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Abstract

In this thesis, we study the high resolution coding problem for stochas-
tic processes. The general coding problem concerns the finding of a good
representation of a random signal, the original, within a class of allowed
representations. The class of allowed representations is defined through re-
strictions on the information content of these representations. Mostly we
consider three different interpretations of information. In the quantization
problem we constrain the reconstruction corresponding to a representation,
which itself is a random element, to be supported by a finite set having less
than er elements. The entropy coding problem restricts the entropy of the
reconstruction to be less than r. Finally, the algorithmic coding problem
constrains the Shannon mutual information between the original and the
reconstruction to be less than r.

This thesis is concerned with the asymptotic quality of the optimal cod-
ing scheme when the bound on the allowed information r tends to infinity:
the high resolution coding problem. Our analysis considers Gaussian pro-
cesses for the original and norm-based distortion measures. This means
the distortion between the reconstruction and the original is measured as
a power of the distance. A typical example is Wiener measure on the Ba-
nach space of continuous functions with corresponding norm. We derive
asymptotic bounds for the high resolution coding problems. Our bounds
are weakly and strongly tight for a broad class of originals in Banach and
Hilbert spaces, respectively. Moreover, in the typical Hilbert space setting
we show that the above three coding problems yield the same asymptotics.

A further result concerns the efficiency of quantization with randomly
generated codebooks instead of deterministic codebooks. It is found that
under certain regularity conditions, which are fulfilled in the typical Hilbert
space setting, the corresponding asymptotics are the same.

A further objective is the effect of perturbations on the coding problem.
These results yield a relation between the coding complexities of diffusions
and Brownian motion in the entropy and algorithmic sense.

A second subject of this thesis is the study of small ball probabilities
around random centers. We find basic properties and estimates. Moreover,
we obtain that in the Hilbert space setting the random small ball proba-
bilities are asymptotically equivalent to a deterministic function. A similar
statement is proven to hold for Wiener measure in the Banach space of con-
tinuous functions. Finally, the asymptotics of random small ball functions
are related to a particular coding problem.
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Zusammenfassung

Diese Arbeit behandelt das asymptotische Kodierungsproblem für stochas-
tische Prozesse. Das allgemeine Kodierungsproblem befasst sich mit dem
Auffinden von guten Representationen für ein zufälliges Signal, das Origi-
nal, in einer erlaubten Klasse von Representationen. Wir identifizieren jede
Representation mit einer Rekonstruktion des Originals. Die erlaubten Re-
presentationen werden durch eine Bedingung an den Informationsgehalt
eingeschränkt. Hierbei gibt es mehrere Möglichkeiten den Begriff des Infor-
mationsgehaltes zu definieren. Das Quantisierungsproblem erlaubt Rekon-
struktionen, deren Träger endlich ist und weniger als er Elemente enthält.
Das Entropiekodierungsproblem erlaubt Rekonstruktionen mit Entropie klei-
ner als r. Im algorithmischen Kodierungsproblem beschränkt man sich auf
Rekonstruktionen, deren Shannon Information mit dem Original kleiner als
r ist.

Diese Dissertation beschäftigt sich mit der asymptotischen Qualität der
Rekonstruktion von optimalen Kodierungsschemata, wenn die erlaubte In-
formation r gegen unendlich strebt; das asymptotische Kodierungsproblem.
Unsere Analyse betrachtet Gaußsche Prozesse in Banachräumen als Origi-
nal. Die Abweichung zwischen Original und Rekonstruktion wird durch eine
Potenz der Distanz gemessen. Ein typisches Beispiel ist das Wienermaß
auf dem Banachraum der stetigen Funktionen. Wir leiten Abschätzungen
für das asymptotische Kodierungsproblem her. Unsere Schranken liefern die
korrekte schwache und starke Asymptotik für eine große Klasse von Origi-
nalen in Banach- beziehungsweise Hilberträumen. Im Hilbertraumfall erhal-
ten wir, dass alle drei Kodierungsbegriffe die gleiche Asymptotik liefern.

Ein weiteres Resultat betrachtet die Effizienz der Quantisierung mit
zufällig konstruierten Codebüchern. Wir zeigen, dass unter gewissen An-
nahmen der neue Kodierungsbegriff die gleiche Asymptotik liefert wie der
gewöhnliche Quantisierungsbegriff. Die Voraussetzungen des Resultats wer-
den für bestimmte Maße in Hilberträumen verifiziert.

Weitere Betrachtungen befassen sich mit dem Effekt von Störungen auf
das Kodierungsproblem. Diese Resultate stellen einen Zusammenhang der
Kodierungskomplexität von Diffusionsprozessen und Brownscher Bewegung
für das Entropie- and algorithmische Kodierungsproblem her.

Ein weiteres Thema dieser Dissertation ist das Verhalten der Maßkonzen-
tration in kleinen Kugeln um zufällige Zentren. Wir leiten grundlegende
Eigenschaften und Abschätzungen her. Im Hilbertraumfall wird die Äquiva-
lenz zu einer deterministischen Funktion gezeigt. Ein ähnliches Resultat gilt
für das Wienermaß im Banachraum der stetigen Funktionen. Schließlich wird
die Asymptotik eines besonderen Kodierungsproblems mit der Asymptotik
der Maßkonzentration in kleinen zufälligen Kugeln in Verbindung gesetzt.
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Introduction

Let (E, ‖ · ‖) be a separable Banach space. For a Borel measurable random
element (abridged by r.e.) X in E and s ∈ (0,∞) we denote

‖X‖Ls(P) =
(
E[‖X‖s]

)1/s
.

The main objective of this dissertation is to study, for a given E-valued
r.e. X, the original, and s ∈ (0,∞), the minimization problem

inf ‖X − X̂‖Ls(P), (I)

where the infimum is taken over a set of random elements X̂, reconstructions,
satisfying an information constraint parameterized by r ≥ 0. We will mainly
work with three constraints given by Kolmogorov in 1965 [36].

1. X̂ is supported by a finite set with at most er elements (quantization).

2. X̂ has entropy less than r (entropy coding).

3. X̂ is such that the Shannon mutual information between X and X̂ is
less than r (algorithmic coding).

The terms in brackets denote the minimization problem (I) under the corre-
sponding information constraint. The parameter r ≥ 0, called rate, governs
the amount of information that is allowed to be contained in X̂.

In the quantization problem we identify a finite subset C ⊂ E, the code-
book, to a reconstruction X̂ by demanding that X̂ ∈ C and

min
x̂∈C

‖X − x̂‖ = ‖X − X̂‖.

Clearly, one can restrict the minimization problem (I) to reconstructions
obtained by codebooks.

We focus on the asymptotic behavior of (I) when r tends to infinity, the
so called high resolution coding problem or asymptotic coding problem.

The asymptotic quantization problem was treated by Zador in 1963 ([66],
[67], [68]), Bucklew and Wise in 1982 [11], and Graf and Luschgy in 2000
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2 Introduction

[27] for continuous distributions in finite dimensional spaces. It is found
that for fixed s ≥ 1 the general asymptotic quantization problem is related
to the asymptotics of the quantization error of the uniform distribution on
the unit cube. Although this link is known explicitly, the problem is not
generally solved since the strong asymptotics of the quantization error of
the uniform distribution are not known in most cases.

Analogue results were obtained for the entropy constrained quantization
problem which is similar to the entropy coding problem. Gray, Linder and
Li [30] related the asymptotics of the general problem to those obtained for
the uniform distribution on the unit cube. As for the quantization problem,
the asymptotics of the latter coding problem are known only in a few cases.

Let us now focus on the infinite dimensional setting. Let X be a centered
Gaussian random element in a separable (infinite dimensional) Banach space
(E, ‖ · ‖) and denote by µ = L(X) the law of X (e.g. X is Brownian motion
in the space of continuous functions C[0, 1] equipped with the supremum
norm). For the quantization error, upper asymptotic bounds for expression
(I) were derived in Fehringer’s 2001 dissertation [23] and strengthened in
an article by Fehringer, Matoussi, Scheutzow and the author in 2003 [19].
The latter article contains also a lower bound for the quantization problem.
These results relate the quantization problem to the asymptotics of the small
ball function

ϕ(ε) = − logµ(B(0, ε)), ε > 0.

Here, B(x, r) denotes the closed Ball in E around the center x ∈ E with
radius r ≥ 0. The above results are stated in Theorem 3.1.1. As we will
prove in Theorem 3.1.2 the results of [19] imply that, for the quantization
problem, expression (I) satisfies

ϕ−1(r) . inf ‖X − X̂‖Ls(P) . 2ϕ−1(r/2) (II)

as r →∞, if

ϕ−1(r) ≈ ϕ−1(2r) (III)

as r → ∞. Here, the symbols . and ≈ denote asymptotic domination and
weak asymptotic equivalence, respectively. Moreover, we use the symbol
∼ to indicate the strong asymptotic equivalence of two expressions. These
notions are introduced rigorously at the end of Section 1.1.

Another approach for deriving upper bounds for the quantization error
was presented in the dissertation by Creutzig in 2002 [14] (Theorem 4.6.5).
He found that the quantization error is related to an approximation quantity
called average Kolmogorov width. Although his result does not strengthen
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the results above in the Gaussian setting, it has the advantage to be appli-
cable for non-Gaussian originals.

Suppose now that H = E is a separable Hilbert space and let s = 2.
Zador (1963) [66] observed that the quantization error of Gaussian measures
on high but finite dimensional Euclidean spaces approaches the distortion
rate function. This suggests a tight relation between the high resolution
quantization problem and the asymptotics of the distortion rate function.
Since the distortion rate function for the normal distribution is explicitly
known for s = 2, this approach can be used for deriving the explicit asymp-
totics of the corresponding high resolution quantization problem. Indeed,
the asymptotic equivalence of distortion rate function and quantization er-
ror is stated in Donoho [20] for certain infinite dimensional Gaussian mea-
sures. However, Donoho did not include a proof of the equivalence in his
report. Luschgy and Pagès [51] (see also [50]) presented a proof under the
assumption that the eigenvalues of the covariance operator of X are regu-
larly varying. Beside the case s = 2 no other cases have been treated in
the literature. Moreover, the high resolution coding problem for entropy
coding and algorithmic coding has not appeared in the literature for infinite
dimensional originals. In the sequel, we give an outline of the thesis and a
brief summary of new results.

Chapters 1 and 2 have a preliminary character. Chapter 1 commences
with an introduction to the basic objects. Known results on the high reso-
lution coding problem in the finite dimensional setup are stated. Moreover,
we provide the reader with basic facts about information theory. Chapter
2 is devoted to the introduction of Gaussian measures and their properties.
In the appendix (Chapter A), we provide basic results for regularly varying
functions. A summary of the notations and symbols used in this work is
given in an extra chapter starting on page 145.

Chapter 3 is concerned with the high resolution coding problem for Gaus-
sian originals on Banach spaces. In Theorem 3.4.1 we derive a relation be-
tween small ball probabilities (SBPs) and certain moment generating func-
tions. This link leads to a lower bound for the algorithmic coding error (see
Theorem 3.5.1). Finally, we find (Theorem 3.5.2) that formula (II) holds for
all three coding problems and for any s ≥ 1, if condition (III) is fulfilled.
A second subject of this chapter is the efficiency of quantization based on
ε-nets. More explicitly, we consider reconstructions associated with code-
books that are ε-nets of certain precompact subspaces of E. In Theorem
3.2.3, we find an upper bound on the corresponding coding error. In the case
where condition (III) is satisfied, we obtain quantization schemes that are
of the optimal weak asymptotic order. Finally, we give asymptotic bounds
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for several originals in Banach spaces.
Chapter 4 studies the effect of perturbations in the asymptotic coding

problems under certain regularity conditions. These are satisfied, for in-
stance, for all examples given in Section 3.6. We consider perturbations in
the rate and the original. For entropy coding and the distortion rate func-
tion, it is found that perturbations r 7→ ∆r of order o(r) in the rate have no
effect on the asymptotic behavior of expression (I) (see Lemmas 4.1.1 and
4.2.4). Moreover, adding less complex processes to the originals leaves the
high resolution problem unchanged (see Corollaries 4.1.4 and 4.2.7). These
results enable us to relate the coding problem of certain diffusion processes
with that of Brownian motion (Theorem 4.4.1). For the quantization prob-
lem only weaker results are obtained.

Chapter 5 is devoted to the study of quantization with randomly gen-
erated codebooks. Theorem 5.2.1 proves that under certain assumptions
random codebooks yield coding errors that are equivalent to those obtained
by general quantization. One of the assumptions is that the quantization
error is slowly varying in the parameter log r. Unfortunately this property
could not be proven for our standard examples. However, the assumptions
are verified in the typical Hilbert space setting treated in Chapter 6.

Chapter 6 studies the high resolution coding problem for Gaussian mea-
sures in Hilbert spaces. The asymptotics of the quantization error with
deterministic and random codebooks are found for all moments s > 0 if the
eigenvalues {λn}n∈N of the covariance operator satisfy

lim
n→∞

log log(1/λn)
n

= 0.

Moreover, these asymptotics coincide with those of the entropy coding error
and the distortion rate function for all moments s ≥ 2 (Theorems 6.2.1 and
6.3.1) and we have equivalence of all moments, meaning that the asymptotics
of (I) do not depend on the choice of s. Finally, examples are given.

Chapter 7 is devoted to the study of small ball probabilities around ran-
dom centers. Let X be a Gaussian random element in the separable Banach
space (E, ‖ · ‖) with law µ. We consider the asymptotics of the random
variables

− logµ
(
B(X, ε)

)
(IV)

for ε > 0 as ε tends to 0. In Theorem 7.1.1, we find that the asymptotics of
expression (IV) are related to the small ball function by

ϕ(ε) . − logµ
(
B(X, ε)

)
. 2ϕ(ε/2)
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as ε ↓ 0, almost surely (a.s.). In the case where E is a Hilbert space, we prove
in Theorem 7.2.2 the existence of a deterministic function ϕR : R+ → R+

satisfying
− logµ

(
B(X, ε)

)
∼ ϕR(ε) as ε ↓ 0, a.s.

The function ϕR can be explicitly derived from the eigenvalues of the covari-
ance operator of µ. In Theorem 7.3.1, we obtain a similar result for Wiener
measure on the Banach space of continuous functions C[0, 1], i.e. C[0, 1]
equipped with the supremum norm. We find that there exists κ ∈ R+ such
that expression (IV) satisfies

− logµ
(
B(X, ε)

)
∼ κ ε−2 (ε ↓ 0)

in probability.
A further subject of this chapter is the study of the quantization error ob-

tained for certain randomly generated codebooks. Let {X̃i}i∈N be a sequence
of independent µ-distributed random elements. We consider the quantiza-
tion error corresponding to the random codebooks Cr = {X̃1, . . . , X̃berc},
r ≥ 0. Here, bxc, x ∈ R, denotes the largest integer smaller than x. We
denote by X̂(r) a reconstruction corresponding to the codebook Cr. Our
result assumes that there exists a convex function ϕR : R+ → R+ that is
one-to-one and onto, and satisfies

− logµ
(
B(X, ε)

)
∼ ϕR(ε) (ε ↓ 0)

in probability. Moreover, it is assumed that ϕ−1
R (r) ≈ ϕ−1

R (2r) as r → ∞.
Theorem 7.5.2 states that under these conditions, one has for all s > 0

‖X − X̂(r)‖Ls(P) ∼ ϕ−1
R (r)

as r →∞.
Finally, Chapter 8 lists open problems.
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Chapter 1

Definitions and basic facts

The principal goal of source coding (or data compression) is to replace data
by a compact representation such that the original can be reconstructed
either perfectly or with high accuracy. In the compression of computer files
one typically needs the reconstruction to resemble the original perfectly;
so called lossless source coding. When the data represents audio or video
signals, perfect reconstruction is usually not feasible. In these cases there
will be a discrepancy between original and reconstruction, and we assume
that this perceptual difference is measured by a distortion measure. In this
case we speak of lossy source coding. To find good coding procedures is
an important task for engineers and has attracted much attention in recent
years.

In this dissertation we focus on lossy data compression of signals living in
infinite dimensional spaces. The following theory is intended to be applicable
for the infinite dimensional setting.

1.1 The general (lossy) coding problem

The general (lossy) coding problem assumes

• a Polish space (E, d) (i.e. complete, separable metric space), called
(source) alphabet,

• a probability distribution µ on the Borel sets of E named source dis-
tribution, and

• a Borel-measurable function ρ : E × E → [0,∞) called distortion
measure or distortion.

Here, E ×E is equipped with the product topology. To avoid uninteresting
technicalities we assume that E is a Polish space even though the problem

7



8 Definitions and basic facts

can be stated in more general alphabets as well. We denote by B(E) the
Borel σ-field on E and by ⊗ the standard product for σ-algebras. Further-
more, let M1(E) denote the set of probability measures on the Borel sets of
E.

We call the pair (µ, ρ) an information source on the alphabet E. Then
µ is thought of as the underlying distribution for a random data signal. We
usually denote by

X : Ω → E

a µ-distributed E-valued random element, which is called original data signal
or simply original. Hereafter, (Ω,F ,P) denotes the underlying probability
space. It is assumed to be rich enough so as to ensure the existence of a
random element with law ν for any probability distribution ν on the Borel
sets of an arbitrary Polish space. This property is equivalent to either one
of the following two properties:

1. P does not contain any atoms.

2. There exists a uniformly distributed random variable (r.v.) on [0, 1].

The task of coding is to store information about the element X such that
afterwards one is able to construct a signal X̂ which is close to the original
X. We assume that X̂ is a random element in E. It is called a reconstruction
of X. The corresponding (random) perceptual distortion between X and X̂
is modeled by ρ(X, X̂).

An important class of distortion measures are the difference distortion
measures. Assume that the underlying space E is equipped with a Borel-
measurable operation −E ,

E × E → E, (x, y) 7→ x−E y.

Clearly this is fulfilled if E is a topological vector space. If a distortion
measure ρ on E can be represented in the form

ρ : E × E → [0,∞), (x, x̂) 7→ ρ(x, x̂) = ρ̃(x− x̂),

for some measurable map ρ̃ : E → [0,∞), then ρ is called a difference
distortion measure. With only slight abuse of notation we usually identify
ρ̃ with ρ and write ρ(x, y) = ρ(x− y).

In this dissertation we consider difference distortion measures based on
Banach space norms (norm-based distortions), i.e. we assume that the al-
phabet (E, ‖ · ‖) is a Banach space and consider

ρ(x, x̂) = ‖x− x̂‖s
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for some s > 0. We denote the corresponding information source by (µ, ‖·‖s).
The major object of this dissertation is the minimization problem

inf E[ρ(X, X̂)],

where the infimum is taken over all random elements X̂ in E satisfying an
information constraint parameterized by a parameter r ≥ 0. Here, we mainly
deal with three notions of information outlined, for instance, by Kolmogorov
in 1965 ([36]). These are

• combinatorial approach: the logarithm of the cardinality of the support
of X̂

log |supp(X̂)|,

• probabilistic approach: the entropy of X̂

H(X̂),

• algorithmic approach: the mutual information between X and X̂

I(X; X̂).

In the following sections we will introduce these notations and the corre-
sponding coding quantities in great detail.

We need some asymptotic equality and inequality signs. Let f1 and
f2 be two positive real-valued functions defined on a set I ⊂ R such that
[C,∞) ⊂ I for some C > 0. We write

f1(x) . f2(x) (x→∞)

when we mean

lim sup
x→∞

f1(x)
f2(x)

≤ 1.

Analogously, we write f1(x) & f2(x) (x → ∞) if f2(x) . f1(x) (x → ∞).
The functions f1 and f2 are said to be (strongly) asymptotically equiva-
lent if f1(x) . f2(x) and f1(x) & f2(x) (x → ∞). In that case we write
f1(x) ∼ f2(x) (x → ∞). Moreover, f1 and f2 are called weakly asymp-
totically equivalent if there exists C ∈ R+ such that f1(x) . C f2(x) and
f2(x) . C f1(x) as x → ∞. In this case we write f1(x) ≈ f2(x) (x → ∞).
Analogously, we use asymptotic relations for the limit x ↓ 0.
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1.2 Quantization

The notion quantization was first used in the late 40’s in the context of
pulse-code modulation (PCM). PCM is a method that translates an analog
sound signal into a digital representation.

In 1924, Nyquist [53] discovered that a function f that is band-limited to
W can be recovered perfectly from the sequence {f(n/(2W ))}n∈Z. In fact,
one has

f(x) =
∑
n∈Z

f
( n

2W

) sin
(
2πW (t− n

2W )
)

2πW (t− n
2W )

, x ∈ R.

Ideally we suppose that the waveform of a sound signal is given by a curve
f which is band-limited to W . In real applications, high frequencies are
removed by a low pass filter. In order to translate the analog signal f into
a digital representation one needs to store at each time instance n/(2W ),
n ∈ Z, the value f(n/(2W )). Clearly, this cannot be done perfectly and it is
necessary to discretize the real value f(n/(2W )). Here one needs to find a
compromise between the reconstruction quality and the coding complexity.
This discretization problem was first called quantization. (see also Oliver,
Pierce and Shannon [54] and Cover and Thomas [13], Theorem 10.3.1)

For an information source (µ, ρ), we define the quantization error by

δ(q)(N |µ, ρ) = inf
{∫

E
min
x̂∈C

ρ(x, x̂)µ(dx) : C ⊂ E, |C| ≤ N
}
, N ≥ 1.

For an original X, we identify a finite set C ⊂ E (called codebook) with an
optimal reconstruction X̂ in C, i.e. X̂ satisfies

ρ(X, X̂) = min
x̂∈C

ρ(X, x̂).

This reconstruction does not need to be unique.
Note that each element of C can be uniquely assigned to a binary string of

length dlog2 |C|e. Here, dxe denotes the smallest integer greater than x ∈ R.
For our purposes, it is more convenient to work with natural logarithms, so
we call loge |C| the rate of the corresponding reconstruction or the rate of
the codebook. In the following the standard logarithm log is taken to the
basis e. Additionally to δ(q), we define the quantization error of a source
(µ, ρ) in terms of the rate by

D(q)(r|µ, ρ) = inf
{∫

E
min
y∈C

ρ(x, y)µ(dx) : C ⊂ E, |C| ≤ er
}
, r ≥ 0.

When there is no ambiguity about the source distribution µ and the distor-
tion measure ρ these parameters are often omitted.



1.2 Quantization 11

Known results in the finite dimensional setting

The high resolution quantization problem was first treated by Zador in 1963
([66]; see also [67], [68]). He found the asymptotics for certain continuous
probability distributions on the Euclidean space E = Rd, d ∈ N, under
difference distortion measures ρ of the form

ρ(x, y) = |x− y|s, x, y ∈ E.

Here, | · | denotes Euclidean distance in Rd. Bucklew and Wise [11] and Graf
and Luschgy [27] generalized his results subsequently. We state Theorem
6.2 of Graf and Luschgy [27].

Theorem 1.2.1. Let E = Rd, d ∈ N, be equipped with an arbitrary norm
| · |E and let s ≥ 1. Let µ ∈ M1(E) with finite s + ε-th moment for some
ε > 0, i.e. ∫

E
|x|s+εE dµ(x) <∞.

Denote by µ = µc + µs the Lebesgue decomposition of µ w.r.t. λd, where the
a.c. and the singular part of µ are denoted by µc and µs, respectively. Then

lim
N→∞

N s/d δ(q)(N |µ, | · |sE) = κ(| · |E , s)
∥∥∥dµc
dλd

∥∥∥
Ld/(d+s)(Rd)

,

where κ(| · |E , s) > 0 depends only on the Banach space E and s ≥ 1, but
not on the distribution µ.

Let U [0, 1]d denote the uniform distribution on the d-dimensional unit
cube [0, 1]d. By the previous theorem, κ(| · |E , s) is obtained by

κ(| · |E , s) = lim
N→∞

N s/d δ(q)(N |U [0, 1]d, | · |sE).

Unfortunately, the coefficient κ is known explicitly only in very few cases.

Theorem 1.2.2. 1.) Let | · |∞ denote the l∞-norm on Rd, d ∈ N. Then for
s ≥ 1,

κ(| · |∞, s) =
d

(d+ s)2s
.

2.) Let | · |2 denote the l2-norm on R2. Then for s ≥ 1

κ(| · |2, s) =
8 · 2s/2

3(2+s)/4

∫ 1/2

0

∫ (1−x1)/
√

3

0
(x2

1 + x2
2)
s/2 dx2 dx1.

In particular,

κ(| · |2, 1) =
2 + 3 log

√
3

37/4
√

2
= 0.37771 . . . and

κ(| · |2, 2) =
5

18
√

3
= 0.1603 . . .
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Statement 1.) follows from the discussion in Graf and Luschgy [27], page
120. Statement 2.) was proven by Fejes Tóth ([24], [25]; see also Theorem
8.15 and Example 8.12 of [27]).

Example 1.2.3. Let us consider the standard normal distribution
µ = N (0, 1) on R under squared norm distortion, i.e. the information source
(N (0, 1), | · |2). By the above results one has for any s ≥ 1

δ(q)(N |N (0, 1), | · |s) ∼
(π
2
)s/2(1 + s)(s−1)/2N−s (N →∞)

and

D(q)(r|N (0, 1), | · |s) ∼
(π
2
)s/2(1 + s)(s−1)/2 e−sr (r →∞).

In particular, for s = 2, one has D(q)(r|N (0, 1), | · |2) ∼ c e−2r with
c = 2.7207 . . .

For more informations on the finite dimensional quantization problem,
one may consult the recent monograph by Graf and Luschgy [27].

1.3 Variable rate compression and entropy coding

To define variable rate compression, we first need some more definitions. We
denote by {0, 1}∗ the set of strings constituted by 0’s and 1’s,

{0, 1}∗ =
⋃
n∈N

{0, 1}n ∪ {ε},

where ε is the empty word. Denote by l(x) the length of a string x ∈ {0, 1}∗.
Here, we define l(ε) = 0. Let A be a countable set. An injective function

Ψ : A→ {0, 1}∗

is called a prefix free representation (prefix code) for A if for any two different
elements x and y of A the string Ψ(x) is not a prefix of Ψ(y).

Let (µ, ρ) be an information source on an alphabet E and let X be a
µ-distributed random element. A variable rate code consists of

• a discrete random element X̂ on E (reconstruction) and

• a prefix free representation

Ψ : supp(X̂) → {0, 1}∗

for the support of X̂.
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Here, the support of X̂ (denoted by supp(X̂)) is the smallest set A ⊂ E

such that P(X̂ ∈ A) = 1. For non-discrete random variables X̂, we denote
by supp(X̂) the smallest closed set such that P(X̂ ∈ A) = 1.

The aim of variable rate compression is to minimize

E[ρ(X, X̂)]

over all discrete random elements X̂ such that there exists a prefix-free code
Ψ of supp(X̂) with

E[l(Ψ(X̂))] ≤ r.

Again, r ≥ 0 is a constraint on the information contained in X̂. By applying
Huffman coding to supp(X̂), there exists a prefix free representation Ψ for
supp(X̂) with

E[l(Ψ(X̂))] < H2(X̂) + 1,

where H2(X̂) = −
∑

x∈ supp(X̂) P(X̂ = x) log2 P(X̂ = x) denotes the entropy

of X̂ with basis 2. The entropy of non-discrete random elements is defined
to be ∞. On the other hand, for any prefix code Ψ for supp(X̂), one has

E[l(Ψ(X̂))] ≥ H2(X̂)

as a consequence of the Kraft inequality. We define the entropy coding error
of rate r ≥ 0 by

D(e)(r) = D(e)(r|µ, ρ)
= inf

{
E[ρ(X, X̂)] : (X, X̂) r.e. in E2, L(X) = µ, H(X̂) ≤ r

}
,

where H(·) denotes the entropy with basis e. Strictly speaking the definition
of D(e) depends on the underlying probability space (Ω,F ,P). However,
the quantity is unique under the assumption that the probability space is
sufficiently rich. Recall that we have assumed the existence of a r.e. (X, X̂)
with law ν for any distribution ν ∈M1(E2).

By the results presented above, entropy coding is closely related to vari-
able rate compression. In the literature, one often finds a slightly different
definition. Instead of allowing general discrete r.e.’s X̂ as reconstruction,
one confines oneself to r.e.’s X̂ of the form X̂ = q(X) where q : E → E is a
Borel-measurable function. Let us denote

D(E)(r) = D(E)(r|µ, ρ)
= inf

{
E[ρ(X, q(X))] : X r.e. in E, L(X) = µ,

q : E → E measurable with H(q(X)) ≤ r
}
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for r ≥ 0. This coding quantity will be referred to as entropy constrained
quantization. Due to the fact that for any discrete reconstruction X̂

H(X̂) ≤ log |supp(X̂)|,

one has
D(e)(r) ≤ D(E)(r) ≤ D(q)(r), r ≥ 0.

For more details about the construction of efficient codes, Huffman cod-
ing and the Kraft inequality, we refer the reader to Chapter 5 of Cover and
Thomas [13].

Known results in the finite dimensional setting

We consider the finite dimensional setting. Let µ be a probability measure
on Rd, d ∈ N, and let X be a µ-distributed r.v. We consider entropy
constrained quantization under squared norm distortion on the Euclidean
space. The quantity D(E)(r|µ, | · |2) was first analyzed by Zador ([66], [67]).
Unfortunately, his discussion contained some mistakes. Nonetheless, his
main formula was justified in an article by Gray, Linder and Li [30]. A
consequence of their Theorem 1 and Lemma 1 is

Theorem 1.3.1. Let π : Rd → Zd, (x1, . . . , xd) 7→ (bx1c, . . . , bxdc) and let
µ ∈M1(Rd) be an absolutely continuous measure (w.r.t. Lebesgue measure)
with Radon-Nikodym derivative f := dµ

dλd . Under the assumptions that µ has
well-defined differential entropy

h(f) := −
∫

Rd

f(x) log f(x) dx

and that the r.v. π(X) has finite entropy, one has

lim
r→∞

e
2
d
rD(E)(r|µ, | · |2) = κ(d) e

2
d
h(f),

where
κ(d) := lim

r→∞
e

2
d
rD(E)(r|U [0, 1]d, | · |2).

In particular, κ(1) = 1/12.

Example 1.3.2. We consider the standard normal distribution µ = N (0, 1)
on R. Since then h(dµdλ) = log(

√
2πe), one has

D(E)(r|N (0, 1), | · |2) ∼ πe

6
e−2r (r →∞)

where the coefficient πe/6 is approximately equal to 1.42329. Recall that
by Example 1.2.3, one obtains the coefficient 2.7207 for the quantization
analog.
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For absolutely continuous measures it seems highly likely that the quan-
tities D(e) and D(E) either coincide or are closely related. We do not concern
this problem in this thesis. Our main focus is on the quantity D(e). The
results above merely give an intuition of the asymptotic behavior of D(e)

and D(E) in the finite dimensional setting.

1.4 The distortion rate function

Denote by H( · ‖ · ) the relative entropy, i.e. for any Borel probability mea-
sures ξ and ν on a Polish space, let

H(ξ‖ν) =

{∫
log

( dξ
dν

)
dξ if ξ � ν

∞ else.

For two Borel random elements A and B taking values in possibly different
Polish spaces, define

I(A;B) = H(PAB ‖PA ⊗ PB),

where PAB, PA and PB denote the distributions of (A,B), A and B, respec-
tively. I(A;B) is called the mutual information of A and B.

For an information source (ξ, ρ), the Shannon distortion rate function
(DRF) is defined by

D(r|µ, ρ) = inf
{
E[ρ(X, X̂)] : (X, X̂) r.e. in E2, L(X) = µ, I(X; X̂) ≤ r

}
for r ≥ 0. We will make use of the fact that the DRF is convex. A proof of
this property is contained in Ihara [32] (Theorem 1.7.1), for instance.

Lemma 1.4.1. For an arbitrary information source (ξ, ρ), the distortion
rate function D(·|ξ, ρ) is convex.

The DRF is one of the main objects used by Shannon in his works from
1948 and 1959 ([60], [62]). He considered the problem of reconstructing
an original X on the basis of the information received via a channel with
restricted capacity. One of his main results is that the DRF gives the asymp-
totically best achievable accuracy of the reconstruction for a given capacity.
Much research has been devoted to the study of the distortion rate function
and information transmission. For more information, we refer the reader
to standard textbooks on information theory (cf. Cover and Thomas [13],
Berger [4] and Gray [28]).
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Example 1.4.2. Shannon [62] derived the distortion rate function for the
standard normal distribution under mean squared error distortion measure.
He found

D(r|N (0, 1), | · |2) = e−2r, r ≥ 0.

Recall that by Examples 1.2.3 and 1.3.2, one obtains coefficients 1.42329
and 2.7207 in the entropy constraint quantization and quantization analog
to the above formula, respectively. In particular, we see that the asymptotic
behavior of D(q), D(E) and D differ in the finite dimensional setting.

Basic properties of mutual information and the DRF

Let A, B and C be Borel random elements in some Polish spaces E1, E2

and E3, respectively. Note that there exist regular conditional probabilities
PAB|C=·, PA|C=· and PB|C=·. For c ∈ E3, set

I(A;B|C = c) = H
(
PAB|C=c ‖PA|C=c ⊗ PB|C=c

)
.

Definition 1.4.3. We call

I(A;B|C) =
∫
E3

I(A;B|C = c) dPC(c)

the conditional mutual information between A and B given C.

Lemma 1.4.4. Let A,B and C as above. Mutual information satisfies the
following properties:

• (Symmetry)

I(A;B) = I(B;A) and I(A;B|C) = I(B;A|C)

• (Positivity)
I(A;B) ≥ 0

• For any Borel measurable function f : E2 → E3,

I(A;B) ≥ I(A; f(B))

•
I(A;B|C) ≥ 0

In particular, I(A;B|C) = 0 if and only if A and B are independent
given C.
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•
I(A; (B,C)) = I(A;B) + I(A;C|B).

• If A is a discrete random element, then

I(A;B) ≤ H(A).

All but the last property are taken from Ihara [32] (Theorem 1.6.3). The
last property is a consequence of the first properties:

I(A;B) ≤ I(A; (A,B)) = I(A;A) + I(A;B|A) = I(A;A) = H(A).

Consequently, the coding quantities are ordered as follows

D(r) ≤ D(e)(r) ≤ D(q)(r), r ≥ 0.

1.5 The source coding theorem

This section is devoted to Shannon’s source coding theorem (SCT). The
theory originates from Shannon’s works in the years 1948 and 1959 ([60],
[62]) and was subsequently extended by many authors. For a history of the
source coding theorem and its generalizations, we refer the reader to the
review article by Berger and Gibson [5] (end of section C).

For stating the theorem we need more definitions. First we extend the
distortion measure ρ to product spaces Em. For m ∈ N and x, y ∈ Em, let

ρm(x, y) :=
1
m

m∑
i=1

ρ(xi, yi).

