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At the beginning of 1941, Professor Ludwig Föppl published an eight-page paper
“Elastische Beanspruchung des Erdbodens unter Fundamenten” (Elastic stress in
the ground under foundations). It was further developed by his doctoral student
Gerhard Schubert and led to a publication by Schubert in 1942, which contains
many results obtained by researchers in contact mechanics in the subsequent
decades of the 20th century andwouldmakemany of these efforts unnecessary. . .
if it had become known. Unfortunately, both papers have been forgotten, which
is not particularly surprising considering the years when they appeared (1941–
1942), the language (German), as well as the location of the publisher (Munich).
Yet, these are true classicworks that are still veryworth reading, not just as histor-
ical artifacts, but also in terms of content. It is most regrettable that this excellent
work, which in itself nearly represents a small “handbook of contact mechan-
ics”, remained essentially unknown for a long time and has only been “rediscov-
ered” in recent years. The present paper provides a historical background and a
guideline to thementionedworks by Föppl and Schubert, followed by a complete
English translation of Schubert’s paper.
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1 INTRODUCTION

The name Föppl is well known in the German mechanics community. Students studying applied mechanics become
acquaintedwith this name already in their first semester due to the “Föppl brackets”.When speaking about Föppl, we have
to specify what Föppl is meant, as both August Föppl (the author of the Föppl brackets) and his sons Ludwig Föppl and
Otto Föppl were well-known German engineers. Together with both sons, August Föppl published textbooks on applied
mechanics, in particular a fundamental treatise on applied mechanics, “Drang und Zwang. Eine höhere Festigkeitslehre
für Ingenieure” (a free translation of this title into English could be “Stress and strain. An advanced strength theory for
engineers”) [1, 2]. August Föppl was a member of the Editorial Board of the ZAMM—Zeitschrift für Angewandte Mathe-
matik und Mechanik—from its foundation in 1921 to his death in 1924. Ludwig Föppl succeeded his father as professor at
the Technische Hochschule Munich in 1922 and as a member of the Editorial Board of ZAMM in 1925 [3].
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The present paper is devoted to the works of Ludwig Föppl and his doctoral student Schubert on contact mechanics.
However, anybody who tries to find something on this topic in Wikipedia or in historical works of contact mechanics and
tribology will fail. The Wikipedia article about Ludwig Föppl as of 2020 is devoted mostly to his work as a cryptanalyst
duringWorldWar I [4]. Indeed, starting as a volunteer in thewireless telegraphy service, he ended up as head of the Signals
Evaluation Office of the Sixth Army [5]. However, his main contributions are surely in mechanics, and in particular in
contact mechanics.
Let us sketch in brief the most important stations of the biography of Ludwig Föppl. He was born on 27. February 1887

in Leipzig as son of August Föppl, later professor at the Technische Hochschule Munich and lived in Munich since 1894.
He studied Mechanical Engineering, Physics, and Mathematics in Munich and Göttingen. He carried out his doctoral
work in Göttingen under supervision of David Hilbert, and after that, he was an assistant of Felix Klein. He habilitated
in Würzburg 1914 aged 27 and started teaching as Privatdozent at the Physics Institute at the University of Würzburg,
working with Wilhelm Wien, the author of the Wien’s displacement law, for which Wien received the 1911 Nobel Prize.
Ludwig Föppl was brother-in-law of Ludwig Prandtl. After the aforementioned military service, he became professor of
mechanics at the Technische Hochschule Dresden in 1920 and professor of mechanics at the Technische Hochschule
Munich in 1922 (see Figure 1).

F IGURE 1 Professor Ludwig Föppl at
the TH Munich (ca. 1939)

Ludwig Föppl not justworked onmechanics of continua theoretically.Hehas significantly developed the very important
industrial measuring technique of photoelasticity in Germany [6] (Figure 3). During the Second World War, he relocated
his residence and photoelasticity laboratory to Ammerland, which may have saved his life, because his house in Munich
was hit by an American bomb in an attack on July 12, 1944, and was completely destroyed [8] (Figure 2). 1947–1948, in
the particularly difficult period after the SecondWorld War, he directed the reconstruction of the Technische Hochschule
Munich (now the Technical University of Munich) as a rector.
Photoelasticity studies gave Föppl the possibility to “see” the stress state, as he writes in the preface to [6] (Figure 3).

Further, it was his photoelasticity laboratory, which gave him the possibility to continue working in the first years of the
Second World War. In his private, not published memoirs [8], he writes about the time around 1940th:

“. . .Above all, photoelasticity was promoted. Since our institute was a leader in this field in Germany, we
received orders from the industry. Among them were those that were considered important for the war and
therefore had to be treated preferentially. This gave me the opportunity to apply for my assistants and close
co-workers to be classified as ‘indispensable’ and as such I was able to protect them from being drafted. The
stock of urgently important tasks, especially in the field of photoelasticity issues, increased, so that I was able
to request previous employees who were in the field. In this way, I managed to pull some valuable young
people from the front and thereby save them from the worst. . . ” [8].
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F IGURE 2 The rests of the house of Prof. L. Föppl in Munich in Kaiserstraße 11 after an American bomb attack on July 12, 1944

Note that L. Föppl had rescued talented young people during the First World War too. M. Samuels writes about Föppl’s
time in the army [5]:

“. . .Föppl found that he was able to use the importance of the decryption work as a means to rescue bright
young men from the fighting. . . ”

F IGURE 3 Isochromats in a freewheel model obtained in the photoelasticity laboratory of Ludwig Föppl. A torque acts clockwise on the
outer ring. This causes the rollers to jam between the sloped surfaces of the inner ring and the outer ring. Model made of unsaturated polyester
resin VP 1527, 10 mm thick, diameter 230 mm. Reproduced from [7]

The treatise of engineeringmechanicsmentioned at the beginning already contained the classic parts of two- and three-
dimensional contact mechanics. However, it was the eight-page paper “Elastic stress in the ground under foundations” of
1941 [9], which was a breakthrough in contact mechanics of arbitrarily shaped axisymmetric bodies. In this paper, Föppl
determined the deformation of the surface of an elastic half-space under the action of arbitrary plane as well as arbitrary
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axis-symmetric pressure distribution, in a form that allowed a simple inversion and thus solution of an arbitrary contact
problem. This inversion was made in the dissertation of his doctoral student Gerhard Schubert, whose dissertation was
published in a shortened form in 1942 [10]. In spite of the fundamental and comprehensive results of this paper, it remained
widely unknown. The reasons for this are obvious: The paper was published in Munich, in German language during the
Second World War. Deep gaps separated German scientists from the rest of the world not only during the war but also in
the first post-war years, so the work fell into oblivion. To remind of the realities of the time, it is instructive to read what
Föppl writes in the preface to his postwar publication on rolling friction (dated with January 1947) [11]:

The present work originated in the last period of the war. Since the work will presumably also be read abroad,
it might not be without interest for the foreign colleagues to learn under what conditions the German scien-
tists carried out their research during the period of terror. The many German scholars who, like the author,
hated the Nazi tyranny from the outset, could only survive in Germany by withdrawing as much as possible
from public affairs and concentrating on their science. A lot of valuable scientific work has been done in Ger-
many since 1933. As far as it was created during thewar, it has largely not yet been published. This work is also
the first in a series of unpublished works by the author that has been printed. Hardly any foreign colleague,
who has not felt the tyranny of the system firsthand, can imagine underwhat kind ofmental pressure through
the Nazis this work was created. May our colleagues abroad take into account in their thoughts about Ger-
man scientists that very many of us have suffered more from this pressure than is generally assumed abroad.
With the spread of this insight, I hope that the deep gap that separates German science from foreign science
will be gradually bridged. The scientists who serve the truth and who apply the same laws to their research
regardless of political borders and apply the same standards to the results of this research are primarily called
to shake hands across borders. May this work help it!. . .

As a matter of fact, Ludwig Föppl was doubly hindered from being taken up more widely, as he suffered from being
German (and hence rejected by much of the wider academic world) and also part of the passive resistance to the Nazis
(and hence unlikely to have his work promoted officially prior to the end of the war).
The paper by Föppl from 1941 was only a small episode in his mechanics research work. For Schubert, this was his

only work on contact mechanics. After his doctoral examination on January 12, 1941, Schubert worked in the physics
department, in particular on low temperature physics, first at the Technische Hochschule Munich. 1950 he became a
professor for theoretical physics at the University of Mainz, where he served also as Director of the Institute of Theoretical
Physics and Dean of the Faculty of Physics (Figure 4) [12].

F IGURE 4 Gerhard Schubert 1977 as dean of the Physics Faculty of the University of Mainz. (Photo by Reiner Wierick)
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2 SOLUTIONS OF AXISYMMETRIC CONTACT PROBLEMS ACCORDING TO FÖPPL
AND SCHUBERT

In this section, we will briefly sketch the derivation of the solution for the contact problem of an arbitrary axially sym-
metric indenter, which was published 1941 by Föppl [9] and 1942 by Schubert [10]. These are the first known publications
providing a complete solution to the contact problem for arbitrary axisymmetric bodies with compact contact area. Over
the course of the history of contact mechanics, this solution was obtained multiple times using different approaches.
For instance, they were later found by Galin in 1946 as well, likely independently [13]. They reached a great degree of
international recognition through the paper of Sneddon [14]—one of the most cited publications in the history of contact
mechanics. Yet Sneddonmerely offers a different derivation approach to obtain already known solutions, including those
of Galin (whom he cites). Even much later, new interpretations and derivations of the same equations were published
repeatedly. Some of these were quite useful since they provided a new perspective on the issues and facilitated differ-
ent generalizations and developments. This includes the interpretation by Jäger [15], who treated the indentation of a
curved body as the superposition of infinitesimal indentations of flat cylindrical punches (although even this idea was
not original and was previously used by Mossakovskii [16]). The solution of Föppl and Schubert was finally transformed
into a simple mnemonic rule in the Method of Dimensionality Reduction (MDR) [17-21]. While the MDR is based on the
equations of Föppl–Schubert–Galin–Sneddon–Jäger, it also offers an intuitive physical-mnemonic interpretation, which
can be directly generalized to many other contact problems. In the meantime, the MDR has been extended to describe
tangential contacts, adhesive contacts, viscoelastic contacts, thermal effects in contacts, contacts of functionally graded
materials as well as applications to arbitrarily shaped bodies [22, 23].
Although 79 years have passed since the publications of Föppl and Schubert, this first historic derivation remains, sur-

prisingly, still the most direct and simple of all. Both for historic and didactic reasons, it is valuable to understand this
derivation. The following presentation of the derivation by Föppl and Schubert very closely follows the original pub-
lications; however, modified notations are used to highlight the direct connection to the equations of the MDR. This
presentation follows [24].
We consider an axially symmetric pressure distribution𝑝(𝑟) in a circle of radius a (see Figure 5). We calculate the dis-

placement at the “point of observation” A caused by an infinitesimally small force in the “source point” B and then inte-
grate over all source points. The location of the source point is parametrized by the linear coordinate 𝑠 and the angle φ.
The vertical displacement of the point A by the force d𝐹𝑁 = 𝑝(𝜌)𝑠d𝑠d𝜑 in point B is given by the fundamental solution
[25, 26]:

d𝑤(𝑟) =
𝑝(𝜌)𝑠d𝑠d𝜑

𝜋𝐸∗𝑠
=

1

𝜋𝐸∗
𝑝(𝜌)d𝑠d𝜑. (1)

