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Comparison of implicit and explicit numerical integration schemes for a bounding
surface soil model without elastic range

Christian Carow∗, Frank Rackwitz

Technische Universität Berlin, Chair of Soil Mechanics and Geotechnical Engineering, Straße des 17. Juni 135, 10623 Berlin, Germany

Abstract

Standard integration schemes for rate constitutive equations were designed within the classical theory of plasticity.
Consequently, they rely on the assumption that a yield criterion defines a range of purely elastic material behaviour.
Many constitutive models for non-cohesive soils discard that assumption. They account for inelastic deformations
without employing a yield criterion. This simplifies the formulation of the models but raises questions concerning
their numerical implementation. In particular, it is not fully clear which algorithmic method is most appropriate for
the numerical integration of constitutive models without elastic range. To investigate this, two different stress point
algorithms for a critical state bounding surface model for sands were developed and implemented. The explicit method
employs substepping to automatically control the local error. The implicit method updates stresses and state variables
through a local Newton iteration, the Jacobian of which is computed by numerical differentiation. The two algorithms
were compared by means of calculations at integration point level as well as with respect to a boundary value problem.
The results show that for a given level of accuracy, the explicit update procedure is significantly more efficient than the
implicit one. This holds regardless of initial state parameters and input strain increment magnitudes.

Keywords: Constitutive models, Non-Cohesive soils, Bounding Surface Plasticity, Implicit Numerical Integration,
Explicit Numerical Integration, Numerical Differentiation

1. Introduction

For constitutive models which employ the classical the-
ory of plasticity, a yield criterion must be defined. It de-
scribes a domain in the space of stresses and state variables
where the material under consideration behaves purely
elastic. This domain is briefly referred to as elastic range.

In contrast to that, non-cohesive soils behave inelasti-
cally even if strains are very small. Consequently, some
models for such soils do not exhibit yield surfaces. In-
stead, the frameworks of Generalized Plasticity (Pastor
et al., 1990) and Bounding Surface Plasticity (Dafalias,
1986) are frequently used (e. g. Li, 2002; Khalili et al., 2005;
Andrianopoulos et al., 2010; Sadeghian and Namin, 2013).
A special kind of bounding surface theories without elas-
tic range was termed hypoplastic by Dafalias (1986). The
characteristic feature of these models are stress rate depen-
dent mapping rules, rendering them incrementally non-
linear. The concept was adopted in (Wang et al., 1990;
Dafalias and Taiebat, 2016), for example. Apart from
that, Kolymbas (1991) established the name Hypoplastic-
ity for a class of soil models without yield criteria which
were mostly developed at the University of Karlsruhe (e. g.
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von Wolffersdorff, 1996; Niemunis and Herle, 1997). They
abandon the concept of elastic-plastic strain decomposi-
tion completely and are incrementally non-linear in the
strain rate. Constitutive relations of this type are called
Karlsruhe Hypoplasticity here.

All constitutive theories mentioned above are formu-
lated by means of rate equations. In order to be used
for the solution of initial boundary value problems, such
differential equations have to be integrated over time in-
crements of finite size. This can be accomplished by either
implicit or explicit numerical methods. Explicit integra-
tors are straightforward to construct and sufficiently ac-
curate if time steps are small. Implicit integrators, on the
other hand, are supposed to be stable even for large time
steps, but require a local iteration if non-linear functions
are to be handled. That renders the implementation rather
cumbersome and may induce considerable computational
overhead (Neto et al., 2008).

Common integration algorithms were developed with re-
spect to the classical theory of plasticity. Thus, the algo-
rithms’ key point is to enforce the yield criteria of the
underlying models. Such methods have to be adapted if
no elastic range is defined. This has been thouroughly
investigated with respect to Karlsruhe Hypoplasticity by
comparing different types of integration schemes (Tam-
agnini et al., 2000; Fellin et al., 2009; Ding et al., 2015;
Wang et al., 2018).
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For elasto-plastic models without yield surfaces, implicit
algorithms (de Borst and Heeres, 2002; Mira et al., 2009;
Petalas and Dafalias, 2019) as well as explicit ones (Andri-
anopoulos et al., 2010; Shu et al., 2011; Kan and Taiebat,
2014; Shi et al., 2018) were adopted. However, each of
these references was confined to either explicit or implicit
methods and thus did not compare the performance of dif-
ferent classes of integrators directly.

Therefore, one question has been left unanswered by
previous publications: Which method is most appropri-
ate for the numerical implementation of bounding surface
plasticity without elastic range? This issue is investigated
here through numerical experiments with the critical state
bounding surface model for sands proposed by Li (2002).

It is important to note beforehand that a radial map-
ping rule is employed to define the bounding surface image
stress, as will be discussed further in Section 2.4. This ap-
proach seems to be quite popular, since it has been adopted
extensively in soil mechanics (e. g. by Andrianopoulos
et al., 2010; Kan and Taiebat, 2014; Wang and Xie, 2014;
Shi et al., 2018). Still, there are bounding surface mod-
els which use different mapping rules. Major implications
for the numerical implementation may result from that,
which cannot be covered by the work presented here. This
is particularly true for hypoplastic mappings in the sense
of Dafalias (1986), because they require knowledge of the
stress rate direction, which is not available a priori dur-
ing numerical stress integration. Please refer to Petalas
and Dafalias (2019) for further insights into that special
subject.

The model by Li (2002) is briefly introduced in the fol-
lowing section. Afterwards, an implicit as well as an ex-
plicit integration scheme are presented. Then, the two
methods are verified, tested and compared comprehen-
sively by means of example calculations.

2. Theory

2.1. Preliminary remarks

The usual conventions of soil mechanics are adopted.
The effective stress σ and the infinitesimal strain ε are
assumed to be positive in compression. The coordinate
frame is three dimensional and Cartesian. Tensors, vec-
tors and matrices are typeset boldface or are referred to
by their components, e. g. tensor σ has components σij .
Quantities referring to a bounding surface are labelled by
a superimposed bar, e. g. r̄ is the bounding surface im-
age of r. Summation over repeated indices in products is
implied, e. g. aivi = a1v1 + a2v2 + a3v3.

Stresses, strains and state variables are functions of their
location x in the ambient space and of the pseudo-time t.
All processes considered here are rate-independent, there-
fore t has no physical meaning, but is used to label loading
stages. The dependency on t is indicated by subscripts.
The dependency on x is hidden in all equations because
stress integration takes place at discrete points with x
fixed. That means for example εn+1 = ε(tn+1, x).

Formally, deformations are assumed to be small, al-
lowing to employ a linearised relationship between dis-
placements and strains. Nevertheless, the theory and the
algorithms presented here may be transferred into a fi-
nite deformation context without structural modifications.
This can be accomplished by using a numerical method
for the global problem which preserves incremental objec-
tivity for the integration of stresses and state variables.
Most major finite element codes provide that. The theo-
retical background is comprehensively described in (Simo
and Hughes, 1998, Chapters 7, 8) and more concisely in
(Aubram, 2017).

The subsequent description of the model by Li (2002)
focuses on basic concepts and on the major rate equa-
tions, the numerical integration of which is discussed in
Section 3. The set of constitutive equations is completed
by the contents of Appendix B.

See Appendix A for a list of operators and symbols
which are not defined in the text.

2.2. Elastic and plastic mechanisms
The constitutive model for sands by Li (2002) is based

on the additive decomposition of the strain rate tensor

ε̇ = ε̇e + ε̇p . (1)

Soil behaviour is assumed to be instantaneously inelastic,
i. e. the elastic part ε̇e and the plastic part ε̇p always act
simultaneously.

The rates of strains and stresses are linked by the usual
elastic law

σ̇ = ce(e, p) : (ε̇− ε̇p) (2)

The elastic stiffness ce is a non-linear function of void ratio
e and mean effective stress p through the empirical formula
for the shear modulus of Richart et al. (1970), see (B.2).

For the plastic strains ε̇p, the bounding surface frame-
work of Wang et al. (1990) is adopted. Since non-cohesive
soils are particularly sensitive to changes in stress ratio
r = σdev/p, the stress rate is decomposed by the chain
rule of differentiation into

σ̇ = ṙp+ ṗ
σ

p
. (3)

The two rate quantities in (3) are being accounted for
by separate plastic mechanisms. Each of them computes a
plastic strain rate by means of its own bounding surface.
These surfaces are described in Section 2.3.

The contributions of the two plastic mechanisms are
added up to

ε̇p = ε̇p1 + ε̇p2

= λ̇1

(
n̄+

√
2

27
D1I

)
+ λ̇2

(
m̄+

√
2

27
D2I

)
.

(4)

According to this equation, the deviatoric plastic flow is
directed along the unit tensors n̄ and m̄, while its mag-
nitude is governed by the plastic loading indices λ̇1 and
λ̇2. The volumetric plastic strains are scaled against the
loading indices by the dilatancy functions D1 and D2.
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Figure 1: Illustration of bounding surfaces in principal stress space;
adapted with permission from (Carow et al., 2017, p. 606); Copyright
(2017) Wiley

2.3. Bounding surfaces

Plastic mechanism ε̇p1 accounts for the stress ratio part
of (3) and relies on the bounding surface

F1 =
R̄

g(θ̄)
−H1 = 0 . (5)

The surface is a cone in effective stress space. Its shape,
as sketched in Figure 1, is prescribed by the function g(θ̄)
and its size is defined by the internal state variable H1.
The quantities R̄ and θ̄ in (5) are invariants of the image
stress ratio r̄, as defined in Appendix A. To find r̄, the
current stress ratio r is projected onto F1 using the method
described in Section 2.4.

