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Abstract

The term Quality of Service (QoS) describes how well an application or service performs.
Hence, QoS can describe properties such as response time, availability, the level of encryption,
throughput etc. QoS is important for multi-media (i.e. video and audio applications) as well as
for enterprise applications. The presented work focuses on QoS-aware enterprise applications.
Enterprise applications are concerned with business transactions such as ordering a product or
transferring money between two accounts. QoS properties of enterprise applications determine,
for example, how many transactions the system can handle in a certain time frame, how many
concurrent users it can serve, or how available the system will be.

Middleware tools and libraries shield the developer almost completely from the realization of
distribution. In an ideal world, QoS-enabled middleware could do the same for QoS, i.e. the
developer does not have to care how QoS is realized. However, the design of an application is
highly dependent on its QoS properties. This means that QoS must be tackled at the design
phase and this is not possible with an approach solely based on QoS-enabled middleware. This
thesis shows how a model-driven approach can overcome this limitation. The development starts
with a platform independent model (PIM), which describes the behavior and QoS properties
of an application. This model is automatically transformed by a model transformation into a
platform specific model (PSM). The PSM describes the design for a concrete implementation
on a specific platform, i.e. operating system, programming language, and middleware. Due to
the automatic model transformation, tools can influence the platform-specific design and take
care of the PIM QoS properties.

To realize this scenario, two problems had to be solved: the modeling of QoS properties in the
PIM and the model transformation. Current approaches to model transformation require in
depth knowledge of the modeling language and its internals. To simplify the construction of
transformers, the visual rule-based transformation language Kafka and associated tools based
on graph transformation theory have been developed throughout this thesis. Kafka simplifies
the implementation of transformers because it builds on the notation of the PIM and the
PSM. Hence, it shields the developers of model transformers from the internals of the modeling
languages, i.e. the meta models. To create PIMs of QoS-aware applications, a modeling language
called PIQML has been developed which is based on UML 2.0 components, hierarchical message
sequence charts, and a novel meta model extension for QoS contracts. The thesis shows how
PIQML models can be mapped to several target platforms, i.e. programming languages and
middleware products. Based on PIQML and Kafka, the CASE tool Kase has been developed
which integrates the editing of PIQML models (i.e. PIMs), UML models (i.e. PSMs), and Kafka
transformations. The result is an integrated tool chain for the model-driven development of
QoS-aware distributed applications.





Zusammenfassung

Der Ausdruck Quality of Service (QoS) beschreibt die Güte eines erbrachten Dienstes. QoS be-
schreibt Eigenschaften wie Antwortzeit, Verfügbarkeit, den Grad der Nachrichten-Verschlüsse-
lung oder den Durchsatz. QoS ist sowohl für Multi-Media Anwendungen (Audio- und Video-
Übertragung) als auch für Geschäftsanwendungen wichtig. Die vorgelegte Arbeit konzentriert
sich dabei auf das Feld der Geschäftsanwendungen. Solche Anwendungen arbeiten mit Transak-
tionen wie etwa dem Bestellen eines Produkts oder der Überweisung von Geld zwischen Konten.
QoS Eigenschaften solcher Anwendungen sind beispielsweise die Anzahl an Transaktionen wäh-
rend eines Zeitintervalls, die maximale Anzahl gleichzeitig mit dem System arbeitender Nutzer,
oder die zu erwartende Verfügbarkeit. Durch Middleware kann die Realisierung von Verteilung
vor dem Programmierer verborgen werden. In einer idealen Welt würde Middleware dasselbe für
QoS leisten. Das heißt, der Entwickler spezifiziert nur die gewünschte Dienstgüte und kümmert
sich nicht darum, wie sie realisiert wird. Das ist so aber nicht möglich, denn die zu erbringen-
de Dienstgüte hat massive Auswirkungen auf das Design einer Applikation. Daher muss QoS
schon in der Design-Phase angegangen werden, was mit einer rein Middleware-gestützten Her-
angehensweise nicht möglich ist. Die vorgelegte Arbeit zeigt, wie dieses Problem durch einen
modellgetriebenen Ansatz behoben werden kann. Die Entwicklung beginnt dann mit einem
Plattform-unabhängigen Modell (PIM), welches das Verhalten und die QoS Eigenschaften der
Applikation beschreibt. Dieses Modell wird automatisch durch eine Modell-Transformation in
ein Plattform-spezifisches Modell (PSM) umgewandelt. Das PSM beschreibt das Design einer
Implementierung für eine spezifische Plattform und berücksichtigt dabei die im PIM beschrie-
benen QoS-Eigenschaften.

Um dieses Szenario in der Praxis anwenden zu können, müssen zwei Probleme gelöst werden:
das Modellieren von QoS Eigenschaften und die Modell-Transformation. Gegenwärtig erfordert
das Erstellen einer Modell-Transformation detailliertes Wissen über die Modellierungssprache
und ihre Interna. Um das zu vereinfachen, wurde im Rahmen dieser Arbeit die visuelle Regel-
basierte Transformationssprache Kafka entwickelt. Kafka und die zugehörigen Werkzeuge bauen
auf Graphtransformations-Theorie auf. Kafka vereinfacht das Erstellen von Transformationen
weil es auf der Notation des PIM und PSM aufbaut. Daher muss der Entwickler nichts von
den Interna (etwa dem Meta-Modell) verstehen. Um PIMs von QoS-fähigen Applikationen zu
erstellen, wurde die Modellierungssprache PIQML entwickelt, welche auf UML 2.0 Komponen-
ten, Hierarchischen Nachrichten Sequenz Diagrammen (HMSCs) und einer neuen Meta-Modell
Erweiterung für QoS Verträge basiert. Die vorgelegte Arbeit zeigt, wie PIQML Modelle auf ver-
schiedene Zielplattformen (Programmiersprachen und Middleware Produkte) abgebildet wer-
den können. Basierend auf PIQML und Kafka wurde das Werkzeug Kase entwickelt, welches
das Editieren von PIQML Modellen (PIMs), UML Modellen (PSMs) und Kafka Transforma-
tionen integriert. Das Ergebnis ist eine integrierte Werkzeug-Kette für das modellgetriebene
Entwickeln QoS-fähiger verteilter Applikationen.
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Chapter 1

Motivation

Modern software technology faces a couple of major challenges, most notably reuse of existing
solutions, complexity of software systems, and distribution. The problem of sending data via
a network from one machine to another has already been addressed by middleware products.
However, that alone is not enough. Sophisticated distributed applications need to know how
well the communication works. For example, availability, security, delay, and throughput of
a communication link are very important. These properties of a service are subsumed under
the term Quality of Service (QoS). QoS determines how well a service performs. In contrast,
functionality determines what a service does. QoS and functionality are orthogonal to each
other. Protocols and algorithms for the realization of QoS properties have been investigated by
research groups. However, many applications fail to support QoS. Neither do they gracefully
handle the failure of a remote service nor do they adapt if bandwidth changes. Handling QoS is
– in theory – a well-studied problem. The lack of QoS support in practice originates either from
the high complexity and associated costs of building QoS-aware applications or from companies
not being interested in QoS.

This leads to another challenge, the complexity of modern software systems. According to
[Whe01, Sch00b] the Windows operating system, for example, is built from 40 million lines
of code (LOC). Red Hat Linux 7.1 sums up to 30 million LOC. The NASA Space Shuttle
flight control is estimated with 2 million LOC. Even the tools developed throughout this thesis
sum up to 150.000 LOC. This complexity must be managed. Usually, a single developer has
no overview of the complete code base. This gave raise to software modeling. Models make
information about a software system explicit that is only implicitly given by the source code,
for example, the structure of a software system. However, models can be more than pure
documentation. Modern modeling tools generate an entire executable application from an
executable model [Ken03].

The next challenge is that of software reuse. Building software is a very expensive and time
consuming process. Therefore, existing solutions should be reused to save time and money and
to avoid the repetition of previous mistakes.

QoS-aware software development faces all three challenges:

• QoS originates in the domain of distributed systems and networks.

• The development of QoS-aware applications can be quite complex and requires expert
knowledge.

• Existing solutions for certain QoS properties should be reusable.
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To cope with these challenges, this thesis focuses on the model-driven development of QoS-aware
distributed applications. A model is an abstraction of a complex system. Hence, modeling can
be used to handle complexity. It does so by suppressing details that are not relevant and by
making information explicit that is otherwise only implicitly given. The concept of modeling
has a long-lasting tradition in natural sciences and gains importance in the field of computer
science. Models have been used to describe the constitution of atoms and molecules [Boh13]
and the scattering of particles by matter [Rut11].

In computer science, models are used to gain a better understanding of applications and their
implementation and to foster the creative process of constructing software. It is important to
differentiate between a model of an application and a model of its implementation. The model
of an application is expressed in terms of its application domain. For enterprise applications
this includes terms such as client, product, offer, price, transactions, and QoS. A model of the
implementation is expressed in terms of the platform used for implementation, i.e. programming
language, middleware, operating system, and GUI framework. This is the implementation
domain. Ideally, a developer describes the application in the application domain and tools
automatically generate an implementation.

This thesis shows how an automatic mapping between both domains can be achieved via
model transformation. This means, the application model is automatically transformed into an
implementation model. Especially QoS-enabled applications can benefit from this approach.
Specifying QoS properties is much easier than implementing them. Therefore, the knowledge
about how to realize a certain QoS property is moved into the model transformer. The use
of such a QoS-aware model transformation can significantly facilitate the development of QoS-
enabled applications.

The following two sections further motivate the model-centric approach taken by this thesis.
The first section describes the limitations of a solely middleware-based approach. The second
section shows how these limitations can be overcome on the modeling level.

1.1 Limitations of QoS-enabled Middleware

Middleware platforms such as CORBA [OMG02a], .NET Remoting [ECM01b, Ram02], or
RMI [Gro01] are industrial strength technologies to cope with distribution. These middle-
ware products do not treat QoS as a first class entity. Therefore, it is inevitable to extend
the middleware with QoS specification and QoS provisioning. QoS specification is usually im-
plemented via a QoS specification language – such as QML [FK98a] – or an extension of an
interface definition language, for example QIDL [BG98]. QoS provisioning requires runtime
support via QoS mechanisms, i.e. resources allocation, message compression, monitoring, etc.
However, middleware hides almost all aspects of distribution such as the marshaling of data,
queuing of requests, and network protocols. The middleware must be extended to perform
bandwidth reservation, encrypted communication, or authentication. Some QoS-aware mid-
dleware products feature built-in support for special QoS properties, for example, availability
or real time. Others extended their platform with interceptors [Sch00a], pluggable protocols
[OMG02a], or customizable proxies [Ram02] to allow arbitrary QoS mechanisms to be hooked
into the middleware.
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Work on QoS-enabled middleware platforms has shown that QoS is inherently cross cutting
[BG98, HBG+01, HBG+99, PLS+00a] in the sense of aspect-oriented programming (AOP)
[KLM+97]. This means the QoS-related code cannot be encapsulated in object-oriented sys-
tems. QoS can affect the entire message path ranging from the physical layer up to the appli-
cation layer. Therefore, the use of AOP to encapsulate QoS-related code has been applied to
multiple CORBA-based middleware platforms [Bec01, HBG+01, ZBS97a]. Such middleware
platforms succeeded in separating QoS-related aspects for all layers except for the application
layer.

The design of an application is highly dependent on the QoS mechanisms used. For example, the
design of a component that is subject to replication differs from one that cannot be replicated.
Either the component is stateless, or it stores its state in a central database, or it uses some
protocol to synchronize the replicas. From the design perspective, this is a major difference.
Furthermore, QoS mechanisms may need information about the way a component is used,
hence, information about the business logic. Typically, only the interfaces of a component are
available to the middleware and its tools. In this case the QoS mechanisms cannot know in
which sequence the methods of the interface will be invoked. They cannot know how many
method calls a client will make to accomplish a certain task. This complicates the planning
and resource allocation. Especially the billing of services is problematic. The customer is not
interested in purchasing access to some interfaces. He wants to perform certain tasks such as
searching an article in an online library or transferring money from his bank account. Handling
the billing of such products requires knowledge of the business logic. However, middleware
platforms are only concerned about interfaces and not about the way the interface is used to
accomplish a task.

Setting up a QoS-aware application requires special considerations during the deployment. The
best load balancing does not help if the network is too slow or if the machines are too weak.
Fault tolerant software systems require fault tolerant hardware to reach a very high level of
availability. Middleware platforms cannot influence the deployment. Middleware-related tools
generate source code – long before deployment is done – and they support the application at
runtime when the deployment is already finished.

Designing and planning a QoS-aware application cannot be reduced to the independent design
of single components. However, that is what middleware platforms suggest developers to do.
Developers start by defining interfaces via some interface definition language (IDL). This IDL
may be enriched with QoS-related specifications. Then, they generate skeletons and stubs and
add the business logic manually in the source code editor. This approach does not yield a
design document that specifies which component will interact with which other components,
yet such a design document is very important. It shows the coherences in the system and it
shows how the QoS of one component may affect the QoS delivered by other components and
the application in general. This discussion yields four shortcomings of middleware-centric QoS
management:

• limited influence on design,

• the business logic is not available to the middleware,

• deployment is not considered,

• coherence of the application’s components is not visible.
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This thesis shows how the aforementioned problems can be solved using a model-driven ap-
proach.

1.2 Advantages of Modeling

The first mentioned shortcoming of QoS-enabled middleware can immediately be solved at
the modeling level. Models capture the design of an application, respectively a design of its
implementation. Tools that work with models can inspect and alter the design. In contrast,
the code generators (IDL compilers) of middleware platforms can only create skeletons that
have to be filled out by the application developer.

A model can be much more than a definition of application structure in terms of classes,
associations, and interfaces. For example, the Unified Modeling Language (UML) [OMG03i] or
formal models such as Petri Nets [Pet81] can make the behavior of a software system explicit.
The UML provides a rich set of diagram types for this purpose: sequence diagrams, state
charts, activity diagrams, and collaboration diagrams. These diagram types can be used to
model the business logic. If QoS is tackled already in the design phase, model-based tools can
inspect these diagrams to get information about the business logic. Thus, modeling can tackle
the second shortcoming of a solely middleware-based approach.

The UML features a special diagram type for the deployment of a system. Tools can inspect
the deployment of components and their QoS properties. If the developers did, for example,
not deploy enough replicas or if the network connection of the load balancer is too weak, a tool
can detect this and raise an error [WBGP01]. Hence, the third mentioned shortcoming can be
eliminated at the modeling level.

Finally, models are well suited to model the coherence of components. For example, UML or
EDOC [OMG02f] provide a diagram type dedicated to components and their interaction. Such
component diagrams show how components are interconnected and which interfaces they use
for their communication. This information is not available to IDL compilers as in CORBA or
reflective middleware platforms such as .NET Remoting.

Thus, the shortcomings of middleware platforms can be conceptually solved at the modeling
level. To turn this conceptual advantage into practical improvements, developers need special
tools that work with models. Therefore, a complete tool chain for model-driven development
has been created during the work on this thesis.
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Focus and Contribution

This thesis discusses model-driven development of QoS-enabled distributed applications. De-
velopment of large-scale software systems is, ideally, guided by a methodology. A methodology
“consists [...] of both a modeling language and a process” [Fow97]. “The modeling language
is the (mainly graphical) notation” [Fow97] used to express design. The “process defines who
is doing what when and how to reach a certain goal” [JBR99]. Several object-oriented and
component-oriented methodologies have been developed over the years, among them Catalysis
[DW98] and the Rational Unified Process (RUP) [JBR99]. For most of them the UML is the
modeling language of choice. However, none of them has addressed the special problems of
QoS-enabled distributed systems.

According to [JBR99] a process has to take technologies, tools, people, and organizational pat-
terns into account. It is not the intention of this thesis to create a new process completely from
scratch. Instead, the thesis shows how techniques such as modeling, model transformations,
middleware, and a specialized tool chain can be used in an ”iterative and incremental pro-
cess” [JBR99]. Hence, process issues such as organizational patterns, formal reviews, building
of teams, etc. are not touched by the presented work.

The contribution of this thesis can be divided into (1) the extension of a modeling language and
(2) the integration of model transformation and supporting tools in an iterative and incremental
process. These two aspects are briefly introduced in the following two sections.

2.1 Modeling Language

Current modeling languages for distributed applications do not feature concepts for QoS. There-
fore, this thesis presents a platform independent modeling language (PIQML) for modeling
QoS-enabled applications. PIQML builds on UML 1.4 and a subset of UML 2.0. PIQML is
component-based, i.e. the application is decomposed into components which are connected via
ports.

PIQML adds QoS support via QoS contracts. A QoS contract describes a measurable quality
level or expresses a constraint on the desired quality level. These contracts can be attached
to component ports. Hence, PIQML can express the quality level that a component offers
and the quality level that it expects from its environment. In contrast to specialized UML
real-time extensions [OMG03g, Dou99], PIQML features concepts for the modeling of different
QoS categories such as performance, security, availability, throughput etc.
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PIQML introduces the task concept. Designers can model a task that consists of a series of
method invocations between components. A task can be enriched with QoS contracts. The
advantage of this approach is that PIQML can, for example, express the worst case execution
time of an entire task. In contrast, other QoS specification languages [BG99, FK98a, Aag01,
RZ03, OMG03g] can only express the worst case execution time of single method invocations.
Hence, PIQML is well suited for the modeling of distributed enterprise applications. In such
enterprise applications single method calls are not as important as in real-time scenarios. In-
stead, designers are interested in the number of transactions a system can process in a given
time interval. Tasks can be used to model the activities of such a transaction and to specify
the associated quality level.

2.2 Process

Modern processes such as [JBR99] and [DW98] usually build on a common workflow: re-
quirements, analysis, design, implementation, deployment, and testing. This thesis focuses
on design, implementation, and deployment. Requirements can be handled via use cases
[OMG03i, JBR99]. Integrating testing in model-driven development has become subject to
scientific work lately.

Figure 2.1 shows the development process for the three phases design, implementation and
deployment as proposed by this thesis. The boxes denote models or source code, hence, physical
artifacts. The arrows indicate transitions from one artifact to another. Such transitions are
either automated or require manual work. Code generation is not discussed in depth by this
thesis since this feature has already found its way into commercially available software. The
transition between models is the major challenge since model transformation is still a subject
of intensive research (see chapter 4).

The development starts with a very high-level model. It decomposes the application into
components. Each component describes how it is to be used and how it behaves. This includes
its interfaces, its invocation protocols, and its QoS properties. Hence, the model describes the
business logic from a very high-level point of view. Finally, the components are connected to
form the system.

The following steps are the most complicated ones. First, the model is automatically trans-
formed into a more low-level one. The low-level model is considerably closer to the source code.
It can be treated as a model of the implementation. However, the generated model is – so far
– QoS-agnostic. This means that the QoS properties, which are part of the high-level model,
have been ignored.

The second transformation step searches for QoS properties in the high-level model and selects
a set of QoS aspects. The term aspect is borrowed from AOP. An aspect groups cross-cutting
information, i.e. this information cannot be encapsulated by means of object-oriented con-
structs such as classes or interfaces. A QoS aspect specifies how a QoS-agnostic low-level model
has to be modified and extended to realize QoS. QoS aspects are reusable. They depend only
on the modeling language used for the high-level model and the target platform of the low-level
model. They do not depend on a concrete high-level model.
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High-level Design
• Components
• QoS
• Business Logic

Low-level Design

Model Transformation

Figure 2.2: Methodology from the viewpoint of a level-one developer

The third step weaves [KLM+97] the QoS aspects with the low-level model. The result is a
low-level model of the system that takes QoS into account. Part II of this thesis shows that the
three mentioned steps – generation, aspect selection, weaving – can be reduced to the concept
of model transformation.

The following steps are the same as for standard UML tools. The developer has to put further
work in the low-level model since the high-level model is not detailed enough to generate a
complete low-level model. Then, the UML tool generates source code and makefiles. Again,
the developers can add new source code. Finally, the software system can be built, tested, and
deployed. The deployment itself is modeled in the low-level design, too. Thus, the UML tool
can be utilized to deploy the software on a set of machines.

Usually, a development process assigns duties to team members, i.e. a process defines who does
what. The approach presented in this thesis assumes that the developers can be split at least into
three categories. The first category has the lowest level of QoS proficiency. They can identify
the QoS categories that are applicable to their system, but they do not know how to implement
these QoS categories. For them the QoS-agnostic model and the QoS aspects in Figure 2.1 are
not directly visible. Their view on the development process is depicted in Figure 2.2. They just
start their model transformation tool. It translates the high-level design into a low-level design.
The internals of this model transformation are not visible to them. A second-level-of-proficiency
developer knows about the shaded QoS aspect box. This box contains all information required
to weave QoS support into the implementation of a component. Hence, these developers are
QoS experts and they know how to express the QoS-related implementation pieces as a reusable
aspect. Third-level developers are able to dig into the transformation process that generates
the low-level design from the high-level one. The sole purpose of these proficiency levels is
to enable developers who are not very experienced in QoS to develop QoS-aware applications.
Only second-level developers need to understand the details of QoS realization.

2.2.1 Model Driven Architecture

The proposed process fits with the Model Driven Architecture (MDA) [OMG03a] initiative of
the OMG [OMG03b]. The MDA is an approach to separate business or application logic from
underlying platform technology. Therefore, the MDA proposes two models:

• a platform independent model (PIM), and
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• a platform specific model (PSM).

The PIM makes no assumptions about platform aspects such as middleware, GUI framework,
operating system, programming language etc. Instead, the PIM models the application in
terms of the application domain. A model transformer maps the PIM to a PSM, which is a
model of the implementation. This means, the PSM depends on the selection of programming
language, middleware, etc. Hence, the high-level model shown in Figure 2.1 can be treated as
a PIM and the low-level model can be treated as a PSM.

However, the reasons for proposing these two kinds of models are different. The original goal
of the MDA is to prevent intellectual property from being tied with a specific platform. Via
the model transformation it is (in theory) possible to map an existing application (i.e. its
PIM) with little effort on a new target platform. In contrast, the goal of this thesis is to
tackle the complexity of QoS realization via the model transformation step. The PIM specifies
which QoS properties apply to which component. The PSM shows how these QoS properties
are realized on a specific target platform. Therefore, it is the task of the model transformer
to map the QoS specification in the PIM to the corresponding QoS realization in the PSM.
Of course it is very advantageous that one modeling language can be used to create PIMs of
applications independent of the selected QoS-aware middleware platforms. However, the MDA
goal of migrating existing applications easily from one platform to another is not envisaged by
this thesis.

2.3 Structure of the Thesis

This thesis consists of four parts. The first part has covered the introduction (see chapter 1).
It elaborates on the motivation for the research and provides a brief overview of focus and
contribution (see chapter 2).

Part II discusses model transformation in detail. A general introduction to model transfor-
mation is given (see chapter 3), followed by foundations and related work (see chapter 4).
Chapter 5 discusses the application of graph transformation to the MDA. Chapter 6 shows
how round-trip engineering can be achieved in model-driven development with model transfor-
mation based on graph transformation theory. Finally, chapter 7 presents a visual rule-based
transformation language, that is built on the theory developed in the previous two chapters,
and chapter 8 elaborates on the tool chain developed throughout this thesis with a special focus
on model transformation. In summary, part two presents the technology und tools on which
the development process is built.

Part III presents a modeling language for the platform independent modeling of QoS-enabled
distributed applications and discusses how the modeling language is to be used. The first
chapter of part III provides an introduction to QoS and modeling of QoS-enabled applications
(see chapter 9), followed by a chapter on related work and foundations (see chapter 10). Chapter
11 presents PIQML, a modeling language for QoS-enabled distributed applications. Chapter
12 shows how to build UML-based PSMs for different target platforms. Finally, chapter 13
shows how the transformation techniques developed in part II are to be used to transform QoS
contracts from their PIM specification to their PSM realization.
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Part IV of this thesis is dedicated to outlook and conclusions. Chapter 14 summarizes the
findings presented in this thesis. Finally, chapter 15 discusses potential future work.



Part II

Model Transformation





Chapter 3

Introduction

In model-driven development models are the main assets of software development. Therefore,
development tools have to act on models instead of source code. These tools can be divided in
model editing tools and model transformation tools. Model transformers are the replacement
for source-code-centric compilers and refactoring tools. Transformers read a model that adheres
to some modeling language and write a model that may adhere to another modeling language.
In special cases the modeling language of the input and the modeling language of the output
are equal. This is, for example, the case for model refactoring tools [FBB+99, SPTJ01]. In the
context of the MDA the input language is different from the output language. Furthermore,
the input language resides on a higher level of abstraction than the output language. MDA
model transformers can be compared with compilers, which transform a high level programming
language into a machine executable language. While MDA model transformers work on models,
compilers act on source code and binary code.

The following chapters discuss the techniques required for the implementation of model trans-
formers. The presented concepts apply to MDA-style transformers, i.e. input and output
languages differ. However, with little modifications the results can be applied to model refac-
toring, too. A short discussion of this idea can be found in chapter 15.

The purpose of the model transformation in the context of this thesis is twofold. First of all,
the high-level design (PIM) has to be transformed into a low-level design (PSM). This fact
is common to all MDA-based development processes. Second, within this thesis the transfor-
mation step is used to incorporate QoS-specific design pieces and source code fragments (QoS
aspects) in the PSM.

Figure 3.1 illustrates a development cycle. The development starts with a PIM. Then it is
transformed in three steps into a PSM. It is a definitive goal of this thesis to divide the trans-
formation in these three steps since that isolates QoS-related artifacts. The first step, which
creates a QoS-agnostic PSM, is aware of the fact that QoS exists. However, this transformation
does not understand the semantics of the single QoS categories. Its task is to map the PIM
components, their ports, interfaces, protocols, and connections to PSM concepts. The next
two transformation steps are QoS-related. They are aware of the different QoS categories and
their semantics. Step number two selects the QoS aspects that are to be used. Step number
three weaves the output of step one with that of step two yielding the PSM.

Transforming models is a complex programming task. If a new or modified transformation is
only needed when a new target platform is introduced then the complexity of this task is less
crucial. However, in reality the transformation will be subject to more frequent changes and
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Figure 3.1: Model transformation overview

additions. For example, every development team has its own subset of design principles and
patterns. The model transformation should take these into account when generating the PSM,
hence, the platform specific design of the application.

3.1 Overview

Part II of this thesis is organized as follows. Chapter 3 provided an introduction and contin-
ues with requirement analysis. The following chapter explains foundations and related work.
The chapter starts with a close look at the terms model and modeling language followed by a
brief presentation of the de facto standard modeling language UML. Furthermore, important
standards such as the Meta Object Facility (MOF) [OMG02d] and techniques for model in-
terchange are presented. The next section discusses the theory of graph transformation since
some transformation techniques depend on this theory. Then, existing approaches to model
transformation are presented.

Chapter 5 shows how graph transformation can be used for MDA-style model transformers.
The first section formalizes the UML. The following sections show the shortcomings of standard
graph transformation theory when applied to the MDA and how it can be adapted to the
MDA.

Chapter 6 explains how round-trip engineering in the context of the MDA can be performed
if the model transformation is based on graph transformations. The chapter starts with a
comparison of the terms round-trip engineering and reverse engineering. Then the concept of
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forward-merging is presented which supports round-trip engineering without reverse engineer-
ing. Finally, the role of diagrams in round-trip engineering is discussed.

Chapter 7 presents the visual rule-based model transformation language Kafka that has been
developed throughout the work on this thesis. The first two sections describe the notation
of the Kafka transformation language. The next section shows how Kafka is related with the
graph transformation theory as developed in chapter 5 and that transformations developed
with Kafka automatically support round-trip engineering. The following section explains how
Python expressions can be embedded in Kafka transformations. Kafka is a rule-based language.
Hence, the next section describes how these rules are orchestrated to form a complete model
transformer. The chapter closes with an analysis of the algorithm that is used to execute a
Kafka transformation.

3.2 Requirements

Every new QoS category requires changes to the model transformation. For example, a repli-
cated service has a design different from that of a service with special security constraints.
Furthermore, each QoS category can be tackled with different designs. For example, a service
with high availability can either use replication with hot-standby or cold-standby. The chosen
solution will for sure affect the design of the realization of a service as well as the choice of
QoS mechanisms. Hence, it is quite likely that the model transformation is subject to frequent
customizations. This yields the first requirement.

Requirement 3.1. Model transformations must be easily customizable.

Modeling languages such as the UML are built on a non-trivial meta model and a large set of
well-formedness rules. The UML 1.4 meta model consist of over 110 meta classes and every
meta class has a set of well-formedness rules. The next major version of UML [OMG03e,
OMG03f] further increases the complexity of the meta model. In order to implement model
transformations detailed knowledge of these meta model and well-formedness rules are required.
However, most users of the UML are familiar with the graphical notation only. When using
standard UML modeling tools, developers do not get in touch with the meta model and the
well-formedness rules are automatically checked by the tool, too. Hence, a large gap separates
an experienced UML user from a person capable of understanding the respective meta model.
Ideally, the meta model could be shielded from the developers. In this case the transformer is
constructed visually and stays within the notation of the modeling language.

Requirement 3.2. Model transformations must feature a notation that builds on the notation
of the PIM modeling language and the PSM modeling language.
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Transformations of QoS-aware application models can be decomposed in two parts. One part
handles the mapping of PIM components, interfaces, connections, etc. to the respective PSM
concept. The second part is QoS-aware. It transforms the QoS specification into code and
design that deals with the realization of the QoS. Modularization in complex software projects
is in general a good idea. If the implementation of both parts is mixed, the typical problems
would arise:

• the responsibilities among developers are not clear,
• changes applied to satisfy one QoS category can harm the transformation of others,
• it is difficult to judge for which QoS category a certain transformation rule has been

introduced,
• the more developers work on the transformer the more increases the probability of conflicts

and the administrative overhead.

Requirement 3.3. The implementation of a transformer must be modularized. Modules
should either be QoS-agnostic or handle a special QoS category.

Modern development processes are usually iterative. That means they pass the sequence of
requirement analysis over design to implementation several times. With each iteration the
product is enhanced with new features or restructured. Agile processes [Agi02] and especially
Extreme Programming (XP) [Bec99, Fow01] feature very short iteration cycles. The MDA im-
poses a constraint on the development process: The sequence of PIM modeling, transformation,
PSM modeling, and implementation has to be part of the overall process.

This imposes a problem on the transformation. The PIMs are usually not powerful enough to
describe every detail of the application. Hence, the PSM is rather a design skeleton enriched
with fragments of source code. The developers have to complete the design and source code
where it could not be generated from the PIM. This results in a modification of the generated
PSM. During the next iteration, developers may change the PIM and trigger the transformation
again. This transformation would overwrite the PSM and all changes applied to it before would
be lost. This is not acceptable.

Requirement 3.4. The transformation must support an iterative development process. Ad-
ditions and changes applied to the PSM during an iteration should be reintegrated after a
subsequent transformation.
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Foundations and Related Work

This chapter presents the theoretical foundations and industry standards on which the new
model transformation technique depends. Furthermore, other approaches to model transfor-
mation and their pros and cons are discussed. The chapter starts with an explanation of
the terms model, modeling language, and associated industry standards. The following sec-
tion elaborates on the mathematical background for graph transformation, since the presented
transformation technique depends on it. The chapter closes with an overview of related work.

4.1 Models

The term model stems from natural sciences, especially theoretical physics. The goal of a model
is to provide a mathematical, hence precise, description of a rather complex system. The model
does not necessarily capture the entire behavior of this system. However, it should at least
allow the prediction of some behavioral or structural aspects. For example, the atom model of
Niels Bohr [Boh13] is a model of an atom. The model covers structural and behavioral aspects
of an atom. The model says that an atom consists of a core and a set of electrons and the
distance between the electrons and the core is fixed. This is a structural description. The
behavioral description says that the electrons circle around the core. The structural aspect
of the model is well suited to explain the different energy levels of the electrons that can be
observed in experiments. At the same time the model is wrong, since electrons do not circle
around the core in orbits as proposed by the model [Tip02]. Hence, the model allows predicting
certain aspects of nuclear physics but certainly not all.

A model is complete, if every experiment in the modeled system can be precisely predicted via
a computation based on the model. In computer science, a complete model is called executable.
This means, the model contains enough information to execute it on a virtual or physical
machine. However, executable models are still subject to intensive research and it has yet to
be proven that executable models will be significantly easier to handle than source code.

In physics, the modeled system is obviously nature, i.e. atoms, electrons, quarks, etc. In
computer science there are at least two different systems a model can describe. First, a model
can model the implementation. If the target language is object-oriented, such a model describes
objects and their interaction. Second, a model can describe the application in terms of its
application domain. In this case the model describes, for example, customers, bank accounts,
products, orders, documents, and business rules. Ideally, one model covers both worlds. Object-
oriented systems seemed to fulfill this promise. Bank accounts and customers can be modeled
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as objects. Business rules can be represented as constraints. These concepts are then mapped
one-to-one onto an object-oriented programming language. In this case a model can at the
same time model the application in its application domain and the implementation.

This idea worked out well for some application domains, for example graphical user interfaces.
Windows, buttons, and text editors can be easily treated as objects. Hence, a one-to-one map-
ping between application domain and implementation language exists. In other cases the idea
is doomed to fail. Especially the realization of QoS properties causes problems. For example,
introducing replication into an object-oriented implementation will add artifacts (i.e. classes
and methods) for synchronization between the replicas. These artifacts have no correspondence
in the application domain. Hence, a model of this implementation is not at the same time a
model in terms of the application domain.

A consequence is that two different models exist: one in the application domain and one in the
realization domain. Software engineers tried to create and investigate methods and techniques
for bridging the gap between the different models. In the seamless approach developers must
bridge the gap with a sequence of model refinements. Developers start with an application
domain model. This model is modified step-by-step until it is an implementation model. The
problem of this approach is that the semantics of such intermediate models are not always easy
to understand because the intermediate models are built on concepts of both modeling lan-
guages. If the two domains (application and realization) are substantially different, a stepwise
transition from one model to the other is impossible.

Therefore, the Model Driven Architecture (MDA) of the OMG proposes a different solution.
In contrast to the seamless approach, the MDA proposes to gap the bridge between both
modeling domains in one big step. Furthermore, this step - a model transformation - should be
automated. In summary, the MDA proposes to transform a model of the application domain
into a model of the realization domain.

4.1.1 Modeling Languages

Each model must adhere to a modeling language. Otherwise it would only be a meaningless
drawing. A modeling language consists of:

• abstract syntax,
• well-formedness rules,
• notation, and
• semantics.

The abstract syntax is the model-equivalent to the structure of a syntax tree as yielded by
parsers of programming languages [ASU86]. The abstract syntax defines a data structure
that is able to hold every model adhering to this language. The well-formedness rules further
constraint this data structure. For example, a rule may enforce that objects must not use
private methods of other objects. Such rules exist for syntax trees of programming languages,
too. The notation has no equivalent in traditional programming languages. Models can even
have multiple notations, graphical ones and textual ones. A notation provides a view on the
model. In contrast, traditional programming languages have no explicit notation. Their syntax
implies their notation. This is the reason why the syntax of a model is called abstract syntax.
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The abstract syntax does not imply a notation. The semantics of a modeling language link the
concepts of the modeling language to a domain (application or realization domain). Usually,
the semantics are provided in an informal way. The drawback is that this leaves room for
interpretation and variations. Another option of expressing semantics is to reduce the concepts
of the modeling language to a well understood and defined mathematical model. For example,
many research groups [RKR+00] devised techniques for mapping UML state machines on Petri
Nets to specify precise semantics for state machine models.

4.1.2 The Unified Modeling Language

The Unified Modeling Language (UML) is currently the most popular object-oriented modeling
language. The UML is an OMG [OMG03b] standard. At the writing of this thesis the most
recent UML standard was UML 1.5 [OMG03i]. All UML 1.x versions are defined via one
large meta model (see section 4.2), a set of well-formedness rules, and a textual description of
semantics and notation. UML 1.x provides concepts for the modeling of structure (i.e. classes,
components, packages, etc.) and behavior (i.e. state machines, interaction diagrams, sequence
charts, etc.). A more detailed description of UML can be found in [Fow97].

Missing formal semantics are one of the major UML shortcomings. If the semantic of a model
are not exactly defined, code generators and model transformers have to interpret the model in
one way or the other. This can lead to unexpected results. In contrast, programming languages
and their semantics are usually better defined or backed up by a reference implementation.
Hence, switching from one compiler to another will usually not change the behavior of the
generated machine code. Generating source code from one model using different UML tools
will lead to quite different results. The next version of UML does not seem to fix this problem.
Therefore, some researchers are working on a precise UML [The03]. Once, the UML has precise
semantics, it might be possible to specify executable models in UML, i.e. machine code can be
automatically generated by a tool chain from a UML model. Such models are called executable
models.

Another interesting aspect of UML is its extension mechanism. The UML is extensible via
stereotypes. A stereotype can be attached to every model element. It adds a special meaning
to this model element. For example, an � EJB � stereotype can be attached to a UML
component indicating that it is an EJB component. A set of stereotypes is grouped to a
so-called profile. UML profiles are widely used to adapt the UML to various programming
languages or frameworks. However, this extension mechanism is often abused. Some profiles
try to redefine the meaning of UML model elements, but by definition profiles can only refine
them. This observation led to the idea of splitting the UML meta model into an infra-structure
and a super-structure. New modeling languages can be based on a UML infra-structure. This
avoids a redefinition of existing UML elements as done by some UML profiles. At the same
time, basic concepts of UML can be reused and do not have to be reinvented.

The new UML 2.0 standard will be split into an infra-structure [OMG03e] and a super-structure
[OMG03f]. At the writing of this thesis, the final version of UML 2.0 has not been adopted
as an official standard by the OMG. However, only minor changes are expected for the final
version. Time will tell whether the idea of a family of modeling languages based on the UML
infrastructure will become reality.
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4.2 Meta Object Facility

All languages must somehow specify what a text or model has to fulfill to comply with the
language. For textual languages a grammar defines a language. This grammar is in turn
specified using another textual language, for example EBNF. The same concept applies to
modeling languages.

A model can be represented as the instance of a meta model. The meta model is the model-
counterpart to the grammar of textual languages. It defines the modeling language. The meta
model is in turn a model, hence, it can be treated as the instance of a meta-meta model. This
could be repeated until infinity. However, the concepts of some metan model will be the same
as the concepts of the metan−1 model because the minimal set of concepts has been reached.
Even more likely, some metam model with m < n will have only such generic concepts that this
metam model does not provide any benefit. Hence, an infinite sequence of meta, meta-meta,
and meta-meta-meta models wont make much sense.

The Meta Object Facility [OMG02d] of the OMG defines four models. The first one (M0)
is the running system. It is an instance of the M1 model, which describes the design of the
system. The M2 model is in fact a meta model. It describes the modeling language. The M3
model is a meta-meta model. It is a language for meta models just like the EBNF is for textual
languages.

The following example illustrates the idea of one model being an instance of another model.
The simple class diagram depicted in figure Figure 4.1 can be viewed as an instance of the UML
meta model. This is shown in figure Figure 4.2. Each box is an instance of a class of the meta
model, i.e. the instance of a meta class. Both figures represent the same thing using different
notations. The first figure is much easier to understand, hence, it is targeted at the human
reader. The second figure shows the data structure that represents the model as instance of its
meta-model.

