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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Algorithmus zur blinden Quellentrennung
mit dem Namen “Extended Spatial Decorrelation (ESD)” entwickelt und mit
bekannten “Independent Component Analysis (ICA)” Verfahren beziiglich der
Robustheit gegen statistische Abhéngigkeit der Quellen und Rauschen anhand
von kiinstlichen Testdaten und “Optical Imaging (OI)” Daten verglichen. Op-
tical Imaging von intrinsischen Signalen ist ein bildgebendes Verfahren bei dem
die neuronale Aktivitdt in der GroBhirnrinde nicht direkt, sondern anhand von
mit der Stimulierung einhergehenden Veranderungen in den Streueigenschaften
des Gewebes optisch gemessen wird. Diese intrinsischen Signale entstehen durch
die Stoffwechselaktivitdt der Nervenzellen. Andere medizinische bildgebende Ver-
fahren wie die Kernspintomographie basieren auf der Meflung derselben intrinsis-
chen Signale und somit sind die in dieser Arbeit gewonnenen Erkenntnisse zum
Teil direkt auf solche Verfahren transferierbar.

Das Problem bei der Auswertung der Daten besteht darin, dal die Meflung
eine lineare Mischung aus der lokal gebundenen Stimulus spezifischen Antwort der
Nervenzellen, dem “mapping signal”, und der groberen metabolischen Aktivierung,
dem “global signal”, sowie biologische Schwankungen und Rauschen enthalt.

Zur Extrahierung des “mapping signals” bieten sich Verfahren zur blinden
Quellentrennung an, da sie ohne Vorwissen iiber den Mischvorgang eine parame-
terfreie Losung des Problems bieten. Vorraussetzung fiir die Anwendung von ICA
ist die statistische Unabhéngigkeit der Quellen. Diese Algorithmen verwenden die
Optimierung von Eigenschaften der statistischen hoheren Momente um die Kom-
ponenten wieder unabhangig zu machen und somit die Quellen zu schéatzen.

Das hier vorgestellte ESD Verfahren benutzt zur Trennung nur Statistik zweiter
Ordnung und stellt somit geringere Anforderungen an die Quellen. Die Annahme
bei ESD besteht in der Autokorreliertheit der Quellen und der geringen Korrelation
untereinander. Das selbe gilt fiir eine raumlich verschobenen Version.

Da man bei biologischen Signalen oft die Quellen nicht genau kennt, mufl
man einen quantitativen Vergleich der Entmischungen durch die beriicksichtigten
Verfahren an kiinstlichen Datensatzen durchfiihren. Bei der Untersuchung mit
drei Testdatensatzen, mit verschiedenen statistischen Eigenschaften, wurde die
Qualitat der Entmischung beziiglich des Signal-Rausch-Verhaltnisses getestet. Es
zeigt sich, dafl die verschiedenen Implementierungen des ESD Verfahrens bei der
Trennung von kiinstlichen Daten mit den statistischen Eigenschaften des biologis-
chen Signals den ICA Methoden iiberlegen sind.

Dieses Ergebniss bestétigt sich auch bei der Analyse der OI Daten. Dabei
wurden Experimente untersucht, deren raumliche Antwort in der Sehrinde auf ein
bestimmtes Stimulusregime bekannt ist. Zusatzlich wurden zur Beurteilung die
aus Projektionen gewonnenen Zeitverlaufe der geschatzten Quellen herangezogen.

Mittels der ESD Analyse konnen selbst die signalschwachen “single condition
images” berechnet werden ohne Modellannahmen iiber den Mischprozefl oder die
modulare Organisatzion der Sehrinde zu machen.
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Symbol Meaning

P, number of pixels in x direction
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Chapter 1

Introduction

7 Alas, I have studied philosophy,
the law as well as medicine,

and to my sorrow, theology;
studied them well with ardent zeal,
yet here I am, a wretched fool,

no wiser than I was before.”

Johann Wolfgang von Goethe, Faust (First Part)

The dilemma that a long time ago devoured Dr. Faust from Goethe (1808)
seems to be one of the impasses we face in neuroscience today. The amount of
knowledge acquired by scientists in the multiple disciplines of neuroscience in the
last century is enormous and only the number of questions still open seems to be
bigger. Nevertheless there is no reason to despair like Faust for the researcher as
advances in technology accelerate in pace with the accrual of scientific knowledge
and therefore the possibilities to process and evolve new veda.

The advent of computer aided medical imaging technologies brings with it
the possibility of answering many open questions about the three dimensional
functional architecture and the modular organisation of the human brain. Some
of these topics revealed only a glimpse of their true nature through thousands
of micro electrode recordings at various sites (saying this without curtailing the
success and the ground breaking insights for the comprehension of the brain by
electrode recordings!). In order to understand and interpret all the new data the
classical scientific fields of chemistry, biology, physics and medicine left their par-
allel running paths long time ago and merged with new disciplines like computer
science to form interdisciplinary research areas like computational neuroscience.
Among those imaging techniques frequently used today are computer tomography
(CT), single photon emission tomography (SPECT) and magnetic resonance
imaging (MRI).

In the mid 1980’s another new imaging technique was introduced to the
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neuroscience community by Blasdel and Salama (1986), the optical imaging of
neural activity with voltage sensitive dyes in vivo across large areas of cortex
(mm). Optical imaging is more invasive than the imaging techniques mentioned
above, as it involves accessing the cortical surface. This approach revealed
the two dimensional organisation of the visual cortex for the first time with a
high spatial and temporal resolution. The principles of this method were then
developed further by others (Grinvald et al., 1986; Ts’o et al., 1990; Bonhoeffer
and Grinvald, 1991) to purely image intrinsic reflectance changes of the cortical
tissue instead of dye signals with intrinsic characteristics. Optical imaging of
intrinsic signals records the two dimensional neural activity patterns by detecting
small activity related changes in the light reflectance of neural tissue under
monochromatic illumination. Typical sources of intrinsic signals are the changes
in blood volume, hemoglobin oxygenation, tissue scattering and cytochrome
oxidase. Although the temporal resolution of intrinsic signals is poor compared
to those of dyes, the non toxicity allows chronic experiments without tissue
damage The optical imaging recordings contain a super-position of the individual
intrinsic signals with various technical and biological noise sources. However we
are only interested in a small portion of the overall mixture that is very localised
to functional areas of the cortex and strongly correlated with a specific stimulus.

At nearly the same time that optical imaging was developed a group of algo-
rithms was introduced into the field of statistical signal processing that addressed
the problem of separating linear mixtures. The algorithms for blind source separa-
tion (BSS) and independent component analysis (ICA) make use of the statistical
properties that the sources have before the mixing to extract the individual com-
ponents from the mixture.

One critical point when working with separation algorithms on biological
signals is how well the original sources fulfil the basic assumptions made. This
problem becomes even more severe when we have no possibility to access the
original signal sources separately, as it is the case of optical imaging. It is therefore
difficult to give a quantitative measure for the success of the separation process
and compare it to heuristic methods used in the analysis so far.

For this doctoral thesis we have developed BSS algorithms and investigated the
applicability of these BSS- and standard ICA algorithms to the separation of in-
trinsic signals from optical imaging recordings. We compared the algorithms based
on the Infomax principle introduce by Bell and Sejnowski (1995) and extended by
Amari (1996) that makes use of statistics of all higher moments, the kurtosis op-
timisation algorithm of Hyvérinen and Oja (1997) that exploits only the fourth
order moment, and the extended spatial decorrelation (ESD) algorithm (Schiefil
et al., 1998; SchieBl et al., 1999) that was derived from an algorithm proposed by
Molgedey and Schuster (1994). The ESD algorithm uses the second order statistic
of the spatial structure of the recorded images to separate the sources.



To get a quantitative result for the success of this separation we have tested
the algorithms first on artificial toy datasets with properties similar to the original
data. We then applied the methods to the optical recordings of the visual cortex
and interpreted the separation results by gaining the time course of the components
by back projection on the original data and correlating them to the stimulus onset.

Chapter 2 presents an overview of the functional anatomy of the central visual
pathway to aid the researchers understanding of the activation patterns one can
expect to see in optical images of V1.

In the first part of chapter 3 we describe the design of our optical imaging
setup and some of its key components. In the second part we have a closer look
at the sources and characteristics of the intrinsic signals and some wavelength
specific properties that are important for the later analysis.

The first section of chapter 4 explains the basic preprocessing of the raw data
before we take a critical look at the heuristic analysis methods that are commonly
used today. A introduction to the algorithms for BSS and principal component
analysis (PCA) is given in the third part of chapter 4.

In the fourth part of chapter / the motivation and the concepts behind ICA
algorithms are explained.

The final section of chapter 4 illustrates the derivation of our extended spatial

decorrelation algorithm. A number of different instances of this method are
described.

In the first section of chapter 5 the different sets of artificial data and their
statistical properties are introduced. Then we point out some of the difficulties
with using the condition number of a matrix as a measure for how ill-conditioned
the mixing process was.

In the third section of chapter 5 the separation performance of the ICA
algorithms are compared to the single shift ESD on the independent- and smooth
sources. This is followed by a comparison between single shift ESD and multi
shift ESD. Finally we examine the simulations using the regularized multi shift

ESD.

Chapter 6 presents the results of optical imaging using standard analysis
methods and filtering followed by a short presentation of the intermediate result
we get from sphering. In the next three sections the ICA and ESD algorithms are
applied to the optical imaging data sets from a ocular dominance experiment and
from an orientation preference experiment.

Finally in chapter 7 the results are discussed and the insights from the artificial
data are compared to those of the real optical imaging data sets.






Chapter 2

The Central Visual Pathway

One of the best investigated and understood signal processing pathways of higher
mammals is the central visual pathway. This is partially due to the fact, that it
is relatively easy to access compared to other areas and can be stimulated in a
straight forward fashion. In the following a short overview of a commonly used
model for the visual pathway of macaque monkey is given as it is relatively similar
to the human visual system and our main model for optical imaging.

The depth of the description is chosen to give the reader some understanding of
the processing of the visual stimulus up to the striate cortex in primates, and does
not claim to be comprehensive on this issue. Here the focus is on the description
of the processing phenomena, that later lead to the patterns recorded with optical
imaging of intrinsic signals. For a more detailed introduction to the anatomy and
physiology of primates see Kandel et al. (1991).

In the description we briefly show how the visual world is mapped onto the
retinas of both eyes and how the photoreceptors transform this information. The
area that is mapped on either of the retinas is called the visual field, with the left
and right half of the visual field called hemifield (for a sketch of the early visual
pathway see fig.2.1).

The coded information is then transmitted by the two optic nerves into the
central nervous system. On the way to the lateral geniculate nucleus (LGN) the
optic nerve is separated at the chiasm in a fashion, such that binocular information
from one hemifield is mapped to the contralateral LGN. After synapsing in the
LGN another bundle of nerve fibers, the optic radiation, made up of the axons
of LGN neurons, transmits the information to the primary visual cortex at the
occipital pole of the neocortex.

2.1 The Retina

The retina is the first stage of visual information processing and acts like a analog-
digital converter, as it converts electro magnetic signals (light) into coded electronic
pulses. Further tasks include the adaptation to different light intensities, the
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Figure 2.1: Schematic sketch of the early visual pathway of higher mammals. Once
the light is focused by the lens on the retina, the information is coded into spike
patterns and passed to the primary visual cortex across the optic nerve, the chiasm,
the LGN and the optic radiation. Notice that the LGN and the visual cortex
of each cerebral hemisphere process binocular information from the contralateral
hemifield (adapted from Bauer (1999)).

detection of contrast and movement and the mediation of color perception.

The function of the retina is well understood and it is a good example for the
understanding of how information is processed by complex neural circuits in the
brain. This comes from the fact that it is derived during development from the
neural ectoderm, which also gives rise to the brain .

2.1.1 The basic organization of the retina

The main task of the eye is to focus light entering the eye onto the retina with
minimal distortion. This upside down projection of the outside world is then
absorbed by the photoreceptor cells.

The retina is built up from three principal layers, that contain the photorecep-
tors, the different interneurons and the retinal ganglion cells (see fig.2.2). These
three granular layers are separated by plexiform layers, that contain the majority
of the synaptic connections. At the back of the retina lies the pigment epithelium,
that contains melanin to absorb light and keep it from being reflected off the back
of the eye. The other important task of the epithelial cells is to assist photore-
ceptors with important aspects of their metabolism. Therefore the photoreceptors
have to contact the pigment epithelium, while other retinal cells are situated closer
to the lens.

This leads to a “reverse” construction, with receptor cells pointing away from the
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Figure 2.2: The retina is composed of three principal layers, that contain five
classes of neurons: rods and cones, amacrine, horizontal and bipolar cells and
the retinal ganglion cells. In the direct pathway the information is transmitted
from the cones to the ganglion cells across the bipolar cells. The indirect pathway
allows a horizontal flow of information mediated by horizontal- and amacrine cells
(adapted from Kandel et al. (1991)).

light, that has to pass the other layers first. The only exceptions to this is the fovea
where the cell bodies of the proximal retinal neurons are shifted to the side, and
the optic disc where the optic nerve fibers leave the retina and no photoreceptors
are present.

There are two basic types of photoreceptors, the rods and the cones, with the
cones being subdivided into three distinguished types. The rods contain more
photosensitive visual pigments than the cones and are therefore sensitive to dim
light and responsible for night vision. The cone system has a lower sensitivity
to light and mediates day vision. The brain obtains information about color by
comparing the responses of the three cone types. The visual pigment of each type
of cone is more sensitive to different wavelengths. The S- or B- cones respond best
to wavelengths around 420 nm, sensed as blue light, the M- or G- cones are most
sensitive to 513 nm green light and L- or R- cones have the maximum sensitivity
at 558 nm, which is perceived as red light.

The intermediate layer of the retina is formed by three classes of inter neurons,
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the bipolar, horizontal and amacrine cells. The bipolar cells again can be distin-
guished into rod- or cone-bipolar cells, depending on where they get their input
from. Both receive direct input from the photoreceptors in form of graded changes
in membrane potential, and not action potentials.

The signal transduction from the photoreceptors to the ganglion cells can be by
the direct (feed-forward) pathway or the indirect (lateral) pathway. In the first one
the photoreceptors contact a bipolar cell and the bipolar cells contact a ganglion
cell. The second pathway is characterized by the lateral information flow between
bipolar cells and photoreceptors, which is mediated by horizontal and amacrine
cells. Horizontal cells transfer information from distant cones to nearby bipolar
cells. Some types of amacrine cells transfer information from distant bipolar cells
to the ganglion cells (Kandel et al., 1991).

A single ganglion cell receives the combined input from several photoreceptors
and transforms this information into spike patterns. This strong convergence con-
centrates the input of about 120 million photoreceptors per eye to about 1 million
ganglion cells. The first stage of coding the visual scene is taking place.

2.1.2 Receptive Fields of Retinal Ganglion Cells

Ganglion cells are the output neurons of the retina. Most of their axons become
myelinated after they leave the retina and form the optic nerve. This property
allows relatively easy access to the response patterns of the ganglion cells to light
stimulus by extracellular recordings of axons in the optic nerve.

In the early 50’s it was found, that the specific connectivity and the physio-
logical properties of the inter neurons are responsible for the contrast enhancing
center surround organization (Kuffler, 1953). There are two principle types of
center surround organizations in the retinal ganglion cells. ON cells increase their
spike frequency when light stimulates the center region and reduce the spike rate if
the inhibitory surround region is illuminated. OFF cells respond exactly the other
way around.

The segregation of the visual information into off-center and on-center path-
ways is mediated by the bipolar cells and the horizontal cells. Apart from the
distinction by the response properties, ganglion cells comprise several classes, of
which three have been best explored: the magnocellular (M) ganglion cells, also
called a- or parasol ganglion cells and the parvocellular (P) ganglion cells, or (-
or midget ganglion cells, that project to the M-layers or the P-layers in the lateral
geniculate nucleus (LGN) respectively after passing the optic chiasm. The third
pathway is the X-pathway that projects into the inter-laminar zones of the LGN
and terminates in the blob regions of V1.



2.2 The Lateral Geniculate Nucleus

11

ON-center

ON region

OFF region

A

A

20000

OFF-center

OFF region

ON region

05 10 15

A

QUL

T

ONON - X~

Figure 2.3: Receptive field center surround organization of retinal ganglion cells
and their neural response patterns (after Kuffler (1953)). If the center of ON-
center cells is stimulated (stimulus duration is marked by the bar above the spike
pattern) it fires with increased rate. Illumination of the antagonistic surround
region suppresses the cell response. Diffuse illumination of the whole receptive
field has no effect (bottom row). The OFF-center cells (shown in the right column)
respond the other way around.

2.2 The Lateral Geniculate Nucleus

The LGN is a part of the thalamus and the major thalamic relay stage in the
central visual pathway of primates. It receives the afferent input from retinal-
ganglion cells through the optic nerve. The LGN is formed by six layers of cell
bodies, that are separated by inter-laminar zones rich in axons and dendrites but
also contain cells that receive X inputs. The cells in the inter-laminar zones are
called I-cells. The layers are innervated in an alternating fashion by ganglion cells
from either the temporal hemiretina of the ipsilateral eye or the nasal hemiretina
of the contralateral eye (see fig.2.4). The most ventral layers 1 and 2 contain
large cell bodies and are inervated by M retinal ganglion cells; the dorsal layers
which are characterized by small cell bodies are inervated by retinal P ganglion
cells. There is evidence that retinal ganglion cells project in a one to one manner
between retinal and geniculate P and M cells. Despite this fact the majority of
connections are from other subcortical regions or the primary visual cortex. It
is believed that the LGN acts as a relay station of the information flow to the



12

The Central Visual Pathway

OO\ left eye N right eye
(I B
clitlc]i |1]jc

N R
column §lsTele o 1%

right LGN— |
(b)

Figure 2.4: (a) Vertical slice through the LGN of a macaque monkey (adapted
from Hubel and Wiesel (1977)), and (b) the retino-geniculate wiring pattern. “P”
and “M” mark parvo- and magnocellular layers, “I” and “C” refer to layers driven
by the ipsi- and contralateral eye respectively. All signals from a given small patch
of the visual field arrive at a single column of the LGN (adapted from Stetter
(2000)).

visual cortex and the modulatory input to the LGN controls the gain of the signal
transmission (Coenen and Vendrik, 1972).

The termination pattern of the retinal ganglion cells in each layer is organized
in a topographic way (Connolly and Essen, 1984). Each layer in the LGN contains
a representation of the contralateral visual hemifield. The layers are stacked on
top of each other, so that the topographic maps form a precise vertical register
(Hubel and Wiesel, 1977). In the LGN the surface of the retina is not represented
in an isometric way. The fovea has a much larger representation than the periphery
of the retina (see fig.2.5). This arises from the fact, that there is a high density
of retinal ganglion cells for the representation of the fovea. Due to the direct
projection pattern half of the neural mass of the LGN represents the fovea and the
areas perifoveal around it (Kandel et al., 1991).

In 1966 Wiesel and Hubel found that the receptive fields of LGN neurons are
similar to those in the retina. They have circular center surround regions and also
show the ON and OFF classification.
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Figure 2.5: Anisometric representation of the visual field in the LGN. (a) Polar
grid on the left visual hemifield that defines isoeccentricity (circles) and isopolar
(rays) lines. The perimeter of the visual field is given by the dark line. (b)
Mapping of the same grid on the layer 6 of the LGN. The central 5 % of the visual
field are marked gray in both graphs (adapted from Connolly and Essen (1984))

2.3 The Primary Visual Cortex

The primary visual cortex is the first stage where receptive field properties sig-
nificantly change. It is known that many features of its anatomy and physiology
are very similar between macaque monkey and man (Levitt et al., 1996). Because
of historical reasons and different qualities of the visual cortex in miscellaneous
disciplines, it is called by many names. For long time people thought that all
output from the LGN would be received by this area, so it was called primary vi-
sual cortex or V1, whereas its characteristic architecture of the layers that visibly
appear as stripes in a vertical slice gave it the name striate cortex. As most of
V1 is buried in the calacrine sulcus in man, a common clinical term is calacrine
cortex. In the studies of Korbinian Brodmann the term area 17 was used and is
widely commonly used today.

The projection from the LGN to the primary visual cortex is in an orderly point
to point manner. Therefore the cortex of each hemisphere receives signals from the
contralateral half of the field of view and the adjacent retinal points are mapped at
adjacent points in the cortex, just like in the LGN (Daniel and Whitteridge, 1961).
This representation of visual space on the cortex is called a topographical map.
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Figure 2.6: Microscope section of V1 from a macaque monkey with cytochrome
oxidase staining to visualize the individual layers. Cytochrome oxidase is known
to concentrate at zones of thalamic input and therefore the laminae 4C, 4A, the
bottom part of layer 6 and the blobs (see arrows) in layers 2 and 3 are stained

darker (adapted from Blasdel and Lund (1983)).

2.3.1 Anatomical Organization of V1

The total area covered by the primary visual cortex of macaques is about 1300
mm? (Hubel and Wiesel, 1977) and the input of 2 million LGN fibers is processed
by 260 million cells in V1. These numbers give a rough idea about the rise of
complexity in the information processing from the LGN to striate cortex.

The most obvious feature of V1, that also gave rise to the name striate cortex,
is the organization into six principal layers 1 to 6 between the pial surface and
the underlying white matter with the prominent stripe of white matter in upper
layer 4, called “the stripe of Gennari” (Kandel et al., 1991). This visible property
emerges from the presence of myelinated axons and the different cell densities
between the layers. Layer 4 is further subdivided into three prominent layers 4A,
4B, 4C where 4C is further subdivided into 4Ca and 4Cg.

All axons that project from the LGN to V1 terminate in the sublaminae 4Ca
and 4CfS (Hubel and Wiesel, 1972; Blasdel and Lund, 1983). Layer 4 therefore
represents the input layer of the striate cortex. The majority of the P neurons
project to the § division of layer 4C and a smaller population projects to layer 4A.
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Single P axons provide terminals to the whole depth of the 4Cj division, splitting
the teritory laterally into alternating stripes of equal width for relays from each eye
(Levitt et al., 1996). In layer 4A the P axons terminate in a cytochrome oxidase
(CO) rich lattice, leaving small uninnervated lacunae.

Most M axons terminate to the lower two third of the a division of layer 4C
with a small population of very large M axons also layered in the upper half of
4Ca. The M axons provide collaterals to layer 6 as they enter the cortex (Blasdel
and Lund, 1983). Like the P axons, the M axons divide the 4Ca territory into
alternating stripes of left and right eye inputs (Hubel and Wiesel, 1977).

The LGN I-cell population, located between and ventral to the LGN layers,
target to the layer 2 and 3 CO blobs as well as layer 1. Layer 1, the so called
molecular layer, is mainly comprised of the apical dendrites of lower pyramidal
cells and horizontal cells running axons (see fig.2.6).

Pyramidal cells make up the major portion of cortical neurons with a presence
of 80%. These cells are excitatory and form intrinsic local projections as well as
long range projections to different areas. Their dendritic trees cover a volume with
a diameter of 200 - 300 um and can reach vertically over several layers. The local
lateral axon projections of pyramidal cells are referred to as axon collaterals. In
the layers 2 and 3 these projections form clusters of connections in a set of patches
of approximately 250um diameter, which can be located up to a few millimeters
away from the cell body. Another type of excitatory neurons in layer 4, that have
spherical instead of cylindrical dendritic trees are the spiny stellate cells.

2.3.2 Physiological Organization of V1

As stated before the receptive field properties of cells in the early visual pathway,
before area V1, are organized in a circular center surround manner and do not
change significantly between the retina and the LGN. Surprisingly in V1 the small
circular stimuli trigger only a poor response in most of the cortical neurons. It was
found that most of the cells outside the blob regions and layer 4C respond best to
stimuli that show more elongated properties, like stripes or bars.

