
❉❛t❛❜❛s❡ ❙✉♣♣♦rt ❢♦r ❯♥❝❡rt❛✐♥ ❉❛t❛
❆♥❛❧②s✐s ❛♥❞ ❈♦rr❡❧❛t✐♦♥ ❍❛♥❞❧✐♥❣ ✐♥

❙❝❡♥❛r✐♦ P❧❛♥♥✐♥❣

✈♦r❣❡❧❡❣t ✈♦♥
❉✐♣❧✳✲■♥❢✳

❑❛tr✐♥ ❊✐s❡♥r❡✐❝❤
❣❡❜♦r❡♥ ❛♠ ✷✾✳✶✷✳✶✾✽✸ ✐♥ ❘♦❞❡✇✐s❝❤

✈♦♥ ❞❡r ❋❛❦✉❧tät ■❱ ✕ ❊❧❡❦tr♦t❡❝❤♥✐❦ ✉♥❞ ■♥❢♦r♠❛t✐❦
❞❡r ❚❡❝❤♥✐s❝❤❡♥ ❯♥✐✈❡rs✐tät ❇❡r❧✐♥

③✉r ❊r❧❛♥❣✉♥❣ ❞❡s ❛❦❛❞❡♠✐s❝❤❡♥ ●r❛❞❡s

❉♦❦t♦r ❞❡r ■♥❣❡♥✐❡✉r✇✐ss❡♥s❝❤❛❢t❡♥
✕ ❉r✳✲■♥❣✳ ✕

❣❡♥❡❤♠✐❣t❡ ❉✐ss❡rt❛t✐♦♥

Pr♦♠♦t✐♦♥s❛✉ss❝❤✉ss✿

❱♦rs✐t③❡♥❞❡r✿ Pr♦❢✳ ❉r✳ ❉r✳ ❤✳ ❝✳ ❙❛❤✐♥ ❆❧❜❛②r❛❦
❇❡r✐❝❤t❡r✿ Pr♦❢✳ ❉r✳ r❡r✳ ♥❛t✳ ❱♦❧❦❡r ▼❛r❦❧
❇❡r✐❝❤t❡r✿ Pr♦❢✳ ❉r✳ ❈❤r✐st♦♣❤ ❑♦❝❤

❚❛❣ ❞❡r ✇✐ss❡♥s❝❤❛❢t❧✐❝❤❡♥ ❆✉ss♣r❛❝❤❡✿ ✷✷✳ ❖❦t♦❜❡r ✷✵✶✷

❇❡r❧✐♥ ✷✵✶✸
❉ ✽✸





Statutory Declaration

I declare that I have authored this thesis entirely independently, that I have not used any other

than the declared sources / resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources. This thesis has never been

used for graduation at any academic institution.

Dresden, July 4th 2012

Date
Signature

3





Abstract

Today, the environment in which companies devise their plans for the future evolves at a fast

pace. In a planning process, one must keep in mind the highly volatile, and therefore uncertain

factors that determine whether a goal can be achieved and what are the associated risks. One

approach to address this issue is scenario planning—a methodology that allows experts to eval-

uate different possible scenarios of the future based on assumptions about relevant business

influences.

Existing tools for planning and risk analysis partially support scenario planning. However,

their application-specific implementation of data models and operators can come at the cost of

inefficient processing and hinder the integration between applications. First, since all process-

ing steps are carried out on the application level, especially data-intensive operations incur

high additional costs for data transfer at runtime. Second, since the resulting scenario data is

stored and accessed in an application-specific manner, it is not easily accessible from other

applications. An approach to address those problems is to provide database support for rep-

resenting and processing data in a scenario planning process. Applications can access this

functionality as building blocks to assemble specific analysis and planning processes, while

individual calculation steps are carried out at the database.

This thesis addresses especially the aspect of handling uncertainty in scenario planning

processes, with focus on the analysis of continuously distributed data at the database level.

At the core of the thesis, a probabilistic data model is used to address the representation of

uncertain scenario data. Building on this model, a set of analytical operators for the creation

and analysis of such data is provided.

In this context, we specifically focus on the flexible analyses of correlation structures in

data. Correlation is a highly relevant aspect when analyzing risks or chances associated with

business activities, since most real-world developments are subject to complex dependencies.

Therefore, it is crucial to enable users to flexibly evaluate arbitrary correlation structures and

their impact on potential outcomes of a plan. To this end, an approach for modeling correlation

structures at the database and efficient methods for their construction and processing are pre-

sented in this thesis. The proposed techniques go beyond existing approaches for correlation

handling in probabilistic databases, supporting the analysis of complex correlations between

arbitrary distributions in a modular and flexible manner.

To enable both the interpretation and the efficient recomputation of derived scenario data,

the thesis further addresses the topic of provenance for scenario data. In particular, an ap-

proach for exploiting provenance information for a selective, and thus more efficient, recom-

putation of analysis results is presented and evaluated.

In summary, this thesis addresses both data- and process-centric aspects of uncertainty in

scenario planning processes. The presented approaches thus go beyond the scope of many ex-

isting solutions in the field of probabilistic data management, which mostly focus on managing

and processing uncertain data in a traditional relational setting. The developed functionalities

can serve applications in the field of strategic and operational planning, predictive analytics,

and enterprise and risk management as a foundation for an efficient and flexible processing of

uncertain data in scenario planning processes.

5



Contents

Acronyms v

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Scenario Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Example Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Use Case 1: Sales Planning . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Use Case 2: Insurance Risk Evaluation . . . . . . . . . . . . . . . . 6

1.3 Supporting Scenario Planning at the Database Level . . . . . . . . . . . . . . 7

1.3.1 Model and Analysis Functionality for Uncertain Scenario Data . . . . 8

1.3.2 Modeling, Extracting, and Evaluating Correlation in Data . . . . . . 10

1.3.3 Tracking the Provenance of Scenario Data and Evaluating Change Im-

pacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Foundations 13

2.1 Business Application Context . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Enterprise Performance and Risk . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Scenario Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Uncertainty in Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Kinds of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Granularity of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Sources of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Representing Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Probability and Possibility of Information . . . . . . . . . . . . . . . 21

2.3.2 Granularity of the Representation . . . . . . . . . . . . . . . . . . . 22

2.3.3 Explicit and Implicit Representation . . . . . . . . . . . . . . . . . . 24

2.3.4 Distribution of a Variable . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.5 Dependencies in Data . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.6 Temporal Indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Processing Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Analysis over Continuous Distributions . . . . . . . . . . . . . . . . 30

2.4.2 Data Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



Contents

2.5.1 Provenance Management Systems . . . . . . . . . . . . . . . . . . . 34

2.5.2 Source and Transformation Provenance . . . . . . . . . . . . . . . . 36

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Data Representation and Analysis 39

3.1 The Scenario Analysis Process . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Distribution Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Representation Forms . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Indeterminate Dimension Data . . . . . . . . . . . . . . . . . . . . . 44

3.3 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Statistical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Derivation and Conversion . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.4 Indeterminate Temporal Aggregation . . . . . . . . . . . . . . . . . 51

3.3.5 Modification of Distributions . . . . . . . . . . . . . . . . . . . . . . 53

3.3.6 Multivariate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Correlation Handling 57

4.1 Requirements for Correlation Processing . . . . . . . . . . . . . . . . . . . . 57

4.2 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Definition and Characteristics . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Copula Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Applying Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Approximate Correlation Representations . . . . . . . . . . . . . . . . . . . 64

4.3.1 Using Precomputed ACRs . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Extracting Empirical ACRs . . . . . . . . . . . . . . . . . . . . . . 66

4.3.3 Restrictions Imposed by the ACR Approach . . . . . . . . . . . . . . 67

4.3.4 Using Nested ACR Histograms . . . . . . . . . . . . . . . . . . . . 68

4.4 Introducing Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Basic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Uniform Spread Approach . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Optimizing Query Plans . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Scenario Recomputation 79

5.1 Provenance and Recomputations in the Analysis Process . . . . . . . . . . . 79

5.1.1 Example Analysis Process . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 Data and Operator Characteristics . . . . . . . . . . . . . . . . . . . 81

5.1.3 Provenance for Scenario Data . . . . . . . . . . . . . . . . . . . . . 82

5.2 Scenario Provenance Capture . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Basic Provenance Graph Structure . . . . . . . . . . . . . . . . . . . 83

ii



Contents

5.2.2 Scenario Versions and Modification . . . . . . . . . . . . . . . . . . 85

5.2.3 Representing Modeling Assumptions . . . . . . . . . . . . . . . . . 86

5.2.4 Representing Operator Impact . . . . . . . . . . . . . . . . . . . . . 87

5.3 Change Impact Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Retrieving Derivation Information . . . . . . . . . . . . . . . . . . . 90

5.3.2 Recomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.3 Approximate Deviation Analysis . . . . . . . . . . . . . . . . . . . . 93

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Related Work 95

6.1 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 The Monte Carlo Approach . . . . . . . . . . . . . . . . . . . . . . 95

6.1.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Explicit Representation of Probabilistic Data with Dependencies . . . . . . . 98

6.2.1 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . . 98

6.2.2 Probabilistic C-Tables . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Data Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.1 Why, How-, and Where-Provenance . . . . . . . . . . . . . . . . . . 101

6.3.2 Provenance Semirings . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.3 Workflow Provenance . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.4 Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 TRIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.2 PrDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4.3 MayBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.4 MCDB and MCDB-R . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.5 PIP and Jigsaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7 Evaluation 123

7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.1 Calculation Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1.2 Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1.3 Operator Implementation, Composition, and Execution . . . . . . . . 124

7.2 Evaluation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Use Case Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.1 Implementation of Use Case 1 . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Implementation of Use Case 2 . . . . . . . . . . . . . . . . . . . . . 127

7.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Univariate Analysis and Aggregation Operations . . . . . . . . . . . . . . . 133

7.4.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4.2 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.5 Correlation Handling and Multivariate Analysis . . . . . . . . . . . . . . . . 138

7.5.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.5.2 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5.3 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

iii



Contents

7.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Recomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6.1 Runtimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.6.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.7 Comparison With MC-based Solutions . . . . . . . . . . . . . . . . . . . . . 150

7.7.1 Extending MC-based Systems for Correlation Support . . . . . . . . 151

7.7.2 Alternative Use Case Implementations . . . . . . . . . . . . . . . . . 152

7.7.3 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Summary 161

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2 Future Research Possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography 165

Publications 173

iv



Acronyms

ACR Approximate Correlation Representation. 64–78, 96, 97, 99, 100, 108–111, 115, 119,

120, 126, 129–132, 138–144, 151, 154, 158, 161–163

BI Business Intelligence. 13

CDF cumulative distribution function. 25, 26, 31, 32, 43, 46, 93, 115, 116, 118

EPM Enterprise Performance Management. 13

GSL GNU Scientific Library. 151, 154

ICDF inverse cumulative distribution function. 26, 31, 43, 116

LDB Lineage Database. 107

MC Monte Carlo. 24, 25, 95–97, 111–115, 118–121, 123, 151, 152, 154, 155, 157–159, 162

MCDB Monte Carlo Data Base. 106, 112–115, 119–121, 123, 151–157

MCMC Markov Chain Monte Carlo. 97, 109

OLAP Online Analytical Processing. 8, 39, 44, 67, 124, 125

OPM Open Provenance Model. 37, 83, 84, 105, 106

PDB probabilistic database. 21, 31, 32, 34, 98, 99, 158, 162

PDF probability density function. 25, 26, 30–32, 43, 46, 115, 118

PGM Probabilistic Graphical Model. 98–100, 108–110, 118, 119, 163

PMF probability mass function. 25

PW possible world. 21, 30, 159

PWS Possible World Semantics. 21, 23, 26, 34, 36

ULDB Uncertainty and Lineage Database. 106, 107

VE Variable Elimination. 99, 109, 119

VG Variable Generation. 112–115, 117, 119, 121, 123, 151–154, 159

v





List of Figures

1.1 Deriving scenarios under alternative economic assumptions . . . . . . . . . . 4

1.2 Deriving scenarios for alternative temporal developments . . . . . . . . . . . 5

1.3 Deriving risk scenarios depending on weather conditions . . . . . . . . . . . 6

1.4 Deriving risk scenarios under different correlation assumptions . . . . . . . . 7

1.5 Central aspects of uncertain data in scenario planning . . . . . . . . . . . . . 9

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 An Enterprise Performance Management cycle . . . . . . . . . . . . . . . . 14

2.2 The relation of risk and measures in risk management . . . . . . . . . . . . . 15

2.3 Stages of a generic risk management methodology . . . . . . . . . . . . . . 15

2.4 The two steps of scenario planning (adopted from [LB02]) . . . . . . . . . . 17

2.5 Functions p(x) and P (x) of a discretely distributed variable . . . . . . . . . 25

2.6 Functions p(x) and P (x) of a continuously distributed variable . . . . . . . . 26

3.1 A schematic description of the what-if analysis process . . . . . . . . . . . . 39

3.2 Indeterminate start, duration, and end time of e . . . . . . . . . . . . . . . . 45

3.3 Representation and processing of temporal indeterminacy associated with in-

determinate events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Disaster-related claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Crime-related claims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Copulas (using 1000 samples) representing different structures of correlation

and corresponding correlation results . . . . . . . . . . . . . . . . . . . . . 63

4.4 A copula C10
G,0.8 (1000 samples) and a corresponding ACR histogram C

10

G,0.8

with 102 bins bl,k, b, k = 1, ..., 10 . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Example ACR histograms (lighter shades of gray represent higher density val-

ues) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Nested histogram representation . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Introduction of correlation between univariate distributions . . . . . . . . . . 71

4.8 Alternative inversion methods . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Overview of process for correlation introduction . . . . . . . . . . . . . . . . 74

4.10 Alternative query graphs for calculating pt1,t2 . . . . . . . . . . . . . . . . . 76

5.1 Analysis process of Use Case 1: Sales planning conditioned on marketing

expenditures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Basic use case provenance graph . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Provenance relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



List of Figures

5.4 Operator-specific provenance edges for the example analysis . . . . . . . . . 87

6.1 Query evaluation in MCDB (adopted from [JXW+08]) . . . . . . . . . . . . 113

7.1 Star schema underlying Use Case 1 . . . . . . . . . . . . . . . . . . . . . . . 127

7.2 CS graph for Use Case 1,Task A . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 CS graph for Use Case 1,Task B . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 CS graph for Use Case 2,Task A . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Result histograms Df,h (right upper region) . . . . . . . . . . . . . . . . . . 131

7.6 CS graph for Use Case 2,Task B.2 . . . . . . . . . . . . . . . . . . . . . . . 132

7.7 ACRs derived from all samples and two 10-year time windows, respectively . 133

7.8 Runtimes of D for varied datasets and approximation granularities . . . . . . 134

7.9 Runtimes of στ for varied datasets and approximation granularities . . . . . . 135

7.10 Runtimes of ASUM for varied datasets and approximation granularities . . . 136

7.11 Calculation times of ASUM and AMIN/MAX . . . . . . . . . . . . . . . . . 136

7.12 Runtimes of ATforvaryingβti , βdi
. . . . . . . . . . . . . . . . . . . . . . 137

7.13 Runtimes of ATforvaryingfractionofoverlapsfφ from 0.0 to 1.0 . . . . . 137

7.14 Accuracy of C for various copulas CH,d and C
α

H,d, H ∈ {Gauss, T (1), Clayton}, d ∈
{0.4, 0.8} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.15 Accuracy of C using different C
20

H,0.8, H ∈ {Gauss, T (1), Clayton} and

copulas CH,0.8, ns = 10k to correlate varying marginals x1, x2 . . . . . . . . 140

7.16 Accuracy of resulting tail probabilities . . . . . . . . . . . . . . . . . . . . . 140

7.17 Runtimes for empirical copula derivation . . . . . . . . . . . . . . . . . . . 141

7.18 Runtimes (in ms) for deriving x
(20,20)
1,2 . . . . . . . . . . . . . . . . . . . . . 142

7.19 Parallel execution of C (reverse) for correlating m = 3 and m = 4 distributions 143

7.20 Runtimes for computing ptx,ty . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.21 στ using ∆H /∆T for varying fx,fX . . . . . . . . . . . . . . . . . . . . . . 146

7.22 ASUM using ∆H /∆T for varying fx,fX . . . . . . . . . . . . . . . . . . . . 147

7.23 AMAX using ∆H /∆T for varying fx,fX . . . . . . . . . . . . . . . . . . . . 148

7.24 C, T m using ∆H /∆T for varying fφ . . . . . . . . . . . . . . . . . . . . . . 148

7.25 Recomputation S3, S4 using ∆H /∆T . . . . . . . . . . . . . . . . . . . . . 149

7.26 Recomputation S6 using ∆H /∆T for varying fφ . . . . . . . . . . . . . . . 149

7.27 Memory consumption for recomputations (fX = 1.0), relative to initial query

memory consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.28 Comparison of runtimes for HANA Ext and MC approaches . . . . . . . . . . 155

viii



List of Tables

2.1 The quantity value of tuple s1 is defined by an OR-set . . . . . . . . . . . . 23

2.2 The alternative quantity values occur with different probability . . . . . . . 23

2.3 Possible relation Sales1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Possible relation Sales2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Operator-specific edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 ≈- and →֒-edges and impact predicates φ . . . . . . . . . . . . . . . . . . . 89

6.1 Input relations S, P,R and query result R = q(S, P ) . . . . . . . . . . . . . 101

6.2 Input relation R and query result q(R) with provenance polynomials . . . . . 103

6.3 Query answers for K = Trio(X) and K = Why(X) . . . . . . . . . . . . . 104

6.4 Overview of characteristic features of related approaches . . . . . . . . . . . 119

ix



1 Introduction

The world today evolves at a faster pace, and so does the environment in which a company,

or any organization which strives for performance, devises its plans for the future. In a plan-

ning process, it is therefore necessary to keep in mind the more volatile and therefore less

predictable economic, ecologic, and social factors that determine how a strategy or a plan will

meet the requirements of the future. In other words, there are many possible scenarios that

should be taken into account when devising plans for sales activities, development projects,

or other business endeavors. One must identify and analyze the uncertainty, and therefore,

the risk that is associated with assumptions and related scenarios of how the business may

develop. This thesis focuses on the aspect of uncertain data in scenario planning processes,

and addresses its flexible representation and processing at database level.

The method of scenario planning was added to the management portfolio in the 1970s,

extending the traditional methods of business forecasting. Rather than predicting a single

probable state of the future business, scenario planning considers different uncertain aspects

to derive a number of possible, even though less probable, future states. This way, as [Wac85]

puts it, scenario planning helps to “accept uncertainty, try to understand it, and make it part of

our reasoning.”

Apart from tools and libraries for generic data analysis tasks, there exist a range of tools

that support users in prediction making and scenario planning. This includes spreadsheet-

based solutions for scenario creation, but also custom applications that provide functionality

for strategic, financial, and operational planning and risk management. Such solutions allow

users, for example, to specify drivers and their possible valuations as input to a model of a

specific business aspect and evaluate the corresponding outcomes of the model. The computa-

tions that are involved in such a model can be complex, including the application of different

drivers and causalities between those drivers. Further, the provided operations potentially re-

quire access to a variety of data, such as historic data which serves as input for a model or

results of economic forecasts.

Ideally, the management of risk and performance in a company should be implemented in

an integrated framework [Bos06]. In order to allow different applications to access, process,

and make available various kinds of data in a scenario analysis process, they should operate

on a common data schema. Furthermore, the semantics and processing of basic operations

applied across different applications should be the same, and their implementation should be

efficient. However, in reality, different applications for data analysis, scenario planning, re-

port creation, etc. are often not integrated. They operate on data silos (e.g., different databases

or spreadsheets), applying statistical analysis functionality implemented at application level.

This introduces problems regarding both the consistency of data and the semantics of provided

operators, as well as the efficiency of those operators. To circumvent those problems, this the-

sis addresses the implementation of scenario planning functionalities at the database level, in

1



1 Introduction

order to enable applications to access, create, and adapt scenario data efficiently. In this re-

gard, the thesis focuses on the handling of uncertainty in data as a central aspect of scenario

planning. It considers both the representation and the processing of uncertain data, covering

the modeling of different aspects of uncertainty and a basic set of analytic functionality for

processing the uncertain information.

The uncertainty in planning processes involves many facets that need to be addressed by a

model for uncertain data. Those include the imprecision of estimations and forecasting results,

temporally uncertain developments of processes, and potentially complex dependencies that

exist in most real-world data. There already exist a broad range of approaches to uncertain

data management, i.e., approaches addressing the representation, storage, and processing of

uncertain data. Most of those solutions are, however, situated in application fields such as in-

formation extraction, sensor data management, or artificial intelligence. They therefore mostly

focus on the representation and querying of (or inference over) existing uncertain data. Ex-

amples include uncertain information extraction results and imprecise sensor measurements.

Besides analyzing uncertain data, the scenario planning context makes it necessary to also

enable users to introduce and modify uncertain data that may follow arbitrary distributions,

as well as to manage and evolve the derived scenario data. Those points, which have been ad-

dressed only to a lesser degree by existing work, are covered in this thesis. As central topics,

this includes the analysis of multivariate distributions which may be created by users based on

assumptions about underlying dependencies, and the recomputation of analysis results under

changed input data.

After having given a first insight into the core topic of this thesis, the remainder of this chap-

ter introduces the reader more closely to the context of scenario planning and the requirements

for handling the uncertainty in this context.

1.1 Scenario Planning

To devise plans for a business development, one must take decisions about activities that shall

be taken in order to achieve set goals. Examples for such activities are, e.g., the introduc-

tion of a new product in a product portfolio, or investments in a specific project, development

effort, or marketing activity. The information considered in a planning process can be mani-

fold, including available historic data (e.g., previous sales numbers), data reflecting forecasts

of an economic figure (e.g., concerning the economic growth in a region), or experts’ implicit

knowledge and expectations. In any case, the goal is to take actions in such a way as to achieve

an optimal outcome with respect to the set goal. For example, when planning a product port-

folio, the goal could be to maximize the total revenue gained by all products in the portfolio

throughout the year.

In a traditional approach to planning and forecasting, future developments are forecast based

on a potentially complex algorithm, and the outcome is then used as a basis for decision-

making. However, this method does not account for changes and possible rapid shifts in the

business environment. Considering only one probable future state of the world becomes in-

appropriate once we are looking further into the future and the potential materializations of

2



1.2 Example Use Cases

the influential aspects change. Therefore, the planner must take into consideration that also

the less expected possibilities can indeed materialize. The uncertainty that comes along with

different possible developments must be addressed and taken into consideration in the plan-

ning process. It must be explicitly introduced in the analysis and managed appropriately in

order to facilitate its interpretation by the user. Even the most advanced forecasting algorithm

or a highly-experienced analyst cannot predict the future with absolute certainty. Considering

a forecast as a crisp fact clearly can mislead its interpretation, as well as any further results

derived from the forecast data during an analysis or planning process.

Rather than disguising the uncertainty, we must therefore appropriately represent it and

propagate it through subsequent calculations which use the uncertain information as input.

Assume an analyst wants to predict the sales of a newly developed product, for which no

reliable historic data—and therefore no appropriate basis for forecasts—is available. He may

consider a (supposedly) similar product as a reference, and use its sales figures as a basis

to forecast the sales of the new product. In this case, the data would reflect the underlying

assumption that the sales of the new product will behave similar to the sales of the reference

product. Since this assumption cannot be verified at the time when it is made, it introduces

a factor of uncertainty into the overall calculation. Another aspect of uncertainty is that,

in the real-world, developments are often a result of different factors that depend on each

other. For example, consider the economic growth and the disposable budget of consumers.

Usually, those factors will not develop independently from each other. Rather, an increase in

the economic growth rate will likely lead to rising incomes, which in turn can increase the

amount of money consumers spend. An analyst must take into consideration the influence

of such dependencies since they can have a great influence on the outcomes of a business

development.

Being able to predict a range of possible outcomes enables the user to evaluate the chance

that a goal will be achieved, or conversely, the risk that a goal will not be achieved. Then, he

can devise measures to increase chances or decrease risks. In this way, scenario planning rein-

forces the insight into opportunities and risks in business developments. Consequently, it can

help to manage both aspects in a more informed way. The benefit of using scenarios has been

acknowledged in the industry, and major vendors meanwhile provide specialized products for

planning and risk analysis in different domains. As stated above, approaches for managing

uncertainty at database level do mostly not address the scenario analysis context. Those solu-

tions that do incorporate the concept of ’what-if’-analysis yet lack important features, such as

the flexible handling of dependencies in data.

This section described the application context within which the thesis is situated. In the

following section, we now turn to two basic use cases that illustrate the requirements of un-

certainty management in scenario planning.

1.2 Example Use Cases

The following use cases shall serve the reader to understand specific aspects of uncertainty in

scenario planning, show where uncertainty exists in the underlying data, and how it may be

3



1 Introduction

introduced or increased. At this point, the use case descriptions are at a conceptual level and

specific characteristics of distributions that underly the data are not considered. The descrip-

tions will be refined during Chapter 2, where the use cases serve to exemplify various aspects

that build the foundation of this thesis.

1.2.1 Use Case 1: Sales Planning

The first use case considers the planning of future sales amounts for a given product. In this

use case, uncertainty plays a role both with respect to the amount of sales that can be achieved

and the time frame within which the product will be sold.

Task A: Predicting Sales Suppose a producer of consumer electronics wants to analyze

the potential sales of a new smart phone P2, which shall be introduced to their product port-

folio at the beginning of the next year (assumed to be 2012). To project prospective sales for

the following year under different assumptions, a planner may consider manifold data. Both

historic and forecast information can play an important role. Naturally no historic sales data

is available for P2. Therefore, the planner wants to take the historic sales data of a similar

product as reference and assume that P2 will generate similar sales. Additionally, he wants to

consider further aspects that he assumes will have an influence on the sales of P2, such as the

effect of the general economic development, or the influence of marketing activities.

Figure 1.1 illustrates, on a conceptual level, the assumptions the planner applies for the

described task.

Figure 1.1: Deriving scenarios under alternative economic assumptions

First, he includes data about the current year’s (2011) sales of the reference product, P1,

in his analysis. He computes the monthly sales numbers of P1 per store from historic data

and assumes that their distribution will reflect the sales of P2 in 2012. In doing so, the ex-

pert implicitly makes the assumption (Assumption 1) that the newly introduced product will

behave similarly to the established product, e.g., because P2 is a successor of P1. Second,

the assumption is that a marketing campaign will have an impact on the sales of P2. The user

4



1.2 Example Use Cases

therefore incorporates the planned marketing investment in 2012 in his analysis (Assumption

2). Finally, he introduces the assumption that the sales increase will depend, to some degree,

on the marketing efforts (Assumption 3). To get an understanding of possible variations in

future sales, the analyst then creates three scenarios reflecting alternative marketing budgets.

Particularly, he considers the possibility of a worst case, i.e., a low budget, a likely case of a

medium budget, and a best case of a high budget (1a, 1b, and 1c). Based on those three cases,

three expected values for the sales increase are computed. Each of the three final scenarios A,

B, and C then represents one possible value of the monthly sales that may be generated by P2

under the applied assumptions.

Task B: Analysis of Temporal Developments In a second task, the analyst needs to

report prospected sales figures of P2 for the first two quarters of 2012, based on different

possibilities regarding the release of P2. The assumptions which are introduced in his analysis

are schematically depicted in Figure 1.2.

Figure 1.2: Deriving scenarios for alternative temporal developments

Suppose that, due to a very tight production plan, it is not clear when exactly P2 will be

launched. The analyst wants to understand how sales may look at the end of Q2 in 2012. To

this end, he considers the launch date of P2 to be uncertain, at some time between the be-

ginning of January and the beginning of May (Assumption 1). For example, the launch may

happen very likely at the beginning of March, and less likely much earlier or later than that,

as indicated in the left-hand side of the figure. Also, the analyst assumes that the monthly

sales value derived for Scenario A of the previous task will be achieved (Assumption 2). The

analyst now can distinguish further scenarios for different potential release dates, e.g., at the

beginning of January, February, March, or April (1a through 1d), respectively, in order to

compute the total sales amount potentially achieved until the end of Q2, resulting in scenarios

A – D.

In the presented use case, the required functionalities for planning under uncertainty include

the introduction of uncertainty from deterministic fact data, the computation of expectations,

5



1 Introduction

and the aggregation of key figures associated with events in time for which no deterministic

occurrence time can be given.

1.2.2 Use Case 2: Insurance Risk Evaluation

The second use case focuses on the evaluation of risks associated with business developments.

In the insurance domain, it is particularly important for an insurer to understand the occurrence

of damage events that are covered by a provided insurance plan. Specifically, the insurer must

have a good understanding of the risk that events cause extreme damages (i.e., very high

financial loss) that may, for example, exceed the insurer’s premium reserve.

Task A: Evaluating Risks for Individual Assets As a first task, suppose the analyst

wants to prospect and analyze damages incurred by an insurance plan, say, against flood dam-

ages. To this end, he needs to know (or rather make assumptions about) the prospective claim

amounts caused by flood-related damages. Figure 1.3 illustrates the assumptions made for this

task.

Given sufficient data of past damages, the analyst can estimate or forecast expected flood

damages. In the example, the assumed damage is estimated to be about $1b per month in

the considered region (Assumption 1). The user can then analyze the forecast under different

assumptions about the climatic development, e.g., on the basis of a climatic forecast (As-

sumption 2). Assuming that there is a dependence between flood damages and the climate

(Assumption 3), the analyst decides to investigate the potential damages for three scenarios

with low, average, or high rainfall (2a – 2c) in the region of interest. Finally, he can calculate

the risk that an extremely high damage value, e.g., of $15b per month, will be exceeded for

each of the three rainfall scenarios (Assumption 4). In this case, the analysis may result in a

very low, low, and medium risk level reflected by scenarios A – C.

Figure 1.3: Deriving risk scenarios depending on weather conditions

Task B: Evaluating Joint Risks Understanding risk under dependencies becomes even

more important as an insurer usually provides insurance against different kinds of damage,

6



1.3 Supporting Scenario Planning at the Database Level

which are often correlated. Therefore, a company must evaluate how likely there will be

extreme events of two or more kinds of damage: A joint occurrence of such extreme events

will cause high combined claims to the insurer. In the worst case, the existence of the insurance

company can be at stake as claimed benefits may easily exceed the available premium reserve.

Assume that the user now wants to analyze how likely it is that there will be very high claims

for two types of insurance, say against flood and hurricane damages, simultaneously. The

different assumptions involved in this task are illustrated in Figure 1.4.

Figure 1.4: Deriving risk scenarios under different correlation assumptions

First, the user prospects the expected flood and hurricane damages (Assumptions 1 & 2).

Further, he assumes there is a dependency between both classes of insurance (Assumption 3).

He could, for example, analyze the effect of two assumed dependency structures, where one

reflects a weak dependency, and one a strong dependency (3a, 3b). Finally, he can evaluate

the risk that both classes of insurance will cause high claim amounts over $15b each (As-

sumption 4). In the example, the resulting risk is low when applying the weak dependency

assumption, and medium for the scenario reflecting the strong dependency.

Given the insight to those risk levels, an insurer might adjust the premium reserve in order

to be able to cover worst-case losses, or decide on an appropriate counter-insurance given the

computed risk is too high. This example shows that enabling the analysis of business aspects

under varying dependencies can help identify extreme scenarios, and thus, gain a deeper in-

sight into opportunities and risks.

The next section summarizes the requirements for scenario planning support at the database,

which were partially illustrated by the presented use cases.

1.3 Supporting Scenario Planning at the Database

Level

As noted before, a range of analytic solutions provide functionalities to support calculations

such as the ones that occur in the introduced use cases. Those solutions include statistical

computing languages (such as R1 and MatLab2), spreadsheet applications (such as Microsoft

1http://www.r-project.org/
2http://www.mathworks.de/products/matlab/

7



1 Introduction

Excel) and customized spreadsheet-based solutions, as well as specialized tools for Enterprise

Performance, Strategy, Risk and Financial Management (such as SAS Risk Management, SAS

Financial Management [SAS10]). While those applications offer sophisticated functionalities,

the need to transfer, integrate, and translate data between the data layer(s) and the application

layer leads to a loss of efficiency, especially if large amounts of data are to be processed. The

implementation of basic—often data-intensive—operators at the database can yield signifi-

cantly faster run-times. Large data transports from the database to the application tier can be

avoided. Further, moving basic computations to the database level can improve the mainte-

nance of the provided functionality, both in terms of enhancements (newly added functionality

is available to all applications accessing the database) and improvements to existing functions

(optimization in terms of functionality and performance are available to all applications).

Those aspects have led to increased efforts both in research and industry to provide parts

of the application logic for data-intensive applications close to the data, i.e., implement core

functionalities for data representation and processing directly at the database layer [Pla09,

JLF10]. Similarly, the database community has increasingly addressed the management of

specific data characteristics, such as probabilistic, temporal, and scientific data, directly at the

database such as to enable the consistent and efficient processing and management of such

data.

Following this motivation, this thesis addresses the provision of functionality for uncertain

data analysis and planning at the database. A data model for uncertain scenario data and a set

of basic operators shall serve as a foundation to enable the creation, analysis, and modification

of data in the scenario planning process.

The three central aspects addressed by the thesis are outlined in Figure 1.5. Those aspects

are (i) the data representation and storage of uncertain data, (ii) their processing within an

analysis process through a set of basic operators, including the flexible analysis of multivariate

data under arbitrary correlation patterns, and (iii) the capture of scenario provenance and the

analysis of change impacts by means of an efficient recomputation approach. Below, each of

those aspects is described briefly.

1.3.1 Model and Analysis Functionality for Uncertain Scenario
Data

As a foundation we require a data model that allows the representation of the different aspects

of data used in the process of scenario planning. As depicted in the left-hand side of Figure 1.5,

both historic fact data and uncertain data, reflecting assumptions or forecasts, can be subject

to the process of scenario planning. They can be inputs, intermediate results, or outputs of the

process. Uncertain data are represented through distributions over one or multiple variables.

Note that, in the remainder of the thesis, the working assumption is that the considered

data is organized according to the multidimensional data model as described, e.g., in [CD97,

Leh03]. This applies for historic data as well as for uncertain information. That is, the ana-

lyzed data is organized along so-called dimensions with (hierarchies of) dimension attributes

(e.g., day, month, and year for the temporal dimension). The data is stored in fact tables,

where values of relevant key figures are associated with values of the dimension attributes.

Based on this model, one can apply typical Online Analytical Processing (OLAP) operations

8



1.3 Supporting Scenario Planning at the Database Level

Figure 1.5: Central aspects of uncertain data in scenario planning

such as filtering and aggregating the fact data based on the dimension attribute values. When

describing the analysis of uncertain values, we will consider their analysis according to the

multidimensional model similar to certain data.

To address the special aspects of uncertainty in scenario data, we require support for

• Representing uncertainty in key figures (such as the prospected sales values from Use

Case 1) and the dimensional association of data (such as the uncertain product launch

times in Use Case 1) and

• Representing correlated uncertain data (i.e., multivariate distributions) reflecting the co-

occurrence of multiple key figures (such as for the insurance claim amounts and rainfall

intensity in Use Case 2)

Based on a suitably flexible data model, users further must be enabled to interact with the

data. That is, they need means to create, analyze, and modify data with the aim to derive

scenarios that reflect assumptions of interest. The thesis addresses this aspect by providing a

set of operators processing both deterministic and uncertain data, which can be assembled in

an analysis process as indicated in the center of Figure 1.5.

9



1 Introduction

Modeling, Deriving, and Modifying Uncertain Information To enable the evaluation

of different assumptions underlying a scenario, users need support for

• Constructing uncertain data flexibly, either by directly modeling distributions, or by

deriving them from underlying fact data (e.g., an assumed and thus uncertain sales value

may be derived from historic data, as in Use Case 1),

• Modifying uncertain values to create new or adapt existing scenarios. For example, as

time progresses, a previously applied assumption regarding the expected sales can be-

come increasingly inconsistent with actual data. It is necessary to reflect such deviations

in the data.

Analyzing Uncertain Information A user needs means to analyze uncertain data similar

to the analysis of certain data. That is, he requires functionality to access and analyze uncer-

tain key figures, including dependencies between those key figures, and data with uncertain

dimensional (especially, temporal) associations. To this end, it is necessary to provide a set of

operators, such as

• Uncertain analogs to traditional relational operations such as selection and aggregation

operators, which take into account the uncertainty of key figure values and the dimen-

sional association of data,

• Basic operations for computing statistical features of univariate data, such as the mo-

ments of distributions, or the fit of distributions to given fact data, and

• Operators for multidimensional analysis.

It must be noted that the set of operators considered in the thesis is not—and can not be—a

comprehensive set of functionalities for statistical computing and financial planning. Rather,

a subset of operators has been chosen to enable the implementation of basic data analysis

and modification steps that are relevant for scenario planning, as illustrated in the use cases.

Regarding the analysis of multidimensional data, the flexible handling of correlations in data

was identified as an important aspect in its own right and will therefore be addressed in depth,

as outlined below.

1.3.2 Modeling, Extracting, and Evaluating Correlation in Data

To enable the evaluation of arbitrary correlation patterns in data and the analysis of multivari-

ate distributions under such correlations, one requires means for

• Constructing, extracting, and storing correlation structures of arbitrary form and degree,

• Applying arbitrary correlation structures to arbitrarily distributed data, and

• Evaluating correlation structures in data efficiently, e.g., to compute risk measures.

10



1.4 Outline of the Thesis

The analysis of different correlation patterns that may potentially exist in data is an impor-

tant means to enable an expert to gain insights into possible joint occurrences of events, as

illustrated in the tasks for insurance risk evaluation in Use Case 2. In the thesis, we focus

on the evaluation of complex correlation patterns in an ad-hoc fashion, and therefore, mainly

address the handling of low-dimensional distributions. The analysis over higher-dimensional

distributions requires alternative approaches. Those will be briefly discussed but otherwise

not addressed in detail in this work.

1.3.3 Tracking the Provenance of Scenario Data and Evaluating
Change Impacts

Besides the actual process of analysis and planning, it is essential that users can track back

the results of a scenario analysis process to the base data and evaluate the assumptions that

were made to derive a given result. This is required to enable a sound analysis (interpretation)

of scenarios, the creation of new scenarios based on existing ones, and the recomputation of

scenarios based on changes in base data. In this thesis the focus will be on the latter aspect,

which is indicated in the right-hand side of Figure 1.5. To support an efficient recomputation

of results, both the data model and the operators for analysis and modification of scenario data

need to provide means for

• Capturing information about involved data items and processing steps applied in the

analysis process,

• Accessing this information, and

• Evaluating the impact of changes in base (input) data on result (output) data in the

process of recomputations.

On the conceptual level, keeping information about how data was derived generally is essential

to enable users to understand, interpret, and possibly adjust a scenario. For example, when

users arrive at a promising result for a given scenario that is associated with a high risk, they

can track down the source of this risk. Then, they can get an insight to possible measures that

prevent or counter the risk. Without knowledge about the derivation of a scenario, such an

interpretation becomes impossible, since a user cannot understand the source of uncertainty.

1.4 Outline of the Thesis

The structure of this thesis is outlined in Figure 1.6. The major aspects will be covered as

follows:

Chapter 2 provides the foundations concerning both conceptual aspects of scenario plan-

ning and uncertainty in data, as well as providing the reader with a technical foundation of

uncertain data management and basic issues regarding the provenance of data. The previ-

ously introduced use cases will serve to exemplify selected aspects throughout the foundation,

as well as for illustrating new concepts presented in the succeeding chapters.

In Chapter 3, we discuss concepts for data representation and analysis of uncertain data

that build the basis of this thesis. In particular, we discuss the representation of distributions

11



1 Introduction

Figure 1.6: Thesis outline

with focus on continuously distributed data, and provide a set of operators for analysis and

modification of such data. Chapter 4 then focuses on the central aspect of correlation handling

and describes a generic concept for the representation of correlation at the database as well

as approaches for both the extraction and introduction of correlation structures to data, which

build the basis for flexible multivariate analyses. Chapter 5 investigates the recomputation of

analysis results. Specific focus is on the capture of scenario provenance information that can

be exploited for an efficient change impact analysis and recomputations of analytical operators

in the scenario planning process.

Chapter 6 discusses related work in the fields of uncertainty management and provenance,

and gives an overview of solutions that apply those approaches in order to position them in

the context of the approaches presented in this thesis. The experimental evaluation of the

presented functionality is discussed in Chapter 7. The evaluation addresses the efficiency, the

restrictions, and the optimization potential of the proposed concepts. Finally, Chapter 8 con-

cludes the thesis, and provides an outlook on possible extensions and future research topics.

12



2 Foundations

This chapter introduces the reader to various concepts that form the foundation of this thesis.

First, aspects of managing performance and risks in enterprises are introduced on a conceptual

level. We situate scenario planning as an approach that can help improve risk management in

planning processes within an enterprise performance management cycle. Uncertainty is a

crucial issue in planning processes, as their true outcome is always unknown. We discuss

how scenario planning is used to tackle the potentially complex uncertainty. Then, the topic

of uncertainty—or, generally speaking, imperfection—in data is addressed and the technical

aspects of uncertain data representation and processing in databases are discussed.

Finally, we turn to the related topic of data provenance, which describes how an artifact—

such as intermediate or final data in a planning process—has come into existence. Provenance

is crucial for managing and investigating scenario data and concerns both the process- and

data-related aspect of our work.

2.1 Business Application Context

This section addresses the application context of the thesis from a business-centric point of

view. We consider the concept of performance management and its relation to risk manage-

ment and then discuss scenario planning as a means to address the management of risks.

2.1.1 Enterprise Performance and Risk

Enterprise Performance Management (EPM) is an integrated approach to increase the perfor-

mance and profitability of a company. Similar to the traditional focus of Business Intelligence

(BI), EPM comprises techniques, tools and processes to analyze and report developments of

the business (see, for example, [Cok09, Bos06] for an overview of methodologies and tech-

niques). EPM extends the usual historic focus of BI, by including also the forecasting and

planning of future developments. The overall goal of EPM is to optimize relevant figures that

reflect the performance of a company, such as its profitability.

Figure 2.1 displays a typical EPM cycle, including four stages that connect the different

phases of execution in a business. Initially, one needs to develop a model that captures the

historic and current state of the business as well as the potential future development of perfor-

mance ❣1 . By developing a strategy and prioritizing and breaking down the goals of a com-

pany, managers set concrete objectives, such as a figure for the return on investment which

shall be achieved ❣2 . The aim of planning is then to determine activities in such a way that the

set objectives are most likely to be achieved ❣3 . A plan may be re-organized during its exe-

cution, if required. During and after the execution of a plan, actual figures (e.g., the achieved

revenue or product quality) are monitored, recorded, and compared to the planned figures in

13



2 Foundations

Figure 2.1: An Enterprise Performance Management cycle

order to evaluate the achievement of the plan ❣4 . Finally, insights from this process serve to

adjust the model or optimize the further execution of plans.

In the stage of planning, an expert applies models and business rules specifying information

about drivers in the business—either defined explicitly or implicitly in the expert’s mind—to

project future values of relevant figures. For example, a planner may forecast a prospec-

tive sales quantity for a given product, using a forecast algorithm that exploits historic sales

numbers and internal marketing information. Similarly, he may include prospected economic

growth numbers in the analysis. At this point, it is important to recognize that the resulting

sales figures will be based on assumptions regarding the considered drivers. Obviously, there

is a chance that some assumptions will not hold true—or that the selected drivers are inap-

propriate or incomplete. For example, there might be an unexpected economic decline that

renders the initial planning invalid. In brief, there is always a risk that wrong assumptions are

applied in the planning process and thus expected results will not be achieved.

Risk There is no common definition of what constitutes a risk. The Risk Management

Group of the Basel Committee on Banking Supervision has defined risk in terms of “risk

of loss resulting from inadequate or failed processes, people and systems or from external

events.” [oBS01]. All definitions share the central idea that, first, risk is associated with an

event that arrives with some likeliness (i.e., is not certain), and second, this event will have

a consequence associated with an impact (mostly measured in terms of financial loss) on the

performance of the organization. Figure 2.2 shows how the likeliness of the event and its

potential impact (i.e., implied costs) both influence risk, which is computed as their product.

One can consider both exogenous and endogenous risks. The former refers to risks such as the

occurrence of a natural catastrophe or an economic decline. The latter refers to risks relating

to the execution of internal processes.

Endogenous risks are risks that can be influenced (to a certain extent) by the decisions taken

in an optimization. In contrast to that, the exogenous type cannot be mitigated. The informal

definition of risk given above considers only the negative aspect of risk (where the occurrence

of an event is associated with a negative impact). In scenario analyses, we also consider the

positive interpretation of risk, i.e., risks associated with events that cause a positive impact.

14



2.1 Business Application Context

Figure 2.2: The relation of risk and measures in risk management

Therefore, besides trying to minimize the risk of a negative event, we also want to maximize

the chance to increase performance by taking an opportunity.

Risk Management Managing risks inherent in the planning process has become increas-

ingly important during the last decades. On the one hand, the high speed of change in the

economic environment makes a more advanced risk management approach necessary in order

to allow to react to changes more flexibly. On the other hand, legal obligations such as the

Sarbanes-Oxley Act render risk management as a mandatory component in the management

cycle of a company. The goal of a risk management process is to handle risk by taking mea-

sures that help (a) to minimize the likelihood of a loss occurring (preventive measures), or (b)

to minimize their potential effect on the organization (counter measures). This relationship is

illustrated in the lower part of Figure 2.2. An example for a preventive measure is to estab-

lish a quality assurance process to decrease the risk of low product quality. An example for

a counter measure is to conclude an insurance that covers financial impacts of materializing

risks.

Figure 2.3 shows a general approach to risk management. It comprises the identification

of risks through appropriate tools and the identification and analysis of relevant root-causes

(drivers) of those risks. A further stage addresses the assessment of risks by measuring their

likelihood and the potential impact of the risk materializing. In the fourth stage, plans are

devised to mitigate risks through proper measures that help reduce or counter the identified

risks. Finally, the last stage of the risk management methodology considers the measurement

and evaluation of identified risk indicators and drivers during the execution of processes, in

order to identify plan deviations and enable counter measures at an early stage.

Figure 2.3: Stages of a generic risk management methodology

This work does not address the whole process of risk management nor does it approach

risk management on a formal basis. Rather, we consider risk management as the context

15



2 Foundations

to be supported by representing uncertainty in data in a suitable fashion, and managing and

processing such data through appropriate statistical functionality in an analysis process. One

crucial factor to be kept in mind when addressing risk management is that one should also

consider behavioral and subjective aspects in the process, especially so for the identification

and evaluation of risks [Bie02, LKA03]. The technique of scenario planning addresses those

human factors in the assessment of risks and chances.

2.1.2 Scenario Planning

The decision for a strategy or—on a lower level—concrete activities that influence the devel-

opment of a company determine the company’s exposure to risk. The strategy an organization

will choose generally depends on its desired risk exposure in relation to the identified opportu-

nities and risks associated with possible actions. For example, if a company is completely risk

averse, they will choose activities such as to minimize the risk implied and thus devise plans

so that it is very probable that a minimal target will be achieved. In the usual case, however,

the goal is to find an optimal plan that balances risks and chances. To achieve such a plan

and manage inherent risks it is not sufficient to produce traditional forecasts, since those fail

to consider significant and unlikely changes. When considering only the likely outcomes of

a process, both very high risks and opportunities may be completely overlooked. Therefore,

it is valuable to enable the evaluation of potential developments under different assumptions

concerning uncertain aspects. This is the heart of scenario planning.

Managing Uncertainty with Scenario Planning In the 1970’s and 1980’s, scenario

planning was adapted from the field of military strategy planning as a tool for business plan-

ning, extending traditional planning approaches to take into account the growing uncertainty

of future developments. The authors of [RS98] describe it as “that part of strategic plan-

ning which relates to the tools and technologies for managing the uncertainties of the future”.

Rather than forecasting probable future states or creating visions of desirable states, the focus

of scenario planning is to explore possible and plausible futures by means of a well-defined

number of scenarios. In many situations, the number of drivers that influence the future state

of a business can be quite large (potentially infinite). The aim of scenario planning is to help

to manage such complex uncertainties by focusing on a manageable number of scenarios, yet

taking into account heterogeneous assumptions about the future [LB02].

If scenarios are well defined and do not include inconsistent assumptions, we consider each

scenario in the set of derived scenarios as an “internally consistent view of what the future

might turn out to be” [Por85]. That is, a scenario describes the state of the future given the

applied assumptions are met. The described technique requires that a user first identifies the in-

dividual dimensions of the underlying uncertainty (detecting drivers) and second distinguishes

a number of appropriate discrete alternatives as basis for alternative scenarios.

The central idea of scenario planning is sketched in Figure 2.4, which indicates two phases.

The scenarios evolving from the first phase (Scenario Creation) effectively serve as an input

to the second phase (Strategic Planning). The second phase constitutes the actual decision

making, i.e., the derivation of business decisions based on an analysis of various possible sce-

narios. In the figure, the central characteristic of scenario planning is indicated through an

16



2.2 Uncertainty in Data

Figure 2.4: The two steps of scenario planning (adopted from [LB02])

evolving amount of information to be considered by a planner: First, one creates a certain

number of scenarios (and thus, increases the information) by applying various assumptions to

process available base data. Then, those scenarios are reduced in a second step to actionable

information. This work focuses on database support for the first phase, by providing function-

ality that enables users to represent, derive, explore and subsequently manage and compare

different scenarios. The second phase, including the actual decision making, is out of scope of

this thesis, since domain-specific expertise and contextual knowledge is required to interpret

different scenarios derived in the first phase. The same applies to the definition of specific risk

functions, rules, or business models, which depend on a broad knowledge of the respective

domain and are therefore similarly not considered in the thesis.