Kapitel 2 - Die Unified Modeling Language
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hingewiesen werden, daß die zusätzliche Einbindung des Pakets Behavioral Elements
und seiner Unterpakete durch die Art, wie die UML bei CoMo implementiert wurde, auf
sehr einfache Weise und ohne Probleme möglich ist und zu einem späteren Zeitpunkt
noch erfolgen kann.

2.5.3 Die abstrakte Syntax der UML
Wie bereits erwähnt spielt die abstrakte Syntax der UML bei der Implementierung der

UML eine besondere Rolle. Auch erwähnt wurde bereits, daß die abstrakte Syntax im
wesentlichen durch eine Reihe von Klassendiagrammen beschrieben wird. Und wie
ebenfalls schon gesagt werden durch die in diesen Klassendiagrammen gezeigten
Klassen die verschiedenen Konstrukte der UML definiert. Was das konkret bedeutet,
soll an einem einfachen Beispiel klar gemacht werden. Dazu werden die
Klassendiagramme, mit Hilfe derer die abstrakte Syntax der UML spezifiziert wird,
benötigt. Diese befinden sich im Anhang A. Dieser Anhang enthält alle zu den Paketen
Foundation und Model Management gehörenden Klassendiagramme. Das
Verständnis dieser Klassendiagramme sollte mit Hil fe der in Abschnitt 2.3.1 gegebenen
Erklärungen ohne weiteres möglich sein.

Betrachtet werden soll als einfaches Beispiel folgendes kleine Modell :

CompanyPerson
*1..*

+employee +employer

employment

Employment Model

Abbildung 18: Das Employment Model

In Abbildung 18 wird das Modell Employment Model gezeigt. Es handelt sich hier
um ein einfaches Klassendiagramm, bei dem das Modell, das die Klassen enthält, mit
dargestellt wurde. Das Modell selbst wird durch das Ordnersymbol in der Abbildung
explizit dargestellt, um zu verdeutlichen, daß die übrigen gezeigten Elemente
Bestandteile des Modells und in ihm enthalten sind. (Ansonsten ist es eher üblich, das
Ordnersymbol für das Modell nicht extra zu zeigen. Meistens wird es einfach
weggelassen.) Das Modell Employment Model enthält die zwei Klassen Person und
Company. Für beide Klassen sind weder Attribute noch Operationen angegeben.
Außerdem ist zu sehen, daß es eine Assoziation zwischen den beiden Klassen gibt. Sie
trägt den Namen employment. Die Assoziation hat zwei Assoziationsenden. Das eine
Assoziationsende befindet sich an der Klasse Person, das andere an der Klasse
Company. Für beide Assoziationsenden sind jeweils Rollenname, Sichtbarkeit und
Multiplizität angegeben.

Das gesamte Modell besteht also aus mehreren, verschiedenen Modellelementen.
Diese Modellelemente sind Instanzen der Klassen, die in den Diagrammen zur
abstrakten Syntax im Anhang A gezeigt werden. Für die beiden Klassen Person und
Company werden zum Beispiel zwei Objekte der Klasse Class benötigt, die in

Figure 4.1: A sample class diagram [Bre02]

The MOF is especially important for model-related tools which are independent of a concrete
modeling language. Via a M2 model such tools can read the specification of a modeling language
as part of their input. This is comparable to parser generators. They read the specification
of a textual programming language and yield a parser for this language. The problem of such
meta-level tools is that they do not get any information about the semantics of the modeling
languages. The M2 model just describes the structure of the modeling language and not its
semantics.
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Abbildung 43 im Anhangsabschnitt A.1.1 zu finden ist. Für die Assoziation wird ein
Objekt der Klasse Association aus Abbildung 43 gebraucht. Für die beiden
Assoziationsenden wiederum sind zwei Objekte der Klasse AssociationEnd aus
Abbildung 43 nötig. Für das Modell als solches wird ein Objekt der Klasse Model aus
Abbildung 50 im Anhangsabschnitt A.2 gebraucht. Das folgende Objektdiagramm zeigt
alle Modellelemente, die für das gegebene Beispiel benötigt werden, und wie sie
zusammenhängen.

association : Association

name ="employment"
isRoot = false
isLeaf = false
isAbstract = false

participant

classA : Class

name = "Person"
isRoot = false
isLeaf = false
isAbstract = false
isActive = false

associationEndA : AssociationEnd

name = "employee"
isNavigable = false
ordering = unordered
aggregation = none
targetScope =instance
multiplicity = 1..*
changeability = changeable
visibility = public

association

connection

participant

classB : Class

name = "Company"
isRoot = false
isLeaf = false
isAbstract = false
isActive = false

associationEndB : AssociationEnd

name = "employer"
isNavigable = false
ordering = unordered
aggregation = none
targetScope =instance
multiplicity = *
changeability = changeable
visibility = public

association

connection

model : Model

name ="Employment Model"
isRoot = false
isLeaf = false
isAbstract = false

namespace

ownedElement

: ElementOwnership

visibility = public
isSpecification = false

: ElementOwnership

visibility = public
isSpecification = false

: ElementOwnership

visibility = public
isSpecification = false

namespace

ownedElement

ownedElement

namespace

Abbildung 19: Die Elemente des Employment Model

Das Objekt model repräsentiert das Modell . Es besitzt als Modellelemente die
Objekte classA, classB und association. Das Objekt association verfügt wiederum
über die zwei Objekte associationEndA und associationEndB. Es sei darauf
hingewiesen, daß die Objektnamen model, classA, classB, association,
associationEndA und associationEndB willkürlich gewählt wurden. Bei den drei
Objekten der Klasse ElementOwnership wurden die Objektnamen sogar ganz
weggelassen, es handelt sich um anonyme Objekte. Alle diese Objektnamen sind hier
nicht von Bedeutung. Sie sind vor allem deshalb angegeben, damit auf die einzelnen
Objekte des Objektdiagramms Bezug genommen werden kann.

Viel interessanter ist zu betrachten, wo zum Beispiel die Namen aus dem
ursprünglichen Klassendiagramm wiederzufinden sind. Den Namen des Modells findet
man als Wert des Attributs name beim Objekt model. Es ist der String "Employment
Model". Die beiden Klassennamen Person und Company sind jeweils als Wert des
Attributs name bei den Objekten classA und classB wiederzufinden. Der Name der
Assoziation, employment, steht als Wert des Attributs name beim Objekt

Figure 4.2: The same diagram depicted as an object diagram [Bre02]

4.2.1 MOF-compliant UML

Some artifacts of the UML meta model cannot be mapped directly to MOF. First of all, the
UML meta model features association-classes. This is a hybrid of an association and a class
and is not supported by the MOF. Furthermore, some associations in the UML meta model do
not have role names attached to them. This is not allowed by MOF, too.

As explained in [Bre02] an association class can be transformed into one class and two asso-
ciations. Another possibility is to shift the attributes of the association class to one of the
associated classes. In both cases the result is a modified meta model with the same expressive
power but without association classes. If a role name is missing, it can be easily substituted
by the name of the associated class.

The UML specification itself provides a solution for these problems. The chapter titled “UML
Model Interchange” in [OMG03i] describes a variation of the UML meta model. The expressive
power of the meta model has not changed. Just the two problems - association classes and
missing role names - have been addressed as described above. The rational for this interchange
model was to align the UML meta model with the MOF standard.
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4.3 Model Interchange

Serializing models is a frequent problem. If the meta model is MOF-based, then an XML
DTD can be automatically derived from the meta model using the XMI [OMG03j] standard.
XMI is usually used to exchange models between the modeling tool (i.e. the editor) and the
model transformation tools. This allows for a loose coupling of the modeling tools and the
model transformation tools. A drawback of XMI is that it does not contain diagramming
information. Hence, after export/import all diagramming information is lost. The developer
has to rearrange the elements on the screen which is a time consuming and cumbersome job.
Nevertheless, many approaches to model transformation are based on XSLT [W3C99b] acting
on XMI documents, for example: [DHO01, PBG01, PZB00, VVP02, KH02]. An alternative to
XMI import/export is to perform the transformation process directly in the modeling tool. In
this case the transformation works directly on the data structures of the modeling tool. Hence,
the modeling tool can adapt the diagrams as the model is transformed. This option is discussed
in more detail in chapter 8.

4.3.1 UML as a Tree Structure

XMI is based on XML and every XML document has a tree structure. Hence, to serialize a
model with XMI a spanning tree has to be calculated. This can be achieved by pruning all
edges that are not instances of a meta composition (depicted with a black diamond in the meta
model). Cyclic compositions are not allowed by the MOF. Furthermore, a model element is
part of at most one composite model element. Therefore, the pruning yields a set of trees Ga

for a model G = (V,E) where V is the set of vertices (i.e. instances of UML meta classes) and
E is the set of edges (i.e. instances of UML meta associations).

Ga = (V,Ea)
Ea = { e | e = (v1, v2) ∈ E, e is a composition }

A spanning tree can be constructed by introducing a root element.

Definition 4.1. Gspan = (Vspan, Espan) is a spanning tree for G = (V,E).

Vspan = V ∪ {root}

Ea = { e | e ∈ E, e is a composition }

Espan = Ea ∪ { (root, v) | v 6= root,¬∃ v2 : (v2, v) ∈ Ea }

The importance of Gspan for model transformations is twofold. Some programming languages
are especially well suited for the handling of tree based data structures. Two of the model
transformation approaches discussed in section 4.5 rely on the tree structure. For example
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XSLT based transformers such as [PBG01] use the tree structure for pattern matching. Others
such as UMLAUT [Tri01, HJGP99, HPP00] use the tree to iterate over the model.

Another advantage of the spanning tree is that it can be used for automatic garbage collection.
For example, if a model transformation script deletes a class from a UML model, all remaining
model elements belonging to the class can be deleted automatically, too. Otherwise the script
would have to delete every attribute, operation, parameters etc. explicitly.

4.4 Graph Transformation

As detailed in section 5.1 a UML model can be treated as a directed graph with labeled nodes
and labeled edges. Hence, transforming UML models is a special application of graph trans-
formations. Graph transformations are a well investigated problem with a sound theoretical
background [AEH+99]. Graphs are transformed by applying graph transformation rules.

Definition 4.2. A graph transformation rule is defined as r = (L,R,K,mapLR,mapKR, appl).
L and R are two graphs, called left-hand side and right-hand side. K is a sub-graph of L and
the projection mapKR maps all vertices and edges of K on R. Therefore, K has an occurrence
in R, too. The projection mapLR maps some vertices of L on R. Finally, appl is an application
constraint. If the constraint is satisfied then the transformation rule can be applied, otherwise
not.

A transformation engine applies transformation rules to graphs. The result of the transforma-
tion is called a derivation of the initial graph.

Definition 4.3. The application of a transformation rule r on a graph G is notated as G ⇒r G2.
The graph G2 is a direct derivation of G with respect to r.

An application of a transformation rule can be split in several steps. The first task is to find an
occurrence of L in G. The following steps have the goal of replacing L in G with R. Hence, this
process is called graph rewriting. The left-hand graph L is searched and replaced (rewritten)
with R.

All vertices and edges of L except those in K are deleted. In other words: L is pruned up to
K. The next step glues R with G. The graph K has an occurrence in L, hence G, and in
R. The gluing process maps both occurrences. Hence, K determines where the graphs G and
R are glued together. The pruning of L may have left over some dangling edges. If an edge
used to be connected with a vertex vL in L and the projection mapLR maps it to a vertex vR

in R then the edge is reconnected with vR. Otherwise the dangling edge is removed from the
graph.
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mapL R

mapKR

prune

glue

connect

Figure 4.3: Application of a transformation rule

The application of a transformation rule is illustrated by Figure 4.3. The first two graphs
represent the transformation rule expressed as graphs L, R, K, and the two mappings mapLR

and mapKR. The other three graphs show the transformation process step by step. First, L
is removed up to K (prune). Then R is glued with the pruned graph. Finally, the missing or
dangling edges are reconnected. A more exhaustive discussion can be found in [AEH+99]. The
following observation can be deduced from the described transformation algorithm.

Observation 4.1. The structure of sub-graph K is preserved by the application of a transfor-
mation rule.

The observation follows from the fact that K is a sub-graph of L and has an occurrence in R.
If the transformed graph is labeled, the transformation must not necessarily preserve the labels
of K. Hence, just the structure is preserved.

4.5 Transformation Languages

Several general purpose programming languages and specialized transformation languages have
been applied to the domain of model transformation. The different approaches can be clas-
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sified in different ways. For example, [CH03] proposed a feature-based classification. In the
following sections, the approaches are classified by the kind of programming paradigm used,
i.e. functional, imperative, rule-based etc.

4.5.1 Functional Languages

Literature features several approaches to model transformation languages. The idea presented
in [HJGP99] proposes the use of a functional programming language. Following this approach,
developers have to develop a set of transformation operators. These operators can be concate-
nated using the filter, reduce and map functions. The following example taken from [HPP00]
illustrates this:

(map removeAssociation) ◦ (filter isClient) allElements

This expression iterates over all elements of the model. The filter function uses an operator
to select the model elements that are to be translated. Finally, the map function passes all
selected elements through a transformation operator.

One advantage of this approach is that the developer does not have to care about how to
traverse the model. As shown in subsection 4.5.3 this is exactly the drawback of object-oriented
languages. Using a functional language, complex transformations can be easily constructed
reusing existing operators. Another advantage of operator composition is that developers using
an operator do not need to understand how the operator is implemented. Hence, developers
can be divided in two groups. The first group simply reuses or parameterizes existing operators.
The second group is concerned with the development of operators.

However, the entire approach has two weaknesses. The side effects of some operators cause a
problem, since functional programming ideally avoids side effects. The same problems appear
in other applications of functional languages, too, for example when dealing with efficient IO.
For this purpose Haskell [PC03] (a functional language) uses a concept called monads [Jon01]
to cope with the problem. Another problem related to the first one is the save iteration over all
elements. The transformation engine iterates over the spanning tree Gspan (see definition 4.1)
to iterate over a model. The model – including Gspan – is modified during iteration. Therefore,
it is difficult to ensure that all elements are visited exactly once.

4.5.2 Pattern-based Languages

The standard serialization format for models is based on XML. Consequently, some researchers
[DHO01, PBG01, PZB00, VVP02, KH02] suggest transforming the XML document instead of
the graph structure. The rational of their proposal is that a transformation language for XML
already exists: XSLT. XSLT [W3C99b] is a W3C standard. The original purpose of XSLT was
to transform arbitrary XML documents into XSL documents. Such an XSL document is just
another XML compliant document. XSL documents put the emphasis on the layout. They can
be compared to PDF or Postscript. Usually, XML documents emphasize on the content and
are ideally free of layout information. Using an XSLT script the content of the XML document
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can be enriched with layout information and displayed in a browser. However, XSLT can be
used as a general purpose transformation language for XML documents.

XSLT uses the concept of patterns. It traverses the XML tree structure and tries to match
its pattern at every node of the tree. If the pattern matches, a certain transformation rule is
applied. While this concept works very well for trees, it is difficult to adapt it to arbitrarily
shaped graphs. Furthermore, the problem of sub-graph matching in arbitrarily shaped graphs
is known to be NP-complete [GJ90].

XSLT can operate in two modes. One mode is used to generate another XML document. In
the other modus the XSLT produces a plain ASCII or UTF8/16 text file. When utilizing XSLT
for model transformations, the first modus is required. The XSLT processor reads the XMI
document (i.e. a model) and produces another XMI file. In [Sar02] the second modus has
been used for code generation. Here, the XSLT processor generates source code files from the
XMI.

The idea is appealing on first sight because it is based on standard technology, but it has severe
drawbacks. XML documents are by definition tree structures only. It is possible to cross link
elements outside the tree structure using new W3C standards such as XPointer [W3C02] or
XLink [W3C01]. However, XMI does not use them. Using the XPath [W3C99a] standard, it is
possible to traverse edges of E that are not in Espan. The usage of XPath is quite complicated.
This implies that it is very difficult for XSLT scripts to take those edges of G into account that
are not part of Espan.

This problem is very evident when transforming state machines, activity diagrams, or sequence
diagrams. When serializing such diagrams (respectively their model) using XMI, the most
important information is not represented in Gspan. The following example uses state machines
to illustrate the problem. The edges Espan of a state machines model will only tell which state
is owned by which composite state. Espan cannot reveal which states are connected via state
transitions. The meta associations used to model the incoming and outgoing state transitions
are not compositions. For this reason the instances of these meta associations are not part of
Espan. This limits XSLT-based model transformation to a subset of UML. XSLT scripts can
be useful to transform class diagrams, component diagrams, or deployment diagrams. Their
most important information is present in Gspan. Transforming behavioral diagrams is rather
difficult.

[PBG01] provides another critical discussion of XSLT in the context of model transformation.
The authors argue that XSLT is powerful enough for general purpose transformations but
too difficult to use. To circumvent this problem, they propose a front end language that is
automatically translated to XSLT. In this approach, XSLT is only the execution engine for
transformations.

4.5.3 Object-oriented Languages

Currently, object-oriented languages are the best choice when general purpose programming
languages are needed. Applying them to model transformation is straight forward. The mod-
eling tool must provide an object-oriented API that grants access to the model. The drawback
of OO languages is that the programmer has to write code for traversing the data structures.
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Traversing trees or even arbitrarily shaped graphs is a non-trivial task. The result is usually
deeply nested loops and the increased possibility of bugs such as infinite loops or infinite re-
cursions. Other approaches like functional languages (see subsection 4.5.1) or pattern-based
languages (see subsection 4.5.2) hide the model traversal from the developer.

4.5.4 Hybrid Languages

Some programming languages tend to merge benefits of functional programming and object
orientation. Two representatives of this approach are Python and OCL. OCL is an acronym
for Object Constraint Language [OMG03i, OMG03d]. The OCL is part of the UML 1.5 spec-
ification. It has been developed to describe constraints on instances of models. OCL can be
used on the meta level, too, because meta models are once again just models. In this case, the
constraints are applied to the model itself instead of model instances.

OCL is a hybrid language merging functional and OO concepts. OCL features a syntax that is
very close to that of object-oriented languages. Furthermore, the handling of data types such
as sets, bags, strings, etc., is very close to that of OO languages. Other constructs such as
forall and select are conceptually close to the map, filter, and reduce functions.

OCL has been designed to work on models. It does not come by surprise that it seems most
suitable for the problem of model transformation. The hitch is that OCL is a constraint
language and designed to be free of side effects. However, model transformation inevitably
causes side effects. The UMLAUT transformation framework [Tri01] is a research project that
builds model transformations on top of the upcoming OCL2 [OMG03d] and the action semantics
standard [SPH+01, OMG03d]. The action semantics represent an extension of OCL2. They
allow OCL2 scripts to add and remove objects and to change their properties. Action semantics
have been designed to formally specify the behavior of a system on the M0 level. Just like OCL
itself, they can be applied to the meta level, too.

The VisualOCL project [BKPPT01, KTW02] equips OCL with a graphical notation. This
may ease the creation and understanding of OCL because its textual notation is very compact.
Nevertheless, VisualOCL’s notation does not provide new concepts. It is just another notation
of OCL. In [BKPPT02] VisualOCL is combined with graph transformation theory. This way
OCL is extended with operational semantics. Thus, it can be used for model transformations.

Python [Pyt03] is an object oriented language that has been extended with elements of func-
tional programming. For example, Python features the map, reduce operators. Lambda func-
tions can be used, too. Furthermore, Python supports Haskell like ”list comprehension”. These
features are very useful when implementing model transformations. Very often a transforma-
tion deals with a list of model elements. This list must be mapped or reduced. Python’s
functional language elements allow doing this with very few lines of code. For example the
code fragment

lst = []
for x in uml.getAll():

if x.name() == "FindMe":
lst = lst + [x]
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can be reduced to

lst = [ x for x in uml.getAll() if x.name() == "FindMe"]

Python is used as a scripting language in the modeling tool developed throughout this thesis
(see chapter 8 for details). Python is used in commercial tools, too. For example, the MDA
tools of Interactive Objects [Int03] build on Python when it comes to scripting.

4.5.5 Graphical Languages

A drawback of textual languages for graph transformations is that text is usually not the ideal
media for graphs. Instead, graphs inherently have a non-textual, hence graphical, notation.
Some approaches have been devised to exploit the advantage of a graphical notation.

AGG [TFS03, EEKR99, Tae99] is a tool for editing and transforming graphs. A graph editor
supports the editing of graphs and mappings between graphs. Since a graph transformation
rule is composed of three graphs and two graph mappings, it is possible to model transformation
rules in AGG. Applying AGG to model transformations is in theory possible although AGG has
not been designed with UML in mind. AGG does not make use of the fact that UML already has
a graphical notation. Instead, every model would be represented as a graph where instances
of meta classes are depicted as nodes. Instances of meta associations are shown as edges
between the nodes. Since AGG supports higher-order graphs it would even be possible to handle
association classes in the meta model. Higher-order graphs allow for edges between edges. This
way, nodes and edges can be handled in a uniform way [LB93]. If a graph transformation system
cannot handle higher-order graphs, workarounds are possible (see subsection 4.2.1).

Some researches enhanced the UML itself with graph transformation capabilities. Story dia-
grams [FNTZ98] are one example. A Story Diagram is a special kind of action diagram. It
shows a set of objects (M0 level) and their links and it shows how the objects change over
time. Story Diagrams show how links between objects are created or removed, how objects are
created or destroyed or how the attribute values of the objects change. Hence, Story diagrams
are a way of modeling the behavior of a system. The intention of Story Diagrams is not to
work on the model level (M1). Instead, they apply the transformation steps to the object level
(M0). This means that the transformation acts on instances on classes, not instances of meta
classes. Therefore, transformations specify how a system behaves at runtime. Conceptually,
this is comparable to the approach taken by AGG. Only the notation is different. Nodes are
represented as UML objects and edges are shown as UML links between the objects.

The approach taken by [HE00] is a merge of UML object diagrams and graph transformations.
In so far it is comparable to Story Diagrams. Just like [FNTZ98] they use ideas from graph
transformation theory to model the behavior of a system. Consequently, the approach acts on
the M0 level, too, just like Story Diagrams.

However, the MDA is not concerned with the M0 level. Transformations address the models
themselves, hence the M1 level. Conceptually, it is possible to shift the meta levels since a
model can be treated as an instance of the meta model just like the M0 objects are instances
of the M1 classes. Story Diagrams, the approach of [HE00], or AGG could be used for model
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transformation, too. However, a shift of the meta models would ideally be accompanied with a
shift of the notation. An M1 instance of an M2 meta class has a special notation in the UML
that depends on the meta class. For example an enumeration is shown as a box while an actor
is depicted as a stickman. An M0 instance of an M1 class in contrast is always depicted as a
rectangle disregarding of the M1 class. A shift of notation cannot be easily accomplished since
the UML notation extension introduced for Story Diagrams works for UML object diagrams
only. Therefore, the notational support of Story Diagrams is as weak as that of AGG. Whether
a node is displayed as a rectangle (Story Diagrams, [HE00]) or circle (AGG) does not really
matter. Figure 4.1 and Figure 4.2 illustrate the shift of notation. Both models show the same
content. However, the second one uses the notation for M0 level objects while the first one uses
the notation for M1 level objects.

All transformation techniques presented in this section modify graphs. This means a start
graph is transformed several times to reach a final derivation. Usually, this final derivation
still shares a common subset with the start graph. This is the case for all examples found in
[AEH+99, FNTZ98, HE00]. In [Cla01] this is called “in-place” editing. In the MDA it is less
common to morph a PIM step by step until it is a valid PSM. Even worse, this is usually not
possible at all since the PIM is based on another meta model. Recalling definition 4.2, the
problem is the sub-graph K and its occurrence mapKR in R. L is a part of a PIM that should
be translated into a corresponding PSM construct. R is a sub-graph of the PSM. K should
have an occurrence in L and R but L and R are built on two distinct meta models. Therefore,
K cannot have an occurrence in L and R at the same time.

VIATRA [VVP02, CHM+02, VGP01] is another model transformation approach based on graph
transformation. In contrast to the other approaches discussed in this chapter, VIATRA has
been designed to transform a model from one modeling language to another one, i.e. it does not
do in-place editing. The overall goal of VIATRA is to check the correctness and reliability of a
design. Therefore, the design (expressed as a UML model) is transformed into a more precise
model better suited for formal reasoning. For example, VIATRA has been used to transform
UML state machines to Petri Nets. Once the transformation is done, existing tools for Petri
Nets can be applied. The result of these tools is back-annotated to the UML state machine
model. To achieve this back-annotation, VIATRA builds a reference graph between the input
and the output model during the transformation process. VIATRA rules can be edited with a
UML tool and a special UML profile. However, the notation of VIATRA rules uses the meta
level shifting as described above. The left-hand side and the right-hand side of a VIATRA rule
are displayed as UML object diagrams. Thus, the rule developer is directly confronted with
the meta model of the input and the output modeling language.

4.6 Model Driven Architecture

In contrast to the model-related technologies discussed in this chapter, the Model Driven Ar-
chitecture (MDA) [OMG03a] is not a concrete technology. It is more kind of a vision of the
Object Management Group (OMG) [OMG03b] aiming at platform independent software de-
velopment. The OMG has followed the idea of platform independent object systems for a
couple of years. With CORBA [OMG02a] the OMG defined a middleware that allows objects
to communicate disregarding of the platform they are running on and disregarding of their
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implementation language. However, only the interfaces of the objects are subject to a platform
independent description in CORBA. The concrete implementation depends on the selected pro-
gramming language and operating system. Very often, the implementation even depends on a
concrete CORBA ORB (Object Request Broker). Hence, CORBA allows specifying interfaces
in a platform independent manner but the behavior of objects is still platform specific.

Platform specific software artifacts are bound to concrete technologies which are subject to
frequent changes. Operating systems for PCs and UNIX servers are updated every 3-5 years.
Frameworks for distribution or graphical user interfaces even evolve faster. Software is a ma-
jor investment for companies. If technologies changes very frequently, these investments will
soon rely on outdated technology or they need continuous development to keep up with new
technologies. The core of the MDA vision is to keep software (i.e. an investment) platform
independent. An automated tool chain will then map the platform independent software de-
scription on a concrete target platform. If the target platform changes, only a new mapping is
required and existing software will still work.

This vision needs more than just platform independent interface definitions as provided by
CORBA. The behavior and interaction of objects must be captured in a platform independent
manner. The MDA proposes the use of models to describe objects, their interface, behavior, and
interaction. Modeling languages have been used for several years to specify and document large
object systems. Different object-oriented modeling languages have been devised. The most
popular ones have been unified and gave birth to the Unified Modeling Language (UML). The
UML is a major building block of the MDA. Many MDA tools use UML or a UML derivation
as their modeling language. In fact, modeling tool vendors consider MDA as an add-on to their
UML tools. The other building block of the MDA is the Meta Object Facility (MOF). The MOF
is important, because the MDA is not tied to a concrete modeling language. Every modeling
language with a MOF-compliant meta-model can be used if it is not tied to a specific platform,
i.e. programming language, framework, or operating system. Developers are supposed to use
such a platform independent modeling language to create a platform independent model (PIM)
of an object system.

This PIM is the most important software artifact. However, computers execute machine code
and not PIMs. Thus, the platform independent model must be fed into a specialized tool
chain. A model transformation tool transforms the PIM into a platform specific model (PSM).
The PSM takes specialties of the target platform into consideration. For example, a PIM
represents the software for controlling an industry robot. This PIM can be mapped to different
target platforms, for example a small embedded system or a full fledged PC. On the embedded
system, the control software can do busy waiting, because it is the only process executing on
the system. On a PC, the control system should be implemented as an event-driven system
since busy waiting would waste CPU power that can be used for other processes. This example
illustrates how one PIM can be mapped to several PSMs. PIM and PSM can be subject
to different modeling languages. Usually, the platform specific language has some special
constructs dedicated to the target programming language (for example, C++ templates or C#
delegates).

Another major difference between a platform independent modeling language and the platform
specific modeling language is the domain from which they lend their concepts. The platform
independent language usually uses concepts of the application domain. For example, a modeling
language for enterprise systems may use concepts such as products, customers, documents,
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signatures, throughput, etc. In contrast, a platform specific language uses concepts of the
realization domain, i.e. classes, operations, state machines. As a rule of thumb, the PIM
describes what the software does, while the PSM describes how this is realized on a concrete
platform. The way from a PSM via source code to machine code is well known from UML
tools. Hence, the special part of a MDA tool chain is the model transformation that maps the
PIM on its PSM counterpart.

The model transformation is among the most complicated techniques required for a MDA tool
chain. The previous section already discussed the different approaches to model transforma-
tion. Implementing a transformation is already a very complex task. However, the best model
transformation approach will not help if the transformation is inherently impossible. For exam-
ple, one could have the idea of building a meta model for the programming language Java and
to use it as a general purpose platform independent modeling language. Building such a meta
model is technically possible. It can be derived from the EBNF grammar of Java. Implement-
ing a transformer that maps, for example, such a Java-PIM on a C#-specific PSM is hardly
impossible with the current state of the art. Microsoft has been working on a Java-to-C#
transformer. Although both languages are quite similar, the result of the transformation is not
complete and the quality of the generated code is questionable. There are many reasons why
such a transformer is doomed to fail. First of all, current object-oriented programs are not free
of side effects. A transformer would have to understand all possible side effects to generate C#
source code that behaves exactly like the Java-PIM. Furthermore, a Java-PIM would already
contain Java-specific optimizations or design decisions. For example, thread synchronization in
Java and .NET are quite different. If the PIM has already been defined with Java in mind, it is
hard to generate a solution optimized for .NET. The strange idea of a Java-PIM shows that it
is very hard to come up with a platform independent modeling language that is detailed enough
to model complex applications and still abstract enough to allow reasonable transformations.

The MDA proposes a shift of paradigms in software development. Developers should use models
to express what the software system does and which constraints (i.e. QoS) apply. Tools care
about how to realize such systems. The major challenges are to develop sophisticated platform
independent modeling languages and associated model transformers.





Chapter 5

Graph Transformation

This chapter shows how graph transformation theory can be adapted to the special needs of
MDA transformations. The goal is build the theoretical foundations for an easy to use rule-
based visual transformation language. This language and its notation is discussed in chapter 7.
Furthermore, the use of graph theory will enable round-trip engineering. Chapter 6 will exploit
this feature in detail.

The reason for choosing an approach based on graph transformation rules, originates in practical
experience. In the context of this thesis industry and research partners of an IST project
used Python (an object oriented language) to implement model transformations. It turned
out that implementing transformations this way was time consuming and error-prone even
though the developers knew their meta model by heart. One major reason for mistakes was
the traversal of models. Chances were high that either some elements were left out or an
endless loop occurred. This chuckhole disappears when using rule-based languages since the
engine applying the rules performs all the model traversals. This observation already led
[HJGP99, HPP00] to propose functional languages for model transformation. The second
source of errors was misinterpretation of the meta model. Using a visual notation that hides
the complex meta model behind a more user-friendly notation solves this problem. Thus, a
rule-based transformation language with a visual notation seems to be the optimal fit.

A careful analysis of a set of Python-based transformers revealed that they performed basically
four kinds of actions:

• Search for a certain pattern in the PIM.

• Determine relevant elements of the current “PSM under construction”, i.e. a pattern
search in the PSM.

• Add, modify, or remove PSM elements, i.e. a certain pattern is applied.

• Bookkeeping of the already generated PSM elements.

Except for the bookkeeping, these steps are performed by applying graph transformation rules.
A rule has a left-hand search pattern L. All matches of L in the start graph are computed. Then
L is replaced by a graph R while an interface graph K ⊆ L is kept invariant. Hence, results of
graph transformation theory can be applied to the problem of model transformation.
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5.1 Formalization

Applying graph transformation theory to the problem of model transformation requires an
appropriate formalization of the terms model and meta model. Specifications of modeling lan-
guages usually contain a formal or semi formal definition of the language. Modeling languages
can be defined by another model – the meta model. This led to the OMG’s Meta Object Facil-
ity (MOF) (see section 4.2). It describes a meta meta model that can be used to model meta
models. Thus, the MOF provides formalization on the meta-meta level.

However, the MOF is not an appropriate formalization for the algorithms discussed in this
chapter. The algorithms build on graph transformation theory. Therefore, models – and meta
models – have to be treated as graph structures with vertices V and edges E. The following
definitions provide a formalization of these graphs.

Definition 5.1. A meta model M is defined as a directed labeled multi-graph M = (V,E)
with E ⊆ V × V .

V is the set of meta classes and E represents the meta associations.

The labels on V represent the meta class name. Names are just strings. Hence, they can be
treated as integers. The labeling function is defined as `V : V 7→ N and every v ∈ V has a
unique label.

∀v1, v2 ∈ V : `V (v1) = `V (v2) ⇔ v1 = v2

The labeling function for E is defined as `E : E 7→ (N×K)× (N× B).

N represents all possible role names that a meta association can have.

K = {None, Aggregate, Composite} denotes the aggregation kind.

B = {true, false} determines whether the association is ordered or not.

Each meta association e = (v1, v2) ∈ V ×V features two association ends. One end can have an
aggregation kind different from None. This is depicted with a black or hollow diamond. The
other association end can be ordered, depicted by the constraint {ordered}. By convention,
the first association end (the one with the optional diamond) is called left meta association end.
The other one (with the possible ordering constraint) is called right meta association end.

An example can be found in the UML meta model depicted in Figure 5.1. The meta association
between BehavioralFeature and Parameter is a composition and it is ordered. This implies
that the parameters are an integral part of the BehavioralFeature that owns them and the
parameters of an BehavioralFeature are ordered.

Meta attributes (i.e. attributes of meta classes) have been separated from the above definition
since they are not treated in a special way by the graph-based algorithms presented in this
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Figure 5.1: Core of the UML meta model

chapter. Meta attributes can be reduced to labels attached to vertices of the meta model.
Hence, they are not important for graph algorithms. However, they are relevant for the Python
binding discussed in section 8.3. The following definition adds meta attributes to each meta
class.

Definition 5.2. A meta attribute of a meta model M = (V,E) is defined as an element of
N× V . Here, N denotes the name of the attribute. Possible types of meta attributes are meta
classes. Hence, V is the set of possible meta attribute types.

The function aM(v) maps every vertex v ∈ V (i.e. each meta class) to a set of meta attributes.

A full featured MOF meta model can have even more properties. For example, associations
feature multiplicities and meta classes can have meta operations (see [OMG02d] for a more
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detailed explanation). Furthermore, enumerations are supported as a special kind of meta
classes. However, a formal model should be as simple as possible. The additional properties
can be mapped to labels and the above definitions are sufficient for the following discussion.

A model can be represented as a directed, typed, and labeled graph as shown by the following
definition.

Definition 5.3. A model M based on the meta model M = (VM, EM) is defined as a directed,
typed, and labeled multi-graph M = (V,E) with E ⊆ V × V .

The graph is typed. That means every vertex in V and every edge in E corresponds to a vertex
in VM or EM, respectively. The functions tV : V 7→ VM and tE : E 7→ EM type the graph.

For every e = (v1, v2) ∈ E and T = tE(e) the vertex v1 plays the role of the left association-
end while v2 is the right association-end. If T has an aggregation kind of Composite, v1 is a
composition and v2 is a part. If T has an aggregation kind of Aggregate, v1 is an aggregation
and v2 is a part.

The vertices are labeled. The label of a vertex x contains a value for each meta attribute in
aM(tV (x)).

The edges are not labeled.

5.2 Shortcomings of Standard Graph Transformation

Figure 4.3 shows that a graphical representation of transformation rules is possible. For con-
venience the relevant part of Figure 4.3 is repeated in Figure 5.2. This figure is based on the
theory of graph-rewriting that is discussed in section 4.4.

{ { {{
L R

K

mapL R

mapKR

prune

glue

connect

Figure 5.2: Graphical representation of a transformation rule.

Unfortunately, this notation cannot be applied directly to MDA-style model transformations.
First, requirement 3.2 states that the standard UML notation should be applied whenever
possible. Second, the theory behind this notation assumes that the start graph and the final
derivation graph are subject to the same meta model and well-formedness rules. In fact, that
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is not the case for the MDA. The start graph (G) is subject to the PIM meta model while the
final derivation graph (H) adheres to the PSM meta model. The derivation graphs between G
and H are problematic.

G ⇒r1 G1 ⇒r2 G2 ⇒r3 · · · ⇒rn H

The graphs Gi, 1 ≤ i < n would be a mixture of PIM and PSM. Even merging both meta
models into one intermediate meta model is no viable solution. This is revealed by Figures 5.2
and 4.3. In terms of the MDA, the graph L is based on the PIM meta model, just as the entire
start graph G. The graph L will be replaced by R. The graph R in turn adheres to the PSM
meta model, just as the entire final derivation graph H. The hitch is the sub-graph K of L,
because it must have an occurrence in R, too. Obviously, graph K cannot have an occurrence
in two graphs that are based on different meta models. A second problem is the reconnecting
of edges as shown in Figure 4.3. Each edge adheres to a meta association. If one vertex is part
of the PSM and another one of the PIM, there is obviously no meta association available that
could serve this purpose. Hence, the glued graph R would remain isolated.

Another problem arises from requirement 3.4. It claims that the transformation process must
support iterative development processes. As detailed in chapter 6, this requires some kind of
mapping between the PIM and the derived PSM. Otherwise changes made to the PSM could
not be re-integrated during a subsequent transformation. If the outcome of the transformation
results just in a PSM model then the transformation cannot yield the required mapping between
PIM and PSM, because the PIM has been discarded during the transformation.

5.3 Adaptation to the MDA

Two problems have to be solved in order to adapt graph-rewriting concepts to the MDA:

• the mix of meta models in the derivation graphs Gi, and
• the mapping between PIM and PSM to satisfy requirement 3.4.

The required mapping should be a direct outcome of the transformation process. After the
transformation, labeled edges should connect elements in the PIM with their relatives in the
PSM. Therefore, the PIM itself must be part of the final derivation graph. The final derivation
graph is denoted as H throughout this chapter. Furthermore, the mapping itself will require a
meta model of its own. This has implications on the meta model problematic outlined above.

The graph H must be based on a meta model that merges the PIM with the PSM and mapping
meta model. In the following the PIM meta model is G and the PSM meta model is denoted
as S.

Definition 5.4. The mapping meta model R is defined as

R = ({Ref} ∪ top(VG) ∪ top(VS), ER).

G = (VG, EG) is the PIM meta model and
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S = (VS , ES) the PSM meta model.

top(V ) is a set of meta classes of V which are not subclasses of other meta classes.

The edges of R connect all toplevel meta classes of G and S with Ref . Hence,

ER = {e | e = (g,Ref), g ∈ top(VG)} ∪ {e | e = (Ref, s), s ∈ top(VS)}.

With these definitions the merged meta model H can be defined as follows.

Definition 5.5. The merged meta model is defined as H = (VG ∪ VS ∪ {Ref}, EG ∪ES ∪ER).

G = (VG, EG) is the PIM meta model,

S = (VS , ES) the PSM meta model, and

R = (VR, ER) the mapping meta model.

VR = {Ref}.