In 1968 Hubel and Wiesel described orientation and direction selectivity as the
major response properties of cells in the striate cortex of primates. The orientation
selective cells respond best when a bar with a specific orientation is chosen as
stimulus. When the orientation of the bar is changed from the preferred within
the same field of view, the strength of the response of the neuron declines gradually
(Hubel and Wiesel, 1968). If the rate at which the cell fires under presentation
of an optimal oriented bar, moving at 90° to the axis of orientation, changes
significantly with a rotation of the stimulus of 180° (same orientation, opposite
direction of motion), the cell is also direction selective. The findings from single
cell recordings showed for some cells strong changes of the cell’s response according
to the positioning of the bar. This suggested a elongated receptive field with
alternating on and off regions. These cells in V1 were classified as simple cells; a
second major class , called complex cells, responded equally well wherever the bar



16

The Central Visual Pathway

AX| %A Al
A xix, 8 XAla® x® %4
A ® X FaY x &la ‘“”A a

A" ax(%a & xajom x_xla’a
% x| x A x Ala x b 4 x A Foy

A A A A 2 xt\a‘ x x_ x4 A/\

__9__5 E__A‘ X" aAla % X ¥ xglada®
A ,R[(%, A, T I R 2 = A

AaiBmint, 2 % ala x Xy Xl2,%
A A b | ]

A AR xA A % ala® ﬁxxxAA&z,
AAg;AA IA’,\I X“RAAQ
A xx A ” Ala ® Xl a A

Ax|xA 3?\?! X lad

Figure 2.7: Examples of receptive fields of simple cells. There is a sharp sepa-
ration between the ON and OFF zones. The receptive fields of simple cells are
rectangular and oriented and the best stimulation is achieved when only the ON
zone is stimulated with a bar in the right orientation (adapted from Kandel et al.
(1991)).

is placed within its receptive field ((Hubel and Wiesel, 1968)).

Simple cells dominate in cells that are localized close to the inputs in layer 4C.
They are assumed to receive the convergent input from three or more stellate cells
of layer 4C, or from LGN, that have similar center surround organization and this
convergence forms the rectangular orientation specific fields. The most effective
stimulus coincides with the boundaries of the subdivision of the receptive fields
ON and OFF zones in the same orientation and gives the maximum response when
only the excitatory region is stimulated (see fig.2.7).

Complex cells are also pyramidal cells but found mainly in the layers 2, 3,
5 and 6 further away from 4C. They also have elongated receptive fields with a
preferred orientation, but they lack clearly defined on-off regions like simple cells.
Therefore the exact position of the stimulus within the receptive field is not that
critical. Some of the complex cells are directly inervated from stellate cells in layer
4C, which can be either non-oriented or simple cells.

Most of the cells in the visual cortex and of layer 4C receive input from both
eyes and are therefore called binocular cells. Their receptive field of the left and
right eye cover the same regime of the visual field. Nevertheless these binocular
cells are normally dominated by the input of one of the eyes and respond stronger,
if the dominant eye is stimulated. Ocular dominance can be found in varying
strengths up to cells only responding exclusively to one eye and therefore called
monocular cells.

The strength of response of a neuron is often not only controlled by orientation
or direction and ocularity, but also by the contrast (Albrecht and Hamilton, 1982)
and other effects. DeAngelis et al. (1992) showed that a grating superimposed
orthogonal to the optimally oriented grating can lead to so called cross-orientation
suppression. Other studies have shown that even stimuli that lie outside the
classical receptive field of a neuron can strongly modulate the response of a cell
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(Blakemore and Tobin, 1972; Gilbert and Wiesel, 1990; Sillito et al., 1995; Levitt
and Lund, 1997). This means that the response to a local feature depends on the
visual context which is referred to as the contextual or surround effect.

2.3.3 Functional Organization of V1

So far we only looked at the individual response properties of neurons in the
striate cortex, but not at the distribution of the cells with similar properties.
As each area in the visual field, processed by the visual system, should be able
to recognize all features the real world has to offer, a first thought could be,
that the neural properties described above are randomly spread in depth and
across the cortex. This is the so called salt and pepper model. Hubel and Wiesel
were the first to investigate the receptive field properties across the cortex with
electrode penetrations (Hubel and Wiesel, 1962; Hubel and Wiesel, 1968) and
found a completely different strategy of cell organization.

The penetrations revealed a columnar organization of cells with similar re-
sponse properties through the depth of all layers and a gradual periodic change
across the cortex. Every orientation column has a width of about 30pum and within
that distance a shift of about 10° in preferred orientation is encountered. They
also found that the striate cortex is subdivided into regions of about 0.4mm width
devoted either to the right or the left eye, derived from the stripe like monoc-
ular right and left eye relays from the LGN to layer 4C. These so called ocular
dominance columns again repeat in an alternating fashion. Therefore the area of
the striate cortex that contains a complete set of orientation columns (i.e. cov-
ers 180°) and a ocular dominance column of the left and the right eye is about
Imm? and is called a “hypercolumn” (see fig.2.8). The hypercolumns also form a
regular and precise pattern across the primary visual cortex. The hypercolumn is
the elementary processing module to analyze the features of a single spot on the
retina.

So how are the orientation columns and the ocular dominance columns arranged
with respect to each other across the cortex? To reveal a good presentation of this
two dimensional organization with single electrode recordings is nearly impossible.
A first visualization was possible with the staining of tissue with radioactively
marked 2-deoxyglucose injected into the blood. As only metabolic active cells ab-
sorb it, one gets a regular pattern of active and inactive cells after the presentation
of a oriented stripe pattern (Hubel et al., 1978).

More recently a technique was developed that uses a sensitive video- or CCD
Camera to image the active and inactive regions on the cortical surface, the so
called optical imaging technique. In the optical imaging of voltage sensitive dye
signals (Blasdel and Salama, 1986; Blasdel, 1992a) the shift of the membrane
potentials is imaged, whereas the optical imaging of intrinsic signals (Grinvald
et al., 1986; Bonhoeffer and Grinvald, 1996) reveals the changes in light ab-
sorbency and reflection of active areas of the cortical tissue. The experimental
setup and the analysis of optical imaging will be explained in much more de-
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Figure 2.8: Schematic sketch of a hypercolumn. This basic module contains a
complete set of orientations columns, that represent 180°, one right and one left
ocular dominance column and several blobs. A hypercolumn can process a discrete
region of the visual field and the complete presentation of the visual field on the
cortex is represented by a regular pattern of hypercolumns.

tail in the following chapters. This method proved that the preferred orientation
changes gradually across the cortex and form a regular orientation map (Blasdel
and Salama, 1986; Obermayer and Blasdel, 1993). An example of such an orien-
tation map from macaque V1 is shown in figure 2.9 where the different preferred
orientations correspond to the colored bars on the right. The ocular dominance
columns form a stripe like pattern that is strongly coupled with the orientation
map. The singularities, that define areas of the orientation map where all degrees
of orientation are present, tend to lie in the center of ocular dominance bands and
the iso-orientation lines and the borders of the ocular dominance stripes intersect
at nearly orthogonal angles (Obermayer and Blasdel, 1997; Miiller et al., 2000).
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Figure 2.9: (a) Orientation preference map of V1 in macaque monkey. The bars
on the side illustrate the color code for the preferred orientation of the cells imaged
in the respective areas. (b) Superposition of an ocular dominance and an orienta-
tion map. The thick lines show the borders of ocular dominance stripes whereas
the thin lines mark the iso-orientation contours within the orientation map (from
Obermayer and Blasdel (1993)).






Chapter 3

Optical Imaging Setup and Data
Acquisition

In order to understand the concepts of the modular organisation of the neocortex
one has to obtain a two- or three dimensional dataset of activation of neurons,
that is correlated with a specific stimulus presentation. Certainly the important
work with single cell recordings now already revealed a good idea about what will
be found once a two dimensional image is obtained.

One of the first visualisation of the cortical structure was obtained with the la-
belling of tissue with radioactively marked 2-deoxyglucose injected into the blood.
For the labelling of the visual cortex a specific stimulus is presented to the eyes of
the animal and the metabolically most active cells in the cortex concentrate most
of the marker. The postmortem anatomical sections reveal a regular pattern of
active and inactive cells depending on the stimulus paradigm (Hubel et al., 1978).
This method delivered the first images of the two dimensional organisation of
large areas of the cortex but the drawback of this method is clear. Only one
stimulus regime could be investigated per animal. This leaves a lot of important
question open. How would the response patterns change with a gradual change in
the presented stimulus, like a change in contrast, bar width or orientation etc.?
In the late 80’s a imaging method was developed that has been proven a powerful
technique to answer all these question. The optical imaging of neural activity
(Blasdel and Salama, 1986; Blasdel, 1992a; Grinvald et al., 1986) is so far the only
in vivo method to obtain detailed functional maps of the cortical architecture at
sub-millimetre resolution. The latest results in functional magnetic resonance
imaging (fMRI) (Kim et al., 2000a) also show promise of delivering a high spa-
tial resolution but are still very controversial (Logothetis, 2000; Kim et al., 2000b).

The first optical images of wide areas of cerebral cortex were obtained by
Blasdel and Salama (1986) using voltage sensitive dyes and a sensitive CCD camera
to investigate patterns of neural activation. This method very directly displays the
neural activity as the voltage-sensitive dyes are attached to the surface membranes
of the neuron and alter their spectral properties by the Stark-effect when the
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electrical field in the membrane changes (Salzberg et al., 1973). Beside high spatial
resolution, optical imaging with voltage-sensitive dyes also provides high temporal
resolution. The temporal structure of the recordings show that the primary signal
source is of intrinsic nature triggered by neural activity. The handicap of this
method is that the voltage-sensitive dyes are photo toxic and destroy the cortical
neurons over time. Therefore long or chronic experiments are not always possible.

A second form of optical imaging was introduced by Grinvald et al. (1986),
the so called optical imaging of intrinsic signals. This method does not directly
image the neural activity, but some of the metabolic responses in the area around
the active neurons. Those imaged metabolic responses are the intrinsic signals. In
the following sections we will extensively explain the experimental setup of optical
imaging of intrinsic signals, the animal preparation and the biological origins of
the intrinsic signals.

Optical imaging of neural activity has lead to a number on new insights of the
functional organisation of the cortex in many species (Blasdel and Salama, 1986;
Blasdel, 1992a; Blasdel, 1992b; Rao et al., 1997; Bosking et al., 1997; Bonhoeffer
and Grinvald, 1991; Bonhoeffer and Grinvald, 1993; Bonhoeffer et al., 1995). This
method also allowed a direct comparison of the anatomical wiring patterns and
the functional activity in the cortex (Malach et al., 1993; Malach et al., 1994).

3.1 The Experimental Setup

The successful realization of an optical imaging experiment is very sensitive to
many technical and physical parameters as well as an optimal animal preparation,
that allow only a marginal variation from the ideal conditions. We now describe
the overall experimental setup and then have a closer look at some of the individual
components.

Figure 3.1 shows a rough sketch of the experimental setup for optical imaging.
In the optical imaging of intrinsic signals the cortical area under investigation
is illuminated with monochromatic light of a wavelength typically around 500-
800 nm. To get the light to the cortical surface a craniatomy and duratomy are
performed on the anaesthetised animal, that is fixed in a stereotaxic head frame.
All the procedures carried out during the optical imaging experiment comply with
the Home Office Animals (Scientific Procedures) Act 1986 regulations of the United
Kingdom. As the signals we expect to record during the experiment are very small
the cortex has to be stabilised again to reduce motion artifacts from respiration
and heartbeat. This is done by mounting a steel chamber with dental cement to
the skull. The top of the chamber is made of a cover glass, the so called cranial
window. The chamber is filled with artificial cerebrospinal fluid (aCSF), saline or
silicon oil. Through this cranial window a sensitive CCD camera is focused on
the surface of the cortex. Some groups prefer to focus slightly below the surface
but this leads to some problems described later in the text. Here we have one
limitation of optical imaging as only cortical areas on the surface of the brain
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Figure 3.1: Sketch of the essential components for optical imaging. The cortical
area of interest is illuminated with monochromatic light of a wavelength between
600 — 800nm from a highly stabilised light source. The sensitive low noise CCD
camera focuses on the cortical surface and images the reflection patterns during
stimulation. In the later analysis the differences between specific stimulus regimes
can be visualised. The computer that controls the stimulus is connected via a
“handshake” connection to the computer that controls the camera and the record-
ing protocol. Due to the high camera speed the data is stored in a ring buffer first
and then read out to the hard disk during the recovery periods.

that are not hidden in a sulcus can be investigated. During the imaging of the
visual cortex the stimulus is presented to the animal by a computer monitor. The
computer that controls the stimulus onset and regime is connected to the computer
for the control of the data acquisition via a “handshake” connection to guarantee
synchronisation with the recording. For preliminary analysis of the recorded data
during an experiment the data are transfered to a second computer by a Ethernet
connection. This online analysis delivers important feedback for the experiment.
Apart from these optical imaging specific components the experimental setup also
contains the apparatus for the anaesthesia and life support of the animal as well
as monitors for expired C'O,, body temperature and tissue oxygenation. After this
short outline we will now have a more detailed look at some of the key components
and procedures of the optical imaging experiment.
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Figure 3.2: Typical light path for the illumination of the cortical surface with a
100W halogen light bulb. The wavelength of the light is determined by the heat fil-
ter and the narrow band width filter. The direct illumination on the cortex comes
from a mirror inside a custom extension to the camera lens. This allows even illu-
mination of the cortex because of a small illumination angle without specularities
from the cover glass. The individual components are not drawn in proportion.

3.1.1 The Illumination

The amount of light back scattered from the cortical tissue containing information
about the stimulus is less than 0.1% of the overall illumination (Bonhoeffer and
Grinvald, 1996). This fact sets very high requirements in the stability of the light
source to avoid artifacts from the illumination that are bigger than the signal. Most
important is a power supply that guarantees that the ripple in the voltage from
the AC to DC power conversion is smaller than 0.01%. Additionally a tungsten
halogen light bulb should be used to achieve a highly stable light output. Arc
bulbs are not an option, because the fluctuation in the light intensity is far too
great.

There are several reasons why one has to get as high on intensity of light as
possible. The photon emission, and therefore the number of photons remitted
from the illuminated tissue, introduce a statistical error by photon shot noise.
The number n of photons collected per unit time follow a Poisson distribution. If
the expectation of the number of measured photons is N, the standard deviation
of n around this value is 0, = VN (Papoulis, 1965). The relative statistical error
for the measurement of the light reflectance is given by o,,/N = N~1/2. To achieve
an accuracy of 0.01% in the measurement with this illumination, the CCD chip in
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the camera has to collect more than 10® photons per pixel.

Most of the light that is emitted from the bulb never even reaches the cortical
surface due to numerous absorbers in the light path. Every surface of a lens or a
mirror, that the light crosses, reduces the intensity. Figure 3.2 shows a typical light
path for the optical imaging experiment. The major portion of the emitted light
is lost in the narrow band width filter to obtain the monochromatic illumination
we need. The bulb emits white light that is cut off at the low frequency side by
a heat filter to avoid heat damage to the brain. From the remaining visible light
only a 5 — 10nm wide portion around the chosen centre frequency passes through
the narrow band width filter. The monochromatic light is then focused into a light
guide of 1.5m length, where the intensity is reduced a further 40%. From a 100W
halogen light source at full intensity and a 605nm filter with a with of 5nm we are
left with 500uW at the end of the light guide (a 2-10° fold reduction in intensity).
The camera lens system further reduces the light intensity.

3.1.2 The Imaging Camera

10® photons per pixel per frame of the camera have to be obtain to stay within
the statistical noise limits of the signal response. This has two main consequences
for the choice of the camera. The camera must have a high well capacity to
collect the maximum number of photons before read out of the chip. Secondly the
camera should have a high frame rate, because by later binning the effective well
capacity can be raised as long as the CCD chip in each frame is nearly saturated.
Furthermore the CCD chip in the camera should have a good quantum efficiency
at the chosen wavelength.

The CCD camera SMD-1M60 by Silicon Mountain Design, Inc. delivers a
1024 x 1024 maximum resolution with square pixels and a frame rate of up to 60 fps.
The true 12-bit colour depth provides up to 4096 distinct grey levels for capturing
large inter scene light variations (dynamic range= 70dB). The image is digitised
in the camera head and transfered as a low noise digitised video signal to the
computer, this allows capture of very low contrasts without noise in the image. In
figure 3.3 the quantum efficiency for the camera is shown to have maximum values
at the wavelengths used in optical imaging. The full well capacity is 250Ke™.

For focusing the image on the CCD chip a Nikon 50mm lens was used and two
extension rings (pk12 and pk13). This gave a maximum resolution of 14.8um+0.5
per pixel in the focal plane. A 256 x 256 image therefore covers an area of 3.7 X
3.7mm?. The cell somas are typically 15 — 35um and bigger (Kandel et al., 1991)
but one would certainly need more than a few pixels to image the shape of a neuron.
Furthermore in the following sections we will see that the scattering properties of
the cortical tissue limit the resolution of the image and not the physical resolution
of the lens and the camera.
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Figure 3.3: Plot of the quantum efficiency of the CCD camera SMD-1M60 from
Silicon Mountain Design, Inc.. The maximum is reached at the wavelengths be-
tween 650 — 720nm that typically used for optical imaging of intrinsic signals.

3.1.3 The Head Chamber

A crucial component that determines the quality of the data obtained from optical
imaging is the design of the head chamber. After the skull and the dura have been
removed over the cortical area of interest the brain pulsates due to the animal’s
respiration and heart beat. These movements are far bigger than the resolution
one can achieve with the imaging system and changes in reflection induced by this
will mask the stimulus correlated signal. To stabilise the cortex a head chamber
is mounted to the skull with dental cement.

In Figure 3.4 the chamber we developed for our optical imaging setup is shown.
The basic setup is comparable to chambers used in most optical imaging systems
(Blasdel and Salama, 1986; Haglund and Blasdel, 1992; Bonhoeffer and Grinvald,
1996) with the exception of a few details. The base ring (figure 3.4 d)) is mounted
to the skull first with dental cement before the craniatomy. This way the dental
cement on the base ring can have time to harden without the cortex being exposed
and the evaporating bonding agent can not irritate the sensitive tissue. The gaskets
(figure 3.4 ¢)) go below and above the cover glass (figure 3.4 e)) and are fixed with
the closing ring (figure 3.4 b)) into the recess of the chamber body (figure 3.4 a)).

Now with the skull intact one can screw the assembled main body into the
base ring and test the sealing of the chamber. A perfect sealing is essential for the
long period of the experiment, as a slow leakage can lead to pulsations and a shift
of the cortex that makes the direct comparison of trials impossible. Furthermore
the slowly decreasing cranial pressure may cause oedema. Once the seal is perfect
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Figure 3.4: Individual parts of the head chamber used in our optical imaging
experiments. a) Main body of the chamber with the two pipes for filling with
aCSF. b) Closing ring to screw the cover glass (e)) into the main body with one
of the gaskets (c)) on top and below.

the chamber body is removed and the craniatomy and duratomy can be performed
with easy and unrestricted access to the surgical site.

A second important feature is the position of the filling pipes in the chamber
body. They must be as close as possible to the bottom of the cover glass to enable
the complete displacement of air in the chamber when filling it. Even small bubbles
left will allow motion artifacts due to the compressibility of gases.

The material of the cover glass certainly should not have absorption bands at

the chosen illumination wavelength.

3.1.4 The Stereotaxic Frame and Camera Holder

The stereotaxic frame is used to fix the animals head to ensure that motion artifacts
from respiration are minimised. A standard stereotaxic frame with ear bars and
one mouth and head bar is used. To the base plate of the frame the camera
holder was attached, designed from camera tripod parts on a rail system. It has
to be very rigid and should not allow a slow shift of the 1kg camera head over a
long period of time. The whole setup must be vibration free and if necessary is
mounted on an air table. To allow the imaging of different sized animals on both
hemispheres a large degree of freedom for rotation and transversal travel of the
camera is accommodated.



28

Optical Imaging Setup and Data Acquisition

3.1.5 Animal Preparation

The careful preparation of the animal is key to the successful completion of an
optical imaging experiment. The choice of anaesthetic and the given concentrations
have a massive influence on the response properties of cortical neurons (Buchweitz
and Weiss, 1986). The second critical procedure is the craniatomy and duratomy.
Here one has to avoid damage to the cortex surface and bleeding from the dura
into the chamber.

Here the preparation and surgical procedures for macaque monkey (macacca
mulatta) are described as it was our main animal model, even if some of the data
was collected from other species.

On the day prior to the experiment we start to starve the animal for 12 hrs to
avoid vomiting during anaesthesia and intubation. The monkey gets an injection
of Dexamethazone (intra muscular (i.m.) or intra venous (i.v.)) of 0.5mg/kg to
reduce the risk of inflammation and oedema.

On the day of recording each animal was induced with a single injection (i.m.)
of a mix of Ketamine (10mg/kg) and Xylazine (0.5 — 1.0mg/kg). Additionally
Atropine (0.05mg/kg i.m.) is administered to reduce salivation. After the animal
had been intubated and a catheter for infusing electrolytes and drugs had been
placed in either the saphenous vein, running from the back of the knee and then
divides as it runs down the calf, or the cephalic vein, running along the anterior
surface of the fore limb, it was ventilated with a 50 : 50 mixture of Oy and N,O
and 2% Isoflurane for surgery. For later maintenance the level is reduced to 1.5 —
0.75%. During the experiment the expired CO, and the tissue oxygenation are
monitored additionally to the control of the body temperature, EEG, heart beat
and respiration rate. The animal is kept on a heating blanket and fixed with two
ear bars, one head bar, and a mouth bar into the stereotaxic frame.

After local sub-cutaneous injection of lignocaine the scalp is resected over the
surgical area. Then the base ring of the chamber is mounted on the cranial surface
using dental cement and tested for leakage. With a dental drill small corner holes
are drilled slowly (to avoid heat damage) and then the bone is cut out between
them. Carefully as large as possible a piece of dura is removed over the region of
interest. Once all the bleeding has stopped the chamber body is screwed onto the
base ring and filled with aCSF. When all air is displaced with fluid the chamber
exhausts are sealed and the cranial window is ready for imaging.

Contact lenses are inserted into the animal’s eyes and the light guide and cam-
era are positioned. Following the completion of surgical procedures each animal
was paralysed partially with vecuronium bromide to stabilise the eyes. Then the
optical imaging experiment was started.

3.1.6 Optical Imaging Experiment and Data Collection

For the visual display of the stimulus a TV monitor was placed at the focal point
of the animal. The focal point was determined roughly by back projection of the
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Figure 3.5: Standard scheme for the timing of an optical imaging experiment.
The recording starts before the stimulus presentation and finishes after the end
of the stimulus. The recovery period between the trials must be long enough to
avoid activation artifacts from the previous stimulus. The presentation of different
stimuli in the trials must not be alternating and can be displayed randomly.

foveas with an ophthalmoscope and verified with single cell recordings before the
head chamber was closed.

Depending on the imaged cortical area, and the experimental goal, several
different types of stimulus patterns were presented. Typical patterns were square
wave gratings, sine wave gratings, checker board patterns or superimposed non
harmonic square wave gratings. The patterns were moved at speeds between 1.0 —
4.0°/s.

At the beginning of the optical imaging experiment a single frame under an
illumination with high hemoglobin absorption (typically green light, 546 nm) of
the whole exposed cortical area is recorded as a reference for the vessel pattern on
the surface. This so called green image is used after the staining and sectioning
of the cortical tissue to match the response patterns of the optical imaging with
the anatomical structure of the imaged area, where the vessel pattern is crucial
for spatial matching.

For the imaging of activity patterns a 605nm or 720nm filter was used. A single
trial denotes the acquisition under one stimulus condition, whereas an experiment
is the recording of several trials with alternating stimuli. 8 — 16 trials per stimu-
lus condition are recorded in one experiment. In a single trial the camera starts
recording two seconds before the stimulus presentation to obtain data on the back-
ground activity and the DC level of reflectance for later analysis (see chapter 4).
After two seconds the stimulus is presented for 2 — 8 seconds while the recording
continues (see figure 3.5). Once the stimulus stops the recording continues for two
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more seconds to obtain information about the signal decay. Before the next trial
starts a recovery period of 8 — 16 seconds elapses to avoid interference with the
previous stimulus. In a typical optical imaging experiment the individual trials
display so called orthogonal stimuli. Orthogonal stimuli are stimulus regimes that
are expected to evoke responses in spatially disjunct cell populations in the cortex.

From all the trials with one stimulus condition the single condition image is
calculated. The difference of two orthogonal single condition images yields a dif-
ference image. For a detailed description of the processing of the raw data see
section 4.1.