2.2 Uncertainty in Data

A planner’s knowledge regarding future developments is always imperfect. Generally speak-

ing, imperfect information is information that does not completely, not with certainty, or only

inaccurately reflect the true state of the world. The consequence of imperfection is uncertainty

in the data, i.e., a “lack of certainty” whether some proposition holds true, or how exactly it

describes the real world. In this section, we first address different types and sources of uncer-

tainty. At this stage, we consider uncertainty with respect to a generic data item, be it a single

value or tuple in a database, or an event in the general sense. Where appropriate, we clarify

specific features through an example.

2.2.1 Kinds of Uncertainty

There are a number of types, or possible interpretations, of uncertainty. Here, we address

imprecision, incompleteness, and confidence of information as possible forms of uncertainty.

However, there is no one clear classification of uncertainty and thus, those types neither consti-

tute an exhaustive list nor do they unambiguously partition the space of uncertain information.

Often, one could apply different interpretations of uncertainty in the same context, and vice

versa, varying contexts can imply varying interpretations of uncertainty for the same data.

Imprecision of data can occur when data values cannot be provided precisely or when in-

formation is not available at the finest level of granularity represented in a database.

17



2 Foundations

Such imprecision can be expressed through ranges (e.g., a sales quantity will be be-

tween 10k and 20k), or through a set of possible values (e.g., the sales quantity will be

10k, 11k, or 12k). Similarly, if one wants to query data at a lower level of granularity

than the recorded granularity, there arises uncertainty in the form of imprecision. For

example, when sales data was collected at the city level but shall be evaluated on the

level of individual stores, one cannot say with certainty in which exact store a given

sales amount was achieved.

A special aspect of imprecision is indeterminacy of data. Indeterminacy appears espe-

cially when addressing uncertainty of facts associated with a future development which

is not determinate. Similar to previous literature [DS98, CP00] we use the term indeter-

minacy particularly to refer to temporal uncertainty. Indeterminacy is relevant when the

occurrence and duration times of events are not exactly known. For example, the launch

date of a product may not be known precisely due to an unpredictable development

phase. Furthermore, there are cases where we want to express an explicit “tolerance”

with respect to a temporal value. Consider as an example a customer’s requirement that

an order shall be delivered within the next two to four weeks. When planning the deliv-

ery, the possible occurrence time span should be taken into account, rather than an exact

point in time.

Incompleteness of data often results from technological constraints or intrinsic character-

istics of a data acquisition process. For example, in production environments, measure-

ments might be missing due to defect sensors. Similarly, when conducting customer

surveys, customers might not answer all questions, e.g., regarding their salary or expen-

ditures, leading to incomplete data. Incompleteness can be regarded as an extreme form

of data imprecision in the sense that a missing value could potentially take on any value

from the domain of possible values, e.g., the salary of an interviewed customer may be

arbitrarily high.

Confidence describes the belief in the validity of a given data item, or the likeliness of an

event. An example in the above context is the statement that the amount of products

sold next year will very likely be 10k, or, conversely, will very unlikely be 100k. One

can express the degree of confidence through a numeric confidence factor, such as the

probability (see Section 2.3.1) that the given data item reflects reality. As stated in

[Mot96], in many cases the confidence and precision of a data item can be traded off

against each other in the sense that a higher precision of a data item (restricting it to a

smaller range of possible values) implies that the confidence in the data decreases, and

vice versa.

The aspects of imprecision and confidence are the most relevant factors when dealing with

data which is forecast or approximated from historic data (with imprecision) or reflects an

expert’s estimations (with indeterminacy and confidence). Therefore, in this thesis, the focus

is primarily on uncertainty in terms of imprecision and confidence.

The remainder of this section focuses on different aspects concerning the granularity and

source of uncertain data.

18



2.2 Uncertainty in Data

2.2.2 Granularity of Uncertainty

In the context of scenario planning, uncertain data is either the input or result of a data analysis

or transformation step. The uncertain information can exist on different levels of data granu-

larity. One typically discerns uncertainty on attribute level, tuple level, and relation level. For

example, the future value of an attribute sales quantity for a product may be known only

imprecisely, e.g., to be in the range [2k, 3k] or to be either 2k or 3k. Analogously, uncertainty

can be on the level of tuples, e.g., we may not know for certain whether a sale was made, or we

may be uncertain whether a specific product was sold in storeA or storeB. In the latter case,

both the tuples (product, storeA) and (product, storeB) are considered uncertain tuples.

One can also associate uncertainty with a complete relation, i.e., a whole set of tuples that

may or may not reflect the true state of the world.

In this work, the focus will be primarily on uncertainty on the level of (numeric) attributes.

This is because scenarios are mostly derived from alternative assumptions regarding key fig-

ures and measure values that are relevant to analyze a business aspect of interest. Still, the

concepts of tuple- and relation-level uncertainty remain relevant, for example, when we want

to express the confidence in a complete derived scenario.

2.2.3 Sources of Uncertainty

Similar to the different interpretations of the concept of uncertainty, we can also discern dif-

ferent sources from which uncertainty can arise or reasons why uncertainty is present in data.

Uncertainty in Base Data Many types of base data from the “real world” are inherently

uncertain. This applies, e.g., to trend data derived by a forecast mechanism, sensor

measurements, or the results of information extraction mechanisms. Of course, in those

cases the uncertainty has been initially introduced to the data at some point in time

(during data acquisition). For example, in the case of sensor data, measurements are

always imprecise, where the degree of imprecision depends on the sensor quality. Here,

the term base data refers to the state of data at the point of insertion to the database. An

example for uncertain base data that is relevant for scenario planning is a forecast value

acquired from an external service.

Uncertainty Introduced Through Processing Uncertainty can naturally also be added

to data through applied transformations (queries, modifications, or computations for

deriving new data). Often, processing steps—particularly in the context of scenario

planning—include an assumption and thus an inherent uncertain component that is in-

troduced to the data. Further, uncertainty may be introduced through indeterministic

processing steps, e.g., when applying sampling techniques in the implementation of a

processing step.

Uncertainty About the Uncertainty On a meta-level, it is important to be aware that any

quantification of uncertainty is itself uncertain. That is, we cannot determine with ab-

solute certainty whether a determined degree of belief reflects the “true” certainty of

19



2 Foundations

the represented information. For example, in information extraction processes, differ-

ent heuristics may lead to varying confidence values for the same entity, rendering the

confidence values uncertain. In the context of scenario planning, one must consider

the restriction imposed through the human factor: The quality and coverage of derived

scenarios will naturally depend on the user’s experience, expertise, as well as their will-

ingness to investigate scenarios that do not reflect the most likely (or most preferred)

developments. While this factor should always be considered when evaluating the prac-

tical application of scenarios, it is not further discussed in this work.

Uncertainty About the Considered Data Schema Another kind of meta-level uncer-

tainty stems from a lack of information about the suitable or preferred schema that

should be used for modeling the data at hand. This aspect is addressed, e.g., in the

context of so-called malleable schemas [DH05] which incorporate imprecise and over-

lapping definitions of data structures in data integration processes.

For this thesis, the first three sources of uncertainty are relevant. First, we consider uncer-

tainty in data that are already represented in the database or imported from external sources.

Second, as processing steps are executed, they often introduce some assumption and thus un-

certainty to the data. The aspect of meta-level uncertainty is also a relevant facet since it

must be considered when interpreting the associated uncertainty of alternative scenarios. The

interpretation of uncertainty in concrete application contexts or business domains are highly

complex topics in their own right. Those aspects are out of the scope of this work.

2.3 Representing Uncertain Data

This section discusses selected aspects of uncertain data representation and points out the most

relevant issues in the context of our work. Particularly, we consider the distinction of different

levels of representing uncertain data, their underlying distribution characteristics, the explicit

and implicit representation of uncertainty, and approaches for representing correlation (depen-

dency) in data.

While there exists a broad range of approaches for modeling uncertain information, the

goal of this section is not to provide an exhaustive survey of models and systems. Relevant

related approaches for uncertain data management are discussed later on in Chapter 6. A

broad survey covering models, properties, and querying algorithms for uncertain data is given

in the work of [SBH+09]. It provides a generic model for uncertain data representation,

which can be specialized to concrete models for various application cases. The authors of

[SBH+09] focus on traditional uncertain data management, enabling the representation of and

relational queries over uncertain data. Further classes of transformations, such as statistic

analytic functions, are not considered. In the following sections, we will refer to the concepts

applied in [SBH+09] where appropriate, while additionally pointing to aspects not covered by

their model yet relevant for the present work.

First, we consider the semantics of belief or certainty in a data item formally, addressing

probability theory and possibility theory as two alternatives for quantifying uncertainty.

20



2.3 Representing Uncertain Data

2.3.1 Probability and Possibility of Information

The degree of uncertainty of a data item can be represented through confidence values. One

can use different such values, depending on the application context and the applied theory.

For example, one can assign categorical belief values such as “very uncertain”, “relatively

certain” or “very certain” to describe the belief in a given data item such as a forecast value.

Mostly however, one uses numeric confidence values in the range [0, 1], with 0 representing a

complete lack of confidence, and 1 representing complete certainty. Two alternative concepts

to deal with degrees of certainty are probability and possibility.

Probability Theory and Possible Worlds Semantics

Under probability theory, uncertain information of a data item is represented through a random

variable x which is associated with a probability distribution Px over the possible instantia-

tions of x, i.e., the domain of x. The probabilities of all possible instantiations sum up to 1,

meaning that the variable will take one of those values with certainty.

Probabilistic Databases Most approaches for uncertain data management assume the

probabilistic representation of uncertainty. Tuples and attribute values are assigned proba-

bilities of belonging to the database, according to an underlying probability distribution. A

possible instance of such a database, termed possible world (PW) can be constructed from any

(valid) combination of tuples in the database. A probabilistic database (PDB) is then defined

as a probability distribution over the set W of all possible worlds. Each wj ∈ W specifies

an assignment |=j x←v of a value v ∈ dom(x) to each random variable x contained in the

database according to the distribution Px, with
∑

wj∈W
P (wj) = 1. That is, in each possible

world all uncertain attributes (tuples) are assigned a deterministic value (tuple), leading to a

deterministic database.

As the database represents a probability distribution over possible worlds, the result of

queries over this database will also be a probability distribution. That is, each tuple (or at-

tribute value) contained in a query result is associated with a result probability. This is termed

Possible World Semantics (PWS). Under PWS, the probability P (x = v), i.e., the probability

that an uncertain variable x has value v, is computed from the individual probabilities of all

possible worlds wj where x = v, i.e., P (x = v) =
∑

wj |=x←v
P (wj).

When random variables are associated with continuous distributions, which is the assump-

tion underlying the approaches of this work, W would contain an infinite number of possible

worlds. Therefore, a representation and evaluation of continuously distributed data under

PWS is not feasible. Section 2.3.4 will address possible representations of continuous random

variables, while Section 2.4 discusses basic techniques that underly the processing of such

variables in this work.

Possibility Theory

The concept of possibility theory is an alternative to probability theory based on fuzzy sets.

A fuzzy set is a set of possible values, where each value is assigned a number in the interval

21



2 Foundations

[0, 1] indicating the possibility that the value is a member of the set. In contrast to probabilis-

tic semantics, the sum over all the assigned degrees need not be 1. A possibility distribution

Πx defines a unique set of probability distributions that are consistent with Πx. Fuzzy sets

and possibility theory build the basis for fuzzy database models [Ma06, BK96, YG98], where

uncertain values are associated with possibility distributions.

Overall, possibility theory is applied to a larger degree in the field of artificial intelligence

rather than in the area of uncertain databases. In this thesis, fuzzy data modeling will not be

considered further.

2.3.2 Granularity of the Representation

Information about uncertainty is represented on different levels depending on the granularity

of the considered data items. We discern attribute-level, tuple-level, and relation-level uncer-

tainty.

Uncertainty on Attribute Level Attribute-level uncertainty addresses incomplete infor-

mation about the concrete value of an attribute value, i.e., uncertainty within a field of a tuple.

For example, for a relation Sales(product, location, quantity), we may be certain that a sale

was (will be) made, but we may be uncertain about the concrete sales quantity; for example,

we may not know for sure whether the customer orders 2k or 3k of a given product product1.

Uncertainty on Tuple Level Tuple-level uncertainty addresses the uncertainty about the

existence of tuples in the database. For example, for the relation

Sales(product, location, quantity) it may not be known exactly whether a sale

s1(product1, cityA, 2k) was (will be) made, and therefore it is uncertain whether tuple s1
exists. Such an uncertain tuple is associated with a random boolean variable x which indicates

the tuple existence. For a specific instantiation of the probabilistic database, the tuple exists if

x takes value 1; otherwise, the tuple does not exist.

In terms of [SBH+09] tuple-level and attribute-level uncertainty are defined using the con-

cept of A-tuples. For each attribute in a relation, an A-tuple contains either a deterministic

value or an OR-set of possible attribute values. A specific A-tuple instance is defined as an

A-tuple for which a concrete value has been assigned to each attribute. This concept can be

applied to represent various models of uncertain data, as shown in the survey. The representa-

tion of attribute uncertainty is implicit in the definition of OR-sets, since those specify sets of

possible values for A-tuple attributes. For example, when the true value of quantity is known

only to be either 2k or 3k, we can represent this value by an OR-set {2k, 3k}, as shown in

Table 2.1 next to another tuple s2, whose quantity value is certain. All valid combinations

of value assignments to all attributes of an A-tuple then represent the alternative tuple in-

stances for that specific A-tuple. In the example, this results in two alternative tuple instances

(product1, cityA, 2k) and (product1, cityA, 3k).
Apart from specifying alternative attribute values, there may be a confidence attached to

each of the alternatives in an OR-set, which describes the probability that the corresponding

22



2.3 Representing Uncertain Data

Table 2.1: The quantity value of tuple s1 is defined by an OR-set

id product location quantity

s1 product1 cityA {2k, 3k}
s2 product2 cityB 1k

A-tuple instance exists, as shown in Table 2.2. Note that the probabilities of the two alternative

A-tuple instances (product1, cityA, 2k) and (product1, cityA, 3k) sum up to 1, as is required

under PWS.

Table 2.2: The alternative quantity values occur with different probability

id product location quantity

s1 product1 cityA {2k : 0.2, 3k : 0.8}
s2 product2 cityB 1k

In this work we consider uncertainty mainly at the level of attribute values. The analysis of

business scenario data mostly is based on computations over numeric measure attribute val-

ues, describing some quantity, rather than considering the (non-)existence of individual facts.

Therefore, the attribute-level representation is most natural in the context of analytic evalua-

tions of business-related data. For example, when prospecting sales for a selected location,

it is assumed that some sales quantity will be achieved for each product, while the concrete

quantity may well be uncertain. Thus, it is natural to represent the value of the quantity
attribute as an uncertain value.

Uncertainty on Relation Level Table 2.1 displays a simple uncertain relation. Recall

that, under PWS, a possible instance of an uncertain relation is a concrete (valid) assignment

of a deterministic value to each uncertain tuple in the relation. That is, an uncertain rela-

tion represents a distribution over all possible (valid) combinations of tuples. In terms of

[SBH+09] this corresponds to all combinations of possible A-tuple instances in the relation.

Thus, for the given example, we have two possible instances of the uncertain relation Sales,

as shown in Tables 2.3 and 2.4. If we consider the probability values given in Table 2.2, the

probability that Sales1 represents the true state is 0.2, while the probability of Sales2 is 0.8.

Table 2.3: Possible relation Sales1

id product location quantity

s1 product1 cityA 2k
s2 product2 cityB 1k

Table 2.4: Possible relation Sales2

id product location quantity

s1 product1 cityA 3k
s2 product2 cityB 1k

So far, we have not explicitly considered the concept of dependency between data items.

However, the definition of OR-sets implicitly contains information about dependency, as they

23



2 Foundations

specify sets of alternative attribute values (and correspondingly, of alternative tuple instances).

This means that only one of the attribute values (and corresponding tuple instances) may exist

in an instance of the database at the same time.

If variables are considered independent from each other, this implies that each combination

of attribute values and uncertain tuple instances can occur. Moreover, the assumption of in-

dependence implies that the likelihood of two specific tuple alternatives occurring jointly can

be computed as the product of their individual tuple confidences. However, this assumption

is a strong restriction that mostly cannot be applied when considering real-world data. When

dependencies exist between tuples, this determines how they can appear together in a relation,

and thus influences the distribution of possible relation instances of an uncertain relation. De-

pendency, or correlation, is an important aspect that takes many different forms in real-world

data. It will therefore be addressed in more detail in Section 2.3.5, and constitutes the central

topic of Chapter 4.

2.3.3 Explicit and Implicit Representation

In the examples shown above, the representation of uncertainty is accomplished through the

modeling of tuple and value alternatives and associated confidence values. This corresponds

to an explicit form of representation, where the different artifacts to represent uncertainty are

an integral part of the data model in the sense that basic relations are extended with additional

attributes to store information that describes the uncertainty. As an alternative to the model

extension approach, uncertainty can be represented in an implicit fashion, exploiting Monte-

Carlo techniques (see, e.g., [JXW+08]). Between those two approaches there exist major

differences both regarding the representation of uncertainty and query evaluation over the

represented data.

Explicit (Model Extension) Approaches Most approaches to uncertain data manage-

ment rely on an explicit representation of uncertainty, where relation schemata are extended

with information about the uncertainty. For example, relations may be extended with spe-

cial attributes that mark optional or alternative values, or through an attribute indicating the

existence probability of each tuple in the relation. Irrespective of the concrete model im-

plementation, the use of model extension approaches implies that the types of representable

uncertainty are hard-wired into the system. Thus, one must adapt the model when new types

of uncertainty shall be supported, thereby potentially affecting dependent applications.

Implicit (Sampling-based) Approaches An alternative approach to modeling and pro-

cessing uncertain data is to represent distributions of variables symbolically, and realize their

concrete instantiation through sampling at runtime. The essence of this sampling-based ap-

proach is the use of Monte Carlo (MC) algorithms, which are applied in many fields such as

physics, computer science, finance, telecommunications and games. The MC approach pro-

ceeds by sampling a high number of realizations for each random variable in a query through

appropriate sampling functions. Then, those samples are evaluated deterministically, i.e., by

evaluating standard relational operators over the sample sets and deriving an empirical result

24



2.3 Representing Uncertain Data

distribution. The great benefit provided by this approach is its genericity. Since arbitrary sam-

pling functions can be applied, the class of applicable probability distributions is not restricted

and not hard-wired into the data model.

Integration of Approaches Many systems combine model extension approaches with

MC techniques. They aim to exploit the genericity of the latter for tasks which otherwise

would be computationally too expensive or would not be solvable analytically. The concepts

presented in this thesis rely mainly on the model extension approach. Sampling will be applied

as a means to construct and apply correlation structures, as described in Chapter 4.

2.3.4 Distribution of a Variable

As exemplified above, probability values are used to reflect the confidence that a tuple or value

alternative belongs to a possible database instance. Thus, uncertain tuples are associated with

a random boolean variable X , which takes a value of 1 with a given probability (meaning t
exists) or 0 (meaning t does not exist in the database). In the case of uncertain attribute values

are similarly represented through random variables, associated with a probability distribution.

This distribution can be defined over a discrete or continuous domain dom(X).

Discrete Distributions In the discrete case, X takes a value out of a finite number of

possible values as characterized by a probability mass function (PMF) p(x), which reflects the

probability that X = x, with
∑

j p(x) = 1. The associated cumulative distribution function

(CDF) P (x) of such a discrete variable increases discontinuously over dom(X). As an exam-

ple, one can model alternatives for next year’s economic growth being 1%, 1.5%, or 2% with

a probability of 0.25, 0.5, and 0.25, respectively. See Figure 2.5 for an example of the PMF

p(x) and the CDF P (x) in this case.

Figure 2.5: Functions p(x) and P (x) of a discretely distributed variable

Most approaches that provide for the representation of attribute-level uncertainty over dis-

crete distributions have also added support for continuous distributions, addressing require-

ments from various application domains where the continuous form is a more natural repre-

sentation.

Continuous distributions A continuous random variable X is characterized through

a non-negative integrable probability density function (PDF), p(x), and a continuous CDF,

25



2 Foundations

P (x). The density function p(x) describes the likelihood of X occurring at a given point x1,

while the cumulative distribution P (x) =
∫ x

−∞
p(x)dx describes the likelihood that X will

take a value X ≤ x, where
∫ +∞

−∞
p(x)dx = 1. See Figure 2.6 for an example of the PDF p(x)

and the CDF P (x) in the case of a normally distributed variable.

Figure 2.6: Functions p(x) and P (x) of a continuously distributed variable

As the number of possible values of a continuous random variable is infinite, the number

of possible worlds represented by a probabilistic database which contains such variables is

infinite as well. Thus, exact query computation over continuous random variables in terms of

PWS is not possible, i.e., would yield infinitely large computation costs. Based on the specific

distribution associated with a continuous variable, different representation forms are used to

represent and process the associated distributions. A selection of those representations is listed

below.

• Parametric representations represent the characteristics of known distributions in a

compact form where this is possible. For example, one can represent variables following

a Uniform, Normal, or Gamma distribution through the distribution family and appropri-

ate parameters as Uniform(min, max), Normal(µ, σ), and Gamma(α, β), respectively.

For example, a symbolic representation of a normally distributed variable reflecting next

year’s economic growth value could be specified as Normal(µ = 1.5%, σ = 0.5%) (see

Figure 2.6).

• Characteristic functions can be used to represent known distributions, allowing the

system or a user to access specific features of the distribution efficiently. Examples

include information about the inverse cumulative distribution function (ICDF) of a

variable, or providing access to the probability P [min ≤ x ≤ max] of X being

within an interval [min,max] by using a mass function mass(min,max) (see, e.g.,

[ABS+06, KK10]).

• Histogram-based representations approximate underlying distributions by reflecting

the density within subintervals (bins) of the domain. Histogram-based approximations

are used when the distributions cannot be represented symbolically or cannot be eval-

uated in closed form. The most basic form of histograms is the class of equi-width

histograms. They partition the domain into equally-sized bins, each of which is asso-

ciated with a frequency that reflects the mass of the distribution that lies in the bin.

Equi-width histograms are constructed and updated very efficiently, but can yield large

1More precisely, p(x) describes the likelihood of X occurring within a small interval [x− ǫ, x+ ǫ], ǫ← 0, around

x.

26



2.3 Representing Uncertain Data

approximation errors depending on the nature of the approximated distribution (e.g., for

very ’spiked’ distributions). More complex partitioning schemes serve to approximate

distributions more accurately, yet at higher costs for both the initial construction and

the update of the histograms, as discussed, e.g., in the work of [JPK+98]. Examples

include equi-depth histograms, which partition the domain into bins that cover an equal

amount of the mass of the distribution, and V-Optimal histograms, which partition the

domain such that the cumulative weighted variance of the bins is minimized. In this

work, equi-width histograms are used due to their efficiency for both constructing and

updating uni- and multivariate distribution approximations. More complex partition-

ing schemes could, however, be used as an alternative implementation for most of the

presented approaches.

• Monte Carlo approaches rely on drawing pseudo-random samples over a continu-

ous domain to implicitly model continuous distributions, as described briefly in Sec-

tion 2.3.3.

2.3.5 Dependencies in Data

Dependencies in data are a highly important aspect for enabling consistent analyses over prob-

abilistic data. In particular, investigating the effect of data dependencies on business devel-

opments can help experts to prevent misestimations of risks and chances, as indicated in the

description of Use Case 2 in Section 1.2.2. Correlation between random variables, such as

the losses of related insurance assets, is reflected in the joint distribution of those variables.

Similar to the representation and processing of univariate probability distributions, we can

distinguish two basic forms of representing correlations in data.

Correlation information can be represented in extended schemata where information about

dependencies (e.g., implication, mutual exclusion, or degrees of positive or negative corre-

lation) is stored explicitly. To this end, one can use additional attributes storing dependency

information for each tuple, or record this information in dedicated tables. Noteworthy, many

approaches consider the base data as such independent and focus on dependencies that are

introduced through query processing (e.g., when joining data). This relates to the tracking of

provenance, or lineage of data, which will be further addressed in Section 2.5.

Dependencies in Discrete Uncertain Data Current approaches to handling depen-

dency in data mostly focus on the processing of dependencies between discrete random vari-

ables, i.e., between tuple alternatives and alternative attribute values.

The common underlying approach is to define constraints over random variables that rep-

resent dependencies between uncertain attribute values, or dependencies on the tuple-level.

The concept of probabilistic c-tables [GT06] is an instance of this approach. A probabilis-

tic c-table is a relational table which keeps a local condition for each tuple in the relation.

The conditions specify how different valuations of variables can occur together, and hence,

describe the dependencies between those variables. A possible world over c-tables is then as-

sociated with a particular value assignment to all variables that fulfills all conditions. Another

representation form, which is equally expressive as probabilistic c-tables [AJKO08], is the

representation of the dependency by means of probabilistic graphical models. Those represent

27



2 Foundations

joint distributions of a set of variables through a graph whose nodes represent the variables

and whose edges represent direct dependencies between the variables. Both those approaches

and their application will be discussed in depth in Chapter 6.

Dependencies Between Continuous Distributions In contrast to dependencies be-

tween discrete values and tuples, the specification and processing of correlation over continu-

ous distributions has been addressed only to a limited extent in probabilistic data management

so far. Yet, evaluating multivariate distributions over continuous variables, and investigating

potential correlation structures in data is a highly important aspect, particularly in the context

of scenario planning.

While there exist approaches (such as [SMS+08, JXW+08, KK10]) that generally allow

for symbolical representation and processing of multidimensional distributions, they do not

explicitly handle correlation information as a self-contained construct. This makes a concise

evaluation of correlation structures a difficult task. Also, as stated before, sampling-based ap-

proaches generally allow us to represent arbitrary dependencies over continuous distributions

(using arbitrary marginals and correlation structures). However, they similarly do not provide

direct access to the correlation structure as such. Rather, the information about dependencies

is encapsulated in the specific sampling functions. Thus, the comparison of correlation struc-

tures and the introduction of new correlation information to hitherto uncorrelated data (e.g.,

forecasts) can become a complicated task.

In the field of financial and insurance mathematics, the modeling of complex correlations

plays an important role. Here, so-called copula functions are used as a well-founded statistical

approach. A copula (Latin for “link”) essentially is a distribution that represents the relation

between individual distributions and their joint multidimensional distribution in a normalized

fashion (for a detailed introduction, see, e.g., [Nel06]). The most important benefit of cop-

ulas is that they are independent from specific marginal distributions and invariant to linear

transformations.

Sections 4.2 and 4.3 will discuss the concept of copulas in depth and introduce approaches

to apply copulas at the database level for a flexible handling of arbitrary correlations over

continuous domains.

2.3.6 Temporal Indeterminacy

In most of the examples introduced so far, we addressed primarily the representation of uncer-

tainty in measure values, such as a sales quantity or the economic growth. Another important

aspect in the context of planning is uncertainty in the dimensional data associated with an

analysis, particularly, in the temporal dimension. In database research, the representation and

querying of temporal information has been addressed both through the concept of interval-

based temporal data (where the temporal occurrence of an event or fact is known to cover

an interval in time), and uncertainty or indeterminacy in temporal information. It is possible

to extend approaches for general uncertainty representation to represent temporal indetermi-

nacy. Generally, the handling of temporal indeterminacy combines aspects from the domains

of data uncertainty and temporal databases. In the following, we briefly address the basic

representation of temporal data and temporal indeterminacy in particular.

28



2.3 Representing Uncertain Data

Temporal Information Most applications of databases involve temporal data, since the

management of real-world data usually involves some temporal aspect. Data is called tem-

poral data if it is in any way connected to a time interval and this connection implies some

special aspect for the data. The area of temporal databases has received broad attention during

the last two decades due to the growing need to represent and manage temporally evolving

data directly at the database, rather than addressing those issues at the application level. An

important aspect addressed in temporal data management is the validity of facts within time.

For example, data describing the association of an employee with a company might only be

valid during a specific time interval [t1, t2]. To analyze and predict developments, e.g., of

salaries or sales amounts, along time, one requires means to represent and query the temporal

information. A comprehensive introduction to temporal data management can be found, e.g.,

in [JS99]. In the following, we introduce selected aspects that are relevant in our context.

The basic concepts for representing time and temporal validity in databases are instants

and durations. An instant or duration is specified through a value of a suitable unit of time.

This unit for temporal measurements is generically referred to as a chronon. Depending on

the database system and application context, a chronon refers to the smallest unit of time

representable, e.g., a minute, an hour, or a day.

Certain, i.e., determinate instants, denoted by t, can be represented through a single chronon.

Likewise, determinate intervals T are considered periods in time and can be modeled through

a lower and upper determinate instant that represent the boundaries of the interval, i.e., a start

time ts and end time te, such that T = [ts, te].

The seminal work of Allen [All83] describes the representation of temporal intervals and

their relations by means of an interval algebra . The interval algebra was introduced as a

calculus for temporal reasoning, with primary focus on the field of artificial intelligence. It in-

cludes thirteen possible relations between intervals, such as that an interval takes place before

or overlaps with a second interval, and provides algorithms for reasoning over temporal inter-

val relations by means of a composition table. Allen’s interval algebra can be considered the

foundation for a broad variety of further research on temporal data representation and reason-

ing. While reasoning over temporal data is out of the scope of this work, the overlaps relation

plays an important role in the computation of aggregates over interval-based and uncertain

temporal data.

Indeterminacy We address uncertainty in temporal data by the term indeterminacy as in

[DS98]. The basic constructs of valid-time indeterminacy are indeterminate time instants,

periods, and intervals. Indeterminate instants are represented by means of a lower and an

upper support, tl and tu, and a probability distribution function that reflects the probability

that the instant occurs at any of the chronons in the interval [tl, tu]. Indeterminate intervals

are likewise represented by a set of possible durations and a respective probability function

over those durations. Finally, indeterminate periods are represented through an indeterminate

start and an indeterminate end instant.

In the context of this thesis the term of indeterminate events refers to facts in a database

(reflecting planning-relevant events) that have an indeterminate temporal association. That is,

indeterminate events are considered under interval semantics, i.e., as having an indeterminate

29



2 Foundations

start time and an indeterminate duration, which (implicitly) also determines their indetermi-

nate end time. This approach is similar to the concept of indeterminate periods in [DS98].

As an example for indeterminate events, consider the indeterminate product launch times, and

the associated indeterminate periods of sale in Use Case 1. The representation of temporally

indeterminate event data and the aggregation of data associated with indeterminate events will

be addressed in Sections 3.2.3 and 3.3.4.

In this section, we discussed different aspects of representing uncertain data. The following

section describes approaches for processing such data during query evaluation.

2.4 Processing Uncertain Data

The two basic approaches to uncertain data representation (implicit and explicit) imply also

different forms of query evaluation. In the case of sampling-based systems (implicit uncer-

tainty representation), queries are evaluated over a large set of generated PWs in a determinis-

tic fashion. In this section, we will focus on the processing of explicitly represented uncertain

data with continuous distributions. We particularly address selected aspects of analyses over

such distributions, including the computation of statistical measures, aggregation, and the han-

dling of correlations in data.

2.4.1 Analysis over Continuous Distributions

Section 2.3.4 described different concepts to represent continuous distributions, as a basis to

access their features during query processing. On the one hand, symbolic representations

specify distribution information in a concise form and enable exact analytic computations in

some cases. On the other hand, in practice only few distribution functions (such as the Normal

distribution) allow an efficient analytical evaluation. Therefore, one resorts to approximate

processing approaches in most cases, relying on one of the previously described representation

forms.

In the context of planning, analysis functions over continuous data are a central require-

ment. Examples include the computation of statistical measures over uni- and multivariate

distributions (see Section 1.2.2), such as the moments or quantile values of a distribution, or

the probability that a value exceeds a given threshold (tail probability). Further, one needs

functionality to filter data based on probabilistic thresholds, and to compute aggregates and

formulas over uncertain values. Below, we consider some basic operations over (continu-

ous) probabilistic data, as well as addressing their application in statistical computations and

probabilistic database systems.

Integration and Numerical Approximation

Integration over continuous distributions is a central operation that builds the basis for many

more complex functionalities. Given an interval [a, b] and a PDF p(x), the integral
∫ b

a
p(x)dx

computes the probability that x will take a value in [a, b]. Integration is, for example, required

as a central functionality to evaluate probabilistic predicates or joins over uncertain values.

30



2.4 Processing Uncertain Data

Also, histograms that are used as approximate representations of symbolic distributions es-

sentially reflect the result of a piecewise (bin-wise) integral over the underlying PDFs.

If the distribution of x is represented symbolically, one may compute the exact integral ana-

lytically. In cases where an exact analytical computation is too expensive or even impossible,

one can take an approximate, numerical approach to integration.

Numerical Integration One can compute an approximate integral over a function p(x) by

evaluating p(x) at a number of discrete points within the integration interval, and computing

a weighted sum of the partial results. Different integration rules, or quadrature rules, can

be applied to this end. The simplest form is the so-called rectangle rule, which approximates

p(x) in [a, b] by a constant function through the point ((a+b)/2, f((a+b)/2)). By splitting up

[a, b] in equal-sized subintervals and adding up the results for all subintervals, one can increase

the accuracy of the overall integration result to a desired degree. Another quadrature rule is

the Simpsons rule, which approximates each subinterval through a second-order polynomial,

and thus can serve to more accurately approximate selected functions with a smaller amount

of sub-intervals.

Assuming a discrete approximation of a continuous distribution function p(x) with n dis-

crete points xi of subintervals of length h = (b − a)/n, one can approximately compute the

integral
∫ b

a
p(x)dx as

∫ b

a

p(x)dx = h ·
n
∑

i=0

p(xi), xi = a+ i ∗ h .

In PDBs, several approaches are applied for numerical integration over continuous distribu-

tion functions, including histogram-based approximation, representation through characteris-

tic functions, and sampling, as described in Section 2.3.4.

Statistical Measures

Computing the probability that a variable x takes a value in a specified range or exceeds a

certain tail quantile tx is a basic but central functionality for the analysis of risks. As specific

cases, one can calculate the upper or lower tail probability, i.e., the probability that x exceeds

or falls below a threshold value tx, as the integral
∫∞

tx
p(x) dx or

∫ tx
−∞

p(x) dx, respectively.

This means that we compute the value of the CDF at tx, yielding the result 1 − P (tx) and

P (tx), respectively. Another essential functionality of statistical analyses is the computation

of the quantile (percentile) values of a distribution. The quantiles are computed as the value of

the ICDF at a given probability value p, P−1(p). The function P−1 is defined for continuous

and strictly monotonic distributions. The p-quantile, or (p · 100)th percentile, is the value

below which p · 100% of all samples randomly drawn for x will fall.

Inverse Transform Approach Besides general statistical analysis, the ICDF of a dis-

tribution can be used for sampling from this distribution: By applying the so-called inverse

transform approach, one can draw a sample from a distribution P (x) by computing its quantile

31



2 Foundations

function P−1(u) at a sample u drawn from a Uniform distribution in [0, 1]. In PDBs, inver-

sion is relevant foremost for implementing approaches that rely on Monte-Carlo simulations.

In this thesis, the inverse transform approach is applied as a central function for processing

correlation structures (see Chapter 4).

Aggregation

Similar to historic (deterministic) data, aggregation over probabilistic values is a central func-

tionality, e.g., for the computation of measures over data of finer granularity. For example,

given individual forecast values for next year’s revenue per product group, a user may want to

compute the total prospective revenue of the company as the sum of all individual revenues.

Convolution In the general case, to compute the sum of (two or more) random variables,

one convolves their distribution functions. The PDF of the sum of random variables is the

convolution of their individual PDFs. Likewise, the CDF of the sum of random variables is

the convolution of their individual CDFs. Convolution is an integration problem that can be

solved efficiently using Fourier transforms. Convolution of integrable functions translates to

multiplication in Fourier space, the Fourier transform of the convolution being equal to the

product of their individual Fourier transforms:

F(f ∗ g) = F(f) · F(f) .

For example, to compute the CDF of the sum revenue = rev1 + rev2 of two continu-

ously distributed values rev1, rev2, we compute the inverse Fourier transform of the product

of the Fourier transforms of the individual CDFs Prev1 and Prev2 . This approach can be

applied both to aggregate symbolically represented distribution functions and to their approx-

imate (histogram-based) distribution representations. In the latter case, one again computes a

numerical integration.

In the special case of normally distributed values, their convolution can be computed very

efficiently. The sum of n normally distributed values Normal(µi, σ
2
i ) can again be expressed

as a Normal distribution. A similar case can be made for Gamma distributed variables, such

that
n
∑

i=1

Normal(µi, σ
2
i ) = Normal

(

∑

i

µi,
∑

i

σ2
i

)

and

n
∑

i=1

Gamma(αi, β) = Gamma

(

n
∑

i=1

αi, β

)

.

For most distribution functions, however, no such solution is available, or it would be highly

expensive to obtain an exact result analytically. In those cases, one can apply numerical con-

volution over the discrete approximations of the underlying functions, as discussed above.

Approximate Aggregation In cases where a large number of variables must be aggre-

gated, computing their exact sum2 through convolution can be very expensive. Moreover, a

2We denote the computation of convolutions as the exact approach, even though the case of numerical convolution

involves a certain degree of inaccuracy due to approximation.

32



2.4 Processing Uncertain Data

user might not even require an exact aggregation result, since approximate results may suffice

to draw a conclusion from a query result. Approximate approaches can be used to compute

aggregates over large amounts of data based on their moments, such as their mean and vari-

ance. This way, one can, for example, efficiently calculate a low, high, and expected value for

aggregation queries such as COUNT, SUM, AVG, MIN, and MAX (see, e.g., [MIW07]). Sim-

ilarly, one can approximately calculate confidence interval information for such aggregates,

i.e., compute the variance of the resulting aggregate distribution.

A crucial characteristic of those approaches is that they rely completely on the assumption

that the underlying values (and therefore, the result) can be appropriately captured through a

normal distribution. This, indeed, is often not the case, which must be considered when ap-

plying this form of approximate aggregation. In this thesis, we similarly resort to approximate

approaches for computing aggregate values, as will be discussed in Section 3.3.3.

Temporal Aggregation To incorporate knowledge about temporal indeterminacy of plan-

ning in the analyses, users need methods to aggregate over measure values associated with

indeterminate facts (events). For example, in Use Case 1, the user wants to aggregate the

product sales prospected for a relevant product within the first half of 2012, while the exact

product release date is unknown.

There exist a variety of approaches addressing the problem of temporal aggregation of

measure attribute values over certain time intervals. In this context, the notion of overlap

from Allen’s interval algebra (see Section 3.2.3) is an important basic operation. Overlap is

defined as the operation of intersection in time, and can be applied to compute predicates and

orderings of temporally indeterminate data (see [All83, DS98]). In particular, if the validity

interval associated with an attribute value has zero overlap with an aggregation interval, the

attribute value will not contribute to the aggregate result. Otherwise, the attribute value will

contribute to the aggregation result.

Attributes can have different semantics regarding the relation of their validity interval and

the considered aggregation interval. In particular, [BGJ06] refers to constant and malleable

attributes. A constant attribute contributes to an aggregate in a constant fashion, i.e., without

its value being adjusted to the length of the aggregation interval. An example is the age of an

employee; when computing the maximum age of all employees working in a company during

some year, their age attribute value is considered constant regardless of the fraction to which

their employment overlaps the aggregation interval. On the other hand, the value of a so-

called malleable attribute is adjusted to the overlap fraction between their validity interval and

the aggregation interval. An example for a malleable attribute is the salary of an employee:

When computing the sum of salaries paid to all employees during a fortnight interval, we

need to aggregate the fraction of each employee’s salary that contributes to the aggregate (i.e.,

half of their monthly salaries, assuming all employees were employed during the complete

fortnight). Considering those semantics, one can apply different aggregations, such as the

computation of instantaneous, cumulative, and moving window aggregates over temporal data

[BGJ06, SGM93].

In this work, the aggregation over temporally indeterminate data (events) accounts for both

uncertain start times and durations. In the context of scenario planning, this is relevant for

evaluating different possible developments, so that one can plan activities that have an effect

33



2 Foundations

on the start and duration times of the considered events. For example, a user can evaluate

the best and worst case revenue for a launched product. Then, if necessary, he can devise

activities to prevent late launch dates if they would compromise a minimal revenue target.

We address the aspect of aggregation over temporally indeterminate data using both concepts

from [DS98] and [BGLS03] in Sections 3.2.3 and 3.3.4.

2.4.2 Data Modifications

To enable users to evaluate assumptions about changing conditions that may influence the re-

sult of a scenario analysis, it is necessary to allow for modifications of data as well as the

introduction of new uncertain information. For example, when a user prospects a possible

future revenue value, he should be able to introduce new information (or modify assumptions)

to see the effect of deviations from initial assumptions. New or changed assumptions should

thus be reflected through modifications of the initial distributions. Traditional PDBs focus on

the evaluation of relational queries or analysis functions, and mostly do not consider modifi-

cations to uncertain data. It is important to track applied modifications to data in an analysis

process. Therefore, one needs to address modifications in data through a version-based ap-

proach, keeping the original data as well as new versions rather than updating the original data

in-place. This is pointed out as a central requirement in [SBD+09] (where it is stated for the

field of scientific databases). Chapter 5 of this thesis addresses an approach to incorporate

modifications to input distributions in the scenario analysis process.

In general, it is important that users can analyze how a final analysis result was computed,

keeping track of initial data that served as input to an analysis, as well as information about

changes and processing steps applied to this data. This requirement is addressed by the topic

of provenance handling, which is addressed in the final section of this chapter.

2.5 Provenance

Conceptually, the concept of provenance refers to the capture and management of bookkeeping

information about how data has been derived by a query or throughout a process. In the

preceding sections, the relevance of keeping such provenance information has been pointed

out. On the one hand, provenance information is crucial for correct query evaluation under

PWS (see Section 2.3.1). On the other hand, one needs provenance to enable users an adequate

evaluation and interpretation of scenario data.

The question of managing information about data production, curation, and analysis pro-

cesses has received broad attention during the last decade. In this section, we give a brief

overview of approaches to provenance management, and relate to special aspects particularly

relevant in the context of this thesis.

2.5.1 Provenance Management Systems

For a brief overview of different aspects of provenance management, we adopt the categoriza-

tion of [GD07]. The major categories considered therein relate to the provenance model, the

query and manipulation functionality, and the storage model.

34



2.5 Provenance

The provenance model determines the sort of information one can manage. Here, one can

distinguish the concept of source provenance and transformation provenance. Source prove-

nance is information about the data items involved in the derivation of another data item and

can be further distinguished, for example, to include all input items used in a derivation, or

only those which positively contributed to the result (e.g., all tuples that satisfied a predicate).

Apart from the original data items, the system may store additional information, such as at-

tached meta data. In each case, the recorded provenance information can be on different levels

of granularity, such as the attribute, tuple or relation level. The concept of transformation

provenance includes all information about the transformations (operations) that have been ap-

plied in a derivation process. Again, the captured information can be on different levels of

detail and include completely manual, automatic, or semiautomatic transformations as well as

additional meta information. As a third aspect of the provenance model, the underlying world

model is considered. In the closed-world model it is assumed that the provenance management

system controls all transformations and data items; in the open-world model it may not control

all transformations and thus, exact provenance recording may not be possible.

In the context of this thesis, we consider the capture of source provenance and high-level

transformation provenance information. We assume a closed-world model, meaning that all

performed transformations are known and can be recorded.

The aspect of manipulation and query functionalities includes, first, different possibilities

to query the abovementioned sorts of provenance data. In the context of scenario planning, a

user may, for example, need to pose queries about the base data (historic data as well as as-

sumptions and forecast data) that was involved in the derivation of scenarios, or about analysis

steps applied to the data. Conversely, he may be interested to learn about derived scenario data

that depends on some base data item, or the different transformations that have been applied

to a base data item. Secondly, a system can also provide functionality for manipulating prove-

nance, e.g., for converting different levels of detail of stored provenance data. This aspect is

not in the scope of our work.

Finally, as regards the storage and recording model, one can make a distinction whether

provenance data is kept physically attached (loosely or tightly coupled) to the actual data,

or is stored in a dedicated repository. The recording of provenance itself can be controlled

by the system or a user, and provenance information can be captured eagerly (i.e., stored

with each transformation) or only be provided at query time (but not persistently stored). A

final distinction considers the question whether provenance attached to an input data item of

a transformation is propagated through the succeeding transformation, and if so, how many

such propagations are applied.

In Chapter 5 of this thesis, we describe the capture and use of scenario provenance infor-

mation. There, provenance information is captured for each operator application and stored

in dedicated provenance tables. The major focus of using provenance data in this thesis is

on evaluating changes in scenario data, rather than on capturing and querying provenance

information as such.

35



2 Foundations

2.5.2 Source and Transformation Provenance

This section addresses selected aspects of provenance both in the field of probabilistic data

management, and in the field of workflow management. Since scenario planning includes both

data-related and process-related aspects, it is necessary to understand the topic of provenance

from both view points.

Provenance in Uncertain Data Management

In the context of PWS, one can consider provenance information as “a constraint that tells us

which worlds are possible.” [DS07]. As such, provenance information is necessary to ensure

correct query evaluation and computation of confidence values of a query result [STW08,

ABS+06, SD07, SMS+08] as discussed in Section 2.4. By exploiting provenance information,

the confidence computation step can be decoupled from the data computation step, in order to

correctly consider dependency information introduced in the process of query processing.

Many systems such as Trio [ABS+06] and Orion [SMM+08] track information about the

data derivation on tuple- and attribute-level during query processing. Effectively, they store a

dependency set of tuples for every tuple derived in a query. Additionally, predicates applied

during query processing are recorded in dedicated tables.

From a slightly different point of view, provenance relates to the representation of depen-

dencies in data, as described in Section 2.3.5. Similar to capturing information about the

provenance of a data item, dependency information reflects constraints involving different

random variables in the database.

Capturing only the source provenance of derived scenario data does not suffice to fully

reflect the derivation of data in a scenario analysis process. This is in contrast to many appli-

cations of provenance in databases, where the focus is on relational queries, whose processing

semantics can be captured adequately using source provenance. As a consequence, current

approaches to uncertain data management primarily handle the source provenance of data. In

contrast, this thesis considers the handling of both source and transformation provenance,

similar to approaches taken in the field of data-centric workflows.

Data-Centric Workflow Provenance

Workflows are a central technical concept in many areas of research as well as business. A

workflow describes a sequence of connected steps (tasks) that describe a process. The indi-

vidual steps of a workflow can be abstract activities as well as concrete data transformation

steps. The data flow of a workflow specifically addresses aspects associated with the passing

of data between activities. This includes, for example, the specification of data sources, ap-

plied transformations (e.g., to clean or merge data), and data consistency constraints. During

the last decade, the management of so-called data-centric workflows has become increasingly

important for keeping track of the great amounts of information processed and created, e.g.,

in scientific analysis processes and business processes. Scenario analysis processes can be

considered as a form of data-centric workflow, whose provenance needs to be captured and

managed appropriately.

In this context, it is necessary to capture the relation between in- and output data of the indi-

vidual steps in a process, but also information about the transformations (operations) that were

36



2.6 Summary

applied in the process. In particular, it is necessary to keep track of the invocations of specific

analysis operations and their input and output data, in order to enable the user to query the

provenance of analysis results and to recompute analysis processes. Different models, such as

the Open Provenance Model (OPM), have been devised to enable users to capture the execu-

tion of processes adequately. In such models, the provenance of an analysis process is usually

being reflected through a graph, where the nodes reflect activities (applied operations) and

artifacts (consumed or produced data) and the edges reflect the relations between the different

nodes. Based on inference rules, a user can then query the collected provenance of a process,

e.g., to discover which data artifacts and transformations were part of the process that led to a

final analysis result.

Many of the requirements stemming from workflow provenance management can similarly

be applied to the context of scenario analysis processes. Those requirements are:

• The need to determine applied operations and to recompute analysis results based on

changes in underlying inputs.

• The possibility to reuse an analysis process or certain sequences therein.

• The need to determine and analyze the source data respectively the derivation of result

data in order to learn about the context of analysis results, their quality, or inconsisten-

cies that may arise.

• The possibility to trace the provenance of data for legal or regulatory issues.

Regardless of those common characteristics, research on data-centric workflow manage-

ment so-far largely addressed the scientific domain. Existing approaches do not address as-

pects such as the processing of business data residing in a database, the computation of analytic

operators over such data, or the recomputation of analysis processes based on changed input

data. Those aspects are the central topic of Chapter 5, where the recomputation of analysis

processes is addressed using approaches to provenance from both the data management and

workflow management fields.

2.6 Summary

In this chapter, different aspects that build the conceptual and technical context of this thesis

were considered. The topic of managing performance and risks in enterprises and the specific

technique of scenario planning were introduced as the general application field in which the

thesis is situated. Then, uncertainty in data was introduced as a crucial issue in planning pro-

cesses of all sorts, and different relevant aspects of probabilistic data and their management in

databases were discussed. This included the representation and processing of uncertain data

in difference flavors, and the aspect of dependencies (correlation) in such data. Particularly

the latter aspect has been addressed only to a limited degree hitherto, especially with respect

to the handling of correlation between continuous distributions. To address this gap, the flexi-

ble handling of such correlations will play a prominent role in this thesis, and is addressed in

37



2 Foundations

detail in Chapter 4. Finally, the topic of provenance was considered and its relevance for sce-

nario planning was pointed out. In Chapter 5 we will exploit both source and transformation

provenance in order to enable an efficient recomputation of scenario analyses.

As a basis for the subsequent topics, the next chapter presents the data model used through-

out the thesis, and introduces a set of analysis operators which users can apply in an analysis

process.

38



3 Data Representation and Analysis

This chapter describes the data model for representing uncertain data and provides a set of

operators for uni- and multivariate analysis. As a starting point, we give a conceptual

description of the general scenario analysis process. Then, the representation of uni- and

multivariate data, as well as functionality for analyzing and modifying such data in the analysis

process, are discussed.

