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Abstract

In this work I investigate patterns of synchronization in networks of semiconductor
lasers. Two main questions arise when studying synchronization phenomena in these
networks: (i) What kind of synchronization patterns can exist in a given network and
(ii) is the synchronization stable? The basis for this study is formed by the chaotic
dynamics that lasers may exhibit when coupled via time-delayed links. The lasers are
modeled by the well established Lang-Kobayashi model. The main focus lies on the
characterization of network topologies and parameter regimes that generate distinct
patterns of synchronization in such laser networks.

Since the stability analysis can be carried out only numerically for chaotic dynamics, I
complement my investigations by another model for the local dynamics in the networks’
nodes – the Stuart-Landau oscillator. These nonlinear equations represent a normal
form for any periodic dynamics near a Hopf bifurcation. In this model, the question
of stability of synchronization can be answered by derivations of analytic equations.
Furthermore, I show how conditions for the coupling parameters can be derived that
allow for the selection and control of desired synchronization states.

At the heart of the stability analysis is the master stability function introduced by Pecora
and Carroll. This formalism allows one to separate the network dynamics from the
network topology, which is only used in terms of the eigenvalues of the coupling matrix.
I extend this theory for networks where delay-induced dynamics becomes important
and show in detail the application to such delay-coupled networks in general and to
laser and oscillator networks in particular. For laser networks, I study particular network
topologies – simple network motifs as well as complex random networks – for different
regimes of the laser dynamics. I will also make use of a symmetry argument of the
master stability function that was recently shown in the limit of large coupling delay
times. In addition, multiple delay times are dealt with by an extension to multiple
coupling matrices.

Isochronous synchronization is the most prominent type of synchronization, but I show
that certain topologies may instead exhibit cluster synchronization depending on sym-
metries in the network. For a better understanding of this dynamical scenario, I extend
a formalism by Sorrentino and Ott that enables a stability analysis of these patterns
of synchronization. The original approach has a restriction on the allowed topologies,
which I partly lift by introducing multiple coupling matrices. As an application of this
theory I consider examples of simple hierarchical networks.

In networks of Stuart-Landau oscillators different cluster states may coexist depending
upon the coupling parameters. I elaborate this finding by analytic results similar to the
case of isochronous synchronization. Furthermore, I show in detail the derivation of a
rigorous condition for the coupling phase, under which all but one of the multistable
states can be suppressed and thus a desired state can be deliberately selected.





Zusammenfassung

In dieser Arbeit untersuche ich Synchronisationszustände in Netzwerken aus Halblei-
terlasern. Zwei wichtige Fragen stellen sich bei der Untersuchung von Synchronisation
in diesen Netzwerken: (i) Welche Arten von Synchronisation können in einem bestimm-
ten Netzwerk existieren und (ii) Sind diese Zustände stabil? Das Fundament für diese
Untersuchungen ist durch die chaotische Dynamik gegeben, die Laser mit zeitverzö-
gerter Kopplung zeigen können. Die Laser werden hierbei durch das etablierte Lang-
Kobayashi-Modell modelliert. Das Hauptaugenmerk liegt hier in der Charakterisierung
der Netzwerktopologien und Parameterbereiche, die die Entstehung bestimmter Syn-
chronisationsmuster in solchen Netzwerken aus Halbleiterlasern beeinflussen.

Für chaotische Dynamik kann die Stabilitätsanalyse nur rein numerisch erfolgen. Daher
beziehe ich ein weiteres Modell für die lokale Dynamik der Netzwerkknoten in meine
Untersuchungen ein – den Stuart-Landau-Oszillator. Die entsprechenden nichtlinearen
Gleichungen stellen eine Normalform für jegliche periodische Dynamik in der Nähe
einer Hopf-Bifurkation dar. Die Frage der Stabilität der Synchronisation kann in diesem
Modell mit Hilfe analytischer Gleichungen beantwortet werden. Weiterhin zeige ich
die Ableitung von Bedingungen an die Kopplungsparameter, die es erlauben, gezielt
bestimmte Synchronisationszustände auszuwählen und zu kontrollieren.

Im Zentrum der Stabilitätsanalyse steht die Master stability function, die auf Pecora
und Carroll zurück geht. Dieser Formalismus erlaubt eine Abspaltung der Dynamik von
der Topologie des Netzwerks, charakterisiert durch die Eigenwerte der entsprechenden
Kopplungsmatrix. Ich erweitere diese Theorie für Netzwerke, in denen die Dynamik
durch die zeitverzögerte Kopplung induziert wird. Die Anwendung auf Netzwerke mit
zeitverzögerter Kopplung im Allgemeinen und auf Laser-Netzwerke und Netzwerke aus
Oszillatoren im Speziellen werde ich detailliert darstellen. Für Laser-Netzwerke unter-
suche ich die Synchronisierbarkeit in verschiedenen Netzwerktopologien, von einfa-
chen Netzwerkmotiven bis hin zu komplexen Zufalls-Netzwerken. Dabei werde ich ein
Symmetrie-Argument benutzen, dass die Form der Master stability function für große
Verzögerungszeiten vorhersagt.

Isochrone Synchronisation ist die bekannteste Art der Synchronisation. Ich zeige, dass
bestimmte Topologien eine weitere Art der Synchronisation zeigen – Cluster-Synchroni-
sation. Zum Verständnis dieser dynamischen Szenarien erweitere ich einen Formalismus
von Sorrentino und Ott, der eine Stabilitätsanalyse für Cluster-Synchronisation erlaubt.
Dieser ursprüngliche Formalismus beinhaltet eine Beschränkung für die möglichen To-
pologien. Durch die Einführung mehrerer Kopplungsmatrizen hebe ich diese Beschrän-
kung teilweise auf. Als Anwendung dieser Theorie zeige ich Ergebnisse für einfache
hierarchische Netzwerke.

In Netzwerken aus Stuart-Landau-Oszillatoren können je nach Wahl der Kopplungs-
parameter mehrere verschiedene Cluster-Zustände gleichzeitig stabil sein. Ich erkläre
diese Multistabilität an Hand analytischer Gleichung ähnlich wie im Fall isochroner
Synchronisation. Außerdem zeige ich die Ableitung einer strengen Bedingung für die
Kopplungsparameter, mit Hilfe dieser die Multistabilität unterdrückt und gezielt ein be-
stimmter Synchronisationszustand eingestellt werden kann.
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1. Introduction

The scientific field of synchronization in coupled systems has evolved rapidly in the
last decades [Strogatz and Stewart, 1993; Rosenblum et al., 1996; Brown and Rulkov,
1997; Pikovsky et al., 2001; Boccaletti et al., 2002; Mosekilde et al., 2002; Balanov
et al., 2009]. Complete synchronization of coupled chaotic units [Pecora and Carroll,
1990; Kocarev and Parlitz, 1995; Pecora et al., 1997] as well as of oscillatory systems
has been extensively studied [Earl and Strogatz, 2003; D’Huys et al., 2008; Sethia et al.,
2008].

In parallel, the research on complex networks has evolved into a rapidly expanding
field [Albert and Barabási, 2002; Barabási, 2002; Newman, 2003; Newman et al., 2006;
Boccaletti et al., 2006]. The models of random graphs [Erdős and Rényi, 1959, 1960],
scale-free networks [Barabási and Bonabeau, 2003] and small-world networks [Watts
and Strogatz, 1998] have been found to reproduce many of the properties of real net-
work structures. On one hand, short paths in very large networks – while locally well-
connected clusters still persist – are modeled in a reasonable way by the Watts and
Strogatz small-world model, for example. On the other hand, the scale-free model by
Barabási and Bonabeau [2003], which exhibits a power-law node-degree distribution,
resembles the hub-like structures occurring in technological, structural networks, but
also in networks of scientific collaborations [Newman, 2001a,b].

There have been attempts to merge the efforts in both areas of research. Synchroniza-
tion has not only been studied in systems of a few coupled nodes, but also in complex
networks [Pecora and Barahona, 2006], in particular in the Watts and Strogatz small-
world network and in modifications of this network model [Barahona and Pecora, 2002;
Lehnert et al., 2011]. While most work focused on time-independent topologies, Sor-
rentino and Ott [2008] studied synchronization in evolving complex networks. Net-
work structure is usually characterized by nodes and links, where only the existence
of links is considered, but not their strength. For the stability of synchronization it
is, however, crucial to include the strength of the links in the analysis [Hwang et al.,
2005; Chavez et al., 2005, 2006]. This is an important point that I will elaborate in this
thesis.
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1. INTRODUCTION

Even more important than the weight of the links are delays in the couplings. Such
delay times due to the physical length of the links and the corresponding signal prop-
agating times have a significant impact on the dynamics in the network, but also on
the stability of synchronization of this dynamics. Both periodic [D’Huys et al., 2008,
2011] and chaotic synchronization [Murphy et al., 2009, 2010] of small network mo-
tifs with delayed couplings have been studied. Again, applications to both coupled
lasers [Flunkert et al., 2009] and neuronal systems [Vicente et al., 2009; Lehnert et al.,
2011] have been made.

The ground-breaking work by Pecora and Carroll [1998]; Pecora [1998], in which they
introduced the master stability function, opened up the field of complex networks for a
simple analysis of stability of synchronization in these networks. The master stability
function allows to separate the network dynamics from the network topology, where
the latter is only needed in terms of the eigenvalue spectrum of the coupling matrix.
It is worth noting that a similar theory was already developed by Fujisaka and Yamada
in a series of papers [Fujisaka and Yamada, 1983; Yamada and Fujisaka, 1983, 1984;
Fujisaka and Yamada, 1986], which did not result in a comparable impact in the com-
munity at that time. There has been an alternative approach by Restrepo et al. [2006],
who used an order parameter to determine the threshold from desynchronization to
synchronization. For globally coupled oscillatory systems with a large number of nodes,
the Antonsen-Ott method has recently had much impact [Ott and Antonsen, 2008].
For the problem of synchronization, this method allows the reduction of the network
dynamics to the evolution of a single order parameter.

Concerning possible applications, being able to securely transmit messages is a neces-
sity in the age of digital and electronic communication. In the light of secure commu-
nication, the isochronous synchronization of coupled chaotic lasers has gained much
interest in the last years [Fischer et al., 2000b; Heil et al., 2001; Peil et al., 2002; Heil
et al., 2002; Mulet et al., 2004; Yang, 2004; Erzgräber et al., 2005; Argyris et al., 2005;
Wünsche et al., 2005; Gross et al., 2006; Klein et al., 2006b; Vicente et al., 2007; Kinzel
and Kanter, 2008; Kinzel et al., 2009, 2010; Englert et al., 2011]. An attacker would be
unable to decode a message which is modulated on top of the chaotic signal that two
mutually coupled lasers exchange. The degree of security that this scheme can poten-
tially offer is still hard to quantify. An alternative public-channel scheme using filters
has been introduced, which overcomes some of these uncertainties [Klein et al., 2005,
2006a; Kinzel and Kanter, 2008; Kanter et al., 2008b,a]. Also, multiple delays have
been shown to increase the chaotic dimension and thus the degree of security [Zigzag
et al., 2008, 2009; Englert et al., 2010, 2011].

Starting with few coupled lasers, identifying possible topologies of laser networks that
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can show stable isochronous synchronization has been the subject of several researchers.
Two lasers, for example, will only synchronize without a time lag when they are cou-
pled via a relay or with additional feedback loops [Fischer et al., 2006; Vicente et al.,
2008; Flunkert et al., 2009; D’Huys et al., 2011]. Even for stable synchronization and
depending upon the dynamical regime in which the coupled lasers operate, the stability
of synchronization may be disturbed by on-off intermittency or bubbling [Venkatara-
mani et al., 1996a,b; Flunkert et al., 2009].

Regardless of the specific implementation or setup, the dynamics of the coupled lasers
needs to be chaotic in order to allow applications in the area of secure communications.
In semiconductor lasers, which emit continuous-wave constant intensity when they are
uncoupled, this chaotic dynamics is induced by the delayed coupling between multiple
lasers. In fact, the dynamics of coupled lasers resemble those of a single laser subject to
delayed feedback, as I will also show in this thesis.

The dynamics of semiconductor lasers with feedback from an external mirror or an ex-
ternal cavity have been widely studied [Fischer et al., 1994; Heil et al., 1998; Krauskopf
et al., 2000; Heil et al., 2000, 2003; Rottschäfer and Krauskopf, 2005; Radziunas et al.,
2006; Tronciu et al., 2006; Rottschäfer and Krauskopf, 2007; Otto et al., 2010, 2012].
The effect of additional filters in the feedback loop was considered as well [Mandre
et al., 2003; Green and Krauskopf, 2006; Erzgräber et al., 2006, 2007a,b; Erzgräber
and Krauskopf, 2007]. Most of that work focused on the feedback-induced dynamical
scenarios and bifurcation scenarios leading to complex dynamics. External feedback is
also able to stabilize unstable dynamics in lasers [Schikora et al., 2006; Wünsche et al.,
2008; Dahms et al., 2008; Schikora et al., 2008; Dahms et al., 2010; Schikora et al.,
2011]. The theoretical basis for those studies has been founded by Pyragas [1992].
This time-delay autosynchronization (TDAS) has since then not only been used to control
laser dynamics; for reviews see Schöll and Schuster [2008]; Just et al. [2010]; Schöll
et al. [2010]; Hövel [2010]. It was believed to be impossible to stabilize a certain type
of periodic orbits – odd-number orbits – by this control scheme, according to an alleged
“theorem” proposed by Nakajima and Ueda [1998]. This so-called odd-number theorem
has been refuted [Fiedler et al., 2007]. An experimental setup to stabilize odd-number
orbits in laser dynamics has been proposed [Flunkert and Schöll, 2011b; Flunkert, 2010,
2011] and was realized experimentally [Schikora et al., 2011].

Experimental realization of laser networks with more than two lasers is still hard to
set up. The reason is that the lengths of the optical pathways have to be tuned with
meticulous precision such that the optical phases match at each laser. The influence
of parameter mismatches and sub-wavelength phase dependency has been studied in
detail by Hicke et al. [2011] and Flunkert and Schöll [2011a], respectively. In a very
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recent work, Reidler and Kanter [2011] have found a setup which shows isochronous
synchronization independently of this sub-wavelength tuning. A similar setup was al-
ready used by Peil et al. in 2007. Another alternative approach originates from Amann
et al. [2008], who exploit globally coupled multi-mode lasers to realize complex net-
works. In this setup, the modes in the lasers act as the nodes of the network, while
the lasers themselves act as the links [Osborne et al., 2009]. Being optically globally
coupled by one mirror, such a mode-coupled network of many lasers can resemble a
variety of complex networks.

Isochronous synchronization is the most prominent type of synchronization in applica-
tions to coupled lasers. Other types of synchronizations include, for example, phase
synchronization [Aviad et al., 2008] and generalized synchronization. In phase syn-
chronization, only the suitably defined phases of the coupled systems but not their am-
plitudes are synchronized. This is particularly interesting in neural applications, where
only the times when neurons spike are important but not the exact amplitudes. In gener-
alized synchronization, coupled systems obey some – potentially nonlinear – functional
dependence. This functional dependence is generally not easily disclosed by just looking
at the dynamics of the nodes and by standard time-series analysis.

As yet another type of synchronization, I will study cluster synchronization in the sec-
ond part of this thesis. In cluster synchronization, several clusters exist in the network,
where all nodes in one cluster are synchronized while there is no synchronization be-
tween the different clusters. As a generalization, group synchronization can take place
in networks where the local dynamics in different clusters or the coupling between clus-
ters is non-identical [Sorrentino and Ott, 2007]. Kestler et al. [2007, 2008] have found
rules for the topological structure of networks that allows for the existence of cluster –
or sublattice – synchronization. Recently, an argument based on the greatest common
divisor of the length of closed loops in networks has been shown to predict the existence
of cluster states in chaotic [Kanter et al., 2011b] and neuronal networks [Kanter et al.,
2011a].

As an extension of the work by Pecora and Carroll [1998], Sorrentino and Ott [2007]
have introduced a method which allows for the calculation of a master stability func-
tion for cluster and group synchronization. I will use and extend this method in
the second part of the thesis to study stability of cluster synchronization in laser net-
works.

This thesis will pick up a variety of the above mentioned topics of ongoing research. It
will focus on dynamics in networks and stability of synchronization in these network
using two different models. The major parts will deal with chaotic dynamics in net-
works of coupled semiconductor lasers modeled by the Lang-Kobayashi model [Lang
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synchronization
Chapter 3: Stability of
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Examples Chapter 4: Network
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Chapter 5: Complex
networks

Multiple coupling matrices Chapter 6: Multiple
coupling matrices

–

Part II: Cluster and group synchronization
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Chapter 8: Stability of
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synchronization

Chapter 10: Controlling
cluster synchronization:
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Multiple coupling matrices Chapter 9: Beyond the
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–

Table 1.1.: Structure of the thesis.
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and Kobayashi, 1980]. The methods that I will use and develop – based on the master
stability function – are valid for dynamics on networks with any kind of local dynamics.
Considering periodic instead of chaotic dynamics, analytic results can be obtained based
on Floquet theory. As other type of node dynamics I will therefore use periodic dynam-
ics modeled by the Stuart-Landau oscillator, which arises as a generic normal form near
any Hopf bifurcation. In addition to the plain study of stability of synchronization, I will
show that the introduction of a phase in the coupling allows for selection and control
of the desired state of synchronization.

This thesis is organized in two parts according to the patterns of synchronization that
occur. See Tab. 1.1 for a schematic overview. Part I focuses on isochronous synchroniza-
tion, which is also known as complete, zero-lag, or in-phase synchronization. Cluster
and group synchronization will be the topic of Part II.

In Part I, Chapter 2 will introduce the dynamics in laser networks. I will demonstrate
that lasers connected in a network with delayed coupling show the same dynamical sce-
narios as a single laser subject to feedback from an external cavity. In Chapter 3, I will
introduce the master stability function with which the transverse stability of synchro-
nization can be treated in an elegant way. The mathematical technique of this Chapter
will be applied to small network motifs of lasers in Chapter 4 and to more complex
networks in Chapter 5. The formalism will be extended to multiple coupling matrices
and multiple delays in Chapter 6.

In Chapter 7 I will investigate networks of nodes exhibiting periodic dynamics using
the Stuart-Landau model. With this model, the calculation of the master stability func-
tion is simplified to the solution of analytic equations. I will also show the effect of a
coupling parameter – namely a coupling phase – on synchronization. Rigorous condi-
tions for an optimal coupling phase can be derived under which synchronization can be
achieved.

In Part II the concepts and methods of Part I will be used and extended to describe
cluster synchronization in networks of both lasers and Stuart-Landau oscillators. In
Chapter 8, I will derive a master stability function for cluster states, which is a gener-
alization of the isochronous master stability function treated in Chapter 3. Examples of
simple network motifs and more complex topologies showing cluster synchronization
will be used to illustrate the results in this Chapter. In order to apply the master stability
approach, a restriction to the coupling matrices is necessary. This restriction is partly
overcome in Chapter 9, which introduces multiple coupling matrices for cluster syn-
chronization and is as such the continuation of Chapter 6. Again, the results for Stuart-
Landau oscillators can be obtained in an analytic fashion, which I will show in Chap-
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ter 10. The role of the coupling phase gains additional importance here, as it will allow
to deliberately select any one of several multistable cluster states.

I will conclude with a summary and review of all results in Chapter 11, which also
includes an outlook on possible continuations of this work.
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2. Laser dynamics in networks

In this Chapter I will first introduce the dynamics on networks in a general form. Ac-
cording to the terminology of networks [Albert and Barabási, 2002; Newman, 2003;
Boccaletti et al., 2006], a network is usually constructed of nodes – or vertices – on
which in my case the dynamics takes place. These nodes are coupled via links – or
edges – along which information is transmitted between nodes.

In order to study dynamics on networks, each node is described by a differential equa-
tion including coupling terms, which account for input from other nodes. Using this
notion, I will discuss the different kinds of synchronization that may occur, including
in-phase, time-lag, and group synchronization. Introducing a model for semiconduc-
tor laser dynamics, I will describe the dynamical scenarios that arise in the optically
coupled laser network.

In general, models for the local dynamics of each node can be classified depending on
the type of dynamics:

Chaotic dynamics is in this thesis achieved using the Lang-Kobayashi semiconduc-
tor laser model [Lang and Kobayashi, 1980]. While the isolated lasers emit
continuous-wave (cw) output, coupling in the network may drive the dynamics
into the chaotic regime similar to a laser with self-feedback. Chaotic dynamics
are in general also given by, e.g., the Rössler or the Lorenz model [Rössler, 1976;
Lorenz, 1963], but the focus in this thesis lies on chaotic dynamics that is induced
only by the coupling. In this scope, the Lang-Kobayashi model is the paradigmatic
choice.

Periodic dynamics is treated using the Stuart-Landau oscillator, i.e., the normal form
of an oscillator near a Hopf bifurcation [Choe et al., 2010, 2011].

Excitable nodes which rest in a stable fixed point and are only showing spikes or oscil-
lations when excited can be modeled by FitzHugh-Nagumo neurons [FitzHugh,
1961; Nagumo et al., 1962], Hindmarsh-Rose neurons [Hindmarsh and Rose,
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2. LASER DYNAMICS IN NETWORKS

1982; Dhamala et al., 2004], or the normal form of the saddle-node infinite pe-
riod bifurcation (SNIPER) [Hu et al., 1993; Ditzinger et al., 1994; Hizanidis et al.,
2008; Aust et al., 2010].

These respective models are of course only examples for the different kinds of dynamics.
They are, however, the most generic and paradigmatic ones for each type. In this thesis
I focus on chaotic and periodic dynamics using the Lang-Kobayashi and the Stuart-
Landau model, respectively. In this Chapter I will introduce the dynamics on laser net-
works, while the periodic dynamics will be the topic of Chapter 7.

Although only induced by the coupling in the network, periodic dynamics will also
occur in networks of excitatory nodes modeled by the FitzHugh-Nagumo system or the
SNIPER normal form. Hence the results for periodic dynamics are valid for excitable
nodes – to some degree – as well. Consequently, some of the results in this thesis allow
insight into the dynamics of neural networks consisting of excitable nodes [Lehnert
et al., 2011].

In the following Sec. 2.1, I will introduce the general notation of local dynamics, cou-
pling matrices, and coupling schemes that forms the basis of the equations for dynamics
on networks. I will show that the synchronized dynamics is similar to that of an iso-
lated node with self-feedback. In Sec. 2.2 I will show the dynamical scenarios that
arise in a single laser with self-feedback and proceed to laser dynamics on networks in
Sec. 2.4.

2.1. Dynamics in networks

Consider a network of dynamical systems, where each of these follows a differential
equation

ẋi = Fi[xi(t)], (2.1)

where xi ∈ Rn is the state vector of each system and Fi[xi(t)] describes the local
dynamical behavior of the node i, depending on the type of node used, i.e., on the
model. Note that the local dynamics does not necessarily have to be identical for all
nodes. However, for the most common types of synchronization it has to be identi-
cal.

The dynamics on an N -dimensional network is then described by

ẋi = Fi[xi(t)] +σ
N
∑

j=1

Gi jHi jx j(t −τi j), i = 1, . . . , N . (2.2)
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2.1. DYNAMICS IN NETWORKS

Here, the N×N matrix G describes the coupling topology in the network. If an entry Gi j
is nonzero, then there is a link from node j to node i with strength Gi j . In the literature
such a matrix is called adjacency matrix [Barabási, 2002; Newman et al., 2006; New-
man, 2003; Boccaletti et al., 2006; Albert and Barabási, 2002], but only if the entries are
either 0 or 1. However, I will generalize this notation and introduce G as coupling ma-
trix with elements Gi j ∈ R. See Section 2.1.2 for a detailed explanation why weighted
links are important for synchronization phenomena in networks.

The overall coupling strength in the network can be further scaled by the parameter σ.
The n×n matrix Hi j describes how the variables in two connected nodes interact. I will
refer to this matrix as coupling scheme in the following. For instance, in a laser model
with all-optical coupling, Hi j will couple the electric field variables from one node to the
same variables in the other node, possibly with a phase rotation. In an electro-optical
coupling scheme, the electric field variables would couple into the carrier equations
of the other node. In neural applications, Hi j describes the interaction of inhibitor and
activator variables, e.g., in the FitzHugh-Nagumo model. Especially in coupled neurons,
the choice of this coupling schemes can influence synchronization [Hövel et al., 2009;
Hövel, 2010]. As Hi j may differ for each link in the network, different coupling schemes
can be present at the same time. Note that a nonlinear function may be chosen instead
of a matrix [Pecora and Carroll, 1998], but all examples shown in this thesis use a
linear coupling function, which can be represented by a matrix. Finally, the time delay
– denoted by τi j – accounts for delays due to the couplings and may as well be different
for each link in the network. Before briefly summarizing why time delays are crucial
in a majority of applications, I will cover the different coupling terms that may be
used.

2.1.1. Direct and pseudo-diffusive coupling

In the network dynamics described by Eq. (2.2), the coupling happens in a “direct”
way, i.e., the delayed variable x j(t −τi j) of the jth node is added directly – after being
weighted by σGi jHi j – to the dynamics of the node i. This coupling scheme is motivated
by the dynamics, e.g., of semiconductor lasers, as I will show in Sec. 2.2.

Another form of the coupling arises when looking at neuronal nodes in a network.
Here, the effect that input from a node j has on node i is determined by a comparison
of both variables. For example, a neuron i that has a membrane potential Vi and gets
input Vj from another neuron will only see an effective input Vj − Vi , i.e., the voltage
difference between the two nodes. In a spatio-temporal reaction-diffusion system, this
corresponds to diffusive coupling. Without delay, the differences arise as discretization
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2. LASER DYNAMICS IN NETWORKS

of the Laplace operator. Translating this to network dynamics with discrete nodes, one
ends up with network dynamics of the form

ẋi = Fi[xi(t)] +σ
N
∑

j=1

Gi jHi j

�

x j(t −τi j)− xi(t)
�

, i = 1, . . . , N , (2.3)

where the delay is included in the contribution from the incoming nodes only, but not
the node i itself, which is intuitively reasonable. This is also the form that I will use
when studying networks of normal form oscillators in Chapters 7 and 10. For the ap-
plication to neural networks with excitatory nodes see [Lehnert, 2010; Lehnert et al.,
2011].

Introducing transformed local dynamics as

F̃i[xi(t)] = Fi[xi(t)]−σ
N
∑

j=1

Gi jHi jxi(t), (2.4)

it becomes clear that Eq. (2.3) is equivalent to Eq. (2.2) using F̃i as local dynamics in
Eq. (2.2). In practice, I will use the form (2.3), e.g., in Chapters 7 and 10 dealing
with networks of Stuart-Landau oscillators, but with this equivalence it is clear that the
formulation of the master stability function that I will introduce in Chapter 3 is valid
for both forms of network dynamics.

2.1.2. Coupling matrix and adjacency matrix

In the literature on complex networks [Barabási, 2002; Newman et al., 2006; Newman,
2003; Boccaletti et al., 2006; Albert and Barabási, 2002], the structure of a network
is usually determined in terms of the existence of links only. In particular, there is no
interest in the weights of the links. Network measures like betweenness, degree distri-
bution, or clustering coefficient, do not use any information on the weight of individual
links. For many applications, it is sufficient to describe the topology by an adjacency
matrix A whose entries are either zero or one. If a certain link i → j exists, the entry
A ji of the matrix is one, otherwise it is zero.

Unlike the papers and books cited above, the interest in this thesis lies on the dynam-
ics on networks and synchronization of these dynamics. As can already be seen from
Eq. (2.2), the dynamics in a network does depend on the individual entries in the cou-
pling matrix G. Its entries act like a coupling strength for each individual link. Reducing

38
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this to the use of an adjacency matrix would only allow to treat networks where each
link has the same strength.

However, from a coupling matrix G, the corresponding adjacency matrix can be ob-
tained by

Ai j =Θ0(Gi j) +Θ0(−Gi j), (2.5)

where Θ0 denotes the Heaviside function with Θ0(0) = 0. Conversely, for a network
described by an adjacency matrix A, the coupling matrix can be obtained by using an
N × N weight matrix W:

G=W ◦A, (2.6)

where ◦ denotes the Hadamard product, which is also known as entrywise or Schur
product and defined as (A ◦ B)i j = Ai jBi j [Horn and Johnson, 1985]. Of course, if
Ai j = Θ0(Wi j) + Θ0(−Wi j), the identity W = G holds, but W may for convenience
contain more non-zero entries than A and G. Consider, for example, a power grid:
Each transmission line connecting two nodes i and j gets a weight Wi j according to its
possible transmission capacity. Cutting links from the network, W stays intact, while
the adjacency matrix A and – following Eq. (2.6) – the coupling matrix G is changed
accounting for the missing link.

Several other notations of weighted coupling matrices exist, which are equivalent to the
one shown here. See, for example, the work by Chavez et al. [2005, 2006], who used
the load of the individual links – a property very similar to the link betweenness that I
will introduce in Chapter 5 – to obtain a weight for each link.

In Chapter 5, where topology measures like the betweenness and degree distribution
mentioned above will be introduced, I will mostly use Eq. (2.5) to derive an adjacency
matrix from which these quantities are then calculated.

2.1.3. Self-feedback in the coupling matrix

In the definition of an adjacency matrix, the diagonal elements Aii are usually zero,
which is sufficient for topological properties. Feedback loops, i.e., Aii = 1, would sub-
stantially complicate the calculation of network quantities. As an example consider the
clustering coefficient, which uses the node degree and the number of neighbors of links.
Should a node i be considered a neighbor of itself when Aii = 1? Should Aii contribute
to the node degree of node i itself?
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For the evolution of dynamics on networks, feedback loops play an important role for
the stability of synchronization and cannot be neglected as I will show in Chapter 4.
Consequently, concerning dynamics and stability of synchronization, I will therefore as-
sume that adjacency matrices can contain diagonal elements. This leaves relations (2.5)
and (2.6) intact.

2.1.4. Origin and role of coupling delays

Delays may arise naturally or may be introduced artificially in a variety of applications:
In optical applications the finite light speed introduces a natural delay depending on the
distance. Already in single lasers with feedback, delay plays a crucial role [Lang and
Kobayashi, 1980]. The effect of time-delayed feedback on semiconductor lasers was
investigated within Lang-Kobayashi (LK) type models [Simmendinger and Hess, 1996;
Liu and Ohtsubo, 1997; Tronciu et al., 2006; Flunkert and Schöll, 2007; Fiedler et al.,
2008; Dahms et al., 2008, 2010; Flunkert and Schöll, 2011b], as well as within more
elaborate device models [Rogister et al., 1999; Simmendinger et al., 1999; Fischer et al.,
2000a; Bauer et al., 2004; Ushakov et al., 2004; Ahlborn and Parlitz, 2006; Schikora
et al., 2006; Otto et al., 2010, 2012] for various configurations, including Michelson in-
terferometers providing a realization of time-delay autosynchronization (TDAS). TDAS
is a simple and widely used feedback scheme introduced in 1992 by Pyragas. In par-
ticular, feedback-induced stationary external cavity modes and their bifurcations in a
LK model for a laser subject to resonant feedback from a Fabry-Perot resonator were
treated within the TDAS approximation [Tronciu et al., 2006].

In neural applications delays may arise naturally for three reasons:

(i) Propagation delays due to finite distances between coupled neurons or regions of
the cortex.

(ii) Processing lags of neural activity.

(iii) Neurovascular coupling.

While (ii) may lead to similar delays for all neurons considered, (i) and (iii) may intro-
duce several nonidentical delays depending on the distance of any pair of neurons or
regions of the cortex. Time delay may also come into account when controlling neural
activity by external stimulation, as has been proposed to alleviate or cure neurological
diseases such as Parkinson or migraine [Popovych et al., 2005b,a, 2006; Dahlem et al.,
2008; Schneider et al., 2009].
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Other systems in which delays may play an important role include electric circuits [Illing
and Gauthier, 2006], electro-optical applications [Callan et al., 2010; Murphy et al.,
2009], but also mechanical systems [Sieber et al., 2008; Blyuss et al., 2008; Kyrychko
et al., 2009] or population dynamics [Hadeler, 2008]. For a review see Just et al.
[2010]. Also the area of chaos control has employed delay times in the scope of time-
delayed feedback control [Schöll and Schuster, 2008].

In the following, conditions will be derived that lead to a synchronization manifold,
i.e. synchronous solutions, of different types. These types include isochronous, time-
lag, group, and generalized synchronization. This theoretical treatment is very similar
regardless of the model used.

2.1.5. Patterns of synchronization

In a network described by the general Eq. (2.2), several types of synchronization may
occur:

(i) Isochronous or zero-lag synchronization

(ii) Time-lag synchronization

(iii) Group or cluster synchronization

(iv) Generalized synchronization

In this first Part of the thesis I focus on case (i), where all nodes are completely syn-
chronized. In Part II I will extend the theory to cluster synchronization (case (iii)).
Time-lag synchronization (case (ii)) can occur as a special case of cluster synchroniza-
tion.

2.1.6. Isochronous synchronization

For isochronous synchronization, both local dynamics and coupling contributions have
to be identical for every node in the network in order for an invariant synchronization
manifold to exist. This leads to several restrictions:

Identical local dynamics: Fi ≡ F for i = 1, . . . , N . There have been studies on synchro-
nization with parameter mismatch [Hicke et al., 2011], but the stability analysis
using the master stability approach is only valid for identical local dynamics.
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Identical time delays: τi j ≡ τ for i, j = 1, . . . , N . Note that isochronous synchroniza-
tion may also be present for different time delays, which will be investigated in
Chapter 6, but the stability analysis shown in Chapter 3 relies on identical delays.

Constant row sum in the coupling matrix:
∑N

j=1 Gi j = const. independently of i =
1, . . . , N . Since the overall coupling strength can be tuned using the parameter σ
(see Eq. (2.2)), I will assume

∑N
j=1 Gi j = 1 without any loss of generality in the

following. If the constant – or unity – row sum condition is not fulfilled, different
nodes will be subject to different coupling signals even when synchronized. The
synchronization manifold cannot be invariant in this case.

Identical coupling schemes: Hi j ≡ H for i, j = 1, . . . , N . In the case of the phase
rotation coupling scheme (2.21) that I will introduce for networks of lasers in
Sec. 2.4, this implies that all phase differences are equal: φi j ≡ φ. Throughout
this work I will use φ = 0. This together with identical time delays and the
constant row sum ensures that in a synchronized case all nodes get the same
input.

