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Zusammenfassung

In dieser Dissertation untersuchen wir Probleme aus den Gebieten Kombinatorik und Algorith-
mische Geometrie auf elementaren geometrischen Entitäten (Punkten, Linien und Kreisen).

Im ersten Teil betrachten wir sogenannte „Erdős–Szekeres type problems“: Ein klassisches
Resultat von Erdős und Szekeres aus dem Jahr 1935 besagt, dass für jede natürliche Zahl k jede
hinreichend große Punktmenge in allgemeiner Lage eine Teilmenge von k Punkten in konvexer
Lage enthält – sogenannte „k-Gons“. Wir untersuchen eine berühmte Variation: Ein „k-Loch“ ist
ein k-Gon mit der zusätzlichen Eigenschaft, dass kein weiterer Punkt in der konvexen Hülle des
k-Lochs liegt. Diese Variante unterscheidet sich vom ursprünglichen Problem da beliebig große
Punktmengen ohne 7-Löcher existieren. Neben der Existenz von k-Löchern wurde auch die
Anzahl an k-Löchern in n-Punktmengen intensiv untersucht. Jede Punktmenge hat mindestens
quadratisch viele 3-Löcher und 4-Löcher, und Punktmengen mit nur quadratisch vielen Löchern
existieren. Zu Beginn meines Studiums waren für 5-Löcher und 6-Löcher nur lineare untere
Schranken bekannt.

In dieser Dissertation präsentieren wir die erste superlineare untere Schranke für die Anzahl
an 5-Löchern. Dies ist die erste asymptotische Verbesserung seit Harborths linearer Schranke aus
dem Jahr 1978. Für unseren Beweis kombinieren wir traditionelle Beweismethoden mit Lemmas,
welche mithilfe von Computerunterstützung verifiziert wurden. Des Weiteren entwickeln wir
ein auf Boolescher Aussagenlogik basierendes Framework, welches die Untersuchung diverser
kombinatorischer Eigenschaften von Punktmengen mittels SAT-Solver erlaubt.

Im zweiten Teil untersuchen wir Arrangements von Kreisen. Um ein besseres Verständnis
derer Strukturen zu erhalten und um geometrischen Schwierigkeiten auszuweichen, betrachten
wir „Arrangements von Pseudokreisen“ – eine Verallgemeinerung von Kreisarrangements, die von
Grünbaum in den 1970er Jahren eingeführt wurde. Ein Pseudokreisarrangement ist eine Menge
von einfachen geschlossenen Kurven auf der Sphäre oder in der Ebene mit der Eigenschaft, dass
je zwei dieser Kurven disjunkt sind oder sich in genau zwei Punkten schneiden. In seinem Buch
präsentierte Grünbaum die Vermutung, dass jedes Digon-freie Arrangement von n sich paar-
weise schneidenden Pseudokreisen mindestens 2n − 4 Dreieckszellen enthält. Wir präsentieren
Arrangements, die diese Vermutung widerlegen und geben neue Schranken für die Anzahl an
Dreieckszellen für unterschiedliche Klassen von Arrangements an.

Des Weiteren untersuchen wir die „Kreisbarkeit“ von Arrangements: Offensichtlich ist jedes
Kreisarrangement auch ein Pseudokreisarrangement – es ist jedoch schwer zu entscheiden, ob
ein gegebenes Pseudokreisarrangement durch Kreise representiert werden kann. Mit Hilfe eines
Computerprogrammes konnten wir alle kombinatorisch unterschiedlichen Arrangements mit bis
zu 7 Pseudokreisen enumerieren. Für Arrangements mit 5 Pseudokreisen und für Digon-freie Ar-
rangements von 6 sich paarweise schneidenden Pseudokreisen geben wir eine vollständige Klas-
sifizierung an: Entweder geben wir eine Kreisrepresentation oder einen Nichtkreisbarkeitsbeweis
an. Diese Beweise basieren auf Inzidenztheoremen (z.B. dem Satz von Miquel) und Deformations-
argumenten, in welchen wir Kreise einer angenommenen Kreisrepresentation in einer kontrol-
lierten Weise ausweiten oder schrumpfen.

Im dritten und letzten Teil fassen wir die Ergebnisse aus Teil I und Teil II zusammen, und
diskutieren weiterführende Fragen.
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Abstract

In this dissertation we investigate some problems from the field of combinatorics and computa-
tional geometry which involve basic geometric entities (points, lines, and circles).

In the first part we look at Erdős–Szekeres type problems: The classical theorem by Erdős
and Szekeres from 1935 asserts that, for every natural number k, every sufficiently large point
set in general position contains a subset of k points in convex position – a so called “k-gon”. We
will investigate the famous variant of “k-holes”, which are k-gons with the additional property
that no other point lies in the convex hull of the k-hole. This variant differs from the original
setting as there exist arbitrarily large point sets which do not contain 7-holes. Besides the
existence of holes, also the number of k-holes in sets of n points have been studied intensively.
It is well-known that point configurations contain at least quadratically many 3- and 4-holes,
respectively, while point configurations with only quadratically many holes exist. Concerning
5- and 6-holes, the best published lower bounds were only linear at the time when I started my
studies.

In this thesis we present the first superlinear lower bound on the number of 5-holes, which
is the first asymptotic improvement since Harborth’s linear lower bound from 1978. For our
proof we combine classical paper-and-pen proofs with lemmas that were proven using heavy
computer asstistance. We also develop a framework based on Boolean logic to investigate various
combinatorial properties of point sets with the aid of SAT solvers.

In the second part we investigate arrangements of circles. Towards a better understanding
of their structure and also to get rid of geometric difficulties, we look at the more general setting
of “arrangements of pseudocircles” which was first introduced by Grünbaum in the 1970’s. An
arrangement of pseudocircles is a collection of simple closed curves on the sphere or in the plane
such that any two of the curves are either disjoint or intersect in exactly two points, where
the two curves cross. In his book, Grünbaum conjectured that every digon-free arrangement
of n pairwise intersecting pseudocircles contains at least 2n − 4 triangular cells. We present
arrangements to disprove this conjecture and give new bounds on the number of triangular cells
for various classes of arrangements.

Furthermore, we study the “circularizability” of arrangements: it is clear that every arrange-
ment of circles is an arrangement of pseudocircles, however, deciding whether an arrangement
of pseudocircles is isomorphic to an arrangement of circles is computationally hard. Using a
computer program, we have enumerated all combinatorially different arrangements of up to 7
pseudocircles. For the class of arrangements of 5 pseudocircles and for the class of digon-free
intersecting arrangements of 6 pseudocircles, we give a complete classification: we either provide
a circle representation or a non-circularizability proof. For these proofs we use incidence theo-
rems like Miquel’s and arguments based on continuous deformation, where circles of an assumed
circle representation grow or shrink in a controlled way.

In the third and last part we summarize the results from Part I and Part II, and discuss
further questions.
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Part I

Erdős–Szekeres-Type Problems





Chapter 1

Erdős–Szekeres-Type Problems on
Point Sets

A set of points in the Euclidean plane S ⊆ R2 is in general position if no three points lie on
a common line. Throughout this thesis all point sets are considered to be finite and in general
position unless mentioned otherwise. A subset X ⊆ S of size |X| = k is a k-gon if all points of
X lie on the boundary of the convex hull of X. Figure 1.1 gives an illustration.

∅

Figure 1.1: An illustration of a 5-gon (left) and a 6-gon (right).

A classical result in combinatorial geometry and Ramsey theory from the 1930s by Erdős and
Szekeres asserts that, for fixed k ∈ N, every sufficiently large point set contains a k-gon [ES35].

Theorem ([ES35], The Erdős–Szekeres Theorem). For every integer k ≥ 3, there is a smallest
integer g(k) such that every set of at least g(k) points in general position in the plane contains
k points in convex position.

Paul Erdős named the problem of determining the value g(k) the “Happy ending problem”
because George Szekeres and Esther Klein became engaged while working on the problem and
got married subsequently (cf. [Hof98]).

In their paper [ES35], Erdős and Szekeres provided two proofs of the theorem (see also
Chapter 3.1 of Matoušek’s book [Mat02]). In the first proof, they color each 4-tuple of points
red if it is in convex position, and blue otherwise. It then follows from Ramsey–Theory1 that
there is a large monochromatic clique, and since blue 5-cliques cannot exist, there is a large
red clique. Carathéodory’s theorem then asserts that all points from this clique are in convex
position. In their second proof, they made more elaborate use of the relative positions of points
to show the upper bound g(k) ≤

(︁
2k−4
k−2

)︁
+ 1. Using Stirling’s formula, it is easy to see that this

bound is of order 4k−o(k). There were several small improvements on the upper bound by various
researchers in the last decades, each of order 4k−o(k) [CG98, KP98, TV98, TV05, MV16, NY16],
until Suk [Suk17] significantly improved the upper bound to 2k+O(k2/3 log k). This bound was
further improved to 2k+O(

√
k log k) by Holmsen and others [HMPT17].

1We refer the reader who is not yet familiar with Ramsey–Theory for hypergraphs to a standard textbook
such as “Ramsey Theory” by Graham, Rothschild, and Spencer [GRS90].
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Concerning the lower bound on g(k), Erdős and Szekeres constructed point sets of size 2k−2

with no k-gons, which they conjectured to be the largest possible sets with no k-gons. In fact,
Erdős offered $500 for a proof of the conjecture in the 1990’s shortly before his death. Today
g(k) = 2k−2 + 1 is confirmed only for up to k = 6, the values of g(k) for k ≥ 7, however,
remain unknown. To be more precise, the value g(4) = 5 was first observed by Klein, g(5) = 9
by Kalbfleisch, Kalbfleisch, and Stanton [KKS70], and the value g(6) = 17 was determined by
Szekeres and Peters using heavy computer assistance [SP06]. In the course of Chapter 4 we
will come across a SAT model which allows us to verify g(6) = 17 with significantly smaller
computation time than the original program by Szekeres and Peters [SP06].

1.1 k-Holes

The Erdős–Szekeres Theorem motivated a lot of further research, including numerous modi-
fications and extensions of the theorem2. In the 1970s, Erdős [Erd78] asked whether every
sufficiently large point set contains a k-hole, that is, a k-gon with no other points of S lying
inside its convex hull. Figure 1.2 gives an illustration. Analogous to g(k), we define h(k) as the
smallest number (if such a number exists) such every set of at least h(k) points in the plane
contains a k-hole. It is worth mentioning that also “non-convex holes” have been investigated in
literature (cf. Section 9.3 in the Discussion), however, throughout this dissertation we consider
all holes to be convex.

Figure 1.2: An illustration of a 4-gon which is not a 4-hole (left) and a 4-hole (right).

It is not hard to see that h(3) = 3 and h(4) = 5. Harborth [Har78] proved by an elaborate
case distinction that there is a 5-hole in every set of 10 points in general position in the plane
and gave a construction of 9 points in general position with no 5-hole; hence h(5) = 10. After
unsuccessful attempts of researchers to answer Erdős’ question affirmatively for any fixed integer
k ≥ 6, Horton [Hor83] constructed, for every positive integer n, a set of n points in general
position in the plane with no 7-hole (see also Chapter 3.2 of Matoušek’s book [Mat02]). Horton’s
construction – which is today known as the perfect Horton set – was later generalized to so-called
Horton sets and squared Horton sets [Val92a], and also to higher dimensions [Val92b].

The question whether there is a 6-hole in every sufficiently large finite planar point set
remained open until 2007, when Gerken [Ger08] and Nicolás [Nic07] independently gave an
affirmative answer. In both proofs the key idea is that sets with sufficiently large gons contain
6-holes. A reasonably short proof for the existence of 6-holes was later given by Valtr [Val08],
who showed h(6) ≤ g(216). The currently best bound is by Koshelev [Kos09b]3, who showed
that every set of 463 points contains a 6-hole. However, the largest set without 6-holes currently
known has 29 points and was found using computer-assistance by Overmars [Ove02]. The gap
between the upper and the lower bound on h(6) remains huge.

2We refer the interested reader to the survey of Morris and Soltan [MS00]
3Koshelev’s publication covers more than 50 pages (written in Russian)
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1.2 Number of Holes

For positive integers n and k, let hk(n) be the minimum number of k-holes in a set of n points
in the plane. From perfect Horton sets it clearly follows that hk(n) = 0 holds for every n and
every k ≥ 7.

3-Holes and 4-Holes The functions h3(n) and h4(n) are both known to be asymptotically
quadratic. A quadratic lower bound on h3(n) can be obtained easily from the fact that every
pair of points a, b, together with the point c closest to the line ab, spans a 3-hole. A similar
idea was applied to 4-holes by Bárány and Füredi [BF87]: For every crossed line-segment ab one
can find a 4-hole which has this segment as a diagonal. Since the non-crossed line-segments of
a point set form a planar graph – which only has linearly many edges – this gives the quadratic
lower bound h4(n) ≥ n2

4 − O(n). Bárány and Füredi further showed h3(n) ≥ n2 − O(n log n),
that randomly chosen point sets contain only quadratically many 3-holes (see also [Val95]), and
that perfect Horton sets have only quadratically many 4-holes, 5-holes, and 6-holes.

After a couple of subsequent improvements [Deh87, KM88, Val95, Dum00, Gar12], the cur-
rently best known lower bounds today are due to Aichholzer et al. [AFMH+14] and the best
known upper bounds are due to Bárány and Valtr [BV04]:

n2 − 32n
7 + 22

7 ≤ h3(n) ≤ 1.6196n2 + o(n2)

n2

2 − 9n
4 − o(n) ≤ h4(n) ≤ 1.9397n2 + o(n2).

It is worth mentioning that the upper bounds in [BV04] were obtained for the above mentioned
squared Horton sets [Val92a], which are basically

√
n×√

n grids perturbed in a way such that
all collinear points become Horton sets.

5-Holes and 6-Holes For h5(n) and h6(n), no matching bounds are known. Both func-
tions, however, are conjectured to be asymptotically quadratic. So far, the best known upper
bounds h5(n) ≤ 1.0207n2 + o(n2) and h6(n) ≤ 0.2006n2 + o(n2) were obtained by Bárány and
Valtr [BV04].

As noted by Bárány and Füredi [BF87], a linear lower bound of ⌊n/10⌋ follows directly
from Harborth’s result [Har78]. Bárány and Károlyi [BK01] improved this bound to h5(n) ≥
n/6 − O(1). In 1987, Dehnhardt [Deh87] showed h5(11) = 2 and h5(12) = 3 in his PhD
thesis4. His result, however, remained unknown to the scientific community for a long time,
until García [Gar12] used the values obtained by Dehnhardt to prove the lower bound h5(n) ≥
3⌊n−4

8 ⌋. Further improvement followed by Aichholzer, Hackl, and Vogtenhuber [AHV12] and
by Valtr [Val12]. The best known bound published before my studies was by Aichholzer et
al. [AFMH+14], who showed h5(n) ≥ 3n/4 − o(n). All above mentioned improvements on the
multiplicative constant were achieved by utilizing the values of h5(10), h5(11), and h5(12). The
lower bound on h6(n) has a similar (but shorter) history. The best bound currently known is
by Valtr [Val12], who showed h6(n) ≥ n/229− 4.

In my bachelor’s thesis [Sch13] the exact values h5(13) = 3, h5(14) = 6, and h5(15) = 9 were
determined and h5(16) ∈ {10, 11} was shown. During the preparation of this thesis, we further
determined the value h5(16) = 11 using a SAT model, which we will describe later in Chapter 4.5.
Table 1.1 summarizes our knowledge on the values of h5(n) for n ≤ 20 (cf. sequence A276096
on the OEIS [Slo]). The values h5(n) for n ≤ 16 can be used to obtain further improvements on
the multiplicative constant. By revising the proofs of [AFMH+14, Lemma 1] and [AFMH+14,
Theorem 3], one can obtain h5(n) ≥ n− 10 and h5(n) ≥ 3n/2− o(n), respectively.

4Harborth was Dehnhardt’s supervisor.

http://oeis.org/A276096
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n ≤ 9 10 11 12 13 14 15 16 17 18 19 20
h5(n) 0 1 2 3 3 6 9 11 ≤ 16 ≤ 21 ≤ 26 ≤ 33

Table 1.1: The minimum number h5(n) of 5-holes determined by any set of n ≤ 20 points.

Relations Edelman and Jamison [EJ85] and Ahrens, Gordon, and McMahon [AGM99] have
shown that every set P of n points fulfills the two relations

h1(P )− h2(P ) + h3(P )− h4(P )± . . . = 1

h1(P )− 2h2(P ) + 3h3(P )− 4h4(P )± . . . = i(P ),

where h1(P ) =
(︁
n
1

)︁
, h2(P ) =

(︁
n
2

)︁
, hk(P ) for k ≥ 3 denotes the number of k-holes in P , and i(P )

denotes the number of inner points of P . Later Edelman and Reiner [ER00] gave an independent
proof for the two relations (cf. [PRS06] and [BV04]). Those relations turned out to be quite
powerful when working with k-holes. For example, for any point set P without 7-holes only the
four terms hk(P ), 3 ≤ k ≤ 6, depend on the structure of P , and hence, any three of those terms
determine the fourth one. Two further relations between k-holes have been shown by Pinchasi,
Radoičić, and Sharir [PRS06]:

h4(P ) ≥ h3(P )− 1
2n

2 −O(n) and h5(P ) ≥ h3(P )− n2 −O(n).

Consequently, h3(n) ≥ (1 + ϵ)n2 − o(n2) would imply a quadratic lower bound on h5(n), or
conversely, a subquadratic upper bound on h5(n) would imply that h3(n) ≤ n2 + o(n2). Here
is also worth mentioning that two further relations were shown by García [Gar12]. However,
since they require some additional definitions, those two relations are deferred to Chapter 3 (cf.
Theorem 3.5).

In Chapter 3, we give the first superlinear lower bound on the number of 5-holes, which is
the first asymptotic improvement since Harborth’s linear lower bound from 1978. In particular,
we show h5(n) ≥ Ω(n log4/5 n). This is one of the main results of this thesis and solves an open
problem, which was explicitely stated, for example, in a book by Brass, Moser, and Pach [BMP05,
Chapter 8.4, Problem 5] and in the survey by Aichholzer [Aic09]. Moreover, we slightly adapt
our proof and provide improved lower bounds on the minimum numbers of 3-holes and 4-holes:
h3(n) ≥ n2 +Ω(n log2/3 n) and h4(n) ≥ n2

2 +Ω(n log3/4 n).

1.3 Disjoint Holes

In 2001, Hosono and Urabe [HU01] started the investigation of disjoint holes, where two holes
X1, X2 of a given point set S are said to be disjoint if their respective convex hulls are disjoint
(that is, conv(X1) ∩ conv(X2) = ∅); see Figure 1.3 for an illustration. This led to the following
question: What is the smallest number h(k1, . . . , kl) such that every set of h(k1, . . . , kl) points
determines a ki-hole for every i = 1, . . . , l, such that the holes are pairwise disjoint [HU08]?

interior-disjoint 3-holes disjoint 3-holes

Figure 1.3: An illustration of (interior-)disjoint 3-holes.
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As there are arbitrarily large point sets without 7-holes, only parameters ki < 7 are of
interest. Moreover, since the gap between the upper bound and the lower bound for h(6) is still
huge, mostly values with parameters k1, . . . , kl ≤ 5 were investigated. Also note that, if all ki
are at most 3, then the value h(k1, . . . , kl) = k1+ . . .+kl is straight-forward because every set of
k1 + . . .+ kl points can be cut into blocks of k1, . . . , kl points (from left to right), which clearly
determine the desired holes.

For two parameters, the value h(k1, k2) has been determined for all k1, k2 ≤ 5 except for
h(5, 5) [HU01, HU05, HU08, BD11]. Concerning the value h(5, 5), the previous best bounds are
17 ≤ h(5, 5) ≤ 19. In particular, the upper bound was shown by Bhattacharya and Das [BD13]
by an elaborate case distinction.

In Chapter 4, we present a technique, based on a SAT model, which can be used to tackle
various combinatorial problems on (relatively small) point sets. With this approach, we show
that every set of 17 points in general position admits two disjoint 5-holes, that is, h(5, 5) = 17.
This answers a question of Hosono and Urabe [HU01]. We also provide new bounds for three
and more pairwise disjoint holes. Table 1.2 shows the best possible bounds for two disjoint holes.

2 3 4 5
2 4 5 6 10
3 6 7 10
4 9 12
5 17*

Table 1.2: Values of h(k1, k2). The entry marked with star (*) is new.

Interior-Disjoint Holes Besides disjoint holes, also the variant of interior-disjoint holes has
been investigated intensively by various groups of researchers (see e.g. [DHKS03, SU07, CGH+15,
BMS17, HU18]). Interior-disjoint holes also play an important role in the study of other geo-
metric objects such as visibility graphs (see e.g. [DTP09]) or flip graphs of triangulations on
point sets (see e.g. [Pil18]). Wagner and Welzl [WW19] quite recently developed a framework
for triangulations on planar point sets which also allows the investigation of interior-disjoint
holes. Using their tools and results it is, for example, quite easy to derive that 10 points always
give a 4-hole and a 5-hole that are interior-disjoint. In fact, when comparing the number of
researchers working on the respective problems, the interior-disjoint holes appear to be more of
interest.

Two holes X1, X2 are called interior-disjoint if their respective convex hulls are interior-
disjoint; see Figure 1.3. Interior-disjoint holes are also called compatible holes in literature.
Note that a pair of interior-disjoint holes can share up to two vertices. In a recent article from
2018, Hosono and Urabe [HU18] summarized the current status and presented some new results.

Using our SAT model from Chapter 4, we show that every set of 15 points contains two
interior-disjoint 5-holes – this strengthens the result from Hosono and Urabe [HU18]. Table 1.3
shows the best possible bounds for two interior-disjoint holes.
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3 4 5
3 4 5 10
4 7 10
5 15*

Table 1.3: Best possible bounds on the minimum number of points such that every set of that many
points contains two interior-disjoint holes of sizes k1 and k2. The entry marked with star (*) is new.



Chapter 2

Preliminaries

2.1 Order Types of Point Sets

Even though, for fixed n ∈ N, there is an uncountable number of possibilities to place n points in
the Euclidean plane, there are only finitely many equivalence classes of point sets when point sets
inducing the same triple orientations are considered equal. Given a set of points S = {s1, . . . , sn}
with si = (xi, yi), we say that the triple (a, b, c) is positively (negatively) oriented if

χabc := sgn det

⎛⎝ 1 1 1
xa xb xc
ya yb yc

⎞⎠ ∈ {−1, 0,+1}

is positive (negative)1. As illustrated in Figure 2.1, the point c lies to the left of the directed
line

−→
ab if and only if the triple (a, b, c) is positively oriented. Also note that χabc = 0 indicates

collinear points, in particular, χaaa = χaab = χaba = χbaa = 0. As introduced by Goodman
and Pollack [GP83], these equivalence classes (sometimes also with unlabeled points) are called
order types.

+

–

a
b

c

d

Figure 2.1: An illustration of orientation triples: (a, b, c) is positively and (a, b, d) is negatively oriented.

It is easy to see that many properties of point sets such as convexity are rather combinatorial
than geometric properties as they can be described solely using the relative position of the points:
If the points s1, . . . , sk are the vertices of a convex polygon (ordered along the boundary), then,
for every i = 1, . . . , k, the cyclic order of the other points around si is si+1, si+2, . . . , si−1 (indices
modulo k). Equivalently, for every i = 1, . . . , k, the points si+2, si+3, . . . lie on one side of the
line sisi+1. Similarly, one can also describe k-holes only using relative positions: A point s0 lies
inside a triangle spanned by points sa, sb, sc if

(i) the line s0sa separates sb from sc,

(ii) the line s0sb separates sa from sc, and

(iii) the line s0sc separates sa from sb.
1The letter χ is commonly used in literature to denote triple orientations as the word “chirality” is derived

from the Greek word for “hand”.
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Carathéodory’s theorem now asserts that s0 lies inside a convex polygon spanned by the points
s1, . . . , sk if and only if there is a triangle sa, sb, sc (1 ≤ a < b < c ≤ k) containing s0.

In the course of this thesis we will come across point sets, that are separated by a line. Also
this property only depends on the order type: Suppose that a line ℓ separates point sets A
and B. Then, for example by rotating ℓ, we can find another line ℓ′ that contains a point a ∈ A
and a point b ∈ B and separates A \ {a} and B \ {b}. In particular, we have χaba′ ≤ 0 for all
a′ ∈ A and χabb′ ≥ 0 for all b′ ∈ B, or the other way round.

2.2 Abstract Order Types

In the course of this thesis, we will use computer assistance to prove a couple of statements
for (relatively small) point sets. For such computer proofs it is common practice to consider a
generalization of order types – the so called abstract order types – which are solely described by
triple orientations. In the first glance, one might think that it is a good idea to use a computer
to simply test all possible mappings χ : {1, . . . , n}3 → {−1, 0,+1}. This approach, however,
might not result in an accurate result as only very few of such mappings describe actual point
sets2. Before we can properly define abstract order types, we recall some basics from projective
geometry and linear algebra.

A point (x, y) in the plane can be identified with the line {(λ, λx, λy) : λ ∈ R} in 3-space,
which in particular contains the origin. Obviously, every point (λ, x, y) in 3-space with λ ̸= 0
describes the unique point (x/λ, y/λ).

The well-known Graßmann–Plücker relations (see e.g. [BLW+99, Chapter 3.5]) assert that
any r-dimensional vectors a1, . . . , ar, b1, . . . , br fulfill3

det(a1, . . . , ar) · det(b1, . . . , br) =
r∑︂

i=1

det(bi, a2, . . . , ar) · det(b1, . . . , bi−1, a1, bi+1, . . . , br).

In particular, two sides of the equation clearly must have the same sign. This necessary condi-
tion directly translates to point sets and their induced triple orientations. Moreover, from the
properties of the determinant we also derive

det(aσ(1), . . . , aσ(r)) = sgn(σ) · det(a1, . . . , ar)

for any permutation σ of the indices {1, . . . , r}. These two necessary conditions clearly motivate
the following generalization of point sets.

Definition 2.1 (Chirotope). A function χ : {1, . . . , n}r → {−1, 0,+1} is called chirotope of
rank r if the following three properties are fulfilled:

(i) χ not identically zero;

(ii) for every permutation σ and indices a1, . . . , ar ∈ {1, . . . , n},

χ(aσ(1), . . . , aσ(r)) = sgn(σ) · χ(a1, . . . , ar);
2In fact, mappings χ :

(︁{1,...,n}
3

)︁
→ {−1,+1}, which can be considered as bicolored 3-uniform hypergraphs,

also have been studied as a natural generalization of point sets in terms of the Erdős–Szekeres Theorem (see e.g.
[SP06, FPSS12, BV17])

3The relations can be derived for example as outlined: Consider the vectors a1, . . . , ar, b1, . . . , br as an r × 2r
matrix and apply row additions to obtain echelon form. If the first r columns form a singular matrix, then
det(a1, . . . , an) = 0 and both sides of the equation vanish by a simple column multiplication argument. Otherwise,
we can assume (also due to a column multiplication argument) that the first r columns form an identify matrix.
Since the determinant is invariant to row additions, none of the terms in the Graßmann–Plücker relations is
effected during the transformation, and the statement then follows from Laplace expansion.
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(iii) for indices a1, . . . , ar, b1, . . . , br ∈ {1, . . . , n},

if χ(bi, a2, . . . , ar) · χ(b1, . . . , bi−1, a1, bi+1, . . . , br) ≥ 0 holds for all i = 1, . . . , r

then we have χ(a1, . . . , ar) · χ(b1, . . . , br) ≥ 0.

Chirotopes of rank 3 were also investigated under several different names (also with slight
variations): abstract order types [AAK02, Kra03], CC systems (see [Knu92]), pseudoconfigu-
rations of points, abstract oriented matroids of rank 3 (see e.g. [BLW+99]), or pseudolinear
drawings of the complete graph Kn (see e.g. [AMRS18]). Since we are mainly interested in pla-
nar point sets in general position in this thesis, we assume that abstract order types are in
general position unless mentioned otherwise, that is, χ(a, b, c) ̸= 0 holds for any three distinct
indices a, b, c. Abstract order types which are not in general position are sometimes also called
degenerate.

Since property (iii) from Definition 2.1 – commonly known as the exchange property – can
be considered as a relaxation of the Graßmann–Plücker relations, it is not that surprising that
there are in fact abstract order types which are not induced by any point set – but we will defer
this to Part II of this thesis (cf. Chapters 6.2 and 7).

2.3 Enumeration of Order Types

Given an abstract order type one can iteratively remove points from the convex hull until all
points are removed. (Similar as in point sets, a and b are consecutive on the boundary of
the convex hull if χ(a, b, c) = + holds for all other indices c.) In reverse, one can recursively
enumerate all abstract order types on n points by taking a chirotope on n − 1 points and
extending it by an n-th point in all possible ways such that the chirotope axioms remain satisfied
(cf. Definition 2.1).

Aichholzer, Aurenhammer, and Krasser [AAK02, AK06] (see also Krasser’s PhD thesis
[Kra03]) provide the order type database which stores all order types encoded as point sets
of size up to 11. In fact, they enumerated all abstract order types on n ≤ 11 points and either
provided a realizing point set or a non-realizability proof. The set of order types of sets of 10
points are available online [Aic] and the ones for n = 11 are available upon request from Aich-
holzer since the database needs about 96 GB of storage. Table 2.1 shows the number of abstract
and realizable order types for n ≤ 11 (cf. sequences A006247 and A063666 on the OEIS [Slo]).

number of points 3 4 5 6 7 8
abstract order types 1 2 3 16 135 3 315
realizable order types 1 2 3 16 135 3 315

number of points 9 10 11
abstract order types 158 830 14 320 182 2 343 203 071
realizable order types 158 817 14 309 547 2 334 512 907

Table 2.1: The number of abstract and realizable order types on n points for n ≤ 11. [AK06]

In the course of another recent paper with two of my colleagues Hendrik Schrezenmaier and
Raphael Steiner [SSS19b], we wrote a short and simple C++ program that allows the recursive
enumeration of all abstract order types on 11 points with only one day of computation time on a
single CPU. In particular, with our independent program we could verify the results for abstract
order types from Aichholzer, Aurenhammer, and Krasser. Since none of our computer proofs
in this thesis relies on coordinates, it is sufficient for our proofs to test the database of abstract

http://oeis.org/A006247
http://oeis.org/A063666
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order types. In fact, also some non-realizable abstract order types are enumerated, however, all
statements actually hold in the more general setting of abstract order types.

2.4 Point-Line Duality

When considering a point set S = {s1, . . . , sn} in the plane, we may further assume that the
points s1, . . . , sn have increasing x-coordinates. Note that when considering point sets as rep-
resentatives for order types this assumption is not a restriction. In fact, given a set of point
where some points have the same x-coordinate, we can apply a slight rotation (which preserves
the order type) to obtain distinct x-coordinates.

Using the unit paraboloid duality transformation, which maps a point s = (a, b) to the line
s∗ : y = 2ax − b, we obtain the arrangement of dual lines S∗ = {s∗1, . . . , s∗n}, where the dual
lines s∗1, . . . , s∗n have increasing slopes. By the increasing x-coordinates and the properties of the
unit paraboloid duality (cf. [O’R94, Chapter 6.5] or [Ede87, Chapter 1.4]), the following three
statements are equivalent for any indices 1 ≤ i < j < k ≤ n:

(i) The points si, sj , sk are positively oriented.

(ii) The point sk lies above the line sisj .

(iii) The intersection point of the two lines s∗i and s∗j lies above the line s∗k.

As a consequence, we can read the triple-orientations of a point set S also from its dual line
arrangement S∗; see Figure 2.2. Pause to note that the choice of the duality is not that important:
The above equivalences applies to any duality transformation (a, b) ↦→ {(x, y) : y = αax − βb}
with α · β > 0. For α · β < 0 the roles of “above” and “below” are simply exchanged in the dual.

s1

s2

s3

+

s∗1

s∗2

s∗3

Figure 2.2: Point-line duality illustration.

All combinatorial properties that only depend on the order type (not the explicit coordinates)
can be read from the dual line arrangement. To give an example, observe that two points a and b
of a set S are consecutive on the boundary of the convex hull of S if all other points of S\{a, b} lie
on one side of the line ab. This directly translates to the dual line arrangement: the intersection
point of a∗ and b∗ either lies above all or below all lines from S∗ \ {a∗, b∗}. Moreover, S is in
convex position if and only if every line from S∗ bounds the top or the bottom cell. Here the
top cell and the bottom cell denote the two cells which contain the points (0,+∞) and (0,−∞),
respectively.

Another way to define a point-line duality is as follows: Consider a collection L of lines in
3-space which pass through the origin. The intersection of these lines with a fixed plane Π yields
a point set which lives in Π. Now consider the collection E of planes orthogonal to the lines
from L and containing the origin. The intersection of the planes from E with another fixed
plane Π′ yields an arrangement of lines which lives in Π′. Figure 2.34 gives an illustration.

4This 3D-figure was created using GeoGeobra [H+19]
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Figure 2.3: Point-line duality illustration in 3 dimensions. The black line L passes through the origin
O and intersects Π in the red point P , and the black plane – which is orthogonal to L and contains the
origin – intersects Π′ in the blue line P ∗.

Here it is also worth mentioning that by intersecting the planes from E with the unit sphere
S2 (centered at the origin) one also gets a one-to-one correspondence to great-circles, however,
we defer circle arrangements until Part II of this thesis (cf. Figure 6.1).
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Chapter 3

A Superlinear Lower Bound on the
Number of 5-Holes

In this chapter, we show h5(n) = Ω(n log4/5 n), obtaining the first superlinear lower bound on
the minimum number of 5-holes among all sets of n points in the plane in general position.

Theorem 3.1. There is an absolute constant c > 0 such that for every integer n ≥ 10 we have
h5(n) ≥ cn log4/5 n.

Moreover, using a result of García [Gar12], we adapt the proof of Theorem 3.1 to provide
improved lower bounds on the minimum numbers of 3-holes and 4-holes.

Theorem 3.2. The following two bounds are satisfied for every positive integer n:

(i) h3(n) ≥ n2 +Ω(n log2/3 n) and

(ii) h4(n) ≥ n2

2 +Ω(n log3/4 n).

3.1 Outline

Throughout this chapter, we assume that every point set P is planar, finite, and in general posi-
tion. We also assume, without loss of generality, that all points in P have distinct x-coordinates.
We use conv(P ) to denote the convex hull of P and ∂ conv(P ) to denote the boundary of the
convex hull of P .

A subset Q of P that satisfies P ∩ conv(Q) = Q is called an island of P . Note that every
k-hole in an island Q of P is also a k-hole in P . For any subset R of the plane, if R contains no
point of P , then we say that R is empty of points of P .

Let P be a finite set of points in the plane in general position and let ℓ be a line that contains
no point of P . We say that P is ℓ-divided if there is at least one point of P in each of the two
halfplanes determined by ℓ. For an ℓ-divided set P , we use P = A ∪ B to denote the fact that
ℓ partitions P into the subsets A and B. Throughout this chapter, we assume without loss of
generality that ℓ is vertical and directed upwards, A is to the left of ℓ, and B is to the right of ℓ.

The following structural result, which might be of independent interest, is a crucial step in
the proof of Theorem 3.1.

Theorem 3.3. Let P = A ∪ B be an ℓ-divided set with |A|, |B| ≥ 5 and with neither A nor B
in convex position. Then there is an ℓ-divided 5-hole in P .

The proof of Theorem 3.3 is computer-assisted. We reduce the result to several statements
about point sets of size at most 11 and then verify each of these statements by an exhaustive
computer search. To verify the computer-aided proofs we have implemented two independent



32 CHAPTER 3. A SUPERLINEAR LOWER BOUND ON THE NUMBER OF 5-HOLES

programs, which, in addition, are based on different abstractions of point sets; see Chapter 3.5.2.
Some of the tools that we use originate from my bachelor’s theses [Sch13, Sch14].

Theorem 3.2 is proved in Chapter 3.3. Then, in Chapter 3.4, we give some preliminaries for
the proof of Theorem 3.3, which is presented in Chapter 3.5. Finally, in Chapter 3.6, we give
some final remarks. In particular, we show that the assumptions in Theorem 3.3 are necessary.
To provide a better general view, we present a flow summary of the proof of Theorem 3.1 in
Figure 3.1.

Theorem 3.1

Theorem 3.3 Lemma 3.4

Lemma 3.14 Proposition 3.21 Proposition 3.22

Lemma 3.20 Corollary 3.13

Lemma 3.19 Lemma 3.18

Lemma 3.16

Lemmas 3.15 and 3.17

Lemma 3.11

Lemma 3.12

Lemma 3.8

Figure 3.1: Flow summary. The shaded boxes correspond to computer-assisted results.

3.2 Proof of Theorem 3.1

We now apply Theorem 3.3 to obtain a superlinear lower bound on the number of 5-holes in a
given set of n points. It clearly suffices to prove the statement for the case in which n = 2t for
some integer t ≥ 55.

We prove by induction on t ≥ 55 that the number of 5-holes in an arbitrary set P of n = 2t

points is at least f(t) := c · 2tt4/5 = c · n log
4/5
2 n for some absolute constant c > 0. For t = 55,

we have n > 10 and, by the result of Harborth [Har78], there is at least one 5-hole in P . If the
constant c is sufficiently small, then f(t) = c · n log

4/5
2 n ≤ 1 and we have at least f(t) 5-holes

in P , which constitutes our base case.
For the inductive step we assume that t > 55. We first partition P with a line ℓ into two

sets A and B of size n/2 each. Then we further partition A and B into smaller sets using
the following well-known lemma, which can be considered as a generalization of the well-known
Ham-Sandwich cut and is for example implied by a result of Steiger and Zhao [SZ10, Theorem 1].

