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Abstract
Wecombine the formalisms of Floquet theory and full counting statistics with aMarkovian
embedding strategy to access the dynamics and thermodynamics of a periodically driven thermal
machine beyond the conventional Born–Markov approximation. Theworkingmedium is a two-level
system andwe drive the tunneling aswell as the coupling to one bathwith the same period.We identify
four different operating regimes of ourmachinewhich include a heat engine and a refrigerator. As the
coupling strengthwith one bath is increased, the refrigerator regime disappears, the heat engine
regime narrows and their efficiency and coefficient of performance decrease. Furthermore, ourmodel
can reproduce the setup of laser cooling of trapped ions in a specific parameter limit.

1. Introduction

In the recent years, notable progress has beenmade towards the experimental realization of small-scale thermal
machines [1–5]. Specific examples in the quantum regime include a quantumabsorption refrigerator with
trapped ions [6] and quantumheat engines using an ensemble of nitrogen-vacancy centers [7]. The theoretical
study of these quantum thermalmachines has in general been restricted to theweak coupling andMarkovian
regime [8–10]. This approach follows the logic of traditional thermodynamics, which is aweak coupling theory
and relies on the distinction of systems interacting with each other due to the negligible contribution of their
interface compared to the bulk properties [11]. Nevertheless, this assumption becomes increasingly
questionable at the nanoscale where, as the volume of systems becomes very small, boundaries cannot be clearly
distinguished. In the present workwewill present a formalismwhich allows to formulate a consistent
thermodynamic framework for periodically driven systems coupled tomultiple heat reservoirs—evenwhen the
coupling is strong, driven and induces non-Markovian behavior.

Time-periodic systems have been successfully studied bymeans of Floquet theory [12–14] and a broad
diversity of interesting phenomena such as coherent destruction of tunneling [15, 16], dynamical localization
[17] and creation of new phases ofmatter [18–20] have been discovered.When connected to a heat reservoir, the
steady state dynamics of time-periodic quantum systems has beenmainly described using the Floquet–Markov
approach [14, 21–26]. It consists in deriving aweak couplingmaster equation [27] in the Floquet basis of the
driven system.Under the secular approximation, conditions for the emergence of a Floquet–Gibbs state have
been studied recently in [28], a full stochastic thermodynamic analysis is given in [29] and a thermodynamic
analysis of laser cooling experiments by collisional redistribution [30, 31] can be found in [26].

To access the dynamics or study thermal transport in periodically driven systems beyond the Born–Markov
approximation,more sophisticatedmethodsmust be used such as stochastic Liouville–vonNeumann equations
[32], perturbative high-frequency expansions [33] or influence functional integralmethods [34]. Their
thermodynamic interpretation, however, is not always clear. Recent studies beyond the Born–Markov
approximationwith a consistent thermodynamic interpretation include non-equilibriumGreenʼs functions
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[35, 36], redefined system-reservoir partitions (collective coordinate (CC)mappings) [37–41], a quantum
absorption refrigerator [42], quenched thermodynamic protocols [43, 44] and the derivation of an exact
expression for the entropy production of a finite arbitrary system in contact with one or several thermal
reservoirs [45], but none of whichwere applied to periodically drivenmachines so far. Exceptions are [46] and
[47]. In [46] a polaron transformation and Floquet theorywere used to include arbitrary strong coupling effects
but only as long as the rotatingwave approximation for the systemHamiltonian and theMarkovian
approximation for the reservoir hold. In [47] a periodically driven three-level heat engine was studied using the
numericalmethod of hierarchy of equations ofmotion, an approach that is based in a decomposition of the bath
correlation function rather than an explicit representation of the bath. For this reason, access tomore general,
thermodynamically relevant thermal transport properties requires a tailored solution [48].

However, none of the aforementionedmethodswas successfully applied to the combinations of problems
wewant to tackle: a driven system coupled tomultiple heat reservoirs with a possibly strong, driven and non-
Markovian coupling. To achieve this we combine threemethods: a CCmapping [49, 50], Floquet theory for
open systems [14, 21] and full counting statistics [51]. This novel and unique combination provides access to
steady state thermodynamics lifting the restriction of common assumptions such as a very fast driving,
Markovian andweakly coupled reservoirs, and the secular approximation. First, in theCCmapping, we identify
a collective degree of freedom in the reservoir, sometimes referred to as reaction coordinate [52] that is
responsible for the strong coupling and non-Markovian effects. Second, using Floquet theory, we derive a
master equation for the original systemplus CC and apply full counting statisticsmethods to obtain the change
in energy of the reservoirs unambiguously. This strategy allows us to perform a consistent thermodynamic
analysis of periodically driven thermalmachines. Furthermore, it also allows us to accurately treat periodic time
dependencies in the interaction between system and reservoirs, capturing their thermodynamic effects, which
are inaccessible with standardmethods. It is worthmentioning that even though themaster equation that will be
used to study the original systemplus CC isMarkovian, once the degrees of freedomof theCC are traced out, the
dynamics of the system is non-Markovian.

This work is organized as follows: we start by briefly presenting theCCmapping (section 2.1), explaining the
Floquetmaster equation used including the technique of counting fields (section 2.2) and defining important
thermodynamic quantities (section 2.3). In section 3we begin by specifying themodel for study. Results are then
presented for theweak coupling and non-Markovian regime (section 3.1)with the identification of the
refrigerator and heat engine regimes. In section 3.2we explore the regime offinite coupling and establish the
existence of two additionalmodes of operation, whereas in section 3.3we look at the performance of our
thermalmachine. Finally, we study the limit inwhichwe reproduce the setup of laser cooling (section 3.4) and
followwith conclusions (section 4).

