
Temporal Pixel Trajectories for Frame
Denoising in a Hybrid Video Codec

vorgelegt von
Marko Esche, M.Sc.

geb. in Berlin

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss

Vorsitzender: Prof. Dr.-Ing. T. Wiegand
1. Gutachter: Prof. Dr.-Ing. T. Sikora
2. Gutachter: Prof. Dr.-Ing. A. Kaup
3. Gutachter: Prof. Dr.-Ing. P. Eisert

Tag der wissenschaftlichen Aussprache: 23.5.2014

Berlin 2014

Acknowledgments

First of all, I would like to thank Prof. Dr.-Ing. Thomas Sikora for the opportunity
to write this thesis under his guidance. Numerous ideas and hints of his not only
formed the basis of this thesis but also inspired the formulation of the underlying
theory. I would also like to thank Michael Tok, Alexander Glantz, and Andreas
Krutz for their cooperation on most of the scientific papers published in the con-
text of this thesis as well as for their helpful professional feedback. Special thanks
also goes to Lieven Lange whose bachelor and master thesis I had the pleasure to
supervise. Most of the investigations mentioned in Chapter 6 were conducted by
him.

i

ii

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die Dissertation selbstständig verfasst
habe. Alle benutzten Hilfsmittel und Quellen sind aufgeführt.

Eine Anmeldung der Promotionsabsicht habe ich an keiner anderen Fakultät oder
Hochschule beantragt.

Berlin, den ..

iii

iv

Abstract

In compressed video sequences artifacts frequently occur at low bit rates. One
possible way to reduce these artifacts and to lower the required bit rate are in-
loop filters. Among them are filters that work in the spatial domain only and
those that utilize the temporal domain as well. In order to effectively perform
temporal filtering, accurate motion information per pixel is required. In this thesis,
one temporal filter, the Temporal Trajectory Filter (TTF), is investigated. Methods
are described to reconstruct pixel motion paths from block-based motion vectors. In
addition, a theoretical foundation for the filter is derived and predictions concerning
the theoretically achievable gain are made. The thesis also covers several additions to
the filter such as quadtree-based parameter signaling, side-information compression
and dense motion vector field interpolation to improve the motion accuracy. Even for
the latest version of the new video compression standard H.265/MPEG.H Part 2 the
filter still produces an average additional bit rate reduction of 0.4% with much higher
values for prior versions and for H.264/AVC. Finally, possible implementations of the
TTF as a post-filter are presented and evaluated. These include a highly adaptive
neural network approach and a true reference-free post-filter.

v

vi

Zusammenfassung

In komprimierten Videosequenzen treten generell Artefakte bei niedrigen Bitraten
auf. Sogenannte in-loop-Filter stellen eine Möglichkeit dar, diese Artefakte zu re-
duzieren. Zu in-loop-Filtern gehören sowohl solche, die ausschließlich räumlich
arbeiten, als auch solche die zusätzlich noch die zeitliche Dimension beinhalten.
Damit die temporale Filterung effektiv funktionieren kann, werden exakte Bewe-
gungsinformationen für jedes Pixel benötigt. In dieser Arbeit wird ein zeitliches
Filter, das Temporal Trajectory Filter (TTF), näher beleuchtet. Unter anderem
werden Methoden vorgestellt, um die Bewegung eines einzelnen Pixels aus block-
basierten Bewegungsvektoren zu rekonstruieren. Zusätzlich wird ein theoretisches
Fundament für das Filter aufgebaut und es werden Vorhersagen bezüglich der Fil-
tereffektivität gemacht. In der Arbeit werden weiterhin Erweiterungen des Fil-
ters wie die quadtreebasierte Parametersignalisierung, Seiteninformationskompres-
sion und dichte Bewegungsvektorfeldinterpolation zur Verbesserung der Bewegungs-
repräsentation vorgestellt. Selbst für die letzte Version des neuen Videokodierungs-
standards H.265/MPEG.H Part 2 konnte das Filter noch mittlere Bitratenreduktio-
nen von 0.4% erzielen. Für frühere Versionen des Testmodells und für H.264/AVC
wurden sogar noch deutlich bessere Ergebnisse erzielt. Abschließend werden mögliche
Implementierungen des TTFs als Postfilter vorgestellt und untersucht. Zu diesen
gehört ein hochadaptives neuronales Netzwerk und ein echtes referenzfreies Postfil-
ter.

vii

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Literature Survey . 3

1.2.1 General Denoising/Filtering Concepts 3

1.2.2 Temporal Denoising/Filtering Concepts 7

1.3 Main Contributions . 9

1.4 Structure of the Thesis . 12

2 Definitions, Applications, Quality Metrics 13

2.1 Definitions . 13

2.2 Possible Applications . 15

2.2.1 Temporal In-loop Filter for Video Compression 15

2.2.2 Temporal Post-Filter for Video Denoising 16

2.2.3 Temporally Denoised Prediction Mode for Video Compression 17

2.3 Quality Metrics . 17

2.3.1 Evaluating the Correctness of a Trajectory 18

2.3.2 Evaluating the Image Quality 19

2.4 Chapter Summary . 22

3 Perfect Motion Knowledge 23

3.1 Human-Assisted Motion Annotation 23

3.2 Theoretical Foundations . 25

3.2.1 Noise Reduction Through Temporal Filtering 26

ix

3.2.2 Image and Noise Model . 26

3.2.3 Investigation of Real-World Sequences 29

3.3 Perfect Motion Vector Fields . 30

3.3.1 Preliminary Considerations 30

3.3.2 Performance Comparison Between QTTF and QTTF with
Perfect Motion Vector Fields 32

3.4 Chapter Summary . 32

4 Theoretical Considerations 35

4.1 Maximum Theoretically Achievable Gain 36

4.1.1 Perfect Knowledge of all Trajectories and Noisy Images 36

4.1.2 Motion Error and Noise-Free Images 38

4.1.3 Motion Error and Noisy Images 43

4.2 Optimal Filter Length and Quality Improvements 44

4.3 Trajectory Structure and GOP-Structure 47

4.4 Chapter Summary . 49

5 Practical Realizations Part 1 51

5.1 Temporal Trajectory Filtering . 51

5.1.1 Introduction . 51

5.1.2 Formation of Temporal Pixel Trajectories 52

5.1.3 Derivation of Filter Parameters 56

5.1.4 Experimental Evaluation . 57

5.1.5 Summary . 72

5.2 Weighted Temporal Long Trajectory Filtering 72

5.2.1 Introduction . 73

5.2.2 Lagrangian Minimization and its Applications in
Video Coding . 73

5.2.3 Theoretical Basis . 74

5.2.4 Filter Design . 75

5.2.5 Experimental Evaluation . 77

x

5.2.6 Summary . 79

5.3 Quadtree-Based Temporal Trajectory Filtering 81

5.3.1 Introduction . 81

5.3.2 Temporal Trajectory Filtering 81

5.3.3 Quadtree-Based Parameter Signaling 82

5.3.4 Experimental Evaluation . 85

5.3.5 Summary . 93

5.4 A Flexible Side-Information Compression Scheme 93

5.4.1 Designing CABAC Context Models for QTTF 94

5.4.2 Experimental Evaluation . 96

5.5 Adaptive Dense Vector Field Interpolation 99

5.5.1 Introduction . 99

5.5.2 Motion Field Interpolation . 100

5.5.3 Experimental Evaluation . 103

5.5.4 Summary . 104

5.6 Chapter Summary . 105

6 Practical Realizations Part 2 107

6.1 An Artificial Neural Network . 107

6.1.1 Additional Criteria . 107

6.1.2 Filtering . 110

6.1.3 TTF as an Artificial Neural Network 114

6.1.4 The Internal Network . 116

6.1.5 A Combination of Luminance Filtering and Temporal Consis-
tency Filtering . 120

6.1.6 Other Possible Implementations 121

6.1.7 The Learning Algorithm . 121

6.2 A Reference-Free Post-Filtering Approach 126

6.2.1 Local Separation with Brute-Force Filtering 127

6.2.2 16× 16 only, Motion Compensated for the Brute-Force Filter . 128

xi

6.2.3 16× 16 only, Motion-Compensated with Residual 133

6.3 Brute-Force Filtering With Side-Information 138

6.3.1 Local Separation with an Artificial Neural Network 139

6.3.2 16× 16-Blocks only, Artificial Neural Network with the Orig-
inal as Reference . 140

6.3.3 Artificial Neural Network Using all Possible Block-Sizes 141

6.3.4 Neural Network with Quantized Parameters 141

6.3.5 Evaluation of the Filter based on an Artificial Neural Network 141

6.3.6 Summary . 142

6.4 Post-Filtering Approach for HEVC 143

6.5 Chapter Summary . 145

7 Theory Assessment 147

7.1 Predicted and Realized Filter Lengths 148

7.1.1 Analysis of the Predicted Filter Lengths 149

7.1.2 Variance Analysis . 152

7.2 Analysis of the Filter Functionality 153

7.3 Filtering of Foreground and Background 155

7.4 Chapter Summary . 156

8 Conclusion and Outlook 163

8.1 Achievements . 163

8.2 Conclusions . 165

8.3 Outlook . 166

Appendices

Appendix A Block-Based Error Distribution Analysis 177

Appendix B Implemented Neural Networks 187

Appendix C Spatial and Temporal Properties of the Test Sequences189

xii

List of Tables

1.1 Filter strength parameter as a function of the coding mode. 4

3.1 Comparison between QTTF and QTTF with perfect motion vectors. 32

5.1 Settings used for the H.264/AVC Baseline Profile. 59

5.2 Settings used for the H.264/AVC Extended Profile. 59

5.3 All test sequences in the TTF experiments. 60

5.4 BD-rate and average PSNR gain for test sequences for the H.264/AVC
baseline profile with TTF, QALF, and both filters in combination. . . 64

5.5 BD-rate and average PSNR gain for test sequences for the H.264/AVC
extended profile with TTF, QALF, and both filters in combination. . 65

5.6 Per class average encoding and decoding time ratios compared to
H.264/AVC baseline profile. 68

5.7 Per class average encoding and decoding time ratios compared to
H.264/AVC extended profile. 68

5.8 BD-rates and average PSNR-gain for the sequences used in the ex-
periments . 78

5.9 All test sequences used in the QTTF experiments. 85

5.10 BD-rate and average PSNR gain for all test sequences compared
against the HEVC low-delay profile with ALF disabled. 87

5.11 Training sequences used to develop the CABAC context models. . . . 88

5.12 Probability for the enable flag for partition number 1 depending on
the position within the GOP. 88

5.13 Probability for the enable flag for partition number > 1 depending
on the position within the GOP. 88

xiii

5.14 Probability for the split flag for partition number 1 depending on the
position within the GOP. 89

5.15 Probability for the split flag for partition number > 1 depending on
the position within the GOP. 89

5.16 BD-rate and average PSNR gain for QTTF in combination with dif-
ferent quadtree optimization and compression techniques. 90

5.17 Training sequences used to develop the CABAC context models. . . . 94

5.18 Average symbol probability for filter control flags and all possible
partition levels. 95

5.19 All test sequences with their respective ∆PSNR and BD-rate values for
the experimental evluation of QTTF with CABAC compression. . . . 98

5.20 Average side-information reduction through CABAC compression. . . 99

5.21 Comparison between QTTF and QTTF with interpolated motion vec-
tor fields. 104

6.1 Sequences analyzed concerning the residual distribution. 127

6.2 BD-rate and BD-PSNR for brute-force filtering with a fixed block-size
of 16× 16 and YMC as reference. 133

6.3 BD-rate and BD-PSNR for brute-force filtering of videos with a fixed
block-size of 16× 16 and Ydec as reference. 137

6.4 BD-rate and BD-PSNR for brute-force with Yorig as reference. 139

6.5 BD-rate and BD-PSNR for filtering with an artificial neural network
of videos with Yorig as reference. 140

6.6 BD-rate and BD-PSNR for filtering with an artificial neural network
with quantized parameters. 142

6.7 BD-rate and average PSNR gain for TTF and QTTF both as post-
filter applications and in their original in-loop implementation. 144

7.1 BD-rate and average PSNR gain for QTTF for different threshold
combinations for the HEVC low-delay high efficiency setting. 155

C.1 Spatial and temporal properties for BlowingBubbles and BQSquare. . 190

C.2 Spatial and temporal properties for RaceHorses and Waterfall. 191

xiv

List of Figures

1.1 One-dimensional visualization of a block edge. 4

1.2 An exemplary quadtree structure with the associated block partitions. 6

2.1 Visualization of a general motion trajectory. 14

2.2 General encoder diagram based on H.264/AVC. 16

2.3 ”Comparison of image fidelity measures for ”Einstein“ image altered
with different types of distortions. 21

3.1 Output of the HAMA algorithm for the BlowingBubbles sequence. . . 25

3.2 Visualization of the utilized synthetic test sequence. 27

3.3 Visual comparison between a decoded squence with and without the
application of TTF. 28

3.4 The autocorrelation function for the trajectory of one exemplary pixel
of the circle boundary. 28

3.5 Original frame, layer segmentation, and color-coded x-component of
the optical flow for the test sequences. 29

3.6 Exemplary frame from the BlowingBubbles with ambiguous motion
vectors caused by transparent objects. 31

4.1 Graphical comparison between the true and the linearized AR(1) cor-
relation model. 41

4.2 Convexity of the distortion variance. 46

4.3 Motion trajectory for an IPPP coding structure. 48

4.4 Motion trajectory for a coding structure with hierachical B-frames. . 49

5.1 Motion trajectory for an hierachical B-frame structure. 53

xv

5.2 Visualization of the block-vote metric. 56

5.3 Integration of the TTF within the H.264/AVC encoder. 58

5.4 Exemplary RD-curves for the H.264/AVC baseline profile. 62

5.5 Combination of TTF and QALF within the H.264/AVC encoder. . . 66

5.6 Visual comparison of the BQSquare sequence with and without TTF. 69

5.7 An enlarged part of frame 500 from the decoded BQTerrace sequence
for QP 37. 69

5.8 Optimal thresholds TY , TSC and TTC for the BQMall sequence for QP
22. 69

5.9 Optimal thresholds TY , TSC and TTC for the BQMall sequence for QP
37. 70

5.10 Average trajectory lengths for the BQMall sequence when using the
baseline profile. 71

5.11 Average trajectory lengths for the BQMall sequence when using the
extended profile. 71

5.12 Motion trajectory for a coding structure with hierachical B-frames. . 76

5.13 Combination of TTF and ALF within the HM 3.0 reference encoder. 77

5.14 RD-curves for all three tested settings for the BQSquare sequence. . . 80

5.15 Exemplary decoded frames from the Waterfall sequence. 80

5.16 Exemplary probability distributions for the BQSquare sequence for
QP values from 22 to 37. 84

5.17 Exemplary RD-curves for the BQSquare sequence. 86

5.18 Frame 44 of the Waterfall sequence. 91

5.19 Quadtree partitions generated by the top-down algorithm. 92

5.20 Quadtree partitions generated by the brute-force algorithm. 92

5.21 The QTTF is inserted in the local decoding loop at the encoder after
the Deblocking Filter. 96

5.22 Trajectory structure for the low-delay setting of HM 3.0. 100

5.23 Traingle mesh derived from a block-based prediction structure. 101

5.24 Calculation of the interpolated motion vector following the proposed
scheme. 102

5.25 Linearly interpolated MV field between three blocks of equal size. . . 102

xvi

5.26 Comparison of interpolation strategies for motion boundaries. 103

5.27 Interpolated motion vector field of frame 7 of the BQSquare sequence. 106

6.1 For each pixel along the trajectory two new parameters are added to
the respective node in the trajectory tree. 109

6.2 Structure of a general decision neuron. The input values ui are first
multiplied with the weights wi and their sum net is calculated. The
decision is then based on net. The output value O is directly com-
puted by the application of the sigmoid function to net: O = Θ(net). 111

6.3 Shape of the sigmoid function Θ(net). 113

6.4 A simplified neuron representation with an input vector ~U whose
scalar product with a weighting vector ~W is calculated and then pro-
cessed by the activation function A. 113

6.5 Artificial neural network for the filtering of a trajectory. 115

6.6 An example of a three-layered internal network. The vectors ~Gi rep-
resent arbitrary weights. The output of neuron Nm2 shall be weighted
by wr ∈ ~Gk and ws shall link neurons N2 and Nm2 117

6.7 Structure of an internal network for a simple ∆Y threshold calculation.118

6.8 Dependency between the neuron output and the sign of the individual
parameters w0 and w1. 120

6.9 Structure of an internal network for a simple ∆Φt threshold calculation.120

6.10 Structure of an internal network for a combination of ∆Y and ∆Φt

threshold calculation. 121

6.11 Division of a macroblock into training data set and filter data set. . . 126

6.12 Frequency of occurence of errors equal to zero between motion-compensated
frame YMC and the original frame YOrig. The residual error was dis-
carded in this experiment. 129

6.13 Average Y-component distribution of the first frame of BQTerrace. . 130

6.14 Probability distributions for the occurence of zero-errors. 130

6.15 Frequency of occurence of error values equal to zero between the re-
constructed frame Ydec and the original frame Yorig. 135

6.16 Analysis of the occurence of zero-errors in the residual between Ydec

and Yorig. 136

xvii

6.17 A post-filter with additional side-information for optimal quality con-
trol. 138

7.1 Block prediction mode distribution for the BlowingBubbles sequence
depending on the QP. 150

7.2 Comparison between realized and expected filter lengths. 151

7.3 Visualization of the dependency between temporal variance and QP. . 153

7.4 Visualization of the spatial distribution of pixels improved through
TTF. 157

7.5 Display of filtered and unfiltered pixels for an exemplary frame of the
RaceHorses (D) sequence for four different QPs. 158

7.6 Display of filtered and unfiltered pixels for an exemplary frame of the
BlowingBubbles sequence for four different QPs. 159

7.7 Display of filtered and unfiltered pixels for an exemplary frame of the
Waterfall sequence for four different QPs. 160

A.1 Average error between the motion-compensated frame YMC and the
original YOrig within the 16× 16 macro blocks. 178

A.2 Analysis of the residual errors between the motion-compensated frame
YNC and the original YOrig. 179

A.3 Power of the error distribution between the motion-compensated frame
YMC and and the original YOrig within 16× 16 blocks. 180

A.4 Analysis of the power distributions in the residual errors between the
motion-compensated frame YMC and and the original YOrig. 181

A.5 Average error between the decoded frame Ydec and the original Yorig

within a 16× 16 block. 182

A.6 Analysis of the error distribution between the decoded frame Ydec and
the original Yorig. 183

A.7 Distribution of the MSE between the decoded frame Yrec and the
original Yorig within all 16× 16 blocks. 184

A.8 Average MSE between the decoded frame Yrec and the original Yorig

over all QPs. 185

xviii

Chapter 1

Introduction

People often say that motivation doesn’t last. Well, neither does bathing - that’s why we

recommend it daily. - Zig Ziglar

1.1 Motivation

Transmitting high-definition (HD) video files over today’s communication networks
still poses a problem, at least when resonable quality and a low delay at the receiver
are required. With the introduction of super high-definition monitors ranging from
resolutions of 2560× 1600 pixels to 8000× 4000 pixels, storage and transmission of
suitable video files becomes an even more ambitious task. The raw bit rate for an
HD video of 1920× 1080 pixels alone at a framerate of 60 Hz in YUV420 format is
1920 · 1080 · 601

s
· 12 bit

pixel
= 1.49Gbit

s
. For an 8k × 4k-video the respective bit rate

would be 23.04Gbit
s

. Even with the compression ratios provided by today’s state-
of-the-art video codecs like ITU-T H.264/ISO/IEC 14496-10 (H.264/AVC) the re-
quired bandwidth for transmitting such videos is still extremely high. Storing them
on traditional media such as DVD or BluRay also poses a problem. In an attempt to
essentially half the required bit rate for such videos, ITU and MPEG issued a joined
Call for Proposals (CfP) in 2009 [45]. The now completed standardization activity
High Efficiency Video Coding (HEVC) supervised by the Joint Collaborative Team
on Video Coding (JCT-VC) saw the introduction of new tools that enable the new
standard ISO/IEC 23008-2 MPEG-H Part 2 / ITU-T H.265 to provide compression
ratios in the range of 50% compared to H.264/AVC. Nevertheless, as will be shown
in this thesis, the achievements of the JCT-VC do not pose an upper limit. In fact,
significant additional bit rate savings can be produced by further exploiting tempo-
ral dependencies within the video content. In an ideal case, where the individual
motion of every image point is known throughout the duration of the video at both

1

2 CHAPTER 1. INTRODUCTION

encoder and decoder and where the illumination of the scene does not change, every
new frame could be reconstructed by reusing the image content from the previously
decoded frame. Additonal information would only be required when new content is
introduced by newly appearing objects, rotations of objects that are already visible
etc. In practice, perfect knowledge of individual pixel motion may, however, only
occur under very special circumstances such as fixed cameras with stationary scenes.
In every other case the overhead for transmitting individual pixel motion, so-called
trajectories, becomes immense.

The traditional hybrid video codec, therefore, associates motion not with individual
pixels but with blocks, that cluster neighboring pixels together. As soon as the
video content can no longer be respresented by square blocks or if non-translational
motion occurs, this motion model will to a certain degree fail. As a result, the
implicit trajectories are no longer accurate and are only rough approximations of
the true motion. Other motion representations such as global or affine motion mod-
els can overcome this deficiency. They are, however, only applicable to very large
foreground objects or to the entire background. No matter where the motion infor-
mation actually originates from and which model is used, hybrid video coding has
two distinct features where such information may be used: The first is the genera-
tion of a prediction signal through motion compensation. This is a well established
concept dating back to the very beginnings of video compression [24]. The second
feature concerns the denoising of reconstructed frames either as an in-loop or a
post-processing step. So-called temporal denoising filters have already been under
investigation for several decades [41]. Mainly due to their computational complex-
ity, they have, however, never yet been included in a video compression standard.
A third possible application would be the use of motion information in applying
a temporal filter as a preprocessing step. Here, denoising could improve the cod-
ing efficiency of a codec by increasing the temporal stability of the input sequence.
However, since the usual evaluation criterion for compressed video sequences is the
mean squared error (MSE) between input and reconstructed sequence, intentionally
modifying the input sequence may in fact provide worse results in a rate-distortion
sense. This is especially the case since a temporal filter can generally not distinguish
between unwanted video artifacts such as camera noise and wanted artifacts such as
heat haze. The removal of the latter will, of course, decrease the objective quality
of the decoded sequence.

This thesis attempts to highlight certain properties of individual pixel trajectories
that justify their use within a video encoder/decoder pair. There are a number of
possible applications for pixelwise motion information within a hybrid video codec.
However, covering all of them is beyond the scope of this thesis. Instead, a special
focus will be placed on in-loop and post-filters for denoising since they share several

1.2. LITERATURE SURVEY 3

important aspects: The information available to such filters concering past encoded
frames is identical and both can theoretically be modeled in the same manner. More-
over, the individual quality improvement for each treated frame will in both cases
also be identical. Both temporal filtering concepts will be analysed in this thesis
based on a theoretical description of their behavior. In addition, their optimality
for some scenarios will also be demonstrated. Before highlighting the main contri-
butions of this thesis the following literature survey will give an overview of other
filtering concepts, their individual properties as well as their usage in today’s video
codecs. The chapter will be completed by a detailed description of the structure of
the remaining thesis.

1.2 Literature Survey

The following section shall highlight some of the previous work done in the context
of denoising and deblocking filters in order to put the contributions of this thesis
into perspective.

1.2.1 General Denoising/Filtering Concepts

In-loop filters in video codecs serve the dual purpose of subjectively improving the
quality of reconstructed frames while also reducing the required bit rate for trans-
mitting a frame at a predefined quality [33]. The latter effect is due to the improved
quality of frames used for the reconstruction of future images. Therefore, it cannot
be reproduced in a post-processing scenario. An in-loop filter was first standardized
as an optional codec component in ITU-T H.261 [25]. Details concering the utilized
low-pass filter in H.261 and considerations concerning an optimal denoising-filter
may be found in [42]. Other filters were later investigated during the standardiza-
tion of ITU-T H.263 [27]. Best known, however, is the deblocking filter that was
introduced with the standardization of H.264/AVC [28].

Deblocking Filter, List et al. In [33] List et al. give additional reasons for
using filters within the local decoding loop at the encoder: They allow the encoder
to guarantee a certain quality level at the decoder since disabling the filter at the
decoder is no longer possible without losing synchronization with the encoder. Fur-
thermore, no extra frame buffer is required at the decoder as no filtering is performed
after a picture has been reconstructed. The H.264/AVC deblocking filter performs
one-dimensional smoothing operations along block edges between neighboring 4×4-
blocks using a finite-impulse-response (FIR) filter. The strength of the filter is

4 CHAPTER 1. INTRODUCTION

Block modes and conditions Bs = 1

One of the blocks is Intra and the edge is a macroblock edge 4
One of the blocks is Intra 3
One of the blocks has coded residuals 2
Difference of block motion ≥ 1 luma sample distance 1
Motion compensation from different reference frames 1
Else 0

Table 1.1: Filter Strength parameter as a function of the coding mode. Source: [33].

Figure 1.1: One-dimensional visualization of a block edge, where the y-axis signifies
the luminance value. Source: [33].

chosen according to the boundary strength parameter Bs . Although the filter only
works in the spatial domain by changing the content of only one frame at a time,
a temporal component is added, too. For the case of Bs = 1, which corresponds to
a very weak smoothing operation, the reference frames for neighboring blocks are
also taken into account. Here the assumption is the following: The further apart
the reference frames are, the more likely is the introduction of unwanted coding
artifacts in the reconstructed frame, see Table 1.1 for reference. In addition to the
adaptability introduced by the different boundary strength values, the filter depends
on the actual luminance distribution at a block edge in order to distinguish between
true edges in the image and block artifacts. For this evaluation, eight pixels on a
line orthogonal to the block edge (p0 to p3 and q0 to q3) are examined. The naming
convention as described in [33] can be seen in Figure 1.1. The subsequent filtering
is only applied to a block if the following conditions hold.

|p0 − q0| < α(IndexA)

|p1 − p0| < β(IndexB)(1.1)

|q1 − q0| < β(IndexB)

1.2. LITERATURE SURVEY 5

Where IndexA and IndexB are directly calculated from the respective quantization
parameter (QP) and the values for α and β have been derived empirically. The
QP-dependency of α and β is motivated according to List et al. by the following
statement: ”Since the threshold values increase with QP, boundaries that contain
higher content activity are filtered when QP is larger, since the coding error (size
of artifacts) increases with QP. [sic]“ This property will also be used in the design
of the temporal filters discussed later in this thesis. The main advantage of the
H.264/AVC deblocking filter is the omission of additional side-information. Since
the filter is not optimized for any given picture at the encoder, no filter parameters
need to be transmitted. All information required by the decoder is readily available
from the bit stream.

Block-based Adaptive Loop Filter A first attempt to adapt the filter directly
to the image content was described by Wittmann and Wedi in [57]. Although the
filter detailed therein is described as a post-processing step, it may also be used
in-loop. Based on the well-known Wiener-Hopf equation the optimal denoising of a
signal s′ with a noisy free original s can be achieved by applying an FIR-filter with
the coefficients w to s′:

(1.2) w = R−1
s′s′ ·Rs′s,

where Rs′s′ is the auto-correlation function of the noisy signal and Rs′s is the cross-
correlation function between the noisy signal and the noise-free original. As de-
scribed by Wittmann and Wedi, the required side-information for applying the filter
at the decoder can either contain the coefficients w themselves or the correlation
information. In the latter case the decoder has the choice to design a suitable filter
itself. According to [57] their post-filter provided a mean bit rate reduction of 8.5%
for the joint video team’s (JVT) test set as defined in [1]. Further adaptibility of
the Wiener Filter method was introduced by a contribution to ITU’s Video Coding
Experts Group (VCEG) in [7] as a possible extension to H.264/AVC. The Block-
based Adaptive Loop Filter (BALF) defines a certain block-size between 8× 8 and
128×128 for each frame. On this block-level the Wiener-based Adaptive Loop Filter
(ALF) is either switched on or off. In addition, different filter coefficients were, for
the first time, applied to the chrominance samples of a decoded frame. When used
as an in-loop filter, the BALF provided an average bit rate reduction of 7.20% for
the VCEG common test conditions [1].

Quadtree-based Adaptive Loop Filter A fully flexible version of the ALF,
that is no longer restricted to fixed block-sizes, was introduced in [6] by Chujoh
et al. The Quadtree-based Adaptive Loop Filter (QALF) again switches the ALF
on and off on the block level. However, no flag for a fixed block size is required

6 CHAPTER 1. INTRODUCTION

Figure 1.2: An exemplary quadtree structure with the associated block partitions.
Source: [6].

anymore, instead the block size can be chosen adaptively. To this end Chujoh et
al. proposed to use a quadtree structure to partition the frame into blocks that are
filtered and those that are not. Their representation may be illustrated by Figure
1.2. Essentially, the quadtree always contains one flag for the current block or
picture. Should the block partition flag be set to 1, then the current block is split
once horizontally and once vertically yielding four subblocks of identical size, that
are afterwards examined in turn. Should the current block not be split, then the
filter block flag is used to either enable or disable the filter for the current block. The
block partition flag is omitted, when a fourth layer of partitions has been reached.
In which case no block is split further. Details on how an optimal quadtree in the
rate-distortion-sense may be derived, can be found in [6] and will be reexamined
later in Chapter 5. The QALF was tested on a different data set than the BALF
and produced an average bit rate reduction of 7.27%. According to Chujoh et al. this
corresponds to an improvement of 0.63% compared to the original BALF proposal.

Adaptive In-Loop Noise-Filtered Prediction for High Efficiency Video
Coding Most in-loop filters do not cope well with noisy input sequences since
they will introduce visible visual differences between original and decoded sequence
through the suppression of the original noise. One filtering concept especially de-
signed for such noisy sequences was presented by Wige et al. in [56]. There
the authors defined the following description of the error residual after motion-

1.2. LITERATURE SURVEY 7

compensated prediction in a hybrid video codec

(1.3) e[i] = sg[i]− sf [i] + ng[i]− nf [i],

where f̂ is the prediction signal and g is the original frame. sg[i], sf [i] represent
the useful signal parts and ng[i], nf [i] are the additive noise components. Assuming
that the noise between adjacent frames is uncorellated, the authors arrive at the
conclusion that the variance of the noise term will generally be increased by the
prediction step. They conclude, that a noise suppression in the form of an in-loop
filter is needed to counteract this effect. Since the noise is part of the original
sequence their filter is only applied after the reconstructed signal has been passed
on to the display device. In this manner the original noise is still visible in the
reconstructed frame while it is at the same time removed from the reference frames
used for prediction. The actual noise filter is a locally adaptive Wiener filter of size
3×3 with low-pass characteristics. The adaptivity is needed to reflect the estimated
variance of the noise-free image so as not to introduce additional artifacts. The filter
was tested within the HEVC test model HM 2.2 and produced bit rate reductions
of up to 22% for the low delay low complexity setting when only P-frames are used
and bit rate reductions of up to 4% for the low delay high efficiency setting. Such a
gain can, however, only be realized for sequences suitable for the filter, i.e. where a
certain amount of additive noise is already present in the original sequence. When
B-frames are used instead, significantly lower gains are reported. According to the
authors this reflects the noise reduction property of the B-frame prediction step.

1.2.2 Temporal Denoising/Filtering Concepts

From the field of microphone and antenna arrays, it is a well-known fact, that
denoising of a signal may be achieved by averaging N noisy samples. As long as the
noise is additive and uncorrelated from sample to sample, the noise variance may
be reduced through the averaging by a factor N [30]. The underlying statistical
signal theory will be revisited in detail later in Chapter 3. In video compression
the idea of having several antennas or other capturing devices is instead replaced
by the tracking of image content over two or more frames. Filters working in such a
manner are generally summarized under the term temporal denoising filters. Some
prominent examples that share certain properties with the filters to be developed in
this thesis will now be examined in more detail.

Three-dimensional Subband Coding with Motion Compensation Among
the first publications concerned with temporal filtering is [40], where a three-dimen-
sional subband coding scheme was detailed. This does not only include the filtering

8 CHAPTER 1. INTRODUCTION

of noisy samples, but also combines this step with the prediction of future samples
along a trajectory. Based on the individual trajectory of a single pixel, a decomposi-
tion of the color components along the trajectory with the help of a QMF filter bank
is performed. Given a trajectory of length R this produces a total of R frequency
components per pixel. Prediction and in-loop filtering are consequently done simul-
taneously, since the predicted reconstructed pixel-value is again derived through the
combination of R frequency bands with an FIR filter. In [40] Ohm also discussed
cases of uncovered new image details and occluded image regions, which lead to
the termination of old or the creation of new trajectories. As described earlier, the
main problem in this context is conveying pixel-wise exact motion information to
the decoder. A special scheme to transmit quantized trajectory information without
strong impairments on the filter quality was also described in [40].

Optimal Motion Compensated Spatio-Temporal Filter A possible imple-
mentation of a simple temporal post-filter for Motion JPEG sequences was detailed
in [48]. The filter performs block-wise spatial alignment of consecutive frames with
motion estimation at the decoder. The described filtering step consists of a simple
averaging of three temporally adjacent pixels, i.e. the current and both a future
and a past frame are used for filtering. In [49] this idea was extended to a general
spatio-temporal filter for H.264/AVC coded sequences that incorporated spatially
adjacent pixels from the current frame as well as from past and future frames. In [49]
an average PSNR improvement of 0.56 dB was reported for the well-known foreman
sequence at 172 kbps. Test results for other sequences are, however, missing. In the
described implementation the need to transmit motion information was simply omit-
ted by using a block-based motion estimation (ME) algorithm at the decoder. The
main drawback of this approach is, of course, the possibility that ME errors will also
influence the performance of the filter, thus possibly decreasing the reconstructed
picture quality.

Global Motion Temporal Filtering, Glantz et al. As has been mentioned
before, very efficient general motion representations can be used, if large parts of a
frame move in the same manner. The simplest case would, of course, be a transla-
tional motion model applicable to the entire frame requiring only one motion vector
(MV) with two components for the frame. In more complex cases, rotational, affine,
and perspective motion models with 4, 6, or 8 parameters respectively can be used.
In [20] filtering of the image background was achieved by consecutively warping
frames into the current frame through the use of homographies transmitted in the
bit stream. The construction of the fused image is controlled by an optimal filter
length transmitted also as side-information. In addition, the algorithm requires the
construction of a binary object mask at the encoder to prevent the filtering of fore-

1.3. MAIN CONTRIBUTIONS 9

ground objects. The mask, too, is conveyed via the bit stream. Despite the fact
that the filter was applied as a post-filter only, a significant reduction of visual arti-
facts was achieved. For individual sequences, bit rate reductions of up to 18% were
reported. As mentioned earlier, such a filter will only produce satisfactory results
on the image background or on very large foreground objects. In case of faulty
segmentation masks the filter will severely impair both the objective and subjective
quality of the reconstructed frames.

Rate-Constrained Multihypothesis Prediction for Motion-Compensated
Video Compression, Flierl et al. Even though it does not constitute a pure
filtering approach the method introduced by Flierl et al. in [18] and expanded in
[17] should be mentioned here. In the two publications, the authors introduced
a new prediction mode for the then state-of-the-art codec H.263 and the experi-
mental codec entitled H.26L, which later became part of H.264. The new mode
referred to as multihypothesis prediction extended the earlier idea of bidirection-
ally predicted frames or B-frames to frames and blocks with an arbitrary number
of reference frames and an equally arbitrary number of averaged predictors or hy-
potheses for generation of the next frame. The authors restricted these predictors
to use only causal information from previous frames in display order, thus reducing
the computational overhead. Even though, two and four motion vectors (hypothe-
ses) per frame were implemented and tested the authors state that ”combining two
hypotheses already achieves most of the gain possible with multihypotheses [motion-
compensated prediction (MCP)].“ [17] The major advantage compared to the simple
B-frames with fixed reference frames used in H.263 is the possibility of referencing
arbitrary previously coded frames by means of a reference index per frame. The
new prediction mode comes close to a temporal filtering mode over several frames
since linearly combining several predictors can also be seen as averaging a number of
noisy versions of the same pixels. The main difference compared to filtering along an
individual trajectory per pixel is, that in both [18] and [17] the same filtering char-
acteristics are applied for an entire motion-compensated block with a fixed number
of motion vectors. Trajectory-based filtering will, instead, apply a different filter or
at least a different filter length to each pixel individually. This difference will again
be examined in Chapter 5.

1.3 Main Contributions

In this thesis, a novel temporal filter will be introduced that reconstructs motion in-
formation on pixel level directly from the motion vectors conveyed in the bit stream
making it thus independent from additional motion information. Furthermore, due

10 CHAPTER 1. INTRODUCTION

to its accuracy, the filter can be applied equally to both foreground and background
giving it a certain advantage over temporal filters that use parametric motion mod-
els. A detailed description of the main developments and findings in this thesis may
be taken from the following list of contributions, where all authors mentioned after
the first author provided helpful discussions, feedback, and corrections.

1. The original Temporal Trajectory Filter (TTF) introducing a lumiance and
a spatial motion consistency threshold was implemented and tested in the
environment of the H.264/AVC baseline profile. The algorithm description
and the results were published in

• Marko Esche, Andreas Krutz, Alexander Glantz, Thomas Sikora
A Novel In-loop Filter for Video-Compression based on Tem-
poral Pixel Trajectories
Proceedings of the 28th IEEE Picture Coding Symposium (PCS 2010),
Nagoya, Japan, 12|07|2010 - 12|10|2010, ISBN: 978-1-4244-7135-5

2. The idea of a one-dimensional motion trajectory for a simple IPPP coding
structure was later extended to the more general case of hierarchical B-frames,
essentially turning the trajectory path into an entire tree of possible pixel loca-
tions that can contribute to the filter efficiency. In addition, a third threshold
describing the temporal motion consistency along the trajectory was described
and further evaluated in

• Marko Esche, Andreas Krutz, Alexander Glantz, Thomas Sikora
Temporal Trajectory Filtering for Bi-directional Predicted
Frames
Proceedings of the 18th IEEE International Conference on Image Pro-
cessing (IEEE ICIP2011), Brussels, Belgium, 09|11|2011 - 09|14|2011,
pp. 1669-1672, IEEE catalog number: CFP11CIP-USB ISBN: 978-1-
4577-1302-6

• Marko Esche, Alexander Glantz, Andreas Krutz and Thomas Sikora
Adaptive Temporal Trajectory Filtering for Video
Compression
IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), IEEE, vol. 22, no. 5, May 2012, pp. 659-670

3. A new weighting scheme for individual noisy samples contributing to the fil-
tered average as well as a method for ensuring a greater length of individual
trajectories was introduced and discussed in

• Marko Esche, Alexander Glantz, Andreas Krutz, Michael Tok, and Thomas
Sikora

1.3. MAIN CONTRIBUTIONS 11

Weighted Temporal Long Trajectory Filtering for Video Com-
pression Proceedings of the 29th IEEE Picture Coding Symposium (PCS
2012), Krakow, Poland, 05|07|2012 - 05|09|2012 ISBN: 978-1-4577-2048-2

4. Following the gerneral idea of the QALF a quadtree was added to the TTF
making it thus more adaptable to differently moving regions within a frame.
The algorithmic details and simulation results may be found in

• Marko Esche, Alexander Glantz, Andreas Krutz, Michael Tok, and Thomas
Sikora
Quadtree-based Temporal Trajectory Filtering
Proceedings of the 19th IEEE International Conference on Image Pro-
cessing (ICIP), Orlando, Florida, 09|30|2012 - 10|03|2012

5. An additional scheme to effectively compress the side-information required for
the quadtree-based TTF was presented in

• Marko Esche, Alexander Glantz, Andreas Krutz, Michael Tok, and Thomas
Sikora
Efficient Quadtree Compression for Temporal Trajectory
Filtering
Proceedings of the 23rd Data Compression Conference (DCC), Snowbird,
Utah, 03|20|2013 - 03|22|2013

6. In order to improve the motion vector accuracy, a novel scheme for motion
vector interpolation was described in

• Marko Esche, Michael Tok, and Thomas Sikora
Adaptive Dense Vector Field Interpolation for Temporal Filter-
ing
Proceedings of the 20th IEEE International Conference on Image Pro-
cessing (ICIP), Melbourne, Australia, 09|15|2013 - 09|18|2013

7. Finally, a theoretical justification of the TTF’s functionality was given in

• Marko Esche, Michael Tok, and Thomas Sikora
Theoretical Considerations Concerning Pixelwise Temporal
Filtering
Proceedings of the 24rd Data Compression Conference (DCC), Snowbird,
Utah, 03|26|2013 - 03|28|2013

12 CHAPTER 1. INTRODUCTION

1.4 Structure of the Thesis

The remainder of the thesis is structured as follows: In Chapter 2 a number of terms
and concepts are defined, which will later be used in the description of filter crite-
ria and algorithms. Furthermore, scenarios for using temporal trajectory filters are
outlined and the ideas briefly introduced in Chapter 1 are expanded further. The
Chapter concludes with a detailed description of the evaluation methods and quality
metrics used in the remaining chapters. The slightly unrealistic case of a decoder
with perfect knowledge of individual pixel motion is investigated in Chapter 3. The
Human-Assisted Motion Annotation Tool as described by Liu et al. in [34] has been
used on several MPEG test sequences to generate perfect motion vector fields. A
temporal filter with access to the optimal motion data has then been applied to
encoded versions of theses sequences at low bit rates. The basic theory of signal de-
noising through averaging of several motion-compensated pixel copies is examined in
Chapter 4. There, achievable bit rate reductions in presence of both noisy samples
and noisy motion information are also discussed. The chapter is continued by the
prediction of certain filter characteristics which are later evaluated using real-world
data. Practical realizations of Temporal Trajectory Filters are presented in Chap-
ter 5. These include mainly the TTF mentioned before and its extended version
the Quadtree-based Temporal Trajectory Filter (QTTF). Both were also tested as
simple post-processing steps with the associated filter parameters being calculated
at the encoder and conveyed as additional side-information in the bitstream. The
results for the post-filters together with alternative approaches to derive the filter
parameters will be detailed in Chapter 6. There, it will be shown, that despite its
increased complexity the application of a temporal filter within the encoding loop
is readily justifiable when compared to the post-filter implementation. In Chapter
7 the theoretical considerations from Chapter 4 will be evaluated using the results
from Chapter 5. A detailed analysis of correspondences and mismatches between
both parts will also be provided. The Chapter finishes with hints on how the theory
can be better adapted to real-world scenarios. Chapter 8 summarizes the thesis
and its main findings. Furthermore, an outlook concerning future developments and
possible improvements of TTF and QTTF is also given.

