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Zusammenfassung

Mikroschwimmer sind biologische Organismen sowie künstlich hergestellte Teilchen
mikroskopischer Größe, die sich selbständig in einer Flüssigkeit fortbewegen. In dieser
Arbeit wird ein Modell-Schwimmer untersucht, der Squirmer genannt wird. Dieser
approximiert verschiedene reale Schwimmer, indem er deren Flussfelder imitiert. Der
Squirmer-Parameter β dient zur Unterscheidung von Pushern (β < 0), Pullern (β > 0)
und neutralen Squirmern (β = 0) und ein endlicher Chiralitäts-Parameter χ erzeugt
Squirmer mit Rotlet-Dipol.

Wir verwenden die numerische Methode der Vielteilchen-Stoß-Dynamik, um ein
Fluid bei kleinen Reynolds-Zahlen und die darin gelösten Schwimmer mitsamt ihrer
hydrodynamischen Wechselwirkungen und thermischen Fluktuationen zu simulieren.
Zugleich wird eine externe Gravitationskraft auf die Schwimmer angewendet. Diese
wird durch das Verhältnis der aktiven Geschwindigkeit zur Sedimentationsgeschwindig-
keit beschrieben, welches α genannt wird. Weiterhin wenden wir ein Gravitationsdreh-
moment an, welches durch Bodenlastigkeit der Squirmer entsteht.

Unsere Studie des einzelnen Squirmers zeigt die Vielzahl möglicher Trajektorien auf,
die durch die hydrodynamischen Wechselwirkungen in der Nähe einer Wand erzeugt
werden. Wir beobachten schwebende Zustände, die entweder stabil oder metastabil
sein können. Ersteres ist für neutrale Squirmer und Puller der Fall. Puller schweben
jedoch nur dann, wenn ein Schwellwert des Geschwindigkeitsverhältnisses αth über-
schritten wird. Ansonsten stecken sie aufgrund hydrodynamischer Anziehungswirkung
an der Wand fest. Pusher gleiten horizontal in der Nähe der Wand und erreichen ihre
Schwebehöhe, sobald sie an dieser aufgerichtet werden. Da die vertikale Orientierung
nicht stabil gegenüber dem vorherrschenden hydrodynamischen Flussfeld ist, kommt es
zu periodisch wiederauftretenden Schwebe- und Gleitzuständen.

Die Kombination aus der Vortizität der Stokeslet-Felder und einem Gravitations-
drehmoment wird Gyrotaxis genannt, die zu Musterbildung führen kann. An einem
Squirmer-Paar beobachten wir gekoppelte Oszillationen, die tanzenden Volvox-Algen
ähneln. Bei großen Teilchenzahlen stellen wir im Zustandsdiagramm neben konven-
tionellen und invertierten Sedimentationsprofilen auch kollektive Konvektionsbewegun-
gen fest. Diese bestehen für neutrale Squirmer aus langgestreckten sinkenden Clustern,
die wir Schwaden nennen. Weiterhin treten am Boden des Systems Konvektionsrollen
auf, wenn die externen und die hydrodynamisch erzeugten Winkelgeschwindigkeiten
vergleichbar sind. Bei starker externer Kraft und starkem Drehmoment treten poröse
Cluster auf, aus denen einzelne Squirmer herausschnellen. Im Gegensatz zu neutralen
Squirmern zeigen Pusher und Puller nur schwache Schwadenbildung und keine Konvek-



tionsrollen.
Wir untersuchen die gyrotaktische Strukturbildung quantitativ an sedimentierten

bodenlastigen Squirmern, die über der unteren Wand schweben. Wir stellen fest,
dass für neutrale Squirmer eine ausgeprägte Clusterbildung bei endlichem Drehmo-
ment auftritt. Für schwache Drehmomente sind diese Cluster zunächst fragil, aufgrund
starker Squirmer-Bewegung. Bei höheren Drehmomenten verdichten sich die Cluster
und der typische Clusterabstand nimmt ab. Eine Verdichtung der Cluster tritt auch
bei höheren Gravitationskräften durch die Wechselwirkung mit der Wand auf. Pusher
bilden keine stabilen Cluster, während Pullersysteme pyramidale Strukturen zeigen.
Allerdings ist das zur Clusterbildung notwendige Drehmoment höher als für neutrale
Squirmer. Squirmer mit Rotletdipol bilden Cluster aus, solange der Parameter χ nicht
zu hoch ist. Diese Cluster zirkulieren an der unteren Wand durch die hydrodynamische
Wechselwirkung der einzelnen Squirmer mit der Oberfläche.
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Abstract

Microswimmers are biological organisms or artificially produced particles with micro-
scopic size, which move autonomously inside a fluid. In this work a model swimmer
called squirmer is investigated. It approximates different real swimmers by mimick-
ing their flow fields. The squirmer parameter β distinguishes pushers (β < 0) from
pullers (β > 0) and neutral squirmers (β = 0) and a finite chirality parameter χ creates
squirmers with a rotlet dipole.

We use the numerical method of multi-particle collision dynamics in order to sim-
ulate a fluid at low Reynolds numbers and the suspended swimmers, including their
hydrodynamic interactions and thermal fluctuations. At the same time, we apply an
external gravitational force to the swimmers. It is characterized by the ratio of the
active velocity to the sedimentation velocity, which is called α. Furthermore, we apply
a gravitational torque which arises from bottom-heaviness of the squirmers.

Our study of the single squirmer shows the variety of possible trajectories which are
generated by the hydrodynamic interactions in proximity to a wall. We observe floating
states, which can be stable or metastable. The former case applies to neutral squirmers
and pullers. However, pullers only float, if a threshold value of the velocity ratio αth

is exceeded. Otherwise, they are pinned to the wall due to hydrodynamic attraction.
Pushers slide horizontally close to the wall and approach their floating height, as soon
as they reach an upright orientation. Since the vertical orientation is unstable in the
surrounding hydrodynamic flow field, sliding and floating states occur recurrently.

The combination of Stokeslet vorticity fields and a gravitational torque is called
gyrotaxis and can lead to pattern formation. We observe coupled oscillations of a
squirmer pair, which resemble dancing Volvox algae. At large particle numbers, in
addition to conventional and inverted sedimentation profiles, we observe convective
motion. For neutral squirmers, it consists of elongated sinking clusters, which we call
plumes. Furthermore, convective rolls occur at the bottom of the system, when the
external and the hydrodynamically induced angular velocities are comparable. At large
external force and torque, porous spawning clusters occur, which eject single squirmers.
In contrast to neutral squirmers, pushers and pullers show only weak plume formation
and no convective rolls.

We investigate gyrotactic cluster formation quantitatively with sedimented bottom-
heavy squirmers which float above the bottom wall. We find a pronounced cluster
formation of neutral squirmers at finite torques. These clusters are fragile at weak
torques, due to strong squirmer motion. At larger torques the clusters compactify
and the typical cluster distance decreases. Higher gravitational forces also cause a



compactification of clusters due to hydrodynamic wall interactions. Pushers do not
form stable clusters, whereas puller systems show pyramidal structures. However, the
necessary torque for cluster formation is higher than for neutral squirmers. Rotlet
dipole squirmers form clusters, as long as the parameter χ is not too high. These
clusters circulate at the bottom wall due to the hydrodynamic surface interactions of
the individual squirmers.
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1. Introduction

The interdisciplinary field of active motion is an intriguing research topic at the inter-
section of biology and physics, which has elicited a lot of interest in recent years [1–3].
From an evolutionary perspective, motion satisfies an organism’s needs of finding food,
mating, or escaping predators. Seen from a physicist’s perspective, active motion is
a process far from thermodynamic equilibrium. Non-equilibrium dynamics pervades
active motile systems since energy is consumed locally by the individual agents, which
transform it into self-propulsion [2, 3]. This leads to states and patterns unreach-
able in equilibrium, implicating both single-particle behaviour and collective dynamics.
Analysing single self-propelled particles, one can identify and distinguish different fas-
cinating forms of taxis. For example, sperm cells are able to swim upstream against
flow (rheotaxis) and E. coli bacteria control their rotational diffusion in response to the
distribution of nutrients (chemotaxis). Furthermore, large-scale collective structures
and dynamics emerge from the local interactions of individual agents [4, 5]. Important
examples are phase separation [6, 7], cluster formation [8, 9] and swarming [10, 11].

Fascinatingly, active motion in nature transcends length scales and thus a wide range
of self-propelled agents are the subject of research. Examples include flocks of birds
[12], schools of fish [13], and herds of sheep [14], as well as accumulation of algae [15]
and bacterial turbulence [16]. Already on the micron scale biological examples include
a plethora of organisms, both eukaryotes and prokaryots [2, 3, 17]: amoeba, ciliates,
algae, sperm cells, as well as bacteria and pathogens, such as trypanosomes [18, 19].
The desired fruits of microswimmer research are very diverse. For instance, one aim
is to drive microscopic motors with bacteria [20]. Furthermore, treatment options for
cervical cancer [21] and infectious biofilms [22] are considered. A better understanding
of the spatial distribution of marine phytoplankton [23] has high ecological importance.

In addition to biological swimmers, numerous artificial active particles have been
manufactured, in order to study novel states of matter and ultimately harness non-
equilibrium self-organization for technology [17, 24]. Active colloids use chemical or
physical reactions in a solute for phoresis, i.e., self-propulsion along induced gradients
of a macroscopic physical quantity, such as concentration or temperature [25, 26]. Active
emulsion droplets use the Marangoni effect, which leads to fluid motion on the droplet’s
surface due to inhomogeneous surface tension, and thus to self-propulsion [27, 28].
Application of such synthetic particles include cargo-carrying microrobots, for example
for drug delivery [29, 30] and removing microplastics as a form of water treatment [31].

In parallel, numerous theoretical model particles have been studied, in order to look
for the generic properties of active systems. These include the famous Vicsek model

1



[32], as well as active Brownian particles [33], and self-propelled rods [34].
Another important active particle is the squirmer model [35, 36]. It uses a flow field

on its surface for self-propulsion and was intended to describe ciliates like Paramecium.
The squirmer is therefore a model for so-called microswimmers. These are active parti-
cles that move inside a fluid and create flow fields which lead to long-range interactions
with surfaces and with other swimmers [37, 38]. These hydrodynamic interactions are
an important aspect of emergent collective behaviour [39–44]. Importantly, microswim-
mers mostly move under conditions of low Reynolds number. Hence, viscous forces
dominate over inertial forces. This challenges locomotion profoundly, since no motion
can be achieved by any reciprocal body deformation [45, 46]. Furthermore, thermal
noise often interferes with the directed motion of a microswimmer. To deal with these
conditions, a large number of swimming techniques have evolved, using deformations,
such as helical rotations of flagella [47] or metachronal ciliary waves [48]. The syn-
thetic particles we mentioned use hydrodynamic surface flows to achieve locomotion.
An interesting example for the importance of flow for biological pattern formation, is
the so-called paradox of the plankton [49], which states that there is an oversupply of
plankton species in violation of standard biological theories of competition. Current
research suggests that interactions with external flow fields can segregate species from
each other [50].

In this work, we are interested in the influence and effect of gravity on single-
swimmer dynamics and collective patterns. Gravity is a ubiquitous influence on any
laboratory experiment, as well as in nature. It is therefore highly relevant for both
biological and artificial swimmer systems, where it results in novel phenomena [51]. For
example, non-equilibrium sedimentation of active swimmers has evoked much attention
in recent years [52–55]. Here, a strongly enhanced sedimentation length [53], as well
as polar order [54] were observed. Furthermore, patterns formed under gravity are
particularly appealing and are summarized under the term bioconvection [56]. An
important aspect of this collective motion is a phenomenon called gyrotaxis, which
consists of a combination of gravitational and viscous torques [57–60]. This effect is
important for biological matter and has been shown to lead to motion of a pair of Volvox
algae which resembles a minuet dance [61], or sinking plumes of micro-organisms [62].

Since the fluid dynamics equations are hard to tackle analytically, especially with
many moving suspended particles, numerical simulations are a much-used tool for study-
ing fluid systems, including hydrodynamically interacting swimmers [34, 42, 63]. Here,
we use the method of multi-particle collision dynamics (MPCD) to solve the fluid dy-
namics equations [64, 65], called the Navier-Stokes equations. The motion of the fluid
is computed by performing a streaming and a collision step on point-like fluid particles,
which conserve momentum. It is thus a mesoscopic simulation technique. Importantly,
it incorporates thermal fluctuations which are relevant for most active swimmer sys-
tems.

In our numerical simulations, using multi-particle collision dynamics, we show the
relevance of hydrodynamics on a single squirmer system under gravity. In particular,
the importance of both near field and far field interactions with a no-slip wall at the
bottom of the system is demonstrated by comparing simulation results to analytical
calculations. We then test the effects of gyrotaxis on a two-squirmer system by ad-
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1. Introduction

ditionally applying a gravitational torque. Furthermore, we study collective motion
at higher density and scan the state diagram of more than 900 bottom-heavy squirm-
ers. We find conventional and inverted sedimentation states, as well as sinking plumes.
Plumes in puller and pusher systems are more fragile. Neutral squirmers additionally
form convective rolls and spawning clusters. Lastly, we investigate how gyrotactic clus-
ters form in the sedimentation state by varying the external torque, the global density,
the amount of gravity, and the hydrodynamic flow fields of the squirmers. We char-
acterize the emerging structures by measuring the cluster sizes and radial distribution
functions.

This thesis is structured as follows: In Chapter 2 we introduce the necessary theoret-
ical framework to study microswimmers. This includes both the laws of hydrodynamics
and the physics of self-propulsion in a low Reynolds number fluid, as well as stochastic
motion. We also introduce our model swimmer, the spherical squirmer. In Chapter 3
we introduce our numerical method, called multi-particle collision dynamics (MPCD).
In Chapter 4 analytical and numerical results for a single squirmer under gravity and
close to the bottom wall of the system are presented. Chapters 5-7 study collective
dynamics. We give a brief overview over the pair dynamics of bottom-heavy squirmers
in Chapter 5. In Chapter 6 we discuss the diverse collective states arising at higher
densities of squirmers under gravity. Finally, we study cluster formation at the bot-
tom wall due to gyrotaxis in Chapter 7. We present our final conclusions and offer an
outlook in Chapter 8.
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2. Physics of microswimmers

The physics of active swimmers consists of two aspects. On the one hand, their propul-
sion mechanisms drive them out of equilibrium and create novel dynamics and patterns.
On the other hand, the laws governing their fluid surroundings need to be specified.
The surrounding fluid is responsible for friction and hydrodynamic interactions. In the
following, we first discuss the laws of hydrodynamics. Here, we especially consider low
Reynolds number flows, because microswimmer motion usually occurs in this regime.
The governing equation is the Stokes equation and we discuss solutions, in particular
the multipole expansion.

Furthermore, we discuss different swimming mechanisms, i.e., self-propulsion in a
fluid. Among the many forms of swimming, we present biological swimmers using a
non-reciprocal motion of cilia or flagella. We also discuss synthetically manufactured
microswimmers, which induce a surface flow field, for example due to catalytic reac-
tions or the influence of surface-active molecules. Furthermore, we discuss stochastic
motion, which is of utmost importance on the micrometer scale. Then, we introduce
the squirmer model, which is used throughout this work.

Hydrodynamic interactions, between swimmers and between a swimmer and a bound-
ary, play an important role in our study. We introduce the method of hydrodynamic
images to describe interactions with a no-slip boundary in Stokes flow. This gives a
description of the flow structure in the far field. Since near field interactions can be
relevant for collective dynamics of swimmers, we also discuss the laws of lubrication.

Finally, this work is concerned with the motion of microswimmers under gravity.
We describe the sedimentation of passive colloids and then discuss the state of the art
of active systems under gravity.

2.1 Dynamics of the Newtonian fluid

Microswimmers self-propel inside a fluid. For the type of swimmers we are interested in,
the detailed dynamics of the fluid and an understanding of the occurring flow fields is
very important. Therefore, we describe systems of wet active matter [3]. In contrast, in
dry systems the interactions with the fluid only consist of the friction and fluctuations
experienced by each individual particle.

There is a large variety of active swimmers, which occur in many different environ-
ments. These range from biological fluids, like blood [18, 66], gut fluid [67], or cervical
mucus [68, 69] to turbulent oceanic flows [70, 71]. Furthermore, swimmers have been
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2.1 Dynamics of the Newtonian fluid

placed in a wide variety of complex fluids in experiments [72–76]. Thus, the surround-
ings of active swimmers can be very diverse in terms of Reynolds number, fluid rheology,
pH, ion distributions, or chemical fields. In this work, we focus on single-component
Newtonian fluids and will ultimately restrict ourselves to low Reynolds numbers. Fur-
thermore, no chemical reactions or charged particles occur in our systems. For New-
tonian fluids, the most important equations are the Navier-Stokes equations. For our
purposes, the regime of creeping flow is the most important, which is described by the
Stokes equations.

2.1.1 Balance equations of continuum mechanics

Even though fluids consist of molecules, they are often treated as a continuum. Here,
the fluid is divided into small volume elements, which are much smaller than the macro-
scopic length scale and much larger than the molecules that make up the fluid [77]. Us-
ing this picture, we present the balance equations of fluid dynamics and the constitutive
relation that define the Newtonian fluid.

Mass conservation

The first balance equation is that of mass. The mass density of a fluid is denoted by
ρ(r), where r is the position of a fluid volume element. A change of mass within a control
volume V is accomplished only by a net flux through the boundary ∂V . This reflects
the principle of mass conservation. Let n be the outward-pointing surface normal of
the control volume, then

∂t

∫︂
V

ρdV = −
∫︂
∂V

j · ndA. (2.1)

The quantity j(r) := ρ(r)u(r) is the mass current density. From dimensional analysis,
one can see that it can also be considered a momentum density. Switching integration
and time differentiation and applying Gauss’ theorem leads to the continuity equation
of mass

∂tρ+∇ · j = 0. (2.2)

An important special case is ρ = const, which expresses that the fluid is incompress-
ible. Then we have

∇ · u = 0. (2.3)

Momentum conservation

Next, we consider the momentum of the fluid and discuss the relevant terms and con-
cepts in more detail. Inside the control volume the total momentum of the fluid P
is given by the volume integral over the current density P =

∫︁
V
jdV . As we will see

below, the time derivative of this term yields a convective momentum current density,
and also a force density. Furthermore, we have to take both volume and surface forces
into account.
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2. Physics of microswimmers

Convective momentum current density Equivalent to matter, fluid flow can
transport momentum ρu into or out of a fluid volume. The convective momentum
current density can be written as ρu⊗ u and is a tensorial quantity .

Surface stresses Volume or body forces have an external source, such as gravity or
electromagnetism. We usually use the respective force densities, which we write as ρb.
In contrast, surface forces originate from the local interaction between fluid elements
[78]. A surface force fS can be expressed through the surfaces force density t as

fS =

∫︂
∂V

tdA. (2.4)

It leads to a deformation of the fluid volume, which is captured by the velocity gradient∇⊗
v ≡ ∇v [79] . The velocity gradient can be divided into the rate-of-strain tensor

L :=
1

2

(︁
∇v +∇vT

)︁
, (2.5)

and the spin tensor

W :=
1

2

(︁
∇v −∇vT

)︁
. (2.6)

Note that a fluid volume may experience both isotropic and anisotropic stress, i.e.,
the surface forces depend on the respective surface normal, t = t(x, t,n). Furthermore,
there is an important distinction between normal stress and shear stress. Shear stress
consists of non-zero tangential forces on the surface element with normal n and thus
represents the concept of fluid layers pulling on each other. For example, in simple shear

flow, shear stress induces a scalar shear rate γ̇ =
∆v

h
over the distance h [78]. Normal

stresses on the other hand lead to an expansion or contraction of the fluid volume as a
whole.

The surface stress t in three dimensions has three components per surface normal.
We express these components via the Cauchy stress tensor σ, which reads1

t(x, t,n) = σ(x, t)n. (2.7)

Balance equation Eq. (2.7) is used in our force balance relation. We can now write
the total force as

f = fV + fS =

∫︂
V

ρbdV +

∫︂
∂V

σndA. (2.8)

Thus, analogous to Eq. (2.2), we arrive at the momentum balance equation

∂t(ρu) + div(ρu⊗ u)− divσ = ρb, (2.9)

where we define the divergence of a tensor as (divσ)i = ∂jσij. The term ρb describes
an external force density.

1We present this equation rather succinctly here and without much preparation. It should be
mentioned that more mathematical rigor is required to really prove this relation, which is also called
the Cauchy stress theorem [78].
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2.1 Dynamics of the Newtonian fluid

The terms with spatial derivatives can be summarized by defining the total momen-
tum current density Π:

Πij = ρuiuj − σij. (2.10)

By using the continuity equation, Eq. (2.2), we arrive at the following equations of
motion

ρ∂tu+ ρ(u · ∇)u−∇ · σ = ρb. (2.11)

Constitutive equation

In an incompressible fluid at rest, all shear stresses are zero and the normal stress is
isotropic [78]. Hence, it can be described by a scalar quantity, which by convention is
the pressure p. The isotropic component −p1 is the only contribution to the frictionless
or ideal fluid, where 1 is the unit tensor. If dissipation exists, another term is added,
called the viscous stress tensor σ′

σ = −p1+ σ′. (2.12)

The dependence of σ′ on other variables is called the constitutive equation. It
captures the viscous properties of the fluid and needs to be satisfied in addition to
the balance equations. In Sec. 2.1.2, we introduce the constitutive equation for the
Newtonian fluid.

Energy conservation

The conservation of the sum of kinetic energy density ρu2/2 and internal energy density
ρε is achieved by another balance equation [77]. The convective energy transport out
of a volume element is ρu (u2/2 + ε). The work done on a fluid element by surface
and bulk forces is captured by the term ∇ · (σtu) + ρb · u. Furthermore, due to the
possibility of thermal conduction one has to include the divergence of the heat flux
density ∇ · q. The precise form of the heat flux density is again a characteristic of the
material. We here ignore the effect of heat sources or sinks in the fluid. After some
calculations, these expressions can be reformulated as [77]

ρ (∂tε+ u · ∇ε) +∇ · q = σt • ∇ ⊗ u. (2.13)

Here, the contraction operation on two tensors M, N is defined as

M •N :=MijNji = Tr(MN).