2.Method

Our formalism is in general applicable to situationsmodeled by a system-bathHamiltonian of the form

H H t H H t , 1S B SBå= + +
n

n n( ) [ ( )] ( )( ) ( )

whereHS(t) is theHamiltonian of the system, HB
n( ) theHamiltonian of reservoir ν and H tSB

n ( )( ) describes their
interaction. The heat reservoirs are described by a typical BrownianmotionHamiltonian as
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with frequencyωkν, mass-weighted positions xkν andmomenta pkν of the bath oscillators and Sν(t) a system
operatorwhichmediates the coupling to the bathwith strength ckν.We consider the case of a periodic time
dependence in theworkingmediumHS(t)=HS(t+T) and coupling operator Sν(t)=Sν(t+T), with period
T=2π/ωL. The periodicity will allowus to study the problemby using Floquet theory.

To fully characterize themodel, the spectral density of the heat reservoirs, defined by
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must be parametrized. The spectral density is a positive function forω>0 and fulfills J 0w n ( ) for 0w 
and w  ¥. A structure-less spectral density (e.g. linear form) usually allows for aMarkovian treatment of the
reservoirs due to the fast decay of its associated correlation functions, while amore structured spectral density
(e.g. strongly peaked around a frequencyωres) demands amore elaborate treatment. In the following, wewill
consider the case of a hot (ν=h) and cold (ν=c) reservoir where only the cold spectral density has a structured
form:

2

New J. Phys. 20 (2018) 053063 SRestrepo et al



J
d

J
d

, . 4c
c

h
h

2

2
res
2 2 2 2

0

w
gw

w w g w
w

w
w=

- +
=( )

( )
( ) ( )

The parameters dc and dh describe the overall coupling strength to each respective reservoir. The spectral
density of the cold reservoir is peaked around resonance frequencyωres and its structure can be tuned by the
parameter γ, where the smaller γthemore strongly peaked the spectral density is. The parameterω0 is a
reference frequency of theworkingmedium.Wewill also consider only the coupling operator of the cold bath
Sc(t) to be time dependent. Figure 1 (top panel) shows a sketch of themodel.

2.1. Collective coordinatemapping
To be able to capture non-Markovian and strong coupling effects of ourmodel we follow the procedure
discussed in [37–41, 53, 54] and introduce aCC, also known as reaction coordinate, from the reservoir as part of
the system. This is done by a unitary transformation applied to the bath degrees of freedom,whichwewill apply
to the cold bath only because of its structured form. In the followingwewill refer to thismethod as theCC
mapping.

TheCC is defined as

c x X , 5
k

kc kc 0 1å l= ( )

withλ0 an unspecified parameter so far. After themapping (see figure 1), we obtain
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with a redefined ‘supersystem’Hamiltonian
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and residual cold reservoir B¢ described by
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Here,X1 andP1 are the position andmomentumoperators of the CC andXk andPk position andmomentum
operators of the residual cold bath B¢. TheCChas natural frequencyωCC and the spectral density of B¢ is defined
as Jc k

C
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k
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( ) ( ). In the continuum limit, all newparameters and Jc w¢( ) can be expressed in
terms of the original spectral density Jc(ω) (see appendix Aor [49]). For our choice of spectral density,
equation (4), we have

J d, , . 9c cCC res 0w gw w w l¢ = = =( ) ( )

Figure 1. Sketch of themodel before and after the CCmapping. A driven system S coupled to a hot bathB( h) and a cold bathB( c) is
mapped to a system coupled to the same hot bath and the CC,which is coupled to a residual bath B c¢( ). The oscillating arrows indicate
the influence of the driving. TheCC and the residual reservoir B c¢( ) are related by a unitary transformation to the original reservoir
B( c).
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Figure 1 shows a sketch of the original andmappedmodel with the newly defined supersystem S¢. In terms of
creation and annihilation operators the newworkingmedium supersystemHamiltonian can bewritten as

H t H t a a S t a a
2

. 10S S cCC
0

CC

w
l
w

= + - +¢( ) ( ) ( ) ( ) ( )† †

One of the key features of themapping is that an increase in the interaction strength betweenworkingmedium
and cold bath only increases the interaction betweenworkingmedium andCC. The coupling strength between
CCand residual bath is unaffected (see equation (9) or appendix A), allowing to treat the supersystemwith
standardweak couplingmaster equationswhen γ can be considered small.

TheCCmapping has been used to study anOtto cycle stroke type engine [38], stochastic thermodynamics
based on coarse-graining [41], continuously coupled but not periodically driven engines [37], a fermionic
autonomousMaxwell demon [39] and a fermionic electronicMaxwell demon [40], all in the strong coupling
and non-Markovian regime. It has offered an accuratemethod for the study of open quantum systems apart
from the thermodynamic applications [53–55] and is closely related to themethod of time evolving density
matrix using orthogonal polynomials algorithm [50, 56–58]. It was, however, not applied to the study of
periodically driven systems so far.We point out that even though theCCmappingwas applied here to the
specific case of a spectral density with a single peak (see equation (4)), spectral densities withmany peaks or
general non-Ohmic formsmay be addressedwith themapping if the use ofmultiple CCs is considered [59].

2.2. Floquetmaster equationwith countingfield
Wewant to obtain amaster equation for the time-periodic supersystem S¢ that permits us to study its
thermodynamic properties based on a rigorous framework. For this purposewe introduce a counting fieldχν for
each reservoir as in [29, 51] (see appendix B) and apply Floquet theory for open systems (see appendices C
andD).

