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Abstract
When planning road construction measures, it is essential to have up-to-date
information on road conditions. If this information is not to be obtained
manually, it is currently obtained using laser scanners mounted on mobile
mapping vehicles, which can measure the 3D road profile. However, a large
number of mobile mapping vehicles would be necessary to record an entire road
network on a regular basis. Since 2D road damages can be found automatically
on monocular camera images, the idea was born to use a stereo camera system
to capture the 3D profile of roads. With stereo camera systems, it would be
possible to equip a large number of vehicles and regularly collect data from
large road networks.

In this thesis, the potential application of a stereo camera system for mea-
suring road profiles, which is mounted behind the windshield of a vehicle, is
investigated. Since this requires a calibration of the stereo camera system, but
the effort for the user should be kept low, the camera self-calibration for this
application is also examined.

3D reconstruction from stereoscopic images is a well-studied topic, but its
application on road surfaces with little and repetitive textures requires special
algorithms. For this reason, a new stereo method was developed. It is based
on the plane-sweep approach in combination with semi-global matching. It
was tested with different measures for pixel comparison. Furthermore, the
plane-sweep approach was implemented in a neural network that solves the
stereo correspondence problem in a single step. It uses the stereoscopic images
as input and provides an elevation image as output.

A completely new approach was developed for the self-calibration of mono
cameras and stereo camera systems. Previous methods search for feature points
in several images of the same scene. The points are matched between the images
and used for the calibration. In contrast to these methods, the proposed method
uses feature maps instead of feature points to compare multiple views of one
and the same plane. To estimate the unknown parameters, the backpropagation
algorithm is used together with the gradient descent method.

The measurements obtained by stereoscopic image processing were com-
pared with those obtained by industrial laser scanners. They show that both
measurements are very close to each other and that a stereoscopic camera
system is in principle suitable for capturing the surface profile of a road.

Experiments show that the proposed self-calibration method is capable of
estimating all parameters of a complex camera model, including lens distortion,
with high precision.
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Kurzfassung
Bei der Planung von Straßenbaumaßnahmen ist es unabdingbar, über aktuelle
Informationen über den Straßenzustand zu verfügen. Sollen diese Informa-
tionen nicht manuell gewonnen werden, werden derzeit Messfahrzeug mit
Laserscannern verwendet, welche das 3D-Straßenprofil vermessen können. Für
die regelmäßige Erfassung eines gesamten Straßennetzes wäre jedoch eine
große Anzahl von Messfahrzeugen erforderlich. Da 2D-Straßenschäden auto-
matisch auf monokularen Kamerabildern gefunden werden können, entstand
die Idee, ein Stereokamerasystem zur Erfassung des 3D-Profils zu verwenden.
Eine große Anzahl von Fahrzeugen könnte damit ausgerüstet werden und es
könnten regelmäßig Daten von großen Straßennetzen erfasst werden.

In dieser Arbeit werden die Einsatzmöglichkeiten eines Stereokamerasystems
zur Messung von Straßenprofilen untersucht, dass sich hinter der Windschutz-
scheibe eines Fahrzeugs befindet. Da hierzu das Stereokamerasystems kalibriert
sein muss, der Aufwand für den Anwender aber geringgehalten werden soll,
wird außerdem die Selbstkalibrierung für diesen Einsatzzweck untersucht.

Die 3D-Rekonstruktion aus stereoskopischen Bildern ist ein viel untersuch-
tes Thema, aber ihre Anwendung auf Straßenoberflächen mit wenig und sich
wiederholenden Texturen erfordert spezielle Algorithmen. Aus diesem Grund
wurde ein neues Stereoverfahren entwickelt. Es basiert auf dem Plane-sweep-
Ansatz in Kombination mit Semi-global Matching. Es wurde mit verschiede-
ne Maßen für den Vergleich von Pixeln getestet. Darüber hinaus wurde der
Plane-sweep-Ansatz in einem neuronalen Netzwerk implementiert, das das
Stereo-Korrespondenzproblem in einem einzigen Schritt löst. Es verwendet die
stereoskopischen Bilder als Eingabe und liefert als Ausgabe ein Höhenbild.

Für die Selbstkalibrierung von Monokameras und Stereokamerasystemen
wurde ein völlig neuer Ansatz entwickelt. Bisherige Methoden suchen nach
Merkmalspunkten in mehreren Bildern der gleichen Szene. Die Punkte werden
zwischen den Bildern zugeordnet und für die Kalibrierung verwendet. Die
vorgeschlagene Methode verwendet anstelle von Merkmalspunkten Feature-
Maps um mehrere Ansichten derselben Ebene zu vergleichen. Zur Schätzung
der unbekannten Parameter wird der Backpropagation-Algorithmus zusammen
mit dem Gradientenabstiegsverfahren verwendet.

Die durch stereoskopische Bildverarbeitung erhaltenen Messungen wurden
mit Messungen von industriellen Laserscannern verglichen. Sie zeigen, dass
beide sehr nahe beieinander liegen und dass ein Stereokamerasystem für die
Erfassung des Oberflächenprofils einer Straße grundsätzlich geeignet ist.

Experimente zeigen, dass die neue Selbstkalibrierungsmethode in der Lage
ist, alle Parameter eines komplexen Kameramodells, einschließlich der Linsen-
verzerrung, mit hoher Präzision abzuschätzen.
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1 Introduction
In the field of road construction, knowledge about the condition of roads is
of great importance. During road maintenance, surface defects that impair
driving safety must be quickly detected and eliminated. This concerns surface
defects1 that can occur without prior notice, such as potholes and blow-ups
[87]. Preventive maintenance is carried out to extend the life of pavements
and reduces the need for more extensive repairs. The decision as to when
and how it is carried out depends not only on the individual surface defect
but on the overall condition of the road, including the surface shape [76]. For
planning road renewals at a network level, individual surface defects are not
of interest. Instead, road construction authorities use indices that describe the
overall condition of road segments [87, 93]. When determining the indices,
the smoothness of the surface is taken into account in addition to the defects.
These applications require up-to-date information, which means that the roads
need to be measured and recorded regularly, and for example, in Germany,
federal roads are visited every four years [81]. In the process, it is not enough
to record defects; the surface shape must also be recorded.

1.1 Motivation
A common approach to gathering information on road conditions is the use
of mobile mapping vehicles equipped with laser scanners, laser triangulation
devices, and cameras [20, 24, 31, 81]. In this way, the road profile can be
recorded, but operating these vehicles is expensive. Prices are in the region
of 100 € per km [14, 103]. Furthermore, to maintain up-to-date information
about entire road networks, a large number of mobile mapping vehicles is
required. An alternative method for road condition monitoring is, therefore,
being sought, which ideally would not require special vehicles.

Surface defects, for whose detection knowledge about surface deformations
is not necessary, can be detected by analyzing monocular camera images. These
are, among others, cracks, potholes, patches, and open joints [31]. For surface
defects, like depressions and rutting, however, knowledge about the surface

1A catalog of damages occurring on asphalt concrete and paved roads used by German authorities
can be found in [34].
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deformation is necessary and they cannot be detected on monocular images
[24, 85]. That raises the question of whether stereo camera systems could be
suitable for measuring the shape of the surface. Especially if the cameras were
installed behind the windshield of a vehicle, a large number could be equipped
with it. They could be mounted on garbage trucks, for example, so that a large
part of the road network would be regularly surveyed without additional effort.

1.2 Objectives
To answer the question

1. Is a stereo camera system that is mounted behind the windshield of a moving
vehicle suitable for measuring the 3D profile of road surfaces in the context of
road condition monitoring?

is the main objective of this thesis. To give an answer, a stereo camera system
is required to record test data, and an algorithm is needed that can extract
depth information. Stereoscopic image processing is a widely studied topic,
but the reconstruction of some scenes pose a challenge. The reconstruction
of road surfaces is one of them. The low texture, which is also repetitive, is
problematic for matching pixels in the reconstruction process. Furthermore,
many algorithms assume fronto-parallel scenes, i. e. scenes consisting of planes
parallel to the image plane of a reference camera [89]. They rely on rectified
stereoscopic images, which are processed into disparity maps [88, 96]. The
disparity, in turn, corresponds to a distance from the cameras, such that the
scene’s depth is sampled in the viewing direction of the cameras. In the case of
cameras behind a windshield, which are tilted in relation to the road, this is
unproductive, since the representation of a perfectly flat road requires many
disparity levels. The dimension of interest, namely the elevation of the road,
can be resolved with much fewer levels. Therefore, two intermediate objectives
must be achieved:

1. a) A stereo camera system must be designed and put into operation.

1. b) A specialized algorithm for depth estimation from stereoscopic images of
low-textured slanted planes has to be developed.

To extract depth information from a stereo camera system, it must be calibrated.
A thorough calibration requires calibration targets that need to be produced.
This prevents the easy application of a stereo camera system. Self-calibration
methods that do not depend on special calibration targets exist but are limited in
the mathematical camera model that can be used. Therefore, another question
arises:
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2. Is it possible to automatically calibrate the stereo camera system installed in a
vehicle behind the windshield with a sufficiently high accuracy for road condition
monitoring?

which shall be answered in this thesis.

1.3 Contributions
The research discussed in this thesis makes two important contributions:

1. The suitability of stereo imaging for road condition monitoring is investi-
gated. In the course of this investigation, several side contributions are
produced:

a) It is examined how a stereo camera system can be designed that
is ideal in terms of resolution and expected reconstruction perfor-
mance.

b) Two algorithms for the dense reconstruction of low-textured slanted
planes are introduced.

c) Experiments to assess the suitability of stereo imaging in this context
are carried out.

The dense reconstruction algorithms both use the plane-sweep approach,
as this naturally solves the problems arising in this context. The first one
uses traditional methods for the comparison of pixels and for solving
the optimization problem. The second one uses a convolutional neural
network (CNN) to solve the stereo correspondence problem.

2. A novel method for the automatic calibration of mono and stereo cameras
is introduced. It uses an entirely new approach compared to previous
ones. Instead of relying on feature points, entire calibration images are
compared using feature maps. It uses the backpropagation algorithm
with gradient descent to infer the unknown camera parameters.

1.4 Overview
Following the introduction, the basics of stereo cameras and camera calibration
are given in Chapter 2. It starts with the image formation of a single camera,
introduces the projective camera model, and continues with how this model is
used in the depth estimation from stereoscopic images. Afterward, an overview
of camera calibration techniques is given.
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In Chapter 3, after the plane-sweep method is explained, the developed
algorithms for depth estimation in the case of low-textured slanted planes are
introduced.

In Chapter 4 the shortcomings of the established self-calibration techniques
are discussed. They are solved by a novel approach for camera self-calibration.
The method is introduced for use with mono cameras and is then extended for
use with stereo cameras.

In order to evaluate the stereo algorithms in the target application of road
condition monitoring, a setup is required to acquire stereoscopic images of
road surfaces from inside the vehicle. Therefore, in Chapter 5, considerations
are made about which cameras and lenses should be used and how they should
be aligned. The effects of motion blur and blur caused by defocusing are also
investigated.

In Chapter 6 road surfaces are recorded with the developed stereo camera
system and scanned for comparison with industrial laser scanners. With the
recorded data, the stereo camera system is evaluated in combination with the
presented stereo methods.

In Chapter 7 the self-calibration method is evaluated. Cameras are calibrated
by a well-established method and by the proposed method and are compared
to each other.

In Chapter 8 the suitability of the stereo camera system in combination
with the developed algorithms for road condition monitoring is demonstrated.
The stereo camera system is used to record a section of a road. From the
measured data, a condition index is calculated, which is commonly used in
road construction in Germany.

Finally, in Chapter 9, conclusions are drawn and suggestions for future work
are made.

1.5 Publications
Parts of this thesis have been published in the following journal articles and
conference papers:

1. Hauke Brunken and Clemens Gühmann. “Deep learning self-calibration
from planes”. In: Twelfth International Conference on Machine Vision (ICMV
2019). Vol. 11433. 2020, p. 114333L.
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2. Hauke Brunken and Clemens Gühmann. “Incorporating Plane-Sweep
in Convolutional Neural Network Stereo Imaging for Road Surface Re-
construction”. In: Proceedings of the 14th International Joint Conference on
Computer Vision, Imaging and Computer Graphics Theory and Applications
- Volume 5: VISAPP. 2019, pp. 784–791. isbn: 978-989-758-354-4. doi:
10.5220/0007352107840791.

3. Hauke Brunken and Clemens Gühmann. “Pavement distress detection by
stereo vision/Straßenzustandserkennung durch stereoskopische Bildver-
arbeitung”. tm-Technisches Messen 86 (s1 2019), pp. 42–46.

4. Hauke Brunken and Clemens Gühmann. “Road Surface Reconstruction
by Stereo Vision”. PFG – Journal of Photogrammetry, Remote Sensing and
Geoinformation Science 88.6 (Dec. 1, 2020), pp. 433–448. issn: 2512-2819.
doi: 10.1007/s41064-020-00130-z.
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2 Basics
In this chapter, the basics about image formation of cameras, depth recon-
struction from stereoscopic images, and camera calibration are explained. An
understanding of these basics is required for the following chapters.

A stereo camera system consists of two or more individual cameras, which
are firmly connected and mounted at a distance from each other. By comparing
their images, the distance of an object to the cameras can be estimated from
geometric relationships. The estimation of distances is based on a camera
model that is derived in Sections 2.1 and 2.2. Since real camera lenses are not
perfect elements, real images are distorted compared to perfect images in terms
of the camera model. The distortion is discussed in Section 2.3. A method
to remove the distortion is described in Section 2.4. Section 2.5 handles the
relationship of imaged points in a stereo camera and shows how this is used to
estimate the distance of a point from the camera. The parameters of a camera
model are determined by camera calibration. Various methods for this are
presented in Section 2.6.

2.1 Image formation
A digital camera consists of two basic elements: an image sensor and a camera
lens, whereby the camera lens usually is equipped with an adjustable aperture.
The camera lens itself is composed of several individual lenses with different
focal lengths. Mathematically, they can be treated as a single lens with an
effective focal length [46]. A single lens is modeled by the Gaussian Lens
Formula [50]

1
fL

=
1
si
+

1
so

. (2.1)

The rays from an object at object distance so passing a lens with focal length fL
that form an image at image distance si are shown in Figure 2.1. The Gaussian
Lens Formula can be used to calculate the image distance si from the object
distance so and focal length fL. Alternatively, the image of an object can be
constructed geometrically. Rays entering the lens parallel to the optical axis
are deflected at the rear principal plane and pass the focal point FL on the
exit side. Vice versa, rays passing through the focal point before entering the
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FL
F′L

hoHL H′
L

hi

fL fLsL
sosi

Figure 2.1: Rays entering the thick lens parallel to the optical axis are deflected at the
rear principal plane and pass the focal point FL on the exit side. Vice versa
rays passing through the focal point before entering the lens are deflected at
the front principal plane and leave the lens parallel to the optical axis.

lens are deflected at the front principal plane and leave the lens parallel to the
optical axis. The nodal points of a lens are those through which a ray entering
the lens on one side leaves the lens in parallel on the other side. In air they
are located at the principal points HL,H′

L, which are the intersections of the
principal planes with the optical axis [50]. Rays through the center of the lens
are not deflected.

Note that in computer vision literature, the axis through the camera center perpen-
dicular to the image plane is called the principal axis, and their intersection is called
the principal point. This is in contrast to the optics literature, where the active planes
of a lens are called principal planes, and their intersection with the optical axis is called
the principal point. In this section, the terms are used interchangeably as they fit. The
meaning should be clear from the context.

The image of an object point that emits rays of light circularly in every
direction is constructed by following the ray parallel to the optical axis, the ray
passing through the object-side focal point F′

L, and the ray passing through the
lens center. All three rays intersect in a single point, which is the image point.
The height of the image is calculated from similar triangles

hi = ho
si

so
. (2.2)

In order to photograph an object at so the image sensor must be placed at si.
If the object moves further away, the sensor must be moved closer to the lens
until it is at the focal plane at the distance fL, and the object is infinitely far
away [50].
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FL
F′L

ho

hi

fL fL
sosi

Figure 2.2: The thin lens neglects the thickness sL of the lens.

H′
L

p
o

sy

p
i

βy

si

Figure 2.3: The pinhole camera model in 2D. The object point p
o

is imaged at the image
point p

i
at the intersection of the ray from object point to the center of

projection and the image sensor. The field of view βy is determined by the
image distance si and the size of the image sensor sy.

To construct the image, all distances can be measured from the principal
planes. Thus, the lens can be replaced by a thin lens, as shown in Figure 2.2,
where the lens thickness sL is neglected.

2.2 Pinhole camera model
A sharp image only is created if the image sensor is placed at si, but due to a
finite aperture and a finite sensor resolution, objects at different distances can
also appear sharp. By inspecting an image, it is only known that light that is
caught by the image sensor must have passed the principal point H′

L, which is
the lens center in case of a thin lens. This point, therefore, is called the center
of projection.

With the center of projection, an image is constructed by placing the image
plane or image sensor in front of the lens, as shown in Figure 2.3. The object
point p

o
= (so, ho)T is imaged at the image point p

i
= (si, hi)

T where the ray
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x y

Image plane

Mp
Im

p

Principal axis

C

X
Y

Z

fL

Figure 2.4: The pinhole camera model in 3D. The origin is placed at the center of
projection and the image plane or sensor at Z = fL ≈ si.

from object point to the center of projection intersects the image sensor. This
simple image formation model is referred to as the pinhole camera model [48].

In regular cameras si ≈ fL, which can be seen from the dimensions of fL
(mm) and so (m). Therefore, in the pinhole camera model, si often is replaced
by fL, but one has to keep in mind that si really is the distance between the
back principal plane and the image sensor and that distance is changed while
focusing the camera [50]. The field of view βy of the pinhole camera model is
the opening angle and it is calculated by

βy = 2 arctan
sy

2 fL
, (2.3)

with the image sensor height sy.
Figure 2.4 shows the pinhole camera model in 3D, where the image plane

is placed at Z = fL and the the origin is placed at the center of projection. In
a camera model, the center of projection is also called the camera center C or
optical center. The axis through the camera center perpendicular to the image
plane is called the principal axis, and their intersection is called the principal
point p1. The image p

Im
= (x, y)T of an object point M = (X, Y, Z)T is the

projection of the point onto the image plane through the camera center. From
similar triangles the mapping from M to p

Im
is found:

(X, Y, Z)T ↦→ ( fLX/Z, fLY/Z)T . (2.4)

1Note the ambiguous meaning of the two terms principal point and principal plane (Section 2.1).
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In homogeneous coordinates the projection can be expressed by a linear equa-
tion [48]

xm =

⎛⎝ fLX
fLY
Z

⎞⎠ =

⎛⎝ fL 0
fL 0

1 0

⎞⎠
⎛⎜⎜⎝

X
Y
Z
1

⎞⎟⎟⎠ , (2.5)

where xm are homogeneous coordinates of the 2D image point.
The origin of image coordinates so far has been placed at the principal point.

With digital cameras, the origin is in a corner, so the coordinates must be
shifted. That extends Equation 2.4 to

(X, Y, Z)T → ( fLX/Z + px, fLY/Z + py) , (2.6)

which in homogeneous coordinates is

xm =

⎛⎝ fLX + pxZ
fLY + pyZ

Z

⎞⎠ =

⎛⎝ fL px 0
fL py 0

1 0

⎞⎠
⎛⎜⎜⎝

X
Y
Z
1

⎞⎟⎟⎠ . (2.7)

By writing

Km =

⎛⎝ fL px
fL py

1

⎞⎠ (2.8)

Equation 2.7 becomes [48]

xm = Km [I|0]X , (2.9)

where X = (X1, X2, X3, X4)
T is the object point in homogeneous 3D coordinates.

Usually, object coordinates are given in the world coordinate system rather
than in the camera coordinate system. The position of the camera is given by
the camera center C and its orientation by the rotation matrix R. Homogenous
world coordinates are then transformed into homogenous camera coordinates
by

Xcam =

[︃
R −RC
0T 1

]︃⎛⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎠ =

[︃
R −RC
0T 1

]︃
X . (2.10)
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Equation 2.10 is used in 2.9 and gives

xm = Km [R| − RC]X = Km [R|T]X , (2.11)

with
T = −RC . (2.12)

Pm = Km [R|T] (2.13)

is called the projection matrix.
A digital camera measures the position of image points in pixel coordinates.

If the dimension of pixels in x- and y-direction is given by mx and my, pixel co-
ordinates are given by m = (u, v)T = (x/mx, y/my)T . This can be implemented
in the camera matrix

K =

⎛⎝ fx u0
fy v0

1

⎞⎠ (2.14)

with fx = fL/mx, fy = fL/my, u0 = px/my and v0 = py/my, so that image
coordinates are given in pixel units

x = PX = K [R|T]X . (2.15)

The camera matrix K describes the internal camera geometry, and its compo-
nents are called intrinsic camera parameters. R and T describe the location and
pose of a camera and are referred to as extrinsic camera parameters.

A general projection matrix has the dimension 3 × 4. The left hand 3 × 3
submatrix of any finite camera has to be non-singular [33]. Thus, it can be
uniquely decomposed into P = K [R|T] by RQ matrix decomposition [48],
where Km is an upper triangular matrix. That is the expected shape from
Equation 2.13, but with an additional skew parameter s in the camera matrix
[48]

K =

⎛⎝ fx s u0
fy v0

1

⎞⎠ . (2.16)

s is only non-zero for cameras with non-perpendicular pixel arrays and for
some other special cases [48].
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2.3 Image distortion

2.3 Image distortion
The projective camera model is valid only for cameras without a lens and
with an infinitely small aperture, since the model assumption is that all light
passes through one single point (Figure 2.4). In that case, homogeneous im-
age coordinates are found by Equation 2.15, which are then converted into
inhomogeneous coordinates m = (u, v)T by

u =
x1

x3
(2.17)

v =
x2

x3
. (2.18)

Real cameras, however, have a lens and a finite aperture. The result is that the
rays do not hit the image plane at the predicted position, but are displaced.
This effect is called lens distortion and can be modeled after the perspective
projection in pixel coordinates. A widely used model is Brown’s model [13]

ũ = u + ǔ(K1|m̌|2 + K2|m̌|4 + K3|m̌|6)
+ 2P1ǔv̌ + P2(|m̌|2 + 2ǔ2) (2.19)

ṽ = v + v̌(K1|m̌|2 + K2|m̌|4 + K3|m̌|6)
+ 2P2ǔv̌ + P1(|m̌|2 + 2v̌2) , (2.20)

with m̌ = (ǔ, v̌)T = m − c, where c is the center of distortion. K1...3 and
P1, P2 are the distortion parameters and m̃ = (ũ, ṽ)T are the distorted image
coordinates.

This work follows the camera model from [9] that is implemented in the
OpenCV [11] and MATLAB [99] libraries. It is based on Brown’s model but
differs in that the distortion is calculated in normalized camera coordinates and
that the center of distortion coincides with the principal point. Calculating the
distortion in normalized coordinates has the advantage that the same distortion
parameters can be used for different image resolutions. Combining the principal
point and the center of distortion to a single point is a simplification. In OpenCV,
the camera model is extended by a rational function, which is also used in this
thesis. The final model is given by the following Equations

x̄ = [R|T]X (2.21)
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ū =
x̄1

x̄3
(2.22)

v̄ =
x̄2

x̄3
(2.23)

ŭ =ū
1 + K1|m̄|2 + K2|m̄|4 + K3|m̄|6
1 + K4|m̄|2 + K5|m̄|4 + K6|m̄|6
+ 2P1ūv̄ + P2(|m̄|2 + 2ū2) (2.24)

v̆ =v̄
1 + K1|m̄|2 + K2|m̄|4 + K3|m̄|6
1 + K4|m̄|2 + K5|m̄|4 + K6|m̄|6
+ 2P2ūv̄ + P1(|m̄|2 + 2v̄2) (2.25)

ũ = fxŭ + u0 (2.26)

ṽ = fyŭ + v0 , (2.27)

where m̄ = (ū, v̄)T are normalized undistorted image coordinates and m̆ =
(ŭ, v̆)T are normalized distorted image coordinates.

If the parameters K1...6 and P1, P2 are all equal to zero, i. e. without distortion,
the model collapses to Equation 2.15. In case only the distortion model without
the projective camera model is needed, the normalized undistorted image
coordinates are calculated by

ū =
u − u0

fx
(2.28)

v̄ =
v − v0

fy
(2.29)

instead of applying Equations 2.22 and 2.23. This way, the distorted and
undistorted images have the same camera matrix. In homogeneous coordinates
Equation 2.26 and 2.27 are expressed as

x̃ = Kx̆ (2.30)

and Equation 2.28 and 2.29 as

x̄ = K−1x . (2.31)
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For later use, the equations are abbreviated. Homogeneous to inhomoge-
neous variables (Equations 2.22 and 2.23):

m = δ(x) ; (2.32)

application of the distortion function (Equations 2.24 and 2.25), which can be
applied in normalized and non-normalized coordinates:

m̆ = ΘK1...6,P1,P2 (m̄) ; (2.33)

and the application of the camera matrix (Equations 2.26 and 2.27), which can
be applied in distorted and undistorted coordinates:

m = κ (m̄) . (2.34)

The estimation of the parameters of the distortion model is described in
Section 2.6.

2.4 Inverse warping
If a pixel-wise mapping from one view to another is available, an image
can be transformed to the other by inverse warping2 [96]: For each pixel
of a destination image, the corresponding location in the source image is
calculated. From there, pixel values are copied to the destination image. Since
the calculated locations are generally non-integer values, bilinear interpolation
is used to estimate the value of a pixel in the source image. Since this method
requires the mapping from target to source, it is called inverse warping. It is
used to undistort images based on the distortion model (Equations 2.24 and
2.25), where the source is the distorted image, and the target is the undistorted
image. For that reason, the distortion model does not need to be inverted. It is
also used for warping images by plane homographies later in this thesis.

2.5 3D reconstruction
From Figure 2.4 it can be seen that every image point corresponds to exactly one
ray. With the knowledge of the geometrical properties of a projective camera,
encoded in the projection matrix P, the direction of these rays is known, but the
position of an object point on a ray is not known. This issue is solved by using
at least two cameras and by geometrically triangulating two corresponding

2The transformation of an image is also called warping. The terms are used interchangeably.
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Cl Cr

M

Baseline

p
Im,l

p
Im,r

Epipolar line

Principal ray

Figure 2.5: The position of an object point M is determined by finding the intersection
of the rays belonging to the image points p

Im,l
and p

Im,r
of a camera pair.

rays, as shown in Figure 2.5, where the intersection of the rays is at the object
point.

Algebraically, the problem is solved by setting up a system of linear equations.
The object point is transformed to left and right camera coordinates by their
projection matrices

xl = PlX (2.35)

xr = PrX . (2.36)

These equations can be solved for the object point X. Since small errors in the
location of the image points lead to non-intersecting rays, in practice it cannot
be solved directly, but a best fitting solution has to be found [48].

The difficulty with a 3D reconstruction from stereoscopic images is to find
matching pixels in both images, i. e. to find tie points. Fortunately, it is not
necessary to search the entire image for a match. The image point p

Im,l
in the

left image in Figure 2.5 is back-projected at a ray shown by a dashed line. The
image of that ray is a line in the right image – the epipolar line – which is shown
as a dotted line. Thus, the image of the object must lie on the epipolar line in
the right image, and only that line has to be searched for the corresponding
point.

2.5.1 Image rectification
The problem becomes particularly easy if the cameras are aligned horizontally
and in parallel, and both cameras have identical focal lengths. The epipolar
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Figure 2.6: The triangulation of object points becomes particularly easy if the cameras
are aligned horizontally and in parallel, and both cameras have identical
focal lengths. The corresponding pixel to a pixel in one image is then found
at the same height on a horizontal line in the other image.

lines then become parallel, and the corresponding pixel to a pixel in one image
is found at the same height on a horizontal line in the other image.

