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The geometry of the space of branched rough paths

Nikolas Tapia and Lorenzo Zambotti

ABSTRACT

We construct an explicit transitive free action of a Banach space of Holder functions on the
space of branched rough paths, which yields in particular a bijection between these two spaces.
This endows the space of branched rough paths with the structure of a principal homogeneous
space over a Banach space and allows to characterize its automorphisms. The construction is
based on the Baker—Campbell-Hausdorff formula, on a constructive version of the Lyons—Victoir
extension theorem and on the Hairer—Kelly map, which allows to describe branched rough paths
in terms of anisotropic geometric rough paths.

1. Introduction

The theory of rough paths has been introduced by Terry Lyons in the 1990s with the aim of
giving an alternative construction of stochastic integration and stochastic differential equations.
More recently, it has been expanded by Martin Hairer to cover stochastic partial differential
equations, with the invention of regularity structures.

A rough path and a model of a regularity structure are mathematical objects which must
satisfy some algebraic and analytical constraints. For instance, a rough path can be described
as a Holder function defined on an interval and taking values in a non-linear finite-dimensional
Lie group; models of regularity structures are a generalization of this idea. A crucial ingredient
of regularity structures is the renormalization procedure: given a family of regularized models,
which fail to converge in an appropriate topology as the regularization is removed, one wants
to modify it in a such a way that the algebraic and analytical constraints are still satisfied and
the modified version converges. This procedure has been obtained in [6, 9] for a general class
of models with a stationary character.

The same question about rough paths has been asked recently in [3-5], and indeed it could
have been asked much earlier. Maybe this has not happened because the motivation was less
compelling; although one can construct examples of rough paths depending on a positive
parameter which do not converge as the parameter tends to 0, this phenomenon is the exception
rather than the rule. However, the problem of characterizing the automorphisms of the space
of rough paths is clearly of interest; one example is the transformation from It6 to Stratonovich
integration (see, for example, [1, 16, 17]). However, our aim is to put this particular example
in a much larger context.

We recall that there are several possible notions of rough paths; in particular we have
geometric rough paths (GRPs) and branched rough paths, two notions defined, respectively,
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by Terry Lyons [29] and Massimiliano Gubinelli [25] (see Sections 3 and 4). These two notions
are intimately related to each other, as shown by Hairer and Kelly [28] (see Section 4). We
note that regularity structures [27] are a natural and far-reaching generalization of branched
rough paths.

In this paper we concentrate on the automorphisms of the space of branched rough paths
(see below for a discussion of the geometric case). Let .# be the collection of all non-planar
rooted forests with nodes decorated by {1,...,d} (see Section 4). For instance, the following

forest
kel
b \@m
1

is an element of .#. We call 7 < % the set of rooted trees, namely of non-empty forests with
a single connected component. Grading elements T € % by the number |7| of their nodes we
set

Ip={re T 7| <n}, neN.
Let now S be the linear span of .%. It is possible to endow 7 with a product and a coproduct
A: H — I ®  which make it a Hopf algebra, also known as the Butcher—-Connes—Kreimer
Hopf algebra (see Section 4.2). We let G denote the set of all characters over S, that is,
elements of G are functionals X € 2* that are also multiplicative in the sense that
(X,70) = (X, 7XX,0)

for all forests (and in particular trees) 7,0 € .%. Furthermore, the set G can be endowed with
a product *, dual to the coproduct, defined pointwise by (X xY,7) = (X ® Y, A7). We work
on the compact interval [0,1] for simplicity, and all results can be proved without difficulty on
[0, 7] for any T > 0.

DEFINITION 1.1 (Gubinelli [25]). Given v €]0,1[, a branched ~-rough path is a path
X:[0,1]> — G which satisfies Chen’s rule
Xsu*Xut :Xsta S,U,te [Oa 1]7
and the analytical condition
(Xet, ™Y S t—s1, 7€ 2.
Setting xz = <X0t,-i>, t € [0,1], we say that X is a branched 7-rough path over the path
= (z%,...,2%). We denote by BRP” the set of all branched v-rough paths (for a fixed finite
alphabet {1,...,d}).

By introducing the reduced coproduct A': 7 — H# ® I
ANr=AT-T®R1-1®T,

where 1 denotes the empty forest, Chen’s rule can we rewritten as follows:

M{X, Tysut = (Xsu ® Xut, A7), s,u,t€[0,1], (1.1)
where for F': [0,1]> - R we set 0F: [0,1]° —» R,
5Fsut = Fst - Fsu - Futa (12)

which is the second-order finite increment considered by Gubinelli [24]. Note that the right-
hand side of (1.1) depends on the values of X on trees with strictly fewer nodes than 7; if we
can invert the operator 4, then the right-hand side of (1.1) determines the left-hand side. This
is however not a trivial result. In fact, a simple (but crucial for us) remark is the following:
if y|7| < 1, then for any g7 : [0,1] — R such that g7 € C"!7l([0,1]), the classical homogeneous
Holder space on [0,1] with Hélder exponent |7, the function

[0, 1]2 3 (Sat) = Lt = <Xsta T> + gz— - g; (13)
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also satisfies
5Fsut = <Xsu®XutaA/T>v |Fst‘ S |t_s|’y‘7|7 S,'I_l,,te [07 1] (14)

Inversely, if F': [0,1]? — R satisfies (1.4), then ' must satisfy (1.3) with g™ € C"17l([0,1]).

If 4|7] > 1, then Gubinelli’s Sewing Lemma [24)] yields that the function (s,t) — (X, 7) is
uniquely determined by (1.4), that is, by the values of X on trees with at most |7| — 1 nodes,
and therefore, applying a recursion, on trees with at most N := |y~!| nodes. More explicitly, the
Sewing Lemma is an existence and uniqueness result for [0,1]? 3 (s,t) — (X, 7y with v|7| > 1,
once the right-hand side of (1.1) is known. However, for v|7| < 1 we have no uniqueness, as we
have already seen, and existence is not trivial.

As we have seen in (1.3), the value of (X, 7) can be modified by adding the increment of a
function in C771([0,1]), as long as |7| < 1. It seems reasonable to think that it is therefore
possible to construct an action on the set of branched ~-rough paths of the abelian group
(under pointwise addition)

€7 = {(g )reay : 95 =0, g" € CVI([0,1]), VT € 7, |7| < N},

namely the set of all collections of functions (g7 € C?I7I([0,1]) : 7€ 7, |7| < N) indexed by
rooted trees with fewer than N = |y~!| nodes, such that g5 = 0 and g” € C"I7/([0,1]). This is
indeed the content of the following.

THEOREM 1.2. Let v €]0,1[ such that v~! & N. There is a transitive free action of €7 on
BRP?, namely a map (g, X) — gX such that

(1) for each g,g' € €7 and X € BRP” the identity ¢'(¢X) = (g + ¢') X holds;
(2) if (¢97)rezy € €7 is such that there exists a unique 7 € I with g7 # 0, then

<(gX)st7 T> = <Xst7 T> + g;— - g:

and {gX,0) =(X,0) for all 0 € J not containing 7;
(3) for every pair X, X’ €e BRP” there exists a unique g € €7 such that gX = X'.

We say that a tree o € 7 contains a tree T € .7 if there exists a subtree 7/ of o, not necessarily
containing the root of o, such that 7 and 7 are isomorphic as rooted trees, where the root of 7/
is its node which is closest to the root of 0. Note that every (¢7)rez, € € is the sum of finitely
many elements of ¥ having satisfying the property required in point (2) of Theorem 1.2.

If v>1/2 then the result of Theorem 1.2 is trivial. Indeed, in this case N =1,

Iy ={si:1=1,...,d} and € = {g'i e C7([0,1]) : gai =0,i=1,...,d}. Then
the action is
(9, X) = 9X, (g X)at 1) = Kty ei) + g1 = g1, (1.5)
while the value of (¢X,7) for |7| > 2 is uniquely determined by (1.1) via the Sewing Lemma.
For example,
¢

(gX)art]) = f (@ — i + g7 — gy d(a + g7, (16)

S

where :L’Z = (Xou, iy and the integral is well defined in the Young sense (see [24, Section 3]).
If 1/3<v<1/2then N=2and 9, = I, 1 {I{ D] = 17___’d}. Then the action at
level |7| =1 is still given by (1.5), while at level |7| = 2 we must have by (1.1)

39X s = (X )su @ (9X )ut, ATy = (2] — 2] + g7 — g2z} — 2}, + g} — g)).

(1.7)
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Although the right-hand side of (1.7) is explicit and simple, in this case there is no canonical
choice for <gX y 1 > An expression like (1.6) is ill defined in the Young sense, and the same is
true if we try the formulation

t

(X0t = Xt + [ (] =t g7 = g1 dg) + (67 - g7)dal).

S

which satisfies formally (1.7), but the Young integrals are ill defined since 2y < 1. The
construction of <gX ) Ig> is therefore not trivial in this case.

The same argument applies for any v < 1/2 and any tree 7 such that 2 < |7| < N = |y7!],
and the fact that the above Young integrals are not well defined shows why existence of the
map X — ¢gX is not trivial.

Since Theorem 1.2 yields an action of 7 on BRP” which is regular, that is, free and
transitive, then BRP” is a principal 7 -homogeneous space or € ”-torsor. In particular, BRP"”
is a copy of €7, but there is no canonical choice of an origin in BRP”.

Therefore, Theorem 1.2 also yields the following.

COROLLARY 1.3. Given a branched «y-rough path X, the map g — gX yields a bijection
between " and the set of branched ~y-rough paths.

Therefore Corollary 1.3 yields a complete parametrization of the space of branched rough
paths. This result is somewhat surprising, since rough paths form a non-linear space, in
particular because of the Chen relation; however, Corollary 1.3 yields a natural bijection
between the space of branched y-rough paths and the linear space €.

Corollary 1.3 also gives a complete answer to the question of existence and characterization
of branched ~-rough paths over a y-Holder path x. Unsurprisingly, for our construction we start
from a result of Lyons and Victoir’s [30] of 2007, which was the first general theorem of existence
of a geometric y-rough path over a y-Holder path z (see our discussion of Theorem 1.4).

An important point to stress is that the action constructed in Theorem 1.2 is neither unique
nor canonical. In the proof of Theorem 3.4, some parameters have to be fixed arbitrarily, and
the final outcome depends on them (see Remark 3.6). In this respect, the situation is similar
to what happens in regularity structures with the reconstruction operator on spaces 27 with
a negative exponent v < 0 (see [27, Theorem 3.10]).