Formally, the counting fieldχν is introduced by defining themodified densitymatrix

t U t U t, , 0 , , 11tot totr c c r cº -n n n( ) ( ) ( ) ( ) ( )†

with total (supersystemplus reservoirs) initial densitymatrix ρtot(0) andmodified evolution operator
U t U t, e eH Hi 2 i 2B Bc =n

c c- n
n

n
n( ) ( )( ) ( )

, whereU(t) is the evolution operator corresponding to theHamiltonian
of equation (6). The introduction of a counting fieldwill allowus to obtain the change in energy of each reservoir
from the operator t t, Tr ,B totr c r cºn n( ) { ( )} (see appendix B for details). To compute the reduced density
operator dressedwith counting field ρ(χν, t), a generalizedmaster equation can be derived by performing the
Born andMarkov approximations to equation (11). In the Schrödinger picture it has the form

t t t, , ,t r c c r c¶ =n n n( ) ( ) ( ), where t, cn( ) is a time-periodic superoperator that has the same frequency as
the driving. Themaster equation for the reduced density operator of the supersystem is then obtained by taking
χν=0. In general, ρ(t) is not a time-periodic function, but we are only interested in the dynamics in the long-
time limit (t  ¥). Here, we expect ρ(t) to acquire the same periodicity as the driving, such that themaster
equation in the long-time limitmay bewritten as

ni , 12L n
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where ρq and q are Fourier components defined by t eq
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q
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The change in energy of the reservoir can then be obtained from (see appendix B)
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where the prime indicates a derivative with respect to cn . Although this formulation is associatedwith the
statistics of two consecutivemeasurements [51], the effect of the firstmeasurement only shows up in high order
moments and can be accounted for bymeans of a generalized fluctuation theorem [48].

In the standardweak coupling approach, it is usually assumed that the systemʼs level broadening ismuch
smaller than its level spacing such that non-resonant termsmay be neglected. This is known as the secular
approximation [27], whose advantage is that themaster equation generator is of Lindblad form. It also has the
advantage of simplifying the study numerically since at steady state one only has to deal with a vector of
populations and not the full densitymatrix. However, the secular approximation is problematic here because,
due to the periodic time dependence of H tS¢( ), we resort to Floquet theory for the solution, where the dynamics
of the supersystem is determined by its quasienergies (chosen to lie in the same Brillouin zone) and respective
Floquetmodes (see appendix C). Due to the high (infinite) dimension of theCC, there is a large amount of near-
degenerancies in the chosen Brillouin zone, thusmaking the secular approximation in general not suitable for
our analysis [60].
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2.3. Steady state thermodynamics
Due to the periodicity of theworkingmedium, expectation values in the long-time limit will asymptotically
oscillate as a function of timewith periodT. It is natural then to consider their average over one period,

i.e. A t A Td
T

0ò= .

Thefirst law (energy balance) and second law (positivity of entropy production rate) in the long-time limit
stipulate

Q Q W 0, 14c h+ + =˙ ˙ ˙ ( )

Q Q 0. 15h h c c b b- -˙ ˙ ( )

Due to theweak coupling between supersystem and reservoirs, we identify the change in energy of the reservoir,
calculated using the counting fieldχν, with the heatflow Qn˙ [37], defined to be positive if itflows into the system.
For the hot bath and cold bathwe define, respectively,

Q t H Q t H, . 16h B
h

c B
cº -á ñ º -á ñ¢

˙ ( ) ˙ ˙ ( ) ˙ ( )( ) ( )

The rate of work Ẇ performed on or exerted by the system is thenfixed by thefirst law (14). Negative values
indicate thatwork is extracted. Positivity of the entropy production rate, equation (15), can be shown from the
definition of entropy production [45] and the existence of a periodic steady state in the long-time limit. Under
the assumption ofweak coupling between supersystem and reservoirs, our use ofmaster equation (12) showed
no violation of the second law at steady state for all presented calculations.

The relation between the change in energy of the residual cold reservoir B¢ and the change in energy of the
original cold reservoirB is given by the change in energy of theCC. To see this, note that in theCCmapping the
reservoirHamiltonian ismapped to three different terms (see equations (6), (7) and appendix A)

H H H H , 17B
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B
c

B
c

CC CC= + +¢ ¢ ( )( ) ( ) ( )

the CCHamiltonianHCC, the residual bathHamiltonian HB
c
¢

( ) and the interaction betweenCCand residual
reservoir H B

c
CC ¢
( ) . As the coupling betweenCC and residual reservoir is weak, we can approximate the expectation

value of the residual reservoir by H H HB
c

B
c

CCá ñ » á ñ - á ñ¢
˙ ˙ ˙( ) ( ) . In the long-time limit, if we average over one period,

we have H 0CCá ñ =˙ since ρ(t) is periodic. Hence H HB
c

B
cá ñ » á ñ¢

˙ ˙( ) ( )
.

Note that the CCmapping allows for a thermodynamically consistent study of a time dependent interaction
Sν(t) between the system and the cold reservoir. This is due to the fact that, after themapping, the time
dependent coupling operator only appears in the supersystemHamiltonian. The interactionwith the residual
reservoir has no time dependence (see section 2.1 or appendix A).

3. Results

All previously presented ideas apply to the case of an arbitrary workingmediumdescribedwithHamiltonian
HS(t) and arbitrary coupling operators Sν(t).We now focus specifically on the case where theworkingmedium is
a driven two-level system

H t g t
2

cos . 18S z L x
0w s w s= +( ) ( ) ( )

Here,σi denotes a Paulimatrix,ω0>0 is the energy splitting of the two-level system in the absence of driving, g
the driving strength andωL is the frequency of the driving responsible for work extraction and injection. The
system coupling operators are

S S t t2 , sin 2 , 19h x c x L0 0s w s w w= =( ) ( ) ( )

wherewe have included a time dependence on the cold reservoir coupling operator.
Themappedworkingmedium consist then of a driven two-level system coupledwith theCC via a time

dependent interaction. This bears resemblance to the setup of laser cooling of trapped ions [61], where an ion
interacts with an electric field. The ion is approximated by a two-level system and itsmotional degree of freedom
is quantized in a harmonic potential. Assuming the ion is well confined, one ends upwith an interaction
Hamiltonian between the ion and the harmonic potential that is time dependent in a similar fashion as the
coupling operator Sc(t) (see appendix F). Cooling in this context refers to the preparation of the state of the
harmonicmode in a low occupation number. It is optimized around the resonance conditionwhere the
frequency of the laser and of the harmonic potential add up to the energy splitting of the two-level system. Based
on the similarities of this setup and ourmappedmodel we explore this resonance conditionwhich for ourmodel
reads
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. 20L0 CCw w w= + ( )

Importantly, the setup of laser cooling follows from an exact limit of ourmodel by considering aweak amplitude
driving g=ω0 and taking the limit 0g  . In this case, there is no coupling to the residual reservoir, we have a
two-level system (ion) coupled to theCC (vibrationalmode of the ion) and one bath (see inset infigure 5). This
limit will be considered later in section 3.4. For nowwe keep γfinite so that the supersystem is coupled to both
reservoirs.