Applying these restrictions to Eq. (2.2) yields the following equation governing the
dynamics of the network’s nodes:

ẋi = F[xi(t)] +σ
N
∑

j=1

Gi jHx j(t −τ), i = 1, . . . , N . (2.7)

2.1.7. The isochronous synchronization manifold

The dynamics in the synchronization manifold can be found by setting xi = x j ≡ xs for
i, j = 1, . . . , N . In this case, Equation (2.7) becomes

ẋs = F[xs(t)] +σHxs(t −τ). (2.8)

Comparing this to Eq. (2.7), it is obvious that Eq. (2.8) is identical to the equation of a
single node with a delayed feedback term.

In the following, I will illustrate this notion of network dynamics by introducing the
model used for semiconductor laser networks. Before doing this, I make use of the fact
that the dynamics on the synchronization manifold is identical to the dynamics of a
single laser subject to delayed feedback and describe the scenarios that show up in such
setups.
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2.2. Semiconductor laser dynamics

In this Section I will review the Lang-Kobayashi model [Lang and Kobayashi, 1980],
which describes a semiconductor laser subject to self-feedback, and discuss the dy-
namical scenarios of this system. In a network of lasers the synchronized dynamics
is equivalent to this system, as discussed above.

Several models exist to describe laser dynamics, differentiating on one hand the dif-
ferent kinds of lasers, i.e., gas lasers, solid-state lasers, dye lasers, or semiconductor
lasers. On the other hand, both the regime of operation and the required level of
sophistication narrow the choice of an appropriate model. For a review see Lüdge
[2011].

For semiconductor lasers subject to optical feedback, the model introduced by Lang and
Kobayashi [1980] has become a de-facto standard model. This model, which is referred
to as the Lang-Kobayashi model, is based on a rate equation model and includes as
variables the carrier inversion n and the complex electric field E, which describes the
slowly varying envelope of the field E = Eeiω0 t .

The Lang-Kobayashi model in its dimensionless form [Alsing et al., 1996; Tronciu et al.,
2006] reads

T ṅ(t) = p− n(t)− [1+ n(t)] |E(t)|2,

Ė(t) =
1

2
(1+ iα)n(t) E(t) + Eb(t), (2.9)

where α denotes the linewidth enhancement factor, T is the time-scale ratio of the
carrier lifetime and the photon lifetime, p is the reduced excess injection current, and
Eb(t) denotes the delayed feedback term, which will include a time delay τ due the
light propagation time in the external cavity.

In this thesis I will not cover in detail the procedure that leads to this dimensionless
form of the Lang-Kobayashi equations. Table 2.1 lists the laser properties that influence
the parameters in the Lang-Kobayashi model and the corresponding relations. Note
that the pump rate J is already normalized to be a rate per unit volume, i.e., it is the
current density divided by the electronic charge and the thickness of the active layer
and normalized to a unit volume [Lang and Kobayashi, 1980]. I refer the reader to the
literature for a detailed survey of the derivation of the dimensionless model [Flunkert,
2007, 2010, 2011].
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laser property symbol typical magnitude

carrier lifetime τc 10−9 s
photon lifetime in the internal cavity τp 10−11 s
threshold carrier density Nth 107

threshold pump rate Jth =
Nth

τc
1016 s−1

pump rate (current density) J 1Jth, . . . , 100Jth

differential gain GN =
∂ G
∂ N

104 s−1

dimensionless parameter definition

time-scale separation T = τc

τp

pump current p = τpGN Nth

�

J
Jth
− 1
�

dimensional dynamical variable dimensionless variable

time scale s t = s
τp

electric field E (s) E(t) =
p

τcGNE (s)
carrier inversion N(s) n(t) = τpGN[N(s)− Nth]

Table 2.1.: Relation of the variables, parameters and time scale in the dimensionless Lang-
Kobayashi model to their dimensional counterparts.

While the Lang-Kobayashi model is well suited for a wide range of application, it has
some limitations that arise as trade-offs for its simplicity:

(i) As the model omits any spatial resolution of the laser device, it is restricted to
situations where the external cavity is long in comparison to the length of the
laser resonator. This is also needed to stay within the validity of the single-mode
approximation with optical feedback [Tager and Elenkrig, 1993].

(ii) The model assumes that the slowly varying envelope of the electric field in the
laser does not change significantly during the traveling time in the external cavity.
This is only valid for small feedback strength. Generalized models have been
proposed to overcome this restriction [Kane and Shore, 2005].

(iii) The model further assumes that the gain in the laser is not changed by the feed-
back. However, using strong feedback, which corresponds to strong injection,
does not fulfill this condition. Again, small feedback strength is needed to stay
within the validity of the model.
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τ, ψ

Klaser diode external resonatorR R

ϕ

Figure 2.1.: Schematic diagram of a semiconductor laser subject to optical feedback by an
external cavity. τ denotes the traveling time of the light in the external cavity and K
is the coupling strength, tuned by a neutral density filter. The phase differences ϕ and
φ are introduced by the traveling time of the light between the external cavity and the
laser diode and inside the external cavity, respectively. R denotes the reflectivity of the
cavity mirrors.

As shown in Sec. 2.1.7, lasers that are coupled in a network may exhibit similar dy-
namics as a laser with self-feedback. In what follows, I will therefore introduce some
dynamical scenarios that are known to occur in semiconductor lasers with an external
cavity.

Figure 2.1 depicts schematically a laser diode with an external cavity. The delay time
τ arises as the traveling time of the light in the external cavity. The influence of the
reflectivity of the mirrors of the external cavity, the attenuator, and the distance between
diode and external cavity are described by the parameters R, K , and ϕ, respectively.
The latter is a phase difference that arises between the electric field of the light coming
from the external cavity and the light in the laser. Phase differences in the external
cavity itself can also be accounted for by an additional phase ψ. Using this scheme, the
feedback term Eb in Eqs. (2.9) can be written as

Eb(t) = Ke−iϕ
∞
∑

n=0

�

Reiψ
�n �

eiψE(tn+1)− E(tn)
�

, tn = t −τ− nτ. (2.10)

Let us assume that the phases ϕ andψ can be considered zero. This can be achieved ex-
perimentally by tuning the positions of the mirrors very carefully [Dahms et al., 2010].
Let us further neglect multiple reflections in the external cavity, I consider only the
contribution of the first round-trip in the cavity and neglect back reflections from the
first mirror, which then corresponds to feedback from a single mirror only. These as-
sumptions are valid in a wide range of applications [Tronciu et al., 2006] and lead to a
simplified form of Eq. (2.10):

Eb(t) = σE(t −τ). (2.11)
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2. LASER DYNAMICS IN NETWORKS

Here, the new feedback strength σ (corresponding to the coupling strength in net-
works) accounts for all contributions of the external cavity, namely a possible attenua-
tor K and the reflectivity R. Given that there can be no gain in the external cavity, the
coupling strength is bounded by σ ∈ [0, 1].

2.2.1. Dynamical scenarios of a single laser subject to optical feedback

A semiconductor laser subject to optical feedback can exhibit different kinds of dy-
namics. Assuming that the solitary laser emits continuous-wave (cw), the following
scenarios are possible when an external cavity is present:

Continuous-wave (cw): For small feedback strength the behavior will be unchanged
and the laser still emits cw output. Increasing the coupling strength, the regime of
external cavity modes (ECM) is reached. There, the laser still emits cw with con-
stant intensity I = |E|2, but the phase of the complex electric field is continuously
rotating.

Periodic behavior: By increasing the feedback strength further, the laser may eventu-
ally undergo a bifurcation and exhibit a stable limit cycle, which corresponds to
intensity pulsations.

Chaotic behavior: Going through a series of period doubling bifurcations [Hohl and
Gavrielides, 1999] or by other mechanisms, the laser finally operates in a chaotic
regime.

The type of dynamics I am interested in in this thesis is chaotic behavior. Recently,
chaotic laser dynamics has gained much interest in the field of secure communication
with chaos synchronization [Fischer et al., 2000b; Rogister et al., 2001; Heil et al., 2002;
Yang, 2004; Argyris et al., 2005; Vicente et al., 2007; Kinzel and Kanter, 2008; Kinzel
et al., 2010]. Different regimes of chaotic dynamics occur in semiconductor lasers; the
most prominent are the low-frequency fluctuations (LFF) and the coherence collapse (CC)
[van Tartwijk and Agrawal, 1998] regime. Depending on the parameters of the laser,
e.g., the pump current p and the feedback parameters, namely feedback strength and
delay time, the laser may be driven into one of these regimes. I will use the pump cur-
rent p as a bifurcation parameter to distinguish the two regimes.
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2.2. SEMICONDUCTOR LASER DYNAMICS

Figure 2.2.: (a) Bifurcation diagram of intensity maxima in dependence on the coupling
(or feedback) strength σ for a semiconductor laser subject to optical feedback accord-
ing to Eq. (2.12). Parameters: p = 0.1, α = 4, T = 200, and τ = 1000. The vertical
dashed line at σ = 0.12 corresponds to the LFF regime according to Tab. 2.2. (b)
Blow-up.

Adding an external cavity as above to one laser, the dynamical equations (2.9) be-
come

T ṅ(t) = p− n(t)− [1+ n(t)]|E(t)|2,

Ė(t) =
1

2
(1+ iα)n(t)E(t) +σE(t −τ). (2.12)

Figures 2.2 and 2.3 show the maxima of the intensity I = |E|2 of a single laser governed
by these equations for injection current p = 0.1 and p = 1, respectively. The other
laser and coupling parameters are chosen as in Tab. 2.2. Panel (b) is a blow-up for
small coupling strengths in both Figures. Overall, it can be seen that even for small
coupling (or feedback) strength σ the laser departs from its fixed point at I = p which
corresponds to cw emission. For small values of the coupling strength, the intensity is
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2. LASER DYNAMICS IN NETWORKS

Figure 2.3.: (a) Bifurcation diagram of intensity maxima in dependence on the coupling
(or feedback) strength σ for a semiconductor laser subject to optical feedback accord-
ing to Eq. (2.12). Parameters: p = 1, α = 4, T = 200, and τ = 1000. The vertical
dashed line at σ = 0.12 corresponds to the CC regime according to Tab. 2.2. (b)
Blow-up.

comparatively higher for the higher injection current p = 1 in comparison to p = 0.1.
The higher pump current leads to a larger degree of chaos for any of σ, which I will
quantify using the Kaplan-Yorke dimension in Sec. 2.3.2. I will also show time series
(Figs. 2.6 and 2.7) that reveal that the laser is operating in different regimes for these
two injection currents p = 0.1 and p = 1. Note the explosion of the intensity for
σ ≈ 0.5 in Fig. 2.2. In this parameter range, the Lang-Kobayashi model loses its validity,
because the input from the external cavity is no longer small in comparison to the field
in the laser cavity. The explosion of the intensity can to some extent be limited by the
introduction of a gain saturation term in the Lang-Kobayashi model [Agrawal, 1988].
Keeping the coupling strength at lower values, such extensions are not necessary in the
scope of this thesis.

Figures 2.2 and 2.3 used a fixed time delay τ = 1000. The chaos in the laser is only
generated in the presence of delay, which is illustrated in Figs. 2.4 and 2.5 in bifurcation
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parameter symbol LFF regime CC regime

time-scale separation T 200 200
linewidth enhancement factor α 4 4
injection current p 0.1 1
coupling strength σ 0.12 0.12
coupling delay time τ 1000 1000

Table 2.2.: Set of parameters used for the networks of semiconductor lasers unless explicitly
noted different.

diagrams in dependence on the time delay τ for a fixed value of σ = 0.12. The injection
current is again chosen as p = 0.1 and p = 1 in Fig. 2.4 and Fig. 2.5, respectively. Panel
(b) is a blow-up for small delay times in both Figures. For vanishing time delay, i.e.,
τ= 0, the laser rests in its fixed point in both cases. Increasing the time delay, a series of
Hopf bifurcations take place, which leads to periodic dynamics first and then to chaotic
dynamics through a cascade of period doublings [Hohl and Gavrielides, 1999]. The
chaotic dynamics is interrupted by periodic windows which do no longer occur for large
delay. For the higher pump current of p = 1 there is an abrupt change and the dynamics
is qualitatively uniform from τ = 100 onwards, while the periodic windows change in
a more monotonous way for the lower pump current of p = 0.1.

To further illustrate the differences in dynamics depending on the injection current,
Figs. 2.6 and 2.7 show time series of a laser according to Eq. (2.12) for fixed coupling
strength σ = 0.12, delay time τ = 1000, and injection current p = 0.1 and 1, respec-
tively. These parameter choices are also marked by a dashed line in Figs. 2.2 and 2.4
for p = 0.1 and in Figs. 2.3 and 2.5 for p = 1. For the lower injection current of p = 0.1
the laser operates in the LFF regime, whereas the higher current of p = 1 leads to the
CC regime. The time series for the LFF regime shows significant power drop-outs with
a frequency that is much lower than the time scale of the dynamics, hence the name
low-frequency fluctuation regime. In contrast to that, no such low-frequency features
are present in the dynamics of the CC regime.

These time series represent the dynamics that I will use for the study of the stability of
synchronization in laser networks. I will refer to these two types as LFF and CC regime,
respectively.

As I will show in Chapter 3, the stability of synchronization in laser networks does
– qualitatively – not depend on the choice of the parameters T , α, and σ. The pump
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Figure 2.4.: (a) Bifurcation diagram of intensity maxima in dependence on the delay
time τ for a semiconductor laser subject to optical feedback according to Eq. (2.12).
Parameters: p = 0.1, α = 4, T = 200, and σ = 0.12. The vertical dashed line at
τ= 1000 corresponds to the LFF regime according to Tab. 2.2. (b) Blow-up.

current influencing the regime of operation is the only crucial parameter. I will therefore
choose the two sets of parameters given in Tab. 2.2.

2.3. Quantifying the degree of chaos

From the bifurcation diagrams and time series shown in the previous section, it becomes
clear that a laser shows chaotic dynamics under the influence of delayed feedback or
coupling. The degree of this chaos can be quantified by the largest Lyapunov exponent,
which I will introduce in the following Section 2.3.1. This largest Lyapunov exponent
will also be important for the analysis of stability of synchronization in networks of
lasers, which will be carried out in Chapter 3. Regarding the degree of chaos, the
largest Lyapunov exponent alone is of limited relevance and I will introduce the Kaplan-
Yorke dimension, which is a measure for the dimension of the chaotic dynamics, in
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Figure 2.5.: (a) Bifurcation diagram of intensity maxima in dependence on the delay
time τ for a semiconductor laser subject to optical feedback according to Eq. (2.12).
Parameters: p = 1, α = 4, T = 200, and σ = 0.12. The vertical dashed line at
τ= 1000 corresponds to the CC regime according to Tab. 2.2. (b) Blow-up.

Section 2.3.2. The Kaplan-Yorke dimension is based on the whole spectrum of Lyapunov
exponents.

2.3.1. Lyapunov exponents

To determine if a trajectory is chaotic, the framework of Lyapunov exponents is widely
used. A Lyapunov exponent characterizes the rate of separation between infinitesimally
close trajectories. Instead of two trajectories, one usually considers the evolution of a
variational equation, i.e., the dynamics of the linearized equation.

Let x0(t) describe the trajectory of a dynamical system (x0 ∈ Rm). A close-by trajectory
x(t) is introduced by using a small variation δx(t):

x(t) = x0(t) +δx(t) (2.13)
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Figure 2.6.: Time series of a semiconductor laser according to Eq. (2.12). (a) Intensity
I = |E|2, (b) carrier inversion n. Parameters: p = 0.1, α = 4, T = 200, τ = 1000,
and σ = 0.12 corresponding to the LFF regime.

with an initial separation δx0. To measure the divergence or convergence of both tra-
jectories, it suffices to follow the variation δx(t). The largest Lyapunov exponent Λ is
then defined as

Λ = lim
t→∞

1

t
ln
|δx(t)|
|δx0|

, (2.14)

which uses the idea that in a linear regime the separation of two trajectories takes place
exponentially:

|δx(t)|= eΛt |δx0|. (2.15)

Calculating the full Lyapunov spectrum, which consists of m exponents for an m-dimen-
sional dynamical system, is a comparatively more complex task, which involves not only
following a single separation vector but a set of m linearly independent vectors. These
vectors evolve and the magnitudes yield the Lyapunov exponents. The procedure in-
cludes periodic orthogonalizations of the set of variational vectors.
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Figure 2.7.: Time series of a semiconductor laser according to Eq. (2.12). (a) Intensity
I = |E|2, (b) carrier inversion n. Parameters: p = 1, α= 4, T = 200, τ= 1000, and
σ = 0.12 corresponding to the CC regime.

For delay-differential equations the phase space has dimension infinity, because the so-
lution of such an equation is only uniquely determined by an initial condition covering
an interval (−τ, 0]. Then the Lyapunov spectrum theoretically consists of infinitely
many exponents. For numerical applications, e.g., calculating the Kaplan-Yorke dimen-
sion as described in the following Section, it is sufficient to consider a subset of this
spectrum.

The numerical procedure I use to calculate the spectrum follows the work by Farmer
[1982] and involves a Gram-Schmidt orthonormalization scheme.

While the Lyapunov exponents as introduced here are a measure for the divergence of
trajectories, they will also be used in Chapter 3 to determine the stability of synchroniza-
tion. There, the concept of transverse Lyapunov exponents is used, where the reference
trajectory evolves on the synchronization manifold and only directions transverse to
this manifold are taken into account in the variational equations.
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2.3.2. Dimension of the chaotic attractor

In the literature, several quantities exist that measure the degree of chaos. One of these
is the Kaplan-Yorke dimension introduced by Kaplan and Yorke [1979], which will be
used here as an exemplary measure. Given the ordered set of n Lyapunov exponents
λ1 ≥ . . . ≥ λn of an n-dimensional dynamical system, the Kaplan-Yorke dimension is
defined as

DKY = k+

∑k
i=1λi

|λk+1|
, (2.16)

where k is the largest natural number for which the sum
∑k

i=1λi is positive.

Note that for the calculation of the Kaplan-Yorke dimension, only the largest Lyapunov
exponents λ1, . . . ,λk+1 are needed. As time-delayed systems have infinitely many Lya-
punov exponents, it is crucial that a finite number of them is sufficient to calculate the
chaotic dimension.

Numerically calculating the Kaplan-Yorke dimension involves calculating the spectrum
of Lyapunov exponents following a technique by Farmer [1982]. This numerical out-
come for the Kaplan-Yorke dimension is an upper bound for the actual dimension of the
chaotic attractor [Grassberger and Procaccia, 1984].

Figure 2.8 shows numerical results for the Kaplan-Yorke dimension in dependence on
the delay time τ for different values of the injection current p: The blue, green, and
red lines correspond to p = 0.1, 1, and 10, respectively. The Kaplan-Yorke dimension
increases linearly with the time delay, where the slope is steeper for higher values of the
pump current p. As explained above, the numerical calculation of DKY is only an upper
bound for the dimension of the chaotic attractor, but it is obvious that the dimension
can be orders of magnitude above the dimension of chaotic systems without delay, i.e.,
Lorenz or Rössler oscillators [Lorenz, 1963; Rössler, 1976]. The typical dimension of
the chaotic attractor in the Lorenz model has been found to be DKY = 2.0584± 0.0007
with the standard parameters R= 28, σ = 10, and b = 8/3 [Grassberger and Procaccia,
1984]. For the Rössler model it is DKY = 2.0132 with the common parameters a = b =
0.2 and c = 5.7 [Sprott, 2003].

2.4. Networks of lasers

As opposed to a single laser subject to optical feedback, the optical injection is realized
by delayed coupling in a network of lasers. Thus, in order to write the dynamics of a
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Figure 2.8.: Kaplan-Yorke dimension DKY calculated from the Lyapunov spectrum of a
single laser with delayed feedback according to Eq. (2.12) in dependence of the time
delay τ. Blue: LFF regime (p = 0.1), green: CC regime (p = 1), red: p = 10. Other
parameters as in Tab. 2.2.

laser network in the form of Eq. (2.2), two steps are needed:

(i) Rewrite the Lang-Kobayashi model (2.9) in vector form.

(ii) Account for coupling instead of feedback by removing the feedback term from the
local dynamics and specify the coupling scheme H to reflect all-optical coupling.
The self-feedback is given by the diagonal elements of the coupling matrix G.

With x = (n, x , y)T and E = x + i y , the Lang-Kobayashi model (2.9) in vector form
reads

F(x) =









1
T

�

p− n− (1+ n)
�

x2+ y2
��

n
2

�

x −αy
�

n
2

�

αx + y
�









. (2.17)
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Then the dynamics of a single laser – without any feedback or coupling – is described
by

ẋ= F[x(t)]. (2.18)

The dynamics in a network consisting of N such systems and including coupling by a
coupling matrix G according to Eq. (2.7) is governed by

ẋi = F[xi(t)] +σ
∑

j

Gi jHx j(t −τ). (2.19)

The 3× 3 matrix H (coupling scheme) determines which channels are involved in the
coupling. In its simplest form, where the light from laser j enters laser i without any
phase difference, the coupling scheme reads

H=







0 0 0
0 1 0
0 0 1






. (2.20)

Recall that the state vector describing the node dynamics reads x = (n, x , y)T . For
the laser model, only the electric field variables x and y are involved in the coupling,
resulting in the above H for zero phase difference. A useful extension is the introduction
of a phase rotation φ due to the coupling delay:

H=







0 0 0
0 cosφ sinφ
0 − sinφ cosφ






. (2.21)

Note that here the same coupling phase is assumed for every coupling in the network.
In general, the introduction of different phases prevents the existence of an isochronous
synchronization manifold; see Sec. 2.1.6. However, under certain conditions, different
phases may still lead to an invariant manifold, as has been shown for two coupled lasers
by Flunkert and Schöll [2011a]. Throughout this thesis, however, I will not consider
phase shifts.

2.4.1. Synchronous dynamics of lasers

Using the model introduced above, networks of lasers can be described by Eq. (2.7).
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The unity row sum condition stated in Sec. 2.1.6 can be narrowed down further for
laser networks: If one does not allow for phase shifts introduced by the coupling ma-
trix, the entries in the coupling matrix may not be negative. Such a matrix – having
unity row sum and only non-negative entries – is known as stochastic matrix in the
literature [Berman and Plemmons, 1979; Kirkland, 2005]. One particular property of
stochastic matrices is the restriction that the eigenvalue spectrum is bound by the unit
circle S(0, 1) in the complex plane. This property is connected to Gerschgorin’s circle
theorem [Gerschgorin, 1931], which allows for an estimate of a matrix’ eigenvalues
and becomes important later in this thesis. See Sec. 7.3.3 on page 139 for a detailed
explanation of Gerschgorin’s circle theorem.

2.5. Conclusion

Using the notion of local dynamics, coupling matrices and coupling schemes, I have
shown that the dynamics of isochronously synchronized lasers is identical to the dy-
namics of a single laser subject to optical feedback. Concerning chaotic dynamics, the
regimes of low-frequency fluctuations (LFF) and coherence collapse (CC) are most dis-
tinguishing and will be used in the following Chapters.

Opposed to a single laser, not only can the dynamics of the lasers change when vary-
ing the parameters of the laser and of the coupling, but also the transversal stability
of their synchronization. I will describe how to calculate this transverse stability of
synchronization in the next Chapter.
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3. Stability of synchronization in laser
networks

In the previous Chapter I found that dynamics on a network given by Eq. (2.7) can
exhibit an invariant isochronous synchronization manifold under certain conditions,
the most important of them being the constant – or, without loss of generality, unity –
row sum of the coupling matrix:

∑N
j=1 Gi j = 1. The synchronous dynamics then follows

Eq. (2.8):

ẋs = F[xs(t)] +σHxs(t −τ), (3.1)

with xi = x j ≡ xs for i, j = 1, . . . , N .

3.1. Master stability function

In a straight forward manner, stability analysis of this synchronization manifold would
be carried out by considering all possible variations perpendicular to the synchroniza-
tion manifold given by Eq. (3.1) [Pecora et al., 1997; Flunkert et al., 2009]. In the space
of the network – not accounting for the local dynamics of each node – there is a total of
N − 1 linearly independent directions that are transversal to the synchronization man-
ifold and one direction parallel to the synchronization manifold. If small perturbations
in all of those N − 1 transversal directions die out – a property that can be expressed
by Lyapunov exponents as we will see later – the synchronization manifold is trans-
versely stable, i.e., the synchronous dynamics is stable. The behavior of perturbations
inside the synchronization manifold does, on the other hand, characterize the type of
synchronized dynamics, as I will show later.

This straight-forward scheme has some drawbacks:

• The directions transversal to the synchronization manifold do in general not co-
incide with the directions of the individual nodes. The set of perturbation vectors
has to be found before the stability analysis.
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• The set of perturbation vectors does depend on the coupling matrix G. It has to
be determined for each choice of a network topology.

In 1998, Pecora and Carroll introduced a formalism that works around both of these
drawbacks. What they call master stability function is calculated as a continuous func-
tion Λ(α,β). The characteristics of the function is only determined by the local dynam-
ics (cf. F(x) in Eq. (2.7)), while a given topology with a coupling matrix G determines
– through its eigenvalues γk (k = 1, . . . , N) – the values of α and β (α + iβ = σγk)
at which the master stability function needs to be evaluated. If the master stability
function is negative at all of these eigenvalues, the synchronous dynamics is stable. In
conclusion, the master stability function separates the local dynamics of the nodes from
the topology of the network.

After briefly reviewing the original results by Pecora and Carroll, I present the extension
that allows for the treatment of the dynamics considered in this thesis.

Pecora and Carroll considered instantaneous coupling, but otherwise identical network
dynamics to Eq. (2.7):

ẋi = F[xi(t)] +σ
N
∑

j=1

Gi jHx j(t), i = 1, . . . , N . (3.2)

Further, they assumed the row sum of the coupling matrix G to vanish:
∑N

j=1 Gi j = 0,
corresponding to a synchronous dynamics

ẋs = F[xs(t)] (3.3)

that is identical to the dynamics of an uncoupled node of the network. In other words,
a coupling matrix with zero row sum does not alter the dynamics of the individual
nodes when synchronized. In order to perform a stability analysis, perturbations δxi(t)
(i = 1, . . . , N) are introduced using the relation xi(t) = xs(t) + δxi(t). Using these
perturbations, variational equations can be obtained as

δẋi = DF|xs(t)δxi(t) +σ
N
∑

j=1

Gi jHδx j(t), i = 1, . . . , N . (3.4)

In their work they went on and showed that the set (3.4) of N equations can be diag-
onalized in the N -dimensional space of the network topology while leaving the local
dynamics untouched, which results in another – now uncoupled – set of N equations:

δ̇x̄k = DF|xs(t)δx̄k(t) +σγkHδx̄k(t), k = 1, . . . , N . (3.5)
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Here, {γk}k=1,...,N denotes the set of eigenvalues of the coupling matrix G. The set of
the δx̄k is transformed from the set of δxi according to the diagonalization of G. Since
these δx̄k in Eq. (3.5) are uncoupled, they can be looked at separately, leading to the
master stability equation

δ˙̃x= DF|xs(t)δx̃(t) + (α+ iβ)Hδx̃(t). (3.6)

The master stability function Λ(α,β) is now given as the largest Lyapunov exponent de-
termined by this equation in dependence on the parameters α and β . Other measures of
trajectory divergence may be considered instead of the Lyapunov exponents; see, for ex-
ample, Chapters 7 and 10 where I used Floquet exponents to determine stability of syn-
chronization in networks of generic normal-form periodic oscillators.

One major condition for the coupling matrix G arises by the diagonalization of Eq. (3.4):
The matrix has to be diagonalizable. If, however, G is not diagonalizable, Eq. (3.5) does
not yield N linearly independent vectors for k = 1, . . . , N . An example will be shown in
Sec. 4.4.

There have been other approaches to characterize stability of synchronization in net-
works, one of them is a method by Restrepo et al. [2006]. This method uses an order
parameter to describe synchronous behavior in a network. This order parameter de-
pends on the coupling matrix’ entries as well as on the structure of the coupling term.
A major drawback of this method is that it only works reliably for densely connected
networks, i.e., high number of links for each node. As this condition is not met in most
parts of this thesis, I will not make use of this method and focus on the master stability
function.

In the following I will derive the master stability equation and master stability function
for networks as used in this thesis. That is, networks with delay-coupling and non-zero
– but still constant – row sum of the coupling matrix.

3.2. Master stability function for delay-coupled networks

Let us start with the network dynamics as in Eq. (2.7),

ẋi = F[xi(t)] +σ
N
∑

j=1

Gi jHx j(t −τ), i = 1, . . . , N , (3.7)
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which yields a synchronization manifold as Eq. (2.8):

ẋs = F[xs(t)] +σHxs(t −τ). (3.8)

Introducing X = [x1,x2, . . . ,xN] and F̂(X) = [F(x1),F(x2), . . . ,F(xN )], Eq. (3.7) can be
rewritten as

Ẋ= F̂[X(t)] +σ[G⊗H]X(t −τ), (3.9)

where ⊗ denotes the Kronecker product. In this notation, perturbations δX from the
synchronous state can be expressed using X = Xs + δX, where Xs = [xs,xs, . . . ,xs]. The
perturbations then evolve according to

δẊ= DF̂|Xs(t)δX(t) +σ(G⊗H)δX(t −τ). (3.10)

Note that in the original work by Pecora and Carroll, the coupling scheme H was a
general – potentially nonlinear – function. In that notation, the Jacobian DH of this
function has to be used in the variational equation. Here, on the other hand, I use
linear coupling schemes only, which can be expressed as a matrix H. Consequently, the
Jacobian of this linear function is identical to the matrix itself.

Now, in Eq. (3.10), it is clear that DF̂= (1N ⊗ DF) and thus

δẊ= (1N ⊗ DF)|Xs(t)δX(t) +σ(G⊗H)δX(t −τ). (3.11)

In order to arrive at a diagonalized form similar to Eq. (3.5), I assume there is a trans-
formation S such that diagG = S−1GS, where diagG denotes the matrix that con-
tains the eigenvalues of G along its diagonal. Such a transformation does certainly
exist if G is diagonalizable. Multiplying Eq. (3.11) by (S−1 ⊗ 1m) from the left yields

(S−1⊗1m)δẊ= (S−1⊗1m)(1N⊗DF)|Xs(t)δX(t)+σ(S−1⊗1m)(G⊗H)δX(t−τ). (3.12)

Using (A⊗B)(C⊗D) = AC⊗BD with A and C and B and C having the same dimensions,
respectively, and the fact that the identity matrices commute with all other matrices,
this simplifies to

(S−1⊗1m)δẊ= (1N ⊗ DF)|Xs(t)(S
−1⊗1m)δX(t)+σ(S−1G⊗H)δX(t −τ). (3.13)

One can always insert a unity; here I insert SS−1:

(S−1⊗1m)δẊ= (1N⊗DF)|Xs(t)(S
−1⊗1m)δX(t)+σ(S−1GSS−1⊗H)δX(t−τ), (3.14)
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which is – using H= H1m – equivalent to

(S−1⊗1m)δẊ= (1N⊗DF)|Xs(t)(S
−1⊗1m)δX(t)+σ(S−1GS⊗H)(S−1⊗1m)δX(t−τ).

(3.15)

Using diagG = S−1GS and introducing the transformed vector as δX̄ = (S−1 ⊗ 1m)δX,
we end up with a block-diagonal variational equation

δ ˙̄X= (1N ⊗ DF)|Xs(t)δX̄(t) +σ(diagG⊗H)δX̄(t −τ). (3.16)

Block-diagonal here means that the equation is diagonal in the N -dimensional space of
the network and the m-dimensional space of each node dynamics is unchanged.

Now, splitting δX̄ into δX̄= [δx̄1,δx̄2, . . . ,δx̄N] this becomes

δ˙̄xk = DF|xs(t)δx̄k(t) +σγkHδx̄k(t −τ), k = 1, . . . , N , (3.17)

where {γk}k=1,...,N denotes the eigenvalue spectrum of the coupling matrix G, i.e., the
entries of diagG. These N equations differ only by these eigenvalues; for any network
topology considered, a set of N equations arises.

With this in mind, Equation (3.17) can also be rewritten as

δ˙̃x= DF|xs(t)δx̃(t) +σγHδx̃(t −τ). (3.18)

This is of course only equivalent to Eq. (3.17) if evaluated at the N different values
of the complex parameter γ = γk, k = 1, . . . , N . Note that I use a notation that is
different from Eq. (3.6), where α + iβ = σγk is introduced. As I will show in the
following, for non-zero row sums, the master stability function depends on the coupling
strength σ itself and it is therefore not needed to introduce a parameter that includes
and effectively hides this coupling strength. It will turn out that a parameter γ = γk
is more convenient for the understanding of the effect different topologies have on
stability of synchronization.

Equation (3.18) is generally referred to as the master stability equation [Pecora and
Carroll, 1998]. The function Λ(γ) of the largest Lyapunov exponents arising from
Eq. (3.18) in dependence on the complex parameter γ is then called master stability
function.

At this point the differences between the original master stability function developed by
Pecora and Carroll and the one here become evident: From Eq. (3.18) it can already be
seen that the time delay τ will also influence the master stability function. Additionally,
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the coupling strength σ plays a subtle role. To see this, remember that DF is evaluated
on the synchronous manifold xs. The synchronous dynamics xs was independent of
the coupling parameters in the original paper by Pecora and Carroll due to the zero
row sum of the coupling matrix (cf. Eq. (3.3)). Now, with a non-zero row sum, the
synchronous dynamics does depend on the coupling parameters σ and τ (cf. Eq. (3.8)).
In conclusion, the coupling strength has an implicit influence on the master stability
function via the synchronous dynamics. Thus, the master stability function is a function
of γ and the coupling parameters:

Λ = Λ(γ,σ,τ). (3.19)

One condition for the existence of the synchronization manifold was the constant row
sum of the coupling matrix, which can be assumed to be unity without loss of generality.
This condition

∑N
j=1 Gi j = 1 ∀i = 1, . . . , N implies the existence of an eigenvalue γ1 = 1

of G with the corresponding eigenvector v1 = (1,1, . . . , 1). This can be easily seen
by calculating γ1v1 = Gv1 which is obviously true for any matrix G with unity row
sum.

The structure of this eigenvector v1 reveals that it points into the direction of the dynam-
ics of all nodes inside the synchronization manifold. Therefore, the eigenvalue γ1 is not
to be considered for the stability of synchronization, because the corresponding eigen-
vector is not transverse to the synchronization manifold. The master stability function
evaluated at this eigenvalue, Λ(γ1), does, however, yield information about the type of
dynamics on in the synchronized network. In fact, the master stability function yields
the usual Lyapunov exponent according to Sec. 2.3.1:

Λ(γ1)< 0: The synchronized nodes rest in a fixed point.

Λ(γ1) = 0: The synchronized dynamics takes place on a periodic orbit.

Λ(γ1)> 0: The synchronized dynamics is chaotic.