Chapter 2

Pixel Trajectories: Definitions,
Applications, Quality Metrics

Most controversies would soon be ended, if those engaged in them would first accurately

define their terms, and then adhere to their definitions. - Tryon Edwards

2.1 Definitions

In order to effectively describe and evaluate both motion vectors, general motion
information, and individual pixel trajectories, a number of basic definitions need
to be made. In the following, it is implicitly assumed that the encoded video is
spatially quantized, e.g. color information is only available at full pixel positions.
Furthermore, the video should be encoded in YUV420 format with four luminance
samples per chrominance sample U and V respectively. Based on these assumptions
the luminance value of a pixel at position (x, y)T in frame i of a video sequence
shall be denoted by Yi(x, y). The respective chrominance samples are Ui(x, y) and
Vi(x, y). Should the video, for example, be represented in in the YUV420 as de-
scribed above, then the U- and V-channels need to be upsampled and interpolated
before being used in the filtering algorithms. For every pixel motion information
describing its translation relative to a reference frame shall be available. The motion
vector at location (x, y)T in frame i then consists of an x-component dxi(x, y) and a
y-component dyi(x, y), see Figure 2.1. If motion information relative to several ref-
erence frames is available, a second subscript is used to indicate the reference frame
index. The motion vector then contains the components dxi,j(x, y) and dyi,j(x, y) for
the j− th available reference frame of pixel (x, y)T in frame i of the video sequence.
The exact ordering of the reference frames here depends, of course, on the encoding
structure and the respective choices of the encoder. A temporal pixel trajectory

13

14 CHAPTER 2. DEFINITIONS, APPLICATIONS, QUALITY METRICS

ii− 1i− 2

Yi−3(x3, y3)

i− 3

dxi(x0, y0)

dyi(x0, y0)

Yi−2(x2, y2)

Yi−1(x1, y1)

Yi(x0, y0)

Figure 2.1: The trajectory starts at a point (x0, y0)T in frame i. The associated color
components are Yi(x0, y0), Ui(x0, y0) and Vi(x0, y0). In a traditional IPPP coding
structure, dxi(x, y) and dyi(x, y) are the motion vector components of frame i at
position (x, y)T relative to frame i− 1.

now shall include all pixel positions in all past and/or future frames through which
a certain image point moves. Starting with a given pixel (x0, y0)T in frame i its
predecessors along the motion trajectory of said pixel shall be (xk, yk), k ≥ 1. How-
ever, pixel and frame index are independent from one another. This differentiation
is needed, since simply using the frame index does no longer suffice to identify a
trajectory element when hierarchical B-frames or some other more complex group
of pictures (GOP) structure is used. As motion vectors will play an essential role in
later chapters some more details and definitions are required in this context.

Both in H.264/AVC and in HEVC motion vectors are encoded by transmitting a
motion vector predictor and a residual describing the difference between the motion
vector and its predictor [55]. In both codecs a motion vector is found by performing a
block-matching algorithm and calculating the sum of absolute differences (SAD) be-
tween the original block and the motion-shifted one. The motion vector is, however,
not simply chosen based on this single criterion. Instead, as in almost all aspects
of modern video codecs, rate-distortion (RD) optimization is conducted. This com-
bines the expected error residual with the number of bits required for transmitting
the actual vector. More details concerning RD-optimization may be found in Section
5.2.2. Due to this optimization a motion vector does not necessarily describe the
true translational motion of all pixels within the associated block. Errors occur, of
course, at object boundaries with non-rectangular shape. In addition, a block may
also be chosen as a reference purely because its SAD is small compared to the original
block. In effect, there is no way to guarantee any suitability of transmitted motion
vectors with respect to individual pixel trajectories. More details on this matter will

2.2. POSSIBLE APPLICATIONS 15

be provided in Chapter 5. Motion vectors in video compression algorithms suffer,
unfortunately, from additional restrictions. They can, for instance, refer to a larger
number of reference frames. Since the transmitted vectors can thus span a more or
less arbitrary number of frames, they are not easily comparable with one another.
The following notation shall therefore be used to indicate that a motion vector has
been scaled according to the temporal distance it spans: If (dxi(x, y), dyi(x, y))T is a
motion vector pointing from frame i to a reference frame i−k, its temporally scaled
version shall be given by

(2.1)

(
dxi(x, y)
dyi(x, y)

)′
=

(
dxi(x,y)

k
dyi(x,y)

k

)
.

It is to be noted here, that k can take on any number k ∈ Z\{0}. Vectors pointing
to a future frame (with an associated value of k < 0) will thus be inverted and
scaled to point to a past frame with a temporal distance of k = 1. In addition,
encoded motion vectors are generally restricted to quarter-pel precision. During the
stages of motion estimation and motion compensation (MC) interpolation filters
are employed to calculate image samples at subpixel locations in reference frames.
Details concerning the used interpolation filter may be found in [55] and [45].

2.2 Possible Applications

The filter to be developed in this thesis may, of course, be used in the manner
already described in Chapter 1. It can, however, also be used in a number of other
applications which will be detailed here. For the sake of completeness the in-loop
filter is also included.

2.2.1 Temporal In-loop Filter for Video Compression

As has been mentioned in Chapter 1 an in-loop filter can (according to List et al.
[33]), if applied correctly, increase the subjective quality of the decoded video. Since
reconstructed frames are also used for the prediction of future frames the prediction
signal will also be of better quality and the bit rate required for transmitting the
residual is potentially reduced by an in-loop filter. The overall bit rate needed to
transmit a video at a predefined quality level will thus also be decreased. An in-loop
filter also ensures that all decoders generate output sequences with identical quality,
since bypassing the in-loop filter will result in an asynchronous state between encoder
and decoder and is thus not an option. A block diagram of an HEVC encoder with
an added TTF may be found in Figure 2.2. The main drawback of an in-loop filter is

16 CHAPTER 2. DEFINITIONS, APPLICATIONS, QUALITY METRICS

MC

ME

TTF

Choose

Prediction

Intra
Prediction

Intra

List

Filter

MVs

 FS

Fi T Q

T−1 Q∗

F ′i−1

F ′i

Figure 2.2: General encoder diagram based on H.264/AVC. The TTF is employed
within the local decoding loop at the encoder.

the increased encoder and decoder complexity. Since a decoder is generally much less
complex than an encoder in a broadcast scenario, the impact of an in-loop filter on its
average runtime will be even more significant. This statement, however, only holds
true if no encoder-side optimization requiring multipass optimization is necessary.
In [33] for example it was stated that the deblocking filter contributed to one third
of the total decoder runtime. For the QALF, however, an increased decoder runtime
of 146% was reported [35]. With QALF included the encoder was also up to 90%
more complex. As most video coding applications assume the existance of many
more decoding devices than encoding devices, the main concern while designing an
in-loop filter should actually be the complexity of the decoder.

2.2.2 Temporal Post-Filter for Video Denoising

A second option to use a temporal denoising filter, which will also be investigated
in this thesis, is its employment as a post-processing step. In this case, the usage of
the filter is non-mandatory, thus giving the decoder the choice to switch it either on
or off. Apart from the obvious advantage of a generally less complex decoder, this
scheme has several drawbacks:

• As will be shown later in this thesis, unsupervised temporal filtering without
input from the encoder bears the risk of introducing new artifacts. This is
especially the case, since the encoder will in general not be able to distinguish

2.3. QUALITY METRICS 17

between parts of the frame suitable for filtering and unsuitable ones.

• If an encoder-side optimization is carried out instead, the side information
will increase the size of the bitstream without the guaranteed subjective and
objective improvements of the decoded picture quality that are present in the
in-loop case.

• The subjective or objective quality improvements at the decoder, if any, have
no impact on the required bit rate. The gain produced in a RD-sense will also
be a lot smaller since the transmitted residual is unaffected by the filter thus
keeping the bit rate constant.

2.2.3 Temporally Denoised Prediction Mode for Video Com-
pression

As has been described in [40], it is possible to predict and encode a video sequence
along individual pixel trajectories. Such schemes are, however, only under certain
conditions able to outperform the traditional hybrid video coding approach. One
way to combine both temporal filtering and prediction is constituted by the B-
frames that were first introduced in H.262/MPEG 2 Part 2 [26]. Since in a B-frame
two motion vectors can exist per block and the reference blocks are combined, the
predicted signal is a temporally filtered version with a trajectory length of 2. The
same could of course be done with multiple reference frames per block. The pixel
could be filtered and denoised prior to the construction of the predicted frame. In
this case the transmitted residual for the current frame will also be reduced. It is
exactly this feature that distinguishes the prediction mode from the simpler in-loop
filter since the latter only affects the bit rate of future frames. Despite not using a
temporal filter, the approach by Wige et al. [56] comes very close to the concept of
a denoised prediction mode.

2.3 Quality Metrics

When discussing the quality of pixel trajectories two aspects have to be distin-
guished:

• In how far is the pixel trajectory identical with the true motion of the dis-
played object? Since only two-dimensional image data is generally available
the reprojection of a three-dimensional trajectory is actually computed. The
error can then be determined between the reprojection of the true motion and

18 CHAPTER 2. DEFINITIONS, APPLICATIONS, QUALITY METRICS

the reprojection of the predicted motion. The error will correspond to the eu-
clidean distance between two alternative or coinciding pixel locations in every
frame.

• In which way does the calculated trajectory contribute to an improvement
of the encoded video sequence in the RD-sense? This corresponds in essence
to an evaluation of the filter performance of the TTF. The main difference
compared to the first point is the fact, that a trajectory does not need to be
correct in order to produce good results. It will be shown in the experimental
evaluation that even faulty trajectories may contribute to the efficient removal
of coding artifacts.

2.3.1 Evaluating the Correctness of a Trajectory

Since the available data in a video sequence is inherently two-dimensional, the dif-
ference between the true trajectory and an approximate one can be measured in the
R2, too. Given a set of correct pixel locations (xi, yi)

T , i = 0, ..., N − 1 in N consec-
utive frames and a corresponding set of N approximate pixel locations (x′i, y

′
i)
T the

average Euclidean distance between both trajectories is given by

(2.2) e =
1

N

N−1∑
i=0

√
(x′i − xi)2 + (y′i − yi)2.

The resulting error can directly be expressed in pixel distances. The main drawback
of this method is twofold:

• The measure is not scale invariant. Even though the relative error in an HD
sequence (compared for instance to the width of a frame) may be small, the
measure will be a lot bigger compared to a similar trajectory in a frame of
smaller size.

• In order to evaluate the approximated locations (x′i, y
′
i)
T , the original correct

locations (xi, yi)
T need to be known first. This kind of ground truth data

is, however, not generally available for real-world sequences. Using synthetic
sequences with known camera motion instead, solves this problem, although
such sequences often differ significantly from realistic ones in terms of the
achievable compression ratios. This is mainly due to the textures used in such
sequence and also due to the absence of camera noise.

The error measure e is commonly also referred to as the average endpoint error
(AEE). A way to determine ground truth data for arbitrary real-world sequences

2.3. QUALITY METRICS 19

has been detailed in [34]. The human-assisted method described therein will be
used in Chapter 3 to derive pixel-precise optical flow fields for the sequences used
in the experimental evaluation. Another commonly used performance measure for
the evaluation of motion accuracy in optical flow algorithms is the average angular
error (AAE) [3]. A two-dimensional motion vector (dx, dy)T can be represented by
a normalized vector in 3D space

(2.3) ~r =
1√

dx2 + dy2 + 1

 dx
dy
1

 .

The angular error (AE) is then given by

(2.4) AE = arccos
(
~rTt ~re

)
,

where ~re is the estimated and ~rt the true motion vector. The added advantage of this
measure is that it simultaneously combines direction and magnitude of the motion
information. However, identical positive and negative deviations from the true value
yield different AE values. Moreover, the magnitude of the motion vector will also
influence the interpreted angle. The AAE is here used as a quality measure, instead,
since for temporal filtering motion vectors are selected if they point to correct image
locations inspite of their angle.

2.3.2 Evaluating the Image Quality

Similar to the mean quadratic error for a trajectory an MSE between a reconstructed
filtered image Y ′(x, y) and an original image Y (x, y) can be defined as:

(2.5) MSE =
1

H ·W

H−1∑
y=0

W−1∑
x=0

(Y ′(x, y)− Y (x, y))
2

for an image of height H and width W . A common measure derived from the MSE
is the PSNR expressing the MSE in dB instead

(2.6) PSNR = 10 log10

2552

MSE

for an image with luminance components in the range of 0 to 255. Corresponding
measures for the two chrominance components can easily be defined. Over an entire
video sequence the PSNR can of course be averaged resulting in a single overall
PSNR value for the sequence. However, in order to compare encoded sequences with
one another, the PSNR alone is not suitable. A PSNR difference is only meaningful if

20 CHAPTER 2. DEFINITIONS, APPLICATIONS, QUALITY METRICS

both sequence and reference sequence have been encoded at the same bit rate. Due to
the generally non-linear relationship between bit rate and picture quality, a measure
is needed which combines both over a wide range of quality levels. Such a scheme
was detailed by Bjøntegaard in [4]. According to Bjøntegaard simply averaging the
PSNR for different quantization parameters (QP) will always favor those values at
higher bit rates. He proposed to compute the integral between two curves instead
and to divide the integral by the integrated interval. To this end both the original
and the reference curve need to be mathematically approximated. As was shown
in [4] this is most easily achieved when a double-logarithmic scale (PSNR in dB
over logarithmic bit rate) is used. The resulting measure can either be expressed
as an average bit rate reduction at identical quality or as a quality improvement at
identical bit rates. Both terms known as BD−PSNR and BD− rate are commonly
used in the video coding community. They are the main optimization criteria in
both H.264/AVC and in HEVC. On the other hand, some researchers argue [50]
that MSE and PSNR poorly represent image quality as it is perceived by the human
visual system (HVS). One metric that is supposed to close this gap is the structural
similarity (SSIM) index introduced in [51], which is based on the finding, that ”the
human visual system is highly adapted to extract structural information from visual
scenes.“ This is achieved by analyzing mean, variance, and covariance between two
images I1 and I2 per pixel yielding the local SSIM [51]:

S(I1, I2) = l(I1, I2) · c(I1, I2) · s(I1, I2)(2.7)

=

(
2µI1µI2 + C1

µ2
I1 + µ2

I2 + C1

)
·
(

2σI1σI2 + C2

σ2
I1 + σ2

I2 + C2

)
·
(
σI1I2 + C3

σI1σI2 + C3

)

Here µI1 and µI2 are the local sample means. σI1 and σI2 are their standard devia-
tions and σI1I2 is the local sample covariance. The SSIM value for the entire image
is computed by averaging the local values over one frame, where the local values
are computed within a sliding window. Figure 2.3 taken from [50] illustrates the
superiority of SSIM over MSE in presence of various different kinds of noise.

The MSE for images (a) to (g) is nearly identical, whereas the SSIM approximates
the human perception of the images much better. Of particular interest is image
(f) depicting JPEG compression artifacts, which strongly impair the visual quality
despite a relatively low MSE. The given value of the CW-SSIM originates from a
wavelet-based extension of SSIM that is more robust towards translations, rotations,
and scalings of images. However, during the standardizations of both H.264/AVC
and HEVC the reference measure has always been PSNR. Moreover, a temporal
equivalent of the SSIM does not yet exist. The visual quality measure of choice in
this thesis will therefore also be the standard PSNR.

2.3. QUALITY METRICS 21

Figure 2.3: ”Comparison of image fidelity measures for ”Einstein“ image altered
with different types of distortions. (a) Reference image. (b) Mean contrast stretch.
(c) Luminance shift. (d) Gaussian noise contamination. (e) Impulsive noise con-
tamination. (f) JPEG compression. (g) Blurring. (h) Spatial scaling (zooming
out). (i) Spatial shift (to the right). (j) Spatial shift (to the left). (k) Rotation
(counter-clockwise). (l) Rotation (clockwise).“ Source: [51].

22 CHAPTER 2. DEFINITIONS, APPLICATIONS, QUALITY METRICS

2.4 Chapter Summary

This Chapter defined several mathematical terms to describe pixel trajectories over
a given set of frames. These will be used in later Chapters to derive criteria for
testing and evaluating motion information to be added to a trajectory. Furthermore,
different quality measures for inspecting both the pixel trajectories and the filtered
images have been discussed.

Chapter 3

Filtering in Presence of Perfect
Motion Knowledge

Perfection is not attainable, but if we chase perfection we can catch excellence.

- Vince Lombardi

Before investigating real-world implementations of a temporal trajectory filtering
approach, the theoretical potential of such an algorithm shall be highlighted. To this
end, optimal pixel-wise motion information is generated and used for filtering both
at encoder and decoder of a video transmission system. The challenges encountered
during this investigation as well as the achieved results are presented here.

3.1 Human-Assisted Motion Annotation

In order to obtain precise pixel-wise motion information for non-synthetic sequences,
optical-flow algorithms can be used [3]. However, these cannot produce satisfactory
results when occlusions occur or new image content is introduced. One possibility
to improve the generated motion field is to provide the optical flow-algorithm with
object masks. Unfortunately, automatically generated object masks are also usually
imperfect, especially when objects are partly occluded or do not move for several
frames [34]. Subsequently, human input is unavoidable to generate high-quality
object masks for arbitrary video sequences. One tool that combines both human a
priori knowledge about moving objects and state-of-the-art optical flow estimation
was presented in [34]. The tool described by Liu et al. provides motion-fields of such
good quality that it is commonly used as a bench-mark to evaluate other (automatic)
optical-flow algorithms. The following description of the ”Human-Assisted Motion

23

24 CHAPTER 3. PERFECT MOTION KNOWLEDGE

Annotation“ (HAMA) algorithm is based on [34]. The algorithm consists of four
major steps.

1. Semi-automatic layer segmentation: The user manually specifies bound-
aries for all foreground objects of a video sequence in one or more frames. The
system then provides preliminary object masks for all other frames. Occlusion
handling in this case is aided by additional user input specifying the object’s
depth in certain keyframes.

2. Automatic layer-wise flow estimation: Based on the seperate masks for
foreground and background individual flow fields per mask (also referred to as
layers) are generated. The tool offers the user the possibility to manually select
certain parameters of the underlying optical flow algorithm. By backprojecting
the pixels from one frame to the next, the user can evaluate the accuracy of
the motion field.

3. Semi-automatic motion labeling: Should the user not be satisfied with the
matches produced during the last step, he or she can specify sparse correspon-
dences between neighboring frames. These are then used to either interpolate
a dense motion field or to generate a parametric global motion model.

4. Automatic Compositing: The final step of the Human-Assisted Motion
Annotation consists of merging all seperate object-specific motion fields into
one optical-flow field per frame. As a byproduct highly accurate object masks
are also generated.

The authors of [34] state, that their method generates motion fields that are much
closer to the ground truth than the output of any other available tool based on
a number of sequences publicly available. Moreover, the output of the method
appears to be consistent over a number of different test subjects. For these reasons,
the above-mentioned tool is applied here to generate ground truth motion data for
the test sequences used in Chapter 5. An exemplary object shape generated by
the HAMA tool for the BlowingBubbles sequence is shown in Figure 3.1(a). The
corresponding motion vector field (showing the x-component in grayscale) may be
found in Figure 3.1(b). To first demonstrate the general properties of temporal
noise induced by video compression, the following two sections analyze the noise
in a simple synthetic test sequence and analyze some publicly available real-world
sequences.

The following Section 3.2 was first published in [9] c©IEEE 2012.

3.2. THEORETICAL FOUNDATIONS 25

(a) Labeled contours for frame 2 of the Blow-
ingBubbles sequence.

(b) Ground truth motion vector field for
frame 2 of the BlowingBubbles sequence (x-
component in grayscale).

Figure 3.1: Output of the HAMA algorithm for the BlowingBubbles sequence con-
sisting of a set of object masks (left) and motion vector fields (right).

3.2 Theoretical Foundations

In statistical signal theory it is a well-known fact that, if several noisy versions of a
signal are available, noise reduction can be achieved by averaging all versions of the
signal. Important applications of such noise reduction concepts include microphone
arrays and antenna array systems. In the case of time-dependent signals such as
audio, speech or video, temporal or spatial alignment respectively need to be per-
formed prior to filtering. Yi(x, y), Ui(x, y), and Vi(x, y) shall denote the luminance
and chrominance components of the i-th frame of a video sequence in display order.
Initially, it is assumed that for a given pixel (x0, y0)T in frame j, N−1 previous loca-
tions ((x1, y1)T , ..., (xN−1, yN−1)) of the image point in N − 1 past frames are known
and the pixel amplitudes remain identical, i.e. the illumination of the scene does not
change Yi(x0, y0) = Yj−i(xi, yi). Each of these shall be distorted by i.i.d. additive
white noise ni with variance σ2

N

(3.1) Ŷj−i(xi, yi) = Yj−i(xi, yi) + ni.

The autocorrelation function of such a noise term is given by

(3.2) RNN(k, l) = E [nknl] =

{
σ2
N , if k = l
0, else.

26 CHAPTER 3. PERFECT MOTION KNOWLEDGE

3.2.1 Noise Reduction Through Temporal Filtering

A filtered version of pixel Ŷj(x0, y0) can then be computed:

Yopt,j(x0, y0) =
1

N

N−1∑
i=0

Ŷj−i(xi, yi)(3.3)

=
1

N

N−1∑
i=0

Yj−i(xi, yi) +
1

N

N−1∑
i=0

ni(3.4)

=
1

N

N−1∑
i=0

Yj(x0, y0) +
1

N

N−1∑
i=0

ni(3.5)

The noise variance σ2
opt of the filtered pixel is reduced by a factor of N :

σ2
opt =

1

N2
E

[
N−1∑
i=0

ni

N−1∑
k=0

nk

]
(3.6)

=
1

N2

N−1∑
i=0

σ2
N =

σ2
N

N
.(3.7)

In this context, it is assumed that pixel amplitudes and noise are not correlated.
Even if such correlation exists, filtering is still successful but with reduced filter
gain. This simple example illustrates how noise introduced by block-artifacts can be
reduced if the motion of every image point in a video sequence is known. It remains
to be shown that the noise term does indeed have the qualities mentioned above.

3.2.2 Image and Noise Model

For simplification it is assumed that the two-dimensional integer-step image content
of a video sequence only has translational motion. In this ideal case, every image
point from the first frame is also present in all other frames and can thus be assigned
a unique motion trajectory. This model, however, does not account for occlusions,
non-translational motion or the introduction of new image content. In real-world
sequences, therefore, trajectories for individual pixels can only be calculated over
a smaller number of frames. Nevertheless, the following example shall illustrate
the properties of block-artifacts and the potential of applying a temporal filter to
every pixel in a decoded sequence. A synthetic sequence is used for this purpose.
In the sequence, a gray circle moves from left to right in front of a black and white
checkered pattern. Figure 3.2 shows frame 64 of the original sequence. Even in
the absence of camera noise, block-artifacts are expected to occur at the object

3.2. THEORETICAL FOUNDATIONS 27

Figure 3.2: The synthetic test sequence shows a gray circle moving from left to right
in front of a black and white checkered background.

boundaries if the sequence is encoded with the H.264/AVC baseline profile (IPPP
GOP structure). For comparison see Figure 3.3(a), where an enlarged part of frame
64 of the decoded sequence for QP 47 is shown. As expected, noise is especially
present at the edge of the circle. Since in this case the true motion of all pixels is
known, a motion-compensated noise per pixel can be calculated. The autocorrelation
function of the noise superimposed over one exemplary pixel from the circle boundary
is displayed in Figure 3.4. Similar autocorrelation functions can be observed for
almost all other pixels at the object boundary, which is a strong indication, that the
temporal noise introduced by block-artifacts does indeed show properties of white
noise. This property is also supported by the fact that extensive block flickering
is apparent at the edge of the circle. Denoising can now be achieved by replacing
every pixel in the decoded sequence with its motion-compensated average over the
previous frames. The result of this operation, taking eight past frames into account,
is depicted in Figure 3.3(b). Although the analysis undertaken on the synthetic
sequence does not provide conclusive proof of the initial assumptions, it at least
justifies further investigation of the temporal trajectory filtering approach. As will
be shown in Chapter 7 the image and noise models used here are also applicable to
real-world scenarios. The mean noise variance of the pixels close to the boundary
of the depicted circle has also been measured:

σ2
N = 572.21(3.8)

σ̂2
N = 77.30(3.9)

Here σ2
N denotes the variance of added noise in the temporal domain of the raw,

decoded sequence. σ̂2
N is the variance of the noise present in the filtered sequence.

The ratio of both values
σ2
N

σ̂2
N

= 7.39 is close to the theoretically assumed value of

28 CHAPTER 3. PERFECT MOTION KNOWLEDGE

(a) Decoded picture (b) Filtered picture

Figure 3.3: On the left an enlarged part of frame 64 of the decoded sequence is
shown. The image on the right shows the same part after the application of a
motion-compensated temporal filter.

−4 −3 −2 −1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ρ
x
x
(n

)

n

Figure 3.4: The autocorrelation function for the trajectory of one exemplary pixel
of the circle boundary.

3.2. THEORETICAL FOUNDATIONS 29

Figure 3.5: Original frame, layer segmentation, and color-coded x-component of the
optical flow for the sequences Sample1, Sample3, and CameraMotion. Source: [34].

N = 8 corresponding to the number of frames used for averaging. This finding again
indicates, that the noise introduced by the codec has the properties of white noise.

3.2.3 Investigation of Real-World Sequences

In order to investigate the properties of temporal noise in real-world video sequences,
it becomes necessary to determine the motion trajectory for every pixel in a given
video sequence. To this end, the dataset provided by Liu et al. in [34] was used
consisting of a number of real-world sequences together with accurate object masks
and optical flow information. All of these sequences were segmented and anno-
tated by the user-aided algorithm described in [34], which is frequently used as a
benchmark for fully automatic optical-flow algorithms. In the context of this the-
sis, only segmentation masks and the optical flow field with subpel accuracy were
used. Exemplary frames together with the layer segmentation and the color-coded x-
component of the flow field are shown in Figure 3.5. Each sequence has been encoded
with the H.264/AVC baseline profile (IPPP GOP structure) at QP 47. Afterwards
the trajectory for all boundary pixels of each foreground object was calculated using
the provided motion information. Based on the per-pixel difference between original
sequence and encoded sequence the spectral flatness measure γ2

X as defined in [41],
[30] was determined. After calculating the power density spectrum SXX(k∆Ω) as

30 CHAPTER 3. PERFECT MOTION KNOWLEDGE

the Fourier transform of the autocorrelation function, the spectral flatness measure
is given by

(3.10) γ2
X ≈

[
N∏
k=1

SXX(k∆Ω)

] 1
N

1
N

N∑
k=1

SXX(k∆Ω)

, ∆Ω =
2π

N
.

In theory γ2
X lies between 0 and 1, where γ2

X = 0 describes a fully predictable data
source, while a value of γ2

X = 1 indicates that the source has the properties of
white noise. For the sequences Sample1 and Sample3 an average γ2

X of 0.93 and
0.95 were observed. For the CameraMotion sequence the value lay at 0.89. These
values, however, only apply to object boundaries. Within a foreground object itself
or for background pixels the observed correlation between temporally adjacent error
samples is significantly higher with an average γ2

X of 0.6. For the synthetic sequence
described above a γ2

X of 0.95 was observed for all image points within a 3-pixel
radius around the object boundary.

3.3 Achievable Bit Rate Reductions with Perfect

Motion Vector Fields

In presence of perfect motion knowledge, the performance of a temporal denoising
or deblocking filter will of course be improved. However, in order to compare the
observed results with tests based on real datasets, certain restrictions have to be
applied. In this section, consequences from using an ideal motion vector field are
considered. Moreover, the term ”ideal“ needs to be examined and precisely defined
in this context, since perfect motion does not necessarily provide the best results, as
will be shown. Nevertheless, it is possible to quantitavely compare the performance
of the implemented QTTF algorithm [10] with the theoretically achievable maximum
gain and thus to underline the effectiveness of the current implementation.

3.3.1 Preliminary Considerations

In order to evaluate the QTTF’s ability to construct pixel trajectories from block-
based motion vectors, the HM implementation will be compared with an identical
version where only the motion vector data has been replaced. However, since the
HAMA tool only provides one motion vector per pixel, the reference implementation
of QTTF also needs to be modified so that only on motion vector per block is used.
In addition, the HAMA motion vectors have floating point precision. Quantizing

3.3. PERFECT MOTION VECTOR FIELDS 31

these back to quarterpel would seriously corrupt the motion data. Thus a new inter-
polator had to be integrated into HM 3.0. The new spline-based interpolator then
had to be used to generate new reference data, since the observed gain might oth-
erwise have been due to the change of the interpolation scheme. For all subsequent
experiments a third order spline interpolator was used.

Another restriction, that had to be placed on the encoder, concerns the range of
available reference frames. Again, as HAMA only performs frame-wise optical flow
calculations the reference frame, for comparability, also needs to be the previous
frame. One additional problem is posed by the actual image content. Within the
BlowingBubbles sequence, for example, specularities and reflections regularly occur.
Even if one of the soap bubbles (see Figure 3.6 for details) is properly segmented
and tracked, individual pixel trajectories originating from the background might
still pass through the bubble. As a consequence it becomes necessary to distinguish

Figure 3.6: Since the soap bubbles visible in the sequence BlowingBubbles are mostly
transparent, the motion vectors in these areas are unreliable, even if the bubbles are
properly segmented.

between a semantically correct object trajectory and a visually correct pixel tra-
jectory. One implication of this is, that all frames of the BlowingBubbles sequence
featuring large soap bubbles as foreground objects, are essentially unsuitable for the
evaluation of the proposed methods.

32 CHAPTER 3. PERFECT MOTION KNOWLEDGE

Sequence
QTTF QTTF perfect

∆PSNR in dB BD-rate in % ∆PSNR in dB BD-rate in %

BlowingBubbles 0.01 −0.35 0.03 −0.70
BQSquare 0.12 −2.62 0.14 −3.01
RaceHorses 0.00 −0.04 0.00 −0.05
Waterfall 0.16 −6.13 0.19 −7.22

Table 3.1: Comparison between QTTF and QTTF with perfect motion vectors.

3.3.2 Performance Comparison Between QTTF and QTTF
with Perfect Motion Vector Fields

The results obtained with QTTF utilizing perfect motion vector fields compared
to QTTF utilizing the HEVC-generated motion field are shown in Table 3.1. As
can ben seen the QTTF with perfect motion fields always performs better than the
original QTTF implementation. However, for RaceHorses both versions only achieve
a very minor gain. In this sequence a lot of motion blur is present making the exact
definition of object boundaries difficult even for humans. Moreover, even if objects
are correctly tracked, the filtering may reduce the motion blur that is present in the
original sequence by including frames without motion in the filtering process and
thus introducing details not present in the blurred frame. The filtered video will
thus have of course a greater MSE compared to the original. For BlowingBubbles
the QTTF achieves around 50% of the theoretically possible bit rate reduction. In
the case of the BQSquare sequence the achieved gain reflects around 87% of the
gain that could ideally be created. These values correspond nicely with the average
motion estimation errors that are given in Appendix C and further discussed in
Chapter 7. From these it can be seen that for BQSquare, for instance, the encoder
conveyes much more accurate motion information to the decoder which accounts for
the larger gain achieved for this sequence. An identical scenario can be observed
for the Waterfall sequence. Here, a much larger portion of the frame is filtered (see
Chapter 7 and a much larger average bit rate reduction is produced. Again the
QTTF realizes about 85% of the theoretically achievable gain. Both in BQSquare
and Waterfall sequences the QTTF profits from the absence of large foreground
objects, which tend to introduce bigger motion estimation errors.

3.4 Chapter Summary

In this Chapter the Human-Assissted Motion Annotation Tool [34] was described
in detail and later utilized to provide pixel-based accurate motion vectors for four

3.4. CHAPTER SUMMARY 33

seperate test sequences. On these both a modified version of the TTF and a the-
oretically optimal temporal filter were tested. The modifications of the TTF were
necessary to objectively compare both filters under identical testing conditions. For
this reason the usage of B-frames was prohibited and HM 3.0 was essentially con-
figured to work in the same manner as the H.264/AVC baseline profile. For these
settings the TTF provided around 50% of the gain produced by the optimal temporal
filter. Of course, the perfect motion vector field does not include control instructions
to terminate trajectories in case of occlusions or when new content is introduced in
a frame. For this reason, both filters use side-information to restrict the trajectory
length where necessary.

34 CHAPTER 3. PERFECT MOTION KNOWLEDGE

Chapter 4

Theoretical Considerations

Ponder Stibbons was one of those unfortunate people cursed with the belief that if only he

found out enough things about the universe it would all, somehow, make sense. The goal

is the Theory of Everything, but Ponder would settle for the Theory of Something and,

late at night, [...] he despaired even a Theory of Anything. - Terry Pratchett

A paper describing the one-dimensional case of the theory presented in this section
was first published in [16].
Temporal motion compensated filtering is based on the assumption that the vis-
ible content of a video sequence only changes slowly over time and that multiple
instances of the same image point in consecutive frames can be seen as identical
noisy copies of one another. This idea also finds application in the areas of noise
reduction in audio sequences with microphone arrays [43], 2D/3D conversion with
structure-from-motion [32], and in video coding with the introduction of B-frames
[55]. Denoising can then be achieved by averaging the color components of such an
image point along its spatiotemporal path, also referred to as a trajectory. The TTF
can efficiently reconstruct such trajectories from the quantized motion data trans-
ferred in the bit stream. To this end, the TTF adaptively concatenates available
motion vectors. However, a general theoretical justification of the filtering concept
has yet to be presented. This chapter aims to provide a theoretical analysis of the
TTF’s performance based on simple video characteristics. This will result in the
prediction of optimal filter lengths per quantization parameter and sequence. A
comparable study for global motion parameters was presented in [8]. Similar ana-
lytical error models and models for the accuracy of motion estimation may be found
in [29] and [2]. An approach that tries to apply statistical signal theory to the similar
problem of motion estimation may be found in [38].

35

36 CHAPTER 4. THEORETICAL CONSIDERATIONS

4.1 Maximum Theoretically Achievable Gain in

Case of Translational Motion

The luminance values per pixel location in an arbitrary frame shall again be given
by Y (x, y). These shall be subject to an isotropic 2D-AR(1) correlation model [5]:

(4.1) E [Y (x, y)Y (x+ ∆x, y + ∆y)] = σ2
Y α
|∆x|
x · α|∆y|y , 0 < αx < 1, 0 < αy < 1.

Here, σ2
Y is the luminance variance of the current frame. |∆x| and |∆y| are the

horizontal and vertical offsets between two pixels from said frame. In the publication
by Chen and Pang [5] it is assumed that the two correlation coefficients are identical
αx = αy. The experimental verification in Chapter 7 will demonstrate that this is
indeed the case for almost all tested sequences. The authors of [5] also produced
evidence for the accuracy of the separable correlation model. They additionally
showed that the same correlation model is accurate for the motion compensated
frame difference image where the model is superimposed with spatial white noise.
The filtering along a temporal trajectory will now be examined analytically for three
special cases:

1. All trajectories are perfectly known but the reconstructed images are distorted
by noise.

2. All images have been reconstructed perfectly but the trajectories are distorted
due to motion estimation errors. This is a case in which the decoder will
decrease the image quality due to filtering.

3. The combined case where both trajectory locations and images are noisy.

4.1.1 Perfect Knowledge of all Trajectories and Noisy Im-
ages

The location (x0, y0)T , at which a trajectory starts, can without loss of generality
be set to (0, 0)T . In addition, if motion compensation has already been performed,
all locations (xn, yn)T in subsequent frames are identical to the starting point

(4.2) xn = x0 = 0, yn = y0 = 0.

Noise is added to all pixels the trajectory passes through

(4.3) Y ′(xn, yn) = Y (xn, yn) + ηn = Y (x0, y0) + ηn.

4.1. MAXIMUM THEORETICALLY ACHIEVABLE GAIN 37

The noise term ηn can be assumed to be i.i.d. white noise with zero mean [11], see
Chapter 7 for further details. If a non-zero mean occurs, the mean of the error
cannot be corrected through temporal filtering. Otherwise, averaging of the noisy
samples yields

Ŷ =
1

m

m∑
i=1

Y ′(xi, yi)(4.4)

=
1

m

(
m∑
i=1

Y (xi, yi) +
m∑
i=1

ηi

)
(4.5)

=
1

m

(
m∑
i=1

Y (x0, y0) +
m∑
i=1

ηi

)
.(4.6)

Subsequently, the error variance after filtering can be calculated. It is safe to assume
that the mean of the error is zero, since 1

m

∑m
i=1E [ηi] = 0 for E [ηi] = 0 ∀i.

E
[
(Ŷ − Y)2

]
= E

(1

m

m∑
i=1

Y (x0, y0) +
1

m

m∑
i=1

ηi − Y (x0, y0)

)2

= E

(m
m
Y (x0, y0)− Y (x0, y0) +

1

m

m∑
i=1

ηi

)2

=
1

m2
E [η1 · η1 + η1 · η2 + ...+ η1 · ηm + η2 · η1 + η2 · η2 + ...(4.7)

... +η2 · ηm + ...+ ηm · η1 + ηm · η1 + ηm · η2 + ...+ ηm · ηm]

=
1

m2

(
E
[
η2

1

]
+ E

[
η2

2

]
+ ...+ E

[
η2
m

])
As all noise terms are uncorrelated with identical variances σ2

η the term can be
simplified as follows:

(4.8) E
[
(Ŷ − Y)2

]
=

m

m2
σ2
η =

σ2
η

m
, lim

m→∞
E

[(
Ŷ − Y

)2
]

= 0.

In the case described above the luminance error variance approaches zero if the
length of the trajectory goes to infinity. In practice, due to the non-linear depen-
dency between the filtered error variance and the number of framesm, adding further
frames does not always produce significant improvements. This relationship will be
illustrated with real data in Chapter 5.

38 CHAPTER 4. THEORETICAL CONSIDERATIONS

4.1.2 Motion Error and Noise-Free Images

In the scenario described in the following section, a noise term is added to the
trajectory path. Equivalently, the motion vector referring from one frame to the next
can be assumed to have additive, uniformely distributed white noise components [5].
This does, of course, not place restricitons on temporal correlations of the motion
since only one frame is examined at a time.

∆x′ = ∆x+ qx, pQx(qx) =
1

qx,max

uqx,max (qx)(4.9)

∆y′ = ∆y + qy, pQy(qy) =
1

qy,max

uqy,max (qy)

In [5] the authors set the maximum ME errors to qx,max = qy,max = 0.5 pel in order
to reflect the half-pel resolution of their H.261 test codec. They also added a delta-
pulse to the distribution to describe the stationary background of their sequences.
Since the considerations here will result in a worst-case scenario description the zero-
errors with perfect motion accuracy will be disregarded. Such zero errors quickly
become leveraged when several motion vectors are concatenated and motion estima-
tion errors accumulate. However, the uniformly distributed error model will still be
used. Here it is extended to account for arbitrarily formed, independently moving
image regions as well.
Whenever a motion-compensated block includes pixels from two differently moving
regions, its single motion vector will be highly inaccurate for some of the pixels. All
pixels from at least one of these regions will then have a motion vector error with
a magnitude significantly higher than 0.5. Due to this observation the values for
qx,max and qy,max will be measured separately based on ground truth data in Chapter
7.

With the established model its effects on the estimated motion trajectory can now
be examined: After motion compensation has been performed the remaining motion
vector consists of the error only.

(4.10) ∆x = 0⇒ ∆x′ = qx,∆y = 0⇒ ∆y′ = qy

In general, the motion at position (x, y)T shall be given by the two random functions
vx(x, y) and vy(x, y). Starting with position (x0, y0)T in a given frame the subsequent

4.1. MAXIMUM THEORETICALLY ACHIEVABLE GAIN 39

trajectory locations are given as follows:

x0 = 0

x1 = x0 + ∆x′0 = x0 + vx(x0, y0)︸ ︷︷ ︸
=0

+qx0 = x0︸︷︷︸
=0

+qx0 = qx0

x2 = x1 + ∆x′1 = x1 + v(x1) + qx1 = x1(4.11)

+ vx(qx0, qy0)︸ ︷︷ ︸
=:px1

+qx1 = qx0 + qx1 + px1

and similarly

y0 = 0

y1 = qy0(4.12)

y2 = qy0 + qy1 + py1.

Without loss of generality it can be assumed that the original motion vector errors
(qxi, qyi)

T and the newly defined error terms pxi = vx(qxi, qyi), pyi = vy(qxi, qyi),∀i
are i.i.d. random variables since they only reflect the quantization of motion vectors
and mismatches. The next location of the trajectory is consequently given by

x3 = x2 + ∆x′2 = x2 + vx(x2, y2) + qx2

= qx0 + px1 + qx1 + vx(qx0 + qx1 + px1, qy0 + qy1 + py1) + qx2(4.13)

= qx0 + qx1 + qx2 + px1 + px2

y3 = qy0 + qy1 + qy2 + py1 + py2.

From these preliminary calculations a general description of the motion compensated
trajectory location can be derived:

(4.14) xn =
n−1∑
i=0

qxi +
n−1∑
i=1

pxi, yn =
n−1∑
i=0

qyi +
n−1∑
i=1

pyi.

It is now possible to calculate the resulting similarity between the n-th pixel along
the trajectory and the original pixel with luminance Y = Y (x0, y0). For this the
filtered average over m samples is again calculated.

(4.15) Ŷ =
1

m

m∑
i=1

Y (xi, yi) =
1

m

m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,
i−1∑
j=0

qyj +
i−1∑
j=1

pyj

)

40 CHAPTER 4. THEORETICAL CONSIDERATIONS

If the mean of the introduced error is again assumed to be zero, the error variance
is given by the following term.

E

[(
Ŷ − Y

)2
]

= E

(1

m

m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,

i−1∑
j=0

qyj +
i−1∑
j=1

pyj

)
− Y (x0, y0)

)2

= E

 1

m2

(
m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,

i−1∑
j=0

qyj +
i−1∑
j=1

pyj

))2

︸ ︷︷ ︸
=:I

(4.16)

−2E

[
1

m

m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,
i−1∑
j=0

qyj +
i−1∑
j=1

pyj

)
· Y (x0, y0)

]
︸ ︷︷ ︸

=:II

+E
[
Y 2(x0, y0)

]︸ ︷︷ ︸
=:III

All three terms introduced in Equation 4.16 are now examined seperately and eval-
uated with respect to the worst-case scenario. The error variance will increase if the
term I becomes maximal.