ρm is called the single letter distortion measure associated with ρ. We con-
sider the quantization error of the product measure µ⊗m under the distortion
ρm. For m ∈ N and r ≥ 0, let

Dm(r|µ, ρ) = D(q)(mr|µ⊗m, ρm)

= inf
{∫

Em

min
y∈C

ρm(x, y) dµ⊗m(x) : C ⊂ Em, |C| ≤ emr
}
.

(1.1)

Dm(r|µ, ρ) is called quantization error of block codes of length m and rate r.

Theorem 1.5.1. (The Source Coding Theorem (SCT)). Let (µ, ρ) be an
information source and suppose that there exists a so called reference letter,
i.e. ∃y∗ ∈ E with

∫
E ρ(x, y

∗) dµ(x) <∞. Then

lim
m→∞

Dm(r|µ, ρ) = inf
m∈N

Dm(r|µ, ρ) = D(r|µ, ρ)

for all r ≥ 0.
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The theorem as stated above is, for instance, an immediate consequence
of the much stronger SCT proved by Gray [28].

The proof of the SCT is typically based on the so called asymptotic
equipartition property (AEP). Following the discussion in Dembo and Kon-
toyiannis [15], we give a short introduction to the AEP and a sketch of the
proof of the SCT. The interested reader is referred to the more detailed
article of Dembo and Kontoyiannis [15].

First let us state the asymptotic equipartition property (AEP). For
ν ∈M1(E) and d > 0, define

R0(µ, ν, d) = inf
ξ

H(ξ‖µ⊗ ν),

where the infimum is taken over all distributions ξ on the Borel sets of E2

with first marginal µ and∫
E×E

ρ(x, y) dξ(x, y) ≤ d.

Set
dav =

∫
E×E

ρ(x, y) dµ⊗ ν(x, y)

and
dmin =

∫
E

essinfY∼ν ρ(x, Y ) dµ(x),

where

essinfY∼ν ρ(x, Y ) = sup
{
t ∈ R : P(ρ(x, Y ) ≥ t) = 1, Y r.e. with L(Y ) = ν

}
.

Let {Xj}j∈N be a sequence of independent µ-distributed random elements
and denote X(m) = (X1, . . . , Xm) for m ∈ N. The asymptotic equipartition
property states that for d ∈ (dmin, dav) one has

− 1
m

log ν⊗m(Bρm(X(m), d)) → R0(µ, ν, d) as m→∞, a.s.

Here,
Bρm(x, r) =

{
y ∈ Em : ρm(x, y) ≤ r

}
for x ∈ Em. Let us sketch how this result can be used to prove the upper
bound in the SCT.

Let µ ∈M1(E) and ν ∈M1(E) denote the distributions of the original
signal and the distribution used for generating the codebook, respectively.
Fix d > 0 and assume for simplicity that d ∈ (dmin, dav), where dmin and dav

are as above.
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Fix ε > 0 arbitrarily and let r = R0(µ, ν, d). We still need to define
the codebooks that will be used for coding X(m). This is done by using the
distribution ν: For m ∈ N, let {Y (m)(i)}i∈N be a sequence of independent
(also independent of X) ν⊗m-distributed random elements and let y∗ ∈ E

be a reference letter as in the SCT. Consider, for m ∈ N,

Cm =
{
Y (m)(i) : i = 1, . . . , be(1+ε)mrc

}
∪

{
(y∗, . . . , y∗)

}
and

Tm =
{
x(m) ∈ Em :

1
m

log ν⊗m(Bρm(X(m), d)) ≥ −(1 + ε/2)r
}
.

Our aim is to bound the expected coding error E[ρm(X(m), Cm)]. We split
the expectation into three parts:

E[ρm(X(m), Cm)] = E[1Tm(X(m)) 1{ρm(X(m),Cm)≤d} ρm(X(m), Cm)]

+ E[1Tm(X(m)) 1{ρm(X(m),Cm)>d} ρm(X(m), Cm)]

+ E[1T c
m

(X(m)) ρm(X(m), Cm)]

=: I1(m) + I2(m) + I3(m).

In the following we provide estimates for I1(m), I2(m) and I3(m):
1.) Clearly, I1(m) ≤ d.
2.) One has,

I2(m) ≤ E[1Tm(X(m)) 1{ρm(X(m),Cm)>d} ρm(X(m), (y∗, . . . , y∗))]

= E[1Tm(X(m)) 1{ρm(X(m),Cm)>d} ρ(X1, y
∗)].

Note that

P(X(m) ∈ Tm, ρm(X(m), Cm) > d) ≤ (1− e−(1+ε/2)mr)bexp{(1+ε)mr}c

converges to 0 as m→∞. Hence, one has limm→∞ I2(m) = 0.
3.) Analogously to 2.) we estimate

I3(m) ≤ E[1{X(m) 6∈Tm}ρ(X1, y
∗)]

and it follows by the AEP that limm→∞ I3(m) = 0.
Summarizing the results above yields that for arbitrary ε > 0

lim sup
m→∞

E[ρm(X(m), Cm)] ≤ d.
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Consequently, there exist codebooks Cm ⊂ Em with em(r+o(1)) elements
yielding ρm-average distortion asymptotically less than d. In order to re-
duce the size of the random codebooks we optimize over the distributions
ν ∈M1(E). Hence, one can asymptotically reduce the rate per symbol to

R(d|µ, ρ) := inf
ν∈M1(E)

R0(µ, ν, d).

By a result of Yang and Kieffer [65], we have

R0(µ, ν, d) = inf
(X,X̂)

[I(X; X̂) + H(PX̂‖ν)],

where the infimum is taken over all random elements (X, X̂) on E2 with
L(X) = µ and

E[ρ(X, X̂)] ≤ d.

It follows immediately that

R(d|µ, ρ) = inf
(X,X̂)

I(X; X̂),

where the infimum is taken over the same r.e.’s as before. The function
R(·|µ, ρ) is called rate distortion function. It is essentially the inverse of
D(·|µ, ρ). One can conclude that r nats per symbol suffice to achieve asymp-
totically ρm-distortion D(r|µ, ρ).

The ideas of the above sketch are useful in the results presented in this
dissertation.
1.) The realizations of X(m) lie in Tm asymptotically with probability 1. Tm
is a so called typical set for the random element X(m) and outcomes outside
of Tm have no influence on the asymptotic coding error. We shall see that
the concept of a typical set provides a useful tool in our considerations.
2.) In the sketch of the proof, we saw that certain randomly generated
codebooks are asymptotically optimal. Keeping this in mind, we shall try
to apply random codebooks in order to infer results for the high resolution
coding problem.



Chapter 2

Gaussian measures

Let (E, ‖ · ‖) be a separable Banach space and let E′ denote its topological
dual equipped with the norm

‖f‖E′ := sup
x∈BE(0,1)

|f(x)|, f ∈ E′.

Definition 2.0.2. A measure µ on the Borel sets of E is called Gaussian
measure on E if

• for any f ∈ E′

µ ◦ f−1

is a normal distribution on R, and

• µ is not a Dirac measure on E.

Analogously, we call a random element X on E with Gaussian law, a Gaus-
sian random element in E.

In this section, let µ be a Gaussian measure on E and let X denote a
µ-distributed random element in E. Let us first state some basic properties
of Gaussian measures. There exist an element aµ ∈ E and a linear operator

Cµ : E′ → E

such that
E[f(X)] = f(aµ)

and
E[f(X − aµ)g(X − aµ)] = f(Cµg)

for all f, g ∈ E′. The element aµ and the operator Cµ are called barycenter
and covariance operator of µ. A Gaussian measure is uniquely determined by

21
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its barycenter and covariance operator. The measure µ is called centered if
aµ = 0. Note, that we can transform any Gaussian vector X into a centered
Gaussian vector with the same covariance operator by shifting X by −aµ.
We will restrict our attention to centered Gaussian measures µ. Results
for the general case can be inferred by shifting the measures appropriately.
Thereafter let µ be centered.

An important quantity will be the small ball function

ϕ : R+ → R+

ε 7→ − logµ(B(0, ε)).

A proof for the existence of aµ and Cµ is contained in Lifshits [48], Section
8 (see also Bogachev [7], Theorem 3.2.3). The continuity and compactness
of Cµ can be deduced from Theorem 3.2.3 and Corollary 3.2.4 in [7].

2.1 The reproducing kernel Hilbert space

Denote for a Borel measurable function f : E → R,

‖f‖L2(µ) =
(∫

E
f(x)2 dµ(x)

)1/2

and let
L2(µ) = {f : E → R : ‖f‖L2(µ) <∞}

be the Hilbert space of square integrable functions. For x ∈ E, we set

‖x‖Hµ = sup{f(x) : f ∈ E′, ‖f‖L2(µ) ≤ 1}.

and let
Hµ = {x ∈ E : ‖x‖Hµ <∞}.

Note that one has Cµ(E′) ⊂ Hµ, since for x = Cµg ∈ Cµ(E′) and f ∈ E′

f(x) = f(Cµg) = 〈f, g〉L2(µ) ≤ ‖f‖L2(µ) ‖g‖L2(µ).

Here, 〈·, ·〉L2(µ) denotes the scalar product in the Hilbert space L2(µ).
The set Hµ equipped with the norm ‖ · ‖Hµ constitutes a Hilbert space;

the so called Cameron-Martin space or reproducing kernel Hilbert space as-
sociated with µ ([7], Lemma 2.4.1 and Theorem 3.2.3). The space Hµ is
compactly embedded in E ([7], Corollary 3.2.4). We denote

σ = σ(µ) = sup
x∈E\{0}

‖x‖E
‖x‖Hµ

<∞. (2.1)
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Example 2.1.1. Let µ denote the Wiener measure on the Banach space of
continuous functions C([0, 1],Rd) equipped with the supremum norm ‖·‖[0,1].
In that case the reproducing kernel Hilbert space is the set

Hµ =
{∫ ·

0
f(s) ds : f ∈ L2([0, 1],Rd)

}
equipped with the Hilbert space norm ‖

∫ ·
0 f(s) ds‖Hµ = ‖f‖L2[0,1].

2.2 Basic properties of Gaussian measures

Lemma 2.2.1. The support of µ (supp(µ)) is a closed linear subspace of E
and one has

supp(µ) = Hµ,

where the closure is taken in the Banach space norm.

Lemma 2.2.2. (Anderson’s inequality). Let A be a symmetric convex Borel
set in E. For any x ∈ E, one has

µ(x+A) ≤ µ(A),

where x+A = {x+ z : z ∈ A}.

Gaussian measures satisfy a zero-one law:

Lemma 2.2.3. (Zero-one law). Suppose that A is a Borel set on E such
that for any h ∈ Cµ(E′),

µ(A+ h) = µ(A).

Then, µ(A) ∈ {0, 1}.

We will need an estimate for the measure of shifted balls. We denote for
x ∈ E and ε ≥ 0

I(x, ε) = inf
{ ‖h‖2

Hµ

2
: h ∈ Hµ ∩BE(x, ε)

}
.

Here the infimum of the empty set is assumed to be ∞.

Lemma 2.2.4. (Estimate of shifted balls). For any x ∈ E, ε > 0 and
a ∈ [0, 1], it holds

µ(B(x, ε)) ≥ exp{−I(x, aε)− ϕ((1− a)ε)}.
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Lemma 2.2.5. (Cameron-Martin formula). Let f ∈ E′ and h = Cµf ∈ Hµ.
The measure µh ∈M1(E) defined by

µh(A) = µ(A− h), A ∈ B(E),

is absolutely continuous w.r.t. µ and the corresponding Radon-Nikodym
derivative is

dµh
dµ

(x) = exp
{
f(x)− 1

2
‖h‖2

Hµ

}
, x ∈ E.

Lemma 2.2.6. Assume that Hµ is infinite dimensional and denote by {ej}j∈N
a complete orthonormal system in Hµ. Let {Xj}j∈N be a sequence of i.i.d.
standard normals. Then the limit

X := lim
n→∞

n∑
j=1

Xjej

exists a.s. in the Banach space norm and L(X) = µ.

A proof of Anderson’s inequality is contained in [7], Theorem 2.8.10.
The zero-one law and the series representation (Lemma 2.2.6) are proven
in [7] Theorem 2.5.2 and Theorem 3.5.1. The estimate of shifted balls is
taken from Li and Shao [47], Theorem 3.2. The Cameron-Martin formula is
proven in [7], Corollary 2.4.3.

2.3 Concentration inequalities for Gaussian mea-

sures

Set for t ∈ R
Φ(t) =

1√
2π

∫ t

−∞
e−x

2/2 dx.

Moreover, we let Φ(∞) = 1 and Φ(−∞) = 0. Then,

Φ : R ∪ {−∞,∞} → [0, 1]

is bijective. Moreover, we let Ψ = 1− Φ and denote by

K = {x ∈ Hµ : ‖x‖Hµ ≤ 1}

the closed unit ball of Hµ.

Lemma 2.3.1. (Isoperimetric or Borell’s inequality). Let A ∈ B(E) and
t ≥ 0. One has

µ(A+ tK) ≥ Φ(t+ Φ−1(µ(A))).
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The isoperimetric inequality shows that the measure is concentrated
around 0. Let M denote a median of the random variable ‖X‖ and let
t > 0. Note that

B(0,M + t) ⊃ B(0,M) +
t

σ
K,

where σ = σ(µ) is as in (2.1). Consequently, with the isoperimetric inequal-
ity,

µ(B(0,M + t)) ≥ Φ
( t
σ

+ Φ−1(1/2)
)

= Φ
( t
σ

)
.

Therefore,

µ(B(0,M + t)c) ≤ Ψ(t/σ) ≤ 1
2

exp{−t2/2σ2}. (2.2)

In particular, the random variable ‖X‖ has Gaussian tails and all moments
of ‖X‖ are finite. A consequence of this strong concentration property is

Lemma 2.3.2. (Equivalence of moments). For any p, q > 0 there exist
universal constants Kp,q such that

E[‖X‖p]1/p ≤ Kp,q E[‖X‖q]1/q

for any Gaussian vector X on an arbitrary separable Banach space E.

Lemma 2.3.3. (Ehrhard’s inequality). Let A1 and A2 be two nonempty
convex Borel sets in E. Assume that µ(A1) < 1 and µ(A2) < 1. Then, for
all γ ∈ [0, 1],

Φ−1
(
µ∗{γA1 + (1− γ)A2}

)
≥ γ Φ−1(µ(A1)) + (1− γ) Φ−1(µ(A2)),

where µ∗ denotes the inner measure of µ.

Corollary 2.3.4. For any x ∈ E, the function

R+ → [−∞,∞)

t 7→ Φ−1(P(‖X − x‖ ≤ t))

is concave.

Proof. Fix x ∈ E and let t1, t2 > 0 and γ ∈ (0, 1). Choose A1 = B(x, t1)
and A2 = B(x, t2). Then B(x, γt1 + (1 − γ)t2) = γA1 + (1 − γ)A2 and the
result is obtained via Lemma 2.3.3. �

A consequence of the previous corollary is



26 Gaussian measures

Lemma 2.3.5. The small ball function

ϕ : R+ → R+

ε 7→ − logµ(B(0, ε))

is monotonically decreasing, one-to-one, onto and convex.

The isoperimetric inequality and the Ehrhard inequality are taken out of
Bogachev [7] (Theorem 4.3.3, Theorem 4.2.2). The equivalence of moments
is proven by Ledoux and Talagrand [44], Corollary 3.2. See also chapter 3.1
on integrability and tail behavior in [44].



Chapter 3

Coding Gaussian measures

on Banach spaces

3.1 An upper bound for the quantization error

Let µ be a centered Gaussian measure on a separable Banach space (E, ‖·‖).
First we consider the high resolution quantization problem for (µ, ‖ · ‖s) for
some s > 0. This problem was first treated in the dissertation by Fehringer
[23]. In a proceeding article by Dereich et al. [19], Fehringer’s results were
extended.

Fehringer considered quantization with random codebooks generated by
the distribution of the original. We denote, for an arbitrary information
source (ξ, ρ) and r ≥ 0,

D(R)(r|ξ, ρ) =
∫ ∫

min
j=1,...,N

ρ(x, yj) dµ⊗N (y1, . . . , yN ) dµ(x),

where N = berc.
As before let ϕ be the small ball function of µ, i.e.

ϕ(ε) = − logµ(B(0, ε)), ε > 0.

It follows Theorem 2.1 and Theorem 3.1 of [19]:

Theorem 3.1.1. 1.) Upper bound. Assume that

lim
ε↓0

ϕ(ε)
(log 1

ε )
1/a

= ∞

for some a ∈ (0, 1). Then for any ς ∈ (0, 1)

D(R)(r|µ, ‖ · ‖s)1/s . 2ϕ−1
((1− ς)r

2

)
(r →∞).

27
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2.) Lower bound. For every s, κ > 0, one has

D(q)(r|µ, ‖ · ‖s)1/s & (1− e−κ)1/s ϕ−1(r + κ) (r →∞).

A consequence of Theorem 3.1.1 is

Theorem 3.1.2. Suppose ϕ fulfills

ϕ−1(2r) ≈ ϕ−1(r) (r →∞). (3.1)

Then one has for arbitrary s > 0

ϕ−1(r) . D(q)(r|µ, ‖ · ‖s)1/s

≤ D(R)(r|µ, ‖ · ‖s)1/s . 2ϕ−1(r/2)

as r →∞.

In particular, Theorem 3.1.2 yields the weak asymptotics of the quanti-
zation error if condition (3.1) is satisfied.

Remark 3.1.3. 1.) For most infinite dimensional Gaussian measures of
interest, the small ball function ϕ(ε) is regularly varying at 0 with some
index −α < 0, i.e. ϕ(ε) = ε−αl(1/ε) for some slowly varying function l.
Then, by the theory of regularly varying functions (see Remark A.5), the
inverse ϕ−1 is regularly varying at ∞. In particular, it holds condition (3.1)
and the previous theorem is applicable. Examples for which the asymptotics
of ϕ are known are provided in Chapter 3.6.

2.) Note that it is not in the scope of Theorem 3.1.1 to give tight bounds
for the weak asymptotics of D(q) and D(R) if condition (3.1) is not satisfied.
The problem of finding the weak asymptotics of the quantization error is still
open when the small ball function tends to infinity (in 0) slower than every
polynomial ε−α, α > 0. For instance, this is the case when the underlying
process X is a smooth Gaussian process in C[0, 1].

Lemma 3.1.4. Let f : R+ → R+ be a monotonically decreasing, convex
function satisfying

f(2r) ≈ f(r) (r →∞).

Then, for ∆ : R+ → R, r 7→ ∆r with ∆r = o(r) (r →∞), one has

f(r + ∆r) ∼ f(r) as r →∞. (3.2)

Proof. Statement (3.2) is equivalent to

lim
r→∞

f(r + ∆r)− f(r)
f(r)

= 0
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By the convexity and monotonicity of f , it follows for every r > 0 with
∆r > −r that ∣∣∣f(r + ∆r)− f(r)

f(r)

∣∣∣ ≤ f(r − |∆r|)− f(r)
f(r)

. (3.3)

Again by the convexity of f , one has

f(r − |∆r|)− f(r) ≤ 1
t
[f(r − t|∆r|)− f(r)] (3.4)

for any t ≥ 1 with t|∆r| < r. Let r0 ≥ 0 be sufficiently large such that
|∆r|/r ≤ 1/2 for every r ≥ r0. For r ≥ r0, set

t(r) =
r

2|∆r|
.

Combining (3.3) and (3.4) yields, for any r ≥ r0,∣∣∣f(r + ∆r)− f(r)
f(r)

∣∣∣ ≤ 1
t(r)

[f(r − t(r)|∆r|)
f(r)

− 1
]

=
1
t(r)

[f(r/2)
f(r)

− 1
]
.

By assumption, lim supr→∞ f(r/2)/f(r) < ∞. Since t(r) tends to infinity,
the previous expression converges to 0 as r →∞. �

Proof of Theorem 3.1.2. We start with verifying the assumptions of
Theorem 3.1.1. We fix r0 ≥ 0 and η ∈ (0, 1) such that

ϕ−1(2r) ≥ ηϕ−1(r)

for all r ≥ r0. Hence, for any n ∈ N, one has

ϕ−1(2n r0) ≥ ηnϕ−1(r0).

For r ≥ r0 we choose n = blog r
r0
/ log 2c+ 1. Then

ϕ−1(r) ≥ ϕ−1(2n r0) ≥ ηn ϕ−1(r0)

≥ η
1+log r

r0
/ log 2

ϕ−1(r0) = η
( r

r0

)log η/ log 2
ϕ−1(r0).

Denoting a := − log η/ log 2 > 0 and c := ηra0ϕ
−1(r0) > 0, one has

ϕ−1(r) ≥ cr−a

for r ≥ r0. Set ε0 := ϕ−1(r0) and consider arbitrary ε ∈ (0, ε0] and
r := ϕ(ε) ≤ r0. Using the previous inequality one has

ε = ϕ−1(r) ≥ cr−a
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and, hence,

ϕ(ε) = r ≥
(ε
c

)−1/a
.

The assumption of part 1.) of Theorem 3.1.1 follows. By an application of
the previous lemma we obtain the correct upper bound. The lower bound
follows immediately by Lemma 3.1.4, since ϕ−1(r + κ) ∼ ϕ−1(r). �

Theorem 3.1.2 implies that random coding yields coding errors of asymp-
totically optimal order in many cases. Motivated by this fact, one may
implement a quantization scheme by generating randomly a codebook
C = {Y1, . . . , Yberc} of some rate r ≥ 0 and keeping it fixed afterwards.
Unfortunately, this method has a non-negligible disadvantage in its practi-
cability. The elements of C are arbitrarily placed in E and do not have nice
geometric properties. Hence, one encounters the problem of constructing
“fast” algorithms that find good representations of X in C. Since r > 0
is typically thought to be large, it seems not feasible to go through the
codebook sequentially to find the best representation.

Alternatively, we consider quantization with codebooks that are based
on ε-nets.

3.2 Using ε-nets as codebooks

Let A ⊂ E. A set A0 ⊂ E is called ε-net of the set A if

A0 +B(0, ε) ⊃ A.

Here, + denotes the Minkowski sum of sets. Let

Ne(ε,A) = inf{|A0| : A0 is an ε-net of the set A}, ε > 0,

be the covering number of A, where |A0| denotes the cardinality of the set
A0. For precompact subsets A ⊂ E, the function

R+ → N0, ε 7→ logNe(ε,A)

is called metric entropy of A. Note that the precompactness property implies
that logNe(ε,A) is finite for any ε > 0. Metric entropy represents a measure
of the complexity of a set. High metric entropy means that much information
is needed to describe an element with high accuracy.

First studies of metric entropy concerned its asymptotic behavior for cer-
tain regular (e.g. Hölder-continuous) precompact subsets of C[0, 1] equipped
with the supremum norm (see for instance Kolmogorov’s review on the the-
ory of information transmission [35] and [38]). The research on entropy
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numbers continues and became a part of the more general approximation
theory. For an exposition on this topic, one may consult the book by Carl
and Stephani [12].

A first relation between entropy numbers and small ball probabilities was
discovered by Kuelbs and Li in 1993 [40] and sharpened by Li and Linde
[46]. They found

Theorem 3.2.1. Let l : R+ → R+ be slowly varying such that for all s > 0,

l(x) ≈ l(xs) (x→∞).

Then, for a > 0,

ϕ(ε) ≈ ε−a l(1/ε)

if and only if

logNe(ε,K) ≈ ε−2a/(2+a) l(1/ε)2/(2+a).

Here K denotes the closed unit ball of the Cameron-Martin space of µ.

Other relationships as presented above, are known to exist between a
number of approximation quantities like average Kolmogorov width and
many more. Such correspondences have been the topic of the recent disser-
tation by Creutzig [14].

Parts of the proof of the previous theorem rely on the same properties
of Gaussian measures that were applied in the dissertation by Fehringer [23]
and in the article by Dereich et al. [19] to obtain the upper bound for the
quantization error. In fact, we will use Lemma 1 of [40] in the following
considerations:

Lemma 3.2.2. For λ, ε > 0, one has

logNe(2ε, λK) ≤ ϕ(ε) +
λ2

2
,

where K denotes the closed unit ball in Hµ.

Denote by Φ the distribution function of a standard normal random
variable and let Ψ = 1− Φ. Recall that Ψ satisfies the basic inequality

Ψ(t) ≤ 1
2
e−t

2/2

for t ≥ 0 (see for instance Ledoux and Talagrand [44], p. 57).
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Theorem 3.2.3. Let µ be a Gaussian measure with infinite dimensional
support. There exists a function c : R+ → R+, ε 7→ cε satisfying

lim
ε↓0

c2ε
ϕ(ε)

= 0 and (3.5)

lim
ε↓0

log(1/ε)
c2ε

= 0. (3.6)

Set λε := cε−Φ−1(µ(B(0, ε))), ε > 0. For any family of codebooks {Cε}ε>0,
in E satisfying

Cε +B(0, 2ε) ⊃ λεK, (3.7)

one has, for any s > 0,

E[d(X, Cε)s]1/s . 3 ε (ε ↓ 0).

Furthermore, there exist codebooks Cε, ε > 0, satisfying (3.7) with

log |Cε| ≤ ϕ(ε) + λ2
ε/2 . 2ϕ(ε) (ε ↓ 0). (3.8)

Remark 3.2.4. Suppose the small ball function ϕ satisfies ϕ−1(r) ≈ ϕ−1(2r)
as r →∞. Then the above theorem yields the upper bound

D(q)(r|µ, ‖ · ‖s)1/s . 3ϕ−1(r/2) (r →∞).

Note, that the estimate is slightly weaker than the one obtained in Theorem
3.1.2,

D(q)(r|µ, ‖ · ‖s)1/s . 2ϕ−1(r/2) (r →∞).

However, quantization with ε-nets yields quantization errors of the optimal
order whenever condition (3.1) is satisfied.

For the proof of Theorem 3.2.3 we need

Proposition 3.2.5. If µ has infinite dimensional support, then for any
κ > 0, there exists ε0(κ) such that

ϕ(ε) ≥ κ log(1/ε)

for all ε ∈ (0, ε0(κ)).

Proof. We apply Lemma 2.2.6. Let {Xj}j∈N denote a sequence of inde-
pendent standard normal random variables and let {ej}j∈N denote a com-
plete orthonormal system in Hµ. Then X :=

∑
j∈NXj ej converges a.s.
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and one has L(X) = µ. Let n ∈ N and An = span(e1, . . . , en) denote a
n-dimensional subspace of the reproducing kernel Hilbert space Hµ. Then

P
(
X ∈ B(0, ε)

)
= E

[
P
( n∑
j=1

Xjej ∈ B
(
−

∞∑
j=n+1

Xjej , ε
)∣∣{Xj}j≥n+1

)]
.

Note that
∑n

j=1Xjej is a centered Gaussian measure in E and Anderson’s
inequality implies

P
(
X ∈ B(0, ε)

)
≤ P

( n∑
j=1

Xjej ∈ B(0, ε)
)

Denote π : Rn → E, (x1, . . . , xn) 7→
∑n

j=1 xjej and let fn be the density of
the n-dimensional standard normal distribution. Then, for ε > 0,

P
( n∑
j=1

Xjej ∈ B(0, ε)
)

=
∫

Rn

1π−1(B(0,ε))(z)fn(z)dz.

Since fn is uniformly bounded by (2π)−n/2 one obtains

µ(B(0, ε)) ≤ (2π)−n/2 λn(π−1(B(0, ε))) = (2π)−n/2 λn(π−1(B(0, 1))) εn,
(3.9)

where λn denotes n-dimensional Lebesgue measure. It remains to show the
finiteness of λn(π−1(B(0, 1))). Since π is linear and one-to-one, the map

An → [0,∞), x 7→ |π−1(x)|

defines a norm on An. On An, this norm is equivalent to the norm ‖ · ‖.
Therefore, there exists c > 0 such that

|π−1(x)| ≤ c ‖x‖

for all x ∈ An. In particular, π−1(B(0, 1)) ⊂ BRn(0, c). The statement
follows from equation (3.9), since n ∈ N was arbitrary. �

Proof of Theorem 3.2.3. According to Proposition 3.2.5, there exists a
function c : R+ → R+ satisfying (3.5) and (3.6).

Let {cε}ε>0 and {Cε}ε>0 fulfill the assumptions of the theorem. Let ε > 0
and consider

Aε = B(0, ε) + λεK

where λε := cε − Φ−1(µ(B(0, ε))). We estimate

E[d(X, Cε)s] ≤ E[1Aε(X)d(X, Cε)s] + E[1Ac
ε
(X)d(X, Cε)s] =: I1(ε) + I2(ε).

(3.10)
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By assumption (3.7), it follows

Aε = B(0, ε) + λεK ⊂ Cε +B(0, 3ε).

Consequently, I1(ε) ≤ (3ε)s. Applying the Cauchy-Schwarz inequality to
I2(ε) yields

I2(ε) ≤ µ(Acε)
1/2 E

[
d(X, Cε)2s

]1/2
. (3.11)

Since d(x, Cε) ≤ ‖x‖+ minz∈Cε ‖z‖ ≤ ‖x‖+ 2ε for x ∈ E, one has

E
[
d(X, Cε)2s

]1/2 ≤ E
[
(‖X‖+ 2)2s

]1/2 =: κs <∞

for all ε ∈ (0, 1]. Hence,

I2(ε) ≤ κs µ(Acε)
1/2, ε ∈ (0, 1].

On the other hand, by Borell’s inequality, (see Lemma 2.3.1)

µ(Acε) ≤ Ψ
(
Φ−1(µ(B(0, ε))) + cε − Φ−1(µ(B(0, ε)))

)
= Ψ(cε)

and we obtain with (3.11)

I2(ε) ≤ κs Ψ(cε)1/2 ≤ κs exp
{
−c

2
ε

4
}
,

since cε ≥ 0. Using assumption (3.6), one has for any η > 0,

I2(ε) ≤ κs e
−c2ε/4 . κs ε

η/4 (ε ↓ 0).

Since η > 0 is arbitrary, I2(ε) = o(εs) as ε ↓ 0. The estimates for I1 and I2
combined with (3.10) finally yield

E
[
d(X, Cε)s

]1/s
. 3 ε (ε ↓ 0).

It remains to be shown that there exists a family of codebooks {Cε}ε>0

that satisfies the assumptions (3.7) and (3.8). By Lemma 3.2.2, we find
codebooks Cε, ε > 0, satisfying (3.7) with

log |Cε| ≤ ϕ(ε) + λ2
ε/2 (3.12)

for ε > 0. Since Ψ(t) ≤ exp{−t2/2}, t ≥ 0, one has, for x ≤ 1/2,

x ≤ exp{−Ψ−1(x)2/2}.

Consequently, √
−2 log x ≥ Ψ−1(x).
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Therefore, for ε > 0 with µ(B(0, ε)) ≤ 1/2, one obtains

λ2
ε =

[
cε + Ψ−1(µ(B(0, ε)))

]2

≤
[
cε +

√
−2 log µ(B(0, ε))

]2

= 2ϕ(ε) + 2cε
√

2ϕ(ε) + c2ε ∼ 2ϕ(ε),

where the last equivalence follows from equation (3.5). Hence, with equation
(3.12),

log |Cε| . 2ϕ(ε) (ε ↓ 0).

�

3.3 A lower bound for the distortion rate function

Let (µ, ρ) be an information source on a Polish space E. We will use the
source coding theorem given in Section 1.5. Recall that for r ≥ 0

lim
k→∞

Dk(r|µ, ρ) = inf
k∈N

Dk(r|µ, ρ) = D(r|µ, ρ),

if there exists y ∈ E with
∫
ρ(x, y) dµ(x) <∞.

We estimate the distortion rate function against some term, which mea-
sures the local mass concentration. For y ∈ E and t ≥ 0, set

Bρ(y, t) = {x ∈ E : ρ(x, y) ≤ t}

and consider
F (t) = sup

y∈E
µ(Bρ(y, t)).

It follows that F (·) is non-negative, monotonically increasing and converges
to 1 as t→∞. We denote by F+ the right continuous version of F and let
ν ∈ M1[0,∞) be the unique probability measure satisfying ν[0, t] = F+(t),
t ≥ 0. Moreover, we denote by Z a ν-distributed random variable.

Theorem 3.3.1. Assume that the information source (µ, ρ) admits an ele-
ment y ∈ E with

∫
ρ(x, y) dµ(x) < ∞. Let ΛZ be the logarithmic moment

generating function of ν, i.e.

ΛZ(θ) = log
∫
eθy dν(y), θ ∈ R,

and denote by Λ∗Z(t) = supθ≤0[θt − Λ(θ)], t ≥ 0 its Legendre transform.
Then one has for r ≥ 0

D(r|µ, ρ) ≥ sup{t ≥ 0 : Λ∗Z(t) > r}, (3.13)

where the supremum of the empty set is assumed to be 0.
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Remark 3.3.2. The definition Λ∗Z(t) = supθ≤0[θt − ΛZ(θ)], t ≥ 0, differs
slightly from the standard definition where one considers supθ∈R[θt−ΛZ(θ)].
However, both notions are closely related:

Note that ΛZ is differentiable on (−∞, 0) with

Λ′Z(θ) =
E[ZeθZ ]
E[eθZ ]

, θ < 0.

By monotone convergence,

lim
θ10

Λ′Z(θ) = EZ.

Moreover, ΛZ(0) = 0. Due to the convexity of the moment generating
function (see for instance Dembo and Zeitouni, 1998, Lemma 2.2.5), one
has

ΛZ(θ) ≥ θE[Z]

for all θ ∈ R. Hence, for any θ ≥ 0 and t ≤ E[Z],

θt− ΛZ(θ) ≤ θ(t− E[Z]) ≤ 0.

Since supθ∈R[θt−ΛZ(θ)] is non-negative for all t ∈ R, we conclude that, for
t ≤ E[Z],

Λ∗Z(t) = sup
θ≤0

[θt− ΛZ(θ)] = sup
θ∈R

[θt− ΛZ(θ)].

On the other hand, it holds for t ≥ E[Z] and θ ≤ 0

θt− ΛZ(θ) ≤ θ(t− EZ) ≤ 0.

Therefore,
Λ∗Z(t) = 0

for t ≥ E[Z].

As in the section on the SCT (Section 1.5), we use the single letter
distortion measures related to ρ. Denote

ρk(x, y) :=
1
k

k∑
i=1

ρ(xi, yi)

for k ∈ N and x, y ∈ Ek.
Proof of Theorem 3.3.1. Let {Xn}n∈N be a sequence of independent

µ-distributed random elements and write X(k) := (X1, . . . , Xk), k ∈ N. Let
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Ck denote a codebook in Ek of rate kr ≥ 0, i.e. |Ck| ≤ ekr and Ck ⊂ Ek.
Then

E
[
ρk(X(k), Ck)

]
=

∫ ∞
0

P
{
ρk(X(k), Ck) > t

}
dt

=
∫ ∞

0

(
1− P

{
ρk(X(k), Ck) ≤ t

})
dt. (3.14)

Estimate

P
(
ρk(X(k), Ck) ≤ t

)
= µ⊗k

( ⋃
y∈Ck

Bρk
(y, t)

)
≤

∑
y∈Ck

µ⊗k
(
Bρk

(y, t)
)
. (3.15)

By the definition of F+, it holds µ
(
Bρ(y1, t)

)
≤ F+(t) for every y1 ∈ E.