In the following I calculate the master stability function for networks of lasers. That is,
I use Eqs. (2.17) as local dynamics and discuss the dependence of the master stability
function on the parameters in the low-frequency fluctuation (LFF) and the coherence
collapse (CC) regime according to Tab. 2.2, respectively.
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Figure 3.1.: Master stability function in the complex γ plane for a network of delay-
coupled lasers according to Eq. (2.7). Parameters: (a) p = 0.1, σ = 0.12; (b) p = 1,
σ = 0.12; (c) p = 10, σ = 0.12; (d) p = 0.1, σ = 0.4; (e) p = 1, σ = 0.4; (f)
p = 10, σ = 0.4; other parameters as in Tab. 2.2.
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3.3. Master stability function for laser networks

Figure 3.1 shows the master stability function in terms of the largest Lyapunov expo-
nent Λ in dependence on the parameter γ for different choices of the injection cur-
rent p and the coupling strength σ. In Figs. 3.1(a-c) the coupling strength is chosen
as σ = 0.12, while it is σ = 0.4 in panels (d-f). The injection current is chosen as
p = 0.1 in Fig. 3.1(a), where the laser operates in the LFF regime. In Fig. 3.1(b),
on the other hand, the laser operates in the CC regime at p = 1. Figures 3.1(c) uses
an even higher value of p = 10. Figs. 3.1(d-f) using the higher coupling strength
σ = 0.4 also correspond to p = 0.1, 1, and 10, respectively. The delay time is chosen as
τ= 1000.

One thing that becomes obvious is the circular shape of the master stability function in
all panels of Fig. 3.1. This is a general feature for large delay, which we have proven
recently [Flunkert et al., 2010]. The proof is valid only in the limit of τ → ∞, but
the delay time of τ = 1000 is already sufficiently large in comparison to the intrinsic
system time scale to result in a circular shape: In the semiconductor the intrinsic time
scale is given by the relaxation oscillations’ period TRO. This period is calculated as
the imaginary part of the eigenvalue of the lasing fixed point in the uncoupled laser

TRO =
4πT

p

p(4T − 2− p)− 1
. (3.20)

For the LFF and CC regime, which use p = 0.1 and p = 1, respectively, I obtain TRO =
283.1 and 89.1, respectively. The value of τ= 1000 used here is a factor 3 and 11 above
this intrinsic time scale in the LFF and the CC regime, respectively.

In this limit of large delay, if the master stability function is negative in the origin (Λ(γ=
0) < 0), it increases monotonically with |γ|; see Fig. 3.1(a,b,d-f). Recently, it has been
shown that this monotonic behavior follows a simple analytic equation [Englert et al.,
2011] that allows to calculate the boundary of the stable region of the master stability
function from the longitudinal Lyapunov exponent Λ(γ= 1):

γb = e−Λ(γ=1)τ, (3.21)

where γb denotes the boundary of the stable region such that stability is obtained for
|γ|< γb. In the work by Englert et al., that analytic formula has been proven to be exact
for the Bernoulli map, but works reasonably well also for networks of lasers modeled
by the Lang-Kobayashi model.
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Figure 3.2.: Master stability function Λ in dependence on the parameter Reγ. Blue: LFF
regime (p = 0.1). Green: CC regime (p = 1) with other parameters given by Tab. 2.2.
The vertical lines correspond to the location of the zero crossing.

In conclusion, for large delay it is sufficient to consider the master stability function as
a function of the absolute value |γ| instead of of γ itself.

Figure 3.2 shows a cross-section of Fig. 3.1 at Imγ = 0 for the parameters in the LFF
and the CC regime according to Tab. 2.2 in blue and green colors, respectively. This
corresponds to horizontal cuts in Figs. 3.1(a) and (b). Both curves are approximately
identical with an offset. This is in line with the results by Englert et al.. As a result, the
range of stability is much smaller for the CC regime compared to the LFF regime. The
values of Reγ where the master stability function changes sign are indicated by vertical
blue and green lines for the LFF and the CC regime, respectively. For the LFF regime
these are at Reγ=±0.65 and at Reγ=±0.07 for the CC regime.

Another outcome of the work by Flunkert et al. [2010] explains Fig. 3.1(c): If the
master stability function is positive in the origin (Λ(γ = 0) > 0), it remains constant
for any value of γ. This corresponds to the uniform color code in this figure and is
related to the notion of weak and strong chaos, which is still a topic of ongoing research
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[Heiligenthal et al., 2011].

3.3.1. The dependence on the delay time

Using small delays is not relevant in the context of fiber-coupled lasers or open-space
setups. It is, however, relevant in integrated structures; see, for example, Argyris et al.
[2008]. From a theoretical point of view, it is worth to investigate what changes for
smaller delay times. Figure 3.3 shows master stability functions in dependence on Reγ
and the delay time τ for fixed Imγ = 0. The injection current p and the coupling
strength σ correspond to the respective panels of Fig. 3.1.

For all parameter sets, the stable part of the master stability function is narrowed down
with increasing delay time τ. Panel (c) shows stability only for very small values of the
delay time. Finally, in panels (a) and (b) the deviation from the rotational symmetry
discussed above can be observed for small values of τ. The master stability function has
an irregular shape here.

Figures 3.4(a) and (b) show enlargements of Figs. 3.3(a) and (b) for the interval
τ ∈ [0,200]. Note that whenever the boundary between green and yellow color is
located at Reγ= 1, the dynamics inside the synchronization manifold are periodic or of
fixed point type, because this is equivalent to Λ(γ= 1) = 0. Comparing these figures to
Figs. 2.4 and 2.5, the alternating occurrence of periodic and chaotic dynamics is repro-
duced here. As seen before in Sec. 2.2.1, the higher pump current p = 1 leads to more
robust chaotic dynamics – and therefore a symmetry in the master stability function –
already at smaller values of the delay time. Note that in between the periodic windows,
the shape of the master stability function is nearly rotationally symmetric, while this
behavior is lost for slightly larger delay times. This suggests that not the period of the
relaxation oscillation is the relevant time scale in the system, but another one that is in-
duced by the delay and is changed in these alternating windows of periodic and chaotic
dynamics.

Figure 3.5 shows cross sections in the full (Reγ, Imγ) plane for different values of small
delay times. Figures 3.5(a-c) and (d-f) use a pump current of p = 0.1 and 1 respectively.
Panels (a,d), (d,e), and (c,f) correspond to delay times τ = 1, 5, and 20, respectively.
Again, it can be seen that the shape is irregular for very small delay, where it can change
its shape drastically. But already for τ= 20 one can observe the transition to the circular
shape that is reached for large delay times.
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Figure 3.3.: Master stability function in the (Reγ,τ) plane for a network of delay-coupled
lasers according to Eq. (2.7) with fixed Imγ= 0. Parameters as in Fig. 3.1.
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Figure 3.4.: Master stability function in the (Reγ,τ) plane for a network of delay-coupled
lasers according to Eq. (2.7) with fixed Imγ= 0. Parameters: (a) p = 0.1, σ = 0.12;
(b) p = 1, σ = 0.12; other parameters as as in Tab. 2.2.

3.4. Conclusion

I have shown results of the master stability function for delay-coupled laser networks
where the nodes’ dynamics is modeled using the Lang-Kobayashi rate equations. Using
these results, I am able to characterize the stability of synchronization in these net-
works. Using a non-vanishing constant row sum instead of a zero row sum as used in
the original work by Pecora and Carroll [1998], the generality of the master stability
function is narrowed down, since the master stability now depends on the coupling
strength which affects the synchronized dynamics.

Also the time delay has a crucial influence on the outcome of the master stability func-
tion. While for large time delays the master stability has a rotationally symmetric shape,
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Figure 3.5.: Master stability function in the complex γ plane for a network of delay-coupled
lasers according to Eq. (2.7). Parameters: (a) p = 0.1, τ = 1; (b) p = 0.11, τ = 5;
(c) p = 0.1, τ = 20; (d) p = 1, τ = 1; (e) p = 1, τ = 5; (f) p = 1, τ = 20; other
parameters as in Tab. 2.2.
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large deviations from this shape occur for smaller values of the delay time.

I will use these results to study stability of synchronization in particular network topolo-
gies. These will be network motifs and regular networks in Chapter 4 and complex
networks in Chapter 5.
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The idea of network motifs is two-fold. On one hand, in the study of synchroniza-
tion, the effects observed in motifs may allow for predictions on the dynamics in much
larger networks. On the other hand, complex networks can be seen as composed by
building-blocks of a few nodes, i.e., motifs. Synchronization in isolated motifs may
describe the effects that take place in a large network on the level of these building
blocks. Determining synchronization in a large network can thus be split into two
questions: (i) Is synchronization stable in the underlying network motifs? (ii) Is syn-
chronization stable in the graph composed by these motifs? This Chapter focuses on the
first question, while the second question is answered partly in Chapter 5 on complex
networks.

In 2002, Milo et al. found that motifs characterize universal classes of networks. In
particular, depending on the nature and function of a particular network, the amount
of different motifs differs substantially. Milo et al. considered connected subgraphs
with different number of nodes as motifs. Figure 4.1, for example, shows all 13 possible
connected subgraphs with three nodes. I will focus on two- and three-node motifs in this
chapter. Note that the existence of self-feedback loops, which are usually neglected in
the literature on complex networks, leads to more than 13 possible connected subgraphs
for the three-node motifs. I will go into detail with regard to these generalized motifs
in Section 4.1.

Regular networks include unidirectionally and bidirectionally coupled rings, as well as
lattices in various dimensions. Regular networks can be seen as an upscaled version
of network motifs. A unidirectionally coupled ring of three nodes can, for example, be
generalized to a ring with any number of nodes. As I will show, the eigenvalue spectra
of many regular topologies follow simple rules, which makes them an ideal playground
for my results in the master stability framework.

I will first introduce the concept of weighted motifs that also allows for self-feedback
in Sec. 4.1. In Secs. 4.2 and 4.3 I will then discuss stability of synchronization in two-
and three-node motifs, respectively. Section 4.4 shows an example where the master
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Figure 4.1.: Network motifs: all possible three-node connected subgraphs [reproduced
from Milo et al., 2002].

stability function is not able to predict the stability of synchronization due to a non-
diagonalizable coupling matrix. Regular networks and a discussion of synchronization
in these will be the topic of Sec. 4.5.

4.1. Weighted motifs with feedback

As pointed out in Section 2.1.2 on page 38, an adjacency matrix A is well sufficient to
examine topological properties of a network, while a coupling matrix G including indi-
vidual weights for each link is needed for the investigation of dynamics on a network.
I will therefore expand the concept of network motifs to what I call weighted motifs.
That is, for example, in a particular motif in Fig. 4.1, different realizations may exist
for varying weights of the different links. Furthermore, I will allow feedback loops, i.e.,
diagonal elements Aii = 1. This increases the number of possible motifs for a given
number of nodes, because each motif in Fig. 4.1 can be modified by independently
adding feedback loops to the three nodes.

Since I consider isochronous synchronization in this first part of the thesis, the con-
stant row sum condition has to be fulfilled in order to gain a synchronization manifold.
As a consequence, not all combinations of link weights are possible. I will illustrate
this first for two-node motifs in the following Section and later extend to three-node
motifs.
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4.2. Two-node motifs

As discussed above, a network only exhibits an isochronous synchronization manifold
– stable or not – if the coupling matrix G has a constant row sum. Without introducing
compensating links or changing signs of links this can in general only be achieved in
the following two cases:

(i) For a given network, each row has the same positive row sum g ≡ gi =
∑

j Gi j .
Note that the row sum may in general also be negative, but for laser networks I
consider only positive links as discussed in Sec. 2.4. The matrix is then normalized
to unity row sum by dividing each entry by g.

(ii) For a given network, each row has a positive row sum gi =
∑

j Gi j . Normalization
to unity row sum is achieved by dividing all elements in the ith row by its row
sum gi .

In real-life networks case (i) is rare, but not impossible. Constant row sums occur in
regular network like rings (see Sections 4.5.1 and 4.5.2), globally coupled networks
(Section 4.5.3), but also in the Erdős-Rényi model for random networks [Erdős and
Rényi, 1959, 1960], although only in the thermodynamic limit of N → ∞. Case (ii),
where each row of a coupling matrix has an individual positive row sum, is more com-
mon, because it is less restrictive on the possible topologies due to additional degrees
of freedom.

Table 4.1 shows the five possible connected two-node motifs that allow for the existence
of an isochronous synchronization manifold. For each of these motifs, there is of course
a unique adjacency matrix, e.g., A =

� 0 1
1 0
�

for motif no. 1. In motifs no. 1 and 2, the
weights of the links cannot be changed individually, because this would lead to a non-
constant row sum. In motifs no. 3, 4 and 5, however, the weights can be changed by
introducing one or two parameters a and b, respectively.

The question of synchronizability in a certain motif is thus not restricted to the schematic
view or adjacency matrix of a motif but does depend on parameters describing the in-
dividual link strengths.

Using the results of the master stability function from Chapter 3, Tab. 4.2 shows the
conditions to the matrix parameters a and b under which the motifs shown in Tab. 4.1
synchronize. I chose the low frequency fluctuation (LFF) and the coherence collapse
(CC) regime with laser and coupling parameters according to Tab. 2.2. The master
stability function depicted in Fig. 3.2 shows stability for −0.65< γ < 0.65 and −0.07<
γ < 0.07 for the LFF and the CC regime, respectively. With the a- and b-dependent
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no. scheme coupling matrix non-unity eigenvalue

1

�

0 1
1 0

�

γ2 =−1

2

�

1 0
1 0

�

γ2 = 0

3

�

1− a a
1 0

�

γ2 =−a

4

�

1 0
a 1− a

�

γ2 = 1− a

5

�

1− a a
b 1− b

�

γ2 = 1− a− b

Table 4.1.: Two-node motifs allowing for an isochronous synchronization manifold.

transversal eigenvalue γ2 corresponding to each motif in Tab. 4.1 a condition for a
and b can be derived under which a particular motif exhibits stable synchronization.

These conditions are valid only in the limit of large delay as discussed in Chapter 3, but
the value of τ = 1000 does already qualify as large enough; see Fig. 3.1. In this limit
of large delay the master stability function is rotationally symmetric in the complex γ
plane, as shown in Sec. 3.3.

In particular, the identity Λ(γ = 1) = Λ(γ = −1) holds. This infers instability of syn-
chronization for motif no. 1, because Λ(γ = 1) is positive for chaotic dynamics in the
synchronization manifold and the master stability function evaluated at the transversal
eigenvalue γ=−1 yields the same positive value.

Motif no. 2, on the other hand, does synchronize regardless of operation of the laser
nodes in the LFF or CC regime. As soon as the master stability function is negative at
the origin (Λ(γ = 0) < 0), synchronization in this motif is stable. There are of course
parameter sets for which even Λ(γ = 0) is positive – see for example Fig. 3.1 – and for
which no network can show stable synchronization.
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no. scheme LFF stable CC stable

1 no no

2 yes yes

3 |a|< 0.65 |a|< 0.07

4 0.35< a < 1.65 0.93< a < 1.07

5 0.35< a+ b < 1.65 0.93< a+ b < 1.07

Table 4.2.: Two-node motifs: Stability conditions for the LFF and the CC regime according
to Tab. 2.2.

The fact that motif no. 2 does synchronize while no. 1 does not can be understood in an
intuitive way: In motif no. 2, perturbations to the first node will influence the dynamics
of both nodes at the same time, because both nodes receive delayed input from node 1.
Affecting both nodes simultaneously, these perturbations are therefore longitudinal to
the synchronization manifold. In motif no. 1, on the other hand, perturbations to node
1 will travel to node 2 and arrive at node 1 after only two times this traveling time.
Hence, this perturbation is transversal to the synchronization manifold as it does not
affect both nodes simultaneously.

In motifs no. 3, 4, and 5, the parameters a and b determine the interplay of feedback
and cross coupling. a = 1 corresponds to no feedback, while a = 0 puts all weight
into a feedback link and in turn eliminates another link. The same applies to b in motif
no. 5.

Differences appear for the LFF and the CC regime. In motif no. 3, the feedback links
can be much stronger in comparison to the cross links while still retaining stability in
the LFF regime than in the CC regime.
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The same applies to motifs no. 4 and 5; in the LFF regime a much broader range
is allowed for the parameter a (and the sum a + b in motif no. 5, respectively)
while being in the range of stable synchronization. Note that a choice of a > 1 or
b > 1 would introduce negative weights for some links. While this is not forbidden,
it would correspond to a phase shift π in the electric field (cf. the coupling scheme
(2.20)).

Note that motif no. 5 includes the other four as special cases for particular choices of
the parameters a and b. I will illustrate the results from this Section further using motif
no. 5 in the following Section. This will also include direct numerical simulations of the
motif to verify the predictions of the master stability function.

4.2.1. Example: motif no. 5

Note that the condition for synchronizability of motif no. 5 depends only on the sum
a+ b, but not on the individual choice of a and b. I will therefore consider a simplified
version of network motif no. 5 from Tab. 4.1. A restriction to a ≡ b simplifies the
discussion largely but still explains the interplay of coupling and feedback. With this
restriction, the motif has the coupling matrix

G=

�

1− a a
a 1− a

�

, (4.1)

with eigenvalues

γ1 = 1, (4.2)

γ2(a) = 1− 2a, (4.3)

where γ1 corresponds to dynamics longitudinal to the synchronization manifold.

The parameter a can in principal take on any value in R. Since I allow for positive
entries only in the coupling matrix for laser networks to avoid effective phase changes,
a ∈ [0,1] is necessary. The values a = 1 and a = 0 correspond to coupling without
feedback and feedback without coupling, respectively. This can be easily seen from
the matrix (4.1). For a value of a = 1/2, feedback and coupling is equally repre-
sented.

From the master stability function depicted in Fig. 3.2, it can be seen that stability is
obtained for γ ∈ [−0.65,0.65] and γ ∈ [−0.07,0.07] for the LFF and the CC regime
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Figure 4.2.: Master stability function for a laser network operating in the LFF regime
according to Tab. 2.2, see Fig. 3.1(a). Red dot: longitudinal eigenvalue γ1 = 1, blue
dot: transverse eigenvalue corresponding to motif no. 5 from Tab. 4.1 with a = 0.83.

according to parameters in Tab. 2.2. For the parameter a of the above network motif,
this translates to stability for a ∈ [0.175, 0.825] and a ∈ [0.465, 0.535]. Figure 4.2
shows the eigenvalues of the motif for an example value of a = 0.83, which is just
above the threshold of stable synchronization.

Figure 4.3 displays synchronization diagrams of the intensities I1 and I2 of the first and
second laser, respectively, from numerical simulations of the network motif for different
values of the parameter a and other parameters chosen in the LFF regime according
to Tab. 2.2. Figure 4.3(a) shows the synchronization diagram for a = 0.95. Here, no
pattern of synchronization can be seen. This agrees with the prediction from the master
stability function, where the transversal eigenvalue γ2(a = 0.95) =−0.9 is located in a
region with positive Lyapunov exponent. Figure 4.3(b) uses a = 0.83 which is just be-
low the threshold of synchronization. Its transversal eigenvalue γ2(a = 0.83) = −0.66
is located just outside the green region in Fig. 4.2 and thus still in a region with slightly
positive Lyapunov exponent. The dynamics rests from time to time on the bisecting line
of I1- and I2-axis – corresponding to isochronous synchronization – but it deviates from
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Figure 4.3.: Synchronization diagrams from simulations of the network motif (4.1) with
(a) a = 0.95, (b) a = 0.83, and (c) a = 0.5. Laser and coupling parameters chosen
in the LFF regime according to Tab. 2.2.

this line frequently. This behavior is also known as on-off intermittency [Flunkert et al.,
2009]. The value a = 0.5, as used in Fig. 4.3(c) corresponds to equal contributions of
coupling and feedback in the coupling matrix (4.1) and yields γ2(0.5) = 0, which is at
the minimum of the master stability function. The synchronization diagram shows that
the dynamics takes place on the bisecting line of the I1- and I2-axis, which corresponds
to perfect isochronous synchronization.

Similar results are obtained for the CC regime, which are shown in Fig. 4.4. Here,
panels (a), (b), and (c) use parameters a = 0.95, 0.55, and 0.5, respectively. Compared
to the LFF regime, the narrower range of possible a results in a loss of stability already
at a = 0.55, shown in Fig. 4.4(b).

In order to quantify the amount of synchronization between two lasers, I use the cross
correlation, which is defined as

Ci j =




Ii I j
�− 
Ii

�


I j
�

Æ




I2
i

�− 
Ii
�2
q




I2
j

�− 
I j
�2

. (4.4)

The symbol

 · � denotes a time average. The numerical simulations to verify the pre-

dictions of the master stability function used a total time of 320,000 time units where
the time average is taken over the last 1,000 time units. This way, possible transient ef-
fects are not taken into account. Starting with initial conditions on the synchronization
manifold, small noise of the magnitude 10−9 was added to the electric field variables of
each node to perturb the dynamics from the invariant synchronized state. The results
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Figure 4.4.: Synchronization diagrams from simulations of the network motif (4.1) with
(a) a = 0.95, (b) a = 0.55, and (c) a = 0.5. Laser and coupling parameters chosen
in the CC regime according to Tab. 2.2.

are robust against changes in the noise strength up to 10−5 and against changes of the
variables the noise is applied to.

In both the LFF and the CC regime, bursts of desynchronization occur even when the
master stability function predicts stability of synchronization. This phenomenon is
known as bubbling and has already been observed for two delay-coupled lasers [Flunkert
et al., 2009]. Still, there is a difference to desynchronization; in the latter the system
does not re-synchronize after perturbations from the synchronization manifold.

For the LFF regime, it is still possible to quantify the difference between a synchronized
and a desynchronized state, since bubbling occurs as short bursts only. I calculated the
cross correlation omitting these short bursts of desynchronization. This is realized by
splitting the relevant time interval into 10 sub-intervals, calculating the cross correlation
for each of the windows separately, and taking the maximum of the 10 calculated values
for Ci j .

In the CC regime, bubbling is not restricted to short bursts, but intervals of desynchro-
nization can reach the length of synchronized windows in between. Carefully using the
above procedure of interval splitting and using the maximum obtained Ci j , effects of
bubbling can be minimized but not fully eliminated from the results; it may happen that
the obtained cross correlation is still below unity for cases the master stability function
predicts stability for.

Another possible synchronization measure useful for quantifying the coherence in dy-
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namics on networks is the mean synchronization error defined as

Ei j =
2



Ii − I j
�




Ii + I j
� . (4.5)

This measure is a time average of the differences between the two nodes i and j. I do not
use it in this thesis, but it is worth mentioning that for a large number of nodes where
one takes the average E = 2

N(N−1)

∑

i< j Ei j this is computationally less expensive than

calculating and averaging the cross correlation C = 2
N(N−1)

∑

i< j Ci j . The calculation of
one Ci j needs more time averages.

Other synchronization measures exist that characterize the synchronization of phases in
coupled systems, for instance, the phase-synchronization index and the phase-synchro-
nization interval distribution [Rosenblum et al., 2001; Hauschildt et al., 2006; Hövel
et al., 2010]. These measures do not include the amplitude of the dynamics and need
a definition of a phase. For spiky dynamics – as observed in excitable systems – such a
phase can be defined, for instance, as

ϕ(t) = 2π
t − tk−1

tk − tk−1
+ 2π(k− 1), (4.6)

where tk is the time of the kth spike. Intuitively, the phase between two spikes should
be 2π. Considering only in-phase synchronization, a phase difference can be defined as

∆ϕi j(t) = |ϕi(t)−ϕ j(t)|, (4.7)

where ϕi and ϕ j denote the phases of the ith and jth node, respectively. Using this
phase difference, the phase-synchronization index is defined as

Γi j =
q




cos∆ϕi j(t)
�2+




sin∆ϕi j(t)
�2 (4.8)

This index varies between zero for no synchronization and unity for perfect in-phase
synchronization. Considering a large network, the average 2

N(N−1)

∑

i< j Γi j could be cal-
culated to characterize the amount of phase synchronization in the network.

If not perfectly synchronized, the phase difference ∆ϕi j may show sudden jumps, be-
cause one system may spike twice during the inter-spike interval of another system. It
has been shown that the average length of the intervals of synchronization, i.e., inter-
vals where the phase difference is zero, is a more sensitive measure than the phase-
synchronization index Γi j [Hövel et al., 2010].
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Figure 4.5.: Correlation of the intensities I1 and I2 of the two lasers in a simulation of
motif no. 5, see Tab. 4.1 and Eq. (4.1).

Despite being very useful for investigations in neural networks, these phase synchro-
nization measures are not appropriate to characterize the amount of synchronization
in the scope of coupled lasers for two reasons: Firstly, for non-spiky dynamics the
definition of a phase in analogy to Eq. (4.6) is not straight-forward. Secondly, the
amplitude of the electric field varies over time to a large extent, most pronounced
in the LFF regime. The differences between amplitudes of the different nodes can
therefore not be neglected as done when considering only phase synchronization. For
these reasons, I will stick to the cross correlation as measure for synchronization in this
work.

Figure 4.5 shows the cross correlation C12 according to Eq. (4.4) of the two nodes in
motif no. 5. The values were obtained using the above method of splitting the time
series. Additionally I averaged over 50 runs with different noise realizations. The
blue curve corresponds to the LFF regime, while the green curve shows the outcome
for the CC regime according to the parameters in Tab. 2.2. The vertical lines show
the value of a for which the master stability function predicts a change of stability;
[0.175 < a < 0.825] for the LFF regime (blue) and [0.465 < a < 0.535] for the

83



4. NETWORK MOTIFS AND REGULAR NETWORKS

CC regime (green). In conclusion, the predictions of the master stability function are
perfectly valid.

4.3. Three-node motifs

From the motifs in Fig. 4.1, some cannot be normalized in the way described in Sec-
tion 4.2, i.e., they do not allow for the existence of a synchronization manifold. In
motifs no. 1, 2, 4, 5, 7, and 11, one or more nodes do not receive input from other
nodes at all. In the coupling matrix, this leads to one or more rows without non-zero
entries. But as shown above, the coexistence of rows with zero and non-zero sums
cannot lead to a common normalization with equal row sums.

The normalized coupling matrices for the remaining motifs, i.e., those that allow for a
synchronous solution, are shown in Tab. 4.3. Again, I have included whether stability of
synchronization is stable in these motifs. The CC regime does not show stable synchro-
nization at all, while at least two out of seven motifs do synchronize in the LFF regime.
This is due to the larger stability region in the master stability function of the LFF regime
compared the CC regime. Those motifs that synchronize have a higher number of links
– i.e, have a denser matrix – than those that do not. In Chapter 5 on complex networks
I will show that this is a general feature. Networks with a high link density tend to have
an eigenvalue spectrum concentrated in a vicinity of zero, which is also the location of
the minimum of the master stability function in laser networks.

In contrast to the case of two-node motifs, I do not introduce motifs with feedback links
here, as the number of possible motifs would exceed a reasonable limit and would not
yield an additional insight. Neither do I introduce parameters for weighted links. This
can of course be done in a manner similar to Sec. 4.2 on two-node motifs. Feedback,
however, does become important for synchronizability. Already for the two-node motifs,
those that included feedback links would lead to stable synchronization earlier than
those without as shown in Sec. 4.2. For three-node motifs this plays an important role,
too. Section 4.5 on regular networks will show these results in a more general scope
for even higher number of nodes.

4.4. Where the master stability function fails

One condition that has to be fulfilled in order to apply the master stability function is
that the coupling matrix of a given network has to be diagonalizable. Here I will show
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no. coupling matrix non-unity eigenvalues LFF stable CC stable

3







0 1 0
0 0 1
0 1 0






γ2 =−1, γ3 = 0 no no

6







0 0.5 0.5
0 0 1
0 1 0






γ2 =−1, γ3 = 0 no no

8







0 1 0
0.5 0 0.5
0 1 0






γ2 =−1, γ3 = 0 no no

9







0 0 1
1 0 0
0 1 0






γ2 =−(−1)1/3, γ3 = (−1)2/3 no no

10







0 0.5 0.5
1 0 0
0 1 0






γ2 = (−1− i)/2, γ3 = (−1+ i)/2 no no

12







0 0.5 0.5
0.5 0 0.5
0 1 0






γ2 = γ3 =−1/2 yes no

13







0 0.5 0.5
0.5 0 0.5
0.5 0.5 0






γ2 = γ3 =−1/2 yes no

Table 4.3.: Normalized coupling matrices and non-unity eigenvalues of selected motifs
depicted in Fig. 4.1.
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an example of a graph where this condition in not fulfilled, but which still synchronizes.
Consider the network motif depicted in Fig. 4.6.

Figure 4.6.: Example motif in which synchronization cannot be described by the master
stability function.

The coupling matrix for this motif reads

G=







1 0 0
1 0 0
0 1 0






, (4.9)

where no weights for the links can be introduced since every row has only one entry.
The eigenvalues of this matrix are

γ1 = 1

γ2 = γ3 = 0 (4.10)

Considering the master stability function for the laser model, e.g., Fig. 3.1(a) and (b) for
the LFF and CC regimes, respectively, synchronization should be stable in this network
motif.

The algebraic multiplicity of the eigenvalue γ2 = γ3 = 0 is 2, while its geometric multi-
plicity is only 1. This can be seen by calculating the matrix S that should diagonalize G
as S−1GS= diagG:

S=







1 0 0
1 0 0
1 1 0






. (4.11)

It is obvious that the column vectors in this matrix can only span a 2-dimensional space,
but not the 3-dimensional eigenspace, hence the 1-fold geometric multiplicity of the
zero eigenvalue.

Indeed, this network motif does show stable isochronous synchronization. Figure 4.7
shows synchronization diagrams for this network from numerical simulations. Plotted
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Figure 4.7.: Synchronization diagrams I1 vs. I2 and I2 vs. I3 from numerical simulations
of the network motif (4.9) with the laser model. Parameters chosen in the LFF regime
according to Tab. 2.2.

are the intensities I1 vs. I2 and I2 vs. I3 of the three lasers. It can be clearly seen that
all three lasers synchronize.

The subgraph consisting of nodes 1 and 2 is identical to the 2-node motif no. 2 in
Tab. 4.2, which shows stable synchronization in both the LFF and the CC regimes. Node
3 is driven by node 2 and does synchronize to the others as well, but this is not covered
by the master stability outcome.

Attempts have been made to overcome the condition of a diagonalizable coupling ma-
trix [Nishikawa and Motter, 2006]. In that work, a framework similar to the master
stability function is derived for general matrices using the Jordan normal form of the
coupling matrix. With that it is possible to characterize stability of synchronization
in a motif as in Fig. 4.6, but only without time delay, i.e., instantaneous coupling. It
is unclear to which extent the results can be generalized to delayed couplings, as the
explanation is based on instantaneous driving of other nodes.

In conclusion, one may get the impression that the master stability function correctly
predicts synchronizability in this motif. It is, however, still unclear, if a generalization
similar to that by Nishikawa and Motter can be employed for delayed coupling.
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4.5. Regular networks

Regular networks are in some sense a generalization of network motifs. They do occur
in real systems and still retain an eigenvalue spectrum that, as we will see, is described
by analytic equations. The following Sections will show results for unidirectionally
and bidirectionally coupled rings, topologies described by circulant matrices in general,
linear chains, and globally coupled all-to-all networks. For all these types of regular
networks, I will investigate the influence of feedback links, i.e., diagonal elements in
the coupling matrix, on the stability of synchronization.

4.5.1. Unidirectionally coupled rings

Consider a unidirectional ring of coupled lasers without self-feedback as illustrated in
Fig. 4.8. The coupling matrix of such a topology reads

G=





















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0





















. (4.12)

The eigenvalues of this matrix are given by

γk = e2πi(k−1)/N , k = 1, . . . , N . (4.13)

Figure 4.9 shows the master stability function in the LFF regime as color code and
additionally the location of the eigenvalues of unidirectional ring matrices following
Eq. (4.13) as a green curve. Eigenvalues for any number of nodes will be located on
this circle. As an example, the four longitudinal eigenvalues for N = 5 are shown as
green dots, while the longitudinal eigenvalue γ1 = 1 is shown in red. It is obvious that
no unidirectional ring can show stable synchronization, because the eigenvalues of any
such ring will be located on the green circle.
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Figure 4.8.: Schematic view of 7 nodes coupled in a unidirectional ring structure without
(left) and with feedback loops (right).

The matrix is very similar in the case of additional self-feedback added to Eq. (4.12)
and rescaled to unity row sum:

G=
1

2





















1 1 0 0 · · · 0
0 1 1 0 · · · 0
0 0 1 1 · · · 0
...

...
...

...
. . .

...
0 0 0 1 · · · 1
1 0 0 0 · · · 1





















. (4.14)

A schematic view is shown in Fig. 4.8.

The unidirectionally coupled ring with feedback has eigenvalues

γk =
1

2

�

1+ e2πi(k−1)/N
�

, k = 1, . . . , N , (4.15)

whose general location is plotted as a blue circle in Fig. 4.9. Since this circle lies partially
inside the green region of stability, synchronization may be stable for certain number of
nodes. Using Eq. (4.15), I can show that synchronization is stable for N = 2 and 3, while
it becomes unstable for any higher value of N . Note that in the CC regime, only the case
N = 2 is stable, because the stable region is much smaller; see Fig. 3.1(b). Note that the
case N = 2 resembles motif no. 5 from Sec. 4.2.1 with a = 1/2.
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Figure 4.9.: Master stability function for a laser network operating in the LFF regime
according to Tab. 2.2, see Fig. 3.1(a). Red dot: longitudinal eigenvalue γ1 = 1,
green circle: location of transverse eigenvalues for unidirectional rings according to
Eq. (4.12), green dots: transverse eigenvalues for a unidirectional ring with N = 5,
blue circle: location of transverse eigenvalues for unidirectional rings with feedback
according to Eq. (4.14), blue dots: transverse eigenvalues for a unidirectional ring
with feedback with N = 5.

4.5.2. Bidirectionally coupled rings

Similar results apply to the bidirectional ring – schematically depicted in Fig. 4.10 –
where the connectivity matrix without self-feedback reads

G=
1

2





















0 1 0 0 · · · 1
1 0 1 0 · · · 0
0 1 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0





















, (4.16)
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Figure 4.10.: Schematic view of 7 nodes coupled in a bidirectional ring structure without
(left) and with feedback loops (right).

while the one with self-feedback is given by

G=
1

3





















1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 1





















. (4.17)

The eigenvalues of the matrix (4.16) are

γk = cos
2π(k− 1)

N
, k = 1, . . . , N , (4.18)

and those of the matrix (4.17) are

γk =
1

2

�

1+ cos
2π(k− 1)

N

�

, k = 1, . . . , N . (4.19)

These are real-valued because both matrices are symmetric. The location of these eigen-
values is plotted in Fig. 4.11 for the example of N = 5 as green and blue dots without
and with feedback, respectively.