I = E

 1

m2

(
m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,
i−1∑
j=0

qyj +
i−1∑
j=1

pyj

))2

=
1

m2
E

(m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,
i−1∑
j=0

qyj +
i−1∑
j=1

pyj

))2
(4.17)

In order to make the following equations more easily readable, the sum of motion
vector errors will now be represented by the trajectory locations (xi, yi)

T as defined
in Equation 4.14. A lower bound for term I can then be derived.

I =
1

m2
E

(m∑
i=1

Y (xi, yi)

)2

=
1

m2
E

[
m∑
i=1

Y (xi, yi)
2

]
+

1

m2

m∑
i=1

E

Y (xi, yi)
m∑
j=1
j 6=i

Y (xj, yj)

(4.18)

=
1

m2
E

[
m∑
i=1

Y (xi, yi)
2

]
+

1

m2

m∑
i=1

m∑
j=1
j 6=i

E [Y (xi, yi)Y (xj, yj)]

4.1. MAXIMUM THEORETICALLY ACHIEVABLE GAIN 41

With the aim of making the following calculations mathematically feasible a linear
Taylor approximation of the autocorrelation model is used.

(4.19) E [Y (x, y)Y (x+ ∆x, y + ∆y)] = (1 + |∆x| · logαx + |∆y| · logαy) · σ2
Y

The correspondence between both models may be seen in Figure 4.1. However, the
linear model is only applicable for very small values of ∆x and ∆y.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Δ x

E
(Y

(x
)Y

(x
+Δ

x)

true AR(1) model
linearized AR(1) model

Figure 4.1: Graphical comparison between the true and the linearized AR(1) corre-
lation model. A close match between both functions can be observed for |∆x| < 20.

The cross-correlation term E [Y (xi, yi)Y (xj, yj)] in Equation 4.17 compares two
arbitrary motion compensated locations along the trajectory. Since both are always
influenced by the accumulated noisy motion differences over several frames, it is
highly likely that the linearized correlation model is no longer applicable but has
gone into saturation at a value of zero. To better approximate the original expo-
nential model, the correlation is here set to zero. In how far this simplification is
justified will be shown in Chapter 7.

I =
1

m2
E

[
m∑
i=1

Y (xi, yi)
2

]
+

1

m2

m∑
i=1

m∑
j=1
j 6=i

E [Y (xi, yi)Y (xj, yj)]

=
σ2
Y

m
+

1

m2

m∑
i=1

m∑
j=1
j 6=i

E [Y (xi, yi)Y (xj, yj)]︸ ︷︷ ︸
σ2
Y α
|xi−xj |
x α

|yi−yj |
y

(4.20)

≈ σ2
Y

m

42 CHAPTER 4. THEORETICAL CONSIDERATIONS

Since the term II is subtracted from the total error variance, the variance is biggest
if this term becomes minimal.

II = E

[
1

m

m∑
i=1

Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,

i−1∑
j=0

qyj +
i−1∑
j=1

pyj

)
· Y (x0, y0)

]

=
1

m

m∑
i=1

E

[
Y

(
i−1∑
j=0

qxj +
i−1∑
j=1

pxj,

i−1∑
j=0

qyi +
i−1∑
j=1

pyj

)
· Y (x0, y0)

]
(4.21)

After the application of the linearized correlation model term II is transformed into

II =
1

m

m∑
i=1

(
1 + |

i−1∑
j=0

qxj +
i−1∑
j=1

pxj| · logαx

+|
i−1∑
j=0

qyj +
i−1∑
j=1

pyj| · logαy

)
· σ2

Y .(4.22)

Since logαx < 0 and logαy < 0, the sum of motion vector errors needs to be
maximized (pxj = qxj = qx,max, pyj = qyj = qy,max,∀j).

II =
1

m

m∑
i=1

(
1 + |

i−1∑
j=0

qxj +
i−1∑
j=1

pxj| · logαx + |
i−1∑
j=0

qyj +
i−1∑
j=1

pyj| · logαy

)
· σ2

Y

≥ 1

m

m∑
i=1

(1 + (2i− 1) · qx,max · logαx + (2i− 1) · qy,max · logαy) · σ2
Y(4.23)

=

1 +
1

m

m∑
i=1

(2i− 1)︸ ︷︷ ︸
=m2

·qx,max · logαx +
1

m

m∑
i=1

(2i− 1)︸ ︷︷ ︸
=m2

·qy,max · logαy

 · σ2
Y

= (1 +m · (qxmax · logαx + qymax · logαy)) · σ2
Y

The whole filtered error variance is then given by the following equation:

E

[(
Ŷ − Y

)2
]

= I− 2II + III

≤ σ2
Y

m︸︷︷︸
=I

−2 (1 +m (qx,max · logαx + qy,max · logαy)) · σ2
Y︸ ︷︷ ︸

=II

+ σ2
Y︸︷︷︸

=III

(4.24)

4.1. MAXIMUM THEORETICALLY ACHIEVABLE GAIN 43

4.1.3 Motion Error and Noisy Images

The most general case with motion estimation errors and noisy images shares many
properties with the previously discussed one with noise-free images. The derivation
of the trajectory locations (xn, yn)T can again be taken from Equation 4.14. In
addition, the luminance values are now superimposed with coding noise η. This
will initially be assumed to have the properties of white noise with zero mean and
a variance of σ2

η.

(4.25) Y ′(x, y) = Y (x, y) + η

The noise term is interpreted as being white both in spatial and temporal dimensions.
Supporting evidence for these assumptions may be found in [9]. Since only a single
trajectory path with one pixel per frame is investigated the noise term η can without
loss of generality be seen as a constant value per frame.

(4.26) Y ′(xn, yn) = Y (xn, yn) + ηn = Y

(
n−1∑
j=0

qxj +
n−1∑
j=1

pxj,
n−1∑
j=0

qyj +
n−1∑
j=1

pyj

)
+ ηn

A filtered pixel now consists of a sum of luminance values taken from possibly
inaccurate pixel locations and additive noise.

(4.27) Ŷ =
1

m

m∑
i=1

Y ′(xm, ym) =
1

m

(
m∑
i=1

Y (xm, ym) +
m∑
i=1

ηi

)

If the noise has zero mean, the error variance after filtering can be calculated in the
following manner.

E

[(
Ŷ − Y

)2
]

= E

(1

m

m∑
i=1

Y (xi, yi) +
1

m

m∑
i=1

ηi − Y (x0, y0)

)2

= E

 1

m2

(
m∑
i=1

Y (xi, yi)

)2

︸ ︷︷ ︸
=I

−2E

[
1

m

m∑
i=1

Y (xi, yi) · Y (x0, y0)

]
︸ ︷︷ ︸

=II

(4.28)

+E

[
1

m2

m∑
i=1

ηi ·
m∑
i=1

ηi

]
+ 2E

[
1

m2
·
m∑
i=1

Y (xi, yi)
m∑
i=1

ηi

]

−2E

[
1

m2

m∑
i=1

ηi · Y (x0, y0)

]
+ E [Y (x0, y0)Y (x0, y0)]︸ ︷︷ ︸

=III

44 CHAPTER 4. THEORETICAL CONSIDERATIONS

Terms I, II and III have already been calculated during the description of the sim-
pler case of noise-free images. The noise terms ηi ∀i can safely be assumed to be
uncorrelated [9].

E

[(
Ŷ − Y

)2
]

= E

 1

m

(
m∑
i=1

Y (xi, yi)

)2
− 2E

[
1

m

m∑
i=1

Y (xi, yi) · Y (x0, y0)

]

+E [Y (x0, y0)Y (x0, y0)] + E

[
1

m2

m∑
i=1

ηi ·
m∑
i=1

ηi

]

=
σ2
Y

m
− 2(1 +m (qx,max · logαx + qy,max · logαy)) · σ2

Y(4.29)

+σ2
Y + E

[
1

m2

m∑
i=1

ηi ·
m∑
i=1

ηi

]

=
σ2
Y

m
− 2(1 +m (qx,max · logαx + qy,max · logαy)) · σ2

Y + σ2
Y +

σ2
η

m

4.2 Optimal Filter Length and Possible Quality

Improvements

If perfect motion knowledge is available and only the images are distorted by i.i.d.
noise the optimum filter length will of course always be infinite. Based on the
calculations done in Section 4.1.2 concepts are now derived that can be tested in real-
world scenarios. These will be used in Chapter 7 in order to validate the theoretical
considerations. This is done for simplification, since the results presented here can
easily be extended to the case of both noisy motion vectors and noisy images. As
given in Equation 4.24 the variance after filtering is reduced to

(4.30) E

[(
Ŷ − Y

)2
]

=
σ2
Y

m
− 2(1 +m(qx,max · logαx + qy,max · logαy)) · σ2

Y + σ2
Y .

The optimum filter length can now be calculated by finding the minimum of the
equation above. Theoretically, there should exist a global optimum for the filter
length, which intuitively is induced by the trade-off between filtering gain and motion
error accumulation. However, for noise-free images the optimal trajectory length

should be one. Since E

[(
Ŷ − Y

)2
]

is a convex function for m ∈ R+
0 , finding the

4.2. OPTIMAL FILTER LENGTH AND QUALITY IMPROVEMENTS 45

optimum corresponds to setting the first derivative of E

[(
Ŷ − Y

)2
]

to zero

∂E

[(
Ŷ − Y

)2
]

∂m
= −σ

2
Y

m2
− 2(qx,max logαx + qy,max logαy) · σ2

Y = 0.(4.31)

Solving the equation for m yields

σ2
Y

m2
opt

= −2(qx,max logαx + qy,max logαy) · σ2
Y

m2
opt = − 1

2(qx,max logαx + qy,max logαy)
(4.32)

mopt =

√
− 1

2(qx,max logαx + qy,max logαy)

For typical values qx,max, qy,max ≥ 3, and αx, αy ≈ 0.98 this yields a trajectory length
of mopt ≤ 1.65 simply corresponding to the original pixel with no additional motion-
compensated samples. The filter is thus disabled for this scenario. Of course, the
actual predicted filter length strongly depends on the values for αx and αy. For some
parameter combinations a filter length greater than 2 might thus be predicted. The
ideal case is, however, always quickly approached, when qx,max and qy,max increase.

Since real-world sequences also contain added noise due to compression artifacts,
the above calculation also needs to be conducted for the case of noisy images de-
scribed again by the following equation:

(4.33) E

[(
Ŷ − Y

)2
]

=
σ2
Y

m
− 2(1 +m(qx,max · logαx, qy,max · logαy)) ·σ2

Y +σ2
Y +

σ2
η

m

A typical curve for E[(Ŷ −Y)2] may be found in Figure 4.2, where qx,max = qy,max =

7, αx = αx = 0.995, ση2

σ2
Y

= 0.7. These values correspond to the properties of the

RaceHorses sequence, see Appendix C. Setting the first derivative to zero again

46 CHAPTER 4. THEORETICAL CONSIDERATIONS

0 2 4 6 8 10 12 14 16 18 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of filtered frames m

E [(Ŷ − Y)2]
d

dm
E[(Ŷ − Y)2]

Figure 4.2: The achievable distortion variance E[(Ŷ − Y)2] (blue) after filtering is
convex on R+

0 . The root of its derivative (red) corresponds to the global minimum of
E[(Ŷ − Y)2]. The input values for this simulation were taken from the RaceHorses
sequence.

4.3. TRAJECTORY STRUCTURE AND GOP-STRUCTURE 47

yields an equation that can be used to determine the optimal filter length mopt.

∂E

[(
Ŷ − Y

)2
]

∂m
= − σ2

Y

m2
opt

− 2(qx,max logαx + qy,max logαy) · σ2
Y −

σ2
η

m2
opt

= 0

0 = −σ2
Y − 2(qx,max logαx + qy,max logαy) ·m2

opt · σ2
Y − σ2

η(4.34)

0 = −1− 2(qx,max logαx + qy,max logαy) ·m2
opt −

σ2
η

σ2
Y

mopt =

√√√√− 1 +
σ2
η

σ2
Y

2(qx,max logαx + qy,max logαy)

The roots of Equation 4.34 only correspond to a minimum of the filtered variance,
if the second derivative is greater than zero. Which is always true for any given
variances σ2

Y , σ2
η:

(4.35)

d2E

[(
Ŷ − Y

)2
]

dm2
=
σ2
Y

m3
+
σ2
η

m3
> 0

Based on real-world sequences and ground truth motion data the applicability of
the formulae derived above will be demonstrated in Chapter 7 as well.

4.3 Trajectory Structure and GOP-Structure

The original idea of a motion trajectory in the temporal direction of a video sequence
needs to be adapted to the actual motion information available at both encoder and
decoder. The following three cases can easily be distinguished and will be examined
seperately in later chapters.

• Ideally, pixel-wise sub-pel motion information is available which allows both
encoder and decoder to construct perfect one-dimensional pixel trajectories
for the entire image content. This scenario which was examined in Chapter 3
can actually have practical relevance, for instance, if a global motion model
accurately describes all pixels within a frame. Another realization could be
an elastic model [39] which is theoretically also able to describe the motion of
every pixel within a frame.

• A more realistic scenario occurs when a video codec such as H.264/AVC in
its baseline configuration is used. With an IPPP coding structure, motion

48 CHAPTER 4. THEORETICAL CONSIDERATIONS

(x0, y0) : Y0

j − 3 j − 2 j − 1 j

(x1, y1) : Y1
(x2, y2) : Y2

(x3, y3) : Y3

Figure 4.3: If an IPPP coding structure is used, a motion trajectory can be build
that comprises all frames of the sequence, unless intra-coded blocks occur.

information is available for almost all pixels of a P-frame. These vectors will
minimally describe a block of 4 × 4 neighboring pixels and they will point
to the previously encoded/decoded frame. Thus, the trajectory will contain
one pixel per frame. A visualization of such a trajectory may be found in
Figure 4.3. No motion information is, however, available if intra-coded blocks
occur. In this case the filter cannot be applied. Theoretically, the constructed
trajectories can have infinite length. A trajectory will of course be interrupted
by intra blocks and also by motion vectors pointing to a point outside of the
frame boundaries. This case will be examined in Section 5.1 which was first
published in [12].

• The most general case has again no practical value but offers interesting the-
oretical aspects. If motion information for every pixel in a frame relative to
every other frame of the video sequence is available, then no errors are in-
troduced through the concatenation of these vectors since every trajectory
point can directly be accessed. This means that a multitude of pixel copies
is available for filtering even if the respective image point is, for instance,
hidden behind other objects in some parts of the sequence. A practical real-
ization of this concept is offered by the B-frame structure both employed in
the main/extended profiles of H.264/AVC and in HEVC. Another realization
are the multihypothesis frames found in [17]. The trajectory structure derived
from hierarchical B-frames may be found in Figure 4.4. The trajectory then
corresponds to a tree of pixel locations that is split at every B-frame. Again,
individual parts of the trajectory may be interrupted if a P-predicted block
or an I-predicted block are referenced. The advantage of the tree structure is
the possibility to track an image point over multiple frames even if it is not
visible in intermediate images. A description of this case may also be found
in Section 5.1.

4.4. CHAPTER SUMMARY 49

frame

frame frame

frame

frame

I

BB

b

P

i− 1 i+ 1

i

i+ 5i− 3

Y4

Y1

Y0

Y2

Y6

Y5

Y3

Figure 4.4: If an IBBB coding structure is used, the motion trajectory is split at
every B-frame thus forming not a one-dimensional trajectory path but a tree of
possible trajectory locations.

4.4 Chapter Summary

In this chapter formulae have been derived that predict the behavior of the TTF un-
der certain circumstances. Based on the ideal case of noise-free videos with perfect
motion knowledge, the model was step by step expanded to include both noisy videos
and motion estimation errors. It is assumed that a video sequence can sufficiently
be characterized by the maximum motion estimation error components qx,max, qy,max

and the spatial image correlation coefficients αx and αy since those are the only inde-
pendent variables in the analytical description of the TTF. The resulting equations
will later be used to predict the optimal filter length in Chapter 7.

50 CHAPTER 4. THEORETICAL CONSIDERATIONS

Chapter 5

Practical Realizations of Temporal
Trajectory Filters

A good idea is about ten percent and implementation and hard work, and luck is 90

percent.[sic] - Guy Kawasaki

5.1 Temporal Trajectory Filtering

The original idea for the Temporal Trajectory Filter was published in [12]. The first
implementation already made use of two filtering parameters and realized variable
filter lengths per processed pixel. Additional modifications and extensions of the
filter will now be described.

The following Sections 5.1.1 to 5.1.5 were first published in [9] c©IEEE 2012.

5.1.1 Introduction

In this section, the trajectory filter is discussed in more detail and its properties are
more closely examined. The main advantage of the new approach over other existing
methods is its ability to compute a trajectory over a large number of frames with
the use of only three filter parameters. These enable the filter to perform optimal
filtering per pixel to reduce block artifacts, which sets it apart from all block-based
approaches. In effect, the filter can convert simple P- or B-frames into multi hy-
pothesis frames without transmitting additional motion information within the bit
stream. Details on how to derive pixel trajectories directly from an H.264/AVC
encoded bit stream are given in Subsection 5.1.2. The subsequent filter design is

51

52 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

described in Subsection 5.1.3 together with an algorithm to efficiently compute op-
timal filter parameters. The encoder and decoder design is also detailed thereafter.
Subsection 5.1.4 describes the experimental evaluation of the filter and compares its
performance with both the H.264/AVC baseline and extended profile. In addition,
the filter is compared with the Wiener-based QALF and both are investigated con-
cerning their computational complexity. Finally, Subsection 5.1.5 summarizes the
Section and provides a conclusion.

5.1.2 Formation of Temporal Pixel Trajectories

In order to perform pixel-wise trajectory filtering on a video sequence, it becomes
necessary to identify the individual motion of every pixel at the decoder. Moreover,
the implementation of the filtering concept described in Subsection 5.1.4 will use
the filter in the decoding loop at both encoder and decoder. In this case an efficient
way to compute trajectories from data conveyed in the bit stream is needed. To
this end, the concatenation of coded H.264/AVC block-based motion vectors (MV)
is now considered, which avoids the transmission of unnecessary side information to
the decoder.

Concatenation of Motion Vectors

The following description uses hierarchical B-frames as the underlying coding struc-
ture. Nevertheless, all equations are equally applicable to P-frames, in which case
the second motion vector per block is simply omitted.
(dxi,0, dyi,0)T and (dxi,1, dyi,1)T shall denote the motion vectors for a certain block
in a bi-directionally predicted frame i for reference lists 0 and 1 respectively. In
this context the translational block motion is assumed to be identical to the mo-
tion of every pixel within that block, which yields the two motion vector fields
(dxi,0(x, y), dyi,0(x, y))T and (dxi,1(x, y), dyi,1(x, y))T . Frames referenced by these
vectors shall be indicated by refi,0(x, y) and refi,1(x, y). Starting with an arbitrary
pixel (x0, y0)T in frame i of a video sequence the two reference locations in frames
refi,0(x, y) and refi,1(x, y) are then given by(

x1

y1

)
=

(
x0

y0

)
+

(
dxi,0(bx0c, by0c)
dyi,0(bx0c, by0c)

)
,

(5.1) (
x2

y2

)
=

(
x0

y0

)
+

(
dxi,1(bx0c, by0c)
dyi,1(bx0c, by0c)

)
.

Through the concatenation of several motion vectors a potential trajectory for every
single pixel can now be formed. The next two locations derived from (x1, y1)T are

5.1. TEMPORAL TRAJECTORY FILTERING 53

frame

I

frame

P

frame frame

frame

BB

bi − 3 i + 5

i − 1 i + 1

i

(x2, y2) : Y t
2

(x6, y6) : Y t
6

(x5, y5) : Y t
5

(x1, y1) : Y t
1

(x0, y0) : Y t
0

(x3, y3) : Y t
3

(x4, y4) : Y t
4

Figure 5.1: Starting with a b-frame the trajectory for each pixel is computed through
the concatenation of motion vectors yielding here a total of seven luminance samples
along the trajectory. Note that only some hierarchical B-frames out of a GOP of
size 8 are depicted for simplification.

for example (
x3

y3

)
=

(
x1

y1

)
+

(
dxrf,0(bx1c, by1c)
dyrf,0(bx1c, by1c)

)
,(

x6

y6

)
=

(
x1

y1

)
+

(
dxrb,1(bx1c, by1c)
dyrb,1(bx1c, by1c)

)
(5.2)

with rf = refi,0(x1, y1), rb = refi,1(x1, y1).

This relationship is illustrated by Figure 5.1. Contrary to the original idea of a tra-
jectory, which associates every pixel with a single motion path through the sequence,
the trajectory now branches into two individual trajectories at each B-frame. The
resulting trajectory structure for an exemplary B-frame of the lowest hierarchy order
is shown in Figure 5.1. Every one of these pixel locations yields a different lumi-
nance sample Y0, ..., YN−1 which can potentially be used to compute a mean value

54 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Yopt. The originally reconstructed pixel Y0 can then be replaced by Yopt to achieve
noise reduction. However, not necessarily do all predicted image locations actually
describe the true motion of a pixel. As in the case of frame i − 3 in Figure 5.1
only one of several pixels within an image can actually be part of the trajectory.
Therefore, it becomes necessary to distinguish between motion vectors that do cor-
rectly describe a pixel’s true motion and those that do not. Criteria that enable the
decoder to perform this decision will be discussed in Subsection 5.1.2. Nevertheless,
the hierarchical B-frame structure offers an opportunity that is not present in the
simple case of frame-wise concatenation of motion vectors. Since an individual lo-
cation along the trjaectory of a pixel may be reached via different paths, it is now
possible to track a single image point over several frames even if said pixel is not
visible in all frames.

Distinguishing Between True and False Trajectories

To enable both encoder and decoder to select motion vectors that correctly describe
a pixel’s trajectory three criteria have been developed that together control the
filtering process.

Absolute error along the trajectory

One indicator for a falsely predicted trajectory is a sudden change between consec-
utive luminance samples Yi+1 and Yi. Such a change might for instance be caused
by moving foreground objects concealing part of the background. Another reason
could be a lighting change during the video sequence. In this case the trajectory
might still be correctly predicted, but temporal filtering would introduce further
errors. Using the deviation measure ∆Yi = |Yi+1 − Yi| a trajectory is subsequently
only continued if

(5.3) ∆Yi < TY .

Temporal motion consistency

Another property of a pixel trajectory, that can be used as a reliability test, is
temporal motion consistency. It is assumed that the individual translational motion
of a pixel changes only slightly from frame to frame. In order to be able to compare
motion vectors from different frames, these are first scaled according to the reference

5.1. TEMPORAL TRAJECTORY FILTERING 55

frames they point to:

(dxi,0(x, y))′ =
dxi,0(x,y)

refi,0(x,y)−i

(5.4)

(dyi,0(x, y))′ =
dyi,0(x,y)

refi,0(x,y)−i

The trajectory for a given pixel is only continued, if the euclidean distance between
the scaled version of the motion vector (dxi, dyi)

T pointing to the current location of
the trajectory and the scaled versions of the vectors (dxr0,0, dyr0,0)T , (dxr0,1, dyr0,1)T

pointing to the reference frames for the current location is smaller than a given
threshold

(5.5)
√

((dxr0,0)′ − (dxi)′)2 + ((dyr0,0)′ − (dyi)′)2 < TTC.

Where the apostrophe marks that scaled versions of the original motion vectors are
used.

Spatial motion consistency

Another indicator for a motion vector, that does not describe the true motion of a
pixel, can be found by comparing it with its neighboring vectors. Even at object
boundaries, spatially adjacent motion vectors on the 4× 4-block level should ideally
be similar. If one vector differs significantly from its neighbors, it is assumed that
a false motion vector has been used due to RD-optimization. Again, for better
comparability scaled versions of all motion vectors are used. The block-vote metric
for reference list 0 BVi,0(x, y) now gives the number of neighboring motion vectors
for the 4 × 4-blocks surrounding the trajectory’s current location (x, y), whose x-
or y-components differ from the current motion vector. Figure 5.2 illustrates the
functionality of the block-vote metric in combination with the scaling of motion
vectors. The filtering is subsequently only continued along the trajectory when the
block-vote metric for the current pixel satisfies

(5.6) BVi,0(x, y) ≤ 4− TSC

for a given threshold TSC.

Adaptive Filtering of Pixels

The combination of all three thresholds introduced above ensures that every pixel,
even inside the same 4×4-block, is filtered using a different trajectory path and a dif-
ferent number of luminance samples. Hence, block-artifacts introduced by quantized

56 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Figure 5.2: The image on the left shows the motion vectors for the 4 × 4-blocks
surrounding the trajectories current location marked in black. All blocks with a
gray background use a reference frame with a greater temporal distance relative to
the current frame than the reference frames for the other blocks. The scaled motion
vectors are shown on the right. The resulting number of neighboring blocks with
differing motion (i.e. the block-vote metric) is 5.

DCT coefficients resulting in homogeneous blocks can effectively be compensated.
Visual examples for this property will be provided in Subsection 5.1.4.

5.1.3 Derivation of Filter Parameters

In the previous paragraphs filter parameters have been described that effectively
control the formation of individual pixel trajectories thereby contributing to different
filter characteristics. Throughout the remainder of this section the filtering step
consists of calculating the average luminance value along the trajectory as given in
Equation 3.3. This operation is chosen for its simplicity so as not to increase the
encoder complexity. In theory an optimal weight could be determined for every pixel
along the trajectory, which would result in an increased computational overhead and
therefore remains a topic for a later section. A derivation method for an optimal set
of the three previously mentioned parameters will now be outlined.

MSE minimization

Since the primary target of both post and in-loop filters is the improvement of
the subjective picture quality, the filter parameters are optimized with respect to a
maximum SNR-gain for the current frame. The resulting effect on future frames,
which would also influence the bit rate, is currently not considered. All three filter
thresholds are tested iteratively at the encoder. For each of these combinations
the resulting MSE is computed. Effectively, it is sufficient to follow the path of a
single pixel using the associated motion vectors. During this process the MSEs for
all parameter combinations can be calculated simultaneously. The combination of

5.1. TEMPORAL TRAJECTORY FILTERING 57

filter parameters that yields the minimal MSE then needs to be transmitted to the
decoder so that it can perform identical filtering operations.

Signaling of Filter Parameters

The two thresholds TY and TTC could theoretically take on arbitrary values. For
practical purposes, however, and to reduce the time needed for parameter optimiza-
tion each threshold is restricted to values between 0 and 7. As a majority vote
is used for the spatial motion consistency the appropriate range of values for the
threshold TSC is 0 ≤ TSC < 4. As will be shown in Subsection 5.1.4, there is virtually
no temporal correlation concerning the optimum filter parameters. The thresholds
do, however, change their characteristics according to the QP of the frame to be
filtered. Moreover, each parameter appears to be evenly distributed over its range
of possible values. Consequently, all thresholds can be signalled in the bit stream
with eight additional bits per frame. An adaptivity per frame, in contrast to a fixed
set of thresholds, is needed since frames with little motion can be filtered with much
longer trajectories. Frames with rapidly moving foreground objects require, how-
ever, much stronger restrictions on motion and color change. The setting TY = 0
is used to disable the filter altogether as the restriction of luminance values in this
case inhibits all changes on the reconstructed frame and the two other parameters
can be omitted.

Encoder and Decoder Design

In general, the new in-loop filter could be applied both before and after the H.264/AVC
Deblocking Filter. Especially in combination with the threshold TSC, however, the
filter performs better when utilized before the Deblocking Filter. The resulting mo-
dified encoder is shown in Figure 5.3. For the H.264/AVC baseline profile eight past
reconstructed, filtered frames are stored at both encoder and decoder in a simple
queue. To allow for trajectories over at least eight past and/or future frames the
simple queue model needs to be extended when hierarchical B-frames are used. In
this case four past I- and P-frames are stored also.

5.1.4 Experimental Evaluation

The proposed new in-loop filter has been implemented in C and integrated into
the reference software JM 16 [44] for the well-established codec H.264/AVC [55].
As described in Subsection 5.1.1 both the baseline profile and the extended profile
with hierarchical B-frames have been tested. The precise encoder settings for both

58 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

MC

ME

Deblocking

Filter TTF

Buffer

(8 B−frames + MVs)

(4 I−/P−frames + MVs)

Choose

Prediction
Intra

Prediction

Intra

MVs

 FS

FS

T QFi

F ′i−1

T−1F ′i Q∗

Figure 5.3: The proposed filter is integrated into the local decoder loop at the
encoder before the Deblocking Filter. F ′i and F ′i−1 are the current reconstructed
picture and its predecessor stored in the frame store (FS).

5.1. TEMPORAL TRAJECTORY FILTERING 59

cases are given in Tables 5.1 and 5.2. The in-loop filter has been applied to the set
of test sequences used in the HEVC standardization activities. These range from
WQVGA sequences to cropped WQXGA sequences. Among these are also sequences
of various temporal resolutions ranging from 25 Hz to 60 Hz. All details concerning
the sequences may be found in Table 5.3 summarized as classes B to E.

Table 5.1: Settings used for the H.264/AVC Baseline Profile.
H.264/AVC Reference Software JM 16
Profile baseline
Picture order / GOP size IPPP / -
Entropy Coding UVLC
RD Optimization high complexity
Motion Estimation EPZS
QP I-slice ∈ {22, 27, 32, 37, 42}
QP P-slice QP I-slice +1

Table 5.2: Settings used for the H.264/AVC Extended Profile.
H.264/AVC Reference Software JM 16
Profile extended
Picture order / GOP size hierarchical B / 8
Entropy Coding UVLC
RD Optimization high complexity
Motion Estimation EPZS
QP I-slice ∈ {22, 27, 32, 37, 42}
QP P-slice QP I-slice +1
QP B-slice QP I-slice +3

Objective Measurements

For the baseline and the extended profile all sequences have been encoded using
H.264/AVC with and without the additional in-loop filter. The resulting bit rates
and PSNR values were compared using the Bjøntegaard metric [4]. The respective
BD-PSNR values and BD-rates for QP 22 to 37 are given in the second and third
column of Table 5.4 for the baseline and Table 5.5 for the extended profile. The
overall average BD-rate for the baseline profile is −3.61% with a maximum average
gain of 9.70% for a single sequence. When hierarchical B-frames are used a bit
rate reduction of up to 6.82% is achieved with an average BD-rate of −2.06%. It
appears that the filter works equally well on both P- and B-frames. In addition,

60 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Table 5.3: All test sequences used in the experiments with their respective resolu-
tions. The number of frames corresponds in each case to a 10 s video sequence.

Sequence Resolution Frames

Class D

BasketballPass 416x240 500
BlowingBubbles 416x240 500
BQSquare 416x240 600
RaceHorses 416x240 300

Class C

BasketballDrill 832x480 500
BQMall 832x480 600
PartyScene 832x480 600
RaceHorses 832x480 300

Class E
Vidyo1 1280x720 600
Vidyo3 1280x720 600
Vidyo4 1280x720 600

Class B

BasketballDrive 1920x1080 500
BQTerrace 1920x1080 600
Cactus 1920x1080 500
Kimono1 1920x1080 240
ParkScene 1920x1080 240

Additional Sequences

Allstars 704x576 250
BBC-pan-13 720x576 110
Desert 720x400 240
Entertainment 720x576 250
Waterfall 704x480 300

5.1. TEMPORAL TRAJECTORY FILTERING 61

a gain is achieved for all tested sequences which justifies the overhead introduced
by the transmission of the filter parameters. In particular, good results have been
achieved for both high- and low-resolution sequences. Even for sequences with large
moving foreground objects, such as both RaceHorses sequences, gains are achieved.
For both the baseline and the extended profile the actual frame rate of a sequence
does not seem to have a significant impact on the performance of the filter. For
example both for BQSquare (60 Hz) and for ParkScene (24 Hz) bit rate reductions
of more than 2% are observed. Interestingly, the gain for the extended profile is
higher than the one observed for the baseline profile for both BasketballDrill and
Cactus. This is due to quickly moving foreground objects, which result in occluded
regions that can not be filtered if an IPPP coding structure is used. For hierarchical
B-frames, however, both past and future frames are available for filtering, in which
case the adaptive TTF can successfully be applied to such regions, too. The RD-
curves in Figures 5.4(a) and 5.4(b) illustrate the results reported in Table 5.4 in
more detail. The general behavior of the proposed filter is shown by Figure 5.4(a),
where significant quality improvement for the Video1 sequence is only present for
QPs 27 and 32. At very high bit rates the motion trajectory is more accurately
determined, but generally fewer artifacts impair the visual quality of the decoded
sequence. Consequently, the gain achievable at QP 22 is smaller. At low bit rates,
on the other hand, the reference frames are of poorer quality, which also reduces the
reliability of the transmitted motion vectors. In this case, too, the effectiveness of
the TTF is limited. Nevertheless widely distributed gain can be achieved for some
sequences, such as BQSquare. The RD-curve for this particular sequence is given in
Figure 5.4(b).

Additional Test Sequences

To illustrate the full potential of the TTF approach, the filter has also been tested on
a number of sequences not included in the HEVC data set. These are also listed in
Table 5.3. Among these are sequences with significant camera motion such as track
(Allstars, BBC-pan-13) or zoom (Waterfall). The resulting BD-measures for the
baseline and the extended profile are shown in Tables 5.4 and 5.5, too. Especially
the average BD-rate of −10.88% for the baseline profile shows that the filter can
improve the performance of H.264/AVC significantly in presence of camera motion.

Influence of the Deblocking Filter

As can be seen from Figure 5.3 the TTF is here used before the Deblocking Filter
is applied. Experiments investigating the optimal order of both filters showed that
the behavior of the codec is only minimally changed when the Deblocking Filter

62 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 500 1000 1500 2000 2500 3000 3500 4000

P
S

N
R

 [
d
B

]

Bit Rate [kbit/s]

Vidyo1 1280x720, 60Hz, 600 frames

H.264
H.264+TTF

(a) Vidyo1

 26

 28

 30

 32

 34

 36

 38

 1000 2000 3000 4000 5000

P
S

N
R

 [
d

B
]

Bit Rate [kbit/s]

BQSquare 416x240, 60Hz, 600 frames

H.264
H.264+TTF

(b) BQSquare

Figure 5.4: Exemplary RD-curves for the baseline profile. For the BQSquare se-
quence the TTF provides objective quality improvement for all depicted bit rates.
For the Vidyo1 sequence the gain is restricted to the medium bit rate range.

5.1. TEMPORAL TRAJECTORY FILTERING 63

is instead applied before the TTF. Apparently, the noise characteristics after the
application of the Deblocking Filter are still suitable for the TTF. This may in part
be due to the fact, that the Deblocking Filter operates in the spatial domain only
while the TTF is applied in the temporal domain. Omitting the Deblocking Filter
altogether, however, drastically impairs the quality of the compressed sequence.

Comparison with QALF

In order to objectively compare the performance of the TTF with other state-of-
the-art in-loop filtering concepts, all experiments have also been conducted with
the QALF as described in [6]. To this end the QALF implementation provided
by KTA 2.7 in combination with JM 16 was used. QALF was here selected since
it was considered to be one of the most promising new in-loop filters at the time
these experiments were conducted. The BD-PSNR and BD-rates values for all test
sequences using the baseline profile may be found in the third and fourth column of
Table 5.4. The respective values for the extended profile are given in Table 5.5.

64 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

S
eq

u
en

ce

Q
P

2
2

to
3
7

Q
P

2
7

to
4
2

T
T

F
Q

A
L

F
T

T
F

+
Q

A
L

F
T

T
F

Q
A

L
F

T
T

F
+

Q
A

L
F

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
in

d
B

in
%

B
a
sk
et
ba
ll
P
a
ss

0
.0

3
−

0
.7

0
0
.3

1
−

6
.0

6
0
.3

1
−

6
.0

4
0
.0

2
−

0
.3

7
0
.2

6
−

5
.4

5
0
.2

6
−

5
.3

5
B
lo
w
in
gB

u
bb
le
s

0
.1

2
−

2
.9

0
0
.3

1
−

7
.3

4
0
.3

4
−

7
.8

5
0
.1

2
−

3
.2

4
0
.2

9
−

7
.5

4
0
.3

1
−

8
.0

3
B
Q
S
qu

a
re

0
.3

1
−

7
.4

1
0
.5

6
−

1
3
.0

2
0
.7

5
−

1
6
.9

2
0
.4

8
−

1
2
.9

6
0
.7

0
−

1
8
.2

6
1
.0

5
−

2
6
.7

3
R
a
ce
H
o
rs
es

0
.1

1
−

2
.2

8
0
.2

5
−

4
.9

2
0
.2

7
−

5
.3

5
0
.0

8
−

1
.7

1
0
.2

2
−

4
.5

8
0
.2

2
−

4
.7

2
a
v
g
.
fo
r
c
la
ss

D
0
.1
4

−
3
.3
2

0
.3
6

−
7
.8
4

0
.4
2

−
9
.0
4

0
.1
7

−
4
.5
7

0
.3
6

−
8
.9
6

0
.4
6

−
1
1
.2
1

B
a
sk
et
ba
ll
D
ri
ll

0
.0

0
0
.0

0
0
.5

6
−

1
3
.1

4
0
.5

6
−

1
3
.1

9
0
.0

0
0
.0

1
0
.6

0
−

1
4
.0

1
0
.5

4
−

1
2
.6

5
B
Q
M
a
ll

0
.1

6
−

3
.6

9
0
.4

5
−

1
0
.1

7
0
.4

9
−

1
0
.8

9
0
.2

1
−

4
.2

7
0
.5

2
−

1
0
.4

9
0
.5

6
−

1
0
.9

5
P
a
rt
y
S
ce
n
e

0
.2

3
−

5
.0

8
0
.4

3
−

9
.5

5
0
.5

5
−

1
1
.9

5
0
.2

7
−

6
.7

9
0
.4

6
−

1
1
.4

5
0
.5

9
−

1
4
.3

7
R
a
ce
H
o
rs
es

0
.0

7
−

1
.7

4
0
.3

1
−

7
.2

7
0
.3

3
−

7
.5

6
0
.0

9
−

2
.1

5
0
.3

2
−

7
.2

8
0
.3

2
−

7
.1

5
a
v
g
.
fo
r
c
la
ss

C
0
.1
2

−
2
.6
3

0
.4
4

−
1
0
.0
3

0
.4
8

−
1
0
.9
0

0
.1
4

−
3
.3
0

0
.4
7

−
1
0
.8
1

0
.5
0

−
1
1
.2
8

V
id
y
o
1

0
.0

9
−

2
.6

6
0
.6

8
−

1
7
.6

4
0
.6

7
−

1
7
.3

1
0
.1

3
−

2
.6

7
0
.7

7
−

1
4
.7

3
0
.7

6
−

1
4
.6

5
V
id
y
o
3

0
.1

9
−

5
.6

6
0
.6

2
−

1
7
.6

0
0
.6

4
−

1
7
.9

9
0
.2

9
−

6
.2

3
0
.8

9
−

1
8
.5

5
0
.9

1
−

1
8
.8

4
V
id
y
o
4

0
.1

1
−

3
.3

1
0
.5

9
−

1
6
.4

5
0
.5

8
−

1
6
.2

9
0
.1

4
−

2
.9

9
0
.7

7
−

1
5
.7

0
0
.7

6
−

1
5
.4

6
a
v
g
.
fo
r
c
la
ss

E
0
.1
3

−
3
.8
8

0
.6
3

−
1
7
.2
3

0
.6
3

−
1
7
.2
0

0
.1
9

−
3
.9
6

0
.8
1

−
1
6
.3
3

0
.8
1

−
1
6
.3
2

B
a
sk
et
ba
ll
D
ri
ve

0
.0

5
−

1
.5

3
0
.3

5
−

1
1
.7

8
0
.3

5
−

1
1
.7

8
0
.0

5
−

1
.3

0
0
.4

6
−

1
1
.5

9
0
.4

6
−

1
1
.6

0
B
Q
T
er
ra
ce

0
.2

2
−

9
.7

0
0
.4

9
−

2
0
.6

2
0
.5

3
−

2
2
.0

5
0
.4

4
−

1
4
.9

9
0
.8

7
−

2
8
.2

3
0
.9

4
−

3
0
.5

3
C
a
ct
u
s

0
.0

0
−

0
.0

7
0
.2

3
−

8
.8

4
0
.2

3
−

8
.8

4
0
.0

1
−

0
.1

5
0
.3

2
−

8
.8

7
0
.3

2
−

8
.8

7
K
im

o
n
o
1

0
.1

4
−

3
.7

9
0
.5

7
−

1
4
.4

5
0
.5

8
−

1
4
.7

1
0
.1

6
−

3
.4

6
0
.6

0
−

1
2
.3

0
0
.6

1
−

1
2
.4

5
P
a
rk
S
ce
n
e

0
.3

1
−

7
.9

9
0
.3

4
−

8
.9

7
0
.4

0
−

1
0
.2

6
0
.3

1
−

7
.2

2
0
.3

8
−

9
.0

4
0
.4

3
−

9
.9

8
a
v
g
.
fo
r
c
la
ss

B
0
.1
4

−
4
.6
2

0
.4
0

−
1
2
.9
3

0
.4
2

−
1
3
.5
3

0
.1
9

−
5
.4
2

0
.5
3

−
1
4
.0
1

0
.5
5

−
1
4
.6
9

A
ll
st
a
rs

0
.1

1
−

3
.0

8
0
.4

6
−

1
2
.2

5
0
.4

8
−

1
2
.5

4
0
.1

6
−

4
.1

6
0
.5

0
−

1
1
.7

3
0
.5

1
−

1
2
.1

2
B
B
C
-p
a
n
-1
3

0
.3

7
−

8
.6

3
0
.7

5
−

1
6
.0

8
0
.7

8
−

1
6
.8

3
0
.4

4
−

8
.0

1
0
.9

6
−

1
4
.0

5
0
.9

2
−

1
3
.9

9
D
es
er
t

0
.3

0
−

7
.1

0
0
.9

9
−

2
1
.1

4
1
.0

0
−

2
1
.4

5
0
.3

9
−

7
.4

5
1
.1

0
−

1
9
.5

0
1
.1

2
−

1
9
.8

2
E
n
te
rt
a
in
m
en

t
0
.2

2
−

4
.9

5
0
.6

9
−

1
4
.9

3
0
.7

5
−

1
6
.3

2
0
.3

1
−

7
.0

8
0
.7

4
−

1
6
.0

4
0
.8

3
−

1
7
.9

6
W

a
te
rf
a
ll

1
.0

2
−

2
8
.3

7
1
.0

6
−

3
0
.1

2
1
.3

7
−

3
6
.7

6
1
.2

7
−

2
7
.0

5
0
.6

8
−

2
4
.0

0
1
.0

6
−

2
7
.3

0
a
v
g
.
a
d
d
.
se
q
.