Therefore, for fixed y1 ∈ E, one can define a ν-distributed random variable
Z1, which is coupled with ρ(X1, y1) in such a way that

Z1 ≤ ρ(X1, y1).

Hence, when denoting by {Zn}n∈N an independent sequence of ν-distributed
random variables, one has

P
(1
k

k∑
i=1

Zi ≤ t
)
≥ µ⊗k

(
Bρk

(y, t)
)

for all y ∈ Ek. Set Z̄k :=
∑k

i=1 Zi/k, k ∈ N. With equation (3.15), one
obtains

P
(
ρk(X(k), Ck) ≤ t

)
≤ |Ck|P(Z̄k ≤ t) ≤ exp

[
k
(
r +

log P(Z̄k ≤ t)
k

)]
.

Due to (3.14), it follows

E
[
ρk(X(k), Ck)

]
≥

∫ ∞
0

(
1− exp

[
k
(
r +

log P(Z̄k ≤ t)
k

)])+
dt,

where we denote (·)+ = · ∨ 0. The previous estimate holds uniformly for all
codebooks of rate r and, therefore,

Dk(r) ≥
∫ ∞

0

(
1− exp

[
k
(
r +

log P(Z̄k ≤ t)
k

)])+
dt.

Note that for any θ ≤ 0 and k ∈ N

ΛZ̄k
(θk) := log EeθkZ̄k = kΛZ(θ)

and by the exponentiel Chebychev inequality it follows

log P(Z̄k ≤ t) ≤ ΛZ̄k
(θk)− θkt = k(ΛZ(θ)− θt).
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Therefore
log P(Z̄k ≤ t) ≤ −kΛ∗Z .

Consequently,

Dk(r) ≥
∫ ∞

0

(
1− exp

[
k
(
r − Λ∗Z(t)

)])+
dt.

For t0 ≥ 0 with Λ∗Z(t0) > r it follows

Dk(r) ≥ t0

(
1− exp

[
k
(
r − Λ∗Z(t0)

)])+
→ t0

as r →∞. By the SCT (Theorem 1.5.1), one obtains

D(r) = lim
k→∞

Dk(r) ≥ t0.

�

Remark 3.3.3. In this remark, we outline an alternative proof of the previ-
ous theorem. This alternative version uses basic properties of the AEP. The
notations of Section 1.5 are adopted. Consider the rate distortion function
R(d|µ, ρ). Recall that

R(d|µ, ρ) = inf
ν∈M1(E)

R0(µ, ν, d).

For ε > 0, let ν ∈M1(E) be such that R0(µ, ν, d) ≤ R(d|µ, ρ)+ε. According
to Proposition 2 of Dembo and Kontoyiannis [15], one has

R0(µ, ν, d) = Λ∗(d|ν),

where Λ∗(d|ν) = supθ≤0[θd− Λ(θ|ν)] and

Λ(θ|ν) :=
∫

log
(∫

eθρ(x,y) dν(y)
)
dµ(x), θ ≤ 0.

Due to Jensen’s inequality, one has for θ ≤ 0

Λ(θ|ν) ≤ log
(∫ ∫

eθρ(x,y) dν(y) dµ(x)
)

= log
(∫ ∫

eθρ(x,y) dµ(x) dν(y)
)

≤ sup
y∈E

log
(∫

eθρ(x,y) dµ(x)
)
≤ ΛZ(θ),

where ΛZ(θ) is as above (see Theorem 3.3.1). Hence,

R0(µ, ν, d) = Λ∗(d|ν) ≥ Λ∗Z(d).

Since ε > 0 was arbitrary, one has

R(d|µ, ρ) ≥ Λ∗Z(d).

Since R( · |µ, ρ) is essentially the inverse of the DRFD( · |µ, ρ), the statement
of the theorem can be deduced.
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3.4 SBPs and moment generating functions

Let throughout the rest of this section µ denote a centered Gaussian measure
on a separable Banach space (E, ‖ · ‖). We denote by X a µ-distributed r.e.
on E.

In the previous section, we established a lower bound for the DRF that
is based on an inverse of a particular Legendre transform. In order to apply
the result to Gaussian random elements, we derive a relation between this
Legendre transform and SBPs. The link will be useful in several parts of
this thesis.

Let x ∈ E and let τ : [0,∞) → [0,∞) be a Young function, i.e. τ is
convex, one-to-one and satisfies τ(0) = 0. Denote, for t ≥ 0 and θ ∈ R,

Z = τ(‖X − x‖),
F (t) = P(Z ≤ t),

ΛZ(θ) = log E[eθZ ],

Λ∗Z(t) = sup
θ≤0

[θt− ΛZ(θ)].

Theorem 3.4.1. For 0 < t < 1/2, set

h(t) =
2 log(1/t)
(Φ−1(t))2

and h(0) = limt↓0 h(t) = 1, where Φ(t) = (2π)−1/2
∫ t
−∞ e

−u2/2du, t ∈ R.
Then

Λ∗Z(t) ≤ − logF (t) ≤ h(F (t)) Λ∗Z(t)

for all t > 0 with F (t) < 1/2.

Proof. For every θ ≤ 0 and t > 0, one has by the Markov inequality

ΛZ(θ) = log E[eθZ ] ≥ θx+ log P(Z ≤ t).

Therefore, for any t > 0,

Λ∗Z(t) = sup
θ≤0

[tθ − ΛZ(θ)] ≤ − log P(Z ≤ t).

We proceed with the proof of the second inequality. Suppose first that
t0 > 0 is such that P(Z ≤ t0) = 0 and fix p ∈ (0, 1) arbitrarily. Then there
exists ε > 0 such that P(Z < t0 + ε) ≤ p. Consequently, for θ ≤ 0,

ΛZ(θ) = log EeθZ ≤ log[peθt0 + (1− p)eθ(t0+ε)]
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and
Λ∗(t0) ≥ lim sup

θ→−∞
[θt0 − ΛZ(θ)] ≥ − log p.

Since p ∈ (0, 1) was arbitrary, it follows that Λ∗(t0) = ∞.
Now let t0 > 0 with P(Z ≤ t0) ∈ (0, 1/2). In order to show the second

inequality, we let G(t) = P(‖X − x‖ ≤ t), t > 0, and consider the function

f := Φ−1 ◦ F = Φ−1 ◦G ◦ τ−1 : (0,∞) → R ∪ {−∞}.

Recall that Φ−1 ◦ G is concave as a consequence of the Ehrhard inequality
(see Corollary 2.3.4). Moreover, since τ−1 is concave and Φ−1 ◦G is mono-
tonically increasing, it follows that f is concave.

Let now q denote a tangent of the graph of f at the point (t0, f(t0)).
Represent q in the form q(t) = (t − m)s, where m, s > 0 are appropriate
constants. Let N denote a standard normal r.v. and associate the random
variable Zq = q−1(N) = N/s + m with q. Zq has distribution function
Φ ◦ q and, hence, it is a normal r.v. on R. Note, that F (t) = Φ ◦ f(t).
Consequently, the distribution function of the r.v. f−1(N) equals F . We
assume without loss of generality that Z = f−1(N). Since q is a tangent of
the concave function f , one has q ≥ f . Therefore, Zq ≤ Z and one has for
every θ ≤ 0

ΛZq(θ) = log E[eθZq ] ≥ log E[eθZ ] = ΛZ(θ).

Consequently,
Λ∗Z(t) ≥ sup

θ≤0
[tθ − ΛZq(θ)] =: Λ∗Zq

(t)

for every t > 0.
On the other hand, one has ΛZq(θ) = (θ/s)2/2 +mθ and, for t ∈ (0,m],

Λ∗Zq
(t) = sup

θ≤0
[θt− ΛZq(θ)]

= sup
θ≤0

[
− 1

2s2
(θ + s2(m− t))2 +

s2(m− t)2

2

]
=
s2(m− t)2

2
=
q(t)2

2
.

Note that t0 < m and one has

Λ∗Zq
(t0) =

q(t0)2

2
=
f(t0)2

2
=

(Φ−1(F (x0)))2

2
.

Hence,

− log P(Z ≤ t0)
Λ∗Z(t0)

≤ 2 log(1/F (t0))
(Φ−1(F (t0)))2

= h(F (t0)).

The convergence limt↓0 h(t) = 1 is established in the lemma below. �
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Lemma 3.4.2.

h(ε) = 1 +
log log(1/ε)
2 log(1/ε)

+ o
( log log(1/ε)

log(1/ε)

)
(ε ↓ 0),

where o denotes the Landau symbol.

Proof. Consider the functions

g : (0,∞) → (0, 1), t 7→ e−t/2 and

g̃ : (−∞, 0) → (0, 1), t 7→ e−t
2/2.

Both functions are one-to-one and possess inverse functions g−1 and g̃−1.
Denote Φ̃ = Φ|(−∞,0) : (−∞, 0) → (0, 1/2). Then(

Φ̃−1
)2 = g−1 ◦ g ◦

(
Φ̃−1

)2 = g−1 ◦ g̃ ◦ Φ̃−1 = g−1 ◦
(
Φ̃ ◦ g̃−1

)−1
. (3.16)

Since Φ(t) ∼ (2π)−1/2e−t
2/2/(−t) as t→ −∞, one has,

Φ̃ ◦ g̃−1(ε) ∼ ε√
2π log(1/ε2)

(ε ↓ 0).

The latter function is regularly varying and its inverse is asymptotically
equivalent to (see Bingham et al. [6], p. 28)(

Φ̃ ◦ g̃−1
)−1(ε) ∼

√
2π log(1/ε2)ε (ε ↓ 0).

Due to equation (3.16), it holds

lim
ε↓0

(Φ̃−1(ε))2 + 2 log(
√

2π log(1/ε2)ε) = 0.

Denote η(ε) = (Φ̃−1(ε))2−[2 log(1/ε)−log(log(1/ε))−log(4π)], ε > 0. Then

h(ε) = 1 +
log(log(1/ε)) + log(4π)− η(ε)

2 log(1/ε)− log(log(1/ε))− log(4π) + η(ε)

and the proof is finished. �

Basic analysis applied to the previous theorem and lemma gives

Corollary 3.4.3. For η > 0, there exists a constant r0 = r0(η) ≥ 0 such
that the following holds: Let X be an arbitrary Gaussian random element
on an arbitrary separable Banach space (E, ‖ · ‖), and let x ∈ E, ε > 0 and
s ≥ 1. One has

− log P(‖X − x‖s ≤ ε) ≤
[
Λ∗x(ε) +

1 + η

2
log Λ∗x(ε)

]
∨ r0,

where Λx(θ) = log E[eθ‖X−x‖
s
], θ ≤ 0, and Λ∗x(ε) = supθ≤0[εθ − Λx(θ)],

ε > 0.
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3.5 A lower bound for the DRF for Gaussian mea-

sures

Let µ denote a centered Gaussian measure on a separable Banach space
(E, ‖ · ‖). For fixed s ≥ 1, we consider the information source (µ, ‖ · ‖s).
In this section, we combine the previous results to obtain an asymptotic
lower bound for the DRF D(r|µ, ‖ · ‖s). Again the bound uses the small ball
function

ϕ(ε) = − logµ(B(0, ε)), ε > 0.

Theorem 3.5.1. For every ε > 0 and s ≥ 1, there exists r0 ≥ 1 such that

D(r|µ, ‖ · ‖s)1/s ≥ ϕ−1
(
r +

1 + ε

2
log r

)
for all r ≥ r0.

Proof. Let ε > 0 be arbitrary and let ρ(x, y) = ‖x − y‖s, x, y ∈ E.
By the Anderson inequality (Lemma 2.2.2), the mass of centered Gaussian
measures is concentrated around zero, i.e.

F (t) := sup
y∈E

µ(Bρ(y, t)) = µ(Bρ(0, t)) = µ(B(0, t1/s)), t > 0.

For a µ-distributed r.e. X, consider Z := ‖X‖s. Then, P(Z ≤ t) = F (t) for
all t > 0. By Theorem 3.3.1, one has for r > 0,

D(r|µ, ρ) ≥ sup
{
t ≥ 0 : Λ∗Z(t) > r

}
= sup

{
t ≥ 0 : Λ∗Z(t) +

1 + ε

2
log Λ∗Z(t) > r +

1 + ε

2
log r

}
.

By Corollary 3.4.3, there exists r0 ≥ 1 such that

− logF (t) ≤
[
Λ∗Z(t) +

1 + ε

2
log Λ∗Z(t)

]
∨ r0

for all t > 0. Hence, for r ≥ r0,

D(r|µ, ρ) ≥ sup
{
t ≥ 0 : − logF (t) > r +

1 + ε

2
log r

}
.

Consider
ϕ̃ := − log ◦F : (0,∞) → (0,∞).

The function ϕ̃ is related to the small ball function by ϕ̃(t) = ϕ(t1/s), t > 0.
Hence, it has inverse ϕ̃−1(x) = ϕ−1(x)s, x > 0. Finally, we obtain that

D(r|µ, ‖ · ‖s) ≥ ϕ−1
(
r +

1 + ε

2
log r

)s
.
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�

Due to Lemma 3.1.4, the new lower bound is asymptotically equivalent
to ϕ−1(r) if ϕ−1(r) ≈ ϕ−1(2r) (r → ∞). As a consequence of Theorems
3.1.2 and 3.5.1 one obtains

Theorem 3.5.2. Suppose that ϕ−1(r) ≈ ϕ−1(2r) as r →∞. Then, for any
s ≥ 1,

ϕ−1(r) . D(r|µ, ‖ · ‖s)1/s ≤ D(R)(r|µ, ‖ · ‖s)1/s . 2ϕ−1(r/2)

as r →∞. In particular, all coding quantities are of the same weak asymp-
totic order.

3.6 Known asymptotics of small ball probabilities

Considerable effort was recently put on determining the asymptotic behavior
of

ϕ(ε) = − logµ(B(0, ε)), ε > 0,

as ε ↓ 0 for centered Gaussian measures µ on Banach spaces E. Beside
quantization, these results can be used to derive certain types of the law
of the iterated logarithm and to get hold of certain metric entropies. An
overview on the topic can be found in Li and Shao [47]. We summarize some
results below.

Wiener measure

We consider the Wiener measure µ on various separable Banach spaces E:

• E = C([0, 1],Rd), equipped with a supremum norm

‖f‖ := ‖f‖[0,1],G = sup
t∈[0,1]

|f(t)|G,

where | · |G is an arbitrary norm on Rd. Owing to Ledoux [43],

µ(B(0, ε)) ∼ e−λ1/ε2f(0)
∫ 1

−1
f(y) dy (ε ↓ 0),

where λ1 is the principal eigenvalue and f is the corresponding unit-
norm (in L2(Rd)) eigenvector of the Dirichlet problem on the domain
{x ∈ Rd : |x|G < 1}. In the case that µ is 1-dimensional Wiener
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measure on E = C[0, 1] equipped with the standard supremum norm
‖ · ‖[0,1], one has λ1 = π2/8. Therefore, it holds

ϕ(ε) ∼ π2

8ε2
(ε ↓ 0)

and, for s ≥ 1,
π√
8r

. D(r|µ, ‖ · ‖s[0,1])
1/s ≤ D(R)(r|µ, ‖ · ‖s[0,1])

1/s .
π√
r
.

as r →∞.

• E = Lp[0, 1], p ≥ 1, equipped with the Lp-norm ‖ · ‖Lp[0,1]. It is
well known (see for instance Li and Shao [47]) that the small ball
probabilities satisfy

ϕ(ε) ∼ cp
ε2
,

where
cp = 22/pp

(λ1(p)
2 + p

)(2+p)/p

and
λ1(p) = inf

{∫ ∞
−∞

|x|p f(x)2 dx+
1
2

∫ ∞
−∞

f ′(x)2 dx
}

where the infimum is taken over all differentiable f ∈ L2(R) with
unit-norm. Consequently, for s ≥ 1,

√
cp√
r

. D(r|µ, ‖ · ‖sLp[0,1])
1/s ≤ D(R)(r|µ, ‖ · ‖sLp[0,1])

1/s .

√
8cp√
r

as r →∞. The small ball probabilities under the Lp-norm for general
Gaussian Markov processes is treated in Li [45].

• E = Cα0 , α ∈ (0, 1/2), the space of α-Hölder continuous functions over
the time [0, 1] starting in 0 equipped with the norm

‖f‖Cα := sup
0≤s<t≤1

|f(t)− f(s)|
t− s

.

Referring to Kuelbs and Li [41], there exists cα > 0 with

ϕ(ε) ∼ cα

ε2/(1−2α)
.

The constant cα is not known explicitly although lower and upper
bounds are derived in [41]. We obtain, for s ≥ 1,

c
(1−2α)/2
α

r(1−2α)/2
. D(r|µ, ‖ · ‖sCα)1/s

≤ D(R)(r|µ, ‖ · ‖sCα)1/s . 2(3−2α)/2 c
(1−2α)/2
α

r(1−2α)/2

as r →∞.
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Gaussian sheets

Let γ = (γ1, . . . , γd), d ∈ N, 0 < γj < 2, and denote by X = {Xt}t∈[0,1]d

the d-dimensional fractional Brownian sheet with parameter γ in C([0, 1]d),
i.e. X is a centered continuous Gaussian process on [0, 1]d with covariance
kernel

E[XtXs] =
1
2d

d∏
j=1

[
|tj |γj + |sj |γj − |tj − sj |γj

]
, t, s ∈ [0, 1]d.

We consider X as Gaussian random element in the Banach space of contin-
uous functions C([0, 1]d) equipped with the supremum norm ‖ · ‖[0,1]d . The
asymptotics of the small ball function

ϕ(ε) = − log P(‖X‖[0,1]d ≤ ε), ε > 0,

have been studied by many authors. If d = 1, the process is 1-dimensional
fractional Brownian motion and the asymptotics of the SBPs are stated
above. In the case that there is a unique minimum, say γ1, in γ = (γ1, . . . , γd),
it was derived by Mason and Shi [52] that

ϕ(ε) ≈ ε−2/γ1 (ε ↓ 0).

Belinski and Linde [3] studied the case that there are exactly two minimal
elements, say γ1 and γ2, in γ = (γ1, . . . , γd). They found

ϕ(ε) ≈ ε−2/γ1
(
log(1/ε))1+2/γ1 (ε ↓ 0).

By this they extended a result of Talagrand [64], who had already solved the
small ball problem for γ = (1, 1), i.e. in the case that X is a 2-dimensional
Brownian sheet.
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Chapter 4

Perturbation of the coding

problem

In Chapter 3, we obtained bounds on the asymptotic coding error for certain
Gaussian measures. In order to derive results for more general processes, we
study the effect of small perturbations on the asymptotic coding problem.

From now on, we denote by µ a measure on the Borel sets of a Banach
space (E, ‖ · ‖). Moreover, we let X denote a µ distributed random element.
Our aim is to study the impact on the asymptotic coding problem when
“slightly” perturbing the rate and the law of the original.

Finally, we will provide an application of the perturbation results on the
high resolution coding problem for diffusion processes.

4.1 Results for the DRF

Using the convexity of the DRF one obtains immediately a stability result
for small perturbations in the rate. As a consequence of Lemma 3.1.4 one
obtains

Lemma 4.1.1. Let (µ, ρ) be an information source such that its DRF
D(r) = D(r|µ, ρ) satisfies

D(r) ≈ D(2r) (r →∞). (4.1)

Then, for any function ∆ : [0,∞) → R, r 7→ ∆r with ∆r = o(r) as r →∞,
it holds

D(r + ∆r) ∼ D(r) as r →∞.

47
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Now we consider perturbation in the distribution of the original. In the
following we let X1 and X2 be two random elements in a Banach space
(E, ‖ · ‖).

Lemma 4.1.2. Let r1, r2 ≥ 0. Then, for κ > 0 and s > 0,

D(r1+r2|X1+X2, ‖·‖s) ≤ (1+κ)sD(r1|X1, ‖·‖s)+(1+1/κ)sD(r2|X2, ‖·‖s).

The proof is based on basic properties of the mutual information and
the conditional mutual information. Recall that these properties are sum-
marized in Lemma 1.4.4.

Proof of Lemma 4.1.2. Let ε > 0. By the definition of D(·) there exist
r.e.’s X̂1, X̂2 such that I(Xi; X̂i) ≤ ri and

E[‖Xi − X̂i‖s] ≤ D(ri|Xi, ‖ · ‖s) + ε for i = 1, 2.

For i = 1, 2, denote by Ki a version of the probability kernel

Ki(x,A) = PX̂i|Xi=x
(A), x ∈ E,A ∈ B(E),

and let µ = P ◦ (X1, X2)−1. Now let (X1, X2, X̃1, X̃2) denote a random
element in E4 with

P ◦ (X1, X2,X̃1, X̃2)−1(d(x1, x2, x̃1, x̃2))

= µ(d(x1, x2))K1(x1, dx̃1)K2(x2, dx̃2).
(4.2)

We observe that (X̃1, X1, X2, X̃2) forms a Markov process. By Lemma 1.4.4,
one has

I((X1, X2); (X̃1, X̃2)) = I((X1, X2); X̃1) + I((X1, X2); X̃2|X̃1)

≤ I((X1, X2); X̃1) + I((X1, X2, X̃1); X̃2)

= I(X1; X̃1) + I(X2; X̃1|X1)

+ I(X2; X̃2) + I((X1, X̃1); X̃2|X2)

Since (X̃1, X1, X2, X̃2) is a Markov process, it follows that the random el-
ements X2 and X̃1 are conditionally independent given X1. Therefore,
I(X2; X̃1|X1) = 0. Analogously, I((X1, X̃1); X̃2|X2) = 0. We conclude

I((X1, X2); (X̃1, X̃2)) ≤ I(X1; X̃1) + I(X2; X̃2) ≤ r1 + r2.

On the other hand, for any κ > 0,

E[‖X1 +X2−(X̃1 + X̃2)‖s]
≤ E[max{(1 + κ)‖X1 − X̃1‖, (1 + 1/κ)‖X2 − X̃2‖}s]
≤ (1 + κ)sE[‖X1 − X̃1‖s] + (1 + 1/κ)sE[‖X2 − X̃2‖s]
≤ (1 + κ)sD(r1|X1, ‖ · ‖s) + (1 + 1/κ)sD(r2|X2, ‖ · ‖s)

+ [(1 + κ)s + (1 + 1/κ)s]ε.

(4.3)
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The statement follows since ε > 0 is arbitrary. �

Remark 4.1.3. If in the previous lemma the parameter s is greater or equal
to one, the calculations in (4.3) can be improved by applying the triangle
inequality in the Ls(P) space. Then

E[‖X1 +X2 − (X̃1 + X̃2)‖s]1/s ≤ E[‖X1 − X̃1‖s]1/s + E[‖X2 − X̃2‖s]1/s

and one obtains

D(r1 + r2|X1 +X2, ‖ · ‖s)1/s ≤ D(r1|X1, ‖ · ‖s)1/s +D(r2|X2, ‖ · ‖s)1/s.

Lemma 4.1.1 and 4.1.2 imply

Corollary 4.1.4. Fix s > 0 and suppose that D( · |X1, ‖ · ‖s) satisfies con-
dition (4.1). If

D(r|X2, ‖ · ‖s) = o(D(r|X1, ‖ · ‖s)) (r →∞),

then
D(r|X1 +X2, ‖ · ‖s) ∼ D(r|X1, ‖ · ‖s) (r →∞).

Proof. Set X = X1 + X2. By the previous lemma, one has, for r ≥ 0,
η ∈ (0, 1] and κ ∈ R+,

D(r|X, ‖ · ‖s) ≤ (1 + κ)sD(r − ηr|X1, ‖ · ‖s) + (1 + 1/κ)sD(ηr|X2, ‖ · ‖s)
∼ (1 + κ)sD(r − ηr|X1, ‖ · ‖s) (r →∞).

Since κ > 0 is arbitrary, it follows that

D(r|X, ‖ · ‖s) . D(r − ηr|X1, ‖ · ‖s).

Hence we can find a function η : [0,∞) → (0, 1) with limr→∞ η(r) = 0 and

D(r|X, ‖ · ‖s) . D((1− η(r))r|X1, ‖ · ‖s).

With Lemma 3.1.4,

D(r|X, ‖ · ‖s) . D(r|X1, ‖ · ‖s).

On the other hand, by Lemma 4.1.2, for s > 0, η > 0, κ > 0 and r ≥ 0,

D(r + ηr|X1, ‖ · ‖s) ≤ (1 + κ)sD(r|X, ‖ · ‖s) + (1 + 1/κ)sD(ηr|X2, ‖ · ‖s).

Consequently,

(1 + κ)sD(r|X, ‖ · ‖s) ≥ D(r + ηr|X1, ‖ · ‖s)− (1 + 1/κ)sD(ηr|X2, ‖ · ‖s)
& D(r + ηr|X1, ‖ · ‖s) (r →∞).

Now we proceed as in the proof of the converse inequality. �
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4.2 Perturbation results for entropy coding

In this section we study the perturbation problem for entropy coding. Re-
call that the convexity of the DRF implied immediately the result for the
perturbation of rate (Lemma 4.1.1). It is not known whether the entropy
coding error is a convex function. On the contrary, results of György and
Linder [31] suggest that D(e) is not necessarily convex. They observed that
the function

D(E)(r|U [0, 1), | · |2) = inf
{
E[|X − q(X)|2] : X is a U [0, 1)-distributed r.v.,

q : [0, 1) → [0, 1),H(q(X)) ≤ r
}

is not convex in r. In order to prove an analog of Lemma 4.1.1 for entropy
coding, we will relate the quantity D(e) to its convex hull. In the following,
let (µ, ρ) be an arbitrary information source on a Polish space E and abridge
D(e)(r) = D(e)(r|µ, ρ).

Lemma 4.2.1. One has, for r1, r2 ≥ 0 and γ ∈ [0, 1],

D(e)(γr1 + (1− γ)r2 + log 2) ≤ γD(e)(r1) + (1− γ)D(e)(r2).

Proof. Let ε > 0 and let X̂(i) (i ∈ {1, 2}) be such that

E[ρ(X, X̂(i))] ≤ D(e)(ri) + ε

and
H(X̂(i)) ≤ ri.

Let ξ be a random variable that is independent of X and X̂(i) (i = 1, 2)
with

P(ξ = 1) = γ and P(ξ = 2) = 1− γ.

Denote X̂ = X̂(ξ). Then

H(X̂) ≤ H(X̂, ξ) = H(ξ) + H(X̂(ξ)|ξ)

= H(ξ) +
2∑
i=1

P(ξ = i) H(X̂(i))

≤ γr1 + (1− γ)r2 + log 2.

Moreover,

E[ρ(X, X̂)] =
2∑
i=1

P(ξ = i) E[ρ(X, X̂(i))]

≤ γD(e)(r1) + (1− γ)D(e)(r2) + ε,
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where we have used the independence of ξ and (X, X̂(1), X̂(2)). The proof is
complete since ε > 0 was arbitrary. �

For r ≥ 0, we denote

D̄(e)(r) = inf
{∫

D(e)(x) dν(x) : ν ∈M1([0,∞)),
∫
x dν(x) ≤ r

}
= inf

{∫
D(e)(x) dν(x) : ν ∈M1([0,∞)),

∫
x dν(x) = r

}
.

We use results of convex analysis to study D̄(e).
Denote by conv(D(e)) the convex hull of D(e), i.e. conv(D(e)) is the

biggest convex function on [0,∞) that is dominated by D(e). Due to
Carathéodory’s Theorem, one can represent conv(D(e)) in the form

conv(D(e))(r) = inf
{
λ1D

(e)(r1) + λ2D
(e)(r2) : λ1 r1 + λ2 r2 = r,

λ1 + λ2 = 1, λ1, λ2 ∈ [0, 1], r1, r2 ∈ R
}

for r ≥ 0. A proof of Caratheodory’s representation theorem is contained in
Rockafellar’s monograph [59], Corollary 17.1.5.

Proposition 4.2.2. One has

D̄(e)(r) = conv(D(e))(r), r ≥ 0.

Proof. First we prove D̄(e)(r) ≤ conv(D(e))(r) for r ≥ 0. Let

r = λ1r1 + λ2r2

be a convex combination of r1 and r2 in [0,∞), i.e. λ1, λ2 ∈ [0, 1] with
λ1 + λ2 = 1. Consider the measure ν =

∑2
i=1 λiδri ∈ M1([0,∞)), with δ

denoting Dirac measure. Note that
∫
x dν(x) = r and, hence,

D̄(e)(r) ≤
∫
D(e)(x) dν(x) = λ1D

(e)(r1) + λ2D
(e)(r2).

Consequently, D̄(e)(r) ≤ conv(D(e))(r) for r ≥ 0.
It remains to prove D̄(e)(r) ≥ conv(D̄(e))(r), r ∈ R. Recall that

conv(D(e)) is a convex function that is smaller than D(e). Hence,

D̄(e)(r) = inf
{∫

D(e)(x) dν(x) : ν ∈M1([0,∞)),
∫
x dν(x) = r

}
≥ inf

{∫
conv(D(e))(x) dν(x) : ν ∈M1([0,∞)),

∫
x dν(x) = r

}
≥ conv(D(e))(r),

where the last estimate holds due to Jensen’s inequality. �

Combining the previous proposition with Lemma 4.2.1, yields
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Corollary 4.2.3. For r ≥ 0,

D(e)(r + log 2) ≤ D̄(e)(r).

In analogy to condition (4.1), we require that

D(e)(2r) ≈ D(e)(r) (r →∞) (4.4)

in order to prove the perturbation result.

Lemma 4.2.4. Let ∆ : [0,∞) → [0,∞) with ∆r = o(r) and suppose that
D(e) satisfies condition (4.4). Then

D(e)(r + ∆r) ∼ D(e)(r) (r →∞).

Proof. By Corollary 4.2.3 and assumption (4.4), one has

D̄(e)(2r) ≈ D̄(e)(r).

Due to Lemma 3.1.4 and the convexity of D̄(e), it follows

D̄(e)(r + ∆r) ∼ D̄(e)(r) (r →∞).

Moreover, applying Corollary 4.2.3, yields for r ≥ log 2

D̄(e)(r) ≤ D(e)(r) ≤ D̄(e)(r − log 2) ∼ D̄(e)(r) (r →∞).

�

Remark 4.2.5. In Section 1.3, we motivated the definition of entropy cod-
ing with the close relationship to variable rate compression. A discrete
reconstruction X̂ admits a prefix free representation Ψ of its support with

1
log 2

H(X̂) = H2(X̂) ≤ E[l(Ψ(X̂))] < H2(X̂) + 1 =
1

log 2
H(X̂) + 1.

Under the assumption (4.4), variable rate compression with constraint
E[l(Ψ(X̂))] ≤ log(2) r yields asymptotically the same coding error as en-
tropy coding.

Now we consider perturbations in the original. Let X1 and X2 be two
random elements in a Banach space (E, ‖ · ‖).

Lemma 4.2.6. For s, κ > 0 and r1, r2 ≥ 0,

D(e)(r1 + r2|X1 +X2, ‖ · ‖s)

≤ (1 + κ)sD(e)(r1|X1, ‖ · ‖s) + (1 + 1/κ)sD(e)(r2|X2, ‖ · ‖s).
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Proof. Let ε > 0 and let X̂i (i = 1, 2) be discrete Borel measurable
random elements in E such that

E[‖Xi − X̂i‖s] ≤ D(e)(ri|Xi, ‖ · ‖s) + ε

and
H(X̂i) ≤ ri

for i ∈ {1, 2}. Then H(X̂1 + X̂2) ≤ H(X̂1, X̂2) ≤ H(X̂1) + H(X̂2) ≤ r1 + r2
by basic properties of the entropy (see Ihara [32], Theorems 1.2.1 and 1.2.2).
Furthermore, analogously to the calculations in (4.3), one has

E[‖X1 +X2 − (X̂1 + X̂2)‖s] ≤ (1 + κ)sD(e)(r1|X1, ‖ · ‖s)

+ (1 + 1/κ)sD(e)(r2|X2, ‖ · ‖s)
+ [(1 + κ)s + (1 + 1/κ)s]ε.

Since ε > 0 was arbitrary, the statement follows. �

Analogously to Corollary 4.1.4, it follows

Corollary 4.2.7. Let s > 0 and suppose that D(e)(r|X1, ‖ · ‖s) fulfills con-
dition (4.4). If

D(e)(r|X2, ‖ · ‖s) = o(D(e)(r|X1, ‖ · ‖s)) (r →∞),

then
D(e)(r|X1 +X2, ‖ · ‖s) ∼ D(e)(r|X1, ‖ · ‖s) (r →∞).

4.3 Perturbation of the rate for the quantization

problem

In the previous section we used convexity and “almost” convexity of the func-
tions D and D(e), respectively, to prove perturbation results. Unfortunately
it is not known whether such strong statements hold for the quantization
error. The regularity result which we will develop is applicable in our typical
setting. However, it is too weak to yield as strong conclusion as for the DRF
and entropy coding.

Let again (µ, ρ) be an information source on E. Consider the quantiza-
tion error

δ(q)(N) = δ(q)(N |µ, ρ) = inf
C⊂E:
|C|≤N

∫
ρ(x, C)µ(dx), N ∈ [1,∞).
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Lemma 4.3.1. Let N ∈ [1,∞), p ∈ (0, 1) and κ ≥ 1. Then

δ(q)(N + dpκNe) ≤ pδ(q)(κN) + (1− p)δ(q)(N).

Proof. We need to show that there exists a codebook with at most
bNc+ dpκNe elements that achieves the distortion bound of the statement.
Let X denote a µ distributed random element. Without loss of generality we
assume that E contains at least bκNc elements. Fix ε > 0 and let C1 ⊂ E

be a codebook with bκNc elements satisfying

E[ρ(X, C1)] ≤ δ(q)(κN) + ε.

Let π : E → C1 be a Borel measurable function such that

E[ρ(X, C1)] = E[ρ(X,π(X))].

Furthermore, let C2 ⊂ E be a codebook with at most bNc elements that
satisfies

E[ρ(X, C2)] ≤ δ(q)(N) + ε.