If G is the PIM model and H is the result of the transformation and

G ⇒r1 G1 ⇒r2 G2 ⇒r3 · · · ⇒rn H

then the meta model for G is G and the meta model for Gi, 1 ≤ i < n and H is H. From
definition 5.5 follows that G is a sub-graph of H. Hence, G adheres to the meta model H, too.
This means that the entire transformation process can be based on a single meta model: H.
This solves the meta model merging problem.

Every meta class of the G (PIM) is connected directly or via one of its super classes to the
meta class R. R in turn is connected directly or indirectly via super classes to every meta class
of S (PSM). Hence, H is able to describe a directed mapping between the PIM and the PSM.
This solves the mapping problem.

This leads to a modified definition of a transformation rule (see definition 4.2).

Definition 5.6. A MDA transformation rule r is defined as

r = (G,S,R, L,R, K, mapKR,mapLR, appl).

G is the PIM meta model,

S is the PSM meta model, and

R is the mapping meta model. H is the merged meta model of G, S, and R.
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The graphs L and R adhere to H.

All vertices of K are instances of the meta classes of G. K is a sub-graph of L and has an
occurrence in R as defined by mapKR. This mapping is type preserving. Hence, if v ∈ K is of
meta class M , the vertex mapKR(v) ∈ R adheres to the same meta class.

The mapping mapLR maps some (or none) vertices of L to R. This mapping is type preserving,
too. Hence, if v ∈ L is of meta class M , the vertex mapLR(v) ∈ R adheres to the same meta
class.

Every vertex in L and R that is an instance of a meta class of G is covered by K. Every edge
in L and R that is an instance of a meta association of G is covered by K, too.

appl is, as usual, an application constraint.
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Figure 5.3: Example of a MDA transformation rule and the transformation process.
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Figure 5.3 provides an example of an MDA transformation rule and the transformation process.
The two graphs on top represent the transformation rule consisting of L, R, K, mapKR, and
mapLR. The three meta models G, S, and R are not shown. Nodes are labeled with capital
letters while edges are labeled with lower case letters. These labels correspond to meta classes
and meta associations of the respective meta models. The two graphs are split in three sections.
The top most is reserved for elements of the PSM (S), the PIM (G) at the bottom and the
mapping (R) in between. The sub-graph K covers all element adhering to G as demanded by
definition 5.6. It is worth noting that all edges crossing the section borders are connected to
an element of R since R glues the two other meta models together. The two mappings mapKR

and mapLR have the same meaning as in Figure 4.3. The purpose of the transformation rule
is to remove node C, create node B and extend the mapping with R’. Different fillings are used
in the figure to illustrate this.

The start graph is shown below the transformation rule. The first step is to prune the graph.
Hence, C is removed. Then, the new nodes B and R’ are added. Finally, the missing edges are
inserted.

The important difference between definition 5.6 and definition 4.2 is the way L, R, and K
are constrained to the different meta models. Note that R can be used by L and R. Hence,
the mapping between PIM and PSM can be created throughout the transformation and it
can be used for pattern matching. Furthermore, the mappings mapLR and mapKR are type
preserving. This was not demanded by the previous definition. Another important property
of an MDA transformation rule is that it preserves the PIM. This is not directly obvious from
the definition. A proof is necessary.

Proposition 5.1. If ri are MDA transformation rules and graph G0 represents a PIM and
adheres to G then all derivations preserve the start graph G0.

Hence, from G0 ⇒r1 G1 ⇒r2 · · · ⇒rn H follows that G0 is a sub-graph of H.

Proof. The ri are defined as (G,S,R, L,R, K, mapKR,mapLR, appl). The structure of K is
preserved throughout a transformation. This follows from observation 4.1. The types of the
vertices and edges of K are preserved because mapKR is type preserving.

⇒ K remains unchanged by a transformation.

From definition 5.6 follows that K covers all vertices and edges of L that adhere to G.

⇒ All vertices and edges of L that adhere to G remain unchanged.

Throughout the application Gi−1 ⇒i Gi only those elements that are matched by L can be
changed.

⇒ The PIM elements in Gi−1 are either not matched by L or covered by K.

⇒ The PIM elements remain unchanged.

⇒ The proposition is true because G0 consists of PIM elements only.

This leads to another important property of MDA transformations.
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Proposition 5.2. The graphs L and R share all vertices and edges that adhere to the PIM
meta model (G).

Proof. r = (G,S,R, L,R, K, mapKR,mapLR, appl) is a transformation rule.

All vertices and edges in L that adhere to the meta model G are by definition 5.6 covered by
K. The same argument holds for R and K.

K is a sub-graph in L and has an occurrence in R as demanded by definition 5.6.

Furthermore, mapKR is type preserving.

⇒ the mapping mapKR is bijective and preserves structure and type of the mapped graph.

⇒ If a vertex or edge adheres to G and is part of either L or R then the bijection maps it to
R or L respectively.

This proposition is useful to simplify the notation as the following section will show.

5.3.1 Notation

Figure 5.3 shows that it is possible to provide a graphical notation for transformation rules.
However, the notation can be significantly simplified.
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Figure 5.4: Simplification steps

Figure 5.4 illustrates two simplification steps. The graph on the left hand side is the same as
the one in Figure 5.3. The graphs L and R share the same PIM section. This is always the case
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as shown by proposition 5.2. Hence, it is better to share the visual representation of K. This
is realized by the graph in the middle. Since K is visible only once, the mapping mapKR can
be dropped from the notation, too. The second step is to simplify the part of the graph that
is based on R. The meta model R adds only the Ref meta class to H. Instead of depicting
instances of Ref as a circle it can be depicted as a labeled line that connects a PIM vertex
with a PSM vertex. This simplification is shown on the right hand side.

The last redundancy in the graph is the double occurrence of the line labeled R. This line denotes
an instance of the Ref meta class of meta model R. The meaning of the top occurrence is
that R is part of the search graph L. The occurrence below denotes that R is not changed by
the replace graph R. Hence, R is preserved by the transformation. Experience has shown that
MDA graph transformations will usually not remove instances of the Ref meta class. Usually,
they are added only by each application of a transformation rule. By demanding that instances
of the Ref meta class are always preserved, the bottom occurrence of the line can be discarded,
too.

5.3.2 Chaining Transformation Rules

A complete transformation of a PIM into a PSM is not possible with only one rule. A set of
rules has to be applied in a certain order. Experience has shown that many transformation
rules depend on each other. As shown in the following example, this leads to redundancy
among the transformation rules.

X A
C

C

C

C

B
Z

Z

Z

Z

… …

Source Target

Figure 5.5: Source and target graph of a transformation requiring two rules

Figure 5.5 shows a class of source graphs and a class of target graphs. Instances of this class
differ in the number of Z or C vertices. To transform each graph of the source class into its
counterpart of the target class two transformation rules are sufficient. However, it is impossible
to handle the problem with one rule only.

Figure 5.6 shows two transformation rules that solve the problem. The hitch is that the A and B
vertices and the mapping labeled with R and R’ appear three times. This is redundancy. Hence,
the well known implications of redundancy will show up. If Rule0 changes during development
of a transformation, no tool can detect that Rule1 should be adapted. Furthermore, Rule1
looks more complicated then it should.

Another drawback is the performance of the transformation process. Transformations based on
graph rewriting tend to be slow, because the problem of sub-graph isomorphism is NP-complete
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Figure 5.6: Implicitly chained transformation rules

[GJ90]. For small graphs L and typical transformations the average runtime is not exponential.
However, it is far from being linear. Chained rules as shown in Figure 5.6 can be optimized
because Rule1 searches for all occurrences of a pattern that has been created by Rule0. A
possible optimization would take that into account. Hence, the application of Rule1 would not
require any sub-graph search.
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Rule 0 Rule1

Figure 5.7: Explicitly chained transformation rules

Both problems, the redundancy and the optimization, can be addressed by explicitly chaining
rules. This is shown in Figure 5.7. Two lines connect Rule0 with Rule1. They represent a
mapping that relates the A, B, and X vertices of Rule0 with the A, B, and X vertices in Rule1.

With this mapping, the optimization can be easily achieved. Rule1 is applied whenever Rule0
has been applied. Just the Z nodes have to be searched. That is much more efficient than
searching for every occurrence of the four vertices A, B, X, and Z. Furthermore, Rule1 has
reduced the redundant information to the possible minimum. The purpose of the rule is easier to
understand and relationship between rules has been made explicit. Chaining of transformation
rules provides no advance in computational power. It is a very useful optimization with respect
to readability and performance.





Chapter 6

Round-Trip Engineering

Modern development processes [DW98, JBR99, Bec99, Agi02] are iterative. This is in contrast
to the waterfall processes. In waterfall processes the development consists of consecutive steps.
No step is taken twice and there is no stepping back. Iterative processes instead repeat the
sequence of steps until the product is finished. In practice this means that a certain set of
requirements is analyzed, implemented and tested. Then the same procedure is repeated with
additional requirements.

The problem of combining the MDA with iterative processes is located in the tools. All gener-
ative approaches provide means for generating an artifact B out of another artifact A. In the
case of the MDA such artifacts are models. However, an artifact may be some kind of text,
graph, etc. During each iteration B is altered by the developers and the result is an artifact
B̃. When the next iteration runs, developers modify A resulting in A′. The generation process
derives B′ from A′. This yields the problem that the changes between B and B̃ are lost. There
are two possibilities of circumventing this problem. The first one is to realize the round-trip
engineering via reverse engineering. Here B̃ is reverse engineered to yield Areverse. Hence, the
differences between B and B̃ are detected, translated and applied to A. This allows starting
the next iteration without any loss of information. The second possibility is to automatically
apply the differences between B and B̃ to B′ yielding B̃′.

6.1 Reverse Engineering

Both presented solutions have advantages and disadvantages. It is the goal of this section to
show that reverse engineering is in general not an appropriate solution in the context of the
MDA.

Reverse engineering is still a real tooling problem for the source code generation. Source code
is generated from a UML model. This code is modified by developers. Reverse engineering
re-translates the code into UML models. It does not come by surprise that this works pretty
well for class diagrams. The reason is that class diagrams and object-oriented languages share
a large set of concepts. Hence, forward engineering (generation) and reverse engineering are
comparably easy because of an isomorphism between class diagrams and class definitions in
OO programming languages.

The case is different for state charts, sequence diagrams or activity diagrams. Commercial tools
often fail to generate code from these diagrams. The reverse is almost impossible. The reason
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is that the concepts used to describe behavior in the UML are quite different from the more
low-level constructs of programming languages. This leads to the following observation.

Observation 6.1. A generation tool reads an artifact A based on the set of concepts A. The
output is an artifact B based on the concepts B.

Reverse engineering has proven to be possible if there exists an isomorphism between the
concepts in A and B, hence, A ≡ B.

Reverse engineering has proven to be difficult if A and B differ in the way they describe things
even if both sets of concepts have the same descriptive power.

Another problem is that one round-trip must not loose information. In the above example B̃
is reverse engineered into Areverse. If forward engineering is applied to Areverse then it should
generate B̃ again. Otherwise, the reverse engineering would loose information. Furthermore,
forward engineering must work loss-less. Otherwise B would contain less information than A,
hence, information would be lost. This leads to the next observation.

Observation 6.2. The function f implements forward engineering and reverse engineering is
represented as the function r.

⇒ The functions f ◦ r and r ◦ f are the identity function.

Forward engineering and reverse engineering translate information between two different sets
of concepts: A and B. From the fact that forward engineering works loss-less follows that B has
at least the same descriptive power as A. Developers may change the output of the forward
engineering. Hence, they may utilize every concept in B. Since reverse engineering works
loss-less, too, it follows that A has at least the same descriptive power as B. The following
observation can be deduced from this.

Observation 6.3. The function f projects A onto B.

The function r projects B onto A.

f and r are forward engineering respectively reverse engineering functions in the sense of
observation 6.2.

Then the set of concepts A has the same descriptive power as B, hence, A ≡ B.
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Reverse engineering is in general not the appropriate solution for the MDA. The reason why
the MDA has been chosen as the fundamental approach for this thesis is that the problem
domain for QoS-enabled applications is quite different from the realization domain. There is
no isomorphism between the concepts used in the problem domain and those in the realization
domain. Following observation 6.1, this renders reverse engineering especially complicated.

It is obvious that the PIM meta model presented in this thesis has less descriptive power than
the UML. Hence, observation 6.3 does not hold for the PIM and PSM meta model. Therefore,
developers would have to work with a loss of information during reverse engineering.

6.2 Forward Merging

Pure reverse engineering adheres to the idea that a single artifact contains all information about
the system at a time. In the case of the MDA such an artifact is a model. Another approach is
to accept that all knowledge about a system is distributed across two models: the PIM and the
PSM. In an iterative process changes are applied to both models. Therefore, a synchronization
mechanism is required. Forward merging provides such a mechanism.

Definition 6.1. In is a list of PIM models. Sn and S̃n are lists of PSM models. During
iteration j the PSM model Sj is generated from Ij via model transformation. Developers will
modify Sj yielding S̃j . Throughout the next iteration Sj+1 will be generated.

Forward merging automatically merges the difference between Sj and S̃j into Sj+1. Hence,
Sj+1 is a synchronization between the PIM model Ij+1 and the latest PSM model S̃j touched
by the developer.

The following observation shows that forward merging overcomes a central problem of reverse
engineering.

Observation 6.4. Forward merging can be expressed as a function r that projects a set of
concepts A onto another set of concepts B.

It is not required that the expressive power of A is equivalent to that of B. This follows from
the fact that the information is distributed among two models.

However, it could happen that some PSM model S̃k contradicts the PIM model Ik+1. This
happens if developers apply substantial changes to Sk resulting in S̃k and they do not adapt
Ik+1 to reflect these changes, too. The next model transformation cannot succeed because of
this contradiction. This problem arises from the fact that all information about the system is
distributed across two models. The two models can diverge and contradict each other.
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The mismatch between S̃k and Ik+1 can be classified in syntactic conflicts and semantic con-
flicts. Syntactic conflicts appear, for example, if S̃k adds a new method to a class that exists
in Sk, too, but Ik+1 is modified in such a way that the generated PSM Sk+1 does no longer
contain this class. In this case the new attribute cannot be applied to Sk+1 because its class is
gone. Semantic conflicts can appear in behavioral diagrams. For example, S̃k adds transitions
to a state machine that are fired when an event of type A is received. Ik+1 is modified in such
a way that the generated PSM Sk+1 features transitions in the same state machine that fire
when an event of type B is received. The state machine is semantically still correct. However,
if event type B is a subtype of A, the modification applied to S̃k results in a different behavior
when applied to Sk+1. In S̃k the transition fired if an event of type A was received, including
events of the subtype B. In Sk+1 the transition fires only if an event of type A is received
that is not of subtype B. Syntactic conflicts can be detected while applying the differences
between Sk and S̃k to Sk1 . Semantic conflicts are more difficult to detect. A deep analysis of
the behavioral diagram would be required. To perform such an analysis on a UML-based PSM
it has to be mapped to a more formal model such as Petri Nets which are better suited for
formal reasoning.

The tools built throughout the work on this thesis can detect syntactic conflicts. Detected
conflicts are reported to the developer. However, the changes between Sk and S̃k are always
applied if anyhow possible. The model transformation does not fail if a conflict is detected.
In case of a doubt the information stored in Ik+1 precedes S̃k. This may result in a loss of
information. If this occurs then it can be pointed out by a tool and the developers have to
investigate how to proceed. This loss of information is different from the one discussed in the
section 6.1. Here, loss of information occures only in case of a conflict. An information-loss
during reverse engineering would be systematic, hence, not a result of an error. Information
would be lost during every iteration.

6.3 Forward Merging as a Graph Transformation

Forward merging has been selected as the mechanism of choice for the tool chain developed
throughout this thesis. Some of the reasons and alternatives have been discussed in the previous
sections. Another reason is that forward merging on models can be implemented independently
of a concrete model transformation. This section shows how this can be achieved.

The independence of a concrete transformation is very important in the context of this thesis.
Model transformation is subject to continuous extensions for new QoS categories or QoS im-
plementations. Because of this independence there is no need to adapt the forward merging
mechanism for every modification of the MDA model transformation.

Forward merging imposes two key challenges. First, the difference between Sj and S̃j has to
be determined. Second, this difference has to be applied to the outcome of the next model
transformation.

The developers modify Sj resulting in S̃j . This modification can be treated as a model trans-
formation. Hence, a transformation rule r (see definition 4.2) exists that derives S̃j from Sj .

Sj ⇒r S̃j
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The basic idea is to apply this transformation to the output of the model transformation.
During iteration j +1 some MDA transformation m (see definition 5.6) derives the model Xj+1

from Ij+1. Xj+1 is just a temporary model. Applying r to Xj+1 yields Sj+1.

Ij+1 ⇒m Xj+1 ⇒r Sj+1

The problem is that the transformation r is not known. Furthermore, the fact that r derives S̃j

from Sj does not necessarily imply that it will add the difference between Sj and S̃j to Xj+1.
However, the following observation highlights the important fact.

Observation 6.5. If r can be determined and

if it merges the differences between Sj and S̃j into Xj+1 with Ij+1 ⇒m Xj+1

then the transformation m ◦ r implements forward merging as defined in definition 6.1.

6.3.1 Deduction of the rule r

The model transformation r has to be derived somehow. One option is to follow step by step
the modifications the developer applied to the model Sj . However, that would impose a major
struggle on the UML tool.

The better idea is to extract r by inspecting Sj and S̃j . The differences between two models
can be categorized as follows.

• Vertices:

– added
– removed

• Edges:

– added
– removed

• Attributes (i.e. labels) changed

The UML-tool Kase (see chapter 8) uses unique IDs internally to mark vertices. Hence, vertices
that are neither added nor removed share the same IDs in both models, i.e. Sj and S̃j . Due to
these IDs it is possible to efficiently detect the differences between Sj and S̃j . This is important
because otherwise the NP-completeness of graph isomorphism would render the entire approach
into a very slow one.

The transformation r is defined as

r = (L,R, K,mapLR,mapKR, appl)
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The sub-graph K is by definition not altered during the model transformation. Hence, as a
first approximation K consists of all vertices that exist in Sj and in S̃j . Furthermore, K covers
all edges between its vertices that exist in Sj and in S̃j , too.

The sub-graph K has an occurrence mapKR in R. The replace pattern R covers all vertices
and edges in S̃j that either belong to K, are not present in Sj or have different attributes in
Sj . The search pattern L covers all vertices in Sj that either belong to K, are not present
in S̃j or have different attributes in Sj . If r covers vertices in S̃j that exist in Sj , too, then
they are mapped to their corresponding vertices in L via mapLR. This leads to the following
observation.

Observation 6.6. Given two models Sj and S̃j it is possible to deduce a model transformation
r with the property

Sj ⇒r S̃j

if vertices shared by both models have the same ID.

Another observation is that L covers Sj , because every vertex and edge in Sj will either exist
in S̃j or it will be removed. Hence, r can be applied only on graphs that have an occurrence
of Sj . However, that is not very beneficial in the light of observation 6.5, because it would be
unlikely that r can be applied to Xj+1.

The transformation r can be simplified by removing vertices and thus edges from K. If a
vertex in K is only connected with other vertices in K then it can be discarded. Obviously the
property Sj ⇒r S̃j is not affected because the vertices covered by K are not modified by the
transformation anyway. Furthermore, it is possible to remove all edges from K. These edges
are not modified by the transformation.

The sole purpose of the removed vertices and edges is to find the occurrence of L - which includes
K - in Sj . While the simplified L will still find at least one match in Sj , it could happen that
it has more than one possible match. This would violate the property Sj ⇒r S̃j . To overcome
such problems, an ID is used that uniquely identifies each node. Then a match of L is only
possible if the matched vertices have the required ID. Hence, the simplified transformation will
have the required property Sj ⇒r S̃j , too.

The result of the simplification is that L does not necessarily cover Sj completely since vertices
and edges have been pruned in K. In the extreme case of Sj being equal to S̃j the transformation
r would feature empty sub-graphs L, K, and R. In general, the complexity of the transformation
increases as the differences between Sj and S̃j increase. Thus, the smaller the differences are
the more likely is a successful application of r to Xj+1.
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6.3.2 Generating Unique IDs

Applying the transformation r to Xj+1 needs special precautions. The IDs mentioned above
are a problem, since Xj+1 is generated via a MDA model transformation that is not aware of
forward merging. The vertices in Xj+1 have completely different IDs than those in Sj and S̃j .
Thus, the transformation r could not be applied to Xj+1.

The IDs of Sj and Xj+1 differ completely. Those of Ij and Ij+1 stay the same. Since the
transformation m is a MDA model transformation there exists a mapping between vertices of
Ij and Sj based on the mapping meta model R. Instead of using the ID of a vertex in Sj ,
the ID of the corresponding vertice(s) in Ij can be used. Furthermore, the vertices that are
instances of the mapping meta class Ref ∈ VR are labeled. This label is included in the ID,
too.

Definition 6.2. I = (VI , EI) is a PIM and S = (VS , ES) is a PSM that has been derived from
I. The mapping graph R = (VI ∪ VS ∪ VR, ER) is structured as follows:

∀r ∈ VR ∃ (v, r) ∈ ER with v ∈ VI .

∀r ∈ VR ∃ (r, v) ∈ ER with v ∈ VS .

Hence, every r ∈ VR has exactly one outgoing and one incoming edge.

Then the ID of a vertex s ∈ VS is defined as the set

ID(s) = {(v, `) | ∃ (v, r), (r, s) ∈ ER ∧ ` is the label of r}.

Following this definition, a vertex s1 of Sj and a vertex s2 of Sj+1 correspond if ID(s1) =
ID(s2). The most important property of the ID function is that the computed set does not
reference the PSM any more. The resulting ID builds entirely on the PIM and labels on edges
of VR. Furthermore, it is important to notice that the mapping graph connects every vertex in
VS via at least one vertex r ∈ VR with a vertex in VI . Otherwise, the ID function could return
an empty set for some vertices of VS .

The basic idea of the ID generation is that the ID describes why an element in Sj has been
created. If an MDA model transformation is repeated, the generated elements will always have
the same ID if they have been created for the same reason. To achieve uniqueness of this ID,
it is important that the labeling of the mapping graph is chosen cleverly. Chapter 7 explains
how the mapping graph and its labels can be chosen to guarantee unique IDs.
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6.3.3 Application of the rule r

The rule r that applies the changes between Sj and S̃j to Xj+1 yielding Sj+1 requires a special
application algorithm. It could happen that some vertices that have been present in Sj are no
longer present in Xj+1. If this vertex is present in the search pattern L of r then r cannot be
applied to Xj+1 because the vertex is missing.

This problem can be tackled with the help of fuzzy sub-graph matching and the spanning
tree of the model. If a vertex of L could not be mapped to a vertex in Xj+1, such a vertex is
introduced temporarily in Xj+1 and marked with a flag. Thus, L will always find an occurrence
in Xj+1 and the transformation can take place. After the transformation the spanning tree
over the generated model Sj+1 is determined. For every vertex in Sj+1 that has been marked
with a flag previously the entire sub-tree with regard to the spanning tree is deleted. Hence,
the temporarily inserted vertices are removed together with all of their owned elements.

An example illustrates this idea. The PIM model Ij contains a set of components. These are
translated into classes and state charts in the PSM model Sj . Finally, the developers modify Sj

resulting in S̃j . During the next iteration one component is removed from the PIM, hence, Ij+1

misses a component. The PSM Xj+1 generated from Ij+1 misses the corresponding class and
state chart. Hence, to apply the transformation r the class and its state chart are temporarily
added to the model as dummies. After the application of r these dummies and all additional
elements added to them during the transformation are removed.

The hitch of this approach is that the resulting model Sj+1 may have broken semantics since
the way r has been applied is rather crude. Thus, the UML tool should tell the developer that
certain elements of S̃j could not be re-applied. Then the developer has to take care of the
problem. Nevertheless, the algorithm tried to re-apply the differences between Sj and S̃j as
good as possible.

Neither reverse engineering nor forward merging provide a 100% solution for the round-trip
engineering problem. Vanilla reverse engineering has the problem that loss-less transformation
from PSM to PIM is usually impossible. Forward merging has an inherent danger of con-
flicts. However, the same applies to all source code version management systems such as CVS
[CVS03], Subversion [Sub03], or Perforce [Per03]. If multiple actors modify the same system
independently, synchronization may end up in conflicts. Nevertheless, version management
became an integral tool for developer teams despite this problem.

6.4 Preserving Diagrams

Round-trip-engineering should not loose information. Such information is not only located
in the models themselves. Developers invest a significant amount of time in arranging the
elements visually in diagrams. If the model transformation m that transforms Ij+1 into Xj+1

would invalidate all diagrams then the entire approach is questionable. No efficient algorithms
for generating “nice” diagrams are known. For most kinds of diagrams optimizations of their
layout is NP-complete. Hence, the goal is to display the new model Sj+1 using the diagrams
of the old model S̃j . However, it may happen that Sj+1 lost some of the vertices present in
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S̃j . Furthermore, Sj+1 can contain new additional vertices. Thus, the old diagrams have to be
automatically adapted to the new model Sj+1.

Diagrams can be seen as an instance of a special meta model. In fact UML 2.0 will contain
a specification that describes a meta model for diagrams [OMG03h]. Such a diagram would
be directly linked to the model. Since the diagram meta model follows definition 5.1 it is
possible to determine the spanning tree of a diagram. If a vertex that has a representation
in the diagram is missing in Sj+1 then its representation is removed from the diagram. Due
to the spanning tree all elements visually hosted inside the removed graphical element can be
removed, too.

If a new vertex is present in Sj+1 then the diagram should show it automatically. Therefore,
Kase’s event bus can be used. Whenever a new element shows up in the model, an event is
generated and Kase tries to adapt the diagram. Hence, every element present in Sj+1 but not
in S̃j will cause an event to be sent. This event in turn will trigger Kase’s diagram objects and
they will try to reflect the change propagated by the event.
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Kafka

The previous chapter discussed the pros and cons of imperative and rule-based model trans-
formation languages. Kafka [WUG03a] is a transformation language that unites advantages of
rule-based and imperative approaches. Kafka is based on graph transformation techniques. A
Kafka transformation rule consists of an orchestrated set of graph transformation rules. Each
rule may be enriched with Python expressions. Graph transformation is useful to change the
structure of a graph. This graph is a model (see definition 5.3), hence, its edges and vertices are
labeled. In contrast, an imperative programming language such as Python is very well suited
to work on the labels attached to the graph vertices.

One of the most important goals of Kafka is to enable developers who are not experts in the
PIM and PSM meta model to implement model transformation. Therefore, Kafka is a visual
transformation language. Its notation is based on the notation of the PIM and PSM.

7.1 Notation

The notation of transformation rules as shown in Figure 7.1 is not very intuitive. Developers
need to understand the meta model of the PIM and PSM to understand what such a transfor-
mation rule does. The problem is that instances of all meta classes are depicted in the same
way: the name of the meta class (or a shortcut thereof) is put inside a circle. For example, an
instance of the Realization meta class is depicted just like the instance of the Interface meta
class. Instead, most modeling languages provide a special graphical notation for instances of
certain meta classes. A Realization is depicted as a dashed line with an arrow and an interface
is depicted as a box labeled with the string �interface�.

Requirement 3.2 demands that the notation of a transformation rule should be based on the
notation of the PIM and PSM. Thus, the graph structure shown in Figure 7.1 should be
replaced by the respective PIM and PSM notation. The result is shown in Figure 7.2. Both
transformation rules share the same semantics but their notation is different. Only the idea of
drawing a rule as a box with three compartments has been retained. The first compartment
contains elements of the PSM that are part of the search graph L (see definition 4.2) and is
called PSM search pattern. The compartment at the bottom is called PSM replace pattern
and contains elements of the PSM, too. They replace the elements of the PSM search pattern
when the rule is applied. Hence, these elements are part of the graph R. The compartment
in the middle contains the PIM search pattern. The PIM is invariant throughout the entire
transformation. Hence, the elements in this compartment are part of the graph K.
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C = Interface (PSM)

Figure 7.1: Transformation rules using graph-style notation

The mapping mapLR follows from the fact that that two model elements (one in the PSM
search pattern, the other in the PSM replace pattern) share the same name. For example, in
the right rule in Figure 7.2 two classes share the same name. This implies that the element
from the PSM search pattern (graph L) is mapped to the element of the PSM replace pattern
(graph K) via mapLR. If an element in the PIM search pattern and one in the PSM replace
pattern are equally named, the name attribute of the PSM element will be set to the name
of the PIM element. This is just for convenience because names are usually retained during
model transformations. K is represented by the PIM search pattern. The mapping mapKR is
not required since K has already been isolated from L (the PSM search pattern) and R (the
PSM replace pattern). This simplification has been discussed in subsection 5.3.1.

The mapping graph needs a graphical notation. In Figure 7.1, the edges of the mapping graph
are depicted as labeled lines crossing the border of the compartments. Figure 7.2 renders the
edges of the mapping graph as dashed lines with an open arrow. The labels are depicted next
to these lines.

Finally, the chaining of transformation rules as introduced in subsection 5.3.2 requires a no-
tation. Drawing lines between different transformation rules as depicted in Figure 7.3 is no
viable solution. Different rules may be shown on different diagrams. In this case the lines
would not be visible. Therefore, the idea is to utilize the name. If an element of one rule
wants to refer to an element of another rule, the name of the other rule is prefixed. This is
illustrated by Figures 7.3 and 7.4. In Figure 7.4, Rule1 references two times an element called
Rule0::Component. References made in the PIM search pattern always refer to an element in
the PIM search pattern of the referenced rule. The same principle applies to the PSM replace
pattern. Its elements must only reference elements in another PSM replace pattern.

References between elements in two PSM search patterns are not allowed. References between
a PSM replace pattern and a PSM search pattern are allowed. Elements in the PSM search
pattern are part of the graph L. Either they have a corresponding element in graph R defined
by the mapping mapLR or not. If not, this element is deleted by this rule. It would not make
sense to refer to an element that is deleted before the referencing rule is executed. If the element
is not deleted, it has a correspondence in graph R. Hence, there is no drawback in prohibiting
references between two PSM search patterns.
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Figure 7.2: Transformation rules using UML-style notation

7.2 Object Diagrams

The notation of a Kafka rule is always based on the notation of the PIM and PSM. This is a
great advantage because rules are easy to read if you understand the PIM and PSM notation.
In some rare cases this approach can cause more problems than it actually solves, especially if
the rule developer has detailed knowledge of the meta model. For such experienced developers
Kafka features a special notation for rules that is closer to the PIM and PSM meta model. One
or multiple patterns of a rule can be notated as object diagrams. In UML, object diagrams are
used to depict instances of a model, i.e. objects of the M0 meta level. In Kafka, object diagrams
are used to depict instances of a meta model, i.e objects of the M1 meta level. Figure 7.5 shows
two equivalent Kafka transformation rules. Only their notation is different. In the rule on
the right the two PSM patterns are depicted as a graph. The vertices are instances of meta
model classes and the edges are instances of associations on the meta model level. This is
comparable to the notation used in Figure 7.1. The major difference is that object diagrams
use UML standard notation while Figure 7.1 uses a notation that is more common in graph
transformation theory.

Figure 7.6 provides another example. Both rules change in every sequence diagram every
invocation of a function foo() into an invocation of bar(). The rule depicted on the left-
hand side of Figure 7.6 solves this task using the PSM notation. The rule on the right-
hand side performs almost the same task using object diagrams. The difference between both
rules is that the one using object diagrams changes synchronous and asynchronous invocations
while the other one changes only synchronous invocations. The reason is that the rule on the
left-hand side shows a synchronous invocation. Therefore, the search pattern will not match
asynchronous invocations. The rule on the right-hand side does not make any assumption about
the isConcurrent attribute of the action object. Hence, it matches both invocation modes.
This illustrates that object diagrams in Kafka rules can save some work if the developers know



70 Chapter 7 Kafka

X X Y ZV

A A B C

Impl Iface

Rule 0 Rule1

X = Component
A = Class

Y = Realization
Z = Interface (PIM)
B = Generalization
C = Interface (PSM)

Figure 7.3: Chained transformation rules without UML-style

Figure 7.4: Chained transformation rules in UML-style

the meta model.

However, object diagrams in Kafka rules are more than just shortcuts for experienced develop-
ers. They are mandatory if either the PSM or the PIM – or both – have no associated graphical
notation. Section 12.5 introduces a meta model for CORBA CCM. This meta model does not
have a graphical notation yet. Using object diagrams a graphical notation is not required for
the use of Kafka.

7.3 Mapping Graph

In subsection 6.3.2 the importance of the mapping graph for round-trip engineering has been
highlighted. The mapping graph must be shaped in such a way that the generated IDs of two
different vertices in the PSM are different.

ID(s1) = ID(s2) ⇔ s1 = s2
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Figure 7.5: Two equivalent Kafka rules using different notation

S = (VS , ES) = PSM
s1 ∈ VS = vertex of the PSM
s2 ∈ VS = vertex of the PSM
ID = as in definition 6.2

The ID should ideally describe why a vertex in the PSM has been created. The reason why a
Kafka transformation created a PSM vertex consists of:

• the rule that has been applied while the vertex is created,
• the model element in the replace pattern that caused the vertex to be created,
• the PIM vertices that matched the PIM search pattern, and
• the PSM vertices that matched the PSM search pattern.

For every vertex v of the PIM that matched the search pattern, a new vertex rv can be
introduced in the mapping graph R. The vertex rv is connected via one edge with v and via
the other edge with the created PSM vertex s. The label of rv is the name of the Kafka rule.
The PSM vertices that matched the PSM search pattern cannot be included in the same way
as the PIM vertices since the mapping graph must not connect two PSM vertices. These PSM
vertices have been created by previous Kafka rules. Hence, they already have a unique ID. This
ID can be encoded as a string to serve as a label for a new vertex rv in the mapping graph.
This vertex rv is connected to the top-level vertex of the PIM, hence, the vertex that is the
root of the PIM’s spanning tree. In summary, for every vertex v in the PSM search pattern, a
new vertex rv is added to the mapping graph R. The vertex rv is connected via one edge with
the top-level PIM vertex and via the other edge with the created PSM vertex s. The label of
rv is ID(v) followed by the rule name.

To distinguish PSM vertices created during the same application of the same rule, the model
element in the replace pattern that caused the vertex to be created must be known and its
identity must be encoded in the mapping graph. Each model element in a Kafka rule has a
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Figure 7.6: Two almost equivalent Kafka rules for the manipulation of sequence diagrams

unique numeric ID (not to be confused with the ID function of definition 6.2) that has been
created by the UML tool (i.e. Kase) during construction of a rule. This ID is appended to the
label of all vertices r of the mapping graph if r is connected to the created PSM vertex s.

Figures 7.7 and 7.8 illustrate the creation of the mapping graph. The PIM search pattern of
the rule contains three vertices (interface, component, port) and the PSM search pattern one
vertex (an interface). The rule creates one vertex (a class). Therefore, the mapping graph
will have four vertices connected with this class. Three end up in the three PIM elements as
shown in Figure 7.8. Each vertex of the mapping graph is displayed as a dashed line with an
arrow. The label is visible, too. It contains the name of the rule (here: Rule) and the ID (here:
Component) of the rule element that caused the creation of the PSM class. The vertex of the
mapping graph that has been created because of the PSM search pattern’s vertex is connected
with the PIM top-level vertex – the PIM model itself. Its label has an additional prefix: the
stringified ID of the PSM vertex that matched the search pattern.

This creation of the mapping graph yields unique IDs for every created PSM vertex. A short-
coming of this automatic approach is that two vertices in PSM models Sj and Sj+1 may have
different IDs although they have been created for the same reason. This can happen if two
different rules do almost the same. For example, one rule maps a PIM component without
provided ports to a PSM class. A second rule maps a PIM component with provided ports
to a PSM class. If the PIM component in PIM Ij did not have provided ports, the first rule
applied. If the new version Ij+1 features a provided port, the second rule applies. This results
in different IDs for the two generated classes in Sj and Sj+1 although they should ideally have
the same ID.

In such cases the rule developer must model the mapping graph manually. Both rules could
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Figure 7.7: A Kafka transformation rule

create a vertex r labeled with some string such as IMPL. The vertex r is connected with the
PIM component and the PSM class. In this case it does not matter whether the first or the
second rule is applied. The ID of the generated class will be the same.

7.4 Embedded Python

The notation presented in section 7.1 and the Python-based transformation (see subsection 4.5.4)
are complementary techniques. Many transformation problems can be easily addressed with
graphical rules. Others are better tackled with a textual language. Kafka combines both ap-
proaches. The structure of a Kafka rule adheres to the principles of graph transformation. In
addition, Python expressions can be embedded in rules. These embedded Python expressions
serve three purposes.

• Python expressions can be used to customize the search pattern matching process. Hence,
they act as application constraints in the sense of definition 4.2.

• They can apply further transformations to the PSM every time the search pattern match-
ing succeeded.

• They can be used to compute attribute values – i.e. labels.

7.4.1 Application Constraints

The first kind of embedded code is a form of the application constraint appl mentioned in
definitions 4.2 and 5.6. Such an expression returns a boolean value. If the return value is true,
the rule is applied, otherwise not. The expression is always evaluated after an occurrence of
the search patterns has been found and before the PSM search pattern is replaced by the PSM
replace pattern.

All examples provided so far act on structural properties and typing of the model. In terms
of definition 5.3 this means that the vertices V , the edges E, and their typing functions tV
and tE are required during application of transformation rules. Embedded code can be used
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Figure 7.8: The result of one application of the rule shown in Figure 7.7

to fine tune the search pattern mapping by including the attribute values, i.e. the labels of the
vertices.

Figure 7.9: Example of an application constraint

The UML concept of a precondition is used to model application constraints. The embedded
Python code can refer to elements in the search patterns by name. Figure 7.9 provides an
example. The transformation rule searches for getter and setter functions of an attribute and
removes them. For example, the expression Getter.name() refers to the name of the operation
that matched the model element Getter of the PSM search pattern.

Application constraints cannot access elements in the replace pattern, because they do either
not exist when the patterns have been matched (because they are created during the application
of the rule) or they have a correspondence in the target pattern (provided by the mapping
mapLR). In the first case it would be an error to attach an application constraint to an element
that is created only if the rule was applied. In the second case the element could as well be
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attached to the corresponding element in the search pattern.

7.4.2 Fix Up Expressions

Graphical transformation rules allow to change the structure of a model, hence, the edges
E, vertices V , and the typing functions tV and tE . However, the vertex labels need special
treatment, because vertices and their labels are simply copied from the replace pattern into
the PSM. The label of a vertex x includes a value for each meta attribute of the meta class
tv(x), i.e. for each meta attribute aM(tv(x)). Therefore, these meta attribute values are static
from the viewpoint of a graph transformation engine. This means that they do not depend on
the meta attribute values of the elements that matched the search pattern. Fix up expressions
provide means for dynamic meta attribute values. However, if a fix up expression creates a new
model element – a procedure that is strongly discouraged – it must build the reference graph
manually. Otherwise this may break the forward merging algorithm.

In Kase, fix up expressions are sequences of Python statements. These statements are exe-
cuted after the replace pattern has been glued in and connected with the model. The Python
statements can access the elements of all three patterns.