To understand the design of a single experiment we examine two standard
regimes: The recording of ocular dominance columns and orientation preference
maps (for functional background section 2.3.3).

In an ocular dominance experiment the two orthogonal stimulus conditions are
the alternating stimulation of the right and the left eye. So for half of the number
of trials the right eye is occluded and for the other half the left eye is occluded.
To avoid intensity changes in the mapped columns from the orientation preference
of the cells within each half of the trials gratings of all orientations are presented,
respectively 4 — 8 distinct realizations (i.e. gratings at 0°,45° 90°, 135°).

In an experiment for the mapping of orientation preference the stimuli can be
presented binocularly or monocularly. The orthogonal stimuli are the alternat-
ing presentation of gratings with 90° difference in orientation (i.e. 0° — 90° or
45° — 135°). In this regime each orientation delivers a single condition map and
the difference image is obtained from the two orthogonal single condition maps.
The final orientation preference map is obtained by vector summation of all the
difference images.

Before we describe the analysis of the experiments in chapter 4 let us have a
look at the actual origin of the recorded data, the intrinsic signals.

3.2 Sources and Characteristics of Intrinsic Sig-
nals

In the optical imaging of intrinsic signals it is not the activity of the neurons
themselves that is monitored, but the changes in absorption and reflection of the
cortical tissue that coincides with the stimulation of the neurons. These changes
derive from metabolic activity and variations in the micro-circulation. Four main
components have been described as sources of these so called intrinsic signals
(Cohen et al., 1968; Cohen, 1973; Kreisman et al., 1995).

One component is due to the blood volume changes in the imaged area caused
by capillary recruitment and increased blood supply by metabolic demand. A sec-
ond component arises from the changes of the hemoglobin oxygen saturation of
the blood in the active area. It is composed of the absorption properties of the
oxy-hemoglobin (HbO,) and the deoxy-hemoglobin (Hbr). Another main compo-
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Figure 3.6: Biophysical origins of the intrinsic signals. (a) Due to their metabolic
activity the neurons decrease the oxygen saturation of the hemoglobin. The ratio
of the deoxy-hemoglobin component (Hbr) and the oxy-hemoglobin (HbOs) is
changed. The insertion shows the absorption book spectra of Hbr and HbO5. The
isobestic points are at the wavelengths where the spectra cross. (b) With the
rising metabolic demand more blood is delivered to the tissue by increasing the
blood volume. Mechanisms for the increase are capillary recruitment and vaso-
dilation. (c) The excitation induces cell swelling in the neurons and therefore
changes the scattering properties of the tissue. (d) Once the oxygenation state
of the surrounding tissue changes the spectral behaviour of cytochrome oxidase is
altered (adapted from Stetter (2000)).

nent of the intrinsic signal is caused by the change of the light scattering in the
neural tissue due to cell swelling during activation. The final component we will
consider here originates from the absorption characteristics of cytochrome oxidase,
that change with the oxygenation state of the tissue. Compared to the temporal
resolution in the millisecond regime one can obtain by imaging with voltage sensi-
tive dyes (Shoham et al., 1999) all of the intrinsic signals are very slow (0.5 — 2.0
seconds onset and rise time). Many important questions about the columnar and
modular organisation of the visual cortex do not depend on the very high temporal
resolution but benefit from the excellent spatial resolution and the non invasiveness
that optical imaging of intrinsic signals delivers.
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In the measured data we have a superposition of all the intrinsic signals with
biological noise artifacts such as respiration and heart beat, plus sensor noise
sources due to photon shot noise and camera read out noise. Our goal is to
separate from this mixture the intrinsic signal components that are closely localised
in the areas of stimulus specific neural activity. This component is called the
“mapping signal” because it will later form the functional maps we are looking
for. Connected with this localised activity of the mapping signal is an overall
increase of the background metabolic activity and blood volume changes on a
coarser spatial scale to satisfy the oxygen demand. This so called global signal is
also evoked by the stimulus but will not reflect the stimulus specific activation as
it sometimes spreads over 3 —5mm (Malonek and Grinvald, 1996). In chapter 4 we
will introduce the methods to separate the mapping signal from the global signal
and noise. All of the sources of intrinsic signals that will be described more closely
now can contribute to both, the mapping and the global components (Frostig et
al., 1990).

3.2.1 The Blood Oxygenation Component

The oxygen saturation level of hemoglobin changes either from metabolic demand
or difference in the blood flow that alters the relative amounts of deoxy-hemoglobin
(Hbr) and oxy-hemoglobin (HbO,). All the blood related components have a large
absorption of light at wavelengths in the range of 500 — 600nm (Malonek and
Grinvald, 1996). In the resulting image a large absorption gives a lower intensity
in the reflected light and therefore a darker area in the image. The insertion in
figure 3.6 a) shows the wavelength dependency of the oxy and deoxy components.
Important to mention are the points were the Hbr and HbO, spectra intersect as
the intrinsic signals at these wavelengths are independent of the oxygenation level.
These wavelengths are called isobestic wavelengths.

At wavelengths below 590nm the mapping component is only 5 — 10% of the
activity dependent reflection signal whereas at 605nm it makes up 39 —50% of the
reflection signal (Bonhoeffer and Grinvald, 1996). This additional contribution to
the mapping signal above 590nm most likely arises from the saturation level of the
hemoglobin due to the increased oxygen consumption of the neurons. In the paper
of Malonek and Grinvald (1996) the spectral and temporal characteristics of the
Hbr and HbO, component in the mapping and the global signal were investigated.

The deoxy-hemoglobin component in the mapping signal starts to rise 200msec
after the stimulus onset and continues to rise during a stimulus presentation up
to eight seconds. Longer stimulus times beyond eight seconds lead to no more
increase of the amplitude (same is true for HbO,). Once the stimulus stops the
Hbr component decays to baseline in 15—20s. This slow decay must be considered
in the recovery periods between the trials to avoid artifacts from the preceding
stimulus. At 605nm the amplitude of the deoxy component is ~ 30% of the
amplitude of the global component.

When nerve cells are active they metabolise oxygen and therefore oxygen dif-
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fuses from nearby capillaries to these cells. This leads to a decrease in oxygen
saturation and the early deoxygenation component is therefore strongly localised
to neural activity.

The oxy-hemoglobin component has a latency of 1 — 2s. It rises continuously
for even up to three seconds longer than the stimulus presentation. The decay to
baseline is slower than in the Hbr component (4 — 6s). The peak amplitude is
about the same as in the HbOy but has a 1 — 3s delay.

3.2.2 The Blood Volume Component

The change in the blood volume during neural activity is due to local capillary
recruitment or dilation of small veins or increased concentration of blood cells in
the capillaries. These changes appear as an increase in hemoglobin absorption
(Grinvald et al., 1991). The contribution of the blood volume component can best
be investigated at isobestic wavelengths (i.e. 570nm) where the oxygenation state
of the blood does not influence the absorption. It was shown by Frostig et al.
(1990) that functional maps can be obtained directly from blood volume changes.
Capillaries and small veins seem to be recruited in a very localised fashion at the
site of stimulus specific activation. Nevertheless the overall intrinsic signal from
blood volume changes is much bigger than the mapping component and most of
the activity dependent blood volume changes are regulated at a spatially spread
domain that does not reflect the functional organisation.

3.2.3 The Tissue Scattering Component

The component of the intrinsic signal that causes changes in the scattering proper-
ties of the cortical tissue during activation originates from a swelling of the neurons.
This change is induced by ion and water movement, expansion and neuro trans-
mitter release (Cohen, 1973; Kreisman et al., 1995). The intrinsic signal by cell
swelling is localised to regions of 100—300um around the active neurons (MacVicar
and Hochman, 1991). Experiments on hippocampal slices showed that the ampli-
tude of the scattering component is only 0.01% in the beginning and builds up to
more than 1.0% with repetitive stimulation for one second (Frostig et al., 1990).
After the stimulus ends this component decays the fastest of all intrinsic signals
(Malonek and Grinvald, 1996). The time course in a blood free slice preparation is
independent of the wavelength and the amplitude only decreases slightly at long
wavelengths.

3.2.4 The Cytochrome Oxidase Component

The chromophore cytochrome oxidase changes its absorption characteristics with
the level of oxygenation of the surrounding tissue. This is maybe the most con-
troversial component as the exact mechanisms are not fully understood. As cy-
tochrome oxidase is present at higher concentrations in the cytochrome oxidase
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(a): Image at 546nm (b): Image at 720nm

Figure 3.7: Difference in absorption and scattering of cortical tissue and superficial
vasculature at 546nm (green light) and 720nm (near infra-red). The depth of focus
is the same in both images. The blurring is caused by the bigger penetration of
the tissue with light at higher wavelengths. The vessel pattern is represented less
dominant because of the reduced absorption of hemoglobin at 720nm. The images
show a 3.7 x 3.7mm? area of visual cortex.

blobs in cortical layers 1 — 3 of V1 and these blobs are supposed to be involved in
colour vision, this signal could prove to be useful for the analysis of colour specific
stimuli.

3.2.5 Wavelength Dependencies of Tissue Scattering and
Artifacts

Comparing the overall absorption of the cortical tissue, including the capillaries
and blood vessels, and therefore the change in brightness in the image at different
wavelengths one can see that considerably more light is absorbed at wavelengths
between 500—600nm than in wavelengths above (Malonek and Grinvald, 1996). At
high wavelengths the image simply is brighter at the same illumination strength
because of the reduced absorption. This change in absorption results from the
decrease of absorption of hemoglobin in the capillaries, small arterioles and veins
and is in agreement with the hemoglobin absorption book spectra (see insertion in
figure 3.6 a)).

The second quantity that drastically changes with the wavelength is the scat-
tering of light and therefore the blurring of the acquired image. The longer the
wavelength is the deeper the light can penetrate the tissue. On its scattering path
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the single photon integrates the information from deeper layers, but less photons
will backscatter and contribute to the image (Stetter and Obermayer, 1999).

An extensive study of a high resolution spatial comparison between optical
maps from intrinsic signals obtained at different wavelengths and the overlaying
vasculature through which these maps are recorded was done by McLoughlin and
Blasdel (1998). In figure 3.7 the same piece of cortex is shown without changing
the focus at different wavelengths. The vessel pattern that can be seen clearly
at 546nm illumination is not just blurred due to increased scattering at 720nm.
Because of the lower absorption of hemoglobin at the higher wavelength the con-
trast and therefore the signal intensity of the vessel pattern is reduced. The size
of the blurring due to light scattering has been estimated by Orbach et al. (1985)
to be smaller than 200um. As a consequence in the data obtained at 720nm the
proportion of the signal from vessel artifacts is reduced. McLoughlin and Blas-
del (1998) found that the 600- and 720nm optical maps are strongly correlated
in tissue compartments not underlying the surface vasculature, but while 720nm
optical maps exhibit a flat distribution of signal strength across the various tissue
compartments the regions associated with the surface vasculature exhibit much
stronger signals in all the 600nm images. This effect can not be neglected as up
to 40% of the cortex surface is covered with vasculature.

A commonly suggested method for getting “rid” of the vasculature artifacts
at wavelengths like 605nm is to focus 300 — 400nm below the cortex using a lens
of small focal depth (Grinvald et al., 1991). This is very misleading as the image
might look like the blurred 720nm image now, but the signal content is different.
The absorption signal of the vasculature certainly is still present and only smeared
over a wider area therefore contaminating a even bigger region of the optical maps.
In our setup we rather focus exactly on the cortex surface with a lens with a large
focal depth and remove the vessel artifacts afterwards with sophisticated statistical
methods.

One further advantage of long wavelengths is the reduction of the change in
the absorption by the respiration and heart beat. The change in blood pressure
during a respiratory cycle and the pulsation of the heart beat change the blood
volume in the imaged area and strongly modulate the brightness in the image. As
the influence of the blood volume component decreases with higher wavelengths
this artifact can be reduced by changing from 530nm to 630nm by a factor of more
than ten (Shoham et al., 1999) and another two fold by switching from 600nm to
720nm (McLoughlin and Blasdel, 1998).






Chapter 4

Statistical Signal Processing
Algorithms

New techniques and advances are emerging in the field of statistical signal pro-
cessing that deserve the attention of the biomedical and neuroscience community.
Several algorithms have been proposed to separate multiple signal sources on the
basis of their statistical properties, instead of the more common spectral features.
These algorithms have the promise to lead to more accurate source modelling and
more effective artifact rejection algorithms, two of the most challenging conditions
faced in biomedical signal processing (Principe et al., 2000).

This so called Blind Source Separation (BSS) has been successfully applied
to other biomedical data such as functional magnetic resonance imaging (fMRI)
(McKeown et al., 1997; McKeown et al., 1998), electroencephalographical measure-
ments (EEG) (Makeig et al., 1996), and cardiovascular signals (Vetter et al., 1999).

In chapter 3 we described how the optical imaging data for analysis are ac-
quired. Some of the examples that will be shown are from species other than
macaque monkey, but the basic recording technique is the same. The raw data
from the optical imaging experiment contain the stacks from the recording of the
individual trials. In those trials the different stimulus conditions were presented in
random or alternating order. The task for the statistical analysis of these datasets
is to reliably separate the signal that corresponds to the neural activity due to
the stimulus presentation (mapping signal) from all other components that are
described in chapter 3. We have no information about the mixing process itself
nor do we know the exact spatial pattern of the sources that underly the recorded
mixture. A further difficulty is the contamination of the data with high levels of
noise.

In this chapter we will first explain how the basic preprocessing of the raw data
is done and introduce a mathematical description of the dataset. Then established
heuristic methods, like differential imaging are described and we have a look at
some of the drawbacks with the use of these procedures on biological signals. The
following section will show the differences between spatial and temporal analysis
of the data proceeded by a description of BSS algorithms like principal component
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Figure 4.1: Outline of the data collection procedure for a single stimulus presen-
tation: A stimulus is presented between times ¢; and ¢y, while a camera takes
a sequence of My images z4(r),t = 1,..., My before, during, and after stimula-
tion. The shaded patterns sketch the changes in reflectance over time, which are
assumed to be made up of different spatial prototype patterns.

analysis (PCA) and independent component analysis (ICA).
In the last part we will have a look at a second order blind source separation
algorithm called extended spatial decorrelation (ESD) and some extensions of it.

4.1 Basic Preprocessing of the Raw Data

A typical set of raw data, that was recorded as described in the chapter 3, contains
the individual trials of the experiment plus some header files, that have information
about the stimulus condition and camera parameters. The individual trials are
numbered in ascending order and the format of the raw data is unsigned 16 bit
integers. All trials contain the same number of M, frames my = 1,.., My with
P, x P, pixels and the stimulus is always presented between the times ¢; and %,
(see figure 4.1). As a first preprocessing step all the trials with the same stimulus
condition are summed up frame by frame. This is justified by the assumption that
all non metabolic random noise is reduced in the summation, whereas the pre-
stimulus activity and the stimulus locked activity are enhanced to give a better
signal to noise ratio. Examples of these random noise sources are the photon shot
noise of the illumination and the read out noise of the CCD chip in the camera.
The result of this first step is one stack of M, frames with P, x P, pixels for
each stimulus condition (single condition stack). With a frame rate of between
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t =4 sec t = 5 sec t = 6 sec t =7 sec

Figure 4.2: Single condition stack after the preprocessing steps of summation of
the trials with same stimulus condition and binning of the frames. The M; = 8
frames now contain the information from one second of data collection. Due to the
large contrast range within each frame, the small stimulus related mapping signal
is still not visible.

7.5fps and 30fps and a recording time of 5-15 seconds the number of frames in
the stack My is normally around 120.

For most of the analysis described later a much smaller number of frames is
sufficient, saving computer memory and calculation time. The signal to noise ratio
is enhanced even further by binning the M, frames in time as the slow changes
of the signal components are not affected by the binning but the fast temporal
changes of the unwanted noise cancel out. Normally the frames are binned by the
factor of the recording frame rate, so each summed frame contains the recorded
information of one second. This results in M; frames with P, x P, pixels each.
For example when 32 trials were recorded in one experiment with two stimulus
conditions and a frame rate of 15 fps and a recording time of 8 seconds we have
16 trials per condition each having M, = 120 frames. After the summation of the
trials we have two stacks, one for each condition, with M, = 120 frames. The
binning of the frames with a ratio of 15 (= 15fps) results in two stacks, one for
each condition, with M; = 8 frames (see figure 4.2). The size of the individual
frame, i.e. P, x P,, has not changed during the whole procedure. All trials were
recorded in the same manner, i.e. the stimulus always started at time ¢; = 2s
after the beginning of the recording. Therefore it can be assumed that all frames
of a stack before t; contain only baseline activity and the information about the
unevenness of illumination, but no stimulus relevant signal (presuming that the
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t =1 sec t = 2 sec t = 3 sec t =4 sec

t = 5 sec t = 6 sec t = Tsec

Figure 4.3: Same single condition stack as shown in figure 4.2, after first frame
analysis. The former first frame contains all zeros and is neglected. So now the
single condition stack contains M = M; —1 = 7 frames. Without the pre- stimulus
activity present the gray values of the image are spread over a much smaller range
and make details visible, that could not be seen in figure 4.2.

recovery period was long enough). The stimulus correlated mapping signal is much
smaller than the baseline activity and the variance of the illumination across each
frame. To enhance the signal ratio of the stimulus related changes to the other
components, the first frame of the summed and binned stack is subtracted from
all subsequent frames. This method is called first frame analysis (Bonhoeffer and
Grinvald, 1996; Blasdel, 1992a). As the first frame now contains all zeros it is
neglected and the resulting single condition stacks have M = M; — 1 frames (see
figure 4.3). If not explicitly stated all the data stacks considered from now on have
undergone summation, binning and first frame analysis. Therefore the notation
for a single condition stack with M frames m=1,..,M and P, x P, pixels for each
frame is:

X(r) = zp(r) (4.1)

with r = (r,,7y),1 <71, < P,,1<r, <P,
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4.2 Conventional Methods for Analysis of Opti-
cal Images

Since the beginning of optical imaging elaborate ways had to be found to extract
the signal of interest from the recorded mixture. The difficulty in this analysis is
that the mapping signal is only about 0.1% of the total intensity of the reflected
light (Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1996). This means
that all other components like biological noise and photon shot noise are bigger
than the mapping signal. Before any analysis has taken place a lot of effort can
be made to enhance the signal to noise ratio. If the images are always recorded
at light intensities close to the camera saturation the photon shot noise is as low
as possible. Furthermore the biological noise can be reduced, if the recording is
synchronised with the respiration and the heart beat. Certainly also a high number
of trials for summation enhances the signal quality.

4.2.1 Differential Imaging

One of the first methods that was introduced to reveal the stimulus dependent
part of a optical imaging experiment was called differential imaging (Blasdel and
Salama, 1986). In a first step the individual trials belonging to one stimulus condi-
tion are summed up and first frame analysis is applied. Depending on the recording
method this is done directly in the computer memory during the experiment or in
the later processing as in our case. The basic assumption for differential imaging
is, that the only signal that changes with the presentation of different stimuli is
the stimulus correlated mapping signal. Furthermore the chosen stimuli should be
so called orthogonal stimuli. This means that the stimuli activate locally disjunct
cell populations when presented to the animal. Typical orthogonal stimuli are the
alternating stimulation of the left and right eye, that leads to the recording of
ocular dominance bands or the presentation of gratings orthogonal to each other,
that gives us orientation maps. To get a differential image, the two single condition
stacks for the orthogonal stimuli are subtracted from each other frame by frame.
This leads to a so called difference stack (see bottom row of figure 4.4 (a)). The
sum of all frames from this difference stack is the difference image (see figure 4.4
(b)). Ideally in the difference image all signals that are not stimulus dependent
are removed.

The first big drawback of this method is that not only the mapping signal
in optical imaging data is correlated with the individual stimulus, but also parts
of the global signal can be locked to only one stimulus or the DC level of the
background activity might change between the trials.

The second disadvantage of this method is, that one needs a quite detailed
knowledge of the cortical response to a stimulus in order to design a orthogonal
pair of stimulus conditions. For classical stimuli like left eye - right eye stimulation
for ocular dominance this might be true, but there are stimulus regimes like the
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Figure 4.4: (a) Example for the calculation of a
difference stack (bottom row). The single condi-
tion stacks (top and middle row) of the orthog-
onal stimulus conditions (here ocular dominance)
so00 are subtracted frame wise from each other. There-
fore any signal that does not change between the
o  recording of the two conditions disappears. (b)
The final differential image is obtained by the
-5000 summation of the frames of the difference stack.
Sometimes not all of the frames are used, but only
the ones where the mapping signal starts to ap-
pear.

10000

activation of a cortical point spread function where an orthogonal stimulus can
not be designed.

4.2.2 Cocktail Blank and Blank Images

The method of using cocktail blank or blank images for recovery of the mapping
signal is described by Bonhoeffer and Grinvald (1996) and works as follows. In
order to get rid of the baseline activity and any uneven illumination the image
that was recorded with a stimulus is divided by a image of the unactivated cortex.
This image of the unactivated cortex is called a blank image in this document.
The other proposed method is to obtain a image of the cortex while it is activated
in a uniform manner. This means in this image all areas of the cortex show the
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activity level they would have during their maximum stimulation. The image of
the uniformly activated cortex is called cocktail blank. The recorded activity map
is now divided by this cocktail blank.

Both methods have their disadvantages. Processing with the blank image often
leaves strong activity related blood vessel artifacts in the maps, that can distort
the image statistics. When the cocktail blank is used one introduces strong as-
sumptions about the functional architecture of the cortical area under investigation
(Bonhoeffer and Grinvald, 1996). It is difficult to ensure, if the stimulus regime
chosen to obtain the cocktail blank activates the cortex uniformly and does not
impose a pattern by itself.

This is especially true when calculating single condition maps using a cocktail
blank image. Single condition maps are obtained by processing a data stack that
results from the summation of trials of one stimulus condition. These maps should
explicitly show the cortical response to a specific single stimulus. If in the process-
ing of this map a cocktail blank is used one introduces the response information of
other stimuli that were used for calculating the uniform activation of the cortex.
Often orthogonal stimulus conditions are used to produce a cocktail blank. The
single condition map, calculated with this cocktail blank, now carries the informa-
tion of the orthogonal stimulus too and is more of a difference image than a single
condition map.

A further problem with the correction of the uneven illumination by division
is the introduction of a nonlinear relation. The method is justified with the small
amplitudes of the mapping signal compared to the overall signal (Bonhoeffer and
Grinvald, 1996). But the problem is not considered that the blank or cocktail
blank image can have near zero values and therefore the division with this can
result in arbitrary big numbers.

4.2.3 Bandpass Filtering

The last of the conventional methods regularly used to enhance the signal quality is
the use of bandpass filters. The basic assumption here is that the individual signal
components have different spatial frequencies and can be separated or cancelled
out in the frequency domain after a discrete Fourier transform. In the frequency
domain a rotation symmetric function is used to cut off the low frequency and the
high frequency part of the transform. This is motivated by the assumption that all
high frequency components are due to random noise and can not originate from the
intrinsic signals because of the blurring of the cortical tissue by scattering (Stetter
and Obermayer, 1999). The low frequency components of the image are known
to derive from the global signal, that has a more coarse spatial distribution than
the mapping signal, for example ocular dominance or orientation maps. Hence the
mapping signal is believed to have spatial frequencies between the both.

Apart from the non trivial difficulty to choose a optimal filter function, that has
smooth enough edges and does not introduce artifacts by its own back transform,
one can never be sure that there is no overlap between the frequency bands for
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Figure 4.5: Influence of filtering on the statistics of optical imaging maps. The
left column shows the orientation preference map (top) and the corresponding
orientation preference histogram for unfiltered data. In the middle column a
(0/3.25)1/mm lowpass filter was applied. There is a slight change, but the overall
distribution in the histogram stays about the same. This supports the assumption,
that most of the high frequency components rise from noise. For the map of the
right column a (0.43/3.25)1/mm bandpass filter was used. Now we see a drastic
change in the image statistics. The colours in the top row represent the preferred
orientation of the cells (see also figure 2.9).

the individual signal components. For example the surface vessel pattern contains
a wide spectral range due to their elongated nature and can not be separated
in this way. There are several other reasons why bandpass filters seem to be
critical. After the cut out of frequency components that are supposed to contain
the mapping signal, the tails of the frequency distributions of the other sources
are still contained in the signal and further processing has to be done. The signal
to noise ratio has increased now, but a lot of interesting image parameters like
the singularity location and the singularity density of orientation maps are very
sensitive to such changes.