1.1. Outline of our approach

A key point in Theorem 1.2 is the construction of branched ~-rough paths. In the case of
geometric rough paths (GRPs; see Definition 4.1), the signature [11, 29] of a smooth path
x: [0,1] — R? yields a canonical construction. Other cases where GRPs over non-smooth paths
have been constructed are Brownian motion and fractional Brownian motion (see [13] for the
case H > % and [33] for the general case), among others. However, until Lyons and Victoir’s
paper [30] in 2007, this question remained largely open in the general case. The precise result

is as follows.

THEOREM 1.4 (Lyons—Victoir extension). If p € [1,0)\N and v: = 1/p, a y-Hélder path
x: [0,1] — R can be lifted to a geometric y-rough path. For anyp > 1 and ¢ €0, [, a y-Hélder
path can be lifted to a geometric (y — €)-rough path.

Our first result is a version of this theorem which holds for rough paths in a more
general algebraic context (see Theorem 3.4). We use the Lyons—Victoir approach and an
explicit form of the Baker—Campbell-Hausdorff formula by Reutenauer [34] (see formula
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(2.11)). Although Lyons and Victoir used in one passage the axiom of choice, our method
is completely constructive.

Using the same idea we extend this construction to the case where the collection (!, ... %)
is allowed to have different regularities in each component, which we call anisotropic (geometric)
rough paths (aGRP) (see Definition 4.8).

THEOREM 1.5. To each collection (z');=1,.. 4, with z* € C7([0,1]), we can associate an
anisotropic rough path X over (2%)i=1.....a- For every collection (g");=1,.._a, with g* € Ci([0,1]),
denoting by gX the anisotropic geometric rough path (aGRP) over (:U‘ + gi)izlﬁ,,,,d, we have

g(9X)=(9+4)X.

This kind of extension to rough paths has already been explored in the papers [2, 26] in the
context of isomorphisms between geometric and branched rough paths. It turns out that the
additional property obtained by our method enables us to explicitly describe the propagation
of suitable modifications from lower to higher degrees.

We then go on to describe the interpretation of the above results in the context of branched
rough paths. The main tool is the Hairer—Kelly map [28], that we introduce and describe in
Lemma 5.1 and then use to encode branched rough paths via aGRPs, along the same lines as
in [2, Theorem 4.3].

THEOREM 1.6. Let X be a branched ~-rough path. There exists an aGRP X
indexed by words on the alphabet Jy, with exponents (v, = v|7|,7 € Jx), and such that
(X, 7y ={(X,9¥(r)), where v is the Hairer—Kelly map.

The main difference of this result with [28, Theorem 1.9] is that we obtain an aGRP instead
of a classical GRP. This means that we do not construct unneeded components, that is,
components with regularity larger than 1, and we also obtain the right Holder estimates in
terms of the size of the indexing tree. This addresses two problems mentioned in Hairer and
Kelly’s work, namely [28, Remarks 4.14 and 5.9].

We then use Theorems 1.5 and 1.6 to construct our action on branched rough paths. Given
(9,X) € €7 x BRP?, we construct the aGRPs X and ¢gX and then define the branched rough
path ¢X € BRP” as (¢X,7) = {(¢gX, (7)), where v is the Hairer-Kelly map.

Our approach also does not make use of Foissy—Chapoton’s Hopf algebra isomorphism
[10, 20] between the Butcher—Connes—Kreimer Hopf algebra and the shuffle algebra over a
complicated set I of trees as is done in [2]. This allows us to construct an action of a larger
group on the set of branched rough paths; indeed, using the above isomorphism one would
obtain a transformation group parametrized by (¢7),e; where I is the aforementioned set of
trees of Foissy-Chapoton’s results and g7 € C"I7l; on the other hand our approach yields a
transformation group parametrized by (¢7)rez, . With the smaller set I n Fy, transitivity of
the action g — ¢gX would be lost.

Finally we note that we use a special property of the Butcher-Connes—Kreimer Hopf algebra:
the fact that it is freely generated as an algebra by the set of trees, so defining characters over
it is significantly easier than in the geometric case. To define an element X € G it suffices to
give the values (X, 1) for all trees 7 € 7; by freeness there is a unique multiplicative extension
to all of 7. This is not at all the case for GRPs: the shuffle algebra T'(A) over an alphabet A
is not free over the linear span of words so if one is willing to define a character X over T(A)
there are additional algebraic constraints that the values of X on words must satisfy.

Outline. We start by reviewing all the theoretical concepts needed to make the exposition
in this section formal. In Section 3 we state and prove the main result of this chapter. We
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extend the notion of rough path and we give an explicit construction of such a generalized
rough path above any given path z € C7. Next, in Section 4.3 we extend this result to the
class of aGRPs. Finally, in Section 4 we connect our construction with Gubinelli’s branched
rough paths, and we extend Hairer and Kelly’s work in Section 5.1. We also explore possible
connections with renormalization in Section 6 by studying how our construction behaves under
modification of the underlying paths. Then, we connect this approach with a recent work by
Bruned, Chevyrev, Friz and Preif§ [4] in Section 6.1, who borrowed ideas from the theory
of regularity structures [6, 27] and proposed a renormalization procedure for geometric and
branched rough paths [4] based on pre-Lie morphisms.

The main difference between our result and the Bruned-Chevyrev-Friz—Preif (BCFP)
procedure is that they consider translation only by time-independent factors, whereas — under
reasonable hypotheses — we are also able to handle general translations depending on the time
parameter. We also mention that some further algebraic aspects of renormalization in rough
paths have been recently developed in [5].

2. Preliminaries
A Hopf algebra /7 is a vector space endowed with an associative product m: 7 & S — H:
m(m ®id) = m(id ®m),
and a coassociative coproduct A: 7 — A Q H:
(d®A)A = (A®Id)A,

satisfying moreover certain compatibility assumptions; 7 is also supposed to have a unit
1 € 7, a counit € € * and an antipode S: 7 — ¢ such that

m(id ® S)Az = e(x)1 = m(S ®id)Az
for all x € 5. As usual we will use the more compact notation m(z ® y) = zy. The reader is

referred to the papers [8, 31] for further details.

DEFINITION 2.1. We say that the Hopf algebra ¢ is graded if it can be decomposed as a
direct sum

e
n=0
with
m: Hn) @ Hm) = Hnimy,  A: Ay = B Hp) @ Hy)- (2:2)
p+g=n

In a graded Hopf algebra, each element x € 57 can be decomposed as a sum

o8]
T = Z T, Tn € Hin), (2.3)
n=0
where only a finite number of the summands are non-zero. We call each x,, the homogeneous
part of degree n of x, and elements of J7(,,) are said to be homogeneous of degree n. In this
case we write |z,| = n.

DEFINITION 2.2. The graded Hopf algebra 7 is connected if the degree 0 part is one-
dimensional. It is locally finite if dim .7,,) < oo for all n > 0.
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From now on we consider a graded connected locally finite Hopf algebra 2. Then, for any
homogeneous element x € J(,,) the coproduct can be written as

Ar=2®1+1®@z+ Az, where A'ze (—B Hpy @ Hg)
ptq=n
P,q=1

and A': # — s ® s is known as the reduced coproduct. Furthermore, the coassociativity
of A and of A/, that is, the identity (A’ ® id)A" = (id ® A")A’; allows to unambiguously define
their iterates A, Al : # — #®"+1) by setting for n > 2

A, =(0d®A, 1A, Al =({d®A!,_)A".
Then we have, for a homogeneous element z € ;) of degree k,

A;la:e @jﬁpl)®"‘®’%ﬂ(ﬂ7z+l)'

pit+pny1=k
pjzl

REMARK 2.3. These properties of the iterated coproduct imply that the bialgebra (52, A)
is conilpotent, that is, for each homogeneous x € ;) there is an integer n < k such that
Al x = 0. We obtain also the inclusion

®(n+1)
Afn%n-&-l) = %1) 3

that is, the n-fold reduced coproduct of a homogeneous element of degree n + 1 is a sum of
(n + 1)-fold tensor products of homogeneous elements of degree 1.

We recall that in general the dual space JZ* carries an algebra structure given by the
convolution product *, dual to the coproduct A, defined by

(f*g,m)=<{f®g,Ax).

For a collection of maps fi,..., fx € 7* we have the formula

fixooxfro=(i® - ® fr) o Ap1. (2.4)

DEFINITION 2.4. A character on 4 is a non-zero linear map X: 77 — R
<X,acy>=<X,x><X,y>, Va,ye A

for all z,y e 5. We call G the set of all characters on . An infinitesimal character (or
derivation) on 7 is a linear map «: 5 — R such that

(o, zy) = o, x)(e,y) + (e, xXony), Va,ye A
We call g the set of all infinitesimal characters on 7.

We observe that necessarily (X,1)=1 and {a,1)=0 for all X e G and aecg. It is
well known that the (G,=,¢) is a group with product *, unit ¢ and inverse X ! = X oS
where S is the antipode defined above. Moreover (g,[-,-]) is a Lie algebra with bracket
[a, B] = ax B — B * « (see, for example, [31]).

2.1. Nilpotent Lie algebras

From (2.2) we have
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LEMMA 2.5. For any N € N the subspace

N
A= @ Hyy = H
k=0

is a counital subcoalgebra of (', A, ¢).

By Lemma 2.5 we can consider the dual algebra (S5, x, ¢). This algebra is also graded and
connected, since we have the natural grading

N N
A = DAy, A=) ap), (2.5)
k=0 k=0

where o) : Ay — R is defined by a ) (2) = a(zy) with the notation (2.3).
Since J#y is not a subalgebra of J#, the notions of character and infinitesimal character on
S5 are not well defined. We can however introduce their truncated versions.

DEFINITION 2.6. We say that X € #5\{0} is a truncated character on ¢ if

(X, wy) = (X, 2)(X,y)

holds for all x € J{,,),y € A,y withn +m < N. We call G the space of truncated characters
on Sy .
Likewise, we say that o € ¥ is a truncated infinitesimal character if

(o, wy) = (o, )(e, y) + (g, 2 s y)

holds for all = e J,),y € H#,) with n+m < N. We call gV the space of truncated
infinitesimal characters on J#y .

