb integrals

nonetheless, semi-numerical exact exchange evaluation as in the COSX method is best
combined with RI-J (cf. Sec. 2.5.2). 267

2.5.4. Non-Standard Integrals in Local Hybrids

Besides the standard integrals discussed so far, local hybrid functionals require the addi-
tional evaluation of LMF-weighted exact-exchange integrals, i.e. the first integral in Eq.
(2.72). Since exact exchange, usually determined analytically, is now multiplied with the
complex-structured LMF, analytical integration schemes are not applicable anymore. On

the other hand, numerical integration schemes, suited for the integration of complex func-
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2. Theoretical Background

tions like the LMF, exhibit problems in the integration over the Coulomb operator due
to the singularity at r; = r;. Hence, the non-standard integrals in local hybrids are best

determined through a semi-numerical approach
/ga (r)- e’ (r)dr =~ Zwi - o (13) - e (i) (2.156)

In the first implementation of local hybrid functionals by Jaramillo et al.,["®! the evaluation
of the exact-exchange energy density was related to the localized HF method of Goérling

and della Salla, 26 which uses an RI approximation, leading to
za Z ZQNV Xu rz Xu (I‘Z) (2157)

with

~ZJ/ = %Z [Sil}uv Dgy : ng/\no : n)\ + ng)\no . : . (2158)
KA

vo

In their implementation of localized local hybrids, Arbuznikov et al.!'%¥ directly applied
an RI to the local hybrid potential, leading to a slightly different potential than the one ob-
tained by the integration method of Jaramillo et al., which employs the RI approximation
on the level of the energy densities. ?”! Nevertheless, in both cases the RI approximation
either requires large decontracted basis sets or the introduction of an additional auxilliary
basis, resulting in a higher computational cost. 2™

Another option is the direct calculation of the exact-exchange energy density in the

sense of a semi-numerical integration (cf. Sec. 2.5.3)[270-272

Co (T) ZB" r;) - GY(r;) . (2.159)

It could be shown that the semi-numerical local hybrid implementation can compete with

global hybrid functionals employing efficient analytical integration. 27!
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3. Derivation of the Local Hybrid

Exchange-Correlation Kernel

Based on the theoretical background established in the last chapter, this chapter is con-
cerned with the detailed derivation of the adiabatic local hybrid exchange-correlation
kernel and related integrals, which are required in linear-response TDDFT. While in the
first formulation of the adiabatic local hybrid XC kernel in Ref. 272 formulas have been
established in a very brief and compact way, in this work the complete formalism based
on the density matrix formulation of KS DFT is discussed. After showing the relation be-
tween the density-matrix-based formalism and the usual derivation schemes, the former
is explicitly applied to semi-local XC functionals and exact exchange first to introduce
shorthand notations used for the ensuing formulation of the local hybrid XC kernel in-
tegrals. As a last step, integrals needed for an implementation, i.e. the local hybrid XC

matrix-vector products in the atomic orbital basis, are given.

3.1. Relations between Derivation Schemes

Within the density-matrix-based formulation of linear-response TDDFT, as introduced
in the last chapter (see Sec. 2.4 for details), adiabatic XC kernel integrals are determined
by the second derivative of the XC functional with respect to the ground-state density
matrix
2
g 5 xc

m = 5D 5Dy, (3.)

In the special case of explicit density functionals, for example GGA exchange and cor-

relation, derivatives with respect to the ground-state density matrix can be transformed

considering the definition of the ground-state electron density

ZDmn@mg r) Ono (1) (3.2)
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

and its first derivative

dpy (r)
oDg,

= Ppo (1) g0 (r) - (3:3)

Eq. (3.1) can be then reexpressed in terms of functional derivatives with respect to the

ground-state electron density by applying the functional chain rule twice

2 /
// 5 5p0’ (r) 5p§ (r )drdr/
5D<’ 5Dc 5po (T 5p§ (') 0Dz, oDs,

62 IEC * % , , ,
// dpo (1) 0pe (') Prmo (1) P (1) 0, ¢ (1) pg ¢ (1) drdr” . (3.4)

Although Eq. (3.4) represents the formulation of the XC kernel integrals most commonly
used in the literature, it only covers the case of explicitly density-dependent XC func-
tionals, which in fact can be circumvented for implicit density functionals by applying
the OEP method."™??3l On the other hand, direct application of expression (3.1), which
is used throughout the present work, in general leads to adiabatic XC kernel integrals
within the generalized KS framework.

Nevertheless, within the generalized KS framework integrals containing functional deri-
vatives of implicit density functionals with respect to the ground-state electron density
are usually reexpressed in terms of functional derivatives with respect to occupied orbitals
(FDO), [55:184273-275] ipstead of taking derivatives with respect to the ground-state density
matrix. While the FDO ansatz represents the natural approach in a density-matrix-free
formulation of KS DF'T), it apparently lacks a direct connection to derivatives with respect
to the density matrix, since the MOs and the ground-state density matrix are only implic-
itly related via the electron density (3.2). Hence, as part of this work, the FDO ansatz will
be reformulated in terms of a density matrix expression, thus showing the direct relation
between the FDO ansatz and derivatives with respect to the density matrix.

As a first step, the derivative ofs the electron density with respect to occupied or-
bitals have to be expressed within the density matrix formalism. In general, two possible

derivatives have to be considered, i.e.

6ps (1)

0 [Dgnn(tp;kn,a (I‘/):| — e (r) ’ <r N r/) (35)
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3.1. Relations between Derivation Schemes

and

0ps(r) /
5o ) r, mengpm J(r—r') . (3.6)

Explicitly applying the restrictions on ground-state density matrices within KS DFT,
diagonal elements of the occupied-occupied block of D¢ = have to be set to 1, while all
other elements are 0. Within a density-matrix-free formulation, both equations would thus
reduce to the same formula, although being different within the density matrix formalism.
Accordingly, the functional chain rule can be used to formulate two different expressions

establishing the connection to functional derivatives with respect to the ground-state

electron density, that is

0E,. / 0E,. dps (r') , 0F,.
= - dr’ = On.o r) (3.7)
5D @] J 390 @) 8 [Drngn, @]~ dp0 (07
and
0F,. / 0E.c 0ps (v) OF,.
e = dr’ = D% ono 3.8
S ® ) 50 @5, O " Gy () 2 D (38)

respectively. However, derivatives with respect to the density matrix can be only reex-

pressed using Eq. (3.7), leading to

0E,. OF,c

SE
= ; n,o d = =
5D 5o (r )wmg( r)p r= /5 D,

Pino (£)dr (3.9)
ngom o (I‘)}
while such a substitution is not possible when considering Eq. (3.8). Hence, only Eq. (3.9)
provides an adequate formulation of the FDO within the density matrix formalism, which

can be similarly obtained by applying the functional chain rule

0 Eye 0Bse 0 [Dhnme (r)] / O
= iasitd dr = = c o (r)dr. (3.10
0Dz / 0 [Dfnho (1)) D7, 0 [Dgninq (r)] P () - (3.10)
The difference between Eq. (3.8), which represents an inadequate density matrix for-
mulation of the FDO, and the adequate formulation in Eq. (3.7) becomes more obvious

and significant only in the case of second derivatives. Therefore, the special cases

6*E,. OBy
5 [DgrmSO:n,a (I'):| 5 [ng@q,a (I'/)] 5p<7 (I') 5p€f (I‘/) gpn?a

(r) oy (r) (3.11)
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

and
E,. 52 E,.
590;((71,0 (I‘) 5§0n,a (I‘l) 5[)0 r/ Z DP”SOP o quq o ( )
(5Emc o
- op (r)(s (r =) Dy, (3.12)

shall be considered. While the former expression, based on the adequate FDO formulation,

directly allows the transformation of Eq. (3.4) into

52 xc % " , ,
5DU 5D§ // 5 D;Zrmgpm o )] ) [DZ > (I‘/)} Spmﬁ (r) (pp’g <r ) drdr ’ <313>

qup,a

which thus gives the correct XC kernel integrals within the FDO approach, Eq. (3.12)
again is not suited for such a reformulation. In this context, it is noteworthy that Eq. (3.12)
compared to Eq. (3.11) even contains an additional term considering a first derivative
with respect to the ground-state electron density. This term becomes significant within
a density-matrix-free formulation of the FDO ansatz, i.e. when explicitly considering
properties of the ground-state density matrix within KS DFT (see above). While the
first derivatives in Egs. (3.7) and (3.8) would become equal in this case, Egs. (3.11)
and (3.12) would still differ due to the additional term in Eq. (3.12). Considering this
fact, the FDO within the density-matrix-free formulation, although already proposed
by other authors, ?™! is not uniquely defined for second derivatives, since no distinction
between Egs. (3.11) and (3.12) would be possible. On the other hand, the density matrix
formulation of the FDO ansatz, i.e. Egs. (3.10) and (3.13), provides a unique definition of
the theory and should thus be preferred over the prevalent density-matrix-free formalism.

While having established a consistent formulation of the FDO ansatz within a density
matrix formalism, further derivations will be conveniently carried out using derivatives
with respect to the density matrix itself, since this directly gives access to the XC kernel
integrals without the need of considering functional derivatives of the XC functional with

respect to orbitals or associated integral transformations.

Application of Density Matrix Derivatives

3.2.1. Semi-Local Exchange-Correlation Functionals

As first special case, the calculation of adiabatic XC kernel integrals of semi-local XC

functionals will be described in detail. Considering that, besides the electron density
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3.2. Application of Density Matrix Derivatives

(3.2), semi-local XC functionals may also depend on other semi-local quantities such as

the square of the density gradient or the kinetic energy density

Yoo (r) = VTPU( ) Vo (r) (3.14)
ZDU Voo (1) Voue (r) (3.15)

respectively, one can define a set Q containing all quantities considered by the respective
XC functional. In the case of 7-dependent meta-GGAs, as e.g. TPSS, QQ takes the form

Q = {pompﬁa’Vaaa’yaﬁa’y,3577—om7_,3} . (316)

The relation between derivatives with respect to the density matrix and those with respect
to the quantities included in Q can then be established by applying the functional chain
rule extended in the sense of a complete differential, leading to the definition of the semi-

local potential operator

dyn. o Z/wg >dr’, (3.17)

QeQ

so that XC potential integrals, i.e. the first functional derivative of the XC functional with

respect to the density matrix, can be expressed as

0, 5
5D = /almn,aegcc (r)dr . (3.18)
Note that Eq. (3.17) represents the most general formulation of the potential operator.
Depending on the quantities included in the set Q, it thus may take different explicit
forms. For example, in the case of 7-dependent meta-GGAs, szn,o acting on a semi-local
XC functional explicitly reads

e () =i () (1) 52500 4 5970, () Vi (1) 2

VT [ 5) 0 (0] - 297, () 525000 4 W 1) 2000 319
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

Note again that ¢’ indicates the opposite spin of ¢ and no separate spin variable. Concate-

nation of two semi-local potential operators finally gives the semi-local kernel operator

6@’ ) 52 / /!
s ZZ/ / 5Dz, oDs, 5Q @) 6Q () T

QeQQ'eQ

o .
Z / 5D7 5D< o )dr, (3.20)

allowing the calculation of the semi-local XC kernel integrals as

2
#E(SMD;(I = /chn,chpqSem (r)dr. (3.21)
For clarity, this implicit formulation employing semi-local potential operators will be
used throughout this work. Explicit formulas for the XC kernel integrals of several XC
functionals are well established, can be found in the literature 273276 and will thus not be
discussed further here.

In the context of semi-local XC kernel integrals, the special case of current-density-
dependent meta-GGAs shall be discussed in addition. As mentioned by Furche and
Bates,!?”” the kinetic energy density (3.15) as used in many standard meta-GGAs is
not invariant with respect to the gauge transformation. As solution for this problem, the
gauge-invariant kinetic energy density 27!

o 0) = 7 () - 32210

(3.22)

~—

has been introduced as substitute for the conventional kinetic energy density in the XC

functional, where
Z Dy, [Vor, (x) on (v) = @5, (r) Vipn ()] (3.23)

denotes the the paramagnetic current density. For current-free ground states, i.e. in the
absence of a magnetic field, j, becomes exactly 0 due to the symmetry of the ground-
state density matrix, so that 7, and 7, are identical. For the calculation of semi-local
XC potential and kernel integrals of these current-dependent meta-GGAs, the set Q used
in the definition of the semi-local potential operator simply has to be extended by the
paramagnetic current density. Nevertheless, since current-density-dependent meta-GGAs

depend on the paramagnetic current density only through the gauge-invariant kinetic
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3.2. Application of Density Matrix Derivatives

energy density, one can set up the following relations

0pe (T)  04e (r) 07, (r)  deye (r) jo (T)

(1) 05 () 5. (1) 0% (1) p (1) (3.24)
02eue (v) _ 8%y (r) [07, (r)}2 | Oeae (v) 07, (r)
@) o2 |6, m] 6% m G2
0% (r) jo(r) e (r) 1
S g2 () 0% () oo (D) (3.25)

for the first and second derivatives of the XC energy density, respectively. Hence, in the

case of a current-free ground state, i.e. j, = 0, contributions of j, to the XC potential

integrals vanish. On the other hand, this is not the case for second derivatives of the XC

energy density entering the XC kernel integrals, which exhibit the non-vanishing term
62 (1) dege (r) 1

SRZ(r) 07 (1) pa(r) (3.26)

This additional term, which arises due to the current dependence of the gauge-invariant
kinetic energy density even for current-free ground states, is usually referred to as current-
density response and should be considered in TDDFT calculations to ensure gauge in-
variance of calculated excitation energies. Nevertheless, considering the TPSS meta-GGA
functional, it could be shown that the influence of the current-density response is minor

in most cases. 277

3.2.2. Exact Exchange

As second special case, density matrix derivatives of exact orbital exchange

exr 1 ag g oo
B =—5) / / SN Dg,.Dg, - wis,, (v drdr’ (3.27)

mnpq

will be examined in detail. For brevity, especially for later use in the case of local hybrid
functionals, the shorthand notation

- W:Knp (r) Pn,o (r) @;,g (r/>90q,< (r')

/
wfn(npq (I‘,I') - |r_r/|

(3.28)
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

for molecular orbital quadruples over the Coulomb operator is introduced. Taking the first

derivative of Eq. (3.27) then directly gives

SE< 1 ,
D7 = 3 / / [ZDW. w%, - (r, v +ZD wle, (r,r')| drdr’ (3.29)

which, after an exchange of summation variables and consideration of the symmetry of

as

mnpq (T, T') with respect to an exchange of the space variables, reduces to

5E;x / /
5D7 //ZD cw? (1) drdr’ . (3.30)

Exact orbital exchange kernel integrals are then determined by second derivatives with

w

respect to the density matrix

62Eex
30700 //wtsm r, 1) §ycdrdr’ (3.31)

which equals Eq. (2.124) given in Sec. 2.4.2. It should be noted that, regarding Eq. (3.31),
exact-exchange kernel integrals exhibit only a non-zero value, if derivatives with respect

to the same spin variable are taken twice, i.e. 0 = .

3.2.3. Local Hybrid Functionals

Based on the just introduced notations for semi-local XC functionals and exact exchange
with respect to density matrix derivatives, the local hybrid XC kernel will be derived.
Starting from the local hybrid XC functional

1
LH
E. :—§§ E D pq//gg wy o, (v, ') dr'dr+

o mnpq

Z/ [1— go(r)] - efﬂl’g(r)dr + / sl (r)dr , (3.32)

o

where for simplicity the calibration function is assumed to be added to the semi-local

: =5l
exchange functional €',

el (r) =&l (r) + Gy(r), (3.33)

z,0 z,0

58



3.2. Application of Density Matrix Derivatives

the local hybrid XC potential integrals are simply given by

ELH
5D§ =3 // g§ + g( Z Dmn msrn I‘/) dI'/dI'
_ Z / / drs,cgo(r) - [5 > DS, Do, (r,1) +e;{0(r)] dr'dr

+Z/ 1= go(r)] - dpuell (r )dr+/dmesl (r)dr . (3.34)

While the first line in Eq. (3.34) represents the LMF-weighted exact-exchange potential,
the second line considers the LMF potential weighted by the difference of the exchange
densities. The last two terms constitute the LMF-weighted semi-local exchange potential
and the semi-local correlation potential, respectively. Subsequently taking second deriva-
tives with respect to the ground-state density matrix, results in the local hybrid XC kernel

integral

52ELH
300D, / / 9(r) + g ()] - 0y - iy, (r,v') dr'dr

- _//dtuﬂ gc +g§ ZDmn msrn I‘/) dI‘/dI‘
-3 // 78,6 919 + 919 Z Dmn mutn IJ) dr’dr

- Z//drs Cdtu 1990 [ Z D Uq fnaqpn (I',I'/) + :vcr( )] dr'dr

mnpq

o Z/ Cirs,cga(r) . dAtu,ﬁejcl,cr(r) + dAtu,ﬁga@) ) dArS <€Zla(r)] dr

+) / [1— go(v)] - dyscdpupes, (r)dr + / g ey pe (r)dr . (3.35)

As is the case for the integrals of the potential, the LH kernel integrals (3.35) contain
several distinct terms, i.e. the LMF-weighted exact-exchange kernel in the first line, the
LMF potential weighted by the exact-exchange potential in the following two lines, as
well as the LMF-potential-weighted semi-local exchange potential in the fifth line. While
the fourth line exhibits the LMF kernel weighted by the difference of the exchange energy
densities, the last two terms represent the LMF-weighted semi-local exchange kernel and

the semi-local correlation kernel, respectively.
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

3.3. Local Hybrid Matrix-Vector Products in the
Atomic Orbital Basis

While in the last section, the most general formulation of the local hybrid XC kernel inte-
grals was derived, for an implementation into a quantum chemical program, the matrix-
vector product (2.119) is required rather than the XC kernel integrals themselves. Fur-
thermore, integrals are generally evaluated within an atomic orbital basis. Hence, for
preparing equations for the subsequent implementation, both transformations have to be
performed.

Due to the density matrix formalism used for the derivation of the local hybrid XC
kernel integrals, integrals in the AO basis are directly accessible by just substituting MO
density matrices by AO density matrices and changing MOs into AO basis functions. Basis
function indices are denoted by pu, v, Kk and A, while o, ¢ and ¥ are used as independent

spin indices. Accordingly, semi-local potential operators in the AO basis are defined as

- 0Q(r) 6
d#u,a - Z/ 5DZV mdr ) (3'36>

QeQ

while for clarity, transition density matrices within the AO basis are abbreviated as

Py, =(X+Y),,, (3.37)
Ug, = (X-Y) (3.38)

nv,o
representing the symmetric and anti-symmetric part of the transition density matrix,
respectively. Considering Eq. (2.119), the XC parts of the matrix-vector products arising

from the electric and magnetic orbital rotation Hessian, respectively, are given by

52ELH 52ELH
et e re__| ps 3.39
=2 [5DZV6D;A + 5Dgy(sD;J RA (3.39)
<
52ELH 52ELH
pres re . OPae g 3.40
po zg: LSD,;'W(SD;A 5D7W5D§J A (3.40)

Similarly to the evaluation of the local hybrid XC energy, the local hybrid matrix-vector
products contain several non-standard integrals, so that an analytical integration is not

possible. Following the semi-numerical approach of Sec. 2.5.4, matrix-vector products can
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3.3. Local Hybrid Matrix-Vector Products in the Atomic Orbital Basis

re,+

be expressed as local matrix-vector products v;7 (r) integrated on a numerical grid

yrod - / oo (r dr~2wz 0o (ry) (3.41)

The local matrix-vector products themselves shall be evaluated within a simple semi-
numerical integration scheme as the one employed in the COSX method. Therefore, ana-

lytical two-center integrals over the Coulomb operator, i.e. the A matrix

Ay (ri) = / X )Xo (1) (3.42)

ze,+

i (r) also depends on the basis function values at the respective

are required. Similarly, v

grid point. Hence, the basis function vector

Xy (ri) = xp (13) (3.43)

shall be introduced. Since all quantities required for the evaluation of the local matrix-
vector product only depend on one space variable, for clarity, the dependence on r is
omitted in the following formulas.

In terms of the introduced shorthand notations, the symmetric local matrix-vector

product for a local hybrid XC functional reads
Wy = g [X (AP°X) + (APUX)HXV}

e
_ - Z Z P, - < e+ Ao g> 9o [Xu (ADX), + (AD?X), X”}

_ZZP < nA19+dAni9) Y+ d,uzxcreilg

s¥ KA

- Z d#l/ a¥s* [ XTDCAPCX + Z Z < KA, + d)\n 19) s ]
— ZZ "\ dMVU ( A T d)\,.; 19) ge - { (XTDgAD<X) I§:|

¥ KA

> (=9 Pl due (Cz"‘w + CZMﬁ) o

IS/ )N

+ZZP Qv (dere + ) € (3.44)
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3. Derivation of the Local Hybrid Exchange-Correlation Kernel

While the assignment of the different contributions, arising either from the LMF, ex-
change or correlation functionals, is similar to the one discussed for the local hybrid XC
kernel integrals (cf. Sec. 3.2.3), v+ can be additionally separated into a non-local and
a semi-local part, vﬁif; and vff,jg, respectively. The former consists of the first two lines in
Eq. (3.44), i.e. the LMF-weighted exact-exchange kernel and the LMF-potential-weighted
exact-exchange potential, where the LMF potential is contracted with the transition den-
sity matrix to form the matrix-vector product. The remaining terms contribute to the
semi-local part of the local matrix-vector product. This also includes terms like the exact-
exchange-weighted LMF kernel and the LMF-potential-weighted exact-exchange poten-
tial, with the exact-exchange potential being contracted with the transition density ma-

trix. Although the latter two terms arise from non-local exact exchange and thus should

LH,+
pv,o

local part, e.g. the LMF kernel or the LMF potential, thus contributing to the local

matrix-vector product in the same way as pure semi-local functionals. While other classi-

apparently contribute to the non-local part of v the indices pv evolve from a semi-

fications of the terms would be also possible, the present one provides the most beneficial
partitioning for an implementation into a computer program. Note in addition that there
is no contribution of the current-density response, described in Sec. 3.2.1, to 'UﬁVHU* due
to the anti-symmetry of the current-density response term with respect to an exchange
of the indices of the semi-local potential operator.

Similarly to the symmetric case, the anti-symmetric LH local matrix-vector product

reads
WEH= — g [Xﬂ (AU°X), — (AU"X), XV]

uv,o
1 7 7 o o
_ 5} § U, - (dm - dw) 7o - [XH (AD°X), + (AD"X), X,

E E 7 7 sl
- ( KA T d/\fi,19> Y9s - dlw,aem’g

s KA

_Zduyogg ZZUHA <l-i)\19 d)\n'ﬂ) sl
—2.2 Ud dm( o = daes ) g B (XD ADX) + }

s KA

+3 Y (1 =g0) Ul de (dmw—dwm) "

¥ KA

+ Z Z Uix* dwo ( KAS CZ)\H&) eil . (3.45)
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3.3. Local Hybrid Matrix-Vector Products in the Atomic Orbital Basis

Assuming a current-free ground state and at most a current dependence of the local
hybrid functional through the gauge-invariant kinetic energy density, as is the case in

current-density-dependent meta-GGAs, the matrix-vector product reduces to
VELT = = g, | X, (AU'X), - (AU'X), X, |
- Z Z ) d/wa ( KA\o T Ci)\n,a) 9 - B (XTD(AD{X) € §
+ Z Z (1= 90) - U\ - duo (dm,a - CZ}U{,U) e
Z 7\ o ( o — JAR,(,) el (3.46)

where, due to the anti-symmetry with respect to an index exchange of the semi-local
potential operator, only the current-density response remains, so that the anti-symmetric

part of the semi-local kernel operator explicitly reads

Ao (&W . CZM,U> - —% (X, VX, — X,VX,) (X VX, — X\VX,.) plo 5(; . (347)
Besides the current-density response, only the non-local LMF-weighted exact-exchange
kernel in the first line is thus present in Eq. (3.46).

Note that the presented formulas describe the most general case, i.e. considering spin
resolution of the density matrices. In the special case of a restricted ground state, i.e. D* =
D?, the solutions of Eq. (2.118) decompose into a set of singlet and triplet excitations. The

respective matrix-vector products can simply be derived by considering the conditions
P*=P°  U*=U" (3.48)
for singlet excitations and

P*=-P°  U*=_-U’ (3.49)

for triplet excitations.
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4. Implementation

On the basis of the formulas for the local hybrid matrix-vector products derived in the
last chapter, this chapter deals with their implementation into a developer’s version of the
widely used quantum chemical program package TURBOMOLE. 'l After a brief exami-
nation of the program structure of the escf module, which contains the existing TDDFT
implementation of TURBOMOLE, its extension to local hybrid functionals will be dis-
cussed. Besides a detailed explanation of the general structure of the new module, special
attention will be paid to the efficiency of the implementation. In this context, an efficient
matrix-vector multiplication, a generalization of S- and P-junctions to TDDFT and the
memory requirements of the semi-numerical scheme within TDDFT will be discussed. In
the subsequent technical evaluation of the semi-numerical implementation, its accuracy
and timings will be considered. In general, this chapter thus features a more detailed
explanation and analysis of the semi-numerical local hybrid TDDFT implementation first

presented in Ref. 272 and thus in large parts contain results already presented there.

4.1. Existing Program Structure

Drawing on the efficient implementation of linear-response TDDFT within the TUR-
BOMOLE program package, 2025927 the main task of the present work consists in the
embedding of the local hybrid matrix-vector products (derivation see chapter 3) into
the existing program structure to enable linear-response TDDFT calculations with lo-
cal hybrid functionals. Therefore, the general structure of the escf module including its
subroutines shall be analyzed in detail first.

A simplified schematic representation of the escf module structure is shown in Fig. 4.1.
Starting from the main routine escf, which handles most of the general input needed for
a TDDFT calculation such as information about the XC functional, the respon routine
taking care of the most basic features of TDDF'T is called. In particular, respon and its
subroutines handle the read-in and record of the transition density matrices, where each
excitation is described by one transition density matrix (in the MO basis) decomposed

into its symmetric and anti-symmetric part V* and V—, respectively, the read-in of the
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escf

Output Input

(:: respon :>

D,P U
D,P U

x = Ilda, gga,
mgga, lochyb C df2nd_x df2nd_x_omp

D, P U

Figure 4.1.: Simplified schematic representation of the general structure of the escf module. Beginning
from the main routine, the transfer of the density matrices D, P and U as well as the matrix-
vector products V* between the particular routines is illustrated (detailed explanations,
see text).

ground-state density matrix D, as well as the iterative solution of the Casida’s equations
(2.118).120:279-281 The latter requires the evaluation of the matrix-vector products (2.119),
which are calculated within the muvproduct routine on the basis of the handed-over density
matrices.

As first step, transition density matrices are transformed into the AO basis, so that
they can be directly contracted with the molecular integrals in the AO basis (see Sec.
2.5 for details) to form the required matrix-vector products. Similarly to the direct-SCF
method in ground-state DFT calculations,?*? the two-electron integrals themselves are
evaluated within the so-called direct-CI method.[?®? That is, instead of calculating ana-
lytical integrals once and saving them on disk, integrals are recalculated in each iteration

step. Thereby, the matrix-vector products can be directly evaluated without storing the
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integrals themselves, thus saving disk and main memory, as well as avoiding the repeated
read-in of these integrals. The calculation of the Coulomb and the exact-exchange kernel
(both calculated analytically) contracted with the transition density matrices is performed
by the rshlop routine. In the case of semi-local functionals only the Coulomb contribution
is required, which in contrast to exact exchange does not contribute to the anti-symmetric
matrix-vector product. Hence, either shloop or colrsp, which both only consider symmetric
transition density matrices, is used in these cases for the calculation of the Coulomb part.
While in shloop integrals are calculated analytically, in colrsp the RI approximation is
employed. ! In the case of local hybrid functionals, the exact-exchange contributions to
the matrix-vector products have to be calculated on the molecular grid, and thus shloop
or colrsp is used for the Coulomb contribution, too.