Figure 2.6 shows the resulting geometry. By similar triangles the following
relations are found

bl =
Z
fL
(pIm,y ,l − py ,l) =

Z
fy
(vl − v0,l) (2.37)

bR =
Z
fL
(py ,r − pIm,y ,r) =

Z
fy
(v0,r − vr) (2.38)

⇒ bl + br = b =
Z
fy

(︁
(vl − v0,l) + (v0,r − vr)

)︁
. (2.39)

With v0,l = v0,r and the disparity defined as d = vl − vr a connection between
the disparity and the distance is found

Z =
b fy

d
. (2.40)

By determining the depth from the disparity, the problem of non-intersecting
rays is avoided, and the search for matching pixels is simplified. Therefore,
many stereo reconstruction algorithms work with such stereo camera setups.
To use those algorithms for other camera setups, images are artificially rectified
as shown in Figure 2.7, where the original images are projected onto image
planes that are aligned horizontally and in parallel. In this case, the new virtual
cameras have different principal points, and Equation 2.39 must be used. The

17



2 Basics
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Figure 2.7: If images are taken with cameras in general orientation, the images can be
rectified. After that, they look as if the cameras were aligned horizontally
and in parallel and had the same focal lengths.

transformations from real to artificial cameras are homographies that can be
calculated from the in- and extrinsic camera parameters [48].

2.5.2 Image features
One way of finding tie points in an image pair is to search for feature points
in both individual images and to compare them. The tie points can then be
triangulated. This approach is useful if the point correspondences are also
used to gain more information about the scene, such as to infer the camera
parameters and the 3D locations at the same time. The drawback is that the
result is only a sparse reconstruction. If the camera parameters are already
known, images can be rectified so that the corresponding pixel for a pixel in
the first image must lie on the same horizontal line in the other image. The
pixel from the first image can then be compared to each pixel on that line
from the other image with the help of a similarity measure. The similarity
measure is used to calculate a score for each comparison. Neglecting noise and
ambiguities, the comparison that gives the highest score indicates the correct
match.

The most straightforward measure compares pixels of greyscale images
by their intensities. The shortcoming of this approach is that it does not
consider radiometric differences between images. These appear due to slight
differences between the individual cameras of the stereo camera system, but
more importantly, due to non-Lambertian surfaces [55]. In the target application
of road surface reconstruction, a stereo camera with a large baseline is used.
This leads to different angles between the light source, the road, and the two
cameras and, thus, to radiometric differences.
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In [55] different similarity measures in combination with different optimiza-
tion algorithms (Section 2.5.3) are compared, and three particularly interesting
similarity measures are identified. According to the results in [55], background
subtraction by bilateral filtering (BilSub) performs well for low radiometric
differences. Hierarchical mutual information (HMI) is particularly suitable
if strong image noise is present. The Census transform (Census) has a good
overall performance, except for the case of strong image noise.

A more recent and widely used choice for estimating the similarity of rect-
angular pixel patches is a CNN [109]. At the time of working on this part, all
top-ranking algorithms on the Middlebury stereo evaluation benchmark [1]
used CNNs. Nevertheless, they are not used for this purpose in this work. The
problem of matching pixels of low-textured road surfaces seems to be a differ-
ent task than in public data sets, which mostly consist of scenes of arranged
everyday objects, and the advantage of a CNN in comparing low-textured
patches seems limited compared to traditional methods. Instead, in Section 3.3,
a CNN for one-step depth reconstruction is introduced, which also solves the
optimization problem that is introduced in Section 2.5.3. BilSub, HMI, and
Census are described in the following.

Background subtraction by bilateral filtering (BilSub)

Before comparing the pixel values between two images, radiometric differences
are removed with the help of a bilateral filter. The bilateral filter is a lowpass
filter and weights pixels depending on their neighborhood Nm around the pixel
m [96]

ILP [m] =
∑nϵNm I [n]wI(m, n)

∑nϵNm wI(m, n)
. (2.41)

I is an intensity image and the intensity of a single pixel with coordinates
m is given by I [m]. The weighting factor wI(m, n) = d(m, n) · rI (m, n) is the
product of a domain kernel d(m, n), which depends on the pixel distance, and a
range kernel rI (m, n), which depends on the pixel data. In the case of Gaussian
kernels these are [96]

d(m, n) = exp

(︄
− |m − n|2

2σ2
d

)︄
(2.42)

rI (m, n) = exp

(︄
− (I [m]− I [n])2

2σ2
r

)︄
, (2.43)

with parameters σr and σd. The filter smoothes an image by removing high
frequencies without blurring edges [5], and essentially captures the radiometric
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Figure 2.8: The Census transform generates a bit string from a set of pixels by comparing
each pixel to the central pixel.

differences. The lowpass filtered image is subtracted from the original image

IBS = I − ILP , (2.44)

which results in a highpass filter that highlights the texture.
After radiometric differences have been removed, pixel intensities are com-

pared by calculating their differences. Alternatively, patches of both images are
compared by the sum of absolute differences (SAD), which makes the measure
more robust

SAD [m] = ∑
nϵNm

⃓⃓⃓
IBS

1 [n]− IBS
2 [n]

⃓⃓⃓
. (2.45)

Census transform

The Census transform [108] transforms a set of pixels surrounding a central
pixel into a bit string. A pixel is represented by a binary 0 if its value is less than
that of the central pixel. Otherwise, it is represented by a binary 1. The bits are
then brought into a canonical order, such as {1, 0, 0, 1, 1, 0, 1, 1} in Figure 2.8. In
this way, a bit string is calculated for every pixel. The similarity between two
pixels of Census transformed images is calculated by the Hamming distance,
i. e. the differing bits between the two bit strings are counted [108].

Hierarchical mutual information

The mutual information (MI) of two random variables measures the average
amount of information that one variable conveys about the other [70]. By
regarding a pair of images as probability distributions of pixel intensities, their
MI can be utilized as a measure for image similarity [53, 64]. The larger the MI
is, the more similar two images are. A stereoscopic reconstruction establishes a
mapping ϕ of pixels mb from a base camera image to the pixels mt of a target
camera image ϕ : mb → mt. It can be derived from Equations 2.35 and 2.36.
For rectified images, the mapping corresponds to the disparity image, i. e. the
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disparity value of each pixel. With the help of ϕ the pixels of It are rearranged
to

Itr = {It [ϕ(mb)] | mb ∈ Mb} , (2.46)

where Mb is the set of all pixels of the base image. With the correct mapping ϕ,
Ib ≈ Itr, apart from radiometric differences, different camera gain, offset, and
noise. Ib and Itr are regarded as random variables and their MI is calculated
by

MIIb ,Itr = H Ib + H Itr − H Ib ,Itr (2.47)

where H Ib , H Itr are the entropies of individual images, and

H Ix = −
∫︂

Ix
pIx

(ix) log pIx
(ix) dix for x = b, tr . (2.48)

The joint entropy of two images is

H Ib ,Itr = −
∫︂

Ib

∫︂
Itr

pIb ,Itr
(ib, itr) log pIb ,Itr

(ib, itr) dib ditr . (2.49)

pIb
and pItr

are the probability distributions of pixel intensities of Ib and Itr.
pIb ,Itr

is their joint probability distribution.
To make the MI usable for matching pixels, it has to be formulated as a

sum over pixels, so it can be used for each individual pixel. Furthermore, the
probability distribution pIb ,Itr

is unknown because the mapping ϕ is not yet
available. In [64] these issues are solved by approximating Equation 2.49 by a
Taylor expansion and by using Parzen estimation. The derivation from [64] is
repeated below:

The employed Taylor expansion is

x log(x) ≃ −x0 +
(︂

1 + log(x0)
)︂

x , (2.50)

which turns Equation 2.49 into

H Ib ,Itr ≃ −
∫︂

Ib

∫︂
Itr

log
(︂

p0
Ib ,Itr

(ib, itr)
)︂

pIb ,Itr
(ib, itr) dib ditr . (2.51)

p0
Ib ,Itr

is a probability distribution that is similar to pIb ,Itr
. pIb ,Itr

is estimated by
Parzen estimation

pIb ,Itr
(ib, itr) ≈

1
|Mb| ∑

mb

gψ

(︂
(ib, itr)

T − (Ib(m), Itr(m))T
)︂

, (2.52)
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with the two-dimensional Gaussian distribution gψ

(︂
x − µ

)︂
, where µ is the

expected value, and ψ is a diagonal covariance matrix. Equation 2.51 can now
be written as

H Ib ,Itr ≈ −∑
mb

1
|Mb|

∫︂
Ib

∫︂
Itr

log
(︂

p0
Ib ,Itr

(ib, itr)
)︂

gψ

(︂
(ib, itr)

T − (Ib(m), Itr(m))T
)︂

dib ditr . (2.53)

The portion that a single pixel adds to H Ib ,Itr is

hIb ,Itr ,ϕ(mb) = − 1
|Mb|

∫︂
Ib

∫︂
Itr

log
(︂

p0
Ib ,Itr

(ib, itr)
)︂

gψ

(︂
(ib, itr)

T − (Ib(mb), It [ϕ(mb)])
T
)︂

dib ditr ,

(2.54)

where It was reinserted. hIb ,Itr ,ϕ(mb) now explicitly depends on the mapping
of every pixel and the goal is reached.

p0
Ib ,Itr

is estimated by Parzen estimation from an initial mapping ϕ0. In the
implementation, it is computed by convolving the 2D histogramm of Ib and
I0

tr =
{︁

It
[︁
ϕ0(mb)

]︁
| mb ∈ Mb

}︁
with a Gaussian function

p0
Ib ,Itr

= PIb ,I0
tr
(ib, itr)⊗ gψ(ib, itr) . (2.55)

The convolution is indicated by ⊗. The histogram is given by

PIb ,I0
tr
(ib, itr) =

1
|Mb| ∑

mb

T
[︂
(ib, itr)) =

(︂
Ib(mb), It

[︂
ϕ0(mb)

]︂)︂]︂
, (2.56)

with T[·] = 1 if its argument is true, otherwise T[·] = 0. Equation 2.54 is also
efficiently computed by a convolution. The result is an array for every possible
combination (ib, itr). Its entries are given by

hlookup
Ib ,Itr

(ib, itr) = − 1
|Mb|

log
(︂

p0
Ib ,Itr

(ib, itr)
)︂
⊗ gψ(ib, itr) (2.57)

= − 1
|Mb|

log
(︂

PIb ,I0
tr
(ib, itr)⊗ gψ(ib, itr)

)︂
⊗ gψ(ib, itr) (2.58)

and it is used as a lookup table in

hIb ,Itr ,ϕ(mb) = hlookup
Ib ,Itr

(Ib [mb] , It [ϕ(mb)]) . (2.59)
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Figure 2.9: The problem of assigning an appropriate label to each pixel is expressed as a
Markov random field, which is shown here as a factor graph. x(u, v) is the
label assigned to the pixel with coordinates (u, v) and y(u, v) is the data at
that pixel. ΨNB(·, ·) and ΨD(·, ·) are functions that describe the compatibility
of adjacent labels and the compatibility of the label with the data.

H Ib and H Itr are equally converted into sums over pixels, whose summands
are given by hIb and hItr . In [64] only H Ib ,Itr is used as the pixelwise similarity
measure and H Ib , H Itr are neglected. In [53] it is reported that not neglecting
theses terms improves the performance of mutual information, such that the
final similarity measure is

miϕ(mb) = hIb(mb) + hItr ,ϕ(mb)− hIb ,Itr ,ϕ(mb) . (2.60)

ϕ0 is initialized in some way, e. g. randomly. ϕ then is refined iteratively
hierarchically on an image pyramid [53], as shown in Section 3.2.1. Hence the
name HMI.

2.5.3 Optimization problem
One difficulty in matching pixel pairs is that the highest similarity value does
not necessarily correspond to the correct match. Low-textured surfaces might
have multiple pixels with equal similarity scores, e. g. if an object is placed
in front of a white background. The same problem occurs in textures with
repetitive patterns. Radiometric differences due to the distance of the stereo
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camera heads to each other also lead to inconsistent pixel intensities. Another
reason is sensor noise. If the disparity is chosen based on similarity values
alone, noisy disparity maps will be the result.

To solve this problem, it is assumed that neighboring pixels mostly belong
to the same physical object and, therefore, must be related [7, 77, 96]. For the
sake of clarity, this section assumes rectified stereoscopic images. Under this
assumption, the disparity value is the mapping of a pixel from one image to
the other and must be in accordance with the two images, i. e. with the given
data. These relationships can be represented in an undirected graph.

By regarding the disparity values and the data given by the images as two
collections of random variables X = {Xm : m ∈ M}, Y = {Ym : m ∈ M}, the
undirected graph corresponds to a Markov random field (MRF) [77]. The goal
is to infer the most probable set of disparity values x from the observed data
y, i. e. arg maxx p(x|y), the maximum a posteriori (MAP) estimate. This is
described in the following.

According to the Hammersley-Clifford theorem, a probability distribution
that is described as a MRF can be factorized into [77]

p(z) =
1
Q ∏

c∈C
Ψc(zc) . (2.61)

Ψc is any positive function, called factor, and C is the set of cliques of the graph.

Q = ∑
z

∏
c∈C

Ψc(zc) (2.62)

is a normalizing constant, which ensures that p(z) is a proper density function
that integrates to ones [77]. In the case at hand Z = X ∪Y, and the cliques each
consist of the disparities of two neighboring pixels xmi , xmj , or of the disparity
of a pixel and the data that belongs to the pixel ymi , hence

p(x, y) =
1
Q ∏

i
ΨD(xmi , ymi ) ∏

i,j∈NNB

ΨNB(xmi , xmj) , (2.63)

where NNB is the set of indices of neighboring pixels. The MRF that is described
by Equation 2.63 is shown as a factor graph in Figure 2.9. By choosing Ψc(zc) =
exp(−Ec(zc)), where E is an energy function, Equation 2.63 is turned into

p(x|y) = 1
Q

exp

(︄
∑

i
−ED(xmi , ymi ) + ∑

i,j∈NNB

−ENB(xmi , xmj)

)︄
(2.64)
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with the constant

Q = ∑
x

exp

[︄
∑

i
−ED(xmi , ymi ) + ∑

i,j∈NNB

−ENB(xmi , xmj)

]︄
. (2.65)

In order to maximize p(x|y) with a given configuration y, the negative log
likelihood can be minimized, which is

− log p(x, y) = ∑
i
−ED(xmi , ymi ) + ∑

i,j∈NNB

−ENB(xmi , xmj) + log Q , (2.66)

and therefore, to solve the problem, which is to find the most probable x, the
energy

E = ∑
i

ED(xmi , ymi ) + ∑
i,j∈NNB

ENB(xmi , xmj) (2.67)

must be minimized. ED is interpreted as the energy that is related to the data,
and ENB is a regularization or smoothness term.

Another way of looking at the problem is by using Bayes’ theorem [96]

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)

∑x p(y|x)p(x)
(2.68)

⇔ − log p(x|y) = − log p(y|x)− log p(x) + log ∑
x

p(y|x)p(x) . (2.69)

Comparing Equations 2.66 and 2.69, the following relations are found

p(y|x) = 1
QD

exp

[︄
−∑

i
ED(xmi , ymi )

]︄
(2.70)

p(x) =
1

QNB
exp

[︄
− ∑

i,j∈NNB

ENB(xmi , xmj)

]︄
. (2.71)

QD = ∑
x

exp

[︄
−∑

i
ED(xmi , ymi )

]︄
(2.72)

QNB = ∑
x

exp

[︄
− ∑

i,j∈NNB

ENB(xmi , xmj)

]︄
(2.73)

are normalizing constants to ensure that p(y|x) and p(x) are proper density
functions. They cancel out in Equation 2.69. From Bayes’ theorem interest-
ing properties are found. The data term ED corresponds to the conditional
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probability p(y|x), and ENB corresponds the prior distribution of X

p(x) =
1

QNB
∏

i,j∈NNB

exp
[︂
−ENB(xmi , xmj)

]︂
(2.74)

and is a MRF itself (compare to Equation 2.63).

2.5.4 Smoothing term
ENB(xmi , xmj) controls the smoothness of the prior distribution p(x). In stan-
dard regularization techniques ∑i,j∈NNB

ENB(xmi , xmj) in Equation 2.67 is called
a regularization term. A common choice is the p-norm ENB(xmi , xmj) =

|xmi − xmj |p [96] and often p = 2. The implications on the MRF prior can
be seen in the following way:

In a 4-connected neighborhood, as is shown in Figure 2.9, ENB(xmi , xmj) =

|xmi − xmj |2 corresponds to the discretized membrane model
∫︁ ∫︁

(x2
u + x2

v) du dv.
The resulting MRF is investigated in [95]. It turns out to be equivalent to a
correlated Gaussian field with spectral distribution S( f ) ∝ |2π f |−2. It shows
that under this prior low spatial frequencies are much more probable than
high frequencies, which prevents discontinuities. This prior is well suited
for removing noise in otherwise flat surfaces, but depth discontinuities are
obscured [8].

In [8] the relationship between regularization terms and line-processes is
investigated. A line-process makes discontinuities possible by downweighting
the regularization term if a discontinuity is present

ENB(xmi , xmj) = |xmi − xmj |2lmi ,mj + Ψ(lmi ,mj) . (2.75)

lmi ,mj is the line-process and indicates the presence (lmi ,mj → 0) or absence
(lmi ,mj → 1) of a discontinuity. Ψ(lmi ,mj) is the penalty for a discontinuity to be
present. The disadvantage of the line-process is that it has to be included in
the estimation of x, but it can be shown, that line-processes and regularization
terms are related. E. g. the L1 norm ENB(xmi , xmj) = |xmi − xmj | corresponds
to Equation 2.75 with Ψ = (4lmi ,mj)

−1, where l has been estimated optimally
[8]. The smoothing energy

ENB(xmi , xmj) = |xmi − xmj | (2.76)

therefore is discontinuity preserving. It will be used later in this thesis.
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2.5.5 Data term
For the data energy term ED(xmi , ymi ), one of the negative similarity measures
from Section 2.5.2 is used. E. g. in case of MI

ED(xmi , ymi ) = −miϕ(mi) , (2.77)

where the labeling is implicity given by the mapping ϕ. ymi (the data y at pixel
mi) is observed and not regarded to be random. It is used in the calculation of
mi.

2.5.6 Optimization algorithms
Except for some special cases of ENB and binary labeling, the problem of
estimating the global optimum of the MAP estimate is NP-hard [10] and
therefore algorithms that find an approximate solution are required.

Graph cuts and message passing algorithms

In [94] and [62] methods for energy minimization of MRFs are compared. Both
find the expansion-move algorithm [10] and the sequential tree-reweighted
message passing algorithm [104] the most useful for stereo matching. The
former uses graph-cuts to infer the hidden variables of the MRF. The latter
is a message-passing algorithm. Message-passing algorithms were originally
introduced for trees and later used for cyclic graphs.

Variational approach

In [82] a special case of Equation 2.67 is considered, where ENB(xmi , xmj) =

|xmi − xmj |. It is reformulated as a variational problem

Evar =
∫︂
M

|∇xm| dm+
∫︂
M

ED(xm, ym) dm . (2.78)

In [82] it is shown that the global minimum of Evar can be found, and an
algorithm is presented that can be parallelized and implemented on a graphics
processing unit (GPU). The variational approach also has the advantage that it
is not necessary to specify a neighborhood for the smoothing term. Therefore,
it does not suffer from a grid bias.
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Dynamic programming

The optimization problem is greatly simplified if scan lines (horizontal epipolar
lines in rectified images) are optimized individually, and the smoothing con-
straint in the vertical direction is neglected. In [27] the assumption is made that
matching pixels are ordered, i. e. if two pixels in the left and right images with
coordinates (ul , vl) and (ur, vr) match, then the match of the pixel (ul + 1, vl)
must satisfy (ur + dr, vr) | dr ≥ 0. Furthermore, instead of a smoothness term,
a penalty term is added for occluded pixels. In [88] scan lines are optimized
individually with a smoothness term, but without enforcing the ordering con-
straint. By optimizing scan lines individually, the 2D cyclic graph, which is
formed by the energy function in Equation 2.67, is transformed to separate
tree-structured graphs. In that case, dynamic programming can be used, which
is a method for inference for any tree-structured graphical model [96].

In [88] the neighborhood of the smoothing term is taken to be the left
and right neighboring pixels on the scan line, such that the lines become
independent

Ev(x) = ∑
u

(︃
ED(xu,v, yu,v) + ENB(xu,v, xu−1,v)

)︃
. (2.79)

The sum is equivalently calculated recursively

Ev(xu) = ED(xu,v, yu,v) + ENB(xu,v, xu−1,v) + Ev(xu−1) . (2.80)

To minimize Ev(x, u) the recursive formulation is used, which enables dynamic
programming

min
x

Ev(xu) = ED(xu,v, yu,v) + min
xu−1

(︃
ENB(xu,v, xu−1,v) + Ev(xu−1)

)︃
. (2.81)

Optimization by semi-global matching

Since dynamic programming can only be used to optimize scanlines indepen-
dently, the consistency between scanlines is not checked. This leads to streaking
effects, which are clearly visible in the resulting disparity map. The semi-global
matching (SGM) approach [53] solves this issue by accumulating cost paths
from multiple directions r

Er(xm) = ED(xm, ym) + min
xm−r

(︃
ENB(xm, xm−r) + Er(xm−r)

)︃
(2.82)
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S(xm) = ∑
r

Er(xm) . (2.83)

The paths are traversed in a forward direction from all pixels of all borders.

om = arg min
x

S(xm) (2.84)

gives the estimated label o at the position m.
SGM can be implemented very efficiently. Traversing can be done indepen-

dently for every path in multiple processes concurrently. By only traversing
paths that start at pixels at the same edge into identical directions at the same
time, i. e. paths that are parallel, Er can directly be added to S during the
traversal because it is guaranteed that memory that holds S is never accessed
concurrently at the same position m. The min operation in Equation 2.82 re-
quires to repeat the same calculations for all possible values of x. That can
be implemented by using single input multiple data (SIMD) instructions. By
using the Intel AVX2 instruction set, calculations on 256-bit registers can be
performed simultaneously. By using single-precision floating-point numbers,
calculations for eight labels xm−r are performed simultaneously in each process.
The algorithm has complexity O(WHD2).

In [53] a function ENB is used that is zero if neighboring pixels have the same
label. It takes a first defined value if neighboring labels differ by one, and it
takes a second defined value if they differ by more than one. This way, the
algorithm has complexity O(WHD).
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2.6 Camera calibration
Geometric calibration is the process of determining a camera’s geometric
properties and is often simply referred to as camera calibration [56]. The
geometric properties can be divided into in- and extrinsic parameters. Intrinsic
parameters (or internal parameters) are those that are intrinsic to the camera
itself [56]. Assuming the projective camera model (Equation 2.15), these are
the ones that make up the camera matrix K. Extrinsic parameters (or external
or pose parameters) are the ones that describe the pose of the camera R, T.
Parameters of the distortion model (Equations 2.21–2.27) are often counted to
the intrinsic parameters [56]. To make a distinction possible, in this thesis, they
will be called distortion parameters. A calibrated camera is a camera whose
intrinsic and distortion parameters are known. With a calibrated stereo camera,
the geometric relationship between the stereo heads is also known.

A calibrated camera, together with the extrinsic parameters, establishes a
mapping from a 3D world to a 2D image coordinate. A projective mapping
cannot be inverted, but with a calibrated camera, an image coordinate can be
back-projected to a ray. The object point lies on this ray, but the absolute position
is unknown. Many applications in computer vision require calibrated cameras.
Examples are the reconstruction of metric properties from single images, depth
reconstruction from stereo cameras, and augmented reality applications. Stitch-
ing panoramic images from multiple images requires undistorted images and
thus the distortion parameters.

To calibrate a camera, a calibration target is observed from one or multi-
ple perspectives. Depending on the shape of and the knowledge about the
calibration target, camera calibration can be divided into different categories.
Following [56] these are:

• Camera calibration with a 3D target with control points. The 3D coordi-
nates of which have to be known precisely.

• Camera calibration with a planar target with control points. The 2D
coordinates within the plane have to be known precisely.

• Camera self-calibration with a 3D or planar target without any control
points.

Combinations of these categories are also possible.
In Chapters 3–6 a calibrated stereo camera system is required for depth

estimation. Therefore the basics of different calibration techniques are laid
out in the remainder of this chapter. Later, a novel self-calibration method
is introduced. Since it uses a feature map extraction network that is part of
Section 3.3, it is covered in Chapter 4.
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2.6.1 Calibration with 3D control points
The most basic calibration technique uses a 3D target with control points. The
coordinates of the control points are known and can be found in an image
so that the corresponding object coordinates Xi and image coordinates xi are
available. Assuming the projective camera model, a 3D object point is mapped
to 2D image coordinates by

x̂i = PXi . (2.85)

Neglecting noise and model imperfections, xi and x̂i describe the same point,
but since those are homogeneous coordinates, they can differ by a factor. The
vectors xi and x̂i are parallel, therefore xi × x̂i = 0 and hence [48]

xi × PXi = Xi ×

⎡⎢⎣ p1T

p2T

p3T

⎤⎥⎦Xi =

⎡⎢⎣ x2,ip3TXi − x3,ip2TXi
−x1,ip3TXi + x3,ip1TXi
x1,ip2TXi − x2,ip1TXi

⎤⎥⎦ (2.86)

=

⎡⎣ 0T −x3,iXT
i x2,iXT

i
x3,iXT

i 0T −x1,iXT
i

−x2,iXT
i x1,iXT

i 0T

⎤⎦
⎡⎢⎣ p1

p2

p3

⎤⎥⎦ = 0 . (2.87)

The first and second lines in Equation 2.87 can be transformed into the third
line, which therefore can be removed and leaves [48]

[︃
0T −x3,iXT

i x2,iXT
i

x3,iXT
i 0T −x1,iXT

i

]︃ ⎡⎢⎣ p1

p2

p3

⎤⎥⎦ = 0 . (2.88)

The equation is valid for all n point correspondences, hence⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0T −x3,1XT
1 x2,1XT

1
x3,1XT

1 0T −x1,1XT
1

0T −x3,2XT
2 x2,2XT

2
x3,2XT

2 0T −x1,2XT
2

...
...

...
0T −x3,nXT

i x2,nXT
n

x3,nXT
n 0T −x1,nXT

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣ p1

p2

p3

⎤⎥⎦ = A

⎡⎢⎣ p1

p2

p3

⎤⎥⎦ = 0 . (2.89)

The projection matrix P can now be determined by solving for the vector

p =
[︂
p1Tp2T

p3T
]︂T

. The projection matrix consists of 12 values, but since it is
only defined up to scale, only 11 values have to be determined. To determine
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P uniquely, 11 equations are necessary, which corresponds to 5 1/2 point
correspondences. The half correspondence can be acquired e. g. by using only
the x-component of a point pair.

In practice, measured point coordinates are subject to noise, and the camera
model will not perfectly reflect reality. Therefore more points are used and p is
determined by the right nullspace of A. The right nullspace can be obtained by
singular value decomposition (SVD) of A, where the solution is the singular
value that corresponds to the smallest singular value. The method is called the
direct linear transform (DLT) [48].

2.6.2 Geometric error
It is also possible to measure the distance between measured and estimated
inhomogeneous image coordinates, i. e. the geometric error |mi − m̂i| [48].
The estimated coordinates are found by projecting the 3D point coordinates
m̂i = δ (PXi). P can now be determined by minimizing the squared sum of all
distances

min
P

∑
i
|mi − δ (PXi)|2 , (2.90)

with a nonlinear optimization technique, such as the Levenberg-Marquardt
algorithm. For initialization, the DLT method can be used. This method
has the advantage that the nonlinear distortion model can be included in the
optimization

min
P,K1...6,P1,P2

∑
i

⃓⃓
mi − δ

(︁
ΘK1...6,P1,P2 (PXi)

)︁⃓⃓2 . (2.91)

2.6.3 Self-calibration with a 3D target
The requirement for self-calibration through 3D scenes is that feature points can
be found in multiple images. The starting point is a projective reconstruction,
i. e. estimated 3D point coordinates X and projection matrices P from 2D image
coordinates x. The reconstruction is then upgraded to a metric reconstruction
by the rectifying homography determined by the self-calibration method.