2.1.2 The Navier-Stokes equations

In the following we present the Newtonian fluid, which is a ubiquitous and useful model
for a viscous fluid. The momentum balance equations of this fluid are known as the
Navier-Stokes equations.
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2. Physics of microswimmers

Viscous stress tensor

In a Newtonian fluid, it is assumed that the viscous stress tensor σ is linear in the
rate-of-strain tensor L = 1

2
(∇v +∇vt). Hence, it is also called a linear fluid [78] and

the most general form of the viscous stress tensor is [79]

σ′
ij = ηijklLkl. (2.14)

The tensor with components ηijkl is called the viscosity. We assume an isotropic fluid
in the following. Here, it is assumed that the asymmetric part of the velocity gradient
W does not contribute. The reason for this is that no friction should be associated
with uniform rotation of a fluid volume [77]. We note, that the asymmetric term
W becomes relevant for the model fluid we introduce in Chapter 3.We arrive at the
constitutive equation for the Newtonian fluid

σ′ = 2ηL+

(︃
λ− 2

3
η

)︃
∇ · u, (2.15)

where η is the dynamic viscosity and λ is the bulk viscosity. For incompressible fluids
Eq. (2.15) becomes

σ′ = 2ηL. (2.16)

Momentum balance

Finally, we arrive at the momentum balance equation of the Newtonian fluid. We insert
the constitutive equation (2.15) into the momentum balance Eq. (2.11) and arrive at
the compressible momentum equations [77], assuming that η and λ are just constants:

ρ (∂tu+ u · ∇u) = −∇p+ η∇2u+

(︃
λ+

1

3
η

)︃
∇ (∇ · u) + ρb. (2.17)

These equations are called the Navier-Stokes equations. For an incompressible fluid, we
obtain

ρ (∂tu+ u · ∇u) = −∇p+ η∇2u+ ρb, (2.18)

where, due to incompressibility, the bulk viscosity λ no longer appears.
Thus, we have derived a non-linear partial differential equation for the fluid dynam-

ics. In general, solving this equation is a hard task. As we will do in following chapters,
one often has no choice but to resort to numerical schemes. However, it is useful to
tackle this equation by means of similarity laws. In particular, this lets us transition to
the regime of creeping flow, where we encounter a linear equation.

2.1.3 Creeping flow

Characteristic numbers and concept of similarity

We transform the Navier-Stokes equations into a dimensionless form by introducing
characteristic parameters. The benefit of this procedure is that a solution found for the
normalized equation can yield a whole family of solutions for different combinations of
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2.1 Dynamics of the Newtonian fluid

these parameters. This is known as similarity [80]. For example, the flow around a
small particle in water can be determined by measuring a larger particle in a fluid with
a larger viscosity [80]. Specifically, we use a typical velocity U and a typical length
scale a as our characteristic parameters. The sizes of these quantities depend on the
specific hydrodynamic problem. For example, the typical length scale could correspond
to the size of the channel or of a suspended particle, or a typical wavelength. Other
characteristic quantities are introduced when the physical problem requires it. For
example, an oscillatory boundary necessitates defining a typical time scale, related to
frequency of the oscillation.

We express the observable quantities, as well as the differential operators, in Eq.
(2.18) in terms of our length and velocity units, following Ref. [80]. A unit of time is
given by a/U . Furthermore, we introduce a typical pressure difference ∆p. Then, we
arrive at an equation for the dimensionless quantities, which we marked with a prime:

∇′ · u′ = 0 (2.19)

ρU2

a
(∂′tu

′ + u′ · ∇′u′) = −∆p

a
∇′p′ +

ηU

a2
∇′2u′ + ρbb′. (2.20)

Reynolds number Transforming the Navier-Stokes equations into dimensionless form,
the non-linear inertial term (u ·∇)u scales with ρU2/a, whereas the viscous term η∇2u
scales with ηU/a2. The ratio between both terms is called the Reynolds number [81]

Re =
ρUa

η
=
Ua

ν
. (2.21)

The Reynolds number determines the importance of inertial forces relative to viscous
forces [81]. It is the most important dimensionless number for our purposes. The
Navier-Stokes equations can now be expressed as

Re (∂′tu
′ + u′ · ∇′u′) = −∆pa2

ηU
∇′p′ +∇′2u′ +

ba2

νU
b′. (2.22)

We can likewise define a rotational Reynolds number [81]

Rerot =
Ωa2

ν
(2.23)

with the typical angular velocity Ω.

Euler number Another characteristic dimensionless number is the ratio between
pressure and inertial forces. It is called the Euler number

Eu =
∆p

ρU2
. (2.24)

Using the Euler number, we recognize that the pre-factor in front of the pressure term
in Eq. (2.22) is −EuRe.
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2. Physics of microswimmers

Froude number The Froude number is defined as Fr = U/
√
ba [80], where b = |b|.

Thus, the pre-factor to the body-force term in Eq. (2.22) is Re/Fr. The Froude number
is large, when the external force is large compared to the inertial force. Thus, we obtain

Re (∂′tu
′ + u′ · ∇′u′) = −ReEu∇′p′ +∇′2u′ +

Re

Fr2
b′. (2.25)

Stokes equations

If we drop the non-linear convective term of the Navier-Stokes equations, we end up
with a linear equation. We also assume that all time scales in the fluid are fast compared
to the time scales of our problems of interest. This allows us to assume stationarity and
the time-dependent term disappears. Thus, we arrive at the Stokes equations, which
represent fluid motion at negligible Reynolds numbers [81, 82]:

∇ · u = 0, (2.26)
−∇p+ η∇2u = ρb. (2.27)

Stokes flow or creeping flow is laminar and no turbulence occurs. As we will see later,
the inertia-less fluid makes it impossible to swim with a drift, like a human swimmer
does in water.

The Stokes equations satisfy an interesting condition, known as kinematic reversibil-
ity. In short, reversing the solution of the velocity field to −u yields a valid solution
to the Stokes equation with inverted pressure and force terms −p and −ρb. Note that
the Stokes equations do not have an intrinsic time scale. This implies that the reaction
of the flow field to a boundary condition is instantaneous.

Stokes paradox It was shown by Oseen that the Stokes approximations can lead
to inconsistencies [83]. Concretely, at large distances from an object the inertial term
cannot be neglected compared to the viscous term, which explains the unphysical be-
haviour known as Stokes’ paradox : The magnitude of the creeping flow velocity past
an infinite cylinder, i.e., the flow past a sphere in two dimensions, cannot stay finite at
large distances from the obstacle surface, where the flow velocity is assumed to be zero
[81].

Solutions of the Stokes equations

Due to the paramount importance of the Stokes equations for meso- and microhydro-
dynamics [81, 82, 84, 85], a number of techniques have been developed to solve it under
various boundary conditions. In the following we introduce two methods of particular
importance to the Stokes equations, the Green function approach, yielding the Oseen
tensor, and Lamb’s solution in spherical coordinates.

Oseen tensor Since the Stokes equations are linear, it is possible to define Green’s
function for both the velocity and pressure fields. Those Green’s functions solve equa-
tions (2.26) for a delta-distributed inhomogeneity, which is also called a point force. The
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2.1 Dynamics of the Newtonian fluid

solution for a general inhomogeneity or body force ρb can be found by using Green’s
functions as integration kernels:

u(r) =

∫︂
O(r− r′)ρb(r′)d3r, (2.28)

p(r) =

∫︂
g(r− r′)ρb(r′)d3r. (2.29)

Green’s functions for the Stokes equations are called the Oseen tensor O and the
pressure vector g and they are given by

O(r) =
1

8πηr

(︃
1− r⊗ r

r2

)︃
, (2.30)

g(r) =
1

4πr3
r. (2.31)

The flow induced by the Oseen tensor is also called a stokeslet or force monopole. We
write a stokeslet GS with direction f̂ , belonging to a unit point force, as

GS(f̂ , r) = O(r)f̂ . (2.32)

Here, we assume the stokeslet to be at the origin. This could for example model a
dragged particle, viewed from a large distance.

Lamb’s solution in spherical coordinates Solving the Stokes equations can be
easier when symmetries are present. One such case is Lamb’s solution in spherical
coordinates. As we study spherical microswimmers at low Reynolds numbers, this
solution becomes relevant for us when we discuss the flow field of a squirmer in Sec. 2.2.4.
We sketch a derivation for Lamb’s solution in Appendix A. The end result in spherical
coordinates is [81, 82]

u =
∞∑︂

n=−∞

[︃
(n+ 3)r2∇pn − 2nrpn
2η(n+ 1)(2n+ 3)

]︃
+∇ϕn +∇× (rχn), (2.33)

with harmonic functions pn, ϕn, χn. The equation for the pressure is

p =
∞∑︂

n=−∞

pn. (2.34)

We are concerned with solutions of the Stokes equation outside of a spherical body,
the so-called external problem. Hence, the relevant parts of the series expansion in Eq.
(2.33) are n ≤ 0, because u should decay to zero for r → ∞ [see Eq. (A.3) and also
Refs. [81, 82]]. Lamb showed that n = 0 is associated with source or sink solutions [84].
While relevant for expanding droplets, these solutions are unphysical for objects with
finite, constant radii and can therefore be discarded.
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2. Physics of microswimmers

Figure 2.1: Flow fields of selected Stokes flow singularities. a) stokeslet, b) symmetric
force dipole, c) source dipole, d) rotlet. The singularities are located at the origin, in
the center of the figure.

2.1.4 Hydrodynamic multipoles

Above, we have introduced the Oseen tensor as the Green’s function of the velocity field.
For arbitrary force distributions in Eq. (2.28), one can use higher order multipoles. We
follow Kim and Karrila [82] who expand the Oseen tensor O (x− y) around y = 0 [82].
The Taylor expansion yields

Oij(x− y) =
∞∑︂
n=0

1

n!
(y · ∇y)

nOij(x− y)|y=0

=
∞∑︂
n=0

(−1)n

n!
(y · ∇)nOij(x). (2.35)

This yields higher-order tensorial multipoles of the form ∂k1 · · · ∂knOij(x) [82, 86]. Al-
ternatively, we can express the flow fields created by these multipoles. The intuition
of these flow singularities works similarly to electrostatics: Seen from a large distance,
the flow field resembles the force monopole term with a strength corresponding to the
total hydrodynamic force. Importantly, for a force-free swimmer, this contribution is
zero. With decreasing distance, more details of the flow signature become apparent and
higher-order singularities are relevant.

In Stokes flow, we can distinguish between force and source singularities. The force
multipoles are also called Stokes multipoles. They are created by iteratively applying
the gradient operator to the stokeslet [85]. Thus, the force dipole GD and quadrupole
GQ are defined as

GD(f̂ , ê,x− y) = ê · ∇yGS(f̂ ,x− y), (2.36)
GQ(f̂ , ê, d̂,x− y) = d̂ · ∇yGD(f̂ , ê,x− y). (2.37)

Each higher order multipole includes a further unit vector, representing a direction of
the singularity. For example, the stokeslet has the direction f̂ , which is the direction
of the point force. The most general force dipole GD has two directions and the force
quadrupole GQ has three directions. The force dipole term GD can be decomposed
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2.1 Dynamics of the Newtonian fluid

into a symmetric and an antisymmetric part [82]2. For the symmetric part, we assume
that ê and f̂ are parallel. The symmetric dipole field then becomes

GD,symm(f̂ ,x) =
1

8πηx2

⎛⎜⎝−1

x
+ 3

(︂
f̂ · x

)︂2
x3

⎞⎟⎠x. (2.38)

Importantly, the asymmetric part is called a rotlet, if ê ⊥ f̂ . The rotlet, which we
denote by R, is the leading order flow field of a rotating sphere [82] and is thus an
important singularity:

R(ŝ,x) =
ŝ× x

8πηx3
. (2.39)

Here, the vector ŝ forms an orthonormal basis with the vectors ê and f̂ introduced
above [87]. Then, we can also define a rotlet dipole with the same rule as above:

RD(t̂, ŝ,x− y) = t̂ · ∇yR(ŝ,x− y), (2.40)

which yields

RD(t̂, ŝ,x) =
1

8πηx3

(︄
t̂× ŝ−

3
(︁
t̂ · x

)︁
ŝ× x

x2

)︄
. (2.41)

We are mainly interested in the case where ŝ and t̂ are anti-parallel to each other. This
results in the rotlet dipole field

RD(−ŝ, ŝ,x) =
3 (ŝ · x) ŝ× x

8πηx5
. (2.42)

Source singularities represent additional solutions, where the pressure field is zero.
A source field (or source monopole) of unit strength is defined as

GSM(x) =
x

8πηx3
. (2.43)

Applying the same operation as before, we can calculate the source dipole GSD, which
describes the field of a source and a sink brought together to a small distance.

GSD(f̂ ,x) =
1

8πηx3

⎛⎝−f̂ + 3

(︂
f̂ · x

)︂
x

x2

⎞⎠ (2.44)

The source dipole can also be calculated from the stokeslet via

GSD(f̂ ,x− y) = −1

2
∇2

yGS(f̂ ,x− y). (2.45)

Finally, the source quadrupole is defined as

GSQ(f̂ , ê,x− y) = ê · ∇yGSD(f̂ ,x− y) (2.46)

We show the flow fields of the stokeslet, symmetric force dipole, source dipole and rotlet
singularities in Fig. 2.1.

2Ref. [82] first subtracts the isotropic part of the dipole before splitting the terms.
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2. Physics of microswimmers

2.1.5 Suspended particles

Hydrodynamic forces and torques

Rigid bodies suspended in a fluid are subject to hydrodynamic forces F and torques
T that the fluid exerts on them. They are given by the total surface force or torque
integral over the body surface S:

F =

∫︂
S

σnd2r, (2.47)

T =

∫︂
S

rP × (σn)d2r. (2.48)

Here, the torque depends on the choice of the center of rotation inside the body, from
which we measure the vector rP to the particle surface [81].

According to Eqs. (2.47) and (2.48), a solution of the Stokes equations enables us
to calculate the hydrodynamic forces and torques of a suspended body. The boundary
conditions of the rigid body are determined by its translational and rotational motion
and the induced slip velocities on its surface:

u|S = U+Ω× rS + uslip(rS), (2.49)

where U is the body’s translational, Ω is its rotational velocity and rS is a vector to
the surface.

Force and torque in Lamb’s solution An external force on a particle results in a
stokeslet component of the flow, whereas a torque results in a rotlet component. They
characteristically decay with 1/r and 1/r2, respectively. Ref. [81] uses Lamb’s solution
from Eq. (2.33) to calculate the infinite series of the stress tensor. Using Eqs. (2.47)
and (2.48), one can then demonstrate that the force F and torque T on a sphere are
expressed by

F = −4π∇
(︁
r3p−2

)︁
|r=R, (2.50)

T = −8πη∇
(︁
r3χ−2

)︁
|r=R. (2.51)

Friction and Mobility

Both the hydrodynamic forces F and the translational velocity of the body U, as well as
the hydrodynamic torques T and the angular velocity of the body Ω are connected by
a linear relation [82, 88]. Assuming a fluid velocity that is zero at infinity, this relation
can be written as (︃

F
T

)︃
=

(︃
γtt γtr

γrt γrr

)︃(︃
U
Ω

)︃
(2.52)

with the 3 × 3 friction matrices γtt, γrr, and γtr refering to translation, rotation and
translation-rotation coupling. The translation and rotation matrices are symmetric,
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2.1 Dynamics of the Newtonian fluid

while the coupling matrices are, in general, not [81]3. However, for the latter the
relation

γtrij = γrtji (2.53)

holds. The exact shape of the matrices depends on the geometry of the particle, and
sometimes also on its orientation and velocity [81]. Furthermore, hydrodynamic inter-
actions with other suspended bodies or boundaries influence the friction. We address
this in Sec. 2.3. First, we consider a spherical body translating or rotating in an oth-
erwise quiescent, infinite fluid. In the following, we apply Lamb’s solution Eq. (2.33)
to a sphere translating with a speed U . We set the direction of the velocity along the
z-direction, without loss of generality, and use spherical coordinates. Then, one arrives
at the following expressions for the harmonics [82]

p−2 =
3

2
ηU

R

r2
cosϑ, (2.54)

χ−2 = 0. (2.55)

From this, using Eq. (2.50), we arrive at Stoke’s law

F = −6πηRU, (2.56)

for a general velocity vector U of the rigid sphere. For a sphere rotating around the
z-axis with angular velocity Ω, one similarly gets [82]

p−2 = 0, (2.57)

χ−2 = Ω
R3

r−2
cosϑ, (2.58)

using Eq. (2.51), and thus
T = −8πηR3Ω. (2.59)

Thus, the friction tensors for a passive sphere in bulk flow become

γtt = 6πηR1, (2.60)
γrr = 8πηR31, (2.61)
γtr = 0. (2.62)

The inverse problem is known as the mobility problem and leads to the inverse
tensors, called the mobility tensors:(︃

U
Ω

)︃
=

(︃
µtt µtr

µrt µrr

)︃(︃
F
T

)︃
. (2.63)

3There exists a unique point in a body, where this tensor is symmetric, called the center of hy-
drodynamic reaction [81]. However, for spherical particles, the translation-rotation coupling will stay
symmetric anyway.
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Flow around a dragged sphere

The flow around a dragged sphere in a quiescent background fluid is given by the
combination of a stokeslet and a source dipole

u(x) = 6πηRU

(︃
1 +

R2

6
∇2

)︃
GS, (2.64)

where U is the particle velocity, which we assume is directed in the z-direction. Ex-
pressed in spherical coordinates (r, ϑ, φ), this flow field has the following components
[82]

ur = U cosϑ

(︄
3

2

R

r
− 1

2

(︃
R

r

)︃3
)︄
, (2.65)

uϑ = −U sinϑ

(︄
3

4

R

r
+

1

4

(︃
R

r

)︃3
)︄
, (2.66)

uφ = 0. (2.67)

2.2 Self-propulsion on the micron scale

The name microswimmers implies two main characteristics of these agents. First, they
are microscopically small, on the order of a couple of microns. Unless they are in a
turbulent external flow, this means that fluid inertia plays no role for them and that
their motion in a fluid is governed by the Stokes equations. Furthermore, thermal
fluctuations can have a big effect on their dynamics. Second, they are swimmers, i.e.,
they self-propel in the fluid by some sort of body deformation [46]. Since the continuous
motion depends on the consumption of food or another energy source, the system is far
from thermodynamic equilibrium.

In the following, we consider the conditions of low Reynolds number swimming and
describe swimming mechanisms. Steric effects, or the dynamics of a chemical can be
very important [89–93]. We note that in our model system those are not considered.
Instead, we focus on hydrodynamic aspects. Furthermore, we treat active matter using
an agent-based approach, i.e., the active material consists of distinct particles. However,
there exists a large body of work where active matter is treated with continuum theories
[3, 94–96]. We will not be considering these theories in our work.

The small size of microswimmers makes them susceptible to Brownian motion. We
briefly discuss the relevant laws and relations that result from stochastic molecular
collisions, mainly based on a passive particle. In addition, we introduce the active
Brownian particle. Finally, we present the swimmer that we study during the course of
this work, the spherical squirmer. In our simulations, it is both subject to low Reynolds
number hydrodynamics and thermal noise.
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2.2.1 Life at low Reynolds numbers

Microorganisms move at very low Reynolds numbers on the order of 10−4 and con-
sequently fluid inertia is irrelevant to their motion [46]. Hence, any motion requires
a non-stop propulsive force and the organism will stop performing directed motion as
soon as the force stops. This is fundamentally different from a human swimmer in water
or a ship in the ocean, both of which rely on inertia to a large extent.

Scallop theorem

There is an important restriction to the kinds of body deformation that a swimmer at
low Reynolds number can perform. The reason for this is that motion at low Reynolds
numbers requires a non-reciprocal actuation. Let us assume that the body deformation
consists of a power stroke and a recovery stroke. Then, a motion is reciprocal if the
second stroke is the exact reversal of the first one. A famous example is that of a
scallop, which opens to self-propel and then closes again in order to revert to its original
shape. Obviously, the second step results in a motion in the opposite direction. The
scallop theorem states that this cycle of deformation results in no net motion at low
Reynolds numbers [46]. No matter how fast or slow the opening and closing motions are
performed, the forward and backward travel distances of the body are always exactly
the same. The irrelevance of the rate of change is a direct consequence of the Stokes
equations, which do not depend on time [97]. In the words of Purcell [46], who acts as
the namesake of the theorem: ‘Time, in fact, makes no difference - only configuration ’.
Thus, in order to achieve any net propulsion, the body’s cycle of movement has to be
non-reciprocal. This implies, that more than one degree of freedom is necessary for the
deformation. We present examples of such swimming mechanisms below.

Note, the scallop theorem only applies in a Newtonian fluid. It has been shown, that
it does not apply to a shear-thickening or shear-thinning fluid. Therefore self-propulsion
is possible in these fluids with a symmetrical motion, as long as forward and backward
motion are performed at different rates [98, 99].

Force-free swimming

In Stokes flow, the sum of all forces is always zero, because the friction force compensates
all other forces. Nonetheless, the ‘force-free’ condition of active swimmers is frequently
invoked. The meaning of this condition is that no external forces aid the swimmer’s
locomotion, which implies that the stokeslet component in the flow field is zero [100].
Thus, it is immediately clear that the hydrodynamic signature of microswimmers can
only decay faster or equal to r−2. On the other hand, a swim force is sometimes
defined as Fswim = 6πηRu (for the spherical swimmer) [101]. To clarify and avoid
confusion with respect to the force-free condition, we note that here the internal forces
responsible for swimming are meant. Brady and co-workers have shown that this swim
force is essential for the understanding of swim pressure against a boundary [101].
Alternatively, the swim force can be understood as the force that is needed to keep a
swimmer from moving [101]. Note, when this is in fact done and the swimmer stops
moving, the force-free condition no longer applies and a stokeslet term will appear in
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2. Physics of microswimmers

the equations. The total flow field in this situation is sometimes referred to as the
pumping field [100]. In contrast, if the swimmer is able to move freely, the internal
forces (such as body surface deformations [35]) only induce higher-order fields, such as
force or source dipoles.

2.2.2 Swimming mechanisms

Locomotion fulfills a variety of functions for biological microswimmers, such as search-
ing for food and escaping predators [37], and is exploited for artificial microswimmers
performing targeted drug delivery and minimally invasive medical interventions [21,
102, 103] or to study autonomous aggregation [104–107]. While the principles gov-
erning locomotion at low Reynolds numbers are the same, they can be implemented
in a variety of ways by different swimmers. Among the most prominent mechanisms,
we find body deformations, movement of appendices like flagella and cilia, as well as
electro-, thermo- or diffusiophoretic effects, which induce a fluid flow at or close to the
swimmer’s surface [1, 17].

Importantly, active swimmers react to environmental cues. Such a response of a
swimmer’s motion to its surroundings is called tactic behaviour. Depending on the
type of environmental stimulus, one can distinguish many kinds of taxis. The motion
towards or away from a certain substance is called positive or negative chemotaxis
[108]. For example, one speaks of aerotaxis in the case of oxygen [109]. Human sperm
cells perform rheotaxis, which enables them to swim upstream in the cervical canal [68,
69, 110]. The motion towards light is known as phototaxis and along a temperature
gradient as thermotaxis [111–114]. Bacteria can be magnetotactic [115]. The alignment
along or against the direction of gravity is called gravitaxis or geotaxis [56, 59, 116].

The swimmer’s interaction with the environment can happen with a rudimentary
sensorial apparatus which scans for food or oxygen [117], but also by purely passive
physical effects. Sometimes, the nature of the response can be a contested issue. In
the case of gravitaxis it was believed that some cells could actively measure gravity
and respond to it [118, 119]. In contrast, other researchers believe that the passive
reorientation, due to the mismatch between the center of mass and the geometrical
center, is responsible for the swimmer’s reorientation [120, 121].

