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Abstract. The first part of this paper is devoted to the approximative solution of linear
and Hermitian eigenvalue problems where the differential operator satisfies a G̊arding
inequality. For this, known iterative schemes for the matrix case such as the inverse power
or Arnoldi method are extended to the infinite-dimensional case. This formally allows
one to apply different spatial discretizations in each iteration step and thus, justifies the
use of adaptive methods. The second part considers eigenvalue problems as they appear
in two-dimensional models of photonic crystals for the computation of band-gaps. If
the permittivity of the material is frequency-dependent, then this leads to a nonlinear
eigenvalue problem. For this, we consider two strategies. First, a linearization combined
with the application of the inverse power method and second, a direct application of
Newton’s iteration.
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1. Introduction

Eigenvalue problems including partial differential equations (PDE) appear in several
applications such as structural mechanics [BW73], fluid-solid structures [Vos03], or the
simulation of Bose-Einstein condensates [PS03]. In general, such problems are considered
in order to optimize certain properties or parameters of the underlying dynamical sys-
tem [MV04]. In this paper, we focus on applications as they appear in the modeling of
photonic crystals [Joh87, Kuc01]. These are special composite materials with a periodic
structure that affect the propagation of electromagnetic waves and thus, can be used for
trapping and guiding light. As these crystals can be designed and manufactured for in-
dustrial applications, the aim is to find so-called photonic band-gaps, which prevent light
within a specified frequency range from propagating [JJWM08, Joh12]. Direct applica-
tions areas are optical fibers [GH14, Ch. 5], medical technologies with laser guides for
cancer surgeries [Tsa12], and thin film solar cells [DJ12].

The corresponding mathematical model is given by a sequence of nonlinear PDE eigen-
value problems based on the Maxwell equations [SP05, DLP+11]. An important role is
played by the electric permittivity ε, which is periodic in space and characterizes certain
properties of the crystal. If ε is independent of the frequency, then we obtain a linear
eigenvalue problem. In more realistic models, however, the permittivity is approximated
by a rational function, which carries the nonlinearity to the eigenvalue problem.

∗ Research funded by the Einstein Foundation Berlin in the frame of Einstein Center for Mathemat-
ics Berlin ECMath via project OT10 Model Reduction for Nonlinear Parameter-Dependent Eigenvalue
Problems in Photonic Crystals and by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID: 390685689).
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Numerical methods for computing the spectrum of such materials have been studied
intensively. This includes adaptive finite element methods [BKS+06, GG12], Newton-
type methods [Kre09, HLM16], and linearization techniques [SB11, EKE12]. In the latter
case, a spatial discretization is assumed and yields then a linear but extended eigenvalue
problem, for which well-known iteration schemes can be applied.

Corresponding iterative methods for the operator case have, so far, not received much
attention in the literature. In the first part of this paper, we focus on linear and Her-
mitian PDE eigenvalue problems in the weak formulation. This corresponds to the case
of a frequency-independent permittivity. Convergence of the (inverse) power method for
compact operators mapping from a Hilbert space H to H was already shown in [ESL95].
In this setting, the proof basically follows the same lines as in the finite-dimensional case.
General bounded operators were considered in [EE07] but only together with a power
iteration based on the exact (und thus unknown) eigenvalue. Considering the weak for-
mulation, which is more natural in view of spatial discretization methods, we are in a
different setting. Nevertheless, the power method converges if an appropriate scaling is
included. For the p-Laplacian eigenvalue problem, this was shown in [Boz16].

The second part of the paper focuses on the nonlinear case as it appears in two-
dimensional photonic crystal modeling. Here we consider two different paths of either
linearizing the problem or applying directly a Newton iteration. In the first case, we
adapt the techniques introduced in [SB11, EKE12] in combination with an inverse power
iteration applied to the resulting linear problem. The second strategy translates the local
convergence of Newton’s method from [Sch08] to the operator case. An analogous method
for infinite-dimensional eigenvalue problems was developed in [AR68], and its local con-
vergence was proven for Fredholm operators with index 0 mapping from a Hilbert space
H to H. We show a similar result when the operators arise from the here considered weak
formulation.

The paper is structured as follows. In Section 2 we introduce the problem setting, i.e.,
the linear PDE eigenvalue problem in its weak and operator formulation. Here we gather
all the assumptions on the spaces and included operators. In particular, we assume an
underlying Gelfand triple with a compact embedding. Section 3 then considers several
iteration schemes including the inverse power method, the Arnoldi method, and Newton’s
method. Two-dimensional photonic crystals with frequency-dependent permittivity are
then topic of Sections 4 and 5. First, we consider a special Hermitian case. For this,
we apply a linearization and the inverse power method. More realistic models are then
discussed in Section 5, for which we prove the local convergence of Newton’s method.
Finally, we perform two numerical tests in Section 6.

2. Preliminaries

As described in the introduction, we consider the weak formulation of a PDE eigenvalue
problem. Given the sesquilinear forms a : V ×V → C and (· , ·) : V ×V → C, we search for
a non-trivial pair (u, λ) ∈ V × C such that for all test functions v ∈ V it holds that

a(u, v) = λ (u, v).(2.1)

More precisely, considering Hermitian eigenvalue problems, we are interested in the eigen-
pair corresponding to the smallest eigenvalue. In the following, we gather assumptions on
the space V and the included sesquilinear forms. Afterwards we discuss well-known PDE
eigenvalue problems, which fit into the given framework.
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2.1. General setting. We start with general assumptions on the involved function spaces.

Assumption 2.1 (Function spaces). We assume V to be a complex, separable, and reflexive
Banach space. Furthermore, we assume the existence of a complex and separable Hilbert
space H (the pivot space) such that V, H, V∗ form a Gelfand triple, cf. [Zei90, Ch. 23.4]
and [Bre10, Ch. 11.4]. This means, in particular, that the embedding iV↪→H : V ↪→ H is
continuous and dense [Wlo87, Ch. 17.1]. The continuity constant is denoted by CV↪→H.

Assumption 2.2 (Compactness). The embedding V ↪→ H is compact.

With the pivot space H in hand, we assume that the sesquilinear form (· , ·) in (2.1) is
also defined for functions in H. We even assume that this defines the inner product in the
Hilbert space H and set ‖ · ‖ := ‖ · ‖H = (· , ·)1/2. Further, jH : H → H∗ denotes the Riesz
isomorphism. The norm in the space V is denoted by ‖ · ‖V . For the sesquilinear form a
we consider the following assumptions.

Assumption 2.3 (Sesquilinear form). The sesquilinear form a : V × V → C is assumed to
be continuous and Hermitian such that a(u, u) ∈ R for all u ∈ V. Furthermore, a satisfies
a G̊arding inequality, i.e.,

a(u, u) ≥ α ‖u‖2V − β ‖u‖2

for real constants α > 0, β ≥ 0 and all u, v ∈ V.

Remark 2.4. The previous Assumption 2.3 implies that aβ(u, v) := a(u, v) + β (u, v) is
V-coercive and thus, defines an inner product in V. As a result, V is actually a Hilbert
space and the corresponding norm

‖u‖β := aβ(u, u)1/2 ≥
√
α ‖u‖V

is equivalent to ‖ · ‖V . Further, all eigenvalues of (2.1) are real and satisfy λ > −β.

In order to be well-posed, an eigenvalue problem of the form (2.1) requires boundary
conditions. Throughout this paper, we assume that these conditions are included in the
space V, cf. the examples in the following subsection. We close this preliminary part with
the proof of Young’s inequality in the specific case of complex vectors.

Lemma 2.5 (Young’s inequality). Consider a,b ∈ C2. Then, for every δ > 0 we have an
estimate of the form

|a · b + b · a| ≤ 1

δ
|a|2 + δ |b|2,

where · denotes the real dot product.

Proof. For any two vectors c,d ∈ C2, the following estimates hold:

0 ≤ |c + d|2 = (c + d) · (c + d) = |c|2 + |d|2 + c · d + d · c,

0 ≤ |c− d|2 = (c− d) · (c− d) = |c|2 + |d|2 − c · d− d · c.

As a result, we have |c ·d+d ·c| ≤ |c|2 + |d|2. The claim then follows by setting c = a/
√
δ,

and d = b
√
δ. �

2.2. Examples. We present a couple of well-known examples, which fit into the given
framework if formulated in the weak setting.

