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ABSTRACT

Excessive alcohol consumption has a detrimental effect on public health.
Alcohol abuse is a top-ranked disorder of the brain with respect to total
costs to economy and is linked to an estimated 3.8 % of global deaths. Often,
first experiences with alcohol are made during adolescence, the time of
transition between childhood and adulthood. Adolescence marks a period
of complex social, biological and psychological development; the interplay
between alcohol consumption and these manifold developments are not yet
fully understood. In my thesis, I use the IMAGEN database, a large-scale,
longitudinal study of around 1000 healthy adolescents, to shed light on the
neurobehavioural patterns of heavy drinking in adolescence.

In the first part of my thesis, I introduce a framework for the systematic
analysis of predictive and explanatory quality of neurobehavioural features.
I adapt a common cross-validation scheme to assess the predictive power
in the presence of confounders. Moreover, I develop a novel method to
estimate the influence of a single (neurobehavioural) feature on a binary
outcome.

In the second part of my thesis, I build a comprehensive phenotype de-
scribing alcohol drinking behaviour for the subjects from the IMAGEN
database. I show that the constructed phenotype outperforms all original
drinking behaviour variables in terms of consistency.

In the third part, I apply the established methods on neurobehavioural
features from the IMAGEN study to differentiate between drinking be-
haviour phenotypes. First, I focus on grey matter volume and psychoso-
cial features. I show that heavy drinking in adolescence is associated with
reduced grey matter volume across various cortical and subcortical struc-
tures, especially in females. Moreover, I observe that impulsivity and facets
of novelty seeking are associated (also longitudinally) to heavy drinking.
Then, I focus on functional imaging and cognitive features. I show that ado-
lescent drinking is associated with various markers of impaired response
inhibition, both neural and behavioural.

Overall, I shed light on both risk profiles and potential consequences of
heavy drinking in adolescence. On the one hand, I contribute to the un-
derstanding of the detrimental effects of alcohol on the adolescent brain,
calling for targeted intervention programs. On the other hand, I show that
risk profiles based on personality traits may offer the potential for preven-
tion procedures before the treacherous spiral of addiction begins.






ZUSAMMENFASSUNG

Uberméagiger Alkoholkonsum wirkt sich nachteilig auf die dffentliche
Gesundheit aus. Alkoholmissbrauch ist eine der haufigsten Erkrankun-
gen des Gehirns in Bezug auf die Gesamtkosten fiir die Wirtschaft und
steht in Zusammenhang mit schdtzungsweise 3,8 % der weltweiten Todes-
falle. Haufig werden erste Erfahrungen mit Alkohol in der Adoleszenz
gemacht, der Zeit des Ubergangs zwischen Kindheit und Erwachsensein.
Die Adoleszenz markiert eine Zeit komplexer sozialer, biologischer und
psychologischer Entwicklungen; das Zusammenspiel zwischen Alkoholkon-
sum und diesen vielfdltigen Entwicklungen ist noch nicht vollstandig ver-
standen. In meiner Dissertation nutze ich die IMAGEN-Datenbank, eine
grof3 angelegte Langsschnittstudie mit rund 1000 gesunden Jugendlichen,
um die neurobehavioralen Muster des starken Alkoholkonsums in der Pu-
bertdt zu verstehen.

Im ersten Teil meiner Arbeit stelle ich eine Struktur fiir die systematische
Analyse der pradiktiven und erkldrenden Qualitdt von neurobehavioralen
Merkmalen vor. Ich adaptiere ein gebrduchliches Kreuzvalidierungsschema,
um die Vorhersagekraft in Gegenwart von Storfaktoren zu bewerten. Dartiiber
hinaus entwickle ich eine neuartige Methode, um den Einfluss eines einzel-
nen (neurobehavioralen) Merkmals auf ein bindre abhdngige Variable zu
schétzen.

Im zweiten Teil meiner Arbeit erstelle ich einen Phanotyp, der das Alko-
holkonsumverhalten der Probanden aus der IMAGEN-Datenbank beschreibt.
Ich zeige, dass der konstruierte Phianotyp alle urspriinglichen Variablen des
Trinkverhaltens in Bezug auf die Eindeutigkeit tibertrifft.

Im dritten Teil wende ich die etablierten Methoden auf neurobehavioralen
Daten aus der IMAGEN-Studie an, um zwischen den Phéanotypgruppen
zu unterscheiden. Zunéichst konzentriere ich mich auf das Volumen der
grauen Substanz und psychosoziale Eigenschaften. Ich zeige, dass starkes
Trinken in der Adoleszenz mit einem reduzierten Volumen an grauer Sub-
stanz iiber verschiedene kortikale und subkortikale Strukturen hinweg as-
soziiert ist, insbesondere bei Frauen. Dariiber hinaus beobachte ich, dass
Impulsivitat und weitere Personlichkeitsmerkmale (auch in longitudinaler
Weise) mit starkem Alkoholkonsum zusammenhingen. Dann konzentriere
ich mich auf die funktionelle Bildgebung und kognitive Merkmale. Ich
zeige, dass jugendliches Trinken mit verschiedenen Markern einer



beeintrachtigten Reaktionshemmung verbunden ist, sowohl auf neuronaler
Ebene als auch im Verhalten.

Insgesamt beleuchte ich sowohl die Risikoprofile als auch die moglichen
Folgen eines starken Alkoholkonsums in der Adoleszenz. Auf der einen
Seite trage ich zum Verstdndnis der schddlichen Auswirkungen von Alko-
hol auf das jugendliche Gehirn bei und fordere gezielte Interventionspro-
gramme. Auf der anderen Seite zeige ich, dass Risikoprofile, die auf Per-
sOnlichkeitsmerkmalen basieren, das Potenzial fiir frithe Pravention bieten
koénnen.
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1 INTRODUCTION

1.1 ALCOHOL AS A PUBLIC HEALTH PROBLEM

Humans began brewing beer as early as 13,000 years ago, as recent archae-
ological findings from the Raqefet Cave in Israel suggest (Liu et al. 2018).
Ever since, alcohol has played a key role in human culture. We know from
experience how having a drink or two feels relaxing and pleasurable. We
may also know that having another drink (or two, or three) might make us
feel unwell. In fact, already the first of those drinks may be harmful.

Social drinking is a slippery slope. The most recent version of the Di-
agnostic and Statistical Manual of Mental Disorders (DSM-V) merged the
previously separate conditions of alcohol abuse and alcohol dependence
into one holistic term — alcohol use disorders (AUDs). This emphasises the
seamless transition between abuse and dependence.

Excessive alcohol consumption has a detrimental effect on public health;
globally it is linked to an estimated 3.8 % of deaths and 4.6 % of disability-
adjusted life years (Rehm et al. 2009). Furthermore, alcohol abuse is a top-
ranked disorder of the brain with respect to total costs to economy (Effertz
and Mann 2013).

The harmful effects of alcohol abuse are manifold. On the one hand,
it is well established that acute intoxication leads to adverse social conse-
quences, including drunk-driving and aggression towards self and others.
For instance, the risk of being involved in a fatal car accident scales expo-
nentially with the blood alcohol content (Naranjo and Bremner 1993). On
the other hand, repeated alcohol intoxication may lead to the development
of a chronic AUD. Many studies have shown the relationship of AUDs with
widespread brain atrophy and functional irregularities (Biihler and Mann
2011; Chelune and Parker 1981; Heinz 2002; Sullivan et al. 2003). These
effects are partly reversible, but only after detoxification and a prolonged
period of abstinence (Carlen et al. 1978; Carlen et al. 1984; Trabert et al.
1995). Abstinence is rare, given relapse rates of up to 8o % within the
first six months after detoxification (Boothby and Doering 2005). Hence,
prospects are grim once the spiral of addiction begins.
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1.2 THE CRITICAL PERIOD OF ADOLESCENCE

Adolescence, the transition between childhood and adulthood, marks a pe-
riod of complex social, biological and psychological development. On a
neural level, adolescence is associated with a reduction in grey matter vol-
ume, an effect presumably resulting from both synaptic pruning and myeli-
nation (Dosenbach et al. 2010). At the same time, the white matter vol-
ume is steadily increasing due to the myelin proliferation (Pfefferbaum et
al. 1994). Synaptic pruning and myelination are thought to contribute to a
more efficient communication between frontal and subcortical brain regions
(Luna and Sweeney 2004). On a behavioural level, this increased efficiency
may be the neural basis responsible for the widely observed improvement
in inhibitory control during adolescence (Prencipe et al. 2011; Zelazo and
Carlson 2012). On a personality level, continuous adolescent development
occurs mainly on subscales related to overall maturity (Klimstra et al. 2009;
Roberts et al. 2001).

First experiences with alcohol often occur during adolescence and may
interfere with all three adolescent development levels — neural, behavioural
and personality. On a neural level, it has been demonstrated that alcohol
drinking during mid-to-late adolescence is related to variations in neurode-
velopment across brain tissue classes (Luciana et al. 2013). On a behavioural
level, impaired inhibitory control in adolescence has been associated with
excessive alcohol consumption (L6pez-Caneda et al. 2014). On a personal-
ity level, binge drinking has repeatedly been linked to various traits, such
as decreased agreeableness (Kuntsche et al. 2006) and conscientiousness
(Stewart and Devine 2000).

However, the association between various neurobehavioural aspects and
alcohol consumption might not (only) be a one-directional interference, i.e.
a negative effect of drinking. In fact, the association may also stem from
an underlying propensity towards an increased alcohol consumption. Dis-
entangling cause and effect is not easy and might be further complicated
by an additional effect of experiences such as stressful life events on the
drinking trajectory.

Besides having unfavourable interactions with various aspects of devel-
opment, heavy drinking during adolescence may further pose a risk factor
developing AUDs later in life (Grant et al. 2006). Understanding the effects
and neurobehavioural profiles of excessive alcohol consumption are hence
essential for the potential design of targeted intervention and prevention
programs.
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1.3 AIM AND SCOPE OF THESIS

In this thesis, I aim at identifying neurobehavioural patterns of alcohol
abuse in adolescence. I use data from a large-scale, longitudinal study (IM-
AGEN) to shed light on potential causes and consequences of early alcohol
consumption. Based on structural and functional brain imaging, person-
ality, life events and cognitive data and taking advantage of IMAGEN's
longitudinal study design, I aim to find both pre-disposing markers and
presumed consequences of heavy drinking in adolescence.

Note that this thesis is closely related to the project "e:Med Alcohol Addic-
tion — A Systems Oriented Approach" (specifically to Subproject 6 — Mathe-
matical Modeling I: Convergent Data Analysis and Statistics, see Spanagel
et al. (2013)), which was financed through the German e:Med fund from the
Federal Ministry of Education and Research (BMBF).

1.4 STRUCTURE OF THESIS

Part I: Foundations

In Chapter 2, I provide the reader with an overview and brief explanation of
the machine learning methods applied in the subsequent parts. I motivate
the two-stage procedure of my analysis and then take a closer look into
both these stages. For the first stage, prediction analysis, I provide details
of all the well-established machine learning classifiers used in Part III. I
further introduce a novel method to estimate classification accuracies in a
setting with confounders, as will be very relevant throughout the thesis. For
the second stage, association analysis, I briefly introduce classical methods
before proposing and briefly evaluating another novel method for assessing
single-feature effects on labels in the presence of confounders. Moreover, 1
touch upon preprocessing methods and multiple testing correction.

Part Il: The IMAGEN database

In Chapter 3, I give an overview of the general aims of the IMAGEN project
and explain the prospective nature of the data acquisition. I further provide
wordings related to the study design that will be used excessively through-
out the thesis, including the definition of a "cross-sectional" and a "longitu-

3
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dinal" setting. Importantly, I also state our contributions for the acquisition,
preprocessing and all further analyses.

In Chapter 4, I derive the drinking behaviour labels "light" and "heavy"
for the adolescent subjects from the IMAGEN database. These labels are of
central importance for all analyses in the subsequent material.

Part Ill: Patterns of alcohol abuse in adolescence

In this part, I apply the methods from Part I on the IMAGEN database,
using the previously derived labels and following the two-stage procedure
introduced in Chapter 2.

In Chapter 5, I concentrate on grey matter volume and psychosocial fea-
tures for the prediction of drinking behaviour. Psychosocial features in-
clude various personality traits and stressful life events.

In Chapter 6, I focus on functional activation and cognitive features. Both
sets of features are specifically trimmed to capture response inhibition.

Part 1V: Synthesis

In Chapter 7, I draw overall conclusions and provide ideas for future work.



Part |

Foundations






2 MACHINE LEARNING AND
RELATED METHODS

This chapter introduces the (old and new) machine learning and statistical
methods that will be used in the rest of the thesis. Sections describing newly
developed methods are marked by a star. Some aspects have previously
been published (Kassraian-Fard et al. 2016; Seo et al. 2018). For author
contributions, see Appendix C.

2.1 INTRODUCTION

The analysis of neurobehavioural data with the goal of differentiating be-
tween distinct subject groups is popular. At the outset, individuals in a
typical study are grouped (or deliberately recruited for participation) ac-
cording to some criterion of interest. Common groupings are, for instance,
patients versus controls, substance abusers versus non-abusing relatives or
— and this will be our criterion of interest — light versus heavy drinking
adolescents. In both subject groups, a set of neurobehavioural features is
measured. The goal of the subsequent analysis is to detect differences in
these features between the groups in order to shed light on their underlying
characteristics. For instance, which neurobehavioural state characterises a
relapser from an abstainer after treatment for alcohol dependency? Or, as
in our setting, what marks a light versus heavy drinking adolescent?

Classical approaches involve testing for group differences for each mea-
sured feature. Slight extensions consider also multivariate profiles, i.e. the
difference in interplay of several features. Importantly, classical approaches
generally do not evaluate the generalisation strength, i.e. the validity of
the discovered group differences on holdout data. As Shmueli (2009) and
Yarkoni and Westfall (2017) nicely frame: the focus of traditional approaches
is explanation, not prediction.

Fueled by the replication crisis (Ioannidis 2005; Open Science Collabo-
ration 2015) and the trend towards gathering large-scale data sets (Jordan
and Mitchell 2015), machine learning methods applied to problems in clin-
ical psychiatry and psychology have gained popularity rapidly throughout
the past years (see the reviews Dwyer et al. (2018) and Iniesta et al. (2016)).
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Machine learning algorithms are statistical methods that learn to perform
a specific task without relying on explicit instructions. They naturally deal
with multivariate data and thereby allow to model intricate patterns of fea-
tures. Moreover, a fundamental property of machine learning algorithms is
the use of an out-of-sample error measure, i.e. the performance is evaluated
on a different data set than the one used for the estimation of model param-
eters. In theory, a focus on such error measures yields transferable and,
given data drawn from the same population, reproducible results (Klein-
berg 1996). This is a highly desirable quality, especially in the framework
of diagnosis or prediction of treatment outcome.

Machine learning methods have radically changed perspectives not only
in clinical psychiatry and psychology but in the entire medical commu-
nity (Darcy et al. 2016; Obermeyer and Emanuel 2016), early predictions
of which can be found in Kononenko (2001). This revolution has not only
led to positive resonance. A regularly raised concern is the apparent "black
box" nature of machine learning (Cabitza et al. 2017; Chen and Asch 2017;
Maddox et al. 2019), referring to the lack of straightforward model interpre-
tations. Chen and Asch (2017) state that "an accurate prediction of a patient
outcome does not tell us what to do if we want to change that outcome";
Cabitza et al. (2017) emphasise "the need to open the machine learning
black box".

In this thesis, we hence propose an analysis pipeline that is a hybrid
between prediction and explanation. We suggest and employ a two-stage
procedure. First, we use machine learning methods and out-of-sample error
measures to determine the predictive value of a set of neurobehavioural fea-
tures for the discrimination of subject groups. If (and only if) the features
contain significant predictive power, we proceed with the second stage, the
post-hoc evaluation of individual feature differences. We thereby adhere
to Yarkoni and Westfall (2017) who argue that "in a great many cases, re-
search programs that emphasize prediction, and that treat explanation as
a secondary goal, would be more fruitful", and refer to the first stage as
prediction analysis and to the second stage as association analysis .

This chapter introduces the necessary foundations for this two-stage pro-
cedure. For preprocessing and prediction analysis, we rely on established
methods and only briefly recapitulate the existing theory. For the evalua-
tion of significance of prediction analysis in the presence of confounders,
we develop "bootstrapped-stratified-cross-validation" (BSSCV). For associ-
ation analysis, after reviewing classical approaches, we design a tailored
adaption of logistic regression, namely the "repeated logistic lasso" (ReLL).



2.2 PREPROCESSING |

A hurried and informed reader is advised to skip the well-known content
and head directly to the more novel parts, indicated by stars next to the
section titles.

2.2 PREPROCESSING

Preprocessing of data is a crucial step to ensure the precision and accuracy
of the subsequent modelling. Here, we provide only a short glimpse into
the broad field of preprocessing, focusing on methods used in our analysis
- namely outlier detection and imputation.

2.2.1  Outlier detection and treatment

Outliers in behavioural or neuroimaging variables can be present for vari-
ous reasons, for instance misunderstood instructions by the tested subject,
or measurement errors. Many methods exist to (i) detect and (ii) then treat
them. Note that we perform outlier detection and treatment in an unsu-
pervised fashion, i.e. only using the features x € R4 and not the labels

y €{0,1}.

DETECTION The most basic approach to outlier detection (and one which,
among others, is also used in this thesis) is to fully rely on hypothesis-
driven thresholds. For instance, say an experiment involves reacting to
stimuli and a subject turns out to have a response rate of 0, i.e. the subject
never responds. Common sense would call this measurement an outlier, po-
tentially caused by inattention of the subject or misunderstood instructions.
Given data (xi,Yi)i=1,..,N, Xi € R4,y; € {0,1}, this approach amounts to
setting thresholds, c}owe* and c].upper, for each feature j, and labeling each
observation outside of these thresholds, i.e. if:

Xij & [C}Ower, Cjupper],

then x;; is an outlier.

A more data-driven approach is to consider the distribution of features
xi. One possibility is to use the z-score of a single feature to determine
how many standard deviations a data point is from the sample’s mean
(assuming a Gaussian distribution). Common values for the number of
standard deviations an observation is allowed to be away from the centre
are values larger than 2.5. For instance, in Figure 2.1, the red triangle is

9
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far away from the centre of feature x; and hence, the method would mark
the observation’s x, feature as an outlier. The method is univariate, since it
does not take the distribution of x; into account when screening for outliers
in X2.

X2
0
1

Figure 2.1: Simulated data of dimension d = 2 drawn from a multivariate normal
distribution. The range of values that fall within 3 sample standard deviations for
feature x; and x;. The red triangle would count as an outlier in x, but not x;.

TREATMENT  The simplest reaction after the detection of an observation
xi with an outlying feature x;; is to discard the entire observation. How-
ever, this can result in the removal of observations that only have a single
outlying feature whereas all other features may still carry important (and
accurate) information. We hence only remove the feature value x;; and treat
this feature entry as missing.

2.2.2 Imputation

To deal with the ubiquitous case of missing data, we make use of common
imputation methods. Given data (xi,Yi)i—1,...N, Xi € R4 and y; € {0,1}
we consider the case of missing feature entries x;; for a data sample i. If
a label y; is missing, the data sample is not considered for prediction and
association analysis.

The most straightforward approach to missing values in data is to con-
sider only the complete cases, i.e. to discard all samples (xi,yi) with at least
one missing feature entry xij. However, if there are many missing values
(and they are distributed over many subjects) the resulting data set may
become too small for reasonable analyses. Furthermore, the acquisition
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of data is often troublesome and costly. Discarding parts of the data may
hence be a real pity.

A slightly more data-driven approach is univariate imputation. Given a
sample index i* and feature index j*, and the corresponding missing fea-
ture xi+j+, this approach makes use of the non-missing entries {x;j+ € R[i =
1,...,N,i # i*} to estimate a realistic value for x;+j». Common estimation
approaches (all of which we use in this thesis) include (Gelman and Hill
20006):

e Mean imputation: replacing the missing feature by the sample mean of
non-missing feature observations

o Median imputation: replacing the missing feature by the sample me-
dian of non-missing feature observations

e Sample imputation: replacing the missing feature by drawing a sample
from the empirical distribution of non-missing feature observations

Multivariate imputation methods make use of potential interplay between
features. Common approaches include (Gelman and Hill 2006):

o kNN-imputation: replacing the missing feature by the sample mean of
the k-nearest neighbours according to some distance measure based
on the scale of the features, e.g. Euclidean, see Zhang (2012) for fur-
ther details

o Deterministic linear regression: replacing the missing feature by an esti-
mated regression model using two steps (Gelman and Hill 2006):

1. estimate a linear regression model, using the observed instances
of the missing feature as target variable and the rest of the (ob-
served) features as explanatory variables

2. use the model to predict the response for the missing case

o Random forest imputation: similar to linear regression imputation, us-
ing a random forest model (Shah et al. 2014)

Extensions of these methods include multiple imputation by chained
equations (MICE, see Gelman and Hill (2006)).
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2.3 PREDICTION ANALYSIS

In our setting, prediction analysis serves to evaluate the predictive power
of a set of neurobehavioural variables. We use a variety of linear and non-
linear classifiers, most of which are widely used. Several classifiers are
used in order to evaluate both linear and non-linear models and to make
full use of the advantages and disadvantages of different classifiers. In the
following, we will briefly introduce the classifiers used in the subsequent
chapters. A thorough description can be found, for instance, in Friedman
et al. (2001).

2.3.1  General setup

The general problem setting for our purposes is a classification task. We
are given a d-dimensional feature vector x = (x7...,xq) € R4 and an as-
sociated binary label y € {0, 1}. (Note that the label could coded arbitrarily,
y € {0, 1} is mere convention. In fact, for the description of support vector
machines we will switch to y € {—1,1}, since this slightly simplifies the
derivations.) The task is to learn the relationship between the features x
and the label y.

There are two distinct approaches for this task — generative and discrim-
inative classifiers. Generative classifiers model the joint probability distri-
bution p(x,y) and the distribution of the features x and y. They then use
Bayes’ rule to infer the posterior:

_ plxy)
plylx) = pix)

and lastly assign the most likely label to a feature vector x, according to this
posterior, i.e.

§(x) = argmaxp(ylx).
Yy

On the other hand, discriminative classifiers model the posterior p(y|x)
directly or learn a some other form of direct mapping between feature x
and label y.

Discriminative classifiers approach the task more directly and were hence
long assumed to be more efficient than generative classifiers. In fact, Ng
and Jordan (2002) have shown that generative models do have a higher
asymptotic error. However, Ng and Jordan (2002) have also demonstrated
that generative models may approach the asymptotic error much faster.
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Hence, both approaches are legitimate and we will describe and use both
generative and discriminative classifiers throughout this thesis.

2.3.2 Logistic regression

Logistic regression is one of the most basic linear approaches to classifi-
cation (Cox 1958). Given the label y € {0, 1}, the set of features x € R4
(usually augmented by xp = 1 to accommodate the intercept) and parame-
ters B = (Po,...,Bq) the following model is assumed:

Ply=Tkx) \ __r
log (1—P(y=1|x)> =x'B. (2.1)

Since the conditional probability P(y = 1|x) is modeled directly, logistic re-

gression counts as a discriminative classifier. Given observations (i, Yi)i—1,...

with x; = (xi1,...,%iq) as the feature values for observation i the model
parameters can then be estimated by maximum likelihood estimation. The
likelihood is derived as follows from Equation (2.1):

T exp(xiTB)
Plyi = 1Ixq) = 1 —|—exp(xiT[3)'

Given ay* € {0, 1}

o Plyi=1x) Y TN
Plyi =y Ixi) = (M) (1—=Plyi = Tlxi))
zexp(xiTB)y* !

1+ exp(xiTB)

_ *xT e
=exp(y*x; B) exp (log (1 +e><p(xin5)>>

= exp(y*x{ p —log(1+exp(x{ B))).

13
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Assuming independent observations and yi € {0,1},i=1,...,N:

P((y1,...,yn) = (y7,...,yN) | (x1,...,%q))
N
=[IPwi=v))
i=1

p(yix{ B —log(1+exp(x] B)))

I
H’:]z I

o

><

=exp <ZH x] B —log(1 +exp(xiTl3))>-

The log-likelihood is therefore given by:

N
:Zy’{xiTB—log(l +exp(x{ B)). (2.2)

i=1
According to the general principle of maximum likelihood estimation,
the parameter vector 3 is numerically estimated as the arg-max of Equation

(2.2).

2.3.3 Naive Bayes

Naive Bayes is a simple generative classifier that relies on Bayes’ theorem.
Using the latter we can rewrite:

pixly =y")Ply =y")

p(x)
and then choose the class {J that maximizes this expression. This leads to
the following:

Ply=y*x) =

§ = argmaxP(y =y*x)

y*€{0,1}

= argmaX‘P(X‘y =y")P(y :y*)
y*€{0,1}

=argmaxp(x,y =y*).
y*€{0,1}

Now the strong assumption (hence the "naive" in the name) is made that
each feature is independent of each other feature, given the class label, i.e.

p(x1,...,xaly) = [ [ p(x;ly).
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It then follows that

d

9=Ply=y") [[rxh).
j=1

Finally, a family of distributions is assumed to model each p(x;jly), Gaus-
sians being the simplest choice. The fact that these distributions are mod-
elled, and not directly P(y = y*|x) is the reason why naive Bayes counts
as a generative classifier. The parameters of a Gaussian distribution (mean
and variance) are then estimated with the typical formulas for each feature
and each class separately.