Biological microswimmers

In the following, we discuss some examples of active motion and of taxis. First, we want
to focus on two ways of propulsion for biological swimmers. These are sketched in Fig.
2.2 a)-c). The bacterium Escherichia coli has one or more helical flagella with a length
on the order of 10 µm at the back of its body [37]. Due to rotary molecular motors [67,
123], they can rotate clockwise or counter-clockwise. The propulsion happens due to,
first, anisotropic translational drag and, second, translation-rotation coupling (matrices
γtt and γtr in Eq. (2.52)) [37]. Thus, the rotating helix is able to move the cell body
forward. Furthermore, the flagella can bundle together, or unbundle and lose synchro-
nization, which is responsible for run-and-tumble motion [124]. The bacterium induces
the tumble phase via intra-cellular pathways, depending on the surrounding food, thus
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2.2 Self-propulsion on the micron scale

Figure 2.2: Sketches of different microswimmers. a) E. coli bacterium with several
flagella (length around 2 µm). b) Biflagellate alga Chlamydomonas (radius around
10 − 20 µm). c) Volvox with two daughter cells and distributed appendages over the
whole body (radius around 100− 200 µm). d) Janus colloid surrounded by a chemical
field (radius around 10 µm). e) Active emulsion droplet inhomogeneously covered with
surfactants (radius around 50 µm) and within a solution of surfactants, some of which
form filled and unfilled micelles (adapted from Ref. [122]).

using chemotaxis [117, 125]. The body counter-rotates relative to the flagellum, which
adds a rotlet dipole to the hydrodynamic signature [87]. The speed of E.coli is on the
order of 20− 30 µm/s [37, 126].

Common other examples are various algal species. This is significant, because algae
are eukaryotic cells, and thus belong to a completely different biological domain than
bacteria [127], so it is surprising that aspects of their swimming are comparable. These
organisms are larger than bacteria and the molecular motors are distributed over the
whole flagellum [37]. The alga Chlamydomonas reinhardtii possesses two flagella in
the front of its body performing a bending motion, which resembles a breast-stroke
swimmer [128]. Since there is a difference of drag between the power and recovery
strokes, a net forward motion is achieved [37, 129]. The motion of C. reinhardtii is
directed towards light, thus it is a phototactic organism [128, 130].

Some organisms have appendices distributed over their whole body and use syn-
chronization among these cilia for their self-propulsion [48, 131, 132]. Their collective
beating patterns create flow fields along their surface [17, 37]. We briefly describe the
Volvox alga which has a radius of approximately 200 µm [48, 132]. Volvox is a multi-
cellular organism with spherical shape, whose somatic cells on the surface each have a
pair of beating flagella [132]. In their totality, they cause a coordinated metachronal

20



2. Physics of microswimmers

wave from the cell’s north pole to its south pole. The transport of fluid across the
surface results in a force-free motion of the organism [35, 131]. Importantly, Volvox
algae carry small daughter colonies in their inside, which modifies the mass distribu-
tion of the whole cell [61, 132]. The cell is bottom-heavy and orients anti-parallel to a
gravitational field.

Artificial microswimmers

Creating artificial microswimmers and controlling their motion from the outside is a fas-
cinating research avenue [24, 102, 103]. It is often inspired by the swimming mechanisms
visible in nature or to study swimming without the complicated molecular signalling
that biological matter often involves [7, 28]. In particular, mimicking flagellar motion
is a frequent procedure for artificial microswimmers, which has been proven to work by
high-impact experiments, such as the manufactured flagellum by Dreyfus et al. [133].

A different and equally successful technique to create artificial microswimmers is
the manufacture of catalytic swimmers [24, 29, 134]. Here, the necessary break of
symmetry is not achieved by a deformation, but by self-generated fields or gradients
[134]. An important class of synthetic active swimmers is given by Janus particles [25,
26, 53, 106, 111, 135–137]. We sketch a Janus particle in Fig. 2.2 d), together with
its surrounding chemical field. Janus is a two-faced god in ancient Roman mythology
and, accordingly, the symmetry breaking in Janus colloids is achieved by coating two
sides of a spherical colloid (made for example from polystyrene [26] or gold [8]) by
different materials. For example, half-coatings of the catalyst platinum result in an
asymmetric chemical reaction around the particle when it is put in a H2O2 solution [8,
25, 26, 55]. An excess of product molecules develops on the catalytic side of the colloid,
which creates a particle flux and a fluid flow around the colloid. This again results in a
force-free propulsion of the colloid. A similar mechanism involving charged molecules is
called electrophoresis [113, 138–140]. Another promising idea is using radiation energy
as the particles’ fuel, i.e., using synthetic phototactic particles [106, 112, 135, 141].
In these experiments, one cap is light-absorbing, leading to an asymmetric heating of
the colloid. Since they reside in a near-critical mixture, the local temperature increase
results in demixing [135], which achieves a concentration gradient around the particle.

Finally, active emulsion droplets also propel due to self-induced chemical gradients
[28, 122, 142]. However, since they are made from liquid materials their response to
gravity can be tailored more narrowly, e.g., by changing the density of the solvent [143,
144]. In the case of liquid crystal droplets [27, 28, 142, 145], the chemical acting as
a fuel is a surfactant molecule that changes the surface tension of the droplet locally.
Thus, a surface slip appears due to the Marangoni effect [28, 146, 147]: fluid flows to the
side of the droplet with a higher surface tension, and thus a lower surfactant molecule
coverage. This results in self-propulsion. The droplet gets smaller over time, since
it ejects emulsion-filled surfactant micelles. This also results in a lack of fuel behind
the droplet, so that other droplets effectively stay clear from the visited path. This
self-avoiding behaviour is called autochemotaxis [148]. We show a sketch of the active
emulsion droplet in Fig. 2.2 e). An important difference to Janus particles is that the
swimming direction does not result from the manufacturing of the droplet but happens
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2.2 Self-propulsion on the micron scale

from a spontaneous symmetry breaking [28].

2.2.3 Stochastic motion of microswimmers

Due to the small size of microswimmers they can be strongly influenced by molecu-
lar collisions. Thus, microswimmers have to adapt their locomotion to a fluctuating
environment, which is illustrated nicely by the run-and-tumble motion of E.coli. For
passive particles, the most famous stochastic process is that of Brownian motion. We
introduce the relevant concepts of Brownian motion in the following and then combine
these thermal fluctuations4 with the concept of persistent locomotion, which leads us to
the model of the active Brownian particle. The laws of diffusion that govern this model
particle are also relevant for the swimmer model we use in our studies. Furthermore,
the laws of stochastic motion are important for our simulation method.

Stochastic processes and the insights of statistical physics constitute large and ex-
haustive fields, thus, we constrain ourselves here to the concepts that are most relevant
to our setting. These include the Langevin equation and the Stokes-Einstein relation
for diffusion and friction.

Langevin equation

A Brownian particle moves in a very irregular way and the molecular collisions respon-
sible for it are analytically intractable. However, by making assumptions about the
distribution of the random forces, it is possible to write down a stochastic differential
equation, also known as the Langevin equation. It can be written as [150]

m
d2x

dt2
= −Γtrans

dx

dt
+ Fext + ξ(t). (2.68)

We have retained the external force Fext on the particle, which leads to a drift in
addition to diffusion.

When we assume that the system is overdamped, we can neglect the acceleration
term. The term proportional to the particle velocity is the hydrodynamic drag force
acting on the particle with the friction tensor for particle translation Γtrans. The term
ξ represents the stochastic force, which is a random variable. We make the following
assumptions about its distribution

⟨ξi(t)⟩ = 0, (2.69)
⟨ξi(t)ξj(t′)⟩ = 2gijδ(t− t′), (2.70)

where ⟨. . .⟩ denotes the ensemble average. The noise is distributed according to a
Gaussian distribution. Additionally, the second property states that different stochastic
forces are uncorrelated, which is why the stochastic forces represent white Gaussian
noise.

4We note that active swimmers can have additional noise sources that do not originate from thermal
fluctuations. This is sometimes called active or intrinsic noise and poses a further challenge to the
stochastic modelling of microswimmers [149].
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2. Physics of microswimmers

Diffusion tensor

Next, we define the diffusion tensor via the second moment of the displacement

⟨x(t)⊗ x(t)⟩ = 2Dtranst. (2.71)

The linear scaling of the square displacement with time is typical for a diffusive process.
The diffusion tensor captures the fluctuation properties of the system. It is related to
the friction Γtrans via the fluctuation-dissipation relation, which in this case is also called
the Stokes-Einstein law:

Dtrans = kBTΓ
−1
trans. (2.72)

Another aspect of the fluctuation-dissipation theorem involves the velocity autocor-
relation ⟨vi(t)vj(0)⟩ for which we have the Green-Kubo relation [151, 152]

Dtrans =

∫︂ ∞

0

⟨v(t)⊗ v(0)⟩dt. (2.73)

or alternatively [153]

Γtrans =
1

kBT

∫︂ ∞

0

⟨F(t)⊗ F(0)⟩dt. (2.74)

The magnitude of the correlations in Eq. (2.70) can be calculated to be [154]

gij = 2kBTΓij. (2.75)

Note that the friction tensor for a spherical particle is Γij = γδij. In the following, we
switch to that assumption.

Ballistic and diffusive motion

If we take the inertial term in Eq. (2.68) into account, we can estimate the time scale
at which diffusive behaviour sets in. First, we calculate the solution for the velocity

v(t) = v(0)e−t/τB +
1

m

∫︂ t

0

e−(t−t′)/τBξ(t′)dt′. (2.76)

Thus, the mean velocity ⟨v⟩ decays exponentially in time, unless there is an external
drift. The time scale of this decay is the momentum relaxation time τB, defined as
τB = m/γ. One can arrive at the following expression for the displacement x(t) [155]

x(t) = v(0)τB
(︁
1− e−t/τB

)︁
+

1

γ

∫︂ t

0

(︂
1− e−(t−t′)/τB

)︂
ξ(t′)dt′, (2.77)

where we set the initial displacement to zero. Then, the second moment of the dis-
placement is

⟨xi(t)xj(t)⟩ = τ 2Bvi(0)vj(0)
(︁
1− e−t/τB

)︁2
+2

kBT

γ
δij

∫︂ t

0

(︂
1− 2e−(t−t′)/τB + e−2(t−t′)/τB

)︂
dt′δij

= τ 2Bvi(0)vj(0)
(︁
1− e−t/τB

)︁2
+

2kBT

γ

(︃
t− 3

2
τB + 2τBe

−t/τB − 1

2
τBe

−2t/τB

)︃
δij, (2.78)
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2.2 Self-propulsion on the micron scale

where we have already used ⟨ξi(t)ξj(t′)⟩ = 2kBTγδ(t − t′). We recognize that the
diffusive scaling x2 ∼ t is reached exactly when t ≫ τB, i.e., for times much larger
than the momentum relaxation time. In particular, it follows that the mean squared
displacement ⟨|x|2⟩ behaves as [33, 155]

⟨|x|2⟩ = 6Dtranst. (2.79)

Note that the second moment of the velocity can be calculated to be [155]

⟨vi(t)vj(t)⟩ =
kBT

m

(︁
1− e−2t/τB

)︁
. (2.80)

Thus, consistent with the equipartition theorem, we have for long times [155]

m

2
⟨|v|2⟩ = 3

2
kBT. (2.81)

It is possible to estimate the time scale of the diffusive processes. For a sphere
of radius R, we use the translational diffusion constant Dtrans in order to express the
typical time it takes the particle to be displaced a distance R. This time is

τdiff = R2/Dtrans. (2.82)

Rotational diffusion

Since a suspended colloid usually experiences random torques along with random forces,
we also have to consider rotational diffusion. This is typically important for rod-shaped
particles [155]. However, as we will see below, a spherical active particle has a fluctu-
ating orientation vector, therefore we have to consider rotational diffusion. The laws of
rotational diffusion are similar to those of translational diffusion. First, the overdamped
Langevin equation for the angular velocity Ω is [155]

Ω = Γ−1
rotText + Γ−1

rotζ(t), (2.83)

using the external torque Text and the rotational friction Γrot. The stochastic torque ζ
is again characterized by white Gaussian noise.

The Stokes-Einstein relation also exists for rotational diffusion and has the form
[154]

Drot = kBTΓ
−1
rot, (2.84)

For a scalar friction coefficient γrot, we have Drot = kBT/γrot. Then, the time scale for
rotational diffusion is given by τr = 1/Drot.

Smoluchowski equation

Considering the motion of a particle under thermal fluctuations, it is possible to de-
rive an equation for the probability density of the particle position, ρ(r, t), from the
stochastic differential equations [155]. This Smoluchowski equation takes the form

∂tρ = −∇ ·D
(︃

F

kBT
−∇

)︃
ρ, (2.85)
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where F is an external force. One often writes the right-hand side as the negative
divergence of a probability current,

j = µFρ−D∇ρ, (2.86)

where µ = D/kBT is the mobility matrix. This offers a good intuition: A stationary
probability density is reached, when the diffusive and deterministic currents balance
each other.

Persistence

In contrast to passive colloids, active particles move with a drift velocity. This intro-
duces an additional time scale τ0 = R/v0, where R is the radius of the active particle
and v0 is the active velocity. The active Péclet number Pe is the ratio between the
diffusive time scale and the ballistic time scale of active motion:

Pe =
τdiff
τ0

=
v0R

Dtrans

. (2.87)

A high Péclet number means that the swimmer’s self-propulsion dominates translational
diffusion. However, we still need to consider orientational noise, since the persistence of
the swimming direction is also affected by rotational diffusion [154]. Hence, we compare
the ballistic time scale τ0 to the rotational diffusion time, which yields the persistence
number

Per =
v0

RDrot

. (2.88)

Typical Péclet numbers are on the order of several 100 for biological swimmers like
E. coli and B. subtilis [67, 156, 157], and 10 − 100 for catalytic Janus particles [8,
141]. The persistence number is around 150 for E. coli and around 20 for the catalytic
particle.

The active Brownian particle

The active Brownian particle is one of the simplest model descriptions of active mat-
ter and one of the most used [33]. Despite its simplicity, it shows complex collective
behaviour, such as motility-induced phase separation [7] and polar order under gravity
[158]. This complexity emerges from the microscopic dynamics: since each particle has
its own self-propulsion, energy is introduced into the system on a local scale and each
particle goes through an irreversible process [7]. This characterizes the system as far
from thermal equilibrium, and sets it apart from a global driving of the whole system
with an external force [7].

The active Brownian particle is a spherical object with a self-propulsion velocity
v0e, where v0 is the constant speed and e the swimming direction, i.e., the particle’s
orientation. The dynamics of the particle is described as follows

ṙ(t) = v0e(t) +
Dtrans

kBT
ξ(t), (2.89)

ė(t) =
Drot

kBT
ζ × e. (2.90)
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2.2 Self-propulsion on the micron scale

The translational and rotational noise terms ξ and ζ satisfy the conditions of the
Brownian process outlined above.

Enhanced diffusion The diffusion process for active Brownian particles is different
than for passive particles, since the rotational noise couples to the translational motion
[33]. The mean squared displacement of the active Brownian particle is [26, 33]

⟨|x|2⟩ =
(︁
6Dtrans + v20τr

)︁
t− 1

2
v20τ

2
r

(︁
1− e−t/τB

)︁
. (2.91)

Here, we used the rotational decorrelation time τr = 1/Drot = 4R2/(3Dtrans). Thus, for
long times, we have the effective diffusion constant

Deff = Dtrans +
1

6
v20τr = Dtrans

(︃
1 +

2

9
Pe2
)︃
, (2.92)

which grows quadratically with the Péclet number.

Motility-induced phase separation The non-equilibrium nature of active colloids
becomes especially apparent in their phase behaviour. In particular, a liquid-gas phase
transition takes place in systems where particle-particle interactions are not attractive
but only repulsive, in contrast to passive systems [6, 7, 159, 160]. The speed of the
particles depends strongly on the density. This effect is a result of particle-particle
collisions, which slow the particles down locally [7]. Importantly, above a critical Péclet
number and a critical density, the purely diffusive reorientation away from an accumu-
lation of particles takes longer than the addition of external active particles that swim
into the cluster [6, 161]. Thus, density inhomogeneities start to grow. The topic of
motility-induced phase separation has attracted a lot of fascination and goes far be-
yond the model of the active Brownian particle. Thus, implications for hydrodynamic
swimmer systems have been discussed [42, 43, 162], as well as extensions and alterna-
tive models, such as particles with social interactions [32, 161, 163], or run-and-tumble
particles [164, 165]

2.2.4 Squirmer model

For an incompressible Newtonian fluid at low Reynolds number the Stokes equations (2.26)
hold. As we have seen, a large variety of swimming mechanisms exist, from using cilia
and flagella to different forms of phoretic effects. In order to model different kinds of
self-propulsion, we use a versatile approximation, which is called the squirmer model.
Here, we restrict ourselves to spherical squirmers, even though elongated squirmer mod-
els have been developed, as well [166, 167]. Lighthill [35] and Blake [36] were first to
describe the squirmer model. It is a swimmer that implements a surface actuation via
a prescribed surface velocity. In the following, we assume the velocity to be a purely
tangential slip velocity. The squirmer model is mainly inspired by ciliated organisms,
such as Paramecium. In the following, we write down a general squirmer model, using
Lamb’s solution. We calculate the flow field of a squirmer and discuss it in terms of
hydrodynamic multipoles.
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2. Physics of microswimmers

Figure 2.3: a) Sketch of a squirmer with orientation vector e and the attached orthonor-
mal system consisting of surface vector r̂S, e× r̂S and e− (e · r̂S) r̂S. b)-e) Surface flow
fields of spherical squirmers. All squirmers have a finite B1 mode of B1 = 0.1, so that
they can self-propel. b) Neutral squirmer B2 = C2 = 0, c) puller squirmer B2 = 0.5,
C2 = 0, d) pusher squirmer B2 = −0.5, C2 = 0, e) rotlet dipole squirmer B2 = 0,
C2 = 0.3.

Application of Lamb’s solution to squirmer

We use Lamb’s solution to the external problem from section 2.1.3, and use it to model
our swimmer with radius R. For the surface flow field we follow Pak and Lauga [100] and
assume an axisymmetric flow field5. We note that swimmers with more general surface
velocities can be modelled, as well [100]. With these requirements Lamb’s solution from
Eq. (2.33) yields [100]

u(r) =
∞∑︂
n=1

B̃n
(n+ 1)Pn

rn+2

(︃
r2

R2
− 1

)︃
er

+
∞∑︂
n=1

B̃n sinϑP
′
n

(︃
n− 2

nR2rn
− 1

rn+2

)︃
eϑ

+
∞∑︂
n=1

C̃n
sinϑP ′

n

rn+1
eφ (2.93)

Here, P ′
n is the derivative of the Legendre polynomial Pn. For the flow field in Eq.

(2.93), the swimming direction e is identical with the z-axis, i.e., where the angle ϑ = 0.

5This amounts to setting m = 0 for the associated Legendre polynomials in Eq. (A.4)
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The flow field at the surface r = R is consistent with the squirmer model by Lighthill

[35] and Blake [36], when setting B̃n = −Rn+2

n+ 1
Bn and C̃n = CnR

n+1. We change the
notation slightly and express the base vectors using the squirmer orientation e, see also
Fig. 2.3 a). Then the surface flow field of the spherical squirmer is

u(r)|r=R =
∞∑︂
n=1

Bn
2P ′

n(e · r̂)
n(n+ 1)

[−e+ (e · r̂)r̂]

+
∞∑︂
n=1

CnP
′
n(e · r̂) [e× r̂] .

(2.94)

We truncate the series after the B2 and C2 terms. Fig. 2.3 b)-e) show different kinds
of surface flow fields that can be realized with the remaining modes. We discuss them
further below. The resulting flow field becomes

u(r) =
B1

2

[︄(︃
−R
r
[e+ (e · r̂)r̂] + R3

r3
[−e+ 3(e · r̂)r̂]

)︃

− β
R2

r2
(︁
−r̂+ 3 (e · r̂)2 r̂

)︁
+ 6χ

R3

r3
(e · r̂) [e× r̂] +O

(︃
R4

r4

)︃]︄
.

(2.95)

We have defined the squirmer parameter β = B2/B1 and the chirality parameter χ =
C2/B1.

Note that the stokeslet field - decaying with 1/r - has not yet been eliminated.
Therefore, the flow structure described in Eq. (2.95) allows for external fields acting on
the swimmer and is not yet the field of a free squirmer. The reason for this is, that
we have not yet included the squirmer’s self-propulsion velocity v0 into the flow field,
with which it swims in the force-free case. We can therefore interpret the flow field Eq.
(2.95) as the pumping field of a squirmer held at constant position [100], which means
that the force acting on the squirmer is precisely the stall force Fa = 6πηRv0e. Taking
the definition of the force in Lamb’s solution in Eq. (2.50), we can set

Fa = 4πηR∇(e · r)B1 = 4πηRB1e
!
= 6πηRv0e. (2.96)

We arrive at the known relation for the active squirmer velocity

v0 =
2

3
B1. (2.97)

Thus, the B1 mode is responsible for self-propulsion, corresponding to a source dipole
flow field.

Free squirmer

So far, we have described a squirmer that is not moving but is held by an external force,
which we calculated above. We note that these calculations and the introduced flow
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fields are used later when we discuss our simulation results for squirmers under gravity.
In order to determine the flow field ufree of the freely moving squirmer, consider that the
moving body creates the same flow field as a dragged sphere, which was introduced in
Eq. (2.64), i.e., a stokeslet and a source dipole term [100]. The stokeslet contribution of
the dragged particle field exactly cancels the stokeslet term of Eq. (2.95). Consequently,
we have

ufree(r) =B1

[︄
1

3

R3

r3
[−e+ 3(e · r̂)r̂]

− β

2

R2

r2
(︁
−r̂+ 3 (e · r̂)2 r̂

)︁
+ 3χ

R3

r3
(e · r̂) [e× r̂] +O

(︃
R4

r4

)︃]︄
.

(2.98)

We can read off the coefficients p, s, q of the force dipole, source dipole, and rotlet
dipole, that were introduced in section 2.1.4, where

ufree(r) = pGD(e, e, r) + sGSD(e, r) + qRD(e, r). (2.99)

The parameter s is linked to the active velocity, as explained above. The parameter p
comes from the squirmer parameter β [87, 168], whereas the rotlet dipole strength q is
connected to the chirality parameter χ:

p = −3

4
βv0R

2 , s =
1

2
v0R

3 , q =
9

2
χv0R

3. (2.100)

Flow fields of squirmers

While the source dipole is necessary for the propulsion of the swimmer, we can tai-
lor the surface slip velocity and thereby the hydrodynamic signature, as we show in
Fig. 2.3 b)-e). As Eq. (2.98) shows, the highest order contribution is the force dipole,
as required by the force-free condition. The force dipole is controlled via the squirmer
parameter β. A squirmer with β < 0 is called a pusher, a squirmer with β > 0 a
puller, and a squirmer with β = 0 a neutral squirmer. The terms pusher and puller are
inspired by biological organisms. A breast-stroke motion, as performed by the biflagel-
late Chlamydomonas, pulls the fluid from the front of the swimmer. Puller squirmers
mimic the fluid flow that is induced in this way, as we show in Figure 2.4 b) and e).
Pushers, on the other hand, push fluid with their appendices in the back, such as sperm
cells or E.coli bacteria. The flow field of a pusher squirmer is shown in Fig. 2.4 c) and
f). The flow fields of pullers and pushers result from the strong fluid flow from the
north pole to the equator, and from the equator to the south pole, respectively, which
can be seen in Fig. 2.3 b) and c). Active emulsion droplets have been called ‘model
squirmers’, because they propel due to an induced surface flow field. Furthermore, the
squirmer model was originally inspired by ciliated protists [35]. Both of these cases can
be approximated by a neutral squirmer, whose flow field we also depict in Fig. 2.4 a)
and d).
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2.3 Hydrodynamic interactions

Figure 2.4: Bulk flow fields of a) a neutral squirmer β = 0, b) a puller β = 5 and c) a
pusher β = −5, shown as streamlines in the laboratory frame. Squirmers are oriented
towards the top of the figure. Subfigures d)-f) show the far fields.