Example 2.6 (Laplace eigenvalue problem). Consider the eigenvalue problem −∆u = λu
in a bounded domain Ω with homogeneous Dirichlet boundary conditions. For this, we
set V := H1

0 (Ω) with ‖ · ‖V := ‖∇ · ‖L2(Ω) and H := L2(Ω) with the standard L2 inner

product. The corresponding sesquilinear form reads a(u, v) :=
∫

Ω∇u · ∇v dx. Note that
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this implies a(u, u) = ‖u‖2V and thus, α = 1 and β = 0. The weak form of the Laplace
eigenvalue problem then reads: find a non-trivial pair (u, λ) ∈ V × C such that for all
v ∈ V it holds that

a(u, v) = λ (u, v).

Example 2.7 (Schrödinger eigenvalue problem). The computation of the ground state of
the linear Schrödinger operator leads to the sesquilinear form

a(u, v) :=

∫
Ω
∇u(x) · ∇v(x) +W (x)u(x)v(x) dx

with a real-valued potential W ∈ L∞(Ω) defining β := max
{

0,− infx∈ΩW (x)
}

. For
homogeneous Dirichlet boundary conditions this leads to the same spaces V and H as in
Example 2.6. Further, a satisfies the G̊arding inequality with α = 1 and β as defined
above. For periodic boundary conditions one has to replace the space V accordingly.

In this paper, we focus on applications with photonic crystals. The dynamics of the
electromagnetic fields inside such a crystal can be modelled by the Maxwell equations in
the whole domain Rd, cf. [DLP+11, Ch. 1]. These equations combine the magnitudes of
the time-harmonic electric and magnetic fields E, H and the frequency ω, which takes the
role of an eigenvalue.

One crucial parameter within the equations is the relative electric permittivity of the
materials inside the crystal. We assume the relative permittivity ε to be piecewise-constant
and periodic in space as well as bounded in the sense that

1 ≤ ε(x, ω) ≤ εmax <∞

for all x ∈ Rd and ω in some frequency domain of interest. For the applications in mind,
where ε is given as a rational function, this means that we consider ω bounded away from
the poles. In the two-dimensional case, i.e., when ε is periodic within a two-dimensional
plane and constant along the direction orthogonal to this plane, the Maxwell eigenvalue
problem decouples into so-called transverse magnetic (TM) and transverse electric (TE)
modes. Thanks to the periodicity of ε, which implies a discrete translational symmetry in
the system, a Floquet transformation can be applied to reduce the problem posed in R2 to
a family of problems on a bounded domain Ω called the Wigner–Seitz cell of the crystal
lattice, see e.g. [Kuc01, DLP+11]. Note that the function ε is here a unitless quantity
expressed relatively to ε0, the electric permittivity of void. Within this paper, we assume
the magnetic permeability of the crystal to be constant and equal to that of void denoted
by µ0.

Example 2.8 (TM mode). In the two-dimensional setting we consider the TM mode with
a real-valued frequency-independent function ε(x). The resulting PDE eigenvalue problem
describes the third component of the electric field E3, from which one can directly compute
the components H1 and H2. Let k be a fixed wave vector in the so-called irreducible
Brillouin zone K ⊂ R2, cf. [DLP+11, Ch. 1], and uk the Floquet transform of E3(x) at k.
Then, uk satisfies the eigenvalue problem

−∇k · ∇k uk(x) = ω2µ0 ε0 ε(x)uk(x)

for all x ∈ Ω and∇k := ∇+ik denoting the shifted gradient. For the sake of conciseness, we
use in the following by abuse of notation a scaled frequency defined by ω → ω/

√
µ0ε0. For

the weak formulation of the eigenvalue problem we then define λ := ω2. Including periodic
boundary conditions, we set V = H1

per(Ω) with the standard H1-norm and H = L2(Ω).
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Note that V is densely embedded in H and thus, Assumption 2.1 is satisfied, cf. [Bre10,
Ch. 4.4]. The sesquilinear form a and the (weighted) inner product in H then read

(2.2) a(u, v) :=

∫
Ω
∇ku(x) · ∇kv(x) dx

and

(u, v) :=

∫
Ω
ε(x)u(x)v(x) dx.

Due to the boundedness of ε, the sesquilinear form (·, ·) defines an inner product in H.
The following lemma shows that a satisfies Assumption 2.3.

Lemma 2.9. For a fixed wave vector k ∈ R2 the sesquilinear form a defined in (2.2) in
Example 2.8 is Hermitian, continuous, and satisfies G̊arding’s inequality for any β > 0.

Proof. Clearly, the sesquilinear form a is Hermitian. For the continuity we apply the
Cauchy-Schwarz inequality with respect to the complex dot product in C2 as well as the
inner product in H and obtain for all u, v ∈ V,

a(u, v) ≤
∫

Ω
|∇ku||∇kv|dx ≤

(∫
Ω
|∇ku|2 dx

)1/2(∫
Ω
|∇kv|2 dx

)1/2
.

Young’s inequality from Lemma 2.5 with δ = 1 then yields∫
Ω
|∇ku|2 dx =

∫
Ω
|∇u|2 + |k|2|u|2 +∇u · (iku) + (iku) · ∇udx

≤
∫

Ω
|∇u|2 + |k|2|u|2 + |∇u|2 + |k|2|u|2 dx ≤ 2 max{1, |k|2}‖u‖2V ,

which proves the continuity of a. To show the G̊arding inequality, we first consider the
case k = 0. Then, for any 0 < β ≤ 1, we have

a(u, u) =

∫
Ω
|∇u|2 dx ≥ (1− β)‖∇u‖2L2(Ω) + β ‖u‖2V − β

∫
Ω
ε uudx ≥ β‖u‖2V − β‖u‖2,

i.e., the G̊arding inequality with α = β. Otherwise, for k 6= 0, we apply once more
Lemma 2.5 for some parameter δ > 0 and get

a(u, u) =

∫
Ω
|∇ku|2 dx ≥

∫
Ω
|∇u|2 + |k|2|u|2 −

∣∣∇u · (iku) + (iku) · ∇u
∣∣ dx

≥
∫

Ω
|∇u|2 + |k|2|u|2 − |∇u|

2

δ
− δ|k|2|u|2 dx.

Now assume δ > 1 and define α := (1−δ−1) min{1, |k|2} > 0. Then, a satisfies the G̊arding
inequality with β := (δ − δ−1) |k|2 > 0. Note that β can be chosen arbitrarily small with
an appropriate choice of δ > 1. �

Example 2.10 (TE mode). In the eigenvalue problem corresponding to the TE modes,
the relative permittivity ε appears on the other side of the eigenvalue problem. More
precisely, for a fixed wave vector k, we search for uk such that

−∇k ·
1

ε(x)
∇k uk(x) = λuk(x)

for all x ∈ Ω. Considering again periodic boundary conditions, we set V = H1
per(Ω) and

H = L2(Ω) with the standard inner products. In this case, the sesquilinear form a has the
form

a(u, v) :=

∫
Ω

1

ε(x)
∇ku · ∇kv dx.
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The proof of the G̊arding inequality follows similarly as in Lemma 2.9.

More general eigenvalue problems are discussed in Sections 4 and 5. There we consider
a TM mode with an electric permittivity, which depends on the frequency ω. This then
leads to a nonlinear eigenvalue problem.

2.3. Operator formulation. The weak formulation of the eigenvalue problem (2.1) can
be equivalently written as an operator equation in the dual space of V. This then yields
a convenient formulation for the introduction of iterative schemes. We introduce the
operator A : V → V∗ by

〈Au, v〉 := a(u, v).

Further, we define I : V → V∗ as the embedding of V in V∗ induced by the Gelfand
triple V, H, V∗ from Assumption 2.1 with respect to the inner product in H, cf. [Zei90,
Ch. 23.4]. To be precise, this means 〈Iu, v〉 = (u, v) for all u, v ∈ V. The operator equation
corresponding to (2.1) then reads

Au = λ Iu in V∗.(2.3)

Note that this equation is stated in the dual space of V, which means that we consider
test functions in V as in (2.1). Hence, the two formulations (2.1) and (2.3) are equivalent.

Finally, recall the definition of the shifted sesquilinear form aβ from Remark 2.4. With
this, we define the corresponding operator Aβ := A+ βI : V → V∗, which is then positive
and thus, invertible.

3. Iterative Methods on Operator Level

In this section, we analyze iterative methods to find the lowermost eigenpair to the
operator eigenvalue problem (2.3). We emphasize that we do not apply any spatial dis-
cretization but perform the eigenvalue iteration directly to the operator equation.

We first consider the inverse power method for which we prove the convergence in V.
Second, we discuss Arnoldi’s method for the operator case, based on Krylov subspaces
as in the matrix case. Finally, we consider a Newton iteration and its connection to the
inverse power method.

