
mathematics

Article

Weighted Total Least Squares (WTLS) Solutions for
Straight Line Fitting to 3D Point Data

Georgios Malissiovas 1,* , Frank Neitzel 1 , Sven Weisbrich 1 and Svetozar Petrovic 1,2

1 Institute of Geodesy and Geoinformation Science, Technische Universität Berlin, Strasse des 17. Juni 135,
10623 Berlin, Germany; frank.neitzel@tu-berlin.de (F.N.); s.weisbrich@tu-berlin.de (S.W.);
svetozar.petrovic@campus.tu-berlin.de (S.P.)

2 GFZ German Research Centre for Geosciences, Section 1.2: Global Geomonitoring and Gravity Field,
Telegrafenberg, 14473 Potsdam, Germany

* Correspondence: georgios.malissiovas@tu-berlin.de

Received: 14 July 2020; Accepted: 25 August 2020; Published: 29 August 2020
����������
�������

Abstract: In this contribution the fitting of a straight line to 3D point data is considered, with Cartesian
coordinates xi, yi, zi as observations subject to random errors. A direct solution for the case of equally
weighted and uncorrelated coordinate components was already presented almost forty years ago.
For more general weighting cases, iterative algorithms, e.g., by means of an iteratively linearized
Gauss–Helmert (GH) model, have been proposed in the literature. In this investigation, a new direct
solution for the case of pointwise weights is derived. In the terminology of total least squares (TLS),
this solution is a direct weighted total least squares (WTLS) approach. For the most general weighting
case, considering a full dispersion matrix of the observations that can even be singular to some extent,
a new iterative solution based on the ordinary iteration method is developed. The latter is a new
iterative WTLS algorithm, since no linearization of the problem by Taylor series is performed at any
step. Using a numerical example it is demonstrated how the newly developed WTLS approaches
can be applied for 3D straight line fitting considering different weighting cases. The solutions are
compared with results from the literature and with those obtained from an iteratively linearized
GH model.

Keywords: 3D straight line fitting; total least squares (TLS); weighted total least squares (WTLS);
nonlinear least squares adjustment; direct solution; singular dispersion matrix; laser scanning data

1. Introduction

Modern geodetic instruments, such as terrestrial laser scanners, provide the user directly with
3D coordinates in a Cartesian coordinate system. However, in most cases these 3D point data are not
the final result. For an analysis of the recorded data or for a representation using computer-aided design
(CAD), a line, curve or surface approximation with a continuous mathematical function is required.

In this contribution the fitting of a spatial straight line is discussed considering the coordinate
components xi, yi, zi of each point Pi as observations subject to random errors, which results in
a nonlinear adjustment problem. An elegant direct least squares solution for the case of equally
weighted and uncorrelated observations has already been presented in 1982 by Jovičić et al. [1].
Unfortunately, this article was very rarely cited in subsequent publications, which is probably due
to the fact that it was written in Croatian language. Similar least squares solutions, direct as well,
have been published by Kahn [2] and Drixler ([3], pp. 46–47) some years later. In these contributions,
it was shown that the problem of fitting a straight line to 3D point data can be transformed into an
eigenvalue problem. An iterative least squares solution for fitting a straight line to equally weighted
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and uncorrelated 3D points has been presented by Späth [4], by minimizing the sum of squared
orthogonal distances of the observed points to the requested straight line.

For more general weighting schemes iterative least squares solutions have been presented
by Kupferer [5] and Snow and Schaffrin [6]. In both contributions various nonlinear functional
models were introduced and tested and the Gauss-Newton approach has been employed for
an iterative least squares solution, which involves the linearization of the functional model
to solve the adjustment problem within the Gauss–Markov (GM) or the Gauss–Helmert (GH)
models. The linearization of originally nonlinear functional models is a very popular approach
in adjustment calculation, where the solution is then determined by iteratively linearized GM or GH
models, see e.g., the textbooks by Ghilani [7], Niemeier [8] or Perovic [9]. Pitfalls to be avoided in
the iterative adjustment of nonlinear problems have been pointed out by Pope [10] and Lenzmann
and Lenzmann [11].

Fitting a straight line to 3D point data can also be considered as an adjustment problem of
type total least squares (TLS) for an errors-in-variables (EIV) model, as already pointed out by
Snow and Schaffrin [6]. For some weighting cases, problems expressed within the EIV model can
have a direct solution using singular value decomposition (SVD). This solution is known under
the name Total Least Squares (TLS) and has been firstly proposed by Golub and Van Loan [12],
Van Huffel and Vandewalle [13] or Van Huffel and Vandewalle ([14], p. 33 ff.). The TLS solution is
obtained by computing the roots of a polynomial, i.e., by solving the characteristic equation of the
eigenvalues, which is identical in the case of fitting a straight line to 3D point data to the solutions
of Jovičić et al. [1], Kahn [2] and Drixler ([3], pp. 46–47). This is something that has been observed
by Malissiovas et al. [15], where a relationship has been presented between TLS and the direct
least squares solution of the same adjustment problem, while postulating uncorrelated and equally
weighted observations.