Exchange and correlation contributions to the matrix-vector products calculated on the
molecular grid are selected and added in the df2nd routine, where separate subroutines
df2nd_x (with z being lda, gga, mgga or lochyb) for different kinds of XC functionals
exist. The respective df2nd_x omp routines handle the SMP (shared-memory multi-
processing). In the case of semi-local functionals, only the transition density matrices P
and U and the precalculated semi-local quantities are handed over to the df2nd_x rou-
tines, since the ground-state density matrix D does not enter the matrix-vector products
otherwise, and D does not change during the TDDFT calculation. On the other hand,
regarding the symmetric and anti-symmetric local hybrid matrix-vector products (3.44)
and (3.46), respectively, local hybrids exhibit also non-local contributions, which depend
on the ground-state density matrix. Hence, instead of precalculating the semi-local quan-
tities and the ground-state density matrix contracted with the basis function vectors for
the whole molecular grid, which indeed requires much more memory than only the storage
of the ground-state DFT quantities in the case of semi-local functionals, the ground-state
density matrix is handed over to the df2nd_lochyb routine in addition to the transition
density matrices, and semi-local quantities are recalculated in each iteration. As will be
seen later, this does not deteriorate the overall performance.

After having added the XC contributions to the matrix-vector products, they are back-
transformed within the muproduct routine into the MO basis, so that the Casida’s equa-
tions can be solved by the respon routine. The computationally most demanding part
of such a linear-response TDDFT calculation is the determination of the matrix-vector
products, 2! especially the analytical integrals (cf. Sec. 2.5). Hence, an efficient imple-
mentation of the latter is of utmost importance. Accordingly, the efficient implementa-
tion of the local hybrid matrix-vector products (3.44) and (3.46), which is realized in the

df2nd_ lochyb routine, will be explained and discussed in detail in the following section.
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4.2. Implementation of the New Local Hybrid Module

4.2.1. Implementation Details

With the ground-state and transition density matrices being handed over, the df2nd_ loc-
hyb routine carries out the calculation of the local hybrid matrix-vector products. As
described in Sec. 3.3, within the semi-numerical integration scheme, the latter is per-
formed by summing up local matrix-vector products on a molecular grid, which consists
of n grid points arranged in grid point batches of a certain size to ensure the optimal
balance between the efficiency of the algebraic operations and the efficient use of locality
of the semi-local quantities. Furthermore, local matrix-vector products are simultane-
ously calculated for the set of ¢ excitations, chosen to be calculated by the user, to avoid
the recalculation of analytical integrals for each excitation. The calculation of the local
matrix-vector products themselves is done by a separation into several basic algebraic
steps as is demonstrated by the COSX method (see Sec. 2.5.3 for details). The resulting
module structure as implemented in the developer’s version of TURBOMOLE is shown
in Fig. 4.2. Additionally, formal scalings with respect to basis set size are given.

At the beginning of the TDDF'T calculation S-junctions, as used in the COSX method
to reduce the calculation cost of the A matrix and as will be discussed in detail in the
following section, are determined once. While this step formally scales as N3, the actual
scaling can be reduced to Npp in the limit of large molecules by considering a distance
criterium. Furthermore, it exhibits a small prefactor, so that the overall contribution to
the calculation cost is negligible.

The actual determination of the local hybrid matrix-vector products begins with the
batch-wise iteration over the n grid points, for which the local matrix-vector products
(3.44) and (3.46) have to be calculated. For clarity, the dependence of local quantities
on the space variable r is omitted again. Within the iteration over the grid points, all
operations that have to be done only once for the set of 7 excitations are performed first.
Initially, the basis function vector X is determined. Despite the formal linear scaling with
the number of basis functions, a constant scaling is achievable for large molecules by
applying a distance-based prescreening. Together with a small prefactor, this step thus
contributes only little to the overall computational cost. The most important part of this
step is the screening of X for non-zero elements. Therefore, the distinct number of & con-
tributing elements, which do not exhibit zero values for the entire grid batch, is evaluated
on the basis of the intermediate vector X,,.., whose elements are the maximum basis

function values on the current grid batch. If higher spatial derivatives of X are required,
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— Determine S-junctions Nip

> Loop over grid points (batch wise):

— Evaluate basis function vector X Ngr
— Determine P-junctions Nip
— Perform matrix-vector multiplication B? = DX N3,
— Determine ground-state quantities QQ Npr
— Determine XC functional and LMF derivatives 1
— Calculate matrix A N3,
— Perform matrix-vector multiplication G” = AB’ N3,
> Loop over i excitations:
— Perform matrix-vector multiplication B = P°X Nz,
— Perform matrix-vector multiplication B>~ = U?X Nip
— Perform matrix-vector multiplication G”* = AB”* N}p
— Calculate non-local parts of Gfﬁ Ngr
— Calculate semi-local parts of G;'l’i.t 1
— Build non-local part v+ Nz,
— Build semi-local part v:-® NZ,

Figure 4.2.: Schematical representation of the individual steps done for the calculation of the local
hybrid matrix-vector product as implemented in the df2nd_lochyb routine. For each step
the formal scaling with respect to the number of basis functions Ngp is given in addition.

e.g. in the case of meta-GGAs, also their maximum absolute values are considered for
the determination of X,,,,. Due to the locality of the basis function vector, the number
of k contributing elements does essentially not scale with the system size, resulting in
significantly reduced computation costs in following steps.

In the ensuing step, P-junctions as in the COSX method are determined. While formally
scaling as N3, they have to be evaluated only once for each grid batch, and a significant
reduction of the scaling can be achieved by an optimized matrix-vector multiplication
(see Sec. 4.2.3). Nevertheless, the original scheme for the determination of the P-junctions
applied for ground-state calculations!?6>2! cannot be used in the case of TDDFT, since
2 -1+ 1 density matrices have to be considered instead of only one ground-state density
matrix. Hence, a modified scheme, that is described in detail in Sec. 4.2.2, has to be

applied. Next, the ground-state density matrix D is contracted with the basis function
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vectors X of the grid point batch
Bg:ZDZV'qu (4].)

finally allowing the calculation of the semi-local DFT quantities, e.g.

pe=> B X, (4.2)
w
Vp,=2» Bj-VX, (4.3)
w
1 o
=3 > V'B]-VX,. (4.4)
w

As it is an ordinary matrix-vector multiplication, Eq. (4.1) formally scales as N3,. If B is
only needed for the calculation of semi-local quantities as in Eqgs. (4.2) to (4.4), the locality
of the basis function vector can be simply used to reduce the scaling to 1, since only the k x
k part of the density matrix is required. Nevertheless, an efficent multiplication scheme (see
Sec. 4.2.3) generally reduces the scaling, even in the case of local hybrids, which require the
complete B vector. In addition, the density matrix does not depend on the space variable
r, so that efficient BLAS (basic linear algebra subroutines) level 3 algebraic routines can
be employed to accelerate the matrix multiplication. Note that for the determination of
semi-local quantities needed by meta-GGAs also the first spatial derivatives of the basis
function vector have to be contracted with the density matrix. Formal and reduced scaling
(considering only k elements of X) of the Eqgs. (4.2) to (4.4) are Ngp and 1, respectively,
and accordingly they do not affect the overall cost of the calculation. The latter holds also
true for the following calculation of the derivatives of the exchange-correlation functional
and the LMF, which requires a constant amount of computation time irrespective of
system size. On the other hand, the subsequent determination of the A matrix, which
represents the most time-consuming part in a ground-state calculation, exhibits a formal
scaling of N3, which can be reduced to 1 in the limit of large molecules by considering
S- and P-junctions as in the COSX method. S- and P-junctions within a semi-numerical
TDDEFT calculation will be described in detail in the next section. Following the scheme
in Fig. 4.2, the last step that has to be done only once per grid point is the contraction
of the A matrix with the vector B

Go=> Aw-BJ. (4.5)
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Similarly to the matrix-vector multiplication (4.1), Eq. (4.5) exhibits a formal scaling of
N2, which can also be reduced by an efficient matrix vector multiplication. In contrast
to the density matrix, the A matrix is different for each grid point, so that one could only
make use of BLAS level 2 routines to perform the algebraic operations, which compared
to BLAS level 3 routines provide less acceleration. Since in TURBOMOLE, symmetric
matrices are additionally stored in a memory-efficient manner, a rearrangement is nec-
essary to employ BLAS routines. In the case of the A matrices, the rearrangement thus
would have to be done for each grid point separately. Hence, it turned out that a direct
matrix vector multiplication without any rearrangements but consideration of rearranged
matrix indices is more efficient than BLAS level 2 routines with a rearrangement.

Since in TDDFT, the excitation energies for the set of ¢ excitations are determined
in one run, the actual evaluation of the particular local matrix-vector products is done
within an iteration over i excitations. For clarity, the excitation index is omitted in the
following formulas. Similar to the ground state density matrix, the basis function vector

is contracted first with the transition density matrices P and U
Byt =Y Pr,-X, (4.6)
BT = i Un, - Xy (4.7)
which are then multiplied with the A matrix, too, to give

Gt => A, -Bo* (4.8)

Grm=> A, B (4.9)

Formal scaling and its reduction for large molecules is equal (or at least very similar as
will be discussed later) to the ground-state cases (4.1) and (4.5), respectively. Non-local
contributions to the local matrix-vector products as defined in Sec. 3.3 are then calculated

by multiplying the intermediate G,,; vectors

o o 1 7 7 o
Gt == 90 Gt = 530N P (dens + danc) 00+ G (4.10)
S KA
Gy =—90- G~ (4.11)
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with the basis function vectors

vt = X, GIL A G- X (4.12)
vgf;“j =X, Gy, -G - X, (4.13)

While the first step, i.e. Egs. (4.10) and (4.11), exhibits a formal scaling of Ngp, which
for large molecules, is reducable to 1 by applying a simple prescreening for non-zero
elements in G, GT and G, the latter two equations formally scale as N&,. Nevertheless,
considering the locality of X, i.e. only k non-zero elements, and a prescreening of G, and
G, for non-zero elements, a scaling of 1 can be achieved in the limit of large molecules, too.
Similarly, the remaining semi-local part of the local matrix-vector products is partitioned

into

vt = X, X, - G+ VT XX, -G+ VX, VX, -G (4.14)
vl = VXX, — X, VX, -Gl s (4.15)
where the intermediate vectors G}, GI . GI  —and G_, contain all semi-local terms

contributing in their respective way to the local matrix-vector products. In particular,
the individual terms have to be collected from the particular semi-local terms in Egs.
(3.44) and (3.46), respectively. While this procedure represents one of the most complex
steps in the implementation due to the combinatorial complexity of second derivatives
within the semi-local part of local hybrid functionals, the calculation of the intermediate
vectors exhibits no scaling with respect to system size and thus contributes only little
to the overall computation time. Note that this complexity is significantly enhanced, if
additional semi-local quantities are considered (as will be done in a later chapter). On
the other hand, Eqs. (4.14) and (4.15) formally scale as N, which can be reduced to a
constant scaling, if the locality of X is considered.

For the evaluation of the overall scaling behavior and computation cost of the newly
implemented routine, the time-determining steps have to be identified first. As for ground-
state calculations, the calculation of the A matrix represents the most time-consuming
individual step, followed by its contraction with the B vectors. In addition, only the
contraction of the density matrices with the basis function vectors and the final step in the
construction of the matrix-vector products show significant contributions. Nevertheless,
in a TDDFT calculation, the A matrix is contracted with 2 -7 + 1 B vectors instead of
only one within a ground-state calculation. The same holds true for the contraction of

the basis function vector with the density matrices and the final step in the construction
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of the matrix-vector product, which is equivalent to the last step in the construction
of the Fock matrix in ground-state calculations. On the other hand, the A matrix has
to be determined only once. Hence, in the limit of an infinite number of excitations, the
calculation cost for the A matrix is negligible in comparison to the other mentioned steps,
especially the contraction of the A matrix with the B vectors. Although in real TDDFT
calculations only a limited number of ¢ excitations is considered, the observation for an
infinite number of excitations suggests that the influence of the efficiency of the matrix
vector multiplication routines is more pronounced. Hence, special attention is paid to an
efficient implementation of the matrix vector multiplication, which is described in detail
in Sec. 4.2.3. Together with S- and P-junctions (see Sec. 4.2.2), the formal overall scaling
of i-m- N3 can be then reduced to i-n in the limit of large molecules, i.e. a linear scaling

with system size and the number of excitations.

4.2.2. S- and P-Junctions in Linear Response TDDFT

While efficient matrix-vector multiplication plays a more pronounced role in TDDFT
than in ground-state calculations with local hybrids, the determination of the A matrix
remains the most expensive individual step. Hence, its efficiency is of utmost importance.
Following the strategy of the COSX method,?%! prescreenings with respect to the basis
function overlap and the density matrices, i.e. S- and P-junctions, respectively, can be ap-
plied to significantly reduce the scaling with system size and the computation cost. The
general idea of both prescreenings is to identify shell pairs that give zero contributions to
the A matrix (or the G vector) for the entire grid batch, before its actual evaluation, so
that two-center integrals for these shell pairs can be disregarded. While S- and P-junctions
thus avoid the complete iteration over these shell pairs, integral estimates, which are ad-
ditionally used to reduce the number of analytical integral calculations, require additional
steps for each shell pair, so that, despite a large reduction of the computation cost, the
formal scaling would not be reduced. Note that similar prescreenings are employed in the
analytical evaluation of exact-exchange integrals within the LinK method of Ochsenfeld
and co-workers. 243l

Relying on a pure basis function overlap criterium, the determination of S-junctions
follows the identical procedure as in ground-state calculations,?®® i.e. constructing an
imaginary sphere around each shell, so that outside its radius all basis functions of the
respective shell exhibit negligible values (with respect to a certain threshold). Shell pairs
with non-overlapping spheres are then disregarded for the evaluation of the A matrix.

Note that this procedure is comparable to a simple screening with respect to basis function
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overlap with the additional assumption that all shells are of s-type, i.e. having an angular
momentum quantum number of 0. When only applying S-junctions, the formal scaling of
the A matrix evaluation is reduced from N3 to a possible linear scaling, which is usually
already achieved for medium-sized molecules.

P-junctions on the other hand feature a prescreening with respect to density matrices.
In particular, only those shell pairs have to be considered for the evaluation of the A
matrix, whose shells are connected by the density matrix to any of the k£ contributing
basis functions on the distinct grid batch. This criterium is equivalent to a shell-wise
screening of the B vector for non-negligible shells (with respect to threshold), followed
by the construction of all remaining combinatorially possible shell pairs. In ground-state
calculations only one density matrix is needed, so that this screening can be directly
done for the B vectors on the current grid batch. On the other hand, 2 -7 + 1 density
matrices are involved in the case of linear response TDDFT. Here, the simplest procedure
would be a common screening of the ground-state B vectors as well as all excited state
B vectors. Nevertheless, since P-junctions have to be calculated before the evaluation
of the A matrix, and B vectors in general shall not be calculated twice, additionally,
2 -1 - Npaten, B vectors with a dimension of Ngr would have to be stored in memory. For
a batch size of nyeen = 100, an excitation number of ¢ = 50, Ngr = 1000 basis functions
and double-precision floating-point numbers, this is equivalent to an additional memory
requirement of more than 200 MB. For larger molecules or if more excitations are reqired,
e.g. for the calculation of X-ray absorption spectra, the additional memory might exceed
several GB of main memory. Furthermore, TDDF'T calculations in general exhibit larger
main memory requirements, so that large additional memory usage is undesirable. The
screening of all B vectors itself scales as (2-i+ 1) -n - Ngp.

As alternative to this simple scheme, two memory-efficient procedures have been pro-
posed.[? In the first method, the X,,q, vector on the current grid batch is used for the
evaluation of the P-junctions instead of all individual basis function vectors. Therefore,

the intermediate vectors

Bfnax“u = Z DZV : Xmaw,y (416)
Bor =Y Pl Xaww (4.17)
Brariz:;t,u = Z UZV ’ Xmaa:,u ) (418)
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have to be screened. Note that Eqgs. (4.16) to (4.18) have to be determined only once per
grid batch (and per excitation for the transition density matrices), reducing the prefactor
of the screening by a factor of 1/npen compared to the simple method. Furthermore, the
intermediate vectors cannot be reused in the subsequent steps, so that on one hand no
additional main memory is required, but on the other hand, 2-7+1 additional matrix vector
multiplications have to be performed for each grid batch, which nonetheless increases the
calculation cost of the B vector evaluation only by a factor of 1 4+ 1/npan. Hence, this
additional step neither deteriorates the overall scaling nor the overall computation cost
significantly.

Nevertheless, if a large number of excitations have to be calculated, the latter method
might exhibit a non-negligible contribution to the overall calculation cost, which can
be circumvented by applying the second approximate method for the determination of
P-junctions[?™ Here, the intermediate density matrix D,,,,, whose elements are the max-
imum absolute values of all density matrices, is determined first. Multiplication with the

X ez Vector
Bfnax,,u = Z Dfnax,w/ ’ Xma:r,u (419>

then allows a screening for non-contributing shell pairs. While the evaluation of D,
formally scales as i- N3, consideration of the locality of the basis function vector reduces
the scaling to 7 - Ngp. Furthermore, this procedure exhibits a very small prefactor. The
calculation of the intermediate B,,,, vector then requires only one additional matrix
vector multiplication step per grid batch. Since the latter scales with 1 in the limit of large
molecules, if an efficient scheme is utilized (see Sec. 4.2.3), the additional computation
cost is almost negligible. As in the first method, no additional main memory is required.

While P-junctions determined with the simple scheme represent the most accurate pro-
cedure, the two presented alternative procedures provide only an approximate prescreen-
ing. Nevertheless, the latter two methods prevent the additional need of main memory for
only a slight increase of the calculation cost. This is achieved by employing the maximum
absolute quantities D,,q, and X,,,,, which also ensures that no shell pairs are falsely
disregarded by the approximate P-junctions. On the other hand, few shell pairs might be
falsely not disregarded, which happens more likely with the second method. Considering
these facts, the first approximate method represents the best compromise between an ac-
curate determination of P-junctions and resource requirements for a moderate number of

excitations, while for a large number of excitations the second method is the best choice.
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Due to potentially high main memory requirements, the simple scheme is not used in the
present implementation.

Evaluating the additional effect of P-junctions on top of S-junctions, the scaling of the
A matrix calculation is potentially reduced from Ngg to 1 in the limit of large molecules,
so that an overall linear scaling of n can be expected. While this holds true for ground-
state calculations, [26%27 this is not the case for TDDFT calculations in general. Assuming
all single excitations allowed by the particular basis set, each occupied molecular orbital
would be connected to each virtual orbital by any transition density matrix. Furthermore,
many atomic basis functions are already connected by the ground-state density matrix. As
a result, almost all basis functions would be connected to each other, so that P-junctions
yield only very few shell pairs, e.g. some core-core shell pairs, which can be disregarded for
the A matrix calculation. In this case, only S-junctions would have a noticeable influence,
so that the overall scaling of the A matrix evaluation would be n- Ngr. While this appar-
ently deteriorates linear scaling in local hybrid TDDFT calculations, one has to recall that
in the limit of a large number of excitations the contraction of the A matrices with the B
vectors represents the time-determining step, so that the A matrix evaluation itself does
not determine the overall scaling. In particular, considering an optimized matrix vector
multiplication as well as S- and P-junctions, the latter two steps exhibit the competing
scalings of n - ¢ and n - Ngp in the limit of large molecules. Since the maximum number
of excitations i scales faster with system size than the number of basis functions (see Sec.
4.2.4 for an illustrative example), the overall scaling in the limit of all single excitations
is determined by n - 7, which in general is equivalent to linear scaling with respect to the
number of basis functions.

Nevertheless, usually only few excitations have to be calculated, so that the A matrix
evaluation might be one of the time-determining steps. In this case, only few occupied
molecular orbitals are connected to some virtual orbitals. Hence, P-junctions generally
reduce the overall scaling of the A matrix calculation to n in the limit of large molecules,
which has to be contrasted to S-junctions, which are already effective for medium-sized
molecules. Accordingly, linear scaling n - ¢ is achieved for the case of few excitations
as well as in the limit of all single excitations, so that an overall linear scaling for the
determination of the local hybrid matrix-vector products is achieved. S- and P-junctions

thus also play an important role in linear response TDDF'T with local hybrid functionals.
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4.2.3. Optimized Matrix Vector Multiplication

As described in the previous sections, scaling and performance of the df2nd_ lochyb routine
heavily rely on an efficient matrix vector multiplication scheme. In particular, the latter
is required for the contraction of the basis function vector with the density matrices and
for the contraction of the B vectors with the A matrices, whereas the former is also
needed for the determination of P-junctions. With both operations being a multiplication
of a Ngr x Nppr matrix with a Ngp vector, a scaling of N%F is expected, in general.
Nevertheless, based on some properties of the involved vectors and matrices, a constant

scaling can be achieved, which is schematically shown in Fig. 4.3.

y

Figure 4.3.: Schematic representation of the optimized matrix vector multiplication scheme for a sym-
metric (or anti-symmetric) matrix and a vector with only m non-zero elements. The green
blocks represent the elements of the matrix and the vector, which have to be considered in
the multiplication. The resulting vector exhibits m’ non-zero elements.

In particular, all Ngp X Ngpr matrices involved are either symmetric or anti-symmetric,
so that the number of floating point number multiplications, which represents the single
time-determining step in a matrix-vector multiplication, is simply reduced from Nz, to
2 (N}p + Npp). The second significant reduction can be made by considering only the m
non-zero elements of the vector. In the case of the basis function vector X, this directly cor-

responds to the k£ contributing elements, while the B vectors have to be screened for zero
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elements, which scales as Ngpr. The latter can be accelerated by considering zero elements
of the B,,,, vector, which has to be determined during the evaluation of P-junctions, so
that the number of screening steps does not scale with system size anymore. Based on
the reduced vector size, the number of floating point number multiplications needed for
the matrix vector multiplication further reduces to m (N BF + % (1— m)), which is equiv-
alent to considering the ’complete’ trapezoidal part of the matrix (green and horizontally
shaded regions in Fig. 4.3).

Last, the particular structure of the involved matrices can be considered additionally.
That is, for large systems, the ground-state density matrix as well as the A matrices
exhibit a diagonal band structure, so that many elements far from the diagonal are close
to zero. Accordingly, many rows in the ’complete’ trapezoidal part of the matrix can
be expected to be zero, which holds also true for the transition density matrices, since
transition density matrices usually connect only a few molecular orbitals. Applying a
prescreening for the m’ contributing rows of the 'complete’ trapezoidal part, leads to
a reduction of floating point number multiplications to m (m’ - % (1-— m)), where the
prescreening for the contraction of the density matrices with the basis function vector can
be accelerated by estimating m’ on the basis of B,,.,. Regarding Fig. 4.3, application of
all described preescreenings results ins a matrix vector multiplication, in which only the
green part of the matrix, referred to as reduced trapezoidal part, is involved.

Regarding the reduced trapezoidal matrix vector multiplication, the number of floating
point number multiplications does not depend on the number of basis functions, but on m
and m/, whose scaling in the limit of large molecules thus determines the overall scaling of
the matrix vector multiplication. For the contraction of the basis function vector with the
density matrices, m is equal to k and thus, exhibits a constant scaling, whereas m’ is the
number of non-zero elements of the respective B vector, which according to the mentioned
properties of density matrices also does not scale with the system size. For the ensuing
step of contracting the B vectors with the A matrices, m is equal to m’ of the previous step
and thus exhibits the same scaling with system size. Due to the diagonal band structure
of the A matrix, the actual m’, i.e. the number of non-zero elements in the respective G
vector, shows also a constant scaling. Accordingly, the presented optimized matrix vector
multiplication does not only feature a reduction of floating point number multiplications,
but also provides a constant scaling for the matrix vector multiplication, so that an overall
linear scaling for the evaluation of the local hybrid matrix-vector products is possible.

Technically, the matrix vector multiplication of symmetric matrices is split into two
separate parts (see Fig. 4.3), i.e. a symmetric m X m part and the remaining m x (m’ — m)

part, so that symmetric and general BLAS routines can be optimally applied. The same
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holds true for the by-hand multiplication of the A matrices (for details, see Sec. 4.2.1). On
the other hand, the contraction of anti-symmetric density matrices with the basis function
vectors is done by using the general matrix vector multiplication BLAS routine for the
entire m x m’ block, since no special anti-symmetric routine is available. Consideration of
anti-symmetry applying a separate by-hand multiplication of the anti-symmetric m x m
block turned out to be less efficient than the optimized BLAS routine. Nevertheless, the
m-m’ scaling of the latter step is comparable to the optimal scaling of m (m’ + % (1-— m))

realized for symmetric matrices.

4.2.4. Memory Dilemma

As presented so far, the implemented df2nd_lochyb routine exhibits a linear scaling with
respect to the number of grid points and the number of excitations, which is thus com-
parable to the efficiency of ground-state calculations. Nevertheless, one major drawback
compared to the ground-state method is the significantly enhanced memory requirement,
which shall be discussed in detail here.

In the df2nd_lochyb implementation, several quantities are simultaneously stored for
each point of the grid batch, i.e. the basis function vector, three B vectors (one for the
ground-state and two for the excited state), the respective G vectors, the ground-state
quantities, derivatives of the LMF and the semi-local XC functional, as well as the A
matrices. While each vector requires the storage of npucn - Ngr double-precision floating-
point numbers, ground-state quantities as well as LMF and XC functional derivatives take
only a constant amount of memory, which scales as nyqien. With npgsen - % (N2, + Ngr)
stored double-precision floating-point numbers, most main memory is taken by the A
matrices. Considering a usual TDDFT calculation with 20 excitations, 1000 basis functions
and a batch size of nyuen, = 100, the total memory requirement of the routine is around
390 MB, whereas 98% is taken by the A matrices. Since it is dominated by the A matrices,
the amount of required main memory thus scales as Mpasen - % (N% 1+ Npr). Nevertheless,
also a large calculation with 4500 basis functions would take less than 8 GB of main
memory in this setup, which is still feasible on common computers.

In an alternative possible implementation of the df2nd_lochyb routine, which is not
implemented in the current developer’s version of TURBOMOLE, the storage of the A
matrices is circumvented by directly contracting them shell-pair-wise with all B vectors.
In turn, the B and G vectors of each excitation have to be stored in memory, which in total
are Npaten - (3 + 6 - 1) vectors of size Npp instead of 9 « npeen vectors in the implemented

version, thus leading to an overall scaling of the memory requirement of nyuen - Ngp -
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(346 -1). Considering again 20 excitations, 1000 basis functions and a batch size of
Npaten, = 100, around 100 MB of main memory are required, while the large calculation
with 4500 basis functions would need only around 430 MB, which is significantly lower
than in the implemented version.

While the alternative version thus apparently exhibits less memory requirements than
the implemented one, the memory demand scales linearly with the number of excitations.
Hence, there is a cross-over in the memory demand compared to the implemented version,
if a large number of excitations is considered, which might be necessary for large molecules
or the calculation of complete X-ray absorption spectra. For example, the calculation of
10000 excitations for 1000 basis functions with a grid batch size of nyr, = 100 requires
only 390 MB in the implemented version while more than 44 GB are required within
the alternative scheme. Hence, depending on the calculation setup, either scheme might
exhibit large memory requirements, which can be referred to as memory dilemma, since
one of the two schemes has to be chosen, either the implemented scheme with a quadratic
scaling of N% or the alternative scheme with a scaling of Ngp - 1.