The hardening rule of the cone is

Ḣ1 =
A

p
K̄p1λ̇1 , (6)

in which K̄p1 is the cone’s plastic modulus and A is the
magnitude of the outward normal to F1 at r̄, see (B.10).

Plastic mechanism ε̇p2 accounts for the second term of
(3). Its bounding surface

F2 = p̄−H2 = 0 (7)

is a flat cap perpendicular to the hydrostatic axis, as shown
in Figure 1. The image mean stress p̄ is defined by a one-
dimensional mapping rule as described in Section 2.4. The
evolution of the hardening parameter H2 is linked to the
cap’s loading index and the plastic modulus K̄p2 by

Ḣ2 = K̄p2λ̇2 . (8)

2.4. Mapping rules

In order to calculate the loading indices λ̇1 and λ̇2, plas-
tic moduli Kp1 and Kp2 at the current stress point are re-
quired. The corresponding formulas are listed here in Ap-
pendix B. They differ from their bounding surface coun-
terparts K̄p1 and K̄p2 by scaling factors, which take into

account the scalar stress distances

ρ̄1 = ‖r̄ −α‖ , ρ1 = ‖r −α‖ ,
ρ̄2 = |p̄− β| , ρ2 = |p− β| .

(9)

The quantities α and β in (9) are projections centres, lo-
cated at the points of last stress reversal. They are known
from the loading history. The stress images r̄ and p̄ are
obtained by means of mapping rules as follows.

To define the image stress ratio r̄, Li (2002) adopted a
radial mapping rule of the form

r̄ = α+
ρ̄1

ρ1
(r −α) . (10)

The distance ρ1 can directly be computed through (9).
That leaves r̄ and ρ̄1 as unknowns of (10). Unfortunately,
the equation cannot be solved analytically. Instead, a
first estimate for the unknowns is computed by assuming
the shape of the cone to be circular, implying g(θ̄) = 1.
Then, the solution is improved by iteratively enforcing (5)
and (10).

The image stress p̄ of the cap bounding surface is much
easier to find, because the projection is along the hydro-
static axis only. Li (2002) simply defined

p̄ =

{
H2 if ṗ > 0

0 if ṗ < 0
. (11)

2.5. State dependend plastic parameters

The model features presented so far constitute a compre-
hensive bounding surface framework without elastic range.
The main novelty which Li (2002) added to this platform
are functions for the dilatancy D1 and the plastic moduli
K̄p1 and Kp1 that depend on the material internal state.
The latter is described by the weighted invariants of r̄ and
r

η̄ =
R̄

g(θ̄)
, η =

R

g(θ)
, (12)

and by the state parameter of Been and Jefferies (1985)

ψ = e− ec . (13)

For the critical void ratio ec in (13), the equation

ec = eΓ − λc (p/pa)
ξ

(14)

is adopted from Li and Wang (1998). Therein, pa is the at-
mospheric pressure and eΓ, λc as well as ξ are constitutive
parameters, the meaning of which is depicted in Figure 2.
Earlier approaches assumed a linear relationship between
ec and ln p. Compared to that, the power law (14) fits
experimental data for non-cohesive soils across a greater
range of pressures.

The idea of modelling the behaviour of non-cohesive
soils by means of the state parameter ψ was developed
and gradually refined by a series of pioneering works. Jef-
feries (1993) and Muir Wood et al. (1994) were the first to
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include a dependence on ψ in the hardening rules of plas-
ticity models. Manzari and Dafalias (1997) adopted this
approach. They furthermore expressed the phase trans-
formation stress ratio at which the soil response changes
from contractive to dilative as a linear function of ψ. Thus,
both hardening and dilatancy became directly related to
ψ. The concept was taken up by Li and Dafalias (2000).
They combined it with the power law (14) and developed
a model for triaxial compression in which the hardening
modulus and the dilatancy are exponential functions of
ψ. These functions were then adapted for general loading
conditions by Li (2002).

The actual equations for D1, K̄p1 and Kp1 are provided
here in Appendix B. For a detailed discussion, please refer
to (Li and Dafalias, 2000; Li, 2002). In essence, their de-
pendency on the material internal state enables the model
to capture the following crucial aspects of the mechanical
behaviour of non-cohesive soils during shear loading:

• The soil response depends on whether the initial state
is to be characterized as dense or loose.

• Dense states and loose states cannot be distinguished
by density or void ratio e only. In addition, the mean
effective stress p must be taken into account, as illus-
trated in Figure 2.

• For dense states, the soil contracts initially, then un-
dergoes phase transformation and finally dilates to-
wards ec. Meanwhile, the stresses reach a sharp peak,
followed by softening towards the residual strength.

• For loose states, the soil continuously contracts to-
wards ec and the stresses evolve without a distinctive
peak.

The above explanations refer to drained conditions.
Nevertheless, the model is also able to simulate the excess
pore pressure evolution during undrained loading with the
same set of equations and constitutive parameters.

2.6. Overall structure

The elastic and plastic constitutive equations are com-
bined into the tensors Θ and Z, which are defined in (B.5)
and (B.6). These are used to calculate the plastic loading
indices from the strain rate according to

λ̇1 = Θ : ε̇ , λ̇2 = Z : ε̇ . (15)

Subsequently, a rate evolution equation for the effective
stress can be derived, the general shape of which is

σ̇ = cep(σ, q) : ε̇ . (16)

The elastoplastic stiffness cep is given by (B.4). It is a
function of stress σ and internal state variables q. The
component matrix of q is

q =
[
e λ1 H1 H2 α β

]T
. (17)

Critical State Line

B

e

A

ψ
B
 > 0 

Loose state

ψ
A
 < 0 

Dense state

( p/p
a
)ξ

e
Γ

λ
c

e
A 
, e

B
 

p
A

p
B0

Figure 2: Illustration of Critical State Line and state parameter ψ;
adapted with permission from (Carow et al., 2017, p. 607); Copyright
(2017) Wiley

2.7. Description of model operation

2.7.1. Monotonic loading

When the model by Li (2002) is used to simulate mono-
tonic loading of a virgin soil sample, the bounding sur-
faces expand isotropically while the current stress point
resides on them. At this stage, the bounding surface pro-
jection centres are defined through the initial conditions.
As noted before, there is no elastic range, so the simu-
lated soil behaviour is elastic-plastic even for the very first
loading increment. Only in case of a neutral loading path
along the cone bounding surface the model response would
be purely elastic because λ̇1 = λ̇2 = 0. However, according
to Li (2002) this situation is “highly hypothetical”.

If softening occurs, for example in drained triaxial com-
pression of dense sand, the two bounding surfaces evolve
differently, as defined by their plastic moduli K̄p1 and K̄p2

(see Appendix B):

• The cone shrinks because K̄p1 becomes negative.
Meanwhile, the stress point remains on the cone.

• The cap stays at the position H2 = pmax as long as
p < pmax, in which pmax is the maximum mean effec-
tive stress that has been experienced.

2.7.2. Reversal of loading direction

According to Li (2002) the loading direction of the cone
is said to reverse if λ̇1 < 0 is encountered. In that case,
the cone’s projection centre α is relocated onto the cur-
rent stress ratio r. Consequently, ρ1 = ‖r − α‖ = 0
and thus Kp1 according to (B.16) becomes infinitely large,
meaning that no plastic strains are produced by the cone.
Due to the mechanics of the bounding surface framework,
this situation is only instantaneous, as Li (2002) explains
in detail. Immediately afterwards, λ̇1 becomes positive
again.
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The loading direction of the cap can be monitored
through the sign of the mean effective stress rate. As long
as sgn ṗ = const, plastic strains are continuously produced.
When sgn ṗ changes, the projection centre β jumps to the
current p, while the cap is momentarily inactive. As with
the cone, this situation lasts for an instant only. For any
further changes of p in the same direction, the loading in-
dex becomes positive again, no matter if sgn ṗ has changed
from positive to negative or vice versa.

2.7.3. Cyclic un- and reloading

Consider a situation in which the loading directions
of both bounding surfaces have reversed after monotonic
loading. Then, continued loading in the new directions
induces the following processes.

1) The stress point detaches from the bounding surfaces.

2) The plastic strain magnitude becomes a function of
the distances defined in (9).

3) The plastic modulus Kp1 becomes a function of the
accumulated plastic loading index

λ1(t) = λ1(t0) +

∫ t

t0

λ̇1(τ)dτ . (18)

These processes are automatically controlled through
the bounding surface framework. Thus, different stages
of cyclic loading that could be classified as “first loading”,
“unloading” and “reloading” are addressed with a single
set of constitutive equations. The only case which needs
special treatment is the instantaneous loading direction re-
versal described in Section 2.7.2. This enables the model
to capture effects of stress and strain history on the soil’s
behaviour in cyclic loading very efficiently.

Additionally, the model is able to simulate effects of non-
proportional loading and fabric anisotropy if further state
variables and plastic mechanisms are incorporated (Li and
Dafalias, 2004; Gao and Zhao, 2015). This is omitted here,
because it complicates the analytical formulation consid-
erably, whereas the paper focuses on numerical implemen-
tation.