3.1. Inverse power method. Power and inverse power methods come in various variants
with different kinds of scaling, see e.g. [AK08, Ch. 10.3] or [Saa11, Ch. 4] for the matrix
case. One may even consider the scaling with the exact eigenvalue λ as done, e.g., in [EE07,
AHP18]. Clearly, the latter is only of interest for theoretical observations rather than
actual computations.

As for every iteration scheme we assume a starting function u0 ∈ V. In order to permit
the iterates to converge to the wanted eigenfunction, one needs an additional assumption
on u0, e.g., having a non-vanishing component in the direction of this eigenfunction.

3.1.1. Rayleigh quotient iteration. A direct implementation of the inverse power method
for the operator case would apply the inverse of the differential operator over and over
again. However, this operator may not be invertible and the Rayleigh quotient is not
guaranteed to remain positive. Thus, we consider the shifted eigenvalue problem

Aβu := (A+ βI)u = (λ+ β) Iu =: µ Iu in V∗.(3.1)

This then leads to the following algorithm: Given an initial function u0 ∈ V, which we
assume not to be orthogonal to the first eigenfunction, we solve for j = 1, 2, . . . the
variational problem

Aβuj = µj−1 Iũj−1 in V∗.(3.2)
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Therein, ũj := uj/‖uj‖ includes the normalization in H and µj the Rayleigh quotient, i.e.,

µj :=
〈Aβuj , uj〉
〈Iuj , uj〉

=
aβ(uj , uj)

(uj , uj)
=
‖uj‖2β
‖uj‖2

.

Note that the power iteration (3.2) includes a normalization although the iterates uj

themselves are not normalized. The approximation of the smallest eigenvalue λ is then
given by λj := µj − β. It remains to discuss the convergence of the suggested iteration.

Theorem 3.1. Given Assumptions 2.1-2.3, the power iteration (3.2) converges to an
eigenpair (uF, λF) of (2.3) in the sense that the (sub)sequences uj and λj := µj−β satisfy
uj → uF in V and λj → λF with AuF = λFIuF in V∗.

Proof. We follow the proof in [Boz16] where the convergence of the inverse power method
for the p-Laplacian is shown. The first step is to show the monotonic decrease of the
sequence µj . For this, we consider (3.2) with test functions uj and ũj−1 leading to

‖uj‖2β ≤ µj−1‖uj‖, µj−1 = µj−1‖ũj−1‖2 ≤
√
µj−1‖uj‖β.

A combination of these two estimates yields ‖uj‖β ≤
√
µj−1‖uj‖ and thus,√

µj =
‖uj‖β
‖uj‖

≤
√
µj−1.(3.3)

The monotonicity and µj ≥ 0, which follows from the positivity of Aβ, imply that there
exists the limit µF := limj→∞ µ

j ≥ 0.

As a second step, we conclude from estimate (3.3) that ‖ũj‖β =
√
µj ≤

√
µ0. Since

the norms ‖ · ‖β and ‖ · ‖V are equivalent, we obtain that ũj is uniformly bounded in
V. Thus, there exists a convergent subsequence and an element ũF ∈ V, which satisfy
(without relabeling)

ũj ⇀ ũF in V, ũj → ũF in H.
Note that we have used here the compact embedding V ↪→ H from Assumption 2.2.
Obviously, we have ‖ũF‖ = limj→∞ ‖ũj‖ = 1. Further, we know from previous calculations
that

‖uj‖2β ≤ µj−1‖uj‖ ≤ µ0‖uj‖ ≤ CV↪→Hµ0‖uj‖V . ‖uj‖β.
This means that also the sequence uj is uniformly bounded in V. Thus, there exists a
limit uF ∈ V such that (again without relabeling)

uj ⇀ uF in V, uj → uF in H.
In the following we compare the two limits uF and ũF. For this, we consider

µj =
aβ(uj , uj)

‖uj‖2
= µj−1 (ũj−1, uj)

‖uj‖2
=
µj−1

‖uj‖
(ũj−1, ũj)

Taking the limit j →∞ on both sides, we conclude that

µF =
µF

‖uF‖
‖ũF‖2 =

µF

‖uF‖
,

i.e., ‖uF‖ = 1. As a result, the sequence (ũj) converges to uF/‖uF‖ = uF. The uniqueness
of the limit then yields uF = ũF.

To show that the pair (uF, λF) with λF := µF − β is indeed an eigenpair of (2.3), we
apply the limit to equation (3.2) and seek

aβ(uF, v) = µF(uF, v) for all v ∈ V.
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Thus, we have a(uF, v) = λF(uF, v) for all v ∈ V or, in operator form, AuF = λFIuF. The
weak convergence ũj ⇀ ũF = uF in V additionally implies√

µF = ‖uF‖β ≤ lim inf
j→∞

‖ũj‖β = lim inf
j→∞

√
µj =

√
µF.

Note that the inequality is strict, if and only if the convergence is not strong. This implies
ũj , uj → uF in V. If µF is a single eigenvalue, then every convergent subsequence has the
same limit. �

Remark 3.2. In order to show that (uF, λF) is the smallest eigenpair, one needs an addi-
tional assumption on u0, see e.g. [Boz16] using the maximum principle and u0 ≥ 0.

Remark 3.3. A second strategy to prove Theorem 3.1 is to reformulate the eigenvalue
problem in terms of the resolvent. Assumption 2.2 shows that the resolvent is a compact
operator such that the results in [ESL95] can be applied.

3.1.2. An alternative power method. In Theorem 3.1 we have shown that the inverse power
method (3.2) provides in the limit an eigenvalue (the limit of the Rayleigh quotient) and
an eigenfunction. However, one may also omit the Rayleigh quotient, which leads to the
iteration

Aβvj = I ṽj−1 in V∗(3.4)

and the following convergence result.

Lemma 3.4. Assume u0 = v0 ∈ V with ‖u0‖ = 1. Let uj and vj be the sequences
obtained from the iteration procedures (3.2) and (3.4), respectively. Then, we have the
relation uj = µj−1vj for all j ≥ 1 with the Rayleigh quotient µj = ‖uj‖2β/‖uj‖2.

Proof. We prove this result by mathematical induction and observe first that

u1 = µ0A−1
β Iu

0 = µ0A−1
β Iv

0 = µ0v1.

Now, assuming uj = µj−1vj is true for a fixed but arbitrary index j, we obtain

uj+1 = µjA−1
β I

uj

‖uj‖
= µjA−1

β I
µj−1vj

µj−1‖vj‖
= µjA−1

β I
vj

‖vj‖
= µjvj+1.

Note that we have used the fact that µj > 0 and thus |µj | = µj . �

Lemma 3.4 directly implies the convergence of the iteration (3.4). In particular, we have
vj = uj/µj−1 → uF/µF =: vF in V. Thus, the limit is not normalized but rather satisfies

‖vF‖ =
‖uF‖
|µF|

=
1

µF
.

3.1.3. Commutativity. The convergence of the power method in the operator case di-
rectly leads to the question whether the application of the power method and the spatial
discretization commute. If we discretize the shifted eigenvalue problem (3.1) by finite
elements, then we obtain a system of the form

Kq = µMq.

Therein, q ∈ Cn encodes a finite-dimensional approximation of the eigenfunction u ∈ V,
e.g., the coefficients w.r.t. a finite element basis. Since we have included the boundary
conditions in the space V, we assume that the mass matrix M ∈ Cn,n and the stiffness
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matrix K ∈ Cn,n are Hermitian and positive definite. With A := M−1K the discrete sys-
tem is equivalent to the eigenvalue problem Aq = µq. Seeking for the smallest eigenvalue,
we apply the inverse power method with normalization, i.e.,

qj = A−1q̃j−1 = A−1 qj−1

‖qj−1‖Z
= K−1M

qj−1

‖qj−1‖Z
.(3.5)

As approximation for the eigenvalue we consider µj := 1/‖qj‖Z with ‖·‖Z being any norm
in Cn. The starting vector, which may be a given approximation of u0, is denoted by q0.
We emphasize that the iteration converges despite of the choice of the norm as long as q0

contains a non-zero component in direction of the first eigenvector.
We now consider the spatial discretization of (3.4), i.e., we first apply the inverse power

method to the PDE eigenvalue problem (3.1) and then discretize. We emphasize that this
allows a different discretization scheme in each iteration step and thus, adaptivity. If we
consider, however, the same spatial mesh as before in each iteration step, then the same
matrices M and K appear and we get

Kqj = Mq̃j−1 = M
qj−1

‖qj−1‖M
.