3.1.Weak coupling
First, wewill consider weak coupling betweenworkingmedium and cold bath. In themappedmodel this
translates to aweak interactionλ0=dc between the two-level system andCC. It is important to note that even
when the coupling is weak, the structured shape of the spectral density can have a strong effect on the behavior of
the system invalidating a conventionalmaster equation approach for the two-level system (also see appendix E
for benchmarks related to that question).

Figure 2 (bottompanel) shows the heatflow to the two reservoirs and thework flow as a function of the
driving frequencywhile the resonance condition ismaintained. Twomain regions can be identified infigure 2 by
looking at the conditionsW 0<˙ and Q 0c >˙ .When one of them is fulfilled themodel either behaves as a heat
engine or as a refrigerator. Thefirst region is illustrated by the red (left) shaded area. Here, heatflows from the
hot reservoir into the system Q 0h >˙ , work is extractedW 0<˙ and heatflows from the system into the cold
reservoir Q 0c <˙ making ourmodel act as a heat engine. The blue shaded area shows the regionwhere themodel
acts as a refrigerator. Here, work is applied to the systemW 0>˙ , heatflows from the system to the hot reservoir
Q 0h <˙ and from the cold reservoir to the system Q 0c >˙ .We also note the existence of a smallfinite white
region separating the transition between refrigerator and heat engine not seen in a previous study [22], based on
the standard Floquet–Markov approach, for a similar but simplermodel.

To physically explain the heat engine and refrigerator regime, one can usefigure 3. It shows the energy levels
of themappedworkingmedium (see equation (10)) for veryweak coupling and driving amplitude. In this
parameter regime the cold reservoirmainly induces transitions between states of the CC, leaving the state of the
two-level systemunchanged. This is illustrated for example by the transitions g n g n, , 1ñ « - ñ∣ ∣ (blue
arrows). On the other hand, the hot bath preferentially induces transitions that leave the Fock state of the CC
fixed andflip the state of the two-level system as in e n g n, 1 , 1- ñ « - ñ∣ ∣ (red arrows). Under the chosen
resonance condition, the driving part addresses transitions that alter both the state of the two-level system and
theCC, and they are responsible for work extraction or injection. Such transitions are illustrated by e.g.

Figure 2.Bottompanel shows time averaged heat flows andworkflows as a function of the driving frequencyωLwhile keeping the
resonance condition (20). The red (left) shaded area corresponds to the regionwhere themodel behaves as a heat engine extracting
work W 0<( ˙ ). The blue (right) shaded area shows the regionwhere themodel behaves as a refrigerator cooling the cold bath
Q 0c >( ˙ ). Parameters used are: g d d0.001 , 0.000 4 , 0.001 , 0.005 , 25,c h c0 0 0

2
0
2

0w g w w w b w= = = = = andβhω0=2.22. The top
panel shows the effective inverse temperature of theCC (dashed line) as a function of the driving frequency, see equation (21) and the
constant inverse temperature of the cold reservoir (continuous line) for the same parameters.
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e n g n, 1 ,- ñ « ñ∣ ∣ (green arrows). Figure 3 only shows themost dominant transitions, additional transitions
are induced by the reservoirs or the driving but they are suppressed due to theweak coupling or the resonance
conditions and become less likely.

To further understandwhy ourmodel behaves either as a refrigerator or a heat engine, let us consider the
effective inverse temperature of theCCβCC, implicitly defined by the equation

a a exp 1 , 21CC CC
1b wá ñ = - -[ ( ) ] ( )†

where a aá ñ† is the occupation number of theCC in the long-time limit averaged over a period.WheneverβCC is
bigger thanβcheatflows from the cold bath into supersystem S¢ and increases the Fock state of the CC, therefore
cooling the cold reservoir. This cooling is achieved by the injection of work simultaneously exciting the two-level
system and lowering the state of the CC followed by heat flowing from the supersystem into the hot reservoir via
a decay of the two-level system. This process is illustrated by the dashed arrows infigure 3. In the case that our
model acts as a heat engine, heat flows from the hot reservoir to the two-level system andwork is extracted by
simultaneously exciting theCC and the two-level systemdecaying. Also, since nowβCC<βc, heat no longer
flows from the cold reservoir into the system. This process is indicated by the continuous arrows infigure 3. The
top panel offigure 2 shows a plot ofβCC as a function of the frequency.We see that the effective temperature of
theCC (dashed line) and the temperature of the cold bath (continuous line) agree precisely at the boundary of
the refrigerator region.We stress the fact that the discussion so far only applies for weak driving strength and
weak coupling betweenworkingmedium and cold bath, since otherwise the energy level diagramoffigure 3 does
not apply. The implicit definition of the effective temperature in equation (21) is just a particular
parametrisation.We have analyzed the fluctuations around the average occupation number of theCC and found
good agreement with those typical for a thermal state (see appendixG). In addition, we have checked explicitly
that in this limit, the populations of theCC are close to a thermal distribution.