Using Eq. (4.18), I find that N = 3 yields stable synchronization, the cases N = 2 and
N = 4 are both unstable because they have an eigenvalue at γ = −1. Higher numbers
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Figure 4.11.: Master stability function for a laser network operating in the LFF regime
according to Tab. 2.2, see Fig. 3.1(a). Red dot: longitudinal eigenvalue γ1 = 1,
green dots: transverse eigenvalues for a bidirectional ring according to Eq. (4.16)
with N = 5, blue dots: transverse eigenvalues for a bidirectional ring with feedback
according to Eq. (4.17) with N = 5.

of N also do not synchronize, as some eigenvalues will always lie outside the stable
region.

For the case with additional feedback, I find networks with N = 2 and N = 4 to show
stable synchronization, while N = 3 does not synchronize. Also networks with N ≥ 5
do not synchronize in a stable manner.

All results are backed up by numerical simulations of the corresponding networks. In
Fig 4.12 I show synchronization diagrams from a simulation of 4 lasers coupled in a
bidirectional ring without feedback. Two things can be observed in this figure: Firstly,
isochronous synchronization is indeed unstable because some of the synchronization
diagrams differ from bisecting lines corresponding to synchronization. But secondly,
some of the synchronization diagrams show synchronization; namely I1 and I3 are syn-
chronized, and also I2 and I4. What we see is a state of cluster synchronization, where
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Figure 4.12.: Synchronization diagrams for the bidirectionally ring of N = 4 coupled
lasers. (a-f): Intensities I1 vs. I2, I2 vs. I3, I3 vs. I4, I1 vs. I3, I2 vs. I4, and I1 vs. I4,
respectively. Parameters according to the LFF regime in Tab. 2.2.

nodes 1 and 3 form a cluster and nodes 2 and 4 form another one. Stability of such
states will be dealt with in Chapter 8, where I show that this two-cluster state in the
bidirectional ring of 4 lasers is a stable state.

4.5.3. All-to-all coupling

All-to-all coupling, also known as global coupling or mean-field coupling, means that
all nodes are pairwise connected by a link. This corresponds to a coupling matrix G
with entries

Gi j =

¨

1
N−1

,
0,

i 6= j
i = j.

(4.20)
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The renormalization by N − 1 results from the N − 1 entries in each row of G. The
eigenvalues of this coupling matrix are

γ1 = 1,

γ2 = . . .= γN = − 1

N − 1
. (4.21)

For N = 2 this resembles motif no. 1 from Tab. 4.1, which does not show stable syn-
chronization. In the limit of N → ∞, on the other hand the N − 1-times degenerate
eigenvalue γ2 = . . . = γN = − 1

N−1
approaches zero, for which synchronization is sta-

ble in both the LFF and the CC regime according to the master stability function in
Fig. 3.2.

For a given master stability function, the stability of synchronization in an all-to-all
network depends on the number of nodes N . Assuming that the radius of the stable part
of the master stability function is given by |γ| = γc , the threshold of synchronizability
can be obtained by the equality

γc =
1

N − 1
. (4.22)

Since I obtained γc = 0.65 for the LFF regime and γc = 0.07 for the CC regime from
Fig. 3.2, this yields stable synchronization for N ≥ 3 and N ≥ 16 for the LFF and the
CC regime, respectively. Note that for N = 3 the all-to-all network is identical to a
bidirectional with feedback, which does indeed synchronize in the LFF regime as I have
elaborated in Sec. 4.5.2.

Figure 4.13 illustrates this result by showing the cross correlation in all-to-all networks
in dependence on the number of nodes N . The blue and green dots correspond to
parameters in the LFF and the CC regime according to Tab. 2.2. For the LFF regime,
there is a sudden jump to high correlation already for small N , while the correlation
increases only slowly for the CC regime. The blue and green lines show the values
of N = 3 and N = 16 for which the master stability function predicts the threshold
to synchronization according to Eq. (4.22). The numerical results are obtained for 50
different noise realizations and show very good agreement with the master stability
function.
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Figure 4.13.: Cross correlation in an all-to-all network corresponding to Eq. (4.20) in
dependence on the number of nodes N. Blue and green dots correspond to the LFF
and the CC regime according to Tab. 2.2. The vertical lines indicate the threshold to
synchronization predicted by Eq. (4.22).

Additional feedback links

With additional feedback links the coupling matrix G has entries

Gi j = 1/N , i, j = 1, . . . , N . (4.23)

The eigenvalues are obtained as

γ1 = 1,

γ2 = . . .= γN = 0. (4.24)

This network does synchronize stably for both the LFF and the CC regime and any
number of nodes N , because Λ(0) is negative in both regimes.
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4.5.4. Circulant matrices

The coupling matrices of unidirectional and bidirectional rings are special cases of an
important class of networks, the circulant matrices [Gray, 2006]. In Chapter 10, where
I study cluster synchronization in oscillator networks, I will show that any circulant
matrix allows for the existence of such cluster states. But already in the context of
isochronous synchronization, circulant matrices play an important role, as they include
several regular motifs as special cases, while the eigenvalue spectrum of the whole class
of networks follows a simple law [Gray, 2006].

An N × N circulant matrix is of the form

C=

















c1 cN · · · c3 c2
c2 c1 cN c3
... c2 c1

. . .
...

cN−1
. . . . . . cN

cN cN−1 · · · c2 c1

















. (4.25)

The eigenvalues of this general form follow

γk = c1+ cNωk + cN−1ω
2
k + . . .+ c2ω

N−1
k

=
N
∑

m=1

cmω
(1−m)+N mod N
k , k = 1, . . . , N , (4.26)

withωk = exp(2πik/N). The eigenvectors vk, on the other hand, follow

vk = (1,ωk,ω2
k, . . . ,ωN−1

k ). (4.27)

The N different ωk can alternatively be seen as the N th complex roots of unity, i.e.,
which satisfy ωN

k = 1.

Let me draw the connection to the examples considered before. Both the unidirec-
tional and the bidirectional ring are special cases of circulant matrices. The unidi-
rectional ring, for example, is obtained for cm = δN ,m. Using this in Eq. (4.26), the
eigenvalue equation of the unidirectional ring – Eq. (4.13) is recovered. Similarly,
the eigenvalue equations for the bidirectionally coupled ring and the all-to-all coupled
network are obtained, and also the equations for the corresponding cases with feed-
back.
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Figure 4.14.: Schematic view of 7 nodes coupled in a bidirectional chain structure without
(top) and with feedback loops (bottom).

Circulant matrices in general will become important in Chapter 6 on multiple coupling
matrices. When using multiple coupling matrices, for instance to use different coupling
parameters, these matrices have to diagonalize simultaneously. I will show that all
circulant matrices fulfill this condition.

4.5.5. Bidirectional linear chain

Circulant matrices include a number of regular networks. All of these have one prop-
erty in common: spatial periodicity. One example of a regular network that does not
belong to the class of circulant matrices is the bidirectional linear chain. Figure 4.14
schematically shows a bidirectional linear chain of 7 nodes with and without feed-
back.

The coupling matrix for the bidirectional chain without self-feedback reads

G=
1

2























0 2 0 0 · · · 0 0 0
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 1 0 1
0 0 0 0 · · · 0 2 0























, (4.28)
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with the corresponding eigenvalues

γk = cos
π(k− 1)

N − 1
, k = 1, . . . , N . (4.29)

Adding feedback yields the coupling matrix

G=
1

3























1 2 0 0 · · · 0 0 0
1 1 1 0 · · · 0 0 0
0 1 1 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 1 1 1
0 0 0 0 · · · 0 2 1























(4.30)

with eigenvalues

γk =
1

2

�

1+ cos
π(k− 1)

N − 1

�

, k = 1, . . . , N . (4.31)

Figure 4.15 shows the eigenvalues for the example of 5 nodes against to master stabil-
ity function in the LFF regime according to Tab. 2.2. The eigenspectrum of the chain
without feedback always include one eigenvalue −1, which prevents stability of syn-
chronization for any number of nodes.

With feedback, this eigenvalue moves to zero and is no longer the crucial part of the
eigenspectrum. I find stable synchronization for N = 2 and 3 in the chain with feedback,
but synchronization is unstable for any N > 3.

4.6. Conclusion

I have presented a survey of two- and three-node motifs, where the weight of the links
has a crucial influence on the stability of synchronization. Also the introduction of feed-
back links to network motifs is important when characterizing possible synchronization
in these motifs.

Going from motifs to regular networks, the regularity of the eigenvalue spectra can
be used to determine stability based on the number of nodes, which yields mixed re-
sults depending on the topology used. In general, the introduction of feedback links
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Figure 4.15.: Master stability function for a laser network operating in the LFF regime
according to Tab. 2.2, see Fig. 3.1(a). Red dot: longitudinal eigenvalue γ1 = 1,
green dots: transverse eigenvalues for a bidirectional chain according to Eq. (4.28)
with N = 5, blue dots: transverse eigenvalues for a bidirectional chain with feedback
according to Eq. (4.30) with N = 5. Note that a green dot is covered by a blue one at
γ= 0.

enhances stability of synchronization. I stress that the results are obtained for the LFF
regime. In the CC regime, where the stable region of the master stability function is
comparatively smaller, the picture might change substantially.

In the studies of regular network, the feedback links are introduced with the same
weight as the existing links in the regular networks. In order to tune a particular net-
work to stable synchronization, using weighted links may show better results.
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5. Complex networks

Several models are known that describe complex networks, where each has some ad-
vantages in describing certain properties of real-world networks depending on the par-
ticular application [Albert and Barabási, 2002; Newman, 2003; Boccaletti et al., 2006].
The most prominent models are the Erdős-Rényi random network [Erdős and Rényi,
1959, 1960], scale-free models by Barabási and Bonabeau [2003], and the small-world
model by Watts and Strogatz [1998].

In this thesis and in particular in this Chapter I will focus on the Erdős-Rényi random
model for exemplary results. This has several reasons: On one hand, this model is
well-established and its properties have been studied in detail [Albert and Barabási,
2002]. Most interestingly, the eigenvalue spectrum obeys an analytic law in certain
limits, which combines well with the master stability function that uses only the eigen-
values of a topology’s coupling matrix to characterize stability of synchronization. On
the other hand, since synchronization depends only on the eigenvalue spectra, unex-
pected results are not likely to show up using other complex network models. The
methods shown here can be applied in a straight forward manner to other models. In
fact, we used the master stability function in a small-world like network of a neural
model in Lehnert et al. [2011].

In the introduction of Chapter 4 I already stated the question whether network motifs
that appear in a complex network can be used to characterize the stability of synchro-
nization in such a larger network. Indeed, I will show a qualitative argument to explain
the differences in synchronizability for the regimes of low-frequency fluctuations (LFF)
and coherence collapse (CC). This will be based on the knowledge of network motifs or
subgraphs that emerge in a random graph.

5.1. Erdős-Rényi random networks

The model proposed by Erdős and Rényi in 1959 was one of the first to describe complex
networks. In this first work, they defined a random graph as constructed of N nodes

101



5. COMPLEX NETWORKS

being connected by a fixed number of n links. These n links are chosen randomly from
the N(N −1)/2 links that are possible when considering an undirected graph where no
feedback links are allowed.

Later, another slightly different definition was given as follows [Erdős and Rényi, 1960]:
Start with N nodes. Then every pair of nodes is connected with a probability p. The
final total number of links in the network is subject to fluctuations based on the partic-
ular realization, but the expectation value E(n) follows the one obtained for the other
model: E(n) = pN(N − 1)/2. In the thermodynamic limit N → ∞ both models are
equivalent.

5.1.1. A directed random graph

A directed random graph, in which I also allow for feedback links, can be obtained
by a very similar adaptation: Instead of the possible N(N − 1)/2 links in the graph
above, in a directed graph with possible feedback N2 links may exist. Following the
second approach above, each of these N2 links is connected with a probability p.
The expectation value of the final number of links is of course obtained as E(n) =
pN2.

In the following, I will refer to the original setup with undirected links and no feedback
as undirected random network and I will call the adaption with directed and feedback
links directed random network.

5.1.2. Meeting the unity row-sum condition

In the above construction rules, nothing is implied for the strength of each link. In ap-
plications that are interested only in topological properties of complex networks, e.g.,
connectedness of an infrastructural network, the actual strength of a link is only of sec-
ondary interest and the description by an adjacency matrix is sufficient (see Sec. 2.1.2
on the relation of adjacency and coupling matrices).

However, for the investigation of synchronization in a random network, the weight of
a particular link is very important, as I have already shown for small network motifs in
Chapter 4. In order to yield an invariant synchronization manifold, any network topol-
ogy has to obey the unity row sum condition as shown in Chapter 2. This is achieved
here in the following way: During the construction of the Erdős-Rényi random net-
work, assign each link the weight 1. Then, when the construction of the network is
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Figure 5.1.: Scheme of a simple network with 5 nodes and 5 links for illustration of the
network quantities [reproduced from Newman, 2003].

finished, divide every row in the obtained random network by the sum over its en-
tries.

This procedure of renormalization may not be possible in cases where one node is not
connected to others at all. The row corresponding to this node has then only zero entries
and cannot be normalized to a finite row sum. It is quite intuitive that this happens only
for low link probabilities p and is related to the problem of the percolation threshold.
Before discussing this threshold in Sec. 5.3, I will briefly introduce several quantities
that are used to characterize the topological properties of complex networks in general.
These will then be useful to understand the particular properties of the Erdős-Rényi
random network.

5.2. Network quantities

Any network can be characterized by an adjacency matrix A (with entries ai j), describ-
ing the links between nodes. A only contains zeros or ones, i.e., its entries denote
only the existence of links, but not particular strengths. Most of the literature uses
this adjacency matrix instead of a coupling matrix to obtain the following network
quantities [Albert and Barabási, 2002; Newman, 2003]. Extensions using the weights
encoded in a coupling matrix do exist, but are not important for most topological prob-
lems.

I will illustrate most the quantities that I introduce using the simple network shown in
Fig. 5.1. Note that this is an undirected network, where each link is present in both
directions.
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Node degree. The node degree ki of a given node i is defined as its number of links.
One distinguishes in-degree and out-degree, where the in-degree counts the incoming
links:

kin
i =

∑

j

ai j (5.1)

and the out-degree counts the outgoing links of the ith node:

kout
i =

∑

j

a ji . (5.2)

The node degree can then be defined as either the sum of or the arithmetic mean over
the in- and out-degree. I use the latter definition:

ki =
1

2

�

kin
i + kout

i

�

. (5.3)

Note that for undirected graphs, all three quantities will be identical for a given node:
kin

i = kout
i = ki . The node degree of, for example, the central node in Fig. 5.1 is

k = 4.

Degree distribution. The degree distribution P(k) is the probability that an arbitrary
node has k links. Note that this degree distribution can be obtained for the in-, out-, or
arithmetic mean degree.

Average degree. The average degree 〈k〉 is given by the first moment of the degree
distribution P(k). For the example shown in Fig. 5.1 the average degree is 〈k〉 =
2.

Characteristic path length (mean geodesic distance). The characteristic path length
` is the mean distance between pairs of nodes. Here, distance refers to the minimum
number of links needed to get from one node to the other.

`=
1

N(N − 1)

∑

i, j

di j , (5.4)

where di j is the distance between the ith and the jth node and N is the number of nodes.
This definition does not include self-couplings, hence the normalization by N(N − 1).
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In a network that consists of more than one component, i.e., where there is at least
one pair of nodes without a path between, the above definition is problematic as it
goes to infinity. An alternative definition that uses the reciprocal values may be used:

`−1 =
1

N(N − 1)

∑

i, j

d−1
i j . (5.5)

For the example in Fig. 5.1 I obtain ` = 1.5 from the first definition and ` = 4/3 from
the second definition.

Diameter. The diameter `max of a network is the maximum of the distances between
all pairs of nodes:

`max =max{di j : i, j = 1, . . . , N} (5.6)

The diameter of the example in Fig. 5.1 is `max = 2.

Closeness. The closeness µi of a node i is defined as the inverse mean distance from
all other nodes of the network:

µi =
N − 1
∑

j 6=i di j
(5.7)

In the example of Fig. 5.1, let me denote the central node by the index 1 and the top
node by the index 2. I then obtain µ1 = 1 and µ2 = 4/7.

Betweenness. The betweenness of a node i is obtained as follows. Let n jk be the
number of shortest paths connecting the nodes j and k. Further, let n jk(i) be the number
of these paths that go through the node i. Then the betweenness of node i is defined as

bi =
∑

j,k
i 6= j 6=k

n jk(i)

n jk
. (5.8)

The betweenness of i will be higher the more paths go through i. In the example of
Fig. 5.1, I obtain b1 = 4 for the central node and b2 = 0 for the top node.

Both the closeness and the betweenness are measures for the centrality of a certain
node. Equivalent definitions can be found for the centrality of links.
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Clustering coefficient The clustering coefficient measures the connectedness of neigh-
bors of a given link. This is, for instance, useful to determine cliquishness in social
networks.

The clustering coefficient of the ith node is obtained as follows. Let the node i have ki
links to other nodes. If these ki neighbors were completely connected with each other,
there would be ki(ki − 1)/2 links between them. Let Ei be the number of links that
really exist between the neighbors. Then the clustering coefficient is the ratio of the
existent and the possible of those links:

Ci =
2Ei

ki(ki − 1)
. (5.9)

An equivalent definition is given by the ratio of the triangles that contain the node i and
the number of triples centered at node i. The mean clustering coefficient is obtained as
the average over the clustering coefficients of all nodes:

C =
1

N

N
∑

i=1

Ci . (5.10)

To characterize clustering at a global level, there is an alternative definition also known
as transitivity T :

T =
3× number of triangles in the network

number of connected triples of nodes
. (5.11)

Newman [2003] has shown that the results from both quantities can differ substantially
depending on the network under consideration. For the example shown in Fig. 5.1
I obtain C1 = 1/6 for the central node and C2 = 0 for the top node. The average
clustering coefficient and the transitivity are obtained as C = 13/30 and T = 1/3,
respectively.

Concerning the question of synchronizability in the Erdős-Rényi random graph in de-
pendence on the link probability p and the number of nodes N , the node degree is the
most important network quantity.

5.3. Subgraphs and the percolation threshold

As discussed above, the Erdős-Rényi random graph shows a threshold in dependence on
p and N below which the network is decomposed into several components that are not
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Figure 5.2.: Emergence of subgraphs in random graphs depending on the parameter z,
which combines the link probability p and the number of nodes N as p ∼ N z . The val-
ues correspond to the threshold above which the respective subgraphs begin to emerge.
[reproduced from Albert and Barabási, 2002].

connected to each other. Bollobás [2001] has shown that there are thresholds in the
link probability p for certain subgraphs to appear until finally a fully connected network
emerges.

Figure 5.2 shows the types of subgraphs that appear in a random network with in-
creasing link probability p. The existence of these subgraphs can be characterized as
follows [Albert and Barabási, 2002]: Assume that the link probability p(N) in depen-
dence on N scales as N z , where z can take any value from −∞ to 0. The occurrence
of the subgraphs depicted in Fig. 5.2 can then be derived from the scaling parameter
z. This parameter exhibits thresholds, above which certain subgraphs begin to appear.
Because trees do not show stable synchronization (see Chapter 4), the completely con-
nected subgraphs, i.e., all-to-all connected subgraphs, are the most interesting ones in
the light of synchronization. As a generalization of the completely connected examples
depicted in Fig. 5.2, the critical probability of having a completely connected subgraph
with k nodes is given by p ∼ N−2/(k−1). In particular, if z approaches zero, completely
connected subgraphs of all sizes appear.

Going further, the size of the largest connected component can be characterized by
deriving thresholds in dependence on the link probability [Chung and Lu, 2001]. Using
the result that the average degree in a random graph is given by 〈k〉 = pN , these
thresholds are given as follows:

• pN < 1: Only isolated subgraphs exist.

• pN > 1: A giant component emerges. The diameter of this component is propor-
tional to ln(N)/ ln(pN).

• pN ≥ ln(N): Almost all realizations of networks are fully connected, i.e., there is
a path between any two nodes.
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5.4. The eigenvalue spectrum of random networks

For an undirected random network, the eigenvalue spectrum, which is crucial for the
analysis of stability of synchronization using the master stability function, is known to
follow a simple law under certain conditions.

If z < 1 in p ∼ N−z , there is a giant component (also referred to as infinite cluster)
[Albert and Barabási, 2002]. Additionally, in the limit of N → ∞ the probability that
every node belongs to this component is converging to unity. In this case of a fully con-
nected graph, the eigenvalue spectrum of the adjacency matrix follows a semicircular
distribution according to

ρ(γ) =







p
4N p(1−p)−γ2

2πN p(1−p)

0

if |γ|< 2
p

N p(1− p)
otherwise.

(5.12)

One eigenvalue is separated from this distribution and is located at γ= pN according to
Albert and Barabási [2002]. In fact, in a network without feedback, where only the N−
1 off-diagonal entries in each row can be filled, this is rather γ= p(N−1), but Albert and
Barabási approximated N − 1≈ N . As we will see, this is the eigenvalue corresponding
to the dynamics inside the synchronization manifold.

What I am interested in is not the eigenspectrum of the adjacency matrix, but that of the
coupling matrix, thus Eq. (5.12) has to be transformed accordingly. As we have seen, in
an undirected random graph each possible link in the network exists with a probability
p. This is equivalent to the statement that in each row of the adjacency matrix, from
the possible N − 1 off-diagonal entries, p(N − 1) are present, i.e., have a value of 1. In
the thermodynamic limit of N → ∞ this expectation value is approached in all rows.
Using the renormalization technique described in Sec. 5.1.2, each row has then to be
divided by the sum over its entries, which is p(N − 1) in this limit. In conclusion, if
every row is divided by the same number, the whole matrix is divided by this number
p(N − 1). Hence, the eigenvalues of the coupling matrix that has unity row sum are
given by those of the adjacency matrix times a factor 1/[p(N − 1)]. As a consequence,
the semicircular law for the coupling matrix reads

ρ(γ) =







q

4N p(1−p)−[ γ

p(N−1) ]
2

2πN p(1−p)

0

if |γ|< 2
p

N p(1−p)
p(N−1)

otherwise.
(5.13)
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The eigenvalue that is separated from this distribution becomes transformed to γ = 1
which is exactly the row sum of this coupling matrix. Thus, this eigenvalue is the one
describing stability inside the synchronization manifold.

For the characterization of the stability of synchronization, only the size of this distri-
bution is important, but not its particular shape. In fact, it is sufficient for the network
to desynchronize, if only one of the transversal eigenvalues from this distribution is
outside of the stable region of the master stability function.

In the limit of large delay, the master stability function shows a rotational symmetry
that was already discussed in Chapter 3. In the application to the random networks
studied here, synchronization will be stable if the distribution (5.13) of eigenvalue is
completely contained in the stable region of the master stability function. That is, the
sharp boundary of the distribution, which is given by

|γb|=
2
p

N p(1− p)

p(N − 1)
(5.14)

according to Eq. (5.13) has to be inside the stable region. Let us assume the master
stability function changes sign at |γc|, i.e., Λ(γ) < 0 for |γ| < |γc|. Then a random
network will synchronize if

γb < γc . (5.15)

In other words, given that the boundary of the stable region of the master stability
function is located at a given value of |γc|, the critical link probability, above which
synchronization is stable, is obtained by solving Eq. (5.14) for p:

pcrit =
4N

γ2
c (N − 1)2+ 4N

. (5.16)

For directed random networks I find the law (5.13) to describe the eigenvalue distribu-
tion equally well. Applying Eq. (5.13) to the absolute value of the then complex-valued
spectrum {γi} of a directed random graph matches the outcome of averaging over a
number of realizations very well. Thus, Eq. (5.15) can also be used to characterize
synchronization in a directed random network. I will show results for directed random
networks of lasers in the following.
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Figure 5.3.: Master stability function in the γ plane for a network of delay-coupled lasers
according to Eq. (2.7). (a-c) LFF regime, (d-f) CC regime according to Tab. 2.2. The
blue dots show the eigenvalue spectra from a single realization of a directed random
graph with link probabilities (a) p = 0.2, (b) p = 0.5, (c) p = 0.95, (d) p = 0.2, (e)
p = 0.5, and (f) p = 0.95.
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Figure 5.4.: Mean cross correlation in a directed random network of N = 30 lasers in
dependence on the link probability p. Blue: LFF regime; green: CC regime, according
to Tab. 2.2. The blue and green lines correspond to the threshold of stability according
to Eq. (5.16) for the LFF and the CC regime, respectively.

5.5. Results for laser networks

Figure 5.3 shows the master stability function in the regimes of low-frequency fluctu-
ations (LFF) and coherence collapse (CC) (see Sec. 2.2.1). Panels (a-c) correspond to
the LFF regime, while panels (d-f) show results for the CC regime. In each panel I in-
serted the eigenvalues from one realization of a directed random graph with N = 30
nodes. In panels (a,d), (b,e), and (c,f), the link probability is chosen as p = 0.2, 0.5,
and 0.95, respectively. One eigenvalue is always located at γ= 1, which corresponds to
perturbations longitudinal to the synchronization manifold as shown in Chapter 3. The
other eigenvalues correspond to transversal directions and determine the stability of
synchronization. It is clearly seen that in the LFF regime, any of these link probabilities
lead to stable synchronization in the corresponding network, while in the CC regime
only the very large value of p = 0.95 leads to synchronization.
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To verify these predictions from the master stability function, I performed numerical
simulations using N = 30 lasers in the corresponding random networks and calculated
the mean cross correlation in order to characterize the degree of synchronization. The
results are shown in Fig. 5.4 in dependence on the link probability p. The blue and green
curves result from parameters in the LFF and in the CC regime, respectively. In order to
obtain a smooth result, each data point is retrieved from averaging over 50 realizations
of a random network with the corresponding link probability.

These results confirm the predictions from the master stability very well. For the LFF
regime, synchronization is possible for any link probability in the range considered
here. Note that I did not use link probabilities below p = 0.2, because this would cause
interference with the percolation threshold under which the network is topologically
separated into many components and synchronization is not possible for this structural
reason alone.

For the CC regime, synchronization is only possible for very large link probabilities
above p ≈ 0.95. This could already be seen in Fig. 5.3.

The blue and green lines shown in Fig. 5.4 show the theoretical threshold of synchro-
nization according to Eq. (5.16). These theoretical values do, however, not match the
numerical results. While in the CC regime the threshold is only slightly off which could
be caused by numerical fluctuations, no desynchronization can be seen for the LFF in
the numerics near the analytic value of the threshold.

This discrepancy is most likely explained by the finite and relatively small number of
nodes I used in the simulations. Remember that the semicircular law (5.12) from which
I derived the analytic value for the threshold of synchronization is only valid in the
limit of N →∞. It would be necessary to run numerical simulations for a significantly
larger number of nodes, but since the numerical cost of such a simulation scales with
the number of links in the network, which is ∼ O (N2) for fixed link probability p, this
could not be done in the scope of this thesis.

5.6. The relation to motifs

At the beginning of Chapter 4 I introduced network motifs as the building blocks of
larger complex networks. This was shown again in Sec. 5.3 where I have summarized
the subgraphs that appear in a random graph with increasing link probability. One
may argue that if the network motifs or subgraphs that are present in the graph do
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not synchronize for given parameters, than a larger network constructed from these
subgraphs cannot synchronize either.

Although different kinds of subgraphs occur in a random graph as shown in Sec. 5.3,
I will focus on the completely connected subgraphs. Note that these completely con-
nected subgraphs of order k are equivalent to all-to-all networks without feedback as
introduced in Sec. 4.5.3. In that Section I showed that the minimum size of an all-to-all
network that can synchronize is very different in the LFF and the CC regime. In the LFF
regime, all-to-all networks with N ≥ 3 could synchronize, while N ≥ 16 is needed in
the CC regime.

Now, in Sec. 5.3 I have shown that the size of the completely connected subgraphs
increases with the link probability p. Subgraphs of order 3 are present even for very
small link probabilities, leading to stable synchronization in the LFF regime already
for these small probabilities. Completely connected subgraphs of order 16 – needed
for synchronization in the CC regime – appear only at much higher values of the link
probability. Keeping in mind that the number of node of the networks considered was
N = 30, an almost unity link probability is needed to achieve all-to-all networks of size
16 in the network. This explains the differences in the critical link probabilities for the
LFF and the CC regime in a qualitative but intuitive way.

5.7. Conclusion

Using the example of Erdős-Rényi random graphs, I have shown how the master sta-
bility function can be used to characterize stability of synchronization in large complex
networks. With an analytic expression for the boundary of the eigenvalue spectrum,
I demonstrated that the question of synchronizability may be reduced to the relation
between this boundary and the boundary of the master stability function. In particular
in the case of large delay, where the master stability function is rotationally symmetric
in the complex plane, a single equation remains. The outcome of this equation does,
however, not completely match the results from numerical simulation, which is likely
caused by a finite-size effect.

I also drew the connection between synchronizability in complex networks and the oc-
currence of subgraphs or network motifs inside of these. This allows for an intuitive
explanation of the differences between the LFF and the CC regime with regard to sta-
bility of synchronization in complex networks.
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6. Multiple coupling matrices

Following the idea by Flunkert [2010, 2011] and Englert et al. [2011], stability of
isochronous synchronization in a network with multiple coupling matrices can be de-
termined by a master stability function if these multiple coupling matrices commute
with each other. This is particularly interesting in the light of multiple delays in a net-
work. These multiple delays may, for instance, arise due to differences in the physical
length of links, as I will show using an example.

I will review the dynamical equations with multiple coupling contributions and intro-
duce an example topology with two coupling matrices in Sec. 6.1. In Sections 6.2
and 6.3 I will show what matrices can be used in general and what problems arise for
the calculation of the eigenvalue spectrum. Results for the example of a ring with cou-
pling to the nearest and next-nearest neighbors will be presented in Sections 6.4, 6.5
and 6.6.

6.1. Multiple coupling contributions

Initially aiming at the ability to have multiple time delays in a network, Flunkert [2010,
Sec. 10.7] looked at node differential equations of the form1

ẋi = F(xi) +σ
(1)

N
∑

j=1

G(1)i j H(1)x j(t −τ(1)) +σ(2)
N
∑

j=1

G(2)i j H(2)x j(t −τ(2)) (6.1)

Note that, in order to operate in the same output regime of the laser, the sum of the
coupling strengths σ(1) and σ(2) has to yield the overall coupling strength σ used with
one coupling matrix as in Chapter 2: σ(1)+σ(2) = σ.

If the matrices G(1) and G(2) commute, i.e., [G(1),G(2)] = G(1)G(2) −G(2)G(1) = 0, they
diagonalize with the same set of eigenvectors. Then, a master stability function Λ can

1In fact, the notation was slightly different, I use the notation of this thesis for convenience.
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be calculated as a function of the eigenvalue spectra γ(1) and γ(2) of both G(1) and G(2),
respectively:

Λ = Λ(σ(1)γ(1),σ(2)γ(2)). (6.2)

From Eq. (6.1) it can be seen that different coupling schemes H and time delays τ can
be used for each coupling term. Let me give an example of matrices that do commute.
Consider a network coupled in a generalized bidirectional ring where every node is
coupled to its nearest and next-nearest neighbors. This is described by the coupling
matrix

G=
1

2

















0 1 1 0 0 0 · · · 0 1 1
1 0 1 1 0 0 · · · 0 0 1
1 1 0 1 1 0 · · · 0 0 0
0 1 1 0 1 1 · · · 0 0 0

...

















. (6.3)

The network can be split up using two coupling matrices: G(1) for the nearest-neighbor
couplings and G(2) for the next-nearest neighbors:

G(1) =

















0 1 0 0 0 0 · · · 0 0 1
1 0 1 0 0 0 · · · 0 0 0
0 1 0 1 0 0 · · · 0 0 0
0 0 1 0 1 0 · · · 0 0 0

...

















, (6.4)

G(2) =

















0 0 1 0 0 0 · · · 0 1 0
0 0 0 1 0 0 · · · 0 0 1
1 0 0 0 1 0 · · · 0 0 0
0 1 0 0 0 1 · · · 0 0 0

...

















. (6.5)

These matrices do commute, which can easily be seen by calculating the products
G(1)G(2) and G(2)G(1), and have eigenvalues

γ(1)m = cos
�

2πm

N

�

, m= 1, . . . , N (6.6)

and

γ(2)m = cos
�

4πm

N

�

, m= 1, . . . , N , (6.7)

116



6.2. FINDING THE EIGENVALUE PAIRS

respectively. These eigenvalues are purely real, allowing to omit the imaginary parts of
the master stability function, which is then dependent purely on the real parts of γ(1)

and γ(2):

Λ = Λ(Reγ(1), Reγ(2)). (6.8)

Note that the eigenvalues of both matrices corresponding to the same eigenvector have
to be used simultaneously, which leads to pairs of (γ(1)k ,γ(2)k ) for k = 1, . . . , N at which
the master stability function has to evaluated.

The formalism can be extended to an arbitrary number of matrices M , which is es-
pecially interesting for the use of many different coupling delays. The condition of
commutativity must be fulfilled for every pair of these matrices.

6.2. Finding the eigenvalue pairs

In order to evaluate the master stability function for two coupling matrices, the pairs of
eigenvalues (γ(1)k ,γ(2)k ), k = 1, . . . , N , have to be considered. That is, γ(1)k and γ(2)k have
to correspond to the same eigenvector.

For regular matrices based on ring structures, this task is easy, since the pairs can be cal-
culated following a simple rule. Ring structures are special cases of circulant matrices,
which share a an identical set of eigenvectors. This way, for pairs of circulant matrices,
the pairs of eigenvalues are given explicitly, as I will show in Sec. 6.3. Equations (6.6)
and (6.7) were obtained in this way.

In networks that do not fall into this class, but still commute, this task is comparatively
more complicated. For larger matrices, joint diagonalization algorithms have been de-
veloped that can be easily implemented numerically. Notable work has been done by
Cardoso and Souloumiac [1996], as well as by Ziehe et al. [2004]. The former ap-
proach works even for only approximately jointly diagonalizable matrices, which may
potentially be useful for multiple complex coupling matrices that do not commute ex-
actly. However, in the example used in this Chapter the application of these algorithms
is not needed because they fall into the class of circulant matrices.
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6.3. Matrices that commute

In general, matrices that describe real-world complex networks or those that are con-
structed from random matrix models, e.g., Erdős-Rényi [Erdős and Rényi, 1959, 1960],
Price, Barabási-Albert [Barabási and Bonabeau, 2003], or Watts-Strogatz [Watts and
Strogatz, 1998] do not commute, as randomly distributed links do not tend to cancel in
the commutator [G(1),G(2)] = G(1)G(2) − G(2)G(1). Certain insular realizations of such
networks may of course commute as a special case.