3. Numerical implementation

3.1. Algorithmic setup

Constitutive equations for path-dependent materials
usually are of the rate-type and thus provide a relationship
between infinitesimal increments of stresses and strains.
This also holds for the model by Li (2002). As has already
been noted in Section 1, such equations must be integrated
over finite time or strain increments to obtain stress point
algorithms. The general setup for that is defined subse-
quently.

Let [tn, tn+1] be a given time interval. For t = tn, ef-
fective stress σn and internal state variables qn are known

as initial conditions. The evolution of σ and q during the
time increment ∆t = tn+1− tn is governed by a set of rate
equations of the general form

σ̇ = g(σ, q, ε̇) ,

q̇ = h(σ, q, ε̇) ,
(19)

in which dependency of all variables on time t has been
suppressed. The symbols g and h represent generic consti-
tutive functions. The actual evolution equations that Li
(2002) proposed to use in place of g and h are summarised
here in Table 1.

The strain rate ε̇ is given and constant for t ∈ [tn, tn+1].
Therefore, the update of stresses and state variables from
tn to tn+1 is solely driven by the strain increment

∆ε = εn+1 − εn = ε̇∆t . (20)

Based on these assumptions, the problem to be solved
by any stress point algorithm is: Find stresses and state
variables at t = tn+1 through numerical approximation of

σn+1 = σn + ∆σ , ∆σ :=

∫ tn+1

tn

σ̇(t)dt ,

qn+1 = qn + ∆q , ∆q :=

∫ tn+1

tn

q̇(t)dt .

(21)

Numerous methods for the solution of (21) were devel-
oped. Explicit methods approximate the integrals based
on known quantities, usually the ones at t = tn. Implicit
methods evaluate the rate equations for t = tn+1 at the
end of the time increment (Simo and Hughes, 1998; Neto
et al., 2008). Here, one algorithm out of each of the two
categories is constructed.

Table 1: Evolution equations for stress and internal state variables

Var. Description Evolution Eq.

σ Effective stress σ̇ = cep : ε̇ (16)
e Void ratio −ė = (1 + e) tr(ε̇) (B.8)

λ1 Accum. pl. strain λ̇1 = Θ : ε̇ (15)

H1 Size of cone Ḣ1 = (A/p)K̄p1λ̇1 (6)

H2 Position of cap Ḣ2 = K̄p2λ̇2 (8)
α Projection centre See Section 2.7.2
β Projection centre See Section 2.7.2

3.2. Implicit stress point algorithm

3.2.1. Backward Euler update

First of all, the implicit Backward Euler method is
adopted for the numerical solution of the general problem
(21). Its fundamental idea is to compute the increments
of stresses and internal state variables by

∆σ = g(σn+1, qn+1, ε̇)∆t ,

∆q = h(σn+1, qn+1, ε̇)∆t .
(22)

5



That means, the constitutive functions g and h are evalu-
ated for the updated configuration of stresses and internal
state variables, which is unknown in advance. Please note
that usually neither ε̇ nor ∆t are considered in rate-inde-
pendent plasticity. Instead, only their product ∆ε is taken
into account by the stress point algorithm.

In conventional plasticity, the basic equations (22) are
further constrained because the yield criterion is to be
obeyed at tn+1. This is naturally accounted for by implicit
return mapping procedures. In contrast, explicit time in-
tegration is prone to give numerical solutions which violate
the yield criterion at tn+1. This can be avoided by tech-
niques like for example “consistent correction” of stresses
and state variables (Sloan et al., 2001) or “event location
and solving the corresponding index 2 problem“ (Fellin
and Ostermann, 2014). However, such enhancements com-
plicate the implementation of explicit integrators and in-
crease their computational costs.

For the class of models considered here, there is no yield
criterion to obey, which eliminates the advantage of im-
plicit time integration described above. Still, the Back-
ward Euler method should be more stable than explicit
integration (Belytschko et al., 2014). The test calcula-
tions presented in Section 4 will show whether this is of
significance here.

To derive an algorithm from the basic concept (22), the
approach of de Borst and Heeres (2002) is adopted. Conse-
quently, the Backward Euler stress increment is computed
from the elastic stress-strain relation (2) and the plastic
strains (4) at tn+1. This yields the discrete equation

∆σ = ce
n+1 :

(
∆ε−∆εp1

n+1 −∆εp2
n+1

)
, (23)

in which the plastic strain increments are

∆εp1
n+1 = ∆λ1

(
n̄n+1 +

√
2/27D1,n+1I

)
,

∆εp2
n+1 = ∆λ2

(
m̄n+1 +

√
2/27D2,n+1I

)
.

(24)

For the cone’s state variables, the idea of (22) can di-
rectly be applied to the rate equations listed in Table 1.
Thus, the Backward Euler increments are

∆λ1 = Θn+1 : ∆ε ,

∆H1 =
An+1

pn+1
K̄p1,n+1∆λ1 .

(25)

The incremental loading index of the cap ∆λ2 is not
needed to update the state variables. Therefore, one could
substitute the equation for ∆λ2 into (23). It turned out,
however, that this leads to a poor convergence rate. Simi-
lar findings were reported in (de Borst and Heeres, 2002).
Therefore, the discrete version

∆λ2 = Zn+1 : ∆ε (26)

of rate equation (15) for λ̇2 is included in the Backward
Euler algorithm to be developed here.

All members of Equations (23), (25) and (26) with
the subscript (•)n+1 are non-linear functions of σn+1 and
qn+1. An iterative solution for this problem is developed
in Section 3.2.2. The remaining state variables of Table 1
are treated differently from λ1 and H1. This is discussed
in the following paragraphs.

Equation (B.8) for the void ratio e can be analytically
integrated in Backward Euler fashion, so

en+1 =
en − tr(∆ε)

1 + tr(∆ε)
. (27)

According to the hardening rule (8), the implicit update
of H2 should be

H2,n+1 = H2,n + K̄p2,n+1∆λ2 . (28)

Instead, the simplified update rule

H2,n+1 =

{
pn if pn+1 ≤ pn
pn+1 if pn+1 > pn

(29)

can be used because (B.20) essentially means thatH2 is the
largest pressure that has been experienced throughout the
loading history. This makes H2,n+1 a dependent variable
that can be calculated directly as soon as some estimate
for σn+1 is at hand.

The projection centres α and β evolve stepwise, as de-
scribed in Section 2.4. This is implemented as

αn+1 =

{
αn if ∆λ1 ≥ 0

rn if ∆λ1 < 0
,

βn+1 =

{
βn if

(
∆p(pn − βn)

)
≥ 0

pn if
(
∆p(pn − βn)

)
< 0

.

(30)

3.2.2. Iterative solution

In order to calculate the Backward Euler incre-
ments (23), (25) and (26) iteratively, the equations are
rearranged into the residual form

∅ = ∆σ − ce
n+1 :

(
∆ε−∆εp1

n+1 −∆εp2
n+1

)
,

0 = ∆λ1 −Θn+1 : ∆ε ,

0 = ∆H1 −
An+1

pn+1
K̄p1,n+1∆λ1 ,

0 = ∆λ2 −Zn+1 : ∆ε .

(31)

All unknowns of (31) are cast into the vector

u :=
[
∆σ ∆λ1 ∆H1 ∆λ2

]T
. (32)

From the right-hand side of (31), the vector of residuals

R(u) :=


∆σ − ce

n+1 :
(

∆ε−∆εp1
n+1 −∆εp2

n+1

)
∆λ1 −Θn+1 : ∆ε

∆H1 − (An+1/pn+1)K̄p1,n+1∆λ1

∆λ2 −Zn+1 : ∆ε

 (33)
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is defined.
The problem of solving (31) is then reformulated as find-

ing the vector u0 for which

R(u = u0) = ∅ . (34)

The task is accomplished by Newton’s method. As initial
guess for the unknowns, ui=0

0 = ∅ is assumed. This was
proposed by Petalas and Dafalias (2019) and is equivalent
to a Forward Euler trial step.

During the (i+ 1)th iteration, the function R(u) is lin-
earised at ui0 by

LIN(R;u− ui0) = R(ui0) + J(ui0) ·
(
u− ui0

)
, (35)

in which the Jacobian matrix is

J(ui0) :=
∂R(u)

∂u

∣∣∣∣
u=ui

0

, Jlk =
∂Rl
∂uk

. (36)

Let ui+1
0 be the zero of the linear equation (35). It

constitutes an improved estimate for u0 and is found by
solving

∆ui0 =
(
J i
)−1 · (−Ri) , (37)

in which ∆ui0 := ui+1
0 −ui0, J i := J(ui0) andRi := R(ui0).

The iterative solution is then updated to

ui+1
0 = ui0 + ∆ui0 (38)

and the new residual Ri+1 = R(ui+1
0 ) is computed.

The iteration is repeated until

‖Ri+1‖ ≤ ITOL and ‖∆ui0‖ ≤ ITOL , (39)

with the tolerance ITOL being an user input to the algo-
rithm. If convergence is not achieved within the maximum
number of iterations imax, the input strain increment ∆ε
is split into substeps

∆εsub = ∆T∆ε . (40)

In a first attempt, ∆T = 0.5 is chosen for the increment of
the unitless substepping pseudo-time T ∈ [0, 1], yielding
to substeps. The iteration is then restarted for the first
subincrement. Repeated substepping may reduce ∆T to
its pre-defined lower limit ∆Tmin. In that case, the solution
is accepted and a warning message is issued to the calling
routine.