0
.4
1

−
1
0
.8
8

0
.8
0

−
1
9
.6
1

0
.9
0

−
2
1
.7
6

0
.5
0

−
1
0
.8
8

0
.7
5

−
1
7
.4
7

0
.8
6

−
1
8
.8
1

T
ab

le
5.

4:
B

D
-r

at
e

an
d

av
er

ag
e

P
S
N

R
ga

in
fo

r
te

st
se

q
u
en

ce
s

fo
r

th
e

H
.2

64
/A

V
C

b
as

el
in

e
p
ro

fi
le

w
it

h
T

T
F

,
Q

A
L

F
,

an
d

b
ot

h
fi
lt

er
s

in
co

m
b
in

at
io

n
.

C
ol

u
m

n
s

1
to

6
sh

ow
th

e
re

su
lt

s
fo

r
Q

P
22

to
37

.
C

ol
u
m

n
s

7
to

12
sh

ow
th

e
re

su
lt

s
fo

r
Q

P
27

to
42

.

5.1. TEMPORAL TRAJECTORY FILTERING 65

S
eq

u
en

ce

Q
P

2
2

to
3
7

Q
P

2
7

to
4
2

T
T

F
Q

A
L

F
T

T
F

+
Q

A
L

F
T

T
F

Q
A

L
F

T
T

F
+

Q
A

L
F

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

∆
P

S
N

R
B

D
-r

a
te

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
in

d
B

in
%

B
a
sk
et
ba
l l
P
a
ss

0
.0

2
−

0
.4

1
0
.1

8
−

3
.5

5
0
.1

7
−

3
.3

9
0
.0

1
−

0
.1

8
0
.1

2
−

2
.6

8
0
.1

2
−

2
.5

8
B
lo
w
in
gB

u
bb
le
s

0
.0

4
−

0
.9

9
0
.3

1
−

7
.7

5
0
.3

1
−

7
.6

7
0
.0

4
−

1
.2

8
0
.2

6
−

7
.1

7
0
.2

7
−

7
.3

4
B
Q
S
qu

a
re

0
.0

8
−

2
.2

6
0
.6

2
−

1
6
.9

6
0
.6

3
−

1
7
.3

9
0
.1

0
−

2
.9

3
0
.6

1
−

1
5
.8

1
%

0
.6

6
−

1
7
.0

7
R
a
c e
H
o
rs
es

0
.0

1
−

0
.2

1
0
.1

4
−

2
.8

1
0
.1

4
−

2
.7

9
0
.0

0
−

0
.0

4
0
.1

1
−

2
.4

7
0
.1

0
−

2
.2

1
a
v
g
.
fo
r
c
la
ss

D
0
.0
4

−
0
.9
7

0
.3
1

−
7
.7
7

0
.3
1

−
7
.8
1

0
.0
4

−
1
.1
1

0
.2
8

−
7
.0
3

0
.2
9

−
7
.3
0

B
a
sk
et
ba
l l
D
ri
ll

0
.0

1
−

0
.1

4
0
.3

5
−

8
.2

8
0
.3

5
−

8
.1

9
0
.0

1
−

0
.2

3
0
.3

4
−

8
.0

1
0
.3

3
−

7
.7

9
B
Q
M
a
ll

0
.0

2
−

0
.3

5
0
.2

8
−

6
.0

9
0
.2

8
−

6
.0

3
0
.0

1
−

0
.2

6
0
.2

8
−

5
.2

3
0
.2

8
−

5
.2

1
P
a
rt
y
S
ce
n
e

0
.0

5
−

1
.2

8
0
.4

7
−

1
1
.3

2
0
.4

7
−

1
1
.2

5
0
.0

8
−

2
.1

0
0
.4

0
−

1
0
.6

4
0
.4

0
−

1
0
.5

7
R
a
ce
H
o
rs
es

0
.0

1
−

0
.2

9
0
.1

8
−

4
.2

3
0
.1

8
−

4
.1

9
0
.0

2
−

0
.3

8
0
.1

5
−

3
.6

0
0
.1

6
−

3
.6

2
a
v
g
.
fo
r
c
la
ss

C
0
.0
2

−
0
.5
1

0
.3
2

−
7
.4
8

0
.3
2

−
7
.4
1

0
.0
3

−
0
.7
4

0
.3
0

−
6
.8
7

0
.2
9

−
6
.8
0

V
id
y
o
1

0
.1

4
−

3
.8

9
0
.4

2
−

1
1
.1

9
0
.4

1
−

1
1
.1

0
0
.1

3
−

2
.8

5
0
.4

9
−

1
0
.7

8
0
.4

8
−

1
0
.5

0
V
id
y
o
3

0
.1

2
−

3
.0

5
0
.5

5
−

1
4
.1

1
0
.5

8
−

1
4
.9

6
0
.1

3
−

2
.7

4
0
.6

9
−

1
4
.1

3
0
.7

3
−

1
4
.7

7
V
id
y
o
4

0
.1

0
−

2
.7

6
0
.3

9
−

1
0
.8

6
0
.3

9
−

1
0
.7

8
0
.0

7
−

1
.5

9
0
.4

4
−

9
.9

7
0
.4

3
−

9
.6

6
a
v
g
.
fo
r
c
la
ss

E
0
.1
2

−
3
.2
3

0
.4
5

−
1
2
.0
5

0
.5
5

−
1
2
.2
8

0
.1
1

−
2
.3
9

0
.5
4

−
1
1
.6
3

0
.5
5

−
1
1
.6
4

B
a
sk
et
ba
l l
D
ri
ve

0
.0

3
−

0
.8

6
0
.1

8
−

5
.7

5
0
.1

7
−

5
.4

6
0
.0

3
−

0
.5

9
0
.2

2
−

5
.1

8
0
.2

1
−

4
.9

0
B
Q
T
er
ra
ce

0
.1

4
−

6
.8

2
0
.4

5
−

2
1
.1

6
0
.4

5
−

2
1
.4

7
0
.2

2
−

6
.8

3
0
.7

5
−

2
2
.3

9
0
.7

7
−

2
2
.4

9
C
a
ct
u
s

0
.0

3
−

0
.9

6
0
.1

5
−

5
.3

6
0
.1

6
−

5
.6

0
0
.0

2
−

0
.7

0
0
.1

7
−

4
.7

2
0
.1

7
−

4
.8

3
K
im

o
n
o
1

0
.0

9
−

2
.4

3
0
.4

0
−

9
.0

4
0
.4

3
−

1
0
.9

4
0
.0

8
−

1
.9

9
0
.4

0
−

9
.0

4
0
.4

0
−

9
.0

5
P
a
rk
S
ce
n
e

0
.1

4
−

3
.8

0
0
.2

3
−

6
.1

7
0
.2

3
−

6
.1

7
0
.1

3
−

3
.4

6
0
.2

4
−

6
.2

8
0
.2

5
−

6
.4

8
a
v
g
.
fo
r
c
la
ss

B
0
.0
9

−
2
.9
8

0
.2
9

−
9
.8
8

0
.2
9

−
9
.9
3

0
.1
0

−
2
.7
1

0
.3
6

−
9
.5
2

0
.3
6

−
9
.5
5

A
l l
st
a
rs

0
.1

0
−

2
.6

0
.3

9
−

1
0
.2

2
0
.4

2
−

1
0
.8

1
0
.0

6
−

1
.5

6
0
.3

8
−

8
.2

9
0
.3

8
−

8
.5

4
B
B
C
-p
a
n
-1
3

0
.1

2
−

2
.2

6
0
.5

4
−

1
0
.9

7
0
.6

0
−

1
1
.6

2
0
.0

9
−

1
.7

4
0
.5

8
−

9
.8

6
0
.5

0
−

8
.5

4
D
es
er
t

0
.1

0
−

2
.1

4
0
.6

1
−

1
3
.0

9
0
.5

8
−

1
1
.5

8
0
.0

8
−

1
.3

0
0
.5

8
−

1
0
.2

0
0
.5

0
−

8
.9

2
E
n
te
rt
a
in
m
en

t
0
.0

5
−

1
.1

9
0
.5

2
−

1
1
.1

7
0
.5

0
−

1
0
.8

9
0
.0

5
−

1
.1

2
0
.5

2
−

1
0
.6

1
0
.5

0
−

1
0
.2

6
W

a
te
rf
a
ll

0
.4

8
−

1
4
.3

6
0
.8

3
−

2
3
.3

8
0
.8

3
−

2
3
.4

9
0
.4

7
−

1
2
.8

1
0
.8

0
−

2
0
.6

7
0
.8

1
−

2
0
.7

8
a
v
g
.
a
d
d
.
se
q
.

0
.1
7

−
4
.5
1

0
.5
8

−
1
3
.7
7

0
.5
8

−
1
3
.6
8

0
.1
5

−
3
.7
0

0
.5
7

−
1
1
.9
5

0
.5
8

−
1
3
.6
8

T
ab

le
5.

5:
B

D
-r

at
e

an
d

av
er

ag
e

P
S
N

R
ga

in
fo

r
te

st
se

q
u
en

ce
s

fo
r

th
e

H
.2

64
/A

V
C

ex
te

n
d
ed

p
ro

fi
le

w
it

h
T

T
F

,
Q

A
L

F
an

d
b

ot
h

fi
lt

er
s

in
co

m
b
in

at
io

n
.

C
ol

u
m

n
s

1
to

6
sh

ow
th

e
re

su
lt

s
fo

r
Q

P
22

to
37

.
C

ol
u
m

s
7

to
12

sh
ow

th
e

re
su

lt
s

fo
r

Q
P

27
to

42
.

66 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

MC

ME

Buffer

(8 B−frames + MVs)

(4 I−/P−frames + MVs)

Deblocking

Filter

 FS

FS

TTF

Choose

Prediction
Intra

Prediction

Intra

MVs

QALF

T QFi

T−1

F ′i−1

F ′i Q∗

Figure 5.5: When combining TTF and QALF, the TTF is used in front of the
Deblocking Filter while the QALF is applied afterwards.

As these results show, the QALF outperforms the TTF for all sequences, although
similar gains are achieved for ParkScene and Waterfall. This is only to be expected
since the QALF is an already heavily RD-optimized filter having undergone several
major improvements over the last years. Nevertheless, the TTF still manages to
produce BD-rates that are at least in the same order of magnitude as those pro-
vided by QALF.
In addition to the experiments described above, both filters were also tested in com-
bination with the aim of proving that they are not necessarily mutually exclusive.
The resulting modified H.264/AVC encoder with both QALF and TTF is shown in
Figure 5.5. The BD-rates for the combination of both filters when using the baseline
profile are shown in the fourth column of Table 5.4. Constructive interference can
be observed for all tested sequences except for class E, where slight losses occur for
Vidyo1 and Vidyo4. In addition, the combined gain of both filters is significantly
higher than that provided by QALF for BQSquare, PartyScene, ParkScene, BQTer-
race and Waterfall. As can be seen, the combination of both filters is most effective
when the TTF alone already provides a gain of more than 5%. This finding also in-
dicates that QALF and TTF do not necessarily reduce the impact of the same noise
sources at the encoder. Even though the noise observed in the temporal domain
is essentially white, it may originate from several independent sources like motion
estimation and quantization of DCT coefficients. For each of these sources one of
the two filters may be better suited. A combination of temporal and spatial filtering

5.1. TEMPORAL TRAJECTORY FILTERING 67

proves to be even more effective in this context.
Table 5.5 shows the equivalent average BD-rates per class when hierarchical B-
frames are used. In all cases, except for the Waterfall sequence, the combination
of both filters provides lower gain than QALF alone. For the Desert sequence, for
example, this can be explained by the heat noise present in the original sequence.
Although the TTF improves the quality of an entire frame, it removes the heat noise.
The QALF then tries to reconstruct the previously filtered pixels which results in
a very large number of bits needed for the quadtree. The interaction between both
filters, especially in combination with hierarchical B-frames, needs to be further
investigated in the future.

Performance at low bit rates

Since block-artifacts are most noticeable at low bit rates all experiments were also
conducted for QP 42 resulting in already strongly reduced visual quality for all
sequences. As the right half of Tables 5.4 and 5.5 show the TTF performs better still
at poor quality. The QALF’s performance is also improved, although the difference
between both filters is decreased at least for the baseline profile.

Complexity Analysis

Since the computational complexity of both QALF and TTF is mostly located at
the encoder the average encoding time ratios compared to H.264/AVC baseline and
extended profile are shown in Tables 5.6 and 5.7. The decoding time ratios are given
also. All time-measurements were conducted on identical conventional 3 GHz-CPUs
using a single-thread implementation of the respective method. As expected both
filters increase the encoder complexity considerably when hierarchical B-frames are
used. Even then, the TTF is faster than the QALF despite the fact that the TTF
encoder still only uses conventional floating-point arithmetics. In the baseline case,
the encoding times for the TTF vary depending on the QP. Especially at low bitrates
the modified encoder is faster than the original H.264/AVC encoder. This is due
to the highly improved quality of the reference pictures used for motion estimation.
Consequently, the EPZS [46] algorithm stops earlier because of its early termination
criterion, resulting in a speed-up of the motion estimation, which accounts for most
of the encoder run time. The EPZS algorithm in combination with the TTF only
needs about 75% of the original motion estimation time for both tested profiles.
As a result the average encoding time over all tested QPs lies at about 84% of
the reference encoder runtime for the baseline and 198% for the extended profile.
When hierarchical B-frames are used, the number of possible trajectories increases
exponentially. This slows down the encoder considerably. Concerning the decoder,

68 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

the complexity for QALF is usually smaller except for the additional sequences where
both filters require an additional runtime of about 50% of the reference decoding
time. One option to further simplify the decoding process for the TTF will be
the usage of bit-shift operations instead of the previously described averaging. In
addition, the computation of the optimal filter parameters can easily be parallelized
at the encoder.

Sequence
TTF QALF

TENC TDEC TENC TDEC

average for class D 83% 149% 184% 112%
average for class C 82% 165% 170% 137%
average for class E 92% 185% 158% 134%
average for class B 79% 157% 166% 143%
average for additional sequences 89% 149% 159% 164%

Table 5.6: Per class average encoding and decoding time ratios compared to
H.264/AVC baseline profile (QP 22 to 42).

Sequence
TTF QALF

TENC TDEC TENC TDEC

average for class D 188% 148% 482% 113%
average for class C 188% 174% 490% 121%
average for class E 250% 179% 466% 136%
average for class B 195% 152% 465% 128%
average additional sequences 198% 149% 478% 146%

Table 5.7: Per class average encoding and decoding time ratios compared to
H.264/AVC extended profile (QP 22 to 42).

Subjective Examples

Apart from improving the objective quality of the decoded video the additional
in-loop filter also improves the subjective quality. As outlined in Subsection 3.2
the main purpose of the TTF is to reduce the impact of block-artifacts on the
performance of H.264/AVC. These are expected to occur especially at the boundaries
of moving objects in a video sequence and at high QP-values. Figure 5.6 shows frame
500 of the decoded BQSquare sequence both with and without the application of the
TTF filter (bit rate reduced by 19%, PSNR increased by 0.28 dB for the depicted
QP). Especially in the upper left corner the distortion is visibly reduced by the
TTF. The same can be observed in the examples shown in Figure 5.7 which displays

5.1. TEMPORAL TRAJECTORY FILTERING 69

(a) H.264/AVC at 358 kbit/s,
26.8 dB

(b) H.264/AVC + TTF at
309 kbit/s, 27.1 dB

(c) Original frame

Figure 5.6: An enlarged part of frame 200 from the decoded BQSquare sequence for
QP 37.

(a) H.264/AVC at
2683 kbits/s, 30.1 dB

(b) H.264/AVC + TTF at
2355 kbit/s, 30.3 dB

(c) Original frame

Figure 5.7: An enlarged part of frame 500 from the decoded BQTerrace sequence
for QP 37.

0 200 400 600
0

1

2

3

4

5

6

7
optimum lumiance threshold, QP 22

frame index

T
Y

0 200 400 600
0

1

2

3

4

5

6

7
optimum spatial threshold, QP 22

frame index

T
S

C

0 200 400 600
0

1

2

3

4

5

6

7
optimum temporal threshold, QP 22

frame index

T
T

C

Figure 5.8: Optimal thresholds TY , TSC and TTC for the BQMall sequence for QP
22.

70 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

0 200 400 600
0

1

2

3

4

5

6

7
optimum lumiance threshold, QP 37

frame index

T
Y

0 200 400 600
0

1

2

3

4

5

6

7
optimum spatial threshold, QP 37

frame index

T
S

C

0 200 400 600
0

1

2

3

4

5

6

7
optimum temporal threshold, QP 37

frame index

T
T

C

Figure 5.9: Optimal thresholds TY , TSC and TTC for the BQMall sequence for QP
37.

frame 500 from the BQTerrace sequence. Again the noise introduced by the codec
is reduced without the introduction of new artifacts. In addition, the bit rate is
significantly reduced (bit rate reduced by 12%, PSNR increased by 0.25 dB for the
depicted QP).

Analysis of the Filter Parameters

In Subsection 5.1.3 it has been implied that the optimal filter parameters are essen-
tially random variables. To support this assumption Figure 5.8 shows the optimum
thresholds transmitted for the BQMall sequence for the baseline of H.264/AVC using
a QP of 22. The respective thresholds for QP 37 are depicted in Figure 5.9. Es-
sentially, all three thresholds are indeed random. Their variation, however, strongly
depends on the encoded sequence and the QP used. Since stronger artifacts are
expected at high QPs, the filter here is intended to produce much larger deviations
from the originally reconstructed picture. This fact is supported by a significantly
higher average value for the luminance threshold TY for QP 37. For QP 22 the
filter usually only allows minor changes to the reconstruced frame as can be seen
in Figure 5.8. In addition, motion vectors are also expected to be less accurate at
low bit rates. Accordingly, the average value for the temporal consistency threshold
is also increased in such cases. In the experiments described above, a fixed set of
thresholds was applied on frame basis. It is, of course, also possible to adapt the
thresholds spatially. This variant of the TTF will be investigated in Section 5.3.

Analysis of the Trajectories

Figures 5.10 and 5.11 show histograms of the trajectory lengths over all frames
of the BQMall sequence both for the baseline and the extended profile. In these
two cases all trajectories with a length greater than seven are for simplification
summarized into one bin of the histogram. Both for high and low QPs these figures

5.1. TEMPORAL TRAJECTORY FILTERING 71

 1 2 3 4 5 6 7 >7
0

0.1

0.2

0.3

0.4

0.5
QP 22

trajectory length

fr
e

q
u

e
n

c
y
 o

f
o

c
c
u

re
n

c
e

 1 2 3 4 5 6 7 >7
0

0.1

0.2

0.3

0.4

0.5
QP 37

trajectory length

fr
e

q
u

e
n

c
y
 o

f
o

c
c
u

re
n

c
e

Figure 5.10: Average trajectory lengths for the BQMall sequence when using the
baseline profile.

 1 2 3 4 5 6 7 >7
0

0.1

0.2

0.3

0.4

0.5
QP 22

trajectory length

fr
e

q
u

e
n

c
y
 o

f
o

c
c
u

re
n

c
e

 1 2 3 4 5 6 7 >7
0

0.1

0.2

0.3

0.4

0.5
QP 37

trajectory length

fr
e

q
u

e
n

c
y
 o

f
o

c
c
u

re
n

c
e

Figure 5.11: Average trajectory lengths for the BQMall sequence when using the
extended profile.

show similar distributions of the trajectory lengths. In the baseline case the
filter essentially extends simple P-frames to B-frames by filtering around 40% of the
pixels over two frames. For the remaining 50% trajectories of even greater length
are used. That B-frames themselves can still be improved, can be seen from Figure
5.11. Around 70% of the pixels for the extended profile are filtered using 3 or more
frames. Consequentially, the major advantage of the filter is its ability to turn every
frame of a video sequence into a multihypothesis frame without having to transmit
additional motion and mode information on the macro-block level. This is one of
the advantages of the algorithm compared to other multihypothesis approaches such
as the ones described in [54], [18], and [17]. There, each pixel, or more precisely
block of pixels, included in the filtering process for calculating the prediction signal
needs to be referenced by a hypotheses or motion vector with an individual reference

72 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

index and derived motion information. This overhead can completely be omitted in
case of the TTF which selects the appropriate pixels for filtering automatically by
using the given three thresholds per frame.

5.1.5 Summary

The proposed new adaptive in-loop filter has been shown to out-perform both ob-
jectively and subjectively the H.264/AVC reference codec over a large variety of
sequences with an average BD-rate of −3.61% for the baseline and −2.06% for the
extended profile, when only the HEVC test data set is used. Average gains of up
to 28.37% are reported on sequences with significant global camera motion. HEVC
itself was not used as a reference here, since the standardization project was still in
a preliminary stage at the time the experiments were conducted.
At least for the baseline profile, the combination of TTF and the EPZS algorithm
for motion estimation also decreases the encoder run time by up to 21%. All three
thresholds described in this section appear to be good indicators for correctly pre-
dicted trajectories, since the picture quality is always improved. Nevertheless, the
MSE-based optimization of these thresholds does not necessarily constitute an opti-
mal solution as only the picture quality and not the required bit rate is considered.
In addition, it is currently not possible to compare the predicted trajectories with the
true motion of individual pixels, since the required computational overhead would be
significant. A later conducted experiment based on the true pixel motion has already
been described in Chapter 3. A combination with the Wiener-based QALF has also
been tested indicating that both filters in combination can potentially provide an
even higher gain.

5.2 Weighted Temporal Long Trajectory Filter-

ing

The original implementation of the TTF described above used a simple averaging
filter in an attempt to remove temporal noise from a decoded video sequence. The
filter did not take into account the actual nature of this noise, which is introduced
by the compression algorithm. By exploiting this knowledge, significantly better
results can be obtained

5.2. WEIGHTED TEMPORAL LONG TRAJECTORY FILTERING 73

5.2.1 Introduction

In Chapter 4 it was implicitly assumed, that all frames of a compressed video se-
quence are subject to the same noise source with unvarying characteristics. However,
as will be shown in the following section, the TTF’s performance can be significantly
improved, if the actual noise depending on the QP value per frame is taken into ac-
count. This leads to a new concept of a weighted temporal filter. Additionally,
trajectories have previously always been interrupted when a misfitting sample along
the trajectory occured. Here, it will be shown that the TTF performs much better,
when the noisy samples are omitted and the formation of the trajectory is continued
nonetheless.

5.2.2 Lagrangian Minimization and its Applications in
Video Coding

In video compression, trade-off problems between bit rate and quality are often
solved using Lagrangian minimization. A description of the Lagrangian methods
employed in H.264/AVC may, for instance, be found in [55]. According to [22]
”Lagrange multipilers are variables with the help of which one constructs a Lagrange
function for investigating problems on conditional extrema. The use of Lagrange
multipliers and a Lagrange function makes it possible to obtain in a uniform way
necessary optimality conditions in problems on conditional extrema.“ In general, the
extremum of a function f(x1, ..., xn) subject to m constraints gi(x1, ..., xn) = 0, i =
1..m,m < n can be found by formulating the Lagrangian function

(5.7) F (x1, ..., xn, λ) = f(x1, ..., xn) +
m∑
i=1

λi(bi − gi(x1, ..., xn)).

The partial derivatives of F with respect to both xi,∀i and λ are set to zero in order
to determine the minimum of F . The location of the minimum (x∗1, ..., x

∗
n) together

with the optimal cost variables λ1, ..., λm can then be found by solving the resulting
equation system consisting of n equations in F and m equations in gi. In the context
of video compression one frequent problem is the distribution of the available bit
rate R over several parameters that need to be transmitted. In the applications
discussed later in this thesis, the quantity to be minimized is the reconstruction
error variance constraint to a fixed bit rate.

The following Sections 5.2.3 to 5.2.6 were first published in [11] c©IEEE 2012.

74 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

5.2.3 Theoretical Basis

For any given pixel (x0, y0)T in frame j it is assumed that its locations (xi, yi)
T ,

1 ≤ i < N , in N − 1 previous frames are also known. If Yn(x, y) denotes the
luminance component of frame n at location (x, y)T the distorted versions of the
original sample Yj(x0, y0) in any of the N − 1 previous frames given by

(5.8) Yj−i(xi, yi) = Yj(x0, y0) + ni, 1 ≤ i < N.

Even though the motion of the pixel is perfectly known, a noise term ni with variance
σ2
i is introduced due to the reduced quality of the encoded sequence. As described in

[12], it can be assumed that all ni are uncorrelated. These error terms are to a large
extent due to motion estimation errors on block level and thus change from frame
to frame. A filtered version of the original luma component can then be computed
by calculating a weighted mean

Y ∗j (x0, y0) = 1
N

∑N−1
i=0 βi · Ŷj−i(xi, yi)

= 1
N

∑N−1
i=0 βi · Yj(x0, y0) + 1

N

∑N−1
i=0 βi · ni(5.9)

= 1
N
Yj(x0, y0)

∑N−1
i=0 βi + 1

N

∑N−1
i=0 βi · ni.

Where βi are the individual weights per frame with
∑N−1

i=0 βi = N to make the filter
unbiased. This leads to the definition of a new noise term ñj for the filtered pixel

(5.10) Y ∗j (x0, y0) = Yj(x0, y0) +
1

N

N−1∑
i=0

βi · ni︸ ︷︷ ︸
ñj

.

The variance of the filtered noise ñj is subsequently given by

σ2
ñ = E [ñjñj](5.11)

= E

[
1

N2

N−1∑
l=0

βlnl ·
N−1∑
k=0

βknk

]
=

1

N2

N−1∑
m=0

β2
mσ

2
m.

As the filter is to minimize σ2
ñ constraint to

∑N−1
i=0 βi = N , the minimum may be

found by Lagrangian minimization

∂
∂βi

[∑N−1
m=0 β

2
mσ

2
m − λ

(
N −

∑N−1
k=0 βk

)]
= 0(5.12)

2βiσ
2
i + λ = 0⇒ βi = − λ

2σ2
i∑N−1

k=0 βk = N ⇔
∑N−1

k=0 −
λ

2σ2
k

= N

λ = N∑N−1
k=0 −

1
2σk

(5.13)

βi = −λ
2

1
σ2
i

=
N/σ2

i∑N−1
k=0

1

σ2
k

.

5.2. WEIGHTED TEMPORAL LONG TRAJECTORY FILTERING 75

In theory, the reconstruction error variance σ2
k for every pixel along the trajectory

would be required to calculate the optimal filter weight βi. According to Wiegand
and Girod [53] the distortion variance in a reconstructed frame is given by

(5.14) DREC =
Q2

step

3
with zero mean.

Where Qstep is the quantizer step size selected by the quantization parameter QP.
Both in H.264/AVC and in HEVC, Qstep is roughly

(5.15) Qstep = 0.625 · 2
QP
6 .

Subsequently, the optimal filter weight for frame i according to its QP may be
calculated

σ2
i = DREC,i =

1

3

(
0.625 · 2

QPi
6

)2

βi(QPi) = 3 ·
(

0.625 · 2
QPi

6

)−2

.(5.16)

In the case of the H.264/AVC baseline profile this yields identical weights for every
frame. When varying QPs are used as in the HEVC low-delay setting, the optimal
weights can be calculated at the decoder requiring no additional side information.

5.2.4 Filter Design

In the low-delay high efficiency setting of HEVC with an IBBB coding structure, ev-
ery B-predicted block can have up to two motion vectors pointing to one of the last
four encoded pictures. It is assumed that the motion vector for a given block also de-
scribes the individual motion of every pixel within the block. The components of the
two resulting motion vector fields for frame i shall be denoted by (dxi,0, dyi,0)T and
(dxi,1, dyi,1)T . Starting again with pixel (x0, y0)T in frame i, two possible locations
of the pixel in the referenced frames are therefore given by(

x1

y1

)
=

(
x0

y0

)
+

(
dxi,0(bx0c, by0c)
dyi,0(bx0c, by0c)

)
,

(5.17) (
x2

y2

)
=

(
x0

y0

)
+

(
dxi,1(bx0c, by0c)
dyi,1(bx0c, by0c)

)
.

This is identical to the trajectory description in Equation 5.1 which described the
H.264/AVC extended profile. Figure 5.12 shows how the concatenation of motion
vectors is used to derive possible pixel locations over a GOP of four frames. However,

76 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

(x0, y0) : Y0

(x1, y1) : Y1

(x4, y4) : Y4

(x2, y2) : Y2

(x5, y5) : Y5

(x6, y6) : Y6

(x3, y3) : Y3

j − 3 j − 2 j − 1 j

Figure 5.12: Starting at a pixel (x0, y0) with luminance Y0 in an arbitrary B-frame i,
possible trajectory locations are derived through the concatenation of motion vectors
pointing to previously encoded B-frames.

not all of these describe the true motion of the pixel. It becomes therefore necessary
to discard those motion vectors that have purely been chosen due to rate-distortion
optimization and thus may not relate to the true motion of pixels. To this end three
thresholds are used. In each of the following equations the motion vectors are scaled
according to the temporal distance that they span.

Absolute Error Along the Trajectory

For every pixel the absolute difference of two consecutive luminance samples ∆Yi =
Yi+1 − Yi together with the respective chrominance differences ∆Ui and ∆Vi are
calculated. A sudden change in one of these differences is assumed to indicate that
a motion vector no longer describes the true motion of a pixel. The trajectory is
only continued if

(5.18) ∆Yi < T,∆Ui < T,∆Vi < T, T =

{
2TY ,QP < 30
4TY ,QP ≥ 30

for a given threshold TY , 0 ≤ TY ≤ 7. In how far a hard decision in this context is
justified, will be shown in Chapter 6. There soft-decision methods will also be used.

Spatial Motion Consistency and Temporal Consistency

Both the spatial and the temporal criterion used in [9] are here used in a similar
manner as described in 5.1. However, the spatial motion consistency criterion given
in Equation 5.6 is now extended to three bits as well, giving more flexibility to the
encoder

(5.19) BVi,0(x, y) ≤ 8− TSC.

5.2. WEIGHTED TEMPORAL LONG TRAJECTORY FILTERING 77

Fi T Q

T−1 Q∗

F ′i−1

F ′i

Choose

ME
MVs

MC

Intra
Prediction

Intra

Prediction

ALF TTF
Deblocking

Filter

update
Buffer

(32 B-frames + MVs)

FS

Figure 5.13: The TTF is included in the local decoder loop of the encoder after the
Deblocking Filter. For the first test the ALF was disabled. When both ALF and
TTF are used together, the respective frame in the TTF’s buffer is updated after
the ALF has been applied.

Parameter Calculation

All possible parameter combinations can be tested simultaneously at the encoder.
The parameter combination yielding the minimum MSE is then selected. Each of
the thresholds is transmitted to the decoder requiring nine additional bits per frame.
A tenth bit can be used to disable the filter for the current frame altogether, in which
case the other thresholds are simply omitted.

5.2.5 Experimental Evaluation

The TTF has been integrated into the HEVC test model HM 3.0. Up to 32 previ-
ously decoded unfiltered frames are kept in a buffer to be used for the trajectory
formation. The resulting encoder is depicted in Figure 5.13, where the TTF is used
after the Deblocking Filter. In this setting the ALF (dotted connections) was dis-
abled. Tests have been conducted for a variety of sequences listed in Table 5.8. The
exact configuration for the low-delay high efficiency setting may be found in [37].

78 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

S
eq

u
en

ce
R

es
ol

u
ti

on
,

fr
am

er
at

e
in

H
z

T
T

F
A

L
F

T
T

F
+

A
L

F
T

T
F

+
A

L
F

T
T

F
+

A
L

F
v
s.

H
E

V
C

v
s.

H
E

V
C

v
s.

H
E

V
C

v
s.

H
E

V
C

+
A

L
F

si
m

p
le

av
er

a
g
e

∆
P
S
N
R

B
D

-r
at

e
∆

P
S
N
R

B
D

-r
at

e
∆

P
S
N
R

B
D

-r
at

e
∆

P
S
N
R

B
D

-r
at

e
∆

P
S
N
R

B
D

-r
a
te

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
in

d
B

in
%

in
d

B
in

%
B

lo
w

in
gB

u
bb

le
s

41
6x

24
0,

50
0.

03
−

0.
70

0.
05

−
1.

29
0.

08
−

1.
92

0.
03

−
0.

64
0.

02
−

0
.4

2
B

Q
S

qu
a
re

41
6x

24
0,

60
0.

18
−

4.
77

0.
21

−
5.

71
0.

44
−

11
.4

8
0.

23
−

6.
06

0.
08

−
2
.2

1
R

a
ce

H
o
rs

es
41

6x
24

0,
30

0.
00

−
0.

05
0.

05
−

0.
99

0.
00

−
0.

05
0.

01
−

0.
13

0.
01

−
0
.1

2
P

a
rt

yS
ce

n
e

83
2x

48
0,

50
0.

02
−

0.
53

0.
13

−
3.

13
0.

15
−

3.
53

0.
02

−
0.

42
0.

01
−

0
.1

7
V

id
yo

1
12

80
x
72

0,
60

0.
02

−
0.

60
0.

17
−

4.
95

0.
17

−
4.

79
0.

00
0.

18
0.

01
−

0
.3

5
V

id
yo

3
12

80
x
72

0,
60

0.
00

0.
07

0.
37

−
10
.3

8
0.

38
−

11
.0

9
0.

01
−

0.
27

0.
00

−
0
.1

5
V

id
yo

4
12

80
x
72

0,
60

0.
01

−
0.

39
0.

17
−

5.
42

0.
18

−
5.

80
0.

01
−

0.
38

0.
01

−
0
.3

3
B

Q
T

er
ra

ce
19

20
x
10

80
,

60
0.

02
−

1.
46

0.
17

−
9.

73
0.

19
−

10
.4

1
0.

01
−

0.
74

0.
00

−
0
.2

1
P

a
rk

S
ce

n
e

19
20

x
10

80
,

24
0.

01
−

0.
38

0.
07

−
2.

07
0.

07
−

2.
29

0.
01

−
0.

21
0.

01
−

0
.1

1
A

ll
st

a
rs

70
4x

57
6,

25
0.

01
−

0.
25

0.
25

−
7.

46
0.

25
−

7.
66

0.
01

−
0.

21
0.

01
−

0
.2

6
B

B
C

-p
a
n

-1
3

72
0x

57
6,

25
0.

00
−

0.
11

0.
21

−
6.

53
0.

20
−

6.
41

0.
00

0.
11

0.
00

0
.1

0
W

a
te

rf
a
ll

70
4x

48
0,

25
0.

26
−

8.
95

0.
29

−
9.

49
0.

51
−

16
.5

0
0.

23
−

7.
61

0.
20

−
6
.8

3
a
v
e
ra

g
e

0
.0
5

−
1
.5
2

0
.1
8

−
5
.6
0

0
.2
2

−
6
.8
3

0
.0
5

−
1
.3
7

0
.0
3

−
0
.9
2

T
ab

le
5.

8:
B

D
-r

at
es

an
d

av
er

ag
e

P
S
N

R
-g

ai
n

fo
r

th
e

se
q
u
en

ce
s

u
se

d
in

th
e

ex
p

er
im

en
ts

5.2. WEIGHTED TEMPORAL LONG TRAJECTORY FILTERING 79

The HM 3.0 without the ALF is compared against the HM with the added TTF
using the Bjøntegaard metric described in [4]. For comparison, the individual gain
provided by the ALF per sequence was also calculated. The resulting BD-rates for
both filters may be found in Table 5.8 in columns 4 and 6. For all tested sequences
except Vidyo3 the TTF produces a bit rate reduction. For Vidyo3 the increase of
0.07% is, however, only very slight. Nevertheless, the ALF produces a higher gain
than the TTF for all tested sequences. This is only to be expected, as the ALF has
undergone many significant improvements over the last years. Even though, both
filters produce similar gains both for BQSquare and for Waterfall. The average bit
rate reduction produced by the TTF for the dataset is 1.5%.

The true potential of both filters can be exploited when both are used in com-
bination. In this setting, the average encoding time is increased by 190% compared
to the HEVC encoder with the ALF. The decoder complexity, however, is only
increased by about 30%. In order to show that ALF and TTF are not mutually
exclusive, columns 8 and 10 of Table 5.8 compare HM 3.0 with and without ALF
against the combination of ALF and TTF. In this case, a modified encoder as de-
picted in Figure 5.13 with the dotted connections is used. The combination of both
filters outperforms the test model HM 3.0 for almost all sequences. For BQSquare
and BlowingBubbles in particular, the gain produced by both filters together equals
the sum of their individual quality improvements. A possible explanation for this
finding may be different noise sources that are compensated separately by both fil-
ters, so that there is no unintended interference between the two approaches. In
this combination, the TTF provides an average BD-rate of −1.4% when compared
with the HEVC low-delay profile with ALF enabled. For comparison column 12 of
Table 5.8 also shows the BD-rate produced by TTF and ALF if no long trajectories
and a simple average instead of a weighted mean are used. The average BD-rate for
the simplified filter is only −0.9%, which provides evidence for the effectiveness of
the weighted filtering. An exemplary RD-curve for the BQSquare sequence is given
in Figure 5.14. Below 500 kbit/s the TTF performs better than the ALF. For all
depicted QPs the combination of both filters outperforms the simple ALF. Apart
from objective quality improvements the TTF also increases the visual quality of the
decoded video. Part of an exemplary decoded frame from the Waterfall sequence is
shown in Figure 5.15.

5.2.6 Summary

The main objective of this section was to demonstrate the possiblity of further
improving the HEVC test model HM 3.0 through the use of a temporal filtering
approach. In combination with the optimal sample weighting described in Subsec-

80 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

 28

 30

 32

 34

 36

 38

 500 1000 1500 2000

P
S

N
R

 [
d

B
]

Bit Rate [kbit/s]

BQSquare 416x240, 60Hz, 600 frames

no filter
ALF
TTF

TTF+ALF

Figure 5.14: RD-curves for all three tested settings for the BQSquare sequence, QP
22 to 37.

(a) ALF, 31.1 dB at 69.3kbit/s (b) TTF+ALF, 31.3 dB at 69.2kbit/s

Figure 5.15: Exemplary decoded frames from the Waterfall sequence.

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 81

tion 5.2.3, the proposed filter produces an average BD-rate of −1.4% when included
in the HEVC test model. Additional improvements may be achieved by further
investigating both long trajectories and weighted averaging separately.

5.3 Quadtree-Based Temporal Trajectory

Filtering

The following section will further develop the adaptability of the TTF with a concept
called quadtree partitioning. This technique has previously shown its suitability for
filter control in the implementation of the quadtree-based adaptive loop filter [6].
It will be shown that the same approach can be used with great success within the
TTF.

5.3.1 Introduction

In [10] a quadtree partitioning algorithm was added to the TTF with the aim of
providing more adaptability to differently moving image areas. The Quadtree-based
Temporal Trajectory Filter (QTTF) is examined more closely in this section. In
addition, schemes for minimizing the overhead bit rate for the quadtree are presented
and an optimal weighting scheme for the averaged luma samples is investigated.
The remainder of the section is structured as follows. The previously introduced
TTF is revisited in Subsection 5.3.2 which also includes a motivation for the used
filter parameters. Subsection 5.3.3 extends the TTF to the quadtree-based version.
In addition, two methods for signaling the quadtree are introduced. Results of the
experimental evaluation conducted within the environment of the test model HM 3.0
are reported in Subection 5.3.4. There the performance of QTTF is compared with
the ALF also present in the early versions of HEVC. Subection 5.3.5 summarizes
and concludes the Section.

5.3.2 Temporal Trajectory Filtering

In the original implementation of the TTF, all three thresholds were used for one
entire frame at a time. They are optimized at the encoder with respect to the MSE.
Each of the thresholds requires three bits with an additional flag bit to disable
the filter if no parameter combination produces a MSE reduction. In this case the
thresholds themselves are not transmitted. All three thresholds can, however, also
be signaled on block level, which makes the filter much more adaptable to differently

82 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

moving regions within a frame. A method for obtaining block-based optimal filter
parameters is now described.

5.3.3 Quadtree-Based Parameter Signaling

In [6] a scheme was detailed for recursively splitting a frame into a quadtree for
adaptively applying the ALF only to certain image regions. A similar technique is
now used to adapt the TTF to varying image content. For the QTTF a different set
of thresholds is used for every quadtree partition. Both encoder and decoder shall
observe the following rules when constructing or reconstructing the quadtree.

• Whenever a new block or frame is examined a split flag is sent. Should the
flag have the value ”1“ then the current block is split into four subblocks by
dividing it once horizontally and vertically to produce four blocks of identical
size. Each of these new blocks is then examined in turn.

• Should the flag instead be set to ”0“ then the splitting of the current block or
frame is terminated and the combination of thresholds yielding the minimum
MSE for the current block is transmitted to the decoder.

The following Subsection now details methods for finding optimal quadtree-partitions
of a frame under certain constraints.

Flags and Solution Methods

As mentioned above, a split flag per quadtree partition is needed to transmit the
structure of the tree. In addition, an enable flag is transmitted whenever the current
block is not split again. If the enable flag is set to ”1“ then the three thresholds as
described in Subsection 5.3.2 are encoded. Otherwise the filter is disabled. Experi-
ments showed that this strategy provides a much higher gain than setting all three
thersholds to zero, since this would require nine additional bits. A first method for
obtaining a quadtree suitable for QTTF with the associated filter parameters may
be described as a top-down approach:
When the top-down approach is used, an optimal threshold combination is first cal-
culated for the entire frame which also provides a minimal sum of squared differences
SSDtotal. The associated bit rate for transmitting the quadtree is Rtotal = 11 bit if
the filter is enabled or Rtotal = 2 bit if the filter is disabled. Both bit rate and
distortion can then be combined into a rate-distortion cost (RD-cost)

(5.20) Ctotal = SSDtotal +Rtotal · λ,

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 83

where the Lagrangian multiplier λ combines bit rate and sum of squared differences
into a single cost function. In this implementation the same λ as for the Adaptive
Loop Filter in HM 3.0 is used. In a next step, a set of filter parameters for all
four subpartitions of the current partition is computed. These yield four distortion
values SSD1 to SSD4 with an associated bit rate Rnew. The new distortion values
and the required bit rate are again combined into a new RD-cost, which represents
the cost of filtering the subpartitions separately instead of the entire partition on
its own

(5.21) Cnew = (SSD1 + SSD2 + SSD3 + SSD4) +Rnew · λ.