2.3.4 Random forests

Random forests (Ho 1995) are an extension of decision trees. A decision
tree uses a top-down approach to recursively bucket data into disjunct sets.
At each step it chooses a feature and a cut-off value for this feature that
splits the data optimally according to a specific criterion. Typical criteria
are the Gini impurity metric and information gain (Breiman 2017). The
depth of the tree is a free parameter set by the user implicitly through the
minimum node size, i.e. how many samples are minimally allowed to end
up in one leaf. This depth parameter influences both computation time and
regularisation strength.

A slight modification of a decision tree is to take only a random subset
of features, drawn anew at every node instead of inspecting all features at
every node as potential candidates for the next split. However, even with
this modification, decision trees tend to overfit the data, especially if grown
very deep and if no pruning is applied.

Random forests are one way of solving this problem. Simply said, instead
of growing a single tree, a whole forest of trees is grown and the “average"
result is used for classification. Formally, this is done by performing a
variant of bootstrap aggregation (bagging, Breiman (1996)). Given data
D = (xy,Yi)i=1,...,N, do the following:

15
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Algorithm 2.1: Random forest

forb=1,...,Bdo
1. Take a sample Dy, C D of size n with
replacement

2. Train a modified decision tree T, on Dy,

end
Classify a new data point x* according to the majority vote
of the B modified decision trees

As a suggestion by the inventors of random forests, the modified deci-
sion trees are usually grown to maximum depth (i.e. minimum node size =
1) and using random feature subsets of size v/d. The modification decorre-
lates the individual decision trees and allows the averaging to truly reduce
variance.

2.3.5 Support vector machines

The support vector machine (SVM) is a technique to construct an optimal
linear decision boundary to separate two potentially overlapping classes,
see e.g. Friedman et al. (2001, Chapter 12). Since it searches for this bound-
ary directly and does not infer any class distributions, it counts as a dis-
criminative classifier. Such a boundary is called a hyperplane and can be
described mathematically as follows (in a d-dimensional space):

X1B1+x2B2+ - +xaPa+PBo =0, (2:3)
where the 3; are normalised to guarantee a unique representation, i.e.

IBIl = 1. Setting x = (x1,...,xq) and B = (B1,...,B4) one can express
Equation (2.3) more compactly as

x'B+Bo=0 (2.4)

In order to easen visualisation, a closer look at the case d = 2 is worthwhile.
In this case the hyperplane equation simplifies to:

x1B1+x2B2+Bo=0
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which in turn can be rearranged to

B Bo
B2 B2
The accordance to the simple linear function equation y = ax +b now

becomes apparent. A hyperplane can simply be considered as the natural
extension of this concept for dimensions d > 2.

The hyperplane divides the feature space into two distinct areas. Mathe-
matically, this corresponds to whether x"B + Bo is smaller or greater than
0. Given data points (xi,Yi)i=1,...,N, where the x;’s are the d-dimensional
features and the y;’s are the labels as either —1 or +1 (recoded from 0 and
1), one would ideally want perfect classification. This can be expressed by
requiring

yi(x{ B+ Bo) >0, (255)

since this is only the case if the sign of y; corresponds to the sign of x{ B +
Bo. In addition, one wants a maximal “distance" between the classes, the
so-called margin M. Hence, in order to find the best separating hyperplane
the following optimisation problem has to be solved:

max M subject toyi(xiTB—FBo) >Mforalli=1,...,N,
B,BolIBII=1

which can be written as

min ||B]| subject to yi(xTB—i— Bo)=1foralli=1,...,N,
PO

when dropping the constraint on ||B]| and setting M = H]W

However, since perfect classification is usually not possible, so-called
slack-variables & = (&1,...,&N) are introduced to allow for points on the
wrong side of the margin. Hence, the constraint is modified to the follow-

mg:

N
Yilx{ B+ Bo) > 1—& with & > Oforalli=1,...,Nand ) & <C.
i=1
' (2.6)
Intuitively, &; denotes the deviation of sample point i from the correct
side of the margin. The constant C limits the number and gravity of
misclassifications. The optimal parameter is usually determined by cross-
validation, see Section 2.4.2.

17
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Computationally, it is beneficial to re-express Equation (2.6) as a quadratic
problem:

N
1
min = ||Bl?+C Y & subiject to
B,Bo 2 B 1:21 ' )

yilx"B+Po)=>1-¢& fori=1,...,N
& =0 fori=1,...,N’

Then, the corresponding Lagrange primal function that is to be mini-
mized w.r.t. B, o and & is as follows:

N N N
Lp =BIP+CY & —) aulyilx"B+Bo)—(1—&)— ) ni&y,
i=1 i=1 i=1

with «7,...,an and py,..., uN as the Lagrangian multipliers. The associ-
ated dual objective function is then the following:

N N

N
Lp = Z o — % Z Z ociocjyiijiij. (2.7)
i=1

i=1j=1

Support vector machines can be used to model also non-linear bound-
aries by using the so-called "kernel-trick". The data is mapped into a higher-
dimensional space to achieve separability. Note that in Equation (2.7), x{ x;
can also be written as (xi, x;), where (,-) denotes the standard Euclidean
inner product. So-called basis functions hy : RY 5 Rwithm=1,...,M
are used to map the features h(x;) = (hy(xi),...,ham(xi)). This leads to the
following modified dual objective function:

N 1 N N
Lp = Z o — 5 Z Z OciO(jyiyj<h(xi)rh(xj)>'
i=1

i=1j=1

It can be demonstrated (see e.g. Friedman et al. (2001, Chapter 12)) that
the estimated hyperplane is linked to h only through the inner product
(h(x),h(y)) for x,y € R%. Hence, one can specify non-linear extensions
to the support vector machine by defining a kernel function K(x,y) that
computes inner products in the extended feature space. One of the most
typical kernel functions is the radial basis kernel:

K(x,y) = exp(—vlx—yll*),
with y > 0.



2.3 PREDICTION ANALYSIS \

2.3.6 Learning vector quantisation

Learning vector quantisation (LVQ) (Kohonen 1990) is a nearest prototype
classifier. In contrast to the k-nearest-neighbour algorithm, where all data
has to be accessed for classification of a new data point, prototype-based
classifiers use only a set of representative data samples (the so-called pro-
totypes) for each class. Learning involves adjusting the location of the proto-

types using the labels. More specifically, given a data set D = (xi, Yi)i—=1,... N,

a prototype-based classification model consists of a set of M labeled pro-
totypes, T = {(m]-,c]-)})zvl:1 C D. For classification of a new sample, the
distance to all prototypes m; is measured according to some appropriate
distance measure (e.g. Euclidean), and the sample is assigned to the class
of the nearest prototype. During learning, the prototypes m; are adjusted,
but always remain in the labeled data set .

Robust soft learning vector quantisation (RSLVQ) is a variant of LVQ
and was developed by Seo and Obermayer (2003). It finds an optimal set
of prototypes based on the assumption that the data follows a Gaussian
mixture model, making it into a generative classifier. It is assumed that
the data x € RY is generated by a probability density p(x). Furthermore,
it is now assumed that p(x) can be described as a mixture model and that
every component j of this mixture generates data of only one class label
¢j. Note, however, that more than one component could be generating this
class label.

In our two-class setting, and for a set of prototypes T, the probability
density is modeled as follows:

pxT = Y pxj+ ) plxj)

{j: c) =0} {jiey=1}
= Z > pixip
k=0 {j:cj=k}

where p(j) is the probability that data points are generated by component
j and p(x|j) is the probability that a certain data point x is generated by
component j.

RLSVQ maximises the likelihood ratio

7

N
'LTat'LO H P(Xuyl\T
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where p(xi,yi|T) is the probability density that a data point x; is generated
by a mixture model for the correct class, i.e. the class referred to by label y;.
When inserting a d-dimensional Gaussian distribution for the components
of the mixture model with identical width and strength, i.e. 0;j = o and
p(j) =1/Mforj=1,..., M, one obtains:

N2
pxf) = = exp (—(x_m]) )
(2mo2)d/2 202

and the following learning rule (Seo and Obermayer 2003):

m)(t—H) :mJ(t)—i-Am](t)

with
Am;(t) = a(t) (Py'(J|X) —P(jIx)) (x —m;) %f ¢ =v, ,
—P(jIx) (x —m;) if e, £y
and
_m.)2
o (")
Py (jix) = A
Z{k;ck:y}exp (— (xzr;_lzk) )
and
(xomy)?
exp =3
P(jlx) =

T exp (Y

where «(t) is the learning rate. Prototypes that match the label of data
point x are attracted to the data point, proportional to the factor Py (j|x) —
P(jIx). Prototypes that differ in label to data point x are repelled from it,
proportional to the factor P(jlx).

2.4 PERFORMANCE ASSESSMENT

After having introduced several classifiers that are to be used throughout
this thesis, note that it is of equal importance to be able to compare these.
Hence, methods are needed to assess the quality of different classifiers on
a given data set. A typical choice is to look at performance on unseen data
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since generally, one is interested in generalisation performance and not in
within-sample performance. One of the most typical methods is to use a
classifier’s accuracy, i.e. on to assess how often (on average) a classifier is
correct on unseen data.

The data are i.i.d. realisations from random variables (X,Y) ~ F , where
X € R4, Y € {0, 1} and F some unknown distribution. Now, let

A

Qly, G(x) = Ly = G(x)}

denote the quality of the estimate G, where 1{} is the indicator function.
Let D denote the set of data and G the estimate based on D. The theoret-
ical concept one is interested in is the test accuracy (Friedman et al. 2001),
defined as:

Accp = Ex v+ [Q(Y*, G(X*))|D],

where (X*,Y*) is a new test data point, drawn from F and independent of
D. This accuracy depends on the chosen (training) data set D. Averaging
over D then yields the expected test accuracy

Acc = EpE x+ v+ [Q(Y*, G(X*))|D]. (2.8)

In practice, most methods effectively estimate Acc (Friedman et al. 2001).

2.4.1  Specificity, Sensitivity and Balanced Accuracy

The above theoretical accuracy Acc averages over all possible test samples
(X*,Y). However, it is also crucial to consider performance separately for
each class. Depending on the context, the performance on one class can
have a different weight than the performance on the other class. Further-
more, unbalanced classes can give misleading accuracies, see e.g. Brodersen
et al. (2010) for simulations. Say that, for instance, one has 1000 data sam-
ples, 200 of which belong to one class and the remaining 800 to the other
class. Then, even a completely naive classifier predicting simply the label
of the majority class, irrespective of the features, will achieve an accuracy
of 80 %.

These separate performances are formalized in the following concepts
(see e.g. (Fawcett 2000)): positive test samples (here corresponding toy = 1)
and correctly identified as such are called truly positive (TP), test samples
which are negative (here corresponding to label = 0) and correctly iden-
tified as such are called truly negative (TN), falsely classified positive and
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negative test samples are called falsely positive (FP) and falsely negative (FN),
respectively. Then, the so-called sensitivity or true positive rate is

TP
NS = TN
and the so-called specificity or true negative rate is
TN
TECT N
In fact, accuracy can be introduced in a similar manner as
TP + TN
ACC = T TN T FP L N

Importantly, also the concept of balanced accuracy can be introduced (Broder-
sen et al. 2010). Balanced accuracy accounts for the potential imbalance of
classes and is also symmetric in the label:

SENS + SPEC
—

Note that, similar to Equation (2.8), the theoretical notion behind the
estimates of SENS and SPEC above can be written as follows:

balAcc =

Spec = EpE(x+,0)[Q(0, G(X*))/D],

and
Sens = EpEx- 1)[Q(1, G(X™))DI.
2.4.2 Cross-validation

In practice, only finite amounts of data are available to estimate Acc. A
very popular procedure for estimation is cross-validation.

Algorithm 2.2: Fold generation

K-fold cross-validation entails randomly partitioning the indices of
the data set into K subsets By of {1,..., N} such that:

1. UE:1‘B]<={],...N},
2. BjﬂBk:(Z)(j # k),

3. the sets By are (approximately) of equal size.
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For a fixed k, all sample points with indices that are not in one of the sets
By, are used to train the classifier. The dependency of the estimate on the
training set is made explicit by writing this as

a3,

Now, the expected test accuracy of Equation (2.8) is approximated with:

1 &y .
Acc = E Z |Bi Z Q(yi, G(_Bk)(xi))- (29)

By fixing k and iterating over different i € By we are fixing the train-
ing set and giving the fixed estimate G(=Bx) different test points (Yi, Xi).
Hence, this step approximates E(X*/Y*)[Q(Y*,G(X*))I]D] in Equation (2.8).
The outer sum, i.e. the iteration over different values of k, adjusts the train-
ing set and hence approximates the outer expectation Ey in Equation (2.8).

Similarly, the expected test specificity and sensitivity can be estimated.
Let B] and BY denote the subsets of By corresponding to indices of data
labeled as positive (1) and negative (0), respectively. Then the estimations
are the following:

K

— 1 1 N

Spec= D =5 > Qyi, 6P (x)
K k=1 Eipd

0
ieBy

and
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This "classical" cross-validation procedure can be summarized as follows:

Algorithm 2.3: Cross-validation

1. Split data D into K folds
2. fork=1,...,Kdo

a) train model on data, excluding data from fold k

b) test model on data from fold k,
computing balanced test accuracy balAccy

end

3. Average over the quality measures obtained for each fold,
e.g. balAcc = ¢ > K, balAcey

2.4.3 Cross-validation accounting for confounders

In practice, when wanting to analyse the relationship between two (sets of)
variables, there are often so-called confounders that need to be considered.
Fittingly to our setting, consider a set of neuroimaging variables with which
one wants to predict the binary alcohol drinking behaviour. One can easily
train and test a classifier for this problem and assess its quality by cross-
validation. However, now consider that there is an additional variable —
e.g. gender — that is closely linked to both the neuroimaging variables and
the drinking behaviour (see Figure 2.2 for a schematic depiction). More
specifically, let there be significant differences in the neuroimaging vari-
ables between genders and significantly more drinking males than drink-
ing females. If the conventionally assessed classifier now yields balanced
accuracies of 9o %, one cannot be sure of the source of this predictive power.
It might well be that the classifier is in fact learning to predict gender and
not drinking.

For a formal definition of confounders in the framework of causality, we
refer to VanderWeele and Shpitser (2013).

In general, there are multiple approaches for accounting for confounders;
we focus here on the specific setting of K-fold cross-validation. Consider
as above the situation that we have data D = (xi,Yi,zi)i=1,...Nn, Y € {0, 1}
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neuroimaging - > drinking

Figure 2.2: Gender as a confounder in the prediction of drinking behaviour from
neuroimaging data.

being the binary label (encoding e.g. drinking behaviour) and z € {f, m}
being a binary confounder (encoding e.g. gender). The idea is now that we
artificially destroy the relationship between the label and the confounder in
each fold, i.e. in each fold the confounder is balanced. In order to ensure
this, we subsample the data and in order to use all available data, we repeat
this procedure B times.

z=f z=m z=f z=m
y=1 Nyy Nim y=1 31 52
y=0 Nor Nom y=20 59 48

z=f z=m z=f z=m
y=1 Ny Nj y=1 30 30
y=0 Np No y=0 40 40

Table 2.1: Distribution of data across labels (y € {0, 1}) and confounder (z € {f, m}).
The top left table introduces the general notation, e.g. Ny is the number of data
samples with label y = 1 and confounder z = f. The bottom left table shows the
situation after subsampling to balance for the confounder, in preparation for K-fold
cross-validation. Now, the number of samples with confounder z = f equals the
number of samples with z = m, whereas the distribution across labels may still be
unbalanced. On the right we display showcase sample sizes.

More specifically, let the data be distributed across labels and confounder
as shown in Table 2.1, where e.g. N1 = [{(xi,yi,zi) € D:y; =1,z = f}l.
Then set

min(N]f/N1m)
K

L N min(Ng¢, N
= | ana s = | MMNorTom)
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where |- | rounds down to the next integer. Then let
N] :Kﬁ1 and NO :Kﬁo.
Now N and Ny data points are drawn (without replacement) from the
data of the first and second row of Table 2.1, respectively. Each of these

drawn data sets are split into K folds, according to the "normal procedure"
of Algorithm 2.4 to obtain the following testing folds:

T A T
Finally, these folds are combined to obtain the confounder-stratified folds
RBstrat _ rpstrat1K 3
(BT ey, e
ptrat = glfusImuBL UBI™  for k=1,...,K

The adapted cross-validation procedure (that we call "bootstrapped-stratified-
cross-validation" or BSSCV) is now as follows:

Algorithm 2.4: BSSCV

forb=1,...,Bdo

1. Subsample data D and prepare K
confound-stratified folds

2. fork=1,...,Kdo

a) train model on data, excluding data
from fold k

b) test model on data from fold k,
computing e.g. balanced test accuracy

baA\CC k

end

3. Average over the quality measures obtained for
each fold,

e.g. balAcc = ¢ > K_; balAccy

end
Compute the final quality measure as

— —— b
e.g. balAcc= ¢ > b_;balAcc
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Note that this way, it is easy to balance not only for the confounder but
also for the label itself. This entails replacing iy and 1y by

K

fi=| | (2.10)
and N7 and Ng by N = KA.

Using balanced classes is often preferred in extremely unbalanced sce-
narios. This can hold even if a balanced quality measure, such as balanced
accuracy, is used (Brodersen et al. 2010).

Furthermore, this procedure can be adapted to account for more than
one (binary) confounder — with the cost of loosing predictive power due to
even smaller subsetted data available for training.

Naturally, one cannot account for (or even be aware of) all possible con-
founders. In practice, one usually chooses a hypothesis-driven approach
and checks for correlation structures of at least the most obvious potential
confounders.

2.4.4 Significance of accuracies

Having obtained an estimation of accuracy (or another quality measure)
from a cross-validation scheme, the question arises, whether this accuracy
is significantly better than chance. If we have N = 10 data samples and
an SVM yields a balanced accuracy of 55 % — is this better than chance?
What would happen with N = 1000 samples? Statistical hypothesis testing
offers a systematic answer. Say we are interested in the accuracy Acc of a
classifier. Then null and alternative hypotheses could be as follows:

Ho : Acc =0.5 (the classifier performs at chance),
Hq : Acc > 0.5  (the classifier makes an informed choice).

Naively, one could consider a binomial test for this scenario. This would
assume that, under the null-hypothesis, every single classification is identi-
cally and independently Bernoulli-distributed. However, due to the cross-
validation scheme, classifications are neither identically nor independently
drawn from a Bernoulli-distribution. Since every classification decision can
potentially arise from different fitted models (since the training data varies
over folds), they are not identically distributed. Independence is violated
due to the high correlation between training data, hence also between esti-
mated models and classification decisions. For this reason, binomial testing
is not a good approach for the evaluation of accuracy significance.
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A better approach is to use permutation testing. This is a subfield of
non-parametric statistics. In contrast to binomial testing, the distribution
under the null-hypothesis is not assumed to come from a specific family of
distributions. Instead, the null-distribution is estimated and the estimated
accuracy is compared to this approximate null-distribution.

Roughly speaking, in permutation testing, the label is randomly per-
muted and the cross-validation scheme (if necessary accounting for con-
founders) is followed to estimate an accuracy. In theory, the relationship
between label and features is destroyed by the permutation, hence the ob-
tained accuracy is a "random" accuracy. By repeating this procedure many
times (usually at least 1000) and recording the obtained accuracy, we get an
empirical distribution under the null hypothesis.

More formally, the permutation testing follows the following scheme,

given an estimate of balanced accuracy balAcc and data D = (xi,Y1):

Algorithm 2.5: Permutation testing for accuracies

forj=1,...,nPerm do
1. permute labels y;

2. run a cross-validation scheme to obtain
an estimated accuracy balAcc}’ erm

end
Compute a p-value as:

P(balAcc > balAcc | Hp : balAce = 0.5)
1 nPerm

Y s(balAcc?e™ > balAcc)
j=1

" nPerm

Note that here we permute the labels. This will be different for the per-
mutation test introduced in Section 2.5.3.
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2.5 ASSOCIATION ANALYSIS

In the prediction analysis and the significance testing we assess the predic-
tive value of a set of variables. This does not naturally entail the information
about single features. Hence, we introduce association analysis as a post-
hoc step to examine significantly predictive sets of variables more closely.
As a result from association analysis, we would like an estimation of exactly
how a (set of) variable(s) influences the label. For instance, given the size
of a certain brain region, we would like to know whether it is, on average,
larger or smaller in alcohol-drinking adolescents compared to non-drinking
adolescents. As argued in Section 2.1, we crucially require the predictive
setting to be significant in order to proceed with the post-hoc association
analysis.

Importantly, since we already have an estimate of generalisation perfor-
mance, we do not perform cross-validation for the association analysis. In-
stead, ideally we can use the entire available data set D at once for this
post-hoc analysis.

2.5.1 Logistic regression for association analysis

Many different methods could be used to assess the so-called "association".
For single variables, the most straightforward (and also most ubiquitous in
the field of neuroimaging, see e.g. Nichols and Hayasaka (2003)) approach
is using two-sample t-tests.

However, t-tests have several weaknesses, for instance that they cannot
account for the presence of confounders. The natural extension is to re-
sort to logistic regression models. As described in Section 2.3.2, logistic
regression models can be used for classification. Also, they naturally out-
put estimates of feature strength by 3. Confounders can be included as
additional variables of no interest.

Formally, let x = (x1,...,%p) € R¢ and y € {0,1} be the features and
label, respectively and let z = (z1,...,zq) € {0,1}9 be the confounders.
Assume now that we want to assess the influence of a single feature xy on
the label y. Note that the following can easily be extended to non-binary
confounders and to a set of features. Now let

w = (xy,z) € R x{0,1}9 (2.11)
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be the augmented feature vector. Now, analogously to Section 2.3.2 we can
formulate the logistic regression model as follows:

Ply=1w) \ _ 7
log (]—P(‘y:1|‘~)> =W B, (2.12)

with B € RP*1. Now (7 is the coefficient of our feature of interest. With
analogous methods as described in Section 2.3.2, we can estimate 37. With
the usual distributional assumptions (see e.g. Friedman et al. (2001)) we can
then perform inference on this estimate and obtain a p-value.
A typically employed statistic is the Wald-statistic, which is approxi-
mately normally distributed for large samples:
W = /[3\7] ~~N(0,1), (2.13)
Var(B1)

where 4/ \7&‘([31 ) is an estimate of the standard error. The most straight-
forward interpretation of significant 31’s is is to simply look at the sign: a
positive 31 means that an increase in variable xy significantly increases the
likelihood of belonging to the class y = 1 and vice-versa. Other means of
interpretation can be done via odds ratios (Friedman et al. 2001).

2.5.2 Repeated logistic lasso (RelLL) for association analysis

As an extension of logistic regression for association analysis we have devel-
oped a method we call repeated logistic lasso (ReLL). As the name already
states, the method relies heavily on the lasso for logistic regression, which
we introduce here briefly.

The least-absolute shrinkage and selection operator (lasso) was devel-
oped by Robert Tibshirani (Tibshirani 1996) and is a regularisation and fea-
ture selection method. Recall the log-likelihood from Equation (2.2). For
lasso regularised logistic regression, the maximisation of  is done over a
penalised version of Equation (2.2), formulated as follows (with x;, y; and
3 defined as in Equation (2.2)):

N

d
(tasso(gy = Z {yixiTB —log(1 Jrexp(XiTB))} *AZ 1351, (2.14)

i=1 j=1

where A € [0, 1] is the regularisation parameter. The regularisation by means
of the Ly-norm entails that 3; are often estimated as exactly 0, if they do
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not add informative value to the model. This is a desirable property for our
association analysis, since it automatically lets only "important" features
survive.

The regularisation parameter A is commonly chosen via K-fold cross-
validation, by optimising e.g. accuracy or deviance over a given set of po-
tential A’s (see e.g. Friedman et al. (2001) or Friedman et al. (2010)).

Now in order to adapt Equation (2.14) to the presence of confounders,
we take again the notation that w = (xy,z) € R x{0,1}9 with xj as the
single feature we wish to assess. Given data D = {(xi,yi,zi)}{i] with
xi = (Xi1, ..., %iP) let wi = (xix, z1).

We introduce the following adapted likelihood for ReLL:

N
ReLL(E) = 3 |yiw] B —log(1 +exp(w{ B))[ ~AB1.  (215)
i=1

Note that the penalisation is performed only on the coefficient corre-
sponding to our feature of interest and not on the coefficients of the con-
founders. This enforces that the confounders are never de-selected. In turn
this means that a "surviving" feature xx must survive in presence of the
confounders.