F IGURE 5 Schematic diagram to display the notation proposed by Föppl
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The total vertical displacement caused by the entire pressure distribution results from integration

𝑤(𝑟) =
1

𝜋

𝜋

∫
0

⎛⎜⎜⎝
1

𝐸∗

𝑠2

∫
𝑠1

𝑝(𝜌)d𝑠
⎞⎟⎟⎠ d𝜑. (2)

In his paper [9], Föppl proposed to replace the parametrization s and φ with new variables ρ and ξ, which uniquely
define the location of the point B, too, and relate to s and φ according to the following equations:

𝑠 =
√
𝜌2 − 𝜉2 +

√
𝑟2 − 𝜉2, 𝜉 ≤ 𝜌 ≤ 𝑎,

𝜑 = arcsin

(
𝜉

𝑟

)
, 0 ≤ 𝜉 ≤ 𝑟.

(3)

Accordingly, the derivatives are

𝜕𝑠

𝜕𝜌
=

𝜌√
𝜌2 − 𝜉2

,

𝜕𝜑

𝜕𝜉
=

1√
𝑟2 − 𝜉2

.

(4)

Denoting the parenthesized expression in (2) by 𝑤1𝐷(𝜉), we can represent it as:

𝑤1𝐷(𝜉) =
1

𝐸∗

𝑠2

∫
𝑠1

𝑝(𝜌)d𝑠 =
2

𝐸∗

𝑎

∫
𝜉

𝑝(𝜌)𝜌d𝜌√
𝜌2 − 𝜉2

. (5)

For the vertical displacement (2), we then obtain

𝑤(𝑟) =
2

𝜋

𝜋∕2

∫
0

𝑤1𝐷(𝜉)d𝜑 =
2

𝜋

𝑟

∫
0

𝑤1𝐷(𝜉)d𝜉√
𝑟2 − 𝜉2

. (6)

Equation (6) is identical to the Equation (27) of the MDR (see Section 3). Equations (5) and (6) enable the calculation
of the displacement field resulting from a known pressure distribution. In his paper, Föppl examined the pressure distri-
butions (1 − 𝑟2∕𝑎2)−1∕2, (1 − 𝑟2∕𝑎2)1∕2 and a constant pressure distribution, demonstrating that the former corresponds
to a constant displacement and the second corresponds to a parabolic indenter.
Note that Equation (2) was already used in the book [2] by A. Föppl and L. Föppl in 1920. The new stepmade by Ludwig

Föppl in his paper in 1941 was the transition to the variables 𝜌 and 𝜉 according to (3) and Figure 5. In these (and only these)
variables, the contact problem is reduced to a two-step procedure described by Equations (5) and (6) both having the form
of Abel-transforms and thus enabling easy handling with known methods. Written in this particular form they enabled
easy inversion and thus complete solution of a large class of contact problems. The choice of integration variables 𝜌 and
𝜉 is one of many historical examples when a particular choice of parametrization made history. As it often happened in
the history of science, a reduction of the problem statement to a known problem provided its complete solution “at once”
[27].
The contribution of the doctoral student of Ludwig Föppl, Gerhard Schubert (1942) was the inversion of the integral

Equations (5) and (6). Since these are Abel transforms, Schubert found the solutions

𝑤1𝐷(𝜉) = 𝜉

𝜉

∫
0

𝑤′(𝜌)√
𝜉2 − 𝜌2

d𝜌 (7)

and

𝑝(𝜌) = −
𝐸∗

𝜋

𝑎

∫
𝜌

𝑤′
1𝐷(𝜉)√

𝜉2 − 𝜌2
d𝜉, (8)
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which are identical to the Equations (28) and (22) of the MDR (see Section 3 as well as Equations (28) and (32) in the
English translation of the Schubert’s original paper at the end of this historical overview). These two equations are a
straightforward consequence of the Föppl’s paper and the kernel of the Schubert’s paper. The rest of his paper consists of
applications of these relations to a great variety of special contact shapes.
The Equations (7) and (8) completely solve the contact problem: with given three-dimensional form𝑤(𝜌), using (7), one

can calculate the auxiliary function 𝑤1𝐷(𝜉), which then determines the pressure distribution by (8). Schubert used this
approach to solve the contact problems of the flat punch, the cone, power law profiles of second, fourth and sixth order,
concave power law profiles of second and fourth order, and the cylindrical indenter with rounded edges.
Of course, the publications of Föppl and Schubert did not contain the MDR interpretations of their equations, which

requires a couple of additional steps. In the interpretation of the MDR [21], 𝑤1𝐷(𝜉) is the vertical displacement in the
equivalent MDR model. The necessary property for the transition to the MDR interpretation is 𝑤1𝐷(𝜉 = 0) = 𝑤(𝑟 = 0).
This equation guarantees that the indentation depth of the three-dimensional profile is also the indentation depth of the
equivalent MDR profile. The mentioned property follows from Equation (6), when the limit 𝑤1𝐷(𝜉 = 0) is substituted for
𝑤1𝐷(𝜉) in the limit case 𝑟 → 0, while taking into account the identity

2

𝜋

𝑟

∫
0

d𝜉√
𝑟2 − 𝜉2

≡ 1. (9)

Then

𝑤(𝑟 = 0) = lim
𝑟→0

[𝑤(𝑟)] = 𝑤1𝐷(𝜉 = 0) ⋅
2

𝜋

𝑟

∫
0

d𝜉√
𝑟2 − 𝜉2

= 𝑤1𝐷(𝜉 = 0). (10)

It follows trivially from (5) that the contact radius is determined by the equation𝑤1𝐷(𝑎) = 0. The equation determining
the force, (19), follows from (8):

𝐹𝑁 = 2𝜋

𝑎

∫
0

𝑝(𝑟)𝑟 d𝑟 = −2𝐸∗

𝑎

∫
0

⎛⎜⎜⎝
𝑎

∫
𝜌

𝑤′
1𝐷(𝜉)√
𝜉2 − 𝑟2

d𝜉
⎞⎟⎟⎠ 𝑟 d𝑟

= −2𝐸∗

𝑎

∫
0

𝑤′
1𝐷(𝜉)

⎛⎜⎜⎜⎝
𝜉

∫
0

𝑟d𝑟√
𝜉2 − 𝑟2

⎞⎟⎟⎟⎠ d𝜉 = −2𝐸∗

𝑎

∫
0

𝜉𝑤′
1𝐷(𝜉)d𝜉 = 2𝐸∗

𝑎

∫
0

𝑤1𝐷(𝜉)d𝜉.

(11)

It can be easily seen that this equation is equivalent to the Equation (19) of theMDR (see next Section). It is precisely this
equation that makes it possible to reinterpret the problem in terms of a fictitious contact with a linear elastic foundation—
the main intermediate step of the MDR. Thus, all fundamental equations of the MDR are determined and the only task
remaining is to “put them into words”.
Note that the publications by Föppl and Schubert also contain solutions of the plane contact problem. Schubert applies

this solution to the following profiles: flat punch with symmetric load, flat punch with axisymmetric load, wedge profiles,
parabolically rounded wedge profile, power law profiles of second, fourth and sixth order, concave power law profiles of
second and fourth order, and the flat punch with rounded edges.

3 DERIVATIONS OF THEMAIN EQUATIONS OF THEMETHOD OF
DIMENSIONALITY REDUCTION FOR NORMAL CONTACT OF AXISYMMETRIC
PROFILESWITH A COMPACT CONTACT AREA

In this section, we provide an alternative derivation of equations found by Föppl and Schubert. This derivation is based
on the idea of Mossakovskii [16] and Jäger [15] to represent the solution to a contact problem of an arbitrary axisymmetric
body as a superposition of infinitesimal indentation with flat-ended circular cylinders. According to this idea, the known
solution for a rigid cylindrical indenter completely solves the contact problem also for an arbitrary shaped axisymmetric
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indenter. Accordingly, the knowledge of the solution for indenting a rigid cylinder of an arbitrary radius 𝑎 is a prerequisite
for the derivation. For a contact of a rigid cylinder with an elastic half-space, the solution is known already since Boussi-
nesq [25] (see also [26]). The pressure distribution under a rigid flat-ended cylinder pressed into an elastic continuum by
the indentation depth 𝑑 is equal to

𝑝(𝑟) =
1

𝜋

𝐸∗𝑑√
𝑎2 − 𝑟2

, (12)

where 𝐸∗ = 𝐸∕(1 − 𝜈2) with 𝐸 being Young modulus and 𝜈 Poisson ratio of the medium. The contact stiffness does not
depend on the indentation and is equal to

𝑘𝑧 = 2𝑎𝐸∗. (13)

The normal displacement of the surface of the elastic body outside the contact is

𝑤 (𝑟; 𝑎) =
2

𝜋
𝑑 ⋅ arcsin (𝑎∕𝑟) , 𝑟 ≥ 𝑎. (14)

We now consider the contact between a rigid indenter of the shape 𝑧̃ = 𝑓(𝑟) and an elastic half-space characterized by
the effective elasticity modulus 𝐸∗. Let the indentation depth under the effect of the normal force𝐹𝑁 be d and the contact
radius a. For a given profile shape, any of these three quantities uniquely determines the other two, in particular, the
indentation depth is a function of the contact radius, which is denoted by

𝑑 = 𝑔(𝑎). (15)

Let us examine the indentation process from the first touch to the final indentation depth d, denoting the values of the
force, the indentation depth and the contact radius during the indentation by 𝐹̃𝑁 , 𝑑 and 𝑎̃, respectively. The process can
then be viewed as a change in the indentation depth from 𝑑 = 0 to 𝑑 = 𝑑, with the contact radius changing from 𝑎̃ = 0

to𝑎̃ = 𝑎 and the contact force from 𝐹̃𝑁 = 0 to 𝐹̃𝑁 = 𝐹𝑁 . The normal force at the end of the process can be written in the
following form:

𝐹𝑁 =

𝐹𝑁

∫
0

d𝐹̃𝑁 =

𝑎

∫
0

d𝐹̃𝑁

d𝑑

d𝑑

d𝑎̃
d𝑎̃. (16)

Taking into account that the differential stiffness of a zone of radius𝑎̃ is given by

d𝐹̃𝑁

d𝑑
= 2𝐸∗𝑎̃ (17)

(see Equation (13)) and using the notation (15), we obtain

𝐹𝑁 = 2𝐸∗

𝑎

∫
0

𝑎̃
d𝑔(𝑎̃)

d𝑎̃
d𝑎̃. (18)

Integration by parts now results in

𝐹𝑁 = 2𝐸∗
⎡⎢⎢⎣𝑎 ⋅ 𝑔(𝑎) −

𝑎

∫
0

𝑔(𝑎̃)d𝑎̃
⎤⎥⎥⎦ = 2𝐸∗

⎡⎢⎢⎣
𝑎

∫
0

[𝑔(𝑎) − 𝑔(𝑎̃)] d𝑎̃
⎤⎥⎥⎦ = 2𝐸∗

⎡⎢⎢⎣
𝑎

∫
0

[𝑑 − 𝑔(𝑎̃)] d𝑎̃
⎤⎥⎥⎦ . (19)

This equation provides the basis for an intuitive interpretation of theMDR. According to this equation, the normal force
can be considered as resulting from the indentation of the profile 𝑧̃ = 𝑔(𝑎̃) into a one-dimensional elastic foundation with
linear stiffness density 2𝐸∗.
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We now turn our attention to calculating the pressure distribution in the contact area. An infinitesimal indentation of
an area of radius 𝑎̃ generates the following contribution to the pressure distribution (see Equation (12)):

d𝑝(𝑟) =
1

𝜋

𝐸∗√
𝑎̃2 − 𝑟2

d𝑑 , for 𝑟 < 𝑎̃. (20)

The pressure distribution at the end of the indentation process equals the sum of the incremental pressure
distributions:

𝑝(𝑟) =

𝑑

∫
𝑑(𝑟)

1

𝜋

𝐸∗√
𝑎̃2 − 𝑟2

d𝑑 =

𝑎

∫
𝑟

1

𝜋

𝐸∗√
𝑎̃2 − 𝑟2

d𝑑

d𝑎̃
d𝑎̃ (21)

or under consideration of the notation (15)

𝑝(𝑟) =
𝐸∗

𝜋

𝑎

∫
𝑟

1√
𝑎̃2 − 𝑟2

d𝑔(𝑎̃)

d𝑎̃
d𝑎̃. (22)

The function 𝑔(𝑎) fromEquation (15), therefore, uniquely defines both the normal force (Equation (19)) and the pressure
distribution (Equation (22)). The normal contact problem is reduced to the determination of the function 𝑔(𝑎), (15).
The function 𝑑 = 𝑔(𝑎) can be determined as follows. The infinitesimal surface displacement at the point 𝑟 = 𝑎 for

infinitesimal indentation by d𝑑 of a contact area of radius 𝑎̃ < 𝑎 is according to (14) equal to

d𝑤(𝑎) =
2

𝜋
arcsin

( 𝑎̃
𝑎

)
d𝑑. (23)

The total vertical displacement at the end of the indentation process is, therefore, equal to

𝑤(𝑎) =
2

𝜋

𝑑

∫
0

arcsin
( 𝑎̃
𝑎

)
d𝑑 =

2

𝜋

𝑎

∫
0

arcsin
( 𝑎̃
𝑎

) d𝑑

d𝑎̃
d𝑎̃ (24)

or with the notation (15)

𝑤(𝑎) =
2

𝜋

𝑎

∫
0

arcsin
( 𝑎̃
𝑎

) d𝑔(𝑎̃)

d𝑎̃
d𝑎̃. (25)

This vertical displacement, however, is obviously equal to 𝑤(𝑎) = 𝑑 − 𝑓(𝑎):

𝑑 − 𝑓(𝑎) =
2

𝜋

𝑎

∫
0

arcsin
( 𝑎̃
𝑎

) d𝑔(𝑎̃)

d𝑎̃
d𝑎̃. (26)

Integration by parts and consideration of the Equation (15) lead to the equation

𝑓(𝑎) =
2

𝜋

𝑎

∫
0

𝑔(𝑎̃)√
𝑎2 − 𝑎̃2

d𝑎̃. (27)

This is Abel’s integral equation, which is solved with respect to 𝑔(𝑎) in the following way [28]:

𝑔(𝑎) = 𝑎

𝑎

∫
0

𝑓′(𝑎̃)√
𝑎2 − 𝑎̃2

d𝑎̃. (28)

With the determination of the function 𝑔(𝑎), the contact problem is completely solved.
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Equations (19), (22), and (28) are the main equations of the MDR.
Note that the difference between the approach by Föppl and Schubert and that of Jäger (described in this Section) is

that Föppl and Schubert proceed from the fundamental solution for a concentrated force, while Jäger starts from the
solution for a flat-ended punch. The approach by Jäger is simpler and more intuitive while the approach by Föppl is more
straightforward and has no prerequisites.

4 CONCLUSION

The history of science sometimes reads like a detective novel. Like all types of human activity, it is an interweaving of indi-
vidual destinies and global shocks like wars. The personal destinies sometimes lead to the fact that outstanding, ingenious
works which were decades ahead of their time, sink into oblivion. Sometimes it is only the name of the scientist which
remains unknown, while his work becomes known due to publication under another name, as in the history of elastohy-
drodynamics [29]. But sometimes the coincidence of unfavorable circumstances leads to an almost complete oblivion of
the work. This seems to have happened with the publications of Föppl and Schubert. A quick screening of the literature
of contact mechanics shows that the results obtained by Schubert using the method previously developed by Föppl cover
a large amount of results found by dozens of researches during almost half a century. If these two publications became
known, contact mechanics would have received a very intensive impetus already 1941. But the history does not know the
subjunctive mood. . .
One cannot say that the papers by Föppl and Schubert have been completely forgotten. In almost 70 years Schubert’s

paper was cited 52 times (according to Google Scholar as of July 31, 2020). Half of these citations stem from the research
group of one of the authors of the present paper. This citation number should be compared with 4327 citations of the paper
by Sneddon [14]. From a historical perspective, the paper by Conway from 1956 is worth mentioning [30]. This paper is
devoted to contact mechanics of transversely isotropic bodies. The paper is very short (five pages) and consists of three
parts: (i) a very good historical overview, where the paper by Schubert is placed in the center; (ii) a reminder of the result
by Michell from [31] that the fundamental solution for a transversely isotropic medium is identical to that of an isotropic
medium (thus the whole contact mechanics is also identical); and (iii) the brief remark that the calculation method for
any isotropic axially symmetric normal contact problem by Schubert [10] can also be applied to the corresponding contact
problem of transversely isotropic media. Regrettably, the paper by Conway also went almost unnoticed (it was cited eight
times in 64 years).
The equations obtained by Föppl and Schubert became widely known due to publication by Sneddon in 1965, 24 years

after the Föppls publication and it took further decades until it became well-known and “established”. However, Sneddon
cites Galin but not Schubert.
Neither at the time of the publications by Föppl and Schubert nor at the time of the much later publication by Sneddon,

was it noticed that the equations of Föppl–Schubert–Galin–Sneddon allow a simple physical interpretation in terms of an
effective contact with a linear elastic foundation. This further step was made in the framework of the MDR. The MDR,
according to Barber [32], is basically a reinterpretation of the equations of Föppl–Schubert–Galin–Sneddon using a simple
contact with a one-dimensional elastic foundation. MDR summarizes the known solutions and presents them in a simply
reproducible mnemonic form. Due to theorems allowing for (exact or approximate) reduction of tangential contact prob-
lems (Cattaneo [33]; Mindlin [34]; Jäger [15]; Ciavarella [35]), viscoelastic contact problems (Radok [36]) and adhesive
contact problems (Johnson et al. [37]) to non-adhesive normal contact, the MDR becomes a very compact, universal and
intuitive tool for understanding and analyzing a great variety of contact problems. In fact, it provides a sort of “pocket
edition” of all solutions in contact mechanics of point contacts obtained by researchers in the last 138 years. All major
problems of contact mechanics—such as normal and tangential contact, stresses at the surface and inside the material,
viscoelastic contacts, adhesion, wear and fretting, influence of shape, and material gradients on adhesive strength and
wear as well as damping in oscillating contacts—this complete spectrum of essential contact problems can be analyzed
with the MDR without using complicated mathematical tools.
Even if not widely known, Föppl and Schubert initiated this process of drastic simplification of contact mechanics,

which finally, due to recent developments, became accessible even to students of physics or engineering in the first
semester. The parametrization invented by Föppl remains to our day the most simple and elegant method of solving
contacts with axisymmetric contact problem. It can be strongly recommended to anyone who teaches contact mechanics.
As an attachment to this paper, the reader will find a complete English translation of the paper by Schubert “On Stress

Distribution under Elastically Mounted Load Bearing Structures”. We refrained from translating the paper by Föppl from
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1941, which provides the starting point for the Schubert’s paper, because the transformation proposed by Föppl is explained
and cited in Schubert’s paper.
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On stress distribution under
elastically mounted load bearing structures1

By Gerhard Schubert in Munich

1. Assumptions.Here,wewill followup thework ofL. Föppl, “Elastic Loading of theGround beneath Bedplates”2.We
assume that the ground is composed of a homogenous, isotropic material that follows Hooke’s law. Thus, we neglect any
possible plastic deformations. Furthermore, we assume the force of friction between the structure and ground is negligible
and set it equal to zero from the beginning. This is not only possible when using the ground as a substrate, but also for
other materials [seeOkubo3]. From themultitude of possible forms of substrates, we choose two. First, we investigate the
infinitely extended half-plane, in which a two-dimensional state of stress appears due to the pressure from a structure.
Then, we investigate an axisymmetric case. If one wishes to consider instead a two-dimensional deformation state, then
one must only replace 𝐸 with 𝐸′ =

𝐸𝑚2

𝑚2−1
in the equations derived in the following.

To begin with, we envision the structure to be infinitely rigid with respect to the substrate and specify the form of the
pressure surface. Thismeans that we prescribe a perpendicular displacement of the substrate boundarywithin a particular
domain. The pressure to be determined is distributed over the domain in such a way as to result in the given displacement.
Outside of the considered domain, it is only required that the surface forces vanish at the boundary of the substrate. Once
the pressure distribution is determined, it is irrelevant whether one considers the displacement of the substrate surface
to be caused by a rigid bedplate or if the lower bedplate surface is an “elastic surface”. In this way, our considerations are
also important for the theory of flexible load bearing structures on elastic substrates.