For a decent decision between both schemes, the scaling with respect to the number
of basis functions and the number of excitations shall be compared with an increase of
the system size. While scaling with the number of basis functions obviously is linear, the
number of excitations scales quadratically with system size, if excitations of corresponding
character shall be considered. The latter can be illustrated by the example of ethylene.
While there is only one m—n* excitation in the ethylene molecule, doubling of the system
size, which is equivalent to the ethylene dimer, results in four separate m—n* excitations
(two of valence and charge-transfer type, respectively). In general, if system size is doubled,
the number of occupied and virtual MOs is doubled as well, finally leading to four times
the number of excitations. Hence, the implemented scheme scales only quadratically with
the sysem size, while the alternative version, despite a smaller prefactor, shows a cubic
scaling. Furthermore, due to the generally high computation cost, rarely more than 4500
basis functions are used in calculations with hybrid functionals, so that 8 GB can be
regarded as upper bound in the implemented df2nd_lochyb routine, while the alternative
version might exhibit even larger memory requirements. Accordingly, despite the memory
dilemma, which cannot be solved completely, the present implementation represents the

best balanced choice with respect to memory requirements.
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4.3. Technical Evaluation

4.3.1. Computational Details

While the formal performance of the semi-numerical implementation of the local hybrid
matrix-vector products has been extensively discussed in the last sections, the ensuing
technical evaluation of the df2nd_lochyb routine is concerned with the analysis of its
actual accuracy and computation cost for real molecular systems.

In the case of the accuracy analysis, the errors caused by the use of finite numerical
integration grids as well as interdependencies between the basis set and the excitation
type are investigated.!?™? Therefore, a local hybrid with an unscaled t-LMF,[" i.e. Eq.
(2.76) with a factor of a = 1.0, in combination with Slater-Dirac exchange!™ 7 and VWN
correlation (™ is employed. For comparison, semi-numerical TDHF, which is a special case
of Eq. (2.72) with g, = 1.0 and E% = 0, and the SVWNI™7 LDA are also considered.
Possible basis set effects are investigated using Dunning’s correlation consistent basis
sets, 283284 while S- and P-junctions are analyzed separately and are thus switched off for
the evaluation of grid-induced errors. Radial and spherical parts of the molecular grids
are constructed on the basis of the commonly used Lebedev 248l and Chebyshev [*4 grids,
respectively, while the function M4 from Ref. 244 with a variable prefactor r,,q, is used for
radial mapping. The partitioning function is kept fixed in the form proposed by Becke. [24]
Based on the predefined numerical grids within TURBOMOLE, *4 the combination of a
110 point Lebedev and 25 point Chebyshev grid with r,,,, = 1.0 is referred to as small
grid.

As test case for the analysis, the seven lowest-lying excitations of the CO molecule
are used, i.e. three valence and four Rydberg excitations,?" where the C-O distance
of 1.128 A is taken from Ref. 12. While analytical TDHF results serve as reference for
semi-numerical TDHF calculations, the reference values for SVWN and the local hybrid
functional are determined using a sufficiently large integration grid, i.e. a 1202 point Lebe-
dev grid together with a 500 point Chebyshev grid and a radial mapping parameter of
Tmap = 3.0.274 Ground-state and excitation energies are converged to 107'°£,. The mean
absolute deviation in eV between the reference and the (semi-)numerical results, sepa-
rately determined for valence and Rydberg excitations, serves as measurement for the
technical accuracy and will thus be denoted as mean absolute error (MAE). To be consid-
ered negligible in comparison to the accuracy of XC functionals with respect to vertical
excitation test sets (see chapter 5), an MAE of 0.01 eV is regarded as target accuracy.

Nevertheless, slightly larger deviations are still acceptable for many other purposes.
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The influence of S- and P-junctions on the accuracy of the semi-numerical integration
is determined for the lowest-lying valence excitation (! B,) of the decapentaene molecule
in all-trans conformation, employing the local hybrid functional described above on the
small grid together with the def2-TZVP %! basis set. On the basis of the absolute error
introduced by S- and P-junctions, different thresholds ranging from 107! a.u. to 1073
a.u. are compared.

For the investigation of computational efficiency, the new semi-numerical implementa-
tion is compared to the existing analytical TURBOMOLE implementation by employing
the TPSSh[106:107:124] g]oha] hybrid functional. Additionally, a local hybrid functional with
ascaled t-LMF '] (prefactor of 0.48) in combination with Slater-Dirac exchange ™! and
VWN correlation!™! is used to evaluate any overhead arising in the semi-numerical scheme
for local compared to global hybrids.?"? For an optimal performance, semi-numerical in-
tegration is combined with the RI approximation for Coulomb integrals, 26267 while the
present TURBOMOLE implementation of global hybrid functionals within TDDFT fea-
tures only analytical four-center integrals.

For the efficiency analysis, the lowest-lying excitation of conjugated polyene chains
in all-trans conformation with the molecular formula CoHaiyo (i =1—10) is studied.
While for longer polyene chains only the def2-TZVP basis is employed, calculations on
the ethylene molecule are carried out with different basis sets, i.e. Dunning’s cc-pVXZ,
aug-cc-pVXZ and d-aug-cc-pVXZ (X=D,T,Q,5) basis sets?%32%4 as well as Ahlrichs’ def2-
SVP, def2-TZVP and def2-QZVP basis sets, [?%! indluding their variants with additional
polarization and diffuse basis functions. The small grid and a threshold of 107¢ a.u. for S-

and P-junctions are applied. All timings are measured on an Intel core i7-3770K processor.

4.3.2. Accuracy

As first step of the accuracy analysis, the basis set dependence of the semi-numerical
implementation is investigated. Therefore, the MAE of the CO excitation energies has
been determined for the set of Dunning’s cc-pVXZ basis sets, with X = D, T, (), as well as
for their augmented variants aug-cc-pVXZ and d-aug-cc-pVXZ. In all cases the small grid
is employed. Since results for different parent basis set sizes X do not differ qualitatively,
effects shall be discussed only for the series of double-( basis sets, i.e. cc-pVDZ, aug-cc-
pVDZ and d-aug-cc-pVDZ. The respective MAEs for the considered Rydberg and valence
excitations are shown in Fig. 4.4. Note again that given MAEs characterize only the
accuracy of the numerical grid and are not related to the accuracy of the local hybrid

functional itself. While for valence excitations, accurate results with MAEs of less than
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Figure 4.4.: MAE in €V for the low-lying valence and Rydberg excitations of CO for Dunning’s double-(
basis set with increasing basis set augmentation. The small grid is applied.

0.001 eV are obtained with all basis sets, for Rydberg excitations, a significantly decreasing
accuracy with respect to basis set augmentation is observed. For the doubly augmented
basis set in particular, TDHF and the local hybrid functional exhibit deviations of around
0.1 €V from the reference data, which in fact is one order of magnitude above the target
accuracy. Although the behavior is similar for SVWN, the MAE of 0.02 eV with the
d-aug-cc-pVDZ basis set is still acceptable due to the generally large underestimation
of Rydberg excitations by semi-local functionals (see chapter 5). For the non-diffuse cc-
pVDZ basis set on the other hand, Rydberg excitations are as well described as valence
excitations. Since augmented basis sets are nonetheless needed for an accurate description
of Rydberg excitations, the larger deviations for semi-numerical TDHF and local hybrid
results with the chosen grid are investigated further. In particular, the d-aug-cc-pVDZ
basis set is used for this purpose (and the remaining grid analysis).

For Rydberg excitations, it is apparently important within the semi-numerical inte-
gration scheme to account for the additional space spanned by diffuse basis functions
compared to non-diffuse basis sets. Therefore, the numerical grid shall be systematically

modified. In this context, the effect of the radial grid parameters, i.e. the number of radial

82



4.3. Technical Evaluation

grid points N,qq of the Chebshev grid and the relative radial mapping parameter 7,4,
shall be analyzed first. Therefore, the spherical grid is set to a large 1202 point Lebedev
grid, so that numerical errors are predominantly related to the radial grid. The variation
of the relative radial mapping parameter r,,,, shifts the center of radial grid points. Values
larger than 1.0 give more diffuse grids, while smaller values result in a contracted grid.
The screening of 7,,,, for a small (N,,q = 25) and a large (/V,4q = 150) radial grid is shown

in Fig. 4.5. While contracted grids expectedly exhibit larger errors, the accuracy for the
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Figure 4.5.: Dependence of the MAE (in eV) on the radial mapping parameter 7,y for the low-lying
CO Rydberg excitations, calculated with the d-aug-cc-pVDZ basis set and a 1202 point
Lebedev grid for Chebyshev grids with N,,q = 25 and N,..q = 150 radial grid points.

considered Rydberg excitations generally increases for more diffuse grids. In the case of
semi-numerical TDHF, the target accuracy is already reached with 7,4, = 1.0, if a large
radial grid is employed. Convergence is achieved for values larger than r,,,, = 2.0. On the
other hand, a mapping parameter of r,,,, = 1.4 is necessary to reach the target accuracy
with the small radial grid, while no convergence with respect to the radial mapping pa-
rameter is observed. In the case of the local hybrid functional, the target accuracy cannot
be reached with the smaller grid, even by maximizing the mapping parameter, whereas

a value of about 7,,,, = 1.5 is required to obtain accurate results with the large radial
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grid. In both cases, the accuracy does not converge with respect to the radial mapping
parameter, which results in significant oscillations. Compared to semi-numerical TDHF,
the local hybrid functional generally shows a decreased accuracy as well as as a more
pronounced sensitivity with respect to 7,,4,. Most likely, both phenomena directly arise
due to the functional form of local hybrids (see Sec. 2.3.1 for details), where the error
is determined by the product of the LMF and the exact-exchange energy density rather
than only the exact-exchange energy density. In contrast to semi-numerical TDHF, the
LMF features steep changes in certain regions of real space,[?86 so that a large number
of grid points is required there to ensure an accurate integration of exact exchange. For
example, steep changes of the LMF occur between valence and one-electron regions, which
in fact are both sampled by Rydberg excitations. 2%l Consequently, a more balanced grid
is required that accounts for the local exact-exchange admixture and covers the additional
space spanned by the diffuse basis functions,?”? which is indeed not achievable by simply
shifting the center of the existing grid points.

In addition to the mapping parameter, the dependence on the number of radial grid
points N,..q is thus investigated. This is illustrated in Fig. 4.6 for a non-diffuse and a diffuse
grid with 7,4, = 1.0 and 7,4, = 2.0, respectively. In combination with the small mapping
parameter, semi-numerical TDHF needs a large number of about 125 radial grid points
to reach an accuracy of at least 0.01 eV, while already 25 grid points are sufficient for
Tmap = 2.0. Despite a strictly decreasing MAE, results for r,,,, = 1.0 do not converge for
the investigated range of N,.4. In addition, the MAEs remain several orders of magnitude
above the converged value obtained with the large mapping parameter. On the other hand,
the local hybrid functional could not satisfy the accuracy criterion with the non-diffuse
grid, whereas with the diffuse grid, it is reached with 55 radial grid points. In both cases,
oscillations are observed again, preventing a convergence within the chosen range of N,.q.
Similar to the screening of 7,4y, this effect is directly related to the functional form of
local hybrids.

Based on the findings for the radial grid, the analysis of the dependence on the spherical
grid size is performed with a large and diffuse grid (7,4p = 2.0 and N,,q = 150), to ensure
an accuracy of at least 0.01 eV. Besides Rydberg excitations, valence excitations are
considered for comparison again. The screening of seven different Lebedev grids with Ny
grid points is shown in Fig. 4.7. For semi-numerical TDHF', the accuracy for Rydberg and
valence excitations increases with the number of spherical grid points, where the MAEs
converge to values between 107% eV and 10~ eV. Although exhibiting similarly large
errors, local hybrid valence excitations on the other hand do not reach convergence with

the largest employed Lebedev grid. Apparently, local hybrid Rydberg excitations are not
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Figure 4.6.: Dependence of the MAE (in eV) on the number of radial grid points N,..q (Chebyshev grid)
for the low-lying CO Rydberg excitations, calculated with the d-aug-cc-pVDZ basis set and
a 1202 point Lebedev grid for the radial mapping parameters ry,qp, = 1.0 and rp,qp = 2.0

affected by an increased spherical grid size. Most probably, their accuracy is limited by
regions with steep transitions between local and exact exchange, which in the case of
Rydberg excitations, mainly occur in the radial distribution. Hence, Rydberg excitations
do not benefit from an increased spherical grid. [?7?

The employed example of the seven lowest lying excitations of the CO molecule shows
that, for local hybrid calulations, a satisfying accuracy of valence excitations is already
achieved with small spherical and radial grids. On the other hand, Rydberg excitations
require modifications of the radial grid, when diffuse basis sets are used. Besides a mod-
erate augmentation of the number of radial grid points, the use of diffuse grids, i.e. an
increased relative radial mapping parameter 7,4y, is inherently needed to reach a target
accuracy beyond 0.01 V.12 That is, ’diffuse states require diffuse basis functions and
diffuse grids’.[?™ Accordingly, a radial mapping parameter of at least 7,,,, = 2.0 and
an additional number of around 20 radial grid points is recommended for the calculation
of Rydberg excitations with local hybrid functionals. For higher-lying Rydberg states,

most probably even more diffuse and larger grids are required. While semi-numerical
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Figure 4.7.: Dependence of the MAE (in eV) on the number of sperical grid points Ngpp. (Lebedev
grid) for the low-lying valence and Rydberg excitations of the CO molecule. A 150 point
Chebyshev grid, a mapping parameter r,q, = 2.0 and the d-aug-cc-pVDZ basis set are
applied.

TDHEF is less sensitive than local hybrid functionals, an overall comparable dependence
with respect to the grid parameters could be observed. Hence, other methods employing
semi-numerical integration of exact exchange such as the COSX 266 or the pseudospectral
method [*®¥ should behave similarly with respect to the numerical grid.

While S- and P-junctions, as discussed in Sec. 4.2.2, formally enable linear scaling
of the semi-numerical integration, their actual effectiveness might be limited by accuracy
issues. Therefore, the numerical errors introduced separately by both approximations have
been evaluated for the decapentaene molecule. In the entire range of screened thresholds
between 1072 a.u. and 1071 a.u., use of S-junctions gave stable TDDFT results. For
moderate thresholds ranging from 107% a.u. to 107! a.u., deviations of around 1075 eV
are obtained, while already around one third of the shell pairs of the A matrix could be
neglected. Looser thresholds resulted in errors of up to 1072 €V, but allowing the neglect of
almost half of the A matrix shell pairs. S-junctions thus allow substantial computational

savings in general.
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On the other hand, P-junctions affected calculations only for thresholds looser than
1077 a.u., otherwise no shell pair was neglected for any grid point batch. While thresholds
below 10~ a.u. resulted in non-converging TDDFT calculations, with thresholds of 107°
a.u. and 107° a.u. only less than one shell pair was neglected on average. Accordingly,
no significant errors are observed in the latter cases. While P-junctions are thus not very
effective for the investigated molecule, larger effects are expected for larger molecules.
Nevertheless, thresholds below 107° a.u. are definitely not recommended due to the dete-
riorated TDDFT convergence, which limits the effectiveness of P-junctions to very large
molecules.

Based on the observed errors, thresholds of 107% a.u. for both approximations are
considered as providing reasonable results.[?”? For higher accuracies, thresholds of 10~

a.u. and tighter are recommended.

4.3.3. Timings

As first part of the efficiency analysis of the new implementation, the performance with an
extension of system size for a given basis set is evaluated. Therefore, the lowest-lying ex-
citation of conjugated polyene chains of different length is calculated with the def2-TZVP
basis set. In contrast to bulkier molecules, polyene chains allow maximal time savings
due to non-overlapping basis functions.?” Since analytical four-center integral calcula-
tion features two overlap screenings, compared to only one in the case of the A matrix
evaluation within the semi-numerical scheme, analytical integration benefits more in this
case. Furthermore, the linear growth of the integration grid with respect to system size is
unavoidable and the medium-sized def2-TZVP basis does not favor the formal quadratic
scaling of the semi-numerical scheme with respect to the number of basis functions. Hence,
the chosen model systems represent the worst case for a comparison with an analytical
implementation. The CPU times per TDDF'T iteration ¢ for the increasing polyene chains
as well as fitted scalings with respect to the number of primitive basis functions N, are
shown in Fig. 4.8. Due to large relative errors for small ¢ values, ethylene and butadiene
are neglected for the fits. Despite the formal preference of the analytical integration (see
above), the semi-numerical scheme is faster for all molecules larger than butadiene, which
is accompanied by an additionally better scaling behavior. The overhead of the local hy-
brid functional compared to the global hybrid is not significant. Note that larger basis
sets or non-linear molecules would further increase the preference for the semi-numerical
algorithm due to the scaling properties and the less important overlap screening. 27 As

P-junctions are not yet effective even for the largest molecule studied, i.e. decapentaene,
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Figure 4.8.: Scaling of the computation time per TDDFT iteration ¢ with respect to the number of C
atoms in polyene chains with increasing length using the def2-TZVP basis. The fits with
respect to the number of primitive basis functions N, are done for logarithmic scales.

sub-quadratic scaling is not yet reached for the investigated molecules. Nevertheless, for
very large molecules, which are not explicitly considered here, such sub-quadratic scaling
is expected for the present semi-numerical implementation.

To evaluate the efficiency with respect to basis set size, timings for the calculation
of the lowest-lying excitation of ethylene are measured. Therefore, Dunning’s cc-pVXZ,
aug-cc-pVXZ and d-aug-cc-pVXZ (X=D,T,Q,5) basis sets, as well as Ahlrichs’ def2-type
basis sets, i.e. SVP, SVPD, TZVP, TZVPP, TZVPD, TZVPPD, QZVP and QZVPD, are
employed. TDDFT iteration times ¢ are shown in Fig. 4.9 with respect to the number of
primitive basis functions Np,;,. Due to its formal quadratic scaling, the increase of only
the basis set size favors the semi-numerical integration compared to the analytical algo-
rithm. Furthermore, screenings are naturally not effective for the small ethylene molecule.
Accordingly, the semi-numerical integration exhibits only approximately half the scaling
of the analytical implementation. Nevertheless, due to the additional scaling of the inte-
gral evaluation with respect to the angular momentum quantum number [ related to a

basis function, i.e. I? for two-center and ' for four-center integrals, formal quadratic scal-
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Figure 4.9.: Scaling of computation time per TDDFT iteration ¢ with respect to the number of primitive
basis functions Ny, for the ethene molecule using different basis sets, i.e Dunning’s (d-
aug-)ec-pVXZ (X=D,T,Q,5) basis sets and Ahlrichs’ def2-type basis sets.

ing could not be reached. Again, no significant overhead is observed for the local hybrid
functional.

So far, the efficiency of the new implementation has been investigated only on a sin-
gle processor. Nevertheless, a shared-memory paralellization has been additionally imple-
mented to enable paralellized calculations on a single node with several processors sharing
the same memory. This has been done by an ideal distribution of the grid batches to the
distinct processors. Hence, the only step causing an overhead is the last step in the con-
struction of the matrix-vector products, since only one process at a time is allowed to write
on the respective array. Nevertheless, in the limit of infinite large molecules, the overall
calculation time is almost exclusively determined by the evaluation of the A matrices and
their contraction with the B vectors (cf. Sec. 4.2.1). Hence, the present implementation
is virtually ideally parallelized in this case, while for real molecular systems an overhead
is expected, which nonetheless mainly depends on the system size of the test case rather
than on the quality of the parallelization. Hence, a more detailed analysis of the SMP

parallelized version is omitted.
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4.4. Conclusions

In the present chapter, the new semi-numerical implementation of local hybrid functionals
into the escf module of a developer’s versions of the quantum chemical program package
TURBOMOLE has been presented. Based on a detailed discussion of all individual steps
required for the calculation of the local hybrid matrix vector products, it could be shown,
that the efficiency of the code depends in particular on an efficient computation of the
A matrix as well as on an efficient matrix-vector multiplication. While the former could
be achieved by extending the conventional determination of P-junctions within ground-
state calculations to a larger number of density matrices, for the latter, an optimized
procedure employing several prescreenings has been used. Overall, a formal linear scaling
could be achieved, while a distinct compromise had to be made with respect to memory
requirements due to the simultaneous treatment of many excitations within one TDDFT
calculation. During the technical evaluation of the implementation, it thus turned out
that the new local hybrid module, if combined with the RI-J approximation for Coulomb
integrals, is generally faster than the previous global hybrid TDDFT implementation,
where the largest accelerations could be obtained for large basis sets. Despite some ad-
ditional terms, local hybrids appear to be as efficient as global hybrid functionals with
the new semi-numerical implementation. Concerning the accuracy of the semi-numerical
implementation, it could be shown that relatively small numerical grids already suffice
for an accurate description of most vertical excitations. Here, Rydberg excitations cal-
culated with diffuse basis sets were identified as one exception, since more diffuse grids
were needed. This allows the conclusion, that the description of diffuse states generally

requires diffuse basis functions and thus also diffuse grids.
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Drawing on the efficient TDDFT implementation of local hybrid functionals presented
in the last chapter, the present chapter is concerned with the first evaluation of the ac-
tual performance of different local hybrid functionals for vertical excitations compared
to other popular XC functionals. Therefore, the vertical-excitation test sets of Thiel and
co-workers 28728 a5 well as those of Tozer and co-workers, 22 which cover a large vari-
ety of different excitation types including many cases that are prolematic for common XC
functionals, have been employed. Additionally, intermolecular charge-transfer (CT) is fur-
ther investigated using the tetrafluoroethylene ethylene complex. 13 Besides, additional
effects either related to TDDFT or local hybrid functionals, e.g. to the current-density
response, common LMFs and the TDA, are studied in detail, too. The present chapter is

thus a reproduction of the results already published in Ref. 286.

5.1. Computational Details

5.1.1. Investigated Vertical Excitations

For a decent analysis of the performance of local hybrid functionals for the calculation of
vertical excitation energies within linear-response TDDF'T, a broad range of different ex-
citation types shall be investigated. While "local’ valence excitations with single-excitation
character are generally well described by most XC functionals, several challenging cases
have been discovered. Besides the issue of double excitations and the adiabatic approxi-
mation, "] which are both directly related to the general approach of adiabatic linear-
response TDDFT rather than the underlying XC functional, conventional functionals usu-
ally underestimate charge-transfer, " Rydberg'%'!l and core excitation energies!'? sig-
nificantly. The application of hybrid functionals is known to mitigate these problems, [&4
especially range-separated hybrid functionals!'>'4 are a very popular choice to improve
upon the excitation energies of CT type, Rydberg and to some extent core excitations. 2%
However, as more and more different systems are studied, limitations in the flexibility of

range-separated hybrids, typically due to the range-separation parameter, have also be-
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come apparent. 1 For example, the optimal range-separation parameter, determined
with non-empirical tuning, exhibits a substantial dependence on the system and chro-
mophor size. [1%0151] Besides, time-dependent self-interaction corrections represent another
attempt towards an improved description of CT excitations. 212921 Nevertheless, so far
no XC functional performs excellently for all kinds of excitations and for very different
systems. [256]

For the purpose of comparing the performance of different kinds of XC functionals,
one usually relies on distinct vertical-excitation test sets.[293294 In particular, the test
sets of Thiel and co-workers!?" 2% as well as those of Tozer and co-workers!'22% are
employed in the present work. The Thiel test set covers a large variety of 167 valence
excitations of smaller organic molecules grouped into hydrocarbons, aromatics, carbonyls
and nucleobases. In total, 104 singlet and 63 triplet excitations, identified not to exhibit
valence-Rydberg mixing and thus not to be affected much by the use of diffuse basis
functions, are considered and will therefore be distinguished in the present work. As
reference data, best estimates, derived from high-level wavefunction methods such as CC3
and CASPT2 together with the TZVP basis set 2! augmented by information from still
higher levels, e.g. larger basis sets with diffuse basis functions, "l are used. In the revised
version of the test set,[?®! Thiel and co-workers updated their former theoretical best
estimates based on coupled-cluster calculations directly employing an augmented triple-
¢ basis set and on new CASPT2 results, which nonetheless only negligibly influences
the relative performance of different XC functionals. For simplicity, the original best
estimates from Ref. 287 for the TZVP basis set are thus used. Following the evaluation
of several XC functionals in Ref. 288, the 1'Bs, state of s-tetrazine is disregarded for
the statistical evaluation due to its double-excitation character, which in fact cannot be
covered by linear-response TDDFT within the adiabatic approximation. Accordingly, only
166 valence excitations (103 singlet and 63 triplet excitations) are considered. In addition
to ground-state excitation energies, energy differences between low-lying excited states
have been determined. In total, 27 So — Sy, 19 S; — T4 and 19 Ty — T energy differences
relying on the state ordering of the best estimates in Ref. 287 are considered. Oscillator
strengths are disregarded due to larger uncertainties in the currently available benchmark
data.

Rydberg and intramolecular CT excitations are in the focus of a test set developed
by Tozer and co-workers. "2 In particular, it consists of 13 Rydberg excitations of three
small molecules (CO, Ny and formaldehyde), for which experimental gas phase excitation
energies are known, as well as of 14 intramolecular charge-transfer excitations arising from

three model peptides, N-Phenylpyrrole, 4-(N,N-dimethylamino)benzonitrile and the HCI
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molecule, for which theoretical references are used. In addition, 32 valence excitations
of the already considered molecules as well as of polyacetylenes and acenes are also in-
cluded, which are nonetheless less suited as benchmark compared to those of the larger
Thiel test set. Furthermore, only singlet excitations are considered. For some of the test
set molecules, new reference values and triplet excitations are given in a later publica-
tion. 2%l Nevertheless, only a subset of the original test set was considered, so that the
original references are used in the present work. Furthermore, triplet excitations of Ry-
dberg and CT character are expected to give similar excitation energies as their singlet
counterparts due to their longe-range character. 36 Since for long-range excitations, the
difference between singlet and triplet exitations becomes very small, consideration of the
respective singlet excitations is sufficient for the purpose of the present benchmark. The
more pronounced differences for valence excitations are already covered by the Thiel test
set. Accordingly, the original test set together with the primarily used basis sets, i.e. d-
aug-cc-pVTZ for CO, N, and formaldehyde and cc-pVTZ for all other molecules, 283284
is employed. 2!

Core excitations are analyzed on the basis of another test set of Tozer and co-wor-
kers. 2%l While the complete test set features references for core excitations of first- and
second-row elements, only first-row element compounds are considered in the present
work, since relativistic effects on the respective 1s orbitals are small and can be corrected
easily. %9 In contrast, significant basis set and finite-nucleus effects on the relativistic
corrections for the 1s orbitals of second-row elements are suggested by test calculations
on the HyS molecule. Since a closer inspection of these effects would be required, which is
beyond the scope of the present work, second-row element core excitations are excluded as
references. Hence, only the 25 core excitations of first-row elements, divided into 9 core-
valence and 16 core-Rydberg type excitations, are considered. For all molecules, Dunning’s
d-aug-cc-pVTZ basis sets 83284 are used. Relativistic 1s orbital shifts for the molecules
in question are calculated at the HF /aug-cc-pCVQZ-DK 27l level (aug-cc-pVQZ-DK for
hydrogen atoms) using the one-component X2C method in its TURBOMOLE implemen-
tation. 298299 While being separately calculated for each molecule, relativistic shifts for a
given atom type are similar, i.e. approximately 0.12 eV, 0.24 eV, 0.45 eV and 0.75 eV for
C, N, O and F, respectively. One-component X2C TDHF calculations did not show any
additional effects. Statistics are provided for core excitation energies with and without
relativistic corrections. For all test sets, the molecular structures have either been taken
from the references or were recalculated with the methods described therein.