Lemma 3.4 (Generalized Ham-Sandwich Cut, [SZ10]). Let P ′ = A′ ∪ B′ be an ℓ-divided set
and let r be a positive integer such that r ≤ |A′|, |B′|. Then there is a line that is disjoint from
P ′ and that determines an open halfplane h with |A′ ∩ h| = r = |B′ ∩ h|.

We set r := ⌊log1/52 n⌋, s := ⌊n/(2r)⌋, and apply Lemma 3.4 iteratively in the following way
to partition P into islands P1, . . . , Ps+1 of P so that for every i ∈ {1, . . . , s}, the sizes of Pi ∩A
and Pi ∩B are exactly r. Let P ′

0 := P . For every i = 1, . . . , s, we consider a line that is disjoint
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from P ′
i−1 and that determines an open halfplane h with |P ′

i−1 ∩ A ∩ h| = r = |P ′
i−1 ∩ B ∩ h|.

Such a line exists by Lemma 3.4 applied to the ℓ-divided set P ′
i−1. We then set Pi := P ′

i−1 ∩ h,
P ′
i := P ′

i−1 \ Pi, and continue with i + 1. Finally, we set Ps+1 := P ′
s. Figure 3.2 gives an

illustration for the case r = 7.

P1

P2

`

P3

P4

Figure 3.2: An illustration of the proof of Theorem 3.1.

Let i ∈ {1, . . . , s}. If one of the sets Pi∩A and Pi∩B is in convex position, then there are at
least

(︁
r
5

)︁
5-holes in Pi and, since Pi is an island of P , we have at least

(︁
r
5

)︁
5-holes in P . If this is

the case for at least s/2 islands Pi, then, given that s = ⌊n/(2r)⌋ and thus s/2 ≥ ⌊n/(4r)⌋, we
obtain at least ⌊n/(4r)⌋

(︁
r
5

)︁
≥ c · n log

4/5
2 n 5-holes in P for a sufficiently small constant c > 0.

We thus further assume that for more than s/2 islands Pi, neither of the sets Pi ∩ A nor
Pi ∩ B is in convex position. Since r = ⌊log1/52 n⌋ ≥ 5, Theorem 3.3 implies that there is an
ℓ-divided 5-hole in each such Pi. Thus there is an ℓ-divided 5-hole in Pi for more than s/2 islands
Pi. Since each Pi is an island of P and since s = ⌊n/(2r)⌋, we have more than s/2 ≥ ⌊n/(4r)⌋
ℓ-divided 5-holes in P . As |A| = |B| = n/2 = 2t−1, there are at least f(t− 1) 5-holes in A and
at least f(t− 1) 5-holes in B by the inductive assumption. Since A and B are separated by the
line ℓ, we have at least

2f(t− 1) + n/(4r) = 2c(n/2) log
4/5
2 (n/2) + n/(4r) ≥ cn(t− 1)4/5 + n/(4t1/5)

5-holes in P . The right side of the above expression is at least f(t) = cnt4/5 because the
inequality cn(t − 1)4/5 + n/(4t1/5) ≥ cnt4/5 is equivalent to (t − 1)4/5t1/5 + 1/(4c) ≥ t, which
is true if the constant c is sufficiently small, as (t− 1)4/5t1/5 ≥ t− 1. This finishes the proof of
Theorem 3.1.

3.3 Proof of Theorem 3.2

In this section we improve the lower bounds on the minimum number of 3-holes and 4-holes. To
this end we use the notion of generated holes as introduced by García [Gar12].

Given a 5-hole H in a point set P , a 3-hole in P is generated by H if it is spanned by the
leftmost point p of H and the two vertices of H that are not adjacent to p on the boundary
of conv(H). Similarly, a 4-hole in P is generated by H if it is spanned by the vertices of H with the
exception of one of the points adjacent to the leftmost point of H on the boundary of conv(H).
We call a 3-hole or a 4-hole in P generated if it is generated by some 5-hole in P . We denote the
number of generated 3-holes and generated 4-holes in P by h3|5(P ) and h4|5(P ), respectively.
We also denote by h3|5(n) and h4|5(n) the minimum of h3|5(P ) and h4|5(P ), respectively, among
all sets P of n points.
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We say that a point from P is extremal in P if it lies on the boundary of conv(P ). A point
from P that is not extremal is inner in P . García [Gar12] proved the following relationships
between h3(P ) and h3|5(P ) and between h4(P ) and h4|5(P ).

Theorem 3.5 ([Gar12]). Let P be a set of n points and let γ(P ) be the number of extremal
points of P . Then the following two equalities are satisfied:

(i) h3(P ) = n2 − 5n+ γ(P ) + 4 + h3|5(P ) and

(ii) h4(P ) = n2

2 − 7n
2 + γ(P ) + 3 + h4|5(P ).

The proofs of both parts of Theorem 3.2 are carried out by induction on n similarly to the
proof of Theorem 3.1. The base cases follow from the fact that each set P of n ≥ 10 points
contains at least one 5-hole in P and thus a generated 3-hole in P and a generated 4-hole in P .
For the inductive step, let P = A∪B be an ℓ-divided set of n points with |A|, |B| ≥

⌊︁
n
2

⌋︁
, where

n is a sufficiently large positive integer.
To show part (i), it suffices to prove h3|5(P ) ≥ Ω(n log2/3 n) as the statement then follows

from Theorem 3.5. We use the recursive approach from the proof of Theorem 3.1, where we
choose r = ⌊log1/32 n⌋. In each step of the recursion we either obtain

⌊︁
n
4r

⌋︁
pairwise disjoint

r-holes in P or
⌊︁
n
4r

⌋︁
pairwise disjoint ℓ-divided 5-holes in P .

In the first case, each r-hole in P admits
(︁
r
3

)︁
3-holes in P and, by Theorem 3.5, it contains(︁

r
3

)︁
− r2 + 5r − r − 4 generated 3-holes in P . Thus, in total, we count at least n

4r

(︁
r
3

)︁
−O(nr) ≥

Ω(n log2/3 n) generated 3-holes in P .
In the second case, we have at least

⌊︁
n
4r

⌋︁
ℓ-divided 5-holes in P . Without loss of generality,

we can assume that at least 1
2

⌊︁
n
4r

⌋︁
≥

⌊︁
n
8r

⌋︁
of those ℓ-divided 5-holes in P contain at least two

points to the right of ℓ, as we otherwise continue with the horizontal reflection of P , which
has ℓ as the axis of reflection. Note that if a 5-hole is reflected, then it generates another 3-
hole, however, the number of generated 3-holes both in A and in B remains the same after the
reflection by Theorem 3.5. Hence we can apply this transformation. Therefore we have at least⌊︁
n
8r

⌋︁
ℓ-divided generated 3-holes in P and, analogously as in the proof of Theorem 3.1, we obtain

h3|5(P ) ≥ 2h3|5

(︂⌊︂n
2

⌋︂)︂
+
⌊︂ n

4r

⌋︂
≥ Ω(n log2/3 n).

This finishes the proof of part (i).
The proof of part (ii) is almost identical. We choose r = ⌊log1/42 n⌋ and use the facts that

every r-hole in P contains
(︁
r
4

)︁
− r2

2 + 7r
2 − r− 3 generated 4-holes in P and that every ℓ-divided

5-hole in P generates two 4-holes in P , at least one of which is ℓ-divided. This finishes the proof
of Theorem 3.2.

3.4 Preliminaries for the proof of Theorem 3.3

Before proceeding with the proof of Theorem 3.3, we first introduce some notation and defini-
tions, and state some immediate observations.

Let a, b, c be three distinct points in the plane. We denote the line segment spanned by a and
b as ab, the ray starting at a and going through b as

−→
ab, and the line through a and b directed

from a to b as ab. We say c is to the left (right) of ab if the triple (a, b, c) traced in this order
is oriented counterclockwise (clockwise). Note that c is to the left of ab if and only if c is to the
right of ba, and that the triples (a, b, c), (b, c, a), and (c, a, b) have the same orientation. We say
a point set S is to the left (right) of ab if every point of S is to the left (right) of ab.
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Sectors of polygons For an integer k ≥ 3, let P be a convex polygon with vertices p1, . . . , pk
traced counterclockwise in this order. We denote by S(p1, . . . , pk) the open convex region to the
left of each of the three lines p1p2, p1pk, and pk−1pk. We call the region S(p1, . . . , pk) a sector
of P. Note that every convex k-gon defines exactly k sectors. Figure 3.3(a) gives an illustration.

P

p1

p2

p3

p4

S(p2, p3, p4, p1)

S(p1, p2, p3, p4)

S(p3, p4, p1, p2)

S(p4, p1, p2, p3)

(a)

a∗
a5

`

a1

a4

W1

W4

W2

W3

a2

W5

a3

(b)

a∗
a6

`

a1

a4

W1

W4

W2

W3

a2

W5

a3a5

W6

(c)

Figure 3.3: (a) An example of sectors. (b) An example of a∗-wedges with t = |A| − 1. (c) An example
of a∗-wedges with t < |A| − 1.

We use △(p1, p2, p3) to denote the closed triangle with vertices p1, p2, p3. We also use
□(p1, p2, p3, p4) to denote the closed quadrilateral with vertices p1, p2, p3, p4 traced in the coun-
terclockwise order along the boundary.

The following simple observation summarizes some properties of sectors of polygons.

Observation 3.6. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole in P . Then the
following conditions are satisfied.

(i) Every sector of an ℓ-divided 4-hole in P is empty of points of P .

(ii) If S is a sector of a 4-hole in A and S is empty of points of A, then S is empty of points
of B.

ℓ-critical sets and islands An ℓ-divided set C = A ∪ B is called ℓ-critical if it fulfills the
following two conditions.

(i) Neither A nor B is in convex position.

(ii) For every extremal point x of C, one of the sets (C \ {x}) ∩ A and (C \ {x}) ∩ B is in
convex position.

Note that every ℓ-critical set C = A ∪ B contains at least four points in each of A and B.
Figure 3.4 shows some examples of ℓ-critical sets. If P = A ∪B is an ℓ-divided set with neither
A nor B in convex position, then there exists an ℓ-critical island of P . This can be seen by
iteratively removing extremal points so that none of the parts is in convex position after the
removal.

a-wedges and a∗-wedges Let P = A∪B be an ℓ-divided set. For a point a in A, the rays
−→
aa′

for all a′ ∈ A \ {a} partition the plane into |A| − 1 regions. We call the closures of those regions
a-wedges and label them as W (a)

1 , . . . ,W
(a)
|A|−1 in the clockwise order around a, where W

(a)
1 is the

topmost a-wedge that intersects ℓ. Let t(a) be the number of a-wedges that intersect ℓ. Note
that W

(a)
1 , . . . ,W

(a)

t(a)
are the a-wedges that intersect ℓ sorted in top-to-bottom order on ℓ. Also

note that all a-wedges are convex if a is an inner point of A, and that there exists exactly one
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A

B

�

(a)

A
B

�

(b)

A
B

�

(c)

A B

�

(d)

Figure 3.4: Examples of ℓ-critical sets.

non-convex a-wedge otherwise. The indices of the a-wedges are considered modulo |A| − 1. In
particular, W (a)

0 = W
(a)
|A|−1 and W

(a)
|A| = W

(a)
1 .

If A is not in convex position, we denote the rightmost inner point of A as a∗ and write
t := t(a

∗) and Wk := W
(a∗)
k for k = 1, . . . , |A| − 1. Recall that a∗ is unique, since all points have

distinct x-coordinates. Figures 3.3(b) and 3.3(c) give an illustration.
We set wk := |B ∩Wk| and label the points of A so that Wk is bounded by the rays

−−−−→
a∗ak−1

and
−−→
a∗ak for k = 1, . . . , |A| − 1. Again, the indices are considered modulo |A| − 1. In particular,

a0 = a|A|−1 and a|A| = a1.

Observation 3.7. Let P = A ∪ B be an ℓ-divided set with A not in convex position. Then the
points a1, . . . , at−1 lie to the right of a∗ and the points at, . . . , a|A|−1 lie to the left of a∗.

3.5 Proof of Theorem 3.3

First, we give a high-level overview of the main ideas of the proof of Theorem 3.3. We proceed by
contradiction and we suppose that there is no ℓ-divided 5-hole in a given ℓ-divided set P = A∪B
with |A|, |B| ≥ 5 and with neither A nor B in convex position. If |A|, |B| = 5, then the statement
follows from the result of Harborth [Har78]. Thus we assume that |A| ≥ 6 or |B| ≥ 6. We reduce
P to an island Q of P by iteratively removing points from the convex hull until one of the two
parts Q ∩A and Q ∩B contains exactly five points or Q is ℓ-critical with |Q ∩A|, |Q ∩B| ≥ 6.
If |Q ∩ A| = 5 and |Q ∩ B| ≥ 6 or vice versa, then we reduce Q to an island of Q with eleven
points and, using a computer-aided result (Lemma 3.14), we show that there is an ℓ-divided
5-hole in that island and hence in P . If Q is ℓ-critical with |Q ∩ A|, |Q ∩ B| ≥ 6, then we show
that |A ∩ ∂ conv(Q)|, |B ∩ ∂ conv(Q)| ≤ 2 and that, if |A ∩ ∂ conv(Q)| = 2, then a∗ is the only
inner point of Q ∩ A and similarly for B (Lemma 3.19). Without loss of generality, we assume
that |A∩∂ conv(Q)| = 2 and thus a∗ is the only inner point of Q∩A. Using this assumption, we
prove that |Q ∩B| < |Q ∩A| (Proposition 3.21). By exchanging the roles of Q ∩A and Q ∩B,
we obtain |Q ∩A| ≤ |Q ∩B| (Proposition 3.22), which gives a contradiction.

To prove that |Q ∩ B| < |Q ∩ A|, we use three results about the sizes of the parameters
w1, . . . , wt for the ℓ-divided set Q, that is, about the numbers of points of Q∩B in the a∗-wedges
W1, . . . ,Wt of Q. We show that if we have wi = 2 = wj for some 1 ≤ i < j ≤ t, then
wk = 0 for some k with i < k < j (Lemma 3.12). Further, for any three or four consecutive
a∗-wedges whose union is convex and contains at least four points of Q ∩ B, each of those
a∗-wedges contains at most two such points (Lemma 3.18). Finally, we show that w1, . . . , wt ≤ 3
(Lemma 3.20). The proofs of Lemmas 3.18 and 3.20 rely on some results about small ℓ-divided
sets with computer-aided proofs (Lemmas 3.15, 3.16, and 3.17). Altogether, this is sufficient to
show that |Q ∩B| < |Q ∩A|.
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We now start the proof of Theorem 3.3 by showing that if there is an ℓ-divided 5-hole in the
intersection of P with a union of consecutive a∗-wedges, then there is an ℓ-divided 5-hole in P .

Lemma 3.8. Let P = A∪B be an ℓ-divided set with A not in convex position. For integers i, j
with 1 ≤ i ≤ j ≤ t, let W :=

⋃︁j
k=iWk and Q := P ∩W . If there is an ℓ-divided 5-hole in Q,

then there is an ℓ-divided 5-hole in P .

Proof. If W is convex then Q is an island of P and the statement immediately follows. Hence
we assume that W is not convex. The region W is bounded by the rays

−−−−→
a∗ai−1 and

−−→
a∗aj and all

points of P \Q lie in the convex region R2 \W ; see Figure 3.5.

a∗
ai−1

aj

h

P \Q

(a)

a∗
ai−1

aj
x

zh

P \Q

(b)

a∗

Wi

Wj

Wi+1

. . .

ai−1

aj

`

p′

H ′
H

(c)

Figure 3.5: Illustration of the proof of Lemma 3.8. (a) The point aj is to the right of a∗. (b) The point
aj is to the left of a∗. (c) The hole H properly intersects the ray

−−→
a∗aj . The boundary of the convex hull

of H is drawn red and the convex hull of H ′ is drawn blue.

Since W is non-convex and every a∗-wedge contained in W intersects ℓ, at least one of the
points ai−1 and aj lies to the left of a∗. Moreover, the points ai, . . . , aj−1 are to the right of
a∗ by Observation 3.7. Without loss of generality, we assume that ai−1 is to the left of a∗, as
otherwise we consider the vertical reflection of the whole point set P .

If aj is to the left of a∗, then we let h be the closed halfplane determined by the vertical
line through a∗ such that ai−1 and aj lie in h. Otherwise, if aj is to the right of a∗, then we let
h be the closed halfplane determined by the line a∗aj such that ai−1 lies in h. In either case,
h ∩A ∩Q = {a∗, ai−1, aj}.

Let H be an ℓ-divided 5-hole in Q. We say that H properly intersects a ray r if the interior of
conv(H) intersects r. Now we show that if H properly intersects the ray

−−→
a∗aj , then H contains

ai−1. Assume there are points p, q ∈ H such that the interior of pq intersects r :=
−−→
a∗aj . Since r

lies in h and neither of p and q lies in r, at least one of the points p and q lies in h \ r. Without
loss of generality, we assume p ∈ h \ r. From h ∩ A ∩ Q = {a∗, ai−1, aj} we have p = ai−1. By
symmetry, if H properly intersects the ray

−−−−→
a∗ai−1, then H contains aj .

Suppose for contradiction that H properly intersects both rays
−−−−→
a∗ai−1 and

−−→
a∗aj . Then H

contains the points ai−1, aj , x, y, z for some points x, y, z ∈ Q, where ai−1x intersects
−−→
a∗aj , and

ajz intersects
−−−−→
a∗ai−1. Observe that z is to the left of ai−1a∗ and that x is to the right of aja∗. If

aj lies to the right of a∗, then z is to the left of a∗, and thus z is in A; see Figure 3.5(a). However,
this is impossible as z also lies in h. Hence, aj lies to the left of a∗; see Figure 3.5(b). As x and
z are both to the right of a∗, the point a∗ is inside the convex quadrilateral □(ai−1, aj , x, z).
This contradicts the assumption that H is a 5-hole in Q.

So assume that H properly intersects exactly one of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , say

−−→
a∗aj ; see

Figure 3.5(c). In this case, H contains ai−1. The interior of the triangle △(a∗, ai−1, aj) is empty
of points of Q, since the triangle is contained in h. Moreover, conv(H) cannot intersect the
line that determines h both strictly above and strictly below a∗. Thus, all remaining points of
H \ {ai−1} lie to the right of ai−1a∗ and to the right of aja∗. If H is empty of points of P \Q,
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we are done. Otherwise, we let H ′ := (H \ {ai−1}) ∪ {p′} where p′ ∈ P \ Q is a point inside
△(a∗, ai−1, aj) closest to aja∗. Note that the point p′ might not be unique. By construction, H ′

is an ℓ-divided 5-hole in P . An analogous argument shows that there is an ℓ-divided 5-hole in
P if H properly intersects

−−−−→
a∗ai−1.

Finally, if H does not properly intersect any of the rays
−−−−→
a∗ai−1 and

−−→
a∗aj , then conv(H)

contains no point of P \Q in its interior, and hence H is an ℓ-divided 5-hole in P .

3.5.1 Sequences of a∗-wedges with at most two points of B

In this subsection we consider an ℓ-divided set P = A ∪ B with A not in convex position. We
consider the union W of consecutive a∗-wedges, each containing at most two points of B, and
derive an upper bound on the number of points of B that lie in W if there is no ℓ-divided 5-hole
in P ∩W ; see Corollary 3.13.

Observation 3.9. Let P = A ∪ B be an ℓ-divided set with A not in convex position. Let Wk

be an a∗-wedge with wk ≥ 1 and 1 ≤ k ≤ t and let b be the leftmost point in Wk ∩ B. Then the
points a∗, ak−1, b, and ak form an ℓ-divided 4-hole in P .

From Observation 3.6(i) and Observation 3.9 we obtain the following result.

Observation 3.10. Let P = A ∪ B be an ℓ-divided set with A not in convex position and with
no ℓ-divided 5-hole in P . Let Wk be an a∗-wedge with wk ≥ 2 and 1 ≤ k ≤ t and let b be the
leftmost point in Wk∩B. For every point b′ in (Wk∩B)\{b}, the line bb′ intersects the segment
ak−1ak. Consequently, b is inside △(ak−1, ak, b

′), to the left of akb′, and to the right of ak−1b′.

The following lemma states that there is an ℓ-divided 5-hole in P if two consecutive a∗-wedges
both contain exactly two points of B.

Lemma 3.11. Let P = A ∪ B be an ℓ-divided set with A not in convex position and with
|A|, |B| ≥ 5. Let Wi and Wi+1 be consecutive a∗-wedges with wi = 2 = wi+1 and 1 ≤ i < t.
Then there is an ℓ-divided 5-hole in P .

Proof. The overall idea of the proof is as follows. We suppose for contradiction that there is
no ℓ-divided 5-hole in P . Then we prove a sequence of structural facts on the layout of the
points of P forced by this assumption. Eventually we show that the structure of the point set
P resembles the point set from Figure 3.8((a)). In particular, we arrive at the conclusion that
|B| = 4, which contradicts our assumption |B| ≥ 5.

Suppose for contradiction that there is no ℓ-divided 5-hole in P . Let W := Wi ∪Wi+1 and
let Q := P ∩W . By Lemma 3.8, there is also no ℓ-divided 5-hole in Q. We label the points in
B∩Wi as bi−1 and bi so that bi−1 is to the right of bi. Similarly, we label the points in B∩Wi+1

as bi+1 and bi+2 so that bi+2 is to the right of bi+1. By Observation 3.10, the point ai is to the
right of bibi−1 and to the left of bi+1bi+2. If the points bi−1, bi, bi+1, bi+2 are in convex position,
then ai, bi+1, bi+2, bi−1, bi form an ℓ-divided 5-hole in P ; see Figure 3.6(a). Thus, we assume the
points bi−1, bi, bi+1, bi+2 are not in convex position. Without loss of generality, we assume that
the line bibi−1 intersects the segment bi+1bi+2, as otherwise we consider the horizontal reflection
of the whole point set P .

We show that the segments aibi−1 and bibi+1 intersect. As bibi−1 intersects aiai−1 and
bi+1bi+2, the point bi−1 lies in the triangle △(bi, bi+1, bi+2). Moreover, bi−1 is to the right of
bi+1bi, ai is to the left of bi+1bi, bi is to the left of aibi−1, and bi+1 is to the right of aibi−1.
Consequently, the points ai, bi+1, bi−1, bi form an ℓ-divided 4-hole in P , and, in particular, the
segments aibi−1 and bibi+1 intersect, which we wanted to prove; see Figure 3.6(b).

The points ai−1, bi, bi−1, bi+2 are in convex position because ai−1 is the leftmost and bi+2

is the rightmost of those four points and because both ai−1 and bi+2 lie to the left of bibi−1.
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Figure 3.6: (a) If bi−1, bi, bi+1, bi+2 are in convex position, then there is an ℓ-divided 5-hole in P .
(b) The points a∗, ai+1, ai, ai−1 form a 4-hole in P .

Moreover, the points ai−1, bi, bi−1, bi+2 form an ℓ-divided 4-hole in P as □(ai−1, bi, bi−1, bi+2)
lies in W and wi = wi+1 = 2.

We consider the four points bi+2, bi−1, bi+1, ai+1. The point bi+2 is the rightmost of those
four points. By Observation 3.10, bi+1 lies to the right of aibi+2 and ai+1 lies to the right of
bi+1bi+2. Since bi−1 ∈ Wi and bi+2 ∈ Wi+1, the point bi−1 lies to the left of aibi+2. Thus, the
clockwise order around bi+2 is ai+1, bi+1, bi−1.

Suppose for contradiction that the points bi+2, bi−1, bi+1, ai+1 form a convex quadrilateral.
Due to the clockwise order around bi+2, the convex quadrilateral is □(bi+2, bi−1, bi+1, ai+1). The
only points of P that can lie in the interior of this quadrilateral are a∗, ai−1, ai, and bi. Since
the triangle △(bi+2, bi+1, ai+1) is contained in Wi+1, it contains neither of the points a∗, ai−1,
ai, and bi. Since the triangle △(bi+2, bi−1, bi+1) is contained in the convex hull of B, it does
not contain a∗, ai−1, nor ai. Moreover, as bi−1 lies in the triangle △(bi, bi+1, bi+2), the trian-
gle △(bi+2, bi−1, bi+1) also does not contain bi. Thus the quadrilateral □(bi+2, bi−1, bi+1, ai+1)
is empty of points of P . By Observation 3.6(i), the two sectors S(ai−1, bi, bi−1, bi+2) and
S(bi+2, bi−1, bi+1, ai+1) contain no point of P . Since every point of B \ {bi−1, bi, bi+1, bi+2}
is either in S(ai−1, bi, bi−1, bi+2) or in S(bi+2, bi−1, bi+1, ai+1), we have B = {bi−1, bi, bi+1, bi+2}.
This contradicts the assumption that |B| ≥ 5.

Therefore the points bi+2, bi−1, bi+1, ai+1 are not in convex position. In particular, the point
bi+1 lies in the triangle △(bi−1, ai+1, bi+2), since ai+1 is the leftmost and bi+2 is the rightmost
of the points bi+2, bi−1, bi+1, ai+1 and since bi−1 lies in Wi. The red area in Figure 3.6(b) gives
an illustration.

Consequently, the point ai+1 lies to the left of bi+1bi−1. By Observation 3.6(i), the point
ai+1 is not in the sector S(bi+1, bi−1, bi, ai), as otherwise the points bi+1, bi−1, bi, ai, ai+1 form an
ℓ-divided 5-hole in P . Thus the point ai+1 lies to the left of aibi; see Figure 3.6(b).

The points a∗, ai+1, ai, ai−1 do not form a 4-hole in P because otherwise bi lies in the sector
S(ai−1, a

∗, ai+1, ai) and forms a 5-hole together with ai−1, a
∗, ai+1, ai, which is impossible by

Observation 3.6(ii).
Therefore the points a∗, ai+1, ai, ai−1 are not in convex position. Now we show that a∗

is inside the triangle △(ai−1, ai+1, ai). The point ai is not inside △(ai−1, ai+1, a
∗), since, by

Observation 3.7, ai is to the right of a∗ and since a∗ is the rightmost inner point of A. Since
ai−1 is to the left of a∗ai and ai+1 is to the right of a∗ai, a∗ is the inner point of a∗, ai+1, ai, ai−1.
Figure 3.7 gives an illustration.

Since |B| ≥ 5, there is another a∗-wedge besides Wi and Wi+1 that intersects ℓ. Now we
show that all points of B \ Q lie in a∗-wedges below Wi+1. The rays

−−−→
biai−1 and

−−−−−→
bi−1bi+2 both

start in Wi and then leave Wi. Moreover, the segment biai−1 intersects ℓ and bi−1bi+2 intersects−−→
a∗ai. As both bi and bi−1 lie to the right of ai−1bi+2, all points of B \Q that lie in an a∗-wedge
above Wi also lie in the sector S(ai−1, bi, bi−1, bi+2). We recall that, by Observation 3.6(i), the
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Figure 3.7: Location of the points of A \Q.

sector S(ai−1, bi, bi−1, bi+2) is empty of points of P . Hence all points of B \ Q lie in a∗-wedges
below Wi+1.

Claim I. We have i = 1. That is, Wi is the topmost a∗-wedge that intersects ℓ.

By Observation 3.7, ai+1 lies to the right of a∗. Since ai and ai+1 are both to the right of
a∗ and since a∗ is inside the triangle △(ai−1, ai+1, ai), the point ai−1 is to the left of a∗. By
Observation 3.7, we have i = 1. This proves Claim I.

Claim II. All points of A \ Q lie to the left of ai+1ai, to right of ai+1bi+1, and to the right of
a∗ai+1.

The violet area in Figure 3.7 gives an illustration where the remaining points of A\Q lie. We
recall that the sector S(ai−1, bi, bi−1, bi+2) (red shaded area in Figure 3.7) is empty of points of P .
By Observation 3.9, both sets {a∗, ai, bi, ai−1} and {a∗, ai+1, bi+1, ai} form ℓ-divided 4-holes in P .
By Observation 3.6(i), the two sectors S(a∗, ai, bi, ai−1) (green shaded area in Figure 3.7) and
S(a∗, ai+1, bi+1, ai) (blue shaded area in Figure 3.7) are thus empty of points of P . Therefore,
no point of A \Q lies to the left of ai+1bi+1. Since W is non-convex, every point of P that is to
the left of a∗ai+1 lies in Q. Thus every point of A \Q lies to the right of a∗ai+1. Moreover, no
point a of A \ Q lies to the right of ai+1ai (gray area in Figure 3.7) because otherwise, ai+1 is
an inner point of △(ai, a

∗, a), which is impossible since a∗ is the rightmost inner point of A and
ai+1 is to the right of a∗. This finishes the proof of Claim II.

Now we have restricted where the points of A \Q lie. In the rest of the proof we prove the
following claim. We will then use the sectors S(bi+2, bi+1, ai+1, ai+2) and S(ai−1, bi, bi−1, bi+2)
to argue that |B| = |B ∩Q| = 4, which then contradicts the assumption |B| ≥ 5.

Claim III. The points bi+2, bi+1, ai+1, ai+2 form an ℓ-divided 4-hole in P .

We consider ai+2 and show that the points ai+1, a
∗, ai−1, ai+2 are in convex position. It

suffices to show that ai+2 does not lie in the triangle △(a∗, ai−1, ai+1) because of the cyclic order
of A\{a∗} around a∗. Recall that a∗ lies inside the triangle △(ai−1, ai+1, ai), that bi+1 lies inside
the triangle △(ai, ai+1, bi+2), and that bi−1 lies inside the triangle △(ai−1, ai, bi+2). Since the
triangles △(ai−1, ai+1, ai), △(ai, ai+1, bi+2), and △(ai−1, ai, bi+2) are oriented counterclockwise
along the boundary, the point ai lies inside △(ai−1, ai+1, bi+2). Thus also the points a∗, bi, bi+1

lie in the triangle △(ai−1, ai+1, bi+2). Consequently, the triangle △(a∗, ai−1, ai+1) is contained in
the union of the sectors S(ai+1, bi+1, ai, a

∗) (blue shaded area in Figure 3.7) and S(a∗, ai, bi, ai−1)
(green shaded area in Figure 3.7). Thus ai+2 does not lie in the triangle △(a∗, ai−1, ai+1) and
the points ai+1, a

∗, ai−1, ai+2 are in convex position.
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We now show that the sector S(ai+1, a
∗, ai−1, ai+2) is empty of points of P . If the quadri-

lateral □(ai+1, a
∗, ai−1, ai+2) is not empty of points of P , then there is a point a′i−1 of A in

△(a∗, ai−1, ai+2). This is because △(a∗, ai+2, ai+1) is empty of points of A due to the cyclic
order of A \ {a∗} around a∗. We can choose a′i−1 to be a point that is closest to the line a∗ai+2

among the points of A inside △(a∗, ai+2, ai+1). If the quadrilateral □(ai+1, a
∗, ai−1, ai+2) is

empty of points of P , then we set a′i−1 := ai−1.
By the choice of a′i−1, the quadrilateral □(ai+1, a

∗, a′i−1, ai+2) is empty of points of P .
Since ai+1 and ai+2 are consecutive in the order around a∗, no point of A lies in the sector
S(ai+1, a

∗, a′i−1, ai+2). By Observation 3.6(ii), the sector S(ai+1, a
∗, a′i−1, ai+2) (gray shaded

area in Figure 3.8(a)) is empty of points of P . Since the sector S(ai+1, a
∗, ai−1, ai+2) is a subset

of S(ai+1, a
∗, a′i−1, ai+2), the sector S(ai+1, a

∗, ai−1, ai+2) is empty of points of P .
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Figure 3.8: (a) Location of the points of B \Q. (b) The point ai+1 lies to the left of ai.

We show that ai+1 is to the left of ai and to the right of ai+2. Recall that ai lies to the
right of a∗ and to the left of bi. The point bi lies to the left of a∗ai and the point ai+1 lies to
the right of this line; see Figure 3.8(b). The point ai+1 then lies to the left of ai, since we know
already that ai+1 lies to the left of aibi. Recall that ai+1 is to the right of a∗. Consequently, the
point ai+2 lies to the left of ai+1, as ai+2 lies to the right of a∗ai+1 and to the left of ai+1ai by
Claim II.

Now we are ready to prove that the points bi+2, bi+1, ai+1, ai+2 form an ℓ-divided 4-hole in P
(green area in Figure 3.8(a)). Recall that bi+2 and ai+2 both lie to the right of ai+1bi+1, and
that ai+2 is the leftmost and bi+2 is the rightmost of those four points. Altogether, we see that
the points bi+2, bi+1, ai+1, ai+2 are in convex position. The four sectors S(bi+2, ai−1, bi, bi−1)
(red shaded area in Figure 3.8(a)), S(bi−1, bi, ai, bi+1) (orange shaded area in Figure 3.8(a)),
S(bi+1, ai, a

∗, ai+1) (blue shaded area in Figure 3.8(a)), and S(ai+1, a
∗, a′i−1, ai+2) (gray shaded

area in Figure 3.8(a)) contain the quadrilateral □(bi+2, bi+1, ai+1, ai+2) (green area in Fig-
ure 3.8(a)). The sectors are empty of points of P by Observation 3.6(i). Consequently, the
convex quadrilateral □(bi+2, bi+1, ai+1, ai+2) is an ℓ-divided 4-hole in P . This concludes the
proof of Claim III.

To finish the proof, recall that all points of B \ Q lie in a∗-wedges below Wi+1 as i = 1 by
Claim I. Since ai+2 is to the left of ai+1, the line ai+2ai+1 intersects ℓ above ℓ ∩Wi+2. The line
ai+1bi+1 also intersects ℓ above ℓ ∩ Wi+2, since ai+1 and bi+1 both lie in Wi+1. From i = 1,
every point of B \ Q is to the right of ai+2ai+1 and to the right of ai+1bi+1. Since the points
bi+2, bi+1, ai+1, ai+2 form an ℓ-divided 4-hole in P by Claim III, Observation 3.6(i) implies that
the sector S(bi+2, bi+1, ai+1, ai+2) is empty of points of P . Thus every point of B \Q lies to the
left of bi+1bi+2. Since bi+1bi+2 intersects ℓ ∩Wi+1 above ℓ ∩ ai+1bi+1 and since bi−1 lies to the
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left of bi+2 and to the left of bi+1bi+2, every point of B \Q lies to the left of bi−1bi+2 and to the
right of bi+2, and thus in the sector S(ai−1, bi, bi−1, bi+2). However, by Observation 3.6(i), this
sector is empty of points of P . Thus we obtain B = {bi−1, bi, bi+1, bi+2}, which contradicts the
assumption |B| ≥ 5. This concludes the proof of Lemma 3.11.

Next we show that if there is a sequence of consecutive a∗-wedges where the first and the last
a∗-wedge both contain two points of B and every a∗-wedge in between them contains exactly
one point of B, then there is an ℓ-divided 5-hole in P .

Lemma 3.12. Let P = A∪B be an ℓ-divided set with A not in convex position and with |A| ≥ 5
and |B| ≥ 6. Let Wi, . . . ,Wj be consecutive a∗-wedges with 1 ≤ i < j ≤ t, wi = 2 = wj, and
wk = 1 for every k with i < k < j. Then there is an ℓ-divided 5-hole in P .

Proof. For i = j − 1, the statement follows by Lemma 3.11. Thus we assume j ≥ i + 2. That
is, we have at least three consecutive a∗-wedges. Suppose for contradiction that there is no
ℓ-divided 5-hole in P . Let W :=

⋃︁j
k=iWk and Q := P ∩ W . By Lemma 3.8, there is also no

ℓ-divided 5-hole in Q. Note that |Q ∩ B| = j − i + 3. Also observe that |Q ∩ A| = j − i + 2 if
ai−1 = aj = at and |Q ∩ A| = j − i + 3 otherwise. We label the points in B ∩Wi as bi−1 and
bi so that bi−1 is to the right of bi. Further, we label the unique point in B ∩Wk as bk for each
i < k < j, and the two points in B ∩ Wj as bj and bj+1 so that bj+1 is to the right of bj ; see
Figure 3.9.
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ai−1
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...
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ai+1

Figure 3.9: An illustration of a∗-wedges Wi, . . . ,Wj in the proof of Lemma 3.12.

Claim I. All points of B ∩ (Wk−1 ∪ Wk ∪ Wk+1) are to the right of akak−1 for every k with
i < k < j.

The claim clearly holds for points from B ∩Wk. Thus it suffices to prove the claim only for
points from B ∪Wk−1, as for points from B ∪Wk+1 it follows by symmetry. Since i < k < j,
Observation 3.7 implies that the points ak−1 and ak are both to the right of a∗.

We now distinguish the following two cases.

1. The point ak−2 is to the left of a∗ak; see Figure 3.10(a). Since a∗ is the rightmost inner
point of A, ak−1 does not lie inside △(a∗, ak, ak−2) and thus □(ak−2, a

∗, ak, ak−1) is a 4-
hole in P . All points of B ∩Wk−1 lie to the right of a∗ak−2 and to the left of ak−2ak−1.
By Observation 3.6(ii), no point of B ∩Wk−1 lies in the sector S(ak−2, a

∗, ak, ak−1) (red
shaded area in Figure 3.10(a)) and thus all points of B ∩Wk−1 are to the right of akak−1.

2. The point ak−2 is to the right of a∗ak; see Figure 3.10(b). Since ak−1 and ak are to the
right of a∗ and since ak−2 is to the left of a∗ak−1 and to the right of a∗ak, the point ak−2
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Figure 3.10: An illustration of the proof of Claim I.

is to the left of a∗. By Observation 3.7, we have k = 2. That is, Wk−1 is the topmost
a∗-wedge that intersects ℓ.