The example of E.coli shows that this picture is not yet complete. Due to the
rotating motion of the flagella, a counter rotation is induced in the cell body. This
creates a rotlet dipole field for this swimmer [169, 170]. By setting the squirmer chirality
parameter χ ̸= 0, we can also model rotlet dipole fields [100]. The intrinsic chirality of
the rotlet dipole can be seen in the surface flow field of Fig. 2.3 e).

The representation of real swimmers by the squirmer model has some limitations.
For example, the experimentally occurring flow fields may vary in time due to a beating
cycle [171, 172], or may further depend on a chemical processes [122, 173].

2.3 Hydrodynamic interactions

Microswimmers induce a signature flow field in the fluid they inhabit. In some models,
such as the active Brownian particle, the details of these fields are ignored and swimmers
interact only via a particle-particle or particle-wall potential. However, the importance
of flow on swimmer dynamics is well established [39–44]. This includes both external
flow and interactions with surfaces or between swimmers [37, 174].

For many of the phoretic swimmers we discussed above, the dynamics of the chem-
icals that supply the catalytic or surfactant reactions is very important. The dynamics
of the chemicals induces additional interactions between swimmers and with surfaces
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2. Physics of microswimmers

[91, 175, 176]. For our studies, we will neglect the dynamics of these solvent parti-
cles and the emerging additional interactions, which strongly depend on the particular
swimmer. Instead, we study the generic effects of hydrodynamic interactions that are
relevant for any swimmer. This helps to understand and estimate the role of hydrody-
namic interactions even in the presence of other interactions.

In the following, we present the important Faxén theorems for translation and ro-
tation and discuss both far- and near-field hydrodynamic interactions.

2.3.1 Faxén Theorems

The rigid body motion of a particle is influenced by its surrounding flow field. The force
and torque experienced by a spherical particle in an ambient flow has been calculated
by Faxén [82, 177]. The formulae are called the Faxén theorems of translation and
rotation and state that

F = 6πηR

(︃
1 +

R2

6
∇2

)︃⃓⃓⃓⃓
x=xc

u0(x)− 6πηRU, (2.101)

T = 8πηR3

(︃
1

2
∇× u0(x)

)︃⃓⃓⃓⃓
x=xc

− 8πηR3Ω. (2.102)

Here, xc is the center of mass of the particle and u0 is the surrounding flow field without
the particle.

These laws are relevant for interactions with a boundary and for swimmer-swimmer
interactions. In the case of the no-slip boundary, the swimmer interacts with its own
flow field and experiences effective attraction, repulsion, and reorientation due to the
modifications of the flow by the no-slip wall [87]. On the other hand, the background
flow field can also be induced by a another particle, or indeed by a whole suspension of
particles. For example, we know the flow field of a particle dragged by a force F1 from
Eq. (2.64), which is a combination of a stokeslet and a source dipole. If we consider this
induced flow as the ambient flow of a second sphere, Faxén’s law of translation dictates
for the velocity of this second sphere V2 [82]

V2 =
1

6πηR
F2 −

(︃
1 +

R2

6
∇2

)︃⃓⃓⃓⃓
x=x2

(︃
1 +

R2

6
∇2

)︃
O (x− x1)F1, (2.103)

with the Oseen tensor O. For simplicity, we have assumed that both spheres have the
same radius R.

Obviously, the same formula can be applied to the first particle from which follows
another correction. The iterative calculation of the forces and torques in a suspension
by a repeated application of the Faxén theorem is known as the method of reflections
[155]. However, we will usually only consider the leading orders of the flow fields we
encounter.

2.3.2 Interactions with a no-slip boundary

Colloids or microswimmers in a fluid encounter boundaries. Clearly, the presence of
boundaries changes the solution of the Stokes equations, since they impose additional
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2.3 Hydrodynamic interactions

Figure 2.5: Singularity flow fields for a multipole located above a no-slip wall including
its image singularities. The wall coincides with the z = 0 plane at the bottom of the
plot. We confirmed that the flow field there is zero. a) Stokeslet pointing in negative z
direction, b) force dipole with ê = −f̂ = −ez and c) source dipole with f̂ = −ez.

Table 2.1: Composition of the wall image singularities for different multipoles of Stokes
flow

Multipole Image singularities
stokeslet stokeslet, force dipole, source dipole

force dipole force dipole, force quadrupole, source dipole, source quadrupole
source dipole source dipole, force quadrupole, source quadrupole

rotlet rotlet, force dipole, source dipole
rotlet dipole rotlet dipole, force quadrupole, source dipole, source quadrupole

conditions on the fluid flow. Green’s function in half-space — a fluid with an infinite
no-slip wall in the z = 0 plane — can be calculated and is called the Blake tensor [178].
Similar to electrostatics, it consists of a system of image singularities in the region
z < 0, opposite to the fluid. This image system counteracts the stokeslet in a way that
fulfills the no-slip condition. The Blake tensor for a wall at z = 0 and a point force at
position r0 = (x, y,∆z) is [87, 178]

B(r, r0, e) =GS(r− r0, e) +G∗
S(r− r0, e)

=GS(r− r0, e)−GS(r− r∗0, e)+

sinϑ
(︁
2∆zGD(r− r∗0, eρ, ez)− 2∆z2GSD(r− r∗0, eρ)

)︁
+

cosϑ
(︁
−2∆zGD(r− r∗0, ez, ez) + 2∆z2GSD(r− r∗0, ez)

)︁
,

(2.104)

where r∗0 = r−2∆zez is the position of the image, e is the orientation of the point force,
and we measure the angle ϑ from the vertical. Finally, we have eρ = (cosφ, sinφ) in
the plane. The mirrored stokeslet term GS(r− r∗0, e) directly counteracts the stokeslet
above the wall. However, it is not enough to fulfill the no-slip boundary condition at
z = 0. Therefore force dipole and source dipole terms are needed, as well.

In the same way, we can introduce image singularities for higher order singularities.
Various terms have been calculated by Blake and Chwang [179], and Spagnolie and
Lauga [87]. We provide an overview in Table 2.1. Note that all the image singularities
are positioned at the mirrored position r∗0. The terms are not simply added together, but

32



2. Physics of microswimmers

have specific pre-factors. Furthermore, the composition of singularities differ depending
on whether one looks at the direction parallel or perpendicular to the wall. The concrete
image systems can be found in Appendix B and in Ref. [87]. We show the flow fields
of a stokeslet, a symmetric force dipole and a source dipole singularitiy close to a wall
in Figure 2.5. These are the most relevant contributions for a squirmer under gravity.

2.3.3 Mobility matrix

A passive sphere dragged in wall proximity experiences a non-homogeneous hydrody-
namic resistance. For example, it is obvious that the friction has to increase the closer
a particle gets to the no-slip wall in order to not crash into it. The resulting mobility
matrix has wall-parallel and wall-perpendicular contributions and consists of a transla-
tional part, a rotational part and a translation-rotation coupling. We provide the first
terms of the series expansion for no-slip walls, computed by Perkins and Jones [180].
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The indices ⊥ and ∥ refer to motion perpendicular or parallel to the plane of the wall.
For the translation-rotation coupling term µtr, there exists no component perpendicular
to the wall.

Additionally, Brenner obtained an exact result for the friction associated with mo-
tion perpendicular to the wall [181]

γtt⊥(z) =
4

3
sinh q(z)

∞∑︂
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
×[︃

2 sinh ([2n+ 1]q(z)) + (2n+ 1) sinh (2q(z))

4 sinh2 ([n+ 1/2]q(z))− (2n+ 1)2 sinh2 (q(z))
− 1

]︃
,

(2.110)

with
q(z) = Arcosh(z/R). (2.111)

Two-wall friction For the two-wall system, Green’s function has been determined by
Liron and Mochon [182], which is particularly useful for Hele-Shaw geometries (i.e., fluid
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2.3 Hydrodynamic interactions

compartments with very close vertical walls) [167]. It has been extended to solutions
for force multipoles by Bhattacharya and Bławzdziewicz [183]. For walls that are far
apart, a superposition approximation for the friction can be used [184, 185]:

γ2w(r) = γwall(z − w1) + γwall(w2 − z)− 1, (2.112)

where without loss of generality, the direction perpendicular to the walls is the z-
direction, w1 is the position of the bottom wall and w2 the position of the top wall.
This approximation has been tested against solutions using hydrodynamic images, with
the result that for large enough separations the error stays small [183–185].

2.3.4 Lubrication

For particles in close proximity to walls or to each other, lubrication theory provides
approximations for the flow fields, which are often not known exactly. For the discus-
sion of flow fields at small distances one introduces the smallness parameter ε, which
determines the minimum clearance between two particles [82, 186], denoted here by
∆ = εR. The case of interactions between a colloidal particle and a wall is then treated
by setting the radius of the second particle to infinity. The motion at close distance
creates frictional forces and torques that differ from the far field terms. In particular,
they show a particular type of divergence for ε→ 0, when expanded in terms of ε. The
characteristic scaling depends on the direction of motion that the particle performs.
Thus, one differentiates between shearing and squeezing motion.

We present the results for squeezing and shearing motion of a colloid at a wall in
the following. A more detailed treatment can be found in Refs. [82, 186]. Importantly,
the treatment provided here does not include a slip velocity on the colloid’s surface.
However, this becomes relevant when we consider the near field interactions of squirmer
microswimmers [187].

Squeezing motion

We consider here the motion of a colloidal particle towards a no-slip wall, at close con-
tact. We use cylindrical coordinates (ρ, ϑ, z) and, without loss of generality, assume
that the colloid moves in the z-direction with velocity U . The no-slip boundary condi-
tion on the surfaces dictates that the flow velocity at the boundaries is zero. Following
Ref. [82], one can approximate the spherical surface of the particle in the vicinity of the
closest point to the wall by

z(ρ) = εR +
ρ2

2R
+O

(︃
ρ4

R3

)︃
. (2.113)

After introducing the stretched coordinates ρ̃ = ρ/(
√
εR) and z̃ = z/(εR) [82], the

equation for the surface in stretched coordinates becomes

z̃(ρ̃) = 1 +
ρ̃2

2
+
ερ̃4

8
+O(ε2). (2.114)

This approximation simplifies the boundary condition to the Stokes equations.
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Here, the typical way of solving the Stokes equation consists of using a stream
function ψ with u′ρ = 1/ρ ∂ψ/∂z and u′z = −1/ρ∂ψ/∂ρ, where u′ = u/U is the flow
field normalized by the particle velocity U . The resulting equation [82](︃

∂2

∂z̃2
+ ε

(︃
∂2

∂ρ̃2
− 1

ρ̃

∂

∂ρ̃

)︃)︃2

ψ = 0 (2.115)

is solved by performing a regular expansion in ε [82, 186]. The resistance force follows
from the solution of the flow field, by integrating the stress tensor over the sphere
surface, as shown in Eq. (2.47) [82, 186].

For the squeezing motion, the leading orders of the resistance force FR on the passive
sphere are [82]

FR/(6πηRU) = −A1ε
−1 − B1 ln

(︁
ε−1
)︁
+ C1 −D1ε ln

(︁
ε−1
)︁
+O(ε), (2.116)

where Refs. [82, 188] have A1 = 1, while the constants B1, C1, D1 can be determined by
a matching procedure to the far field and depend on the exact geometry of the problem,
such as the radii of two spheres at close contact.

Shearing motion

We also briefly present the result for the shearing motion at close contact. Here, the
resistance force is [82, 189]

FR/(6πηRU) = −B2 ln
(︁
ε−1
)︁
+ C2 −D2ε ln

(︁
ε−1
)︁
+O(ε). (2.117)

Ref. [82] has B2 = 8/15. The induced torque has terms of the same order in ε [82, 189]:

TR/(8πηR
2U) = β2 ln

(︁
ε−1
)︁
+ γ2 + δ2ε ln

(︁
ε−1
)︁
+O(ε), (2.118)

with β2 = 1/10 and matching constants γ2 and δ2 [82].

2.4 Motion under gravity

The motion of active colloids under external fields is an exciting aspect of their non-
equilibrium dynamics [5, 51–56, 59, 190, 191]. Real microswimmers often sediment
due to their weight [53, 55, 91, 192, 193], therefore it is important to understand how
gravity affects their dynamics. Fascinating phenomena in nature, such as patch and
layer formation of plankton [23, 70], hovering rafts of active emulsion droplets [144] and
dancing states of algae [61] can be attributed to the motion of swimmers under gravity.

We start by discussing the sedimentation of passive particles and active Brownian
particles. Then we describe how gravity is used as a cue for specific forms of taxis,
which are called gravitaxis and gyrotaxis. We also provide examples from biology,
where hydrodynamic interactions lead to pattern formation in systems under gravity.
These effects are subsumed under the name bioconvection.
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Figure 2.6: Vertical density profiles for systems of active Brownian particles. Using the
gravitational Péclet number Peg = 10, we show the height profiles of passive sedimenta-
tion (black solid line) and the sedimentation of active Brownian particles with Pe = 20
without (red dashed line) and with bottom-heaviness. We measure bottom-heaviness
via the rescaled torque r0/(Rα), where r0 is the backward shift of the center of mass.
The blue dotted line corresponds to a weaker strength of bottom-heaviness and shows
conventional sedimentation, whereas the green dash-dotted line shows inverted sedi-
mentation. Adapted from Ref. [158], where we have set up the systems such that the
concentration at the wall ρ0 is equal for all cases.

2.4.1 Passive sedimentation

Under gravity, a passive colloid sinks to the bottom of the system, which is a deter-
ministic motion. Additionally, the particle diffuses, as outlined in Section 2.2.3. This
results in an exponential density profile with a characteristic length called the sedimen-
tation length δ0, which describes how high the thermal fluctuations typically raise the
particle above the bottom wall. In mathematical terms, the density profile is

ρ(z) = ρ0e
−(z−zwall)/δ0 . (2.119)

It is clear that δ0 must depend on the buoyant weight of the particle, as well as
on the temperature. In fact, balancing the fluxes in the Smoluchowski equation [Eq.
(2.85)] immediately gives the above equation with the sedimentation length [51]

δ0 =
kBT

∆mg
, (2.120)

where ∆m is the buoyancy mass.

2.4.2 Active Brownian particles under gravity

Palacci et al. studied the non-equilibrium sedimentation of active Janus colloids [53]
and discovered that the sedimentation length is much larger than for the passive case.
Using active Brownian particles, one can understand this behaviour, by balancing the
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drift and diffusion current [51, 54]. This is the same calculation one can do for passive
colloids, however, the enhanced diffusion creates a new effective sedimentation length
[51]

δeff = δ0

(︃
1 +

2

9
Pe2
)︃
. (2.121)

One can define the gravitational Péclet number

Peg =
∆mgR

kBT
=
R

δ0
, (2.122)

which compares the radius of the particle to the sedimentation length. Combining the
active and gravitational Péclet numbers, we arrive at the parameter

α :=
Pe

Peg
=

v0kBT

∆mgD
=

v0
vsed

. (2.123)

which is the velocity ratio between the active velocity and the passive sedimentation
velocity in bulk vsed = ∆mg/γ. The parameter α is an important control parameter in
our studies.

In Fig. 2.6 one can see the stark contrast between passive and active sedimentation
by comparing the black solid line of a passive particle with the red dashed line of
a sedimenting active Brownian particle. Both particles experience the same gravity
corresponding to Peg = 10. However, the active sedimentation length is much larger,
thus the decay is much slower.

Importantly, the orientational dynamics play a big role for active particles, because
they couple directly to their translational motion. It was shown that the kinematics
under gravity lead to an increase of polar order of active Brownian particles. This
increase is balanced by a diffusive current, thus resulting in a stationary orientational
distribution [51, 54]. One can further manipulate the orientational dynamics by intro-
ducing an external gravitational torque. For example, for a bottom-heavy particle the
center of mass is offset by a length r0 from the geometrical center. This induces the
torque

Tbh = mgr0ez × e, (2.124)

which tends to align the particle anti-parallel to the gravity vector −gez. Here, we can
define the rescaled bottom-heavy torque r0/(Rα) as a dimensionless measure. Studying
bottom-heavy active Brownian particles, Wolff et al. discovered that the sedimentation
profile can be inverted [158]. Thus, at sufficiently high external torques, particles are
more likely to have a high potential energy than a low one in the external field, in
strong contrast to the expectations in thermodynamic equilibrium. We can see the
effects of bottom-heaviness in Fig. 2.6, firstly by the increased sedimentation length of
the dotted blue line for r0/(Rα) = 0.05. Secondly, we indeed observe an inversion at a
higher external torque of r0/(Rα) = 0.25 (green dash-dotted line).

2.4.3 Gravitaxis and gyrotaxis

A gravitational torque strongly influences microswimmer dynamics, as explained in the
previous section for active Brownian particles. The tendency to move anti-parallel to

37



2.4 Motion under gravity

the direction of gravity is also called negative gravitaxis [158, 190, 191]. Note that we
have used different symbols for the mass occurring in the sedimentation velocity (∆m)
and the bottom-heavy torque (m). The reason is as follows. While sedimentation
depends on the buoyancy and thus on the density difference between the sinking body
and the fluid, the reorientation from bottom-heaviness depends on the gravitational
mass itself. However, in the following, we use the assumption ∆m ≈ m. Alternatively,
one may simply redefine r0 as r0m/∆m [158].

Furthermore, there exist other mechanisms of gravitational reorientation. In par-
ticular, fore-aft asymmetries induce a different, viscosity-based gravitational torque,
which is an effect of the sedimentation and thus of ∆m [59, 71, 190]. We note that the
results of our studies in the following chapters do not depend on the source of the gravi-
tational torque. However, since we use spherical swimmers without fore-aft asymmetry,
bottom-heaviness remains the natural choice for creating the external torque.

Gravitaxis of biological organisms could be a purely passive effect, or it could be the
result of physiological and perceptive mechanisms in a cell. Already in the 19th century,
Verworn considered this question and expressed doubt that the response to gravity
would be an active reaction of the organism [194]. This topic remains controversial,
since for some organisms there is evidence of a perceptive apparatus [118, 119, 195].
Similarly, it is unclear if gravitaxis brings an evolutionary advantage [196]. It could for
example influence the access to oxygen or sunlight or offer a predatory advantage [56,
197]. Interestingly, phytoplankton can strategically diversify its gravitactic response in
order to avoid turbulent regimes [71], supporting the idea of gravitaxis as an evolved,
learned response.

Importantly, gravity acting on a swimmer also induces a flow, represented by a
stokeslet in the far field, which strongly influences the effective sedimentation of passive
clusters [198]. The importance of flow is further emphasized by the phenomenon of
gyrotaxis. Here, gravity and flow both influence the dynamics of a swimmer or the
collective behaviour of many swimmers [15, 56]. Here, the effects of fluid vorticities
is especially important [57, 58, 60]. Studies on the formation of a fluid pump in a
harmonic trap potential can serve as an illustration for this behaviour [51, 192, 199]:
Active particles in the trap are first oriented radially outward. Due to their stokeslet
vorticity fields the swimmers are reoriented and swim towards each other, which changes
the configuration. If rotational diffusion and viscous reorientation from the stokeslets
are balanced, a stable cluster with high polar order forms - since this transports fluid
from one side to the other, it is referred to as a pump [192, 199].

Bioconvection

As we described in Sec. 2.2.2, both prokaryotic and eukaryotic cells evolved to swim un-
der low Reynolds number conditions. Likewise, bioconvection occurs for the bacterium
Bacillus subtilis [157, 200], the protists Paramecium and Tetrahymena [201, 202] and
various forms of the Chlamydomonas alga [56, 109, 197, 203, 204].

In general, one can understand bioconvection as the self-organized collective motion
of biological cells [204, 205]. For example, it is known that bacteria orient upstream in
a channel flow and thus form an focussed state [15]. Another example is the collective
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patch formation of phytoplankton resulting from gyrotaxis in turbulent flows [23, 58,
70]. Plumes are among the most studied patterns of bioconvection. They are finger-
like sinking structures that emerge from the homogenous phase [56, 157, 203, 206].
They can either appear at the top layer of the system and sink down due to density
fluctuations in the stratified layers [56, 206–208], or they can emerge as bottom-standing
plumes [56], which do not require the top wall to form. The formation of the latter
is likely caused by a gyrotactic mechanism [56, 109, 203, 209–211]. For systems of
Chlamydomonas and Bacillus subtilis, other mechanisms have been suggested which
include either phototactic effects [204, 212], or chemotaxis and chemodiffusion in the
oxygen field [200]. Thus, there is no clear and concise picture of what exactly causes
plumes to appear. In particular, the roles of hydrodynamic interactions and of gyrotaxis
need to be specified further.
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3. Numerical methods

In Chapter 2 in the sections on hydrodynamics, we introduced the momentum balance
equation for the continuum fluid, which brought us to the Navier-Stokes and Stokes
equations. These equations can be solved numerically by discretization techniques,
such as the finite element or finite volume methods [213, 214] or the smoothed-profile
method [215]. The special properties of the Stokes equations can be exploited in order
to find a solution with the boundary element method [216]. Here the problem is reduced
to finding a solution on the boundaries.

The above methods solve a differential or integral equation in an approximate way.
We use a different approach to determine the fluid dynamics, by using a mesoscopic
method. After introducing this family of techniques, we present the algorithm of multi-
particle collision dynamics (MPCD), which we will use throughout this work. It consists
of a streaming and a collision step. We discuss the hydrodynamic properties of our
model fluid. Later, we describe how boundaries, such as solute particles and walls, can
be introduced to the system and discuss the effective friction experienced by a colloid.

3.1 Mesoscale simulation techniques

The term mesoscopic denotes a regime within the hierarchy of length scales between
the atomic or molecular scale and the continuum scale. Historically, the continuous
description of fluids predates the knowledge of the corpuscular structure of matter.
With the wisdom of hindsight, in the 20th century, fluid dynamic equations were derived
from the dynamics on a smaller scale. This justifies methods working on a scale smaller
than the continuum scale which nonetheless recover the correct fluid dynamics. To
be specific, if la is the atomic length scale that resolves the details of the chemical
constituents, we are concerned with the scale lmfp ≫ la of the mean free path of these
atoms or molecules, i.e., the typical distance they travel between collisions. On this
length scale the details of the constituents are irrelevant, therefore the highly fluctuating
dynamical variables, such as positions and velocities, can be replaced by their average
values [65].

Examples for mesoscopic methods are Dissipative Particle Dynamics (DPD) and
Lattice-Boltzmann simulations. DPD models the fluid as a motion of point-like fluid
particles. On the one hand they move ballistically, which is called the streaming step.
On the other hand, they transfer momentum between each other due to effective colli-
sions within a pre-defined interaction radius [217]. In Lattice-Boltzmann simulations,
the fluid is modelled on a discrete lattice by distribution functions of microscopic den-
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sity and velocity [218]. Momentum transport is achieved by streaming fluid to a finite
set of neighbor lattice sites according to the velocity distributions. In a subsequent step
the Boltzmann collision equation is solved on each lattice site. We revisit the organiza-
tion into a streaming and a collision steps when we describe the method of our choice,
multi-particle collision dynamics.