The top-down algorithm essentially splits every partition as long as Cnew < Ctotal. In
order to distribute the partitions homogeneously over the entire frame, all partitions
of equal size are examined before one of them is split. Blocks of size 32 × 32 are
for example only examined when all 64× 64 blocks have been processed. The main
advantage of this approach is the relatively small time required to find a well-suited
quadtree for a given frame. Nevertheless, it is not guaranteed that an optimal
solution is found since the splitting is stopped as soon as the RD-cost no longer
decreases with a new partition. A brute-force solution that eliminates this problem
is now also developed with an algorithmic structure similar to the one described in
[6].
Due to the linear dependency between distortion, rate, and RD-cost, each partition
of the quadtree can be treated independently. Should an optimal solution be found
for one out of subpartitions then this solution is also part of the optimal parameter
configuration for the parent partition, unless it is less expensive to not split the
parent partition at all. Based on this principle the following brute-force algorithm
can be used. Starting at the smallest possible partition level an optimal combination
of thresholds is calculated for every partition. Afterwards the next higher layer of
partitions is examined. For each of these the cost of signaling thresholds on this level
with the associated SSD is compared with the RD-cost of signaling the thresholds
on the next lower partition level. Based on this comparison the optimal solution per
partition is updated and the algorithm proceeds with the next higher hierarchy level
in the quadtree. This manner of operation guarantees that the quadtree remains
optimal in all its subtrees. The optimality of this solution was analytically proven
by Wiegand et al. in [52] where the authors also first described a complete quadtree-
based video codec. Both the top-down approach and the brute-force solution are
examined in Subsection 5.3.4. As will be shown the resulting quadtree can take up
a significant number of bits per frame. For this reason a context modeling approach
to compress the quadtree with the HM’s CABAC [36] engine is now investigated.

84 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

0 2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s
p
lit

_
fl
a
g
 =

 1
 p

ro
b
a
b
ili

ty

partition number

BQSquare_416x240_60

QP 22

QP 27

QP 32

QP 37

(a) split flag distribution

0 2 4 6 8 10 12 14 16
0.4

0.5

0.6

0.7

0.8

0.9

1

partition number

e
n
a
b
le

_
fl
a
g
 =

 1
 p

ro
b
a
b
ili

ty

BQSquare_416x240_60

QP 22

QP 27

QP 32

QP 37

(b) enable flag distribution

Figure 5.16: Exemplary probability distributions for the BQSquare sequence for QP
values from 22 to 37.

Dedicated Context Models for CABAC

Figure 5.16 shows exemplary distributions of the split flag and the enable flag for the
BQSquare sequence. The partition number is given hierarchically to the quadtree
nodes. The first partition is always the entire frame. The four subpartitions of the
frame have the partition numbers 2 to 5. When examining these distributions it
becomes obvious that the probability for split flag = 1 and enable flag = 1 depends
strongly on the employed QP. Once a frame has at least been split once, the proba-
bility, that the enable flag is set, is increased significantly. A similar obervation can
be made for the split flag, where the probability, that the frame is split into four
subpartitions depends essentially on the QP. After the initial splitting operation,
all splitting probabilities are in the range of 50% with the exception of QP 37 where
the splitting of a partition is much less likely. These observations justify the use of
two separate context models per flag. The first one models the probability that the
split flag or enable flag is set for the entire frame. The second one represents the
probability for one of the two flags for all remaining partitions. When conducting
the experiments, it became apparent that the probabilities for both flags also de-
pend on the position within a group of pictures (GOP). In the HEVC test model
HM 3.0 utilizing the low-delay high efficiency setting only the very first frame is an
Intra-frame. Afterwards the same QPs are assigned periodically to four consecutive
frames: {QP +1,QP +3,QP +2,QP +3}, where QP is the quantization parameter
for the Intra-frame. According to the relative position in one of these GOPs the prob-
abilities for split flag and enable flag were measured. The resulting probabilities for
the four possible context models along with their associated CABAC-states are pro-
vided in Subsection 5.3.4. Due to the additional computation time required by the

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 85

CABAC engine, CABAC was only used after a quadtree had been constructed and
not during the optimization of the quadtree itself. There, only bins were counted.
In all experimental settings where CABAC was not used, the quadtree was simply
conveyed in the slice header as raw data.

5.3.4 Experimental Evaluation

The QTTF algorithm has been integrated into the HEVC test model HM 3.0. Tests
were performed on all HEVC test sequences as listed in Table 5.9 for the low-delay
high efficiency setting of HEVC. For comparison the respective results provided by
the TTF as reported in [10] are also reproduced here. Each sequence was encoded at
four QPs from 22 to 37. The resulting bit rates and PSNR values are compared using
the Bjøntegaard metric [4]. In addition, the gain provided by the ALF algorithm
is listed separately for comparison as well. Table 5.10 provides results for both

Sequence Resolution Frames Frequency

Class D

BasketballPass 416x240 500 50 Hz
BlowingBubbles 416x240 500 50 Hz
BQSquare 416x240 600 60 Hz
RaceHorses 416x240 300 30 Hz

Class C

BasketballDrill 832x480 500 50 Hz
BQMall 832x480 600 50 Hz
PartyScene 832x480 600 50 Hz
RaceHorses 832x480 300 30 Hz

Class E
Vidyo1 1280x720 600 50 Hz
Vidyo3 1280x720 600 50 Hz
Vidyo4 1280x720 600 50 Hz

Class B

BasketballDrive 1920x1080 500 50 Hz
BQTerrace 1920x1080 600 60 Hz
Cactus 1920x1080 500 50 Hz
Kimono1 1920x1080 240 24 Hz
ParkScene 1920x1080 240 24 Hz

Table 5.9: All test sequences used in the experiments with their respective resolu-
tions. The number of frames corresponds in each case to a 10 s video sequence.

TTF and QTTF compared against the HEVC low-delay profile with ALF disabled.
For better comparability the gain produced by the ALF itself is also shown. In
addition, the combined gain of ALF and TTF or QTTF respectively is provided. In
general, the ALF performs better than both trajectory filters. Since the ALF has,
however, been optimized over a period over several years, this is only to be expected.

86 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

 28

 30

 32

 34

 36

 38

 500 1000 1500 2000

P
S
N

R
 [

d
B

]

Bit Rate [kbit/s]

BQSquare 416x240, 60Hz, 600 frames

ALF
TTF

QTTF
ALF+TTF

ALF+QTTF

(a) QP 22 to 37

 30.5

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 300 400 500 600 700 800 900

P
S
N

R
 [

d
B

]

Bit Rate [kbit/s]

BQSquare 416x240, 60Hz, 600 frames

ALF
TTF

QTTF
ALF+TTF

ALF+QTTF

(b) QP 27 to 32

Figure 5.17: Exemplary RD-curves for the BQSquare sequence.

In addition, similar bit rate reductions are achieved for BlowingBubbles, BQSquare,
and PartyScene. As can be seen for example from the sequences BlowingBubbles and
BQSquare, the combined gain of ALF and QTTF can be greater than the sum of
the gains provided by the filters individually. Figure 5.17 shows the respective RD-
curves for all tested filters and their combinations for the BQSquare sequence. As
shown in the enlarged part on the right, the QTTF performs better than ALF in the
lower bit rate range. In addition, the combination of ALF and QTTF significantly
outperforms the individual application of each filter.

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 87

S
eq

u
en

ce
T

T
F

Q
T

T
F

A
L

F
T

T
F

+
A

L
F

Q
T

T
F

+
A

L
F

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

B
as

ke
tb

al
lP

as
s

0.
01

−
0.

10
0.

01
−

0.
13

0.
08

−
1.

55
0.

08
−

1.
59

0.
08

−
1.

62
B

lo
w

in
gB

u
bb

le
s

0.
03

−
0.

70
0.

03
−

0.
81

0.
05

−
1.

29
0.

08
−

1.
92

0.
09

−
2.

19
B

Q
S

qu
ar

e
0.

18
−

4.
77

0.
20

−
5.

27
0.

21
−

5.
71

0.
44

−
11
.4

8
0.

47
−

12
.2

4
R

ac
eH

or
se

s
0.

00
−

0.
05

0.
01

−
0.

24
0.

05
−

0.
99

0.
05

−
1.

12
0.

06
−

1.
18

a
v
g
.
fo
r
c
la
ss

D
0
.0

6
−

1
.4

1
0
.0

6
−

1
.6

1
0
.1

0
−

2
.3

9
0
.1

6
−

4
.0

3
0
.1

8
−

4
.3

1
B

as
ke

tb
al

lD
ri

ll
0.

00
0.

01
0.

01
−

0.
21

0.
22

−
5.

41
0.

23
−

5.
53

0.
22

−
5.

51
B

Q
M

al
l

0.
02

0.
62

0.
00

−
0.

10
0.

13
−

3.
29

0.
14

−
3.

37
0.

14
−

3.
35

P
ar

ty
S

ce
n

e
0.

02
−

0.
53

0.
04

−
1.

05
0.

13
−

3.
13

0.
15

−
3.

54
0.

15
−

3.
54

R
ac

eH
or

se
s

0.
00

−
0.

13
0.

00
−

0.
13

0.
10

−
2.

51
0.

10
−

2.
55

0.
10

−
2.

64
a
v
g
.
fo
r
c
la
ss

C
0
.0

1
−

0
.3

2
0
.0

1
−

0
.3

7
0
.1

5
−

3
.5

9
0
.1

6
−

3
.7

5
0
.1

5
−

3
.7

6
V

id
yo

1
0.

02
−

0.
60

0.
03

−
0.

71
0.

17
−

4.
95

0.
17

−
4.

79
0.

19
−

5.
47

V
id

yo
3

0.
00

0.
07

0.
01

−
0.

18
0.

37
−

10
.8

3
0.

38
−

11
.0

9
0.

38
−

11
.0

8
V

id
yo

4
0.

01
−

0.
39

0.
02

−
0.

78
0.

17
−

5.
42

0.
18

−
5.

80
0.

19
−

6.
07

a
v
g
.
fo
r
c
la
ss

E
0
.0

1
−

0
.3

1
0
.0

2
−

0
.5

6
0
.2

4
−

7
.0

7
0
.2

4
−

7
.2

3
0
.2

5
−

7
.5

4
B

as
ke

tb
al

lD
ri

ve
0.

00
−

0.
01

0.
00

−
0.

05
0.

14
−

5.
65

0.
14

−
5.

67
0.

14
−

5.
66

B
Q

T
er

r a
ce

0.
02

−
1.

46
0.

03
−

1.
96

0.
17

−
9.

73
0.

19
−

10
.4

1
0.

19
−

10
.9

2
C

ac
tu

s
0.

00
−

0.
14

0.
01

−
0.

29
0.

09
−

3.
60

0.
09

−
3.

76
0.

10
−

3.
91

K
im

on
o1

0.
00

−
0.

03
0.

01
−

0.
16

0.
15

−
4.

60
0.

15
−

4.
59

0.
15

−
4.

68
P

ar
kS

ce
n

e
0.

01
−

0.
38

0.
02

−
0.

62
0.

07
−

2.
07

0.
07

−
2.

29
0.

08
−

2.
60

a
v
g
.
fo
r
c
la
ss

B
0
.0

1
−

0
.4

0
0
.0

1
−

0
.6

2
0
.1

2
−

5
.1

3
0
.1

3
−

5
.3

4
0
.1

3
−

5
.5

5
W

at
er

fa
ll

0.
26

−
8.

95
0.

31
−

10
.2

6
0.

29
−

9.
49

0.
51

−
16
.5

0
0.

56
−

17
.8

5

T
ab

le
5.

10
:

B
D

-r
at

e
an

d
av

er
ag

e
P

S
N

R
ga

in
fo

r
al

l
te

st
se

q
u
en

ce
s

co
m

p
ar

ed
ag

ai
n
st

th
e

H
E

V
C

lo
w

-d
el

ay
p
ro

fi
le

w
it

h
A

L
F

d
is

ab
le

d
.

88 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Dedicated CABAC Context Models

In Subsection 5.3.3 the use of four separate context models for CABAC has been
motivated. To derive reliable initial values for each of these, a training data set
consisting of four TV sequences was chosen and encoded at QPs from 22 to 37.
The sequences used may be found in Table 5.11. The resulting probabilities for the
CABAC states are given in Tables 5.12, 5.13, 5.14, 5.15. In Table 5.16 two separate

Sequence Resolution Frames Frequency
Allstars 704x576 250 25 Hz
BBC-Pan-13 720x576 110 25 Hz
Desert 720x400 240 25 Hz
Stanford 720x480 300 25 Hz

Table 5.11: Training sequences used to develop the CABAC context models.

iQP pos0 pos1 pos2 pos3
22 0.09 0.10 0.11 0.10
27 0.13 0.22 0.26 0.22
32 0.17 0.31 0.36 0.29
37 0.14 0.26 0.39 0.35

Table 5.12: Probability for the enable flag for partition number 1 depending on the
position within the GOP.

iQP pos0 pos1 pos2 pos3
22 0.85 0.84 0.86 0.77
27 0.86 0.87 0.88 0.88
32 0.88 0.90 0.92 0.90
37 0.92 0.87 0.90 0.91

Table 5.13: Probability for the enable flag for partition number > 1 depending on
the position within the GOP.

mechanisms to further improve the performance of QTTF are examined. The third
column shows the BD-rate provided by the combination of QTTF and ALF. When
the proposed CABAC models are applied to the quadtree, a reduced bit rate can be
observed for almost all sequences as shown in column 5. A very slight loss, due to
an ill adapted context model, is only present for the RaceHorses sequence of class C
and for the BQMall sequence. On average, the use of CABAC increases the bit rate
reduction by a further 0.1%. As has been discussed in Subsection 5.3.3 the QTTF

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 89

iQP pos0 pos1 pos2 pos3
22 0.12 0.12 0.12 0.12
27 0.07 0.10 0.09 0.12
32 0.06 0.06 0.06 0.12
37 0.02 0.02 0.03 0.09

Table 5.14: Probability for the split flag for partition number 1 depending on the
position within the GOP.

iQP pos0 pos1 pos2 pos3
22 0.26 0.32 0.38 0.23
27 0.25 0.47 0.49 0.44
32 0.20 0.40 0.41 0.54
37 0.06 0.17 0.15 0.53

Table 5.15: Probability for the split flag for partition number > 1 depending on the
position within the GOP.

can also be improved through the calculation of an optimal quadtree. The results
of the described brute-force approach are given in column 7. Again the original
implementation of QTTF is outperformed, except for the RaceHorses sequence of
class C and for the Vidyo1 sequence. On average the brute-force solution also adds
a further 0.1% BD-rate to the bit rate reduction of QTTF, which for some sequences
essentially doubles the PSNR gain.

90 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

S
eq

u
en

ce
or

ig
in

al
C

A
B

A
C

b
ru

te
-f

or
ce

C
A

B
A

C
+

b
ru

te
-f

or
ce

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

B
as

ke
tb

al
lP

as
s

0.
00

−
0.

07
0.

01
−

0.
19

0.
01

−
0.

20
0.

01
−

0.
22

B
lo

w
in

gB
u

bb
le

s
0.

04
−

0.
91

0.
04

−
1.

09
0.

04
−

0.
99

0.
04

−
1.

02
B

Q
S

qu
ar

e
0.

26
−

6.
86

0.
30

−
7.

85
0.

26
−

6.
94

0.
27

−
7.

07
R

ac
eH

or
se

s
0.

01
−

0.
19

0.
01

−
0.

26
0.

01
−

0.
20

0.
01

−
0.

21
a
v
g
.
fo
r
c
la
ss

D
0
.0

8
−

2
.0

1
0
.0

9
−

2
.3

5
0
.0

8
−

2
.0

8
0
.0

8
−

2
.1

3
B

as
ke

tb
al

lD
ri

ll
0.

00
−

0.
11

0.
00

−
0.

13
0.

01
−

0.
15

0.
01

−
0.

16
B

Q
M

al
l

0.
00

−
0.

06
0.

00
0.

00
0.

00
−

0.
08

0.
00

−
0.

09
P

ar
ty

S
ce

n
e

0.
05

−
1.

09
0.

05
−

1.
26

0.
05

−
1.

25
0.

05
−

1.
24

R
ac

eH
or

se
s

0.
01

−
0.

14
0.

00
−

0.
11

0.
00

−
0.

09
0.

00
−

0.
09

a
v
g
.
fo
r
c
la
ss

C
0
.0

2
−

0
.3

5
0
.0

1
−

0
.3

8
0
.0

2
−

0
.3

9
0
.0

2
−

0
.4

0
V

id
yo

1
0.

02
−

0.
53

0.
02

−
0.

53
0.

02
−

0.
52

0.
02

−
0.

54
V

id
yo

3
0.

01
−

0.
27

0.
02

−
0.

48
0.

01
−

0.
33

0.
01

−
0.

35
V

id
yo

4
0.

02
−

0.
67

0.
02

−
0.

78
0.

02
−

0.
71

0.
02

−
0.

73
a
v
g
.
fo
r
c
la
ss

E
0
.0

2
−

0
.4

9
0
.0

2
−

0
.6

0
0
.0

2
−

0
.5

2
0
.0

2
−

0
.5

4
B

as
ke

tb
al

lD
ri

ve
0.

00
−

0.
01

0.
00

−
0.

06
0.

00
0.

00
0.

00
−

0.
06

B
Q

T
er

ra
ce

0.
02

−
1.

30
0.

02
−

1.
40

0.
02

−
1.

46
0.

02
−

1.
48

C
ac

tu
s

0.
01

−
0.

32
0.

01
−

0.
39

0.
00

−
0.

23
0.

01
−

0.
39

K
im

on
o1

0.
00

−
0.

08
0.

00
−

0.
13

0.
00

−
0.

08
0.

00
−

0.
09

P
ar

kS
ce

n
e

0.
02

−
0.

53
0.

02
−

0.
56

0.
02

−
0.

56
0.

02
−

0.
58

a
v
g
.
fo
r
c
la
ss

B
0
.0

1
−

0
.4

5
0
.0

1
−

0
.5

1
0
.0

1
−

0
.4

7
0
.0

1
−

0
.5

2

T
ab

le
5.

16
:

B
D

-r
at

e
an

d
av

er
ag

e
P

S
N

R
ga

in
fo

r
Q

T
T

F
in

co
m

b
in

at
io

n
w

it
h

d
iff

er
en

t
q
u
ad

tr
ee

op
ti

m
iz

at
io

n
an

d
co

m
p
re

ss
io

n
te

ch
n
iq

u
es

co
m

p
ar

ed
ag

ai
n
st

th
e

H
E

V
C

lo
w

-d
el

ay
p
ro

fi
le

w
it

h
A

L
F

en
ab

le
d
.

5.3. QUADTREE-BASED TEMPORAL TRAJECTORY FILTERING 91

Figure 5.18: Frame 44 of the Waterfall sequence.

The above values are only restricted to the official MPEG set of test sequences.
If, however, sequences with significant global motion are used, the performance of
QTTF is even better. Even though these sequences do not fit the translation motion
model of TTF, they are much better described by individual pixel motion than by
the block-based approch alone. One example of such a sequence is Waterfall, which
consists essentially of a still background and a zoom-out performed by a hand-held
camera. For this sequence, which is also publicly available, TTF alone provides a
bit rate reduction of 9.10%. This can be increased to 9.64% when QTTF is used,
instead. Frame 44 of the Waterfall sequence is shown in Figure 5.18.

Analysis of the Quadtree Structure

In the previous section the effectiveness of the brute-force solution has been examined
in terms of the resulting BD-rate. It can be assumed, that the QTTF will perform
better depending on the depth of the associated quadtree. A larger quadtree will of
course also mean more side information, which automatically increases the required
bit rate for a given quality level. As shown in Figure 5.19 the smallest partition
computed for frame 44 of the Waterfall sequence is significantly larger than the
minimum possible size of 16 × 16 pixels. When, however, the brute-force method
is used, the resulting quadtree has a lot more detail as is shown in Figure 5.20.
Despite the increased amount of side information the modified QTTF still performs
better. Since the filtering process for both TTF and QTTF is straight forward
and requires no additional computations, the decoder runtime is only increased by
20% on average. Values for individual sequences may, however, differ significantly
from the average, depending on the number of frames for which the respective filter
is active. Adding the TTF to the HEVC encoder increases its runtime by 40% on
average. For QTTF the top-down solution requires 80% additional runtime and the

92 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

(a) top-down solution: TY (b) top-down solution: TTC

Figure 5.19: Exemplary quadtree partitions with associated threshold values for
frame 44 of the Waterfall sequence computed using the top-down solution. Black
corresponds to a threshold value of 0 and white to a threshold of 7.

(a) brute-force solution: TY (b) brute-force solution: TTC

Figure 5.20: Exemplary quadtree partitions with associated threshold values for
frame 44 of the Waterfall sequence computed using the brute-force solution. Black
corresponds to a threshold value of 0 and white to a threshold of 7.

5.4. A FLEXIBLE SIDE-INFORMATION COMPRESSION SCHEME 93

brute-force increases the encoder complexity by 110%. These values do, however,
not necessarily reflect the complexity of the underlying algorithm, but are strongly
influenced by the actual implementation, which as of yet has not been optimized for
runtime, but makes use of conventional floating point arithmetics.

5.3.5 Summary

The proposed QTTF algorithm in its simplest configuration has been shown to
provide an average bit rate reduction of 0.8% for the HEVC set of test sequences.
Through the use of CABAC in combination with a brute-force solution the average
bit rate reduction can be increased to 0.9%. Even though the QTTF itself does
not yet perform as well as the ALF, it still provides gains of similar magnitude.
Moreover, constructive interference between both filters can be observed for several
sequences. To further improve the performance of QTTF, two approaches will be
investigated further. Firstly, the quality of the motion vector field may be improved
through interpolation between neighboring motion-compensated blocks. This option
will be discussed in Section 5.5. Secondly, a way of continuing those trajectories,
that have been interrupted, remains a subject for future work. In this scenario a lot
more pixels could be filtered thus increasing the achieved PSNR gain.

5.4 A Flexible Side-Information Compression

Scheme

As has been shown in Subsection 5.3.3 the side-information needed to transmit the
QTTF’s quadtree can be reduced by using dedicated context models for the individ-
ual flags. Further investigation into the statistical properties of these flags showed,
that adding a temporal component to the context models drastically improves their
efficiency. Usually CABAC models are reset if a new slice is transmitted, however,
allowing a model to adapt itself over several frames can also be beneficial. In this
case the final CABAC state from the previous slice just needs to be transmitted
in the slice header of the subsequent one. The new algorithm is evaluated in the
context of the HEVC test model HM 8.0 which is technically almost identical to
the final version HM 10.0. The remainder of this section is structured as follows.
Firstly the statistical properties of the split flag and the enable flag are reexamined
and new context models are derived. Secondly, said models are evaluated in terms
of the resulting BD-rate when these models are utilized within the QTTF. Finally,
the compression ratio for the quadtree information is also measured.

94 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

The following Sections 5.4.1 and 5.4.2 were first published in [14] c©IEEE 2013.

5.4.1 Designing CABAC Context Models for QTTF

All entropy coding in the HEVC test model HM 8.0 is done using CABAC. This
arithmetic coder mainly profits from precise predictions of individual symbol prob-
abilities, in which case high compression ratios can be achieved. Consequently, the
compression scheme for the quadtree will also be based on CABAC. The main por-
tion of the side-information consists of the split flag and enable flag. The thresholds
and threshold combinations themselves are essentially random and will not be ex-
amined here. In the case of the flags, the situation is, however, different. As will be
shown, the split flag and enable flag represent highly correlated information. Simu-
lations conducted on a set of test sequences showed, that both flags strongly depend
on the size of the current partition. Partitions shall now no longer be referred to
by a partition number but by their hierarchy level. Partition level 1 is the entire
frame. Blocks with a partition level 2 are now the four equally sized subpartitions of
the top-level partition. Since the highest tested resolution was 1080p material and
partitions are restricted to be no smaller than 16 × 16, the smallest partition thus
has a partition level of 8. For both flags and for all tested quantization parameters
(QP 22, 27, 32, and 37) statistics were obtained for a set of training sequences listed
in Table 5.4.1. As long as the partition levels are kept separately, their statistics

Sequence Resolution Frames Frequency
Allstars 704x576 250 25 Hz
BBC-Pan-13 720x576 110 25 Hz
Desert 720x400 240 25 Hz
Stanford 720x480 300 25 Hz

Table 5.17: Training sequences used to develop the CABAC context models.

show quite distinct characterisits with very little variation: The split flag largely de-
pends on the image content, i.e. foreground objects, texture and object movement.
Therefore, the respective CABAC model is only allowed to adapt itself within a
single frame. Afterwards, the context model is reinitialized with its default con-
text state and MPS value. The enable flag, however, always shows similiar behavior
throughout the duration of a sequence. The initialization is, therefore, only done
at the beginning of the sequence. Afterwards the model is only reset to its original
state, when an I-frame occurs. The observed average probabilities for both flags and
the associated CABAC states (consisting of a probability state and a most probable
symbol (MPS)) are given in Table 5.18. The general applicability of these context
models will be shown in Subsection 5.4.2.

5.4. A FLEXIBLE SIDE-INFORMATION COMPRESSION SCHEME 95

QP
partition split flag enable flag

level probability (state, MPS) probability (state, MPS)

22

1 26.96% (11, 0) 2.09% (60, 0)
2 31.32% (8, 0) 30.41% (9, 0)
3 35.54% (6, 0) 48.37% (0, 0)
4 21.38% (16, 0) 66.82% (7, 1)
5 8.65% (33, 0) 80.27% (11, 1)
6 0.66% (63, 0) 51.08% (2, 1)
7 0.00% (63, 0) 8.33% (34, 0)
8 0.00% (63, 0) 7.50% (36, 0)

27

1 37.16% (5, 0) 4.59% (45, 0)
2 34.00% (7, 0) 40.38% (4, 0)
3 26.13% (12, 0) 60.95% (5, 1)
4 11.70% (27, 0) 79.58% (10, 1)
5 2.04% (61, 0) 77.57% (10, 1)
6 0.71% (63, 0) 24.62% (13, 0)
7 0.00% (63, 0) 8.38% (34, 0)
8 0.00% (63, 0) 7.50% (36, 0)

32

1 34.94% (6, 0) 7.76% (35, 0)
2 32.32% (8, 0) 48.80% (0, 0)
3 24.87% (13, 0) 66.69% (7, 1)
4 15.61% (22, 0) 76.11% (10, 1)
5 6.43% (39, 0) 75.83% (9, 1)
6 0.24% (63, 0) 53.25% (3, 1)
7 0.01% (63, 0) 8.47% (34, 0)
8 0.00% (63, 0) 2.50% (57, 0)

37

1 21.14% (16, 0) 13.32% (25, 0)
2 27.00% (11, 0) 55.49% (3, 1)
3 18.36% (19, 0) 63.79% (6, 1)
4 6.86% (38, 0) 76.32% (10, 1)
5 0.34% (63, 0) 67.44% (7, 1)
6 0.42% (63, 0) 16.85% (20, 0)
7 0.00% (63, 0) 7.50% (36, 0)
8 0.00% (63, 0) 0.00% (63, 0)

Table 5.18: Average symbol probability for both flags and all eight possible partition
levels. In addition, the corresponding CABAC state (consisting of state index and
MPS) is also given.

96 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

ME

MC

Prediction

Intra

ALF Filter

Deblocking

Buffer

(32 B−frames + MVs)

Choose

Prediction
Intra

MVs

update

FS

SAO QTTF

Fi

F ′i−1

F ′i

T

T−1

Q

Q∗

Figure 5.21: The QTTF is inserted in the local decoding loop at the encoder after
the Deblocking Filter.

5.4.2 Experimental Evaluation

The QTTF has been implemented in C++ and integrated into the HEVC test model
HM 3.0. The resulting modified encoder is shown in Figure 5.21. Simulations were
run for the test sequences listed in Table 5.19 for the low delay, high efficiency set-
ting as described in [37]. For better comparability results are reported both for
QTTF with and without the application of the new CABAC context models. When
CABAC is not used, the side-information is transmitted as raw uncompressed data
in the slice header. The obtained bit rates and PSNR values were compared with
the HM 3.0 anchor data using the Bjøntegaard metric [4]. The respective average
PSNR gains and BD-rates may be found in columns 3 to 6 of Table 5.19. Most
importantly, the QTTF produces no loss for either setting. For individual sequences
bit rate reductions of up to 9.05% can be observed with an average of 1.70%. As
can be seen, the QTTF does not work equally well for all sequences. However, the
performance only depends on the actual video content, not on resolution or frame
rate.

With the application of the new CABAC context models the average bit rate re-
duction is increased to 1.77%. Moreover, the performance of the filter is always
improved. For individual sequences the CABAC encoding adds another 0.3% bit
rate reduction to the original gain.The current implementation of QTTF increases
the HM 3.0 encoding runtime by 110%. The decoder complexity is increased by
20% on average. For comparison the same filter has been integrated into the HM
8.0 software as well. Here ,the filter still produces gain compared with the HM 8.0
anchor, but the average bit rate reduction is reduced to 0.26%. Further investigation
of the interactions with other tools in the current test model, such as the improved

5.4. A FLEXIBLE SIDE-INFORMATION COMPRESSION SCHEME 97

SAO, will therefore be necessary. Most importantly the new HM generally seems to
cope better with video sequences containing global motion such as Waterfall and
BQSquare. The suitability of the context models for the compression of quadtrees
is illustrated by Table 5.20. Here the average bit rates for the uncompressed and
compressed side-information are given. A maximum bit rate saving of 55.35% for
the Vidyo1 sequence is observed. On average the side-information is reduced by
41.9%. Good compression performance is present for both the sequences where the
filter is used frequently and for those where it is mainly switched off. This becomes
apparent when setting the bit rate savings into the context of the observed BD-rates.
I.e. for such diverse sequences as RaceHorses and BQTerrace almost identical bit
rate savings are produced by the CABAC compression.

98 CHAPTER 5. PRACTICAL REALIZATIONS PART 1
S
eq

u
en

ce
R

es
ol

u
ti

on
H

M
3.

0
+

Q
T

T
F

H
M

3.
0

+
Q

T
T

F
+

C
A

B
A

C
H

M
8.

0
+

Q
T

T
F

+
C

A
B

A
C

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

∆
P

S
N

R
B

D
-r

at
e

B
as

ke
tb

al
lP

as
s

41
6x

24
0,

50
H

z
0.

01
d
B
−

0.
20

%
0.

01
d
B

−
0.

23
%

0.
01

d
B

−
0.

13
%

B
lo

w
in

gB
u

bb
le

s
41

6x
24

0,
50

H
z

0.
04

d
B
−

0.
99

%
0.

04
d
B

−
1.

09
%

0.
00

d
B

−
0.

06
%

B
Q

S
qu

ar
e

41
6x

24
0,

50
H

z
0.

26
d
B
−

6.
94

%
0.

27
d
B

−
7.

24
%

0.
06

d
B

−
1.

74
%

R
ac

eH
or

se
s

41
6x

24
0,

50
H

z
0.

01
d
B
−

0.
20

%
0.

01
d
B

−
0.

23
%

0.
00

d
B

−
0.

03
%

B
as

ke
tb

al
lD

ri
ll

83
2x

48
0,

50
H

z
0.

01
d
B
−

0.
15

%
0.

01
d
B

−
0.

16
%

0.
00

d
B

0.
01

%
B

Q
M

al
l

83
2x

48
0,

50
H

z
0.

00
d
B
−

0.
08

%
0.

00
d
B

−
0.

10
%

0.
01

d
B

0.
00

%
P

ar
ty

S
ce

n
e

83
2x

48
0,

50
H

z
0.

05
d
B
−

1.
25

%
0.

06
d
B

−
1.

33
%

0.
00

d
B

−
0.

08
%

R
ac

eH
or

se
s

83
2x

48
0,

50
H

z
0.

00
d
B
−

0.
09

%
0.

01
d
B

−
0.

10
%

0.
00

d
B

−
0.

08
%

V
id

yo
3

12
80

x
72

0,
60

H
z

0.
01

d
B
−

0.
33

%
0.

01
d
B

−
0.

37
%

0.
01

d
B

−
0.

35
%

V
id

yo
4

12
80

x
72

0,
60

H
z

0.
02

d
B
−

0.
71

%
0.

02
d
B

−
0.

75
%

0.
01

d
B

−
0.

14
%

P
ar

kS
ce

n
e

19
20

x
10

80
,

60
H

z
0.

02
d
B
−

0.
60

%
0.

02
d
B

−
0.

60
%

0.
00

d
B

0.
05

%
B

Q
T

er
ra

ce
19

20
x
10

80
,

60
H

z
0.

02
d
B
−

1.
46

%
0.

02
d
B

−
1.

53
%

0.
01

d
B

−
0.

31
%

W
at

er
fa

ll
70

4x
48

0,
25

H
z

0.
27

d
B
−

9.
05

%
0.

28
d
B

−
9.

37
%

0.
01

d
B

−
0.

49
%

T
ab

le
5.

19
:

A
ll

u
se

d
te

st
se

q
u
en

ce
s

w
it

h
th

ei
r

re
sp

ec
ti

ve
∆

P
S

N
R

an
d

B
D

-r
at

e
va

lu
es

fo
r

al
l

th
re

e
te

st
ed

se
tt

in
gs

.

5.5. ADAPTIVE DENSE VECTOR FIELD INTERPOLATION 99

Sequence
Uncompressed CABAC

Savings
in kBit/s in kBit/s

BasketballPass 0.42 0.21 50.79%
BlowingBubbles 1.96 1.26 35.47%
BQSquare 7.84 5.01 36.07%
RaceHorses (small) 0.34 0.18 47.49%
BasketballDrill 0.35 0.18 49.75%
BQMall 0.58 0.32 44.70%
PartyScene 6.44 4.38 32.03%
RaceHorses 0.40 0.24 39.49%
Vidyo3 0.46 0.21 55.35%
Vidyo4 1.34 0.93 30.35%
ParkScene 3.30 2.17 34.37%
BQTerrace 9.79 6.22 36.53%
Waterfall 2.70 1.27 52.93%

Table 5.20: Average bit rate needed to signal the QTTF side-information (QP 22
to 37) with and without application of the CABAC context models for HM 3.0.

5.5 Adpative Dense Vector Field Interpolation for

Temporal Filtering

Apart from optimizing the encoder and analyzing both new threshold combinations
and signaling schemes, there exists another way to improve the TTF. As illustrated
in Chapter 4 the quality of the available motion information has a significant impact
on the filter’s performance. In this section, therefore, a scheme to better explore the
block-based motion vector field transmitted in the HEVC bit stream is presented.

The following Sections 5.5.1 to 5.5.4 were first published in [15] c©IEEE 2013.

5.5.1 Introduction

The Quadtree-based Temporal Trajectory Filter (QTTF) selectively concatenates
motion vectors (MV) transmitted in the bit stream of the encoded video sequence
to construct individual motion trajectories over several frames for each pixel. As has
been described before, the filter is controlled by three thresholds which are signaled
along with a quadtree structure to apply different parameter settings to different
image regions. The filter performs better when more accurate motion information

100 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

(x0, y0) : Y0

(x1, y1) : Y1

(x4, y4) : Y4

(x2, y2) : Y2

(x5, y5) : Y5

(x6, y6) : Y6

(x3, y3) : Y3

j − 3 j − 2 j − 1 j

Figure 5.22: The trajectory starting at an arbitrary pixel (x0, y0)T in frame j is split
into two subtrajectories at every new B-frame. The number of samples that can
potentially be used for filtering is thus increased exponentially.

is available, as longer trajectories help to improve the filter performance. However,
accurate motion information is mainly only available at very low QP values, where
less artifacts occur. In this section, a method is described to derive accurate motion
information at pixel level from block-based motion vectors for temporal filtering.
Previous work in the area of dense motion interpolation [21] always required pixel-
wise motion estimation on the raw video data which is of course not available at the
decoder. The remainder of the section is structured as follows: The dense motion
field interpolation algorithm used here is detailed in Subsection 5.5.2. In Subsec-
tion 5.5.3 the algorithm is firstly evaluated based on a manually annotated sequence
with ground truth motion. Secondly, the compression performance of the improved
filter is tested within the HEVC test model HM 8.0. All experiments conducted
here made use of the HEVC main profile which uses an IBBB coding structure. In
this setting each block has up to two motion vectors with different reference frames
as shown in Figure 5.22. The basic functionailty of the QTTF algorithm with its
three thresholds that are signaled via a quadtree is here simply retained. The new
extension only acts as a pre-processing step on the block-based motion vectors.

5.5.2 Motion Field Interpolation

In order to obtain more accurate motion information, an interpolation algorithm
is now applied to the transmitted motion vector field. Firstly, all motion vectors
are normalized according to their temporal distance, i.e. the number of frames that
they span. It is assumed, that each motion vector accurately describes the center
pixel of its Prediction Unit (PU), which corresponds to a motion compensated block
in H.264/AVC. The closer an arbitrary pixel is to such a block center, the closer
its actual motion will be to the block motion. Since pixels between block centers
may have been falsely combined into a single block, they are interpreted as being

5.5. ADAPTIVE DENSE VECTOR FIELD INTERPOLATION 101

influenced by their three closest neighboring block centers. To determine which
pixel-based motion vectors are influenced by which blocks, a Delaunay triangulation
is performed on the HEVC prediction unit (PU) grid. An exemplary original block
prediction structure and the triangulated mesh are shown in Figure 5.23. When

Figure 5.23: Left: Block prediction structure of the upper left part of frame 7 of the
BQSquare sequence. Right: Resulting triangle mesh after Delaunay triangulation.

calculating the interpolated motion vector for any pixel D = (xD, yD)T within a
frame, the following steps have to be carried out:

1. Determine the Triangle ABC within which D lies.

2. Calculate the areas spanned by the triangles ABD, ACD, and BCD. These
are referred to as FC , FB, and FA.

3. Calculate the interpolated MV ~d by weighting the MVs at the vertices of the
triangle with their associated areas FC , FB, and FA and rescale ~d according
to the reference frame of its original PU.

These areas are identical to the barycentric coordinates of D. The variables used
in the above algorithm are visualized in Figure 5.24. The choice of the interpola-
tion function now depends on the underlying motion type. Linear weighting of the
associated vertex vectors results in

(5.22) ~dlinear =
~a · FA +~b · FB + ~c · FC

FA + FB + FC
.

An example of a motion vector field produced by Equation 5.22 may be found in
Figure 5.25. Here, three blocks of equal size were chosen, that originated from an
area with rotational motion. In the block-based interpretation of the motion data,
each pixel within one of the blocks has the motion vector associated with the center
pixel of the block (~a, ~b, ~c). The linearly interpolated motion as shown in Figure 5.25

102 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

FA

FC

D

A

~c

B

C

~b

FB

~a

Figure 5.24: The MV at location D within the Triangle ABC is computed as a
weighted mean of ~a, ~b, and ~c. The subtriangles between D and the three vertices A,
B, C with the areas FA, FB, and FC are chosen as weights.

~a

~c

~b

Figure 5.25: Linearly interpolated MV field between three blocks of equal size. The
original motion type (rotation) is successfully reconstructed.

5.5. ADAPTIVE DENSE VECTOR FIELD INTERPOLATION 103

clearly approximates the rotation quite well. If the linear interpolation is applied to
vectors at object boundaries, the quality of the interpolated MVs is, however, worse
than the quality of the original motion data (see Figure 5.26 (dashed line)). If linear

~b

~a

Figure 5.26: Two blocks moving in opposite directions. With linear interpolation
(dashed curve) intermediate motion vectors differ significantly from the true motion.
With cubic interpolation (black curve) a much sharper motion edge is preserved.

interpolation is used, the pixels close to the object edge appear to move slower than
they should. In this case better results are achieved, if a cubic interpolation function
is used:

(5.23) ~dcubic =
~a · F 3

A +~b · F 3
B + ~c · F 3

C

F 3
A + F 3

B + F 3
C

.

The resulting motion distribution along the object edge may be found in Figure 5.26
(solid line). One method to determine which version of ~d is to be used, is to analyze

the differences between the vertex MVs ~a, ~b, ~c. In the current implementation,
cubic interpolation is utilized whenever two vertex vectors out of ~a, ~b, and ~c only
differ by at most one quarter-pel. In these cases, it is assumed that at least two
vectors describe the motion of the same object. Otherwise linear interpolation is
used. Should all three vectors be similar, both interpolation methods produce the
same result. Examplary interpolated motion vectors may be found in Figure 5.27,
where the MV distribution shows much less blockiness in the interpolated case.

5.5.3 Experimental Evaluation

The proposed method has been implemented in C++ and is employed as a prepro-
cessing step for QTTF. It is to be noted that the interpolated MVs are only used
for temporal filtering. The transmitted block-based motion field is not changed.
In order to evaluate the quality of the interpolated MV field, the MPEG sequence
BlowingBubbles was manually segmented using the Human Assisted Motion Anno-
tation Tool [34] which subsequently produces highly accurate motion vector fields.

104 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Sequence Resolution
HM 8.0+QTTF HM 8.0+QTTFi

∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in %

BasketballPass 416x240 0.00 −0.13 0.01 −0.22
BlowingBubbles 416x240 0.00 −0.06 0.01 −0.33
BQSquare 416x240 0.06 −1.74 0.07 −2.02
RaceHorses 416x240 0.00 −0.03 0.02 −0.44
BasketballDrill 832x480 0.00 0.01 0.00 −0.03
BQMall 832x480 0.00 0.04 0.00 0.01
PartyScene 832x480 0.00 −0.08 0.01 −0.20
RaceHorses 832x480 0.00 −0.09 0.00 −0.08
Vidyo3 1280x720 0.01 −0.35 0.01 −0.20
Vidyo4 1280x720 0.01 −0.14 0.00 −0.14
ParkScene 1920x1080 0.00 0.05 0.00 −0.02
Waterfall 704x480 0.01 −0.49 0.03 −0.93
average 0.01 −0.17 0.01 −0.38

Table 5.21: BD-rates and BD-PSNR for all tested sequences, both for the original
QTTF implementation and for the QTTF with interpolated motion vector fields
(QTTFi).