3.1 The Scenario Analysis Process

In the process of scenario analysis users require both operations for OLAP, i.e., slicing, dic-

ing, roll-up, and drill-down, and specific operations for deriving, analyzing, and modifying

uncertain data.

A generic data analysis process includes activities for accessing and modeling, cleaning

and integrating, transforming, and exploring data. The specific steps depend strongly on the

specific aim of the analysis. The general aim of any data analysis, however, is to highlight

or extract useful information from potentially huge amounts of data, in order to derive con-

clusions and support decision making. Analogously, the aim of the scenario analysis process

is to support users in decision making by means of methods to extract and derive potential

future business developments (scenarios) based on historic data and hypothesis. As a basic

working assumption, we assume that business data are already available and accessible based

on multidimensional data model, as noted before in Section 1.3.1.

Figure 3.1: A schematic description of the what-if analysis process

Figure 3.1 illustrates on an abstract level how operations are applied in such a process in a

sequential and iterative fashion. After loading and analyzing underlying data, the user can ap-

ply different operations that represent assumptions regarding possible business developments,

39



3 Data Representation and Analysis

before he investigates, compares, and possibly persists the resulting scenarios. In the graph,

operators are shown as rectangles with round corners. Rectangles depict data consumed and

produced by the steps (i.e., the applied operators) in the process. We consider both certain

(historic) and uncertain (approximated or forecast) data loaded from a database, where it is

accessible through a dedicated representation (Step 1). In the figure, uncertain data is dis-

tinguished from certain data by dashed lines. Users select and analyze data to view it on an

appropriate aggregation level (Step 2). To evaluate a possible development of the current situ-

ation those views can then be processed through several steps to create an (uncertain) what-if

scenario (Step 3). For example, users can select and calculate statistic measures of past data

and use the result as input for a forecast. Additionally, they might insert new values assumed

to hold for some attribute. They can iterate steps 2 and 3 to derive, explore, and subsequently

compare several scenarios based on previous intermediate results. For example, data resulting

from an analysis in step 2 can serve as input for several what-if analysis steps 3a, 3b, etc. The

final result of the illustrated process is uncertain data of one or several scenarios. Users can

investigate those scenarios to make appropriate business decisions and possibly store them for

later reference (Step 4).

Analysis Data Flow

Formally, the process of scenario analysis can be viewed as a data flow. In this data flow,

operators are applied to one or multiple input data, process the data, and produce output data

which may serve as input to further operators or as the result of the data flow.

Data When referring to data artifacts in the context of the analysis process, we use the

generic term of a data item x. For example, we may refer to a sales forecast value in Use Case

1 as data item xS . Further, we use X to refer to (ordered) sets of data items {x1, ..., xn} and

use x[i] to refer to the ith item of X . For example, XS[1] would be used to refer to sales the

forecast value of the first month.

Since the focus within this thesis is on analysis operations over (numeric) attribute data, x
is used to directly refer directly to the value of a (mostly numeric) attribute of an implicitly

associated tuple ti in the database, i.e., x = ti.x. Tuple ti may naturally have additional values

for both measure and dimensional attributes A = {a0, ..., an}, e.g., storing foreign key values

identifying the location or time associated with a forecast. Those attributes can be used for

selection, grouping, or joining within the analysis process. It will be implicitly assumed that

the association between the data item x and the attribute values of attributes aj of a tuple ti
are accessible in the given context.

Operators An operator o is applied to (one or multiple) input data sets or items (i.e., sets

containing one data item), o.in = {X1, ..., Xk} and produces an output data set or item. For

operators o that expect an atomic input item but are applied to an input dataset X , an iterator

model similar to [MPB10] is implicitly applied. That is, o is iteratively applied to each item

xi ∈ X and produces a result item yi of an output data set o.out = Y in turn. Similar to

[ISW10], operators can be composed such that for a composition o1 ◦o2, the result of operator

40



3.2 Distribution Representation

o1 serves as input to o2, i.e., Y2 = o2(X2), where X2 = Y1 = o1(o1.in), and similarly for

operators that take several inputs.

3.2 Distribution Representation

To appropriately represent uncertainty in decision support systems, one needs to observe the

specific characteristics of the data and tasks involved. As this work is situated in the context

of scenario analysis processes, both the data representation and processing functionalities are

designed support statistical analysis over business data and forecasts. This requires that we

handle uncertainty on the level of numeric attribute values rather than, for example, evaluating

discrete probabilities associated with a fact in the database. Therefore, the focus is on handling

continuously distributed data on attribute-level, rather than discrete alternatives on the level of

attribute values or tuples.

Our data representation addresses the following aspects:

• Considering the representation of uncertainty on attribute-level, the domain of a distri-

bution can be either continuous or discrete, and it may be represented through a known

distribution family or follow an arbitrary distribution.

• Real-world data are often dependent (correlated), with dependency (correlation) struc-

tures that may be of arbitrary form.

• Uncertainty can occur both in measure attributes, i.e., the values that are ’measured’ and

analyzed, and in dimension attributes, i.e., the values that characterize the context of a

measure value, such as its time of occurrence.

3.2.1 Representation Forms

A data item can refer either to an uncertain attribute value or a deterministic value. The case

of deterministic values—which may be either fact data in a database table or result values

computed throughout the analysis process— will be distinguished through the notation ẋ and

Ẋ , where it serves clarity.

An uncertain attribute value is represented through a continuous random variable x. The

variable x is associated with a distribution of possible values within a support interval [x, x],
where x and x mark the lower and upper bounds of x, respectively. To enable a broad class

of represented distribution forms, both a symbolic and an approximate representation of dis-

tributions through histograms are supported.

Symbolic Representation

The first representation form applied is a symbolical representation, which is captured by

means of an instance of a distribution family and distribution-specific parameter values for

the given distribution. The system presented in this work supports the basic classes of Gaus-

sian (normal), Gamma and Uniform distributions. Users can represent a specific distribution

instance for a variable x by specifying its distribution family and parameter values, such as

41



3 Data Representation and Analysis

x = Gaussian(µ : 100, σ : 30) for a variable x that is normally distributed with a mean

of 100 and a standard deviation of 30. The use of symbolic representations is beneficial due

to their compact representation; however, not every real-world data can be closely fit using

a known distribution family. Moreover, only a small number of distribution functions can be

evaluated analytically in an efficient manner, or there is a high induced computational effort

to do so.

Histogram Representation

To provide a generic representation of distributions, the use of histograms is supported. By

using histograms, one can circumvent potential restrictions connected with the symbolic dis-

tribution representation regarding (i) their (potentially low) fit to actual data and (ii) to provide

an approximate numeric representation of symbolic representations in the course of query

processing. When discussing the processing of distribution values in the further course of this

chapter, the approximate histogram-based representation form is implicitly assumed. That is,

when handling symbolic distributions, the working assumption is that they are either evalu-

ated analytically based on their known distribution function, or their discrete approximation is

processed using numeric algorithms.

Histograms may be built both as a frequency distribution (empirical distribution) over sam-

ple data, and as an approximation to discrete or continuous distribution functions.

For the first case, for the distribution of x within a support interval Ix = [x, x] consider a

set of pairs (vj , fj) where vj are the discrete sample values from Ix and fj are the respective

frequencies of those values in the underlying data. A histogram x(β) is built as an empirical

distribution of the underlying data by partitioning the concrete values for x into β mutually

disjoint subsets (bins) B = {b1, ..., bβ}. Each bin bk represents a sub-interval [lk, hk] of Ix
and is associated with the frequency fk computed by aggregating frequencies fj of all values

in [lk, hk].
1

The second way to build a histogram-based representation is by approximating a symboli-

cally represented distribution function of a variable x through a histogram. This functionality

may be used explicitly by a user, or can be applied implicitly during the processing of an op-

erator which internally requires a histogram-based representation. Given a variable x with a

symbolic distribution function, a corresponding histogram is built by associating each of the

β bins bk, 1 < k < β with the density fk computed as the integral fk =
∫ hk

lk
P (x)dx over the

density function of x.

This work uses equi-width histograms. As stated before, one reason for this choice is their

construction and update efficiency. Alternative partitioning schemes such as equi-depth and

V-Optimal (see, e.g., the classification in [PHIS96]) on average produce more exact approxi-

mations, and could be integrated with most of the approaches presented in this work. However,

the construction and updating of the resulting histograms induces larger costs than the use of

equi-width histograms. The handling of the arbitrary partition boundaries of, e.g., equi-depth

or V-optimal histograms, requires adaptations of the histogram processing routines, which in

1Where the concrete nature of the underlying histogram is not relevant or clear from the context, the specification

of β will be omitted from the notation and we will simply refer to the variable x.

42



3.2 Distribution Representation

some cases would further lead to a decreased processing efficiency. Further, the arbitrary par-

tition boundaries prevent some of the optimization techniques proposed in Chapters 4 and 5.

An in-depth evaluation of the use of the various histogram classes is out of scope for this work.

Density and (Inverse) Cumulative Distribution functions

The basic functions pdfx, cdfx and invx are provided to represent random variables x through

their PDF, CDF, and ICDF values, respectively. Those basic functions can be accessed explic-

itly in queries, or used implicitly during the computation of other (more complex) operators.

The computation of pdfx, cdfx and invx occurs transparently over symbolic and histogram-

based representations, since we process the former based on their discrete approximation.

Representing Differences (Deltas) between Distributions

For some operations, we want to represent the difference between two distributions (in terms

of their distribution), rather than their absolute values. Storing the difference, or delta, between

two distributions is addressed through a dedicated delta representation ∆. In particular, the

delta between two data x and x′ is denoted as ∆x, where ∆x(υ) is the difference of the

cumulative distribution functions cdfx and cdfx′ at value υ. For simplicity, we will write ∆x

for ∆x,x′ between an original item x and a new version of the same item, x′, in case the

context is clear.

Note that for any two variables x, x′ the value of ∆x(υ) is always in [−1, 1] for any value of

υ.

Delta Histograms As a particular representation of ∆, we use so-called delta histograms

∆H . Given x and x′, their delta information ∆H
x is computed as a histogram that comprises,

for each modified bin, the bin-wise differences of x(β) and x′(β), i.e., f∆x,j = fx′,j − fx,j .

Conceptually, the resulting representation ∆H
x reflects a stepwise function that represents the

difference between the cumulative distribution functions of x and x′ in the modified interval.

Therefore, strictly speaking ∆H
x is neither a histogram, nor a distribution, since its value is

negative where cdfx′(υ) < cdfx′(υ). Still, we refer to ∆H
x as a histogram in the context of

this thesis. Indeed, we can process the delta representations in a way that incorporates their

integration with analysis results computed over standard histogram representations. In par-

ticular, we will exploit delta representations for an efficient recomputation of analysis results

under changes in input data, as discussed in Chapter 5.

3.2.2 Multivariate Distributions

In addition to uncertainty associated with individual attributes, real-world data is often subject

to correlation in data. This means that values can not be handled as independent from each

other as they covary and therefore exhibit a dependent behavior which must be considered

in computations. Examples of analysis functions over multidimensional distributions are the

computation of joint tail probabilities and marginal distributions, which are highly important

43



3 Data Representation and Analysis

in our context due to the need to analyze potential positive and negative effects between dif-

ferent key figures.

Here, we first consider the general representation of multidimensional data, while specific

approaches to handling the underlying correlation will be discussed at a later point.

Let a multidimensional distribution over m random variables be characterized through

(a) its m marginal distributions, which we will denote as x.dimj and

(b) the correlation structure that defines the dependencies between the marginal distributions,

referred to as x.cor.

Empirical Multivariate Distributions Similar to the univariate case, multivariate distri-

bution can be derived from values of m (possibly correlated) attributes in a database. The

result is an m-dimensional histogram, which again serves as a generic representation of arbi-

trary distribution forms, analogously to the one-dimensional case.

Symbolic specification of multivariate distributions In cases where a user wants

to freely define a joint distribution, or the amount of data required to derive an empirical

distribution is not available (or no correlated data at all is available), we allow the user to

provide a specification of both x.dimj and x.cor. That is, the correlation component can be

defined depending on a desired correlation. For example, the user could specify that a revenue

value xr and a marketing value xm both follow normal distributions with means µr, µm and

that their correlation is defined by a covariance matrix Σ. Then, the resulting joint distribution

can be represented symbolically as xr,m = Gaussian(µ : [µr, µm],Σ), where xr,m.dim1 =
Gaussian(µr,Σ(1, 1)),xr,m.dim2 = Gaussian(µm,Σ(2, 2)), and xr,m.cor = Σ.

Handling generic correlation structures The basic way to specify the correlation in-

formation x.cor is to use a covariance matrix. This approach, however, requires that (a) the

correlated values are normally distributed, and (b) the correlation between the marginals is

linear. Those are restrictions that do not apply for many real-world data. We therefore con-

sider the topic of multivariate distributions in a more generic manner in Chapter 4, where we

address the representation, construction, and processing of joint distributions by means of a

self-contained representation of their underlying correlation structures.

3.2.3 Indeterminate Dimension Data

Besides uncertainty in the data which is typically the primary target of analysis (i.e., the at-

tributes commonly addressed by the term key figures in the OLAP context) there may also exist

uncertainty in the dimensional attributes of the data under analysis. In the context of forecast-

ing and planning, the temporal dimension naturally is highly relevant: Users may neither know

the exact start time nor the duration of considered events (product launches, deliveries, etc).

Still, we want to enable users to analyze data (such as the costs of deliveries) associated with

such events along time.

44



3.3 Operations

Temporally Indeterminate Events By the term of a temporally indeterminate event e =
(t, d, x) we refer to a fact in the database which represents some event in the real world,

and whose start time t and duration d can not be determined with certainty, and thus are

indeterminate. Further, an event is associated with a key figure x, which reflects a quantity of

interest associated with e, e.g., a cost induced by a service event or revenue generated through

a sales event.

Analogous to the representation of random variables that describe measure values, we rep-

resent indeterminacy by means of indeterminate instants t and durations d, similar to [DS98].

Both are defined over the domain of time; the smallest time unit representable (in a specific

application context) is called a chronon. For a random start time variable tstart, we specify

its support interval Itstart of possible chronon values and a corresponding distribution over

Itstart (again, in symbolic or histogram-based form). Accordingly, an indeterminate duration

d is associated with a support interval Id and a corresponding distribution over a possible

duration.

Each possible allocation of an event e to a specific start tstartp = vp, vp ∈ It and duration

dq = vq, vq ∈ Id then yields a possible occurrence interval Ipq = [vp, vp + vq]. Since t and d
are assumed to be independent, the probability of ei occurring exactly during the interval Ipq
computes as p(tp, dq) = p(tp) · p(dq). The complete distribution of tend then results as the

convolution (see Section 2.4.1) of tstart and d.

EXAMPLE: Figure 3.2 depicts histograms for an uncertain start time (date) tstart, duration

d, and the resulting end time distribution tend of a single event e. The event has start times

distributed between 10 and 13 and a duration between 2 and 4 days. Given the distributions,

the probability for e occurring exactly in I2,2 = [12, 12 + 4] is, for example, p(t2, d2) =
p(t2) · p(d2) = 0.5 · 0.5 = 0.25.

Figure 3.2: Indeterminate start, duration, and end time of e

The representation of uncertain data has now been discussed in its different aspects. The

next Section addresses functionality for the analysis of such data by means of different op-

erators. There, we will also consider analytic functionality that takes into consideration the

indeterminate temporal association of events.

3.3 Operations

In this section, the provided functionality for the creation, analysis, and modification of un-

certain data is discussed. This includes basic operators for

• computing statistical measures of distributions underlying random variables

45



3 Data Representation and Analysis

• deriving, converting, and modifying distributions

• approximate aggregation, and

• the analysis of multivariate distributions.

3.3.1 Statistical Measures

In the following, we consider the set of operations for analysis, introduction, and modification

of uncertain values represented through random variables x. As stated before, the operators

process histogram-based representations x(β) or discrete approximations of symbolically rep-

resented distributions, respectively.

Moments

The basic operators E(x) and Var(x) serve to compute the first two moments, i.e., the mean

and variance, of the distribution of x based on its PDF and CDF. We compute the mean

(expected value)

µ = E(x) =

∫ ∞

−∞

x · p(x) dx

numerically over a histogram representation (assuming uniform spread in each bin) as

E(x) =
∑

k=1,...,β

mk · pk, withmk = (lk + hk)/2

Likewise, we compute the variance

σ2 = E[(x− µ)2] =

∫ ∞

−∞

(x− µ)2 · p(x) dx

numerically as

Var(x) =
∑

k=1,...,β

(mk − µ)2 · pk, withmk = (lk + hk)/2 .

Complexity: The computation of both E and Var is done in one pass over all β bins of x(β),

thus implying costs linear in the granularity of the histogram representation, i.e.,

E(x(β)) ∈ O(β)

Var(x(β)) ∈ O(β)

46



3.3 Operations

Range and Tail Probability

The operator T computes the probability of a variable x satisfying predicate ω(υ1, υ2), which

is defined as x > υ1 ∧ x < υ2, i.e., evaluates to true if x is within the range [υ1, υ2] of

its domain. T (x, ω) is computed as the integral
∫ υ2

υ1

p(x)dx, i.e., T (x, ω) = cdfx(υ2) −

cdfx(υ1). For the corresponding histogram representation x(β), we integrate numerically over

the affected region of Ix, i.e., we compute

T (x, ω(υ1, υ2)) =
∑

k=1,...,β

fk · pk, withfk = f∩([lk, hk], [υ1, υ2])

where f∩ defines the fraction of [lk, hk] that lies in [υ1, υ2], i.e., fk = 1 for all bins completely

contained in [υ1, υ2], and 0 for all bins where hk < υ1 ∨ lk > υ2.

If υ1 is set to −∞ or υ2 is set to ∞, we compute the lower or upper tail probability of x (de-

noted as predicates ω<(υ2) and ω>(υ1), respectively). This results in T (x, ω<) = cdfx(υ2)
and T (x, ω>) = 1 − cdfx(υ1), respectively. Evaluating tail probabilities is a central element

of risk analysis, where the tail probability is used to reflect the likelihood that an extreme event

will occur.

Complexity: The imposed complexity for computing the probability of x satisfying ω is

determined by a maximum of 2 calculations of cdfx (for the lower bound υ1 and upper bound

υ2). This results in complexity

T (x(β), ω) ∈ O(log2 β)

3.3.2 Derivation and Conversion

Rather than analyzing existing uncertain information, users may also introduce uncertainty

based on underlying deterministic fact data. The operator D(F, tgt) serves the derivation of a

distribution over (historic) values of fact data, which then can either be investigated visually or

serve as input for further analyses. The assumption is that a distribution derived from historic

facts may constitute a proper reference for the development of another value in some similar

context. For example, in our use case UC 1 (Section 1.2), the analyst wants to utilize knowl-

edge about the past revenue in region Rref as reference for the prospective revenues in a newly

developed region Rnew with no historic data available. To this end, he needs to construct a

distribution from the historic revenues of all stores in Rref as a reference distribution.

The operator D(F, tgt) receives a number of nF = |F | of facts F from a fact table of the

database. The type of target distribution that shall be derived is specified via the tgt parameter,

including the representation type and further parameters. In particular, the representation form

can be either histogram-based or symbolic. In the former case, a user must further provide the

number of bins β and, optionally, the lower and upper support (l, h) of the desired histogram

x(β). In the latter case, he must provide the assumed family of the target distribution. Note

that this requires some insight or expectation about the nature of the underlying fact data.

Derivation of Histogram Representations When deriving a histogram over the fact

values F = {f1, ..., fnF
}, we assume they are provided in a non-sorted order. To construct

47



3 Data Representation and Analysis

an equi-width histogram, bin boundaries are statically computed based on a desired lower and

upper support (l, h) and the number of bins β and assign each of the nF values, resulting in

complexity O(nF ). If l and h are not specified, they must first be retrieved as the minimum

and maximum of all fact values in O(nF ).
2

Complexity: The complexity for deriving an equi-width histogram over nF samples is

D(F, hist(β)) ∈ O(nF )

EXAMPLE: Referring to Use Case 1, the user derives a distribution of the assumed sales

revenue per store in region Rnew from facts of the reference region Rref .

In the general case (i.e., if bin boundaries can not be computed statically), for each of the

nF values underlying the histogram to-be derived, we apply a bisection algorithm for sorting

it into one of the β bins of the target histogram.

Complexity: Given arbitrary histogram bin boundaries, the complexity for deriving a his-

togram over nF samples is

D(F, hist(β)) ∈ O(nF · log2(β))

Derivation of Symbolic Representations If users know about the nature of fact data,

they may derive a symbolic distribution representation as an instance of a specific distribution

family. Uniform, Gaussian, and Gamma distributions are supported as instances of common

distribution families. Further distribution families may be added if required. Finding the

lower and upper bounds of the support interval of an assumed uniform distribution requires

determining their maximum and minimum in O(nF ). For a normal distribution, we similarly

need to process each of the nF values to incrementally compute the mean and variance. For

a Gamma distribution,we estimate the scale and shape parameters from the sample mean and

standard deviation using the method of moments estimation.

Complexity: For all considered distribution functions, the computation is implemented in

one or multiple runs over the fact data, and thus, implies a complexity of

D(F, symb) ∈ O(nF )

Conversion of Representations As stated above, symbolic representations are con-

verted implicitly to their discrete approximation for further processing in (more complex)

operators. In addition, users may apply an operator DC(x, tgt) to explicitly convert distribu-

tion representations. Another application of DC(x, hist(β)) arises when the user wants to test

a (derived) symbolic distribution representation for goodness of fit with actual data. This is

because such tests (e.g., the χ2-test) mostly rely on binned data, and distributions which shall

be tested must therefore be converted to a suitable histogram representation.

2Alternative to a user-specified parameter, an optimal β can be estimated at the cost of an additional run over facts

F using a basic heuristic aiming at an optimal approximation of the interval with β bins (e.g., Sturges’ rule)

48



3.3 Operations

EXAMPLE: Referring to use case UC 1, a user wants to incorporate information about the

economic forecast for the region Rnew. This forecast is provided by means of an expected

value and an associated confidence interval and is represented in the system as a normal dis-

tribution with appropriate mean and variance. In order to further process this value, it may be

internally converted to a histogram, depending on the operator to which it is provided as input.

Similar to D, users must provide parameters specifying the desired distribution tgt, includ-

ing the type of representation and representation-specific parameters. The three potential cases

of conversion are as follows:

Symbolic Distribution into Histogram To construct a histogram x
(β)
h as

x
(β)
h = DC(x, (hist, β, [l, h])), the user specifies the desired number of bins β and

the lower and upper support (l, h) of the target histogram. If no lower and upper sup-

port are provided, they are retrieved as the value of a low and high quantile value of the

source distribution, that is, they are computed as l = invx(ql) and h = invx(qh). The

values ql and qh for determining the minimum and maximum quantiles can be set para-

metrically; by default, they are set to ql = 0.001 and qh = 0.999, i.e., the distributions

are cut off at their 0.001 and 0.999 quantiles. The very extreme tails are in this case not

reflected in the resulting histograms. Based on l, h, and β, the bin boundaries lk and hk

are then computed and the source distribution is integrated within the lower and upper

bin boundary for each of the β target bins bk to yield the mass lying within bk, i.e.,

pk =

∫ hk

lk

pdfxdx

Complexity: The complexity of converting a distribution to a histogram is

DC(x, hist(β)) ∈ O(β)

where the integration costs may vary with the type of the converted distribution function.

Histogram into Symbolic Distribution When converting a histogram to a uniform dis-

tribution, the support interval of the Uniform is determined simply from the lower and

upper bounds of the histogram, inducing constant access costs in O(1). To convert the

histogram to a suitably parameterized normal distribution or Gamma distribution, we

need to access boundary and frequency values for all bins bk to compute the required

parameters (mean and variance for a normal distribution or scale and shape for a Gamma

distribution, respectively).

Complexity: The conversion to a symbolic representation induces a complexity of

DC(x(β), symb) ∈ O(β)

Histogram into Histogram As a third alternative, one can change the granularity of dis-

crete approximations, computing x
(β2)
2 = DC(x

(β1)
1 , hist(β2)). This conversion serves,

49



3 Data Representation and Analysis

e.g., to provide users with a changed granularity of information or is internally applied

to convert histograms to the same bin resolution for further processing, such as testing

the fit of two distributions to each other. The conversion proceeds by finding the bin

boundaries of the β1 bins of x
(β1)
1 and computing the area covered by the β2 bins in

x
(β2)
2 within the boundaries of each bin of x

(β1)
1 .

Complexity: The imposed complexity of the computation is determined by the source

and target resolution, thus

DC(x(β1), hist(β2)) ∈ O(β1 + β2)

3.3.3 Aggregation

The operators ASUM and AMIN/MAX serve the computation of SUM, MIN, and MAX ag-

gregates over a dataset X . All three aggregations are computed in an approximate fashion. In

the case of SUM, we use a general approach also taken, e.g., in [KK10, KLD11], and add up

the expected values of each xi ∈ X . That is, we compute a deterministic expected aggregate

value ẋSUM as

ẋSUM = ASUM (X) =
∑

(E(xi)) xi ∈ X

Complexity: Summing the expected values of all xi ∈ X results in a complexity of

ASUM (X = {x
(β)
i }) ∈ O(|X| · β)

Alternatively, computing exact sums over all distributions xi ∈ X by applying fast discrete

convolution algorithms (e.g., using Fast Fourier Transform, see Section 2.4.1) results in costs

of ASUM (X = {x
(β)
i }) ∈ O(|X| · β log β).

The operators AMIN and AMAX similarly to ASUM use an approximate approach, yield-

ing a deterministic output value as minimum or maximum of a set X , respectively. The results

of AMIN and AMAX are computed based on low and high quantile values invxi
(ql) and

invxi
(qh) of the distributions associated with each xi ∈ X . Again, the values of ql and qh

can be provided by the user; by default, they are set to ql = 0.01 and qh = 0.99. Those values

are based on the reasoning that extreme outliers shall not be considered in the computation

of the maxima. In cases where this reasoning is not suitable, the parameters can be adjusted

accordingly.

Then, we compute the minimum and maximum of all values xi ∈ X as

ẋMIN = AMIN (X) = min({inv(0.01, xi)|xi ∈ X})

and

ẋMAX = AMAX(X) = max({inv(0.99, xi)|xi ∈ X}) ,

respectively.

50



3.3 Operations

Complexity: The imposed complexity of the computation depends on the costs of invxi
for

each xi, thus resulting in a complexity of

AMIN/MAX(X = {x
(β)
i }) ∈ O(|X| · log2 β)

3.3.4 Indeterminate Temporal Aggregation

In order to enable the handling of temporal indeterminacy of plans, we consider indeterminate

events as described in Section 3.2.3. We use the operator AT (E, T ) to compute the aggre-

gate (sum, minimum, or maximum) of a considered key figure associated with temporally

indeterminate events within a time interval T =
[

lT , hT

]

. The set E = {ei} contains in-

determinate events ei = (xkf,i, ti, di), each defined through an associated key figure xkf,i,

and variables ti, di which represent uncertain start and duration times of ei, respectively. To

compute an aggregate, we must consider all events that have a potential overlap with T (i.e.,

lti < hT ∧ hti + hdi
> lT ). In the following, we consider the aggregation step for a single

event e ∈ E (omitting the subscript for reasons of readability).

Summation A
T

SUM
: We first focus on the computation of A

T
SUM . We address only the

case where xkf has so-called interval-aggregate semantics (which is called a "malleable" at-

tribute in [BGJ06]). This means, the value of xkf is considered as a sum over the complete

duration d of the associated event e. Therefore, if only a fraction of the event duration lies

within T , the same fraction of xkf is considered as contribution in the summation procedure

of A
T
SUM .

Following this reasoning, we need to compute the overlap fraction f∩ as the relative part of

potential occurrence intervals of e that overlap T . Then, the contribution of e to the aggregate

result amounts to f∩ ·x. The fraction f∩ depends both on the position of T and on the set of all

possible intervals Ipq ∈ I =
{[

tstartpq = vp, t
end
pq = vp + vq

]}

,

vp ∈ It, vq ∈ Id in which e can occur. We compute all possible occurrence interval over-

laps with T for event e ∈ E as follows:

overlappq =































(h− l)/dq if tsp ≤ l ∧ tepq ≥ h

(tepq − l)/dq if tsp ≤ l ∧ tepq > l

1 if tsp > l ∧ tepq < h

(h− tsp)/dq if tsp < h ∧ tepq > h

0 else

To compute f∩, we also require the occurrence probabilities of all possible occurrence inter-

vals. Since we consider t and d independent, the occurrence probability P (t = vp, d = vq) is

given by the product P (t = vp) · P (d = vq).

In the aggregation procedure, we apply this computation for a relevant set of events ei ∈ E
and then compute contributions f∩i of ei as

f∩i =
∑

p,q

overlapipq · P (ti = vp, di = vq)

51



3 Data Representation and Analysis

and yield the final result as A
T
SUM (E, T ) =

∑

i E(xkf i) · f
∩
i .

EXAMPLE: Figure 3.3(a) depicts, for the single event e, the start time t, βt = 3 and

duration d, βd = 2 of e while Figure 3.3(b) shows how aggregation works over this single

event. For event e, f∩ results from six possible occurrence intervals I = {I11, I12, . . . , I32}.

For each possible interval, we need to compute joint probabilities P (t = vp) · P (d = vq)
(assuming independence between t and d) and the fractions of overlaps, i.e., the part of each

Ipq that lies within T = [1, 5].

(a) Indeterminate start

and duration

(b) Aggregation over indeterminate events for event e

Figure 3.3: Representation and processing of temporal indeterminacy associated with indeter-

minate events

We denote the average number of potential occurrence intervals of all considered events

ei ∈ E as nI = (
∑

i=0...N βti · βdi
)/|E| and the fraction of those intervals that overlap T

(and therefore contribute to the aggregate result) as fφ.

Complexity: Computing the sum over indeterminate events E, with an average number of

potential occurrence intervals nI and an average aggregation interval overlap of fφ, implies

costs for computations of overlaps and joint probabilities in the complexity

A
T
SUM (E, T ) ∈ O(|E| · nI · f

φ)

Extrema A
T

MIN/MAX
: For computing A

T
MIN and A

T
MAX , we consider the set of con-

tributing events E∩ ∈ E to be exactly those events ei ∈ E that have any potential occurrence

interval Iipq that overlaps T . This is true for all ei where lti < hT ∧ hti + hdi
> lT . Now,

we use f∩ to refer to the fraction f∩ = |E∩|/|E|. We then compute the resulting aggregate

over all ei ∈ E∩ similar to the standard minimum or maximum computation discussed in

Section 3.3.3 over the associated values xkf i. That is, for the set X∩kf = {xkf i|ei ∈ E∩} we

compute the minimum as

A
T
MIN (Xkf , T ) = AMIN (X∩kf )

and the maximum as

52



3.3 Operations

A
T
MAX(Xkf , T ) = AMAX(X∩kf )

Complexity: Computing the minimum and maximum of measure values x
(β)
kfi

associated

with events ei ∈ E within a time interval T incurs constant costs of O(1) for determining

whether an event belongs to E∩, followed by the computation of AMIN/MAX over all those

ei ∈ E∩:

A
T
MIN/MAX(E, T ) ∈ O(|E| · f∩logβ)

3.3.5 Modification of Distributions

Modifying distributions is necessary to introduce new assumptions about the concrete distri-

bution of a random variable in a scenario or adapt its distribution if the old distribution deviates

from actual evidence.

For example, if the user assumes the tails of a distribution irrelevant for his current analysis

(or does not want to consider this part of the distribution in his scenario), he can update the

value by modifying (parts of) the distribution. In this case, the modification can be repre-

sented symbolically, i.e., by flooring [SMS+08] the distribution in its tail. Here, we focus on

the modification of histogram-based representations of distributions. That is, we change the

densities associated with relevant bins of the histogram associated with a variable x. In the

case of flooring, the densities of the bins corresponding to the tail region of x are conceptually

set to 0. Likewise, we allow to change individual parts of a distribution to reflect lower or

higher densities in the corresponding part of Ix.

We provide an operator U(x, x′, ω) to update a distribution x into a modified distribution x′

within an interval determined by the predicate ω. An application of U causes the frequencies

associated with affected sub-intervals of Ix to be changed to the corresponding density in x′,
optionally restricted to the interval specified by ω. This way, a user can explicitly specify both

the affected bins and their target density through x′. If no information is given for x′, the

predicate ω specifies the distribution part to be "floored". If no information is given for ω, the

complete support interval of x will be affected by the modification.

To ensure that modified values can be traced back to the original value, we must not replace

x by x′. Rather, we keep the original value together with a reference to the delta information

∆x represented by means of a delta histogram ∆H
x , as introduced in Section 3.2.1. In the

worst case, i.e., when the modification affects the complete interval of x, we need to compute

and store β bin density values for ∆H
x .

Complexity: The costs for computing and storing modifications depend on the resulting

degree of modification (fm), i.e., the fraction to which a distribution, represented by x(β), is

actually affected by the condition ω.

U(x(β), fm) ∈ O(fm · β)

The topic of modifications in input data is a central issue in the context of provenance

handling and recomputation of scenarios over changed input data. In this context, the repre-

53



3 Data Representation and Analysis

sentation of modifications by means of deltas can be exploited for an efficient change impact

analysis over modified input data. In particular, using ∆H
x , we can compute the deviation be-

tween original and the modified data, x and x′, at any position v, as ∆H
x (v) in constant time,

similar to the computation of cdfx. In Section 5, we will come back to this topic and address

the question how modifications can be efficiently incorporated in the recomputation of queries

over modified data or under assumed deviations to assumptions.

3.3.6 Multivariate Analysis

In this section, we briefly discuss the application of operators over multidimensional distri-

butions, which serve to derive relevant statistic measures over jointly distributed variables.

Such analyses are particularly relevant in risk analysis, where users want to consider risks

and chances associated with joint developments of portfolio assets, product sales, etc. The

handling of correlation information will be addressed in depth in Chapter 4, where we also

discuss possibilities for an efficient processing of the subsequent operations under arbitrary

correlation structures.

At this point, recall from Section 3.2.2 that we consider a joint distribution xjnt to be

specified through its m marginal distributions xjnt.dimj , j = 1, ...,m and an m-dimensional

correlation structure xjnt.cor. For now, we assume pdfxjnt
, cdfxjnt

are implemented based

on a corresponding multidimensional histogram x
(β)
jnt, where each dimension of x

(β)
jnt reflects

the domain of the marginal distribution corresponding to that dimension.

Joint Tail Probabilities

We use the operator T m(xjnt,Ω) to compute the probability of jointly occurring events, such

that each ωj ∈ Ω is satisfied. Each ωj(υj,1, υj,2) ∈ Ω is a predicate on dimension xjnt.dimj ,

as described for the univariate case in Section 3.3.1. Specifically, we compute the upper joint

tail probability of xjnt when using predicates ωj>(υj,1) and setting all υj,2 to ∞, and the

lower joint tail probability when using predicates ωj<(υj,2) and setting all υj,1 to −∞. The

results of T m are then the joint probability values

p>υj
= T m(xjnt,Ω = {ω>(υj)}) =

∫ ∞

υ1

. . .

∫ ∞

υm

pdfxjnt
(x1, . . . xm) dx1 . . . dxm and

p<υj
= T m(xjnt,Ω = {ω<(υj)}) =

∫ υ1

−∞

. . .

∫ υm

−∞

pdfxjnt
(x1, x2) dx1 . . . dxm

for the upper and lower joint tail probability, respectively.

EXAMPLE: In the risk analysis context, considering the joint probability of events is a

crucial functionality. Jointly occurring high losses can pose an existential risk, e.g., to an

insurer or in stock trading, and must be considered appropriately. In use case Use Case 2, the

analyst wishes to compute the risk that two claim categories, flood claims xf and hurricane

claims xh, jointly exceed a claim amount of υf = $15bn and υh = $15bn, respectively. Given

54



3.4 Summary

their joint distribution is represented through xf,h, we compute puυf ,υh
= T m(xf,h, (ωf , ωh))

using ωf>(υf ), ωh>(υh).

Complexity: The imposed complexity of joint probability computations, assuming xjnt is

accessed through a multidimensional histogram x
(β)
jnt, where each of the m dimension being

represented through β bins, is exponential in m:

T m(x
(β)
jnt,Ω) ∈ O(βm)

Marginal Distributions

The operator M(xjnt,Ω) serves to compute a marginal distribution xjnt from a joint distribu-

tion xjnt given predicates ωj(υj,1, υj,2) ∈ Ω, 1 ≤ j < m on j dimensions xjnt.dimj of xjnt.

The result is an (m− j)-dimensional distribution with all dimensions dimj marginalized (or:

projected) out.

In the scenario and risk analysis context, the user can apply M to compute the conditional

marginal distributions for variables of interest under different assumptions about the correlated

variables.

EXAMPLE: For example, for analyzing the joint distribution xf,h of potential insurance

claims from Use Case 2, the user can compute xf ′ = x(f |h>$7 bn) as the marginal distribution

of xf under the condition that xh will take on a very high value, e.g., exceed $7 bn. The

result is a one-dimensional (conditional) distribution xf ′ . Another example is the computa-

tion of conditional distribution of sales revenues by applying different assumptions regarding

economic growth or marketing expenditures, as addressed in Use Case 1.

Complexity: The imposed complexity of computing marginal distributions, assuming xjnt

is accessed through an m-dimensional histogram x
(β)
jnt, each of the m dimension being repre-

sented through β bins, is

M(x
(β)
jnt,Ω) ∈ O(βm)

3.4 Summary

This chapter first discussed the nature of the scenario analysis process and the requirements

for data representation and processing therein. For a representation of distributions associated

with random variables in an analysis, we allow both for a symbolic and a histogram-based

representation. For its generic nature, the histogram-based form can be used to model (ap-

proximate) arbitrary distributions, including the approximation of symbolically represented

distributions. A set of relevant basic operations for computations over uni- and multivariate

distributions was then discussed in the context of the scenario analysis process. Those include

the derivation and conversion of distributions from source fact data, ”standard“ aggregation as

well as the temporal aggregation of values associated with temporally indeterminate events,

and the computation of statistical measures such as expected values, quantiles, and tail proba-

bilities. Finally, we turned to the analysis of multivariate distributions, for which operators for

computing joint tail probabilities and conditional marginal distributions were discussed.

55



3 Data Representation and Analysis

Analyzing joint distributions, such as between the sales revenues or stock prices of different

assets in a portfolio, is highly relevant for risk analysis purposes as part of the scenario analy-

sis. Therefore, the issue of modeling and processing the correlation structures underlying data

is addressed in more depth in the following chapter.

56



4 Correlation Handling

An important point in the process of analyzing risks and opportunities in a business is the cor-

relation underlying many real-world aspects. Investigating the effect of correlation on business

developments is an important means to help experts to prevent misestimations of risks and op-

portunities.

Section 3.3.6 already discussed the computation of joint probabilities and marginal distri-

butions over multidimensional distributions, under the assumption that those distributions are

readily available. However, correlation information is not always present in the data a user

wants to analyze. At times, only independently represented distributions are available, e.g., in

the case of forecasts that have been produced separately for two measure values. The user still

may want to analyze such data under the assumption of a correlation structure that is present in

historic data. In this case, one must allow him to first extract the correlation structure (which

may be of arbitrary form) in order to subsequently introduce it to the data of interest. In other

cases, it is not possible to compute any correlation structure since there is no historic data, or

the given data is too sparse (e.g., data about the occurrence of extreme catastrophe damages

as indicated in Use Case 2 in Section 1.2). In this case we want to support the introduction

and querying of assumed correlation structures in order to enable the user to investigate their

potential effects over the correlated data.

This chapter focuses on a number of specific requirements for correlation handling in the

risk analysis context, and introduces a generic approach to representing and processing corre-

lation.

4.1 Requirements for Correlation Processing

Recall from Section 3.3.6 that representing correlation in data through the covariance infor-

mation (i.e., the covariance matrix one can compute based on available correlated samples)

between the variables relies on a number of assumptions. First, for the results to be valid,

the correlated variables must be (nearly) normally distributed, i.e., one cannot represent joint

distributions between arbitrary distributions. Second, the dependency between the marginal

distributions is assumed to be linear. This means that one cannot analyze correlations that

are non-linear, which often occur in real-world data. Both assumptions imply that the basic

covariance-based approach has a very restricted applicability for representing correlations. In

the same way, one cannot apply this approach to introduce correlation information of arbi-

trary form between arbitrary correlations. Therefore, a more generic approach to correlation

handling is required.

To clarify specific requirements for handling correlation and to illustrate the techniques

presented in this chapter, let us first focus in more detail on different aspects of Task B of

57



4 Correlation Handling

Use Case 2, first presented in Section 1.2. The general topic of this task is the analysis of

data reflecting claims for different kinds of insurance damages. The goal is to evaluate the

claim data in a way that takes information about correlation between them into consideration.

That is, the joint occurrence of claims from different claim classes is considered. We now

consider two alternative cases for Task B. In the first case, if no historic reference information

is available, but the user still wants to introduce correlation information as an assumption in

his analysis. In the second case, sufficient historic claim data is available, and the user can

extract information about their correlation from the data. Subsequently, he wants to apply this

correlation to hitherto uncorrelated data (such as forecasts).

Task B.1 The first case concerns damages caused by large disaster events, namely, hurri-

canes and floods. For such events, the available data is usually sparse due to the low case

numbers. Figure 4.1 shows losses associated with flood events (f ) and hurricane events (h) in

the US, recorded for a period of twenty years1. For lack of detailed data, a constant loss of

$1 bn is being associated with each hurricane event. It is further assumed that the distributions

of flood and hurricane damages, xf and xh, are Gamma distributed and their parameters are

fit according to the available data.

Figure 4.1: Disaster-related claims

From Figure 4.1, an analyst can see that the data correlate (as one may expect from the

natural characteristics of such catastrophe events) and, using the available data points, he can

compute a linear correlation coefficient of 0.76. However, due to the sparsity of the underlying

data he cannot determine the actual correlation structure nor use such information for analyses

such as the computation of marginals or joint probabilities.

For example, the user may wish to compute the expected value of xf under the assumption

that xh will take a high value (e.g., xh > $7 bn), or the risk that both flood and hurricane

events cause damages above a certain threshold. Since no correlation structure can be faith-

fully extracted from the data, the user should be able to consider alternative settings, using

different potential correlation structures as assumptions. Then, he could investigate the re-

1http://www.fema.gov/business/nfip/statistics/pcstat.shtm

58



4.1 Requirements for Correlation Processing

sulting joint distributions either visually or through further analysis, e.g., by calculating the

probability (risk) that xf > $15 bn ∧ xh > $15 bn.

Task B.2 Now, we consider a class of insurance for which much higher case numbers are

usually reported. Particularly, assume the user evaluates insurance losses caused by burglary

and vehicle theft (whose distributions are denoted as xb and xv). He wants to learn about the

correlation structure of the historic insurance data in order to then incorporate this historic

correlation in the analysis of forecast values, represented by distributions xbf and xvf . As

example data, we consider yearly crime numbers in the USA2 over a period of 20 years

(1990-2009) as indicators for the number of claims put forward to an insurance. For lack of

fine-grained data3 the distribution of claims throughout the year is assumed to be uniform, and

weekly claim numbers are simulated accordingly. Figure 4.2 displays their joint distribution

xb,v , which clearly indicates some correlation pattern in the data. Now, for a joint analysis of

xbf and xvf , the user wants to take the historic correlation pattern into account. To this end,

he needs to be enabled to extract the correlation information. Further, the user might want to

investigate different correlation structures, such as to learn about changing correlation patterns

throughout time, or in different regions or customer groups of interest.

Figure 4.2: Crime-related claims

Both analysis tasks necessitate the flexible introduction and analysis of correlation infor-

mation between arbitrary distributions—each of xf , xh, xb, xv , xfh and xbv could follow any

distribution—and its representation in a form that can be processed efficiently. The first task

specifically requires means to extract correlation patterns from historic data, and to make them

available for further processing, while the second task focuses on the handling of precomputed

2http://www2.fbi.gov/ucr/cius2009/data/table_01.html
3Note that analyses often involve much more fine-grained data, e.g., on a per-client basis, thus processing potentially

large volumes of historic data. This aspect will be addressed in the evaluation.

59



4 Correlation Handling

structures stored in the database. To serve those requirements, the remainder of this chapter

presents approaches for a user to

• Represent arbitrary correlation structures over arbitrarily distributed data,

• Extract information about arbitrary correlation structures flexibly from historic data,

enable their storage and reuse,

• Apply an arbitrary correlation structure to arbitrary continuous distributions to yield a

joint distribution that exhibits the introduced correlation structure, and

• Query the produced joint distributions efficiently.

Most previous work on correlation handling in databases addresses basic forms of tuple

dependency or dependencies between discrete attribute value alternatives. Examples for such

correlations are implication (i.e., perfectly positive correlation), linear correlation, or mutual

exclusion between discrete values. Handling (producing and analyzing) joint distributions

with arbitrary (particularly, non-linear) correlation structures over arbitrary (particularly, non-

normally) distributed continuous variables has not been treated in depth in the database domain

so far.

We borrow the approach of using so-called copulas, which is a well-established statistical

technique applied, e.g., in the field of finance and insurance. The use of copulas is supported

partially by tools for statistical analysis, such as MatLab, Mathematica and R (see, e.g., [Li06,

KY10]) or can be implemented using statistical functions. In the next sections, we discuss their

characteristics and, particularly, their merits regarding the previously described requirements

for correlation handling. Section 4.2 gives the theoretic basis of the copula concept. Then, we

will consider the central concepts for representing and processing copula-based correlation

structures at the database level in Sections 4.3 and 4.4.

4.2 Copulas

A copula (Latin for “link”) essentially represents the relation between individual distributions

and their joint distribution (for a detailed introduction, see, e.g., [Nel06]).

4.2.1 Definition and Characteristics

The basic idea of the concept of copula is that a specific m-dimensional joint distribution can

be represented as a joint distribution over the uniform transforms of its m marginal distribu-

tions, i.e., in the interval [0, 1]m. Recall from Section 3.2.2 the definition of a multivariate

distribution x through its dimension components x.dimj and a correlation component, x.cor.

In brief, in the context of this thesis the copula encodes the correlation component x.cor,

while each component x.dimj can be specified to be a distribution of arbitrary form. The

copula is in itself an m-dimensional distribution function C : [0, 1]
m → [0, 1] that represents

an m-dimensional correlation structure on the unit cube [0, 1]
m

, and thus independently from

any specific marginals.

60



4.2 Copulas

In the following, without restriction of generality, copulas are discussed in a bivariate set-

ting, unless stated otherwise. That is, we consider copulas with uniform marginals u and v for

linking m = 2 univariate distributions x1 and x2.

Formally, copulas are founded on Sklar’s theorem [Skl59, MST07], which can be stated as

follows for the bivariate case:

Theorem 1 (Sklar’s theorem) Given H as a bivariate distribution with

F (x) = H(x,∞) and G(y) = H(∞, y) as univariate marginal distributions, there exists

a (copula) function C : [0, 1]
2 → [0, 1] so that H(x, y) = C(F (x), G(y)). That is, there

exists a copula C relating F and G so as to form a joint distribution H with F and G as

marginals.

In brief, the most important benefit of copulas are

• their independence from the specific (marginal) distributions to correlate,

• their ability to model any correlation (both regarding its structure and degree), and

• their invariance to linear transformations.

Using Sklar’s theorem and exploiting the named characteristics, one can build a copula that

represents the dependency of any bivariate distribution, and vice versa, apply this copula to

“couple” any two distributions with the represented correlation. In terms of the definition of a

multivariate distribution representation, this means that we can map the dependency modeled

through C in [0, 1]m to a specific joint distribution xjnt between m marginals through the

functions invj : xC .dimj → xjnt.dimj . Conversely, we can use cdfj to map the distribution

function from xjnt to [0, 1]m through cdfj : xjnt.dimj → xC .dimj . This methodology offers

a flexible means both to represent existing correlation patterns (extracted from historic data)

and to introduce such patterns to uncorrelated data.

Below, the construction of copulas is discussed, before we address their application,i.e., the

introduction of correlation structures between univariate data.

4.2.2 Copula Construction

Copulas can be constructed in two ways depending on the available information. If no historic

data is available, one can generate a copula from a specific copula family. If, however, suffi-

cient amounts of historic data are available, one can empirically estimate a copula that reflects

their correlation. Below, we discuss the copula construction from a known copula type and the

derivation of empirical copulas in more detail. The first approach can serve to apply pure as-

sumptions about a possible correlation to the existing data; the second approach is especially

valuable to extract specific correlation structures from historic data in order to enable their

evaluation in the context of other data. For example, in the first task of the insurance use case,

a user can derive multiple empirical copulas over time windows of the historic claim data in

order to evaluate changes in their dependency structure.

61



4 Correlation Handling

Parametric Construction

By constructing copulas from a standard copula family, one can represent an assumption about

both the structure and strength of a correlation. For example, if the user has no detailed infor-

mation about the correlation between the values of xf and xh, as is the case in Task B.1, it can

be a helpful alternative for him to investigate different assumptions about possible correlations.

In the following discussion, we use copulas from the families of elliptical and Archimedian

copulas. In the case of elliptical copulas, the copula is derived from (samples of) a known

multivariate distribution function (such as a bivariate Gaussian or Student-T-distribution) ex-

ploiting Sklar’s theorem. One yields a bivariate copula C as C(u, v) = H(F−1(u), G−1(v)).
For example, to construct a Gaussian copula, a bivariate distribution H of two standard nor-

mal variates F and G with a desired correlation coefficient can be used. Samples taken of H
are then transformed to [0, 1] through the inverse of the standard normals, i.e., F−1 and G−1.

Alternatively, if the user wants to represent a correlation structure which is especially strong

in the tails of the marginals, he can use a T-copula, constructed from a bivariate T-distribution,

instead. In the case of Archimedian copulas (such as a Clayton copula), one directly applies a

closed-form generator function to build the copula, instead of sampling from a distribution.