3.2. Finite coupling strength
Asmentioned earlier, the transition between refrigerator and heat engine is not immediate, there exists a gap
between the two regimes. Although already present infigure 2, we further explore this gap in the phase diagram
offigure 4 (left)where four different regions can be identified depending on the coupling strength between
workingmedium and cold reservoir. Regions I and IV indicate the regions previously introduced, where the
model behaves as a heat engine or as a refrigerator, respectively. In both of the twomiddle regions (II and III)
work is being done on the system and heat flows from the system into the cold reservoir. Regions II and III are
distinguished by the direction of the heatflowing between the hot reservoir and the supersystem. For region III,
heatflows from the system into the hot reservoir and for region II the opposite way. In region II work is applied
to the system to assist theflowof heat from the hot reservoir to the cold reservoir and in region III work is
converted into heatflowing into both reservoirs. The existence of these regions should not be ignored since their
area grows as the coupling is increased. The refrigerator regime actually completely disappears. The immediate
transition from a refrigerator to a heat engine as the one obtained in [22] only occurs in the ideal case of
vanishing coupling strength.

3.3. Performance
To quantify the performance of ourmodel we introduce the efficiency of the heat engine η and the coefficient of
performance (COP) of the refrigeratorκ. Both have ideal Carnot bounds given in terms of the bath

Figure 3.Mappedworkingmedium acting as a refrigerator (dashed arrows) or as a heat engine (continuous arrows) at the resonance
condition (20). eñ∣ and gñ∣ refer to the excited and ground state of the two-level system. nñ∣ refers to the Fock state n of theCC.
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temperatures. They are defined as:

W

Q
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h
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c h
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h h
b b

b
=
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=
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˙ ( )

Q
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c h

k k
b

b b
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-
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Figure 4 (right) shows the efficiency andCOPof ourmodel for different coupling strengths. The shaded area
only applies for theweakest coupling case d 0.001c 0

2w= . A clear decrease in performance can be seen as the
coupling increases for both, heat engine and refrigerator. This is consistent with performance results obtained
for the quantumOtto cycle [38] and a continuously coupled but not driven three-level heat engine [37].We also
see that, as the coupling decreases, themaximum in efficiency η for the heat engine approaches the border
between thewhite and red region, where the power goes to zero (see figure 2).

The exploration of stronger coupling regimes than the ones infigure 4 (left) requires a high level of
truncation for theCC for convergence,making numerical simulations very demanding. This is also the case for a
blue detuned resonance conditionwhereωL>ω0, since theCC is heated increasing its occupation number, and
no proper truncation of the Fock levelsmay be defined. In all presented results the dimension of theCCwas
considered finite and truncated at a level where convergent results were obtained.

3.4. Single reservoir: laser cooling limit
Wenow consider the case of vanishing coupling between supersystem and residual bath B¢: 0g  . Thismeans
that the bath is exclusively represented by theCC, and therefore there is no need to treat it perturbatively. The
supersystem is then coupled only to a single reservoir. The setup for laser cooling of trapped ions [61] is well
represented by thismodel (see appendix F) if one thinks of theCC as the vibrationalmode of an ion. The goal of
such experiments is the preparation of the harmonicmode in its ground state, and the success is usually
measured in terms of a low occupation number of the vibrationalmode ná ñ. The inset offigure 5 shows a sketch
of this set up. Figure 5 shows the occupation number of theCC as a function of the detuningΔ=ωL−ω0 for
different driving amplitudes.We see that the optimal preparation (maximum cooling) is obtained for small
driving amplitudes and around the resonance condition studied previouslyΔ=−ωCC. The continuous line is
obtained from the analytical results in [61]where they showed that at steady state the occupation number is

given by n A

A A
á ñ =

-
+

- +
, withA±=Γ f (Δ±ν) and f ,2

2

2

2 2 nD = G
G +D

( ) ( )
( )

the frequency of the oscillator andΓ

the decay rate of the two-level system (ion). Infigure 5we take ν=ωCCandΓ=dh. It is important to state that
the analytical results in [61] are obtained under approximations that we do not performhere such as the rotating
wave approximation and the adiabatic elimination of the internal degrees of freedomof the ion.We have also
only considered the case of low amplitude driving such that scattering effects, as the recoil of the ion in the
emission of a photon, can be neglected.

Figure 4. Left: phase diagram showing the different thermodynamic behaviors of themodel. Parameters are the same as infigure 2
except for the coupling dc. Vertical (green) arrows indicate whether work is performed on/by the system and horizontal arrows
indicate the direction of the heatflow. Right: efficiency and coefficient of performance normalized by the ideal Carnot bounds.
Parameters are the same as infigure 2 except for the coupling dc. The shaded areas only apply for dc=0.001 ω0

2.
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4. Conclusions

Wehave provided a novel framework to study periodically driven thermalmachines beyond theweak coupling
andMarkovian approximations. TheCCmappingwas used to overcome the loss of separability that appears for
systems as their interaction strengthwith the bath increases, Floquet theory allowed us to accurately treat
periodic time dependencies of workingmedia and,with the use of full counting statistics, wewere able to
consistently perform a steady state thermodynamic analysis.

We specifically considered as theworkingmedium a driven two-level systemwith time dependent
interaction to one of its reservoirs and dealt with the case where only this heat reservoir had a structured spectral
density.We focus on the limit of a strongly peaked spectral density since that also guaranteed aweak coupling to
the residual bath such that amaster equation could be used. In theweak coupling and non-Markovian scenario,
we confirmed the existence of twomain regimeswhere the thermalmachineworks either as a refrigerator or a
heat engine and gave an intuitive physical explanation of the observed difference and transition between these
two regimes in terms of the occupation number of theCC and its effective temperature.However, we also
additionally identified a small gap between both operational regimes.