Note that the applied normalization is here w.r.t the M -norm, since this corresponds
to the L2-inner product in the infinite-dimensional case. Thus, the resulting iteration
equals (3.5) if we choose the normalization matrix Z = M .

Remark 3.5. If we discretize the iteration scheme introduced in (3.2), then also this is
equivalent to the inverse power iteration (3.5). To see this, the normalization matrix Z
has to be chosen accordingly.

3.2. A Krylov subspace method. The natural extension of the inverse power method
in order to approximate several eigenvalues is a subspace iteration, cf. [Saa11, Ch. 5]. This
includes several starting functions, for which a power iteration is applied, and an additional
orthogonalization step. The computation of several eigenvalues is also of interest in the
calculation of band-gaps of a photonic crystal. Here, we consider the Arnoldi method
in the operator setting. For this, we need an extension of the Krylov subspaces used in
numerical linear algebra.

3.2.1. Krylov spaces. Krylov subspaces play a crucial role for iterative eigenvalue com-
putations, see, e.g., [Saa11, Ch. 6.1]. In order to generalize these methods to the PDE
setting, we need Krylov subspaces for general Hilbert spaces [GHS14].

Let u0 be a function in V, e.g., an initial guess for the power method in Section 3.1.
With this, we define the Krylov subspace

Kmβ (u0) := span
{
u0, A−1

β Iu
0, . . . , (A−1

β I)m−1u0
}
⊆ V.(3.6)

Obviously, this defines a closed subspace of V. We emphasize that Kmβ (u0) is spanned - as
in the finite-dimensional case - by the iterates of the power method. To see this, note that
(A−1

β I)ju0 equals the corresponding iterate of the power method up to a multiplicative

constant. Thus, if we denote the sequence resulting from the modified inverse power

method (3.4) by ujpow, then we have

Kmβ (u0) = span
{
u0, u1

pow, . . . , u
m−1
pow

}
.
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3.2.2. Arnoldi’s method. We translate the Arnoldi algorithm from the matrix setting [Saa11,
Ch. 6.2] to the present operator case. Let {v1, . . . , vm} denote a basis of Kmβ (u0), e.g., ob-
tained by a Gram-Schmidt orthogonalization process. Then, the new iterate of the Arnoldi
method is given by um :=

∑m
j=1 ζjvj ∈ Kmβ (u0), whose coefficients ζ := [ζ1, . . . , ζm]T and

corresponding µm ∈ R are derived by the Galerkin projection

m∑
j=1

ζj aβ(vj , vk) = µm
m∑
j=1

ζj (vj , vk) for k = 1, . . . ,m.

This is equivalent to the m×m eigenvalue problem K̃ζ = µmM̃ζ, for which we search for
the smallest eigenpair. Here, K̃ and M̃ are stiffness and mass matrices restricted to the
Krylov basis, i.e.,

K̃jk := aβ(vj , vk), M̃jk := (vj , vk).

Thus, the extra costs going from the power method to the Arnoldi method are identical
as in the finite-dimensional setting, namely the solution of a small (but dense) eigenvalue
problem. Note that the resulting approximation of the eigenvalue, namely µm, is again
the Rayleigh quotient of the iterate um. The obtained pair of the Arnoldi method provides
the best-approximation within the Krylov subspace Kmβ (u0) in the sense that

〈Res(um, µm), v〉 = 0

for all v ∈ Kmβ (u0) and with the residual defined by Res(u, µ) := Aβu− µIu ∈ V∗ for any

pair (u, µ) ∈ V × C. Obviously, this implies that the Arnoldi method is superior to the
inverse power method. The norm of the residual may also be used as an error estimator
as it equals the backward error.

The gain of the Arnoldi method can also be characterized in terms of the Courant min-
max principle in Hilbert spaces, cf. [Cou20] or [WS72, Ch. 1]. This means that the j-th
eigenvalue is defined by minimizing over all j-dimensional subspaces of V, i.e.,

λj + β = µj = min
V(j)⊂V,

dimV(j)= j

max
v ∈V(j)

aβ(v, v)

(v, v)
.

With this, one shows that computed approximations of the eigenvalues are larger than the
exact ones. With the same arguments one can show that the Arnoldi iteration provides
better approximations than the inverse power method and thus, converges as well. More
precisely, the Arnoldi method computes an approximation µmArnoldi satisfying

µ1 ≤ µmArnoldi = min
V(1)⊂Kmβ (u0),

dimV(1)=1

max
v∈V(1)

aβ(v, v)

(v, v)
≤ max

v ∈ span{um−1
pow }

aβ(v, v)

(v, v)
= µm−1

pow .

Note that the inequality holds, since um−1
pow is an element of the Krylov subspace Kmβ (u0)

and thus, span{um−1
pow } is one particular one-dimensional subspace.

3.3. Newton iteration. Yet another approach is to apply Newton’s method to (2.3),
cf. [MV04, Sch08]. For this, we rewrite the eigenvalue problem as

Fy(u, λ) :=

[
(A− λ I)u
(y, u)− 1

]
= 0
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with a fixed function y ∈ V serving as normalization. Further, the second equation balances
the number of equations and variables. The resulting Newton iteration reads[

A− λj−1 I −Iuj−1

(y, · ) 0

] [
uj − uj−1

λj − λj−1

]
= −

[
Auj−1 − λj−1Iuj−1

(y, uj−1)− 1

]
.(3.7)

This means that all iterates are normalized to (y, uj) = 1 and uj satisfies

(A− λj−1 I)uj = (λj − λj−1) Iuj−1.

The similarities to the power method are obvious. More precisely, Newton’s method leads
to a shifted inverse iteration with the shift given by the previous eigenvalue approximation.
The precise algorithm is given in [MV04, Alg. I]. In the matrix case, this then leads to a
local third-order convergence of the eigenvalue, cf. [Osb64].

A simplified Newton algorithm would not update the shift in every step. If we even
consider a constant shift and set this to zero, then – up to scaling – we end up with the
power iteration given in (3.2). We will apply Newton’s method in Section 5 for a nonlinear
eigenvalue problem arising from two-dimensional photonic crystals.

4. A Nonlinear Model Problem

In this section, we consider an extension of the TM mode from Example 2.8, in which
the relative electric permittivity ε depends on the frequency and thus, the eigenvalue. This
then leads to a nonlinear eigenvalue problem. Assuming that ε is a rational function in
the frequency, we are able to reformulate the eigenvalue problem to a linear one satisfying
Assumptions 2.1 and 2.3. The lack of compactness, however, calls for a novel convergence
analysis of the inverse power method.

4.1. A simplified Drude-Lorentz model. We consider a photonic crystal made up of
two different materials. For this, we decompose the computational domain Ω into two
subdomains Ω = Ω1 ∪ Ω2, each representing one material. We define the corresponding
indicator functions on Ωj by χj : Ω → {1, 0}, j = 1, 2. On both subdomains we assume
the relative electric permittivity to be constant in space and thus,

(4.1) ε(x, ω) = ε1(ω)χ1(x) + ε2(ω)χ2(x).

To skimp the length of this section, the material contained in Ω1 is assumed to be linear,
i.e., we set the relative permittivity in this subdomain to a constant ε1(ω) ≡ α1 > 0. For
the frequency dependence in the second material we consider a simplified version of the
Drude-Lorentz model, see e.g. [LL10] or [Jac99, Ch. 7.5]. More precisely, we assume the
electric permittivity to be of the form

(4.2) ε2(ω) = α2 +

L∑
`=1

ξ2
`

η2
` − ω2

with a positive constant α2 > 0 and real parameters η`, ξ` such that η2
` , ξ

2
` ≥ 0. This

corresponds to the ’lossless’ case considered in [Eng10]. In order to stay bounded, we only
consider ω away from the pols given by η`. Since ω appears in (4.2) only squared, we
introduce λ := ω2 and obtain

λ ε2(λ) = λα2 +

L∑
`=1

λ ξ2
`

η2
` − λ

= λα2 − Ξ +

L∑
`=1

ξ2
` η

2
`

η2
` − λ
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with

Ξ :=
L∑
`=1

ξ2
` > 0.