There is another a∗-wedge below Wk+1, since otherwise |B| = |B∩ (Wk−1∪Wk∪Wk+1)| ≤
2+1+2 = 5, which is impossible according to the assumption |B| ≥ 6. By Observation 3.7,
the point ak+1 is to the right of a∗. Moreover, since a∗ is the rightmost inner point of A,
the point ak does not lie inside the triangle △(a∗, ak+1, ak−1). The points a∗, ak+1, ak, ak−1

then form a 4-hole in P , which has a∗ as the leftmost point.

By definition, all points of B∩Wk−1 lie to the left of a∗ak−1. As the ray
−−−−→
a∗ak+1 intersects ℓ,

all points of B ∩ Wk−1 lie also to the left of a∗ak+1. By Observation 3.6(ii), no point of
B ∩Wk−1 lies in the sector S(a∗, ak+1, ak, ak−1). Thus all points of B ∩Wk−1 lie to the
right of akak−1.

This finishes the proof of Claim I.
We say that points p1, p2, p3, p4 form a counterclockwise-oriented convex quadrilateral if every

triple (px, py, pz) with 1 ≤ x < y < z ≤ 4 is oriented counterclockwise.

Claim II. The points bi−1, bi, ai, ai+1 form a counterclockwise-oriented convex quadrilateral.

Due to Claim I, the points bi−1 and bi are both to the right of ai+1ai. Thus the points ai and
ai+1 are both extremal points of those four points. Also the point bi−1 is extremal, since it is
the rightmost of those four points. The point bi does not lie inside the triangle △(ai+1, ai, bi−1),
since, by Observation 3.10, bi lies to the left of aibi−1. To finish the proof of Claim II, it suffices
to observe that the triples (bi−1, bi, ai), (bi−1, bi, ai+1), (bi−1, ai, ai+1), and (bi, ai, ai+1) are all
oriented counterclockwise.

Claim III. The point bi+1 lies to the right of bibi−1.

Suppose for contradiction that bi+1 lies to the left of bibi−1. We consider the five points
ai−1, ai, bi−1, bi, bi+1; see Figure 3.11. By Claim I, the points bi−1, bi, and bi+1 lie to the right of
aiai−1. Moreover, since bi−1 and bi lie in Wi and since bi+1 lies in Wi+1, the points bi−1 and bi
both lie to the left of aibi+1. By Observation 3.10, the point ai−1 lies to the left of bibi−1 and bi+1

is to the right of bi−1. Consequently, the points bi−1 and bi lie in the triangle △(ai−1, ai, bi+1).
Altogether, the points ai−1, bi, bi−1, and bi+1 are in convex position.

By Claim I, the points bi−1 and bi+1 lie to the right of ai+1ai. Moreover, since bi−1 is
to the left of bi+1 and to the left of aibi+1, the points bi+1, bi−1, ai, and ai+1 are in convex
position. Since there are no further points in Wi and Wi+1, the sets {ai−1, bi, bi−1, bi+1} and
{bi+1, bi−1, ai, ai+1} are ℓ-divided 4-holes in P . By Observation 3.6(i), the point bi+2 lies neither
in S(ai−1, bi, bi−1, bi+1) nor in S(bi+1, bi−1, ai, ai+1). Recall that the ray

−−−−−→
bi−1bi+1 intersects

−−→
a∗ai

and the ray
−−−→
biai−1 does not intersect

−−→
a∗ai. Therefore bi+2 is to the right of aiai+1. This

contradicts Claim I and finishes the proof of Claim III.

Claim IV. For each k with i < k < j, the point bk lies to the left of akbi−1 and to the left
of bi−1.
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Figure 3.11: An illustration of the proof of Claim III.

Recall the labeling of the points in B ∩W ; see Figure 3.9. We show by induction on k that

(i) the points bi−1, bk−1, ak−1, and ak form a counterclockwise-oriented convex quadrilateral,
which has bi−1 as the rightmost point, and

(ii) the point bk lies inside this convex quadrilateral and, in particular, to the left of akbi−1.

Claim IV then clearly follows.
For the base case, we consider k = i+ 1. By Claim II, the points bi−1, bi, ai, and ai+1 form

a counterclockwise-oriented convex quadrilateral. By definition, bi−1 is the rightmost of those
four points. Figure 3.12(a) gives an illustration. The point bi+1 lies to the right of ai+1ai and,
by Claim III, to the right of bibi−1. Moreover, since bi+1 lies in Wi+1, it lies to the right of aibi.
By Observation 3.6(i), bi+1 does not lie in the sector S(bi−1, bi, ai, ai+1). Consequently, bi+1 lies
inside the quadrilateral □(bi−1, bi, ai, ai+1).
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Figure 3.12: (a) An illustration of the proof of Claim IV. (b) An illustration of the proof of Lemma 3.12.

For the inductive step, let i+1 < k < j. By the inductive assumption, the point bk−1 lies to
the left of ak−1bi−1 and to the left of bi−1. By Claim I, bk−1 lies to the right of akak−1. Hence,
the points ak and bi−1 both lie to the right of ak−1bk−1. Recall that the points bi−1, bk−1, ak−1, ak
lie to the right of a∗. Since bi−1 is the first and ak is the last in the clockwise order around a∗,
the points bi−1, bk−1, ak−1, ak form a counterclockwise-oriented convex quadrilateral,

Recall that the points bk−1 and bk both lie to the right of akak−1 and that bk−1 is to the
left of ak−1bi−1. Since bk ∈ Wk, the point bk lies to the right of ak−1bi−1. Therefore the
clockwise order of {bk−1, bi−1, bk} around ak−1 is bk−1, bi−1, bk. Since bi−1 is not contained in
Wk−1 ∪Wk, the point bi−1 is not contained in the triangle △(ak−1, bk, bk−1). Consequently, the
points ak−1, bk, bi−1, bk−1 form a convex quadrilateral and, in particular, bk lies to the right of
bk−1bi−1. Figure 3.12(a) gives an illustration. Since bk lies in Wk, it lies to the right of ak−1bk−1.
By Observation 3.6(i), the point bk does not lie in the sector S(bi−1, bk−1, ak−1, ak). Thus bk lies
inside the quadrilateral □(bi−1, bk−1, ak−1, ak). This finishes the proof of Claim IV.
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Using Claim IV, we now finish the proof of Lemma 3.12, by finding an ℓ-divided 5-hole in
the island Q and thus obtaining a contradiction with the assumption that there is no ℓ-divided
5-hole in P . In the following, we assume, without loss of generality, that bj+1 is to the right of
bi−1. Otherwise we can consider a vertical reflection of P .

We consider the polygon P through the points bi−1, bj−1, aj−1, bj , bj+1 and we show that P
is convex and empty of points of Q. See Figure 3.12(b) for an illustration. This will give us an
ℓ-divided 5-hole in Q.

We show that P is convex by proving that every point of {bi−1, bj−1, aj−1, bj , bj+1} is a convex
vertex of P. The point aj−1 is a convex vertex of P because it is the leftmost point in P. The
point bi−1 is a convex vertex of P because all points of P lie to the right of a∗ and bi−1 is the
topmost point in the clockwise order around a∗. The point bj+1 is a convex vertex of P because
bj+1 is the rightmost point in P by Claim IV and by the assumption that bj+1 is to the right of
bi−1. The point bj−1 is a convex vertex of P because bj−1 lies to the left of aj−1bi−1 by Claim IV
while bj and bj+1 both lie to the right of this line. The point bj is a convex vertex of P because,
by Observation 3.10, bj lies to the right of aj−1bj+1 while bj−1 and bi−1 both lie to the right of
this line. Consequently, P is a convex pentagon with vertices from both A and B. Moreover, by
Claim IV, all points bk with i < k < j lie to the left of akbi−1. Since bi is to the left of bj−1bi−1,
P is thus empty of points of Q, which gives us a contradiction with the assumption that there
is no ℓ-divided 5-hole in P .

We now use Lemma 3.12 to show the following upper bound on the total number of points
of B in a sequence Wi, . . . ,Wj of consecutive a∗-wedges with wi, . . . , wj ≤ 2.

Corollary 3.13. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole, with A not in
convex position, and with |A| ≥ 5 and |B| ≥ 6. For 1 ≤ i ≤ j ≤ t, let Wi, . . . ,Wj be consecutive
a∗-wedges with wk ≤ 2 for every k with i ≤ k ≤ j. Then

∑︁j
k=iwk ≤ j − i+ 2.

Proof. Let n0, n1, and n2 be the number of a∗-wedges from Wi, . . . ,Wj with 0, 1, and 2 points
of B, respectively. Due to Lemma 3.12, we can assume that between any two a∗-wedges from
Wi, . . . ,Wj with two points of B each, there is an a∗-wedge with no point of B. Thus n2 ≤ n0+1.
Since n0 + n1 + n2 = j − i+ 1, we have

∑︁j
k=iwk = 0n0 + 1n1 + 2n2 = (j − i+ 1) + (n2 − n0) ≤

j − i+ 2.

3.5.2 Computer-assisted results

We now provide lemmas that are key ingredients in the proof of Theorem 3.3. All these lemmas
have computer-aided proofs. Each result was verified by two independent implementations,
which are also based on different abstractions of point sets; see below for details.

Lemma 3.14. Let P = A ∪ B be an ℓ-divided set with |A| = 5, |B| = 6, and with A not in
convex position. Then there is an ℓ-divided 5-hole in P .

Lemma 3.15. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole in P , |A| = 5,
4 ≤ |B| ≤ 6, and with A in convex position. Then for every point a of A, every convex a-wedge
contains at most two points of B.

Lemma 3.16. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole in P , |A| = 6, and
|B| = 5. Then for each point a of A, every convex a-wedge contains at most two points of B.

Lemma 3.17. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole in P , 5 ≤ |A| ≤ 6,
|B| = 4, and with A in convex position. Then for every point a of A, if the non-convex a-wedge
is empty of points of B, every a-wedge contains at most two points of B.
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To prove these lemmas, we employ an exhaustive computer search through all combinatorially
different sets of |P | ≤ 11 points in the plane. Since none of these statements depends on the
actual coordinates of the points but only on the relative positions of the points, we distinguish
point sets only by orientations of triples of points (cf. Chapter 2).

We wrote two independent programs to verify Lemmas 3.14 to 3.17. Both programs are
available online [Scha, Bal].

The first implementation is based on programs from my bachelor’s theses [Sch13, Sch14]. For
our verification purposes we reduced the framework from there to a very compact implementa-
tion [Scha]. The program uses the order type database [AAK02, AK06], which stores all order
types realizable as point sets of size up to 11. As mentioned in Chapter 2.3, the statements
can also be verified using the database of abstract order types. The running time of each of the
programs in this implementation does not exceed two hours on a standard computer.

The second implementation [Bal] generates all possible abstract order types using a simple
depth-first search algorithm and verifies the conditions from our lemmas. The running time of
each of the programs in this implementation takes up to a few hundreds of hours.

3.5.3 Applications of the computer-assisted results

Here we present some applications of the computer-assisted results from Chapter 3.5.2.

Lemma 3.18. Let P = A ∪ B be an ℓ-divided set with no ℓ-divided 5-hole in P , with |A| ≥ 6,
and with A not in convex position. Then the following two conditions are satisfied.

(i) Let Wi,Wi+1,Wi+2 be three consecutive a∗-wedges whose union is convex and contains at
least four points of B. Then wi, wi+1, wi+2 ≤ 2.

(ii) Let Wi,Wi+1,Wi+2,Wi+3 be four consecutive a∗-wedges whose union is convex and contains
at least four points of B. Then wi, wi+1, wi+2, wi+3 ≤ 2.

Proof. To show part (i), let W := Wi∪Wi+1∪Wi+2, A′ := A∩W , B′ := B∩W , and P ′ := A′∪B′.
Since W is convex, P ′ is an island of P and thus there is no ℓ-divided 5-hole in P ′. Note that
|A′| = 5 and A′ is in convex position. If |B′| ≤ 5, then every convex a∗-wedge in P ′ contains
at most two points of B′ by Lemma 3.15 applied to P ′. So assume that |B′| ≥ 6. If necessary,
we remove points from P ′ from the right to obtain P ′′ = A′ ∪ B′′, where B′′ contains exactly
six points of B′. Note that there is no ℓ-divided 5-hole in P ′′, since P ′′ is an island of P ′. By
Lemma 3.15, each a∗-wedge in P ′′ contains exactly two points of B′′. Let B̃ be the set of points
of B that are to the left of the rightmost point of B′′, including this point, and let P̃ := A ∪ B̃.
Note that B′′ ⊆ B̃. Since |B′′| = 6 and since W ∩B̃ = B′′, each of the a∗-wedges Wi,Wi+1,Wi+2

contains exactly two points of B̃. The a∗-wedges Wi, Wi+1, and Wi+2 are also a∗-wedges in P̃ .
Thus, Lemma 3.11 applied to P̃ and Wi,Wi+1 then gives us an ℓ-divided 5-hole in P̃ . From the
choice of P̃ , we then have an ℓ-divided 5-hole in P , a contradiction.

To show part (ii), let W := Wi ∪ Wi+1 ∪ Wi+2 ∪ Wi+3, A′ := A ∩ W , B′ := B ∩ W , and
P ′ := A′ ∪ B′. Since W is convex, P ′ is an island of P and thus there is no ℓ-divided 5-hole
in P ′. Note that |A′| = 6 and A′ is in convex position. If |B′| = 4, then the statement follows
from Lemma 3.17 applied to P ′ since a∗ is an extremal point of P ′. If |B′| = 5, then the
statement follows from Lemma 3.16 applied to P ′ and thus we can assume |B′| ≥ 6. Suppose
for contradiction that wj ≥ 3 for some i ≤ j ≤ i + 3. If necessary, we remove points from
P from the right to obtain P ′′ so that B′′ := P ′′ ∩ B contains exactly six points of W ∩ B.
By applying part (i) for P ′′ and Wi ∪ Wi+1 ∪ Wi+2 and Wi+1 ∪ Wi+2 ∪ Wi+3, we obtain that
|B′′ ∩Wi|, |B′′ ∩Wi+3| = 3 and |B′′ ∩Wi+1|, |B′′ ∩Wi+2| = 0. Let b be the rightmost point from
P ′′ ∩W . By Lemma 3.16 applied to W ∩ (P ′′ \ {b}), there are at most two points of B′′ \ {b} in
every a∗-wedge in W ∩ (P ′′ \ {b}). This contradicts the fact that either |(B′′ ∩Wi) \ {b}| = 3 or
|(B′′ ∩Wi+3) \ {b}| = 3.
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3.5.4 Extremal points of ℓ-critical sets

Recall the definition of ℓ-critical sets: An ℓ-divided point set C = A ∪ B is called ℓ-critical if
neither C ∩A nor C ∩B is in convex position and if for every extremal point x of C, one of the
sets (C \ {x}) ∩A and (C \ {x}) ∩B is in convex position.

In this section, we consider an ℓ-critical set C = A∪B with |A|, |B| ≥ 5. We first show that
C has at most two extremal points in A and at most two extremal points in B. Later, under
the assumption that there is no ℓ-divided 5-hole in C, we show that |B| ≤ |A| − 1 if A contains
two extremal points of C (Chapter 3.5.4) and that |B| ≤ |A| if B contains two extremal points
of C (Chapter 3.5.4).

Lemma 3.19. Let C = A ∪B be an ℓ-critical set. Then the following statements are true.

(i) If |A| ≥ 5, then |A ∩ ∂ conv(C)| ≤ 2.

(ii) If A∩∂ conv(C) = {a, a′}, then a∗ is the only inner point in A and every point of A\{a, a′}
lies in the convex region spanned by the lines a∗a and a∗a′ that does not have any of a and
a′ on its boundary.

(iii) If A∩∂ conv(C) = {a, a′}, then the a∗-wedge that contains a and a′ contains no point of B.

By symmetry, analogous statements hold for B.

Proof. To show statement (i), suppose for contradiction that |A∩∂ conv(C)| ≥ 3. Let a, a′, and
a′′ be three points from A∩∂ conv(C) that are consecutive vertices of the convex hull conv(C). If
there is no point of A in the triangle △(a, a′, a′′) spanned by the points a, a′, and a′′, then A\{a′}
is not in convex position. This is impossible, since C is an ℓ-critical set. If there is at least one
point a(1) in △(a, a′, a′′), then we consider an arbitrary point a(2) from A \ {a, a′, a′′, a(1)}. Such
a point a(2) exists, since |A| ≥ 5. The point a(1) lies inside one of the triangles △(a, a′, a(2)),
△(a, a′′, a(2)), or in △(a′, a′′, a(2)) and thus one of the sets A \ {a′′}, A \ {a′}, or A \ {a} is not
in convex position, which is again impossible. In any case, C cannot be ℓ-critical and we obtain
a contradiction.

To show statement (ii), assume that A ∩ ∂ conv(C) = {a, a′}. Every triangle in A with a
point of A in its interior has a and a′ as vertices, as otherwise A\{a} or A\{a′} is not in convex
position, which is impossible. Consider points a(1) and a(2) from A such that △(a, a′, a(1))

contains a(2). Denote by R the region bounded by aa(2) and a′a(2) that contains a(1). If there
is a point a(3) in A \ (R ∪ {a, a′}) then a(2) lies in one of △(a, a(1), a(3)) and △(a′, a(1), a(3)),
implying that A \ {a} or A \ {a′} is not in convex position. Hence all points of A \ {a, a′, a(2)}
lie in R. Moreover, any further inner point a(4) from A∩R lies in some triangle △(a, a′, a(5)) for
some a(5) ∈ A ∩R. Thus, a(4) also lies in one of the triangles △(a, a(2), a(5)) or △(a′, a(2), a(5)).
This implies that A\{a} or A\{a′} is not in convex position. Hence a(2) is the only inner point
of A.

To show statement (iii), assume that A ∩ ∂ conv(C) = {a, a′}. Let Wi be the wedge that
contains a and a′. Since a and a′ are the only extremal points of C contained in A, the segment
aa′ is an edge of conv(C). The points a, a′, and a∗ all lie in A and thus the triangle △(a, a′, a∗)
contains no points of B. Since all points of C lie in the closed halfplane that is determined by
the line aa′ and that contains a∗, the wedge Wi contains no points of B.

We remark that the assumption |A| ≥ 5 in part (i) of Lemma 3.19 is necessary. In fact,
arbitrarily large ℓ-critical sets with only four points in A and with three points of A on ∂ conv(C)
exist, and analogously for B. Figure 3.4(c) gives an illustration.

Lemma 3.20. Let C = A∪B be an ℓ-critical set with no ℓ-divided 5-hole in C and with |A| ≥ 6.
Then wi ≤ 3 for every 1 < i < t. Moreover, if |A ∩ ∂ conv(C)| = 2, then w1, wt ≤ 3.
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Proof. Recall that, since C is ℓ-critical, we have |B| ≥ 4. Let i be an integer with 1 ≤ i ≤ t. First,
we assume that there is no point in A∩ ∂ conv(C), which lies outside of Wi. By Lemma 3.19(i),
we have |A ∩ ∂ conv(C)| ∈ {1, 2}. If |A ∩ ∂ conv(C)| = 1, then, since there is no point in
A ∩ ∂ conv(C), we have i ∈ {1, t} and there is nothing to prove for Wi. In the remaining case
|A ∩ ∂ conv(C)| = 2, Lemma 3.19(iii) gives Wi ∩B = ∅, as there is no point in A ∩ ∂ conv(C).

Hence there is a point a in A∩∂ conv(C), which lies outside of Wi. We consider C ′ := C\{a}.
Since C is an ℓ-critical set, A′ := C ′ ∩ A is in convex position. Thus, there is a non-convex a∗-
wedge W ′ of C ′. Since W ′ is non-convex, all other a∗-wedges of C ′ are convex. Moreover, since
W ′ is the union of the two a∗-wedges of C that contain a, all other a∗-wedges of C ′ are also
a∗-wedges of C. Let W be the union of all a∗-wedges of C that are not contained in W ′. Note
that W is convex and contains at least |A|− 3 ≥ 3 a∗-wedges of C. Since |A| ≥ 6, the statement
follows from Lemma 3.18(i).

Two extremal points of C in A

Proposition 3.21. Let C = A ∪ B be an ℓ-critical set with no ℓ-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |A ∩ ∂ conv(C)| = 2. Then |B| ≤ |A| − 1.

Proof. Since |A ∩ ∂ conv(C)| = 2, Lemma 3.20 implies that wi ≤ 3 for every 1 ≤ i ≤ t. Let a
and a′ be the two points in A ∩ ∂ conv(C). By Lemma 3.19(ii), all points of A \ {a, a′} lie in
the convex region R spanned by the lines a∗a and a∗a′ that does not have any of a and a′ on its
boundary. That is, without loss of generality, a = ah−1 and a′ = ah for some 1 ≤ h ≤ |A|−1 and,
by Lemma 3.19(iii), we have wh = 0. Since all points of A \ {a, a′} lie in the convex region R,
the regions W := cl(R2 \ (Wh−1 ∪Wh)) and W ′ := cl(R2 \ (Wh ∪Wh+1)) are convex. Here cl(X)
denotes the closure of a set X ⊆ R2. Recall that the indices of the a∗-wedges are considered
modulo |A| − 1 and that R2 is the union of all a∗-wedges.

First, suppose for contradiction that |A| = 6. There are exactly five a∗-wedges W1, . . . ,W5,
and only four of them can contain points of B, since wh = 0. We can apply Lemma 3.18(i) to W
and to W ′. An easy case analysis shows that either wi ≤ 2 for every 1 ≤ i ≤ t or wh−1, wh+1 = 3
and wi = 0 for every i ̸∈ {h − 1, h + 1}. In the first case, Corollary 3.13 implies that |B| ≤ 5
and in the latter case Lemma 3.16 applied to P \ {b}, where b is the rightmost point of B, gives
|B| ≤ 5, a contradiction to |B| ≥ 6. Hence, we assume |A| ≥ 7.

Claim I. For 1 ≤ k ≤ t−3, if one of the four consecutive a∗-wedges Wk, Wk+1, Wk+2, or Wk+3

contains 3 points of B, then wk + wk+1 + wk+2 + wk+3 = 3.

There are |A| − 1 ≥ 6 a∗-wedges and, in particular, W and W ′ are both unions of at least
four a∗-wedges. For every Wi with wi = 3 and 1 ≤ i ≤ t, the a∗-wedge Wi is either contained
in W or in W ′. Thus we can find four consecutive a∗-wedges Wk,Wk+1,Wk+2,Wk+3 whose
union is convex and contains Wi. Lemma 3.18(ii) implies that each of Wk,Wk+1,Wk+2,Wk+3

except of Wi is empty of points of B. This finishes the proof of Claim I.

Claim II. For all integers i and j with 1 ≤ i < j ≤ t, we have
∑︁j

k=iwk ≤ j − i+ 2.

Let S := (wi, . . . , wj) and let S′ be the subsequence of S obtained by removing every 1-entry
from S. If S contains only 1-entries, the statement clearly follows. Thus we can assume that S′

is non-empty. Recall that, by Lemma 3.20, S′ contains only 0-, 2-, and 3-entries, since wi ≤ 3
for all 1 ≤ i ≤ t. Due to Claim I, there are at least three consecutive 0-entries between every
pair of nonzero entries of S′ that contains a 3-entry. Together with Lemma 3.12, this implies
that there is at least one 0-entry between every pair of 2-entries in S′.

By applying the following iterative procedure, we show that
∑︁

s∈S′ s ≤ |S′|+1. While there
are at least two nonzero entries in S′, we remove the first nonzero entry s from S′. If s = 2,
then we also remove the 0-entry from S′ that succeeds s in S. If s = 3, then we also remove
the two consecutive 0-entries from S′ that succeed s in S′. The procedure stops when there
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is at most one nonzero element s′ in the remaining subsequence S′′ of S′. If s′ = 3, then S′′

contains at least one 0-entry and thus S′′ contains at least s′ − 1 elements. Since the number
of removed elements equals the sum of the removed elements in every step of the procedure, we
have

∑︁
s∈S′ s ≤ |S′|+ 1. This implies

j∑︂
k=i

wk =
∑︂
s∈S

s = |S| − |S′|+
∑︂
s∈S′

s ≤ |S| − |S′|+ |S′|+ 1 = j − i+ 2

and finishes the proof of Claim II.
If Wh does not intersect ℓ, that is, t < h ≤ |A| − 1, then the statement follows from Claim II

applied with i = 1 and j = t. Otherwise, we have h = 1 or h = t and we apply Claim II with
(i, j) = (2, t) or (i, j) = (1, t − 1), respectively. Since t ≤ |A| − 1 and wh = 0, this gives us
|B| ≤ |A| − 1.

Two extremal points of C in B

Proposition 3.22. Let C = A ∪ B be an ℓ-critical set with no ℓ-divided 5-hole in C, with
|A|, |B| ≥ 6, and with |B ∩ ∂ conv(C)| = 2. Then |B| ≤ |A|.

Proof. If wk ≤ 2 for all 1 ≤ k ≤ t, then the statement follows from Corollary 3.13, since
|B| = ∑︁t

k=1wk ≤ t+ 1 ≤ |A|. Therefore we assume that there is an a∗-wedge Wi that contains
at least three points of B. Let b1, b2, and b3 be the three leftmost points in Wi ∩ B from left
to right. Without loss of generality, we assume that b3 is to the left of b1b2. Otherwise we can
consider a vertical reflection of P . Figure 3.13 gives an illustration.

b1

b2

b3

a∗
ai

R2

R1

`

ai−1

Figure 3.13: An illustration of the proof of Proposition 3.22.

Let R1 be the region that lies to the left of b1b2 and to the right of b2b3 and let R2 be the
region that lies to the right of aib1 and to the right of a∗ai. Let B′ := B \ {b1, b2, b3}.
Claim I. Every point of B′ lies in R1 ∪R2.

We first show that every point of B′ that lies to the left of b1b2 lies in R1. Then we show
that every point of B′ that lies to the right of b1b2 lies in R2.

By Observation 3.10, both lines b1b2 and b1b3 intersect the segment ai−1ai. Since the segment
ai−1b1 intersects ℓ and since b1 is the leftmost point of Wi ∩ B, all points of B′ that lie to the
left of b1b2 lie to the left of ai−1b1. The four points ai−1, b1, b2, b3 form an ℓ-divided 4-hole in P ,
since ai−1 is the leftmost and b3 is the rightmost point of ai−1, b1, b2, b3 and both ai−1 and b3 lie
to the left of b1b2. By Observation 3.6(i), the sector S(ai−1, b1, b2, b3) is empty of points of P
(green shaded area in Figure 3.13). Altogether, all points of B′ that lie to the left of b1b2 are to
the right of b2b3 and thus lie in R1.

Since the segment aib1 intersects ℓ and since b1 is the leftmost point of Wi ∩ B, all points
of B′ that lie to the right of b1b2 lie to the right of aib1. By Observation 3.6(i), the sector
S(b1, b2, b3, ai−1) is empty of points of P . Combining this with the fact that a∗ is to the right
of ai−1b3, we see that a∗ lies to the right of b1b2. Since b1 and b2 both lie to the left of a∗ai and
since a∗ and ai both lie to the right of b1b2, the points b2, b1, a∗, ai form an ℓ-divided 4-hole in P .
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By Observation 3.6(i), the sector S(b2, b1, a
∗, ai) (blue shaded area in Figure 3.13) is empty of

points of P . Altogether, all points of B′ that lie to the right of b1b2 are to the right of a∗ai and
to the right of aib1 and thus lie in R2. This finishes the proof of Claim I.

Claim II. If b4 is a point from B′ \R1, then b2 lies inside the triangle △(b3, b1, b4).

By Claim I, b4 lies in R2 and thus to the right of aib1 and to the right of a∗ai. We recall
that b4 lies to the right of b1b2.

We distinguish two cases. First, we assume that the points b2, b3, b1, ai are in convex po-
sition. Then b2, b3, b1, ai form an ℓ-divided 4-hole in P and, by Observation 3.6(i), the sector
S(b2, b3, b1, ai) is empty of points from P . Thus b4 lies to the right of b2b3 and the statement
follows.

Second, we assume that the points b2, b3, b1, ai are not in convex position. Due to Observa-
tion 3.10, b2 and b3 both lie to the right of aib1. Moreover, since b3 is the rightmost of those
four points, b2 lies inside the triangle △(b3, b1, ai). In particular, ai lies to the right of b2b3.
Therefore, since b2 and b3 are to the left of a∗ai, the line b2b3 intersects ℓ in a point p above
ℓ∩a∗ai. Let q be the point ℓ∩b1b2. Note that q is to the left of a∗ai. The point b4 is to the right
of b2b3, as otherwise b4 lies in △(p, q, b2), which is impossible because the points p, q, b2 are in
Wi while b4 is not. Altogether, b2 is inside △(b3, b1, b4) and this finishes the proof of Claim II.

Claim III. Either every point of B′ is to the right of b3 or b3 is the rightmost point of B.

By Observation 3.6(i), the sector S(b3, ai−1, b1, b2) is empty of points of P and thus all points
of B′ ∩R1 lie to the left of ai−1b3 and, in particular, to the right of b3.

Suppose for contradiction that the claim is not true. That is, there is a point b4 ∈ B′ that is
the rightmost point in B and there is a point b5 ∈ B′ that is to the left of b3. Note that b4 is an
extremal point of C. By Claim I and by the fact that all points of B′ ∩R1 lie to the right of b3,
b5 lies in R2 \ R1. By Claim II, b2 lies in the triangle △(b1, b5, b3), and thus B \ {b4} is not in
convex position. This contradicts the assumption that C is an ℓ-critical set. This finishes the
proof of Claim III.

Claim IV. The point b3 is the third leftmost point of B. In particular, Wi is the only a∗-wedge
with at least three points of B.

Suppose for contradiction that b3 is not the third leftmost point of B. Then by Claim III, b3
is the rightmost point of B and therefore an extremal point of B. This implies that B′ ⊆ R2\R1,
since all points of B′ ∩ R1 lie to the right of b3. By Claim II, each point of B′ then forms a
non-convex quadrilateral together with b1, b2, and b3. Since neither b1 nor b2 are extremal points
of C and since |B ∩ ∂ conv(C)| = 2, there is a point b4 ∈ B that is an extremal point of C.
Since |B| ≥ 5, the set C \ {b4} has none of its parts separated by ℓ in convex position, which
contradicts the assumption that C is an ℓ-critical set. Since Wi is an arbitrary a∗-wedge with
wi ≥ 3, Claim IV follows.

Claim V. Let W be a union of four consecutive a∗-wedges that contains Wi. Then |W ∩B| ≤ 4.

Suppose for contradiction that |W ∩B| ≥ 5. Let C ′ := C ∩W . Note that |C ′ ∩ A| = 6 and
that a∗, ai−1, ai lie in C ′. By Lemma 3.8, there is no ℓ-divided 5-hole in C ′. We obtain C ′′ by
removing points from C ′ from the right, if necessary, until |C ′′ ∩ B| = 5. Since C ′′ is an island
of C ′, there is no ℓ-divided 5-hole in C ′′. From Claim IV we know that b1, b2, b3 are the three
leftmost points in C and thus lie in C ′′. We apply Lemma 3.16 to C ′′ and, since b1, b2, b3 lie in
a convex a∗-wedge of C ′′, we obtain a contradiction. This finishes the proof of Claim V.

We now complete the proof of Proposition 3.22. First, we assume that 1 ≤ i ≤ 4. Let
W := W1 ∪W2 ∪W3 ∪W4. By Claim V, |W ∩B| ≤ 4. Claim IV implies that wk ≤ 2 for every
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k with 5 ≤ k ≤ t. By Corollary 3.13, we have

|B| =
4∑︂

k=1

wk +
t∑︂

k=5

wk ≤ 4 + (t− 3) = t+ 1 ≤ |A|.

The case t− 3 ≤ i ≤ t follows by symmetry.
Finally, we assume that 5 ≤ i ≤ t − 4. Let W := Wi−3 ∪Wi−2 ∪Wi−1 ∪Wi. Note that W

is convex, since 2 ≤ i− 3 and i < t. By Lemma 3.18(ii), we have wi−3 + wi−2 + wi−1 + wi ≤ 3
and wi + wi+1 + wi+2 + wi+3 ≤ 3. By Claim IV, wk ≤ 2 for all k with 1 ≤ k ≤ i − 4. Thus,
by Corollary 3.13,

∑︁i−4
k=1wk ≤ i− 3. Similarly, we have

∑︁t
k=i+4wk ≤ t− i− 2. Altogether, we

obtain that

|B| =
i−4∑︂
k=1

wk +
i−1∑︂

k=i−3

wk +wi +
i+3∑︂

k=i+1

wk +
t∑︂

k=i+4

wk ≤ (i− 3) + 3+ (t− i− 2) = t− 2 ≤ |A| − 3.

3.5.5 Finalizing the proof of Theorem 3.3

We are now ready to prove Theorem 3.3. Namely, we show that for every ℓ-divided set P = A∪B
with |A|, |B| ≥ 5 and with neither A nor B in convex position there is an ℓ-divided 5-hole in P .

Suppose for the sake of contradiction that there is no ℓ-divided 5-hole in P . By the result of
Harborth [Har78], every set P of ten points contains a 5-hole in P . In the case |A|, |B| = 5, the
statement then follows from the assumption that neither of A and B is in convex position.

So assume that at least one of the sets A and B has at least six points. We obtain an island
Q of P by iteratively removing extremal points so that neither part is in convex position after
the removal and until one of the following conditions holds.

(i) One of the parts Q ∩A and Q ∩B has only five points.

(ii) Q is an ℓ-critical island of P with |Q ∩A|, |Q ∩B| ≥ 6.

In case (i), we have |Q∩A| = 5 or |Q∩B| = 5. We can assume by symmetry that |Q∩A| = 5
and |Q ∩B| ≥ 6. We let Q′ be the union of Q ∩A with the six leftmost points of Q ∩B. Since
Q ∩ A is not in convex position, Lemma 3.14 implies that there is an ℓ-divided 5-hole in Q′,
which is also an ℓ-divided 5-hole in Q, since Q′ is an island of Q. However, this is impossible as
then there is an ℓ-divided 5-hole in P because Q is an island of P .

In case (ii), we have |Q∩A|, |Q∩B| ≥ 6. There is no ℓ-divided 5-hole in Q, since Q is an island
of P . By Lemma 3.19(i), we can assume without loss of generality that |A ∩ ∂ conv(Q)| = 2, as
|A ∩ ∂ conv(Q)| + |B ∩ ∂ conv(Q)| ≥ 3 and thus |A ∩ ∂ conv(Q)| and |B ∩ ∂ conv(Q)| cannot
be both smaller than 2. Then it follows from Proposition 3.21 that |Q ∩ B| < |Q ∩ A|. By
exchanging the roles of Q ∩ A and Q ∩ B and by applying Proposition 3.22, we obtain that
|Q ∩A| ≤ |Q ∩B|, a contradiction. This finishes the proof of Theorem 3.3.

3.6 Necessity of Assumptions

In this section, we present some point configurations which show that the statements of our
computer-assisted lemmas are best possible in some sense. In fact, finding the final setup of the
lemmas was an iterative process and we luckily had a complete proof in the end.
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3.6.1 Necessity of the assumptions in Theorem 3.3

In the statement of Theorem 3.3 we require that the ℓ-divided set P = A∪B satisfies |A|, |B| ≥ 5.
We now show that those requirements are necessary in order to guarantee an ℓ-divided 5-hole
in P by constructing an arbitrarily large ℓ-critical set C = A ∪ B with |A| = 4 and with no
ℓ-divided 5-hole in C.

Proposition 3.23. For every integer n ≥ 5, there exists an ℓ-critical set C = A ∪ B with
|A| = 4, |B| = n, and with no ℓ-divided 5-hole in C.

Proof. First, we consider the case where n is odd. Let p+ = (0, 1) and p− = (0,−1) be two
auxiliary points and let ℓ+ = {(x, y) ∈ R2 : y = x/4} and ℓ− = {(x, y) ∈ R2 : y = −x/4} be
two auxiliary lines. We place the point b′1 = (2,−1/2) on the line ℓ− and the auxiliary point
q = (2, 1/2) on the line ℓ+. For i = 2, . . . , n, we iteratively let b′i be the intersection of the line
ℓ+ with the segment p+b′i−1 if i is even and the intersection of ℓ− with p−b′i−1 if i is odd. We
place two points a1 and a2 sufficiently close to p+ so that a1 is above a2, the segment a1a2 is
vertical with the midpoint p+, and all non-collinear triples (b′i, b

′
j , p

+) have the same orientation
as (b′i, b

′
j , a1) and (b′i, b

′
j , a2). Similarly, we place two points a3 and a4 sufficiently close to p− so

that a3 is to the left of a4, the segment a3a4 lies on the line p−q and has p− as its midpoint, the
point a4 is to the left of b′n, and all non-collinear triples (b′i, b

′
j , p

−) have the same orientation as
(b′i, b

′
j , a3) and (b′i, b

′
j , a4). Figure 3.14 gives an illustration.

p+

p−

b′1

b′2

`+

`−

b′3

b′4

b′n

a1

a2

a3

a4

q

· · ·
b′n−1

`

Figure 3.14: The set C constructed in the proof of Proposition 3.23 for n odd.

We let A, B′, and B′
3 be the sets {a1, a2, a3, a4}, {b′1, . . . , b′n}, and B′ \ {b′3}, respectively.