2. Formulation of the integral equations. (a) Two-dimensional state of stress. We set up the calculation
using a right-handed Cartesian coordinate system (𝑥, 𝑦). Let the elastic displacement along the 𝑦 - axis be 𝜂. The equation
for the interface between the bedplate and the substrate is 𝑦 = 0. We assume, according to Figure 1, a single load 𝑃 normal

1 Dissertation at the Technische Hochschule München (D 91) in a shortened edition (Examiner: Prof. Dr. L. Föppl and Prof. Dr. J. Lense).
2L. Föppl, Forsch. Ing.-Wes. 12 (1941) p. 31.
3Okubo, Z. Angew. Math. Mech. 20 (1940) p. 271.
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F IGURE 1 Point load on a half-plane

F IGURE 2 Continuous pressure distribution

to the interface. Thereby, 𝑃 has the units force per unit length. The theory of elasticity provides for the derivative of 𝜂 with
respect to 𝑥.4 [

𝜕𝜂

𝜕𝑥

]
𝑦=0

≡ 𝜂′𝑥,0(𝑥) = −
2𝑃

𝜋𝐸

1

𝑥
. (1)

For a continuous load distribution, integration according to Figure 2 provides

𝜂′𝑥,0(𝑥) = −
2

𝜋𝐸

+𝑎

∫
−𝑎

𝑝(𝑢)

𝑥 − 𝑢
d𝑢, (2)

or with

𝑓(𝑥) ≡ 𝐸

4
𝜂′𝑥,0(𝑥) (3)

and, ultimately, for |𝑥| ≤ 𝑎,

𝑓(𝑥) =
1

2𝜋

+𝑎

∫
−𝑎

𝑝(𝑢)

𝑢 − 𝑥
d𝑢. (4)

Equation (4) is to be solved with respect to 𝑝(𝑢).
(b) Rotationally-symmetric state of stress. We transfer everything to a cylindrical coordinate system

(𝑟, 𝛼, 𝑥), where all quantities are independent from the azimuth 𝛼. According to Boussinesq, the displacement 𝜉 in
the 𝑥- direction at the edge for a point load on an infinite half-space is

[𝜉]𝑥=0 ≡ 𝜉0 =
𝑃

𝜋

𝑚2 − 1

𝐸𝑚2

1

𝑟
=

𝑃

𝜋𝐸′

1

𝑟
. (5)

4 Compare with p. 33 in L. Föppl, Forsch. Ing.-Wes. 12 (1941) p. 31.
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F IGURE 3 Point load on a half space

F IGURE 4 Continuous rotationally-symmetric loading

In order to find 𝜉0 for a rotationally-symmetric load 𝑝(𝑟) over a circle with a radius of 𝑎, one proceeds according to L.
Föppl, using the nomenclature defined in Figure 4, in the following way. Imagine a force 𝑝(𝑅, 𝜑)𝑅 d𝜑 d𝑅 at the origin
(𝑅, 𝜑) that corresponds, according the Equation (5), to the displacement

d𝜉0 =
1

𝜋𝐸′
𝑝(𝑅, 𝜑) d𝜑 d𝑅

at the point 𝑟. Integration with respect to 𝑅 results in

d𝜉0 =
1

𝜋𝐸′
d𝜑

𝑅2

∫
−𝑅1

𝑝(𝑅, 𝜑) d𝑅.

We set
𝑅2

∫
−𝑅1

𝑝(𝑅, 𝜑) d𝑅 = Φ1(𝜑), (6)
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resulting in

𝜉0 =
2

𝜋𝐸′

2∕𝜋

∫
0

Φ1(𝜑)d𝜑.

Inserting 𝑧 = 𝑟 sin 𝜑, we obtain

𝜉0(𝑟) =
2

𝜋𝐸′

𝑟

∫
0

Φ(𝑧)√
𝑟2 − 𝑧2

d𝑧 with Φ(𝑧) ≡ Φ1

(
arcsin

𝑧

𝑟

)
. (7)

In order to calculate Φ according to Equation (6), it proves useful to introduce a variable 𝜚 such that

𝑅 =
√
𝑟2 − 𝑧2 +

√
𝜚2 − 𝑧2,

d𝑅

d𝜚
=

𝜚√
𝜚2 − 𝑧2

.

Due to the fact that 𝑝 is only dependent on 𝜚, Equation (6) becomes especially simple:

Φ(𝑧) = 2

𝑎

∫
𝑧

𝑝(𝜚)𝜚√
𝜚2 − 𝑧2

d𝜚. (8)

Thus, we have the integral equations Equation (7) and Equation (8) to determine𝑝(𝜚).

3. Solution of the integral equations. (a) Inverse transformation for Equation (4). First, let it be men-
tioned that kernel of Equation (4) is so singular that one must use the Cauchy principle value.Hamel5 states the solution
to Equation (4) in the form of a series expansion. With

𝑥 = −𝑎 cos 𝜑, 𝑢 = −𝑎 cos 𝜓, (9)

Equation (4) becomes

𝑓(−𝑎 cos 𝜑) =
1

2𝜋

𝜋

∫
0

𝑝(−𝑎 cos 𝜓) sin 𝜓

cos 𝜑 − cos 𝜓
d𝜓. (10)

Let us express the function 𝑓(−𝑎 cos 𝜑) sin 𝜑 as a Fourier series, namely, as an odd function of 𝜑 in a series with sin
terms:

𝑓(−𝑎 cos 𝜑) sin 𝜑 = −
1

2

∞∑
𝑛=1

𝑏𝑛 sin 𝑛𝜑 (11)

with

𝑏𝑛 = −
4

𝜋

𝜋

∫
0

𝑓(−𝑎 cos 𝜑) sin 𝜑 sin 𝑛𝜑 d𝜑. (12)

Equation (10) becomes

1

𝜋

𝜋

∫
0

𝑝(−𝑎 cos 𝜓) sin 𝜓

cos 𝜑 − cos 𝜓
d𝜓 = −

∞∑
𝑛=1

𝑏𝑛
sin 𝑛𝜑

sin 𝜑
. (13)

5G. Hamel, Integralgleichungen, Berlin (1937) p. 145.
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However, the following integral formula is valid:

1

𝜋

𝜋

∫
0

cos 𝑛𝜓

cos 𝜑 − cos 𝜓
d𝜓 = −

sin 𝑛𝜑

sin 𝜑
(𝑛 = 0, 1, 2, 3, …). (14)

A comparison of Equation (13) and Equation (14) leads to

𝑝(−𝑎 cos 𝜓) =
1

sin 𝜓

(
𝑏0 +

∞∑
𝑛=1

𝑏𝑛 cos 𝑛𝜓

)
. (15)

This isHamel’s solution, in which 𝑏0 is initially an arbitrary constant. We determine it using the mechanical equilib-
rium condition

𝑃 =

𝑎

∫
−𝑎

𝑝(𝑢) d𝑢 = 𝑎

𝜋

∫
0

𝑝(−𝑎 cos 𝜓) sin 𝜓 d𝜓. (16)

In this case, 𝑃 is the total load. From Equation (15) and Equation (16), we obtain

𝑏0 =
𝑃

𝜋𝑎
. (17)

Now, we want to rearrange Hamel’s solution with the intention of obtaining an integral presentation of the solution. To
this end, we substitute Equation (12) into Equation (15) and write the infinite series as the limit of the sum of 𝑁 terms:

𝑝(−𝑎 cos 𝜓) =
1

sin 𝜓

⎡⎢⎢⎣ 𝑃

𝜋𝑎
−

4

𝜋
lim
𝑁→∞

𝑁∑
𝑛=1

𝜋

∫
0

cos 𝑛𝜓𝑓(−𝑎 cos 𝜑) sin 𝜑 sin 𝑛𝜑 d𝜑
⎤⎥⎥⎦ . (18)

For a finite number of terms, we may interchange between the serial and integral forms:

𝑝(−𝑎 cos 𝜓) =
1

sin 𝜓

⎡⎢⎢⎣ 𝑃

𝜋𝑎
−

2

𝜋
lim
𝑁→∞

𝜋

∫
0

𝑓(−𝑎 cos 𝜑) sin 𝜑

(
𝑁∑
𝑛=1

2 cos 𝑛𝜓 sin 𝑛𝜑

)
d𝜑
⎤⎥⎥⎦ . (19)

With the help of the familiar formula

𝑁∑
𝑛=1

sin 𝑛𝛼 =
sin

𝑁+1

2
𝛼 sin

𝑁

2
𝛼

sin
𝛼

2

=
cos

𝛼

2
− cos

2𝑁+1

2
𝛼

2 sin
𝛼

2

, (20)

we obtain the following after a few intermediate steps:

𝑁∑
𝑛=1

2 cos 𝑛𝜓 sin 𝑛𝜑 =

𝑁∑
𝑛=1

sin 𝑛(𝜑 + 𝜓) + sin 𝑛(𝜑 − 𝜓) =
sin 𝜑 + sin𝑁𝜑 cos(𝑁 + 1)𝜓 − sin(𝑁 + 1)𝜑 cos𝑁𝜓

cos 𝜓 − cos 𝜑
. (21)

We insert Equation (21) into Equation (19) and obtain

𝑝(−𝑎 cos 𝜓) =
1

sin 𝜓

⎡⎢⎢⎣ 𝑃

𝜋𝑎
−

2

𝜋

𝜋

∫
0

𝑓(−𝑎 cos 𝜑)sin
2
𝜑

cos 𝜓 − cos 𝜑
d𝜑 +

1

2
lim
𝑁→∞

𝐿𝑁

⎤⎥⎥⎦ (22)
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with

𝐿𝑁 ≡ 4

𝜋

⎡⎢⎢⎣cos𝑁𝜓

𝜋

∫
0

𝑓(−𝑎 cos 𝜑) sin 𝜑 sin(𝑁 + 1)𝜑

cos 𝜓 − cos 𝜑
d𝜑 − cos(𝑁 + 1)𝜓

𝜋

∫
0

𝑓(−𝑎 cos 𝜑) sin 𝜑 sin𝑁𝜑

cos 𝜓 − cos 𝜑
d𝜑
⎤⎥⎥⎦ . (23)

In order to calculate 𝐿𝑁 , we substitute the general term −
1

2
𝑏𝑘 sin 𝑘𝜑 of the series in Equation (11) into Equation (23).

Then, with 𝐿𝑁 =
∑∞

𝑘=1
𝐿𝑁𝑘, the general term becomes

𝐿𝑁𝑘 = −
𝑏𝑘
2

⎡⎢⎢⎣2 cos𝑁𝜓
1

𝜋

𝜋

∫
0

cos(𝑁 + 1 − 𝑘)𝜑 − cos(𝑁 + 1 + 𝑘)𝜑

cos 𝜓 − cos 𝜑
d𝜑 − 2 cos(𝑁 + 1)𝜓

1

𝜋

𝜋

∫
0

cos(𝑁 − 𝑘)𝜑 − cos(𝑁 + 𝑘)𝜑

cos 𝜓 − cos 𝜑
d𝜑
⎤⎥⎥⎦ .