Note that (again) this can be formulated analogously for non-binary con-
founders and/or a set of features.

Due to the randomness of K-fold cross-validation, the chosen A and hence
also the estimated model may vary over different runs. This is problematic
for our purposes: we would not wish a certain feature to be "chosen" as
informative in one run and then not chosen in the next.

Hence, we propose to repeat the entire model fitting (including the opti-
misation of A) N;¢ times. As a final estimate of 3 we propose to use the
median. More formally, we suggest the following algorithm:

31
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Algorithm 2.6: ReLL for association analysis

forr=1,...,Ny¢p do

o fit a lasso-regularised regression model on the
augmented data D = {(wi,yi)}]i\jz] ,
maximising Equation (2.15)

e choose A by K-fold cross-validation

e obtain estimate m

end
Obtain a final estimate by:

A 1 N
B?eLL - medlan(ﬁl,.. 5p B] rep )

Interpretation of BReLL is analogous to interpretation in logistic regres-
sion, i.e. a positive 37 implies that an increase in variable xj increases the
likelihood of belonging to the class y = 1 and vice-versa.

To check if our developed method has the desired properties, we con-
ducted a small simulation study. We simulate a feature x;. that is linked
to a label y with a true association coefficient 3; € [—0.03,0.03], emulat-
ing very weak (or even 0) associations. Furthermore, we add a confounder
z € {0, 1} that is related to the feature xy and to the label y, based loosely
on the setting described in Figure 2.2. We then let the association 37 be
estimated by logistic regression, as described in Section 2.5.1 and with the
ReLL method for each simulated scenario. Figure 2.3 shows that our ReLL
method is always more conservative in its estimation of association than
logistic regression, since |G$8LL\ < |B1l. Furthermore, the simulation sug-
gests that the ReLL method seems to give a less biased estimate of (31, since
|B$6LL —B1l < IB1 — B1l. However, these simulation results are only in-
dicative. A more extensive analysis would be required to draw definite
conclusions. This could also include an analytic derivation of the distri-
bution of the ReLL estimator. We comment in more detail on this idea in
Section 7.2.
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Figure 2.3: Simulation study to compare logistic regression to ReLL for association
analysis. We simulate observations of a feature xx € R that is related both to a
label y € {0, 1} and a confounder z € {0, 1}, based loosely on the setting described
in Figure 2.2. More precisely, we draw the first 500 samples i.i.d. from a Gaussian
distribution N(p,—p, 0,—¢) and the another 500 samples i.i.d. from N(pu,—_1,0,-1),
where pu,—o = 2.1, g0 = —1.2, 0,1 = 0.9 and 0,1 = 0.4. This gives us a
total of N = 1000 samples. The difference in distributions of xy is supposed to
emulate the relationship between the confounder z and the feature xi. We then
simulate labels y by the model described in Equation (2.12), using , = —1.9 and
an additional noise term, drawn from N(0, 0.1). The negative {3, results in a negative
effect of the confound on the label, simulating the negative effect of being female
on the probability of being a drinker. The noise term with a mean of 0 lets the
data follow the model on average, but with some fluctuation. The simulation of
data is repeated for different coefficients of interest 37 € [—0.03,0.03]. The weak
association strengths are meant to emulate the weak associations typically found
in real neurobehavioural features. For each simulated data sets corresponding to a
different true association 31, we estimate the association with (i) logistic regression,
as described in Section 2.5.1 and (ii) with the ReLL method. Boxplots represent the
distribution of respective estimates over 100 different noise realisations, displaying
the 95% coverage.
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2.5.3 Significance testing of RelL

Whether the BReLL are significant is not a trivial problem, since signifi-
cance testing for the lasso is not straightforward (Lockhart et al. 2014). This
makes significance testing for the ReLL all the less straightforward. We pro-
pose to resort to permutation testing — i.e. to compare true estimates to an
empirically obtained null-distribution.

In the version of permutation testing we use for testing prediction ac-
curacies, see Section 2.4.4, we permute labels. Here, we instead permute
the feature-of-interest column (xi;) ;. This has been proposed by Leo
Breiman in the framework of random forests (Breiman 2001). Permuting
the feature x; breaks any association between x; and the label y. However,
the relationship between the confounders z and the label y is preserved.
Hence, the resulting significance test assesses the specific influence of the
feature-of-interest x;.

Formally, we propose the following algorithm, given an estimate 3R¢tL:

Algorithm 2.7: Permutation testing for ReLL

fork=1,...,Nperm do
1. permute the feature-of-interest x;

2. run Algorithm 2.7 to obtain an estimated feature

weight:
‘3 ReLL,perm

end
Compute a p-value as:

P(BYTE > IBTM | Ho - B?e“ =0)

Nperm

Z 5 6ReLL,perm BI]QeI_L)

Nperm
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2.6 MULTIPLE TESTING CORRECTION

We have introduced the testing of balanced accuracy and the testing of the
ReLL-association method. They have to be performed for various classi-
fiers and features-of-interest, resulting in M different null- and alternative
hypotheses and M associated p-values. For instance, when testing ReLL-
association we have the following:

. RelL __
Hom: BRELL =0

Ham : BRQLL 750

, nl,m

for m = 1,... M. From significance testing we obtain M associated p-values
pReLL A null-hypothesis, Ho 1, is rejected at level o if pRELE < o Then,

by construction:

P(Ho m rejected | Hp 1 true) = «.

Let further A, be the event that we falsely reject the null-hypothesis, i.e.

Am = Hom rejected | Hp my true,

then the family wise error rate is the probability of at least one false rejec-

tion, i.e.:
M

FWER = | ] P(Am).
m=1

For M independent tests, it can easily be shown that
FWER =1—(1— o)™,

Hence, already for M = 2 (independent) tests, FWER > « and it becomes
more likely to reject null-hypotheses that are in fact true.

The Bonferroni-method (Friedman et al. 2001) accounts for the multiple
tests by simply adjusting the significance level & = . It can then easily be
shown that FWER < «. However, for many tests, the Bonferroni-method is
known to be too strict (Friedman et al. 2001).

Hence, it is a typical procedure to instead control the so-called false dis-
covery rate (FDR). If we are given an underlying scenario as described in
Table 2.2, then:

FDR=E [FR] ,
Tej
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where FR is the number of falsely rejected null hypotheses TR is the number
of correctly rejected null hypotheses and rej = FR+ TR.

Table 2.2: Overview of multiple testing setting. TA (FA) is the number of correctly
(incorrectly) non-rejected null hypotheses, and FR (TR) the number of incorrectly
(correctly) rejected null hypotheses. M denotes the total number of tests and rej the
number of rejected null hypotheses.

not rejected rejected
Hy true TA FR
Hq true FA TR

M —rej rej .= FR+TR

The FDR can then be controlled by the so-called Benjamini-Hochberg
method (Friedman et al. 2001) in the following way:

Algorithm 2.8: Benjamini-Hochberg correction

Hj ..., Hpm tests yielding p-values p1,...,pm

1. order p-values: p(1) <+ <p(m)
2. set K=max{m=1,... M|p ) < o}

3. reject all Hiyy withi=1,...,K

Throughout this thesis, we will be referring to the the Benjamini-Hochberg
method when mentioning FDR-correction.
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2.7 CHAPTER SUMMARY

In this chapter, we have introduced all the (old and new) methods used in
the subsequent chapters.

o We motivated our two-step procedure (prediction analysis, then asso-
ciation analysis). If (and only if) a set of features is declared significant
by the prediction analysis, we will move on to post-hoc association
analysis.

e We further gave a brief overview of outlier detection and treatment
and of the various imputation methods used in this thesis.

e We then dived into prediction analysis, briefly recapitulating well-
established classifiers (logistic regression, naive Bayes, random forests,
support vector machines, RSLVQ). We commented on the different
ways to assess the performance of a classifier (accuracy, specificity,
sensitivity), both theoretically and practically using cross-validation.
We further introduced a novel adapted version of cross-validation —
bootstrapped-stratified-cross-validation (BSSCV) — for the assessment
of classifier performance in the presence of confounders.

e Next, we took a closer look at association analysis. We recapitulated
the classical methods for association analysis, namely t-tests and lo-
gistic regression. We then introduced a novel method for association
analysis — repeated logistic lasso (ReLL) — and showed in a small sim-
ulation study that it can outperform logistic regression for association
analysis.
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3 THE IMAGEN PROJECT

This chapter gives an overview of the IMAGEN project and our specific
contribution. The remaining chapters will be based on the data of this
study.

3.1 INTRODUCTION

The IMAGEN project (Schumann et al. 2010) is a European, large-scale,
multi-centre and multidisciplinary collaboration that was initiated to shed
light how neurobiological, psychological and environmental aspects during
adolescence may or may not influence brain development and, in the long-
term, mental health.

More specifically, the IMAGEN consortium describes their aim as follows
(Schumann et al. 2010):

...to identify the genetic and neurobiological basis of individual
variability in quantitative psychological traits, and to determine
their predictive value for the development of frequent neuropsy-
chiatric disorders.

In order to pursue this aim, the IMAGEN study combines (i) behavioural
and neuropsychological characterisation, (ii) functional and structural neu-
roimaging and (iii) genome-wide association analysis. Furthermore, the
study has a longitudinal design, starting off with the assessment of around
2000 14 year-old adolescents (Baseline, BL) and following up on them at
approximate age 16 (Follow-Up 1, FU1) and 19 (Follow-Up 2, FU2). This
design enables drawing trajectories of adolescent development.

The data was acquired at eight sites across four European countries (United
Kingdom: London, Nottingham; Germany: Berlin, Dresden, Hamburg,
Mannheim; France: Paris; Ireland: Dublin). Subjects were recruited at high
schools; in order to obtain a heterogeneous (and representative) sample in
terms of socio-economic status and cognitive development, private, state-
funded and special units were all targeted. After written consent, personal-
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ity and cognitive testing was done via home assessments. In a study centre
visit, adolescents and their parents underwent various further testing.

Standard operating procedures and a full list of administered instruments
can be found online (IMAGEN SOP 2019). The IMAGEN project has re-
sulted in more than 100 publications and currently a third follow-up is
being conducted.

3.2 CROSS-SECTIONAL AND LONGITUDINAL

The general longitudinal design of the IMAGEN study plays an important
role throughout this thesis. We hence introduce the main wordings related
to the study design here. Figure 3.1 shows the setup of the IMAGEN study
at three time-points: Baseline (BL), Follow-Up 1 (FU1) and Follow-Up 2
(FU2).

Wordings specific to our work are the so-called cross-sectional and longitu-
dinal setting. By the cross-sectional setting, we mean using various features
from FU2 to associate with drinking behaviour at the same time point. By
the longitudinal setting, we mean using features from BL to associate with
drinking behaviour at FU2.

3.3 OUR CONTRIBUTION

We focussed our research on only a sub-domain of the broad aims of the
IMAGEN project. More specifically, we use data from two of the three
general data domains:

(i) behavioural and neuropsychological characterisation (personality, life
events and cognitive assessments),

(if) functional and structural neuroimaging (contrast images from an fMRI
paradigm and grey matter volume).

In this thesis, we do not examine data from the third domain (genome-wide
association). Note that we comment in 7.2 on possible extensions.

In the style of the aims of IMAGEN, our aims in this thesis can be de-
scribed as follows:

...to identify the neurobiological basis of individual variability
in alcohol drinking behaviour to determine the predictive value
for the development of later alcohol abuse.
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Baseline Follow-Up 1 Follow-Up 2
(BL) (FU1) (FU2)
age ~ 14 age ~ 16 age = 19

Ch.6

Ch.7

cross-
sectional

longitudinal

v

Figure 3.1: Overview of longitudinal study design of IMAGEN, explaining the
meaning of cross-sectional and longitudinal settings for all subsequent analyses.
Chapter 6 considers structural magnetic resonance imaging (sMRI) and psychoso-
cial data, whereas Chapter 7 treats functional MRI (fMRI) and cognitive data. We
generally focus on the drinking behaviour at Follow-Up 2 (FU2), whereas the rest
of the data can also originate from FU2 — resulting in the cross-sectional setting — or
from Baseline (BL) — resulting in the longitudinal setting. Data from Follow-Up 1
(FU1) is used only in some additional analyses and will be mentioned explicitly.

Chapter 5 Chapter 6 Chapter 7

drinking . life MRl N
behaviour personality e cognitive

done (centrally) by done in collaboration done (mainly) by
IMAGEN consortium with Sambu Seo Caroline Matthis

Figure 3.2: The pipeline of the analysis, separated into chapters of this thesis and
marked with the main contributors.
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Furthermore, parts of the general "pipeline” of analysis (that will be ex-
plained in more detail throughout this thesis) were done centrally by ex-
perts from the IMAGEN consortium or together with local collaborators.
Figure 3.2 displays this pipeline and the main contributors to every step.
Importantly, note that we were not in any way involved in the acquisition
of the data and that some preprocessing was also performed centrally.

3.4 CHAPTER SUMMARY

In this chapter, we gave an overview of the aims and design of the IM-
AGEN study. We further introduced the cross-sectional and longitudinal
settings. Finally, we gave a detailed description of our contribution within
the IMAGEN framework.



4 DEFINING ALCOHOL
DRINKING PHENOTYPES

This chapter introduces the label — light and heavy drinkers — that will be
used throughout the rest of the thesis.

4.1 INTRODUCTION

The fifth version of the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-V, American Psychiatric Association (2014)) indicates an alcohol
use disorder (AUD) when at least two of a list of 11 criteria were met within
the past year. Criteria include having

e had times when you ended up drinking more, or longer, than in-
tended,

e continued to drink even though it is causing trouble with your family
or friends,

e more than once wanted to cut down or stop drinking, or tried to, but
couldn’t.

The number of fulfilled criteria gives a classification into mild (2-3 symp-
toms), moderate (4-5 symptoms) and severe (6 or more symptoms) AUD.
Note than none of the criteria relate to thresholds of quantity of consumed
alcohol.

In contrast to the plentiful studies comparing alcohol addicted patients
to a control group, population studies such as IMAGEN with per se healthy
samples (Schumann et al. 2010) do not offer such a pre-defined split. Typ-
ical information that is recorded in such population studies is average
amount of alcohol consumed within a certain period (see e.g. Leon et al.
(2007) and McCambridge et al. (2011)) or, especially for adolescent subjects,
the frequency of binge drinking events, see e.g. Hill et al. (2000), Mashhoon
et al. (2014), Petit et al. (2014), Squeglia et al. (2011), and Squeglia et al.
(2012).

Within the IMAGEN study several different questionnaires concerning
alcohol consumption were administered. Instead of focusing on a single
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answer to a single question of a single questionnaire, we chose to establish
a more comprehensive alcohol drinking behaviour variable, explained in
detail in the subsequent sections.

4.2 AVAILABLE QUESTIONNAIRES

In the following, we briefly describe the available questionnaires of the IM-
AGEN study regarding alcohol consumption and behaviour. Note that (ex-
cept for Section 4.4) we will consider only the data from FU2, i.e. when
subjects are around 19 years old.

4.2.1  ESPAD

The version of The European School Survey Project on Alcohol and other
Drugs (ESPAD) (Hibell et al. 1997; Hibell et al. 2004) administered in the
IMAGEN sample includes a set of more than 100 questions on legal and
illegal substance use within several past time frames. Questions that we
focus on are as follows:

Frequency of drinking: On how many occasions in your whole life-
time / over the last 12 months / over the last 30 days have you had
any alcoholic beverage to drink?

Frequency of bingeing: On how many occasions in your whole life-
time / over the last 12 months / over the last 30 days have you had
five or more drinks in a row?

Frequency of drunkenness: On how many occasions in your whole
lifetime / over the last 12 months / over the last 30 days have you
been drunk from drinking alcoholic beverages?

To any of the three variants (lifetime, 12 months, 30 days) of each ques-
tion, subjects could choose an answer coded as an ordinal scale ranging
from o to 6 (for frequency of drinking and drunkenness) or from o to 5 (for
frequency of bingeing). The corresponding values are shown in Table 4.1.
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Table 4.1: Correspondence of answer possibilities in the ESPAD questionnaire to
actual values. Answer possibilities range from o to a maximum of 6.
Values indicate occasions over whole lifetime, last 12 months or last 30

days.
Ordinal scale 0 1 2 3 4 5 6
Frequency of drinking 0o 12 35 69 1019 2039 =40
Frequency of bingeing 0 1 2 35 6-9 > 10

Frequency of drunkenness o 12 35 6-9 10-19 20-39 > 40

4.2.2 TLFB

The Timeline Followback (TLFB) is an assessment instrument to obtain ret-
rospective daily estimates of substance consumption across a certain time
span (Sobell and Sobell 1992; Sobell et al. 1996). The relevant (since stan-
dardised and specific to alcohol) question of the TLFB administered in the
IMAGEN study is as follows:

Quantity: Total number of Alcohol Drink Units in past 30 days?

One Alcohol Drink Unit hereby refers to the equivalent of 8g of absolute
ethanol. Note that in contrast to the ESPAD, the TLFB only considers the
past 30 days.

4.2.3 MAST

The Michigan Alcoholism Screening Test (MAST) is a structured interview
instrument for detecting alcoholism (Selzer 1971). In contrast to the ESPAD
and the TLFB, the MAST does not include questions on exact amounts or
frequencies of alcohol consumptions. Rather, it is aligned more closely to
the DSM-V criteria for alcohol use disorders, asking for the relationship
to drinking and symptomatic behaviours. More precisely, binary answers
(yes/no) to 25 questions such as the following had to be given:

e Can you stop drinking without a struggle after one or two drinks?
e Do you ever feel bad about your drinking?
e Have you ever lost a job because of drinking?

e Have you ever been arrested for drunk driving or driving after drink-
ing?
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Modified from Selzer (1971), a positive alcoholism screening is defined
as follows:

MAST-flag: Set as true if at least 5 of the 25 criteria from the MAST
are met.

This MAST-flag is a relatively strict measure of alcohol drinking behaviour.

4.2.4 AUDIT

The Alcohol Use Disorders Identification Test (AUDIT) is a 10-item ques-
tionnaire covering alcohol consumption, drinking behaviour and alcohol-
related problems (Saunders et al. 1993). Similar to the MAST, it focuses
more on early detection of alcohol use disorders than on assessing general
drinking habits. Questions asked include the following:

e How often do you have a drink containing alcohol?
e How often do you have six or more drinks on one occasion?

e How often during the last year have you had a feeling of guilt or
remorse after drinking?

e How often during the last year have you been unable to remember
what happened the night before because you had been drinking?

All 10 questions are answered on an ordinal scale ranging from o ("never")
to 4 ("daily or almost daily"), giving a maximum score of 40 over the entire
test.

According to Saunders et al. (1993), a flag for likely alcohol abuse is
defined as follows:

AUDIT-flag: Set as true if a score of at least 8 is reached.

In comparison to the MAST, the AUDIT is slightly less strict.
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4.3 CONSTRUCTION OF PHENOTYPE

We use all subjects for which at least all three ESPAD variables were non-
missing, which amounts to a total of 1472 subjects.

4.3.1  Grouping of drinking behaviour variables

We grouped each of the four variables (Frequency of drinking, bingeing
and drunkenness from ESPAD and Quantity from TLFB) into three groups
— light, moderate and heavy. This grouping was performed based on a
trade-off between clinical representation of drinking patterns at age 19 and
having roughly balanced group sizes for the IMAGEN sample. Further-
more, having three groups is parallel to the grouping of AUD into mild,
moderate and severe. The histograms and groupings are shown in Figure
4.1. The number of subjects allocated to each group for each variable is
shown in Table 4.2.

Importantly, we can observe that a consistent allocation across the four
variables (i.e. that all four variables agree on the classification of a subject
into either light, moderate or heavy drinker) happens only in 339 subjects
of the 1147 where all four variables are available, see Table 4.2.

Thus, all further analysis crucially depends on the drinking variable that
we choose to focus on. We decided to take a more systematic approach,
by using the information from all four variables for the construction of one
comprehensive drinking behaviour phenotype.

Table 4.2: Number of subjects belonging to light, moderate and heavy groups (ac-
cording to the grouping depicted in Figure 4.1) for the four drinking variables. The
last row shows the number of subjects for which the grouping of all four phenotypes
agree.

light moderate heavy total

Frequency of drinking 447 633 392 1472
Frequency of bingeing 471 545 456 1472
Frequency of drunkenness 650 368 454 1472
Quantity 253 431 463 1147

All four agree 96 66 177 339
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Figure 4.1: (a)-(c): Histograms and groupings into light, moderate and heavy
drinkers of the three drinking variables from ESPAD, assessed at FU2 and count-
ing drinking occasions of the past 12 months. (d): Histogram and grouping into
light, moderate and heavy drinkers of the Quantity of alcohol from TLFB, assessed
at FU2 and measuring the total number of Alcohol Drink Units consumed in the
past 30 days.

4.3.2 Establishing a comprehensive phenotype

In order to construct a comprehensive phenotype from the four grouped
drinking variables, we used a pairwise clustering algorithm (Seo et al. 2009;
Seo and Obermayer 2003), setting the number of clusters a priori to three.
Pairwise clustering uses the pairwise distance between all pairs of subjects.
The four grouped drinking variables are on an ordinal scale — light, moder-
ate and heavy, which we code as o, 1 and 2, respectively. On ordinal scales,
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the only operation that one can use is counting events of one entry being
smaller, larger, or equal to another entry.

For computing the pairwise distance between pairs of subjects we hence
use the following distance measure for ordinal data from Walesiak (1999):

m m n
1 250 GikgQkij + 2501 21 1k @il Akl
dix = 3~ i

2 [(Z}L St aizlj) (Z}L 2k aili)} ’

1, if Xij > Xkj
Aikj = 0, if Xij = XKj /
-1, if Xij < Xkj

n denoting the total number of subjects and m the number of ordinal vari-
ables (in our case four). The diix denotes the distance between subject i
and subject k and x; is the m-dimensional variable vector of subject i and
xij € {0, 1,2} is the j-th variable of subject i.

Note that Z]ﬂ;] aixjaxij < 0, since ajjx = —ayij. Note further that
it counts the number of variables j for which subject i differs from sub-
ject k. The larger the "disparity" between x; and xy, the more negative
Z)TL aikjakij and hence the larger dy.

Furthermore, 3 ™ > {14y Qitjakyj is the disparity between x; and
xy, relative to the similarity to all other subjects.

Lastly, it holds that 3 "¢ 31" | 4 aizlj > 0 and note that it counts the
number of variables j for which subject i differs from all other subjects
(analogously for 3™ > 1" aﬁlj).

Intuitively, the distance between two subjects is 0, if the two subjects have
equal relation (smaller or larger) to all other subjects. Note that di)x does
not define a metric, since from dj; = 0 it does not follow that i = k.

In general, we used all four variables for calculating the pairwise distance
between subjects. However, since some subjects were missing the variable
Quantity from the TLFB (see Table 4.2), we used only the three available
variables for these cases.

Figure 4.2 shows the the three resulting clusters and the distribution of
the four input variables over each cluster. The three clusters show clear
correspondence to the three original groups (light, moderate and heavy
drinkers). A total of 550 subjects are assigned to the first cluster and most of
the input variables assign subjects in this cluster to the "light" drinker group.
We hence refer to this cluster as the new light drinker group. The second
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cluster contains a total of 458 subjects and most of the input variables assign
subjects in this cluster to the "moderate” drinker group. Therefore, we refer
to this cluster as the new moderate drinker group. Finally, a total of 464
subjects are assigned to the third cluster and most of the input variables
assign subjects in this cluster to the "heavy" drinker group. We thus refer
to this cluster as the new heavy drinker group.

4.3.3 Dropping the moderate drinkers

In order to obtain more disparate groups, we decided to focus all subse-
quent analyses only on the two extreme groups — light (N = 550) and heavy
(N = 464) drinkers, i.e. we dropped the moderate drinkers; this results in a
binary label.

The disparity of the two resulting groups can also be observed in the
original variables, see Table 4.3. Here, we can see that the new groups
correspond nicely to the former division into light and heavy drinkers. For
instance, the mean value for Frequency of drinking (2.6) falls into the former
light drinker group for this variable, see Figure 4.1. The only exception is
the Quantity variable, where the mean of the subjects falling into the new
light drinker group (5.8) is slightly higher than the threshold for the light
drinker group on the original scale (4.99, see Figure 4.1).

Table 4.3: Mean values of the original variables for the new light and heavy drinker
groups.

New phenotype
(Mean values)
Light drinkers Heavy drinkers
Original variable female male all female male all
Frequency of drinking 2.8 2.4 2.6 5.6 5.7 5.6
Frequency of bingeing 1.4 1.5 1.4 4.8 4.8 4.8
Frequency of drunkenness 0.8 0.8 0.8 4.4 4.5 4.5
Quantity 5.6 6.1 5.8 40.0 60.0 521

Table 4.3 shows further that for the three variables originating from the
ESPAD questionnaire the differences between genders within the light and
heavy groups are minimal (not significant). Only for the variable Quantity,
males score significantly higher than females in both the light and the heavy
drinker group. This is expected, since men generally drink larger alcohol
quantities than women (Wilsnack et al. 2000; Wilsnack et al. 2009).
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4.3.4 Validation of phenotype

For further validation of the new phenotype, we compared it to the flags
from the MAST and AUDIT. For the MAST, 45 subjects were screened as
positive for alcoholism out of the 816 subjects that completed the question-
naire at age 19. For the AUDIT, 399 subjects were screened as likely for
alcohol abuse out of the 1511 subjects that completed the questionnaire at
age 19.