Mesoscale simulation methods are able to recover the Navier-Stokes equations at the
coarse-grained scale [219, 220], meaning that their hydrodynamic fields are governed
by the same differential equations, which conserve mass and momentum. However, the
constitutive relation of the simulated fluid, as well as the transport coefficients can be
different than in continuum theory [65], and one usually cannot match all of them to
the experimental setting at the same time. Importantly, the algorithm has to satisfy
symmetries, such as Galilean invariance [65].

An advantage of mesoscale methods is that conservation equations can be enforced
directly. For example, in Lattice-Boltzmann methods the right velocity distribution
is prescribed and in MPCD we include momentum or angular momentum conserving
steps. Of course, it has to be shown rigorously that the continuum equations are
indeed recovered. For MPCD, this has been done by Malevanets and Kapral using the
Boltzmann equation and the Chapman-Enskog expansion [64].

Thermal fluctuations are an important factor in choosing a simulation technique.
These are typically not included in the continuum equations, but are important for a
wide range of phenomena, in particular in biological and soft matter physics. DPD and
MPCD already include thermal fluctuations and they can be incorporated into Lattice-
Boltzmann schemes, as well. Thus, we can summarize the advantage of mesoscale
simulation techniques in two main points: since microscopic degrees of freedom are
averaged out, behaviour at larger time scales can be studied efficiently; at the same
time, thermal fluctuations can still be included.

3.2 Multi-particle collision dynamics

Multi-particle collision dynamics (MPCD) models the fluid by point-like fluid particles
with unit mass whose averaged dynamics represents the flow field of the fluid [64].
In contrast to the Lattice-Boltzmann method, position and velocity of the fluid are
continuous variables [65]. It is thereby related to the Dissipative Particle Dynamics
(DPD) approach [65, 221].

MPCD has been used for a large variety of systems [65, 222], including polymers
[223], studies of inertial effects [224, 225], chemically driven systems [226], vesicles
[227], and the African trypanosome parasite [18]. It has also been succesfully used for
squirmer microswimmer simulations [42, 43, 162, 228–230].

In this chapter, we first present the algorithm of the MPCD method, which consists
of a streaming and a collision step. We then present some options for the choice of
the collision operator. Afterwards, we discuss the hydrodynamic consequences that
follow from the way the fluid is modelled, such as the expression for the fluid stress
and kinematic viscosity. Furthermore, we discuss how boundaries, colloidal particles or
microswimmers are included in the algorithm.
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3.2.1 Main algorithm

In the following we describe the dynamics of the fluid particles that lead to a flow field
consistent with the Navier-Stokes equations. As mentioned above, the method consists
of two steps, the streaming step and the collision step.

Streaming step

The streaming step consists of updating the fluid particles, i.e., solving Newton’s equa-
tions of motion. Thus, momentum is transported through the fluid along with the
particles. Additionally, the dynamics of any materials in solution, such as colloids, are
calculated in the streaming step. This coupling is described in further detail in Sec. 3.3.
The choice of the duration of the streaming step ∆t is important, because it influences
the physical properties of the fluid.

The positions of the fluid particles are updated during this step via

ri(t+∆t) = ri(t) + vi(t)∆t. (3.1)

We can add pressure gradients by accelerating fluid particles with a constant force. In
this case one has to use further integration for the accelerated fluid particles, such as
Velocity-Verlet integration [231].

Collision step

For the collision step, we define a length scale a0 which serves as the lattice constant of
a cubic lattice. The cells of the lattice - which we call the MPCD collision cells - serve
as the interaction volume of the fluid particles in the collision step. The average number
nfl of fluid particles per collision cell is an important property of the MPCD fluid. The
collision step consists of reorienting all fluid particle velocities in a cell using a collision
operator, in a way that leaves the average velocity in a cell constant. All particles in a
cell are rotated simultaneously and different cells can have different collision operators
[64].

We express the collision step as

vi(t+∆t) = Vµ + C
(︂
{rj}µ , {vj}µ

)︂
(3.2)

with the collision operator C and the average velocity Vµ of the collision cell with
index µ. The sets {...}µ refer to all particles within this cell. In the original paper by
Malevalets and Kapral [64] the collision operator consisted of rotating the difference
vectors vi(t) − Vµ by a fixed angle α around a random axis. Therefore, this original
method is also called stochastic rotation dynamics (SRD) [64]. In Sec. 3.2.2 we describe
various collision rules in more detail.

Galilean invariance The MPCD method works under the assumption of molecular
chaos for the fluid particles [65]. This also ensures translational symmetry. Therefore,
correlations between them have to be avoided, in order to ensure Galilean invariance
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[232]. However, the collision step introduces correlations between the fluid particles. In
order to amend this, a grid shift procedure is performed, where for every new collision
step, the whole grid of collision volumes is translated by a random amount dshift between
−a0/2 and a0/2 [232].

Technical aspects

Units The MPCD method entails natural units for our simulations. We use the edge
length of the collision cells a0 as a unit for length and the mass m0 of the fluid particles
as a unit for mass. The thermal energy kBT0 serves as a unit of energy. Thus, forces
are given in units of kBT0/a0 and velocities in units of

√︁
kBT0/m0. While the unit of

time follows as a0
√︁
m0/kBT0, we sometimes also use the duration of the streaming step

∆t as a reference time.

Implementation Performing computer simulations of fluid systems can incur high
computational cost. For example, a typical cubic system with size 108a0×108a0×108a0
with nfl = 10 fluid particles per cell means that trajectories of more than 107 fluid par-
ticles need to be calculated. Thus, the software we use is compiled such that it can
be run on multiple processing units simultaneously. For parallelization, we use a high-
performance computing cluster using approximately 150 CPU cores with a software
written in C. Alternatively, we also run simulations on graphics processing units imple-
mented in a software written in C++ and CUDA∗.

3.2.2 Collision rules

The collision step presented above allows for several different implementations of a
collision operator. Here we present a selection of collision rules, which are established
in research.

The original method is called the MPC-SRD algorithm and is presented first. In
a SRD collision, the kinetic energy of the fluid particles is conserved locally, since
they are only rotated [64]. In contrast, other methods use a thermostat, connecting
the system to a heat bath [233]. Thus, different simulation methods can operate in
different thermodynamical ensembles. Momentum conservation is ensured by all the
presented collision rules, as it is a necessary pre-condition for recovering the Navier-
Stokes equation on a coarse-grained level. However, angular momentum conservation
is not satisfied automatically and has to be added to the algorithm by hand.

SRD

The stochastic rotation dynamics algorithm was the original algorithm proposed by
Malevanets and Kapral [64]. Its collision rule is

Cµ(ri, {rj}µ, {vj}µ) = Rµ∆vi, (3.3)
∗The core algorithms of the C and C++ programs have been written by M. Maurer and A. W. Zan-

top, respectively. The CPU high computing power resources were provided by the North-German Su-
percomputing Alliance (HLRN).
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where ∆vi = vi−V. In three dimensions, the matrix Rµ is a rotation around a random
axis nµ by a fixed angle α, which is the same for all collision cells. Note that the axis
nµ differs from cell to cell. Consequently [65],

Cµ(ri, {rj}µ, {vj}µ) = ∆vi,⊥ cosα + (∆vi,⊥ × nµ) sinα +∆vi,∥. (3.4)

The parallel and perpendicular parts are determined with respect to nµ. It has been
shown that an H-theorem can be derived for this collision rule and that the velocity
distribution is Maxwellian [64]. Since the energy is conserved locally, the states of the
fluid particles in a collision cell are part of the microcanonical ensemble.

Thermostats

In order to control the temperature of the system, it is necessary to connect it to a heat
bath. Consequently, we want to set up the system in the canonical ensemble, where a
collision cell can exchange heat with its surroundings. The new collision rule substitutes
the random rotations of SRD by random relative velocities with respect to the average
[65, 221]. We present two different rules to achieve this. One is called the Andersen
thermostat, after H. C. Andersen [234], which we call MPC-AT. The other one is the
Langevin thermostat [221], which we call MPC-LT. Note that angular momentum is
not conserved by these collision rules.

Andersen thermostat The MPCD collision operator of the Andersen thermostat
is:

Cµ(ri, {rj}µ, {vj}µ) = vrand
i − 1

N c
µ

∑︂
j∈µ

vrand
j , (3.5)

where N c
µ is the number of fluid particles in the respective collision cell. The random

velocities are drawn from a Maxwell-Boltzmann distribution at the desired temperature
T0.

Langevin thermostat Noguchi, Kikuchi, and Gompper [221] describe an alternative
thermostat, called the Langevin thermostat. It applies the friction and noise parts of
the Langevin equation on a particle, i.e., a force of the form [221]

fLT = −γvi +
√︁

2kBT0γξi. (3.6)

As usual, ξi is described by Gaussian white noise. We need to adjust the deterministic
and random terms, in order to ensure the fluid properties that we have discussed before.
Then, the force applied to a fluid particle reads:

fMPC−LT = −γ
(︁
vi −Vµ

)︁
+
√︁

2kBT0γ

(︄
ξi −

1

N c
µ

∑︂
j∈µ

ξj

)︄
. (3.7)

Therefore, in this method, no random velocities are drawn, but instead stochastic forces
are used. In the MPC-LT rule, a friction coefficient γ of the fluid particles is provided
explicitly, and thus does not have to be calculated from the fluid properties [221]. The
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numerical integration of the velocities is more involved, due to the stochastic nature of
the force. Here, the leap-frog algorithm can be used during the streaming step [221].

Angular momentum conservation

Both SRD and the collision rules with thermostats recover the correct hydrodynamic
equations. However, as we will see in the next chapter, the stress tensor is not sym-
metric, which leads to the unphysical lack of angular momentum conservation. This
drawback creates incorrect results [235]. To restore angular momentum conservation
the collision rules have to be changed further [221, 235, 236].

For the SRD algorithm the collision angle α cannot stay constant, but needs to be
different for each cell. Actually, it depends explicitly on the particular fluid particle
positions according to the equations [65, 236]

sinα = − 2AB

A2 +B2
, (3.8)

cosα =
A2 − B2

A2 +B2
, (3.9)

A =

Nc
µ∑︂

i=1

(︁
ri × (vi −V)

)︁
· ez, (3.10)

B =

Nc
µ∑︂

i=1

ri ·
(︁
ri × (vi −V)

)︁
. (3.11)

This algorithm is called SRD+a. The authors of Ref. [65] describe it as rather time-
consuming, since the collision angle α needs to be calculated for every cell in every time
step.

The angular momentum conserving version of MPC-AT is called MPC-AT+a. It
consists of calculating the induced angular momentum by the collision step and com-
pensating it explicitly. Thus

CMPC−AT+a
µ (ri, {rj}µ, {vj}µ) =CMPC−AT

µ +

m0N
−1
µ

[︄∑︂
j∈µ

(rj −Rµ)×
(︁
vj − vrand

j

)︁]︄
× (ri −Rµ) ,

(3.12)

where m0 is the mass of a fluid particle, Rµ is the center of mass of the fluid parti-
cles in a collision cell, and Nµ is the moment of inertia tensor. When applying the
algorithm, one first computes collisions without the correction and then calculates the
angular momentum difference ∆L. The restoring angular velocity ω is then provided by
solving the equation Nω = −∆L [65, 235]. For the Langevin thermostat, the angular
momentum conserving version MPC-LD+a works analogously to MPC-AT+a [221].

The compensation of the angular momentum has both technical and physical im-
plications for the fluid simulation. Transport coefficients, such as the viscosity, are
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influenced by the new rule. Furthermore, one often uses virtual fluid particles inside
the solid object during the collision step (see Sec. 3.3.2). With angular momentum
conservation, one has to be more careful with the placement of the virtual particles,
because their positions influence the cell center of mass in Eq. (3.12). However, the
corrections are straightforward. The virtual particles merely need to be added to the
fluid particle sum when calculating the center of mass and moment of inertia tensor, or
for calculating the induced angular momentum [168].

In our simulations, we use the Andersen thermostat with angular momentum con-
servation, hence the collision rule MPC-AT+a.

3.2.3 Properties of the MPCD fluid

In this chapter we explore the emergent physical properties of the fluid model and of the
different collision rules. A Chapman-Enskog expansion was performed by Malevanets
and Kapral for the original algorithm, showing that the viscous stress tensor has the
correct form of a Newtonian fluid [64, 237]. Thus, the streaming and collision steps
recover the Navier-Stokes equations. Importantly, the hydrodynamics of the fluid is
generally influenced by both steps independently. On the one hand, the streaming step
provides the so-called kinetic contribution to the viscosity. Since the fluid particles are
not interacting, it is also called an ideal gas contribution [65, 238]. On the other hand,
the redistribution of velocities in the collision step also changes the physical properties
of the fluid. Through any arbitrary plane chosen within a MPCD cell, the distribution
of linear momentum during the collision time ∆t creates an effective momentum flux
[233], and thus a collisional contribution to the viscosity. As we see below, the kinetic
and collisional parts of the viscosity enter the constitutive equations, which connect the
stress to the velocity gradient.

Pressure

For the SRD and MPCD methods discussed here, the fluid pressure consists only of the
ideal gas contribution [65]. This term is known from thermodynamics and expressed
by the equation of state [239]

p =
NkBT

V
, (3.13)

with the total particle number N . More elaborate MPCD algorithms implement a non-
ideal equation of state and thus have an additional contribution from the collision step,
which consists of an effective virial term [65, 240, 241].

Viscous stress tensor

We now consider the constitutive equations that are represented by different MPCD
collision rules. As mentioned, the viscous stress tensor has both kinetic and collisional
contributions. Note that it is possible that the stress tensor is not symmetric. Thus,
in general, angular momentum is also transported [238], which is addressed by the
MPC-AT+a method that we have introduced above.
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3.2 Multi-particle collision dynamics

Kinetic and collisional parts of the viscosity A good qualitative understanding
of the kinetic and collisional viscosities is offered by Ref. [65]. The kinematic viscosity
ν is the diffusion coefficient for momentum diffusion, thus ν ∼ λ2/∆t, where λ is the
mean free path. If we consider the kinetic contribution, the appropriate mean free path
is the distance that a fluid particle travels unobstructed during the streaming step.
With the average particle velocity

√︁
kBT0/m0, we have λmfp ∼

√︁
kBT0/m0∆t. The

kinetic contribution therefore is

νkin =
kBT0∆t

m0

fkin(nfl, α). (3.14)

The function fkin depends on the simulation parameters, such as the number of fluid
particles per cell nfl and - if the SRD algorithm is used - the collision angle α.

For the collision step, momentum is distributed on the length scale of the entire
collision cell of edge length a0, therefore this is the appropriate length scale, instead of
the mean free path above. This yields

νcoll =
a20
∆t
fcoll(nfl, α). (3.15)

The size of either viscosity is influenced by ∆t, controlling which one of the two contri-
butions dominates. In our simulations, the collisional part is more important.

Asymmetric part of the stress tensor Collisional stress in the MPCD fluid con-
sists of a symmetric and an asymmetric part [238]. The viscous stress tensor of the
Newtonian fluid was presented in Sec. 2.1.2. We already mentioned that the contribu-
tion of the asymmetric part of the velocity gradient ∇ ⊗ v is unphysical for isotropic
fluids, since it does not conserve angular momentum. However, angular momentum
conservation is not available for all MPCD collision rules. Therefore, we must use a
more general form for the viscous stress tensor [235]

σ′ =

(︃
λ− 2

3
η1

)︃
(∇ · u)1+ η1

[︁
∇⊗ v + (∇⊗ v)T

]︁
− η2

[︁
∇⊗ v − (∇⊗ v)T

]︁
, (3.16)

where η2 is an additional scalar viscosity, associated with the asymmetric part. Note
that the effective total dynamic shear viscosity is η = η1 + η2 [242], while λ is the bulk
viscosity. The generalized stress tensor leads to the momentum equation

ρ (∂tu+ (u · ∇)u) = −∇p+ (λ+ η1 − η2)∇(∇ · u) + (η1 + η2)∇2u. (3.17)

It can be shown that the symmetric and antisymmetric parts of the collisional
viscosity η1 and η2 have equal size [233]. Equation (3.17) obeys the Navier-Stokes
equation for ∇ · u = 0, if we define viscosity as the sum of the symmetrical and
asymmetrical viscosities. The velocity fields of such a fluid are therefore the same as
with angular momentum conservation in bulk [235]. However, it leads to the appearance
of spurious torques [235]. Furthermore, if compressibility is non-negligible, the bulk
viscosity becomes important, which does not have the same value as for fluids without
angular momentum conservation [235].
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Viscosities for different algorithms We have introduced the different contribu-
tions to the viscosity in general form. We now collect the exact results that have been
derived for the viscosities, using different MPCD algorithms. We note that corrections
of higher-order in ∆t than those in Eqs. (3.14) and (3.15) can be necessary, which
are only tractable with numerical simulations. Zöttl showed with measurements in
Poiseuille flow that deviations become especially large for small ∆t ≤ 0.1 [168].

SRD For the SRD algorithm fkin and fcoll have been calculated by Kikuchi et al.
[243] using kinetic theory and by Gompper et al. [65] using an alternative method which
yielded the same results. They arrive at the following result for the kinetic part of the
viscosity [65, 243]

νkin =
kBT0∆t

2m0

(︃
5nfl

(nfl − 1 + e−nfl)(2− cos(α)− cos(2α))
− 1

)︃
. (3.18)

The exponential functions occur because averaging was performed over the Poisson-
distributed occupation of the collision cells. For high enough mean fluid particle occu-
pancy nfl, this is less important, because we can approximate the actual occupancy in
a cell with the mean value nfl. This is also done for the MPC-AT formula below.

The results for the collisional viscosity of the SRD algorithm is [65, 238]

νcol =
a2

18∆t

(︃
nfl − 1 + e−nfl

nfl

(1− cosα)

)︃
. (3.19)

MPC-AT The MPC-AT algorithm, without angular momentum conservation, has
the following kinetic and collisional viscosity contributions [221]

νMPC−AT
kin =

kBT∆t

m0

(︃
nfl

nfl − 1 + e−nfl
− 1

2

)︃
, (3.20)

νMPC−AT
col =

a2

12∆t

(︃
nfl − 1 + e−nfl

nfl

)︃
. (3.21)

The collisional contribution includes the asymmetric viscosity term ν2, thus we have
νcoll = ν1 + ν2 with ν2 = ν1.

MPC-AT+a The asymmetric part of the stress tensor disappears in MPC-AT+a,
due to angular momentum conservation. The viscosities then become [233, 235]

νMPC−AT+a
kin =

kBT∆t

m0

(︃
nfl

nfl − 5
4

− 1

2

)︃
, (3.22)

νMPC−AT+a
col =

a20
24∆t

(︃
nfl − 7

5

nfl

)︃
. (3.23)

The above collisional contribution is the total collisional viscosity without any asym-
metric term ν2. It is roughly half of the total collisional viscosity without angular
momentum conservation. Since the collisional part dominates in our simulations, the
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total viscosity of the fluid (for both streaming and collision steps) with angular momen-
tum conservation is also around half of the viscosity in the algorithm without angular
momentum conservation. Note that Eq. (3.23) only applies, if nfl > 3 [65, 233]; for
small nfl the results differ [233].

MPC-LT For the Langevin thermostat, we have [221]

νMPC−LT
kin = kBT

⎛⎜⎝ nfl(1 + γ∆t/2m0)
2

2γ/m0(nfl − 1 + e−nfl)− ∆t

2

⎞⎟⎠ (3.24)

and

νMPC−LT
col =

a20
12nfl

(︃
γ(nfl − 1 + e−nfl)

1 + γ∆t/2m0

)︃
. (3.25)

Note that these expressions can be transferred into the MPC-AT forms in Eqs. (3.20)

and (3.21) by identifying the friction of the fluid particles as γ =
2m0

∆t
[221].

Compressibility

The Stokes equation describes an incompressible fluid. In contrast, MPCD models a
compressible fluid. One therefore has to ensure that the Mach number is low, by using
small enough velocity fields, in order to avoid high density fluctuations. Here, the Mach
number Ma is defined as the ratio of the maximum flow velocity to the speed of sound:

Ma = vmax

√︃
m0

kBT0
. (3.26)

For squirmer simulation, this essentially requires that the mode B1, which controls the
swimming velocity, is small enough. Note that the compressibility in MPCD limits
how fast flow fields can propagate, whereas from a theoretical point of view, hydrody-
namic fields following the Stokes equation react instantaneously to a disturbance in an
arbitrary distance [65].

3.3 Colloids and walls in MPCD

We use a swimmer model called squirmer in our MPCD simulations, which has been
introduced in Sec. 2.2.4. Simulations of squirmers under MPCD have confirmed quanti-
tatively correct single particle behaviour [228–230]. We use the squirmer model to study
the behaviour of microswimmers in their fluid habitat. Arguably, the most important
aspect of the simulation technique then becomes the coupling of the fluid to the objects
in solution. In the following, we consider how passive and active particles behave in
the MPCD fluid, in particular how we implement the forces on moving objects and the
squirmer boundary conditions. Of course, the boundaries of the system also enforce
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Figure 3.1: Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) potentials.

conditions on the fluid, specifically a no-slip or a periodic boundary condition. We also
consider the friction experienced by a dragged particle and discuss how it changes in
MPCD compared to a continuum fluid.

3.3.1 Forces and torques on suspended colloidal particles

Weeks-Chandler-Andersen potential

The interaction of the solute particles with walls and with each other should be such
that no overlap can occur. One possibility is to use event-driven collisions [231], which
can model hard-core interactions. Instead, we use a steep Weeks-Chandler-Andersen
(WCA) potential [244], which avoids the discontinuous jumps in energies of the hard-
core potential.

The WCA potential is a truncated version of the Lennard-Jones potential, which
has the known form

VLJ(r) = 4ε

(︃(︂σ
r

)︂12
−
(︂σ
r

)︂6)︃
. (3.27)

The parameter ε defines the depth of the energy minimum and the parameter σ provides
the interaction radius of the potential. In order to arrive at the WCA potential, one
truncates the potential at its minimum at r = 21/6σ. Afterwards the potential is shifted
up by the amount ε, so that truncation happens at zero energy:

VWCA(r) =

⎧⎨⎩4ε

(︃(︂σ
r

)︂12
−
(︂σ
r

)︂6)︃
+ ε r/σ < 21/6,

0 otherwise.
(3.28)

We plot both the Lennard-Jones and the WCA potentials in Fig. 3.1.

Molecular dynamics step

Colloids and swimmers under gravity experience external forces, as well as a torque for
bottom-heavy swimmers. In order to apply these external deterministic terms, as well as
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the above mentioned steric interactions, the velocity-Verlet algorithm is used during the
streaming step. In contrast, hydrodynamic interactions are mediated via the momentum
transfer from fluid particles on solute particles in both the streaming and collision
steps. We describe this process further below. In order to achieve good resolution of
the rigid body motion, the duration ∆t of the streaming step is divided further into
Nmd molecular dynamics steps. Typically, we use Nmd = 10 in our simulations. This
introduces the molecular dynamics time step tmd = ∆t/Nmd.