To involve more general weight matrices in the adjustment procedure, iterative algorithms have
been presented in the TLS literature without linearizing the underlying problem by Taylor series at any
step of the solution process. These are algorithmic approaches known as weighted total least squares
(WTLS), presented e.g., by Schaffrin and Wieser [16], Shen et al. [17] or Amiri and Jazaeri [18]. A good
overview of such algorithms, as well as alternative solution strategies can be found in the dissertation
theses of Snow [19] and Malissiovas [20]. An attempt to find a WTLS solution for straight line fitting to
3D point data was made by Guo et al. [21].

To avoid confusion, it is to clarify that the terms TLS and WTLS refer to algorithmic approaches
for obtaining a least squares solution, which is either direct or iterative but without linearizing the
problem by Taylor series at any step. This follows the statement of Snow ([19], p. 7), that “the terms
total least-squares (TLS) and TLS solution [. . . ] will mean the least-squares solution within the EIV
model without linearization”. Of course, a solution within the GH model is more general in the sense
that it can be utilized to solve any nonlinear adjustment problem, while TLS and WTLS algorithms can
treat only a certain class of nonlinear adjustment problems. This has been firstly discussed by Neitzel
and Petrovic [22] and Neitzel [23], who showed that the TLS estimate within an EIV model can be
identified as a special case of the method of least squares within an iteratively linearized GH model.

To the extent of our knowledge, a WTLS algorithm for fitting a straight line to 3D point data has
not been presented yet. Therefore, in this study we derive two novel WTLS algorithms for the discussed
adjustment problem considering two different cases of stochastic models:

(i) pointwise weights, i.e., coordinate components with same precision for each point and no
correlations between them,

(ii) general weights, i.e., correlated coordinate components of individual precision including singular
dispersion matrices.

The adjustment problem resulting from case (i) can still be solved directly, i.e., a direct WTLS
solution, presented in Section 2.1 of this paper. For case (ii) an iterative solution without linearizing
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the problem by Taylor series is derived in Section 2.2, i.e., an iterative WTLS solution. Both solutions
are based on the work of Malissiovas [20], where similar algorithms have been presented for the
solution of other typical geodetic tasks, such as straight line fitting to 2D point data, plane fitting to 3D
point data and 2D similarity coordinate transformation. The WTLS solution for straight line fitting
to 3D point data will be derived from a geodetic point of view by means of introducing residuals for
all observations, formulating appropriate condition and constraint equations, setting up and solving
the resulting normal equation systems.

2. Straight Line Fitting to 3D Point Data

A straight line in 3D space can be expressed by

y− y0

a
=

x− x0

b
=

z− z0

c
, (1)

as explained e.g., in the handbook of mathematics by Bronhstein et al. ([24], p. 217). This equation
defines a line that passes through a point with coordinates x0, y0 and z0 and is parallel to a direction
vector with components a, b and c. Since the number of unknown parameters is six, two additional
constraints between the unknown parameters have to be taken into account for a solution, as Snow
and Schaffrin [6] have clearly explained. Proper constraints will be selected at a later point of
the derivations.

Considering an overdetermined configuration for which we want to obtain a least squares solution,
we introduce for all points Pi residuals vxi, vyi, vzi for the observations xi, yi, zi assuming that they are
normally distributed with v ∼ (0, σ2

0 QLL). Here the 1× 3n vector v contains the residuals vxi, vyi, vzi,
QLL is the 3n× 3n corresponding cofactor matrix and σ2

0 the theoretical variance factor. Based on (1),
the nonlinear conditions equations

a(xi + vxi − x0)− b(yi + vyi − y0) = 0,

b(zi + vzi − z0)− c(xi + vxi − x0) = 0,

c(yi + vyi − y0)− a(zi + vzi − z0) = 0,

(2)

can be formulated for each point Pi, with i = 1, . . . , n and n being the number of observed points.
A functional model for this problem can be expressed by two of these three nonlinear condition
equations per observed point. Using all three condition equations for solving the problem would lead
to a singular normal matrix due to linearly dependent normal equations.