It is important to note that the convergence crite-
rion (39) does not monitor the accuracy of the updated
stresses and state variables. Instead, it measures to what
extend (34) is satisfied by ui+1

0 and how much the solution
has changed during the current iteration. The initiation
of substepping through the convergence criterion improves
the robustness of the method, but it is not suited to en-
hance the accuracy. That would require a method for es-
timating the local numerical error, as is presented for the
explicit integrator in Section 3.3. In the context of implicit
time integration an error estimate can be constructed by

a Richardson extrapolation of the fully implicit Backward
Euler scheme (22). Based on this, a semi-implicit method
with error control can be derived (Fellin et al., 2009).

The complete implicit stress point algorithm is sum-
marised in Algorithm 1. It relies on the numerical approx-
imation of the Jacobian discussed in the following section.

Algorithm 1: Implicit stress point algorithm with
substepping for the constitutive model by Li (2002),
based on the method by de Borst and Heeres (2002)

Input: σn, qn, ∆ε, ITOL, imax, ∆Tmin

Output: σn+1, qn+1

Initialize T = 0, ∆T = 1, σT = σn, qT = qn
while T < 1.0 do

compute strain subincrement ∆εsub = ∆T∆ε
initialize i = 0 and ui=0

0 = ∅
compute R(ui0) according to (33)
update α and β according to (30)
while i < imax do

compute Jacobian J i = J(ui0) (Algorithm 2)

solve ∆ui0 =
(
J i
)−1 · (−Ri)

update ui+1
0 = ui + ∆ui0

compute Ri+1 = R(ui+1
0 ) according to (33)

update i = i+ 1
Check convergence criterion (39)
if convergence criterion met then exit

end while
if convergence failed and ∆T > ∆Tmin then

reject substep
restart with reduced increment ∆T = ∆T/2

else
update σT+∆T and qT+∆T from ui0
update T = T + ∆T

end if

end while
Exit with σn+1 = σT and qn+1 = qT

3.2.3. Computation of the local Jacobian

This section is intended to present a method for calculat-
ing the Jacobian J = ∂R/∂u defined in (36). According to
(32) and (33), the residual R depends on the components
of u directly as well as through the discrete constitutive
functions for cepn+1, Θn+1, An+1 and K̄p1,n+1. These func-
tions are formulated in terms of the image stress ratio r̄
and its invariants R̄ and θ̄, as is clear from Appendix B.
This poses a particular problem, because r̄n+1 is calcu-
lated from σn+1 = σn + ∆σ and H1,n+1 = Hn + ∆H1 by
the iterative mapping procedure discussed in Section 2.4,
which cannot be described by a differentiable equation.
Therefore, r̄ cannot be differentiated with respect to the
unknowns ∆σ and ∆H1, and an analytical expression for
J cannot be derived. Instead, the partial derivates in (36)
are obtained through numerical differentiation after Pérez-
Foguet et al. (2000a,b).
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Algorithm 2: Approximate computation of the
Jacobian using the method by Pérez-Foguet et al.
(2000a)

Input: ui, R(ui), σn, qn, ∆ε, relative stepsize hr

Output: Jlk = ∂Rl/∂uk approximated at ui

for k = 1 to p+ 2 do
compute stepsize h = hr max(|uik|, 1.0)
compute R(ui + hek) according to (33) (also
requires σn, qn and ∆ε)

for l = 1 to p+ 3 do compute Jlk by (43)

end for

To outline the basic idea of the procedure, let f(v) be
a scalar function of some vector-valued variable v with
components vj . Then, the partial derivates of f at a
given point v0 can be approximated by a forward differ-
ence scheme as

∂f(vj)

∂vj

∣∣∣∣
v=v0

=
f(v0 + hjej)− f(v0)

hj
+O(hj) . (41)

The variables ej and hj are the unit vector and the step
size for the j-th component of v, respectively. The higher
order terms O(hj) are not calculated, but included here to
indicate that the approximation is first order accurate.

With regard to the component v0,j of v0 the step size is
computed through

hj = hr max(|v0,j |, 1.0) . (42)

The relative step size hr is a control parameter that has
to be pre-defined. In previous works, the approximation
(41) proved to be efficient and robust for a wide range of
values for hr. Here, hr = 1× 10−6 is chosen because that
value yielded good results in all numerical experiments of
Pérez-Foguet et al. (2000a).

The one-dimensional formula (41) can be applied to the
vector-valued R if f is replaced by one component Rl.
Consequently, the numerical approximation for J at ui is

Jlk =
∂Rl
∂uk

∣∣∣∣
u=ui

=
Rl(u

i + hkek)−Rl(ui)
hk

. (43)

The basic steps which are necessary to compute (43) are
listed in Algorithm 2. The computational costs are scaled
by the number of components of R and u. According to
(32), the length of these two vectors is p+ 3, in which

p =

{
4 for plane strain and axisymmetry

6 for 3D
(44)

is the length of stress and strain vectors in Voigt notation.

3.3. Explicit stress point algorithm

3.3.1. Basic concepts

The second stress point algorithm to be developed solves
the problem (21) through the explicit method proposed by

Sloan (1987); Sloan et al. (2001). Accordingly, stress and
state variables are updated by

σ̃n+1 = σn + 1
2 (∆σ1 + ∆σ2) ,

q̃n+1 = qn + 1
2 (∆q1 + ∆q2) .

(45)

The first group of increments is computed by the Forward
Euler method, so

∆σ1 = g(σn, qn,∆ε) ,

∆q1 = h(σn, qn,∆ε) ,
(46)

in which g and h are the generic constitutive functions
introduced with (19). The second group of increments is

∆σ2 = g(σn + ∆σ1, qn + ∆q1,∆ε),

∆q2 = h(σn + ∆σ1, qn + ∆q1,∆ε) .
(47)

The approximation (45) is frequently called “Modified Eu-
ler Scheme”, but from a theoretical point of view it rep-
resents a second order Runge-Kutta method (Tamagnini
et al., 2000).

The relative numerical error of the explicit approxima-
tion is estimated from

Rrel = max

(
‖∆σ2 −∆σ1‖
‖σ̃n+1‖

,
‖∆q2 −∆q1‖
‖q̃n+1‖

)
. (48)

An error threshold is pre-defined as STOL. If the criterion

Rrel ≤ STOL (49)

is not met, the input strain increment ∆ε is split into sub-
steps ∆εsub as shown in (40) and the update procedure
is repeated for the subincrements. Otherwise, the solu-
tions (45) are accepted as final values for σn+1 and qn+1.
This technique is commonly referred to as automatic error
control.

The normalisation of Rrel by ‖σ̃n+1‖ and ‖q̃n+1‖ in (48)
allows to treat different levels of stresses and state variables
with the same tolerance. A drawback of the approach is
that numerical singularities arise if one of the norms in the
denominators tends to zero. If that is of relevance, as for
example in boundary value problems with a free surface
and no preloading, the mixture of relative and absolute
errors proposed in (Fellin et al., 2009) could be employed.

The explicit procedure is summarized in Algorithm 3.
All calculation steps from (Sloan et al., 2001) which are
related to the yield surface have been omitted because the
constitutive model is of zero elastic range type. This sim-
plifies the implementation significantly, but might affect
the accuracy because the evolution of stress and state vari-
ables is restricted less strongly.

3.3.2. Computation of substep size

In Algorithm 3, the size of local substeps is defined by
the increment ∆T of the pseudo-time T ∈ [0, 1], analogous
to Algorithm 1. Depending on whether or not the criterion
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Algorithm 3: Explicit stress point algorithm with
automatic error control for the model by Li (2002),
based on the method by Sloan et al. (2001)

Input: σn, qn, ∆ε, STOL
Output: σn+1, qn+1

Initialize T = 0, ∆T = 1, σT = σn, qT = qn
while T < 1 do

compute strain subincrement ∆εsub = ∆T∆ε
for k = 1 to 2 do

compute
∆σk = g(σ̃k, q̃k,∆εsub)
∆qk = h(σ̃k, q̃k,∆εsub)

where
σ̃1 = σT , q̃1 = qT
σ̃2 = σT + ∆σ1 , q̃2 = qT + ∆q1

end for
update α and β according to (30)
update stress and material state according to

σ̃T+∆T = σT + 1
2 (∆σ1 + ∆σ2)

q̃T+∆T = qT + 1
2 (∆q1 + ∆q2)

Determine relative error Rrel(T + ∆T ) by (48)
if Rrel(T + ∆T ) > STOL then

reject substep
decrease ∆T according to (50)
go back to the beginning of the while loop

else successful substep
update

σT+∆T = σ̃T+∆T

qT+∆T = α̃T+∆T

T = T + ∆T
increase ∆T according to (50)

end if

end while
Exit with σn+1 = σT and qn+1 = qT

(49) has been met, ∆T may increase or decrease after each
substep.