Table 4.4 shows the distribution of the 45 and 399 positively screened sub-
jects across the four original variables and the new drinking phenotype, for
MAST and AUDIT, respectively. Importantly, the new phenotype shows
the best correspondence to the screening results. Note that the construc-
tion of the new drinking phenotype did not, however, include any of the
information from the MAST and the AUDIT.

This indicates that the new phenotype reflects abusive drinking behaviour
better than the four original drinking variables and therefore gives a com-
prehensive and consistent assessment.

Table 4.4: The distribution across the light, moderate and heavy drinker groupings
of the positively screened subjects of MAST and AUDIT, for the four original drink-
ing variables and the new phenotype.

MAST AUDIT
(45 of 816 (399 of 1511
screened positive) screened positive)

light moderate heavy light moderate heavy

Freq. of drinking 1 15 29 11 146 242
Freq. of bingeing 2 8 35 12 74 313
Freq. of drunkenness 3 9 33 25 79 295
Quantity 1 8 29 20 75 263
New phenotype o 10 35 5 79 315

4.3.5 Confounding variables

SITE IMBALANCE An advantage of the IMAGEN data base is the large
sample size that was achieved by the collaboration of eight different Euro-
pean sites. However, a challenging aspect is revealed when looking at the
distribution of the new drinking phenotype across these sites. Figure 4.3
shows the imbalance of the heavy and light drinker groups across sites - es-
pecially the sites London, Nottingham and Dublin have disproportionally
many heavy drinkers, whereas the sites Berlin, Hamburg, Mannheim, Paris
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and Dresden are dominated by the light drinkers. A x?-test on the contin-
gency table confirms the visual impression and delivers a p-value < 10713
for the null-hypothesis of statistical independence between site and group.
Note that this imbalance was already present for the original variables and
is not an "artefact" of the new phenotype.

GENDER IMBALANCE  The differences in drinking behaviour across gender
were already visible to some extent in Table 4.3 and are still present in
the new phenotype. Figure 4.3 depicts the distribution of heavy and light
drinkers across genders. There are more female light than heavy drinkers
and vice-versa for males. This is confirmed by a x?-test, giving a p-value
< 1072, Note again that this imbalance across gender was already present
for the original variables and is not an "artefact" of the new phenotype.

4.4 DEFINITION OF CUMULATIVE DRINKING SCORE

So far, we have focussed on drinking behaviour assessed at FU2, i.e. at an
approximate age of 19, covering the past year. A typically explored quan-
tity is the cumulative drinking across the entire life span. This quantity is
often assessed using the Lifetime Drinking History (LDH) interview-based
procedure (Koenig et al. 2009; Skinner and Sheu 1982).

The LDH was not administered in the IMAGEN study. In order to never-
theless obtain some impression of the cumulative drinking for each subject,
one possibility would be to resort back to the ESPAD questionnaire. In ad-
dition to assessing the drinking behaviour during the past year, it also asks
for different time spans, namely the past 30 days and the whole lifetime
(see Section 4.2.1). However, the disadvantage is that the ordinal scale for
all three time spans (lifetime, 12 months and 30 days) is exactly the same
— see Table 4.1. Hence, for the lifetime span, most subjects fall into the
most extreme category (6 for Frequency of drinking and drunkenness and
5 for Frequency of bingeing, corresponding to > 40 and > 10 occasions).
This does not offer a satisfactory level of differentiation to serve as a good
"proxy" for life time drinking.

Thus, we construct a different "proxy" for cumulative drinking. In ad-
dition to the ESPAD assessment at FU2, we take the assessments at FU1
(approximate age of 16) and at BL (approximate age of 14) into account.
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We define cumulative scores as follows:

Cumulative bingeing: Sum of raw scores of Frequency of bingeing at
BL, FU1 and FUo.

Cumulative drunkenness: Sum of raw scores of Frequency of drunk-
enness at BL, FU1 and FU2.

Figure 4.4 shows histograms of the resulting cumulative scores.

4.5, CHAPTER SUMMARY

In this chapter, we introduced the various alcohol-related instruments ad-
ministered in the IMAGEN study. We showed how we use a pairwise
clustering algorithm to build a comprehensive binary drinking behaviour
phenotype (light and heavy drinkers). Furthermore, we validated the new
phenotype. Finally, we defined continuous cumulative drinking scores.
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Part 1l

Patterns of alcohol abuse in
adolescence






5 GREY MATTER VOLUME AND
PSYCHOSOCIAL VARIABLES

This chapter treats the analysis of grey matter volume and psychosocial
data from the IMAGEN study, using the methods introduced in Chapter
2. Most of the contents has been published (Seo et al. 2018). For author
contributions, see Appendix C.

5.1 INTRODUCTION

Alcohol abuse is a top-ranked disorder of the brain with respect to total
costs to economy and human suffering (Effertz and Mann 2013). Chronic al-
cohol use disorders (AUDs) are known to be linked with widespread brain
atrophy and functional irregularities (Bithler and Mann 2011; Chelune and
Parker 1981; Heinz 2002; Sullivan et al. 2003). Furthermore, adolescent-
onset AUDs have also been associated to grey matter atrophy in young
adulthood, specifically in the prefrontal cortex (Bellis et al. 2005).

Heavy drinking during adolescence may pose a risk factor for developing
AUDs later in life (Grant et al. 2006). Furthermore, early alcohol consump-
tion may interfere significantly with the crucial brain maturation during
adolescent development (Luna et al. 2010). In fact, it has been demonstrated
that even subclinical alcohol drinking during mid-to-late adolescence is
related to variations in neurodevelopment across brain tissue classes and
specifically to decreases in grey matter volume in several brain regions (Lu-
ciana et al. 2013).

The cited studies underline the relevance of establishing neurobehavioural
risk profiles in adolescents for later alcohol abuse. These profiles can be
used in order to better devise, plan and target early intervention programs
with the ultimate goal of diminishing the probability of high-risk adoles-
cents to spiral into a full-blown AUD. Importantly, in the identification of
such profiles, predisposing effects have to be disentangled from alcohol-
related effects, both an neural and psychosocial level.

Gender (with which we here mean biological sex) may be a pivotal aspect
of the desired risk profiles. Firstly, adolescent males have shown to be
at greater general risk for heavy drinking and AUDs, see e.g. Schulte et
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al. (2009). Further, AUDs typically begin later but then advance faster in
women than in men — this is the so-called "telescoping effect”, i.e. the faster
progression of negative somatic alcohol-related effects (Mann et al. 2005).

On a neural level, stimulant drug addiction has been linked with in-
creased (striatum, amygdala) and decreased (insula) grey matter volume
(Ersche et al. 2010), presumptively even as a predisposing feature of addic-
tion vulnerability. The mentioned brain regions, as well as further brain ar-
eas (e.g. anterior cingulate cortex (ACC), medial prefrontal cortex (MPFC))
are furthermore well established in the altered processing of alcohol-related
cues (termed cue-reactivity) in AUD (Beck et al. 2012; Kithn and Galli-
nat 2011; Schacht et al. 2013; Zilberman et al. 2019). Moreover, prefrontal
grey matter volume was shown to be associated to (smoking) cue reactiv-
ity (Zhang et al. 2011). Grey matter volume together with functional cue
reactivity in the MPFC have been observed to be predictive of relapse in
detoxified patients (Seo et al. 2015). Hence, both grey matter volume and
functional activity in cue reactivity regions have been shown to be relevant
in both subclinical and clinical AUD settings.

When inspecting the neural level separately for genders, it has been
shown that male drinkers seem to display more cue reactivity than fe-
male drinkers (Nesic and Duka 2006). Moreover, differential gender effects
have been found in local brain volume and cortical thickness between binge
drinkers and controls (Squeglia et al. 2012). Variation in gray matter volume
specifically in regions previously linked with a function pertinent to AUDs,
such as cue reactivity, may hence be highly relevant both for establishing
pre-dispoising factors to develop an AUD and also for a thorough grasp of
the effects of excessive alcohol consumption in adolescence. We thus chose
to focus on a cue reactivity network (Kalivas and Volkow 2005; Schacht et
al. 2013) to understand the relationship between grey matter volume and
heavy drinking in adolescence.

On a psychosocial level, stressful life events have been linked with an in-
creased risk for harmful alcohol consumption and AUDs (Keyes et al. 2011).
Furthermore, anxiety and impulsivity have been associated to the develop-
ment of an AUD (Heinz et al. 2011). The relationship between personal-
ity traits and the risk for AUD does not seem to differ between genders
(Schulte et al. 2009). However, gender differences can be found in the social
context associated to alcohol consumption: males seem drink more in order
to fit in with male peers and perceived gender roles, whereas females seem
to do exactly the opposite (Schulte et al. 2009).

In this chapter, we aimed at identifying a profile of grey matter volume
and psychosocial features associated with heavy alcohol drinking, sepa-
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rately for males and females using the IMAGEN study (see Chapter 3 for
details). We used grey matter volume in areas previously linked with (al-
cohol) cue reactivity (Kithn and Gallinat 2011; Schacht et al. 2013) as well
as psychosocial variables at age 14 and 19 (separately) to predict drinking
behaviour at age 19. The combination of both a cross-sectional (inspecting
differences between heavy and light drinkers at age 19 with respect to their
neurobehavioural features at the same age) and a longitudinal (inspecting
pre-existing differences between heavy and light drinkers at age 19 based
on features at age 14) setting facilitated distinguishing between potentially
pre-disposing markers from neurotoxic effects.

5.2 DATA

5.2.1  Structural brain imaging and preprocessing

Structural brain images were acquired by the eight sites of the IMAGEN
study on 3-Tesla scanners. Comprehensive details and standard operating
procedures have been reported previously (Schumann et al. 2010).

We preprocessed the three-dimensional Ti-weighted images using the
Statistical Parametric Mapping 8 (SPM8) and the Voxel-Based Morphometry
(VBMS) toolbox. We segmented the images into grey matter, white matter
and cerebrospinal fluid and then transferred them into MNI space, making
use of an affine registration with the International Consortium for Brain
Mapping template for European brains (Template_1_IXI550_MNI152.nii).
Using the high-dimensional DARTEL normalization and non-linear-only
modulation, the segmented and registered images were finally normalized
and modulated.

5.2.2 Personality measures

We use data from three personality inventories that were administered
within the IMAGEN study: the revised self-administered 60-item NEO Five-
Factor-Inventory (NEO-FFI, Costa and McCrae (1992)), the revised Temper-
ament and Character Inventory (TCI-R, Cloninger et al. (1994)) and the
Substance Use Risk Profile Scale (SURPS, Woicik et al. (2009)).
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5.2.3 Life events questionnaire

To evaluate the history of stressful life events per subject, we use data from
the Life Events Questionnaire (LEQ, adapted from Newcomb et al. (1981)).
Events such as "parents divorced" or "changed schools" are evaluated both
for happening within a certain time frame (past year or ever) and valence.
Valence is assessed per item on a rating scale (-2: "very unhappy"; 1: "un-
happy"; o: "neutral”; 1: "happy"; 2: "very happy").

5.3 METHODS

5.3.1 Extraction of structural imaging features

We pre-select 24 regions of interest that have been linked with cue reactiv-
ity processes specific to alcohol cues (Kithn and Gallinat 2011; Schacht et al.
2013). Based on these meta-studies, we focus on the anterior cingulate cor-
tex, amygdala, caudate nucleus, medial prefrontal cortex, inferior-, medial-,
middle- and superior orbitofrontal cortex, putamen, and thalamus from the
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002)
and the anterior and posterior insula from SPM12’s Neuromorphometrics
Inc. atlas. For each region (left and right separately), we extract the mean
value of gray matter volume as features.

CHoICE OF Rols We resort to this cue-reactivity network since (i) the
associated regions are specific to the substance of abuse (Kiihn and Gallinat
2011; Schacht et al. 2013), (ii) the network has been shown to reliably predict
relapse in detoxified alcohol-dependent patients, based on both functional
and structural data (Seo et al. 2015) and (iii) differential gender effects have
been shown in alcohol cue-reactivity (Nesic and Duka 2006).

We intentionally focused our analysis of structural (grey matter) data on
regions that were chosen based on functional properties. We assume that
changes in grey matter volume in areas previously associated in a function
related to alcohol abuse, such as cue reactivity, might be highly relevant
both for the identification of pre-disposing factors to develop alcohol use
disorders, as well as for the sound understanding of the effects of excessive
alcohol use. Using a priori defined (instead of data-derived) regions of in-
terest means that the full data set can be used for further analyses, without
risking double-dipping. Note that there is always a trade-off between (i)
how small (and hence locally precise) we choose the regions to be and (ii)
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statistical power. The more fine-grained the mask, the more features would
have to then be controlled for multiple testing. The more coarse the mask,
the more prone we are to "averaging out" interesting local effects. We hence
decided for an intermediate option, using the AAL atlas. We additionally
split the insula in potentially functionally different posterior and anterior
parts.

5.3.2 Extraction of personality features

From the NEO-FFI we extracted the five dimensions neuroticism, extraver-
sion, openness to experience (in short: openness), agreeableness and con-
scientiousness (Costa and McCrae 1992). The data from the TCI-R was
used to extracted the four sub-dimensions of the Novelty-Seeking scale.
More specifically, we extracted exploratory excitability impulsiveness, ex-
travagance and disorderliness (Cloninger et al. 1994). From the SURPS we
extracted the four dimensions hopelessness, anxiety sensitivity, impulsivity
and sensation seeking (Woicik et al. 2009).

5.3.3 Extraction of life events features

From the LEQ we extracted the mean frequency and valence of the sum-
mary scores accident/illness (e.g. a death in the family), sexuality (e.g. lost
virginity), autonomy (e.g. found a new group of friends), deviance (e.g. got
in trouble at school), distress (e.g. gained a lot of weight), and relocation
(e.g. family moved).

5.3-4 Summary of features

For an overview of number of subjects available see Table 5.1. The num-
ber in brackets indicates the number of female subjects available for each
cell. Note that there are much fewer female heavy drinkers compared to
male heavy drinkers. This imbalance is present in general for the drinking
phenotype defined on the IMAGEN data set, see Chapter 4 for more details.
We dealt with this imbalance in prediction analysis by using a bootstrapped
version of cross-validation (BSSCV), see Section 2.4.3. For association anal-
ysis, we included gender (and also the scanning site) as additional covari-
ate(s), see Section 2.5.2 for details. For a list of features, see Tables 5.2, 5.3
and 5.4. All missing values were mean-imputed, see Section 2.2.2 for brief
methodological details.
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Table 5.1: Sample sizes for each data modality — grey matter and psychosocial — and
time point. Values in brackets indicate the number of female subjects.

Phenotype  Grey matter ~ Grey matter  Psychosocial =~ Psychosocial

age ~ 19 age ~ 14 age ~ 19 age X 14 age ~ 14
All 1472 2073 1387 2128 2166
(772) (1054) (713) (1087) (1075)
Light 550 539 498 550 550
drinkers (347) (341) (316) (347) (347)
Heavy 464 412 452 464 464
drinkers (184) (153) (178) (184) (184)
destroyed by grey
mean-subtraction ¥ matter V...
& T A
scanning
site gender
. xr L4
"~.‘ a destroyed by

balancing

Figure 5.1: Overview of how we removed the effect of the confounders site and
gender in prediction analysis.
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Table 5.2: Summary of personality variables and their meanings and origins. NEO-
FFI: NEO Five-Factor-Inventory; TCI-R: revised Temparament and Character Inven-
tory; SURPS: Substance Use Risk Profile Scale.

Name Meaning Origin

Tendency to experience

neo_neuroticism ] . NEO-FFI
negative emotions

neo_extraversion Engz'igement with the NEO-FFI
outside world

neo_openness Openness to NEO-FFI

variety of experiences
neo_agreeableness Cor.lcern for NEO-FFI
social harmony

Tendency to be organised

neo_conscientiousness and depen dable NEO-FFI
.. .. Tendency to act

tei_impulsivity with little forethought TCIR

tci_disorderliness I?r;fgleii’s;?iLECk TCI-R

tci_extravagance Eztg:ilg:?;r:;;vuh the TCI-R
. s Tendency to be

tei_excitability readily roused into action TCIR

surps_anxiety_sensitivity :Eiii?:i;;ll;e SURPS

surps_hopelessness Ezr}lcelfgcsy to feel SURPS

. . Tendency to act
surps_impulsivity with little forethought SURPS
surps_sensation_seeking Tendency to search SURPS

for new experiences
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Table 5.3: Summary of life events variables and their meanings, origin and percent-
age of missing values. LEQ: Life Events Questionnaire.

Y% Y%
Name Meaning Origin  Missing  Missing
BL FU2
. Frequency of accidents
leq_accident_freq and illnesses in past year LEQ 0.21 0.00
leq_accident_valence Valer.lce of accidents LEQ 0.62 0.21
and illnesses
Frequency of autonomous
leq_autonomy_freq behaviours in past year LEQ 0.00 0.00
Valence of autonomous
leq_autonomy_valence behaviours LEQ 0.00 0.00
. Frequency of deviant
leq_deviance_freq behaviours in past year LEQ 0.00 9.42
. Valence of deviant
leq_deviance_valence behaviours LEQ 0.41 8.17
. Frequency of stressful
leq_distress_freq behaviours in past year LEQ 0.00 0.21
. Valence of stressful
leq_distress_valence behaviours LEQ 0.00 0.00
. Frequency of relocations
leq_relocation_freq in past year LEQ 0.93 0.31
leq_relocation_valence ~ Valence of relocations LEQ 0.83 0.31
leq_sexuality_freq Frequg ney O.f sexual LEQ 0.00 0.00
experiences in past year
leq_sexuality_valence Valence of sexual LEQ 0.00 0.00

experiences
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Table 5.4: Summary of grey matter volume variables and their meanings. AAL:
Automated Anatomical Labeling atlas.

Name Meaning Atlas Name in atlas

Anterior cingulate
ACC_L/R cortex AAL Cingulum_Ant_L/R
(left / right)
Amygdala
(left / right)
Caudate nucleus

Caudate_L/R (left / right) AAL Caudate_L/R

Amygdala_L/R AAL Amygdala_L/R

Anterior insula Neuro-
Insula_Ant_L/R . morpho- Insula_Ant_L/R
(left / right) .
metrics
Posterior insula Neuro-
Insula_Post_L/R R morpho-  Insula_Post_L/R
(left / right) X
metrics
Medial prefrontal
MPFC_L/R cortex AAL Frontal_Sup_Medial_L/R
(left / right)
Inferior
OFC_Inf_L/R orbitofrontal cortex =~ AAL Frontal_Inf_Orb_L/R
(left / right)
Middle
OFC_Med_L/R orbitofrontal cortex AAL Frontal Med_Orb_L/R
(left / right)
Middle
OFC_Mid_L/R orbitofrontal cortex =~ AAL Frontal_Mid_Orb_L/R
(left / right)
Posterior
OFC_Sup_L/R orbitofrontal cortex =~ AAL Frontal_Sup_Orb_L/R
(left / right)
Putamen_L/R glelfttar/nf?gh 9 AAL Putamen_L/R
Thalamus_L/R Thalamus AAL Thalamus_L/R

(left / right)
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SITE AND GENDER EFFECTS  Note that we found the above regions of grey
matter volume to be highly predictive of both the scanning site and gender.
Furthermore, we have seen that there is an imbalance of the drinking be-
haviour phenotype and gender across the eight different scanning sites (see
Chapter 4 for details). If blindly performing classification for the drinking
phenotype on the data (without accounting for these counfounders), the
obtained accuracies would be inflated. The intrinsic site and gender infor-
mation contained in the grey matter volume data would be used by the
classifier. It would associate a subject with a site and gender and would
then classify the subject to the majority class of this site-gender combina-
tion.
We account for these effects as follows (also depicted in Figure 5.1):

(i) For prediction analysis in scenarios with both genders, we balanced
for gender in each training and testing fold using BSSCV, see Section
2.4.3. In order to account for the confound scanning site, we chose a
different approach. Subsampling for site as done for gender by BSSCV
is computationally intensive and would lead to much smaller data
sets due to the imbalance of label across sites. Instead, we attempted
to destroy the intrinsic site information in the grey matter data by
subtracting the respective site-mean of grey matter for each subject for
each feature. We showed that such a linear model suffices to remove
virtually all of the intrinsic site information (see Appendix A.1 for
details).

(if) For association analysis we added site (and gender for scenarios with
both genders) as additional covariates into the ReLL model (see Ap-
pendix 2.5.2).

5.3.5 Prediction analysis

For prediction analysis we relied on the methods described in Section 2.3.
As classifiers we used linear support vector machines (see Section 2.3.5),
naive Bayes (see Section 2.3.3) and robust soft learning quantisation (RSLVQ)
with one prototype per class (see Section 2.3.6). We used K = 10 folds for
cross-validation. On each training and test fold we balanced for class and
in scenarios including both genders we additionally balanced the confound
gender using BSSCV (see Section 2.4.3) with B = 10 bootstraps. For signifi-
cance testing of accuracies (see Section 2.4.4) we used Nperm = 10000. We
corrected for multiple testing via the Benjamini-Hochberg method at level
o = 0.05 (see Section 2.6). The p-values of non-selected features in the asso-
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ciation analysis (i.e. if B = 0) were set to 1.0. Furthermore, to ensure equal
weighting of features, we z-scored each feature on the training folds and
applied the resulting z-scoring to the respective test folds.

5.3.6 Association analysis

For association analysis, we used our ReLL-method (see Section 2.5.2) with
Niep = 100. We again correct for multiple testing via the Benjamini-
Hochberg method at level @« = 0.05 (see Section 2.6). Furthermore, we
z-scored each feature prior to the association analysis.

5.4 RESULTS

5.4.1 Prediction analysis

In the prediction analysis, we investigated the predictive power of grey
matter volume and psychosocial data, respectively, for the discrimination
of heavy versus light drinkers.

GREY MATTER DATA Figures 5.2 and 5.3 show the prediction accuracies
(plotted as yellow triangles) for the grey matter volume features in the cross-
sectional and longitudinal setting, respectively.

In the cross-sectional setting (i.e. using features assessed at approximate
age 19 to predict the drinking behaviour at the same age), using all subjects
all three classifiers yield low, yet significant prediction accuracies. In the
gender separate cases, the predictive power of grey matter volume in female
subjects seems to be higher than in male subjects — all three classifiers show
significant accuracies for females and only one for males (naive Bayes). The
highest accuracy is obtained by the linear SVM for the female only case
(balAcc = 0.59).

In the longitudinal setting (i.e. using features assessed at approximate
age 14 to predict the drinking behaviour at approximate age 19), none of the
classifier in none of the cases (all, only females, only males) give significant
accuracies.

Our analysis indicates that cue-reactivity ROIs from grey matter volume
data is predictive for drinking behaviour only in the cross-sectional and not
in the longitudinal setting. Hence, according to the framework proposed
in Section 2.1, we infer that only the cross-sectional setting provides gener-
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alisable discrimination between heavy and light drinkers. We thus take a
closer look at this setting in the association analysis.

PSYCHOSOCIAL DATA Figures 5.4 and 5.5 show the prediction accuracies
for the grey matter volume features in the cross-sectional and longitudinal
setting, respectively. In the cross-sectional setting (i.e. using features as-
sessed at approximate age 19 to predict the drinking behaviour at the same
age), the classifiers yield much higher prediction accuracies than for the
grey matter case. All cases are significant. Prediction for males seems to
be slightly better than for females. The highest accuracy is obtained by the
linear SVM for the male only case (balAcc = 0.70).

In the longitudinal setting (i.e. using features assessed at approximate
age 14 to predict the drinking behaviour at approximate age 19) using all
subjects, all three classifiers yield lower, yet still significant prediction accu-
racies. The only non-significant case is the RSLVQ for males only. Predic-
tion accuracies do not differ much between genders. The highest accuracy
is obtained by naive Bayes for the male only case (balAcc = 0.59).

We thus conclude that psychosocial data is predictive for drinking be-
haviour in both the cross-sectional and the longitudinal setting. Hence,
according to the framework proposed in Section 2.1, we take a closer look
at both settings in the association analysis.
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Figure 5.2: Balanced accuracies (as yellow triangles) for prediction of heavy versus
light drinkers from grey matter features for the cross-sectional setting, based on
three classifiers: linear support vector machine (1-SVM), naive Bayes and robust soft
learning vector quantisation (RSLVQ) and for all subjects, only females and only
males. Grey box plots (spanning the entire range) indicate prediction accuracies ob-
tained by label permutation. The farther away the yellow triangles (true accuracies)
are from the grey box plots (permuted accuracies), the more likely it will survive
hypothesis testing and correction for multiple testing. Significant cases after con-
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Figure 5.3: Balanced accuracies (as yellow triangles) for prediction of heavy versus
light drinkers from greymatter features for the longitudinal setting, analogous to

Figure 5.2.
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5.4.2 Association analysis

In the association analysis, we examined predictive settings more closely.
More specifically, we evaluated the influence of single variables on the
drinking behaviour using our ReLL-method 2.5.2.