LEMMA 2.7, There are a canonical inclusions 7y — | < 2*, which induce canonical

inclusion gV < gN*! < g. Moreover, such canonical inclusions are right-inverse for the

corresponding restriction maps % — G | — .

Proof. Using the notation (2.5), we can extend o € S to o€ S, | (vespectively, J7*)
by setting a(y41) = 0 (respectively, ) =0 for all k > N + 1). Trivially this extension takes
A to A, I ae g and @,y € Hy are such that |z] + |y| < N + 1 then

N+1

(ayayy = a, Y (zy); Z<a zy); Z Z O, ThYr—j)

§=0 =0

N

= > (asz)ey) + (e, )any;)) = (asa)e, y) + (e, x)any),

so that the extension of « is in g’V *!. The same argument yields the inclusion g" < g. O

There are also the truncated exponential expy: J6F — 5 and logarithm
logy: J6 — 5y, defined by the sums

N 1 X N h+1 .
eXpN(a) = k' * ‘jf ’ logN Z _E)* ’%N' (26)

The proof of the next result can be found for instance in [19, Theorem 77].
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LEMMA 2.8. (G, *,¢) is a group and (g, [, -]) is a Lie algebra. Moreover, exp : g% — G
is a bijection with inverse logy : GV — g".
For every k > 0 we define now, using the notation (2.5),

Wi = {a €Eg: a= a(k,)}.
LEMMA 2.9. For all n,m > 0 we have [W,, W] € Whim.

Proof. Let x € 5. With the notation (2.3) we have for « € W,, and 8 € W,,
(axB—Bra)(z)=(a®f - FRa)Ar=(a® S ~ S®a)ALyim
by (2.2). 0

By the canonical inclusion of Lemma 2.7, we observe that
N N
' =PWr, gV sa= > ay (2.7)
k=1 k=0

in the notation (2.5). With this decomposition g"¥ becomes by Lemma 2.9 a graded Lie algebra.
We recall that the center of g"V is the subspace of all w € g"¥ such that [o,w] = 0 for all a € gV,
while the center of GV is the set of all X € GV such that X Y =Y » X forall Y € GV.

PROPOSITION 2.10. Wy is contained in the center of gV and exp,(Wy) is a subgroup
contained in the center of GIV.

Proof. Let a € g" and w € Wy. Clearly, {[a, w], ) is zero unless |z| = N. In this case
(o], 2y = (a @ w — w @, Az = (a, 1w, ) — (w, 2, 1y = 0

since (w,y)y = {w,yn), in the notation (2.3). The second assertion follows easily: it is enough
to write X = expy(w) and Y = expy(a) with a € gV and we Wy and use the explicit
representation (2.6) of expy and the fact that a x w = w * a. O

The next (famous) result describes the group law on G¥ in terms of an operation on g via
the exponential/logarithmic map.

THEOREM 2.11 (Baker-Campbell-Hausdorff). For all a, 3 € gV, we have

log y (expy (a) * expy(B)) € QN-

We define the map BCHy: gV x gV — g"¥ by
BCHy (e, ) = logy (expy (@) * expy (8))- (2.8)

Another way to interpret this theorem is to say that there exists an element
v =BCHy(a, 8) € gn such that expy (@) * expy () = expy (7).

It is a classical result that the map BCH y is formed by a sum of iterated Lie brackets of «
and 3, where the first terms are

BCHy(a,8) = a+ B+ i[a, B8] + 5l [, B]] — 518, [, B + - -, (2.9)
and the following ones are explicit but difficult to compute. Nevertheless, fully explicit formulas
have been known since 1947 by Dynkin [15].

For our purposes, however, Dynkin’s formula is too complicated (for example, the regularity
argument in step 2 of the proof of Theorem 3.4 would not be as evident) so we rely on a different
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expression first shown by Reutenauer [34]. In order to describe it, let @y : (H%)®% — 2% be
the linear map

o1 ® - ®ay) = Z Ao Qlp(1) % - % Q) (2.10)

O'ESk
here Sy, d th i f order k, and a, = CD°7 (A1) ¢
where Sy denotes the symmetric group of order k, and a, = B (d(a)) 1s a constan

depending only on the descent number d(o) of the permutation o € Sk, namely the number of
i€{l,...,k— 1} such that o(i) > o(i + 1).

LEMMA 2.12 (Reutenauer’s formula). For all o, 3 € gV

N
BCHy(a,8) = >, )] ww ® ® 5%9), (2.11)

k=1li+j=k

Moreover, for all i € {0,..., N}, we have px(a® ® fON=)) e Wy.

Proof. Let us suppose first that T(V) is the (completed) tensor algebra over a two-
dimensional vector space V', with V linearly generated by {e;, ea}. Then the result is contained
in Reutenauer’s paper [34] where the free step-N nilpotent Lie algebra £V plays the role of

N We want now to show how this implies the same result in our more general setting.

Let o, B € gV and let @: (T(V)n,®) — (4%, *) be the unique algebra morphism such that
®(e;) = a, ®(eg) = B. Then @ restricts to a Lie-algebra morphism ®: £~ — g/ such that
BCHy (o, 8) = ®(BCHy (e1,€2)) and therefore (2.11) follows.

In order to prove the first formula, we first note that ® is not a graded morphism, since
the generators e; and es are homogeneous of degree 1 in T'(V)y, but o and  are in general
not homogeneous in 5. However, from the bilinearity of the Lie bracket and Lemma 2.9 we
obtain

W@ - @WN, Wy, @ - @WN] S Wiim @Wiimi1 @ D Wh.
Then, if ay,...,ar € g"¥ then (0 @ - Rap) e Wp ®--- @ W O
From all these considerations we obtain the following result on the map:
BCHy41): g x gt S WL, BCH(,41) = BCH, 41 —BCH,,, n >0. (2.12)

Note that BCH,, ;1) takes indeed values in W), ;1 rather than in g" " by (both assertions of)
Lemma 2.12.

LEMMA 2.13. Let x € ], 1) and o, € g"*'. Then

n+1
(BCH(41) (@, B),2) = )] o Z > a, H<a o1 || Bt (213)
i+j=n+1 (& (z) 0€Sn41 p=1 g=1+1
where
®(n +1)
Az =3 a0 @ ®T(nin) € A
(z)
Proof. Setay =+ =a; =, aj41 =+ = apy1 = [. Then the result follows directly from

the definition of ¢, in (2.10) together with (2.4) and the fact that since {a;,1) = 0 we can
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write

ap* ok = (0 ® - @ apg1)Al (2.14)
instead (note the reduced coproduct in place of the full coproduct). O

2.2. A distance on the group of truncated characters

Now we introduce a distance on GV which is well adapted to the notion of rough paths, to be
introduced in Definition 3.1. We fix a basis B of #% and define a norm | - | on this space by
requiring that B is orthonormal. There is a unique function ¢: B x B x B — R such that

Av = Z c(v,v1,v2)v1 ®ua, VYveE B.

’Ul,’UQEB

Then we define

K = max le(v,v1,v0)| <0, ||fl = K sup |[{f,v)|, [fe€H.
veEB veB
’Ul,UQEB

Then, if f, g € 5, for any ve B

1
[(frgol< Y le(o,on,0)[Kf, 009 0] < %= Il

v1,V2€B

thus £ * gll < 1]l llgll- We set now for all X € GV

1= e (), () @19

where for X € GN < ¥ we use the notation (2.5). We define GV x GV 3 (X,Y) —
N(X,Y) = |X"1*Y|e Ry, that is, by (2.15)

p(X.Y) = max (R X))+ max (Rl (@16)
PROPOSITION 2.14. The map py defines a left-invariant distance on the group G~ such
that the metric space (G, pn') is complete.

Proof. We only need to prove that the function |- | defined in (2.15) is subadditive, the
other properties being clear. Note that for X,Y € G, with the notation (2.5) we have

N N N k
X*xY = (Z X(k:)) * (Z )/(k)> = 2 Z Xj> *Yk: 7) (217)
k=0

— k=03j=0
Therefore
u 1 (kY o 1
I Vowll < 3 1l ¥amll < 37 X (5w = gox it
j=0 j=0
whence the result. |

The next result is the analog of [30, Proposition 7].

LEMMA 2.15. If X =expy(wy + -+ + wy) with w; € W;, then

en  max [l <X < O max o]
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Proof. Using the notation (2.5), we have

Xm—Z D wy, ke xwy,

1= 1 T it tji=k

so that forall k=1,... N

i N G\
(Bl xwl) " < (Z, S (e ) (s, ”Jt)ﬂ>
=1 """ jit+-+ii=k

ko e\ 1k
< Zlg > <én}§§k|we| ) :

" iteti=k

There are exactly ( ) < (k(l 1>11), solutions to j; + --- + j; = k so that
k' X 1/k k' 1/k 1/@
(k[ X [ < (le® = 1)V maxc o]
Since X! = expy(—w; — -+ — wy), the bound for X ~! follows in the same way and we have

therefore proved the desired upper bound for | X|. For the lower bound, we use the truncated
logarithm

k i—
— ¢ X X,
Wk = Z i Z (1) * A G-

=1 Ji+-+gi=k

Then we can estimate

Jk
1/k 1/:\ 7 1
el )

k g\ VE
1/k—1 e 1
< - < —
<2<—1><mx ] Lix|

and the proof is complete. O

> (el - (1%,

Jitetii=k

D=
S| =

<
Il
—

We now note that the function | - | and the distance p” make GV a homogeneous group; see
[22] for an extensive treatment of this subject, and [30] for the case of tensor algebras and the
relation with GRPs.

To put it briefly, for all » > 0 we can define the following linear operator, Q,.: J* — J*:

Q.a = Z P ap)-
k=0

This family satisfies ,. 0 Qs = Q,.5, 7,8 > 0. Moreover, (2,.: gN — gN is a Lie-algebra auto-
morphism of gV for all » > 0. Then they induce group automorphisms A, = expy o, o
logy: GY — GV, r > 0. In the terminology of [22], (£2,.),~¢ is a family of dilations on the
finite-dimensional Lie algebra gV and GV is a homogeneous group.

Note that the function | - |: G — R, is continuous, satisfies |A, X| = | X| for all > 0 and
X eGV, and |X| =0 for X € GV if and only if X = 1. These three properties make |-| a
homogeneous norm on GV (see [22]). The homogeneity property plays an important role in
the proof of Theorem 3.4.
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3. Construction of rough paths

As in the previous section, we fix a locally finite graded connected Hopf algebra . We also
fix a number v €]0,1[ and let N == |y~!| be the biggest integer such that N+ < 1. Without
loss of generality we can fix a basis B of ¢ consisting only of homogeneous elements and in
particular we let {e,...,eq} = B n J;), where d :== dim ().