During these steps, we perform the Verlet algorithm in order to implement the
ballistic motion of solute particles. This algorithm updates position and velocity as
follows [245]

r(t+ δt) = r(t) +

(︃
v(t) +

1

2M
F(t)|δt|

)︃
δt, (3.29)

e(t+ δt) = e(t) +

(︃(︃
Ω(t) +

1

2I
T(t)|δt|

)︃
× e(t)

)︃
δt, (3.30)

v(t+ δt) = v(t) +
1

2M
(F(t) + F(t+ δt)) δt, (3.31)

Ω(t+ δt) = Ω(t) +
1

2I
(T(t) +T(t+ δt)) δt. (3.32)

Here, M is the colloidal mass and I the moment of inertia, here a scalar, as is valid
for a spherical body. The motion of the fluid particles in the streaming step is also
divided into the Nmd shorter molecular dynamics episodes. In Fig. 3.2 a) we sketch the
processes involved in the streaming step. On the one hand, fluid particles are advected,
on the other hand, gravitational and inter-particle forces act on the squirmers.

3.3.2 Bounce-back rule

Our systems of interest include no-slip walls, as well as slip conditions on the surfaces
of the squirmers. In order to implement these, we apply the bounce back rule during
the streaming step [228, 246]. We describe first its application on a no-slip boundary.
While fluid particles stream during the molecular dynamics time step with duration
tMD, they sometimes end up inside a boundary at the end of the step. The bounce
back rule then provides a systematic way to reset the fluid particle into the fluid, and
also to reset its velocity. First, the particle within the boundary is moved backwards
according to its velocity vf for a time tMD/2 and it is then reset to the closest position
directly on the boundary. We call this position rbound. Second, the velocity is inverted
to the new velocity

ṽf = −vf , (3.33)

i.e., it now moves away from the boundary. Third, the particle is moved with this
new velocity ṽf forward in time during a time period tMD/2. The resulting position is
then again checked for overlaps with a boundary. If it overlaps again, the corrections
backward and forward in time will now occur during the time periods tMD/4, and so
on [168]. Interactions with multiple boundaries during the same step also help to avoid
depletion interactions between colloidal particles or swimmers [65, 247].
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Figure 3.2: a) Sketch of MPCD streaming step including external and interparticle
forces on squirmers. Blown-up image shows bounce back rule on a squirmer with slip
velocity. b) Sketch of collision step showing collision cells inside and outside a squirmer
with radius 4a0. Red collision cell at the top shows grid shift operation with random
vector dshift. Black dots: fluid particles. Orange dots: virtual particles. Partially
adapted from Refs. [168, 231].

Applying the bounce-back rule to a squirmer’s boundary is straightforward. We
show the relevant steps in the blown-up part of Fig. 3.2 a). Note that all colloids
are moved first during a molecular dynamics step, before the fluid particles are moved
[231]. The fluid particle is again transported backwards along its original velocity vector
(step 1 in Fig. 3.2 a)). Then, its position is set to the closest position on the squirmer
boundary rbound (step 2). In comparison with walls, two new contributions appear.
First the squirmer’s finite velocity and angular velocity in the lab frame has to be
added to the velocity ṽf of the bounced-back particle. This also applies to colloidal
particles. The updated velocity is [228, 231]

ṽf = −vf + vbound(rbound). (3.34)

We show this velocity as step 3 in Fig. 3.2 a). Since squirmers and other microswimmers
do not obey no-slip boundary conditions on their surface, we also have to add the slip
velocity vslip. In concrete, the velocity at the boundary at the fluid particle’s end
position rbound is

vbound(rbound) = vslip(e, rbound) +Ω× (rbound − r) +V. (3.35)

Here, V and Ω are the colloid’s or swimmer’s linear and angular velocities. These
include effects of steric interactions or external forces. We use here that r and e are the
position and orientation of the squirmer. As we have shown before, the slip velocity
vslip of a squirmer depends on e.
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3.3.3 Virtual particles

If a collision cell partly overlaps with an immersed particle or a wall, the number of
fluid particles interacting within this cell is less than the prescribed value nfl. This
locally changes the fluid properties in this cell, i.e., the viscosity is not homogenous.
In order to recover the original fluid particle density, we fill up the solid particle or
wall with virtual particles for the duration of the collision step [246, 248]. In this way,
collision cells that are partially overlapping with the boundary are completely filled.
For cells completely submerged within a wall or colloid, no virtual particles are needed.
In concrete, we fill up a layer of thickness a0 within a wall with virtual particles, and
a layer of thickness

√
3a0 within a colloid or squirmer [231]1. This is shown in Fig. 3.2

b), where the inner circle represents the part of the squirmer, that does not have to
be filled. Since the number of fluid particles that take part in the momentum transfer
is increased, slip and no-slip boundary conditions are satisfied with a higher precision
during the collision step. In Fig. 3.2 b) we show collision cells both with and without
participation of virtual particles.

The virtual particles are initialized with a velocity corresponding to the fluid velocity
on the surface [231, 248]. This also applies to the tangential surface velocity of a
squirmer during the collision step. Additionally, the virtual particles are assigned a
random velocity vrand, where each component is drawn from a normal distribution with
standard deviation σ =

√︁
kBT0/m0. In total the velocity of a virtual particle vvp is

[231]

vvp = vrand + vbound(r
∗
vp). (3.36)

Here, the boundary effects on the fluid velocity are contained in the term vbound, which
is evaluated at the point closest to the virtual particle. We call this point on the surface
r∗vp. The boundary term includes slip velocities and velocities or angular velocities of
the moving colloid from external sources.

The addition of virtual particles requires a change to the Andersen thermostat in
the MPC-AT methods, which has to act on the virtual particles: During the collision
step, all virtual particles in a collision cell are added to the sum over the fluid particles
and take part in the collisions.

3.3.4 Momentum transfer to a colloid or squirmer

While walls are fixed in the system, colloids or squirmers do not just absorb momentum
from the fluid, but change their own velocity. In the streaming step this is caused by
the scattering of fluid particles during the bounce-back algorithm. In the collision step,
it is caused by virtual particles within the squirmer. At the end of the collision step,
their velocities have changed with respect to their initial values, which translates into
a momentum change of the squirmer.

For the streaming step, the bounce-back momentum transfer can be readily obtained

1For the algorithm using graphics processing units, this is not necessary, since it does not lead to
a considerable speeding up of the computation. Here, the entire colloid is filled with virtual particles.
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[231]:

∆pbb = m0

Nbb∑︂
i=1

(︁
vi
f − ṽi

f

)︁
, (3.37)

where the sum is over all Nbb fluid particles that landed inside the squirmer during the
molecular dynamics step tMD. Therefore, the momentum transferred to the squirmer is
the sum of the negative momentum differences affecting the fluid particles. Likewise,
the angular momentum changes according to

∆Lbb = m0

Nbb∑︂
i=1

(︁
ribound − r

)︁
×
(︁
vi
f − ṽi

f

)︁
, (3.38)

with the squirmer position r.
For the collision step, the momentum gain of the squirmer depends on the exchange

between physical and virtual fluid particles [231]. The momentum gain of the squirmer
is the sum over the momentum gains of all virtual particles. Hence,

∆pvp = m0

Nvp∑︂
i=1

(︁
ṽi
VP − vi

vp

)︁
(3.39)

for the momentum and

∆Lvp = m0

Nvp∑︂
i=1

(︁
rivp − r

)︁
×
(︁
ṽi
vp − vi

vp

)︁
(3.40)

for the angular momentum. Nvp is the number of virtual particles, which can vary for
each squirmer and for each instance the collision step is performed.

The velocities and angular velocities of a squirmer are both updated after each
molecular dynamics step and after the collision step, according to its mass and moment
of inertia [231].

3.3.5 Corrections to hydrodynamic friction

The particle description of the fluid influences the friction experienced by a suspended
particle. Furthermore, periodic boundary conditions change the hydrodynamic friction
compared to its bulk value. We discuss both the solvent, as well as the geometry effects
below.

Local friction

As we have seen, the fluid properties, such as viscosity, are influenced by the discrete
fluid model of MPCD. Likewise, a colloidal particle experiences friction that is not
completely consistent with the Stokes-Einstein friction law at low Reynolds numbers.
This was confirmed in measurements by Imperio, Padding, and Briels [153]. Rather,
the continuum hydrodynamic friction is only one part of the total friction the particle
experiences. There is an additional local Brownian friction [246, 249], which originates
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3.3 Colloids and walls in MPCD

Figure 3.3: a) Translational (blue) and rotational (green) local friction coefficients as
a function of particle radius, together with the fits proportional to R2 and R4. b)
Comparison of the predictions for the hydrodynamic friction: bulk friction γ∞ (green
line), including periodic boundary conditions (orange line), and in combination with
local friction (blue dots). c) Sedimentation velocities of a colloid with R = 4 at dif-
ferent lateral system sizes measured from MPCD simulations (blue dots) compared to
various theoretical predictions: using bulk friction (dashed black line), hydrodynamic
friction including wall effects and local friction (solid black line), hydrodynamic fric-
tion with periodic boundaries (dotted purple line), and a combination of wall friction,
local friction and periodic boundaries (solid red line). The blue triangles correspond
to an alternative measurement of the sedimentation velocities using the slope of the
trajectories, but they mostly overlap with the blue circles. Inset: Vertical trajectory
z(t) and vertical velocity vz(t) for a sinking colloid. The portions used to measure the
sedimentation velocities are in green color.

from collisions with the solvent particles and is thus due to the gas character of the
MPCD fluid. In theory, this friction term can be calculated, if uncorrelated, two-body
collisions are assumed. For a spherical colloid the local translational and rotational
friction according to this theory is [246]

γEtrans,loc =
8

3

√︃
2πkBT0m0M

m0 +M
nfl/a

3
0R

21 + 2χgyr

1 + χgyr

, (3.41)

γErot,loc =
8

3

√︃
2πkBT0m0M

m0 +M
nfl/a

3
0R

4 χgyr

1 + χgyr

, (3.42)

where M is the mass of the colloid and R is its radius, and the gyration ratio is χgyr =
2
5

for spherical particles. The coefficients are also called Enskog friction coefficients, hence
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we indexed them with an ‘E’. However, this value still considerably underestimates the
friction in MPCD simulations [153], because the collision step introduces additional
effective collisions, via the interaction with virtual particles. That also implies that the
strength of the local friction depends on the collision operator and the length of the
collision step [168]. The total local friction coefficients are

γtrans,loc = γEtrans,loc + γVP
trans,loc, (3.43)

γrot,loc = γErot,loc + γVP
rot,loc. (3.44)

These coefficients can only be determined by numerical simulations. We can use the
Green-Kubo relation (2.74) to measure the local friction, by measuring the force and
torque autocorrelation [153, 168]. Here, the force and torque are determined by the
difference quotients

F(t) =
M∆V

∆t
(3.45)

and
T(t) =

I∆Ω

∆t
, (3.46)

where ∆V and ∆Ω are the change of velocity and angular velocity of the colloid after
both streaming and collision step. The local friction coefficients for translation and
rotation are shown in Fig. 3.3 a) as a function of particle size R, using the MPC-
AT+a algorithm. We have added curve fits proportional to R2 and R4, respectively,
which describe the data excellently. The fit parameters confirm that the local friction
is higher than described by the theoretical Enskog law: For our system with R =
4a0, ∆t = 0.02a0

√︁
m0/kBT0, nfl = 10 we measure a translational friction growing

as 782.2 ± 1.7R2 and a rotational friction growing as 455.8 ± 1.0R4. These values are
consistent with measurements in Ref. [168]. In contrast, the theoretical values using the
Enskog friction calculated from Eqs. (3.43)-(3.44) are 85.9R2 and 43.0R4, respectively.

For sufficiently large colloid radii, we can use the following formulae for the total
friction [153, 246, 249, 250]

γ−1
trans = γ−1

trans,hd + γ−1
trans,loc, (3.47)

γ−1
rot = γ−1

rot,hd + γ−1
rot,loc. (3.48)

Here, the hydrodynamic contributions γtrans,hd and γrot,hd can in some situations be
provided by the bulk values 6πηR and 8πηR3, but they could also include the hydro-
dynamic effect of walls.

Corrections from periodic boundary conditions

In the lateral directions of our simulation box, we use periodic boundary conditions.
Since this introduces copies of all colloidal particles, which then interact with each
other, the friction is different from an infinite system. For a sphere in a full 3D periodic
system, Dünweg and Kremer have calculated the approximation [251]

γPBC =
γhd

1− 2.837R/L
, (3.49)
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with boxlength L. Therefore, while hydrodynamic interactions between spheres often
decrease the effective friction, for example when they are falling next to each other under
gravity, periodic boundary effects increase it. Imperio et al. show that this law remains
valid for a two-wall system with lateral periodicity, if the system size is large [153].
Furthermore, the increase of friction disappears completely for large enough systems
[153]. We compare the effects of periodic boundary conditions to the effects of local
friction in Fig. 3.3 b). Interestingly, periodic boundary conditions and local friction on a
colloid cancel each other partially, as already noticed by Zöttl [168]. Consequently, the
total friction obtained from combining both effects according to Eqs. (3.47) (blue dots
in Fig. 3.3 b)) is again close to the hydrodynamic bulk friction (solid green line). Under
these circumstances, the wall effects on the friction introduced in Sec. 2.3.3 dominate.

Sedimentation velocity

Finally, we measure the sedimentation velocity of a single passive colloid in the MPCD
fluid. We choose a radius R = 4a0 and vary the lateral cross-section via the width L
in order to check the finite size and periodic boundary effects. We show the results in
Fig. 3.3 c). The blue dots indicate the measured sedimentation velocities. The blue
triangles were obtained from an alternative measurement using the slope of the curve
z(t) and agree very well with the first measurement. The trajectory z(t) is shown in the
inset. Here, the time period used for measuring the sedimentation velocity is marked
in green color. The fluctuating curve depicts the sedimentation velocity and shows how
its absolute value decreases, as the colloid approaches the wall. This illustrates the
effect of the wall on friction. In the main plot of Fig. 3.3 c), we show the expected
sedimentation velocity, when we assume the bulk value for the friction 6πηR as the
dashed black line, while the dotted purple line includes the finite-size correction from
Eq. (3.49). The solid black horizontal line assumes the two-wall approximation from
Eq. (2.112) and gives a good estimate for the measured sedimentation velocities. For
system sizes greater than L = 100a0, the measurements also agree well with the values
found for combining walls, periodic boundaries and local friction, which is shown as
the solid red line. Therefore, we can confirm that the hydrodynamic friction value,
including wall interactions, offers a good approximation for the total friction.

3.3.6 Depletion and fluid compressibility

In some settings the particle description of the fluid can lead to unphysical depletion of
fluid between solute particles in close contact. The depletion of fluid between colloids
is problematic, because it prevents the application of the correct lubrication forces.
Solvent-induced forces can draw colloids closer together [247, 252]. However, this is
mainly a problem for attractive colloid-solvent interactions [252]. Furthermore, in the
case of swimmers with a prescribed surface velocity (e.g. squirmers), the use of virtual
particles has been shown to prevent depletion attraction [252].

Several strategies of addressing compressibility of MPCD have been suggested:
Theers et al. [162] argued that the particle number per cell has to be increased in
very dense systems and the speed of the active particles lowered. This way, viscosity is
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increased but the active Péclet number stays the same. Furthermore, the Mach number
and Reynolds number are decreased. Their work focused on Hele-Shaw geometries. An-
other possibility for reducing compressibility effects is to model the fluid as a non-ideal
gas [167]. This has been shown to decrease the compressibility.

3.4 Parameters

Our system consists of two walls that are separated vertically by a height H. These
walls have a no-slip boundary condition. The system has a quadratic cross section with
edge length L. However, we use periodic boundary conditions in lateral direction. We
set the duration of the streaming step to ∆t = 0.02a0

√︁
m0/kBT0 and the fluid-particle

number density to nfl = 10, which means a dynamic viscosity of η = 16.05
√
m0kBT0/a

2
0

[168]. Our Reynolds number is determined by Re = v0Rnfl/η = 0.17. Reaching this
value is computationally feasible and means that viscous effects dominate over inertial
effects. Lowering it further would add considerable numerical costs.

Our squirmers have a radius of R = 4a0. The squirming mode B1 = 0.1
√︁
kBT0/m0

is fixed, while the B2 and C2 modes can vary. This implies an active Péclet number
Pe = Rv0

Dtrans
= 330, comparable, for example, to bacteria [156, 157]. The persistence

number of a squirmer is Per = v0/(RDrot) = 420. We can determine these values
from the bulk diffusivities of a sphere in Stokes flow, viz. Dtrans = kBT0/(6πηR) =
8 · 10−4a0

√︁
kBT0/m0 and Drot = 4 · 10−5

√︁
kBT0/m0/a0.
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4. Single squirmer under gravity

In this chapter, the dynamics of a single squirmer under gravity is investigated, both
analytically and with numerical simulations. Most results of this chapter are based on
publication [A].

4.1 Introduction

Active particles are inherently out of equilibrium, which leads to intriguing and counter-
intuitive dynamics. A lot of focus is - deservedly - put on collective effects, such as
giant number fluctuations [2, 253], motility-induced phase separation [165] or pattern
formation [254], for example of biofilms [255]. However, since the activity is introduced
on small scales, i.e., from the self-propulsion of the individual agent, non-equilibrium
dynamics are present already for the single particle. The striking differences to passive
particles become visible, for example, by subjecting a swimmer to an external field
or putting it under flow. One example are swimmers that react to magnetic fields
[133, 256–258], opening the possibility to steer synthetic particles or magnetotactic
bacteria [259–261]. One can observe swinging trajectories for simple model swimmers in
Poiseuille flow [262, 263], as well as in studies of the parasite Trypanosome brucei [18].
Furthermore, live sperm cells can sense chemoattractants and also use external flow
to navigate [110, 264]. Under gravity, an asymmetrically shaped phototactic colloid
switches from straight to complex trochoidal motion, depending on the illumination
strength [59]. We have presented further examples of the motion under gravity in
Sec. 2.4.

Since swimmers create hydrodynamic flow fields, interactions with surfaces become
important. This has been shown in both experiments and computer simulations [38,
175, 265, 266]. Under gravity, this is particularly relevant, since swimmers sink down
to the bottom surface [61, 91]. Importantly, these hydrodynamic interactions depend
on the distance to the wall.

A single squirmer in wall proximity is a conceptually simple system and can be
tackled analytically to a certain extent. Thus, we start by discussing its deterministic
dynamics. We take into account that hydrodynamic near field and far fields differ
considerably for a squirmer [38, 266]. Thus, both have to be calculated in order to
arrive at a good representation. Furthermore, we perform MPCD simulations of a single
squirmer. These include the full hydrodynamic flow field, as well as thermal noise. We
simulate a squirmer in a rectangular box of height H. At z = 0 and z = H a no-slip
wall is placed, whereas periodic boundary conditions are used in lateral direction. We
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4.2 Deterministic single squirmer dynamics

apply a gravitational acceleration −gez to the single squirmer and briefly discuss the
effect of a gravitational torque. In our studies, we neglect the influence of gravity on
the fluid particles. Thus, we assume that the fluid particles’ sedimentation length is
larger than H.

In Appendix C we summarize the most important symbols for both physical and
simulation parameters that we use in our studies in Tables C.1 and C.2.

4.2 Deterministic dynamics of a single squirmer in
wall proximity

In the following, we describe the dynamics of a single squirmer and use the insights
collected in previous chapters. At this point, we do not take the effects of thermal
fluctuations into account. However, these will be present in our numerical simulations.
The squirmer’s deterministic motion consists of three different effects: its active motion,
the influence of gravity and the hydrodynamic interactions with the no-slip boundary.
Since the motion in vertical direction is especially important for the single-squirmer
dynamics, we begin by introducing these three contributions while considering only the
height z and polar angle ϑ from the vertical. Then, we calculate the height-dependent
sedimentation velocity, and the height-dependent angular velocity from the gravita-
tional torque. Furthermore, we discuss both far-field and near-field effects of the wall
interactions caused by the squirmer’s own flow field.

4.2.1 Vertical motion

The first velocity contribution we identified is self-propulsion. The active velocity is
present in bulk and without any external forces, which is why we call it v0. Furthermore,
since the systems we study are subject to gravity, the squirmer experiences a sedimen-
tation velocity v1 and an angular velocity Ω1 from bottom-heaviness. These effects are
passive in nature, i.e., they also occur for a simple colloidal particle. The external force
and torque on the squirmer induce a hydrodynamic flow field in the system. This leads
to height-dependent mobility close to walls, which we discuss below. Third, the self-
generated flow fields in combination with the no-slip wall lead to a self-interaction of
the squirmers. This creates the contributions v2 and Ω2. We present all contributions
in Fig. 4.1. In total, one arrives at the vertical velocity and angular velocity,

v = v0 cosϑ− v1 + v2 and Ω = Ω1 + Ω2 . (4.1)

4.2.2 Gravitational force and torque

We apply the gravitational force

Fg = −mgez (4.2)

on a squirmer. This tunable force could for example arise from a density mismatch
between fluid and swimmer density, as has been applied to active emulsion droplets in
Ref. [144], from an inclined plane [55, 267], or from a centrifuge [51].
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4. Single squirmer under gravity

Figure 4.1: The different velocity and angular velocity contributions to a squirmer in
wall proximity: Sedimentation with the velocity v1 and the angular velocity Ω1 created
by bottom-heaviness are passive effects. The latter appears due to an offset of the
center of mass (shown in green). The self-propulsion velocity is v0 and its vertical
component is v0 cosϑ. We do not consider an active angular velocity. In addition, the
self-generated flow field of the squirmer induces the linear velocity v2 and the angular
velocity Ω2. We sketched the responsible surface flow field in red.

Furthermore, making the squirmer bottom-heavy induces a gravitational torque. It
results from an offset r0 of its center of mass from the geometrical center [158]. The
resulting torque is

Tbh = mgr0(−ez × e). (4.3)

The resulting angular velocity in bulk is

Ωbh = Tbh/(8πηR
3) =

3

4

v0
R

r0
Rα

(−ez × e). (4.4)

Here, we use the rescaled torque r0/(Rα).

Flow field

A squirmer with orientation e under gravity and close to a wall moves with the velocity

v = v0e+MttFg +MtrTbh, (4.5)

where Mtt is the translational mobility and Mtr the translation-rotation coupling. Far
enough from the wall, we can apply the pumping field derived in Sec. 2.2.4, where the
part of the flow field induced by gravity is expressed as a stokeslet and a source dipole,
the same as for a passive sphere. Hence,

ug = uS
g + uSD

g , (4.6)
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where the two components are

uS
g = −3

4
vsed

R

r

(︂
ez +

z

r
r̂
)︂

(4.7)

uSD
g =

1

4
vsed

R3

r3

(︂
−ez + 3

z

r
r̂
)︂
, (4.8)

and where z = r · ez. The gravity-induced flow fields play a central role, when we
consider collective motion of squirmers.