We assume without loss of generality that bNc+ dpκNe < bκNc since oth-
erwise the statement is trivial. We consider the following random codebook.
Choose uniformly dpκNe different elements of C1 without preference for any
combination and denote the corresponding set of points by C(R). We as-
sume independence of X and C(R). Now set C = C(R) ∪ C2. Note that
|C| ≤ bNc+ dpκNe. Moreover,

E[ρ(X, C)] ≤ P(π(X) ∈ C(R))(δ(q)(κN) + ε)

+ P(π(X) 6∈ C(R))(δ(q)(N) + ε),

since the event {π(X) ∈ C(R)} is independent of X. Furthermore,

P(π(X) ∈ C(R)) =
dpκNe
bκNc

≥ p.

Since δ(q)(N) ≥ δ(q)(κN), we obtain

E[ρ(X, C)] ≤ p(δ(q)(κN) + ε) + (1− p)(δ(q)(N) + ε).

Since ε > 0 is arbitrary the proof is complete. �

The regularity result requires the following

Assumption 4.3.2. There exist constants c, C > 0 and a slowly varying
function f : [1,∞) → [1,∞) such that

cf(N) . δ(q)(N) . Cf(N) (N →∞).
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Note that the quantization error δ(q) satisfies Assumption 4.3.2 in many
cases. For instance, the assumption is satisfied if Theorem 3.1.2 is applicable.
In particular, it is fulfilled for all examples presented in Section 3.6.

Lemma 4.3.3. Let δ(q) satisfy Assumption 4.3.2. Then, for any r ∈ (0, 1],

δ(q)(rN)
δ(q)(N)

. 1 + (1− r)(Cc − 1) as N →∞.

Proof. Owing to Lemma 4.3.1,

(1− p)[δ(q)(N)− δ(q)(N + dpκNe)] ≥ p[δ(q)(N + dpκNe)− δ(q)(κN)]

for N ∈ [1,∞), p ∈ (0, 1) and κ ≥ 1. Hence,

δ(q)(N)− δ(q)(κN)

= δ(q)(N)− δ(q)(N + dpκNe) + δ(q)(N + dpκNe)− δ(q)(κN)

≥ (1 +
p

1− p
)[δ(q)(N + dpκNe)− δ(q)(κN)].

Dividing by δ(q)(κN) and regrouping the terms gives

δ(q)(N + dpκNe)
δ(q)(κN)

≤ 1 + (1− p)
( δ(q)(N)
δ(q)(κN)

− 1
)
.

By Assumption 4.3.2, it follows

δ(q)(N + dpκNe)
δ(q)(κN)

. 1 + (1− p)(Cc − 1) as N →∞.

Now let κ ≥ 1 and p ∈ (0, 1) be such that r > (1 + pκ)/κ = p + 1/κ. The
previous asymptotic estimate yields

δ(q)(rN)
δ(q)(N)

. 1 + (1− p)(Cc − 1) as N →∞.

Note that for any p ∈ (0, r) there exists κ ≥ 1 with r > p+ 1/κ. Therefore,

δ(q)(rN)
δ(q)(N)

. 1 + (1− r)(Cc − 1) as N →∞.

�

In particular, one obtains the following corollary.

Corollary 4.3.4. Let ∆ : [1,∞) → R, N 7→ ∆N with ∆N = o(N) as
N →∞. If Assumption 4.3.2 holds, then it holds

δ(q)(N + ∆N) ∼ δ(q)(N) as N →∞.
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Translating the corollary into the notion of rates yields

D(q)(r + ∆r) ∼ D(q)(r) (r →∞),

if Assumption 4.3.2 is satisfied and ∆ : r 7→ ∆r, [0,∞) → R is such that
limr→∞∆r = 0. This statement is much weaker than the corresponding
results for the DRF (Lemma 4.1.1) and entropy coding (Lemma 4.2.4).

4.4 Coding diffusion processes

In this section, X = {Xt}t∈[0,1] denotes a stochastic process in Rd, d ∈ N,
that solves the stochastic differential equation (SDE)

Xt =
∫ t

0
f(Xs, s) ds+Bt, t ∈ [0, 1],

where f : Rd × [0, 1] → Rd is a Borel measurable function and {Bt}t∈[0,1]

denotes d-dimensional Brownian motion. Throughout the following con-
siderations we impose a regularity condition on the drift function f . We
suppose that there exist constants L, c > 0 such that

|f(x, t)| ≤ L|x|+ c (4.5)

for all x ∈ Rd and t ∈ [0, 1]. Let G = Rd be a Banach space equipped with
a norm | · |G and denote, for a function g : [0, 1] → Rd,

‖g‖[0,1],G = sup
t∈[0,1]

|g(t)|G

and

‖g‖Lp([0,1],G) =
(∫ 1

0
|g(t)|pG dt

)1/p
.

The main task of this section is to prove

Theorem 4.4.1. Let ‖·‖ = ‖·‖[0,1],G or ‖·‖ = ‖·‖Lp([0,1],G) for some p ≥ 1.
Under the regularity condition (4.5), one has, for s ∈ [1,∞),

D(r|X, ‖ · ‖s) ∼ D(r|B, ‖ · ‖s)

and
D(e)(r|X, ‖ · ‖s) ∼ D(e)(r|B, ‖ · ‖s)

as r →∞.
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From now on, let ‖ · ‖ = ‖ · ‖[0,1] be the standard supremum norm, i.e.

‖g‖ = sup
t∈[0,1]

|g(t)|.

In order to prove the theorem, we decompose X into Xt = Yt+Bt, t ∈ [0, 1],
where Yt =

∫ t
0 f(Xt, t) dt. We will show that it is easier to code the process

Y = {Yt}t∈[0,1] than coding Brownian motion.
For g ∈ C([0, 1],Rd) and α ∈ (0, 1], we denote

‖g‖Cα = sup
s,t∈[0,1],
s 6=t

|g(t)− g(s)|
|t− s|α

.

and let
Cα0 =

{
f ∈ C([0, 1],Rd) : f(0) = 0, ‖f‖Cα <∞

}
be the Banach space of α-Hölder continuous functions starting in 0. Note
that

‖Y ‖C1 ≤ sup
t∈[0,1]

|f(Xt, t)| ≤ sup
t∈[0,1]

[L|Xt|+ c] = L‖X‖+ c. (4.6)

In order to obtain an upper bound for the coding complexity of Y we
will use a result of Kolmogorov and Tikhomirov ([38], Theorem XIV).

Lemma 4.4.2. For α ∈ (0, 1], it holds

logNe(ε,BCα
0
(0, 1)) ≈ 1

ε1/α
(ε ↓ 0),

where Ne(ε,BCα
0
(0, 1)) denotes the ε-entropy of the unit ball of Cα0 in the

space C([0, 1],Rd) equipped with the supremum norm ‖ · ‖.

The previous lemma follows as well from Proposition 5.7.1 of Carl and
Stephani [12]. We need some lemmas for the proof of Theorem 4.4.1.

Lemma 4.4.3. There exist A,B ∈ R+ such that, for all t ≥ 0,

P(‖X‖ ≥ t) ≤ exp{−[(t−A)+]2/B},

where (t−A)+ = (t−A) ∨ 0.

Proof. Denote Xt = (X(1)
t , . . . , X

(d)
t ) and Bt = (B(1)

t , . . . , B
(d)
t ) and let

{B(d+1)
t , B

(d+2)
t }t∈[0,1] be a 2-dimensional Brownian motion that is indepen-

dent of X and B. For technical reasons we study the d + 2-dimensional
process

X̃t = (X(1)
t , . . . , X

(d)
t , B

(d+1)
t , B

(d+2)
t + 1)
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instead of X. Clearly, ‖X‖ ≤ ‖X̃‖. By definition, X̃ solves the differential
equation

dX̃t = f̃(X̃t, t) dt+ dB̃t

with X̃0 = (0, . . . , 0, 1), B̃t = (B(1)
t , . . . , B

(d+2)
t ) and f̃(x1, . . . , xd+2, t) =

f(x1, . . . , xd, t) for x ∈ Rd+2 and t ∈ [0, 1]. Note that f̃ satisfies the d + 2-
dimensional analog to property (4.5).

Since by construction X̃t stays a.s. at all times t ∈ [0, 1] in the domain
Rd+2\{0}, one obtains by Itô’s formula

|X̃t| = 1 +
∫ t

0

[ 1
|X̃s|

〈X̃s, f̃(X̃s, s)〉+
d+ 1
|X̃s|

]
ds+

d+2∑
i=1

∫ t

0

X̃
(i)
s

|X̃s|
dB(i)

s .

Noting that
∑d+2

i=1

∫ t
0
X̃

(i)
s

|X̃s|
dB

(i)
s is a martingale with quadratic variation pro-

cess {t}t∈[0,1], we conclude that it is a standard Brownian motion which we
will denote by B̂ = {B̂t}t∈[0,1]. Hence,

|X̃t| = 1 +
∫ t

0

[ 1
|X̃s|

〈X̃s, f̃(X̃s, s)〉+
d+ 1
|X̃s|

]
ds+ B̂t.

Let now T2 denote a random time when |X̃·| attains its maximum in the
time interval [0, 1] and denote by T1 the last time before time T2 when |X̃·|
hits 1. Then

|X̃T2 | ≤ 1 +
∫ T2

T1

[
1
|X̃t|

〈X̃t, f̃(X̃t, t)〉+ (d+ 1)] dt+ B̂T2 − B̂T1

≤ 1 +
∫ T2

T1

[L |X̃t|+ c+ (d+ 1)] dt+ B̂T2 − B̂T1

≤ 1 + c+ (d+ 1) + 2‖B̂‖+ L

∫ T2

T1

|X̃t| dt,

where we have used condition (4.5). Set c̃ = 1 + c + (d + 1). With the
Gronwall Lemma, we obtain

|X̃T2 | ≤ (2‖B̂‖+ c̃) eL.

Hence
‖X̃‖ ≤ 2 eL‖B̂‖+ c̃ eL.

An application of the concentration inequality given in (2.2) to the Brownian
motion B̂ implies the existence of constants A,B ∈ R+, such that

P(‖X‖ ≥ t) ≤ exp
{
−[(t−A)+]2/B

}
for t ≥ 0. �
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Lemma 4.4.4. Let α ∈ (0, 1] and s̃ > s > 0. There exists a constant
κ = κ(s, s̃) such that for all Cα0 -valued processes Z, it holds

D(q)(r|Z, ‖ · ‖s[0,1])
1/s ≤ κE[‖Z‖s̃Cα ]1/s̃

1
rα
. (4.7)

Proof. Let

U = BCα
0
(0, 1).

By Lemma 4.4.2, there exists a constant c1 ∈ R+ such that

logNe(ε, U) ≤ c1

ε1/α

for all ε > 0. It follows that

logNe(ε, rU) ≤ c1 r
1/α

ε1/α
(4.8)

for every r, ε > 0. We fix η > 0 such that (1 + η)s < s̃ and let ε > 0 be
arbitrary. Set

εi = ε e(1+η)i, i ∈ N0.

Moreover, let

ri = ei, i ∈ N0,

and r−1 = 0. We use εi-nets of the sets riU to build appropriate codebooks.
Note that εi ≥ ri, if

i ≥
⌈1
η

log(1/ε)
⌉

=: N.

Since ‖g‖Cα ≥ ‖g‖ for g ∈ Cα0 , the set {0} is an optimal εi-net of riU for
i ≥ N . For ε > 0, we consider the codebook

C(ε) = {0} ∪
N−1⋃
i=0

Ci(ε),

where Ci(ε) are arbitrary optimal εi-nets of riU for i ∈ N0. By basic analysis,
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one concludes that

E[d(Z, C(ε))s] ≤
∞∑
i=0

E[1{‖Z‖Cα∈[ri−1,ri]} d(Z, Ci(ε))
s]

≤
∞∑
i=0

P(‖Z‖Cα ≥ ri−1) εsi

= εs +
∞∑
i=1

P
(‖Z‖s̃Cα

rs̃i−1

≥ 1
)
εsi

≤ εs + E[‖Z‖s̃Cα ]
∞∑
i=1

εsi
rs̃i−1

= εs + E[‖Z‖s̃Cα ] εs
∞∑
i=1

e(1+η)is

e(i−1)s̃

= εs + E[‖Z‖s̃Cα ] εs
∞∑
i=1

es̃−(s̃−(1+η)s)i.

Since s̃ > (1 + η)s, the previous sum converges. Consequently, there exists
a constant c2 ∈ R+ such that

E[d(Z, C(ε))s] ≤ (1 + c2 E[‖Z‖s̃Cα ]) εs.

Now we estimate the number of elements in C(ε). If ε ≥ 1 then N ≤ 0 and
|C(ε)| = 1. Otherwise, one obtains with equation (4.8)

|C(ε)| ≤ 1 +
N−1∑
i=0

|Ci(ε)| ≤ 1 +
N−1∑
i=0

exp
{
c1 (ri/εi)1/α

}
= 1 +

N−1∑
i=0

exp
{
c1

1
ε1/α

e−iη/α
}

≤ 1 +N exp
{
c1

1
ε1/α

}
≤ 1 +

(
1 +

1
η

log(1/ε)
)

exp
{
c1

1
ε1/α

}
.

The previous expression can be bounded uniformly, for ε ∈ (0, 1), by

|C(ε)| ≤ exp
{
c3

1
ε1/α

}
,

where c3 ∈ R+ is an appropriate constant. Note that the estimate is also
valid for ε ≥ 1. Consequently,

D(q)
(
c3

1
ε1/α

|Z, ‖ · ‖s
)
≤ [1 + c2 E[‖Z‖s̃Cα ] εs
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for ε > 0 and, hence, for all r ≥ 0

D(q)(r|Z, ‖ · ‖s)1/s ≤ [1 + c2 E[‖Z‖s̃Cα ]1/s cα3
1
rα
. (4.9)

All constants c1, c2 and c3 depend on s, s̃ and η but not on the process Z.
Note that the left hand side of equation (4.7) satisfies

D(q)(r|λZ, ‖ · ‖s[0,1])
1/s = λD(q)(r|Z, ‖ · ‖s[0,1])

1/s

for λ ∈ [0,∞). The same scaling property holds for the right hand side of
equation (4.7). Hence, it suffices to prove the inequality (4.7) for processes
Z with E[‖Z‖s̃Cα ] = 1. Consequently, the assertion follows from (4.9). �

Proof of Theorem 4.4.1. Let ‖ · ‖ = ‖ · ‖[0,1],G or ‖ · ‖ = ‖ · ‖Lp([0,1],G),
p ≥ 1. As a consequence of Section 3.6, one has, for any s ≥ 1,

D(r|B, ‖ · ‖s)1/s ≈ D(e)(r|B, ‖ · ‖s)1/s ≈ 1√
r
.

On the other hand, for any g ∈ C([0, 1],Rd), it holds

‖g‖ ≤ ‖g‖[0,1],G.

Since all norms on Rd are equivalent, there exists a constant c > 0 such that

‖g‖ ≤ ‖g‖[0,1],G ≤ c ‖g‖[0,1]

for all g ∈ C([0, 1],Rd). By the previous lemma, we obtain

D(q)(r|Y, ‖ · ‖s)1/s ≤ c κE[‖Y ‖2s
C1 ]1/2s

1
r
,

where κ is as in the lemma. Due to Lemma 4.4.3, E[‖Y ‖2s
C1 ] is finite. An

application of Corollaries 4.1.4 and 4.2.7 completes the proof. �
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Chapter 5

General results

5.1 Spread of “good” codebooks

Let µ denote a centered Gaussian measure on a separable Banach space
(E, ‖ · ‖). In this section, we are concerned with the quantization problem
of the information source (µ, ‖ · ‖s), s > 0. We study the spread of a “good”
codebook. Denote by X a µ-distributed random element and set

σ = σ(X) = sup
f∈E′\{0}

(E[f(X)2])1/2

‖f‖E′
.

Here, E′ denotes the topological dual of E equipped with the norm

‖f‖E′ = sup
x∈BE(0,1)

|f(x)|, f ∈ E′.

Lemma 5.1.1. For each s > 0, there exist a sequence {cN}N∈N in R+ and
a sequence of codebooks {CN}N∈N in E with |CN | ≤ N such that

i.) cN ∼
√

2σ2 log− δ(q)(N |µ, ‖ · ‖s) (N →∞),

ii.) CN ⊂ B(0, 2cN ) (N ∈ N) and

iii.) E[d(X, CN )s] ∼ δ(q)(N |µ, ‖ · ‖s) (N →∞),

where log− x = (− log x) ∨ 0 for x > 0.

For the proof we need

Proposition 5.1.2. For ε > 0, one has

E[‖X‖s1{‖X‖>t}] . exp
{
−(1− ε)t2

2σ2

}
(t→∞).
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Proof. By Hölder’s inequality, it holds, for p, q ∈ (1,∞) with 1
p + 1

q = 1,

E[‖X‖s1{‖X‖>t}] ≤ E[‖X‖sp]1/p P(‖X‖ ≥ t)1/q.

By the finiteness of all moments the first expectation is finite. Let M ∈ R
denote a median of the random variable ‖X‖. Recall, that due to the isoperi-
metric inequality (see (2.2)),

P(‖X‖ > t) ≤ Ψ((t−M)/σ) ≤ exp
{
−(t−M)2

2σ2

}
.

Hence,

E[‖X‖s1{‖X‖>t}] ≤ E[‖X‖sp]1/p exp
{
−(t−M)2

2qσ2

}
.

Since q > 1 may be chosen arbitrarily close to 1 the result follows. �

Proof of Lemma 5.1.1. Let {CN}N∈N denote a sequence of codebooks in
E with |CN | ≤ N and E[d(X, CN )s] ∼ δ(q)(N |µ, ‖ · ‖s) as N →∞. Fix ε > 0
and consider

cN := (1 + ε)
√

2σ2 log− δ(q)(N |µ, ‖ · ‖s), N ∈ N.

We split CN into CN,1 := CN ∩B(0, 2cN ) and CN,2 := CN ∩B(0, 2cN )c. Set

C̃N =

{
CN if CN,2 = ∅,
CN,1 ∪ {0} else.

Then |C̃N | ≤ N and C̃N ⊂ B(0, 2cN ). If CN,2 = ∅, coding with C̃N and
CN coincide. From now on consider only N ∈ N with CN,2 6= ∅. By the
construction of the set C̃N it follows that

E[d(X, C̃N )s] ≤ E[d(X, CN )s 1{‖X‖≤cN}] + E[‖X‖s 1{‖X‖>cN}].

Due to the above proposition,

E[d(X, C̃N )s] . δ(q)(N |µ, ‖ · ‖s) + exp
{
−

(1− ε′)c2N
2σ2

}
(N →∞)

for any ε′ > 0. Choose ε′ > 0 such that 1 + ε′′ := (1− ε′)(1 + ε)2 > 1. Then

exp
{
−

(1− ε′)c2N
2σ2

}
= exp{−(1 + ε′′) log− δ

(q)(N |µ, ‖ · ‖s)}

∼ δ(q)(N |µ, ‖ · ‖s)1+ε′′ = o(δ(q)(N |µ, ‖ · ‖s)),

as N → ∞. Hence, E[d(X, C̃N )s] ∼ δ(q)(N |µ, ‖ · ‖s). Since ε > 0 was
arbitrary, the result follows from a diagonalization argument. �
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Lemma 5.1.3. Let s > 0 and {CN}N∈N a sequence of codebooks in E. If
limN→∞ E[d(X, CN )s] = 0, then cN := maxx∈CN ‖x‖ satisfies

cN &
√

2σ2 log− E[d(X, CN )s] as N →∞.

Proof. Let ε > 0 arbitrary and let f ∈ BE′(0, 1) with

σ̃ := (E[f(X)2])1/2 ≥ (1− ε)σ.

Since f : E → R is contractive, one has d(x, CN ) ≥ dR(f(x), [−cN , cN ]) for
any N ∈ N and x ∈ E. Therefore,

E[d(X, CN )s] ≥ E[dR(f(X), [−cN , cN ])s]

= 2
∫ ∞
cN

(2πσ̃2)−1/2(x− cN )se−x
2/(2σ̃2)dx ≥ Ψ

(cN + 1
σ̃

)
.

Since ε > 0 was arbitrary, it follows E[d(X, CN )s] ≥ Ψ( cN+1
σ ). By assump-

tion, limN→∞ E[d(X, CN )s] = 0 and, hence. cN tends to infinity. Recall that
Ψ(t) ∼ (2π)−1/2 1

t e
−t2/2 as t→∞. Consequently,

log− E[d(X, CN )s] .
(cN + 1)2

2σ2
(N →∞)

and one obtains
cN &

√
2σ2 log− E[d(X, CN )s]

as N →∞. �

5.2 Random versus deterministic codebooks

Fehringer’s upper bound was derived via certain randomly generated code-
books. As seen before, his bound is of the correct weak asymptotic order
in many cases (Theorem 3.1.2). A second example where random coding
provides an even (asymptotically) optimal coding procedure, is the source
coding theorem (see Section 1.5). Motivated by these results we pose the
question in how far random codebooks can compete with deterministic code-
books in the high resolution quantization problem.

In the sequel, we are concerned with quantization based on randomly
generated codebooks. For N ∈ N and r ≥ 0, we denote the quantization
error with random codebooks by

δ(r)(N |µ, ρ) := inf
{∫

E

∫
EN

min
i=1,...,N

ρ(x, yi) dν⊗N (y1, . . . , yN ) dµ(x) :

ν ∈M1(E)
}
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and

D(r)(r|µ, ρ) := inf
{∫

E

∫
EN

min
i=1,...,N

ρ(x, yi) dν⊗N (y1, . . . , yN ) dµ(x) :

ν ∈M1(E), N = berc
}
.

Theorem 5.2.1. Let s > 0. Suppose that δ(q)( · |µ, ‖ · ‖s) is slowly varying
and that

δ(r)(N |µ, ‖ · ‖s) ≈ δ(q)(N |µ, ‖ · ‖s) (5.1)

as N →∞. Then

δ(r)(N |µ, ‖ · ‖s) ∼ δ(q)(N |µ, ‖ · ‖s) (5.2)

as N →∞.

Remark 5.2.2. We fix s ≥ 1 and suppose that the small ball function
satisfies

ϕ−1(2r) ≈ ϕ−1(r) (r →∞).

Due to Theorem 3.5.2, one has

D(q)(r|µ, ‖ · ‖s)1/s ≈ D(R)(r|µ, ‖ · ‖s)1/s ≈ ϕ−1(r) (r →∞).

Therefore, δ(q)(N |µ, ‖ · ‖s) ≈ δ(r)(N |µ, ‖ · ‖s) (r →∞). To apply the above
theorem, it remains to verify that δ(q)( · |µ, ‖ ·‖s) is slowly varying. Unfortu-
nately, it is not in the scope of the perturbation result for the quantization
error (Lemma 4.3.3) to imply this property.

More can be done, if we assume additionally that the asymptotics of the
entropy coding error and the quantization error coincide. In that case the
perturbation result for entropy coding (Lemma 4.2.4) yields that, for κ > 0,
one has

δ(q)(er|µ, ‖ · ‖s) ∼ D(e)(r|µ, ‖ · ‖s)

∼ D(e)(r + κ|µ, ‖ · ‖s)

∼ δ(q)(eκer|µ, ‖ · ‖s) (r →∞).

Consequently, δ(q)( · |µ, ‖·‖s) is slowly varying and one has strong equivalence
of δ(q)( · |µ, ‖ · ‖s) and δ(r)( · |µ, ‖ · ‖s) due to Theorem 5.2.1.

Later in this thesis we are concerned with asymptotic relations between
different coding quantities. From the discussion above, it follows that if
D(e)(r) ∼ D(q)(r), then this equivalence may also be proven by using random
codebooks under certain regularity conditions.
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Proof of Theorem 5.2.1. We abbreviate δ(q)(N) = δ(q)(N |µ, ‖ · ‖s) and
δ(r)(N) = δ(r)(N |µ, ‖ ·‖s). In order to prove the result, we construct asymp-
totically optimal random codebooks. By assumption, there exists a sequence
{νN}N∈N of probability measures on E and a constant η ≥ 1 such that∫

E

∫
EN

min
i=1,...,N

‖x− yi‖s dν⊗NN (y1, . . . , yN ) dµ(x) . η δ(q)(N)

as N ∈ N. Moreover, by Lemma 5.1.1, there exists a sequence of codebooks

{CN}N∈N in E satisfying |CN | = N , maxx∈CN ‖x‖ .
√

8σ2 log− δ(q)(N, s)
and

E[d(X, CN )s] . δ(q)(N) as N →∞.

For fixed κ ∈ N, we consider random codebooks C̃N , N ∈ N, of size (κ+1)N
generated by i.i.d. samples with law

ν̃N :=
κ

κ+ 1
1
N

∑
x∈CN

δx +
1

κ+ 1
νbN

2
c.

Let {Z(N)
i }i∈N and {Z̃(N)

i }i∈N denote independent sequences of i.i.d.
r.e.’s with laws 1

N

∑
x∈CN δx and νbN

2
c, respectively. Moreover, assume that

M = M(N) is an independent binomial r.v. to the parameters 1
κ+1 and

(κ+ 1)N and set for N ∈ N

C̃N,1 = {Z(N)
1 , . . . , Z

(N)
(κ+1)N−M} and C̃N,2 = {Z̃(N)

1 , . . . , Z̃
(N)
M }.

Note that C̃N := C̃N,1 ∪ C̃N,2 is a codebook constituted by (κ + 1)N
ν̃N -distributed r.e.’s. Let πN (·) : E → CN , N ∈ N, be a measurable map
with

E[d(X, CN )s] = E[d(X,πN (X))s].

Then

E[d(X, C̃N )s] ≤ E[1C̃N,1
(πN (X)) d(X,πN (X))s]

+ E[1(C̃N,1)c(πN (X)) 1{M≥bN/2c} d(X, C̃N,2)s]

+ E[1{M<bN/2c} d(X, C̃N,1)s]
=: I1(N) + I2(N) + I3(N).

It remains to find appropriate bounds for I1(N), I2(N) and I3(N). Clearly,
I1(N) ≤ E[d(X, CN )s] . δ(q)(N) ∼ δ(q)((κ + 1)N) (N → ∞). We control
the second summand by

I2(N) ≤ P(πN (X) 6∈ C̃N,1) E[ min
i=1,...,bN

2
c
d(X, Z̃(N)

i )s].
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It follows from the construction of C̃N,1 that

P(πN (X) 6∈ C̃N,1) =
(

1− κ

(κ+ 1)N

)(κ+1)N

≤ e−κ.

Observe that

E[ min
i=1,...,bN

2
c
d(X, Z̃(N)

i )s] . η δ(q)(bN/2c) ∼ η δ(q)((κ+ 1)N).

Consequently,
I2(N) . η e−κ δ(q)((κ+ 1)N).

Expression I3(N) is bounded by

I3(N) ≤ P(M < bN/2c) E[(‖X‖+ max
x∈CN

‖x‖)s]

≤ 2s P(M < bN/2c)
(
E[‖X‖s] + max

x∈CN
‖x‖s

)
. 2s P(M < bN/2c)

√
8σ2 log− δ(q)(N).

By Cramér’s Theorem, P(M < bN/2c) converges exponentially fast to 0 as

N → ∞. Since δ(q)(N) and, hence,
√

8σ2 log− δ(q)(N) are slowly varying,

one has I3(N) = o(δ(q)(N)) as N → ∞. Combining the above estimates
yields

E[d(X, C̃N )s] . (1 + η e−κ) δ(q)((κ+ 1)N) (N →∞).

Since δ(q) is slowly varying, one has

δ(r)(N) . (1 + η e−κ) δ(q)(N)

as N →∞. Letting κ→∞ completes the proof. �



Chapter 6

Coding Gaussian measures

on Hilbert spaces

This chapter is devoted to the study of the high resolution coding problem
for Gaussian measures on Hilbert spaces under norm-based distortions.

6.1 Introduction and known results

Let µ be a centered Gaussian measure on a separable real Hilbert space
(H, 〈 · , · 〉) and denote by X a µ-distributed r.e. We denote by ‖ ·‖ the norm
associated to the scalar product 〈 · , · 〉. We concentrate on measures µ that
have infinite dimensional support.

Let C̃µ : H ′ → H denote the covariance operator of µ. By the Riesz
representation theorem the map

i : H → H ′, f 7→ 〈f, · 〉

is an isometric isomorphism between H and its dual space H ′. Consider
now

Cµ = C̃µ ◦ i : H → H.

In the case that the underlying space is a Hilbert space it is convenient to
call Cµ the covariance operator of µ. In particular when H = Rd, we obtain
the covariance matrix of the underlying Gaussian measure. For f, g ∈ H

define

f ⊗ g : H → H,

h 7→ f ⊗ g(h) = i(g)(h) · f = 〈g, h〉 f.

Since
〈f, Cµg〉 = E[i(f)X · i(g)X] = 〈Cµf, g〉,
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it follows that Cµ is self-adjoint. Taking f = g in the previous equation
shows that Cµ is positive semidefinite. Furthermore, Cµ is compact, since C̃µ
is compact. By the spectral theorem for compact operators, there exists an
at most countable index set I and an orthonormal system of eigenfunctions
{ej}j∈I corresponding to the strictly positive eigenvalues {λj}j∈I such that

Cµ =
∑
j∈I

λj · ej ⊗ ej ,

where convergence occurs in the operator norm. For each j ∈ I, we denote

Xj =
1√
λj
〈ej , X〉.

Since 〈ei, Cµej〉 = δijλj for i, j ∈ I (here δ denotes the Kronecker-delta), the
sequence {Xj}j∈N is a sequence of independent standard normals. We can
extend the system {ej}j∈I by countably many orthonormal elements {fj}j∈J
(J countable index set) such that the union forms a complete orthonormal
system of H. Then 〈fj , X〉 = 0 for all j ∈ J almost surely. Hence, one has
a.s.

X =
∑
j∈I

√
λjXjej . (6.1)

This representation is called Karhunen-Loève expansion. Without changing
the distribution of X we will assume strict equality in equation (6.1).

In the sequel, we assume that µ has infinite dimensional support. Hence,
the index set I is infinite and countable and we assume without loss of
generality that I = N. Since Cµ is a compact operator, there exist only
finitely many eigenvalues greater than ε for arbitrary ε > 0. Therefore,
we can assume without loss of generality that the eigenvalues are ordered
decreasingly in j.

The distortion rate function D(r|µ, ‖ · ‖2) for squared norm distortion
was derived by Kolmogorov in 1956 [35]. Consider the following system of
equations for d ∈ (0, ‖λ‖l1 ], dc ∈ (0, λ1] and r ∈ [0,∞){

d =
∑

j dc ∧ λj
r =

∑
j

1
2 log+(λj

dc
).

(6.2)

Here, we denote log+ x = 0 ∨ log x for x > 0. When we fix one parameter
d, dc or r in the allowed domains, the system (6.2) possesses a unique solu-
tion (d, dc, r) with the determined value in the fixed parameter. Hence, the
system induces unique maps

d : [0,∞) → (0, ‖λ‖l1 ], r 7→ d(r) and

dc : [0,∞) → (0, λ1], r 7→ dc(r).
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such that (d(r), dc(r), r) solves the system (6.2) for any r ≥ 0. Then it holds

D(r|µ, ‖ · ‖2) = d(r), r ≥ 0.

This result can be found also in Cover and Thomas [13] (Theorem 13.3.3)
and Ihara [32] (Theorem 6.9.1).

Recall that the SCT is typically proven via a random coding argument.
There the codebook is constituted by a sequence of i.i.d. random elements.
In the case where the information source is (µ, ‖ · ‖2), the optimal choice for
the underlying distribution is known explicitly. It is centered Gaussian in
H with covariance operator ∑

j∈N
λ̃j(r) · ej ⊗ ej ,

where
λ̃j(r) = (λj − dc(r)) ∨ 0, j ∈ N.

Note that λ̃j(r) = 0 for all j > N(r) := sup{i ∈ N : λi > dc}. Here the
supremum of the empty set is assumed to be 0. In the following our aim
is to use similar random codebooks in order to obtain result on the high
resolution quantization problem.

The relation between the functions d, dc, N and λ̃ is illustrated in Fig-
ure 6.1. This link is called inverse water filling principle in the literature.
Similar principles play an important role, for instance, in the theory of the
capacity of Gaussian channels. First results of that kind were obtained by
Shannon (1949, [61]) and Pinsker (1954, [56]; 1956, [57]). See also Chapters
5 and 6 of Ihara [32] and the references therein.

A close relation between the high resolution quantization problem and
the distortion rate function on infinite dimensional Hilbert spaces was
pointed out in the introduction of a technical report by Donoho [20]. There
it is stated that

D(q)(r|µ, ‖ · ‖2) ∼ D(r|µ, ‖ · ‖2) (r →∞), (6.3)

if the eigenvalues of µ decrease polynomially, i.e. there exist κ > 1 and c > 0
such that

λj ∼ c j−κ (j →∞).

In Luschgy and Pagès [51], the latter equivalence is proven for regularly
varying eigenvalues, i.e. there exist κ ≥ 1 and a slowly varying function
l : R+ → R+ such that

λj ∼ j−κl(j) (j →∞).
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Figure 6.1: Inverse water filling principle

Donoho’s report does not contain a proof of his assertion. Nevertheless, one
of the key techniques used in the article is a subband decomposition which
was used later by Luschgy and Pagès to prove equivalence (6.3).

Subband coding

In the sequel, we shortly describe the ideas of subband coding and give a
sketch of the proof of equivalence (6.3). Denote by l2 the Hilbert space of
square summable real-valued sequences. The map

π : H → l2

x 7→ {〈ej , x〉}j∈N

is a contraction. Moreover, π restricted to the linear subspace H0 = supp(µ)
is an isometric isomorphism into l2. It follows that

D(q)(r|X, ‖ · ‖s) = D(q)(r|π(X), ‖ · ‖sl2).

The analog statement holds also for the coding quantities D(e) and D. Note
that π(X) = {

√
λjXj}j∈N. Consequently, we may assume without loss of

generality that X = {
√
λjXj}j∈N and that the underlying Hilbert space is

l2. In particular, we can and will assume that supp(µ) = H.
We divide the ordered sequence of eigenvalues {λj}j∈N into subbands

{λj}j∈I(m) , m ∈ N,

where I(m) = {km−1, . . . , km− 1} and {km}m∈N0 is a monotonically increas-
ing sequence in N with k0 = 1. We assume that the subband decomposition
satisfies
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• limm→∞ km − km−1 = ∞ and

• limm→∞
λkm−1

λkm−1
= 1.

An appropriate decomposition can be found, for instance, if the eigenvalues
are regularly varying. Note that the eigenvalues in each block become more
and more similar and that the block size tends to ∞. Set

X(m) := {
√
λj Xj}j∈I(m) , m ∈ N.