DEFINITION 3.1. A (J#,7)-rough path is a function X: [0,1]> —» GV, with N = |y7}],
which satisfies Chen’s rule

Xsu*Xut :Xst7 57u7t€ [Oa 1]7 (31)
and such that for all ve B
[(Xst,v)] < |t — s|7"‘". (3.2)

If 2: [0,1] > R, i =1,...,d, is such that ! — 2! = (X, e;), s,t € [0,1], we say that X is a
y-rough path over (z!,... z%).

REMARK 3.2. By specializing this definition to different choices of .5 we recover both GRPs
[29] where JZ is the shuffle Hopf algebra over an alphabet, branched rough paths [25] where
€ is the Butcher—Connes—Kreimer Hopf algebra on decorated non-planar rooted trees, and
also planarly branched rough paths [14].

We remark that there is a bijection between

(1) functions X : [0,1]?> — G¥ such that X, * X,; = X, for all s,u,t € [0,1];
(2) functions X: [0,1] — G such that Xy = 1,
given by
XX X =Xy XX X;=X'xX, stel0,1]. (3.3)

PROPOSITION 3.3. Let X: [0,1] — GV and X : [0,1]> — GV asin (3.3). Then X is a (S, ~)-
rough path as in Definition 3.1 if and only if X is yv-Hélder with respect to the metric pn defined
in (2.15).

Proof. First note that the distance in (2.16) is defined with respect to a fixed (but arbitrary)
basis so we use the basis B fixed at the beginning of this section. Also, due to the above remark
we only have to verify that X is y-Hdolder with respect to py if and only if X satisfies (3.2)
using the same basis. In one direction, if X is y-Ho6lder then, by definition

[ Xatl = pn (X, Xo) S [t =8|
and so, for a basis element v € B we have
(X oty 03] S [t = 877,
Conversely, if (3.2) holds then | X4 | < |t — 5|7 and so by definition also py (X, X;) < |t — s/,
that is, X is v-Holder with respect to py. O

We now come to the problem of existence. Our construction of a rough path in the sense of
Definition 3.1 over an arbitrary collection of y-Holder paths (z!, ..., 2%) relies in the following
extension theorem. We note that the proof is a reinterpretation of the approach of Lyons—Victoir
[30, Theorem 1] in the context of a more general graded Hopf algebra 7.
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THEOREM 3.4 (Rough path extension). Let 1<n <N —1 and y€]0,1[ such that
v~ &N. Suppose we have a y-Holder path X": [0,1] — (G", p,,). There is a y-Holder path
X+ [0,1] — (G™FY, pny1) extending X", that is, such that X" 1|, = X",

A key tool is the following technical lemma whose proof can be found in [30, Lemma 2].

LEMMA 3.5. Let (E,p) be a complete metric space and set
D={t"=k2":m=>0k=0,...,2"—1}.

Suppose y: D — E is a path satisfying the bound p(yt?vytﬁl) < 277 for some 7y € (0,1).
Then, there exists a y-Holder path x: [0,1] — E such that x|p = y.

Proof of Theorem 3.4. The construction of X”*! is made in two steps.
Step 1. For m >0 and k€ {0,...,2™} we define ¢’ := k27 € [0,1]. Then we define the
following sets of dyadics in [0,1] :

D(m) = {t;cn | k = 07'”727”}7 D, = U D(n)7 D = U D(m)'

n=0,..., m=0

Set Xg = (X2)" 1« X2 € G" and Ly = log,, (X) € g" where log, was defined in (2.6). Then,
the Baker—Campbell-Hausdorff formula (2.8) and Chen’s rule (3.1) imply that

Ly = BCH, (Lgy, Lut). (3.4)

We look for Y: [0,1]> — G"™*! such that Y satisfies Chen’s rule (3.1) and Y|, = X. We
use throughout the proof that g" < g"*! (see Lemma 2.7).

In a first step, we define Y: D x D — G™*!. In the second step we show that Y has suitable
uniform continuity properties and can thus be extended to [0, 1]? using Lemma 3.5.

The construction of Y: D x D — G"*! goes through a construction of Y™: D,, x D,, —
G™*+1 by recursion on m > 0. We claim that for all m > 0 we can find Y™ such that

(1) Y™ satisfies Chen’s relation on D,,, namely Y} + Y, = Y for all a,b,c € D,,;
(2) for any n e {0,...,m} and k,¢ € {0,...,2™ "} we have the compatibility relation

m _ yvm—n
Yim im, =Y,

Z‘zn 2"5” gm—ngm—n)

"

(3) Y™ restricted to 4%, is equal to X: D,, x D,, — G™, in the sense that
Yorle = Xap, Va,b€ Dy

(4) for all k =0,...,2™ — 1, setting

m — m —
Zipap,, = 108011 (Yi;"t;:ul *eXPy i ( Lt;"t;f;l))»

we have Zg;nml e Woit.

For m = 0, we set Y} = exp,,.1(Lo1), Yy = Y} =¢c and 2, = 0€ W, ;. For z € J%,, we
have {exp,, .1 (Lo1),z) = {exp,,(Lo1), x), so that Y restricted to .7, is equal to X : Dy x Dy —
G".

Let now m > 1, and suppose that Y™~ 1: D, | x D,,_; — G™*! has been constructed with
the above properties. We start by defining Y;i* = ¢ for all ¢ € D,,). Let us consider three
consecutive points in Dy, of the form

__4+m _qm _qm
s=1op, U=ty 1, =14
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for some k = 0,...,2"~! — 1. Note that s = ;" ' and t = t’,’i'fll, so that Z7 = Z7 "' e W, 4,
is already defined by the recurrence hypothesis. We define Z!! and Z]}; as follows:
Z0 =20 = 2(Z07" = BCH(ys 1) (Lsus Lut)) (3.5)

where BCH,, ;1) = BCH,, 41 —BCH,,: g"*! x g"*! — W, ;1 (see (2.12)). Since by recurrence
Z;’Zﬁl € W,,1+1, we obtain that Z7!, Z7, € W,, 11 and

20+ Zyy = 25~ = BCH(u11) (Lsuy Lut) = Lot + 23} = BCHu 1 (L, Lut), (3.6)
where in the last equality we have applied (3.4). Then we set
Vil = expyp (Lo + Z05), Yy = exppyq (Lu + Z,7)-
Since exp,,,1(W,,+1) is in the center of G"™! by Proposition 2.10, we obtain that
Yo = exp, o (Lou) xexp,1(Z2),  Yii = expy, 1 (Lut) * exp,, 1 (Z37)-
By (2.8) and (3.6) the product is equal to
Yo * Yy = expy, i (BCH 1 (Lsu, Lut) + Z55 + Zi;) = expypq (Lst + Z5) = Yo'

Let now t7",#}" € D(,,) with 0 < j <k <2™. We set
-1
m — m m m . m
Yt}"’tz"' = Yt;?lt_;’;rl Kok Yt;flltkm Yf,glt;" = ( t;."'tg")

so that the identity Y3 « Y7 = Y7 is valid for any a,b,c € D).

We need now to check that this definition is compatible with the values already con-
structed on D,,_1 x D,,_1. By the recursion assumption, it is enough to show that for all
k. tef{0,...,2m 1}

~1
Y m =Y .
3120 eyt

If k=/{or |k—¢ =1, then this is true by construction. Otherwise, if for example k + 1 < ¢
then

m m m m—1 m—1 m—1
L e = Lot * -k t ot = }/t'mflt'rnfl *oces Kk th'mfltmfl = Y;'lnflf'm.fl
2k2 2k "2k +2 26-272 ko Ykt -1 b ko te

by the recursion property and the Chen relation satisfied by Y™ (respectively, Y™ ~1) on D)
(respectively, D,—1)).
We also have to check the extension property: for z € 7, we have

iy ) = Cexpp g (Ligim ) * expy 1 (Zig ), 2 = (expy, (Lipirn, ), @) = (X, ).

By recurrence, we have proved that Y™: D,, x D,, — G"*! is well defined for all m > 0,
with the above properties. Therefore, we can unambiguously define Y: D x D — G"*1,

Yo = Y 57tEDma

st

and Y indeed satisfies the Chen relation on D, namely Y, * Y3 = Y, for all a,b,c € D, and
the restriction property

<Yab7x>:<Xub7x>a Va,be D, x € J4,.

Step 2. In order to have a (J,41,7)-Holder path, Definition 3.1 requires us to construct a
v-Hélder path with values in G"*1, and for this we will use Lemma 3.5. Set

A = 27D max H'Zt%tm
k=0,...,2m—1 "% The1

n+l
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Then, if v is a basis element in 777, 1) we have by (2.13), for s = #]', u =t} | and t = 1], ,

n+1

[K(BCH;y 1) (Lsw, L), )| <D > ij ) ‘“0|H|<Lsu’“(0*1(p>>>| [ ] KLut, vl

(v)it+j=n+1 TESH+1 q=i+1

Now, since v(;) € H#{y) for all j = 1,...,n + 1 we actually have that

d d
KLaw vl < X |ah — abllof) | <277 > ufy)|
k=1 k=1

for some coefficients v, € R such that v, = ZZ=1 Uf’j)ek, and we have a similar estimate for
L, instead of Lg,. Therefore we obtain that

}HBCH(nJrl) (LsuaLu,t)m < 027m(n+1)ry,

n+1
where
1 n+1 n+1
C = KmaxE Z Tl Z las| 2 1_[ |Uéc;')|~
v) i+j=n+1 vy 0€ESn+1 kiyeoikns1=1£=1
Therefore, from (3.5) we get
1 m—1 1 —m(n+1)y
max Zt Ty < = max Z i +-=C2
k=0,...,2m—1 kO lllper T 2 k=0,..2m=1—1 ||t by nel 2
hence
A < 200D g 4 5 m > 1.