Sloan et al. (2001) deduced guidelines for the computa-
tion of ∆T from numerical experiments. These are meant
to guarantee optimal performance of the algorithm and
thus are adopted here. Accordingly, the new increment
size is determined at the end of substep k as

∆Tk+1 = q∆Tk . (50)

The step factor is set to

q = 0.9
√
STOL/Rrel(Tk) (51)

and constrained to lie within the range

0.1 ≤ q ≤ 1.1 . (52)

4. Results and discussion

4.1. Criteria and methods for the test calculations

In subsequent sections, the implicit stress point algo-
rithm and the explicit one are compared by means of ex-
ample calculations. The results are assessed with respect
to the algorithms’ stability, accuracy and efficiency. These
criteria are defined as follows (Tamagnini et al., 2000; Neto
et al., 2008).

Stability. A stable algorithm ensures that variations of
the solution which result from perturbations of the initial
conditions of a calculation step are bounded within that
step. In an unstable solution, on the other hand, the vari-
ations propagate through subsequent steps and may even
be amplified, which then leads to erroneous results.

Accuracy. A numerical solution is regarded accurate if
the difference to an exact solution is small. The exact so-
lution usually is computed by means of numerical methods
as well, but with load increments which are small enough
to yield very high accuracy.

Efficiency. Algorithm A is regarded more efficient than
algorithm B if A takes less computational costs than B to
produce a solution with a given level of accuracy.

In general, the performance of integration algorithms
with regard to the criteria defined above mostly depends
on three factors: 1) the initial state conditions, 2) the
magnitude of input strain increments and 3) the strain in-
crement direction. The impact of the first two factors is
investigated here through example calculations at stress
point level with custom Fortran programs and Incremen-
tal Driver (Niemunis, 2017). To furthermore account for
strain increments of different directions and to assess the
algorithms’ overall efficiency, a boundary value problem
was solved by finite element simulations with ANSYS®
Mechanical™ APDL 17.0.

Both ANSYS® and Incremental Driver require their
constitutive routines to provide algorithmic stiffness oper-
ators for the Jacobians of the global Newton iteration. For
that purpose, the stress update algorithms implemented
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Table 2: Constitutive parameters for Toyoura Sand (Li, 2002)

Elasticity CSL Cone Cap

G0 = 125 M = 1.25 d1 = 0.41 d2 = 1.0
ν = 0.25 eΓ = 0.934 m = 3.5 h4 = 3.5

λc = 0.019 h1 = 3.15 a = 1.0
ξ = 0.7 h2 = 3.05
c = 0.75 h3 = 2.2

n = 1.1

here use the continuum tangent cep computed last in the
course of the stress integration procedure. This is the sim-
plest possible choice because it does not require additional
computations. More elaborate approaches are discussed in
Section 5.

Last but not least, all results presented subsequently
were obtained using the constitutive parameters listed in
Table 2.

4.2. Verification

Before investigating the algorithms’ performance, it is
necessary to verify that the constitutive routines are con-
sistent with the underlying rate equations. To accomplish
that, results from numerical simulations of element tests
are compared to reference results from (Li, 2002). For the
benefit of a clear presentation, only the explicit algorithm
without local substepping is used. However, the source
code for the constitutive functions is shared between the
implicit and the explicit algorithm. Therefore, both meth-
ods yield the same results if load increments are small
enough to render numerical errors negligible.

First, the cap mechanism is tested by means of isotropic
and oedometric compression with un- and reloading. The
loads are applied in steps of 1 kPa. The results obtained
here are compared to those of the reference in Figure 3.
They match very closely. This proves that the constitutive
functions of the cap were implemented correctly.

Second, constant volume simple shear was simulated to
verify those constitutive functions which are related to the
cone bounding surface and account for changes in stress ra-
tio. Cyclic loading with a shear stress amplitude of 60 kPa
was applied in 120 steps per cycle. The results are shown
in Figure 4. Accordingly, the stress path obtained here is
very similar to the one presented in (Li, 2002). In detail,
however, the curves differ slightly. On the other hand, the
strain evolution computed here agrees very well with the
reference.

When interpreting Figure 4, one has to bear in mind
that the loading is stress controlled and that the succes-
sive build-up of excess pore pressure reduces the incremen-
tal stiffness severely. Because of that, the results strongly
depend on the load step size as well as on the choice of
numerical methods for the global iteration and the local
algorithmic stress update. These computational parame-
ters are unknown for the reference results, which makes it
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isotropic and oedometric compression; e0 = 0.85; the reference is
(Li, 2002); reference results for e in oedometric compression are not
available

very difficult to exactly reproduce the results. In light of
that, the small deviations in the stress path in Figure 4
can be accepted. The implementation of the constitutive
functions therefore is considered successfully verified.

4.3. Performance at stress point level

4.3.1. Stability

This section investigates how the stability of Algo-
rithms 1 and 3 is affected by the input strain increment
size. For that purpose, constant volume triaxial compres-
sion was simulated up to a total equivalent shear strain of
εq = 5 % with different values for the increment ∆εq.
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Figure 4: Verification of the constitutive functions through simula-
tion of constant volume simple shear; p0 = 300 kPa and e0 = 0.73;
the reference is (Li, 2002); γ12 = 2ε12 is the engineering shear strain
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The initial state parameters are e0 = 0.93 and p0 =
100 kPa. They represent a soil specimen that exhibits low
stiffness and shear strength as well as post-peak softening
in undrained conditions. This creates a demanding test
case for the numerical procedures.

An error tolerance of STOL = 10−4 is pre-defined for
the explicit substepping algorithm. This is considered a
conservative value in most situations (Sloan, 1987). With
regard to the convergence tolerance of the implicit iter-
ation ITOL, no clear guidelines are available. Previous
research publications reported values between 10−6 and
10−12 (Pérez-Foguet et al., 2000a; Tamagnini et al., 2002;
de Borst and Heeres, 2002; Petalas and Dafalias, 2019).
However, ITOL = 10−6 already appears to be a fairly
strict tolerance for practical applications. Therefore, this
value is adopted as default here.

The stress evolution, as computed by both algorithms
with different ∆εq, is presented in Figure 5. Addition-
ally, curves obtained by explicit Forward Euler integration
are presented. This is done to provide an example for an
integrator which is known to be unstable for large strain
increments. The Forward Euler method is obtained from
Algorithm 3 by omitting the error control and the Runge-
Kutta update.

The outputs of all integration methods in Figure 5 tend
towards limit curves when ∆εq decreases. This implies
that each of the three methods yields reasonable results if
the step size is sufficiently small.

The curves of the Forward Euler method in Figure 5 (a)
are significantly affected by ∆εq. For ∆εq = 0.1 %, the
stress even becomes physically implausible in two aspects:
1) The peak strength is greatly overestimated. 2) The
material state drifts away from the Critical State Line for
εq > 4.5 %. The second phenomenon clearly contradicts
the theoretical framework of the constitutive model and
the more accurate solutions. Most likely, it results from
the property of explicit integrators to be unstable for steps
larger than a critical size.

The stress curves of the implicit algorithm in Fig-
ure 5 (b) continuously change with decreasing ∆εq until
they converge to the limit curve. Nevertheless, the out-
put remains plausible even for ∆εq = 1.0 %. Thus, the
algorithm is regarded stable for large strain increments.

In Figure 5 (c), all curves which were calculated by the
explicit algorithm with automatic error control match very
closely. Even the first step of the computation with a large
input strain increment of ∆εq = 1.0 % precisely arrives at
the stress path obtained with ∆εq = 0.001 %. The stability
of the explicit substepping algorithm therefore appears to
be almost insensitive to changes in ∆εq.

4.3.2. Effect of stress point tolerances on stability

The same test case as in Section 4.3.1 is employed.
This time, the global strain increment is kept constant
at ∆εq = 0.1 % while the implicit tolerance ITOL and the
explicit tolerance STOL are varied. Additionally, refer-
ence curves are presented, which were computed by the
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explicit algorithm with STOL = 10−9 along with a global
equivalent shear strain increment of ∆εq = 0.001 % and
consequently are highly accurate.

According to Figure 6 (a), the following results are ob-
tained with the implicit integration scheme:

• With decreasing ITOL, the stress output converges
to a curve which clearly differs from the reference so-
lution.

• The stress remains physically plausible even for un-
usually large tolerances such as ITOL = 10.

• No substepping was needed to obtain the solutions.

• The number of iterations niter grows mildly when
ITOL is decreased, e. g. maximum niter is 2 for
ITOL = 20 and 6 for ITOL = 10−8.

The outcome of the test calculations with the explicit
algorithm is presented in Figure 6 (b). Accordingly, the
most obvious effects of changes to STOL are:

• For STOL ≥ 10−1, the stress becomes erroneous, sim-
ilar to Forward Euler integration, see Figure 5 (a).

• With decreasing STOL, the output converges to the
reference solution.

• The number of local substeps nsubst grows rapidly
with decreasing STOL, e. g. maximum nsubst is 50
for STOL = 10−4 and 5000 for STOL = 10−8.

The results of the current section and the previous one
are interpreted as follows. Both the implicit and the ex-
plicit algorithm are stable for large strain increments. The
explicit method ensures stability by means of substepping.
Consequently, the output tends to become unreliable if the
error tolerance STOL is chosen too large and the number
of substeps therefore is too small. This is consistent with
the fundamental property of explicit numerical approxima-
tions that stability is ensured only for input steps smaller
than a critical size (Belytschko et al., 2014). On the other
hand, the implicit algorithm appears to be inherently sta-
ble because of the underlying Backward Euler concept,
which is enforced by the local iteration. Furthermore, the
implicit method proved to be robust for a wide range of
values for the convergence tolerance ITOL.