Note that the line a3a4 intersects the segment b′1b
′
3. Since maxa∈A x(a) < minb′∈B′ x(b′), the

sets A and B′ are separated by a vertical line ℓ.
Next we slightly perturb b′3 to obtain a point b3 such that b3 lies above ℓ− and all non-

collinear triples (b3, c, d) with c, d ∈ A ∪ B′
3 have the same orientation as (b′3, c, d). Note that

the point b3 lies in the interior of conv(B′
3), since n ≥ 5.
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To ensure general position, we transform every point b′i = (x, y) ∈ B′
3∩ℓ+ to bi = (x, y−εx2)

and every point b′i = (x, y) ∈ B′
3 ∩ ℓ− to bi = (x, y + εx2) for some ε > 0. The remaining points

in A ∪ {b3} remain unchanged. We choose ε sufficiently small so that all non-collinear triples
of points from A ∪B′

3 ∪ {b3} have the same orientations as their images after the perturbation.
Finally, let B be the set {b1, . . . , bn} and set B3 := B \ {b3}.

Since the points from B3 lie on two parabolas, the set B is in general position. In particular,
points from B3 are in convex position and the point b3 lies inside conv(B3). Also observe that
the line ℓ separates A and B and that a1, a3, and b1 are the extremal points of C := A ∪ B.
Since neither of the sets A and B is in convex position, and removal of any of the extremal
points a1, a3, b1 leaves either A or B in convex position, the set C = A ∪B is ℓ-critical.

We now show that C contains no ℓ-divided 5-hole. Suppose for contradiction that there is an
ℓ-divided 5-hole H in C. We set A+ := {a1, a2}, A− := {a3, a4}, B+ := {b2, b4, . . . , bn−1}, and
B− := {b1, b3, . . . , bn}. First we assume that H contains points from both A+ and A−. Then
H ∩ B ⊆ {bn−1, bn}, since if there is a point bi in H with i < n− 1, then bn lies in the interior
of conv(H). Note that if H ∩B = {bn−1, bn}, then neither a4 nor a1 lies in H and thus |H| < 5.
Hence |H ∩B| = 1, which is again impossible, as H cannot contain all points from A. Therefore
we either have H ∩A ⊆ A+ or H ∩A ⊆ A− and, in particular, 1 ≤ |H ∩A| ≤ 2.

We now distinguish the following two cases.

1. |H ∩A| = 2. If H ∩A = A+, then the hole H can contain only the point bn from B−. This
is because if there is a point bi in H∩B− with i < n, then the point bi+1 lies in the interior
of conv(H). Additionally, H contains at most two points from B+, since otherwise H is
not in convex position. Consequently, bn lies in H and |H ∩B+| = 2, which is impossible,
as H would not be in convex position.

If H ∩ A = A−, then the hole H contains no point from B+. This is because if there is
a point bi in H ∩ B+, then the point bi+1 lies in the interior of conv(H). The point b1
cannot lie in H because otherwise H is not in convex position as the line a3a4 separates b1
from B \ {b1}. Additionally, H contains at most two points from B−, since otherwise H
is not in convex position. Thus H contains at most four points of C, which is impossible.

2. |H ∩ A| = 1. Assume first that H ∩ A ⊆ A+. Note that for bi, bj ∈ B− with i < j ≤ n,
the point bi+1 lies inside the triangle △(a1, bi, bj) and, if j < n, the point bj+1 lies inside
△(a2, bi, bj). Thus H contains at most one point from B− or we have H∩B− = {bn−2, bn}
and H ∩A = {a2}. The latter case does not occur, since for every bi ∈ B+ with i < n− 1
the point bn−1 lies in the interior of conv({a2, bi, bn−2, bn}). Therefore we consider the
case |H ∩B−| ≤ 1. However, |H ∩B+| ≥ 3 is impossible since H would not be in convex
position. Altogether, we obtain |H| < 5, which is impossible.

Now we assume that H ∩ A ⊆ A−. Note that for bi, bj ∈ B+ with i < j < n, the point
bi+1 lies inside the triangle △(a4, bi, bj) and the point bj+1 lies inside △(a3, bi, bj). Thus H
contains at most one point from B+. Consequently, H contains at least three points from
B−, which is possible only if H ∩ B− = {b1, b3, b5}. However, then H contains a point bi
from B+ and b3 lies in the interior of conv(H).

Thus, in any case, H is not an ℓ-divided 5-hole in C, a contradiction.
To finish the proof, we consider the case where n is even. Let C̃ = A ∪ B̃ be the set

constructed above with |A| = 4 and |B̃| = n+ 1. We set B := B̃ \ {b2} and C := A ∪ B. Note
that C is ℓ-critical.

It remains to show that C contains no ℓ-divided 5-hole. Suppose for contradiction that there
is an ℓ-divided 5-hole H in C. There is no ℓ-divided 5-hole in C̃ and thus b2 lies in the interior
of conv(H). Since b1 is the only point from C to the right of b2, the point b1 lies in H. Since
a1 is the only point of C to the left of b2b1, all other points of H lie to the right of b2b1. Then,
however, the set (H \ {a1}) ∪ {b2} is a 5-hole in C̃, which gives a contradiction.
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3.6.2 Necessity of the assumptions in Lemmas 3.14 to 3.17

We remark that all the assumptions in the statements of Lemmas 3.14 to 3.17 are necessary;
Figure 3.15(a) shows that the conditions |B| = 5 in Lemma 3.16 and the convexity of A in
Lemma 3.17 are both necessary. The horizontal reflection of Figure 3.15(a) also shows the
necessity of the assumption |A| = 5 in Lemma 3.14. It follows from the example in Figure 3.15(b)
that the condition |B| = 4 cannot be omitted in Lemma 3.17, since there is an a-wedge with
three points of B. The same point set without the point a′ shows that the assumption |B| ≥ 4
in Lemma 3.15 is necessary. The example from Figure 3.15(c) shows that the conditions |B| = 6
in Lemma 3.14, the convex position of A in Lemma 3.15, and |A| = 6 in Lemma 3.16 are all
necessary. The same set without the point a shows that |A| = 5 in Lemma 3.15 is also needed
and, if we remove the points a and a′, then the resulting point set shows that we need 5 ≤ |A| in
Lemma 3.17. We can make statements only about convex a-wedges in Lemmas 3.15 and 3.16, as
there are counterexamples for the corresponding statements without the convexity condition. It
suffices to consider so-called double-chains, which are point sets obtained by placing n points on
each of the two branches of a hyperbola. Double-chains also show, that A cannot be in convex
position in Lemma 3.14, and, that the non-convex a-wedge must be empty of points in B in
Lemma 3.17.

�

a∗

(a)

�

a

a′

(b)

�

a∗

a

a′

(c)

Figure 3.15: Examples of points sets that witness tightness of Lemmas 3.14 to 3.17. All k-holes in
these sets with k ≥ 5 are highlighted in gray.



Chapter 4

Finding Holes using SAT Solvers

In this chapter we develop a framework for Boolean formulas in conjunctive normal form (CNF)
to investigate various combinatorial properties of point sets using SAT solvers. As our main
result, we obtain that every set of 17 points in general position admits two disjoint 5-holes.

Theorem 4.1 (Computer-assisted). Every set of 17 points contains two disjoint 5-holes, hence
h(5, 5) = 17.

The proof of the upper bound is based on a SAT model which we describe in Chapter 4.4.
The lower bound h(5, 5) ≥ 17 is witnessed by the set of 16 points with no two disjoint 5-holes
(taken from Hosono and Urabe [HU08]), which is depicted Figure 4.11.

0 0
0 270

140 0
140 270

9 127
9 143

131 127
131 143
34 117
34 153

106 117
106 153
59 85
59 185
81 85
81 185

Figure 4.1: A set of 16 points with no two disjoint 5-holes. This point set and the one by Hosono and
Urabe [HU08, Figure 3] are of the same order type.

The computations for verifying Theorem 4.1 take about two hours on a single 3 GHz CPU
using a modern SAT solver such as glucose (version 4.0)2 or picosat (version 965)3. Moreover,

1For readability, only particular edges are drawn in the figure; we refer the interested reader to [ABH+19b].
2http://www.labri.fr/perso/lsimon/glucose/, see also [AS09]
3http://fmv.jku.at/picosat/, see also [Bie08]

http://www.labri.fr/perso/lsimon/glucose/
http://fmv.jku.at/picosat/
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we have verified the output of glucose and picosat with the proof checking tool drat-trim4 (see
Chapter 4.4.2).

In Chapter 4.1, we summarize the current state of the art for three-parametric values
h(k1, k2, k3) and we present some new results that were obtained by utilizing the value h(5, 5) =
17. Moreover, we describe some direct consequenses for multi-parametric values h(k1, . . . , kl) in
Chapter 4.2.

The basic idea behind our computer-assisted proofs is to encode point sets and disjoint holes
only using triple orientations (see Chapter 2 and Chapter 4.3), and then to use a SAT solver to
disprove the existence of sets with certain properties (see Chapter 4.4).

In the Chapter 4.5 we outline how our SAT model can be adapted to tackle related questions
on point sets. For interior-disjoint holes, we show that every set of 15 points contains two
interior-disjoint 5-holes. Also it is remarkable, that our SAT model can be used to prove g(6) =
17 with significantly smaller computation time than the original program from Szekeres and
Peters [SP06]. Last but not least, we also outline how SAT solvers can be used to count
occurences of certain substructures (such as k-holes in point sets).

4.1 Three Disjoint Holes

For three parameters, most values h(k1, k2, k3) for k1, k2, k3 ≤ 4 and also the values h(2, 3, 5) =
11 and h(3, 3, 5) = 12 are known [HU08, YW15]. Tables 4.1 and 4.2 summarize the currently
best known bounds for three-parametric values.

2 3 4
2 8 9 11
3 10 12
4 14

Table 4.1: Values of h(k1, k2, 4).

2 3 4 5
2 10 11 11..14 17*
3 12 13..14 17..19*
4 15..17 17..23*
5 22*..27*

Table 4.2: Bounds for h(k1, k2, 5).

The values h(2, 2, 4), h(3, 3, 4), and h(2, 4, 4) have not been explicitly stated in literature.
However, the former two can be derived directly from other values (cf. Table 1.2) as follows:

8 = 2 + 2 + 4 ≤ h(2, 2, 4) ≤ 2 + h(2, 4) = 8

10 = 3 + 3 + 4 ≤ h(3, 3, 4) ≤ 3 + h(3, 4) = 10.

To determine the value h(2, 4, 4) = 11, observe that h(2, 4, 4) ≤ 2 + h(4, 4) = 11 clearly holds.
Equality is witnessed by the double circle with 10 points (cf. Figure 4.2). This statement can
be verified by computer or as follows: First, observe that no 4-hole contains two consecutive
extremal points, thus every 4-hole contains at most two exterior points. Now consider two
disjoint 4-holes. Since not both 4-holes can contain two extremal points, one of them contains
two exterior points while the other one contains one exterior point. As illustrated in Figure 4.2,
this configuration is unique up to symmetry and does not allow any further disjoint 2-hole. This
completes the argument.

Also we could not find the value h(2, 2, 5) in literature, however, using a SAT instance similar
to the one for Theorem 4.1 one can also easily verify that h(2, 2, 5) ≤ 10, and equality follows
from h(5) = 10 [Har78]. One can also use the database of all (abstract) order types on 10
points, to verify the existence of those particular disjoint holes for all possible configurations of
10 points.

4http://cs.utexas.edu/~marijn/drat-trim, see also [WHH14]

http://cs.utexas.edu/~marijn/drat-trim
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Figure 4.2: The double circle on 10 points witnesses h(2, 4, 4) > 10.

We now use Theorem 4.1 to derive new bounds on the value h(k, 5, 5) for k = 2, 3, 4, 5.

Corollary 4.2. We have

h(2, 5, 5) = 17, 17 ≤ h(3, 5, 5) ≤ 19, 17 ≤ h(4, 5, 5) ≤ 23, and 22 ≤ h(5, 5, 5) ≤ 27.

Proof. To show h(2, 5, 5) ≤ 17, observe that, due to Theorem 4.1, every set of 17 points contains
two disjoint 5 holes that are separated by a line ℓ. By the pigeonhole principle there are at
least 9 points on one of the two sides of such a separating line ℓ. Again, using a SAT instance
similar to the one for Theorem 4.1, one can easily verify that every set of 9 points with at least
one 5-hole contains a 5-hole and a 2-hole that are disjoint. This completes the argument. We
remark that one can also use the order type database of 9 points to verify this statement.

To show h(3, 5, 5) ≤ 2 · h(3, 5) − 1 = 19, observe that, due to Theorem 4.1, every set of 19
points contains two disjoint 5 holes that are separated by a line ℓ. Now there are at least 10
points on one side of such a separating line ℓ, and since h(3, 5) = 10, there is a 3-hole and a
5-hole that are disjoint on that particular side.

An analogous argument shows h(4, 5, 5) ≤ 2 · h(4, 5)− 1 = 23.
The set of 21 points depicted in Figure 4.3 witnesses h(5, 5, 5) > 21 (can be easily verified

by computer), while h(5, 5, 5) ≤ h(5) + h(5, 5) = 27. We remark that this point set was found
using local search techniques, implemented in our framework pyotlib5.

4.2 Many Disjoint Holes

As introduced by Hosono and Urabe [HU01, HU08], we use the following notation: Given positive
integers k and n, let Fk(n) denote the maximum number of pairwise disjoint k-holes that can
be found in every set of n points, that is,

Fk(n) := max({0} ∪ {t ∈ N : h(k; t) ≤ n}) with h(k; t) := h(

t parameters⏟ ⏞⏞ ⏟
k, k, . . . , k).

5The “python order type library” was initiated during the Bachelor’s studies of the author [Sch14] and
provides many features to work with (abstract) order types such as local search techniques, realization or proving
non-realizability of abstract order types, coordinate minimization and “beautification” for nicer visualizations.
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0 161014
437034 595949
326347 343801
284425 294548
368806 311583
359850 306967
303825 276373
295136 271265
384946 285229
410465 282863
385025 275150
280383 244110
288858 238662
432159 221931
383508 211334
343366 205440
352134 200469
273710 191231
383027 201270
337326 179552
595182 0

Figure 4.3: A set of 21 points with no three disjoint 5-holes.

In the following, we revise and further improve results by Hosono and Urabe [HU01, HU08] and
by Bárány and Károlyi [BK01]. The currently best bounds are the following:

Fk(n) = ⌊n/k⌋ for k = 1, 2, 3

3n/13 + o(n) ≤ F4(n) < n/4

2n/17−O(1) ≤ F5(n) < n/6

n/h(6)−O(1) ≤ F6(n) < n/12

Fk(n) = 0 for k ≥ 7.

Hosono and Urabe [HU01] showed that F4(n) ≥ (3n − 1)/13 holds for an infinite sequence of
integers n. Moreover, since we have

h(k; s+ t) ≤ h(k; s) + h(k; t),

Fekete’s subadditivity lemma (see for example [Sch03, Chapter 14.5]) asserts

lim
t→∞

h(k; t)

t
= inf

t∈N

h(k; t)

t
,

and consequently 3n/13 + o(n) ≤ F4(n) holds.
Concerning the lower bound on F5(n), Theorem 4.1 clearly implies that F5(n) ≥ ⌊2n/17⌋

holds.
Concerning the upper bounds, it was remarked in [BK01] that F5(n) < n/6 is not too

difficult to prove but no explicit construction was given. We now outline how the upper bounds
F5(n) < n/6 and F6(n) < n/12 can obtained from the double circle on 2n points with an
additional “center point”: Every 5-hole (6-hole) in this “dotted double circle” is incident to at
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most 2 extremal points, and therefore, at most 2/3 (2/4) of the exterior points – that is less than
5/6 (3/4) of all points – can be covered by disjoint 5-holes (6-holes). An analogous statement
shows that the dotted double circle on 4k+1 points has no k disjoint 4-holes, hence F4(n) < n/4.
In particular, we obtain that h(4, 4, 4, 4) = 18 since 17 < h(4, 4, 4, 4) ≤ 2h(4, 4) = 18.

It is also worth to note that the double circle (sometimes with the additional center point,
sometimes without) is a maximal configuration also for other settings; see for example [HU01,
Figure 5] and [HU08, Figures 1(a), 4, 10(a), and 10(b)].

4.3 Encoding with Triple Orientations

As discussed in Chapter 2, point sets and disjoint holes can be encoded only using triple orien-
tations. This combinatorial description allows us to get rid of the actual point coordinates and
to only consider a discrete parameter-space. This is essential for our SAT model of the problem.

4.3.1 Signotope Axioms

The chirotope axioms can be checked in Θ(n6) time, and, when a Boolean satisfiability instance
(SAT) is modelled, Θ(n6) constraints are needed. Moreover, it is sufficient to only check 5-tuples
(cf. Theorem 3.6.2. [BLW+99]), which gives a slight improvement to Θ(n5). We now describe
an axiomatization which only requires Θ(n4) conditions to be checked – the so-called signotope
axioms.

Since we only consider point sets is in general position, we can assume without loss of
generality that in any set S = {s1, . . . , sn} the points s1, . . . , sn have strictly increasing x-
coordinates. Due to Felsner and Weil [FW01] (see also [BFK15]), for every 4-tuple si, sj , sk, sl
with i < j < k < l the sequence

χijk, χijl, χikl, χjkl

(index-triples are in lexicographic order) changes its sign at most once. These conditions are the
signotope axioms. It is worth mentioning that these necessary conditions were also used in the
computer-assisted proof for g(6) = 17 by Szekeres and Peters [SP06] and also later by Balko and
Valtr [BV17], who refuted a natural strengthening of the Erdős–Szekeres conjecture introduced
by Szekeres and Peters.

4.3.2 Increasing Coordinates and Cyclic Order

In the following, we see why we can assume, without loss of generality, that in every point set
S = {s1, . . . , sn} the following three conditions hold:

• the points s1, . . . , sn have increasing x-coordinates,

• in particular, s1 is an extremal point, and

• the points s2, . . . , sn are sorted around s1.

When modeling a computer program, one can use these constraints (which do not affect
the output of the program) to restrict the search space and to possibly get a speedup. This
idea, however, is not new and was already used for the generation of the order type database
[Kra03, AAK02, AK06].

Lemma 4.3. Let S = {s1, . . . , sn} be a point set where s1 is extremal and s2, . . . , sn are sorted
around s1. Then there is a point set S̃ = {s1̃, . . . , sñ} of the same order type as S (in particular,
s2̃, . . . , sñ are sorted around s1̃) such that the points s1̃, . . . , sñ have increasing x-coordinates.



60 CHAPTER 4. FINDING HOLES USING SAT SOLVERS

Proof. We can apply an appropriate affine-linear transformation to S so that s1 = (0, 0) and
xi, yi > 0 holds for i ≥ 2. Moreover, we have that xi/yi is increasing for i ≥ 2 since s2, . . . , sn
are sorted around s1. Since S is in general position, there is an ε > 0 such that S and S′ :=
{(0, ε)} ∪ {s2, . . . , sn} are of the same order type. We apply the projective transformation
(x, y) ↦→ (x/y,−1/y) to S′ to obtain S̃. By the multilinearity of the determinant, we obtain

det

⎛⎝ 1 1 1
xi xj xk
yi yj yk

⎞⎠ = yi · yj · yk · det

⎛⎝ 1 1 1
xi/yi xj/yj xk/yk
−1/yi −1/yj −1/yk

⎞⎠ .

Since the points in S′ have positive y-coordinates, S′ and S̃ have the same triple orientations.
Moreover, as xĩ = x′

i/y′i is increasing for i ≥ 1, the set S̃ fulfills all desired properties.

It is worth to mention that the transformation (x, y) ↦→ (x/y,−1/y) is the concatenation of
the (inverse of the) unit paraboloid duality transformation and unit circle duality transformation
which – under the given conditions – both preserve the triple orientations (see e.g. [Kra03,
Chapters 1.3 and 2.2]).

4.4 SAT Model

In this section we describe the SAT model that we use to prove Theorem 4.1. The basic idea
of the proof is to assume towards a contradiction that a point set S = {s1, . . . , s17} with no
two disjoint 5-holes exists. We formulate a SAT instance, where Boolean variables indicate
whether triples are positively or negatively oriented and clauses encode the necessary conditions
introduced in Chapters 2 and 4.3. Using a SAT solver we verify that the SAT instance has no
solution and conclude that the point set S does not exist. This contradiction then completes
the proof of Theorem 4.1.

It is folklore that satisfiability is NP-hard in general, thus it is challenging for SAT solvers
to terminate in reasonable time for certain SAT instances. We now highlight the two crucial
parts of our SAT model, which are indeed necessary for reasonable computation times: First,
due to Lemma 4.3, we can assume without loss of generality that the points are sorted from
left to right and also around the first point s1. Second, we teach the solver that every set of 10
consecutive points gives a 5-hole, that is, h(5) = 10 [Har78]. By dropping either of these two
constraints (which only give additional information to the solver and do not affect the solution
space), none of the tested SAT solvers terminated within days.

In the following, we give a detailed description of our SAT model. For the sake of readability,
we refer to points also by their indices. Moreover, we use the relation “a < b” simultaneously
to indicate a larger index, a larger x-coordinate, and the later occurence in the cyclic order
around s1.

4.4.1 A Detailed Description

(1) Alternating axioms For every triple (a, b, c), we introduce the variable Oa,b,c to indicate
whether the triple (a, b, c) is positively oriented. Since we have that

χa,b,c = χb,c,a = χc,a,b = −χb,a,c = −χa,c,b = −χc,b,a,

we formulate clauses to assert

Oa,b,c = Ob,c,a = Oc,a,b ̸= Ob,a,c = Oa,c,b = Oc,b,a

by using the fact A = B ⇐⇒ (¬A ∨B) ∧ (A ∨ ¬B), and A ̸= B ⇐⇒ (A ∨B) ∧ (¬A ∨ ¬B).
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(2) Signotope Axioms As described in Chapter 2.2, for every 4-tuple a < b < c < d, the
sequence

χabc, χabd, χacd, χbcd

changes its sign at most once. Formally, to forbid such sign-patterns (that is, “− + −” and
“+−+”), we add the constraints

OI ∨ ¬OJ ∨OK and ¬OI ∨OJ ∨ ¬OK

for every lexicographically ordered triple of index triples, that is, {I, J,K} ⊂
(︁{a,b,c,d}

3

)︁
with

I ≺ J ≺ K.

(3) Sorted around first point Since the points are sorted from left to right and also
around s1, we have that all triples (1, a, b) are positively oriented for 1 < a < b.

(4) Bounding segments For a 4-tuple a, b, c, d, we introduce the auxiliary variable Ea,b;c,d to
indicate whether the segment ab spanned by a and b bounds the convex hull conv({a, b, c, d}).
Since the segment ab bounds the convex hull conv({a, b, c, d}) if and only if c and d lie on the
same side of the line ab, we add the constraints

¬Ea,b;c,d ∨ Oabc ∨ ¬Oabd,

¬Ea,b;c,d ∨ ¬Oabc ∨ Oabd,

Ea,b;c,d ∨ Oabc ∨ Oabd,

Ea,b;c,d ∨ ¬Oabc ∨ ¬Oabd.

(5) 4-Gons and containments For every 4-tuple a < b < c < d, we introduce the auxiliary
variable G4

a,b,c,d to indicate whether the points {a, b, c, d} form a 4-gon. Moreover we introduce
the auxiliary variable Ii;a,b,c for every 4-tuple a, b, c, i with a < b < c and a < i < c to indicate
whether the point i lies inside the triangular convex hull conv({a, b, c}).

Four points a < b < c < d, sorted from left to right, form a 4-gon if and only if both segments
ab and cd bound the convex hull conv({a, b, c, d}). Moreover, if {a, b, c, d} does not form a 4-gon,
then either b lie inside the triangular convex hull conv({a, c, d}) or c lies inside conv({a, b, d}).
Pause to note that a and d are the left- and rightmost points, respectively, and that not both
points b and c can lie in the interior of conv({a, b, c, d}). Formally, we assert

G4
a,b,c,d = Ea,b;c,d ∧ Ec,d;a,b,

Ib;a,c,d = ¬Ea,b;c,d ∧ Ec,d;a,b,

Ic;a,b,d = Ea,b;c,d ∧ ¬Ec,d;a,b.

(6) 3-Holes For every triple of points a < b < c, we introduce the auxiliary variable H3
a,b,c to

indicate whether the points {a, b, c} form a 3-hole. Since three points a < b < c form a 3-hole if
and only if every other point i lies outside the triangular convex hull conv({a, b, c}), we add the
constraint

H3
a,b,c =

⋀︂
i∈S\{a,b,c}

¬Ii;a,b,c.

(7) 5-Holes For every 5-tuple X = {a, b, c, d, e} with a < b < c < d < e, we introduce the
auxiliary variable H5

X to indicate that the points from X form a 5-hole. It is easy to see that
the points from X form a 5-hole if and only if every 4-tuple Y ∈

(︁
X
4

)︁
forms a 4-gon and if every

triple Y ∈
(︁
X
3

)︁
forms a 3-hole. Therefore, we add the constraint

H5
X =

(︃ ⋀︂
Y ∈(X4 )

G4
Y

)︃
∧
(︃ ⋀︂

Y ∈(X3 )

H3
Y

)︃
.
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(8) Forbid disjoint 5-holes If there were two disjoint 5-holes X1 and X2 in our point set S,
then – as discussed in Chapter 2 – we could find two points a ∈ X1 and b ∈ X2 such that the
line ab separates X1 \ {a} and X2 \ {b} – and this is what we have to forbid in our SAT model.
Hence, for every pair of two points a, b we introduce the variables

• La,b to indicate that there exists a 5-hole X containing the point a that lies to the left of
the directed line

−→
ab, that is, the triple (a, b, x) is positively oriented for every x ∈ X \ {a},

and

• Ra,b to indicate that there exists a 5-hole X containing the point b that lies to the right of
the directed line

−→
ab, that is, the triple (a, b, x) is negatively oriented for every x ∈ X \ {b}.

For every 5-tuple X with a ∈ X and b ̸∈ X we assert

La,b ∨ ¬HX ∨
(︃ ⋁︂

c∈X\{a}

¬Oa,b,c

)︃
,

and for every 5-tuple X with a ̸∈ X and b ∈ X we assert

Ra,b ∨ ¬HX ∨
(︃ ⋁︂

c∈X\{b}

Oa,b,c

)︃
.

Now we forbid that there are 5-holes on both sides of the line ab by asserting

¬La,b ∨ ¬Ra,b.

(9) Harborth’s result Harborth [Har78] has shown that every set of 10 points gives a 5-
hole, that is, h(5) = 10. Consequently, there is a 5-hole X1 in the set {1, . . . , 10}, and if
X1 ⊂ {1, . . . , 7}, then there is another 5-hole X2 in the set {8, . . . , 17}. Analogously, if there is
a 5-hole X3 ⊂ {11, . . . , 17}, then there is another 5-hole X4 in the set {1, . . . , 10}. Therefore,
we can teach the SAT solver that

• there is a 5-hole X with X ⊂ {1, . . . , 10},

• there is no 5-hole X with X ⊂ {1, . . . , 7},

• there is a 5-hole X with X ⊂ {8, . . . , 17}, and

• there is no 5-hole X with X ⊂ {11, . . . , 17}.

We remark that the so-obtained SAT instance has Θ(n5) variables and Θ(n6) clauses. The
source code of our python program which creates the instance is available online on our supple-
mental website [Schb].

4.4.2 Unsatisfiability and Verification

Having the satisfiability instance generated, we used the following command to create an unsat-
isfiability certificate:

glucose instance.cnf -certified -certified-output=proof.out

The certificate created by glucose was then verified using the proof checking tool drat-trim by
the following command:

drat-trim instance.cnf proof.out

The execution of each of the two commands (glucose and drat-trim), took about 2 hours and
the certificate used about 3.1 GB of disk space.
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We have also used pycosat to prove unsatisfiability:

picosat instance.cnf -R proof.out

This command ran for about 6 hours and created a certificate of size about 2.1 GB. The verifi-
cation of the certificate6 using drat-trim took about 9 hours.

4.5 Further Applications of the SAT Model

Interior-disjoint Holes: By slightly adapting the SAT model from Chapter 4.4, we managed
to show that every set of 15 points contains two interior-disjoint 5-holes. Moreover, this bound
is best possible because, for example, the set of 14 points depicted in Figure 4.4 contains no
two interior-disjoint 5-holes. This further improves Theorem 3 from [HU18], which asserts that
every set of 18 points contains two interior-disjoint 5-holes.

142 0
0 100

29 105
65 73
63 81
49 111
88 58
80 79
98 58

107 65
105 72
134 35
131 54
128 142

Figure 4.4: A set of 14 points with no two interior-disjoint 5-holes.

To be more specific on the changes of the SAT model for this variant: we slighly relaxed
the contraints “(8) Forbid disjoint 5-holes” so that each of the two points a and b, which span
a separating line ℓ, can be contained in holes from both sides. The program creating the SAT
instance is also available on our website [Schb].

We remark that, analogously to Chapter 4.1, one could further improve the bounds for three
interior-disjoint holes.

Classical Erdős–Szekeres: The computation time for the computer assisted proof by Szek-
eres and Peters [SP06] for g(6) = 17 was about 1500 hours. By slightly adapting the model from
Chapter 4.4 we have been able to confirm g(6) = 17 using glucose and drat-trim with about one
hour of computation time. To be more specific with the adaption of the model from Chapter 4.4:

• The constraints “(6) 3-Holes” are removed.

6In our experiments, picosat wrote a comment “%RUPD32 ...” as first line in the RUP file. This line had to
be removed manually to make the file parsable for drat-trim.
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• The constraints “(7) 5-Holes” are adapted to “(7*) 6-Gons” simply by testing 6-tuples
instead of 5-tuples and by dropping the requirement that “triples form 3-holes”.

• The contraints “(8) Forbid disjoint 5-holes” are removed.

Also this program is avaiable on our website [Schb].
For determining the exact value of g(7), however, further ideas or more advanced SAT solvers

seem to be required.

Counting 5-Holes: It is also possible to count occurences of certain substructures using SAT
solvers. For example to find point sets with as few 5-holes as possible, we have introduced
variables Xabcde;k indicating whether the indices 1 ≤ a < b < c < d < e ≤ n form the k-th 5-hole
in lexicographic order. In particular, using SAT solvers we have been able to show that every
set of 16 points contains at least 11 5-holes. Our obtained results were presented in Table 1.1 of
Chapter 1.
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Chapter 5

Arrangements of Pseudocircles

The study of arrangements of pseudolines – which generalize arrangements of lines in a natural
way1 – was initiated in 1926 with an article of Levi [Lev26] where he proved the ‘Extension
Lemma’ and studied triangular cells in arrangements. Since then arrangements of pseudolines
were intensively studied and the handbook article on the topic [FG18] lists more than 100
references.

Arrangements of pseudocircles generalize arrangements of circles in the same vein as arrange-
ments of pseudolines generalize arrangements of lines. To the best of our knowledge the study
of arrangements of pseudocircles was initiated by Grünbaum [Grü80] in the 1970s. By stating a
large number of conjectures he was hoping to attract the attention of researchers for the topic.
The success of this program was limited and several of Grünbaum’s 45 year old conjectures
remain unsettled.

In this thesis we give the first thorough study of circularizability – the problem of deciding
which arrangements of pseudocircles are isomorphic to an arrangement of circles – and report on
some progress regarding conjectures involving numbers of triangles and digons in arrangements of
pseudocircles. Some of our results and new conjectures are based on a program that enumerates
all arrangements of up to 7 pairwise intersecting pseudocircles.

A pseudocircle is a simple closed curve in the plane or on the sphere. An arrangement of
pseudocircles is a collection of pseudocircles with the property that the intersection of any two of
the pseudocircles is either empty or consists of two points where the curves cross. The left-hand
side of Figure 5.1 gives an illustration. It is worth to mention that other authors also allow
touching pseudocircles (see e.g. [ANP+04]).

The (primal) graph of an arrangement A of pseudocircles has the intersection points of
pseudocircles as vertices, the vertices split each of the pseudocircles into arcs, these are the edges
of the graph. Note that this graph may have multiple edges and loop edges without vertices.
The graph of an arrangement of pseudocircles comes with a plane embedding, the faces of this
embedding are the cells of the arrangement.

In an arrangement A of pseudocircles, we denote a cell with k crossings on its boundary
as a k-cell and let pk(A) be the number of k-cells of A. Following Grünbaum we call 2-cells
digons and remark that some other authors call them lenses. 3-cells are triangles, 4-cells are
quadrangles, and 5-cells are pentagons ; see the right-hand side of Figure 5.1 for an illustration.

An arrangement A of pseudocircles is

simple, if no three pseudocircles of A intersect in a common point;

connected, if the graph of the arrangement is connected;

intersecting, if any two pseudocircles of A intersect;
1A pseudoline is a simple closed non-contractible curve in the projective plane. An arrangement of pseudolines

is a collection of pseudolines such that any two intersect in exactly one point where they cross.
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Figure 5.1: An arrangement of 5 pseudocircles (left) and with its k-cells highlighted (right). The
arrangement has p2 = 6 digons (blue), p3 = 4 triangles (green), p4 = 8 quadrangles (red), p5 = 0
pentagons, and p6 = 4 hexagons (black).

cylindrical, if there are two cells of the arrangement A which are separated by each of the
pseudocircles;

digon-free, if there is no cell of the arrangement which is incident to only two pseudocircles.

Note that every intersecting arrangement is connected. In this thesis we assume that ar-
rangements of pseudocircles are simple unless explicitly stated otherwise.

Two arrangements A and B are isomorphic if they induce homeomorphic cell decompositions
of the compactified plane, i.e., on the sphere. Stereographic projections can be used to map
between arrangements of pseudocircles in the plane and arrangements of pseudocircles on the
sphere. Figure 5.22 gives an illustration. Such projections are also considered isomorphisms. In
particular, the isomorphism class of an arrangement of pseudocircles in the plane is closed under
changes of the unbounded cell. In many cases, in particular in all our figures, arrangements of
pseudocircles are embedded in the Euclidean plane, i.e., there is a distinguished outer/unbounded
cell. An advantage of such a representation is that we can refer to the inner and outer side of
a pseudocircle. Note that for every cylindrical arrangement of pseudocircles it is possible to
choose the unbounded cell such that the intersection of the inner discs of all pseudocircles is
non-empty.

Figure 5.2: A stereographic projection of an arrangement of two circles from the sphere to the plane.

2This 3D-figure was created using GeoGeobra [H+19]
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Figure 5.3 shows the three connected arrangements of three pseudocircles and Figure 5.4
shows the 21 connected arrangements of four pseudocircles. We call the unique digon-free inter-
secting arrangement of three (pseudo)circles the Krupp3. The second intersecting arrangement is
the NonKrupp; this arrangement has digons. The non-intersecting arrangement is the 3-Chain.

(b) (c)(a)

Figure 5.3: The 3 connected arrangements of 3 pseudocircles. (a) Krupp, (b) NonKrupp, (c) 3-Chain.

Every triple of an arrangement of great-circles on the sphere induces a Krupp, hence, we
call an arrangement of pseudocircles an arrangement of great-pseudocircles if every subarrange-
ment induced by three pseudocircles is a Krupp. Some authors think of arrangements of great-
pseudocircles when they speak about arrangements of pseudocircles, this is e.g. common practice
in the theory of oriented matroids. In fact, arrangements of great-pseudocircles serve to repre-
sent rank 3 oriented matroids (cf. [BLW+99]). Planar partial cubes can be characterized as the
duals of so-called ‘non-separating’ arrangements of pseudocircles, these are certain arrangements
such that no triple forms a NonKrupp [AK16].

5.1 Circularizability

As introduced by Grünbaum (cf. [Grü80, page 68]), we call an arrangement of pseudocircles
circularizable if there is an isomorphic arrangement of circles. In his book Grünbaum wrote that
deciding circularizability appears to be a “very difficult” problem and, in fact, preceeding our
work there have been only few results about circularizability of arrangements of pseudocircles.

Edelsbrunner and Ramos [ER97] presented an intersecting arrangement of 6 pseudocircles
(with digons) which has no realization with circles, i.e., it is not circularizable; see the left-hand
side of Figure 5.5. Linhart and Ortner [LO05] found a non-circularizable non-intersecting ar-
rangement of 5 pseudocircles with digons; see the right-hand side of Figure 5.5. Linhart and
Ortner also proved that every intersecting arrangement of at most 4 pseudocircles is circulariz-
able, and Kang and Müller [KM14] extended the result by showing that all arrangements with
at most 4 pseudocircles are circularizable. Kang and Müller also proved that deciding circular-
izability for connected arrangements is NP-hard. Actually, by reducing the problem of deciding
stretchability of an arrangement of n pseudolines to a problem of deciding circularizability of
an connected arrangement of 2n pseudocircles, they even showed ETR-completeness4. The com-
plexity class ETR (“existential theory of the reals”) consists of problems, that can be reduced
in polynomial time to solvability of a system of polynomial inequalities in several variables over
the reals, and lies inbetween NP and PSPACE. The inclusion NP ⊆ ETR clearly follows from
the fact, that every Boolean formula can be written as a polynomial, and ETR ⊆ PSPACE was
shown by Canny [Can88]. Further background on ETR can be found in [Mat14, SŠ17] and in
the Wikipedia article [Wikc].

In Chapter 7 we present the results of the first thorough study of circularizability. We
show that there are exactly four non-circularizable arrangements of 5 pseudocircles (one of them
was known before). In the set of 2131 digon-free intersecting arrangements of 6 pseudocircles we

3This name refers to the logo of the Krupp AG, a German steel company. Krupp was the largest company in
Europe at the beginning of the 20th century.

4Figure 33 from [KM14] nicely illustrates the proof idea.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u)

Figure 5.4: The 21 connected arrangements of 4 pseudocircles. The 8 first arrangements (a)–(h) are
intersecting. The arrangements (a), (b), and (m) are digon-free. The arrangement (s) is the unique
non-cylindrical.
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Figure 5.5: The Edelsbrunner–Ramos arrangement (left) and the Linhart–Ortner arrangement (right).

identify the three non-circularizable examples. We also show non-circularizability of 8 additional
arrangements of 6 pseudocircles which have a group of symmetries of size at least 4.