Figure 4.5 shows how these parameters can drastically change with the arbi-
trary selection of the highpass cut off frequency. The images in the left column
show the orientation preference map (top) and the distribution of the individual
orientation of the unprocessed data (bottom). After the application of a low-pass
filter the high frequency speckles in the orientation preference map are lost (middle
column) but more importantly the asymmetric distribution of the orientations has
hardly changed. This supports the argument above, that due to tissue scattering
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Figure 4.6: Bandpass filtering of white noise can result in image patterns that are
not distinguishable from the real mapping signal. (a) 0-90 deg differential image
from ferret primary visual cortex , and (b) the same image after bandpass filtering
(highpass cutoff: 0.43 mm~" (A = 2.3 mm); lowpass cutoff: 1.63 mm~' (A = 0.61
mm)). (c) Random white noise image with same mean and variance than (a), and
(d) its bandpass-filtered version (same cutoff frequencies) (adapted from Stetter
(2000)).

high frequency components rise from random noise. More critical is the introduc-
tion of the high-pass cut off (right column). The map now looks much better as
the orientation patches are spread more evenly like one would expect them to be,
but the distribution statistic has changed completely. The highpass cutoff value
has to be chosen arbitrarily and this makes it difficult to believe in the resulting
data.

The following example illustrates the difficulty in interpreting bandpass filtered
results. As shown before the orientation maps from V1 in many species are ar-
ranged in a periodic pattern. The back transform of bandpass filtered noise can
show very similar patterns and Rojer and Schwartz (1990) used bandpass filtered
noise to describe the phenomenon of orientation maps. Figure 4.6 a) shows the
differential image from a ferret V1 calculated after the response to a vertical and
horizontal stripe pattern was recorded. In b) this image is bandpass filtered and
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the orientation pattern seems to be clearly visible. The image d) shows the band-
pass filtered version of random white noise (image c)) that has the same mean
and variance as a). For both b) and d) the same cut off frequencies were used.
Even if the signal amplitude in the image generated from the noise is smaller than
in the filtered optical image, the influence on the important near zero values of
singularities can be crucial. This influence becomes even bigger when the recorded
optical signal was not very strong.

All the methods introduced so far have been proven to be valuable tools for
the analysis of optical imaging recordings, when great care is taken with respect
to their limitations. A lot of technical effort is made during the experiment itself
to make the basic assumptions for these methods more applicable.

The in vivo work does not always deliver good signal to noise ratios but the
respect for the animal demands the use of the data and a careful analysis. Fur-
thermore a lot of interesting stimulus designs for optical imaging do not provide
an orthogonal stimulus condition and if completely new parameter regimes are
explored or other cortical areas are investigated the pattern of critical responses
might not be predictable anymore and hard to distinguish from artifacts.

All these reasons and difficulties have led us to the investigation of new analysis
methods in the field of optical imaging. The algorithms we are looking for should be
less heuristic and parameterised but make strong use of the statistical properties of
the imaged mixture of sources and use these for separation. All these requirements
are fulfilled by a group of algorithms that are gathered under the name blind source
separation.

4.3 Introduction to Algorithms for Blind Source
Separation

Blind source separation (BSS) is an emerging signal processing technique that aims
at recovering unobserved signals or sources from a set of observed linear mixtures
of theses sources. The mixtures are functions of space or time and are detected
by a set of sensors. However no direct information about the original sources
is available nor is the exact mixing process known, giving rise to the adjective
“blind”.

The classical example for BSS is the so called cocktail party problem. Imagine
two people speaking simultaneously. There are two microphones that are posi-
tioned at different distances from the speakers and therefore record a two different
mixtures of the two voices. The two microphones give you two time signals, that
we will call z1(¢) and x9(t) with z; and x5 being the amplitudes of the measure-
ment and ¢ the time index. Each of the recordings is the weighted sum of the
speech signals emitted by the two speakers, who are the original sources and are
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denoted with s;(¢) and s2(¢). So now we can formulate this as a linear equation:

SL’l(t) = a1181(t)+a1282(t)
CL'Q(t) = aglsl(t)+a2232(t) (42)

where a1, a2, as; and agn are some parameters that depend on the distances of the
microphones from the speakers. As we have only the recordings x;(t) and xo(t)
and no information about the original sources s;(t) and sy(t) or the mixing process
we need a procedure to estimate the sources from the recorded mixtures. With
the BSS algorithms we can demixe the recordings so that we have two tracks with
only the voice of one speaker on it.

So how does this apply to our optical imaging experiment? Let us have a
look at figure 4.1 again (see page 38). We see a sketch of a data stack from an
optical imaging experiment. As defined before in equation 4.1 the notation for
a frame stack is x(r) = z,,,(r). When the stimulus is presented at time t; due
to the metabolic activity in the cortex the absorption and reflection of the tissue
changes. The changes each give rise to a characteristic pattern s;(r,¢),7=1,...,N
in the data stack. For example, s; may describe reflectance changes due to the
mapping signal, sy those due to the global signal and s3 changes occurring within
large blood vessels (Schiefil et al., 2000c).

Under the assumption that the signal components are spatio/temporally sepa-
rable, these patterns can be written as:

si(r,t) = a;j(t)sj(r), j=1,.,N (4.3)

where s,(r) is the spatial pattern of the source s;, that is the same at all times in
each frame and a;(¢) is the amplitude of the source s; and makes it appear and
disappear over time in the stack. Because of the small intensities we regard the
overall recorded intrinsic signal as an instantaneous linear superposition of this set
of spatial prototype patterns. The frames of the optical imaging dataset are the
recordings of these superpositions and can be rewritten as:

En(1) = 3 s () (4.4)

where a,,; is the amplitude in the m-th frame and gives the time-course of s; by
Amj = a;(tm)-

This is now our noise free model of the optical imaging data. When we intro-
duce a noise term now we must differentiate between the so called source noise and
sensor noise. Source noise describes a form of noise that is introduced by an ad-
ditional source s; where the signal is Poisson- or white noise. This noise therefore
appears to be the same in all mixtures just with different amplitudes and is easy
to separate from the real signal with BSS. More of a problem is the sensor noise,
that we encounter in optical imaging. Here the noise is added after the mixing
process and is different for each recorded mixture. Origins of this form of noise
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are the photon shot noise of the illumination and the read out noise of the CCD
chip in the camera. If we add the terms for the sensor noise, our model becomes:

Bn(F) = 3 s (1) + 1) (45)

Instead of the sum notation we can combine the coefficients a,,; in the mixing
matrix A and the spatial component of the sources in the source vector s(r) =
(s1(r), ..., sy(r) and rewrite equation 4.5 in vector notation as

x(r) = As(r) 4+ n(r) (4.6)

For the introduction of the concepts of BSS algorithms we neglect the noise for a
moment and use the vector form of the general mixing model in equation 4.4:

x = As (4.7)

Sometimes we need the columns a; of the matrix A and write equation 4.7 in the
form

N
X = Zaij (48)
7=1

like in equation 4.4.

The task is to calculate the original sources s from the measurement x without
knowing the linear mixing matrix A nor the sources s. This means we have to find
a demixing matrix

W=A" (4.9)

that reverses the mixing introduced by A. In most of the applications one can
only find an estimate (marked by a hat) for the inverse of A and therefore only
calculate an estimate of the original sources. Hence we formulate the demixing
process as

-~

§=Wx=A% (4.10)

From the equation 4.7 we can easily see that there will be some ambiguities in the
estimation of 8.

The first ambiguity is that we can not determine the amplitude of the inde-
pendent components . This is because both s and A are unknown and any scalar
multiplier in one of the sources s; should always be cancelled by dividing the
corresponding column a; of A by the same scalar. Another consequence of this
is that we can not estimate the sign of the sources because we can multiply the
independent component by —1 without affecting the model.
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The second ambiguity is the order of the independent components. Again
because of s and A being unknown we can freely change the order of the terms in
the sum of equation 4.8. Formally a permutation matrix P and its inverse can be
substituted in the model to give x = AP 'Ps. The elements of Ps are the original
independent variables s; just in another order. The matrix AP is then a new
unknown mixing matrix we have to estimate by the BSS algorithms (Hyvérinen
and Oja, 1999). Luckily in most applications the order of the sources is of no
importance.

4.3.1 Temporal vs. Spatial Analysis

In a data stack that contains a mixture of spatio-temporal separable signals, like in
the optical imaging recordings, there are at least two ways to look at the data and
analyse it. The first and more intuitive way is to look at the individual pixels of
the frames and regard the values of a single pixel at the position r across all frames
as the measurement. This is then a so called temporal analysis (see figure 4.7).
Compared to our example of the cocktail party problem each pixel is a sensor, i.e.
a microphone, and the measurement, i.e. the recording of the voices, are the M
values of this pixel. In this case we have P = P, x P, sensors with M recorded
data points each.

The other way to look at the dataset is by spatial analysis. Here we con-
sider each individual frame to be a sensor and all the pixels in one frame are the
measurement. In the words of the cocktail party example each frame now is a
microphone and the P = P, x P, pixels are the measurement. In the analysis of
optical imaging datasets with BSS algorithms we found certain advantages of a
spatial analysis over temporal analysis. The individual sources in our linear mix-
ture, the intrinsic signals, tend to have similar time courses after the presentation
of the stimulus started. Therefore this is not a good feature for separation under
information theoretic aspects, as the signal information is very similar and the size
of the noise can be as big as the signal.

As shown in figure 4.7 we consider our individual sources s; to have spatially
fixed patterns, that rise and vanish over time. In this case each frame contains a
mixture of prototype patterns that have well distinguishable statistical features.

A further advantage of spatial analysis is the dimensionality of the data space.
After summation and first frame analysis we are typically left with about seven
frames of the size P, x P, = 256 x 256 pixels. This means we have a seven dimen-
sional data space with P = 65536 measurements. In the temporal analysis we end
up with a 65536 dimensional space and the maximum number of measurements
we can use is the number of frames M, in the raw data, typically around 120.
This defines a very sparse problem and difficult to solve by BSS algorithms. There
are certain methods of rearranging the raw stacks to reduce the sparseness of the
data for temporal analysis (Stetter et al., 2000) but the default procedure in the
following chapters will be spatial analysis.
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Figure 4.7: (top row): In temporal analysis we consider each pixel to be the
sensor and the values of this pixel in the single frames are the measurements. The
right side shows the plot of the time course of the single components. (bottom
row): In the spatial analysis each frame is a sensor and the pixels in one frame
are the measurement.

4.3.2 Basic Statistical Parameters

Before we derive the BSS algorithms in the following sections let us quickly repeat
some basic statistical parameters with the example of the normal or Gaussian
distribution.

The normal density function, for the case of a single variable, can be written
in the form

p(z) = Wem (—%) (4.11)

where 1 is called the "mean” or “average” and o2 the “variance”. ¢ = V0?2 is
called the “standard deviation”. The coefficient in front of the exponential in
equation 4.11 ensures that ffooo p(z)dz = 1. p(x) is called the ”probability density
function” (pdf). In the given example of the Gaussian distribution one has a high
probability to draw a value x that is close to the mean p (the maximum of the pdf
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Figure 4.8: Plot of a Gaussian distribution around the mean p with the standard
deviation o

p(z) is at x = pu, see figure 4.8). The definition for the mean p is

o0

p=EXx)=<x>= / zp(z)dz (4.12)

— 00

E(-) or < - > are equivalent notations for the expectation value. Normally we do
not know the pdf and only have a number of samples drawn from the distribution.
In this case one can estimate the arithmetic mean fi:

N
1
o= N ;xz , where z; are realizations of z (4.13)

The variance o2 is defined by:

0? = B((x — p)?) =< (x — p)(x — 1) >= / (o — wPpla)d (4.14)

(e o]

If x is a random sample of data from a normal distribution, the best unbiased
estimate of its variance o2 is calculated with

1 N
2 _ )2 4.1
7=y ) (4.15)

In the case of a two dimensional distribution of the two variables (x,y) we get the
following statistical parameters:

pe = E(x) =<X>=/ / zp(z,y)dzdy

py = Ely)=<y>= / / yp(z,y)dzdy (4.16)
are the expectation values for the variables x and y.

= B((x—pe)?) = B(X*) — (1t2)?
= E(ly —1y)?) = E(y*) — (1y)? (4.17)

g

Q
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a) b) C)

Figure 4.9: Sketch of the data distribution for a a) positive, b) negative and c)
zero correlation between the samples x and y.

are the respective variances. The covariance of the samples x and y is defined by

Cuy = B((x — 1)y — 1)) = E(xy) — E(x)E(y) (4.18)
and the correlation coeflficient is
C.y
oy = ——2- 4.19
Py 020y ( )

The correlation coefficient is a measure for the dependency of the samples. In
the figure 4.9 you can see an example of a a) positive correlation , b) a negative
correlation and c) uncorrelated data. From the result p,, = 0 one can only make
the conclusion that x and y are statistically independent, if they have a two
dimensional Gaussian distribution, with the following pdf

-1 1 (x=p2)?® _ o Cay(x—pa)y—py) | (y—py)*
p(X’ y) o 2moz0y4/1-C2, exp ( 2(1-C3,) ( o2 2 OO0y + o3 >>
In the final part of the statistics review we have a look at the d dimensional

multivariate normal probability density that can be written in the following form
(Bishop, 1995)

p(x) = (27r)d/2d<13t(Cx)1/2 exp <_%(X — ) Gy (x - N)) (4.20)

where the mean p is now a d-dimensional vector, Cy is a d X d covariance ma-
trix and det(Cy) is the determinant of Cy. The pre-factor ensures again that
SO p(x)dx = 1.

The pdf p(x) is fully described by the mean p and the covariance matrix Cy.
The covariance matrix is a symmetric matrix and therefore has d(d+1)/2 indepen-
dent components. There are d independent elements in g so the density function
is completely specified once the d(d+ 3)/2 parameters have been determined. The
quantity

A?=(x—p)'CH (x—p) (4.21)
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Figure 4.10: Plot of a two dimensional normal distribution. This distribution
is completely determined by the mean vector p and a covariance matrix with
eigenvectors v, and vg, and the corresponding eigenvalues A; and As.

that appears in the exponent of the equation 4.20 is called Mahalanobis distance
from x to w.

It can be shown that the surfaces of a constant pdf for equation 4.20 are
hyper-ellipsoids on which A? is constant. Figure 4.10 shows an example for two
dimensions. The principal axis of the hyper-ellipsoid are given by the eigenvectors
v; of Cy which satisfy

vai = )\ivi (422)

and the corresponding eigenvalues \; give the variances along the principal direc-
tions.

This Gaussian distribution can be simplified by considering a form in which
the covariance matrix is diagonal

where 0;; is the Kronecker delta. This is equivalent to decorrelating the z;. Now
the number of independent parameters is reduced to 2d because the principal
directions are aligned with the coordinate axes (in figure 4.10 this would be a
rotation around the ellipsoid centre, so that v; and v, point into the directions of
the axes).

For a Gaussian distribution the components of x are now statistically indepen-
dent as all second order statistics have vanished. The joint distribution can be
written as the product of the distributions for each component separately in the
form

p(x) = [ [ p(=:) (4.24)
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This description of the factorising pdf’s is the definition of statistical independence,
and is also true for any non Gaussian pdf. All ICA algorithms are based on this
definition.

We have now repeated all the basic statistical parameters we need to derive
and understand the concepts of BSS algorithms.

4.3.3 Principal Component Analysis and Whitening

As the name implies principal component analysis (PCA) finds orthogonal direc-
tions, called principal components, within the probability density distribution of
the data along which the variance has maximum values. In the example of the two
dimensional Gaussian distribution the equation 4.22 is exactly doing this and the
v; in figure 4.10 illustrate the two principal components, as v; shows the direction
of the maximum variance and vy the orthogonal direction with the next biggest
variance. The vector notation for equation 4.22 is

CyV = AV (4.25)

where Cy is again the covariance matrix, V is a square orthogonal matrix (i.e.:
V! = VT), that has the eigenvectors v; as columns and A is the diagonal matrix
with the corresponding eigenvalues \; as diagonal elements, that are the variances
along the corresponding eigenvectors. The elements of Cy are calculated as given
in equation 4.18. Equation 4.25 holds for any pdf and not only for Gaussian distri-
butions. Without loss of generality we can set a pdf to zero mean by subtracting
the mean pu.

Let us apply this to our data model of the optical imaging stack with M frames
and P = P, x P, pixels per frame. As the mean is subtracted (u = 0) we can
estimate the elements of Cy

o = E(@m(r)n () = %me(r)xn(r) (4.26)

where m,n stand for the rows and the columns of the matrix and m,n € 1...M.
In matrix notation this is

1
C, = FXXT (4.27)

What are principal components in our data?

Figure 4.11 illustrates the principal components of a time series. In the left
column the time series of several pixels along the same time-span are drawn. Now
PCA tries to find the directions of maximal variance in the data, that are orthog-
onal. The largest variance is the change of the slow signal across the pixels (shown
on the top right) and the second biggest variance is the change of the amplitude
of the high frequency component (shown on the bottom right). There are two
components temporal PCA can find in this example.
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Figure 4.11: Tllustration of PCA on a time series that contains two components.
The left column shows the superposition of the signals in different pixels along the
same time axis. The two components are separated by PCA in the order of the
size of their variance.

PCA can be used for blind source separation by itself under certain statisti-
cal conditions of the data (Stetter et al., 2000) but we will mainly use it as a
preprocessing step for ICA. As shown by Oja (1997) the problem of estimating
the demixing matrix can be considerably simplified by whitening or sphering the
datasets before the application of BSS algorithms. The goal of this procedure is
to reduce the number of free parameters, that have to be estimated by the ICA
algorithm. In our example of the Gaussian distribution in section 4.3.2 we have
seen two effective ways of doing so already.

First of all we can subtract the mean vector g from our measured data and set
it to zero mean (E(x) = 0). This implies that s is zero mean as well, as can be
seen by calculating the expectations of both sides of equation 4.7. In the case of a
d-dimensional problem we have reduced the number of parameters to be estimated
by d (because d parameters specify p).

In the second step we reduce the number of parameters by aligning the direc-
tions of our principal components with the axis of the coordinate system. From
equation 4.23 we know that this is true when the covariance matrix Cy is diagonal.
To achieve this rotation we simply multiply the data X with the transpose of the
vectors v;, that are held in the matrix V. Now each primary direction is specified
by one variable instead of d variables, what reduces the number of variables for
the estimation of the principal directions from d? to d.

In the third step of parameter reduction we use the ambiguity of ICA, that we
can not determine the energies of the independent components (see page 48). As
a consequence, we can fix the magnitudes of the independent components, as they



56

Statistical Signal Processing Algorithms

p
v, X " Y2
p
Vi
V,X
X1 M
Sphering
V 2 X2 y2
Vi
X Y

Figure 4.12: Illustration of the sphering procedure for a Gaussian pdf (top) and a
non-Gaussian pdf (bottom). The sphering finds the principal axes and normalises
the length of each equal to one (adapted from Stetter (2000)).

are arbitrary variables, to unit variance. This is done by dividing each vector v;
by its length )\1-1/2 (see figure 4.10).

PCA solves the eigenvalue decomposition (equation 4.25) of the covariance
matrix Cy and delivers the matrices V and A we need for the parameter reduction
described above. The original measurement X is now transformed linearly by

Y := A 2VTX = DX (4.28)

what makes the components of Y uncorrelated and their variances equal to unity,
in other words the covariance matrix of Y equals the identity matrix

BYY!) =1 (4.29)

The transformation of equation 4.28 is called sphering or whitening and D is the
sphering matrix and Y are the sphered data. Figure 4.12 illustrates the process
of whitening for two kinds of data distributions. In the top row we see the trans-
form for a two dimensional Gaussian distribution. The sphering finds the principal
directions and normalises the extend of each axis to one. Now the Gaussian distri-
bution is circular symmetric and the probabilities factorise. For a joint Gaussian
distribution all the statistical parameters are now determined, as the Gaussian pdf
is fully specified by the second order statistics of the data.

The bottom row of figure 4.12 shows an example for a pdf, that is determined
by features of higher than second order. The whitening procedure again makes
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Figure 4.13: The demixing of the measurement is achieved in two steps. First the
second order correlations are removed by the sphering procedure. In the second
step an orthogonal matrix U is found by Independent Component Analysis or
Extended Spatial Decorrelation as described in the following chapters (adapted
from Stetter (2000)).

the second order moments vanish (zero mean, unit variance), but the directions of
the independent components can only be revealed by methods, that consider the
structure of higher order moments, i.e. ICA algorithms. For data that contain
higher order structure we have reduced the problem of finding the independent
components by applying PCA to the task of estimating a new matrix U, that is
orthogonal and rotates the whitened data, so that the directions of the independent
components are aligned with the coordinate axis, as is shown in figure 4.13.

Instead of having to estimate the d? parameters, that are the elements of the
d x d demixing matrix W = A~! we now only need to estimate the new orthogonal
matrix U with d(d — 1)/2 degrees of freedom. For large dimensions d this is only
about half of the parameters.

A further advantage of the data preprocessing with PCA is the possibility of
dimension reduction if there are less sources than mixtures. This done by looking
at the eigenvalues of C,, that are contained as the variances in A and throw away
the corresponding v’s, that have small A\’s and therefore only contain noise.

In conclusion we have the mixing process X = AS and need to find the demix-
ing matrix W = A1, so that S = WX. After this preprocessing we have the
sphered dataset Y = DX, so that we now only have to estimate the orthogonal
matrix U and end up with

S = UY=UDX=
= UA:VTX (4.30)

4.4 Independent Component Analysis

The term independent component analysis (ICA) describes a group of algorithms,
that can estimate the original sources s from a recorded mixture by exploiting the
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Figure 4.14: Intuitive understanding of statistical independence. Left: Plot of the
probability density of the independent variables s; and sy with uniform distribu-
tion. Right: Joint distribution of the variables after the mixing with A. The
variables are not statistically independent anymore, as the maximum or minimum
of one variable completely determines the value of the other variable. In the case
of independence on the left we can make no prediction about the one variable from
the other (adapted from Hyvérinen and Oja (1999)).

statistical properties of the higher order moments of the probability distribution.
PCA is limited to second order. Some basic assumptions have to be fulfilled by
the sources and the mixtures, so that ICA is able to work.

The most important assumption for ICA is, that there is a representation with
independent components of the recorded mixtures or equivalently the original
sources must have been statistical independent in the first place. We know the
mathematical definition for statistical independence from equation 4.24. If the
product of the individual pdf’s of the source signals equals the pdf of the overall
data distribution of the signals, then the signals are independent. Most of the time
we do not know the sources s or the mixing matrix A, therefore ICA transforms
the measurements x in a way, that the resulting estimates § fulfil equation 4.24 as
good as possible. Once the densities satisfy the equation 4.24 we know that the
estimates § equal the original sources s up to a permutation and a scaling factor
(remember the ambiguities of ICA on page 48). Let us stress at this point again,
that we look at our measurements x like the measurement of a random variable,
therefore the time structure is of no importance, because we only use the pdf’s
(we can randomly scramble the data points within the individual z; and still get
the same results).