These fields will here be used as ground truth. For the tested QP range (QP 22 to
37) the interpolated MV field improves the average endpoint error per pixel by 0.7
pel. The modified QTTF with interpolation (QTTFi) has been integrated into the
HEVC test model HM 8.0 and tested on the sequences shown in Table 5.21. For the
given dataset using the HEVC main profile QTTF alone produced an average bit
rate reduction of 0.17%. With the added MV interpolation the average BD-rate [4]
is increased to 0.38%. Improvements of 0.5% are observed for those sequences where
QTTF already works well. In addition, sequences with large foreground objects, like
the small version of RaceHorses, also show good improvements. However, the new
method appears to work only well for low-resolution video. For the HD-sequences
even slight losses occur. The current implementation of the QTTF increases the en-
coder runtime by 140% on average, while the decoder complexity is only increased
by 30%. The additional interpolation does not significantly change these values since
very efficient and fast algorithms exist both for the computation of barycentric co-
ordinates and for Delaunay Triangulation. Future work will focus on configuring the
interpolation parameters in a manner that make the method applicable to higher
resolutions as well. Preliminary results indicate, that switching between linear in-
terpolation and raw block-based motion data may further improve the results and
that the threshold for identifying similarly moving blocks should also be changed
depending on the QP.

5.5.4 Summary

In this Section a novel method to interpolate dense MV fields from block-based
motion data has been presented. The interpolated vectors are closer to the actual

5.6. CHAPTER SUMMARY 105

motion of the image points in video sequences. When the new motion data is used
within the QTTF in-loop filter, its performance is increased to an average bitrate
reduction of 0.38% on the test dataset. Future work will include the adaptation of
the filter to high-resolution sequences.

5.6 Chapter Summary

In this Chapter, publications related to temporal trajectory filtering within the
decoding loop were presented. Based on the original implementation [12], the filter
was extended to include B-frames as well [13]. First investigations into interactions
with other in-loop filters were presented in [9]. A first implementation within the
HEVC test model with extended trajectories was described in [11], where an optimal
sample weighting scheme was also detailed. Further flexibility was introduced by
the additional quadtree partitioning scheme [10]. Compression algorithms for which
were investigated in [14]. A final improvement was presented in [15] where the
compressed block-based motion fields were interpolated to produce accurate pixel-
wise motion vectors. Based on results from H.264/AVC as well as HEVC test models
HM 3.0 and HM 8.0, the conclusion can be drawn that the TTF performs well when
used as an in-loop filter. Moreover the filter’s effectiveness grows significantly when
more accurate motion data is available.

106 CHAPTER 5. PRACTICAL REALIZATIONS PART 1

Figure 5.27: Top: Block-based motion vector field for reference list 0 of the upper
left part of frame 7 of the BQSquare sequence. Bottom: Interpolated motion vector
field of frame 7. A grayscale version of the x-component of each motion vector is
shown.

Chapter 6

Post-Filter Implementations

We can’t have full knowledge all at once. We must start by believing; then afterwards we

may be led on to master the evidence for ourselves. - Thomas Aquinas

6.1 Speeding-up the Post-Filter with an Artificial

Neural Network

As has been shown in Chapter 5, the TTF produced the best results in the context
of the H.264/AVC baseline profile. Since the post-filter at the decoder now to be
investigated can generally be expected to provide less gain than its in-loop counter-
part, the baseline profile shall initially be the basis for the following investigations.
In order to form longer trajectories and to make the filter more flexible, additional
filter parameters shall first be introduced and examined.

6.1.1 Additional Criteria

In most application scenarios of the TTF, short to average-length trajectories will be
encountered. Should a trajectory cross a shot boundary, then this is probably due
to an RD-optimized decision of the encoder, whose motion vectors do not represent
the motion of pixels but refer, at least in H.264/AVC, to entire macro blocks. If a
motion estimation error is thus introduced, the trajectory needs to be interrupted
at the respective location, since the referenced pixel does not represent a copy of
the pixel to be filtered. In order to derive powerful trajectory termination criteria,
the following three restrictions are again formulated:

1. The absolute luminance difference between the first pixel and the current pixel

107

108 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

along the trajectory should not be bigger than a threshold ThY .

2. The direction of the current motion vector should not differ by much from its
predecessor.

3. The neighboring 8 motion vectors on 4×4 block level should also have a similar
direction compared to the current motion vector.

Since no reference for quality measurement exists in a post-filtering scenario, the
initially reconstructed pixel, which forms the starting point of the trajectory, is
assumed to be the most reliable representation of the original pixel. The first re-
striction then only states that strong luminance differences imply a falsely formed
trajectory. On the other hand, it is also possible that a large quantization error pro-
duced the luminance difference. In this case, it might still make sense to follow the
trajectory since a large residual error does not necessarily indicate a false trajectory.
How to deal with exceptionally large luminance differences will be described later.

The other two criteria also need to be modified for their application in a post-
filter. The second restriction states that the trajectory should not suddenly change
its direction but should rather follow a linear motion principle. This assumption is
validated by the utilized high frame rates resulting only in small differences between
consecutive frames. Should the angle of a motion vector differ strongly from the
angle of the previous motion vector then a motion estimation error has probably oc-
cured. This test is similar to the previously described motion consistency criterieon.
The third restriction concerns homogeneous motion vector fields, which represent
smooth and thus realistic motion. Should some of the neighboring motion vectors
point in different directions, then this is again an indication for a badly predicted
motion vector or for an object edge. The motion criteria now become much more
important, since they represent real-world restrictions on the 2-D representation of
real-world object motion. In order to test the criteria, every pixel (or trajectory
node) can theoretically be associated not only with a luminance value but also with
three additional values:

1. ∆Y for the difference between the luminance value of the current trajectory
pixel and the top-most pixel in the trajectory tree representing the pixel to be
filtered

2. ∆Φt for the angular difference between two temporally consecutive vectors

3. the previously used block-vote metric for the current motion vector

However, as will be shown in Chapter 7, the spatial motion consistency criterion
has a very minor impact on the actual filter performance. In order to allow for a

6.1. AN ARTIFICIAL NEURAL NETWORK 109

Y0 Y1 Y2Y

~U

0

∆Φt

|Y1 − Y0|∆Y

0 Φ1 − Φ0

|Y2 − Y0|

Φ2 − Φ1

Figure 6.1: For each pixel along the trajectory two new parameters are added to the
respective node in the trajectory tree.

110 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

quick yet exhaustive search for an optimal filter setting, only the color criteria and
the temporal consistency are used here. The lower part in Figure 6.1 shows the
additional criteria introduced above, which are added to the respective trajectory
node. The criteria vector ~U contains all of the 10 above-mentioned characteristics
per node. Since the root node is associated with the decoded luminance sample, its
∆Y value is 0. The second parameter ∆Φt is also set to zero for the root node, since
it has no preceeding motion vector. As the luminance value Y0 was chosen due to the
encoder’s RD-optimization as a best fit, the trajectory should not be stopped here.
Otherwise, the trajectory would only include one single pixel. For the calculation of
the vector entries only the luminance values and the motion information are needed.
The luminance difference ∆Yi of node i is calculated as follows:

(6.1) ∆Yi = |Yi − Y0|

where Yi is the luminance value of node i. The second parameter ∆Φt,i is calculated
from the motion vector MVi−1 of the predecessor and the node’s own motion vector
MVi

(6.2) ∆Φt,i = |MVi−1 −MVi|.

6.1.2 Filtering

The emphasis of the filtering operation lies on the averaging process along the tra-
jectory. Nevertheless, the additional criteria also need to be checked with respect to
their thresholds. The filter parameters are subsequently, as before, the transmitted
thresholds. In the simplest and safest case the thresholds are determined through a
brute-force algorithm. In this manner an optimal performance of the filter is guar-
anteed. However, other approaches, such as a threshold search with an artificial
neural network (ANN) are also possible. Both methods have been implemented as
a post-filter for the H.264/AVC baseline profile and are described below.

Brute-Force Implementation

A brute-force search is used whenever an arbitrary unknown function defined on a
finite input space is given and an optimum of the function needs to be found. There
now exist two variables ∆Y , ∆Φt with a search range in the intervall of [0, 255],
both of which can be chosen independently. This results in a total of 2552 ≈ 65 · 103

parameter combinations for the TTF.

6.1. AN ARTIFICIAL NEURAL NETWORK 111

u1

w1

w2

wM

net
u2

uM

Θ(net)
O

Figure 6.2: Structure of a general decision neuron. The input values ui are first
multiplied with the weights wi and their sum net is calculated. The decision is then
based on net. The output value O is directly computed by the application of the
sigmoid function to net: O = Θ(net).

Artificial Neural Network

The thresholds described above constitute a simple possibility to control the perfor-
mance of the TTF and can easily be RD-optimized. Since a post-filter is investigated
in this section, no restrictions need to be placed on side-information bit rate or RD-
optimization as long as the filter works in an unsupervised manner. Subsequently
a much larger number of combinations could be tested. With a growing number of
combinations, however, the computional complexity is also increased and an alterna-
tive way to compute the optimal threshold combination is required. To this end an
artificial neural network (ANN) is chosen here, since it can, if it is well configured,
quickly solve such problems. One of the biggest advantages of this approach is that
the network can be trained on a certain dataset with the ability to later perform
adaptive filtering.

In addition, no hard decisions are required for an ANN. Instead of terminating
a trajectory or excluding certain pixels from the averaging process, the ANN can
assign every luminance value an independent weight. In this context it is essentially
irrelevant which criteria are provided to the network and in which manner they con-
tribute to the solution. The brute-force method described above requires knowledge
about the input parameters and their influence on the filter’s performance. A neural
network can construct an efficient filter structure from a set of input variables even
if their direct influence on the filter result is unknown. Essentially, the ANN will
select its own filter structure and can even cope with additional input parameters.
It will also automatically select the optimal weights for all available input values.
This would enable the filter to even detect temporal and spatial interdependencies
that have not yet been considered during the TTF design process. To this end the

112 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

basic principle and functionality of a neural network are now described.

A neural network reflects the structure of a biological nerve system and is thus
made up of small (and rather simple) processing units which are interconnected by
weighted connections. With reference to the biological original the processing units
are called neurons and use several input values to produce an output value that
describes the status of each neuron (see Figure 6.2). An output value of 0 represents
an inactive neuron, the value 1 signifies an active neuron. The first processing step
in a neuron is restricted to a weighted sum of the input values ui resulting in an
internal value net.

(6.3) net =
M∑
i=1

wi · ui

The subsequent activation function A(net) evaluates net and returns the status of
the neuron. In the simplest case the activation function corresponds to the Heaviside
step function which returns 0 unless a certain threshold is reached, after which
the function returns 1. As will be shown later, it is generally preferable to use a
differentiable activation function that only approximates the Heaviside step function.
One such function is the sigmoid function

(6.4) Θ(net) =
1

1 + e−net
,

a plot of which may be found in Figure 6.3. With an additional parameter β the
steepness of the slope of the function can be manipulated. For the modified sigmoid
function

(6.5) Θ(net) =
1

1 + e−
net
β

a higher value of β > 0 produces a very slow rise. With a decreasing β the Heaviside
step function is approximated. For each neuron such an activation function needs
to be specified. In order to simplify the following descriptions, a simplified neuron
structure is used (see Figure 6.4). Here the previously used sigmoid function Θ is
replaced by a general activation function A. With the help of A a neuron can now
also perform more complex operations like multiplications or additions. The weights
wi associated with the components ui of the input vector ~U shall be given in the
upper half of the graphical representation while the activation function shall always
be displayed in the lower half, see Figure 6.4. Analytically, the computation of a
neuron’s output is now given by

(6.6) O = A
(
~U · ~W

)
,

where the dot represents the scalar product.

6.1. AN ARTIFICIAL NEURAL NETWORK 113

Figure 6.3: Shape of the sigmoid function Θ(net) and two modified versions with
β = 2 and β = 0.2 as well as the derivative Θ′.

~W

A

~U O

Figure 6.4: A simplified neuron representation with an input vector ~U whose scalar
product with a weighting vector ~W is calculated and then processed by the activation
function A.

114 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

6.1.3 TTF as an Artificial Neural Network

In order to construct an artificial neural network with the functionality of the TTF,
the individual neurons need to be connected in a web structure. Afterwards ap-
propriate weights need to be assigned to each neuron. For simplification the neural
network will be devided into different layers of neurons.

Depending on the direction of a link a network can either be classified as forward-
oriented or backward-oriented. Forward-oriented neural networks only consist of
connections to the following layer. Backward-oriented networks equivalently only
show connections to the previous layer. Feedback loops in backward-oriented net-
works can produce undesired side-effects such as oscillation and thus require more
complex implementations.

For simplification the TTF will be implemented as a forward-oriented network with
a variable number of layers. In order to adapt the network to the properties of the
TTF, the application of the filter to one single trajectory will now be examined. The
filtering process is devided into two separate parts that are reflected by the neural
network:

• The first part processes the available criteria and decides whether the asso-
ciated luminance value will be selected for inclusion in the filtering process.
However, this only results in a soft decision and each luminance value is as-
signed a weight between 0 and 1.

• The second part represents the calculation of the filtered luminance value
through a weighted sum of the available luminance values.

Figure 6.5 shows the resulting structure consisting of the two different parts. Whether
a certain luminance value is included in the filtering process or not, is decided in the
internal network. This network makes its decision based on its structure and on the
input values. The neurons of the last layer (the norm neuron and the value neuron)
are responsible for the averaging operation, where the norm neuron executes the
summation of all internal network output values.

As the output of each internal network always takes on a value between 0 and
1, the sum of these outputs is a lower bound to the number of selected luminance
values. The value neuron receives the luminance vector ~Y = [Y0, Y1, Y2, ..., YN]T

describing the trajectory of length N and weights them with the associated output
values of the N internal networks. Since A = net for the value neuron, it only adds
up its individual inputs multiplied with the given vector of luminance values and

6.1. AN ARTIFICIAL NEURAL NETWORK 115

~UN

~U2

1

~U1

~1

net

x Ynew

~Y

1

net

internal network

norm neuron

value neuron

O1

O2

ON

OWN

O−1

s

internal network

internal network

Figure 6.5: General network structure for the filtering of a trajectory. For each node
(trajectory pixel) and input vector ~Uk is evaluated by the internal network. The
resulting output 0 ≤ Ok ≤ 1 signifies how much influence the respective luminance
value should have on the filtered luminance value Ynew.

passes them along

(6.7) OWN =
N∑
i=1

Oi · Yi.

The summation of these weighted decision values corresponds to the averaging pro-
cess of the TTF. This also constitutes the biggest difference between the brute-force
solution and the ANN approach: No matter what the state of each internal network
is, the associated pixel will always be included in the averaging process. However,
each pixel is now treated differently depending on its semantic context. For in-
stance, the filter could now decide only to use those parts of a trajectory where the
estimated motion is very small.

The norm neuron with an activation function A = 1
net

computes the inverse of
the sum of all individual luminance weights

(6.8) O−1
s =

1∑N
i=1Oi

.

116 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

The processed and filtered luminance value is finally calculated by multiplying the
output of the value neuron OWN with the norm neuron’s output O−1

s .

(6.9) Ynew = OWN ·O−1
s =

∑N
i=1 Oi · Yi∑N
i=1 Oi

.

These two neurons may be found on the right-hand side of Figure 6.5. In this manner
the filtering along a trajectory is easily represented by the neural network. The
underlying structure of the internal network, which is identical for each trajectory
node, now has to be defined.

6.1.4 The Internal Network

Since the general structure of the neural network is roughly layed out by the av-
eraging process, an adaptation within the internal networks remains. The internal
network reflects the location where all information from a trajectory node is used
for evaluation and whose output controls the selection of certain input values for
filtering. At the same time, the internal network is responsible for most of the com-
putational complexity. This means that its structure has a significant impact on the
total algorithm runtime. Consequently, the following restrictions are placed on the
internal network structure:

1. Each internal network has exactly n input values.

2. Each internal network has exactly one output value.

3. The structure of the internal network is constituted by neurons with sigmoid
activation functions.

In this manner the internal network can be treated as an independent neural network
that processes an input data set (~Uk) into a decision value Ok. In principle, the
structure of the internal network could be chosen arbitrarily (see Figure 6.6). Several
examples of internal network realizations will now discussed.

Luminance Filtering

If the internal network has the structure shown in Figure 6.7, only the luminance
difference is used for decision making. The internal network consists of a single
neuron for each trajectory point and determines a threshold for ∆Y after successful
training. In order for a certain luminance value to be included in the filtering, it has
to pass that threshold first. With the aim of evaluating the results of the filtering

6.1. AN ARTIFICIAL NEURAL NETWORK 117

G1

Θ

G2

Θ

G3

Θ

~Gm1

Θ

~Gm2

Θ

~Gm3

Θ

~Gm4

Θ

~Gk

Θ

GM

Θ

~GmP

Θ

u1

u2

u3

uM

Ok

Layer 0 Layer 1 Layer 2
(input layer) (hidden layer) (output layer)

wr
ws

Figure 6.6: An example of a three-layered internal network. The vectors ~Gi represent
arbitrary weights. The output of neuron Nm2 shall be weighted by wr ∈ ~Gk and ws
shall link neurons N2 and Nm2

118 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

∆Y

∆Φt

~W

Θ

1

Figure 6.7: Structure of an internal network for a simple ∆Y threshold calculation.
The weight vector ~W consists of two valuesEach neuron has one constant input value
which multiplied by its weight constitutes the neuron threshold.

process with an artificial neural network, the mathematical form of the utilized
internal network is now analyzed:

(6.10) Oi = Θ(neti) = Θ

(
∆Y · w0 + 1 · w1

β

)
, with neti =

∆Y · w0 + 1 · w1

β
.

Θ(neti) has a point of inflection at neti = 0. The corresponding ∆Y value shall be
referred to as the Θ-threshold ThΘ:

(6.11) neti =
∆Y · w0 + 1 · w1

β
= 0⇔ ThΘ := ∆Y |neti=0 = −w1

w0

Depending on the choice of β there exists either a transitional interval between the
two zones of saturation or the function approximates the Heaviside function. In
order to describe the width of the transitional interval, the Th−3 measure is now
defined. It represents the distance from ThΘ to the point where Θ(neti) = 10−3.
Based on the two values ThΘ and Th−3 predictions can be made concerning filter
behavior and the optimal weights. To this end both are formally described by

(6.12) ThΘ = −w1

w0

and

Θ(Th−3 + ThΘ) = Θ(Th−3 −
w1

w0

) =
1

1 + e−
Th−3−

w1
w0

β

!
= 10−3

1 + e−
Th−3−

w1
w0

β = 103(6.13)

−
Th−3 − w1

w0

β
= ln(103 − 1)

6.1. AN ARTIFICIAL NEURAL NETWORK 119

From these the following analytical term is derived:

(6.14) Th−3 =
−β · ln(103 − 1)− w1

w0

− w1

w0

= −β · ln(999)
1

w0

.

The Θ-threshold ThΘ can be seen as a decision threshold which corresponds to the
threshold from the brute-force filtering algorithm. In the ideal case of a Heaviside
function with an infinitely small transitional interval (Th−3 = 0) both algorithms
would be identical. When examining Equation 6.11 it becomes obvious that de-
spite the three independent variables β, w0, and w1, there only exists two degrees of
freedom. Common multiples of the three variables would always result in identical
behavior of the sigmoid function-

From Equation 6.11 it follows that the absolute value of the Θ-threshold is the
ratio of the absolute values of w0 and w1. The signs of both parameters influence
the output of the sigmoid function with respect to ∆Y . Figure 6.8 shows the four
possible different parameter combinations of w0 and w1, where the absolute value of
each parameter is fixed to 1 and only the signs change. Here the Θ-threshold also
has a value of 1 resulting in a different curvature per combination.

Figure 6.8(a) shows the sigmoid function for two positive parameters. In this case,
all values (which are non-negative absolute differences) lie above the Θ-threshold
and the neuron will always be activated. As the Θ-threshold is negative, every lu-
minance value would be selected. Changing the absolute value of Θ would have no
influence on the filter performance.

Figure 6.8(b) shows a different curvature where all ∆Y values above a positive
threshold should deactivate the neuron. This constitutes the relevant case. In an
analogy, to the brute-force algorithm only values below a certain threshold are se-
lected and are then processed by the remaining network structure. All values above
the threshold are discarded. The remaining two cases are again of no practical use.

In Figure 6.8(c) all values above the threshold would be selected while small differ-
ences are ignored. Figure 6.8(d) shows a case with a negative threshold which, in
presence of a small transitional zone, would constantly deactivate the neuron.

Temporally Consistant Filtering

A second possible implementation is temporal filtering without any color informa-
tion, see Figure 6.9 for details. This works exactly in the same manner as the
luminance filtering version but with ∆Φt subject to a threshold. This corresponds
to the search for a maximum allowed deviation from the temporal consistency of

120 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

−10 −5 0 5 10
0

0.5

1

∆ Y

(a) w0 = 1, w1 = 1

−10 −5 0 5 10
0

0.5

1

∆ Y

(b) w0 = −1, w1 = 1

−10 −5 0 5 10
0

0.5

1

∆ Y

(c) w0 = 1, w1 = −1

−10 −5 0 5 10
0

0.5

1

∆ Y

(d) w0 = −1, w1 = −1

Figure 6.8: Dependency between the neuron output and the sign of the individual
parameters w0 and w1.

∆Y

∆Φt

~W

Θ

1

Figure 6.9: Structure of an internal network for a simple ∆Φt threshold calculation.
Each neuron has one constant input value which multiplied by its weight constitutes
the neuron threshold.

the trajectory. However, it does not take into account the most prominent source of
information, namely the luminance difference. As will be shown in Chapter 7.2 dis-
abling the color threshold generally produces very poor results. Thus a combination
of both thresholds is much more promising.

6.1.5 A Combination of Luminance Filtering and Temporal
Consistency Filtering

Another possible network for filtering based on a combination of two input values is
shown in Figure 6.10. There, three neurons are used to combine luminance difference
and temporal angular difference. The two neurons of the first layer produce a
rough classification of the respective input value. Here, too, two thresholds and
the steepness of the sigmoid function can be specified. The result of this evaluation
is handed over to the output neuron in the form of a value in the interval [0, 1].
The weights of this neuron represent the influence of the temporal and luminance
differences. A large weight here reflects a strong influence of the associated criterion
while a small weight indicates a much weaker correlation. The additional constant
input to the output neuron again produces a neuron threshold which both input
values have to surpass in order to force the output to 1. In this context the weight

6.1. AN ARTIFICIAL NEURAL NETWORK 121

∆Y

∆Φt

~W0

Θ

1

~W1

Θ

~W2

Θ

1

1

Figure 6.10: Structure of an internal network for a combination of ∆Y and ∆Φt

threshold calculation. Each neuron has one constant input value which multiplied
by its weight constitutes the neuron threshold.

vectors ~W0 and ~W1 each have two components whereas ~W2 consists of another three
independent weights. The entire internal netwok is, therefore, controlled by a total
of seven parameters (w0 to w6).

6.1.6 Other Possible Implementations

In principle, a whole set of other implementations is possible as well. Also, the
number of input values could be arbitrarily increased if the network structure is
also adapted. The previously described implementations are relatively simple and
allow for an intuitive interpretation of the threshold values. Based on the general
theory of artificial neural networks other forms of neurons, structures with feedback
loops, and structures that evaluate input signals more than once are also possible.
Especially reevaluating an input value several times allows the network to escape
the boundary of linear seperability of individual neurons. The more neurons are
available per layer the more easily the network adapts itself to changing input data.
However, utilizing too many neurons could possibly overtrain the network which
would restrict its general applicability. In addition, each new neuron also increases
the computational load. Since the operations of an internal network need to be
executed for each node of a trajectory, the runtime can increase very quickly. With
today’s multicore architectures and as each trajectory can be processed individually,
such a load could be easily shared between several cores.

6.1.7 The Learning Algorithm

The backpropagation algorithm is a very common way of determining the weights
of a forward-oriented neural network. The basic idea is the calculation of individual
weights by differentiating the output of the network with respect to a weight. This

122 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

method may be chosen since the networks in Figures 6.5 and 6.6 only show linear
dependencies (except for the sigmoid function). Consequently, partial derivatives
can be calculated for each weight and a gradient-based algorithm can be used to
determine the optimal configuration. In order to do so, a neural network can be
defined in the following manner:

(6.15) Ynew =
sum of weighted luminance values

number of selected luminance values

equivalently

Ynew =
OWN

Os

OWN = Y0 +
N∑
k=1

Yk ·Ok(6.16)

Os = 1 +
N∑
k=1

Ok.

The constants (Y0 and 1) in front of the sums ensure that the decoded luminance
value (Y0 = Ydec) is not discarded and that a division by zero is avoided. The
method described here is, of course, not limited to the TTF implementation and is
commonly used when neural networks are used for optimization.

For any trajectory the partial derivatives with respect to a weight wi are

∂Ynew
∂wi

=
∂OWN

∂wi
· 1

Os

− OWN

Os
2 ·

∂Os

∂wi

∂OWN

∂wi
=

N∑
k=1

Yk ·
∂Ok

∂wi
(6.17)

∂Os

∂wi
=

N∑
k=1

∂Ok

∂wi
.

(6.18)

With these a new expression for ∂Ynew/∂wi can be found:

∂Ynew
∂wi

=
1

Os

·
N∑
k=1

Yk ·
∂Ok

∂wi
− OWN

Os
2 ·

N∑
k=1

∂Ok

∂wi
(6.19)

∂Ynew
∂wi

=
1

Os

·
N∑
k=1

(
Yk −

OWN

Os

)
∂Ok

∂wi
=

1

Os

·
N∑
k=1

(Yk − Ynew)
∂Ok

∂wi

6.1. AN ARTIFICIAL NEURAL NETWORK 123

Finally, only the derivative ∂Ok
∂wi

, which is derived from the output of the internal
network, remains. In order to calculate the derivative, the structure from Figure 6.6
is used. The basic idea of backpropagation is now explained for an arbitrary weight
wi. As mentioned above, all internal networks shall use the same set of weight
parameters w1 to wM . Therefore, the output Ok of neuron Nk is given by

(6.20) Ok = Θ(netk) =
1

1 + e−β−1·netk
, with netk =

P∑
i=0

wi · ui,k.

Where wi is the i-th weight, ui,k is the i-th input value of neuron Nk. As an
activation function Θ(netk) the sigmoid function was chosen here. The advantage
of this function lies in its derivative

(6.21)
∂Θ(netk)

∂netk
= − 1

β
Θ(netk) · (Θ(netk)− 1) .

This means that the derivative at location netk can be calculated directly from
the previously determined value at location netk itself. This greatly reduces the
computational complexity since only a multplication and a subtraction need to be
carried out. For the dependency of a neuron output with respect to the individual
weights the following relation can be found

(6.22)
∂O

∂wi
=
∂Θ(netk)

∂netk
· ∂netk
∂wi

= −Θ(netk) · (Θ(netk)− 1) · ui,k

This relationship only applies to the last neuron in an internal network. For all
other weights calculating the derivative requires application of the chain-rule. If ws
links neurons N2 and Nm2, ws links neurons N2 and Nm2 and P is the number of
nodes in the hidden layer (see Figure 6.6) then

(6.23)
∂Ok

∂ws
=

∂Ok

∂netk
·

P∑
l=1

(
wl ·

∂ul,k
∂ws

)
=

∂Ok

∂netk
· wr ·

∂Om2

∂ws
.

It is to be noted that only Om2 depends on ws, whereas all other input values
depend on different weights. With the simplified notation Θ(netk) = Θk this can be
rewritten as

(6.24)
∂Ok

∂ws
=

1

β2
Θk · (Θk − 1) · wr ·Θm2 · (Θm2 − 1) ·O1,

where O1 is introduced since it is a constant input value to the neuron m2 from
the hidden layer and thus the inner derivative of ∂Om2

∂ws
becomes ∂Θm2

∂ws
= O1. The

above equation, as well, only contains additions and multiplications since the Θ-
values have all previously been calculated during the update-step. For all other
weights the procedure is similar. The backpropagation algorithm now consists of
the following steps of determining a derivative ∂Ok

∂wi
:

124 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

1. Calculate ρk = Θ′k for the last neuron.

2. Traverse all layers from back to front.

3. Calculate ρj = Θ′j ·
∑

q ρq · wr for each neuron in a layer.

Where q as an index adresses all output values of neuron j and wq is the weight
between neuron j and its successor neuron q. With ρi the derivative can be calculated

(6.25)
∂Ok

∂wi
= ρi · ui,k.

ui is the input value connected to the weight wi. If the MSE is used as an error
measure E, its partial derivative is

E = (Ynew − YOrig)2

∂E

∂wi
=

∂E

∂Ynew
· ∂Ynew
∂wi

(6.26)

∂E

∂wi
= 2 (Ynew − YOrig) ·

∂Ynew
∂wi

The resulting gradient ∇E points, of course, in the direction of the steepest ascent.
However, since the aim of this step is finding the minimum of the error function,
the opposite direction is chosen.

(6.27) w∗i = w†i −
∂E

∂wi

where w∗i is the new weight and w†i is the value of the same weight from the previous
calculation step. All descriptions so far have only focused on one single trajectory.
The optimization of the network, however, is conducted for the entire network on
frame level. Subsequently, the total error is given by

(6.28) E =
N∑
t=0

Et =
W ·H∑
t=0

(Ynew,t − YOrig,t)2.

Where W is the width and H is the height of the frame. W · H then corresponds
to the total number of available trajectories. The partial derivatives are modified in
the same way:

∂E

∂wi
=

W ·H∑
t=0

∂Et
∂Ynew,t

· ∂Ynew,t
∂wi

(6.29)

∂E

∂wi
= 2

W ·H∑
t=0

(Ynew,t − YOrig,t) ·
∂Ynew,t
∂wi

.

6.1. AN ARTIFICIAL NEURAL NETWORK 125

iRprop+

The actual algorithm is based on an improved version of the ”resilient back-propa-
gation algorithm“ (Rprop) as described in [23]. In addition to the description in [23]
boundaries for the weights are introduced inside of which the optimal weight is to
be searched for. The two values UpperBound and LowerBound define the maximum
and minimum value for each weight.

A second boundary condition describes a temporal aspect: A moving bound is
defined that increases with the number of iterations of the iRprop+. It ensures that
small weights are selected during the early phase of the algorithm. Only if no fitting
configuration has been found after several cycles, larger weights are considered as
well. A detailed description of all parameters of the algorithm may be found in
Appendix B.

Simulated Annealing Rprop (SARprop)

As the iRprop+ algorithm showed difficulties to find a minimum in some test cases,
the Rprop was extended with the ability to perform Simulated Annealing [47]. The
term comes from the area of thermodynamics where particles of strongly heated ma-
terial are brought into an optimal mesh structure through gradual annealing. The
optimal structure corresponds to a global energy minimum. During the annealing
process, particles in a minimal energy state can switch to a worse configuration in
order to later reach the global minimum. The simulated annealing algorithm here
treats the weights of the network as these particles. This, subsequently, means that
the algorithm will not terminate once a minimum of the error function E has been
found. Instead, random modifications of individual weights are allowed to search for
an even better minimum. The amplitude of the random fluctuations is controlled by
a ”temperature“ parameter T , which is decreased step by step. One disadvantage
of this process is the increased runtime the algorithm requires to find a minimum.
However, the runtime can be controlled by the choice of T . The respective param-
eters and their influence are described in Appendix B. Nevertheless, no guarantee
can be given that a global minimum is found with the SARprop method.

126 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

6.2 A Reference-Free Post-Filtering Approach

The main purpose of a reference-free post-filtering approach is to develop a post-filter
or a post-filter configuration that operates in such a way as to allow its application
without the transmission of additional filter parameters. With this setup the filter
can then be utilized outside the strict protocol of the codec that generates the
compressed bit stream. Moreover, such a filter does not necessarily need to be
linked to a compression scheme at all. Instead a temporal filter could also be used
to improve the visual quality of noisy uncompressed video sequences. The basic
structure of the filter investigated here remains identical to the one described in
Section 6.1. However, the generation of the filter control parameters can now no
longer be based on data available only at the encoder. Therefore, the filter needs
to adapt itself to the limited information available at the decoder side. Before
describing the reference-free filter optimization, a number of definitions need to be
made: For any given frame or block the training data set shall contain all the pixels
which the filter uses to adapt itself to. The filter data set (see Figure 6.11) contains
all pixels to be filtered and their trajectories. Thus the filter no longer operates
on the entire frame but is trained on a small number of pixels. The optimized
filter is then applied to the remaining image or block content. In Section 5.1 filter

training data set

filter data set

Figure 6.11: A macroblock containing 16× 16 pixels is devided into a training data
set consisting of all boundary pixels within a certain distance and the filter data set
comprising all other pixels of the block.

data set and training data set were identical since the filter was optimized on the
entire frame. However, the method required the transmission of filter parameters as
side-information. If no side-information is transmitted and both optimization and
filtering are done in the same frame and if the training data set and the filter data set
are disjunct sets, then the following conclusion can be drawn: The smaller the filter

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 127

data set, the smaller the achievable gain. A first possibility to conquer this problem
would be to use fixed universally applicable filter parameters for all video sequences,
i.e. a training data set of size zero. In this case, all pixels from each frame could
still be filtered. Such a filter would, however, not take into account the content and
temporal characteristics of different sequences. Even for the short sequences used
here, temporal adaptability has been the greates strength of the TTF. Based on the
experiments described in the first part of Chapter 5, it is safe to assume that no
such filter configuration exists. In order to provide good results for a large variety
of sequences, it would be possible to optimize the filter parameters per sequence. In
the case of a post-filter, this would require the receiver to buffer the entire sequence
before displaying it. Because of this disadvantage a frame-based optimization is
used instead. With the aim to devide a frame into training data set and filter data
set certain rules are required. This separation scheme is now investigated in detail.

6.2.1 Local Separation with Brute-Force Filtering

A local separation scheme shall use the properties of motion estimation (ME) and
motion compensation (MC) to separate well-predicted and badly-predicted spatial
areas from each other. ME tends to choose larger blocks (16× 16 in H.264/AVC) so
that the RD-cost for transmitting such a block becomes smaller. It is now assumed
that pixels at the center of such a block generally correspond better to the original
frame than those at the block boundary. In order to support this theory, 250 frames
from each of the videos listed in Table 6.1 are now analyzed. These were chosen
since they reflect the spectrum of MPEG test sequences quite well and also, because
the set includes both sequences that are and sequences that are not suitable for
temporal filtering.

Ideally, the reference-free post-filter should, of course, never decrease the quality of a
decoded video. To this end the original sequences were encoded with the H.264/AVC

Sequence fps Hz width height

BasketballDrive 50 1920 1080
BlowingBubbles 50 416 240
BQMall 60 832 480
BQSquare 60 416 240
BQTerrace 60 1920 1080
RaceHorses 30 416 240
Waterfall 25 704 480

Table 6.1: Sequences analyzed concerning the residual distribution.

128 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

reference software JM 16 KTA 2.4 [44] and the encoder settings were modified so
that the ME algorithm only uses 16 × 16 macroblocks. The selected H.264/AVC
profile is baseline with an IDE level of 4.0. The encoded sequences are, of course,
noisy and thus allow for an examination of the error distribution on 16 × 16 block
level. However, especially when close to the frame boundary, certain trajectories
point to areas outside of the frame. In order to suppress effects introduced by inac-
curate ME, all pixels within a 16 pixel radius around the frame boundary are not
examined. Motion vectors in this area are ignored for all subsequent post-filtering
applications. For reasons of comparability the same four QP parameters (22 to 37)
as in all other experiments are used.

6.2.2 16×16 only, Motion Compensated for the Brute-Force
Filter

A first analysis’ objective is to evaluate where in a 16×16 motion compensated block
pixels occur that are identical to the original frame. These would signify locations
where the MC is generally succesful in describing the true pixel-wise motion. Based
on the assumption that motion changes only slowly from frame to frame and that
foreground objects will distort the block boundary first, motion compensated pixels
with a zero residual are expected to occur mostly in the macroblock center.

Zero-Errors

As can be seen in Figure 6.12 this is indeed the case for three out of six sequences
(BlowingBubbles, BQMall and RaceHorses). The sequences BasketballDrive and
BQTerrace are the only tested HD-sequences and show a significantly different dis-
tribution. In the case of BQTerrace a pattern of vertical stripes appears, which
correspond to columns of pixels with an above-average number of small errors. In
order to explain this anomaly, Figure 6.13 shows the average Y-component distri-
bution per 8× 8-block of the uncompressed first frame of the BQTerrace sequence.
Here, too, the vertical stripes are apparent. These are, in fact, not caused by the
codec and its resulting artifacts, but are a property of the original sequence.

Apparently, the photo chip of the camera the video was captured with produced
a small offset for each even column of pixels. When MC is conducted the over-
all texture of the sequence will, of course, be the dominant feature and the slight
vertical lines will be ignored. They will, however, frequently reappear in the the
residual signal when the difference between prediction signal and original sequence
is calculated. This effect is clearly visible in the analyzed residual signals from the
BQTerrace sequence (see Figure 6.12). When the distortion added by the camera’s

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 129

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15 0.088

0.091
0.094

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.102

0.106
0.11

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.128

0.132
0.136

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.11

0.1125
0.115

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.082

0.086
0.09

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.11

0.12
0.13

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15 0.072

0.074
0.076

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.078

0.082
0.086

q=255; r=0

B
Q

M
a
ll

51015

5
10
15

0.105
0.1075
0.11

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.088

0.09
0.092

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15

0.08
0.085
0.09

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.09

0.095
0.1

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15 0.056

0.058
0.06

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.054

0.059

0.064

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.075

0.0775
0.08

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.065

0.0675
0.07

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.06

0.065
0.07

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.068

0.073
0.078

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15

0.046
0.047
0.048

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.042

0.044
0.046

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.055

0.0575
0.06

q=255; r=0
B

Q
S

q
u
a
re

51015

5
10
15 0.048

0.05
0.052

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.045

0.05
0.055

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.05

0.0525
0.055

Figure 6.12: Frequency of occurence of errors equal to zero between motion-
compensated frame YMC and the original frame YOrig. The residual error was dis-
carded in this experiment.

130 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 6.13: Average Y-component distribution per 8× 8-block of the first frame of
BQTerrace. The average minimum luminance value was subtracted from all pixels
first.

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15 0.066

0.068

0.07

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15 0.07

0.075

B
Q
M
a
ll

5 1015

5
10
15 0.09

0.095

B
Q
S
q
u
a
re

5 1015

5
10
15 0.078

0.08

0.082

B
Q
T
e
rr
a
c
e

5 1015

5
10
15 0.065

0.07

0.075

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15 0.08

0.085

0.09

q=255; r=0

5 10 15

5

10

15
0.075

0.076

0.077

0.078

0.079

0.08

0.081

Figure 6.14: Left: average over the probability distributions showing an error of
zero for all four QPs. Right: average over all tested videos.

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 131

chip is removed, however, the original distribution of clustered zero errors around
the block center reappears.

In order to precisely define an area with above-average reconstruction quality, the
number of zero-error pixels should be relatively high. The more often a certain pixel
is predicted without distortion, the better its trajectory can be used to train the
filter parameters. As a training reference the motion-compensated luminance value
YMC would be used as this value will probably match the original quite frequently.
If, in addition, the trajectory is forced to consist of two pixels at least, then the re-
sulting filter parameters will offer a good configuration to calculate pixel trajectories
for the remaining pixels of a frame (i.e. the filter data set) as well. However, taking
into account the actual values shown on the right-hand side of Figure 6.14 only
values between 7.5% and 8.1% occur. In more then 90% of all tested cases, a pixel
is noisy no matter where in a 16× 16 block it lies. Should, however, the remaining
90% of the pixels only have a small residual error, then a removal of certain extreme
outliers after training the filter would still be possible. To this end, the distribution
of the average luminance error is investigated next.

Average Error

The distribution of the average error shown in Figures A.1 and A.2 in the Appendix
are supposed to demonstrate that smaller errors tend to occur more frequently at
the center of a 16×16 block. Compared with the previously shown zero-error distri-
butions no tendency towards spatial separation is visible. Again BQTerrace displays
the pattern of horizontal stripes. The remaining sequences show random distribu-
tions. In addition, the average values range from −0.1 to −0.2 for Blowingbubbles
at QP 22 and between 0 and −1 for BQTerrace at QP 22. The residual is obvi-
ously biased. This observation was one motivation for the development of the SAO
filter described in [19]. In addition, it is obvious that BQTerrace with its distinct
error residual has a strong impact on the average error distribution. Concerning the
separation of this distribution into a training data set and a filter data set no clear
decision can be made based on the test material.

Mean Squared Error

In order to support the theory of a better motion prediction at the macro-block
center, the MSE is now measured. This also corresponds to the power of the dif-
ference signal Yorig − YMC between original and motion-compensated frame. The
distributions in Figures A.3 and A.4 (see Appendix) show that for all smaller se-
quences larger errors occur at the macroblock boundary. This obviously supports

132 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

the formulated theory but it probably needs to be restricted to lower resolutions.
The deviating behavior of the HD-sequences is very likely due to the HD-cameras’
CMOS chips. In addition, for a low-resolution sequence a moving foreground object
will distort the boundary of only one 16 × 16 block. The same image content will
be distributed over many more 16 × 16 blocks at higher resolutions. In this case
the distortion will not only affect the block boundary but several 16× 16 blocks at
a time. Neighboring blocks will not be distorted, however, and can be transmitted
without additional boundary distortions. Despite the asymmetric error distributions
of BasketballDrive and BQTerrace a clear 1 to 2 pixel boundary can be distinguished
in Figure A.4, which shows that the MSE at a block boundary is generally higher.

Results

From the distributions described above it is possible to separate a pixel boundary
of width 1 as filter data set from the remaining 14 × 14 pixels that constitute the
training data set within a macro block. For each 16×16 block this results in 60 pix-
els that can be filtered and 196 pixels to train the filter. With a ratio of 60

256
≈ 0.24

only around a quarter of pixels with a trajectory can be improved, which is the gen-
eral drawback of this approach. The more trajectories are available for the training
data set the better the filter performance, while less pixels can actually be filtered,
thus reducing the achievable gain. If, on the other hand, more pixels are used for
filtering than for training, more pixels can actually be denoised while the filter will
have poorer quality.

Due to these implications, three different settings will be tested in the subsequent
experiments: A filter data set with a width of 1 pixel is chosen due to the previ-
ously described tests. A second setting with a boundary of 2 pixels corresponds
to a ratio of 0.77 and a third with a boundary of 4 pixels even has a ratio of 3.
Since the motion-compensated luminance values without residual YMC are used for
training, each trajectory must encompass at least one motion vector and two pix-
els: the motion-compensated luminance value YMC itself, which corresponds to a
pixel from the previous frame, and the first referenced pixel Y2. With these two,
it is possible to define both a luminance difference and an angular vector differ-
ence, which are associated with the first trajectory node. Training and filtering are
only done for all pixels from the second node (Y2) onwards and the parameters are
chosen so that the difference to YMC (within the training data set) becomes minimal.