In the following, the term CH,d denotes a copula built using a function H with a given

correlation factor d.

EXAMPLE: Figure 4.3(a) shows a Gaussian copula CG,0.8 with a correlation factor of 0.8,

while Figure 4.3(b) shows a copula CT (1),0.8 based on a T-distribution with one degree of free-

dom and the same correlation factor. Note how the structure of correlation differs—CT (1),0.8

shows a higher dependency in the tails of the marginals (i.e., a larger number of samples in the

upper right and lower left corners of CT (1),0.8), despite the same factor of correlation in both

cases.

Deriving Copulas from Fact Data

When sufficient observations are available for related measures, a user can first extract knowl-

edge about their correlation in the form of a copula in order to compare different structures

or transfer this knowledge to other data in a second step. For example, in Task B.2, the

user is given |F | correlated samples for weekly burglary and vehicle theft claims (bi, vi,
i = 0, ..., |F |). Suppose now that the user wants to apply their correlation structure to re-

sults of separate forecasts, say, xbFc and xvFc.

To derive a copula from the historic data, either a (semi-) parametric approach can be ap-

plied to fit a copula of a given type, or an empirical copula can be derived from the fact data.

The primary benefit of empirical copulas is that the functional form of the correlation structure

represented in the result copula is derived directly from the data. Therefore, it is not necessary

for the user to introduce any further assumptions about the shape of the correlation. To build

an empirical copula, one replaces, for each of the |F | m-dimensional samples (here, m = 2),

the coordinate values (here, (bi, vi)) by their ranks divided by |F |; conceptually, this corre-

62



4.2 Copulas

(a) CG,0.8 (b) CT (1),0.8

(c) xf,h using CG,0.8 (d) xf,h using CT (1),0.8

Figure 4.3: Copulas (using 1000 samples) representing different structures of correlation and

corresponding correlation results

sponds to transforming each of the m marginal sample distributions to [0, 1], resulting in a

discrete distribution in [0, 1]m. This way, one can capture any correlation pattern, including

specific tail dependencies, asymmetries, etc., in the data. In contrast to the empirical approach,

the use of (semi-)parametric approaches implies that one first makes an assumption about the

appropriate copula type (e.g., a Gaussian copula). Then, as the name suggests, the parameters

for that particular type are fit to the data.

In this work, only the empirical derivation of copulas is applied, since it is the most generic

approach and does not require any further information from the user.

4.2.3 Applying Correlation

To correlate two distributions x1 and x2 based on a copula C, we again exploit Theorem 1,

now substituting F and G with x1 and x2. That is, we invert the samples (ui, vi) previously

derived for copula C by computing the inverse distribution function values of x1 and x2. This

results in samples (inv1(ui), inv2(vi)) of the result joint distribution D1,2. Figures 4.3(c)

and 4.3(d) show the joint distribution xf,h that results from correlating the distributions xf

and xh by using a copula CG,0.8 and CT (1),0.8, respectively. One can observe the higher tail

dependency in Figure 4.3(d) as opposed to Figure 4.3(c) analogous to the applied copulas in

Figures 4.3(b) and 4.3(a). For illustration, the right upper corners of xf,h have been marked,

corresponding to the occurrence of jointly occurring high claims (xf > 15 bn ∧ xh > 15 bn).

63



4 Correlation Handling

The generic and flexible construction and application of both empirical and parametric cop-

ulas emphasizes the benefit that lies in their self-contained dependency representation. Their

applicability to arbitrary distributions distinguishes copulas from approaches that represent

dependencies specific to the correlated values .

The next sections investigate how the described concepts for constructing and applying

copulas serve us to extend the basic representation of multivariate distributions at the database,

enabling users to

• Extract correlation structures from historical data, as well as accessing parametric cor-

relation structures (Section 4.3),

• Introduce correlation structures cor between distributions xj , j = 1, ...,m, resulting in

a joint distribution xjnt, with xjnt.dimj = xj and xjnt.cor = cor (Section 4.4), and

• Analyze the resulting joint distributions or extracted correlation structures.

As stated in Section 3.3.6, apart from serving users for visual exploration of distribution

characteristics, a joint distribution xjnt can be further processed through the operators T m for

computing a joint probability over xjnt, as well as the operator M for computing a marginal

distribution over xjnt. For example, to address Task B.1 of the discussed insurance use case,

the user could compute x(f |h>7) as the marginal distribution of xf under the condition that xh

will take on a high value, i.e., exceed $7 bn. Generally speaking, both T m and M can serve

users to create and subsequently compare different possible scenarios over multivariate data.

The combination with the flexible introduction of correlation structures gives users even more

possibilities to investigate the data under different correlations.

4.3 Approximate Correlation Representations

To apply the copula concept at the database, one could directly use the techniques described

in 4.2.2 and 4.2.3 to sample and successively apply a copula. This approach requires that

different statistical functions for sampling the desired copulas are available at runtime, and

can be executed efficiently. This restriction may often not apply. The alternative approach

taken in this work is to use an Approximate Correlation Representation (ACR).

An ACR is a self-contained artifact in the form of an m-dimensional (equi-width) histogram

built over the samples S that are drawn or generated for the underlying copula. ACRs serve us

to approximate and store correlation structures based on copulas at the database, and access

them efficiently at query time. The granularity of the ACR is determined by the number of bins

α per dimension, totaling a number of αm bins for the ACR. For example, for a 2-dimensional

copula C the corresponding ACR C has α2 bins bl,k, each of which is associated with a density

value wl,k that reflects the fraction of all copula samples (s1, s2) that fall in this bin of C.

For an example ACR, see Figure 4.4(a), which shows the ACR C
10

G,0.8, with a granularity

of α = 10 in m = 2 dimensions. In the figure, the two-dimensional histogram of C
10

G,0.8 is

displayed as a heatmap, with lighter shades of gray representing higher density values.

64



4.3 Approximate Correlation Representations

(a)

Figure 4.4: A copula C10
G,0.8 (1000 samples) and a corresponding ACR histogram C

10

G,0.8 with

102 bins bl,k, b, k = 1, ..., 10

Similar to the parametric and empirical construction of copulas, the construction of ACRs

can also be performed in two ways. First, an ACR can be built from a parametrically con-

structed copula and stored at the database for later access. Second, one can empirically derive

a copula which is then approximated by an ACR and can be accessed in further computation

steps at query time, similar to the parametric case. Both approaches are discussed in detail

below.

4.3.1 Using Precomputed ACRs

The parametric construction of copulas involves potentially costly multivariate sampling func-

tions. To be independent from external statistical functions and to avoid the sampling costs

at runtime, the copula information can be made directly available by means of precomputed

structures. To this end, the correlation structures are precomputed externally — i.e., outside

the database — and provided as independent artifacts to be stored and accessed at query time

in the database. For each desired correlation structure, we first draw a high number of samples

(e.g., nS = 100k) from a copula (e.g., a Gaussian copula) to get an accurate representation

of the chosen copula. In a second step, an ACR is built over those samples. The accuracy

of the produced ACR will be determined from the total number of samples drawn and the

parameter α. For example, for an ACR representing a 2-dimensional copula, one could de-

rive a 2-dimensional histogram with 202 bins from a total of 100k copula samples. Following

this approach, one can precompute a number of ACRs for different structures and degrees of

correlation, which are then stored and indexed in the database where they can be accessed at

query time. Analogous to the notation for copulas, we write C
α

H,d to denote the ACR of a

copula CH,d with α · α bins.

EXAMPLE: Figures 4.5(a) and 4.5(b) show the ACRs C
10

G,0.8 and C
10

T (1),0.8 representing

the copulas from Figures 4.3(a) and 4.3(b), respectively.

The benefit of using ACRs as a precomputed structure is twofold. Firstly, as the copulas do

65



4 Correlation Handling

(a) C
10
G,0.8 (b) C

10
T (1),0.8

Figure 4.5: Example ACR histograms (lighter shades of gray represent higher density values)

not have to be built at query time, one achieves significantly shorter processing times, and sec-

ondly, one becomes independent from statistical libraries and distribution-specific functions

at runtime. For low-dimensional copulas, the storage of their corresponding ACRs incurs only

relatively small memory costs due to their small size. For example, the storage of a bidimen-

sional ACR using 20 bins per dimension incurs storage costs for a total of 400 integer and

double values, which hold the information about the bins and their associated density.

Complexity: The costs for constructing an m-dimensional ACR are induced by (i) drawing

nACR samples for the desired copula, (ii) building a histogram with αm bins, and (iii) storing

the histogram. As the bin boundaries are statically determined at a constant distance of 1/α,

the complexity for sampling, histogram construction, and storage resolves to

ACR(nACR,m, α) ∈ O(αm +m · nACR)

As stated, the costs for drawing or generating an individual sample naturally vary depending

on the desired copula and the applied statistics library.

4.3.2 Extracting Empirical ACRs

As a second option, an ACR can be constructed based on an empirical copula derived from

historic data (which in itself can already be considered an approximate representation of the

correlation structure). The derivation of empirical copulas takes place at runtime based on

selected fact data from which the correlation structure shall be extracted.

The operator E supports this functionality. Note that we again focus on the case of 2-

dimensional data, while the presented approaches can be easily extended to the m-dimensional

case where m > 2. Using E(F, α) we extract an empirical copula C
α

F with α2 bins from his-

torical correlated fact values F = {(f1,i, f2,i)}, i = 0, ..., N , such as the data representing

claims for vehicle theft and burglary in Task B.2. To build the empirical copula, E first com-

66



4.3 Approximate Correlation Representations

putes the marginal distributions (i.e., x1 and x2) and then transforms the samples (f1,i, f2,i)
to the unit square [0, 1]2 by computing the uniform transforms, i.e., (cdfx1

(f1,i), cdfx2
(f2,i)).

The construction of an ACR over the empirically derived copula is similar to the case of

parametrically derived copulas. By storing empirically derived copulas, users can reference

the correlation structure in further queries, or compare different empirical correlation struc-

tures. For example, one can extract multiple copulas from data in different time windows

to discover temporally evolving correlation structures or, likewise, for data associated with

different regions, customer groups, etc. Thus, the user is enabled to evaluate correlation struc-

tures over historical data in a typical OLAP setting.

Complexity: The cost for extracting an m-dimensional ACR with α bins per dimension

from facts F depends on three steps: First, m empirical marginal distributions x
(α)
j are de-

rived, where the bounds of each marginal are determined as the minimum and maximum of

all fj,i, respectively. The histograms are built by sorting each fj,i in the corresponding bin

of x
(α)
j based on static bin bounds. As the second step, each sample (f1,i, ..., fm,i) is trans-

formed into a copula sample (u1,i, ..., um,i) = (cdfx1
(f1,i), ..., cdfxm

(fm,i)). As a third step,

each such sample is sorted into the corresponding target ACR bin, which causes constant cost

for each of the m dimensions. Altogether, the complexity of this process is

E(F,m, α) ∈ O(m · |F | · log2 α)

We will show in Section 4.5 how the extraction of empirical copulas can be parallelized, thus

making E a more efficient operation even in the context of large underlying data sets.

4.3.3 Restrictions Imposed by the ACR Approach

Due to the histogram-based storage, the required storage size and access times increase expo-

nentially with the number of dimensions of the underlying copula. This restricts the applica-

tion of ACRs to multivariate data of relatively low dimensionality (m < 5) in practice. Within

the scope of the presented work, it can be argued that this low dimensionality is sufficient for

many kinds of analysis. In particular, it suffices for enabling users to get ad-hoc insight into

complex correlation structures over continuous data over a few variables. This covers a large

space of applications, since often, the user’s focus is on a small number of key figures. For

queries over higher-dimensional data, which may be required for more complex evaluations,

e.g., in the field of portfolio analysis, the application of the sampling approach described in

Section 4.2 may be more appropriate. Yet, the sampling-based approach comes at the cost of

higher runtime requirements, as evaluated in Section 7.

Another potential drawback lies in the fact that ACRs store accumulated density values

within discrete bin boundaries, i.e., in an approximate manner. Thus, their application inad-

vertently introduces some inaccuracy. As stated in [JXW+08], analyses of probabilistic data

inherently involve uncertainty. Therefore, it can be argued that a certain amount of inaccuracy

in such analyses is acceptable. The accuracy of query results for applying different degrees

67



4 Correlation Handling

of approximation for an ACR is evaluated in Section 7.5.2. The evaluation shows that, the ap-

proximation error of ACRs indeed has only a small effect on the query results in most cases.

4.3.4 Using Nested ACR Histograms

To increase the accuracy of an ACR, one can approximate different copula regions at varying

levels of granularity. A nested (hierarchical) partitioning scheme is used to achieve this aim.

That is, selected bins b within the overall ACR histogram are being represented through a

nested histogram of finer granularity. This way, one can represent such copula regions that are

of particular interest in the analysis very accurately. For example one can represent the joint

tails of the dependency structure with increased accuracy. Figure 4.6 illustrates this approach

via a simple example, where a copula is represented through an ACR with α = 5, and its

joint tail bins (b1,1 and b5,5) are represented through one nested histogram with α1,1 = 10
and α5,5 = 2 bins per dimension, respectively. Representing the complete ACR in the same

accuracy as b1,1 would require a total of 1002 bins. The use of different granularities per

bin thus enables a more accurate representation of relevant regions while retaining relatively

low memory requirements for storing the respective ACRs or keeping them in memory. In the

example, a total of 102+52+22 = 129 bins are provided for an overall highly accurate copula

approximation, with finer-grained approximation being provided in the marked tail regions.

Figure 4.6: Nested histogram representation

Using this hierarchical histogram approach approach, highly relevant parts of the copula,

e.g., reflecting the joint tail densities, can be represented and processed with increased accu-

racy, as will be shown in Section 7. It should be noted that alternative partitioning schemes

could of course be used for this purpose. This includes more complex partitioning schemes

that result in arbitrary partitions such as equi-depth or V-Optimal [MPS99]. Such schemes

could, on the one hand, yield an even more accurate representation of the complete copula.

On the other hand, as stated in [Sir05], the resulting histograms induce larger costs than the use

of equi-width histograms. This concerns the construction and updating of ACR histograms as

well as storing and accessing the resulting histogram representations. In particular, while ar-

bitrary partitions require that the boundaries of all bins are stored and accessed at query time,

68



4.4 Introducing Correlation

a hierarchical equi-width partitioning requires only to store the frequency values for each bin,

(plus potential references to nested histograms).

Another aspect that supports the choice of nested equi-width histograms is that a user may

desire to approximate selected copula regions highly accurately when precomputing ACRs,

rather than having the partitioning determined by a generic heuristic.

Having discussed different forms of (pre-)computing ACRs, the following section discusses

the introduction of the represented correlation structures in data based on a given ACR. Note

that the presented approach works for any kind of ACR representation, irrespective of whether

a basic ACR histogram or a nested histogram representation are used, or whether a completely

different partitioning is applied during the ACR construction.

4.4 Introducing Correlation

Each ACR—either parametrically or empirically derived—serves as a self-contained artifact

that encapsulates a potential correlation structure and serves as input when correlation shall

be introduced between two or more distributions. For example, to introduce a correlation with

degree 0.8 and a heavy dependency in the tails of the marginals between two distributions x1

and x2, the ACR C
α

T (1),0.8 can be selected from the set of precomputed ACRs and applied for

correlation introduction.

The term correlation introduction means that a joint distribution xjnt is produced between

distributions xj , j = 1, ...,m using the provided correlation structure C such that for the re-

sulting joint distribution, we have xjnt.dimj = xj and xjnt.cor = C.

The operator C(xj=1,...,m, C) takes as input the m distributions xj=1,...,m and the correla-

tion structure C that shall be introduced to yield xjnt. This is achieved essentially through the

method described in Section 4.2.3. However, instead of inverting individually derived samples,

C uses the aggregated sample information represented by each bin of the applied ACR. In the

following, two methods for processing the aggregated information, implemented by operators

Cbasic and Cresample, are described. Further, an even more efficient processing scheme, im-

plemented by operator Creverse, is provided. For reasons of readability, the approaches will

be described for the (m = 2)-dimensional case again, i.e., for producing a joint distribution

x1,2 by correlating x1 and x2. The complexity for each approach will be discussed for the

generic case, i.e., for arbitrary m.

4.4.1 Basic Approach

The basic approach for correlation introduction is implemented by the operator Cbasic as out-

lined in Listing 4.1. There, the assumption is that each ACR bin bi,j ∈ C represents one

sample to be inverted, and each such sample is weighted according to the bin frequency value,

wi,j . Consider the application of the ACR C
10

T (1),0.8 to two distributions x1, x2 to yield a

result distribution histogram x
(β1,β2)
1,2 , where β1 = β2 = 10. We choose the center of each

bin bi,j , i, j = 1, . . . , 10 in C
10

T (1),0.8 as the coordinates (ui, vj) of its representative sample

and set wi,j to its associated density value in C
10

T (1),0.8. We then invert the center coordinates,

69



4 Correlation Handling

yielding x1,i = invx1
(ui) and x2,j = invx2

(vj) as the quantile values of x1 and x2 at ui and

vj , respectively. Finally, we increase the density of the bin associated with (x1,i, x2,j) in Dx,y

by wi,j .

Listing 4.1: Basic ACR processing through Cbasic

C
basic(x1,x2, C):

for each bi,j in C

ui = centeru(bi,j), vj = centerv(bi,j)

(x1,i, x2,j) = (invx1(ui) , invx2(vj))

add sample (x1,i, x2,j) with weight wi,j to x1,2

To compare the costs induced by the ACR-based correlation introduction, we first consider

the costs of applying the “native” sampling-based approach (referred to as Csample) that sam-

ples a copula C at runtime and applies it for correlating m distributions x
(β)
j .

Complexity: First, we need to draw (or generate) nS m-dimensional samples of the under-

lying bivariate distribution (or generation function) in O(nS). We then transform each such

sample using the cumulative distribution functions cdfxm
of the m marginals, summing up

to m · nS calls to statistical functions. Applying the constructed copula implies nS quantile

computations for the desired marginal distributions x
(β)
j in m dimensions (O(nS ·mlog2β)),

totaling to a complexity of

Csample(x
(β)
1 , ..., x(β)

m , C, nS) ∈ O(m · nSlog2β)

In contrast, for the basic ACR-based operator Cbasic, the costs are reduced as follows:

Complexity: As the procedure of Cbasic saves the copula construction costs at runtime

and needs to compute only the quantile values for α bin center coordinates for each of the m

desired marginal distributions x
(β)
j , the complexity is:

Cbasic(x
(β)
1 , ..., x(β)

m , C
α
) ∈ O(m · α log2 β)

Under the assumption m · α ≪ m · nS , this implies lower costs when using Cbasic as

opposed to Csample, as indicated by the results presented in Section 7. The costs for the

histogram construction for the approach of Csample and Cbasic are in O(m · nS) and O(αm),
respectively. Again, the theoretical cost of Cbasic is lower than that of Csample if αm < m ·nS .

Figure 4.7 illustrates the described approach. There, we derive a bivariate distribution, x1,2

(represented through x
(10,10)
1,2 ) as a joint distribution between x1 (Gamma distributed with

α = β = 2) and x2 (normally distributed with µ = 0, σ = 1). The center of the figure shows

the respective histograms x
(10)
1 and x

(10)
2 , which are accessed to compute invx1

and invx2
,

respectively. The left-hand side of the figure shows the ACR C
10

T (1),0.8. The inversion is

illustrated for the single bin b5,8 which is marked in the histogram of C
10

T (1),0.8. The center

70



4.4 Introducing Correlation

Figure 4.7: Introduction of correlation between univariate distributions

coordinates of b5,8 are considered as the coordinates of its representative sample in the unit

square, (u5, v8) = (0.45, 0.75). Now, we use the density associated with b5,8 (represented

by a dark shade of gray) as the weight w5,8, say, w5,8 = 5 . We now access x
(10)
1 and

x
(10)
2 to compute the inverse cumulative distribution values of x1 and x2 at u5 = 0.45 and

v8 = 0.75. This results in the coordinates x1,5 = 4.0, x2,8 = 0.7. Conceptually, those

coordinates correspond to a sample in the target joint distribution. The associated weight w5,8

is then added to the corresponding bin in the result histogram x
(10,10)
1,2 , as represented by the

colored bin on the right hand side of the figure. This process is repeated for each of the bins

in the ACR, and densities are successively summed up to yield x
(10,10)
1,2 , as shown in the far

right-hand side of the figure.

4.4.2 Uniform Spread Approach

ACR Resampling Applying the basic approach implemented by Cbasic may result in a

large discretization error. This is because for each bin we consider only one sample as its

representative, resulting in a total of only αm weighted samples for the complete ACR. We

therefore extend the basic approach by applying a resampling approach to compensate for a

part of the discretization introduced in the construction of the ACR. In particular, assuming a

uniform spread within each ACR bin bi,j , we draw a number of uniformly distributed samples

per bi,j . This process is implemented by Cresample as shown in Listing 4.2.

Listing 4.2: ACR processing with uniform resampling through Cresample

C
resample(x1, x2, C

α
):

for each bi,j in C
α

for k = 0, ..., wi,j
ui,k = sampleuniformu(bi,j)

vj,k = sampleuniformv(bi,j)

(x1,i,k, x2,j,k) = (inv1(ui,k), inv2(vj,k))

add (x1,i,k, x2,j,k) to x1,2

The weight wi,j associated with bi,j determines the number of samples to be drawn for bi,j .

Finally, we invert each of the uniform samples to yield the samples in the result distribution

71



4 Correlation Handling

(a) Basic approach, using Cbasic (b) Uniform resampling, using

Cresample

(c) Reverse processing, using Creverse

Figure 4.8: Alternative inversion methods

x1,2. Figure 4.8(b) shows the resulting “dispersion” of the aggregated density value wi,j

(e.g., w5,8 = 5) of an ACR bin b5,8 to different locations of the result distribution, while

Figure 4.8(a) displays the result of the basic approach, where the complete weight of the ACR

bin is assigned to one result histogram bin.

Complexity: For a total of nACR uniformly drawn samples, the introduction of correlation

implies a similar complexity as the “native” sampling-based approach. However, at runtime

we save the costs for constructing the copula in the first place. Therefore, assuming we intro-

duce correlation between m distributions x
(β)
j the induced complexity is determined by nACR

quantile computations in total over all bins for each of the m marginals:

Cresample(x
(β)
1 , ..., x(β)

m , C
α
, nACR) ∈ O(m · nACR log2 β)

The complexity for the histogram construction in the case of Cresample is in O(m · nACR)
and thus, similar to the case of Csample when nACR = nS .

Reverse ACR Processing If it is known at the time of correlation introduction (i.e., when

C is executed) that the result distribution will be represented through a histogram with known

bin boundaries, we can perform the described approach more efficiently. This assumption

generally holds true when we use equi-width histogram representations, which is the case in

this thesis. The approach taken to increase the efficiency of Cresample is to reverse the mapping

72



4.5 Query Processing

between C and the target distribution x1,2. Consider bins bl,k, 1 ≤ l ≤ β1, 1 ≤ k ≤ β2 of a

target result histogram x
(β1,β2)
1,2 , each spanning a rectangle [tl, tl+1] × [tk, tk+1]. Now, rather

than “dispersing” the weight from each ACR bin bi,j to the result histogram bins bl,k, we

instead gather fractions of the ACR bin weights for each result bin bl,k.

This approach is implemented by the operator Creverse. Figure 4.8(c) illustrates the reverse

processing scheme for a single bin bl,k ∈ x
(β1,β2)
1,2 . We compute the density for bl,k as the sum

of weights contained in the area of the ACR that maps to the result bin through inversion. To

achieve this, we first compute the associated transforms ul, ul+1, vk, and vk+1. That is, the

boundaries of the result histogram bins are mapped into the unit square covered by the ACR

histogram:

ul = cdf1(tl), ul+1 = cdf1(tl+1), vk = cdf2(tk), vk+1 = cdf2(tk+1)

Then, we calculate the fractions of all ACR bins overlapping with [ul, ul+1] × [vk, vk+1].
In the figure, we compute fa, fb, fc, fd as the fractions that the areas marked with a, b, c, and

d cover of their associated bins. Finally, we yield the density associated with bl,k as

wl,k = fa · wi,j + fb · wi+1,j + fc · wi+1,j+1 + fd · wi,j+1 .

For cases where the number of target bins βx · βy is smaller than the number of nACR, the

reverse scheme is more efficient than the ACR resampling approach due to the decreased num-

ber of transformation steps.

Complexity: To build a target histogram with βm bins using Creverse, we need to compute

m · β transforms (for each of the β bin boundaries in m dimensions), compute m ·αβ overlap

fractions (of which most can be omitted since they evaluate to zero trivially), and finally

compute the sum of fractions for each of the βm result bins. The latter step dominates the

overall complexity such that

Creverse(x
(β)
1 , ..., x(β)

m , C
α
) ∈ O(βm)

Again, under the assumption that βmm · nS , the reverse approach implies lower costs than

the application of Csample.

4.5 Query Processing

In Figure 4.9 we can see how the overall process for introducing a correlation structure pro-

ceeds. Generally, one can either use precomputed ACRs that are accessed from the ACR store

or ACRs extracted from historical data at query time.

From a system point of view, the ACR store containing all available ACRs in a dedicated

histogram table as tuples (id, b, w) associating the ACR id with its bins b and the density w per

bin. Those can be either precomputed ones as well as ACRs previously empirically derived

and persisted. An additional index associates, for each precomputed ACR CH,d, the corre-

lation parameters H and d with the id of the respective ACR. For selecting an ACR, a user

73



4 Correlation Handling

can either provide the assumed correlation parameters based on expert knowledge, or they can

be derived through rules at the application-level. For example, for modeling high joint tail

dependencies, a rule could imply that H = T (1), while the requirement for an asymmetric

correlation structure could yield to the selection of an ACR computed from a Clayton copula.

Figure 4.9: Overview of process for correlation introduction

Listing 4.3 illustrates queries for introducing correlation between two distributions x1, x2

(x1,x2).

Using Query (i), a user can first derive an ACR (acr) empirically from selected facts (F).

Then, the derived copula is applied for correlation introduction, using one of the variants of C.

Alternatively, the user can provide parameters H and d for selecting a pre-computed ACR from

the store, as shown in Query (ii). In Figure 4.9, the two alternatives are indicated by dashed

arrows for (i) and by dotted arrows for (ii).

Listing 4.3: Correlation queries

(i)

WITH acr AS (SELECT Empirical(F) FROM F)

SELECT Correlate(acr,d1,d2)

FROM dists d1, dists d2

WHERE d1.id = dx AND d2.id = dy

(ii)

SELECT Correlate(acr,d1,d2)

FROM dists d1, dists d2, acr

WHERE d1.id = dx AND d2.id = dy

AND acr.H = H AND acr.d = d

Having received either of Query (i) or Query (ii), the method proceeds through two steps:

1. Retrieve the ACR by (i) extracting C
α

F = E(F, α) from facts F or (ii) selecting the ACR

CH,d from the ACR store.

74



4.5 Query Processing

2. Introduce the correlation structure using one of the available procedures for C, namely

a) if x1,2 shall be represented by a histogram x
(β1,β2)
1,2 with precomputed bin bound-

aries, apply Creverse

b) else, apply Cbasic or Cresample

Using a selected or extracted ACR, the C operator can correlate one or more distribution

pairs (x1 ∈ X1, x2 ∈ X2), accessing the respective ACR only once and processing it for each

pair of marginal distributions. This is, for example, relevant when we want to apply the same

correlation structure to many assets in a portfolio. If an empirical copula C
α

F shall be used, it is

first computed over the selected fact data F using E , and then used in the correlation process,

applying C(C
α

F , x1, x2). Empirical copulas can also be persisted in the ACR repository for

later reference through an associated id, similar to the precomputed ACRs.

Generally, depending on the overall analysis process, a produced joint distribution x1,2 can

then be used either directly as a result, stored for further access (as a histogram x
(β1,β2)
1,2 ), or

processed by subsequent operators.

The presented functionality shall enable users to carry out fast interactive analyses in deci-

sion making processes. Fortunately, ACRs provide some beneficial characteristics that open

up opportunities for optimizing the required computations, as described subsequently.

4.5.1 Optimizing Query Plans

A first optimization consists in the rewriting of queries that involve the computation of T m or

M preceded by C.

As an example, consider the application of M in Task B.1, where we want to analyze xf,h

by computing a marginal xf |h>$7 bn, and the risk that both f and h will exceed specified

thresholds tf = th = $15 bn under the assumed correlation.

Marginal Distributions When computing the marginal distribution using the processing

procedure outlined above, we would first apply C to calculate xf,h and then apply M. At this

point, assuming we do not need the complete distribution xf,h for further steps, this execution

strategy induces a large number of unnecessary calculations—only a part of xf,h (i.e., only

the region where h > $7 bn) will contribute to xf |h>$7 bn. To prevent overhead and only

compute the information necessary for further steps, we can exploit the feature that the ACR

CH,d reflects a mapping from the unit interval to the concrete marginals xf , xh; hence, we

can in turn map the relevant part of xf,h to a subregion of the applied ACR to access and

process this ACR subregion only. We can easily determine this region based on the condi-

tion predicates ωj of M. Specifically, for a condition ωop(tx), op ∈ {<,>} we only need to

consider the ACR region that satisfies v op ptx , with ptx = cdfx(tx), when applying C. As a

result of the decreased number of required inversions, the runtime costs for the correlation step

decrease almost linearly by a factor of 1/(ptx) or 1/(1−ptx) for op being < or >, respectively.

EXAMPLE: In Task B.1, to compute the marginal xf |υh
with ωh(7 bn,∞) directly over

the result of C, we push down the selection of the relevant region of xf,h (i.e., h > $7 bn) to

select the region of the applied ACR where v > cdfh($7 bn).

75



4 Correlation Handling

Joint Tail Probability Moreover, when applying T m to compute a joint tail probabil-

ity putf ,th , we can achieve an even greater optimization effect. This optimization approach

is depicted in the two alternative query graphs in Figure 4.10. The graphs illustrate how the

result of T m can be computed directly on CH,d rather than using C to process a region of

the ACR and introducing a correlation in a first step. As a consequence, we do not need to

apply C at all. Instead, we compute the uniform transforms of tf and th, ptf = cdfxf
(tf ) and

pth = cdfxh
(th) and use them as parameters to the T m operator, which we now apply directly

to CH,d. That is, we compute T m(CH,d, ptf , pth).

(a) Initial query graph (b) Optimized processing

Figure 4.10: Alternative query graphs for calculating pt1,t2

Note that the described approach relates to the reverse ACR processing scheme described

in Section 4.4.2; conceptually, we now determine the region of CH,d associated with one

"tail bin" and aggregate the density contained therein. Since this method implies only two

computations of cdf followed by an aggregation of the relevant ACR bin weights, we achieve

a large efficiency gain, as shown in Section 7.5.3.

It is noteworthy that the optimizations described above rely on the fact that ACRs can be

accessed as precomputed structures. Thus, we can restrict the computations that are executed

when applying either M or T to parts of the precomputed correlation information. Using the

sample-based implementation of C, does not allow for using those optimization approaches

directly. In MC-based solutions, one could support the efficient use of copulas by means of

techniques for sampling from the tails of joint distributions, such as discussed in [JXW+10].

4.5.2 Parallelization

An additional, orthogonal approach to optimize the correlation processing stems from the fact

that many calculations can be executed independently on the individual bins of an ACR, and

therefore are amenable to parallelization.

76



4.6 Summary

Correlation Introduction Since C can process a subset of the α2 ACR bins indepen-

dently from any other subset, we can parallelize its execution. This applies both to the basic

approach implemented by Cbasic and the resampling approach implemented by Cresample. Us-

ing t threads, each can be assigned a tth subregion of the complete ACR to produce a partial

result distribution. Those t partial results are then merged into the final distribution x1,2. The

merging step consists in a bin-wise addition of bin frequencies, which is a simple operation

and therefore implies only slight computational overhead. Similarly, we can use t threads to

compute the reverse ACR processing scheme as implemented by Creverse, where each of the

t threads can be assigned with a tth part of the bins of the target result histogram.

In this case, the use of parallelization pays off foremost when the target histogram has

a high granularity, i.e., is represented by a relatively large number of bins β1 and β2 (e.g.,

β ≥ 100). A similar benefit in performance can be gained when using fine-granular or higher-

dimensional ACRs (e.g., α ≥ 100, or m ≥ 3). This is because in those cases we have a

relatively high computational effort due to the large number of overlap fractions that must

be computed, as opposed to the relatively low overhead induced by the synchronization and

merging steps of the parallelized version of C.

Empirical Copula Derivation We can also parallelize most steps of the empirical cop-

ula derivation operator, E , i.e., computing the marginal distributions over the |F | samples and

computing the uniform transforms for each sample value (f1,i, f2,i). In the parallelized imple-

mentation of the operator E , each of the t threads first computes marginal distributions over

a tth subset of the samples which are then merged into the complete marginal distribution

histograms. Then, each thread transforms a tth part of the samples based on the computed

marginal distributions. Then, t partial ACR histograms can be constructed over the samples,

which are finally merged into the result ACR.

4.6 Summary

This chapter discussed means for the flexible and efficient representation and processing of

arbitrary correlation structures at the database. The primary goal of the proposed techniques

was to enable users to perform flexible analyses of joint distributions under potentially differ-

ent correlations. To this end, it is necessary to allow them to introduce arbitrary correlation

structures between arbitrary distributions. This functionality was addressed using the concept

of copulas. First, the copula approach for correlation representation was discussed. Then,

we considered an adaption of this approach to the database by means of the ACR concept.

Further, it was pointed out how a user can either use precomputed ACRs in cases where only

a purely assumed correlation shall be evaluated, or first extract ACR structures from existing

data. Then, the functionality for introducing correlation to data in the analysis process was

presented and different alternative versions of the correlation operator C were proposed. Fi-

nally, opportunities for optimization through query rewriting and parallelization were pointed

out.

In Chapter 7 the application of the proposed operators in an implementation of the discussed

use case are demonstrated. Also, the efficiency and accuracy of the proposed approaches are

77



4 Correlation Handling

evaluated. Further, we consider an exemplary comparison with a sample-first approach in or-

der to point out the applicability of the generic copula technique, as well as investigating the

benefits of the ACR-based approach.

After having presented the provided set of operators for scenario analysis in the last two

chapters, the next Section addresses a crosscutting aspect of the scenario analysis process.

We consider the question how the iterative nature of the analysis process can be supported.

The focus there is to provide a methodology for an efficient recomputation of scenarios based

on changes in input data or assumptions. This methodology particularly exploits provenance

information captured during an analysis process. Among other optimizations, the captured

information enables the rewriting of query plans that involve subsequent applications of mul-

tivariate analysis operators, as has been discussed above.

78



5 Scenario Recomputation

The computation of scenarios based on various assumptions can initially offer valuable in-

sights to the business. However, in order to allow for an interpretation of the derived scenar-

ios, it is equally important to enable the user to track the applied analysis steps. For example,

when analyzing sales projections, such as in the scenarios derived in Use Case 1, first of all

the user needs to know about the assumptions that were made with respect to the factors that

influence the future sales. Only based on this knowledge the user will be able to reason about

(and compare) different scenarios. Second, when actual data contradicts an applied assump-

tion (e.g., the actual economy turns out worse than expected) the user wants to reflect the

plan-actual deviations in any results derived from the assumption. That is, he needs to be able

to recompute the analysis results based on available information about changes in input data.

Similarly, the user requires means to reflect assumed deviations in the underlying inputs.

Those two aspects relate to the general tasks of (i) querying data provenance backwards

(to investigate the data derivation) as well as forwards (to find dependent data) and (ii) in-

vestigate the impact of changes in base data on dependent data by re-evaluating underlying

queries efficiently. The following chapter will focus on the latter aspect; the former serves

as a prerequisite to investigate relevant input data and operators that must be recomputed in a

re-evaluation of the query.

5.1 Provenance and Recomputations in the Analysis

Process

First, we briefly consider the requirements for provenance handling and efficient recomputa-

tion that are addressed in the scope of this chapter. To this end, consider an example analysis

process for one of the use cases discussed throughout the thesis, which can now be imple-

mented using the analysis functionality presented in the previous two chapters.

5.1.1 Example Analysis Process

Recall Use Case 1, Task A, where a company plans a marketing campaign to optimize the

outcome on the generated sales revenues of their to-be-launched product P2. Within the cam-

paign, various marketing measures shall be applied to address the customers, such as mailings,

vouchers, or TV ads, each causing different expenditures per customer . The marketing man-

ager wants to forecast and analyze the effectiveness of different marketing expenditures (more

precisely, different distributions of per-customer expenditures) with regard to the monthly

sales generated per customer. Moreover, the manager may, for example, aggregate the pro-

jected sales values to yield the total expected sales values per product group, location, etc.

79



5 Scenario Recomputation

Figure 5.1: Analysis process of Use Case 1: Sales planning conditioned on marketing

expenditures

Figure 5.1 shows the analysis process for the described task: ❣1 As a starting point, the user

derives a series of forecast values for the monthly per-customer sales amount (xS) of P2. For

simplicity, he computes those forecasts as distributions from the historic monthly sales data

of the reference product P1 in the previous year (the set of monthly sales amounts, ẊH ) by

applying D1. ❣2 He also provides information about the (planned) distribution of monthly per-

customer marketing expenditures (xM ). For example, he may plan a high number of low-cost

activities (say, for newsletters, and direct mailings), as well as higher costs incurred by vouch-

ers and promotions (indicated by a Gamma distribution in the Figure). ❣3 To introduce the

assumption that sales will exhibit a high (positive) dependence on the marketing expenditures,

the C operator is applied, which computes the joint distribution between xS and marketing

costs, xM . ❣4 Finally, the user wants to investigate the distribution of monthly sales in the

cases of low-, medium-, and high marketing expenditures (e.g., for per-customer expenditures

within low = [$0, $5],med = [$5, $10], and high = [$10,∞], respectively), which is derived

using M and results in three alternative scenarios denoted as xlow, xmed, and xhigh. Note that

in step ❣1 , the user may naturally also derive multiple monthly forecast values, e.g., for various

products, regions, etc; this aspect is omitted in the illustration for reasons of simplicity. Still, it

is addressed through the capture and processing of provenance information for datasets within

this chapter.

Recomputation A user should be able to recompute the final results (in this case, xlow,

xmed, and xhigh) after changes in (fractions of) the input data have occurred. Such recompu-

tations should naturally be performed efficiently, i.e., with minimal overhead with respect to

the proportion of the changes in data.

1For simplicity, we omit the step of selecting and aggregating historic data assuming they are readily available.

80



5.1 Provenance and Recomputations in the Analysis Process

In the exemplary analysis process for Use Case 1, assumptions about per-store sales (xS)

may become invalid due to deviating actual sales data (xS′ ). For example, a shift in per-

customer expenditures may lead to a situation where the recorded sales xM exhibit a distri-

bution xS′ with mean $50 rather than the initially assumed mean of $60. This would render

the assumed distribution for xS (see step ❣1 in Figure 5.1) increasingly inconsistent. Alterna-

tively, the user may want to modify the sales forecast values to reflect assumed deviations.

Similar to the described manual approach to recomputation (i.e., deviations in inputs are

specified by a user or derived over new evidence data), an automatic procedure could recom-

pute results over several variations of input data. From those scenarios, a user can then for

example identify relevant (critical or promising) “neighboring” scenarios of an initial scenario.

In this case, the need for efficient incorporation of changes becomes even more apparent since

many new computations must be performed. In the remainder of this chapter, we investigate

how we can exploit specifics of the underlying data and the class of the analysis functionality

discussed in Chapters 3 and 4.

5.1.2 Data and Operator Characteristics

In the scope of this work, the central data and operator characteristics with regard to the

recomputation of analyses are as follows:

Deviations in Continuous Input Distributions When recomputing analysis results

based on deviations in continuously distributed input data, we need to consider the devia-

tions of an old and new input value over the whole support interval of its distribution. This is

in contrast to approaches for recomputation and sensitivity analysis in the context of discrete

probabilistic input data, where the deletion or updating of a discrete value or tuple probability

is considered. In Section 3.2.1 the representation of delta information ∆x, represented by a

delta histogram ∆H
x between two distribution representations x and x′, has been described.

This representation will be used to reflect deviations in the course of recomputation.

Focused Class of Operators Both the application of relational operators such as selec-

tion and grouping as well as the previously discussed statistical operators are relevant within

the analysis process. In this chapter, similar to the previous chapters, we explicitly focus on

the application of analytic operators, and specifically on the capture and exploitation of spe-

cific provenance information that can be exploited in the recomputation process. In particular,

we do not address the introduction and evaluation of dependencies that are introduced through

relational queries including joins over probabilistic attributes.

Clearly, relational operators are applied in all but a few cases before any statistical analy-

sis operators are used. For example, before deriving distributions over fact data, the relevant

data is first selected based on a selection predicate, and possibly grouped, e.g., per product.

Capturing and querying the provenance of or dependencies in data derived through relational

queries, and their (selective) recomputation based on changes in input data has been the topic

of previous research such as [ABS+06, SMS+08, ISW10]. The focus of the subsequently

presented approaches is explicitly on a complementary methodology that specifically targets

81



5 Scenario Recomputation

the efficient recomputation of analytic operators. The central approach is to exploit specific

provenance information captured during the initial evaluation phase to perform recomputa-

tion steps only over those deviations in input data that can indeed impact the (intermediate)

computation results.

5.1.3 Provenance for Scenario Data

Scenario data reflect potential realizations of the future, and thus involve assumptions about

influences (drivers) of future developments. Those may change or need to be adapted through-

out time. Our focus is to support a continuous, iterative scenario derivation process. An import

aspect therein is to allow users to consider the evolving state of underlying data, i.e., to incor-

porate changes in input data on derived analysis results.

Tracing and Querying the Scenario Derivation As a first step to enable the analysis

and incorporation of changes, a user must first know about the derivation of scenario data.

For example, a user reviewing potential sales needs to know about underlying assumptions

about the marketing expenditures and correlation with sales; in case the planned sales numbers

seem exceedingly low, or deviate strongly from actual recorded sales, he may investigate

whether this stems from inappropriate assumptions, or rather is an indication for marketing

optimization potential. Once the user knows about relevant base data, he can analyze the

impact of changes in the base data on the overall result of the analysis.

Change Impact Evaluation To incorporate actual or assumed deviations from applied

hypotheses in their analyses, users need to evaluate how they impact previously derived data.

For example, deviations from prospected customers sales patterns may influence computed

revenue scenarios. A shift in per-customer expenditures may lead to a situation where sales

S are distributed with mean $50 rather than a forecast mean of $60, possibly rendering an

assumed distribution for S (see step ❣1 in Figure 5.1) increasingly inconsistent. In general,

uncertainty can change over time and assumptions can get inconsistent as actual data is ob-

tained. A user must be able to query how derived scenarios may be affected, and possibly

recompute them based on the identified deviations.

We enable users to incorporate deviations in two ways:

Exact Recomputation To incorporate exact information about deviations in base data, the

user can recompute all affected intermediate data of an analysis process based on the

associated delta information, represented by ∆H as described in 3.2.1.

Approximate Recomputation and Deviation Analysis In other cases users may not

know about exact changes, but rather need to investigate the effect of assumed devia-

tions. Then, an alternative approach is to evaluate change impacts in an approximate

fashion based on a functional deviation approximation, denoted by ∆T .

To support those tasks in an efficient manner, we need to consider both data-related and

process-related aspects of the analysis. In Section 5.2 the capture of provenance information

82



5.2 Scenario Provenance Capture

regarding both aspects is described. Specific knowledge about characteristics of data depen-

dencies is incorporated with information about operator applications and their data in- and

output, which is captured through a graph representation. In Section 5.3 we discuss the recom-

putation of analysis results using exact and approximate deviation representations, exploiting

the recorded provenance information.

5.2 Scenario Provenance Capture

When computing scenarios, we need to keep provenance information about both the transfor-

mations and data involved in the process to enable users to track how analysis results were

derived and to recompute them. Moreover, for an efficient evaluation of change impacts spe-

cific information about applied operations is required.

As stated above, rather than considering changes in probabilities of discrete tuple alterna-

tives (as for deletion propagation [GKT07] or sensitivity/explanation analysis [KLD11]), the

continuous case necessitates that we address the impact of changes in (parts of) the distribu-

tions represented by data items. This impact clearly depends on the applied operator o. After

describing a basic provenance graph that captures data derivation on the high level of operator

applications and datasets, we address the capture of operator-specific provenance information

both on the level of data sets and the detailed level of data items.

5.2.1 Basic Provenance Graph Structure

Formally, we capture the transformation provenance of a scenario computation through a

graph G = {N,E, ann}, where

• N is the set of nodes, N = NO ∪ ND. Operator nodes o ∈ NO represent processing

steps, and data nodes d ∈ ND represent data artifacts, i.e., data items or sets.

• E ⊆ N ×N × T is the set of typed edges representing provenance relations, where T
is the set of relation types.

• ann : N ∪ E → A(K × V ) associates a node n ∈ N or edge e ∈ E with additional

attribute information stored by key-value pairs (k, v), such as the name of the roles

associated with an edge.

In the following, we use the notation n1 (r1)
t

−→(r2) n2 for an edge of type t that connects

node n1 to n2, where labels r1 and r2 may be used to specify the role of n1 and n2. We will

exemplify the use of roles below; for better readability we omit them whenever they are not

required. When describing provenance, we refer to the underlying data x or X through its as-

sociated data node d. We use edge types T = {used, wgb, wdf}, similar to the provenance

relations from the OPM [MFF+07]. An edge d
wgb
−→ o reflects that (the item x associated with)

d was generated by the operator o while o
used
−→ d means that o used (the item x associated

with) d as input. Further, d1
wdf
−→ d2 states that d1 was derived from d2; it can be inferred from

83



5 Scenario Recomputation

edges d1
wgb
−→ o and o

used
−→ d2

2. We store instances of each node and edge type, including

associated annotations, in dedicated provenance relations, as exemplified below.

EXAMPLE: Figure 5.2 shows a basic provenance graph for the derivation of xlow in

the analysis process above. The graph captures the application of operators D, C, and M
. For example, nodes dM and dS represent the planned marketing expenditures (xM ) and

sales forecasts (XS) while the edges dS
wgb
−→ oD and oD

used
−→ dH represent the derivation of

sales forecasts xS,i ∈ XS from ẊH through the operator D. The application of the C and

M operators are similarly reflected with their associated input and output data nodes. The

derivation of xmed and xhigh are similar, differing only in the used input nodes of M. Table

5.3 shows the relations that storing the graph structure containing data nodes (5.3(a)) and

edges (5.3(b)).

Figure 5.2: Basic use case provenance graph

data nodes

d x ver

dH ẊH v0
dS XS v0
dM xM v0
dM,S XM,S v0
dC xC v0
dlow Xlow v0
dυ LOW v0
dop > v0

dH ẊA v1
dS X′

S v1
dlow X′

low v1

(a) Data nodes d

wgb-edges

d o type

dS D wgb

dM,S C wgb

dlow M wgb

used-edges

o d type

D dH used

C dM used

C dS used

C dC used

M dM,S used

M dop used

M dυ used

(b) Edges e ∈ E

Figure 5.3: Provenance relations

2Note that we only adopt relation types from OPM and do not account for subtle semantic aspects of the OPM

relations.

84



5.2 Scenario Provenance Capture

5.2.2 Scenario Versions and Modification

Given changes in input data, a user could in practice directly replace the old input values

and evaluate the effect of those updates on previously computed analysis results. However,

in many cases, the existing (derived) scenario data must not be changed directly, even if new

evidence renders them invalid. The data may be integrated in business reports, or otherwise

must be kept available for reference. Therefore, we handle information about changes as delta

information, storing different versions of both data items and provenance information.

Scenario Version Provenance

Alternative scenario versions are created when results are recomputed based on changed input

data. A version identifier v distinguishes provenance elements for different scenario versions,

yet retaining the relation between alternative computations. Since alternative versions of a

scenario computation may differ only in a small number of inputs, we store the provenance

graph for a version vi+1 as delta to the graph G of the previous version, vi instead of storing

a complete new provenance graph. This means that we add only those provenance elements

which distinguish vi+1 from vi. In case of small differences, this approach is more space-

efficient than storing the complete new provenance G′, at the cost of re-assembling G′ when

it is queried. See [ZDH+11] for a discussion of the trade-off between runtime and storage

efficiency resulting from this approach.

As an example, Table 5.3(a) shows the data nodes dH , dS , and dlow, distinguished through

version ver = v0 and v1. The v1-nodes are added when the scenario is re-computed based

on actual sales data ẊA, with (dS , v1) and (dlow, v1) representing the derived data X ′S and

X ′low, respectively. In the remainder of the chapter, we will implicitly refer to two successive

versions of data associated with a node d as items x and x′.

Deviation Information ∆x

Recall that modifications to data are stored as delta information ∆x,x′ between two items x
and x′, denoted as ∆x if the context (i.e., the relation between two successive versions of a

data item, x, x′) is clear. In particular, delta histograms ∆H
x , which are computed from the

differences of cdfx and cdf ′x, are stored to capture deviations between two items, from which

the deviation at any position υ can be computed as ∆H
x (υ) in constant time, similar to the

computation of cdfx on a regular distribution.

Deriving ∆H
x If a distribution y was initially created through D from fact data Ẋ and new

facts have been recorded (or old ones updated), it may become necessary to recompute y′

based on the new (partially deviating) fact data, Ẋ ′. Under the working assumption that each

ẋi ∈ Ẋ can be associated with its corresponding ẋi
′ ∈ Ẋ ′ (e.g., through a unique sales id),

the deviation information ∆H
y can be computed based on the differences of the two sets. That

is, we define sets Ẋ∆ = {ẋi|ẋi /∈ Ẋ ′} and Ẋ ′∆ = {ẋ′i|ẋ
′
i /∈ Ẋ} and compute two delta

histograms, ∆H− = D(Ẋ∆, β) and ∆H+ = D(Ẋ ′∆, β). Then, ∆H
y is built by bin-wise

85



5 Scenario Recomputation

subtraction and addition of those deltas, to yield ∆H
y = ∆H+ − ∆H−, which can then be

accessed when recomputing scenarios that use y as input data.