2.1. Direct Total Least Squares Solution for Equally Weighted and Uncorrelated Observations

Considering all coordinate components xi, yi, zi for all points Pi as equally weighted and
uncorrelated observations with

pyi = pxi = pzi = 1 ∀i, (3)

a least squares solution can be derived by minimizing the objective function

Ω =
n

∑
i=1

v2
xi
+ v2

yi
+ v2

zi
→ min. (4)

A direct least squares solution of this problem, respectively a TLS solution, has been presented by
Malissiovas et al. [15] and Malissiovas [20]. According to these investigations, equally weighted
residuals correspond to the normal distances

D2
i = v2

xi
+ v2

yi
+ v2

zi
, (5)
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as deviation measures between the observed 3D point cloud and the straight line to be computed.
Thus, the objective function can be written equivalently as

Ω =
n

∑
i=1

v2
xi
+ v2

yi
+ v2

zi
=

n

∑
i=1

D2
i → min. (6)

An expression for the squared normal distances

D2 =
[a(x− x0)− b(y− y0)]

2 + [b(z− z0)− c(x− x0)]
2 + [c(y− y0)− a(z− z0)]

2

a2 + b2 + c2 , (7)

can be found in the handbook of Bronhstein et al. ([24], p. 218).
An appropriate parameterization of the problem involves the substitution of the unknown

parameters y0, x0 and z0 with the coordinates of the center of mass of the observed 3D point data.
A proof for this parameter replacement has been given by Jovičić et al. [1] and concerns only the case of
equally weighted and uncorrelated observations. A solution for the line parameters can be computed
by minimizing the objective function (6), under the constraint

a2 + b2 + c2 = 1, (8)

or by searching for stationary points of the Lagrange function

K =
n

∑
i=1

D2
i − k(a2 + b2 + c2 − 1), (9)

with k denoting the Lagrange multiplier. The line parameters can be computed directly from the normal
equations, either by solving a characteristic cubic equation or an eigenvalue problem. A detailed
explanation of this approach was given by Malissiovas ([20], p. 74 ff.). In the following subsections
we will give up the restriction of equally weighted and uncorrelated coordinate components and derive
least squares solutions considering more general weighting schemes for the observations.

2.2. Direct Weighted Total Least Squares Solution

In this case we consider the coordinate components xi, yi, zi of each point Pi to be uncorrelated
and of equal precision with

σyi = σxi = σzi = σi ∀i, (10)

yielding the corresponding (pointwise) weights

pi =
1
σ2

i
∀i. (11)

A least squares solution of the problem can be found by minimizing the objective function

Ω =
n

∑
i=1

pxiv
2
xi
+ pyiv

2
yi
+ pziv

2
zi
→ min

=
n

∑
i=1

pi

(
v2

xi
+ v2

yi
+ v2

zi

)
→ min.

(12)

Taking into account the relation of the squared residuals with the normal distances of Equation (5), it is
possible to express the objective function as

Ω =
n

∑
i=1

piD2
i → min. (13)
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Using the constraint (8), the expression of the normal distances can be written as

D2
i = [a(xi − x0)− b(yi − y0)]

2 + [b(zi − z0)− c(xi − x0)]
2 + [c(yi − y0)− a(zi − z0)]

2. (14)

A further simplification of the problem is possible, by replacing the unknown parameters y0, x0 and z0

with the coordinates of the weighted center of mass of the 3D point data

y0 =

n

∑
i=1

piyi

n

∑
i=1

pi

, x0 =

n

∑
i=1

pixi

n

∑
i=1

pi

, z0 =

n

∑
i=1

pizi

n

∑
i=1

pi

. (15)

It can be proven that this parameterization is allowed and possible, following the same line of thinking
as in the study of Jovičić et al. [1]. Therefore, for this weighted case we can write the normal distances as

D2
i =

(
ax′i − by′i

)2
+
(
bz′i − cx′i

)2
+
(
cy′i − az′i

)2, (16)

with the coordinates reduced to the weighted center of mass of the observed 3D point data

y′i = yi −

n

∑
i=1

piyi

n

∑
i=1

pi

, x′i = xi −

n

∑
i=1

pixi

n

∑
i=1

pi

, z′i = zi −

n

∑
i=1

pizi

n

∑
i=1

pi

. (17)

Searching for stationary points of the Lagrange function

K =
n

∑
i=1

D2
i − k(a2 + b2 + c2 − 1)

=
n

∑
i=1

(
ax′i − by′i

)2
+
(
bz′i − cx′i

)2
+
(
cy′i − az′i

)2 − k(a2 + b2 + c2 − 1)
(18)

leads to the system of normal equations

∂K
∂a

=2a

(
n

∑
i=1

pix′i
2
+

n

∑
i=1

piz′i
2 − k

)
− 2b

n

∑
i=1

piy′ix
′
i − 2c

n

∑
i=1

piy′iz
′
i = 0, (19)

∂K
∂b

=2b

(
n

∑
i=1

piy′i
2
+

n

∑
i=1

piz′i
2 − k

)
− 2a

n

∑
i=1

piy′ix
′
i − 2c

n

∑
i=1

pix′iz
′
i = 0, (20)

∂K
∂c

=2c

(
n

∑
i=1

piy′i
2
+

n

∑
i=1

pix′i
2 − k

)
− 2a

n

∑
i=1

piy′iz
′
i − 2b

n

∑
i=1

pix′iz
′
i = 0, (21)

and
∂K
∂k

= −
(

a2 + b2 + c2 − 1
)
= 0. (22)