There is also a more intuitive understanding of statistical independence, that is
illustrated in figure 4.14. Let us assume two independent variables s;, that have a
uniform distribution between two arbitrary values. The joint density of s; and s5 is
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then uniform on a square. The left plot of figure 4.14 shows data points randomly
drawn from this distribution. Now we mix these two independent components with

1 2
-1 2
The joint density of z; and x5 is a uniform distribution on a parallelogram (right
plot). We can see now that the random variables x; and x5 are not independent
anymore, because if we go to one of the minimum or maximum values of z;, the
value of x5 is completely determined. We can predict the value of one distribution
from the value of the other distribution. In the left plot for each value of s; all
values of sy are possible, so they are independent. This gives us the marginal pdf
of s; and sy by

the mixing matrix A = and we get two mixed variables z; and x,.

pi(s1) = /p(81752)d52 (4.31)

and similarly for s,. Then we define that s; and sy are independent if and only if
the joint pdf is factorisable in the following way (Hyvérinen and Oja, 1999):

p(s1,82) = p(s1)p(s2) (4.32)

This is true for any number of random independent variables s;. From this and
the independence assumption we can derive a important property of independent
random variables. Given two functions h; and hy we always have

E(hi(s1)ha(s2)) = E(h1(s1))E(ha(s2)) (4.33)

This can be proven as follows:
Eltn(sbals) = [ [ ha(sha(salplonsa)dsidss
= [ [ mlsopsnatsaptsdsds:
= [ msp(sids: [ ha(sp(sa)ds:

= E(hi(s1))E(ha(s2)) (4.34)

One example for h; and hs is the potency, that will be important when we consider
the higher order moments of the distributions.
For hi(s1) = (s1)® and hy(ss) = (s2)? we have

E((51)%(s2)”) = E((51))E((s2)") for any ., (4.35)

From this we can see that uncorrelatedness is a weaker argument, than statistical
independence. Two random variables s; and s, are uncorrelated if their covariance
is zero

E(8182) - E(Sl)E(Sg) =0 (436)
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If the variables are independent, they are uncorrelated, what follows directly from
equation 4.33 with hy(s1) = s; and ha(s2) = so.

The other way around this is not true, because uncorrelatedness does not imply
independence. For example assume that (si, sy) are discrete valued and follow a
distribution, that the pairs are drawn with a probability p = 1/4 equal to any
of the following values: (0,1),(0,—1),(1,0),(—1,0) (Hyvérinen and Oja, 1999).
Then s; and sy are uncorrelated, but

E(sisy) = 0# 1 = E(s{)E(s3)
so the equation 4.33 is violated and the variables are not statistically independent.

The second fundamental restriction to ICA is that the independent components
must be non Gaussian for ICA algorithms to work. In the top row of figure 4.12
we see the result of a two dimensional Gaussian distribution after sphering. The
density is completely symmetric and has no information on the directions of the
columns of the mixing matrix A. Therefore we can only estimate the 5; up to a
orthogonal transform. If only one independent component is Gaussian then ICA
still works.

4.4.1 Estimation of Extremal Kurtosis

The advantage of ICA over PCA is, that it uses the information of the higher order
statistics in the data to find the estimates § of the original independent sources s
and is therefore not bound to find only orthogonal components. The higher order
statistic is expressed in the higher order moments, or cumulants respectively. The
first cumulant is the mean p of a distribution. The second cumulant represents
the variance o2. For a symmetric distribution the third order cumulant, that is
referred to as skewness, vanishes. The fourth order cumulant is called the kurtosis
and is defined for a random variable x by:

kurt(z) = E(z*) — 3(E(2%))? (4.37)

As we know from equation 4.17 the variance equals one as we have zero mean unit
variance data. This simplifies the right hand side of equation 4.37 to

kurt(z) = E(z*) — 3 (4.38)

The kurtosis is the lowest cumulant that holds information about the statistics
of the pdf after decorrelation by whitening. As figure 4.15 shows, the kurtosis
is a measure for the gaussianity of a distribution. For a Gaussian distribution
the kurtosis is zero, for a supergaussian distribution the kurtosis is positive and
negative for subgaussian distributions.

So how can we use this information of the kurtosis to find the independent
components from the mixture? The solution was introduced by Hyvérinen and
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Figure 4.15: Kurtosis kurt as a mea-
sure of nongaussianity of a pdf. A
Gaussian distribution has a kurtosis
equal to zero as it has no higher than
second order statistic (dashed line), su-
pergaussian densities a positive (thick
line) and subgaussian densities a neg-
ative kurtosis (thin line). The su-
pergaussian distributions have heavier
tails than a Gaussian pdf, which makes
the calculation of the kurtosis sensitive
to outliers in the data.

Oja (1997). The key is the central limit theorem of probability theory, that shows
that the distribution of a sum of independent nongaussian variables tends towards
a Gaussian distribution. Thus the sum of two such variables has a distribution
that is closer to a Gaussian than any of the two original random variables, i.e.
the nongaussianity gets more and more lost. The following example illustrates
the demixing procedure for a two dimensional model x = As. Let us assume the
independent components s, ss with zero mean, unit variance and kurtosis values
kurt(sy), kurt(sz) # 0. For the kurtosis of independent random variables s1, s the
following holds:

kurt(sy + s2) = kurt(sy) + kurt(sz) (4.39)
and
kurt(as,) = o kurt(s,) (4.40)

To estimate one of the independent components §; consider a linear combination
of the z; with § = w'x = 37 w;z;. The vector w’ has to be determined and
if w?' equals a row of W = A~! then §; is one of the sources. We make the
transformation

z=A"w (4.41)
and get
§=wix=wlAs=2z's = 2,51 + 2989 (4.42)

From the equations 4.39 and 4.40 we have kurt(8) = z{kurt(s;) + z3kurt(sz). On
the other hand we made the constraint that the variance of 8§ equals 1. This implies
a constraint on z: F(8?) = 2} + 22 = 1. Geometrically this means that the vector
z is constrained to the unit circle. The optimisation problem is now : what are the
maxima of the function |kurt(8)| = |ztkurt(s,) + z3kurt(sz)| on the unit circle?
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Figure 4.16: Independent Component Analysis by estimation of extremal kurtosis.
After sphering the FastICA algorithm finds the direction in the joint densities,
along which the absolute kurtosis of the projected data becomes maximal. The
example shown consists of two supergaussian sources. On the left hand side we
see the result after sphering. The bottom plot shows the projection of the mixture
on the axis. After the separation (right hand side) the projection of the densities
is more supergaussian than in the mixture (adapted from Stetter (2000)).

In the article by Delfosse and Loubaton (1995) it is shown that the maxima are
at the points where exactly one of the z; is zero. Because of the unit circle the
other z; is then equal to 1 or -1 and we get from equation 4.42 that 5; is one of
the original sources s; and therefore the problem is solved.

For many dimensions the same principle is used by finding one row w’ of W
and then repeating the procedure on the orthogonal subspace. The fast fixed point
algorithm for ICA, that was introduced by Hyvérinen and Oja (1997), works on
this principle and yields the rows of the unmixing matrix W = U one at a time.
The first row w? of W is obtained by the fixed point iteration from the sphered

data y (remember y = Dx)
w (iter + 1) = E(y(w] (iter)y)?®) — 3w (iter) (4.43)

while for the remaining rows after each iteration step the resulting vector w; is
projected into the subspace orthogonal to wy, ..., w;_.

In Figure 4.16 the concept of estimation of extremal kurtosis is illustrated.
After sphering of the data the algorithm finds an orthogonal transform U so that
the projection of the pdf of the data onto the new axis has its maximum absolute
value of the kurtosis.
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Figure 4.17: The optimal information transfer of the input x with the pdf fx(x)
through a sigmoidal neuron with the non-linear transfer function g(x) is achieved
when the resulting density fy(y) is as uniform as possible (maximum entropy!).
This is achieved when the mean and the variance of x is matched with the threshold
wp and the slope w of g(x). This property will be used in the learning step of the
Infomax algorithm (from Bell and Sejnowski (1995)).

4.4.2 The Infomax Principle

A second class of ICA algorithms makes use of all higher moments of any order to
explore the probability density of the mixture and find the independent compo-
nents. To do this we use a generalisation of the Linsker (1989) Infomax principle
that was introduced by Bell and Sejnowski (1995). The Infomax principle was
described by Laughlin (1981) in the following way: when inputs are to be passed
through a sigmoid function, maximum information transmission can be achieved
when the sloping part of the sigmoid is optimally lined up with the high density
parts of the inputs (see figure 4.17). To understand what that means for our ICA
problem we will introduce now a measure for the information content of a stochas-
tic variable and then we will see that maximising the information transfer is equal
to reducing the redundancy between sources, which is equal to making the sources
independent.

The measure we are looking for was originally developed in the context of
thermodynamics and introduced to information theory by Shannon (1948). It is
called Entropy H and can be interpreted as the degree of disorder of a system or
the information content a variable carries. For probability distributions p which
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are functions of variables x we define the entropy to be (Bishop, 1995):

H(x) = —/p(x) In p(x)dx (4.44)

The entropy H has its maximum value for a bounded variable x if it has a flat
probability distribution, i.e. the probability density p;(x) to draw a value z is equal
for all € (a,b), where a and b are the boundaries. In this state the system has
its maximum disorder. On the other hand H has the smallest value close to zero,
when all the probability mass is concentrated in one value, i.e. the p(x) = §(x—pu).
This very sharply peaked distribution has the highest possible order.

In the information theoretic interpretation of the entropy, H tells us the amount
of information, or equivalently the ’degree of surprise’, which is obtained when we
learn that a particular value was drawn. When one probability p; equals 1 (so the
others must be 0) then the event is certain to occur, and there is no surprise when
the event is found to occur (and no information is received). Again when all p;
are equally distributed, we have the maximum surprise (or information transfer)
when a value z; is drawn.

From the definition of independence in equation 4.24 and the entropy H in
equation 4.44 we see that for independent s the following is true

0= (> H(s;) — Hls) (4.45)

So any non zero value on the left side of equation 4.45 would derive from a mixing
of the independent variables s and is a measure for redundancy of information in
the components of the mixture x = As. This gives the definition of the mutual
information (MI)

MI(x) = (3 H(z) ~ H(x) (4.46)

Note that this expression is identical to the Kullbach-Leibler distance (KLD) of
the joint density and the factorisation

KLD(p(x), H p(z;)) = / p(x)In (%)
— (Z H(xj)) — H(x) (447)

The KLD is a distance measure between two distributions. This shows us again
that the mutual information will be minimal, if the variables are statistically inde-
pendent. So we solve the ICA problem if we make the mutual information vanish.

One solution to this was introduced by Bell and Sejnowski (1995) from a neu-
ral network point of view. The authors proved that maximising the information
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transfer reduces the redundancy between the units in the output layer. Starting
from the Infomax principle (see page 63) they show that for continuous determin-
istic mappings the mutual information between the inputs and outputs can be
maximised by maximising the entropy of the outputs alone. Do not confuse this
with the mutual information between the outputs themselves. Here the mutual
information between the inputs and the outputs of a network is a measure for
the information transfer through a network. Now Shannon (1948) has shown that
the uniform distribution of a random variable with finite support has the largest
entropy H of all possible distributions. So once the distribution of the elements of
the outputs have a uniform distribution they are independent.

The last thing we have to prove now is that the inputs of the non-linear in-
vertible transform ® are independent as soon as the outputs are independent.
The source estimates § are transformed component wise by a non linear invertible
function ®

a=d(5), z=2(Wx), (®)i=d¢ (here ¢ = tanh) (4.48)

in a way that the data vector is restricted to a M-dimensional hypercube —1 < z; <
1, [=1,...,M. Because the transform ® acts component wise it does not change
any dependencies between the components. Therefore if the z; are independent,
the §; are independent too. This can be shown with the transformation rules for
probability densities (Papoulis, 1965)

p(s) = q(z)det <%> = q(z)det]. (4.49)
with
0z ,
Ju = (9—; = Oy (1) (4.50)

where the prime denotes the first derivative of a function and 6;; denotes the Kro-
necker delta, which is 1 if £ = [ and 0 otherwise. Once the pdf of the transformed
vector z factorises, we obtain the following term for the source density:

pls) = (Hm(z») (Hso;(sl))
= [ atas))es)
1
Lm0, (4.51)
1

The equations (4.51) say that as soon as ¢(z) factorises, the source density p(s)
factorises as well and we have found the independent components.

The confusing bit of the ICA with the Infomax principle is the two step algo-
rithm that is iteratively used. The first step is the calculation of estimates § with
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Figure 4.18: Sketch of the two step iteration algorithm of ICA with the
information-maximisation approach. Logical concept:

e If the mutual information between source estimates §; is 0 they are indepen-
dent.

e Maximise information transfer between input and output layer < reduce
redundancy between units in the output layer.

e Mutual information, i.e. information transfer, between the input layer and
the output layer can be maximised in a network with invertible, continuous,
deterministic mapping, by maximising the entropy between the outputs alone
= maximum entropy of outputs = independent outputs.

e The maximum entropy for a bounded random variable is the uniform distri-
bution.

e Because the transform ® acts component wise the inputs §; are statistically
independent when the outputs z; are independent = ICA problem is solved.
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a demixing matrix W from our measurement x, so § = Wx. The first W is cho-
sen randomly. This step is the standard demixing part and contains no Infomax
concept so far.

The second step is the Infomax step, where we take the § and get a measure how
independent they are with the help of a nonlinear transfer function ®. If the z =
®S have a uniform distribution they are independent and therefore our estimates
§ are also independent. We found the W = A~!. If the z are not uniformly
distributed we use a learning rule to change W and calculate new estimates § and
start a new Infomax step. With the right learning rule the distribution of the z
will converge to the uniform distribution in a hypercube.

To end with a perfect uniform distribution the marginal source densities s;
would have to match the derivatives of the nonlinearity. As the source densities
are unknown, this is normally not given, but a approximately correct nonlinearity
still gives good separation results and makes the z; converge to a flat distribution.

The learning rule for the iterative change of W with the Infomax principle is
given in Bell and Sejnowski (1995) and a extensive proof of it is derived in the
appendix of this paper. This learning rule performs a gradient ascent in the infor-
mation that the outputs transmit about the inputs by noting that the information
gradient is the same as the entropy gradient for invertible deterministic mappings.
This involves the calculation of the inverse of W, which is computationally ex-
pensive and should be avoided. Instead of taking the actual gradient one can take
its product with a positive definite matrix WZ'W. The resulting so called natural
gradient, first introduced by Amari (1996), has a positive inner product with the
original gradient and points therefore into the same overall direction (Parra, 1998).

This gives us the following learning rule for the matrix elements of W

W(k)y (4.52)
W(k+1) = W(k)— ®(8)s"W(k) (4.53)

§

In the beginning we stated that this method uses the statistics of all higher mo-
ments. So where in the procedure did this happen? The higher order statistics
are accessed through the use of the static non-linear function. The Taylor series
expansion of the non linearity yields the higher order terms. By passing the infor-
mation through this non-linearity the algorithm enables the network to find higher
order forms of redundancy inherent in the inputs.

4.5 Extended Spatial Decorrelation

The two ICA algorithms we have considered so far make the basic assumption
that the measurement x is a linear mixture of statistically independent sources,
i.e. their probability densities factorise. To generate this separation the higher
order moments in their pdf’s are used. These algorithms do not use the time
or space structure of the measurement. Therefore any random scrambling (i.e.
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Figure 4.19: Independent Component Analysis with information maximisation.
After sphering (left) the orthogonal transform U is applied (middle). To control
if the sources are independent after the transformation with U another transform
® is applied. If the distribution of z is uniform (right), independence is achieved.
If not, U is modified and the next iteration step starts. The three graphs show
the final perfectly separated result (adapted from Stetter (2000)).

permutation) of the data in a measurement x; would still deliver the same
separation result. Omne main drawback of the separation with higher order
moments in practice is that we have to make a estimation from a measured
sample of finite length. Cumulants like the kurtosis are very sensitive to out-
liers and therefore need a high number of data in the measurements to make a
reliable estimation. This is also one of the reasons for their high sensitivity to noise.

We now introduce a class of algorithms, that only relies on the second order
statistics of the data to find the unmixing matrix W and by doing this has a
more robust estimation from a realistic sized data set. The following algorithms
explicitly make use of the structure in the original sources s and do not rely on
the statistical independence assumption. This makes them less sensitive to small
dependencies in the sources, that can be present in real world data. So strictly
seen they are not ICA algorithms (they do not make use of the equation 4.24) but
BSS algorithms as the sources s and the matrix A are not known.

A second order BSS algorithm for the separation of a mixture of one dimen-
sional time series was introduced by Molgedey and Schuster (1994). We extended
the algorithm for the analysis of two dimensional spatial structures (Otto et
al., 1998; Schiefll et al., 1998; Schiefil et al., 1999; Schiefll et al., 2000c; Schief3l
et al., 2000b). This algorithm is called extended spatial decorrelation (ESD) and
makes use of the simultaneous decorrelation of the sources and shifted versions of
them. We then extended the algorithm for use with multiple shifts (Schoner et
al., 1999; Schoner et al., 1999b; Schéner et al., 2000) and added a regularization
term (SchieBl et al., 2000a).

In the following sections we introduce cross-correlation function and the concept
of how it can be used for blind source separation with ESD. Then the different
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versions of ESD, i.e. single shift ESD, multi shift ESD and regularized ESD are
derived.

Let us derive now how we justify the basic assumptions we make for ESD later
on. We know from the definition of covariance in equation 4.18 and equation 4.36
that two source estimates 5; and S, are uncorrelated if their covariance is zero. As
we only consider the expectation values E(-) equation 4.36 is also true for shifts
Ar within the zero mean sources and can be reformulated as

E(51(1)ém(r + Ar)) = E(5(0)E(m(r+ Ar)) =0 ¥ [#m,Ar  (4.54)

With the mixing matrix A and the demixing matrix W we have § = WAs which
leads us to

E(5(r)8y,(r+Ar)) = E (Z(WA)M&'(F) Z(WA)ijj(r + Ar))
- Z _(WA)u(WA) ;B (5:(x)s;(x + Ar))
= D (WA)u(WA),is B (si(r)si(r + Ar))

(2

= D (WA)(WA),ui(Cs(r))i (4.55)

(2

This condition for a non singular (WA) is only fulfilled if the matrix (WA) has
only one element in each column and row that is not equal to zero, which is the
definition of the permutation matrix P, that we know already from the second
ambiguity of ICA on page 49. From this we see that we solved the BSS problem
with considering only second order statistics, if equation 4.55 is true for any Ar.
One exception is the extreme case where all s; have the same auto-correlation
function, because then equation 4.55 would be fulfilled by any orthogonal matrix
(WA). Therefore one of the assumptions for ESD, that we formulate later in the
text will be , that this exception is excluded, i.e. auto-correlations are different for
all s;.

This demonstrates how ESD makes explicit use of the spatial structure in the
patterns s;. Equation 4.54 demands, that for all Ar the correlations vanish. Later
we will see that we can only consider a limited number of shifts, for computational
reasons. But let us first introduce the cross-correlation function and have a look
at some of its properties.

The definition of the cross-correlation function between two source patterns
s(r) and s,,(r) is
im 1
C'™(Ar) = E (s;(r)sp(r + Ar)) = 3 > si(r)sm(r + Ar) (4.56)
The shift Ar is often called the lag of the correlation function and the right hand
side of equation 4.56 is the deterministic cross-correlation sequence, that we have
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to use as we only know the measured values (i.e. pixels) but not the continuous
function. Each lag Ar delivers one value C™(Ar) and as the number of overlapping
pixels between s; and s,,, decreases with the size of Ar we normalise with the value
Q, that is the number of pixels the two sources still have in common. If [ = m we
get the auto-correlation CY(Ar) of a source s;. To avoid confusion between the
terms covariance and auto-correlation recall that we assume zero mean and unit
variance data and therefore both terms are mathematically the same.

To get a feeling for the meaning of a cross-(auto-)correlation function let us
have a look at two zero mean one dimensional time series. The first time series is
a simple sine function s;(¢) = sin(wnt) and the second time series is white noise
S9(t) = randn(t). In figure 4.20 on the left hand side we see the plot of a sine wave
(a)) and its auto-correlation sequence (c)) without correction by the value Q. For
the zero lag we always get a maximum as the variables in the sum of equation
4.56 are the same and we therefore never have negative values in the sum. With
increasing lag the correlation coefficient becomes smaller until the shift = (0.5 on
the x axis) where we always add up pairs of s;(t)s1(t + ) with negative value.
Now the correlation coefficient rises again up to the shift 2. As we did not divide
by @ this maximum is smaller as there is less overlap and therefore less elements
in the sum.

The right hand side plot of figure 4.20 demonstrates why a slow decay of the
auto-correlation function is a measure for the smoothness of the source s;. In the
case of the white noise (b))we get again the maximum for the zero lag. But in
contrast to the sinusoidal signal a small shift has a drastic effect on the size of
the C! | because the values are random and therefore the sum of equation 4.56
cancels out over the average (d)). So a smooth decaying CY tells us that the
neighbouring values s;(t) and s;(t + 1) are similar.

Extended spatial decorrelation makes the following assumptions:

i): The original sources s are smooth in space, which is reflected in a smooth
auto-correlation function.

ii): Different sources sy, s, are uncorrelated among themselves. This is expressed
in a small (ideally vanishing) cross-correlation value C™(0).

iii): Sources s; are uncorrelated with shifted versions of s,,, i.e C/™(Ar) vanishes
for all Ar.

iv): The auto-correlation functions must be different between all sources.

For M given sources s we can write all auto- and cross-correlations in form of
a matrix Cg(Ar) with (C4(Ar))y, = CI™. The diagonal elements of Cg(Ar)
are the auto-correlations and the off diagonal elements are the cross-correlations.
Therefore the assumptions i), ii) and iii) just request that Cg(Ar) is a diagonal
matrix for all Ar, which gives the following rule for the matrix elements C'™(Ar)

C'™(Ar) = §,,,C™(Ar) = C(Ar) = A(Ar) V Ar (4.57)
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Figure 4.20: Examples for auto-correlation functions of a sine wave and random
white noise. In a) we see a plot of a sinus over a period of 4w. The label of the
X axis is given in multiples of 27, i.e. a full period. In c) the plot of the auto-
correlation function of this sine wave is shown. Now the label on the x axis denotes
the shift of the function, i.e. the lag, in the calculation of the correlation coefficient
in multiples of 27r. The right column shows an example of random white noise (b))
and its auto-correlation below (d)). Here the x axis simply denotes the number of
the measurement and the lag respectively. The auto-correlation coefficient shows
a smooth transition for the smooth sine wave, whereas the correlation value nearly
disappears for a shift bigger than zero for the white noise. Therefore we say that
the sinus has a good auto-correlation and the white noise has no auto-correlation.

where A(Ar) denotes the diagonal matrix of the auto-correlation coefficients.

So let us summarise what we have so far: From the equation 4.55 we derived
our assumptions i)-iv) for ESD and got the mathematical formulation in equation
4.57. This is equivalent to a simultaneous decorrelation of all s for all Ar.
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As we do not know the original source s we have to answer the question now,
how we can minimise the correlations between the estimates §; for all Ar. Equation
4.54 is also true for the § and in the case of uncorrelated s the covariance matrix
Cs(Ar) is diagonal:

(Cs(Ar))ym = E(5(r)Sp(r + Ar)) =0 V [ #m,Ar (4.58)
With the relation § = Wx we get

C:(Ar) = WC,(Ar)W7” (4.59)
and analogously from x = As

C.(Ar) = AC,(Ar)AT (4.60)

Due to the mixing process the C,(Ar) are not diagonal anymore, but still sym-
metric.

The task of the ESD algorithm is to obtain the separated estimates § by cal-
culating the covariance matrices C,(Ar) for a (good) set of Ar and optimise the
matrix W in a way that the resulting C;(Ar) are diagonal simultaneously.

4.5.1 Single shift ESD

The simplest application of the ESD concept is the use of the zero shift decor-
relation matrix Cx(0) and a second decorrelation matrix Cx(Ar). This delivers
M(M + 1) equations

Cu(0) = ) AuA;CL0)
l

Cy(Ar) = > AyA;Cl(Ar)
l

for the M (M +1) unknowns A,;, CY(0), CY(Ar). The mixing matrix A only
has M (M — 1) unknown variables instead of M? as one might expect, due to the
fact that the scaling of the columns has no effect on the mixing and therefore a

fixed diagonal can be assumed without loss of generality. In the matrix notation
and W = A~! we get

WC,(0)WT = C,(0) = As(0) (4.61)
WC,(Ar)WT = C,(Ar) = A (Ar) (4.62)

The Cg equal the Ag, i.e they are diagonal matrices with the auto-correlations
as values, because the sources where uncorrelated. For now we assume perfect

separation by the ESD method so the § and the s are the same. We see that W
diagonalises C(0) and Cx(Ar) simultaneously and if Ar is chosen so that

CH0)C™™(Ar) # CH(Ar)Cy™™(0) ¥V 1 #m (4.63)
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then the problem is solvable up to M! permutations (Molgedey and Schuster, 1994).