Figure 7.10: Example of a fix up expression

The example in Figure 7.10 creates a UML model element named QoS_parameter in the PSM
if the component realizes the contract type MyContractType. The fix up expression sets the
value for the meta attribute InitialValue of the created model element QoS_parameter to
the value of the PIM QoS parameter specified in the contract.
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7.4.3 Attribute Expressions

All text attributes of elements in the replace pattern of a rule are fed through the Python
interpreter. This interpreter searches for Python expressions located between two @ characters.
The expression is evaluated and replaced in the text by the result of the evaluation. For
example, the string

The number @21 * 2@ is the product of 21 and 2

will be replaced by

The number 42 is the product of 21 and 2.

Such Python expressions can access the PIM and PSM model elements that matched the current
rule and the elements created by the PSM replace rule. Figure 7.11 provides an example. It
adds two operations – a constructor and a destructor – to a class. Constructors and destructors
must have the same name as their class. Therefore, the expression @Class.name()@ has been
inserted in the attribute value of the two operations. This expression is replaced by the name
of the class whenever the transformation rule is applied.

Figure 7.11: Example of attribute expressions

From a theoretical point of view attribute expressions are superfluous. They can always be
replaced by fix up expressions. They are just provided for convenience.

7.5 Orchestration

A Kafka transformation contains several Kafka transformation rules (see definition 5.6). These
rules are orchestrated. The orchestration determines in which order the rules are to be applied.
In contrast, graph rewriting theory does not provide an orchestration. There it is the task of
the rewriting engine to determine the next applicable rule. As discussed in subsection 7.6.1
this may lead to ambiguousness. Therefore, Kafka introduces the concept of orchestration.

The orchestration is depicted as a UML state chart. The major difference is that the states are
transformation rules. Figure 7.12 gives an example.
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Figure 7.12: Simple orchestration without alternative paths

Each transformation starts at the initial state vertex and traverses the state machine until the
final state vertex is reached. When a new state – e.g. rule – is entered, this rule is executed.
Then the outgoing edges are checked. An edge may have a Python expression that returns a
boolean. If it returns true, this edge is traversed. Otherwise the unlabeled edge is traversed.
To guarantee the termination of the algorithm 7.1, the orchestration must not contain loops.
Furthermore, every vertex – except the final state vertex – must have exactly one outgoing
edge without a Python expression. This is the default edge. Typically, the orchestration just
puts the set of rules in an absolute order as shown in Figure 7.12 The rules are applied one
after the other. Sometimes it is required to introduce an alternative path through the set of
rules. For example, the same Kafka transformation could be used for internal projects of a
company and for customer projects. Depending on the type of project, some differences may
be necessary. Instead of maintaining two transformations, the same transformation can detect
the kind of project and choose different transformation rules in some places. This is illustrated
by Figure 7.13.

Figure 7.13: Orchestration with one alternative path

7.6 Transformation Algorithm

A complete Kafka transformation consists of a set of rules and their orchestration. The following
definition provides a precise definition.
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Definition 7.1. A Kafka transformation T is a directed acyclic graph T = (V,E).

The vertices V are MDA model transformation rules according to definition 5.6.

The edges E represent the orchestration.

V contains two dedicated vertices: an initial state vertex and a final state vertex f .

The edges E ⊆ V × V can be labeled. A label is a boolean Python expression that acts on an
input model G.

For each edge e the function `e : G 7→ B denotes whether the Python expression returns true
when applied to graph G. An edge may be unlabeled. In this case `e returns always true.

For every v ∈ V \ {f} the property

| { e | e = (v, vi), vi ∈ V, e is not labeled } | = 1

must hold. Hence, each vertex except f has exactly one unlabeled outgoing edge. Furthermore,
the Python expressions must be mutual exclusive for every input model G.

∀ G : | { e | e = (v, vi), vi ∈ V, e is labeled, `e(G) = true } | ≤ 1

The Kafka transformation algorithm transforms an input model G into an output model H by
applying the Kafka transformation T .

G ⇒T H

G and H are models in the sense of definition 5.3

Algorithm 7.1. The Kafka algorithm transforms an input model G by applying a Kafka
transformation T = (V,E).

T is by definition a directed acyclic graph and its vertices V are MDA model transformation
rules according to definition 5.6.

• r := initial state vertex ∈ V

• determine e = (r, ri) ∈ E for which `e(G) = true

• if e = none then find the unlabeled edge e = (r, ri) ∈ E
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• r := ri with e = (r, ri)
• while r 6= f (i.e. the final state is not reached)

– M := { J | J ⊆ G ∧ J is a match of Lr in G }
– remove all J ∈ M for which applr is not satisfied (see subsection 7.4.1)
– foreach J ∈ M

∗ if J is still a match of Lr in G and applr is satisfied

· transform J ⊆ G with rule r, i.e. G ⇒r Gtmp

· apply fix up expressions to Gtmp (see subsection 7.4.2)
· G := Gtmp

G = the model that is to be transformed
T = (V,E) = a Kafka transformation
r ∈ V = (G,S,R, L,R,K, mapKR,mapLR, appl)
f ∈ V = final state vertex
applr = application constraint appl of the current rule r
Lr = left-hand side L of the current rule r
M = a list of sub-graph matches in G

The algorithm traverses the vertices of V . Each vertex is a model transformation rule that
is applied when the vertex is entered. The application of the rules is realized in two steps.
First, all possible matches M are determined. Then a loop iterates over the matches in M and
modifies G step by step. Alternatively, one could imagine that the algorithm finds one match,
modifies G, searches the next match, and so on. As shown in the next section the chosen
approach guarantees that a Kafka transformation always terminates.

7.6.1 Termination and Unambiguity

A complete graph transformation contains a set of transformation rules. In general, graph
transformations do not necessarily describe the order in which these rules are applied. A rule
r = (L,R,K,mapLR,mapKR, appl) is applied if the left-hand side L could be found and if
the application constraint appl is satisfied. The inherent problem of this approach is that
ambiguities become more probable. Furthermore, a graph transformation does not necessarily
terminate. This is shown by the following two examples. A set of rules

P = {r1, r2}

is applied to a start graph G0. The following derivations are possible.

G0 ⇒r1 G1 ⇒r2 G2
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G0 ⇒r2 G3 ⇒r1 G4

G1 may differ from G3. However, G2 and G4 can be equal nevertheless. If G2 and G4 are
final derivations and G2 6= G4 then the transformation is ambiguous. A graph transformation
system that does not allow such ambiguous derivations is called confluent.

A non-terminating transformation can be constructed as follows. Let r1 replace a vertex labeled
A with a vertex labeled B. Let r2 replace a vertex labeled B with a vertex labeled A. If G is a
graph with one vertex labeled A then

G0 ⇒r1 G1 ⇒r2 G2 ⇒r1⇒r2 G3 ⇒r1 · · ·

is an infinite derivation.

Research in the field of graph transformation theory has investigated the problem of ambiguity
and infinite derivations. Termination in general is undecidable [Plu98]. However, as shown
later in this section the termination of Kafka rules is decidable. Some approaches exist to
detect ambiguity of graph transformation systems. They are based on critical pairs [Plu93].

Definition 7.2. Let ri = (L,R,K,mapKR,mapLR, appl) be a set of transformation rules, for
i = 1, 2. Let gi be a set of morphisms. A graph G is constructed such that G := g1L1 ∪ g2L2.
A pair of direct derivations G1 g1,r1 ⇐ G ⇒g2,r2 is called a critical pair if g1L1 ∩ g2L2 6=
g1K1 ∩ g2K2 and if either r1 6= r2 or g1 6= g2.

Hence, a derivation pair is critical if the left-hand sides of r1 and r2 overlap and if one rule
removes a vertex or edge from this overlap. If g1L1 ∩ g2L2 = g1K1 ∩ g2K2, the overlap is not
altered and the pair is not critical. In Kafka, the detection of critical pairs is reduced to the
special case r1 = r2 since the orchestration determines the order in which rules are to be applied.
However, it can happen that g1 6= g2, i.e. the left-hand side of one rule has different matches in
G. In this case, a critical pair is possible. This is proven by the following example. The graph
G0 contains two vertices labeled with A and one labeled with B. The graph has only one edge.
G0 connects one A vertex with the B vertex. Thus, the two A vertices can be distinguished.
The rule r searches two A vertices and removes the first one. Hence, the algorithm has two
possibilities for the first application of r. After the first application G0 ⇒r G1 the graph G1

contains only one A vertex. This implies that G1 is irreducible – r cannot be applied a second
time. However, which A vertex has been removed is a random outcome. Therefore, a critical
pair exists and the transformation system is not confluent.

[Plu93] shows how to detect critical pairs to decide whether a transformation system is conflu-
ent. Furthermore, [Plu93] proves that a finite and terminating (hyper-)graph transformation
system without critical pairs is strongly confluent. However, a confluent, finite, and termi-
nating transformation system can contain critical pairs. Thus, enforcing the elimination of
critical pairs can guarantee that the transformation system is confluent, but this constraint is
too restrictive. It may rule out confluent transformation systems. [Plu93] even showed that
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it is undecidable in general whether a finite, terminating (hyper-)graph transformation system
is confluent. A further source of complications is Kafka’s use of Python. The Python code
can insert, remove, or modify the graph. This has proven to be a useful feature in practice.
The drawback is that it is impossible to decide a priori what a Kafka rule will do since that
would require to understand all implications of the embedded Python code. The problem is
illustrated by the following example. Let G0 be defined as above. The rule r searches one A
vertex and labels it with k. The value k is increased by the Python code by one after each
application. Hence, k is a side effect introduced by the Python code. In the derived graph one
vertex will be labeled with 1 and one with 2. Which A vertex is relabeled to 1 is accidentally.
Therefore, the detection of critical pairs would have to ignore the embedded Python code.

In summary, Kafka does not provide means to detect the ambiguity of a rule. Especially the
embedded Python code renders an automatic detection of ambiguousness impossible. This is
a tradeoff between ease of use on one hand and verification capabilities on the other hand. In
the context of this thesis the transformation is a tool. Therefore, the ease of use got precedence
over verification capabilities. If a developer implements a transformation directly in Python,
he can face the same problem. The simple loop

for x in doc.getClass() :
transformClass(x)

can already be ambiguous if transformClass has unexpected side effects. However, the prob-
lem of termination can be solved for Kafka transformations.

Proposition 7.1. The Kafka transformation algorithm 7.1 terminates for every Kafka trans-
formation T and for every input model G.

Proof. T = (V,E) is directed and acyclic by definition.
⇒ Each directed path in T visits a finite number of vertices.
⇒ The outer loop of the algorithm exits.

G∗ is the current model – e.g. a graph – and a vertex r ∈ V (i.e. a Kafka rule) is entered.
Then r is applied as often as possible.

G∗ ⇒r G1 ⇒r G2 ⇒r G3 ⇒r · · ·

The algorithm starts by determining the set M of all possible applications of r to G∗. G∗ has
a finite number of vertices ⇒ M is a finite set.
⇒ the sequence of derivations terminates, because r is applied at most once for each J ∈ M .
⇒ the inner loop of the algorithm exits.
⇒ the algorithm terminates.

The proof relies on the fact that the algorithm first determines the set of matches M and
executes the derivations afterwards for every J ∈ M . If the algorithm would instead find one
match of Lr in G, execute G ⇒r G1, search the next match, execute G1 ⇒r G2 and so on, then
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the algorithm does not necessarily terminate. Each application of the rule r could introduce a
new sub-graph that is a match of Lr in G. Hence, the rule r would be applied infinite times.

7.6.2 Time and Space Complexity

The termination property of the algorithm leads to the following proposition.

Proposition 7.2. The size of the resulting graph H of a Kafka transformation T

G ⇒T H

is polynomial in the size of G if the size of T is treated as a constant. Furthermore, the Python
fix up expressions of T are assumed not to create new vertices and to execute in constant time.

Proof. T = (VT , ET ) has a finite number of rules. t :=| VT | can be treated as a constant.

Each rule r ∈ VT has a left-hand side L = (VL, EL). The maximum of all | VL | is treated as a
constant called l in the following.

G = (VG, EG) is the input graph and n :=| VG | is treated as a variable.

If a rule r is applied to the graph G, a constant number of maximum c additional vertices and
edges is added. It remains to be proven that r is applied O(nl) times. Then the added vertices
and edges are in O(t · c · nl) with constants c, l, and t.

In the worst case each vertex in VL matches each vertex in VG. This leads to

n!
(n− l)!

= n · (n− 1) · · · (n− l + 1)

possible matches. The correctness of the proposition follows from the estimate

n!
(n− l)!

≤
l∏

i=1

n ∈ O(nl)

and the fact that l is a constant.

The worst case estimate in the above proposition is weak, because the constant l can become
very large. Although l � n is usually the case. The most sensible conclusion of the estimate
is that a malignant Kafka transformation can easily exceed the available memory. The same
approximation can be used to estimate the time complexity of the algorithm.
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Proposition 7.3. The time complexity of algorithm 7.1 is polynomial in the size of input
model G if the size of transformation T is treated as a constant.

Proof. The algorithm iterates over all rules r and for each rule it searches matches of the left-
hand side L of the rule in the input model G. Finding the matches is the expensive part.
Adding, modifying, or removing edges and vertices from G requires constant time for each
application of a rule. From proposition 7.2 follows that the maximum number of matches
throughout the entire transformations is in O(t · nl) where l and t are constants. If the
algorithm simply tries every possible match, the application of each rule is polynomial in n.

Once again, this worst case estimate applies only to malignant transformations. The average
is lower because the initial assumption that every vertex of a rule’s left-hand side L matches
each vertex in the input model G is usually wrong. For example, if L searches for a class and
an operation, it has two vertices. The class vertex will only match those vertices in G that are
classes, too. The same applies to the operation vertex. Thus, the initial assumption is very
pessimistic. In practice the speed of transformations did not impose a problem. However, it
was observable that the size l of the left-hand side L of a rule has significant impact on the
runtime. This effect is in line with the result of proposition 7.3.
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Tool Chain

The MDA requires a specialized tool chain [WUG03d, WUG03c], including tools such as model
editors, model transformers, model versioning tools, specialized debuggers, etc. If developers
spend too much time fighting with inappropriate tools, the MDA will not speedup software
development. Instead, the MDA would just introduce an additional overhead. Therefore, a
specialized tool chain for the presented methodology has been developed. Figure 8.1 shows the
different components of the tool chain and how they work on the models and source code.

The tool chain starts with an editor that allows developers to create the PIM. Then the model
transformation follows. The transformation yields (internally) a QoS-agnostic PSM. This model
is never visible to the user. It is just an intermediate model. The QoS aspects have to be woven
with this intermediate model. The outcome is the QoS-aware PSM. Once again, a model editor
is required to extend the PSM (if needed). If the PIM is an executable model, this step may be
no longer required. However, executable models are still subject of intensive research. In the
meantime, the generated PSM can be treated as kind of a design and implementation skeleton
that has to be extended with respect to design and source code. Then, the PSM is input to a
code generator. The code generator creates source code and perhaps deployment descriptors
based on the PSM’s deployment diagrams. The generated source code is loaded by an IDE.
The IDE controls editing of the source code, compilation, and physical deployment.

The PSM QoS aspects must be created by experienced QoS developers. Hence, another editor
is required for this task. In Kafka, these QoS aspects are represented as transformation rules. A
Kafka transformation rule is itself a model. Thus, editing QoS aspects requires another model
editor.

8.1 Model Editing Tool

From a user’s point of view the most important tools are the model editing tools. A model
editor is required for the PIM and for the PSM. If the PIM is standard UML extended with
some profiles, a standard UML tool can serve for both kinds of models. However, if the PIM
is built on a meta model different from UML or on a UML meta model extension, special tool
support is required. Some commercial tools such as ArcStyler [Int03] use different editors for
the PIM and the PSM. The drawback of this approach is that users have to learn two editors.

The tool chain developed throughout this thesis solves this problem by offering one model
editing tool (called Kase) that is capable of editing standard UML models as well as models
based on other meta models. The benefit is an easier to learn tool chain. Furthermore, the
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model transformation itself is integrated in the model editor. Developers do not need to switch
from one tool to the other. The entire MDA process is hidden behind a consistent graphical user
interface. All activities related to source code editing, compilation, and physical deployment
are left to industry standard IDEs (Integrated Development Environment).

8.1.1 Extensibility

Kase has built-in support for UML 1.4. Furthermore, it supports some extensions introduced
by UML 2.0, such as the new component model and HMSCs. Kase is extensible in various
ways. It supports UML profiles. A profile is a collection of stereotypes and tagged values.
They can be used to specialize concepts of the UML. For example, a CORBA CCM profile can
specialize the concept of an interface by stereotyping it as an IDL interface. The drawback of
profiles is that they cannot really add new concepts to the UML. However, some developers
are tempted to abuse this extension mechanism. Instead of refining the semantics of a UML
construct, they redefine it, which is not the original extension of stereotypes.

Another drawback of UML profiles is the ugliness of the resulting diagrams. Text sequences
of the type � StereoTypeName � are scattered across the entire diagram. To overcome this
problem, Kase supports notation plugins. Such plugins are hooked into Kase’s diagram engine.
If a stereotyped element is to be displayed or edited, the plugin can offer a special notation or
editing support. This way standard profiles can be used and at the same time the notation can
be significantly improved.

Especially for PIMs meta model extensions may be required. Kase has no built-in meta model.
Instead, the meta model is read at runtime from an XML file. Kase’s core is of course not able
to display instances of the new meta classes in diagrams. Plugins solve this problem. They
add notation and editing support for meta classes which are not part of standard UML.

Kase can store the PIM and the PSM in one physical model. To achieve this, both meta models
are merged into one combined meta model.

8.1.2 Editing Kafka Rules

The merged meta model H (see definition 5.5) is especially important for the editing of Kafka
transformation rules. Each rule uses elements of the PIM and the PSM. Furthermore, the
execution of a model transformation builds the mapping graph between both models. Due to
the combined meta model this is quite easy to realize. If PIM editing and PSM editing are
realized by two non-combined meta models, editing of Kafka transformation rules would not
be possible.

Kase does not only allow the editing of PIMs and PSMs. It is used for editing Kafka trans-
formation rules, too. Kafka has its own meta model. This meta model contains concepts such
as a rule, search pattern, replace patterns and references between PIM and PSM meta classes.
Therefore, Kase operates on a combined meta model that merges PIM, PSM, and the Kafka
meta model into one meta model.

A Kafka transformation (i.e. a set of rules and their orchestration) can be compiled into an
executable Python script. A tool called SAMSA (named after the protagonist in Franz Kafka’s
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book Metamorphosis [Kaf16]) handles this compilation step. To execute the transformation,
the Python script is executed in Kase via a built-in Python interpreter

8.2 Python Scripting

Kase utilizes Python as a general purpose extension language. However, the primary task
of the interpreter is to execute the transformers, which SAMSA has compiled from Kafka
transformations. Other areas of application are source code and document generation, model
checking, and model refactoring [FBB+99, SPTJ01].

The Python interpreter is embedded in Kase. This design has some advantages over XMI based
tools. First of all, the diagrams adapt automatically to changes in the model. If the model is
first exported as XMI, then transformed and re-imported as XMI, the diagram information is
usually lost. This might be resolved with UML2 because the diagramming information itself
will be based on a meta model [OMG03h] and can be exported as XMI, too. However, it
would still be the task of the transformation to keep the diagramming information in sync with
the model changes. In Kase this is achieved without cooperation of the transformers. The
diagram objects listen to events generated by the model. As the model changes the diagrams
adapt step by step. This simplifies the development of transformers since the diagrams are
automatically kept in sync without increasing the complexity of the transformer. Furthermore,
it is possible to suspend transformations. This is important for debugging since the developer
of a model transformation can look at intermediate results. However, this feature has not yet
been implemented although it is technically possible.

Kase has a built-in undo/redo mechanism that listens to model and diagram changes. These
changes can be reverted and re-played. This mechanism works independently of the kind of
changes applied to the model or diagrams. Even complete model transformations or model
refactoring can be handled by the undo/redo mechanism.

Python is an interpreted language. Hence, the idea of adding an interactive Python shell to
Kase was a logical step. The advantage of an interactive shell is that developers can easily try
out some ideas. The diagrams adapt automatically after each command is completed. Hence,
the developer can follow step by step the results of each command. The interactive shell
provides advanced concepts such as command completion. Python’s reflection capabilities are
used to inspect the API and complete commands as they are typed in. This is especially useful
for those developers who do not know the meta model - and hence the Python API - by heart,
since the Python API generated for UML 1.4 contains 1461 methods.

The interpreter is used for model checking, too. A special Python script checks the UML
well-formedness rules. If the model is not well-formed, a dialog is displayed that highlights
the erroneous model elements and provides advice. New meta models require checking new
well-formedness rules. It is very convenient that the checking of these rules is not hard coded
in Kase.

Furthermore, Python expressions can be embedded in the model as a special kind of constraints.
Standard UML constraints have been designed to check instances of models, i.e. running
systems. As a typical example, a constraint might limit the balance of a bank account to a value
≥ 0. To evaluate such a constraint an instance of the bank account class is required. Evaluation
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of constraints happens at runtime. In contrast, the special kind of constraint checks the model
and not instances of the model. This constraint is kind of a well-formedness rule embedded in
the model. These constraints are usually created throughout a model transformation. This has
the following reason: The developers can change and enhance the generated PSM. For example,
they can deploy components in a deployment diagram. These changes cannot be controlled by
the model transformer. Nevertheless, the transformer can create special constraints that ensure
a correct deployment. For example, a constraint may enforce that some component is deployed
on three redundant machines in order to achieve a high availability. This idea is exploited in
section 12.1.

8.3 Model Access API

The embedded Python interpreter can access the model. This requires a special API. Two
different approaches for designing such an API are possible. Option one is based on reflection.
This approach provides full read access to the meta model. To access vertices, edges or labels of
the model the respective meta model constructs are required. The following example illustrates
this.

The fictive transformation engine – built on such a reflective API – has, for example, a reference
to an operation v ∈ V . The operating belongs to a model M = (V,E) that is based on the meta
model M = (VM, EM). To traverse the association between the operation and its parameters
(see Figure 5.1) the engine must find out the meta class of v. This will yield Operation. Then
it must find the required meta association between the meta classes BehavioralFeature -
which is a super class of Operation - and Parameter. Now the engine can query for all edges
in M that have the required type - where type means meta association. The advantage of this
approach is that the same API works for every meta model. The drawback is that the usage
of the API is very difficult as the above example demonstrated.

The second approach does not use reflection. Knowledge about the meta model is encoded in
the API. This simplifies the usage of the API. The example discussed above is repeated here,
this time using the non-reflective API. Again, the engine has a reference to an operation v ∈ V .
The API provides a function that allows traversing from an Operation to its Parameters. The
difference here is that only one API call is sufficient. In contrast, the reflective API required
three calls.

A drawback of the non-reflective API is that a new API is required for every new meta model.
Furthermore, meta programming is not possible. For example, there is no way of determining
the spanning tree Gspan of M independently of M. However, if M is known a priori then it is
possible.

The current implementation of Kase uses a non-reflective API. The reason for this decision
was the ease of use. The reflective API is very hard to use and its only major advantage is its
meta model independence. To cope with a special tool has been developed that automatically
generates a non-reflective Python API for a given meta model. The most important information
required for the generation of the API are:

• the meta classes VM,
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• the meta associations EM, and
• the meta attribute mapping aM(v).

This information is extracted from the meta model and implanted into the generated Python
API. The Python API allows for creation and deletion of model elements. Just as in the XML
Document Object Model [W3C98] (DOM) a Document class is used for this purpose. It has a
factory function for every meta class in VM. Furthermore, every meta class ∈ VM is represented
as a Python class. If two meta classes participate in a generalization relationship, this applies
to the respective Python classes, too. This approach causes some problems for languages such
as Java and C# since they do not have multiple inheritance. A discussion of this problem can
be found in [Bre02].

The Python pendant of a meta class v is equipped with getter and setter functions for all meta
attributes of v. This way aM(v) is encoded in the API. Furthermore, functions for traversing,
checking, appending and removing instances of meta associations are added. Hence, EM is
encoded in the API. An excerpt of the generated API illustrates this.

class GeneralizableElement ( ModelElement ) :
def isRoot( self ) :

...
def setIsRoot( self, value ) :

...

class Classifier ( Namespace, GeneralizableElement ) :
def removeFeature( self ) :

...
def removeFeature( self, element ) :

...
def hasFeature( self ) :

...
def hasFeature( self, element ) :

...
def feature( self ) :

...
def appendFeature( self, element ) :

...

The excerpt shows the getter and setter functions for the isRoot meta attribute. The mapping
of meta associations is shown by the feature meta association of the Classifier meta class.

The same design principles are used for a C++ model access library. This library is used inside
the modeling tool Kase because it is very fast. Just like the Python API it is generated from
the meta model following the same principles as the generation of the Python API. A code
comparison will show that statically typed languages of the C-family such as C++ [Str00], C#
[ECM01a], or Java complicate the API.

The following example shows how to create a list of all classes in the model. In Python this is
a one line job.
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[ x.toClass() for x in doc.allElements() if x.isClass() ]

In C-style languages the same construct would require many lines more. For example the C++
pendant looks like this.

list<UMLClass> result;
list<UMLModelElement> lst = doc.allElements();
list<UMLModelElement>::iterator it = lst.begin();
for( ; it != lst.end(); ++it )

if ( (*it).isClass() )
result.append( (*it).toClass() );

The Python statement and the C++ code block are built on the same API. Hence, the difference
in complexity is a direct result of the language differences. Python features the concept of
named parameters. When a new instance of a meta class is to be created then all attributes
are set to their default value. However, the factory function accepts a list of named parameters
to easily set the attribute values.

c = doc.createClass( name=’’MyClass’’, isAbstract=1 )

The same job implemented in C++, which does not have this feature, covers already three
lines.

UMLClass c = doc.createClass();
c.setName( ‘‘MyClass’’ );
c.setIsAbstract( 1 );

An advantage of a Python based model transformation process in contrast to XSLT or OCL
is that Python is a general purpose programming language. It can easily solve common tasks
such as file IO, XML parsing, HTTP requests etc. Therefore, model transformations could for
example contact a model repository to retrieve design or code fragments. Another application
is the creation of a transformation log that lists the transformation steps, warnings, and error
messages.

Throughout this thesis, many lines of source code have been written for traversing and mod-
ifying a model. It turned out that the use of Python reduced the code size and complexity
tremendously. However, a drawback is that type errors occur during runtime only. Neverthe-
less, C-style languages including C++, C# and Java should only be used if performance is a
very important requirement.
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8.4 Code Generation

Kase itself has no special support for any target programming language. If a target pro-
gramming language requires special modeling constructs, they can be added via profiles. For
example, Kase ships with a C# profile. Some frameworks such as Microsoft’s .NET may require
additional profiles. Its language-agnostic design implies that the core of Kase is not able to
generate source code.

Generation of source code is handled by special Python scripts. These scripts traverse the
model and generate source code for them. The real challenge is not to generate the source
code. Instead, the synchronization between a changed model and manually changed source
code is the real challenge. Usually this requires a parser for the target programming language.
Currently, Kase supports C# and Java as target programming languages.

Other Python scripts implement interoperability with IDEs. Currently, Kase ships with a
script for Microsoft’s VisualStudio.NET. This script can parse UML 1.4 style component and
deployment diagrams to determine which classes and other artifacts have to be bundled to
libraries or executables. This information is used to generate a complete VS.NET solution.
Hence, the output of source code generation is not just a bunch of source code files. The
code generation step can generate a complete solution including makefiles, source code, and
deployment descriptors.
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Chapter 9

Introduction

Part II focuses on the tooling problems of the MDA and presents a tool chain and the as-
sociated theoretical foundations. Part III discusses the modeling of QoS-enabled distributed
applications and how the tool chain can be utilized to transform PIM QoS contracts into their
PSM counterparts. The PIM is a model of the application described in terms of the application
domain. The purpose of the PIM is to provide a high-level platform independent view on the
application with a special focus on its QoS properties. The PIM shows which QoS properties
components offer and require. Therefore, the PIM is highly declarative. In contrast, the PSM
is a model of the system realization. It shows how the application realizes the QoS properties
on top of a specific target platform.

The platform independence of the PIM is especially useful for the modeling of heterogeneous
distributed applications. Usually, large scale enterprise applications operate in a heterogeneous
environment. Such applications are built on a set of distribution platforms, operating systems,
and programming languages. For example, web applications utilize three communication proto-
cols: HTTP between web browser and web server, CORBA/EJB/.NET Remoting between web
server and business logic, and a vendor specific protocol between business logic and database
engine. By definition, the PIM abstracts from this set of technologies. Hence, the PIM is not
obfuscated by details and scurrilities of the target platforms.

A large distributed application is composed of several services. The QoS properties provided
by one service may be limited by the QoS properties it perceives from other services. For
example, the response time of a web application is limited by the response time of the back-
end. Such dependencies are important in order to understand how the application performs.
By making such dependencies explicit in the model, developers can more easily identify pos-
sible bottlenecks. Furthermore, they can understand better how the application will adapt if
resources such as network bandwidth or processing power vary. Therefore, the PIM model-
ing language presented in chapter 11 will support the modeling of QoS properties and their
interdependencies.

In an ideal case an application can guarantee certain QoS-properties. This involves the allo-
cation of resources such as bandwidth, processing power, and memory. Such applications are
called pro-active. However, guarantees are often hard to achieve. Most operating systems do
not provide any guarantee for processing power, timeliness, or memory. Furthermore, today’s
dominant network technology does not support bandwidth reservations. In such cases the ap-
plication must adapt to changing resources. For example, a video streaming application would
decrease the resolution or frame rate if the bandwidth decreases. Such applications are called
reactive. Other applications can neither guarantee QoS properties nor can they adapt in any
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way. For example, typical P2P applications such as file sharing solutions cannot guarantee any
throughput. And there is no way of compensating low bandwidth. The application can just
monitor the QoS it perceives and tell the user how long the download will approximately take
or it can abort a download if the monitored throughput is below a threshold. Hence, QoS-aware
distributed applications can be pro-active, reactive, or just monitoring.

A very special kind of QoS-enabled applications are embedded real-time systems. They are very
important for devices such as mobile phones or control systems as used in machine building and
robotics. These systems operate in a closed environment. The available CPU power, number of
concurrently running processes, memory footprint of each process, and all other resources are
known a priori. Hence, it is (in theory) possible to proof that the system operates within the
demanded QoS properties. If the device fails to meet its QoS properties, it can be considered
to be broken. In contrast, distributed enterprise applications operate in an open environment.
This environment is less predictable. New processes can be launched at any time. This affects
the available resources such as CPU power, memory, bandwidth, etc. Hence, such applications
must be pro-active or at least reactive to deal with their changing environment. This thesis does
not focus on embedded real-time systems. However, a short overview of modeling approaches
can be found in chapter 10 and chapter 15.

Another difference between embedded real-time systems and enterprise applications is the gran-
ularity of QoS properties. In embedded systems the runtime of a single method invocation
matters. In enterprise applications performance is usually measured at the granularity of tasks
instead of single method invocations. A task can involve a large set of method invocations.
It does not matter how long a single method invocation runs. The important question is how
long the execution of the entire task lasts. Therefore, the presented PIM modeling language
will provide means for modeling such tasks and their QoS properties.

9.1 Overview

Part III is organized as follows. The next chapter discusses foundations and related work.
This covers a more detailed explanation of the term QoS and the associated terminology.
Furthermore, existing approaches to QoS specification are presented. This includes textual
specification languages and model-based approaches. An overview of QoS-aware middleware
including research projects and industry products close the chapter.

Chapter 11 presents the PIM modeling language used to model QoS-enabled applications in
a platform independent way. The chapter explains how QoS contracts can be attached to a
component-based design. Furthermore, dependencies between QoS contracts and the concepts
of tasks are discussed. The chapter closes with a comparison between the presented modeling
language and the most prominent QoS specification language QML.

Chapter 12 shows examples of platform specific models for QoS-enabled applications. The
chapter starts with a discussion of deployment diagrams and how they are affected by QoS.
The next four sections show PSMs for different QoS-enabled middleware platforms.

The last chapter explains how the tool chain presented in chapter 8 can be utilized to transform
a PIM as shown in chapter 11 into their counterparts as illustrated by chapter 12. The chapter
starts with an explanation of the term QoS-aspect and shows how QoS aspects can be modeled.



9.1 Overview 97

The following sections show how a Kafka transformation can be deduced from such a QoS
aspect. The chapter closes with a discussion of multi-category QoS and the implications for
model transformation.





Chapter 10

Foundations and Related Work

10.1 Component Contracts

The platform independent modeling language presented in this thesis builds on the concept of
components. The PIM shows the components that constitute the application and details their
interaction. A component is – in contrast to a class – well encapsulated [Szy02]. Components
make their provided and required interfaces explicit. In contrast, classes in object-oriented lan-
guages make only their provided interface explicit. The interfaces required by the environment
are not made explicit.

In the context of QoS-aware applications it is not enough to specify only interfaces using
methods, their parameters, types, and attributes. These syntactical interfaces do not describe
how the methods behave and perform. Hence, the term contract is introduced to denote
that there are other properties (synchronization, behavior, and QoS) that must be specified.
[BJPW99] defines four levels of contracts:

• syntactic contracts,
• synchronization contracts,
• behavioral contracts, and
• QoS contracts.

10.1.1 Syntactic Contracts

Syntactic contracts define which messages a component accepts and which reply-messages it will
send in return. In object-oriented design syntactic contracts are expressed in terms of methods
and attributes that are grouped to interfaces. Syntactic contracts can be easily expressed in
the UML using class diagrams.

10.1.2 Synchronization Contracts

Synchronization contracts define in which order a client may send certain messages to a port
and when return-messages have to be expected. In UML a hierarchical message sequence chart
(HMSC) can be utilized to model synchronization contracts. HMSCs describe the ordering of
message calls. They do not describe the effect of the message calls.
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Synchronization contracts can be parameterized. For example an interaction with a query
engine involves one query and the retrieval of n query results. Here, n is the parameter. If
a time critical QoS contract is attached to this task, it is utterly important to determine a
value for n. Only if this parameter is known it will be possible to allocate resources for the
accomplishment of the task.

10.1.3 Behavioral Contracts

Behavioral contracts define the effect caused by a message sent from a client to a port. In UML
behavioral contracts are specified in terms of pre-conditions, post-conditions, and invariants.
Pre-conditions are utilized to describe a certain constraint that has to be true before the
message is sent. Post-conditions are constraints that will be satisfied after the message has
been processed. Finally, invariants describe constraints that are satisfied before the message is
sent and after the message has been processed.

10.1.4 QoS Contracts

A QoS contract specifies the qualitative or extra-functional properties of a service. The term
QoS originates from the networking area where it covers bandwidth, jitter, delay, response
time, concurrent calls, and so on. The term extra-functional covers additional properties such
as security, transaction, accounting, etc. The special fact about QoS contracts is that the
quality of a service can be measured in an almost analog way, with the obvious limitation that
today’s computing hardware is entirely digital, hence, the analog values are always quantified.
The bandwidth can be measured in MByte/sec, response time in milliseconds, etc. In con-
trast, extra-functional properties such as security and transaction are hardly measurable at
runtime.

QoS contracts are usually parameterized - similar to synchronization contracts. In the case
of an availability contract the expected uptime percentage is one possible parameter. In the
case of security, the key length or the encryption algorithm is an example for parameterization.
Existing approaches for the specification of QoS contracts are discussed in section 10.2.

10.1.5 UML Components

The UML provides concepts for the modeling of component-based systems. However, the
component support of UML 1.4 is not well suited for contracts. UML 1.4 components do
not have explicit connections – i.e. a direct relationship between two components. It is not
possible to model that component A interacts with component B via some interface. Instead,
a component can only specify that it either realizes or requires a certain interface. If multiple
components provide the same interface, it is no longer possible to determine which components
interact. UML 1.4 components are bound to types. They are not connected directly.

The first problem of this component model is that the model transformation does not have
sufficient information for the generation of the QoS-agnostic PSM, because the relationship
between the different components is not precisely modeled. Two components can acciden-
tally provide, respectively require, the same interface. This does in no way imply that these



10.2 QoS Specification Languages 101

Figure 10.1: UML 1.4 components

components are supposed to communicate. They could even belong to two totally different
subsystems. The second problem is that a component in such a model is doomed to offer the
same QoS contracts to all client-components. The reason is that contracts cannot be attached
to an inter-component connection, since such connections do not exist in the UML 1.4 meta
model. Figure 10.1 illustrates this. Components A and B require the same interface. Compo-
nents C and D offer this interface. It is, for example, not clear whether A communicates with
C or D. Furthermore, C cannot offer A a different QoS contract than B.

New modeling languages such as EDOC [OMG02f] or UML2 [OMG03f] solve this problem
by introducing ports and inter-port connections. A component communicates with its envi-
ronment only via ports. A port has a type, i.e. a syntactical contract. Two ports can be
directly connected. Furthermore, one provided port can serve multiple required ports, hence,
a component can have multiple attached client-components. Contracts can be attached to the
port-to-port connections. Thus, every client-component can access the server-component with
different QoS properties. Figure 10.2 illustrates this. Therefore, the platform independent
modeling language used in this thesis builds on the UML2 component meta model.

10.2 QoS Specification Languages

10.2.1 QML

QML [FK98b, FK98a, FK99] was the first general purpose QoS specification language. General
purpose means that QML is not restricted to a certain QoS category. QML supports the
specification of QoS contract types. An example of a contract type (taken from [FK98b])
specification is shown below.

type Performance = contract {
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Figure 10.2: UML 2 components

delay: decreasing numeric msec;
throughput: increasing numeric mb/sec;

};

type Reliability = contract {
numberOfFailures: decreasing numeric no/year;
TTR: decreasing numeric sec;
availability: increasing numeric;

};

The contract type named Performance features two so-called QoS dimensions: delay and
throughput. Each dimension has name, direction, value type, and physical unit. The value
type may either be numeric or an (ordered or partially ordered) enumeration. The direction
determines whether higher values yield a better quality (increasing) or not (decreasing). A
QML contract is built on top of a contract type as shown by the following example.

contract1 = Performance contract {
delay < 40 msec

};

contract2 = Performance contract {
delay {

percentile 50 < 10 msec;
percentile 80 < 20 msec;
percentile 100 < 40 msec;
mean < 15 msec;

};
};
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Equations, inequations and a predefined set of statistical functions can be used to constrain
the QoS dimensions. In the above example the QoS dimension delay is constrained. In the
first case, an upper bound is given. In the second case a statistical distribution and a mean
value is demanded. The terminology used in QML is questionable. A QML-style contract is
not an instance of a QML-style contract type. Instead, a QML-style contract is more kind of a
specialization of a contract type with additional constraints. In the above example, a constraint
expresses that the average value of the QoS dimension delay must be below 15 msec. Therefore,
the terms contract type and contract are misleading because the naming convention implies that
both terms have a instance-of relationship.