Regular networks, on the other hand, may show structures that lead to a cancellation
of both contributions in the commutator. By performing the calculation of [G(1),G(2)]
it is, for example easily seen that matrices (6.4) and (6.5) from the Section above do
commute. Indeed, one can show that matrices describing rings of all kinds commute
with each other, i.e., form a commutative algebra.

Rings belong to the class of circulant matrices that were introduced already in Chap-
ter 4. A circulant matrix is of the form

C=

















c1 cN · · · c3 c2
c2 c1 cN c3
... c2 c1

. . .
...

cN−1
. . . . . . cN

cN cN−1 · · · c2 c1

















, (6.9)

where the ck ∈ C, k = 1, . . . , N . The ring matrices (6.3), (6.4), and (6.5) can be con-
structed from this general form by choosing the ck appropriately.

Circulant matrices form a commutative algebra [Gray, 2006; Golub and van Loan,
1996]. Any circulant matrix C has the same set of eigenvectors vk according to (4.27),

vk = (1,ωk,ω2
k, . . . ,ωN−1

k ). (6.10)

with ωk = exp(2πik/N). Therefore, the matrix S that contains these eigenvectors and
diagonalizes C as

diag (γk) = S∗CS (6.11)

is identical for any circulant matrix C. Thus, any two circulant matrices commute.

Using the identical set of eigenvectors vk and the formula (4.26), which determines the
corresponding eigenvalues of a circulant matrices, it is easy to calculate the pairs of
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eigenvalues of two circulant matrices that belong to the same eigenvector. These pairs
are used in the evaluation of the master stability function.

6.4. Nearest and next-nearest neighbors

Let me come back to the example of coupling to next and next-nearest neighbors. It
is particularly interesting to investigate the effects of different delay times for both
coupling matrices. This is motivated by the intuition that the delay time for a physically
longer connection is potentially larger. Investigations with different delay times have
already been performed for identical coupling matrices for the Bernoulli map [Englert
et al., 2010], the logistic map [Greenshields, 2010], but also in a laser model [Englert
et al., 2011].

6.5. Master stability function for different delay times

The master stability function itself depends on the two time delays τ(1) and τ(2), be-
cause the synchronous dynamics

ẋs = F[xs(t)] +σ
(1)H(1)xs(t −τ(1)) +σ(2)H(2)x j(t −τ(2)) (6.12)

depends on these delay times, but also the corresponding variational equation

δ˙̃x= DF|xs(t)δx̃(t) +σ(1)γ(1)H(1)δx̃(t −τ(1)) +σ(2)γ(2)H(2)δx̃(t −τ(2)), (6.13)

from which the master stability function is calculated. The coupling schemes are kept
identical H(1) = H(2) = H as in Chapter 2. The coupling strengths are chosen as σ(1) =
σ(2) = σ/2.

6.6. The influence of the delay times

Figure 6.1 shows the master stability function arising from Eq. (6.13) in dependence
on the parameters Reγ(1) and Reγ(2) for different values of the delay time for the
longer-range couplings G(1), τ(1), while the other delay time – corresponding to the
shorter-range coupling G(2) – is fixed at τ(2) = 1000. Figures 6.1(a-f) correspond
to τ(1) = 250, 500, 750, 1000, 1500, and 2000, respectively. The other parameters
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Figure 6.1.: Master stability function in dependence on the parameters Reγ(1) and Reγ(2)

of two coupling matrices for different values of the delay time τ(1) and fixed Imγ(1) =
Imγ(2) = 0. (a-f): τ(1) = 250, 500, 750, 1000, 1500, and 2000, respectively. σ(1) =
σ(2) = σ/2 with σ = 0.12, τ(2) = 1000 and other parameters in the LFF regime
in Tab. 2.2. Red dot: longitudinal eigenvalue pair (1,1), red line: general location
of eigenvalue pairs of matrices (6.4) and (6.5), green and blue dots: transversal
eigenvalue pairs of matrices (6.4) and (6.5) for N = 2 and N = 5, respectively.



6.7. CONCLUSION

are chosen to operate in the regime of low-frequency fluctuations (LFF) according to
Tab. 2.2.

From the different panels in Fig. 6.1 it can be seen that choosing different delay times
has no positive influence on the size of the stable region of the master stability function.
The region is largest for identical time delays τ(1) = τ(2) = 1000. In this case it is
also symmetric with respect to exchange of Reγ(1) and Reγ(2), which is due to the
identical coupling terms in the synchronous dynamics (6.12). For other choices of the
delay time τ(1), i.e., non-unity ratios of τ(1) and τ(2), the stable region is smaller in
comparison.

Also plotted in Fig. 6.1 are the locations of the eigenvalue pairs of the example ma-
trices (6.4) and (6.5). The eigenspectra of these matrices follow Eqs. (6.6) and (6.7),
respectively. For any number of nodes N , the eigenvalue pairs lie always on the red
line that is depicted in Fig. 6.1. This line would be densely filled with eigenvalue pairs
in the limit N → ∞. The longitudinal eigenvalue pair (1,1) that is always present is
shown as a red dot. The master stability function evaluated at this point is the longitu-
dinal Lyapunov exponent, which determines whether the dynamics is chaotic. As can
be seen, the color code at this point changes depending on τ(1), i.e., the longitudinal
Lyapunov exponent differs slightly. Nonetheless, the dynamics is chaotic for all choices
of τ(1).

The green and blue dots show the transverse eigenvalue pairs for N = 2 and N = 5,
respectively, as examples. For τ(1) = 1000 the network with N = 2 can synchronize in
a stable manner, which is not the case for any other choice of the delay time τ(1). Con-
cerning the example N = 5, it can synchronize for all choices of τ(1) shown here. Note
that for τ(1) = 2000 shown in Fig. 6.1(f), one transverse eigenvalue is just at the border
of the stable region of the master stability function. For any higher value of N some of
the transverse eigenvalue pairs will be outside the green – stable – region. For the other
choices of the delay time τ(1), the threshold for the number of nodes that can synchro-
nize in this setup differs and has to be calculated considering the point where the red
line crosses from the stable green to the unstable yellow region.

6.7. Conclusion

In conclusion, in this example of coupled lasers, different delay times do not enhance
or improve synchronization in a significant way. This may be different for other models
and also for smaller delay times in the Lang-Kobayashi model used here. As shown
in Chapter 3, the shape of the master stability is no longer circular for a single small
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delay. The effect of multiple small delays on synchronizability would be an interesting
continuation of this investigations.

Overall, the use of multiple coupling matrices enables the use of multiple delays for all
links in a single topology, but also the use of topologies where some links have different
delays than others. The different coupling matrices that this yields have to obey the
condition of being commutative.
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7. Control of synchronization in oscillator
networks

The results of the previous Chapters in this part of the thesis, in particular the stabil-
ity analysis introduced in Chapter 3, hold for any type of system governing the local
dynamics of the network’s nodes, which can include fixed-point, periodic, or chaotic
dynamics. The master stability function evaluated in terms of the largest Lyapunov ex-
ponent has proven to be a general and powerful method for determining stability of
synchronization.

For periodic and fixed-point dynamics, instead of using Lyapunov exponents, stability
can be described by Floquet exponents and eigenvalues of the Jacobian, respectively.
This eases the numerical treatment, as analytic expressions can be derived in some
cases.

In this Chapter, I use the generic Stuart-Landau model for periodic dynamics describing
a wide range of systems near a Hopf bifurcation. This model allows for an analytical
treatment, including the calculation of the Floquet exponents.

I develop analytical tools for determining stability of synchronization and derive ana-
lytical conditions for controlling the different states of synchrony [Choe et al., 2010,
2011] in networks of Stuart-Landau oscillators. I identify the phase of the complex
coupling constant as a crucial control parameter and demonstrate that by adjusting
this phase one can deliberately switch between synchronization and desynchroniza-
tion.

7.1. The Stuart-Landau oscillator

The Stuart-Landau oscillator is a generic oscillator model, which arises naturally as an
expansion in center-manifold coordinates around a Hopf bifurcation. A Hopf bifurcation
occurs in a variety of systems, e.g. in semiconductor lasers [Tronciu et al., 2000] or in
models for neuronal dynamics like the FitzHugh-Nagumo [FitzHugh, 1961; Nagumo
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et al., 1962] or the Morris-Lecar model [Tsumoto et al., 2006]. In the type-II excitable
FitzHugh-Nagumo model, for example, a Hopf bifurcation lies between the excitable
and the oscillatory regime. The Stuart-Landau model is given as follows: In the center
manifold, the dynamics of a complex variable z ∈ C is governed by the differential
equation

f (z) =
�

λ+ iω∓ (1+ iγ)|z|2
�

z. (7.1)

Here, the− and+ signs describe a supercritical or a subcritical Hopf bifurcation, respec-
tively. λ acts as a bifurcation parameter as illustrated in Fig. 7.1:

Subcritical Hopf bifurcation: The system shows a stable focus for λ < 0, surrounded
by an unstable limit cycle with radius

p−λ. Passing λ = 0, the limit cycle disap-
pears and the focus becomes unstable.

Supercritical Hopf bifurcation: For λ < 0, only a stable focus exists. At λ= 0, a stable
limit cycle with radius

p
λ is born while the focus loses stability.

The time evolution ż(t) = f [z(t)] of the Stuart-Landau oscillator can be rewritten in
amplitude r(t) and phaseϕ(t) of the complex variable z(t) = r(t)eiϕ(t):

ṙ = (λ∓ r2)r,

ϕ̇ = ω∓ γr2. (7.2)

From these equations the existence of the fixed points and periodic orbits described
above can already be seen. Equation (7.2) also reveals that the parameters ω and γ
determine the period of the limit cycle in both cases, which is given by T = 2π/(ω−γλ).
In particular, the choice of γ influences the period’s dependence on the radius, which is
determined by λ.

In this work, I focus on the supercritical case (−) and the parameter λ chosen as λ =
0.1, such that already the uncoupled system operates on a stable limit cycle. In the next
Section, I show the dynamical equations of N such Stuart-Landau oscillators coupled in
a network.
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Figure 7.1.: (a) Subcritical and (b) supercritical Hopf bifurcation: Radius of oscillations
and stability in dependence on the bifurcation parameter λ. Solid and dashed lines
denote stable and unstable states, respectively.

7.2. Oscillator networks

Consider N oscillatory nodes in a network, where each node ( j = 1, . . . , N) is modeled
by the same local dynamics, given by the Stuart-Landau oscillator (7.1):

ż j = f [z j(t)] +σ
N
∑

n=1

G jn

�

zn(t −τ)− z j(t)
�

, (7.3)

with time delay τ and complex coupling strength σ = Keiβ ∈ C. The topology of the
network is determined by the real-valued coupling matrix G= {G jn}.

The complex coupling strength. Such complex couplings have been shown to be
important in overcoming the odd-number limitation of time-delayed feedback control
[Fiedler et al., 2007] and in anticipating chaos synchronization [Pyragas and Pyragiene,
2008].

The phase β of the complex coupling strength can also be understood as a mixing
strength between real and imaginary part of the z j: Let z j = x j + y j; then Eq. (7.3) can
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also be rewritten in the form

�

ẋ j
ẏ j

�

=

�

Re[ f (x j + i y j)]
Im[ f (x j + i y j)]

�

+K

�

cos(β) sin(β)
− sin(β) cos(β)

� N
∑

n=1

G jn

�

xn(t −τ)− x j(t)
yn(t −τ)− y j(t)

�

.

(7.4)

In other words, seeing x and y as two variables instead of real and imaginary part of
z, the phase β acts as the angle in the rotational matrix in the above equation, β = 0
results in an identity matrix. This rotational matrix is a special case of non-diagonal
coupling. Already for the stabilization of fixed points in the Hopf normal form it has
been shown that the introduction of such a coupling phase can enhance or impair the
domain of stability [Hövel and Schöll, 2005; Dahms et al., 2007]. This has later been
applied to a laser model where the phase is an important parameter in the external
feedback loop [Dahms et al., 2008]; see also Sec. 2.4.

The coupling matrix. The coupling matrix is introduced in the same way as for laser
networks; its entries may be real numbers. Nonzero diagonal elements, for instance,
correspond to networks with delayed self-feedback. In the following, I consider only
unity row sum

∑

n G jn = 1 such that each node is subject to the same input in the case
of complete synchronization. This generalizes the common assumption of zero row
sum in the master stability function approach [Pecora and Carroll, 1998] as in the laser
networks in Chapter 3. Note that a constant but non-unity row sum can be dealt with
by adjusting the overall coupling strength K .

7.2.1. Synchronous oscillator dynamics

In order to study stability, one has to describe first the synchronous dynamics. Let me
first write Eq. (7.3) in amplitude and phase variables r j = |z j| andϕ j = arg(z j):

ṙ j =
h

λ− r2
j (t)
i

r j(t)

+K
N
∑

n=1

G jn

¦

rn(t −τ) cos
�

β +ϕn(t −τ)−ϕ j(t)
�

− r j(t) cosβ
©

,

ϕ̇ j = ω− γr2
j (t)

+K
N
∑

n=1

G jn

¨

rn(t −τ)
r j(t)

sin
�

β +ϕn(t −τ)−ϕ j(t)
�

− sinβ

«

. (7.5)
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Two kinds of synchronous solutions can be found from this equation:

In-phase (or zero-lag) synchronization: All oscillators share a common radius r0 and
a common phase, oscillating with a common frequency Ω:

r j(t) = r0,

ϕ j(t) = Ωt, j = 1, . . . , N . (7.6)

Cluster and splay states: All oscillators share a common amplitude r0 and frequency
Ω, but there are constant differences in their phase variables:

r j(t) = r0,

ϕ j(t) = Ωt + j∆φm, j = 1, . . . , N , (7.7)

with

∆φm = 2πm/N . (7.8)

The integer m = 0, . . . , N − 1 determines the specific state: The cluster number
dc , which determines how many clusters of oscillators exist, is given by the least
common multiple (lcm) of m and N divided by m:

dc =
lcm(m, N)

m
(7.9)

for m = 1, . . . , N − 1. dc = N corresponds to a splay state [Zillmer et al., 2007].
m= 0 resembles in-phase synchronization (dc = 1), although Eq. (7.9) cannot be
used in this case.

Note that in general more complex cluster states may exist as solutions of the
dynamical system, for instance, states with non-uniform phase differences or dif-
ferent number of nodes in each cluster. The analysis shown in this Chapter uses
states of the form (7.7) with constant phase differences according to Eq. (7.8).

Fig. 7.2 shows the possible scenarios for the simple example of 4 nodes coupled in a uni-
directional ring. I will focus on in-phase synchronization according to Eq. (7.6) in this
Chapter and extend the theory to cluster and splay states in Chapter 10.
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(a)
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Figure 7.2.: Schematic view of (a) in-phase, (b) two-cluster, and (c)-(d) splay states in a
network with 4 oscillators. The phase differences are ∆φ0 = 0, ∆φ2 = π, ∆φ1 =
π/2, and ∆φ3 = 3π/2 in panels (a), (b), (c), and (d), respectively, according to
Eqs. (7.8) and (7.9).

7.3. Stability of in-phase synchronization

Looking at Eq. (7.6), which describes in-phase dynamics, the common radius r0 and
frequency Ω are yet to be determined. Given that such a common frequency Ω exists, I
can write

ϕ j(t)−ϕn(t −τ) = Ωτ (7.10)
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for any pair of nodes ( j, n). Using this and Eq. (7.6), we obtain the common radius and
frequency by solving Eq. (7.5) for r2

0 and Ω:

r2
0 = +

�

λ+ K
�

cos (β −Ωτ)− cosβ
�	

,

Ω = ω− γr2
0 + K

�

sin (β −Ωτ)− sinβ
�

, (7.11)

This is a set of transcendental equations for r0 and Ω. It cannot be solved analytically.
Numerical solution yields a multi-leaved structure as shown in Figs. 7.3 and 7.4 in de-
pendence on the time delay τ for different coupling parameters. Namely, the amplitude
of the coupling strength was chosen as K = 0.3 in Fig. 7.3, while it is K = 0.7 in Fig. 7.4.
The phase of the coupling strength was fixed at β = 0.

Panels (a) and (b) show the collective frequency Ω and the squared collective radius r2
0 ,

respectively, in both Figures. The collective frequency Ω is distributed around the intrin-
sic frequency ω = 1, where multiple solutions are obtained with increasing time delay
τ. This behavior becomes more pronounced for higher K (Fig. 7.4). The collective am-
plitude also shows this multivalued behavior. That is, for a given value of the time delay
τ and the coupling strength’s amplitude K , one obtains different possible solutions for
the common amplitude r0 and frequency Ω. The degree of this multistability increases
with higher values of the time delay τ. Spurious solutions with r2

0 < 0 – indicated by
red color – can be observed. These would result in nonreal radii r0 which correspond
to amplitude death, i.e., no oscillations occur in this range.

As most of our calculations regarding stability of synchronization are based on cal-
culating Floquet exponents – as opposed to running direct simulations – it is crucial
to ensure that only stability of physical solutions r2

0 ≥ 0, i.e., blue colored solutions
in Figs. 7.3 and 7.4, is calculated. I will come back to this later in the next Sec-
tion.

7.3.1. Obtaining the master stability function

Stability analysis is carried out by forming variational equations from the equations
describing the network dynamics. These variational equations can be diagonalized in a
fashion similar to Chapter 3, which decouples the calculation of the Floquet exponents
from the network topology.

As it turns out, forming variational equations from the synchronous network dynamics
becomes most simple when using the ansatz r j(t) = r0[1+δr j(t)], ϕ j(t) = Ωt+δϕ j(t).
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Figure 7.3.: (a) Collective frequency Ω and (b) squared amplitude r2
0 of in-phase oscilla-

tion vs. time delay τ for coupling strength K = 0.3 and phase β = 0. Blue and red
curves correspond to physical and unphysical solutions, i.e, r2

0 ≥ 0 and < 0, respec-
tively. Parameters: λ= 0.1, ω= 1, γ= 0.

Expanding Eq. (7.5) to linear order in the small deviations δr j and δϕ j , I obtain the
variational equation

�

δ̇r j
˙δϕ j

�

=

�

−2r2
0 0

−2γr2
0 0

��

δr j
δϕ j

�

− K

�

cos∆ − sin∆
sin∆ cos∆

��

δr j
δϕ j

�

+K
∑

n
G jn

�

cos∆ − sin∆
sin∆ cos∆

��

δrn(t −τ)
δϕn(t −τ)

�

, (7.12)

where I abbreviate ∆= β −Ωτ.
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Figure 7.4.: (a) Collective frequency Ω and (b) squared amplitude r2
0 of in-phase oscilla-

tion vs. time delay τ for coupling strength K = 0.7 and phase β = 0. Blue and red
curves correspond to physical and unphysical solutions, i.e, r2

0 ≥ 0 and < 0, respec-
tively. Parameters: λ= 0.1, ω= 1, γ= 0.

Using the variational vector ξ j =

�

δr j
δϕ j

�

, the Jacobian of the Stuart-Landau local

dynamics J0 =

�

−2r2
0 0

−2γr2
0 0

�

, and the rotational matrix R =

�

cos∆ − sin∆
sin∆ cos∆

�

,

Equation (7.12) is rewritten as

ξ̇ j = J0ξ j − KRξ j + K
∑

n
G jnRξn(t −τ), j = 1, . . . , N . (7.13)

The rotational matrix R plays the role of the coupling scheme H (cf. Chapter 2). In net-
works with multiple-variable nodes it determines which of the variables are involved in
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the coupling. Here, where we have only one complex variable describing the dynam-
ics of each node, the coupling phase yields a 2× 2 coupling scheme in the notation of
phases ϕ j and amplitudes r j .

In a similar fashion as in Chapter 3, Eq. (7.13) can be rewritten with one state vector
ξ= (ξ1, . . . ,ξN ) including the dynamics of all nodes:

ξ̇= (IN ⊗ J0)ξ− K(IN ⊗R)ξ+ K(G⊗R)ξ(t −τ). (7.14)

If the coupling matrix G is diagonalizable, a block-diagonal form of this variational
equation can be obtained:

ζ̇k(t) = J0ζk(t)− KR
�

ζk(t)− νkζk(t −τ)
�

, k = 1, . . . , N , (7.15)

where νk is the kth eigenvalue of G. One eigenvalue is always one, ν1 = 1, following
from the unity row sum condition. The variational equation corresponding to this eigen-
value describes variations inside the synchronization manifold while all other eigenval-
ues correspond to transverse directions.

Floquet exponents In contrast to Chapter 3, where the master stability function was
calculated in terms of Lyapunov exponents, the periodic behavior of the Stuart-Landau
oscillator allows for the use of Floquet exponents. Usually, solving a given Floquet prob-
lem involves numerically integrating an evolution matrix and is therefore as expensive
as calculating Lyapunov exponents [Just, 1999]. I will show, however, that the Floquet
problem simplifies to an eigenvalue problem here, since the coefficient matrices J0 and
R in Eq. (7.15) do not depend on time.

Consider an n-dimensional system of differential equations

ẋ(t) = h[x(t)], (7.16)

which exhibits a periodic solution ξ(t) = ξ(t + T ) with period T . Stability of this
periodic solution is determined by considering trajectories in the vicinity of this solution:

x(t) = ξ(t) +δx(t). (7.17)

Then, a Taylor expansion in x(t) reveals that, in linear order, the deviations δx are
described by

δẋ(t) = Dh[ξ(t)]δx(t). (7.18)
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Solving this Floquet problem usually complicates to a numerical problem. However,
if we assume the Jacobian to be time-independent – Dh[ξ(t)] = Dh – we can use
a simple exponential ansatz δx(t) = exp(Λt)x(t). Equation (7.18) then simplifies to

Λδx(t) = Dhδx(t), (7.19)

which is equivalent to the eigenvalue problem

0= det(Dh−ΛIn). (7.20)

That is, the Floquet exponents that describe the evolution of the deviations δx according
to Eq. (7.18) are calculated as eigenvalues of the Jacobian Dh. Stability of the orbit ξ is
then given by the real parts of the eigenvalue spectrum Λ1, . . . ,Λn. The imaginary parts
describe a possible torsion of the orbit and are not important for stability concerns. Note
that due to the translational invariance of a periodic orbit, one of the these eigenvalues
– or Floquet exponents – will always be zero. This has to be kept in mind since this value
does not play a role in determining stability of synchronization.

Applying this scheme to Eq. (7.15) yields

0= det
�

J0−ΛI2+ K
�

−1+ νke−Λτ
�

R
�

, (7.21)

where the exponential term exp(−Λτ) results from the delayed term ζk(t − τ). Equa-
tion (7.21) is of course equivalent to

0 =

�

�

�

�

�

�

−2r2
0 + KQk(Λ) cos∆−Λ −KQk(Λ) sin∆

−2γr2
0 + KQk(Λ) sin∆ KQk(Λ) cos∆−Λ

�

�

�

�

�

�

(7.22)

= KQk(Λ)
��

−2r2
0 − 2Λ

�

cos∆− 2γr2
0 sin∆+ KQk(Λ)

�

+ 2r2
0Λ−Λ2,

where Qk(Λ) =−1+νke−Λτ and in particular Q1(Λ) = e−Λτ−1 since ν1 = 1.

Equation (7.22) is a transcendental equation for the eigenvalues Λ and can in general
not be solved analytically. In the following, I will show results from numerically solving
the equation for different parameters in different projections of the parameter plane.
Note that the plane of the coupling parameters alone is 3-dimensional, consisting of
the coupling strength’s amplitude K and phase β and the time delay τ. I will therefore
fix the model parameters as λ = 0.1, ω = 1, and γ = 0 and show the dependence of
synchronizability on the coupling parameters only.
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Figure 7.5.: Master stability function for in-phase synchronization of Stuart-Landau oscil-
lators in the (Reν , Imν)-plane for β = 0 and different coupling strengths K and delay
times τ. The color code corresponds to the largest real part of the Floquet exponents
for a given value of the parameter ν . All eigenvalues of the coupling matrix G of a
unidirectional ring lie on the black circle. Parameters:(a) K = 0.08, τ = 3π/2, (b)
K = 0.3, τ = 3π/2, (c) K = 0.7, τ = 3π/2, (d) K = 0.08, τ = 2π, (e) K = 0.3,
τ= 2π, (f) K = 0.7, τ= 2π; others as in Fig. 7.3.



7.3. STABILITY OF IN-PHASE SYNCHRONIZATION

Figure 7.5 depicts the master stability function, i.e., the largest real part of the Floquet
exponents, calculated from Eq. (7.21) for different coupling parameters. The coupling
strength is chosen as K = 0.08, 0.3, and 0.7 in panels (a,d), (b,e), and (c,f), respec-
tively. The coupling phase is chosen as β = 0 and the time delay is τ = 3π/2 in panels
(a-c) and 2π in panels (d-e). Note that for a unidirectionally coupled ring all eigen-
values, i.e., νk = exp(2πik/N) with k = 1, . . . , N (see Sec. 4.5.1), are located on the
black circle. Hence, for the choice of parameters in panels (c-f) all eigenvalues lie in
the region of negative maximum real part of the Floquet exponent. The unidirectional
ring shows stable in-phase synchronization for these parameters. For the parameters in
panels (a-b) in-phase synchronization of the unidirectional ring is unstable for N > 2.
Furthermore, it can be shown using Gerschgorin’s disk theorem (see Sec. 7.3.3 [Ger-
schgorin, 1931; Earl and Strogatz, 2003]) that the eigenvalues are located on or inside
this circle S(0,1) centered at 0 with radius 1 for any network topology with unity row
sum. As a special case, the same holds for the circle S(G j j , 1 − G j j) centered at G j j
if self-feedback (constant G j j , j = 1 . . . , N) is added while keeping the unity row sum
condition. This circle is contained in S(0,1) which describes the more general case with
arbitrary diagonal elements. Note that the master stability function is symmetric with
respect to a change of sign of Imν .

In order to further illustrate the dependence on the coupling strength K , Fig. 7.6 shows
the master stability function in the (Reν , K) plane for fixed delay times τ = 3π/2
and 2π in panels (a) and (b), respectively. The imaginary part Imν is chosen to be
zero. It can be seen that the master stability function shows stability inside the interval
Reν ∈ [−1, 1] regardless of the coupling strength K . This implies that any undirected
network topology (Imν = 0) with a unity row sum shows stable synchronization for
any coupling strength and these two fixed delay times.

Until now, the influence of the coupling phase β was not discussed yet. I will show this
dependence for some exemplary values of the other coupling parameters. Figure 7.7
shows the master stability function in the (Reν ,β) plane for the same sets of parameters
as in Fig. 7.5 in panels (a-f). On one hand, for each set of parameters there are ranges
for the coupling phase β where the master stability function shows instability in the
interval Reν ∈ [−1,1]. In fact, in some regions, not even solutions for the common
frequency and amplitude exist (white color). On the other hand, for every panel, i.e.,
every set of parameters, there is a range where the interval Reν ∈ [−1, 1] shows stable
synchronization, which corresponds to stable synchronization of any network with row
sum 1. For some regions, the size of the interval even exceeds the interval Reν ∈ [−1, 1]
considerably. In the following Section I will show how these optimal values of the
coupling phase β can be determined using an analytic equation.
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Figure 7.6.: Master stability function for in-phase synchronization of Stuart-Landau oscil-
lators in the (Reν , K) plane for fixed Imν = 0. (a) τ = 3π/2, (b) τ = 2π. Other
parameters as in Fig. 7.5.

7.3.2. Control of in-phase synchronization

I have shown that for zero coupling phase (β = 0) stability of in-phase synchronization
strongly depends on the choice of the coupling parameters K and τ. To overcome this
dependence, the coupling phase can be used to achieve stability of synchronization in
the whole plane of parameters K and τ. Desynchronization, on the other hand, can as
well be stabilized independently of K and τ by choosing a different coupling phase. As
a result, switching between synchronization and desynchronization can be achieved by
tuning this coupling phase.

As we will see, a choice of β = Ωτ is the optimal value of the coupling phase to control
in-phase synchronization. Note that the equations (7.11) determining the collective
amplitude and frequency do depend on the choice of β . One can expect a different
picture than that shown in Figs. 7.3 and 7.4 obtained for β = 0. It is easily seen that
inserting β = Ωτ instead of β = 0 leaves the collective frequency unchanged because
of the asymmetry of the sine function. Using the symmetry of the cosine on the other
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Figure 7.7.: Master stability function for in-phase synchronization of Stuart-Landau oscil-
lators in the (Reν ,β) plane for fixed Imν = 0. Other parameters as in the respective
panels of Fig. 7.5.
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Figure 7.8.: (a) Collective frequency Ω and (b) squared amplitude r2
0 of in-phase oscilla-

tion vs. time delay τ for coupling strength K = 0.7 and phase β = Ωτ. Parameters:
λ= 0.1, ω= 1, γ= 0.

hand, shows that the squared collective amplitude r2
0 is mirrored around the value of

λ. This result is also shown in Fig. 7.8, which uses the same parameters as Fig. 7.4,
but a phase of β = Ωτ instead of β = 0. As a first result, this means that this choice of
the coupling phase does not show any unphysical solutions any more, i.e., no solutions
with r2

0 < 0.

Let me now investigate stability of these solutions. Inserting the value β = Ωτ into
Eq. (7.22), that equation factorizes and yields

¨

Λ = K(−1+ νke−Λτ)− 2r2
0 ,

Λ = K(−1+ νke−Λτ), (7.23)

For concerns of stability, only the largest Floquet exponent is of interest. As shown
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7.3. STABILITY OF IN-PHASE SYNCHRONIZATION

above, I find that r2
0 is always positive for this choice of the coupling phase. Thus the

largest Floquet exponents can be obtained from

Λ = K(−1+ νke−Λτ). (7.24)

In order to draw a general conclusion from Eq. (7.24), I will make use of a theorem by
Gerschgorin [1931]. The theorem reads as follows.

7.3.3. Gerschgorin’s circle theorem

Let A be a – potentially complex – N × N matrix with entries ai j . For every row i =
1, . . . , N , let

Ri =
∑

j 6=i

|ai j| (7.25)

be the sum of the absolute values of the non-diagonal entries in this ith row. Let
S(aii , Ri) be the circle centered at aii with radius Ri . I refer to such a circle as Ger-
schgorin circle.

Theorem: Every eigenvalue of the matrix A lies within at least one of the Gerschgorin
circles S(aii , Ri) (i = 1, . . . , N).

Application of Gerschgorin’s circle theorem to Eq. (7.24) allows the eigenvalues of any
network to be written as

νk = a0+ (1− a0)ρkeiθk , (7.26)

where a0 = 0 and ∈ [0, 1] for a network without and with self-feedback, respectively,
and ρk ∈ [0, 1], θk ∈ [0,2π). Self-feedback in this context means a constant diago-
nal element in each row of the matrix. For the network without self-feedback, Equa-
tion (7.24) becomes

Λ = K(−1+ρke−Λτ+iθk), (7.27)

while for networks with self-feedback I obtain

Λ = K[−1+ a0e−Λτ+ (1− a0)ρke−Λτ+iθk]. (7.28)

Following the method similar to [D’Huys et al., 2008], one can prove that solutions of
the above two equations remain always in the left half plane of the complex Λ plane:
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It is obvious that Re(Λ) ≤ 0 for zero delay (τ = 0). The growth rate of Λ depends con-
tinuously on the delay time τ. If a state loses stability, the value of τ must correspond
to a purely imaginary value Λ = iq with q ∈ R. Since the above expressions for Floquet
exponents do not admit such solutions, all of the real parts of Floquet exponents must
be negative for any τ. Self-feedback facilitates the stability of synchronization since
a0 > 0.

7.3.4. Control of desynchronization

In the same way that β = Ωτ enhances synchronization, I can show that a choice of
β = Ωτ+ π (mod 2π) always leads to either desynchronization or amplitude death,
i.e., no oscillations.

With this choice, the matrix R becomes −I2, which results again in a factorization of
Eq. (7.22). The Floquet exponents then follow

¨

Λ = K(1− νke−Λτ)− 2r2
0 ,

Λ = K(1− νke−Λτ), (7.29)

where k = 1, . . . , N . Note that, unlike the case of β = Ωτ, there might exist regions with
r2
0 < 0 for β = Ωτ+ π. Nevertheless, it is sufficient to consider the second equation

Λ = K(1− νke−Λτ), (7.30)

because one can show that all of the solutions of Eq. (7.30) lie in the right-half plane of
the complex Λ-plane. In fact, according to Gerschgorin’s theorem, Equation (7.30) can
be rewritten for the network without self-feedback as

Λ = K(1−ρke−Λτ+iθk) (7.31)

and now it is possible to prove that any solution of Eq. (7.31) has positive real part.
Having shown that all solutions of this second equation have positive real part, the lo-
cation of the solutions of the first equation in (7.29) cannot change stability. Adding
self-delayed feedback strengthens the desynchronization since a0 = 1. Note that the
term desynchronization here refers to any state that differs from the in-phase synchro-
nized dynamics. The exact realization of a desynchronized state depends on many
factors.

In Chapter 10 I will show that certain network topologies allow for an ordered structure
of non-in-phase states. These states are called cluster states. It will be seen that the
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Figure 7.9.: Distribution of the relative phases θ = ϕi − Θ around the order parame-
ter (7.32) for 200 slightly nonidentical elements with different standard deviations
σω of the frequencies ω for β = Ωτ. Dotted (black) curve: β = Ωτ+π (desynchro-
nization). Other coupling parameters τ= 0.52π, K = 0.08.

value of β = Ωτ is always able to desynchronize the in-phase synchronization, but will
eventually stabilize a two-cluster state in permitting topologies. More cluster states can
be stabilized choosing an appropriate value of the coupling phase.

7.4. Robustness against parameter mismatch

All analytic results obtained in this Chapter rely on identical oscillators and identical de-
lay times in the network. I ran simulations on a globally coupled network of N = 200 os-
cillators with slightly different frequenciesωi for each oscillator i = 1, . . . , N following a
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Gaussian distribution with mean ω and standard deviation σω. Figure 7.9 shows angu-
lar deviations from the Kuramoto order parameter [Kuramoto, 1984]

ReiΘ =
1

N

N
∑

k=1

eiϕk , (7.32)

where the phases ϕk of the oscillators are obtained using the relation exp(iϕk) =
zk/|zk|. Using the value of β = Ωτ, which is the optimal value of the coupling phase
to stabilize synchronization, the width of the angular distribution broadens with in-
creasing variance of the frequency distribution, but the mean value is still significantly
pronounced. Using the value of β = Ωτ+ π for desynchronization, there is no peak
left, i.e., no coherence is left in the network. The corresponding black line is obtained
regardless of the width of the frequency distribution.