Most of our non-circularizability proofs depend on incidence theorems like Miquel’s. In other
cases we contradict circularizability by considering a continuous deformation where the circles
of an assumed circle representation grow or shrink in a controlled way.

The claims that we have all non-circularizable arrangements with the given properties are
based on a program that generated all arrangements up to a certain size. Given the complete
lists of arrangements, we used heuristics to find circle representations. Examples where the
heuristics failed were examined by hand.

Furthermore, we will intensively study arrangements of great-pseudocircles – a very specific
class of pseudocircles – and show that such an arrangement is circularizable if and only if it
is realizable as an arrangement of great-circles. Based on this result, we then strengthen the
hardness-result of Kang and Müller [KM14] in the following two ways:

• We reduce stretchability of an arrangement of n pseudolines to circularizability of an
arrangement of n pseudocircles.

• The resulting arrangement is an arrangement of great-pseudocircles – a very specific class
of pseudocircles5.

It is also worth mentioning that our hardness-reduction is somewhat more natural since it is
based on an argument of sweeping planes and does not require any gadgets.

5.2 Triangular Cells

Conjecture 3.7 from Grünbaum’s monograph [Grü80] is: Every (not necessarily simple) digon-
free arrangement of n pairwise intersecting pseudocircles has at least 2n−4 triangles. Grünbaum
also provides examples of arrangements with n ≥ 6 pseudocircles and 2n − 4 triangles; see
Figure 5.6.

Snoeyink and Hershberger [SH91] showed that the sweeping technique, which serves as an
important tool for the study of arrangements of lines and pseudolines, can be adapted to work
also in the case of arrangements of pseudocircles (cf. Section 6.3). They used sweeps to show
that, in an intersecting arrangement, every pseudocircle is incident to two cells which are digons
or triangles on both sides (two in the interior and two in the exterior). Therefore, 2p2+3p3 ≥ 4n
which implies that every intersecting digon-free arrangement of n pseudocircles has at least 4n/3
triangles.

5Arrangements of great-pseudocircles are the most restrictive class considered in this thesis.
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Figure 5.6: Illustration of the construction by Grünbaum [Grü80, Figure 3.28]: a digon-free arrange-
ment of n = 8 pseudocircles with p3 = 12 triangles.

Felsner and Kriegel [FK99] observed that the bound from [SH91] also applies to non-simple
intersecting digon-free arrangements and gave examples of arrangements showing that the bound
is tight on this class for infinitely many values of n. These examples disprove Grünbaum’s
conjecture in the non-simple case.

In Chapter 8 we present examples to disprove Grünbaum’s conjecture in the general case.
With a recursive construction based on an example with 12 pseudocircles and 16 triangles we
obtain a family of intersecting digon-free arrangements with p3(A)/n → 16/11 = 1.45. We
expect that the lower bound p3(A) ≥ 4n/3 is tight for infinitely many simple arrangements. It
may however be true that all digon-free arrangements of n pairwise intersecting circles have at
least 2n− 4 triangles.

Furthermore, for pairwise intersecting arrangements with digons we have a lower bound of
p3 ≥ 2n/3, and conjecture that p3 ≥ n − 1. Concerning the maximum number of triangles in
pairwise intersecting arrangements of pseudocircles, we show that p3 ≤ 4

3

(︁
n
2

)︁
+ O(n). This is

essentially best possible because there are families of pairwise intersecting arrangements of n
pseudocircles with p3 =

4
3

(︁
n
2

)︁
.



Chapter 6

Preliminaries

Stereographic projections map circles to circles (if we consider a line to be a circle containing
the point at infinity), therefore, circularizability on the sphere and in the plane is the same
concept. Arrangements of circles can be mapped to isomorphic arrangements of circles via
Möbius transformations. In this context, the sphere is identified with the extended complex
plane C ∪ {∞}. Note that, for n ≥ 2, the isomorphism class of an arrangement of n circles is
not covered by Möbius transformations. Indeed, if C is a simple arrangement of circles, then
ε-perturbations of the circles in size and position will result in an isomorphic arrangement when
ε is chosen small enough.

Let C be an arrangement of circles represented on the sphere. Each circle of C spans a plane
in 3-space, hence, we obtain an arrangement E(C) of planes in R3. In fact, with a sphere S we
get a bijection between (not necessarily connected) circle arrangements on S and arrangements
of planes with the property that each plane of the arrangement intersects S.

Consider two circles C1, C2 of a circle arrangement C on S and the corresponding planes E1,
E2 of E(C). The intersection of E1 and E2 is either empty (i.e., E1 and E2 are parallel) or a
line ℓ. The line ℓ intersects S if and only if C1 and C2 intersect, in fact, ℓ ∩ S = C1 ∩ C2.

With three pairwise intersecting circles C1, C2, C3 we obtain three planes E1, E2, E3 inter-
secting in a vertex v of E(C). It is notable that v is in the interior of S if and only if the three
circles form a Krupp in C. We save this observation for further reference.

Fact 6.1. Let C be an arrangement of circles represented on the sphere. Three circles C1, C2,
C3 of C form a Krupp if and only if the three corresponding planes E1, E2, E3 intersect in a
single point in the interior of S.

For digons of C, we also have nessessary conditions in terms of E(C) and S.

Fact 6.2. Let C be an arrangement of circles represented on the sphere S. If a pair of intersecting
circles C1, C2 in C forms a digon of C, then the line E1 ∩E2 has no intersection with any other
plane E3 corresponding to a circle C3 ̸∈ {C1, C2} inside of S.

6.1 Arrangements of Great-Pseudocircles

Central projections1 – not to be confused with stereographic projections – map between arrange-
ments of great-circles on a sphere S and arrangements of lines on a plane. Figure 6.1 gives an
illustration. Changes of the plane to which we project preserve the isomorphism class of the
projective arrangement of lines. In fact, arrangements of lines in the projective plane are in
one-to-one correspondence to arrangements of great-circles.

1recall the point-line duality from Part I of this thesis (cf. Figure 2.3)
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Figure 6.1: Great-circle–line duality illustration. The points A,B,C,D from the sphere are projected
to the points A′, B′, C ′, D′ in the plane; the center of the sphere is also the center of projection.

In this section we generalize this concept to arrangements of pseudolines and show that there
is a one-to-one correspondence to arrangements of great-pseudocircles. As already mentioned,
this correspondence is not new (see e.g. [BLW+99]).

A pseudoline is a simple closed non-contractible curve in the projective plane. A (projective)
arrangement of pseudolines is a collection of pseudolines such that any two intersect in exactly
one point where they cross. We can also consider arrangements of pseudolines in the Euclidean
plane by fixing a “line at infinity” in the projective plane – we call this a projection.

A Euclidean arrangement of n pseudolines can be represented by x-monotone pseudolines, a
special representation of this kind is the wiring diagram ([Goo80], see also [FG18]). As illustrated
in Figure 6.2, an x-monotone representation can be glued with a mirrored copy of itself to form an
arrangement of n pseudocircles. The resulting arrangement is intersecting and has no NonKrupp
subarrangement, hence, it is an arrangement of great-pseudocircles.

(a) (b)

Figure 6.2: (a) Obtaining an arrangement A of great-pseudocircles from an Euclidean arrangement L
of pseudolines and its mirrored copy. The gray boxes highlight the arrangement L and its mirrored copy.
(b) A great-circle representation of A on the sphere.

For a pseudocircle C of an arrangement of n great-pseudocircles the cyclic order of crossings
on C is antipodal, i.e., the infinite sequence corresponding to the cyclic order crossings of C
with the other pseudocircles is periodic of order n − 1. If we consider projections of projective
arrangements of n pseudolines, then this order does not depend on the choice of the projection.
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In fact, projective arrangements of n pseudolines are in bijection with arrangements of n great-
pseudocircles.

6.2 Incidence Theorems

The smallest non-stretchable arrangements of pseudolines are closely related to the incidence
theorems of Pappos and Desargues. A construction already described by Levi [Lev26] is depicted
in Figure 6.3(a). Pappos’s Theorem states that, in a configuration of 8 lines as shown in the figure
in black, the 3 white points are collinear, i.e., a line containing two of them also contains the third.
Therefore, the arrangement including the red pseudoline has no corresponding arrangement of
straight lines, i.e., it is not stretchable.

Miquel’s Theorem asserts that, in a configuration of 5 circles as shown in Figure 6.3(b) in
black, the 4 white points are cocircular, i.e., a circle containing three of them also contains the
fourth. Therefore, the arrangement including the red pseudocircle cannot be circularized.

(a) (b)

Figure 6.3: (a) A non-stretchable arrangement of pseudolines from Pappos’s Theorem.
(b) A non-circularizable arrangement of pseudocircles from Miquel’s Theorem.

Next we state two incidence theorems that will be used in later proofs of non-circularizability.
In the course of Chapter 7 we will meet further incidence theorems such as Lemma 7.11,
Lemma 7.12, Theorem 7.14, Lemma 7.17, and again Miquel’s Theorem (Theorem 7.18).

Lemma 6.1 (First Four-Circles Incidence Lemma). Let C be an arrangement of four circles
C1, C2, C3, C4 such that none of them is contained in the interior of another one, and such that
(C1, C2), (C2, C3), (C3, C4), and (C4, C1) are touching. Then there is a circle C∗ passing through
these four touching points in the given cyclic order.

We point the interested reader to the website “Cut-the-Knot.org” [Bog], where this lemma is
stated (except for the cyclic order). The website also provides an interactive GeoGebra applet,
which nicely illustrates the incidences.

C1

C2 C3

C4

C∗
Γ Γ−1

``′

α4

α3β3

γ3

γ4

β4

L1

L2

C ′4

C ′3

Figure 6.4: An illustration for the proof of Lemma 6.1.
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Proof. Apply a Möbius transformation Γ that maps the touching point of C1 and C2 to the
point ∞ of the extended complex plane. This maps C1 and C2 to a pair L1, L2 of parallel lines.
The discs of C1 and C2 are mapped to disjoint halfplanes. We may assume that L1 and L2 are
horizontal and that L1 is above L2. Circles C3 and C4 are mapped to touching circles C ′

3 and
C ′
4. Moreover, C ′

3 is touching L2 from above and C ′
4 touches L1 from below. Figure 6.4 shows

a sketch of the situation.
Let ℓ′ be the line, which is tangent to C ′

3 and C ′
4 at their touching point p. Consider the two

segments from p to C ′
3∩L2 and from p to C ′

4∩L1. Elementary considerations show the following
equalities of angles: α3 = α4, β3 = γ3, β4 = γ4, and γ3 = γ4 (cf. Figure 6.4). Hence, there is a
line ℓ containing the images of the four touching points. Consequently, the circle C∗ = Γ−1(ℓ)
contains the four touching points of C, i.e., they are cocircular.

The following theorem (illustrated in Figure 6.5) is mentioned by Richter-Gebert [RG11,
page 26] as a relative of Pappos’s and Miquel’s Theorem.

Theorem 6.2 ([RG11]). Let C1, C2, C3 be three circles in the plane such that each pair of them
intersects in two points, and let ℓi be the line spanned by the two points of intersection of Cj and
Ck, for {i, j, k} = {1, 2, 3}. Then ℓ1, ℓ2, and ℓ3 meet in a common point.

C3

C1

C2

p1

p′1

p′2
p2

p′3

p3

`1

`3

`2

Figure 6.5: An illustration of Theorem 6.2.

Proof. Use a stereographic projection ϕ to map the three circles to circles C ′
1, C

′
2, C

′
3 on a

sphere S. Consider the planes E′
1, E

′
2, E

′
3 spanned by C ′

1, C
′
2, C

′
3. Let ℓ′i be the line E′

j ∩ E′
k,

for {i, j, k} = {1, 2, 3}. Since the arrangement is simple and intersecting, the lines ℓ′1, ℓ
′
2, ℓ

′
3 are

distinct and the intersection E′
1 ∩ E′

2 ∩ E′
3 is a single projective point p, which is contained in

each of ℓ′1, ℓ′2, ℓ′3. The inverse of ϕ can be interpreted as a central projection from 3-space to the
plane. In this interpretation of ϕ−1, the lines ℓ′1, ℓ

′
2, ℓ

′
3 are mapped to ℓ1, ℓ2, ℓ3 and p is mapped

to a projective point, i.e., either p is a point or the lines are parallel (i.e. p lies at infinity).

6.3 Flips and Deformations

Let C be an arrangement of circles. Imagine that the circles of C start moving independently,
i.e., the position of their centers and their radii depend on a time parameter t in a continuous
way. This yields a family C(t) of arrangements with C(0) = C. Let us assume that the set T
of all t for which C(t) is not simple or contains touching circles is discrete and for each t ∈ T
the arrangement C(t) contains either a single point where 3 circles intersect or a single touching.
If t1 < t2 are consecutive in T , then all arrangements C(t) with t ∈ (t1, t2) are isomorphic.
Selecting one representative from each such class, we get a list C0, C1, . . . of simple arrangements
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such that two consecutive (non-isomorphic) arrangements Ci, Ci+1 are either related by a triangle
flip or by a digon flip, see Figure 6.6.

triangle flip digon flip

Figure 6.6: An illustration of the flip operations.

We will make use of controlled changes in circle arrangements, in particular, we grow or shrink
specified circles of an arrangement to produce touchings or points where 3 circles intersect. The
following lemma will be of use frequently.

Lemma 6.3 (Digon Collapse Lemma). Let C be an arrangement of circles in the plane and let
C be one of the circles of C, which intersects at least two other circles from C and does not fully
contain any other circle from C in its interior. If C has no incident triangle in its interior,
then we can shrink C into its interior such that the combinatorics of the arrangement remain
the same except that two digons collapse to touchings. Moreover, the two corresponding circles
touch C from the outside.

Figure 6.7: An illustration of the Digon Collapse Lemma.

Proof. As illustrated on the left hand side of Figure 6.7, we shrink the radius of C until the first
event occurs. Since C does not fully contain any other circle from C in its interior, no new digon
can be created. Moreover, since C has no incident triangles in its interior, an interior digon
collapses. We obtain a point where C touches another circle that lies outside of C. (Note that
several digons might collapse at the same time.)

If C has only one touching point p, we shrink the radius and simultaneously move the center
towards p (cf. the right hand side of Figure 6.7) such that p stays a touching until a second
digon becomes a touching. Again the touching point is with a circle that lies outside of C.

In the following we will sometimes use the dual version of the lemma, whose statement is
obtained from the Digon Collapse Lemma by changing interior to exterior and outside to inside.
The validity of the dual lemma is seen by applying a Möbius transformation which exchanges
interior and exterior of C.

Triangle flips and digon flips are also central to the work of Snoeyink and Hershberger [SH91].
They have shown that an arrangement C of pseudocircles can be swept with a sweepfront γ
starting at any pseudocircle C ∈ C, i.e., γ0 = C. The sweep consists of two stages, one for
sweeping the interior of C, the other for sweeping the exterior. At any fixed time t the sweepfront
γt is a closed curve such that C ∪ {γt} is an arrangement of pseudocircles. Moreover, this
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arrangement is simple except for a discrete set T of times where sweep events happen. The
sweep events are triangle flips or digon flips involving γt.



Chapter 7

On Circularizability

In Chapter 7.1 we present one of our main results of this thesis:

Theorem 7.1 (Great-Circle Theorem). An arrangement of great-pseudocircles is circularizable
(i.e., has a circle representation) if and only if it has a great-circle representation.

The Great-Circle Theorem allows to transfer knowledge regarding arrangements of pseudo-
lines to arrangements of pseudocircles. Subsequent to the theorem, we present several direct
consequences such as the ∃R-completeness of circularizability.

In Chapters 7.2 and 7.3 respectively, we present the full classification of circularizable and
non-circularizable arrangements among all connected arrangements of 5 pseudocircles and all
digon-free intersecting arrangements of 6 pseudocircles. With the aid of computers we gener-
ated the complete lists of connected arrangements of n ≤ 6 pseudocircles and of intersecting
arrangements of n ≤ 7 pseudocircles. For the class of arrangements of n great-pseudocircles,
the numbers were already determined for n ≤ 11 [Knu92, AAK02, Kra03, AK06]. The respec-
tive numbers are shown in Table 7.1 (cf. sequences A288568, A296406, and A006248 on the
OEIS [Slo]). Given the complete lists of arrangements, we used automatized heuristics to find
circle representations. Examples where the heuristics failed had to be examined by hand.

n 3 4 5 6 7 8

connected 3 21 984 609 423 ?
+digon-free 1 3 30 4 509 ?
connected+cylindrical 3 20 900 530 530 ?
+digon-free 1 3 30 4 477 ?

intersecting 2 8 278 145 058 447 905 202 ?
+digon-free 1 2 14 2 131 3 012 972 ?
intersecting+cylindrical 2 8 278 144 395 436 634 633 ?
+digon-free 1 2 14 2 131 3 012 906 ?

great-pseudocircles 1 1 1 4 11 135

n 9 10 11

great-pseudocircles 4 382 312 356 41 848 591

Table 7.1: Number of combinatorially different arrangements of n pseudocircles.

Computational issues and algorithmic ideas are deferred until Chapter 7.5. There we also
sketch the heuristics that we have used to produce circle representations for most of the arrange-
ments. The encoded lists of arrangements of up to n = 6 pseudocircles and circle representations

http://oeis.org/A288568
http://oeis.org/A296406
http://oeis.org/A006248
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are available on our webpage [FS]. Chapter 7.5 also contains asymptotic results on the number
of arrangements of n pseudocircles as well as results on their flip-graph.

The list of circle representations at [FS] together with the non-circularizability proofs given
in Chapter 7.2 yields the following theorem.

Theorem 7.2. The four isomorphism classes of arrangements N 1
5 , N 2

5 , N 3
5 , and N 4

5 (shown in
Figure 7.1) are the only non-circularizable ones among the 984 isomorphism classes of connected
arrangements of n = 5 pseudocircles.

Corollary 7.3. The isomorphism class of arrangement N 1
5 is the unique non-circularizable one

among the 278 isomorphism classes of intersecting arrangements of n = 5 pseudocircles.

We remark that the arrangements N 1
5 , N 2

5 , N 3
5 , and N 4

5 have symmetry groups of order
4, 8, 2, and 4, respectively. Also, note that none of the four examples is digon-free. Non-
circularizability of N 2

5 was previously shown by Linhart and Ortner [LO05]. We give an alter-
native proof which also shows the non-circularizability of N 3

5 . Jonathan Wild and Christopher
Jones, contributed sequences A250001 and A288567 to the On-Line Encyclopedia of Integer
Sequences (OEIS) [Slo]. These sequences count certain classes of arrangements of circles and
pseudocircles. Wild and Jones also looked at circularizability and independently found Theo-
rem 7.2 (personal communication).

(a) (b) (c) (d)

Figure 7.1: The four non-circularizable arrangements on n = 5 pseudocircles: (a) N 1
5 , (b) N 2

5 , (c) N 3
5 ,

and (d) N 4
5 .

Concerning arrangements of 6 pseudocircles, we were able to fully classify digon-free inter-
secting arrangements.

Theorem 7.4. The three isomorphism classes of arrangements N∆
6 , N 2

6 , and N 3
6 (shown in

Figure 7.2) are the only non-circularizable ones among the 2131 isomorphism classes of digon-
free intersecting arrangements of n = 6 pseudocircles.

In Chapter 7.3, we give non-circularizability proofs for N∆
6 , N 2

6 , and N 3
6 . In fact, for the non-

circularizability of N∆
6 and N 2

6 , respectively, we have two proofs of different flavors: One proof
uses continuous deformations similar to the proof of the Great-Circle Theorem (Theorem 7.1)
and the other proof is based on an incidence theorem. The incidence theorem used for N∆

6 may
be of independent interest:

Theorem 7.5. Let a, b, c, d, A,B,C,D be 8 points from R3 such that no five of these points lie
in a common plane and each of the following 5 subsets of 4 points is coplanar:

{a, b, A,B}, {a, c, A,C}, {a, d,A,D}, {b, c, B,C}, and {b, d,B,D}.
Then {c, d, C,D} is also coplanar.

The proof we give is based on determinant cancellation, a technique that we learned from
Richter-Gebert, cf. [RG11]. It turned out that this incidence theorem is a slight generalization
of the Bundle theorem (see e.g. [Wika]), where the points are typically assumed to lie on the
sphere.

http://oeis.org/A250001
http://oeis.org/A288567
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(a) (b) (c)

Figure 7.2: The three non-circularizable digon-free intersecting arrangements for n = 6: (a) N∆
6 ,

(b) N 2
6 , and (c) N 3

6 . Inner triangles are colored gray. Note that in (b) and (c) the outer face is a
triangle.

An instance of Theorem 7.5 is obtained by assigning the eight letters appropriately to the
corners of a cube. Each of the six involved sets then corresponds to the four corners covered by
two opposite edges of the cube. The appropriate assignment of the letters can be derived from
Figure 7.9.

We remark that the arrangements N∆
6 , N 2

6 , and N 3
6 have symmetry groups of order 24,

3, and 6, respectively. Particularly interesting is the arrangement N∆
6 (Figure 7.2(a), see also

Figure 7.9). This is the unique intersecting digon-free arrangement of 6 pseudocircles which
attains the minimum 8 for the number of triangles (see [FS19b]).

Even though we could not complete the classification for intersecting arrangements of 6
pseudocircles, we provide some further nice incidence theorems and non-circularizability proofs in
Chapter 7.4. One of them is the example of Edelsbrunner and Ramos [ER97]; see Figure 7.14(a)
and Figure 5.5(left).

It may be worth mentioning that, by enumerating and realizing all arrangements of n ≤ 4
pseudocircles, we have an alternative proof of the Kang and Müller result, that all arrangements
of n ≤ 4 pseudocircles are circularizable [KM14].

7.1 The Great-Circle Theorem and its Applications

Let A be an arrangement of great-pseudocircles and let L be the corresponding projective
arrangement of pseudolines (cf. Chapter 6.1). Central projections show that, if L is realizable
with straight lines, then A is realizable with great-circles, and conversely. In fact, due to
Theorem 7.1, it is sufficient that A is circularizable to conclude that A is realizable with great-
circles and L is realizable with straight lines.

Theorem 7.1 (Great-Circle Theorem). An arrangement of great-pseudocircles is circularizable
(i.e., has a circle representation) if and only if it has a great-circle representation.

Proof of Theorem 7.1. Consider an arrangement of circles C on the unit sphere S that realizes
an arrangement of great-pseudocircles as illustrated in Figure 7.3(left and center). Let E(C)
be the arrangement of planes spanned by the circles of C. Since C realizes an arrangement of
great-pseudocircles, every triple of circles forms a Krupp, hence, the point of intersection of any
three planes of E(C) is in the interior of S.

Imagine the planes of E(C) moving towards the origin. To be precise, for time t ≥ 1 let
Et := {1/t · E : E ∈ E(C)}. Since all intersection points of the initial arrangement E1 = E(C) are
in the interior of the unit sphere S, the circle arrangement obtained by intersecting the moving
planes Et with S remains the same (isomorphic). Moreover, as illustrated in Figure 7.3(right),
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every circle in this arrangement converges to a great-circle as t → +∞, and the statement
follows.

Figure 7.3: Illustration for the proof of Theorem 7.1.

The Great-Circle Theorem has several interesting consequences. The following corollary
allows us to transfer results from the world of pseudolines into the world of (great-)pseudocircles.

Corollary 7.6. An arrangement of pseudolines is stretchable if and only if the corresponding
arrangement of great-pseudocircles is circularizable.

Since deciding stretchability of arrangements of pseudolines is known to be ETR-complete
(see e.g. [Mnë88, Mat14, SŠ17]), the hardness of stretchability directly carries over to hardness of
circularizability. To show containment in ETR, the circularizability problem has to be modeled
with polynomial inequalities. This can be done by taking the centers and radii of the circles as
variables and using polynomial inequalities to prescribe the order of the intersections along the
circles. A detailed description of such polynomial inequalities is deferred to Chapter 7.5.3.

Corollary 7.7. Deciding circularizability is ETR-complete, even when the input is restricted to
arrangements of great-pseudocircles.

It is known that all (not necessarily simple) arrangements of n ≤ 8 pseudolines are stretchable
and that the simple non-Pappos arrangement is the unique non-stretchable simple projective
arrangement of 9 pseudolines, see e.g. [FG18]. This again carries over to arrangements of great-
pseudocircles.

Corollary 7.8. All arrangements of up to 8 great-pseudocircles are circularizable and the ar-
rangement corresponding to the simple non-Pappos arrangement of pseudolines is the unique
non-circularizable arrangement of 9 great-pseudocircles.

Note that the statement of the corollary also holds for the non-simple case. A non-simple
arrangement of great-pseudocircles is an arrangement where three pseudocircles either form a
Krupp or the intersection of the three pseudocircles consists of two points. Grünbaum [Grü80]
denoted arrangements of great-pseudocircles as “symmetric”.

Bokowski and Sturmfels [BS89] have shown that infinite families of minimal non-stretchable
arrangements of pseudolines exist, i.e., non-stretchable arrangements where every proper subar-
rangement is stretchable. Again, this carries over to arrangements of pseudocircles.

Corollary 7.9. There exist infinite families of minimal non-circularizable arrangements of
(great-)pseudocircles.

Mnëv’s Universality Theorem [Mnë88], see also [RG95], has strong implications for pseudo-
line arrangements and stretchability. Besides the hardness of stretchability, it also shows the
existence of arrangements of pseudolines with a disconnected realization space, that is, there are
isomorphic arrangements of lines such that there is no continuous transformation which trans-
forms one arrangement into the other within the isomorphism class. Suvorov [Suv88] gave an
explicit example of two such arrangements on n = 13 lines.
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Corollary 7.10. There exist circularizable arrangements of (great-)pseudocircles with a discon-
nected realization space.

7.2 Arrangements of 5 Pseudocircles

In this section we prove Theorem 7.2.

Theorem 7.2. The four isomorphism classes of arrangements N 1
5 , N 2

5 , N 3
5 , and N 4

5 (shown in
Figure 7.1) are the only non-circularizable ones among the 984 isomorphism classes of connected
arrangements of n = 5 pseudocircles.

On the webpage [FS] we have the data for circle realizations of 980 out of the 984 connected
arrangements of 5 pseudocircles. The remaining four arrangements in this class are the four
arrangements of Theorem 7.2. Since all arrangements with n ≤ 4 pseudocircles have circle
representations, there are no disconnected non-circularizable examples with n ≤ 5. Hence, the
four arrangements N 1

5 , N 2
5 , N 3

5 , and N 4
5 are the only non-circularizable arrangements with n ≤ 5.

Since N 2
5 , N 3

5 , and N 4
5 are not intersecting, N 1

5 is the unique non-circularizable intersecting
arrangement of 5 pseudocircles, this is Corollary 7.3.

7.2.1 Non-circularizability of N 1
5

The arrangement N 1
5 is depicted in Figures 7.1(a) and 7.5. Since Figure 7.1(a) is ment to

illustrate the symmetry of N 1
5 while Figure 7.5 illustrates our non-circularizability proof, the

two drawings of N 1
5 differ in the Euclidean plane. However, we have marked one of the cells

of N 1
5 by black cross in both figures to highlight the isomorphism.

For the non-circularizability proof of N 1
5 we will make use of the following incidence lemma.

Lemma 7.11 (Second Four-Circles Incidence Lemma). Let C be an arrangement of four circles
C1, C2, C3, C4 such that every pair of them is touching or forms a digon in C, and every circle
is involved in at least two touchings. Then there is a circle C∗ passing through the digon or
touching point of each of the following pairs of circles (C1, C2), (C2, C3), (C3, C4), and (C4, C1)
in this cyclic order.

Γ

Γ−1

Γ−1

Γ

C1

C2

C4

C3

C1

C2

C4

C3

C1

C3

C2C4

C1

C3

C2
C4

Figure 7.4: Illustration for the proof of Lemma 7.11.
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Proof. We first deal with the case where C1 and C3 form a digon. The assumptions imply that
there is at most one further digon which might then be formed by C2 and C4. In particular, the
four pairs mentioned in the statement of the lemma form touchings and, as illustrated in the
first row of Figure 7.4, we will find a circle C∗ that is incident to those four touching points. In
the following let pij denote the touching point of Ci and Cj .

Think of the circles as being in the extended complex plane. Apply a Möbius transformation
Γ that maps one of the points of intersection of C1 and C3 to the point ∞. This maps C1 and
C3 to a pair of crossing lines. The images of C2 and C4 are circles which touch the two lines
corresponding to C1 and C3. The first row of Figure 7.4 gives an illustration. Since the centers
of C2 and C4 lie on the bisector ℓ of the lines Γ(C1) and Γ(C3), the touchings of C2 and C4

are symmetric with respect to ℓ. Therefore, there is a circle C with center on ℓ that contains
the images of the four points p12, p23, p34, and p41. The circle C∗ = Γ−1(C) contains the four
points, i.e., they are cocircular.

Now we consider the case where C1 and C3 touch. Again we apply a Möbius transformation
Γ that sends p13 to ∞. This maps C1 and C3 to parallel lines, each touched by one of C2 and
C4. The second row of Figure 7.4 shows that there is a circle C such that C∗ = Γ−1(C) has the
claimed property.

C3

C4

C1

C2

C5

C∗

C5
p12

p23

p34

p41

C3

C4

C1

C2

Figure 7.5: An illustration of the non-circularizability proof of N 1
5 . The auxiliary circle C∗ is drawn

dashed.

Proof (non-circularizability of N 1
5 ). Suppose for a contradiction that there is an isomorphic ar-

rangement C of circles. We label the circles as illustrated in Figure 7.5 and apply the Digon
Collapse Lemma (Lemma 6.3) to shrink C2, C3, and C4 into their respective interiors. We also
use the dual of the Digon Collapse Lemma for C1. In the resulting subarrangement C′ formed
by these four transformed circles C ′

1, C
′
2, C

′
3, C

′
4, each of the four circles is involved in at least

two touchings. By applying Lemma 7.11 to C′ we obtain a circle C∗ which passes through the
four points p12, p23, p34, and p41 (in this order) which respectively are touching points or points
from the digons of (C ′

1, C
′
2), (C ′

2, C
′
3), (C ′

3, C
′
4), and (C ′

4, C
′
1).

Moreover, since the intersection of C ′
i and C ′

j in C′ is contained in the intersection of Ci

and Cj in C, each of the four points p12, p23, p34, and p41 lies in the original digon of C. It
follows that the circle C5 has p12 and p34 in its interior but p23 and p41 in its exterior (cf.
Figure 7.5). By applying Lemma 7.11 to C′ we obtain a circle C∗ which passes through the
points p12, p23, p34, and p41 (in this order). Now the two circles C5 and C∗ intersect in four
points. This is impossible, and hence N 1

5 is not circularizable.
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7.2.2 Non-circularizability of the connected arrangements N 2
5 , N 3

5 , and N 4
5

The non-circularizability of N 2
5 has been shown by Linhart and Ortner [LO05]. We give an

alternative proof which also shows the non-circularizability of N 3
5 . The two arrangements N 2

5

and N 3
5 are depicted in Figures 7.1(b) and 7.1(c), and also in Figures 7.6(a) and 7.6(b).

C3

C2

C4

C1

C5

(a)

C2

C3

C4

C1

C5

(b)

Figure 7.6: An illustration of the non-circularizability proofs of (a) N 2
5 and (b) N 3

5 . The auxiliary
circle C∗ is drawn dashed.

Proof (non-circularizability of N 2
5 and N 3

5 ). Suppose for a contradiction that there is an isomor-
phic arrangement C of circles. We label the circles as illustrated in Figure 7.6. Since the respec-
tive interiors of C1 and C3 are disjoint, we can apply the Digon Collapse Lemma (Lemma 6.3)
to C1 and C3. This yields an arrangement C′ with four touching points p12, p23, p34, p41, where
pij is the touching point of C ′

i and C ′
j .

From Lemma 6.1 it follows that there is a circle C∗ which passes through the points p12, p23,
p34, and p41 in this cyclic order. Since the point pij lies inside the digon formed by Ci and Cj

in the arrangement C, it follows that the circle C5 has p12, p34 in its interior and p23, p41 in its
exterior. Therefore, the two circles C5 and C∗ intersect in four points. This is impossible and,
therefore, N 2

5 and N 3
5 are not circularizable.

It remains to prove that N 4
5 (shown in Figures 7.1(d) and 7.8) is not circularizable. In the

proof we make use of the following incidence lemma.

Lemma 7.12 (Third Four-Circles Incidence Lemma). Let C be an arrangement of four circles
C1, C2, C3, C4 such that (C1, C2), (C2, C3), (C4, C1), and (C3, C4) are touching, moreover, C4

is in the interior of C1 and the exterior of C3, and C2 is in the interior of C3 and the exterior
of C1, see Figure 7.7. Then there is a circle C∗ passing through the four touching points in the
given cyclic order.

Proof. Since C1 touches C2 and C4 which are respectively inside and outside C3, the two cir-
cles C1 and C3 intersect. Apply a Möbius transformation Γ that maps a crossing point of C1

and C3 to the point ∞ of the extended complex plane. This maps C1 and C3 to a pair L1, L3 of
lines. The images C ′

2, C
′
4 of C2 and C4 are separated by the lines L1, L3 and each of them touches

both lines. Figure 7.7 illustrates the situation. The figure also shows that a circle C ′ through
the four touching points exists. The circle C∗ = Γ−1(C ′) has the claimed properties.

Proof (non-circularizability of N 4
5 ). Suppose for a contradiction that there is an isomorphic ar-

rangement C of circles. We label the circles as illustrated in Figure 7.8. We shrink the circles C2

and C4 such that each of the pairs (C1, C2), (C2, C3), (C3, C4), and (C4, C1) touch. (Note that
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Γ

C4

C2

C1
C3

C ′
2

C4

C ′
3

C ′
1

Figure 7.7: An illustration for the proof of Lemma 7.12.

C5

C1

C4

C2

C3

C∗

Figure 7.8: Illustration of the non-circularizability proof of the arrangement N 4
5 . The circle C∗ is

drawn dashed.

each of these pairs forms a digon in C.) With these touchings the four circles C1, C2, C3, C4

form the configuration of Lemma 7.12. Hence there is a circle C∗ containing the four touching
points in the given cyclic order. Now the two circles C∗ and C5 intersect in four points. This is
impossible and, therefore, N 4

5 is not circularizable.

7.3 Intersecting Digon-free Arrangements of 6 Pseudocircles

In this section we prove Theorem 7.4.

Theorem 7.4. The three isomorphism classes of arrangements N∆
6 , N 2

6 , and N 3
6 (shown in

Figure 7.2) are the only non-circularizable ones among the 2131 isomorphism classes of digon-
free intersecting arrangements of n = 6 pseudocircles.

We remark that all three arrangements do not have the intersecting arrangement N 1
5 as

a subarrangement – otherwise non-circularizability would follow directly. In fact, N 1
5 has no

extension to an intersecting digon-free arrangement of six pseudocircles.
On the webpage [FS] we have the data of circle realizations of all 2131 intersecting digon-free

arrangements of 6 pseudocircles except for the three arrangements mentioned in Theorem 7.4.
In the following, we present two non-circularizability proofs for N∆

6 and N 2
6 , respectively, and a

non-circularizability proof for N 3
6 .

7.3.1 Non-circularizability of N∆
6

The arrangement N∆
6 (shown in Figure 7.2(a)) is an intersecting digon-free arrangement. Our

interest in N∆
6 was originally motivated by our study [FS19b] of arrangements of pseudocircles

with few triangles. From a computer search we know that N∆
6 occurs as a subarrangement
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of every digon-free arrangement for n = 7, 8, 9 with p3 < 2n − 4 triangles. Since N∆
6 is not

circularizable, neither are these arrangements. It thus seems plausible that every arrangement
of n circles has at least p3 ≥ 2n− 4 triangles – but we will come back to this later in Chapter 8
(cf. Conjecture 8.1).

Our first proof is an immediate consequence of the following theorem, whose proof resembles
the proof of the Great-Circle Theorem (Theorem 7.1).

Theorem 7.13. Let A be a connected digon-free arrangement of pseudocircles. If every triple
of pseudocircles which forms a triangle is NonKrupp, then A is not circularizable.

Proof. Assume for a contradiction that there exists an isomorphic arrangement of circles C on
the unit sphere S. Let E(C) be the arrangements of planes spanned by the circles of C.

Imagine the planes of E(C) moving away from the origin. To be precise, for time t ≥ 1 let
Et := {t · E : E ∈ E(C)}. Consider the arrangement induced by intersecting the moving planes
Et with the unit sphere S. Since C has NonKrupp triangles, it is not a great-circle arrangement
and some planes of E(C) do not contain the origin. All planes from E(C), which do not contain
the origin, will eventually lose the intersection with S, hence some event has to happen.

When the isomorphism class of the intersection of Et with S changes, we see a triangle flip, or
a digon flip, or some isolated circle disappears. Since initially there is no digon and no isolated
circle, the first event is a triangle flip. By assumption, triangles of C correspond to NonKrupp
subarrangements, hence, the intersection point of their planes is outside of S (Fact 6.1). This
shows that a triangle flip event is also impossible. This contradiction implies that A is non-
circularizable.

Proof (first proof of non-circularizability of N∆
6 ). The arrangement N∆

6 is intersecting, digon-
free, and each of the eight triangles of N∆

6 is formed by three circles which are a NonKrupp
configuration. Hence, Theorem 7.13 implies that N∆

6 is not circularizable.

All arrangements known to us whose non-circularizability can be shown with Theorem 7.13
contain N∆

6 as a subarrangement – which already shows non-circularizability. Based on this
data we venture the following conjecture:

Conjecture 7.1. Every connected digon-free arrangement A of pseudocircles with the property,
that every triple of pseudocircles which forms a triangle in A is NonKrupp, contains N∆

6 as a
subarrangement.