∆x-based Selective Recomputation The information encoded in ∆H
x can now be used

directly to re-compute the value ṗ′ = cdfx′ based on a known (initial) result ṗ = cdfx. More

specifically,

ṗ′ = ṗ+ ṗ∆ with ṗ = cdfx(υ) and ṗ∆ = ∆H
x (υ) .

Opposed to that, the computation of invx′ requires us to always access the complete informa-

tion of x′, i.e., both the base and the delta information associated with x′. Thus, the general

aim is to only selectively recompute operators that rely on inv based on a previous computa-

tion of ∆H
x .

The use of deltas for deviation capture and the result recomputation based on such delta

information are discussed in Section 5.3.2, which also addresses the case of using approximate

delta representations ∆T . In order to exploit the deviation information to evaluate change

impacts, it is however first necessary to extend G by capturing operator-specific provenance

information. This includes the capture of specific edges at the operator level, as well as the

construction of predicates over the delta information ∆x on the level of individual data items.

5.2.3 Representing Modeling Assumptions

First, we capture information about related components of data items in the analysis pro-

cess. The intuition is that, by applying selected operators, we introduce assumptions about

correspondences between components of the input and the output data items. For example,

when correlating two distributions x1, x2 to yield a joint distribution y, this means that x1

and x2 model the first and second dimension component of y. This information goes beyond

the semantics of a mere input-output dependency, essentially reflecting the composition of

multidimensional distributions, similar to probabilistic graphical models. Thus, it is captured

through a dedicated edge type denoted by ≈, i.e., we extend G such that G.T = G.T ∪ {≈}.

din rin
≈
−→rout

dout

An ≈-edge is added to G and stored in a dedicated provenance relation depending on the

applied operator. Attached roles rin and rout refer to the affected dimension components

of the (multivariate) distributions associated with the source and target node, respectively.

The ≈- edge is transitive, such that two edges d1 (r1)
≈
−→(r2) d2 ∧ d2 (r2)

≈
−→(r3) d3 imply

d1 (r1)
≈
−→(r3) d3.

Table 5.2 formally lists the edges recorded for the multivariate operators.

EXAMPLE: Table 5.1(a) shows the ≈-edges introduced for our use case. For a bivariate

distribution xM,S resulting from C(xM , xS , xC), we know that xM and xS model the dim-

components of xM,S , and xC models the cor-component, respectively. Further, the dimension

component dim2 of dM,S corresponds with the resulting (conditional) marginal distributions

86



5.2 Scenario Provenance Capture

associated with dlow, dmed, and dhigh. Figure 5.4 illustrates part of the resulting graph struc-

ture (omitting the derivation of nodes dmed and dhigh for simplicity).

(a) ≈ edges

ver din dout rin rout
v0 dM dM,S — dim1

v0 dS dM,S — dim2

v0 dC dM,S — cor
v0 dM,S dlow dim2 —

v0 dM,S dmed dim2 —

v0 dM,S dhigh dim2 —

(b) →֒ edges

ver din dout rin Impact predicatesφ

v0 dM,S dlow dim1 φl : (∆xM,S .dim1
(υ) 6= 0), υ < LOW

v0 dM,S dmed dim1 φm : (∆xM,S .dim1
(υ) 6= 0), HIGH > υ > LOW

v0 dM,S dhigh dim1 φh : (∆xM,S .dim1
(υ) 6= 0), υ >> HIGH

Table 5.1: Operator-specific edges

Figure 5.4: Operator-specific provenance edges for the example analysis

5.2.4 Representing Operator Impact

The results of some operators depend on a selected part of x only. This part is determined

either by applied predicates ω or processing parameters such as the quantile value used in

the computation procedure of AMAX/MIN . In such cases, only deviations in the relevant

part of x impact dependent data y, or, are impact-relevant for y. To incorporate information

about the impact of a deviation ∆x on y, G is extended by an additional edge type →֒, i.e.,

G.T = G.T ∪ {→֒}:

din rin
→֒
−→rout

dout

The →֒-edges are annotated with either a single impact predicate φ or a collection of impact

predicates, Φ, where each φi ∈ Φ is associated with an item xi ∈ X at the source node din
of the →֒-edge. That is, while ≈- and →֒-edges are captured on the level of operator nodes,

predicates φ are captured also on the level of data items, thus representing a more fine-grained

87



5 Scenario Recomputation

information about the computation of data items at the target data node dout. The evaluation

of φ determines whether a deviation ∆x at node din potentially can impact the data associated

with dout. That is, only if φ evaluates to true, the corresponding data item must be considered

in the recomputation. For an operator o we construct φ from its specific parameters, such

as applied predicates ω. In some cases, predicates φi additionally reference (intermediate)

processing results for each xi, such as the selection probabilities pi in the case of στ . Table

5.2 lists the operator-specific →֒-edges and impact predicates which are briefly explained in

the following.

For T (x, ω), we record din
→֒
−→ dout, annotated with predicate φ : (∆x(υ1) 6= 0 ∨

∆x(υ2) 6= 0) since for an applied predicate ω(υ1, υ2) any deviation of data associated with

din at positions υ1 or υ2 will most likely impact the result at dout (i.e., potentially yield a

different tail probability). In the case of Q, a deviation ∆x impacts the result at dout when

∆x(ẏq) 6= 0, i.e., when there is a deviation at the position of the previously computed quantile

value ẏq . For D, ASUM , and C, any deviation in input data leads to a change in dout; there-

fore, we keep no explicit →֒-information for those operators. Similarly to the one-dimensional

case, for T m we record predicates φdimj
for deviations in each dimj–component of the input

distribution. For the operator M, the predicates φdimj
are associated with the dimensions

that are marginalized out; each φdimj
evaluates to true if there is a deviation ∆x.dimj

6= 0
anywhere in the interval [υ1, υ2].

EXAMPLE: Table 5.1(b) shows the →֒ edges introduced for our use case. We have three

edges, representing the conditioning of xM,S to a low, medium, and high marketing budget,

respectively (recall that xM,S .dim1 is modeled by xM , see Table 5.1(a)).

The operators στ and AMIN/MAX require that predicates φi are captured for each xi ∈ X .

Each φi references intermediate processing information captured when the operator is initially

executed3.

For στ (X,ω(<, υ)), we record the selection probability pi for each xi. Assume that pi > τ ,

i.e., xi fulfilled ω(<, υ) with sufficient probability and was therefore selected into Y . Then,

similar to [KLD11], an item x′i deviating from xi (with pi > τ ) will become unselected only

if ∆xi
(υ) < τ − pi. Similarly for an unselected item (pi < τ ), the item will get selected only

if ∆xi
(υ) > τ − pi. The procedure for predicates ω(>, υ) is similar, and we omit it here.

In the procedure of AMAX(X), the high percentile values ẋq,i = inv(xi, 0.99) computed

for each xi ∈ X are captured. Further, we keep a tree structure kTree, in which we cache

the k highest values ẋq,i with a reference to their associated xi ∈ X . For each xi ∈ kTree,

we then capture a predicate φi that evaluates to true if ∆xi
(ẋq,i) 6= 0. In this case, the new

quantile value ẋ′q,i will deviate from ẋq,i and thus must be recomputed. For all other items

xi /∈ kTree we define φi to be true if the deviation ∆xi
(ẋq,i) is negative, since only then

ẋ′q,i > ẋq,i and x′i may contribute to the k top values. The procedure for AMIN is similar and

therefore omitted here.

After this section discussed the rationale of the captured operator-specific edge and predi-

cate information, the next section describes how those information are exploited for efficient

result recomputation. As an alternative to exact recomputations based on known deviations,

3We list the intermediate processing information in the out-column of στ and AMIN/MAX of Table 5.2, even

though they do not constitute the actual output, but rather provenance augmentations.

88



5.2 Scenario Provenance Capture

o
i

in
ou

t
≈

ed
g

es
→֒

ed
g

es
Im

p
ac

t
p

re
d

ic
at

e
φ

U
n

iv
ar

ia
te

T
x

,
ω
:
(υ

1
,υ

2
)

ẏ p
—

d
in

−
→

d
p

φ
:
(∆

x
(υ

1
)
6=

0
∨
∆

x
(υ

2
)
6=

0
)

Q
x
,p

ẏ q
—

d
in

−
→

d
q

φ
:
(∆

(x
q
)
6=

0
)

σ
τ

X
,
ω
:
(≶

,υ
),
τ

Y
,(
p
i)

d
in

−
→

d
o
u
t

φ
i
:
(∆

x
i
(υ
)
≶

τ
−
p
i)

,
if
x
i
∈
Y

φ
i
:
(∆

x
i
(υ
)
≷

τ
−
p
i)

,
if
x
i
/∈
Y

A
S
U
M

X
ẏ s

u
m

—
—

—

A
M

I
N

X
ẏ m

in
—

d
in

−
→

d
m

in
φ
i
:
(∆

x
i
(ẋ

q
,i
)
6=

0
),

if
x
i
∈
k
T
re
e

(ẋ
q
,i
)

φ
i
:
(∆

x
i
(ẋ

q
,i
)
>

0
),

if
x
i
/∈
k
T
re
e

A
M

A
X

X
ẏ m

a
x

—
d
in

−
→

d
m

a
x

φ
i
:
(∆

x
i
(ẋ

q
,i
)
6=

0
),

if
x
i
∈
k
T
re
e

(ẋ
q
,i
)

φ
i
:
(∆

x
i
(ẋ

q
,i
)
<

0
),

if
x
i
/∈
k
T
re
e

D
Ẋ
,β

y
—

—

M
u

lt
iv

ar
ia

te

C
x
j
,
x
C

y j
n
t

d
j
−
→

d
im

j
d
o
u
t
,

—
—

j
=

1,
..
.,
m

d
C
−
→

c
o
r
d
o
u
t

—
—

M
x

,
ω
j
:
(υ

j
1
,υ

j
2
)

y m
r
g

d
in

d
im

k
−
→

d
im

k
d
o
u
t

d
in

d
im

j
−
→

d
o
u
t

φ
d
im

j
:
(∆

x
.d
im

j
(υ
)
6=

0
),

j
=

1,
..
.,
|Ω
|

k
=

|Ω
|+

1
,.
..
,m

υ
j
1
<

υ
<

υ
j
2

T
m

x
,
ω
j
:
(υ

j
1
,υ

j
2
)

ẏ p
—

d
in

−
→

d
p

φ
d
im

j
:
(∆

x
.d
im

j
(υ

j
1
)
6=

0
∨
∆

x
.d
im

j
(υ

j
2
)
6=

0
)

T
ab

le
5

.2
:
≈

-
an

d
→֒

-e
d

g
es

an
d

im
p

ac
t

p
re

d
ic

at
es

φ

89



5 Scenario Recomputation

the approximate evaluation of assumed changes in input data is addressed in the second part

of Section 5.3.

5.3 Change Impact Analysis

As basis for evaluating change impacts through the computation process, we use information

about the deviation of base data, ∆x. Then the goal is to evaluate their impact on derived data.

5.3.1 Retrieving Derivation Information

The capture and querying of data derivation information, while not being the focus of this

work, builds the basis for users (i) to find base data and operators applied in the derivation

of a relevant result data and (ii) to analyze change impacts from base data on dependent data

through the graph. As the derivation of d, we denote the part of a computation that finally

yielded d, i.e., the sub-graph P (d) of G, P (d) = PO(d) ∪ PD(d) ∪ PE(d), where PD(d) are

the contained data nodes, PO(d) the applied operator nodes, and PE(d) contains the edges

connecting the nodes in PD(d) ∪ PO(d). We traverse G along its edges E to answer basic

queries about the source and transformation provenance of data of interest. For a node d, all

elements in PD(d) can be retrieved as the transitive closure wdf∗(d). Similarly, we can access

provenance for a specific version of a node d through P (d, vi), and traversing associated edges

(either inherited from version vi−1 or annotated with vi).

5.3.2 Recomputation

Consider a result data item xt at node dt and a deviation ∆xb
, where db ∈ PD(dt). Given

G, we can re-execute the computation that yielded xt from scratch. In particular, we can

reconstruct the query that yielded xt by traversing G along wgb and used edges starting at dt

to retrieve applied operators oi, and their input and output data (oi.in =
⋃

dj |∃ oi
used
−→ dj

and oi.out =
⋃

dj |∃ dj
wgb
−→ oi). Then, we can map each operator node oi ∈ PO(d) to its

implementation and parameterize it using oi.par. Finally, given all base data is available, we

can recompute xt.

At this point, we naturally want to exploit the captured operator-specific information and in-

termediate initial computation results to lower the costs for recomputations. For two versions

of base data items, x, x′ or datasets X,X ′, there can be different degrees of modification (f ),

which will influence the costs of recomputation. Particularly, for input data sets X , we denote

the fraction of items |X∆|/|X| for which deltas are considered in the recomputation as fX .

To ensure an efficient recomputation, the overhead of the recomputation times in proportion to

fX should be small, e.g., if fX = 0.5, the recomputation times should, ideally, be close to one

half of the initial computation times. For individual items x, we denote the modified fraction

of their support interval Ix as fx. Again, with smaller values of fx, the times for recompu-

tation should decrease, due to the smaller amount of data loaded and processed. Section 7.6

will investigate the recomputation methods presented below regarding the achieved runtime

efficiency for different fX and fx.

90



5.3 Change Impact Analysis

First, we consider the case of individual processing steps represented through a node o and

its associated inputs. As described above, the goal is to exploit recorded information to re-

strict recomputation steps to incorporate only impact-relevant deviations ∆x, i.e., those ∆x

for which φ evaluates to true. In the second part, the optimized recomputation of operators

over multivariate data is considered, where information reflected through ≈- and →֒- edges is

used for a more efficient processing of operator sequences.

Recomputing the basic statistic operator T (x, ω) based on deviations ∆H
x amounts to test-

ing φ(∆H
x (υ) 6= 0) and computing ẋ′out = ẏ + ∆H

x (υ). This is equal to computing T from

scratch when ∆H
x affects the whole interval of x. For Q(x, p), the predicate φ(∆H

x (ẋq) 6= 0)
is tested, and ẋ′out = Q(x, p) is then recomputed only in cases where φ evaluates to true. This

induces a complexity of O(log2β), which is reduced to O(1) if φ evaluates to false.

Probabilistic Threshold Selection

Given a data set Y = στ (X,ω), we want to compute Y ′ = στ (X ′, ω) based on the initial

result X and deviations of data items x′i ∈ X ′. As before, the assumption is that for each

xi, the corresponding (i.e., selected) item in Y is accessible based on a unique key. Then, we

start with a result set Y ′ = Y , and remove each item for which φi evaluates to true. Similarly,

we add each (previously unselected) item x′i ∈ X ′ \ Y , to Y ′ if φi = true, and update the

selection probabilities p′i accordingly.

Aggregation

To recompute ASUM based on X ′, we incorporate each deviation ∆H
xi

by computing an ex-

pected delta value

E
∆(∆H

xi
) =

β
∑

j=0

∆H
xi
(vj) · vj

at β equi-distant points vj in the interval Ixi
. Then, we recompute y′ = y +

∑

i E
∆(∆H

xi
)4.

For AMAX(X), we consider a one-time recomputation based on a deviating set of input

values, X ′. Recall that, at the time of recomputation, we have available the quantile values

ẋq,i and predicates φi which are recorded when AMAX(X) is initially computed. First, for

any φi of an item xi ∈ kTree that evaluates to true, we compute ẋ′q,i = invx′
i
(0.99) as the

new percentile value of x′i and update kTree with the new value. Similarly, for all xi /∈ kTree
we compute new quantiles ẋ′q,i if φi evaluates to true (since only then, ẋ′q,i > ẋq,i) or if the

old value ẋq,i now is larger than the current highest value in kTree. We successively update

kTree with the newly computed ẋ′q,i and return the new absolute maximum value ẏ′max. The

procedure for AMIN is similar and therefore omitted.

4Note that we write E
∆(∆H

x ) even though ∆H
x is no distribution function but rather reflects the deviation between

two distributions; yet the computation of the expected delta value E
∆ is similar to that of an expected value of a

distribution, E.

91



5 Scenario Recomputation

Multivariate Data Analysis

In the standard approach for multivariate analysis, we either have available a joint distribution

xjnt or first compute it using C, and then process it using T m or M. A deviation in any

of the components of xjnt (dimj and cor) will affect xjnt. Therefore, considering edges

dj
≈
−→dimj

djnt, we need to compute a new data item x′jnt if there is a deviation in any of

the input marginals xj . Then, we need to consecutively re-evaluate operators that used xjnt

as input. For example, for an edge oM
used
−→ djnt, we recompute M over x′jnt. Using the

operator-per-operator approach, this recomputation must be done even if no deviation ∆xj

(at the input of C) will ultimately impact the result of M(x′jnt,Ω). Moreover, the complete

distribution x′jnt needs to be recomputed, even when only a restricted part of x′jnt (satisfying

all ωj ∈ Ω) eventually contributes to the result of M. The same holds true for the computation

of T m. Using the recorded ≈ and →֒ edges, analyses over multivariate data can be processed

more efficiently as described in the following.

Restriction push-down One can exploit knowledge about impact restrictions introduced

by an operator oi by pushing them down to the input of a direct preceding operator oi−1.

Consider the edges dj
≈
−→dimj

djnt, j = 1, ...,m (which is introduced as C is applied) and

djnt dimj

→֒
−→ dout (introduced as M is applied to marginalize out dimj , j = 1, ..., |Ω| < m).

Now, it is possible to infer implicit →֒ edges dj
→֒
−→ dout. Conceptually, the impact-restriction

introduced by oM is thus pushed down to the input node of oC , dj . On this basis, both C and

M need to be recomputed only if any deviation ∆xj
will impact the output of M according to

the impact predicates associated with M. The approach applies similarly to the recomputation

of T m.

Section 7.6 evaluates how this impact-based restriction decreases the overhead of recompu-

tations for different degrees of fX , where fX denotes the fraction of the pairs of marginals xj

that satisfy φj .

Rewriting based on ≈-correspondences Second, correspondences between distribu-

tions components can be exploited in order to re-arrange the operator plan associated with

an analysis. Here, the goal is to restrict the recomputation to the relevant part of xjnt (i.e.,

the part that will ultimately influence the result of M and T m). This approach has been

described as optimization possibility in Section 4.5.1. Here, it is briefly discussed how the

recorded ≈-relations enable this optimization. In particular, the rewriting is based on exploit-

ing (a) knowledge about corresponding dimj components of xC and xjnt and (b) the map-

ping between distributions xC and xjnt (using functions invj : xC .dimj→xjnt.dimj and

cdfj : xjnt.dimj → xC .dimj) as discussed in Section 4.2.

Consider a bivariate case with x1, x2 as marginals, and predicates ω1(υ11, υ12) and ω2(υ21, υ22)
used in the computation of M and T m. Then, consider a recomputation based on inputs x′1
and x′2. For M, instead of computing M(x′jnt, ω1) with x′jnt = C(x′1, x

′
2, xC), we com-

pute only the relevant region of x′jnt as input to M. That is, we compute M(x′jnt, ω1) with

x′jnt = C(x′1, x
′
2, x
′
C), where x′C is floored outside the region [cdfx′

1
(υ11), cdfx′

1
(υ12)]. For

T m we can directly compute the joint probability over xC exploiting knowledge about the cor-

responding dim-components. Therefore, instead of computing T m(C(x′1, x
′
2, xC), (ω1, ω2)),

92



5.3 Change Impact Analysis

the computation can be rewritten to T m(xC , (ωC1, ωC2)) with predicates

ωC1(cdfx′
1
(υ11), cdfx′

1
(υ12)) and ωC2(cdfx′

2
(υ21), cdfx′

2
(υ22)).

Having discussed different approaches to exploit captured provenance information for a

recomputation using ∆H , the next section addresses an approach for approximate recomputa-

tion, where assumed deviations are represented through a function representation.

5.3.3 Approximate Deviation Analysis

Often, a user may either not know accurate deviation information or require only an approx-

imate recomputation of results. This is the case when he wants to evaluate the effect of an

assumed deviation (rather than evaluating a known or expected plan-actual deviation). For ex-

ample, in our use case the user may wish to "shift" distributions associated with per-customer

sales (XS) such as to investigate the effect of a skew in xS,i towards their lower tails. In this

case, he can use an approximate representation of deviations.

Delta Function Approximation ∆T
x For an exemplary approximate representation, we

apply a simple piecewise linear function ∆T
x . As the deviation of two CDFs by definition

approaches zero as we draw near lx
′

x = min(x′, x) and hx′

x = max(x′, x), we use a triangular

function defined in [lx
′

x , hx′

x ]. This is adequate in cases where deviations between x, x′ are

gradually increasing or decreasing, rather than occurring at one position of the distribution

only. The parameters of ∆T are the (assumed) amount of the maximum distance between

cdfx′ and cdfx, δ̄x
′

x , 0 ≤ δ̄x
′

x ≤ 1, and the location of that deviation, posx
′

x . We define

∆T
x (v) =











δ̄x
′

x · (hx′

x − v)/(hx′

x − posx
′

x ) if v ∈ [posx
′

x , hx′

x ],

δ̄x
′

x · (v − lx
′

x )/(posx
′

x − lx
′

x ) if v ∈ [lx
′

x , posx
′

x ],

0 otherwise.

While the ∆H representation of deviations requires storage, access and processing costs

equal to x in the worst case (i.e., if the deviation affects the complete interval Ix), ∆T is

entirely represented by four parameters. Those are stored in a function table from which the

delta associated with an item x′ is accessed at query time.

Approximate Recomputation Using ∆T , users can now also reevaluate queries by in-

corporating the approximate deviation information reflected by ∆T . Since ∆T retains (ap-

proximate) information about the location of the distance between distributions, one can use

it similarly to ∆H , i.e., to compute the deviation ∆T
x at a given position υ, such as to use the

result to evaluate φ in the process of operator recomputation. At the same time, using ∆T we

can avoid the higher storage and access costs incurred by ∆H .

Naturally, in cases where ∆T is used as an approximation of ∆H (rather than to introduce an

assumed deviation), there will be an approximation error introduced by ∆T which influences

the accuracy of the approximate recomputation. In particular, if the triangular shape (or any

other function approximation one may devise) of ∆T does poorly or not at all fit the real

deviation, the recomputed result will naturally be inaccurate as well. The application of more

complex and accurate approximation functions is out of the scope of this thesis, but could be

easily integrated with the discussed approaches.

93



5 Scenario Recomputation

5.4 Summary

This chapter discussed the capture of provenance information for scenario analysis processes,

and its exploitation with the goal to efficiently re-evaluate analytic computations over continu-

ously distributed data. The issue of recomputations is motivated with respect to incorporating

plan-actual deviations in data, as well as investigating assumed input deviations for change

impact analyses. The presented approaches focus on analyses that involve the application of

the analytic operators discussed in Sections 3 and 4. Those operators share the common char-

acteristic that their results often rely on a restricted region of their input data distributions only.

According to the presented approaches, this information is captured in the form of provenance

relations and predicates, where the former are recorded on the level of operator applications

(and their input and output data sets), while the latter are stored per data item. Additionally,

intermediate processing information, such as the selection probability values in the case of the

operator στ , are kept in memory. At re-evaluation time, the captured information is exploited

to perform the required computation steps only selectively. That is, the recorded predicates

are evaluated in order to determine impact-relevant changes in input data. Then, further com-

putation steps are only re-computed for those data that exhibit impact-relevant changes.

In Section 7.6, the efficiency of the presented techniques for recomputation of analytical

queries will be evaluated. Noteworthy, in this thesis, the focus is mainly on incorporating

manual changes to input data as well as possible plan-actual deviations that occur when the

distributions of actual data deviate from originally assumed deviations. Another important and

promising application of the recomputation approach is the automatic computation of deviat-

ing scenarios. When the scenario space shall be explored for (combinations of) deviations in

input data to identify critical or promising neighboring scenarios, this results in a large number

of possible deviations. In this case, the efficiency of subsequent scenario computations under

partial changes in the input data becomes even more apparent. This topic, which is similar

to the optimized computation of what-if queries under varying parameterizations investigated

in [KN11], is highly interesting yet out of scope of this thesis.

Although the generic capture and handling of provenance for arbitrary queries is not ad-

dressed in this thesis, it is noteworthy that the presented approach can be extended to allow

for the representation of dependency (provenance) in a more generic manner. Particularly,

predicates applied in the processing of operators such as T m and M can be reflected by cap-

turing conditions for the tuples associated with individual data items in a dedicated condition

column, in line with the representation system of probabilistic c-tables (see Section 6.4.5).

Having presented the concepts of this thesis during the last three chapters, the next chap-

ter is dedicated to the presentation of related work in the area of uncertain data management

and scenario analysis. There, we will present important (alternative) techniques for represent-

ing and processing uncertain data, dependency and provenance, as well as a discussion of a

selected range of existing solutions.

94



6 Related Work

This chapter discusses related work in the areas of uncertain data management and prove-

nance. First, prominent alternative technologies for modeling and processing uncertainty and

provenance in data are discussed. This includes foremost the implicit approach to uncertain

data management using Monte Carlo simulation, the explicit representation of probabilistic

data with dependencies through probabilistic graphical models and c-tables, and the manage-

ment of provenance in its different forms. Then we consider a number of existing systems for

probabilistic data management. We discuss their relation to the context of scenario analysis

and planning, and how their capabilities differ from the approaches presented in the thesis at

hand.

6.1 Monte Carlo Simulation

The approaches discussed in this thesis rely on an explicit representation and processing of

uncertainty to the largest part. A notable exception is the concept of sampling copulas and

their application for correlation handling discussed in Chapter 4. As stated before, the class of

approaches that model uncertainty implicitly, relying on Monte Carlo (MC) simulation, form

a widely-used alternative to the explicit representation of uncertainty.

6.1.1 The Monte Carlo Approach

The essence of the MC simulation approach is the simulation of a large number of stochastic

events which are then evaluated deterministically. The MC approach bas been widely applied

in many fields such as physics, engineering, finance, telecommunications, and games. Gener-

ally, the goal of MC is to compute a numerical solution to problems (functions) which would

be expensive or even impossible to solve analytically. To this end, one first draws a large num-

ber of samples for each of the input variables of the problem (the function to be evaluated)

through appropriate sampling functions. The generated samples are then considered realiza-

tions of the problem in different possible worlds, and the function of interest is evaluated

deterministically over the samples. This way, it is possible to evaluate arbitrarily complex

functions over (multivariate) input distributions, as well as to compute statistical measures

over the function outputs, such as their expected value.

The great benefit provided by the MC simulation approach, as opposed to the explicit rep-

resentation of uncertainty with its hard-wired uncertainty representation, is its genericity. The

representation of uncertainty is encapsulated completely in the sampling functions. Therefore,

95



6 Related Work

the class of applicable probability representations is not restricted. On the one hand, this im-

plies great flexibility since the user can model any distribution through appropriate sampling

functions when required. On the other hand, this genericity can come at the cost of potentially

large memory and processing costs, especially as the complexity of the applied statistic mod-

els increases. Apart from this aspect, models involving very complex sampling functions can

be hardly accessible or comprehensible to users without a deep knowledge in statistics. Thus,

they may be hard to maintain, adjust, and reuse.

When using MC in a sample first approach (as described for a specific system in Sec-

tion 6.4.4), all random variables involved in a query are represented symbolically and their

concrete instantiation is realized through sampling at runtime. Then, queries are evaluated

over the potentially very high number of all samples. As a variation to the pure sample-first

approach, the relational parts of queries can be evaluated partially before the sampling phase

is started. This can help to avoid wasting sampling effort on such samples which will be dis-

carded during the further evaluation of the query (e.g., based on a selection predicate over a

deterministic attribute). An implementation of such an approach is described in Section 6.4.5.

Numerical Integration One common application of MC is the numerical integration of

functions for which an analytical evaluation is infeasible or even impossible. Given a distribu-

tion function Px, one can draw a very high number of samples following the distribution, and

then evaluate the integral
∫ υ2

υ1

Px(x)dx within a lower bound υ1 and an upper bound υ2 as the

fraction of those samples that fall in the interval [υ1, υ2].

While the approaches of this thesis mostly rely on an explicit representation of probabilis-

tic data, sampling-based numerical integration is used in the context of correlation handling.

More specifically, we integrate over sampled multidimensional copula functions in the course

of constructing ACRs, as well as in the process of evaluating joint distributions based on sam-

ples drawn from a copula function, or based on an ACR, respectively.

6.1.2 Optimizations

There exist a variety of MC algorithms that are tailored to the specific nature of an analy-

sis or optimized regarding the accuracy of simulation results. A primary concern of those

optimization methods is to focus the sampling effort on those regions that are most relevant

for the evaluated function. An important application is the simulation of rare events and the

evaluation of queries over such events, which is addressed, e.g., in the work of [JXW+10].

Importance Sampling and Recursive Stratified Sampling As an example for an

optimized sampling approach, the importance sampling technique is used to draw samples

from a distribution of input variables in such a way that it “emphasizes” (i.e., draws more

frequently) those values that have more impact on the function estimate than others. This way,

the error of the final result estimate can be reduced with a lower total number of samples than

would be required using the basic MC approach. The bias that is introduced to the sampled

input distributions is accounted for by appropriately weighing the resulting outputs of each

simulation iteration in the computation of the final result estimate.

96



6.1 Monte Carlo Simulation

Similarly to importance sampling, recursive stratified sampling approaches aim to increase

the accuracy of the function estimate, while minimizing the number of required samples. This

is achieved by focusing the sampling effort on those regions in the m-dimensional sample

space where the variance of the function value is the largest. The algorithm proceeds re-

cursively by first computing a function estimate and error estimate with input samples being

obtained through the basic MC approach. Given the resulting error is larger than an accuracy

threshold, the multidimensional space is divided into subregions and the first step is repeated

for each subregion in turn. This procedure is repeated until the error estimate is low enough,

and the simulation results are returned.

In this work, copula function samples are used for the representation of correlation struc-

tures. However, the proposed ACR approach does not perform sampling at runtime but rather

uses sampling-based approximate representations of the copulas. Those are produced offline

before they are imported to the database to be used for future queries. The accuracy and

runtime costs of the operators for correlation processing depend solely on the representation

accuracy of the applied ACRs. Due to the offline construction of the ACRs, the sampling costs

are not considered of prior importance within this work. Indeed, we hold that the number of

underlying samples can be potentially very large, so that the produced ACR reflects the copula

function closely. Specific relevant regions of the copula (such as the joint tails) can then be

represented highly accurately by choosing an appropriate nested histogram representation, as

discussed in Section 4.3.4.

Markov Chain Monte Carlo (MCMC) The class of MCMC algorithms can be applied

when a desired joint distribution is not known or is difficult (expensive) to sample from, but

the individual conditional distributions of the variables are known. The overall method is to

construct a Markov chain whose stationary distribution is then the desired sample distribution.

This is achieved by performing a random walk, at each step of which a sample from each one-

dimensional conditional distribution is generated in turn. The resulting sequence constitutes a

Markov chain which converges to the stationary distribution after a certain number of steps.

Examples for MCMC techniques include the Metropolis-Hastings [Has70] algorithm and

Gibbs sampling [GG84] as a special form thereof. They are particularly well-suited to derive

the posterior distribution of a Bayesian network (which is essentially constructed as a graph of

conditional distributions). Gibbs sampling is applied in the work of [JXW+10] to efficiently

sample from the tails of a query result distribution and thus speed up the evaluation of queries

over light-tailed result distributions considerably. The method described in [WMM10] relies

on Metropolis-Hastings. In this work, an uncertain database is modeled through a database

that represents a single initial possible world, and an associated factor graph that encodes the

distribution over possible worlds. The MCMC technique is applied to infer further possible

worlds from the initial possible world, such as to “recover” the uncertainty in the data to a

desired degree.

97



6 Related Work

6.2 Explicit Representation of Probabilistic Data with

Dependencies

Considering the representation of probabilistic data with dependencies, we address two mod-

els which received broad attention in the field of probabilistic data management. First, we

consider the representation of joint distributions through a graph structure reflecting the depen-

dencies between the involved variables. Such graphs form the basis for so-called Probabilistic

Graphical Models (PGMs), which are applied heavily for modeling probabilistic information

in the fields of AI and knowledge management, e.g., for natural language processing, and in-

formation extraction tasks. In databases, the graphical modeling approach has been adopted

in order to allow the representation of complex distributions over large sets of random vari-

ables and for efficient querying (inference) over such data. In [DGS09], the authors discuss

the use of PGMs for uncertain data management. This section gives a brief account of the

PGM approach, adopting the notation of their work. Afterwards, the concept of probabilistic

conditional tables (probabilistic c-tables) is discussed as an approach that was developed pri-

marily in the field of PDBs as a probabilistic data model that is closed and complete under the

relational algebra.

6.2.1 Probabilistic Graphical Models

Probabilistic graphical models allow for an efficient representation and query processing over

large volumes of uncertain data. In brief, they represent dependencies over a set

X = {X1, ..., Xn} of random variables, each of them associated with uncertain tuples or

attribute values, through a graph structure and associated probability values. Assuming each

of the variables Xi is m-valued, a basic approach would be to store mn numbers (condi-

tional probabilities) for the joint distribution between the n variables. This is an expensive

approach for larger numbers of m, since it implies exponential growth in the representation

of the joint distribution. However, as stated in [DGS09], real-world distributions often exhibit

conditional independence between some of their variables. This aspect can be exploited when

using PGMs.

A PGM represents the dependency structure of all variables in X through a graph. The

graph contains nodes representing the individual variables in X , and edges representing direct

dependencies between those variables. If two nodes in the graph are directly connected, it

means that they interact (i.e., depend on each other) directly. If two variables are, however,

not directly connected, they are conditionally independent.

Factored Representation The conditional independence between subsets of variables

can be reflected in a factored representation of the modeled joint distribution. Factors essen-

tially represent the interaction within the sets of (dependent) variables in a graph; conditionally

independent sets are associated with different factors. Therefore, the factored representation

allows to represent a (complex) joint distribution over a set of variables X by means of multi-

ple factors of independent subsets Xi ⊆ X .

98



6.2 Explicit Representation of Probabilistic Data with Dependencies

Adopting the notation from [SDG09], a factor is defined as a function f(X) over a set of

variables X = {X1, ..., Xn} such that 0 ≤ f(X = x) ≤ 1. The complete joint distribution

over all variables in X can then be computed as the product of factors,

Pr(X = x) =
∏

i=1...m

fi(Xi = xi) .

Using factors, a graphical model P = (F ,X ) can now represent a joint distribution over all

variables Xi ∈ X with each of the factors fi ∈ F being defined over a subset of X .

Bayesian vs. Markov Networks Based on the structure of the graph representation, one

distinguishes the classes of Bayesian networks (in case the graph is a directed acyclic graph)

and Markov networks (in case the graph is undirected). The two classes differ both in the

form of dependencies that can be expressed, as well as the factorization one can apply, as

further detailed in [DGS09]. While the use of Bayesian networks is more suited and natural

to model dependencies that are causal and asymmetric, applying Markov networks is more

appropriate when there is no directionality of influence of one variable on another (or when

no such directionality is known), i.e., the dependency structure is symmetric.

Inference over PGMs A query over uncertain data represented through a PGM is evalu-

ated through inference over the graph representation. The structure of the graph and, particu-

larly, its degree of factorization, can be exploited to increase the query efficiency.

Typical queries that are performed over a PGM include the computation of the conditional

probability Pr(Y|E = e), i.e., the probability distribution of a subset of variables Y under

the condition of an assignment E = e. This includes the special case of computing a marginal

distribution Pr(Y), where all variables X \Y are marginalized out (see Section 2.4.1).

Using the PGM representation, one can exploit the particular characteristics of the graph

structure for a more efficient computation of such queries, instead of applying the “naive” ap-

proach of computing queries for the complete joint distribution (which results in exponential

complexity). Examples for highly efficient inference techniques include the Variable Elimina-

tion (VE) [DD96] and junction tree [CDLS03] algorithms.

PGM in PDBs The graphical modeling technique is applied by different solutions for prob-

abilistic data management, such as [SDG09] (see Section 6.4.2) and [WMGH08, WMM10].

In [WMM10] a graphical model is used to represent the joint distribution over the possible

worlds of a PDB, which serves as a basis for creating a desired number of possible realiza-

tions of the database from an initial world in the process of query evaluation.

Existing work that considers the use of PGMs in databases focuses on modeling and pro-

cessing discrete joint distributions. However, the concept of copulas and the use of ACRs,

which was investigated in Chapter 4, could be integrated with the graphical model approach,

so as to enable an efficient processing of complex joint distributions with continuous marginal

distributions. Conceptually, copulas (and ACRs as their approximate representations) can then

be considered as factors fi ∈ F of the graphical model, and conditional independence between

subsets of variables can be exploited as described above. Such an approach would serve to

99



6 Related Work

mitigate the high runtime and memory costs that occur in the case of larger-dimensional cop-

ulas (ACRs), which has been addressed as a restriction of the ACR approach in Section 4.3.3.

More specifically, using a factored representation of an m-dimensional copula (ACR), the rep-

resentation and processing of the m-dimensional joint distribution can be split up into several

factors, each represented through a lower-dimensional ACR. Then, similar to the represen-

tation of (conditional) dependency structures between discrete variables, one can represent

(conditional) dependencies between continuously distributed variables. This application of

copulas is close to the approach of the so-called Copula Bayesian Models discussed in [Eli10],

which have been developed in the context of machine learning.

6.2.2 Probabilistic C-Tables

The use of probabilistic c-tables as a representation system for incomplete, probabilistic data

with dependencies was considered in the work of [GT06]. Probabilistic c-tables are based on

the concept of c-tables [IL84]. In a c-table, the attribute values of each tuple can take either

a constant value or a variable, thus enabling the representation of incomplete information. In

addition to standard data columns, each tuple of the relation can be associated with a local

condition. A local condition combines atomic conditions over variables and constants through

conjunction, disjunction, and negation. Given a specific variable assignment (i.e., mapping

each variable in the table to a value from its domain), the condition can either evaluate to true

(i.e., be satisfied under a given variable assignment) or false. This way, c-tables enable the

representation of dependency between variables. A possible world over c-tables is specified by

a particular variable assignment. A relation in such a possible world is then obtained from each

c-table by dropping all tuples whose conditions are not satisfied under the given assignment.

C-tables are closed under relational algebra. Conceptually, the local conditions associated

with tuples of a c-table can be considered equivalent to the concept of data provenance in that

they specify the existence of a tuple based on the evaluation of atomic conditions over other

variables.

A probabilistic c-table is a c-table in which each variable is defined as a finite random vari-

able. That is, besides the conditions columns one also stores information about the probability

distributions of the values taken by the variables contained in the table. Vertical partitioning

can be applied to represent attribute-level uncertainty. That is, tuples in a table can be decom-

posed in order to efficiently represent several independent uncertain attributes. Probabilistic

c-tables are complete and closed under the relational algebra.

Probabilistic c-tables have the same expressiveness as PGMs. Both representation systems

can essentially be used to model any joint distribution between a number of random variables,

and thus, any joint distribution that can be produced using the correlation introduction op-

eration discussed in Chapter 4. The vital distinction between the concept of ACRs and the

PGM and c-table-based representation systems is that ACRs indeed represent the correlation

information between generic marginal distributions, while PGMs and probabilistic c-tables

represent specific joint distributions.

100



6.3 Data Provenance

6.3 Data Provenance

There exists a variety of approaches to capture and process data provenance in a relational

setting. A first formal classification in [BKT01] distinguished existing approaches into so-

called why-provenance (describing why an output data item was constructed from input data),

how-provenance (capturing how exactly output items have been constructed from input items),

and where-provenance (describing where some output data was derived from in the input data).

This section briefly discusses the notions of why-, how-, and where-provenance and describes

a framework that provides a generic formalization to those different approaches.

6.3.1 Why, How-, and Where-Provenance

As stated before in Section 2.5, data provenance refers to different forms of information that

capture the relation between the output data and input data of queries. To this end, one gen-

erally assumes that the items in the input data are annotated, such that the provenance of an

output can be represented by means of references to the relevant input items. Those anno-

tations can be at different levels (annotating tables, tuples, attributes, or individual attribute

values) depending on the form of provenance information. To illustrate different approaches

to data provenance, consider the input relations S and P shown in Table 6.1 and the relation R
computed through the query q(S, P ) = Πname(S ⋊⋉S.pid=P.pid P ).

(a) Sales S

sid pid

s1 p1 r

s2 p1 s

(b) Products P

pid name

p1 name1 u

p2 name2 v

(c) Sold R

name

name1 t

Table 6.1: Input relations S, P,R and query result R = q(S, P )

Why-Provenance One of the first formal descriptions of provenance is presented in

[CWW00], where the concept of lineage is introduced. There, the lineage of a tuple t in

the output of a query comprises all tuples in the input data that in some way contributed to

the production of t. For the tuple t in R, this includes tuples r, s, and u. A formally more

precise notion of provenance was given in [BKT01] under the term of why-provenance. Why-

provenance considers, for a given result tuple t, the set of so-called witnesses that contributed

to the result tuple, rather than considering all input tuples that can contribute to t. Thus, a

witness specifies a set of tuples which is in itself sufficient to produce output t; several such

witnesses may exist for a single output tuple. For example, for the result tuple t in R, we have

two witnesses, {r, u} and {s, u}, each of which can individually produce t.

How-Provenance In addition to providing information about which tuples (or witnesses

as sets of tuples) contributed to a query result, the notion of how-provenance further considers

the question how individual tuples contributed to produce an output tuple. For example, for

the tuple t in R, u has contributed in different ways, namely, by joining with several other

101



6 Related Work

tuples (r and s). This more informative (relative to why-provenance) level of provenance can

be captured through so-called provenance polynomials, which have been formalized in terms

of provenance semirings [GKT07] (see next section).

Where-Provenance While why-provenance describes the tuple combinations that serve

as witnesses of an output tuple t, where-provenance describes exactly where a specific data

value in the output (such as the value of the name attribute of tuple t) was “copied” from. That

is, given the witness {r, u} for the output tuple t with attribute t.name, the where-provenance

returns the exact location (i.e., the attribute or field) in tuple u, from which the value of t.name
was copied from according to the executed query, i.e., the field u.name.

6.3.2 Provenance Semirings

As described above, different sorts of provenance information may be relevant depending on

the application context. The classes of why-, how-, and where-provenance each address the

capture of provenance in different contexts and on different levels of data. The genericity of

the task of capturing and querying provenance information has been addressed in the work

on provenance semirings of [GKT07]. There, the authors show how a commutative semiring

structure can serve to model the source provenance information for results of positive rela-

tional (SPJU) queries in a generic manner. Provenance semirings can be applied to capture

provenance information on many levels of detail and can be specialized to different applica-

tion contexts, such as information integration, access control, and uncertain data management.

The remainder of the section gives a brief account of the concept of semirings and their spe-

cialization to different implementations of provenance.

The Commutative Semiring Structure

A semiring is an algebraic structure consisting of a domain and two binary operations with

their neutral element. For a semiring to be commutative, both operations must be commuta-

tive. As shown by [GKT07] polynomials with coefficients from the set of natural numbers

N[X] serve as the domain most informative for capturing provenance annotations, reflecting

the notion of how-provenance in [BKT01]. The corresponding semiring, with the commuta-

tive operations + and · and the neutral elements 0 and 1 is denoted by

(N[X],+, ·, 0, 1) (6.1)

The neutral elements 0 and 1 are used to denote that an element is contained or is not con-

tained in a relation, respectively. The variables of a provenance polynomial resulting from

a query are the annotations of the input data items of this query. The operations + and ·
are associated with the operators of positive relational algebra. In particular, the operation

+ is associated with the application of union and projection, combining annotations of input

tuples into the annotation of the tuple that results from the union or projection. The opera-

tion · is associated with the application of joins, combining the annotations of joined tuples.

The coefficients and exponents of a provenance polynomial then reflect information about the

102



6.3 Data Provenance

number of possible ways the annotated tuple can be produced. To illustrate the use of semir-

ings, consider the example from [GKT07] with a relation R (see Table 6.2(a)) and the SPJU

query q(R) = πAC(πABR ⋊⋉ πBCR ∪ πACR ⋊⋉ πBCR). In the relation R, we can see the

annotations p, r, and s for the three contained tuples.

(a) R

A B C

a b c p

d b e r

f g e s

(b) q(R)

A C Provenance

a c 2p2

a e pr
d c pr
d e 2r2 + rs
f e 2s2 + rs

Table 6.2: Input relation R and query result q(R) with provenance polynomials

Looking at the provenance polynomials associated with the result q(R) displayed in Ta-

ble 6.2(b), we can see that the tuples annotated with p and r contributed to the creation of the

result tuples (a, e) and (d, c). Also, we can see that tuple (d, e) can be produced in three ways,

where two involve the tuple annotated with r twice (leading to 2r2) and one involves both the

tuples annotated with r and s. This general representation of provenance information and their

processing can now be specialized to particular applications by, first, discarding information

and, second, applying appropriate operations with their associated neutral elements.

Specialization

The specialization of (provenance) semirings relies on the operation-preserving characteris-

tics of homomorphisms (see, e.g., [Beu03, GKT07]). The generic algebraic structure of

commutative semirings can be mapped to specific (less general) ones, which can then be used

to appropriately handle provenance for particular (less general) application cases. This way,

one can flexibly choose the most efficient provenance representation for a task at hand by

leaving out information present in the provenance polynomials of the most generic semiring

((N[X],+, ·, 0, 1)). In principle, one can first carry out all computations within the general

structure (that would be N[X]) and map the results to a specialized structure in a last step.

Alternatively, one can map to the specialized (less informative) structure first and carry out

the computations on this representation afterwards.

For example, the semiring can be specialized to the model of “lineage” that is applied in

[ABS+06]. Conceptually, this is achieved by discarding information about the number of

times a tuple participated in one derivation of a query result, i.e., dropping the exponents from

the provenance polynomial. The resulting algebraic structure is (Trio(X),+, ·, 0, 1); it is

termed Trio-lineage in [GKT07] since this form of provenance has been implemented in the

Trio database (see Section 6.4.1). The changes in the query results from Table 6.2 are shown

in Table 6.3(a). Note that one can no longer deduce that the tuple annotated p contributed

twice to produce the result tuple (a, c).
For further specializing the semiring in Equation 6.1, one can drop both the exponents

103



6 Related Work

(a) K = Trio(X)

A C provenance

a c 2p
a e pr
d c pr
d e 2r + rs
f e 2s+ rs

(b) K = Why(X)

A C provenance

a c {p}
a e {p, r}
d c {p, r}
d e {r, s}
f e {r, s}

Table 6.3: Query answers for K = Trio(X) and K = Why(X)

and the coefficients of the polynomials. This results in the concept of why-provenance de-

scribed above. The associated algebraic structure is (Why(X),∪,∪, ∅, {∅}). The corre-

sponding query results for why-provenance are presented in Table 6.3(b). We can see that

the provenance information no longer reflects how or how often an input tuple contributed to

the derivation of a result tuple.

The discussed provenance semirings offer a very generic approach to provenance capture

for positive relational algebra (SPJU) queries. They also enable an efficient update (and dele-

tion) propagation for such queries. For example, the deletion of a tuple can be represented

by setting its annotation to the value 0, and propagating the change through the provenance

polynomials that include the same annotation. In the context of probabilistic data, one can

similarly reflect and propagate changes in the confidence values associated with specific tu-

ples or attribute values. This has been exploited, e.g., in the work on sensitivity and explana-

tion analysis for positive relational queries over discrete probabilistic data in [KLD11]. In the

continuous case, however, modifications in input data affect a specific part of the distribution,

rather than confidences associated with a discrete value. The impact on the resulting output

of operations must therefore be determined based on the whole domain of the input distri-

bution, as discussed in Chapter 5. The provenance polynomials can, furthermore, not reflect

the application of analysis operations beyond the class of relational operators, such as those

applied in this thesis. However, for the purposes of scenario provenance capture and recom-

putation, one requires such information. In the context of this thesis, the scenario derivation

information is therefore captured on the level of operator applications and their input datasets

(in order to allow for the re-computation of analyses) and on the level of data items (in or-

der to allow for selective recomputations depending on an item-specific evaluation of impact

predicates). Similar to approaches from the field of workflow provenance, the captured prove-

nance information is represented through a graph that contains data nodes and edges to the

consuming and producing operators, and sets of item-specific impact predicates. Overall, this

information is less fine-granular than the information captured through the different forms of

data provenance discussed above for relational queries. However, it suffices for the purpose of

supporting the efficient recomputation of analysis processes, as discussed in this thesis.

104



6.3 Data Provenance

6.3.3 Workflow Provenance

As stated in Section 2.5.2, the topic of provenance for (data-centric) workflows has received

broad attention during the last decade. Many workflow management systems have included

support for representing, persisting, and querying information about the provenance of the

processed data. The surveys of [BF05, SPG05] provide an overview of the topic of prove-

nance particularly in the field of scientific data processing, which has been a major application

field of workflow management systems. As a consequence, most approaches to workflow

provenance management address the derivation of data on the level of scientific data artifacts.

That is, they capture the processing of, e.g., patient files, genetic sequence data, image data,

and the like. The management of fine-grained provenance for large amounts of individual

data records, such as the tuples of a database table, is usually out of scope for such systems.