GREY MATTER DATA  Figure 5.6 shows the association between grey matter
volume in cue-reactivity ROIs and drinking behaviour in the cross-sectional
setting. All non-zero parameter estimates are negative. This indicates ex-
tensive gray matter reduction in the heavy compared to the light drinker
class. For the case with all subjects, the bilateral ACC, MPFC, median, mid-
dle and superior OFC, thalamus as well as the left amygdala and anterior
insula and the right inferior OFC present significantly lower grey matter
volume in the heavy drinker compared to the light drinker class.

Inspecting the results separately per gender, it becomes apparent that
the significance in all-subject case is almost solely driven by the female
subjects. The female heavy drinker class shows significantly lower grey
matter volume in the bilateral ACC, medial OFC and thalamus, as well as
the left amygdala, MPFC, inferior and superior OFC. For the male subjects,
much fewer features yielded non-zero parameter estimates and they show
significantly lower grey matter volume only in the bilateral medial OFC.

Note that e.g. for the right MPFC the parameter estimate for the female
only-group is larger than for the analysis including all subjects. Counter-
intuitively, the case including all subjects is deemed significant, whereas the
female-only case is not significant. This may happen due to the difference
in sample sizes, see Table 5.1.

PERSONALITY DATA  Figures 5.7 and 5.8 show the association between psy-
chological features and drinking behaviour in the cross-sectional and longi-
tudinal setting, respectively.

In the cross-sectional setting for all three subject cases (all, only males,
only females), six personality traits (NEO-extraversion, TCl-impulsivity, -
extravagance and -excitability, SURPS-impulsivity and -sensation-seeking),
are significantly positively associated with heavy drinking and the male
group shows a stronger association than the female group. Furthermore,
NEO-agreeableness and NEO-conscientiousness are significantly associated
to heavy drinking in a negative direction. NEO-agreeableness is no longer
significant when assessed separately for each gender.

In the longitudinal setting, the pattern is similar. The male group again
shows more and stronger significant association between personality traits
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and drinking behaviour. Note that SURPS-hopelessness is positively asso-
ciated for all three subject cases, whereas there was no association in the
cross-sectional setting.

LIFE EVENTS DATA Figures 5.9 and 5.10 show the association between
stressful life event features and drinking behaviour in the cross-sectional
and longitudinal setting, respectively.

In the cross-sectional setting and for all subject groups, there is signifi-
cant positive association of frequency of autonomy, frequency of deviance,
valence of deviance and frequency of sexuality to heavy drinking. Valence
of autonomy positively associated for all subjects and male subjects only.
Furthermore, valence of sexuality shows significant positive association to
heavy drinking for female subjects only.

In the longitudinal setting there is no significant association between any
of the stressful life event features and drinking behaviour.
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Figure 5.6: Median parameter estimates from association analysis on grey matter
features using the ReLL-method in the cross-sectional setting. Non-zero estimates
are obtained if the median of the parameter estimates over 100 runs is non-zero.
Significant cases after correction for multiple testing are indicated by a red star.
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Figure 5.7: Median parameter estimates from association analysis on personality
features in the cross-sectional setting, analogous to Figure 5.6.
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Figure 5.9: Median parameter estimates from association analysis on life events
features in the cross-sectional setting, analogous to Figure 5.6.
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5.4.3 Further investigations

CUMULATIVE DRINKING BEHAVIOUR In an additional (post-hoc) investi-
gation, we explored the relationship between a cumulative drinking score
and grey matter volume in regions that were shown to be significantly as-
sociated to heavy drinking (see Section 5.4.2) at FU2. We did this for all
subjects, and for females and males separately — looking in each case only
at the subset of significant regions from the association analysis. For details
on how we computed the cumulative drinking score, see Chapter 4.

Figures 5.11, 5.12 and 5.13 show the results from separate linear regres-
sion analyses between the cumulative bingeing score (target variable) and
each grey matter volume (explanatory variables), corrected for FDR at o =
0.05 over all 28 tests (16 for all subjects, 10 for females and 2 for males),
including site and (for the case of all subjects) gender as covariates. In Fig-
ures 5.11, 5.12 and 5.13 we plotted the estimated coefficients and confidence
intervals of the grey matter volumes resulting from each linear regression
model estimation. Significant cases after multiple testing correction are in-
dicated by a red star.

We see in all cases only negative relationships, indicating that more life
time drinking is associated to lower grey matter volume. For all subjects,
we see significant reduction for the bilateral ACC, anterior insula, MPFC,
median OFC, for the right superior OFC and for the left thalamus. For only
females, we see significant reduction again in the bilateral ACC and median
OFC and furthermore in the left MPFC and thalamus. For only males, we
see significantly negative correlation between cumulative bingeing and grey
matter volume in the bilateral median OFC — the two only regions identified
as significant for only males in the association analysis.
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Figure 5.12: Relationship of significant grey matter features for female subjects to
the cumulative bingeing score. Analogous to Figure 5.11.
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Figure 5.13: Relationship of significant grey matter features for male subjects to the
cumulative bingeing score. Analogous to Figure 5.11.
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CORRELATION STRUCTURE In an additional analysis, we investigated the
correlation structure between psychosocial features and grey matter vol-
ume, both at FU2 and BL. In order to account for site effects, we use site-
mean corrected grey matter volume (see Figure 5.1). We controlled the FDR
at level o = 0.05.

Figure 5.14 shows the correlation at FU2 between personality features
(see Table 5.2 for details) and site-corrected grey matter volume for all sub-
jects. Significant negative correlation is observed between TCI-disorganization
with grey matter volume in various brain regions (bilateral MPFC and me-
dian OFC, left inferior OFC and right ACC and amygdala). Furthermore,
the analysis shows significant negative correlation between TCI-extravagance
and grey matter volume in the left median OFC. NEO-agreeableness shows
significant negative correlation to the bilateral putamen and positive corre-
lation to the bilateral thalamus.

Correlations between grey matter volume and personality features were
not significant at BL. Moreover, no correlations between grey matter volume
and life events were significant for FU2 or BL.
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Figure 5.14: Pearson’s correlations between personality and site-corrected grey mat-
ter volume features, both assessed at FU2. Only significant correlations (after FDR-
correction) are shown.
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5.5 DISCUSSION

Problematic drinking regularly begins in adolescence (Petit et al. 2014), an
especially crucial (Luna et al. 2010) and vulnerable (Squeglia et al. 2009)
phase of brain development. Furthermore, early onset of heavy drinking
may constitute a risk factor for the development of alcohol use disorders
later in life (Grant et al. 2006).

In this chapter, we explored the predictive and associative relationship of
neural and psychosocial variables to heavy drinking in a large adolescent
sample.

Our main findings are that heavy drinking at age 19 is significantly asso-
ciated with:

(i) grey matter reduction in cue reactivity relevant brain areas at age 19
(but not at age 14), especially for female subjects,

(ii) psychological variables like impulsivity and extravagance at age 14
and at age 19, in both genders,

(iif) and stressful life events assessed at age 19 but not at age 14, in both
genders.

GREY MATTER VOLUME We have shown that grey matter volume of 19
year olds in areas relevant to cue reactivity was predictive of drinking be-
haviour at the same age (cross-sectionally) for all subjects, and for each
gender separately. Longitudinally, the same areas’ grey matter volume at
age 14 was not predictive for drinking behaviour at age 19. The evaluation
of cross-sectional association between single grey matter volume features
and drinking behaviour revealed reduced grey matter volume in bilateral
ACC, medial, middle and superior OFC, MPFC, and thalamus, and further
in the left anterior insula and right inferior OFC in heavy drinking subjects.
This effect was driven mainly by the female subjects. Since the longitudinal
setting, we did not find any relationship between grey matter volume at age
14 and heavy drinking at age 19, we suggest that the reduced grey matter
volume in cue reactivity related areas of heavy drinking adolescents might
be a consequence of their alcohol drinking behaviour, i.e. a potential neuro-
toxic effect. Neurotoxic effects have been reported frequently in alcoholism
(Harper et al. 1985; Jernigan et al. 1991; Pfefferbaum et al. 1992). Also for
sub-clinical (binge) drinking, studies have previously observed this effect in
cingulate cortex (Mashhoon et al. 2014), the caudate nucleus (Squeglia et al.
2014), and frontal, temporal, cerebellum and brain stem areas (Heikkinen
et al. 2017; Luciana et al. 2013; Squeglia et al. 2014; Squeglia et al. 2015).

83



84

| GREY MATTER VOLUME AND PSYCHOSOCIAL VARIABLES

Only few studies have reported increased grey matter volume or cortical
thickness associated to binge drinking (Loheswaran et al. 2016).

Importantly, we have seen in our study that the reduction in brain vol-
ume of heavy compared to light drinkers was much more pronounced in
female than in male subjects at age 19. This is potentially similar to the
telescoping effect of the development of alcohol use disorders in female
adults, where alcohol-dependent women spiral faster from their onset of
drinking to alcohol-related problems and finally into treatment (Hernandez-
Avila et al. 2004; Johnson et al. 2005; Piazza et al. 1989). It has previously
been found that also atrophies seem to develop faster in alcohol-dependent
women than in men (Mann et al. 2005), in line with our findings.

Note that less grey matter volume reduction in males in response to
heavy drinking does not necessarily imply that they are less susceptible
for developing an alcohol use disorder later in life. In fact, the opposite
might be the case, since a high tolerance for alcohol may be a risk factor for
the development of alcohol use disorders (Schuckit et al. 2017; Schulte et al.
2009).

PsycHosocIAL DATA We found that psychosocial variables can signifi-
cantly predict drinking behaviour, both cross-sectionally and longitudinally.
Various personality traits at age 14 and at age 19 were significantly as-
sociated with drinking behaviour at age 19. Specifically, subjects that were
more extroverted, hopeless, impulsive, disordered, and extravagant at age
19 were shown to have a higher chance of being heavy drinkers at age 19
across both genders. A similar pattern could be seen at age 14, except for
hopelessness. On the other hand, reduced conscientiousness was found to
be associated to heavy drinking at age 19 across both genders. Our results
are in line with many studies that have found relationships, both cross-
sectionally and longitudinally, of harmful alcohol drinking in adolescents
to sensation seeking, agreeableness and neuroticism (Kuntsche et al. 2006)
and to conscientiousness and extraversion (Stewart and Devine 2000).
Furthermore, our results agree with the notion that sub-dimensions of
novelty seeking (excitability, disorderliness, extravagance) differentiate heavy
drug abusers from controls that show only similarly high scores on impul-
sivity (Ersche et al. 2010), whereas we also observe this effect longitudinally.
Interestingly, while more hopeless subjects at age 14 are more likely to
be heavy drinkers at 19 (longitudinally), this effect is not present cross-
sectionally, i.e. hopelessness at age 19 is not associated to drinking be-
haviour at the same age. Hopelessness in combination with sensation
seeking at ages between 11 and 15 have been linked to higher drinking
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probability at the same age (Malmberg et al. 2010). In combination with
our new results, this may suggest a lasting effect of hopelessness in early
adolescence, influencing the likelihood of drinking also later in life.

The association between various personality traits and heavy drinking
underscores the relevance of personality-based intervention programs (Con-
rod et al. 2010).

Stressful life events showed significant association to drinking behaviour
only in the cross-sectional setting. In females, the subscales autonomy, de-
viance and sexuality showed positive association to heavy drinking, both in
frequency and valence. For males, the same pattern was observed, except
for valence of sexuality, which did not show a significant relationship to the
drinking behaviour at age 19.

Interestingly, all these significantly associated subscales (autonomy, de-
viance and sexuality) have an internal locus of control, i.e. they are active
stressors. The remaining subscales that were not shown to be associated to
heavy drinking (accident, distress relocation) have an external locus of con-
trol, i.e. they are passive stressors. A limited influence of passive stressors
on alcohol drinking behaviour in adolescents has been found previously
(Hoffmann 2016). A further study did find some effects of stressful life
events on the likelihood of following a more harmful drinking trajectory.
However, the stressful life events score in that study comprised both active
and passive stressors (Windle et al. 2005).

In the longitudinal setting, none of the stressful life events assessed at
age 14 were associated with drinking behaviour at age 19. However, this
negative finding does not rule out that more detailed prospective studies
may find an influence of stressful life events (Hoffmann 2016; King and
Chassin 2008; Windle et al. 2005).

We conclude that there is no simple influence of stressful life events on
harmful drinking. Mediating and moderating effects like external or in-
ternal loci of control, externalising and internalising symptoms (King and
Chassin 2008) and coping strategies have to be incorporated to shed more
light the effects of stressful life events (Corbin et al. 2013).

CUMULATIVE DRINKING BEHAVIOUR In a post-hoc investigation we ob-
served negative correlations between a score for cumulative drinking (in-
corporating information from drinking behaviour at 14, 16 and 19) and the
areas of grey matter volume that were significantly associated with the phe-
notype capturing the drinking behaviour at age 19. This finding supports
our interpretation that the reduction in grey matter volume may be a con-
sequence of heavy drinking, i.e. a neurotoxic effect as seen in other studies
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investigating subclinical drinking (Heikkinen et al. 2017; Luciana et al. 2013;
Mashhoon et al. 2014; Squeglia et al. 2014; Squeglia et al. 2015).

56 CHAPTER SUMMARY

The results from the analyses on the IMAGEN data base indicate a reduc-
tion in grey matter volume through heavy drinking in adolescence in areas
relevant to cue reactivity. Interestingly, this reduction seems to be stronger
in females than in males. Further studies should explore how these grey
matter reductions can be linked to and potentially augment the diagnosis
of alcohol-related cognitive deficits. We have moreover found that several
personality traits at age 14 and 19 could be seen as a risk factor for heavy
drinking at age 19. We thereby add to a large corpus of research indicating
similar results. The administration of personality questionnaires is easy and
comparatively cheap. Early interventions could be aimed at adolescents at
age 14 who consider themselves being impulsive, disorderly, extraverted or
hopeless to prevent them from alcohol abuse later in adolescence. Moreover,
the communication of coping strategies for stressful life situations, specifi-
cally those with an internal locus of control, may be an additional approach
to avert heavy drinking in adolescence.



6 FUNCTIONAL IMAGING AND
COGNITIVE VARIABLES

This chapter treats the analysis of functional imaging and cognitive data
from the IMAGEN study, using the methods introduced in Chapter 2. We
focus especially on features related to response inhibition.

6.1 INTRODUCTION

Excessive alcohol consumption has a detrimental effect on public health;
globally, it is linked to an estimated 3.8 % of deaths and 4.6 % of disability-
adjusted life years (Rehm et al. 2009). Furthermore, alcohol abuse is a top-
ranked disorder of the brain with respect to total costs to economy (Effertz
and Mann 2013). Many of the costs and damages are driven by the dan-
gerous behaviour during acute intoxication, e.g. involvement in fatal traffic
accidents. Such risky behaviour under the influence of alcohol is also a
consequence of loosened inhibitory control (Field et al. 2010; Weafer and
Fillmore 2012).

Inhibitory control, i.e. the executive function allowing for inhibition of
natural or habitual responses to stimuli with the effect of choosing a more
appropriate ("sensible") behaviour, is not only affected by alcohol consump-
tion, but may also play a key role in the initiation of a harmful drinking tra-
jectory. Such trajectories often begin in adolescence and young adulthood, a
period of immature inhibitory functioning (Field et al. 2010; Lépez-Caneda
et al. 2014) and a time during which heavy drinking poses a risk factor for
the development of alcohol use disorders (AUDs) (Grant et al. 2006).

On a cognitive level, response inhibition, i.e. the ability to suppress re-
sponses that are already initiated, is commonly measured by the stop sig-
nal task (SST) and the go/no-go task (Murphy et al. 1999; Verbruggen et al.
2008). Both tasks require fast and repeated responses to stimuli, but de-
mand a suppression of those responses in a fraction of trials. While the
go/no-go task presents two different groups of stimuli, one for which sub-
jects are instructed to respond and one for which they should withhold
their response, the SST requires subjects to inhibit a response that has al-
ready been initiated. For the go/no-go task, the number of inappropriate
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responses to a no-go stimulus, and for the SST, the time needed to stop a
response once it has been initiated (stop signal reaction time, SSRT), are
popular markers for inhibitory control, see Schulz et al. (2007) and Lépez-
Caneda et al. (2014) for a review. Importantly, impaired response inhibition
has also been linked to intellectual disabilities (Bexkens et al. 2014). It is
hence important to integrate measurements of intelligence as potential me-
diators of response inhibition.

On a neural level, inhibitory control is often measured by functional brain
activity during the SST (Aron and Poldrack 2006; Chevrier et al. 2015; Li
et al. 2006; Sharp et al. 2010; Verbruggen and Logan 2008). The frontostri-
atal network seems to be particularly involved in the inhibition of initiated
responses (Aron et al. 2007; Chambers et al. 2009) and there are indications
for abnormalities in this network in alcohol abuse (Bednarski et al. 2012; Hu
et al. 2015; Li et al. 2009; Noél et al. 2001; Pfefferbaum et al. 2001). Further-
more, an established finding is the inverse scaling of the SSRT with activity
in various brain regions during successful stopping (Aron and Poldrack
2006; Li et al. 2006; Rubia et al. 2007).

A central issue, comprising both cognitive and neural levels, is whether
poor inhibitory control is a cause or a consequence of excessive alcohol use.
Identifying weakened inhibition as cause or risk factor may allow for more
tailored prevention strategies, while establishing it as a consequence would
possibly call for targeted intervention and training (Houben et al. 2011).
A recent review (Lépez-Caneda et al. 2014) suggests that poor inhibitory
control may be both cause and consequence of alcohol abuse; in the worst
case this interplay may trap heavy drinkers in a vicious cycle. The authors
encourage further longitudinal research on adolescent subjects to properly
investigate the interaction between impaired inhibitory control and alcohol
use.

In this chapter, we used the large-scale, longitudinal IMAGEN database
(see Chapter 3 for details) to identify the link between heavy alcohol drink-
ing in adolescence and a range of cognitive and functional imaging mark-
ers of inhibitory control. We used features at age 14 and 19 (separately)
to predict drinking behaviour at age 19. The combination of both a cross-
sectional (inspecting differences between heavy and light drinkers at age
19 with respect to their markers of inhibitory control at the same age) and
a longitudinal (inspecting pre-existing differences between heavy and light
drinkers at age 19 based on features at age 14) setting facilitated distinguish-
ing between cause and effect of excessive alcohol consumption.
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6.2 DATA

6.2.1  Wechsler intelligence scale

The Wechsler intelligence scale for children was developed by David Wech-
sler as an intelligence test for children between age 6 and 16 (Wechsler
1949). In the IMAGEN study, subtests of the fourth version (WISC-IV) were
administered (Wechsler 2003). More specifically, two indices were tested
— Verbal Comprehension Index (VCI) and the Perceptual Organization In-
dex (PCI). Of the VCI, two subscales were administered — "Vocabulary" and
"Similarities". Of the PCI, also two subscales were administered — "Block
Design" and "Matrix Reasoning". For details on these tasks, see e.g. Wech-
sler (2003). Note that the Wechsler intelligence scale was administered only
once in the IMAGEN study at an approximate age of 14.

6.2.2 Affective go-no/go task

The affective go/no-go (AGN) task is a variant of the classical go/no-go task
and measures signatures of response inhibition (Murphy et al. 1999). In the
classical version, participants are instructed to perform a motor response,
such as a button press, when a stimulus from a certain "target" class is
shown, and to withhold the motor response if the stimulus is of another,
"non-target”, class. Typically, the number of trials showing stimuli the from
target class is much larger than the number of "non-target" trials. Hence,
participants are generally focussed on a quick reaction and thereby make
many false responses in "non-target" trials. The number of false responses
can be used as a signature of response inhibition.

The affective go/no-go task was originally proposed as the affective shift-
ing task by Murphy et al. (1999). The stimuli are words of either positive
or negative nature. The alteration to the classical version is that the "tar-
get" class switches between blocks, hence requiring more mental flexibility
from participants. One of the advantages of this more difficult setup, is that
fewer trials are needed for obtaining the same number of false responses.

In the IMAGEN study, an implementation of the affective go/no-task
from the Cambridge Neuropsychological Test Automated Battery (CANTAB
2018) was used.
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6.2.3 Stop signal task

The stop signal task (SST) is an extension of the go/no-go task and was
first introduced by Lappin and Eriksen (1966). Since, there have been exten-
sive developments and refinements to the SST paradigm (see Logan (1994),
Logan et al. (1984), Verbruggen and Logan (2008), Verbruggen and Logan
(2009), and Verbruggen et al. (2008)). The paradigm requires subjects to
react as fast as possible to a "go"-stimulus. In a fraction of trials, the "go"-
stimulus is followed by a "stop"-stimulus, and subjects have to inhibit their
previously initiated go-response.

The IMAGEN study uses left and right arrows as go-stimuli and par-
ticipants are required to react with corresponding button presses (a left
and a right button press). The stop signal is displayed as an arrow point-
ing upwards. The time between go-stimulus and stop-signal presentation
(the so-called stop-signal-delay) is adjusted according to the subjects” perfor-
mance. If a subject inhibits a go-response on a stop-trial successfully, the
next stop-signal-delay is prolonged by 50 ms (making stopping more diffi-
cult). If a subjects falsely responds in a stop-trial, the next stop-signal-delay
is reduced by 50 ms (making stopping easier). This tracking-procedure
produces stop-success rates of around 50% (Levitt 2005).

A block contained 400 go-trials and approximately 8o stop-trials (with
varying stop-signal-delay) for the BL-acquisition and 300 go-trials and ap-
proximately 60 stop-trials for the FUz2-acquisition. If a subject responded
before the stop-stimulus was shown, then that particular stop trial (with
the set stop-signal-delay) was repeated up to seven times. Subjects were
instructed not to wait for the upwards arrow, but to try to respond as accu-
rately and quickly as possible to the presented stimuli. The maximum time
window for response was 1000 ms.

Note that this task was performed in an fMRI-scanner (see Section 6.2.4
for details). Subjects were previously familiarised with the task in a practice
session of 60 trials outside of the scanner.

6.2.4 Preprocessing and first level analyses of functional brain images

Functional brain images were acquired by the various sites of the IMAGEN
study on 3-Tesla scanners using Echo Planar Imaging (EPI). Comprehen-
sive details, standard operating procedures and quality checks have been
reported previously (Schumann et al. 2010).
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stop-trial

go-trial

. 80 stop trials
" 400 go trials

60 stop trials
300 go trials

Figure 6.1: Schematic representation of the stop signal task. Subjects were required
to respond as quickly and as correctly as possible to the go-stimulus (arrows point-
ing right or left). During a stop trial, a stop signal (an arrow pointing upwards)
was presented at a certain stop-signal-delay (SSD) after the onset of the go-stimulus.
Subjects had to stop the already initiated motor response.

PREPROCESSING Preprocessing was performed centrally by the IMAGEN
consortium (Schumann et al. 2010) as follows: The pre-processing of the
EPI data were performed with Statistical Parametric Mapping 12 (SPM12)
software. Time series data were first corrected for slice-timing, then cor-
rected for movement (spatial realignment), non-linearly warped onto stan-
dard Montreal Neurological Institute (MNI) space, and smoothed with a
Gaussian kernel at smm full-width-at-half-maximum (FWHM). Estimated
movement parameters (three translations, three rotations, three translations
shifted one volume acquisition before and three translations shifted one
volume acquisition later) were added as nuisance variables. Furthermore,
automatic spike detection was applied to each fMRI time series (see Ap-
pendix B.2 for details).

FIRST LEVEL ANALYSES Activation maps were computed with SPM12,
and regressed using a general linear model with an autoregressive noise
model. Based on behavioural records, each subject’s design matrix included
regressors for stop success trials, stop failure trials, trials on which the go
response was too late, trials on which the go response was wrong (if any)
and the nuisance variables. The regressors modeling the experimental con-
ditions were convolved using SPM’s default hemodynamic response func-
tion. No motor responses are modeled since the timings involved would
not yield a regressor orthogonal enough to the other stimuli.

We investigated two of the contrasts centrally computed and suggested
by the IMAGEN consortium Schumann et al. 2010:
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e stopSuccess: stop success minus an implicit baseline
o stopSuccess-stopFail: stop success minus stop failure

Feature extraction from these contrasts is described in Section 6.3.2.

6.3 METHODS

6.3.1 Extraction of cognitive features

Various features were extracted from the tasks described in Section 6.2,
separately for BL and FU2 (except for the IQ tasks since the Wechsler in-
telligence scale was administered only at BL). Some were available in a
straightforward fashion (as the reaction time in the AGN-task), others (as
the stop-signal-reaction-time) involved modelling, see below. Note that all
features were extracted on a per subject basis.