Our second proof of non-circularizability of N∆
6 is based on an incidence theorem for circles

(Theorem 7.14) which is a consequence of an incidence theorem for points and planes in 3-space
(Theorem 7.5). Before going into details, let us describe the geometry of the arrangement N∆

6 :
Consider the non-simple arrangement A• obtained from N∆

6 by contracting each of the eight
triangles into a single point of triple intersection. The arrangement A• is circularizable. A
realization is obtained by taking a cube inscribed in the sphere S such that each of the eight
corners touches the sphere S. The arrangement A• is the intersection of S with the six planes
which are spanned by pairs of diagonally opposite edges of the cube.

Theorem 7.5. Let a, b, c, d, A,B,C,D be 8 points from R3 such that no five of these points lie
in a common plane and each of the following 5 subsets of 4 points is coplanar:

{a, b, A,B}, {a, c, A,C}, {a, d,A,D}, {b, c, B,C}, and {b, d,B,D}.
Then {c, d, C,D} is also coplanar.

Proof. By assumption, the five points a, b, c, d,D do not lie in a common plane. If we assume
– towards a contradiction – that the three points a, b, c lie on a common line, then c lies in
the plane spanned by {a, b, A}. By assumption, the point B also lies in that plane, which then
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contains the five points {a, b, A,B, c} – a contradiction. Hence, the three points a, b, c are not
collinear.

Now an easy case distinction shows that at most one of the 4-element subsets of the five
points a, b, c, d,D is coplanar. Since the roles of d and D can be exchanged, we assume without
loss of generality that a, b, c, d are affinely independent.

We now embed R3 as the hyperplane
∑︁

xi = 1 into R4 such that the four points a, b, c, d
become the elements of the standard basis, namely, a = e1, b = e2, c = e3, and d = e4.

Now coplanarity of 4 points can be tested by evaluating the determinant. Coplanarity of
{a, b, A,B} yields det[abAB] = det(e1, e2, A,B) = 0. On the basis of the 5 collinear sets, we get
the following determinants and equations:

det[abAB] = 0

A3B4 = A4B3

det[caCA] = 0

A4C2 = A2C4

det[adAD] = 0

A2D3 = A3D2

det[cbCB] = 0

B1C4 = B4C1

det[bdBD] = 0

B3D1 = B1D3 .

Take the product of the left sides of the five equations and the product of the right sides. These
products are the same. We can cancel as much as possible from the resulting equations and
obtain C2D1 = C1D2. This cancellation works because all relevant factors are non-zero, which
is shown below. We then obtain that det(e3, e4, C,D) = 0, i.e., the coplanarity of {c, d, C,D}.

To show that A3 ̸= 0, suppose that A3 = 0. This implies that {a, b, d, A} is coplanar.
Suppose that a, b, A are collinear. Since {a, b, d, A} and {a, d,A,D} are coplanar, the five points
{a, b, d, A,D} are coplanar – which is a contradiction. Hence a, b, A are not collinear. Now,
since {a, b, A, d} and {a, b, A,B} are coplanar, the five points {a, b, A,B, d} are coplanar – a
contradiction to the assumption A3 = 0. The proof that the other relevant factors are non-zero
is analogous.

The theorem implies the following incidence theorem for circles.

Theorem 7.14. Let C1, C2, C3, C4 be four circles and let a, b, c, d, w, x, y, z be eight distinct
points in R2 such that C1∩C2 = {a,w}, C3∩C4 = {b, x}, C1∩C3 = {c, y}, and C2∩C4 = {d, z}.
If there is a circle C containing a, b, w, x, then there is a circle C ′ containing c, d, y, z. Moreover,
if one of the triples of C1, C2, C3, C4 forms a Krupp, then c, d, y, z represents the circular order
on C ′.

Proof. Consider the arrangement of circles on the sphere. The idea is to apply Theorem 7.5.
The coplanarity of the 5 sets follows because the respective 4 points belong to C,C1, C2, C3, C4

in this order. The 5 points a, b, c, d, z do not lie in a common plane because otherwise we would
have C2 = C4 (a contradiction to C2 ∩ C4 = {d, z}). Analogous arguments show that also none
of the other 5-element subset of {a, b, c, d, x, y, z, w} is coplanar. This shows that Theorem 7.5
can be applied. Regarding the circular order on C ′, suppose that C1, C2, C3 is a Krupp. This
implies that C2 separates c and y. Since C ′∩C2 = {d, z} the points of {c, y} and {d, z} alternate
on C ′, this implies the claim.

It is worth mentioning, that the second part of the theorem can be strengthened: If one
of the triples of C1, C2, C3, C4 forms a Krupp, then the arrangement together with C and C ′

is isomorphic to the simplicial arrangement A• obtained from N∆
6 by contracting the eight

triangles into triple intersections. A simplicial arrangement is a non-simple arrangement where
all cells are triangles. The arrangement A• can be extended to larger simplicial arrangements
by adding any subset of the three circles C∗

1 , C∗
2 , C∗

3 which are defined as follows: C∗
1 is the

circle through the four points (C1 ∩ C4) ∪ (C2 ∩ C3); C∗
2 is the circle through the four points

(C1 ∩C4)∪ (C ∩C ′); C∗
3 is the circle through the four points (C2 ∩C3)∪ (C ∩C ′). In each case

the cocircularity of the four points defining C∗
i is a consequence of the theorem.

The following lemma is similar to the Digon Collapse Lemma (Lemma 6.3). By changing
interior to exterior and outside to inside (by applying a Möbius transformation), we obtain a
dual version also for this lemma.
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Lemma 7.15 (Triangle Collapse Lemma). Let C be an arrangement of circles in the plane and
let C be one of the circles of C, which intersects at least three other circles from C and does not
fully contain any other circle from C in its interior. If C has no incident digon in its interior,
then we can continuously transform C such that the combinatorics of the arrangement remain
the same except that two triangles collapse to points of triple intersection. Moreover, it is possible
to prevent a fixed triangle T incident to C from being the first one to collapse.

Proof. The proof is very much like the proof of Lemma 6.3. Shrink the radius of C until the
first flip occurs, this must be a triangle flip, i.e., a triangle is reduced to a point of triple
intersection. If C has a point p of triple intersection, shrink C towards p, i.e., shrink the radius
and simultaneously move the center towards p such that p stays incident to C. With the next
flip a second triangle collapses.

For the extension let q ∈ T ∩ C be a point. Start the shrinking process by shrinking C
towards q. This prevents T from collapsing.

c

xa

z

y d

wb

C4

C6

C1

C5

C3C2

Figure 7.9: The arrangement N∆
6 with a labeling of its eight triangles.

Proof (second proof of non-circularizability of N∆
6 ). Suppose for a contradiction that N∆

6 has a
realization C. Each circle of C has exactly two incident triangles in the inside and exactly two
on the outside. Apply Lemma 7.15 to C5 and to C3 (we refer to the circles with the colors and
labels used in Figure 7.9). This collapses the triangles labeled a, b, x, w, i.e., all the triangles
incident to C5. Now the green circle C1, the magenta circle C2, the black circle C3, the blue
circle C4, and the red circle C5 are precisely the configuration of Theorem 7.14 with C5 in the
role of C. The theorem implies that there is a circle C ′ containing the green-black crossing at
c, the blue-magenta crossing at d, the green-black crossing at y, and the blue-magenta crossing
at z in this order. Each consecutive pair of these crossings is on different sides of the yellow
circle C6, hence, there are at least four crossings between C ′ and C6. This is impossible for
circles, whence, there is no circle arrangement C realizing N∆

6 .

7.3.2 Non-circularizability of N 2
6

The arrangement N 2
6 is shown in Figure 7.2(b) and Figure 7.11(a). We give two proofs for the

non-circularizability of N 2
6 . The first one is an immediate consequence of the following theorem,

which – in the same flavor as Theorem 7.13 – can be obtained similarly as the proof of the
Great-Circle Theorem (Theorem 7.1).

Theorem 7.16. Let A be an intersecting arrangement of pseudocircles which is not an arrange-
ment of great-pseudocircles. If every triple of pseudocircles which forms a triangle is Krupp,
then A is not circularizable.
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We outline the proof: Suppose a realization of A exists on the sphere. Continuously move
the planes spanned by the circles towards the origin. The induced arrangement will eventually
become isomorphic to an arrangement of great-circles. Now consider the first event that occurs.
As the planes move towards the origin, there is no digon collapse. Since A is intersecting, no
digon is created, and, since all triangles are Krupp, the corresponding intersection points of their
planes is already inside S. Therefore, no event can occur – a contradiction.

Proof (first proof of non-circularizability of N 2
6 ). The arrangement N 2

6 is intersecting but not
an arrangement of great-pseudocircles (N 2

6 contains a NonKrupp) and each triangle in N 2
6 is

Krupp. Hence, Theorem 7.16 implies that N 2
6 is not circularizable.

Besides N 2
6 , there is exactly one other arrangement of 6 pseudocircles (with digons, see

Figure 7.10) where Theorem 7.16 implies non-circularizability. For n = 7 there are eight ar-
rangements where the theorem applies; but each of them has one of the two n = 6 arrangements
as a subarrangement.

Figure 7.10: Another intersecting arrangement of 6 pseudocircles (with digons) where Theorem 7.16
applies. The arrangement is minimal non-circularizable and has symmetry 2 (the colors red-orange,
blue-green, and purple-black can be exchanged). Triangles are colored gray.

Our second proof of non-circularizability of N 2
6 is based on Theorem 6.2.

Proof (second proof of non-circularizability of N 2
6 ). Suppose that N 2

6 has a representation as a
circle arrangement C. We refer to circles and intersection points via the labels of the correspond-
ing objects in Figure 7.11(b).

(a) (b)

p1

p′3

p3

p′1
p′2

p2

C1 C2

C4

C6

C3

C5

Figure 7.11: (a) The non-circularizable arrangement N 2
6 .

(b) An illustration for the second proof of non-circularizability of N 2
6 .

Let ℓi be the line spanned by pi and p′i for i = 1, 2, 3. The directed line ℓ1 intersects C4

and C5 in the points p1, p
′
1 and has its second intersection with the yellow circle C2 between
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these points. After p′1, the line has to cross C3 (magenta), C1 (black), and C6 (red) in this
order, i.e., the line behaves as shown in Figure 7.11. Similarly ℓ2 and ℓ3 behave as shown.
Let T be the triangle spanned by the intersection points of the three lines ℓ1, ℓ2, ℓ3. Observe
that the gray interior triangle T ′ of C is fully contained in T . By applying Theorem 6.2 to
the circles C4, C5, C6, we obtain that ℓ1, ℓ2, ℓ3 meet in a common point, and therefore, T and
T ′ are degenerate. This contradicts the assumption that C is a realization of N 2

6 , whence this
arrangement is non-circularizable.

7.3.3 Non-circularizability of N 3
6

The arrangement N 3
6 is shown in Figure 7.2(c) and Figure 7.12(b). To prove its non-circulariz-

ability, we again use an incidence lemma. The following lemma is mentioned by Richter-Gebert
as a relative of Pappos’s Theorem, cf. [RG11, page 26]. Figure 7.12(a) gives an illustration.

Lemma 7.17 ([RG11]). Let ℓ1, ℓ2, ℓ3 be lines, C ′
1, C

′
2, C

′
3 be circles, and p1, p2, p3, q1, q2, q3 be

points, such that for {i, j, k} = {1, 2, 3} point pi is incident to line ℓi, circle C ′
j, and circle C ′

k,
while point qi is incident to circle C ′

i, line ℓj, and line ℓk. Then C ′
1, C

′
2, and C ′

3 have a common
point of intersection.

(a) (b)

p1

C ′
1

C ′
3

C ′
2

ℓ3

p3

q3

p2

ℓ1

q2

q1

ℓ2

p3

p1

p′2

p2

p′3

q3q1

q2

p′1

C6

C1

C2

C4

C5

C3

Figure 7.12: (a) An illustration for Lemma 7.17.
(b) The arrangement N 2

6 with 3 dashed pseudolines illustrating the proof of non-circularizability.

Proof (non-circularizability of N 3
6 ). Suppose that N 3

6 has a representation C as a circle arrange-
ment in the plane. We refer to circles and intersection points via the label of the corresponding
object in Figure 7.12(b). As in the figure, we assume without loss of generality that the triangular
cell spanned by C4, C5, and C6 is the outer cell of the arrangement.

Consider the region R := R24 ∪ R35 where Rij denotes the intersection of the respective
interiors of Ci and Cj . The two straight-line segments p1p

′
1 and p3p

′
3 are fully contained in R35

and R24, respectively, and have alternating end points along the boundary of R, hence they
cross inside the region R24 ∩R35.

From rotational symmetry we obtain that the three straight-line segments p1p
′
1, p2p′2, and

p3p
′
3 intersect pairwise.
For i = 1, 2, 3, let ℓi denote the line spanned by pi and p′i, let qi denote the intersection-point

of ℓi+1 and ℓi+2, and let C ′
i denote the circle spanned by qi, pi+1, pi+2 (indices modulo 3). Note

that ℓi contains pi, qi+1, qi+2. These are precisely the conditions for the incidences of points,
lines, and circles in Lemma 7.17. Hence, the three circles C ′

1, C ′
2, and C ′

3 intersect in a common
point (cf. Figure 7.12(a)).

Let T be the triangle with corners p1, p2, p3. Since p2 and p3 are on C1, and q1 lies inside
of C1, we find that the intersection of the interior of C ′

1 with T is a subset of the intersection



92 CHAPTER 7. ON CIRCULARIZABILITY

of the interior of C1 with T . The respective containments also hold for C ′
2 and C2 and for

C ′
3 and C3. Moreover, since C ′

1, C ′
2, and C ′

3 intersect in a common point, the union of the
interiors of C ′

1, C ′
2, and C ′

3 contains T . Hence, the union of interiors of the C1, C2, and C3

also contains T . This shows that in C there is no face corresponding to the gray triangle; see
Figure 7.12(b). This contradicts the assumption that C is a realization of N 3

6 , whence the
arrangement is non-circularizable.

7.4 Additional Arrangements with n = 6

In the previous two sections we have exhibited all non-circularizable arrangements with n ≤ 5
and all non-circularizable intersecting digon-free arrangements with n = 6. With automatized
procedures we managed to find circle representations of 98% of the connected digon-free ar-
rangements and of 90% of the intersecting arrangements of 6 pseudocircles. Unfortunately, the
numbers of remaining candidates for non-circularizability are too large to complete the classi-
fication by hand (cf. Section 9.7). In this section we show non-circularizability of a few of the
remaining examples which we consider to be interesting. As a criterion for being interesting we
used the order of the symmetry group of the arrangement. The symmetry groups have been de-
termined as the automorphism groups of the primal-dual graphs using SageMath [S+17a, S+17c].

In Chapter 7.4.1 we show non-circularizability of the three intersecting arrangements of
n = 6 pseudocircles (with digons) depicted in Figure 7.13. The symmetry group of these three
arrangements is of order 6. All the remaining examples of intersecting arrangements with n = 6,
where we do not know about circularizability, have a symmetry group of order at most 3.

(a) (b) (c)

Figure 7.13: Three intersecting arrangements of n = 6 pseudocircles with symmetry 6.
(a) NER

6 (b) N i6:2
6 (c) N i6:3

6 .

In Chapter 7.4.2 we show non-circularizability of the five connected digon-free arrangements
of 6 pseudocircles depicted in Figures 7.17 and 7.20. The symmetry group of the three arrange-
ments shown in Figure 7.17 is of order 24 or 8, and the symmetry group of the two arrangements
shown in Figure 7.20 is of order 4. All the remaining examples of connected digon-free arrange-
ments with n = 6, where we do not know about circularizability, have a symmetry group of
order 2 or 1.

7.4.1 Non-circularizability of 3 intersecting arrangements with n = 6

In this subsection we prove non-circularizability of the three arrangements NER
6 , N i6:2

6 , and N i6:3
6

shown in Figure 7.13. The non-circularizability of NER
6 was already shown by Edelsbrunner and

Ramos [ER97], the name of the arrangement reflects this fact. The other names are built,
such that the subscript of the N is the number of pseudocircles, the first part of the superscript
indicates that the arrangement is intersecting with a symmetry group of order 6, and the number
after the colon is the counter. Accordingly, the arrangement NER

6 can also be denoted as N i6:1
6 .
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Non-circularizability of the Edelsbrunner–Ramos example NER
6

The arrangement NER
6 is shown in Figure 7.13(a). As in the original proof [ER97] the argument

is based on considerations involving angles.

a

a

a′ bc

c′b′

C6

C4 C5

C1

C3

C2

C6

C5C4 C4 C5

ℓ1

ℓ2

(a) (b) (c)

Figure 7.14: (a) The Edelsbrunner–Ramos example NER
6 .

(b) Comparing the angle at a and the corresponding angle of T .
(c) Labels for the vertices of the inner subarrangement AI .

Figure 7.14(a) shows a representation of the arrangement NER
6 consisting of a subarrange-

ment AO formed by the three outer pseudocircles C1, C2, C3 and a second subarrangement AI

formed by the three inner circles C4, C5, C6.
Suppose that there is a circle representation C of NER

6 . Let CO and CI be the subarrangements
of C which represent AO and AI , respectively. For each outer circle Ci from CO consider a
straight-line segment si that connects two points from the two digons which are formed by Ci

with inner circles. The segment si is fully contained in Ci. Let ℓi be the line supporting si and
let T be the triangle bounded by ℓ1, ℓ2, and ℓ3.

We claim that T contains the inner triangle of CO. Indeed, if three circles form a NonKrupp
where the outer face is a triangle and with each circle we have a line which intersects the two
digons incident to the circle, then the three lines form a triangle containing the inner triangular
cell of the NonKrupp arrangement.

The inner triangle of CO contains the four inner triangles of CI . Let a, b, c be the three
crossing points on the outer face of the subarrangement CI . Comparing the inner angle at a, a
crossing of C4 and C5, and the corresponding angle of T , i.e., the angle formed by ℓ1 and ℓ2, we
claim that the inner angle at a is smaller. To see this let us assume that the common tangent
h of C4 and C5 on the side of a is horizontal. Line ℓ1 has both crossings with C5 above a and
also intersects with C6. This implies that the slope of ℓ1 is positive but smaller than the slope
of the tangent at C5 in a. Similarly, the slope of ℓ2 is negative but larger than the slope of the
tangent at C4 in a. This implies the claim, see Figure 7.14(b).

The respective statements hold for the inner angles at b and c, and the corresponding angles
of T . Since the sum of angles of T is π, we conclude that the sum of the inner angles at a, b,
and c is less than π.

The sum of the inner angles at a, b, c equals the sum of inner angles at a′, b′, c′, see
Figure 7.14(c). This sum, however, clearly exceeds π. The contradiction shows that NER

6 is not
circularizable.

Non-circularizability of N i6:2
6

The arrangement N i6:2
6 is shown in Figure 7.13(b) and again in Figure 7.15(a). This figure also

shows some shaded triangles, three of them are gray and three are pink.
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(a) (b) (c)
p1

p2
p3 p3p2

C2C6

C5

C4

C1

C3

C3

C6

C4

C1

C5

C2

Figure 7.15: (a) The arrangement N i6:2
6 with some triangle faces emphasized.

(b) After collapsing the shaded triangles.
(c) After moving the point p1 to infinity.

Suppose that N i6:2
6 has a circle representation C. Each of C1, C2, and C3 has two triangles and

no digon on its interior boundary. One of the two triangles is gray the other pink. Lemma 7.15
allows to shrink the three circles C1, C2, C3 of C into their respective interiors such that in each
case the shrinking makes a pink triangle collapse. Let pi be the point of triple intersection of
Ci, for i = 1, 2, 3. Further shrinking Ci towards pi makes another triangle collapse. At this
second collapse two triangles disappear, one of them a gray one, and Ci gets incident to pi−1

(with indices modulo 3). Having done this for each of the three circles C1, C2, C3 yields a circle
representation for the (non-simple) arrangement shown in Figure 7.15(b).

To see that this arrangement has no circle representation apply a Möbius transformation
that maps the point p1 to the point ∞ of the extended complex plane. This transforms the four
circles C1, C2, C4, C5, which are incident to p1, into lines. The two remaining circles C3 and
C6 intersect in p2 and p3. The lines of C2 and C5 both have their second intersections with C3

and C6 separated by p2, hence, they both avoid the lens formed by C3 and C6. The line of C1

has its intersections with C2 and C5 in the two components of the gray double-wedge of C2 and
C5, see Figure 7.15(c). Therefore, the slope of C1 belongs to the slopes of the double-wedge.
However, the line of C1 has its second intersections with C3 and C6 on the same side of p3 and,
therefore, it has a slope between the tangents of C3 and C6 at p3. These slopes do not belong
to the slopes of the gray double-wedge. This contradiction shows that a circle representation C
of N i6:2

6 does not exist.

Non-circularizability of N i6:3
6

The arrangement N i6:3
6 is shown in Figure 7.13(c) and again in Figure 7.16(a). This figure also

shows some shaded triangles, three of them are gray and three are pink.
Suppose that N i6:2

6 has a circle representation C. Each of C1, C2 and C3 has two triangles
and no digon on its exterior boundary (excluding the outer face). One of the two triangles is
gray the other is pink (we disregard the exterior triangle because it will not appear in a first flip
when expanding a circle). The dual form of Lemma 7.15 allows to expand the three circles C1,
C2, C3 of C into their respective exteriors such that in each case the expansion makes a pink
triangle collapse.

Figure 7.16(b) shows a pseudocircle representation of the arrangement after this first phase
of collapses. In the second phase, we modify the circles Ci, for i = 4, 5, 6. We explain what
happens to C5, the two other circles are treated the same with respect to the rotational symmetry.
Consider the circle C ′

5, which contains p1 and shares p3 and the red point with C5. This circle
is obtained by shrinking C5 on one side of the line containing p3 and the red point, and by
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(a) (b)

p2

p3
(c)

p1

p1

p2

p3

C1

C3

C4

C6

C5
C2

C3

C2

C1

C4

C5

C6

Figure 7.16: (a) The arrangement N i6:3
6 with some triangle faces emphasized.

(b) After collapsing the pink shaded triangles.
(c) A detail of the arrangement after the second phase of collapses.

expanding C5 on the other side of the line. It is easily verified that the collapse of the gray
triangle at p1 is the first event in this process.

Figure 7.16(c) shows the inner triangle formed by C1, C2, and C3 together with parts of C ′
4,

C ′
5, and C ′

6. At each of the three points, the highlighted red angle is smaller than the highlighted
gray angle. However, the red angle at pi is formed by the same two circles as the gray angle at
pi+1, whence, the two angles are equal. This yields a contradictory cyclic chain of inequalities.
The contradiction shows that a circle representation C of N i6:3

6 does not exist.

7.4.2 Non-circularizability of 5 connected digon-free arrangements with n = 6

We first prove non-circularizability of the three arrangements N c24
6 , N c8:1

6 , and N c8:2
6 shown in

Figure 7.17.

(a) (b) (c)

Figure 7.17: A digon-free connected arrangement of n = 6 pseudocircles with symmetry group of
order 24, and two with a symmetry group of order 8: (a) N c24

6 (b) N c8:1
6 (c) N c8:2

6 .

Non-circularizability of N c24
6 and N c8:1

6

The proof of non-circularizability of the two arrangements is based on Miquel’s Theorem. For
proofs of the theorem we refer to [RG11].

Theorem 7.18 (Miquel’s Theorem). Let C1, C2, C3, C4 be four circles and let C1∩C2 = {a,w},
C2 ∩ C3 = {b, x}, C3 ∩ C4 = {c, y}, and C4 ∩ C1 = {d, z}. If there is a circle C containing
a, b, c, d, then there is a circle C ′ containing w, x, y, z.

The arrangement N c24
6 is shown in Figure 7.17(a) and again in Figure 7.18(a). Suppose

that N c24
6 has a circle representation C. Circle C5 has six triangles in its exterior. These

triangles are all incident to either the crossing of C1 and C4 or the crossing of C2 and C3.
Hence, by Lemma 7.15 we can grow C5 into its exterior to get two triple intersection points
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(a) (c)(b)

C1

C3C4

C2

C5

p34

p12

p14 p23
p2

p4

p1
p3

C1 C2

C3

C6
C4

C6

C5

Figure 7.18: (a) The arrangement N c24
6 .

(b) N c24
6 after collapsing four triangles.

(c) The arrangement N c8:1
6 .

p1 = C1 ∩C4 ∩C5 and p2 = C2 ∩C3 ∩C5. The situation in the interior of C6 is identical to the
situation in the exterior of C5. Hence, by shrinking C6 we get two additional triple intersection
points p3 = C1 ∩ C2 ∩ C6 and p4 = C3 ∩ C4 ∩ C6. This yields the (non-simple) arrangement
shown in Figure 7.18(b). Now grow the circles C1, C2, C3, C4 to the outside while keeping each
of them incident to its two points pi, this makes them shrink into their inside at the ‘short arc’.
Upon this growth process, the gray crossings p12, p23, p34, and p14 move away from the blue
circle C6. Hence, the process can be continued until the upper and the lower triangles collapse,
i.e., until p12 and p34 both are incident to C5. Note that we do not care about p23 and p14, they
may have passed to the other side of C5. The collapse of the upper and the lower triangle yields
two additional triple intersection points C1∩C2∩C5 and C3∩C4∩C5. The circles C1, C2, C3, C4

together with C5 in the role of C form an instance of Miquel’s Theorem (Theorem 7.18). Hence,
there is a circle C ′ traversing the four points p3, p14, p4, p23. The points p3, p4 partition C ′ into
two arcs, each containing one of the gray points p14, p23. Now C ′ shares the points p3 and p4
with C6 while the gray points p14, p23 are outside of C6. This is impossible, whence there is no
circle representation of N c24

6 .
The arrangement N c8:1

6 is shown in Figure 7.17(b) and again in Figure 7.18(c). The proof of
non-circularizability of this arrangement is exactly as the previous proof, just replace N c24

6 by
N c8:1

6 and think of an analog of Figure 7.18(b).

Originally, we were aiming at deriving the non-circularizability of N c24
6 as a corollary to

the following theorem. Turning things around we now prove it as a corollary to the non-
circularizability of N c24

6 . We say that a polytope P has the combinatorics of the cube if P
and the cube have isomorphic face lattices. The graph of the cube is bipartite, hence, we can
speak of the white and black vertices of a polytope with the combinatorics of the cube.

Theorem 7.19. Let S be a sphere. There is no polytope P with the combinatorics of the cube
such that the black vertices of P are inside S and the white vertices of P are outside S.

Proof. Suppose that there is such a polytope P . Let E be the arrangement of planes spanned
by the six faces of P and let C be the arrangement of circles obtained from the intersection of
E and S. This arrangement is isomorphic to N c24

6 . To see this, consider the eight triangles of
N c24

6 corresponding to the black and gray points of Figure 7.18(b). Triangles corresponding to
black points are Krupp and triangles corresponding to gray points are NonKrupp. By Fact 6.1
this translates to corners of P being outside and inside S, respectively.

Non-circularizability of N c8:2
6

The arrangement N c8:2
6 is shown in Figure 7.17(c) and again in Figure 7.19(a).
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ℓ3

ℓ1ℓ2
(b) (c)(a)

p

C6

C3

C2

C4

C2

C1

C3

C4

C6

C5

C1

C5

Figure 7.19: (a) The arrangement N c8:2
6 with four gray triangles.

(b) N c8:2
6 after collapsing the gray triangles.

(c) After moving the point p to infinity.

Suppose that N c8:2
6 has a circle representation C. Circle C1 only has two triangles in the

exterior, in the figure they are gray. Circle C6 only has two triangles in the interior. With
Lemma 7.15 these four triangles can be collapsed into points of triple intersection. This results
in a (non-simple) arrangement as shown in Figure 7.19(b). Note that we do not care, whether
the circles C1 and C6 cross or not.

Apply a Möbius transformation that maps the point p = C4 ∩C5 ∩C6 to the point ∞ of the
extended complex plane. This maps C4, C5, and C6 to lines, while C1, C2, and C3 are mapped
to circles. From the order of crossings, it follows that the situation is essentially as shown in
Figure 7.19(c). This Figure also shows the line ℓ1 through the two intersection points of C1 and
C2, the line ℓ2 through the two intersection points of C2 and C3, and the line ℓ3 through the two
intersection points of C3 and C1. The intersection points of ℓ3 with the other two are separated
by the two defining points of ℓ3. According to Theorem 6.2, however, the three lines should
share a common point. The contradiction shows that there is no circle representation of N c8:2

6 .

Non-circularizability of N c4:1
6 and N c4:2

6

The arrangements N c4:1
6 and N c4:2

6 are shown in Figure 7.20 and again in Figure 7.21. These
are the only two connected digon-free arrangements of 6 pseudocircles with a symmetry group
of order 4 which are not circularizable. The two proofs of non-circularizability are very similar.

(a) (b)

Figure 7.20: Two non-circularizable arrangements of n = 6 pseudocircles with a symmetry group of
order 4. The arrangements are denoted as (a) N c4:1

6 and (b) N c4:2
6 .

Suppose that N c4:1
6 has a circle representation C. In Figure 7.21(a) the pseudocircles C5 and

C6 each have two gray triangles on the outside and these are the only triangles on the outside
of the two pseudocircles. With Lemma 7.15 the respective circles in C can be grown until the
gray triangles collapse into points of triple intersection or until a digon flip occurs. In the case
of a digon flip C5 and C6 become intersecting, and no further triangles incident to C5 and C6
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C1

C2

C3 C4

C5

C6

C4

C5

C6

C1

C3

C2(a) (b)

Figure 7.21: (a) The arrangement N c4:1
6 with four gray triangles.

(b) The arrangement N c4:2
6 with four gray triangles.

are created. Therefore, it is possible to continue the growing process until the four triangles
collapse. In the following, we do not care whether the digon flip occured during the growth
process, i.e., whether C5 and C6 intersect. The four points of triple intersection are the points
p1, p2, p3, and p4 in Figure 7.22(a).

C1

C2

(a) (b)

p1

p3
p4

q1 q2

q3 q4

C5

C ′
3 C ′

4

C∗

C∗ C1

C2

p1

q1
p3

p2q3

C ′
3

C ′
4

C5

q2 p4

q4
p2

Figure 7.22: (a) Illustration of the non-circularizability proof for N c4:1
6 .

(b) Illustration of the non-circularizability proof for N c4:2
6 .

There is a circle C ′
3 which shares the points p1 and p3 with C3 and also contains the point

q1, which is defined as the intersection point of C1 and C5 inside C3. Similarly there is a
circle C ′

4 which shares the points p2 and p4 with C4 and also contains the point q2, which is
defined as is the intersection point of C2 and C5 inside C4. By construction C5 is incident to
one intersection point of each of the pairs C1, C

′
3, and C ′

3, C2, and C2, C
′
4 and C ′

4, C1. Miquel’s
Theorem (Theorem 7.18) implies that there is a circle C∗ through the second intersection points
of these pairs. It can be argued that on C∗ the two points p3 and p4 separate q3 and q4. The
circle C6 shares the points p3 and p4 with C∗ and contains the crossing of the pairs C1, C3 and
C2, C4 which are ‘close to’ q3 and q4 in its interior (the two points are emphasized by the arrows
in the figure). Hence p3 and p4 are separated by q3 and q4. This is impossible, whence N c4:1

6 is
not circularizable.

Suppose that N c4:2
6 has a circle representation C. In Figure 7.21(b) the pseudocircles C3 and

C4 each have two gray triangles on the outside and these are the only triangles on the outside of
the two pseudocircles. By Lemma 7.15 the respective circles in C can be grown to make the gray
triangles collapse into points of triple intersection (we do not care whether during the growth
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process C3 and C4 become intersecting). The four points of triple intersection are the points p1,
p2, p3, and p4 in Figure 7.22(b).

There is a circle C ′
3 which shares the points p1 and p3 with C3 and also contains the point

q1, this point q1 is the intersection point of C2 and C5 inside C3. Similarly there is a circle C ′
4

which shares the points p2 and p4 with C4 and also contains the point q2, this point q2 is the
intersection point of C1 and C5 inside C4. By construction C5 contains one intersection point of
the pairs C1, C

′
3, and C ′

3, C2, and C2, C
′
4 and C ′

4, C1. Miquel’s Theorem (Theorem 7.18) implies
that there is a circle C∗ through the second intersection points of these pairs. It can be argued
that on C∗ the points q3 and q4 belong to the same of the two arcs defined by the pair p3, p4.
The circle C6 shares the points p3 and p4 with C∗ and has the crossing of the pair C2, C3 which
is outside C∗ in its inside and the crossing of the pair C1, C4 which is inside C∗ in its outside
(the two points are emphasized by the arrows in the figure). This is impossible, whence N c4:2

6

is not circularizable.

7.5 Enumeration and Asymptotics

Recall from Chapter 5, that the primal graph of a connected arrangement of n ≥ 2 pseudocircles
is the plane graph whose vertices are the crossings of the arrangement and edges are pseudoarcs,
i.e., pieces of pseudocircles between consecutive crossings. The primal graph of an arrangement
is a simple graph if and only if the arrangement is digon-free.

The dual graph of a connected arrangement of n ≥ 2 pseudocircles is the dual of the primal
graph, i.e., vertices correspond to the faces of the arrangement and edges correspond to pairs of
faces which are adjacent along a pseudoarc. The dual graph of an arrangement is simple if and
only if the arrangement remains connected after the removal of any pseudocircle. In particular,
dual graphs of intersecting arrangements are simple.

The primal-dual graph of a connected arrangement of n ≥ 2 pseudocircles has three types of
vertices; the vertices correspond to crossings, pseudoarcs, and faces of the arrangement. Edges
represent incident pairs of a pseudoarc and a crossing, and of a pseudoarc and a face1.

Figure 7.23 shows the primal graph, the dual graph, and the primal-dual graph of the
NonKrupp arrangement.

(a) (b) (c) (d)

Figure 7.23: (a) An arrangement and its (b) primal graph, (c) dual graph, and (d) primal-dual graph.

We now show that crossing free embeddings of dual graphs and primal-dual graphs on the
sphere are unique. This will allow us to disregard the embedding and work with abstract graphs.

If G is a subdivision of a 3-connected graph H, then we call G almost 3-connected. If H is
planar and, hence, has a unique embedding on the sphere, then the same is true for G.

1In retrospect, we believe that adding the face-crossing edges to the primal-dual graph would have simplified
the approach with respect to theory as well as to implementation.
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In the dual and the primal-dual graph of an arrangement of pseudocircles the only possible
2-separators are the two neighboring vertices of a vertex corresponding to a digon. It follows
that these graphs are almost 3-connected. We conclude the following.

Proposition 7.20. The dual graph of a simple intersecting arrangement of n ≥ 2 pseudocircles
has a unique embedding on the sphere.

Proposition 7.21. The primal-dual graph of a simple connected arrangement of n ≥ 2 pseudo-
circles has a unique embedding on the sphere.

Note that the statement of Proposition 7.20 clearly holds for n = 2, where the dual graph is
the 4-cycle.

7.5.1 Enumeration of Arrangements

The database of all intersecting arrangements of up to n = 7 pseudocircles was generated with a
recursive procedure. Arrangements of pseudocircles were represented by their dual graphs. The
recursion was initiated with the unique arrangement of two intersecting pseudocircles. Given
the dual of an arrangement we used a procedure which generates all possible extensions by one
additional pseudocircle. The procedure is based on the observation that a pseudocircle in an
intersecting arrangement of n pseudocircles corresponds to a cycle of length 2n− 2 in the dual
graph. A problem is that an arrangement of n pseudocircles is generated up to n times. Since
the embedding of the dual graph is unique, we could use the canonical labeling provided by the
Graph-package of SageMath [S+17a] to check whether an arrangement was found before2.

Another way for obtaining a database of all intersecting arrangements of n pseudocircles for a
fixed value of n, is to start with an arbitrary intersecting arrangement of n pseudocircles and then
perform a recursive search in the flip-graph using the triangle flip operation (cf. Chapter 7.5.5).

Recall that the dual graph of a connected arrangement contains multiple edges if the removal
of one of the pseudocircles disconnects the arrangement. Hence, to avoid problems with non-
unique embeddings, we modeled connected arrangements with their primal-dual graphs. To
generate the database of all connected arrangements for n ≤ 6, we used the fact that the flip-
graph is connected, when both triangle flips and digon flips are used (cf. Chapter 6.3). The
arrangements were created with a recursive search on the flip-graph.

7.5.2 Generating Circle Representations

Having generated the database of arrangements of pseudocircles, we were then interested in
identifying the circularizable and the non-circularizable ones.

Our first approach was to generate arrangements of circles C1, . . . , Cn with centers (xi, yi)
and radius ri by choosing triples xi, yi, ri at random from {1, . . . ,K} for a fixed constant K ∈ N.
In the database the entries corresponding to the generated arrangements were marked circular-
izable. Later we used known circle representations to find new ones by perturbing values. In
particular, whenever a new circle arrangement was found, we tried to locally modify the param-
eters to obtain further arrangements. With these quantitative approaches we managed to break
down the list for n = 5 to few “hard” examples, which were then treated “by hand”.

For later computations on n = 6 (and n = 7), we also used the information from the
flip-graph on all arrangements of pseudocircles. In particular, to find realizations for a “not-yet-
realized” arrangement, we used neighboring arrangements which had already been realized for
perturbations. This approach significantly improved the speed of realization.