Projective reconstruction

The projective reconstruction is obtained by the following basic steps [48, 83]:

1. Search for point correspondences xi ↔ x′i between two views.

2. Reconstruction of the fundamental matrix that relates image point corre-
spondences x′iF1xi = 0.
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3. Decomposition of F1 into the projection matrices of two cameras P1 and
P0, where P0 = [I|0].

4. Estimation of world coordinates Xi by triangulation (Section 2.5).

5. Search for point correspondences between one of the previous views and
further views and estimation of Xi and Pj as described in points 2.–4.

The reconstruction can be enhanced by alternating the search for correspon-
dences and updating the fundamental matrix [83]. Once the projection matrices
Pj are found, and the 3D points Xi are triangulated, the 3D points can be
back-projected into 2D camera coordinates.

The steps of estimating the projection matrices and triangulating points
have been separate so far. To obtain a consistent model, the geometric error
(Section 2.6.2) is minimized by concurrently altering the projection matrices
and the 3D point coordinates

min
P,Xi

∑
i
|mi − δ (PXi)|2 , (2.92)

which is called bundle adjustment [101]. At this point, a distortion model can
also be included [83].

Since the reconstruction in points 2.–4. is performed between two views at a
time, a bundle adjustment refinement can be added after adding a view (step
5) or after all views have been added, to obtain a single consistent model [83].

Metric reconstruction

In a projective reconstruction, metric properties are not preserved. A rectifying
homography Hrect is required that upgrades the projective reconstruction to a
metric reconstruction. It can be shown that it must have the form

Hrect =

[︃
K 0

−pTK 1

]︃
, (2.93)

with π∞ = (pT , 0)T and π∞ being the plane at infinity in the projective frame
[48]. It transforms point vectors and projection matrices to the metric frame by
XM = H−1

rectX and PM = PHrect. To estimate Hrect, an important property of the
dual absolute quadric Ω∗

∞ is used. In a metric frame Ω∗
∞,M = diag(1, 1, 1, 0),

and it is transformed to the projective frame by [48, 83]

Ω∗
∞ = HrectΩ

∗
∞,MHT

rect . (2.94)
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In a general projective frame, Ω∗
∞ is described by a 4x4 symmetric positive

semi-definite matrix [83]. If Ω∗
∞ is known, Hrect can be determined by matrix

decomposition. The image of the dual absolute quadric is the dual image of
the absolute conic. It is found by a projection

ω∗ = PjΩ
∗
∞ ,jP

T
j (2.95)

equally in every j’th view, since ω∗ = KKT is only dependent on the camera
matrix. In the application where a camera shall be calibrated, all views are
created by the same camera, hence K and thus ω∗ are fixed. Ω∗

∞ ,j is inherent to
the projective frame. The homogenous quantities in Equation 2.95 are defined
only up to scale, and, therefore, ω∗ differs by an unknown scaling between

views, but for its elements,
ω∗i

k,l

ω
∗j
k,l

= const for all k, l for each two views i, j. Due

to the symmetric form of Ω∗
∞ and the form of ω∗, one can extract the equalities

[48]
ω∗i

11

ω
∗j
11

=
ω∗i

12

ω
∗j
12

=
ω∗i

13

ω
∗j
13

=
ω∗i

21

ω
∗j
21

=
ω∗i

22

ω
∗j
22

=
ω∗i

23

ω
∗j
23

=
ω∗i

33

ω
∗j
33

. (2.96)

By using Equation 2.95 in 2.96, a system of equations quadratic in the entries
of Ω∗

∞ j is generated and can be solved numerically. K is found from ω∗ by
Cholesky decomposition.

In [83] a different approach is used. There, the projection matrices are
normalized so that ω∗ can be approximated by a unit matrix. The result is a
system of equations linear in the entries of Ω∗

∞ j, which can be solved by linear
least squares.

In [83] a final bundle adjustment step is performed to optimize the metric
projection model. With the projection matrices PM,j of the metric frame, the
locations of the cameras Rj,T j are also known (Section 2.2). The projection
model, which is established for every camera by Equations 2.21–2.27, is setup
and is used to optimize the geometric error by bundle adjustment

min
K,K1...6,P1,P2,Rj ,T j ,Xi

∑
j

∑
i

⃓⃓⃓
mi − δ

(︂
ΘK1...6,P1,P2

(︂
K
[︂
Rj|T j

]︂
Xi

)︂)︂⃓⃓⃓2
. (2.97)

2.6.4 Calibration with planar targets
Calibration from a planar target can be performed with targets containing
known calibration patterns and those containing an arbitrary texture. Both
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methods require multiple views of the target from different perspectives. They
are described in the following sections.

Calibration with a planar target with calibration pattern

Calibration from a planar target is based on the fact that every plane has two
distinct points, which are the circular points, and the circular points of all
planes in 3D space lie on the absolute conic Ω∞ [48, 110]. The images of the
absolute points thus lie on the image of the absolute conic, which only depends

on the calibration matrix ω =
(︂

KKT
)︂−1

[48].
In Section 3.1.1 it is shown that a point lying on a plane is projected into a

camera by a homography. Therefore, the image of the absolute points of the
plane is found in the j’th view by

c1,2
j = Hj

⎛⎝ 1
±i
0

⎞⎠ = h1
j ± ih2

j , (2.98)

where h1,2
j are the first and second columns of Hj, and i is the imaginary unit.

Since the images of the absolute points lie on the image of the absolute conic, it
is found that [110] (︂

h1
j ± ih2

j

)︂T
ω
(︂

h1
j ± ih2

j

)︂
= 0 , (2.99)

which can be split into real and complex parts(︂
h1

j

)︂T
ω
(︂

h2
j

)︂
= 0 (2.100)(︂

h1
j

)︂T
ω
(︂

h1
j

)︂
=
(︂

h2
j

)︂T
ω
(︂

h2
j

)︂
. (2.101)

It is assumed that the plane contains a known calibration pattern, which can be
found in the images. The pattern is used to find point correspondences, which
in turn are used to find the homographies between the plane and the images.
In [110] Equation 2.101 is converted to a problem linear in the entries of ω. It is
solved by SVD, which is similar to the DLT approach in Section 2.6.1. Finally,
K is extracted from ω.
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Until now, the lens distortion was not taken into account. In [110] lens
distortion is included by minimizing the geometric error

min
K,K1...6,P1,P2,Rj ,T j

∑
j

∑
i

⃓⃓⃓
mi − δ

(︂
ΘK1...6,P1,P2

(︂
K
[︂
Rj|T j

]︂
Xi

)︂)︂⃓⃓⃓2
. (2.102)

To do so, Rj and T j are found from K and Hj [71].
The method that combines the estimation of linear camera parameters with a

following optimization is commonly referred to as Zhang’s method [110] and
is probably the most used method for camera calibration [56]. Variants of it
[9] are implemented in the OpenCV [12] and MATLAB [99] libraries. Since
the target is often a board with a printed pattern, which is moved around the
camera, the method is referred to as the movable planar target (MPT) method
in the following.

Calibration with a planar target with arbitrary pattern

Calibration from planar scenes that do not contain a known calibration pattern
is similar to the previous method. The difference is that homographies cannot
be estimated between planes and cameras, but only between cameras.

A 3D point X that is located on a plane can be described by 2D coordinates
x. Its image in the j’th view is found by a homography xj = Hjx. Points that
lie on a plane are transformed from one view to another by a plane induced
homography, as is shown in Section 3.1.1. That also means that if a plane is
photographed from two perspectives by moving the plane, the image of X is
transformed from the j’th to the k’th view by the plane induced homography
xk = Hj→kxj.

Suppose the plane’s circular points in the metric frame c1,2 = (1,±i, 0)T are
projected into a reference camera by a plane homography

c1,2
0 = H0

⎛⎝ 1
±i
0

⎞⎠ , (2.103)

and homographies H0→j have been estimated, which relate every other view to
the reference view, then the circular points are found in those views by

c1,2
j = H0→jc1,2

0 . (2.104)

36



2.6 Camera calibration

The images of the circular points lie on the image of the absolute conic, hence(︂
H0→jc1,2

0
)︂T

ω
(︂

H0→jc1,2
0
)︂
= 0 . (2.105)

This equation can be solved by numerical optimization methods for the image
of the circular points in the reference view and for the entries of ω, given
sufficiently many H0→j [100]. K is recovered from ω, and with its help Rj and
T j are recovered from H0→j [71].

A distortion model with two radial coefficients is incorporated in the planar
self-calibration problem in [52]. The starting point is the optimization of
Equation 2.105. Then, the projective camera model for all cameras is set-up,
and the geometric error is optimized by bundle adjustment (Equation 2.97).

Another plane based self-calibration approach is presented in [67]. There,
the relationship between the images of a plane, which is enforced by the plane
induced homographies, is maintained by first optimizing a distortion model.
Afterward, the in- and extrinsic parameters are estimated, as was explained in
this section. A similar approach is presented in [97].
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3 Stereoscopic 3D Profile
Reconstruction of Low-Textured
Slanted Planes

In order to draw conclusions about the condition of a road surface through its
deformation, its profile shall be extracted from stereoscopic images through a
dense reconstruction. In this chapter, two new methods for performing depth
estimation in this particular case are presented. Although they were developed
with the application of road profile reconstruction in mind, they can be applied
to the general case, where the underlying geometry is a low-textured, slanted
plane. Parts of this chapter have previously been published in [16] and [18].

If intrinsic camera parameters and the relative orientation of the individual
cameras are known, the problem of depth estimation from stereo images can
be broken down into matching pixels in a pair of images (Section 2.5). Most
stereo algorithms follow four basic steps to solve it:

1. Since the search through image pixels on skewed lines is difficult, as
pixels are aligned on a grid, the images of a stereo camera are rectified
so that corresponding pixels are located on the same horizontal epipolar
line (Section 2.5.1).

2. For each pixel of a reference image, a similarity measure for each pixel in
a specified disparity range on the same horizontal line of the target image
is calculated (Section 2.5.2). The similarity measure is often calculated on
a window around the pixel of interest.

3. A smoothing term is introduced, which penalizes jumps in the disparity
image (Section 2.5.4).

4. The similarity is maximized, while the smoothing term is minimized
(Section 2.5.3).

That procedure creates several problems in the target application of road profile
reconstruction, where the stereo camera system is placed behind the windshield
of a vehicle, and the road surface is a low-textured, slanted plane:
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1. For a high depth resolution, a large baseline is used in the stereo camera
system. In this case, to cover the lane width with both cameras, the
cameras must have convergent viewing directions. Rectification stretches
the resulting images and reduces their quality.

2. The disparity is directly linked to the distance between an object and the
cameras. A perfectly flat slanted plane has a broad range of disparity
values. As a result, a broad range of disparity values has to be searched.

3. The pixels that correspond to a rectangular patch in an image are generally
not arranged rectangularly in the other image. It rather depends on the
underlying geometry. The compared patches, therefore, do not show the
same area.

4. By penalizing jumps in disparity space, a fronto-parallel scene is implied.
In the target application, it is known that the underlying geometry is a
plane. Since the cameras are located behind the windshield, the plane is
not fronto-parallel, but slanted to the cameras.

Other authors have addressed some of these problems. In [42] prior knowledge
about surface normals is integrated into the optimization procedure, with
surface normals being extracted directly from intensity images. The extraction
of surface normals from intensity images is described in [28]. In [106] second-
order smoothness priors are used to account for slanted surfaces. Second-order
smoothness can also be encoded by using 3D labels as is described in [79] and
applied in [68]. Although these methods generally allow for slanted surfaces,
they do not favor any particular surface. However, in the task of road surface
reconstruction, it can be assumed that the surface belongs to a single plane. A
drawback of 3D labels is the enlarged label search space. In [59] the task of
surface reconstruction is described. Disparity values are converted to elevations
from a base plane, making it possible to penalize a change in adjacent pixels’
elevations, but the location of the ground plane has to be known in advance.
In [90] plane priors are used in order to pre-estimate disparity values for an
arbitrary scene. Afterward, only a small range around that value is searched,
but the smoothing term penalizes jumps in disparity space. The algorithm
is not optimized for a single plane. A similar approach is described in [32],
where road surface reconstruction is targeted. A seed and grow algorithm is
used, where the disparity is first calculated at the bottom of the image and
then propagated to the lines above. The smoothing term penalizes jumps in
disparity space. Both latter methods use sparse image features to find the
ground plane. In [89] a smoothing term is used that is dependent on a local
plane hypothesis. That makes it possible to favor slanted surfaces. However,
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the method works with discrete disparity values and cannot fully account for
fractional surface slants. In [112], in contrast to the search through the disparity
space, the search is performed through the discretized elevation of a base plane.
As a result, jumps in elevation can be penalized. The location of the base plane
is considered prior knowledge.

Except for [68], none of the methods above account for non-corresponding
rectangular patches. Recently, in [86], a method was proposed that addresses
this problem by first searching for dominant planes in a scene and then trans-
forming one image into the other’s space. A smoothing term similar to the one
introduced in [59] is used. Addressing non-corresponding rectangular patches
is especially important if the underlying scene is a highly slanted plane, or if
motion blur occurs because this requires the comparison of large patches to
make the matching robust.

Road surface reconstruction by stereo vision is a special application and
requires a specialized algorithm. In this chapter, two examples are proposed.
Since it is known that the underlying geometry is a plane, the plane-sweep
approach is a natural choice to limit the search space and to take into account
the similarity in the elevation of adjacent pixels. This is discussed in Section 3.1.
Both developed algorithms make use of it.

The first proposed algorithm is based on traditional methods and searches
for corresponding pixels in a stereo image pair. It is described in Section 3.2
and has previously been published in [18]. The second proposed algorithm
solves the stereo correspondence problem in a sinlge step by using a CNN. It is
described in Section 3.3 and has previously been published in [16]. Results that
were obtained with both proposed methods are shown in Chapter 6.

3.1 Plane-sweep
Plane-sweep was first introduced in [25], where a virtual plane is swept through
object space and checked for compliance with the images of at least two cameras.
First, features are calculated in each image and are then back-projected into
3D space as rays. A segmented virtual plane is placed in space, and the rays
hitting a segment are counted. The number of hits indicate that the plane is
at the position of an object point because the rays should intersect or almost
intersect at this position. The plane is then swept through space. In this way,
the plane-sweep approach is used to match image features and determine the
corresponding object point position simultaneously. The result is a sparse
reconstruction.

In this thesis, virtual planes parallel to the mean road surface are swept
through space and checked for compliance with the stereoscopic images, as
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is shown in Figure 3.1. This is accomplished by warping an image of one
camera onto the plane and into the other camera’s space (Section 3.1.1). There,
both images are compared by a similarity measure (Section 3.2.1). Since the
underlying geometry is a plane, adjacent pixels are expected to have similar
elevations measured from a mean road surface, which means they produce
high similarity values on similar virtual planes. That is taken into account
by a smoothing term in Section 3.2.2. In order to perform the plane-sweep,
the location of the mean road surface is approximated at first in Section 3.1.3
and refined later on in Section 3.2.4. The plane-sweep approach solves the
previously listed difficulties:

1. The images do not need to be rectified.

2. With a sweeping direction orthogonal to the mean road surface, the
volume that has to be searched can be limited to a few centimeters above
and below the mean road surface. The reduction of the search space is a
key aspect of the proposed algorithm because it reduces the ambiguity
when matching pixels between the left and right images.

3. Assuming that compared image patches lie on one of the plane hypothe-
ses, the similarity measure is calculated on correctly transformed patches.
That is because the image from one camera is transformed into the space
of the other camera.

4. A smoothing term that penalizes jumps in elevation is implemented
seamlessly.

In this section it is assumed that the intrinsic camera parameters and the relative
orientation and translation of both individual cameras of the stereo camera
setup are known, and that possible lens distortions have been removed from
the images.

3.1.1 Plane induced homography
If two cameras picture the same plane, a view from one camera is transformed
into the view of the other camera by a plane induced homography. Suppose
the plane is the XY-plane. A point from that plane is transformed into camera
coordinates by (Equation 2.15)

x = P

⎛⎜⎜⎝
X
Y
0
1

⎞⎟⎟⎠ =
[︂
p1 p2 p4

]︂⎛⎝ X
Y
1

⎞⎠ = K
[︁
r1 r2 T

]︁⎛⎝ X
Y
1

⎞⎠ , (3.1)
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X 0

Y 0
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Z

Figure 3.1: The virtual planes (unfilled rectangles) are swept in Z-direction around the
average road surface (gray rectangle) located in the XY-plane of the road
coordinate system.

with T = −RC (Equation 2.13). pi is the i’th column of P, and ri is the i’th
column of R. A point from a plane parallel to the XY-plane, but with distance
Z, is transformed into image coordinates by shifting the camera center

TZ = −R

⎛⎝C −
⎛⎝ 0

0
Z

⎞⎠⎞⎠ = T + r3Z . (3.2)

A point on a plane parallel to the XY-plane with distance Zi from the plane is
projected into the left camera space by

xl = Kl
[︁
r1

l r2
l Zir3

l + Tl
]︁⎛⎝ X

Y
1

⎞⎠ = Hl,i

⎛⎝ X
Y
1

⎞⎠ , (3.3)

where the index l denotes that the variables belong to the left camera. The
transformation is a homography and can be inverted, which means an image
can be projected from a camera view onto the plane.
A point from the left camera image is warped onto the plane with index i and
elevation Zi and into the right camera space by the plane induced homography

Hi = Hr,i · H−1
l,i , (3.4)

where Hr,i is the homography that maps from the plane into the right camera
space.

3.1.2 Coordinate system
Two coordinate systems are defined, which are shown in Figure 3.1 The road
coordinate system XYZ is placed such that the XY-plane coincides with the
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3 Stereoscopic 3D Profile Reconstruction of Low-Textured Slanted Planes

mean road surface. The stereo camera system’s coordinate system is set to the
point in-between camera centers, such that the X0-axis points to the right, the
Y0-axis down, and the Z0-axis in the viewing direction. This helps to create an
elevation map later on. It is accomplished by splitting the extrinsic parameters
Rst and Tst, which relate the stereo camera heads to each other and are a result
of stereo camera calibration, into two parts by the square root of a matrix

(︃
Rst Tst
0 1

)︃ 1
2

=

(︃
Rr Tr
0 1

)︃
, (3.5)

where Rr is the rotation matrix from coordinate origin to the right camera, and
Tr is the corresponding translation vector. The location of the left camera is
found by

Rl = R−1
r and Tl = −Tr . (3.6)

The plane homographies (Equation 3.3) are then found by

Hl,i = Kl
[︁
Rl Tl

]︁ [︃r1
P r2

P zir3
P + TP

0 0 1

]︃
, (3.7)

with the rotation matrix RP =
[︁
r1

P r2
P r3

P
]︁

and translation vector TP, which
relate the plane to the coordinate origin. This is equivalently done for Hr,i.

3.1.3 Mean surface approximation
In order to perform the plane-sweep, the location of a base plane, i. e. RP
and TP, must be known. Therefore, the location of the mean road surface
is approximated at first and refined later on. With the approximate location,
dense reconstruction, as is described in Section 3.2, is performed, and a 3D
point cloud is generated. A new mean road surface can then be found in that
point cloud. These steps are repeated until convergence. There are two ways of
determining the initial approximate location of the plane.

1. A sparse point cloud can be estimated from image features by triangula-
tion. The mean surface is then found in the point cloud, as described in
Section 3.2.4. Since robust features are hard to find on road surfaces, this
method often fails. In a video sequence, it can still be used by waiting for
an image pair with rich features.

2. Since the cameras are fixed in the vehicle, the relation between cameras
and the road surface can be measured.
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3.2 Plane-sweep for dense reconstruction with traditional methods

The approximate location only needs to be found once per stereo camera setup.
It can be reused for subsequent images. However, since the cameras’ position
in relation to the base plane constantly changes due to the suspension of the
vehicle, the refinement step must be repeated for each pair of images.

3.2 Plane-sweep for dense reconstruction with
traditional methods

To perform dense reconstruction, the entire left camera image Il is transformed
to the space of the right camera. It is performed by inverse warping (Sec-
tion 2.4) according to the plane homographies Hi (Equation 3.4) for each plane
hypothesis in question. The mapping function is

ml = ϕHi
(mr) = δ

(︂
H−1

i δ−1 (mr)
)︂

, (3.8)

and it is used to transform pixels from the left image to the space of the right
camera

IlW,i =
{︂

Il

[︂
ϕHi

(mr)
]︂ ⃓⃓

mr ∈ Mr

}︂
. (3.9)

If the virtual plane is at the true location in 3D space for parts of the images,
these parts match in the warped left and unchanged right image. The right
camera image therefore is the reference image. For each pixel m, a virtual plane
must be identified, for which this is the case. The identified plane index i for
a specific pixel m is the label om, and the set of all om is the label image O.
With the true O, a new image I∗lW can be assembled from IlW,i, which perfectly
resembles Ir.

Due to the ambiguity problem (Section 2.5.3), to obtain a robust estimate for
O, the optimization problem from Equation 2.67 must be solved. The required
data and smoothing terms are defined in Sections 3.2.1 and 3.2.2.

The homographies can be calculated for virtual planes of any elevation. It
enables the search for correspondences in non-integer pixel coordinates, since
the transformed images are obtained by interpolation. That is in contrast to a
search through disparity space, where subpixel accuracy is reached through
interpolation between disparity values.

3.2.1 Data term
The (dis-)similarity of pixel values is compared by the methods discussed in
Section 2.5.2. Their application, in combination with the plane-sweep approach,
is discussed in this Section. To emphasize that the data term is a function of
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3 Stereoscopic 3D Profile Reconstruction of Low-Textured Slanted Planes

the plane index i at pixel m

ĒD(im) := ED(im, ym) , (3.10)

where the explicit representation of the data y is omitted.

BilSub Bilateral filtering and subtraction are performed before warping of
the left image in order to prevent repetitive calculations. The background-
subtracted left image IBS

l is warped and a patch around a pixel of IBS
lW,i is

compared to the corresponding patch around the pixel of IBS
r by

ĒD(im) = ∑
nϵNm

⃓⃓⃓
IBS

lW,i [n]− IBS
r [n]

⃓⃓⃓
. (3.11)

Census Warping of the left image is performed first. Then, the Census trans-
form is applied on a patch around each pixel of each IlW,i ↦→ ICS

lW,i and on a
patch around each pixel of Ir ↦→ ICS

r .
It is applied after warping to account for the perspective transformation of

the patches. The hamming distance is used to measure the similarity between
the bit strings that belong to each pixel of every ICS

lW,i and those that belong to
each corresponding pixel of ICS

r

CS(m, i) = dHD

(︂
ICS

lW,i [m] , ICS
r [m]

)︂
, (3.12)

where dHD (·, ·) is the hamming distance. To make the similarity measure more
robust against noise, a rectangular patch is then summed around each pixel

ĒD(im) = ∑
nϵNm

CS(n, i) . (3.13)

HMI With the correctly assigned plane from Equation 3.8, for each pixel a
mapping ϕ : mr → ml is found, which maps the pixels from the right image to
the space of the left image. The correctly transformed left image in the right
image space is

IlW =
{︁

Il [ϕ(mr)]
⃓⃓

mr ∈ Mr
}︁

. (3.14)

With this, the pixel-wise MI in Equation 2.60 is written as

mi¯ (m, i) := miϕ(m) =hlookup
Ir

(Ir [m]) + hlookup
IlW

(IlW,i [m])

−hlookup
Ir ,IlW

(Ir [m] , IlW,i [m]) . (3.15)
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3.2 Plane-sweep for dense reconstruction with traditional methods

Just as was done for BilSub and Census, for robustness, it is summed on a
patch around each pixel. Since the MI value increases as the compared images
become more similar, its negative value is used as the energy

ĒD(im) = − ∑
nϵNm

mi¯ (n, i) . (3.16)

Problematic is that hlookup
Ir

, hlookup
IlW

and hlookup
Ir ,IlW

have to be known to calculate

mi¯ (m, i), but hlookup
IlW

and hlookup
Ir ,IlW

are calculated from IlW , which is based on the
correct mapping. The mapping, in turn, is the result of the optimization. The
solution is to start with a mapping that corresponds to the base plane, i. e. it is
initialized with Zi = 0 for each pixel. Then, the optimization and assembly of
IlW are alternated until convergence.

For computational efficiency, HMI uses an image pyramid of downscaled
input images [53]. It starts with the lowest resolution. A mapping is calculated
and upscaled for use with the next level of the pyramid. In this work, the
refinement of the mean road surface location (Section 3.2.4) is integrated into
the process. Therefore, the mapping is warped according to the new location
and upscaled afterward.

3.2.2 Smoothing term
The goal is to estimate an elevation for each pixel in the stereoscopic image. The
elevation is represented by the index i that determines the elevation Zi of the
corresponding plane. Overall, the road surfaces are expected to be piecewise
continuous. For this reason, the discontinuity preserving smoothing term

ENB(imj , imk ) = Ks

⃓⃓⃓
imj − imk

⃓⃓⃓
(3.17)

is used, which was discussed in Section 2.5.4. The factor Ks is chosen depending
on the size of ĒD(im) and ENB(imj , imk ), in order to bring both energies to the
same order of magnitude. K is not changed across images depending on pixel
data, as is commonly done (e. g. in [68]) because, in the target application, a
change in color or intensity is not necessarily related to a change in elevation.
That can be seen in Figure 6.7, where some leaves are squeezed onto the surface
and are completely flat. Another example of this is shadows, which also do not
involve a change in elevation.
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3.2.3 Label image, elevation image, point cloud, and elevation
map

The SGM algorithm is used to approximate

om = arg min
im

∑
j

ĒD(imj) + ∑
i,j∈NNB

ENB(imj , imk ) . (3.18)

The result is an assigned plane for each pixel of the right camera image,
and every plane corresponds to an elevation. The result therefore is a label
image from the right camera’s perspective. By exchanging the labels for the
corresponding elevation, it is transformed into an elevation image.

To find the 3D point coordinates that belong to each pixel, image coordinates
are transformed to plane coordinates mP by the appropriate inverse plane
homography

mP = δ
(︂

H−1
r,i δ−1 (mr)

)︂
, (3.19)

and the 3D world coordinates are found by adding the elevation of the corre-
sponding plane

M =

(︃
mP
Zi

)︃
. (3.20)

The point cloud can easily be converted to an elevation map. For this a 2D array
is created, which is filled with the elevation values Zi at the coordinates mP.
Since mP in general are non-integer values, the array is filled with interpolated
values Zi at integer coordinates.

3.2.4 Mean surface refinement
The location of the cameras in relation to the mean road surface must be known
to perform the plane-sweep. First, an estimate is used, and the dense elevation
image reconstruction is performed. The plane-sweep thereby must cross at
least parts of the real road surface to be successful. The parts of the road that
do not lie within the volume that is searched during the plane-sweep cannot
be reconstructed and appear as noisy regions in the elevation image. They are
filtered with a local variance filter with a threshold. The 3D coordinates of
the valid pixels are found, and a plane is fitted to the resulting point cloud, as
described in the following.

Let M be the data matrix, where each row represents the 3D coordinates of a
point Mi, and M̄ be the data matrix of the same point cloud, where the sample
mean M̄ has been subtracted. The principal component analysis (PCA) finds a

48



3.2 Plane-sweep for dense reconstruction with traditional methods

Plane-
sweep

Down-
scale by s

I'l EDMI
&

mean filter
SGMI'r

I'lW,i
Il

Ir
O'

Elevation
image

Extract
point grid

MRANSAC
w/ PCA

Zichoose
acc. to szmax

Calc.
homo-

graphies
Hi

Warp & upscale

zmin

O ini

RP,TPRini,Tini

O
convert

Figure 3.2: Overview of the plane-sweep algorithm. Multiple iterations are used to find
the location of the base plane.

matrix W that rotates M̄
M̄PCA = M̄W , (3.21)

such that the principal axes are aligned with the coordinate system, i. e. the
greatest variance of M̄PCA is aligned with the X-axis, the second largest variance
is aligned with the Y-axis and the smallest variance with the Z-axis [7]. In
the case of a point cloud that has the shape of a plane, that means the XY-
plane coincides with a mean plane that is fitted to the rotated point cloud. In
Equation 3.7 the inverse of W rotates plane coordinates into camera coordinates.
Since W is a rotation matrix, the inverse is replaced by the transposed

RP = WT . (3.22)

The center of the stereo rig is found by the negative sample mean vector. The
translation vector TP is found by (Equation 2.12)

TP = RP M̄ . (3.23)

The approximation is made more robust by using the random sample con-
sensus (RANSAC) algorithm [38]. It uses the following steps to fit an arbitrary
model to data points:

1. As many points are randomly selected as are needed to fit the model.

2. The model is fitted.

3. All points are checked to be within a defined limit of the model.

4. Steps 1 - 3 are repeated. The model with the highest number of inliers is
chosen.
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3 Stereoscopic 3D Profile Reconstruction of Low-Textured Slanted Planes

(5. Optionally, the model can be reestimated with the inliers of the best
model.)