Due to the inclusion of Ξ, the fractional terms are in a strictly proper form, i.e., the degree
of the polynomial in terms of λ in the numerator is strictly smaller than the degree in the
denominator. All in all, this leads to the nonlinear eigenvalue problem

−∇k · ∇kuk(x) + Ξχ2(x)uk(x)

= λ
(
α1χ1(x) + α2χ2(x)

)
uk(x) +

L∑
`=1

ξ2
` η

2
`

η2
` − λ

χ2(x)uk(x)(4.3)

with ∇k denoting again the shifted gradient introduced in Example 2.8. Our aim is to
turn this into a linear eigenvalue problem in order to apply the iterative methods from the
previous section. For this, we follow the ideas presented in [SB11, EKE12, Eff13], which
consider the corresponding finite-dimensional case. The main clue is to rewrite the sum,
which may be regarded as a transfer function, by means of a realization, i.e.,

(4.4)
L∑
`=1

ξ2
` η

2
`

η2
` − λ

= b∗
(
A− λI

)−1
b.

Due to the simple structure of the permittivity, we can directly read of the vector b =
[ξ1η1, . . . , ξLηL]T ∈ RL and A ∈ RL×L as the diagonal (and thus Hermitian) matrix with
Aj,j = η2

j for j = 1, . . . , L. By I ∈ RL×L we denote the identity matrix.

Remark 4.1. For other models of the permittivity, the choice (and even the dimension) of
A and b may not be as straightforward. Further, the identity matrix I may be replaced
by another positive Hermitian matrix. Proper realizations for such cases may be found
using the techniques in [SUBG18].

4.2. Spaces and embeddings. For the weak formulation and linearization of the eigen-
value problem (4.3) we introduce several function spaces. First, we introduce

H := L2(Ω), V := H1
per(Ω), X := {v ∈ H | v vanishes on Ω1}.

These spaces form Hilbert spaces equipped the inner products

(u, v) := (u, v)H :=

∫
Ω
uv dx, (u, v)V := (u, v) + (∇u,∇v), (u, v)X :=

∫
Ω2

uv dx

for u and v in the respective spaces H, V , or X. Second, we define the product spaces

H := H ⊗XL, V := V ⊗XL.

Also these product spaces are Hilbert spaces. In H we consider the inner product

(z1, z2)H := (u, v) +

L∑
`=1

(x`, y`)X

for z1 = [u;x], z2 = [v;y] ∈ H consisting of u, v ∈ H and x,y ∈ XL. Note that we use here
the notation [u;x] := [u,xT ]T . Analogously, we define an inner product in V by replacing
(u, v) by (u, v)V . This also defines the norms ‖z‖2H := (z, z)H and ‖z‖2V := (z, z)V .

Remark 4.2. Although the embedding V ↪→ H is compact, the embedding V ↪→ H is not.
This is due to the fact that the identity operator is not compact in infinite dimensions.
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For the weak formulation we further need several embeddings. First, I : V → V ∗ denotes
the continuous inclusion map defined by the Gelfand triple V , H, V ∗, cf. Section 2.3.
Second, we define the extension of the mapping u 7→ (u, · )X as I2 : V → V ∗, i.e.,

u 7→ 〈I2u, · 〉V ∗,V := (χ2u, χ2 · )X =

∫
Ω2

u · dx.

In the same manner, but based on the indicator function χ1, we define I1 : V → V ∗. The
weighted combination of these two embeddings yields Iα : V → V ∗, given by

Iα := α1I1 + α2I2.

Finally, we introduce the embedding I2 : X → V ∗. For u ∈ X this is defined by

u 7→ 〈I2u, · 〉V ∗,V := (u, χ2 · )X =

∫
Ω2

u · dx.

The corresponding dual operator I∗2 : V → X∗ satisfies for v ∈ V and u ∈ X that

〈I∗2v, u〉X∗,X = 〈v, I2u〉V,V ∗ = (χ2v, u)X .

Lemma 4.3. With the Riesz isomorphism jX : X → X∗, the introduced embeddings satisfy
that I2 j

−1
X I

∗
2 = I2 : V → V ∗.

Proof. Consider u, v ∈ V . Then, the claimed identity can be seen by

〈I2 j
−1
X I

∗
2u, v〉V ∗,V = 〈I∗2u, χ2v〉X∗,X = (χ2u, χ2v)X = 〈I2u, v〉V ∗,V . �

Remark 4.4. In the remainder of this paper, we often omit to write the Riesz isomorphisms
jH : H → H∗ or jX : X → X∗ if their presence is clear from the context. Thus, we may
write I2I

∗
2 = I2.

4.3. Weak formulation and linearization. This subsection is devoted to the transfor-
mation of the nonlinear eigenvalue problem into a linear one by the introduction of new
variables. Thus, we aim to write (4.3) in the form

Az = λ Iz.
Based on the proper form of the permittivity given in (4.4), we obtain the following weak
form of the eigenvalue problem. For a given (and fixed) wave vector k ∈ K, find a non-
trivial pair (uk, λ) ∈ V × R such that

(4.5) Akuk + Ξ I2uk = λ Iαuk + b∗
(
A− λI

)−1
b I2uk.

We emphasize that this equation is stated in V ∗. The operator Ak : V → V ∗ denotes
the weak form of the shifted Laplacian, cf. Example 2.8. For the linearization of (4.5) we
introduce a new variable

x := (A− λI)−1b I∗2uk ∈ XL.(4.6)

Note that this includes a hidden application of jX . With Lemma 4.3 this leads to a linear
eigenvalue problem where we search for a pair (z, λ) with z := [uk;x] ∈ V such that

(4.7)

[
Ak + Ξ I2 −I2b

∗

−b I∗2 A jX

]
z = λ

[
Iα

I jX

]
z.

This formulation consists of two equations stated in the dual spaces of V and XL, respec-
tively. The Riesz isomorphism jX should be understood as a componentwise application.

Remark 4.5. The operator on the left-hand side of the linearized eigenvalue problem (4.7)
has a generalized saddle point structure.
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Lemma 4.6. The eigenvalue problems (4.5) and (4.7) are equivalent. This means that
an eigenpair (uk, λ) of (4.5) defines a solution of (4.7) by ([uk;x], λ) with x as defined
in (4.6) and vice versa.

Proof. The second block row of (4.7) is given by (A−λI)jXx = b I∗2uk, which implies (4.6).

Substituting this formula for x into the first block row yields together with I2I
∗
2 = I2 from

Lemma 4.3 that (4.7) is indeed equivalent to the nonlinear eigenvalue problem (4.5). �

Defining A, I : V → V∗ in an obvious manner, we can write (4.7) in the form Az = λ Iz.
The to I corresponding sesquilinear form reads i : V × V → C,

i(z1, z2) :=
〈
Iαu, v

〉
V ∗,V

+
(
x1,x2

)
XL

for z1 = [u;x1], z2 = [v;x2] ∈ V. Note that we may also consider i as a sesquilinear form
mapping from H×H to C. We now show that this defines an inner product in H.

Lemma 4.7. The sesquilinear form i : H×H → C, defines an inner product in H.

Proof. Obviously, i is Hermitian and sesquilinear. Further, for any z = [u;x] ∈ H and
α := min{α1, α2} > 0, it holds that

i(z, z) ≥ α ‖u‖2 +
(
x,x

)
XL ≥ min(α, 1) ‖z‖2H,

which proves its positivity. �

4.4. Shifted eigenvalue problem. In the previous subsection, the nonlinear eigenvalue
problem was brought into the form Az = λ Iz. In order to use the framework presented
in Section 2, we need to apply a shift to gain positivity of the differential operator. Recall
from the discussion of the linear case that the operator Ak is not elliptic. From Lemma 2.9
we know, however, that Ak,β̃ := Ak + β̃I is elliptic for every β̃ > 0.

For fixed β̃ > 0 and α := min{α1, α2} we introduce β := β̃/α and shift the linearized
eigenvalue problem by βIz. This then provides the appearance of Ak,β̃. More precisely,

we obtain the shifted operator

(4.8) Aβ := A + β I =

[
Ak + Ξ I2 + β Iα −I2b

∗

−b I∗2 A + β I

]
.

Due to I = I1 + I2 we have

Ak + Ξ I2 + β Iα = Ak + Ξ I2 + β̃ α1
α I1 + β̃ α2

α I2

= Ak,β̃ + Ξ I2 + β̃
(
α−1Iα − I

)
with

(
α−1Iα − I

)
≥ 0. The shifted eigenvalue problem has the form Aβz = (λ + β) I z.

Corresponding to the operator Aβ, we define aβ : V × V → C by

aβ(z1, z2) :=
〈
Aβz1, z2

〉
= a(z1, z2) + β i(z1, z2)

for z1 = [u;x1], z2 = [v;x2] ∈ V.

Lemma 4.8. The sesquilinear form a : V×V → C defined through a(· , ·) := 〈A · , ·〉 satisfies
Assumption 2.3.