Since intermolecular CT is neither covered by the Tozer nor the Thiel test set, the

lowest-lying intermolecular CT excitation of the ethylene tetrafluoroethylene complex
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is additionally studied, by stepwise varying the intermonomer distance and compar-
ing results to the exact 1/R behavior.["!3l Monomer structures were optimized at the
B3LYP/cc-pVTZ level and are kept frozen. Excitation energies were determined using
cc-pV'TZ basis sets.

5.1.2. Considered Functionals

For the first assessment of local hybrid functionals with respect to their performance
for the calculation of vertical excitation energies, several local hybrids based on Slater-
Dirac exchange!™7! without calibration have been investigated (see Sec. 2.3 for details).
In combination with VWN correlation, [ the spin-channel t-LMF and s-LMF (see Egs.
(2.76) and (2.77), respectively) as well as their common LMF counterparts are applied. To
facilitate the discussion and the comparison between the common and the spin-channel
scheme, the same parameters are used in both cases. In particular, parameters optimized
for the spin-channel LMF with respect to atomization energies are employed, i.e. a = 0.48
for the t-LMF ¥ and 8 = 0.277 for the s-LMF. [ VWN-based local hybrids are denoted
as Lh-SVWN.

Additionally, the performance of local hybrids based on self-interaction-corrected PW92
correlation*®! (see Eq. (2.83)) is explored. In combination with the t-LMF, two different
approaches for the self-interaction correction are employed, i.e. a self-interaction-free and
a self-interaction-reduced scheme, labeled as sifPW92 and sirPW92, respectively. In the
self-interaction-free scheme, X\ in Eq. (2.83) is set to 1.0 leading to a complete removal
of one-electron short-range self-correlation. Setting A to the prefactor a of the t-LMF
reduces the short-range self-correlation locally by the same amount as the LMF removes
Coulomb self-interaction in the exchange part, resulting in the self-interaction-reduced
scheme. In both cases, a range-separation parameter of © = 0.8 a.u. is employed for
the determination of short-range correlation. Parametrizations optimized for the common
t-LMF with respect to atomization energies and reaction barrier heights are used, i.e.
a = 0.709 for sifPW92 and a = 0.646 for sirPW92. For the respective spin-channel LMFs,
again the same parameters are applied. The corresponding local hybrids are referred to
as Lh-SsifPW92 and Lh-SsirPW92, respectively.

Given the use of the kinetic energy density, local hybrids containing the t-LMF may
exhibit an additional response due to the current density (see Sec. 3.2.1 for details). While
local hybrids with the abbreviation Lh employ the usual kinetic energy density and thus

do not exhibit an additional current-density response, current-dependent local hybrids
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abbreviated by cLH apply the gauge-invariant kinetic energy density, thus leading to the
additional response terms. Use of the Tamm-Dancoff approximation is denoted as (TDA).

For illustration, the spatial behavior of the s-LMF and t-LMF in their respective Lh-
SVWN and Lh-SsirPW92 parametrizations is shown for the CO molecule along the

molecular axis (Fig. 5.1). Furthermore, the plot is roughly separated into several real-
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Figure 5.1.: t-LMF (black) and s-LMF (red) (a = 0.646 for t-LMF!'8l and g = 0.277 for s-LMF ['7])
plotted for the CO molecule along the molecular axis. Different regions in real space are
roughly classified into core, valence and asymptotic regions as well as the intermediate
space between valence and asymptotic regions.

space regions, i.e. core, valence, asymptotic and intermediate regions between valence and
asymptotic regions. Since electronic excitations are usually classified by the types of the
involved orbitals, e.g. valence, core or Rydberg orbitals, which themselves can also be
roughly related to distinct regions in real space, this approximate separation allows a di-
rect comparison between the LMF behavior and the local hybrid performance for distinct
excitation types. Note that the electron density on the border between intermediate and

asymptotic region is around 107% a.u..
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To assess the performance of the described local hybrid functionals, various other func-

tionals are considerd for comparison. This includes the semi-local functionals SVWN, [74-76]

BLYP, 92101 PBE3] and TPSSI106107 a5 well as several global hybrid functionals with
increasing exact-exchange admixture, i.e. TPSSh (10%), 124 B3LYP (20%),26:127 PBEO
(25%),"%1 BMK (42%),1"* BHLYP (50%), %) and M06-2X (54%).**% In some cases, the
asymptotic correction to the SVWN potential, i.e. LB94, 3% has also been investigated. In
addition, range-separated hybrid functionals covering different ranges of exact exchange
and exhibiting different RS parameters are employed. This includes CAM-B3LYP (19%—
65%, w = 0.33),1148] LC-wPBE (0%-100%, w = 0.40),1'43] and wB97X-D (22.2036%-100%,
w = 0.20). 1154

All calculations, except those using BMK, M06-2X and the three range-separated hy-
brids, have been done with the modified developers’ version of the TURBOMOLE program
package ¥ containing local hybrid functionals. 279272 For the TURBOMOLE calculations,
the RI-J approximation for Coulomb integrals[?*%259 and semi-numerical integration of
exact exchange!?"%?™ is applied. The latter is generally done on the TURBOMOLE m3
grid, while, according to the findings in Sec. 4.3.2,1?7% glighly enhanced and diffuse grids
are used for Rydberg and core-Rydberg excitations. Calculations with BMK, M06-2X and

the range-separated hybrids have been done with Gaussian 09. 201

5.2. Results

5.2.1. Valence Excitations: The Thiel Test Set

At first, the performance of the aforementioned local hybrids shall be investigated for the
166 valence excitations of the Thiel test set. While for singlet excitations, local hybrids
employing common LMFSs exhibit the same exchange-correlation kernel as with the cor-
responding spin-channel LMF using the same parameters, due to additional cross terms
different kernels are obtained in the case of triplet excitations. Since common LMFs are
found to always perform better than their spin-channel counterparts, for simplicity only
common LMF results are considered in the present section. The detailed comparison be-
tween common and spin-channel LMFs is postponed to Sec. 5.2.4. As for all other test
sets, the mean absolute error (MAE) and the mean signed error (MSE) are used for sta-
tistical analysis. Results for the Thiel test set, grouped by molecule and excitation types,
respectively, are provided in Table 5.1 and are graphically displayed in Fig. 5.2.
Although performance of semi-local as well as global and range-separated hybrid func-

tionals for the Thiel test set has already been studied extensively, [288:294392] regults for some
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Table 5.1.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in €V for the
valence excitation energies of the Thiel test set calculated with different exchange-correlation
functionals. Results are grouped by molecular classes and excitation type, respectively. The
numbers of excitations of each subset are given.

Hydrocarbons Aromatics Carbonyls Nucleobases Singlets Triplets — All

Functional 2 89 32 19 103 63 166
SVWN 0.37 0.46 0.55 0.87 0.57 041 051
(-0.29) (-0.37)  (-0.46)  (-0.87)  (-0.49) (-0.34) (-0.43)
BLYP 0.43 0.47 0.56 0.86 0.55 049  0.53
(-0.43) (-042)  (-0.50)  (-0.86)  (-0.49) (-0.49) (-0.49)
PBE 0.42 0.46 0.57 0.84 053  0.50  0.52
(-0.42) (-0.40)  (-0.50)  (-0.84)  (-0.46) (-0.50) (-0.47)
TPSS 0.41 0.38 0.52 0.67 042 049 045
(-0.40) (-0.30)  (-0.39)  (-0.67)  (-0.30) (-0.49) (-0.37)
TPSSh 0.45 0.32 0.43 0.36 029 049  0.37
(-0.38) (-0.18)  (-0.33)  (-0.36)  (-0.12) (-0.49) (-0.26)
B3LYP 0.45 0.29 0.41 0.21 026 045  0.33
(-0.34) (-0.16)  (-0.31)  (-0.21)  (-0.08) (-0.45) (-0.22)
PBE0 0.52 0.30 0.39 0.09 023 049  0.33
(-0.35) (-0.09)  (-0.29)  (-0.05) (0.03) (-0.49) (-0.17)
BMK 0.34 0.28 0.31 0.25 032 024  0.29
(-0.02) (0.15)  (-0.16) (0.25) (0.23) (-0.18)  (0.07)
BHLYP 0.73 0.46 0.46 0.53 047 058  0.51
(-0.35) (0.12)  (-0.13) (0.53) (0.40) (-0.54)  (0.04)
MO06-2X 0.32 0.27 0.34 0.25 0.33 023  0.29
(0.10) (0.18)  (-0.20) (0.25) (0.21) (-0.07) (0.10)
CAM-B3LYP 0.55 0.30 0.34 0.25 029 042 034
(-0.22) (0.02)  (-0.21) (0.25) (0.19) (-0.41) (-0.04)
LC-wPBE 0.78 0.42 0.41 0.50 044 055 048
(-0.23) (0.11)  (-0.12) (0.50) (0.40) (-0.50)  (0.06)
wBITX-D 0.47 0.27 0.29 0.24 029 032 030
(-0.13) (0.06)  (-0.19) (0.24) (0.20) (-0.31)  (0.00)
Lh-SVWN 0.34 0.25 0.33 0.18 027 028  0.27
9o = erf(0.277 s) (-0.18) (-0.05)  (-0.27)  (-0.16)  (-0.04) (-0.27) (-0.13)
Lh-SVWN 0.28 0.22 0.24 0.09 024 019  0.22
gy = 0.48¢ (-0.05) 0.07)  (-0.13)  (-0.04) (0.08) (-0.14)  (0.00)
Lh-SsifPW92 0.28 0.28 0.21 0.24 0.33 016  0.27
9o = 0.709¢ (0.06) (0.21)  (0.00) (0.24) (0.26) (-0.03) (0.15)
Lh-SsirPW92 0.28 0.26 0.21 0.17 0.30 016  0.25
gy = 0.646t (0.03) (0.18)  (-0.03) (0.17) (0.22) (-0.06) (0.11)

selected XC functionals (see Sec. 5.1.2) shall be briefly discussed first to serve as back-
ground for the comparison to local hybrid functionals. Except for BHLYP and LC-wPBE;,

hybrid functionals tend to improve over semi-local functionals for singlet excitations, with
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Figure 5.2.: Mean absolute errors (MAEs) in eV of various exchange-correlation functionals for subsets
of the vertical valence excitation Thiel test set. Errors for singlet excitations are above, for
triplet excitations beneath the axis.

MAEs being closer to 0.3 eV for the latter compared to about 0.5 eV for the former. While
global hybrid functionals with an exact-exchange admixture of about 20-25%, e.g. BSLYP
and PBEO, exhibit the largest improvement upon the systematic underestimation of sin-
glet valence excitation energies by semi-local functionals, global hybrid functionals with a
larger amount of exact exchange, e.g. BHLYP and BMK, tend to overestimate singlet va-
lence excitations. Although the latter holds also true for the investigated range-separated
hybrid functionals, most-likely also due to a large average fraction of exact exchange,
except LC-wPBE, the chosen range-separated hybrids exhibit comparable results to the
better-performing global hybrids. On the other hand, BHLYP and LC-wPBE clearly em-
ploy too much exact exchange, thus leading to even worse results than the best-performing
semi-local functional TPSS. In contrast, negative MSEs, typically around -0.4 ¢V and -0.5
eV, show that semi-local functionals as well as global and range-separated hybrids system-
atically underestimate triplet excitation energies, 283294 except for the better-performing,
highly parametrized wB97X-D, M06-2X and BMK.[2%6:302 The fact, that BMK with 42%
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as well as M06-2X with 54% exact exchange admixture both perform much better than
BHLYP with 50% exact exchange, indicates that exact exchange does not play the only

major role for an accurate description of triplet valence excitations.
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Figure 5.3.: Histograms with respect to the mean signed error (MSE) in electron volt (eV) for four
different hybrid functionals, i.e a) M06-2X, b) wB97X-D, ¢) Lh-SVWN and d) Lh-SsirPW92
(both with common t-LMF). Errors are grouped within ranges of 0.1 eV and separately
plotted for singlet and triplet excitations of the Thiel test set. The counts w.r.t. MSE are
fitted against Gauss distributions.

For singlet excitations, the four investigated local hybrid functionals show a compara-
ble performance to the best global and range-separated hybrids. While the local hybrid
employing the s-LMF exhibits no significant systematical error, larger prefactors a of the
t-LMF associated with larger exact-exchange admixtures result in more positive MSEs.
Accordingly, Lh-SsifPW92 and Lh-SsirPW92 show a systematic overestimation of singlet
valence excitation energies, which nonetheless influences the respective MAEs only moder-
ately. For triplet excitations on the other hand, local hybrids employing the t-LMF clearly
outperform all other shown XC functionals, even BMK and M06-2X as best-performing
functionals of Ref. 302. This is accompanied with generally reduced MSEs, which in the
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Table 5.2.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in eV for

relative energies between the lowest-lying excited states of the Thiel test set, i.e. So — Sy,
S;1 — Ty and To — T4, calculated with different exchange-correlation functionals. The num-
bers of excitations included in each subset are given.

. So—S1 S1—-Ty To—-T4 All
Functional 97 19 19 65
SVWN 0.43 0.40 0.24 0.37
(0.06) (-0.11) (-0.03) (-0.02)

BLYP 0.40 0.34 0.14 0.31
(0.02) (0.02) (-0.04) (0.00)

PBE 0.41 0.35 0.13 0.31
(0.04) (0.06) (-0.02) (0.03)

TPSS 0.40 0.32 0.13 0.30
(0.05) (0.20) (0.00) (0.08)

TPSSh 0.37 0.36 0.19 0.32
(0.11) (0.33) (0.04) (0.15)

B3LYP 0.39 0.32 0.16 0.30
(0.14) (0.25) (0.02) (0.14)

PBEO 0.41 0.43 0.24 0.37
(0.19) (0.41) (0.07) (0.22)

BMK 0.48 0.30 0.14 0.33
(0.26) (0.27) (0.09) (0.21)

BHLYP 0.55 0.76 0.61 0.63
(0.28) (0.73) (0.19) (0.39)

MO06-2X 0.50 0.29 0.12 0.33
(0.28) (0.08) (-0.01) (0.14)

CAM-B3LYP 0.45 0.47 0.27 0.40
(0.23) (0.45) (0.11) (0.26)

LC-wPBE 0.53 0.80 0.46 0.59
(0.35) (0.79) (0.31) (0.47)

wB9I7X-D 0.45 0.37 0.22 0.36
(0.23) (0.36) (0.09) (0.23)

Lh-SVWN 0.39 0.29 0.11 0.28
go = erf(0.277 s) (0.16) (0.16) (0.03) (0.12)
Lh-SVWN 0.37 0.28 0.12 0.27
go = 0.48t (0.16) (0.12) (0.02) (0.11)
Lh-SsifPW92 0.43 0.27 0.14 0.30
go = 0.709¢ (0.23) (0.14) (0.03) (0.14)
Lh-SsirPW92 0.41 0.28 0.14 0.29
go = 0.646t (0.21) (0.14) (0.03) (0.14)

case of Lh-SsifPW92 and Lh-SsirPW92, give no significant systematic error for triplet va-
lence excitations. The s-LMF based local hybrid exhibits results comparable to wB97X-D,
the best range-separated hybrid.
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The good performance of the local hybrids is also reflected by their error histograms,
which are shown in Fig. 5.3 for Lh-SsirPW92 and Lh-SVWN (with t-LMF) in comparison
to M06-2X and wB97X-D, the respectively best-performing global and range-separated
hybrid functionals investigated in this work. Singlet and triplet excitations are separately
considered. While M06-2X exhibits a relatively broad error distribution for singlet as well
as triplet excitations, wB97X-D is characterized by clear systematic errors, i.e. an under-
estimation of triplet and an overestimation of singlet excitations. The two local hybrid
functionals on the other hand feature relatively sharp distributions with MSE maxima
close to 0.0 eV. They thus provide a more balanced description of valence excitations than
the chosen reference functionals.

A similar picture as for the fundamental excitations is obtained for the evaluation of
energy differences between the lowest-lying excited states, i.e. energies for the S; — S,,
Ty —S; and Ty — Ty transitions (see Fig. 5.2). Hence, only the main differences will be
highlighted. Semi-local functionals perform similarly as global hybrid functionals (except
BHLYP) with TPSS and B3LYP, both exhibiting an MAE of 0.3 eV, being the best func-
tionals of each group. Compared to global hybrids, range separated hybrid functionals
perform worse than for the fundamental excitations. Although local hybrid functionals
also do not improve over standard functionals for the S; — Sy transitions, they are among
a larger group of well-performing functionals for the Ty — T case and perform best (to-
gether with BMK and M06-2X) for the S; — T energy differences. 26!

In summary, the investigated local hybrid functionals, especially those based on the
t-LMF, provide a simultaneously accurate description of singlet and triplet valence exci-
tations, which seems to be more difficult for global and range-separated hybrids despite

a large number of empirical parameters in some cases.

5.2.2. Rydberg, Charge-Transfer and Core Excitations: The
Tozer Test Sets

While the vertical-excitation test set of Thiel considers solely valence excitations, i.e.
excitations of valence electrons into nearby antibonding orbitals, the Tozer test sets addi-
tionally include Rydberg, intramolecular charge-transfer and core excitations, 2% which
shall be discussed in detail in the present section. On the other hand, the renewed dis-
cussion of valence excitations on the basis of the Tozer test sets is omitted due to its
significantly smaller number and diversity of valence excitations compared to the Thiel
test set. Although the number of Rydberg, charge-transfer and core excitations is also

limited, it nonetheless allows the identification of weaknesses of the local hybrid func-
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tionals, again in comparison to some standard XC functionals. MAEs and MSEs of the
investigated functionals for the different excitation types considered in the Tozer test sets

are given in Table 5.3 and are visualized in Fig. 5.4.
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Figure 5.4.: Mean absolute errors (MAEs) in eV of various exchange-correlation functionals for the
vertical excitation test sets of Tozer and co-workers. For core excitations, non-corrected
reference values are taken.

Difficulties in the treatment of Rydberg excitations arise from the necessity to simul-
taneously describe the very diffuse Rydberg orbitals, into which electron density is trans-
ferred, and the less diffuse valence orbitals, from which the density originates. While the
former require a large amount of exact exchange to minimize self-interaction errors, the
latter benefit considerably from correlation contributions included in semi-local function-
als. As a consequence, the investigated semi-local functionals exhibit systematically too
low Rydberg excitation energies with MAEs being close to 2 eV. TPSS and SVWN perform
slightly better than the two employed GGA functionals. The inclusion of exact exchange
clearly reduces this strong underestimation, which in the case of hybrid functionals with
lower amounts of exact exchange, e.g. TPSSh, BSLYP and PBEQO, is nonetheless not suf-
ficient for a complete removal. On the other hand, BHLYP as best-performing global
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Table 5.3.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in brackets) in €V for the
Tozer test sets calculated with different exchange-correlation functionals. For core excita-
tions, values are given without and with relativistic correction of the 1s orbitals (before and

after the slash, respectively). The numbers of excitations are given in addition.

B—— Vilewe Rydbeg T Core
SVWN 0.37 1.70 2.65  23.85/23.61
(-0.35)  (-1.70)  (-2.65) (-23.85/-23.61)
BLYP 0.41 2.03 2.64  20.16/19.93
(-0.39)  (-2.03)  (-2.64) (-20.16/-19.93)
PBE 0.36 1.84 2.61  20.77/20.53
(-0.35)  (-1.84)  (-2.61) (-20.77/-20.53)
TPSS 0.30 1.66 239 17.69/17.45
(-0.23)  (-1.66)  (-2.39) (-17.69/-17.45)
TPSSh 0.26 1.25 1.90  14.34/14.10
(-0.10)  (-1.25)  (-1.90) (-14.34/-14.10)
B3LYP 0.23 1.10 146 13.14/12.91
(-0.17)  (-1.10)  (-1.45) (-13.14/-12.91)
PBE( 0.19 0.80 119 11.69/11.46
(-0.08)  (-0.80) (-1.17) (-11.69/-11.46)
BMK 0.26 0.32 0.33 5.24/5.01
(0.00)  (-0.30) (-0.28)  (-5.24/-5.01)
BHLYP 0.31 0.17 0.39 2.41/2.18
(0.08)  (0.04)  (0.10)  (-2.41/-2.18)
MO06-2X 0.28 0.40 0.28 4.25/4.02
(-0.07)  (-0.38)  (-0.04)  (-4.25/-4.02)
CAM-B3LYP 0.20 0.48 027  12.76/12.53
(0.02)  (-0.48)  (-0.18) (-12.76/-12.53)
LC-wPBE 0.22 0.13 075  18.54/18.31
(0.14)  (-0.03)  (0.74) (-18.54/-18.31)
wBITX-D 0.18 0.62 0.21 12.14/11.91
(0.04)  (-0.62)  (-0.07) (-12.14/-11.91)
Lh-SVWN 0.22 1.67 1.38  14.05/13.82
go = erf(0.277s)  (-0.13)  (-1.67)  (-1.36) (-14.05/-13.82)
Lh-SVWN 0.21 0.31 1.24 6.12/5.89
go = 0.48t (-0.01)  (-0.31) (-1.21)  (-6.12/-5.89)
Lh-SsifPW92 0.25 0.16 0.72 1.34/1.54
go = 0.709¢ (0.08)  (0.07)  (-0.66)  (1.22/1.45)
Lh-SsirPW92 0.25 0.14 0.84 0.86/0.74
go = 0.646t (0.06)  (-0.02)  (-0.79)  (-0.71/-0.48)

hybrid provides a very low MAE together with virtually no systematic error. Apparently,

50% exact exchange represents a good compromise between the requirements of valence

and Rydberg orbitals. Hence, significantly larger exact-exchange admixtures would gen-
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erally result in overestimated Rydberg excitations. Most likely due to the larger number
of parameters included in the gradient expansion of the exchange-correlation hole, BMK
and M06-2X nonetheless show negative MSEs. Nevertheless, among the studied global
hybrids, these two provide the best balance between the demands of Rydberg and valence
excitations.

Due to the inclusion of larger fractions of exact exchange, especially in the interelec-
tronic long-range, the three range-separated hybrid functionals significantly improve over
global hybrids with lower-exact exchange admixtures. While LC-wPBE exhibits a very
low MAE together with no significant systematic error, the other two range-separated
hybrid functionals show MAEs even worse than M06-2X. In addition, all Rydberg excita-
tion energies are underestimated. Especially, the relatively bad performance of wB97X-D
compared to LC-wPBE is notable, since both functionals employ 100% exact exchange at
long range. Here, the main difference lies in the range-separation parameter, which is 0.2
a.u. for wB97X-D compared to 0.4 a.u. for LC-wPBE. The latter thus features a faster
increase of exact exchange with respect to the interelectronic distance, which suggests,
that the Rydberg excitations from the Tozer test set depend to a large extent on an inter-
mediate interelectronic distance and not predominantly on the correct asymptotics. 250!
In comparison to a recent TDDFT study of Isegawa et al.,’%! where the three investi-
gated range-separated hybrid functionals performed similarly well for Rydberg excitations,
larger differences are thus observed in the present work, which with high probability, are
related to the fact that the Tozer test set considers more higher-lying Rydberg states than
the other studies. [303-309]

Turning to local hybrid functionals, one should first note the different meaning of
asymptotic region’ compared to range-separated hybrid functionals. While in range-
separated hybrids, asymptotic regions refer to large interelectronic distances, which is
generally the case for Rydberg excitations, the term ’asymptotic region’ in local hybrid
functionals has a different, real-space meaning, i.e. it refers to regions farther away from
the valence (cf. Fig. 5.1), which in fact are sampled by Rydberg excitations. Local hy-
brid functionals nonetheless show a somewhat similar behavior as range-separated hybrid
functionals. That is, Lh-SVWN with the s-LMF does not improve the analyzed Ryd-
berg excitation energies, even though it features 100% exact exchange in asymptotic one-
electron regions, even compared to SVWN. In contrast, t-LMF-containing local hybrids,
which do not exhibit the correct asymptotic behavior, but a steeper change in the inter-
mediate region (cf. Fig. 5.1), perform strikingly better. While Lh-SVWN with t-LMF and
a = 0.48 gives still overall slightly too low Rydberg excitation energies (MSE -0.31 eV),
both Lh-SsifPW92 and Lh-SsirPW92 with their larger a values may be considered to pro-
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vide essentially perfect agreement with the reference Rydberg excitation energies (Table
5.3). 28 Compared to the s-LMF with its exact asymptotic behavior, this suggests that in
a real-space sense predominantly the intermediate range between valence and asymptotic
regions is sampled by the considered Rydberg excitations. This is similar to the finding for
range-separated hybrids that the intermediate interelectronic region is most important.
Apparently, local hybrids with a scaled t-LMF provide a systematically correct behavior
in this region, for which exact properties are, however, largely unknown. 23

Besides different XC functionals, the influence of the XC potential has been studied
for Rydberg excitations by employing the LB94 %! correction to the SVWN potential to
ensure the correct asymptotic —1/r behavior. For the Rydberg excitations of the Tozer
test set, the MAE of SVWN is dramatically reduced from 1.7 €V to 0.18 eV using the
LB94 correction. However, this is accompanied by an increase of the MAE for valence
excitations from 0.37 eV to 0.71 eV, which is related to the fact that the LB94 model
affects the potential over a large spatial region rather than correcting only distinct regions.
More recent developments such as the '"HOMO level depopulation’ appear to improve
Rydberg excitations without deterioration of valence excitation energies,*° but have
not been investigated in the present work. In this context, it is noteworthy that local
hybrid functionals with 100% exact exchange in asymptotic regions guarantee only the
correct asymptotic behavior of the energy density, while the potential generally decays
as —c¢/r with 0 < ¢ < 1, which can be shown easily for a one-electron system, but is not
trivial for many electron systems.*"1%l The real-space behavior of the LMFs (e.g. Fig.
5.1) nonetheless remains a useful guideline for the interpretation of the performance of
different local hybrid functionals.

Charge-transfer excitations constitute another challenging class of electronic excita-
tions, which is characterized by a charge separation in the excited state, often coming
along with a small overlap between the initial and final molecular orbital of the excited
electron.®7 Since the interaction between the separated charges exhibits a particularly
non-local character, especially for long-range CT excitations, 3%l large admixtures of
non-local exact exchange are essential to reproduce CT excitation energies.!! Accord-
ingly, semi-local XC functionals perform particularly poorly in this case (Table 5.3), with
excitation energies being systematically underestimated by more than 2 eV. Again, TPSS
shows slightly smaller errors than the two GGAs and SVWN. Similar to Rydberg ex-
citations, larger exact-exchange admixtures improve the performance of global hybrids
for CT excitations, where M06-2X and BMK give clearly the smallest errors (Table 5.3).
Nevertheless, the CT excitations of the Tozer test set exhibit only a limited long-range

character, so that for CT excitations with more long-range character, larger errors are
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expected due to the constant exact-exchange admixture. %! Among the range-separated
hybrid functionals, wB97X-D and CAM-B3LYP both exhibit a good performance, with
MAESs being comparable to those of valence excitations. On the other hand, CT excitation
energies are systematically and significantly overestimated by LC-wPBE, most likely due
to the larger range-separation parameter. Although range-separated hybrid functionals are
thus generally able to provide improved Rydberg and CT excitation energies, [12144:293,310)
a simultaneously accurate treatment appears to be difficult. Different functionals might
perform best for one or the other excitation class. 25

Concerning CT excitations, the four studied local hybrids can neither compete with
the best global nor best range-separated hybrid functionals (Table 5.3).2% With excita-
tion energies being systematically underestimated, the two Lh-SVWN functionals exhibit
errors comparable to B3LYP and PBEQ, while better results with nonetheless negative
MSEs are obtained for Lh-SsifPW92 and LhA-SsirPW92. This is consistent with larger
prefactors a of the t-LMF, leading to an increased average amount of exact exchange. For
the subset of CT excitations, a minimal MAE for the Lh-SVWN functional is obtained
with a reoptimized t-LMF prefactor of a = 0.88 (MAE 0.32 ¢V, MSE 0.01 e¢V). While
such a functional would be competitive to the best-performing functionals studied here,
valence excitations as well as thermochemical and other ground-state properties would be
deteriorated significantly. In particular, an MAE of 0.50 eV was obtained for the Thiel test
set. Despite the limited number of rather simple local hybrids that have been investigated,
it appears that local hybrid functionals are generally not able to provide a systematical
improvement over conventional global hybrid functionals for the description of CT excita-
tions. In fact, a similar performance as for global hybrids with a certain amount of exact
exchange is observed. One possible reason could be the real-space dependence and locality
of the LMF'. In particular, the non-locality of a CT excitation, and thus the necessity to
include excact exchange, is determined by its long-range character in the interelectronic
space. In contrast, the LMF distinguishes only between different regions in real space. For
example, local hybrid functionals thus do not discriminate between antibonding orbitals of
the same bond and antibonding orbitals of an equivalent bond being farther away, which
is the inherent difference between valence and CT excitations. Hence, in the case of local
hybrids, CT excitations might be more affected by the on average increased amount of
exact exchange rather than by a specifically improved exact exchange admixture. A fur-
ther discussion of the CT problem is provided in Sec. 5.2.3 on the basis of intermolecular
CT excitations, which are not considered in the Tozer test sets.