QML must bind the QoS contracts to interfaces or methods. This is achieved with so called
profiles. A profile can bind a contract to the entire interface. This is the case for contract1
in the following example. Alternatively, a contract can be bound to single method. This is the
case for the method bar() in the example below.

interface ISomething {
void foo();
void bar();

};

PerformanceProfile for ISomething = profile {
require contract1;
from bar require contract2;

};

10.2.2 CQML

CQML [Aag01] is a textual QoS specification language, which resembles many ideas of QML and
adapts them to the special needs of component-based systems. The most notable differences to
QML is a different vocabulary, the usage of the object constraint language (OCL) [OMG03d],
support for CORBA component IDL (CIDL) [OMG02b]. As in QML it is possible to describe
QoS dimensions. However, in QML they are called quality characteristics.

quality_characteristic response_time {
domain: numeric decreasing real milliseconds;
mean;
maximum;
invariant: maximum <= 2 * mean;

}

Each characteristic has a domain, which specifies the possible range of values. Furthermore,
a characteristic can use a set of predefined statistical functions. In the above example, the
response_time characteristic uses a maximum and a mean. Using OCL, it is possible to
specify invariants for characteristics. OCL is well suited for such purposes since it is a language
free of side effects. A CQML characteristic can make use of measurands which are passed as
parameters to a characteristic.
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quality_characteristic delay( msg_sent, msg_received ) {
domain: numeric decreasing real milliseconds;
value: msg_received - msg_sent;
maximum;
invariant: msg_sent < msg_received;

}

In the above example, the value of the characteristic is always the time difference between the
sending of a message and the reception of the response message. Hence, a CQML characteristic
can be treated as a function reading metered values and yielding a resulting value and optionally
some statistical values. So-called QoS statements constraint characteristics. QoS statements
are comparable to QML’s contracts.

quality fast {
response_time < 100;

}

quality slow {
response_time < 200;

}

OCL is used to express these kinds of constraints. On the above example, the response time
is constrained to be smaller than 100. In this case, the quality is fast. Just like QML,
CQML features a concept called profile. It binds several QoS statements to a set of interfaces.
The following example binds two QoS statements to the provided ports of a component. The
interface of the component is described using CIDL.

interface FooBar {
};

component MyComponent {
provides FooBar service;

};

profile MyProfile for MyComponent {
provides fast;

}

However, it is not possible to bind contracts only to a limited set of interfaces since a profile is
attached to a component and not to one of its interfaces. As in QDL (see subsection 10.2.4) it
is possible to define transitions between different qualities.

profile MyProfile for MyComponent {
profile good { uses fast; }
profile bad { uses slow; }
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transition bad->good: invoke_some_callback();
transition good->bad: other_callback();
precedence: good, bad;

}

The above example describes that a callback function must be invoked if the quality level
changes. This way, CQML features support for adaptation. CQML features a UML profile
[AE02], which has the same expressive power as the textual CQML version. Textual CQML
binds quality statements via profiles to CIDL. In contrast, the UML-based version attaches
quality statements to UML 1.4 components or classes modeled in UML. The drawback of the
chosen approach is that the notation is ugly and not very intuitive. This is usually the case
when UML stereotypes and tagged values are used excessively. The CQML profile uses 14
stereotypes and 20 tagged value definitions. 12 out of 14 stereotypes extend the UML meta
class Classifier, hence, the stereotyped element is always displayed as a rectangular box (like
a UML class) inside a UML tool. Hence, the resulting diagrams are hard to read and do not
provide any advantage over the textual QML version.

10.2.3 QIDL

QIDL [BG99] is an IDL extension used by the MAQS framework [Bec01, BG97]. In contrast to
QML, QIDL does not separate the definition of QoS profiles from the definition of functional
interfaces. Both are specified using a single language. QIDL adds two new keywords to IDL: qos
and withQoS. The first new keyword is used for the specification of a so-called QoS interface.
The following QIDL fragment provides an example.

qos Replica
{

short ServerNum;
...

interface {
State GetState();
void SetState( in State s );

};
};

The QoS interface Replica defines a QoS parameter. It determines the desired number of
servers. Furthermore, a set of QoS-related methods are grouped to an interface. These methods
are woven with the functional interface when the QoS interface is attached. The following
example demonstrates this.

interface ISomething
{

void foo();
};
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interface ISomethingWithQoS : ISomething withQoS Replica
{
};

In this example, the C++ ISomethingWithQoS interface generated by the QIDL compiler would
consist of three methods: one derived from ISomething and two QoS-related methods derived
from Replica. This shows that QIDL is very close to the realization domain. A QoS interface
is highly dependent on the QoS mechanism used to realize a certain QoS. For example, the
methods GetState and SetState are used by the QoS mechanisms to clone server objects. In
the application domain such realization details would not be visible. QIDL does not foster a
strict separation between QoS specification and QoS realization. In the context of a model-
driven approach this is not necessarily negative. The PIM is used to specify the QoS properties
independent of their realization. The middleware and its associated tools and languages do not
need to uphold this abstraction, since the PIM does already provide this abstraction level.

10.2.4 QDL

QDL [LBS+98, PLS+00b] is a Quality Description Language used by Quality Objects (QuO)
[BBN03, ZBS97b, VZL+98], a CORBA-based framework for developing distributed applications
with QoS requirements. QDL consists of a set of QoS aspect languages and CORBA IDL.
IDL is used to specify interfaces. In contrast to QIDL, QuO does not extend IDL with new
keywords. Instead, aspect languages define the QoS contract outside the interface definition.
QDL features two aspect languages: (1) a Contract Description Language (CDL) and (2) a
Structure Description language (SDL).

Specifying an interface with QDL starts with standard IDL. The following example shows, that
IDL is used to specify the functional interfaces and interfaces used for QoS. In this example, the
interface client_expectations is used by the QoS contract while ISomething is the functional
interface.

interface ISomething {
void foo();
void bar();

};

interface client_expectations
{

int requested;
};

interface client_callback
{

toolow();
normal();

};
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CDL is used to specify QoS contract types and so-called regions. CDL-style contracts are
defined independently of any functional interface. A contract defines a set of negotiated regions
and reality regions. As the name indicates, the first kind of region is determined through
contract negotiation. The example below specifies two regions: Low_Cost and Available.
Which one applies at runtime is determined via the client_expectations interface defined
above. Each negotiated region can contain a set of reality regions. Which reality region applies
is determined via measuring. Hence, the negotiated regions are selected during negotiation,
while reality regions can be switched any time. The transitions statement of CDL describes
what happens if reality regions are switched. In the example, the client is notified via its
callback interface.

contract Replication is ...
negotiated regions are
region Low_Cost:
when client_expectations.requested = 1 =>
...

region Available:
when client_expectations.requested > 1 =>
reality regions are
region Too_Low : when measured <= 1
region Normal : when measured < 1
transitions are
transition any->Too_Low: client_callback.toolow();
transition any->Normal: client_callback.normal();

...
end Replication;

The SDL is used to define how calls are handled with respect to the current region. The
following example shows that a call can either be forwarded to a single server object or to
a group of server objects. If the QoS contract is broken (i.e. the Available.TooLow region
applies), an exception is thrown.

delegate behavior for ISomething and Replication is
obj: bind ISomething with name SingleObject;
group: bind ISomething with ...;

call foo:
region Available.Normal:
pass to group;

region Low_Cost.Normal:
pass to obj;

region Available.TooLow:
throw AvailabilityDegraded;

return foo:
pass_through;

end degelgate behavior;
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In contrast to QML, QDL does not make QoS dimensions explicit. They are implicitly defined
by IDL interfaces. Therefore, QDL is closer to the realization domain than the application
domain. In this aspect, QDL has similarities with QIDL. In contrast to QIDL, QDL uses
aspect languages, i.e. the IDL itself remains unchanged. QDL and CQML share the idea of
transitions between different QoS-levels (regions in QDL parlance). A specialty of QDL is the
SDL. It is used to describe how the QoS contract is realized. In so far, QDL is more than
just a QoS specification language since is concerned with implementation specific decisions,
too. However, it is not clear why SDL is called structure description language. SDL is used to
describe which QoS mechanisms are used for which region, i.e. SDL is more kind of a behavior
description language.

10.3 QoS-enabled Middleware

Classical middleware supports the interface specification, implementation, and execution of a
distributed application. Middleware shields the developer – at least partially – from the impli-
cations of distribution. In an ideal case, a developer can implement a distributed application
without any knowledge of distribution. This is called distribution transparency. QoS-aware
middleware enables application to specify their QoS properties and to handle QoS provisioning
at runtime. For example, components can benefit from security features or load balancing that
is realized with the help of the middleware.

In order to be QoS-aware a middleware must at least feature so-called QoS mechanisms. A QoS
mechanism is used to implement a certain QoS category. The mechanism influences the message
exchange between distributed objects. Furthermore, it may influence the activation, deactiva-
tion, migration, and replication of objects. Since these activities belong to a domain covered
by the middleware, QoS mechanisms are usually very tightly integrated with the middleware.
Some QoS platforms allow developers to add new QoS mechanisms [UWGB03]. Therefore,
they allow to dynamically plugin the QoS mechanisms into the communication path of the
middleware. Such products are called generic QoS platforms. Others support only a built-in
set of mechanisms. The combination of different QoS mechanisms is very difficult since they
can interfere [UWG03]. Middleware products addressing this problem support multi category
QoS. Other platforms avoid the problem of QoS mechanisms interference. They feature only
single category QoS, i.e. only one QoS category per object.

QoS-enabled middleware products usually use a QoS specification language [ZBS97b, PLS+00b,
Bec01]. This language is used to specify QoS contracts. A QoS contract details which QoS
properties an object supports. This contract is input to a QoS strategy. The purpose of the
strategy is to utilize and configure the QoS mechanisms to provide the specified QoS properties
at runtime. QoS contracts can either be specified during development. In this case they are
hard coded. Additionally, a middleware can support QoS negotiation. This allows two objects
to negotiate QoS contracts at runtime.

Older middleware platforms build on object-oriented principles. Objects can be very fine
granular and they are not well encapsulated. Objects only define their provided service but
not the services they require from their environment. This limits the possibility of reuse.
Therefore, new middleware products build on the concept of components [Szy02]. Components
provide better encapsulation and foster reuse. New QoS-aware middleware products are built
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on component-oriented middleware such as CORBA CCM [OMG02b]. QoS-aware components
developed with component-oriented middleware specify their provided and their required QoS
properties. In contrast, QoS-aware objects running on top of an object-oriented middleware
such as MAQS [Bec01] specify only their provided QoS properties.

Most QoS-aware middleware products are build on top of an existing middleware [Bec01, Rit03,
UWGB03, PSC03]. Several approaches have been developed by the scientific community. Most
of them are based on CORBA since this used to be the dominant middleware when these
projects started. Other platforms such as .NET have been extended lately to incorporate QoS
support [UWGB03, UWG03, WUG03b] explicitly in the .NET Remoting middleware [Ram02].
Companies have added QoS related products to their middleware and operating system prod-
ucts, too. For example, Microsoft provides the COM+ services [Ise00] for its Windows OS.
COM+ supports a fixed set of mechanisms, among them security, events, object pooling, mes-
sage queuing, and component load balancing [RAC+02] that can be used to realize several QoS
categories.

The following sections discuss a selection of QoS-aware middleware products. The focus is
on the implications for the model transformation. From the viewpoint of the transformation,
middleware products can be categorized along several lines.

• Multi Category QoS: Some platforms support more than one QoS category for one com-
ponent at the same time. If the target platform does not support this, some PIMs cannot
be mapped to this platform. This can happen if multiple QoS contract types are attached
to one port.

• Generic QoS: MAQS [Bec01] and DotQoS [UWGB03] potentially support a very large
range of QoS categories. Almost every QoS contract type that can be modeled in a PIM
can be realized with such a middleware. The model transformation just needs to add the
required QoS mechanisms since generic QoS middleware provides only the hooks for QoS
mechanisms. In contrast, non-generic QoS middleware restricts the PIM to those QoS
contract types that are supported by the middleware.

• Contract notion: Most middleware products originating in the research community sup-
port the notion of a QoS contract. A QoS contract specifies which QoS properties a
component provides and requires. The model transformation must map the contracts
found in the PIM to contracts supported by the middleware. If the middleware does not
support contracts, the model transformation must select and configure the appropriate
QoS mechanisms that are able to realize the contract.

• Contract negotiation: The PIM can define concrete QoS properties or it can just enu-
merate the supported QoS category. In the second case, concrete QoS properties are
determined at runtime via contract negotiation. If the targeted middleware does not
support contract negotiation, the model transformation must either add negotiation sup-
port on top of the middleware or it must advice the developer to specify concrete QoS
properties of all QoS-aware components.

• Client-specific contracts: A QoS-aware component can either provide the same QoS prop-
erties to all of its clients or it can provide different QoS properties to different clients. If
the first case applies, the model transformation cannot realize all possible PIMs with the
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help of this middleware. A component must not have multiple clients with different QoS
demands if the middleware supports only the same QoS properties for all clients.

• Reflective approach: DotQoS relies heavily on reflection and interception of messages.
This allows QoS mechanisms to hook themselves up to the message path at runtime.
Thus, the separation between QoS-related code and QoS-agnostic code can be kept up
even during implementation. In contrast, MAQS is built on an AOP-based approach.
QoS-related code is injected at design time in the stubs and skeletons generated from the
interface definition language. Hence, the separation is lost – at least partially – at the
source code level. A more detailed discussion of reflective middleware can be found in
[KCCB02].

• Support for tasks: Some middleware products allow QoS only on a per interface or per
method basis. As discussed in section 11.4 it can be very useful to apply certain QoS
properties to a context. For example, a web shop requires authentication only when a
customer starts adding items to his virtual shopping basket. Hence, the same functionality
can be provided with or without QoS depending on the context. Tasks are introduced
in the PIM to model this kind of context. If a middleware supports QoS only on a per
interface basis, some platform independent models cannot be mapped directly onto this
middleware.

10.3.1 CORBA

Several research projects extended the Common Object Request Broker Architecture (CORBA)
with QoS support. The TAO project [Sch03, PSC03] extended CORBA with real-time capabil-
ities. In the meantime, the OMG has standardized real-time extensions for CORBA [OMG03c].
This standard is supported by the TAO Object Request Broker (ORB). TAO is aware of the
different priorities a thread can have. During remote invocations the client thread priority can
be propagated to the server. Based on this priority, the server schedules incoming message
calls to meet their timing constraints. On the network level, protocols such as DiffServ [IET98]
are used deliver messages in time. A resource planner is available that can either statically or
dynamically [GLS01] determine whether a demanded real-time guarantee can be met by the
system or not. In summary, TAO supports one QoS category (real-time) and has a notion of
client-specific timing contracts. If dynamic scheduling is used, it is even possible to negotiate
contracts at runtime.

Another CORBA-based project is QuO (Quality Objects) [BBN03, ZBS97b, VZL+98] from
BBN Technologies. QuO has been developed mainly for the military sector. It supports QoS
categories which are important for battle field technology, such as real-time and availability
[RBC+03]. A focus of QuO is on adaptation. Its QoS specification language QDL (see sub-
section 10.2.4) describes QoS regions and when the application should switch between the
different regions. On the implementation side, QuO inserts delegates between the client and
the client-side ORB. These delegates consult contract objects to determine the current QoS
region. Based on this, the delegate uses an adequate QoS mechanism. For example, if a large
image of the combat field is to be retrieved, it can be split into several tiles. The tiles are
requested subsequently and their resolution is adapted to the currently available network re-
sources. So-called system condition objects inside QuO measure the provided QoS level and
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trigger a change of QoS regions if required. From the client perspective, the entire QoS-related
processing is hidden behind the delegate objects. A specialty of QuO is that the QDL files can
contain source code. A QDL file describes, for example, which actions an application should
take if QoS region are switched. In summary, QuO offers several multi category QoS. In theory,
QuO can be extended with support for new QoS categories (i.e. generic QoS support) via new
contract objects, system condition objects, and delegates. However, this will require changes
to the QDL code generators.

MAQS [BG97, Bec01] is a QoS extension of the MICO [RP03] CORBA implementation. The
goal of MAQS is to support generic QoS management on standard object-oriented middleware.
MAQS builds on an aspect-oriented approach to separate the QoS mechanisms from business
logic. The QoS applicable to a certain interface is defined in an extension of CORBA IDL called
QIDL (see subsection 10.2.3). A QIDL file specifies QoS-specific attributes and methods, which
are used to negotiate, monitor, and adapt the QoS level at runtime. The QIDL compiler extends
the standard CORBA IDL compiler. Furthermore, MAQS extends the CORBA IDL to C++
mapping with QoS-related constructs. The compiler acts as an aspect weaver and combines
the CORBA skeletons and stubs with QoS-related source code that supports the integration of
QoS mechanisms at runtime. The QoS-related source code in the generated stubs and skeletons
uses an interceptor-pattern on client side and a chain of responsibility pattern on server side.
Thus, it is possible to integrate QoS mechanisms in the ORB at runtime using a reflective
approach. This way, the implementation of a CORBA object is separated from a concrete QoS
mechanism implementation. QoS mechanisms can be exchanged at runtime if they support the
QoS-specific interface (i.e. attributes and methods) as defined in the QIDL file. MAQS has
been designed as a generic QoS middleware. However, it can only handle one QoS category per
object. Multi category QoS is not addressed by MAQS.

10.3.2 COM+

Microsoft’s operating systems offer prefabricated solutions for some QoS-related mechanisms.
These are called COM+ [Ise00]. The name implies that COM+ is an extension of COM
[Box97], the dominant component model for Microsoft products. COM+ acts – conceptually
– as a wrapper around COM components. COM+ offers the following services QoS-related
mechanisms:

• Transactions: A component can participate in a distributed transaction service. This is
very important for critical applications. COM+ implements a two phase commit protocol.

• Security: COM+ can authenticate the client invoking a COM+ component. Authentifi-
cation can happen at several occasions: (i) upon the client’s connection to the COM+
component, (ii) with each network package exchanged between the client and the COM+
component, or (iii) as each method is invoked. COM+ can perform authorization, too.
It checks the role of the client and rejects method invocations if the role is not entitled
to invoke the method. If required, COM+ can impersonate a component. That means
the component is executed with all privileges and restrictions of its calling client.

• Just-In-Time Activation: Some components allocate many expensive resources when they
are instantiated. Therefore, the activation of such components should be deferred until
they are invoked for the first time. If such components are no longer used, it is be
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beneficial to release their resources. JIT activation can be used to limit the resources
such as memory or database connections consumed by a component.

• Object Pooling: If performance is critical and components have a long startup procedure,
object pooling can be used. COM+ allocates a pool of COM+ components. Multiple
clients can use the same instantiation of a COM+ component. This avoids the time
consuming startup procedure whenever a new client requests a component. The size of
the pool is adapted dependent on the number of clients.

• Component Load Balancing: A special version of Microsoft’s server operating system is
required to realize COM+ load balancing. Upon a request sent from client to a compo-
nent, the component load balancer determines one machine and assigns the client to it.
The COM+ component must be stateless, since subsequent requests may be redirected
to different machines.

• Message Queuing: Sometimes a COM+ component may be unavailable. Either it has
crashed or the client is currently disconnected from the network. In such situations
message queuing records the messages sent from the client to a COM+ component and
sends them again as soon as the COM+ component becomes available.

• Events: COM+ Events are an implementation of the publish-subscribe paradigm [Müh02].
They can be useful to monitor the load of a distributed system. However, COM+ Events
are weak because a malicious client can block the transmission of an event.

Although COM+ is not a dedicated QoS technology such as DotQoS, Qedo, or MAQS, it can
be used to implement QoS-aware applications. The most important difference is that COM+
does not support the notion of a contract. It just provides a set of QoS mechanisms. Contract
negotiation, monitoring, and adaptation strategies are not covered by COM+. Microsoft’s
COM+ is not a generic QoS framework. Developers cannot add new QoS mechanisms. They
are restricted to those listed above. COM+ is partially multi category QoS enabled. For
example, security can be used in combination with other QoS mechanisms, but it is not possible
to combine load balancing with transactions. COM+ in combination with .NET is highly
reflective. Custom attributes attached as meta information to a class determine the QoS
mechanism that has to be applied to the component implemented by this class. This is detailed
in section 12.2. COM+ does not support tasks. With the exception of security, the QoS
mechanisms apply to every method, event, or message supported by a component.

10.3.3 ASP.NET

ASP.NET is an acronym for active server pages in the .NET framework. An active server
page is an HTML page that is dynamically constructed in the web server when the page is
requested by the client. The concept is similar to Java’s JSP technology [Sun03]. ASP.NET
applications can use some QoS mechanisms that are built into the ASP framework and the
web server that hosts the active server pages. ASP.NET supports security, i.e. authentication
and authorization, transactional behavior, and load balancing. QoS is not a first class concept
in ASP. The concept of a QoS contract does not exist. Instead, some modifications in XML
configuration files, custom attributes, and the implementation of specific interfaces can turn
on some mechanisms that can be used to fulfill a QoS contract.
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COM+ configures QoS mechanisms either programmatically or via custom attributes attached
to classes. In addition, ASP.NET uses XML configuration files to configure QoS mechanisms.
This implies that the model transformation must be able to map PIM contracts to the appro-
priate XML tags. Therefore, XML tags must be part of the PSM.

10.3.4 DotQoS

DotQoS [UWGB03, UWG03, WUG03b] is a QoS-aware middleware that is based on .NET
and .NET Remoting. The .NET framework and related Microsoft technologies provide several
approaches for the development of distributed systems. The web-based ASP.NET and COM+
have already been discussed. From a design point of view .NET Remoting is close to CORBA.
Client and server communicate via a proxy and a transport channel. The major difference
in comparison to CORBA is the extensibility and the reflective approach in .NET Remoting.
Applications can modify and monitor almost the entire message path, ranging from the proxy,
over formatters, to the transport channel [UWGB03, UWG03]. .NET Remoting relies heavily
on reflection. When a message path for a server-side object is created, .NET Remoting searches
for custom attributes attached to the class of the object. This custom attribute can be used to
influence the message path. For example, messages can be encrypted or compressed [Ram02]
before they are put on the transport channel. Or another transport channel, for example one
with bandwidth reservation [Kuh03], can be used. Figure 10.3 shows the .NET Remoting stack.
The message path is formed by message sinks and a channel. More information about the .NET
Remoting stack can be found in [Ram02].
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Figure 10.3: .NET Remoting stack

DotQoS is a layer on top of .NET Remoting. DotQoS handles the installation of QoS mecha-
nisms – sinks in .NET Remoting parlance – and QoS-aware transport channels transparently
for the application developer. The developer just attaches custom attributes to his server-side
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classes. These custom attributes are inspected by DotQoS at runtime. It adapts the message
path, cares about contract negotiation, and contract monitoring.

.NET Remoting is not able to modify a message path after it has been created. DotQoS
overcomes this problem by introducing special sinks (called QoS mechanism sinks) that forward
each message to the appropriate QoS mechanism. This is depicted in Figure 10.4. More
information about DotQoS can be found in [UWGB03, UWG03, WUG03b].
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Figure 10.4: Client- (left) and server-side (right) message path in DotQoS

The following example shows a component that implements the IFoo interface. For all methods
of this interface, the QoS category QoSBar is implemented.

public interface IFoo
{

void Foo();
}

[DotQoS.QoSContextAttribute("TestBaseDefinitions.MyComponent")]
[DotQoS.QoSContractClass(typeof(QoSBar), typeof(IFoo))]
public abstract class MyComponent : DotQoS.RemoteObject, IFoo
{

public abstract void Foo();
protected MyComponent(bool register)

: base(register) {}
}

From the viewpoint of a model transformation, DotQoS and COM+ have some similarities.
Both rely on custom attributes. However, DotQoS is a QoS middleware with support for
contracts and arbitrary QoS mechanisms. In contrast, COM+ features only a fixed number of
QoS mechanisms and does not implement the notion of contracts. DotQoS implements QoS
contract types as separate classes.
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[Serializable]
public class QoSBar : QoSCategorySchemeBase
{

[QoSDimension(Increasing,BytePerSec)]
public int Bar
{

get
{

return (int)this.Parameters["bar"];
}
set
{

this.Parameters["bar"] = value;
}

}
}

Instances of QoSBar describe the QoS properties of a service. The class is tagged as serializable,
since it is transferred between client and server during contract negotiation.

Contract negotiation and activation is implemented in DotQoS by a so-called frame contract.
This frame contract resides on the server side. Each client of a component has its own frame
contract. Hence, different clients of the same component can negotiate different QoS properties.
The following example shows how a frame contract is configured and activated.

// get hold of the frame contract
DotQoS.FrameContract contract = component.CreateFrameContract(
DotQoS.ContractServices.DefaultObserver);

// set the desired QoS properties
QoSBar bar = new QoSBar();
// setting the QoS parameter(s)
bar.Bar = 1;

// specify QoS for IFoo port
// port is selected with interface name, assembly, and version
contract.SetQoSParameters(
typeof(IFoo).AssemblyQualifiedName, bar);

// activate contract (negotiation, resource allocation)
contract.Activate();

In contrast to COM+, DotQoS can be used to implement the task concept. COM+ applies
its QoS mechanisms to every invocation, disregarding of the invoked method and any context.
DotQoS handles QoS more fine granular. QoS categories are applied to interfaces. Different
interfaces of one component can be subject to different QoS categories. Furthermore, special
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message sinks can select the QoS categories applicable to a certain message depending on a
context.

10.3.5 Qedo

Qedo adds QoS support to CORBA CCM, which is a component model for CORBA. Similar to
CORBA, CCM uses an interface definition language to describe the interfaces of the component.
The following CORBA 3 IDL example is taken from [OMG02b]. CORBA 3 IDL extends the
CORBA 2.x IDL with constructs for components.

module LooneyToons
{

interface Bird
{

void fly (in long how_long);
};
interface Cat
{

void eat (in Bird lunch);
};
component Toon
{

provides Bird tweety;
provides Cat sylvester;

};
home ToonTown manages Toon {};

};

The IDL module describes two interfaces Bird and Cat. The component Toon offers both
interfaces under the name tweety and sylvester. Each CORBA CCM component has a
home that is responsible for the life cycle management and configuration of a component. In
the above example the home is called ToonTown and is responsible for the component Toon.

Mapping this IDL to source code is a non-trivial process especially since components can have
a persistent state. Persistency in turn can be implemented with a variety of database products.
A complete overview of the classes involved in the Toon component can be found in figure 3-2 of
[OMG02b]. The CORBA CCM standard facilitates an additional specification language called
CIDL. It is a mixture of IDL and the Persistent State Definition Language (PSDL). The CIDL
configures the code generation. For example, it determines class names, patterns (for example
delegation), and binding to databases. The following CIDL example taken from [OMG02b]
describes an implementation binding for the above IDL.

import ::LooneyToons;

module MerryMelodies {
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composition session ToonImpl {
home executor ToonTownImpl {

implements LooneyToons::ToonTown;
manages ToonSessionImpl;

};
};

};

The suffixes Impl indicate that these names denote names of implementation classes. This CIDL
specification causes the generation of the skeleton for the component executor ToonSessionImpl,
and the complete implementation of the home executor ToonTownImpl.

Usually, IDL and CIDL use a textual notation. However, the OMG has standardized a meta
model for both languages (chapter 8 in [OMG02b]). The textual notation can be treated as
a special notation of a model based on this meta model. Figure 10.5 shows an excerpt of the
BaseIDL package that defines the IDL.
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Figure 10.5: Excerpt of the IDL meta model, taken from [OMG02b]
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For example, the meta class InterfaceDef is used to define an interface. Interfaces are
Containers. They can contain Contained elements such as AttributeDef or OperationDef.
For most constructs the mapping between meta model and textual notation are obvious.

CORBA CCM is not a QoS-enabled middleware. However, research groups are currently
expanding their expertise on QoS-enabled CORBA 2.x platforms to CORBA CCM [Rit03,
WSKP01]. Qedo is an experimental CORBA CCM implementation implemented at Fraunhofer
Fokus. Qedo incorporates QoS support. Further details on the implementation strategy can
be found in [RBUW03]. Figure 10.6 shows Qedo’s QoS meta model.

then able to describe QoS contracts in addition to usual 
functional interfaces. 

The extension of UML concepts allows us to model a 
component, its interfaces, events and QoS contracts in a 
graphical manner. In [6] we demonstrated how UML can 
be extended to support contracts for non-functional 
aspects in general and QoS in special. The UML 
drawings can help a lot to gain an overview of all 
components, interfaces and their possible QoS contracts 
during the application design phase. 

 Once this design step is finished it is possible to 
convert this UML based specification into an IDL file. 
Converting standard UML into IDL is already standard 
practice in most industrial strength modeling tools. Since 
the very same QoS metamodel is bound to UML and 
CCM/IDL it is clear that we can convert the extended 
UML concepts in the extended IDL without loss. 
However, the code generator of the UML tool has to be 
modified to achieve this goal. 

In the following sections we will first of all present 
our QoS contract metamodel. Then we discuss how it fits 
into CCM and finally its integration with UML. 

 
3.1. QoS contract metamodel 

 
The QoS contract metamodel has to address two key 

issues 
 
• Support the specification of contract types for 

every possible QoS category 
• Define a binding that connects interfaces, 

methods and the like with QoS contract types. 
 
We follow the approach of QML [5] and think of a 

contract type as a composition of dimensions. Therefore 
we introduce the metaclasses Dimension and 
ContractType. Both are indirectly connected by a 
composition that specifies that a ContractType is 
composed of an arbitrary number of Dimensions (Figure 
1).  

A ContractType has one attribute called name. This 
attribute is used to store the name of the QoS category 
that is described by the contract type, i.e. “Availability” 
or “Bandwidth”.  

The metaclass Generalization allows for modeling 
multiple inheritance among contract types. One obvious 
constraint is that circular inheritance is forbidden. 
Specializations of a contract type inherit all dimensions 
of its generalizations.  

There are two reasons for introducing inheritance in 
QoS contract types. If we want to negotiate about two 
contract types in an atomic manner then we can 

introduce a new contract type, which inherits from these 
two but does not introduce any new dimensions.  

We realized in our project that it is almost impossible 
to define one set of dimensions that are able to describe 
all possible contracts of one QoS category. The reason is 
that the contract type does not describe the QoS category 
itself. Instead it describes constraints on the delivery of 
the service’s quality.  
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Figure 1. QoS metamodel 

For example it may be possible to agree on one 
definition of availability, one definition of bandwidth and 
so on. The result of such a definition is a set of variables. 
In other domains other variables may be appropriate to 
characterize a QoS category.  

While the service is running we can monitor the 
values of these variables and plot them in a chart as time 
evolves. Unfortunately we cannot deduce the dimensions 
of a contract type entirely from these variables. The 
values of the variables describe the quantified QoS that is 
actually delivered by the service. In the ideal case a 
diagram showing a measuring-variable together with the 
time axis will show a horizontal line. In this case the 
delivered quality is always exactly the quality that has 
been negotiated between client and server. Usually we do 
not have these horizontal lines in real life measurements. 

So we have to define in a contract what we still 
consider to be ok and what we have to reject. From a 
mathematical point of view there is an unlimited number 
of possibilities for specifying these constraints. Some 
mathematical instruments are very common in this 
situation. We could describe minimum boundaries, which 
must not be crossed. Or we can demand that the average 
quality measured over a certain time range has to be at 
least a certain value. 

Figure 10.6: Qedo QoS meta model, taken from [RBUW03]

A ContractType consists of Dimensions and unions of Dimensions. Each dimension has a
unit, ordering information – i.e. decreasing or increasing – and a name. Contract types are
bound to interaction elements – i.e. operations, attributes or an interface – via a Binding. A
binding belongs to a certain context. In case of the IDL a component is a valid context. A
binding can express, for example, that the fly operation of interface Bird is bound to a certain
QoS contract type when it is invoked on the Toon component (see IDL example above).

The QoS meta model shown in Figure 10.6 must be merged with the IDL and CIDL meta model.
Figure 10.7 illustrates this. The constructs InterfaceDef, AttributeDef and OperationDef
from the BaseIDL package inherit from the abstract meta class InteractionElement. Thus,



10.3 QoS-enabled Middleware 119

single attributes (its setter and getter methods), operations or an entire IDL interface can
participate in a QoS binding.

specializations of the abstract metaclass IDLType. With a 
constraint definition we restrict the concrete types, which 
can be assigned to Dimensions to IDLTypes, which are 
numeric, and QoSContractType/DimensionUnion. 
Structured IDL types are not allowed since they would 
cause the problem of being not comparable.  

To define the context of potential QoS-negotiations we 
use the concept of component features. Since component 
features contain all possible interactions of a component 
type with its environment, QoS-negotiations occur always 
in the context of a component feature. As mentioned 
before, component features are used and provided 
interfaces (metaclasses UseDef and ProvidesDef), 
produced and consumed events (metaclass 
EventPortDef), produced or consumed streams 
(metaclass StreamPortDef) and the component itself 
(metaclass ComponentDef). Consequently, all these 
metaclasses are defined as specializations of the abstract 
metaclass QoSContext. QoSContext itself is associated to 
the metaclass NegotiatableBinding that aggregates a set 
of QoSContractTypes and represents the Binding 
metaclass. These are the contract types that are subject to 
negotiation within the context to which the binding is 
associated.  

In order to restrict the negotiation to specific 
interaction elements (i.e. operations and/or attributes) of 
an operational interface there is an association from 
NegotiatabelBinding to InteractionElement as the base 
class for OperationDef and AttributeDef. The occurrence 
of instances of this association in a model implies, that 
QoS-negotiations are not applied to all 
operations/attributes of an interface but only to those, 
which are associated to the binding. (See section 3.1) 
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Figure 4. Binding in CIF 

3.3. A UML profile for QoS 
 

Typically, there exist two different methods for adding 
new concepts to the UML. One way is to directly extend 
the metamodel, i.e. introducing new metaclasses, 

attributes or associations. However, the drawback of this 
method is that most common modeling tools are not able 
to deal with these extensions. Furthermore, the new 
metaclasses need some kind of notation. For example the 
UML standard defines that a class is depicted as a 
rectangle with several vertically stacked compartments. 
The same job has to be done for every new metaclass. 
Unfortunately, this means that the code base of the UML 
modeling tool has to be extended. 

Because of these inconveniences there exists a more 
lightweight method for extending the UML. With the 
concept of tagged values and stereotypes [7] we can 
almost simulate new metaclasses, attributes and 
associations. The notation is inherited from the 
stereotyped metaclass. 

Instead of the metaclass ContractType we introduce a 
stereotype called QoSContractType that extends the UML 
metaclass Class. The reasoning for this is simply that 
contract types can be instantiated almost like classes in 
object oriented languages. A Dimension becomes a 
stereotyped UML Attribute, which is pretty 
straightforward because a Class contains Attributes just 
like a ContractType contains Dimensions. The additional 
attributes of the metaclass Dimension become so called 
tagged values in the stereotype. 

A DimensionUnion is considered to be a stereotyped 
class, too. So a DimensionUnionMember is mapped to an 
attribute just like Dimension. As a matter of this decision 
a ContractType does not directly contain a 
DimensionUnion. Instead it can have a normal UML 
attribute which has a type that is in turn a 
DimensionUnion. This seems to impose quite some 
structural difference between our QoS metamodel and the 
UML profile. However, the only important point is that 
we map concepts one to one so that we can translate the 
UML model in an extended IDL file without loss. 
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Figure 5. Contract and Dimension in UML Profile 

The Binding is a bit more difficult to deal with. In 
UML a component provides an interface if both are 
connected by a Realization dependency (a dashed line 
with a closed arrow). Instead of extending the UML 
metaclass Realization so that we can map our metaclass 

Figure 10.7: Binding QoS meta model to BaseIDL, taken from [RBUW03]

Qedo extends the IDL/CIDL meta model with QoS concepts. A textual notation for the
extended IDL/CIDL is not available yet.





Chapter 11

Platform Independent Model

This chapter discusses how to a build platform independent model (PIM) of a QoS-aware
application. The overall goal of a PIM is to model the application independently of its concrete
realization. In the case of QoS-aware applications a PIM declares which QoS properties the
application adheres to. PIMs can hide the heterogeneity of platforms and technologies used in
large scale distributed systems. For example, the QoS properties of a web service and those of
a CORBA application are modeled in the same way in the PIM although their realization is
entirely different.

11.1 Platform Independent Modeling Language

Modeling QoS-enabled applications in a platform independent manner requires a platform in-
dependent modeling language (PIQML) enriched with QoS concepts. As detailed in section 4.1
a modeling language requires:

• an abstract syntax,
• well-formedness rules,
• notation, and
• semantics.

The abstract syntax is expressed as a meta model. One possibility is to create a new meta
model from scratch. However, meta models for important concepts such as components, mes-
sage sequence diagrams, and interfaces have already been developed. Therefore, the PIQML
presented in this thesis is an extension of the UML 1.4 meta model. A future updated version
could be ported to the new UML 2.0 meta model, but at the time of writing of this thesis the
UML 2.0 is not yet a formal OMG standard. The UML 1.4 misses three important concepts.
First, it does not provide means for modeling QoS contracts. These concepts have been added
to the UML meta model as described in section 11.2. Second, the UML 1.4 components are not
sufficient for the modeling of contract-aware components as explained in section 10.1. There-
fore, the component meta model of UML2 [OMG03f] has been back-ported to the UML 1.4
meta model. Third, the UML 1.4 has insufficient support for message sequence diagrams. The
old sequence diagrams have an insufficient meta model and modeling of branches, loops, par-
allelism, etc. is very complicated. Hence, the Hierarchical Message Sequence Chart (HMSC)
meta model of the same UML 2.0 draft has been back-ported to UML 1.4. Figure 11.1 shows
this graphically.
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Infrastructure

Superstructure}

}
Figure 11.1: Dependencies between the meta model packages

The figure distinguishes between an infrastructure and a superstructure. The infrastructure is
a compilation of existing meta models that form the basis of the PIQML. The meta model for
QoS is built on top of this infrastructure. UML 2.0 itself follows a similar approach. The UML
2.0 meta model is divided into an infrastructure part [OMG03e] and several superstructure
parts [OMG03f]. The distinction between an infrastructure and a superstructure is especially
useful in the context of the MDA. New problem domains require new PIM meta models. New
PIMs should not reinvent basic concepts. They should reuse existing and approved concepts.
If all PIM meta models can build on the same infrastructure, the development of modeling and
transformation tools is tremendously simplified. New PIMs could build on a thinner layer - the
UML 2.0 infrastructure.

11.1.1 Components and Ports

Components provide very strict encapsulation. Ports are the only connection between the
internals of a component and its environment. Therefore, it is straight forward to attach QoS
properties to the ports of components. Another advantage of this approach is that it separates
the QoS-related modeling elements from the business logic. The business logic is encapsulated
inside the component, while the QoS properties are attached to the outside, i.e. the ports of a
component. Figure 11.2 shows how components, ports, and the infrastructure meta model are
connected.

The meta class for components has been named Component2 to avoid conflicts with the UML
1.4 components which are part of the infrastructure, too. Component2 derives from Classifier
just as Interface. A component can own Ports because a component is a Classifier and clas-
sifiers can own Features such as Ports. A Port is typed because it is a StructuralFeature.
An additional well-formedness rule, which is not visible in the meta model diagram, demands
that this type has to be an Interface.

This is illustrated by Figure 11.3, which shows an instantiation of the meta model. The
component in the figure owns one port which is bound to an interface. Of course, the notation
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Figure 11.2: Components, ports, and an excerpt of the infrastructure meta model

is awkward. Figure 11.4 shows the same model but this time with the usual notation.