In the given case, three points are required in step 1, and the model is fitted
by PCA. The check for compliance of points with the model is performed by
checking the absolute value of the last coordinate of the transformed point
cloud M̄PCA, which is the distance from the mean plane. PCA is repeated with
all points that are within the defined limit.

Since the plane found by PCA can be arbitrarily rotated around the Z-axis,
the rotation matrix is disassembled into Tait-Bryan angles, which describe three
sequential rotations around the X-axis, Y-axis, and Z-axes. Rotation matrices
perform the sequential rotations

RP = RP,zRP,yRP,x . (3.24)

The rotation around the Z-axis is ignored, and the rotation matrix is reassembled

RP = RP,yRP,x . (3.25)

That ensures that the point cloud M, which consists of the road, is oriented in
the correct direction. It is also possible that the normal of the plane found by
PCA points downwards. In this case, an additional rotation by 180◦ around the
x-axis is applied to the rotation matrix. Otherwise, the plane-sweep in a next
iteration would take the wrong direction.

3.2.5 Algorithm overview
Figure 3.2 gives an overview of the entire plane-sweep algorithm with hierar-
chical mutual information as the similarity measure and shows the refinement
of the plane position. The input images are downscaled by the factor s in both
dimensions (“downscale by s”), and the positions of the plane hypotheses are
chosen according to the reduced resolution (“Choose acc. to s”). The location
of the mean road surface in relation to the stereo camera system is given by RP
and TP. The virtual planes are placed below and above of it, and plane homo-
graphies are calculated (“calc. homographies”). The plane-sweep is performed
with the left camera image (“plane-sweep”) using the plane homographies. In
order to calculate the MI similarity, the final label image is required, i. e. the
plane index for each pixel. It is a result of the following SGM optimization
(“SGM”) and is found iteratively by alternating the SGM optimization and the
MI calculation. At the same time, a point grid is extracted from the label image
(“extract point grid”) and the position of the road is refined by RANSAC with
PCA (“RANSAC w/ PCA”). Since the scaling of the images is adjusted and
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the estimated location of the mean road surface changes, the label image used
to calculate the MI must be adjusted accordingly. This is done by warping
and upscaling the label image by a homography (“warp & upscale”). The MI
calculation is followed by summing over rectangular windows (“MI & mean
filter”). By converting the indices to heights (“convert”), the label image is
converted to an elevation image.

3.2.6 Distinction to other methods
The plane-sweep approach is used in several other publications for dense
reconstruction [41, 107, 112]. In [107] multiple images are warped onto virtual
planes, which are swept in depth direction away from a camera rig that holds
multiple cameras. However, the focus lies on a real-time implementation for
a multi-camera setup, and a term for smooth surfaces is not implemented.
The search volume has to be known a-priori. Similarly, in [19], the plane-
sweep approach is used for multi-image matching, with the sweeping direction
being in the reference camera’s viewing direction. In contrast to the method
mentioned before, a smoothing term is implemented, and a global optimization
algorithm is used. The search volume must again be known a-priori.

In [41] the dense plane-sweep approach is extended by the creation of plane
hypotheses from triangulated feature points. In contrast to [107], the warped
images are not compared on virtual planes, but in the camera space. Plane-
sweeps are conducted orthogonally to the plane hypotheses, and by a winner
takes it all principle, a best-fitting plane for each sweeping direction is chosen
for each pixel. A term for smooth surfaces is not implemented in this step.
Afterward, the best fitting sweeping direction is found by penalizing changes of
surface normals of neighboring pixels. Due to the multiple sweeping directions,
it is especially useful for scenes that contain multiple base planes. In case of
only one base plane, as in this work, the approach is not expedient because the
choice of a best sweeping direction is unnecessary and because of the lack of a
smoothing term.

In [58] the plane-sweep approach is used for multi-image matching of aerial
images in the second step of a structure from motion (SfM) pipeline. The
algorithm depends on scale invariant feature transform (SIFT) feature points,
which are used to compute camera poses and a sparse point cloud. The
viewing direction of the reference camera is chosen for plane-sweeping. As a
smoothing term, total variation is used, which enables the use of the variational
optimization technique from Section 2.5.6. The volume to be searched is given
by elevation data, which is specified in advance.

The work in [112] was performed concurrently with this thesis and indeed is
similar. Still, there are some significant differences. A plane-sweep approach,
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in combination with the SGM optimization, is performed. Also, the change
in elevation of neighboring pixels is penalized, and the Census transform is
used for matching pixels. The difference is that in [112], the location of the
base plane is known a-priori. Therefore, the search and refinement of the base
plane are not performed. Furthermore, the plane-sweep approach is used to
find the location of possibly matching pixels across multiple images. The plane
homography is not used to transform entire images, but only for matching
single pixels. The matching cost, however, is calculated across rectangular
windows across every single image. Thus, the perspective, which changes the
shape of a rectangular patch that is transformed into another camera space, is
not considered.

The target in [32] is road profile reconstruction from stereoscopic images,
but the approach is different. Rectified images are considered, one of which
is transformed by a plane homography to the other image by a slanted plane,
located at the mean road surface. Therefore, the perspective transformation
of rectangular matching windows is partially taken into account. Afterward,
only a small range of disparity values has to be searched. Subpixel accuracy is
achieved by interpolating the best matching disparities from adjacent pixels. A
smoothing term penalizes jumps in disparity space, where the disparity space
has been corrected for the slanted plane. Optimization is performed by a seed
and grow algorithm. The base plane is found by the triangulation of feature
points. The most significant difference to the proposed method is the search
through disparity space in contrast to a search through elevations from the
base plane. The search through disparity space makes it necessary to perform
interpolation to achieve subpixel accuracy.

The proposed method uses the plane-sweep approach and is capable of
transforming images by plane homographies at arbitrary positions. Therefore,
subpixel accuracy is achieved without further processing steps. Interpolation of
disparity values between adjacent pixels is not necessary. In fact, interpolation
of pixel intensities is performed during the transformation of images, and
interpolated images are compared to the reference image. In combination
with the inherent consideration of the perspective while matching patches, this
property is the main advantage of using plane-sweep in the proposed way.
Furthermore, in [32], a stereo camera with a baseline of only 120 mm is used,
and the matching cost is the normalized cross-correlation (NCC). The small
baseline prevents radiometric differences between images. Although not shown
in this thesis, own experiments with NCC confirm the findings from [55] that
better-suited similarity measures than NCC exist.
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3.3 Plane-sweep for dense reconstruction by
one-step CNN

In Section 2.5.2 measures for comparing similarities between single pixels and
pixel patches were discussed. A very efficient one is a convolutional neural
network that is reported to outperform traditional methods, like the sum of
absolute differences, Census transform, and normalized cross-correlation [109].
That raised the idea of integrating the cost aggregation and the optimization
step into a single neural network. Different architectures thereof exist. In [30] a
network for estimating optical flow is proposed, where a region around a pixel
in consecutive frames of a video sequence needs to be traced. If the left and
right rectified images of a stereo camera are used as input, the optical flow is
the disparity. Thus, the idea was modified for use with stereoscopic images. In
[73] a correlation layer is used to account for the epipolar geometry. In [63] the
idea of a cost volume is introduced. First, the network extracts feature maps
from the left and the right image. Then, the feature map from one image is
copied multiple times. The copies are shifted according to different disparity
levels and are stacked on top of the other image’s feature map. This approach
embeds the epipolar geometry. In [91] a similar network with a semi-supervised
training procedure is implemented. It runs almost in real-time.

Besides Flownet from [30], all the methods mentioned above search through
disparity space. In this chapter, the plane-sweep approach is integrated into a
neural network. Instead of warping the raw images, feature maps are created
first and then transformed by plane homographies. That combines the useful
properties of plane-sweep, like the constraint search volume and the correct
perspective transformation, with the good performance of a neural network.

3.3.1 Neural network for 3D surface profile reconstruction
The plane-sweep approach can be implemented in all networks based on the
idea of a cost volume. Here, the work from [23] is extended by plane-sweep, as
it can exploit global context information. By creating image features with the
help of spatial pyramid pooling, region-level features are introduced [23]. As
roads have little texture, it is believed that region-level features will improve
the overall performance, especially if cracks or other contexts are visible.
Figure 3.3 gives an overview of the network architecture. It consists of five basic
blocks:

1. A Siamese network extracts feature maps from the left and right input
images.
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Figure 3.3: Overview of the CNN for 3D surface profile reconstruction. A Siamese
network calculates feature maps for both input images. Plane homographies
transform the one belonging to the left image, and a 4D cost volume is
generated. Matching is performed by the 3D network that outputs the
elevation image.

2. The feature maps of the left image are transformed according to plane
hypotheses.

3. Transformed feature maps of the left image are stacked on top of the right
image’s feature map, which results in a 4D cost volume.

4. A 3D network transforms the 4D cost volume into a 3D cost volume.

5. An interpolation and regression block finds the correct plane index from
the plane hypotheses. The output of the network is a label image.The
label image needs to be converted to the final elevation image.

The network thus implements a procedure similar to that described in Sec-
tion 3.2. The relationship is explained in the following. To find the correct plane
from the set of plane hypotheses, in Section 3.2, image patches are compared by
one of the hand-crafted similarity measures. These correspond to the features
calculated by the neural network, but in contrast to the previous method, the
neural network can learn multiple features and use them concurrently. In
Section 3.2, images are transformed. The network transforms feature maps
instead. Due to the multiple features, the previously 3D cost volume is turned
into a 4D cost volume. The 3D network is built as a classifier that uses the
features and gives a class probability for each pixel. The classes are the plane
indices. The interpolation and regression block finds the most probable plane
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Figure 3.4: Detailed view of the feature extraction network. Refer to Table 3.1 for the
convolutional layers. The current size of the intermediate feature maps is
specified as a fraction of the input resolution.

index for every input pixel coordinate, which corresponds to the calculation
and optimization of an energy function that considers a smoothing term. The
single blocks are explained in more detail in the next sections.

Feature extraction

The feature extraction network [23] is based on a spatial pyramid pooling
module [49]. It is supposed to create features that describe the fine structure
and features that describe the coarse structure. In Figure 3.4 the network
structure is shown. Convolutional layers are shown as boxes. Their sizes
denote the spatial dimension of the filter outputs. The implemented operations
of the convolutional layers are given in Table 3.1. The second column lists the
properties of the convolutional filters, i. e. the filter kernel size, the number
of output features, the stride if it is present, and the dilation (dila). The
third column shows all the operations that are performed in the layer: “conv”
is the convolutional layer, “bn” is the batch-norm operation, “ReLU” is the
rectified linear unit. Two rows that are enclosed by square brackets are executed
consecutively. This is repeated []× y times, while the stride is applied only the
first time. + in denotes the addition of the input of the layer to its output, i. e.
it denotes a residual block.

After operation C2, the feature map resolution is reduced to W/4 × H/4 by
convolutional layers. After operation C4, it is further scaled down to different
resolutions by average pooling. At the different scalings, convolutional layers
are applied. The outputs, therefore, contain both the fine and the coarse
structure. Afterward, all feature maps are upscaled to the same resolution
by bilinear interpolation to make a concatenation possible. In the last step,
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Table 3.1: Operations that are used in the feature extraction network.

Name Convolution Operation
C0 [3 × 3, 32, stride = 2]× 3 [conv, bn, ReLU]× 3

C1
[︃

3 × 3, 32
3 × 3, 32

]︃
× 3

[︃[︃
conv, bn, ReLU

conv, bn

]︃
+ in

]︃
× 3

C2
[︃

3 × 3, 64, stride = 2
3 × 3, 64

]︃
× 16

[︃[︃
conv, bn, ReLU

conv, bn

]︃
+ in

]︃
× 16

C3
[︃

3 × 3, 128
3 × 3, 128

]︃
× 3

[︃[︃
conv, bn, ReLU

conv, bn

]︃
+ in

]︃
× 3

C4
[︃

3 × 3, 128, dila = 2
3 × 3, 128, dila = 2

]︃
× 3

[︃[︃
conv, bn, ReLU

conv, bn

]︃
+ in

]︃
× 3

C5-C8 [1 × 1, 32] [conv, bn, ReLU]

C9
[︃

3 × 3, 128
1 × 1, 32

]︃ [︃
conv, bn, ReLU

conv

]︃

the final features are created by operation C9. The output has the resolution
W/4 × H/4.

Plane-sweep and cost volume assembly

The plane-sweep approach is implemented in the neural network by transform-
ing the feature maps of the left input image according to the plane hypotheses,
as was done with the input images in Section 3.2. In order to identify the correct
plane for each input pixel, the transformed left and unchanged right feature
maps are compared. For this purpose, a cost volume is assembled. The feature
map network extracts feature maps of dimension W/4× H/4× Z per input im-
age, with the number of features Z. For each plane hypothesis, the feature map
of the left input image is transformed and stacked on top of the feature map
of the right input image, building 3D volumes (see Figure 3.3). Then, the 3D
volumes are concatenated to a 4D volume of dimension W/4 × H/4 × P × 2Z,
with the number of plane hypotheses P. Since the feature maps have a reduced
resolution, the camera matrices used to calculate the homographies, have to be
scaled accordingly

K =

⎛⎝ fx/4 s/4 u0/4
fy/4 v0/4

1

⎞⎠ . (3.26)

The transformation of the feature map is realized by inverse warping (Sec-
tion 2.4). Therefore, a lookup table is calculated that stores a source location
for each target pixel. The source location is rounded to the nearest integer
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C10 C121/4 C13 C14 C151/8

1/16

1/8 1/4 C16

4D output

3D output

C11

Re
LU

Re
LU

Re
LU

Re
LU

Re
LU

Re
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Figure 3.5: Detailed view of the 3D network. Refer to Table 3.2 for the convolutional
layers. The current size of the intermediate feature maps is specified as a
fraction of the input resolution. All but the last shown arrays are 4D volumes.

coordinate. Instead of rounding, bilinear interpolation could be integrated
into neural networks, as in spatial transformer networks [60]. Unfortunately,
experiments showed that training of the neural network fails if interpolation is
used. The neural network has a large receptive field, which, in combination
with interpolation, presumably breaks the relation between an image pixel and
its corresponding value in the feature map. However, bilinear interpolation can
be used for the evaluation of the network.

3D network

After feature extraction has been performed, and the cost volume has been
assembled (dimension W/4 × H/4 × P × 2Z), the best fitting plane for each
input pixel needs to be found. Therefore, the feature dimension is reduced,
so that the overall dimension is W/4 × H/4 × P × 1. The plane dimension
thereby maintains the compatibility of the plane hypotheses with the data.
It is implemented in a 3D network [23], and it is shown in Figure 3.5. The
convolutional layers, which are denoted by boxes, are described in Table 3.2.
“deconv” is short for deconvolution. The size of the boxes denote the spatial
resolution of the layer’s output. Dark boxes output 4D volumes and light
boxes output 3D volumes. “ReLU” blocks denote additional rectified liniear
units. The network uses a stacked hourglass architecture [78] in order to encode
context information. Each of the three hourglasses consist of encoder-decoder
structures and generate a W/4 × H/4 × P × 1 sized output O.
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Table 3.2: Operations that are used in the 3D network.

Name Convolution Operation
C10 [3 × 3 × 3, 32]× 2 [conv, bn, ReLU]× 2

C11
[︃

3 × 3 × 3, 32
3 × 3 × 3, 32

]︃ [︃
conv, bn, ReLU

conv, bn

]︃
C12

[︃
3 × 3 × 3, 64, stride = 2

3 × 3 × 3, 64

]︃ [︃
conv, bn, ReLU

conv, bn

]︃
C13

[︃
3 × 3 × 3, 64, stride = 2

3 × 3 × 3, 64

]︃ [︃
conv, bn, ReLU
conv, bn, ReLU

]︃
C14 [3 × 3 × 3, 64, stride = 2] [deconv, bn]
C15 [3 × 3 × 3, 32, stride = 2] [deconv, bn]

C16
[︃

3 × 3 × 3, 32
3 × 3 × 3, 1

]︃ [︃
conv, bn, ReLU

conv

]︃

Interpolation and regression

All three outputs of the 3D network are upsampled by trilinear interpolation to
dimension W × H × P. Regression is performed by

ou,v =
P

∑
i=1

i · σSM,i (−O [u, v]) (3.27)

on all of them. σSM,i (−O [u, v]) is the softmax operation, applied on a negative
vector of the output volume at position (u, v) and evaluated at plane index
i. This way the mean plane index, weighted by its probability, is chosen as
the best matching plane. The estimated plane index, i. e. the label, can have
non-integer values. Finally, the label image is converted to an elevation image.

3.3.2 Training
In [23] the neural network described above is used to estimate disparity maps
from rectified stereoscopic images. Instead of assembling the cost volume
according to the plane-sweep approach, feature maps of one image are shifted
and stacked on top of the other image’s feature map. That way, the horizontal
epipolar geometry is implemented. The smooth L1 loss function is utilized
to compare each of the three outputs to the target. The three loss values are
weighted by 0.5, 0.7, and 1, 0 and are summed.

In order to train the proposed network (referred to as CNN in the following),
pre-trained parameters from the disparity network are used. Then, cost volume
assembly is switched to the plane-sweep approach. Training is performed on
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3.3 Plane-sweep for dense reconstruction by one-step CNN

an NVidia GTX 1080 Ti GPU with 11 GB of memory. Since there is not enough
memory to train the network when using full resolution images (1920 × 1200
pixels), patches of 256 × 256 pixels are randomly selected from the right image.
The corresponding patch in the left image is found by transforming the patch’s
corners with the plane homographies of the lower and upper plane hypotheses.
The patch from the left image is cut out and is padded to a uniform size of
576 × 300 pixels. This is done because the patch’s size depends on its position
on the plane and on the orientation of the plane. The uniform patch size
enables the use of training batches. The principal point in the camera matrix
has to be adjusted according to the patch location. By using two graphics cards
in parallel, a batch size of 8 can be used. In evaluation mode, if no gradients are
required and if intermediate results are deleted, the network fits into a single
GPU’s memory while using full resolution images.

3.3.3 Evaluation
During the network training, all three outputs are compared to the target in
a supervised way. During the evaluation, only the final output is considered.
The yet unknown precise location of the mean road surface is found in the
same way as in Section 3.2.4, i. e. an initial location is guessed, the CNN is
evaluated, and the mean surface location is refined. These steps are repeated
until convergence.
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4 Deep Learning Self-Calibration
from Planes

In Section 2.6 three different categories of camera calibration techniques were
described: calibration with 3D targets and control points, calibration with
planar targets and control points, and self-calibration without control points.
In [56] it is stated that the precision of the extracted parameters of methods
from these categories decreases in the given order. However, the manufacture
and high precision measurement of a 3D calibration target are often unfeasible.
A 2D target is easier to create and is the standard calibration method using
the popular OpenCV and MATLAB libraries. Nevertheless, it is a tedious task,
because standard methods require many images from different perspectives of
the target. Obviously, it would be more practical not to have to use a custom
made pattern.

Self-calibration is the extraction of calibration parameters from unstructured
scenes. It is widely used in SfM methods, where a metric reconstruction is
performed from an unordered collection of images from uncalibrated cameras.
In [83] this is used on a series of images of a single camera. The result is not
only the 3D reconstruction but also the in- and extrinsic camera parameters, as
well as parameters of a simple distortion model. Self-calibration can be used
for a single camera with fixed intrinsic parameters, but also for a collection of
different cameras that picture the same scene. A critical part in self-calibration
is the automatic matching of corresponding feature points between images. It
is addressed in [40], where an iterative search algorithm for feature matches
is shown. It incorporates only a single radial distortion parameter, although
the method itself is not limited to one parameter. A more recent work in [22]
follows a similar approach and incorporates more distortion parameters.

The focus of self-calibration techniques from 3D scenes is on 3D reconstruc-
tion and not on the precise estimation of calibration parameters [22, 39, 83,
92]. Planar scenes, on the other hand, have been used for the purpose of
estimating parameters, and, in [52], promising results are shown, but none of
the previously published methods are capable of reconstructing all parameters
of the widely used camera model that is described in Section 2.3.

In this chapter, a novel self-calibration method is introduced, capable of
reconstructing all parameters of the complex camera model from Section 2.3. It
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is fundamentally different from previous methods, because it is not based on
feature points matched across multiple images, but on feature maps of entire
images. In Section 4.1 the shortcomings of the previous self-calibration methods
are discussed. The idea of the proposed method is laid out for mono cameras
in Section 4.2. It requires some initializations, which are found in Section 4.3.
In Section 4.4 the proposed method is extended for use with stereo camera
systems. The method has previously been published in [15].

4.1 Shortcomings of previous self-calibration
techniques

In Section 2.6 current self-calibration techniques were shown. All of them are
based on the simultaneous localization of feature points and the extraction of
camera parameters. Therefore they require point matches between multiple
views of the scene. This approach causes the following problems:

1. Feature point matches between different images must be exact and actu-
ally belong to the same object point. Wrong matches impair the calibration
result.

2. With severe lens distortion, matching feature points is difficult because
the epipolar geometry constraint cannot help guide the search for matches
or discard wrong matches.

3. Common distortion models are based on polynomials. Since polynomials
extrapolate poorly, feature points must be found uniformly across the
entire image space. Not covering the entire image space has been shown
to greatly decrease the performance of self-calibration methods [39]. That
is also true if most feature points lie in the center and less are covering
the edges because the number of points has a weighting effect on the
geometric error. While images are being captured, it is difficult to predict
where feature detection algorithms will find feature points.

4. Only image coordinates containing a feature point are used for calibration.
Information that exists at other coordinates is discarded.

Due to these difficulties, works on self-calibration from 3D scenes focus on
3D reconstruction and not on the precise estimation of calibration parameters
[22, 39, 83, 92]. They use only simple distortion models and do not compare
the extracted calibration parameters to other calibration techniques [22, 40, 83].
The problem of finding point correspondences is particularly evident in [40],
where correspondences are inserted manually. The difficulty of finding point
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correspondences also exists in the methods that perform camera calibration
from planar scenes. This can be seen in the results of [52] and [67], where again
point correspondences are found manually.

4.2 Method
The new self-calibration method overcomes the issues that arise in the cal-
ibration from (possibly wrong) feature point matches. It is also based on
self-calibration from planar scenes but takes a fundamentally different path.
Instead of relying on feature point matches, feature maps of entire images
are extracted. Instead of optimizing the distance between reprojected features
points, the overall similarity between transformed views is optimized.

Under the assumption of undistorted images and the projective camera
model, every two images of a plane are related by a plane homography, and
with its help, an image can be transformed to match the other image. The
homography depends on the relative orientation between the cameras, the
plane’s location in space, and the calibration matrices of the cameras, hence on
the in- and extrinsic camera parameters. The idea to find the unknown in- and
extrinsic as well as distortion parameters is first to undistort images and then
to transform them by plane homographies to match an undistorted reference
view. Using a roughly estimated set of parameters, this will not be the case
initially, but by altering the parameters until the views match precisely, the
parameters are determined. The optimization is based on a training approach
for neural networks.

In order to infer the unknown parameters, their search must be guided
in the right direction. That requires a measure for image similarity that is
differentiable to the unknown parameters. Therefore, feature maps are extracted
by the feature map network from Section 3.3.1, which was shown in Figure 3.3.
The images are undistorted and transformed by inverse warping. Then, feature
maps are extracted. Finally, their similarity is compared with the cosine
similarity measure. All these steps are implemented in a neural network
and are differentiable to the unknown parameters. Hence, they can be found
by backpropagation and gradient descent in a neural network training loop.
The use of feature maps instead of feature points solves all issues that were
mentioned in the previous section:

1. & 2. The issue of mismatched feature points does not arise.

3. Since the feature maps are extracted from the entire images, the
polynomials are also fitted over the entire images.

4. No information from parts of the images is discarded.
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The new method will be referred to as deep learning self-calibration (DLSC) in
the following.

4.2.1 Number of unknowns
Before continuing with the method, the question should be answered how
many parameters can theoretically be found and how many images are re-
quired. Every additional perspective to the reference perspective provides a
homography that possesses eight independent variables. With respect to the
reference camera, three translation and three rotation parameters are required
to describe another camera’s location. The plane is located in front of the
reference camera, and the distance and two rotations are necessary to describe
its location. By fixing the distance at one, the overall scale of the scene is fixed.
That means

8(m − 1)− 6(m − 1)− 2 = k (4.1)

unknown parameters k can be found from m views.
The warped views only match the reference view under the assumption

of the pinhole camera model. The distortion model indirectly estimates the
principal point because it matches the center of distortion. The distortion model
itself can be learned from only two images, as is shown in [97], since every
pixel functions as one condition on a system of equations. Since zero skew is
assumed, this leaves two parameters in the camera matrix: fx and fy. Hence, as
long as there is lens distortion, three views of a plane are sufficient to estimate
the full camera model. This will be demonstrated in Section 7.5. If the principal
point cannot be estimated from the distortion model, four views of the plane
are required, and if the skew is not assumed zero, five views are required.

4.2.2 Transformation functions
The space where the images or their feature maps are compared is the undis-
torted reference camera view. That is in contrast to the methods described
in Section 2.6.4, where the distance between reprojected points is measured
in the distorted reference camera space. The reason for this is that to apply
the undistortion function to an image, inverse warping is used. For inverse
warping, the inverse of the transformation function is needed, which is the
distortion function. However, the distortion function cannot be analytically
inverted.

The coordinate system is set such that the XY-plane coincides with the
calibration plane, just as was done in Section 3.1.1. With the abbreviations from
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Section 2.3, a point from the plane is projected into the i’th camera by

m̃i = κ

⎛⎝Θ

⎛⎝δ

⎛⎝[︁r1
i r2

i Ti
]︁⎛⎝ X

Y
1

⎞⎠⎞⎠⎞⎠⎞⎠ . (4.2)

To transform a point from the i’th view into the undistorted reference view, it
is first projected onto the plane by inversing Equation 4.2

x =
[︁
r1

i r2
i Ti

]︁−1
δ−1

(︂
Θ−1

(︂
κ−1

(︂
m̃i
)︂)︂)︂

, (4.3)

and then transformed into the undistorted reference view by applying Equa-
tion 4.2, where Θ() is the identity function

mre f = κ
(︂

δ
(︂[︂

r1
re f r2

re f Tre f

]︂
x
)︂)︂

. (4.4)

Equations 4.3 and 4.4 are combined and inversed since for applying inverse
warping on images, the inverse transformation function from distorted coor-
dinates in the i’th image to undistorted coordinates in the reference image is
needed

m̃i = κ

(︃
Θ
(︃

δ

(︃[︁
r1

i r2
i Ti

]︁ [︂
r1

re f r2
re f Tre f

]︂−1
δ−1

(︂
κ−1

(︂
mre f

)︂)︂)︃)︃)︃
.

(4.5)
The reference image only needs to be undistorted. This simplifies Equation 4.5
to

m̃re f = κ
(︂

Θ
(︂

κ−1
(︂

mre f
)︂)︂)︂

. (4.6)

Inverse warping is performed on the reference image with Equation 4.6, and
on all other images with Equation 4.5.

4.2.3 Comparing the images
In the DLSC approach, the sought parameters are estimated by varying them
until the transformed images from all views match each other. In order to
guide the search for the correct parameters, a measure is required that describes
the similarity of those transformed images. The easiest method to compare
images is a sum of pixel-wise differences, but this would not provide any
information on how to change parameters to improve the similarity. Therefore,
the feature map network from Section 3.3.1 in Figure 3.3 is used. It calculates
features at a region level, and it is assumed that the similarity of features in
an image will slowly decrease with distance, thus guiding the search for good
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parameters. The feature map network outputs feature maps Z of dimension
W/4 × H/4 × Z, i. e. a feature vector for every location.