Equations (19) to (21) are a homogeneous system of equations which are linear in the unknown
line parameters a, b and c, and has a nontrivial solution if∣∣∣∣∣∣∣

(d1 − k) d4 d5

d4 (d2 − k) d6

d5 d6 (d3 − k)

∣∣∣∣∣∣∣ = 0, (23)
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with the elements of the determinant

d1 =
n

∑
i=1

pix′i
2
+

n

∑
i=1

piz′i
2 , d2 =

n

∑
i=1

piy′i
2
+

n

∑
i=1

piz′i
2 , d3 =

n

∑
i=1

piy′i
2
+

n

∑
i=1

pix′i
2 ,

d4 = −
n

∑
i=1

piy′ix
′
i , d5 = −

n

∑
i=1

piy′iz
′
i , d6 = −

n

∑
i=1

pix′iz
′
i.

(24)

Equation (23) is a cubic characteristic equation with the unknown parameter k and a solution is
given by Bronhstein et al. ([24], p. 63). The unknown line parameters a, b and c can be computed either
by substituting kmin into Equations (19)–(21) under the constraint (22) or by transforming the equation
system and solving an eigenvalue problem, i.e., the direct WTLS solution.

2.3. Iterative Weighted Total Least Squares Solution

In this case, we consider the fact that the coordinate components xi, yi, zi of each point Pi are not
original observations. They are either

(i) derived from single point determinations, e.g., using polar elementary measurements of slope
distance ρi, direction φi and tilt angle θi, e.g., from measurements with a terrestrial laser scanner,
so that the coordinates result from the functional relationship

xi = ρi cos φi sin θi,
yi = ρi sin φi cos θi,

zi = ρi cos θi.
(25)

Using the standard deviations σρ i, σφ i and σθ i of the elementary measurements, a 3 × 3
variance-covariance matrix can be provided for the coordinate components xi, yi, zi of each
point Pi by variance-covariance propagation based on (25). Covariances among the n different
points do not occur in this case.

or

(ii) derived from a least squares adjustment of an overdetermined geodetic network.
From the solution within the GM or GH model, the 3n × 3n variance-covariance matrix of
the coordinate components xi, yi, zi of all points Pi can be obtained. This matrix is a full matrix,
considering also covariances among the n different points. It may even have a rank deficiency in
case the coordinates were determined by a free network adjustment.

The variances and covariances from (i) or (ii) can then be assembled in a dispersion matrix

QLL =

 Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz

 , (26)

for the coordinate components as “derived observations”. In case of a non-singular dispersion matrix,
it is possible to compute the respective weight matrix

P =

 Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

 = Q−1
LL . (27)

Starting with the functional model (2), we choose to work with the nonlinear condition equations

c(yi + vyi − y0)− a(zi + vzi − z0) = 0,

c(xi + vxi − x0)− b(zi + vzi − z0) = 0.
(28)
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Two additional constraints must be taken into account in this case. For example, Snow and Schaffrin [6]
proposed the constraints

a2 + b2 + c2 = 1,

ay0 + bx0 + cz0 = 0.
(29)

A further development of an algorithmic solution using these constraints is possible.
However, we choose to parameterize the functional model so that an additional constraint is
unnecessary and the equations become simpler. Therefore, we choose to fix one coordinate of the point
on the line

z0 =

n

∑
i=1

zi

n
= z, (30)

as well as one of the unknown components of the direction vector

c = 1. (31)

This simplification of the functional model has been used by Borovička et al. [25] for a similar practical
example, this of estimating the trajectory of a meteor. As already mentioned in that work, the resulting
direction vector of the straight line can be transformed to a unit vector afterwards, i.e., a solution using
the constraint a2 + b2 + c2 = 1. The simplified functional model can be written in vector notation as

(yc + vy − ey0)− a(zc + vz − ez) = 0,

(xc + vx − ex0)− b(zc + vz − ez) = 0,
(32)

with the vectors xc, yc and zc containing the coordinates of the observed points and vectors vx, vy

and vz the respective residuals. Vector e is a vector of ones, with length equal to the number of
observed points n.

A weighted least squares solution of this problem can be derived by minimizing the
objective function

Ω = vT
x Pxxvx + vT

yPyyvy + vT
z Pzzvz + 2 vT

x Pxyvy + 2 vT
x Pxzvz + 2 vT

yPyzvz (33)

or by searching for stationary points of the Lagrange function

K = Ω− 2kT
1
[
(yc + vy − ey0)− a(zc + vz − ez)

]
− 2kT

2 [(xc + vx − ex0)− b(zc + vz − ez)]
(34)

with two distinct vectors k1 and k2 of Lagrange multipliers. Taking the partial derivatives with respect
to all unknowns and setting them to zero results in the system of normal equations

1
2

∂K
∂vT

x
= Pxxvx + Pxyvy + Pxzvz − k2 = 0, (35)