Upon increasing the interaction strength betweenworkingmedium and the cold reservoir, we observed an
enlargement of the gap between the refrigerator and heat engine regime.We identified four different operation
regimes for ourmodel andwitnessed the eventual disappearance of the refrigerator regime as the coupling
increased. In terms of efficiency, both the refrigerator and the heat engine showed amonotonic decrease of
performance as a function of the coupling strength. Similar performance results for non periodically driven
systemswere observed in [37, 38] and higher efficiency in theweak coupling but non-Markovian regimewas
observed in [37]. Nonetheless, as it was the case here, these results were focused on particularmodels, and the
general question of whether strong coupling and non-Markovian effects are (un)favorable for the performance
of quantum thermalmachines is still open. Strong coupling corrections to the second law due to the interaction
strengthwere derived in [44], also showing a lower performance, but restricted to thermodynamic protocols
where the system is adiabatically driven and never simultaneously coupled tomore than one thermal bath.

We also considered the case where the inclusion of theCC is enough to capture all the effects of one of the
two baths, leaving the supersystem coupled only to one bath. By doing this we recovered the setup of laser
cooling of trapped ions. The predicted occupation of the harmonicmode (CC)was shown to be in good
agreementwith the analytical results of [61], confirming the adequacy of the proposedmethod.

Finally, we emphasize that themethod presented here applies in general to any periodically driven thermal
machine coupled linearly with a bosonic bath, so thatmore complexmodelsmay be addressed in the future.

Figure 5.Occupation number of CC as a function of the detuning between the two-level system and the driving frequency.
Continuous line is obtained from the analytic results in [61]. Parameters used are: d d0.005 , 0.000 113 , 10h c0

2
0
2

0
4w w bw= = = and

ωres=0.005ω0.
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AppendixA. Collective coordinatemapping

In the following it will be assumed that the system (supersystem) is in contact only with one bath, but additional
reservoirs can be incorporated additively. The relevant quantities of themappedHamiltonian are given in terms
of the original spectral density [49] as

J
J

2
d ,

2
d , A.10
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0

0
0
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w
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w w wW = =
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with J0(ω)=Jc(ω) and frequency of CC CC
2

0
2w = l

dW
. The residual bath B c¢( ) has a new spectral density
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e
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
( ) ( ) and  indicates the principal value.Note that J0(ω)

is extended to negative values ofω via J0(−ω)=−J0(ω). From these expressions it is easy to see that increasing
the coupling between system and reservoir by J J0 0w a w( ) ( ) (with 1a ¹ ) has no effect on the coupling
between supersystem and residual reservoir since themultiplicative factorα cancels out in J1(ω).

It is important to note that the CCmapping can actually be appliedmore than once. If onewishes to apply
theCCmapping recursively, it is then necessary that the behavior of the spectral density Jn(ω) as w  ¥,
guarantees convergence of expressions for the residual reservoir with spectral density Jn+1(ω). The index n=0
indicates the original spectral density of the bath. This can be guaranteed from the start by introducing a hard
cutoff in the original spectral density J0(ω) at a sufficient high frequencyωR. Herewe apply theCCmapping
only once.

For our particularmodel (see equation (4)), an analytical expression can be obtained for Jc w¢( ). For
4 res

2 2w g> it follows that [52]

J . A.3c w gw¢ =( ) ( )

Additionally, we haveλ0=dc and δΩ0=dc/ωres such that CC res
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0
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dW
. In terms of creation and
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k= +W ( )† equations (7) and (8) can bewritten as
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where terms proportional to the identity and of second order inCk have been disregarded sincewe consider the
case where the coupling to the residual reservoir is weak. Now the totalHamiltonian can bewritten as
H H t H H H H H HS S B
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Comparingwith equation (1)wehave H H H HB
c

B
c

B
c

CC CC= + +¢ ¢
( ) ( ) ( ) .

Appendix B. Countingfield

In order to study the thermodynamics of our systemwe follow the full counting statistics formalism reviewed in
[51]. The totalHamiltonian, including system and reservoir is H H t H HS B SB= + +( ) andwe assume an initial
factorizing state of the form 0 0 Btotr r r= Ä( ) ( ) , with eB

HBr ~ b- . Note that we have considered the
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interactionHamiltonianHSB to be time independent. This termhas a periodic time dependence in ourmodel
but after the CCmapping this time dependence only appears in the supersystemHamiltonian and not in the
interaction to the residual bath.What is presented in this section also applies for the case of replacing S by S¢ and
B by B¢. Let us define themodified densitymatrix

t U t U t, , 0 , , B.1tot totr c c r cº -( ) ( ) ( ) ( ) ( )†

with total (supersystemplus reservoirs) initial densitymatrix ρtot(0) andmodified evolution operator
U t U t, e eH Hi 2 i 2B Bc = c c-( ) ( ) , whereU(t) is the evolution operator corresponding toHamiltonianH. The
variableχ is usually referred to as counting field. The evolution of operator ρtot(χ, t) is given by

t H t t t H t, i , , , , . B.2t tot tot totr c c r c r c c¶ = - - -( ) [ ( ) ( ) ( ) ( )] ( )

Taking the trace over the reservoir degrees of freedomwedefine

t t, Tr , . B.3B totr c r cº( ) { ( )} ( )

Note that the total densitymatrix and the reduced densitymatrix of our system are both recovered by setting
χ=0. Themoment generating function [51] associatedwith the probability p(ΔE) of projectivelymeasuring
HB at time t obtaining Et and at time 0 obtaining E0 is

G E p E td e Tr , , B.4Eiòc r c= D D =c- D( ) ( ) { ( )} ( )

withΔE=Et−E0 . It allows us to obtain the statistics of the energy transferred between system and reservoir
by simple differentiation

E G
i

. B.5n
n

n
0c

cáD ñ = -
¶

¶ c=( )
( ) ( )

Note that for a steady state thermodynamic analysis we are only interested in the change in time of the energy of
the reservoir given by equation (13).