From this, the integral formula Equation (14) provides

𝐿𝑁𝑘 =
𝑏𝑘

2 sin 𝜓
{2 cos𝑁𝜓 [sin(𝑁 + 1 − 𝑘)𝜓 − sin(𝑁 + 1 + 𝑘)𝜓] − 2 cos(𝑁 + 1)𝜓 [sin(𝑁 − 𝑘)𝜓 − sin(𝑁 + 𝑘)𝜓]} = 0,

at the end of the calculation, and consequently,

𝐿𝑁 = 0, lim
𝑁→∞

𝐿𝑁 = 0. (24)

If we once again substitute the variables 𝑥 = −𝑎 cos 𝜑 and 𝑢 = −𝑎 cos 𝜓 into Equation (22), it becomes

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

⎡⎢⎢⎣𝑃 + 2

𝑎

∫
−𝑎

𝑓(𝑥)
√
𝑎2 − 𝑥2

𝑢 − 𝑥
d𝑥
⎤⎥⎥⎦ (25)

or, according to Equation (3),

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

⎡⎢⎢⎣𝑃 +
𝐸

2

𝑎

∫
−𝑎

𝜂′𝑥,0(𝑥)
√
𝑎2 − 𝑥2

𝑢 − 𝑥
d𝑥
⎤⎥⎥⎦ . (26)

If the displacement 𝜂 is symmetric with respect to the 𝑦 - axis (i.e., 𝜂′𝑥,0(−𝑥) = −𝜂′𝑥,0(𝑥)), then one may easily rearrange
Equation (26) to

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

⎡⎢⎢⎣𝑃 + 𝐸

𝑎

∫
0

𝜂′𝑥,0(𝑥)𝑥
√
𝑎2 − 𝑥2

𝑢2 − 𝑥2
d𝑥
⎤⎥⎥⎦ . (27)

Let us point out that there are two conditions that 𝑝(𝑢)must satisfy. First, we assume pressure 𝑝 to be positive. When
the structure is slightly lifted, no tension forces are able to be transferred from the structure to the bedplate. Therefore,
𝑝(𝑢)may not be negative for |𝑢| ≤ 𝑎. For cases meeting this requirement, the contact length 2𝑎 may be determined. Sec-
ond, the static equilibrium conditions must be satisfied for the body of the structure. The infinite substrate should be
thought of in such a way that it is in equilibrium. The equilibrium of the substrate with respect to parallel displacement
requires that the parallel component of load vanishes, due to the lack of frictional forces. The equilibrium with respect to
the displacement in the 𝑦 - direction is assured due to Equation (17). In themost general case resultant force from 𝑝(𝑢) and
the load will not have the same line of action when 𝑝(𝑢) is calculated according to Equation (26). In order to also estab-
lish equilibrium of moments, it is necessary to take the rotation of the bedplate into account by including an additional
arbitrary constant in the expression of 𝜂′𝑥,0(𝑥). This is then included in 𝑝(𝑢) and can be determined from the moment
equation.
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F IGURE 5 (𝜚, s) - plane

(b) Inverse transformations for Equation (7) and Equation (8). According toAbel6, the solution of Equa-
tion. (7) is

Φ(𝑧) = 𝐸′
⎡⎢⎢⎣𝜉0(0) + 𝑧

𝑧

∫
0

𝜉′0(𝑟)√
𝑧2 − 𝑟2

d𝑟
⎤⎥⎥⎦ . (28)

Here, 𝜉0(0) is a constant that plays no role, as we will see. In order to now solve Equation (8) with respect to 𝑝(𝜚), we
start with the identity

Φ(𝑧) = Φ(𝑎) −
2

𝜋

𝑎

∫
𝑧

Φ′(𝑠)
𝜋

2
d𝑠. (29)

Furthermore, it can be easily shown that the following equation is valid:

𝑡

∫
𝑧

𝜚√
(𝑡2 − 𝜚2)(𝜚2 − 𝑧2)

d𝜚 =
𝜋

2
. (30)

Therefore, we can write Equation (29) in the following form when we choose 𝑡 = 𝑎 for the first term and 𝑡 = 𝑠 for the
second:

Φ(𝑧) =
2

𝜋

⎡⎢⎢⎣
𝑎

∫
𝑧

Φ(𝑎)𝜚√
(𝑎2 − 𝜚2)(𝜚2 − 𝑧2)

d𝜚−

𝑎

∫
𝑧

ds

𝑠

∫
𝑧

Φ′(𝑠)𝜚√
(𝑠2 − 𝜚2)(𝜚2 − 𝑧2)

d𝜚
⎤⎥⎥⎦ .

The double integral should be taken over the hatched domain in Figure 5. By changing the order of the integrals, one
obtains

Φ(𝑧) = 2

𝑎

∫
𝑧

𝜚√
𝜚2 − 𝑧2

1

𝜋

⎡⎢⎢⎣
Φ(𝑎)√
𝑎2 − 𝜚2

−

𝑎

∫
𝜚

Φ′(𝑠)√
𝑠2 − 𝜚2

ds
⎤⎥⎥⎦ d𝜚. (31)

6 Compare with Frank-Mises, Die Differential- und Integralgleichungen der Mechanik und Physik, Bd. 1, pp. 483–485, 2. Aufl., Braunschweig (1930).



20 of 34 POPOVA and POPOV

F IGURE 6 Example (a)

Comparing Equation (31) with Equation (8) provides the following inverse transformation for the equation:

𝑝(𝜚) =
1

𝜋

⎡⎢⎢⎣
Φ(𝑎)√
𝑎2 − 𝜚2

−

𝑎

∫
𝜚

Φ′(𝑠)√
𝑠2 − 𝜚2

ds
⎤⎥⎥⎦ . (32)

The static equilibrium conditions are limited, due to reasons of symmetry, to

2𝜋

𝑎

∫
0

𝑝(𝜚)𝜚 d𝜚 = 𝑃. (33)

This final equation (Equation 32) only contains the integration constant 𝜉0(0)within the expressionΦ(𝑎), whichwe can
insert as a new integration constant. If 𝑎 is known from the beginning and𝑝(𝜚) is not negative for 𝜚 ≤ 𝑎, thenwe determine
Φ(𝑎)with the help of Equation (33). However, if 𝑝(𝜚) is negative for 0 < 𝑐 ≤ 𝜚 ≤ 𝑎, thenwemust consider 𝑎 as a parameter
in Equation (32) to be calculated from 𝑝(𝑎) = 0, which is, according to the definition in Equation (6), synonymous with
Φ(𝑎) = 0 . Thereby, the constant is already established and we must find 𝑎 in such a way that the necessary condition
Equation (33) is satisfied.

4. Examples for the two-dimensional problem. (a) The symmetrically loaded substrate by a
flat-bottomed bedplate. Let 𝜂′𝑥,0 = 0. With this, Equation (26) provides the familiar result7

𝑝(𝑢) =
𝑃

𝜋
√
𝑎2 − 𝑢2

=
2𝑝0

𝜋

√
1 − (𝑢∕𝑎)

2
, (34)

in which 𝑝0 = 𝑃∕2𝑎 is an equivalent pressure resulting in a uniform pressure distribution.
(b) The asymmetrically loaded substrate by a flat-bottomed bedplate. The resultant 𝑃 of the load is

applied at a distance 𝑏 from the axis of symmetry. Then, the bedplate rotates counter clockwise by a very small angle
𝛾 = arctan 𝛼 counter-clockwise as a result of the deformation of the half-plane. Therefore, 𝜂′𝑥,0(𝑥) = 𝛼 = const. Hamel’s
solution (Equation 15), in combination with Equation (17) and substitution of the variables 𝑥 and 𝑢, immediately leads to

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

[
𝑃 +

𝜋

2
𝐸𝛼𝑢

]
. (35)

Now, there are two cases to discriminate between.

7 Compare with p. 34 in L. Föppl, Forsch. Ing.-Wes. 12 (1941) p. 31.
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F IGURE 7 Example (b)

1) There should be no lifting of the bedplate from the substrate.
This means 𝑎 = 𝐴, while 𝐴 is defined in Figure 7. Here, the equilibrium of moments requires

𝐴

∫
−𝐴

𝑝(𝑢)𝑢 d𝑢 = 𝑃𝑏. (36)

Elementary integration results in the conditional equation for 𝛼:

𝜋

4
𝐸𝐴2𝛼 = 𝑃𝑏.

Due to the fact that 𝛼 ≪ 1, we obtain the angle of rotation when we introduce the equivalent pressure 𝑝0 = 𝑃∕2𝐴, as we
will always want to do later:

𝛾 ≈ 𝛼 =
8

𝜋

𝑝0𝑏

𝐸𝐴
. (37)

If we take Equation (37) into account in Equation (35), we obtain the pressure distribution independent of 𝐸:

𝑝(𝑢) =
2𝑝0

𝜋

√
1 − (𝑢∕𝐴)

2

[
1 + 2

𝑏

𝐴

𝑢

𝐴

]
. (38)

The condition 𝑝 ≥ 0 at the point 𝑢 = −𝐴 leads to the constraint 𝑏 ≤ 𝐴∕2. As long as this is satisfied, the bedplate does
not lift from the substrate. Figure 8 shows the trend of the function 𝑝̄(𝑢∕𝐴) ≡ 𝑝(𝑢)𝜋∕(2𝑝0) for 𝑏 = 𝐴∕4 and 𝑏 = 𝐴∕2.
2) For the case that 𝑎 ≤ 𝐴. This is the case for 𝑏 ≥ 𝐴∕2 . In the points 𝑢 < −𝑎, the substrate and bedplate no longer have

contact. The moment equation for point 𝑢 = 0 (Figure 9), upon using Equation (35), is

𝑎

∫
−𝑎

𝑝(𝑢)𝑢 d𝑢 =
𝜋

4
𝐸𝛼𝑎2 = 𝑃 [𝑏 − (𝐴 − 𝑎)] . (39)

From this, we obtain

𝑝(𝑢) =
𝑃

𝜋
√
𝑎2 − 𝑢2

{
1 +

2 [𝑏 − (𝐴 − 𝑎)]

𝑎2
𝑢

}
. (40)

Since tension will initially occur at the point 𝑢 = −𝑎, the conditional equation for 𝑎 must be 𝑝(−𝑎) = 0, meaning

𝑎 = 2(𝐴 − 𝑏). (41)
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F IGURE 8 Pressure distribution under an eccentrically loaded bed plate with a two-dimensional substrate

F IGURE 9 Determining the pressure distribution for partial lifting of the bed plate from the ground

With this, we obtain the following pressure distribution:

𝑝(𝑢) =
𝑃

𝜋𝑎

√
𝑎 + 𝑢

𝑎 − 𝑢
. (42)

The curve 𝑝(𝑢) ⋅ const is already drawn in Figure 8 (𝑏 = 𝐴∕2). Here, 𝑢∕𝑎 is only replaced with 𝑢∕𝐴. We note that also
in this case, 𝑝(𝑢) is independent of 𝐸.
(c) Cutting shape structure. Here, 𝜂′𝑥,0(𝑥) = − tan 𝛽 = −𝛼 for 0 ≤ 𝑥 ≤ 𝑎. Due to symmetry, we use Equation (27)

and have

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

⎡⎢⎢⎣𝑃 + 𝐸𝛼

𝑎

∫
0

𝑥
√
𝑎2 − 𝑥2

𝑥2 − 𝑢2
d𝑥
⎤⎥⎥⎦ .