As last excitation class included in the Tozer test sets, 1s core electron excitations of

first-row elements shall be discussed. Besides usually non-neglible relativistic shifts of or-
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bital energies (cf. Sec. 5.1.1), core orbitals in general feature high electron densities due to
their confinement to small volumes. The resulting domination of exchange over correla-
tion thus requires larger amounts of exact exchange to avoid self-interaction errors due to
semi-local exchange functionals, ! which as a consequence, systematically and dramat-
ically underestimate core excitation energies. So far, larger exact-exchange admixtures
are realized by increasing the constant prefactor of global hybrids, %! by introducing
an additional, tailored short-range correction within range-separated hybrids?* or by
employing orbital-specific hybrid functionals featuring larger amounts of exact exchange
for core orbitals. 135138149 In particular, the BH®*LYP global hybrid functional with a
reoptimized constant exact-exchange mixing of ¢ = 0.58 has been found to perform best
for first-row elements without relativistic corrections.*! Alternatively, constant semi-
empirical shifts to core excitation energies are applied to account for the various errors
regarding functional, basis set and relativistic effects. [212:311-313]

MAEs and MSEs (with and without relativistic corrections) for the core excitations of
the Tozer test set obtained with all so far discussed XC functionals are given in Table
5.3. As expected, semi-local functionals exhibit a systematic pronounced underestimate
of around 17-24 eV, which is reduced to 11-15 eV for ’standard’ global hybrid functionals
with moderate exact-exchange mixing, such as BSLYP and PBEO, and to 4-6 eV for BMK
and M06-2X. Exhibiting an MAE lower than 3 eV, BHLYP shows the best performance.
Employing a reoptimized mixing parameter of ¢ = 0.58 in the abovementioned BH***LYP
functional, MAEs even smaller than 1 ¢V were obtained. ! While long-range corrected
hybrid functionals, as those considered in the present work, do not improve over standard
global hybrids, specifically adjusted short-range corrections are able to provide MAEs
down to 0.3 V.12l Nevertheless, relativistic (see Sec. 5.1.1) effects were not considered
in Ref. 290 and thus might be erroneously incorporated into the short-range-separation
parameter.

Turning to the local hybrids, Lh-SVWN combined with the s-LMF exhibits a similarly
pronounced underestimate of core excitation energies as the standard global and range-
separated hybrid functionals. This can be explained by a distinct ’dip’ of the s-LMF and
thus little exact exchange in the core region (Fig. 5.1). In contrast, the t-LMF provides
large exact-exchange admixtures in core regions, thus leading to a dramatically reduced
MAE of around 6 eV for Lh-SVWN with a t-LMF prefactor of a = 0.48. The larger a
values of the Lh-SsifPW92 and Lh-SsirPW92 functionals finally provide small positive
or negative MSEs and MAEs (Table 5.3) in the range of the abovementioned specialized
functionals. Notably, Lh-SsifPW92 overshoots somewhat, whereas Lh-SsirPW92 is still
slightly too low. A t-LMF prefactor between those two values is thus expected to provide
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even smaller errors, while the performance for thermochemistry and the other excitation
types should be deteriorated only slightly. A specific large admixture of exact exchange
in the core region (in real space), as can be ensured by local hybrids employing suitable
LMFs, is thus of tremendous importance for core excitations. Compared to other hybrid
functionals, this is a particular advantage of the local hybrid approach. In this context, it is
noteworthy, that already rather simple local hybrid functionals (with only one or two em-
pirical parameters), optimized only for thermochemical kinetics with no special attention
to TDDFT applications, dramatically improve over all other investigated XC functionals,
with errors being even competitive to those of specifically designed XC functionals.
Summarizing the performance for the complete Tozer test set, the Lh-SsifPW92 and
Lh-SsirPW92 local hybrids provide the best accuracy over a wide set of difficult excitation
classes (core, valence and Rydberg) of any 'non-specialized’ studied XC functional, while
the improvement for CT-type excitations is insufficient, with performances being inferior

to the best available functionals.

5.2.3. Intermolecular Charge-Transfer Excitations

While intramolecular charge-transfer excitations, which usually exhibit only a limited
long-range character, already appear to be a great challenge for local hybrid function-
als (see Sec. 5.2.2), intermolecular charge-transfer excitations, which often show a more
pronounced long-range character, are not included in the Tozer test sets and shall thus
be investigated more closely. Therefore, a widely used model case is employed, which is
particularly difficult for standard functionals, &3] i.e. the shift of the first charge-transfer
excitation energy of the ethylene tetrafluoroethylene complex with respect to the inter-
monomer distance R. Excitation energies relative to an intermonomer distance of R = 5.0
A are shown in Fig. 5.5 for some of the investigated XC functionals. In addition, asymp-
totic values for an infinite monomer distance are given in parentheses. Besides TPSS,
B3LYP, BHLYP and HF, each featuring a different amount of constant exact exchange,
three local hybrid functionals are shown, i.e. Lh-SsirPW92 (a = 0.646), Lh-SVWN using
the t-LMF and the optimized prefactor of a = 0.48 as well as Lh-SVWN employing an
unscaled t-LMF. Numerical data for the other local hybrid functionals can be found as
supplemental information in Ref. 286. The experimental reference value of 12.5 eV for
an infinite monomer distance corresponds to the difference between the ionization po-
tential of tetrafluoroethylene and the electron affinity of ethylene. 313 Furthermore, the

theoretical 1/R behavior of the charge-transfer excitation energy is given as reference.
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Figure 5.5.: Relative computed lowest charge-transfer excitation energies (in €V) for the ethylene
tetrafluoroethylene complex as function of the intermolecular distance compared to the
excitation energy at 5.0 A. The asymptotic values are given in paranthesis below the curves.

Semi-local functionals dramatically underestimate the asymptotic CT excitation energy
by more than a factor of 2. Furthermore, the asymptote is reached at too short distances,
which reflects the significant deviation from the correct Coulombic 1/R behavior of the
CT excitation energy. '3l While long-range separated hybrid functionals have been shown
to be able to provide accurate asymptotic values, 'l large exact-exchange admixtures are
required within global hybrid functionals to get close to the desired behavior. That is,
even BHLYP, the best-performing global hybrid for the intramolecular charge-transfer
excitations of the Tozer test set, exhibits a too low fraction of exact exchange. On the
other hand, HF employs too much exact exchange, although it satisfies the exact 1/R
increase for longer distances. The employed Lh-SVWN (a = 0.48) and Lh-SsirPW92 local
hybrid functionals perform only somewhat better than BSLYP. Even Lh-SVWN with an
unscaled t-LMF is only slightly better than BHLYP and still more than 1.7 eV below the
exact asymptotic value, in spite of 100% exact exchange in one-electron regions and in the

low-density limit. 26! Furthermore, also for larger intermonomer distances, the theoretical
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1/R increase is not observed, which may be related to the incorrect asymptotic behavior
of the local hybrid potential (see Sec. 5.2.2). Regarding the unscaled t-LMF as limiting
case, i.e. all meaningful LMFs should provide only less exact exchange, local hybrids
without a correlation functional, allowing even more exact exchange, are thus not able to
provide accurate intermolecular charge-transfer excitations, which supports the previous
argument (see Sec. 5.2.2) that local hybrid functionals in general do not improve over
global hybrid functionals with larger fractions of exact exchange. For the chosen example,
it can be simply argued that neither the HOMO (highest occupied molecular orbital) of
ethylene nor the LUMO (lowest unoccupied molecular orbital) of tetrafluoroethylene are
anywhere close to the low-density limit. Hence, the behavior in one-electron regions, as
screened by local hybrids, may not be decisive.

Extensions such as range-separated local hybrids?™ and local range-separated hy-
brids, ' which combine the ideas of range-separated and local hybrid functionals, rep-
resent one possible solution to combine the excellent performance of local hybrids for a
wide range of different excitation classes with the benefits of range separation for CT-type

excitations. [256]

5.2.4. Additional Effects

In this section, several further aspects important for local hybrid TDDFT calculations,
which were disregarded so far, shall be explored in detail. This includes the difference be-
tween common LMFs and their spin-channel counterparts as well as effects of the current-
density response within the ¢LH functionals, which employ the gauge-invariant kinetic
energy density. Furthermore, the effect of the Tamm-Dancoff approximation (TDA) is
evaluated, which is frequently used in TDDFT and was suggested to provide improved
triplet excitations. 29

Due to the fact that all studied excitations exhibit a closed-shell ground-state, com-
mon LMFs give identical results for singlet excitations as their spin-channel counterparts,
provided the same parameters are used. For triplet excitations on the other hand, results
differ even with the same parameters. This is shown in Table 5.4 for the triplet excita-
tions of the Thiel test set, for which the common LMFs perform systematically better
with MAEs being reduced up to 0.10 eV. This is related to the fact that, due to the
use of total rather than spin quantities in common LMFs, the LMF of one spin channel
partially includes opposite-spin quantities. According to Eq. (2.75), this results in addi-

tional cross-terms simulating some opposite-spin non-dynamical correlation, ¥l which is
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apparently beneficial for an accurate description of triplet excitations and of open-shell

states in general.

Table 5.4.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in eV for
the triplet excitations of the Thiel test set calculated with different local hybrid functionals
using spin-channel LMFs and their common-LMF counterparts.

Hydrocarbons Aromatics Carbonyls Triplets

Functional 13 36 1 63
Lh-SVWN 0.37 0.29 0.46 0.35
go = erf(0.277 s,,) (-0.37) (-0.29) (-0.46) (-0.35)
Lh-SVWN 0.23 0.25 0.41 0.28
9o = erf(0.277 s) (-0.23) (-0.24) (-0.41) (-0.27)
Lh-SVWN 0.27 0.22 0.39 0.27
9o = 0.48t,, (-0.27) (-0.21) (-0.39) (-0.26)
Lh-SVWN 0.14 0.18 0.26 0.19
go = 0.48t (-0.07) (-0.11) (-0.26) (-0.14)
Lh-SsifPW92 0.31 0.20 0.37 0.26
go = 0.709t, (-0.31) (-0.14) (-0.37) (-0.22)
Lh-SsifPW92 0.12 0.17 0.17 0.16
go = 0.709¢ (-0.01) (0.02) (-0.17) (-0.03)
Lh-SsirPW92 0.31 0.20 0.37 0.26
go = 0.646t, (-0.31) (-0.16) (-0.37) (-0.24)
Lh-SsirPW92 0.13 0.17 0.19 0.16
go = 0.646¢ (-0.03) (-0.01) (-0.19) (-0.06)
Lh-SsirPW92 (TDA) 0.12 0.16 0.19 0.16
go = 0.646t, (0.01) (-0.03) (-0.19) (-0.05)
Lh-SsirPW92 (TDA) 0.22 0.21 0.10 0.19
go = 0.646t (0.18) (0.08) (-0.06) (0.07)

Notably, this systematic improvement for common over spin-channel LMFs does not
hold, when the TDA is used (shown in Table 5.4 with Lh-SsirPW92 as an example).
Here, the spin-channel LMF gives better results than the common LMF, with errors be-
ing comparable to those of the common LMF within the full TDDFT scheme. This can
be explained by the fact that, in the case of the Thiel test set, the TDA generally leads to
systematically upshifted singlet and triplet excitation energies (cf. MSE values in Table
5.5). This can improve the agreement with reference values, if excitation energies are un-
derestimated by the given XC functional, which is indicated by negative MSEs and, for
triplet excitations, is the case for most functionals. On the other hand, the performance is
obviously deteriorated, if MSEs are small or already positive in the full TDDFT scheme.
For example, the latter is the case for singlet excitations calculated with hybrid func-

tionals applying larger amounts of exact exchange (see Table 5.1), also including some
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range-separated and local hybrids, as well as for triplet excitations with the Lh-SsirPW92
functional employing a common LMF. On the other hand, the systematical upshift is
beneficial for the spin-channel counterpart of Lh-SsirPW92 (Table 5.4). It is thus clear
that the TDA will only improve agreement with benchmark data for certain situations,
where an error compensation with other approximations occurs.?® Compared to most
global and range-separated hybrid functionals, all local hybrid functionals considered in
the present work nonetheless exhibit smaller MAEs for the triplet excitations of the Thiel
set (cf. Table 5.1).

Table 5.5.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in €V for the
Thiel and Tozer test sets calculated with different XC functionals and their current-density
dependent counterparts.

Thiel Tozer
Functional Singlet Triplet ~ Valence Rydberg CT  Core-valence Core-Rydberg
103 63 32 13 14 9 19
TPSS 0.43 0.49 0.30 1.66 2.39  16.31/16.03  18.34/18.13
(-0.32) (-0.49) (-0.23) (-1.66) (-2.39) (-16.31/-16.03) (-18.34/-18.13)
c¢TPSS 0.45 0.53 0.33 1.66 240 16.34/16.06  18.33/18.12
(-0.35) (-0.53)  (-0.29) (-1.66) (-2.40) (-16.34/-16.06) (-18.33/-18.12)
TPSSh 0.30 0.49 0.26 1.25 1.90 13.32/13.04  14.82/14.61
(-0.13) (-0.49)  (-0.10) (-1.25) (-1.90) (-13.32/-13.04) (-14.82/-14.61)
c¢TPSSh 0.32 0.52 0.28 1.25 1.93  13.36/13.08  14.81/14.60
(-0.16) (-0.52) (-0.15) (-1.25) (-1.92) (-13.36/-13.08) (-14.81/-14.60)
Lh-SVWN 024 0.19 0.21 0.31 1.24 6.52/6.24 5.93/5.72
g, = 0.48t (0.08) (-0.14) (-0.01) (-0.31) (-1.21) (-6.52/-6.24) (-5.93/-5.72)
cLh-SVWN 0.23 0.20 0.19 0.57 1.25 6.62/6.34 5.94/5.73
go = 0.48¢ (0.05) (-0.16) (-0.05) (-0.57) (-1.22) (-6.62/-6.34) (-5.94/-5.73)
Lh-SsifPW92 0.33 0.16 0.25 0.16  0.72 0.50/0.67 1.73/1.94
go = 0.709¢t (0.26) (-0.03) (0.08) (0.07) (-0.66) (0.14/0.42) (1.73/1.94)
c¢Lh-SsifPW92 0.32 0.16 0.24 0.35 0.72 0.48/0.63 1.70/1.90
9o = 0.709¢t (0.24) (-0.05) (0.06) (-0.34) (-0.68) (0.00/0.28) (1.70/1.90)
Lh-SsirPW92 0.30 0.16 0.25 0.14 0.84 1.60/1.33 0.50/0.46
go = 0.646t (0.22) (-0.06) (0.06) (-0.02) (-0.79) (-1.60/-1.33) (-0.29/-0.08)
cLh-SsirPW92 0.28 0.17 0.23 0.38  0.85 1.74/1.46 0.50/0.46
go = 0.646¢ (0.20) (-0.08) (0.03) (-0.38) (-0.81) (-1.74/-1.46) (-0.30/-0.09)
Lh-SsirPW92 (TDA) 0.40 0.19 0.26 0.15 0.84 1.59/1.31 0.50/0.46
go = 0.646t (0.37) (0.07) (0.18) (0.00) (-0.75) (-1.59/-1.31) (-0.28/-0.07)

In Table 5.5, effects of using the gauge-invariant kinetic energy density, coming along
with an additional response of the current density (see Sec. 3.2), are evaluated for the
Thiel and Tozer test sets. Note again, that the current-density-dependent counterparts
of the XC functionals are indicated by a prepended ’'c¢’. Obviously, GGAs and the Lh-
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SVWN functional with the s-LMF are not affected by this current dependence. Hence, the
evaluation is restricted to t-LMF containing local hybrids as well as TPSS and TPSSh as
reference. For the latter two XC functionals, inclusion of the current-density dependence
has only a minor influence. In good agreement with a previous study, " individual er-
rors differ by less than 0.04 eV. Local hybrid functionals exhibit a similar picture with
the exception of Rydberg and core-valence excitations, which in average, are systemati-
cally downshifted by more than 0.25 eV and 0.10 eV, respectively. Those larger deviations
for these two excitation classes can be explained by considering the spatial behavior of
the LMF for their initial and final state orbitals. As discussed above, the description of
low-lying Rydberg excitations requires a balanced treatment of the valence orbitals, from
which the electron is excited, and of the target Rydberg orbitals, which predominantly
depend on the intermediate spatial region (Fig. 5.1). Similarly, core and valence orbitals
are both sampled by core-valence excitations. While the t-LMF gives large exact-exchange
admixtures in core and asymptotic regions, few exact exchange is provided in valence re-
gions. In the intermediate regions between the valence and the other two regions, which
are in fact sampled by the two excitation classes in question, the t-LMF features steep
changes, which appear to cause significant changes in the relative exact-exchange dis-
tribution through the additional LMF response term in (3.46) (see also Eq. (3.47)) and
thus affect the respective excitation energies significantly. In the case of 7-dependent meta-
GGAs, the inhomogeneity parameter ¢ shows the same steep change as the t-LMF of local
hybrids. However, it is not multiplied by exact but by local exchange, which does not affect
Rydberg and core-valence excitations much. On the other hand, valence, charge-transfer
and core-Rydberg excitations do not share this behavior, since intermediate regions with
steep changes of the LMF are expected to be less relevant. In the case of core-Rydberg
excitations, also a compensation between the steep LMF changes between core and va-
lence regions and between valence and asymptotic regions is possible. Nevertheless, the
observed results suggest that the effect of the current-density response for LMFs involv-
ing the gauge-invariant kinetic energy density becomes significant for excitations probing

widely different LMF values for initial and final state densities. 23]

5.3. Conclusions

The results presented in the current chapter represent the first evaluation of the perfor-
mance of local hybrid functionals for vertical excitation energies. Besides the ethylene
tetrafluoroethylene complex for the investigation of intermolecular charge-transfer excita-

tions, the vertical-excitation test sets of Thiel et al. and Tozer et al., which cover valence,
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intramolecular CT, Rydberg as well as core excitations, have been employed. For singlet
valence excitations, the current local hybrid functionals are on par with state-of-the-art
global hybrid functionals, while the best-performing local hybrids exhibit significantly
better results for triplet valence excitations. For the latter, especially common LMFs have
turned out to give systematically better results, which can be related to the additional
inclusion of spin-opposite static correlation contributions. Concerning the other excitation
types, local hybrids are able to provide a systematical improvement of Rydberg and core
excitations, if the LMF gives an adequate exact-exchange admixture in distinct regions of
real space. On the other hand, CT excitations are only comparably well described as with
common global hybrid functionals. Regarding other influences, Rydberg and core-valence
excitations calculated with local hybrids employing the t-LMF have been identified as
the first cases, for which the inclusion of the current-density response to ensure gauge in-
variance of the kinetic energy density makes a significant difference. In contrast to many
other XC functionals, local hybrid functionals appear not to benefit from the TDA, even
in the case of triplet excitations, which indicates that local hybrids are generally able to
provide accurate vertical excitation energies without the necessity of relying on the error

compensation provided by the TDA.
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Functions

In the current chapter, the development of new calibration functions (CFs), which be-
sides the LMF, represent one of the main building blocks in local hybrid functionals, is
presented. First, a new general derivation scheme for calibration functions is introduced,
on the basis of which new GGA and meta-GGA based CFs will be derived. For the de-
termination of the free CF parameters, a new optimization procedure is applied, which
relies on the correct description of the dissociation of noble gas dimers. Finally, the perfor-
mance of the new calibration functions is evaluated and analyzed on the basis of the new

optimization procedure. The present chapter thus reproduces theory and results already
published in Ref. 315.

6.1. Derivation of Calibration Functions

6.1.1. Calibration Functions via Integration by Parts

While previously derived calibration functions (see Sec. 2.3.3) were constructed employing
either a coordinate transformation of the exact-exchange hole or the divergence of a
vector field, where the vector field is chosen to satisfy known properties of exchange
functionals, 21971 the starting point for the present derivation scheme is the exchange
functional itself. Following Eq. (2.55), exchange functionals can usually be written in

terms of an integration of exchange energy densities

E,,= /ex,g(r)dr . (6.1)

As a first step, it is assumed that the energy density in Eq. (6.1) can be partitioned into

a scalar product of two vectors, one of which is assumed to be the gradient of a scalar.
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The exchange energy and its transformation by a partial integration are then given by

/emﬁg(r)dr = /uT(r) -Vo(r)dr = —/VTu(r) -o(r)dr . (6.2)

According to the necessary condition (2.84), the subtraction of the last from the middle

term in (6.2) allows the construction of a CF by

/Gg(r)dr = / [u'(r) - Vou(r) + V' u(r) - o(r)] dr
= /VT [u(r) - v(r)]dr =0, (6.3)

which coincides with the formula for the divergence of a vector field in Eq. (2.86), with
W, (r) = u(r) - v(r). Since a partitioning according to Eq. (6.2) is generally possible with
GGA and meta-GGA functionals, Eq. (6.3) can be used directly to construct several new
semi-local calibration functions embodying the same approximations as the underlying
semi-local exchange functional. Hence, in contrast to previously derived CFs, no further
assumptions have to be made besides the choice of the underlying exchange functional.
The new approach thus reveals the close relationship between the CF and the exchange
functional, accompanied by further understanding of the reqired CF properties. In par-
ticular, calibration functions based on GGA and 7-dependent meta-GGA exchange will
be derived in the present work. For brevity, the space variable r will be omitted in the
following sections of the chapter.

In this context, it should be noted that integration by parts in general is frequently
applied in GGA and GEA exchange and correlation functionals to get rid of the density
Laplacian. Classical examples are the theoretical determination of the GEA expansion
parameter 3 in Eq. (2.60) on the basis of the gradient expansion of the Fermi hole [*°!
or the transformation of the original Laplacian-dependent LYP functional™Y into its
Laplacian-free version.['9?l In recent attempts, even a replacement of a certain fraction
of GGA exchange by a Laplacian-dependent energy density has been suggested, arguing
that this may suppress oscillations of the corresponding XC potential. 16l Accordingly,
the addition of the underlying CF to its related GGA exchange functional may thus also
be regarded as a partial step back, which is assumed to improve the compatibility of the

resulting exchange energy density with exact exchange.
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6.1.2. First-Order GGA Calibration Functions

Following Eq. (2.65), GGA exchange energies can be generally expressed as
B = B0~ [ 1P (s2) - st

= Eﬁ?A — %/w - Vpedr (6.4)
o

where the reduced spin density gradient s, is given by Eq. (2.64) and F'(s,) denotes the
damping function, also known as real-space cut-off function (for details see Sec. 2.2.4).
For example, the damping functions for B88°2 and PBE!"3! exchange are given by Egs.
(2.66) and (2.67), respectively. While the leading LDA exchange term in (6.4) does not
contain any scalar products of vectors and is thus not suited for the construction of a
CF via Eq. (6.3), the GGA correction, i.e. the second term on the right-hand side of the
equation, can be rewritten according to Eq. (6.2) by taking

u=

1 F(sy)-Vp,

p‘;/ 3 ’ i

Introducing a numerical prefactor f; for fitting purposes, this provides the CF

F .
cm = fogr {—(302 WU} , (6.6)
o kQ pU/3

which shall be referred to as first-order calibration function (indicated by the superscript
in Ggl)), since the integration-by-parts scheme has been applied once. Basically, the nu-
merical prefactor f; can be regarded as variable shifting the original exchange energy
density to its integration-by-parts transform. In general, it is nonetheless not restricted
to values between 0.0 and 1.0.

In an explicit form, Eq. (6.6) reads

VIiVp, 1V
Gz(rl)_ﬁ' F(Srf)'( 1 - 4J'vp0 +
k2 pa/s 3 pa/s
dF (s, \VAWR 1 4V,
So d(s )< 17, p1/3’v7m/72_§ 4;2 'VIOU)] ) (67)
So Yoo * Po Po
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which can be expressed in a more compact way

Ggl) — fl . /0‘;/3 . |:F (30) : (QJ - %33) + S5 - dFdisd) . (pa - é32):| (68)

by introducing the reduced spin density Laplacian and the reduced spin density Hessian

1 ViV,
o = ﬁ?’ (6.9)
1 770' oo
Do = Eé% y (610)
Yoo * Po
respectively. Here, the quantity 7, ,, is defined as
No,0s = V' po - V'V py -V, (6.11)

and can be viewed as spin density Hessian projected onto the spin density gradient.
Further relations of the reduced spin density Hessian to known DFT quantities as well as
necessary extensions of the current local hybrid implementation due to the incorporation
of this new semi-local quantity will be disscussed in the Appendix, sections A.1 and
A2, respectively. Note that Eq. (6.11) and the CF of Ref. 197 essentially coincide in the
case that the Gaussian damping function (2.92) is employed. Only the definition of the
numerical prefactor differs slightly. Hence, the previous CF represents one special case of

a first-order GGA calibration function within the present scheme.

6.1.3. Higher-Order GGA Calibration Functions

Considering the explicit formulation of the first-order CF in Eq. (6.8), the integration-by-
parts scheme can be applied separately to its individual terms to derive new second-order
GGA CFs in the same way as done above for the first-order CF on the basis of the
original energy density. The second term of Eq. (6.8) simply represents the original GGA
exchange energy density scaled by a factor, so that merely the original first-order GGA

CF is obtained again. The same occurs for the first term with the partitioning

o Pl
= 12 p1/3

[

V,v=p,. (6.12)
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In contrast, the last two terms of Eq. (6.8) provide new CFs. In particular, a partitioning
of the third term into

_ N dF(s0) Vi,

TR, e T (6.13)
or equivalently of the fourth term into
Ji dF (SO') Voo 1/,
= 75 " 90 1 1 ) = Yoo 6.14
u kQ S ng- ’}/U{;—Q . pa/g v 7 ( )
both result in the same second-order GGA CF
2) _ é .oT . Vpo * So dF (SU)
Gy = 12 \V4 {fl p},/:” &s, , (6.15)

where prefactors and signs are again absorbed in the empirical parameter f,. Partitioning
the third term of Eq. (6.8) instead into

i dF(s,) VYVl

TR s, s U

u

(6.16)

would lead to computationally inefficient third derivatives of the density, which are not
considered further here. Hence, in the present work, only the second-order CF (6.15) is

considered, which in a more explicit formulation reads

1 2F (s, 4
Gg?) — fl .f2 .po_/S. |:Sz' . d—(s) . (pa_ — —82) +

ds2 37
dF (s,) 5,
el W20 _Z . 1
50 . (pa+qa 380)} (6.17)

Since the second-order GGA CF directly evolves from the first-order GGA CF by appli-
cation of the new integration-by-parts scheme, ng) can be regarded as first correction
term to G5 and should thus be used only in combination with the first-order CF. The
same holds also true for higher-order calibration functions, which can be derived easily
by subsequently applying the integration-by-parts scheme to terms of higher-order CFs.
In particular, one possible Nth-order CF (note that the present derivation scheme would
give a large variety of different higher-order CFs) with N free parameters can be derived

by generalizing Eqgs. (6.6) and (6.15) and summing the individual CF contributions up to
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order N

m=1

Lgm—lgm-1p
-VT{W‘Q/S” d (8">}dr, (6.18)

3 m—1
Do ds”

where the zeroth derivative of the damping function simply refers to the damping function
F itself. In this way, the new integration-by-parts scheme provides a theoretically infinite
series of successively more flexible CFs based on GGA exchange, which nonetheless is
expected to suffer from the same numerical issues for higher orders as GGA or meta-
GGA expansions of the exchange hole.!%! To distinguish between CFs of different orders
N, the nomenclature 'pig’ (partial integration gauge) plus the order of the expansion is
introduced. In the present work, only GGA-based CFs to first and second order, i.e pigl

and pig2, respectively, are further investigated.