EXTRACTION OF 1Qs From the results of the Wechsler intelligence scale
two features were extracted: an estimation of the performance IQ (wech-
sler_pig) and an estimation of the verbal IQ (wechsler_vig). Since only a
subset of the full Wechsler scale was measured, the respective subsets were
used as an approximation of the performance and verbal IQ, as is common
practice (Ward 1990; Whelan et al. 2012). Scores for the single subtests (Vo-
cabulary, Similarities, Block Design and Matrix Reasoning) were z-scored
across subjects. As an estimation for verbal IQ, the mean of the z-scored
Vocabulary and Similarities subscales was used. As an estimation for the
performance IQ, the mean of the z-scored Block Design and Matrix Reason-
ing subscales was used. Age-normalisation was not performed, since all
subjects were of very similar age at time of assessment.

EXTRACTION OF BEHAVIOURAL DATA FROM THE AGN-TASK From the AGN-
task four features were included:
e agn_latency_positive: reaction time to in trials with positive words,

e agn_latency_negative: reaction time to in trials with negative words,

o agn_omissions_positive: total number of false negative responses in tri-
als with positive words,

e agn_omissions_negative: total number of false negative responses in
trials with negative words.
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Unfortunately, the number of commissions (i.e. false positives - the partic-
ipant falsely reacted to a non-target word) was not recorded in the IMAGEN
study.

EXTRACTION OF BEHAVIOURAL DATA FROM THE ssT Three features can
easily be extracted from the behavioural data from the Stop-signal-task:

e sst_go_reaction_time: mean reaction time over all successful go-trials,

e sst_go_success_rate: average of the ratio of number of correct go-responses
(given in time) divided by the total number of correct go-responses
(including the responses given too late),

e sst_ssd: stop-signal-delay, i.e. the mean delay between go-stimulus
and stop-stimulus presentation.

Since the stop-signal-delay is adjusted according to the subjects’ behaviour,
a longer stop-signal-delay indicates a better task performance, i.e. a more
successful inhibition.

MODELLING OF THE SSRT IN THE ssT The SSRT is the analogy to the
go reaction time. It describes how long a participant takes (on average) to
"react” to a stop signal. However, since a correct "reaction” is in the case of
an appearing stop signal one that is inhibited, the stop signal reaction time
is not measured directly.

A common modelling approach is the horse-race model (see Verbruggen
and Logan (2008) for a review). It asserts that the go and stop processes
are independently racing each other — the go process usually with a head
start. If the stop process manages to "catch up", the action is successfully
inhibited. Otherwise, the go process (and hence the response) "escapes"
from successful inhibition.

If we stay within the metaphorical setting of a horse-race, we have two
horses - a go-horse and a stop-horse. The go-horse runs at a certain pace,
subject to some variability. Observing the go-horse for a number of runs,
we can infer its finishing-time distribution. The second horse, the stop-
horse, runs completely independently of the go-horse (e.g. equipped with
blinkers). This stop-horse is generally a faster runner than the go-horse and
always starts a (for now: fixed) delay period later than the go-horse. How-
ever, for technical reasons we cannot measure the time when the stop-horse
crosses the finishing line. All we observe is the information whether the
stop-horse managed to catch up with the go-horse or not. After many such
races (with the fixed delay period), we know that the stop-horse catches up
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with the go-horse in x % of cases. The question we now ask is: how long
does the stop-horse need on average to get to the finishing line, i.e. what is
the stop-horse finishing-time?

The so-called mean-method (Verbruggen and Logan 2008; Verbruggen
and Logan 2009; Verbruggen et al. 2008) assumes a chance of 50 % for
the stop-horse to win the race. (In fact, when dropping the fixed delay
period constraint and when using the tracking algorithm as described in
Section 6.2.3, the stop-success rates do truly approach 50 %.) Hence, in
an rough approximation, the stop-horse finishes at the same time as the go-
horse finishes on average over all its runs, so we can estimate the stop-horse
finishing time as the average go-horse finishing time.

However, the mean-method does not take the variability of the go-horse
finishing time and the variability of stop-success rates into account. The
so-called integration method incorporates both aspects. Say now that the
stop-success rate is 30 %. We can infer that in 70 % of the trials, the go-horse
has already reached the finishing line by the time the stop-horse crosses it.
Since we assume that go and stop-horses run entirely independent of one
another, we can check when the go-horse has already reached the finishing
line in 70 % of its runs. This time we can then take as the estimate of the
finishing time of the stop-horse.

Note that for a symmetric finishing-time-distribution of the go-horse and
for stop-success rates of exactly 50 %, the mean-method and the integration
method give the same results.

Finally, the actual SSRT is calculated in both cases as the estimated stop-
horse-finishing time minus the delay period (the time when the stop-signal
is presented after the go-stimulus) — i.e. it is the time the stop-horse is
actually running. In the case of a non-fixed delay period, the mean-method
subtracts the mean of the delays from the mean go-horse finishing time
for an estimation of the stop signal reaction time. The integration-method
estimates the SSRT separately for each delay period and then takes the
average over these as the final estimate.

Moving to a more formal setting, let goRT(t) be the probability density
function of go-reaction times and

t
FgoRT(t) = J gORT(t/)dt/
—0o0

the cumulative distribution function. The corresponding quantile func-
tion is then:

Qgort(p) =inf{t € R>0 : p < Fgort(t)}
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With Ny, go-trials, each yielding a reaction time of goRT;, i =1,...,Ngo,
we can estimate the empirical cumulative distribution function as follows:

Ngo

Z 1{goRT; < t},

90 =1

=
goRT( N

where 1{-} is the indicator function. This cumulative distribution is a step
function.
The empirical quantile function can then be estimated by:

ngRT( J=inf{t e Ryo:p < goRT(t)}

Furthermore, let SSR(SSD) € [0, 1] be the probability of (falsely) reacting
in a stop-trial with a stop-signal delay SSD. Note that this is usually called
the inhibition function in literature (Verbruggen and Logan 2008). We can
estimate this inhibition function as follows:

NS o
S/S\R( SSD) = L tiSSD go-response in a stop-trial with
- Nstop,ssD = stop signal delay = SSD ’

where Ngiop ssp is the number of stop-trials with stop-signal delay SSD.
Note that the average of S/S\R(SSD) over different SSDs in a setup with a
tracking procedure (as we have it) should approach 50 %. However, certain
SSR(SSD) might deviate strongly.

Let us further set Nssp as the number of unique stop-signal delays used
over all stop-trials and let SSDj, i = 1,..., Nstop be the respective delays.
Having introduced the necessary definitions, we can now formalise the
mean-method estimate of the stop signal reaction time:

— Ngo Nstop
SSRTimean 3— Z goRT; — Z SSD;. (6.1)
stop i=1

The integration-method estimates the stop-signal reaction time separately
for each delay:

SSRT i (SSD) := QgorT(SSR(SSD)) — SSD (6.2)

for SSD € {SSDy,...,SSDnN,sp ), and then takes an average for the final

estimate:
Nssp

> SSRTin(SSDy). (63)

i=1

S/Sﬁ-in =
SSD
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Even though the mean-method seemed superior to the integration-method
for many years (Band et al. 2003; Verbruggen and Logan 2008), recent find-
ings have shown that the mean-method is very susceptible to skewed go-
reaction time distributions and gradual slowing of the go-reaction times
over trials (Boehler et al. 2012; Verbruggen et al. 2013). Especially for pos-
itive skewness, the mean-method was shown to consistently overestimate
the stop-signal reaction times. This overestimation is especially problematic,
since it may lead to spurious SSRT differences between subject groups that
in fact differ only in the shape of the go-reaction time distribution. The inte-
gration method was shown to be more robust against these variations and
was hence recommended for further use (Verbruggen et al. 2013). Hence,
we used the integration-method for the main analyses and only performed
basic comparisons to the mean-method (see Appendix B.1 for details).

Note that within the integration-method for the computation of the fi-
nal estimate (6.3) we exclude all SSD* € SSDy,...,SSDn,, that lead to

SS/R\T(SSD*) < 0. This occurs for instance when STS\R(SSD*) =0, i.e. the
participant never responded falsely for that certain delay. Then, it holds
that:

QQORT(S/STQ(SSD*)) = min{goRTy, ..., goRTNgo}

and hence if min{goRT1,...,goRTNgo} < SSD* the estimate Sgl?l'(SSD*)
will be negative.

Note that detailed analyses for the extraction of the SSRT can be found
in Appendix B.1.

OUTLIER DETECTION IN THE ssT  In order to ensure that we consider only
data of subjects who have understood the task correctly and to ensure a sta-
ble estimation of the SSRT, we removed outliers. The necessity of an outlier
treatment for the stop-signal-task has recently been demonstrated (Cong-
don et al. 2012). We specifically excluded data from subjects that have an
average go success rate lower than 8o % or an average stop success rate
larger than 8o %. Due to the tracking procedure the average stop success
rate should be around 50 % and we wanted to exclude subjects that (almost)
never reacted, even in go-trials. Such crude thresholding is common in lit-
erature (Congdon et al. 2012; Whelan et al. 2012). Furthermore, it has been
shown that such rather lenient criteria are superior to more conservative ap-
proaches in the trade-off between reliability and sample size (Congdon et al.
2012). All four extracted features for the SST were replaced by respective
mean values across all subjects for subjects considered outliers, analogous
to mean-imputation for missing values (see Section 2.2.2).
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Furthermore, we required the subjects to have performed the full ex-
periment. Specifically, we required 60 < Nstop < 67 for FU2-data and
80 < Nstop < 87 for BL-data.

Note that we have also performed a more sophisticated outlier detection,
based not only on the stop signal behavioural features but on all cogni-
tive features (as described in Section 2.2.1). However, this did not improve
accuracies, hence we kept with the simple approach.

Figure 6.2 shows the outlier removal procedure for BL and FU2 data.
Based on their combined stop and go success rates, a total of 31 and 28
subjects are considered as outliers for BL and FU2 data, respectively. Both
values are low in comparison to the total sample size (see Table 6.1). Fur-
thermore, no clear patterns regarding the distribution of light and heavy
drinkers are visible from Figure 6.2, other than potentially a tendency for
light drinkers having slightly higher (outlying) stop success rates and slightly
lower (outlying) go success rates.
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(b) Follow-up 2 (age ~ 19)

Figure 6.2: Outlier removal for the behavioural data from the SST. The dark grey
shaded area (the overlap of the two light grey shaded areas) show the region where
subjects are not treated as outliers. More specifically, subjects that either had a stop
success rate larger than 0.8 or a go success rate smaller than 0.8 were considered an
outlier.
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6.3.2 Extraction of functional imaging features

We pre-selected 12 regions of interest that have been linked to response
inhibition in the stop signal task (see Verbruggen and Logan (2008) for a
review). Based on this review, we focused on the frontal-thalamic-basal-
ganglia network, specifically the inferior frontal gyrus (separated into the
pars opercularis, pars triangularis and the pars orbitalis), the caudate nu-
cleus, the putamen and the thalamus from the Automated Anatomical La-
beling (AAL) atlas (Tzourio-Mazoyer et al. 2002). For each region, left and
right separately, we extracted the mean value of the stopSuccess and the
stopSuccess-stopFail contrasts. We also performed comparisons to a dif-
ferent single-value summary measure instead of the mean, based on rec-
ommendations given in Tong et al. (2016). Details and results are given in
Appendix B.6.

CHOICE OF REGIONS We resort to the frontal-thalamic-basal-ganglia net-
work since
(i) there are clear indications for its involvement in response inhibition:

e inferior frontal gyrus, see Aron et al. (2007), Aron and Poldrack
(2006), Chevrier et al. (2007), Li et al. (2006), Rubia et al. (2003),
and Whelan et al. (2012),

e basal ganglia, see Aron et al. (2007), Aron and Poldrack (2006),
and Chevrier et al. (2007),

e thalamus, see Lépez-Caneda et al. (2014) and Rubia et al. (2007),

(i) significant substance use effects have been found for the network:
e subclinical, see Bednarski et al. (2012),

e clinical, see Hu et al. (2015) and Li et al. (2009),

(iii) there is extensive evidence for an inverse scaling of activation in the
network with the SSRT, see Aron and Poldrack (2006), Li et al. (2006),
Rubia et al. (2007), and Whelan et al. (2012),

(iv) and this scaling may be different between substance abusers and con-
trols.

We intentionally did not include the pre-supplementary motor area (pre-
SMA). Even though there is evidence for its general involvement in re-
sponse inhibition, it seems to be linked more to task-monitoring than to
actual stopping processes (Aron et al. 2007; Aron and Poldrack 2006).
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Furthermore, note that our arguments from Section 5.3.1 for (i) using a
priori defined (instead of data derived) regions of interest and (ii) using the
AAL atlas as a intermediate option between fine-grainedness and coarse-
ness apply here, too.

OUTLIER TREATMENT We excluded data from all subjects that were con-
sidered outliers according to the lenient criteria described in 6.3.1.

6.3.3 Summary of features

For an overview of number of subjects available see Table 6.1. The number
in brackets indicates the number of female subjects available for each cell.
Note that there are much fewer female heavy drinkers compared to male
heavy drinkers. This imbalance is present in general for the drinking phe-
notype defined on the IMAGEN data set, see 4 for more details. We deal
with this imbalance in prediction analysis by using a bootstrapped version
of cross-validation (BSSCV), see Section 2.4.3. For association analysis we
include gender (and also the scanning site) as a additional covariates, see
2.5.2 for details.

For a list of features including a short description, see Tables 6.2 and
6.3. All missing values were mean-imputed for prediction analysis (see
Section 2.2.2 for brief methodological details). We have performed several
more sophisticated imputation methods, both univariate and multivariate.
Furthermore, we also performed all prediction analyses additionally on the
subset of subjects for which complete features were available. For further
details and comparative results, see Appendix B.5. For histograms of all
features, see Appedix B.3.
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Table 6.1: Sample sizes for each data modality — functional imaging (SST fMRI)
and cognitive variables — and time point. Values in brackets indicate the number of
female subjects.

Phenotype SST fMRI ~ SST fMRI  Cognitive  Cognitive
age~ 19 age~ 14 age~ 19 age~ 14 age = 14

FU2 BL FU2 BL FU2
All 1472 1995 1378 1929 1094
(772) (1027) (713) (990) (498)
Light 550 534 491 517 395
drinkers (347) (339) (311) (329) (256)
Heavy 464 440 408 421 328

drinkers (184) (179) (153) (169) (125)
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Table 6.2: Summary of cognitive variables and their meanings, origin and percent-
age of missing values. AGN: affective go/no-go task; SST: stop signal task.

Missing Missing
Name Meaning Origin age~ 19 age~ 19
BL (%) FU2 (%)
agn_mean_corre'ct Mean reaFtion time AGN 13.14 .
_latency_negative  for negative words
agn,mean,corr.elct Mean re.ahction time AGN 12.03 042
_latency_positive for positive words
agn_total_omissions =~ Number of false negatives
gh_tota’_omt v . gatv AGN 10.9 30.29
_negative for negative words
agn_tot.a‘l_omissions Number of‘f.alse negatives AGN 10.9 -
_positive for positive words
wechsler_piq Performance IQ Wechsler 0.00 0.28
wechsler_viq Verbal IQ Wechsler 0.00 0.28
St i 1 tion ti
sst_ssrt op sigha’ reaction me SST 0.00 0.28
from integration method
t. M tion ti
sst_mean_go- ean reaction time over SST 0.00 0.28
_reaction_time all successful go-trials
Mean delay between
sst_mean_ssd Yy be SST 0.00 0.00
go- and stop-stimulus
sst_mean_go Average ratio of successful
- -8 verag SST 0.00 0.00

_success_rate

go-trials

Table 6.3: Summary of functional imaging variables and their meaning.

Name Meaning Atlas
Caudate_L Left caudate nucleus AAL
Caudate_R Right caudate nucleus AAL
Putamen_L Left putamen AAL
Putamen_R Right putamen AAL
Frontal_Inf_Oper_L Left inferior frontal. gyrus AAL
pars opercularis
Frontal_Inf_Oper_R Right inferior fronta'l gyrus  ,ap
pars opercularis
Frontal_Inf Tri L Left mferlo%' frontal'gyrus AAL
pars triangularis
Frontal_Inf Tri R usht inferior frontal gyrus )
pars triangularis
Frontal Inf Orb_ L Left inferior frs)nte'll gyrus AAL
pars orbitalis
Frontal_Inf_Orb_R Right inferior fr.on’fal BYTUS  AAL
pars orbitalis
Thalamus_R Right thalamus AAL
Thalamus_L Left thalamus AAL
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6.3.4 Prediction analysis

For prediction analysis, we rely on the methods described in Section 2.3.
As classifiers we use logistic regression (see Section 2.3.2), random forests
(see Section 2.3.2) and naive Bayes (see Section 2.3.3). We use K = 10 folds
for cross-validation and account for the confound gender using BSSCV (see
2.4.3) with B = 10 bootstraps. Class labels are not balanced. See Appendix
B.7 for an investigation using balanced class labels. For significance testing
of accuracies (see Section 2.4.4), we use nPerm = 1000. Multiple testing
is corrected via the Benjamini-Hochberg method at level « = 0.05 (see Sec-
tion 2.6). Furthermore, to ensure equal weighting of features, we z-score
each feature on the training folds and apply the resulting z-scoring to the
respective test folds.

6.3.5 Association analysis

For association analysis, we use our ReLL-method (see Section 2.5.2) with
number of repetitions nRep = 100. We correct for multiple testing via the
Benjamini-Hochberg method at level & = 0.05 (see Section 2.6). We per-
form the association analysis only on the existing (missing data is removed
instead of mean-imputed). Each feature is z-scored prior to association
analysis.

6.4 RESULTS

6.4.1  Prediction analysis

In the prediction analysis, we investigated the predictive power of cognitive
variables and fMRI data from the stop signal task for the discrimination of
heavy versus light drinkers.

COGNITIVE FEATURES  Figure 6.3 shows the prediction accuracies for the
cognitive features in the cross-sectional and longitudinal setting. In the
cross-sectional setting (i.e. using features assessed at approximate age 19 to
predict the drinking behaviour at the same age), all three classifiers yield
significant prediction accuracies. The highest accuracy is obtained by naive
Bayes (balAcc = 0.61). In the longitudinal setting (i.e. using features as-
sessed at approximate age 14 to predict the drinking behaviour at approx-
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imate age 19), all accuracies are lower, yet are still significant. The highest
accuracy is obtained by Random Forest (balAcc = 0.56).

Hence, according to the framework proposed in Section 2.1, we infer that
both the cross-sectional and the longitudinal setting provides generalisable
discrimination between heavy and light drinkers. We thus take a closer
look at both settings in the association analysis.

Note that, analogously to the analyses in Chapter 5, we also considered
the gender-separate case. We did not observe any large differences between
genders (see Appendix B.7 for further details).
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(a) Cross-sectional setting. (b) Longitudinal setting.

Figure 6.3: Balanced accuracies (yellow triangles) for prediction of heavy versus
light drinkers from cognitive features, based on three classifiers: logistic regression,
random forest and naive Bayes, and for (a) the cross-sectional and (b) the longitu-
dinal setting. Grey box plots (spanning the entire range) indicate prediction accu-
racies obtained by label permutation. The farther away the yellow triangles (true
accuracies) are from the grey box plots (permuted accuracies), the more likely it
will survive hypothesis testing and correction for multiple testing. Significant cases,
after controlling for FDR at « = 0.05, are indicated by a red star.

FUNCTIONAL IMAGING FEATURES Figures 6.4 and 6.5 show the predic-
tion accuracies based on functional imaging features from the stopSuccess-
stopFail and stopSuccess contrast, respectively. The prediction analysis
reveals that only the cross-sectional setting for the stopSuccess-stopFail
contrast yields significant (yet low) accuracies. The highest accuracy is ob-
tained by Random Forest (balAcc = 0.55).

Hence, according to the framework proposed in Section 2.1, we infer that
only the cross-sectional setting for the stopSuccess-stopFail contrast pro-
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vides generalisable discrimination between heavy and light drinkers. We
thus take a closer look at this setting in the association analysis.

Note that (analogously to the analyses in Chapter 5) we also considered
the gender-separate case. We did not observe any large differences between
genders (see Appendix B.7 for further details).
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(a) Cross-sectional setting. (b) Longitudinal setting.

Figure 6.4: Balanced accuracies for prediction of heavy versus light drinkers from
functional imaging features from the stopSuccess-stopFail contrast, based on three
classifiers: logistic regression, random forest and naive Bayes and for (a) the cross-
sectional and (b) the longitudinal setting. Grey box plots (spanning the entire range)
indicate prediction accuracies obtained by label permutation. The farther away the
yellow triangles (true accuracies) are from the grey box plots (permuted accuracies),
the more likely it will survive hypothesis testing and correction for multiple testing.
Significant cases, after controlling for FDR at o« = 0.05, are indicated by a red star.

6.4.2 Association analysis

In the association analysis, we examined predictive settings more closely.
More specifically, we evaluated the influence of single variables on the
drinking behaviour using the ReLL-method, see Section 2.5.2.

COGNITIVE FEATURES Figure 6.6 shows the association between cogni-
tive features and drinking behaviour in the cross-sectional and longitudinal
setting. In the cross-sectional setting, both the negative and positive to-
tal omissions in the AGN task are significantly negatively associated with
heavy drinking, i.e. heavy drinkers gave less false negative responses in
both negative and positive word categories. Moreover, heavy drinking is
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Figure 6.5: Balanced accuracies for prediction of heavy versus light drinkers from
functional imaging features from the stopSuccess contrast, based on three classifiers:
logistic regression, random forest and naive Bayes, and for (a) the cross-sectional
and (b) the longitudinal setting. Grey box plots (spanning the entire range) indicate
prediction accuracies obtained by label permutation. The farther away the yellow
triangles (true accuracies) are from the grey box plots (permuted accuracies), the
more likely it will survive hypothesis testing and correction for multiple testing.
Significant cases after controlling for FDR at « = 0.05 are indicated by a red star.

associated positively with the SSRT, meaning that heavy drinkers showed
a slower reaction to stop signal signs compared to light drinkers. Further,
both the mean SSD and the go-success-rate in the SST display a significant
negative association to heavy drinking, see Figure 6.6. This implies that
heavy drinkers were generally less successful in the SST.

In the longitudinal setting, only two features survive significance testing
and multiple testing correction, namely the negative and positive total omis-
sions in the AGN task. As in the cross-sectional setting, they are negatively
associated with heavy drinking.

FUNCTIONAL IMAGING FEATURES Figure 6.7 shows the association be-
tween drinking behaviour and activity of regions relevant for response in-
hibition in the stopSuccess-stopFail contrast, in the cross-sectional setting.
Only three features are estimated as non-zero and only the left and right
thalamus survive significance testing and correction for multiple testing.
Both of these features are associated negatively to heavy drinking, i.e. the
less activity specific to successful stopping a subject shows in the bilateral
thalamus, the more likely the subject is a heavy drinker.
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(b) Longitudinal setting.

Figure 6.6: Median parameter estimates from association analysis on cognitive fea-
tures using the ReLL-method. Non-zero estimates are obtained if the median of the
parameter estimates over 100 runs is non-zero. Significant cases after correction for
multiple testing are indicated by a red star. If the B for a score is negative, then this
means that heavy drinkers showed a smaller score compared to light drinkers (and
vice versa).
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Figure 6.7: Median parameter estimates from association analysis on functional
imaging features from the stopSuccess-stopFail contrast using the ReLL-method.
Non-zero estimates are obtained if the median of the parameter estimates over 100
runs is non-zero. Significant cases after correction for multiple testing are indicated
by a red star. If the 3 for a score is negative, then this means that heavy drinkers
showed a smaller score compared to light drinkers (and vice versa).

6.4.3 Further investigations

CUMULATIVE DRINKING BEHAVIOUR In an additional (post-hoc) investi-
gation, we explored the relationship between a cumulative drinking score
(cumulative drunkenness) and the cognitive features at FU2. For details on
how we computed the cumulative drinking score, see Chapter 4.

Figure 6.8 shows a the results of this exploration and reveals a similar
pattern as for the cross-sectional association analysis (see Figure 6.6): sig-
nificant negative relationship between the cumulative drunkenness score
and (i) negative total omissions and (ii) positive total omissions in the AGN
task and (iii) the go-success rate in the SST. Furthermore, we see a signif-
icant positive relationship between the cumulative drunkenness score and
the SSRT, again in line with the cross-sectional association analysis.
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Figure 6.8: Relationship of the cognitive features to a cumulative drinking score.
The plot shows coefficient estimates and confidence intervals from a linear regres-
sion analysis between the cumulative drunkenness score (target variable) and each
cognitive feature (explanatory variables), including gender as a covariate. Signifi-
cant estimates after correction for multiple testing are indicated by a red star.
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CORRELATION STRUCTURE In another analysis, we investigated the corre-
lation structure between the sets of variables investigated in this chapter,
namely:

(i) cognitive features and functional imaging features from the stopSuc-
cess contrast,

109

(ii) cognitive features and functional imaging features from the stopSuccess-

stopFail contrast,

For these sets of variables, we considered both the data from FU2 and the
data from BL. In order to account for potential site effects, we use site-
mean corrected functional imaging features. We controlled the FDR at level
o = 0.05. Figure 6.9 shows all the results.