1
2

∂K
∂vT

y
= Pyyvy + Pyxvx + Pyzvz − k1 = 0, (36)

1
2

∂K
∂vT

z
= Pyyvy + Pxzvx + Pyzvy + ak1 + bk2 = 0, (37)
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1
2

∂K
∂kT

1
= (yc + vy − ey0)− a(zc + vz − ez) = 0, (38)

1
2

∂K
∂kT

2
= (xc + vx − ex0)− a(zc + vz − ez) = 0, (39)

1
2

∂K
∂a

= kT
1 (zc + vz − ez) = 0, (40)

1
2

∂K
∂b

= kT
2 (zc + vz − ez) = 0, (41)

1
2

∂K
∂y0

= eTk1 = 0, (42)

1
2

∂K
∂x0

= eTk2 = 0. (43)

To derive explicit expressions for the residual vectors, we write Equations (35)–(37) as Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz


 vx

vy

vz

 =

 k2

k1

−ak1 − bk2

 , (44)

which leads to the solution for the residual vectors vx

vy

vz

 =

 Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz


−1  k2

k1

−ak1 − bk2


=

 Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz


 k2

k1

−ak1 − bk2

 ,

(45)

or explicitly

vx =
(
Qxy − aQxz

)
k1 + (Qxx − bQxz) k2, (46)

vy =
(
Qyy − aQyz

)
k1 +

(
Qxy − bQyz

)
k2, (47)

vz =
(
Qyz − aQz

)
k1 + (Qxz − bQzz) k2. (48)

Inserting these expressions for the residual vectors into Equations (38) and (39) yields

W1k1 + W2k2 + yc − ey0 − azc = 0, (49)

W2k1 + W3k2 + xc − ex0 − bzc = 0, (50)
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with the auxiliary matrices W1, W2 and W3 as

W1 = Qy − 2aQyz + a2Qz, (51)

W2 = Qxy − aQxz − bQyz + abQz, (52)

W3 = Qx − 2bQxz + b2Qz, (53)

Using Equations (49), (50) and (40)–(43), the nonlinear equation system

W1k1 + W2k2 − ey0 − azc = −yc,

W2k1 + W3k2 − ex0 − bzc = −xc,

− (zc + vz − ez)T k1 = 0,

− (zc + vz − ez)T k2 = 0,

−eTk1 = 0,

−eTk2 = 0

(54)

can be set up. To express this system of equations into a block matrix form and to obtain a symmetrical
matrix of normal equations in the following, it is advantageous to add the terms −a (vz − ez)
and −b (vz − ez) to both sides of the first two equations, leading to the system of equations

W1k1 + W2k2 − ey0 − a (zc + vz − ez) = −yc − a (vz − ez) ,

W2k1 + W3k2 − ex0 − b (zc + vz − ez) = −xc − b (vz − ez) ,

− (zc + vz − ez)T k1 = 0,

− (zc + vz − ez)T k2 = 0,

−eTk1 = 0,

−eTk2 = 0.

(55)

Arranging the unknowns in a vector

X =



k1

k2

a
b
y0

x0


, (56)

the equation system (55) can be written as

NX = n. (57)
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with the matrix of normal equations

N =

[
W A
AT 0

]
, (58)

constructed using the matrices

W =

[
W1 W2

W2 W3

]
(59)

and

AT =


− (zc + vz − ez) 0

0 − (zc + vz − ez)
−e 0

0 −e

 . (60)

The right-hand side of the equation system (57) reads

n =



−yc − a (zc + vz − ez)
−xc − b (zc + vz − ez)

0
0
0
0


(61)

It is important to point out that matrix N and vector n contain the unknown parameters a, b and vz

in their entries. Therefore, to express and solve these normal equations that live in the “nonlinear
world” with the help of vectors and matrices (that only exist in the “linear world”), appropriate
approximate values a0, b0 and v0

z have to be introduced for all auxiliary matrices required for the setup
of matrix N and vector n. The solution for the vector of unknowns can be computed by

X̂ = N−1n, (62)

without the need of a linearization by Taylor series at any step of the calculation process. The WTLS
solution for the line parameters can be computed following the ordinary iteration method, as it is
explained for example by Bronhstein ([24], p. 896). Therefore, the solutions â, b̂ and ṽz, after stripping
them of their random character, are to be substituted as new approximate values as long as necessary
until a sensibly chosen break-off condition is met. For example, the maximum absolute difference
between two consecutive solutions must be smaller than a predefined threshold ε, which in this
problem can be formulated as

max

∣∣∣∣∣
[

a0

b0

]
−
[

â
b̂

]∣∣∣∣∣ ≤ ε, (63)

with |·| denoting the absolute value. The predicted residual vectors ṽx, ṽy, ṽz can be computed
from Equations (46)–(48). The iterative procedure for the presented WTLS solution can be found in
Algorithm 1.
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Algorithm 1 Iterative WTLS solution

Choose approximate values for a0, b0 and v0
z .