11.1.2 Contracts and Ports

Three possible ways of enriching a component with QoS properties can be envisaged. First,
interfaces could be extended with QoS properties. However, a single interface might be used
by several components with different QoS properties. Therefore, attaching QoS properties
directly to an interface is no good choice. Second, the Port meta class could directly be
enhanced with QoS specific concepts. However, several ports may adhere to the same QoS
properties. Duplication is never a good idea. Third, interfaces, ports, and QoS properties are
separate concepts. Figure 11.5 illustrates the resulting meta model.

The figure illustrates how the four levels of contracts (see section 10.1 are realized in the
meta model. The first level (syntactic contracts) is represented by the meta class Interface
that is attached to Ports. The modeling of Interactions allows for the specification of
synchronization contracts. The behavioral contracts - usually pre-conditions, post-conditions,
and invariants - are specified in UML as Constraints. Finally, QoS contracts are realized via
the QoSContractType meta class.

The abstract meta class ContractType serves as a base class for the different contracts. A
ContractType can be attached to a Port via a Realization. The realization element be-
tween contract type and port is useful to store additional information about how or when
the port realizes this contract type. In an ideal world, Interaction should be renamed to
BehavioralContract and Interface as well as Constraint should inherit from ContractType,
too. This would put the meta model in line with the concept of the four levels of contracts dis-
cussed in section 10.1. However, this would involve too many changes of the UML meta model,
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Figure 11.3: Sample instantiation of the Component2, Port, and Interface meta classes

Figure 11.4: Same as Figure 11.3 but with the usual notation

i.e. the infrastructure. Therefore, the interface and constraint meta class remains unchanged.
The meta class Interaction stems from the HMSC package shown in Figure 11.1 which in turn
is inspired by a UML 2.0 draft. To keep consistency its name remains, too.

The PIM meta model presented in this thesis distinguishes contract types from contracts. A
contract type can be compared with a class in object-oriented programming. A contract type
serves as template for contracts. Contracts are an instantiation of a contract type. Therefore,
the meta class ContractType derives from Classifier. UML supports the modeling of classi-
fiers and the modeling of classifier instantiation (see subsection 11.2.6). Throughout this thesis
the terms contract type and contract are treated as synonyms. An instantiation of a contract
type is always called contract instance.

11.2 QoS Contracts

The following section is dedicated to QoS contracts. The remaining three levels of contracts
are not discussed in depth. Syntactic contracts are covered by most common books on object-
oriented design, e.g. [Boo93]. A more complete coverage of behavioral contracts can be found
in [Mey00, Mey92]. The details of HMSCs - i.e., synchronization contracts - are discussed in
the UML2 super structure [OMG03f].

To support the modeling of QoS contracts in the meta model two problems need to be solved.
First of all, the concept of a QoS category has to be supported by the meta model. That means,
application designers must be able to express terms such as availability, throughput, timeliness,
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Figure 11.5: Adding contracts to ports

etc. in the model. As discussed in the following section, QoS categories can be referenced by
name. Hence, their semantics are not described in the model. Instead, an external information
source such as books, web pages or common knowledge is required. Another more sophisticated
solution is to express the semantics of QoS categories in the model itself.

Second, the meta model must provide means for modeling constraints upon these categories.
In case of a throughput contract, such a constraint limits the acceptable throughput. In this
thesis, a very general approach is taken. An evaluation function (see subsection 11.2.2) is used
to express the constraint.

The following discussion highlights all aspect of the QoS meta model. However, the figures
only show that part of the meta model that is relevant to the current subject of discussion.
The complete QoS meta model can be found in section B.3.

11.2.1 Semantics of QoS Categories

Models usually capture the structure and often the behavior of a system. However, it is hard
to express semantics in a model. If it is possible to describe the semantics of a response time
contract in the model, the model provides the answer to the question: What is response time?
It is a philosophical question whether semantics can be absolutely described at all. Usually,
the semantics of something complex is reduced to the semantics of more simple things. For
example, UML state diagrams are transformed into Petri Nets [Pet81] which are conceptually
clearer and well understood. This way, semantics are assigned to the state diagrams. However,
this does not answer what the semantics of Petri Nets are. A Petri Net can be described
by mathematic formulas. Finally, mathematic formulas reside on a set of axioms on which
mathematics is built.
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In order to express the semantics of QoS categories in the model the semantics have to be
reduced to something that is well understood and non-ambiguous. For some QoS categories
this is almost instantly the case. Terms such as authorization, authentication, indisputability,
transaction, and payment are satisfactorily clear. Therefore, such contract types can use their
name to assign the desired semantics. The case is different for more analog QoS categories
which include measurements and statistics. For instance, every developer should know what
response time is. Furthermore, a developer is expected to know that the average response time
and its variance are usually used to calculate the quality of a service. However, the semantics
of an average response time 140±10 ms could be specified more precisely. The hitch is that the
average response time alones does not tell how many calls have been measured to produce the
average. Still, the value 140 ± 10 ms at 1000 calls does not describe precisely when the timer
started and when it stopped. The response time could be time that elapses between the sending
of the request message over the network and the receipt of the response message. Alternatively,
the response time could be the time elapsed between the beginning of the marshalling of the
request message and the end of the un-marshalling of the response message. The semantics of
the average response time could be reduced to the following statements:

• The response time of a call is the time that elapses between a send event and a receive
event.

• The send event occurs when the request message is send to the network driver of the
operating system.

• The receive event occurs when the response message has been received from the network
driver.

• The average response time is the average of the response times of n subsequent calls.

A send event and a receive event each represent one measurand. Each time the event occurs, a
new value is metered. The response time of a call is a derived value of the metered values. The
average response time is computed based on a sequence of such values. Hence, an evaluation
function that works on the metered values can determine whether the QoS is satisfied or not.
This indicates that the semantics of a QoS category can be reduced to a set of measurands and
an evaluation function.

11.2.2 Evaluation Function

The evaluation function checks the delivered quality – by inspecting the metered values – and
compares it with the demanded quality. The output of this function - called f from here on -
is a boolean value: true means the contract is obeyed, false indicates that the contract has
been violated. During runtime a set of measurands mi is continuously monitored. This results
in a list

[mi] = mi1 , · · · ,mil

of metered values for measurand mi. The evaluation function f can be defined using the
measurands mi.
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Definition 11.1. A function f is an unparameterized evaluation function if it projects the
sequences [m1], · · · , [mn] of measured values onto B = {true, false}.

mi are measurands, 1 ≤ i ≤ n

Mi is the set of all possible metered values of mi

[Mi] is the set of all possible sequences of metered values of the measurand mi

[mi] = [mi1 , · · · ,mil ] ∈ [Mi] with mij ∈ Mi is a sequence of metered values

f : [M1]× · · · × [Mn] 7→ B

The delivered quality as indicated by [mi] is acceptable if f returns true. Otherwise the deliv-
ered QoS is unacceptable.

Expressing a valid and reasonable evaluation function requires detailed understanding of the
QoS category and the measurands. It is rather unpractical if every application designer starts
creating his own evaluation function, especially since a new evaluation function might require
a special model transformation. Building new transformations involves extra work and costs.
Therefore, existing evaluation functions should be reused if anyhow possible. Furthermore,
some QoS-enabled middleware architectures do not support negotiation of functions (for exam-
ple DotQoS, MAQS, and Quedo). Instead, A fixed set of values is used for contract negotiation.
Consequently, f should be parameterized. This allows developers to tune f without introduc-
ing a new evaluation function. Middleware platforms that do not support the negotiation of
functions will simply negotiate the parameters while f is fixed. More sophisticated negotiation
algorithms can still negotiate f . This is an important achievement since the model should
ideally not be more restrictive than the targeted technology.

Definition 11.2. A function f is a parameterized evaluation function if it projects the param-
eter set p ∈ P and the sequences [m1], · · · , [mn] of measured values onto B.

f : P × [M1]× · · · × [Mn] 7→ B

The meaning of [Mi] is the same as in definition 11.1.

The delivered quality as indicated by [mi] is acceptable with regard to f and p if
f(p, [m1], · · · , [mn]) returns true.

The definition is illustrated by Figure 11.6. The function f is a box that takes the metered
values for the measurands m1, · · · ,m3 as input. The parameters p1 and p2 allow to tune f .
Tuning means adjusting the desired QoS. The box will show green if the metered values satisfy
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Figure 11.6: Concept of QoS measuring and evaluation

the desired QoS. Otherwise the red light will signal an unsatisfactory QoS. However, the concept
of a parameter remains to be defined.

Definition 11.3. f is a parameterized evaluation function as in definition 11.2 with

f : P × [M1]× · · · × [Mn] 7→ B

Then the parameter set p ∈ P is defined as follows.

p = (p1, · · · , pk)

pi ∈ Pi, where Pi is the set of all possible values of pi.

P = P1 × · · · × Pk

Each parameter pi, 1 ≤ i ≤ k has an attached storage type, a physical unit, and a direction.

typep : {1, · · · k} 7→ Types

directionp : {1, · · · k} 7→ {Increasing,Decreasing,None}

unitp : {1, · · · k} 7→ Units

The set Types contains all available storage types. Units is the set of all relevant physical
units.

A parameter may be increasing, decreasing or none of both. If the direction is increasing, a
higher parameter value demands a better quality of service. Hence, if f(p1, [m1], · · · , [mn])
results in true then f(p2, [m1], · · · , [mn]) yields true, too, if p2 ≤ p1. The opposite is not
demanded. This means, if the delivered quality is acceptable for f tuned with p1, it is ac-
ceptable for f tuned with a value smaller than p1, too. If the direction is decreasing, a lower
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parameter value demands a better QoS. Thus, if f(p1, [m1], · · · , [mn]) results in true then
f(p2, [m1], · · · , [mn]) yields true if p2 ≥ p1.

It may happen that parameters are neither increasing nor decreasing. For example f could be
defined as follows.

f(p, [m1]) = p2 ·
l∑

i=0

m1i < 100

p ∈ N = parameter
m1 ∈ N = measurand
[m1] = (m10 , · · · ,m1l

) ∈ [N] = sequence of metered values
l = length of [m1]
m1i ∈ N, 1 ≤ i ≤ l = metered value

For a certain range p1 ≤ p ≤ p2 the function f yields true. Every value smaller than p1 or
higher than p2 will result in f returning false. Hence, p has no direction according to the
above definition. It is in general not advisable to construct f in such a way that a tuning
parameter has no direction. Imagine a home entertainment sound system with a turning knob
for the volume and there is no turning direction in which the sound is definitely turned down.
This would be tremendously unintuitive. Nevertheless, the meta model allows for parameters
without direction, too, since this might be required in some rare cases.

The parameters p of f have some similarities with QoS dimensions of QML. However, these QoS
dimensions are more related to the measurands as discussed in subsection 11.2.3. A comparison
with QML can be found at the end of this chapter in section 11.5.

Frequency of Evaluation

Figure 11.7 illustrates that it is very important to specify the frequency at which the metered
values are evaluated by f .

The figure shows a fictive bandwidth measurement over 24 hours. The bandwidth is good at
the beginning, becomes worse and better towards the end. Whether the average response time
is acceptable or not depends on the time frame. The average over the first 12 hours yields
a bandwidth of 70 MBit/sec. The same holds for the second 12 hours and for the entire 24
hours. However, the average bandwidth between 6am and 6pm is only 58 MBit/sec. If f is
to be evaluated every 12 hours, the outcome of the evaluation is random since it depends on
the time frame. It is better to demand that f must yield true for every possible time frame
of 12 hours. In Figure 11.7 a measurement happens 4 times an hour. Therefore, f should be
evaluated at a frequency of νf = 4/hour.

It is important to distinguish between the frequency νf and the frequencies associated with
measurands - as discussed in the next section. Obviously, it does not make sense to evaluate f
more frequently than measuring takes place. However, a certain amount of new metered values
may be required before f is evaluated again. Thus, f may be evaluated at a lower frequency
than the frequency of the measurements.
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Figure 11.7: Fictive bandwidth measurement

11.2.3 Measurements

To determine the current QoS at runtime the application, middleware, operating system or
hardware has to monitor certain measurands mi. Each measurand is metered at a certain
frequency νi or upon some event. Hence, a sequence of metered values [mi] is created for each
measurand mi and the sequence grows by one at the frequency νi.

To precisely specify the measurement, the model must express for every measurand mi:

• what to measure,
• where to measure, and
• when to measure.

Examples for what are the current time, the size of a message put on the wire, or the sequence
number of the last message received. The where determines, for example, whether the time
stamp of a message should be determined by the middleware or at the TCP/IP stack. The when
is either a frequency or an event. For example, the amount of bytes sent could be measured
every second, hence, at a frequency of νi = 1/sec. In another example, the size of a message
has to be measured whenever a (relevant) message is sent, i.e. when an event occurs.

Specification versus Implementation

In theory, it would perhaps be possible to formally specify the what, where, and when in
the PIM. A model transformation tool could automatically generate code that monitors the
measurands. However, this is not advisable. The measurands mi and the evaluation function f
specify which quality of service is acceptable or not. They do not provide sufficient information
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to derive an efficient algorithm for the measurement and evaluation of the QoS delivered by a
service. This claim is proven by the following example.

To measure the bandwidth, the amount of bytes transferred during the interval of one second
is measured at a frequency of ν = 1/sec. This results in a sequence m1 = m11 , · · · ,m1t after t
seconds. The parameter p denotes the minimum bandwidth that is acceptable. The evaluation
function f is defined as

f(p, [m1]) =
1
t
·

t∑
i=1

m1i ≥ p.

t = time interval sec
p = parameter MByte/sec
m1i , 1 ≤ i ≤ t = metered value MByte/sec
[m1] = (m11 , · · · ,m1t) = sequence of metered values

Implementing f this way is very inefficient. Instead, f could be updated every second as
follows:

f(p, [m1]) = h(p, [m1]) ≥ p

h(p, [m1]) =

{
m11 if [m1] = (m11)
(h(p,(m11 ,··· ,m1t ))∗t+m1t+1

t+1 if [m1] = (m11 , · · · ,m1t+1)

resulting in a runtime of O(n) instead of O(n2) after n seconds. In other settings, the hardware
might offer a byte counter. Clever QoS monitoring code would read this value - called c here -
every second. f would then be defined as

f(p, c, t) =
c · 10−6

t
≥ p

c = byte counter #Bytes
t = time interval sec
p = parameter MByte/sec

In this case the implementation of f is entirely different. The measurand mi (bytes sent during
the last second) is never measured directly. Instead, the bytes sent since the QoS contract has
been established are measured.

An application that adheres to a certain QoS contract does not necessarily measure the specified
values mi or treat f as specified in the model. However, the application must behave as if it
would monitor the measurand mi and apply the evaluation function f . This means, that
reasonable monitoring code can hardly be generated by a tool even if the what, where, and
when are formally described.

As a consequence of this observation, the meta model uses strings to specify the what, where,
and when. The advantage of this approach is that developers can specify the measurement in
natural language, which is usually easier than formalization. The drawback is that the missing
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formalization does not allow tools to make use of the information since computers do not (yet)
understand natural language. This drawback is acceptable. The above argumentation showed
that there are other inherent difficulties in automatically deriving an implementation from the
measurement specification.

11.2.4 Example

This section provides an example of the QoS category response time and how this QoS category
can be defined in terms of measurands mi, the evaluation function f , and parameters pi. The
server guarantees to answer every message in a given time. Otherwise the server is too slow and
the contract is broken. Two measurands are required for the detection of time-outs. Measurand
m1 monitors outgoing messages, their timestamp, and message IDs. Measurand m2 monitors
reply messages received by the server. Tables 11.1 and 11.2 specify these measurands.

Name m1

Description Time stamp and ID of messages sent by the client
When Client sent a message successfully
Where Middleware
What (Timestamp of the message, Message ID)
M1 Time× ID

Table 11.1: Measurand m1

Name m2

Description Time stamp and ID of messages received by the client
When Client receives a message
Where Middleware
What (Timestamp of the message, Message ID)
M1 Time× ID

Constraint The message ID of the received message matches
that of the corresponding send message (see m1)

Table 11.2: Measurand m2

A slow middleware influences the timeout, because the measurands produce a timestamp when
a message enters or leaves the middleware. The time the middleware spends on marshalling and
dispatching is added to the total time required to send and answer the message. A different
definition of the measurands could ignore the overhead induced by the middleware. In this
case the timestamps are created when a message enters or leaves the transport layer of the
operating system. The drawback of this approach is that the timeout is not guaranteed on
the application level since the middleware can spend any time on marshalling and dispatching
without violating the contract. In both cases, the evaluation function requires a parameter p1

that defines the timeout.

The evaluation function f works on the parameter p1 and the two lists of metered values [m1]
and [m2].
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Name p1

Description Timeout
Direction Decreasing
Unit msec
Type integer

Table 11.3: Parameter p1

f(p1, [m1], [m2]) =
{

(∀m1i : h(m1i , [m2], p1) = true) true
else false

The helper function h returns true if the message has a corresponding reply message in [m2]
or if the message has been sent during the last p1 milliseconds.

h(x, [y], p1) = now − t(x) < p1 or ∃yi ∈ y : id(x) = id(yi) and t(x)− t(yi) < p1

time(x) = Time stamp of the message x
id(x) = ID of the message x
now = current time

11.2.5 Custom Functions

A contract type can have a set of custom functions in the PIM. These functions can be divided
into two categories. The first category consists of query functions, i.e. they are free of side
effects. Thus, they do not affect the behavior of the contract. The second category changes
the contract.

A good example for the first category is a getUser and getRoles function of an authentication
contract. The contract ensures that only authenticated users can use a component. Business
logic might be interested in retrieving the name and the roles of an authenticated user. The
contract offers this functionality via the getUser and getRoles methods. The contract is part
of the PIM. Therefore, the getUser and getRoles functions do not necessarily exist in the
PSM, too. For instance, they could be mapped to some functions of the ASP.NET framework.
The sole purpose of these functions is to support the modeling of the business logic in the
PIM.

The second category of custom functions affects the QoS. The functions suspend and resume
of a contract dealing with timeliness are an example (see Figure 11.22). This contract sums
up the computing time required for a certain task (see section 11.4). If the designer wants
to model an exemption, i.e. some method calls that are not covered by the contract, he can
suspend the contract, perform some method calls outside the contract, and resume the contract
afterwards. The suspend and resume functions affect the QoS.

The distinction between the two kinds of functions is important. Imagine a monitor that wants
to track who creates, modifies, and destroys QoS contracts. The monitor must be interested in
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every invocation of the suspend and resume functions. In contrast, invocations of the getUser
and getRoles functions are of no relevance to the monitor.

11.2.6 Instances of QoS Contracts

QoS contract types are attached to ports to indicate that these ports support certain guarantees.
However, a QoS contract type does not specify concrete values. It only tells that timeliness,
availability, bandwidth, etc. guarantees can be made. Sometime this is enough information for
the PIM. Concrete values are determined at runtime via negotiation between the components
or they are configured during deployment. If the designer wants to specify concrete values in
the PIM, he must model a QoS contract instance. A QoS contract type a kind of class and an
instance of a class has a value for each attribute of its class. Correspondingly, a QoS contract
instance can provide a concrete value for every parameter (p1, · · · , pn) = p as specified in its
QoS contract type.

A QoS contract instance may have a concrete value for every parameter. It does not have to.
For example, the designer could specify a component that has a negotiable uptime, but this
uptime is always measured over periods of 10 days. In this case, the QoS contract instance
would have a value of“10 days” for one parameter but no value for the other one. If a parameter
has no assigned value in the PIM, it is subject to negotiation at runtime or configuration during
deployment.

A QoS contract instance does not instantiate the measurands of its contract type. From the
view point of the meta model this would be possible. This could be interesting to store series
of measurements and depict them in a graph as in Figure 11.7. To make this a really useful
feature, it would be necessary to couple the model with testing and debugging tools. This idea
is further discussed in the outlook chapter since it is beyond the scope of this thesis.

11.2.7 Notation

QoS contract types in the PIM are depicted as a convoluted box as shown in Figure 11.8. This
distinguishes them from classes. The name of the contract type is centered at the top of the
box. The box contains three compartments.

Figure 11.8: Compartments of a contract type
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The first compartment contains the parameters. The second one hosts the optional custom
functions. The third compartment contains the task, i.e. a sequence diagram. Usually, the
task is only shown minimized inside the contract type. The complete task is displayed in an
additional diagram. The presentation of the parameters adheres to the following syntax.

parameter := direction name ′ :′ type ′ [′ unit ′
]′

direction := ↑ | ↓ | none
name := [A− Z a− z 0− 9 ] +
type := [A− Z a− z 0− 9 ] +
unit := [A− Z a− z 0− 9 % / ]+

An example is

↓ time : int [msec]

This defines a parameter named time. Its storage type is an integer and its unit is millisec-
onds. The arrow indicates that smaller values lead to better QoS. The presentation of custom
functions follows exactly the standard UML notation for operations. An example is

+customOperation( in param : int ) : int

This specifies a custom function named customOperation with one input parameter named
param of type int. The function returns an int. The visibility of custom functions is always
public since the sole purpose of custom functions is to model the interaction between contracts
and components. Thus, the function is prefixed with a +. Alternatively, modeling tools can
use an icon.

If the custom function does not modify the contract, i.e. if it does not have side effects (see
subsection 11.2.5) then the UML notation for side effect free operations is used, for example

+customOperation( in param : int ) : int {isQuery}

Contract types are attached to ports using a realization dependency. A realization dependency
is a standard UML element. It is denoted as a dashed line with a hollow arrow head. The
arrow points from the port to the contract type. An example is shown in Figure 11.9.

Figure 11.9: Attaching contracts to components
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A realization dependency connecting port and contract type can optionally have a name. Fur-
thermore, a realization dependency can have a set of stereotypes attached to it. A component
can handle a QoS category in three different modes.

• proactive
• reactive
• monitoring

One of these three keywords can be shown next to the realization dependency. If it is omitted,
proactive is assumed. The notation is shown in Figure 11.10

Figure 11.10: Stereotyped contract binding

An additional stereotype is �mandatory�. If a contract is bound to a port using the
�mandatory� stereotype, the component will not operate the port unless this contract is
established. For example, a security related contract may be mandatory. If the environ-
ment of a component cannot provide the required security level, the component will refuse to
operate the port. Finally, the stereotype �static� can be attached to the realization depen-
dency. This specifies that the contract must be instantiated either in the model – using a QoS
contract instance – or during implementation or deployment. Negotiation at runtime is not
supported for static contracts. The stereotypes �mandatory�, �proactive�, �reactive�,
�monitoring�, and �static� must not be attached to the contract type, although that may
seem natural at first sight. The problem of this approach is that one contract type may be
bound to several ports. One port may treat the contract type as mandatory, others do not.
Therefore, the stereotypes must be attached to the realization dependency that connects port
and contract type.

The evaluation function and the measurands are missing in the diagrams. This is done to foster
the clarity of the diagrams. The measurands and the evaluation function are very important
for developers who implement a model transformation or a QoS mechanism for a special plat-
form. However, most developers will simply use existing contract types since a new contract
type requires work on the model transformation and QoS mechanisms for the target platform.
Developers reusing an existing contract type are only interested in those aspects of a contract
type that affect them. In fact, the parameters and the custom operations are relevant to them,
while the evaluation function and the measurands are just documentation to them. Therefore,
the evaluation function and the measurands are only visible in a dialog of the modeling tool.
They do themselves not show up in the model. This idea is used in several other places in the
UML already. For example, all code pieces attached to methods or actions are usually hidden
in the diagrams.

Instances of QoS contract types are depicted as a convoluted box, too. This distinguishes them
from UML’s notation for objects. Objects in UML are instances of classifiers. Comparably,
QoS contract instances are instances of QoS contract types. To distinguish instances from
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types the name is underlined. Furthermore, a QoS contract instance shows its name and type
at the top of the box. The syntax for this is:

instance := name ′ :′ type

name := [A− Z a− z 0− 9 ] ∗

An example is:

MyPerfContract : Performance

From the definition of name follows that a QoS contract instances may be unnamed. An
instance has a slot for every parameter of its type. This slot shows the name of the parameter
and the associated value. The syntax for slots is as follows.

slot := parameter name ′ =′ value unit

parameter name := [A− Z a− z 0− 9 ] +
value := [A− Z a− z 0− 9 . ] +
unit := [A− Z a− z 0− 9 % / ]+

An example is:

time = 10 msec

Figure 11.11: Notation of a contract instance

A complete example is shown in Figure 11.11. Contracts can be bound to ports similar to
contract types. The semantics are that such a port is able to support this contract. If multiple
contracts of the same contract type are bound to the port, the component offers a set of prede-
fined contracts. If the realization is stereotyped as �static�, a selection must be made before
runtime. Otherwise contract selection can occur at runtime. The stereotypes �mandatory�,
�proactive�, �reactive�, �monitoring� are supported for dependencies between a port
and a contract, too.
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11.3 Contract Dependencies

If a PIM statically defines a certain QoS contract instance for every QoS-enabled port, runtime
negotiation and adaptation is not needed. In contrast, if the PIM just specifies QoS contract
types for some ports, runtime negotiation or deployment configuration is required. In these
cases it is important to understand the interdependencies of the different ports and their con-
tracts. One way of addressing this is to model the negotiation and adaptation of QoS contracts
in the PIM. Although this is a very interesting research topic, it is out of the scope of this thesis,
especially since current QoS-aware middleware platforms have only very limited support for
negotiation and adaptation strategies.

A more light weight approach is to make dependencies explicit, but not to describe this depen-
dency in detail. For example, the output quality of a video encoder component depends on its
input. This can be modeled with PIQML as shown in Figure 11.12. However, PIQML cannot
express the output quality as a function of the input quality. Although that could be achieved
with an OCL expression, it is not sufficient in the general case. The output quality depends
on additional factors such as memory and processing power constraints. Therefore, PIQML
is limited to simpler constructs. A contract dependency can belong to one of the following
categories:

• provided/required dependency

• negotiation dependency.

The video encoder is an example for the first kind. The second kind is used to constrain
the negotiation. Such a constraint could, for example, be used to model the order in which
a component allows to negotiate contracts. The following two sections discuss both kinds of
contract dependencies in detail.

11.3.1 Provided/Required Dependencies

The QoS provided by component depends on the QoS that it perceives from its environment. A
component can follow one of two possible strategies to cope with the problem. The first strategy
is to wait for the requests of clients. If a client demands a certain contract, the component will
start negotiating with its environment. The second strategy does the opposite. It negotiates
the contract that the component requires from its environment first. The contracts that it can
provide to clients are limited by the outcome of this first negotiation. This information is very
valuable already in the design phase. If a component follows the second strategy, the developer
must specify what the component should demand from its environment. What the component
will be able to provide is limited by this decision.

This is quite similar to planned economy. For example, the plan in communist states determined
a priori how many car wheels are to be produced during one year. The amount of cars that
can be sold is limited by the number of produced wheels. The drawback is that such systems
do not care how many cars are actually sold. The number of produced car wheels will always
stay the same. The benefit of the approach is that it requires – in theory – less organizational
overhead, because the system does not need to adapt to a change of demand.
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A component following the first strategy will automatically negotiate with its environment to
satisfy the demand. This is close to market economy. The advantage of market economy is
that the system adapts better to the actual demand. Therefore, it is less static than planned
economy. The drawback is that the system may spend enormous capacities on negotiation.
This may eliminate the advantages of better adaptation.

In the model dependencies between provided and required contracts are represented by UML
dependencies. In diagrams they are depicted as dashed lines with open arrow head. The
dependency is not drawn between the ports because a port can offer multiple contracts and
each contract may have other dependencies. A look at Figure 11.12 unveils that for obvious
reasons the dependency cannot be drawn between the contract types, because the diagram
shows only one contract type. Instead, the dependency is drawn between the two dashed lines
connecting port and contract. If the arrow originates in a provided contract (respectively in
the dashed line connecting port and contract) and ends in a required contract, the component
uses the planned economy strategy.

Figure 11.12: Dependency between provided and required contract

Figure 11.13: Negotiation process for Figure 11.12

When the system shown in Figure 11.12 is started, the video encoder component will first
negotiate the contract attached to its required port. Then the viewer component can start ne-
gotiating with the encoder about the contract attached to the provided port. This is illustrated
by the sequence diagram in figure Figure 11.13. If the arrow points in the opposite direction,
the component implements the other strategy – i.e. market economy. This is illustrated by
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Figure 11.14.

Figure 11.14: Dependency between required and provided contract

Figure 11.15: Negotiation process for Figure 11.14

When this system is started, the encoder component will not actively negotiate any contract.
When the viewer component requests a contract, the encoder will negotiate its required contract
with the data store in such a way that the request of the client is satisfied - as far as this is
possible. The negotiation process is shown in Figure 11.14.

11.3.2 Negotiation Dependencies

A different kind of dependencies is related to the negotiation process. Imagine a component
in the context of banking that analyzes the impact of currency changes for brokers. This
component will be used in parallel by many brokers. Speed is of course a consideration since
brokers must decide very rapidly. Therefore, the component offers two contracts. One contract
is about concurrency. It determines how many users the system can service at a time. The
other contract determines how long one analysis will take. Obviously, a system with many
users will be slower than one with few users. The negotiation algorithm of the component may
be realized in such a way that it requires the number of concurrent users first. Then it can
make offers regarding the performance of the computation. The technical reason might be, for
example, that the component will be executed on a small server if the number of concurrent
users is less than 100. The small server is not very fast, hence, the available performance is quite
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limited. If the number of concurrent users is greater than 100, the component is executed on
a load balanced cluster of fast servers. As a consequence, the component can now offer better
performance contracts. Negotiating the contracts in the opposite ordering - hence, performance
first, concurrency second - may lead to the unfortunate situation where few users can force the
component to be executed on the expensive cluster just because the negotiation demanded a
performance of 5 seconds whereas the small server could provide a guaranteed response time
of 6 seconds. Restricting the negotiation order prevents this from happening. Dependencies as
in the example above are called negotiation dependencies.

Negotiation dependencies exist only between provided contracts. They specify in which order
a client of the component must negotiate contracts, which contracts are mutual exclusive and
which contracts must be negotiated in an atomic manner. This is important in the PIM since
two components can be incompatible if they disagree on these topics. Negotiation dependen-
cies can be further subdivided in three classes. The first class restricts the ordering of contract
negotiations. The second class specifies mutual exclusions of contracts. The third class deter-
mines the atomicity of contract negotiations. That means a component enforces the negotiation
about several contracts en block.

Ordering

A component may enforce a certain order on the contract negotiations. This is only important
for runtime negotiable contracts. Thus, their connection to the port must not be stereotyped
as �static�. UML dependencies are used to model ordering dependencies. For example, the
component in the Figure 11.16 insists on negotiating contract C1 before C2.

Figure 11.16: Negotiation ordering

Mutual Exclusion

Some QoS contracts can be mutual exclusive. In this case, they are connected with an {xor}
constraint. This is a standard UML way of marking two elements as mutual exclusive. Figure
11.17 provides an example.
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Figure 11.17: Component with mutual exclusive contract realizations

Atomicity

Negotiation strategies can be quite complicated to implement, especially if multiple QoS cate-
gories have to be obeyed. A first step towards simplification is to limit the order of QoS contract
negotiations. An even simpler approach is to negotiate several QoS contracts en block, hence,
in an atomic manner. Atomicity is modeled with a new QoS contract type. The new QoS
contract type inherits all QoS contract types that should be negotiated in an atomic manner.
A UML generalization dependency is used to model the inheritance. An example is shown in
Figure 11.18.

Figure 11.18: Component with atomic contract negotiation

The introduction of a new QoS contract type requires in turn an adaptation of the model
transformation. The reason is that the negotiation algorithm is a different one. Atomic ne-
gotiation cannot be expressed as a simple concatenation of single negotiations because atomic
negotiation has all-or-nothing semantics. If multiple contracts are negotiated atomically, either
all contracts must be successfully negotiated or none. This requires – in general – special con-
siderations at the QoS mechanisms. Therefore, the model transformation is affected. The case
is different for ordering dependencies. They just constrain the order of negotiations, but they
do not imply all-or-nothing semantics.
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11.4 Tasks

Some QoS contracts apply equally to the entire communication between two ports. An example
is availability. If the component has a failure, it will most likely affect all methods available
via the interface of a port. Therefore, an availability contract can be attached to an entire
port. The case is different for contracts involving timeliness. Some methods require more
computation than others. Therefore, it is appealing to attach different contracts to different
methods. A contract about the timeliness of a single method call is only usable in hard real-
time systems. The contractually guaranteed time must always be a worst case time since every
single method call must complete in the specified time. However, worst case times are often
far away from the time that was effectively required. Therefore, the time difference δt between
the guaranteed time and the effectively required time for each method invocation may be quite
big.

After n subsequent invocations this sums up to n · δt. This means that the contractually
guaranteed time must be much worse than the real performance of the system. This leads to
the undesirable observation that the system guarantees only a very long runtime for n calls
while its effective worst case runtime is much shorter. Especially enterprise applications are
affected by this observation. For an enterprise application it does not matter how long a single
method call takes to complete. The real question is: how fast will the entire task complete?
The problem is that the contract in the above example is about the worst case time of a single
method call. It should have been about the worst case time of n invocations instead.

Therefore, it is beneficial to attach QoS contracts to tasks instead of single methods. For
example, a task could specify that the client should loop n times and during every loop a
certain method is to be called. A timeliness contract for this task would specify a worst case
time for the total of n invocations. This shows that the combination of tasks and QoS improves
the QoS specification of components.

11.4.1 Accumulative Runtime Analysis

Accumulative runtime analysis is an outcome of research on efficient algorithms. The goal of
this approach is to determine worst case times for sequences of operations, hence, tasks. These
worst case times are lower than the sum of the worst case times of the single operations. Hence,
accumulative runtime analysis delivers sharper worst case approximations for tasks.

A simple example inspired by [Sch99] illustrates the accumulative runtime analysis. Imagine
a binary counter with k bits. The counter offers one operation: increase by one. The time
required for the increment depends on the sequence of 1-bits at the end of the counter.

1101 0111 + 1 = 1101 1000

The above increment required the flip of 4 bits. Obviously, the worst case complexity for one
increment of a k bit counter is k. Therefore, n · k is a valid worst case approximation for n
increments of the counter. This approximation is quite bad.
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Some increment operations are cheap since they flip only one bit. Others are very expensive.
The idea of the accumulative runtime analysis is to make the cheap operations pay for the
expensive ones. An expensive operation flipping i bits from 1 to 0 increases the potential.
Subsequent increment operations are fast, because few bits have to be flipped from 1 to 0.

1101 1000 + 1 = 1101 1001

The above increment operation is cheap since the previous operations flipped many i bits.
Therefore, the potential function Θ(x) is defined as

Θ(x) := [Number of 1-Bits inx] .

It is important to notice that

Θ(0) = 0
Θ(k) ≥ 0.

Let wi be the real cost, i.e. the number of bit operations, of the i-th increment operation.
Then

ai = wi + Θ(k)−Θ(k − 1)

is the accumulative cost of the i-th increment operation. The i-th operation switches wi−1 bits
from 1 to 0 and one bit from 0 to 1. Thus, the potential Θ is decreased by (wi−1)−1 = wi−2.
It follows that

ai = wi − (wi − 2) = 2.

Therefore, an approximation for n subsequent increments starting by 0 yields

n∑
i=1

ai = 2n

which is much better than the kn determined above. It remains to be proven that

n∑
i=1

wi ≤
n∑

i=1

ai

i.e. that the real costs are always smaller than the accumulative costs.
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n∑
i=1

ai =

(
n∑

i=1

wi

)
+

n∑
i=1

(Θ(i)−Θ(i− 1))

=

(
n∑

i=1

wi

)
+ Θ(n)−Θ(0)

=

(
n∑

i=1

wi

)
+ Θ(n)

≥
n∑

i=1

wi

This proves that the accumulative runtime analysis improves the approximation of the runtime
for i subsequent increment operations. Figures 11.19 and 11.20 illustrate how the achievement
of this analysis can be used in a model. The analysis has proven that the number of bit
operations is linear in the number of increment operations. The number of bits does not
influence the runtime.

Based on this theoretical result, the contract of the task depicted in Figure 11.19 can be
evaluated. The contract demands 100 iterations. The time for the entire task is 10 msecs.
Invoking the clear operation requires tc msecs. Hence, 10−tc msecs remain for 100 invocations
of the increment function. From

100∑
i=1

wi ≤
100∑
i=1

ai = 2 · 100

follows that 200 bit flips have to be executed for 100 increment invocations. Let tf be the time
in msec required for a bit flip. Then the following constraint must always hold if the contract
is valid.

tc + 200 · tf ≤ 10msec

Without the accumulative runtime analysis the constraint would have been

tc + 100 · 64 · tf ≤ 10msec

for a 64-bit integer, because the worst case runtime for a call to increment would be 64 · tf ,
i.e. 64 bit flips. This is a difference by a factor 64/2 when compared with the results of the
accumulative runtime analysis. Hence, using tasks and accumulative runtime analysis allows
for significantly sharper worst case guarantees.

Incrementing a bit counter seldom is a problem in practice. Scientists have invented specialized
algorithms for real world problems and analyzed them using accumulative runtime analysis. For
example, splay trees [ST85] provide better worst case performance for inserting and searching
elements in ordered dictionaries. Fibonacci trees speedup Prim’s algorithm [Pri57] for minimal
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spanning trees and Dijkstras algorithm for shortest paths. They have in common that they
have a good worst case performance for an entire task. The worst case performance for a single
invocation can be comparably bad. Thus, QoS specification languages such as QML that attach
contracts to methods instead of tasks cannot take advantage of these algorithms. Accumulative
analysis can be used for memory complexity, too. Hence, it can be useful for multiple QoS
categories.

11.4.2 Modeling Tasks

The UML provides two diagram types that can be used for modeling tasks.

• State charts

• Sequence diagrams

State machines (finite automatons) can be used to describe the allowed message sequences.
UML’s state machines are even more powerful than finite automatons. They feature so-called
history states. These history states can be treated as some kind of stack. The combination of
finite automaton and stack is known as push down automaton, which is able to parse context
free grammars while finite automatons accept regular grammars only [HMU00]. Despite the
expressive power of UML’s state machines, the approach presented in this thesis uses sequence
diagrams to express tasks. Sequence diagrams put an emphasis on the time. The messages in a
sequence diagram are vertically stacked according to their chronological order. State charts, as
already indicated by their name, put the emphasis on the change of state instead. The decision
in favor of sequence diagrams and against state charts is merely based on notation issues.
Conceptually, state charts would be possible, too. This is underlined by the transformation
of sequence diagrams into state machines later in this chapter. State machines are easier to
handle in a formal way while sequence diagrams are a better guide to the eye. Thus, a task is
depicted as a normal UML 2.0 sequence diagram. The involved parties are depicted as objects.
In the example presented in Figure 11.20 the task involves four objects. The first two objects
(from left to right) represent the two components that carry out the task. The right most
object represents a QoS contract instance. The corresponding component diagram is shown in
Figure 11.19.

Figure 11.19: Component diagram for a simple counter
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Figure 11.20: Task associated with the Performance contract

If a contract is created, all subsequent messages are subject to this contract. Therefore, the
example in Figures 11.19 and 11.20 shows that the contract type Performance is only applicable
to the increment method of the ICounter interface. The clear method is not affected by the
contract. The call of the increment method is hosted inside a loop. The number of iterations
is defined by P.iterations, which is a parameter of the Performance contract. Thus, the
entire task consists of a call to clear and several calls to increment.