The main observations are as follows:

(i) cognitive features and stopSuccess features:

o negative correlations between the SSRT and bilateral caudate nu-
cleus and putamen,

e contrast positive correlations between both go-reaction-time and
SSD and bilateral caudate nucleus, putamen, and thalamus,
(ii) cognitive features and stopSuccess-stopFail features:

e positive correlations between the go-success-rate in the SST and
bilateral thalamus,

o only for FU2 negative correlations between go-reaction-time, SSD
and various brain regions,

e no significant correlations between functional activity and SSRT.
Generally it is noticeable that the correlation structure for the stopSuccess

contrast looks quite different to the stopSuccess-stopFail contrast. Further-
more, BL and FUz2 correlation structures are overall quite consistent.
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Figure 6.9: Correlations between different sets of features with the cognitive
features at BL and FU2. Note that only significant (after FDR-correction
at level & = 0.05) are displayed.
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A CLOSER LOOK INTO THE sSRT Further, we took a closer look into the
correlates of the SSRT. Figures 6.10 and 6.12 show the correlation between
the stopSuccess contrast and the SSRT for all subjects, for BL and FU2, re-
spectively. Figures 6.11 and 6.13 show the same correlations, but separately
for light and heavy drinkers.

The bottom two plots in each Figure show the same correlations sepa-
rately for light and heavy drinkers. For FUz2 (i.e. Figure 6.12) we used the
usual phenotype, as constructed and described in Chapter 4. For BL (i.e.
Figure 6.10), we show in the bottom two plots again the results for the usual
phenotype, that means the separation in light and heavy drinkers assessed
at FU2. In addition, in the middle two plots, we show results separately for
drinking behaviour groups assessed at BL. As usual, significant cases after
correction for multiple testing are indicated by a red star.

In general, the results over all subjects (top plots) show significant neg-
ative correlations between the SSRT and the activity in successful stop tri-
als in almost all selected regions. This indicates that the longer the SSRT,
the less active these regions are during successful stop trials. Interestingly,
when looking at the correlations separately for light and heavy drinkers, it
becomes apparent that the significant correlations for all subjects are driven
exclusively by the light drinkers. For both BL (using the BL drinking be-
haviour grouping and the usual drinking behaviour phenotype from FU2)
and FU2 the correlations are much smaller and not significant anymore for
the heavy drinkers.
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Figure 6.10: Pearsons’s correlations between the SSRT and site-corrected imaging
features from the stopSuccess contrast, assessed at BL (approximate age of 14). Sig-
nificant estimates after correction for multiple testing are indicated by a red star.

Caudate_L ] * Caudate_L - [
Caudate_R - — * Caudate_R - O
Putamen_L - [ * Putamen_L -
Putamen_R [ * Putamen_R
Frontal_Inf_Oper_L - O Frontal_nf_Oper_L - O
Frontal_Inf_Oper_R [ Frontal_Inf_Oper_R O
Frontal_inf_Tri_L | O Frontal_Inf_Tri_L | O
Frontal_Inf_Tri_R [ * Frontal_Inf_Tri_R O
Frontal_Inf_Orb_L | . * Frontal_Inf_Orb_L | ]
Frontal_Inf_Orb_R ] * Frontal_Inf_Orb_R O
Thalamus_L | — * Thalamus_L | |
Thalamus_R - — * Thalamus_R - ]
r T T T 1 r T T T 1
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Pearson's correlation coeff. with SSRT Pearson's correlation coeff. with SSRT

(a) Light drinkers at BL (b) Heavy drinkers at BL
(N =796). (N =94).

Caudate_L — * Caudate_L 1
Caudate_R -| /] * Caudate_R -| 1
Putamen_L - [ * Putamen_L - [
Putamen R 1 * Putamen R —
Frontal_Inf_Oper_L i Frontal_Inf_Oper_L [
Frontal_Inf_Oper_R [ Frontal_Inf_Oper_R O
Frontal_inf_Tri_L | O Frontal_inf_Tri_L | [
Frontal_Inf_Tri R - O Frontal_Inf_Tri R - —
Frontal_Inf_Orb_L [ Frontal_Inf_Orb_L 1
Frontal_Inf_Orb_R / Frontal_Inf_Orb_R .
Thalamus_L | — Thalamus_L | O
Thalamus_R - — Thalamus_R - O
r T T T 1 r T T T 1
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Pearson's correlation coeff. with SSRT Pearson's correlation coeff. with SSRT

(c) Light drinkers at FU2 (d) Heavy drinkers at FU2
(N =497). (N =399).

Figure 6.11: Caption on next page.
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Figure 6.11: Pearson’s correlations between the SSRT and imaging features from
the stopSuccess contrast, all assessed at BL (approximate age of 14). Significant
estimates after correction for multiple testing are indicated by a red star. (a): Cor-
relations for BL light drinkers only; (b): Correlations for BL heavy drinkers only;
(0): Correlations for BL light drinkers only; (d): Correlations for FU2 heavy drinkers
only. For (a) and (b), we defined the light drinkers as subjects falling into the "light"
category of the "Frequency of drinking" variable, as described in Chapter 4 and de-
picted in Figure 4.1, and the heavy drinkers as the remaining subjects. Note that
the results look similar when choosing a different variable for the grouping. For (c)
and (d), the separation into light and heavy drinkers was performed according to
the usual drinking behaviour phenotype, as constructed and described in Chapter

4.
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Figure 6.12: Analogous to Figure 6.10, here for FU2.
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Figure 6.13: Analagous to Figure 6.11, here for FU2 and (a): Correlations for FU2
light drinkers only; (b): Correlations for FU2 heavy drinkers only.
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6.5 DISCUSSION

In this chapter, we explored the predictive and associative relationship of
functional imaging and cognitive variables to heavy drinking in a large
adolescent sample.

Our main findings are that heavy drinking at age 19 is significantly asso-
ciated with:

(i) decreased functional activation in the bilateral thalamus at age 19 (but
not age 14),

(if) decreased behavioural markers of inhibitory control, e.g. prolonged
SSRT and worse performance in the SST at age 19 (but not age 14),

(iif) reduced false positive reactions (omissions) in the AGN task both at
age 14 and age 19.

Interestingly, we also found that the SSRT scales inversely with activation
during successful stop trials only for light drinkers and not at all for heavy
drinkers. This effect appears consistently for ages 14 and 19.

COGNITIVE FEATURES  We found that direct cognitive markers of inhibitory
control can significantly predict drinking behaviour cross-sectionally but
not longitudinally.

Several inhibition markers from the SST at age 19 were significantly asso-
ciated with drinking behaviour at age 19. Specifically, subjects with a longer
SSRT, a shorter SSD (i.e. a worse task performance) and a lower go-success
rate were shown to have a higher chance of being heavy drinkers at age
19. Our results are in line with many studies that have found that impaired
inhibitory control is related to binge drinking in adolescence and to the risk
of later alcohol dependence (Ahmadi et al. 2013; Czapla et al. 2015; Henges
and Marczinski 2012; Nigg et al. 2006; Rubio et al. 2008).

Furthermore, a lower number of omission errors in negative and posi-
tive word categories of the AGN at both age 14 and 19 were associated
to heavy drinking at age 19. This appears rather surprising, since we ex-
pected a worse (and not better) task performance in heavy compared to
light drinkers. This finding is also not in line with literature. Ahmadi et al.
(2013) have for instance observed increased reaction times in heavy com-
pared to light college drinkers during a go/no-go task. Notably, most other
studies concentrate on the more natural marker of response inhibition in
go/no-go tasks, namely commission, i.e. false positive errors, and almost
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unanimously report increased commission errors in heavy drinkers and al-
coholics (Henges and Marczinski 2012; Noél et al. 2007; Petit et al. 2012);
note that Ahmadi et al. (2013) did not find group differences. Omission er-
rors have been associated to inattention, however, their exact interpretation
has been debated (Bezdjian et al. 2009; Kertzman et al. 2008). We specu-
late that the heavy drinking subjects may have generally responded more,
both to go and to no-go stimuli, hence making less omission errors but
thereby also more commission errors. However, we cannot make definite
conclusions due to the lack of direct measurement of commission errors.

Importantly, we observed no association between intelligence and drink-
ing behaviour. Thus, we assume the differences in inhibitory control be-
tween heavy and light drinkers do not stem from discrepancies in general
cognitive abilities.

Overall, we find that a relation between definite markers of response
inhibition and drinking behaviour are present cross-sectionally but not lon-
gitudinally. Further, the magnitude of impaired inhibitory control seems to
be correlated with cumulative drinking. Hence, our findings point in the
direction of poor response inhibition being more likely a consequence than
a direct cause of heavy drinking in adolescence and is thereby in line with
e.g. the findings of a prospective study (Goudriaan et al. 2011).

FUNCTIONAL IMAGING FEATURES We showed that functional activity of
19 year olds in the stopSuccess-stopFail contrast in areas relevant to re-
sponse inhibition were predictive of drinking behaviour at the same age
(cross-sectionally). Longitudinally, the same areas’ functional activity at age
14 was not predictive for drinking behaviour at age 19. The evaluation of
cross-sectional association between functional activity in single regions and
drinking behaviour revealed reduced activity of heavy drinkers in the bi-
lateral thalamus. Differences in the frontal-basal-ganglia network between
substance abusers and controls have been found before (Bednarski et al.
2012; Hu et al. 2015; Li et al. 2009), yet the thalamus was usually not in the
search space. The central role of the thalamus as a relay station between
different subcortical areas and the cerebral cortex is also played in the con-
text of response inhibition. It is postulated that during response inhibition,
the inferior frontal cortex sends a stopping command, indirectly resulting
in the inhibition of the thalamus, which then in turn inhibits thalamocorti-
cal projections (Lopez-Caneda et al. 2014). Diminished thalamic activity in
heavy drinkers may hence indicate a less efficient inhibition process.

Since the link between functional activity and drinking behaviour are
not present in the longitudinal setting, we suggest anew that they may be a
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consequence of heavy drinking. Furthermore, the altered functional activity
may even constitute the neural basis for the impaired response inhibition
that we have observed cross-sectionally in the cognitive features. Note that
Norman et al. (2011) have found reduced neural activity during response
inhibition to be related to future alcohol and other substance abuse, yet for
a much smaller sample size (N = 38).

SCALING OF THE sSRT  We have further found a significant inverse scaling
of the SSRT with functional activity during successful stopping across var-
ious regions, in agreement with a corpus of literature (Aron and Poldrack
2006; Li et al. 2006; Rubia et al. 2007; Whelan et al. 2012). An Important-
and to our knowledge novel — finding is that this inverse scaling is present
only for light drinkers and vanished completely for heavy drinkers. The
cited studies either did not focus on alcohol drinking behaviour or did not
consider the of correlation between functional activity and the SSRT sep-
arately for light and heavy drinkers. We speculate that this finding may
indicate that heavy drinkers encode the inhibition process less efficiently.
Furthermore, since the presence of the scaling of SSRT with functional ac-
tivity at age 14 is able to distinguish drinking behaviour at age 19, the
neural efficiency of response inhibition may even be an indirect risk factor
for a harmful alcohol drinking trajectory.

6.6 CHAPTER SUMMARY

The results from the analyses on the IMAGEN database tentatively indicate
impaired response inhibition in adolescence as a consequence of excessive
alcohol consumption, both on a neural and a behavioural level. Interest-
ingly, heavy drinkers seem to neurally encode response inhibition in a less
efficient manner than light drinkers.
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7 SUMMARY AND OUTLOOK

7.1 SUMMARY

Part I: Foundations

In the first part of the thesis, I introduced all the (old and new) methods
used in the subsequent chapters. I motivated the two-step procedure (pre-
diction analysis, then association analysis). If (and only if) a set of fea-
tures is declared significant by the prediction analysis, I would move on to
post-hoc association analysis. I then dived into prediction analysis, briefly
recapitulating well-established classifiers (logistic regression, naive Bayes,
random forests, support vector machines, RSLVQ). I commented on the dif-
ferent ways to assess the performance of a classifier (accuracy, specificity,
sensitivity), both theoretically and practically using cross-validation. I fur-
ther introduced a novel adapted version of cross-validation — bootstrapped-
stratified-cross-validation (BSSCV) — for the assessment of classifier perfor-
mance in the presence of confounders. Next, I took a closer look at associa-
tion analysis. I recapitulated the classical methods for association analysis,
namely t-tests and logistic regression. I then introduced a novel method for
association analysis — repeated logistic lasso (ReLL) — and showed in a small
simulation study that it can outperform logistic regression for association
analysis.

Part Il: The IMAGEN database

In the second part of the thesis, I gave an overview of the aims and design
of the IMAGEN study. I further introduced the cross-sectional and longitu-
dinal settings. I gave a detailed description of my contribution within the
IMAGEN framework. Moreover, I introduced the various alcohol-related
instruments administered in the IMAGEN study. I showed how a pairwise
clustering algorithm was used to build a comprehensive binary drinking be-
haviour phenotype (light and heavy drinkers). Furthermore, I validated the
new phenotype and showed that the constructed phenotype outperforms
all original drinking behaviour variables in terms of consistency.
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Part Ill: Patterns of alcohol abuse in adolescence

In the third part of the thesis, I applied the established methods on var-
ious neurobehavioural features from the IMAGEN study to differentiate
between drinking behaviour phenotypes. First, I focussed on grey matter
volume and psychosocial features. I showed that heavy drinking in adoles-
cence is associated with reduced grey matter volume across various corti-
cal and subcortical structures, especially in females. Moreover, I observed
that impulsivity and facets of novelty seeking are associated (also longitu-
dinally) to heavy drinking. Then, I focussed on functional imaging and
cognitive features. I showed that adolescent drinking is associated with var-
ious markers of impaired response inhibition, both neural and behavioural.

7.2 OUTLOOK

Theory

The ReLL method for association analysis introduced in Chapter 2 showed
promising performance in a simulation study and in the application to neu-
robehavioural data. It would be interesting to explore the propertiers of
the ReLL in more complex simulated settings. For instance, one could add
more confounders or analyse association based on multivariate features.
Furthermore, it may be possible to derive an approximate distribution of
the ReLL estimator, based on the work of Buja and Brown (2014) and Lock-
hart et al. (2014). Finding such an (approximate) distribution would make
the time-intense permutation testing obsolete.

Application

In this thesis, I have analysed a wide range of neurobehavioural features
with respect to their predictive and associative value for distinguishing light
from heavy drinkers. The rich IMAGEN study offers even more data that
was in parts studied in the framework of the e:Med project. An aspect that
was not yet covered but seems promising given my results is the detailed
study of connectivity networks from resting state fMRI data. While whole-
brain connectivity yielded only mediocre predictive power, the presented
differences in response inhibition may be rooted in altered functional con-
nectivity in e.g. the executive control network.
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SUPPLEMENTS FOR
CHAPTER 5

A1 SITE EFFECT

As mentioned in Section 5.3.4, a challenging aspect of the data is the correla-
tion of site and grey matter volume data and the imbalance of the drinking
behaviour and gender across sites.

For a more exact determination of the correlation structure between site
and brain imaging data we performed a classification task predicting the
eight sites based on grey matter volume data. We used all 116 regions
of interest from the AAL atlas (Tzourio-Mazoyer et al. 2002) and used the
RSLVQ as classifier (see Section 2.3.6 for more details)). The prediction
accuracy was estimated using 100 training-test scenarios. In each one of
these scenarios, a class-balanced subset of maximum size was randomly
selected and split into a class-balanced test set (10 % of the total size) and a
class-balanced training (9o % of the total size). The final prediction accuracy
was calculated as the mean of the 100 test accuracies.

The linear RSLVQ (using only one prototype per class) achieved a pre-
diction accuracy of 78.3 %. This means, the site could be predicted from
the grey matter volume data with a high accuracy. Due to these strong
interactions between grey matter volume data and site, one obtains mis-
leading accuracies if a model is trained on the grey matter volume data to
predict the drinking behaviour without accounting for the site, as explained
at length in Section 2.4.3.

As we have explained in Section 5.3.4, we approach the removal of in-
trinsic site information in the imaging data by subtracting the respective
site-mean of the grey matter volume data for each subject. We show that
this linear model suffices to remove most of the intrinsic site information.
The same setup as above was used on the site-corrected grey matter volume
data. The best achieving version of the RSLVQ was one with four proto-
types per class and it achieved an accuracy of 15.8 %. This is only slightly
higher than chance (12.5%). We hence assume that we have removed most
of the site information from the data.
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A.2 HISTOGRAMS OF FEATURES

A.2.1  Personality features

Figures A.1 and A.2 show the histograms per personality feature, for BL
and FU2, respectively.
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Figure A.1: Personality features for BL (approximate age of 14).
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Figure A.2: Personality features for FU2 (approximate age of 19).
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A.2.2 Life events features

Figures A.3 and A.4 show the histograms per life events feature, for BL and
FU2, respectively.
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Figure A.3: Life events features for BL (approximate age of 14).



150 300

0

700

0 300

700

0 300

150 300

0

100 200

0

100 200

0

A.2 HISTOGRAMS OF FEATURES

o
S
&
Q
I H | : | H H Il
H — N — [ |
r T T T r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
leq_accident_freq leq_autonomy_freq
M =
S
5]
’ H
©
[1 il o
T T = T 1 © f T T T 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
leq_deviance_freq leq_distress_freq
— 2
3
&
Q
O S0 0 H H
— 1
T T T T 1 ° f T T T 1
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
leq_relocation_freq leq_romantic_freq
o A
8 4
1l ] FWH HTH
an o - ] el [
r T T T T T 1 r T T T 1
-2.0 -1.5 -1.0 -0.5 0.0 05 1.0 0.0 0.5 1.0 15 2.0
leq_accident_valence leq_autonomy_valence
2
3
H H H i H
3 h
ﬂ ﬂ o 1 d [
r T T T T T r T T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
leq_deviance_valence leq_distress_valence
2
©
[ : 1 WH b
ul 0 - 1 o
T T T T T T T T T 1
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0

leq_relocation_valence

leq_romantic_valence

Figure A.4: Life events features for FU2 (approximate age of 19).
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A.2.3 Grey matter volume features

Figures A.5 and A.6 show the histograms per grey matter volume feature,
for BL and FU2, respectively.
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Figure A.5: Grey matter volume features for BL (approximate age of 14).



40 80

0

150

50

40 80

0

100

40

40 80

0

60 120

0

. )
&
2 g
o o
0.3 0.5 0.7 0.9 0.4 0.6 0.8
ACC_L ACC_R
] 3 2
&
b o
4 N S
- o o
03 04 05 06 07 040 050 060 0.70
Caudate_L Caudate_R
7 o
4 < o
s
4 < 2
- o o
0.5 0.7 0.9 11 0.6 0.8 1.0 1.2
Insula_Post_L Insula_Post_R
8 8
e <
o o
03 04 05 06 07 08 04 05 06 07 08
OFC_Inf_L OFC_Inf_R
I~
3 =)
e
=3
N =3
¥
o
T T 1 T 11 L B B B B B |
0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7
OFC_Mid_L OFC_Mid_R
=
® °
¥
o
¥
o o
0.2 0.4 0.6 0.8 03 04 05 06 07
Putamen_L Putamen_R

A.2 HISTOGRAMS OF FEATURES

05 06 07 0.8 09 1.0

Amygdala_L

0.6 0.8 1.0

Insula_Ant_L

020 030 040 050

MPFC_L

LLt11y

03 04 05 06 07 08

OFC_Med_L

(|

Tt T 1 T 1
0.2 0.4 0.6

OFC_Sup_L

02 03 04 05 06

Thalamus_L

40 80 0 40 80 0 40 80 0 40 80

0

100

40

LLiilg

0 40 80

05 06 07 08 09 1.0

Amygdala_R

0.5 0.7 0.9 1.1

Insula_Ant_R

MPFC_R

I |

Tt 1 1 T 11
03 0.5 0.7 0.9

OFC_Med_R

[ B L e |
02 03 04 05 06

OFC_Sup_R

03 04 05 06 07 08

Thalamus_R

Figure A.6: Grey matter volume features for FU2 (approximate age of 19).

129



130

| SUPPLEMENTS FOR CHAPTER 5

A.3 RESULTS FOR PREDICTION ANALYSIS

Tables A.1 and A.2 show more detailed results of the prediction analysis
in both the cross-sectional and the longitudinal setting for grey matter vol-
ume and psychosocial features, respectively. These are the values on which
Figures 5.2, 5.3, 5.4 and 5.5 are based.

Table A.1: Balanced accuracies for prediction of drinking behaviour at 19 with
grey matter volume features from age 19 (cross-sectional setting) and from age
14 (longitudinal setting) using three different classifiers, linear support vector ma-
chine (I-SVM), Naive Bayes (naiveBayes), and Robust Soft Learning Vector Quanti-
sation (RSLVQ). The classifiers use either all, only female or only male subjects. The
star indicates significance evaluated by label permutation and after correction for
multiple testing at level oc = 0.05.

Cross-sectional Longitudinal
all female  male all female male
1-SVM 0.566*  0.586* 0.515  0.482 0.531 0.517
naiveBayes 0.561*  0.575%  0.580* 0.495 0556  0.531
RSLVQ 0.561*  0.560* 0.537  0.504 0.526 0.496

Table A.2: Balanced accuracies for prediction of drinking behaviour at 19 with
psychosocial features from age 19 (cross-sectional setting) and from age 14
(longitudinal setting) using three different classifiers, linear support vector machine
(I-SVM), Naive Bayes (naiveBayes), and Robust Soft Learning Vector Quantisation
(RSLVQ). The classifiers use either all, only female or only male subjects. The star in-
dicates significance evaluated by label permutation and after correction for multiple
testing at level « = 0.05.

Cross-sectional Longitudinal
all female  male all female  male
1-SVM 0.694*  0.636* o0.704* 0.586* 0.565% 0.585%

naiveBayes  0.676*  0.616* 0.678* 0.593* o0.571* 0.595%
RSLVQ 0.687*  o0.601*  0.678* 0.558*  0.572* 0.534




A.4 RESULTS FOR ASSOCIATION ANALYSIS

Tables A.3, A.4 and A.5 show more detailed results for the association anal-
ysis, as displayed in Figures 5.6, 5.7, 5.9, 5.8 and 5.10.