Since ag = 0 we can show by recurrence on m > 0

m—1

Z g—i(1=(n+1)7)_

Since we are in the regime where (n + 1)y < 1 (here we use that y~! ¢ N) we obtain that

C
Sup @, <
mz% 2 2(n+1)
Therefore
‘Hzgnt <27 V>0, k=0,...,2" — 1. (3.7)
bkt Llin41
Let now fix m =0, i € {0,. — 1}, and set s :=t]", t:==¢7" ;. Then we want to prove

that |V <27™7 (see (2.15) for the definition of | - |). By subadd1t1v1ty of | - | with respect to
the convolution product * we have

|YSt| < |eXpn+1(LSt)‘ + ’eXanrl(ZgZ)"
By Lemma 2.15 and (3.7)

1
n+1 < 2_m,y.

777,
|6Xp”+1 ZSt |~ H‘Zk i n+1

Moreover, using Lemma 2.15 again (first the upper bound, then the lower bound) and the fact
that X™: [0,1] — G™ is y-Holder by assumption,
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k 1/k
exnia(Lo)] < Coin 5w Lyl = Cir swp (L)l
=1,...,n =L..,n
C C C _
< 2 Jexp,, (L) = 5 [ Xo| = 2 (X X ) S 2770,

n n n

Therefore, the path X"*1: D — G"*! defined by X/\i* == Yo,em satisfies
J
Pn+1 (X;?J?X;Lﬁi) <27,
thus by Lemma 3.5 we obtain a y-Holder path X"*1: [0,1] — G""! extending X". O

REMARK 3.6. Our construction depends on a finite number of choices, namely we set
Zp1 =0 to start the recursion in (3.6), and this for each level; moreover in (3.6) we make
the choice Ztg’ztt;';vﬂ = Zt;’L+1,t;',;+2- These choices are the same as in [30, Proof of Theorem 1]
and are indeed the most natural ones, but one could change them and the final outcome would

be different.

REMARK 3.7. While in [30, Proof of Proposition 6] Lyons and Victoir use the axiom
of choice, our proof is completely constructive. In particular, we use the explicit map
expy olog,: G*(7,) — G**1(.7,) which plays the role of the injection ig/x c: G/K — G
in [30, Proposition 6]. The fact that this map has good continuity estimates is based on
Lemma 2.15.

COROLLARY 3.8. Given v€]0,1[ with v~ !¢ N and a collection of ~y-Hélder paths
q:‘ [0,1] > R, i =1,....,d, there exists a y-Hdlder path X: [0,1] — GY such that (X,e;) =
' —zb,i=1,...,d. Then X = X! «X; defines a (#,~)-rough path over (z',... z%).

S

Proof. We start with the following observation: for n = 1, the group G! < jﬁ’f) is abelian,
and isomorphic to the additive group f%”(’l") Indeed, let X, Y e G! and z € (1) Then, as
Az =2x®1+1®x by the grading, we have that

<X*Y,.73> = <X,$>+<Y,l‘>,

that is, X * Y = X + Y. Moreover, in % the product zy = 0. Therefore, we may set (X}, e;) =
xi — x} where {e1,...,eq} is a basis of (1) and this path is y-Holder with respect to p;.

By Theorem 3.4 there is a y-Holder path X2: [0,1] — (G2, p2) extending X! so in particular
(X2, e;y = ai —x{ also. Continuing in this way we obtain successive y-Holder extensions
XS,...,XNandwesetX::XN. |

The following result has already been proved in the case where the underlying Hopf algebra
S is combinatorial by Curry, Ebrahimi-Fard, Manchon and Munthe-Kaas in [14, Theorem
4.3]. We remark that their proof works without modifications in our context so we have

THEOREM 3.9. Let X: [0,1] — GV be a y-Hélder path with X = 1 and suppose that
7~'¢ N. There exists a path X: [0,1] — G such that [(X;'*X;,0)| <[t — sVl for all
homogeneous v €  and extending X, in the sense that X| -, = X.

REMARK 3.10. In view of Theorem 3.9 we can replace the truncated group in Definition 3.1
by the full group of characters G. What this means is that v-rough paths are uniquely defined
once we fix the first IV levels and since S is locally finite, this amounts to a finite number of
choices. This is of course a generalization of the extension theorem of [29] (see also [25, Theorem
7.3] for the branched case).
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4. Applications

We now apply Theorem 3.4 to various kinds of Hopf algebras in order to link this result with
the contexts already existing in the literature.

4.1. Geometric rough paths

In this setting we fix a finite alphabet A := {1,...,d}. As a vector space 5 := T(A) is the
linear span of the free monoid M(A) generated by A. The product on 42 is the shuffle product
w: QA — H defined recursively by 1wv =vwl = for all v e 5, where 1 € M(A) is
the unit for the monoid operation, and

(auwbv) = a(uwbv) + blauwv)

for all u,v € # and a,b € A, where au and bv denote the product of the letters a,b with the
words u, v in M(A).
The coproduct A: 7 — 7 ® J is obtained by deconcatenation of words,

n—1
Alay--ap)=0a1 a0, ®1+1®aj - -a, + Za1-~-ak®ak+1---an.
k=1

It turns out that (2, w,A) is a commutative unital Hopf algebra, and (#,A) is the cofree
coalgebra over the linear span of A. The antipode is the linear map S: ¢ — S given by

S(ay--an) = (—=1)"ap---a.

Finally, we recall that 5 is graded by the length ¢(a; - - - a,,) = n and it is also connected. The
homogeneous components J{,,) are spanned by the sets {a1 ---a, : a; € A}.

Definition 3.1 specializes in this case to GRPs as defined in [28] (see just below for the
precise definition) and Theorem 3.4 coincides with [30, Theorem 6.

DEFINITION 4.1. Let v€]0,1[ and set N == |y~!|. A geometric ~y-rough path is a map
X:[0,1]> —» GV which satisfies Chen’s rule

Xst = Xsu * Xut
for all s,u,t € [0,1] and the analytic bound [( X, v)| < |t — 5|7 for all v e .

Then Proposition 3.3 and the existence results Theorem 3.4—Corollary 3.8 are the content
of the paper [30] by Lyons and Victoir.

4.2. Branched rough paths

Let Z be the collection of all non-planar non-empty rooted trees with nodes decorated by
{1,...,d}. Elements of .7 are written as 2-tuples 7 = (T, ¢) where T is a non-planar tree with
node set Ny and edge set Er, and ¢: Ny — {1,...,d} is a function. Edges in Er are oriented
away from the root, but this is not reflected in our graphical representation. Examples of
elements of 7 include the following

. . kpl
i, U, Wk \Qm

For 7 € 7 write || = #Nr for its number of nodes. Also, given an edge e = (x,y) € Er we
set s(e) = x and t(e) = y. There is a natural partial-order relation on Ny where x < y if and
only if there is a path in 7" from the root to y containing .

We denote by # the collection of decorated rooted forests and we let 57 = #Bck denote
the vector space spanned by .%. There is a natural commutative and associative product on .7,
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denoted by - and given by the disjoint union of forests, where the empty forest 1 acts as the unit.

Then, S is the free commutative algebra over .7, with grading |71 -+ 7% = |71| + -+ + |7%]-
Given i€ {1,...,d} and a forest 7 = 7, --- 7 we denote by [r ---74]; the tree obtained by
grafting each of the trees 7, ..., 7, to a new root decorated by i, for example,

[i]i =12, [eder]s = 5.

The decorated Butcher—Connes—Kreimer coproduct [12, 25] is the unique algebra morphism

A: H — H ® S such that

This coproduct admits a representation in terms of cuts. An admissible cut C of a tree T is a
non-empty subset of Ep such that any path from any vertex of the tree to the root contains
at most one edge from C; we denote by A(T') the set of all admissible cuts of the tree 7. Any
admissible cut C' containing k edges maps a tree T to a forest C(T) = T - - - Ti+1 obtained by
removing each of the edges in C. Observe that only one of the remaining trees T1,...,Tki1
contains the root of T', which we denote by RY(T); the forest formed by the other k factors
is denoted by P®(T). This naturally induces a map on decorated trees by considering cuts
of the underlying tree, and restriction of the decoration map to each of the rooted subtrees
jvl7 e ,Tk+1. Then,

AT=7®1+1®7+ Y, PYr)®@R(7). (4.1)
Ce(T)

This, together with the counit map e: .# — R such that ¢(7) = 1 if and only if 7 = 1 endows .%
with a connected graded commutative non-cocommutative bialgebra structure, hence a Hopf
algebra structure [31].

As before we denote by #* the linear dual of J# which is an algebra via the convolution
product (X xY,7) =(X ®Y, A7) and we denote by G the set of characters on 5, that
is, linear functionals X € 5#* such that (X,o-7) = (X,0XX, 7). For each n € N the finite-
dimensional vector space %, spanned by the set %, of forests with at most n nodes is a
subcoalgebra of 7, hence its dual is an algebra under the convolution product, and we let G,
be the set of characters on J7;,.

We have already defined branched rough paths in Definition 1.1. Proposition 3.3 yields the
following characterization:

PROPOSITION 4.2. A path X : [0,1]?> — G¥ is a branched rough path if and only if X; = X,
is y-Holder path with respect to the distance py defined in (2.16).

Directly applying Theorem 3.4 to the Butcher—-Connes—Kreimer Hopf algebra . we obtain

COROLLARY 4.3. Given «v€l0,1[ with ~'¢N and a family of ~-Holder paths
(' :i=1,...,d), there exists a branched rough path X above (2t :i=1,...,d), that is,
X:[0,1]*> — GV is such that (X, i) = x; — x’ foralli=1,...,d.

REMARK 4.4. Given the level of generality in which Theorem 3.4 is developed, our results
also apply to the case when S is a combinatorial Hopf algebra as defined in [14]. In
particular, we also have a construction theorem for planarly branched rough paths [14] which
are characters over Munthe-Kaas and Wright’s Hopf algebra of Lie group integrators [32].
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4.3. Anisotropic geometric rough paths

We now apply our results to another class of rough paths which we call aGRPs. Gyurké
introduced a similar concept in [26], which he called II-rough paths; unlike us, he uses a
‘primal’ presentation, that is, paths taking values in the tensor algebra T'(R?), and p-variation
norms rather than Hélder norms. GRPs over a inhomogeneous (or anisotropic) set of paths
can be traced back to Lyons’ original paper [29].

As in the geometric case (see Section 4.1), fix a finite alphabet A = {1,...,d} and denote
by M(A) the free monoid generated by A. We denote again by 7 = T(A) the shuffle Hopf
algebra over the alphabet A.