Due to the SCT, one expects that, for largem ∈ N, D(q)(r|X(m), | · |2) is close
to D(r|X(m), | · |2). Here, | · | denotes Euclidean norm on the appropriate
finite dimensional spaces. As a consequence of Luschgy and Pagès ([51],
Proposition 4.4) it follows that

κ(m) := sup
r≥0,
σ2>0

D(q)(r|N (0, σ2)⊗m, | · |2)
D(r|N (0, σ2)⊗m, | · |2)

(6.4)

is finite for all m ∈ N and satisfies limm→∞ κ(m) = 1. It remains to combine
this result with standard estimates.

For fixed r ≥ 0, we let

rm = rm(r) =
1
2

∑
j∈I(m)

log+

λj
dc(r)

, m ∈ N.

Then
∑∞

m=1 rm = r and

D(r|X, ‖ · ‖2
l2) =

∞∑
m=1

D(rm|X(m), | · |2).

We estimate

D(q)(r|X, ‖ · ‖2
l2)

(a)

≤
∞∑
m=1

D(q)(rm|X(m), | · |2)

(b)

≤
∞∑
m=1

D(q)(rm|N (0, λkm−1)
⊗|I(m)|, | · |2)

(c)

≤
∞∑
m=1

κ(|I(m)|)D(rm|N (0, λkm−1)
⊗|I(m)|, | · |2)

(d)
=

∞∑
m=1

κ(|I(m)|)
λkm−1

λkm−1
D(rm|N (0, λkm−1)⊗|I

(m)|, | · |2)

(e)

≤
∞∑
m=1

κ(|I(m)|)
λkm−1

λkm−1
D(rm|X(m), | · |2). (6.5)
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Inequality (a) follows by considering a product codebook which assigns rate
rm to each block X(m). Inequalities (b) and (e) hold due to the fact that
blowing up the variances in the normal distribution increases the quantiza-
tion error and the distortion rate function. Inequality (c) holds by definition
of κ(·) in (6.4), and equality (d) holds due to scaling properties of the normal
distribution.

In (6.5), the coefficients of D(·) converge to 1 as m → ∞. It can be
shown that finitely many coordinates (or blocks) have no influence on the
asymptotic behavior of the quantization error and may be neglected. Then
one concludes

D(q)(r|X, ‖ · ‖2
l2) .

∞∑
m=1

D(rm|X(m), | · |2) = D(r|X, ‖ · ‖2
l2)

as r →∞.

6.2 The high resolution quantization problem

The known proofs of the equivalence between the DRF and the quantization
error are based on a subband decomposition. It is not known whether the
equivalence holds if it is not possible to find a subband decomposition that
fulfills the required assumptions. For instance, it is typically not possible to
find such a decomposition if the eigenvalues are decaying exponentially or
faster than exponentially. Or the eigenvalues may decrease very irregularly
so that there does not exist an appropriate decomposition. A second open
problem is to find the asymptotics of the quantization error if the distortion
measure is of the form ‖ · ‖s where s > 0 is not equal to 2.

The aim of this section is to prove

Theorem 6.2.1. Assume that

lim
n→∞

log log(1/λn)
n

= 0.

Then, for any s ∈ (0,∞),

D(q)(r|µ, ‖ · ‖s)1/s ∼ D(r|µ, ‖ · ‖2)1/2

as r →∞.

As a consequence of the Hölder inequality, one has

D(r|µ, ‖ · ‖s)1/s ≥ D(r|µ, ‖ · ‖2)1/2

for any s ≥ 2 and r ≥ 0. Hence, Theorem 6.2.1 implies
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Corollary 6.2.2. Suppose that

lim
n→∞

log log(1/λn)
n

= 0.

Then, for any s ∈ [2,∞),

D(e)(r|µ, ‖ · ‖s)1/s ∼ D(r|µ, ‖ · ‖s)1/s ∼ D(r|µ, ‖ · ‖2)1/2

as r →∞.

Theorem 6.2.1 yields strong equivalence of the moments in the asymp-
totic quantization problem. This indicates that, for “good” codebooks C of
high rate, the (random) quantization error d(X, C) is concentrated at some
typical value.

We maintain the definitions for X, d(·), dc(·), N(·) and λ̃j(·) of the intro-
duction throughout the whole chapter unless stated otherwise. Thereafter,
r ≥ 0 denotes the (approximate) rate of the coding strategy considered.
We will always evaluate the latter functions at r. To simplify notations
we will omit the parameter r. We write d, dc, N and λ̃j when we mean
d(r), dc(r), N(r) and λ̃j(r), respectively.

In the following, we consider the efficiency of certain randomly generated
codebooks. The underlying codebook distribution is chosen in analogy to
the source coding theorem. The codebook depends on two parameters r ≥ 0
and δ > 0. Since we keep δ fixed most of the time, we omit the parameter
in the notations. Set

Cr = C(δ)
r = {X̃(r)

i : i = 1, . . . , der+2δ d
dc e}, (6.6)

where the elements are i.i.d. centered Gaussian r.e.’s in H with covariance
operator ∑

j∈N
λ̃j · ej ⊗ ej .

We need a number of propositions for the proof of Theorem 6.2.1. For ease
of notation, we abbreviate D(r) = D(r|µ, ‖ · ‖2), r ≥ 0.

Proposition 6.2.3. The function D(·) is differentiable on [0,∞) with

∂

∂r
D(r) = −2dc(r).

Proof. Let

d̃ : (0, λ1] → (0, ‖λ‖l1 ], x 7→
∑
j∈N

λj ∧ x and

r̃ : (0, λ1] → R+, x 7→
1
2

∑
j∈N

log+

λj
x
.



76 Coding Gaussian measures on Hilbert spaces

Then for any x ∈ (0, λ1], (d̃(x), x, r̃(x)) solves (6.2) and, hence, one has
D(r) = d̃(r̃−1(r)) for any r ≥ 0. Furthermore, d̃ and r̃ are differentiable on
D = (0, λ1]\{λj : j ∈ N} with

∂

∂x
d̃(x) = N(x) and

∂

∂x
r̃(x) = −N(x)

2x
,

where N(x) := sup{i ∈ N : λi > x}, x ∈ R+, and the supremum of the
empty set is 0. Note that r̃|D is a diffeomorphism on its image. Using the
chain rule and the inversion formula we obtain for any r ∈ r̃(D)

∂

∂r
D(r) =

∂d̃

∂x
(dc(r))

(∂r̃
∂x

(dc(r))
)−1

= −N(dc(r))
2dc(r)
N(dc(r))

= −2dc(r).

Since D(·) is continuous and the derivative ∂
∂r D(·) can be continuously

extended onto r̃(D) = [0,∞), the function D(·) is differentiable on [0,∞)
with

∂

∂r
D(r) = −2dc(r).

�

Corollary 6.2.4. One has for δ ∈ (0, 1
2) and r ≥ 0,

D
(
r + δ

d

dc

)
≥ (1− 2δ) d.

Proof. By the convexity of D and Proposition 6.2.3, one has

D
(
r + δ

d

dc

)
≥ D(r) +

∂

∂r
D(r)δ

d

dc
= (1− 2δ)d.

�

For the parameter δ > 0, we let T (r) = T (δ)(r) be the event

T (r) =
{

min
x̂∈C(δ)r

‖X − x̂‖2 ≤ (1 + δ)d
}
, r ≥ 0. (6.7)

We will show that the event occurs almost with probability 1 when r is
large. The proof is based on the link between SBPs and certain moment
generating functions given in Theorem 3.4.1 and Corollary 3.4.3. For θ ≤ 0,
x ∈ H and r ≥ 0, set

Λx(θ|r) = log E[eθ‖X̃
(r)
1 −x‖2 ]

and
Λ′x(θ|r) =

∂

∂θ
Λx(θ|r).
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Proposition 6.2.5. Let x =
∑

j∈N
√
λjxjej ∈ H. Then, for θ ≤ 0 and

r ≥ 0,

Λx(θ|r) =
∑
j∈N

[
−1

2
log(1− 2θλ̃j) +

θλj

1− 2θλ̃j
x2
j

]
(6.8)

Λ′x(θ|r) =
∑
j∈N

[ λ̃j

1− 2θλ̃j
+

λj

(1− 2θλ̃j)2
x2
j

]
. (6.9)

Proof. Let r ≥ 0 and let

Z =
∑
j∈N

√
λ̃jZjej ,

where {Zj}j∈N is a sequence of i.i.d. standard normals. Then Z is centered
Gaussian with covariance operator

∑
j∈N λ̃j ej ⊗ ej . Hence,

L(X̃(r)
1 ) = L(Z).

Let x =
∑

j∈N
√
λjxjej ∈ H and θ ≤ 0. Then

Λx(θ|r) = log E
[
exp

{∑
j∈N

θ
(√

λ̃jZj −
√
λjxj

)2}]
=

N(r)∑
j=1

log E
[
exp

{
θλ̃j

(
Zj −

√
λj

λ̃j
xj

)2}]
+

∞∑
N(r)+1

θλjx
2
j ,

where we have used the independence of the random variables Zj , j ∈ N.
Note that, for any z1 ∈ R and θ ≤ 0,

log E[eθ(Z1−z1)2 ] = −1
2

log(1− 2θ) +
θ

1− 2θ
z2
1 .

Hence,

Λx(θ|r) =
N(r)∑
j=1

[
−1

2
log(1− 2θλ̃j) +

θλj

1− 2θλ̃j
x2
j

]
+

∞∑
j=N(r)+1

θλjx
2
j

and the first statement follows. Equation (6.9) is obtained immediately from
(6.8). �

For convenience, we omit the parameter r in the expressions Λx(θ|r) and
Λ′x(θ|r). For instance, we write Λx(θ) when we mean Λx(θ|r).
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Proposition 6.2.6. Let r ≥ 0 and

θ0(r) = − 1
2dc(r)

.

One has

Λ′X(θ0(r)) = d+ dc

[ N∑
j=1

dc
λj

(X2
j − 1) +

∞∑
N+1

λj
dc

(X2
j − 1)

]
and

Λ∗X(Λ′X(θ0(r))) = r +
N∑
j=1

λ̃j
2λj

(X2
j − 1).

Proof. By the representation given in Proposition 6.2.5 and straightfor-
ward calculations, one has

Λ′X(θ0(r)) =
∑
j∈N

[ λ̃j

1 + λ̃j/dc
+

λj

(1 + λ̃j/dc)2
X2
j

]

=
N(r)∑
j=1

[dcλ̃j
λj

+
d2
cλj
λ2
j

X2
j

]
+

∞∑
j=N(r)+1

λjX
2
j

=
N(r)∑
j=1

[
dc +

d2
c

λj
(X2

j − 1)
]

+
∞∑

j=N(r)+1

[
λj + λj(X2

j − 1)
]

= d+ dc

[N(r)∑
j=1

dc
λj

(X2
j − 1) +

∞∑
j=N(r)+1

λj
dc

(X2
j − 1)

]
.

Hence, E[Λ′X(θ0)] = d. Note that

ΛX(θ0(r)) = −
∞∑
j=1

1
2

log(1 + λ̃j/dc)−
N(r)∑
j=1

[1
2

+
1
2
(X2

j − 1)
]

−
∞∑

N(r)+1

[ λj
2dc

+
λj
2dc

(X2
j − 1)

]

= −r − d

2dc
−
N(r)∑
j=1

1
2
(X2

j − 1)−
∞∑

N(r)+1

λj
2dc

(X2
j − 1).
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Consequently,

Λ∗X(Λ′X(θ0(r))) = θ0(r)Λ′X(θ0(r))− ΛX(θ0(r))

= r +
N(r)∑
j=1

1
2
(X2

j − 1) +
∞∑

N(r)+1

λj
2dc

(X2
j − 1)

− 1
2

[N(r)∑
j=1

dc
λj

(X2
j − 1) +

∞∑
j=N(r)+1

λj
dc

(X2
j − 1)

]

= r +
N(r)∑
j=1

λ̃j
2λj

(X2
j − 1).

�

We keep the function θ0 as defined in the above lemma and abbreviate
θ0 = θ0(r).

To show mass concentration on T (r) we use the link between the moment
generating function and small ball probabilities. More explicitly, we show
that the random variables

Λ∗X(Λ′X(θ0)) and Λ′X(θ0)

are typically close to their means r and d, respectively. Consequently, it
follows that

− log P
(
‖X − X̃1‖2 ≤ (1 + δ)d

∣∣X)
≤ r +

δd

dc

with high probability. Consequently, a random codebook with der+2δd/dce
elements contains a (1 + δ)d-close representation w.r.t. ‖ · ‖2 for “most”
realizations of X. Due to Proposition 6.2.6, the expressions of interest are
weighted sums of i.i.d. random variables.

Lemma 6.2.7. Let {Zj}j∈N be a sequence of zero-mean real-valued i.i.d.
random variables in L2(P) and denote by ΛZ1 the logarithmic moment gen-
erating function of Z1,

ΛZ1(θ) = log EeθZ1 , θ ∈ R.

Let {aj}j∈N ∈ l2 be a sequence of positive numbers and set amax = maxj∈N aj.
Suppose η > 0 is such that ΛZ1 is finite on [0, η]. Then, for each t ≥ 0 and
ζ ∈ [0, η/amax], it holds

log P
( ∞∑
j=1

ajZj ≥ t
)
≤ −ζ

(
t− 1

2
ζξ‖a‖2

l2

)
, (6.10)

where ξ = sup{Λ′′Z1
(x) : x ∈ (0, η)}.
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Proof. By the Markov inequality (exponential Chebyshev inequality),
one has for every ζ ∈ [0, η/amax]

P
( ∞∑
j=1

ajZj ≥ t
)
≤

E[exp{
∑

j∈N ajZjζ}]
exp{tζ}

.

Since {Zj}j∈N is a sequence of i.i.d. random variables, we obtain

log P
( ∞∑
j=1

ajZj ≥ t
)
≤

∑
j∈N

ΛZ1(ajζ)− tζ. (6.11)

We use Taylor’s formula for estimating Λ̃ = Λ|[0,η]. Recall, that by assump-
tion Λ̃ is finite. Hence, Λ̃ is continuous on [0, η] and C∞ on (0, η). Note that
Λ̃(0) = 0 and

Λ̃′(θ) =
E[Z1e

θZ1 ]
E[eθZ1 ]

, θ ∈ (0, η),

where the equality follows by interchanging differentiation and integration.
By dominated convergence,

lim
θ↓0

Λ̃′(θ) = E[Z1],

and hence Λ̃′(0) = 0. Combining all results, we obtain by Taylor’s formula

Λ̃(θ) ≤ 1
2
ξθ2, θ ∈ [0, η].

With equation (6.11),

log P
( ∞∑
j=1

ajZj ≥ t
)
≤
∞∑
j=1

1
2
ξ(ajζ)2 − tζ.

Rewriting this estimate yields (6.10). �

Proposition 6.2.8. For all δ > 0 there exists κ > 0 such that

P(Λ′X(θ0) ≥ d+ δd) ≤ e−κ
d
dc and (6.12)

P
(
Λ∗X(Λ′X(θ0)) ≥ r + δ

d

dc

)
≤ e−κ

d
dc (6.13)

for all r ≥ 0.

Proof. 1.) We start with proving inequality (6.12). Recall that by Propo-
sition 6.2.6,

Λ′X(θ0) = d+ dc

[ N∑
j=1

dc
λj

(X2
j − 1) +

∞∑
j=N+1

λj
dc

(X2
j − 1)

]
.
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Denote

ψ1(X) = ψ1(X|r) =
N∑
j=1

dc
λj

(X2
j − 1) +

∞∑
j=N+1

λj
dc

(X2
j − 1)

and

Σ1(r) =
N∑
j=1

(dc
λj

)2
+

∞∑
j=N+1

(λj
dc

)2
.

Then

P(Λ′X(θ0) ≥ d+ δd) = P
(
ψ1(X) ≥ δ

d

dc

)
.

Note that the coefficients in the term ψ1(X) are bounded by 1. We will
use Lemma 6.2.7 to bound the probability of large deviations. Note that
Λ̃(θ) = log E[eθ(X

2
1−1)] is finite on (−∞, 1/2). Fix η ∈ (0, 1/2) and let

ξ = sup{Λ̃′′(x) : x ∈ (0, η)} <∞.

Then

log P
(
ψ1(X) ≥ δ

d

dc

)
≤ −ζ

(
δ
d

dc
− 1

2
ζξΣ1(r)

)
for all ζ ∈ [0, η]. With the estimate

Σ1(r) ≤
d

dc

one obtains

log P
(
ψ1(X) ≥ δ

d

dc

)
≤ −ζ(δ − ζξ)

d

dc
.

Choosing ζ sufficiently implies the existence of a constant κ > 0 such that

P(Λ′X(θ0) ≥ d+ δd) ≤ e−κ
d
dc

for all r ≥ 0.
2.) We proceed with the proof of inequality (6.13). Recall that, by Propo-
sition 6.2.6,

Λ∗X(Λ′X(θ0)) = r +
N∑
j=1

λ̃j
2λj

(X2
j − 1).

We estimate the probability of large deviations of

ψ2(X) := ψ2(X|r) :=
N∑
j=1

λ̃j
2λj

(X2
j − 1)
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with Lemma 6.2.7. Set

Σ2(r) =
1
4

N∑
j=1

( λ̃j
λj

)2
.

Then

log P
(
ψ2(X) ≥ δ

d

dc

)
≤ −ζ

(
δ
d

dc
− 1

2
ζξΣ2(r)

)
for ζ ∈ [0, 2η] where ξ and η are as above. Since Σ2(r) ≤ d

4dc
, it follows that

log P
(
ψ2(X) ≥ δ

d

dc

)
≤ −ζ(δ − ζξ)

d

dc
.

Therefore,

P
(
Λ∗X(Λ′X(θ0)) ≥ r + δ

d

dc

)
≤ e−κ

d
dc

for all r ≥ 0, where κ is as above. �

Remark 6.2.9. Analogously to the above proof, one can show that for all
δ > 0 there exists κ > 0 such that

P(Λ′X(θ0) ≤ (1− δ)d) ≤ e−κ
d
dc and

P
(
Λ∗X(Λ′X(θ0)) ≤ r − δ

d

dc

)
≤ e−κ

d
dc .

Note that in general d
dc
≥ N . If the eigenvalues decay rapidly, then N is a

good approximation for the term d
dc

. The estimates show that the random
variables of interest are concentrated at their means and the tail probabilities
decay at least exponentially fast in N .

The estimates of the previous proposition lead to an estimate of P(T (r)c).

Proposition 6.2.10. Suppose that

log r = o
( d

dc

)
(r →∞).

For δ > 0, one has

P(T (r)c) . 2e−κ
d
dc (r →∞),

where κ = κ(δ) is as in Proposition 6.2.8 and T (r) = T (δ)(r) is as in (6.7).
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Proof. Recall that

Cr = {X̃(r)
i : i = 1, . . . , der+2δ d

dc e},

where the elements are i.i.d. centered Gaussian random elements with co-
variance operator ∑

j∈N
λ̃j ej ⊗ ej .

For ease of notation, we denote by ∆ : [0,∞) → [0,∞), r 7→ ∆r the unique
function with der+2δ d

dc e = er+∆r. For r ≥ 0, consider the set

T0(r) =
{
x ∈ H0 : Λ′x(θ0) ≤ d+ δd and Λ∗x(Λ

′
x(θ0)) ≤ r + δ

d

dc

}
.

Due to the previous proposition there exists κ > 0 such that

P(X 6∈ T0(r)) ≤ 2e−κ
d
dc

for all r ≥ 0. Note that

P(T (r)c|X) = (1− P(‖X − X̃
(r)
1 ‖2 ≤ d+ δd|X)

)exp{r+∆r}
.

Using that (1− u/v)v ≤ e−u for any v ≥ u ≥ 0, we obtain

P(T (r)c|X) ≤ exp
{
−P

(
‖X − X̃

(r)
1 ‖2 ≤ d+ δd|X

)
exp{r + ∆r}

}
= exp

{
− exp

{
log P

(
‖X − X̃

(r)
1 ‖2 ≤ d+ δd|X

)
+ r + ∆r

}}
.

(6.14)

Applying the relation between the moment generating function and SBPs
(Corollary 3.4.3) yields that

− log P
(
‖X − X̃(r)

1 ‖2 ≤ Λ′X(θ0)|X
)
≤ r0 ∨

[
Λ∗X(Λ′X(θ0)) + log(Λ∗X(Λ′X(θ0)))

]
for some universal constant r0 ≥ 1. For X ∈ T0(r), we obtain

− log P
(
‖X − X̃

(r)
1 ‖2 ≤ d+ δd|X

)
≤ r0 ∨

[
r + δ

d

dc
+ log(r + δ

d

dc
)
]
. (6.15)

Hence, with estimate (6.14),

P(T (r)c) ≤ P(X 6∈ T0(r))

+ exp
{
− exp

{
r + ∆r − [r0 ∨ (r + δ

d

dc
+ log(r + δ

d

dc
))]

}}
and, for all r ≥ r0,

P(T (r)c) ≤ 2e−κ
d
dc + exp

{
− exp{δ d

dc
− log(r + δ

d

dc
)}

}
. (6.16)



84 Coding Gaussian measures on Hilbert spaces

Using that log r = o(d/dc), one concludes that

P(T (r)c) . 2e−κ
d
dc (r →∞).

�

Lemma 6.2.11. If the eigenvalues {λj}j∈N satisfy

lim
n→∞

log log(1/λn)
n

= 0, (6.17)

then it holds
log r = o(d/dc).

Proof. Note that d ≥ Ndc and, hence, for r ≥ 1,

dc
d

log r =
dc
d

log
(1

2

N∑
j=1

log
λj
dc

)
≤ 1
N

log
(N

2
log

λ1

λN+1

)
→ 0

as r →∞. �

The properties that we have derived so far show that we can find in Cr a√
d+ δd-close representation for X with high probability. In order to prove

the main theorem, we still need an estimate for the weak asymptotics of the
quantization error.

Proposition 6.2.12. For s > 0 there exists κ = κ(s) > 0 such that

D(q)(r|N (0, t), | · |s)1/s ≤ κD(r|N (0, t), | · |2)1/2

for all r ≥ 0 and t ≥ 0.

Proof. Observe that

sup
N∈[1,∞)

δ(q)(N |N (0, 1), | · |s)1/s

D(logN |N (0, 1), | · |2)1/2

= sup
N∈[1,∞)

δ(q)(N |N (0, 1), | · |s)1/s

1/N

≤ sup
N∈N

δ(q)(N |N (0, 1), | · |s)1/s

1/(N + 1)
.

By Theorem 1.2.1, the limit

lim
N→∞

N δ(q)(N |N (0, 1), | · |s)1/s
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exists and is equal to some constant c ∈ R+. Hence,

δ(q)(N |N (0, 1), | · |s)1/s

1/(N + 1)

is less than 2c for all but finitely many N ∈ N. Consequently, the supremum
of this expression taken over all N ∈ N, say κ, is finite and it follows that

D(q)(r|N (0, 1), | · |s)1/s ≤ κ e−r = κD(r|N (0, 1), | · |2)1/2

for r ≥ 0. Due to the scaling properties of the quantization error and the
DRF, the result carries over to general normal distributions N (0, t), t > 0,
with the same constant κ. For t = 0, the estimate is trivial. �

Proposition 6.2.13. For s ≥ 2 there exists κ = κ(s) > 0 such that

D(q)(r|µ, ‖ · ‖s)1/s ≤ κD(r|µ, ‖ · ‖2)1/2

for all r ≥ 0.

Proof. As in the section on subband coding we assume without loss of
generality that the underlying Hilbert space H is l2 and X is the random ele-
ment X = {

√
λjXj}j∈N. With Zj :=

√
λjXj , j ∈ N, one has X = {Zj}j∈N.

Let r ≥ 0 and associate with r

rj = rj(r) =
1
2

log+

λj
dc
, j ∈ N.

We construct an appropriate product codebook Cr on H. By Proposition
6.2.12, there exist κ = κ(s) > 0 and codebooks C(j)

r , j ∈ N, r ≥ 0, on R such
that |C(j)

r | ≤ erj and

E[ min
ẑ∈C(j)r

|Zj − ẑ|s]1/s ≤ κD(rj |N (0, λj), | · |2)1/2 (6.18)

for all r ≥ 0. Set Cr =
∏
j∈N C

(j)
r . Since

∑
j∈N rj = r, the set Cr contains at

most er elements. For j ∈ N, let Ẑj denote the closest (in | · |) representation
in C(j)

r for Zj and let X̂ = {Ẑj}j∈N. Then

D(q)(r|µ, ‖ · ‖s)2/s ≤ E[‖X − X̂‖s]2/s

= E[(
∑
j∈N

|Zj − Ẑj |2)s/2]2/s

(a)

≤
∑
j∈N

E[|Zj − Ẑj |s]2/s

(b)

≤ κ2
∑
j∈N

D(ri|Zj , | · |2)

= κ2D(r|µ, ‖ · ‖2).
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Here, (a) follows from the triangle inequality in the Ls/2(P)-space. (b) holds
due to equation (6.18). �

We are now able to prove Theorem 6.2.1.

Proof of Theorem 6.2.1. 1.) We start with proving inequality “.”. By
the Hölder inequality, it follows that

D(q)(r|µ, ‖ · ‖s′)1/s′ ≤ D(q)(r|µ, ‖ · ‖s)1/s

for s ≥ s′ > 0 and r ≥ 0. Hence, it suffices to consider only s ≥ 2.
By Proposition 6.2.13, there exist a sequence of codebooks {C̃r}r≥0 and a
constant κ > 1 such that |C̃r| ≤ er and

E[min
x̂∈C̃r

‖X − x̂‖2s]1/2s ≤ κD(r)1/2 (6.19)

for all r ≥ 0. Let Cr = C(δ)
r , r ≥ 0, denote the random codebooks as defined

in (6.6) for some fixed δ ∈ (0, 1/4). We consider coding with codebook

Ĉr := Cr ∪ C̃r.

Let δ′ ∈ (2δ, 1/2). Then there exists r0 ≥ 0 such that

|Ĉr| ≤ er + der+2δ d
dc e ≤ er+δ

′ d
dc

for all r ≥ r0. From now on let r ≥ r0. One has

D(q)(r + δ′d/dc|µ, ‖ · ‖s) ≤ E[min
x̂∈Ĉr

‖X − x̂‖s]

≤ E[1T (r) min
x̂∈Cr

‖X − x̂‖s] + E[1T (r)c min
x̂∈C̃r

‖X − x̂‖s]

=: I1(r) + I2(r),

where T (r) = T (δ)(r) is defined as in (6.7). Clearly I1(r) ≤ [(1 + δ)d]s/2.
Moreover, by the Cauchy-Schwarz inequality,

I2(r) ≤ P(T (r)c)1/2 E[min
x̃∈C̃r

‖X − x̂‖2s]1/2.

Property (6.19) implies that

I2(r) ≤ κs P(T (r)c)1/2 ds/2.

Due to Proposition 6.2.10, P(T (r)c) converges to 0. We conclude that
I2(r) = o(ds/2) as r →∞. Consequently,

D(q)(r + δ′d/dc|µ, ‖ · ‖s)1/s ≤ (I1(r) + I2(r))1/s . (1 + δ)1/2d1/2.
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On the other hand, by Corollary 6.2.4,

D(r + δ′d/dc) ≥ (1− 2δ′)d.

Putting everything together gives

D(q)(r + δ′d/dc|µ, ‖ · ‖s)1/s . (1 + δ)1/2d1/2

≤ (1 + δ)1/2

(1− 2δ′)1/2
D(r + δ′d/dc)1/2

as r →∞. We can choose δ ∈ (0, 1/4) and, hence, δ′ ∈ (2δ, 1/2) arbitrarily
small. We conclude that

D(q)(r|µ, ‖ · ‖s)1/s . D(r)1/2 (r →∞).

2.) Now we prove inequality “&”. Let {Čr}r≥0 be an arbitrary sequence
of (deterministic) codebooks in H with |Čr| ≤ er. Fix δ ∈ (0, 1

4) and let
Ĉr, r ≥ 0, as in the first part of the proof. Note that Ĉr depends on the
parameters δ and s. We take s = 2 and denote

Z1(r) = min
x̂∈Čr

‖X − x̂‖ and Z2(r) = min
x̂∈Ĉr

‖X − x̂‖.

Note that |Čr ∪ Ĉr| ≤ 2er + der+2δd/dce For δ′ ∈ (2δ, 1
2) there exists r0 ≥ 0

such that
|Čr ∪ Ĉr| ≤ er+δ

′ d
dc (r ≥ r0).

Hence, for r ≥ r0,

E[Z1(r)2 ∧ Z2(r)2] ≥ D(q)
(
r + δ′

d

dc
|µ, ‖ · ‖2

)
≥ D

(
r + δ′

d

dc

)
.

Due to Corollary 6.2.4, one has

E[Z1(r)2 ∧ Z2(r)2] ≥ (1− 2δ′)d (6.20)

for all r ≥ r0. On the other hand

E[Z1(r)2 ∧ Z2(r)2]

≤ E
[
1{Z1(r)2∧Z2(r)2≤(1+δ)d}

(
Z1(r)2 ∧ [(1 + δ)d]

)]
+ E

[
1{Z1(r)2∧Z2(r)2>(1+δ)d}Z2(r)2

]
=: I1(r) + I2(r).

(6.21)

As a consequence of part 1.), it holds

I2(r) ≤ E[1{Z2(r)2≥d+δd}Z2(r)2] = o(d) (r →∞).
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With equations (6.20) and (6.21), we conclude

I1(r) ≥ (1− 2δ′)d− I2(r) ∼ (1− 2δ′)d (r →∞).

Therefore,

E
[
Z1(r)2 ∧ [(1 + δ)d]

]
& (1− 2δ′)d (r →∞).

Recall that we can choose δ ∈ (0, 1/4) and δ′ ∈ (2δ, 1/2) arbitrarily small.
Consequently, for any ε > 0,

lim
r→∞

P
[
Z1(r) < (1− ε)d1/2

]
= 0.

Hence, for any s > 0, we have

E[Z1(r)s]1/s & D(r)1/2 as r →∞.

�

6.3 The high resolution quantization problem for

random codebooks

In this section, we study the quantization problem with random codebooks,
i.e. the quantity D(r). Recall that

D(r)(r|µ, ‖ · ‖s) = inf
{∫ ∫

min
i=1,...,N

‖x− yi‖s dν⊗N (y1, . . . , yN ) dµ(x) :

N = berc, ν ∈M1(E)
}

for r ≥ 0. We keep the notations and definitions of the previous section.
The main aim of this section is to strengthen Theorem 6.2.1 to

Theorem 6.3.1. Suppose that

lim
n→∞

log log(1/λn)
n

= 0. (6.22)

Then for any s ∈ (0,∞)

D(r)(r|µ, ‖ · ‖s)1/s ∼ D(q)(r|µ, ‖ · ‖s)1/s ∼ D(r|µ, ‖ · ‖2)1/2

as r →∞.
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We adopt the notations of d and dc of the previous section. In order
to strengthen the result to the above theorem, we apply Theorem 5.2.1.
It remains to verify its assumptions. Due to Corollary 6.2.4 and Theorem
6.2.1, perturbations ∆ : [0,∞) → [0,∞), r 7→ ∆r with ∆r = o(d/dc) do not
have an influence on the strong asymptotics of the quantization problem,
i.e.

D(q)(r + ∆r|µ, ‖ · ‖s) ∼ D(q)(r|µ, ‖ · ‖s) (r →∞)

for arbitrarily fixed s > 0. Consequently, δ(q)( · |µ, ‖ · ‖s) is slowly varying.
Hence, it remains to prove the weak equivalence

D(r)(r|µ, ‖ · ‖s) ≈ D(q)(r|µ, ‖ · ‖s) (r →∞).

Since D(q) is in general dominated by D(r), it suffices to find an appropriate
upper bound for D(r). In analogy to the proof of Theorem 6.2.1, we only
need to consider s ≥ 2. Then Theorem 6.3.1 is a consequence of the following
lemma.

Lemma 6.3.2. For s ≥ 2 there exists a constant κ = κ(s) > 0 such that

D(r)(r|µ, ‖ · ‖s)1/s ≤ κD(r|µ, ‖ · ‖2)1/2

for all r ≥ 0.

The lemma does not require assumption (6.22). Consequently, the ex-
pressions D(r)(r|µ, ‖ · ‖s)1/s and D(r|µ, ‖ · ‖2)1/2 are weakly asymptotically
equivalent for any s ≥ 2 without any assumptions on the eigenvalues. How-
ever, if Theorem 6.2.1 is not applicable, then it is not known whether the
function

N 7→ D(q)(logN |µ, ‖ · ‖s)

is slowly varying and we cannot conclude strong equivalence in the general
case. This problem remains unsolved.

Lemma 6.3.3. Let {Ai}i∈N and {Bi}i∈N be independent sequences of i.i.d.
non-negative real-valued r.v.’s. Here, the underlying laws of the sequences
may differ. It holds, for any N,M ∈ N and s > 0,

E
[

min
i=1,...,NM

[Ai +Bi]s
]
≤ E

[
min

i=1,...,N ;
j=1,...,M

[Ai +Bj ]s
]
.

Proof. Fix N,M ∈ N and s > 0, and denote

Im = {(m− 1)N + 1, . . . ,mN}, m = 1, . . . ,M.
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For each m ∈ {1, . . . ,M}, we denote by jm the minimal random index in
Im such that

Ajm = min
i∈Im

Ai.

Let us denote by J the random set of indices {j1, . . . , jM}. Then the se-
quence {Aj}j∈J contains M i.i.d. r.v.’s with law L(mini=1,...,N Ai). By con-
struction, the sequences {Aj}j∈J and {Bj}j∈J are mutually independent.
Moreover, {Bj}j∈J is an i.i.d. sequence with law L(B1). Denote by m̂ the
minimal random index in {1, . . . ,M} with

Bjm̂ = min
i∈J

Bi.

Then L(Bjm̂) = L(mini=1,...,M Bi). Since {Ai}i∈J and m̂ are independent,
it follows that

L(Ajm̂ +Bjm̂) = L
(

min
i=1,...,N ;
j=1,...,M

[Ai +Bj ]
)
.

The assertion is obtained by noting that

min
i=1,...,NM

[Ai +Bi] ≤ Ajm̂ +Bjm̂ .

�

Proposition 6.3.4. Let s̃ > s ≥ 1. There exists a constant κ = κ(s, s̃) such
that

D(r)(r|Z, | · |s)1/s ≤ κ ‖Z‖Ls̃(P) e
−r (6.23)

for all r ≥ 0 and all real-valued random variables Z in Ls̃(P).

The proposition is a consequence of a result of Pierce [55] (see also Graf
and Luschgy [27], Lemma 6.6). He found that, for s ≥ 1 and ε > 0 there
exist constants C1, C2, C3 > 0 such that, for any distribution ξ ∈M1(R),

δ(q)(N |ξ, | · |s) ≤
(
C1

∫
|x|s+εdξ(x) + C2

) 1
N s

, N ≥ C3.