Figure 11.19 shows that the Performance contract has in fact two parameters. The first
parameter, named runtime, is a parameter p of the evaluation function in the sense of definition
11.3. It defines how much computing time the increment operations will require in total. The
second parameter, named iterations, is not directly associated with the evaluation function.
Instead, iterations is a parameter of the task. Thus, an instance of this contract type will
have a concrete value for the number of iterations. The two kinds of parameters are depicted
differently in the model to underline the difference. Parameters of the evaluation function have
an arrow in front and their physical unit is shown inside brackets. Parameters of the task are
depicted like attributes of classes in UML 1.4.

Figure 11.19 does not show any concrete value for the parameters. This means that these
parameters are either negotiated at runtime or configured during deployment. Sometimes
concrete values can already be determined during design time. Figure 11.21 shows concrete
values for each parameter. The components are bound to a task with 100 iterations and the
time required for the 100 calls to increment must be ≤ 10 msec. Thus, the contract does not
require negotiation at runtime.

A mixture of both is possible, too. Thus, the contract instances have concrete values for some
parameters but not for all. Then the remaining parameters will be subject to negotiation at
runtime. This is especially useful for task parameters. It is quite unlikely that the count of
iterations as specified in Figure 11.19 is precisely known at design time. However, it is more
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Figure 11.21: Instantiation of the Performance contract

likely that the designer knows that the counter may not consume more than 10 msec in total.
Therefore, the time can already be specified in the design while the precise number of iterations
is determined at runtime.

Some contracts offer an additional set of functions. For example, an authentication contract
may offer a function to determine name and roles of the current user. In these cases a com-
ponent may wish to exchange messages with the contract instance. However, this would be
an implementation detail of the component and should not show up in the diagram. All com-
munication between a component and a QoS contract instance that is shown inside the task
diagram must have an impact on the QoS of subsequent messages. For example, a QoS contract
type may offer methods suspend and resume. Their usage must appear in the task since they
affect the QoS. This is illustrated by Figure 11.22. The client O1 can call the read function as
often as it wants to. The time required for the read calls is not relevant to the performance
contract, because the contract is suspended before and resumed after the read calls. It would
not be possible to model this task and its QoS properties without the suspend and resume
functions.

11.4.3 Validity Check of Message Sequences

Tasks are used to model the set of allowed message sequences. During runtime the task model
can be used for two purposes:

• detecting erroneous message sequences,
• activation/deactivation of QoS contracts.

During runtime the client sends messages to the server side and the server side sends response
messages. The task specifies the set V of message sequences that comply with the task. This set
may be of infinite size. In order to treat task models in a more formal way, they are projected
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Figure 11.22: The extended Performance contract

on formal languages. The set V is treated as the vocabulary of a formal language. Hence, every
word w ∈ V is a sequence of messages. Each word w is composed of single characters, hence,

w = (w1 · · ·wn) with wi ∈ Σ.

The set of characters Σ contains at least one element for each method of each interface involved
in the task. If a method is not one-way – i.e. if a return message will be sent – a second element
is added to Σ. Additionally, for each contract c used in the task the two messages ca, cd ∈ Σ
are added.

• ca for contract activation,

• cd contract deactivation.

Client and server monitor the sequence of messages and the activation/deactivation of contracts.
These observed messages must yield a word w. If w ∈ V , client and server conform to the task.
This conformance covers the correct ordering of messages as well as the correct activation and
suspension of QoS contracts. The implications of QoS contracts for the formal language are
further discussed in subsection 11.4.4.
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In order to check the conformance of message sequences at runtime, an automaton is required
that accepts the language V . In many cases a finite automaton - hence, a regular language - is
sufficient.

Proposition 11.1. Tasks that do not contain concurrent compartments (marked with par in
the diagram) and that do not use recursion can be checked by a finite automaton.

Proof. The proof shows that the task model can be reduced to a regular expression. Regular
expressions have the same expressive power as finite automatons [HMU00].

The input alphabet of the regular expression is Σ.

One message can be represented by a character in Σ. Hence, a single message corresponds to
a valid regular expression.

The opt compartment can be reduced to (r?) where r is the regular expression inside the opt
compartment.

The alt compartment can be reduced to (r1|r2| · · · |rn) where ri is the regular expression of
the i-th alternative in the alt compartment.

The loop compartment can be reduced to (r∗) where r is the regular expression inside the
loop compartment.

The proof follows from the fact that two concatenated regular expressions are in turn a regular
expression.

If recursion is allowed, a push down automaton - hence, a context free language - is required.

Proposition 11.2. Tasks that do not contain parallel compartments can be checked by a push
down automaton.

Proof. A finite automaton is created from the task model. The transition that enters a recursion
puts a symbol on the automaton’s stack to indicate where to continue when the recursion
returns. The final state of the recursively called automaton will check for these symbols on
the stack. If there is one, it is popped from the stack and the automaton transits to the state
where recursion started.

Each finite automaton can be reduced to a minimal automaton. Such minimal automatons
have the property that they do not contain dead-end states.
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Observation 11.1. The automatons constructed from the task model do not contain dead-end
states. Thus, if the automaton already read the word x then ∃ y ∈ Σ∗ such that xy ∈ V .

Parallelism

Tasks can contain par compartments, which host sub-tasks that can be executed in parallel.
In such cases the first sub-task is treated as if it is executed by the thread that entered the par
compartment. All other sub-tasks are executed by threads that are forked from the one that
entered the par compartment.

A consequence of this treatment is that a main-thread executes during the complete task.
This main-thread executes always the first sub-task in every par compartment. For this main-
thread it is possible to construct a word w ∈ V ⊆ Σ∗ representing the message sequence. For
each additional sub-task a new thread is started. The new threads will be subject to another
automaton. Their automaton is constructed from their respective sub-task.

Thus, a total of 1 + s − p automatons is required if p par compartments contain altogether s
subtasks. One automaton is required for the main-thread. Each sub-task except for the first
one requires an additional automaton, hence, s− p additional ones.

This shows how to check the conformance of message sequences with automatons in the presence
of parallelism. However, it has to be noted that the monitoring entity (usually some kind
of middleware) must be able to associate each message with a logical thread. This can be
implemented by sending some context information along with every message. This technique
can be applied at least to CORBA, .NET Remoting, and SOAP based services. This leads to
the following observation.

Observation 11.2. The compliance of message sequences to a given task can be checked with
a set of push down automatons if the compliance checking entity can associate every message
with a logical thread.

11.4.4 Validity Checks of QoS

The constructed automatons can be deterministic or non-deterministic. According to [HMU00]
their expressive power is the same. However, even a deterministic automaton does not nec-
essarily have the property that it can non-ambiguously associate every real message with a
message of the task model. This is illustrated by the following example.

The task shown in Figure 11.23 can be checked with a simple finite automaton. The corre-
sponding regular expression is ab. The automaton is shown in Figure 11.24.
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Figure 11.23: Ambiguous task

Figure 11.24: Automaton for Figure 11.23

Obviously, the automaton does not care whether the message b belongs to the first or sec-
ond sub-task in the alt compartment. This is irrelevant if no QoS contracts are involved.
However, if the sub-tasks in the alt compartment are subject to different QoS contracts, it
makes a significant difference to which sub-task a message belongs. Such a case is shown in
Figure 11.25.

The task in Figure 11.25 can be checked with the regular expression

a(cabcd|b).

Hence, the regular expression accepts only the words ab and acabcd. The automaton can
check whether the QoS contract has been activated and deactivated in accordance to the task
model. However, it is desirable, too, that the automaton could automatically turn on or off the
required QoS contracts. In this case the client would just exchange messages, a and b in the
above example, with the server. The automatons on client and server side will automatically
establish the required QoS contracts in accordance with the task. Thus, in the above example,
the messages ca and cd would be automatically inserted by the automaton.

In the above example this cannot work, because the client would always send the message
sequence ab. The automaton cannot detect whether it was the intention of the client to use
the QoS contract c or not. This leads to the following observation.
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Figure 11.25: Ambiguous task with a contract

Observation 11.3. An automaton constructed from a task model is in general not able to
automatically turn on or off the QoS contracts. It can just check whether they have been
turned on or off in compliance with the task model.

11.4.5 Automatic QoS Contract Activation

Observation 11.3 only covers the general case. For a large subset of tasks it is possible to
automatically activate the required QoS contracts. Hence, Σ is partitioned into ΣI and ΣC .
The set ΣI contains the symbols that correspond with methods of the interface. The set ΣC

contains all messages associated with each contract c, i.e. the messages ca and cd.

The client is supposed to send and receive only messages that correspond to a symbol in ΣI .
The other messages are automatically sent or processed by the automaton. Such an automaton
must be able to determine the QoS contracts that are applicable to each message. That means,
if the automaton already saw the message sequence w = (w1 · · ·wn−1) ∈ Σ∗

I and it reads
message wn ∈ ΣI then the QoS applicable to wn can be determined. More formally spoken,
let

M = (Q,Σ, δ, q0, qf )
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Q = set of states
Σ = input alphabet
δ : Q× Σ 7→ P (Q) = transition function
P (Q) = the power set of Q
q0 ∈ Q = start state
qf ∈ Q = final state

be the non-deterministic automaton that accepts the language V over the input alphabet

Σ = ΣI ∪ ΣC .

Furthermore, let

R(a) : Σ∗ 7→ Σ∗
I

be a function that strips all characters from a that belong to ΣC .

Proposition 11.3. A task model can feature automatic contract activation if its automaton

M = (Q,Σ, δ, q0, qf )

holds the property

δ(q0, w1) 6= {} ∧ δ(q0, w2) 6= {} =⇒ w1 = w2 ∨ R(w1) 6= R(w2)

w1, w2 ∈ Σ∗ = arbitrary words over Σ.

Proof. Let a = (a1 · · · an−1) be the total sequence of messages sent and received and an ∈ ΣI

the next message sent or received by the client (or server respectively).

If δ(q0, a) 6= {} then a is a prefix of some word w ∈ V because of observation 11.1.

There exists only one word c ∈ Σ∗
C such that acan is a valid prefix of some word x ∈ V .

Assuming the opposite implies that c1, c2 ∈ Σ∗
C , c1 6= c2 and y ∈ Σ∗ exist such that w1 = ac1any

and w2 = ac2any would both be in V . In this case w1 and w2 differ only in characters of ΣC .
Hence, R(w1) = R(w2), which contradicts the assumption.

Thus, c ∈ Σ∗
C is uniquely defined and the QoS contracts applicable to an can be determined by

the automaton.

Not every task model supports automatic contract activation. Furthermore, it depends on
the model transformation and the targeted platform whether contract activation will be sup-
ported.
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11.4.6 Tasks and the Evaluation Function

In contrast to QML (see section 11.5), QoS contracts can be bound to a task, hence to sequences
of method calls. If, for example, a time contract is attached to a sequence of calls, the semantics
can be two fold.

• The contractually guaranteed time is the total time needed for all method calls together.
• The contractually guaranteed time is the maximum time of each single method call.

Which possibility applies depends on the evaluation function. This is illustrated by the following
example. The measurands are the same in both cases. Let m1 record the timestamp of messages
sent from client to server. Let m2 record the timestamp of the reply message. Hence, [m1] and
[m2] are sequences of timestamps.

If the contractually guaranteed time is the total time, the evaluation function f must be
evaluated when the sequence of calls terminates.

f =

len(m1)∑
i=0

(m2i −m1i)

 < p

p ∈ P = contractually guaranteed time [msec]

In contrast, if the contractually guaranteed time is a constraint on the time needed for each
single method call, f is defined differently.

f = (m2i −m1i) < p , ∀ 1 ≤ i ≤ len(m1)

p ∈ P = contractually guaranteed time [msec]

The first case is usually used in the context of enterprise applications, since the time of a single
invocation does not matter. The second case is more important for real-time applications. QoS
specification languages that do not support tasks are always restricted to the second case.

11.4.7 Tasks versus Synchronization Contracts

Synchronization contracts determine the order and possible parallelism of messages sent be-
tween the component and its environment. Therefore, tasks seem to interfere with synchroniza-
tion contracts since both constrain the allowed sequences of messages. If a component features
a synchronization contract and QoS contracts with associated tasks, both constraints apply.
Thus, the allowed sequence of messages must conform to the tasks and to the synchronization
contract. It is quite likely that the message sequence defined by the synchronization contract
and the message sequence defined by the task differ only by messages ∈ Σc, i.e. messages
exchanged with QoS contracts. Hence, if

L(T ) = L(S)
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L(S) = language over ΣI defined by the synchronization contract
L(T ) = language over ΣI defined by the task

then the task is a duplication of the synchronization contract. Note that the language L(T )
does not contain messages ∈ ΣC , although they may be part of the task. To overcome this
duplication, the task replaces the synchronization contract and is moved outside the QoS
contract. Dropping the synchronization contract is no problem if L(T ) = L(S). Figure 11.26
illustrates the solution. The task does now belong to the component. In Figures 11.19 and
11.20 the task belongs to the QoS contract instead. The drawback of this approach is that two
contracts are mixed: synchronization contracts and QoS contracts.

Figure 11.26: Merging task and synchronization contract

However, in some situations QoS contracts must indeed constrain the allowed message sequences
more than the synchronization contract, i.e. L(S) 6= L(T ). It is desirable that the set of message
sequences allowed by the task of a QoS contract is always a subset of the message sequence
set allowed by the synchronization contract. As shown in subsection 11.4.3 the set of allowed
message sequences can be treated as a formal language over the alphabet

Σ = ΣI ∪ ΣC .

Thus, if

L(T ) ⊆ L(S) (11.1)

then all message sequences allowed by the task are also allowed by the synchronization contract.
It appears that Equation 11.1 is in general not decidable. Nevertheless, in many constraint
settings, the problem is decidable.



11.4 Tasks 157

Proposition 11.4. If languages L(S) and L(T ) are regular then Equation 11.1 is decidable.

Proof. The intersection of two regular languages is again a regular language. Thus,

L(M) := L(T ) ∩ L(S)

is a regular language. If

L(M) = L(T )

then every x ∈ L(T ) must be in L(S), too. Hence, L(T ) ⊆ L(S). According to [HMU00] the
equivalence of two regular languages is decidable. It follows, that L(T ) ⊆ L(S) is decidable,
too.

Unfortunately, this result cannot be applied to more complex languages.

Proposition 11.5. If languages L(S) and L(T ) are context free, Equation 11.1 becomes un-
decidable.

Proof. If the proposition was wrong then

L(S) ⊆ L(T )

and

L(T ) ⊆ L(S)

would be decidable. If both properties are satisfied, it follows that

L(T ) = L(S)

and the problem is decidable. However, according to [Mar02] the equivalence of two context
free languages is undecidable. Hence, the assumption is wrong, and the proposition is proven.

It is not even possible to check whether L(T ) and L(S) are mutual exclusive, since the prob-
lem

L(T ) ∩ L(S) = ∅

is not decidable if L(S) and L(T ) are context free languages [Mar02].
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11.5 Comparison with QML

Every contract or profile expressed with QML can be expressed with the meta model presented
in this thesis. A QML-style QoS contract type can be expressed as a PIQML QoS contract type.
A QML-style QoS contract can be treated as a PIQML QoS contract and an unparameterized
evaluation function f (see definition 11.1). QML-style profiles can be expressed with tasks. If
a QML contract is bound to an entire interface, the contract can be directly attached to the
port of a component. If a QML contract is bound to a certain method or a set of methods, the
corresponding task creates the QoS contract before this method(s) are invoked and destroys it
afterwards.

The main difference between QML’s profiles and the approach presented here is that QML
binds QoS contracts to interfaces. For the PIQML this is just a special case which is covered
by the more general task concept. QML cannot specify QoS contracts that depend on a context,
i.e. the current state of the task, in which a method is invoked. Furthermore, QML cannot
assign QoS contracts to a sequence of method invocations. For example, it is not possible to
specify that the total time required for one call to foo() and three calls to bar() should not
exceed a certain time. Thus, QML has less expressive power than PIQML.

QML does not foster reuse. Each QML contract corresponds to a different unparameterized
evaluation function. Therefore, each new contract represents a new evaluation function. Dif-
ferent evaluation functions – i.e. different QML contracts – may require new QoS mechanisms,
monitoring code, and adaptation strategies. It is an yet unsolved problem to automatically de-
termine whether an existing QoS mechanism is suitable for a certain QML contract. Hence, in
general existing solutions cannot easily be reused. Therefore, the evaluation function as used in
this thesis can be parameterized. This allows developers to tune the evaluation function while
the QoS mechanisms, monitoring code, and adaptation strategies can be reused.

The semantics of QoS dimensions in QML are unclear. QoS dimensions have to be measurands,
otherwise it would not make sense to express constraints upon them such as mean or variance.
However, QML does not specify when or how-often they must be metered. Furthermore, it is
unclear over which time interval the mean value has to be measured. The importance of such
information is discussed in section 11.2.2.

The set of statistical functions offered by QML is limited. QML supports mean, variance,
percentile, and frequency. The functions mean and variance are self-describing. Percentile
is used for the specification of statistical distributions on numeric QoS dimensions. Frequency
is used for the specification of statistical distributions on enumerated QoS dimensions.

Every statistical analysis needs a certain startup time to gain enough data. QML does not
provide means to specify how long such a startup time should be. Two contracting parties
have three possibilities. First, they assume a startup time of 0. This may have the effect
that the contract is immediately terminated after the first value has been metered. Second,
they somehow agree on a startup time. This means that the QML contract cannot sufficiently
describe the QoS properties of a component. Third, the contracting parties do not agree on a
startup time. In this case the party with the shorter startup time may already treat the contract
as violated while the other party is still gathering data for the first statistical analysis.
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QML cannot mix several QoS dimensions in one constraint. For example, it is not possible to
specify that the delay and the throughput should stay in relation. The following constraint
cannot be expressed with QML, because it mixes two QoS dimensions in one expression.

variance(c · delay

msec
− throughput

MByte/sec
) < 0.3

delay = QoS dimension [msec]
throughput = QoS dimension [MByte/sec]
c = correction factor

This example is quite reasonable, since an extreme good delay can be useless to streaming
applications if the throughput is extremely weak.

Finally, contract negotiation with QML is very complex. A contract is a set of constraints upon
the QoS dimensions, hence, a set of mathematical functions. Comparing two QML contracts is
therefore quite difficult. Taking into account that QoS contracts can be negotiated at runtime
the time complexity of negotiation should not be underestimated. The approach presented
in this thesis supports parameterized evaluation functions f . Negotiation is much easier if
the negotiating parties agree upon f a priori. Hence, they just have to negotiate the set of
parameters p at runtime. This is easier and faster than the negotiation of a set of functions.





Chapter 12

Platform Specific Model

The model transformation projects the platform independent model (PIM) onto a platform spe-
cific model (PSM). A platform consists of a choice of hardware, operating system, middleware,
services, programming language, and perhaps additional frameworks such as a GUI toolkit.
Hardware can be important, because a component’s QoS properties are often correlated with
the performance and availability of the underlying hardware. The operating system (OS) influ-
ences the PSM, because it offers OS-specific APIs that may be used in the PSM; in the PIM
OS-specific APIs are not allowed. The middleware influences the PSM significantly. The PSM
for a .NET Remoting based component differs tremendously from a component built on top
of CORBA, for example. Especially the approaches to integrate QoS in middleware are very
diverse. A component may rely on other services, for example databases, a lifecycle service
[OMG02a], or a naming service [OMG02a]. Databases vary in the API they offer, in the SQL
version they understand, and in the way they handle transactions. The PSM can include frag-
ments of source code. Such source code fragments are attached to bodies of methods in class
diagrams or to state transitions in state diagrams. Thus, the selected programming language
influences the PSM. Finally, a component may be built on an additional framework, for exam-
ple a GUI toolkit [WG00] such as Qt [Tro03] or GTK+ [GTK03]. Integrating the event loop
of the middleware with the event loop of the GUI framework can be a tedious task.

Just like the PIM, each PSM is an instance of a meta model. The primary candidate for
this meta model is standard UML because UML supports the modeling of a software system’s
realization. However, as outlined in section 12.5 other meta models are more appropriate in
certain settings.

It is worth noting that one meta model can be used for multiple platforms. For example, the
UML is not affected by the choice of hardware and operating system. Frameworks and services
can be modeled in UML as hierarchies of classes and interfaces. Concepts of the middleware
are integrated with the UML by special UML profiles, for example [OMG02e, Gre01]. Finally,
some programming languages have special concepts that have no representation in UML, for
example .NET’s delegates [ECM01a] and meta information [ECM01b]. Such programming
language concepts may require an additional UML profile, too.

PIM and PSM do not only differ in the platform independence. The PIM is highly declarative,
especially with regards to QoS. The PIM specifies what the system should do and which QoS
properties is must have. In contrast, the PSM is concerned with the question how the system
works and how the QoS properties are realized. Therefore, the PSM is more complex and
difficult to read when compared with the clearness of the PIM. This process is continued
by source code generation and by compiling the source code to CPU specific assembly code.
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The development process moves from very high level constructs to more technology specific
constructs until it reaches a state that allows a machine to execute the software system.

The PSM is not necessarily a model in the sense of a modeling language. It would be possible
to transform the PIM directly into source code and makefiles. Source code can be treated as
a textual representation of an abstract syntax tree. This tree can be treated as a model in
the sense of definition 5.3. Thus, the same transformation technology can be used to generate
source code and makefiles. Section 12.5 gives an example for this approach.

In the case of very large scale applications it may be necessary to address a collection of
target platforms. For example, a company may use ASP.NET & IIS (Active Server Pages and
Internet Information Server) to communicate with customers via the web while the business
logic is implemented in CORBA CCM. This heterogeneous system is modeled homogeneously
in the PIM. The model transformation must create a ASP.NET specific model for customer
related components and a CORBA CCM specific model for the business logic. These two
platform specific models may either be totally disjunctive or they are joined into one model
based on a merged meta model.

The following section describes how model transformation can influence the deployment of
components by attaching constraints to the PSM. The next four sections demonstrate that the
MDA approach used in this thesis can be applied to many quite diverse QoS categories and
platforms. Four platforms – ASP.NET & IIS, .NET & COM+ services, DotQoS, and CORBA
CCM – are discussed.

12.1 Deployment Diagrams

QoS mechanisms are usually realized in software which is executed on hardware. If this hard-
ware is inappropriate then the desired QoS properties cannot be realized. For example, the
best load balancing does not guarantee sufficient performance if the computing machinery is
not powerful enough. Another example is availability. The replication of data and services
must stay in relation to the availability of the hardware. This implies that the deployment is
important for QoS-aware applications.

From the viewpoint of the model transformation the deployment is more difficult to influence.
Model transformation can generate design, source code, and state machines. However, the
model transformation cannot automatically create a deployment diagram. The PIM does – by
intention – not contain any hardware related information. Thus, the transformation does not
know a priori on which hardware the components must be deployed.

Therefore, model transformation has two possibilities to influence the deployment. First, the
transformation could generate a deployment template. This template shows an ideal config-
uration of hardware for the software system. Second, the transformation creates constraints
that enforce certain properties of the hardware.

These two possibilities are further investigated in the following discussion. The two approaches
are not mutual exclusive. A very sophisticated model transformation could produce a deploy-
ment template. This template diagram may be modified by the developers to adapt it to
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their hardware configuration. In a final step, generated constraints check whether the final
deployment diagram still satisfies the demanded QoS properties.

12.1.1 Deployment Templates

Deployment templates are especially useful if the software system will be deployed on dedicated
hardware. In this case the model transformation could have built-in knowledge of available
hardware products. The generated PSM would contain a deployment diagram that shows
the hardware required to execute the software system. This includes the computers, their
network connection, and may even include information about redundant power supply for
mission critical systems. Furthermore, the deployment diagram shows which component to
deploy on which machine.

Deployment templates can be very useful for project planning, too. In early phases of the
project, designers can model the important components and their QoS properties in the PIM.
Then they generate the deployment template to see how expensive the hardware will become.
In subsequent steps the QoS properties can be adjusted to reach the optimal relation between
cost and capacity.

The drawback of deployment templates is that they do not take existing hardware into account.
The PIM does not – and should not – contain hardware specific information. Thus, the model
transformation does not have any input regarding existing hardware configuration. Therefore,
deployment templates are optimal if new hardware is required anyway.

Modifying deployment templates may result in inadequate hardware configurations. To detect
such problems, the model transformation should generate constraints, too.

12.1.2 Examples

In the first example a component is constraint to be deployed on three different machines (nodes
in UML terminology). Figure 12.1 shows an adequate deployment of this component.

The constraint is attached to the component. The constraint’s boolean expression is not vis-
ible in the diagram. It is a Python expression that counts the deployment locations of the
component.

len( self.deploymentLocation() ) == 3

Figure 12.2 shows what happens if the deployment is not acceptable. The constraint raises a
warning. This warning is displayed in the dialog and the component in question is displayed
in red.

The second example shows the deployment of a database component. In the PIM, the database
offered a certain amount of transactions per minute. The database must be deployed on an
adequate machine to realize this. Hardware vendors of expensive server machines run bench-
mark suits to determine the performance of applications such as databases on their machines.
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Figure 12.1: Deployment diagram with satisfied constraint

The result of such a benchmark test can be attached to a deployment diagram. For this pur-
pose, tagged values are attached to the UML representation of the machine. A tagged value
is a key/value pair. In this example the key is the kind of benchmark and the value is the
benchmark’s result. Figure 12.3 illustrates this.

The constraint in this example checks that the node on which the component is deployed has
adequate benchmarking results.

[t.dataValue() for t in self.deploymentLocation()[0].taggedValue()
if t.type().name()== "benchmark" ][0] >= 5000

The above statement does not check whether the component is deployed at all and whether
the tagged value benchmark exists. Constraints can become quite large expressions. Therefore,
only a short description of the constraint is shown in diagrams.

12.2 COM+

This section shows how a Kafka transformation can be used to transform a PIM into a COM+-
specific PSM. COM+ components can be implemented in every .NET language. The following
examples use C# [ECM01a]. .NET is object-oriented. Therefore, it is straight forward to
utilize an object-oriented modeling language such as UML as a basis for the PSM. Some .NET
features have no representation in the UML, for example custom attributes and delegates. Cus-
tom attributes can be attached to almost every construct of a .NET compatible programming
language. Such constructs are classes, attributes, methods, parameters, enumerations, and so
on. Upon runtime a .NET application can use reflection to get hold of these custom attributes.
The following code excerpt provides an example:
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Figure 12.2: Violated constraint in the deployment diagram

[MyClassAttribute( 100, ‘‘Hello World’’ )]
class FooBar {
}

Every application programmer can define new custom attributes. In the above example the
MyClassAttribute has been attached to the FooBar class. To add this and other concepts
to the UML a profile is required. A UML profile is a set of stereotypes and tagged values
[GHS02]. In UML a .NET custom attribute is represented as a stereotyped UML constraint. A
constraint can be attached to every UML elements. The same is – almost – the case for custom
attributes. Figure 12.4 shows a UML diagram created with Kase which contains a class and a
custom attribute.

A COM+ component is a class that is decorated with some COM+-specific custom attributes.
These attributes determine which QoS mechanism the component will use: security, transac-
tions, etc. Furthermore, the implementation of this class must obey certain rules which depend
on the selected mechanism. The model transformation should generate the COM+ specific
parts. The business logic is either derived from the PIM, too, or it has to be filled in by
the application developer. The C# source code for a transaction-aware component looks like
this:
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Figure 12.3: Tagged values in a deployment diagram

Figure 12.4: .NET custom attributes in UML diagrams

using System;
using System.EnterpriseServices;

[assembly:ApplicationActivation(ActivationOption.Server)]
[assembly:ApplicationID(‘‘543534-3455-3245-3234-42342’’)]
[assembly:ApplicationName(‘‘MyApplication’’)]
[assembly:Description(‘‘Some information’’)]

namespace MyNamespace
{
[Transaction(TransactionOption.Required)]
public class MyComponent
{
public MyComponent() { }
public void DoSomething()
{
if ( !ContextUtil.IsInTransaction() )
throw new Exception(‘‘No Transaction Context’’);

//
// TODO: Allocate resources
//

try
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{
//
// TODO: Business logic
//

}
catch(Exception e)
{
ContextUtil.SetAbort();
return;

}
finally
{
//
// TODO: Release resources
//

}
ContextUtil.SetComplete();

}
}

}

The custom attribute Transaction is used by the .NET runtime. The class MyComponent will
be put under the control of the COM+ distributed transaction coordinator. Each function that
is subject to the transactional behavior starts by checking for a transaction context. If this one
is missing, an exception is thrown. Then the method can allocate resources such as a database
connection. These resources are later on released in the finally clause. The business logic is
inside a try clause. If the business code fails for some reason then the transaction is aborted.
Otherwise the transaction is completed.

The four custom attributes starting with assembly tell COM+ to start the component in a
separate process. Another option would be to execute the component in the same process as
the calling client.

A UML model for the above example is shown in Figure 12.5. The namespace and the class
are modeled as UML package and UML class. The custom attributes are displayed on top of
the element to which they belong. They are depicted almost like UML constraints. The major
difference is that constraints are put inside curly braces. A UML 1.4 component (a physi-
cal component) represents the component, hence, a .NET assembly. Therefore, the assembly
related custom attributes are attached to the component. The artifact MyComponent.dll rep-
resents the file in which the assembly will be stored. In UML jargon the class resides on the
component and the component’s implementation is stored in the MyComponent.dll artifact.

The diagram does not show the implementation of the method DoSomething(). The dialog
shown in Figure 12.6 shows the function’s implementation. This source code is generated by
the model transformation, too. The generated code is embedded in region constructs:
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Figure 12.5: Diagram of a transaction-aware COM+ component

#region SomeName
...generated code ...
#endregion

In VisualStudio.NET the code inside the regions is hidden when the regions are collapsed. This
is shown in Figure 12.7. The application developer does not need to know what is inside these
regions. He just fills his source code between the regions as indicated by the comments.

The application developer is allowed to modify the code outside the regions. The code in-
side the regions is managed by the modeling tools. This is important for subsequent model
transformations. The model transformation itself will always produce the same skeleton imple-
mentation. A merging algorithm inside Kase’s code generation engine automatically updates
the code inside the regions or removed/adds regions. For example, if the transaction contract
is removed from the PIM then the code regions dealing with transactions will be removed from
the source code. Just the business code written by the application programmer would remain.
This turns code generation in an easy to use but powerful feature (from the viewpoint of a
model transformation developer). The developer of a model transformation just generates a
skeleton implementation. Kase’s code generation automatically merges the source code written
by the application programmer with the source code generated by the model transformation.

Other COM+ features such as object pooling, just-in-time activation, events, and security are
handled in a similar way. From the modeling viewpoint they are structurally comparable with
the transaction example above. More details can be found in [RAC+02].

12.3 ASP.NET

ASP.NET is a .NET technology. Therefore, the platform specific model is based on UML with
some extension. In so far, ASP.NET is similar to COM+. The specialty of ASP.NET is its
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usage of XML. Some mechanisms such as authentication, authorization, and transactions are
configured via XML files. The model transformation must be able to generate the relevant
entries in the configuration file.

XML files are – at first sight – text files, but a model is always a graph structure. Hence,
the XML structure must be mapped to a graph like structure. A XML file can be represented
as a tree structure. The Document Object Model (DOM) [W3C98] is a W3C standard for
accessing a XML document programmatically. DOM decomposes the XML text file into a tree
structure. This tree structure can be treated as a model. Thus, model transformations can
construct XML files. The UML itself does not support this. An extension is required. Mapping
the DOM into a UML meta model extension is straight forward. Section B.2 shows the meta
model extension for XML.

Figure 12.8 shows a model containing XML tags, a XML file, and a dialog for the editing of
XML. Files are represented in UML as instances of the meta class Artifact. The content of
a file – i.e. an artifact – is not shown in a UML model, although Kase can store the content of
the file in the model. XML tags are useful to depict the contents of a XML file or fragments of
a file in a model. From the perspective of a modeling language it is not useful to show XML
tags in a model. However, XML tags are especially useful in Kafka transformation rules. Using
XML tags in Kafka rules, a transformation can add, remove, or modify tags and attributes
selectively. The following example will make use of this feature.

The following practical example shows how a Kafka transformation creates a ASPX page that
resides in a transaction context. Transactions in ASP.NET pages are enabled by a special tag
in the ASPX file. Putting the attribute Transaction=’Required’ in the Page tag creates a
transaction context whenever the page is processed by the web server.

<\%@ Page Transaction="Required"
language="c#"
Codebehind="MyPage.aspx.cs"
Inherits="TransTest.MyPage"
AutoEventWireup="false"\%>

<html>
<head>

<title>ASP.NET Transaction</title>
</head>
<body MS_POSITIONING="GridLayout">

<form id="MyPage" method="post" runat="server">
<asp:button id="btn1" onClick="onButton1" runat="server"

Text="Button 1"></asp:button>
<asp:button id="btn2" onClick="onButton2" runat="server"

Text="Button 2"></asp:button>
</form>

</body>
</html>

Figure 12.9 shows the PIM of a simple web application. Kase supports a special PIM meta
model for modeling web applications. Each web application is modeled as a component that
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may feature multiple ports. A port has an attached protocol, HTTP in this example. In the
example one port is bound to a transaction contract. The line mode=’Required’ indicates that
a new transaction context will be created whenever a page served via this port is requested
unless the request happens to be already under control of a transaction context. In this case
the page is served in the existing transaction context. The web pages are hosted inside the
component. The dashed arrows connecting ports and pages indicate the pages served via each
port. Hence, the page MyPage will run inside a transaction. A web page can have multiple
controls: buttons, text fields, data selectors, and so on. The controls themselves are modeled
in the PIM, too. The Button control provides an example. Controls can emit signals. The
button, for example, emits a clicked signal. Signals can trigger actions. If the Button1 of
MyPage is clicked, the transition with the trigger On_Button1_clicked will fire and the user is
redirected to another web page.

The transformation of a web application PIM into a PSM involves a large set of rules. Only the
rules dealing with XML tags are shown here. Previous examples have already demonstrated
how Kafka rules can be used to transform PIM constructs into .NET classes, custom attributes,
and source code. The transformation of the MyPage of the PIM shown in Figure 12.9 into an
ASPX page is carried out in three steps. The first Kafka rule matches the web page in the
PIM creating the following XML structure and a class named MyPage. An ASPX page always
consists of a XML file and the corresponding code – called codebehind in Microsoft terminology.
However, the class and its generation are omitted in the following, since it would not show any
new concepts.

<\%@ Page language="c#" Codebehind="MyPage.aspx.cs"
Inherits="MyPage" AutoEventWireup="false"\%>

<html>
<head>

<title>ASP.NET Transaction</title>
</head>
<body MS_POSITIONING="GridLayout">

<form id="MyPage" method="post" runat="server">
</form>

</body>
</html>

The second transformation rule matches all controls and adds the following XML tags.

<asp:button id="btn1" onClick="onButton1" runat="server"
Text="Button 1"></asp:button>

<asp:button id="btn2" onClick="onButton2" runat="server"
Text="Button 2"></asp:button>

The third rule checks whether a transaction contract is associated with this page. In this case,
the attribute

Transaction="Required"
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is added to the Page tag. Figure 12.10 shows the Kafka rules that are used to generate the
ASPX file. The Page rule creates the ASPX file. The Python expression @P.name()@ is used
to include the name of the PIM page into the filename. The generated ASPX file contains
several tags, among them a tag named form and one named Page. The second transformation
rule iterates over all controls hosted by a web page. If the control is a Button, an asp:button
tag is created and added to the form tag. The third rule iterates over all component ports
that realize a transaction contract. For every page served via a transaction-enabled port, the
attribute Transaction=’Required’ is added to the Page tag.

12.4 DotQoS

DotQoS is based on Microsoft’s .NET technology just like COM+ and ASP.NET. In contrast
to these technologies DotQoS is a full featured QoS-enabled middleware. It supports the spec-
ification and negotiation of QoS contracts. Furthermore, DotQoS supports the task concept.

The QoS-agnostic transformation for DotQoS works similar to those for the other .NET-based
technologies. The QoS-specific transformation is more demanding. QoS contracts must be
mapped to .NET classes and custom attributes have to be attached to the generated class.
The transformation must select the appropriate QoS mechanisms and add them to the model.
In DotQoS, a QoS mechanisms consists of a set of message sinks and optionally a special
transport channel as discussed in subsection 10.3.4. Furthermore, custom attributes have to be
added to bind the QoS contracts to the implementation classes generated by the QoS-agnostic
transformation. Additional source code is required to negotiate the contracts. Finally, the PIM
tasks must be mapped to a state machine that is able to determine the QoS contract appropriate
for each invoked method. These transformation steps are illustrated by the following example.

Figure 12.11 shows the PIM of a simple e-shop consisting of three components. The Client
component can order items using the IShop interface provided by the Server component. The
shop in turn uses the ICard interface of the CreditCardSystem component to handle the pay-
ment. Obviously, payment via the Internet needs special precautions regarding security. Hence,
a contract is attached to the connector between the client and the shop. Another contract is
used between the shop and the credit card company to guarantee a certain performance. It
is obvious from the diagram that all messages sent from Client to Server and vice versa are
subject to encryption. The case is more difficult for the QoS category Timing. Figure 12.11
shows an interaction diagram titled MyApp::PaySec::Protocol. It specifies for which method
invocations the time limit applies. Furthermore, the interaction diagram puts a constraint on
the possible order of method calls. A client may query the shop to get information about
available products. Optionally, the client can order items and the shop returns a signed or-
der. The client must either accept the order by signing it with his private key or the client
must cancel the order. Malicious clients could attack the shop by invoking order() but never
accept() or cancel(). The server would have to store session information for every client
and could not release this data until the client accepts or cancels. To overcome this problem
the contract includes a timing constraint. Upon reception of an order() invocation the server
starts the timer. The timer stops when the server replied to either an accept() or cancel()
call. If this transaction fails to finish in time, the middleware has to detect the timeout and
cancel the contract. The middleware must provide means for signaling contract violations to



172 Chapter 12 Platform Specific Model

the application logic. Since such details are implementation specific, they are not shown in the
PIM.

Figure 12.12 illustrates how a subset of the e-shop model in Figure 12.11 is transformed. Some
details are omitted for the sake of brevity and the generated source code is of course omitted,
too. The two top most packages represent the PIM. The following two packages show the static
view, which illustrates the realization of the components (left hand) and the QoS mechanism
(right hand). The next two packages represent the physical view, which shows how classes and
other artifacts of the static view are grouped by physical components. These components are
then deployed on computing hardware as shown in the deployment diagram at the bottom of
the figure.

The model transformation maps each PIM component to a package in the PSM. Such a pack-
age contains a class for the actual implementation of the functionality - ClientImpl and
ServerImpl in the example. Furthermore, a subclass of FrameContract on the server side
is generated to handle contract negotiation and monitoring. The contract PaySec is mapped
to a class. Its attached state machine called Protocol implements the invocation protocol
(i.e. a task) as specified in the PIM. This transformation can be achieved with Kafka trans-
formation rules, too, as explained in [WUG03a]. The right hand package of the static view
shows the implementation of the QoS mechanism. Model transformation can either fetch an
existing mechanism out of a repository or create a skeleton implementation as shown here.
QoS categories such as Encryption are mapped to classes and each QoS dimension to a mem-
ber variable. The text in brackets on top of the member variables represent .NET attributes,
hence, meta-data. The implementation of the QoS mechanism is covered by the two classes
Encryptor and Decryptor. Both inherit a DotQoS-specific interface that allows these classes
to be plugged as sinks in the sink-chain.