Let (v, :a€ A) be a sequence of real numbers such that 0 <, <1 for all a, and let
4 = minge4 Yq. For a word v = ay - - - ax, € M(A) of length & define

w(v) = Yo, Tt Vay
and observe that w is additive in the sense that w(uv) = w(u) + w(v) for each pair of words
u,v € M(A). The set
L:={wveM):w) <1}

is finite; if N = |571] then £ < 7. In analogy with Lemma 2.5, the additivity of w implies
LEMMA 4.5. The subspace 7, c 7, spanned by £ is a subcoalgebra of (A, Ae).

Consequently, we will consider the dual algebra (J£*,x,¢). In this case, we define g, to be
the space of truncated infinitesimal characters on .74, namely the linear functionals a € J£*
such that

loywwy) = {a,w)(e, y) + (&, 2 y)

for all x,y € 7, such that xwye 74, and let G, == {X = expy(a)|z : @ € ga}. As before,
there is a canonical injection J£* < #* so we suppose that (X,v) =0 for all X € 7* and
ve L.

For each A >0 there is a unique coalgebra automorphism Qy: 7 — S such that
Qaa = \7e/7q for all a € A. We also define | - |: G, — R,

| X = max [(X, oy, (4.2)
ve
As at the end of Section 2, (2))a=0 is a one-parameter family of Lie-algebra automorphisms
of g, and [\ X | = A|X]| for all A > 0 and X € G,, namely | - | is a homogeneous norm on G,.
However, unlike ||-|| this norm is not subadditive and it therefore does not define a distance
on G,.

4.3.1. Signatures. In order to construct an appropriate metric on G, we consider signatures
of smooth paths. We observe that A < £. Let z = (2 : a € A) be a collection of (piecewise)
smooth paths, and define a map S(z): [0,1]? — 5£* by

t Sk ED)
(S(x)st,v) = f dazg f k dog! J dzyl.
In his seminal work [11], Chen showed that S(z) is a character of (T'(A),w); in particular,
S(x)st| e, € Ga. )

Consider the metric da(X,Y) =Y, 4 (X = Y,a)[?/7= on jﬁ’l“), where we recall that J¢7;) is
the vector space spanned by A. The anisotropic length of a smooth curve 6: [0,1] — J£* is
defined to be its length with respect to this metric and will be denoted by L,(#). Observe that
since d, (X, 0Y) = Ad.(X,Y) we have that L,(Q2,60) = AL,(0).
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We now define a homogeneous norm (see the end of Section 2) | - |cc: Ga — Ry, called the
anisotropic Carnot—Carathéodory norm, by setting

| X|co = inf{L,(z) : 2% € C",S(x)o1 = X}.

Since curve length is invariant under reparametrization in any metric space we obtain, as in
[23, Section 7.5.4]:

PROPOSITION 4.6. The infimum defining the anisotropic Carnot—Carathéodory norm is
finite and attained at some minimizing path .

PROPOSITION 4.7. The anisotropic Carnot—Carathéodory norm is homogeneous, that is,
|Q)\X|CC = /\lecc.

Proof. Let & be the curve such that | X|cc = Lo (£). For any A > 0 and word v € £ we have
S(2)o1,v) = )\w(v)/%s'(if?)(n,@ = {S(@)o1,v) = (WX, v),

thus |Qx\X|cc < La(Q%) = AL.(£) = A|X|cc. The reverse inequality is obtained by noting
that X = (Q)\—l o Q)\)X |

The anisotropic Carnot—Carathéodory norm can also be seen to satisfy | X|cc = | X ~!|cc and
|X *Y|ce < |X]|cc + |[Y]cc for all X,Y € G, (see, for example, the proof of [23, Proposition
7.40]); hence it induces a left-invariant metric p,(X,Y) = |X ! *Y|cc on G,. Moreover,
arguing as in the proof of [23, Theorem 7.44] we see that there exist positive constants ¢, C
such that

C‘X|CC < ”X” < C|X‘007 VXe Ga- (43)

DEFINITION 4.8. An anisotropic geometric y-rough path, with v = (., a € A), is a map
X :[0,1]*> — G. which satisfies

(1) the Chen rule X, * X,y = Xy for all (s,u,t) € [0,1]%;
(2) the bound [( X, v)| < |t — 5| for all v € L.

PROPOSITION 4.9. Anisotropic geometric «y-rough paths are in one-to-one correspondence
with 4-Holder paths X: [0,1] — (Ga, p.) with Xy = 1.

Proof. Let X be an anisotropic geometric v-rough path and v a word. By definition we have

that (X, v)| S |t — s|“(), hence | X4 | < |t — s|7. The equivalence between | - | and | - |cc of
(4.3) implies that p,(X,,X;) = | Xs|cc S |t — 5|7, hence t — X; is 4-Holder with respect to p,.
The other direction follows in a similar manner. O

Theorem 3.4 also applies to this situation, and we obtain the following:

COROLLARY 4.10. Let (v, :a € A) be real numbers in ]0,1] such that 1 ¢} _,7.N. Let
(z%:a e A) be a collection of real-valued paths such that x® is ~,-Holder. Then there exists
an anisotropic geometric y-rough path X such that (X, ay = x¢ — 2% for all a € A.

Proof.  We start by constructing the homogeneous GRP X given by the 4-Holder path
X: [0,1] = G¥ of Corollary 3.8. Then we restrict X to ., < # and we show that on this
space it satisfies the stronger bound [( X, v)| < |t — s]“(*) for all v € £.

Recalling the proof of Theorem 3.4, we consider v € J%, N J%,, and we proceed by recurrence
on n. For n = 0 there is nothing to prove. Suppose we have proved the result for n and let
v € M1 N Iy In this case
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n+1
1 .
(X5 vy = Cexpy, 1 (Lt + Zap),v) = ) L) * (e + Zat) v)
i=0 "
n+1 1 1
= Z ;'<( St U>+<Zstav> <X;§E?’U>+ (n+ 1)'<<Lst)(n+1)*,’l)>+<Zst,’U>.
i=0 ’
We want to prove now that
’<X;%L+t}?“,u>) <20 Ym0, k=0,...,2" —1. (4.4)
For m = 0 set
P (L)
bm =2 e 0 2m 1 <Zt tr U>

Then, for s = t}', u = ti and t =17, and v = v1 - - Vpy1

n+1
|<BCH(n+1)(LSTMLut)7v>| < Z il Z ‘aﬂ| H |<L€ltvva*1(p >| 1_[ |<L71tv Vo— 1(q)>|
i+j=n+1 U€5¢L+1 p=1 g=1i+1
Now, since v; € #(y) for all j = 1,...,n + 1 we actually have that by the assumption z* €

KL, a)] = |z —xg] <2777
and we have a similar estimate for L,; instead of Lg,. Therefore we obtain that
[KBCH (1) (Lsus Lut), v)| < 2mmelv),
Therefore, from (3.5) we get
by < 27Oy 4O, m>1,
hence since by = 0 we can show by recurrence on m = 0
m—1
—j(1-w(v))
by < C ; 2 :

Since we are in the regime where w(v) < 1 (here we use that 1 &)} _,7,N) we obtain that

b <L
i O S T a1

['herefore
m —mw(v) mo__
‘<Zf271"/211’v>‘ <2 , m>=0,k=0,...,2 1.

Analogously, since Ly € g, arguing as in (2.14) we have

n+1 n+1

()"0 = [ = [T @0 =) — () 7,0 s 27

and (4.4) is proved. This implies that ||XZ:$}T+1 | <27™7 and by equivalence of homogeneous

norms (4.3) we obtain
+1 yn+l —mA
pa(X;LZL ,X;g;cn“) <9,

Then we can use Lemma 3.5 and obtain that the path X"*! constructed in the proof of
Theorem 3.4 is in fact 4-Ho6lder path with values in G,. O
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5. The Hairer—Kelly construction

In this section we develop further results specifically for branched rough paths as introduced
in Section 4.2 using our general results from Section 3. We analyze in detail the Hairer—Kelly
map introduced in [28], which plays a very important role in our construction, and we use it
to prove Theorem 1.2 and Corollary 1.3.

5.1. The Hairer—Kelly map

Recall that 7 denotes the set of all decorated rooted trees, .# denotes the collection of
all decorated rooted forests and J#5ck is the Butcher—-Connes—Kreimer Hopf algebra. As in
Section 4.2, A denotes the Connes—Kreimer coproduct on #gck. For each ne N, n > 1, we
denote by .7, the set of (non-empty) trees with at most n vertices.

Recall also from Section 4.1 that given an alphabet A we denote by T(A) the shuffle Hopf
algebra generated by A, and that A denotes the deconcatenation coproduct on it. We fix N € N
and we consider the shuffle Hopf algebras T'(.7) and T(Zy), namely we choose as letters of
our alphabet the (non-empty) decorated rooted trees (respectively, rooted trees with at most
N vertices). Note that we can identify every non-empty tree 7 € 7 with the word in T(.7)
composed by the single letter 7. We also remark that, in order to avoid confusion with the
forest product on S5k we denote the concatenation of letters in T(.7) by a tensor symbol.

We note that T(7) and T(Zy) admit two different natural gradings, both of which make
them locally finite graded Hopf algebras. One grading, as in Section 4.1, is given by the
number of letters (trees) of each word, namely the degree of v =71 ® - -+ ® 7% is k. The other
grading is given by the sum of the number of nodes of each letter (tree), namely the degree of
V=T1® - QT is |T1| + -+ + |7Tk|, where we recall that forests and trees are graded in Jck
by the number of nodes, with the notation |7| = #N.. We remark the latter grading is always
greater or equal to the former. As an example, take p = o; ®I§?; then, as a word v has
length 2 but the total number of nodes is 3.

We recall the following result from [28, Lemma 4.9].

LEMMA 5.1. We grade T'(.7) according to the number of nodes. Then there exists a graded
morphism of Hopf algebras 1: #hcx — T(T) satistying ¥(1) = 7 + ¥,—1(7) for all 7 € T,
where 1,1 denotes the projection of 1 onto T'(F;,—-1).

We call ¢ the Hairer—Kelly map. Since ¢ is graded, for any forest 7 € .% the image ¢ (7) is
a sum of words of the form 7 ® - - - ® 7, where all terms satisfy |7| + - -+ + |7| = |7]. Observe
that since 1 is a Hopf algebra morphism, in particular a coalgebra morphism, then

W ®Y)A'T=AY(1) = Apyi(r), T T,

since trees are primitive elements in T(.7), being single-letter words. From the proof
of [28, Lemma 4.9] we are able to see that in fact ,_1 is given by the recursion
Yn—1 = mg( ®1d)A’ on the linear span of .7, (see also [3, Definition 1, Section 6]).