For the comparison of feature vectors, the cosine similarity is a suitable mea-
sure [72]. In order to calculate a single value describing the overall similarity,
the mean cosine similarity measure is used

sc =
1
N

N

∑
i=1

∑
u,v

Zi[u, v] · Zre f [u, v]
|Zi[u, v]||Zre f [u, v]|

, (4.7)

where Zi[u, v] is the feature vector at the coordinates (u, v) of the feature map
that belongs to the i’th image in the undistorted reference view, and N is the
number of additional views to the reference view. Zre f is the feature map of
the undistorted reference image.

4.2.4 Optimization
The images are undistorted and transformed to the reference view by inverse
warping. In order to find values at non-integer pixel locations, bilinear interpo-
lation is used.1 Then, feature maps are extracted from the images. Finally, the
mean cosine similarity cost function is applied to the feature maps. It is greatest
if all images have been perfectly transformed to the undistorted reference view,
i. e. if all parameters have been estimated correctly. By optimizing the similarity,
the parameters are found.

All calculations are implemented in a neural network framework and are
differentiable to the parameters. Using a rough estimate of the parameters, they
can thus be learned in a training loop through backpropagation and gradient
descent, while the weights of the feature extraction network remain unchanged.

Encoding of orientation parameters

The goal of the optimization is to find the intrinsic camera and the distortion
parameters. The extrinsic parameters are not of special interest, but also need
to be estimated for the method to work. In the transformation functions 4.5 and
4.6, the rotation matrices are used to describe the orientation of the cameras. A
rotation matrix possesses nine entries, but only three parameters are required
to describe a 3D rotation. For the optimization, an encoding is needed in order
to estimate only as many parameters as necessary. One possibility of encoding
a rotation matrix are Euler angles. These have the advantage of consisting of
exactly three values but suffer under discontinuities, making them unsuitable

1In [60] it is shown that bilinear interpolation is differentiable and how it can be used in a neural
network
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for optimization [66]. Instead, pairs of axis and angles are used to describe
the rotations of the cameras. The axes are described by unit length vectors.
Since the condition of unit length is not enforced by the gradient descent
optimization, they are renormalized after every iteration. Experiments showed
that the optimization converges faster when using three parameters for the
rotation axis than when using only two and deriving the third.

In order to encode the orientation of the reference camera, two Euler angles
are used. They are physically restricted to a suitable range, and the plane can
be rotated around its normal axis without changing the image transformations.
Axis-angle representations and Euler angles are then converted to rotation
matrices. The translation vector of the reference camera is given by Tre f =

−Rre f · (0, 0, 1)T .

Training

In order to decrease the training time, all images are downscaled by a factor
of four in both dimensions. As soon as the parameters converge, downscaled
images with a factor of two are used. Finally, images at full resolution are
processed. If the scaling of the images is changed, the camera matrix’s scaling
also has to be adjusted. The distortion parameters are independent of the
camera matrix.

For finding the best parameters, the Adam optimizer [65] is used in all
experiments.

4.3 Initialization
To start the gradient descent training loop, the initialization of the parameters
is necessary. For the cosine similarity function to calculate a meaningful output,
the transformed images have to overlap at least in parts. That can also be
checked visually by transforming the images to the reference view. If no prior
knowledge about camera parameters is available, they can be roughly estimated.
That is done in two steps. First, the radial distortion is estimated and second,
the focal length.

4.3.1 Distortion
Views of a plane are only related to each other by plane homographies under
the projective camera model assumption without lens distortion. Thus, the
distortion function can be found by varying the distortion parameters until the
homography assumption holds. That is utilized in the following way:
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• Points from all views are extracted with the SIFT feature extractor [69].
They are matched pairwise between the reference view and all other
views by a brute-force method and checked for validity by a ratio test.

• The distortion function is inversed iteratively [11], and the undistorted
feature point coordinates are found. For undistorting the images, a
camera matrix with a principal point located at the center is used. It is
assumed that fx and fy are similar, and they are set to the same arbitrary
value.

• The homography that is compatible with the most points is found by
RANSAC. The number of inliers of the RANSAC method indicates how
well the point coordinates are undistorted.

• The distortion parameters are varied by a nonlinear optimization method
in order to increase the number of inliers. In the experiments, only K1 and
K2 are varied, and the optimization is carried out by simulated annealing
with the Nelder-Mead method as a local method.

This approach is similar to [67] and [97]. It has proven to be robust, and no
manual point matching is necessary.

4.3.2 Calibration matrix
With the estimated best fitting homographies from undistorted feature point

coordinates from the previous section, and with ω =
(︂

KKT
)︂−1

, Equation 2.105
is set up (︂

H0→jc1,2
0
)︂T (︂

KKT
)︂−1 (︂

H0→jc1,2
0
)︂
= 0 (4.8)

and is numerically solved for the unknowns. For initialization, the principal
point is assumed to be at the center of the image sensor. Therefore, only fx
and fy have to be found. For regular photo cameras, fx can be set equal to fy,
although this is not required. Furthermore, the circular points c1,2

0 with two
unknown parameters each need to be found. Three images are sufficient to
find the unknowns (see Section 4.2.1), i. e. three images give six equations to
find six unknowns.

Since the image distortion is calculated in normalized coordinates, the distor-
tion depends on the camera matrix. Therefore, K1 and K2 have to be adjusted
after finding fx and fy. Putting Equations 2.28, 2.29 and 2.26, 2.27 into 2.24 and
2.25, and by only using the distortion coefficients K1 and K2, one yiels
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ũ − u0 = (u − u0)
(︂

1 + K1|m̄|2 + K2|m̄|4
)︂

(4.9)

ṽ − v0 = (v − v0)
(︂

1 + K1|m̄|2 + K2|m̄|4
)︂

. (4.10)

The term
(︁
1 + K1|m̄|2 + K2|m̄|4

)︁
needs to stay constant if fx and fy are replaced

by fx ,new and fy ,new. Hence, with |m̄|2 =
(︂

u−u0
fx

)︂2
+
(︂

v−v0
fy

)︂2
,

K1

(︄(︃
u − u0

fx

)︃2
+

(︃
v − v0

fy

)︃2
)︄

= K1,new

(︄(︃
u − u0

fx ,new

)︃2
+

(︃
v − v0

fy ,new

)︃2
)︄

(4.11)

and

K2

(︄(︃
u − u0

fx

)︃2
+

(︃
v − v0

fy

)︃2
)︄2

= K2,new

(︄(︃
u − u0

fx ,new

)︃2
+

(︃
v − v0

fy ,new

)︃2
)︄2

.

(4.12)
With fx = fy = f and fx ,new = fy ,new = f new this simplifies to

K1,new = K1
f 2

new

f 2 (4.13)

K2,new = K2
f 4

new

f 4 . (4.14)

4.3.3 Extrinsic parameters
With a known camera matrix, the best fitting homography for every view from
Section 4.3.1 is decomposed into a rotation matrix and a translation vector that
relate the reference camera to the other camera, and into a plane normal that
describes the orientation of the plane [71]. The decomposition is ambiguous,
but the correct solution can be chosen by comparing the plane normal to the
physically possible solution.

Since in- and extrinsic camera parameters for every image pair are known, the
feature points that were inliers in the RANSAC method can now be triangulated.
The coordinate system is placed at the reference camera center, and a plane
is found in the resulting point cloud (see Section 3.2.4). Its Z-axis intercept
is found, which is the distance between the reference camera and plane. In
order to fix this distance at 1, the translation vectors of the homography
decompositions are scaled accordingly. That is done for all cameras to achieve
a projection model that is consistent with all cameras.
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4.4 Calibration of a stereo camera
The proposed DLSC method is easily extended for use with a stereo camera. The
procedure remains the same, and the images from all cameras are transformed
to the reference view, where they are compared with the feature maps’ help.
The difference to the calibration of a mono camera is that every two cameras
of the stereo setup are related by a fixed rotation matrix Rst and a translation
vector Tst. Therefore, the degrees of freedom are reduced.

4.4.1 Transformation functions
In order to perform inverse warping, the transformation functions are needed.
Points from the plane are projected into the left and right camera heads of the
i’th stereo camera by

m̃s,i = κs

(︂
Θs

(︂
δ
(︂[︂

r1
s,i r2

s,i Ts,i

]︂
x
)︂)︂)︂

for s = l, r , (4.15)

with Rr = RstRl , Tr = RstTl + Tst. By choosing one of the left-hand stereo
heads as the reference camera, all feature maps are transformed to the undis-
torted left reference camera space by inverse warping. Equation 4.5 is extended
to

m̃s,i = κs

(︂
Θs

(︂
δ
(︂[︂

r1
s,i r2

s,i Ts,i

]︂
[︂
r1

L,re f r2
L,re f TL,re f

]︂−1
δ−1

(︂
κ−1

s

(︂
mL,re f

)︂)︂)︃)︃)︃
. (4.16)

4.4.2 Number of unknowns
Once again, every additional view to the reference view provides a homogra-
phy that possesses eight independent variables. In order to find the location
and orientation of the reference stereo camera in relation to the plane, three
parameters are necessary. In order to find every additional stereo camera, six
more parameters are needed. Therefore,

8(2mst − 1)− 6(mst − 1)− 3 = kst (4.17)

parameters can be extracted from mst stereo camera views of a plane. The
stereo camera itself contains eight intrinsic camera parameters (assuming zero
skew) and five parameters for the stereo camera geometry. The five parameters
consist of three rotation parameters and two for translation. There are only two
translation parameters since the overall scale cannot be extracted from images
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4.4 Calibration of a stereo camera

alone due to the projective geometry. Hence, two stereoscopic images of the
plane in a general orientation are sufficient to extract all parameters.

The proposed method’s target application in this thesis is the self-calibration
of cameras behind the windshield of a vehicle. In this case, one is faced with
the problem that only one plane can be captured without lifting the vehicle,
namely the ground level. Following Equation 4.17, this leaves 5 parameters
that can be extracted, but these are needed for the camera geometry. To still
be able to extract the intrinsic camera parameters, physical measurements are
included in the process: The baseline and the distance between stereo camera
rig and the ground plane are measured. By fixing the baseline, the overall scale
is fixed, and the distance reduces one degree of freedom from the equation.
By assuming zero skew and rectangular pixels, only one intrinsic parameter
per stereo camera head is left since the principal point is part of the distortion
model, and its coordinates are found independently from the projective camera
model. By further assuming the same focal length for both camera heads, only
one intrinsic camera parameter is left and can be extracted.

There also exist use cases where the intrinsic parameters have been estimated
beforehand, and only the extrinsic parameters are sought. One example is
cameras whose intrinsic parameters have been estimated in a laboratory that
are used as a stereo pair. In [111] structured light is used for this purpose. In
contrast, the DLSC method can calibrate the extrinsic parameters from a single
stereoscopic image without the need for external light sources.
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5 Stereo Camera System Design
The target of the stereo camera system is to capture the 3D profile of the road
surface that lies in front of a vehicle. Two cameras shall be used. The following
requirements can be derived from this and have to be considered:

• In order to make a 3D reconstruction possible, the surface has to be
covered by both cameras.

• The spatial resolution has to be large enough to capture the texture of
the road. The size of the road segment that shall be covered in a single
stereoscopic image then determines the minimum resolution of the image
sensor. The resolution and physical pixel dimensions determine the focal
length of the lens.

• The image sensor resolution is proportional to the achievable depth
resolution for a given road segment size.

• Processing high-resolution images is computationally demanding and
limits the resolution.

• Since the depth resolution of a stereoscopic reconstruction increases with
increasing baseline, the baseline should be as large as possible.

• The aperture influences the depth of field and the exposure time. A large
depth of field requires a small aperture, but a long exposure time. A long
exposure time increases the motion blur.

• Since the vehicle is moving, the cameras must be triggered synchronously.

• The cameras must be calibrated.

Image sensors are available with two different capturing methods: global shut-
ter and rolling shutter. Global shutter image sensors read every pixel at once,
while rolling shutter image sensors read pixels sequentially [3]. The sequential
acquisition causes distortion effects if the target is moving. Therefore, a global
shutter image sensor has to be used. Due to the computing power required
for processing high-resolution images, an image sensor with a resolution of
1920 × 1200 px was chosen for this research. It has a pixel size of 4.8 × 4.8 µm2,
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Figure 5.1: Scene layout – The two cameras capture the road surface. The left camera
captures the area that is marked by a dash-dotted line. The light gray area
is captured by the left and the right camera. The darker area is the road
segment of interest.

and it will be used for all experiments throughout this work. The achievable
spatial resolution will be derived from the image sensor.

The camera height h above the road and the largest possible baseline b are
determined by the vehicle. In Section 5.1 all other geometric parameters are
derived from the image sensor, from the lens’ focal length and from the width
and length of the road segment to be captured. In Section 5.2 the effect of the
focal length on the theoretical spatial resolution and on the depth resolution is
investigated. Due to the blur from motion and blur from defocus, the effective
resolution is reduced. This is discussed in Section 5.3. Finally, in the Section 5.4,
a lens is selected and the aperture and focusing length are also specified.

5.1 Geometrical orientation
The geometrical orientation of the cameras is determined by the road segment
width rw and length rl to be covered in a single stereoscopic image, by the
baseline b, by the height h of the cameras, by the focal length of the lens fL,
and by the resolution and size of the image sensor (Figures 5.1, 5.2, 5.3). rw and
rl are specified by the user, b and h by the vehicle. The focal length is a still free
to choose parameter. An optimal focal length is discussed in Section 5.4, but
for its determination the geometrical camera orientation must first be known.
The parameters that describe the orientation will be derived in this section.

In Chapter 6 the cameras are mounted on an aluminum bar. On it, the
cameras can be rotated around their Y0-axis. The bar, in turn, can be rotated
around the X0-axis (see Figure 3.1). Thus, their orientation is restricted and
can be described by extrinsic Tait-Bryan angles around the coordinate system
axis in the order Z-Y-X, with rotation φ around X-axis, θ around Y-axis and
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Figure 5.2: The dashed rectangle shows the left camera view of the road surface. The
area highlighted in gray is the road segment of interest.
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Figure 5.3: Side view of the scene layout.

ψ around the Z-axis. Figure 5.2 shows a typical view of a road segment from
the left camera’s perspective. It can be seen that the usable vertical sensor
resolution s′v is generally limited due to the aspect ratio of common image
sensors. Therefore, the frame is selected so that it is horizontally limited by
the lower left and by the lower right corner of the road segment. Vertically the
road segment is placed in the center. From this the target is to find s′v, and φ, θ
in the road coordinate system that is shown in Figure 5.1.

Width the edge length of a pixel mx and the resolution of the image sensor
in horizontal direction su, the distances to the front end of the segment are
approximated by

rr ≈
fLrw

sumx
(5.1)

and

rd =

√︄
r2 − h2 −

(︃
b
2

)︃2
, (5.2)
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which can be seen from Figure 5.1.

θ ≈ arcsin
(︃

b
2rr

)︃
(5.3)

describes the inclination of the cameras towards each other. From Figure 5.3

βy = arctan
(︃

rd + rl
h

)︃
− arctan

(︂ rd
h

)︂
(5.4)

is found. It is used in Equation 2.3, which gives

s′v =
2 tan

(︂
βy
2

)︂
fL

my
. (5.5)

From Figure 5.3

φ = π − arctan
(︂ rd

h

)︂
− βy

2
(5.6)

is found.
Figures 5.1 and 5.2 show the corners R1,R2,R3 of the road segment. Their

image coordinates are given by

ri = δ
(︂

K [R|T] δ−1 (Ri)
)︂

, (5.7)

with T = −RCl , where R is found from the consecutive rotations θ and φ. K
is assembled according to Equation 2.14, where the principal point is placed
in the center. As can be seen in Figure 5.2, the corners of the road segment
appear in the lower-left corner, the right-hand edge, and the upper edge of the
left camera image. With these four conditions and with the previously found
values as initialization, a nonlinear system of equations is numerically solved
for the unknowns φ, θ, s′v and rd.

5.2 Estimating the theoretical resolution
For a given road segment size and a given image sensor, the theoretical spatial
and depth resolutions depend on the lens’ focal length. The effect is investigated
in this section. For simplicity, the theoretical resolution is calculated for the
central line between cameras, i. e. along the Y-axis (Figure 5.1). It is evenly
discretized, and three samples are created per level: one on the Y-axis, one
with a slightly negative X- and one with a slightly positive X-coordinate. The
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Figure 5.4: Spatial resolution in X- and Y-direction and the elevation resolution in Z-
direction over the position on the road segment for different focal lengths are
shown. The calculations for this figure are based on a lane width rw = 2 m
and length rl = 6 m.
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Figure 5.5: The spatial resolution in X- and Y-direction and the elevation resolution in
Z-direction depend on the focal length and on the distance between an object
and the stereo camera system. The calculations for this figure are based on a
lane width rw = 2 m and length rl = 6 m.
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points are transformed by Equation 5.7 into pixel coordinates of one of the two
cameras. In order to apply the equation, the geometric orientation as a function
of the focal length from the last section must first be solved. For the resolution
in Y-direction, the spacings of consecutive central point image coordinates are
divided by the spacing of discretization levels. For the resolution in X-direction,
the distance between points with negative and positive X-coordinate is devided
by the distance of their image coordinates.

To calculated the resolution in Z-direction, the central points are transformed
to the left camera space by the plane homography (Equation 3.4) that belongs
to the XY-plane. Then they are transformed into the right camera space by
plane homographies twice – through a plane with a positive and through a
plane with a negative Z-coordinate. The distances of the image coordinates
in the right camera space are divided by the spacing of the two planes. That
resembles the plane sweep approach, which is used for the elevation estimation.
The result is shown in Figure 5.4 and 5.5 for a road segment that is rw = 2 m
wide and rl = 6 m long.

As the focal length increases, the distance between the cameras and the road
segment rd increases because the segment is vertically fitted on the image.
Therefore, the inclination of the cameras downwards to the road φ decreases.
As the front edge of the lane is fitted to match the image width, the resolution
in X-direction stays approximately constant at the front edge and decreases
towards the rear edge, since the rear edge covers a smaller area in the image,
see Figure 5.2. Due to the perspective, it decreases slower if φ is decreased
(and fL is increased). The resolution in Y-direction generally decreases if the
angle between camera and surface decreases, because the usable sensor size s′v
decreases. At the same time, the tilt has the effect of increasing the resolution
in Y-direction at the front edge and decreasing the resolution at the rear edge.
Thus, at a certain distance Y, there is a focal length that optimizes the resolution
in Y-direction, which can be seen in Figure 5.5 at Y = 6000 mm. The resolution
in Z-direction increases with an increasing focal length because φ decreases. It
is further approximately proportional to the resolution in X-direction because
the search direction of the plane sweep approach is mainly in X-direction.
Overall, the lowest resolution always is in Y-direction.

5.3 Estimating the effective resolution
Overall, the theoretical resolutions in X- and Z-direction increase with increas-
ing focal length, while the resolution in Y-direction decreases. However, the
theoretical resolution in Z-direction is indirectly limited by the spatial resolu-
tion in X- and Y-direction because the surface texture must be captured to make
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a stereoscopic reconstruction possible. During the estimation of the elevation, a
path in one image is searched for the corresponding pixel in the other image.
The length of this path is determined by the considered volume in 3D space.
For a 3D reconstruction to be successful for an isolated pixel, the pixels in the
search path must be unique. Since the implemented stereo algorithms search
for a globally optimal solution, this requirement can be relaxed, but it is clear
that ambiguity should be small. The blur from motion and defocus blend the
intensities of neighboring pixels, and due to the finite numerical resolution, the
pixels become indistinguishable.

The motion blur depends on the exposure time, which in turn depends on
the aperture and the focal length. A short exposure time results in little motion
blur but requires a large aperture. A large aperture, in turn, leads to high blur
due to defocusing. The relationship between exposure time, aperture, and focal
length is discussed in Section 5.3.1. The total amount of blur is calculated in
Section 5.3.2.

Another factor influencing the total amount of blur is diffraction. The Airy
disk, which is the central and most visible part of the diffraction pattern that a
circular aperture produces, has radius ≈ 1.22λ fk [50], where λ is the wavelength
of light. Therefore, diffraction does not affect the image sharpness until fk > 5.6
with the imaging sensor used. Simulations later in this section show that larger
apertures are needed, and for that reason, diffraction is neglected.

Blur affects the probability of correctly matching isolated pixels in the stereo-
scopic reconstruction, which is discussed in Section 5.3.3. In Section 5.4, all
these effects are considered in order to select the optimal lens and aperture or
exposure time.

5.3.1 Calculation of the exposure time
The image sensor registers irradiation

Be =
ΦetE

As
, (5.8)

with the radiant flux Φe, the sensor size As, and the exposure time tE. The
output signal of an image sensor is nearly proportional to its irradiation [4,
61].The radiant flux, emitted by the road surface and caught by the lens aperture,
is calculated by the basic law of radiometry and photometry [46]

dΦe =
LR dAR cos βR dAL cos βL

dL
2 . (5.9)
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dAR is a light emitting road element and dAL is an element of the lens aperture.
βR and βL are the light ray angles measured against the plane normals of both
surface elements. LR is the radiance of the road, and dL is the distance between
the elements. As only one exposure time can be used for one image, dL and
βR are calculated for the road segment’s central point and are considered to
be constant across the segment. The road surface is idealized as a Lambertian
surface, i. e. the radiance LR is independent from the angle βR [46]. βL = 0
because the camera is pointed at that central point and therefore the light is
coming in on the optical axis. βR = π − φ is found from Figure 5.3. With these
simplifications, the radiant flux entering the lens is calculated

Φe =
LR AR cos βR AL

dL
2 . (5.10)

The lens passes it onto the image sensor. For constant irradiation, and As
approximately proportional to s′y, a new exposure time can be calculated
from parameters that are known to produce a well-illuminated picture. Using
Equation 5.10 in Equation 5.8 gives

tE ,new = tE ,old

AL ,old cos βR ,olddL
2
,news′y,new

AL ,new cos βR ,newdL
2
,olds′y,old

. (5.11)

The size of the lens aperture is commonly defined by the f-number

fk =
fL

DL
, (5.12)

where DL is the diameter of the aperture. With this definition the new exposure
time is

tE ,new = tE ,old
fL

2
,old fk

2
,new cos βR ,olddL

2
,news′y,new

fL
2
,new fk

2
,old cos βR ,newdL

2
,olds′y,old

. (5.13)

5.3.2 Blur from motion and defocus
The defocusing effect is illustrated in Figure 5.6. The lens is focused, such that
an object at object distance (or focusing distance) so creates a sharp image on the
sensor at image distance si. so and si are related by Equation 2.1. In Figure 5.6
the edges of the sensor’s pixels are shown and are also drawn where their
image would appear at object distance. Since the road is slanted to the lens,
only the intersect between the road and the sensor’s image appears perfectly
sharp.
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Figure 5.6: Because the road is not parallel to the image sensor, the entire road cannot
be completely in focus. The blue segment would ideally be seen by a single
pixel, but since the aperture cannot be infinitely small, the red segments also
emit light that is captured by that pixel. As a result, the parts of the segment
that are not at focusing distance appear blurred.

For illustration, three rays are drawn for both edges of a pixel. They pass
through the center of the lens, the uppermost and the lowermost possible point,
these points being determined by the aperture. Looking at the cones of light
formed by the rays from the two edges passing through the same point on the
lens, one can see that the pixel is hit by light from different parts of the road,
depending on which point of the lens was passed. Ideally, with an infinitely
small aperture, only light emitted by the part drawn in blue would hit the pixel.
The parts that are actually captured by the same pixel are those marked in blue
and red.

The effect is also shown in Figure 5.7. It shows the light distribution coming
from different parts of the road to a single pixel, and for comparison, the part
that would ideally be seen by the same pixel. It was calculated by constructing
light cones, as shown in Figure 5.6, with the cones’ tips uniformly distributed
across the aperture. Then, a normalized histogram was created by simultane-
ously sampling across the road. The overall result of defocus is a blurred image,
as the light from each element of the road is scattered across several pixels.

In order to calculate the amount of blur from defocus across the entire image,
a single camera is considered, and the rotation θ is neglected. Calculations are
performed separately for the X- and Y-direction. Figures 5.6 and 5.7 illustrated
the relations for the Y-direction, and this is done equivalently for the X-direction.
Since the calculation of the light distribution, as shown in Figure 5.7, is compu-
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Figure 5.7: Example of the ideal and real light distribution, which is captured by one
particular pixel due to defocusing. For the creation of this figure, the fol-
lowing parameters were used: rw = 2 m, rl = 6 m, fL = 25 mm, fk = F/3.4,
so = 6.5 m.

tationally expensive, and the calculation is part of an optimization procedure in
Section 5.3.3, the maximum width of the trapezoid in both directions bx and by
is considered as the size of the road that is captured by a pixel due to defocus.
The blur from motion is accounted for by adding the distance that is traveled
during the exposure time to by. The blur is defined by

blur :=
bx

bx ,ideal
· by

by ,ideal
, (5.14)

where bx ,ideal and by ,ideal are the dimensions of the patch that would ideally be
captured by a pixel.

The blur depends on the exposure time, the aperture, the focal length, the
focusing distance, the vehicle speed, and the road segment’s position. By
adjusting the focusing distance, either the front end or the segment’s rear
end becomes blurrier. The point with the minimal blur, therefore, always is
in-between. An example is shown in Figure 5.8 for different focusing distances
and different focal lengths. In the creation of this figure, the lighting condition
and the vehicle speed were fixed, and the focusing distance, the aperture, and
the exposure time were optimized, as will be shown in Section 5.3.3.

5.3.3 The impact of blur on the reconstruction quality
In a stereoscopic reconstruction, a path of pixels in one image is searched for
a corresponding pixel of another image. If isolated pixels are considered, the
reconstruction can only be successful if all pixels in the path are distinguishable.
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Figure 5.8: The combined blur from motion and from defocus is shown over distance
for different focal lengths. Exposure time, aperture, and focusing distance
are determined as shown in Section 5.3.3. The lighting condition is given by
the following settings: tE = 350 µs, fk = F/1.4, fL = 25 mm. Furthermore,
rw = 2 m, rl = 6 m, v = 50 km h−1.

Generally, that is not the case. Due to the blur from motion and defocus, pixel
intensities of neighboring pixels are blended, and due to the finite numerical
resolution, the pixels become indistinguishable. In the plane-sweep approach,
as it is implemented in this work, for all pixels in an image, the same elevation
range in 3D space is searched for pixel correspondences. Near the stereo camera
system, the 3D search space corresponds to a longer search path through image
coordinates than at a distance from it. The amount of blur, therefore, is not
equally significant across the image. Therefore, it is not the blur that is of
interest, but the probability that the pixels are correctly matched.

Probability of correctly matching isolated pixels

In information theory the entropy of a discrete random variable X is estimated
by [70]

H(X) = −∑
i

PX(xi) log2 PX(xi) . (5.15)

It measures the average information content of an event. Shannon’s source
coding theorem states that N independent and identically distributed random
variables, each having an entropy of H(X) = H can be represented by NH bits
(assuming a negligible risk of information loss and N → ∞) [70]. Regarding
the pixel values of a search path as random variables, that means, on average,
every pixel within a search path can be characterized by H bits. That effectively
makes it possible to distinguish between nQ = 2H quantization levels.

All pixels in a search path of length nsp are distinguishable, if there are
nsp quantization levels. If there are fewer quantization levels than pixels, the
corresponding pixel cannot be matched uniquely. The probability of correctly
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Figure 5.9: The expected probability of correctly matching isolated pixels is shown for
different focal lengths at three positions on the lane. Due to the optimization,
the probability at Y = 0 m and Y = 6 m is the same, and the graphs are on
top of each other. Calculations are based on the reference lighting condition
given by tE = 350 µs, fk = F/1.4, and fL = 25 mm.

matching isolated pixels therefore is

PP =
nQ

nsp
. (5.16)

In order to calculate an average PP for a real image, PX is approximated at
every image coordinate by a histogram of pixel values. It is calculated from
the neighboring pixels that lie within the limits of the currently treated search
path. With this, a mean entropy is calculated for the entire image and is used
in Equation 5.16.