Models of large scale distributed applications contain many classes, state-machines and other
artifacts. In order to deploy such a system a plan is required to determine which artifact belongs
where. To ease this undertaking classes, artifacts, etc. are grouped by components - Server
and Client in the example. The same applies to the implementation of the QoS mechanisms.
Although the sink-chains titled ServerChannelChain and ClientChannelChain use a different
notation, they represent physical components in the sense of UML1.4, too (see the DotQoS
meta model extension in section B.1). Hence, they can be deployed on computing hardware.
The�local� dependency denotes that the component Client requires locally (i.e. on the same
machine) the ClientChannelChain component. The package on the bottom of the diagram in
Figure 12.12 shows how those four components are distributed on the computing machinery.
A computer called Console hosts the Client component and the client-side implementation
of the QoS mechanism. The DataCenterServer is the deployment location of the Server
component and the server-side part of the QoS mechanism. Using the deployment diagram an
automated tool can package the compiled classes and other artifacts to DLLs and copy them
to the specified machines.

12.4.1 Multi Category QoS

Multi category QoS requires special precautions when assembling the message sinks to a mes-
sage path (see Figure 10.4). Each QoS category introduces one or more message sinks. Their
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ordering is important. For example, one QoS category is security. It injects an encryp-
tion/decryption sink into the message path. The second QoS category is bandwidth. It adds
compression/decompression sinks to the message path to reduce the required bandwidth. The
order in which a message is passed through these sinks is important.

A special DotQoS UML profile [UWG03] allows modeling this in the PSM. Figure 12.13 illus-
trates this. The diagram features two QoS mechanisms: encryption and compression. Each
mechanism is composed of two message sinks. Sinks are depicted as stereotyped classes. The
stripes with the convoluted top and bottom edges represent a sink chain. In UML terms they
are stereotyped components. Each sink chain is composed of three compartments. Every sink
must belong to exactly one compartment. Sinks in the Head compartment must always be in-
stalled on top of the sink chain. Sinks in the Arbitrary compartment can be placed anywhere
in the sink chain. Sinks in the Tail compartment must be placed at the end of the sink chain.
This information tells how the two QoS mechanisms can be installed together in one message
path. The resulting sink chain is depicted in Figure 12.14.

The sink chains are UML components. Thus, they can be deployed on nodes in a deployment
diagram.

Sometimes two QoS mechanisms cannot be automatically combined as in the above example.
For example, two sinks could demand to be on top of the sink chain. In some cases there is no
possibility of combining the QoS mechanisms. A new QoS mechanism has to be implemented
that covers both QoS contracts. In other case an ordering of the sinks can solve the problem.
The model transformation must take care of this. If two QoS contracts are attached to one
port and the corresponding QoS mechanisms are known to conflict with respect to the ordering
of their sinks, the model transformation must provide a sink chain that solves the problem.

12.5 Qedo

The three PSMs presented so far are based on the UML meta model. This approach is theo-
retically possible for every object-oriented target platform. However, sometimes a UML profile
or even a UML meta model extension might be required. In the case of Qedo [Rit03] (i.e.
CORBA CCM [OMG02b]) a PSM based on a UML profile has been proposed by [BR02].
However, CORBA CCM as target platform offers a different option. All CORBA CCM spec-
ification languages – as discussed in section 10.3 – are based on a meta model. Thus, model
transformation can map PIM concepts directly to concepts of the IDL/CIDL meta model.

In the next step, a code generator scans the model to generate skeletons, stubs, and the
component home. This approach differs in two important aspects from the previous ones based
on DotQoS, COM+, or ASP.NET/IIS. First, the PSM is not based on the UML. Second, the
developers do not necessarily touch the PSM. The PSM is hidden inside the tool chain. From
the viewpoint of a developer the PIM is directly mapped to source code.

The mapping to the IDL/CIDL meta model has been presented here to illustrate that a PSM
is not necessarily restricted to the UML or a derivate thereof. Furthermore, the IDL/CIDL
meta model is special since it has no standard graphical notation. That means there is no
standard way of depicting a model based on the IDL/CIDL meta model in a modeling tool.
The standard notation is a textual one as shown in subsection 10.3.5. Kafka’s object diagrams
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have been developed for such scenarios. The object diagram shows instances of meta classes as
objects and instances of meta associations as links between the objects.

Figure 12.15 provides an example. The Kafka rules transform PIM components, ports, contract
types and QoS parameters into the corresponding Qedo and CORBA CCM constructs. The
rules Interface and Component map PIM components and interfaces to the IDL constructs
InterfaceDef and ComponentDef. The Port rule maps PIM ports to CORBA CCM facets.
In the CORBA CCM meta model a component and its provided interfaces are connected via
an instance of the ProvidesDef meta class. The Contract rule maps PIM contract types to
Qedo’s ContractType meta class. QoS parameters are translated by the Parameter rule. The
rule searches the ContractType that has been created for the PIM contract by a previous rule.
Then it iterates over all PIM QoS parameters. For each PIM QoS parameter it determines
its storage type and searches the corresponding IDLType. The matching between PIM storage
types and the corresponding IDLType uses the matching graph. The rules that build this part
of the matching graph are not shown in the diagram. For each match found the Parameter rule
adds a new Dimension to the ContractType. The rule as depicted in Figure 12.15 matches only
parameters with direction increasing and milliseconds as units. Using some Python expressions
the rule can be generalized. For the sake of clarity, the simplified rule without Python expres-
sions is shown in the diagram. Finally, the Bind rule ties together components, interfaces, and
contract types. The Binding is owned by the ContractType. The InterfaceDef has the role
of the interaction element (see subsection 10.3.5). The ComponentDef acts as the context for
the binding.

The example demonstrates that one Kafka rule can combine object diagrams and normal no-
tation. The PIM search pattern uses the standard PIM notation. The PSM search and replace
pattern are depicted as object diagrams.
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Figure 12.6: Implementation of DoSomething()
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Figure 12.7: DoSomething() in the VS.NET editor
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Figure 12.8: XML editing in Kase
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Figure 12.9: PIM of a simple web application
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Figure 12.10: Transformation rules for web applications
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Figure 12.11: PIM for DotQoS application
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Figure 12.12: Development life-cycle of a DotQoS application
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Figure 12.13: Diagram of two mechanisms

Figure 12.14: Resulting sink chain
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Figure 12.15: Transformation rules for Qedo





Chapter 13

Transforming QoS Contracts

This chapter discusses how QoS contracts are treated by the tool chain. The three steps
required for the transformation of a PIM and its QoS contracts into a PSM are depicted in
Figure 13.1.

• The first step is aware of the fact that QoS exists. However, it does not know anything
about the concrete semantics of the QoS categories used in the PIM. The result of step
one is a QoS-agnostic PSM.

• The second step selects the QoS aspects that have to be woven into the QoS-agnostic
PSM. This requires traversing the PIM and searching for ports bound to QoS contracts.

• The third step weaves the QoS aspect with the QoS-agnostic PSM yielding the final
outcome of the transformation process.

High-level Design
• Components
• QoS
• Business Logic

Low-level Design
(QoS-agnostic)
• Classes
• State Machines
• Source Code
• Executables/Libraries

Low-level Design
(QoS Aspect)
• Reusable

Low-level Design

generation selection

weaving

Figure 13.1: Overview of the model transformation

All three steps can be implemented via Kafka rules. This has the advantage that the set of
technologies required to implement model transformation is kept down to an absolute mini-
mum. The first of the three steps can be implemented with Kafka because Kafka has been
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designed primarily for this purpose: transforming a PIM into a PSM. The second step can
be implemented by a Kafka rule that searches component ports that are connected with QoS
contracts. Figure 13.2 shows such a rule. It searches for all component ports that realize a
QoS contract type named Authentication. Furthermore, the rule determines the interface
belonging to the port of the component. Finally, the rule adds a transformation tag to the
component. Following rules can use this tag to determine which QoS mechanism this compo-
nent will use in the PSM. This tag is especially important in the case of multi category QoS
which is discussed in section 13.4. The third step – weaving the QoS aspects into the PSM – is
the most complicated one. To understand its realization with Kafka, it is important to study
the QoS aspects in more detail.

Figure 13.2: A Kafka rule for the selection of an QoS aspect

13.1 Anatomy of QoS Aspects

The box titled QoS aspect [WPA+03, JPWG02, SAD+02] in Figure 13.1 contains different
modeling elements. Most notably the QoS aspect contains some sort of QoS mechanism or
source code that activates a built-in QoS mechanism of the platform. Examples for such QoS
mechanisms are message compressors, transport channels with bandwidth reservation, a load
balancer etc. The middleware has to know for which component and port a certain QoS
mechanism has to be used. Hence, the QoS aspect must manifest this information somehow in
the final PSM. This can either happen by adding special constructs to interfaces [BG99, Rit03,
UWGB03] or via deployment descriptors as in Enterprise Java Beans (EJB). The concrete
solution depends entirely on the middleware.

Many QoS categories affect the application design. For example, replication or load balancing
require the cooperation of the application. The application must know how to replicate its
current state and how to synchronize with multiple worker processes. The QoS mechanism can
just manage the worker processes. Hence, the QoS aspect must contain some kind of design
pattern to add the QoS-specific design to the PSM.

Furthermore, a QoS aspect can contain a set of software artifacts (deployment descriptors,
DLLs, executables, methods, etc.). For example, a QoS mechanism available as a separate
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library (as in DotQoS) is such a software artifact. These artifacts can show up in an imple-
mentation diagram. The implementation diagram describes which DLLs, source code files, text
files, etc. are required to build (i.e. compile, link, and deploy) the application. Furthermore,
the artifacts may show up in deployment diagrams (see section 12.1) since the artifacts must
be installed on real machines in order of deploying the application. Thus, sophisticated QoS
aspects can contain parts of an implementation diagram and they can contain constraints of
the deployment as discussed in section 12.1.

Each QoS aspect is accompanied by a PIM QoS contract type. This type has an evaluation
function f , parameters p, and measurands mi. If a PIM designer uses this QoS contract
type, the corresponding QoS aspect will be woven with the PSM. The mapping between QoS
contract type and QoS aspect happens by name. The QoS contract type is, for example, called
Authentication. Then the QoS aspect searches for all ports that are connected to a QoS
contract type named Authentication.

Searching by name only seems very restrictive. However, it is in most cases sufficient, since
the PIM designers are not expected to modify the QoS contract type. In the general case, it is
hard to impossible to implement a QoS aspect that is independent of f , and its measurands mi.
Hence, the contract type is assumed to remain unchanged. Only the values of the parameters
p are specified by PIM designers. In some cases it might be necessary to search for contracts
which have special values for some parameter pi. For example, one QoS aspect can realize
availability of up to 99%, while a second QoS aspect is dedicated to systems with an availability
greater than 99%. In this example, the two QoS aspects search for all components offering an
availability contract with less than (respectively more than) 99%.

13.2 Aspect Diagrams

In the tool chain a QoS aspect is a set of Kafka transformation rules. The rules search for
components with the appropriate contracts and generate the PSM realization of this contract.
While this is satisfying from a tool chain point of view, it is not sufficient from a methodology
point of view. Only very experienced developers will be able to directly formulate the appro-
priate Kafka rules for complex QoS categories. The solution is to introduce an intermediate
step. In this intermediate step a QoS aspect developer models the structure and the behavior
of the QoS aspect in a special aspect diagram. This model is not important for the tool chain.
Its sole purpose is to support the developer in his creative process.

To develop any kind of generator, it is good practice to start with an example that shows the
input and the output of the intended generator. Furthermore, the example should illustrate
how the input influenced the output. With such an example (or a set of examples) as a starting
point, it is much easier to derive a generator that covers all possible cases. A weaver is just a
special kind of a generator. Hence, this principle can be applied here, too. An aspect diagram
shows the structural features that a QoS aspect adds to the QoS-agnostic PSM. Furthermore,
it describes how the behavior of the aspect is woven with the behavior of the QoS-agnostic
PSM.

Figure 13.3 provides an example. The right half of the figure contains a PIM and a PSM
model. The PSM shows (partially) the QoS-agnostic PSM that would be generated from the
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Figure 13.3: An aspect diagram

PIM. Both models are in no way complete. They just contain the modeling elements that are
important for the QoS aspect. The left half of Figure 13.3 shows the aspect diagram. From a
UML point of view, an aspect diagram is a package template. The diagram shows in how far the
QoS-agnostic PSM is extended and modified. In this example, a monitor class, a composition,
and a state machine is added by the QoS aspect to the QoS-agnostic PSM. The dashed box in
the upper right corner of the aspect diagram shows the join points, or template parameters in
UML parlance. The example has two of them called Component and op. Modeling elements of
the same name appear in the aspect diagram. These modeling elements stem from the QoS-
agnostic PSM. Hence, the template parameters are useful to define how the model elements of
the aspect are glued with the model elements of the QoS-agnostic PSM.

13.2.1 Aspect Behavior

An aspect diagram can model how the behavior of the aspect is woven with the behavior of the
QoS-agnostic PSM. An interaction diagram is used for this purpose. This diagram shows the
interaction between QoS-agnostic objects and QoS-aware objects. The purpose of this diagram
is two fold. First, it shows the QoS-agnostic behavior that the aspect expects. Second, it shows
in which situations the QoS-agnostic behavior is changed by the aspect.

Figure 13.4 illustrates this concept. The aspect models how a timeout is woven into a com-
ponent that acts as client to some kind of FTP-like service. The aspects expects the class
Component and the interface FTP-Service to exist in the QoS-agnostic PSM. Furthermore, it
expects that a set of methods connect, abort, login, pwd, and list exist. The aspect
adds the Timer class. The interaction diagram embedded in the aspect diagram shows how
the behavior of the QoS-agnostic PSM is altered. If some caller invokes the connect method,
the aspect enforces the creation of a Timer object. In the following, two threads execute in
parallel. In the first thread, the component follows its QoS-agnostic behavior. It calls several
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Figure 13.4: Aspect with interaction diagram
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methods of the FTP-Service. In the second thread, the start method of the timer is called. If
a timeout occurs, the timer invokes the abort method of the component. If the communication
with the FTP-Service finishes in time, the two threads join and the stop method of the timer
is called.

In some cases it is not obvious, which method calls are expected from the QoS-agnostic PSM
and which are introduced by the aspect. This can be solved in two ways. First, another
interaction diagram models the behavior of the QoS-agnostic PSM. In this case, the aspect
behavior is the difference between the two interaction diagrams. The other option is to mark
the aspect-specific method calls either with a special color or an asterix in front of the method
name, i.e *stop instead of stop.

13.2.2 Transition to Kafka

The transition from an aspect diagram to a set of Kafka rules can be quite easy. Figure 13.3
shows that the combination of PIM model, QoS-agnostic PSM and QoS-aspect correspond
closely with the three compartments of a Kafka rule. The PIM model will end up in the PIM
search compartment of Kafka rules. The QoS-agnostic PSM will find its way in the PSM search
compartment of Kafka rules. Finally, the model elements of the QoS-aspect can be moved into
the replace compartments. If the QoS aspect contains an interaction diagram as shown in
Figure 13.4, a bit more cleverness is required to alter the behavior of the woven PSM via Kafka
rules. In this case the rules must either inject source code in the implementation body of
methods, or behavioral diagrams of the QoS-agnostic PSM must be modified by Kafka rules.

Usually, an aspect diagram will result in a set of Kafka rules. This is due to multiplicity
relationships. For example, a QoS-agnostic PSM contains a set of classes and each class a set
of methods. The aspect wants to add a new attribute to every class and some source code lines
to every method. This example requires two Kafka rules. One rule is applied to every class.
The second rule is applied to every method.

13.3 Weaving QoS Aspects

The first challenge for aspect weaving (in the sense of AOP) is to determine join points. Join
points define the possible hooks in a system where an aspect could be hooked in. For example,
an aspect may intend to do something whenever a new instance of a class is created. Hence,
the aspect would hook itself into the class’ constructor.

In Kafka each model element of the PSM and the PIM can be treated as a join point. A QoS
aspect can hook itself up to any model element in order to change or even remove it. In AOP
languages – such as AspectJ [Asp03] – aspects define so called point cuts. A point cut is a
pattern that is matched against all possible join points. If a point cut matches a join point (or
a set of join points), the aspect is hooked up to this join point.

In Kafka the PIM search pattern and the PSM search pattern can be treated as point cuts. The
search patterns are matched against all PIM and PSM model elements (i.e. the join points).
If a set of model elements matches the pattern, the QoS aspect is injected in the design.
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The example in Figure 13.5 illustrates this idea. The rule searches for a PIM component and its
realization in the PSM. The tag on the right-hand side of the rule is used to limit the matched
components to those that realize the authentication contract. This complements the tag found
in Figure 13.2. If a match is found, the method DoSomething() is injected into the design.

Figure 13.5: A Kafka rule that injects a new method

PSMs – especially when they are based on UML – can contain source code. For example, the
body of a method – i.e. source code – can be embedded in the model. Furthermore, state
machines contain actions which can have associated source code, too. Weaving QoS aspects
can include the modification of such source code. Typical tasks are to prepend some lines of
source code or to insert some code in front of a return statement. In Kafka the modification
of any kind of text, including source code, or numbers, timeouts for example, are performed
via embedded Python statements.

Figure 13.6: A Kafka rule that modifies the implementation of the run() method

For example, the transformation rule in Figure 13.6 injects source code in the run() method of
a class named MainThread. Figure 13.6 looks similar to Figure 13.5. The interesting part is the
body of run() method in the rule’s replace pattern. This body is depicted in Figure 13.7. The
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Python statement @run.specification()@ is replaced by the previous body of run(). The
rule prepends some lines of source code to the implementation of run() and prepends some
other lines.

Figure 13.7: The method body of the run() method in the rule’s replace pattern

Another way of weaving new behavior into a class is to modify its behavioral diagrams, for
example a state machine. The two rules in Figure 13.8 add a new QoS-related state QoSBroke
to a state machine. Whenever a QoS contract is violated, the state QoSBroke is entered. The
only transition away from QoSBroke leads to the state machine’s final state. Rule R1 adds
QoSBroke and connects it with the final state. Rule R2 searches all states of the state machine
and connects them with QoSBroke. The precondition is used to avoid a transition that starts
and ends in the QoSBroke state. The prefix R1:: is used to refer to elements that have been
created or matched by rule R1.

It would not be possible to merge both rules into one. R1 is executed once for every state
machine. R2 is executed once for every state in each state machine matched by R1.
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Figure 13.8: Modification of a state machine

AspectJ supports regular expressions in point cuts. Thus, it is possible to catch the invocation
of every method that has a name starting with set. The same solution can be used in Kafka
rules. Names of model elements in a rule’s search patterns are treated as regular expressions.
The PSM search pattern in Figure 13.9 searches all setter methods of a class using the regular
expression set[A-Z].* [Fri02].

Figure 13.9: A rule searching for setter methods

The weaving of QoS aspects and the weaving of AspectJ-style aspects can be compared to a
certain degree only. AspectJ developers do not have to care about the possible ugliness of the
woven source code. It is directly passed on to the compiler. Developers will only face the woven
source code when they watch the application via a debugger.

Weaving QoS aspects into the PSM has the intention of injecting design aspects into the PSM.
The woven PSM will be visible to developers. They must understand and work with the woven
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design. Therefore, weaving QoS aspects targets the design phase. Weaving aspects in the sense
of AspectJ targets the runtime behavior. Any obfuscation of the design is acceptable as long
as the expected runtime behavior is guaranteed.

Thus, weaving QoS aspects and AspectJ aim at different problems. They have in common the
problem of cross cutting. AspectJ-style aspects cannot be isolated in the source code using Java
language constructs. QoS aspects cannot be isolated in a UML model using UML constructs.
Both approaches have some similarities in the way they define aspects, join points and point
cuts. However, the weaving of QoS aspects as presented in this thesis is not a direct extension
of AspectJ to the design phase. Therefore, Kafka should not be treated as an AOP language,
although it can be utilized to overcome the problem of cross cutting in certain settings.

13.4 Multi-Category QoS

A problem may arise if one component port features several QoS categories. In this case multiple
design patterns may be applied to the PSM representation of the port. It could happen that
the first design pattern modifies the PSM in such a way that the second one cannot be applied
any more.

There are two ways of solving the problem. In some cases it is just a question of the ordering
of transformations. The outcome of the transformations

G ⇒a G1 ⇒b H1

G ⇒b G2 ⇒a H2

may differ, hence H1 and H2 are not necessarily equal. Ordering can be achieved via the
orchestration of Kafka rules.

If ordering cannot solve the problem then a special set of transformation rules is needed to
handle this special combination of QoS categories. This sort of problem is inherent to all generic
multi-category QoS approaches because some QoS categories are not completely orthogonal to
each other. A related problem appears in the DotQoS PSM when it comes to the ordering of
message sinks (see subsection 12.4.1). The solution works along the same lines.

If multi-category QoS requires special mechanisms to deal with a special combination of QoS
categories, Kafka rules can be utilized to detect components that require special QoS mecha-
nisms. Figure 13.10 shows a possible solution. The first rule R1 searches for components that
realize the QoS contract Type1. Rule R2 does the same for Type2. Finally, rule R3 searches for
multi-category QoS components. The solution depends on the tags. In case of multi-category
QoS the mechanism tag’s value will be 1&2. Subsequent rules search for the mechanism tag and
its value and apply the indicated QoS mechanism.
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Figure 13.10: Collision detection for multi-category QoS
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Chapter 14

Conclusions

This chapter is split in two sections. The first section reviews the findings of this thesis and
the goals achieved. The second section discusses the pros and cons of the chosen approach.

14.1 Review

This thesis has shown the importance of models for software development, especially in the
context of distributed and QoS-enabled applications. Models allow developers to work on
a higher level of abstraction. Hence, developers can concentrate on their application, the
business logic and the QoS requirements. Their attention is not distracted with implementation-
specific decisions and optimizations. Model-driven development can at the same time provide a
very convenient way of programming and still produce optimized code. Without model-driven
development, these two goals are often mutual exclusive. For example, if a set of classes in an
object-oriented language provide a convenient level of abstraction for implementation, it is quite
likely the classes waste time and memory space to provide this abstraction. By introducing two
models, one being platform (and implementation) independent and one being platform specific,
it is possible to have a convenient level of abstraction at the PIM and an optimized realization
in the PSM.

During the work on this thesis it turned out that tooling is an essential problem of model-driven
development. Developers have to use a couple of new tools – especially modeling, editing, and
model transformation tools – in addition to their traditional tool chain, i.e. source code editor,
compiler, debugger. The advantages of model-driven development can vanish, if developers
spend too much time with badly designed tools. Therefore, the usability of the model editing
tool and an intuitive modeling language are important. Model transformation has proven
to be very hard to address. Model transformation approaches based solely on imperative or
functional languages complicate the implementation of transformers too much. Developers who
are not real experts in meta models cannot quickly implement even simple transformers this
way. Hence, a new and more user-friendly approach has been developed throughout this thesis.
In summary, the following three building blocks supporting model-driven development have
been presented in the previous chapters.

PIQML is a high-level platform independent modeling language (PIQML) based on UML.
It supports component-based modeling of distributed applications. Components com-
municate via ports and ports may be subject to QoS contracts. Furthermore, PIQML
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supports the task concept, i.e. instead of attaching QoS contracts to entire ports, they
can be attached to a special interaction patterns, i.e. tasks.

Kase is an easy to use model editor for PIMs, PSMs, and Kafka diagrams. In contrast to
other modeling tools, Kase does not have a fixed meta model and notation. Both can be
extended via plugins. This way it is not necessary to develop a new modeling tool for new
versions of PIQML or the UML. Kase has a built-in Python interpreter for inspection
and transformation of models. This tight integration improves model transformation is
a way that is difficult to achieve with more loosely coupled XMI-based solutions.

Kafka is a visual rule-based model transformation language. The advantage of Kafka is that it
builds on a fairly simple concept: search and replace. The notation used for the search and
replace patterns builds on the notation used for the PIMs and PSMs. If a developer can
read PIMs and PSMs, Kafka rules are easy to read and construct, too. Transformation
rules in Kafka are in most cases easier to construct than their Python counterparts. In
cases where an imperative language is better suited, Python expressions can be embedded
in Kafka rules. Hence, Kafka is symbiosis of rule-based and imperative languages.

This thesis has shown that model-driven development can improve the creation of complex
QoS-enabled distributed applications in terms of quality and development time. The following
list highlights the improvements resulting from the model-driven approach.

Make design decisions explicit: The PIM shows information that is otherwise only implicitly
contained in the implementation of an application. Most notably, the QoS contracts and
tasks of components are explicitly modeled in the PIM. In the PSM and especially in
the source code, tasks are mapped to state machines and QoS contracts are mapped to
code utilizing QoS mechanisms of the target platform. Hence, it is very hard to extract
the information presented in the PIM from PSM and source code. Furthermore, model
transformation can derive an implementation (or at least a skeleton) from the PIM. This
way the PIM is not just extra work required for documentation. It becomes an active
asset of the development process.

Abstraction from middleware specific details: The PIM is by definition platform indepen-
dent. Therefore, it allows abstracting from details of the target platform. Designers
can concentrate on the core of their problem: the application. Concentrating on the ap-
plication and ignoring platform details helps preventing “premature optimization”which
“is the root of all evil”[Knu92]. Furthermore, the decision for a certain target platform
can be deferred. Development teams can choose the appropriate target platform after
they finished the first iteration of the PIM.

Tasks help to improve QoS contracts: For enterprise applications the execution time of a cer-
tain method is not as important as for embedded real-time systems. Hence, providing
QoS contracts for single method invocations is not an ideal solution for enterprise ap-
plications. Attaching QoS contracts to tasks is more promising. This thesis has proven
that the worst case runtime of tasks can be better approximated if the QoS contract is
attached to the task not not to single methods. Therefore, the introduction of tasks is
not only a syntactic improvement. Using tasks, QoS contracts about timeliness can be
closer to the real worst case runtime required for the complete task.



14.2 Criticism 201

Automation of recurrent work : Model transformation automates boring and recurrent – i.e.
error prone – work. The model transformer can, for example, insert code pieces or
special states in the implementation of many methods or state machines. Doing this
manually requires time and has the inherent danger that a developer forgets to insert
the code or design artifact in all relevant places. Furthermore, the model transformer
can automatically update these code pieces and design artifacts when the PIM changes.
That means, the relevant information is changed in a single place and the code pieces
and design artifacts scattered across the PSM and source code are automatically updated.
Hence, a model transformer does not only save work, it can even help to keep consistency
in the PSM and source code.

Encapsulate expert knowledge: The knowledge about how to map a QoS contract onto a
target platform is encapsulated in QoS aspects. Hence, expert knowledge can be separated
from business logic and packaged in a tool. Less skilled developers can simply use an
existing contract type in their PIM. The model transformer automatically weaves the
corresponding QoS aspect with the QoS-agnostic PSM. Hence, the less skilled developers
do not need to understand in depth how QoS is realized on the target platform in order
of implementing a QoS-enabled application.

Reuse: In a pure source code oriented development it would not be possible to reuse QoS-
related code and design. On the implementation level QoS is known to be cross cutting
[BG98, HBG+99, PLS+00a]. The QoS-related code cannot be encapsulated in a class or
a behavioral UML diagram. However, it is very difficult to reuse something that cannot
even be encapsulated. The case is different for the approach presented in this thesis. QoS
aspects allow separating QoS-related design and code pieces. Over time companies can
build a library of contract types and associated QoS aspects. Thus, knowledge that has
been gained in previous projects can be directly applied to new projects.

Support for deployment: Model transformers can create constraints on the deployment. These
constraints are evaluated by the modeling tool when developers create the deployment
diagrams. If a constraint is violated, the modeling tool prompts the user. This is very
important since the realization of a QoS contract is not always possible without dedicated
hardware support. For example, the best load balancing does not help if the network
connection between the machines is too weak or if the servers are not potent enough.
Using constraints on the deployment diagrams, it is possible that the QoS contracts of
the PIM influence the deployment.

14.2 Criticism

14.2.1 Overhead

Model-driven development imposes a certain overhead. New tools must be installed and mas-
tered in every day work. This involves costs and training. For large scale projects these
investments will pay off quickly, especially if transformers developed during one project can be
reused in new projects. The case might be different for small scale projects. The fewer people
work on a project, the worse is the overhead introduced by a process.
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Implementing transformers is a time consuming tasks. Hence, it might be tempting to skip this
step and hand craft the transformation. During the first iteration this is for sure the fastest so-
lution. In subsequent iterations the transformer will pay off since it keeps consistency between
PIM and PSM and gathers information in a central place. However, writing a transformer is an
upfront investment. Agile development tries to minimize such upfront investments. Future will
show whether model-driven development can be combined with agile development and extreme
programming. [Fow01] discusses whether modeling can be combined with extreme program-
ming at all. His conclusions are that UML can be used where it proves to be immediately
useful, especially for communication between developers.

14.2.2 Notation

For many computer scientists the term modeling implies automatically a graphical notation.
It would as well be possible to use a textual notation for models. The meta model (called
abstract syntax tree) can theoretically be combined with any kind of notation: 2D, 3D, or
textual. Consequently, the OMG published lately a standard for deriving a textual notation
from meta models [OMG02c]. From a scientific point of view it is very difficult to judge
which solution is the best one. A solution is good if humans can easily and quickly perceive
the information depicted with a certain notation. Furthermore, an adequate tool for editing
the model is required. Science did not yet come up with a model of how humans perceive
information. Hence, it is difficult to proof the quality of notations in a formal way.

If the solution is a textual language, it is still hard to find a good textual language. Even
usability tests with textual programming languages are very difficult. Anders Hejlsberg (father
of Turbo Pascal and C#) states in an interview [HEV03] that it is not feasible to make usability
studies for textual programming languages. Hejlsberg points out that good language design is
a matter of “aesthetics”and “good taste”, but “good taste is extremely subjective and hard to
define”[HEV03].

However, a definite advantage of every textual notation is that you can read the text and
afterwards you can be sure that you read all information. The case is different for graphical
notations. A diagram is a collage of boxes, lines, and small text fragments. A diagram cannot
be read top-down. The eye follows the lines from one box to the other. In large and complex
diagrams it can easily happen that even careful diagram readers miss important information.
This claim can be easily proofed at the example of Hieronymus Bosch’s famous triptych “The
Garden of Earthly Delight”[Bos04]. The picture has so much detail and so many actors, that it
is very hard not to miss an important detail. Therefore, it might be possible that every graphical
notation has a complexity threshold. In this case, every diagram exceeding the threshold would
be worse than a good textual notation.

Furthermore, the concrete notation of UML has several drawbacks. PIQML being UML-based
inherited these drawbacks. UML does not make use of layout. Except for message sequence
diagrams designers can arrange classes, objects, actors, use cases, etc. as they desire and they
can draw lines in really wired ways. The result is that designers can draw totally unintuitive
diagrams just by messing up the layout. Some textual languages (for example, Python) address
this problem. Layout (i.e. white spaces in the text) has a meaning. This way, Python code
has always a unique layout. C/C++ is the counter example. These languages ignore layout
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(i.e. white spaces). Another problem of layout is that tools usually cannot render good looking
diagrams. If a new model is generated (either via a model transformer or reverse engineered
from source code), the user spends much time on arranging the boxes and lines on the screen.
Fewer degrees of freedom in the layout could ease automatic layout and thus improve the
interaction with the modeling tool. Furthermore, diagrams would instantly get a more unique
look.





Chapter 15

Outlook

15.1 Extension of the Tool Chain

The presented tool chain covers the entire development cycle from PIM modeling to source
code generation and deployment. However, some additional tools can be envisaged.

15.1.1 Model Checking

Experience shows that design errors are easier to resolve if they are detected early. Hence,
it is desirable to perform some checking on the PIM. With respect to QoS, a model checker
could search for unrealistic PIM QoS contracts. For example, a component in the PIM offers
200 concurrent client-components to perform a certain task. The model checker could compute
the resulting number of expected incoming method calls per minute. If the target platform
is known, the model checker could estimate whether the computed frequency of method calls
can realistically be handled. Even if a realization may be possible, it may be very expensive,
because an entire server farm is required to realize the amount of incoming method calls. The
model checker could find such contracts and tell the designer about the costs involved.

15.1.2 Simulations

QoS-enabled distributed applications can adapt to a changing environment. Hence, a simulator
could be used to see already in the PIM how QoS contracts are adapted and re-negotiated when
the (simulated) environment changes. Such a simulator would require a very detailed PIM. If
the PIM does not specify the behavior detailed enough then it cannot be simulated. As [TPV03]
stated, simulations can only be performed when the PIM is executable.

15.1.3 Testing

Testing is a very complex and time consuming task. Integrating testing in model-driven de-
velopment could significantly speed up the implementation of test cases and could help to
understand the results of tests. The lines of code required for test cases can exceed the lines
of code required for the implementation of the tested component. Hence, it is desirable to
use the benefits of model-driven development for the generation of test case implementations.
Developers could model their test cases on a high level of abstraction, e.g. the PIM. The model
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transformation tool could then generate the implementation or at least a skeleton implemen-
tation for each test case. This would save time and money.

Once the tests are executed, the results are gathered in a testing report. A special back-
annotation tool could parse the report and back-annotate the results to the models. For
example, a developer could then see in the PIM which QoS contract has been violated during
the tests. This eases the interpretation of testing results.

15.1.4 Monitoring and Administration

Administrating a large scale distributed system is a difficult task. Systems composed of many
components, which rely on a large set of QoS contracts, add even more complexity to admin-
istration. The administrator should be able to monitor important contracts and eventually he
should be able to adapt them manually. This requires special tool support. One possible solu-
tion is to use the PIM as a basis for such a tool. The PIM shows graphically all components and
their QoS contracts. The results of QoS contract monitoring could be displayed life in the PIM.
Hence, the PIM is used to monitor the running application. This idea is comparable to the test
results back-annotation tool. The difference is that the monitoring happens in real-time.

15.1.5 Refactoring

Model refactoring [FBB+99, SPTJ01] is another application of model transformation. The
difference to an MDA transformation is that the output is a variation of the input. In contrast,
the output of an MDA transformation, i.e. the PSM, is created from scratch during a trans-
formation. Kafka could be used for refactoring, too. A refactoring rule would only contain
two compartments. One compartment contains a search pattern and the other one a replace
pattern.

Figure 15.1: Kafka used for refactoring

Figure 15.1 illustrates this idea. The presented rule searches for public attributes of classes. If
found, a getter and setter method is added, the source code for both is generated (not visible
in the figure), and the attribute is renamed and its visibility is changed to private. First tests
of this idea have already been successful.
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15.2 Modeling Languages

In its current incarnation the platform independent modeling language PIQML allows for mod-
eling of components, their interaction (e.g. tasks), and their QoS contracts. PIQML itself is
not targeted at a special application domain, hence, PIQML components are still black boxes.
Currently, the only way of modeling their internals is to recursively decompose a component
in sub-components. In the context of a European IST project PIQML has been extended
with concepts for the modeling of three-tier web applications. In the future, PIQML could be
adapted to other application domains such as web services. Furthermore, PIQML could be
extended with more behavioral concepts until it reaches a state where it can be treated as an
executable model.

15.2.1 Adaptation Policies

Currently, PIQML allows for modeling of QoS contract types and concrete QoS contracts.
Furthermore, the interdependencies of contracts can be expressed. PIQML does not allow
modeling the policies that are used to update contracts. For example, if a contract is not suf-
ficient anymore and it is renegotiated, a policy can specify whether the negotiation tries to get
a higher QoS level than actually required. This policy avoids that the system is flooded with
renegotiations. If the model contains such policies, negotiation algorithms could be automat-
ically derived from the model. Adaptation policies in the PIM would replace the stereotypes
�mandatory�, �proactive�, �reactive�, �monitoring�, and �static�. In the current
PIQML they allow for a rough categorization of the adaptation and negotiation policy.

15.2.2 New Application Domains

PIQML aims at component-based distributed enterprise applications. Currently, the principles
developed in this thesis are applied to a different application domain - robot control. Toy-
robots such as Lego Mindstorm [Leg03] and Fischertechnik Mobile Robots [Fis03] are ideal for
teaching computer science to pupils and students. These robots have a processor, RAM, sensors,
motors, and some kind of communication device (IR or serial cable). The goal of the current
development is to develop a modeling language for these robots. The same modeling language
is used for programming robots built on construction kits of different hardware vendors, i.e.
Lego Mindstorm and Fischertechnik. Robots can be treated as real-time systems. If the control
program is too slow, the robot can crash against a wall or fall down from a table. Hence, timing
related QoS properties are utterly important. QoS properties are not modeled as separate
contracts in this application domain. Therefore, the separation between functionality and QoS
contracts is not upheld by this language. Instead, timing related concepts became an integral
part of the new modeling language.

In contrast to PIQML the robot modeling language has no similarities with UML, neither with
regards to the meta model nor notation-wise. Figure 15.2 shows an example. The modeled
robot control program consists of three concurrent processes. Processes can communicate via
events. Each process is implemented using an easy to learn imperative language and some
communication primitives. A process can emit event or wait for a set of events. The modeling
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Figure 15.2: Design study of a new modeling language

language targets at pupils and students. Hence, its notation is closer to Star Trek than the
simplistic UML notation.

Model-driven development is a very promising technology. It can combine the benefits of high
level abstraction and efficient implementation. However, the tooling is essential and it is more
complex than that of textual languages. The future will show whether UML will remain as
the lingua franca of software modelers. Most likely, new application domains will bring up new
modeling languages or derivations of existing ones.
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Appendix A

List of Symbols

N is the set of natural numbers
B is the set {true, false}
G = (V,E) G is a tree with vertices V and edges E
e is an edge
v is a vertex
Gspan is the spanning tree of G
r is a transformation rule
L is the left-hand side of a transformation rule
R is the right-hand side of a transformation rule
K is the interface graph of a transformation rule
appl is the application condition of a transformation rule
mapXY maps vertices of graph X to vertices of graph Y
G1 ⇒r G2 is a direct derivation
`X is a labeling function for set X
M is a meta model
VM are the meta classes of M
EM are the meta associations of M
aM(v) is the set of meta attributes of meta class v

top(VM) are the top-level (i.e. root) meta classes of M
M is a model
tv(x) is the meta class of a model element x
G is the PIM meta model
S is the PSM meta model
R is the mapping meta model
H is the merged meta model
In is the n-th version of a PIM
Sn is the n-th version of a PSM
S̃n is the user modified version of Sn

ID(x) is a unique ID for model element x
T is a Kafka transformation
f is either the final state vertex of T or

an evaluation function
mi is a measurand
[mi] is a sequence of metered values of mi

Mi is the range of mi

[Mi] is the set of all possible sequences [mi]
pi is a parameter of an evaluation function
P is the range
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Meta Models

B.1 DotQoS Meta Model

Figure B.1: Meta model extension for DotQoS
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B.2 XML Meta Model

Figure B.2: Meta model extension for XML

B.3 QoS Meta Model
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Figure B.3: Meta model extension for QoS
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