Proof. Due to the given structure of A and the fact that A is Hermitian, it is easy to
see that a is continuous and Hermitian. It remains to show that aβ is positive for some
shift β > 0. For this, we consider z = [u;x] ∈ V and note that

aβ(z, z) ≥
〈
Ak,β̃u+ Ξ I2u, u

〉
− 2 Re 〈I2b

∗x, u〉+
(
(A + β I)x,x

)
X
.
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The definition of b = [ξ1η1, . . . , ξLηL]T yields the estimate

2 Re 〈I2b
∗x, u〉 = 2

L∑
`=1

Re (ξ`η`x`, u)X ≤ 2

L∑
`=1

‖η`x`‖X‖ξ`u‖X

≤ max η2
` ‖x‖2X + max ξ2

` ‖u‖2X
and thus, with cell denoting the ellipticity constant of Ak,β̃,

aβ(z, z) ≥ cell ‖u‖2V + (Ξ−max ξ2
` ) ‖u‖2X + (min η2

` −max η2
` + β) ‖x‖2X .

Assuming β > max η2
` −min η2

` , we conclude the positivity of aβ. �

4.5. Convergence of the inverse power method. We apply the inverse power method
from Section 3.1 to the shifted eigenvalue problem Aβz = (λ+β) I z. For an initial function
z0 = [u0;x0] ∈ V we thus consider the iteration

Aβzj = µj−1 I z̃j−1 in V∗(4.9)

with the Rayleigh quotient

µj :=
aβ(zj , zj)

i(zj , zj)
=
‖zj‖2β
‖zj‖2

≥ 0.

Note that we use here the norms ‖z‖2β = aβ(z, z) and ‖z‖2 = i(z, z) in line with Sec-

tion 2.1. Further, z̃j−1 denotes the normalization in the i-norm, i.e., we define z̃j−1 :=
zj−1/‖zj−1‖. Note, however, that in the present setting the embedding V ↪→ H is not
compact and thus, Assumption 2.2 is not satisfied. Hence, Theorem 3.1 is not applicable
but we are able to show the following result.

Theorem 4.9. Consider the nonlinear eigenvalue problem (4.5) for a fixed wave vector k
and a starting function u0 ∈ V . Set z0 := [u0;x0] ∈ V with any x0 ∈ XL. Then, the
power iteration (4.9) converges in the sense that there exists a subsequence of uj, which
satisfies uj → uF in H with uF being an eigenfunction of (4.5).

Proof. We proceed as in the proof of Theorem 3.1 and test (4.9) with zj and z̃j−1, respec-
tively. This then yields the estimates

‖zj‖2β ≤ µj−1‖zj‖,
√
µj ≤

√
µj−1.

Due to µj ≥ 0, we conclude the existence of a limit µF := limj→∞ µ
j ≥ 0. This also

implies the uniform bounds

‖z̃j‖β =
√
µj ≤

√
µ0, ‖zj‖β . CV↪→H µj−1 ≤ CV↪→H µ0.

For the last estimate we have used the continuity of the embedding V ↪→ H and the
ellipticity of aβ shown in Lemma 4.8. Thus, there exist convergent subsequences and limits
zF, z̃F ∈ V, which satisfy (without relabeling) zj ⇀ zF, z̃j ⇀ z̃F in V. We emphasize that
the two limits can only differ by a multiplicative constant, i.e., z̃F = c zF. A componentwise
consideration with zj = [uj ;xj ], z̃j = [ũj ; x̃j ], and zF = [uF;xF] then yields

uj ⇀ uF in V, ũj ⇀ cuF in V, xj ⇀ xF in XL, x̃j ⇀ cxF in XL.

Using the compact embedding V ↪→ H, we conclude that the first component converges
strongly in H, i.e., uj → uF and ũj → c uF in H. We now show that the limit pair (uF, λF)
with λF := c µF − β solves the nonlinear eigenvalue problem (4.5). For this, we apply
to (4.9) a test function [v; 0] ∈ V with arbitrary v ∈ V and consider the limit j →∞,

aβ(zF, [v; 0])← aβ(zj , [v; 0]) = µj−1 i(z̃j−1, [v; 0])→ µF i(c zF, [v; 0]).
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By the definitions of aβ and i we conclude that

Aku
F + Ξ I2u

F = c µF IαuF − β IαuF + I2〈b,xF〉 in V ∗.

On the other hand, taking the limit in (4.9) with a test function [0;y] ∈ V, we obtain(
A + (β − c µF) I

)
xF = j−1

X b I∗2uF in XL.

These two equations together then give

Aku
F + Ξ I2u

F = λF IαuF + b∗(A− λF I)−1b I2u
F in V ∗.

Thus, the pair (uF, λF) is an eigenpair of the nonlinear eigenvalue problem (4.5). �

This result shows that the convergence is maintained for this particular case coming
from the linearization of a nonlinear eigenvalue problem. In contrast to Section 3, however,
we only showed the convergence in H and not in V due to the lack of compactness.

5. Nonlinear Eigenvalue Problems Arising in Photonic Crystals

Similarly as in Section 4, we consider an extension of Example 2.8 where the electric
permittivity ε is frequency-dependent and has the form (4.1). Here, however, we allow for
a more general class of models for the electric permittivity ε2(ω). Indeed, the simplified
Drude-Lorentz model considered in Section 4 has the particular property that it can be
linearized in a way that ensures Assumption 2.3. But other – more realistic – models may
not have this nice property. We are especially interested in the general causality-preserving
model described in [GVDZ17] and the full Drude-Lorentz model, see e.g. [LL10] or [Jac99,
Ch. 7.5], i.e.,

εCP(ω) = 1 +
L∑
`=1

A`
ω −B`

− A`

ω +B`
and εDL(ω) = αDL +

L∑
`=1

ξ2
`

η2
` − ω2 − iωγ`

for some empirically determined parameters A`, B` and, respectively, αDL, ξ`, η`, γ` for
` = 1, . . . , L. Here we restrict ourselves to the real part of these models in order to preserve
the Hermitian structure of the eigenvalue problem, i.e., we consider functions of the form

ε<CP(ω) = 1 +
L∑
`=1

2(ω2 − |B`|2)<(A`B`)− 4ω2=(A`)=(B`)

(ω2 − |B`|2)2 + 4ω2=(B`)2
,

and

ε<DL(ω) = αDL +
L∑
`=1

ξ2
` (η2

` − ω2)

(η2 − ω2)2 + γ2
`ω

2
.

The information about the imaginary part can be included later through perturbation
theory as a post-processing step, see [RF11]. After discussing the properties of the resulting
nonlinear eigenvalue problem in more details, we show in this section how to solve it with
a Newton-type iteration, provided some a priori knowledge on the eigenpair of interest is
given.

5.1. Definition of the eigenvalue problem. In the remainder of this section, we assume
that ε1(ω) ≡ α1 ∈ R+ and that ε2 is a real-valued function which is analytic on an open
connected set S ⊂ R where it satisfies

0 < C0 ≤ |ε2(ω)| ≤ C1 <∞ and ε2(−ω) = ε2(ω)

for all ω ∈ S.
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Given V = H1
per(Ω), H = L2(Ω) with the standard H1 and L2-norm, respectively, we

consider the nonlinear eigenvalue problem

(5.1) T (ω)u := Au− B(ω)u = 0 in V∗

where A : V → V∗ is defined by the sesquilinear form (2.2) via 〈Au, v〉V∗,V = a(u, v) for all
u, v ∈ V and B(ω) : S → L(V,V∗) is defined by

〈B(ω)u, v〉V∗,V :=

∫
Ω

(
α1χ1(x) + ε2(ω)χ2(x)

)
u(x)v(x) dx.

Here, L(X,Y ) denotes the set of bounded linear operators mapping from X to Y .
An eigenvalue problem similar to (5.1), but formulated in terms of operators mapping

from V into itself, was already analyzed in [Eng10]. Some properties of the operator-valued
function T (ω) can be directly derived from there.

Lemma 5.1. The operator-valued function T (ω) can be extended to a self-adjoint holo-
morphic operator-valued function in some neighborhood D of S, where D is symmetric with
respect to the real axis. Moreover, the spectrum of T (ω) consists of isolated eigenvalues of
finite multiplicity.

Proof. See the proof of Lemma 4.4 in [Eng10] and the following remark. �

Lemma 5.2. For all ω ∈ D the operator T (ω) : V → V∗ is Fredholm with index 0.