Choosing the best parameters by simulation

The probability of correctly matching isolated pixels depends on the number of
effective quantization levels of the surface texture. During the image capturing
process, the road’s natural texture is blurred by motion and defocus and is
sampled spatially and quantified into discrete values by the image sensor. As
seen in the previous sections, the blur from motion and from defocus depends
on the focal length fL, the aperture fk, the exposure time tE, the focusing
distance so, the position on the road segment Y, and on the vehicle speed v.
Under fixed lighting conditions, the exposure time can be determined from the
focal length and the aperture. Thus, there are three free to choose parameters:
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Figure 5.10: Optimal aperture and focusing distance for different lighting conditions,
which are described by fL = 25 mm, fk = F/1.4 and the exposure time
shown in the graphs. The vehicle speed is v = 50 km h−1.

fL, fk and so. fk and so are determined by optimizing PP for a given v. PP then
only depends on fL.

To determine the effective number of quantization levels and, therefore, the
probability PP, the effects are simulated by artificially blurring and downscal-
ing high-resolution close-up grayscale images of a typical asphalt concrete
pavement and by then calculating the entropy on those images. The neces-
sary exposure time has been found by experiments to be tE = 350 µs at an
aperture of fk = F/1.41 with a fL = 25 mm lens on a sunny winter morning.
This set of parameters describes a lighting condition. The exposure time for
different focal lengths and apertures is calculated from this reference, as shown
in Section 5.3.1. The blurring is implemented as a moving mean filter with the
dimensions bx × by, which are determined as shown in Section 5.3.2. The result-
ing image is down-sampled, such that the resolution according to Section 5.2 is
obtained. Then PP is calculated. Since blur, resolution, and the search path’s
length depend on the position on the road segment, these steps are performed
for three positions: at the front edge, at the rear edge, and in-between.

For a constant quality of the reconstruction result across the road segment,
the minimum of all three values of PP is optimized by adjusting the focusing
distance and the aperture. Differential evolution is used for optimization. The
result is shown for different values of fL and a constant velocity v = 50 km h−1

in Figure 5.9. By optimizing the minimum value of PP, which is located either

1It is customary to write f-numbers preceded by F/.
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Figure 5.11: The expected probability of correctly matching isolated pixels depends on
the vehicle speed and lighting condition. The lighting condition is specified
by the necessary exposure time at fk = F/2.0 and fL = 25 mm. The actual
parameters tE, fk and so are determined by the optimization of PP. The
lane segment is rw = 2 m wide and rl = 2 m long.

at the front or at the rear edge, it results that the values at Y = 0 and at Y = 6 m
are always the same. Their diagrams, therefore, lie on top of each other. It
can be seen that the probability of correctly matching pixels decreases with
a growing focal length, while the resolution in X- and Z-direction increases
(Figures 5.4 and 5.5). Figure 5.8 shows the resulting blur over distance for
different focal lengths. Looking at the result for fL = 10 mm, it shows that
the result is not the same as an optimization of the maximum amount of blur
would produce, as it is much higher at the front end of the road segment than
at the rear end.

5.4 Optimal lens
An increasing focal length overall has the following effects:

• The resolution in X-direction stays constant at the front end and increases
at the rear end of the road segment (Figure 5.5).

• The resolution in Y-direction decreases overall (Figure 5.5).

• The resolution in Z-direction stays constant at the front end and increases
at the rear end (Figure 5.5).
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• The reconstruction quality decreases (Figure 5.9).

The focal length that can be used is limited by the vehicle and the stereo camera
system’s position in it. Since the system is mounted behind the windshield,
the field of view is limited by the hood. In the test vehicle used, 19 mm is the
smallest possible focal length if a 2 m wide road segment is to be recorded.
Choosing reconstruction quality over resolution in Z-direction, the best fitting
commercially available lens has a focal length of fL = 25 mm. At the same time,
this lens yields the optimal resolution in Y-direction at the rear end, as it has its
maximum at 24.2 mm (Figure 5.5).

Because the aperture and the focusing distance are manually set on most
lenses, they cannot be changed during operation. Therefore, values have to
be found that are suitable for different lighting conditions. They are found by
optimization at different lighting conditions, which are described by different
exposure times tE that would produce a well illuminated picture with fL =
25 mm and fk = F/1.4, as was shown in Section 5.3.3. The vehicle speed is
set to v = 50 km h−1. The result is shown in Figure 5.10. Figure 5.11 shows
the expected performance under different lighting conditions and for different
vehicle speeds if one chooses fk = F/2.0 for an overall acceptable performance
and a focusing distance so = 6300 mm. The lighting conditions are measured by
a reference exposure time tE ,re f that would produce well illuminated pictures
at fL = 25 mm and fk = F/1.4. The actual exposure time is calculated by
Equation 5.13.
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6 Experiments – Stereoscopic 3D
Road Profile Reconstruction

The developed stereo vision methods are evaluated in the application of 3D
road profile reconstruction with cameras mounted behind the windshield in
Section 6.5, but first, the design of the employed image acquisition system
is described in Section 6.1. In Section 6.2 the test scenes are described, and
in Section 6.3, the determination of the achieved accuracy is discussed by
comparing the measurements obtained with the stereo vision system to those
obtained with industrial laser scanners.

6.1 Stereo camera system
The stereo camera system consists of two cameras, a circuit for generating
a trigger signal, and a laptop computer for reading and saving the camera
images. In Chapter 5 an image sensor with a resolution of 1920 × 1200 px and
a pixel size of 4.8 × 4.8 µm2 was chosen. The dimensions of the road segment
to be captured are defined by rw = 2 m width and rl = 7 m length, and it was
found that in this case a lens with a focal length fL = 25 mm is suitable. The
cameras are mounted on an aluminum bar with a baseline b = 1080 mm, which
is the widest possible baseline in the test vehicle. The cameras are both inclined

Figure 6.1: The cameras are mounted on an aluminium bar. The bar is attached to the
windshield with suction cups.
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Table 6.1: Camera specifications

Manufacturer Basler AG
Model acA1920-150uc
Color Bayer filter

Sensor Type Global shutter CMOS
Resolution (H x V) 1920 × 1200 px

Optical size 2/3 in
Pixel Size 4.8 µm × 4.8 µm

Synchronization hardware trigger
Interface USB 3.0

Table 6.2: Lens specifications

Manufacturer Kowa
Model LM25JC1MS

Focal length 25 mm
Aperture F/# 1.4–16

Resolution 120 lp/mm–100 lp/mm

around the horizontal axis by θ = ±6° to each other. In the case of static scenes,
the bar is mounted on a tripod. For dynamic scenes, the bar is attached to
the windshield of the vehicle with suction cups from the inside, as shown in
Figure 6.1. In both cases, the bar with the cameras is rotated around the vertical
axis φ towards the road.

6.1.1 Camera description
The specifications of the employed camera are shown in Table 6.1. It has a
global shutter sensor (see Chapter 5) to handle objects under motion. The
sensor is equipped with a Bayer filter to produce color images, as these are
thought to help in a future classification of defects. The cameras are equipped
with directly coupled and optocoupler isolated I/O lines. They can be triggered
by a rising or falling edge of a signal applied to an input.

The lens specifications can be found in Table 6.2. It has the required focal
length and an aperture that can be manually set in the required range. The opti-
cal resolution between 120 lp mm−1 and 100 lp mm−1 (line pairs per millimeter)
does not limit the spatial sensor resolution of 4.8 px mm−1.
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Figure 6.2: Analog external signal and associated internal line status with propagation
delays for the employed cameras [2].

6.1.2 External trigger and asynchronism
The trigger signal is externally generated by a microcontroller board and is
applied to both cameras in parallel. The delay between a trigger signal and the
start of exposure is deterministic, except for the propagation delay tPHL or tPLH ,
which is the time between reaching a transition threshold voltage and when
the camera reacts by changing its internal line status [2]. The timing diagram is
shown in Figure 6.2. The exact values of the threshold are unknown, but the
fall time of the setup was measured and is t f = 50 ns. The propagation delay
from high to low is typically tPHL < 0.5 µs [2]. Therefore, the total maximum
propagation delay is 50 ns + 0.5 µs and the maximal asynchronism is ≈ 0.5 µs.
It is negligible in comparison to exposure times of at least 100 µs. The directly
coupled I/O lines have a shorter propagation delay than the optocoupler
coupled ones, which is why the directly coupled lines are used to process the
trigger signal.

6.1.3 Camera communication
The camera manufacturer provides an application programming interface (API)
called “pylon API” for the C++ programming language, which is used to set
parameters on the camera and to read uncompressed images from the camera
via the USB 3.0 interface.

Exposure time calculation

The camera supports an automatic determination of the exposure time based
on previous images’ average gray values. If both cameras are set to determine
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the exposure time independently, the exposure time may differ between the
two cameras. That is because the road does not have a perfectly Lambertian
surface, so the light is reflected differently depending on the angle between
light source, surface, and camera. However, different exposure times lead to
different degrees of motion blur between the left and right images and thus to
a different appearance of the same object, which is problematic in the stereo
reconstruction process. In order to solve this issue, the right camera is set to
determine the exposure time automatically. The value is read and used on the
left camera.

Data transmission and compression

The pylon API provides the images encoded in the RGB81 data format. Thus, a
stereoscopic image pair generates 13.2 MB of data. If a video stream is to be
saved for later analysis, the amount of data prohibits the uncompressed saving
of the data. Intel central processing units (CPUs) starting with the Haswell
architecture support video hardware encoding in the H.264 video format of
high-resolution content [57]. This feature is marketed as “Intel Quick-Sync-
Video” and enables the real-time encoding of video streams. It is supported by
the libavcodec C-library, which is part of the FFmpeg project [98]. The library is
used in the software for encoding the video and for the later decoding. It was
found by experiments that the H.264 compression does not noticeably reduce
the 3D reconstruction performance.

6.1.4 Camera calibration
The air-glass-air transition at the windshield influences the calibration param-
eters of the camera. As a result, the baseline of a stereo camera seems to be
smaller than it actually is [47]. The curved surface of the windshield also affects
the distortion parameters, and external forces can bend the bar on which the
cameras are mounted. For these reasons, the calibration parameters change
if the stereo camera system is mounted behind the windshield, and they also
change if it is reinstalled in approximately the same position. Therefore, the
stereo camera system must be calibrated when it is already installed in the
vehicle.

For the calibration of the vehicle-mounted stereo camera system, images of
a calibration target are taken through the windshield. The target is a printed
circular point pattern glued to a wooden board. It is shown in Figure 7.4b. It
contains 481 points and has dimension 1080 mm × 740 mm. The calibration
parameters are determined by the MPT method described in Section 2.6.4.

1In the RGB8 data format, the color channels red, green, and blue are encoded by 8 Bits each.
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6.2 Test scenes
The experiments are performed on static and dynamic scenes. Static scenes
are considered because the results are compared to laser scanners and the
terrestrial laser scanner used for static scenes (Section 6.3.3) has much higher
accuracy than the laser line scanner mounted on the mobile mapping vehicle
(Section 6.3.4) that is used for dynamic scenes. Furthermore, the terrestrial laser
scanner’s accuracy is given in a datasheet, while the accuracy of the scanner
mounted on the vehicle was estimated from measurements. The dynamic scenes
illustrate the performance of the stereo methods under difficult conditions.

Static scenes were captured with the stereo camera system mounted on a
tripod. The viewing angle and the height of the cameras are similar to those in
the test vehicle. For a large depth of field and since motion blur is not an issue,
the aperture is set to fk = F/8 and the exposure time to tE = 40 µs. Dynamic
scenes are captured during the drive with v ≈ 70 km h−1. The first set of
images was captured in the morning under low lighting conditions. Therefore
the aperture was set to fk = F/1.4. The exposure times were determined
automatically. The second and third sets were captured later that day under
better lighting conditions.

Figure 6.7b shows the right camera image of the first static test scene. The
image shows an asphalt concrete roadway in the foreground and a cobblestone
pavement in the background. Some parts of the road are hit by direct sunlight,
others by indirect light. Some leaves are lying on the road, and others are
squeezed flat onto the ground. A large crack in the asphalt concrete pavement
can also be seen. Although it cannot be seen in the image, the crack is accom-
panied by a bump, and the cobblestone pavement has a surface depression.
Figure 6.8b shows the second static example. It is a paved walkway with raised
and lowered tiles. The surface has both shiny parts and shadows.

Figures 6.9b, 6.10b, 6.11b show the same segment of a highway that was
recorded three times under different lighting conditions during the drive. Two
repair patches can be seen. The major surface defects are not visible in the
image. They are a step in the foreground, rutting on the right-hand side and an
overall unevenness. Figures 6.12b, 6.13b, 6.14b show a similar segment under
different lighting conditions. The dark parts in the upper right in Figures 6.13b
and 6.14b are shadows from the guardrail. A change in the road surface is
visible. The large surface depression is not visible on the camera image.
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dPC,Z,5

dPC,5

X

Z

Figure 6.3: Calculation of the distances between two point clouds. Because the point
clouds mostly resemble surfaces parallel to the XY-plane, and two nearest
neighbors are usually not on top of each other, only the Z-component of the
distance is considered the point cloud distance.

6.3 Accuracy
A measurement’s accuracy is usually determined by comparing it to a reference
measurement with much higher accuracy; however, in the present case, that
is not available. The proposed stereo methods are applied to stereoscopic
images of road surfaces and compared with measurements from industrial
laser scanners. Static scenes are captured with cameras mounted on a tripod
and scanned by a terrestrial laser scanner. Dynamic scenes are captured
with cameras mounted behind the windshield of a moving vehicle, and the
corresponding laser scans are performed by a company that uses laser line
scanners mounted on a mobile mapping vehicle [43, 45]. The laser scan point
clouds and the stereo vision point clouds are subject to measurement noise in
the same order of magnitude.

Section 6.3.1 discusses how to compare the two noisy point clouds. The
terrestrial laser scanner and the uncertainty of its measurements are discussed
in Section 6.3.3. The laser line scanner and the uncertainty of its measurements
are discussed in Section 6.3.4. Section 6.3.2 deals with the question of how
to calculate the uncertainty of the stereo vision point cloud from the noisy
observations.

6.3.1 Point cloud comparison
Both point clouds are subject to measurement noise, and it is assumed that the
noise is Gaussian-shaped. Furthermore, the point clouds are not necessarily
sampled evenly. Therefore, to compare two point clouds, the nearest neighbor
of every point MC,i of a compared point cloud is found in a reference point
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cloud, and their distances dPC ,i are computed, as shown in Figure 6.3. Since the
point clouds mostly resemble surfaces that are parallel to the XY-plane, and two
nearest neighbors are usually not on top of each other, only the Z-component
of the distance dPC ,Z,i is considered the point cloud distance. The total distance
would lead to an overestimate. Since the point cloud coordinates are random
variables, the difference also is a random variable

DPC,Z ∼ ZLS − ZSV , (6.1)

where ZLS is the Z-component of point coordinates of the laser scan point
cloud as a random variable, and ZSV is the Z-component of point coordinates
of the stereo vision point cloud as a random variable. Following the guide
to the expression of uncertainty in measurement (GUM) [75], their standard
deviations uZLS and uZSV are regarded as their measurement uncertainties. The
standard deviation of the difference is given by

uDPC,Z =
√︂

uZLS
2 + uZSV

2 . (6.2)

That shows that the distance measurement noise is a combination of the devia-
tion of the laser scan point cloud and the stereo vision point cloud.

6.3.2 Distance between laser scan reference and stereo
methods

Point clouds are extracted from the stereo vision methods and are compared to
those generated by the laser scanners, but for both, static and dynamic scenes,
the geometric relationship between the stereo camera system coordinate system
and the laser scanner coordinate system is unknown. Therefore, the point
clouds are first aligned using the Iterative closest point (ICP) algorithm [6],
which is implemented in the software “Cloud Compare” [44]. It assigns to
every point of a compared point cloud the nearest neighbor from the reference
point cloud. Then, the distance between every two neighbors is calculated.
The compared point cloud is rotated and shifted to minimize the root mean
square distance. New nearest neighbors are assigned, and the algorithm is
repeated until convergence. As a result, the mean difference in Z-direction is
approximately equal to zero. The point clouds are compared as described in
Section 6.3.1. Therefore, the standard deviation of the stereo vision method can
be isolated by

uZSV =
√︂

uDPC,Z
2 − uZLS

2 . (6.3)
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Figure 6.4: The uncertainty of a terrestrial laser scanner measurement is a combination
of the uncertain beam direction and the laser distance measurement. In the
present application, the combined uncertainty in Z-direction is of interest.

It is assumed that the bias of the laser scan measurements is zero. By aligning
the stereo vision point cloud with the laser scan point cloud, the stereo vision
point cloud’s bias is also assumed to be zero. Hence, the empirical standard
deviations are equal to the RMS values. RMS values are a commonly used
error measure and are therefore used in the evaluation.

6.3.3 Terrestrial laser scanner
For static scenes, the terrestrial laser scanner “Z+F IMAGER 5006h” from Zoller
+ Fröhlich is used. Non-moving terrestrial laser scanners generate a 3D point
cloud from 1D depth measurements by deflecting a laser beam around two
axes, while the whole apparatus is mounted on a tripod [105]. The laser scanner
used carries out the depth measurement by evaluating the phase position of
the outgoing and incoming laser beams [105]. The measurement uncertainty in
Z-direction uZLS therefore is a combination of the uncertainty urB of the laser
range measurement rB and the uncertainty uα of the azimuthal laser beam
angle α. This is shown in Figure 6.4. Following the GUM, the azimuthal angular
uncertainty uα is propagated to the azimuthal distance uncertainty ua by

ua ≈ rBuα . (6.4)
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Table 6.3: Measurement uncertainty of terristrial laser scanner.

reflectivity > 10% > 20% > 100%
urB in mm 1.2 0.7 0.4

uα in ° 0.007

The measurement uncertainty in Z-direction of both components add up.
Hence, the total uncertainty is

uZLS =
√︂

urB
2
,Z + ua

2
,Z . (6.5)

The uncertainty in radial direction further depends on the reflectivity of the
measured surface (Table 6.3). The total uncertainty therefore depends on the
location and reflectivity of the measured point.

6.3.4 Laser line scanner on mobile mapping vehicle
For dynamic scenes, a laser line scanner is mounted to the roof of a mobile
mapping vehicle2 [43, 45]. As the vehicle is moving forward, stripes of point
measurements are concatenated to form a 3D point cloud. Therefore, the
uncertainty of the depth measurement depends on the distance measurement
of the Laser Light Detection and Ranging (LIDAR) measurement and the
accuracy of the position estimation of the scanner.

The measurement uncertainty of dynamic scenes is not known, but the
mobile mapping vehicle is equipped with two separate laser scanners, and
two point clouds are provided. The point clouds have an offset and, therefore,
are aligned using the ICP algorithm. The measurement noise is estimated
by comparing the point clouds from both scanners. For the comparison, the
distances between nearest neighbors are calculated as described in Section 6.3.1.
If both laser scanners encounter the same noise, the noise of a single scanner
can be recovered from the measurements by rearranging Equation 6.2

uZLS =
uDPC,Z√

2
. (6.6)

Experiments show an empirical standard deviation uDPC,Z = 2.0 mm, thus
uZLS = 1.4 mm. The laser scanner’s standard deviation is a combination of the

2The data that is used in this work was acquired within the BMBF project (Bundesministerium
für Bildung und Forschung / Federal Ministry of Education and Research) “Kooperative
cloudbasierte Straßenzustandserfassung / Cooperative cloudbased road condition monitoring –
StreetProbe”. Funding reference number 01MD16006D.
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measurement itself and the granular roughness of the road surface. However,
this does not lead to an underestimation of the accuracy of stereovision methods
in Section 6.3.2, as the cameras are not able to resolve the granular surface
roughness due to their spatial resolution. Therefore, it is correct to subtract
the combined uncertainty value. It is assumed that the terrestrial laser scanner
does not measure granule roughness because the laser beam hits the surface at
an acute angle so that the beam skips over the granules.

This approach of deriving the laser scanner’s measurement uncertainty also
neglects the noise of the position estimate of the laser scanners. Nevertheless, it
is used because no better estimate is available. The RMS values for the dynamic
laser scans therefore are donoted by RMSLS+N in the experiments.

6.3.5 Reported accuracy value
The oblique viewing angle of the cameras on the road, as well as that of the
terrestrial laser scanner, leads to an uneven distribution of the point cloud
densities. The densities decrease with the distance to the cameras or laser
scanner. Additionally, the accuracy of the near points is higher than the
accuracy of the far points. Accordingly, the empirical standard deviation that
is calculated on all points seems to be quite low. Therefore, the point cloud is
divided into bins that are evenly distributed along the surface’s Y-axis. The
empirical standard deviation is then calculated per bin. Standard deviation
over distance is plotted in Section 6.5. In order to have one single value per
stereoscopic image to encode the accuracy, the mean value of the standard
deviation per bin is used for the later comparisons. The mean value is divided
by the range in which points from the laser scan measurements are encountered
to relate the accuracy to the underlying geometry. This is done because the
proposed stereo methods favor flat surfaces. The range is found independently
for every bin.

6.3.6 Visualization of the results
In the experiments in Section 6.5, elevation images and difference images are
shown from a camera’s perspective (e. g. in Figure 6.7). The elevation images
generated by stereo vision are a direct result of the stereo algorithms. The laser
scanners’ elevation images are generated by placing a virtual camera with the
same parameters as the real right camera in a 3D scene with the measured
point cloud. An image is created by drawing a voxel with a finite size for every
measured point. They are colorized by a color map that corresponds to the
points’ Z-component. The difference images are generated in the same way,
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but the voxels are colorized according to the difference. The calculation of
differences was explained in Section 6.3.1.

6.4 Practical experiments
Elevation images are generated by the proposed methods described in Sec-
tions 3.2 and 3.3 from the stereoscopic images captured with the developed
stereo camera system. With both methods, 128 plane hypotheses are used in
the last iteration, which are evenly distributed around the mean road surface.
The images are downscaled by the factors 5 . . . 1 in both dimensions. Thereby
the search volume is altered from ±150 mm . . .±50 mm around the mean road
surface. The initial road surface is found from feature points in case of static
scenes. In the case of dynamic scenes, the initial road surface is found from
feature points only once. Its refined location is then used for the initialization
of all other dynamic scenes.

For comparison, static scenes are measured with the terrestrial laser scanner,
and dynamic scenes are scanned with the laser scanner mounted on a mobile
mapping vehicle.

6.4.1 Traditional method
The method iproposed in Section 3.2, in combination with the similarity mea-
sure being used are referred to as: HMI, BilSub and Census in the following.
The Census transform itself is calculated on 9× 9 px patches. The patch size over
which the similarity measures are accumulated has dimension Nm = 5 × 5 px.
Ks is chosen depending on the similarity measure:

Ks =

⎧⎨⎩
10−6 for HMI
10−2 for BilSub
5 for Census

(6.7)

Both, the patch size and the parameter Ks, were chosen by increasing them
until obvious mismatches no longer occurred in the elevation images.

The SGM implementation uses 16 search paths: horizontally, vertically,
diagonally, and the directions in-between. These are implemented by, e. g.,
traversing the path moving two steps to the left and one step down.

6.4.2 CNN method
The CNN method is implemented in the neural network framework PyTorch
[80]. It is pre-trained on the KITTI 2015 stereo dataset [74] in disparity mode.
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Then cost volume assembly is switched to the plane-sweep approach, and
training is continued with data generated by the HMI method. The training set
is created with the plane-sweep method with 64 equally spaced planes between
±30 mm around the mean road surface. The training data consists of left and
right color images as input and an elevation image as output. An example
of a right camera image and the corresponding elevation image is shown in
Figure 6.10c (although this particular example was used for validation only).
The HMI method also gives the mean road surface location, which is necessary
to calculate the plane hypotheses for training the network. The training dataset
consists of 510 examples of road surfaces captured while driving from the
inside of the vehicle. Another 20 static examples were taken outside the vehicle.

For training, the same 64 equally spaced planes between ±30 mm used to
create the dataset were used. For evaluation, the iterative method with 128
plane hypotheses was employed.

6.5 Results
The results for static scenes are discussed in Section 6.5.1 and those for dynamic
scenes in Section 6.5.2. An overview of the results for both is given in Table 6.4.

6.5.1 Results on static scenes
Static scene #1

Figure 6.7a shows an elevation image that was generated by the laser scan
measurement. It is shown from the right hand cameras’ perspective (see
Section 6.3.6). A bump accompanying the crack becomes visible, and a surface
depression in the cobblestone pavement can be seen. The bump has a height of
25 mm and the depression a depth of 28 mm in relation to the mean surface.

Figures 6.7c to 6.7j show the elevation images generated by the stereo meth-
ods. They also show the corresponding difference between the laser scan and
the stereo methods from the right camera’s perspective. The differences are
calculated in 3D space, as explained in Section 6.3.1. All four methods show
high accordance with the laser scan. The Bump and the depression can be
seen clearly. The difference image shows a correspondence within ≈2 mm over
large parts of the surface. However, the cobblestone joints are not resolved on
the stereo vision elevation images. The HMI and BilSub methods are able to
reconstruct some of the leaves, whereas the Census and CNN methods smooth
them out.
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Figure 6.5: Static scene #1 – comparison of stereo method results to laser scan data.

The graph in Figure 6.5 shows the interval enclosing 90% of distances between
laser scan point cloud and stereo vision point clouds for evenly spaced bins
across the Y-axis (see Section 6.3.5). It also shows the RMS value of the laser
scan RMSLS, which is calculated based on the laser scanner’s datasheet, and
the RMS value of the stereo vision method RMSSV , which is calculated as
described in Section 6.3.5. The shown resolution is the theoretical resolution,
which was calculated in Section 5.2. The enclosing interval is within ±2 mm
close to the camera and jumps to larger values at a distance of ≈9 m. That is
where the cobblestone pavement begins. The mean RMSLS values are reported
in Table 6.4. It shows that the CNN method produces the smallest error.

Static scene #2

Figures 6.8c to 6.8j show the elevation images and the corresponding difference
images created by the different stereo methods for the second static example.
The graph in Figure 6.6 shows the same values as in the previous example. All
methods can reconstruct the elevation of partly smooth surfaces. The jumps
between tiles are visually best reconstructed by the HMI and BilSub methods.
The HMI method produces the largest errors in the upper left-hand corner. The
Census and CNN methods both create smooth surfaces. The HMI and BilSub
methods are able to reconstruct some of the leaves, whereas the Census and
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Figure 6.6: Static scene #2 – comparison of stereo method results to laser scan data.

CNN methods smooth them out. These visual results are confirmed by the
RMS values in Table 6.4. The best result is achieved by the BilSub method.

6.5.2 Results on dynamic scenes
Next, the reconstruction quality of dynamic scenes is examined. Figures 6.9,
6.10, 6.11 show camera images and visual results for dynamic scene #1 under
different lighting conditions. The corresponding graphs in Figures 6.15 to
6.17 show the the same values as in the previous exmaples. The resulting
motion blur and mean RMS values are found in Table 6.5. With values up to
19 pixels at long exposure times, motion blur is not negligible. The effect on
the reconstruction quality depends on the stereo method. The HMI method
is very sensitive for motion blur, which can be seen on the right-hand side,
where the elevation of a large patch was not reconstructed correctly. The other
methods are not as sensitive, but still, more errors appear under bad lighting
conditions. That can be seen in the upper left-hand corner. However, the major
surface defects (a step in the foreground, rutting on the right-hand side, and
overall an unevenness) are reconstructed by all methods under all lighting
conditions. Observing the graphs in Figures 6.15 to 6.17 it is noticeable that the
differences between the laser scan and the stereo vision point clouds show the
same parabola-like bias in all twelve cases.
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.7: Static scene #1 – a laser scan elevation image, b right hand camera image,
c ,d HMI elevation/difference image e ,f BilSub elevation/difference image,
g ,h Census elevation/difference image, i ,j CNN elevation/difference image
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6.5 Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.8: Static scene #2 – a laser scan elevation image, b right hand camera image,
c ,d HMI elevation/difference image e ,f BilSub elevation/difference image,
g ,h Census elevation/difference image, i ,j CNN elevation/difference image
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

Figures 6.12, 6.13, 6.14 show a similar road segment under different lighting
conditions. The results are similar to the previous one. All methods can
reconstruct the large surface depression under all lighting conditions, and the
HMI method is most sensitive to bad lighting conditions with high motion
blur. That can be seen in the upper right corner and at the bottom edge. The
parabola-like bias observed on the previous segment is not observed on this
segment.