The motivation for this approach is the following: If trajectories within the train-
ing data set can be optimized to produce filtered values close to the original frame
(here represented by YMC), the same thresholds should work well on all other pixels,

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 133

too. These thresholds are subsequently applied to the filter data set. The results of
all three settings tested within the H.264/AVC baseline profile are shown in Table
6.2. Unfortunately, the results do not reflect the expected gain. For a boundary

Sequence
1 Pixel Boundary 2 Pixel Boundary 4 Pixel Boundary
∆PSNR BD-rate ∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in % in dB in %

BasketballDrive -1.00 47.57 -1.22 72.42 -1.64 144.56
BlowingBubbles -0.02 0.45 -0.04 0.76 -0.07 1.50

BQMall 0.00 0.06 0.00 0.09 -0.01 0.14
BQSquare -0.07 1.45 -0.13 2.70 -0.25 5.46

RaceHorses 0.00 0.04 -0.01 0.15 -0.04 0.77
Waterfall 0.00 0.00 0.00 0.01 0.00 0.05
average -0.18 8.26 -0.23 12.69 -0.33 25.41

Table 6.2: BD-rate and BD-PSNR for brute-force filtering of videos encoded with a
fixed block-size of 16× 16. YMC is used as a reference.

of one pixel an average loss of 0.18 dB is observed. For two pixels and four pix-
els a BD-PSNR of −0.23 dB and −0.33 dB is produced. As a result, filtering with
YMC as reference does not offer a viable opportunity to improve the video quality.
Especially BasketballDrive with a loss of more than 1 dB and a BD-rate of up to
144.56% is an extreme outlier. This behavior corresponds well to the asymmetric
error distribution shown Figure A.3 (see Appendix). The distribution for Basket-
ballDrive clearly highlights, that the concept of a training area in the middle of
the motion-compensated block is not justified for this sequence and the resulting
trajectories are of poor quality. Subsequently, the reference Bjøntegaard bit rate
at identical quality is increased by more than 100% since the TTF introduces new
artifacts which increase the MSE. An explanation applicable to all sequences is the
fact that Ydec is excluded from the filtering process. This value could substantially
improve the filter since it generally has a smaller distance to the original than the
motion-compensated version YMC due to the added residual.

6.2.3 16× 16 only, Motion-Compensated with Residual

Since post-filtering with the motion-compensated frame YMC as a reference has not
provided the expected quality improvements, the decoded, reconstructed luminance
values Ydec are now used as a reference instead.

134 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

Zero-Errors

The zero-error distributions, if the test videos are again encoded with a fixed block-
size of 16 × 16, may be found in Figure 6.15. The distributions show the proba-
bility with which a certain pixel within a 16 × 16 block of the reconstructed frame
exactly matches the original. Compared with the previously conducted tests on
the motion-compensated frame YMC , no clear separation is possible here. How-
ever, some sequences, such as BQSquare and RaceHorses, show a 1 pixel boundary
within which a larger number of errors occures compared with the rest of the block.
Other sequences, such as BasketballDrive and BQTerrace again show a deviating
distribution. As in Section 6.2.2 these sequences have an asymmetric error distri-
bution. But most of the pixels with a high residual error probability are located at
the block boundary. The average distribution in Figure 6.16 again highlights the 1
pixel boundary as a suitable choice for a separation criterion. A boundary of width
2 also can be justified by the experiments. In order to make the following results
comparable with the previously conducted experiments for the motion-compensated
reference, a boundary of width 4 is also investigated. Nevertheless, it is expected
that smaller boundaries will again provide better results.

Average Error

As in Section 6.2.2 the error distributions in Figures A.5 and A.6 in the Appendix
show no distinct separation criteria. However, the average errors are significantly
reduced due to the added residual. In addition, the influence of the 4 × 4 DCT is
visible for some QPs (RaceHorses, QP 22 and BQMall, QP 22). The strong impact
of the BQTerrace sequence on the average distribution in Figure A.6 has remained
the same. The average error has been decreased from values between −0.6 and −0.9
for the motion-cmpensated case to values from −0.45 to −0.75. The effect of this
change is twofold. Firstly, the robustness of the training is increased. Secondly, the
maximum achievable filter gain is decreased due to the reduced maximum error.

Mean Squared Error

In contrast to the results in presented in Section 6.2.2, no clear separation between
training data set and filter data set for the smaller sequences is possible here. Due
to the added residual the power of the observed error is reduced. Nevertheless, a
boundary of width 1 remains whose error statistic differs slightly from those of the
inner pixels. The summarized representation on the right-hand side of Figure A.8
(see Appendix) as well as the per-sequence histograms provide at least justification
for a separate examination of the block boundary. Again the same three boundary

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 135

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15

0.16
0.1625
0.165

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.156

0.16
0.164

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.172

0.175
0.178

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.165

0.1675
0.17

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.155

0.16
0.165

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.2

0.21
0.22

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15 0.12

0.1225
0.125

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.096

0.101

0.106

q=255; r=0

B
Q

M
a
ll

51015

5
10
15

0.125
0.1275
0.13

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.105

0.1075
0.11

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.095

0.1
0.105

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.135

0.14
0.145

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15 0.092

0.094
0.096

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.065

0.0675
0.07

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.085

0.0875
0.09

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.07

0.072
0.074

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.07

0.075
0.08

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 0.086

0.089
0.092

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15 0.07

0.0725
0.075

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 0.045

0.0475
0.05

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 0.06

0.0625
0.065

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 0.049

0.051
0.053

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 0.05

0.055
0.06

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15

0.06
0.0625
0.065

Figure 6.15: Frequency of occurence of error values equal to zero between the re-
constructed frame Ydec and the original frame Yorig.

136 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15 0.11

0.115

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15 0.092

0.094
0.096

B
Q
M
a
ll

5 1015

5
10
15

0.112
0.114
0.116

B
Q
S
q
u
a
re

5 1015

5
10
15 0.098

0.1

0.102

B
Q
T
e
rr
a
c
e

5 1015

5
10
15

0.095

0.1

0.105

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15 0.12

0.122
0.124
0.126
0.128

q=255; r=0

5 10 15

5

10

15
0.105

0.106

0.107

0.108

0.109

Figure 6.16: Left: Average of the distributions over all four tested QPs showing the
frequency of occurence of zero-errors. Right: Average over all tested videos.

6.2. A REFERENCE-FREE POST-FILTERING APPROACH 137

Sequence
1 Pixel Boundary 2 Pixel Boundary 4 Pixel Boundary
∆PSNR BD-rate ∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in % in dB in %

BasketballDrive -0.97 47.93 -1.20 71.78 -1.55 111.16
BlowingBubbles 0.00 0.08 -0.01 0.12 -0.01 0.31

BQMall 0.00 0.09 0.00 0.11 -0.01 0.18
BQSquare -0.05 1.04 -0.09 1.96 -0.18 3.91

RaceHorses 0.00 0.03 0.00 0.06 -0.02 0.26
Waterfall 0.00 0.03 0.00 0.09 -0.01 0.15
average -0.17 8.20 -0.22 12.35 -0.30 19.33

Table 6.3: BD-rate and BD-PSNR for brute-force filtering of videos with a fixed
block-size of 16× 16. Ydec was chosen as a reference.

settings (1 pixel, 2 pixels, and 4 pixels) are used. The decoded frame Ydec is now
used as a reference.

Results

The summarized results of the experimental evaluation are shown in Table 6.3.
Unfortunately, a boundary of width 1 still produces a loss −0.17 dB on average.
The improvement of 0.01 dB compared to the YMC reference is negligible. Even for
boundaries of size 2 with −0.22 dB (+0.01 dB) and 4 with −0.20 dB (+0.03 dB) no
actual filter gain can be observed. It remains to be stated that with an increasing
boundary width the quality of the filtered frame is decreased while the required bit
rate for transmission with the same quality is increased. The results are improved,
however, when the decoded value Ydec is included in the filtering process. Only
BQMall and Waterfall show a different behavior: BQMall always produces the
same quality despite the variation of the boundary width and requires a higher bit
rate when the decoded frame is used as a reference. The same is true for Waterfall
where additionally the quality is decreased with a four-pixel boundary. Based on
the results of Sections 6.2.2 and 6.2.3 it can be concluded that a pure post-filtering
approach with a boundary-separated version of YMC or Ydec as reference cannot
produce satisfactory quality improvements. Even if the results for BasketballDrive
are excluded from the average, no filter gain can be observed.

138 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

Encoder

DecoderPost-FilterYnew

Yorig

bit stream

Fdec

side-information

Figure 6.17: A post-filter with additional side-information for optimal quality con-
trol.

6.3 Brute-Force Filtering With Side-Information

As all post-filtering attempts so far have not provided acceptable filtering gain, the
boundary of the theoretically possible maximum gain is now explored. To this end
all trajectories are used both as the training data set and the filter data set, where
Yorig is the reference and a parameter combination yielding the minimal MSE is
selected and transmitted to the decoder (see Figure 6.17). The side-information
consists of the thresholds for ∆Y and Φt and can be transmitted with 2 · 8 = 16
additional bits per frame. With respect to the number of frames per second of each
sequence, not only the PSNR values are changed but also the bit rates.

16× 16 Blocks only

Columns 2 and 3 of Table 6.4 list the filtering results for all sequences when a
fixed block size of 16× 16 is used. The best results are obtained for BQSquare and
Waterfall, where both the BD-rate is decreased and the image quality is improved by
values from 0.03 dB to 0.05 dB. All other sequences do not show significant quality
improvements, but the bit rate for transmitting these sequences at a predefined
quality is decreased. Only for the RaceHorses sequence the bit rate is slightly
increased, as side-information is added to the bit stream without improving the
visual or objective quality. Despite these improvements such small changes are
generally not visible for a human observer. Since it is possible that the 16 × 16
block-based motion estimation inhibits the filter’s effectiveness, other block sizes
are now examined as well.

6.3. BRUTE-FORCE FILTERING WITH SIDE-INFORMATION 139

Sequence

16× 16 all sizes
∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in %

BasketballDrive 0.00 -0.10 0.00 -0.07
BlowingBubbles 0.00 -0.02 0.00 -0.07

BQMall 0.00 0.00 0.00 -0.01
BQSquare 0.05 -1.11 0.04 -0.81

RaceHorses 0.00 0.01 0.00 0.00
Waterfall 0.03 -0.74 0.05 -1.08
average 0.02 -0.33 0.02 -0.34

Table 6.4: BD-rate and BD-PSNR for brute-force filtering. Yorig was used as refer-
ence and all trajectories are part of both training data set and filter data set. Per
frame an overhead of 2 · 8bit is transmitted.

8× 8 Blocks only

A smaller block-size was originally selected with the hope of more accurately predict-
ing the motion of individual pixels. However, the first tested videos BQSquare and
Waterfall already showed BD-rate increases of 0.6% and a decreased BD-PSNR. For
this reason no further experiments were conducted. Theoretically four 8× 8 blocks
should more accurately represent the motion of a 16× 16 block. However, a smaller
block-size also means that the true motion of recurring patterns or structures in a
frame cannot precisely be tracked.

All Possible Block-Sizes

Most commonly employed H.264/AVC encoders will of course use the full range of
available block-sizes. Theoretically, this should ensure an optimal trade-off between
bit rate and achievable quality. The results for this setting are given in Columns 4
and 5 of Table 6.4. Interestingly, the quality improvement for BQSquare is reduced in
this setting, while Waterfall is improved by another 0.02 dB. For all other sequences
the quality improvement is still negligible, while the BD-rates are slightly improved.

6.3.1 Local Separation with an Artificial Neural Network

Another variant of a post-filter is the implementation with an artificial neural net-
work. Due to the ANN’s ability to learn dependencies between input and output
autonomously, these networks are employed whenever such dependencies are not

140 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

Sequence

16× 16, 2 · 32 bit all sizes, 2 · 32 bit
∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in %

BlowingBubbles -0.01 0.22 -0.01 0.26
BQMall -0.01 0.11 -0.01 0.13

BQSquare 0.07 -1.32 0.04 -0.72
RaceHorses -0.01 0.20 -0.01 0.24

Waterfall 0.00 0.03 0.00 -0.02
average 0.01 -0.15 0.00 -0.02

Table 6.5: BD-Rate and PSNR-Rate for the artificial neural network. Yorig is used
as a reference and all trajectories are both part of the training data set and the filter
data set. For each frame 64 bit of side-information are transmitted.

clearly defined. In addition, they are able to find optimal solutions with the help
of adequate learning algorithms. With the help of the back-propagation algorithm
described in Section 6.1.7 the MSE of each decoded frame is minimized. In order to
keep the computational runtime within reasonable limits the simplest form of the
artificial neural network with only ∆Y as an input value is used. As will be shown
in Chapter 7, adding a temporal threshold to the filter will only produce slight im-
provements. Yorig is used as the reference for optimization and side-information in
the form of neuron weights is again transmitted.

6.3.2 16×16-Blocks only, Artificial Neural Network with the
Original as Reference

Similar to the experiments conducted in Section 6.2.1 here, too, compressed videos
with a fixed block-size of 16 × 16 are investigated. The results in columns 2 and 3
of Table 6.5 show, that the BD-rate is increased for all sequences except BQSquare.
This can be explained by the large amount of side-information per frame. During
the search for the optimal PSNR value the highest possible precision (32 bit) was
chosen for the two weights w0 and w1 each. A floating-point number with a lower
precision could possibly yield comparable results. Despite the increased amount of
side-information, the BD-rate for BQSquare is even better than for the equivalent
brute-force solution.

6.3. BRUTE-FORCE FILTERING WITH SIDE-INFORMATION 141

6.3.3 Artificial Neural Network Using all Possible Block-
Sizes

Since a restriction to 8× 8 blocks did not produce any improvements for the brute-
force solution, it is not again investigated here. The results for utilizing all possible
block-sizes are shown in Colums 4 and 5 of Table 6.5. These show a similar behavior
to the brute-force case with an additional BD-rate reduction for BQSquare when
only 16 × 16 blocks are used (compare with Table 6.4). The poorer performance
of the neural network here is mostly due to the 64 bits of side-information that are
transmitted per frame. The actual PSNR values comparing input and output of the
post-filter at a certain QP always show quality improvements.

6.3.4 Neural Network with Quantized Parameters

Since the main disadvantage of the neural network compared to the brute-force filter
is the increased amount of side-information, a modified version, that uses quantized
parameters instead, is now also investigated. The results produced by the modified
artificial neural network may be found in Table 6.6. For all tested sequences a
quantization of the parameters w0 and w1 (represented due to their linear nature by
Th−3 and ThΘ)) to 16 bit and 8 bit respectively only shows slight variations in the
resulting PSNR. Subsequently the filter’s effectiveness is improved when a smaller
amount of side-information is transmitted. However, quantizing the two weights
below 8 bit always resulted in drastic losses, so that no further compression of said
parameters was investigated. In the case of 8 bit per weight the filter performs
similarly to the brute-force implementation. Although the highest gain is achieved
for BQSquare and not for Waterfall. Most importantly the post-filter now always
improves the BD-PSNR or has no impact on the sequence.

6.3.5 Evaluation of the Filter based on an Artificial Neural
Network

The neural network has a huge drawback compared to the brute-force solution where
the side-information is concerned. Since the weights within the neural network are
not restricted to integer numbers, formats with a flexible precision are required. The
more bits are available for the filter weights the more accurately the filter can adapt
itself. The results produced by the post-filter show small losses for BlowingBubbles,
BQMall and RaceHorses even when quanitzed parameters are used. However, the
loss is only due to the trade-off between bit rate and PSNR in the Bjøntegaard
metric [4].

142 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

Sequence

all sizes, 2 · 16 bit all sizes, 2 · 8 bit
∆PSNR BD-rate ∆PSNR BD-rate
in dB in % in dB in %

BlowingBubbles -0.01 0.11 0.00 0.03
BQMall 0.00 0.07 0.00 0.04

BQSquare 0.07 -1.33 0.07 -1.38
RaceHorses -0.01 0.12 0.00 0.07

Waterfall 0.00 -0.11 0.01 -0.13
average 0.01 -0.23 0.02 -0.27

Table 6.6: BD-Rate and PSNR-Rate for the artificial neural network with arbitrary
block-sizes and quantized parameters.

If the impact of the side-information is ignored, the neural network actually shows
higher quality improvements for BQSquare at certain QPs than the brute-force solu-
tion. The reason for the additional gain lies with the different interpretation of the
input values by both filters. The brute-force filter simply computes an average lu-
minance value along the trajectory and discards certain outliers. Due to the shape
of the sigmoid function the neural network uses a larger number of input values
but weights them differently. Both implementations here work similarly, since the
temporal threshold for BQSquare is usually set to the maximum. For the Water-
fall sequence the impact of the temporal threshold is much more noticable, as the
brute-force filter will select a different threshold value for each frame. Due to the
abscence of this threshold in the neural network implementation, the realised gain
for this sequence is far smaller.

6.3.6 Summary

To summarize, the brute-force filter with side-information showed the best perfor-
mance among all post-filter approaches. In all other cases significant losses for some
sequences were observed. It appears to be obvious that the current implementation
of the TTF always requires control from the encoder. For this reason the brute-
force filter with side-information is now separately investigated within the HEVC
low-delay profile.

6.4. POST-FILTERING APPROACH FOR HEVC 143

6.4 Post-Filtering Approach for HEVC

If a fixed set of parameters is used for an entire sequence, the filter can no longer
adapt itself to changing image content or differently moving foreground objects. One
way to overcome this difficulty is to calculate filter parameters at the encoder and
to transmit them in addition to the actual bit stream describing the video sequence.
If the decoder chooses not to use the filter then the bit rate will of course increase
slightly. At nine bits per frame for the simple TTF, however, this overhead should
be acceptable for most video formats and quality levels. If the filter is applied, the
bit rate will be identical but the quality of the decoded frames can be improved.
Mainly to emphasize the superiority of the in-loop filter, experiments with a TTF
post-filter were also conducted on the HEVC test data set. As in the case of the
simple TTF, the QTTF, too, can be employed as a post-filter. Here, however, more
problems need to be addressed. Even though the great advantage of the QTTF is
its adaptability to differently structured or differently moving image regions, this
adaptability is only provided by the underlying quadtree. The quadtree itself can
be of arbitrary size and it is only restricted by the RD-optimization which has been
described in Section 5.3.3. Even when the brute-force method is utilized the quadtree
is, of course, only optimal if the QTTF is used at the decoder at all. Otherwise the
bit rate will simply be increased by the quadtree information. In this scenario, it
is subsequently essential to restrict the maximum size of the quadtree which can
be easily accomplished through the introduction of a minimum block size. Bit rate
reductions provided by the QTTF as a post-filter were again measured for all HEVC
test sequences.

144 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

T
T

F
T

T
F

p
os

t-
fi
lt

er
Q

T
T

F
b
ru

te
-f

or
ce

Q
T

T
F

b
ru

te
-f

or
ce

p
os

t-
fi
lt

er
∆

P
S

N
R

B
D

-r
at

e
∆

P
S

N
R

B
D

-r
at

e
∆

P
S

N
R

B
D

-r
at

e
∆

P
S

N
R

B
D

-r
at

e
in

d
B

in
%

in
d
B

in
%

in
d
B

in
%

in
d
B

in
%

B
as

ke
tb

al
lP

as
s

0.
00

−
0.

04
0.

00
0.

00
0.

01
−

0.
20

0.
01

−
0.

14
B

lo
w

in
gB

u
bb

le
s

0.
03

−
0.

64
0.

00
−

0.
02

0.
04

−
0.

99
0.

02
−

0.
43

B
Q

S
qu

ar
e

6.
06

−
0.

23
0.

06
−

1.
61

0.
26

−
6.

94
0.

13
−

3.
48

R
ac

eH
or

se
s

0.
01

−
0.

13
0.

00
−

0.
03

0.
01

−
0.

20
0.

01
−

0.
22

a
v
g
.
fo
r
c
la
ss

D
0
.0

7
−

1
.6

2
0
.0

2
−

0
.4

2
0
.0

8
−

2
.0

8
0
.0

4
−

1
.0

7
B

as
ke

tb
al

lD
ri

ll
0.

00
−

0.
12

0.
00

0.
00

0.
00

−
0.

15
0.

00
−

0.
01

B
Q

M
al

l
0.

00
−

0.
09

0.
00

0.
02

0.
00

−
0.

08
0.

00
−

0.
02

P
ar

ty
S

ce
n

e
0.

02
−

0.
42

0.
00

−
0.

03
0.

05
−

1.
25

0.
03

−
0.

64
R

ac
eH

or
se

s
0.

00
−

0.
05

0.
00

−
0.

01
0.

00
−

0.
09

0.
00

−
0.

07
a
v
g
.
fo
r
c
la
ss

C
0
.0

1
−

0
.1

7
0
.0

0
0
.0

0
0
.0

1
−

0
.3

9
0
.0

1
−

0
.1

9
V

id
yo

1
0.

00
−

0.
18

0.
00

0.
03

0.
02

−
0.

52
0.

00
0.

13
V

id
yo

3
0.

01
−

0.
27

0.
00

0.
02

0.
01

−
0.

33
0.

00
0.

09
V

id
yo

4
0.

01
−

0.
38

0.
00

0.
03

0.
02

−
0.

71
0.

00
0.

16
a
v
g
.
fo
r
c
la
ss

E
0
.0

1
−

0
.2

7
0
.0

0
0
.0

2
0
.0

2
−

0
.5

2
0
.0

0
0
.1

3
B

as
ke

tb
al

lD
ri

ve
0.

00
−

0.
02

0.
00

0.
00

0.
00

−
0.

06
0.

00
0.

02
B

Q
T

er
ra

ce
0.

01
−

0.
74

0.
00

−
0.

05
0.

02
−

1.
40

0.
00

0.
15

C
ac

tu
s

0.
00

−
0.

17
0.

00
−

0.
01

0.
01

−
0.

39
0.

00
0.

09
K

im
on

o1
0.

00
−

0.
08

0.
00

0.
02

0.
00

−
0.

13
0.

00
0.

04
P

ar
kS

ce
n

e
0.

01
−

0.
21

0.
00

−
0.

02
0.

02
−

0.
56

−
0.

01
0.

17
a
v
g
.
fo
r
c
la
ss

B
0
.0

0
−

0
.2

4
0
.0

0
−

0
.0

1
0
.0

1
−

0
.5

1
0
.0

0
0
.0

8
W

at
er

fa
ll

0.
23

−
7.

61
0.

03
−

0.
85

0.
27

−
9.

05
0.

06
−

1.
98

T
ab

le
6.

7:
B

D
-r

at
e

an
d

av
er

ag
e

P
S
N

R
ga

in
fo

r
T

T
F

an
d

Q
T

T
F

b
ot

h
as

p
os

t-
fi
lt

er
ap

p
li
ca

ti
on

s
an

d
in

th
ei

r
or

ig
in

al
in

-l
o
op

im
p
le

m
en

ta
ti

on
.

6.5. CHAPTER SUMMARY 145

When only the original TTF implementation without quadtree optimization is ex-
amined, the post-filter realizes about 20% of the gain achieved by the TTF in-loop
filter (see Columns 3 and 5 of Table 6.7). This is mostly due to the missing bit
rate reduction which can be induced by improved reference frames. In addition, the
TTF’s post-filter implementation also produces loss for certain badly performing se-
quences. For BasketballPass, BQMall and the vidyo sequences the side-information
of up to nine bits per frame suffices to produce a BD-loss. For the QTTF-based post-
filter the situation is different. Since the QTTF already includes a RD-optimization
scheme, no loss can be observed here. Nevertheless, the realized filter gain of the
QTTF post-filter is only about 50% of the gain produced by the QTTF in-loop
implementation.

6.5 Chapter Summary

In this chapter, several different attempts were described to effectively apply the
TTF and its derivatives as a post-filter. Among them were a neural network imple-
mentation and an unsuperivsed brute-force filter without control information from
the original sequence. It has been shown that the TTF only produces bit rate
reductions when controlled by additional side-information. Moreover, the in-loop
implementation continously outperformed all post-filter algorithms. It is thus safe
to state that the TTF is best used within the local decoding loop and almost always
needs additional side-information to effectively adapt itself to changing sequence
characteristics.

146 CHAPTER 6. PRACTICAL REALIZATIONS PART 2

Chapter 7

Assessment of the Theoretical
Considerations

If you don’t know where you are headed, you’ll probably end up someplace else. - Douglas

J. Eder

A paper describing the one-dimensional case of the theory and results presented in
this section was first published in [16].

The theoretical considerations conducted in Chapter 4 have resulted in predictions
concerning the optimal filter length and the achievable filter gain. These predictions
(see the solution of Equation 4.32) can only be validated if the variables that the
solution depends on are known. Among these variables are the maximum motion
estimation errors qx,max, qy,max as well as the variance of the luminance component
σ2
Y . In addition, the error variance along the trajectory σ2

η and the mean horizon-
tal and vertical luma sample correlation coefficents αx and αy are measured. For
three test sequences out of class D of the HEVC test data set and for one additional
sequence (Waterfall) highly accurate motion data was obtained with the Human-
Assisted Motion Annotation Tool (HAMA) [34]. The respective values may be found
in Tables C.1 and C.2 in the Appendix. This data was used in Chapter 3 to analyze
the TTF’s behavior under ideal conditions. When examining the maximal motion
estimation errors qx,max and qy,max it becomes instantly apparent, that they may
differ significantly from each other, depending on the sequence. In the difference the
motion within the scene is reflected: Should a sequence contain more horizontal than
vertical motion, for instance, then the errors in x-direction will, in general, be larger.
This behavior can be explained by the simple fact, that a motion-compensated block
containing a majority of pixels from a foreground object and a few pixels from the

147

148 CHAPTER 7. THEORY ASSESSMENT

image background will produce an error almost equal to the foreground motion for
all covered background pixels. Since a dominant motion in x-direction is assumed,
the vertical error will be much smaller for said pixels. This effect is most prominent
for the Waterfall sequence, which contains a zoom out and a downward track of the
camera. Subsequently, qy,max is larger than qx,max for this sequence.

7.1 Comparison of Predicted and Realized Filter

Lengths

In Chapter 4 formulae were derived that allow for the prediction of the best filter
length for the TTF and the resulting maximum theoretically achievable gain if mo-
tion prediction errors and noisy images are present. The expected error variance
after filtering was given in Equation 4.33.

(7.1) E

[(
Ŷ − Y

)2
]

=
σ2
Y

m
− 2(1 +m(qx,max · logαx, qy,max · logαy)) · σ2

Y + σ2
Y +

σ2
η

m

In order to evaluate the accuracy of the above equation, two tests can be performed:

• By finding the minimum of Equation 7.1 with the method described in Chapter
4, an optimum filter length can be calculated. This value can then be compared
with the realized filter lengths observed during the experiments.

• The measured filter gain
E[(Y−Y ′)2]
E[(Y−Ŷ)2]

can be set into relation with the observed

PSNR or MSE gain.

In both cases, the free variables of Equation 7.1 need to be determined first: The
image correlation coefficients αx and αy can easily be measured by calcualting the
autocorrelation function of each image row and image column in a video frame
respectively. The individual α-value then corresponds to the value of the normalized
autocorrelation function ρ(1) next to the maximum of the function at ρ(0) = 1.
Here, the median correlation values over all frames are used. The spatial variance
can equally be estimated by examining one image at a time

(7.2) σ2 =
1

W ·H − 1

W ·H−1∑
x=0

(Y (x)− Ȳ)2,

where Ȳ is the mean luminance of the current image and W and H are the width and
height of the image in pel. In temporal direction the path described by the ground

7.1. PREDICTED AND REALIZED FILTER LENGTHS 149

truth motion vectors is used as the trajectory. Along this trajectory the difference
between the encountered luminance values and the original value before compression
is measured. The variance of the error can then be computed along the temporal
trajectory. Tables C.1 and C.2 in the Appendix give the observed variances for the
temporal noise σ2

η and for the spatial variance σ2
Y of the luminance component. The

medians of the maximum endpoint error components qx,max, qy,max over all frames
are also given. In addition, columns 5 and 6 give the mean luminance correlation
values in horizontal and vertical direction. The luminance variance is, of course,
always measured in the original uncompressed sequence and is thus constant. The
temporal error variance changes, as expected, with the used QP. However, a lower
bit rate does not necessarily mean a higher σ2

η value. Instead, at high QPs the error
variance can become smaller, even if its mean value is increased. This effect can be
explained by strongly quantized residuals and the more frequent usage of skip-blocks.
When the skip prediction mode is used, the color values along the trajectory are not
changed for several frames thus reducing the temporal variability and subsequently
the temporal error variance σ2

η. The luminance correlation values αx and αy also
only reflect properties of the uncompressed sequence. The maximum motion vector
error components qx,max, qy,max depend on the utilized QP, too.

At low QPs and thus high bit rates the encoder will choose basically random mo-
tion vectors in order to reconstruct the best image in an RD-sense. In that range,
longer motion vectors can be used if they yield a small residual error. Moreover,
the encoder will usually also select smaller blocks for MC in which case not much
information is available for finding a good match. At low bit rates, however, skip-
blocks are chosen more frequently and only very small motion vectors, such as they
occur in real video sequences at high frame rates, are transmitted in the bit stream.
Subsequently, the maximum motion vector error frequently decreases with a rising
QP. A few larger errors will, of course, be introduced by differently moving regions
inside the same block or by simple mismatches. On average, however, the ME error
is mostly influenced by the RD-optimization scheme depending on the QP. These
assumptions are supported by Figure 7.1 showing the number of skip-blocks per QP
for the BlowingBubbles sequence.

7.1.1 Analysis of the Predicted Filter Lengths

Based on the numbers reported in Tables C.1 and C.2 a prediction concerning the ex-
pected optimum filter length can be made. In order to compare the prediction with
real-world data from the QTTF implementation, one has to consider the limitations
of the HEVC encoder. Due to the utilized IBBB coding structure, the trajectory
is split at every B-frame. Thus a trajectory spanning n frames can include up to

150 CHAPTER 7. THEORY ASSESSMENT

(a) QP18 (b) QP20

(c) QP30 (d) QP40

(e) QP50 (f) summary

Figure 7.1: Subfigures a) to e) show the block prediction mode distribution for
the BlowingBubbles sequence encoded with the HM 3.0 low-delay high efficiency
setting. The inter -modes are divided into modes with (m) and without motion
vector residual (n) and those with (r) and without (n) a DCT-residual. Subfigure
f) summarizes the percentages of blocks utilizing the skip mode.

7.1. PREDICTED AND REALIZED FILTER LENGTHS 151

2n−1 samples. For comparability a predicted filter length x is consequently replaced
by 2x−1. The predicted and observed average filter lengths based on the sequence
QP can be found in Figure 7.2. There, the predicted optimum filter length shows a

15 20 25 30 35 40 45 50
0

50

100

150
predicted trajectory length for BlowingBubbles

QP

tr
a

je
c
to

ry
 l
e

n
g

th
 i
n

 s
a

m
p

le
s

predicted length

measured length

(a) BlowingBubbles

15 20 25 30 35 40 45 50
0

50

100

150

200

250
predicted trajectory length for BQSquare

QP

tr
a

je
c
to

ry
 l
e

n
g

th
 i
n

 s
a

m
p

le
s

predicted length

measured length

(b) BQSquare

18 20 22 24 26 28 30 32 34 36 38
0

5

10

15

20

25

30

35

predicted trajectory length for RaceHorses

QP

tr
a

je
c
to

ry
 l
e

n
g

th
 i
n

 s
a

m
p

le
s

predicted length

measured length

(c) RaceHorses

15 20 25 30 35 40 45 50
0

50

100

150
predicted trajectory length for Waterfall

QP

tr
a

je
c
to

ry
 l
e

n
g

th
 i
n

 s
a

m
p

le
s

predicted length

measured length

(d) Waterfall

Figure 7.2: The black curve shows the expected optimal filter length. The red curve
represents the observed average trajectory lengths.

strong dependency on the QP. Nevertheless the relationship is by no means expo-
nential or even linear and shows a different behavior for each tested sequence. In
all tested cases the observed and predicted filter lengths match very closely and,
even though significant differences sometimes occur at low bit rates, the predicted
filter lengths appear to be a very good predictor for the behavior of the real-world
implementation.

152 CHAPTER 7. THEORY ASSESSMENT

In the case of the BQSquare sequence, predicted and realized filter lengths are
very similar to each other. A particularly good match can be observed for low QPs.
Since exact measures for the temporal error were obtained, which match the used
analytical model quite well, the theoretical predictions are tuned to match the ac-
tually used filter lengths very well. In this context, it is to be highlighted that the
error term does not only consist of the described white noise component but also of
a constant non-zero mean. This mean has no influence on the TTF’s performance
since a constant mean cannot be removed through temporal filtering. In Chapter 4,
this colored noise is represented by the cross-correlation terms E[Y (xi, yi)Y (xj, yj)].
These introduce an additional error, depending on the correlation values αx, αy
within the frame itself.

For the RaceHorses (D) sequence the behavior is identical. At high QPs the fluctua-
tions again become bigger, but the predictions for mid-range and low QPs are highly
accurate. It is to be noted, that the predictions for RaceHorses and BQSquare do
not only share their curvature with the measured values but that both even match
them quantitatively. The deviations for RaceHorses again only become larger for
videos of poor quality. For RaceHorses no data is shown for QPs higher than 38
since the filter is generally switched off at poor quality for this sequence. Subse-
quently, no trajectory lengths are available for QPs 40 and above.

For BlowingBubbles a huge difference between theory and experiment only occurs
for QP 48. Here, as well as at very high bit rates (low QPs), the TTF is switched
off for too many pixels to provide reliable average trajectory lengths.

Interestingly, the predicted and realized filter lengths for Waterfall are much smaller
than those for BQSquare, even though Waterfall has always produced a higher gain
in the experiments. The reason for this may be found when comparing Tables C.1
and C.2: There the compression-induced error variance for Waterfall can be seen
to be significantly higher than the variance for BQSquare. Subsequently, even short
trajectories can provide acceptable gain for this sequence. In summary, all four
videos demonstrate the applicability of the formulae derived in Chapter 4 very well.

7.1.2 Variance Analysis

In Table C.1 a dependency of the error variance σ2
η on the QP can be observed.

However, it still remains to be shown that the assumption of image content under-
going only translational motion (see Chapter 4) is actually valid. If this hypothesis
is true, the variance of a single pixel motion compensated pixel along the temporal
axis should be small. Changes can now only be introduced by occlusion, new image

7.2. ANALYSIS OF THE FILTER FUNCTIONALITY 153

content, and lighting changes. Figure 7.3 shows the sorted variances of 120 pixels
that were succesfully tracked over at least 20 frames in the sequences RaceHorses
and BlowingBubbles.

10 20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500

600

700

800

900
BlowingBubbles

sorted trajectory index

te
m

p
o

ra
l
v
a

ri
a

n
c
e

 σ
η2

original

QP20

QP30

QP40

(a) BlowingBubbles

10 20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500

600

700

800

900

1000
RaceHorses

sorted trajectory index

te
m

p
o

ra
l
v
a

ri
a

n
c
e

 σ
η2

original

QP20

QP30

QP40

(b) RaceHorses

Figure 7.3: For all tracked pixels the variance was estimated and the results were
sorted in ascending order. Due to the thresholds of TTF, all pixels with an extreme
variance would be discarded and thus not filtered.

The displayed variances per pixel were sorted ascendingly first to eliminate extreme
outliers, that are discarded by the TTF. In the case of the RaceHorses sequence the
temporal variance of the original sequence is significantly lower than the variances
originating from compressed versions of the sequence. This indicates that filtering
should always be possible as long as adequate motion information is available. For
BlowingBubbles the situation is slightly different. Even though the original variance
is generally below those of QPs 20 and 30, the temporal stability of the sequence en-
coded at QP 40 is higher. Subsequently, the temporal variance decreases for higher
QPs. Here, this is due to the nature of the sequence with transparent foreground
objects which dissappear at low bit rates when large parts of the frame turn into
smooth textureless regions. Then the compressed sequence shows, of course, more
temporal stability even though the average error between reconstructed and original
sequence is large.

7.2 Analysis of the Filter Functionality

In all experiments conducted in this thesis, the TTF was tested with three thresh-
olds, namely a luminance threshold TY , a spatial consistency threshold TSC, and

154 CHAPTER 7. THEORY ASSESSMENT

a temporal consistency threshold TTC. As has been mentioned in Section 5.3, the
spatial threshold only showed good performance at low bit rates. In order to further
validate the usability of these thresholds, experiments have been conducted to ana-
lyze the filter performance with and without each of the aforementioned thresholds.
Since disabling the luminance threshold generally renders the filter useless, only the
following combinations were tested:

1. All three thresholds are used together. This implementation is identical to the
one described in Section 5.3 except for the fact that the spatial threshold was
originally only used for high QPs. This configuration will be referred to as
QTTF YST.

2. Luminance threshold and temporal threshold together: At high bit rates the
performance of this configuration (QTTF YT) provides the same gain as the
original QTTF.

3. Luminance threshold and spatial threshold together (QTTF YS): This corre-
sponds to the original QTTF implementation described in [12].

4. QTTF with only the luminance threshold (QTTF Y): The expected advantage
of this approach lies in the considerable reduction of the side-information while
the most promising threshold is kept.

The QTTF was chosen as a basis for this test, since its performance is generally
better than TTF and the observed differences will thus be more significant. Table
7.1 lists the observed results in terms of BD-performance for all configurations de-
scribed above. As can be seen from the table, the majority of the gain results indeed
from the luminance threshold TY which produces around 75% of the observed total
gain. The temporal consistency threshold TTC accounts for around 20% of the gain
and for some sequences the combination of only these two thresholds is even better
than the original implementation. Only for high QPs does the spatial consistency
threshold TSC further improve the results. Its impact is, however, far smaller. These
observations support the conclusion, that a simplified encoder that optimizes only
TY and TTC will generally produce almost the same ouput quality with a complexity
reduction in the area of 70%. This trend led to the ommission of the spatial con-
sistency threshold in all implementations based on HM 8.0. There, the influence of
TSC was generally even smaller due to the improved motion vector accuracy. Never-
theless, the selected filter configuration consisting of all three thresholds produced
a good gain over all sequences and quality levels on average.

7.3. FILTERING OF FOREGROUND AND BACKGROUND 155

QTTF YST QTTF Y QTTF YT QTTF YS
∆PSNR BD-rate ∆PSNR BD-rate ∆PSNR BD-rate ∆PSNR BD-rate

in dB in % in dB in % in dB in % in dB in %
BasketballPass 0.01 −0.20 0.01 −0.15 0.01 −0.23 0.01 −0.15
BlowingBubbles 0.04 −0.99 0.04 −0.97 0.04 −1.00 0.04 −0.87
BQSquare 0.26 −6.94 0.27 −7.09 0.26 −7.00 0.26 −6.94
RaceHorses 0.01 −0.20 0.01 −0.15 0.01 −0.24 0.01 −0.16
avg. for class D 0.08 −2.08 0.08 −2.09 0.08 −2.12 0.08 −2.03
BasketballDrill 0.01 −0.15 0.00 −0.10 0.01 −0.23 0.00 −0.12
BQMall 0.00 −0.08 0.00 −0.06 0.00 −0.12 0.00 −0.09
PartyScene 0.05 −1.25 0.04 −1.04 0.05 −1.22 0.04 −1.05
RaceHorses 0.00 −0.09 0.00 −0.03 0.00 −0.06 0.00 −0.10
avg. for class C 0.02 −0.39 0.01 −0.31 0.02 −0.41 0.01 −0.34
Vidyo1 0.02 −0.52 0.00 0.08 0.02 −0.46 0.00 0.10
Vidyo3 0.01 −0.33 0.00 −0.11 0.02 −0.63 0.01 −0.24
Vidyo4 0.02 −0.71 0.00 −0.13 0.03 −0.82 0.00 −0.14
avg. for class E 0.02 −0.52 0.00 −0.05 0.02 −0.64 0.00 −0.09
BasketballDrive 0.00 −0.04 0.00 −0.01 0.00 −0.05 0.00 0.00
BQTerrace 0.02 −1.46 0.02 −1.16 0.02 −1.53 0.02 −1.16
Cactus 0.00 −0.23 0.00 −0.14 0.01 −0.37 0.00 −0.16
Kimono1 0.00 −0.08 0.00 −0.04 0.00 −0.09 0.00 −0.04
ParkScene 0.02 −0.56 0.01 −0.34 0.02 −0.65 0.01 −0.37
avg. for class B 0.01 −0.47 0.01 −0.34 0.01 −0.54 0.01 −0.35
Waterfall 0.27 −9.05 0.27 −8.90 0.27 −9.11 0.26 −8.55

Table 7.1: BD-rate and average PSNR gain for QTTF for different threshold com-
binations for the HEVC low-delay high efficiency setting.

7.3 Filtering of Foreground and Background

In Chapter 1 it was predicted, that the TTF would work equally well on both
foreground and background. Even though high gains on both sequences with and
without large foreground objects imply that the initial assumption is true, conclu-
sive proof still has to be presented. To this end, three test sequences out of class
D (BlowingBubbles, BQSquare, RaceHorses) were reexamined. These were on the
one hand chosen because of their relatively fast encoding and decoding times and
also because they reflect the most typical combinations of foreground objects and
background scenery:

• In the BlowingBubbles sequence slowly moving foreground objects (two girls)
are present, which occupy about half of each spatial frame on average.

• Large and quickly moving foreground objects (horses) are depicted in the Race-
Horses (D) sequence, which is especially challenging for temporal filters as the
background is mostly occluded and even inter-object occlusion occurs.

• The BQSquare sequence, on the other hand, consists mostly of slowly moving
background with only a few small foreground objects (people walking over a
terrace).

156 CHAPTER 7. THEORY ASSESSMENT

Each of these sequences has been encoded with HM 3.0 with the added QTTF. For
each frame the reconstructed unfiltered signal was compared with the output of the
QTTF. For each pixel it was determined whether the filtered signal was closer to
the original than the unfiltered one. Exemplary results for these experiments for
QP 32 may be found in Figure 7.4.

It is firstly to be noted, that the number of filtered pixels per frame corresponds
quite well with the achieved gain per sequence: The highest gain among these three
test sequences was produced for BQSquare where around 40% of the pixels have
been filtered. The smallest gain could be observed for RaceHorses (D) where the
number of filtered pixels is much smaller. Both for BlowingBubbles and BQSquare
the filtered pixels are more or less evenly distributed over the entire frame. In the
case of BQSquare all foreground objects are also filtered. In BlowingBubbles the girl
on the left is also completely filtered. While the filter has been switched off for the
upper right corner of the displayed frame. The structure of the underlying quadtree
can also be deduced from the distribution of the filtered and improved pixels.