The integral can be easily solved and one obtains

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

(𝑃 − 𝐸𝛼𝑎) +
𝐸𝛼

𝜋
arctan

√
1 −

(𝑢
𝑎

)2
. (43)
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F IGURE 10 Example (c)

F IGURE 11 Representation of the pressure distribution according to Equation (44)

Again, there are two cases to differentiate.
1) 𝑃 > 𝐸𝛼𝐴. In Equation (43), 𝑎 = 𝐴must now be substituted. The pressure distribution is now dependent on the ratio

𝑝0 ∶ 𝐸:

𝑝(𝑢) =
2𝑝0
𝜋

[(
1 −

( 𝑢
𝐴

)2)−1∕2(
1 −

𝐸𝛼

2𝑝0

)
+

𝐸𝛼

2𝑝0
arctan

√
1 −

( 𝑢
𝐴

)2]
. (44)

Figure 11 illustrates this equation for the special case of 𝑝0 = 𝐸𝛼, 𝑝̄ = 𝜋𝑝(𝑢)∕(2𝑝0). Noteworthy is the fact that at the
point 𝑢 = 0,𝑝 only becomes logarithmically infinite, while at the point 𝑢 = 𝐴, the order of singularity is 1∕2, as in example
(a).
2) 𝑃 ≤ 𝐸𝛼𝐴. So that 𝑝 does not become negative, 𝑎 ≤ 𝐴. In order to obtain 𝑝(𝑎) = 0, it is necessary to make the first

term in Equation (43) identically equal to zero:

𝑎 =
𝑃

𝐸𝛼
. (45)

With this, the pressure under the wedge is obtained:

𝑝(𝑢) =
𝑃

𝜋𝑎
arctan

√
1 −

(𝑢
𝑎

)2
. (46)

Figure 12 depicts the trend of the function 𝑝̄ = 𝑎𝜋𝑝(𝑢)∕𝑃. In the middle, the pressure is logarithmically infinite. At
the edges, the dependence of pressure is of such a low order that the tangents of the pressure distribution curve run
asymptotically vertically.
Now, a geometrically sharp point would practically not exist; the point would be more or less rounded so that the

pressure would not be infinite. To illustrate this, three simple examples will be examined that are also important from
another view point.
(d) Parabolically rounded wedge. For a rounded profile according to a second order parabola (Figure 13)

𝜂′𝑥,0(𝑥) = − cot 𝛾
𝑥

𝑥0
for |𝑥| ≤ 𝑥0.
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F IGURE 1 2 Pressure under the wedge

F IGURE 13 Parabolically rounded wedge

Furthermore, we assume that 𝑎 ≤ 𝑥0. Then, Hamel’s method provides

𝑝(𝑢) =
1√

𝑎2 − 𝑢2

[
𝑃

𝜋
+

𝐸 cot 𝛾

4𝑥0
(𝑎2 − 2𝑢2)

]
. (47)

The condition 𝑝(𝑎) = 0 provides

𝑎 = 2

√
𝑥0𝑃

𝜋𝐸 cot 𝛾
= 2

√
𝑟0𝑃

𝜋𝐸
. (48)

Here, 𝑟0 is the radius of curvature of the parabola at the point 𝑥 = 0 .With Equation (48), Equation (47) is simplified to

𝑝(𝑢) =
2𝑃

𝜋𝑎

√
1 −

(𝑢
𝑎

)2
. (49)

The Hertzian solution for the pressure is given by Equation (48) and Equation (49), which was to be expected. This is
because in the derivation of the Hertzian formula, the loading structure is replaced with a parabolic cylinder with the
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F IGURE 14 Pressure distribution under a fourth order parabolic cylinder

F IGURE 15 Pressure distribution under a sixth order parabolic cylinder

same curvature along the contact line. However, the application of the Hertzian formula is only allowed for 𝑎 ≪ 𝑟0. In
our case, this restriction is unnecessary.
For 𝑎 > 𝑥0, nothing substantially new is provided. For the curvature of a fourth order parabola,

𝜂′𝑥,0(𝑥) = − cot 𝛾

(
𝑥

𝑥0

)3

for |𝑥| ≤ 𝑥0.

With this at 𝑎 ≤ 𝑥0, we obtain

𝑝(𝑢) =
1√

𝑎2 − 𝑢2
.

[
𝑃

𝜋
+

𝐸 cot 𝛾

16𝑥30
(𝑎4 + 4𝑎2𝑢2 − 8𝑢4)

]
. (50)

The condition 𝑝(𝑎) = 0 yields

𝑎 = 2
4

√
𝑥30𝑃

3𝜋𝐸 cot 𝛾
(51)

and, thus,

𝑝(𝑢) =
4𝑃

3𝜋𝑎

[
1 + 2

(𝑢
𝑎

)2]√
1 −

(𝑢
𝑎

)2
. (52)
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F IGURE 16 Paraolically curved bed plate

Whereas one could have immediately written the formula from Hertz for the previous case, this is not possible here,
because the curvature of the profile disappears at the point of contact (flat point).
If one chooses a sixth order parabola as the curve at the rounded wedge, then the pressure distribution becomes

𝑝(𝑢) =
6𝑃

5𝜋𝑎

[
1 +

4

3

(𝑢
𝑎

)2
+

8

3

(𝑢
𝑎

)4]√
1 −

(𝑢
𝑎

)2
(53)

with

𝑎 = 2
6

√
𝑥50𝑃

10𝜋𝐸 cot 𝛾
. (54)

Let us choose a specific example to allow for a comparison between the three cylinder pressures:

𝑃 = 1 kg∕cm 𝐸 = 104 kg∕cm2, 𝑥0 = 1 cm, and 𝛾 =
𝜋

4
.

One finds for

a second order parabola: 𝑝max = 56.5 kg/cm2, 𝑎 = 0.011 cm,
a fourth order parabola 𝑝max = 5.2 kg/cm2, 𝑎 = 0.114 cm,
a sixth order parabola 𝑝max = 2.8 kg/cm2, 𝑎 = 0.243 cm.

(c) Parabolically-convex bedplate. The equations from Equation (47) to Equation (52) also describe the pressure
distribution under a structure as that shown in Figure 16. The equation for the lower surface is

𝜂0(𝑥) = −
ℎ

𝐴2
𝑥2 or 𝜂0(𝑥) = −

ℎ

𝐴4
𝑥4.

One substitutes 2ℎ∕𝐴2 for cot 𝛾∕𝑥0 or 4ℎ∕𝐴4 for cot 𝛾∕𝑥30 . Now, if according to Equation (48) or Equation (51) 𝑎 ≤ 𝐴,
then Equation (49) or Equation (52) apply. Otherwise, Equation (47) or Equation (50) provide the pressure distribution
with 𝑎 = 𝐴:

𝑝(𝑢) =
𝑃

𝜋𝐴

1√
1 −

(
𝑢

𝐴

)2
[
1 + 𝑐2

(
1 − 2

( 𝑢
𝐴

)2)]
with 𝑐2 =

𝜋𝐸ℎ

2𝑃
, (55)

𝑝(𝑢) =
𝑃

𝜋𝐴

1√
1 −

(
𝑢

𝐴

)2
[
1 + 𝑐4

(
1 + 4

( 𝑢
𝐴

)2
− 8

( 𝑢
𝐴

)4)]
with 𝑐4 =

𝜋𝐸ℎ

4𝑃
. (56)

So that 𝑝 does not become negative, 𝑐2 and 𝑐4must be constrained to the intervals−1 ≤ 𝑐2 ≤ 1 and−2

3
≤ 𝑐4 ≤ 1

3
, respec-

tively. Negative values for 𝑐2 and 𝑐4 are exhibited by concave bedplates.
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F IGURE 17 Pressure distribution according to Equation (55a)

F IGURE 18 Pressure distribution according
to Equation (56a)

The introduction of 𝑢 = 𝐴 sin𝜒 in Equation (55) and Equation (56) serves to provide a clear graphical illustration (Fig-
ures 17, 18):

𝑝(𝜒) =
𝑃

𝜋𝐴

1 + 𝑐2 cos 2𝜒

cos 𝜒
=

𝑃

𝜋𝐴
𝑝̄2(𝜒), (55a)

𝑝(𝜒) =
𝑃

𝜋𝐴

1 + 2𝑐4 cos 2𝜒 − 𝑐4 cos 4𝜒

cos 𝜒
=

𝑃

𝜋𝐴
𝑝̄4(𝜒). (56a)

Here, we would only like to draw attention to the importance of this pressure distribution for elastically supported,
non-rigid structures. This question will be more generally addressed at a later point.
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F IGURE 19 Bed plate with parabolically-rounded edges

F IGURE 20 Pressure distribution for rounded edges

(f) Flat bedplate with rounded corners. We consider the bedplate shown in Figure 19 and choose

𝜂′𝑥,0(𝑥) = 0 for |𝑥| ≤ 𝐴, 𝜂′𝑥,0(𝑥) = ∓
|𝑥| − 𝐴

𝑟0
for |𝑥| ≥ 𝐴,

where 𝑎 is unknown. Equation (27) yields

𝑝(𝑢) =
1

𝜋
√
𝑎2 − 𝑢2

⎡⎢⎢⎣𝑃 +
𝐸

𝑟0

𝑎

∫
𝐴

(𝑥 − 𝐴)𝑥
√
𝑎2 − 𝑥2

𝑥2 − 𝑢2
d𝑥
⎤⎥⎥⎦ . (57)