The Taverna system [MPB10] builds a notable exception in that it considers the provenance

of large volumes of collection-based data, and provides fine-grained provenance capture and

querying at the level of both collections and individual data items. The captured provenance

trace of a Taverna workflow execution can be regarded as a directed acyclic graph, similar

to the provenance graph described in Chapter 5. It comprises two types of relations, the first

reflecting the data transformations that are computed by activities (processors) in the dataflow,

and the second reflecting the transfer of data artifacts from the output port of one processor to

the input port of the subsequent processor. The processed data artifacts of a Taverna workflow

can be either atomic data items or collections. Thus, a processor may expect different types

of data at a given input port, e.g., an atomic data item x or a collection of items list(x). If

the depth of the actual input data is larger than the expected depth at a given input port, this

depth mismatch is handled implicitly. For example, if a processor expects an atomic input item

(depth = 0), but receives a collection of items (depth = 1), a separate instance of the pro-

cessor will be invoked over each element of the input collection. For capturing and querying

the workflow provenance trace efficiently, Taverna uses this implicit iteration model. Thus,

if required, provenance traces can be generated explicitly at the fine-grained item-level, or by

using the implicit iterator model over collections. In the approach discussed in Chapter 5, a

similar iteration model is used to implicitly iterate over datasets in the process of recomputing

the results of analysis processes.

Open Provenance Model The OPM [MFF+07] has emerged as a community-driven

model for provenance capture as the result of the the Provenance Challenge series. It provides

a technology-agnostic specification and a graphical notation of a provenance graph, which

captures the sequence of transformations and the consumed and produced data artifacts of a

given process. The OPM reflects basic concepts of provenance in a generic manner, and can

be extended with application-specific concepts if required. It is largely and foremost applied

in the field of workflow management; many systems such as [LAB+06, MPB10, PCA11]

provide implementations extending the model or im- and export capabilities to produce prove-

nance traces from or to OPM.

In an OPM graph, different node types are used to represent data artifacts, processes using

or generating such artifacts, and agents controlling the execution of those processes. Edges

that connect those nodes within the graph can be of different types (Used, WasGeneratedBy,

WasTriggeredBy, WasDerivedFrom, WasControlledBy) and annotated with role labels, depend-

105



6 Related Work

ing on the nature of dependency between source and target nodes. For example, if an artifact

A1 has been generated by a process P1, this will be represented in the graph through an edge

wasGeneratedBy(A1,P1). Based on the graph model, the OPM further defines a set of infer-

ence rules and transitive closures over the dependency relationships. So, a user can investigate

different questions such as which processes were used to generate a given artifact A, or from

which base artifacts A has been derived.

While the provenance graph structure used in Chapter 5 of this thesis adopted the use of

artifact and process nodes as well as selected edge types from OPM, OPM includes a large

range of features that have not been considered in this thesis. For example, all OPM entities

can further be annotated, e.g., with application-specific information. OPM also allow to cap-

ture temporal information about the existence of artifacts and the execution of processes, and

defines temporal constraints that must be satisfied with respect to he (causal) dependencies

of the provenance information. The use of so-called accounts, which enable the specifica-

tion of multiple descriptions for the same process execution, and thus can be used to provide

hierarchically refined views on the process provenance.

In general, the OPM addresses provenance on a much more coarse-granular manner than

the previously discussed approaches to data provenance, due to its primary focus on the cap-

ture of workflow provenance rather than (relational) query provenance. On the other hand,

the OPM captures the precise sequence and properties of applied transformation, and includes

concepts such as roles, agents, or accounts, which are highly relevant in the context of work-

flow management, but are completely out of scope of the models for data provenance.

6.4 Systems

We now consider selected systems for uncertain data management. The goal of this section is

to give an overview of how the various approaches discussed previously are applied by those

systems, and how they differ from the concepts presented in this thesis. We broadly distinguish

two classes of solutions. First, we discuss systems that focus mostly (though not exclusively)

on the evaluation of relational queries over uncertain data in a data warehouse setting. Those

solutions primarily consider large volumes of discretely distributed base data, such as occurs

in the field of information extraction or data integration tasks. In this context, we discuss Trio

[ABS+06], PrDB [SDG09] and MayBMS [HAKO09], all relying on an explicit representation

of uncertainty. Then, we shift the scope to such approaches that focus both on the evaluation

of relational operators as well as statistical analyses, and which are positioned in the area of

what-if-analysis. This includes the Monte Carlo Data Base (MCDB) system [JXW+08] as a

sample-first approach to uncertain data management, and the PIP [KK10] system, as well as

the Jigsaw [KN11] approach which further extends PIP.

6.4.1 TRIO

The Trio system implements an integrated approach for uncertainty and lineage manage-

ment, based on the model of Uncertainty and Lineage Database (ULDB), first discussed in

[BSHW06].

106



6.4 Systems

Uncertainty and Lineage Database

The capture of source provenance, referred to as “lineage”, is the first central concept of Trio.

To enable the handling of lineage, Trio associates each tuple in a database with a unique iden-

tifier (i.e., an annotation). A Lineage Database (LDB) is a triple D = (R̄, S, λ), where R̄
denotes the set of relations, S = I(R̄) denotes the set of identifiers for all tuples in relations

R̄, and λ is a lineage function λ : S → 2S which associates with each tuple t the set of tuples

that were used in its derivation. ULDBs extend LDBs by incorporating the concept of uncer-

tainty. The ULDB model can be considered a specialization of the generic model described

in [SBH+09]. Trio uses the concept of X-tuples and X-relations to represent tuple alternatives

and uncertain relations as sets of such alternatives. An X-tuple is a set of alternative tuples

(representing disjoint events) while different X-tuples are considered independent. Each X-

tuple alternative is assigned a confidence value in [0, 1] which denotes its probability of being

in a possible instance of the database; the sum of probabilities assigned to all alternatives of

an X-tuple must be 1. Further, it is possible to define Maybe X-tuples as X-tuples marked with

a ’?’, to indicate that its presence in the database is not certain. As a consequence, the sum of

probabilities assigned to alternatives of a Maybe X-tuple can be below 1 (which relates to the

representation of partial distributions in [SMS+08]).

In a ULDB D = (R̄, S, λ) the symbols in S = I(R̄) now correspond to tuple alternatives

rather than tuples, as in LDBs. That is, any s ∈ S is a pair (i, j), where i identifies the X-tuple

and j refers to the jth alternative of this X-tuple. From a ULDB, one can derive a possible

LDB Dk = (Rk, Sk, λk) by choosing exactly one (at most one) of its alternatives for every

X-tuple (Maybe x-tuple) ti. The associated symbol s(i,j) is included in Sk. Similarly, for

every s(i,j) ∈ Sk its lineage λk(s(i,j)) is included in Sk, since all tuples that contributed to

the alternative associated with s(i,j) must be contained in the LDB as well. This approach

again relates to the work of [SMS+08], where the so-called history of tuples is handled like-

wise. Besides discrete distributions, Trio also supports for random variables distributed over

continuous domains [AW09], which are represented symbolically.

Two-Phase Query Processing

To enable the incorporation of lineage information in the computation of confidence values for

result tuples, the Trio system evaluates queries in two steps. Result confidences are computed

in a lazy approach, i.e., only at the end of the evaluation when they are requested. In the

first phase, the data computation is performed, i.e., the query result as such is computed, and

lineage information is recorded. As discussed, the lineage information reflects dependencies

between source and (intermediate) result data. This information is then used in the second

phase of the query evaluation to calculate result confidences consistent with probability theory.

More specifically, the lineage information of each result tuple t is used to trace back to the base

data (tuples) from which t was derived. Then, the result confidence of t is computed from the

probabilities of the base tuples.

Continuous Distribution Support

Trio supports the processing of continuous distributions, which are represented symbolically,

using approximate processing techniques at query time. The system relies on the use of var-

107



6 Related Work

ious approaches, such as accessing distributions through representative functions or using

histogram-based approximations, in order to numerically integrate over or compute statistical

measures from the continuous distributions (see Section 2.4.1). Examples for representative

functions include the function mass(min,max) that returns the integral of the distribution in

[min,max], and the function sample(min,max) that generates a random sample within a

given support interval [min,max].
In this thesis, continuous distributions are represented in a similar fashion to Trio by relying

on symbolic or histogram-based representations and providing basic operators to access the

represented distribution information. However, opposed to the central approaches discussed

in this thesis, Trio focuses on general relational query processing over volumes of (mainly)

discretely distributed data. Trio does not address techniques for modeling joint distributions

between variables, which is addressed in this thesis through the ACR approach. Also, Trio

itself does not incorporate methods for an efficient re-evaluation of queries under changed

inputs, as addressed in the context of analysis processes in this thesis. Later work of the

authors of Trio, such as [IW10, ISW10], addresses the topic of (selective) query re-evaluation

for relational queries based on recorded predicates, yet in the context of deterministic rather

than probabilistic data.

6.4.2 PrDB

The PrDB system, described in [SDG09], provides a flexible probabilistic data model that

supports the specification of uncertainty at tuple and attribute level and the representation and

querying of complex correlation structures. While [SD07] focused on the representation of

tuple-level uncertainty, [SDG09] includes the handling of attribute-level uncertainty.

Each relation R in the PrDB database is associated with (probabilistic) attributes attr(R)
and consists of a set of (probabilistic) tuples t which map each probabilistic attribute value

in attr(R) to a random variable. The variable corresponding to t ∈ R and a ∈ attr(R) is

denoted as t.a. Every tuple t of R is further associated with a boolean random variable t.e,

which represents the tuple’s existence in the database D. Using X as the set of all random

variables associated with relations in D, one can produce a deterministic database (i.e., a

possible world) through a complete assignment of values from dom(X ). Based on this model,

the special focus of PrDB is the handling of correlations between random variables, which can

be both introduced during query evaluation and present in source data. Since PrDB primarily

targets domains such as information extraction and (sensor) data integration, its focus is on the

efficient representation and evaluation of joint distributions over large sets of discrete random

variables. Contrary to the focus of this thesis, the handling of arbitrary correlation structures

between continuous marginal distributions is not in the scope of PrDB.

Probabilistic Graphical Models in PrDB

PrDB uses a PGM representation in order to represent arbitrary dependency structures between

(potentially large numbers of) discrete random variables. Thus, a probabilistic database D =
(R,P ) is defined by a set of relations, R and a corresponding PGM P . Joint distributions are

represented using a factored representation. Recall that factors represent interactions within

sets of (dependent) variables in a graph while independent sets are associated with different

108



6.4 Systems

factors. Therefore, they allow for a compact representation of complex joint distributions in

PrDB. For example, factors can express dependencies such as mutual exclusion, implication,

or independence. Instead of storing the information about the uncertainty and dependencies

directly with the data, PrDB applies the concept of separate partitions. Each partition stores a

factor together with references to those variables that are arguments of the factor; conversely,

with each individual variable the system stores references to the partitions from which the

variable is referenced.

The use of factors and the concept of a partition can be viewed analogously to the rela-

tion of a joint distribution xjnt and its components, as discussed for the representation of

multidimensional distributions in Section 3.2.2. In particular, factors f in the PGM relate to

correlation components x.cor, while the individual variables that are arguments to f relate to

the dimension components x.dimj .

Query Evaluation and Optimization

PrDB supports a wide range of queries including SQL queries, inference, and decision support

queries. As described above, one benefit of the PGM approach is the possibility of applying

efficient query evaluation techniques, even when complex correlation structures (with a large

number of variables) are involved. For example, PrDB employs the VE inference algorithm

to compute a marginal distribution of a variable Xi from a joint distribution. Still, inference

can get highly complex if the PGM contains factors that involve large numbers of variables,

e.g., as a result of an aggregation. For example, when n tuples are aggregated into a result

tuple t, this produces a large factor involving n + 1 arguments. As one approach to mitigate

this performance problem, the PrDB system exploits the decomposability of many operations,

such as the union or aggregation operations. Potentially very large factors are thus split up

into a linear number of constant-sized factors, thereby allowing an efficient evaluation over

the complete joint distribution. For further optimization, PrDB resorts to approximate eval-

uation approaches, such as MCMC techniques, whenever exact query evaluation gets overly

expensive.

Correlation Modeling through Factors and ACRs

While PrDB typically considers a low number of discrete possible values per variable, this

thesis focuses on the case of continuously distributed variables. As a result, joint distributions

between those variables theoretically reflect an infinite number of conditional probability val-

ues. In practice, we apply m-dimensional histograms (ACRs) to approximate the underlying

correlation structures, which are represented by copula functions. This use of ACRs (copulas)

implies a different approach to dependency modeling and processing than the PGM approach,

and the involved number of correlated variables is typically assumed to be much lower. As

stated before, one could still consider an ACR analogous to a factor in a PGM. A factor rep-

resenting the same joint distribution as an ACR with a representation granularity of β and

m dimensions would contain βm conditional probability values, assuming there is no con-

ditional independence between the m correlated variables. That is, the overall size of the

factor depends on the granularity of the distribution approximation, β, and the dimensionality

m, similar to the ACR-based representation. As stated in 6.2, PrDB can generally represent

109



6 Related Work

and process arbitrary joint distributions similar to the ones that can be produced using ACRs.

However, the ACR approach differs from the PGM approach in that it provides the benefit of

modularity: While PrDB models every joint distribution between the concrete variables, the

self-contained correlation representation of ACRs is decoupled from the actual data. Thus, it

can be used to correlate several variables with arbitrary univariate distributions, and compare

the resulting joint distributions. This is more appropriate for application scenarios in which

a user wants to evaluate complex correlation structures and compare their influence on future

business developments, e.g., for the purpose of risk analyses.

6.4.3 MayBMS

The MayBMS system was developed as a complete probabilistic database system extending

the Postgres server backend. MayBMS uses U-relations, a version of probabilistic c-tables

(see Section 6.2), to represent probabilistic data with dependency information. The U-relations

of MayBMS provide the same expressiveness as the PGM approach used in the PrDB frame-

work. Concerning the representation and processing of joint distributions this means that

MayBMS similarly enables the user to represent any joint distribution between arbitrary dis-

cretely distributed variables. Again, this representation approach is different from the ACR

approach taken in this thesis, which distinguishes itself through the self-contained representa-

tion of correlation structures.

The MayBMS system features a query and update language extending SQL for process-

ing and transforming probabilistic data. Based on the U-relational representation, MayBMS

provides for efficient query processing through probabilistic inference techniques.

Query Algebra

The query algebra of MayBMS is the probabilistic world-set algebra (probabilistic WSA).

It contains the relational algebra operations (σ, Π, ×, ∪, \, and ρ), an operation conf(R)

for computing the confidence of result tuples of a relation R and a repair-key operation for

introducing uncertainty.

The operation conf(R) computes the confidence for each tuple in relation R as the sum of

probabilities for all possible worlds in which the tuple occurs. The resulting (certain) relation

contains an attribute P which keeps the total confidence value for each tuple. Further, oper-

ations poss(R) and certain(R) are provided; they are computed as a selection on the results

of conf(R), to yield those tuples that are possible (i.e., P > 0) or occur with certainty (i.e.,

P = 1), respectively.

The operator repair-key→
A@B

(R) conceptually introduces uncertainty to the database. It

does so by deriving a maximum repair of relation R with respect to a functional dependency
→

A→ schema(R). That is, the result of applying repair-key is the set of possible worlds Sj ,

each of which is a relation that satisfies the functional dependency
→

A→ schema(R). Each

such world is assigned a probability pj computed from the weight values associated with

the contained tuples through a numerical attribute B. Apart from introducing uncertainty

to an initially certain database, the repair-key operation further enables the computation of

110



6.4 Systems

a database of posterior probabilities from a database with prior probabilities based on new

evidence data.

In this thesis, in contrast to the repair-key operator, uncertainty is only introduced to data

by deriving distributions of a (newly introduced) random variable from historic fact data. This

can be done either by computing parameters of a distribution function, or by constructing a

histogram representation from underlying fact data. The repair-key operation has a different

focus and is more generic in that it allows the introduction of uncertainty (and correlation

information) based on both initially certain and uncertain data. Different to MayBMS, this

thesis interprets uncertainty in terms of random variables over continuous domains. Thus,

the focus was put on the derivation of continuous distributions, as well as the evaluation of

correlation structures (ACRs) between continuously distributed variables.

Query and Update Language

The query and update language of MayBMS is a generalization of SQL over traditional

relational databases. For so-called typed-certain U-relations (classical relational tables ),

MayBMS supports full SQL. For queries over uncertain U-relations (i.e., U-relations that

contain random variables and thus are uncertain) MayBMS applies some restrictions, in par-

ticular with respect to aggregation. MayBMS replaces the standard SQL aggregates (sum and

count) by operations for computing the expected aggregate (esum and ecount), which allow

for an efficient processing and representation of aggregates over U-relations. This relates to

the semantics applied for the aggregation operator ASUM in Section 3.3.3. The computation

of confidence values (conf(R)) is also implemented as an aggregate in the MayBMS query

language. Similar to the aggregation functions presented in this work, the aggregation opera-

tors of MayBMS compute aggregate values that are deterministic, i.e., each of the aggregate

operations in MayBMS produces typed-certain output tables.

MayBMS further supports SQL data manipulation queries for inserting, creating, and delet-

ing data both for typed-certain and uncertain U-relations. As a special update operation,

MayBMS provides the assert operation. This operation serves to condition a database us-

ing a constraint Φ (expressed through a boolean positive relational query), such that the result

database contains only those possible worlds that satisfy Φ. This assert operation can be

applied, for example, to introduce integrity constraints over an uncertain database and thus re-

duce the contained uncertainty, e.g., for the purpose of data cleansing. The operation of con-

ditioning relates to the computation of conditional marginal distributions over continuously

distributed variables. There, the density in the region that satisfies the applied conditions is

similarly normalized to 1, while the region that does not satisfy the applied conditions is dis-

carded from the further analysis.

The preceding sections have discussed three systems that rely on an explicit representation

of discrete probabilistic data. Next, we consider two solutions that rely on MC simulation and

support the representation of arbitrarily distributed data.

111



6 Related Work

6.4.4 MCDB and MCDB-R

As its name suggests, the Monte Carlo Data Base (MCDB) [JXW+08, XBE+09] applies MC

sampling on the database level to implicitly represent and process probabilistic data. MCDB

allows users to specify queries involving attributes that are generated through so-called Vari-

able Generation (VG) functions. Those functions, and the parameter tables used to parameter-

ize them, encapsulate all information about the uncertainty in data.

Random Relations and VG Functions

In MCDB, a random relation (i.e., a relation that contains at least one uncertain attribute) is

specified by a schema and a set of VG functions which are used to (pseudo-randomly) generate

the samples for a number of MC iterations. An extended version of the SQL CREATE TABLE

syntax is used to identify VG functions and the corresponding parameter tables which are to

be used to parameterize the desired VG function in the query. Users can choose from a set of

default VG functions (e.g., Normal, Gamma), or use custom-implemented VG functions.

MCDB follows the assumption of [DS07] that each random relation R can be viewed as

a union of blocks of correlated tuples, where tuples in different blocks are independent. In

each iteration of the simulation, a set of samples is generated for all random attributes in the

query, corresponding to a possible world in the database. Ordinary relational queries, such

as selection, join, grouping, and aggregation, are then evaluated over the samples. The query

result is an empirical distribution which can then be evaluated further by the user. He can

visually analyze this distribution, or further evaluate it by computing statistical measures over

the distribution.

As an example (adopted from [JXW+08]) suppose a user wants to prospect sales for the

coming year based on a forecast of per-customer sales. He does not know the exact sales

amount that will be generated per customer, but he has available historic data about the cus-

tomers region. He assumes the sales to be Gamma distributed, with the scale parameter de-

pending on the region the customer lives in, and the shape parameter being determined for

each customer individually. The parameter information is made available to the VG functions

through input parameter tables. Listing 6.1 shows the query implementing this example.

Listing 6.1: MCDB Example Query

CREATE TABLE SALES(CID, AMOUNT) AS

FOR EACH c in CUSTOMERS

WITH AMOUNT AS Gamma(

(SELECT sh.SHAPE FROM AMOUNT_SHAPE sh

WHERE sh.CID = c.CID),

(SELECT sc.SCALE FROM AMOUNT_SCALE sc

WHERE sc.REGION = c.REGION))

SELECT c.CID, m.VALUE FROM AMOUNT m

In the query, two parameter tables AMOUNT_SCALE(REGION, SCALE) and AMOUNT_SHAPE(CID,

SHAPE) are provided to the VG function Gamma. The FOR EACH clause instructs MCDB to loop

over the list of customers stored in the CUSTOMERS table and to generate a realization of the

AMOUNT attribute for each customer via a call to the Gamma function. This function returns

a one-column single-row table (AMOUNT) as result. The sample data thus created (for n MC

112



6.4 Systems

Figure 6.1: Query evaluation in MCDB (adopted from [JXW+08])

iterations) represent n possible worlds, which are then evaluated in a deterministic fashion.

Thus, the query SELECT SUM(AMOUNT) AS totalSales FROM SALES yields the prospected to-

tal sales amount in the form of an empirical distribution computed over the sampled possible

worlds.

Query Processing

Figure 6.1 illustrates how query processing proceeds in MCDB. First, the VG functions spec-

ified in a query Q, such as the Gamma function used above, are invoked with the provided

parameter tables, generating a set of n i.i.d. samples for the corresponding attributes. Those

samples correspond to n possible worlds dj . The relational part of the query is then eval-

uated over each of those possible worlds, resulting in a set of n results Q(dj) contributing

to the query result distribution x. This resulting empirical distribution can then be input to

further statistical evaluation functions, to derive statistical characteristics, such as its variance

or expected value.

Since a random relation in MCDB conceptually consists of sets of many hundreds or thou-

sands of possible worlds (depending on the number n of MC iterations), the execution and

processing times of a query are crucial. In a naive approach, each possible world would be

materialized for its own, resulting in very high CPU and memory requirements to store all the

emerging tuples. To mitigate this problem MCDB makes use of the fact that all deterministic

values are the same in each possible world. MCDB thus uses tuple bundles to represent ran-

dom tuples succinctly. In a tuple bundle, each deterministic attribute is represented only once

and each random attribute is included as a nested vector that contains the n different sample

values. The following example shows a tuple bundle t for the previous example:

t = (CID, AMOUNT, PRESENT) = (42, (123.50, 274.00, ..., 180.76), isPresent)

In the tuple bundle, the values of the random AMOUNT attribute are stored as a nested vector,

while the deterministic CID attribute is stored only once. Queries are executed over tuple

bundles instead individual tuples, which means that each deterministic attribute is evaluated

only once, and only the nested vectors incur multiple evaluations (one evaluation per sample

value). Optionally, if not all costumers in our SALES table always appear in each possible

world (e.g., due to an applied predicate), a boolean vector PRESENT is used to further optimize

query processing.

113



6 Related Work

Recomputability

Since pseudo-random number generation is a deterministic process when started from a fixed

seed, one can generate an equal set of samples based on the same seed. MCDB enables the

recomputation of queries by capturing and reusing the seed values applied by the VG functions

in the initial computation. Hence, the tuple bundle from the previous example can be stored

in compressed form as t = (42, seed, isPresent), where seed is a single seed value. The

values for the random attributes, in this case AMOUNT, can then be regenerated in a consistent

manner when required—given the applied VG function and parameterization is accessible.

MCDB-R: Support for Risk Analysis

In the context of risk analysis, [JXW+10] describes an extension to the initial MCDB ap-

proach. MCDB-R targets to support functionalities such as the sampling from extreme (i.e.,

very low or high) quantiles of query result distributions. MCDB-R primarily follows the goal

to increase the sampling efficiency for such queries, especially in the case of very light-tailed

result distributions. The problem that occurs when sampling such distributions is that many

samples will eventually be discarded since they do not meet the selection criteria. For exam-

ple, for a very light-tailed distribution only very few samples may exceed a specified upper

tail threshold; thus, a large number of samples from the remaining domain of the distribution

will be discarded, and a lot of effort is wasted during the sampling phase.

To enable a more efficient approach to sampling from the tails of a result distribution, the

MCDB-R system applies the so-called Gibbs cloning approach. This approach combines

Gibbs sampling [GG84] and cloning, a technique from the area of rare event simulation. The

idea of cloning is to take a low number of initial randomly generated rare events (called par-

ticles), and produce further extreme samples as clones of those particles. The cloned samples

are created based on a Markov chain that is constructed through stepwise random perturba-

tions from the initial particles; only those clones that are indeed extreme are then retained and

added to the result sample set.

In the MCDB-R system, the Gibbs cloning approach is implemented efficiently through

the so-called Gibbs looper. The tuple-bundle approach from [JXW+08] is also extended to

account for additional bookkeeping information that is necessary to support the Gibbs cloning

approach. Using those extensions, the MCDB-R achieves considerable speed-ups for process-

ing risk analysis queries, particularly in the case of light-tailed result distributions.

MCDB in the Context of Scenario Analysis

Overall, the application focus of MCDB and MCDB-R are in the field of what-if analysis and

risk evaluation, and their requirements are closely related to our work.

In both systems, the specification of uncertainty and correlation structures are completely

encapsulated in the VG functions. In addition to the provided default VG functions, users may

implement their own sampling functions. Thus, one can basically model any desired joint

distribution, provided appropriate statistical functions are available or have been implemented.

On the one hand, the great flexibility is the principle benefit of the MC approach. On the other

hand, encapsulating the complete information about the stochastical models in VG functions

may lead to a loss of maintainability and reusability.

114



6.4 Systems

We hold that the application of copulas (ACRs) offers a more modular approach to con-

structing multidimensional distributions flexibly than does the implementation of specific joint

distributions through VG functions. In Section 7.7.1, we discuss how the copula approach can

be integrated with MC approaches such as MCDB. There, we also address the downsides of

the native sample-based implementation as opposed to the representation through ACRs. Sim-

ilar to the optimization approaches of MCDB-R, this thesis addresses the efficient evaluation

of risk-related measures, such as joint tail probabilities of a distribution. In this respect, the use

of ACRs as precomputed correlation structures enables a high query result accuracy, since the

ACR structures can be computed offline at any desired degree of accuracy, using a potentially

very high number of samples, if required.

While MCDB also focuses on the computation of what-if analyses, it does not address the

capture and evaluation of provenance information over the created data. Thus, apart from

enabling the recomputation of queries based on the retained seed values, the reuse of previous

computations is not accounted for by MCDB. In contrast, this thesis addressed the capture

of provenance as well as an approach for the re-computation of analysis results based on

deviations in the input data.

To conclude, the very generic approach of MCDB is very well suited for computing stochas-

tic models at any desired complexity, yet at the drawback of a potentially lower maintainability

and high runtimes due to the costs of sampling. As will be shown in Section 7.7.1, the copula

approach for handling arbitrary correlation structures can be integrated with MCDB in order

to improve the analysis of low-dimensional joint distributions with arbitrary correlations.

6.4.5 PIP and Jigsaw

The PIP system extends the capabilities of MayBMS by supporting uncertainty in the form of

both discrete and continuous distributions. Continuous distributions are represented symboli-

cally and instantiated at runtime using MC simulation. In contrast to MCDB, PIP specifically

aims to accelerate query processing by decreasing the effort spent for sampling, or trying to

sidestep the sampling phase completely. In brief, PIP achieves this acceleration by deferring

sampling to the final phase of query evaluation, and by exploiting specific information about

the distributions to be sampled.

Probabilistic C-Tables with Symbolic Representations

For the representation of uncertainty, PIP uses probabilistic c-tables similar to MayBMS, al-

lowing random variables in the c-tables to be associated with symbolic representations of

continuous distributions, similar to [JXW+08]. The symbolic representations are likewise

specified in the form of distribution classes (e.g., Normal or Uniform), which are associated

with random variables. For example, X → Normal(10, 1) states that the variable X is

associated with a Normal distribution with parameters µ = 10 and σ = 1. Additional infor-

mation, such as the definition of the PDF or CDF, can optionally be provided to the system.

A function p(X = x, Y = y) specifies the joint distribution of X and Y (through a prob-

ability mass or density function for discrete or continuous variables, respectively). Similar

to the VG functions of [JXW+08], PIP supports a set of standard distribution functions and

115



6 Related Work

alternatively allows users to implement arbitrary required distribution functions. Functions of

random variables are themselves considered as (composite) random variables.

Query Evaluation

PIP performs the sampling of random variables involved in a given query in a goal-oriented

fashion. Sampling is delayed in order to reduce the effort wasted for samples which would not

be considered during the subsequent evaluation. That is, PIP first evaluates the relational part

of a query—as far as possible—over the c-table representation. For example, selections, joins,

and grouping based on non-probabilistic columns are performed first. The result of the first

step is again a c-table representation. If inconsistent conditions exist in those c-tables (such

conditions can be introduced during query processing), the associated tuples are removed (as

their conditions can never evaluate to true).

For the second phase of query evaluation, PIP applies various sampling techniques. The

symbolically represented distributions associated with the remaining random variables of a

query are thus instantiated. Finally, histograms or statistical moments are computed over

the resulting samples. To increase the efficiency of the second evaluation phase, the system

exploits additional information that can be provided for each distribution function, such as its

(inverse) CDF. Depending on the availability of such information, the system can choose an

optimal technique for computing statistical measures. This can help to speed up or even skip

the sampling step, thus increasing the overall efficiency of query evaluation. For example,

given information about the CDF associated with a variable X , the system requires only two

function calls to determine the probability that a sample for X will fall within a specified

interval. Further, PIP applies a number of optimized sampling techniques in order to decrease

the overhead of basic techniques such as rejection sampling. For example, if a predicate ω
is applied to values of a random variable X , PIP can use the inverse-transform approach (see

Section 2.4.1) to sample directly from the part of the domain of X that satisfies ω, given the

ICDF of X is known. This relates closely to the use of the inversion approach for efficient

processing of correlation information in Chapter 4. PIP further exploits information about

the independence between variables by subdividing constraint predicates into minimal subsets

(i.e., such sets that do not share any variables). Then, it starts the sampling process for each of

those subsets independently, thereby reducing the total number of samples required in total.

Jigsaw and Fuzzy Prophet

The Jigsaw system presented in [KN11] extends the approach of PIP to support the efficient

computation of what-if scenarios over uncertain data. The specific focus of Jigsaw is to solve

optimization problems, i.e., to find the optimal parameterization for a stochastical model with

respect to a target function. The simulation process of Jigsaw proceeds by evaluating a spec-

ified what-if scenario—defined through a query over a parameterized stochastic model—for

a number of parameterizations, and selecting the parameter setting that yields the optimal

query outcome. In a basic approach, the query would need to be evaluated for every param-

eter setting in a potentially large parameter space. However, this yields prohibitively large

processing times for even relatively simple models. Jigsaw addresses this performance prob-

lem by identifying correlations (similarities) between the parameterization and the output of a

116



6.4 Systems

VG function, and reusing the result of VG functions where possible. To this end, the system

applies the so-called fingerprinting technique.

The basic intuition of the fingerprinting concept is that the outcomes of many stochastic

functions are strongly correlated under different input parameter settings. Jigsaw enables

the automatic identification of such correlations between function outputs and exploits the

identified correlation in order to reuse the output of a preceding VG function invocation as the

result for a correlated point in the parameter space.

Jigsaw uses fingerprints θ as a basis to determine similarity between two functions or be-

tween the outputs of one function F under different parameterization Pi and Pj . Fingerprints

concisely represent the output distribution of F (Pi) as a small ordered set of outputs of F (Pi).
The use of fingerprints for comparing the similarity of two functions relies on the approach of

random testing [Ham94]. In random testing, deterministic functions are compared based on

the pairwise similarity of their results given random input values. Jigsaw transforms stochastic

functions F to deterministic functions by replacing all sources of randomness in both invoca-

tions of F using the same vector σ of m seed values. Then, the resulting fingerprints of two

stochastic functions F (Pi), F (Pj) are defined as the m outputs F (Pi, σk), F (Pj , σk) that are

produced based on the common seed vector σ = {σk}.

To determine similar fingerprints, Jigsaw aims to find a closed-form mapping function M
that maps individual elements of a fingerprint θi to the corresponding element in θj . Dur-

ing the query execution process Jigsaw maintains a set of basis distributions that associate

fingerprints θi with a previous output oi. Whenever the fingerprint θj of a new function pa-

rameterization Pj is similar to a previous fingerprint θi, the output for Pj can be computed

as a mapping of oi. Else, F (Pj) is computed and inserted as a new basis distribution. This

approach enables Jigsaw to reuse results whenever a correlation between the parameterization

and outputs of a function can be identified. Thus, Jigsaw increases the efficiency of the PIP

approach further, decreasing query runtimes considerably when large numbers of parameteri-

zations need to be evaluated.

Jigsaw further provides the tool Fuzzy Prophet that enables an interactive exploration of

the parameter space. A user may specify a region of interest in the parameter space through

a graphical user interface; Jigsaw then rapidly produces accurate results for the selected pa-

rameter settings based on a very small fingerprint, and generates further samples to refine and

validate the accuracy of the result and the maintained basis distributions. To speed up poten-

tial future explorations, Jigsaw heuristically generates fingerprints for adjacent regions in the

parameter space that may be relevant to the user, thus increasing the efficiency of the further

exploration steps.

While Jigsaw aims at an efficient computation of scenarios based on similar input param-

eterizations, the recomputation approach discussed in this thesis aims to exploit the explicit

representation of deviations in input data. Although both approaches exploit provenance in-

formation, the sort of information and the way this information is used are vastly different.

This is due to the different underlying representation paradigms, i.e., the implicit uncertainty

modeling of Jigsaw (and the base system PIP) and the explicit approach applied in this thesis.

Therefore, the two optimization approaches are not directly comparable, but should rather be

considered as alternative approaches that are tailored towards each of the specific representa-

tion forms. A graphical user interface that supports the interactive exploration of the scenario

117



6 Related Work

space, such as provided by Fuzzy Prophet, has not been implemented during the course of this

thesis.

After the different solutions to uncertain data management have now been discussed, the

next section will once again summarize their main distinction to the approaches discussed in

this thesis.

6.5 Conclusion

This section concludes the discussion of related work by summarizing the relation of the pre-

sented systems with the contributions of this thesis. For a comprehensible overview, Table 6.4

summarizes the main aspects of the discussed solutions regarding the modeling and process-

ing of data. Regarding the data modeling aspect, we consider the distinction of explicit and

implicit representations of probabilistic data, the type of distributions that are supported (i.e.,

no support (-), weak support (+), and strong support (++) for representing discrete and con-

tinuous distributions), and the modeling of dependency (correlation) and provenance. The

latter comprises aspects of query processing, supported analysis functions, and support for

the recomputation of analysis queries. The table also lists the implementation of the concepts

presented in this thesis (see the gray-shaded row), which will be discussed and evaluated dur-

ing the subsequent chapter. This implementation is denoted as HANA Ext. In line with the

previous rough categorization of approaches, HANA Ext is compared against the approaches

based on the explicit (model-extension) and implicit (MC-based) representation of uncertainty,

respectively.

Model-Extension Approaches

Similar to the Trio, PrDB, and MayBMS systems, the approaches discussed in this thesis rely

on an explicit representation of uncertainty. However, in contrast to the named systems, the

focus is on the representation of continuous distributions represented in histogram-based or

symbolic form. While Trio provides some support for continuous distributions, their support

is restricted to a selected number of distribution families, and thus to the representation of

data that follows a suitable distribution. In contrast, this thesis also allows for the represen-

tation of arbitrary distributions through histograms. Parameterized distribution functions are

accessed through a provided definition of their PDF or CDF, or processed based on a discrete

(histogram-based) approximation at runtime.

Another distinction can be made with respect to the handling of dependencies in data. While

Trio handles dependencies introduced in the course of query processing, base data is generally

assumed independent and the Trio system does not allow to specify any dependency informa-

tion. The expressivity of PGMs and probabilistic c-tables, as used in the PrDB and MayBMS

systems, generally allows for representing arbitrary dependencies both in base and (interme-

diate) result data. This enables the representation of arbitrary joint distributions. However,

in contrast to the concepts for correlation handling presented in Chapter 4, PrDB particularly

focuses on the handling of correlation structures over a large number of variables over discrete

domains. Similarly, MayBMS expresses joint distributions between discrete variables based

118



6.5 Conclusion

S
y

st
em

M
o

d
el

in
g

P
ro

ce
ss

in
g

R
ep

re
se

n
ta

ti
o

n
D

is
cr

et
e/

C
o

n
t.

D
ep

en
d

en
cy

&
P

ro
v
e-

n
an

ce

Q
u

er
y

P
ro

ce
ss

in
g

A
n

al
y

si
s

F
u

n
ct

io
n

s
R

ec
o

m
p

u
ta

ti
o

n

T
ri

o
E

x
p

li
ci

t

(X
-r

el
at

io
n

s)

+
+

/+
In

d
ep

en
d

en
t

b
as

e

d
at

a,
’T

ri
o

-l
in

ea
g

e’

o
n

tu
p

le
-l

ev
el

:

T
w

o
-p

h
as

e:
L

az
y

co
n

fi
d

en
ce

co
m

p
u

ta
ti

o
n

,
co

n
t.

d
is

tr
ib

u
ti

o
n

s

th
ro

u
g

h
ch

ar
ac

te
ri

st
ic

fu
n

ct
io

n
s,

sa
m

p
li

n
g

C
o

m
p

u
ta

ti
o

n
o

f
m

o
m

en
ts

,

th
re

sh
o

ld
&

to
p

-k
q

u
er

ie
s

—

P
rD

B
E

x
p

li
ci

t

(P
G

M
)

+
+

/–
D

ep
en

d
en

cy
en

co
d

ed

in
P

G
M

,
fa

ct
o

re
d

re
p

-

re
se

n
ta

ti
o

n
,
p

ar
ti

ti
o

n
s

E
x

ac
t

(V
E

)
&

ap
p

ro
x

im
at

e

(M
C

M
C

)
in

fe
re

n
ce

o
v
er

P
G

M
s,

g
ra

p
h

d
ec

o
m

p
o

si
ti

o
n

C
o

m
p

u
ta

ti
o

n
o

f
co

n
d

i-

ti
o

n
al

jo
in

t
p

ro
b

ab
il

it
ie

s,

m
ar

g
in

al
d

is
tr

ib
u

ti
o

n
s

—

M
ay

B
M

S
E

x
p

li
ci

t

(c
-t

ab
le

s)

+
+

/–
C

o
n

d
it

io
n

s
o
v
er

v
ar

i-

ab
le

s

Q
u

er
y

p
la

n
s

o
v
er

c-
ta

b
le

s
R

ep
ai

r-
k
ey

,
co

m
p

u
ta

ti
o

n

o
f

co
n

fi
d

en
ce

,
p

o
st

er
io

r

p
ro

b
ab

il
it

y,
co

n
d

it
io

n
in

g

—

H
A

N
A

E
xt

E
x

p
li

ci
t

(V
ar

ia
b

le
s

w
/

h
is

to
g

ra
m

s)

+
/+

+
D

ec
o

u
p

le
d

co
rr

e-

la
ti

o
n

in
fo

rm
at

io
n

(A
C

R
s)

,
p

ro
v
en

an
ce

at
tr

an
sf

o
rm

at
io

n
-

an
d

d
at

a
it

em
-l

ev
el

Q
u

er
y

p
la

n
s

w
/

cu
st

o
m

o
p

er
at

o
rs

,

h
is

to
g

ra
m

ap
p

ro
x

im
at

io
n

,
ap

p
ro

x
-

im
at

e
in

v
er

si
o

n
-b

as
ed

co
rr

el
at

io
n

p
ro

ce
ss

in
g

C
o

rr
el

at
io

n
in

tr
o

d
u

ct
io

n
&

ex
tr

ac
ti

o
n

,
co

m
p

u
ta

ti
o

n
o

f

co
n

d
it

io
n

al
jo

in
t

p
ro

b
ab

il
-

it
ie

s,
m

ar
g

in
al

d
is

tr
ib

u
-

ti
o

n
s,

(t
em

p
o

ra
l)

ag
g

re
-

g
at

es

S
el

ec
ti

v
e

re
co

m
-

p
u

ta
ti

o
n

b
as

ed
o

n

im
p

ac
t

re
le

v
an

ce

P
IP

H
y

b
ri

d

(P
ro

b
.

c-
ta

b
le

s,

v
ar

ia
b

le
s

w
/

V
G

fu
n

ct
io

n
s)

+
+

/+
+

C
o

n
d

it
io

n
s

o
v
er

v
ar

i-

ab
le

s,
m

u
lt

iv
ar

ia
te

V
G

fu
n

ct
io

n
s

T
w

o
-p

h
as

e:
Q

u
er

y
p

la
n

s
o
v
er

c-

ta
b

le
s,

g
o

al
-o

ri
en

te
d

sa
m

p
li

n
g

,
ex

-

p
lo

it
in

g
in

d
ep

en
d

en
ce

S
ta

ti
st

ic
al

ag
g

re
g
at

es
,
co

n
-

d
it

io
n

al
p

ro
b

ab
il

it
ie

s

—

Ji
g

sa
w

C
ap

tu
re

&
ev

al
u

at
io

n
o

f
fi

n
g

er
-

p
ri

n
ts

d
u

ri
n

g
p

ro
ce

ss
in

g

F
in

g
er

p
ri

n
t-

b
as

ed

re
u

se
o

f
re

su
lt

s

M
C

D
B

S
am

p
le

-F
ir

st

(V
ar

ia
b

le
s

w
/

V
G

fu
n

ct
io

n
s)

+
/+

+
M

u
lt

iv
ar

ia
te

V
G

fu
n

c-

ti
o

n
s

T
w

o
-p

h
as

e:
S

am
p

li
n

g
&

d
et

er
m

in
-

is
ti

c
q

u
er

y
ev

al
u

at
io

n
o
v
er

sa
m

p
le

d

P
W

s

A
g

g
re

g
at

io
n

,
m

o
m

en
ts

M
C

D
B

-R
G

ib
b

s
sa

m
p

li
n

g
E

ffi
ci

en
t

co
m

p
u

ta
ti

o
n

o
f

ex
tr

em
e

ta
il

s,
q

u
an

ti
le

s

—

T
ab

le
6

.4
:

O
v
er

v
ie

w
o

f
ch

ar
ac

te
ri

st
ic

fe
at

u
re

s
o

f
re

la
te

d
ap

p
ro

ac
h

es

119



6 Related Work

on the U-relational representation. The handling of arbitrary correlation structures involving

continuous distributions is neither in the scope of PrDB nor MayBMS.

In general, none of the discussed approaches account for the extraction, storage, and in-

troduction of arbitrary correlation structures between arbitrary distributions. The approaches

addressed in Chapter 4 address exactly this open issue by means of ACRs, which can be used

to represent correlation structures that are either extracted from historic data or precomputed,

and to introduce such correlation structures to arbitrarily distributed variables.

A related topic is the representation and use of provenance information by the different

approaches. In the Trio and PrDB system, the source provenance of data is captured as the

lineage of tuples or in the form of factors, respectively. There, the primary goal is to enable

the correct computation of confidence values associated with relational query results. The

MayBMS system does not yet include support for provenance handling, but U-relations gen-

erally can be used to reflect such information. In contrast to the capture of fine-grained (tuple-

or attribute-level) source provenance for relational operators, Chapter 5 of this thesis discusses

the capture and use of both source and transformation provenance for analysis operators. The

provenance information is captured at different levels of granularity, i.e., on the level of data

sets and items as well as operator applications. Both sorts of provenance information are cap-

tured with the goal to enable the efficient recomputation of analysis processes under deviations

in the input data.

The overall aim of Trio, PrDB, and MayBMS is to provide a probabilistic database for

evaluating generic relational queries over large amounts of uncertain data. Their application

context, as stated in most of the publications related to the systems, is largely situated in the

fields of sensor data management, information extraction, and data cleaning and integration.

MayBMS explicitly also addresses the field of (what-if) analysis, providing functionality for

introducing uncertainty (repair-key) and computing posterior probabilities based on new evi-

dence data, as well as conditioning a database. In contrast to the above-named solutions, this

thesis has addressed primarily the execution of analysis processes involving analytical oper-

ators, rather than providing a complete probabilistic data management system. For example,

support for joining and grouping data based on uncertain attributes is not provided for by this

thesis. The application of generic relational queries over fact (and thus, deterministic) data is

assumed as a step that precedes the further analysis. Thus, the analysis operators supported

in this thesis are in most cases applied on previously joined, grouped, and aggregated input

fact data. The aspects of correlation handling and recomputations within the analysis process

have been of primary interest in this thesis. Both aspects have not been addressed appropri-

ately in prior work, yet are highly relevant to support flexible scenario analysis and planning

processes.

Monte Carlo Approaches

The MCDB and PIP systems (and their extensions MCDB-R and Jigsaw) constitute solutions

that rely on the implicit approach to uncertain data management, using MC simulation. Simi-

lar to this thesis, both the MCDB and PIP approaches mainly address the application context

of statistical analysis and what-if queries over large volumes of data. They include function-

ality for the introduction of uncertainty (hypotheses) in data and the evaluation of statistical

measures, such as the mean or variance of query results. While MCDB implements the pure

120



6.5 Conclusion

sample-first approach, PIP employs a more goal-oriented and thus more efficient sampling,

by deferring the sampling phase until after the relational part of a query has been evaluated

as far as possible. Using MC simulation, both systems provide for constructing and querying

complex statistical models of theoretically arbitrary complexity. In this respect, one can argue

that MC-based solutions are the most generic solutions to uncertain data modeling, since any

desired distribution can be represented given suitable (custom) VG functions are provided.

However, as previously stated, the potential complexity of the resulting stochastic models

may reduce maintainability and can lead to high runtime requirements in case optimized sam-

pling techniques are not supported or not applicable. Although both MCDB and PIP enable

the modeling of arbitrary joint distributions using custom-implemented VG-functions, they do

not consider correlation as a self-contained artifact and do not address the extraction and in-

troduction of correlation between arbitrary marginal distributions. In Section 7.7, a technical

integration of the correlation introduction operator with systems such as MCDB and PIP will

be described. At the same time, the drawbacks of the native (sample-based) implementation

by means of a basic VG function will be discussed.

In addition to the concepts of MCDB, PIP particularly addresses the goal-oriented execu-

tion and optimization of the sampling phase during query evaluation. To this end, PIP exploits

the availability of additional information such as the CDF or ICDF of a distribution. This

optimization relates to the exploitation of the inversion technique in the implementation of

Creverse, as well as the rewriting-based optimization of multivariate analysis queries, as dis-

cussed in Sections 4.4 and 4.5.

MCDB and PIP provide no functionality for efficient recomputations based on modifica-

tions in input data. Thus, changes to parts of the input data require a complete re-evaluation

of the query in contrast to the selective re-evaluation discussed in this thesis. The Jigsaw ap-

proach addresses the problem of scenario computations under many different input parameter-

izations of the underlying stochastical models. Jigsaw seeks to achieve an efficient exploration

of scenarios by exploiting knowledge about similarities in the output of VG functions, and en-

ables an interactive parameter space exploration through the Fuzzy Prophet tool. Both the

efficient scenario computation as well as the parameter space exploration enable a highly flex-

ible approach to scenario analysis. This thesis, similarly, includes an approach to increase the

efficiency of analysis process recomputations by selectively re-evaluating analytical operators

depending on deviations in the input data. The applied approaches differ from those of Jigsaw

both regarding the underlying representations of uncertainty (model-extension vs. MC-based)

and the different focus of the applied techniques. While Jigsaw considers recomputations un-

der different function parameterizations, the recomputation approach of Chapter 5 selectively

recomputes operators for explicitly represented deviations in input data.

In summary, the application context of this thesis is close to that of the MCDB and PIP

systems, due to their similar focus on scenario (what-if) analysis and planning. On the other

hand, the explicit representation of uncertain data, their processing, and the capture of prove-

nance are more closely related to the model-extension approaches discussed above. Different

from all discussed systems, this thesis investigated the use of a self-contained representation

of correlation structures, including their efficient extraction from and introduction to data. The

selective recomputation of analytic queries over continuously distributed data constitutes an

extension to previous work in the field of deterministic and discrete probabilistic data. The

motivation for enabling efficient recomputations is close to the fingerprinting-based approach

121



6 Related Work

of the Jigsaw system, and can benefit the efficient evaluation of scenarios in the scenario plan-

ning process.

After having given an overview over related approaches and systems in the field of uncertain

data management, the next chapter evaluates the concepts discussed in this thesis based on

their prototypical implementation.

122



7 Evaluation

This chapter presents the experimental evaluation of the analytic operators discussed in Sec-

tions 3.3, 4.3, and 4.4, and the performance effect achieved by means of the provenance-based

recomputation technique discussed in Chapter 5. The first section describes the prototype

system that implements the discussed functionality. This system extends the SAP HANA

database; it is therefore denoted as HANA Ext during the remainder of the chapter. Addition-

ally, Section 7.7 discusses an extension to the MC-based systems MCDB and PIP by means

of a custom VG function for correlation introduction. Finally, an evaluation of operators and

queries performed on HANA Ext, MCDB and PIP is provided to compare the implementation

of HANA Ext to the MC-based solutions with regard to their applicability and expressivity as

well as the associated runtime requirements.

7.1 Implementation

This section describes the prototypical implementation of the HANA Ext system as an exten-

sion to the Calculation Engine (CE) component of the SAP HANA in-memory database.

7.1.1 Calculation Scenarios

The CE component of SAP HANA provides support to construct, parameterize, and execute

so-called Calculation Scenarios (CS). A CS models complex calculations over data residing

in tables of the database by means of a directed acyclic graph of Calculation Views (CV). A

CS can be created, executed, reused, and extended by users. In the context of this thesis, a

CS represents the implementation of an analysis process comprising several analysis steps.

Intermediate or final processing results within such an analysis process are represented by

means of a CV. A CV is being specified through a name, a set of input and output attributes, and

an operation that transfers inputs to outputs. Input attributes can either be the output attributes

of another CV or the attributes of a base table (i.e., a collection of columns physically stored

in the database). To refer to a base table as input data one specifies a Data Source (DS). The

DS specification contains information about the physical input table as well as the exposed

columns and a name by which the DS is referenced.

Similar to the way the SELECT-clause of an SQL CREATE VIEW statement refers to other

tables or views, one can specify a CV by referring to one or several input CVs and DSs, and by

specifying the operation that is applied over those inputs, as further discussed in Section 7.1.3.

123



7 Evaluation

7.1.2 Data Representation

To handle probabilistic data within the analysis process, the CE was extended by appropriate

distribution data types as well as basic operations for accessing the distribution information.