7.5. Conclusion

Using the Stuart-Landau model for periodic dynamics on the nodes in a network, the
analysis of stability of synchronization reduces to analytic equations for the Floquet
exponents. In general, these equations can only be solved numerically due to the delay
influence. Notable results can, however, be obtained rigorously. The coupling phase is
identified as a crucial parameter influencing stability of synchronization. Deriving an
analytic condition, I show that stability of synchronization is achieved independently
of the coupling strength and the delay time for optimal values of the coupling phase.
Concerning possible applications, I have shown that the results are robust against noise
and parameter mismatch.

I will come back to networks of Stuart-Landau oscillators in Chapter 10, where I will
show that cluster and splay states can be treated in the same way for certain network
topologies. This will also allow the calculation of optimal values for the coupling phase
in order to stabilize a desired state of synchronization.
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Cluster and group synchronization
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8. Stability of cluster and group
synchronization

So far only stability of isochronous synchronization was considered. In general more
complicated synchronization patterns may be observed. Cluster synchronization will be
investigated in this Chapter [Dahms et al., 2011]. In a state of cluster synchronization,
certain clusters inside the network show isochronous synchronization, but not the entire
network. Group synchronization is a generalization of cluster synchronization where
the local dynamics can be different in each cluster.

Sorrentino and Ott [2007] have shown that it is possible to treat non-isochronous syn-
chronization with a master stability approach. In their work they considered two groups
of nodes governed by different local dynamics F(xi) and G(y j), where xi (respectively,
yi) describe the dynamics of the Nx (Ny) elements i = 1, . . . , Nx ( j = 1, . . . , Ny) of the
first (second) group.

After introducing the notion of cluster and group dynamics in Sec. 8.1, I derive the
master stability function in Sec. 8.2 and show the restrictions that arise on the topology
in Sec. 8.3. In Sections 8.4 and 8.5 I investigate the symmetries that group and clus-
ter synchronization implies on the spectrum of the coupling matrix and on the master
stability function, respectively. Finally, in Sections 8.6-8.9, I show exemplary results
obtained for networks of delay-coupled lasers.

8.1. The network dynamics

In a network consisting of N identical nodes, I refer to cluster synchronization as a state
where clusters of nodes exist that show isochronous synchronization internally, but syn-
chronization among these cluster is not existent or of non-isochronous type, e.g., there
may be a phase lag between clusters [Choe et al., 2010, 2011].

Group synchronization describes a similar state of synchrony, but the type of nodes
– determined by the local dynamics function – differs from cluster to cluster, which
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8. STABILITY OF CLUSTER AND GROUP SYNCHRONIZATION

I refer to as groups in this case. As the description of cluster synchronization is a
special case of group synchronization, I use the more general notion of groups in the
following.

Assume the number of groups to be M with k = 1, . . . , M numbering the individ-
ual groups. The dynamical variables of the nodes in each group are then given by
x(k)i ∈ Rdk with i = 1, . . . , Nk, where Nk denotes the number of nodes in the kth group.

The dimension dk of the x(k)i themselves is given by the particular node model, e.g.,
the complex Hopf normal-form oscillator (that will be used in Chapter 10), the two-
dimensional FitzHugh-Nagumo model [Lehnert et al., 2011], or the three-dimensional
Lang-Kobayashi equations that I use in this Chapter and that I already used in Part I of
the thesis.

In general the dimension of the nodes x(k)i may be different for each group k. Conse-

quently, also the local dynamics F(k)(x(k)i ) can be different for each group, but has to be
identical for all nodes i = 1, . . . , Nk in a given group k. For example, consider a network
of neurons, where one group contains inhibitory neurons and another group contains
excitatory ones. The local dynamics will be different for each group and depending
on the model used to describe both types of neurons, also the dimension of the nodes’
equations may be different.

Let σ(kn) be the coupling strength for the coupling from the nth to the kth group. In
the same sense, let A(kn) be an Nk × Nn coupling matrix, such that its entries {A(kn)

i j }
represent the coupling of system j (which is in the nth group) to system i (which is
in the kth group). Without loss of generality I assume the row sums of the coupling
matrices A(kn) to be only either one or zero:

(i) If there is no coupling from the nth group to the kth group, the coupling matrix
A(kn) is the zero matrix, hence its row sum is zero:

a(kn) :=
Nn
∑

j=1

A(kn)
i j = 0, i = 1, . . . , Nk. (8.1)

(ii) If there is coupling from group n to group k, then I assume the row of the corre-
sponding coupling matrix to be unity:

a(kn) =
Nn
∑

j=1

A(kn)
i j = 1, i = 1, . . . , Nk. (8.2)
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Note that (ii) is equivalent to the condition of a unity row sum deployed in Chapter 3
for complete isochronous synchronization. Any constant row sum can be rescaled here
to allow for coupling matrices with constant but non-unity row sum, as will be shown
in the following.

A certain coupling strength σ(kn) may also be scaled to compensate for a corresponding
coupling matrix A(kn) that has a row sum not equal to one [see Sorrentino and Ott,
2007, Sec. II]. As an example, let a(kn) =

∑Nn
j=1 A(kn)

i j be the constant row sum of the

coupling matrix A(kn). Then, to comply with Eq. (8.2), both A(kn) and σ(kn) can be
rescaled as A(kn) → (1/a(kn))A(kn) and σ(kn) → a(kn)σ(kn).

The coupling schemes H(kn) are introduced as in the standard master stability approach
(see Chapter 3). These coupling schemes are dk× dn-dimensional, given that dk and dn
are the dimensions of the kth and nth group, respectively.

Note that Sorrentino and Ott used – potentially nonlinear – coupling functions H(kn) :
Rdn → Rdk instead of matrices for H(kn). Since I consider only linear coupling functions
– which apply to the coupling scenarios used in all networks considered in this thesis –
the restriction to matrices is reasonable here.

Finally, I allow the coupling delays τ(kn) to be different for any pair (k, n) of groups
being connected. Applying the local dynamics and the coupling contributions, the dy-
namics of any single node in the network can be described by the differential equation

ẋ(k)i = F(k)[x(k)i (t)] +
M
∑

n=1

σ(kn)
Nn
∑

j=1

A(kn)
i j H(kn)x(n)j (t −τ(kn)). (8.3)

The synchronized manifold for group synchronization is given by

ẋ(k)s = F(k)[x(k)s (t)] +
M
∑

n=1

σ(kn)a(kn)H(kn)x(n)s (t −τ(kn)), (8.4)

which can easily be seen by inserting x(k)i = x(k)j into Eq. (8.3) (∀i, j = 1, . . . , Nk, k =
1, . . . , M).

Note that every group may exhibit different synchronous dynamics in this synchroniza-
tion manifold which has dimension

∑M
i=1 di . Even when the functions F(k), the coupling

schemes H(kn), and the coupling strengths σ(kn) are identical for every group and every
coupling, respectively, different initial conditions potentially lead to different dynamics;
this would correspond to the notion of cluster synchronization.
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8.2. Stability of the synchronous state for group
synchronization

In order to investigate stability of the synchronous state, a linearization around the
synchronization manifold x(k)s (k = 1, . . . , M) yields

δẋ(k)i = DF(k)|x(k)s
δx(k)i (t) +

M
∑

n=1

σ(kn)
Nn
∑

j=1

A(kn)
i j H(kn)δx(n)j (t −τ(kn)). (8.5)

The master stability function for isochronous synchronization shown in Chapter 3 uti-
lizes a transformation in the space of the network’s dimension. In this transformed
space there exist N vectors that still allow to represent all N linearly independent so-
lutions. The diagonalizability of the coupling matrix ensured that its eigensystem was
able to span this N -dimensional space.

The idea is very similar in the case of group synchronization. While it is not possible
to perform a straight-forward diagonalization, the idea is to find a transformation in
which the variational equations decouple in a way that they become independent of the
particular coupling matrices, but at the same time the transformation must yield a set
of vectors which span the same space of dimension

∑M
k=1 Nk.

Assume that for each group k = 1, . . . , M every of the Nk solutions of Eq. (8.5) can be
written in the form

δx(k)i = c(k)i δx̄(k), (8.6)

where {c(k)i } are appropriately chosen time-independent scalars. I show that the space
of the vectors formed from the possible combinations of the

c(1)i1
, . . . , c(M)iM

(i1 = 1, . . . , N1; . . . ; iM = 1, . . . , NM ) (8.7)

has dimension
∑M

k=1 Nk, which means that the form (8.6) yields all solutions of Eq. (8.5)
as linear combinations. Using the form (8.6), Equation (8.5) becomes

c(k)i δ
˙̄x(k) = c(k)i DF(k)|x(k)s

δx̄(k)(t)+
M
∑

n=1







Nn
∑

j=1

A(kn)
i j c(n)j






σ(kn)H(kn)δx̄(n)(t−τ(kn)). (8.8)

This equation has to be satisfied for each group k = 1, . . . , M and for each node i =
1, . . . , Nk therein. Given these conditions the following can be observed:
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(i) For a given k, no general conclusion can be drawn if the first sum
∑M

n=1 contains
more than one summand, i.e., more than one of the A(kn) (n = 1, . . . , M) is not
zero.

(ii) If the sum
∑M

n=1 contains exactly one element for a given k, i.e., exactly one of
the A(kn) (n= 1, . . . , M) is non-zero, the relation

1

c(k)i

Nn
∑

j=1

A(kn)
i j c(n)j = C (k) (8.9)

can be derived, which yields C (k) as a factor that is independent of i = 1, . . . , Nk.

This can be seen by dividing Eq. (8.8) by c(k)i :

δ˙̄x(k) = DF(k)|x(k)s
δx̄(k)(t)+

1

c(k)i

M
∑

n=1







Nn
∑

j=1

A(kn)
i j c(n)j






σ(kn)H(kn)δx̄(n)(t−τ(kn)).

(8.10)

Assuming that the kth group gets input from exactly one other group n the sum
over n vanishes and the coefficients in the coupling term can be substituted by
C (k):

δ˙̄x(k) = DF(k)|x(k)s
δx̄(k)(t)+

1

c(k)i

Nn
∑

j=1

A(kn)
i j c(n)j

︸ ︷︷ ︸

C (k)

σ(kn)H(kn)δx̄(n)(t−τ(kn)). (8.11)

I will elaborate on the restrictions this implies in Sec. 8.3. For a 2-cluster state,
for example, this would lead to a bipartite network.

(iii) If such a factor C (k) (see (ii)) can be derived for every k = 1, . . . , M , i.e., for every
row of the M ×M block matrix Q = [A(kn); k, n = 1, . . . , M] contains exactly one
non-zero block, Equation (8.8) can be written as

δ˙̄x(k) = DF(k)|x(k)s
δx̄(k)(t)+C (k)σ(kn)H(kn)δx̄(n)(t−τ(kn)), k = 1, . . . , M , (8.12)

where the relation (8.9) was used. Equivalently, by defining the vectors c(k) =
(c(k)1 , c(k)2 , . . . , c(k)Nk

) for every k = 1, . . . , M , the relations (8.9) (k = 1, . . . , M) can
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x(2)1x(1)2

x(2)2 x(1)1

τ(1)τ(2)
σ(2) σ(1)

Figure 8.1.: Bidirectionally coupled ring of 4 lasers in 2 groups, where the elements of
group (1) and (2) are colored in blue and green, respectively. σ(1) and σ(2) and τ(1)

and τ(2) denote the coupling strengths and the time delays for couplings from group
(2) to (1) and (1) to (2), respectively.

be written as

Q













c(1)

c(2)
...

c(M)













=













C (1)c(1)

C (2)c(2)
...

C (M)c(M)













. (8.13)

Note that the kth group receives input from exactly one group, which is desig-
nated by the index n in Eq. (8.12). This is unique, since there is only one A(kn) 6= 0
in the kth row of Q. In Sec. 8.3.1 I will show that any topology that falls under
this condition can be rearranged to a unidirectional ring structure of the cluster,
which will ease the notation greatly.

I now restrict myself to the case (iii), as this is the only case where stability of synchro-
nization can be investigated using a master stability function, as will be shown in the
following. Figure 8.1 shows a scheme of this topology for the case of two groups or
clusters. As an additional constraint, I consider only cases where the non-zero blocks in
the matrix Q may never lie on the diagonal of this very matrix.

Setting

C (1) = C (2) = . . .= C (M) = γ, (8.14)
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one special solution c(1)0 , . . . ,c(M)0 of Eq. (8.13) (and equivalently of Eq. (8.12)) is ob-
tained as

Q















c(1)0

c(2)0
...

c(M)0















=















γc(1)0

γc(2)0
...

γc(M)0















. (8.15)

It can be shown that by choosing M − 1 rescaling factors z1, . . . , zM−1, Equation (8.15)
yields all solutions of Eq. (8.13), hence Eq. (8.12) can be written as

δ˙̄x(k) = DF(k)|x(k)s
δx̄(k)(t) +σ(kn)γH(kn)δx̄(n)(t −τ(kn)), k = 1, . . . , M , (8.16)

where γ is chosen from the set of eigenvalues of the matrix Q. I will show this for an
example in the following Section. That example will be a generic one onto which other
cluster topologies can be mapped. I will also show counterexamples for matrices Q that
do not fulfill the condition (iii) above, i.e., matrices where no factor C (k) can be derived
independently of the individual nodes.

In conclusion, Equation (8.16) qualifies as a master stability equation for group and
cluster synchronization. Here, γ is chosen from the set of eigenvalues of the block
matrix Q = [A(kn); k, n = 1, . . . , M]. In Sec. 8.6 I will show examples for the laser
network. I will characterize the stability of cluster states in simple network motifs as
well as in more complex topologies.

8.3. Allowed topologies

Here, I will discuss the possible topologies that are covered by block matrices with only
one block in each row. First consider the example of two groups. A possible coupling
matrix reads

Q=

�

0 A(1)

A(2) 0

�

. (8.17)

Regardless of the particular entries of the matrices A(1) and A(2), this always describes
a bipartite network. In a bipartite network, two kinds of nodes exist and no links may
exist between the same kind of nodes. Going to a higher number of groups or cluster,
i.e., more blocks in the coupling matrix, this leads to tripartite, quadripartite, i.e., in
general multipartite networks.
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8.3.1. Groups coupled in a unidirectional ring structure

Assume a network with M groups and a matrix Q where the groups are coupled in a
unidirectional ring structure. For convenience in the following calculations, I change the
naming of the inter-group coupling matrices. For a unidirectional ring, only the lower
off-diagonal element blocks A(kn) = A(k,k−1) are nonzero. Thus I abbreviate A(k,k−1) by
A(k). The coupling matrix Q then reads

Q=

















0 0 · · · 0 A(1)

A(2) 0 0 · · · 0
0 A(3) 0 · · · 0

...
0 · · · 0 A(M) 0

















. (8.18)

The notation of the coupling strengths, coupling schemes, and delay times is changed
in a similar fashion; I abbreviate σ(k,k−1) by σ(k), H(k,k−1) by H(k), and τ(k,k−1) by
τ(k). Note that any of the matrices A(k) (k = 1, . . . , M) may have different dimensions
depending on the size of the groups.

Using this special form of Q, Equation (8.13) reads

















0 0 · · · 0 A(1)

A(2) 0 0 · · · 0
0 A(3) 0 · · · 0

...
0 · · · 0 A(M) 0





























c(1)

c(2)
...

c(M)













=













C (1)c(1)

C (2)c(2)
...

C (M)c(M)













(8.19)

and equivalently Eq. (8.15) becomes

















0 0 · · · 0 A(1)

A(2) 0 0 · · · 0
0 A(3) 0 · · · 0

...
0 · · · 0 A(M) 0































c(1)0

c(2)0
...

c(M)0















=















γc(1)0

γc(2)0
...

γc(M)0















, (8.20)

which is equivalent to

A(k)c(k−1)
0 = γc(k)0 , k = 1, . . . , M , (8.21)
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where k− 1 is k− 1 mod M , also in what follows. Introducing M − 1 rescaling factors
z1, . . . , zM−1, this can be rewritten as

A(k)zkc(k−1)
0 = γzkc(k)0 , k = 1, . . . , M − 1,

A(M)c(M−1)
0 = γc(M)0 . (8.22)

Note that this is equivalent to the even simpler form

A(k)zkc(k−1)
0 = γzkc(k)0 , k = 1, . . . , M , (8.23)

when introducing a fixed zM = 1, which I use in the following to simplify the notation.
Substituting c(k) = zk+1c(k)0 (k = 1, . . . , M), Eq. (8.23) becomes

A(k)c(k−1) = γ
zk

zk+1
c(k), k = 1, . . . , M . (8.24)

Setting

C (k) = γ
zk

zk+1
, k = 1, . . . , M , (8.25)

it is easily seen that Eq. (8.24) yields all possible solutions of Eq. (8.19) assuming that
z1, . . . , zM−1 are free parameters and zM = 1.

The particular choice of the z1, . . . , zM−1 is not important for the stability of synchro-
nization, as it only rescales the magnitude of the transformed vectors x̄(k). The master
stability function is calculated in terms of Lyapunov exponents, which measure the
growth or shrinkage relative to an initial magnitude and thus do not depend on the fac-
tors z1, . . . , zM−1. Therefore, setting δx̃(k) = zk+1δx̄(k) for k = 1, . . . , M into Eq. (8.12)
yields

δ˙̃x(k) = DF(k)|x(k)s
δx̃(k)(t) +σ(k)γH(k)δx̃(k−1)(t −τ(k)), k = 1, . . . , M . (8.26)

In conclusion, Equation (8.26) qualifies as a master stability equation for this network
topology.

8.3.2. The ring is generic

This unidirectional ring cluster structure is generic in the sense that any topology that
fulfills the conditions
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(i) Each row in the coupling matrix Q contains exactly one non-zero block,

(ii) Each column of the coupling matrix Q contains exactly one non-zero block,

(iii) None of the non-zero blocks lies on the diagonal of the coupling matrix Q,

can be transformed to a unidirectional ring structure by renumbering the clusters.

Condition (i) has to be fulfilled in order to treat synchronization with the master sta-
bility function. Violating this condition, one cannot arrive at a valid master stability
equation to calculate stability from. This can be seen by considering an example of
three groups coupled with a matrix Q like

Q=







0 A B
C 0 0
0 D 0






. (8.27)

Inserting this matrix into Eq. (8.8) yields for the first group

c(1)i δ
˙̄x(1) = c(1)i DF(1)|x(1)s

δx̄(1)(t)

+







N2
∑

j=1

Ai jc
(2)
i






σ(1,2)H(1,2)δx̄(2)(t −τ(1,2))

+







N3
∑

j=1

Bi jc
(3)
i






σ(1,3)H(1,3)δx̄(3)(t −τ(1,3)). (8.28)

From here, it can easily be seen that no relation similar to Eq. (8.9) can be derived, since
the two summands arising due to the coupling cannot be reduced into one.

Condition (ii) means that one group cannot be the input of more than one other group.
This is indeed a restriction and not necessary for the master stability function for group
synchronization to work. I will show an example where this condition is not met in
Sec. 8.3.3.

Condition (iii) is trivial when condition (ii) is already met. As condition (i) has to
be fulfilled at the same time, a non-zero block on the diagonal of Q means that the
corresponding cluster is totally uncoupled from the rest of the network, since it is
coupled only to itself. Thus it can be separated from that rest and separate master
stability functions have to be obtained. If, on the other hand, condition (ii) is not ful-
filled, condition (iii) is indeed a restriction of the possible matrices similar to condition
(ii).

154



8.3. ALLOWED TOPOLOGIES

8.3.3. Two groups having the same input

Consider an example of three groups:

Q=







0 A 0
B 0 0
0 C 0






. (8.29)

Using this in Eq. (8.13) yields






0 A 0
B 0 0
0 C 0













c(1)

c(2)

c(3)






=







C (1)c(1)

C (2)c(2)

C (3)c(3)






, (8.30)

and equivalently for Eq. (8.15):







0 A 0
B 0 0
0 C 0















c(1)0

c(2)0

c(3)0









=









γc(1)0

γc(2)0

γc(3)0









. (8.31)

Introducing two rescaling factors z1 and z2 this can be rewritten as







0 A 0
B 0 0
0 C 0















z2c(1)0

z1c(2)0

c(3)0









=











γ
z1

z2
c(1)0

γ
z2

z1
c(2)0

γz1c(3)0











. (8.32)

Using c(1) = z2c(1)0 , c(2) = z1c(2)0 , c(3) = c(3)0 , C (1) = γz1/z2, C (2) = γz2/z1, C (3) = γz1
it can easily be seen that all solutions of Eq. (8.30) can be found with a proper choice
of the parameters z1 and z2. Additionally, using the substitutions δx̃(1) = z2δx̄(1) and
δx̃(2) = z1δx̄(2), it can be seen that Eq. (8.16) is satisfied for this particular choice of
Q with δx̃(1), δx̃(2), and δx̄(3). In conclusion, Eq. (8.16) qualifies as a master stability
equation for this network topology.

In conclusion, the three conditions from Sec. 8.3.2 cover a wide range of possible
topologies, with exceptions as shown here exemplarily. Nonetheless, the structures that
are covered by those condition are general enough to investigate the properties of the
corresponding coupling matrices. As I will show, the eigenvalue spectrum has a char-
acteristic symmetry that is also present in the underlying master stability function. As
a result, the extent of γ’s parameter space in which Λ(γ) has to be calculated becomes
restricted which lowers the numerical costs.
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8.4. The spectrum of the coupling matrix

In this Section, I investigate the spectrum of the coupling matrix Q = [qk,n; k, n =
1, . . . , M] with qk,k−1 = A(k) and zeros otherwise. Q has at least n0 eigenvalues zero,
where

n0 =
∑

k

|Nk − Nk−1| (8.33)

arises solely due to the block structure of Q: If all A(k) have maximum rank equal to
min(Nk, Nk−1), there are exactly these n0 zeros. In general, the exact number of zeros
is given by

∑

k

�

Nk − rankA(k)
�

, which may be larger than n0 due to the particular
structure of the matrices A(k).

Consider the matrix QM , which is of block diagonal structure

(QM )kk = A(k)A(k−1) · · ·A(1)A(M)A(M−1) · · ·A(k+1) (8.34)

and zeros otherwise. Note that each block is a product of all A(k), only the order dif-
fers.

Assume that the groups are arranged such that N1 ≤ N j ( j = 2, . . . , M), which can
always be achieved by an index shift, and that every A(k) has maximum rank equal to
min(Nk, Nk−1)1. Then of the blocks in QM , (QM )11 has lowest rank, since it is an N1×N1
matrix. The non-zero eigenvalues of a matrix product are invariant against exchange
of the factors, their number (including degeneracy) equals the rank of the product with
lowest rank, i.e., (QM )11 in our case. See Appendix A for the details regarding this
invariance. As a consequence, the non-zero eigenvalues of QM are given by the non-
zero eigenvalues of (QM )11; {λ1, . . . ,λN1

}. As there are M blocks yielding these very
eigenvalues, each of them is M -fold degenerate. In particular, since the row sum of QM

is unity, there is an M -fold unity eigenvalue.

The non-zero eigenvalues of Q are then given by the M th roots of the non-zero eigenval-
ues of QM , and the whole spectrum Γ = {γ j} j=1,...,

∑

Nk
of Q reads

Γ = {0, . . . , 0
︸ ︷︷ ︸

n0

} ∪
M
⋃

k=1

{ M
p

|λ1|e[arg(λ1)+2πk]i/M , . . . (8.35)

. . . , M
p

|λM |e[arg(λM )+2πk]i/M}.
1The latter assumption simplifies the argument regarding the zero eigenvalues, but the final result is valid

for arbitrary ranks of the block matrices
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Note, in particular, that the unity eigenvalue λ= 1 of QM corresponds to the M longitu-
dinal eigenvalues γk = exp(2πik/M) of Q, which are related to directions longitudinal
to the group synchronization manifold. Their existence can already be seen solely by
looking at Q itself, because the eigenvectors

vk =













































exp(−2πik/M)
...

exp(−2πik/M)







N1

exp(−4πik/M)
...

exp(−4πik/M)







N2

...

exp(−2πik)
...

exp(−2πik)







NM













































, (8.36)

that correspond to the longitudinal eigenvalues γk = exp(2πik/M), do not depend on
the inner structure of the blocks A(k).

Let me assume that the master stability function is invariant with respect to rotations
γ→ exp(2πi/M)γ, which I will show in the next Section, see Fig. 8.2. Also note that
each of the multiple roots of λ1, . . . ,λM is obtained as a rotation by multiples of 2π/M
with respect to the roots { M

p

|λ1|exp[i arg(λ1)/M], . . . , M
p

|λM |exp[i arg(λM )/M]}. As
a consequence, we can restrict ourselves to evaluating the master stability function at
the location of the eigenvalues

{ M
p

|λ1|exp[i arg(λ1)/M], . . . (8.37)

. . . , M
p

|λM |exp[i arg(λM )/M], 0},

which lie all inside the sector arg(γ) ∈ [0, 2π/M). Note that the zero eigenvalue is only
added here if n0 > 0, i.e., if at least one block A(k) differs from the others in size. The
location of the longitudinal eigenvalues, which are the M th roots of unity, are shown as
stars in Fig. 8.2, which illustrates this symmetry.

157



8. STABILITY OF CLUSTER AND GROUP SYNCHRONIZATION

8.5. The symmetry of the master stability function

Looking closely at the master stability equation (8.26), one can observe another symme-
try. The equation is invariant with respect to the transformation δx̃(k)→ exp(2kπi/M)δx̃(k):

e
2kπi

M δ˙̃x(k) = DF(k)(x(k)s )e
2kπi

M δx̃(k)

+σ(k)γH(k)e
2(k−1)πi

M δx̃(k−1)(t −τ(k)) (8.38)

⇔ δ˙̃x(k) = DF(k)(x(k)s )δx̃(k)

+σ(k)γH(k)e
−2πi

M δx̃(k−1)(t −τ(k)) (8.39)

With the transformation γ→ exp(−2πi/M)γ the original equation is regained, meaning
that the master stability equation is invariant with respect to rotations of 2π/M .

Combining both results – the master stability function and the spectrum of Q are invari-
ant against rotations of 2π/M – I conclude that it is sufficient to evaluate the master
stability function in a sector given by arg(γ) ∈ [0,2π/M). Let me stress that this sym-
metry holds even when considering nonidentical groups. This includes nonidentical
local dynamics but also nonidentical coupling parameters – strength and delay time –
between the clusters.

In the following, I demonstrate this symmetry and calculate the master stability func-
tion in terms of the largest Lyapunov exponent for the example of delay-coupled laser
networks.

8.6. Cluster synchronization in laser networks

The results obtained here will be restricted to cluster synchronization where I use iden-
tical local dynamics F(k)(x(k)) = F(x(k)) for each cluster k = 1, . . . , M . Also the coupling
schemes will be identical for each coupling:

H(k) = H=







0 0 0
0 1 0
0 0 1






. (8.40)

I will, however, allow for different coupling strengths σ(k) between the clusters (see
Sec. 8.8), where σ(k) denotes the coupling strength for the coupling from the (k− 1)th
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Figure 8.2.: Master stability function in terms of the largest Lyapunov exponent Λ from
Eq. (8.26) for M = 1, 2, 3, and 4 groups of delay-coupled lasers (2.17) in panels
(a,e), (b,f), (c,g), and (d,h), respectively. Black stars mark the position of longitudinal
eigenvalues. (a-d): τ(k) = τ = 1, (e-h): τ(k) = τ = 1000. σ(k) = σ = 0.12. Other
parameters chosen in the LFF regime according to Tab. 2.2.
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to the kth group. The cluster synchronization manifold and thus the master stability
equation (8.26) are 3M -dimensional.

Figure 8.2 shows the master stability function for one, two, three, and four clusters
in panel (a), (b), (c), and (d), respectively. The parameters are chosen in the regime
of low-frequency fluctuations (LFF, see Tab. 2.2). Also the coupling strengths are kept
identical in this example: σ(k) = σ = 0.12. The black stars mark the position of the
longitudinal eigenvalues of Q; γk = exp(2πik/M). There is a symmetry in the master
stability function with respect to rotations of 2π/M observable in Fig. 8.2. This sym-
metry is a result of the invariance of the master stability equation (8.26) discussed in
Sec. 8.5.

For large delay, as shown in the right part of the Figure, the master stability function
has a circular shape for one group (panel (e)). This is a universal feature of networks
where the coupling delay is large compared to the time scale of the local dynamics,
as discussed in Chapter 3; see also the publication by Flunkert et al. [2010]. Due
to the rotational symmetry discussed before, the circular shape cannot change when
increasing the number of groups, hence the shape of the master stability function is
independent of the number of groups when large delay is present in the network (see
Fig. 8.2(f-h)), but one can observe that the disc of stability is shrinking with increasing
number of clusters.

8.7. The relation of the number of clusters and the delay time

This shrinking of the master stability function with increasing number of clusters can
be explained as follows: The dimension of the synchronization manifold (8.4) is pro-
portional to the number of groups. Since the blocks of the matrix Q are arranged in a
unidirectional ring, the dynamics inside the synchronization manifold takes place inside
such a unidirectional ring. Hence, the time that it takes for a signal to travel through
this ring scales linearly with the number of groups M .

This signal traveling-time can be seen as an effective time delay governing the degree
of chaos, i.e., the longitudinal Lyapunov exponent. As I have discussed in Chapter 3,
a larger longitudinal Lyapunov exponent due to a longer delay time yields a smaller
radius of the stable region [Flunkert et al., 2010].

Against the background of the results obtained for the master stability function, I will
discuss several example topologies in the following. I will start with one of the simplest
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motifs that allows for a 2-cluster state and will then also cover more complex network
topologies.

8.8. Application: two-cluster states in laser networks

As a first example I will consider a network of 4 lasers in a bidirectionally coupled ring,
where each two opposite lasers belong to the same group, which lets the network have
two groups. Figure 8.1 depicts the scenario schematically.

In the notation derived above, a bidirectionally coupled ring of two groups yields the
block matrix Q= {A(k)} denoting the inter-group connections as

Q=

�

0 A(1)

A(2) 0

�

. (8.41)

The dynamics of the network follows Eq. (8.3), where here the number of groups is
M = 2 and the number of elements in groups is N1 = N2 = 2:

ẋ(1)i = F[x(1)i (t)] +σ
(1)

2
∑

j=1

A(1)i j H(1)x(2)j (t −τ(1)),

ẋ(2)i = F[x(2)i (t)] +σ
(2)

2
∑

j=1

A(2)i j H(2)x(1)j (t −τ(2)). (8.42)

The synchronization manifold is given according to Eq. (8.4):

ẋ(1)s = F[x(1)s (t)] +σ
(1)H(1)x(2)s (t −τ(1)),

ẋ(2)s = F[x(2)s (t)] +σ
(2)H(2)x(1)s (t −τ(2)) (8.43)

using Eq. (8.41). Following Eq. (8.16) the master stability equation reads

δ˙̄x(1) = DF(1)|x(1)s
δx̄(1)(t) +σ(1)γH(1)δx̄(2)(t −τ(1)),

δ˙̄x(2) = DF(2)|x(2)s
δx̄(2)(t) +σ(2)γH(2)δx̄(1)(t −τ(2)). (8.44)
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8.8.1. Stability of the 2-cluster state

As I have already shown in Chapter 4, isochronous synchronization is unstable for bidi-
rectionally coupled rings of any size. Therefore, no isochronous synchronization will
take place within the synchronization manifold described by Eq. (8.43). I will now
show under which circumstances the 2-cluster state described by Eqs. (8.43) is stable.
Note that the parameter space is four-dimensional, as one can vary the time delays τ(1)

and τ(2) as well as the coupling strengths σ(1) and σ(2).

For the coupling from group 2 to group 1 I will, however, keep the coupling strengths
and the time delays fixed at the values formerly used for the investigations of the
isochronous synchronization manifold. As the coupling strength was σ = 0.12 and
the delay time τ = 1000, this yields τ(2) = 1000 and σ(2) = 0.12. Still the parameter
space for the master stability function includes the delay and coupling strength in the
other direction:

Λ = Λ(γ,σ(1),τ(1)) (8.45)

The eigenvalues γk are calculated from the matrix

Q=
1

2











0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0











, (8.46)

which has unity row sum and does not include any information about the nonidentical-
ity of the parameters for each coupling directions. Its eigenvalues are given by

γ1 = 1,

γ2 = −1,

γ3 = 0,

γ4 = 0 (8.47)

with the corresponding eigenvectors

v1 =











1
1
1
1











, v2 =











−1
−1
1
1











, v3 =











0
0
−1
1











, v4 =











−1
1
0
0











. (8.48)
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Figure 8.3.: Master stability function evaluated at γ= 0, which corresponds to stability of
cluster synchronization in the bidirectionally coupled ring with N = 4, in dependence
of the coupling strength σ(1) and coupling delay τ(1). Other parameters are chosen in
the LFF regime according to Tab. 2.2.

Remember that the theory employed here only considers the stability of synchronization
inside each group but not between the group. It can be seen that the eigenvalues γ1
and γ2 correspond to directions inside this generalized synchronization manifold since
the first two and the last two entries in the corresponding eigenvectors v1 and v2 are
not linearly independent. This is a special case of the general properties derived in
Sec. 8.4.

As a consequence only the two-fold degenerate eigenvalue γ3 = γ4 = 0 describes the
dynamics transversal to synchronization manifold. This allows the master stability
function to be exhaustive when evaluated only at γ = 0. Figure 8.3 shows the mas-
ter stability function at γ = 0 in terms of the largest Lyapunov exponent λ in depen-
dence on the coupling strength σ(1) and the delay time τ(1) for fixed σ(2) = 0.12 and
τ(2) = 1000 corresponding to the regime of low-frequency fluctuations (LFF) according
to Tab. 2.2.
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Figure 8.4.: Cross correlations in a bidirectionally coupled ring of 4 nodes in dependence
on the coupling strength σ(1) for fixed τ(1) = 1000. Blue: correlation in cluster
(1), green: correlation in cluster (2), red: correlation of the whole network. Other
parameters are chosen in the LFF regime according to Tab. 2.2.

It can be seen that the difference in time delay does not yield any significant effects. This
will be further investigated using the time series of simulations further below. Varying
the coupling strength σ(1), there is a critical value for which synchronization becomes
unstable. By running direct simulations of this very bidirectional ring, the predictions
of the master stability function are matched. In Fig. 8.4 I show the cross correlations in
the network in dependence on the parameter σ(1) for fixed τ(1) = 1000 and the other
parameters as before. The red curve depicts the mean correlations of the intensities
in the entire network, while the blue and green curves show the mean correlation in
cluster (1) and cluster (2), respectively. Again, it can be seen that the coupling strength
σ(1), shows a threshold, below which the cluster state becomes unstable as the corre-
lation inside cluster (2) gets lost. The dynamical scenario that emerges when changing
the coupling strength in one group below this threshold is depicted schematically in
Fig. 8.5. Note that in Fig. 8.4 it can be observed that the correlation increases for very
small values of σ(1). One may get the impression that synchronization if enhanced
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x(2)1x(1)2

x(2)2 x(1)1

σ(2) σ(1)

τ(1)τ(2)

Figure 8.5.: Scheme of the partial synchronization that arises in the bidirectional ring of
4 lasers for low correlation inside group (1) according to Fig. 8.4. Elements of group
(1) are colored in blue and red, elements of group (2) are green. σ(1) and σ(2) and
τ(1) and τ(2) denote the coupling strengths and the time delays for couplings from
group (2) to (1) and (1) to (2), respectively.

again, but this is only due to cluster (2) going to fixed point dynamics for very small
σ(1).