Table 6.4 shows that the CNN method performs best in almost all cases for
the dynamic scenes.

6.6 Discussion
The static scenes show a characteristic of the different methods: the similarity
measures that work on pixels (HMI, BilSub) reconstruct fine structures in more
detail, such as the edges of the tiles or the leaves. Census, as a window-based
method, loses the fine structure and produces smooth surfaces. That is because
it is implicitly assumed that all pixels in a window belong to the same plane and
thus have the same elevation in 3D space. For asphalt concrete surfaces, this is
not a problem, because fine structures are rare. Usually, they have an overall
smooth surface. This can be seen in the first static scene, where the Census
method outperforms HMI and BilSub. The joints between the cobblestones
are not important in this comparison, because none of the methods could
reconstruct them. The second static scene contains many fine structures, and,
therefore, BilSub performs best.

On the one hand, these results depend on the choice of the window size
used by the Census transform. They also depend on the choice of the patch
size on which the similarity measures are accumulated. On the other hand,
the Census transform needs a minimal window size to work with to match
windows robustly. The size over which similarity measures are accumulated
was the same throughout all experiments, and, therefore, it does not explain
the smoother surfaces if Census is used. The parameter Ks does affect the
results. It puts more weight on the smoothing or data term, but the smoothness
assumption itself is encoded in the smoothing term, as discussed in Section 2.5.4.
Therefore, a smooth surface, as generated by the Census method, cannot be
achieved by e. g. the BilSub method by simply adapting the parameter Ks.

Shadows and shiny surfaces do not have a strong influence on the recon-
struction. In the second static scene, this is due to the direction of the sunlight
coming from the right side, which produces similar shiny surfaces in both
camera images, but also to the similarity measures used, which are robust
against radiometric differences.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.9: Dynamic scene #1, long exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j CNN
elevation/difference image
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.10: Dynamic scene #1, medium exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j
CNN elevation/difference image

108



6.6 Discussion

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.11: Dynamic scene #1, short exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j
CNN elevation/difference image
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.12: Dynamic scene #2, long exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j
CNN elevation/difference image
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.13: Dynamic scene #2, medium exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j
CNN elevation/difference image
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6.14: Dynamic scene #2, short exposure time – a laser scan elevation image, b
right hand camera image, c ,d HMI elevation/difference image e ,f BilSub
elevation/difference image, g ,h Census elevation/difference image, i ,j
CNN elevation/difference image
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Figure 6.15: Dynamic scene #1, long exposure time – comparison of stereo method
results to laser scan data.
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Figure 6.16: Dynamic scene #1, medium exposure time – comparison of stereo method
results to laser scan data.
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction
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Figure 6.17: Dynamic scene #1, short exposure time – comparison of stereo method
results to laser scan data.
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Figure 6.18: Dynamic scene #2, long exposure time – comparison of stereo method
results to laser scan data.
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Figure 6.19: Dynamic scene #2, medium exposure time – comparison of stereo method
results to laser scan data.
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Figure 6.20: Dynamic scene #2, short exposure time – comparison of stereo method
results to laser scan data.
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

(a) Detail view from the right
camera image.

(b) Detail view from the left
camera image if the per-
spective transformation is
ignored.

(c) Detail view from the left
camera image after the per-
spective transformation.

Figure 6.21: Detail view from dynamic scene #1 with long exposure time and strong
motion blur. Only if the perspective transformation is taken into account,
corresponding pixels are compared.

Due to a lack of training data, the CNN was trained on data generated by
the HMI method. Laser scans were not used for training because a sufficiently
large data set was not available and is difficult to obtain. Laser scanning and
the acquisition of stereoscopic images would have to take place simultaneously,
and the relationship between scanner and camera would have to be known
precisely. That makes the measurement complex and expensive, especially
for measurements recorded during the drive. Nevertheless, the CNN method
produces interesting results. It produces rather smooth surfaces, and it loses the
fine structure. The region-level features might cause that, but more importantly,
the training set mostly consisted of asphalt concrete surfaces and did not
contain many examples of tiles.

The more interesting result is that the CNN method performs better than the
HMI method, i. e. it outperforms the training data. That becomes especially
evident in the dynamic examples, where the CNN method performs best in
almost all cases. An explanation for this result is the following: in the training
data, the elevation is estimated correctly for most pixels, while for some pixels,
the elevation is wrong. The correct pixels fit the model, which is learned by the
CNN. The wrong pixels do not fit the model and appear as noise. Since the
correct pixels outweigh the wrong pixels, the CNN can generalize the correct
and reject the erroneous ones.

Comparing the results on dynamic scenes shows that the motion blur does
not have as strong an effect as one might expect. Since the recorded surfaces are
piecewise flat, the movement of each point on this surface follows a linear path
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6.7 Summary

in both images. Therefore, the blurred texture is transformed perspectively
correct by plane homographies. After that, blurred objects look exactly the
same in both images. The motion blur results in a reduced spatial resolution in
the direction of motion, which is in the vertical direction, and fine details in
this direction can no longer be distinguished. In the horizontal direction, it has
little effect. However, the horizontal direction is the direction that is primarily
being searched with horizontally arranged stereo camera systems. The motion
blur, therefore, has little effect on the estimated elevations.

If the surface texture is blurred, and fine details are lost, patches should
be compared instead of individual pixels. That is done by accumulating
similarity measures on patches in the traditional method, through the Census
transformation itself, and it is done in the CNN when calculating feature maps.
Before patches are compared, they first must be transformed perspectively
correctly, as shown in Figure 6.21. If one transforms only a single pixel and
compares the patch surrounding the corresponding pixels in both images, the
perspective transformation is ignored. With the proposed method, the entire
patch is transformed correctly.

Comparing the results of static and dynamic scenes, it is noticeable that the
errors in dynamic scenes are smaller than in static scenes. Several reasons
explain this. The static scenes that are used in this work are generally more
difficult to reconstruct because the first contains cobblestones, and the second
contains tiles, while the dynamic scenes all contain asphalt concrete surfaces.
The static scene in Figure 6.5 shows an asphalt concrete surface between 4 m
and 9 m distance. The errors of that part are smaller than the errors in all
dynamic scenes. Furthermore, the results depend on the RMSLS values, which
are only roughly approximated for dynamic scenes. Therefore, the results for
static and dynamic scenes cannot be compared quantitatively.

The reason for the parabola-like bias of the differences in the dynamic scene
#1 is unclear. The images of the scene were taken on three consecutive test
drives, but the results are similar on all three of them. The behavior is not
observed in the dynamic scene #2 nor in the static scenes. An explanation could
be a faulty laser scan measurement. The laser scan point cloud is composed of
scan lines measured with laser line scanners mounted on a mobile mapping
vehicle. If the position estimation of the moving scanner is inaccurate, this may
lead to the shown deviation between the measured data.

6.7 Summary
In this chapter, the stereo methods proposed in Chapter 3 were evaluated on
real-life examples of the target application of road surface elevation estimation.
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6 Experiments – Stereoscopic 3D Road Profile Reconstruction

The data was recorded with the developed stereo camera system. In the case
of dynamic scenes, it was mounted behind the windshield, and pictures were
captured during the drive.

The methods performed differently on the data of the different scenes. For
fine details the BilSub method seems to be suited best. On smooth surfaces and
blurred images, the CNN method has the best overall performance. Since the
CNN was trained on data generated by the HMI method, it is quite possible
that the results of the CNN could be further improved if better training data
was available. In particular, the results of the CNN on fine structures should
be studied in more detail, and it should be found out whether the reason for
over-smoothed surfaces is in the training data.

Overall, the results showed that the stereo camera system combined with the
stereo algorithms can reconstruct the road surface up to several meters in front
of the vehicle. The accuracy of the system is within a few mm for large parts of
the surfaces with a RMS value of <2 mm.
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7 Experiments – Deep Learning
Self-Calibration from Planes

In order to evaluate the proposed DLSC method, first, images are created
by artificial cameras, such that all calibration parameters are known. The
parameters are reconstructed by the DLSC method and for comparison by
the MPT method that was described in Section2.6.4. Afterward, the proposed
method is tested on real monocular cameras and on stereo camera systems.

7.1 Test cameras
Artificial images are created in two steps. First, a projective camera is simulated
in the 3D computer graphics software blender [26]. Objects are modeled as
flat, textured surfaces, and undistorted images are rendered. In a second step,
the images are distorted by inverse warping. This requires the inverse of the
distortion model (Equations 2.21–2.27), which is calculated by an approximate
iterative algorithm [11].

In addition, three different real cameras are calibrated in the experiments:

• A GoPro Hero 4 Black action camera with a wide-angle lens and strong
distortion (see Figure 7.2) is calibrated. The image sensor has 3840 ×
2160 px. In the experiments, the images are first cropped and then down-
scaled to 1920 × 1200 px. The camera has a fixed focus.

• The same industrial camera that was used in the depth reconstruction
experiments in Section 6 is calibrated. The image sensor and lens specifi-
cations were given in Tables 6.1 and 6.2. The resolution is 1920 × 1200 px.
The focus is set manually but remains fixed during the experiments.

• A stereo camera system mounted behind a vehicle’s windshield is cal-
ibrated. It consists of two of those industrial cameras from Section 6
equipped with a 16 mm lens. The resolution is 1984 × 560 px. The focus
is set manually but remains fixed during the experiments.
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7 Experiments – Deep Learning Self-Calibration from Planes

7.2 Calibration targets
The DLSC method requires images of a plane from different perspectives. For
calculating the similarity between views, it requires a textured surface.

7.2.1 Artificial targets
The artificial target is a plane that is equipped with a photograph as a texture.
Various camera parameters are used to create different sets of calibration images.
A set consisting of three images is shown in Figure 7.1.

7.2.2 Real targets for monocular camera calibration
For the calibration of real monocular cameras, an example of a flat surface
is chosen that is available almost everywhere. It is the floor of a staircase.
Figure 7.2 shows a set of three images that were taken by the GoPro camera.
The same floor is also captured by the industrial camera.

7.2.3 Real targets for stereo camera system calibration
For a realistic scene that would appear in road profile measurements, the target
is an asphalt concrete roadway in a perfect condition. The images were taken
during the drive at a low speed. The set of calibration images, consisting of a
single left and right image, is shown in Figure 7.3.

7.2.4 Targets for comparison
For the calculation of reprojection errors, images of a planar calibration target
with control points are used. Artificial and real images thereof are created. The
target used for real images is the same as was used in Chapter 6. It contains
481 points and has dimension 1080 mm × 740 mm. For the artificial images, a
plane with the same dimension was modeled. It was equipped with the same
texture that was printed and glued on the real calibration target. Examples of
an artificial and a real image are shown in Figure 7.4.

7.3 Accuracy
Correct camera parameters are known only in the case of artificial images.
Therefore, to determine the accuracy of the calibration, the geometric error
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7.3 Accuracy

(a) Distorted first view. (b) Distorted reference view. (c) Distorted second view.

Figure 7.1: Artifical images (test set #2) of a flat surface that were used for self-
calibration.

(a) Distorted first view. (b) Distorted reference view. (c) Distorted second view.

Figure 7.2: Images of a flat surface that were used for self-calibration of the GoPro
camera. The tile pattern is not used by the algorithm, but it makes the
distortion visible.

(Section 2.6.2) of back-projected image points of the planar calibration target is
calculated.

In order to make the distortion parameters easier to interpret, the mean and
median shift, that each pixel in an image undergoes, are calculated. That is
useful because different distortion parameters can lead to a similar amount of
distortion. In the case of artificial images, the distortion error is also calculated,
which will be shown in Section 7.3.2.

(a) Left camera image. (b) Right camera image.

Figure 7.3: Images of an asphalt concrete road surface that were used to calibrate the
stereo camera behind the windshield.
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7 Experiments – Deep Learning Self-Calibration from Planes

(a) Artifical image of the calibration target from
test set #3 (Section 7.4.1).

(b) GoPro camera image of the calibration tar-
get.

Figure 7.4: The MPT method is used for comparison. It requires images of a calibration
target.

7.3.1 Reprojection error
Since the calibration target’s location and orientation in relation to the camera
are unknown, they must be determined first. Therefore, the reprojection error
is iteratively minimized by Levenberg-Marquardt optimization [11] for every
view j of the target

min
Rj ,T j

∑
i

⃓⃓⃓
m̃i − δ

(︂
κ
(︂

Θ
(︂[︂

Rj|T j

]︂
Xi

)︂)︂)︂⃓⃓⃓2
. (7.1)

Several images of the calibration target from different perspectives are captured
and the RMS of all euclidian distances

RMSre =

⌜⃓⃓⎷ 1
MN

M

∑
j=1

N

∑
i=1

⃓⃓⃓
m̃i − δ

(︂
κ
(︂

Θ
(︂[︂

Rj|T j

]︂
Xi

)︂)︂)︂⃓⃓⃓2
(7.2)

is reported as the reprojection error in the results.

7.3.2 Distortion
The distortion is the distance between a pixel in distorted and undistorted
image coordinates

di = m̃i − mi , (7.3)

where the distorted image coordinates are found by m̃i = κ
(︁
Θ
(︁
κ−1 (mi)

)︁)︁
for

all pixel coordinates mi of the image sensor. The mean and median values of
|di| are reported in the results.
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7.4 Practical experiments

Table 7.1: Learning rates used in the DLSC optimization.

Parameter Learning Rate
encoding of Ri 1e-3

Ti 1e-3
fx, fy 1e-1
u0, v0 1e-1
K1, K2 1e-2
P1, P1 1e-2

K3 1e-3
K4, K5, K6 1e-4

For artificial images, the real distortion parameters are known, and the
distortion error is calculated

ei = d̂i − di , (7.4)

where d̂ is the estimated distortion and d is the true distortion. The relative
error is calculated by

ēi =

(︃
eu ,i

du ,i
,

ev ,i

dv ,i

)︃T
. (7.5)

The mean and median values of |ēi| are reported as the mean relative error
(MRE) and the median relative error (MdRE) in the results.

7.4 Practical experiments
The DLSC method is implemented in the neural network framework PyTorch
[80], which requires GPUs for computation. In the experiments, NVidia GTX
1080 Ti GPUs with 11 GB of memory are employed. With an input image
resolution of 1920 × 1200 px, the feature extraction network requires 8 GB of
GPU memory per input image. Therefore, the feature extraction network for
every individual input image is calculated on a dedicated GPU. For the feature
extraction network, the learned weights from Chapter 3 are used. The Adam
optimizer [65] with learning rates shown in Table 7.1 is used.

For comparison, calibration parameters are estimated by the MPT method
that was described in Section 2.6.4. The implementation from the OpenCV
library is used for this purpose.
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7 Experiments – Deep Learning Self-Calibration from Planes

7.4.1 Experiments with monocular cameras
The DLSC method uses a reference camera in whose space the images of all
cameras are compared. To calibrate the distortion model in all parts of the
image, it is advantageous if all images overlap the reference image in all areas.
Therefore, the reference camera is pointed approximately vertically to the plane
that is used for calibration. That makes it easier to ensure that all other images
cover this part of the surface. Furthermore, it helps in finding the correct
homography decomposition (Section 4.3.3).

In every experiment, three images of the textured plane are created for use
with the DLSC method. Furthermore, one set of images of the calibration target
with the point pattern for use with the MPT method and another set for the
calculation of the reprojection error is generated.

Experiments with artificial cameras

Three artifical cameras with various camera parameters are created. They all
have the resolution 1920 × 1200 px. The calibration parameters are shown in
Table 7.2. In experiments #1 and #2, 14 images are used for the MPT method,
and three images are used to calculate the reprojection error. In experiment
#3, 10 and 3 images are used. That is sufficient because there is no noise in
artificial images.

1. In the first experiment (artificial #1) the principal point of the artifical
camera is shifted 100 pixels in horizontal direction away from the center.
The pictures are radially distorted by the parameters K1, K2. All other
distortion parameters are set to zero. For initialization, one paramater
for fx = fy and the distortion parameters K1, K2 are estimated. The
parameters fx = fy, u0, v0, K1, K2 are calibrated by the MPT and by the
DLSC method.

2. In the second experiment (artificial #2), the camera’s aspect ratio is not
equal to 1, and the principal point is displaced vertically and horizontally
from the center. The same distortion parameters as in the first camera are
used. Due to the different intrinsic parameters, this leads to a different
amount of distortion. Since the aspect ratio is not equal to one, an initial
value for both fx and fy, and initial distortion parameters K1, K2 are
estimated. The parameters fx, fy, u0, v0, K1, K2 are calibrated by the MPT
and by the DLSC method.

3. The artificial camera in the third experiment (artificial #3) resembles
the real GoPro camera of the next experiment, i. e. the intrinsic and
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7.4 Practical experiments

distortion parameters are set to similar values as are found by experiment
for the GoPro camera. The principal point is displaced from the center,
and a higher degree of radial distortion than in the previous cameras is
used. Tangential distortion is also present. The distortion parameters
K1, K2, K3, P1, P2 are defined and all other paramters are set to zero. For
initialization, one paramater for fx = fy, and the distortion parameters
K1, K2 are estimated. The parameters fx = fy, u0, v0, K1, K2, K3, P1, P2 are
calibrated by the MPT and by the DLSC method.

Experiments with real cameras

1. With the GoPro camera, one paramater for fx = fy, and the distortion pa-
rameters K1, K2 are estimated for initialization. Then, the complete distor-
tion model with the parameters fx = fy, u0, v0, K1, K2, P1, P2, K3, K4, K5, K6,
is calibrated by the MPT and by the DLSC method. 52 images are used
for the MPT method and 51 to calculate the reprojection errors.

2. With the industrial camera, the distortion parameters are initialized to
zero due to the low lens distortion. Although, from the datasheet, a pixel
aspect ratio of one is known to be correct, two experiments are carried
out: with fx = fy, and with fx, fy both as free parameters. In both cases,
the principal point and the complete distortion model are calibrated by
the MPT and by the DLSC method. 106 images are used for the MPT
method and 36 to calculate the reprojection errors.

7.4.2 Experiments with stereo cameras
With the stereo camera system, a single stereoscopic image is used for the DLSC
method. Once again, two sets of images of the calibration target with the point
pattern are captured, one for use with the MPT method and one to calculate
the reprojection errors. Since the windshield has an influence on the calibration
parameters, all images are taken through the windshield. For initialization, the
focal lengths are set to the same value fx L = fyL = fxR = fyR. Due to the low
lens distortion, the distortion parameters are initialized to zero.

Because the number of intrinsic parameters that can be recovered from only
two images is limited, the DLSC method is used to calibrate the intrinsic pa-
rameters fx L = fyL = fxR = fyR, u0L, v0L, u0R, v0R. Furthermore, the distortion
parameters K1, K2, P1, P2, K3 are calibrated for both cameras. The distance be-
tween the camera and the road surface and the baseline length are measured
with a ruler and are fixed during the optimization.
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(a) Distorted reference view. (b) All three views are blended
with the initial parameters
in the reference camera
view.

(c) All three views are blended
with the optimized parame-
ters in the reference camera
view.

Figure 7.5: Images of a flat surface that were used to calibrate the GoPro camera. In
(b), initial parameters are used to undistort and transform the images, and
the blended images appear blurred. In (c), the parameters after the DLSC
optimization are used, and the blended images appear perfectly sharp. The
algorithm does not use the tile pattern, but it makes the distortion visible.
[15]

With the MPT method, the parameters fx, fy, u0, v0, K1, K2, P1, P2, K3 are cali-
brated for both cameras, but different conditions are enforced. These are shown
in Table 7.3.

7.5 Results

7.5.1 Monocular cameras
The DLSC method is initialized by imprecise parameters at first. Images are
undistorted, transformed, and compared. Due to the imprecise parameters, the
images do not match at first in the reference camera space. This is visualized in
Figure 7.5. Figure 7.5a shows the distorted reference image. Figure 7.5b shows
the three blended, undistorted, and transformed images in the reference camera
space, where the initial parameters have been used. After the optimization by
the DLSC method, all three images match perfectly. That is shown in Figure 7.5c.
The three images cannot be distinguished anymore, and they look like one
single image. Only in the upper right-hand corner, it can be seen that the three
images did not overlap in this part. Figure 7.5 shows the result for the GoPro
camera, but the result is representative for all other artificial and real cameras.

Results for all experiments with monocular cameras are reported in Table 7.2.
In each case the MPT, initialization, and DLSC methods are evaluated. For
artificial cameras, results obtained with the real parameters are shown as well.
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Figure 7.6: The displacement error generated by the MPT and the proposed DLSC
method in the artificial test case #3. Arrows represent the displacement error
with a factor of 10.

Results for artificial cameras

The results for the artificial experiment #1 show that both, the MPT and the
DLSC method, can estimate the true intrinsic parameters to a precision of
≈1 px. The distortion parameters are recovered precisely by both methods. The
reprojection errors are very small with 0.04 px and 0.05 px, respectively. The
reprojection error of the MPT method is even smaller than the error that was
achieved by the real parameters.

The results for experiment #2 show a larger error of the DLSC method
compared to the MPT method, although the reprojection error still is within
0.09 px and the MRE of the distortion is within 0.1 %. In this case, the DLSC
method searches two intrinsic parameters from three calibration images. This
number is the theoretical limit under the assumption that the principal point is
found through the distortion model, which makes it more difficult to solve the
problem.

In experiment #3 the reprojection of the DLSC method is larger, but the MRE
and MdRE are significantly smaller compared to the MPT method. Therefore,
in Figure 7.6, the displacement error produced by both methods is compared
for individual pixels. It shows that the DLSC method predicts the displacement
much more accurately. This is particularly visible at the edges.
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Table 7.2: Note: The table extends horizontally over two pages.Results for artificial
found by the initialization method are referred to as Ini. Values
highlight the best result.

parameters
fx fy p0 p1 K1 K2 P1 P2

camera method in px in px in px in px (×e-3) (×e-3)
artifical - 1386.5 1060.0 600.0 -0.240 0.050

# 1 Ini. 1323.7 960.0 600.0 -0.176 0.019
MPT 1387.2 1060.6 599.3 -0.240 0.050
DLSC 1385.6 1058.7 600.2 -0.240 0.050

artifical - 1386.5 1663.9 975.0 590.0 -0.240 0.050
# 2 Ini. 1289,8 1558,5 960.0 600.0 -0.140 -0.018

MPT 1387.3 1664.7 975.6 589.4 -0.240 0.050
DLSC 1384.8 1661.0 972.2 590.0 -0.239 0.049

artifical - 840.9 975.0 590.0 -0.250 0.100 -1.000 -0.010
# 3 Ini. 824.3 960.0 600.0 -0.261 0.115

MPT 841.9 974.5 588.8 -0.250 0.104 -0.755 -0.297
DLSC 841.4 975.0 589.9 -0.253 0.106 -0.980 -0.032

GoPro Ini. 695.2 960.0 600.0 -0.146 0.020
MPT 840.2 973.2 586.5 -2.701 1.808 -0.232 0.249
DLSC 839.2 974.1 590.6 -0.249 0.095 -1.108 -0.078

industrial Ini. 5247.5 960.0 600.0
# 1 MPT 5275.4 894.9 690.6 -1.106 4.835 3.121 -2.779

DLSC 5264.5 960.4 601.4 -0.095 1.811 -5.868 2.094
industrial Ini. 5247.5 5247.5 960.0 600.0

# 2 MPT 5284.5 5280.7 882.9 682.9 -13.654 4.757 2.458 -3.427
DLSC 5163.0 5104.6 944.5 591.8 -0.036 -0.737 -5.320 -1.735

Results for real cameras

For real cameras, the true distortion is unknown, and therefore only the repro-
jection errors are compared. For the GoPro camera, the results show that the
DLSC method slightly outperforms the MPT method.

In the first experiment with the industrial camera, where the aspect ratio is
fixed at one, both methods’ reprojection errors and the amount of predicted dis-
tortion are comparable. Although the real calibration parameters are unknown,
it seems as if the principal point estimated by the MPT method is too far away
from the center, whereas the DLSC method places it approximately at the center.
Due to the low lens distortion, the parameters used for the initialization already
achieve an equal reprojection error as the final parameters estimated by the
DLSC method.

In the second experiment with the industrial camera, the aspect ratio is
not fixed in the calibration. Measured in terms of the reprojection error, the
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and real cameras. The rows marked by - show the real parameters. Parameters
shown in gray are not optimized but are defined or are fixed. Values in bold

parameters reprojec- distortion
K3 K4 K5 K6 tion err. median mean MdRE MRE

in px in px in px in % in %
0.05 26.7 39.5 ref. ref.
1.69 21.8 31.6 0.55 4.12
0.04 26.6 39.5 0.01 0.03
0.05 26.7 39.5 0.01 0.05
0.05 23.3 35.2 ref. ref.
2.16 16.7 26.8 0.90 3.01
0.04 23.3 35.2 0.01 0.03
0.09 23.3 35.2 0.03 0.10

0.010 0.11 61.6 65.1 ref. ref.
0.49 64.9 68.8 0.43 1.48

0.001 0.08 61.8 68.2 0.07 1.17
0.007 0.12 61.9 65.5 0.04 0.13

1.42 49.7 65.1
0.688 -2.416 0.963 1.430 0.20 70.5 88.3
0.008 0.018 -0.012 0.043 0.17 61.2 82.8

0.27 0 0
-9.919 -10.999 2.716 9.095 0.23 0.61 0.86
1.881 -0.001 0.015 -0.593 0.27 0.79 1.00

0.27 0 0
-10.253 -13.593 2.611 9.769 0.23 0.61 0.92
28.640 -0.001 0.036 -2.537 0.74 0.72 0.89

MPT method performs equally well as in the previous experiment, although
all calibration parameters differ by a rather large amount. Especially K1 and
K4 differ by an order of magnitude. In this case, the DLSC method performs
significantly worse than in the first experiment. Due to the low distortion, the
center of distortion, and thus the principal point, cannot be found through the
distortion model as precisely. As a result, the other intrinsic calibration parame-
ters are also not estimated accurately. The estimated amount of distortion stays
approximately the same, but the reprojection error increases.

7.5.2 Results for a stereo camera system mounted behind the
windshield

Calibration results for a stereo camera system mounted behind the windshield,
produced by the MPT and the DLSC methods, are shown in Table 7.3. First, four
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Figure 7.7: After the DLSC-Stereo calibration, the left and right camera images blend
perfectly.

intrinsic parameters were calibrated by the MPT method. Because the principal
point seemed to be too far away from the center, it was fixed at the center in the
next experiment. With the DLSC method and only a single calibration image
(and by including some measurements), one focal length for both cameras and
a principal point for both individual cameras can be estimated. Therefore, these
conditions were used with the MPT method. As a result, the reprojection error
increased. Because the principal point again seemed to be very far away from
the center, it again was fixed at the center. That decreased the reprojection
error.

For a fair comparison of the MPT and DLSC methods, the baseline used in
the DLSC calibration was adjusted to minimize the reprojection error of the
calibration target. An inaccurate baseline has the effect of changing the scene’s
overall scale, and a small error of the baseline leads to a large reprojection
error, making the values uncomparable. The DLSC method estimates the
principal point to be close to the center in a reasonable position. Compared
to the previous results, the reprojection error is larger, probably due to the
inaccurately estimated focal length. That is expected because the distance
between camera and road surface and the baseline length were measured with
a ruler and themselves are subject to a measurement error. The visual calibration
result is shown in Figure 7.7, where the left camera image is undistorted and
transformed to the undistorted right camera image. It can be seen that both
images blend perfectly.
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Table 7.3: Results of the DLSC-Stereo method compared to the results of the MPT. l –
left, r – right, all values are shown in pixels.