Representation of Probabilistic Data

The distributions of variables are internally represented either symbolically or as histograms.

Those data are processed (consumed and produced) by the provided operators at runtime and

can be stored in dedicated database tables. A unique identifier v_id is assigned for each

variable and associated with a distribution representation. Symbolically represented distribu-

tions are represented by means of parameter values in a symbolic distribution table, which

associates each v_id with a distribution family and corresponding parameters. For histogram

representations, a relation HISTINFO(v_id,v_lower,v_upper,beta,p_id) stores information

about the lower and upper support of each histogram along with the number of bins, β. A

relation HISTOGRAM(v_id,b,w) stores the actual distribution information in the form of β
frequency values wi associated with the bins bi. Optionally, the p_id column of HISTINFO

contains a key value that refers to a “parent” histogram v_id in the same table. Thus, modi-

fications can be stored in the form of delta histograms ∆H and related to their corresponding

base histograms through the p_id. At query time, it is possible either to access only the delta

histograms (e.g., in order to evaluate impact predicates φi), or to combine the deltas with their

base (parent) histogram data. Within a CV, probabilistic attribute data are referenced through

values of integer-valued input and output columns, which hold the variable identifiers (v_ids).

The distribution data associated with a set of v_ids is loaded at runtime when the operator that

computes the output of the current CV is executed.

Physical Storage Model

On the physical level, SAP HANA supports both a column-based and row-based storage

model. Due to the focus of this thesis on data analysis tasks, the column-store was chosen

as the basic storage model for the prototype. First, the separate storage of individual columns

(attributes) rather than rows (tuples) is beneficial for analytical queries, where operations often

need to access values from a small number of columns per row, rather than accessing entire

rows. This is true both for standard OLAP operators [ABH09, Pla09, JLF10] as well as for

the techniques and operations presented in this thesis, particularly those that process large

amounts of raw fact data, such as D and E .

Moreover, the column-store model enables a flexible addition of columns that hold interme-

diate or final result data to the output of a CV, which can be (re-)used by further CVs in a CS.

Finally, for operators that process multiple input columns, yet process those independently, the

columns can be processed in a parallel fashion, thus opening opportunities for optimization.

7.1.3 Operator Implementation, Composition, and Execution

As stated above, an individual CV can be considered analogous to a database view, and can

either implement access to selected columns of a base table, or an operation applied over

provided input columns of one or several input CVs or DSs. This enables users to apply

124



7.1 Implementation

both standard OLAP analysis functionality (e.g., filtering or aggregation of deterministic fact

data) as well as using custom (analytical) operators which have been previously supplied by a

consultant or an expert user.

The operators discussed in Sections 3.3, 4.3, and 4.4 are thus implemented as C++ cus-

tom operators. Each such operator takes a collection of columns (which are accessed from

one or several InternalTables) as input and produces a new collection of columns (another

InternalTable) as output. To apply a specific operator, one defines a new CV, in which the

desired operator is referenced through its associated operator identifier and the required pa-

rameter values are provided through a key-value map. Further, one specifies the input CVs

and the columns that are consumed and produced by the operator. At query processing time,

the operator accesses its internal input table(s), from which it then retrieves all relevant input

columns. Then, the operator iterates over all values of the column(s) according to its spe-

cific implementation. One or several result columns are constructed and added to the internal

output table.

The output columns produced by the analytical operators implemented within this thesis

contain either a set of result variable references, or deterministic values, reflecting result prob-

abilities, quantile values, or expected values that are in turn computed from probabilistic input

data.

Composition of Operators As stated before, a CS is constructed by specifying and com-

posing several CVs. The topmost CV of a scenario along with its ancestors form a directed

acyclic graph, which is stored as a CS. Each CV can have several input CVs (or DSs) and one

output CV. A CS is represented and stored by means of a JSON data object, i.e., consistent

with a dedicated JSON Calculation Scenario schema. A thus specified CS is created at the

database through an SQL statement and associated with a unique name under which it can be

queried. A previously created scenario and its contained CVs can be queried like an ordinary

database view, and their outputs can serve as input to further CVs that may be specified in

other CSs. The consistency of a CS is checked at definition time based on the specification of

the input and output tables and columns of successive CVs.

Parallelization The use of custom operators largely prevents the built-in automatic paral-

lelization of the HANA Calculation Engine. Thus, one needs to rely on different schemes for

parallelizing their execution “manually” to increase the runtime efficiency by scaling up to

available resources. To this end, one can use either intra-view or inter-view parallelization,

depending on the characteristics of the application case. While intra-view parallelization is

implemented through threaded execution of custom operators within a single CV, inter-view

parallelization relies on several CVs being computed in parallel, each one processing one of

several partitions of the data. Since the partitioning required by the inter-view approach must

be specified and performed explicitly before the actual calculation, it is not applicable in the

context of ad-hoc analysis processes. Thus, the intra-view parallelization was chosen as the

more appropriate approach. This parallelization approach was prototypically implemented

and evaluated for the correlation handling operators (C and E).

125



7 Evaluation

7.2 Evaluation Objectives

The next sections present the evaluation of the functionality discussed in

Chapters 3 through 5. The evaluation addresses a variety of goals and is organized as fol-

lows.

First, we discuss the application and composition of the provided operators such as to enable

the implementation of the use cases presented in Section 1.2 and fleshed out during the course

of the thesis. Then, Sections 7.4 and 7.5 focus on the evaluation of the runtime efficiency

for the operator functionality presented in Chapters 3 and 4, relating the experimental results

to the analytically derived computational complexities. Specific focus is put on a thorough

evaluation of the functionality for correlation handling. The subsequent section then addresses

the runtime performance of the recomputation approaches discussed in Chapter 5. Finally,

the performance of HANA Ext is compared to the MC-based probabilistic database systems

in Section 7.7. There, we also discuss an alternative, sample-based implementation of the

correlation introduction operator C and discuss its drawback with respect to the ACR-based

approach of this thesis.

7.3 Use Case Implementations

This section describes an implementation of the use cases discussed in Section 1 and further

extended throughout the thesis.

7.3.1 Implementation of Use Case 1

Use Case 1 addressed the analysis and prediction of possible sales scenarios. The tasks of Use

Case 1 cover both the application of basic operators such as the derivation of distributions from

fact data (D(Ẋ)) and the calculation of expectations (E(x)), as well as the application of the

temporal aggregation using AT . The data schema of the underlying sales dataset is depicted

in Figure 7.1. It contains information about historic sales figures (margin, quantity, revenue),

and their associated dimensional data (e.g., dimensions holding attributes that describe the

sold product, the store and the week of the sale).

Figure 7.2 illustrates the implementation Use Case 1, Task A, as visualized by a user in-

terface included with the HANA database administration system. The CS uses the DS SALES,

which provides the historic sales fact table and the DS WEEKS, which provides the temporal

dimension data. The CV SALES_IN_2011 selects all entries joins the temporal dimension data

and those sales that are associated with the relevant time range (2011) and product (i.e., the

product which serves as reference product for the newly introduced product), and the distri-

bution of monthly revenues per store is calculated as the output of the CV DERIVE_REVENUE.

Then, the expected revenues are calculated simply by computing the expected value of a linear

function of the derived distributions. For example, the user may assume an increase of 1%,

5%, and 8% as a weak, medium, and strong effect of the marketing campaign on the revenue

of the new product; the results of EXP_REVENUE1, EXP_REVENUE2, and EXP_REVENUE3 are then

computed as E(1.01 ·x), E(1.05 ·x), and E(1.08 ·x), respectively. Note that this basic imple-

mentation assumes a perfect linear dependency structure. Alternatively, the influence of the

126



7.3 Use Case Implementations

Figure 7.1: Star schema underlying Use Case 1

marketing campaign could be analyzed using an appropriate ACR, as discussed in the context

of Use Case 2 below.

In Task B of Use Case 1, the prospective revenue in the first half of 2012 shall be com-

puted for a new product based on the forecast revenue of a reference product. The graph that

results from the implementation of this task is shown in Figure 7.3. The CS uses the first

revenue expectation scenario from the previous task as input data, represented through the CV

PROSPECTED, which associates a reference product ID with the previously computed expected

monthly reference revenue. A second input is provided by the DS RELEASES which holds the

prod_id of the newly released product(s), the ref_id of the reference product, and variables

start_id and dur_id representing the uncertain start time and duration of the sales period of

each product. After joining the two tables on ref_id=prod_id, the temporal aggregation is

applied in the CV Q1Q2REVENUE over the set of temporally indeterministic sales events to cal-

culate the aggregated total_revenue for each prod_id. That is, the operator AT is applied

in order to compute the expected sales during the first two quarters of the year 2012 under

indeterminate launch times of the newly released product.

7.3.2 Implementation of Use Case 2

With special focus on the relevance on correlation in business data, Use Case 2 addressed the

analysis of risks related to jointly occurring events in the insurance domain. To support such

analyses, Chapter 4 discussed the functionalities for both extracting and introducing corre-

lation information (using E and C), as well as the computation of joint measures over thus

correlated data (using T m and M). Those functionalities are required to implement this use

case.

127



7 Evaluation

Figure 7.2: CS graph for Use Case 1,Task A

128



7.3 Use Case Implementations

Figure 7.3: CS graph for Use Case 1,Task B

Task A In Task A of Use Case 2, the user wants to evaluate the risk of high flood damages

under the assumption of different weather conditions, say regarding rainfall. The task can

be implemented by applying C over the marginal input distributions associated with weather

and flood forecasts using a selected ACR. Figure 7.4 shows the visualization of the corre-

sponding CS graph. The input data is provided by the DSs WEATHER_FC and FLOOD_FC, which

hold variables associated with forecasts for the future rainfall strength and flood-related insur-

ance claims. The user first assumes a correlation between rainfall and flood damages, which

is introduced in the CV WEATHER_FLOOD_JOINT. The CV COPULA_H,d, reflects the ACR se-

lected from the ACR store (COPULAS) based on the parameters determining the structure H and

strength d of the desired correlation. Based on the result data of WEATHER_FLOOD_JOINT, dif-

ferent marginal distributions (FLOOD_MRG1,FLOOD_MRG2) are then computed, from which the

user finally calculates the tail probabilities (risks) that the flood damages will exceed, e.g.,

$15bn (CVs TAIL_FLOOD1,TAIL_FLOOD2).

Task B In Task B, the goal is to evaluate risks associated with the joint occurrence of
insurance events under different correlations. The first case, Task B.1, addresses the evaluation
of catastrophe-related claims based on an assumed correlation. This task is implemented by
applying C with (possibly several pairs of) xf and xh as marginal input distributions and using

different ACRs, e.g., CT (1),0.8, as shown in Listing 7.1. In a second step, the joint probability
pu15 bn,15 bn is computed over the resulting joint distribution xf,h by applying T m.

Listing 7.1: Query for Task B.1

WITH jointDfh AS

(SELECT C(x1,x2,acr)

129



7 Evaluation

Figure 7.4: CS graph for Use Case 2,Task A

FROM Distribution x1, Distribution x2, Copulas acr

WHERE x1.id = ’xf’ AND x2.id = ’xh’

AND acr.H = ’T(1)’ AND acr.d = 0.7)

SELECT Tu(jointDfh, 15, 15)

In Figures 4.3(c) and 4.3(d) (see page 63, Section 4.2.3), the samples for which the prospec-

tive loss both from flood and hurricane claims exceeds the threshold of $15 bn. A comparison

of those figures shows that in the case of CG,0.8 a smaller mass falls into the extreme region

than in the case of CT (1),0.8. This is confirmed through the query result visualization in Fig-

ure 7.5. The joint probability pu15 bn,15 bn is calculated by summing up the bin density values

over the marked regions of the histograms. The higher tail dependency introduced through the

ACR CT (1),0.8 (adding up to a risk of 1.3%) as opposed to CG,0.8 (0.7%) can be observed

in the visualized distributions. For an insurer, evaluating such alternatives is essential: Even

small underestimations of risk may lead to an existential threat, as it implies premium re-

serves that are too low to cover claims in a "worst case" (such as a total of $135 bn in property

damages caused by Hurricane Katrina alone1).

In Task B.2, the user considers a different class of insurance events—burglary and vehicle
theft—, from which he first wants to extract a correlation structure, in order to then apply it
to forecasts of burglary and vehicle theft, bfc and vfc. Listing 7.2 illustrates the query that
implements this task. First, the user needs to derive an ACR from the samples for burglary
and vehicle theft claims over a relevant time frame. He does so by applying E , e.g., with a

1Swiss Re sigma, catastrophe report 2005

130



7.3 Use Case Implementations

(a) Using CG,0.8 (b) Using CT (1),0.8

Figure 7.5: Result histograms Df,h (right upper region)

desired result ACR granularity of α = 10. Then, the extracted ACR is applied to correlate the
distributions associated with bfc and vfc.

Listing 7.2: Query for Task B.2

CREATE VIEW Claims_Per_Week AS

SELECT SUM(bClaim), SUM(vClaim)

FROM V_Claims v, B_Claims b WHERE b.week_id = v.week_id

GROUP BY week_id

WITH Emp_BV AS (

SELECT E(Claims_Per_Week, 10)

FROM Claims_Per_Week)

SELECT C(B_FC,V_FC, Emp_BV)

FROM B_FC, V_FC, Emp_BV

WHERE B_FC.week_id = V_FC.week_id

Figure 7.6 shows the visualization of the CS graph resulting for the implementation of

Task B.2. In contrast to the implementation shown in Figure 7.4, an additional CV EMP_BV

implements the extraction of the empirical copula between weekly burglary and theft claims

(which is first selected and aggregated from fine-grained claim data on a weekly level). The

result of the CV EMP_BV is then used as input to the CV BV_JOINT. In the BV_JOINT view,

the extracted ACR serves to transfer the historical correlation to (possibly several) pairs of

forecast values bfc and vfc, which are provided by DS B_FC and DS V_FC.

Alternatively to investigating the correlation during the complete time frame (1990-2009)

of the underlying fact data, as shown in the listing, the user can also evaluate the correlation

within different time windows, by first selecting data from within those time windows, and

then deriving different ACRs over each of the selected data sets in turn.

As an example, consider the case of two 10-year windows T1 = [1990, 1999] and T2 =

[2000, 2009]. Figures 7.7(a), 7.7(b) and 7.7(c) show the ACRs C
10

T , C
10

T1 and C
10

T2 derived

from all samples, and from the samples during T1 and T2, respectively. In this case, the more

recent data show a different correlation structure, with a far lower dependency in the upper

tails (i.e., a lower density in the upper right quadrant of Figure 7.7(c)). For introducing corre-

lation to the forecast data, the user might indeed apply C
10

T2, since it represents the more recent

131



7 Evaluation

Figure 7.6: CS graph for Use Case 2,Task B.2

correlation structure, which is more likely to hold for the future development. In this case, a

subsequent computation of the joint tail probability results in a risk of below 1%. Noteworthy,

the risk would have been estimated much higher (12%) when applying the ACR C
10

T , and

again even higher (23%) using C
10

T1. In this case, the overestimation of risk could have lead

the user to opt for an overly cautious strategy, e.g., regarding the insurance premium reserve,

and therefore, loss of potential profit (chances) for the insurer.

7.3.3 Summary

This section discussed exemplary implementations of the use cases which have been discussed

throughout the thesis, and showed how the provided operators are applied to fulfill the required

132



7.4 Univariate Analysis and Aggregation Operations

(a) C
10
T (b) C

10
T1 (c) C

10
T2

Figure 7.7: ACRs derived from all samples and two 10-year time windows, respectively

functionality. Particularly, the beneficial aspects of the provided correlation handling function-

ality and their flexible application for Use Case 2 were illustrated. By means of exemplary

CS graphs, the composition of analysis processes as in the HANA Ext implementation was

demonstrated.

The next section turns to the evaluation of the runtime performance of HANA Ext, regarding

both the application of individual operators and the recomputation of analysis queries.

7.4 Univariate Analysis and Aggregation Operations

In this section, the runtimes of the univariate operators discussed in Chapter 3 are evaluated.

7.4.1 Setting

All of the following tests were executed on a server equipped with a Quadcore CPU 2.0GHz

and 32GB RAM running SLES 11.0. The underlying dataset is the TPC-H benchmark data,

which was generated with a scaling factor of 1 (resulting in a total database size of 1GB, or

a corresponding number of 6m entries in the lineitem fact table). The D operator is used

to derive distributions over the data in the lineitem tables for each associated l_suppkey,

o_custkey, or l_partkey. This results in a total of 10k, 100k or 200k distributions, respec-

tively. Those distribution data are then used as input data in the subsequent evaluation cases.

For example, the aggregation operators are executed over a set of 10k, 100k, and 200k random

variables associated with a derived distribution each. Further, for evaluating AT , an uncertain

l_shipdate and an uncertain l_shipduration is assigned to each of the facts in lineitem,

each distributed uniformly within [0, 100]2.

2The distribution was chosen for simplicity and without restriction of generality. The concrete shape of the individual

distributions is irrelevant in the context of the evaluation ofAT provided it is representable by one of the supported

distribution families or by a histogram representation.

133



7 Evaluation

7.4.2 Runtimes

This section presents the runtime results for the basic operators for deriving and analyzing

univariate distributed data, i.e., D, στ , ASUM , AMIN/MAX , and AT .

Deriving Distributions

For the evaluation of D, we consider the derivation of histogram-based and symbolic repre-

sentations over the l_extendedprice attribute of the lineitem table. Figure 7.8 shows the

resulting runtimes when grouping the data by l_partkey, resulting in a total of 200k distri-

butions. The target histogram granularity is set to β = 10, 20, 50, or 100, respectively. For

deriving symbolic representations of the underlying distributions, we fit a uniform, a Gaussian,

or a Gamma distribution.

Figure 7.8: Runtimes of D for varied datasets and approximation granularities

As shown in Figure 7.8, the runtimes for all evaluated cases increase linearly with the size

nF of the input fact data, as expected based on the complexity of O(nF ). For the construction

of histograms, the increase in β causes a slight relative increase in runtimes, even though

the bin allocation costs as such are constant due to the statically determined bin bounds. This

effect is due to increasing costs for writing the resulting histograms to the output InternalTable

of the corresponding CV.

Probabilistic Selection

The probabilistic threshold selection operator, στ , is applied to the previously derived sets of

variables, X . The associated distributions are being represented in different granularities, i.e.,

β = 10, 20, 50, and 100. As shown in Figure 7.9(a), the overall runtimes for στ are linear in

β. This behavior (which is inconsistent with the expected complexity of O(|X| · log2 β)) is

due to the dominating effect of the loading times, which are linear in β.

In contrast, Figure 7.9(b) shows the calculation times of the same operator, i.e., without the

times required for loading and constructing the distribution information. There, the expected

logarithmic behavior in β can be observed.

134



7.4 Univariate Analysis and Aggregation Operations

(a) With loading

(b) Without loading

Figure 7.9: Runtimes of στ for varied datasets and approximation granularities

Aggregation

The computation of ASUM and AMIN/MAX over X is again evaluated under varying ap-

proximation granularities β of the histogram representations associated with each x ∈ X . The

results for the application of ASUM for various sizes of the processed data set X are shown in

Figure 7.10.

The runtimes resulting for the execution of AMIN/MAX are almost equal to those for

ASUM , regardless of the difference in their associated complexities. This behavior is again

due to the fact that the costs for loading and constructing the distribution representations dom-

inate the overall runtimes. In contrast, Figures 7.11(a) and 7.11(b) show the pure costs for

calculating the results of ASUM and AMIN/MAX , respectively. There, one can observe that

the runtimes are linear in β for ASUM and logarithmic in β for AMIN/MAX , which is con-

sistent with the complexities of O(|X| · β) and O(|X| · log2 β), respectively.

135



7 Evaluation

Figure 7.10: Runtimes of ASUM for varied datasets and approximation granularities

(a) ASUM (b) AMIN/MAX

Figure 7.11: Calculation times of ASUM and AMIN/MAX

Temporal Aggregation

The temporal aggregation operator AT , is evaluated under different granularities βti and βdi

of the distributions associated with the start times and durations of a set of events E. Further,

the overlap fraction fφ is varied. As input data, a set of 10k indeterminate line item shipping

events is assumed. As note above, each such event is associated with an uncertain start time

and duration uniformly distributed over [0, 100]. Each time point or duration is represented by

a corresponding histogram with βti = βdi
= β = 10, 20, 50, or 100 bins.

In the first considered test case, βti and βdi
are varied. The portion fφ of overlapping

occurrence intervals is kept stable (at 100%) by ensuring that, for every variation, hti <
lT ∧ lti + ldi

> lT . The results for various sizes of the aggregated data sets are displayed

in Figure 7.12. There, one can observe a quadratic increase in β.This behaviour is consistent

with the complexity of O(|E| · nI · f
φ) with nI = βdi

· βti and βti = βdi
= β.

136



7.4 Univariate Analysis and Aggregation Operations

Figure 7.12: Runtimes of AT for varying βti , βdi

Figure 7.13: Runtimes of AT for varying fraction of overlaps fφ from 0.0 to 1.0

In a further experiment, the fraction fφ of the potential occurrence intervals Iipq that do

overlap T is varied. To vary the portion fφ of overlapping Iipq from 0.0 to 1.0, ti and T
are kept constant and AT is calculated for varying distributions of di. The resulting runtimes

are shown in Figure 7.13. Again, a linear increase of runtimes can generally be observed,

which is in line with the analysis results. An exception occurs for the smallest degree of

overlap, fφ = 1/10, where we observe an initially stronger increase. This is due to the fact

that for fφ = 0.0, all potential occurrence intervals of all events lie outside T , which can

be determined by solely accessing ti and di. For any fφ > 0.0, the test whether an interval

overlaps T requires that we load the representations of ti and di, which in turn implies a higher

initial cost.

137



7 Evaluation

7.5 Correlation Handling and Multivariate Analysis

This section considers the performance of the approaches for ACR extraction, correlation

introduction, and analysis over the resulting joint distributions. The experiments address both

the efficiency and the accuracy of the discussed functionality.

7.5.1 Setting

To demonstrate the flexible applicability of the proposed operators for correlation handling,

the application of ACRs is being evaluated under various correlation parameter settings. Fur-

ther, the ACR-based correlation results are compared to those obtained by the sample-based

approach considering the runtimes and result accuracy. Since the basic approach for correla-

tion introduction (Cbasic, see Section 4.4.1) often results in large discretization errors, we only

consider the application of the uniform spread approach (applying Cresample and Creverse, see

Section 4.4.2). Those approaches are more expensive than using Cbasic, yet at the benefit of a

considerably higher accuracy.

Use of Precomputed ACRs

In the following experiments, the operators Cresample, Creverse, E , T , and M, which are
implemented as C++ operators as discussed in Section 7.1, are evaluated. For the ACR-based
test cases, a set of ACRs was precomputed. To this end, the R copula package was used
[KY10]. When using nACR = 100k samples for the copula pre-computation, the construction
and storage of an ACR takes between 0.5 to 1 minutes depending on the type of underlying
generation function and the granularity α of the produced ACR. It must be noted again that
those time requirements are irrelevant for the application of copulas at runtime. The following
table lists the space required for the storage of the precomputed ACRs (in uncompressed form).
It can be seen that especially low-granular ACRs induce very low memory costs. Thus, a large
variety of ACRs can be precomputed and kept in memory for faster access at execution time.

α 10 20 40 100

size (kB) 14 29 56 181

Test Cases

Different marginal distributions (Gaussian, Gamma, and T(1)) and various copulas (Gaussian

(G), T(1), and Clayton (C)) are used as input data in the experiments. This way, the query re-

sult accuracy can be evaluated for different variations of correlated data as well as for different

correlation structures. At the same time, this variable parameterization stresses the flexibility

of our approach.

Baseline distribution histograms xB
1,2 were constructed from 100k samples for a highly

accurate representation. They serve as a basis for comparing the accuracy of the resulting joint

distributions, as well as the times required for their computation. In particular, six variants of

this baseline were computed, using copulas CG,0.4, CG,0.8, CT (1),0.4, CT (1),0.8, CC,0.4, and

CC,0.8. For each of those variants the sample-based approach was then evaluated using a

smaller sample size of nS = 5k, 10k, and 40k copula samples, respectively. Similarly, the

138



7.5 Correlation Handling and Multivariate Analysis

ACR-based results were computed using ACRs that approximate the six copulas with α = 10,

20, and 40 bins.

Apart from the operator C (in its variants Cresample and Creverse), the runtimes for the

derivation of empirical copulas from historic data using E were also measured. The results are

presented in Section 7.5.3.

7.5.2 Accuracy

For evaluating the accuracy of the resulting joint distributions, the root mean squared error

between the evaluation results and the baseline results is computed. That is, the densities

fB
k,l(k = 1, ..., β1, l = 1, ..., β2) in xB

1,2 are considered as the expected (baseline) values and

the densities fE
k,l of the evaluation results xE

1,2 are considered as the observed values. Then,

the error is computed as the root mean squared error

e =

√

(
∑

k,l

(fB
k,l − fE

k,l)
2)/N

over all N = β1 · β2 bins of the result histogram.

Figure 7.14 shows the errors obtained for each of the sample-based and ACR-based evalua-

tion variants when correlating the Gamma distribution xh and a standard normal distribution

xG, represented through βh = βG = 40 bins each. As the most accurate representations,

the usage of copulas with 40k samples clearly dominates all other results. However, the error

statistics for the ACR variants also indicate high result accuracies. In particular, very accurate

results (around 0.5% error) are obtained for the cases of lower correlation (i.e., d = 0.4) even

with a low ACR granularity α. One can see that the error increases slightly with larger values

of d (i.e., d = 0.8). This effect is due to the larger approximation error in the copula regions

corresponding to the joint tails and can be mitigated through a more accurate representation

of those regions as described in Section 4.3.

Figure 7.14: Accuracy of C for various copulas CH,d and ACRs C
α

H,d, H ∈

{Gauss, T (1), Clayton}, d ∈ {0.4, 0.8}

A further experiment investigates the accuracies of the joint distributions that are obtained

when correlating various marginal distributions. Three ACR-based and three sample-based

correlation cases are compared. For each of them, the marginal distributions x1 and x2 are

chosen to be equal, both following either a Gaussian xG (µ = 0, σ = 1), a (heavy-tailed) T-

Student distribution xT with one degree of freedom, or the (light-tailed) Gamma distributions

139



7 Evaluation

xf or xh from Use Case 2, respectively. The results are shown in Figure 7.15. One can

see that, similar to the accuracy results reported for different correlation structures above,

C computes joint distributions which deviate from the true joint distribution only within a

small error bound of 1%. Those results show that the correlation introduction performs highly

accurately for different types of input (marginal) distributions.

Figure 7.15: Accuracy of C using different ACRs C
20

H,0.8, H ∈ {Gauss, T (1), Clayton} and

copulas CH,0.8, ns = 10k to correlate varying marginals x1, x2

Figure 7.16: Accuracy of resulting tail probabilities

However, as shown in the scenario, in many queries over correlated data the focus lies

particularly on the tails of a joint distribution rather than on the whole distribution. There-

fore, instead of the overall accuracy of x1,2, the accuracy of a selected part (e.g., the right

upper corner as marked in Figures 4.3(c) and 4.3(d)) is of specific interest. To this end the

ACRs C
20

T (1),0.8 and C
20

G,0.8 are applied and the accuracy of the joint tail probabilities put1,t2
over the resulting joint distributions is evaluated. The correlated marginals x1 and x2, rep-

resented through β1 = β2 = 40 bins, follow either the Gaussian xG or the Gamma distri-

bution xh. The thresholds t1 and t2 are set so that they correspond with different percentiles

(50%, 75%, 90%, 95%, 99%) of each of the marginals. The results displayed in Figure 7.16

show that for all cases but the last one (i.e., for t1 = inv1(0.99) and t2 = inv2(0.99)), the

results are highly accurate (with an error below 1%). The higher inaccuracy in the very up-

per tails of the marginals is due to the fact that the corresponding region of the copula is not

represented accurately enough. To avoid large result errors, one can alternatively apply ACRs

where the copula region covered by the ACR bins b1,1 and b20,20 is further partitioned by a

140



7.5 Correlation Handling and Multivariate Analysis

nested histogram, as described in Section 4.3.4. For the experiment, the granularity was set

to α1,1 = α20,20 = 5, resulting in a representation granularity of 0.05/5 = 0.01 for the two

extreme joint tail bins. The results displayed in Figure 7.16 for the 99th percentile shows that

the joint tail probability can now be computed very accurately, with below 2% relative error

for all the test cases.

7.5.3 Runtimes

Another set of experiments was conducted to evaluate the runtimes of the C operation, as well

as the runtimes of the empirical ACR derivation using E .

Empirical ACR Derivation As the construction of empirical ACRs takes place at query

time (except for the case where the user accesses previously stored empirically derived re-

sults), it is crucial that the runtimes of E are sufficiently low. For the evaluation, copulas

that reflect the correlation of the l_extendedprice and l_quantity attributes of the TPC-

H lineitem table were constructed. Different sizes of sample sets were used, containing

|F | = 10k, 50k, 100k, 500k, and 1000k facts for deriving the ACR. A parallelized version of

E was implemented as described in Section 4.5.2 to speed up the ACR extraction. Figure 7.17

illustrates the required times for extracting ACRs with α = 40 bins for a single-threaded

execution as well as different multi-threaded settings.

The results show that the parallelization allows runtimes well below 1s even for large |F |.
Runtimes do not scale linearly with the number of threads due to the costs for merging the t
partial marginal distributions, as well as building the final ACR. Still, the resulting runtimes

allow for an ad-hoc derivation of empirical ACRs and thus, the flexible analysis of correlation

structures existing in data.

Figure 7.17: Runtimes for empirical copula derivation

Note that any result of E can serve as input to C just like the precomputed ACRs, which were

used in the experiments of the previous section. The accuracy results presented in Section 7.5.2

therefore apply similarly to the use of empirical copulas C
α

F .

141



7 Evaluation

Introducing correlation Given an empirically derived ACR or a selected precomputed

ACR, the goal is to enable fast correlation processing using C, as well as efficient processing

of subsequent analyses using T or M. Figure 7.18 shows the runtimes for computing x
(20,20)
1,2

using the ACR resampling approach (keeping nACR = 100k constant) and the reverse ap-

proach, respectively. For both cases, the ACR construction times are not included, since at

query time only the precomputed ACR histograms need to be accessed and processed. For the

following experiments, ACRs with α = 10, 20, 40, and 100 bins are applied. For resampling,

the runtimes are constant at about 120ms for 10, 20, and 40 bins, due to the constant num-

ber of inversion steps (2 ∗ nACR). The increasing runtimes for α = 100 are mainly due to

the higher loading costs, which dominate the runtimes as the size of the ACR increases. For

the reverse processing approach, the costs are lower than for the resampling approach for all

cases. The runtimes are slightly increasing with the number of α. This is due to the increase

of required computations for each additional ACR bin (a similar increase occurs with larger

β).

For comparison, the computation times required by the pure sample-based approach has

also been evaluated, using 5k, 10k or 40k samples. For the sample-based approach, the times

for copula construction and application were summed up. As a reference, the resulting ex-

ecution times for the sample-based approach are shown next to the ACR-based results, even

though it must be noted that the numbers of α and nS are not strictly comparable. Therefore,

the graph rather associates comparable degrees of result accuracy for the two approaches. For

example, the results of applying an ACR with α = 20 is compared to the application of a

copula with nS = 10k. One can observe that the reverse ACR-based computation runs three

times faster than the sample-based approach for comparable degrees of accuracy at nS = 10k
(for comparison, see the accuracy results for α = 20 and nS = 10k in Figure 7.14). The

runtimes for the resampling-based ACR approach are higher than those for the sample-based

approach up to α = 20, nS = 10k, but then stay at an almost constant low level.

Figure 7.18: Runtimes (in ms) for deriving x
(20,20)
1,2

Overall, the sub-second runtime results indicate that the ACR-based approach is applicable

for ad-hoc queries even when high result accuracies are required.

Although this thesis addresses mostly the handling of bi-dimensional correlation structures

142



7.5 Correlation Handling and Multivariate Analysis

for ad-hoc analyses, the issue of higher-dimensional correlation patterns is relevant, and is

therefore addressed in a further experiment. Higher-dimensional ACRs (i.e., m-dimensional

histograms where m > 2) incur larger costs for loading as well as for correlation processing.

One benefit of the ACR approach is the possibility to process subregions (i.e., sub-cubes in

the multi-dimensional case) of the ACR independently. Figure 7.19 shows the processing

costs for the reverse ACR processing scheme when correlating m = 3 and m = 4 marginals

using an m-dimensional ACR. In the figure, the results for the single-threaded execution are

shown next to executions using t threads, each loading and processing a tth subregion of the

ACR. Due to the costs for initial loading and setup as well as the final merging of results

histograms, the processing costs do not scale linearly with the number of parallel threads.

Still, using parallelization one can achieve ad-hoc results (well below 1s) even in the case of

higher-dimensional correlation structures.

Figure 7.19: Parallel execution of C (reverse) for correlating m = 3 and m = 4 distributions

Note that, different from the ACR approach, the runtimes for the native sample-based ap-

proach grow only linearly in m for constant numbers of nS . However, as the dimensionality of

the sample space grows, it is necessary to increase nS exponentially in m in order to achieve

similar sampling accuracies . This cost increase affects also the ACR resampling approach,

which results in processing times of more than 7s when using a 3-dimensional ACR. As the

number of bins α is usually much smaller than the number of sample points per dimension,

the costs for the reverse processing scheme increase less than for the resampling approach.

Optimization As described in Section 4.5.1, one can further optimize query processing by

exploiting the specific characteristics of ACRs. To this end, it is necessary to have available

information about a complex query (involving a sequential application of C and M or T ) in

advance. This is the case when the query is specified completely before execution (rather than

applying the operators in a step-wise fashion). Further, such information is available when

analysis results shall be recomputed; this aspect refers to the efficient recomputation approach

discussed in Chapter 5, which is evaluated in the next section.

The following experiment evaluates the times required to compute tail probabilities pt1,t2 ,

varying both the numbers of bins representing x1 and x2 and the applied ACRs (β and α,

143



7 Evaluation

respectively). As Figure 7.20 shows (using logarithmic scale), optimizing the query execu-

tion by rewriting the query such as to compute the tail probability directly over the applied

ACR has a major effect on the runtimes. Note that for all cases of the optimized approach,

the large computation times induced by high numbers of β (i.e., β ≥ 100) are completely

mitigated. This effect occurs because only the applied ACR needs to be processed, rather than

first computing the joint distribution histogram x
(β1,β2)
1,2 .

Figure 7.20: Runtimes for computing ptx,ty

7.5.4 Summary

In summary, the conducted experiments regarding the handling of correlation and the analysis

of multivariate distributions show:

• The obtained query results are highly accurate for different correlation structures and

input distribution characteristics.

• Both the presented operations for extraction and introduction of correlation structures

perform efficiently, especially when the number of correlated variables or the granularity

of the applied ACRs or the marginal distribution histograms is sufficiently low.

• The reverse processing scheme implemented by Creverse performs particularly effi-

ciently. The calculation of M and T m can be similarly sped up through a query rewrit-

ing that exploits a reverse mapping from the multidimensional distribution to the under-

lying correlation structure.

• For higher dimensional joint distributions and high granularities of the underlying his-

togram representations, the runtimes can be decreased through parallelization of the C
and E operators.

7.6 Recomputation

This section discussed the runtime efficiency of the approach for efficient recomputation,

which was discussed in Chapter 5. Similar to the setting used previously, experiments are

conducted on a server equipped with a Quadcore CPU 2.0GHz and 32GB RAM running SLES

144



7.6 Recomputation

11.0 and queries are evaluated against the TPC-H dataset generated with a scaling factor of

s = 1. The data was adapted to include uncertain attribute value information. In particular,

the variables xship, xrec, xprice, xdisc are used, each following the distributions of attributes

l_shipdate, l_receiptdate, l_extendedprice, and l_discount, respectively (each distri-

bution is internally represented by a histogram with β = 20) .

First, the performance of recomputing individual operators is evaluated. Both the exact

and approximate recomputation of results (using ∆H and ∆T ) under different modification

degrees fX are considered and discussed for the operators. Further, selected queries from

the TPC-H benchmark (namely, queries Q3, Q4, and Q6) have been adapted to using proba-

bilistic instead of deterministic values for selected attributes, such that they become what-if

queries over potential future developments. To this end, for each lineitem random variables

xship, xrec, xprice, and xdisc are associated with the attributes l_shipdate, l_receiptdate,

l_extendedprice, and l_discount, respectively. The distribution of each such variable is

derived by computing a histogram with β = 20 over the historic attribute values of the re-

spective attribute, grouped per l_suppkey. This results in 10k distributions, each of which

is internally represented and processed through a histogram with β = 20 bins. For the date

attributes, an integer representation is first computed from the values in the TPC-H dataset and

a uniform distribution is built for each of xship and xrec under the constraint that x̄ship (the

high support of xship) is lower than xrec (the low support of xrec). The generated probabilis-

tic data are then considered as hypothetic future values of the l_extendedprice, l_discount,

l_shipdate, and l_receiptdate attributes, and scenarios are computed over this hypothetic

future data, as follows:

• Query S3 computes the potential revenue from orders after 1995-03-01 which are likely

not shipped until 30 days from the largest order date (now). That is, the probabilis-

tic selection operator is applied over the uncertain ship dates of all selected line items

as στ (Xship, (>, (now + 30)), τ), where the selection probability threshold is set to

τ = 0.5. The total potential revenue is then computed by aggregating the price values

associated with the line items that passed στ , i.e., revenue = ASUM (Xprice) for each

order. The query is recomputed after varying different fractions of Xship.

• Query S4 counts the orders containing line items that are likely to be received late, i.e.,

those line items that pass στ (Xrec, (>, l_commitdate), τ), with a selection probability

threshold τ = 0.5. The query is recomputed after varying different fractions of Xrec.

• Query S6 resembles Task A of Use Case 1, which was revisited in Section 5.1. Dif-

ferent from the original TPC-H query Q6, where the goal is to compute potential (past)

revenue gains based on the assumption that certain discounts are not granted, we now

consider the effect of granted discounts on the potential future revenues. The basic as-

sumption is that revenue (computed based on the xprice attribute) has a positive cor-

relation with discounts. For each supplier, the variables xprice,i and xdisc,i reflect

the distribution of prices and discounts granted, and a joint distribution xdisc,price,i =
C(C, xdisc,i, xprice,i) of the price and discount variables is computed with an assumed

correlation structure C (e.g., C = CG,0.7). The query then computes the marginal

distributions xprice|ωdisc
under a predicate ωdisc on the distribution of xdisc. Finally,

145



7 Evaluation

Figure 7.21: στ using ∆H /∆T for varying fx,fX

all marginal distributions are aggregated into a total revenue number, by computing

ASUM (M(Xprice|ωdisc
)). Different fractions of all xdisc,i are modified and the query

is recomputed.

For each of the operator and query evaluations an initial evaluation is followed by a recom-

putation based on different degrees of modification fx and fX .3

7.6.1 Runtimes

First, the efficiency of recomputing individual operators over a set of input distributions Xprice

(|Xprice| = 10k) is evaluated. Then the recomputation of TPC-H queries S3,S4, and S6 is

addressed.

The following experiments reflect both the optimization effects achieved by restricting the

recomputation effort to impact-relevant inputs as well as the optimization of multivariate anal-

yses based on knowledge about corresponding dim- and cor-components. In both cases, the

information represented by the captured ≈- and →֒-relations and intermediate computation

results is exploited.

Probabilistic Selection Figure 7.21 shows runtimes for (re)computing στ over Xprice.

As the costs for testing Φ are similar to computing T from scratch, the efficiency of recomput-

ing στ is similar to the initial computation in cases where fX and fX are close to 1. In cases

of small fX those xi without an associated ∆ can be skipped in the recomputation process,

simply assuming their initially computed results as the results of the recomputation. Further,

for small fx, loading ∆H
x is cheaper than accessing the complete representation of x(β). The

savings are not fully proportional with (1− fx), due to the overhead associated to initial setup

costs for loading and evaluating the delta information. When fX · fx → 1, slightly higher

runtimes can be observed for the recomputation compared to the initial computation due to

the overhead caused by predicate evaluations. Approximate recomputations using ∆T incur

3Without restriction of generality, in our evaluation items x′ deviate from their initial version x in [lx, lx + (hx −

lx) · fx]

146



7.6 Recomputation

the lowest costs in all cases due to the small overhead of accessing and processing the ∆T -

parameters.

Aggregation Figure 7.22 shows the runtimes for (re-)computing ASUM over Xextprice;

again, the modification fractions fX and fx are varied. In the first case (denoted by ∆H in

the figure), the set of aggregated items remains the same; only deviations in the underlying

distributions are incorporated, resulting in runtimes well below the initial computation in all

cases but for fX = fx = 1. In the second case (denoted by ∆H+), part of the modification

(20% of all x ∈ X∆) result from items added and/or removed to X (e.g., as the result of a

previous application of στ ). Processing newly added items causes higher costs, since both

their initial values and associated delta information must be accessed; therefore, in the worst

case, the recomputation costs of ASUM may exceed those of the initial computation. As

above, the use of ∆T is the most efficient alternative due to the low loading costs and the

cheap evaluation of deviations at discrete points of ∆T .

Figure 7.22: ASUM using ∆H /∆T for varying fx,fX

Figure 7.23 illustrates the runtimes for AMAX . One can again see that for small fx and fX ,

the recomputation effort is well below the initial computation times; in case Φi is not satisfied

for xi, x
′
q,i does not need to be recomputed. In case of small fx this applies for many x′i, since

those do not deviate from xi at the position of ẋq,i. Recall also that a sorted result list of the

k highest values xq,i is kept in memory. For all items but those initial k maximum items, x′q,i
only needs to be recomputed when ∆xi

(xmax) < 0, since only in those cases x′q,i exceeds

xq,i; this results in a further decrease of required computations. In cases where fX → 1, one

can see that the recomputation is clearly less efficient then the initial computation due to the

need to recompute quantile values for almost all x′i (in addition to the provenance evaluation).

Such worst cases can be mitigated by applying the standard computation whenever fX exceeds

a defined threshold, say 0.5.

Multivariate Data Figure 7.24 illustrates the increased efficiency of recomputing T m and

M, m = 2 over 10k joint distributions x1,2 = C(C, x1, x2) for different fractions fφ. The

results reflect the effect of skipping the recomputation of T m and M for those base data where

deviations of the involved marginals dimj do not satisfy Φj . Further, even for fφ = 1, i.e.,

when all 10k results need to be recomputed, the resulting runtimes are well below the initial

147



7 Evaluation

Figure 7.23: AMAX using ∆H /∆T for varying fx,fX

computation due to the described query rewriting approach based on corresponding dim- and

cor-components of the multivariate distributions.

Figure 7.24: C, T m using ∆H /∆T for varying fφ

TPC-H What-if Queries

Figures 7.25 and 7.26 display the initial computation times and the runtimes for the re-

computation of queries S3, S4, and S6. For queries S3 and S4 (see Figure 7.25) one can

observe that the overhead is close to zero for all recomputations, i.e., the incurred runtimes

amount to a fraction f of the initial query times. In the case of S6 (displayed in Figure 7.26

along with the other results involving multidimensional analysis), the rewriting approach

causes the largest decrease of the observed computation times. Thereby, the resulting query

times are well below the initial computation even when fφ (the fraction of all marginals that

need to be recomputed due to changes in either of the two dimensions of the analyzed joint

distribution) equals 1. Further, for each of S3, S4, and S6, one can again observe that the

lowest runtimes are caused by the approximate recomputation (based on ∆T ).

7.6.2 Memory

Storing the provenance graph information on the level of nodes rather than individual (poten-

tially large numbers of) items decreases storage overhead, implying only |o.in|+|o.out| edges

148



7.6 Recomputation

Figure 7.25: Recomputation S3, S4 using ∆H /∆T

Figure 7.26: Recomputation S6 using ∆H /∆T for varying fφ

o
used
−→ x ∈ o.in and dout

wgb
−→ o. Similarly, ≈ and →֒ edges are stored on the level of in- and

output nodes din and dout.

Figure 7.27: Memory consumption for recomputations (fX = 1.0), relative to initial query

memory consumption

For an efficient recomputation, it is necessary to keep additional item-level information

about initial (intermediate) results in memory (values ẋq,i, kTree for AMIN/MAX , and a

selection flag and probability ṗi for στ ). Figure 7.27 shows the runtime memory requirements

when re-evaluating different operators and queries S3, S4, and S6, assuming a dataset update

fraction of fX = 1 (i.e., all base data is modified). The figure shows the memory requirements

M at re-computation time in relation to the memory required for an initial computation, (using

the same underlying data characteristics). The memory required to keep the recomputation-

149



7 Evaluation

relevant predicates Φ and intermediate aggregation and selection data (ṗi, ẋq,i, kTree) are

below 4% of M for all operator applications and queries. Furthermore, for στ ,Asum, and

queries S3 and S4, the memory costs for delta information ∆H required in the recomputation

process is equal to the fraction fx of the memory size for initial distribution histograms, as one

may expect. In the case of AMAX/MIN , the relative memory requirements are clearly larger

compared to an initial computation, due to the fact that the recomputation of quantile values

requires that the initial histograms of xi are loaded and processed in addition to the deltas

(∆H
xi

, ∆T
xi

). The figure depicts the case where roughly 50% of all ẋq,i need to be recomputed,

resulting in memory costs that exceed the initial costs when fx ≥ 0.5. Similarly, for query S6

we can observe higher relative memory requirements for recomputation. The reason for this is

that (most of) the correlation information, represented through xC , is associated with several

joint distributions and thus, must be loaded even when only a fraction of Ydisc,price need to be

recomputed.

7.6.3 Summary

In summary, the evaluation of the provenance-based re-computation shows:

• The computational runtime costs can be decreased by selectively recomputing complex

calculations only for items with impact-relevant deviations, based on an evaluation of

Φi. This lowers the costs for re-computation in all cases but for fX · fx → 1, and leads

to recomputation times roughly proportional with the degree of modification fX in most

cases.

• Specific knowledge about multivariate data, encoded through ≈ edges, can be exploited

to enable highly efficient multivariate analyses based on the rewriting of the underlying

query, when applying C and T m or M.

• The approximate analysis of (assumed) deviations is highly efficient, in all cases but

for very high degrees of modification in the case of A. Therefore, using approximate

deviation functions ∆T offers an efficient alternative for evaluating assumed deviations

in underlying input data.

7.7 Comparison With MC-based Solutions

As stated in the discussion of related research, MC-based approaches to uncertain data man-

agement are closest to the context of this thesis, as they enable a flexible analysis of what-if

scenarios. Similar to our work, those approaches address the analyses of arbitrary (multi-

variate) distributions (with a specific focus on risk analysis in [JXW+10]). This makes them

the most suitable candidates for a comparison. The next sections discuss a sampling-based

integration of the copula-based correlation introduction with those solutions as well as the

implementation of selected aspects of the discussed use cases.

150



7.7 Comparison With MC-based Solutions

7.7.1 Extending MC-based Systems for Correlation Support

The copula approach to correlation handling, which builds the basis for the ACR approach dis-

cussed in Chapter 4, can be integrated naturally with the approaches that rely on MC simula-

tion such as MCDB and PIP. This section briefly describes how those systems can be extended

to allow queries that introduce correlation information to data. As a prerequisite, suitable

(copula) sampling or generation functions need to be provided at runtime (e.g., through a sta-

tistical library such as GNU Scientific Library (GSL) ).

Implementing CorrelateVG In MCDB, a correlation introduction operation (analog to

C) can be implemented through a VG function, denoted as CorrelateVG. This function takes

provided parameters, which describe the marginal distributions and the desired correlation

structure, as input. The implementation of the CorrelateVG function then takes care of com-

puting the copula samples and, for each of the samples, the quantile values of the two desired

marginal distributions. Using this approach, the introduction of correlation essentially pro-

ceeds exactly as discussed in Section 4.2.3. Listing 7.3 shows how the appropriate copula

function is first selected to compute a copula sample (u,v) based on the input parameters

of the desired copula (H,d). Then, the parameters of the desired marginals x1 (d1,p11,p12)

and x2 (d2,p21,p22) are used to compute a correlated pair of values for each copula sample

through inversion. Finally, all samples of the joint distribution are returned. Similarly, one can

use a VG function for deriving empirical copulas; we omit further implementation details at

this point.

Listing 7.3: Implementation of the CorrelateVG function in MCDB

outputVals(d1, d2, p11, p12, p21, p22, H, d)

float u, v, x, y = 0;

float[2] vals;

switch (H){

case GAUSSIAN:

x, y = bivariate_gaussian(1, 1, d);

u = cdf_gaussian(x, 1);

v = cdf_gaussian(y, 1);

case T:

...

}

switch(d1){

case GAMMA:

vals[0] = gamma_inv(u,p11,p12);

case GAUSS:

...

}

switch(d2){

case GAMMA:

vals[1] = gamma_inv(v,p21,p22);

case GAUSS:

...

151



7 Evaluation

}

return vals;

In PIP, one can implement a multidimensional sampling function in a similar form, and thus, enable

the application of copulas that are sampled at runtime. While MCDB allows to return an array of values,

PIP internally represents distributions through the pip_var type; with attributes vid, which holds the

variable id which is shared between correlated variables, and subscript, which distinguish between

the different variables of the joint distribution. Associating various samples with a common value for the

vid field ensures that the generation function uses a common seed value for generating the correlated

variables, and prevents the optimizer from treating the correlated variables as independent. The gener-

ated pseudo-random values for the variables of a joint distribution will therefore be deterministic for a

specific pair of variables. The subscript is provided as input parameter in the query, in order to determine

which of the two dimensions should be returned. Similarly to the example of the above CorrelateVG

function, one first must pass the parameters describing the desired type and correlation degree of the

correlation structure as well as the marginal distributions. After passing the parameters through a func-

tion pip_CorrelateVG_in, they are used in the user-defined sampling (generation) function. There,

one first draws samples from an appropriate copula function. Second, the inverse cumulative distribution

functions of the desired marginals are used to create the samples of the result joint distribution, similar

to the CorrelateVG function above.