6.1.4. B98-Based Calibration Functions

Since the above 'pig’ calibration functions were derived from GGA exchange, they might
not be optimally suited for the calibration of meta-GGA exchange energy densities, that
depend on the Kohn-Sham kinetic energy density 7 (see Eq. (2.63)). In fact, one of the
reasons why semi-local CFs so far were only used for the calibration of GGA exchange
energy densities!'7l is that attempts to calibrate TPSS exchange %197 with the previ-
ously derived Gaussian-damped GGA CF (see previous section) deteriorated results. 3%
Application of the new integration-by-parts scheme to 7-dependent meta-GGA exchange,
thus leading to 7-dependent CFs, represents one possible approach to solve these issues.

In particular, the semi-local meta-GGA part of the B98 exchange functional [6%

M
sl LDA
ng—/ew .Zam
m=0

has been used in the present work. Here, a,, denotes the coefficients of the Mth-order

LDA
T

w - QO’ "
T Q§)1/2] dr (6.19)

inhomogeneity expansion, e is the LDA exchange energy density, w represents the

damping function coefficient and @), is the meta-GGA inhomogeneity parameter

10 Ty 5
QU:1+_QU_ + (27

= 6.20
3 TTFo 35 ( )
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with the Thomas-Fermi kinetic energy density

3
TTFo = _k2 . pZ/S .

= (6.21)

While the zeroth-order term of the expansion (6.19) corresponds to scaled LDA exchange
and is thus not suited for the construction of a CF within the present scheme, CFs can

be derived from all higher-order terms. Nonetheless, only the first-order correction term
to LDA

AeB® = a - F(Q,) - Qo - eX24 (6.22)

T,0 T,0 )

with the parameter a; is considered in the present work for the CF construction, since
higher-order terms give only minor improvements in the underlying meta-GGA. % F

again denotes a damping function

w

F(Qy) = Qe g2 (6.23)

which in contrast to the GGA case depends on the inhomogeneity parameter @), instead

of s,. In a more explicit formulation, Eq. (6.22) reads

1/3 1/3
3/ 3 3 a1 F(Q,
Aef,?f:——( ) al-F(Qa)~p§/3—5(—) a. pﬁ/jx

2 \4rm 4 k2
1 VT L \V. . oce
5% + ViV, —2 Z VTgo}ZJ -Vro (6.24)
7 k

While the first term in Eq. (6.24) is again an LDA-like term and is thus disregarded, the
remaining three terms all result in the same CF. For the second and third term, this can
be easily seen from the fact, that those terms are similar to the first and second term of
the first-order GGA CF (6.7), which have been shown to result in the same CF, when used
within the integration-by-parts scheme (see Sec. 6.1.3). The differing damping function
argument, i.e. (), instead of s,, represents only a formal difference. The last term gives

the same result due to the relation
vpa - Z D;q (V(’DZ*LU " P + 90;,0 ’ v@q,a) . (625)
pq

Hence, either of the three remaining terms can be chosen for a partitioning according

to Eq. (6.3). Taking exemplarily the second term of Eq. (6.24) (without the numerical
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1
prefactor 5 - aq (%) / *) and applying the partitioning

o 1 F(Qa) ' vpa .
— ET LU= Py (6.26)
results in the first-order meta-GGA CF
f F QO’ : Vpa
G,(jl) = k:_; Bva (’% _ (6.27)

As for the GGA CF, a numerical prefactor f;, which in the case of the meta-GGA CF
has been merged with the numerical prefactors neglected above, is introduced for fitting
purpose. Furthermore, Eq. (6.27) differs from the GGA CF (6.6) only by the employed
inhomogeneity parameter and a different damping function, which anyway is exchangable
in general. Hence, the close relation between GGAs and meta-GGAs is also reflected by
the emerging calibration functions.

The evaluation of the divergence in (6.27) with the intermediate result

G(l) :fl . pz_/é .

g

1 2) idF (QJ) vao : VQO' (628)

F(Qo)- (q" “3%) T RTa,

reveals, that the first-order meta-GGA CF contains the gradient of ()., which itself re-
quires the calculation of the gradient of the spin density Laplacian VIV p, and thus third
basis function derivatives. To avoid third derivatives, the reduced spin density Laplacian

can be approximated semi-locally!®% as
o T D2 (6.29)

resulting in the approximated inhomogeneity parameter

17, 25, 1

)y = = e 6.30
Qo= Sy T 185 T 2 (6.30)
with its gradient
~ 1Vr, 5 7, Vp, 10 5VVTp,Vp, 10Vp,
vg, =LY% 5 7 Voo 10, [6VV'0Vp 10V (631
27—TF,U 6TTF,O’ Po 3 6 Yoo 9 Po
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The approximated meta-GGA CF then reads explicitly

dF (Q )
~ 1 10 o
GW — £ . /s, F( U). o =g N/
o fl Py Q q 380 + 3 ng X
5 10, 1 7 ,
Dy M, — —sr — = , 6.32
(6p SJ+ T 9 SO’ 47—TF,O-SO-):| ( )

where r, is defined as mixed reduced gradient of the density and the kinetic energy density

1 Vi, -Vr,

In analogy to GGA calibration functions, a theoretically infinite series of higher-order

meta-GGA CFs can be constructed via

Vg, - s2m D A" (G,

: _ , 6.34
po dQg-! 039

which will be referred to as ’tpig’ (7-dependent partial integration gauge) calibration
functions. Nonetheless, to investigate the effect of semi-local 7-dependent CFs, only the
first-order meta-GGA CF will be considered further.

Note that the restriction of the power series expansion (6.19) to first order is equivalent
to considering the second-order gradient expansion of the exchange hole, ¥ additionally
imposing exact constraints by introducing the damping function F'. Since the meta-GGA
calibration function (6.27) directly emerges from such an expansion (and approximately
also the GGA CF (6.8)), CFs, either of pig or tpig type, represent the natural formulation
for CFs, if the second-order gradient expansion of the exchange hole is assumed. Differ-
ences between different pig and tpig CFs only appear in the employed damping function,
which thus represents the main component for the construction of new CFs. In cases,
in which higher-order gradient expansions of the exchange hole'’l or higher powers of
the inhomogeneity parameter!®%! are considered, as in TPSS or HCTH, respectively, the
new integration-by-parts scheme would indeed provide different CFs, if higher-order terms
are considered. Nonetheless, it can be hoped that the first-order meta-GGA CF derived
from B98 exchange, i.e. tpigl, is already suitable for the calibration of a broader range
of meta-GGA exchange functionals. Hence, derivations of calibration functions based on
more complicated exchange functionals as TPSS, which is based on a fourth-order gradient

expansion, are disregarded in the present work.
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6.2. Optimization of Calibration Functions

6.2.1. Optimization Procedure

As in previously proposed calibration functions, 1197 the newly derived pig and tpig CFs
contain empirical parameters, which have to be fixed employing a suitable optimization
scheme. So far, two different approaches had been used. Tao et al.?!] had optimized the
three parameters of their CF (see Eq. (2.87)) by making the semi-local (TPSS) exchange
energy density reproduce the exact-exchange energy density for a number of atoms and
small diatomics. To some extent, this direct minimization of exchange energy density
differences might also eliminate static correlation contributions, required for an accurate
description of homogeneous regions in molecules, since no distinction between different
regions in real space are made. Hence, this optimization procedure may result in a sig-
nificant overcalibration. Furthermore, interrelations between the CF and the LMF within
the framework of local hybrid functionals (cf. Eq. (2.72)) are completely neglected.

For the calibration of local hybrids, Arbuznikov et al.!'"l had thus chosen a different
approach. Here, the linear prefactor of their CF (see Eq. (2.91)) was optimized together
with the LMF parameters and the prefactors of semi-local exchange and correlation cor-
rections to LDA (as in B3LYP, see Eq. (2.70)) with respect to thermochemical test sets,
after some preoptimization of the damping function parameter (see Eq. (2.92)). While a
balanced description of static correlation contributions is thus retained, it is not guaran-
teed that gauge issues are directly addressed, since strong interrelations with the other
parameters might appear. Furthermore, the fact that the CF itself integrates to 0 (see
Eq. (2.84)) suggests that the additional integral [ g,(r)-G,(r)dr should not make major
contributions to total energies. Hence, thermochemical properties might thus be more af-
fected by other parts of the functional than by the calibration function. It therefore seems
more promising to fix the free parameters of a CF to quantities that are most clearly
affected by the gauge issue.

In particular, uncalibrated local hybrid functionals generally exhibit unphysical, too
repulsive energy curves for weakly bound complexes, such as noble gas dimers. It could
be shown 9729 that even CFs with small linear prefactors are able to appreciably cor-
rect this unphysical behavior by removing spurious, typically positive, static correlation
contributions (see Eq. (2.75)).1%7 Hence, such energy curves may in principle be used
to optimize CFs. In the present work, the dissociation curves of several noble gas dimers
are thus used to optimize the empirical parameters of the new pig and tpig calibration

functions. Therefore, a suitable reference point has to be defined first. At larger distances,
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the intermolecular interaction energies between two noble gas atoms can be assumed to
be determined by nucleus-nucleus and some remaining Pauli repulsion contributions as
well as by dispersion interactions caused exclusively by non-local correlation contribu-
tions neither included in simple semi-local nor in hybrid functionals (cf. Sec. 2.2.4).13%
Static correlation is thus negligible. Additionally neglecting the dispersion contributions,
Hartree-Fock or exact-exchange-only Kohn-Sham calculations (see Secs. 2.1.2 and 2.2.2,
respectively) should accurately reproduce the remaining repulsive interactions and thus
provide a suitable reference to identify and subsequently minimize unphysical static cor-
relation contributions (cf. Eq. (2.75)) present in uncalibrated local hybrids. One implicit
consequence of this optimization scheme is that, besides the mitigation of the gauge prob-
lem, some artifacts inherent to the semi-local exchange functional are also removed. Since
the behavior of the reference energy curves nonetheless represents an accurate physical
condition (only with the restriction that the minor influence of correlation effects to the
orbitals are neglected), the removal of those artifacts can be regarded as an additional fea-
ture of the present optimization scheme. Likewise, it can be expected that the obtained
calibrated local hybrids form a good basis for the addition of non-local van-der-Waals
functionals or other dispersion corrections (see Sec. 2.2.4). [199:200

Based on these considerations, three optimization schemes are proposed, differing only
in the set of orbitals used for the reference and the local hybrid functional. The first
method (M1) uses the HF interaction energy as reference, applying the local hybrid of in-
terest without a dynamical correlation functional and orbitals being fully optimized. In the
second scheme (M2), the self-consistent HF energy is again used as reference, but the local
hybrid orbitals are now optimized in the presence of a dynamical correlation functional,
while the local hybrid interaction energy is determined without the dynamical correlation
functional to suppress spurious energy contributions. In the third scheme (M3), only one
set of self-consistently determined orbitals is used, i.e. orbitals optimized for the local hy-
brid with dynamical correlation. For this set of orbitals, the static correlation term (2.75)
is directly minimized. That is, the exact-exchange-only Kohn-Sham interaction energy is
subtracted from the local hybrid interaction energy without dynamical correlation, using
an identical set of orbitals.

As a last step, a suitable minimization parameter has to be defined to allow the opti-
mization of the CFs using the proposed schemes. The most natural choice is the use of
the absolute area between the local hybrid and the reference energy curve, as illustrated
in Fig. 6.1. In practice, n points of the dissociation curves are calculated within a distinct
interval and are exactly fitted to an nth order power series expansion. The minimization

parameter then corresponds to the absolute integral of the difference between both fit-
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Figure 6.1.: Dissociation curve (energy in kJ/mol and distance in ag) of the argon dimer calculated with
HF and an uncalibrated local hybrid functional with t-LMF (unscaled) and B88 exchange.
The difference between both curves (shaded area) represents the spurious (positive) static
correlation AF,, 4., that is minimized by calibration (see text).

ted polynomials. While this scheme is straightforward, its outcome may depend on the
applied integration range. A too small lower integration boundary, i.e. a too small inter-
atomic distance, might result in an overcalibration in regions where the chosen reference
is not well-behaved anymore, e.g. due to extensive overlap of the two atomic density dis-
tributions. 'l On the other hand, a too large upper integration boundary only increases
computation time without additional significant contributions to the integral. Besides an
integration within real space, i.e. integrating over the interatomic distance r, a second
scheme, which applies an integration over the inverse space r~!, is explored. Within the
second scheme, contributions from large interatomic distances, which are in fact very
small, are lower weighted compared to the first scheme, so that numerical noise might be
reduced. Accordingly, shorter distances receive higher weights, which might be advanta-
geous to remove the larger unphysical static correlation contributions in those regions.

Considering all possible combinations of proposed integration and reference schemes, six
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different procedures are evaluated with respect to their applicability for the optimization
of CFs.

6.2.2. Computational Details

All calculations were carried out with the local developer’s version of the TURBOMOLE
program package, 'l which contains the self-consistent implementation of local hybrid
functionals?™! together with the extension to calibration functions of pig and tpig type
(cf. Sec. A.2). As basis for the optimizations, a local hybrid functional consisting of LDA
exchange, ™7 self-interaction reduced PW92 correlation (sirPW92)[!%77 (2.83) and a
common t-LMF I (2.81) was taken. The LMF parameter a = 0.637 was obtained by
a thermochemical reoptimization with respect to G2-1P317318 atomization energies and
ionization potentials as well as BH76 reaction barriers193%! (see Sec. 7.2 for details).
For the purpose of comparability, the LMF prefactor has been kept the same for the
additionally evaluated B88[%2l and TPSS['9:197 exchange functionals. Besides the three
CFs pigl, pig2 and tpigl (cf. Egs. (6.8), (6.17) and (6.32), respectively), three different
damping functions are investigated, i.e. Gaussian damping (2.92) as well as B88- and
B98-like damping (2.66) and (6.23), respectively. While in the case of tpigl, the reduced
spin density gradient s, is simply replaced by the inhomogeneity parameter Q, for B88
and Gaussian damping, Q, is equivalently substituted by s, for B98 damping with pig
type CFs. In all calculations, def2-TZVP basis sets have been employed. [28°)

For the optimization of the CF parameters within the proposed scheme (see Sec. 6.2.1),
the dissociation curves of the argon-argon (Ar-Ar), the argon-neon (Ar-Ne) and the neon-
neon (Ne-Ne) dimer have been chosen. The mean absolute error (MAE) of the measure
described in Sec. 6.2.1, i.e. the average over the three dimers, has been used as qual-
ity measure and was thus seeked to be minimized. To ensure comparability between the
different noble gas dimers, the lower integration boundary was adjusted to give a HF re-
pulsion energy of around 14-16 kJ/mol. Starting from thus-obtained lower distances of 2.2
A, 2.6 A and 3.0 A for Ne-Ne, Ar-Ne and Ar-Ar, respectively, ten additional steps within
a range of 3.0 A have been used for the integration. Since very small interaction energies
and even smaller energy differences have to be covered, total energies had to be calculated
with high precision. Therefore, an SCF convergence threshold of 1071°E), as well as large
molecular grids have been employed to ensure the required accuracy within the semi-
numerical integration scheme used in the local hybrid implementation of TURBOMOLE.
In particular, a large 1202 point Lebedev spherical grid and a Chebychev radial grid with

a large number of 320 and 325 grid points for neon and argon, respectively, are utilized.
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This ensures a sufficient number of grid points in the region between the monomers even
for larger monomer distances, thus avoiding any oscillations in the dissociation energy
curves. 319

Lacking analytical derivatives with respect to the CF parameters, a Nelder-Mead-
Simplex algorithm 24 was used for the optimizations. To accelerate the convergence close
to the minimum, which in general is only linear, a quadratically convergent step has been
added at the end of the usual optimization (in fact, with a looser threshold), which consid-
ers all evaluation points near the actual minimum via a fitting procedure of the parameter
surface. Due to the small number of simultaneously treated optimization parameters (at

most three), results can be safely assumed to represent global minima.

6.2.3. Results

In a first step, the suitability of the six proposed schemes for the definition of the MAE
(see Sec. 6.2.1) shall be evaluated. Therefore, LDA exchange in combination with the pigl
calibration function and B88 damping is employed. The respectively minimized MAEs as
well as the corresponding optimized CF parameters are shown in Table 6.1. Since the

1 space exhibit different units, they are not

MAEs for the integration in r and in r~
directly comparable. On the other hand, MAEs for a given integration space show only
moderate variation for different reference methods (M1-M3), where the exact-exchange-
only reference (M3) gives slightly larger deviations compared to the other two methods.
Regarding the optimized CF parameters, results obtained with the M2 and the M3 method

I space. While deviations seem to be larger in the

differ just slightly, in particular in r~
r space, the overall prefactor, which is determined by the product of f; and g (cf. B88
damping (2.66)), reveals an even better correspondence for r space integration. Although
parameters obtained within the M1 scheme exhibit somewhat larger deviations from those
of the M2 and M3 method, they differ only moderately, thus illustrating the assumed
minor influence of self-consistency on the investigated noble gas dimer dissociation curves
(cf. Sec. 6.2.1). Differences between the r and r~! space methods are notable, but also
remain moderate, which illustrates the appropriate choice of the integration ranges. In
particular, the optimized damping function parameter [ exhibits systematically larger
values in r space, which however is compensated by slightly smaller values for f;. Overall,
all six methods have been found to be almost equally suited for the optimization of the
CF parameters. Nevertheless, the M3 method has the advantage, that the MAE can be
directly interpreted as residual static correlation, since the reference is calculated for the

same set of orbitals as the local hybrid functional. Hence, in the following discussion only
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6.2. Optimization of Calibration Functions

the M3 method is further used, which in favor of simplicity, is combined with r space

integration.

Table 6.1.: Mean absolute errors (MAEs) (in aq - kJ/mol for r space and in ag ' - k.J /mol for 7= space)
calculated with a local hybrid functional with LDA exchange and an optimized pigl CF with
B88 damping. Three different evaluation methods (M1-M3) with respect to two different
space coordinates (r, 7~!) are compared for optimization.

LDA —+ pigl/B88

Space Method

MAE h B —f1-8

M1 1.326  -1.009 2.932-107% 2.959-1073

r M2 1.359  -0.806 1.246-1072 1.005-10~2
M3 1473 -0.727 1.458-1072 1.060 - 102

M1 4.505-1072 -1.317 1.937-10"2% 2.552-1073
r1 M2 4.952-1072 -1.052 5.587-10"2% 5.876-1073
M3 5.897-10~2 -1.055 5.045-10~2 5.321-10"3

Before comparing different CFs, the influence of the calibration shall be highlighted for
the dissociation curves of the individual noble gas dimers. Fig. 6.2 therefore shows the
comparison between a calibrated local hybrid functional (LDA exchange with pigl CF
and B88 damping, M3 optimization in r space, cf. Table 6.1) and its corresponding uncal-
ibrated counterpart. The figure plots the unphysical static correlation AEypc as function
of the internuclear distance, starting from the selected lower boundary distance value (cf.
Sec. 6.2.2) to ensure comparability between the different dimers. Hence, a straight line on
the abscissa may be interpreted as a perfectly calibrated local hybrid. The uncalibrated
dimer curves exhibit the expected large unphysical repulsion, 729! with the curvature
varying somewhat between the complexes. The Ne-Ne dimer shows the fastest decay, the
Ar-Ar dimer the slowest. Obviously, even the simple pigl CF used for Fig. 6.2 reduces
AEyNpc appreciably, i.e. from an MAE of 12.664 ag - kJ/mol for the uncalibrated curves
to a MAE of 1.473 ag - kJ/mol for the calibrated ones. Reflecting the differences between
the uncalibrated curves, the calibrated curves also exhibit a variable behavior for the
three dimers, from a small undercorrection for Ne-Ne via essentially perfect calibration
for Ar-Ne to a slight overcalibration for Ar-Ar. It is these variations and thus the quality
and universality of the CF, that the MAE expresses.®!% In this context, it should be
noted that, beyond Ar > 2.0ay, the calibrated local hybrid exhibits essentially negligible
static correlation contributions for all noble gas dimers, which shows the effectiveness of
the calibration at larger distances.

As a next step, the ability of the various CFs derived in Sec. 6.1 to universally minimize
AFENpc in conjunction with different semi-local exchange energy densities and different

damping functions shall be analyzed. Table 6.2 provides the CF parameters f;, fo and
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Figure 6.2.: Static correlation contributions AEy pe in kJ/mol calculated for distances Ar in ag relative
to the lowest boundary distance (depending on noble gas dimer, see Sec. 6.2.2). The dotted
and full lines represent non-calibrated and calibrated local hybrid functionals, respectively.

B optimized for different combinations of exchange energy densities, basic CF forms and
damping functions together with the obtained MAEs. Regarding the various damping
functions, simple Gaussian damping exhibits the largest MAEs in combination with LDA
exchange, irrespective of the chosen CF. On the other hand, Gaussian damping provides
the lowest MAEs for B88 and TPSS exchange with the pigl form. With the more sophisti-
cated pig2 and tpigl CFs, B88 and particularly B98 damping perform better. In contrast
to the other two damping functions, Gaussian damping does not benefit from the second-
order correction term introduced in pig2, thus simply reducing the CF to pigl form. B98
damping slightly outperforms B88 damping for pig2 and tpigl, which is most pronounced
for TPSS exchange. Although this might reflect the better match of meta-GGA damping
with a meta-GGA exchange energy density, differences are small compared to the benefit
with respect to the uncalibrated local hybrid.

The performance of the different calibration functions for different exchange energy den-

sities varies relatively little. Only for the simple pigl CF, MAEs increase significantly for
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Table 6.2.: Minimized mean absolute errors (MAEs) in ag - kJ/mol and corresponding CF parameters
(f1, f2, B) in a.u. calculated with local hybrid functionals using different semi-local exchange
energy densities e;{U in combination with the pigl, pig2 and tpigl CFs and different damping
functions F. The integration method M3 in r space has been used.

sl pigl pig2 tpigl
" MAE f B MAE fi  fo B MAE fi B
B&8& 1.47 -0.73 1.46-10~2 1.41 -1.97 0.61 3.56-10"3 1.47 -14.11 2.28-10~*
LDA B98 1.59 -0.23 2.09 1.37 -0.49 0.66 6.39-10"1 1.47 -2.05 8.34-1072

Gauss 1.60 -0.19 9.13-1072 1.60 -0.19 0.00 9.13-1072 1.73 -0.15 1.08-1073
B88 1.82 -0.58 1.91-1072 1.53 -2.24 0.82 3.67-1073 1.51 -7.53 5.14-10~*

B88 B98 1.93 -0.19 2.08 1.48 -0.54 0.86 6.87-107! 1.48 -1.28 1.54-107!
Gauss  1.60 -0.20 1.44-1071 1.60 -0.20 0.00 1.44-1071 1.68 -0.15 2.06-1073
B88 1.83 -0.54 2.38-1072 1.57 -2.41 0.81 6.89-1073 1.48 -5.77 8.46-10~*
TPSS B98 2.03 -0.19 2.99 1.47 -0.59 0.93 7.10-107! 1.44 -1.08 2.24-107!

Gauss  1.53 -0.23 1.96-10~1 1.53 -0.23 0.00 1.96-10~1 1.60 -0.17 3.34-1073

B88 and TPSS exchange, with the exception of Gaussian damping. In contrast, pig2 and
tpigl calibration perform comparably well for all investigated exchange energy densities
and, except for simple Gaussian damping, which anyhow is disfavored due to its too fast
decay, exhibit clearly smaller MAEs than the previous pigl CF. Besides the effectiveness
of the second linear parameter f5 in the pig2 CF, this illustrates the potential of a tpig-like
calibration, especially for the calibration of non-LDA exchange energy densities. In par-
ticular, even the tpigl CF, although also containing only one linear parameter, exhibits
significantly lower MAEs for the calibration of B88 and TPSS exchange than pigl, which
might be related to the meta-GGA background of the tpigl CF. Giving the lowest MAEs
for the calibration of LDA and TPSS exchange, respectively, pig2 and tpigl calibration
thus clearly improve over the simple pigl CF.

Going from LDA to TPSS exchange, the damping function parameters of the calibra-
tion functions turned out to increase systematically, thus indicating an increasingly faster
decay of the damping. Within the present scheme, this means that different semi-local
exchange energy densities require slightly different calibration in the long range. Most
notably, the optimized damping function parameters § are in good agreement with the
values of the exchange functionals, upon which the CFs are based. That is, for B88 ex-
change, the pig2 CF with B88 damping exhibits a damping parameter of g = 0.0037,
while 5 = 0.0042 for the B88 exchange functional.®?l Likewise, tpigl with B98 damping
used for the calibration of B88 exchange and the B98 exchange functional have damping
parameters of 8 = 0.15 and 8 = 0.11, respectively. %! Besides a well-behaved optimization

procedure, this underlines again the close relationship between the CFs of this work and

131



6. Construction of New Calibration Functions

the underlying exchange functionals, from which they have been derived. In this context,
it should be noted that, due to different inhomogeneity parameters used in pig and tpig
CFs, i.e. the reduced density gradient s, and Q.,, which is proportional to s2, respectively,
damping function parameters represent different orders of magnitude for pig and tpig CFs.
Hence, the damping function parameter based on a distinct exchange functional is not

simply transferable to calibration functions with other underlying exchange functionals.

—e— pigl
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tpigl

T
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Figure 6.3.: Scan of the mean absolute error (MAE) in ag - kJ/mol over the damping function parameter

B of the B88 damping function calculated with calibrated (pigl, pig2 or tpigl) local hybrid
functionals with LDA exchange. For each value of 3, the other CF parameters have been

optimized.