AppendixC. Floquet theory and extended space

Floquetʼs theorem establishes that, for a time-periodicHamiltonian H t HeS k
k t

k
i L= å w( ) , with period T 2

L
= p

w
,

a solution to Schrödingerʼs equation is given by t r ter
ti ry ñ = ñe-∣ ( ) ∣ ( ) , where εr are called quasienergies and

r t ñ∣ ( ) Floquetmodes (states). The Floquetmodes are time-periodic and form a complete basis. Tofind themone
solves the eigenvalue problem

H t r t r ti . C.1S t re- ¶ ñ = ñ( ( ) )∣ ( ) ∣ ( ) ( )

The periodicity of the Floquetmodes allows us tomap the eigenvalue problem (C.1) to a time independent one
in an extendedHilbert space, sometimes referred to as Sambe space [13]. This is done by introducing an infinite
dimensional spacewith integer quantumnumbers. Its basis is given by

B , 3 , 2 , 1 , 0 , 1 , 2 , 3 . C.2TL = ¼ - ñ - ñ - ñ ñ ñ ñ ñ¼{ ∣ ∣ ∣ ∣ ∣ ∣ ∣ } ( )

In this space we define the operators Fk and Fz by their action on a state from BTL
.

F m m k F m m m, . C.3k zñ = + ñ ñ = ñ∣ ∣ ∣ ∣ ( )

These operators will help uswrite equation (C.1) in a simpler time independent form.We also have a basis for
our quantum system living inHilbert space S . Its basis is denoted by B , ,S K1 2 3f f f f= ñ ñ ñ ¼ ñ{∣ ∣ ∣ ∣ }. Now,we
can build the basis of the extendedHilbert space, which is the space inwhich our eigenvalue problemwill
become time independent

B B B n n i K, , 1, , . C.4T SL f= Ä = ññ Î Î ¼{∣ ∣ { }} ( )

Vectors in the extendedHilbert space will be denoted by a double ket notation rññ∣ . Its corresponding state at
time t in S will be denoted by r t ñ∣ ( ) . Conversely, a periodic state u t u t Tñ = + ñ∣ ( ) ∣ ( ) is denoted in the
extendedHilbert space by uññ∣ . If an operator has a periodic time dependence O t O ek k

ti L= å w( ) , its form in
extended space is defined as

O F O . C.5
k

k kext å= Ä ( )

Furthermore, the scalar product in the extended space is defined by

u v
T

t u t v t u t v t
1

d . C.6
T

0
òáá ññ = á ñ = á ñ∣ ( )∣ ( ) ( )∣ ( ) ( )
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With the previous definitions it is nowpossible towrite the operatorQ=H(t)−i∂t and eigenvalue problem
(C.1) in extended space as

Q F H F Q r r, , C.7
k

k k L z m rm mext extå w e= Ä + Ä ññ = ññ⟶ ∣ ∣ ( )

whereHk are the Fourier components of theHamiltonianH(t). The reasonwhy the eigenstates and quasienergies
have been denotedwith an additional indexm in the extended space is because they actually carry redundant
information. This becomes apparent when one considers a solution of (C.1) and defines εrm=εr+mωL and
r t r t em

m ti Lñ = ñ w∣ ( ) ∣ ( ) such that t r t r te er
t mt

m
i ir ry ñ = ñ = ñe e- -∣ ( ) ∣ ( ) ∣ ( ) . Thismeans that the state try ñ∣ ( ) can

actually be constructed fromboth solutions rmññ∣ or rm ññ¢∣ . To completely characterize the problemone has to
choose the Floquetmodes in the extended spacewhose quasienergies lie in the sameBrillouin zone. Fromnow
onwewill denote Floquetmodes in the extended space just by rññ∣ , assuming that all lie in the same
Brillouin zone.

With the Floquetmodes at hand, one can find the evolution of any operator. Let us consider an arbitrary
operator S
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S, calculating the integral in square bracketsmight not be trivial. In extended space this is easily calculated just by
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With decomposition (C.8) it is now straight forward to obtain amaster equation for a driven open quantum
system. For amore complete study and review of Floquet theory and driven systems the reader is referred
to [14, 62].

AppendixD. Floquetmaster equation

Starting from equation (B.2), going to the interaction picture and performing the standard Born andMarkov
approximations [27]we obtain

t s H t H t s t H t t H t s

H t s t H t t H t s H t

, d Tr , , , , , ,

, , , , , , . D.1

t B I I B I B I

I B I B I I

0
òr c c c r c r c r c r c

c r c r c r c r c c

¶ =- - - - -

- - - + - - -

¥
˜( ) { ˜ ( ) ˜ ( ) ˜( ) ˜ ( ) ˜( ) ˜ ( )

˜ ( ) ˜( ) ˜ ( ) ˜( ) ˜ ( ) ˜ ( )} ( )

The interaction picture is defined by A t U t AU t0 0=˜( ) ( ) ( )† , withU t0( ) the evolution operator associated to
HamiltonianH0(t)=HS(t)+HB.We take the interactionHamiltonian to have the form
H S B S c xSB k k k= Ä = Ä å and define the correlation function C t B t B B t B, , Tr ,B Bc c c rº á ñ =( ) ˜( ) { ˜( ) }.
Using the fact that B t B s B t s B, , ,c x c xá ñ = á - - ñ˜( ) ˜( ) ˜( ) , we have
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The correlation functions can actually bewritten in terms of the spectral density J k
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The periodicity ofHS(t) allows us to decompose the systemoperators in the interaction picture as in

equation (C.8). Performing the integrals over s andωwith the help of sd e is
0
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disregarding the principal value  term, one ends upwith an equation in the Schrödinger picture of the form
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withΔω, n=ω+nωL and S t r t S r t r t r ten
T t

T
n t

, 0

d i Lò= á ¢ ñ ñá ¢w
w-⎡

⎣⎢
⎤
⎦⎥( ) ( )∣ ∣ ( ) ∣ ( ) ( )∣ such that r rw e e= - ¢. Note

that due to the periodicity of the Floquetmodes r t ñ∣ ( ) , the superoperator t, c( ) also has the same periodicity.
The heatflow is obtained by (see section 2.3 and appendix B)
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Finally the evolution of the system can be computed just by settingχ=0 in equation (D.3),
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Assuming that in the long-time limit the densitymatrix ρ(t) is time-periodic with the same period as the Floquet
modeswe obtain equation (12). In the extended space this equation has the form

F Fi 0, D.6
k

k k L zå w rÄ - =
⎡
⎣⎢

⎤
⎦⎥ ( )

with r a vector containing all Fourier components of ρ(t).