EXAMPLE 5.2. Here are some examples of the action of ¥ on some trees:

Do) =y ) = (o) W) — o @t @, B(I2) = 1+ b @
w(I\g/ab):I\cd/ab—l—-b@g+°d®'\c[zd+1g®I2+°d®°C®Ig+°d®°b®12+~b®0d®12
F1 @b Qea+ b QR Rt + od D oc Q@b @ oa + od @ ob @ oc @ +d

T ®ed®ec ®oa.
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5.2. A special class of anisotropic geometric rough paths

We have already discussed aGRPs in Section 4.3. For the Hairer—Kelly construction we need
a very particular subclass of aGRPs, where the base paths (2%),ca are such that each x® is
~o-Holder and there exists v €]0, 1] and (k4 )aea © N such that v, = k,7; therefore the Holder
exponents are all integer multiples of a fixed exponent ~.

We may of course apply the extension result of Corollary 4.10, but it turns out that in this
setting we can avoid using the Carnot—Carathéodory distance and rather use a more explicit
metric, which is a simple generalization of the homogeneous case (2.16).

We have already seen that the space 52 = T'(Jx) can be graded in two ways. We can even
define a bigrading on this space: for 1 <n < N and n < j < nNN, we define the space J, ;)
as the linear span of the words 71 ® -+ - ® 7, € T(J) such that |r1| + -+ + |7,| = j. Then, in
analogy with (2.2), we have

Wi A,y ® Hmny = Hnsmjiny, Dt Hnj) = @ Hlp,g) @ Hn—p,j—q)-

p=0,...,n, g=1,....,5—1

Then, recalling that .75 = R1, we set

In other words, J#y n is the linear span of all words 71 ®---®7, with n <N and
|71] + -+ + |7n| < N. Therefore, analogously to (2.3) and (2.5), we have decompositions

N N N N
J N DT =0 + Z Z T js %”KEN 3a=aq) + Z Z Alnj)s U (@) = a(@n5).

n=1j=n n=1j=n
We define now g% as the space of truncated characters on #y y, namely of all linear
o: N N — R such that
(o, zwy) = (a,w)(e, y) + (g, )X, y)

for all z,y € S, v such that zwy € ¢ n. Moreover we define GNN = expy (g™VN) < TN
Then we set in analogy with (2.17) for X € GV

) 1/5 ) _ 1/j
= N e (max GIXGD™ + max, (], )) e

and we can see that

LEMMA 5.3. The map GNV x GNN 5 (X)Y) — pVN(X)Y) = | X1« Y| e R defines a
distance on GV,

Proof. We only have to check the triangular inequality, which is equivalent to the sub-
additivity property |X «Y| < |X|+ [V]| for all X,Y € GMV. Arguing as in the proof of
Proposition 2.14

n

Jj—1
IX = V)enll < 20 20 1Kl ¥l

m=01=1
<nil Z Nixpvp— = 2 Lox)+ vy
SN &G N j!

whence the result. ]
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Let v€]0,1[ and N = |y~ !|. In accordance with Definition 4.8, an anisotropic geometric
~-rough path in this setting is a map X : [0,1]?> — G™'"V which satisfies

(1) the Chen rule X, * X,y = X for all (s,u,t) € [0,1]%;
2) KX, v)| S|t — s forall ve 4, , with1 <n <N and j < N.
(n.3)

Then, arguing as in Proposition 3.3, it is easy to show that X: [0,1] — GN'V is y-Holder
with respect to the metric p™V if and only if X : [0,1]?> — GN'VV, defined as X = X! » Xy,
is an anisotropic geometric y-rough path with v, = jy forv =7 ®---® 7, with n < NV and
|71] 4+ -+ |m]| =j < N.

The next result is the analog of Corollary 4.10 in this setting. The proof is the same, with
one exception: we can use the explicit norm (5.1) rather than the Carnot—Carathéodory norm
| - |cc and we do not need the equivalence of norms result (4.3).

PROPOSITION 5.4. Given v €]0,1[ with v~! ¢ N and a collection of paths z7: [0,1] — R,
7€ I, such that 27 € C""l, there exists a ~-Holder path X: [0,1] — GV such that
X,7)=2a" forall Te Iy.

COROLLARY 5.5. In the setting of Theorem 5.4, let (¢7 : 7 € Jy) be a collection of functions
with g7 € CI7l. Set Z] = 2] + g7 and denote by gX the anisotropic geometric y-rough path
constructed in Theorem 5.4 above the path

To= Y ZTEM, telol].

76,71\]

Then, for any two such functions g and g’ we have that ¢'(9X) = (¢ + ¢')X.

Proof. Let g,¢’ be two collections of functions as in the statement of the theorem. We have
the identity

{g'(9X)]e, ) = {9 X)e, ) + (9] = 2i + 97 + ()] = [(g" + 9)X]e, 7).

Since both ¢'(¢X) and (g’ + g) X are constructed iteratively by adding at each step a function
Z satisfying (3.6) on the dyadics, if we let L™ and L™ denote the logarithms corresponding to
9 (9X) and (¢’ + ¢g)X, Lemma 2.13 and the previous identity imply that

BCHn-ﬂ—l(Ln Ly ) = BCH"/+1(E;L’IHEZIE)

su’) Hut

and so ¢'(¢X) = (¢’ + 9)X. O

5.3. Branched rough paths are anisotropic geometric rough paths

The next theorem is almost the same statement as [28, Theorem 4.10], the only difference
being that we construct an aGRP X while Hairer—Kelly need only that X is geometric in the
usual sense (see also [28, Remark 4.14].

THEOREM 5.6. Let v €]0,1[ with y~" ¢ N, and let X be a branched ~-rough path. There
exists an aGRP X : [0,1]*> — G™'Y with exponents v = (v, = v|7|,7 € n), and such that

<X77>:<X7w(7—)>a VTeFn.

Proof. We construct X iteratively as follows. Let X(!) be the aGRP indexed by
Jy = {1, ..., ed} over the paths (z; = (X;,%i): i =1,...,d) with exponents (Yo; = )
given by Theorem 5.4 (alternatively we could use have used Theorem 3.4 since all the exponents
are equal). This will give us an anisotropic rough path X: [0,1]?> — G.(71) with exponents
(vr =7,7€ R).
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Suppose we have constructed aGRPs X*): [0,1]? — G.(:) over the paths (27 : 7 € F,)
such that o] — 2] = (X4, 7) — <X(k 1),7/1k—1(7)> for k=1,...,n. This is true for n =1 by
the previous paragraph since w(-z) = foralli=1,...,d.

If we let F7, = (X, 7) and GI, = <X§f), (7)) for 7 € 9,11 we have, by Chen’s rule, that
SF]

sut

= (X0 @ Xut, A7) = (XM 0 p @ X\ 0 9p, A'1).

Since ) is in particular a coalgebra morphism between (2, A) and (T(Zx), A) we obtain the
identity dF <X Mex™ A "4(7)), which then, by Lemma 5.1 becomes

sut - ut 7

SFL, = (XM @ X, A, (1)) = 6GT, (5.2)

sut —
since every 7 € .7 is primitive in (T'(Zy), A) being a single-letter word.

The finite increment operator § has the following property: if J: [0,1]> — R is such that
0J = 0 then there exists f: [0,1] — R such that Jy = f; — fs, and the function f is unique up
to an additive constant shift (see also [25, formula (5)]). Thus, by this fundamental property,
for each 7€ 7,11 there exists a function z7: [0,1] — R such that ] — 27 = FJ, — GT, and
then

o7 — 27| < (Ko, Ol + KX (7)) 5 £ = 517!

since ¥, (7) preserves the number of nodes by Lemma 5.1.

Repeatedly using Theorem 5.4 we obtain an aGRP X(+1): [0,1] > Ga(Tps1) over
(z7 : 7 € F,11) whose restriction to T'(.7,) coincides with X (™).

Finally note that if 7 € %H is a tree then

EGH () = XV + G, ey (1)
=af —af +{Xo,7) — (#] —a]) = X, 7)
and the corresponding identity for arbitrary forests follows by multiplicativity. The aGRP
sought for is X = X(V), O

We note that our proof is shorter and simpler than that of [28, Theorem 4.10], so we will
now dedicate a few paragraphs to highlight the differences between our approach and that of
Hairer and Kelly. They define first

X! = expy Z rtea | € GN(T)
acA

then they note that this is not y-Holder with values in GV (.71), but it is y-Holder with values
in GN(7)/K1, where K = expy (Wa + - - + W) (see (2.7)). By the Lyons—Victoir extension
theorem there exists a v-Holder path X} — GV (.7;) such that TGN (9) -GN (7)) K1 (X1 = XL
Then, in order to add a new tree 7 with |7| = 2, they define

(OX ") = (Xar,7) = (X ()
and this defines the new function ¢ — (X, 7). Then they define

X2 = expy Zx?-a+ Z<§§t,7>7 e GN(F)

acA |7|=2

and again they note that this path is not y-Holder with values in GV (%), but it is with values
in GN(%)/K», where Ky = expy (W3 + -+ + Wy), and again the Lyons—Victoir extension
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theorem yields a y-Holder path X7 — GV (%) such that mon (7,)an (7)1, (X2) = X2. Finally
they construct recursively in this way X* and X* for all k < N.

At this point we see the difference with our approach. We do not define X? nor X* but rather
we construct X step by step, namely on all G*(.7;,) with 1 < k,n < N, first by recursion on k
for fixed n and then by recursion on n; at each step we enforce the Holder continuity on G*(.7,,)
and the compatibility with the previous levels. This is done using the Lyons—Victoir technique,
but in a very explicit and constructive way, in particular without ever using the axiom of choice,
since we have the explicit map exp, ., olog,: G¥(.7,) — G**1(.7,) which plays the role of the
injection ig/k ¢: G/K — G in [30, Proposition 6].

6. An action on branched rough paths

In this section we prove Theorem 1.2.

Given v €]0,1[, let N = |y~!] and denote by € the set of collections of functions (¢7),c 7y
such that ¢ € CI7 and g5 =0 for all 7e Iy. It is easy to see that €7 is a group under
pointwise addition in ¢, that is,

(g+h)" =g" +h".