While calibration functions optimized within the present scheme (see Sec. 6.2.1) thus
effectively minimize the unphysical static correlation in weak interaction curves, as e.g.
for the dissociation of noble gas dimers, it was previously observed that the optimal CF
parameters determined with respect to thermochemical properties may differ consider-
ably. 1972001 Besides small MAESs, a sufficient flexibility of CFs is thus very desirable. For
the evaluation of the flexibility of the three investigated CF types, mean absolute errors

within the present optimization scheme have been determined for different fixed values
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of the damping parameter 3, while the remaining parameters of the CF are reoptimized.
Therefore, LDA exchange was used together with B88-like damping. Fig. 6.3 plots the
resulting MAEs as a function of 5 for the three different types of CFs, i.e. pigl, pig2 and
tpigl. While the curves for the pigl and tpigl CFs each exhibit a distinct minimum with
steep curvature, the pig2 CF shows a much more shallow double-minimum curve with
low MAEs over a larger range of 3. As discussed above, the optimal damping parameter
for tpigl is two orders of magnitude smaller than the one for pigl due to the different
employed inhomogeneity parameters. Although the lowest MAE with pig2 is only slightly
better than with the other two CFs, the larger range of g with low MAEs and thus a
higher flexibility of the CF might be advantageous for a simultaneous accurate treatment
of weak interactions and thermochemistry. The reason for this higher flexibility is the
additional linear prefactor introduced within the second-order correction term of pig2.
The addition of higher-order corrections might provide even more flexibility. This shows
the potential of the new integration-by-parts scheme, which besides the construction of
CFs on the basis of an arbitrary GGA or meta-GGA exchange functional, allows the

systematical development of higher-order CFs.

6.3. Conclusions

Besides the search for suitable models for the local mixing function, the development
of calibration functions to mitigate the gauge origin problem (see Sec. 2.3.3 for details)
represents the most difficult task in the construction of local hybrid functionals. In the
present chapter, a novel general derivation scheme for the construction of CFs based on
an integration by parts of exchange functionals has been presented. Besides the illustra-
tion of the close relation between CFs and approximations to the exchange functional,
the new scheme thus provides the opportunity to construct a large variety of different
new CFs. In particular, new CFs have been derived on the basis of GGA as well as the
semi-local part of B98 exchange, leading to the pig and tpig type CFs, respectively. While
the first-order pig type CF, i.e. pigl, has been identified as the previously proposed CF
of Arbuznikov et al. and thus provides a more detailed theoretical understanding of the
previous model, the second-order pig and first-order tpig CFs, i.e. pig2 and tpigl, re-
spectively, represent fundamentally new calibration functions. For the determination of
their intrinsic empirical parameters, a novel optimization procedure, minimizing the un-
physical static correlation contributions in dissociation curves of noble gas dimers, which
are known to be significantly affected by the calibration of exchange energy densities, has

been additionally proposed. In contrast to previous approaches, the gauge problem is thus
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more directly tackled and an overcalibration is avoided to a large extent. Concerning the
new CFs, it could be shown that tpigl performs significantly better than the previous
pigl, although both CFs contain only one linear parameter. The additional parameter
provided by the second-order CF pig2 turned out to dramatically enhance the flexibil-
ity of the calibration function, if an appropriate damping is applied. Hence, the present
chapter provides the methodology for the construction of novel, more flexible calibration
functions as well as a general methodology for their optimization. In conjunction with the
usual thermochemical optimization of XC functionals, as will be used in the next chapter
for the development of local hybrids employing a new LMF and correlation functional,
the new optimization procedure thus opens the way for the general development of cal-
ibrated local hybrid functionals, which are expected to be better suited for the addition

of semi-empirical dispersion corrections.
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Function

While the last chapter was concerned with the construction of new calibration functions
(CFs) to mitigate the gauge problem inherent to local hybrid functionals, the present
chapter deals with the development of a new local mixing function (LMF). In the first
section, the theoretical model used for the construction of the new gt-LMF is elucidated
in detail. This also includes a modified version of the self-interaction reduced PW92 corre-
lation functional. Subsequently, the thermochemically optimized local hybrid functionals
containing the modified correlation functional either in combination with the new gt-
LMEF or the standard t-LMF' are evaluated with respect to common thermochemical and

vertical-excitation test sets.

7.1. Theoretical Model

Although being the first proposed and one of the simplest approaches for modeling the

local mixing function, "% the scaled t-LMF

) (7.1)

go(r)=a -ty (r)=a- #p(:(r)

ool =

still represents one of the most successful models for the construction of new local hybrid
functionals. 17181971 The t-LMF nonetheless exhibits several undesirable properties. That
is, it violates the correct behavior in one-electron regions for prefactors a < 1.0, which is
usually the case for thermochemically optimized prefactors, 181851971 the single empirical
parameter allows only a limited flexibility in intermediate regions between valence and
one-electron regions, which have been shown to be responsible for accurate Rydberg ex-
citation energies, and the maximum amount of exact exchange in core regions is limited
to a certain fraction determined by a irrespective of the atom type, which results in an

unbalanced performance for core excitations of atoms from different periods. Nevertheless,
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7. Construction of a New Local Mixing Function

the t-LMF represents a suitable starting point for the construction of new local mixing
functions, that are able to satisfy the above mentioned conditions.

Within the new approach of the current work, the constant scaling factor a is simply
replaced by a real-space-dependent function g, (r), which is similar to the step from global

to local hybrid functionals. This then leads to the new local mixing function

)

o (1)t (1) = g, () L e ()
0 (1) = G (1) o () = 3 () g2 s (72)

ol

referred to as gt-LMF, where the function g, (r) is responsible for the downscaling of the
t-LMF in different regions of real space and thus has to satisfy the condition

0.0< g, (r)<1.0. (7.3)

In particular, g, (r) should provide a distinct downscaling in valence regions to ensure
an adequate description of thermochemical properties. In homogeneous regions, the LMF
value is already fixed to 0.0 due to the inhomogeneity parameter t, (r), so that g, (r)
generally may take arbitrary values between 0.0 and 1.0. While in one-electron regions,
Jo (r) has to be 1.0 to guarantee 100% exact exchange, the downscaling in core regions
should account for the demand of heavier elements for larger fractions of exact exchange
due to their higher electron density at the atomic cores. Taking those considerations
into account, g, (r) can be modeled in a similar way as the local mixing function itself.

Therefore, the simple approach

o () = ———— (7.4)
has been chosen, where the dimensionless function
ho (v) = a+b-s5(r) +c-g;(r) +d-p;(r) (7.5)

contains a constant, the reduced spin density gradient s, (r), the reduced spin density
Laplacian ¢, (r) and the reduced spin density Hessian p, (r) (see Eqs. (2.64), (6.9) and
(6.10), respectively), each scaled by an individual parameter (a — d) that should be positive
to satisfy condition (7.3).

The parameter a defines the minimal value of g, (r) and thus the maximum downscaling
of the t-LMF. For example, a value of a = 0.0 allows the h, (r) function to become
0.0, if the reduced quantities exhibit zero values, which would result in g, (r) = 0.0.

On the other hand, a = 1.0 provides a scaling factor of at least 50%, while a = oo
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would simply result in an unscaled t-LMF. Hence, the parameter a is comparable to
the linear prefactor of the t-LMF and thus able to provide an adequate downscaling
in valence regions, where the reduced quantities might not be effective. The remaining
parameters b, ¢ and d determine the influence of the reduced quantities. Since the latter
all have infinite values in the low-density limit, the condition g, (r) = 1.0 in one-electron
regions is automatically satisfied, if one of their parameters is non-zero. Only the regions
identified as one-electron regions might change with different parameter sets. Due to the
antisymmetry of the spin density gradient with respect to atomic centers, the reduced
spin density gradient is zero at the atomic centers. On the other hand, p, (r) and ¢, (r)
exhibit non-zero values at the atomic centers, since the spin density Hessian is a symmetric
quantity. The combination of the three reduced quantities within the A, (r) function thus
generally allows an adjustment of the amount of exact exchange in core regions depending
on the atom as well as a fine-tuning in intermediate regions. The presented gt-LMF is
thus generally able to eliminate the abovementioned deficiencies of the t-LMF, supposed a
suitable parameter set is provided. In fact, h, (r) can be simply extended by other reduced
quantities, as e.g. the reduced kinetic energy density gradient (see Sec. A.1), to further
improve the present model. Nevertheless, for simplicity only the three abovementioned
reduced quantities are further considered in the present work.

Since common LMFs are generally known to give improved results compared to their
spin-channel counterparts (see Sec. 2.3.2), a common LMF version of the gt-LMF shall
be constructed, too. While a mixed gt-LMF

Che(t) Yoo (1) + 29007 (X) + Yot (1)
L+ h, (r) [75(r) + 70 (r)] - [0 () + por (T)]

, (7.6)

ol

9o (r) =

in which the common t-LMF is scaled by the spin-channel g, (r) function, is generally
conceivable, only the 'complete’ common gt-LMF shall be used in the present work. Hence,
h, (r) in Eq. (7.6) has to be additionally replaced by

h(r)=h,(r)=a+b-s*(r)+c-¢*(r)+d-p*(r), (7.7)
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1 Yoo (T) + 270'0" r)+ Yoo (T %
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1 ViVp, (r)+ VIV, (r
q(r) =g (r) = - ) 5/3()
[pa (I‘) + Po’ (I‘)]
1 No,oo +2- No,oo’ + No o'’ + No' oo +2- No' oo + No' o'
p(r)=p, (r) = eh 7 (7.10)
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, (7.9)

denote the reduced density gradient, the reduced density Laplacian and the reduced den-
sity Hessian, respectively, which represent the total quantity counterparts of the spin
quantities employed in the spin-channel gt-LMF (7.4).

Considering the arguments for the construction of the self-interaction-reduced PW92
correlation functional (2.83), i.e. self-correlation in the correlation functional should be
reduced to the same extent as self-interaction within the exchange functional by the local
admixture of exact exchange, the self-interaction-reduced PW92 (sirPW92) '8l functional
has to be adjusted, if it is combined with the new common gt-LMF. In particular, a mod-

ified version of the sirPW92 correlation functional, referred to as sirPW92*, is proposed
B po(r), ps(r)] = EFY2[pa(r), ps(r)] = / 9o (r) - eV [py (r), 0]dr , (7.11)

which employs the same LMF g, (also with the same parameters) as used in the local
hybrid exchange functional in the self-correlation reduction scheme. Besides an enhanced
compatibility with LMFs that are not of t-LMF type, the new sirPW92* correlation thus
also differs from the previous sirPW92 scheme, if a common t-LMF is used in the local
hybrid exchange functional. Wheras in sirPW92* the common t-LMF would also be
employed in the self-correlation reduction, a spin-channel t-LMF would be used within

the previous sirPW92 scheme.

7.2. Computational Details

Based on the newly proposed theoretical models for the local mixing function and the
correlation functional (see Sec. 7.1), two new local hybrid functionals have been con-
structed. Besides Slater-Dirac exchange, ™! both employ the new sirPW92* correlation
functional and are thus labelled as Lh-SsirPW92*. While one functional contains the com-
mon t-LMF and thus differs from the previous Lh-SsirPW92"¥l only in the correlation
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functional, which employs the common t-LMF instead of the spin-channel t-LMF for the
self-correlation correction, the second local hybrid uses the new common gt-LMF. The
free empirical parameters within both local hybrids, i.e. one with the common t-LMF and
four with the common gt-LMF, are optimized with respect to thermochemical test sets.
In particular, G2-1B17318 atomization energies (G2-1 AE) and ionization potentials (G2-
1 IP) as well as the BH76 test set, ?193%] consisting of 38 hydrogen transfer (HTBH38)
and 38 non-hydrogen transfer barrier heights (NHTBH38), are used for that purpose. The
weighted mean absolute error over the mentioned test sets is optimized, where atomization
energies and barrier heights are equally weighted with 25%, while for ionization potentials,
a weighting factor of 50% is chosen due to the generally lower sensititvity of ionization po-
tentials with respect to the choice of the XC functional, as will be seen later. G2-1 electron
affinities (G2-1 EA) are not included, to reduce the calculation cost of the optimization,
and since electron affinities appear to be reasonably well described without being included
in the optimization test set (see Sec. 7.3). For all optimizations, Ahlrichs’ def2-TZVP ba-
sis sets?! as well as the modified Nelder-Mead Simplex algorithm described in Sec. 6.2.2
are employed. To ensure positive parameter values, adequate boundary conditions are
included in the optimization algorithm.

The performance of the optimized functionals is evaluated with respect to thermo-
chemical as well as vertical excitation test sets. For thermochemistry, MAEs for G2-1
atomization energies, ionization potentials and electron affinities as well as for the bar-
rier heights of the HTBH38 and NHTBHS3S8 test sets are calculated. For comparison, the
semi-local functionals SVWN, 74761 BLYP, 921011 PBE %3] and TPSS[196:107 a5 well as the
global hybrid functionals TPSSh,?4 B3LYP,[126:127l PBEQ!'?] and BHLYP!"?"! are ad-
ditionally considered. Besides, four existing local hybrid functionals, i.e. LA-SVWN with
spin-channel t-LMF (a = 0.48)1"¥] and spin-channel s-LMF (3 = 0.277)1!%6] as well the
Lh-SsirPW92 and Lh-SsifPW92 functionals with common t-LMF and empirical prefactors
of a = 0.646 and a = 0.709, 8! respectively, are employed as well. All calculations of ther-
mochemical properties are done with the def2-QZVPPD basis set. ! For the evaluation
of the performance for vertical excitations, the test sets of Thiel 27289 and Tozer, [1%:2%]
which were already used in chapter 5, are employed. Hence, the same basis sets are used
as described in Sec. 5.1.2.

All calculations were done with the local developers’ version of the TURBOMOLE
program package, ' which contains the DFT 27 and the linear-response TDDFT imple-
mentation?? of local hybrid functionals as well as their extensions to the new common
gt-LMF and sirPW92* correlation. Modifications of the existing implementations caused

by the reduced density Laplacian and the reduced density Hessian are explained in detail
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in Sec. A.2. In all calculations, the RI-J approximation for Coulomb integrals (see Sec.
2.5.2) has been used. Numerical integration of the semi-local XC energy densities as well
as semi-numerical integration (see Sec. 2.5.3) of exact exchange within global and local
hybrid functionals were done on the TURBOMOLE m3 grid.

7.3. Results

The thermochemically optimized prefactor of the common t-LMF within the Lh-
SsirPW92* functional is @ = 0.637, which is very close to the prefactor in the previous
Lh-SsirPW92 functional. '¥ Besides a well-behaved optimization procedure, this also indi-
cates an adequate definition of the optimization parameter (see Sec. 7.2). For the common
gt-LMF, only three non-zero parameters remained after optimization, i.e. a = 1.04357,
b = 0.09032 and d = 0.02607. The optimal prefactor for the reduced density Laplacian
is ¢ = 0.00000, so that this term has no influence on the resulting LMF. This can be
explained by the fact that the reduced density Laplacian exhibits similar properties as
the reduced density Hessian. While the reduced density Laplacian considers the trace of
the density Hessian, the reduced density Hessian contains information about the com-
plete density Hessian by projecting it onto the density gradient. Apparently, only one
of those two quantities is required to effectively reduce errors with respect to thermo-
chemical test sets. Although the reduced density Hessian seems to be the natural choice,
since the complete density Hessian is considered, the reduced density Laplacian might be
preferred within other setups. Nevertheless, in the optimized common gt-LMF within the
Lh-SsirPW92* functional, only three empirical parameters are retained.

The spatial behavior of both optimized local mixing functions is illustrated in Fig. 7.1
along the molecular axis of the CO molecule. The common t-LMF shows the usual behav-
ior, i.e. low LMF values in valence regions combined with LMF values of g, (r) = 0.637
in core and asymptotic regions and steep changes in-between. In valence regions, the
common gt-LMF exhibits essentially the same behavior as the common t-LMF, which
indicates that those regions are of high importance for an accurate description of ther-
mochemical properties. On the other hand, the common gt-LMF provides only around
50% exact exchange in core regions, which coincides with the downscaling of the common
t-LMF provided by the constant parameter a in the common gt-LMF. Hence, the reduced
quantities, although generally being able to provide more flexibility in core regions, do
not affect the behavior of the common gt-LMF here. In fact, this might be an artefact of
the thermochemical optimization procedure, which does not consider properties depend-

ing on core regions. In the intermediate region between the valence and the asymptotic
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Figure 7.1.: LMF values g, (r) of the common t-LMF (black) and the common gt-LMF (red) plotted for
the CO molecule along the molecular axis with LMF parameters (see text) being optimized
for the Lh-SsirPW92* functional with respect to the combined thermochemical test set
(see Sec. 7.2). Different real-space regions are classified as described in Sec. 5.1.2.

region, the common gt-LMF shows a distinctly different behavior from the common t-
LMEF. Instead of one single steep change, the common gt-LMF exhibits two changes in
the intermediate region, where the first, steeper change is caused by the parameter a and
the common t-LMF part, while the second change, which leads to g, (r) = 1.0 in the
asymptotics, is a direct result of the new terms containing the reduced density gradient
and the reduced density Hessian. Apparently, less exact exchange is required in interme-
diate regions close to the valence, while more exact exchange is needed with an increasing
distance. Astonishingly, the common t-LMF and the common gt-LMF intersect each other
approximately in the center of the intermediate region, which indicates that the average
amount of exact exchange in these regions do not differ between both LMFs. Hence, the
common gt-LMF at least mitigates two deficiencies of the common t-LMF (see Sec. 7.1).
That is, it provides the correct behavior in one-electron regions as well as more flexibility
in the intermediate region. While the common gt-LMF in general also provides a higher

flexibility in core regions, the thermochemically optimized gt-LMF simply reduces to a
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7. Construction of a New Local Mixing Function

scaled common t-LMF in core regions. Nevertheless, this might be related to the employed
optimization test set and might thus be accomplished by considering properties that are
more sensitive with respect to core regions.

First, the performance of the optimized local hybrid functionals shall be evaluated with
respect to the employed thermochemical test sets (see Sec. 7.2). Results for all considered
XC functionals are given in Table 7.1. Although the performance of the considered con-
ventional XC functionals!® and local hybrids!!™'®l for the calculation of thermochemical
properties has already been studied extensively, they shall be briefly discussed first to
serve as background for the comparison to the optimized new local hybrid functionals.
Besides a systematic strong overestimation of atomization energies and underestimation of
barrier heights, SVWN systematically exhibits too large ionization potentials and electron
affinities. Turning to GGA and meta-GGA functionals, these problems are significantly
mitigated, although not completely removed. With an increasing amount of exact ex-
change in global hybrid functionals, MSEs become more negative for atomization energies
and more positive for barrier heights. Up to BSLYP and PBEO, this also results in gener-
ally smaller MAEs compared to the semi-local functionals. The trend is partially reversed
for larger exact-exchange admixtures, as e.g. in BHLYP. Here, atomization energies and
electron affinities are significantly underestimated due to the large exact-exchange admix-
ture, while barrier heights exhibit even smaller MAEs than with the other global hybrids.
This indicates, that a simultaneously good description of atomization energies and barrier
heights remains difficult for the simple global hybrid functionals considered in the present
work. More complicated schemes are nonetheless able to provide both. %2 Electron affini-
ties and ionization potentials appear to be weakly influenced by the admixture of exact
exchange.

Local hybrid functionals, on the other hand, are able to provide simultaneously accu-
rate atomization energies and barrier heights as well as electron affinities and ionization
potentials. While the Lh-SVWN functional employing the s-LMF exhibits MAEs more
comparable to less well-performing global hybrids, the picture changes upon turning to
local hybrids using LMFSs of t-LMF type. Here, the best results are obtained with the com-
mon t-LMF within the Lh-SsirPW92 and the Lh-SsifPW92 functional. Besides low MAEs
for electron affinities close to 2.0 kcal/mol, especially barrier heights are well described
by both functionals, which can be attributed to the larger prefactor in comparison to the
t-LMF within the Lh-SVWN functional. While hydrogen transfer barrier heights exhibit
very small MAEs close to 1.0 kcal/mol with almost no systematic error, non-hydrogen
transfer barriers, although being better described than by most other XC functionals, are

systematically overestimated. Atomization energies and ionization potentials on the other
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7.3. Results

Table 7.1.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in kcal/mol
for the G2-1, G2-1 IP, G2-1 EA, HTBH38 and NHTBH38 test sets calculated with several
XC functionals, including some existing and the new optimized local hybrid functionals.

G2-1 G2-11P G2-1 EA HTBH38 NHTBH38

Functional 55 38 95 38 38

SVWN 35.74 5.23 5.57 17.43 12.18
(35.74)  (3.98) (5.57) (-17.43) (-11.99)

BLYP 4.60 4.80 3.43 7.40 8.29
(2.88) (-1.65) (-0.47) (-7.40) (-8.26)

PBE 7.94 3.90 2.29 9.22 8.19
(6.51) (0.23) (0.98) (-9.22) (-8.09)

TPSS 4.62 4.23 2.43 7.57 8.65
(3.63) (-0.62) (-1.25) (-7.57) (-8.60)

TPSSh 4.84 4.34 2.94 5.83 6.61
(0.96) (-0.44) (-2.14) (-5.83) (-6.54)

B3LYP 2.66 3.88 2.68 4.10 4.44
(-0.44) (0.20) (-1.17) (-3.99) (-4.31)

PBEO 3.02 4.30 2.68 4.13 3.33
(-1.69) (0.41) (-1.84) (-4.13) (-2.85)

BHLYP 11.80 5.53 6.27 2.79 2.34
(-11.06) (-1.10) (-5.64) (1.04) (0.69)

Lh-SVWN 5.00 4.48 2.79 3.37 3.62
9o = erf(0.277 s,) (1.81) (3.08) (1.86) (-3.25) (-2.03)

Lh-SVWN 3.88 5.17 3.52 2.40 2.67
go = 0.48t, (1.14) (4.37) (2.93) (-1.94) (-1.50)

Lh-SsirPW92 3.45 4.49 2.50 1.12 2.32
go = 0.646t (2.06) (3.73) (2.10) (0.13) (1.49)

Lh-SsifPW92 3.45 4.03 2.01 1.09 2.84
go = 0.709¢ (1.64) (2.76) (1.16) (0.60) (2.40)

Lh-SsirPW92* 3.33 4.35 2.41 1.25 2.23
go = 0.637¢ (1.45) (3.38) (1.73) (-0.14) (1.23)

Lh-SsirPW92* 2.01 4.02 2.08 1.22 2.42
g =¢g-t (0.78) (2.54) (1.04) (-0.26) (1.20)

hand are significantly overestimated, with MAEs being more comparable to standard
global hybrid functionals with low exact exchange.

Concerning the different test sets, two facts become obvious. While atomization ener-
gies and barrier heights exhibit large deviations between the distinct XC functionals and
are strongly affected by the admixture of exact exchange, the MAEs for the G2-1 ioniza-
tion potentials and electron affinities vary much less. Electron affinities on the one hand
appear to be well described by most functionals with MAEs around 2.0 to 3.0 kcal /mol.
Considering the fact that the local hybrid functionals with the smallest MAEs for electron
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affinities are only optimized with respect to atomization energies and barrier heights sug-
gests that electron affinities are not a necessary part of the optimization test set (cf. Sec.
7.2). On the other hand, ionization potentials exhibit relatively large MAEs of around
4.0 to 5.0 kcal/mol and thus remain the considered property described worst within the
current work. Regarding the optimization procedure (see Sec. 7.2), a larger weight of the
ionization potentials compared to the other properties thus appears a reasonable choice.

Turning to the optimized new Lh-SsirPW92* local hybrid functionals, the performance
of the common t-LMF shall be discussed first. Despite the very similar linear prefactor
of a = 0.637 compared to the previous Lh-SsirPW92 functional with a = 0.646, the new
Lh-SsirPW92* functional shows distinct differences. That is, G2-1 atomization energies
are less overestimated, with the MSE being more than 0.6 kcal/mol lower. Since the t-
LMF prefactor a deviates only by around 0.01 from the Lh-SsirPW92 functional, this
large decrease is most likely due to the modification in the sirPW92* correlation, which
indicates that using the same LMF in the self-correlation correction scheme as in the
local hybrid functional provides some benefits compared to the previous sirPW92 scheme.
Besides, the MAEs for all considered properties except hydrogen transfer barrier heights
are slightly lowered, which can be related to the slightly smaller prefactor of the common t-
LMF. In combination with the new common gt-LMF, Lh-SsirPW92* exhibits even better
results. While barrier heights remain well described, with errors comparable to those
of the Lh-SsirPW92* functional with common t-LMF, electron affinities and ionization
potentials are almost equally well treated as with the so far best local hybrid functional
Lh-SsifPW92. G2-1 atomization energies on the other hand are dramatically improved
compared to the other investigated XC functionals, with the MAE being close to 2.0
kcal /mol. Furthermore, the mean signed errors for all test sets are significantly lowered
compared to Lh-SsirPW92* with common t-LMF. The new Lh-SsirPW92* functional
employing the common gt-LMF thus represents a significant improvement over many
standard XC functionals and, in particular, over the currently best performing local hybrid
functionals.

Besides the performance for thermochemical properties, the optimized new local hybrid
functionals are additionally evaluated with respect to their performance for vertical exci-
tations. For that purpose, the Thiel and Tozer test sets employed in chapter 5 are used
again. Since many XC functionals have already been discussed in Sec. 5.2, the discussion
is restricted to a comparison to existing local hybrid functionals, which is shown in Ta-
ble 7.2. Concerning the Lh-SsirPW92* functional employing the common t-LMF, results
are, as expected, very similar to those of the Lh-SsirPW92 functional. Larger deviations

are only apparent for triplet valence excitations, where Lh-SsirPW92* exhibits a slightly
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7.3. Results

Table 7.2.: Mean absolute errors (MAEs) and mean signed errors (MSEs) (in parentheses) in €V for the
Thiel and Tozer test sets calculated with existing as well as the optimized new local hybrid
functionals. For core excitations, results are given with and without relativistic correction
(before and after the slash).