For convenience, one may introduce the non-dimensional quantities

𝑥1 =
𝑥

𝐴
, 𝑢1 =

𝑢

𝐴
, 𝑎1 =

𝑎

𝐴
, 𝑟1 =

𝑟0
𝐴

(58)

and then obtain

𝑝(𝑢1) =
1

𝜋
√

𝑎21 − 𝑢21

⎡⎢⎢⎢⎣
𝑃

𝐴
+

𝐸

𝑟1

𝑎1

∫
1

(𝑥1 − 1)𝑥1

√
𝑎21 − 𝑥21

𝑥21 − 𝑢21
d𝑥1

⎤⎥⎥⎥⎦ .
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Elementary integration yields

𝑝(𝑢1) =
1

𝜋
√

𝑎21 − 𝑢21

{
𝑃

𝐴
+

𝐸

2𝑟1

[√
𝑎21 − 1 + (𝑎21 − 2𝑢21)

(
𝜋

2
− arcsin

1

𝑎1

)

+ (𝑢1 − 1)
√

𝑎21 − 𝑢21 ln

||||||||
𝑎21 − 𝑢1 +

√
(𝑎21 − 1)(𝑎21 − 𝑢21)

𝑎1(𝑢1 − 1)

||||||||
− (𝑢1 + 1)

√
𝑎21 − 𝑢21 ln

||||||||
𝑎21 + 𝑢1 +

√
(𝑎21 − 1)(𝑎21 − 𝑢21)

𝑎1(𝑢1 + 1)

||||||||
⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

. (59)

The equation 𝑝(𝑎1) = 0 serves to determine 𝑎1:

2𝑃𝑟1
𝐴𝐸

= 𝑎21

(
𝜋

2
− arcsin

1

𝑎1

)
−
√

𝑎21 − 1. (60)

This provides the pressure distribution

𝑝(𝑢1) =
𝐸

2𝜋𝑟1

[(
𝜋 − 2 arcsin

1

𝑎1

) √
𝑎21 − 𝑢21 + (𝑢1 − 1) ln

||||||||
𝑎21 − 𝑢1 +

√
(𝑎21 − 1)(𝑎21 − 𝑢21)

𝑎1(𝑢1 − 1)

||||||||
− (𝑢1 + 1) ln

||||||||
𝑎21 + 𝑢1 +

√
(𝑎21 − 1)(𝑎21 − 𝑢21)

𝑎1(𝑢1 + 1)

||||||||
⎤⎥⎥⎥⎦ .

(61)

Generally, the left side of Equation (60) becomes small with respect to 1. In this case, the only usable solution of the
transcendental equation (Equation 60) is easy to find. One substitutes

𝛿 =

√
𝑎21 − 1

𝑎1
, 𝑎1 =

1√
1 − 𝛿2

(62)

and, in doing so, Equation (60) becomes

2𝑃𝑟1
𝐴𝐸

=
1

1 − 𝛿2
arcsin 𝛿 −

𝛿√
1 − 𝛿2

.

If the left side is now small with respect to 1, then 𝑎1 − 1 ≪ 1must be valid, also meaning that 𝛿 ≪ 1. If one develops
a series of powers of 𝛿 into 2

3
𝛿3 −

2

15
𝛿5 + ⋅ ⋅ ⋅, then one may neglect the rest of the series with respect to the first term and

find that

𝛿 =
3

√
3𝑃𝑟1
𝐴𝐸

=
3

√
6𝑝0𝑟1
𝐸

with 𝑝0 =
𝑃

2𝐴
. (63)

According to Equation (62)

𝑎1 =
1√

1 − 𝛿2
≈ 1 +

𝛿2

2
= 1 +

1

2

(
6𝑝0𝑟1
𝐸

)2∕3

,

𝑎 = 𝐴

[
1 +

1

2

(
6𝑝0𝑟0
𝐸𝐴

)2∕3
]
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(64)
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In order to discuss Equation (61), one may differentiate it. One finds that the tangents of the curve run vertically at the
points 𝑢 = ±1, ±𝑎1. Furthermore, we note that from Equation (57) 𝑝(𝑐) < 𝑝(𝑑) for 0 ≤ 𝑐 < 𝑑 ≤ 1. From this, the fact is
illuminated that the pressure distribution has a local minimum at 𝑢 = 0. In order to find the trend of the curve in the
vicinity of 𝑢 = 𝑎1, we introduce a new variable

𝑣 =

√
𝑎21 − 𝑢21

𝑎1
.

In the vicinity of the point in question, 𝑣 is of the same order of magnitude as 𝛿. Developing a power series of Equa-
tion (61), with Equation (63) and Equation (64), yields

𝑝 =
3𝑝0
𝜋𝛿

[
𝑣

𝛿
+

1

2

(
1 −

𝑣2

𝛿2

)
ln
||||𝛿 + 𝑣

𝛿 − 𝑣

||||
]
. (65)

Through a quick calculation, one finds that

𝑝max =
3.6𝑝0
𝜋𝛿

= 0.631𝑝0
3

√
𝐴

𝑟0
⋅
𝐸

𝑝0
. (66)

The value 𝑝max occurs at a point that differs from ±𝑎1 only by a squared term of 𝛿.
Another representation is also important, namely, that obtained for 1 − 𝑢21 > 0 by developing a power series of the

parameter 𝛿. A somewhat cumbersome calculation yields

𝑝 =
3𝑝0
𝜋𝛿3

⎡⎢⎢⎢⎣𝛿
3 2

3
√

1 − 𝑢21

+ 𝛿5
10 − 13𝑢21

(1 − 𝑢21)
3∕2

+ ⋅ ⋅ ⋅

⎤⎥⎥⎥⎦ . (67)

If
√

1 − 𝑢21 ≫ 𝛿, meaning we do not approach the vicinity of ±1, then we find the same pressure distribution as that of
the bedplate without the rounded edges; because we suppress the terms of smaller order in this case so that

𝑝 =
2𝑝0

𝜋
√

1 − 𝑢21

. (68)

So, rounding the edges only affects the pressure distribution at the edges.
In summary, we observe that if 2𝑃𝑟0

𝐴2𝐸
≪ 1, then the pressure distribution near the edge is given by Equation (65), while

away from the edge, Equation (68) may be used. In contrast, if the order of magnitude comparison 2𝑃𝑟0

𝐴2𝐸
≪ 1 is not valid,

then one must resort to the strict formula of Equation (61) and determine 𝑎 graphically from Equation (60).

5. Examples for the axially-symmetric problem. Using Equation (28), Equation (32), and Equation (33), the associ-
ated pressure distributions for the respective axially-symmetric bedplates may be found for examples (a), (c), (d), and (e)
by elementary integration. Let us be content with noting the results here.
(a’) A flat bedplate.

𝑝(𝜚) =
𝑝0

2

√
1 −

(
𝜚

𝑎

)2 with 𝑝0 =
𝑃

𝜋𝑎2
. (69)

(c’) A conical bedplate.

1)
𝐸′𝛼

𝑝0
< 2 ∶ 𝑝(𝜚) = 𝑝0

[
1

4

(
1 −

( 𝜚

𝐴

)2)−1∕2(
2 −

𝐸′𝛼

𝑝0

)
+

𝐸′𝛼

2𝑝0
arccos

(
𝐴

𝜚

)]
with 𝑝0 =

𝑃

𝜋𝐴2
. (70)



POPOVA and POPOV 31 of 34

Penetration occurs up to the edge.

2)
𝐸′𝛼𝐴2𝜋

𝑃
≥ 2 ∶ “Cone pressure” ∶ 𝑝(𝜚) =

𝑃

𝜋𝑎2
arccos

(
𝑎

𝜚

)
with 𝑎 =

√
2𝑃

𝛼𝜋𝐸′
. (71)

(d’) A parabolic bedplate. Second order paraboloid of revolution (Figure 13):

𝑝(𝜚) =
3𝑃

4𝜋𝑎2

√
1 −

( 𝜚
𝑎

)2
with 𝑎 = 3

√
3𝑃𝑥0

4𝐸′ cot 𝛾
(Hertzian Formula). (72)

Fourth order paraboloid of revolution:

𝑝(𝜚) =
5𝑃

6𝜋𝑎2

[
1 + 2

( 𝜚
𝑎

)2]√
1 −

( 𝜚
𝑎

)2
with 𝑎 =

5

√
15𝑃𝑥30

16𝐸′ cot 𝛾
. (73)

Sixth order paraboloid of revolution:

𝑝(𝜚) =
7𝑃

10𝜋𝑎2

[
1 +

4

3

( 𝜚
𝑎

)2
+

8

3

( 𝜚
𝑎

)4]√
1 −

( 𝜚
𝑎

)2
with 𝑎 =

7

√
35𝑃𝑥50

32𝐸′ cot 𝛾
. (74)

(e’) Parabolically-convex bedplate. Let the cross-section be as that shown in Figure 16. Second order paraboloid
of revolution:

𝑝(𝜚) =
𝑃

2𝜋𝐴
√
𝐴2 − 𝜚2

[
1 +

2

3
𝑐2 − 𝑐2

( 𝜚

𝐴

)2]
with 𝑐2 =

8𝐸′ℎ𝐴

𝑃
. (75)

Fourth order paraboloid of revolution:

𝑝(𝜚) =
𝑃

2𝜋𝐴
√
𝐴2 − 𝜚2

[
1 +

2

5
𝑐4 + 𝑐4

( 𝜚

𝐴

)2
− 2𝑐4

( 𝜚

𝐴

)4]
with 𝑐4 =

64𝐸′ℎ𝐴

9𝑃
. (76)

The quantities 𝑐2 and 𝑐4 are to be limited to the interval −
3

2
≤ 𝑐2 ≤ 3 and −40

21
≤ 𝑐4 ≤ 5

3
, respectively.

(f’) Flat bedplate with rounded edges. Let the cross-section of the bedplate be defined according to Figure 19.
The prescribed edge displacement is

𝜉0(𝑟) = −
(𝑟 − 𝐴)

2

2𝑟0
for 𝑟 ≥ 𝐴 𝜉0(𝑟) = const = 𝜉0(0) for 𝐴 ≥ 𝑟 ≥ 0. (77)

Equation (28) provides

Φ(𝑧) =

{
𝐸′
{
𝜉0(0) −

𝑧

𝑟0

[√
𝑧2 − 𝐴2 −

𝜋

2
𝐴 + 𝐴 arcsin

(
𝐴

𝑧

)]}
for 𝑧 ≥ 𝐴,

𝐸′𝜉0(0) for 𝑧 ≤ 𝐴.
(78)

With Equation (78) and Φ(𝑎) = 0, Equation (32) provides

𝑝(𝜚) =
𝐸′

𝜋𝑟0

𝑎

∫
𝑐

2
√
𝑠2 − 𝐴2 − 𝐴

(
𝜋

2
− arcsin

𝐴

𝑠

)
√
𝑠2 − 𝜚2

d𝑠 with 𝑐 =

{
𝐴 for 𝜚 ≤ 𝐴,

𝜚 for 𝜚 ≥ 𝐴.
(79)

Amore exact investigation of the pressure distribution, which is given by the integral presentation, especially the simple
formulas for 𝑝max and 𝑎, is only possible for the case 𝑎 − 𝐴 ≪ 𝐴. Then, namely, 𝑎 − 𝑠 ≪ 𝐴 for all values of 𝑠 in both
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integration intervals of Equation (79). Therefore, we may substitute 𝜋

2
− arcsin

𝐴

𝑠
≈

√
(
𝑠

𝐴
)
2
− 1, as done in Equation (60).