As a consequence of Theorem 5.4, (g, X) — ¢gX is an action of €7 on the space of aGRPs.

We use the Hairer—Kelly map 1 of Lemma 5.1 to induce an action of ¥ on branched rough
paths. Given a branched rough path X and g € 7 we let gX be the branched rough path
defined by

<ngt7 T> = <9Xst7 ¢(7)>a

where X is the aGRP given by Theorem 5.6. As a simple consequence of Theorem 5.4 we
obtain

ProrosiTIiON 6.1. Let X € BRP".

(1) We have ¢'(gX) = (¢ + 9)X for all g, ¢’ € 7.
(2) If (9" )regy € €7 is such that there exists a unique 7 € Sy with g” # 0, then

{gX)st: Ty =X, T) + 9] — 9!

and {(gX,0) =(X,0) for all 0 € F not containing T as a subtree.

Proof. The first claim follows from point (1) in Theorem 5.4. In order to prove the second
claim, let g = (¢7)rezy € €7 be such that there exists a unique 7 € Jy with g7 # 0. Then by
the property of g we have

(9X,m) = (gX,%(1)) = (gX, T + - 1 (7))
= <X’ T> + 69T + <9X7 ¢|r|—1(7')>7

where dg;, == g/ — g;. By Lemma 5.1 the tree 7 does not appear as a factor in any of the
tensor products appearing in 1|.|_1(7), hence one can recursively show that (g.X, ¢ |_1(7)) =
(X, 1r|-1(7)) so that the above expression becomes

gX,7) = (X, 7+ Y -1(7)) + 69"
=(X, 1)+ dg".
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For the last assertion, it is enough to note that o € .7 contains 7 € 7 if and only if 7 appears
in the expression for 1(c); this can be expressed more precisely by saying that o ¢ T(In\{T}).
But if o € T(In\{7}), then (g X, ¥ (7)) = (X, (7)) O

PROPOSITION 6.2. The action of €7 on branched ~y-rough paths is transitive: for every pair
of branched ~-rough paths X and X' there exists g € €7 such that gX = X'.

Proof. We define g€ %" inductively by imposing the desired identity. For trees
T €T = {o1,...,%d} weset g] = (X, 7) — (Xos, 7)€ C7 so that

(X, 7y =X, (1)) = gX,7) =(X,7)+ 69" =(X',7),

where d¢g7, == g] — gI. Suppose we have already defined ¢” for all 7€ .7, for some n > 1,
satisfying the constraints in the definition of €. For a tree 7 with |7| = n + 1 we define

Fip =X, 7) = Xst, 7) = {gXst, ¥ (7))
Then
OF], = (X, ® X, A7) — (g X ® g Xut, At (7))
= (X ® Xy, A'T) — (g Xsu ® g Xut, AY(7))
= (X ® Xy, A7) — (g Xsu 09 ® gXup 01, A'T)
=X, ®X, ,A'T) —(gXsu ® gXut, A'T) =0
by the induction hypothesis. Hence there is ¢7: [0,1] — R such that gJ = 0 and
97 — 97 = (Xl = Kty 7) = (g X, n (7)) (6.1)
whence g € CI7I; by construction
(gX,7) = (gX, (7)) = (g X, 7) + (g X, ¢n(7))
= (X, 7) + 897 + (gX,¢n (7)) = (X', 7),
where g7, = g7 — g7. This concludes the proof. O

PROPOSITION 6.3. The action of €7 on branched y-rough paths is free, namely if gX = ¢’ X
then g = ¢'.

Proof. This follows from the fact that by (6.1) the function g7 is defined up to a constant
shift. Therefore, the condition gj = 0 determines g™ uniquely. |

Together, Proposition 6.1, Theorem 6.2 and Proposition 6.3 imply Theorem 1.2.

6.1. The BCFP renormalization

In [4] a different kind of modification is proposed. There, a new decoration 0 is considered so
rough paths — branched and geometric — are over paths taking values in R%*!. Recall that
since branched rough paths are seen as Holder paths taking values in the character group of
the Butcher—Connes—Kreimer Hopf algebra, we may think of them as an infinite forest series
of the form

Xst = Z <X8t77->7-7 (62>

TEF
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where we regard 7 as a linear functional on 4, such that {r,0) = 1 if 0 = 7 and zero else. The
aforementioned modification procedure then acts as a translation of the series (6.2). Specifically,
for each collection v = (vo,...,vq): 7 — R an operator M, : % — J#* is defined, such
that for a y-branched rough path, (M,X)s = M,(Xs:) is a v/N-branched rough path.

In the particular case where v; = 0 except for vy, the action of this operator can be described
in terms of an extraction/contraction map' ¥: 7 — 7 @ . This map acts on a tree T
by extracting subforests and placing them in the left factor; the right factor is obtained by
contracting the extracted forest and decorating the resulting node with 0. As an example,
consider

VOPF) =1@F +«i @Y+ QUF +ar QW+ QU +1F R
A vioj @ YF + eisk @O 4 ok @ VY + 1ok @) 4 1Fei @15 + F ® 0.
Extending v = vg:  — R to all of #* as an algebra morphism it is shown that
U MyX)st, 7y ={Xst, (v @)V (7T)). (6.3)

Furthermore, in this case M, X is a y-branched rough path if coefficients corresponding to trees
with decoration zero are required to satisfy the stronger analytical condition

|<Xst77—>|
sup
0<s,t<1 |t — 8|(1—’Y)\T\o+'y|7'|

< 0, (6.4)

where |7|p counts the times the decoration 0 appears in 7. Essentially, this condition imposes
that the components corresponding to the zero decoration be Lipschitz on the diagonal s = t.

We now show how this setting can be recovered from the results of Section 6. Let X be a
v-branched rough path on R?*! satisfying (6.4). Since M, X is again a y-branched rough path,
by Theorem 6.2 there exists a collection of functions g € ¥7 such that gX = M, X. Moreover,
this collection is the unique one satisfying

97 — 95 = Xot, 0 ®id) (7)) = (X1, 7) = (g Xst, ¥}71-1(7)) (6.5)

for all 7 € 7 (R¥*1) where we have used (6.3) in order to express M, X in terms of ¥. Theorem

28 in [4] ensures that the first term on the right-hand side is in C3 ™ hence g is actually in
C'7l as required.

The approach of [4] is based on pre-Lie morphisms and crucially on a cointeraction property,
which has been explored by [7] (see in particular [4, Lemma 18]). The cointeraction property
can be used for time-independent modifications, indeed note that the functional v in [4] is
always constant.

Let us see why this is the case. The approach of [4] is based on a cointeraction property
studied by [6, 7, 21] between the Butcher—Connes—Kreimer coproduct and another extraction—
contraction coproduct §: 7 —  ® . The formula is the following:

(d® A)S = .5(6 @ 5)A.

Let us consider now a character v € s7*. If we multiply both sides by (v®id ®id) and set
M* = (v®id)d: H# — H as in [4, Proposition 17], then we obtain

AMF = (MF®MHA,

namely M7 is a coalgebra morphism on 5. Then one can define a modified rough path as
vX = M, X = X o M}. The crucial Chen property is still satisfied since

fIn [4] this map is named § but we choose to call it ¥ in order to avoid confusion with the operator
defined here.
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(0X) et = (0@ Xat)d = (v ® Xy ® X)) (id ® A)6
v ® Xsu ® Xut)%l 3(5 ® (5)
(v ® Xsu) ® (V® Xut)) (6 ® 0)A

(
= (
=
= (vX)su ® (VX )ur) A

However, this does not work if v: [0,1]*> — J#* is a time-dependent character. Indeed in this
case we set (vX)g = (vs ®id)d and we obtain

(UX)st = (vst ® Xsf)(S = (Ust ® Xsu, ® Xut)(id ® A)(S
= (Ust ® Xs’u, ® Xut)'%l,?)((s ® 6)A
= ((Ust ® Xsu) ® (Ust ® Xuf))(d ® 5)A

but we cannot conclude that this is equal to ((vX)sy ® (vX)y)A. Our construction, as
explained after formula (1.8), is not purely algebraic but is based on a (non-canonical) choice
of generalized Young integrals with respect to the rough path X. Moreover our transformation
group, infinite-dimensional, is much larger than that finite-dimensional group studied in [4].

7. Perspectives

In this paper we have shown that the space of branched ~-rough paths is a principal
homogeneous space with respect to the linear group %”. This is related to the analytical
properties of the operator § defined in (1.2), which is invertible under the conditions of
Gubinelli’s Sewing Lemma, but not in general, and in particular not in the context of the
Chen relation on trees with low degree.

It would be now interesting to see how this action can be translated on the level of controlled
paths [24]. The space of paths controlled by a rough path X € BRP” should be interpreted as
the tangent space to BRP” at X, and the action on rough paths should induce an action on
controlled paths. In particular it should be possible to write an action on solutions to rough
differential equations.

The proof of Theorem 6.2, and in particular (6.1), gives a recursive way of computing the
unique g € €7 translating a given branched ~-rough path into another. An interesting feature of
the BCFP scheme is that is given in terms of a coaction so explicit calculations are somewhat
easier in this more restricted case as one can compute g” for each tree 7 € Iy directly by
extracting and contracting subforests of 7 without doing any recursions (see (6.5).) However,
we do not have a computational rule for an important case: suppose that X is branched rough
path lift of a stochastic process with almost surely C7~ trajectories; it would be nice to have
a way of finding g € €7 such that ¢gX is centered with respect to the underlying distribution of
the process, provided this is possible. Even this last problem, namely giving precise conditions
under which this centering is possible is interesting in itself. This should be related to the
notion of Wick polynomials and deformations of products as considered in [18].

More generally, in the physics literature there are various renormalization procedures which
allow to obtain convergent iterated integrals from divergent ones by subtracting suitable
‘counterterms’. In the context of rough paths, implementing one of the most accepted such
procedures due to Bogoliubov—Parasiuk—Hepp—Zimmermman (BPHZ) has been carried out
by Unterberger in [35, 36] by means of the Fourier normal ordering algorithm and using a
technique relating the trees in the Butcher-Connes—Kreimer Hopf algebra to certain Feynman
diagrams. In our context, this could provide a canonical choice for g € ¥7 implementing
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BPHZ renormalization procedure in a way analogous to what is done in [6] for

regularity structures.
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