4.3.3. Numerical error for single time increments

The remaining parts of Section 4.3 focus on the accu-
racy of the stress point algorithms. For that purpose, sin-
gle time integration steps are considered, in which an in-
put strain increment ∆ε drives an initial state given by
(σ0, q0) to a new configuration (σ1, q1). The loading is of
constant volume triaxial compression type. Its magnitude
is described by the equivalent strain increment ∆εq.

The accuracy of the updated stress is measured by
means of the relative error

Eσ =
‖σref − σ1‖
‖σref‖

, (53)
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Figure 6: Influence of tolerances ITOL and STOL for the test
case presented in Figure 5 with global load step size kept fix at
∆εq = 0.1 %; all load steps in (a) converged successfully without
local substepping

in which σref is a reference solution with very high accu-
racy (Tamagnini et al., 2000; Mira et al., 2009). The refer-
ence solutions were computed here with the explicit Algo-
rithm 3. In order to ensure very high accuracy, the input
strain ∆εq was globally subdivided into steps of 10−4 %
and a very strict error tolerance of STOL = 10−9 was
chosen.

4.3.4. Accuracy for different strain increment magnitudes

The methodology described in the previous section was
used to investigate how the equivalent strain increment
magnitude ∆εq affects the accuracy of the stress point al-
gorithms. The initial parameters from Section 4.3.1 were
adopted, i. e. isotropic initial stress, p0 = 100 kPa and
e0 = 0.93.

Figure 7 illustrates the evolution of Eσ with increasing
∆εq. Results generated by both integration schemes with
different values for their tolerances are shown in log-log-
plots. It turns out that all graphs are approximately linear
for ∆εq approaching zero. This is consistent with the re-
sults of analytical studies on the accuracy of numerical
approximations (Neto et al., 2008).

The initial gradients of the error curves in Figure 7 are
supposed to be m + 1, in which m is the order of accu-
racy of the numerical approximation (Lloret-Cabot et al.,
2016). The Backward Euler approximation (22), that Al-
gorithm 1 relies on, is of order m = 1. The Runge-Kutta
approximation (45) of the explicit method with error con-
trol is second order accurate, i. e. m = 2. Therefore, the
gradients of Eσ should be 2 and 3, respectively. To verify
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this, exponential functions were curve-fitted to the compu-
tation results in Figure 7. These functions match the data
very well. This confirms that the stress point algorithms
work as expected and that the numerical error analysis
yields plausible results.

As ∆εq increases beyond 10−3 %, the curves in Figure 7
which were produced by the implicit algorithm slowly flat-
ten. This implies that the implicit integrator can handle
even very large strain increments. For ∆εq > 10−1 %, the
error stabilises on a high level with 1 % < Eσ < 15 %.
This probably is too imprecise for practical applications
with many successive calculation steps. However, the au-
thors’ experience suggests that global time increments usu-
ally are chosen so that ∆εq ≤ 10−1 % anyway. Otherwise,
global solution procedures do not converge properly due
to the strongly non-linear material behavior.

In addition to that, Figure 7 indicates that the value
of the implicit convergence criterion ITOL barely affects
the error induced by a single strain increment. In con-
trast, Figure 6 clearly demonstrates that a complete test
path evolves if ITOL is changed. Probably, this discrep-
ancy is due to the effect that sequential calculations with
many consecutive steps amplify phenomena which appear
negligible if merely one integration step is considered.

The results of the explicit method in Figure 7 are
strongly affected by the value of the error tolerance STOL.
For large STOL, the error criterion (49) is always met
and thus no substepping takes place. In that case, the
error Eσ grows linearly with the strain increment size in
a log-log plot. This is illustrated by the curve labelled
as No substepping in Figure 7, which was obtained with
STOL = 1.0.

In contrast, all curves in Figure 7 that were obtained
with the explicit method and STOL ≤ 10−2 leave the lin-
ear domain with a sharp bend. This bend is located at the
smallest value of ∆εq which still causes the automatic error
control to subdivide the input strain increment into sub-
steps. It is evident from Figure 7 that the smaller STOL
is chosen, the smaller is the value for ∆εq which initiates
substepping. Moreover, the evolution of Eσ is capped at a
level of approximately STOL× 100 % for very large ∆εq.
These observations clearly prove that the automatic er-
ror control mechanism of the explicit algorithm works as
intended.

The quantitative difference between the curves of the
two integrators in Figure 7 is discussed in the next section.

4.3.5. Impact of initial state on numerical error

The calculations discussed in the previous section were
repeated with four different sets of initial state parame-
ters, termed A, B, C and D. The parameters were adopted
from different points of the test path for ∆εq = 0.001 % in
Figure 5 (c). They represent basic types of material be-
haviour that are encountered when a virgin sand sample
is sheared: isotropic state (A), pre-peak hardening (B),
post-peak softening (C) and shearing towards the Critical
State Line (D). See Table 3 for further details.

The results produced by the implicit and the explicit
algorithm are presented in Figure 8. It turns out that the
numerical errors for a given ∆εq at the four initial states
in general are related by

Eσ,A > Eσ,B > Eσ,C > Eσ,D . (54)

Similarly, the absolute value of the equivalent stress in-
crement |∆q| induced by a given ∆εq is largest at A and
decreases towards B, C and D. This follows from the slope
of stress evolution, which, according to Table 3 and Fig-
ure 5 (c), is steepest at point A and flattens towards B, C
and D. These findings imply that initial state parameters
which cause small stress changes generate better accuracy
than parameters that lead to large stress changes. This
complies with the common observation that the accuracy
strongly depends on the strain increment magnitude for a
given initial state.

Another important finding is evident from Figure 8 as
well as from Figure 7. Accordingly, the implicit method
is less accurate than the explicit one for almost the en-
tire range of computational parameters considered here.
The only exception is the small portion of Figure 7, where
∆εq > 3 %. For such unusually large input strains, the
explicit method with a rather loose error tolerance of
STOL = 10−2 yields an error of similar magnitude as the
implicit integrator.

Apparently, the considerable difference in accuracy be-
tween the two stress point algorithms is due to two reasons.

First, the implicit method is of lesser accuracy order,
as has already been mentioned in Section 4.3.4. From a
theoretical point of view, this does not necessarily provide
information about the absolute values of numerical errors
(Neto et al., 2008). Nevertheless, it is considered a relevant
factor here.

Second, the explicit method systematically uses substep-
ping to produce solutions which meet the pre-defined error
tolerance STOL. In theory, this allows to reduce the nu-
merical error down to levels where machine precision and
rounding errors are predominant. No similar mechanism
is included in the implicit stress point algorithm, as noted
in Section 3.2.2. The accuracy of the implicit procedure
therefore is conceptually limited by the magnitude of input
strain increments.

4.3.6. Convergence behaviour of the implicit scheme

Section 4.3.7 is concerned with the efficiency of the stress
point algorithms. In case of implicit time integration, the
efficiency depends crucially on the convergence speed of
the local iteration. Newton’s method should converge at
quadratic rate if the Jacobian is computed sufficiently ac-
curate. That means the magnitudes of the iteration incre-
ment and the vector of residuals decrease with the iteration
number as quadratic functions The current section should
explore whether this holds for the implicit procedure which
is outlined in Algorithm 1.

The example calculations presented here are based on
the same initial states as in the previous section. For
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Table 3: Non-zero initial state parameters for calculation of Eσ ;
adopted from solution for ∆εq = 0.001 % in Figure 5 (c)

A B C D

εq in % 0.0 0.1 1.0 4.0

 1  2  3

eq in %

A

B

C

D

40

p in kPa 100 90.3 39.8 21.3
q in kPa 0.0 29.9 40.3 26.4
e 0.93 0.93 0.93 0.93
λ1 in % 0 0.08 1.15 4.84
H1 0 0.33 1.00 1.24
H2 100 100 100 100
β 0.0 100 100 100
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each of them, a single increment of constant volume triax-
ial compression with ∆εq = 0.1 % was integrated by the
implicit algorithm. The evolution of the convergence pa-
rameters was monitored. It turned out that the iteration
increment ∆u converged slightly slower than the residual
R. Therefore, the convergence behaviour in each iteration
i is assessed here with respect to the normalised iteration
increment magnitude

Eu(i) =
‖∆u(i)‖
‖∆u(i = 1)‖

. (55)

The evolution of Eu with i for initial states A, B, C
and D is presented in Figure 9. Accordingly, the fastest
convergence is obtained for state D, the slowest for A. This
is consistent with the effect of the initial state parameters
observed in the previous section.

Furthermore, Figure 9 contains an example curve from
the work by Pérez-Foguet et al. (2000b). It has been
included for reference because it is said to represent
quadratic convergence and was obtained with the same nu-
merical approximation for the local Jacobian that is used
here. Apparently, this reference curve is very similar to
the results for initial states A, B, C and D. This proves
that the numerical approximation for the Jacobian was
implemented correctly and that the iterative procedure of
Algorithm 1 can converge at quadratic rate.