The proof of this result uses a random coding argument. Moreover, the
proof contained in Graf and Luschgy [27] implies

Lemma 6.3.5. Let s̃ > s ≥ 1 and denote by ν+
P the Pareto distribution with

ν+
P (−∞, t] = 1− ((t+ 1) ∨ 1)−

s̃
s
+1, t ∈ R.

Then there exist constants C1, C2, C3 > 0 such that∫ ∫
min

i=1,...,N
|x− yi|s d

(
ν+
P

)⊗N (y1, . . . , yN ) dξ(x) ≤
C1

∫
xs̃ dξ(x) + C2

N s

for all N ≥ C3 and any ξ ∈M1[0,∞) with finite s̃-th moment.
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Proof of Proposition 6.3.4. Let Z ∈ Ls̃(P) and observe that, for all
λ ∈ [0,∞) and r ≥ 0,

D(r)(r|λZ, | · |s)1/s = λD(r)(r|Z, | · |s)1/s.

The same scaling property holds for the right hand side of (6.23). Therefore,
it suffices to prove estimate (6.23) for r.e.’s Z with ‖Z‖Ls̃(P) = 1.

Note that D(r)(r|Z, | · |s)1/s ≤ ‖Z‖Ls̃(P) for all r ≥ 0. It remains to find
an estimate applicable for large rates r ≥ 0. We consider quantization with
random codebooks generated by the distribution

ν =
1
2
(ν+
P + ν−P ),

where ν+
p is the Pareto distribution as in Lemma 6.3.5 and ν−P is the at

0 flipped version of ν+
P . Let CN = {Y1, . . . , YN}, N ∈ N, be constituted

by N ν-distributed random variables. We divide CN into two parts,
C1,N = CN ∩ (−∞, 0] and C2,N = CN ∩ [0,∞). The size of each set Ci,N ,
i = 1, 2, is binomially distributed with parameters N and 1/2. Hence, by
the Markov inequality there exists a constant c > 0 such that, for all N ∈ N
and i = 1, 2,

P(|Ci,N | < N/3) ≤ e−cN .

Let T (N), N ∈ N, denote the event

T (N) = {|Ci,N | ≥ N/3 for i = 1, 2}.

Then P(T (N)c) ≤ 2e−cN , N ∈ N. We estimate

E[d(Z, CN )s]1/s ≤ E[1T (N)d(Z, CN )s]1/s + E[1T (N)c d(Z, CN )s]1/s

=: I1(N) + I2(N).

By Lemma 6.3.5, the first term is bounded by

I1(N) = E[1T (N) d(Z, CN )s]1/s ≤ (C1E[|Z|s̃] + C2)1/s
3
N

for N ≥ C3 where C1, C2, C3 ∈ R+ are appropriate constants. Moreover,

I2(N) = E[1T (N)c d(Z, CN )s]1/s ≤ E[1T (N)c

(
|Z|+ min

i=1,...,N
|Yi|

)s]1/s
(a)
= P{T (N)c}1/s E

[(
|Z|+ min

i=1,...,N
|Yi|

)s]1/s

(b)

≤
(
2e−cN

)1/s (
‖Z‖Ls(P) + ‖ min

i=1,...,N
|Yi|s‖Ls(P)

)
.
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In step (a), we used the independence of the r.v. 1T (N) and the sequence
{|Yi|}i=1,...,N . Estimate (b) is a consequence of the estimate for P(T (N)c)
and the triangle inequality in Ls(P). According to Lemma 6.3.5, one has in
particular that E[mini=1,...,N |Yi|s] < ∞ for N ≥ C3. In fact, the finiteness
is immediately obtained when taking ξ = δ0. Combining the estimates for
I1 and I2, yields the existence of constants C4, C5 > 0 such that

E[d(Z, CN )s] ≤ (C4E[|Z|s+ε] + C5)1/s
1
N

for all N ≥ C3. The estimate is valid for all processes Z ∈ Ls̃(P) and the
proof is complete. �

Proof of Lemma 6.3.2. By the reasoning in the section on subband cod-
ing, we may assume without loss of generality that the underlying Hilbert
space H is l2 and X is the random element X = {

√
λjXj}j∈N. With

Zj =
√
λjXj , j ∈ N, one can write X = {Zj}j∈N. Let r ≥ 0 and asso-

ciate with r

rj = rj(r) =
1
2

log+

λj
dc

(j ∈ N)

and Nj = Nj(r) = berjc and denote N = N(r) = berc. Fix s ≥ 2. By
Proposition 6.3.4, there exist distributions νj = ν

(r)
j ∈M1(R), j ∈ N, and a

constant κ = κ(s) ∈ R+ such that, for any j ∈ N and r ≥ 0,∫ ∫
min

i=1,...,Nj

|x− yi|s dν
⊗Nj

j (y1, . . . , yNj ) dN (0, λj)(x) ≤
(
κ
√
λje
−rj

)s
.

(6.24)

Moreover, we can choose ν
(r)
j = δ0 if Nj(r) = 1. In fact, one obtains

immediately by the Anderson inequality that for Nj(r) = 1 the distribution
ν

(r)
j = δ0 minimizes the left hand side of (6.24).

We consider coding with codebooks Cr, r ≥ 0, constituted by N(r)
independent

ν(r) =
⊗
j∈N

ν
(r)
j

distributed random elements. Fix r ≥ 0 and let {Y (r)
j (i)}i∈N, j ∈ N, de-

note independent sequences of independent ν(r)
j -distributed random vari-

ables. Moreover, we assume independence of X. We consider

Cr =
{
Y (r)(i) : i = 1, . . . , N(r)

}
,
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where we let Y (r)(i) = {Y (r)
j (i)}j∈N ∈ l2, i ∈ N. Then one has

E[d(X, Cr)s] =
∫

E
[

min
i=1,...,N(r)

‖x− Y (r)(i)‖s
]
dµ(x)

=
∫

E
[

min
i=1,...,N(r)

(∑
j∈N

|xj − Y
(r)
j (i)|2

)s/2]
dµ(x).

Note that for all but finitely many j ∈ N, one has Y (r)
j (i) = 0 for all i ∈ N,

almost surely. Moreover,
∏
j∈NNj(r) ≤ N(r). Therefore, finitely many

applications of Lemma 6.3.3 give

E
[

min
i=1,...,N(r)

(∑
j∈N

|xj − Y
(r)
j (i)|2

)s/2] ≤ E
[(∑
j∈N

min
i=1,...,Nj(r)

|xj − Y
(r)
j (i)|2

)s/2]
for any x = {xj}j∈N ∈ l2. Consequently,

E[d(X, Cr)s]2/s ≤
(∫

E
[(∑
j∈N

min
i=1,...,Nj(r)

|xj − Y
(r)
j (i)|2

)s/2]
dµ(x)

)2/s

= E
[(∑
j∈N

min
i=1,...,Nj(r)

|Xj − Y
(r)
j (i)|2

)s/2]2/s

≤
∑
j∈N

E
[

min
i=1,...,Nj(r)

|Xj − Y
(r)
j (i)|s

]2/s
,

where the last inequality follows from the triangle inequality in the Ls/2(P)-
space. With (6.24) we obtain

E[d(X, Cr)s]2/s ≤ κ2
∑
j∈N

λj e
−2rj = κ2D(r|µ, ‖ · ‖2).

�

6.4 Applications

In the case where the eigenvalues {λj}j∈N are regularly varying there is an
elegant formula for the asymptotics of D(r|µ, ‖ · ‖2). Here, regularly varying
means that the function r 7→ λdre is regularly varying.

Lemma 6.4.1. Let λj = j−αl(j) be regularly varying with index −α < −1.
Then

D(r|µ, ‖ · ‖2) ∼ αα

2α−1(α− 1)
rλdre (r →∞).
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The same result is contained in Luschgy and Pagès [51], Theorem 2.2.
Our proof is similar to the one provided in this reference.

Proof. In contrast to before, we define functions d : (0, λ1] → (0, ‖λ‖l1 ]
and r : (0, λ1] → [0,∞) by

d(x) =
∑
j∈N

(x ∧ λj) and

r(x) =
1
2

∑
j∈N

log+

λj
x
.

Furthermore, dc denotes an arbitrary real value in (0, λ1]. Then
(d(dc), dc, r(dc)) solves the system of equations (6.2). We extend the function
λ on R+\N by λt = λdte, t > 0. Then for N ∈ N

N∑
j=1

log λj =
∫ N

0
log λt dt.

When we approximate the latter integral by replacing λ by a function
λ̃ : R+ → R+ with log ◦ λ̃ locally integrable and λ̃t ∼ λt, we can control
the error for any T ∈ R+ by

∣∣∣∫ T

0
log λt dt−

∫ T

0
log λ̃t dt

∣∣∣ ≤ ∫ T

0

∣∣∣log
λt

λ̃t

∣∣∣ dt = o(T ) (T →∞).

By basic facts of regularly varying functions (see Theorem A.3) there exists
a function λ̃t = t−α l̃(t) in C∞(R+,R+) that is asymptotically equivalent to
λ and satisfies l̃′(t) = o(l̃(t)/t) as t→∞. We estimate

∫ T

0
log λ̃t dt =

∫ T

0
log t−α dt+

∫ T

0
log l̃(t) dt

= −α[T log T − T ] + [t log l̃(t)]T0 −
∫ T

0

tl̃′(t)
l̃(t)

dt

= T log(T−α l̃(T )) + αT + o(T ),

where we have used partial integration and l̃′(t) = o(l̃(t)/t). For dc ≤ λ1 let

N(dc) := max{j ∈ N : λj ≥ dc}.
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Using the above results, we conclude that

2 r(dc) =
∑
j∈N

log+

λj
dc

=
∫ N(dc)

0
log λt dt−N(dc) log dc

=
∫ N(dc)

0
log λ̃t dt−N(dc) log dc + o(N(dc))

= N(dc) log
λ̃N(dc)

dc
+ αN(dc) + o(N(dc))

= N(dc) log
λN(dc)

dc
+ αN(dc) + o(N(dc)),

where the asymptotic estimates are for dc ↓ 0. By basic properties of regu-
larly varying functions (see Lemma A.6), N(dc) is an asymptotic inverse of
{λt}t>0, one has λN(dc) ∼ dc as dc ↓ 0. Consequently,

2 r(dc) = αN(dc) + o(N(dc)). (6.25)

Consider now d(dc). One has

d(dc) =
∑
j∈N

(dc ∧ λj) = N(dc)dc +
∫ ∞
N(dc)

λt dt

∼ N(dc)dc +
∫ ∞
N(dc)

λ̃t dt (dc ↓ 0),

with {λ̃t} as above. On the other hand,∫ ∞
N(dc)

t−α l̃(t) dt =
[
− 1
α− 1

t−α+1 l̃(t)
]∞
N(dc)

+
∫ ∞
N(dc)

1
α− 1

t−α+1 l̃′(t) dt.

Since by assumption t−α+1 l̃′(t) = o(t−α l̃(t)) and N(dc) → ∞ as dc ↓ 0, we
conclude

d(dc) ∼ N(dc)dc +
1

α− 1
N(dc)λ̃N(dc)

∼ α

α− 1
N(dc)dc (dc ↓ 0).

(6.26)

Combining (6.25) and (6.26) gives

d(dc) ∼
2

α− 1
r(dc)dc ∼

2
α− 1

r(dc)λ2r(dc)/α ∼
αα

2α−1(α− 1)
r(dc)λr(dc)

as dc ↓ 0, which is equivalent to the statement in the lemma. �

As a consequence of Theorem 6.3.1 and Corollary 6.2.2, one obtains
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Corollary 6.4.2. Let {λj}j∈N be regularly varying with index −α < −1.
Then for any s > 0 and s̃ ≥ 2, one has

D(r)(r|µ, ‖ · ‖s)1/s ∼ D(q)(r|µ, ‖ · ‖s)1/s ∼ D(e)(r|µ, ‖ · ‖s̃)1/s̃

∼ D(r|µ, ‖ · ‖s̃)1/s̃ ∼

√
αα

2α−1(α− 1)
rλdre.

In the sequel, we provide some examples for which the eigenvalues are
known and give the corresponding asymptotics of D(r|µ, ‖ · ‖2).

Fractional Brownian motion

Let X = {Xt}t∈[0,1] be fractional Brownian motion with Hurst exponent
γ/2, 0 < γ < 2, in C[0, 1], i.e. the centered continuous Gaussian process X
with covariance kernel

E[XtXs] =
1
2
[
tγ + sγ − |t− s|γ

]
, t, s ∈ [0, 1].

We consider X as a random element in the Hilbert space L2[0, 1] and denote
‖ · ‖ = ‖ · ‖L2[0,1].

The asymptotic behavior of the ordered eigenvalues has been determined
by Bronski [9]. He found

λn ∼
sin(πγ/2) Γ(γ + 1)

(nπ)γ+1
(n→∞),

where Γ is the Euler gamma function. Hence, by Corollary 6.4.2

D(r|X, ‖ · ‖2)1/2 ∼

√
(γ + 1)γ+1 sin(πγ/2) Γ(γ + 1)

2γ γ πγ+1
r−γ/2

as r →∞. In particular,

D(r|X, ‖ · ‖2)1/2 ∼
√

2
π
r−1/2,

when X denotes standard Brownian motion.

Fractional Brownian sheet

Fix d ∈ N and let X = {Xt}t∈[0,1]d denote fractional Brownian sheet with
realizations in C([0, 1]d) and parameter γ = (γ1, . . . , γd), 0 < γj < 2, i.e. X
is a centered continuous Gaussian process with covariance kernel

E[XtXs] =
1
2d

d∏
j=1

[tγj

j + s
γj

j − |tj − sj |γj ] =: K(t, s), t, s ∈ [0, 1]d.
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We consider X as Gaussian random element in the Hilbert space L2[0, 1]d.
Then the covariance operator of X is the integral operator corresponding to
the kernel K(·, ·), i.e.

Cγ : L2[0, 1]d → L2[0, 1]d

f 7→ Cγf =
∫

[0,1]d
K(·, s)f(s) ds.

Denote by Cγj , j = 1, . . . , d, the integral operators on L2[0, 1] corresponding
to the kernels

Kγj (s, t) =
1
2
[tγj + sγj − |t− s|γj ], t, s ∈ [0, 1].

One can write C as the tensor product of the bounded (even compact)
operators Cγ1 , . . . , Cγd

, i.e.

Cγ = Cγ1 ⊗ · · · ⊗ Cγd
.

Here, we denote the tensor product to be the unique operator on L2[0, 1]d

satisfying

Cγ1 ⊗ · · · ⊗ Cγd
(f1 ⊗ · · · ⊗ fd) = (Cγ1f1)⊗ · · · ⊗ (Cγd

fd),

where we mean by (f1⊗· · ·⊗fd)(x1, . . . , xd) = f1(x1) · · · fd(xd). It is known
that the eigenvalues of the operator Cγ can be deduced from the eigenvalues
of the operators Cγj , j = 1, . . . , d. Let {λ(j)

i }i∈N denote the eigenvalues of
Cγj . Then, each combination i1, . . . , id ∈ N yields an eigenvalue

λ
(1)
i1
· · ·λ(d)

id

of Cγ . Furthermore, all eigenvalues of Cγ are obtained with the correct
multiplicity by that construction. Consequently, for t > 0,

|{i ∈ N : λi ≥ t}| = |{(i1, . . . , id) ∈ Nd : λ(1)
i1
· · ·λ(d)

id
≥ t}|,

where {λi}i∈N denotes the sequence of ordered eigenvalues with correct mul-
tiplicity of Cγ . Hence, one can deduce the asymptotic of {λi} from the se-
quences {λ(j)

i }. The operation which assigns the sequences λ(1), . . . , λ(d) to
the unique ordered sequence {λi}i∈N will be denoted by πd, i.e.

πd(λ(1), . . . , λ(d)) := {λi}i∈N.

A similar discussion to that above is contained in Ritter [58] (Section
6.2). There it is proven (Lemma 34)
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Lemma 6.4.3. Let α > 1, m ∈ N and assume that η(j) = {η(j)
i }i∈N are

sequences in R+ with η(j)
i ∼ i−α (i→∞) for all j ∈ {1, . . . ,m}. Then

πm(η(1), . . . , η(m))(i) ∼ ((d− 1)!)−α((log i)d−1/i)α

as i→∞.

Suppose that γ1 ≤ γ2 ≤ · · · ≤ γd and denote by m ∈ N the maximal
number with γ1 = γm. We conclude

Corollary 6.4.4. If γ1 = · · · = γd (i.e. m = d), then

λi ∼
(sin(πγ1/2)Γ(γ1 + 1)

πγ1+1

)d
((d− 1)!)−(γ1+1)

((log i)d−1

i

)γ1+1
.

Remark 6.4.5. Suppose now that m 6= d. It can be shown that the ten-
sorization of covariance operators with eigenvalues decreasing on different
scales (i.e. of different polynomial orders) yields eigenvalues that have the
same weak asymptotic order as the operator with the slowest decaying eigen-
values. Moreover, straight forward calculations lead to

λi ∼ cγ

((log i)m−1

i

)γ1+1
(i→∞),

where cγ is a constant in R+ depending on the vector γ. Unfortunately, it is
typically not possible to compute cγ . It does not suffice to know the strong
asymptotics of {λ(j)

i }i∈N, j = 1, . . . , d, in order to compute cγ .

In the case that m = d, Corollary 6.4.2 gives

D(r|X, ‖ · ‖2)

∼
( γ1 + 1

(d− 1)!

)γ1+1(sin(πγ1/2)Γ(γ1 + 1)
πγ1+1

)d 1
γ1 2γ1

(log r)(d−1)(γ1+1)

rγ1

as r →∞. For general m ≤ d, we still have

D(r|X, ‖ · ‖2) ∼ cγ
(γ1 + 1)γ1+1

γ1 2γ1
(log r)(m−1)(γ1+1)

rγ1

with cγ > 0 as above.

Integrated Brownian motion

Let m ∈ N and let X be m-times integrated Brownian motion on C[0, 1],
i.e.

Xt =
∫ t

0

∫ t1

0
. . .

∫ tm−1

0
Btmdtm . . . dt2 dt1, t ∈ [0, 1],
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where B denotes Brownian motion in C[0, 1]. X is a Gaussian process in
L2[0, 1]. Gao et al. [26] computed the asymptotics of the eigenvalues of the
corresponding covariance operator. They found

λn ∼
1

(πn)2(m+1)
as n→∞.

Hence,

D
(
r|X, ‖ · ‖2

L2[0,1]

)
∼ 1

(2m+ 1) 22m+1

(2(m+ 1)
π

)2(m+1) 1
r2m+1

as r →∞.

6.5 Convex combinations of measures

In the typical Hilbert space setting, we found that the asymptotics in the
quantization problem do not depend on the moment s > 0. Moreover, we
proved equivalence of the coding quantities D, D(e) and D(q) for all moments
s ≥ 2. In this section, we show that these equivalences are untypical and
cannot be expected for most non-Gaussian originals.

We assume the general setting. For n ∈ N, let µi, i = 1, . . . , n, be
probability measures on a Polish space E and let ρ be a distortion measure
on E. In the sequel, we consider the coding complexity of the measure

µ :=
n∑
i=1

pi µi,

where pi ∈ (0, 1) for i = 1, . . . , n and
∑n

i=1 pi = 1.

Quantization

We consider the quantization problem of µ under the assumption that

lim
r→∞

rαD(q)(r|µi, ρ) = κi, i = 1, . . . , n,

where α > 0 and κi ∈ [0,∞), i = 1, . . . , n. Moreover, we suppose that κi > 0
for at least one i ∈ {1, . . . , n}. Then

D(q)(r|µ, ρ) ≥
n∑
i=1

piD
(q)(r|µi, ρ) ∼

n∑
i=1

pi κi
1
rα

as r →∞. On the other hand,

D(q)(r|µ, ρ) ≤
n∑
i=1

piD
(q)(r − log n|µi, ρ) ∼

n∑
i=1

pi κi
1
rα
.
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Hence,
lim
r→∞

rαD(q)(r|µ, ρ) = ‖κ·‖l1(p),

where we denote

‖a‖lq(p) =
( n∑
i=1

pi |ai|q
)1/q

for any q ∈ R\{0} and any real-valued sequence a = {ai}i=1,...,n.

Example 6.5.1. For i = 1, . . . , n, let σi ∈ R+ and let X(i) be indepen-
dent Brownian motions with diffusion coefficients σi, i.e. L(X(i)) = L(σiB),
whereB denotes the standard Brownian motion. Let pi ∈ (0, 1), i = 1, . . . , n,
with

∑n
i=1 pi = 1 and denote by ξ an independent r.v. (of X(1), . . . , X(n))

with P(ξ = i) = pi.
For s > 0 and i ∈ {1, . . . , n}, it holds

lim
r→∞

r1/2D(q)(r|X(i), ‖ · ‖sL2[0,1])
1/s =

√
2σi
π

.

We apply the previous result and obtain

lim
r→∞

r1/2D(q)(r|X(ξ), ‖ · ‖sL2[0,1])
1/s =

∥∥∥√2σ·
π

∥∥∥
ls(p)

.

In particular, one has no longer equivalence of the moments for the asymp-
totic quantization problem for X(ξ).

Entropy coding

We consider entropy coding of µ =
∑n

i=1 pi µi.

Lemma 6.5.2. Let

f(r) := inf
n∑
i=1

piD
(e)(ri|µi, ρ), (6.27)

where the infimum is taken over all ri ∈ [0,∞), i = 1, . . . , n, with

n∑
i=1

pi ri ≤ r.

For r ≥ log n, it holds

f(r) ≤ D(e)(r|µ, ρ) ≤ f(r − log n).
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Proof. Let ξ be a r.v. in {1, . . . , n} with P(ξ = i) = pi and let X(i),
i = 1, . . . , n, be independent µi-distributed r.e.’s. Moreover, we assume
independence of {X(i)}i=1,...,n and ξ. Then L(X(ξ)) = µ.

We start with proving the lower bound. For an arbitrary reconstruction
X̂ of rate r ≥ 0 (i.e. H(X̂) ≤ r), we estimate

r ≥ H(X̂) ≥ H(X̂|ξ) =
n∑
i=1

pi H(X̂|ξ = i).

Moreover,

E[ρ(X, X̂)] =
n∑
i=1

pi E[ρ(X(i), X̂)|ξ = i] ≥
n∑
i=1

piD
(e)(H(X̂|ξ = i)|µi, ρ).

Consequently, D(e)(r|µ, ρ) is greater than f(r).
Now let ri ∈ [0,∞) with

∑n
i=1 ri ≤ r − log n and ε > 0. We denote

by X̂(i), i = 1, . . . , n, reconstructions of X(i) that are independent of ξ and
satisfy

H(X̂(i)) ≤ ri and E[ρ(X(i), X̂(i))] ≤ D(e)(ri|µi, ρ) + ε.

Then

H(X̂(ξ)) ≤ H(X̂(ξ), ξ) = H(ξ) +
n∑
i=1

pi H(X̂(i))

≤ log n+
n∑
i=1

ri ≤ r.

Hence,

D(e)(r|µ, ρ) ≤ E[ρ(X(ξ), X̂(ξ))] ≤
n∑
i=1

piD
(e)(ri|µi, ρ) + ε.

Since ε > 0 was arbitrary, we conclude that D(e)(r|µ, ρ) ≤ f(r − log n). �

Lemma 6.5.3. We assume that there exist α > 0 and κi ∈ R+, i = 1, . . . , n,
such that

lim
r→∞

rαD(e)(r|µi, ρ) = κi.

Then

lim
r→∞

rαD(e)(r|µ, ρ) = ‖κ·‖l1/1+α(p). (6.28)
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Proof. Let f as in (6.27) and let, for r ≥ 0, ri = ri(r) ∈ [0,∞) such that

f(r) ∼
n∑
i=1

piD
(e)(ri|µi, ρ) (r →∞)

and
∑n

i=1 ri = r. Note that necessarily limr→∞ ri = ∞ and, hence,

f(r) ∼
n∑
i=1

pi κi r
−α
i (r →∞).

Applying the Hölder inequality for q = − 1
α ∈ (−∞, 0) and q∗ = 1/(1 + α)

gives

n∑
i=1

pi κi r
−α
i ≥ ‖κ·‖lq∗ (p) ‖r−α· ‖lq(p)

= ‖κ·‖l1/1+α(p) r
−α.

(6.29)

On the other hand, for fixed r ≥ 0, we can find c ≥ 0 such that

ri := ri(r) := c κ
1/1+α
i

solves
∑n

i=1 ri = r. For this choice of {ri}i=1,...,n, one obtains equality in
equation (6.29). Consequently,

n∑
i=1

piD
(e)(ri|µi, ρ) ∼ ‖κ·‖l1/1+α(p) r

−α (r →∞).

Hence, f(r) ∼ ‖κ·‖l1/1+α(p) r
−α and the assertion follows from the previous

lemma. �

Example 6.5.4. As in the above example, we let X(i), i = 1, . . . , n, be
independent Brownian motions with diffusion coefficients σi > 0 and ξ be
an independent r.v. with P(ξ = i) = pi. Then, for i = 1, . . . , n and s ≥ 2,

lim
r→∞

r1/2D(e)(r|X(i), ‖ · ‖sL2[0,1])
1/s =

√
2σi
π

.

An application of the previous lemma gives

lim
r→∞

r1/2D(e)(r|X(ξ), ‖ · ‖sL2[0,1])
1/s =

∥∥∥√2σi
π

∥∥∥
l2s/s+2(p)

.

Again the equivalence of moments does not hold for the process X(ξ). More-
over, there is no equivalence of entropy coding and quantization.
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Suppose now that the stochastic process X = {Xt}t∈[0,1] ∈ C[0, 1] solves
the SDE

dXt = σ(Xt) dBt

for a “nice” function σ : R → R. Note that the diffusion coefficient seen by
X will for some realizations be rather high and for some others rather low.
The above results suggest that there is typically no equivalence of moments
and no equivalence of quantization and entropy coding in the high resolution
coding problem. We will not further pursue this issue here.
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Chapter 7

Random small ball

probabilities

Let µ be a centered Gaussian measure on a separable Banach space (E, ‖ ·‖)
and denote by X a random element in E with law µ. Denote

ϕ(ε) = − logµ(B(0, ε)), ε > 0.

The asymptotics of the small ball function has attracted much interest in
the last decades. Recall, for instance, the results given in Section 3.6. A
detailed survey on this topic is contained in the review article of Li and Shao
[47].

In the case that the underlying space is a Hilbert space, there is an
explicit formula that gives the asymptotics of the small ball probabilities for
an arbitrary center. Beside that particular case, the small ball problem for
centers not in the Cameron-Martin space is unsolved.

In this chapter, we consider the r.e. X as center and ask for the asymp-
totics of the random small ball function

− logµ(B(X, ε)), ε > 0,

as ε tends to 0. We will see that the measure concentration around random
centers satisfies a number of nice properties. These new insights will lead to
a tight link between random small ball probabilities and the coding quantity
D(R).

7.1 General results

Theorem 7.1.1. One has

− logµ(B(x, ε)) . 2ϕ(ε/2) as ε ↓ 0

105
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for µ-almost all x ∈ E.

We denote by Φ the distribution function of the standard normal distri-
bution and set Ψ = 1− Φ. For the proof we need

Lemma 7.1.2. For y ∈ (0, 1/2],

Ψ−1(y) ≤
√
−2 log y.

The lemma is an immediate consequence of the inequality

Ψ(x) ≤ 1
2
e−x

2/2, x ≥ 0.

Proof of Theorem 7.1.1. For n ∈ N, denote cn = n and εn = ϕ−1(n3).
Let K and K be the closed unit balls in E and the reproducing Hilbert space
of µ, respectively. Consider

An = εnK +
(
cn + Ψ−1(µ(B(0, εn)))

)
K, n ∈ N.

Then by Borell’s inequality (see Lemma 2.3.1)

µ(An) ≥ Φ
[
cn + Ψ−1(µ(B(0, εn))) + Φ−1(µ(B(0, εn)))

]
= Φ(cn).

The tail probabilities of standard normal random variables are known to
satisfy Ψ(cn) ∼ 1√

2πn
e−n

2/2 as n→∞. Hence,∑
n∈N

µ(Acn) ≤
∑
n∈N

Ψ(cn) <∞.

Therefore, Borel-Cantelli’s Lemma gives that a.s. all but finitely many events
An, n ∈ N, occur.

On the other hand, by the estimate of shifted balls (Lemma 2.2.4), we
get for every x ∈ An

µ(B(x, 2εn)) ≥ exp{−I(x, εn)− ϕ(εn)}

≥ exp
{
−1

2
[
cn + Ψ−1(µ(B(0, εn)))

]2 − ϕ(εn)
}
,

where I(x, ε) = infz∈B(x,ε) ‖z‖2
Hµ
/2. For n ∈ N with µ(B(0, εn)) ≤ 1/2, one

has by the previous lemma,

− logµ(B(x, 2εn)) ≤
1
2
[
cn + Ψ−1(µ(B(0, εn)))

]2 + ϕ(εn)

≤ 1
2
[
cn +

√
2ϕ(εn)

]2 + ϕ(εn)

= c2n/2 + cn
√

2ϕ(εn) + 2ϕ(εn),
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where the estimate holds uniformly for all x ∈ An. Observe that by defini-
tion, cn = o(ϕ(εn)) (n→∞). Consequently,

sup
x∈An

− logµ(B(x, 2εn)) . 2ϕ(εn) (n→∞).

Since limn→∞ ϕ(εn+1)/ϕ(εn) = 1 and the small ball probabilities are mono-
tone, the lemma is proven. �

Combining Theorem 7.1.1 with Anderson’s inequality shows that the
small ball probabilities around a random center are enclosed by two deter-
ministic functions a.s., i.e.

ϕ(ε) ≤ − logµ(B(X, ε)) . 2ϕ(ε/2) (ε ↓ 0, a.s.)

In the case where the small ball function ϕ is regularly varying at 0 with
index −α ≤ 0, one has

ϕ(ε) ≤ − logµ(B(X, ε)) . 21+α ϕ(ε) (ε ↓ 0, a.s.).

In the following, we address the question of existence of a deterministic
function ϕR : R+ → R+ satisfying

− logµ(B(X, ε)) ∼ ϕR(ε) (ε ↓ 0, a.s.).

Lemma 7.1.3. For any continuous function ψ : R+ → R+, there exist
constants cψ, Cψ ∈ [0,∞] such that

lim inf
ε↓0

− logµ(B(x, ε))
ψ(ε)

= cψ

and
lim sup
ε↓0

− logµ(B(x, ε))
ψ(ε)

= Cψ

for µ-almost all x ∈ E.

The proof is based on the zero-one law for Gaussian measures (Lemma
2.2.3).

Proof. Let h = Cµ(z) ∈ Cµ(E′) and x ∈ E. The Cameron-Martin for-
mula (Lemma 2.2.5) gives

µ(B(x− h, ε)) =
∫
B(x,ε)

exp
{
z(y)− 1

2
‖z‖2

L2(µ)

}
dµ(y).

The continuity of z implies that

µ(B(x− h, ε)) ∼ exp
{
z(x)− 1

2
‖z‖2

L2(µ)

}
µ(B(x, ε))
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as ε ↓ 0. In particular,

− logµ(B(x− h, ε)) ∼ − logµ(B(x, ε)) (ε ↓ 0).

Therefore, for any s ≥ 0, the set

As =
{
x ∈ E : lim inf

ε↓0

− logµ(B(x, ε))
ψ(ε)

≤ s
}

is invariant under an arbitrary shift h ∈ Cµ(E′). Since ψ is continuous,
the sets As, s ≥ 0, are measurable. Consequently, by the zero-one law for
Gaussian measures (Lemma 2.2.3), the sets As have µ-measure 0 or 1. The
first statement follows. Analogously one proves the second statement. �

Remark 7.1.4. As can be easily seen the previous lemma holds also when
replacing − log by a continuous and at 0 slowly varying function l (i.e. l(1/x)
is slowly varying).

Corollary 7.1.5. If ϕ(ε) = ε−αl(1/ε) with α > 0 and l slowly varying, then

1 ≤ cϕ ≤ Cϕ ≤ 21+α,

where cϕ and Cϕ are as in Lemma 7.1.3.

The following lemma will prove to be useful in the later discussion.

Lemma 7.1.6. Let Z denote a standard normal r.v. For any s ≥ 1 and
ε > 0 with µ(B(0, ε)) ≤ 1/2, one has

‖ − logµ(B(X, 2ε))‖Ls(P) ≤ ϕ(ε) +
1
2

(√
2ϕ(ε) + ‖Z‖L2s(P)

)2
.

The upper bound given in the lemma is asymptotically equivalent to
2ϕ(ε) as ε ↓ 0.

Proof. The proof is similar to that of Theorem 7.1.1. We fix ε > 0 with
µ(B(0, ε)) ≤ 1/2 and let

At = εK + (t+ Ψ−1(µ(B(0, ε))))K, t ≥ 0.

Here, K and K are again the closed unit balls in E and the reproducing
kernel Hilbert space Hµ of µ, respectively. By Borell’s inequality (Lemma
2.3.1) one has

µ(At) ≥ Φ
[
t+ Ψ−1(µ(B(0, ε))) + Φ−1(µ(B(0, ε)))

]
= Φ(t) (7.1)
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for any t ≥ 0. Applying the small ball estimate for shifted balls (Lemma
2.2.4) gives for any t ≥ 0 and x ∈ At

µ(B(x, 2ε)) ≥ exp{−I(x, ε)− ϕ(εn)}

≥ exp
{
−1

2
[t+ Ψ−1(µ(B(0, ε)))]2 − ϕ(ε)

}
.

By Lemma 7.1.2, it follows

− logµ(B(x, 2ε)) ≤ 1
2
[t+ Ψ−1(µ(B(0, ε)))]2 + ϕ(ε)

≤ 1
2
[t+

√
2ϕ(ε)]2 + ϕ(ε).

Combining this estimate with (7.1) gives

P
{
− logµ(B(x, 2ε)) >

1
2
[t+

√
2ϕ(ε)]2 + ϕ(ε)

}
≤ Ψ(t)

for all t ≥ 0. Hence, with Z+ = Z ∨ 0 it follows that

‖ − logµ(B(X, 2ε))‖Ls(P) = E
[
(− logµ(B(X, 2ε)))s

]1/s

≤ E
[
(
1
2
[Z+ +

√
2ϕ(ε)]2 + ϕ(ε))s

]1/s
.

Applying the triangle inequality twice yields

‖ − logµ(B(X, 2ε))‖Ls(P) ≤
1
2

E
[(
Z+ +

√
2ϕ(ε)

)2s]1/s + ϕ(ε)

≤ 1
2
(
E[(Z+)2s]1/2s +

√
2ϕ(ε)

)2 + ϕ(ε)

and the assertion follows. �

In the rest of this paragraph, we assume the existence of a deterministic
function ϕR : R+ → R+ satisfying

ϕR(ε) ∼ − logµ(B(X, ε)) as ε ↓ 0, in probability. (7.2)

Here, equivalence in probability means that

lim
ε↓0

− logµ(B(X, ε))
ϕR(ε)

= 1, in probability.