8.9. Bipartite random networks

While the previous Section focused on the effects of the coupling parameters in a fixed
example topology, the influence of the topology itself will be looked at here. The
simplest example of a complex network that can show cluster synchronization and be
treated with the master stability approach derived in this Chapter is a bipartite random
network. This follows from the results of Chapter 5, where I have shown that there is a
threshold in the link probability at which a phase transition from desynchronization to
synchronization takes place.

The coupling matrix of a bipartite random network that is treatable with the master
stability function derived in this Chapter is constructed as

Q=

�

0 A(1)

A(2) 0

�

, (8.49)
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Figure 8.6.: Master stability function in terms of largest Lyapunov exponent Λ from
Eq. (8.26) for M = 2 groups of delay-coupled lasers (2.17). Parameters: τ(k) =
τ = 1000, σ(k) = σ = 0.12, T = 200, p = 1, α = 4, according to the CC regime
in Tab. 2.2. Blue dots indicate the location of the eigenvalues of a directed bipartite
random graph of N = 30 nodes with link probability p = 0.4, red dots show the
longitudinal values γ=±1.

where A(1) and A(2) are directed Erdős-Rényi random graphs of the size N
2
× N

2
that

are renormalized to unity row sum. The master stability function would also work for
different sizes of both clusters, but I focus on the influence of the link probability p here
and consider only equally sized clusters.

Figure 8.6 shows the eigenvalues of the matrix (8.49) for a link probability p = 0.4
for N = 30 lasers, i.e., 15 nodes in each cluster, against the master stability function
in the coherence-collapse regime (CC, see Tab. 2.2) as before. It can be seen that this
network does not show stable two-cluster synchronization. As with the isochronous
synchronization, the eigenspectrum is distributed around zero, where the radius of this
distribution increases when lowering the link probability p. Again, there is a phase
transition to desynchronization for small p.
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Figure 8.7.: Mean cross correlations in a bipartite random network of N = 30 lasers in
dependence on the link probability p. Blue: correlation inside the clusters, green:
correlation in the whole network. Parameters are chosen in the CC regime according
to Tab. 2.2.

This behavior is illustrated in Fig. 8.7, which shows the average correlations in the
bipartite random network of 30 lasers in dependence on the parameter p for the CC
regime. The blue and green lines correspond to the average correlation inside the
clusters and in the whole network, respectively. While the overall correlation is low
for any value of p, the phase transition can be seen in the correlation for the clus-
ters, which decreases at lower values of p. I chose the CC regime here as an example.
In the LFF regime, synchronization will be stable for any value of p above the per-
colation threshold, as I have already shown for isochronous synchronization in Chap-
ter 5.
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8.10. Conclusion

In this Chapter, I introduced a technique to characterize cluster and group synchroniza-
tion using an extension of the master stability function. The formalism is restricted
to a class of coupling matrices that have a block structure with one block in each row
of the coupling matrix, i.e., multipartite networks. While several matrices have this
form or can be transformed to this form, the following Chapter partially overcomes this
limitation by using multiple coupling matrices.

Using the example of the bidirectional ring I have shown how the master stability frame-
work can be used to predict thresholds in the coupling strength, below which cluster
synchronization breaks down. To illustrate the dependence on topology, I used a bipar-
tite Erdős-Rényi random graph, where the results from Chapter 5 could be generalized
to cluster synchronization.
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9. Beyond the one-block restriction

In Chapter 8 I developed a master stability formalism to determine the stability of
group and cluster synchronization. In order to utilize the master stability framework,
one major restriction came up: Each group has to get input from one and only one
other group. More complex topologies beyond multipartite structures like, for in-
stance, lattices as described by Kestler et al. [2007, 2008] could not be dealt with.
There sublattice synchronization as a special form of cluster synchronization was con-
sidered.

Following the spirit of Chapter 6, where I have shown that stability of isochronous
synchronization in a network with multiple coupling matrices can be determined by
a master stability function if these multiple coupling matrices commute pairwise with
each other, I will develop this idea further and transfer it to the scope of group and
cluster synchronization in this Chapter.

I will derive the master stability equation for group synchronization with multiple cou-
pling matrices. Some restrictions – although not as tight as before – arise, which I will
explain in detail.

9.1. The master stability function

The network dynamics for group synchronization with one coupling matrix could be
written in the form (8.3), and the synchronization manifold and the master stability
equation were given by Eqs. (8.4) and (8.16), respectively.

Generalizing this to two coupling matrices yields for the network dynamics of M clus-
ters:

ẋ(k)i = F(k)[x(k)i (t)] + (9.1)

M
∑

n=1






σ
(kn)
1

Nn
∑

j=1

A(kn)
i j H(kn)x(n)j (t −τ(kn)) +σ(kn)

2

Nn
∑

j=1

B(kn)
i j H(kn)x(n)j (t −τ(kn))






.
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For the sake of simplicity and readability, I use identical coupling schemes and identical
time delays for both coupling terms. Similarly to Chapter 6, the sum of σ(kn)

1 and σ(kn)
2

must yield the overall coupling strength σ(kn) from Chapter 8 in order to arrive at the
same dynamical regime: σ(kn)

1 +σ(kn)
2 = σ(kn).

From the above, the synchronization manifold is obtained as

ẋ(k)s = F(k)[x(k)s (t)]+σ
(kn)
1

M
∑

n=1

a(kn)H(kn)x(n)s (t−τ(kn))+σ(kn)
2

M
∑

n=1

b(kn)H(kn)x(n)s (t−τ(kn))

(9.2)

for k = 1, . . . , M , where a(kn) and b(kn) denote the row sums of the matrices A(kn) and
B(kn). As in Chapter 8, for a given k, only one of the A(kn) can be non-zero. This
one non-zero matrix is assumed to have a unity row sum as before. The same holds
for B(kn), which is part of a second block matrix. Effectively, each of the sums in the
above equation simplifies to one summand. The index n can be different for both
contributions, though.

Finally, the master stability equation becomes

δ˙̄x(k) = DF(k)|x(k)s
δx̄(k)(t)+σ(kn)

1 γ(1)H(kn)δx̄(n)(t−τ(kn))+σ(km)
2 γ(2)H(km)δx̄(m)(t−τ(km)),

(9.3)

for k = 1, . . . , M , where the indices n and m denote the location of the non-zero block in
the matrices Q1 and Q2, respectively. Q1 and Q2 are the matrices containing the blocks
A(kn) and B(kn), respectively, following the notation of Sec. 8.2.

This is a very heavy-weight notation in the case of an arbitrary number of clusters
M and arbitrary location of the non-zero blocks in both matrices Q1 and Q2. For a
specific application, however, this notation simplifies greatly. I will show examples in
the following.

9.2. A minimal example for groups

Let me first consider the most simple example, namely only two groups. Synchroniza-
tion in two groups has already been studied by Sorrentino and Ott [2007] when using
a single coupling matrix of the form

Q1 =

�

0 A(1)

A(2) 0

�

, (9.4)
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where the matrices A(1) and A(2) describe the coupling from the second to the first group
and vice versa, respectively.

A generalization to more than two groups was given in Chapter 8, with the restriction
that each row in the coupling matrix Q had to have exactly one block, i.e., each group
had to get input from exactly one other group. In the case of two groups, I will now elab-
orate what happens when introducing a second coupling matrix

Q2 =

�

B(1) 0
0 B(2)

�

. (9.5)

Both matrices have unity row sum and the dynamical equations of the network (cf.
Eq. (9.1)) read

ẋ(1)i = F[x(1)i (t)] +σ
(1)
1

N2
∑

j=1

A(1)i j Hx(2)j (t −τ) +σ(1)2

N1
∑

j=1

B(1)i j Hx(1)j (t −τ),

ẋ(2)i = F[x(2)i (t)] +σ
(2)
1

N1
∑

j=1

A(2)i j Hx(1)j (t −τ) +σ(2)2

N2
∑

j=1

B(2)i j Hx(2)j (t −τ).

Note that here I chose to use only one time delay τ for simplicity. For the same reason,
the local dynamics F and the coupling scheme H are identical for both groups in this
example. The synchronization manifold is given as

ẋ(1)s = F[x(1)s (t)] +σ
(1)
1 Hx(2)s (t −τ) +σ(1)2 Hx(1)s (t −τ),

ẋ(2)s = F[x(2)s (t)] +σ
(2)
1 Hx(1)s (t −τ) +σ(2)2 Hx(2)s (t −τ), (9.6)

from which these master stability equations arise as variational equations:

δ˙̄x(1) = DF|x(1)s
δx̄(1)(t) +σ(1)1 γ

(1)Hδx̄(2)(t −τ) +σ(1)2 γ
(2)Hδx̄(1)(t −τ),

δ˙̄x(2) = DF|x(2)s
δx̄(2)(t) +σ(2)1 γ

(1)Hδx̄(1)(t −τ) +σ(2)2 γ
(2)Hδx̄(2)(t −τ). (9.7)

Figure 9.1 shows the master stability function for the structure given by these matrices
Q1 and Q2 and for laser parameters in the regime of low-frequency fluctuations (LFF,
see Tab. 2.2). The eigenvalue pairs depicted by the blue dots correspond to a particular
topology that will be discussed in the following Section.
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Figure 9.1.: Master stability function for two coupling matrices using the structures Q1

as in Eq. (9.4) and Q2 as in Eq. (9.5) with coupling strengths σ(1)1 = σ(1)2 = σ(2)1 =
σ
(2)
2 = σ/2. Parameters chosen in the LFF regime according to Tab. 2.2. The pairs
(Reγ(1), Reγ(2)) plotted as blue dots correspond to eigenvalues of the matrices (9.4)
and (9.5) using Eq. (9.11), i.e., an all-to-all network.

In order for the master stability function to yield valid results for a given topology, the
matrices Q1 and Q2 have to commute. Using the forms (9.4) and (9.5), the relation
[Q1,Q2] = 0 is equivalent to

¨

A(1)B(2) = B(1)A(1)

A(2)B(1) = B(2)A(2).
(9.8)

These conditions are fulfilled for certain classes of matrices only. Deriving a more spe-
cific condition for the A(1), A(2), B(1), and B(2) is not possible, because Eq. (9.8) is not
only a condition for matrices to commute, but the mixed products introduce tighter
conditions. I will show examples in the following that use matrices which fulfill these
conditions.
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9.2.1. Cluster states in an all-to-all network?

Looking at Eqs. (9.4) and (9.5), the most simple example that can be considered is an
all-to-all – or globally coupled – network. Such a network including self-couplings has
the renormalized coupling matrix

G=
1

N













1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1













(9.9)

The question may arise whether cluster states may exist and be stable in this network. I
have shown that such a topology shows stable isochronous synchronization with Lang-
Kobayashi laser nodes in Chapter 4. If a cluster state exists, this would mean multista-
bility between these states.

The existence of a two-cluster state can be investigated using the matrices Q1 and Q2
according to Eqs. (9.4) and (9.5), respectively, with

G=
1

2

�

Q1+Q2
�

, (9.10)

where each of the matrices Q1 and Q2 has unity row sum, and coupling strengths σ(1)1 =
σ
(1)
2 = σ(2)1 = σ(2)2 = σ/2. Splitting G without additional renormalization of the row

sums can then only be achieved by splitting into two clusters of the same size N/2. An
even number of nodes N is thus a necessary condition. The matrices A1, A2, B1, and B2
in Eqs. (9.4) and (9.5) then all are identical N/2×N/2 matrices:

A(1) = A(2) = B(1) = B(2) =
2

N













1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1













(9.11)

Matrices Q1 and Q2 have unity row sum and do commute in this case, since the rela-
tions (9.8) hold trivially for identical matrices. The eigenvalue pairs (γ(1),γ(2)) in this
example are obtained using a straight calculation of the eigenvectors corresponding
to the eigenvalues. Note that for general and especially for non-circulant matrices, a
joint diagonalization algorithm, for instance by Cardoso and Souloumiac [1996], can be
used. The results are plotted in Fig. 9.1 for N = 30. There are two pairs of eigenvalues
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corresponding to dynamics longitudinal to the synchronization manifold: (γ(1),γ(2)) =
(1,1) and (−1,1). The other N − 2 pairs are degenerate at (0,0).

The Figure suggests that a two-cluster state should indeed exist in an all-to-all network.
Given that the isochronous synchronization is also stable in this model (cf. Sec. 4.5.3),
this would indicate multistability between these states. Keeping in mind that in an
all-to-all network the coupling matrix is invariant against permutations of any two
nodes, the degree of multistability would be even higher, as different realizations of
the two-cluster state select different nodes being a member of one or the other clus-
ter.

We will see in the following that the 2-cluster state exists only “formally” and the dy-
namics in this state are identical to a state of isochronous synchronization.

9.2.2. A sufficient condition for the existence of a cluster state

The synchronous dynamics in the 2-cluster state is governed by Eq. (9.6). This equation
for the synchronized dynamics in cluster (1) and cluster (2) can as well be seen as gov-
erning the dynamics of two nodes x(1)s and x(2)s with a coupling matrix

Ĝ=

�

σ
(1)
2 σ

(1)
1

σ
(2)
1 σ

(2)
2

�

. (9.12)

In the all-to-all network I usedσ(1)1 = σ
(1)
2 = σ

(2)
1 = σ

(2)
2 = σ/2, which yields

Ĝ=
σ

2

�

1 1
1 1

�

. (9.13)

This now is again just the coupling matrix of an all-to-all network with feedback and
unity row sum. I have shown in Sec. 4.5.3 that isochronous synchronization is always
stable in such a network for the Lang-Kobayashi model. Translating this back to the
synchronous dynamics in the two cluster considered here, both clusters will synchro-
nize and the whole network will end up in a state of isochronous synchronization. In
other words, the master stability function that is calculated from Eq. (9.7) determines
the stability of a two-cluster state with identical dynamics in both clusters in this case.
In conclusion, there is no two-cluster state – in its real sense – in the all-to-all net-
work.

Using Eq. (9.12), it is possible to formulate a condition that determines in what kind of
cluster topologies the existence of a “real” two-cluster state – stable or not – is possible:
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The dynamics of the synchronized solution is governed by the coupling strengths σ(1)1 ,

σ
(1)
2 , σ(2)1 , and σ(2)2 . Thus, Equation (9.12) describes the synchronous dynamics. With

the all-to-all to all example it is easily seen that using identical coupling strengths in
Eq. (9.12), this resembles Eq. (9.13). Separating the coupling strength from Eq. (9.12),
i.e., using unity row sum in Ĝ and using the relationsσ(1)1 +σ

(1)
2 = σ andσ(2)1 +σ

(2)
2 = σ,

Equation (9.12) corresponds to motif no. 5 from Tab. 4.1 in Chapter 4. The existence
of a two-cluster state is thus equivalent to the instability of that motif, which has been
covered in Sec. 4.2.1 in detail.

In general, if the coupling matrix (9.12) yields unstable isochronous synchronization, a
two-cluster state does exist in the network built by Q1 and Q2. In the laser model, the
stability of the isochronous synchronization generally forbids the existence of any other
state, thus the other direction is also valid: If the coupling matrix (9.12) yields stable
isochronous synchronization, a two-cluster state does not exist in the network built by
Q1 and Q2. In general, several states may coexist, and thus only the former formulation
is valid.

Using equal coupling strengths for each cluster, i.e., σ(1)1 = σ
(2)
1 and σ(1)2 = σ

(2)
2

and the condition that both coupling strength have to sum up to the overall cou-
pling strength σ, it is possible to compare Eq. (9.12) to Eq. (4.1) and use the results
from Sec. 4.2.1. Then, instability of the isochronous synchronization is obtained if ei-
ther

σ
(1)
1 /σ = σ

(2)
1 /σ > 0.825 or

σ
(1)
1 /σ = σ

(2)
1 /σ < 0.175 (9.14)

is fulfilled and only in this case a 2-cluster can exist as a solution of the dynam-
ics.

Note that this consideration does only determine the existence of a two-cluster state.
Stability is then to be investigated using the master stability function on the whole net-
work including the matrices Q1 and Q2. In the following Section, I will use an example
that exhibits a “real” two-cluster state and calculate the stability of this state.

9.3. Towards hierarchical networks

A hierarchical network usually consists of topological clusters that are densely coupled
inside, while links to other such topological clusters are sparse. The hierarchy is then
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Figure 9.2.: Scheme of a hierarchical structure [reproduced from Barabási and Oltvai,
2004].

built by larger topological clusters that contain the smaller ones [Zhou et al., 2006;
Zhou and Kurths, 2006]. This procedure can be continued over many levels of hierarchy.
See Fig. 9.2 for a schematic view of such a structure. It is important to distinguish these
topological clusters from the dynamical cluster states that are investigated in this part
of the thesis.

The most simple hierarchical structure consists of just two topological clusters. Fig-
ure 9.3 illustrates this in a schematic sketch of a graph of 30 nodes with two topological
clusters. Blue color corresponds to links inside one cluster while red color denotes
links that across both clusters. In this Section I will show that each cluster can show
isochronous synchronization in its own under certain conditions. In this sense, the no-
tation of topological cluster and dynamic cluster merges at this point since the dynamic
clusters will be identical to the topological clusters.

The graph in Fig. 9.3 is modeled by the coupling matrixes

Q1 =

�

0 1N/2
1N/2 0

�

(9.15)

and

Q2 =

�

B 0
0 B

�

, (9.16)
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Figure 9.3.: Schematic view of a simple hierarchical network structure according to
Eqs. (9.15) and (9.16) with 30 nodes. The two topological clusters are separated for
illustration. Blue and red arrows correspond to links inside and between the clusters,
respectively.

where 1N/2 is the identity matrix and B is an undirected N/2×N/2 Erdős-Rényi random
graph with a certain link probability p. The undirectedness is necessary to obtain a
real-valued eigenvalue spectrum. Then it is sufficient to calculate the master stability
function in the (Reγ(1), Reγ(2)) plane.

In order to operate in a “real” two-cluster state I choose the coupling strength for
the two matrices Q1 and Q2 to be different. The coupling strengths σ(1)1 and σ(2)1

corresponding to the coupling matrix Q1 are chosen as σ(1)1 = σ(2)1 = 0.05σ, where
σ = 0.12 is the overall coupling strength corresponding to the regime of low-frequency
fluctuations (LFF, see Tab. 2.2). The coupling strengths corresponding to Q1 are cho-
sen as σ(1)2 = σ(2)2 = 0.95σ. For a high link probability p in the random matrix B,
the matrix Q2 contains comparatively more links than Q1, which has only one link
per row. It is therefore a reasonable choice that Q1 has a significantly smaller row
sum.

Figure 9.4 shows the master stability function for this choice of the coupling strengths.
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Figure 9.4.: Master stability function for two commutating matrices with the structures
Q1 as in Eq. (9.4) and Q2 as in Eq. (9.5) with coupling strengths σ1 = 0.05σ and
σ2 = 0.95σ. The pairs (Reγ(1), Reγ(2)) plotted as blue dots correspond to eigenvalues
of the hierarchical example with matrices (9.15) and (9.16) using a link probability
p = 0.5 in the Erdős-Rényi graph (9.16).

Plotted as blue dots are the eigenvalue pairs (γ(1),γ(2)) of the hierarchical example
given by Eqs. (9.15) and (9.16) using a link probability of p = 0.5 in the random matrix
B for N = 30. It can be seen that this network shows stable synchronization in this 2-
cluster state. That is, each topological cluster shows synchronization inside itself. The
eigenvalues will always be lined up on the dotted vertical lines, which are given by the
Q1 being constructed from identity-matrix blocks.

The link probability p = 0.5 is just at the threshold to stable synchronization. Using
lower values, some eigenvalues will cross the boundary of the stable region of the mas-
ter stability function, leading to desynchronization.

Since the eigenvalues are always aligned along the lines Reγ(1) = ±1 in this example,
the stability for other choices of the coupling strength can easily be obtained by evaluat-
ing the master stability function at a fixed value of Reγ(1) = 1. The other value Reγ(1) =
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Figure 9.5.: Master stability function for two commutating matrices with the structures
Q1 as in Eq. (9.4) and Q2 as in Eq. (9.5) in the (Reγ(2),σ1/σ) plane. The parameter
Reγ(2) is fixed as unity and the coupling strength σ2 arises as σ−σ1. The dashed blue
lines form the boundary of the parameter range where no 2-cluster exists. Parameters
chosen in the LFF regime according to Tab. 2.2.

−1 yields identical results and must therefore not be considered, which is a results from
the symmetry discussed in Sec. 8.5 and observable in Fig. 9.4.

Figure 9.5 shows the master stability function in the (Reγ(2),σ1/σ) plane, where σ1 :=
σ
(1)
1 = σ(2)1 . The other coupling strength is set using the relation σ2 := σ(1)2 = σ(2)2 =
σ−σ1, where the overall coupling strength is chosen as σ = 0.12 corresponding to the
LFF regime in Tab. 2.2. This relation ensures that the overall coupling strength leads to
an operation in this LFF regime. The dashed blue lines correspond to conditions (9.14),
thus enclose the region where no 2-cluster state can exist. The stability of the 2-cluster
state is therefore only meaningful below the lower and above the upper dashed blue
line. The 2-cluster state is almost equally stable everywhere in the lower range of
σ1/σ < 0.175, which corresponds to a high coupling strength inside the clusters, but
a low coupling strength between clusters. The upper range of σ1/σ > 0.825, which
corresponds to low coupling strength inside the clusters, but high coupling strength be-
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tween them, also allows for the existence of the 2-cluster state, but this state cannot
be stable for any topology here. In conclusion, the coupling strength has to be com-
paratively higher inside the clusters to exhibit both the 2-cluster state as solution and
stability of this state at the same time.

9.4. More than two clusters

For two clusters, the only possible structure of Q1 and Q2 is given by Eqs. (9.4) and (9.5).
The size of each cluster may of course differ in general, but a more interesting general-
ization is to go to three clusters. Then, assuming that one coupling matrix is given by

Q1 =







0 0 A(1)

A(2) 0 0
0 A(3) 0






, (9.17)

a possible second coupling matrix Q2 may exist in several forms.

Both matrices must commute; one necessary condition is that the cluster structures
themselves do commute. In other words, let the structure matrix Q̃1 be the 3×3 matrix
that is derived by substituting each non-zero block in Q1 by a scalar 1:

Q̃1 =







0 0 1
1 0 0
0 1 0






. (9.18)

In general, the structure matrix of an M -cluster state is an M × M matrix. Using this
formalism, a possible additional coupling matrix Q2 can be found by first searching for
structure matrices Q̃2 that commute with Q̃1.

Take, for example, the structure

Q̃2 =







0 1 0
0 0 1
1 0 0






; (9.19)

the commutator [Q̃1, Q̃2] vanishes. But also

Q̃2 =







1 0 0
0 1 0
0 0 1






(9.20)
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is a valid structure for a second coupling matrix, since it – being an identity matrix –
commutes trivially with Q̃1.

Let us focus on the structure (9.19) together with the primary coupling matrix (9.17).
The coupling matrix that emerges from (9.19) reads, in general,

Q2 =







0 B(1) 0
0 0 B(2)

B(3) 0 0






, (9.21)

and the commutator condition [Q1,Q2] = 0 is equivalent to






A(1)B(3) = B(1)A(2)

A(2)B(1) = B(2)A(3)

A(3)B(2) = B(3)A(1).
(9.22)

One problem that arises is that the structures used here do not allow for a real-valued
eigenvalue spectrum of Q1 and Q2. As I have shown in Chapter 8, the structure of Q1
itself leads to the existence of eigenvalues that are the – complex-valued – third roots
of Q3

1.

Having a complex eigenvalue spectrum of both matrices Q1 and Q2, the pairs of eigen-
values would have to be checked against the master stability function in a 4-dimensional
space:

Λ = Λ(Reγ(1), Imγ(1), Reγ(2), Imγ(2)). (9.23)

This 4-dimensional space is hard to visualize on 2-dimensional paper. One solution
would be to study the different 2-dimensional projections that arise from this 4-dimensional
space. In applications, however, the coupling matrices may show certain specialties or
symmetries that would allow to consider these projections for fixed values of some of the
parameters. Compare, for example, the hierarchical example of Sec. 9.3 which resulted
in a unity eigenvalue for one of the matrices and thus a reduction to the investigation
of the eigenvalues of the second matrix.

9.5. Conclusion

Being able to use multiple coupling matrices in the framework of cluster synchroniza-
tion is a valuable generalization of the work shown in Chapter 8. Stability of cluster
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states can be characterized in more general network topologies, include a very simple
hierarchical example.

Applying the method, one has to carefully check that the state under investigation is in-
deed a cluster state by performing a stability analysis for the network motif describing
the underlying synchronization manifold itself. Also, it is still unclear to which extent
the condition on commuting matrices restricts a general application here.
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10. Controlling cluster synchronization:
an analytic approach

In this Chapter I will get back to the networks of Stuart-Landau oscillators [Choe et al.,
2010, 2011]. In Chapter 7 I studied the stability of isochronous – or in-phase – syn-
chronization in these networks. But already there I introduced the possible existence of
cluster and splay states in networks of Stuart-Landau oscillators described by Eq. (7.3)
from Chapter 7,

ż j = f [z j(t)] +σ
N
∑

n=1

G jn

�

zn(t −τ)− z j(t)
�

. (10.1)

The function f (z) is given by the Stuart-Landau model (see Eq. (7.1)) as

f (z) =
�

λ+ iω− (1+ iγ)|z|2
�

z. (10.2)

Again, the coupling is described by a coupling matrix {Gi j}i=1,...,N , a complex coupling
strength σ = Keiβ and a delay time τ.

Already shown in Chapter 7, the dynamics in cluster and splay states can be expressed
using phase differences to each others. Considering the simplest example of an equal
phase difference between neighboring clusters, the dynamical variables can be written
as

r j(t) = r0,

ϕ j(t) = Ωt + j∆φm, j = 1, . . . , N , (10.3)

with

∆φm = 2πm/N . (10.4)

This of course assumes common amplitudes r0 and frequencies Ω for all nodes. The
integer m = 0, . . . , N − 1 determines the specific state: The cluster number dc , which
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(a)
ϕ̇1, ϕ̇2, ϕ̇3, ϕ̇4(b) ϕ̇1, ϕ̇3

ϕ̇2, ϕ̇4

π

(c)

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

π

2

(d)

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

−π
2

Figure 10.1.: Schematic view of (a) in-phase, (b) two-cluster, and (c)-(d) splay states
in a network with 4 oscillators. The phase differences are ∆φ0 = 0, ∆φ2 = π,
∆φ1 = π/2, and∆φ3 = 3π/2 in panels (a), (b), (c), and (d), respectively, according
to Eqs. (7.8) and (7.9).

determines how many clusters of oscillators exist, is given by the least common multiple
(lcm) of m and N divided by m:

dc =
lcm(m, N)

m
(10.5)

for m = 1 . . . N − 1. dc = N corresponds to a splay state [Zillmer et al., 2007]. m = 0
resembles in-phase synchronization (dc = 1), although Eq. (10.5) cannot be used in this
case.

Figure 10.1 shows again the possible scenarios for the simple example of 4 nodes cou-
pled in a unidirectional ring (see also Fig. 7.2). After I have fully described the stability
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of the in-phase synchronization (a) in Chapter 7, I will show how this can be extended to
the cluster (b) and splay states (c,d) in certain special topologies.

In Sec. 10.1 I will show a general notation for cluster and splay states in networks of
Stuart-Landau oscillators with which variational equations can be derived. A stabil-
ity analysis using a master stability function works only if these variational equations
uncouple by a diagonalization. For a unidirectional ring topology I will show this in
Sec. 10.1.2. In this topology, several cluster states may coexist depending on the pa-
rameters and the number of nodes. Similar to the case of in-phase synchronization I will
derive conditions for the coupling phase under which the stability of a desired cluster
state is extended to the whole plane of the parameters K and τ while the other cluster
states are suppressed. This allows for easy selection of a desired state of synchroniza-
tion. The analytic part of this Chapter will close with Sec. 10.3 including remarks on
possible generalizations beyond the unidirectional ring.

In Sec. 10.4 I will introduce an order parameter that is based on the common Kuramoto
order parameter [Kuramoto, 1984]. This makes the numerical characterization of the
dynamics more accessible, but more importantly it opens up the control of synchro-
nization by an adaptive scheme which can be used to select cluster states without prior
knowledge of the system’s parameters [Selivanov et al., 2011].

10.1. Cluster and splay states

10.1.1. Synchronous states

Using the notation of amplitudes r j and phases ϕ j of the complex variables z j in analogy
to Eq. (7.5) from Chapter 7, common amplitude and frequency Ω can be obtained for
a cluster state obeying r j(t) = r0 and ϕ j(t) = Ωt +∆θ j . The latter assumes that every
oscillator has the same frequency Ω but each has a different phase offset ∆θ j . Inserting
these assumptions into Eq. (7.5) yields

r2
0 = λ− K cosβ + K

N
∑

n=1

G jn cosΦ j
n,

Ω = ω− γr2
0 − K sinβ + K

N
∑

n=1

G jn sinΦ j
n, (10.6)

where Φ j
n = β −Ωτ+∆θn−∆θ j .
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Note that in the special case of zero-lag – or in-phase – synchronization, i.e., ∆θ j = 0,

the expressions
∑

n G jn cosΦ j
n = cos (ϕ−Ωτ) and

∑

n G jn sinΦ j
n = sin (ϕ−Ωτ) hold so

that Eq. (10.6) is reduced to Eq. (7.11).

Using these results for the common frequency Ω and the common amplitude r0 of all
oscillators, variational equations can be formed using the same ansatz r j(t) = r0[1+
δr j(t)] and ϕ j(t) = Ωt +δϕ j(t) as before. Using Eq. (7.5), the linear order of δr j and
δϕ j follows

�

δ̇r j
˙δϕ j

�

=

�

−2r2
0 0

−2γr2
0 0

��

δr j
δϕ j

�

(10.7)

−K

�
∑

n G jn cosΦ j
n −∑n G jn sinΦ j

n
∑

n G jn sinΦ j
n
∑

n Ga jn cosΦ j
n

��

δr j
δϕ j

�

+K
∑

n
G jn

�

cosΦ j
n − sinΦ j

n

sinΦ j
n cosΦ j

n

��

δrn(t −τ)
δϕn(t −τ)

�

,

where Φ j
n = β −Ωτ+∆θn −∆θ j . This can be described equivalently in the form of a

vector equation as

ξ̇ j = J0ξ j − KΨξ j + K
∑

n
G jnRn jξn(t −τ), (10.8)

where ξ j = (δr j ,δϕ j). The matrix

J0 =

�

2r2
0 0

2γr2
0 0

�

(10.9)

describes the Jacobian of the local dynamics, the matrix

Ψ=

�
∑

n G jn cosΦ j
n −∑n G jn sinΦ j

n
∑

n G jn sinΦ j
n

∑

n G jn cosΦ j
n

�

(10.10)

includes contributions from the coupling matrix and from the phase differences between
the individual oscillators, and the matrix

Rn j =

�

cosΦ j
n − sinΦ j

n

sinΦ j
n cosΦ j

n

�

(10.11)

includes only these differences and is thus independent from the topology.
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In order to determine stability by a master stability function, Eq. (10.8) has to be trans-
formed into a form in which the individual equation for the ξ j decouple. In Chap-
ter 7 this was done by first rewriting the form of Eq. (10.8) in matrix form using
ξ = (ξ1, . . . ,ξN ) and the notation of the direct product (cf. Eq. (7.14)) and diago-
nalizing that equation.

In the general case of arbitrary coupling matrices G and arbitrary phase differences
θ j − θn between two nodes j and n, Equation (10.8) cannot be represented in such a
form, because the matrix Rn j depends on the index n. This implies that it is – in general
delay-coupled networks – impossible to decouple the above variational equations in a
master stability framework.

In some specific networks, however, the difficulty of applying the master stability func-
tion approach to the cluster and splay synchronization can be eliminated: The ring
structure with uni- or bidirectional coupling and the star-coupling structure are the
typical examples in which the Floquet exponents for cluster and splay synchroniza-
tion can be treated analytically. Also, it is evident that the matrix R in the case of
zero-lag synchronization is independent of n, which yields the variational equation

ξ̇= IN ⊗ (J0− KR0)ξ+ K(G⊗R0)ξ(t −τ), (10.12)

which resembles Eq. (7.14) with

R0 =

�

cos∆ − sin∆
sin∆ cos∆.

�

and ∆ = β − Ωτ. As shown in Chapter 7 this permits decomposition into a diagonal
form.

In the following, I will consider the unidirectional ring structure as a special case
where a diagonalization of the variational equations is also possible. In consequence,
stability of cluster synchronization can be determined using a master stability func-
tion.
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10.1.2. The unidirectionally coupled ring

A unidirectional ring is described by a coupling matrix

G=













0 1 0 · · ·
0 0 1 · · ·
...

...
...

. . .
1 0 0 · · ·













; (10.13)

see also Chapter 4 where I discussed synchronization of laser network with this struc-
ture.

This network allows for N different splay and cluster states ϕ j(t) = Ωt +∆θ j = Ωt +
j∆φm with∆φm = 2mπ/N , m= 1, . . . , N . As discussed at the beginning of the Chapter,
m= 0 corresponds to in-phase synchronization, m= N is the splay state, and any value
in between describes a dc-cluster state with dc = lcm(m, N)/m clusters. This description
yields

Φ j
n = β −Ωτ+ (n− j)∆φm. (10.14)

Because the coupling matrix of the unidirectional ring has nonzero entries only at
G j, j+1 mod N , j = 1, . . . , N , only the j-independent Φ j

j+1 = β −Ωτ+∆φm lead to con-

tributions in the variational equation (10.8) and I abbreviate these as Φ j
j+1 = Φ1. j + 1

has to be understood as j+ 1 mod N in what follows.

This brings up two important points that are due to using the unidirectional ring: First,
only the matrix R j+1, j (Eq. (10.11)) contributes to the variational equation. Since

R j+1, j includes the Φ j
j+1 ≡ Φ1, I abbreviate R j+1, j by R1. Second, the matrix Ψ (see

Eq.(10.10)) becomes identical to the matrix R1.