Thiel Tozer
Functional Singlet Triplet =~ Valence Rydberg CT  Core-valence Core-Rydberg
103 63 32 13 14 9 19
Lh-SVWN 0.26 0.35 0.22 1.67 1.38  13.38/13.10 14.37/14.16
go = erf(0.277s,) (-0.03) (-0.35) (-0.13) (-1.67) (-1.36) (-13.38/-13.10) (-14.37/-14.16)
Lh-SVWN 0.24 0.27 0.21 0.31 1.24 6.52/6.24 5.93/5.72
go = 0.48t, (0.08) (-0.26) (-0.01) (-0.31) (-1.21) (-6.52/-6.24) (-5.93/-5.72)
cLh-SVWN 0.23 0.30 0.19 0.57 1.25 6.62/6.34 5.94/5.73
go = 0.48t, (0.05) (-0.29) (-0.05) (-0.57) (-1.22) (-6.62/-6.34) (-5.94/-5.73)
Lh-SsirPW92 0.30 0.16 0.25 0.14 0.84 1.60/1.33 0.50/0.46
go = 0.646t (0.22) (-0.06) (0.06) (-0.02) (-0.79) (-1.60/-1.33) (-0.29/-0.08)
cLh-SsirPW92 0.28 0.17 0.23 0.38 0.85 1.74/1.46 0.50/0.46
go = 0.646t (0.20) (-0.08) (0.03) (-0.38) (-0.81) (-1.74/-1.46) (-0.30/-0.09)
Lh-SsifPW92 0.33 0.16 0.25 0.16 0.72 0.50/0.67 1.73/1.94
9o = 0.709¢ (0.26) (-0.03) (0.08) (0.07) (-0.66) (0.14/0.42) (1.73/1.94)
cLh-SsifPW92 0.32 0.16 0.24 0.35 0.72 0.48/0.63 1.70/1.90
g, = 0.709¢ (0.24) (-0.05) (0.06) (-0.34) (-0.68) (0.00/0.28) (1.70/1.90)
Lh-SsirPW92* 0.29 0.19 0.24 0.14 0.86 1.54/1.41 0.82/0.76
g, = 0.637t (0.21) (-0.13) (0.06) (-0.04) (-0.82) (-1.54/-1.27) (-0.22/-0.01)
cLh-SsirPW92* 0.28  0.20 0.23 0.40 0.87 1.67/1.53 0.82/0.76
9o = 0.637¢t (0.19) (-0.16) (0.02) (-0.40) (-0.83) (-1.67/-1.39) (-0.23/-0.02)
Lh-SsirPW92* 0.25 0.19 0.22 0.41 1.09 4.64/4.36 4.05/3.84
go=g-t (0.13) (-0.14) (0.02) (-0.41) (-1.06) (-4.64/-4.36) (-4.05/-3.84)
cLh-SsirPW92* 0.24 0.20 0.22 1.00 1.10 4.73/4.45 4.06/3.85
g =gt (0.11) (-0.16) (-0.04) (-1.00) (-1.07) (-4.73/-4.45) (-4.06/-3.85)

more pronounced underestimation, and for core excitations, where core-Rydberg excita-
tions are most affected. Although parts of the deviations might be also related to the lower
exact-exchange admixture in the Lh-SsirPW92* functional, it appears that those excita-
tions are most sensitive to spurious self-correlation contributions, which differ between
Lh-SsirPW92 and Lh-SsirPW92*. This is in accordance with the previous finding that
triplet valence excitations are significantly influenced by the change from spin-channel to
common LMFs and by the introduction of a self-correlation correction (see Sec. 5.2.4). For
the core excitations, it is noteworthy that the MSEs for the Lh-SsirPW92* functional are
more positive than those of Lh-SsirPW92 despite the fact that the lower LMF prefactor
would suggest more negative MSEs due to less exact exchange and thus higher-lying core
orbitals. It appears that self-correlation in the core region significantly affects core excita-

tions, and that the new sirPW92* scheme performs distinctly differently than the previous
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7. Construction of a New Local Mixing Function

sirPW92 scheme. Since the quality of core excitations is nonetheless mostly determined
by the choice of the LMF, no clear decision between both schemes can be made.
Turning to the Lh-SsirPW92* functional with the new common gt-LMF, valence excita-
tions are similarly well described as with the other local hybrid functionals, with the MAE
for singlet excitations being closer to the Lh-SVWN functionals. On the other hand, Ry-
dberg and charge-transfer excitations are described worse than with the best-performing
local hybrid and are more comparable with Lh-SVWN employing the t-LMF. Compared
to the latter, C'T excitations are slightly better described, which indicates a larger average
fraction of exact exchange, while Rydberg excitations exhibit a stronger underestimation.
This shows, that in the relevant parts of the intermediate region less exact exchange is
provided (cf. Fig. 7.1) and that these parts are quite close to the valence, since mainly
lower-lying Rydberg states were considered. Nevertheless, for higher-lying Rydberg states,
it can be speculated that the new common gt-LMF' gives better results due to the correct
behavior in one-electron regions. Most notably, the consideration of the current-density
response dramatically worsens results for Rydberg excitations, while the effect on core-
valence excitations remains similar to functionals with t-LMF. One possible reason for
this is the more pronounced change of the LMF in the intermediate region. While the t-
LMF exhibits one steep change up to the value fixed by the LMF prefactor, the common
gt-LMF goes up to g, (r) = 1.0 within two steep changes (see Fig. 7.1), so that, according
to the discussion in Sec. 5.2.4, the influence of the current-density response is expected
to be larger compared to a scaled t-LMF. Although it appears that the inclusion of the
current-density response thus generally deteriorates the performance for Rydberg excita-
tions, it might be different in combination with other LMFs and XC functionals as well
as for the inclusion of calibration functions. Due to the lower amount of exact exchange

in the core region, core excitations are also less well described than with the best local

hybrid.

7.4. Conclusions

In this chapter, a new model for the local mixing function, i.e. the gt-LMF, as well as
a modified version of the sirPW92 functional, referred to as sirPW92*, have been pre-
sented. Additionally containing terms depending on the density gradient and the density
Hessian, respectively, the gt-LMF provides a more flexible approach than the so far most
successful local mixing function, the t-LMF. Relying on a thermochemical optimization
of the four empirical parameters of the common gt-LMF within the new Lh-SsirPW92*

functional, this has been illustrated by evaluating the performance for various thermo-
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chemical and vertical-excitation test sets. While for thermochemical properties, the new
local hybrid functional is generally on par with the so far most successful local hybrids,
(G2-1 atomization energies are improved in comparison to other successful functionals
such as B3LYP. On the other hand, vertical excitation energies for charge-transfer, Ry-
dberg and core excitations of the Tozer test sets are described significantly worse than
with the Lh-SsirPW92* functional containing the common t-LMF. This shows, that the
usual thermochemical optimization of XC functionals does not automatically provide
parametrizations suitable for the description of response properties such as vertical ex-
citation energies. Hence, a common optimization procedure, simultaneously considering
thermochemical and vertical-excitation test sets, might be desirable, to make efficient use
of the high flexibility provided by the gt-LMF model. In fact, so far only three of the four
proposed empirical parameters have been effectively used within the optimized common
gt-LMF, which indicates a potentially higher flexibility of the new approach. In this sense,
the present work can be regarded as only a first step towards new local hybrid functionals

that are able to describe a wide range of different chemically relevant properties.
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8. Conclusions and Outlook

In the present work, the development of local hybrid functionals has been extended into
two major directions. The first one is concerned with the conjunction of local hybrids
with time-dependent density functional theory, which constitutes the most widely used
tool for the calculation of excited states of large molecules. To that end, the current work
provides the first detailed derivation and formulation of the adiabatic local hybrid XC
kernel integrals within the generalized KS formalism as well as the corresponding matrix-
vector products, which are required for an implementation into modern quantum chemical
programs. Since local hybrids belong to the class of explicit orbital-dependent function-
als, so that explicit derivatives with respect to the electron density are not possible, a
derivation scheme directly based on density matrix derivatives has been used. Concerning
the previously employed FDO scheme for the derivation of the local hybrid XC potential,
the present work establishes a direct link to the density-matrix-based scheme, leading to
a reformulation of the conventional FDO, which is needed for the derivation of adiabatic
XC kernels within a FDO framework.

On this theoretical basis, the present work also features a detailed description of the
first implementation of the adiabatic local hybrid XC kernel into the common quan-
tum chemical program package TURBOMOLE. Concerning the employed semi-numerical
integration scheme, which exhibits a formal cubic scaling with respect to system size, spe-
cial attention has been paid to the efficiency of the implementation. Besides an efficient
computation of the A matrix, realized by the introduction of S- and P-junctions, where
P-junctions were adjusted for the special requirements of TDDFT, an efficient matrix
vector multiplication has been established. Thus leading to a formal linear scaling in the
limit of large molecules, the new implementation together with the RI-J approximation
outperforms the conventional global hybrid TDDFT implementation of TURBOMOLE
already for small molecules and medium-sized basis sets. Due to the formal quadratic
scaling with basis set size, even larger time savings were obtained for large basis sets.
In combination with the additionally implemented SMP parallelization, the present local
hybrid TDDFT implementation thus allows the calculation of a large number of excita-

tions for larger molecules with at least medium-sized basis sets and therefore provides
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an efficient tool for routine TDDFT calculations with local hybrid functionals. Neverthe-
less, the semi-numerical integration, especially in the case of local hybrids, can engender
enhanced requirements on the numerical integration grid. While for most excitations, a
relatively small numerical grid is sufficient, more diffuse grids are required, when diffuse
states are sampled in conjunction with diffuse basis functions, as it is the case, e.g., in
Rydberg excitations. Since similar problems might also occur for other cases, accuracy
issues concerning the molecular grid have to be excluded first. Here, the incremental
protocol, used in the present work, represents one particular tool for the identification
of such numerical issues. Regarding other semi-numerical methods like the PS and the
COSX method, a reevaluation of the numerical accuracy concerning the molecular grid
with special attention to diffuse states, e.g. by following the presented protocol, is thus
recommended.

Based on the new efficient implementation, the present work also provides the first
evaluation of local hybrid functionals with respect to their performance for vertical exci-
tations. Making use of the common Thiel and Tozer test sets as well as a model system
covering intermolecular CT excitations, the performance of several existing local hybrids
has been assessed. While for singlet valence excitations, the overall best-performing local
hybrid functional LhA-SsirPW92 is on par with other state-of-the-art hybrid functionals,
local hybrids are generally able to provide a significantly enhanced accuracy for triplet
valence excitations as well as for core and Rydberg excitations. CT excitations, on the
other hand, appear to be less well described with the investigated local hybrids than
with some other hybrid functionals, especially certain range-separated hybrids. Besides,
it could be shown that the TDA does not generally enhance the accuracy for triplet
excitations, especially in the case of local hybrids employing common LMFs. Likewise,
Rydberg and core-valence excitations calculated with local hybrids employing the t-LMF
have been identified as first cases, for which the response of the current density within
functionals containing the current-dependent gauge-invariant kinetic energy density have
a major influence. Although common representive test sets have been employed for the
first evaluation of local hybrids, only a small part of possible electronic configurations is
covered. Hence, further studies using more diverse test sets, containing, e.g., transition
metal complexes, radical excitations, strongly correlated complexes or core excitations of
second row elements, which have been excluded in the present work due to particular
basis set issues, are desirable. Concerning the investigated local hybrid functionals, only
a small set of different functionals have been explored so far. Besides the predominant
use of the t-LMF, all explored local hybrids only considered Slater-Dirac exchange and

employed LDA correlation, which was at best self-correlation corrected. In fact, some
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possible candidates for further investigations are the recently developed calibrated local
hybrids of Arbuznikov et al.,['%"! which use only the simple t-LMF, but employ semi-local
exchange and correlation functionals, as well as local hybrids containing more advanced
LMFs, such as some of those shown in Sec. 2.3.2.

Besides the combination of local hybrid functionals with TDDFT, the present work also
features a more general development of local hybrids. In particular, novel approaches for
the construction of the two exclusive local hybrid building blocks, i.e. the LMF and the
CF, are proposed. In the case of calibration functions, a new derivation scheme, which is
based on integration by parts of exchange functionals, has been introduced. Application
of this scheme to GGA exchange as well as to the semi-local part of B98 exchange has
led to calibration functions of pig and tpig type, where both are theoretically given to an
infinite order. In this context, a previously reported semi-local CF 17l has been identified
as first-order pig type CF, illustrating the universality of the new derivation scheme. For
the determination of the introduced empirical parameters, a novel optimization procedure
has been used, which aims at minimizing unphysical static correlation contributions in
the dissociation curves of noble gas dimers, which are known to be directly related to the
gauge problem. Although not exclusively correcting for gauge issues, the new method thus
provides an effective approach for the calibration of local hybrids. Concerning the proposed
new CFs, it could be shown that the introduction of a second linear parameter through
pig2 significantly enhances the flexibility of the CF, while tpigl provides comparably good
results within the new optimization scheme with only one empirical linear parameter.
Beyond those CFs that have been explicitly investigated in the present work, the novel
derivation scheme allows, e.g., the derivation of further higher-order calibration functions
based on the so far employed exchange functionals, as well as the development of CFs
on the basis of more advanced exchange functionals such as TPSS. In particular, the
tpig2 CF represents a promising candidate for future investigations, since it combines
the flexibility of a second-order CF with the more advanced functional form of tpig type
calibration functions. Also, the construction of CFs containing quantities beyond second
basis function derivatives is possible. The pig2 and tpigl CF, which have been investigated
in the present work, thus represent only a first step towards a new generation of calibrated
local hybrid functionals.

For the local mixing function, a novel ad hoc model has been proposed, the gt-LMF. Re-
lying on the beneficial properties of the scaled t-LMF, several of its shortcomings, e.g. the
wrong behaviour in one-electron regions, have been eliminated by substituting the con-
stant prefactor by a real-space-dependent function, which includes additional information

about the density gradient and the density Hessian. To retain the balanced self-correlation
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reduction of the self-interaction-reduced PW92 functional also with the new gt-LMF, the
sirPW92 functional was additionally modified to use the same LMF as in the exchange
functional also for the screening of one-electron regions in the self-correlation correction.
For the thermochemical optimization, the Lh-SsirPW92* functional in combination with
the common gt-LMF containing four empirical parameters, has been chosen. While most
of the investigated thermochemical properties, such as reaction barriers, ionization po-
tentials and electron affinities calculated with the optimized new local hybrid are on par
with the so far most successful local hybrid functionals, atomization energies, evaluated
using the G2-1 test set, were significantly improved, e.g. compared to the succesful global
hybrid B3LYP. On the other hand, vertical excitation energies of some excitation classes
were significantly deteriorated with the new local hybrid, e.g. Rydberg, CT and core exci-
tations. This indicates, that a pure thermochemical optimization does not automatically
provide a good description of response properties, such as vertical excitation energies.
One possibility to overcome this shortcoming is the inclusion of vertical excitation ener-
gies in the optimization test set, e.g. those of Rydberg and core excitations, which sample
distinct regions in real space. This potentially leads to local hybrid functionals that treat
ground-state thermochemistry and vertical excitations similarly well. Due to its higher
flexibility compared to other LMFs, the new gt-LMF represents one promising candidate
for such an optimization. Besides those quantities that are already included, further re-
duced quantities (see Sec. A.1), e.g. the kinetic energy density gradient, could be also
incorporated in the gt-LMF to further enhance its flexibility. Concerning the correlation
functional, self-correlation-reduced GGA correlation functionals might be one option for
future local hybrid functionals.

While as a first step, the new approaches for the LMF and the correlation functional,
and the CF have been investigated separately in the present work, the combination of
these approaches represents a promising way for future developments on the field of local
hybrid functionals. In particular, a large variety of calibrated new local hybrids can be
constructed on the basis of these new approaches. Suitable parameter sets may then be
obtained by combining the conventional thermochemical optimization strategy for LMFs,
which in fact, can be enhanced by vertical excitation energies, with the new optimization
procedure for CFs. In particular, both schemes could be performed subsequently, until a
self-consistent set of LMF and CF parameters is obtained. Finally, this might lead to local
hybrid functionals featuring an improved and balanced description of thermochemical
properties and vertical excitation energies as well as being better suited for the addition
of semi-empirical dispersion corrections, while only a couple of empirical parameters has
to be included.

151



8. Conclusions and Outlook

Providing the theoretical and technical basis for the use of local hybrid functionals
within linear-response TDDFT, as well as illustrating several new directions in the de-
velopment of novel local hybrid functionals, the present work thus represents another

important step towards the routine use of local hybrid functionals in quantum chemistry.
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A. Appendix

In the first section of the appendix, a brief discussion of reduced quantities, which have
been extensively used for the expression of the new CFs and LMFs developed in chapters
6 and 7, respectively, is provided. Besides, the extension of the existing local hybrid
implementation of TURBOMOLE enabling self-consistent DFT and TDDFT calculations
with the new CFs and LMFs will be presented in the second section. In both cases, parts

are taken from Ref. 315. For clarity, the space variable r is generally omitted.

A.1. Reduced Quantities

Although semi-local XC functionals can be generally expressed in terms of fundamental
quantities that directly emerge from the contraction of the density matrix with the basis
function vector as the electron density p, the kinetic energy density 7 and their spatial
derivatives, most XC functionals make use of auxilliary quantities to enhance comprehen-
sibility and clarity. One particular class of auxilliary quantities, that is widely used for
the definition of exchange functionals, are so-called reduced quantities, which represent
a scalar measure of a particular fundamental quantity on the scale of the Thomas-Fermi
wavelength®?®! and are made dimensionless through division with the electron density.
The two most commonly used reduced quantities!¥3197186] are the reduced spin density

gradient and the reduced spin density Laplacian

1 ol

So = % F ) (A1)
1 ViVp,

Qo = ﬁ : p5/3 ) (AQ)

respectively, which both go to infinity in the low-density limit due to the slower decay of
Pyi—{f and VTV, compared to the respective powers of the spin density. While the reduced
spin density gradient exhibits a value of s, = 0 in homogeneous regions and thus at the

atomic centers, ¢, constitutes non-zero values at the atomic cores. In a similar fashion,
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the reduced kinetic energy density

1 3 T,
o = T ° —U = — g s A3
Y k2 pa/3 40 TTF o ( )

may be defined. Although it is not commonly used due to its rexpressability into the
ration between the kinetic energy density and the Thomas-Fermi kinetic energy density,
together with Eq. (A.1), it allows a reformulation of the inhomogeneity parameter ¢, of
Eq. (2.68) into

Qo
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$ |4

which illustrates the universal applicability of reduced quantities.
Besides the so far mentioned reduced quantities, two others have been introduced in

the present work. The first one is the reduced spin density Hessian

1 na,aa
Po = @—5/3 ) (A-5)
Yoo * Po

where the normalization with respect to ~v,, ensures, that information about the spin
density gradient, on which the spin density Hessian is projected, is not included. Hence,
po exhibits similar properties as the reduced spin density Laplacian, i.e. an infinite value
in the low-density limit and non-zero values at atomic cores. Although the reduced density
Hessian has not been directly defined so far, other Hessian-dependent quantities commonly
used for the expression of XC functionals may be reexpressed in terms of p,. For example,
the dimensionless parameter
L V0,V

Uy = ﬁ T (A6)

represents one important building block for GGA XC potentials. 261 Applying the sub-

stitution
1/, VvV, Vo,
Vo = ——15, (A.7)
Yoo
results in the alternative formulation
1 No,oo
Us = E : m . (A8>
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Finally using Eqgs. (A.5) and (A.1l), defining the reduced spin density Hessian and the

reduced spin density gradient, respectively, gives
Uy = Do * So (A.9)

which illustrates, that the reduced spin density Hessian p, is in accordance with existing
reduced quantities and able to facilitate commonly used expressions.

Another quantity, that is closely related to p,, is the ©, function used in the DORI, 189
the related meta-GGA %4 and the ©-LMF (2.79).1'%] While in the original notation, ©,

is defined in terms of a local wave vector

()]

0, = W : (A.10)

the explicit application of the V operator results in

Po - 1) ps
Oy =4—8- T2 4+ 4. == -V p,VV p, YV p,Vp, . (A.11)

7c2ro Voo

The introduction of another reduced quantity, i.e. the reduced quadratic spin density

Hessian
VT, VVT V'V p,Vp,
- = 107, , (A.12)
k4. Yoo * Po ’
results in a simple formulation of the ©, function in terms of reduced quantities
Ps Do
60244—4%—8% . (A13)

In contrast to the reduced spin density Hessian, in Eq. (A.12), the square of the spin
density Hessian is projected onto the spin density gradients. Hence, p, generally does
not contain additional information about the system compared to p, and can thus be

approximated to good accuracy, as numerically tested within the local developers’ version
of TURBOMOLE, ¥ by the square of the reduced spin density Hessian

Do R D2 (A.14)
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Accordingly, the 6, function (A.13) can be approximated as

2
0, ~4- (1—%) , (A.15)
thus avoiding second powers of the spin density Hessian. Besides revealing the close rela-
tion between the reduced spin density Hessian and the DORI, the proposed simplified ©,,
function represents a simpler object than the original one (A.13), since only one quantity
including the density Hessian appears. This may simplify self-consistent implementations
of such quantities (cf. also Sec. A.2 below), without loss of information.

The second reduced quantity, that has been newly defined in the present work, is the

mixed reduced density kinetic energy density gradient

I too
TO’ = ﬁm 5 (A.16>
where
loe = Vipy - VT, (A.17)

represents the kinetic energy density gradient projected onto the spin density gradient.
While r, in fact contains information about the kinetic energy density gradient, it partially
also incorporates the spin density gradient. Hence, it is desirable to define a quantity that
exclusively contains information about the kinetic energy density gradient. Accordingly,

the reduced kinetic energy density gradient may be defined by

10
Wy = ﬁ . p?’ s <A18>
with
Vge = VI,V (A.19)

being the square of the kinetic energy density gradient. To avoid redundancy, again for
the sake of a simplified possible self-consistent implementation, the reduced kinetic energy

density gradient can be approximated using the relation

1900 * Yoo = VTTO'VTO' : vavaa ~ vaO'vTO' : VTTUVPU = L2 . (AZO)

oo
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For the reduced kinetic energy density gradient then follows

1 L T
SPRLL A21
v g = (A21)

which shows that, in general, the information contained in w, and r, is similar.
Last, the usefulness of reduced quantities shall be illustrated for the example of the
dimensionless parameter
o VT)OUVTW,G 1 2 : 770,(70' *Po — ’Ygg

= _ : A.22
o VT, V1, 8 P2 Loy ( )

which represents the ratio between the von-Weizsécker kinetic energy density gradient
projected on to the spin density gradient and the kinetic energy density gradient projected
on to the spin density gradient. While Eq. (A.22) constitutes the most suitable formulation
regarding the implementation, as will be seen in Sec. A.2, the reformulation in terms of
reduced quantities

2 2'p0_5?r UJ-[Q-pU—Sg]

1
Y e A A
8 To' ra

(A.23)

Ty =

provides a simpler formulation with respect to subsequent transformations. In particular,
the dimensionless quantitiy x, can be easily partitioned into the inhomogeneity parameter
t, and an additional scaling factor, whose identification would be more difficult within
the conventional formulation (A.22).

In summary, reduced quantities represent a suitable set of auxilliary quantities to facil-
itate formulations of complicated XC functionals and to enable the identification of inter-
relations with other quantities. Concerning local hybrid functionals, reduced quantities,
being dimensionless by default, may represent a better starting point for the construc-
tion of new local mixing functions than fundamental quantities. For example, this has
been shown in Chapter 7 for the new gt-LMF. Other dimensionless quantities proposed
in the present section might also be suitable ingredients for future LMFs. Note that all
relations shown for the reduced spin quantities are also valid for the corresponding total
quantities, with the only difference that k = 2 (67‘(‘2)1/ * & 7.79555 has to be replaced by
K =2(31%) /" ~ 6.18734.
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A.2. Extension of the Implementation

Besides those quantities already incorporated in conventional 7-dependent meta-GGAs,
the new calibration and local mixing functions introduce an additional dependence on
several additional ingredients. This holds in particular for quantities that explicitly de-
pend on second basis function derivatives, such as e.g. the reduced spin density Hessian
(A.5) and the reduced spin density Laplacian (A.2). While these quantities are formally
already considered in the derivation of the local hybrid potential and kernel integrals (see
Sec. 3.2.3) through the general definition of the semi-local potential operator Ay (see Eq.
(3.17)), they were initially not considered within the existing TURBOMOLE implemen-
tation of local hybrid functionals. To allow self-consistent DF'T and TDDF'T calculations
with the new CFs and LMFs, the existing code thus had to be extended.

As a first step, a suitable definition of the set Q, which contains all quantities considered
by the respective XC functional, has to be given (cf. Sec. 3.2.1). Besides the projected
spin density Hessian 7, ,, and the spin density Laplacian VTVp,, the scalar product of
the gradients of the spin density and the kinetic energy density ¢, shall be added to the
set of 7-dependent meta-GGA ingredients (3.16). Additionally replacing the conventional
kinetic energy density (2.63) by the gauge-invariant kinetic energy density (3.22) and
accordingly ¢, by its gauge-invariant version

los = VI p, V7 = VT p, V1 + Y os  V2poVic s
2 p? Ps

S

(A.24)

leads to an additional dependence of the XC functional on the current density j and on
the current-density gradient Vj* (which is a matrix). Furthermore, all spin permutations
of the additional quantities shall be included in Q to allow the construction of total spin
quantities, which are required e.g. by common LMFs (see Sec. 2.3.2). For example, the

projected total density Hessian and the total spin version of ¢,, are given by

N = Naaa + 2 Naap + Nafp + Mo+ 2 Npap +Ns.68 (A.25)
L= loa + Lga + tap + Lag (A.26)

respectively. Considering all of these dependencies of the semi-local potential operator,

the set Q can be generally defined as

Q = {/Oou P8y Yaar YaB> VBB Tay T8 VTVpaa vTvpﬁajaaj,37
Nasaas TasaBs Tay385 MB,acs Nga8s 18,885 Laas Las Las 138> Vias Vig } (A.27)
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which in the case of a current-free ground state, then leads to the explicit formulation of

the semi-local potential operator

A Ode Oe Oe
dmna xc n,o - VT n,o = VTV , o =
) € gom O’Qp 8p0 S07’71 UVSD ) 87_0— + (('OP:U('O% ) avTVpU+
Oe Oe Oe Oe
VT (o* o) 12V —= + Vg — + VTy—— + VT, —
(Qpp,agpq, ) { p Moo T VP Moo + 8%—0 * 3ng } *
Oe de
2V (0 0re) - |V paV e + VYV oV py o
(PhPae) [ PN Ot P 0%/,00} "
T ([ « T D€y T Deac
V (Spp,agpq#f) vv pcfvpo"a , + vv pU'VpU, a,r] , , +
Oe Oe
vT vaT * J) - v . xc V » xc
p (#p.0Pa0) [ P TV 8%,00/} +
T T ( « dege
V0o VY (2),0000) Vo g ==t
1 i} . Dege Dege
5 (V10 V Vey ., + VT, VIV ] - {wg T Ve a} . (A28)

While the corresponding semi-local kernel operator can be simply obtained by concate-
nating two semi-local potential operators (see Eq. (3.20)), for current-free ground states,
second derivatives with respect to the current density and its gradient can be reexpressed

as

526:1}0 _ _6e:cci 56:{:0 h 56:50 Yoo!
0j2 0Te Po Oloo P2 Olots Pz
6%eye 0ese Voo  0€ye Vpor

= — — A.
OVjiloj, 0lvs Po Olgie Po (A-30)

, (A.29)

similar to Eq. (3.26) for the case of 7-dependent meta-GGAs employing only the gauge-
invariant kinetic energy density 7, (cf. Sec. 3.2.1). Accordingly, the derivatives (A.29) and
(A.30) also give non-vanishing contributions only to the anti-symmetric matrix-vector
product (3.47).

In a second step, the additional semi-local quantities have to be made available within
the TURBOMOLE implementation of local hybrid functionals. Besides the basis function
vector and its first derivatives, second basis function derivatives are additionally required.

Together with the B vector (4.1) and its gradient, the spin density Hessian and the
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gradient of the kinetic energy density can be calculated via

vV, =2-> [VB] -V'X,+VV'X, B7] (A.31)
w
V7, =Y VV'X, VB, (A.32)
7

respectively, finally allowing the determination of the spin density Laplacian VIVp, as
trace of the spin density Hessian as well as 7, 5, and ¢4, through Egs. (6.11) and (A.17).
Based on those quantities, the local hybrid matrix-vector products can then be calculated
using the same procedure as the one described in detail in Sec. 4.2.1. Due to the inclusion
of the new quantities within the semi-local potential operator, the semi-local parts of the
symmetric and anti-symmetric local matrix-vector products take a slightly different form,

1.e.

vt =X, X, -G+ VT [X,X,]- G+ VIX, VX, G+

o,V T, dxx,u dxdx,p
VIV XX G+ VT VYT [X,X,] - Greol +
S
[V'X,VV'X, + VX, VV'X,] - Gol i (A.33)
vty = [VIXuX, - X, VX, |- GYp
o,— T o,—
[chQx,;J ) [VVTXuXV - X,LLVVTXI/} . ch2;v’,u 5 (A34>

respectively. Here G337, Goo and Gg,F . denote those contributions to the symmet-
ric local matrix-vector product arising from the density Laplacian, the density Hessian
and the gradient of the kinetic energy density, respectively. Terms arising in the anti-
symmetric local matrix-vector product due to the gradient of the current density are
collected within terms GZUE%N and Ggé;m,’“. Since the implementation of the local hy-
brid potential is similar to the determination of the symmetric local hybrid matrix-vector
product, it will be not discussed further.

In the actual state of the local developers’ version of TURBOMOLE, all new calibration
functions and LMFs are implemented within the ridft and dscf module, thus allowing
self-consistent DF'T calculations. In the escf module, only the response of the density
Hessian and the density Laplacian are additionally implemented so far, so that only
calibration functions of pig type as well as the new LMFs are accessible. Response terms
of the kinetic energy density gradient and the current density gradient will be included

in a later version.
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