The quadtree is responsible for the sharp edges in the pixels marked in green. In the
case of the RaceHorses sequence only very few of the pixels belonging to the fore-
ground are filtered. However, for this sequence the filter is switched off quite often
for the displayed QP. Figure 7.5 shows the same frame at the four tested QPs. As
can be seen, large parts of the background are filtered in all cases. The foreground
is also widely filtered for QP 37. This corresponds to the decreased motion vector
impairment at that QP (see Tables C.1 and C.2). Figure 7.6 shows one exemplary
frame at four different QPs for the BlowingBubbles sequence. Here, too, the filter
is switched on for all QPs, but is most effective for QPs 32 and 37. Moreover, the
foreground objects are always part of the filtered area despite their motion relative
to the background. For the Waterfall sequence the largest gain was always observed
regardless of the filter configuration. As can be seen in Figure 7.7, a majority of
pixels within that sequence is filtered for all QPs higher than 25. Especially at low
bit rates all parts of the frame are successfully modified.

7.4 Chapter Summary

In this Chapter two features of the TTF were investigated. The first part concerned
the theoretical considerations conducted in Chapter 4. It has been possible to show
that predicted and realized optimal filter lengths strongly correlate for all tested
sequences. Even though these all originate from class D of the HEVC test dataset,
a similar behavior is to be expected for the high-resolution sequences. This assump-
tion is based on the fact that the filter itself also shows similar characteristics across

7.4. CHAPTER SUMMARY 157

(a) QP 32, BlowingBubbles

(b) QP 32, BQSquare

(c) QP 32, RaceHorses

Figure 7.4: Output frames of the QTTF. Each improved pixel is marked in green.
The amplitude of the green color channel (dark to bright green) also reflects the
amount of the improvement. All unmarked pixels were not affected by the filter or
only minimally influenced.

158 CHAPTER 7. THEORY ASSESSMENT

(a) QP 22, RaceHorses (b) QP 27, RaceHorses

(c) QP 32, RaceHorses (d) QP 37, RaceHorses

Figure 7.5: Display of filtered and unfiltered pixels for an exemplary frame of the
RaceHorses (D) sequence for four different QPs.

7.4. CHAPTER SUMMARY 159

(a) QP 22, BlowingBubbles (b) QP 27, BlowingBubbles

(c) QP 32, BlowingBubbles (d) QP 37, BlowingBubbles

Figure 7.6: Display of filtered and unfiltered pixels for an exemplary frame of the
BlowingBubbles sequence for four different QPs. The green channel (dark to bright)
reflects the achieved improvement per pixel.

160 CHAPTER 7. THEORY ASSESSMENT

(a) QP 22, Waterfall (b) QP 27, Waterfall

(c) QP 32, Waterfall (d) QP 37, Waterfall

Figure 7.7: Display of filtered and unfiltered pixels for an exemplary frame of the
Waterfall sequence for four different QPs. The green channel (dark to bright) refelcts
the achieved improvement per pixel.

7.4. CHAPTER SUMMARY 161

all test classes regardless of spatial or temporal resolution.

Consequently, with the formulae derived in Chapter 4 it is now possible to quickly
predict the filters suitability for a certain sequence based on certain spatial and
temporal characteristics of a video. Even though the optimal filter lengths are not a
parameter that needs to be calculated explicitly, their predictions could for instance
be used to build an early termination criterion to speed-up the encoder. Other possi-
ble applications include memory management and above all a theoretical assessment
of the filter’s performance relative to the maximum realizable gain in presence of
perfect motion knowledge.

The second part covered the effectiveness of the individual thresholds of the TTF.
As expected, the luminance threshold is responsible for most of the realized gain.
However, both the temporal and the spatial consistency threshold also justify their
existence through their individual contribution to the overall performance of the
TTF. As has been mentioned in Section 5.4 the motion vector accuracy of the later
HM versions is significantly better than the quality of earlier versions. Since the
spatial consistency threshold only performs well with poor motion vector fields, it
is subsequently disabled in the final implementation of this thesis based on HM 8.0.
Finally, the spatial distribution of the filtered pixels has been investigated for three
different sequences. Even though the filter is not switched on for every frame due to
RD-optimization, both foreground and background have successfully been filtered
in all tested cases.

162 CHAPTER 7. THEORY ASSESSMENT

Chapter 8

Conclusion and Outlook

I think and think for months and years. Ninety-nine times, the conclusion is false. The

hundredth time I am right. - Albert Einstein

8.1 Achievements

In this thesis the formation of pixel trajectories from block-based encoded motion
vectors as well as their suitability for temporal filtering have been investigated. The
temporal trajectory filter has been tested firstly in the H.264/AVC baseline and ex-
tended profiles and secondly in several versions of the new standard H.265/MPEG-H.
While the results for H.264/AVC were significantly more promising, an acceptable
gain could still be produced both for HEVC test models HM 3.0 and HM 8.0.

One achievement, therefore, lies in the proof of concept of a filter that performs
temporal filtering on both foreground and background of a sequence and thus both
improves the image quality and reduces the required bit rate. In addition, several
versions of the filter were implemented and tested in a post-processing scenario.

The second finding in this context is, that the TTF in its current form cannot
be used as an unsupervised post-filter. Even though the motion compensated frame
shows promising features as a training data set, no gain could be produced without
additional side-information. The exact form of the side-information was also exam-
ined showing that the amount of side-information is critical when using the TTF
as a post-processing filter. The TTF is subsequently best employed in-loop both at
encoder and decoder. A quadtree partitioning algorithm, an idea originating from
the Wiener-based QALF filter, has also been integrated into the TTF, thus signifi-
cantly improving its performance.

163

164 CHAPTER 8. CONCLUSION AND OUTLOOK

A third achievement includes the description of an optimal RD-optimized parti-
tioning algorithm for the TTF with an added statistical analysis of the filter flags.
The statistical analysis yielded insight into the temporal and spatial behavior of
said flags and allowed for the derivation of certain CABAC models to compress
the side-information by 47% on average. This compression ratio is quite significant
since CABAC usually only produces bit rate reductions in the area of 10 to 20%
and underlines the effectiveness of the compression scheme.

In addition, an analytical description of the filter behavior under certain assump-
tions has been derived. In this context, it has been proven that an optimal filter
length does exist for every pixel individually. Even though this length still varies
from pixel to pixel, the average optimal trajectory length can reliably be predicted
from fundamental video characteristics. Based on these formulae predictions con-
cerning the optimal filter length were made. The accuracy of these predictions could
be demonstrated for all tested sequences.

Another achievement here lies in the simple analytical description of the filter based
only on three separate input variables: image correlation, temporal noise variance,
and maximum motion estimation error. In this context it has been verified that
horizontal and vertical correlation in an image are indeed often close to identical,
while the motion estimation errors in both directions can differ significantly. An-
other achievement is the possibility to classify any given video sequence based on the
mentioned characteristics. In this manner a powerful encoder could decide whether
a sequence is suitable for temporal trajectory filtering or not. In order to reconstruct
the true pixel motion, all implementations of the TTF utilize three separate criteria.
Despite slight changes over time all three have retained their distinct characteristics:
color change and spatial as well as temporal motion consistency.

The introduction and investigation of these three criteria is another achievement
of the present thesis. Experiments showed that the color criterion is responsible for
around 75% of the filtering gain while the temporal criterion produced much of the
remaining improvements. Only for certain sequences the spatial criterion achieved
further quality gain.

8.2. CONCLUSIONS 165

8.2 Conclusions

The TTF has been extensively studied in this thesis. Its application in both ex-
isting and new video coding standards has been tested and validated. Despite the
more accurate motion representation available in HEVC compared to H.264/AVC,
the filter’s performance is decreased when used within the new codec. This loss is
mainly due to the increased effectiveness of other prediction and filtering tools in
HEVC. For the tested dataset an average BD-rate of −0.4% was observed for the
final HEVC reference model thus justifying the investigation of the described filter
and possible future extensions.

The filter offers quite good parallelization opportunities even though these have not
yet been implemented. For instance, all trajectories could be examined separately
to find an optimal brute-force solution for the original TTF. In the case of QTTF,
a new thread could be started for each subpartition of a given block. Another way
to decrease the runtime of the filter would be to store intermediate interpolation
results. In the simplest case each frame in the TTF’s buffer would be upsampled
to a 4-times higher resolution thus making interpolating the same subpel position
several times for each new trajectory unnecessary. From the bit rates achieved by
HM 3.0 it can be seen, that the TTF works especially well for those sequences that
achieve only a less than average compression ratio. For example, both BQSquare
and BQTerrace have significantly higher bit rates than other sequences of the same
resolution at comparable quality.

The filter’s main drawback, however, is its dependency on accurate side-information
that controls the filter behavior. Even with the presented CABAC compression
schemes the side-information still restricts the filter’s effectiveness. Despite several
efforts no temporal or spatial correlation between the three threshlolds TY , TSC , and
TTC could be established. As has been shown, the split flag for QTTF changes its
behavior on a frame-by-frame basis. This is due to foreground objects that move
and thus necessitate the recalculation of the entire quadtree for each new frame. If,
however, a region-based approach were used, the filter could potentially reuse the
split flag structure from previous frames. In this case, however, efficient representa-
tions for such regions would be needed.

Another negative aspect of the filter is its sheer computational complexity. Nev-
ertheless, significant advances beyond the state-of-the-art in the areas of temporal
filtering of foreground objects, quadtree-compression, and improvement of block-
based motion vector fields have been achieved. At low bit rates in particular, the
filter consistently produced gain comparable in magnitude to those of the Wiener-
based QALF which had previously undergone many years of steady improvements.

166 CHAPTER 8. CONCLUSION AND OUTLOOK

In addition, the TTF can now accurately be modeled by a set of analytically derived
equations. These will allow future intelligent encoders to only apply the TTF to
sequences where long trajectories and thus higher gain can be expected.

8.3 Outlook

A first step to further improve the TTF would, of course, be the reduction of the com-
putational complexity by, for example, using bit shift operations instead of the usual
floating point arithmetics. Especially during the recursive search for an optimal pa-
rameter combination this would greatly reduce the memory load. Non-exhaustive
search methods such as the presented neural network could also be used to find
near-optimal settings more quickly. Ideally, such a learning algorithm should be
able to derive the TTF’s thresholds directly from the image content. As has been
shown in Chapter 6, however, the current definition of the thresholds makes finding
a good solution with anything other than a brute-force search almost impossible.
One additional criterion could be the ratio of object size to frame size since smaller
objects generally decrease the TY value and also require a small (more accurate)
temporal consistency threshold TTC .

In addition, asymmetric partitions or even region-based paramter signaling for the
QTTF could be investigated. These methods have already been extensively studied
during the standardization process of HEVC in the context of motion estimation and
motion compensation [31]. They allow the algorithms to better adapt themselves to
individually moving image regions of arbitrarty shape. In the context of the TTF
these regions have not yet been investigated. It would, however, be possible to use
a merging technique to combine square image partitions into shapes of arbitrary
size after parameter optimization. However, such a merging step would again need
to be controlled by an RD-optimization scheme. Due to runtime restrictions such
schemes can only be put into operation when the TTF optimization itself is sped
up significantly.

While a post-filter implementation will quite probably not be a likely realizable
scenario, other uses within a video encoder are possible. For instance, the TTF
could be used before the calculation of the frame residual, which would constitute a
combination of loop filter and prediction mode. There are several advantages to such
a mode of operation: Firstly, a smaller residual can be expected on average. Ad-
ditionally, the new prediction mode could potentially even perform better than the
regular B-frame as has been pointed out in Section 5.1. Due to the temporal mem-
ory of such a prediction mode flickering artifacts could be reduced further, resulting
in a much more stable output image. Moreover, the temporal consistency criterion

8.3. OUTLOOK 167

could be used to predict the location of certain trajectories in future frames. With
this ability a temporally smoothed prediction mode similar to the one described
by Ohm [40] would be possible. A further improvement of the TTF would be a
decoder-side motion estimation scheme to improve the quality of the decoded mo-
tion vectors where necessary. Similar to the already mentioned filtering method by
Wige et al. [56] the filter could also be applied after a frame has been displayed. In
this manner the frames used for ME and MC would probably be better suited for
prediction while no unwanted artifacts are introduced in the decoded sequence.

Additionally, combinations with the Global Motion Temporal Filter (GMTF) [20]
are also possible. In this scenario, the GMTF tool would be used to process the
background of an image and the TTF would be applied to the foreground only. In
such a case, where global motion models are available at the decoder, the TTF’s vec-
tor field could again be improved, while the homographies calculated by the GMTF
could also be used to segment a frame into foreground, background and other inde-
pendently moving regions. In this case, no additional side-information would need
to be transmitted to selectively apply the filters to certain regions. Since both filters
would now only optimized on certain regions of a frame, the optimization time for
TTF and GMTF would also be reduced. One disadvantage of such an approach
would, however, be the introduction of new artifacts at the boundaries between the
two filtering areas. Everywhere where the segmentation achieves poor results new
errors would be introduced unintentionally.

168 CHAPTER 8. CONCLUSION AND OUTLOOK

Bibliography

[1] Ce5: 4:4:4 coding. VT-S305, 19th JVT Meeting, Geneva, Apr 2006.

[2] M. A. Agostini and M. Antonini. Theoretical model of the coding error in mcwt
video coders. In Proceedings of the IEEE International Conference on Image
Processing, 2006.

[3] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques.
International Journal of Computer Vision, 12:43 – 77, 1994.

[4] G. Bjøntegaard. Calculation of average PSNR differences between RD-curves.
ITU-T SG16/Q.6 VCEG document VCEG-M33, Mar 2001.

[5] C.-F. Chen and K. K. Pang. The optimal transform of motion-compensated
frame difference images in a hybrid coder. IEEE Transactions on Circuits and
Systems for Video Technology, 40(6):393–397, 1993.

[6] T. Chujoh, N. Wada, T. Watanabe, G. Yasuda, and T. Yamakage. Specifica-
tion and experimental results of quadtree-based adaptive loop filter. ITU-T
SG16/Q.6 VCEG document VCEG-AK22, Apr 2009.

[7] T. Chujoh, G. Yasuda, N. Wada, T. Watanabe, and T. Yamakage. Block-based
adaptive loop filter. ITU-T SG16/Q.6 VCEG document VCEG-AI18, Jul 2008.

[8] G. Dane and T. Nguyen. The effect of global motion parameter accuracies on
the efficiency of video coding. In Proceedings of the 11th IEEE International
Conference on Image Processing (ICIP), 2004.

[9] M. Esche, A. Glantz, A. Krutz, and T. Sikora. Adaptive temporal trajectory
filtering for video compression. IEEE Transactions on Circuits and Systems for
Video Technology, 22(5):659–670, May 2012.

[10] M. Esche, A. Glantz, A. Krutz, M. Tok, and T. Sikora. Quadtree-based tempo-
ral trajectory filtering. Proceedings of the 19th IEEE International Conference
on Image Processing (ICIP), 2012.

169

170 BIBLIOGRAPHY

[11] M. Esche, A. Glantz, A. Krutz, M. Tok, and T. Sikora. Weighted temporal
long trajectory filtering for video compression. Proceedings of the 29th IEEE
Picture Coding Symposium (PCS 2012), May 2012.

[12] M. Esche, A. Krutz, A. Glantz, and T. Sikora. A novel in-loop filter for video-
compression based on temporal pixel trajectories. Proceedings of the 28th PCS,
pages 514–517, Dec 2010.

[13] M. Esche, A. Krutz, A. Glantz, and T. Sikora. Temporal trajectory filtering for
bi-directional predicted frames. In Proceedings of the 18th IEEE International
Conference on Image Processing (IEEE ICIP2011), pages 1669–1672, Brussels,
Belgium, Sept. 2011. IEEE catalog number: CFP11CIP-USB ISBN: 978-1-
4577-1302-6.

[14] M. Esche, M. Tok, A. Glantz, A. Krutz, and T. Sikora. Efficient quadtree
compression for temporal trajectory filtering. In Data Compression Conference,
Snowbird, Utah, Mar. 2013.

[15] M. Esche, M. Tok, and T. Sikora. Adaptive dense vector field interpolation for
temporal filtering. In 20th IEEE International Conference on Image Processing,
Melbourne, Australia, Sept. 2013.

[16] M. Esche, M. Tok, and T. Sikora. Theoretical considerations concerning pix-
elwise temporal filtering. In Data Compression Conference, Snowbird, Utah,
Mar. 2014.

[17] M. Flierl, S. Member, T. Wiegand, and B. Girod. Rate-constrained multihy-
pothesis prediction for motion compensated video coding. IEEE Transactions
on Circuits and Systems for Video Technology, 12:957–969, 2002.

[18] M. Flierl, T. Wiegand, and B. Girod. Multihypothesis pictures for h.26l. In Pro-
ceedings of the 8th IEEE International Conference on Image Processing (ICIP),
pages 526–529, 2001.

[19] C.-M. Fu, C.-Y. Chen, Y.-W. Huang, and S. Lei. Sample adaptive offset for
hevc. IEEE 13th Intl. Workshop on Multimedia Signal Processing (MMSP),
pages 1–5, 2011.

[20] A. Glantz, A. Krutz, M. Haller, and T. Sikora. Video coding using global motion
temporal filtering. Proceedings of the 16th IEEE International Conference on
Image Processing (ICIP), pages 1053–1056, Nov 2009.

[21] B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. Triangleflow: Op-
tical flow with triangulation-based higher-order likelihoods. In 11th European
Conference on Computer Vision (ECCV), Crete, Greece, September 2010.

BIBLIOGRAPHY 171

[22] M. Hazewinkel. Encylopedia of Mathematics. Springer, 2010.

[23] C. Igel and M. Hüsken. Empirical evaluation of the improved rprop learning
algorithms. Neurocomputing, 50:105–123, 2003.

[24] International Telecommunications Union. ITU-T Recommendation H.120.
Technical report, 1988.

[25] International Telecommunications Union. ITU-T Recommendation H.261.
Technical report, 1993.

[26] International Telecommunications Union. ITU-T Recommendation H.262.
Technical report, 1995.

[27] International Telecommunications Union. ITU-T Recommendation H.263.
Technical report, ITU-T Study Group 16, March 1996.

[28] International Telecommunications Union. Draft ITU-T recommendation and
final draft inernational standard of joint video specification (ITU-T Tec.
H.264/ICO/IEC 14496-10 AVC). Joint Video Team (JVT) of ICO/IEC MPEG
and ITU-T VCEG, JVT-G050, 2003.

[29] A. K. Jain. Advances in mathematical models for image processing. Proceedings
of the IEEE, 69(5):502–534, 1981.

[30] N. Jayant and P. Noll. Digital Coding of Waveforms: Principles and Applica-
tions to Speech and Video. Prentice Hall, Englewood Cliffs, NJ, 1984.

[31] I.-K. Kim, S. Lee, M.-S. Cheon, T. Lee, and J.-H. Park. Coding efficiency
improvement of hevc using asymmetric motion partitioning. In IEEE Interna-
tional Symposium on Brandband Multimedia Systems and Broadcasting, 2012.

[32] S. Knorr and T. Sikora. An image-based rendering (ibr) approach for realistic
stereo view synthesis of tv broadcast based on structure from motion. In Pro-
ceedings of the IEEE International Conference on Image Processing, volume 6,
pages 572 – 575, 2007.

[33] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz. Adaptive
deblocking filter. IEEE Transactions on Circuits and Systems for Video Tech-
nology (TCSVT), 13(7):614–619, Jul 2003.

[34] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss. Human-assisted motion
annotation. Prodeedings of the 26th IEEE Conference on Computer Vision and
Pattern Recognition, Jun 2008.

172 BIBLIOGRAPHY

[35] Y. Liu. Unified loop filter for video compression. IEEE Transactions on Circuits
and Systems for Video Technology, 20(10):1378 – 1382, October 2010.

[36] D. Marpe, H. Schwarz, and T. Wiegand. Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard. Circuits and Sys-
tems for Video Technology, IEEE Transactions on, 13(7):620–636, Jul 2003.

[37] K. McCann, T. Wiegand, B. Bross, W.-J. Han, J.-R. Ohm, J. Ridge,
S. Sekiguchi, and G. J. Sullivan. Hevc draft and test model editing. ITU-
T SG16 WP3, ISO/IEC JTC1/SC29/WG11 doc. JCTVC-D500-r1, Mar 2011.

[38] R. Mester. A system-theoretical view on local motion estimation. In 5th IEEE
Southwest Symposium on Image Analysis and Interpretation, 2002.

[39] A. A. Muhit, M. R. Pickering, M. R. Frater, and J. F. Arnold. Video coding
using elastic motion model and larger blocks. IEEE Transactions on Circuits
and Systems for Video Technology, 20(5):661–672, 2010.

[40] J.-R. Ohm. Three-dimensional subband coding with motion compensation.
IEEE Transactions on Image Processing, 3(5):559–571, Sep 1994.

[41] J.-R. Ohm. Multimedia Communication Technology, chapter 11, 12 and 13.
Springer, Heidelberg, Germany, 2004.

[42] K. K. Pang and T. K. Tan. Optimum loop filter in hybrid coders. IEEE
Transactions on Circuits and Systems for Video Technology, 4(2):158–167, April
1994.

[43] M. M. Sondhi and G. W. Elko. Adaptive optimization of microphone arrays
under a nonlinear constraint. In IEEE International Conference on Acoustics,
Speech, and Signal Processing, volume 11, pages 981 – 984, 1986.

[44] K. Suehring. Key technical area reference modell,
http://iphome.hhi.de/suehring/tml/download/.

[45] G. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on Circuits and
Systems for Video Technology, 22:1649–1668, 2012.

[46] A. M. Tourapis. Enhanced predictive zonal search for single and multiple frame
motion estimation. Proceedings of the SPIE Conference on Visual Communi-
cations and Image Processing (VCIP), pages 1069–1079, Jan 2002.

[47] N. K. Treadgold and T. D. Gedeon. Simulated annealing and weight decay
in adaptive learning: the sarprop algorithm. IEEE Transactions on Neural
Networks, 9(4):662–668, 1998.

BIBLIOGRAPHY 173

[48] D. T. Vo and T. Q. Nguyen. Quality enhancement for motion JPEG using
temporal redundancies. IEEE Transactions on Circuits and Systems for Video
Technology, 18(5):609–619, May 2008.

[49] D. T. Vo and T. Q. Nguyen. Optimal motion compensated spatio-temporal filter
for quality enhancement of H.264/AVC compressed video sequences. Proceed-
ings of the 26th IEEE International Conference on Image Processing (ICIP),
pages 3173–3176, Nov 2009.

[50] Z. Wang and A. C. Bovik. Mean squared error: Love it or leave it? IEEE
Signal Processing Magazine, 2009.

[51] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: From error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600 – 6012, 2004.

[52] T. Wiegand, M. Flierl, and B. Girod. Entropy-constrained design of quadtree
video coding schemes. In Proceedings of the International Conference on Image
Processing and its Applications, pages 36–40, 1997.

[53] T. Wiegand and B. Girod. Lagrange multiplier selection in hybrid video coder
control. Proceedings of the 8th IEEE International Conference on Image Pro-
cessing (ICIP), 3:542–545, 2001.

[54] T. Wiegand, E. Steinbach, A. Stensrud, and B. Girod. Multiple reference
picture video coding using polynomial motion models. Proceedings of the VCIP,
3309:134–145, Jan 1998.

[55] T. Wiegand, G. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13(7):560–576, Jul 2003.

[56] E. Wige, G. Yammine, P. Amon, A. Hutter, and A. Kaup. Adaptive in-loop
noise-filtered prediction for high efficiency video coding. In IEEE International
Workshop on Multimedia Signal Processing, pages 1–6, 2011.

[57] S. Wittmann and T. Wedi. Transmission of post-filter hints for video coding
schemes. Proceedings of the 25th Picture Coding Symposium (PCS), pages 81–
84, Sep 2007.

174 BIBLIOGRAPHY

Appendices

175

Appendix A

Block-Based Error Distribution
Analysis

177

178 APPENDIX A. BLOCK-BASED ERROR DISTRIBUTION ANALYSIS

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15 −0.45

−0.375
−0.3

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15

−0.2
−0.15
−0.1

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.3

−0.25
−0.2

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −0.4

−0.35
−0.3

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −1

−0.5
0

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.4

−0.3
−0.2

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15 −0.5

−0.4
−0.3

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −0.45

−0.375
−0.3

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.5

−0.4
−0.3

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15

−0.7
−0.65
−0.6

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −1.5

−0.75
0

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15

−0.4
−0.3
−0.2

q=255; r=0
B

a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15

−0.6
−0.5
−0.4

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −0.8

−0.7
−0.6

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.8

−0.7
−0.6

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −1.3

−1.2
−1.1

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −2

−1.5
−1

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15

−0.6
−0.5
−0.4

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15 −0.8

−0.6
−0.4

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −1.2

−1
−0.8

q=255; r=0
B

Q
M

a
ll

51015

5
10
15 −1

−0.9
−0.8

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −1.9

−1.8
−1.7

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −3.5

−2.75
−2

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.8

−0.6
−0.4

Figure A.1: Average error between the motion-compensated frame YMC and the
original YOrig within the 16× 16 macro blocks.

179

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15 −0.6

−0.5
−0.4

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15

−0.6
−0.5
−0.4

B
Q
M
a
ll

5 1015

5
10
15

−0.6
−0.5
−0.4

B
Q
S
q
u
a
re

5 1015

5
10
15 −1.1

−1

B
Q
T
e
rr
a
c
e

5 1015

5
10
15 −2

−1

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15 −0.6

−0.4

q=255; r=0

5 10 15

5

10

15
−0.9

−0.8

−0.7

−0.6

Figure A.2: Left: average errors for all four QPs. Right: Average over all tested
sequences.

180 APPENDIX A. BLOCK-BASED ERROR DISTRIBUTION ANALYSIS

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15 310

320
330

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 40

50
60

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 40

60
80

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 40

45
50

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 130

140
150

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 50

75
100

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15 400

410
420

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 60

70
80

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 50

75
100

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 55

60
65

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 140

150
160

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 60

100

140

q=255; r=0
B

a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15 500

520
540

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 80

100
120

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 60

90
120

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 85

92.5
100

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 180

200
220

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 100

125
150

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15 620

650
680

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 150

175
200

q=255; r=0
B

Q
M

a
ll

51015

5
10
15 120

150
180

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 160

170
180

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 260

300

340

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15

150
175
200

Figure A.3: Power of the error distribution between the motion-compensated frame
YMC and and the original YOrig within 16× 16 blocks.

181

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15 460

480

500

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15 80

100

120

B
Q
M
a
ll

5 1015

5
10
15 60

80
100
120

B
Q
S
q
u
a
re

5 1015

5
10
15 85

90
95
100

B
Q
T
e
rr
a
c
e

5 1015

5
10
15 180

200

220

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15

100

150

q=255; r=0

5 10 15

5

10

15
160

170

180

190

200

Figure A.4: Left: Average over the power distributions over four QPs. Right: Av-
erage over all sequences.

182 APPENDIX A. BLOCK-BASED ERROR DISTRIBUTION ANALYSIS

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15 −0.25

−0.15

−0.05

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −0.15

−0.125
−0.1

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.2

−0.15
−0.1

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15

−0.2
−0.175
−0.15

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −0.3

−0.15
0

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.15

−0.1
−0.05

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15

−0.3
−0.25
−0.2

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −0.45

−0.35

−0.25

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.45

−0.35

−0.25

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −0.55

−0.5
−0.45

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −1

−0.5
0

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.3

−0.25
−0.2

q=255; r=0
B

a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15

−0.4
−0.3
−0.2

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −0.8

−0.7
−0.6

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 −0.7

−0.6

−0.5

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −1.15

−1.075
−1

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −2

−1.5
−1

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.5

−0.425
−0.35

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15

−0.4
−0.3
−0.2

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 −1.2

−1
−0.8

q=255; r=0
B

Q
M

a
ll

51015

5
10
15 −1

−0.9
−0.8

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 −1.8

−1.7
−1.6

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 −3

−2.5
−2

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 −0.65

−0.55
−0.45

Figure A.5: Average error between the decoded frame Ydec and the original Yorig

within a 16× 16 block.

183

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15 −0.35

−0.3
−0.25
−0.2

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15 −0.6

−0.55
−0.5
−0.45

B
Q
M
a
ll

5 1015

5
10
15 −0.6

−0.5

−0.4

B
Q
S
q
u
a
re

5 1015

5
10
15

−0.9

−0.8

B
Q
T
e
rr
a
c
e

5 1015

5
10
15 −1.5

−1

−0.5

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15

−0.35
−0.3
−0.25

l

q=255; r=0

5 10 15

5

10

15
−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

Figure A.6: Left: Average over all tested QPs. Right: Average over all sequences.

184 APPENDIX A. BLOCK-BASED ERROR DISTRIBUTION ANALYSIS

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 22

51015

5
10
15 6.2

6.5

6.8

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 6.2

6.4
6.6

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 5.5

5.6
5.7

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 5.8

5.9
6

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 6.2

6.5
6.8

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 4.2

4.4
4.6

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 27

51015

5
10
15

13
13.5
14

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 17.5

18.5
19.5

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 12.5

13
13.5

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 17

17.75
18.5

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 19

20
21

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 11

11.5
12

q=255; r=0
B

a
s
k
e
tb

a
ll

D
ri
v
e

QP 32

51015

5
10
15

24
25
26

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 45

47.5
50

q=255; r=0

B
Q

M
a
ll

51015

5
10
15 30

31
32

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 50

52
54

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15

40
42.5
45

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 30

32
34

q=255; r=0

B
a
s
k
e
tb

a
ll

D
ri
v
e

QP 37

51015

5
10
15 42

47
52

q=255; r=0

B
lo

w
in

g
B

u
b
b
le

s

51015

5
10
15 105

112.5
120

q=255; r=0
B

Q
M

a
ll

51015

5
10
15 66

71
76

q=255; r=0

B
Q

S
q
u
a
re

51015

5
10
15 125

130
135

q=255; r=0

B
Q

T
e
rr

a
c
e

51015

5
10
15 70

80

90

q=255; r=0

R
a
c
e
H

o
rs

e
s

51015

5
10
15 70

75
80

Figure A.7: Distribution of the MSE between the decoded frame Yrec and the original
Yorig within all 16× 16 blocks.

185

B
a
s
k
e
tb
a
ll

D
ri
v
e

5 1015

5
10
15

22

24

B
lo
w
in
g
B
u
b
b
le
s

5 1015

5
10
15

45

50

B
Q
M
a
ll

5 1015

5
10
15 28

30

32

B
Q
S
q
u
a
re

5 1015

5
10
15 50

52

54

B
Q
T
e
rr
a
c
e

5 1015

5
10
15

35

40

R
a
c
e
H
o
rs
e
s

5 1015

5
10
15 29

31

33

q=255; r=0

5 10 15

5

10

15
35

36

37

38

39

Figure A.8: Left: Average over all MSE per sequence over all QPs. Right: Average
over all sequences.

186 APPENDIX A. BLOCK-BASED ERROR DISTRIBUTION ANALYSIS

Appendix B

Implemented Neural Networks

The implemented neural networks and their parameters shall be described here. The
configurable network parameters shall be detailed first. The iRprop+ is essentially a
gradient-based algorithm whose function to optimize is an error function. The vari-
ables of the error function are its weights. As has been described in Section 6.1.2
there are combinations of weights that have no practical use for this application.

In order to reduce the runtime of the algorithm, these combinations are eliminated
first. Subsequently, upper limits are imposed on the utilized weights within the
ANN. Two variables (NN UpperBound and NN LowerBound) are defined for each
possible weight of the algorithm. Another bound ensures that small weights tend
to be chosen more frequently during the early stages of the algorithm. With an in-
creasing number of iterations higher values can be assigned to the weights. To this
end the temperature parameter T from Section 6.1.2 is used. It controls the speed
at which a bound moves towards larger weights. A second parameter k1 individually
adjusts the speed of adjustment for each weight whereas k4 sets the starting poiunt
for the boundary. Together these are used to formulate a moving boundary:

(B.1) MB = k4 · 2k1·T ·n,

where n is the number of iterations.

For the SARprop variant of the algorithm the following additional constraints
are formulated: Should a parameter λ be smaller than k2 · sRMS then the λ for the
next iteration will be

(B.2) λnew = λ · η− + k3 · r · 2−T ·n.

Here λ is the parameter introduced in [47] that adjusts the weights and r is a random
real number between 0 and a. η− = 0.5 as in [47]. k3 is the maximum allowed change

187

188 APPENDIX B. IMPLEMENTED NEURAL NETWORKS

of the weight. k2 is an additional threshold such that, if the derivative of the weight
drops below k2, only then is a random change of the weight permitted. The sRMS
describes a modified version of the root mean squared error:

(B.3) sRMS =
√

MSE0 ·
√

MSE

256
.

The first term MSE0 is the MSE value measured between the decoded frame and
the reference frame. The second term represents a normalized version of the regular
MSE. Together both can be interpreted as a normalized error variance which is
converted to the standard deviation by taking the square root. The other parameters
of the algorithm are its termination criteria:

1. maximum number of iterations

2. minimum absolute value of the error gradient

3. minimum absolute value of a single component of the error gradient

The algorithm stops when the last two criteria are fulfilled.

Appendix C

Spatial and Temporal Properties
of the Test Sequences

189

190APPENDIX C. SPATIAL AND TEMPORAL PROPERTIES OF THE TEST SEQUENCES

Sequence QP σ2
η σ2

Y αx αy
σ2
η

σ2
Y

qx,max qy,max

BlowingBubbles

18 486.13 1610 0.997 0.998 0.319 4.67 4.67
20 483.63 1610 0.997 0.998 0.300 4.66 4.74
22 483.32 1610 0.997 0.998 0.300 4.67 4.32
24 476.56 1610 0.997 0.998 0.296 5.28 4.28
26 475.30 1610 0.997 0.998 0.295 5.79 4.59
28 470.83 1610 0.997 0.998 0.292 6.59 4.45
30 470.21 1610 0.997 0.998 0.292 4.42 4.53
32 462.67 1610 0.997 0.998 0.287 4.90 3.81
34 451.95 1610 0.997 0.998 0.281 4.47 3.53
36 443.36 1610 0.997 0.998 0.275 3.79 3.10
38 428.36 1610 0.997 0.998 0.266 4.04 3.46
40 416.40 1610 0.997 0.998 0.259 3.51 2.74
42 400.85 1610 0.997 0.998 0.249 3.30 2.75
44 371.22 1610 0.997 0.998 0.231 3.04 2.48
46 344.58 1610 0.997 0.998 0.214 2.94 2.60
48 336.90 1610 0.997 0.998 0.209 2.46 2.86

BQSquare

18 446.13 4465 0.996 0.996 0.100 1.85 2.62
20 441.53 4465 0.996 0.996 0.099 1.64 2.13
22 440.04 4465 0.996 0.996 0.099 1.61 2.12
24 440.01 4465 0.996 0.996 0.097 1.40 1.94
26 433.45 4465 0.996 0.996 0.095 1.36 2.01
28 423.31 4465 0.996 0.996 0.094 1.39 1.88
30 418.11 4465 0.996 0.996 0.096 1.38 1.69
32 430.63 4465 0.996 0.996 0.093 1.35 1.81
34 415.36 4465 0.996 0.996 0.088 1.37 1.83
36 392.83 4465 0.996 0.996 0.083 1.26 1.40
38 395.86 4465 0.996 0.996 0.089 1.23 1.39
40 372.38 4465 0.996 0.996 0.083 1.25 1.16
42 341.58 4465 0.996 0.996 0.077 1.25 1.00
44 307.61 4465 0.996 0.996 0.069 1.13 0.60
46 285.22 4465 0.996 0.996 0.064 1.02 0.60
48 192.68 4465 0.996 0.996 0.043 0.96 0.59

Table C.1: Spatial and temporal properties for BlowingBubbles and BQSquare.

191

Sequence QP σ2
η σ2

Y αx αy
σ2
η

σ2
Y

qx,max qy,max

RaceHorses (D)

18 583.74 1600 0.995 0.996 0.365 6.96 6.71
20 671.13 1600 0.995 0.996 0.363 6.96 6.96
22 670.60 1600 0.995 0.996 0.361 6.60 6.64
24 667.33 1600 0.995 0.996 0.361 6.96 6.66
26 666.50 1600 0.995 0.996 0.362 6.60 6.59
28 663.00 1600 0.995 0.996 0.363 6.96 6.62
30 665.31 1600 0.995 0.996 0.363 6.60 6.62
32 664.23 1600 0.995 0.996 0.351 6.60 6.92
34 652.91 1600 0.995 0.996 0.352 6.96 6.79
36 640.04 1600 0.995 0.996 0.340 6.96 6.62
38 627.03 1600 0.995 0.996 0.347 6.96 6.00

Waterfall

18 740.04 735 0.998 0.990 1.007 0.65 3.09
20 735.94 735 0.998 0.990 1.000 0.66 3.13
22 735.90 735 0.998 0.990 1.001 0.64 3.13
24 729.25 735 0.998 0.990 0.992 0.64 3.16
26 724.18 735 0.998 0.990 0.985 0.63 3.21
28 721.10 735 0.998 0.990 0.981 0.65 3.01
30 721.51 735 0.998 0.990 0.982 0.62 3.03
32 714.65 735 0.998 0.990 0.973 0.67 3.16
34 716.80 735 0.998 0.990 0.974 0.67 3.13
36 706.35 735 0.998 0.990 0.960 0.69 3.31
38 705.38 735 0.998 0.990 0.959 0.73 3.17
40 691.92 735 0.998 0.990 0.940 0.72 3.00
42 676.81 735 0.998 0.990 0.921 0.75 2.81
44 668.28 735 0.998 0.990 0.909 0.85 1.67
46 656.25 735 0.998 0.990 0.893 0.85 1.53
48 639.34 735 0.998 0.990 0.869 0.93 1.40

Table C.2: Spatial and temporal properties for RaceHorses and Waterfall.

	1 Introduction
	1.1 Motivation
	1.2 Literature Survey
	1.2.1 General Denoising/Filtering Concepts
	1.2.2 Temporal Denoising/Filtering Concepts

	1.3 Main Contributions
	1.4 Structure of the Thesis

	2 Definitions, Applications, Quality Metrics
	2.1 Definitions
	2.2 Possible Applications
	2.2.1 Temporal In-loop Filter for Video Compression
	2.2.2 Temporal Post-Filter for Video Denoising
	2.2.3 Temporally Denoised Prediction Mode for Video Compression

	2.3 Quality Metrics
	2.3.1 Evaluating the Correctness of a Trajectory
	2.3.2 Evaluating the Image Quality

	2.4 Chapter Summary

	3 Perfect Motion Knowledge
	3.1 Human-Assisted Motion Annotation
	3.2 Theoretical Foundations
	3.2.1 Noise Reduction Through Temporal Filtering
	3.2.2 Image and Noise Model
	3.2.3 Investigation of Real-World Sequences

	3.3 Perfect Motion Vector Fields
	3.3.1 Preliminary Considerations
	3.3.2 Performance Comparison Between QTTF and QTTF with Perfect Motion Vector Fields

	3.4 Chapter Summary

	4 Theoretical Considerations
	4.1 Maximum Theoretically Achievable Gain
	4.1.1 Perfect Knowledge of all Trajectories and Noisy Images
	4.1.2 Motion Error and Noise-Free Images
	4.1.3 Motion Error and Noisy Images

	4.2 Optimal Filter Length and Quality Improvements
	4.3 Trajectory Structure and GOP-Structure
	4.4 Chapter Summary

	5 Practical Realizations Part 1
	5.1 Temporal Trajectory Filtering
	5.1.1 Introduction
	5.1.2 Formation of Temporal Pixel Trajectories
	5.1.3 Derivation of Filter Parameters
	5.1.4 Experimental Evaluation
	5.1.5 Summary

	5.2 Weighted Temporal Long Trajectory Filtering
	5.2.1 Introduction
	5.2.2 Lagrangian Minimization and its Applications inVideo Coding
	5.2.3 Theoretical Basis
	5.2.4 Filter Design
	5.2.5 Experimental Evaluation
	5.2.6 Summary

	5.3 Quadtree-Based Temporal Trajectory Filtering
	5.3.1 Introduction
	5.3.2 Temporal Trajectory Filtering
	5.3.3 Quadtree-Based Parameter Signaling
	5.3.4 Experimental Evaluation
	5.3.5 Summary

	5.4 A Flexible Side-Information Compression Scheme
	5.4.1 Designing CABAC Context Models for QTTF
	5.4.2 Experimental Evaluation

	5.5 Adaptive Dense Vector Field Interpolation
	5.5.1 Introduction
	5.5.2 Motion Field Interpolation
	5.5.3 Experimental Evaluation
	5.5.4 Summary

	5.6 Chapter Summary

	6 Practical Realizations Part 2
	6.1 An Artificial Neural Network
	6.1.1 Additional Criteria
	6.1.2 Filtering
	6.1.3 TTF as an Artificial Neural Network
	6.1.4 The Internal Network
	6.1.5 A Combination of Luminance Filtering and Temporal Consistency Filtering
	6.1.6 Other Possible Implementations
	6.1.7 The Learning Algorithm

	6.2 A Reference-Free Post-Filtering Approach
	6.2.1 Local Separation with Brute-Force Filtering
	6.2.2 1616 only, Motion Compensated for the Brute-Force Filter
	6.2.3 16 16 only, Motion-Compensated with Residual

	6.3 Brute-Force Filtering With Side-Information
	6.3.1 Local Separation with an Artificial Neural Network
	6.3.2 16 16-Blocks only, Artificial Neural Network with the Original as Reference
	6.3.3 Artificial Neural Network Using all Possible Block-Sizes
	6.3.4 Neural Network with Quantized Parameters
	6.3.5 Evaluation of the Filter based on an Artificial Neural Network
	6.3.6 Summary

	6.4 Post-Filtering Approach for HEVC
	6.5 Chapter Summary

	7 Theory Assessment
	7.1 Predicted and Realized Filter Lengths
	7.1.1 Analysis of the Predicted Filter Lengths
	7.1.2 Variance Analysis

	7.2 Analysis of the Filter Functionality
	7.3 Filtering of Foreground and Background
	7.4 Chapter Summary

	8 Conclusion and Outlook
	8.1 Achievements
	8.2 Conclusions
	8.3 Outlook

	Appendix A Block-Based Error Distribution Analysis
	Appendix B Implemented Neural Networks
	Appendix C Spatial and Temporal Properties of the Test Sequences