The flow field of a rotating sphere under the influence of an external torque is the
rotlet [82],

ubh = uR
bh =

R3

r2
Ωbh × r̂ =

3

4
v0
r0
Rα

R2

r2

(︂
(e · r̂)ez −

z

r
e
)︂
. (4.9)

Here, Ωbh = Tbh/(8πηR
3) is the angular velocity resulting from the bottom-heavy

torque. Note that the flow field in Eq. (4.9) vanishes for e → ez.

4.2.3 Effective sedimentation and reorientation

We have discussed the effective mobility induced by walls in Sec. 2.3.3. We truncate the
expressions at the z−3 order and consequently neglect the translation-rotation coupling.
However, the mobility is still anisotropic, i.e., a horizontal motion and a vertical motion
create different forces. For a single wall the translational mobility to leading order is
[268]

µtt
⊥(z) = µ∞

[︄
1− 9

8

R

z
+

1

2

(︃
R

z

)︃3

+O

(︄(︃
R

z

)︃4
)︄]︄

(4.10)

for the direction perpendicular to the wall and

µtt
∥ (z) = µ∞

[︄
1− 9

16

R

z
+

1

8

(︃
R

z

)︃3

+O

(︄(︃
R

z

)︃4
)︄]︄

(4.11)

for the direction parallel to the wall. The bulk mobility is µ∞ = 1/(6πηR). Fur-
thermore, the approximate rotational mobility for a rotation about a wall-parallel axis
is

µrr
∥ (z) = µr

∞

[︄
1− 5

16

(︃
R

z

)︃3

+O

(︄(︃
R

z

)︃6
)︄]︄

(4.12)

with µr
∞ = 1/(8πηR3).

We also re-state the series expansion for the friction of Eq. (2.110), which we use
below for more exact results.

γtt⊥(z) =
4

3
sinh q(z)

∞∑︂
n=1

n(n+ 1)

(2n− 1)(2n+ 3)
×[︃

2 sinh ([2n+ 1]q(z)) + (2n+ 1) sinh (2q(z))

4 sinh2 ([n+ 1/2]q(z))− (2n+ 1)2 sinh2 (q(z))
− 1

]︃
,

with q(z) = Arcosh(z/R).
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Figure 4.2: Height-dependent sedimentation velocity v1(z) for α = 0.67 and α = 0.75
using the series expansion for the friction (solid lines) or the approximation up to order
z−3 (dashed line). Due to the decrease in magnitude at lower z the sedimentation
velocity falls below the active velocity v0 (horizontal line), leading to a stable floating
height.

Height-dependent sedimentation velocity

Using the above mobilities, we can express the height-dependent sedimentation velocity
as

v1(z) = µtt
⊥(z)mg = vsed (κ(z) + κ(h− z)− 1) . (4.13)

The bulk sedimentation velocity vsed can be expressed as

vsed = v0/α, (4.14)

with the velocity ratio α introduced in Eq. (2.123). The correction factor in parentheses
reflects the two-wall approximation with

κ(z) = µtt
⊥(z)/µ∞ =

(︄
1− 9

8

R

z
+

1

2

(︃
R

z

)︃3
)︄
. (4.15)

Alternatively, using the series expansion for γtt⊥(z), we have κ(z) = γ∞/γ
tt
⊥(z) with the

bulk friction γ∞ = 1/µ∞.

Stable floating heights due to height-dependent friction Height-dependent
friction has an important consequence on the vertical velocity balance of a squirmer.
Consider a value of α ⪅ 1, i.e., the active velocity v0 is smaller than the bulk sedimen-
tation velocity vsed, but stays comparable to it. Since the magnitude of the effective
sedimentation velocity decreases closer to the wall, the active velocity v0 can over-
come the downward buoyancy at a certain height. This floating height is stable for the
squirmer, since the total vertical velocity is positive below this height (active velocity
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overcomes effective sedimentation velocity) and negative above it (active velocity is
smaller than sedimentation velocity). We show this behaviour in Fig. 4.2, where we
plot v1(z). A stable height can be expected, where the curves intersect the horizontal
line v1(z) = v0. At the larger plotted value α = 0.75 the floating height is larger than
at the smaller value α = 0.67. Furthermore, there are quantitative differences between
the series expansion for the friction (solid lines) and the approximation in Eq. (4.10)
(dashed lines), in particular close to the wall at z = R.

Note that for these brief considerations we neglected the hydrodynamic contribu-
tion v2, which is presented below in Sec. 4.2.4. Furthermore, we assumed a upright
orientation of the squirmer, which strongly depends on Ω2.

Height-dependent angular velocity

We now consider the angular velocity, which acts on the polar angle ϑ, measured from
the vertical. Thus, we use the z-component of the torque in Eq. (4.3), which is given by
−mgr0 sinϑ. Using the two-wall approximation and the rotational mobility from Eq.
(4.12) the height-dependent angular velocity Ω1 yields

Ω1(z) = −µrr
∥ (z)mgr0 sinϑ = −Ωbh sinϑ

(︁
κR(z) + κR(h− z)− 1

)︁
(4.16)

with

κR(z) =

(︄
1− 5

16

(︃
R

z

)︃3
)︄

(4.17)

and
Ωbh =

3

4

v0
R

r0
Rα

, (4.18)

which is the absolute value of Eq. (4.4). From Eq. (4.18) we see that the rescaled
torque r0/(Rα) is directly proportional to the ratio of the ballistic active time R/v0
to the reorientation time Ω−1

bh . The leading order correction induced by the wall is
proportional to z−3 and therefore more short-ranged than the translational one.

4.2.4 Hydrodynamic wall interactions from squirmer flow fields

We now consider the hydrodynamic contributions from the active actuation. In con-
crete, the squirmer self-propels due to a surface flow field, which varies with parameters
v0, β and χ. This flow field is reflected by the no-slip wall and therefore induces linear
and angular velocities. We take two different approximations into account. First, we
discuss the far field. This corresponds to approximating the squirmer by multipole
moments, consequently the boundary condition on the squirmer surface is not satisfied
by the approximate flow field close to the wall. Secondly, we consider the lubrication
approximation, which is valid at small distances. Both considerations need to be taken
into account, since we expect squirmer trajectories to include positions both close to
and far from the wall.
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Far-field hydrodynamic interactions

The velocity far field of a squirmer at position r0 and with orientation vector e consists
of a force dipole with strength p, a source dipole with strength s > 0 and a rotlet dipole
with strength q:

u(r) = − p

r2
[1− 3 (e · r̂)2]r̂+ s

r3
[e− 3 (e · r̂) r̂] + q

r3
[(e · r̂) e× r̂] . (4.19)

We repeat here the dipolar strengths derived in Eqs. (2.100)

p = −3

4
βv0R

2 , s =
1

2
v0R

3 , q =
9

2
χv0R

3 . (4.20)

Wall-induced squirmer velocity We calculate the wall-induced velocity of the
squirmer in the far field vff , using the multipole representation of the flow field in Eqs.
(4.19) and (4.20). According to Sec. 2.3.2, the multipoles induce wall images, which
influence the squirmer according to Faxén’s theorem of translation [see Eq. (2.101)]
[87, 269]. We neglect the higher-order terms appearing from the Laplace operator and
arrive at

vffρ =
v0
8

(︃
R

z

)︃2 [︃
−9

4
β sinϑ cosϑ− R

z
sinϑ

]︃
(4.21)

vffz =
v0
2

(︃
R

z

)︃2 [︃
9

16
β
(︁
1− 3 cos2 ϑ

)︁
− R

z
cosϑ

]︃
. (4.22)

Here vffρ represents the velocity in the wall-parallel plane and vffz represents the vertical
velocity. There is no contribution in the azimuthal eφ direction. Furthermore, the rotlet
dipole does not contribute to the wall-induced velocity [87]. The reason for this is that
the combined wall singularities induced by the rotlet dipole lead to a net zero velocity
at the squirmer position.

Wall-induced angular velocity The wall-induced angular velocity in the far field
Ωff can be calculated in the same way. Here, we use the formula Ω = 1

2
∇×u according

to Faxén’s theorem of rotation in Eq. (2.102). Again, u is the flow field of the image
singularities. The induced angular velocity has components along the radial, azimuthal,
and vertical directions, which read

Ωff
ρ =

81

32

v0
R
χ sinϑ cosϑ

R4

z4
(4.23)

Ωff
φ = − 3

16

v0
R

R3

z3
sinϑ

(︃
3

2
β cosϑ+

R

z

)︃
(4.24)

Ωff
z = −27

64

v0
R
χ(1− 3 cos2 ϑ)

R4

z4
. (4.25)

The force and source dipoles of the squirmer both contribute only to the φ-component,
which affects the polar angle ϑ of the squirmer’s orientation vector, while leaving the
wall-parallel contribution unchanged. The latter is altered by the rotlet-dipole compo-
nent.
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4.2 Deterministic single squirmer dynamics

Lubrication approximation

The lubrication approximation for a squirmer with finite β was calculated by Ishikawa
and Pedley [187] and, with corrections, by Lintuvuori et al. [266]. In contrast to the
passive colloid sketched in the lubrication calculation in Section 2.3.4, the squirmer
microswimmer has a slip velocity on its surface. Therefore, the functional forms of
the translational and angular velocities differ. We limit our considerations here to
the angular velocity in eφ direction, which we need to discuss the vertical motion of
squirmers. This angular velocity is [266]

Ωnf
φ =

3

2

v0
R

sinϑ (β cosϑ− 1) +O(1/ log(ε)), (4.26)

where ε = (z − R)/R is the smallness parameter giving the reduced distance of the
squirmer surface from a wall. For the translational velocity in lubrication approxi-
mation, we note that the constant term with respect to ε vanishes [266]. Hence, the
induced velocity is zero at the leading order of Eq. (4.26).

4.2.5 Stable orientations and heights

We now focus on the vertical dynamics of the squirmer. We identify stable squirmer
heights and orientations for the near and far field. We here consider both approxima-
tions in isolation. In our numerical simulations, which we present in the next section,
squirmers move both close to the wall and far from the wall, therefore both aspects are
combined.

Total vertical velocity and angular velocity

We use the vertical components of the sedimentation and wall-induced velocities found
above to specify the total vertical velocity v0 cosϑ+v1+v2 introduced in Eq. (4.1). The
same applies to the angular velocity Ω1+Ω2 around an axis parallel to the wall. At the
moment, we leave open whether we use the near field or the far field approximation for
v2 and Ω2.

Deterministic system in vertical direction The deterministic system of the ver-
tical squirmer motion can be written as(︃

ż

ϑ̇

)︃
=

(︃
v
Ω

)︃
=: f(z, ϑ). (4.27)

We now look for fixed points (z∗, ϑ∗) of the system, i.e., states with f(z∗, ϑ∗) = 0.
Following linear stability analysis, we check the eigenvalues of the Jacobian Df(z∗, ϑ∗).
States with negative eigenvalues correspond to stable fixed points of the dynamical
system. One finds different conventions for the sense of rotation induced by an angular
velocity in literature [87, 266] — in our case we define Ω such that ϑ̇ = +Ω.

In the following, we consider the rotational and translational equations separately.
We first look for stable angles in the system. Here, we differentiate between squirm-
ers with and without bottom-heaviness, i.e., Ω1 = 0 and Ω1 ̸= 0. Furthermore, we
distinguish between the near and the far field interaction Ω2 = Ωnf

φ or Ω2 = Ωff
φ.
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4. Single squirmer under gravity

Figure 4.3: Wall-induced angular velocity of a squirmer versus angle ϑ against the
vertical a) in far-field approximation at z = 2R b) in lubrication approximation for
different values of β.

Stable orientations at zero external torque

Without the external torque, setting the angular component of Eq. (4.27) to zero
amounts to:

Ωnf
φ = 0 or Ωff

φ = 0, (4.28)

depending on whether we use the near- or the far-field approximation. Figure 4.3 plots
the far field and near field angular velocities versus ϑ for different squirmer types β.
Zeros with positive and negative slopes correspond to unstable and stable fixed points,
respectively. Thus, we calculate the derivatives:

∂Ωff

∂ϑ
∝ −3

2
β
(︁
cos2 ϑ− sin2 ϑ

)︁
− R

z
cosϑ < 0 (4.29)

∂Ωnf

∂ϑ
∝ − cosϑ+ β(cos2 ϑ− sin2 ϑ) < 0 . (4.30)

We have summarized the solutions to the equation Ω2 = 0, which satisfy the stability
conditions in Eq. (4.29) or Eq. (4.30), in Tab. 4.1. As the table shows, in both cases,
the angles ϑ∗

1 = 0 and ϑ∗
2 = π are stable under some conditions, which we discuss below.

Additionally, a stable angle ϑ∗
3 can occur, with a value between ϑ∗

1 and ϑ∗
2.

Both in Tab. 4.1, as well as in Fig. 4.3, the positions of the fixed points vary with
the squirmer parameter β. For the neutral squirmer, the upright position ϑ∗

1 = 0 is
stable. In the far-field approximation, this is due to the image force-quadrupole field,
induced by a source dipole at a no-slip wall. However, the same configuration is still
stable for a neutral squirmer in the lubrication approximation. In contrast, pushers and
pullers, switch their stable configurations going from the near field to the far field. The
magnitude of β also has an effect: Weak pushers and pullers have an upright stable
orientation, just like neutral squirmers. For pullers, the unstable fixed point at ϑ∗

2 = π
becomes stable beyond a threshold β > 2R

3z
which depends on the distance. However,
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4.2 Deterministic single squirmer dynamics

Table 4.1: Stable orientation angle ϑ∗ for different squirmer types from lubrication
theory and in far-field approximation.

ϑ∗ lubrication far field

pusher
0 acos

[︂
2

3|β|
R
z

]︂
if |β| > 2R

3z

π if β < −1 0 otherwise

neutral 0 0

puller
0 if β < 1 0

acosβ−1 if β > 1 π if β > 2R
3z

this threshold is rather low. The pullers in our study exceed this value and therefore
have two stable orientations. In contrast, for all but very weak pushers, the upright
orientation becomes unstable and the only stable orientation ϑ∗

3 has a tilt against the
vertical, which gets stronger for higher values of |β|.

Stable orientations with torque due to bottom-heaviness

Bottom-heaviness extends the range of the stable upright orientation in both the near
and the far field. For simplicity, we neglect the height dependence of the bottom-heavy
angular velocity. This results in a quantitative error, particularly in the near field, but
still illustrates the consequences of the external torque well. We have calculated the
wall-induced angular velocity in Eq. (4.16) to −3

4
r0/(Rα)v0/R sinϑ. Adding this term

to the angular-velocity balance yields new angular fixed points

ϑ∗
1 = 0, ϑ∗

2 = π, ϑ∗
3 = arccos

[︃
2R

3βz
+

8

3β

r0
Rα

(︂ z
R

)︂3]︃
(4.31)

in the far field, as well as

ϑ∗
1 = 0, ϑ∗

2 = π, ϑ∗
3 = arccos

[︃
1

β
+

1

2β

r0
Rα

]︃
(4.32)

in the lubrication regime. We again arrive at the vertically up- and down-pointing
configurations ϑ∗

1 and ϑ∗
2, as well as a solution with a tilted angle ϑ∗

3. In comparison to
the solutions at zero torque [see Tab. 4.1], the third angle is smaller, i.e., the squirmer
orientation is more vertical. The stability conditions ϑ∗

3, as well as for ϑ∗
2 = π change

to
|β| > 2R

3z
+

8

3

r0
Rα

(︂ z
R

)︂3
(4.33)

in the far field, and

|β| > 1 +
1

2

r0
Rα

(4.34)
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4. Single squirmer under gravity

Figure 4.4: a) Total vertical velocity at cosϑ = 1 for α = 0.67 (top) and α = 0.75
(bottom) versus height z. We use the series expansion Eq. (2.110) for the hydrodynamic
friction and the far field approximation for the the squirmer flow field. b) Stable heights
calculated from the total vertical velocity at cosϑ = 1. c) Stable and unstable solutions
for vsq = 0 using the simpler approximation of Eq. (4.15). Solid lines represent the
stable heights. Inset in b) Threshold values αth for both approximations.

in the near field, respectively.
Clearly, for high values of the rescaled torque r0/(Rα), the upright orientation be-

comes the only stable one for all squirmer types in the far field. Closer to the wall, the
condition in the lubrication regime suggests that viscous torques can compete with the
external torque at smaller values of β since typical values for the rescaled torques are
0 < r0/(Rα) < 1.

Stable heights

Depending on the stable orientation, different stable heights z∗ can be reached by the
squirmer, such that we obtain the fixed point (z∗, ϑ∗) of the whole dynamical system.
The first and most important case is that of vertically oriented squirmers ϑ∗ = 0. Here,
the active velocity and the sedimentation velocity are directly opposed to each other,
while the hydrodynamic interaction velocity v2 depends on the squirmer type. Since
v1(z) increases with height z, a fixed point can appear for α < 1, as we have described
above. This floating height is further influenced by the sign and strength of v2. We
quantify these insights in Fig. 4.4 a), where we plot the squirmer velocity, using the
far field approximation for v2. Here, we have used the series expansion of Eq. (2.110)
for the friction coefficient in order to be more precise, and truncated the sum at the
n = 10 term. We change the velocity ratio α from the value 0.67 in the top to 0.75 in
the bottom plot by decreasing the gravitational acceleration. For β = 1 and lower, the
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4.2 Deterministic single squirmer dynamics

stable fixed point, i.e., the zero of the curve where the slope is negative, is shifted to
larger values of z. Furthermore, for β = 2 (orange curve) no stable height exists for
α = 0.67 but appears at α = 0.75, since only then the self-propulsion velocity starts
to exceed the effective sedimentation velocity close to the wall. We determined the
floating heights over a wide range of α and show them in Fig. 4.4 b). We see that for
pullers, a threshold value for α has to be overcome until a stable floating height can
exist. This threshold value αth depends on β.

This property can be nicely illustrated for the simpler approximation of the one-wall
mobility used in Eq. (4.15), up to the order O (z−3). Setting the vertical velocity to
zero leads to the equation

1− 1/ακ(z) +
1

2

(︃
R

z

)︃2 [︃
−9

8
β − R

z

]︃
= 0 (4.35)

which yields a cubic equation for z. The number of positive, real-valued solutions
displays a bifurcation behaviour. In particular, in the lower half of the system, the
number of fixed points change from 0 to 2, controlled by the parameter α. One of the
appearing fixed points is stable and the other one is unstable. Figure 4.4 c) shows the
stable and unstable manifolds, and the stable ones agree qualitatively with Fig. 4.4
b). However, neutral squirmers (solid black line) in the approximation from Eq. (4.35)
lose their stable fixed point around α ≈ 0.5, while this is not the case for the series
expansion in Eq. (2.110) which was used in the main plot of Fig. 4.4 b). In simulations,
we later show that the latter prediction is correct. In the inset of Fig. 4.4 b) we show the
resulting values for the threshold αth, which also shows quantitative differences between
the two approximations. In both cases, αth increases monotonically with β, but does
no longer exist for strong pullers. The maximum values are β = 4 for the truncated
series expansion and β = 5 for the simpler approximation up to order z−3. The reason
for this is that upright pullers are hydrodynamically attracted to the bottom wall and
thus cannot escape it. This prevents floating.

We also show the stable heights of pushers in Fig. 4.4 b) (blue and purple curves),
using the orientation cosϑ = 0. Note however that this does not reflect a stable far
field solution for the pusher, unless an external torque is applied.

For ϑ∗ = π, both self-propulsion and gravity act downwards. Therefore, unless there
is a strong hydrodynamic repulsion, the analytical model predicts the squirmer to crash
into the wall.

The tilted orientations that arise as stable configurations in both the near and the
far field under certain conditions (see Tab. 4.1), have a small positive z component,
resulting only in weak up-swimming. Thus, the sedimentation velocity is dominating
and the squirmer collides with the wall, as well. We can conclude that a stable upright
orientation, induced by the bottom wall, is a necessary condition for the appearance of
a floating height in the squirmer system.
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4. Single squirmer under gravity

Figure 4.5: a) Height distributions p(z) of typical squirmer states. b) Vertical part
of the corresponding trajectories z(t). c) Trajectories z(t) for pushers with β = −5,
−4, and −2 at α = 0.75, showing the alternation between floating and wall sliding.
d) Height distributions p(z) of neutral squirmers for different values of α. (e) Height
distributions p(z) of pullers with β = 2 for different values of α . f) Distributions
p(cosϑ) of vertical orientation cosϑ for α = 0.67 for recurrent floating (β = −5) and
wall-pinned states (β = 3 and β = 5).
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4.3 Numerical results

The analysis performed in the last section used the multipole approximation of the
squirmer in order to capture its behaviour far from the wall, and the angular velocity
in the lubrication regime for the behaviour close to the wall. In order to probe how
the squirmer actually behaves in a low-Reynolds-number fluid, we use the method of
multi-particle collision dynamics (MPCD). As introduced, this method includes thermal
fluctuations, which were ignored until this point. In our simulations, we vary the
squirmer parameter β and the velocity ratio α. We present the different types of
trajectories that appear from the different combinations of these parameters. We do not
take the rotlet dipole component into account at this point, since it neither contributes
to the wall-induced velocity nor to the vertical orientation [87].

4.3.1 Cruising trajectories

We start with a neutral squirmer, whose active velocity is larger than the bulk sedi-
mentation velocity, i.e., α > 1. Then, the trajectory alternates between the top and
the bottom wall and is not constrained to the bottom wall by gravity. In Fig. 4.5 a)
we see the resulting height distribution for α = 1.5, which is flat and approximately
constant (dashed black line with dots). The alternation is clearly visible in the cruising
trajectory in Fig. 4.5 b). It occurs because the neutral squirmer orients upwards at
the bottom wall and downwards at the top wall. The downward motion from the top
wall is faster than the upward motion, since here self-propulsion and gravity cooperate,
whereas they compete for upward motion. This is also visible in Fig. 4.5 b). Further-
more, around t ≈ 1.25 ·106∆t the squirmer turns around in the center of the simulation
box, beyond the influence of the bottom wall. This results from a reorientation due to
rotational noise, which also influences the trajectories.

4.3.2 Stable floating

For values of 0 < α < 1, the active velocity is weaker than the bulk sedimentation
velocity. Following our analytical results, a vertical velocity balance can be reached for
neutral squirmers and pullers, characterized by the orientation ϑ∗ = 0 and the floating
height z∗. This is confirmed by the squirmers’ height distributions for β = 0 and β = 2,
which peak at a finite distance above the wall. The same is shown by the corresponding
trajectories in Fig. 4.5 b). Figs. 4.5 d) and e) show the height profiles for β = 0 and
β = 2, respectively and at different α. As expected, the floating height increases with
increasing α. Furthermore, the height fluctuations increase as well, as can be seen
from the broader histograms. Note that these height fluctuations do not result from
translational noise, but rather rotational noise driving the orientation away from the
vertical. This impacts the velocity balance and can cause the squirmer to sink. The
wall induces a counteracting angular velocity, which directs the squirmer back to the
vertical. It takes the squirmer longer to regain its upright orientation at larger heights,
because this angular velocity gets weaker.

In Fig. 4.6 a) we show the average vertical orientations for the floating steady state.
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4. Single squirmer under gravity

Figure 4.6: a) Mean stable orientation ⟨cosϑ∗⟩ and b) stable and metastable heights z∗
determined from numerical simulations plotted at different values of β and versus α.
The height z∗ can refer to floating, sliding, and wall-pinned heights. Dashed and dotted
lines: floating heights from theory, using ϑ = 0, which is a stable far field orientation
for neutral squirmers and pullers, and a persisting near field orientation for recurrent
floating of pushers.