We now can solve our BSS problem by solving equations 4.61 and 4.62 in two
steps. Once we have the preliminary matrix D, that solves the first equation we
only apply orthogonal transforms U to solve the second equation and therefore
do not destroy the condition for equation 4.61. This way we find the demixing
matrix W = A~! = UD. The first step diagonalises the zero shift correlation
matrix Cs(0) and as we assume the sources s to be zero mean and unit variance,
Cs(0) equals the identity matrix I. Therefore equation 4.61 is nothing else than
the sphering we know from section 4.3.3 and we get

DC,D” =1 (4.64)
and as Cx(0) is symmetric we can derive the eigenvalue equation

Cx(0)Vp =VpAp (4.65)
with

D=A,V} (4.66)

After the sphering the data y = Dx have zero mean and unit variance and no
cross correlations, i.e. Cy(0) =1.

Now we look for the orthogonal matrix U that diagonalises Cy(Ar). We see
from

C,(Ar) = DC,D” = DAC,(Ar)A"D” (4.67)

that C,(Ar) is symmetric, because Cs(Ar) is diagonal (assumption iii) for ESD).
So the eigenvalue equation

Cy(AI')VU = VUAU (468)
delivers
U=V} (4.69)

Because orthogonal transforms preserve the vector lengths and angles between
the vectors, applying U to C,(0) does not destroy the results of the first step
and we get the overall demixing matrix W from W = UD, that diagonalises
simultaneously

WC,(0)WT = UDC,(0)D'UT =1 (4.70)
WC,(Ar)WT = UDC,(Ar)D'U” = A(Ar) (4.71)
and solves the ESD problem.

Both the sphering in step one and the calculation of the eigenvalue equation
in step two can be solved analytically without the use of a learning network and
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are much faster than the ICA algorithms in section 4.4 and the multi shift ESD
algorithms in the following section.

In real world datasets we often have the problem that Cs(Ar) is not perfectly
diagonal and therefore Cy is not perfectly symmetric. In this case we use the
artificially symmetrised matrix 1(Cy(Ar) + Cg(—Ar)) in the second step and still
get a satisfying separation.

The advantage of single shift ESD, apart from the computational speed, is that
equation 4.57 only has to be fulfilled for a single shift Ar. The ESD assumptions
about the sources are not that restrictive anymore, but the shift is arbitrary and
the separation result depends a lot on a good choice of Ar. This good choice of Ar
for single shift ESD will always be a guess as we again do not know the original
sources s in equation 4.57 to make this judgement.

By our experience a small shift of only a few pixels (i.e. 5 pixels) delivers good
results, as the auto-correlation of the smooth sources does not change to much, but
the auto-correlation of the noise will drop drastically. This brings us to a problem
we generously neglected so far, the presence of noise in the mixtures x.

4.5.2 Multi shift ESD

In the presence of sensor noise we got the notation for our mixing model in equation
4.6. The introduction of the noise term has the effect, that the sphering in the
first step of the single shift ESD tries to compensate not only for the effects of the
mixing matrix A but also for the additional noise

Cx(0) = AC4(0)A" + E (n(r)n(r)") (4.72)

Even if the sources s fulfilled equation 4.57 our source estimates s, that inherently
carry the noise compensation from sphering might not do so anymore. The effect
of this is that the C4(0) and Cs(Ar) are not diagonal and the basis of ESD, that
we derived from equations 4.61 and 4.62 is destroyed. In order to still solve the
ESD problem we have to find a non-orthogonal matrix U in the second step to
achieve simultaneous diagonalisation of the correlation matrices.

In the ESD assumption we said that all Cs(Ar) should be diagonal for any (Ar).
If we now use multiple Cx(Ar) for simultaneous diagonalisation we can increase
the robustness of the method against the influences from the noise compensation.
As we can not rely on the diagonal form of our Cg(Ar) anymore we have to derive
a optimisation procedure that diagonalises the correlation matrices for many shifts
as good as possible.

The neural network algorithm to solve this task is called multi shift ESD and
was introduced in (Schoner et al., 1999; Schéner et al., 1999b; Schoner et al.,
2000). We use a gradient descent algorithm to find the absolute minimum of
a cost function, that diagonalises the equation WC,(Ar)W7T = A(Ar) V(Ar).
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One possible cost function E to solve this problem after sphering is

E(U) = > ) ($m(r)si(r+ Ar)),

Ar l#m

= > Y ((ucy(anu”), ) (4.73)

Ar l#m

The gradient descent on this cost function enables us to a find non-orthogonal
matrix U as claimed before. All this cost function does is to score the ability to
remove the cross-correlation functions between the source estimates (i.e. make the
sum of all off-diagonal elements of UCy(Ar)U7 as small as possible) while keeping
the auto correlation functions finite for all Ar. To avoid the trivial solution as the
minimum of the cost function the diagonal elements of the estimated mixing matrix
A are fixed to 1.

(A =1 (4.74)

In practice we do not use all possible shifts, but a limited number. Normally
we have chosen about 12 shifts that are arranged in a star like pattern around
the zero shift. One first applies the sphering and then calculates the correlation
matrices for the given shifts. Then the gradient descent is applied to the calcu-
lated Cy(Ar). The gradient of F(U) is calculated numerically. To accelerate the
gradient descent we used the conjugate gradient method described by Press et al.
(1988) with dynamic step-width adaptation published by Riiger (1996). ”In order
to achieve dynamic parameter adaptation, it is necessary to modify the learning
algorithm under consideration: evaluate the performance of the parameters in use
from time to time, compare them with the performance of nearby values, and (if
necessary) change the parameter setting on the fly. This requires that there ex-
ists a measure of the quality of a parameter setting, called performance, with the
following properties: the performance depends continuously on the parameter set
under consideration, and it is possible to evaluate the performance locally, i.e. at
a certain point within a inner loop of the algorithm (Riiger, 1996)”.

Instead of applying sphering first and then calculate U one can also minimise
a cost function that optimises the full separating matrix W

BE(W) =" (WCx(Ar)WT), )? (4.75)

Ar l#m
It implicitly calculates the sphering matrix D and the demixing matrix U, but is
less stable and more likely not to converge.
Noise-Robust Sphering

One possibility to make the gradient descent more stable is the so called noise-
robust sphering. The non-orthogonality of U was forced by the influence of the
noise on the result of the sphering (Miiller et al., 1999). This influence can be
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weakened by using a symmetrised shifted correlation matrix with a small shift
vector Ar,, (i.e. one pixel) instead of the zero shift covariance matrix (Miiller et
al., 1999)

Cx = AC(Ar,)AT + (n(r)n”(r + Ar,)),
AC(Ar,)AT =~ AC4(0)A” (4.76)

As we know from figure 4.20 d) this destroys the correlation for white noise but
has hardly any influence on the correlations of the smooth sources.

4.5.3 Regularized multi shift ESD

So far we only considered BSS algorithms that do not need any information about
the mixing matrix A and the sources s. Only the assumption of factorising pdf’s
for ICA and the assumptions about the cross- and auto-correlation in case of ESD
must be fulfilled by the s. Let us have a closer look at the properties of the cost
function in equation 4.73 now.

In the paper by Molgedey and Schuster (1994), the constraint to fix the diagonal
auto-correlation values to 1 was suggested to avoid trivial solutions of W. However
under certain conditions the gradient descent with the constraint on the diagonal
elements of A does not prevent W from becoming arbitrarily small and decreasing
the cost function without diagonalising Cg(Ar). We will only give a short example
here to illustrate this weakness. An extensive discussion on cost functions for ESD
and their limitations can be found in (Vollgraf, 2000).

Consider two covariance matrices

i ( (1) g ) (4.77)

and

= ( (2) (1) ) (4.78)

for two given source signals, which are mixed using the matrix

A= ( 0%7 0; ) . (4.79)

Figure 4.21 shows a contour plot of the cost function with respect to the two
off-diagonal elements of the estimated mixing matrix A. The hyperbolic ridge
corresponds to values at which A becomes singular and causes an infinite value of
the cost function. Solid lines mark gradient descent trajectories for five different
initialisations. It can be seen, that depending on the initialisation, the gradient
descent procedure may succeed to find the true mixing matrix (trajectories 1,3), or
may diverge, leading to arbitrary small W and hence trivial minima (trajectories
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Figure 4.21: Surface of the cost function equation (4.74) with the constraint (A); =
1 for two sources and the mixing matrix provided in the text. The two hyperbolic
ridges are regions with singular W~ and have infinite values of the cost function
(adapted from Vollgraf et al. (2000)).

2,4,5). Due to these properties, the constraint (4.74) does not seem to be suitable
for gradient based joint diagonalisation.

In order to prevent the gradient descent from running into the wrong minima in
the publication by SchieBl et al. (2000a) an additional so called regularization term
was introduced. These regularization terms specify prior knowledge we have about
the time course of the signal of interest. One possibility of such prior knowledge
about the time course of a source in optical imaging is the metabolic response to
the stimulus onset. Because W~ should be close to A after the decorrelation
process, we introduce a regularization term, which punishes derivation of W1
from an estimated A. As column j of A represents the time course of signal j, we
weight this derivation by the confidence we have in our prior knowledge o;:

Ew (W) = ZO‘J' ' Z (W), — Ay)° (4.80)

The farther the distance (sum of squared differences) is from the assumed time
series, the higher the regularization costs are. Altogether we get a cost function

E(W) = Es(W) + Ew(W), (4.81)

which is minimised using the gradient descent procedure mentioned above.
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Strictly speaking the regularized multi shift ESD is not a BSS algorithm any-
more as we make explicit assumptions about the mixing matrix A and therefore
the mixing process. This algorithm is rather a hybrid method that uses spatial
information in the data as well as the temporal structure.



Chapter 5

Performance Test on Artificial
Data

In order to make a quantitative study of the performance of the individual separa-
tion algorithms we must compare the original sources with the separation results.
We will introduce a measure that will tell us on a continuous scale from zero to
one how good these estimates are. The problem we have with our datasets form
the imaging of the intrinsic signals in vivo is that we do not know the spatial dis-
tribution of the underlying original sources, as they differ slightly from individual
to individual. There are possibilities to get a better idea by simultaneous electrode
recordings and imaging or the staining of the tissue, but still the biological and
metabolic activities we can control in this manner are different in time and space
than the intrinsic signals.

To overcome this weakness we created different sets of artificial data that on
the one hand should have similar statistical properties to the optical images and
on the other hand allow us to explore dependencies of the separation quality of
the algorithms on special features of the data. We have seen in chapter 4 that the
individual algorithms are based on different assumptions. This will certainly be
reflected in the separation performance depending on how well the assumptions
are fulfilled. So keep in mind that a poor separation quality does not indicate that
the BSS or ICA algorithm is less elaborate but that it is not suitable for the given
problem.

5.1 The Artificial Datasets

We have used three different artificial datasets for testing the algorithms. In the
later results only the meaningful combinations of datasets and algorithms that
underline the tendencies will be presented due to space limitations.
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Figure 5.1: Illustration of the statistical parameters for the non-Gaussian indepen-
dent sources. The top row shows the individual sources. As they were designed
to only meet the assumptions made by the ICA algorithms about the pdf’s they
contain no structure. In the middle row we can see the histograms of the gray
values that illustrate the source distribution. The flat histogram on the left shows
that source one is sub-Gaussian whereas the other two are super-Gaussian. From
the joint distributions in the bottom row we can detect that the sources are
independent.

5.1.1 Independent Sources

This dataset was designed to fulfill the basic assumptions of the classical ICA
algorithms like kurtosis optimization and Infomax. That is the sources should
be as non-Gaussian as possible (i.e. have higher order moments) and should be
statistical independent. For all the tested datasets we calculated three images. For
this set the first image was a dataset with a sub-Gaussian gray value distribution.
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It was calculated by taking a random equal distribution and has a kurtosis of
kurt ~ —1.2. The other two sources are super-Gaussian distributions that were
calculated by taking the power of three of a random normal distribution. These
super-Gaussian sources had a kurtosis around kurt =~ 40. For each mixture the
three sources were calculated again and with the random values (hence the kurtosis
changed a bit (therefore the ~)).

Figure 5.1 shows three generated images in the top row and reminds us again
that ICA algorithms purely consider the pdf’s but no structure.

In the second row we see the histograms of the gray value distributions. For
the two supergaussian images we have clipped the y-axis to be able to display the
tails of the distribution.

In the third row we see the joint distributions and as we know from figure 4.14
the distributions are independent because we can make no prediction from one
value of the first about the a value of the other distribution.

The three independent sources are generated randomly and therefore there is
no structure in the images. The auto-correlations of the three images are similar
to that of white noise and have a strong decay for even small shifts (see example
in figure 4.20 d)). The two dimensional auto- and cross-correlations are not shown
for this test dataset as they again only show a peak in the middle.

5.1.2 Smooth Sources

The sources we refer to as smooth sources were generated so that they yield prop-
erties of our real optical images. All the images are calculated from superimposed
two dimensional sine functions with different frequencies. The second image is
additionally multiplied with itself two times. The third image is rescaled on top
of that by the pixel maximum times a sign function. Therefore we have spa-
tial smooth structures in the images and they are subgaussian (smooth source 1,
kurt =~ —0.75) or supergaussian (smooth source 2, kurt ~ 2.1; smooth source 3,
kurt = 0.6).

In figure 5.2 the top row displays the three smooth sources. We now have the
spatial smooth structure like in the optical images. The first two images should
represent intrinsic patterns with different spatial frequencies whereas the third
smooth source illustrates the gradual change in intensity across the image due to
illumination or global response. The second row displays the gray value histograms
again and as stated above the first image has a negative kurtosis and the other
two a positive kurtosis.

The bottom row plots the joint pdf’s of the smooth sources and we can see that
the sources we generated from sine functions have very elaborate dependencies and
are not independent anymore. But there is also no simple correlation structure
and the density is well spread in the probability space, so that the independence
assumption is not fulfilled but good enough to let the ICA algorithms work. The
violation of the independence assumption is also expected to be true for the bio-
logical sources, as they are all triggered by the same event. But again as we do
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Figure 5.2: Illustration of the statistical properties of the smooth sources. The
top row displays the three smooth sources and the middle row shows the gray
value histograms. From the histogram of the first source one might think it is
supergaussian but the tails are to heavy compared to the thin peak in the middle,
so that the kurtosis is negative. The other two sources are supergaussian again.
The joint probabilities in the bottom row show complex statistical dependencies
as the sources were calculated from different sine functions.

not know the biological sources this is hard to prove.

Figure 5.3 shows the auto- and cross-correlations for the three smooth sources.
The lower triangle displays the two dimensional surface of the correlation functions
of the images. The surfaces are not normalized to display the smoothness across
the whole range. The upper triangle shows the auto- and cross-correlations along
the horizontal mid-line of the correlation surface and is normalized to one. As
we can see the assumption for ESD is fulfilled, the auto-correlations (diagonal
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Figure 5.3: The auto- and cross-correlations for the smooth sources. The upper
triangle shows a cut through the two dimensional correlation functions of the
smooth sources displayed in the lower triangle. The graphs in the upper triangle
are normalized so we can see that the cross-correlations (off diagonal elements)
are much weaker than the auto-correlations (diagonal elements) as required for
the ESD algorithm. The surface displays are scaled to their individual maximum
to display the smoothness of the correlation functions.
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Figure 5.4: Illustration of the statistical properties of the natural sources. The
top row displays the three natural sources and the middle row shows the gray
value histograms. The histogram of the vessel pattern is restricted to the values 0
and 1 as this is the mask we received from a wavelet analysis. All three sources are
supergaussian. The joint probabilities in the bottom row display no dependencies
for the first two sources. The pdf’s with the third source are split to the two values
of the third source but still we can make no prediction from one pdf about the
other.

elements) are strong compared to the cross-correlations (off diagonal elements).
The correlations for the shifted versions are not shown, but from the smoothness
of the correlation graphs one can see that it is nearly the same for small shifts.
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Figure 5.5: The auto- and cross-correlations for the natural sources. The upper
triangle shows a cut through the two dimensional correlation functions of the
natural sources displayed in the lower triangle. The assumptions for ESD are
not perfectly fulfilled anymore as the auto-correlation of the third natural source
is also quite weak compared to the other auto-correlations. Also the smoothness
is lost due to the thinned structure of the vessels.
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5.1.3 Natural Sources

In the final test data set with the name natural sources we used results from op-
tical imaging after the analysis, where we assumed a successful separation. The
top row in figure 5.4 shows the selected images. The first image is an ocular domi-
nance map with a masked region. The second image displays a global illumination
gradient and the third image a vessel pattern. All there sources are supergaussian
with a kurtosis of kurt = 3.18;1.32;0.3 respectively. The histograms of the first
two sources in the middle row show the peak for the zero gray value due to the
masking of the images. The histogram of the third source contains only the values
zero and one. This awkward pdf also has an impact on the shape of the joint
probability distributions. The joint pdf of the first two sources is shown on the left
in the bottom row. It shows some structure and the two sources are not perfectly
independent but independent enough. The joint pdf that contain the third source
are split between the two values 0 and 1 on the y-axis. But still we can make no
prediction from one source about the value of the other.

Figure 5.5 displays the correlations between the sources themselves and among
each other. The two dimensional auto-correlation surface of the ocular dominance
pattern nicely reflects the periodic structure the image contains. Again the third
source makes an exception as the auto-correlation function is quite small (upper
triangle last plot) compared to the other auto-correlations and not smooth as
displayed by its correlation surface. For all cross-correlations it is true that they
nearly vanish as assumed by the ESD algorithms.

5.2 The Reconstruction Error and Condition
Number

For testing the separation performance of the introduced algorithms on the artifi-
cial data sets with additive sensor noise we need an error measure for the quality of
the reconstruction. In the case of a perfect blind separation our source estimates
§ would look like the original sources. Due to the ambiguities of ICA they could
have a different sign, i.e. look like a negative of the original, and the order of
the sources from one to three can be different, i.e. a permutation (see figure 5.10.
Therefore the quality of reconstruction was scored by calculation the covariance
matrix G;; = (§;8;) between the true sources and the estimates. By definition a
permutation matrix only contains one non-zero element with the value 1 in each
row and column. Unfortunately we will not always get perfect separations espe-
cially at high noise levels.

In figure 5.6 a) we see a typical result from the multiplication of § and s. So far it
does not look like a permutation matrix. We now determine the maximum absolute
value of each row (boxed value) and normalize the elements of this row by division
with the absolute value of this maximum. The result of this is shown in b). At this
point we make the judgment, if we count the separation as a successful trial or not.
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a) b)

Figure 5.6: Calculation of the success rate
and the mean reconstruction error RE. a)
shows the result from (s§7). Due to the nor-
malization this is equal to the correlation ma-
trix. In b) each row is normalized to the
maximum absolute value (boxed numbers).
If one column contains two maxima the ma-
trix is no permutation matrix and the sepa-
ration failed. The plot in ¢) shows the final
result of a complete test. For detailed expla-
nation see text.
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Figure 5.7: The condition number of a matrix is an unreliable measure of how
ill-conditioned a matrix is. In general the separation quality decreases with the
rising condition number a)-c) as the percentage of successful separation goes down
and the mean reconstruction error and the variance for each noise level rises. But
one has to take care of outliers like in b) that result in an arbitrary breakdown of
the separation.

If a single column contains two 1’s we do not have a permutation and therefore
the sources were not separated. The separation failed. If we have a permutation
matrix the non-maximum values tell us how good or clean the separation was. In
the ideal case they should all be zero. As a quantitative measure we use the mean
reconstruction error (RE) as suggested by Koehler and Orglmeister (1999):

N N

1 1 |Gijl
E=— 1 1
R N,ZN—I(Z maxy |Gkl ) (5.1)

=1 j=1
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where G, ; are the matrix elements and k denotes a row of the matrix.
For a complete test result like in shown in figure 5.6 ¢) we mix the chosen toy
dataset with a fixed mixing matrix A and add random white noise to each of
the resulting mixtures. The noise is re-calculated for each of the three mixtures
at a given noise level and therefore sensor noise. Now we apply the separation
algorithm and calculate RE from the results. This procedure is repeated several
times (normally 15-25 times) for each noise level.

The noise level is gradually increased until a signal to noise ratio of at least 1
is reached, that is equal to 0dB. The definition of the signal to noise ratio (SNR)
in decibel (dB) is

o%(signal

The maximum noise level is set by taking the maximum variance o2 of the
mixtures and rise the variance of the noise step wise until we have reached this
value. Therefore sometimes even higher noise levels than 0dB are shown in
the plots. The solid line in the plot of figure 5.6 c¢) displays the percentage of
successful separations (where 0 = 0% and 1 = 100%). The dashed line shows
the percentage of permutation matrices one generates by random calculation of
3 x 3 matrices. If the solid line goes below the dashed line the result is worse
than by chance. FEach circle in the plot shows the reconstruction error for a
successful separation. This means if twenty trials per noise level are run and
100% were successful (solid line at 1) we have 20 circles at this noise level. If
only 50% were successful (solid line at 0.5) we are left with 10 circles. In case of
very stable results the circles are drawn on top of each other and may appear as one.

Apart from the sources, the noise level and the separation algorithm the at-
tributes of the mixing matrix A are critical for the separation result. The more
ill-conditioned the mixing is, the more difficult is the separation. Ill-conditioned
for the source separation problem means: Can we calculate the inverse of A, the
demixing matrix W and does W contain arbitrary big or small elements? An
indication for the accuracy of the results from matrix inversion is the condition
number of a matrix. The definition of the condition number is

cond(A) = [|A[l|A~]] (5:3)

to a given vector norm.

So the condition number is the ratio of the largest singular value of the matrix to
the smallest, because the norm ||A|| is equal to the largest singular value of A.
The singular value decomposition of a matrix A results in a diagonal matrix S of
the same dimension as A and the s;; are the singular values. The calculation is
done with two unitary matrices so that A * S * VT. This is the computationally
most efficient way to calculate the condition number and used by the standard
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C or matlab routines. A matrix with a condition number of cond = 1 is ideally
conditioned and the higher cond the more difficult is the separation.

In figure 5.7 we can see that this is generally true that with rising condition
number the separation is more difficult and therefore the reconstruction error be-
comes bigger. But under arbitrary conditions there can be outliers in the trend as
shown in figure 5.7 b). So when we make a judgment about the performance of
the separation for a given condition number we have to consider the results with
several matrices with the same condition number to eliminate such influences.

5.3 Choosing the right shift for single shift ESD

In order to find out which single shift applied in the single shift ESD separation
gives the best and most stable results we ran a simulation on different toydata sets.
In this simulation we used the mixing matrixA with a condition number of 11 (see
equation 5.5). The representative example depicted (figure 5.8) is the result for
the mixing of the smooth sources (see figure 5.2).

The range of shifts along the x- and y-axis was —100 to 100 pixels in a 256x256
pixel image. For each shift the reconstruction error (equation 5.1) was calculated.
The simulation was repeated ten times for each shift and the mean value of
the successful separations was stored at the shift location. In a second matrix
the number of successful trials was stored to have a measure for the stability of
the separation for a given shift. If all ten trials to separate the mixture were
unsuccessful according to the criteria in the calculation of the reconstruction
error, the error was set to 1. So for a perfect separation the reconstruction error
is 0, represented by a black pixel in figure 5.8 a), b) and c¢), and 1 for complete
failure, represented by a white pixel. The complete simulations for all shifts
were calculated at different noise levels. For the simulations in a) no noise was
added, in b) the signal to noise ratio was around 5db, while in c) the signal to
noise ratio was 0db. In figure 5.8 d) the success rate for the 0db noise level is shown.

The first three images show that the black areas representing perfect separa-
tions become much smaller with rising noise levels. Also the white areas where
no separation was possible grow with higher noise levels. The symmetry of the
underlying original sources is reflected in the pattern of separation quality as we
are using a correlation criterion for separation. This property though is of no help
for selecting the shift in real world data, as we do not know the patterns of the
original sources.

In the no noise case a) for very small shifts up to 3x3 pixels the separation
fails as the unshifted and shifted correlation matrix are too similar for the type
of smooth patterns we are looking at and therefore no additional information is
gained. The shifts from 5x5 to 9x9 pixels deliver good separation results. In the
case with the added noise all small range shifts deliver good separations in the
case of the smooth sources. There are areas with better separation qualities (more
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Figure 5.8: Simulation of the separation results of single shift ESD at different
signal to noise levels (a) for no noise, b) for 5 db and c) at around 0 db) for shifts
from —100 to 100 along both axes of the smooth sources. No filtering was applied.
The separation success was scored with the reconstruction error (see equation
5.1). The black areas show no reconstruction error whereas for shifts where the
reconstruction failed completely the pixels are white. Image d) shows the rate of
success of separation at the high noise level (c))in this simulation. If all trials were

separated the value equals one (white) and zero (black) for no successful trial. For
details see text.

black) but they could not be predicted in the real datasets.