4.3.7. Efficiency

In this section, the efficiency of Algorithms 1 and 3 is
assessed in the manner of (Tamagnini et al., 2000). To
this end, the stress response to constant volume triaxial
compression with a total strain of εq = 0.1 % is computed.
The numerical error Eσ of the updated stress is varied sys-
tematically. The computational costs for a given Eσ are
measured in terms of neval, which is the total number of
evaluations of the constitutive functions during the inte-
gration procedure.
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Table 4: Testing programme for assessing the algorithms’ efficiency
with regard to a constant volume triaxial compression load of mag-
nitude εq = 0.1 % (∆εq is the global load step size)

Implicit algorithm Explicit algorithm

ITOL = 10−6 ∆εq = 0.1 %

1. ∆εq = 1× 10−1 % STOL = 100

2. 2× 10−2 % 10−1

3. 1× 10−2 % 10−2

4. 1× 10−3 % 10−3

5. 2× 10−4 % 10−4

6. 1× 10−4 % 10−5

7. 5× 10−5 % 10−6

The previous sections have demonstrated that the accu-
racy of the explicit method is largely pre-defined by the
error tolerance STOL. On the other hand, the implicit
method’s accuracy was shown to strongly depend on the
global strain increment size ∆εq. Both results are direct
consequences of the basic concepts on which the algorithms
rely. To account for this, the testing programme for the
current section is organised as follows. The explicit inte-
grator was invoked with seven different STOL, whereas
for the implicit integrator seven different ∆εq were em-
ployed. Furthermore, a default value of ITOL = 10−6

was adopted for the implicit convergence tolerance, as in
previous sections. See Table 4 for more details of the setup.

In Figure 10, neval is plotted against Eσ for both in-
tegration methods and different initial states. Efficiency
increases from the top right corner to the bottom left cor-
ner. According to the results presented in the diagram,
initial state parameter affect the efficiency of the implicit
and the explicit method in a similar way. Initial state A
consumes most resources to achieve a certain degree of ac-
curacy. If the initial state parameters change from set A
to D via B and C, the required computational costs de-
crease. Analogous to Section 4.3.5, this implies that both
algorithms are challenged most by initial states where the
slope of stress evolution is steep.

Moreover, the results presented in Figure 10 reveal that
for a given Eσ, the number neval induced by the implicit
stress update is at least 10 times the neval from the explicit
update. The largest difference which occurs even corre-
sponds to a factor of roughly 1000. This indicates that the
explicit stress point algorithm with error control is more
efficient than the implicit Backward Euler algorithm. The
reasons for that are further discussed in Section 4.5.

Additional numerical experiments showed that the effi-
ciency of the implicit method improves only very slightly
if the convergence tolerance ITOL is increased above its
default value. Hence, no results with regard to that are
presented here.
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states adopted from Tab. 3

4.4. Performance with respect to a boundary value problem

4.4.1. Problem statement

Section 4.4 addresses the algorithms’ performance with
regard to a fully fledged finite element simulation. The ini-
tial boundary value problem to be solved is the displace-
ment controlled loading of a rigid, rough strip footing on
weightless, drained soil. This example has served as bench-
mark in many works on numerical methods, for example
in (Potts and Zdravković, 2001).

In order to study accuracy and efficiency similarly to
Section 4.3, the following computational parameters were
varied systematically: 1) stress point algorithm invoked at
the finite element integration points, 2) initial conditions,
3) size of global load increments.

4.4.2. Finite Element model

The finite element model is displayed in Figure 11. Ac-
cordingly, only half of the problem was modelled by mak-
ing use of symmetry. Furthermore, plane strain conditions
were assumed to hold.

The soil was discretized by four-noded rectangles. Such
elements may overestimate bearing capacity due to vol-
umetric locking. Nevertheless, they were employed here
out of two reasons. First, the problem is purely synthetic
and the absolute value of bearing capacity therefore is of
no relevance. Second, higher-order elements which are less
prone to locking induce convergence problems of the global
Newton procedure when large mesh distortions occur, as
according to Figure 11 is the case here.

Since the footing is assumed to be perfectly rigid and
rough, it can be modelled by appropriate boundary con-
ditions instead of dedicated finite elements. Thus, a uni-
form vertical displacement u was applied to the nodes of
the ground surface along the footing, while their relative
horizontal movement was hindered. This is implied in Fig-
ure 11, which also shows the boundary conditions for other
parts of the model.
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Uniform initial conditions were applied to the complete
mesh. The initial void ratio is e0, the initial stress is hy-
drostatic and the initial mean effective pressure is p0.

4.4.3. Reference solutions for evolution of footing load

Numerical solutions with high accuracy were computed
to serve as reference for the quantification of numerical
errors. The explicit Algorithm 3 was employed for that,
with a very strict error tolerance of STOL = 10−9. The
maximum vertical displacement umax = 0.4 m was applied
in 10 000 load steps. This number is sufficiently large com-
pared to the maximum value used in the actual computa-
tions, which is nsteps = 1000.

Initial void ratio and initial pressure were varied sys-
tematically, based on a reference set with e0 = 0.80 and
p0 = 0.1 MPa. At each calculation step k with total dis-
placement uk, the footing load Q(uk) was computed from
the sum of vertical nodal forces along the footing. The
resulting load displacement curves are displayed in Fig-
ure 12. With increasing soil density and increasing initial
stress, the curves become steeper and the maximum foot-
ing load grows. This illustrates that the impact of e0 and
p0 on the footing’s behaviour can be simulated in a plau-
sible way. The results are further used in the following
sections.

4.4.4. Effect of tolerances on accuracy and efficiency

In order to obtain numerical solutions with different lev-
els of accuracy, the number of global load steps for the
maximum settlement umax = 0.4 m was varied. Specif-
ically, the testing programme includes calculations with
nsteps = 40/80/200/400/1000.

All simulations were run on an Intel® CoreTM I5-8250U
machine with 8 GB of memory, requesting two logical cores
in Shared Memory mode. The CPU times which were
required to simulate a complete loading process are used
to quantify the computational costs.

The accuracy of the solutions is determined as follows.
Let Qexa be a reference footing load according to Sec-
tion 4.4.3 and Q some approximate solution obtained with
nsteps load steps. Then the overall accuracy of the approx-
imate load displacement curve Q(uk) can be quantified
through the relative error

EQ =

√√√√√√nsteps∑
k=1

(
Qexa(uk)−Q(uk)

)2

(
Qexa(uk)

)2 . (56)

In Figure 13, computational costs are plotted against EQ
for simulations with the implicit and the explicit integrator
and different values for ITOL and STOL. The results are:

• Reducing ITOL does not appear to improve accuracy
considerably but increases the computational costs.

• Reducing STOL improves accuracy while the CPU
time increases relatively little.

Table 5: Exemplary data for points in Figure 13

Stress point algorithm EQ in % CPU time in s

Implicit, ITOL = 1.0 0.33 60.9
Explicit, STOL = 10−3 0.34 11.5

Ratio of CPU times = 5.3

Implicit, ITOL = 1.0 0.07 281.8
Explicit, STOL = 10−4 0.08 14.9

Ratio of CPU times = 18.9

• The calculations with the explicit algorithm are most
efficient with values of nsteps between 80 and 200.

• Calculations with the explicit stress point algorithm
are more efficient than calculations with the implicit
algorithm.

Exemplary results from Figure 13 have been compiled
in Table 5. Accordingly, CPU time with the implicit algo-
rithm is larger than with the explicit algorithm at a given
level of accuracy by a factor between 5 and 19. This holds
for a convergence tolerance of ITOL = 1.0, which is an un-
usually large value. For smaller tolerances, the efficiency
obtained with the implicit stress point algorithm is even
worse.

The results obtained here are in agreement with those
reported for stress point calculations in Section 4.3.7.
There is only one exception. For single strain increments,
the convergence tolerance ITOL influenced the implicit al-
gorithm’s efficiency very little. In contrast, a considerable
effect was observed in solving the initial value problem.
This is due to the fact that the large numbers of integra-
tion points and load steps which are employed for the finite
element simulations amplify any phenomena which occur
at the integration points.

4.4.5. Effect of initial state on accuracy and efficiency

Furthermore, the influence of different initial void ra-
tios e0 and initial pressures p0 on the overall efficiency
was investigated. The results, as presented in Figure 14
and Figure 15, indicate that e0 and p0 do not significantly
influence accuracy and computational costs of the simula-
tions. At first glance, this seems to contradict the results
obtained from the numerical experiments at stress point
level in Section 4.3.7. However, there is a plausible expla-
nation.

In Section 4.3.7, accuracy and efficiency have been inves-
tigated for single time integration steps. The magnitude
and the direction of the stress increment computed during
these time steps change drastically with the initial condi-
tions. This, in turn, affects the integrators’ efficiency, as
has already been discussed.

In contrast to that, the accuracy of the finite element
simulations was measured with respect to complete load
displacement curves. These curves do not change funda-
mentally across the range of initial conditions considered
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here, as shown in Figure 12. That is why the efficiency
of the numerical procedures in solving the strip footing
problem is little affected by changes in e0 and p0.

4.5. Analysis of causes for the algorithms’ performance

Bottom line, the finite element simulations clearly show
that the explicit stress point algorithm is more efficient
than the implicit one. A similar finding has already been
described for the stress point calculations in Section 4.3.7.
So the question arises, what are the causes of that result?

Presumably, the properties of the underlying rate equa-
tions play a crucial role. According to computational
mathematics, there are two classes of differential equa-
tions, namely non-stiff problems and stiff problems. Non-
stiff problems can be identified by the fact that they are
most efficiently solved by explicit numerical methods. In
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contrast, stiff equations demand implicit approximations,
because these allow larger step sizes in situations where
stability issues are encountered. Explicit methods could
handle such situations only by means of very small time
steps, which leads to inadequate efficiency (Hairer and
Wanner, 1996).