Another technique to speedup our computations was to use floating point operations and,
whenever a solution suggested that an additional arrangement is circularizable, we verified the

2We recommend the Sage Reference Manual on Graph Theory [S+17c] and its collection of excellent examples.
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solution using exact arithmetics. Note that the intersection points of circles, described by inte-
ger coordinates and integer radii, have algebraic coordinates, and can therefore be represented
by minimal polynomials. All computations were done using the computer algebra system Sage-
Math [S+17a]3.

As some numbers got quite large during the computations, we took efforts to reduce the
“size” of the circle representations, i.e., the maximum over all parameters |xi|, |yi|, ri. It turned
out to be effective to scale circle arrangements by a large constant, perturb the parameters, and
divide all values by the greatest common divisor. This procedure allowed to reduce the number
of bits significantly when storing the circle (x− a)2 + (y − b)2 = r2 with a, b, r ∈ Z.

7.5.3 The Circularizability Problem as System of Polynomial Inequalities

We here describe, for a given arrangement of pseudocircles A in the Euclidean plane, a system
of polynomial inequalities over real-valued variables which has a solution if and only if the
arrangement is circularizable. This model not only shows the containment in the complexity
class ETR (cf. Corollary 7.7), one might also use algebraic or numeric solvers to find a solution
of this system, and hence a realization of A. In theory, one could also prove non-circularizability
based on this model, in practice, however, no solver/algorithm (known to us) can be used to
prove infeasibility of such an instance in reasonable time.

In our system of inequalities, each circle Ci in an arrangement C of circles in the Euclidean
plane is represented by its center ci = (xi, yi) ∈ R2 and its radius ri > 0. Since each two circles
Ci, Cj are distinct, we clearly have

∥ci − cj∥2 + (ri − rj)
2 > 0, (7.1)

where ∥·∥2 denotes the squared Euclidean norm, that is, a quadratic polynomial in the respective
x- and y-coordinates. Pause to note that the left-hand-side is clearly non-negative as the sum
over quadratic terms and that, given X ≥ 0, the strict inequality X > 0 is equivalent to
X − ε2 ≥ 0 ∧ ε · δ = 1, where ε and δ denote auxiliary variables. This transformation can
be applied to any strict inequation and allows to rewrite any system of inequalities only using
“≤”-symbols.

Two circles Ci and Cj intersect if and only if

(ri − rj)
2 ≤ ∥ci − cj∥2 ≤ (ri + rj)

2, (7.2)

while one of the two equalities holds if and ony if the two circles touch. Since our focus is on
simple arrangements, we can forbid touching circles using the fact that X ̸= Y is equivalent to
X − Y = ε ∧ ε · δ = 1, where ε and δ denote auxiliary variables. In particular, we write:

(ri − rj)
2 − ∥ci − cj∥2 = εij and εij · δij = 1, (7.3)

(ri + rj)
2 − ∥ci − cj∥2 = ε′ij and ε′ij · δ′ij = 1. (7.4)

From the given arrangement we know which pairs of circles intersect and which do not. For
a pair Ci, Cj of intersecting circles we denote the two points of intersections by pij = (xij , yij)
and pji = (xji, yji). When orienting the circles counter-clockwise, the point pij can be considered
as the point, where Ci enters the disk bounded by Cj , and vice versa. A point p which lies on
a circle Ci fulfills

∥ci − p∥2 = r2i . (7.5)

For a pair of circles Ci, Cj that intersect, the inequalities from (7.2) can be omitted as the
existence of the points pij , pji asserts an intersection.

3For more details, we refer to the Sage Reference Manual on Algebraic Numbers and Number Fields [S+17b].
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For a pair of circles Ci, Cj that do not intersect, however, the negation of the inequalities (7.2)
are indeed necessary to prevent unintended intersections. Thus, we use the auxiliary variables
εij , ε

′
ij from inequalities (7.3) and (7.4) to assert

εij · ε′ij > 0. (7.6)

For a fixed circle Ci, the order of the points of intersections along Ci are predescribed by the
arrangement and all these points are in convex position. For each three points of intersection
pij , pik, pil on Ci, the sign of the determinant of the 3× 3 matrix⎛⎝ 1 1 1

xij xik xil
yij yik yil

⎞⎠
is prescribed by the arrangement. Note that this determinant is a quadratic polynomial in the
respective x- and y-coordinates. Since all points lie on the circle C, no three lie on a common
line and, therefore, the sign of the determinant is either strictly positive or strictly negative.

Altogether, we obtain a system of quadratic inequalities of polynomial size which has a
solution if and only if the arrangement A is circularizable.

7.5.4 Counting Arrangements

Projective arrangements of pseudolines are also known as projective abstract order types or
oriented matroids of rank 3. The precise numbers of such arrangements are known for n ≤ 11
[Knu92, AAK02, Kra03, AK06] (cf. sequences A006248 and A018242 on the OEIS [Slo]). Hence
the numbers of great-pseudocircle arrangements given in Table 7.1 are not new. Moreover, it is
well-known that there are 2Θ(n2) arrangements of pseudolines and only 2Θ(n logn) arrangements
of lines [GP93, FG18]. Those bounds directy translate to arrangements of great-pseudocircles,
and, in particular, there are at least 2Ω(n2) and 2Ω(n logn) arrangements of pseudocircles and
circles, respectively. In this subsection we show that the number of such arrangements is also
bounded from above by 2O(n2) and 2O(n logn), respectively.

Proposition 7.22. There are 2Θ(n2) arrangements of n pseudocircles.

Proof. The primal-dual graph of a connected arrangement of n pseudocircles is a plane quadran-
gulation on O(n2) vertices. A quadrangulation can be extended to a triangulation by inserting
a diagonal edge in every quadrangular face. It is well-known that the number of triangulations
on s vertices is 2Θ(s) [Tut62]. Hence, the number of connected arrangements of n pseudocircles
is bounded by 2O(n2).

Now observe that every not necessarily connected arrangement on n pseudocircles can by
extended by n additional pseudocircles to a connected arrangement on 2n pseudocircles. Since
each connected arrangement on 2n pseudocircles yields at most

(︁
2n
n

)︁
distinct subarrangement of

size n, there are at most 2O(n2) arrangements on n pseudocircles.

Proposition 7.23. There are 2Θ(n logn) arrangements of n circles.

The proof relies on a bound for the number of cells in an arrangement of zero sets of polyno-
mials (the underlying theorem is associated with the names Oleinik-Petrovsky, Milnor, Thom,
and Warren [PO49, Mil64, Tho65, War68]). The argument is similar to the one given by Good-
man and Pollack [GP86] to bound the number of arrangements of lines, see also Chapter 6.2 of
Matoušek’s book [Mat02].

http://oeis.org/A006248
http://oeis.org/A018242
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Proof. An arrangement C of n circles on the unit sphere S is induced by the intersection of n
planes E = {E1, . . . , En} in 3-space with S. Plane Ei can be described by the linear equation
aix+ biy+ ciz + di = 0 for some reals ai, bi, ci, di; we call them the parameters of Ei. Below we
define a polynomial Pijk of degree 6 in the parameters of the planes, such that Pijk = 0 iff the
three circles Ei ∩ S, Ej ∩ S, and Ek ∩ S have a common point of intersection. We also define
a polynomial Qij of degree 8 in the parameters of the planes, such that Qij = 0 iff the circles
Ei ∩ S and Ej ∩ S touch.

Transforming an arrangement C into an arrangement C′ in a continuous way corresponds to
a curve γ in R4n from the parameter vector of E to the parameter vector of E ′. If a triangle flip
or a digon flip occurs when transforming C to C′, then γ intersects the zero set of a polynomial
Pijk or Qij . Hence, all the points in a fixed cell of the arrangement defined by the zero set of the
polymials Pijk or Qij with 1 ≤ i < j < k ≤ n are parameter vectors of isomorphic arrangements
of circles.

The number of cells in Rd induced by the zero sets of m polynomials of degree at most
D is upper bounded by (50Dm/d)d (Theorem 6.2.1 in [Mat02]). Consequently the number of
non-isomorphic arrangements of n circles, is bounded by (50 · 8 · 2

(︁
n
3

)︁
/4n)4n which is nO(n).

For the definition of the polynomial Pijk we first note (see e.g. [RG11, Section 12.3]) that
the homogeneous coordinates of the point Iijk of intersection of the three planes Ei, Ej , Ek are
given by4 ⨂︁

4((ai, bi, ci, di), (aj , bj , cj , dj), (ak, bk, ck, dk)),

where
⨂︁

n denotes the (n− 1)-ary analogue of the cross product in Rn

⨂︁
n(v1, . . . ,vn−1) :=

⃓⃓⃓⃓
⃓⃓⃓v

(1)
1 . . . v

(1)
n−1 e1

...
. . .

...
...

v
(n)
1 . . . v

(n)
n−1 en

⃓⃓⃓⃓
⃓⃓⃓ .

For more information on the (n− 1)-ary analogue of the cross product, we refer e.g. to [Wikb].
Each component of Iijk is a cubic polynomial in the parameters of the three planes. Since

a point in 3-space, described homogeneous coordinates (x, y, w, λ), lies on the unit sphere S if
and only if x2 + y2 + z2 − λ2 = 0, we get a polynomial Pijk of degree 6 in the parameters of the
planes such that Pijk = 0 iff Iijk ∈ S.

To define the polynomial Qij we need some geometric considerations. Note that the two
circles Ei ∩ S and Ej ∩ S touch if and only if the line Lij = Ei ∩ Ej is tangential to S. Let E∗

ij

be the plane normal to Lij which contains the origin. The point I∗ij of intersection of the three
planes Ei, Ej , E

∗
ij is on S if and only if Ei ∩ S and Ej ∩ S touch.

A vector Nij which is parallel to Lij can be obtained as
⨂︁

3((ai, bi, ci), (aj , bj , cj)). The
components of Nij are polynomials of degree 2 in the parameters of the planes in E . The
components of Nij are the first three parameters of E∗

ij ; the fourth parameter is zero. The
homogeneous components of I∗ij are obtained by a

⨂︁
4 from the parameters of the three planes

Ei, Ej , and E∗
ij . Since the parameters of E∗

ij are polynomials of degree 2, the components of
I∗ij are polynomials of degree 4. Finally we have to test whether I∗ij ∈ S, this makes Qij a
polynomial of degree 8 in the parameters of the planes.

7.5.5 Connectivity of the Flip-Graph

Given two arrangements of n circles, one can continuously transform one arrangement into the
other. During this transformation (the combinatorics of) the arrangement changes whenever a
triangle flip or a digon flip occurs.

4If the three planes Ei, Ej , Ek intersect in a common line, we still take the expression as a definition for Iijk,
i.e., the homogeneous coordinates are all zero.
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Snoeyink and Hershberger [SH91] showed an analog for arrangements of pseudocircles: Given
two arrangements on n pseudocircles, a sequence of digon flips and triangles flips can be applied
to transform one arrangement into the other. In other words, they have proven connectivity of
the flip-graph of arrangements of n pseudocircles, which has all non-isomorphic arrangements
as vertices and edges between arrangements that can be transformed into each other using only
a single flip operation.

For arrangements of (pseudo)lines, it is well-known that the triangle flip-graph is connected
(see e.g. [FW00]). A triangle flip in an arrangement of (pseudo)lines corresponds to an operation
in the corresponding arrangement of great-(pseudo)circles where two “opposite” triangles are
fliped simultaneously.

With an idea as in the proof of the Great-Circle Theorem (Theorem 7.1) we can show that
the flip-graph for arrangements of circles is connected.

Theorem 7.24. The triangle flip-graph on the set of all intersecting (digon-free) arrangements
of n circles is connected for every n ∈ N.

Proof. Consider an intersecting arrangement of circles C on the unit sphere S. Imagine the planes
of E(C) moving towards the origin. To be precise, for time t ≥ 1 let Et := {1/t · E : E ∈ E(C)}.
During this process only triangle flips occur as the arrangement is already intersecting and
eventually the point of intersection of any three planes of Et is in the interior of the unit sphere S.
Thus, in the circle arrangement obtained by intersecting the moving planes Et with S every triple
of circles forms a Krupp, that is, the arrangement becomes a great-circle arrangement. Since
the triangle flip-graph of line arrangements is connected, we can use triangle flips to get to any
other great-circle arrangement. Note that, due to Fact 6.2, no digon occurs in the arrangement
during the whole process in the setting of digon-free arrangements.

Consequently, any two arrangements of circles C and C′ can be flipped to the same great-circle
arrangement without digons to occur, and the statement follows.

Based on the computational evidence for n ≤ 7, we conjecture that the following is true.

Conjecture 7.2. The triangle flip-graph on the set of all intersecting (digon-free) arrangements
of n pseudocircles is connected for every n ∈ N.



Chapter 8

Triangles in Arrangements of
Pseudocircles

In Chapter 8.1, we give counterexamples to Grünbaum’s conjecture [Grü80, Conjecture 3.7]
which are simple. With a recursive construction based on an example with 12 pseudocircles
and 16 triangles we obtain a family of digon-free intersecting arrangements with p3/n

n→∞−−−→
16/11 = 1.45. We then replace Grünbaum’s conjecture by Conjecture 8.2: The lower bound
p3(A) ≥ 4n/3 is tight for infinitely many simple arrangements.

A specific arrangement N∆
6 of 6 pseudocircles of 8 triangles is interesting in this context.

The arrangement N∆
6 has no representation with circles, two different proofs for the non-

circularizablility of N∆
6 were given in Chapter 7. The arrangement N∆

6 appears as a subar-
rangement in all known simple, intersecting, digon-free arrangements with p3 < 2n − 4. This
motivates the question, whether indeed Grünbaum’s conjecture is true when restricted to inter-
secting arrangements of circles, see Conjecture 8.1. In Chapter 8.1.1 we discuss arrangements
with digons. We give an easy extension of the argument of Snoeyink and Hershberger [SH91]
to show that these arrangements contain at least 2n/3 triangles. All intersecting arrangements
known to us have at least n−1 triangles and therefore our Conjecture 8.3 is that n−1 is a tight
lower bound for intersecting arrangements with digons.

In Chapter 8.2 we study the maximum number of triangles in arrangements of n pseudo-
circles. We show an upper bound of order 4

3

(︁
n
2

)︁
+ O(n). For the lower bound construction we

glue two arrangements of n pseudolines into an arrangement of n pseudocircles. Since respec-
tive arrangements of pseudolines are known, we obtain arrangements of pseudocircles with 4

3

(︁
n
2

)︁
triangles for n ≡ 0, 4 (mod 6).

8.1 Intersecting Arrangements with few Triangles

The main result of this section is the following theorem, which disproves Grünbaum’s conjecture.

Theorem 8.1. The minimum number of triangles in digon-free intersecting arrangements of n
pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.

(ii) ⌈43n⌉ for 6 ≤ n ≤ 14.

(iii) < 16
11n for all n = 11k + 1 with k ∈ N.

Figures 8.1 and 8.2 show intersecting arrangements with the minimum number of triangles
for up to 8 pseudocircles, and Figure 8.3(a) shows an arrangement of 12 pseudocircles with the
minimum of 16 triangles. We remark that, in total, there are three non-isomorphic intersecting
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arrangements of n = 8 pseudocircles with p3 = 11 triangles, these are the smallest counterex-
amples to Grünbaum’s conjecture (cf. Lemma 8.2). We refer to our website [FS] for further
examples.

Figure 8.1: Digon-free intersecting arrangements of n = 3, 4, 5 circles with p3 = 8 triangles. Triangles
(except the outer face) are colored gray.

The basis for Theorem 8.1 was laid by exhaustive computations, which generated all in-
tersecting arrangements of up to n = 7 pseudocircles. Starting with the unique intersecting
arrangement of two pseudocircles, our program recursively inserted pseudocircles in all possible
ways. From the complete enumeration, we know the minimum number of triangles for n ≤ 7. In
the range from 8 to 14, we had to iteratively use arrangements of n pseudocircles with a small
number of triangles and digons to generate arrangements of n + 1 pseudocircles with the same
property. Using this strategy, we found intersecting arrangements with ⌈4n/3⌉ triangles for all
n in this range. The corresponding lower bound p3(A) ≥ 4n/3 is known from [SH91].

Figure 8.2: Digon-free intersecting arrangements of n = 6, 7, 8 pseudocircles with 8, 10, 11 triangles,
respectively. The arrangement of n = 6 pseudocircles on the left-hand side is named N∆

6 .

Another result which we obtained from our computer search is the following: the triangle-
minimizing example for n = 6 is unique, i.e., there is a unique intersecting arrangement N∆

6 of 6
pseudocircles with 8 triangles. In Chapter 7 we gave different proofs for the non-circularizability
of N∆

6 . Since the arrangement N∆
6 appears as a subarrangement of all arrangements with less

than 2n− 4 triangles known to us, the following weakening of Grünbaum’s conjecture might be
true.

Conjecture 8.1 (Weak Grünbaum Conjecture). Every digon-free intersecting arrangement of
n circles has at least 2n− 4 triangles.

If this conjecture was true, it would imply a simple non-circularizability criterion for in-
tersecting arrangements: Any arrangement with p3 < 2n − 4 could directly be classified as
non-circularizable.

So far we know that this conjecture is true for all n ≤ 9. The claim, that we have checked all
intersecting arrangements with p3(A) < 2n−4 in this range, is justified by the following lemma,
which restricts the pairs (p2, p3) for which there can exist arrangements of n pseudocircles whose
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extensions have p3(A) < 2n− 4. For example, to get all digon-free intersecting arrangements of
n = 9 pseudocircles with p3 ≤ 13 triangles, we only had to extend intersecting arrangements of
n = 7 and n = 8 pseudocircles with p3 + 2p2 ≤ 13 triangles.

Lemma 8.2. Let A be an intersecting arrangement of pseudocircles. Then for every subarrange-
ment A′ of A we have

p3(A′) + 2p2(A′) ≤ p3(A) + 2p2(A).

Proof. We show the statement for a subarrangement A′ in which one pseudocircle C is removed
from A. The inequality then follows by iterating the argument. The arrangement A′ partitions
the pseudocircle C into arcs. Reinsert these arcs one by one.

Consider a triangle of A′. After adding an arc, one of the following cases occurs: (1) the
triangle remains untouched, or (2) the triangle is split into a triangle and a quadrangle, or (3) a
digon is created in the region of the triangle.

Now consider a digon of A′. After adding an arc, one of the following cases occurs: (1) the
digon remains untouched, or (2) there is a new digon inside this digon, or (3) the digon has been
split into two triangles.

Levi [Lev26] has shown that every arrangement of pseudolines in the real projective plane
has at least n triangles. Since arrangements of great-(pseudo)circles are in bijection to arrange-
ments of (pseudo)lines (the bijection is explained in Chapter 8.2.1), it directly follows that every
arrangement of great-pseudocircles has at least 2n triangles. The next theorem applies the same
idea to a superclass of great-pseudocircle arrangements. We think of the theorem as support of
the Weak Grünbaum Conjecture (Conjecture 8.1).

Theorem 8.3. Let A be an intersecting arrangement of n pseudocircles such that there is a pseu-
docircle C in A that separates the two intersection points C ′∩C ′′ of any other two pseudocircles
C ′ and C ′′ in A. Then the number of triangles in A is at least 2n.

Proof. Since, for every two pseudocircles C ′ and C ′′ distinct from C, the two intersection points
of C ′∩C ′′ are separated by the pseudocircle C, the pseudocircle C “partitions” the arrangement
A into two projective arrangements of n pseudolines which lie in the two respective hemispheres.
According to Levi [Lev26], there are at least n triangles in each of the two arrangements, thus
the original arrangement A contains at least 2n triangles.

Felsner and Kriegel [FK99] have shown that every arrangement of n pseudolines in the
Euclidean plane has at least n − 2 triangles. This can again be turned into a result about
triangles in arrangements of pseudocircles.

Theorem 8.4. Let A be an intersecting arrangement of n pseudocircles. If A can be extended
by another pseudocircle C such that the pseudocircle C separates the two intersection points
C ′ ∩ C ′′ of any other two pseudocircles C ′ and C ′′, then the number of triangles in the original
arrangement A is at least 2n− 4.

Proof. Since, for every two pseudocircles C ′ and C ′′ distinct from C, the two intersection points
of C ′ ∩C ′′ are separated by C, the pseudocircle C splits the arrangement A into two Euclidean
arrangements of n pseudolines which lie in the two respective hemispheres. According to Felsner
and Kriegel [FK99], there are at least n − 2 triangles in each of the two arrangements. Since
the extending pseudocircle C (which can be considered as the line at infinity in the respective
Euclidean pseudoline arrangements) is not incident to any of these triangles, the arrangement
A contains at least 2n− 4 triangles.

We now prepare for the proof of Theorem 8.1(iii), for which we construct a family of (non-
circularizable) intersecting arrangements of n pseudocircles with less than 16

11n triangles. The
basis of the construction is the arrangement A12 of 12 pseudocircles with 16 triangles shown
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(a)

4

D

(2)

(1)

(3)

(4)

(b)

Figure 8.3: (a) The digon-free intersecting arrangement A12 of 12 pseudocircles with exactly 16 trian-
gles. The dashed curve intersects every pseudocircle exactly once. (b) An illustration of the construction
in Lemma 8.5. Pseudocircles of A and B are drawn red and blue, respectively.

in Figure 8.3(a). This arrangement will be used iteratively for a ‘merge’ as described by the
following lemma.

Lemma 8.5. Let A and B be digon-free intersecting arrangements of nA ≥ 3 and nB ≥ 3
pseudocircles, respectively. If there is a simple curve PA that

(1) intersects every pseudocircle of A exactly once

(2) contains no vertex of A,

(3) traverses τ ≥ 1 triangles of A, and

(4) forms δ triangles with pairs of pseudocircles from A,

then there is a digon-free intersecting arrangement C of nA + nB − 1 pseudocircles with p3(C) =
p3(A) + p3(B) + δ − τ − 1 triangles.

We remark that condition (1) from the statement of Lemma 8.5 asserts that A is cylindrical.
Moreover, if B is cylindrical, then also C is cylindrical.

Proof. Take a drawing of A and make a hole in the two cells which contain the ends of PA.
This yields a drawing of A on a cylinder such that none of the pseudocircles is contractible. The
path PA connects the two boundaries of the cylinder. In fact, the existence of a path with the
properties of PA characterizes cylindrical arrangements.

Stretch the cylindrical drawing such that it becomes a narrow belt, where all intersections
of pseudocircles take place in a small disk, which we call belt-buckle. This drawing of A is called
a belt drawing. The drawing of the red subarrangement in Figure 8.3(b) shows a belt drawing.

Choose a triangle △ in B and a pseudocircle B which is incident to △. Let b be the edge
of B on the boundary of △. Specify a disk D, which is traversed by b and disjoint from all other
edges of B. Now replace B by a belt drawing of A in a small neighborhood of B such that the
belt-buckle is drawn within D; see Figure 8.3(b).

The arrangement C obtained from merging A and B, as we just described, has nA + nB − 1
pseudocircles. Moreover if A and B are digon-free/intersecting, then C has the same property.
Most of the cells c of C are of one of the following four types:
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(1) All boundary edges of c belong to pseudocircles of A.

(2) All boundary edges of c belong to pseudocircles of B.

(3) All but one of the boundary edges of c belong to pseudocircles of B and the remaining edge
belongs to A. (These cells correspond to cells of B with a boundary edge on B.)

(4) Quadrangular cells, whose boundary edges alternatingly belong to A and B.

From the cells of B, only △ and the other cell containing b (which is not a digon since B is
digon-free) have not been taken into account. In C, the corresponding two cells have at least
two boundary edges from B and at least two from A. Consequently, neither of the two cells are
triangles. The remaining cells of C are bounded by pseudocircles from A together with one of
the two bounding pseudocircles of △ other than B. These two pseudocircles cross through A
following the path prescribed by PA. There are δ triangles among these cells, but τ of these
are obtained because PA traverses a triangle of A. Among cells of C of types (1) to (4) all the
triangles have a corresponding triangle in A or B. But △ is a triangle of B which does not occur
in this correspondence. Hence, there are p3(A) + p3(B) + δ − τ − 1 triangles in C.

Proof of Theorem 8.1(iii). We use A12, the arrangement shown in Figure 8.3(a), in the role
of A for our recursive construction. The dashed path in the figure is used as PA with δ = 2
and τ = 1. Starting with C1 = A12 and defining Ck+1 as the merge of Ck and A12, we construct
a sequence {Ck}k∈N of digon-free intersecting arrangements of n(Ck) = 11k + 1 pseudocircles
with p3(Ck) = 16k triangles. The fraction 16k/(11k + 1) is increasing with k and converges to
16/11 = 1.45 as n goes to ∞.

We remark that using other arrangements from Theorem 8.1(ii) (which also admit a path
with δ = 2 and τ = 1) in the recursion, we obtain intersecting arrangements with p3 = ⌈1611n⌉
triangles for all n ≥ 6.

Since the lower bound ⌈43n⌉ is tight for 6 ≤ n ≤ 14, we believe that the following is true:

Conjecture 8.2. There exist digon-free intersecting arrangements A of n pseudocircles with
p3(A) = ⌈4n/3⌉ for infinitely many values of n.

8.1.1 Intersecting Arrangements with Digons

We know intersecting arrangements of n ≥ 3 pseudocircles with digons and only n− 1 triangles.
The examples depicted in Figure 8.4 are part of an infinite family of such arrangements. As
illustrated, the intersection order with the black circle determines the arrangement. In fact, it
is easy to see that 2n−3 different arrangements are possible: Starting with the black, the purple,
and the yellow pseudocircles (which give a unique arrangement), each further pseudocircle has
its finger placed either immediately to the left or immediately to the right of the previous
finger. Figures 8.4(a) and 8.4(b) illustrate the finger-insertion-sequence “right-right-right-. . . ”
and “left-right-left-. . . ”, respectively.

(a) (b)

Figure 8.4: Intersecting arrangements of n pseudocircles with n digons and n− 1 triangles.
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Using ideas based on sweeps (cf. [SH91]), we can show that every pseudocircle is incident to
at least two triangles. This implies the following theorem:

Theorem 8.6. Every intersecting arrangement of n ≥ 3 pseudocircles has at least 2n/3 triangles.

The proof of the theorem is based on the following lemma:

Lemma 8.7. Let C be a pseudocircle in an intersecting arrangement of n ≥ 3 pseudocircles.
Then all digons incident to C lie on the same side of C.

Proof. Consider a pseudocircle C ′ that forms a digon D′ with C that lies, say, “inside” C. If C ′′

also forms a digon D′′ with C, then C ′′ has to cross C ′ in the exterior of C. Hence D′′ also has
to lie “inside” C. Consequently, all digons incident to C lie on the same side of C.

Proof of Theorem 8.6. Let A be an intersecting arrangement and consider a drawing of A in
the plane. Snoeyink and Hershberger [SH91] have shown that starting with any circle C from
A the outside of C can be swept with a closed curve γ until all of the arrangement is inside of
γ. During the sweep γ intersects every pseudocircle from A at most twice. The sweep uses two
types1 of moves to make progress:

(1) take a crossing, in [SH91] this is called ‘pass a triangle’;

(2) leave a pseudocircle, this is possible when γ and some pseudocircle form a digon which is on
the outside of γ, in [SH91] this is called ‘pass a hump’.

Figure 8.5 gives an illustration of the two possible types of moves.

take a crossing

leave a pseudocircle

Figure 8.5: An illustration of the two types of moves which are possible in the proof of Theorem 8.6.
The blue curve is γ. The interior of γ is left of the shown part of the curve.

Let C be a pseudocircle of A. By the previous lemma, all digons incident to C lie on the
same side of C. Redraw A so that all digons incident to C are inside C. The first move of
a sweep starting at C has to take a crossing, and hence, there is a triangle △ incident to C.
Redraw A such that △ becomes the unbounded face. Again consider a sweep starting at C. The
first move of this sweep reveals a triangle △′ incident to C. Since △ is not a bounded triangle of
the new drawing we have △ ̸= △′, and hence, C is incident to at least two triangles. The proof
is completed by double counting the number of incidences of triangles and pseudocircles.

Since for 3 ≤ n ≤ 7 every intersecting arrangement has at least n − 1 triangles, we believe
that the following is true:

Conjecture 8.3. Every intersecting arrangement of n ≥ 3 pseudocircles has at least n − 1
triangles.

If the arrangement is not required to be intersecting, then the proof of Lemma 8.7 fails.
Indeed, if the intersection graph of the arrangement is bipartite, then all faces are of even
degree, in particular, there are no triangles; see Figure 8.6(a).

1There is a third type of move take a hump which is the inverse of “leave a pseudocircle”. However, this third
type does not occur in the proof of Theorem 8.6 because each two pseudocircles already intersect.
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(a) (b)

(c)

Figure 8.6: Non-intersecting arrangements (a) with no triangles, (b) with a triangle-cell-ratio of 5/6 +
O(1/

√
n), and (c) with only two non-triangular cells, i.e., with a triangle-cell-ratio of 1 +O(1/n).

8.2 Maximum Number of Triangles

Regarding the maximum number of triangles the complete enumeration2 provides precise data
for n ≤ 8. Moreover, we used heuristics to generate examples with many triangles for larger n.
Table 8.1 summarizes our results and Figures 8.7 and 8.8 show intersecting arrangements of
n = 5, 6, 7, 8 pseudocircles with the maximal number of triangles; further arrangements are
available on our website [FS].

(a) (b) (c) (d)

Figure 8.7: (a) and (b) show arrangements of n = 5 pseudocircles. The first one is digon-free and has
12 triangles and the second one has 13 triangles and one digon. (c) and (d) show arrangements of n = 6
with 20 triangles. The arrangement in (c) is the skeleton of the Icosidodecahedron.

In the next subsection we show that asymptotically the contribution of edges that are in-
cident to two triangles is neglectable. The last subsection gives a construction of intersecting
arrangements which show that ⌊43

(︁
n
2

)︁
⌋ is attained for infinitely many values of n.

2While we only have a complete database of arrangements of up to 7 pseudocircles (cf. Table 7.1) we could
make sure that there is no arrangement of 8 pseudocircles with at least 39 triangles. Such an arrangement A would
have a pseudocircle C such that the number of triangles of A′ = A−C would be at least 25. Our computations
showed that no arrangement A′ of 7 pseudocircles with p3(A′) ≥ 25 can be extended to an arrangement of 8
pseudocircles with more than 38 triangles.
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(a) (b)

Figure 8.8: (a) An arrangement with n = 7 pseudocircles and 29 triangles.
(b) An arrangement with n = 8 pseudocircles and 38 triangles.

n 2 3 4 5 6 7 8 9 10
simple 0 8 8 13 20 29 38 ≥ 48 ≥ 60

digon-free - 8 8 12 20 29 38 ≥ 48 ≥ 60

⌊43
(︁
n
2

)︁
⌋ 1 4 8 13 20 28 37 48 60

Table 8.1: Maximum number of triangles in intersecting arrangements of n pseudocircles.

Recall that we only study simple intersecting arrangements. Grünbaum [Grü80] also looked
at non-simple arrangements. His Figures 3.30, 3.31, and 3.32 show drawings of simplicial ar-
rangements that have n = 7 with p3 = 32, n = 8 with p3 = 50, and n = 9 with p3 = 62,
respectively. Hence, non-simple arrangements can have more triangles.

Theorem 8.8. Every intersecting arrangement A of pseudocircles fulfills p3(A) ≤ 4
3

(︁
n
2

)︁
+O(n).

Proof. Let A be an intersecting arrangement of n ≥ 4 pseudocircles. We view A as a 4-regular
plane graph, i.e., the set X of crossings is the vertex set and edges are the segments which
connect consecutive crossings on a pseudocircle.

Claim I. No crossing is incident to 4 triangular cells.

Assume that a crossing u of Ci and Cj is incident to four triangular cells. Then there is a
pseudocircle Ck which bounds those 4 triangles, see Figure 8.9(a). Now Ck only intersects Ci

and Cj . This, however, is impossible because n ≥ 4 and A is intersecting. △

Ci

Cj

Ck

4
4

4
4

(a)

Ci

Ck Cj

u′

u
v

v′
4

4 4

44

w

(b)

Figure 8.9: Illustrations of the proof of Claim I and Claim II.

Let X ′ ⊆ X be the set of crossings of A that are incident to 3 triangular cells. Our aim is
to show that |X ′| is small, in fact |X ′| ∈ O(n). When this is shown we can bound the number
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of triangles in A as follows: Under the assumption that |X ′| ∈ O(n), the number of triangles
incident to a crossing in X ′ clearly is in O(n). Now let Y = X \ X ′. Each of the remaining
triangles is incident to three elements of Y and each crossing of Y is incident to at most 2
triangles. Hence, there are at most 2|Y |/3 + O(n) triangles. Since |Y | ≤ |X| = n(n − 1) we
obtain the bound claimed in the statement of the theorem.

To show that |X ′| is small we need some preparation.

Claim II. Two adjacent crossings u, v in X ′ share two triangles.

Since u and v are both incident to 3 triangles, there is at least one triangle △ incident to
both of them. Assume for a contradiction that the other cell which is incident to the segment
uv is not a triangle. Let Ci, Cj , Ck be the three pseudocircles such that u is a crossing of Ci and
Cj , v is a crossing of Ci and Ck, and △ is bounded by Ci, Cj , Ck; see Figure 8.9(b). We denote
the third vertex of △ by w and note that w is a crossing of Cj and Ck.

Since u is incident to three triangles, the segment uw bounds another triangle, which is again
defined by Ci, Cj , Ck. Let u′ be the third vertex incident to that triangle. Similarly, the segment
vw is incident to another triangle which is also defined by Ci, Cj , Ck, and has a third vertex v′.

Again, by the same argument, the segments uu′ and vv′, respectively, are both incident to
another triangle. However, this is impossible as the two circles Cj and Ck intersect three times.
Thus both faces incident to segment uv are triangles. △

Claim III. Let u, v, w be three distinct crossings in X ′. If u is adjacent to both v and w, then
v is adjacent to w.

Since u is incident to three triangles and the segments uv and uw are both incident to two
triangles, there is a triangle △ with corners u, v, w. This triangle shows that u, v, and w are
adjacent to each other. △

Claim III implies that each connected component of the graph induced by X ′ is a complete
graph. It is easy to see that a K4 induced by X ′ is impossible, and therefore, all components
induced by X ′ are either singletons, edges, or triangles. Figure 8.10 shows the local structure of
the arrangement around components of these three types.

4 4

4
N N

N

?

?

N

(a)

4 4

4 4N

N

N

N
?

?

(b)

4 4
4

4
N

N

N

?
?

?

(c)

Figure 8.10: An illustration of the configurations of crossings in X ′. In this figure △ marks a triangle,
“N ” marks a k-cell with k ≥ 4 (“neither a triangle, nor a digon”), “?” marks an arbitrary cell. Crossings
with 3 incident triangles are shown as black vertices (these are the crossings in X ′).

To show that |X ′| is small, we are going to trade crossings of X ′ with digons and then refer to
a result of Agarwal et al. [ANP+04]. They have shown that the number of digons in intersecting
arrangements of pseudocircles is at most linear in n.

To convert crossings of X ′ into digons we use triangle flips. Each of the configurations shown
in Figure 8.10 has a gray triangle. By flipping these triangles we obtain the configurations shown
in Figure 8.11. These so-obtained configurations have at least as many new digons as the original
configurations contain crossings in X ′. It may be that the flip creates new triangles and even
new vertices which are incident to 3 triangles. However, the flips never remove digons.
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Figure 8.11: The configurations in (a), (b), and (c) are obtained by flipping the gray triangle in the
configuration from Figure 8.10(a), 8.10(b), and 8.10(c), respectively. The digons created by the flip are
marked “D”.

Therefore, thanks to the result from [ANP+04] we can make no more than O(n) flips before
all the crossings are incident to at most 2 triangles. This finishes the proof of Theorem 8.8.

In the proof of Theorem 8.8, we have used flips to trade segments incident to two triangles
against digons. It can be shown that at most one component of the graph induced by X ′ is
a K3. The proof of this fact is omitted here since it does not improve the bound given in the
theorem. Having used a bound on the number of digons we recall that Grünbaum conjectures
that p2 ≤ 2n− 2 holds for intersecting arrangements.

Since intersecting arrangements have 2
(︁
n
2

)︁
+ 2 faces, we can also rewrite the statement of

Theorem 8.8: at most 2
3 + O( 1n) of all cells of an intersecting arrangement are triangles. For

n = 7 there exist arrangements with 29 = 4
3

(︁
7
2

)︁
+ 1 triangles. It would be interesting to know

what the precise maximum value of p3 for n large is.
For non-intersecting arrangements the arguments from the proof of Theorem 8.8 do not

work. Figure 8.6(c) shows an arrangement where all but two cells are triangles. However, if each
pseudocircle is required to intersect at least 3 other pseudocircles, then we can proceed similar
and show that the triangle-cell-ratio is at most 5/6 + O(1/n). In fact, Figure 8.6(b) shows a
construction with triangle-cell-ratio 5/6 +O(1/

√
n).

Theorem 8.9. Let A be an arrangement of n pseudocircles where every pseudocircle intersects
at least three other pseudocircles. Then the triangle-cell-ratio is at most 5/6 +O(1/n).

Proof. We proceed as in the proof of Theorem 8.8. In fact, as the “intersecting” property was
only used to bound the number of digons, Claims I–III hold also in this less restrictive setting.

From Claims I–III we have learned that every vertex from X ′ has at least two neighbors
from X \X ′. The following claim will help us to show |X ′| ≤ |X \X ′|.

Claim IV. Every vertex from X \X ′ has at most two neighbors from X ′.

Suppose for a contradiction that a vertex v ∈ X \ X ′ has (at least) three neighbors x, y, z
from X ′. Since x, y, z each have three incident triangular faces and since v ̸∈ X ′, two of the
neighboring faces of v are triangles. In particular, those two triangular faces are not adjacent
as otherwise x, y, z would lie in the same component of G[X ′] and have the same neighbor v –
which is impossible.