Method Cam fx fy px py error

MPT

l 3508.7 969.4 304.1 0.28r 3521.7 1019.6 319.4
l 3507.7 992 280 0.28r 3521.7
l 3452.7 1004.7 390.9 0.38r 1015.3 389.2
l 3516.6 992 280 0.30r

DLSC

l 3440.4 990.5 281.0 3.13r 992.6 280.0
l 3440.4 990.5 281.0 0.94∗r 992.6 280.0

∗For a fair comparison for calculating the reprojection error, the baseline was
adjusted to fit the calibration target best.

7.6 Discussion

7.6.1 Monocular cameras
The experiments with artificial images show the potential of the proposed DLSC
method. In the first artificial experiment, all parameters were reconstructed
almost precisely. In the third artificial experiment, lens distortion was strong,
and the principal point not located at the center. Nevertheless, all calibra-
tion parameters were also reconstructed accurately. The reprojection error is
approximately the same as that generated by the actual parameters. In this
experiment, the DLSC method achieves a distortion error that is significantly
smaller than the distortion error achieved by the MPT method. The reason for
this is the higher accuracy of the distortion model, as was shown in Figure 7.6.
The DLSC method uses every pixel to estimate the distortion model. That
is in contrast to the MPT method, which relies on feature points. This is an
important advantage due to the poor extrapolation capability of the distortion
model.

The second artificial camera is more difficult to calibrate. The distortion is not
as strong, and at the same time, the aspect ratio is not equal to one. A strong
distortion would help because the principal point is calibrated as a part of the
distortion model. Since only three images are used with the DLSC method, the
theoretical limit of parameters to be calibrated is reached in this experiment.
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Therefore, both, the reprojection and the distortion error, are larger with the
DLSC method than with the MPT method.

Similar results are achieved with the real industrial camera. It has a low lens
distortion, making it difficult to calibrate the principal point as a part of the
distortion model. Consequently, in the second experiment, where four intrinsic
parameters were searched for, the parameters cannot be estimated precisely.
If only three intrinsic parameters are searched, as in the first experiment, the
results are much better. However, this behavior is not inherent to the DLSC
method, but rather shows that the DLSC method still performs remarkably
well with this absolute minimum number of calibration images. It can be
assumed that all parameters would be estimated with even greater accuracy if
more input images were used. However, since the number of input images is
currently limited by the amount of available GPU memory, more input images
could not yet be used.

The GoPro camera has an extreme lens distortion. Therefore, the principal
point can be estimated precisely as part of the distortion model. That leaves
theoretically two intrinsic parameters that could be calibrated. As a result, the
only intrinsic parameter left, which is the focal length, is estimated precisely,
which can be seen at the small reprojection error. In this case, the DLSC method
outperforms the MPT method. If one compares the result with the artificial test
case #3, this is probably due to more precise distortion parameters.

In all the experiments with artificial images, the reprojection error of the
MPT method is smaller than the error that was achieved by the real parameters.
The cause probably is the finite resolution and the two-step method of creating
those images, where the projective camera is modeled first, and the distortion
is added afterward. Another cause might be that the algorithm that finds the
individual points of the calibration target does not find their precise locations,
and the MPT method might adapt to these imprecise locations.

With all these results, one has to remember that only three calibration images
were used in each case for the DLSC method, whereas for the MPT method
many more calibration images were used.

7.6.2 Stereo camera system
The stereo camera system behind the windshield is particularly tricky to
calibrate. Due to the influence of the windshield, it has to be calibrated
after being installed (Section 6.1.4). The cameras are focused on the road
surface, and the focus cannot be changed, as that would change the intrinsic
camera parameters (Section 2.2). If the calibration method with a movable 2D
calibration target is applied, the target must be captured in different poses
and positions. For a reliable estimation of distortion parameters, the entire
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image space has to be used, and for a good estimation of the focal lengths, the
distance between cameras and target needs to be varied. The overlapping space
that is captured by both cameras, however, is small. Most of it is located behind
the road surface and is therefore not accessible without lifting the vehicle. If
the calibration target is brought closer to the cameras, it quickly goes out of
focus. These considerations show that calibration with a movable target is not
ideal for the intended setup.

In the experiments with the MPT method, the coordinates of the princi-
pal points differ, depending on the fixed conditions, while neither the focal
lengths nor the reprojection errors change much. It indicates that the location
of the principal point and the distortion model could not be estimated accu-
rately. It demonstrates the difficulty of calibrating the stereo camera behind the
windshield.

The DLSC method produces a much larger reprojection error. It is caused
by the imprecise length and distance measurements, and by the windshield’s
effect on the baseline length (Section 6.1.4). If the baseline is adapted to fit
the calibration pattern best, the reprojection error is reduced by an order of
magnitude.

The reprojection error generated by the DLSC method and corrected by
scaling is ≈3 times as large as the error generated by the MPT method. Never-
theless, the result is remarkable because only one stereoscopic image pair was
used to perform the calibration.

7.6.3 Non-planar calibration surface
One aspect that has not been considered so far is the flatness of the calibration
surface. The DLSC method assumes that the surface is perfectly flat, which is
not the case in reality, especially if some surface in a working environment is
used for calibration that appears flat enough to the user. The transformation
of the calibration images into the undistorted reference camera space is only
valid for undistorted images of flat surfaces. If the surface had a shape that
corresponds to the distortion model if projected onto an image, the shape of
the surface would influence the calibration result. If the surface is not perfectly
flat, and the shape’s image does not fit the distortion model, the effect appears
as noise, and the calibration result should still be ok. This assumption seems to
be valid, as the calibration results are quite good, but the effect has not been
studied in detail yet.
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Figure 7.8: The expected elevation error depends on the measured height of the cameras,
the distance to the cameras, and the accuracy of the focal length estimation.

7.6.4 The influence of an inaccurately estimated focal length
After the DLSC calibration, the undistorted and transformed images match each
other perfectly, which can only be the case if the distortion has been removed
and the homography between those images has been estimated correctly. Given
the intrinsic camera parameters, a homography can be decomposed into the
scene’s geometrical layout, consisting of poses and orientations of cameras
and plane [71]. The length of the baseline cannot be recovered from the
decomposition. With a baseline of more than 1 m, one can assume that it is
measured with a small relative error. For the intrinsic camera parameters, the
assumptions are zero skew, an aspect ratio of one, and that the principal point
is estimated independently from the projective camera model. Therefore, a
reasonable assumption is that the focal length is the only parameter that is not
estimated accurately. The effect of this inaccuracy on the elevation estimation
is investigated in the following.

Following Section 3.1, the stereo camera setup with the base plane defines
a homography. It is used to transform pixel coordinates from one image to
the other. The base plane’s homography is decomposed with an inaccurate
focal length, and the result is used to perform the plane-sweep again. It
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results in a slight change of pixel coordinates in comparison to the accurate
plane-sweep. The difference of pixel coordinates can now be translated to a
deviation in elevation that would be estimated by the plane-sweep method.
These calculations are performed numerically for the stereo camera system
used in the experiments. The result is an erroneous elevation estimate. It
depends on distance, the elevation itself, and the inaccurate focal length, and is
shown in Figure 7.8.

Assuming the focal length estimated by the MPT method is the true value
(≈3500 px), then the focal length estimated by the DLSC method (3440 px) is
off by ≈1.7 %. That leads to a predicted elevation error of ≈2 % – ≈5 %.

7.7 Summary
In this Chapter, the new method for camera self-calibration, which was intro-
duced in Chapter 4, was evaluated. The experiments with mono cameras in
Section 7.5 show that the method is capable of reconstructing intrinsic camera
parameters as well as distortion parameters with high precision. The effort is
reduced to a minimum, since only three views of a flat surface are required to
estimate all camera calibration parameters. That is in contrast to established
methods, which require many pictures of custom made calibration patterns.

In Section 4.4 the method was extended for use with a stereo camera system.
In this case, two stereoscopic views are required to do a full calibration. In case
the focal lengths have been calibrated beforehand, and the system’s baseline is
known, the distortion parameters of both individual cameras together with the
extrinsic parameters can be estimated from a single stereoscopic picture of a flat
surface. For comparison, in [111], a method is described that uses structured
light for this purpose. Without the prior knowledge of the focal lengths, it was
shown that adding a distance measurement enables the extraction of a shared
focal length, together with the principal points, the extrinsic, and the distortion
parameters from a single stereoscopic image. Although this technique can only
be as accurate as the distance measurement, the accuracy may be sufficient,
depending on the application.
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8 Road Condition Monitoring
For the planning of road renewal at the network level, road construction
authorities use indices that describe the overall condition of road sections [87,
93]. They are calculated from surface defects, such as cracks, patches, and
potholes, and also take into account the surface shape, which may include
rutting or an overall unevenness. In [35] the concatenation of condition variables
describing certain conditions to an overall index value for an asphalt concrete
pavement for inner-city roads is given. The index value is frequently used
by road construction authorities in Germany. Its composition is shown in
Figure 8.2. The reviews in [24] and [85] show that many papers have been
published on the detection of surface cracks and potholes by the analysis of
camera images, e. g. in [21]. Potholes can also easily be found in depth maps by
comparing the depth of a contiguous region to a threshold, as can be seen from
Figure 8.1. An approach is described in [102]. Approaches for patch detection
are also available [84].

What is missing to calculate the index are the condition variables concerning
the deformation of the road surface. Therefore, this section demonstrates
the calculation of condition variables from the road profile of an inner-city
road, generated from the stereo camera system. It is an example of how the
developed methods are useful for road condition monitoring in practice.

8.1 Calculation of condition variables
In order to calculate the condition index, several individual condition variables
are needed, as is shown in Figure 8.2. Their calculation is described in the
following.

Simulated leveling board – PGR A simulated 4 m leveling board is placed
on the measured points along the longitudinal road profile of the right wheel
path. The distance vertically to the road profile in the middle of the board is
the PGR value, as is shown in Figure 8.3. The board is shifted from support
point to support point, and the result is a new derived profile. The maximum
and average values of the derived profile of a road section are the PGR-M and
PGR-A values [36].

137



8 Road Condition Monitoring

(a) Right camera image (b) Elevation image from the right camera’s per-
spective

Figure 8.1: A large pothole that has been marked for repair by a road construction
authority is clearly visible in the elevation image.
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Figure 8.2: Overview of the calculation of the condition index [35].
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Figure 8.3: A simulated 4 m leveling board is used to measure the longitudinal road
profile.

SPT
Cross profile
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Figure 8.4: A simulated 2 m leveling board is used to measure the maximum rut depth.

Maximum rut depth – SPT The maximum rut depth is determined by mov-
ing a simulated 2 m leveling board across the road’s cross profile (see Figure 8.4)
[29]. The maximum distance between the board and the profile measured
on the center’s left-hand side is the SPTL value. The one measured on the
right-hand side is the SPTR value. MSPTH and MSPTR are mean values of
the former, calculated across road sections, and the maximum of the two is the
maximum rut depth MSPH [36].

SPHR
Cross profile

SPHL

Figure 8.5: The fictional water depth is determined from the cross profile.

Fictional water depth – SPH The fictional water depth is the height up to
which water could be filled into the cross profile on both sides from the center.
[29, 36]. The values are SPHL for the left side and SPHR for the right side, as
shown in Figure 8.5. The mean values of both are calculated on road sections,
and the maximum of both values is the maximum fictional water depth MSPH.

Alligator (fatigue) cracking – NRI The ratio of the surface with irregular
surface cracks to the total surface area is the NRI value [37].

Patching – FLI The ratio of the surface with patches to the total surface area
is the FLI value [37].
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Figure 8.6: Road condition variables over traveling distance – Bismarckstraße from
Kaiser-Friedrich-Straße to Wilmersdorfer Straße in Berlin, second lane from
the left.

Other surface damages – OBS The ratio of the surface with other surface
damages to the total surface area is the OBS value [37].

Each condition value is normalized to a range between 1 (great) and 5 (bad).
1 to 1.5 is considered an excellent condition, 3.5 corresponds to a condition
from where measures should be taken and is considered the warning value,
and 4.5 is the limit value. Inbetween, linear interpolation is used [37].

8.2 Demonstration of the developed system
For the determination of the condition variables SPH, SPT, and PGR, the
requirements in [36] demand to record a lane width of at least 3 m. A suitable
lens for the previously chosen camera is determined by following Chapter 5
and has a focal length of 16 mm. The stereo camera system is mounted behind
the windshield, as was shown in Figure 6.1. A lane length of 6 m and a frame
rate of 14 Hz are chosen. The frame rate corresponds to approximately one
frame per meter at a driving speed of 50 km h−1. Although not performed in
this work, this would enable a fusion of data points to reduce noise. Camera
calibration is performed by the method introduced in Section 4.4 from a picture
of a known to be flat surface, while the cameras are already installed behind
the windshield. The calibration images are shown in Figure 7.7.

The variables MSPTL, MSPTR, MSPHL, MSPHR and MPGR are calculated
for road sections of 10 m length and are shown for a total driving distance of
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(a) Transformed color image. (b) Elevation map with resolution drawn as con-
tour lines in mm px−1.

Figure 8.7: Bird’s eye view and elevation map at 160 m driving distance – the start of
rutting is clearly visible.

500 m in Figure 8.6. It can be seen that the road condition abruptly worsens
at a driving distance of ≈160 m. Figure 8.7b shows the elevation map and its
resolution (refer to Section 5.2) of the segment where the condition changes.
For comparison, the color image of the right camera is transformed into a
Bird’s-eye view in Figure 8.7a that shows the same segment as the elevation
map. At a distance of approximately 8.5 m in the elevation map, the start of
rutting is clearly visible, which interestingly is where the color of the asphalt
changes. Presumably, one of both sides has been renewed at some point. It can
also be seen that the lane width is 3 m and fits the recorded width.

8.3 Discussion
In this chapter, a real-life application of the stereo vision system in combination
with the proposed stereo methods and the proposed stereo camera calibration
method was presented. From the obtained point clouds, condition variables
concerning the surface shape were calculated. In combination with the condi-
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tion variables on surface defects, the overall condition index from Figure 8.2
could be calculated from camera images alone.

In [35], other methods of calculating the overall condition index are shown,
which incorporate a roughness and a grip condition variable. The roughness
variable is calculated using frequency responses, which in turn are calculated
on continuous measurement data of the longitudinal road profile [36]. In [36],
the longitudinal road profile of these segments is obtained from only four
laser distance measurements mounted on a bar of 2 m length, which in turn is
attached to a vehicle, by combining consecutive depth measurements. The same
technique can be applied by combining the overlapping depth maps created
by the proposed method. The only variable that cannot be measured with the
stereo camera system is the surface’s grip.

In the presented example application, the depth resolution shown in Fig-
ure 8.7 varies between 2 mm px−1 and 4 mm px−1. If this is not sufficient, a
higher resolution can be achieved in two ways:

• The length covered in a single frame can be shortened so that the part
with high resolution in the front can be used.

• A camera with a higher sensor resolution can be used, but that, of course,
increases the computing workload.
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9 Conclusion and Future Work
This thesis’s main objective was to explore the suitability of a stereo camera
system behind the windshield of a moving vehicle for measuring the 3D profile
of road surfaces in the context of road condition monitoring. For this purpose,
two intermediate objectives had to be achieved. First, a stereo camera system
had to be designed and put into operation (objective 1. a). Second, stereo
algorithms had to be developed to extract depth information from images
captured with that system (objective 1. b). The results were compared to
measurements obtained with industrial laser scanners. Since the extraction of
depth from stereoscopic images requires a calibrated stereo camera system, this
thesis’s second objective was to explore how the stereo camera system could be
self-calibrated.

Before answering the questions about the suitability of a stereo camera system
and the self-calibration in Section 9.2, a summary is first given in Section 9.1.
Finally, possible future work is discussed in Section 9.3.

9.1 Summary
The theory of depth reconstruction from stereo cameras was explained in
Chapter 2. Based on the theory, in Chapter 3, two stereo methods were proposed
for the special case of elevation estimation of low-textured, slanted planes. The
proposed methods use the plane-sweep approach, as it solves the issues that
arise in this context. The first stereo method was based on traditional methods
that consist of comparing pixels by a similarity measure and an optimization
scheme that considers possible mismatches. The second method utilizes a CNN,
which solves the stereo correspondence problem in one single step. Thus, the
intermediate objective 1. b was achieved.

In Chapter 5 basic thoughts about the stereo camera system were presented.
The relationship between the system parameters, such as focal lengths of the
lenses or camera orientation, and the achievable resolution in all three spatial
directions was established. Furthermore, the influence of exposure time and
aperture on the probability of correctly estimating the elevation of an object
shown on individual pixels was identified. Based on these relations, it was
shown how to determine optimal parameters for the stereo camera system.
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Based on the considerations from Chapter 5, a stereo camera system was
designed and put into operation in Chapter 6. Thus, the intermediate goal 1. a
was achieved. With the stereo camera system, static and dynamic scenes were
recorded, and measurements were performed with a terrestrial laser scanner
and with a laser scanner mounted to the roof of a mobile mapping vehicle. The
stereoscopic images were converted into elevation images with the developed
stereo methods and further converted into point clouds. After a method for
comparing the stereo vision point clouds with those generated by the laser
scanners was developed, the results were evaluated. It was found that the
measurements from stereo vision and laser scanners show a high degree of
agreement.

What has been summarized so far assumed that the images were corrected for
lens distortion because only then the projective camera model can be applied.
Therefore, a mathematical model for lens distortion was described in Chapter 2.
It contains calibration parameters, and the methods found in the literature
for extracting these parameters from calibration images were also described.
In Chapter 4, a novel method for camera self-calibration of mono cameras
and stereo camera systems was presented. Although only three images were
used to calibrate mono cameras, experiments with artificial cameras showed
that the model’s parameters were identified almost exactly. Experiments with
real cameras showed reprojection errors similar to those observed with an
established method. Thereby, the established method used a large number
of images of planes with control points, whereas the proposed method does
not require control points and requires only a few images. With the proposed
self-calibration method, the stereo camera system behind the windshield was
calibrated. If the ground plane is used for calibration, the difficulty arose that
only one perspective of it can be captured. In order to be able to determine all
parameters nevertheless, some additional information had to be provided.

In Chapter 8, the stereo camera system, in combination with the proposed
stereo methods, was used to capture condition variables used in road construc-
tion. For this purpose, a broader lane had to be captured than in Chapter 6.
Therefore, a new lens and accompanying parameters of the stereo camera
system were found following Chapter 5. An inner-city street was captured
with the system, and the captured stereoscopic images were converted into 3D
point clouds using the proposed stereo methods. From the point clouds, the
condition variables used in road construction were obtained.
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9.2 Conclusions
The answer to the central research question from Section 1.2

1. Is a stereo camera system that is mounted behind the windshield of a moving
vehicle suitable for measuring the 3D profile of road surfaces in the context of
road condition monitoring?

depends on the required accuracy of the measurements and the stereo camera
system used. Throughout this research, an image sensor with a resolution
of 1920 × 1200 px was used, limiting the elevation resolution. In Chapter 6 it
was used to capture a lane width of 2 m, and resulted in a depth resolution of
≈0.75 px mm−1 near the cameras. It decreases with increasing distance between
the depicted part of the road and the cameras. At a distance of 6 m from the
foremost part, it has dropped to ≈0.4 px mm−1. If a 3 m lane is to be captured
with the same sensor, it decreases to ≈0.5 px mm−1 and ≈0.25 px mm−1. In
Chapter 6, experiments were carried out with a 2 m lane width and 7 m segment
length. The approximate mean RMS error across the entire segment achieved
by the stereo method was within 2 mm. With a higher sensor resolution, the
same result should be achieved on a 3 m lane.

For road construction in Germany, requirements are given in terms of a
comparative measurement of state variables, some of which were described
in Chapter 8 [36]. For example, for state variables related to the cross-section
of a road, averages are calculated on 100 m segments on the reference and
the compared measurements. The mean difference between these averages
must be within 1 mm. The reference measurements must be carried out by the
Bundesanstalt für Straßenwesen (Federal Highway Research Institute). Such
measurements were not available, but this requirement might be met with a
sufficiently high sensor resolution.

A stereo camera system that is mounted behind the windshield of a moving
vehicle is, therefore, in principle suitable for measuring the 3D profile of
the surface of roads in the context of road condition monitoring. However,
whether the requirements of a road construction authority can be met cannot
be answered in general terms.

The answer to the second research question from Section 1.2

2. Is it possible to automatically calibrate the stereo camera system installed in a
vehicle behind the windshield with a sufficiently high accuracy for road condition
monitoring?

depends on the required accuracy of the final depth measurements and whether
additional information can be provided. One difficulty in applying the calibra-
tion of cameras mounted behind the windshield is that only one perspective of
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the ground plane can be captured for the calibration. Therefore, not all calibra-
tion parameters can be estimated automatically, and some prior knowledge is
required. That can be the focal length and a distance in the images, or it can be
two distances of the stereo camera setup. The accuracy of the results depends
on the accuracy of the additional information or measurements. However, as
shown in Chapter 8, qualitatively good results can be obtained with such a
measurement.

Besides answering the research questions, another result and probably the
most innovative part of this thesis is the novel self-calibration method that can
be used for mono cameras and stereo camera systems. It has proven to provide
high-quality results with minimal effort.

9.3 Future work

9.3.1 3D surface profile reconstruction
The current implementations of the proposed stereo methods do not achieve
real-time performance, which means that they cannot process the data as fast as
it occurs during the drive. The current implementation of the SGM optimization
algorithm has complexity O(WHP2), whereas the original SGM algorithm has
complexity O(WHP), which is due to a different smoothing term (refer to
Section 2.5.6). While the current implementation is highly optimized, as it
runs in parallel on all 48 cores of a CPU and makes use of the Intel AVX2
SIMD instruction set, it is also possible to implement SGM on GPUs [51]. In
[54] experiments showed that the utilized GPUs were faster than the CPUs.
Therefore, a future work could evaluate the simpler smoothing term and utilize
a GPU implementation for optimization.

It would also be interesting to try a different optimization algorithm. The
variational approach is applicable in the presented case. It is also reported to
be fast and is parallelizable on GPUs. Furthermore, it does not suffer from a
grid bias, and it finds the global optimum.

Future work on the CNN method for 3D surface profile reconstruction could
focus on accelerating its execution time by reducing the feature map network
size. It was originally designed for the reconstruction of general scenes. Since
the road surfaces have little texture, the extraction of rich features may be
unnecessary, and a network with fewer layers may be sufficient.

Until now, the stereoscopic images were processed one by one, but for road
condition monitoring, continuous measurement data is needed. This may
be obtained by merging 3D point clouds extracted from a series of partially
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overlapping images. At the same time, the overall accuracy could be improved
by a higher weighting of points estimated from parts close to the cameras.

9.3.2 Camera self-calibration
In this work only up to three images were processed for camera self-calibration,
but the proposed method itself is not limited in the number of images. The
limiting factor is the amount of GPU memory. Future work could focus on
reducing the amount of memory needed, e. g. by reducing the size of the feature
extraction network. Another approach is changing the order of computations
from undistorting and transforming the images first and then extracting the
feature maps to first extracting the feature maps and then undistorting and
transforming the feature maps. That is the approach that was used in the
depth reconstruction network. That way, more calibration images could be
used, but the transformation of the images would be performed at a reduced
resolution, and some precision might be lost. In general, the advantage of
using more pictures would be a greater precision of the extracted parameters
and the estimation of the principal point independently from the estimation of
the distortion model. It might even be possible to separate the location of the
principal point and the center of distortion.

Another point to be examined in the self-calibration approach is the problem
of local minima. Although, with a descent initialization, this was not a problem
in the experiments, there is no guarantee that the optimization by gradient
descent finds the global minimum or even a “good” minimum. However, by
visually examining the optimization results, it is possible to determine whether
the optimization has found a minimum so that the undistorted and transformed
images blend well.

The assumption for the self-calibration method to work are images of per-
fectly flat planes. Since the planes used cannot meet this requirement, the
influence of non-flat planes and the effect of the surface’s shape on the calibra-
tion result should also be investigated.
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When planning road construction measures, it is essential to have up-to-date information 
on road conditions. If this information is not to be obtained manually, it is currently obtai-
ned using laser scanners mounted on mobile mapping vehicles. In this thesis, the applica-
tion of a stereo camera system, which is mounted behind the windshield of a vehicle, is 
investigated as an alternative.
For this purpose, a method based on plane-sweeping in combination with semi-global 
matching for the stereoscopic reconstruction of surfaces with little and repetitive textures 
is proposed. Furthermore, it is shown how the plane-sweep approach can be implemen-
ted in a neural network, which solves the stereo correspondence problem in a single step.
Since cameras used in this context must be calibrated, a completely new approach for the 
self-calibration of mono cameras and stereo camera systems is introduced. It uses feature 
maps instead of feature points to compare multiple views of one and the same plane and 
employs backpropagation with gradient descent to infer unknown calibration parameters.

Ha
uk

e 
Br

un
ke

n

9

Stereo Vision-Based Road Condition Monitoring

Editor: Clemens Gühmann

Universitätsverlag der TU Berlin

I S B N  9 7 8 - 3 - 7 9 8 3 - 3 2 0 5 - 8

ISBN 978-3-7983-3205-8 (print)
ISBN 978-3-7983-3206-5 (online)

https://verlag.tu-berlin.de

Hauke Brunken

Stereo Vision-Based Road Condition Monitoring


	Frontcover
	Title page
	Imprint
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Acronyms
	Notations
	Symbols

	Introduction
	Motivation
	Objectives
	Contributions
	Overview
	Publications

	Basics
	Image formation
	Pinhole camera model
	Image distortion
	Inverse warping
	3D reconstruction
	Image rectification
	Image features
	Optimization problem
	Smoothing term
	Data term
	Optimization algorithms

	Camera calibration
	Calibration with 3D control points
	Geometric error
	Self-calibration with a 3D target
	Calibration with planar targets


	Stereoscopic 3D Profile Reconstruction of Low-Textured Slanted Planes
	Plane-sweep
	Plane induced homography
	Coordinate system
	Mean surface approximation

	Plane-sweep for dense reconstruction with traditional methods
	Data term
	Smoothing term
	Label image, elevation image, point cloud, and elevation map
	Mean surface refinement
	Algorithm overview
	Distinction to other methods

	Plane-sweep for dense reconstruction by one-step CNN
	Neural network for 3D surface profile reconstruction
	Training
	Evaluation


	Deep Learning Self-Calibration from Planes
	Shortcomings of previous self-calibration techniques
	Method
	Number of unknowns
	Transformation functions
	Comparing the images
	Optimization

	Initialization
	Distortion
	Calibration matrix
	Extrinsic parameters

	Calibration of a stereo camera
	Transformation functions
	Number of unknowns


	Stereo Camera System Design
	Geometrical orientation
	Estimating the theoretical resolution
	Estimating the effective resolution
	Calculation of the exposure time
	Blur from motion and defocus
	The impact of blur on the reconstruction quality

	Optimal lens

	Experiments – Stereoscopic 3D Road Profile Reconstruction
	Stereo camera system
	Camera description
	External trigger and asynchronism
	Camera communication
	Camera calibration

	Test scenes
	Accuracy
	Point cloud comparison
	Distance between laser scan reference and stereo methods
	Terrestrial laser scanner
	Laser line scanner on mobile mapping vehicle
	Reported accuracy value
	Visualization of the results

	Practical experiments
	Traditional method
	CNN method

	Results
	Results on static scenes
	Results on dynamic scenes

	Discussion
	Summary

	Experiments – Deep Learning Self-Calibration from Planes
	Test cameras
	Calibration targets
	Artificial targets
	Real targets for monocular camera calibration
	Real targets for stereo camera system calibration
	Targets for comparison

	Accuracy
	Reprojection error
	Distortion

	Practical experiments
	Experiments with monocular cameras
	Experiments with stereo cameras

	Results
	Monocular cameras
	Results for a stereo camera system mounted behind the windshield

	Discussion
	Monocular cameras
	Stereo camera system
	Non-planar calibration surface
	The influence of an inaccurately estimated focal length

	Summary

	Road Condition Monitoring
	Calculation of condition variables
	Demonstration of the developed system
	Discussion

	Conclusion and Future Work
	Summary
	Conclusions
	Future work
	3D surface profile reconstruction
	Camera self-calibration


	Bibliography
	Backcover