Proof. In [Eng10] it is shown that the operator T (ω) : V → V defined by (T (ω)u, v)V :=
〈T (ω)u, v〉V∗,V for all u, v ∈ V is Fredholm with index 0. Denoting by jV the Riesz
isomorphism between V and V∗, it follows that T (ω) = jV T (ω) is a composition of two
Fredholm operators with index 0 and thus, T (ω) is Fredholm with index 0 itself. �

We denote by (uF, ωF) ∈ V ×S an eigenpair of (5.1) and assume the multiplicity of the
eigenvalue ωF to be 1.

5.2. A Newton-type iteration. In this subsection, we define a Newton-type iteration
with the aim of converging, under certain conditions discussed in the next subsection, to
the eigenpair (uF, ωF). We wish to extend the results of [Sch08, Ch. 4] to the infinite-
dimensional case and therefore define the iteration following a similar reasoning. We start
with rewriting the eigenvalue problem as

(5.2) Fy(u, ω) :=

[
T (ω)u
Pyu− 1

]
= 0,

where the functional Py : V → C is defined by Pyu := (y, u) for all u ∈ V and the
normalizing vector y ∈ V has to be chosen such that PyuF 6= 0. Note that the Hermicity
of T (ω) for all ω ∈ S implies that the eigenvalues of T are real. However, since V
is defined over the field C, the well-posedness of the Newton-type iteration requires an
extension of the domain of definition of T to an open and convex neighborhood D ⊂ C of
S, cf. Lemma 5.1.

It follows that Fy is twice continuously Fréchet differentiable on E := G × D where
G is an open and convex subspace of V containing uF, and a Taylor expansion of Fy
around (u, ω) ∈ E yields

Fy(uF, ωF) = Fy(u, ω) + ∂Fy(u, ω)

[
uF − u
ωF − ω

]
+

1

2
∂2Fy(u, ω)

([
uF − u
ωF − ω

]
,

[
uF − u
ωF − ω

])
+O

(∥∥∥∥(uF − uωF − ω

)∥∥∥∥3

W

)
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where ‖ (u, ω) ‖2W := ‖u‖2V+ |ω|2 for all (u, ω) ∈ W := V×C. The corresponding Jacobian
is given by

∂Fy(u, ω) =

[
T (ω) T ′(ω)u
Py 0

]
,

where T ′ denotes the derivative of T with respect to ω. In order to shorten the notation,
we introduce the variables ∆u := uF−u and ∆ω := ωF−ω. The second Fréchet derivative
of Fy along the direction (∆u, ∆ω) reads

∂2Fy(u, ω)
([

∆u
∆ω

]
,

[
∆u
∆ω

])
= ∆ω

[
2T ′(ω)∆u+ T ′′(ω)u∆ω

0

]
.

Following the strategy of the standard formulation of Newton’s method, we define the
following iterative process: Given an initial vector (u0, ω0) ∈ E satisfying Pyu0 = 1, the
iterates are defined by uj+1 := uj + sj , ωj+1 := ωj + νj with

(5.3)

[
T (ωj) T ′(ωj)uj
Py 0

] [
sj

νj

]
= −

[
T (ωj)uj

0

]
for j = 0, 1, 2, . . ..

Clearly, T (ω) is not invertible in ω = ωF. Nevertheless, we show in the following
subsection that (5.3) is uniquely solvable for (sj , νj) when (uj , ωj) lies in a neighbourhood
of the eigenpair (uF, ωF).

5.3. Convergence of the Newton-type iteration. This subsection is devoted to the
proof of local convergence of the iteration introduced in (5.3). We adopt the ideas from
[AR68], where operators mapping from V to V are considered. For v ∈ V and ω ∈ C we
denote by Bτ (v, ω) ⊂ W the open ball of radius τ in the W-norm centred at (v, ω) and
by Bτ (v) ⊂ V the open ball of radius τ in the H-norm centred at v. We base the proof on
the Kantorovich theorem as stated and proved in [Deu04, Th. 2.1].

Theorem 5.3. Let Fy : E → W∗ be the continuously Fréchet differentiable mapping de-
fined in (5.2). For a starting point z0 = (u0, ω0) ∈ E let ∂Fy(z0) be invertible. Fur-

ther, we assume that Bρ(z0) ⊂ E with ρ := (1 −
√

1− 2h0)/κ0 and h0 := ακ0 ≤ 0.5,
where α, κ0 <∞ are defined through

‖∂Fy(z0)−1Fy(z0)‖W ≤ α,
‖∂Fy(z0)−1(∂Fy(z)− ∂Fy(z̃))‖W ≤ κ0 ‖z − z̃‖W

for all z, z̃ ∈ E. Then, the sequence (uj , ωj) obtained from iteration (5.3) is well-defined,

remains in Bρ(z0), and converges to some (uF, ωF) with Fy(uF, ωF) = 0. For h0 < 0.5,
the convergence is quadratic.

In order to use Theorem 5.3, we need to determine under which conditions the Jacobian
∂Fy(z0) is invertible.

Lemma 5.4. There exists τ > 0 such that

〈T ′(ωF)u, uF〉V∗,V 6= 0

and

V∗ = ker(QuF)⊕ span{T ′(ωF)u}
hold for any u ∈ Bτ (uF), where QuF : V∗ → C is defined by QuF := 〈 · , uF〉V∗,V .
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Proof. From Lemma 5.2 we know that T (ωF) is Fredholm with index 0, which implies

codim
(

im(T (ωF))
)

= dim
(

ker(T (ωF))
)
.

As the algebraic and geometric multiplicities of the eigenvalue ωF are equal to 1, we deduce
that codim(im(T (ωF))) = 1 and, additionally, T ′(ωF)uF 6∈ im(T (ωF)), see e.g. [LGMC07].
The last statement stays true in a neighbourhood of uF since T ′(ωF) is a linear operator,
i.e., there exists τ > 0 such that T ′(ωF)u 6∈ im(T (ωF)) for all u ∈ Bτ (uF). It follows that
we can decompose V∗ = im(T (ωF))⊕ span{T ′(ωF)u}.

Note that the Hermicity of T (ωF) implies that 〈T (ωF)v, uF〉V∗,V = 〈T (ωF)uF, v〉V∗,V = 0
for all v ∈ V. Now, since per definition of the eigenfunction uF 6≡ 0, there exist some
h ∈ V∗, α ∈ C, and v ∈ V with h = αT ′(ωF)u+ T (ωF)v such that

0 6= 〈h, uF〉V∗,V = 〈αT ′(ωF)u, uF〉V∗,V + 〈T (ωF)v, uF〉V∗,V = α〈T ′(ωF)u, uF〉V∗,V .
Therefore, 〈T ′(ωF)u, uF〉V∗,V 6= 0.

It remains to show that ker(QuF) = im(T (ωF)). We start by showing the inclusion ”⊆”.
Given any h ∈ ker(QuF) ⊂ V∗, we can write h = αT ′(ωF)u+ T (ωF)v for some α ∈ C and
v ∈ V. Thus, 0 = QuF(h) = 〈αT ′(ωF)u, uF〉V∗,V + 〈T (ωF)v, uF〉V∗,V = α〈T ′(ωF)u, uF〉V∗,V
implies α = 0 and therefore h ∈ im(T (uF)). The reverse inclusion follows from the fact
that for any h ∈ im(T (uF)) there exists some v ∈ V such that h = T (uF)v and thus,
QuF(h) = 〈h, uF〉V∗,V = 〈T (uF)v, uF〉V∗,V = 0. �

Lemma 5.5. Consider u ∈ Bτ (uF) with τ as in Lemma 5.4. Then ∂Fy(u, ωF) has a
bounded inverse.

Proof. We prove the bijectivity of ∂Fy(u, ωF) by showing that the equation

(5.4) ∂Fy(u, ω)

[
s
ν

]
=

[
f
g

]
with ω = ωF and u ∈ Bτ (uF) has a unique solution for all f ∈ V∗, g ∈ C. Since PyuF 6= 0
by assumption, we can decompose

(5.5) V = span{uF} ⊕ ker(Py).