Define parameter c = 1.
Set threshold ε for the break-off condition of the iteration process.
Set parameter da = db = ∞, for entering the iteration process.
while da > ε and db > ε do

Compute matrices W and A.
Build matrix N and vector n.
Estimate the vector of unknowns X̂.
Compute the residual vector ṽz .
Compute parameters da = |â− a0| and db = |b̂− b0|.
Update the approximate values with the estimated ones, with a0 = â, b0 = b̂ and v0

z = ṽz.
end while
return â and b̂, with c = 1.

After computing the line parameters â and b̂ and putting them into a vector, we can easily scale
it into a unit vector by dividing each component with the length of the vector

 an

bn

cn

 =

 â
b̂
1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 â

b̂
1


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(64)

with ||·|| denoting the Euclidean norm. The derived parameters an, bn and cn refer to the normalized
components of a unit vector, that is parallel to the requested line, with

a2
n + b2

n + c2
n = 1 (65)

2.4. WTLS Solution with Singular Dispersion Matrices

The algorithmic approach presented in Section 2.3 can also cover cases when dispersion matrices
are singular. Such a solution depends on the inversion of matrix N (58), which depends on the rank
deficiency of matrix W (59). Following the argumentation of Malissiovas ([20], p. 112), a criterion that
ensures a unique solution of the problem can be described in this case by

rank ([W | A]) = 2n, (66)

with

- rank of W ≤ 2n, with 2n = number of condition equations, since for each of the observed n points
two condition equations from Equation (2) are taken into account;

- rank of A = m, with m = number of unknown parameters.

In cases of singular dispersion matrices, the rank of matrix W will be smaller than 2n. A unique
solution will exist if the rank of the augmented matrix [W | A] is equal to the number of condition
equations 2n of the problem. It is important to mention that the developed idea is based on
the Neitzel–Schaffrin criterion, which has been firstly proposed by Neitzel and Schaffrin [26,27],
particularly for a solution of an adjustment problem within the GH model when singular dispersion
matrices must be employed.
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2.5. A Posteriori Error Estimation

In this section we want to determine the variance-covariance matrix of the estimated parameters.
The following derivations can be used for computing the a posteriori stochastic information for
all weighted cases discussed in this investigation, i.e., the direct and the iterative WTLS solutions.
Therefore, we will employ the fundamental idea of variance-covariance propagation. This is a
standard procedure explained by many authors, like for example in the textbooks of Wells and
Krakiwsky ([28], p. 20), Mikhail ([29], p. 76 ff.) or Niemeier ([8], p. 51 ff.) and has been further employed
in the GM and the GH model, so that the a posteriori stochastic results can be computed using directly
the developed matrices from each model. A detailed explanation is given by Malissiovas ([20], p. 31 ff.).

As we have already mentioned in the introduction of this article, a TLS, respectively a WTLS
solution, can be regarded as a special case of a least squares solution within the GH model.
From the presented WTLS algorithm we observe that the derived matrix of normal Equation (58)
is equal to the matrix if it was computed within the GH model. Therefore, it is possible to compute

N−1 =

[
Q11 Q12

Q21 Q22

]
(67)

and extract the dispersion matrix for the unknown parameters from

Qx̂x̂ = −Q22. (68)

The a posteriori variance factor is

σ̂2
0 =

vTPv
r

(69)

with vector v holding all residuals and r denoting the redundancy of the adjustment problem. In case
of a singular dispersion matrix, it is not possible to compute the weight matrix P, as in Equation (27).
Therefore, we can make use of the solution for the residual vectors from Equation (45) and insert them
in Equation (69) to obtain

σ̂2
0 =

vT
x k2 + vT

yk1 − avT
z k1 − bvT

z k2

r
. (70)

The variance-covariance matrix of the unknown parameters can be then derived by

Σx̂x̂ = σ̂2
0 Qx̂x̂ =


σ2

a σab σay0 σax0

σba σ2
b σby0 σbx0

σy0a σy0b σ2
y0

σy0x0

σx0a σx0b σx0y0 σ2
x0

 . (71)

To derive the variance-covariance matrix of the normalized vector components (64), we can
explicitly write the equations

an =
â√

â2 + b̂2 + c2
,

bn =
b̂√

â2 + b̂2 + c2
,

cn =
c√

â2 + b̂2 + c2
.