Appendix E. Time independent interaction

Weconsider the casewhere theworkingmedium is coupled to the cold bath and hot bathwith the same system
coupling operator S S 2c h x 0s w= = . Note that we have removed the time dependence in the coupling
operator that appeared in our originalmodel. This is done in order to compare results of the heat flows
calculatedwith andwithout theCCmapping. The overall coupling strength between system and reservoir is
controlled by the parameter dc in (4). Parameter γ, on the other hand, can tune how strongly peaked the spectral
density is. A smaller value of γmeans amore strongly peaked spectral density.

Figure E1(a) shows the heatflowof the hot reservoir as a function of the coupling strength for different
values of γ. Continuous lines are the result of a standardMarkovian theory, where the Born,Markov and secular
approximations have been performed and dashed lines show the result of the non secularmaster equation of the
supersystemobtained after theCCmapping.We can clearly see that the structure of the spectral density can have
a strong impact on steady state quantities, since the smaller the value of γ the bigger the difference between the
standardMarkovian theory and the results performing theCCmapping. The reason for this relies in the
separation of timescales typically performed during theMarkovian approximation. In this approximation, it is
assumed that the correlation functions of the reservoir decay at amuch faster rate than the typical timescales of
the system. As the spectral density getsmore peaked, correlation functions tend to decay at a slower rate, thus

Figure E1. (a)Heat flow from the hot reservoir as a function of the coupling strength. (b)Workflow as a function of parameter γ.
Continuous lines are results of theMarkovian treatment of the two-level system and dashed lines results obtained using theCC
mapping. Parameters used are: g d0.75 , 0.2 , 0.005 , 25, 2.2L h c h0 0 0

2
0 0w w w w b w b w= = = = = andωres=0.2ω0. In (b) dots

indicate results using theCCmappingwith the secular approximation.
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making the separation of timescales not valid. The heat flowof the cold reservoir and thework flow also follow a
similar behavior as a function of the coupling strength for different values of γ.

Figure E1(b) shows theworkflow as a function of γ for small couplings dc. This timewe have included the
results performing theCCmappingwith the secular approximation (dots) for completeness. As explained in
section 2.2, the study of a periodically driven systemwith Floquet theory canmake the secular approximation
not suitable for analysis [60]. The secular approximation requires the systems level broadening to bemuch
smaller than its level spacing. After the CCmapping is performed the dimension of the supersystembecomes
infinite. Since for a correct treatment of the driven problem all quasienergies (see appendix C) aremapped to the
sameBrillouin zone, the assumption regarding the systemʼs level spacing looses its validity. Figure E1(b) shows
that the results of performing theCCmappingwith the secular approximationmight agree with the results of
only performing theCCmapping in some regimes, nevertheless to fully identify this regimes independently of
themodel, a further study is needed. As infigure E1(a)we also see that bigger differences between the standard
Markovian theory and theCCmapping formalism are obtained for strongly peaked spectral densities. Similar
results to the ones infigure E1(a)were also obtained in [37] for the case of a non-driven heat engine.

We stress the point that even though higher values of γ show a better agreementwith the standard
Markovian theory after the CCmapping is performed, the coupling between supersystem and residual reservoir
must remainweak in order to obtain amaster equation. Since in ourmodel themapped spectral density is
proportional to γ (see appendix A), one needs to be careful because increasing the value of γmightmake the
master equation for the supersystemnot valid.

Appendix F. Laser cooling

Weconsider an ion interactingwith a laser field [61, 63]. The interaction is given by H d EI =
 

· , where d

is the

dipolemoment and E

the electric field.We consider only two electronic states of the ion and define the electric

field to be along the x-direction,

H S E r t S E kx td , d cos , F.1I w= = -
    

· ( ) · ( ) ( )

with S

the spin of the ion and x its position.We also assume that themotional degree of freedomof the ion is

quantized in a harmonic potential such that x=x0 (a+a†) and define η=kx0, so that

H
E

a a t
d

2
cos . F.2I xs h w= + -[ ( ) ] ( )†

If the ion is well confinedwe can assume that 1h  . DefiningΩ≡ dE/2we obtain

H t a a tcos sin , F.3I x xs w h s w= W - W +( ) ( ) ( ) ( )†

which is analogous to the time dependent part of themappedworkingmedium in equation (10).

FigureG1. Left: occupation number of theCC and its fluctuations as a function of the driving frequencyωLwhile keeping the
resonance condition (20). Parameters used are as infigure 2.
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AppendixG. Fluctuations

Herewe analyze the fluctuations in the occupation number of theCC, defined as n n n2 2 2á D ñ º á ñ - á ñ( ) , with
n a aá ñ = á ñ† . For a thermal state (th) it is easy to show that these fulfill n n n n12

th th th thá D ñ = á ñ + á ñ á ñ( ) ( ) .
FigureG1 shows a good agreement between the variance of the occupation number of theCC and that of a

thermal state, further supporting the choice of parametrisation for the effective temperature in equation (21).
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