Another important factor for choosing the right shift is how reproducible the
separation result is. In d) we see the distribution of the number of successful
separations of the high noise case in c). If ten of ten trials were separated
the pixel value is 1 (white). These areas correlate with the areas of low
reconstruction error but do not exactly match the patterns. Thus it is possi-
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ble to have a low reconstruction error but not be very reliable in separation success.

So how does one choose the best shift for the single shift ESD? From the re-
sults presented here and the experience from many other separations with different
sources one has to select a shift that gives the highest probability for a low recon-
struction error and a good success rate. Without knowing the original sources in
our experience shifts of 5x5 to 9x9 work the best for the reasons given above. For
the rest of the thesis in the case of single shift ESD a shift of (5x5) was chosen.

5.4 Comparison of ICA with single shift ESD

To begin with we have to investigate how the two classical ICA algorithms perform
compared to our single shift ESD algorithm on the different test datasets at various
noise levels. For this comparison we will consider the independent sources and the
smooth sources as they have clearly designed properties. The natural sources will
be used in later comparisons once we have experience with the separation behavior
under the defined conditions.

Remember that the independent sources favor the ICA algorithms while the
smooth sources have properties similar to the optical imaging datasets.

5.4.1 Test Results with the Independent Sources

This test series was run with one mixing matrix A having a condition number of
6.5 and one with 11:

0.39 —-0.56 0.78

Aondgs = 0.08 044 057 (5.4)
—0.64 —0.95 —0.82
0.74 041 0.93

Acona—i = | 041 097 0.73 (5.5)
0.52 0.72 0.45

In the left column of figure 5.9 we see the performance for the matrix with the
lower condition number and on the right for the matrix with the higher condition
number. The top row shows the results for the kurtosis optimization, the middle
column for the Infomax algorithm and in the bottom row for the single shift ESD.
For the condition number of 6.5 the kurtosis optimization a) sustains a 100%
successful separation rate even for signal to noise ratios worse than 0dB. Also
the mean reconstruction error is low (RE < 0.2) for all noise levels up to 0dB
with a small variance in the quality of the results in each single step (small spread
of the circles). The Infomax algorithm b) performs nearly as well up to a noise
level of 3dB. From there on with a decreasing signal to noise ratio the percentage
of successful separations drops drastically and the mean error rises. Also the
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Figure 5.9: Test results for the simulations with the independent sources. The
left column shows the results for the matrix with the condition number 6.5 and the
right column for the condition number 11. The kurtosis optimization algorithm a),
d) performs well up to high noise levels. The Infomax algorithm shows a decreasing
performance from a signal to noise ratio of ~ 3dB downwards as the percentage
of the successful separations declines and the variance of the separation quality
increases. The single shift ESD algorithm c), f) shows the worst performance
on the dataset with the independent sources, as they do not fulfill the needed
assumptions about the auto- and cross-correlations. Circles: individual trials.
Solid line: percentage of successful trials. Dashed line: percentage of permutation
matrices by random generation of 3x3 matrices.
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reliability is reduced as we get a reconstruction error up to RE = 0.75 in single
instances.

With this dataset single shift ESD c¢) has the worst performance of all three
algorithms because the assumptions about the smoothness of the sources are not
fulfilled. For all noise levels we get a huge variance in the separation quality
(ARE ~ 0.5) and the number of successful separations starts to decline already
around 16dB. This result for all three algorithms is also reflected in the trials
using the matrix with a condition number cond = 11. Because this matrix is more
ill-conditioned and therefore the separation task more difficult, the performance of
the three algorithms is slightly worse, expressed by a higher mean error and a lower
number of successful trials. Only the Infomax algorithm seems to perform a little
better below 3dB, but as we said before this changes slightly with the individual
run.

We can summarize that ICA algorithms perform well on the separation problem
with the independent sources up to high noise levels and difficult mixing conditions.
The single shift ESD algorithm on the other hand is clearly not designed for this
kind of data and performs poorly.

5.4.2 Test Results with the Smooth Sources

Now we run the same test on the dataset with the smooth sources that were
developed to meet the properties of the optical imaging datasets.

In figure 5.10 we see the smooth sources and their mixtures for the individual
steps of the test with the single shift ESD algorithm and the mixing with the lower
condition number matrix. After the whitening with PCA ¢) the separation is still
incomplete but after the application of single shift ESD the sources are separated
again d). Here we can see how the ambiguity of ICA affects the images. The order
of the estimated sources in d) is permuted compared to a) and the source estimate
in the middle of column d) has the opposite sign of the original.

In figure 5.11 we see the actual separation results for all three algorithms.
The basic arrangement is the same as in figure 5.9. Now the performance is
reversed compared to the test before. On the smooth dataset the single shift
ESD algorithm delivers the best separation performance. The percentage of
successful separations in ¢) is 100% even below 0dB for the mixing matrix with
cond = 6.5. The quality of the reconstruction is slightly increasing with increasing
noise but still very good with RE = 0.3 at 0dB. The ICA algorithms a),b) do
not completely fail like ESD on the other dataset, nevertheless the performance
is poor compared to the result shown in ¢). Especially the drop in the number
of successful separations at higher noise levels is striking. This is relevant for
us because in the real data sets we have signal to noise ratios of 0dB due to
the small intensity of the mapping signal. Again all the trends are verified in
the test with the high condition number matrix just that the overall perfor-
mance of the three algorithms is slightly worse due to the difficult mixing matrix A.
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sources mixtures after pca after ESD

2 I N
o N

Figure 5.10: Example for the separation tests with the smooth sources a) and
single shift ESD. In column b) we see the mixture that is produced with the low
condition number matrix and additive sensor noise (6? = 0.1). After the sphering
with PCA in c) the source separation is still incomplete. Not until the application
of single shift ESD with a shift vector of Ar = (5,5) the sources are successfully
separated. Column d) also illustrates the consequences of the ambiguities of ICA
as the sources are permuted and the middle estimate has the opposite sign.

In section 4.2.3 we have learned that lowpass filtering can be applied to the data
as the tissue scattering does not allow high frequencies in the intrinsic signals and
they therefore descent from noise sources. In the following test we investigated how
this lowpass filtering would affect the separation quality for our smooth sources.
After the mixing of the sources and the application of the noise the mixtures were
lowpass filtered with a cut off frequency of 25cycles/256pizels.

In figure 5.12 we can see that the lowpass filtering increased the performance of
all algorithms as the spectral power of white noise is constant across all frequencies
and therefore reduced by the filter. In ¢) and f) the result for single shift ESD
on the filtered data is plotted. More than the other algorithms ESD profits from
the lowpass as the images become smoother and with them the underlying mixed
sources. This smoothness is one of the assumptions of the algorithm. In ¢) the
mean reconstruction error stays below RE = 0.2 even at the high noise level of
0dB.

This demonstrates that lowpass filtering will enhance the ability of ESD to
separate the sources from our optical imaging data.
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Figure 5.11: Test results for the simulations with the smooth sources. Unlike
the ESD algorithm in the tests with the independent sources (see figure 5.9) the
ICA algorithms (first row: kurtosis optimization, second row: Infomax) do not
break down completely on the separation task with the smooth sources, because
the sources are nongaussian and therefore partially fulfill the ICA assumptions.
We can also see in ¢) and f) that the single shift ESD algorithm has the best per-
formance on the artificial dataset with the statistical properties of optical images.
Circles: individual trials. Solid line: percentage of successful trials. Dashed line:
percentage of permutation matrices by random generation of 3x3 matrices.
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Figure 5.12: Test results for the simulations with the smooth sources and the
application of a lowpass filter with a cut off frequency of 25cycles/256pixels on
the mixtures. All the algorithms (first row: kurtosis optimization, second row:
Infomax, third row: ESD) show a better performance as the spectral power
of the white noise is reduced. The ESD algorithm in c), d) benefits the most
from this procedure, because the source become smoother after the filtering and
therefore even more supportive of the ESD assumptions. Circles: individual trials.
Solid line: percentage of successful trials. Dashed line: percentage of permutation
matrices by random generation of 3x3 matrices.
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In conclusion, the tests with the smooth sources tell us that the single shift
ESD algorithm has the most stable and the best separation performance of the
tested algorithms. This is due to the fact that the properties of optical imaging
data, that are reflected by the smooth sources, support the assumptions of the
ESD algorithm. As soon as the independence assumption of the ICA methods
is not fulfilled by the data the performance of the kurtosis optimization and the
Infomax algorithm decreases significantly. Consequentially we will concentrate on
the further development and improvement of our ESD algorithm for the application
on the real data.

5.5 Comparison of single shift ESD with
multi shift ESD

From the test results so far we have seen that the level of the sensor noise is
the most disrupting influence on the separation quality of single shift ESD. In
section 4.5.2 we introduced the multi shift ESD algorithm. The multiple shifts
introduce redundancy by approximate simultaneous diagonalisation of the corre-
sponding cross-correlation matrices. This should make the method less sensitive
to sensor noise (Schoner et al., 2000). The cost function for both methods is the
same, but single shift ESD performs an analytic calculation and multi shift ESD
an optimization procedure by gradient descent.

In figure 5.13 the test results with the smooth sources are displayed. In the
left column the mixing matrix with cond = 6.5 was used and in the right column
the one with cond = 11. In the top row the results for the single shift ESD from
figure 5.11 are shown again for direct comparison. As we want to investigate the
reduced sensitivity of multi shift ESD to sensor noise no filtering was applied to
the data

The simulations with the multi shift ESD (figure 5.13 b), e)) revealed a quite
ambiguous result. Individual trials showed an excellent separation for both con-
dition numbers, whereas other trials performed even worse than single shift ESD.
The big variance in the separation quality and therefore the reduced reliability do
not speak for the multi shift algorithm. Also the success rate is reduced compared
to the analytic solution. On the other hand the great quality of some of the trials
is tempting. Nevertheless for the application on the real data we need blind con-
fidence in the method, as we do not have the possibility to make a quantitative
judgment about the result.

In section 4.5.2 we introduced the concept of noise robust sphering from Miiller
et al. (1999). The bottom row in 5.13 shows the results after separation with using
noise robust sphering. The multi shift ESD algorithm is much more stable now
and the majority of trials show a high quality in the separation, i.e. very low
reconstruction error. In figure 5.14 a direct comparison between single shift ESD
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The top row shows the results

for single shift ESD without filtering. In the middle row the performance of
multi shift ESD is displayed. Individual trials have an excellent separation quality
whereas others perform badly. The variance in separation quality is big for both
matrices. With the application of noise robust sphering the multi shift ESD is
stabilized and the majority of trials have a small reconstruction error RE (bottom

row).

Solid line: percentage of successful trials.

permutation matrices by random generation of 3x3 matrices.

Dashed line: percentage of
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Figure 5.14: Direct comparison of the
single shift ESD (dotted line), multi
shift ESD (dashed-dotted line) and
multi shift ESD with noise robust
sphering (solid line) for the separation
with the high condition number matrix.
The lines display the mean reconstruc-
tion error at the individual noise levels
and the error bars the variance. The
multi shift ESD algorithm with noise
robust sphering has a superior separa-

tion quality.

(dotted line), multi shift ESD (dashed-dotted line) and multi shift ESD with noise
robust sphering (solid line) for the separation with the high condition number
matrix is plotted. The lines show the mean of the reconstruction error and the
error bars the variance. One can see that the multi shift ESD with noise robust
sphering exhibits a superior performance at all noise levels. Therefore from now
on when we use multi shift ESD noise robust sphering is applied. In fairness it has
to be pointed out, that this type of plot facilitates the performance of the multi
shift algorithms as it neglects the percentage of successful separations.

5.6 Comparison of multi shift ESD with
regularized ESD

The regularized ESD algorithm uses additional information we have about the
mixing process to stabilize the convergence of the gradient descent. We want to
point out again that we now deliberately leave the field of parameter free estima-
tions and introduce knowledge about the original sources. If the assumptions are
incorrect we force a wrong result.

In order to test if the regularization term improves the separation we created
a new3 X 3 matrix A. We know that in our mixing model the column a; of A
represents the time course of the source s;. In figure 5.15 we see the time course
we implemented in the matrix for the A for the three sources.

The first source has a rising and then descending time course (dashed-dotted
line), the second source has a continuously rising time course (solid line) and the
third source stays constant (dotted line). The matrix has a condition number of
cond = 4.8.
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0.6 . | Figure 5.15: The 3 x3 mixing ma-
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5.6.1 Regularization of all Sources

For the first set of tests we are using a regularization term that introduces knowl-
edge for all three sources. In figure 5.16 we see the results of the simulations with
the smooth sources in the left column and the natural sources in the right column.
Even if we do not directly consider the single shift ESD in this section, we have
calculated the separation results with the new matrix for the demonstration of the
increased difficulty of the separation task (figure 5.16 a), d)). The middle row b),
e) shows the separation results for the multi shift ESD algorithm. As in section
5.5 the quality of individual separations can be far better (RE = 0.0) than with
the single shift ESD, but due to the convergence of the gradient descent into the
wrong minima the reliability is poor (big variance of results on individual noise
levels).

The separation results of multi shift ESD with regularization of all three sources
eliminates this short coming (c), f) ). As well for the smooth sources as the natural
sources the rate of successful separation is 100% across the whole noise image. Also
the mean reconstruction error stays below RE = 0.2 for all trials and has a small
variance. This method is therefore more reliable and successful than the single
shift ESD and the multi shift ESD on our artificial datasets.

5.6.2 Regularization of one Source

In a real optical imaging experiment it is very likely that we have only knowledge
about the time course of a part of the original source, i.e. those sources that are
correlated with the stimulus onset. To simulate this situation we calculated and
scored the regularization term for only the fist column of the assumed A during
the optimization. In figure 5.17 a), ¢) we can see that the number of successful
separations is reduced again and the mean error and the variance is bigger than
in the case with prior knowledge on all the sources.

Part of this seeming decrease in the separation performance is that the source
with the prior knowledge in the regularization term is well separated, whereas
in some trials the other sources are still mixed. In this case the calculation of
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Figure 5.16: Mean reconstruction error as a function of the signal to noise ratio in
dB (15 trials per noise level). The left column shows the results of the separation
for the smooth sources and the right column for the natural sources after
mixing with the 3x3 matrix A . The first row shows the results for ESD with only
two shifts (here [0,0;5,5]). The second row shows the results the multi shift ESD.
In the third row the results with multi shift ESD and the regularization term on
the time course of all sources is displayed. Circles: individual trials. Solid line:
percentage of successful trials. Dashed line: percentage of permutation matrices
by random generation of 3x3 matrices.
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Figure 5.17: Mean reconstruction error as a function of the signal to noise ratio in
dB (15 trials per noise level). The left column shows the results of the separation
for the smooth sources and the right column for the natural sources. In the
first row the results with multi shift ESD and the regularization term on the time
course of only the first sources is displayed. A better and more stable convergence
of the gradient descent can be achieve by initializing the estimate of W with the
inverse of a matrix, that has the assumed time course in the first column and
random noise in the others (bottom row). Circles: individual trials. Solid line:
percentage of successful trials. Dashed line: percentage of permutation matrices
by random generation of 3x3 matrices.

the mean reconstruction error as introduced in equation 5.1 is not appropriate
anymore. Figure 5.18 shows such a typical result a 0 dB. We found that we
can stabilize the separation performance by initializing W with the inverse of a
matrix, that has the assumed time course in the first column and random noise in
the others (see figure 5.17 b,d).
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Figure 5.18: The three separated natural sources after application of multi shift
ESD and the regularization term on only the first time course of the first source
at the high signal to noise ratio of 0 dB. The source of interest is well separated,
whereas the other two sources are still mixed.

Figure 5.19: The 3 x 10 mix-
ing matrix A for the testing of
the regularization terms. The
dashed-dotted line is the time
course for the first source, the
solid line for the second source
and the dotted line for the third
source.

5.6.3 Results using a 3 x 10 mixing matrix A

In the optical imaging experiment one normally measures a higher number of video
frames and therefore mixtures than there are underlying sources. To simulate this
property we now use a 3x10 mixing matrix A (see figure 5.19). The dashed-dotted
line is the time course for the first source, the solid line for the second source and
the dotted line for the third source.

The resulting ten frames after the mixing contain the mixtures of the origi-
nal sources at ten succeeding points in time. We now have to estimate a 10x10
demixing matrix W. Applying the regularization term to the first three of the ten
estimated sources we can force the underlying original sources into the first three
frames. This way we can still use the calculation of the mean reconstruction error
as given in equation 5.1. Figure 5.20 shows the separation result for the smooth
sources (a) and the natural sources (b) up to signal to noise ratios even lower than
0 dB. It shows that the minimization of the cost function in equation 4.73 con-
verges well independent of the number of mixtures. The percentage of successful
separations is nearly 100% over the whole noise range. Also the variance in the
mean reconstruction error is low at all noise levels.
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Figure 5.20: Mean reconstruction error as a function of the signal to noise ratio
in dB (15 trials per noise level). For both plots the original sources where mixed
with a 3x10 matrix. For the demixing process the multi shift ESD algorithm
with the regularization term for the first three of the ten mixtures was used. a)
shows the result for the smooth sources and b) the result for the natural sources.
Circles: individual trials. Solid line: percentage of successful trials. Dashed line:
percentage of permutation matrices by random generation of 3x3 matrices.

We have to remember that with this spatio-temporal hybrid method knowledge
about the time course of the original sources is introduced. When we have non
symmetric matrices A and we apply a prior for only one source the other sources
can be anywhere in the resulting stack and therefore are misjudged by the error
measure RE.



Chapter 6

Separation of Optical Imaging
Data

After the successful testing of the individual algorithms on the artificial datasets we
will now study the performance on the datasets we achieved from optical imaging
of intrinsic signals. For most of the comparisons we have a detailed look at two
selected experiments that have a stimulus regime where the associated mapping
signal is well known. The first contains images from an ocular dominance (od)
experiment of V1 from macaque monkey. The second set contains an orientation
preference (op) experiment of V1 from cat. The second dataset was given to us
for the collaboration in Schiefll et al. (1998) and Stetter et al. (2000).

Before we can start with the source separation we have to apply the basic
preprocessing procedures describe in the section 4.1. For all the later results first
frame analysis and binning of the frames in time was used. In figure 4.4 the frames
after the preprocessing for the ocular dominance experiment are shown. The two
single condition stacks and the difference stack of the orientation preference ex-
periment for the orientations 0° — 90° are shown in figure 6.1. The stacks for the
45° — 135° orientation look similar. Like in the ocular dominance stack we can not
see the mapping signal in the single condition stacks emerge over time, but in the
difference stack the mapping signal becomes visible after the stimulus onset.

6.1 Differential Imaging and Filtering

In the section 4.2 we described several methods for the analysis of the data with the
concept of differential imaging. For the standard differential imaging the frames
of the difference stack are summed up. Due to the different times courses of the
individual intrinsic signals it is sometimes advantageous to only sum up the early
frames after the stimulus onset as the vessel and blood flow artifacts are slow
compared to the cell swelling. In figure 6.2 the result of this selective summation
is shown in a). Another method for differential imaging suggested the division
with a blank image, that was recorded before the stimulus onset. The result of
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Single Condition Stack 0°

Single Condition Stack 90°

Difference Stack 0° — 90°

Figure 6.1: Single condition stacks and difference stack for the orthogonal stimulus
condition 0° — 90° of a orientation preference experiment. The corresponding
45° — 135° datasets look similar.

this procedure is shown in ¢) for the ocular dominance data. In both images the
patterns of the mapping signal is visible but the quality has not enhanced much
compared to the single frames of the difference stack. The signal still contains
strong artifacts. The large vessel in the top third of image c¢) might always be a
problem, as it is big enough to absorb the underlying mapping signal, but there
are still small vessel artifacts left in the area of the mapping signal.

To enhance the signal quality lowpass filtering can be applied if necessary. The
right column in figure 6.2 shows the images after a lowpass filter was applied. The
contrast is enhanced as the noise is filtered out but the artifacts are still present.
The filtering of data is often used when orientation preference maps are calculated.
In figure 6.3 we see the two difference images for a) 0°—90°, and b) 45° —135° from
which the orientation preference map in c) is calculated. The patchy appearance
of the orientation preference map is somewhat messed by the high frequency noise.
After the lowpass filtering d) the organisation of the orientation preference map
becomes visible. But as we pointed out in section 4.2.3 filtering must be handled
with great caution.

For instant feedback of the stimulus response during an experiment we can
display the a set of single condition and difference images that are recorded online
during the trials. Figure 6.4 shows an example of the display. In the top row the
first frame analysed images are shown and below the mean gray value of the region
of interest during the recording of all trials is plotted. The big dips in the mean
time course represent the change in absorption due to the stimulus presentation.
Therefore we know that the cortex responds to the stimulation. The differential
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Figure 6.2: Analysis results from the standard analysis of the ocular dominance
experiment. In a) only the frames in the first second of the stimulus presentation
are summed up to reduce the influence of vessel artifacts. In c) the result after
the summation of all frames from the difference stack and division of the blank
image is show. b), d) show the results after lowpass filtering of the difference
stack (25cyl/256pizels).

image in the top right only sums up the frames during the first second after the
stimulus onset to keep the influence from the slower vascular response small.

6.2 Principal Component Analysis

We normally use PCA in the context of blind source separation only for whiten-
ing of the data and if necessary to perform dimension reduction. Under certain
condition PCA can deliver the aspired separation of the sources after the frames
of the trials have been specially rearranged (Stetter et al., 2000).

Here we have a look at one example of the ocular dominance data stack after
sphering. In figure 6.5 we see the first ten principal components (first and third
column) with the largest eigenvalues from the data stack with 120 frames. To the
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c)

Figure 6.3: Orientation preference maps from the differential image of the presen-
tation of a 0° and 90° square wave grating and the presentation of a 45° and 135°
square wave grating. In c) we see the result without lowpass filtering. The patchy
structure of the map is not clearly visible due to noise. After the application of
the lowpass filter d) the orientation preference map is visible.

right of each image we can see the time course of the principal component. This
time course is calculated by back projection of the component onto the difference
stack by matrix multiplication. This procedure is the same for the BSS and ICA
algorithms. This time course is very important for the interpretation of the results
as we do not know exactly what the spatial distribution of the mapping signal
should look like, but we know the timing of the stimulus presentation.

Principal component 120 shows mainly the big vessel artifact and the corre-
sponding time course clearly correlates with the heart beat of the animal (18 dips
in 120 frames at a frame rate of 15fps = 135 beats per minute). The principal
component 118 has the best representation of the mapping signal after PCA. In
the time course thought we can see that the source is not perfectly separated yet,
as the response to the stimulus (gradual rise of the DC level) is strongly contam-
inated by a respiration artifact (6 dips in 120 frames at 15fps = 45 breaths per
minute). Component 112 for example shows noise in the image and the time course
and could be neglected in the process of dimension reduction. The interpretations
from the time course become even more important if we use a stimulus regime
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Figure 6.4: Representation of the online analysis during the recording of the ocular
dominance experiment. The images A and B are calculated by subtraction of
frames from the stimulus onset until one second after from image frames before the
stimulus. This is done for all trials and all stimulus conditions. The results from the
single trials are summed up then. Image A shows the single condition for the left
eye and B for the right eye. A — B is the difference image calculated from A and
B. The plot shows the mean gray value for the duration of the whole experiment
(32 trials). The big dips represent the response to the stimulus presentation. The
slow drift in the time series is caused by a slow change in biological parameters
over the 12 minutes of the trial like a change in the oxygenation state or paralysis.

where we do not know how the spatial distribution of the cortical response looks
like.

Figure 6.5 demonstrates that PCA by itself was not able to separate the sources
for this experiment. Therefore we will now have a look at methods that take into
account higher order statistics.
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Figure 6.5: The first ten principal components and their time courses. The princi-
pal components are sorted in descending order according to the largeness of their
eigenvalue. The time courses are calculated by back projection of the individual
component onto the data stack they were calculated from. The run of the curve
gives important information about the signal content of the image. The same pro-
cedure of back projection is applied to the independent components in the later
analysis.