With the dimensionless quantities

𝑠1 =
𝑠

𝐴
, 𝜚1 =

𝜚

𝐴
, 𝑎1 =

𝑎

𝐴
, 𝑟1 =

𝑟0
𝐴

(80)

Equation (79) now reads

𝑝(𝜚1) =
𝐸′

𝜋𝑟1

𝑎1

∫
𝑐1

√√√√ 𝑠21 − 1

𝑠21 − 𝜚21
d𝑠1 with 𝑐1 =

{
1 for 𝜚1 ≤ 1,

𝜚1 for 𝜚1 ≥ 1.
(81)

First, we investigate the trend of𝑝(𝜚1) in the vicinity of the point 𝜚1 = 𝑎1. If we consider that over the integration interval
of Equation (81), 𝑠1 − 1 ≪ 1, then we can take√√√√ 𝑠21 − 1

𝑠21 − 𝜚21
=

√
2(𝑠1 − 1)

(1 + 𝜚1)(𝑠1 − 𝜚1)

and find the following after elementary integration:

𝑝 =
𝐸′

𝜋𝑟1

√
2

1 + 𝜚1

[√
(𝑎1 − 1)(𝑎1 − 𝜚1) +

1

2
(𝜚1 − 1) ln

||||||
√
𝑎1 − 1 +

√
𝑎1 − 𝜚1√

𝑎1 − 1 −
√
𝑎1 − 𝜚1

||||||
]
. (82)

Let
√
𝑎1 − 𝜚1 = 𝑣 ≪ 1 and

√
𝑎1 − 1 = 𝜀 ≪ 1. Developing a power series for Equation (82) yields

𝑝 =
𝐸′𝜀2

𝜋𝑟1

[
𝑣

𝜀
+

1

2

(
1 −

𝑣2

𝜀2

)
ln
|||| 𝜀 + 𝑣

𝜀 − 𝑣

||||
]
. (83)

The function within the parentheses has already been seen in Equation (65). We note that d𝑝

d𝜚1
→ ∞ when 𝜚1 → 1 and

𝜚1 → 𝑎1. Furthermore, for 𝜚 ≤ 𝐴

𝑝(𝜚) =
𝐸′

𝜋𝑟0

𝑎

∫
𝐴

√
𝑠2 − 𝐴2

𝑠2 − 𝜚2
d𝑠 ≤ 𝐸′

𝜋𝑟0

𝑎

∫
𝐴

√
𝑠2 − 𝐴2

𝑠2 − 𝐴2
d𝑠 =

𝐸′(𝑎 − 𝐴)

𝜋𝑟0
. (84)

A comparison between Equation (83) and the results of example (f), shows that the maximum pressure is assumed to
be along a circle that has a radius that differs from 𝑎 by only a small second order value. This pressure is

𝑝max =
1.2𝐸′(𝑎 − 𝐴)

𝜋𝑟0
. (85)

In order to finally determine 𝑎, we do not use Equation (33) this time, but rather draw support in the fact that within a
certain circle, which must be 𝐴 − 𝜚 ≫ 𝑎 − 𝐴, the pressure distribution is the same as for the two-dimensional bedplate.
For a 𝜚 sufficiently satisfying the immediately preceding conditions, the following is valid:

𝑝 =
𝑃

2𝜋𝐴
√
𝐴2 − 𝜚2

=
𝑝0

2
√

1 − 𝜚21

. (86)
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With 𝑎1 − 1 = 𝜀2, we go to Equation (81) for 𝜚1 ≤ 1and obtain

𝑝(𝜚1, 𝜀) =
𝐸′

𝜋𝑟1

1+𝜀2

∫
1

√√√√ 𝑠21 − 1

𝑠21 − 𝜚21
d𝑠1. (87)

According to Taylor’s theorem

𝑝(𝜚1, 𝜀) = 𝑝(𝜚1, 0) +

∞∑
𝜈=1

𝜀𝜈

𝜈!

[
𝜕𝜈

𝜕𝜀𝜈
𝑝(𝜚1, 𝜀)

]
𝜀=0

. (88)

Here, 𝑝(𝜚1, 𝜀) is defined by the integral. For this reason, 𝑝(𝜚1, 0) = 0. The quantity 𝜕𝑝∕𝜕𝜀 is found from Equation (87)
to be

𝜕

𝜕𝜀
𝑝(𝜚1, 𝜀) =

𝐸′

𝜋𝑟1
2𝜀

√√√√ 𝑎21 − 1

𝑎21 − 𝜚21
with 𝑎1 = 1 + 𝜀2. (89)

Further differentiation yields

𝜕2

𝜕𝜀2
𝑝(𝜚1, 𝜀) =

𝐸′

𝜋𝑟1

⎡⎢⎢⎢⎣2
√√√√ 𝑎21 − 1

𝑎21 − 𝜚21
+ 4𝑎1𝜀

2
1 − 𝜚21

(𝑎21 − 𝜚21)
3∕2
√

𝑎21 − 1

⎤⎥⎥⎥⎦ ,

𝜕3

𝜕𝜀3
𝑝(𝜚1, 𝜀) =

𝐸′

𝜋𝑟1

4(1 − 𝜚21)

(𝑎21 − 𝜚21)
3∕2√

𝑎1 + 1

[
3𝑎1 −

2𝑎21
1 + 𝑎1

+ 2𝜀2

(
2 − 3𝑎21

1 − 𝜚21

𝑎21 − 𝜚21

)]
.

For 𝜀 = 0, meaning 𝑎1 = 1,

[
𝜕𝑝

𝜕𝜀

]
𝜀=0

= 0,

[
𝜕2𝑝

𝜕𝜀2

]
𝜀=0

= 0,

[
𝜕3𝑝

𝜕𝜀3

]
𝜀=0

=
𝐸′4

√
2

𝜋𝑟1

√
1 − 𝜚21

.

We insert this into Equation (88) and neglect terms that are small with respect to the first non-neglected term. In this
way, we obtain

𝑝 =
2
√
2𝐸′𝜀3

3𝜋𝑟1

√
1 − 𝜚21

. (90)

Comparison with Equation (86) yields

𝜀 = 3

√
3𝜋𝑟1𝑝0

4
√
2𝐸′

. (91)

So

𝑎1 = 1 + 𝜀2 = 1 +

(
3𝜋𝑟1𝑝0

4
√
2𝐸′

)2∕3

or 𝑎 = 𝐴
⎡⎢⎢⎣1 +

(
3𝜋

4
√
2

𝑟0
𝐴

𝑝0
𝐸

)2∕3⎤⎥⎥⎦ . (92)
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Furthermore, according to Equation (85) and Equation (92)

𝑝max = 0.537𝑝0
3

√
𝐴

𝑟0

𝑝0
𝐸

with 𝑝0 =
𝑃

𝜋𝐴2
. (93)

The dependence of pressure on radius is given in the following way: For all 𝜚 not in the vicinity of 𝐴, the trend of 𝑝 is
presented by Equation (86). In the vicinity of 𝜚 = 𝐴, which continues to 𝜚 = 𝑎, we use Equation (83). The pressure assumes
its largest value along a circle having a radius that differs from 𝑎 by only a small second order value.
By appropriately choosing the radius of the rounded edge, as was seen in Equation (93) similarly to the two-dimensional

problem, we may reduce the maximum pressure to one below the proportionality limit of the bedplate so that we are sure
to be able to calculate the described pressure distribution. This is practically applicable for the transfer of force through
steel bodies to wood or cement substrates. For bedplates on earthen substrates, the requirement of complete isotropic
elasticity of the bedplate can only be approximately satisfied for certain types of substrate. The value of 𝑝max calculated
from Equation (93) or Equation (66) is incidentally an upper limit for the pressure under an elastic structure on an elastic
substrate, if the bedplate sinks more in the middle than at the edge.

6. Pressure distribution beneath flexible structures. The calculation of the pressure distribution under an elastic
bedplate on an elastic isotropic substrate involves considerable difficulties. Even for a known pressure distribution, it is
only possible to specify the displacement of the contact surface for very few bedplate geometries, such as beams, plates,
and slabs8. Here, on the contrary, one must present this displacement as a function of the unknown surface load, in order
to set them equal to the corresponding values of the bedplate interface. Linear equations in which the unknown pressure
function is presented in differential, integral, or series form must then be solved. One would try to execute this using an
iteration technique or series ansatz. Borowicka9 conducted to the latter in a simple case for a plate.
Now, in most cases, depending on the pressure distribution, one would be able to know from the beginning whether

a bedplate sinks more in the middle than at the edges. Let us then consider as a first approximation two-dimensional
and three-dimensional bodies that are composed of a linear combination of parabolas or paraboloids of revolution of
second, fourth, etc. order. The corresponding pressure distributions can be taken from examples (e) or (e’), respectively,
in connection with Equation (66) and Equation (93), which gives the upper limit for the maximum pressure as long as
the middle of the bedplate sinks more than the edges. The opposite case should be avoided. Deviation of the approximate
pressure distribution from reality is so large for very elastic beams or plates that the approximation is too crude. In contrast,
for appropriately constructed bedplates (e.g., square plates or cylindrical indenters with sufficient height) one may use
these approximations very well.

7. Summary. For a given pressure distribution over the contact surface between a bedplate and a substrate, the two-
dimensional and axially-symmetric problem of perpendicular displacement of the contact surfacemay be presented using
simple integral expressions. Inverse transformations were developed for these expressions, which allow for the pressure
distribution to be calculated from a prescribed displacement. Thereby, the task of discovering the pressure distribution
under a rigid bedplate with an arbitrary contact surface in both the two-dimensional case and the axially-symmetric case
is generally solved. Several practically important examples show the usefulness of these considerations. Above all, the
conclusions may be drawn for the pressure distribution under an elastic bedplate.
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8 E. Mathieu gave a solution to the boundary value problem of the plane elasticity theory for the rectangle: E.Mathieu, Théorie de l’Élasticité des Corps
solides, S. 140, Paris (1890).
9Borowicka, Ing.-Arch., 10 (1939) p. 113.
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