We will see that ϕR exhibits some nice properties.

Theorem 7.1.7. Suppose that

ϕ(ε) ≈ ϕ(2ε) (ε ↓ 0)
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and ϕR : R+ → R+ satisfies (7.2). Then

lim
ε↓0

− logµ(B(X, ε))
ϕR(ε)

= 1

in Ls(P) for any s ≥ 1. In particular,

ϕR(ε) ∼ ‖ − logµ(B(X, ε))‖Ls(P)

as ε ↓ 0.

Proof. Fix η ∈ (0, 1) and let

T (ε) =
{
x ∈ E :

∣∣∣− logµ(B(x, ε))
ϕR(ε)

− 1
∣∣∣ ≤ η

}
.

Then∥∥∥− logµ(B(X, ε))
ϕR(ε)

− 1
∥∥∥
Ls(P)

≤
∥∥∥1T (ε)(X)

(− logµ(B(X, ε))
ϕR(ε)

− 1
)∥∥∥

Ls(P)

+
∥∥∥1T (ε)c(X)

(− logµ(B(X, ε))
ϕR(ε)

− 1
)∥∥∥

Ls(P)

≤
∥∥∥1T (ε)(X)

(− logµ(B(X, ε))
ϕR(ε)

− 1
)∥∥∥

Ls(P)

+
∥∥∥1T (ε)c(X)

− logµ(B(X, ε))
ϕR(ε)

∥∥∥
Ls(P)

+ ‖1T (ε)c(X)‖Ls(P)

=: I1(ε) + I2(ε) + I3(ε).

Clearly I1(ε) ≤ η. Using the Cauchy-Schwarz inequality, we estimate the
second term by

I2(ε) =
1

ϕR(ε)
‖1T (ε)c(X) logµ(B(X, ε))‖Ls(P)

≤ 1
ϕR(ε)

P(X ∈ T (ε)c)1/2s ‖ logµ(B(X, ε))‖L2s(P).

Note that by the previous lemma, ‖ logµ(B(X, ε))‖L2s(P) . 2ϕ(ε/2) as
ε ↓ 0. Due to Anderson’s inequality one has ϕR(ε) & ϕ(ε) (ε ↓ 0). Since

ϕ(ε) ≈ ϕ(ε/2) and lim
ε↓0

P(X ∈ T (ε)c) = 0,

it follows that
lim
ε↓0

I2(ε) = 0.
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Furthermore, limε↓0 I3(ε) = 0 by assumption (7.2). Hence,∥∥∥− logµ(B(X, ε))
ϕR(ε)

− 1
∥∥∥
Ls(P)

. η (ε ↓ 0).

Since η ∈ (0, 1) was arbitrary, we are done. �

Remark 7.1.8. Let us assume that ϕ(ε) ≈ ϕ(2ε) (ε ↓ 0). As a consequence
of the previous theorem, we conclude that whenever there exists a gauge
function ϕR satisfying (7.2), then one may choose ϕR equal to

ϕ̃R(ε) := E[− logµ(B(X, ε))], ε > 0.

We keep the definition of ϕ̃R.

Lemma 7.1.9. The function ϕ̃R : R+ → R+ is convex, one-to-one and
onto.

Proof. Denote by φx, x ∈ E, the function

φx : R+ → (0,∞], ε 7→ − logµ(B(x, ε)).

It is classical that the function φx is convex. In fact, one has by Corollary
2.3.4 and basic analysis that the maps ε 7→ Φ−1(µ(B(x, ε))) and log ◦Φ are
concave on R+ and [−∞,∞), respectively. Consequently,

ε 7→ φx(ε) = − log ◦Φ ◦ Φ−1(µ(B(x, ε)))

is convex on R+ for all x ∈ E. We conclude that ε 7→ ϕ̃R(ε) = E[φX(ε)] is
convex on R+. The finiteness of ϕ̃R on R+ follows from Lemma 7.1.6. By
Anderson’s inequality, one has ϕ̃R ≥ ϕ. Therefore, ϕ̃R maps into R+ and
limε↓0 ϕ̃R(ε) = ∞. Note that limt→∞ φx(t) = 0. By dominated convergence,
it follows that limt→∞ ϕ̃R(t) = 0. Putting everything together implies the
assertion. �

Lemma 7.1.10. For ε > 0, one has

ϕ̃R(ε) ≥ ϕ(ε/
√

2).

Proof. Denote by X̃ a µ-distributed r.e. that is independent of X. One
has for ε > 0,

E[logµ(B(X, ε))] = E[log P(‖X − X̃‖ ≤ ε|X)]

≤ log E[P(‖X − X̃‖ ≤ ε|X)]

= log P(‖X − X̃‖ ≤ ε),
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where the inequality follows from Jensen’s inequality. Note that X − X̃

and
√

2X are both centered Gaussian processes with the same covariance
operator. Therefore, L(

√
2X) = L(X − X̃) and one gets

E[− logµ(B(X, ε))] ≥ − logµ(B(0, ε/
√

2)) = ϕ(ε/
√

2).

�

Corollary 7.1.11. Suppose ϕ is regularly varying at 0 with index −α < 0,
i.e. there exists a slowly varying function l such that ϕ(ε) = ε−α l(1/ε).
Moreover, we assume existence of a function ϕR satisfying (7.2). Let cϕ
and Cϕ as in Lemma 7.1.3 when taking ψ = ϕ. Then

2α/2 ≤ cϕ ≤ Cϕ ≤ 21+α.

In particular, the small ball probabilities around a random center have
different asymptotics than those around 0.

7.2 Small ball probabilities in Hilbert spaces

Let µ denote a centered Gaussian measure on a separable Hilbert space
(H, 〈·, ·〉) and let X be a µ-distributed random element. Without loss of
generality, we assume that supp(µ) = H. Otherwise, we can shrink the
space H to supp(µ), which is a closed linear subspace of H. We denote by
Cµ : H → H the corresponding covariance operator, i.e. the self-adjoint,
positive semidefinite and compact operator Cµ satisfying

〈f, Cµg〉 = E
[
〈f,X〉〈g,X〉

]
, f, g ∈ H.

By the spectral theorem, there exist a countable index set I ⊂ N and a com-
plete orthonormal system {ej}j∈I of eigenvectors in H with corresponding
positive eigenvalues {λj}j∈I . We assume that the eigenvalues λj , j ∈ I, are
ordered by their size.

The exact asymptotic behavior of the small ball probabilities for fixed
centers was derived by Sytaya in 1974 [63] (see also Lifshits [49]). To state
the theorem, we need some more notations. Let x =

∑
j∈I λ

1/2
j ej xj ∈ H,

xj ∈ R, be an element of H and let

Λx(θ) = log E[eθ‖X−x‖
2
]

=
∑
j∈I

[
−1

2
log(1− 2θλj) +

θλj
1− 2θλj

x2
j

]
, θ ≤ 0.
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The second equality holds due to Proposition 6.2.5. Then for θ ≤ 0

Λ′x(θ) =
d

dθ
Λx(θ) =

∑
j∈I

[ λj
1− 2θλj

+
λj

(1− 2θλj)2
x2
j

]
and

Λ′′x(θ) =
d2

dθ2
Λx(θ) =

∑
j∈I

[ 2λ2
j

(1− 2θλj)2
+

4λ2
j

(1− 2θλj)3
x2
j

]
.

Theorem 7.2.1. (Sytaya). Let x ∈ H. For ε ∈ (0,Λ′x(0)], let θ0(ε) denote
the unique value θ0(ε) ∈ (−∞, 0] solving Λ′x(θ0(ε)) = ε. Then one has

P(‖X − x‖2 ≤ ε) ∼ 1√
2πθ0(ε)2Λ′′x(θ0(ε))

exp{−Λ∗x(ε)} (ε ↓ 0),

where Λ∗x(ε) = supθ≤0[θε−Λx(θ)], ε > 0, denotes the Legendre transform of
Λx. In particular, Λ∗x(ε) = θ0(ε)ε− Λ(θ0(ε)) for ε ∈ (0,Λx(0)].

In this chapter, we study the mass concentration of µ at the random
center X. In order to obtain results, we consider logarithmic small ball
probabilities. On a non-logarithmic scale, the asymptotics of small ball
probabilities depend strongly on the realization of X and a statement as the
following theorem does not hold.

Theorem 7.2.2. For µ-almost all x ∈ H, one has

− logµ(B(x, ε)) ∼ Λ∗(ε2) as ε ↓ 0, (7.3)

where Λ∗(ε) := supθ≤0[θε− Λ(θ)], ε > 0, is the Legendre transform of

Λ(θ) := E[ΛX(θ)] =
∑
j∈I

[
−1

2
log(1− 2θλj) +

θλj
1− 2θλj

]
, θ ≤ 0.

Remark 7.2.3. Suppose µ is a Gaussian measure with finite dimensional
support, say of dimension n. Then the logarithmic small ball function
around a random center Xsatisfies

− logµ(B(X, ε)) ∼ n log(1/ε) (ε ↓ 0).

It is not hard to verify that in this case (7.3) gives the correct asymptotic
behavior. Thereafter, we assume that µ has infinite dimensional support
and that I = N.

Lemma 7.2.4. Let {Yj}j∈N be a sequence of real-valued i.i.d. random vari-
ables with mean 0. Assume that the moment generating function

Λ̃(θ) = log E[eθY1 ], θ ∈ R,
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is finite in an open two-sided neighborhood of zero. Let

aj : [0,∞) → [0, 1], j ∈ N,

be increasing functions such that

[0,∞) → [0,∞), γ 7→ ‖a·(γ)‖l1 =
∑
j∈N

aj(γ)

is continuous and converges to infinity as γ →∞. Then, for every β > 1/2,

lim
γ→∞

1

‖a·(γ)‖βl1

∑
j∈N

aj(γ)Yj = 0, a.s.

Proof. Choose β̃ with 1/2 < β̃ < β and set t0 = ‖a·(0)‖l1 . By the
continuity of γ 7→ ‖a·(γ)‖l1 , there exist values γt ∈ [0,∞), t ≥ t0, such that

‖a(γt)‖l1 = t. (7.4)

Consider St =
∑

j∈N aj(γt)Yj , t ≥ t0. We estimate the logarithmic moment
generating function of St for arguments θ ≥ 0 by

log EeθSt =
∑
j∈N

Λ̃(θaj(γt)) ≤
∑
j∈N

aj(γt) Λ̃(θ) = t Λ̃(θ).

Here, the inequality follows from the convexity of Λ̃ combined with the
properties Λ̃(0) = 0 and aj(γ) ∈ [0, 1], γ ≥ 0. Applying the exponential
Chebyshev inequality gives for every θ ≥ 0

log P(St ≥ tβ̃) ≤ log E[eθSt ]− tβ̃θ ≤ tΛ̃(θ)− tβ̃θ.

Now choose θ = θ(t) = t−1/2. Then

log P(St ≥ tβ̃) ≤ tΛ̃(t−1/2)− tβ̃−1/2.

Note that Λ̃′(0) = EY1 = 0 and Λ̃′′(0) = var(Y1), and Λ̃ is at least twice
continuously differentiable in some neighborhood around 0. By Taylor’s
formula, we conclude that

− log P(St ≥ tβ̃) & tβ̃−1/2 as t→∞.

Set I = N ∩ [t0,∞). By the previous estimate,
∑

n∈I P(Sn ≥ nβ̃) is finite
and a.s. only finitely many of the events {Sn ≥ nβ̃}, n ∈ I, occur. There-
fore, lim supn→∞ Sn/nβ ≤ 0. By symmetry, this statement is also true for
{−Sn}n∈I . Hence, {Sn/nβ}n∈I converges a.s. to zero.
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For t ∈ [n, n+ 1), n ∈ I, we use the monotonicity of aj(·) to estimate

|St − Sn| ≤
∑
j∈N

(aj(γt)− aj(γn))|Yj | ≤
∑
j∈N

(aj(γn+1)− aj(γn))|Yj | =: Zn.

Then

P(Zn ≥ nβ̃) ≤ EZ2
n

n2β̃

and

EZ2
n =

∑
i∈N

∑
j∈N

(ai(γn+1)− ai(γn))(aj(γn+1)− aj(γn))E|YiYj |

≤
∑
i∈N

∑
j∈N

(ai(γn+1)− ai(γn))(aj(γn+1)− aj(γn))var(Y1) = var(Y1),

where the equality follows from (7.4). Consequently,∑
n∈N

P(Zn ≥ nβ̃) <∞

and Zn ≤ nβ̃ for all but finitely many n ∈ I, a.s. Therefore, {Zn}n∈I is a.s.
of order o(nβ) as n→∞. Since |St| ≤ |Sn|+Zn for n ∈ N and t ∈ [n, n+1),
we conclude that |St| = o(tβ) as t→∞, a.s. �

In order to prove Theorem 7.2.2, we use the relation between the moment
generating function and small ball probabilities (Theorem 3.4.1). Recall that
for arbitrary x ∈ H one has

− logµ(B(x,
√
ε)) ∼ Λ∗x(ε) (ε ↓ 0), (7.5)

where Λx(θ) = log E[exp{θ‖X−x‖2}], θ ≤ 0, and Λ∗x(t) = supθ≤0[θt−Λx(θ)],
t > 0. In our case the center X is chosen randomly and, hence, one has to
show that the distribution of the random variable Λ∗X(ε) is concentrated at
Λ∗(ε) for small ε.

Proof of Theorem 7.2.2. As noted in Remark 7.2.3, we can restrict
our attention to measures µ with infinite dimensional support. By the
Karhunen-Loève expansion, one has

X =
∑
j∈N

λ
1/2
j Xj ej ,

where {Xj}j∈N = {λ−1/2
j 〈ej , X〉}j∈N is a sequence of independent N (0, 1)-

distributed random variables. We consider the random moment generating
function

ΛX(θ) =
∑
j∈N

[
−1

2
log(1− 2θλj) +

θλj
1− 2θλj

X2
j

]
, θ ≤ 0. (7.6)
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Clearly,

Λ′X(θ) =
∑
j∈N

[ λj
1− 2θλj

+
λj

(1− 2θλj)2
X2
j

]
. (7.7)

Recall that Λ(θ) = EΛX(θ) and denote Λ′(θ) = EΛ′X(θ). By interchanging
integral and differentiation, one obtains that Λ′ is the derivative of Λ.

Note that for ε ∈ (0,Λ′X(0)], the supremum in the Legendre transform

Λ∗X(ε) = sup
θ≤0

[θε− ΛX(θ)]

is attained for θ0 ≤ 0 with Λ′X(θ0) = ε. By the continuity of Λ′X on (−∞, 0]
such a θ0 always exists. When ε tends to 0, the corresponding parameter
θ0 will tend to −∞. In order to derive results for Λ∗X(ε) for small ε, we
need to send θ to −∞ and study the quantities Λ∗X(Λ′X(θ)) and Λ′X(θ). For
convenience we use γ = −θ ≥ 0 and send γ to ∞. We first consider the term

ξX(γ) : = Λ∗X(Λ′X(−γ)) = −γΛ′X(−γ)− ΛX(−γ)

=
∑
j∈N

[1
2

log(1 + 2γλj) +
γλjX

2
j

1 + 2γλj
− γλj

1 + 2γλj
−

γλjX
2
j

(1 + 2γλj)2
]

=
∑
j∈N

[1
2

log(1 + 2γλj)−
γλj

1 + 2γλj
+

2(γλj)2

(1 + 2γλj)2
X2
j

]
.

(7.8)

Since log(1 + 2γλj) ≥ (2γλj)/(1 + 2γλj), the deterministic part∑
j∈N

[1
2

log(1 + 2γλj)−
γλj

1 + 2γλj

]
is greater than 0. The coefficients of the random terms X2

j in (7.8) satisfy
the assumptions of Lemma 7.2.4. Therefore, one has

ξX(γ) ∼ EξX(γ) =: ξ(γ) as γ →∞, a.s.

It remains to show that Λ′X(−γ) is sufficiently close to its expectation. It
will be sufficient to show that |Λ′X(−γ) − Λ′(−γ)| = o(ξ(γ)/γ) as γ → ∞,
a.s. By Chebyshev’s inequality and the estimate

var
(
γΛ′X(−γ)

)
=

∑
j∈N

(γλj)2

(1 + 2γλj)4
var(X2

1 ) ≤ ξ(γ),

it follows that

P
(
|Λ′X(−γ)− EΛ′X(−γ)| ≥ ξ(γ)4/5/γ

)
≤

var(γΛ′X(−γ))
ξ(γ)8/5

≤ ξ(γ)−3/5.
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We choose a sequence {γn}n∈N in R+ such that ξ(γn) = n2 for n ∈ N. Since∑
n∈N ξ(γn)

−3/5 <∞, we conclude by the Borel-Cantelli Lemma that a.s.

|Λ′X(−γn)− EΛ′X(−γn)| ≤ ξ(γn)4/5/γn

for all but finitely many n ∈ N. Hence, using the monotonicity of Λ∗X on R+

gives

Λ∗X
(
Λ′(−γn) +

ξ(γn)4/5

γn

)
& Λ∗X

(
Λ′X(−γn) +

2ξ(γn)4/5

γn

)
= sup

θ≤0
[(Λ′X(−γn) + 2ξ(γn)4/5/γn) θ − ΛX(θ)]

≥ ξX(γn)− 2ξ(γn)4/5 ∼ ξ(γn) (n→∞, a.s.),

(7.9)

where the last inequality is obtained by taking θ = −γn. On the other hand,
one has

Λ∗X
(
Λ′(−γn) +

ξ(γn)4/5

γn

)
. Λ∗X

(
Λ′X(−γn)

)
= ξX(γn) ∼ ξ(γn) (7.10)

as n → ∞, a.s. For n ∈ N, set εn = Λ′(−γn) + ξ(γn)4/5/γn. By (7.9) and
(7.10) one has

Λ∗X(εn) ∼ ξ(γn) (n→∞, a.s.).

By the monotonicity of Λ∗, one has ξ(γn) = Λ∗
(
Λ′(−γn)

)
≥ Λ∗(εn). More-

over,

Λ∗(εn) = sup
θ≤0

[
θεn − Λ(θ)

]
≥ −γnεn − Λ(−γn)

= −γnΛ′(−γn)− Λ(−γn)− ξ(γn)4/5

= ξ(γn)− ξ(γn)4/5 ∼ ξ(γn) = Λ∗(Λ′(−γn)) (n→∞).

Hence, Λ∗X(εn) ∼ Λ∗(εn) (n→∞, a.s.) and one has with (7.5)

− log(µ(B(x,
√
εn))) ∼ ΛX(εn) ∼ Λ∗(εn) (n→∞)

for µ-almost every x ∈ H. The general result follows by the monotonicity
of the small ball probabilities, and the moment generating function and the
fact that limn→∞ Λ∗(εn+1)/Λ∗(εn) = 1. In fact,

Λ∗(εn+1)
Λ∗(εn)

∼ ξ(γn+1)
ξ(γn)

=
(n+ 1)2

n2
→ 1 (n→∞).

�
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The Legendre transform Λ∗ is convex. Furthermore, it is non-negative
and attains 0 on the set [Λ′(0),∞). Note that Λ′(0) = 2

∑
j∈N λj . Consider

the map

ϕR :
(
0, (2

∑
j∈N

λj)1/2
]
→ [0,∞)

ε 7→ Λ∗(ε2).

Since Λ∗ is finite on R+ and converges to ∞ as ε ↓ 0, it follows that ϕR
is one-to-one and onto. Motivated by the previous theorem we call ϕR the
small ball function for random centers.

Theorem 7.2.5. Assume that the eigenvalues {λj}j∈N are regularly varying
with index −α < −1. Then

ϕR(ε) ∼
(α+ 1

α

) α
α−1

ϕ(ε) as ε ↓ 0.

In the proof of Theorem 7.2.5, we use de Bruijn’s Tauberian Theorem
(de Bruijn [10]; Bingham et al. [6], Theorem 4.12.9):

Theorem 7.2.6. Let ν be a probability measure on (0,∞) with logarithmic
Laplace transform

Γ(γ) = log
∫ ∞

0
e−γxdν(x), γ > 0.

Let φ be regularly varying at zero with index −β < 0. Set ψ(x) = φ(x)/x
and denote by φ← and ψ← an asymptotic inverse of φ ∈ R−β(0) and
ψ ∈ R−β−1(0), respectively. Then, for B > 0,

− log ν(0, ε] ∼ B/φ←(1/ε) as ε ↓ 0

if and only if

−Γ(γ) ∼ (1 + β)(B/β)β/1+β/ψ←(γ) as γ →∞.

Corollary 7.2.7. Let ν1 and ν2 be probability measures on the Borel sets of
(0,∞). Let Γ1 and Γ2 denote the log-Laplace transforms of ν1 and ν2 and
suppose that −Γ1 is regularly varying with index α ∈ (0, 1). For κ > 0,

−Γ2(γ) ∼ −κΓ1(γ) (γ →∞)

implies
− log ν2(0, ε] ∼ −κ1/(1−α) log ν1(0, ε] (ε ↓ 0).
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Proof. Choose
φ(x) = x

( 1
−Γ1

)←
(x),

where
(

1
−Γ1

)←
∈ R−1/α(0) is an arbitrary asymptotic inverse of 1

−Γ1
∈ R−α.

Then φ ∈ R1−1/α(0). Note that −β := 1− 1/α < 0 and, hence, the Taube-
rian Theorem is applicable. With φ←, ψ and ψ← as in the Tauberian The-
orem, we may write

−Γ1(γ) ∼ (1 + β)(B1/β)β/1+β/ψ←(γ)

for some appropriate constant B1 > 0. For B2 = B1κ
(1+β)/β = B1κ

1/(1−α),
one has

Γ2(γ) ∼ κΓ1(γ)

∼ κ(1 + β)(B1/β)β/1+β/ψ←(γ)

= (1 + β)(B2/β)β/1+β/ψ←(γ).

Consequently, with the Tauberian Theorem,

− log ν2(0, ε] ∼ B2/φ
←(1/ε)

= κ1/(1−α)B1/φ
←(1/ε) ∼ −κ1/(1−α) log ν1(0, ε],

as ε ↓ 0. �

Proof of Theorem 7.2.5. Let X and X̃ be independent µ-distributed
random elements in H. As noted before the log-Laplace transform at the
random center X is given by

ΓX(γ) := log E[e−γ‖X̃−X‖
2 |X]

= −
∑
j∈N

[1
2

log(1 + 2γλj) +
γλj

1 + 2γλj
X2
j

]
, γ ≥ 0,

where {Xj}j∈N is a sequence of independent standard normals. By Lemma
7.2.4, one has

−ΓX(γ) ∼
∑
j∈N

[1
2

log(1 + 2γλj) +
γλj

1 + 2γλj

]
=: −Γ(γ) (γ →∞)

for a.e. realization of X. We apply Corollary 7.2.7 to prove the theorem. It
remains to show that −Γ0 and −Γ are regularly varying and to relate the
asymptotics of Γ and Γ0 appropriately.

Consider first
Σ1(γ) :=

∑
j∈N

γλj
1 + 2γλj

, γ ≥ 0.
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Let λt := λdte = t−α l(t), t > 0, and suppose that λ̃ : R+ → R+ is a
measurable function with λ̃t ∼ λt as t→∞. Then one has for any t0 ≥ 0,

Σ1(γ) =
∫ ∞

0

γλt
1 + 2γλt

dt ∼
∫ ∞
t0

γλt
1 + 2γλt

dt (γ →∞), (7.11)

since the integrand is bounded by 1/2 and the integral converges to ∞ when
γ tends to ∞. Due to the fact that

γλt
1 + 2γλt

1 + 2γλ̃t
γλ̃t

converges uniformly for all γ ≥ 0 to 1 as t→∞ combined with (7.11), one
concludes

Σ1(γ) ∼
∫ ∞

0

γλ̃t

1 + 2γλ̃t
dt (γ →∞). (7.12)

Hence, replacing λ by an asymptotically equivalent λ̃ yields the same asymp-
totics for Σ1. Consequently, for κ ∈ R+,

Σ1(κγ) =
∫ ∞

0

κγλt̃
1 + 2κγλt̃

dt̃

= κ1/α

∫ ∞
0

γt−αl(κ1/αt)
1 + 2γt−αl(κ1/αt)

dt

∼ κ1/αΣ1(γ) (γ →∞),

where the second equality follows from substituting t̃ = κ1/αt. One con-
cludes that Σ1 is regularly varying with index α−1.

Consider now

Σ2(γ) :=
∑
j∈N

1
2

log(1 + 2γλj), γ ≥ 0.

By using the inequality log(1 + x) ≥ x/(x− 1), we see that Σ2(γ) ≥ Σ1(γ).
Hence, Σ2 grows at least as a power. We conclude again that a finite number
of summands in Σ2 has no effect on its asymptotic behavior when γ → ∞.
In analogy to the argumentation above, one has

Σ2(γ) ∼
∫ ∞

0

1
2

log(1 + 2γλ̃t) dt (γ →∞) (7.13)

for any λ̃ : R+ → R+ that is asymptotically equivalent to λ and locally
integrable.
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By basic properties of regularly varying functions (see TheoremA.3),
there exists a positive slowly varying function l̃ ∈ C1[0,∞) that satisfies
λt ∼ t−α l̃(t) and l̃′(t) = o(l̃(t)/t) as t→∞. Set λ̃t := t−α l̃(t), t ≥ 0. Then

Σ2(γ) ∼
∫ ∞

0
log(1 + 2γλ̃t) dt =

[
t
1
2

log(1 + 2γλ̃t)
]∞
0
−

∫ ∞
0

γtλ̃′t

1 + 2γλ̃t
dt.

(7.14)

Observe that
[
t12 log(1 + 2γλ̃t)

]∞
0

= 0. Since l′(t) = o(l(t)/t), we have

λ̃′t = −αt−α−1 l̃(t) + t−α l̃′(t) ∼ −αλ̃t/t as t→∞.

Combined with (7.14) and (7.12) this yields

Σ2(γ) ∼ αΣ1(γ).

Thus,

−Γ(γ) ∼ (α+ 1)Σ1(γ) ∼ −α+ 1
α

Γ0(γ).

Moreover, −Γ and −Γ0 are regularly varying with index 1/α and we finish
the proof by applying Corollary 7.2.7. �

Recall that the asymptotics of the small ball function can be derived
from eigenvalues. As a consequence of Bronski [9], one has

Lemma 7.2.8. Suppose that the eigenvalues {λj}j∈N satisfy

λj ∼ κ j−α (j →∞)

for some κ > 0 and α > 1. Then

ϕ(ε) ∼ α− 1
2

( π

α sin(πα)

) α
α−1

κ
1

α−1 ε−
2

α−1 (ε ↓ 0).

With Theorem 7.2.5 we obtain

Corollary 7.2.9. If the eigenvalues are as in the previous lemma, then

ϕR(ε) ∼ α− 1
2

( (α+ 1)π
α2 sin(πα)

) α
α−1

κ
1

α−1 ε−
2

α−1 (ε ↓ 0).

In Section 6.4, we quoted the asymptotics of the eigenvalues of fractional
Brownian motion and integrated Brownian motion. These results yield

ϕR(ε) ∼ γ

2

( (γ + 2)
(γ + 1)2 sin( π

γ+1)

) γ+1
γ (

sin(πγ2 )Γ(γ + 1)
) 1

γ ε
− 2

γ



122 Random small ball probabilities

for fractional Brownian motion to the index γ ∈ (0, 2) in L2[0, 1] and

ϕR(ε) ∼ 2m+ 1
2

( 2m+ 3
4(m+ 1)2 sin( π

2m+2)

) 2m+2
2m+1

ε−
2

2m+1

for m-times integrated Brownian motion in L2[0, 1]. In particular, one has

ϕR(ε) ∼ 9
32
ε−2

for Wiener measure on L2[0, 1].

7.3 Small ball probabilities for Brownian motion

Let d ∈ N. Suppose S = Rd is equipped with an arbitrary norm | · |S . For a
set I and function g : I → R, we denote

‖g‖I := ‖g‖I,S = sup
t∈I

|g(t)|S .

For x ∈ Rd, let P x be d-dimensional Wiener measure on C([0,∞), S) with
starting point x ∈ Rd. Analogously, we let P x,t0 , x ∈ Rd, t0 ≥ 0, be d-
dimensional Wiener measure on C([t0,∞), S) with starting point x ∈ Rd

started at time t0 ≥ 0. Here, we equip C([0,∞), S) and C([t0,∞), S) with
the topology of uniform convergence on compacts. Analogously to the pre-
vious section, we study the asymptotics of

− log P0(‖W − w‖[0,1] ≤ ε)

for a P 0-typical w when ε tends to 0. In order to infer results for this
problem we consider the asymptotics of

− log P0(‖W − w‖[0,t] ≤ 1) as t→∞,

for a P 0-typical w ∈ C([0,∞), S). Then we use the scaling properties of
Brownian motion to conclude on the original problem. The main result of
this paragraph is

Theorem 7.3.1. Let λ1 > 0 be the principal eigenvalue of the Dirichlet
problem on the domain int(BS(0, 1)). There exists κ ∈ [2λ1, 8λ1] such that

− log P0(‖W − w‖[0,t] ≤ 1) ∼ κt

as t→∞, for P 0-a.e. w in C([0,∞), S). Furthermore, the maps (ε > 0)

φε : C([0,∞), S) → [0,∞)

w 7→ φε(w) = − log P0(‖W − w‖[0,1] ≤ ε)
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considered as random variables on the canonical Wiener space satisfy

lim
ε↓0

ε2 φε = κ in probability.

Denote by M(S) the set of positive finite measures on the Borel sets of
S. For ν ∈M(S) and t0 ≥ 0, we define P ν,t0 to be the measure on the Borel
sets of C([t0,∞), S) satisfying

P ν,t0(A) =
∫

Rd

P z,t0(A) ν(dz), A ∈ B(C([t0,∞), S)).

Let f : [0,∞) → S be an arbitrary continuous function with f(0) = 0 and
let µ ∈M(S) be the measure defined by

µ(A) = E0[1{‖W−f‖[0,1]≤1} 1A(W1)], A ∈ B(Rd).

Before we start with the proof of the theorem, we derive some lemmas.

Lemma 7.3.2. One has

supp(µ) = BS(f(1), 1).

Proof. Let x ∈ intBS(f(1), 1) and ε > 0. We need to show that
µ(BS(x, ε)) > 0. Without loss of generality, we assume that ε < 1 − |x|S .
Since the set of functions C∞([0, 1], S) is dense in (C([0, 1], S), ‖·‖[0,1]), there
exists a function f1 ∈ C∞([0, 1], S) with ‖f − f1‖[0,1] ≤ ε/2 and f1(0) = 0.
Note that

µ(B(x, ε)) ≥ P0(‖Wt − (f(t) + tx)‖[0,1] ≤ ε)

≥ P0(‖Wt − (f1(t) + tx)‖[0,1] ≤ ε/2).

By the estimate of shifted balls (Lemma 2.2.4) it follows that

µ(B(x, ε)) ≥ P0(‖W‖[0,1] ≤ ε/2) exp
{
−

∫ 1
0 |ḟ1(s) + x|2 ds

2

}
> 0.

�

Lemma 7.3.3. There exists a log-concave version of the Radon-Nikodym
derivative dµ

dλd , where λd denotes d-dimensional Lebesgue measure.

Proof. Let
J(n) =

{ i

2n
: i = 0, . . . , 2n

}
, n ∈ N,
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and let µ(n), n ∈ N, denote the measures on Rd with

µ(n)(A) = E0[1{‖W−f‖(J(n))<1}1A(W1)], A ∈ B(Rd).

First we show that there exists a log-concave version of the Radon-Nikodym
derivative dµ(n)

dλd . Let

pt(z) = (2πt)−d/2e−|z|
2/(2t), t > 0, z ∈ Rd,

and let K = intBS(0, 1) be the open unit ball in S. Fix n ∈ N. The Radon-
Nikodym derivative dµ(n)

dλd can be constructed as follows. The function

g
(n)
1 (z) := 1f(2−n)+K(z) · p2−n(z), z ∈ Rd,

is the density of the measure µ(n)
1 defined by

µ
(n)
1 (A) := P x

{
w ∈ C([0,∞), S) : w2−n ∈ A ∩ (f(2−n) +K)

}
for A ∈ B(Rd). We continue inductively. Suppose g(n)

i , i ∈ {1, . . . , 2n − 1},
is defined already. Then let

g
(n)
i+1(z) := 1f((i+1)2−n)+K(z) ·

(
p2−n ∗ g(n)

i

)
(z), z ∈ Rd,

where ∗ denotes the convolution of functions, and

µ
(n)
i+1(A) := Pµi,i2

−n{
w ∈ C([i2−n,∞), S) :

w(i+1)2−n ∈ A ∩ (f((i+ 1)2−n) +K)
}

for A ∈ B(Rd). It follows by construction that µ(n)
2n is equal to µ(n). More-

over, g(n) := g
(n)
2n is the density of µ(n). Note that pt(·) is log-concave for

any t > 0. By Brascamp and Lieb [8] (Theorem 1.3), the convolution of
two log-concave functions is again log-concave. Since log-concavity is also
maintained by multiplication with 1A for convex sets A ⊂ S, it follows that
g(n) is log-concave.

Moreover, the construction of g(n) implies that n 7→ g(n)(z) is monoton-
ically decreasing for all fixed z ∈ Rd. Set

g(z) := lim
n→∞

g(n)(z) = inf
n→∞

g(n)(z), z ∈ Rd.

Since g is an infimum of log-concave functions, it is log-concave as well. It
remains to prove that g is a density of µ. Note that for any A ∈ B(Rd),

lim
n→∞

∫
gn1A dλd =

∫
g1A dλd,
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by dominated convergence. On the other hand,∫
1A dµ(n) = E0[1{‖W−f‖J(n)<1} 1A(W1)]

converges to E0[1{‖W−f‖J<1} 1A(W1)] with J =
⋃
n∈N Jn. Due to Corollary

2.3.4, one has
P0(‖W − f‖[0,1] = 1) = 0

and, hence, ∫
1A g dλd = E0[1‖W−f‖[0,1]≤1} 1A(W1)]

since J is dense in [0, 1] and W and f are continuous. �

Now the previous two lemmas are used to prove

Proposition 7.3.4. For every η ∈ (0, 1) there exists ε0 > 0 such that

µ(A) ≥ ε0 λ
d(A ∩B(f(1), η)), A ∈ B(S).

Proof. By Lemma 7.3.3, there exists a log-concave function g : S → [0,∞)
with g = 0 on int(BS(f(1), 1))c such that

dµ

dλd
= g.