(72)
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with c = 1. Following the standard procedure of the variance-covariance propagation in nonlinear
cases, we can write the Jacobian matrix

F =



∂an

∂a
∂an

∂b

∂bn

∂a
∂bn

∂b

∂cn

∂a
∂cn

∂b


. (73)

Taking into account the variances and covariances of the line parameters â and b̂ from (71)

Σâb̂ = Σx̂x̂(1 : 2, 1 : 2) =

[
σ2

a σab
σba σ2

b

]
, (74)

we can compute the variance-covariance matrix of the normalized components

Σanbncn = FΣâb̂FT =

 σ2
an σanbn σancn

σbnan σ2
bn

σbncn

σcnan σcnbn σ2
cn

 . (75)

3. Numerical Examples

In this section we present the solutions for fitting a straight line to 3D point data using the TLS
approach from Section 2.1 and the newly developed WTLS approaches from Sections 2.2 and 2.3.
The utilized dataset for this investigaiton consists of n = 50 points and originates from the work of
Petras and Podlubny [30]. It has been utilized also by Snow and Schaffrin, see Table A1 in [6], for
a solution within the GH model, which will be used here for validating the results of the presented
WTLS solutions. Three different stochastic models will be imposed in the following:

1. equal weights, i.e., coordinate components xi, yi, zi as equally weighted and
uncorrelated observations,

2. pointwise weights, i.e., coordinate components with same precision for each point and
without correlations,

3. general weights, i.e., correlated coordinate components of individual precision including singular
dispersion matrices.

3.1. Equal Weights

For the first case under investigation, we consider all coordinate components xi, yi, zi as equally
weighted and uncorrelated observations, yielding the weights as shown in (3). The least squares
solution of this problem within the GH model, presented by Snow and Schaffrin [6], is listed in Table 1.
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Table 1. Least squares solution within the Gauss–Helmert (GH) model of Snow and Schaffrin [6].

Line Orientation Components Standard Deviation

Parameter b̂y = an 0.219309 0.077523
Parameter b̂x = bn 0.677404 0.058450
Parameter b̂z = cn 0.702159 0.056575
Coordinates of a point on the line Standard deviation

Parameter ây = y0 0.047785 0.121017
Parameter âx = x0 −0.067111 0.091456
Parameter âz = z0 0.049820 0.088503

A posteriori variance factor σ̂2
0 0.7642885

A direct TLS solution for this problem can be derived using the approach presented in Section 2.1.
The results are shown in Table 2. Numerically equal results have been derived by using the direct
WTLS approach of Section 2.2 by setting all weights equal to one.

Table 2. Direct TLS solution from Section 2.1.

Line Orientation Components Standard Deviation

Parameter an 0.219308632730 0.07752314583
Parameter bn 0.677404488809 0.05844978733
Parameter cn 0.702158730025 0.05657536189

A posteriori variance factor σ̂2
0 0.76428828602

Comparing the solution with the one presented in Table 1, it can be concluded that the numerical
results for the parameters coincide within the specified decimal places. Regarding the small difference
in the numerical value for the variance factor, it is to be noted that the value in Table 2 was confirmed
by two independent computations.

Furthermore, a point on the line can be easily computed using the equations of the functional
model (2), as long as the direction vector parallel to the requested line is known. Alternatively,
all the adjusted points will lie on the requested straight line, which can be simply computed by adding
the computed residuals to the measured coordinates.

3.2. Pointwise Weights

For the second weighted case under investigation, we consider the coordinate components xi, yi,
zi of each point Pi to be uncorrelated and of equal precision. From the standard deviations listed in
Table 3, the corresponding pointwise weights can be obtained from (11).
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Table 3. Pointwise precision σxi = σyi = σzi = σi for each point Pi.

Point i σi Point i σi

1 0.802 26 0.792
2 0.795 27 0.799
3 0.807 28 0.801
4 0.770 29 0.807
5 0.808 30 0.798
6 0.799 31 0.796
7 0.794 32 0.792
8 0.808 33 0.806
9 0.807 34 0.805
10 0.800 35 0.801
11 0.789 36 0.808
12 0.798 37 0.778
13 0.808 38 0.795
14 0.803 39 0.794
15 0.804 40 0.803
16 0.808 41 0.772
17 0.806 42 0.791
18 0.806 43 0.806
19 0.807 44 0.804
20 0.806 45 0.807
21 0.804 46 0.803
22 0.808 47 0.808
23 0.805 48 0.801
24 0.801 49 0.805
25 0.801 50 0.779

A direct WTLS solution is derived, following the approach presented in Section 2.2.
The determinant (23) ∣∣∣∣∣∣∣

(d1 − k) d4 d5

d4 (d2 − k) d6

d5 d6 (d3 − k)

∣∣∣∣∣∣∣ = 0,

can be built with the components

d1 = 213.505250528675,

d2 = 206.458905097029,

d3 = 198.273122927545,

and

d4 = −20.9837621443375,

d5 = −12.1835697465792,

d6 = −81.6787394185243.

(76)

which leads to the solutions for the Lagrange multiplier

k̂ =


115.0596477492 (k̂min)

218.3490470615
284.8285837425

(77)

The direct WTLS solution for the line orientation components is shown in Table 4.
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Table 4. Direct WTLS solution from Section 2.2.