The described custom-implemented VG functions enable a user to define queries that introduce cor-

relation information to sampled data, based on the native copula approach.

7.7.2 Alternative Use Case Implementations

This section briefly describes alternative, MC-based implementations of selected tasks from the use cases

of Section 1.2. After a brief discussion of Use Case 1, the focus will be on the implementation of Use

Case 2, Task B.2, demonstrating the CorrelateVG function described above.

Use Case 1, Task A This task implements a basic sales projection for a new product (or sev-

eral products), based on historic reference sales data. It can be easily implemented in the MC-based

approaches by deriving the parameters of symbolic distributions and computing the expected values of

(linear) functions that describe the revenue increase. Therefore, a detailed description is omitted here.

The result of the task is a table Prospect_Sales (pid, value) , which holds the IDs of the products

with their associated monthly sales forecast values.

Use Case 1, Task B This task implements an aggregation of the previously prospected

monthly sales values within an aggregation interval, based on information about indeterminate

sales periods of the considered product(s).

As input to the query we assume the table Prospect_Sales (pid, value) from the pre-

vious task, and the table Releases(pid, ref_id, start, dur). Latter holds the IDs of the

to-be released products and their reference products, as well as the start and duration variables

of the sales period. The implementation of this task cannot be performed directly, due to the

lack of a specific operation for interval-based aggregation in the MC-based solutions. There-

fore, the computation of interval overlaps is implemented through a corresponding OverlapVG

function (even though this is not the original intend of the VG concept). This function is then

152



7.7 Comparison With MC-based Solutions

applied to compute the overlap of each of a large number of sampled sales periods with the

aggregation interval, T . That is, for each sampled start and duration time associated with a

product release (r.start, r.dur) one computes the overlap with the desired aggregation in-

terval (e.g., T = [1, 6]). Listing 7.4 shows the corresponding query, which first applies the

OverlapVG function based on the parameter values from Releases, and then computes the sum

of prospected sales values during the interval [1, 6] based on the computed interval overlaps

and the prospected monthly sales computed in Task A of Use Case 1.

Listing 7.4: MCDB example query: Temporal aggregation

WITH Interval_Overlaps AS Overlap (

SELECT r.start, r.dur, 1, 6

FROM Releases r

)

SELECT SUM (o.overlap * p.value)

FROM Interval_Overlaps o, Prospect_Sales p

Use Case 2, Task B.1 To implement this task, the CorrelateVG function is applied to

define an arbitrary joint distribution in MCDB. For example, the calculation of joint risks

in Use Case 2 is implemented by first using CorrelateVG to generate samples for xf,h and

then computing pu15 bn,15 bn as the fraction of those samples where both xf and xh exceed

the specified threshold of $15 bn. Listing 7.5 shows how such a query can be implemented

(denoted in SQL style similar to [JXW+08]). For each of 20k tuples in a table claims, a pair

of values (h_value, f_value) for hurricane- and flood-related claim values is generated using

CorrelateVG. In the example query, the type of each of the marginal distributions is specified

as a GAMMA distribution whose (scale and shape) parameters are provided as fixed input param-

eters. Further, the desired copula type is specified as a GAUSSIAN and the correlation degree

is set to d=0.8. The resulting samples are assigned to the tuples of the claims_amounts

table, and the required tail probability is computed as the fraction of those values where

h_val > 15bn ∧ f_val > 15bn.

Listing 7.5: MCDB example query: Correlation

CREATE TABLE claims_amounts(id, h_val, f_val) AS

FOR EACH c IN claims

WITH claims_occur AS CorrelateVG(

VALUES (GAMMA, GAMMA, 2, 2.6, 0.2, 8, GAUSSIAN, 0.8))

SELECT h_value, f_value

FROM claims_occur

SELECT COUNT(*)/(SELECT COUNT(*) FROM claims)

AS tailprob

FROM claims_amounts ca

WHERE ca.h_val > 15bn AND ca.f_val > 15bn

On the one hand, this exemplary integration shows the broad applicability of the copula

approach, such as through the use of a custom VG function. On the other hand, it also shows

the drawbacks that can arise with the sample-based approach.

153



7 Evaluation

First, the sample-based implementation depends on the availability of appropriate statistical

functions at runtime for creating the desired copula. Such functions may not be available in

a specific statistical package (e.g., GSL only provides the bivariate Gaussian distribution) or

costly to access at runtime. In contrast, ACRs are precomputed outside the database, thereby

enabling the use of functions from potentially different statistical tools. The runtimes of C
then depend solely on the inversion procedure executed at runtime. Second, using the sample-

based approach, one cannot use the optimization approaches discussed in Section 4.5 directly,

since both approaches rely on the specific features of ACRs. Similar optimizations of the

sample-based copula approach require means for parallel generation of copulas, as well as

efficient techniques for sampling from the tails of joint distributions, as discussed, e.g., in

[JXW+10]. Third, the implementation of CorrelateVG requires that each desired correlation

structure is implemented as a choice in the CorrelateVG function, plus a similar choice of

possible marginals. In contrast, an ACR represents correlation generically. One does not need

to care about a specific copula at runtime, since they are represented through a histogram,

agnostic of the underlying copula function.

Use Case 2, Task B.2 This task, which involves the derivation of an empirical copula

prior to the introduction of dependency using this copula, was not implemented for the MC-

based solutions. This is because another custom-implemented VG function, plus additional

support for the storage of intermediate computation results would have been required for its

implementation in MCDB or PIP. Particularly, based on a set of m-dimensional samples, one

would need to (i) derive parameters that describe the marginal distribution of each of the di-

mensions of the sample space, (ii) compute inverses of each input sample value based on its

corresponding (previously computed) marginal distribution and (iii) either process the output

samples directly or store them by means of a histogram-based distribution representation.

Summary

The comparison of the use case implementations shows that the functionality provided in the

thesis can only partially be implemented (emulated) in the MC-based approaches. While the

genericity of the MC-based approach is demonstrated e.g., by means of the CorrelateVG

function, one can also observe that the alternative (sample-based) implementation yields dis-

advantages such as the need to access particular copula generation or sampling functions at

runtime, or the higher runtime requirements due to the effort for sampling copulas (see 7.5.3).

Further, the implementation of functionality for the extraction of correlation structures from

data (and their subsequent introduction to other data) in MCDB or PIP would require addi-

tional functionality that goes beyond the basic MC approach. While such an extension is

conceivable, it was not evaluated in the thesis.

As stated in the discussion of related work, the efficient scenario recomputation is similar

to the optimized scenario computation technique of the JIGSAW system, with regard to the

common application scope of the two approaches. However, the two approaches cannot be di-

rectly compared due to the fundamentally different uncertain data representation. Hence, the

use case implementations were not compared with respect to the recomputation of scenarios.

154



7.7 Comparison With MC-based Solutions

Figure 7.28: Comparison of runtimes for HANA Ext and MC approaches

After having discussed the application (and applicability) of MC-based solutions to the

approaches discussed in this thesis, the next section compares the corresponding runtime effi-

ciency of the different solutions.

7.7.3 Runtime Performance

This section evaluates the runtimes required by the described prototype system, denoted as

HANA Ext, and the MCDB and PIP systems, for the execution of individual operators and

queries. Similar to the previous evaluation cases, experiments are performed over a dataset

generated from the TPC-H benchmark with a scaling factor of s = 1. For HANA Ext, the dis-

tributions associated with each random variable are internally represented through histograms

with β = 20 and β = 100, respectively. For MCDB and PIP, all sampling processes generate

1000 samples, i.e., each distribution associated with a variable is represented through 1000
samples. The results of the conducted experiments are illustrated in Figure 7.7.3.

The following test cases were performed to compare the runtime requirements of the alter-

native implementations.

Distribution Derivation As a starting point, the application of D is evaluated over the

set Ẋprice of all l_extendedprice attribute values, grouped by l_partkey. That is,

Xprice = D(Ẋprice, hist(β), l_partkey) is computed, to derive N = |Xprice| = 200k
distributions. The runtimes are compared against the computation of distribution pa-

rameters mean and variance over the same attribute and grouping in MCDB and PIP.

The runtimes achieved by HANA Ext for deriving the distributions are at 20s for both

β = 20 and β = 100 (as discussed, the histogram granularity has only a negligible

effect on the runtimes of D). The runtimes of PIP are slightly lower at 17.5s. The

155



7 Evaluation

runtimes of MCDB are about four times as high, which is most likely being caused by

larger times required for loading the lineitem table data from disk.

Aggregation The application of the aggregation operators ASUM and AMIN/MAX over

a data set of 200k derived distributions is compared against the results of computing

SUM and MAX aggregates for the same set of distributions (using the previously

computed mean and variance parameter values to generate samples for each tuple in the

lineitem table). The runtimes of HANA Ext for aggregating 200k variables are clearly

the lowest (about 8s) when a low histogram granularity of β = 20 is used. The runtimes

required by MCDB and PIP (using 1000 samples per generation as noted above) are 42s
and 37s, respectively. As can be expected from the previous experimental results from

Section 7.4, the runtimes of HANA Ext raise (linearly) for a higher histogram resolution

of β = 100, leading to larger runtimes of 46s at the benefit of a higher accuracy of the

derived histograms.

Temporal Aggregation For a comparative implementation of AT for the MCDB and PIP

systems, a function OverlapVG is used. The OverlapVG function is provided with param-

eters that define the aggregation interval T and distribution parameters for the start and

end time distributions. Analogous to the AT operator, OverlapVG computes the tempo-

ral overlap of the interval T with a temporally indeterminate event. i.e., an event with a

randomly sampled start and end time. For both the application of AT and OverlapVG,

the boundaries of T are set so that all events lie completely in T , i.e., fφ = 1 in all cases.

The runtimes required by HANA Ext with β = 20 are clearly the lowest at about 25s.

The runtimes of MCDB and PIP exceed this runtime by a factor of 3 and 2, respectively.

With a high granularity of β = 100, one can observe a clear increase of runtimes for

HANA Ext (over 300s) which is due to the quadratic complexity of AT , as discussed

also in Section 7.4.

Multivariate Analysis The correlation operator Creverse is evaluated against the described

implementation of the CorrelateVG function for correlating 10k distributions. Corre-

lated samples are drawn for random variables xprice and xdisc based on the previously

computed distribution parameters. A Gaussian copula is used for the correlation, based

on a specified correlation degree (e.g., d = 0.7 for a copula CG,0.7).

For the sequential application of C, one can observe a clear performance benefit for

HANA Ext compared to MCDB and PIP, with runtimes of about 20s and 48s compared

to 55s and 112s for MCDB and PIP, respectively. This is mainly due to the efficient

reverse processing approach of Creverse as opposed to the sample-based implementation

of CorrelateVG.4 For HANA Ext the combined use of C and T m results in even lower

runtimes (14s and 34s, respectively) than the execution of C alone, due to the optimized

processing discussed in Section 4.5. In contrast, the sample-based implementation of

CorrelateVG for MCDB requires that one first introduces the correlation and then filters

the resulting joint distribution samples to meet the conditions of T m, as described in

4The very low performance of the PIP implementation seems to be caused by a workaround for the implementation

of CorrelateVG, which requires the specification of the correlated variables based on individually parsed

parameter strings.

156



7.7 Comparison With MC-based Solutions

Section 7.7.1. In the case of PIP, the runtimes for the sequential application of C and T m

are lower than for the execution of C alone, since the sampling of the second variable

(i.e., xdisc) can be avoided in the case that the first variable (xprice) satisfies predicate

ω1 of T m. 5.

Queries S3, S4, and S6 For the three example queries S3, S4, and S6, one can observe

that the runtimes of HANA Ext for β = 20 are clearly the lowest for S3 and S6, while

they are similar to the runtimes of PIP for S4. In the case of S6, one can particularly

observe that the optimized subsequent processing of C and M can be exploited, which

improves the efficiency of HANA Ext compared both to MCDB and PIP. For β = 100,

the required runtimes exceed those of PIP for all three queries due to the larger times

required to load and process the fine-granular distribution representations. In S3, one

can see most clearly the effect of the applied histogram granularity β on the runtimes,

due to the computation of the sum aggregate. The runtimes of MCDB are the highest

for all cases, which seems to be largely due to the times required for loading the table

data from disk.

To sum up the comparison, one can observe that the runtimes are clearly lower for HANA

Ext than for MCDB in all cases for β = 20 and even most cases of β = 100. The runtimes

of PIP partially lie below the runtimes of HANA Ext (e.g., for the application of D and in the

case of S3 and S4), but clearly exceed the runtimes of HANA Ext especially for the case of

multivariate analysis using C and CorrelateVG, respectively, which is due to the optimized

processing achieved by HANA Ext in those cases. A clear exception of the low runtimes of

the evaluated functionality is the application of the temporal aggregation operator in case very

fine-grained histogram representations are applied, which lead to very high runtimes of HANA

Ext in the case of fine-granular histogram representations due to the quadratic complexity of

AT . In the case of the application of C, this negative effect can be largely mitigated due to

the use of the discussed optimization techniques, applying the reverse correlation processing

approach.

Although the observed runtimes provide an overall insight into the performance of the ap-

proaches, it must be clearly noted that an evaluation between the three systems, particularly,

between the approaches presented in this thesis and the MC-based solutions, can not yield

strictly comparable results. This is because the underlying approaches, the representation of

(derived) distributions, and the processing of data differ vastly. An evaluation regarding both

the runtimes and accuracy of both approaches relies on different parameters: In the case of

the explicit (histogram-based) representation of HANA Ext, the parameterization of the his-

togram granularity is varied, while the performance of the MC-based approaches depends on

the number of samples generated per random variable.

Furthermore, the accuracy of results yielded from the execution of the discussed analytical

operators is not directly comparable. For example, while allowing both for symbolic and

histogram-based distribution representations, this thesis mainly addresses their handling in the

form of histogram-based approximations. In contrast, the MC-based approaches rely mostly

on the use of symbolic representations of distribution functions, whose parameters are fitted

5For MCDB, similarly improved runtimes could be achieved by optimizing the sampling function to draw samples

from the tail of the joint distribution. This optimization was however not implemented.

157



7 Evaluation

to the data. The fitted distributions can represent the underlying data either with less or more

accuracy than a derived histogram, depending on whether the assumed distribution family

represents the true nature of the distribution of the data. In general, the accuracy of the base

distributions, and therefore the results of any of the considered operators, depends to a large

degree on the assumptions about the nature of the underlying data. Therefore, an analysis of

accuracies is not included in this evaluation.

7.8 Summary

This chapter presented the evaluation of the concepts presented in this thesis and their im-

plementation by the HANA Ext system. First, an implementation of the use cases discussed

throughout the thesis was considered. It was shown that the discussed functionality covers

the requirements implied by the use cases. The following sections discussed the efficiency

of the analytical operators over probabilistic data, including the functionality for the extrac-

tion and introduction of correlation in data. The achieved runtimes are largely consistent with

the complexity analysis of Chapters 3 and 4. For the operators C and E , it was shown that

their execution can be parallelized effectively in order to achieve runtime improvements. This

approach can be applied in order to mitigate the negative effect on runtimes that is caused

especially in the case of high dimensionality of the correlation structure (i.e., m-dimensional

ACRs with m > 3) as well as a high granularity of the applied ACRs. Nonetheless, the

focus of the correlation processing functionality discussed within this thesis is on an ad-hoc

computation of analyses over a low number of random variables (i.e., m ≤ 3) with arbitrary

distributions. Note again that this is in contrast to related approaches as discussed, e.g., in

Section 6.4.2, where the focus is on correlating larger numbers of variables, yet with only a

few discrete alternative valuations each. For the bi-dimensional cases, low runtimes of well

below one second can be achieved for both the correlation introduction and extraction.

Following the evaluation of the correlation handling functionality, the efficient recompu-

tation of analysis operations was addressed through a number of experiments. Both for the

recomputation of individual operators and selected queries that apply those operators, it was

shown that the selective recomputation serves to reduce runtimes. In most cases, runtimes are

close to proportional to the fraction of modification of the processed data sets. An exception

is the application of the quantile-based computation of maxima, due to the higher runtimes

induced by processing both the initial distributions and the delta information.

For a comparison with related approaches, the MC-based solutions were chosen due to

their similar application context and analysis capabilities. An integration of the correlation

introduction operation by means of a CorrelateVG function was presented. The discussion

and evaluation of this sample-based implementation shows that a flexible handling of correla-

tions can be integrated with MC-based PDBs, yet requires that appropriate statistical library

functions are available at runtime to produce different required correlation structures (i.e., dif-

ferent copulas that are sampled or generated). Further, the evaluation of the ACR-based and

the sample-based approaches shows that the latter causes higher runtimes. In general, one can

observe that HANA Ext achieves smaller or comparable runtimes for the evaluation of both

individual operators as well as the selected queries. However, it must be noted again that

the runtimes of the implementation of HANA Ext and the MC-based solutions are not strictly

158



7.8 Summary

comparable due to the different approaches of the implicit (sample-based) and the explicit

representations of uncertainty. This is because the achieved runtimes depend on the number

of MC iterations on the one hand and on the granularity of the underlying histogram-based

approximation on the other hand.

Considering the selective recomputation based on initially recorded provenance informa-

tion, no comparison to the MC-based solutions is possible. If a fraction of the symbolically

represented input distributions are modified, the complete query must be re-evaluated. That

is, for all involved variables one must again draw samples from the associated distributions

and evaluate the query for all sampled PWs. In contrast to the basic MC-based solutions, the

Jigsaw system (see Section 6.4.5) presents an approach that does enable an efficient computa-

tion of scenarios with VG functions under varied parameterizations. This approach provides

large performance gains for an efficient exploration of the scenario space, partially reducing

the computation times by an order of magnitude. However, again this approach is not di-

rectly comparable with the approach applied in this thesis, since the explicit representation

of distributions does not allow for a fingerprinting-like technique and vice-versa, the explicit

representation of deviations can not be used in the MC-based approach.

159





8 Summary

To summarize this thesis, this chapter outlines its contributions and lines out the most relevant

aspects considering the effectiveness and the efficiency of the presented technologies. A num-

ber of interesting further research issues that arose during the time of this work but could not

be answered within the thesis will also be addressed as future possibilities of research.

8.1 Conclusion

This thesis addressed concepts for supporting the creation and analysis of scenarios within

a scenario planning process at database level. The focus was on the representation and pro-

cessing of uncertain data. First, the context of scenario analysis and planning was introduced

in Chapter 1, and the need for appropriate database support for such analyses was motivated.

Within this problem space, the aspects of correlation handling and the need for efficient sce-

nario recomputations were identified as requirements that have hitherto not been addressed

sufficiently by existing solutions. Chapter 2 then provided the reader with a conceptual and

technical foundation of the application context of scenario planning and the representation and

management of uncertainty in data. Based on this foundation, the following section presented

the uncertain data model and a set of statistical operations that can be applied as the basic

components of a scenario analysis process. Specific focus was then put on the topics of cor-

relation handling (Chapter 4) and the recomputation of analyses based on changed input data

(Chapter 5). The presented approaches contribute to and extend the hitherto existing function-

ality for univariate and multivariate analyses in databases, first, by providing flexible methods

for correlation handling and, second, by enabling an optimized processing of the provided

analysis functionality for scenario recomputations.

Chapter 6 compared the presented approaches for scenario analysis over uncertain data

with prior work. There, we discussed both generic related techniques for uncertainty and

provenance management, as well as distinguishing the techniques of this thesis from those

used in concrete related solutions for uncertain data management.

Finally, the developed concepts were evaluated in Chapter 7 based on the prototypical im-

plementation HANA Ext. An implementation of different use cases demonstrated the applica-

bility of the provided analysis functionality. In particular, the high flexibility of the developed

functionality for correlation handling was illustrated. Further, the evaluation of the uni- and

multivariate analysis operators proved their runtime efficiency, which renders them suitable

for ad-hoc analysis over large amounts of data in most of the considered evaluation cases.

Within the evaluation, specific focus has been put on the presented techniques for corre-

lation handling and scenario recomputation. For the ACR-based introduction of correlation

in data, the evaluation showed that the resulting joint distributions are highly accurate com-

pared to the application of the native sample-based copula approach. It was also shown that

161



8 Summary

the resulting runtimes are well-below the sample-based approach, particularly so in the case

of the reverse processing scheme, which reverts the inversion approach to map from the bin

boundaries of the to-be-computed result histogram to the relevant copula regions. A similar

mapping was exploited to optimize the processing of the multivariate operators over corre-

lated data. Further, an effective parallelization was described for both the introduction and the

extraction of correlation information based on the concept of ACRs.

The positive effect of selective recomputations over partially modified (deviating) input

data could also be demonstrated in the evaluation. Both approaches for the incorporation

of histogram-based (known) deviations, as well as approximative (assumed) deviations were

evaluated. The results show that both approaches serve to save computation times. In particu-

lar, incorporating assumed deviations based on corresponding approximate delta information

can be achieved in a highly efficient manner.

The focus of this thesis has been on providing support for processing analytical operators

over continuously distributed probabilistic data, rather than provisioning a new PDB system.

Nonetheless, it was shown that the developed concepts closely relate with and can serve to ex-

tend different approaches of existing PDB systems, and especially so to allow a more flexible

handling of continuous distributions in probabilistic data. In particular, the ACR-based corre-

lation representation and processing techniques that were presented as a central contribution

of this thesis can be integrated with existing PDB solutions. For example, it was shown that

one can integrate the processing of copulas or alternatively, the use of generic pre-computed

ACRs with the class of MC-based solutions. Similar to the correlation handling functionality,

the presented techniques for recomputation of analysis over modified input data apply to con-

tinuously distributed data. Thus, it forms a complementary approach to previous work in the

field of recomputations and sensitivity analysis over deterministic and discrete probabilistic

data.

Concluding, the contributions of the thesis help to extend the applicability of probabilistic

data analyses on the database to the continuous case. For many scenario analysis use cases, the

provided operators can be applied flexibly as well as efficiently, thus benefiting a flexible, ad-

hoc scenario analysis process. Still, there exist a number of open issues as well as restrictions

that should be addressed in future to further extend the proposed approaches, and increase

their applicability and efficiency.

8.2 Future Research Possibilities

During the discussion and evaluation of the presented concepts several further research ques-

tions arose, which could not be addressed sufficiently or were considered out of scope for this

thesis. The following aspects are considered interesting fields of future research:

Integrating ACRs and PGMs As stated in the presentation of the ACR approach and its

evaluation, the chosen histogram-based representation of ACRs has the drawback that

their storage and processing incurs costs that are exponential in the number of correlated

variables, m. Although the evaluation showed that analyses of distributions between up

to 4 variables incur sub-second runtimes, the exponential complexity restricts the appli-

cability of C to analyses of joint distributions of up to 5 variables. Comparing ACRs

162



8.2 Future Research Possibilities

to the related technique of PGMs, one observes that the graphical representation of

dependency structures in principle is equally complex, in the case that all conditional

probabilities between all discrete alternatives of all variables need to be represented.

The PGM approach addresses this problem by representing conditionally independent

subsets of variables through separate factors thus reducing the overall complexity. This

method enables a more efficient representation and processing of dependency structures

involving many variables, given that conditional independencies exist among them. A

similar approach is conceivable when considering the modeling of dependencies be-

tween continuous distributions through copulas, or ACRs, respectively. In particular,

considering ACRs as the factors of a PGM, one could similarly target the efficient rep-

resentation of joint distributions between many variables by exploiting the conditional

independencies of subsets, and combining several lower-dimensional copulas (ACRs) in

a graph structure. Investigating such an integration of ACRs and PGMs is a promising

topic of future research.

ACR Partitioning Schemes The choice of a suitable partitioning scheme for the histogram-

based representation of copulas through ACRs has been discussed during Section 4.3.

The choice of equi-width histograms in this thesis is based on the fact that their represen-

tation and processing incurs the lowest costs compared to more advanced partitioning

schemes. A more fine-granular representation of specific regions of the copula, such

as their joint tail regions, is achieved by using nested histograms. The nested partition-

ing scheme enables different representation granularities while retaining the efficient

storage and processing through statically computed bin boundaries. Further, the use of

(nested) equi-width histograms enables a simple parallelization of operations such as

the derivation of histograms and the derivation of empirically derived ACR structures,

as exemplified in the thesis. In contrast, the use of partitioning schemes that result in

arbitrary bin boundaries, such as equi-depth or V-optimal [Ioa03], has not been investi-

gated during the thesis. Important to note, such partitioning schemes could be integrated

with most of the presented approaches. Naturally, such an integration would require an

adaption of the histogram storage and processing by various operators. Further, the

application of different partitioning schemes would hinder the implementation of paral-

lelized and optimized processing schemes, such as for the derivation of empirical ACRs.

Nevertheless, more advanced partitioning schemes can certainly serve to achieve a

smaller approximation error over the complete ACR, thus leading to more accurate

analysis results, or alternatively enable the copula representation through a smaller total

number of bins. Thus, investigating the different partitioning schemes with emphasis

on the special characteristics and requirements of the copula approximation is an inter-

esting topic of future work.

Automatic Deviation-based Recomputation An automatic computation of large num-

bers of scenarios that are “neighbors” of an initial scenario (in terms of similar but

partially deviating input data) could be achieved through an automatic scenario recom-

putation. Such a method can serve as a helpful tool for a user to identify critical (or

otherwise interesting) scenarios based on variations in the input data space. Note that

this is similar to the parameter space exploration of Jigsaw, yet with a higher empha-

163



8 Summary

sis on the nature of individual input distributions rather than parameters of a model.

While this thesis addresses an efficient approach for recomputations based on input

modifications, an automatic approach for computing a whole space of scenarios was not

investigated further. The question whether such an approach can efficiently incorporate

and thus exploit the proposed recomputation method is thus subject to future research.

Approximation Schemes for Delta Information The incorporation of assumed input data

deviations in the recomputation of scenarios was exemplified in Section 5.3 by means of

a triangular approximation function. The evaluation of the proposed approach showed

that thus approximated deviations can be incorporated highly efficiently during the re-

computation of the analytic operators. Yet, their applicability is restricted to deviations

that can be approximated by a triangular function with reasonably low error. Different

approximation functions such as more complex piecewise linear approximations could

be used, e.g., for a close approximation of actually observed (rather than just assumed)

deviations. Evaluating the trade-off between the complexity and accuracy of approxi-

mation functions and the resulting runtime efficiency of the recomputation was out of

scope for this work. This aspect becomes relevant when considering the recomputa-

tion of analyses under a large number of deviations (e.g., in the context of an automatic

scenario exploration) for which exact function-based deviations shall be used instead of

histogram-based representations.

Evaluation Benchmark for What-if Analysis Finally, during the conceptualization as

well as during the evaluation of this thesis, the lack of a suitable set of data which

could serve as a realistic benchmark became apparent. The well-known TPC-H bench-

mark (the generated data set as well as the included queries) is appropriate for analyses

over historic data, but does not provide a sufficient basis for evaluating what-if queries

as focused in this thesis. Therefore, selected queries of the TPC-H benchmark have

been adapted to include aspects suitable for the analyses targeted within this thesis.

The design of a dataset and a wholesome set of queries in the application context of

planning and what-if analysis would build a better basis both for devising and testing

analytic functionalities at the database level, and for evaluating such functionalities from

a performance and application point of view. Thus, such a benchmark would certainly

constitute a major contribution to the future academic and industrial research in this

field.

164



Bibliography

[ABH09] Daniel J. Abadi, Peter A. Boncz, and Stavros Harizopoulos. Column-Oriented

Database Systems. Proc. VLDB Endow., 2(2):1664–1665, 2009.

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A System for Data, Un-

certainty, and Lineage. In Proceedings of the 32nd International Conference on

Very Large Data Bases (VLDB), pages 1151–1154. VLDB Endowment, 2006.

[AJKO08] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast and

Simple Relational Processing of Uncertain Data. In Proceedings of the 24th

International Conference on Data Engineering (ICDE), pages 983–992, 2008.

[All83] James F. Allen. Maintaining Knowledge about Temporal Intervals. Communi-

cations of the ACM, 26(11):832–843, 1983.

[AW09] Parag Agrawal and Jennifer Widom. Continuous Uncertainty in Trio. In Pro-

ceedings of the 3rd Workshop on Management of Uncertain Data, 2009.

[Beu03] Albrecht Beutelspacher. Lineare Algebra. Friedr. Vieweg und Sohn Verlag /

GWV Fachverlage GmbH, 6th edition, 2003.

[BF05] Rajendra Bose and James Frew. Lineage Retrieval for Scientific Data Process-

ing: A Survey. ACM Computing Surveys, 37(1):1–28, 2005.

[BGJ06] Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Multi-dimensional

Aggregation for Temporal Data. In Proceedings of 10th International Confer-

ence on Extending Database Technology (EDBT), pages 257–275, 2006.

[BGLS03] Veronica Biazzo, Rosalba Giugno, Thomas Lukasiewicz, and V. S. Subrahma-

nian. Temporal Probabilistic Object Bases. IEEE Transactions on Knowledge

and Data Engineering, 15(4):921–939, 2003.

[Bie02] Lauren Bielski. The Great Risk Debate. American Banking Association Banking

Journal, 94:58–64, 2002.

[BK96] Patrick Bosc and J. Kaeprzyk, editors. Fuzziness in Database Management Sys-

tems. Physica-Verlag, 1996.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and Where: A

Characterization of Data Provenance. In Proceedings of the 8th International

Conference on Database Theory, volume 1973/2001, pages 316–330, Berlin,

Heidelberg, 2001. Springer.

165



Bibliography

[Bos06] R. Bose. Understanding Management Data Systems for Enterprise Performance

Management. Industrial Management & Data Systems, 106(1):43–59, 2006.

[BSHW06] Omar Benjelloun, Anish Das Sarma, Alon Halevy, and Jennifer Widom.

ULDBs: Databases with Uncertainty and Lineage. In Proceedings of the 32nd

International Conference on Very Large Data Bases, pages 953–964, 2006.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing

and OLAP Technology. SIGMOD Record, 26(1):65–74, March 1997.

[CDLS03] Robert G. Cowell, Philip A. Dawid, Steffen L. Lauritzen, and David J. Spiegel-

halter. Probabilistic Networks and Expert Systems (Information Science and

Statistics). Springer, New York, May 2003.

[Cok09] Gary Cokins. Performance Management: Integrating Strategy Execution,

Methodologies, Risk, and Analytics. John Wiley and Sons, 1st edition, 2009.

[CP00] Wes Cowley and Dimitris Plexousakis. Temporal Integrity Constraints with In-

determinacy. In Proceedings of the 26th International Conference on Very Large

Data Bases (VLDB), pages 441–450, San Francisco, CA, USA, 2000. Morgan

Kaufmann Publishers Inc.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of view

data in a warehousing environment. ACM Trans. Database Syst., 25(2):179–227,

2000.

[DD96] Rina Dechter and R. Dechter. Bucket Elimination: A Unifying Framework for

Probabilistic Inference. pages 211–219, 1996.

[DGS09] Amol Deshpande, Lise Getoor, and Prithviraj Sen. Graphical Models for Un-

certain Data. In C. Aggarwal, editor, Managing and Mining Uncertain Data.

Springer, 2009.

[DH05] Xin Dong and Alon Y. Halevy. Malleable Schemas: A Preliminary Report. In

WebDB, pages 139–144, 2005.

[DS98] Curtis E. Dyreson and Richard Thomas Snodgrass. Supporting Valid-Time In-

determinacy. ACM Transactions on Database Systems, 23(1):1–57, 1998.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient Query Evaluation on Probabilistic

Databases. The VLDB Journal, 16(4):523–544, 2007.

[Eli10] Gal Elidan. Inference-less Density Estimation using Copula Bayesian Networks,

2010. http://event.cwi.nl/uai2010/papers/UAI2010_0054.pdf.

[GD07] Boris Glavic and Klaus R. Dittrich. Data Provenance: A Categorization of Exist-

ing Approaches. In 12. GI-Fachtagung für Datenbanksysteme in Business, Tech-

nologie und Web (BTW), pages 227–241. Verlagshaus Mainz, Aachen, March

2007. ISBN 978-3-88579-197-3.

166



Bibliography

[GG84] Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distributions

and the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 6(6):721–741, November 1984.

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance Semir-

ings. In Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium

on Principles of Database Systems (PODS), pages 31–40, New York, NY, USA,

2007. ACM.

[GT06] Todd J. Green and Val Tannen. Models for Incomplete and Probabilistic Infor-

mation. In IEEE Data Engeneering Bulletin, pages 278–296. Springer Berlin /

Heidelberg, 2006.

[HAKO09] Jiewen Huang, Lyublena Antova, Christoph Koch, and Dan Olteanu. MayBMS:

A Probabilistic Database Management System. In Proceedings of the 35th ACM

SIGMOD International Conference on Management of Data, pages 1071–1074,

2009.

[Ham94] Richard Hamlet. Random Testing. In Encyclopedia of Software Engineering,

pages 970–978. Wiley, 1994.

[Has70] W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and their

Applications. Biometrika, 57(1):97–109, April 1970.

[IL84] Tomasz Imieliński and Witold Lipski, Jr. Incomplete Information in Relational

Databases. Journal of the ACM, 31(4):761–791, 1984.

[Ioa03] Yannis Ioannidis. The History of Histograms (abridged). In Proceedings of the

29th International Conference on Very Large Data Bases (VLDB), 2003.

[ISW10] Robert Ikeda, Semih Salihoglu, and Jennifer Widom. Provenance-Based Refresh

in Data-Oriented Workflows. Technical report, Stanford University, 2010.

[IW10] Robert Ikeda and Jennifer Widom. Panda: A System for Provenance and Data.

IEEE Data Engineering Bulletin, 33(3):42–49, 2010.

[JLF10] Bernhard Jäcksch, Wolfgang Lehner, and Franz Faerber. A Plan for OLAP.

In Proceedings of the 13th International Conference on Extending Database

Technology (EDBT), pages 681–686, 2010.

[JPK+98] H. V. Jagadish, Viswanath Poosala, Nick Koudas, Ken Sevcik, S. Muthukrish-

nan, and Torsten Suel. Optimal Histograms with Quality Guarantees. In Pro-

ceedings of the 24th International Conference on Very Large Databases (VLDB),

pages 275–286, 1998.

[JS99] Christian S. Jensen and Richard T. Snodgrass. Temporal Data Management.

IEEE Transactions on Knowledge and Data Engineering, 11(1):36–44, 1999.

167



Bibliography

[JXW+08] Ravi Jampani, Fei Xu, Mingxi Wu, Luis L. Perez, Christopher Jermaine, and

Peter J. Haas. MCDB: A Monte Carlo Approach to Managing Uncertain Data.

In Proceedings of the 28th ACM SIGMOD/PODS International Conference on

Management of Data, pages 687–700, 2008.

[JXW+10] Ravi Jampani, Fei Xu, Mingxi Wu, Christopher Jermaine, Luis L. Perez, and

Peter J. Haas. MCDB-R: Risk Analysis in the Database. In Proc. of the 36th

International Conference on Very Large Data Bases (VLDB), volume 3, pages

782–793, 2010.

[KK10] Oliver Kennedy and Christoph Koch. PIP: A Database System for Great and

Small Expectations. In Proceedings of the 26th International Conference on

Data Engineering (ICDE), pages 157–168, 2010.

[KLD11] Bhargav Kanagal, Jian Li, and Amol Deshpande. Sensitivity Analysis and Ex-

planations for Robust Query Evaluation in Probabilistic Databases. In Proceed-

ings of the 2011 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’11, pages 841–852, New York, NY, USA, 2011. ACM.

[KN11] Oliver Kennedy and Suman Nath. Jigsaw: Efficient optimization over uncer-

tain enterprise data. In Proceedings of the 2011 ACM SIGMOD International

Conference on Management of Data, pages 829–840, 2011.

[KY10] I. Kojadinovic and J. Yan. Modeling Multivariate Distributions with Continu-

ous Margins Using the copula R Package. In Journal of Statistical Sortware,

volume 34, pages 1–20. 2010.

[LAB+06] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,

Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Work-

flow Management and the Kepler System: Research Articles. Concurrency and

Computation: Practice and Experience, 18(10):1039–1065, August 2006.

[LB02] Mats Lindgren and Hans Bandhold. Scenario Planning: The Link Between Fu-

ture and Strategy. Palgrave Macmillan, New York, 2002.

[Leh03] Wolfgang Lehner. Datenbanktechnologie für Data-Warehouse-Systeme :

Konzepte und Methoden. dpunkt-Verlag, 2003.

[Li06] Jacki Li. Modelling Dependency Between Different Lines of Business with

Copulas, 2006. www.economics.unimelb. edu.au/actwww/wps2006/No146.pdf.

[LKA03] G.J.G Lawrie, D.C. Kalff, and H.V. Andersen. Integrating Risk Management

with Existing Methods of Strategic Control: Avoiding Duplication Within the

Corporate Governance Agenda. In International Conference on Corporate Gov-

ernance and Board Leadership, 2003.

[Ma06] Zongmin Ma. Fuzzy Database Modeling of Imprecise and Uncertain Engineer-

ing Information. Studies in Fuzziness and Soft Computing. Springer, 2006.

168



Bibliography

[MFF+07] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers, and

Patrick Paulson. The Open Provenance Model. Technical report, University of

Southampton, 2007.

[MIW07] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. Making Aggregation

Work in Uncertain and Probabilistic Databases. Technical Report 2007-7, Stan-

ford InfoLab, June 2007.

[Mot96] Amihai Motro. Sources of Uncertainty, Imprecision, and Inconsistency in In-

formation Systems. In Uncertainty Management in Information Systems, pages

9–34. 1996.

[MPB10] Paolo Missier, Norman W. Paton, and Khalid Belhajjame. Fine-grained and Effi-

cient Lineage Querying of Collection-based Workflow Provenance. In Proceed-

ings of the 13th International Conference on Extending Database Technology

(EDBT), pages 299–310, 2010.

[MPS99] S. Muthukrishnan, V. Poosala, and T. Suel. On Rectangular Partitionings in Two

Dimensions: Algorithms, Complexity, and Applications. In Proceedings of the

15th International Conference on Data Engineering (ICDE), pages 236–256,

1999.

[MST07] G. Mayor, J. Suner, and J. Torrens. Sklar’s Theorem in Finite Settings. IEEE

Transactions on Fuzzy System, 15(3):410 –416, 2007.

[Nel06] R. B. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer-

Verlag New York, 2006.

[oBS01] The Basel Committee on Banking Supervision. Consultative Document: Oper-

ational Risk. Bank for International Settlements, Basel, 2001.

[PCA11] Beth Plale, B. Cao, and Mehmet Aktas. Provenance Collection of Unmanaged

Workflows with Karma. Technical report, 2011.

[PHIS96] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita.

Improved Histograms for Selectivity Estimation of Range Predicates. SIGMOD

Record, 25(2):294–305, 1996.

[Pla09] Hasso Plattner. A Common Database Approach for OLTP and OLAP Using an

in-memory Column Database. In Proceedings of the 35th SIGMOD Interna-

tional Conference on Management of Data, pages 1–2, New York, NY, USA,

2009. ACM.

[Por85] M.E. Porter. Competitive Advantage. Free Press, New York, 1985.

[RS98] Gill Ringland and Peter Schwartz. Scenario Planning : Managing for the Future.

John Wiley & Sons, 1998.

[SAS10] SAS. Financial Management. Delivering Unified, Reliable Financial Intelli-

gence throughout the enterprise, 2010.

169



Bibliography

[SBD+09] Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian-Tat Lim, David Maier,

Oliver Ratzesberger, and Stanley B. Zdonik. Requirements for Science Data

Bases and SciDB. In 4th biennial Conference on Innovative Data Systems Re-

search (CIDR). www.crdrdb.org, 2009.

[SBH+09] Anish Das Sarma, Omar Benjelloun, Alon Halevy, Shubha Nabar, and Jennifer

Widom. Representing Uncertain Data: Models, Properties, and Algorithms. The

VLDB Journal, 18(5):989–1019, 2009.

[SD07] Prithviraj Sen and Amol Deshpande. Representing and Querying Correlated Tu-

ples in Probabilistic Databases. In Proceedings of the 23rd International Con-

ference on Data Engineering (ICDE), pages 596–605, 2007.

[SDG09] Prithviraj Sen, Amol Deshpande, and Lise Getoor. PrDB: Managing and Ex-

ploiting Rich Correlations in Probabilistic Databases. The VLDB Journal,

18:1065–1090, October 2009.

[SGM93] Richard Thomas Snodgrass, S. Gomez, and E. McKenzie. Aggregates in the

Temporal Query Language TQuel. IEEE Transactions on Knowledge and Data

Engineering, 5(5):826–842, 1993.

[Sir05] C. Sirangelo. Approximate Query Answering on Multi-dimensional Data. PhD

thesis, University of Calabria, 2005.

[Skl59] A. Sklar. Fonctions de repartition à n dimensions et leurs marges. Publications

de l’Institut de Statistique de L’Universite de Paris, 8:229–231, 1959.

[SMM+08] Sarvjeet Singh, Chris Mayfield, Sagar Mittal, Sunil Prabhakar, Susanne Hambr-

usch, and Rahul Shah. Orion 2.0: Native Support for Uncertain Data. In Pro-

ceedings of the 28th ACM SIGMOD/PODS International Conference on Man-

agement of Data, pages 1239–1242, 2008.

[SMS+08] Sarvjeet Singh, Chris Mayfield, Rahul Shah, Sunil Prabhakar, Susanne Hambr-

usch, Jennifer Neville, and Reynold Cheng. Database support for probabilistic

attributes and tuples. In Proceedings of the 2008 IEEE 24th International Con-

ference on Data Engineering (ICDE), pages 1053–1061, Washington, DC, USA,

2008. IEEE Computer Society.

[SPG05] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Prove-

nance in E-Science. SIGMOD Record, 34(3):31–36, 2005.

[STW08] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting Lineage

for Confidence Computation in Uncertain and Probabilistic Databases. In Pro-

ceedings of the 2008 IEEE 24th International Conference on Data Engineering

(ICDE), pages 1023–1032, Washington, DC, USA, 2008. IEEE Computer Soci-

ety.

[Wac85] Pierre Wack. Scenarios: Uncharted Waters Ahead. Harvard Business Review

63, 5, 1985.

170



Bibliography

[WMGH08] Daisy Zhe Wang, Eirinaios Michelakis, Minos Garofalakis, and Joseph M.

Hellerstein. BayesStore: Managing Large, Uncertain Data Repositories with

Probabilistic Graphical Models. Proc. of the VLDB Endowment, 1:340–351,

2008.

[WMM10] Michael L. Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilis-

tic databases with factor graphs and mcmc. PVLDB, 3(1):794–804, 2010.

[XBE+09] Fei Xu, Kevin Beyer, Vuk Ercegovac, Peter J. Haas, and Eugene J. Shekita.

E = MC3: Managing Uncertain Enterprise Data in a Cluster-Computing En-

vironment. In Proceedings of the 35th SIGMOD International Conference on

Management of Data, pages 441–454, New York, NY, USA, 2009. ACM.

[YG98] Adnan Yazici and Roy George. Fuzzy Database Modeling. Journal of Database

Management, 9(4):36, 1998.

[ZDH+11] Wenchao Zhou, Ling Ding, Andreas Haeberlen, Zachary Ives, and Boon Thau

Loo. TAP: Time-aware Provenance for Distributed Systems. In Proceed-

ings of the 3rd USENIX Workshop on the Theory and Practice of Provenance

(TaPP’11), June 2011.

171





Publications

[1] Katrin Eisenreich. Towards an Algebraic Foundation for Business Planning. In Proceed-

ings of Joint EDBT/ICDT Ph.D. Workshop, pages 161–169, 2009.

[2] Katrin Eisenreich and Philipp Rösch. Handling Uncertainty and Correlation in Decision

Support. In Proceedings of the 4th Workshop on Management of Uncertain Data (MUD)

co-located with VLDB 2010, pages 145–159, 2010.

[3] Katrin Eisenreich, Philipp Rösch, Volker Markl, Gregor Hackenbroich, and Robert

Schulze. Handling of Uncertainty and Temporal Indeterminacy for What-if Analysis. In

Proceedings of the 4th Workshop on Enabling Real-Time Business Intelligence (BIRTE)

co-located with VLDB 2010, pages 100–115, 2010.

[4] Jochen Adamek, Katrin Eisenreich, Volker Markl, and Philipp Rösch. Operators for An-

alyzing and Modifying Probabilistic Data – A Question of Efficiency. In Proceedings of

BTW 2011, pages 454–473, 2011.

[5] Katrin Eisenreich, Jochen Adamek, Philipp Rösch, Gregor Hackenbroich, and Volker

Markl. Correlation Support for Risk Evaluation in Databases. In Proceedings of the

28th International Conference on Data Engineering (ICDE) 2012, Washington DC, 2012.

173


	Acronyms
	List of Figures
	List of Tables
	Introduction
	Scenario Planning
	Example Use Cases
	Use Case 1: Sales Planning
	Use Case 2: Insurance Risk Evaluation

	Supporting Scenario Planning at the Database Level
	Model and Analysis Functionality for Uncertain Scenario Data
	Modeling, Extracting, and Evaluating Correlation in Data
	Tracking the Provenance of Scenario Data and Evaluating Change Impacts

	Outline of the Thesis

	Foundations
	Business Application Context
	Enterprise Performance and Risk
	Scenario Planning

	Uncertainty in Data
	Kinds of Uncertainty
	Granularity of Uncertainty
	Sources of Uncertainty

	Representing Uncertain Data
	Probability and Possibility of Information
	Probability Theory and Possible Worlds Semantics
	Possibility Theory

	Granularity of the Representation
	Explicit and Implicit Representation
	Distribution of a Variable
	Dependencies in Data
	Temporal Indeterminacy

	Processing Uncertain Data
	Analysis over Continuous Distributions
	Integration and Numerical Approximation
	Statistical Measures
	Aggregation

	Data Modifications

	Provenance 
	Provenance Management Systems
	Source and Transformation Provenance
	Provenance in Uncertain Data Management
	Data-Centric Workflow Provenance


	Summary

	Data Representation and Analysis
	The Scenario Analysis Process
	Analysis Data Flow

	Distribution Representation
	Representation Forms
	Symbolic Representation
	Histogram Representation
	Density and (Inverse) Cumulative Distribution functions
	Representing Differences (Deltas) between Distributions

	Multivariate Distributions
	Indeterminate Dimension Data

	Operations
	Statistical Measures
	Moments
	Range and Tail Probability

	Derivation and Conversion
	Aggregation
	Indeterminate Temporal Aggregation
	Modification of Distributions
	Multivariate Analysis
	Joint Tail Probabilities
	Marginal Distributions


	Summary

	Correlation Handling
	Requirements for Correlation Processing
	Copulas
	Definition and Characteristics
	Copula Construction
	Parametric Construction
	Deriving Copulas from Fact Data

	Applying Correlation

	Approximate Correlation Representations
	Using Precomputed ACRs
	Extracting Empirical ACRs
	Restrictions Imposed by the ACR Approach
	Using Nested ACR Histograms

	Introducing Correlation
	Basic Approach
	Uniform Spread Approach

	Query Processing
	Optimizing Query Plans
	Parallelization

	Summary

	Scenario Recomputation
	Provenance and Recomputations in the Analysis Process
	Example Analysis Process
	Data and Operator Characteristics
	Provenance for Scenario Data

	Scenario Provenance Capture
	Basic Provenance Graph Structure
	Scenario Versions and Modification
	Scenario Version Provenance
	Deviation Information x

	Representing Modeling Assumptions
	Representing Operator Impact

	Change Impact Analysis
	Retrieving Derivation Information
	Recomputation
	Probabilistic Threshold Selection
	Aggregation
	Multivariate Data Analysis

	Approximate Deviation Analysis

	Summary

	Related Work
	Monte Carlo Simulation
	The Monte Carlo Approach
	Optimizations

	Explicit Representation of Probabilistic Data with Dependencies
	Probabilistic Graphical Models
	Probabilistic C-Tables

	Data Provenance
	Why, How-, and Where-Provenance
	Provenance Semirings
	The Commutative Semiring Structure
	Specialization

	Workflow Provenance

	Systems
	TRIO
	Uncertainty and Lineage Database
	Two-Phase Query Processing
	Continuous Distribution Support

	PrDB
	Probabilistic Graphical Models in PrDB
	Query Evaluation and Optimization
	Correlation Modeling through Factors and acr

	MayBMS
	Query Algebra
	Query and Update Language

	MCDB and MCDB-R
	Random Relations and vg Functions
	Query Processing
	Recomputability
	mcdb-R: Support for Risk Analysis
	mcdb in the Context of Scenario Analysis

	PIP and Jigsaw
	Probabilistic C-Tables with Symbolic Representations 
	Query Evaluation
	Jigsaw and Fuzzy Prophet


	Conclusion
	Model-Extension Approaches
	Monte Carlo Approaches



	Evaluation
	Implementation
	Calculation Scenarios
	Data Representation
	Representation of Probabilistic Data
	Physical Storage Model

	Operator Implementation, Composition, and Execution

	Evaluation Objectives
	Use Case Implementations
	Implementation of Use Case 1
	Implementation of Use Case 2
	Summary

	Univariate Analysis and Aggregation Operations
	Setting
	Runtimes
	Deriving Distributions 
	Probabilistic Selection
	Aggregation
	Temporal Aggregation


	Correlation Handling and Multivariate Analysis
	Setting
	Accuracy
	Runtimes
	Summary

	Recomputation
	Runtimes
	TPC-H What-if Queries

	Memory
	Summary

	Comparison With MC-based Solutions
	Extending MC-based Systems for Correlation Support
	Alternative Use Case Implementations
	Runtime Performance

	Summary

	Summary
	Conclusion
	Future Research Possibilities

	Bibliography
	Publications