Consider the sets

Aε := g−1(ε,∞) ⊂ BS(f(1), 1), ε > 0,

and denote A :=
⋃
ε>0Aε. The measure µ is supported on the set Ā. Since

A ⊂ int(BS(f(1), 1)), one has Ā = BS(f(1), 1) due to Lemma 7.3.2. The
set A is convex due to its definition. Consequently, one has

A = int(BS(f(1), 1))

by basic results of convex analysis (see Rockafellar [59], Theorem 6.3). Since
g > 0 on A, it follows that the function g restricted to the open set A is
a continuous function. Hence, for ε > 0 the sets Aε = g−1(ε,∞) are open
subsets of S. Consequently, ⋃

ε>0

g−1(ε,∞)

is an open cover of the compact set BS(f(1), η) for any η ∈ (0, 1). Hence,
there exists ε0 > 0 such that

Aε0 ⊃ BS(f(1), η).

Thus, g ≥ ε0 on BS(f(1), η) and the assertion follows. �
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Lemma 7.3.5. For ε > 0,

− log sup
x∈Rd

Px(‖W − f‖[0,t] ≤ 1− ε) & − log P0(‖W − f‖[0,t] ≤ 1),

as t→∞.

Proof. For x ∈ Rd and ε ∈ (0, 1), let µx,ε ∈M(Rd) with

µx,ε(A) = Ex
[
1{‖W−f‖[0,1]≤1−ε}1A(W1)

]
, A ∈ B(Rd).

For t ≥ 1 one has by the Markov property of Brownian motion that

Px(‖W − f‖[0,t] ≤ 1− ε)

= Pµ
x,ε,1

{
w ∈ C([1,∞), S) : ‖w − f‖[1,t] ≤ 1− ε

}
.

Analogously, one has

P0(‖W − f‖[0,t] ≤ 1) = Pµ,1
{
w ∈ C([1,∞), S) : ‖w − f‖[1,t] ≤ 1

}
,

with µ as above. Consider the set Iε := BS(f(1), 1 − ε) ⊂ Rd. As W1 is
normally distributed we conclude that there exists a constant C < ∞ such
that

µx,ε(A) ≤ Ex
[
1A∩Iε(W1)

]
≤ C λd(A ∩ Iε)

for all A ∈ B(Rd). Note that C can be chosen uniformly for all starting
points x ∈ S. On the other hand, by Proposition 7.3.4, there exists a
constant c > 0 such that

µ(A) ≥ c λd(A ∩ Iε), A ∈ B(Rd).

Combining both estimates gives

P0(‖W − f‖[0,t] ≤ 1) = Pµ,1
{
w ∈ C([1,∞), S) : ‖w − f‖[1,t] ≤ 1

}
≥ c

C
sup
x∈Rd

Pµ
x,ε,1

{
w ∈ C([1,∞), S) : ‖w − f‖[1,t] ≤ 1− ε

}
=

c

C
sup
x∈Rd

Px(‖W − f‖[0,t] ≤ 1− ε).

Due to Anderson’s inequality, it follows that P0(‖W − f‖[0,t] ≤ 1) converges
to 0 as t→∞. Consequently,

− log P0(‖W − f‖[0,t] ≤ 1) . − log sup
x∈Rd

Px(‖W − f‖[0,t] ≤ 1− ε)

as t→∞. �
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Proof of Theorem 7.3.1. First we prove that the existence of a constant
κ ∈ [0,∞] such that

lim
t→∞

1
t

log P(‖W − w‖[0,t] ≤ 1) = −κ

for P 0-a.e. w ∈ C[0,∞). Here, convergence is understood in the extended
real numbers. The proof is based on Kingman’s subadditive ergodic Theo-
rem.

Let (C([0,∞), S),B(C([0,∞), S)), P 0, {θt}t≥0) be the ergodic canonical
dynamical system corresponding to the Wiener process. Here,

θt : C([0,∞), S) → C([0,∞), S)

w 7→ (θtw)s = ws+t − wt.

For t ≥ 0, we define the function ψt : C([0,∞), S) → (−∞, 0] by

ψt(w) = sup
x∈Rd

log Px(‖Wu − w‖[0,t] ≤ 1).

The process {ψt(w)}t≥0 is subadditive for any w ∈ C([0,∞), S). In fact,
one has for s, t > 0,

ψs+t(w) = sup
x∈S

log Px(‖W − w‖[0,s+t] ≤ 1)

= sup
x∈Rd

log Px(‖W − w‖[0,s] ≤ 1 and

‖Ws+· − ws − (θsw)·‖[0,t] ≤ 1)

≤ sup
x∈Rd

log Px(‖W − w‖[0,s] ≤ 1)

+ sup
x∈Rd

logPx(‖W − θsw‖[0,t] ≤ 1) = ψs(w) + ψt(θsw).

Hence, by Kingman’s subadditive ergodic Theorem (see Krengel [39], The-
orem 5.3) there exists κ ∈ [0,∞] such that for P 0-a.e. w, one has

lim
n→∞

1
n
ψn(w) = −κ.

Since for n ∈ N and t ∈ [n, n+ 1)

n+ 1
n

ψn+1(w)
n+ 1

≤ 1
t
ψt(w) ≤ n

n+ 1
ψn(w)
n

,

it follows that

lim
t→∞

1
t

sup
x∈S

log Px(‖W − w‖[0,t] ≤ 1) = −κ.
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We will use the scaling properties of Brownian motion. For η > 0, the
map

πη : C[0,∞) → C[0,∞)

h 7→ πη(h)(t) = η h
( t

η2

)
is linear and satisfies P ηx = P x ◦ π−1

η . In particular, P 0 is πη-invariant, i.e.
P 0 = P 0 ◦ π−1

η . Hence,

Px(‖W − w‖[0,t] ≤ 1) = Px(‖πη(W − w)‖[0,η2t] ≤ η)

= Pηx(‖W − πη(w)‖[0,η2t] ≤ η)
(7.15)

and one has for P 0-a.e. w ∈ C[0,∞),

lim
t→∞

1
t

sup
x∈Rd

log Px(‖W − w‖[0,η2t] ≤ η) = −κ.

Now let ε ∈ (0, 1) and η := 1− ε. Then

−κ = lim
t→∞

1
t

sup
x∈Rd

log Px(‖W − w‖[0,(1−ε)2t] ≤ 1− ε)

= (1− ε)2 lim
t→∞

1
t

sup
x∈Rd

log Px(‖W − w‖[0,t] ≤ 1− ε)

≤ (1− ε)2 lim inf
t→∞

1
t

log P0(‖W − w‖[0,t] ≤ 1),

where the inequality holds due to Lemma 7.3.5. Letting ε ↓ 0 gives

lim
t→∞

1
t

log P0(‖W − w‖[0,t] ≤ 1) = −κ

for P 0-a.e. w.
Now we show convergence in probability of ε2φε as ε ↓ 0. For t > 0

consider

ψ
(1)
t : C([0,∞), S) → [0,∞)

w 7→ ψ
(1)
t (w) = −1

t
log P0(‖W − w‖[0,t] ≤ 1)

and

ψ
(2)
t : C([0,∞), S) → [0,∞)

w 7→ ψ
(2)
t (w) = −1

t
log P0(‖W − w‖[0,1] ≤ 1/

√
t)
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as random variables on the canonical Wiener space. Applying the scaling
property (7.15) with η = 1/

√
t, gives L(ψ(1)

t ) = L(ψ(2)
t ) for any t > 0. In

particular, ψ(2)
t = 1

t φ1/
√
t converges in probability to κ as t→∞.

It remains to prove the explicit bounds for κ. By Theorem 7.1.1,

ε2 ϕ(ε) ≤ ε2 φε(w) . 2 ε2 ϕ(ε/2) (ε ↓ 0)

for P 0-a.e. w, where ϕ(ε) = − log P0(‖W‖[0,1] ≤ ε). Recall that ϕ(ε) ∼ λ1
ε2

,
where λ1 > 0 is the principle eigenvalue of the Dirichlet problem on the
domain int(BS(0, 1)). Hence, κ is in R+ and Corollary 7.1.11 yields that

κ ∈ [2λ1, 8λ1].

�

7.4 Monte Carlo approximation of κ

We maintain the notations of the previous section, but confine ourselves to
1-dimensional Brownian motion, i.e. d = 1. The norm ‖ · ‖I (I ⊂ R) shall
denote the standard supremum norm. As we have observed in the previous
section there exists κ > 0 such that for P 0-a.e. w ∈ C[0,∞)

lim
t→∞

−1
t

log P0(‖W − w‖[0,t] ≤ 1) = κ.

The principal eigenvalue of the Dirichlet problem on the domain (−1, 1) is
λ1 = π2

8 . Hence, κ ∈ [π
2

4 , π
2].

In this section, we estimate the constant κ by using Monte Carlo meth-
ods. Note that it is not feasible to construct a perfect P 0-distributed sample
w and to afterwards compute

−1
t

log P0(‖W − w‖[0,t] ≤ 1).

Therefore, we approximate the Wiener process by discrete processes.
Let U = {Ui}i∈N denote a sequence of independent Bernoulli random

variables on {−1, 1} and set

Sn = Sn(U) =
n∑
i=1

Ui, n ∈ N0.

For a fixed parameter δ > 0, we consider the process

W
(δ)
t = W

(δ)
t (U) = δ Sbt/δ2c, t ≥ 0.
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Table 7.1: Results of a Monte Carlo study (δ = 1/400, T = 10, K = 30)

k 0 1 2 3 4 5
κ̂(k) 2.7224 2.4381 2.7445 2.7971 2.3199 2.4937
k 6 7 8 9 10 11
κ̂(k) 2.2441 2.8693 2.7322 2.6318 2.7747 2.3066
k 12 13 14 15 16 17
κ̂(k) 2.9224 3.0409 2.8994 2.5822 2.6797 2.4320
k 18 19 20 21 22 23
κ̂(k) 3.2327 2.6069 2.6644 3.0838 2.6450 2.4910
k 24 25 26 27 28 29
κ̂(k) 2.8788 2.3264 2.9022 2.4058 2.7635 2.3513

We denote by P (δ) the law of the process W (δ) = {W (δ)
t }t≥0 on the Skoro-

hod space, i.e. the space of right continuous functions with left hand limits
equipped with the Skorohod topology. Due to Donsker’s invariance princi-
ple, the family W (δ), δ > 0, of processes converges weakly to the Wiener
process. Motivated by this fact, we investigate the probability

− 1
T

log P(‖W (δ) − w(δ)‖[0,T ] ≤ 1)

for a P (δ)-typical w(δ), small δ > 0 and large T > 0. Although this ap-
proximation is mathematically not rigorous, it gives first insights on the
parameter κ.

We let u = {ui}i∈N be an arbitrary {−1, 1}-valued sequence which will
later be thought of as a realization of independent Bernoulli random vari-
ables. Analogously to S and W (δ), we define s = s(u) = {sn(u)}n∈N and
w(δ) = w(δ)(u) = {w(δ)

t (u)}t≥0. Since

‖W (δ) − w(δ)‖[0,T ] = δ ‖Sbt/δ2c − sbt/δ2c‖[0,T ]

= δ sup
n=1,...,bT/δ2c

|Sn − sn|,

we have

− 1
T

log P(‖W (δ) − w(δ)‖[0,T ] ≤ 1) = − 1
T

log P
(

sup
n=1,...,bT/δ2c

|Sn − sn| ≤
1
δ

)
.

(7.16)

The latter expression may be computed explicitly for any fixed sequence
{un}n∈N in {−1, 1}. Now one can compute (7.16) for a typical computer
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generated sequence {un}n∈N. In order to obtain results on the dispersion of
(7.16) we study alternatively

κ̂(k) := − 1
T

log P
(
‖W (δ) − w(δ)‖(kT,(k+1)T ] ≤ 1

∣∣‖W (δ) − w(δ)‖(0,kT ] ≤ 1
)

for k = 0, . . . ,K − 1 where T > 0 and K ∈ N are fixed parameters.
In Table 7.1, one finds results of a simulation run on Matlab with pa-

rameters δ = 1/400, T = 10 and K = 30. In this sample the average of the
values κ̂ is 2.6661 and one obtains a confidence interval [2.572, 2.76] (95%
confidence level) based on a t-test.

Comparing the estimated values with the known bounds
κ ≥ π2

4 = 2.4674... and κ ≤ π2 = 9.8696... gives rise to the assumption that
the rigorous lower bound is better than the corresponding upper bound.

7.5 Linking random SBPs and quantization

Let µ be a centered Gaussian measure on the separable Banach space (E, ‖·‖)
and denote by X a µ-distributed r.e. In this section, we study the asymp-
totics of D(R)(r|µ, ‖ · ‖s)1/s and its relations to random small ball probabil-
ities around random centers. Recall that

D(R)(r|µ, ‖ · ‖s)1/s = E
[

min
i=1,...,berc

‖X − X̃i‖s
]1/s

,

where {X̃i}i∈N is a sequence of independent (as well of X) µ-distributed
r.e.’s in E.

The following calculations are based on

Assumption 7.5.1. There exists a function ϕR : R+ → R+ that is convex,
one-to-one and onto, and satisfies

ϕR(ε) ∼ − logµ(B(X, ε)) as ε ↓ 0, in probability. (7.17)

Recalling Remark 7.1.8 and Lemma 7.1.9, it is typically not hard to find
ϕR such that the regularity conditions beyond (7.17) are fulfilled if there
exists a function ϕR satisfying (7.17). In fact, ϕ̃R(ε) = E[− logµ(B(X, ε))],
ε > 0, is an appropriate choice for ϕR in many cases. Moreover, recall that
the small ball probabilities are a.s. equivalent to a convex function in the
Hilbert space setting.

Theorem 7.5.2. Suppose that ϕR fulfills Assumption 7.5.1 and assume that

ϕ−1
R (r) ≈ ϕ−1

R (2r) (r →∞). (7.18)

Then
D(R)(r|µ, ‖ · ‖s)1/s ∼ ϕ−1

R (r) (r →∞).



132 Random small ball probabilities

We need some lemmas.

Lemma 7.5.3. Under the assumptions of Theorem 7.5.2 one has

ϕ−1(r) ≈ ϕ−1
R (r) (r →∞).

Proof. By assumption (7.17) and Theorem 7.1.1, there exists ε0 > 0 such
that for ε ∈ (0, ε0],

1
2
ϕ(ε) ≤ ϕR(ε) ≤ 4ϕ(ε/2).

Hence, for r ≥ 4ϕ(ε0/2),

ϕ−1(2r) ≤ ϕ−1
R (r) ≤ 1

2
ϕ−1(r/4).

and assumption (7.18) yields the proof of the lemma. �

Remark 7.5.4. Analogously to the previous proof, one can show that

ϕ−1(r) ≈ ϕ−1(2r) (r →∞) (7.19)

implies
ϕ−1
R (r) ≈ ϕ−1

R (2r) (r →∞).

Consequently, we can replace assumption (7.18) by assumption (7.19) in
Theorem 7.5.2.

Proposition 7.5.5. Denote

η = lim sup
r→∞

ϕ−1
R (r)

ϕ−1
R (2r)

<∞.

Fix κ ∈ (0, 1) and consider for δ := 1
4η κ and r ≥ 0 the sets

T1(r) =
{
x ∈ E : − logµ(B(x, (1 + κ)ϕ−1

R (r))) ≤ (1− δ)r
}

and

T2(r) =
{
x ∈ E : − logµ(B(x, (1− κ)ϕ−1

R (r))) ≥ (1 + δ)r
}
.

Under the assumptions of Theorem 7.5.2, one has

lim
r→∞

µ(T1(r)) = lim
r→∞

µ(T2(r)) = 1.
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Proof. Fix κ ∈ (0, 1) arbitrarily and let δ = 1
4η κ <

1
4 and r > 0. Note

that by the convexity of ϕ−1
R ,

ϕ−1
R (r − 2δr)− ϕ−1

R (r) ≤ 2δr
r/2

(
ϕ−1
R (r/2)− ϕ−1

R (r)
)

. 4δ(η − 1)ϕ−1
R (r)

as r →∞. Therefore, there exists r0 ≥ 0 such that

ϕ−1
R (r − 2δr) ≤ (1 + κ)ϕ−1

R (r)

for all r ≥ r0. Consequently, the set T1(r) satisfies for r ≥ r0

T1(r) ⊃
{
x ∈ E : − logµ(B(x, ϕ−1

R ((1− 2δ)r))) ≤ 1− δ

1− 2δ
(1− 2δ)r

}
.

Since ϕ−1
R ((1 − 2δ)r) converges to 0 and (1 − δ)/(1 − 2δ) > 1, it holds by

assumption (7.17) that
lim
r→∞

µ(T1(r)) = 1.

The converse inequality is proved similarly: One has for r ≥ r0

ϕ−1
R (r)− ϕ−1

R (r + 2δr) ≤ ϕ−1
R (r − 2δr)− ϕ−1

R (r) ≤ κϕ−1
R (r),

where the first inequality is a consequence of the convexity of ϕ−1
R . Hence,

ϕ−1
R (r + 2δr) ≥ (1− κ)ϕ−1

R (r) for r ≥ r0 and it follows

T2(r) ⊃
{
x ∈ E : − logµ(B(x, ϕ−1

R (r + 2δr))) ≥ 1 + δ

1 + 2δ
(1 + 2δ)r

}
.

Analogously to above, assumption (7.17) is used to infer that

lim
r→∞

µ(T2(r)) = 1.

�

Proposition 7.5.6. Let κ ∈ (0, 1). For r ≥ 0 consider

Z(r) := min
i=1,...,berc

‖X − X̃i‖

and the event

T (r) :=
{
Z(r) ∈ [(1− κ)ϕ−1

R (r), (1 + κ)ϕ−1
R (r)]

}
.

Under the assumptions of Theorem 7.5.2 one has

lim
r→∞

P(T (r)) = 1.
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Proof. Recall that ϕ−1
R is convex. According to Lemma 3.1.4 it suffices

to prove the asymptotic equivalence for values r ∈ I := {log j : j ∈ N},
i.e. values r for which er is an integer. By Proposition 7.5.5, one has
limr→∞ µ

(
T1(r) ∩ T2(r)

)
= 1 with T1(r) and T2(r) as in the proposition.

Moreover, for r ∈ I and X ∈ T1(r), one has

P(Z(r) > (1 + κ)ϕ−1
R (r)|X) =

(
1− µ(B(X, (1 + κ)r))

)er

≤
(
1− e−r+δr

)er

=
(
1− eδr

er

)er

≤ exp{−eδr} → 0 (r →∞).

On the other hand, for X ∈ T2(r), r ∈ I, it holds

P(Z(r) > (1− κ)ϕ−1
R (r)|X) =

(
1− µ(B(X, (1− κ)r))

)er

≥
(
1− e−r−δr

)er

=
(
1− e−δr

er

)er

→ 1

as r →∞. Hence, the events T (r), r ≥ 0, satisfy limr→∞ P(T (r)) = 1. �

Proof of Theorem 7.5.2. Fix s > 0. First we prove

D(R)(r|µ, ‖ · ‖s)1/s . ϕ−1
R (r) (r →∞).

Fix κ ∈ (0, 1) and let T (r) and Z(r) as in the previous proposition. Now

E[Z(r)s] ≤ E[1T (r) (1 + κ)sϕ−1
R (r)s] + E[1T (r)c Z(r)s] =: I1(r) + I2(r).

One has I1(r) ≤ (1 + κ)sϕ−1
R (r)s. Moreover, the Cauchy-Schwarz inequality

gives
I2(r) ≤ P(T (r)c)1/2 E[Z(r)2s]1/2.

As a consequence of Lemma 7.5.3 and assumption (7.18), ϕ satisfies

ϕ−1(2r) ≈ ϕ−1(r) (r →∞).

Thus, Theorem 3.1.2 is applicable and one obtains that E[Z(r)2s]1/2 is of
order O(ϕ−1(r)s). By the previous proposition, limr→∞ P(T (r)c) = 0. Con-
sequently,

I2(r) = o(ϕ−1
R (r)s) (r →∞).

and
E[Z(r)s]1/s . (1 + κ)ϕ−1

R (r) (r →∞).

Since κ ∈ (0, 1) was chosen arbitrarily, it follows that

E[Z(r)s]1/s . ϕ−1
R (r) (r →∞).
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The converse inequality follows since for fixed κ ∈ (0, 1) and T (r) as
above one has

E[Z(r)s]1/s ≥ E[1T (r) Z(r)s]1/s ≥ P(T (r))1/s(1− κ)ϕ−1
R (r)

& (1− κ)ϕ−1
R (r) (r →∞).

�

Now we consider the standard Hilbert space setting, i.e. µ is a Gaussian
measure on a separable Hilbert space H with infinite dimensional support.
Again we denote by {λn}n∈N the ordered sequence of eigenvalues.

Recall that the asymptotics of ϕR are given in Corollary 7.2.9 under
a polynomial decay assumption on the eigenvalues. Combining this result
with Theorem 7.5.2 yields immediately

Corollary 7.5.7. Suppose

λj ∼ κ j−α (j →∞)

for some κ > 0 and α > 1. Then for s > 0

D(R)(r|µ, ‖ · ‖s)1/s ∼
(α− 1

2

)α−1
2

((α+ 1)π
α2 sin π

α

)α/2√
κ r−(α−1)/2, (7.20)

as r →∞.

We compare the coding quantities D(R) and D(q). Recall that under the
assumptions of the previous corollary, one has

D(q)(r|µ, ‖ · ‖s)1/s ∼ αα/2

2(α−1)/2
√
α− 1

√
κ r−(α−1)/2 (r →∞) (7.21)

for any s > 0 due to Corollary 6.4.2. Hence, the limit

lim
r→∞

D(R)(r|µ, ‖ · ‖s)1/s

D(q)(r|µ, ‖ · ‖s)1/s
=

[(α2 − 1)π
α3 sin(πα)

]α/2
=: q(α)

exists and does not depend on s > 0. Figure 7.1 contains a plot of the ratio
q(α) against the parameter α.

By basic analysis, one finds the following

Lemma 7.5.8. One has

lim
α↓1

q(α) =
√

2 and lim
α→∞

q(α) = 1.

The lemma indicates that D(R) is closer to D(q) the faster the eigen-
values decay. This gives rise to the conjecture that for certain fast decay-
ing eigenvalues (faster than all polynomials) both quantities have the same
asymptotics.
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Figure 7.1: The plot shows the graph of the ratio q



Chapter 8

Final remarks and open

problems

In this paragraph we recall some results of this dissertation and present some
interesting open problems.

8.1 Coding Gaussian measures on Hilbert spaces

The main results of Chapter 6 are Theorem 6.2.1 and Theorem 6.3.1. There
the strong asymptotics of D(r) and D(q) for arbitrary moments s > 0 have
been found under the assumption that the sequence of eigenvalues {λn}n∈N
satisfies

lim
n→∞

log log(1/λn)
n

= 0. (8.1)

Moreover, the asymptotics of D and D(e) are given for moments s ≥ 2.

Question 8.1.1. 1.) Can one complement the upper bound for
D(r|µ, ‖ · ‖s)1/s and D(e)(r|µ, ‖ · ‖s)1/s by an appropriate lower bound when
s ∈ (0, 2)?
2.) Does a result like Theorem 6.2.1 or Theorem 6.3.1 hold under weaker
assumptions on the eigenvalues?

8.2 Coding Gaussian measures on Banach spaces

In Chapter 3, the upper bound derived by Fehringer is complemented by an
appropriate lower bound for the DRF (Theorem 3.5.1). Combining these
bounds gives the weak asymptotics of the coding quantities D(q), D(e) and
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D under the assumption that the small ball function satisfies

ϕ−1(r) ≈ ϕ−1(2r) (r →∞). (8.2)

Moreover, all quantities and all moments are weakly equivalent. As one
easily verifies in the Hilbert space setting, neither the lower nor the upper
bound are optimal in general in the strong sense. If condition (8.2) is not
fulfilled, the weak asymptotics of either of the expressions D, D(e) an D(q)

is not known explicitly, unless we are in the Hilbert space setting.

Question 8.2.1. 1.) Can one improve the known bounds in the general
setting or in particular cases?
2.) What are the weak asymptotics in the high resolution coding problem
when (8.2) is not satisfied?

The second main result of this chapter (Theorem 3.2.3) shows that
ε-nets of certain compact sets constitute weakly optimal codebooks under
assumption (8.2).

Question 8.2.2. Is it possible to find appropriate compact subsets Ar,
r ≥ 0, of E such that ε-nets of Ar constitute asymptotically optimal code-
books of rate r?

8.3 Perturbation of the high resolution coding

problem

In Chapter 4 we have treated the effect of perturbations in the rate and dis-
tribution parameter for the coding quantities D, D(e) and D(q). It is found
that the quantities D and D(e) are quite robust against small perturbations.
The perturbation result for the quantization error is weaker than the corre-
sponding results for D and D(e). In fact, it is typically too weak to imply
further results. For instance, it is not possible to conclude that the quantity
δ(q)( · ) is slowly varying which is an essential assumption of Theorem 5.2.1.

Question 8.3.1. Do there exist stronger perturbation results for the high
resolution quantization problem?

The perturbation results for D and D(e) allowed us to relate the coding
problem of diffusion processes with non-constant diffusion coefficient to the
coding complexity of Brownian motion. We saw that “nice” drifts have no
influence on the asymptotic coding problem. For general diffusions with ran-
dom diffusion coefficient, the strong asymptotics in the quantization problem
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are still unknown. The results of Section 6.5 suggest that for this original
there is no equivalence of moments and no equivalence of entropy coding
and quantization in the high resolution coding problem.

Question 8.3.2. What are the asymptotics of the high resolution coding
problem for general diffusion processes?

8.4 Random small ball probabilities

In Theorem 7.2.2, we showed that in the Hilbert space setup there exists a
deterministic continuous function ψ : R+ → R+ such that

− logµ(B(x, ε)) ∼ ψ(ε) (ε ↓ 0)

for µ-a.e. x. In the general setting one still knows that (by Lemma 7.1.3)
for µ-a.e. x

lim inf
ε↓0

− logµ(B(x, ε))
ψ(ε)

= cψ and

lim sup
ε↓0

− logµ(B(x, ε))
ψ(ε)

= Cψ

for any continuous gauge function ψ : R+ → R+ with appropriate constants
cψ, Cψ ∈ [0,∞].

Question 8.4.1. For which Gaussian measures does there exist a gauge
function ψ such that the corresponding constants cψ and Cψ satisfy
cψ = Cψ = 1?

Under the assumption that

ϕ(ε) ≈ ϕ(2ε) (ε ↓ 0)

one knows that

ϕ̃R(ε) = E[− logµ(B(X, ε))], ε > 0,

is an appropriate choice for ψ whenever there exists an appropriate gauge
function (see Remark 7.1.8).

In Theorem 7.5.2 we established an equivalence between the random
small ball function and the coding quantity D(R). An application of this
result to the standard Hilbert space setup showed that for fast polynomially
decaying eigenvalues the ratio between D(R) and D(q) is close to one (see
Lemma 7.5.8).

Question 8.4.2. What are the asymptotics of D(R) for fast decaying eigen-
values? Does one have equivalence of D(R) and D(q) under appropriate
assumptions on the eigenvalues?
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Appendix A

Regular variation

Definition A.1. A function f : R+ → R+ is said to be slowly varying if it
is Borel measurable and satisfies

lim
x→∞

f(λx)
f(x)

= 1

for all λ ∈ R+.

Definition A.2. A function f : R+ → R+ is called regularly varying with
index α ∈ R if

f(x) = xα l(x), x ∈ R+,

for some slowly varying function l. For short we write f ∈ Rα. Analogously,
g : R+ → R+ is said to be regularly varying at 0 with index α ∈ R if

g(x) = xα l̃(1/x), x ∈ R+,

for some slowly varying function l̃. Then we write g ∈ Rα(0).

Regularly varying functions have some nice properties.

Theorem A.3. Let l : R+ → R+ be slowly varying. Then, there exists
l1 ∈ C∞(0,∞) such that l(x) ∼ l1(x) as x→∞ and

lim
x→∞

xl′1(x)
l1(x)

= 0,

where l′1 denotes the derivative of l1.

Proof. The theorem is a direct consequence of a theorem of de Bruijn [10]
(see also Theorem 1.3.3 in [6]). It states that there exists l1 ∈ C∞(0,∞)
satisfying l1(x) ∼ l(x) with

lim
x→∞

d

dx
log(l1(ex)) = 0.
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Evaluating the latter derivative yields

lim
x→∞

l′1(e
x) ex

l1(ex)
= 0

which is equivalent to the statement of the Theorem. �

Theorem A.4. Let f ∈ Rα with α > 0. Then there exists g ∈ R1/α with

f(g(x)) ∼ g(f(x)) ∼ x

as x → ∞. g is called asymptotic inverse of f . It is unique up to asymp-
totic equivalence. Moreover, two asymptotically equivalent regularly varying
function f and f̃ in Rα have the same functions as asymptotic inverse.

The theorem is taken from [6] (Theorem 1.5.12).

Remark A.5. The previous theorem considers inversion of regularly
varying functions with index bigger than zero. Let now −α < 0 and
f(x) = x−αl(x) for some slowly varying function l. Denote

i : R+ → R+, x 7→ 1/x.

For arbitrary β ∈ R, left hand application of i gives a bijection between
Rβ and R−β and right hand application of i an bijection between Rβ and
R−β(0). Moreover both operations maintain asymptotic equivalence. The
previous theorem is applicable to the function

f̃(x) = i ◦ f(x) = 1/f(x) = xα/l(x)

which is in Rα. Hence, there exists a unique (up to asymptotic equivalence)
asymptotic inverse g̃ ∈ R1/α of f̃ . Denote g(x) = g̃ ◦ i(x). Then, g ∈
R−1/α(0) and one has

g ◦ f(x) = g̃ ◦ i ◦ i ◦ f̃(x) ∼ x (A.1)

and

f ◦ g(1/x) = i ◦ f̃ ◦ g̃(x) ∼ 1/x (A.2)

as x → ∞. Consequently, in this case a function f ∈ R−α corresponds to
an asymptotic inverse g ∈ R−1/α(0) and vice versa.

Lemma A.6. Let f ∈ R−α monotonically decreasing for some α > 0. Then

f←(y) = sup{x ∈ R+ : f(x) ≥ y}, y ∈ R+,

is an asymptotic inverse of f , i.e. g = f← satisfies (A.1) and (A.2). Here,
the supremum of the empty set is assumed to be 1 in order to enforce that
f← maps into R+.
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Lemma A.7. Let α, κ > 0 and β ∈ R. Assume that f ∈ R−α(0), α > 0,
satisfies

f(ε) ∼ κε−α
(
log

1
ε

)β
(ε ↓ 0).

Then its asymptotic inverse f← ∈ R−1/α satisfies,

f←(t) ∼
( κ

αβ
(log t)β

t

)1/α
(t→∞).

The previous result follows by basic analysis (see, for instance, Dereich
et al. [19], Lemma 4.2).
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Notation index

N natural numbers without 0

N0 N ∪ {0}

R real numbers

R+ (0,∞)

Real numbers

bxc the largest integer n ≤ x

dxe the smallest integer n ≥ x

x ∧ y the minimum of x and y

x ∨ y the maximum of x and y

x+ the positive part of x, x ∨ 0

x− the negative part of x, (−x) ∨ 0

∼ strong asymptotic equivalence, f(x) ∼ g(x) (x → ∞)
means limx→∞ f(x)/g(x) = 1

. strong asymptotic domination, f(x) . g(x) (x → ∞)
means lim supx→∞ f(x)/g(x) ≤ 1

& f(x) & g(x) (x→∞) means g(x) . f(x) (x→∞)

≈ weak asymptotic equivalence, f(x) ≈ g(x) (x → ∞)
means lim supx→∞[f(x)/g(x) + g(x)/f(x)] <∞
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146 Notation index

Vectors and sequences

|x| Euclidean norm of x

|x|p the lp-norm for vectors,
(
|x1|p + · · ·+ |xd|p

)1/p

‖x‖lp the lp-norm for sequences,
(∑

j∈N |xj |p
)1/p

lp the set of real-valued sequences with finite lp-norm

Sets in Polish spaces (E, d)

Ā closure of A in E

B(x, r), BE(x, r) the closed ball of radius r with center x (in E)

d(x,A) the distance between the point x and the set A,
d(x,A) = infy∈A d(x, y)

Sets

∅ empty set

A+B the Minkowski sum, A+B = {x+ y : x ∈ A, y ∈ B}

x+A {x+ y : y ∈ B}

Ac the complement of A

|A| the cardinality of A

Function spaces

C(E), C(E,F ) the set of continuous functions mapping from E

to R or F

‖f‖I , ‖f‖I,G the supremum of |f | (|f |G) over the index set I

‖f‖Lp(I),
‖f‖Lp(I,G)

the Lp-norm of function |f | (|f |G) w.r.t. Lebesgue mea-
sure,

(∫
I |f |

p dλd
)1/p

Lp(I) the set of functions with finite Lp-norm

Rα, Rα(0+) the set of α-regularly varying functions at ∞ and 0
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Special functions

Φ the distribution function of the standard normal dis-
tribution

Ψ Ψ(t) = 1− Φ(t)

ϕ(ε) the logarithmic small ball function of µ,
− logµ(B(0, ε))

Probability and measures

B(E) the Borel σ-algebra on E

M1(E) the set of probability measures on (E,B(E))

M(E) the set of finite positive measures on (E,B(E))

L(X) the law of X

E[X] the expected value of X

‖X‖Lp(P), ‖X‖Lp(P,E) the p-th moment of X (in E), E[‖X‖p]1/p

Lp(P), Lp(P, E) the set of real-valued (E-valued) random elements
with finite p-th moment

N (x, t) the normal distribution with mean x and variance t

U(A) the uniform distribution on the set A

λd d-dimensional Lebesgue measure

Information theory

H(X) the entropy of X in nats

H(µ‖ν) the relative entropy of µ w.r.t. ν

I(X, X̂) the mutual information between X and X̂



148 Notation index

Coding quantities for measures µ and distortions ρ

D(r|µ, ρ) distortion rate function p. 15

D(e)(r|µ, ρ) entropy coding error p. 13

D(E)(r|µ, ρ) entropy constrained quantization p. 13

D(q)(r|µ, ρ),
δ(q)(N |µ, ρ)

quantization error p. 10

D(r)(r|µ, ρ),
δ(r)(N |µ, ρ)

quantization error with random codebooks p. 65

D(R)(r|µ, ρ) quantization error with random codebooks gener-
ated by µ

p. 27

R(d|µ, ρ) rate distortion function p. 20

Abbreviations

a.s. almost surely

i.e. id est

i.i.d. independent identically distributed

r.e. random element

r.v. random variable

w.r.t. with respect to

AEP asymptotic equipartition property

DRF distortion rate function

SBPs small ball probabilities

SCT source coding theorem
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