6.3 Performance of the ICA Algorithms

After basic preprocessing and PCA the data stacks were processed with the Info-
max algorithm and the kurtosis optimisation algorithm. The data stacks before
ICA contain the principal components sorted by their eigenvalues. The result of
the separation with ICA have the individual independent components as the single
frames. Due to the ambiguity of ICA there is no specific order in the components.
The individual frames from the results of ICA were then back projected on the
original data stack to get the time course of the independent components. The
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greater the number of frames available in the original data for back projection
the more time points we can display. In order to get any reasonable results from
the optical images after the analysis with ICA masks were applied to the stacks
after PCA to cover the regions in the image that are outside the exposed cortex
or showed a very large vessel. This reduces the content of noise in the image. We
expect to have the best signal to noise ratio after we subtracted the orthogonal
stimulus conditions, because the biological background activity common to both
single condition stacks is removed. Therefore we start with the analysis of the
difference stacks.

6.3.1 Separation of Difference Stacks

In the dataset from the orientation preference experiment we have two difference
stacks. The first is from the subtraction of the 0° stimulus minus the 90° stimulus
and the second from the 45° stimulus minus the 135° stimulus. In the stacks we
have only five frames from the recording and therefore only a rough plot of the
time course. The interval between frames is 600ms and the stimulus was presented
during the whole time of the trial.

In figure 6.6 we see the separation results of the two ICA algorithms on the

two difference stacks of the orientation preference experiment and their back pro-
jections. For a rough estimate how the patterns we expect to see look like have
a view at the images a) and b) in figure 6.3 again. Neither the Infomax- nor the
kurtosis optimisation method show a clear separation of the mapping signal from
the biological- and sensor noise. In only a few frames like the last frame of the
kurtosis optimisation of the 0°—90° difference stack one can vaguely anticipate the
expected pattern. The corresponding time courses of the independent components
do not reflect the temporal gradient of the mapping signal that should start to rise
or decline from beginning to the end as the stimulus was presented from the first
frame to the last.
So let us have a look at the separation result with the difference stack from the
ocular dominance experiment. The origin data stack before binning contains 120
frames (8s at 15fps) and therefore the time course calculated from the stack is
finer now. The bottom bar in each plot represents the duration of the stimulus.
In figure 6.7 the independent components from the Infomax algorithm are printed
in the first column and the time courses in the second. The stripe like pattern
we know from figure 6.2 a)-d) is not projected into one component and therefore
not separated. The best result is the last frame of column one, but again the time
course does not reflect the stimulus presentation.

From the results on the artificial datasets we know that lowpass filtering can
enhance the performance of the ICA algorithms. Therefore we applied a lowpass
filter (25cyl/256pizels) to the data stack before ICA. In the right half of figure
6.7 the separations of the Infomax algorithm on the filtered data is displayed.
The quality of the separation has improved and the fourth and sixth image from
the top show the ocular dominance pattern. The time course of the fourth image
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Figure 6.6: Separation results of the tested ICA algorithms and their back projec-
tions on the two difference stacks from the orientation preference experiment. The
stimulus was presented during the whole trial (3s).
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Figure 6.7: Separation results of the Infomax algorithm and the back projections
on the difference stack from the ocular dominance experiment (left half). In the
right half the result after lowpass filtering is shown (25cyl/256pizels). (Bottom
bar: Stimulus duration 4s).
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shows a positive trend after the stimulus onset. But again the separation is not
perfect as the mapping signal is still present in several independent components.
The time course of the component in the first image from the top shows the
respiration artifact again.

The same analysis was done now with the kurtosis optimisation algorithm. The
arrangement for the results from this in figure 6.8 is the same as in figure 6.7. The
independent components from the unfiltered data in the left column again do not
represent the stripe like ocular dominance pattern clearly. In the third to the fifth
source it is slightly visible but the time courses are arbitrary. After the filtering
kurtosis optimisation is capable of separating the mapping signal well enough
to make it visible. Again it is present in two sources (second and third). The
correlated time courses show a clear stimulus related change but are still strongly
contaminated by artifacts. The top source contain the change in absorption from
respiration and the lower sources contain mainly noise.

6.3.2 Separation of Single Condition Stacks

The more difficult task is the analysis of the single condition stacks because the
signal to noise ratio is worse than in the difference stacks. The single condition
stacks are not processed with a cocktail blank as this would introduce information
of the orthogonal stimulus condition.

In figure 6.9 we see the separation results of the two ICA algorithms on the
0° stimulation single condition stack of the orientation preference experiment as
one example of the results on unfiltered data. For both algorithms (Infomax top
rows, kurtosis optimisation bottom rows) the independent components do not show
the mapping signal. If anywhere one can anticipate the pattern in the second
component of the top row and the fourth component of the third row. In both
separations we can see that the algorithms are able to separate a global artifact
(first row, last image; third row , third image) that is triggered by the stimulus
onset (see time course) and the reaches a constant level from the second time frame
on. This is a good example for a global signal that appears with the stimulus
presentation but is not stimulus specific, i.e. it is also present in the separations of
the single condition stacks of the other orientations (not shown). So this artifact
would be removed by the subtraction used in the calculation of the difference stack.

In figure 6.10 a example of the separation with ICA on the filtered single
condition stack of the right eye stimulation of the ocular dominance experiment
is shown. The independent components and their time courses from the Infomax
algorithm are shown in the left half and the results from kurtosis optimisation in
the right half. Here we have a better separation due to the lowpass filter with
some interesting features.

Both algorithms separate the vessel artifacts into two independent components
with different time courses (left: images 1 and 2; right: images 2 and 3).Both
vessel components show a strong response to the stimulus onset. The stripe like
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Figure 6.8: Separation results of the kurtosis optimisation algorithm and
the back projections on the difference stack from the ocular dominance ex-
periment (left half). In the right half the result after lowpass filtering is
shown(25cyl/256pizels). (Bottom bar: Stimulus duration 4s).
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Figure 6.9: Separation results of the tested ICA algorithms and their back pro-
jections on the single condition stack with the 0° orientation from the orientation
preference experiment. The results of the single condition stacks with the other
three orientations show similar results. The stimulus was presented during the
whole trial (3s).

patterns of the ocular dominance stripes is slightly visible in the third frame on
the left and the first frame on the right. The time course though is not exactly
what we would expect, as it should continue to rise after the end of the stimulus
presentation. Interestingly all the components show some response to the stimulus
and none reflects just arbitrary noise what means that the signal is not separated
from the noise.

6.4 Performance of single shift ESD

The single shift ESD algorithm makes no assumptions about the independence
of the sources, only about their correlation. Nevertheless it is not restricted to
orthogonal solutions like PCA. From the results of the simulations with the smooth
artificial data we expect this algorithm to handle the optical images better than
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Figure 6.10: Separation results of the Infomax algorithm (left half) and the kur-
tosis optimisation algorithm (right half) and the back projections on the single
condition stack with the stimulation of the right eye from the ocular dominance
experiment after lowpass filtering (25cyl/256pixels). The results for the left eye
are similar. (Bottom bar: Stimulus duration 4s).
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the ICA algorithms. We will start with the easier task of separating the difference
stacks and then look at the separation of single condition stacks.

6.4.1 Separation of Difference Stacks

In order to be able to compare the performance of single shift ESD with the
ICA algorithms the separation on the orientation preference experiment with the
mask was calculated first. Not all the results will be shown but the examples are
representative.

In the first two rows of figure 6.11 the estimates from the 0° — 90° difference
stack of the orientation preference experiment with the mask are shown. The
mapping signal is now clearly visible with better contrast than in the results from
ICA. Nevertheless it is present in the first and second source. The other sources
contain noise. The time course of the second component is close-by the one we
would expect from the experiment (see section 3.2). Therefore the separation has
a better quality than with ICA but is not yet optimal.

To see more of the underlying sources the mask was omitted now and the
single shift ESD was applied again. The middle two rows show that the calculated
components contain the mapping signal. We can see that a ridge from the back
folded dura causes a motion artifact that is partially separated (last component)
but also present in the first component together with some global signal and parts
of the mapping signal. In order to enhance the separation quality the lowpass
filter (25cyl/256pizels) was applied to the difference stack and the separation was
repeated. In the bottom two rows the mapping signal (second image) is separated
from the motion artifact of the dura (fourth image) and the global background
variation (first image). The time course of the mapping signal shows the expected
decline. The global signal in the first image is underlying in the first images of
the upper separations just with opposite sign.

For the separation of the ocular dominance data we started with the unmasked
and unfiltered difference stack. The results in the first two columns of figure 6.12
show that the ocular dominance stripes become visible in the first image together
with the big vessel. The time course shows the predicted delayed response to the
stimulus onset with small modulations from the vessels artifact. The lower four
source estimates contain noise. It seems that the vessel is big enough to bury the
mapping signal, so we applied the mask again.

The result in the middle two columns has a better contrast now as the gray
values are only distributed across the ocular dominance pattern. The influence
of the vessel artifact on the time course is reduced. The artifacts from the small
vessels are projected into the components two to four.

We can further enhance the separation quality by applying the lowpass filter.
Now the first component in the right two columns of figure 6.12 shows the ocular
dominance stripes with good contrast and the appropriate time course. The tem-
poral trend of the second image reflects the respiration artifact. The lower images
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Figure 6.11: Separation results of the single shift ESD algorithm and their back
projections on the 0° — 90° difference stack from the orientation preference exper-
iment. The top two rows show the components from the masked stack. The
middle two rows display the unmasked components and the bottom two rows
were calculated from the lowpass filtered stack (25cyl/256 frames). The stimulus
was presented during the whole trial (3s).

mainly contain noise.

6.4.2 Separation of Single Condition Stacks

The success of the separation with the single shift ESD on the single condition
stacks followed the trend we had in the separation of the difference stack. In the
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Figure 6.12: Separation results of the single shift ESD algorithm and the back
projections on the difference stack from the ocular dominance experiment. On the
(left) the result without mask and no filtering is shown. In the middle the large
vessel was masked. On the right the result with the mask and lowpass filtering is
shown (25cyl/256pizels). (Bottom bar: Stimulus duration 4s).
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case of the 0° single condition stack from the orientation preference data we can see
in the first two rows of figure 6.13 that the separation with the region of interest
fails. The source that is separated contains the global artifact. The mapping
signal is not visible. The same is true after we applied no mask to the data before
analysis. In the middle two rows the resulting source estimates show a separation
from the noise (first two images) but the mapping signal seems to be hidden in the
third component under the noise. This problem is solved again by the application
of the lowpass filter (25cyl/256pixel). In the bottom two rows of figure 6.13 the
mapping signal is separated into the second estimate and the global artifacts into
the first and third component. The time course of the stimulus specific pattern
show a steady rise, even if it is very coarse due to the limited number of frames.

Therefore we look at the ocular dominance data now. In figure 6.14 the separa-
tion of the unfiltered data (left half) was only able to find the global activation in
the mixture (top image). After the lowpass filtering the mapping signal is found in
the mixture and separated from the artifacts (right half second image from top).
The time course shows a response to the stimulus onset with a slow slope. Ideally
it should continue to rise a little longer after the end of the stimulus but the slope
is clearly different from the responses of the background- and vessel artifacts in the
other components. In contrast to the separation results with the ICA algorithms
on the same filtered single condition stack (see figure 6.10) the stimulus specific
component is extracted from the recorded mixture.

6.5 Performance of multi shift ESD

We know now that the concept of ESD is able to find the mapping signal under
conditions were the ICA methods fail. Due to the redundant information we have
by applying the multi shift algorithm the separation should be more stable and
less sensitive to noise. The final goal would be to complete the separation without
filtering. To test if the multi shift ESD manages to solve this task we have a look
at the separation results from the ocular dominance experiment.

6.5.1 Separation of Difference Stacks

In the case of the separation of the sources from the ocular dominance experiment
the single shift ESD showed a good separation without the application of filtering.
The lowpass filter was used to enhance the contrast of the result.

In figure 6.15 the left two columns show the separation result from the sep-
aration of the difference stack with the multi shift ESD. A weak lowpass filter
(50cyl /256pixels) was applied. The mapping signal is well separated in the third
source from below. The corresponding time course shows a steady increase of
the signal strength with a short delay after the stimulus onset. The strength of
the mapping signal continues to rise after the stimulus was turned off. The other
sources mainly contain respiration artifacts or random noise.
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Figure 6.13: Separation results of the single shift ESD algorithm and their back
projections on the 0° single condition stack from the orientation preference exper-
iment. The top two rows show the components from the masked stack. The
middle two rows display the unmasked components and the bottom two rows
were calculated from the lowpass filtered stack (25cyl/256 frames). The stimulus
was presented during the whole trial (3s).

6.5.2 Separation of Single Condition Stacks

To demonstrate the separation quality of the multi shift ESD on a single condition
stack concentrate on the analysis of the data from the stimulation of the left eye
with multi frequency gratings at various orientations. In figure 6.15 we see the
results from this part of the ocular dominance experiment after the application of



6.5 Performance of multi shift ESD

123

L1708 AR,
TRERY

Figure 6.14: Separation results of the single shift ESD algorithm and the back
projections on the single condition stack from the ocular dominance experiment
(right eye stimulation). On the left the result without filtering is shown. The large
vessel was masked. On the right the result with the mask and lowpass filtering is
shown (25cyl/256pizels). (Bottom bar: Stimulus duration 4s).
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Figure 6.15: Separation results of the multi shift ESD algorithm and the back pro-
jections on the difference stack (left two columns) and the single condition stack
(left eye) (middle and right columns) from the ocular dominance experiment.
Lowpass filtering is applied to the difference stack and the single condition stack
in the middle. In the case of multi shift ESD much less filtering is necessary to
receive a result from the single condition stack (50cyl/256pizels). Without the ap-
plication of any lowpass filter the separation is incomplete (right two columns).
(Bottom bar: Stimulus duration 4s).
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the weak lowpass filter (50cyl/256pizels) in the middle two columns and without
any filtering in the right two columns.

In the separation with multi shift ESD and the weak lowpass filter the mapping
signal is visible in the last component of the middle columns. The time course also
agrees with the result we got from the single shift ESD and the stronger filter
(see figure 6.14 right columns, second image). Therefore with multi shift ESD
we can reduce the strength of the influence of the lowpass filter compared to
single shift ESD to get the separation of the mapping signal. The application of
a lowpass filter is well justified (see section 4.2.3) and should have no influence on
the mapping signal. Nevertheless the weaker the influence of the lowpass filter the
less dependent we are on that assumption.

When we applied the multi shift ESD to the single condition stack without
any filtering the separation was incomplete and the mapping signal could not be
extracted (figure 6.15 right columns).

So the application of the multi shift ESD algorithm again moved the limits of
the successful separation of single condition stacks towards a completely parameter
free separation. With the data at hand the preprocessing in form of a weak lowpass
filter could not be completely eliminated. Compared to the massive influence on
the data with the use of the conventional analysis methods the application of the
ESD algorithms is a big improvement.






Chapter 7

Discussion

In this work we developed and introduced a blind source separation algorithm
called extended spatial decorrelation for the analysis of data sets from the
optical imaging of intrinsic signals. Since the early days of optical imaging the
separation of the signal components that are exclusively correlated with a specific
stimulus condition (mapping signal) from the overall recorded mixture has been
a challenging task. Due to the nature of the recording we face a highly noise
corrupted mixture with the mapping signal only contributing 0.1% of the overall
signal amplitude. A very critical look has to be taken at the standard methods
used in the analysis of the optical imaging recordings of intrinsic signals.

Very often strong data pre-processing is already performed during the recording
of the data due to intentional blurring by focusing below the cortical surface. This
blurring is equivalent to strong lowpass filtering of the images. Misleadingly it is
often stated after the recording with focus below the surface, that no further pre-
processing like filtering was applied. This is true in a certain sense as the filtering
was done by hardware during the experiment. The difference between this type
of lowpass filtering and the lowpass filter we apply in some cases of the data pre-
processing is the size of the filter kernel. For this study we choose the blur caused
by the filter small enough to only cause the high frequency noise component in the
recordings to be cancelled but leave the smooth image features like global signal,
mapping signals, vessel patterns etc. nearly unchanged. The aim of focusing below
the cortical surface is to get rid of the vessel artefacts by smearing them out over
a wider area due to the shallow depth of field of the imaging lens. Certainly this
does not get rid off the vessel artefacts but distributes them over the whole image.
This blurring is not even uniform because of the curvature of the cortex and the
difficulty in positioning the camera perpendicular to the imaged surface. Now one
has the situation that the signal artefact from the vessels, one wanted to get rid
of in the first place, is spread uncontrollably over the image instead of having it
at the well defined locations of the arteries and veins. A more elaborate approach
should try to extract the vessel artefacts into a separate component that can be
removed from the mixture.
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Another problematic but often used method of pre-processing is the bandpass
filtering of the data. The wrong choice of the cut off frequencies can introduce
artefacts that are very similar to the signal components one is looking for. This is
nicely demonstrated in figure 4.6.

The most common form of extracting the mapping signal from the recording
is the calculation of a difference image as described in chapter 4.2.1. The assump-
tion that all signal components except the mapping signal remain the same for two
orthogonal stimulus conditions and will therefore be removed by the subtraction
in the calculation of a difference image is not fulfilled. Because other more global
features are linked with each of the orthogonal conditions individually the subtrac-
tion can not get rid off them though it enhances the signal quality a lot. Further
enhancement of the signal to noise ration can be gained by first frame analysis.

A even stronger assumption about the organisation of the visual cortex is
introduced with the use of a cocktail blank image. The cocktail blank image is
supposed to represent the reflectance pattern of the uniformly activated cortex.
By division or subtraction of this image from a difference of single condition image
the non stimulus related more global artefacts should be removed. In chapter
4.2.2 it is shown why this assumption has to be handled carefully especially when
calculating a single condition image. From a single condition experiment one
wants to get information about the activity related to only the chosen stimulus
condition and can not introduce information of orthogonal or other stimulus
conditions via the cocktail blank image.

To avoid these parametric assumptions and to be neutral in regard to pat-
tern extraction we concentrated on the exploration of parameter free separations
methods: the blind source separation (BSS) and independent component analy-
sis (ICA) algorithms. These algorithms use statistical features like second and/or
fourth order moments for the source separation rather than heuristic or parametric
assumptions like the methods mentioned before.

Among the ICA methods two concepts have been proven to work well for the
classical cocktail party problem. One is the Infomax algorithm of Bell and Se-
jnowski (1995) that uses the statistics of all higher order moments in the probabil-
ity distributions of the sources and the other is the kurtosis optimisation method
of Hyvérinen and Oja (1997) that exploits the properties of the fourth order cu-
mulant. Both algorithms are based on the assumption that the original sources
are statistically independent.

This independence assumption is often not fulfilled properly in the record-
ing of a mixture of biological signals that are triggered by the same event, i.e.
the presentation of a visual stimulus. Therefore we derived the expanded spatial
decorrelation algorithm from a BSS method that was published by Molgedey and
Schuster (1994). The assumption behind the ESD algorithm is the smoothness
of the underlying sources and the vanishing cross correlations, all of which are
properties of second order statistics. From the scattering properties of the corti-
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cal tissue we know that the smoothness assumption is well fulfilled (Stetter and
Obermayer, 1999).

A general problem in evaluating and comparing the performance of BSS algo-
rithms is that the separation result has to be compared to the underlying original
sources. This is not possible with in vivo data as the exact spatial distribution
of sources for an individual animal is not know. Therefore we designed three
different sets of artificial data. The first dataset contains independent sources
and fulfils the assumptions made in ICA. The second data set was developed to
meet the statistical properties of the optical images and the third is composed
of separation results from real data. The separation quality is measured by the
mean reconstruction error (RE) (see equation 5.1).

The simulation with all three artificial datasets were performed at different
noise levels ranging from no noise to a noise level of 0db. The classical ICA methods
delivered very good separation results on the first artificial dataset that fulfilled
the independence assumption but does not have smooth sources. In this case
the performance of the ESD algorithms was poor as expected due to the lack off
auto- and cross correlations. But the simulations with the artificial datasets two
and three (smooth and natural sources) clearly demonstrated that the different
instances of the ESD algorithm perform superior on the artificial data that reflect
the statistics of the optical images (Schiefil et al., 1998; Schiefl et al., 1999). This is
especially true at the high noise levels we find in vivo. The single shift ESD shows
a higher quality in separation than the ICA algorithms (Schiefll et al., 2000c).
This result can be enhanced even further by using the multi shift ESD algorithm
with noise robust sphering. This approach is less susceptible to noise because
it has redundant information about the sources (Schoner et al., 1999; Schoner et
al., 2000). Another explanation for the bad performance of the ICA methods might
be explained by the fact, that it is more difficult to estimate higher order moments
in the presence of strong sensor noise from a limited number of data points, than
the estimation of second order moments.

With the introduction of the regularization term to the cost function of ESD
one deliberately leaves the path of parameter free estimation in order to introduce
additional knowledge about the time course of the sources (Schiefll et al., 2000a).
If the assumptions are wrong the result will necessarily also be wrong. But if the
assumptions are right the tests with the artificial data show that this is the most
promising method. Unfortunately up to now the regularization term implies some
restrictions on the size and appearance of the demixing matrix W so that the
method could not yet be applied to the real data sets.

The insights of the performance differences between ICA and ESD we have
gained from the tests with the artificial data were reflected in the results with real
data. This shows, apart from the fact that the artificially created data were well
designed, that these biological signals with the high noise levels are not suited for
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the classical ICA methods. The ESD assumption about the smoothness of the
sources is supported by tissue scattering properties. From the first and second
source of the natural images in the test data we know that the auto-correlations
of a ocular dominance pattern and a vessel pattern is about five times bigger than
the cross-correlations.

The shift vector for single shift ESD should be chosen in a way that the auto-
correlations of the sources as well as the cross-correlations of the mixtures should
be big. Furthermore it showed that small shifts like (5 x 5) pixels have the highest
probability for good and reliable separation results. Though ESD only uses second
order statistics it is not bound to orthogonal solutions like PCA. On the tested
optical imaging data sets the ICA algorithms were not able to clearly separate
the mapping signal from the artefacts in the difference stacks even after lowpass
filtering. The single shift ESD algorithm on the other hand could clearly separate
the mapping signal in difference stacks after filtering. For the analysis of the
single condition stacks the ICA methods proved to be inadequate and the stimulus
specific signal could not be extracted. Both the single shift ESD and the multi
shift ESD separated the mapping signal in the single condition stack and the later
method often needed less or no filtering. Apart from that fact the two instances
of ESD did not show a that big performance difference on the real data sets.

Once a source is separated from the mixture one has to make a judgement
about its metabolic origin. This proves especially difficult in the analysis of
new stimulus regimes where the pattern of cortical activation is unknown. An
important tool to aid this judgement is the corresponding time course one can
calculate by back projection on the data stack. This tool is delivered by our non
parametric statistical methods and is not available in this form from the standard
analysis methods for optical images.

We have introduced a method that allows us to analyse data with much
lower signal to noise ratios compared to what has been possible so far. This not
only extends the stimulus regimes that can be investigated with optical imaging,
but also helps to analyse data from sub-optimal recording conditions. As the
statistical properties of the estimates are untouched we can also have more belief
in the statistical results like pinwheel densities etc. we get from the data. The
metabolic activities reflected in the intrinsic signals are also used for imaging with
other techniques like the blood-oxygenation level-dependent (BOLD) functional
magnetic resonance imaging (fMRI) for localising brain function of humans in
vivo. Because of the statistical similarities of the data from these different medical
imaging techniques the results and findings from this work show the same analysis
methods are highly applicable to another. Both the experimental technique and
the field of blind source separation are quite recent and so far the properties
of BSS have not been exploited for the separation of two dimensional medical
imaging data.
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One of the goals for the application of the non invasive optical imaging tech-
nique is the use during brain surgery on humans. Due to size of the craniatomy
the stable conditions we have in the experiment with the steel chamber will not be
reproduced. This will introduce many artefacts that can not be removed with the
standard methods as they are not stimulus locked. We believe that it is here that
the robustness of the ESD algorithms will prove themselves especially valuable.
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