Publications on soil models seldom seem to take into ac-
count the mathematical stiffness of the equations. Only for
Karlsruhe Hypoplasticity some reports on that are avail-
able. They imply that the constitutive model behaves ei-
ther stiff or non-stiff, depending on the initial state and the
type of loading (Fellin et al., 2009, 2010; Fellin and Oster-
mann, 2014). Consequently, there could also be cases in
which the constitutive model by Li (2002) is stiff enough
for the efficiency of the explicit integrator to deteriorate
significantly.

However, the references cited above further report
for Karlsruhe Hypoplasticity that in typical geotechnical
boundary value problems most of the elements behave non-
stiff. Because of that, explicit time integration with error
control turned out to yield superior efficiency overall. This
is consistent with the results obtained here for the consti-
tutive model by Li (2002). In light of that it appears plau-
sible that the mathematical stiffness properties of the dif-
ferential equations have contributed to the explicit method
being more efficient than the implicit one in the present
work.

Furthermore, there are some conceptual differences be-
tween the two algorithms presented here that apparently
give the explicit approach an advantage:

• The accuracy order of the implicit Backward Euler
method is smaller than that of the explicit Runge-
Kutta approximation.

• The automatic error control of the explicit algorithm
is very effective in boundary value problems where
only small parts of the model require a fine discretiza-
tion in time.

• The implicit integrator does not include any mecha-
nism to effectively control the local numerical error.

• The local implicit iteration is more costly than the
explicit substepping procedure in terms of computa-
tional effort.

• The numerical approximation of the Jacobian for
the implicit iteration causes additional overhead, al-
though it is said to require only slightly more com-
putational costs than analytical derivatives (Pérez-
Foguet et al., 2000a).

5. Conclusions

Within this paper, an implicit and an explicit integra-
tion algorithm for a bounding surface soil model without
elastic range have been presented. Because the soil is as-
sumed to be instantaneously plastic, no yield criterion had
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to be enforced by return mapping or drift correction pro-
cedures. The Jacobian of the local implicit iteration was
approximated numerically, which proved to be straight-
forward to implement and sufficiently accurate to achieve
quadratic convergence.

The stability as well as the accuracy of the implicit and
the explicit algorithm have been investigated through nu-
merical experiments at stress point level. The results are
presented in Sections 4.3.1 to 4.3.5. They are summarised
here as follows.

• Both methods are stable for equivalent strain incre-
ments of up to ∆εq = 1 %.

• Even without return mapping, Backward Euler time
integration still is more reliable than Forward Euler
integration for large input strain increments.

• The accuracy of the explicit integrator is efficiently
controlled by the automatic substepping procedure;
the local numerical error does not exceed the pre-
defined limit, even if input strain increments are very
large.

• Due to the lack of a local error control, the accuracy of
the implicit method is strictly limited by the global
load step size; consequently, large strain steps yield
large numerical errors.

Accordingly, the accuracy and stability attributes of the
stress point algorithms are consistent with what could be
expected from the properties of the underlying numerical
methods. More interesting, then, is to assess the algo-
rithms’ efficiency at a given accuracy. To this end, further
example calculations at stress point level and a comprehen-
sive series of finite element simulations were performed.
The results have been presented in Sections 4.3.7, 4.4.4
and 4.4.5. They clearly prove that the explicit algorithm
is more efficient than the implicit one in terms of compu-
tational costs. The reasons for that have been analysed in
Section 4.5 .

As stated in the introduction, this paper is intended to
reveal which type of numerical integration scheme should
be adopted for plasticity models without elastic range.
This question can conclusively be answered in light of the
findings summarised above: For practical applications, the
explicit method with automatic error control should be
adopted rather than implicit Backward Euler time inte-
gration.

One interesting point has not been investigated thor-
oughly. In this study, continuum tangents were used for
the Jacobian of the global solution procedures, as noted in
Section 4.1. This is simple to implement and saves compu-
tational resources at the integration point level, but may
prevent the global solution from converging at its optimal
rate. Faster convergence is said to be achieved if tangent
stiffness operators are used which are consistent with the
algorithmic stress update (Simo and Hughes, 1998; Neto
et al., 2008). Unfortunately, the algorithms developed here

do not allow to derive analytic expressions for consistent
stiffness operators. First, due to the nature of the constitu-
tive model, as discussed in Section 3.2.3. Second, because
local substepping is used. However, it seems possible to
obtain consistent tangents for combinations of complex soil
models and substepping schemes from numerical approx-
imations. This was demonstrated in (Pérez-Foguet et al.,
2001) by employing numerical differentiation and in (Fellin
and Ostermann, 2002), based on variational equations. Fu-
ture research should explore whether such approaches can
be applied to the problem investigated here and if this is
more efficient than simply using continuum tangents.
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Appendix A. List of operators and symbol defini-
tions

(A ·B)ij = AikBkj – Single contraction
A : B = AijBij – Double contraction
(A⊗B)ijkl = AijBkl – Tensor product
tr(A) = Akk – Trace
δij – Kronecker delta
I – Second order unit tensor
∅ – Zero tensor
Adev = A− (1/3) tr(A)I – Deviatoric tensor
‖A‖ =

√
A : A – Euclidean norm

Ȧ – Material time derivative
〈x〉 = (x+ |x|)/2 – Macaulay brackets
p = (1/3) tr(σ) – Mean effective stress
q =

√
3/2‖σdev‖ – Equivalent shear stress

r = (σ − pI)/p – Stress ratio tensor
R =

√
3/2‖r‖ – Stress ratio invariant

θ = (1/3) arcsin
(
−9rijrjkrki/(2R

3)
)

– Lode angle

εq =
√

2/3‖εdev‖ – Equivalent shear strain

Appendix B. Differential constitutive equations

All formulas which were adopted from (Li, 2002) and
have not been introduced in Section 2 are recalled here for
completeness.
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Variables with a superposed bar (e. g. K̄p1, r̄) are as-
sociated with a bounding surface. Variables without bar
(e. g. Kp1, r) refer to the actual stress point.

Elastic stiffness:

(ce)ijkl = Kδijδkl +G(δikδjl + δilδjk − 2
3δijδkl) (B.1)

G = G0
(2.97− e)2

1 + e

√
ppa (B.2)

K = G
2 (1 + ν)

3 (1− 2ν)
(B.3)

Elastoplastic stiffness, see also (15) and (16):

cep = ce − ce :
[(√

2/27D1I + n̄
)
⊗Θ

−
(√

2/27D2I + m̄
)
⊗Z

] (B.4)

Θ =
2Gn̄−K (n̄ : r +B) I

2G−
√

2/3KD1 (n̄ : r +B) +Kp1

(B.5)

Z =
KI −

√
2/3KD1Θ√

2/3KD2 +Kp2

(B.6)

B =
2Gn̄ : m̄−

√
2/3KD2n̄ : r√

2/3KD2 +Kp2

(B.7)

Evolution of void ratio (Muir Wood, 1990, p. 12):

− ė = (1 + e) tr(ε̇) (B.8)

Unit flow directions:

n̄ =
1

A

(
∂F1

∂r̄

)
dev

, m̄ =
r

‖r‖
(B.9)

A =

∥∥∥∥(∂F1

∂r̄

)
dev

∥∥∥∥ (B.10)

(B.11)

Shear mode interpolation function:

g(θ̄) =

√
(1 + c2)2 + 4c(1− c2) sin 3θ̄ − (1 + c2)

2(1− c) sin 3θ̄
(B.12)

∂g(θ̄)

∂ sin 3θ̄
=

c(1 + c)

sin 3θ̄
√

(1 + c2)2 + 4c(1− c2) sin 3θ̄
− g(θ̄)

sin 3θ̄

(B.13)
Normal to cone bounding surface:

∂F1

∂r̄ij
=

3

2R̄2g2(θ̄)

{[
R̄g(θ̄) + 3R̄ sin 3θ̄

∂g(θ̄)

∂ sin 3θ̄

]
r̄ij

+9
∂g(θ̄)

∂ sin 3θ̄
r̄imr̄jm

}
(B.14)

Plastic modulus of cone:

K̄p1 =
Gh

R̄

[
Mcg(θ̄)exp(−nψ)− R̄)

]
(B.15)

Kp1 =
Gh

R̄

[
Mcg(θ̄)exp(−nψ)

(
ρ̄1

ρ1

)
− R̄)

]
(B.16)

h = (h1 − h2e)

{(
ρ1

ρ̄1

)10

+ h3f(λ1)[1−
(
ρ1

ρ̄1

)10

]

}
(B.17)

f(λ1) =
1− 0.01√

(1− λ1

0.005 )2 + λ1

0.02

+ 0.01 (B.18)

Plastic modulus of cap:

Kp2 = Gh4

(
Mcg(θ)

R

)(
ρ̄2

ρ2

)a
sgn ṗ (B.19)

K̄p2 =

{
Kp2 if p = p̄ and ṗ > 0

0 otherwise
(B.20)

Dilatancy functions:

D1 =
d1

Mcg(θ)

[
Mcg(θ)exp(mψ)

√
ρ̄1

ρ1
−R

]
(B.21)

D2 = d2

〈
Mcg(θ)

R
− 1

〉
sgn ṗ (B.22)
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