As a consequence, Equation (10.8) can be represented in matrix form as follows:

ξ̇= IN ⊗ (J0− KR1)ξ+ K(G⊗R1)ξ(t −τ), (10.15)

where

R1 =

�

cosΦ1 − sinΦ1
sinΦ1 cosΦ1

�

, (10.16)

and Φ1 = β − Ωτ + ∆φm. Remember that the phase difference ∆φm = 2mπ/N is
determined by the particular cluster state under investigation.
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Diagonalizing Eq. (10.15) with respect to the coupling matrix G yields a set of decou-
pled variational equations:

ζ̇k(t) =
�

J0− KR1
�

ζk(t) + KνkR1ζk(t −τ), k = 1, . . . , N , (10.17)

where νk = e2ikπ/N , k = 1, . . . , N are the eigenvalues of the coupling matrix G of the
unidirectional ring, which I already used in Sec. 4.5.1.

I already used the time-independence of the Jacobian J0 before. In this case, the Floquet
exponents that arise from the variational equation above can be calculated as eigenval-
ues from characteristic equation

0= det
�

J0−ΛI2+ KQk(Λ)R1
�

, (10.18)

in which I abbreviated the term that arises from the delay as Qk(Λ) =−1+e−Λτ+2ikπ/N .
Equation (10.18) is equivalent to

0=

�

�

�

�

�

−2r2
0 + KQk(Λ) cosΦ1−Λ −KQk(Λ) sinΦ1

−2γr2
0 + KQk(Λ) sinΦ1 KQk(Λ) cosΦ1−Λ

�

�

�

�

�

. (10.19)

Note that for stable synchronization in the given cluster state in this unidirectional
ring, Equation (10.19) has to yield a negative Λ for any transversal eigenvalue νk, k =
1, . . . , N −1, of the coupling matrix. The eigenvalue νN−1 = 1 corresponds to dynamics
inside the synchronization manifold. This eigenvalue will always yield the Goldstone
mode Λ(νN−1 = 1) = 0 for periodic dynamics. In conclusion, Equation (10.19) has to
be evaluated for every k = 1, . . . , N − 1. Additionally, the parameter Φ1 includes the
phase difference ∆ϕm determined by the particular cluster state. Thus, for every of
the N different states m= 1, . . . , N , the result for the Floquet exponents determined by
Eq. (10.19) will be different. As I will show there are even parameter regions, where
multiple cluster or splay states are stable at the same time.

Figure 10.2 shows the stability regions for the four possible states of synchronization in
a unidirectional ring of N = 4 nodes in dependence on the coupling parameters K and τ.
The coupling phase is fixed at β = 0. The color in panels (a), (b), (c), and (d) indicates
stability, i.e., negative real part of the Floquet exponent Λ for all k = 1, . . . , N − 1, for
the in-phase synchronization (m= 0), splay state (m= 1), 2-cluster state (m= 2), and
another splay state (m = 3). White regions correspond to positive Floquet exponents
indicating instability.

Figure 10.3(a) illustrates the multistability by showing the stability boundaries of these
different dynamical scenarios in the (K ,τ)-plane for unidirectional coupling of N = 4
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0
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Figure 10.2.: Stability diagram of a unidirectional ring of N = 4 oscillators in the (K ,τ)-
plane (β = 0). Panels (a), (b), (c), and (d) show the domain of stability for in-phase
(m = 0), splay state (m = 1), 2-cluster state (m = 2), and splay state (m = 3),
respectively. White regions denote instability of the corresponding state.
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oscillators altogether in one picture. Here, the color code indicates regions of different
multistability of in-phase (m = 0), 2-cluster (m = 2), and splay states (m = 1, m = 3):
Black (blue), dark gray (red), light gray (green), and yellow (white) color corresponds
to regions where one, two, three, or four of these dynamical states are stable, respec-
tively.

In the following Section I will show how the coupling phase β can be used to suppress
this multistability and lead to the control and selection of a desired state of synchro-
nization.

10.2. Controlling and selecting cluster and splay states

Already in the case of isochronous synchronization, an optimal choice for the coupling
phase β existed which enables stable synchronization in the entire plane of the other
coupling parameters K and τ.

Such an analytic condition can also be found in the case of cluster and splay states.
If Φ1 = 0, i.e., β = Ωτ−∆φm + 2lπ, l = 0,±1,±2, . . . , Eq. (10.19) for the Floquet
exponents factorizes and the exponents are given by

Λ = KQk(Λ)− 2r2
0 , (10.20)

Λ = KQk(Λ). (10.21)

Taking into account that I obtain r2
0 > 0 at β = Ωτ−∆φm, one can see that the domi-

nant Floquet exponents are governed by the latter of the two, i.e.,

Λ = K(−1+ e−Λτ+2ikπ/N ). (10.22)

Using a similar argument as in Sec. 7.3.2, it is obvious that the solutions of Eq. (10.22)
have negative real part for any K > 0 and any τ. This means that the unidirectional
ring configuration of Stuart-Landau oscillators exhibits stable in-phase synchronization,
splay states or clustering according to the choice of the control parameter β as β = Ω0τ,
Ω1τ− 2π/N and Ωmτ− 2πm/N (m> 1, N > 2), respectively. This stability persists for
any value of the coupling strength K and the time delay τ. Note that for every cluster
state determined by the index m, a different value of the common frequency Ωm is
obtained.

To illustrate this further and demonstrate the robustness of the stability results for
slightly nonidentical oscillators, I choose a set of control parameters K = 3 and τ= 3π,
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Figure 10.3.: (a) Stability diagram of a unidirectional ring of N = 4 oscillators in the
(K ,τ)-plane (β = 0). Solid, dash-dotted, dashed, and dotted boundaries correspond
to a stability change of in-phase (m= 0), 2-cluster (m= 2), splay states with m= 1,
and m= 3, respectively. The blue, red, green, and yellow regions denote multistability
of one, two, three, and four of the above states. (b)-(e) Time series of the phase
differences for a unidirectional ring of four slightly nonidentical oscillators: (b) β =
Ω0τ, (c) Ω1τ− π/2, (d) Ω2τ− π, (e) Ω3τ− 3π/2, with Ω0 = 1, Ω1 = 0.83903,
Ω2 = 1, and Ω3 = 1.16097. Black (blue), dark gray (red), and light gray (green)
lines denote the differences ϕ2 −ϕ1, ϕ3 −ϕ1, and ϕ4 −ϕ1, respectively (in (b),(d)
black (blue) is hidden behind light gray (green)). Parameters: λ= 0.1, γ= 0, K = 3,
τ = 3π, ω1 = 0.99757, ω2 = 0.99098, ω3 = 1.01518 and ω4 = 0.99496 [Choe
et al., 2010].
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denoted by the black cross in Fig. 10.3(a), for which multistability of all four possible
synchronization states is found for the coupling phase β = 0. Figures 10.3(b)-(e) show
time series from numerical simulations of four Stuart-Landau oscillators in a unidirec-
tional ring configuration with slightly different frequencies ω. For each choice of β in
panel (b) - (e) the solutions Ωm were obtained by solving Eqs. (10.6) such that the solu-
tion of Ωm closest to unity was chosen. The differences of the phases ϕi (i = 2, 3,4) rel-
ative to the first oscillator phase ϕ1 are plotted. After transients (note that the transient
oscillations are not resolved on the time scale chosen), the oscillators behave exactly as
predicted by the theory, i.e., they lock into in-phase synchronization for β = ωτ (b),
into a splay state for β = ωτ−π/2 (c), into a 2-cluster state for β = ωτ−π, where
ϕ1 = ϕ3 and ϕ2 = ϕ4 (d), and again into a splay state, albeit with inverted ordering of
the phases, for β =ωτ− 3π/2 (e).

Having demonstrated the value of our theory on the example of the unidirectional ring,
the question regarding the possible network topologies that permit a treatment with
this theory is still unanswered. In the following I make an attempt into this direction
by discussing the possible topologies that allow for a common amplitude and frequency
for all oscillators.

10.3. Topologies allowing for cluster states

In the following, I extend the control of in-phase, cluster, and splay states from unidirec-
tional rings to more general network topologies. To this end I elaborate conditions on
the coupling matrix G = {G jn} for which in-phase, cluster, and splay states with a com-
mon amplitude r j ≡ r0,m and phases ϕ j = Ωm t+ j∆φm = Ωm t+ j2πm/N can be found.

These conditions hold for general networks (with unity row sum
∑N

n=1 G jn = 1) in the
case of in-phase states. For cluster and splay states, networks satisfying these conditions
include, for instance, configurations with a circulant coupling matrix [Golub and van
Loan, 1996], where G jn depends only on (n − j) mod N , e.g., uni- and bidirectional
rings; see also Sec. 4.5.4.

Starting from the system’s equations (10.1) and (10.2) I can split the complex equa-
tion (10.1) into two real equations (for amplitude r j and phaseϕ j) as follows
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ṙ j =
�

λ+ r2
j

�

r j + K
N
∑

n=1

G jn

�

rn(t −τ) cos(β +ϕn(t −τ)−ϕ j)− r j cosβ
�

(10.23)

ϕ̇ j =ω− γr2
j + K

N
∑

n=1

G jn

�

rn(t −τ)
r j

sin(β +ϕn(t −τ)−ϕ j)− sinβ

�

. (10.24)

Since I investigate in-phase, cluster, and splay states, I assume a common amplitude r j ≡
r0,m and phases given by ϕ j(t) = Ωm t + j∆φm = Ωm t + j2πm/N . Using this notation I
obtain for the amplitude equation with ϕn(t−τ)−ϕ j = ϕ1(t−τ)−ϕ1+(n− j)∆φm:

r2
0,m = λ− K cosβ + K

N
∑

n=1

G jn cos(β +ϕ1(t −τ)−ϕ1+ (n− j)∆φm). (10.25)

This can be rewritten using the trigonometric identity cos(a + b) = cos(a) cos(b) −
sin(a) sin(b)with a = β+ϕ1(t−τ)−ϕ1 and b = (n− j)∆φm as follows

r2
0,m = λ− K cosβ + K cos(β +ϕ1(t −τ)−ϕ1)

N
∑

n=1

G jn cos((n− j)∆φm)

− K sin(β +ϕ1(t −τ)−ϕ1)
N
∑

n=1

G jn sin((n− j)∆φm). (10.26)

The last equation is identical for all j = 1, . . . , N , keeping in mind ∆φm = 2πm/N , if
the following conditions hold, independently of j:

N
∑

n=1

G jn cos
�

(n− j)
2πm

N

�

= const. and
N
∑

n=1

G jn sin
�

(n− j)
2πm

N

�

= const.

(10.27)

I stress that the same conditions can be derived from the phase equation (10.24).

For in-phase states (m= 0), these conditions hold for any coupling matrix G with unity
row sum since the arguments of the cosine and sine function vanish due to ∆φ0 = 0.
In case of cluster states (m 6= 0), for example for circulant matrices G, i.e., if G jn =
g
�

(n− j)mod N
�

is a function of (n− j)mod N only, the conditions are met due to the
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periodicity of the cosine and sine functions and the cyclic properties of such matrices.
This can be seen by inserting this matrix structure into the expressions in Eq. (10.27)
for the jth row:

N
∑

n=1

g
�

(n− j) mod N
�

cos
�

(n− j)2πm

N

�

,
N
∑

n=1

g
�

(n− j) mod N
�

sin
�

(n− j)2πm

N

�

.

(10.28)

Evaluating the same conditions for the ( j+ 1)th row yields

N+1
∑

n=2

g
�

(n− j) mod N
�

cos
�

(n− j)2πm

N

�

,
N+1
∑

n=2

g
�

(n− j) mod N
�

sin
�

(n− j)2πm

N

�

.

(10.29)

Using the cyclic properties of the circulant matrix, it can easily be seen that this sum-
mation in Eq. (10.29) is equivalent to the one in Eq. (10.28). Hence, irrespectively of
index j, both equations are equivalent. This shows that conditions (10.27) hold for
circulant matrices.

An example for N = 3 which satisfies conditions (10.27) for any m is provided by the
circulant matrix

G=







2 1 3
3 2 1
1 3 2






. (10.30)

In summary, Eqs. (10.27) provides conditions on the topology of the network for which
the amplitude and phase of all elements are determined by the same equations, i.e.,
independent of the index j, even for cluster states (non-in-phase, m 6= 0). I stress that
our theory holds as well for any coupling matrix that can be transformed to a circulant
matrix by renumbering of the nodes. Also note that for certain values of m this inde-
pendence of j is also given in a wider class of coupling matrices than circulant matrices.
Consider for example, N = 4 and m= 2. Then the matrix

G=











1 1 0 0
0 1 1 0
1 0 0 1
0 0 1 1











(10.31)
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satisfies conditions (10.27). For a large number of coupling schemes treated in the
literature, condition (10.27) holds. For example, let us consider networks of all-to-all
coupling, unidirectional ring, bidirectional ring and star-coupling. For these configura-
tions, Eqs. (10.6) yield a common amplitude and frequency, irrespectively of index j, as
follows:
All-to-all coupling: Gi j = 1 for i 6= j, Gii = 0

r2
0,m = λ− K cosβ + K

N−1
∑

l=1

cos [β −Ωmτ+ l∆φm], (10.32)

Ωm = ω− γr2
0,m− K sinβ + K

N−1
∑

l=1

sin [β −Ωmτ+ l∆φm]

Unidirectional ring: Gi j = δ j,i+1 mod N

r2
0,m = λ− K cosβ + K cos [β −Ωmτ+∆φm], (10.33)

Ωm = ω− γr2
0,m− K sinβ + K sin [β −Ωmτ+∆φm]

Bidirectional ring: Gi j = G ji = δ j,i+1 mod N

r2
0,m = λ+ K

�−2 cosβ + cos (β −Ωmτ+∆φm) + cos (β −Ωmτ−∆φm)
�

,

Ωm =ω− γr2
0,mK

�−2sinβ + sin (β −Ωmτ+∆φm) + sin (β −Ωmτ−∆φm)
�

Star coupling: G1i = 1, Gi1 = N − 1 for i = 2, . . . , N , all other Gi j = 0
This network does not fall into the class of circulant matrices, but admits synchrony in
the following generalized sense:

ϕ1(t) = Ωt, ϕl(t) = Ωt +mπ, (10.34)

where index j = 1 corresponds to the hub and l = 2, . . . , N denote the elements con-
nected to the hub. Odd m refer to the drumhead clustering, i.e., the hub and the outer
elements are in anti-phase, and even m correspond to in-phase synchrony. Synchronous
amplitude and frequency for the outer elements l = 2, . . . , N in the drumhead mode
(odd m) are given by

r2
0,m = λ− K

�

cos (β −Ωmτ) + cosβ
�

, (10.35)

Ωm = ω− γr2
0,m− K

�

sin (β −Ωmτ) + sinβ
�

.
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Note that in these example the index m denotes the solutions for a particular cluster
state determined by the phase difference ∆φm = 2πm/N . In Eq. (10.6) I omitted this
index for readability reasons.

For all these network topologies the dynamics in cluster and splay states is given by the
above equations. Using these solutions, stability conditions have to be derived which
yield the same form as Eqs. (10.15), (10.18) as in Section 10.1.2 in order that in-phase,
cluster, and splay states can be controlled in a similar way by changing the coupling
phase.

10.4. A generalized order parameter for cluster states

So far, stability of synchronization was only treated from the point of view of linear
stability analysis: From the dynamical equations a synchronized solution can be found.
The stability of this very solution can then be found by using the variational equations
for small perturbations from the synchronization manifold and is expressed in terms of
Floquet or Lyapunov exponents.

Several reasons introduce the need to go away from this pure stability analysis. Study-
ing the robustness of synchronization against noise or parameter mismatch between
nodes are the most prominent. Comparing theoretical results to experimental data also
gets easier when having a quantity at hand that can be derived from both sources of
data. I will introduce such a quantity in this Section.

This generalized order parameter is also a crucial ingredient for a recent work by Seliv-
anov et al. [2011], where we aim at adaptive control of cluster synchronization without
prior knowledge of the system or coupling parameters. In the speed gradient method
used as adaptation scheme there, it is necessary to have a dynamically evolving quan-
tity that is minimized in the desired dynamical state [Fradkov, 2007]. As it turns out,
a function based on the generalized order parameter introduced is most appropriate
to adaptively control the cluster and splay states in networks of Stuart-Landau oscilla-
tors.

10.4.1. The Kuramoto order parameter

A very simple measure to quantify the coherence in networks in order to verify existence
of isochronous synchronization was proposed by Kuramoto [1984] for networks of
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phase oscillators. Consider an ensemble of N oscillators with phases ϕk (k = 1, . . . , N).
The order parameter

R=
1

N

�

�

�

�

�

N
∑

k=1

eiϕk

�

�

�

�

�

(10.36)

is bounded between zero and unity due to the nature of the complex exponential
function. If the network is in a state of complete synchronization, i.e., ϕk = ϕm
∀k, m = 1, . . . , N , the order parameter becomes R = 1. If, on the other hand, the nodes
are completely desynchronized with their phases distributed randomly in [0,2π), the
order parameter approaches R= 0.

Although the Kuramoto order parameter was initially used to quantify order in ensem-
bles of phase oscillators, it can be used unmodified for Stuart-Landau oscillators, if only
the coherence of the phases is considered. Disregarding the amplitude is valid for the
following reasons: I have shown that in Eqs. (10.6) that a synchronized solution shows
identical amplitudes and phases for all oscillators. If, on the other hand, the network
desynchronizes, this will happen in both amplitude and phase variables simultaneously.
Note that, in principal, also phase synchronized solutions may exist, where only the
phases are in synchrony, but not the amplitudes. The Kuramoto order parameter would
also be unity for these states, but I only consider completely synchronized states. The
order parameter can then be calculated from the complex oscillator variables using the
relation exp(iϕk) = zk/|zk|, k = 1, . . . , N .

10.4.2. Identifying a two-cluster state

Let us now consider a two-cluster state. In the sense of this Chapter, this means that
half of the nodes is in one cluster while the other half is in another cluster. Both clusters
have a phase shift of π between them. Obviously, the contributions of both clusters
compensate in Eq. (10.36), thus the order parameter is zero. I propose a generalization
of Eq. (10.36):

R2 =
1

N

�

�

�

�

�

N
∑

k=1

e2iϕk

�

�

�

�

�

. (10.37)

This order parameter will approach unity in a two-cluster state. It will, however, also
be R2 = 1 in an in-phase state. Therefore, in order to distinguish the two-cluster state
from the in-phase state, the difference

r2 = R2− R (10.38)
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(a)
ϕ̇1, ϕ̇2

(b)

ϕ̇1

ϕ̇2

π/2

(c)
ϕ̇1

ϕ̇2

π

Figure 10.4.: Snapshot of the dynamics of two oscillators with different phase differences
in between them. (a) ϕ2−ϕ1 = 0, (b) ϕ2−ϕ1 = π/2, and (c) ϕ2−ϕ1 = π.

has to be considered. r2 is zero for an in-phase state, but unity for the two-cluster state.
Desynchronization also yields r2 < 1. Note that r2 may in principal – as opposed to R
and R2 – take on any values from the interval [−1,1].

Consider, for example, the case of just two nodes as depicted in Fig. 10.4. In this case,
Equation (10.38) simplifies to

r2 =
1

2

�

�e2iϕ1 + e2iϕ2
�

�− 1

2

�

�eiϕ1 + eiϕ2
�

�

=
�

�cos(ϕ2−ϕ1)
�

�−
�

�cos
�

(ϕ2−ϕ1)/2
�

�

� . (10.39)

This result is plotted in Fig. 10.5 in red color in dependence of the phase difference of
ϕ2−ϕ1 between both oscillators. Also plotted are the individual terms R2 (green) and
R (blue). The dashed lines indicate phase differences of 0, π/2, and π, corresponding
to Fig. 10.4(a), (b), and (c), respectively.

From Fig. 10.5, it can clearly be seen that the parameter R can well determine the in-
phase state (a), while r2 has its maximum only in the two-cluster state (c). Although the
in-phase state (a) yields a local maximum in the order parameter r2, this local maximum
is well distinguished from its global maximum at ϕ2−ϕ1 = π.
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0 π/2 π 3π/2 2π
ϕ2−ϕ1

−1.0

−0.5

0.0

0.5

1.0

R,
R

2
,

r 2

(a) (b) (c)

Figure 10.5.: Order parameters R (blue), R2 (green), and r2 (red) in dependence of the
phase difference ϕ2 −ϕ1 for two oscillators. Dashed lines correspond to phase differ-
ences of 0, π/2, and pi, corresponding to Fig. 10.4(a), (b), and (c), respectively.

10.4.3. Higher-order cluster states

These findings can be generalized to higher cluster states with c clusters and also to the
splay state (c = N). For these cases, I propose to use

Rc =
1

N

�

�

�

�

�

N
∑

k=1

eciϕk

�

�

�

�

�

. (10.40)

Note that again, a given order parameter Rc becomes unity for the cluster with cluster
number c, but also for certain cluster states with cluster number smaller than c. I simply
subtract the order parameters for these lower order cluster states

rc = Rc −
∑

n|c
rn, (10.41)

where the notation n|c means that n is a positive divisor of c, but n 6= c. This sum then
includes all lower order cluster states, for which considering solely Rc would yield a
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unity result.

10.4.4. Example: Ring of 4 oscillators

I will consider an example of four coupled oscillators here. This allows for a convenient
comparison with the results from the linear stability analysis performed in Sections 10.1
and 10.2. Figures 10.6, 10.7, 10.8, and 10.9 show the order parameters R, r2, and r4 in
dependence on the coupling parameters K and τ for different initial conditions. Also the
frequencies of the four oscillators were chosen slightly nonidentical as ω1 = 0.99757,
ω2 = 0.99098,ω3 = 1.01518 andω4 = 0.99496 for these numerical studies. These fre-
quency correspond to the ones used in Figs. 10.3(b-e). As shown in Fig. 10.3(a), there
is multistability among the four possible states of synchronization, thus one expects dif-
ferent synchronous dynamics for different initial conditions chosen for the simulations
that I ran to compute the order parameters. In Fig. 10.6, the initial phase differences
were chosen as ϕk+1 mod 4 − ϕk = 0, k = 1, . . . , 4, while I set ϕk+1 mod 4 − ϕk = 2π/2,
2π/4, and −2π/4 in Figs. 10.7, 10.8, and 10.9, respectively. These choices correspond
to the in-phase state, the cluster state, and the two different splay states possible in the
unidirectional ring of four elements.

In these pictures the control phase is chosen as β = 0 similar to Fig. 10.3. This allows
for easy comparison of both the results from calculating Floquet exponents and running
direct simulations of the network as done here. For in-phase synchronization, the order
parameter R has to be looked at, while for the cluster and splay states, r2 and r4 are
the relevant parameters, respectively. As a consequence, if the numerical simulations
match the analytic predictions perfectly, Figs. 10.6(a), 10.7(b), 10.8(c), and 10.9(c)
should resemble panels (a), (c), (b), and (d) of Fig. 10.2.

This is not exactly the case, however. Even for initial conditions in the desired state,
other states are more attractive for the dynamics for certain parameters. See, for exam-
ple, the upper right of Fig. 10.6, where the simulation reaches a 2-cluster or a splay state
despite the in-phase state being stable. This is caused by the nonidentical frequencies
of the oscillators. Also for very small values of the coupling strength K , synchroniza-
tion is not perfect in all cases as measured by the order parameters. For these small
coupling strengths, the coupling cannot compensate for the differences in frequencies
between the four oscillators. In all of the examples, however, states that are not sta-
ble according to the predictions from the master stability function are never reached
in the simulations. This proves once more the validity of the master stability func-
tion.
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Figure 10.6.: Order parameters R, r2, and r4 for the unidirectionally coupled ring of 4
Stuart-Landau oscillators. Initial conditions are chosen as rk =

p
λ, ϕk+1 mod 4−ϕk =

0, k = 1, . . . , 4, i.e, in an in-phase state.
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Figure 10.7.: Order parameters R, r2, and r4 for the unidirectionally coupled ring of 4
Stuart-Landau oscillators. Initial conditions are chosen as rk =

p
λ, ϕk+1 mod 4−ϕk =

2π/2, k = 1, . . . , 4, i.e., in the 2-cluster state.
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Figure 10.8.: Order parameters R, r2, and r4 for the unidirectionally coupled ring of 4
Stuart-Landau oscillators. Initial conditions are chosen as rk =

p
λ, ϕk+1 mod 4−ϕk =

2π/4, k = 1, . . . , 4, i.e., in a splay state.
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Figure 10.9.: Order parameters R, r2, and r4 for the unidirectionally coupled ring of 4
Stuart-Landau oscillators. Initial conditions are chosen as rk =

p
λ, ϕk+1 mod 4−ϕk =

−2π/4, k = 1, . . . , 4, i.e., in a splay state.
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In Fig. 10.8 and 10.9, the order parameter r4 may give the impression that the respec-
tive splay state is reached for parameters outside the stable region (see Fig. 10.2). The
order parameter r4 cannot distinguish between the two splay states with m = 1 and
m = 3. For example, in Fig. 10.8, which has initial conditions corresponding to the
splay state with m = 1, the system may evolve into the splay state with m = 3 where
the m = 1 state is unstable. In the Figure which shows the order parameter r4, these
two states cannot be distinguished.

In the above examples I chose β = 0. In Sec. 10.2 I have shown that an appropriate
choice of β leads to stability of a single state in the whole (K ,τ) plane. Considering
in-phase synchronization as an example, I ran simulations in the unidirectional ring
using β = Ωτ, which corresponds to the predicted optimal value to stabilize in-phase
synchronization. The numerical results shown in Fig. 10.10 confirm this. The order pa-
rameter R is almost unity throughout the (K ,τ) plane, while the other two parameters
are always nearly zero. Only for small values of the coupling strength the order param-
eter R is significantly smaller than unity, which is due to the nonidentical frequencies
used in the simulations. I conclude that the in-phase state is stable regardless of the
choice of K and τ for sufficiently large K . Using identical frequencies, stability would
already be obtained for infinitesimally small coupling strength K .

10.5. Outlook: Nonidentical oscillators

The master stability function allows to characterize the stability of the different states
only for identical frequencies of the oscillators. Although I have shown that slightly
nonidentical frequencies still lead to a near perfect agreement with the master sta-
bility predictions, it is unclear to which extent the parameters of the nodes may dif-
fer.

Recently, a theory by Ott and Antonsen [2008] has had much impact on the network
and synchronization community. In that work, Ott and Antonsen studied networks of
globally coupled phase oscillators of the form

dθi(t)
d t

=ωi +
K

N

N
∑

j=1

sin
�

θ j(t)− θi(t)
�

, (10.42)

where the frequencies ωi of the oscillators are chosen from a distribution g(ω), K
is the coupling strength, and N is the number of nodes. In the limit of N → ∞,
the state of the network at any time t can be described by a continuous function
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Figure 10.10.: Order parameters R, r2, and r4 for a unidirectionally coupled ring of 4
Stuart-Landau oscillators with a coupling phase β = Ωτ. Initial conditions are chosen
as rk =

p
λ, ϕk+1 mod 4−ϕk = 0, k = 1, . . . , 4, i.e., in an in-phase state.
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f (ω,θ , t) as a distribution over the frequencies and the phases of the individual os-
cillators.

Ott and Antonsen have shown that rewriting the original equations yields

0 =
∂ f

∂ t
+
∂

∂ θ

��

ω+
K

2i
(re−iθ − r∗eiθ )

�

f (ω,θ , t)
�

,

r =

∫ 2π

0

dθ

∫ ∞

−∞
dω f (ω,θ , t)eiθ , (10.43)

where r is equivalent to the Kuramoto order parameter [Kuramoto, 1984]. Under cer-
tain assumptions regarding the evolution of the dynamics – which turned out to be valid
[Ott and Antonsen, 2009] – they showed that the long term evolution can be reduced
to the evolution of the order parameter when assuming a Lorentzian shape of the fre-
quency distribution g(ω). The order parameter r = ρeiφ then evolves as

dρ

d t
= −

�

1− K

2

�

ρ+
K

2
ρ3,

dφ

d t
= 0. (10.44)

The solutions of these equation proved a heuristic prediction for the dependence of the
order parameter on the coupling strength K by Kuramoto [1984]. It has later been
shown that the strength of the theory is not restricted to Lorentzian distributions of the
frequencies [Ott and Antonsen, 2009].

When omitting the amplitude from the Stuart-Landau oscillator, it becomes very similar
to the Kuramoto phase oscillator (Eq. (10.42)), which can already be seen by compar-
ing Eq. (10.42) to the phase equation of the coupled Stuart-Landau oscillators, Equa-
tion (7.5). In particular, the coupling phase β is included in a very simple manner.
There have been applications of the Ott-Antonsen theory to systems with delay [Lee
et al., 2009] and the effect of the coupling phase in these setups would be an interest-
ing subject of further investigations based on the results obtained and presented in this
thesis.
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10.6. Conclusion

In conclusion, I have shown that by tuning the complex coupling strength in delay-
coupled networks of Stuart-Landau oscillators one can easily control the stability of
different synchronous periodic states. I have specified analytic conditions for the cou-
pling phase, under which stability of a desired state is established. Using the example
of unidirectional rings, I have shown that either in-phase, cluster or splay states can be
selected. The coupling phase is a parameter which is readily accessible, e.g., in opti-
cal experiments [Schöll and Schuster, 2008; Flunkert and Schöll, 2011a], which makes
these results interesting for applications.

I have given an outlook on the possible topologies beyond the unidirectional ring by
deriving conditions on the coupling matrices. Finally, our results are robust even for
slightly nonidentical elements of the network. As another outlook, the theory by Ott
and Antonsen [2008] may provide a valuable tool to characterize synchronization for
nonidentical oscillators. Furthermore, I introduced an order parameter to characterize
the existence of cluster and splay states, which has proven to be especially useful in
adaptive control of synchronization [Selivanov et al., 2011].
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11. Conclusion

11.1. Summary

In this thesis I studied patterns of synchronization in laser networks. The dynamics of
the networks’ nodes was modeled by the Lang-Kobayashi model. Additionally, I investi-
gated the Stuart-Landau oscillator as a model for periodic node dynamics.

In part I I focused on isochronous – or zero-lag – synchronization and employed the mas-
ter stability function formalism to determine synchronization. The coupling-induced
dynamics leads to a master stability function which is no longer independent of the cou-
pling parameters as in the original work by Pecora and Carroll [1998].

In laser networks, depending on the dynamical regime the lasers operate in, the shape
and size of the stable region of master stability region differs substantially. I have
demonstrated a rotational symmetry in the case of large delay times, which reduces
the analysis for a given network topologies to determining the extent of the eigenvalue
distribution. Note that this is closely connected to the terminology of the eigenvalue
gap [Englert et al., 2011]. That is, knowledge of the gap between the longitudinal
and the transversal eigenvalue with largest absolute value suffices for the characteri-
zation of stability of synchronization. Using multiple coupling matrices, I have shown
how topologies that include heterogeneous delay times can be treated with the master
stability analysis.

Concerning the application of the results of the master stability function to particular
network topologies, I have shown results for small network motifs, regular networks,
but also complex random networks modeled by the Erdős-Rényi model. For motifs, I
have shown that most configurations can only show stable synchronization with ad-
ditional self-feedback loops. The results obtained for networks could be used to un-
derstand the stability of synchronization in more complex network by considering the
subgraphs that exist in these complex topologies. I have shown this using the example
of the Erdős-Rényi random model.
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I have complemented the numerical results obtained for the chaotic laser networks
with studies on networks of Stuart-Landau oscillators. The periodic dynamics in this
network allow for the characterization of stability using analytic equations for the Flo-
quet exponents. Most notably, I have shown the derivation of analytic conditions for
the coupling phase, for which synchronization can be stabilized or destabilized deliber-
ately.

In Part II of the thesis I generalized the concepts and methods from Part I to cluster
and group synchronization. I have discussed a master stability function which is able
to characterize stability of cluster states. This formalism is only valid for a restricted
class of networks, namely multipartite networks. This structure also allows to obtain
symmetries in the eigenvalue spectrum and in the master stability function itself. The
restriction to multipartite networks can, however, be overcome by using multiple cou-
pling matrices. I have demonstrated these results using bipartite random networks, but
also simple hierarchical structures.

Concerning cluster states in networks of Stuart-Landau oscillators, I obtained analytic
results in the stability analysis in analogy to in-phase synchronization for certain net-
work topologies. I derived rigorous conditions under which multistability of several
cluster states is suppressed and a single cluster state is selected.

11.2. Outlook

The most interesting extension to this work would be the discussion of heterogeneous
delay times or system parameters. I have introduced multiple coupling matrices in
order to deal with multiple delays in a network. In the light of applications, where fully
heterogeneous delay times may occur in a network, this method is very restrictive and
a suitable theory remains to be found. In general, parameter mismatch in the system
or the coupling remains unfeasible with the master stability function and appropriate
extension are missing.

Another promising extension of the work in this thesis leads into the direction of hier-
archical network structures, where higher levels of hierarchy could possibly obtained
using many coupling matrices at the same time.

Concerning networks with periodic local dynamics, I have discussed stability of clus-
ter states in unidirectional rings of Stuart-Landau oscillators in detail. These states do,
however, also exist in other regular networks. It is still unclear how the particular topol-
ogy affects the stability of these solutions. Finally, using the theory by Ott and Antonsen
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11.2. OUTLOOK

could possibly yield valuable result regarding nonidentical nodes in the networks of
Stuart-Landau oscillators.
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A. Invariance of eigenvalues in matrix
products

Let A and B be m× n and n×m matrices, respectively. I show that the eigenvalues of
the product AB are identical to those of BA except for a potentially different number of
zero eigenvalues. Or, more precisely:

λnχAB(λ) = λ
mχBA(λ), (A.1)

where χM(λ) = det(λIm−M) denotes the characteristic polynomial of an m×m matrix
M. Consider the following matrix equations:

�

λIm −A
0 In

��

Im A
B λIn

�

=

�

λIm−AB 0
B λIn

�

, (A.2)

�

λIm 0
−B In

��

Im A
B λIn

�

=

�

λIm λA
0 λIn−BA

�

, (A.3)

which are true as can be easily seen by calculating the matrix products. Then calculating
the determinant in both equations and using the property of the determinant det(FG) =
det(F)det(G) yields

λn det(λIm−AB) = λm det

�

Im A
B λIn

�

= λm det(λIn−BA), (A.4)

which proves Eq. (A.1).

A.1. Implications

If m = n, the product AB will have exactly the same spectrum as BA. If however, m
is larger than n, the spectrum of AB will have m− n more zeros than that of BA since
Eq. (A.1) is equivalent to

χAB(λ) = λ
m−nχBA(λ). (A.5)
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