Line Orientation Components Standard Deviation

Parameter an 0.230818543507 0.07646636344
Parameter bn 0.677278360907 0.05781967335
Parameter cn 0.698582007942 0.05623243170

A posteriori variance factor σ̂2
0 1.19853799739

The presented results are numerically equal to the iterative WTLS solution using the algorithmic
approach of Section 2.3, as well as the solution within the GH model.

3.3. General Weights

For the last weighted case in this investigation, we impose the most general case, i.e., correlated
coordinate components with individual precision resulting in a singular dispersion matrix. To obtain
such a matrix for our numerical investigations, we firstly solved the adjustment problem within the GH
model with an identity matrix as dispersion matrix. From the resulting 150× 150 dispersion matrix of
the residuals

Qvv =

 Qvxvx Qvxvy Qvxvz

Qvyvx Qvyvy Qvyvz

Qvzvx Qvzvy Qvzvz

 , (78)

computed as e.g., presented by Malissiovas ([20], p. 46), we take the variances and covariances
between the individual point coordinates, but not among the points, i.e., the diagonal elements of each
sub-matrix in (78) and arrange them in a new 150× 150 matrix

QLL =


diag (Qvxvx) diag

(
Qvxvy

)
diag (Qvxvz)

diag
(

Qvyvx

)
diag

(
Qvyvy

)
diag

(
Qvyvz

)
diag (Qvzvx) diag

(
Qvzvy

)
diag (Qvzvz)

 , (79)

with “diag()” denoting that only the diagonal elements are taken into account. This is an example of
pointwise variances and covariances, described as case (i) in Section 2.3, but now yielding a singular
dispersion matrix for the observations with

rank (QLL) = 100.

Before deriving an iterative WTLS solution for this weighted case, we must check if
the criterion (66) for a unique solution of the adjustment problem is fulfilled. Therefore, we computed
the 100 × 100 matrix W with

rank (W) = 100,

and the 100× 4 matrix A with
rank (A) = 4.

The criterion ensures that a unique solution exists when using the presented singular dispersion
matrix, while

rank ([W | A]) = 100, (80)

since n = 50 observed points are used in this example, cf. (66). As for all iterative procedures,
appropriate starting values for the unknowns must be provided. However, they can be obtained easily
by first generating a direct solution with a simplified stochastic model. The iterative WTLS solution for
the direction vector of the requested straight line is presented in Table 5.
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Table 5. Iterative WTLS solution from Section 2.3.

Line Orientation Components Standard Deviation

Parameter an 0.225471114499 0.076563026291
Parameter bn 0.677670055415 0.057791104518
Parameter cn 0.699947192665 0.056127005073

A posteriori variance factor σ̂2
0 0.798915322513

The presented WTLS solution has been found to be numerically equal to the least squares
solution within the GH model. Detailed numerical investigations of the convergence behaviour,
e.g., in comparison to an adjustment within the GH model, are beyond the scope of this article.
However, in many numerical examples it could be observed that the iterative WTLS approach showed
a faster convergence rate compared to an adjustment within an iteratively linearized GH model.

4. Conclusions

For the problem of straight line fitting to 3D point data, two novel WTLS algorithms for two
individual weighting schemes have been presented in this study:

- Direct WTLS solution for the case of pointwise weights, i.e., coordinate components with same
precision for each point and without correlations,

- Iterative WTLS solution for the case of general weights, i.e., correlated coordinate components
of individual precision including singular dispersion matrices. This algorithm works without
linearizing the problem by Taylor series at any step of the solution process.

Both approaches are based on the work of Malissiovas [20], where similar algorithms have been
presented for adjustment problems that belong to the same class, i.e., nonlinear adjustments that can be
expressed within the EIV model. The approach presented in Section 2.1 provides a direct TLS solution
assuming equally weighted and uncorrelated coordinate components. The fact that this assumption
is inappropriate, e.g. for the evaluation of laser scanning data, has often been accepted in the past to
provide a direct solution for large data sets. With the newly developed approach in Section 2.2 it is
now possible to compute a direct WTLS solution at least for a more realistic stochastic model, namely
pointwise weighting schemes.

If more general weight matrices must be taken into account in the stochastic model, including
correlations or singular dispersion matrices, the presented algorithm of Section 2.3 can be utilized
for an iterative solution without linearizing the problem by Taylor series at any step, following
the algorithmic idea of WTLS. A criterion that ensures a unique solution of the problem when
employing singular dispersion matrices has also been presented, which is based on the original
ideas of Neitzel and Schaffrin [26,27], for a solution within the GH model.

Numerical examples have been presented in Section 3 for testing the presented WTLS algorithms.
The utilized dataset of the observed 3D point data has also been employed by Snow and Schaffrin [6]
for a solution of the problem within the GH model and originates from the study of Petras
and Podlubny [30]. The results of the presented algorithms have been compared in all cases with
existing solutions or the solutions coming from existing algorithms and have been found to be
numerically equal.
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