Indeed, any v ∈ V can be written as the sum v = αvu
F+vker with αv := (PyuF)−1 Pyv ∈ C

and vker = v−αvuF ∈ ker(Py). Therefore, the lower row of (5.4) implies g = Pys = αsPyuF
and thus αs = (PyuF)−1g. Using the Hermicity of T (ωF), we find that the upper row of
(5.4) tested with uF yields

〈f, uF〉V∗,V = 〈T (ωF)s, uF〉V∗,V + 〈νT ′(ωF)u, uF〉V∗,V = ν〈T ′(ωF)u, uF〉V∗,V ,
from which it follows that

ν =
〈f, uF〉V∗,V

〈T ′(ωF)u, uF〉V∗,V
,

since the condition 〈T ′(ωF)u, uF〉V∗,V 6= 0 holds for all u ∈ Bτ (uF). Moreover, we note
that the restriction of T (ωF) to ker(Py) is bijective as mapping from ker(Py) to its range.
Indeed,

ker(T (ωF)|ker(Py)) = ker(T (ωF)) ∩ ker(Py) = {0}
implies the injectivity and the surjectivity is obvious from the definition. Therefore we
obtain from the upper row of (5.4) that

f = T (ωF)s+ νT ′(ωF)u = T (ωF)|ker(Py)sker + νT ′(ωF)u,

which implies
sker = T (ωF)|−1

ker(Py)

(
f − νT ′(ωF)u

)
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if f − νT ′(ωF)u ∈ im(T (ωF)|ker(Py)). In order to show that this last condition is satisfied,
we use the fact that ker(QuF) = im(T (ωF)) and the decomposition (5.5). This finally

implies f − (〈T ′(ωF)u, uF〉V∗,V)−1 〈f, uF〉V∗,VT ′(ωF)u ∈ ker(QuF) = im(T (ωF)|ker(Py)). �

Lemma 5.6. Let ω 6= ωF ∈ D be close enough to ωF so that T (ω) is invertible, and let
u ∈ V satisfy PyT (ω)−1T ′(ω)u 6= 0. Then ∂Fy(u, ω) has a bounded inverse.

Proof. Note that there exists a neighborhood around ωF in which T (ω) is invertible, since
the spectrum of T consists of isolated eigenvalues. We prove the bijectivity of ∂Fy(u, ω)
by showing that (5.4) has a unique solution for all f ∈ V∗, g ∈ C.

The upper row of (5.4) implies

s = T −1(ω)(f − ν T ′(ω)u)

whereas the lower row implies

g = Pys = PyT −1(ω)(f − νT ′(ω)u).

Thus, ν ∈ C is uniquely defined by

ν =
PyT −1(ω)f − g
PyT −1(ω)T ′(ω)u

as long as the condition PyT −1(ω)T ′(ω)u 6= 0 is satisfied. In this case, ∂Fy(u, ω) is linear,
bijective, and bounded which implies the existence of a bounded inverse. �

The previous lemmata show that choosing (u0, ω0) close enough to (uF, ωF) in E with

(5.6) PyT −1(ω0)T ′(ω0)u0 6= 0 if ω0 6= ωF

insures that ∂F(u0, ω0) has a bounded inverse. In this case, the first iteration step of (5.3)
is well-defined. An estimate for the bound κ0 appearing in Theorem 5.3 can be derived
from the fact that Fy is twice continuously Fréchet differentiable and that ∂2Fy(u, ω) is
bounded for all (u, ω) ∈ E, since

‖∂2Fy(u, ω)‖L(E×E,W∗) := sup
z1,z2∈E

‖∂2Fy(u, ω)(z1, z2)‖W∗
‖z1‖W‖z2‖W

≤ 2‖T ′(ω)‖L(V,V∗) + ‖T ′′(ω)u‖V∗ .

To sum up, the results of this section show the local convergence of the Newton iteration
(5.3) under the assumption that the starting point (u0, ω0) ∈ E is close enough to the
eigenpair and satisfies the condition (5.6).

6. Numerical Experiments

In this final section we consider the proposed PDE eigenvalue iterations for a linear as
well as a nonlinear example. In both cases we focus on the fact that we apply the inverse
power method before the spatial discretization, i.e., we consider refinements of the mesh
within the power iteration. Both experiments are defined on the unit square Ω = (0, 1)2

with a disk of radius 0.3 in the middle defining Ω2. In both cases the outer material is
air, i.e., ε1(ω) ≡ α1 = 1, whereas the relative electrical permittivity of the inner material
varies.
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Figure 6.1. The two plots show the relative error in the eigenvalue, i.e.,
|µj − µref|/|µref| (top) and the residual estimated in the dual norm, i.e.,
‖ res(λj , uj)‖V∗ (bottom). In both plots we compare the results for 3 ( ),
5 ( ), and 7 ( ) iteration steps per mesh. The dashed line in gray
corresponds to computations without refinements on the fine mesh.

6.1. Linear case. We consider the problem described in Example 2.8 for a fixed wave
vector k = [π/2, π]T . In order to find the smallest eigenvalue, we take as shift β = 1
and apply the Rayleigh quotient iteration (3.2). For the spatial discretization we use the
software library Concepts [FL02, Con19] using curved quadrilateral mesh cells and basis
functions of polynomial degree 2.

The obtained convergence history for the eigenvalue is shown in the upper plot of
Figure 6.1. More precisely, we show the relative error |µj − µref|/|µref|, where µref denotes
the reference solution (as approximation of µF) obtained on a finer spatial mesh with a
large number of inverse iteration steps. Here, the reference mesh corresponds to the sixth
level of uniform refinement. Note that µref > µF due to the spatial discretization error.
We compare the results for 3, 5, and 7 iteration steps per mesh. This means that we
perform a fixed number of iteration steps before we consider a uniform refinement of the
mesh. When the fine mesh (corresponding here to the fifth level of refinement) is reached,
the inverse power iterations continue without further mesh refinement. The corresponding
convergence on this fine mesh is depicted by the dashed line in Figure 6.1.

One observation is that the results for 3 iteration steps ( ) per mesh are comparable
to the results obtained on the fine mesh although the first 15 iteration steps are roughly as
expansive as a single step on the fine mesh. Note that the saturation of the convergence
is due to the discretization error, since µref is computed on a finer spatial mesh than the
iterates µj . This computational gain is even more distinct for the convergence of the
residuum (and thus the eigenfunction), which is shown in the lower plot of Figure 6.1.
Here, the residuum res : C× V → V∗ is defined by

res(λ, u) :=
(
Ak − λI

)
u ∈ V∗
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Figure 6.2. Convergence history for the nonlinear example. Again, the
relative error in the eigenvalue (top) and the residual estimated in the
dual norm (bottom) are shown. We compare the results for 3 ( ) and
7 ( ) iteration steps per mesh. The dashed line in gray corresponds to
computations on the fine mesh.

and measured in the dual norm, i.e.,

‖ res(λ, u)‖V∗ := sup
v ∈V,
‖v‖V=1

∣∣〈res(λ, u), v〉V∗,V
∣∣.

Here, also the results for 5 ( ) and 7 ( ) iteration steps per mesh show similar results
at much lower costs.

6.2. Nonlinear case. Motivated by the numerical example in [EKE12] we consider a
material within the disk Ω2 having a frequency-dependent permittivity described by a
two-term Lorentz model, cf. (4.2), with positive and real parameters

α2 = 2, ξ2
1 = 98.6960, ξ2

2 = 197.3921, η2
1 = 55.2698, η2

2 = 63.1655.

Recall that we consider here relative permittivities as discussed in Section 2.2. As in the
previous example, we are interested in the lower-most eigenvalue of the corresponding
nonlinear eigenvalue problem (4.3) for the fixed wave vector k = [π/2, π]T .

For the numerical solution of the eigenvalue problem, we apply the inverse power
method (4.9) to the linearized system with shift β = η2

2−η2
1 + 1. This shift guarantees the

positivity of the involved operator, cf. Lemma 4.8. In Figure 6.2 we compare again the
results for a fixed number of iteration steps per mesh. Here, the computational results are
even more convincing as the plots for 3 and 7 iteration steps per mesh are very similar to
the results obtained on the fine mesh, although the computational costs are significantly
smaller. In the considered nonlinear case, the iteration is based on the linearization (4.7)
but the residual is computed in terms of the nonlinear eigenvalue problem (4.3).

Finally, the eigenmode corresponding to the first eigenvalue obtained by the inverse
power method (4.9) applied on the linearized system is depicted in Figure 6.3.
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Figure 6.3. Illustration of the eigenmode corresponding to the first eigen-
value of the nonlinear eigenvalue problem of Section 6.2 showing its mod-
ulus (left) and phase (right).

7. Conclusion

In this paper, we have considered iterative methods for linear Hermitian as well as
specific nonlinear eigenvalue problems arising in photonic crystal modeling. In case the
electric permittivity is given by a Drude-Lorentz model with real coefficients and no dis-
sipation, we are able to linearize the problem to obtain a linear and Hermitian eigenvalue
problem. For this, we show the convergence of the inverse power method.

For more realistic models taking dissipation into account, the same procedure would
lead to a linear but non-Hermitian eigenvalue problem. Thus, instead of a linearization
we directly apply Newton’s method, for which we prove local convergence.
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