A.4.1  Cross-sectional setting

Table A.3: Detailed results from the ReLL method 2.5.2 for association analysis on
grey matter volume features in the cross-sectional setting using Ny, = 100, as dis-
played in Figure 5.6. {3 is the median of Ny¢p coefficients of the respective feature,
resulting from N, repetitions of lasso-regularised logistic regression with the bi-
nary drinking behaviour label as dependent variable and the respective feature and
the confounds gender (for the case with all subjects) and site as independent vari-
ables. If the feature is survives lasso-regularisation in at least Ny¢p /2 repetitions,
then the median estimate will be non-zero. Significance testing is done according to

A.4 RESULTS FOR ASSOCIATION ANALYSIS \

2.5.3 and corrected for multiple testing at o« = 0.05.

all female male
B selected B selected B selected
(max: 100) (max: 100) (max: 100)
ACC_L -0.195* 100 -0.224* 100 -0.159 89
ACC_R -0.165* 100 -0.242* 100 0.000 13
Amygdala_L -0.158* 91 -0.253* 98 0.000 o
Amygdala_R 0.000 o 0.000 0 0.000 0
Caudate_L 0.000 4 0.000 o 0.000 o
Caudate_R 0.000 13 0.000 46 0.000 o
Insula_Ant_ L  -0.149* 100 0.000 43 -0.177 97
Insula_Ant_R -0.095 86 0.000 o -0.111 58
Insula_Post_L 0.000 [¢] 0.000 2 0.000 2
Insula_Post_R 0.000 o 0.000 17 0.000 16
MPFC_L -0.208% 100 -0.270* 100 -0.132 70
MPEC_R -0.135% 99 -0.192 96 0.000 5
OFC_Inf_L -0.106 79 -0.234* 100 0.000 o
OFC_Inf_R -0.145* 100 -0.141 81 0.000 43
OFC_Med_L -0.238* 100 -0.285* 100 -0.209* 99
OFC_Med_R -0.247* 100 -0.271* 100 -0.210* 99
OFC_Mid_L -0.139* 97 -0.147 64 0.000 34
OFC_Mid_R -0.167* 100 -0.207 98 0.000 29
OFC_Sup_L -0.170* 100 -0.237* 100 0.000 19
OFC_Sup_R -0.185%* 100 -0.209 99 -0.133 73
Putamen_L 0.000 o 0.000 38 0.000 33
Putamen_R 0.000 o 0.000 o 0.000 9
Thalamus_L -0.216* 100 -0.404* 100 0.000 o
Thalamus_R -0.211%* 100 -0.292* 100 0.000 40
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Table A.4: Detailed results from the ReLL method 2.5.2 for association analysis on
psychosocial features in the cross-sectional setting using Nyp = 100, as displayed
in Figures 5.7 and 5.9. f is the median of Ny, coefficients of the respective feature,
resulting from Ny¢p repetitions of lasso-regularised logistic regression with the bi-
nary drinking behaviour label as dependent variable and the respective feature and
the confounds gender (for the case with all subjects) and site as independent vari-
ables. If the feature is survives lasso-regularisation in at least Ny¢p, /2 repetitions,
then the median estimate will be non-zero. Significance testing is done according to
2.5.3 and corrected for multiple testing at o = 0.05.

all female male
B selected B selected B selected
(max: 100) (max: 100) (max: 100)

neo_neuroticism 0.000 o 0.000 2 0.000 1

neo_extraversion 0.513% 100 0.335% 100 0.659* 100
neo_openness 0.247* 100 0.142 85 0.348* 100
neo_agreeableness -0.177* 100 -0.178 89 -0.158 88
neo_conscientiousness -0.363* 100 -0.352* 100 -0.369* 100
tei_impulsivity 0.478* 100 0.309* 100 0.633* 100
tci_disorderliness 0.449* 100 0.205 100 0.674* 100
tci_extravagance 0.724* 100 0.515% 100 0.930* 100
tei_excitability 0.411* 100 0.304% 100 0.525% 100
surps_anxiety_sensitivity ~ 0.000 4 0.000 4 0.000 0

surps_hopelessness 0.000 o 0.000 24 0.000 40
surps_impulsivity 0.345* 100 0.271* 100 0.419* 100
surps_sensation_seeking 0.352* 100 0.336* 100 0.351% 100
leq_accident_freq 0.000 1 0.000 5 0.000 0

leq_accident_valence 0.000 0 0.000 0 -0.091 59
leq_autonomy_freq 0.223* 100 0.207* 100 0.221* 100
leq_autonomy_valence 0.144* 100 0.096 57 0.179* 100
leq_deviance_freq 0.420* 100 0.404* 100 0.411* 100
leq_deviance_valence 0.427* 100 0.487* 100 0.360* 100
leq_distress_freq 0.077 93 0.093 8o 0.000 o

leq_distress_valence 0.000 11 0.000 4 0.000 20
leq_relocation_freq 0.000 0 0.000 0 0.000 0

leq_relocation_valence 0.000 0 0.000 o 0.000 o)

leq_sexuality_freq 0.370* 100 0.380* 100 0.358* 100
leq_sexuality_valence 0.000 0 0.167* 100 0.000 9




A.4.2 Longitudinal setting
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Table A.5: Detailed results from the ReLL method 2.5.2 for association analysis on
psychosocial features in the longitudinal setting using Nv¢p = 100, as displayed in
Figures 5.8 and 5.10. B is the median of Nyep coefficients of the respective feature,
resulting from Ny}, repetitions of lasso-regularised logistic regression with the bi-
nary drinking behaviour label as dependent variable and the respective feature and
the confounds gender (for the case with all subjects) and site as independent vari-
ables. If the feature is survives lasso-regularisation in at least N;¢p /2 repetitions,
then the median estimate will be non-zero. Significance testing is done according to
2.5.3 and corrected for multiple testing at « = 0.05.

all female male
= selected = selected = selected
B (max: 100) b (max: 100) p (max: 100)
neo_neuroticism 0.000 o 0.000 1 0.000 o
neo_extraversion 0.449* 100 0.359* 100 0.531% 100
neo_openness 0.000 2 0.000 1 0.000 o
neo_agreeableness -0.130% 91 0.000 37 0.000 47
neo_conscientiousness -0.166* 100 0.000 24 -0.221 99
tei_impulsivity 0.454* 100 0.328* 100 0.621* 100
tci_disorderliness 0.470* 100 0.322% 100 0.637* 100
tci_extravagance 0.586* 100 0.480* 100 0.690* 100
tci_excitability 0.339% 100 0.215 93 0.564* 100
surps_anxiety_sensitivity ~ 0.000 31 0.000 o 0.000 34
surps_hopelessness 0.333% 100 0.272* 99 0.360* 100
surps_impulsivity 0.000 38 0.000 26 0.000 2
surps_sensation_seeking 0.215% 100 0.184 89 0.226 98
leq_accident_freq 0.000 2 -0.118 61 0.000 o
leq_accident_valence 0.000 ) 0.000 0 0.000 o
leq_autonomy_freq 0.000 0 0.000 35 0.150 97
leq_autonomy_valence 0.000 o 0.000 o 0.000 1
leq_deviance_freq 0.000 4 0.000 47 0.000 o
leq_deviance_valence 0.000 48 0.000 46 0.000 o
leq_distress_freq 0.000 0 0.000 0 0.000 2
leq_distress_valence 0.000 0 0.000 0 0.000 1
leq_relocation_freq 0.000 1 0.000 13 0.000 o
leq_relocation_valence 0.101 94 0.147 92 0.000 12
leq_sexuality_freq 0.000 29 0.000 24 0.000 1
leq_sexuality_valence 0.000 ) 0.000 1 0.000 o
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B.1 EXTRACTION AND MODELLING OF SSRT

B.1.1 Sample inhibition functions

Figure B.1 shows estimated inhibition functions (using piecewise polyno-
mial splines) of two different subjects. One example is a "good" example —
one where the inhibition function is increasing, as expected — and one is a
"bad" example — one where the inhibition function fluctuates.
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Figure B.1: Sample inhibition functions for two different subjects. SSD: stop signal
delay, in ms. SSR(SSD): probability of stopping for stop signal delay SSD, estimated
by relative frequency of successful stopping.
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B.1.2 Comparison of SSRT extraction methods

In Figure B.2 we show comparisons of two SSRT extraction methods de-
scribed in Section 6.3.1 — the mean method and the integration method. We
show the comparison both for BL and for FU2 data. Generally, the integra-
tion method produces slightly higher SSRTs, yet they are very correlated
(Person’s correlation for BL: p = 0.51, p-value < 10~13, for FU2: p = 0.76,
p-value < 10719).
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Figure B.2: Comparisons two methods (mean method and integration method) of
SSRT extraction. For the mean method we excluded negative SSRTs. Outliers were
removed according to the thresholding described in Section 6.3.2.
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B.1.3 Time-resolved SSRT

In Figure B.3 we show the average SSRT across subjects computed in a
time-resolved manner, i.e. for each time point and each subject we took the
100 trials around the time point to compute the SSRT with the integration
method (see Section 6.3.2 for details on the integration method). The dif-
ferences that were found in the SSRT cross-sectionally in the association
analysis (see Section 6.4.2) are present also in a time-resolved manner —
heavy drinkers seem to consistently show a longer SSRT compared to light
drinkers. This difference is not present for the longitudinal setting, i.e. for
the SSRTs at BL separated into light and heavy drinkers from FU2. This is
again consistent with the findings from Section 6.4.2. Note, however, that
here we do not account for the gender confound.
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Figure B.3: SSRT extracted by the integration method, time-resolved for the length
of the experiment with 95% confidence intervals. For each time point and each sub-
ject we took the 100 trials around the time point to compute the SSRT. We further-
more depict the SSRTs separately for the light and heavy drinkers (where drinking
behaviour is as usual assessed at FUz2, i.e. at approximate age 19).
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B.2 PREPROCESSING OF FUNCTIONAL IMAGING DATA

B.2.1 Custom EPI template

A set of 240 randomly-selected subjects (30 for each of the eight acquisi-
tion sites) EPI sequences for two protocols (SST and Monetary Incetive De-
lay (MID), i.e. one from each session) were spatially-realigned, and their
temporal-mean image were rigidly co-registered to their respective anatom-
ical image. Those anatomical images were warped to the MNI space using
the SPM8 non-linear normalisation algorithm, and the corresponding trans-
formations parameters were applied on the mean-EPI images. From those
480 MNI-warped mean EPI images, a simple xor-based metric is computed
to quantify the overlap quality between individual EPI masks and the MINI
mask. Using this metric we discarded 17 % outliers, and the remaining 400
mean-images are averaged, then smoothed with a 5mm FWHM (full-width
at half maximum) Gaussian kernel. The final template image is 53 x 63 x 46
voxels, with 3mm x 3mm x 3mm voxel resolution.

B.2.2 Quality control of imaging data

The following was performed centrally by the IMAGEN consortium Schu-
mann et al. 2010:

In order to detect and remove blatant outliers, an automatic procedure
has been used. In this context, outliers refers mainly to data with obvious
problem, such as missing values or heavy misregistration, but also subject
maps which exhibit largely disparate activations profile for expected con-
trasts, which usually reflects task behavioural misdoing. Those had been
applied blindly database-wide, and is therefore not biased to traits of inter-
est of the current study.

First, at the time series level, a mean-square based metric identifies spikes
as specific slice- and time-limited burst, and those are corrected for us-
ing temporal linear interpolation. Second, following the SPM realignment
procedure, another metric flags remaining time-points where the volume
mean-square difference to the (robust) average raises above a threshold pre-
calibrated on 180 random subjects, and the subject data is discarded if more
than one such bad volume occurs per minute.

At the activations maps level, an automatic procedure ranks the maps
which departs unreasonably from the group.

The procedure rely on a distance metric from each individual activation
profile to the average one, computed as follows. In MNI space, a set of
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Region of Interest (ROI) is defined based either on anatomical or functional
knowledge for the relevant contrast, and every subject’s average effect over
each of those ROI is gathered. Then X p resulting matrix, where n is the
number of subjects and p is the number of ROIs, is used to estimate to
p * p covariance matrix of the ROIs signal accross the subjects. To improve
the robustness of the covariance measurement, the 0.5 % upper and lowest
values had been trimmed out each component before the estimation; Ad-
ditionally, the covariance matrix is inverted using an Eigen-decomposition
for which the 25 % least informative component are nullified. This allows
to further compute the Mahalanobis distance of every subjects to the group
mean. As it had been checked using subgroups that the results does not
depend much on the group size anymore after a certain size, the number
of subjects involved to estimate to metric has been fixed to 1000. The ability
to extract this multivariate, Mahalanobis distance from every subject to the
fixed group average allows to quickly compute their score and compare it
to a relevant non-parametric threshold, to flag them as outliers. A visual
checking did actually confirm that the more extreme scores corresponds to
obvious artefacts.
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B.3 HISTOGRAMS OF FEATURES

B.3.1 Cognitive features

Figures B.4 and B.5 show the histograms per feature, for BL and FU2,
respectively. Outliers for the SST are already removed, according to the
thresholding introduced in Section 6.3.1.
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Figure B.4: Cognitive features for BL (approximate age of 14).
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Figure B.5: Cognitive features for FU2 (approximate age of 19).
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B.3.2 Functional features

Figures B.6 and B.7 show the histograms per feature of the functional imag-
ing features from the stopSuccess contrast, for BL and FU2, respectively.
Figures B.8 and B.g show the histograms per feature of the functional imag-
ing features from the stopSuccess-stopFail contrast, for BL and FU2, re-
spectively. Outliers for the SST are removed, according to the thresholding
introduced in Section 6.3.1.
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Figure B.6: Functional imaging features from the stopSuccess contrast for BL (ap-
proximate age of 14).
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B.4 IMPUTATION INVESTIGATION

Tables B.1 and B.2 show the prediction accuracies obtained for different
imputation methods with the same parameters as described in Section 6.3.4,
for the cross-sectional and longitudinal setting, respectively. Note that the
results for mean imputation are exactly the results shown in Figure 6.3.
Note that the different imputation methods produce very similar predic-
tion accuracies. We hence opted for the simplest approach — mean imputa-

tion — in our main analyses.

Table B.1: Balanced accuracies for prediction of drinking behaviour at 19 with cog-
nitive features from the same age (cross-sectional setting) for different imputation
schemes (see Section 2.2.2 for a brief description); mean: mean imputation, median:
median imputation, sample: sample imputation, k-NN: k-nearest neighbour impu-
tation. linReg: imputation by deterministic linear regression, rF: random forest
imputation; Logistic: logistic regression classifier, Random Forest: random forest
classifier, naive Bayes: naive Bayes classifier.

Imputation method  Logistic = Random Forest naive Bayes
mean 0.5823 0.6081 0.6087
median 0.5749 0.6095 0.6055
sample 0.5892 0.5953 0.5996
3-NN 0.6019 0.6010 0.6117
5-NN 0.6069 0.6171 0.6123
10-NN 0.6199 0.6189 0.6169
linReg 0.5884 0.5975 0.6120
rF 0.5825 0.5804 0.5982
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Table B.2: Balanced accuracies for prediction of drinking behaviour at 19 with cog-
nitive features from age 14 (longitudinal setting) for different imputation schemes
(see Section 2.2.2 for a brief description); mean: mean imputation, median: median
imputation, sample: sample imputation, k-NN: k-nearest neighbour imputation.
linReg: imputation by deterministic linear regression, rF: random forest imputa-
tion; Logistic: logistic regression classifier, Random Forest: random forest classifier,
naive Bayes: naive Bayes classifier.

Imputation method  Logistic = Random Forest naive Bayes

mean 0.5518 0.5642 0.5526
median 0.5526 0.5652 0.5531
sample 0.5609 0.5412 0.5493
3-NN 0.5604 0.5453 0.5528
5-NN 0.5578 0.5507 0.5468
10-NN 0.5565 0.5639 0.5473
linReg 0.5492 0.5567 0.5498

rF 0.5521 0.5566 0.5500
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B.5 INVESTIGATION ON COMPLETE DATA

Table B.3 shows the prediction accuracies on cognitive data in the cross-
sectional and longitudinal setting using mean-imputed data and subsetting
on subjects for which there are no missing values. The mean-imputed cases
correspond exactly to the accuracies in the first lines of Tables B.2 and B.1
and also to the ones shown in Figure 6.3.

Table B.3: Balanced accuracies for prediction of drinking behaviour at 19 with cog-
nitive features from age 19 (cross-sectional setting) and from age 14 (longitudinal
setting) using complete data, i.e. only using subjects with no missing values and for
mean imputed data; N: sample size, Logistic: logistic regression classifier, Random
Forest: random forest classifier, naive Bayes: naive Bayes classifier.

Setting Data N Logistic Random Forest  naive Bayes
cross-sectional ~ complete 481 0.6144 0.5878 0.6095
cross-sectional ~mean-imputed 723  0.5823 0.6068 0.6087
longitudinal complete 735  0.5488 0.5582 0.5692

longitudinal mean-imputed 938  0.5518 0.5642 0.5526
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B.O INVESTIGATION OF OTHER FUNCTIONAL FEA-
TURE EXTRACTION METHODS

In addition to using the mean value per region of interest for the analy-
sis of functional data from the SST, we performed comparisons to another
summary measure. Specifically, we followed the recommendations given
in Tong et al. 2016 to use single value summary measures representing val-
ues from the top most-activated voxels within a region of interest. Tong
et al. 2016 show that these types of measures are more powerful at detect-
ing group differences between e.g. patients and controls. We hence use the
mean value from the top 10 % voxels within one region of interest.

Table B.4 shows the results from prediction analysis on both the stopSuccess-
stopFail and the stopSsuccess contrast, in the cross-sectional and longitudi-
nal setting, for the usual (mean) measure and the new measures. Prediction
accuracies are very similar.

Table B.4: Balanced accuracies for prediction of drinking behaviour at 19 with
functional imaging features from age 19 (cross-sectional setting) an from age 14
(longitudinal setting) for two different summary measure. Mean: mean of all vox-
els within each of the 12 regions of interest described in Section 6.3.2, top10%: mean
of top 10 % of voxels within each of the 12 regions of interest. Logistic: logistic re-
gression classifier, Random Forest: random forest classifier, naive Bayes: naive Bayes
classifier.

Setting Summary Data Logistic Random  Naive

measure Forest Bayes
cross-sectional mean stopSuccess-stopFail  0.5364 0.5510 0.5341
cross-sectional  top10% stopSuccess-stopFail ~ 0.5321 0.5604 0.5378
cross-sectional ~ mean stopSuccess 0.5109 0.5022 0.5273
cross-sectional  top10% stopSuccess 0.5034 0.5436 0.5343
longitudinal mean stopSuccess-stopFail ~ 0.5149 0.5050 0.5001
longitudinal top10% stopSuccess-stopFail  0.5164 0.5057 0.4870
longitudinal mean stopSuccess 0.5119 0.5044 0.4854

longitudinal top10% stopSuccess 0.5042 0.4851 0.4986
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B.7 INVESTIGATION OF GENDER DIFFERENCES

We investigated the predictive power of cognitive and functional imaging
features, separately for genders. Tables B.5, B.6 and B.7 show the balanced
accuracies for prediction of drinking behaviour at 19 with features from age
19 (cross-sectional setting) and age 14 (longitudinal setting). All accuracies
are very similar. Note that the slight differences of the scenarios with all
subjects compared to the results presented in Section 6.4.1 are due to the
fact that we additionally balanced for label here. A balanced label is impor-
tant for the gender-separate scenarios, since otherwise the classes are too
imbalanced.

Table B.5: Balanced accuracies for prediction of drinking behaviour at 19 with
functional imaging features from age 19 (cross-sectional setting) an from age 14
(longitudinal setting) from cognitive features for all subjects and for each gender
separately. For all scenarios, label is balanced. For the scenario with both genders,
we further balance for gender. N: sample size, Logistic: logistic regression classifier,
Random Forest: random forest classifier, naive Bayes: naive Bayes classifier.

Subjects  Setting N Logistic Random  Naive

Forest Bayes
all cross-sectional 723 0.5779 0.5979 0.6044
female cross-sectional 381  0.5571 0.5608 0.5688
male cross-sectional 342  0.5779 0.5979 0.6044
all longitudinal 938  0.5561 0.5589 0.5508

female longitudinal 498  0.5622 0.5528 0.5575
male longitudinal 440  0.5508 0.5144 0.5425
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Table B.6: Balanced accuracies for prediction of drinking behaviour at 19 with
functional imaging features from age 19 (cross-sectional setting) an from age 14
(longitudinal setting) from functional imaging features from stopSuccess-stopFail
contrast for all subjects and for each gender separately. For all scenarios, label is
balanced. For the scenario with both genders, we further balance for gender. N:
sample size, Logistic: logistic regression classifier, Random Forest: random forest
classifier, naive Bayes: naive Bayes classifier.

Random  Naive

Subjects  Setting N Logistic Forest Bayes
all cross-sectional 873  0.5316 0.5546 0.5341
female cross-sectional 450  0.5207 0.5629 0.5643
male cross-sectional 423  0.5356 0.5465 0.5441
all longitudinal 943  0.5050 0.5067 0.5055
female longitudinal 501  0.4856 0.4738 0.4875
male longitudinal 442  0.5031 0.5264 0.4861

Table B.7: Balanced accuracies for prediction of drinking behaviour at 19 with
functional imaging features from age 19 (cross-sectional setting) an from age 14
(longitudinal setting) from functional imaging features from stopSuccess contrast
for all subjects and for each gender separately. For all scenarios, label is balanced.
For the scenario with both genders, we further balance for gender. N: sample size,
Logistic: logistic regression classifier, Random Forest: random forest classifier, naive
Bayes: naive Bayes classifier.

Random  Naive

Subjects  Setting N Logistic Forest Bayes
all cross-sectional 873  0.4923 0.4975 0.5146
female cross-sectional 450  0.5039 0.5482 0.5246
male cross-sectional 423  0.5282 0.4679 0.5121
all longitudinal 944  0.5117 0.4955 0.4769
female longitudinal 501  0.4822 0.4900 0.4819

male longitudinal 443 05111 0.5039 0.4997
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B.8 RESULTS FOR ASSOCIATION ANALYSIS

We show in Tables B.8, B.g and B.10 more detailed results for the association
analysis performed on cognitive and functional imaging features in both
cross-sectional and longitudinal settings. Note that in Figures 6.6 and 6.7
we have plotted the median values from these tables.

B.8.1 Cross-sectional setting

Table B.8: Detailed results from the ReLL method (see Section2.5.2) for association
analysis on cognitive features in the cross-sectional setting using Nyep = 100, as
displayed in Figure 6.6. Mean (median) is the mean (median) of Ny}, coefficients of
the respective feature, resulting from N}, repetitions of lasso-regularised logistic
regression with the binary drinking behaviour label as dependent variable and the
respective feature and the confound gender as independent variable. If the feature
is survives lasso-regularisation in at least Ny /2 repetitions, then the median esti-
mate will be non-zero. Significance testing is done according to Section 2.5.3 and
corrected for multiple testing at « = 0.05. N denotes the number of non-missing
(see Table 6.1) and non-outlying (see Section 6.3.1) subjects for the respective feature
and hence the number of subjects used for association analysis for the feature.

. Selected C e
Name of feature N mean 3 median 3 Significance
(max: 100)
agn_mean_correct
. 719  0.0005 0.0000 1 no
_latency_negative
agn_mean_correct
» 720  0.0000 0.0000 0 no
_latency_positive
agn_total_omissions o 0.4996 0.5080 100 os
_negative 504 -499 -5 y
agn_total_omissions on 04710 04740 100 os
_positive 504 -37 -374 y
wechsler_piq 721 0.0000 0.0000 0 no
wechsler_viq 721 0.0000 0.0000 0 no
sst_ssrt 695  0.1747 0.1750 100 yes
sst_mean_go
- -5 695 -0.0182 0.0000 23 no

_reaction_time
sst_mean_ssd 695  -0.1750 -0.1770 99 yes
sst_mean_go

success. rate 695 -0.2659 -0.2690 100 yes
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Table B.9: Detailed results from the ReLL method (see Section 2.5.2) for associa-
tion analysis on functional imaging features from the stopSuccess-stopFail con-
trast in the cross-sectional setting using Nye¢p = 100, as displayed in Figure 6.7.
Mean (median) is the mean (median) of Ny¢p coefficients of the respective feature,
resulting from Ny}, repetitions of lasso-regularised logistic regression with the bi-
nary drinking behaviour label as dependent variable and the respective feature and
the confounds gender and site as independent variables. If the feature is survives
lasso-regularisation in at least Ny /2 repetitions, then the median estimate will be
non-zero. Significance testing is done according to Section 2.5.3 and corrected for
multiple testing at « = 0.05. N denotes the number of non-missing (see Table 6.1)
and non-outlying (see Section 6.3.1) subjects for the respective feature and hence the
number of subjects used for association analysis for the feature.

Name of feature N mean 3 median 3 Selected Significance
(max: 100)
Caudate_L 873  -0.0103 0.0000 22 no
Caudate_R 873  -0.0300 0.0000 48 no
Putamen_L 873  -0.0167 0.0000 27 no
Putamen_R 873  -0.0768 -0.0082 87 no
Frontal_Inf Oper_L 873  0.0000 0.0000 0 no
Frontal_Inf Oper_ R 873  0.0009 0.0000 3 no
Frontal_Inf_Tri_L 873  0.0000 0.0000 o no
Frontal_Inf_Tri_R 873  0.0000 0.0000 o] no
Frontal_Inf Orb_L 873  0.0068 0.0000 14 no
Frontal Inf Orb_R 873  0.0010 0.0000 4 no
Thalamus_L 873  -0.1598 -0.1598 100 yes

Thalamus_R 873  -0.1474 -0.1474 100 yes
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B.8.2 Longitudinal setting

Table B.10: Detailed results from the ReLL method (see Section 2.5.2) for associa-
tion analysis on cognitive features in the longitudinal setting using Nyep = 100, as
displayed in Figure 6.6. Mean (median) is the mean (median) of Ny, coefficients of
the respective feature, resulting from Ny¢p repetitions of lasso-regularised logistic
regression with the binary drinking behaviour label as dependent variable and the
respective feature and the confound gender as independent variable. If the feature
is survives lasso-regularisation in at least Ny¢p /2 repetitions, then the median esti-
mate will be non-zero. Significance testing is done according to Section 2.5.3 and
corrected for multiple testing at « = 0.05. N denotes the number of non-missing
(see Table 6.1) and non-outlying (see Section 6.3.1) subjects for the respective feature
and hence the number of subjects used for association analysis for the feature.

Selected

Name of feature N mean 3 median (max: 100) Significance
agn_mean_corrgc t 814 -0.1119 -0.1200 93 no
_latency_negative
agn_mean_correct
" latency_positive 816 0.0823 0.1040 79 no
total issi
agh_tota’_omissions 835 -0.3173 -0.3170 100 yes
_negative
total issi
agill:_)oc;i?i;:mlssmns 835 -0.3093 -0.3090 100 yes
wechsler_piq 936  0.0000 0.0000 0 no
wechsler_viq 936  0.0011 0.0000 2 no
sst_ssrt 907  0.0000 0.0000 ) no
t
sstmean_go 907  -0.0094 0.0000 15 no

_reaction_time
sst_mean_ssd 907  -0.1197 -0.1260 95 no
sst_mean_go

0 -0.00. -0.000 8 no
_success_rate 907 47
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