Without loss of generality, we assume that xy is an edge and that z forms an edge with the
fourth neighbor of v, which we denote by w. Since x is incident to a non-triangular face (which
is also incident to v), the edge xy bounds another triangle. The same argument shows that zw
bounds another triangle, and therefore, the two pseudocircles passing through v intersect three
times – a contradiction; see Figure 8.12. This finishes the proof of Claim IV. △
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Figure 8.12: An illustration of the proof of Claim IV.

We can now discharge 1/2 from every vertex of X ′ to its neighbors from X \ X ′ and, by
Claim IV, count at most 1 at each of the vertices from X \X ′. Therefore, |X ′| ≤ |X \X ′| holds.
By counting the face-vertex-incidences we get

p3 ≤
3|X ′|+ 2|X \X ′|

3
≤ 5|X|

6
,

and since the number of faces equals |X|+ 2, this completes the proof of Theorem 8.9.

8.2.1 Constructions using Arrangements of Pseudolines

Great-circles on the sphere are a well known model for projective arrangements of lines (cf.
Chapter 6.1). Antipodal pairs of points on the sphere correspond to points of the projective
plane. Hence, the great-circle arrangement corresponding to a projective arrangement A of lines
has twice as many vertices, edges, and faces of every type as A. The same idea can be applied
to projective arrangements of pseudolines. If A is a projective arrangement of pseudolines, take
a drawing of A in the unit disk D such that every line ℓ of A connects two antipodal points
of D. Project D to the upper hemisphere of a sphere S, such that the boundary of D becomes
the equator of S. Use a projection through the center of S to copy the drawing from the upper
hemisphere to the lower hemisphere of S. By construction the two copies of each pseudoline
from A join together to form a pseudocircle. The collection of these pseudocircles yields an
intersecting arrangement of pseudocircles on the sphere with twice as many vertices, edges, and
faces of every type as A. Arrangements of pseudocircles obtained by this construction have a
special property:

• If three pseudocircles C, C ′, and C ′′ have no common crossing, then C ′′ separates the two
crossings of C and C ′.

Grünbaum [Grü80] calls arrangements with this property ‘symmetric’. In the context of oriented
matroids the property is part of the definition of arrangements of pseudocircles [BLW+99]. We
call arrangements with this property “arrangements of great-pseudocircles” as they generalize
the properties of arrangements of great-circles (cf. Chapter 8.2.1).

Arrangements of pseudolines which maximize the number of triangles have been studied in-
tensively. Blanc [Bla11] gives tight upper bounds for the maximum both in the Euclidean and
in the projective case and constructs arrangements of pseudolines with 2

3

(︁
n
2

)︁
−O(n) triangles for

every n. In particular, for n ≡ 0, 4 (mod 6) projective arrangements of straight lines with 2
3

(︁
n
2

)︁
triangles are known; see also [FG18]. This directly translates to the existence of (1) intersecting
arrangements of pseudocircles with 4

3

(︁
n
2

)︁
− O(n) triangles for every n and (2) intersecting ar-

rangements of circles with 4
3

(︁
n
2

)︁
triangles for n ≡ 0, 4 (mod 6). The ‘doubling method’ that has

been used for constructions of arrangements of pseudolines with many triangles, see [Bla11], can
also be applied for pseudocircles. In fact, in the case of pseudocircles there is more flexibility
for applying the method. Therefore, it is conceivable that ⌊43

(︁
n
2

)︁
⌋ triangles can be achieved for

all n.
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Chapter 9

Discussion

I would like to close this thesis with a discussion on the obtained results, some related results,
and with the statement of some open problems.

9.1 Holes in Point Sets

The number of 3-holes and 4-holes (h3(n) and h4(n) resp.) is known to be asymptotically
quadratic whereas the multiplicative factor of the quadratic term remains unknown. In Chapter 3
we have seen a superlinear lower bound on the number of 5-holes h5(n), while the currently best
known upper bound remains quadratic.

• Are the numbers of 5-holes and 6-holes (h5(n) and h6(n) resp.) asymptotically quadratic?

• What are the multiplicative factors of the quadratic terms of h3(n) and h4(n)?

In particular, we have shown that every ℓ-divided set S = A∪B with |A|, |B| ≥ 5 and A,B not in
convex position contains at least one ℓ-divided 5-hole (cf. Theorem 3.3). With a generalization of
Ham-Sandwich cuts (cf. Lemma 3.4) we then concluded the superlinear bound (cf. Theorem 3.1).

• Is there a way to apply Theorem 3.3 to obtain an Ω(n1+ϵ) bound on h5(n)?

We remark that all computer-assisted proofs from Chapter 3 towards a proof of Theorem 3.3
were done using C++ and python programs (cf. the flow summary in Figure 3.1). I’m convinced
that, when modeling the statement appropriately as a SAT instance (cf. Chapter 4), these results
can also be confirmed using SAT solvers. In fact, it might turn out that some of the computer-
assisted lemmas can even be shown for larger values of n using SAT solvers, and that some parts
of the proof of Theorem 3.3 become obsolete.

Small Point Sets: We have used a SAT model based approach in Chapter 4 to determine
the values of h5(n) for all values n ≤ 16 (cf. Table 1.1). Due to García ([Gar12], Theorem 3.5)
the number of 3-holes and 4-holes only depend on the number of extremal points and on the
number of generated 3-holes and 4-holes, respectively. Since these values are both bounded from
above by h5(n), the values of h3(n) and h4(n) should also be determinable with an appropriate
adaption of the SAT model for all values n ≤ 16.

6-Holes: The minimum number h(6) of points, such that every set of that many points contains
a 6-hole, is still unknown today. The best known bounds are 30 ≤ h(6) ≤ 463.

At a first glance, it might seem that a similar approach as in Chapter 3 could be used to
derive stronger lower bounds also on the minimum number of 6-holes h6(n). However, since
there are point sets of 29 points with no 6-hole [Ove02], one would need to investigate point
sets of size at least 30 in order to find an ℓ-divided 6-hole. This task is too demanding for
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our implementations, since the number of combinatorially different point sets grows too rapidly.
Moreover, the case analysis in several steps of our proof would become much more complicated.

• What is the value of h(6)?

We would not be surprised if a SAT model based approach (cf. Chapter 4) can be used to tackle
this question.

9.2 Disjoint Holes in Point Sets

In Chapter 4 we used a SAT model based approach to determine the value h(5, 5) = 17, that is,
every set of 17 points determines two 5-holes with disjoint respective convex hulls. Furthermore,
we have investigated interior-disjoint holes.

• It remains open what the values h(5, 5, 5), h(5, 5, 5, 5), . . . are (cf. Chapter 4.2) – and
analogously for interior-disjoint holes.

To determine multi-parametric values such as h(5, 5, 5), one can formulate a SAT instance
as follows: Three 5-holes X1, X2, X3 are pairwise disjoint if there is a line ℓij for every pair
Xi, Xj that separates Xi and Xj . By introducing auxiliary variables Yi,j for every pair of 5-
tuples Xi, Xj to indicate whether Xi and Xj are disjoint 5-holes, one can formulate an instance
in Θ(n10) variables with Θ(n15) constraints. However, since this formulation is quite space
consuming, a more compact formulation might be of interest.

Another way to determine the values h(2, 4, 5), h(3, 4, 5), and h(4, 4, 5) is to use partial
extension (cf. [Kra03, Chapter 3] and [Sch13]). The idea is to filter order types on 11 points,
which do not contain disjoint 2-, 4-, and 5-holes. (To speed up this process, one could first
filter order types on 9 points which do not contain disjoint 4- and 5-holes and then extend the
remaining order types to 11 points by adding two extremal points.) If no such order type exists,
then h(2, 4, 5) would be 11 – otherwise one extends the remaining order types by an additional
point outside the convex hull and filters the so-obtained order types on 12 points.

9.3 Erdős–Szekeres type Questions on Colored Point Sets

A k-hole in a point set S is a subset X ⊆ S in convex position with conv(X) ∩ S = X and
|X| = k. In Chapter 3 we have already seen one generalization of k-holes: A k-island1 is a
subset X ⊆ S (not necessarily in convex position) with conv(X) ∩ S = X. An even more
general structure is a so-called generalized k-hole in a point set S, which is a simple polygon
(not necessarily convex) spanned by k points of S with no other point in its interior. Pause to
note that every k-island yields at least one generalized k-hole.

Another famous Erdős–Szekeres variant is as follows: Given a set S of n points, each point
colored by one of the colors {1, . . . , c} for a fixed c, does S contain a monochromatic k-hole,
k-island, or generalized k-hole? Devillers and others [DHKS03] showed that the perfect Horton
set can be (i) 3-colored such that it does not contain any monochromatic 3-hole, and (ii) 2-
colored such that it does not contain any monochromatic 5-hole. Pach and Tóth [PT13] showed
that every bicolored point set contains Ω(n4/3) monochromatic 3-holes, and in fact, a quadratic
number is conjectured [AFMFP+09]. Moreover, it is conjectured that every sufficiently large
bicolored point set contains a monochromatic 4-hole [DHKS03]. Some progress was made by
Aichholzer et al. [AHH+10], who showed that every sufficiently large bicolored set contains at
least one monochromatic generalized 4-hole.

1k-islands were introduced by Fabila-Monroy and Huemer [FMH12]
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• It remains open whether every sufficiently large bicolored set contains monochromatic k-
islands for k ≥ 4 (in particular, monochromatic 4-holes) and monochromatic generalized
k-holes for k ≥ 5.

• Is the number of monochromatic 3-holes in a bicolored set quadratic?

Koshelev [Kos09a] found a set of 46 points without monochromatic 4-holes; see also the point
set zoo2. Using SAT solvers, we managed to find an abstract order type on 77 points without
monochromatic 4-holes. Concerning (realizable) order types, the largest set we found has 48
points.

The largest bicolored set currently known without monochromatic 4-islands has 35 points3.
We managed to find an abstract order type on 46 points and a set of 36 points without monochro-
matic 4-islands.

The largest bicolored set currently known without monochromatic generalized 4-holes has 22
points4. We managed to find an abstract order type on 25 points and a set of 24 points without
monochromatic generalized 4-holes.

To our knowledge, no bicolored large sets without monochromatic generalized 5-holes were
explicitly mentioned in literature (or on auxiliary websites). We found a set of 31 points without
monochromatic generalized 5-holes.

All our data is available on our website5. We remark that all examples were found using local
search techniques such as simulated annealing, SAT solvers, and abstract order type extension
(cf. [Kra03, Chapter 2.4]). Mostly all computations were done with our framework pyotlib [Sch14]
and, in particular, to find realizations of abstract order types, Wolfram Mathematica [Wol] was
used.

9.4 Triangles in Arrangements of Pseudocircles

In Chapter 8 we have seen that Grünbaum’s conjecture on triangles in arrangements of pseudo-
circles turned out wrong in general, however, it might be true when restricted to arrangements
of proper circles:

• Is it true that every intersecting digon-free arrangement of n circles has at least 2n − 4
triangles? (cf. Conjecture 8.1).

Moreover, we have used an intersecting digon-free arrangement of 12 pseudocircles with 16
triangles to recursively construct larger arrangements with p3 <

16
11n triangles.

• We conjecture that arbitrarily large digon-free intersecting arrangements of n pseudocircles
with p3 = ⌈4n/3⌉ triangles exist (Conjecture 8.2).

For intersecting arrangements with digons we have shown that they contain at least 2n/3
triangles. By now we only know of constructions with n − 1 triangles, which we verified to be
best possible for n ≤ 7 using computer assistance.

• We conjecture that every intersecting arrangement of n pseudocircles has at least n − 1
triangles (cf. Conjecture 8.3).

2http://www.eurogiga-compose.eu/posezo/n46_c2_no_monochromatic_convex_4_hole/n46_c2_no_
monochromatic_convex_4_hole.php

3http://www.eurogiga-compose.eu/posezo/n35_c2_no_monochromatic_4_island/n35_c2_no_
monochromatic_4_island.php

4http://www.eurogiga-compose.eu/posezo/n22_c2_no_monochromatic_4_hole/n22_c2_no_
monochromatic_4_hole.php

5http://page.math.tu-berlin.de/~scheuch/research/sat_vs_bicolored_point_sets/

http://www.eurogiga-compose.eu/posezo/n46_c2_no_monochromatic_convex_4_hole/n46_c2_no_monochromatic_convex_4_hole.php
http://www.eurogiga-compose.eu/posezo/n46_c2_no_monochromatic_convex_4_hole/n46_c2_no_monochromatic_convex_4_hole.php
http://www.eurogiga-compose.eu/posezo/n35_c2_no_monochromatic_4_island/n35_c2_no_monochromatic_4_island.php
http://www.eurogiga-compose.eu/posezo/n35_c2_no_monochromatic_4_island/n35_c2_no_monochromatic_4_island.php
http://www.eurogiga-compose.eu/posezo/n22_c2_no_monochromatic_4_hole/n22_c2_no_monochromatic_4_hole.php
http://www.eurogiga-compose.eu/posezo/n22_c2_no_monochromatic_4_hole/n22_c2_no_monochromatic_4_hole.php
http://page.math.tu-berlin.de/~scheuch/research/sat_vs_bicolored_point_sets/
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9.5 Digons in Arrangements of Pseudocircles

In Chapter 8 we investigated number of triangles in arrangements of pseudocircles. Concerning
the number of digons, Grünbaum also has a conjecture:

• Every intersecting arrangement of n pseudocircles contains at most p2 ≤ 2n − 2 digons
[Grü80, Conjecture 3.6].

Agarwal et al. [ANP+04] have shown that the conjecture holds for cylindrical arrangements.
Moreover, for intersecting arrangements of pseudocircles they show that the number of digons
is at most linear in n, the multiplicative constant of the linear term however remains unknown.
Their result is based on the fact, that every intersecting arrangement of n pseudocircles has a
constant sized piercing number (later shown to be at most 4 [HPKM+18, CKM18]), and hence
can be decomposed into constantly many cylindrical subarrangements.

Grünbaum’s conjecture is only of interest for intersecting arrangements, since arrangements
of n circles exist with a superlinear number of digons6. An upper bound of O(n3/2+ϵ) on the
number of digons in general arrangements was shown by Aronov and Sharir [AS02].

• What is the maximum number of digons in an arrangement of pseudocircles?

It is worth mentioning that, for the more restrictive setting of arrangements of unit-circles,
Pinchasi showed an upper bound of p2 ≤ n+ 3 [Pin02, Lemma 3.4 and Corollary 3.10].

During our studies we came across the following result7:

Proposition 9.1. Every digon-free arrangement A of n ≥ 3 pseudocircles has a Krupp subar-
rangement.

Proof. Suppose that A is digon-free and has no Krupp subarrangement. We obtain a con-
tradiction by constructing an infinite sequence of nested lenses of A. Let C0 be an arbitrary
pseudocircle of A. Because there is no Krupp in A, there is a pseudocircle C1 such that the two
intersections of C0 and C1 are consecutive on C0 along an arc a0. The first lense L1 is the sub-
region in the interior of C0 whose boundary consists of a0 and a piece b1 of C1. Since L1 is not a
digon in A, there are pseudocircles intersecting the boundary, in fact, they intersect b1. Because
there is no Krupp involving C1, there is a pseudocircle C2 such that the two intersections of C1

and C2 are consecutive on b1 along an arc a1. Lens L2 is the subregion of L1 whose boundary
consists of a1 and a piece b2 of C2. Next we find a pseudocircle C3 whose intersections with C2

are consecutive on b2 and so on.

It would not be surprising, if the following generalization of the circle-plane representation
(cf. Chapter 6) was true:

• Given an arrangement A of pseudocircles on the sphere S, does there exist an arrange-
ment E of pseudoplanes (in R3) such that the intersection of E with S is precisely the
arrangement A?

The intersection of two pseudoplanes (which is a pseudoline) would intersect S if and only if the
corresponding pseudocircles intersect, and three pseudocircles would form a Krupp if and only if
the intersection point of three pseudoplanes lies inside S. Also Proposition 9.1 and many other
nice properties would follow directly from the existence such a representation.

6As noted by Agarwal and others [ANP+04], the bound follows from a construction by Erdős [Erd46] with n
circles which has Ω(n1+c/ log log n) pairs at distance 2.

7With a more fine-grained analysis one can show that an arrangement, in which every triple is Non-Krupp,
has at least 2 digons, which moreover is best-possible.
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9.6 Larger Cells in Arrangements

Besides the number of digons and triangles in arrangements, also larger cells have been investi-
gated (cf. [FG18]). It is known, that infinitely many arrangements without quadrilaterals exist
[Rou86], and that arbitrarily large arrangements exist, where all cells are either triangles or quad-
rangles [LLM+07]. Roudneff [Rou87], showed that every arrangement of n ≥ 5 (pseudo)lines in
the projective plane contains linearly many quadrilaterals or linearly many pentagons.

Concerning the upper bound on the number of k-cells in arrangements, Grünbaum [Grü80]
showed that every (general) arrangement of n lines determines at most 1

2n(n− 3) quadrilaterals
and conjectured that equality can only hold for simple arrangements. This conjecture was proven
to be correct by Roudneff [Rou87], and Forge and Ramírez-Alfonsín [FRA01] showed that the
statement is also true for arrangements of pseudolines.

9.7 Circularizability

In the course of Chapter 7, we generated circle representations or proved non-circularizability
for all connected arrangements of n ≤ 5 pseudocircles (cf. Chapter 7.2) and for all digon-
free intersecting arrangements of n ≤ 6 pseudocircles (cf. Chapter 7.2). Besides that, we also
investigated the next larger classes and found

• about 4 400 connected digon-free arrangements of 6 circles (which is about 98%),

• about 130 000 intersecting arrangements of 6 circles (which is about 90%), and

• about 2 millions intersecting digon-free arrangements of 7 circles (which is about 66%).

For our computations (especially the last two additional items), we had up to 24 CPUs running
over some months with the quantitative realization approaches described in Chapter 7.5.2.

We further investigated arrangements that were not realized by our computer program and
have high symmetry or other interesting properties. Non-circularizability proofs for some of
these candidates were presented in Chapter 7.4. Since we have no automated procedure for
proving non-circularizability, these proofs had to be done by hand.

In case of abstract order types, Bokowski and Richter [BR90] introduced a technique – com-
monly known as the method of “bi-quadratic final polynomials” – for proving non-realizability,
which is based on the Graßmann–Plücker relations (cf. Chapter 2.2). We outline the idea: As-
suming that an abstract order type is realized by a point set, then we can find values of the
determinants

Dabc := det

⎛⎝ 1 1 1
xa xb xc
ya yb yc

⎞⎠
which clearly have to respect the Graßmann–Plücker relations (cf. Chapter 2.2). In particular,
Setting a3 = b3 in the relation, one of the three summands on the right-hand side of the equation
vanishes. After moving negative summands (each is a product of two determinants) to the other
side such that all summands are positive, we obtain an equation of the form

D1 ·D2 +D3 ·D4 = D5 ·D6,

where each of the three products is positive. In particular, since we have D1 ·D2 < D5 ·D6, we
can apply logarithms on both sides and result in the linear inequality L1+L2 < L5+L6, where
Labc = log |Dabc|. In total, we obtain a system of Θ(n5) linear inequalities in n3 variables8. It is

8To be precise, if the strict inequalities have a solution, then the solution can be scaled such that L1+L2+1 ≤
L5 + L6 is fulfilled.



124 CHAPTER 9. DISCUSSION

indeed a necessary criterion for realizability that this system is feasible, and checking feasibility
of linear programs is known to be doable in polynomial time9.

Interestingly, all non-realizable abstract order types on up to n = 11 points were certified
as non-realizable using this procedure [Kra03]. The smallest non-realizable abstract order type
known today which does not violate this necessary criterion has 14 points and is not in general
position [RG96].

Since order types correspond to arrangements of great-circles, this non-realizability criterion
can also be used to prove non-circularizability for certain arrangements of great-pseudocircles
(cf. Corollary 7.6). For general arrangements, however, we do not have such a criterion.

• Is there an efficiently checkable criterion to certify non-circularizability of arrangements of
(not necessarily great-)pseudocircles?

It is also highly interesting that Bokowski, Richter, and Sturmfels [BRS90] proposed a more
general technique – the method of “final polynomials” – which uses a real version of Hilbert’s
Nullstellensatz to certify non-realizability for all non-realizable abstract order types. Such final
polynomials, however, cannot be computed efficiently.

9.8 Number of Arrangements

As we have seen in Chapter 7.5.4, there are 2Θ(n2) arrangements on n pseudocircles and only
2Θ(n logn) arrangements on n circles. This was not surprising as the same numbers apply to
arrangements of lines and pseudolines, respectively. Besides the asymptotics, also the constant
in the exponent has been studied intensively for arrangements of lines and pseudolines [Fel97,
FV11, DM18] (see also [FG18]).

• What are the asymptotics for the various classes of arrangements (connected, intersecting,
great-circles, digon-free, cylindrical, . . . )?

It is not hard to see that the constant for intersecting arrangements of n pseudocircles is
at least twice as large as the constant for arrangements of n great-pseudocircles. For example,
take any two arrangements of n pseudolines and glue them to one intersecting arrangement of
n pseudocircles.

When investigating the multiplicative constant in the 2O(n2) bound of the number A(n)
of (not necessarily connected) arrangements on n pseudocircles, the following approach allows
better estimates than the technique from Proposition 7.22: Assuming that the number C(n) of
connected arrangements of n pseudocircles is bounded by C(n) ≤ cn for some constant c, then
we have

A(n) ≤
∑︂

k1+...+kl=n
l,k1,...,kl∈N

∏︂
i

C(ki) ≤
∑︂

k1+...+kl=n
l,k1,...,kl∈N

ck
2
1+...+k2l ≤

∑︂
k1+...+kl=n
l,k1,...,kl∈N

cn
2 ≤ 2n · cn2 ≤ 2O(n2).

An analogous argument also applies to arrangements of circles.

9.9 Convexibility

Besides circularizability, Kang and Müller [KM14] have also investigated convexibility – the
problem of deciding whether an arrangement of pseudocircles is isomorphic to an arrangement

9In one of my Bachelor’s theses [Sch14] I’ve developed a python framework for investigating non-realizability
of abstract order types using computer assistance. The largest configuration certified non-realizable had 96 points
and contained a non-realizable subconfiguration on 17 points, which was found heuristically.
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of convex curves10. They proved that deciding circularizability for connected arrangements is
NP-hard11 in general and asked the following question:

• What is the smallest non-convexible arrangement of pseudocircles?

We have convinced ourselves that all (non-circularizable) arrangements of 5 pseudocircles
are convexible. Note that stereographic projections do not necessarily map convex curves to
convex curves, thus convexibility – in contrast to circularizability – might depend on the planar
embedding of the arrangement.

When applying the reduction from [KM14] to the simple non-Pappos arrangement of 9
pseudolines, one obtains a non-convexible arrangement of 18 pseudocircles.

Since ellipses are between circles and convex curves, we also took a short look at “ellipsability”.
In fact, we found realizations of all arrangements of n ≤ 5 pseudocircles with ellipses, which
brings us to the following strenghtened question:

• What is the smallest non-ellipsable arrangement of pseudocircles?12

Moreover,

• is there a generalization of the circle-plane representations to ellipses (involving conic
shapes)?

Note that this is a weakening of the question, whether all arrangements can be represented by
pseudoplanes (cf. Chapter 9.5)

Another interesting result, which involves cylindrical arrangements and convexibility is the
following: Bultena, Grünbaum, and Ruskey [BGR99] showed that every arrangement of closed
curves in the plane, with the property that all the curves have a common point in their interior,
and that any two curves intersect in finitely many points, admits a convex representation. Since,
in planar arrangements of great-pseudocircles, all pseudocircles have a common interior point
(the antipodal cell of the outer cell), there exists a convex representation.

Corollary 9.2. Every planar arrangement of great-pseudocircles is convexible.

Since great-pseudocircle arrangements are always convexible, and connected arrangements
might not be convexible, we pose the following question:

• What classes of arrangements are convexible and for which classes is the decision problem
ETR-hard? In particular, are there intersecting arrangement that are non-convexible?

9.10 Extending Arrangements

Besides the Sweeping Theorem for arrangements of pseudocircles, Snoeyink and Hershberger
[SH91] also proved the Extension Theorem for arrangements of pseudocircles. It asserts that,
given an arrangement A of pseudocircles and 3 points (not on a common pseudocircle from A),
then there is a pseudocircle C through the 3 points such that A+C is a pseudocircle arrangement.
This theorem can be considered as an analoga of Levi’s Extension Lemma [Lev26], which asserts
that, given an arrangement A of pseudolines and 2 points (not all on a common pseudoline
from A), then there is a pseudoline L through the 2 points such that A + L is a pseudoline
arrangement. It is also worth mentioning that, for k ≥ 3, Snoeyink and Hershberger found
(projective) arrangements of curves that intersect pairwise in at most k points which can neither
be swept nor extended.

10the convexibility problem was already mentioned by Grünbaum [Grü80, page 68]
11actually, they even showed ∃R-hardness as they give a reduction from stretchability; Figure 36 from [KM14]

nicely illustrates the idea
12We believed for some time that the Edelsbrunner–Ramos arrangement of 6 pseudocircles is not ellipsable –

this turned out to be wrong as we found a realization.
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9.11 Cylindrical Arrangements

Recall that cylindrical arrangements have two cells which are separated by each of the pseudo-
circles of the arrangement. Let A be a cylindrical arrangement and let z and z′ be points in
two separated cells, i.e., separated by each of the pseudocircles. The Extension Theorem [SH91]
guarantees the existence of a pseudocircle C containing z and z′. In particular, we obtain two
disjoint paths from z to z′. From the choice of the two points it follows that each of the two
paths has to cross each pseudocircle of A, hence, each of the two paths crosses each pseudocircle
of A exactly once. Let P be one of the two paths oriented from z to z′. Starting from P , we
can sweep the full arrangement and end in P again. If A has k crossings, the sweep can be
formalized as a sequence P0, . . . , Pk of internally disjoint paths from z to z′ with P0 = Pk = P
such that for each crossing c there is an i such that Pi ∪ Pi+1 separates c from all the other
crossings.

The order of the crossings along Pi yields a permutation πi of the n pseudocircles of A. The
sequence π0, . . . , πk−1 can be used to draw a wiring diagram of A where the wires are n non-
intersecting belts on a cylinder. Here a belt is a circle separating the two boundary components
of the cylinder.

In particular, we obtain:

Proposition 9.3. Every cylindrical arrangement A of pseudocircles has a monotone represen-
tation on the cylinder S1 × I, i.e, for each x ∈ S1 the fibre Ix has a unique point of intersection
with each pseudocircle of A.

Similar ideas have been used by Bultena, Grünbaum, and Ruskey [BGR99] to show that every
cylindrical arrangement of pseudocircles admits a convex representation, i.e., a representation
in the plane where the interior of each pseudocircle is convex.

Another result that we found is the following.

Proposition 9.4. A connected arrangement on n pseudocircles is cylindrical if and only if its
dual graph has diameter n (which is maximal).

Proof. Given an arrangement A, choose two points p, p′ from cells of maximum distance and
apply the Extension Theorem to obtain a pseudocircle C containing p and p′. Since C intersects
every pseudocircle of A at most twice, one of the two arcs of C between p and p′ has at most n
intersections. Hence, the diameter of the dual graph is at most n.

If A is cylindrical, then the diameter of the dual graph of A is clearly n.
On the other hand, if A is not cylindrical, there is a pseudocircle C in A which is not

separating the two points p and p′. Starting from C sweep the side containing the two points.
Eventually the sweep hits the first of the two points, say p. Snoeyink and Hershberger have
shown that the sweep always has two options for making progress, therefore, the sweep can be
continued with the additional property that p stays on the sweep-front. When the sweep also
hits p′, we have a pseudocircle C ′ containing p and p′ and avoiding C. One of the two arcs of C ′

between p and p′ has at most n− 1 intersections. Hence, the diameter of A is less than n.

This proposition allows to test efficiently, whether a given arrangement is cylindrical or not:
we can simply compute the diameter of the dual graph.

9.12 Flipgraph of Arrangements

In Chapter 7.5.5 we have discussed flip-graphs of various classes of arrangements. In particular,
by a continuous motion argument we have shown that the triangle flip-graph of digon-free
arrangements of circles is connected. The question whether the same is true for digon-free
arrangements of pseudocircles remains open.
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• We conjecture that the triangle flip-graph on the set of all intersecting digon-free arrange-
ments of n pseudocircles is connected for every n ∈ N (Conjecture 7.2).

9.13 Colorability of Arrangements

It is well known that planar graphs are 4-colorable, hence the arrangement graph of any arrange-
ment of pseudocircles is 4-colorable. Koester [Koe90] constructed a connected arrangement of
7 circles which indeed requires 4 colors, however, it remains unknown whether 3 colors are suf-
ficient to color intersecting arrangements of (pseudo)circles and, in particular, arrangements
of great-(pseudo)circles. Hence, we restate a conjecture by Felsner et al. [FHNS06] (see also
[FHNS]), which has been verified for n ≤ 11 [Kra03]:

Conjecture 9.1 ([FHNS06]). Every arrangement graph of a set of great-circles is 3-colorable.

9.14 A Generalization of the Erdős–Szekeres Theorem

In Chapter 1 we have seen the classical Erdős–Szekeres Theorem for point sets. Quite recently
Medina, Ramírez-Alfonsín, and Salazar [MRAS18] generalized Erdős–Szekeres Theorem to ar-
rangements of intersecting pseudocircles: They use Ramsey-theory to show that every sufficiently
large intersecting arrangement contains one of three “unavoidable” arrangements. One of these
three types is the famous “cyclic” arrangement (of great-circles), which corresponds to a point
set in convex position. Their bound, however, is of order 22

c·n2

, which is quite far from the
(exponential) bound from the original theorem, which leaves the following question open:

• What is the largest relative size of an unavoidable arrangement?

In particular, we wonder whether the piercing constant (cf. [CKM18]) allows an improvement?

9.15 Encoding of Arrangements

Encoding the abstract order type requires quadratically many bits as the number of abstract
order types (or pseudoline arrangements) is of order 2Θ(n2). They can for example be encoded as
proposed by Felsner [Fel97], or their planar dual graphs can simply be encoded with quadratically
many bits as proposed by Bonichon, Gavoille, and Hanusse [BGH03]. The same clearly also
applies to arrangements of pseudocircles.

Concerning the encoding of realizable order types, Goodman Pollack, and Sturmfels [GPS89]
showed that encoding an order type with integer coordinates might require coordinates of doubly
exponential size. This clearly also applies to arrangements of great-circles if they are encoded
by planes that intersect the sphere.

• Is there a doubly-exponential lower bound if circles are encoded by their centers and radii
(as integer numbers)?

Recently Cardinal et al. [CCI+18] presented the first efficient encoding of order types which
only uses a subquadratic number of bits. Pause to note that there is a trivial encoding of order
types with Θ(n log n) bits, for example, by encoding the index of the arrangement in the list of
all arrangements. This encoding however is not suitable for practical purposes. It is not (known
to be) efficiently computable and also triple orientations cannot be decoded efficiently.

• Is there a practical subquadratic encoding for arrangements of circles?

It is also worth mentioning that there exist degenerate order types which cannot be repre-
sented by points with rational coordinates [Grü03, Chapter 5]. We do not know whether this
carries over to representations of arrangements, where every circle C : x2 + y2 = r2 is described
by rational values x, y, r.
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9.16 Testing Isomorphism of Arrangements

In general, computing the canonical labeling of a graph is at least as hard as graph isomorphism,
however, linear time algorithms are known for planar graphs. Consequently the canonical label
for the primal-dual graph and for the dual graph can be computed in O(n2) time. For our
computations, we have used the canonical label function in SageMath [S+17a] (see also [S+17c]).

9.17 SAT-Encoding of Arrangements

As we have seen in Chapter 4, (abstract) order types can be encoded for a SAT model where
variables encode the information of triple orientation and clauses ensure that the correctness (not
all +/- assignments to triples correspond to an abstract order type). More precisely, we have
used the Θ(n4) signotope axioms, which are equivalent to the exchange axioms when assuming
that the points are sorted from left to right.

Ortner [Ort08] showed that two arrangements of n pseudocircles are isomorphic if and only
if there is suitable permutation of the pseudocircles such that all induced subarrangements of 4
pseudocircles coincide. In fact, he presents two arrangements of 4 pseudocircles which cannot be
distinguished only by their induced triples. Since there are only constantly many arrangements of
4 pseudocircles, one can clearly encode arrangements using SAT models with Θ(n4) constraints.
However, since there are many arrangements on 4 pseudocircles, the native encoding comes with
a huge multiplicative constant for the n4-term. Hence, I’m not sure whether this model can be
used in practice.

9.18 A Generalization of the Zone Theorem

For arrangements of pseudolines (and hence also arrangements of great-circles) the classical Zone
theorem (cf. [BEPY91, Pin11]) shows that the complexity of the cells along each pseudoline is
of order O(n). Edelsbrunner and others [EGP+92] provided a natural generalization of the Zone
Theorem: for arrangements of curves with at most k pairwise intersections for some fixed k, they
bound the complexity of the cells along each curve by n · 2poly(α(n)) – a function which is almost
linear in n. Here α(n) denotes the functional inverse of Ackermann’s function. In particular, for
an arrangement of n pseudocircles they show that the complexity is of order O(n · 2α(n)) and
mention that a lower bound of order Ω(n · α(n)) was shown in an unpublished manuscript by
Peter Shor13

• In which classes of arrangements do the cells along each pseudocircle have a linear com-
plexity?

Moreover, given an arrangement A of n pseudolines, the Zone Theorem can be used to show∑︁ |c|2 = O(n2), where the sum is over all cells c of A. Since the generalization of the Zone
Theorem from [EGP+92] does not have a linear upper bound, the proving technique does not
directly apply to arrangements of pseudocircles, which brings us to the following question:

• To which classes of arrangements does the bound
∑︁ |c|2 = O(n2) apply?

13Such a construction can be obtained as follows: Take an arrangement of n straight-line segments above the
x-axis with a lower envelope of superlinear complexity, where moreover all end points of the segments lie in the
lower envelope (see e.g. Chapter 7.2 of Matoušek’s book [Mat02]). Now take a vertically mirrored copy of all
these segments below the x-axis and close the corresponding segments to quadrilaterals, which pairwise intersect
at most twice. With an appropriate pseudocircle along the x-axis, one obtains a zone of superlinear complexity.
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9.19 Visualization of Arrangements

A large fraction of the figures of arrangements of pseudocircles in this thesis was generated
automatically. The programs are written in the mathematical software SageMath [S+17a], they
are available on demand.

In Chapter 8, where we have investigated triangular cells in arrangements, we visualized
intersecting arrangements of pseudocircles as follows: we drew the primal graph using straight-
line segments, pseudocircles are colored by distinct colors, and triangles (except the outer face)
were filled gray.

Iterated Tutte Embeddings To generate nice aesthetic drawings automatically, we itera-
tively use weighted Tutte embeddings. We fix a non-digon cell as the outer cell and arrange
the vertices of the outer cell as the corners of a regular polygon. Starting with edge-weights all
equal to 1, we obtain an ordinary plane Tutte embedding.

For iteration j, we set the weights (force of attraction) of an edge e = {u, v} proportional
to p(A(f1)) + p(A(f2)) + q(∥u − v∥/j) where f1, f2 are the faces incident to e, A(.) is the area
function, ∥ · ∥ is the Euclidean norm, and p, q are suitable monotonically increasing functions
from R+ to R+ (we use p(x) = x4 and q(x) = x2/10).

Intuitively, if the area of a face becomes too large, the weights of its incident edges are
increased and will rather be shorter so that the area of the face will also get smaller in the next
iteration. It turned out that in some cases the areas of the faces became well balanced but some
edges were very short and others long. Therefore we added the dependence on the edge length
which is strong at the beginning and decreases with the iterations. The particular choice of the
functions was the result of interactive tuning. The iteration is terminated when the change of
the weights becomes small enough.

Visualization using Curves On the basis of the straight-line embedding obtained with the
Tutte iteration we use splines to smoothen the curves. The details are as follows. First we take a
2-subdivision of the graph, where all subdivision-vertices adjacent to a given vertex v are placed
at the same distance d(v) from v. We choose d(v) so that it is at most 1/3 of the length of an
edge incident to v and then use B-splines to visualize the curves. Even though one can draw
Bézier curves directly with Sage, we mostly generated ipe files (xml-format, cf. [Che]) so that
we can further process the arrangements. Figures 9.1(a) and 9.1(b) show the straight-line and
curved drawing of an arrangement of pseudocircles, respectively.

(a) (b) (c)

Figure 9.1: (a) Straight-line and (b) curved drawings of the arrangement of great-pseudocircles, which
consists of two copies of (c) the non-Pappos arrangement of pseudolines.
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Visualization of Arrangements of Pseudolines We also adapted the code to visualize
arrangements of pseudolines nicely. One of the lines is considered as the “line at infinity” which
is then drawn as a regular polygon. Figure 9.1(c) gives an illustration.

Visualization of Connected Arrangements Since many of the arrangements from Chap-
ter 7 contain digons – which require some additional efforts in the above-described visualization
– we decided to visualize the primal-dual graph of those arrangements instead.

Even though the visualization of the primal-dual graph looks somewhat more natural, all
k-cells in the arrangement are visualized as polygons of size 2k – which is somewhat misleading.
As an example consider the rightmost triangle bounded by the green, the orange, and the
black pseudocircle in Figure 9.2(b) which actually looks like a quadrangle. Consequently, for
Chapter 8, we decided to stick to the former described visualizations of the primal graph.

(a) (b)

Figure 9.2: Two drawings of N∆
6 : (a) curved primal graph. (b) curved primal-dual graph.
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