Indeed, squirmers are almost perfectly vertical at β = 0 and β = 2. For the mea-
surement of the floating height z∗, we choose the maximum height observed. This is a
good estimation for the height where all deterministic vertical velocities cancel, since
the translational thermal fluctuations are not very strong. We show the values of z∗ in
Fig. 4.6 b).

The floating heights of pullers are lower than for neutral squirmers at the same value
of α. The reason for that is that their flow field attracts them to the bottom wall, as
shown by the far field approximation. Furthermore, for pullers we observe that α needs
to exceed a threshold value αth in order for floating to happen, and thus for the stable
fixed point to exist. This confirms the prediction made by the analytical calculations
in the previous section, and can be seen in the density profiles in Fig. 4.5 e), where
the density at low α is concentrated at the bottom wall. We call this the wall-pinned
state. The thresholds αth can be seen in Fig. 4.6 b) for β = 2 and β = 3. Clearly, αth

increases with the squirmer parameter β. Finally, for β = 5, we do not observe floating
any more, but only wall-pinned squirmers.

4.3.3 Wall pinning

As we have seen, pullers assume a wall-pinned state below the threshold value α = αth,
and strong pullers do not escape from this state. For wall-pinned states, we plot the
average heights and not their respective maxima in Fig. 4.6 b). Due to the short
distance to the wall, we expect the average orientations to deviate from the far field
approximation. While for β = 2, they stay very vertical and only slightly tilt for β = 3,
we find ⟨cosϑ∗⟩ ≈ 0.7 for β = 5. We show distributions of the vertical orientation cosϑ
for the case α = 0.67 in Fig. 4.5 f), where these average values for the cases β = 3
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and β = 5 correspond to the peaks of their respective distributions. Compared to the
neutral squirmer, the orientations of the puller squirmers tilt away from the vertical,
which is an effect of the near field regime. However, the measured angle does not
reproduce the prediction from lubrication theory in Tab. 4.1, which yields cosϑ∗ = 0.2
for β = 5 and cosϑ∗ = 0.33 for β = 3.

In addition, we observe a wall-pinned state for strong pushers with β = −5, as can
be seen from the blue triangles around z = R in Fig. 4.6 b). Fig. 4.6 a) shows that the
pushers point down towards the wall, almost vertically. This again reveals the influence
of near-field hydrodynamics. In this case, the prediction from lubrication theory ϑ∗ = π
(see Tab. 4.1) is recovered relatively well, since ⟨cosϑ∗⟩ ≈ −1 in Fig. 4.6 a).

4.3.4 Recurrent floating and sliding

Interestingly, pushers have bistable states, as we show for the case β = −5 in the
density profile in Fig. 4.5 a). In this state, they can both reside close to the wall or
float above the wall, which is visible for long simulation times. In Fig. 4.5 c) the height
variations for three pushers with β ∈ {−5,−4,−2} are shown, depicting alternations
between the floating height and a position close to the wall. The distribution of the
vertical orientation for a pusher with β = −5 in Fig. 4.5 f) also shows bistability, with
a vertical and an upwards tilted orientation. These two orientations are also depicted
in Fig. 4.6 a) over a wide range of α. The tilted angle of the pusher when it is closer to
the wall leads to horizontal motion. Hence, we call this behaviour wall-sliding.

Fig. 4.6 b) shows that a pusher’s height during the floating phases is larger than that
of floating neutral squirmers and pullers, consistent with the far field approximation.
This approximation also predicts that the upright orientation cosϑ = 1 is not stable
for pushers. Thus, in contrast to neutral and puller squirmers, pushers can be driven
out of the floating state by thermal fluctuations or the wall-induced angular velocity.
Consequently, they eventually sink down to the wall. Here, they adopt a tilted angle,
shown in Fig. 4.5 f), and slide horizontally along the wall. Therefore, we call this
state recurrent floating and sliding. For β = −2, the floating is recovered after a short
excursion to the bottom wall, as can be seen in Fig. 4.5 c). Thus, the difference between
floating and sliding states is not clearly established here, and we only plot the floating
heights in Fig. 4.6 b) and not the sliding heights.

The value of the tilt angle matches the prediction of far field hydrodynamics, but
not quantitatively. For the sliding heights at β = −5, which are around z = 1.5R, the
expected far-field stable angle is almost horizontal, whereas we measure cosϑ = 0.6.
But note that the lubrication approximation dictates a vertical orientation, therefore it
is likely that the sliding angle results from a cross-over between both regimes.

Finally, we note that no transition between recurrent floating and downward wall-
pinned states could be observed for pushers, even though both can occur in the same
parameter range in Fig. 4.6. We think the reason for this is that the thermal energy
required for this transition occurring randomly is too large.
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4. Single squirmer under gravity

Figure 4.7: a) Height distributions of single squirmers at α = 0.6 with a dimensionless
gravitational torque of r0/(Rα) = 0.21. b) Height distributions for pushers with β = −5
at different rescaled torques. Insets: Distributions of vertical orientations cosϑ.

4.3.5 Influence of bottom-heaviness

Fig. 4.7 a) illustrates the influence of a gravitational torque due to bottom-heaviness
on the single squirmer states using α = 0.6, by showing the distributions of height z at
different squirmer parameters β. The inset shows the distributions of cosϑ from which
we see that squirmers are strongly vertical. Neutral squirmers keep their floating state
and pushers acquire a stable floating state, as expected. There is no recurrent wall
sliding, since the external torque stabilizes the vertical orientation. In Fig. 4.7 b) we
show the transition of the pusher system from the bistable to the floating state. Without
the external torque (green curve), the squirmer spends more time in the sliding state,
since α is relatively low. This reverses already at a weak rescaled torque r0/(Rα) = 0.04
(magenta curve). While the squirmer has a low probability of sinking to the wall, it is
more likely to float. At high torque r0/(Rα) = 0.42, the floating height is completely
stable (brown curve). The maximum heights of all three systems agree well with each
other. The inset shows the development of the strong directional bias in the angular
distribution.

Since the systems in Fig. 4.7 a) are below the threshold αth for the pullers with
β = 2 and β = 5, they do not show floating, even under an external torque. This
is because the wall-pinned state is a consequence of the hydrodynamic attraction to
the wall and not of the squirmer orientation. In fact, a more vertical orientation even
increases the attraction to the bottom wall. As a consequence, the pinning is very
strong, as suggested by the density profiles.
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4.4 Discussion

4.4.1 Comparison of simulation and theory

As mentioned above, stable upright orientations occur in simulations of neutral squirm-
ers and pullers, as predicted by the far field analysis. Furthermore, close to the bottom
wall we find states with orientation vectors tilted against the vertical. While the an-
gles do not fit exactly, wall-pinned states are expected from the stable orientations we
have calculated. In particular, in the lubrication regime, wall-pinned pusher squirmers
should point towards and puller squirmers point away from the wall, with a tilt in-
creasing with β. For strong pullers the simulation results quantitatively differ from the
calculations, in that the tilt is weaker than expected. We note that neutral squirmers
point away from the wall also in the near field, thus they also turn around at the top
wall. This explains their cruising behaviour at α > 1, where they never get stuck at a
wall.

The threshold of α for pullers is recovered nicely in our simulations and separates
wall-pinned states from floating states. Furthermore, we can see in Fig. 4.6 b) that
αth increases with β as expected. We have superimposed the analytical predictions for
the floating heights (see Fig. 4.4 b)) into Fig. 4.6 b) as dashed and dotted lines. The
predictions fit the simulation results fairly well. However, the calculated thresholds for
β = 2 and β = 3 do not coincide, since the simulated squirmers are able to float at
lower value than the analytical curves suggest.

We have distinguished between floating with a stable far-field orientation ϑ = 0
(dashed lines) and a persistent orientation of ϑ = 0 (dotted lines). The reason for
this distinction is that only for neutral squirmers and pullers floating actually appears
as a stable fixed point of the system, particularly in the far field. Consequently, the
fixed point analysis explains stable floating for β ≥ 0, whereas floating for pushers does
not come out of the analytical calculations. Therefore, we further consider the pusher
dynamics in the following.

4.4.2 Interpretation of pusher dynamics

Wall sliding Our simulations confirmed that the vertical orientation is not stable for
the pusher in the far field. However, a stable orientation ϑ = 0 pointing away from
the wall is predicted in lubrication approximation, while in our simulations a finite
average sliding angle is observed in the cross-over regime between near and far field.
Note that the left peak of the bimodal angular distribution of the strong pusher in Fig.
4.5 f) is relatively broad, implying strong fluctuations around the mean sliding angle.
Indeed, Fig. 4.5 e) shows strongly varying up-and-down motion in the sliding regime
1 < z/R ⪅ 3. We also see that stronger pushers have smaller sliding heights.

Persistent pusher orientation Due to random fluctuations and near field interac-
tions, pushers can eventually assume a vertical configuration close to the bottom wall,
which allows them to escape it. Pushers swim up until they reach their floating height,
however the vertical orientation is not stabilized in the far field. Therefore, reaching the
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Figure 4.8: Qualitative sketch of the single squirmer state diagram.

floating height is only possible due to the directional persistence of the pusher squirmer.
Eventually, the orientation rotates away from the vertical and the pusher sinks down
again. We call the vertical direction a persistent orientation in this case, in contrast to
pullers and neutral squirmers, where it is a fixed point of the angular velocity in the
far field.

Recurrent floating is limited to higher values of α for strong pushers: We do not
observe the recurrent floating at β = −5 for α ≲ 0.5, as can be seen in Fig. 4.6 b).
This is understandable since stronger gravity requires a more vertical configuration for
up-swimming, which makes the transition to floating less probable. While the wall-
sliding state is extractable from our analytical considerations, the floating state and
the recurrent alternations between both states are not. This underlines the importance
of combining both the near and far field picture, as well as the potential of thermal
fluctuations in active systems.

4.5 Conclusions

We studied the dynamics of a single squirmer microswimmer under gravity in wall
proximity, using both analytical calculations and numerical simulations. In spite of the
simplicity of the system, we observed a considerable variety of states. For the deter-
ministic vertical dynamics of the squirmer, we identify the three contributions of active
motion, height-dependent sedimentation and the squirmer’s own flow field, reflected
by the no-slip wall. These are complemented by translational and more importantly
rotational noise in MPCD simulations.

We summarize the states found in our simulations in Fig. 4.8 in a qualitative sketch
with the axes α and β. For the velocity ratio α > 1, we observe trajectories cruising
back and forth between the top and bottom walls. When α = v0/vsed < 1 we find that
the balancing of active velocity and the height-dependent sedimentation velocity creates
a stable floating height. These floating heights are indeed realized for neutral squirmers
and pullers, because the vertical orientation is stabilized by far field vorticities arising

79
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from the interaction of the squirmer with the wall. Furthermore, the reflected flow
field changes the velocity of the squirmer. For upright pullers it creates an effective
attraction, which prevents floating when it becomes too strong. We find in calculations
and confirm in simulations that a threshold αth exists, below which pullers do not float.
This threshold increases with β, and for values above β = 4 no floating is observed.
Instead, pullers are pinned to the wall with a slightly tilted orientation. The tilt we
observe is smaller than expected from lubrication theory. Wall-pinned states also exist
for pushers that point towards the wall, in agreement with the theoretical lubrication
torque.

We observe floating pushers, as well, but this state is not stable for long times.
The upright orientation is not a fixed point of the pusher’s angular velocity, unless a
bottom-heavy torque is applied. Thus, pushers orient away from the vertical orientation
and sink to the bottom wall. There, they enter a wall-sliding state, until they are
oriented again along the vertical by fluctuations and near field hydrodynamics. A high
orientational persistence due to high active Péclet numbers allows this vertical state
to survive for a considerable time and the pusher can reach its floating height again.
Thus, pushers have a bistable configuration alternating between recurrent floating and
sliding phases. Floating for strong pushers only exists for high enough values of α, such
that they are able to escape the bottom wall.

Our simulations underline the importance of hydrodynamic interactions, in par-
ticular, how both near-field and far-field regimes are important. Furthermore, the
ingredients of thermal noise, no-slip walls, and gravity are ubiquitous components of
microswimmer systems. Therefore, our results are relevant for future experimental and
computational studies. In particular, our system can serve as a basis for modifications
and additions, such as phoretic effects [91, 175, 270] or complex fluids [76].
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5. Gyrotaxis of a squirmer pair

One of the most important effects of the hydrodynamic flow fields of squirmers that
we have introduced are their interactions with other swimmers. We use this chapter to
briefly discuss the dynamics of a pair of bottom-heavy neutral squirmers under gravity,
in order to prepare the later investigations of the collective dynamics at large squirmer
numbers. Particularly, the phenomenon of gyrotaxis is important, leading for example
to focussing in Poiseuille flow [15] or vertical trapping of cells [271].

5.1 Hydrodynamic interactions

Squirmers in our study are subject to a gravitational force, a gravitational torque, as
well as flow originating from other squirmers. In the following, we calculate the flow
fields and their vorticities in bulk.

5.1.1 Flow fields

From a far-field perspective, the hydrodynamic signature of a squirmer can be expressed
by multipoles. The multipoles in our system are, first, a stokeslet and source dipole due
to the gravitational force acting on the squirmer, expressed by Eqs. (4.6)-(4.8), second,
a rotlet from bottom-heaviness, described by Eq. (4.9), and, third, the flow multipoles
induced by the free squirmer at position r1. The field of the free squirmer ufree(r− r1)
is noted in Eq. (2.98) and consists of force dipole, rotlet dipole, and source dipole
contributions. In order to calculate the induced velocity v

(2)
hd of a second squirmer at

position r2, we use Faxén’s law, and keep terms up to the order r−3. Then we arrive at

v
(2)
hd = ufree(r2−r1)+ug(r2−r1)+

R2

6
∇2ug(r2−r1)+ubh(r2−r1)+O

(︁
|r2 − r1|−4

)︁
. (5.1)

We note that the term ∇2ug(r2 − r1) creates another source dipole contribution. We
ignore the terms ∇2ufree and ∇2ubh because they decrease faster with distance than
r−3. Hydrodynamic interactions between squirmers strongly depend on the squirmer
type, in particular, on the force dipole components included in ufree. Two pullers attract
each other, when they are in a head-to-head, head-to-tail or tail-to-tail configuration,
whereas two pushers repel each other in these cases [37]. The pushers attract each
other when they swim next to each other with parallel orientation vectors.
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5.1 Hydrodynamic interactions

5.1.2 Flow vorticity

The flow vorticities induced by squirmers play an important role for gyrotaxis. The
vorticity is defined as

ω(r) := ∇× u(r). (5.2)

We now calculate the flow vorticities of the involved multipoles. The stokeslet compo-
nent ωS results from the gravitational force uS

g in Eq. (4.7) and the rotlet component
ωR from the flow field induced by the external torque Eq. (4.9). The flow field induced
by the squirmer, shown in Eq. (2.98), results in force dipole and rotlet dipole vorticities
ωD and ωRD. Source dipole fields are vorticity-free and do not contribute. All in all,
we have the vorticities

ωS =
3

2
vsed

R

r2
r̂× ez (5.3)

ωR =
3

4
v0
r0
Rα

R2

r3

(︂
2e× ez − 3

(︂
(e · r̂)r̂× ez −

z

r
r̂× e

)︂)︂
(5.4)

ωD = −9

2
v0β

R2

r3
(e · r̂) (e× r̂) (5.5)

ωRD = −27

2
v0χ

R3

r4
(︁
2(e · r̂)e+

(︁
1− 5 (e · r̂)2

)︁
r̂
)︁

(5.6)

ωSD = 0. (5.7)

The above vorticities induce an angular velocity on a neighboring squirmer, which
we call Ω(2)

hd . If we assume the position r2 for the second squirmer, the induced angular
velocities is

Ω
(2)
hd =

1

2
ω(r2 − r1), (5.8)

where ω = ωS+ωR+ωD+ωRD is the sum of the above vorticities. The contribution with
the longest range is the stokeslet vorticity. It reorients a neighboring squirmer towards
the sinking squirmer. Due to the squirmers’ self-propulsion this leads to an effective
attraction between them. The rotlet component ωR is typically small, as we discussed
before, since it disappears for the vertical configuration e → ez. The force dipoles again
cause strong differences in dynamics: A puller dipole induces a reorientation that aligns
a neighbor’s orientation parallel or antiparallel to the distance vector. In contrast, two
pushers tend towards orientation vectors that are perpendicular to the distance vector
[37]. We can understand this behaviour from the term −(e · r̂) (e× r̂) in Eq. (5.5).
Its magnitude is − sinψ cosψ if ψ is the angle between the orientation vector and the
distance vector. The resulting minima of the angular velocity at ψ = 0, π/2, and π
cause the pair configurations of puller and pusher dipoles, where ψ = 0 and ψ = π are
stable for pullers and ψ = π/2 is stable for pushers.

The vorticity induced by the rotlet-dipole term decays with r−4 and we therefore
neglect it. Importantly, the source dipole field is vorticity-free, which means that neutral
squirmers do not reorient each others via their propulsion fields.

82



5. Gyrotaxis of a squirmer pair

5.2 Balance of angular velocities

The competition of hydrodynamic torques with the external torques determines the
resulting angular velocity for every orientation and position of a squirmer. Using the
flow vorticities introduced above, we offer some estimates for the two-squirmer system
in the following.

Here, we assume that both squirmers are at the same height and have a lateral
distance ∆x. Their tilting angle against the vertical is, to leading order, determined by
the stokeslet vorticity of Eq. (5.3) and the angular velocity Ωbh caused by the external
torque [see Eq. (4.18)]. Balancing both terms in this particular configuration leads to

3

4

v0
R

r0
Rα

sinϑ =
3

4

v0
α

R

∆x2
. (5.9)

The closest possible distance is ∆x = 2R. For this distance, we can identify the angle
at which both terms are momentarily in balance. This angle ϑ0 is given by

sinϑ0 =
1/(4α)

r0/(Rα)
. (5.10)

Thus, a lower bound for the nondimensional gravitational torque in order to compete
considerably against viscous effects is given by

r0/(Rα) ≥ 1/(4α). (5.11)

Gyrotactic effects arise in a regime where external and hydrodynamic torques are
comparable. The above calculations provide us with an estimate of when this is the
case, i.e., how large the external torque has to be.

5.3 Coupled oscillations

Considering all hydrodynamic contributions is not necessary in order to induce complex
behaviour. A two-swimmer system interacting only via stokeslet vorticity and under the
influence of external force and torque has been considered by Drescher et al. [61]. Their
dynamical system shows coupled oscillations which nicely describe the experimental
observations of ’dancing’ Volvox algae [61, 272]. We here reproduce the oscillatory
trajectories with a two-squirmer system.

Figure 5.1 a) shows snapshots of our system of two neutral squirmers at α = 0.8.
As we have seen in Chapter 4, neutral squirmers float several radii above the bottom
wall at this value. Due to bottom-heaviness, the initial orientations of both squirm-
ers is vertical in the beginning (first snapshot), i.e., the polar tilt angle ϑ shown in
the last snapshot is close to zero. The subsequent dynamics offer an illustration of
the gyrotactic mechanism: Stokeslet vorticities incline the orientation vectors of both
squirmers towards each other (second snapshot). Then, active self-propulsion results
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5.3 Coupled oscillations

Figure 5.1: a) Snapshots of a squirmer pair performing coupled oscillations above the
bottom wall. The simulations used the parameters α = 0.8 and r0/Rα = 0.16. Repli-
cated from [C]. b) Average distance ρ12 between pairs versus rescaled torque. Insets
show the distance vector (∆x,∆y) between both squirmers in the plane.

in a rapprochement. Eventually, both squirmers pass each other (snapshots 3 and 4)1.
The squirmer with the stronger tilting sinks to a lower height and swims slightly un-
derneath the other squirmer. After the squirmers have switched places, the direction
of the vorticity interaction is reversed and thus the reciprocal motion starts (snapshots
5-8).

The external torque is decisive for the periodicity of the motion. Without or with
a weak torque, the distance of the squirmers continues to increase after they have
passed each other and no oscillation occurs, in agreement with Ref. [61]. Thus, the
tendency of both squirmers to orient upwards stabilizes the pair, and keeps the dis-
tance between both squirmers limited. Consequently, for larger torques, the oscillation
amplitude becomes smaller. We show this in Fig. 5.1 b), where the time average over
the squirmer-squirmer distance is plotted. Furthermore, the insets over selected data
points show the trajectory of the planar distance vector (∆x,∆y). Interestingly, we
continue to observe pair formation also at large torques, thus the orientations are never
completely frozen. This is because the gravitational torque approaches zero for e → ez,
as already mentioned. Thus, a small tilt away from the vertical can always be induced
by a neighboring squirmer, which leads to horizontal swimming and initiates (small)
oscillations.

1The overlap seen in the trajectories is due to the projection. The squirmers do not touch or
penetrate each other.
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6. Emergent collective dynamics of
bottom-heavy squirmers

We present MPCD simulations and analysis of the collective motion of bottom-heavy
squirmers under gravity. We base the results of this chapter mainly on materials from
our original work [B].

6.1 Introduction

Many fascinating phenomena of active systems arise from collective motion [40, 273]. In-
triguing novel transitions occur, such as motility-induced phase separation [7], pearling
instabilities [115], focussing in channels [15] and plume formation [109, 206]. Collective
systems of synthetic swimmers show new states of matter due to tunable orientational
or social interactions [161, 163, 274], while biological swimmers self-organize into man-
ifold living patterns, such as biofilms [22, 275] and algal patches [70, 276], or lead to
non-equilibrium collective motion, as seen in convective currents under the influence of
magnetic forces [277], swarming states [11, 278], and bacterial turbulence [16, 94].

For collective motion under high density, hydrodynamic interactions become partic-
ularly relevant [37, 279]. They influence, among other things, the phase separation of
squirmers in Hele-Shaw geometry [42, 43, 162], flock formation of rollers [105], synchro-
nization of micro-rotors [280], and circulation of bacterial suspensions [281]. For systems
under gravity, the external force induces flows originating at each sinking particle and
thus creates additional interactions [198]. Many-body systems of active swimmers un-
der gravity revealed convection of sedimenting squirmers [282] (see also Ref. [D] in list
of publications), ‘Wigner fluid’ states, swarms and chains in monolayers under strong
gravity [283] (see also Ref. [E] in list of publications), as well as chiral spinning clusters
[284]. For bioconvection, the swimmers’ response to gravity and their hydrodynamic in-
teractions are essential, as is demonstrated by gyrotactic plumes of biological organisms
[56, 109].

In Chapter 5 we have discussed the pair dynamics of two neutral bottom-heavy
squirmers. Here, we expand our system to higher squirmer numbers in order to in-
vestigate their collective dynamics, and also consider pushers and pullers. Thus, we
increase the squirmer number to 914, while keeping the radius at R = 4a0. Unless
otherwise stated, we use a boxsize of 108a0×108a0×210a0, where the last length refers
to the height of the system. This corresponds to a volume fraction of 0.1. Since some
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6.2 State diagram and phenomenology

squirmer states are strongly concentrated at the bottom of the system, we also convert
this to the mean area fraction in a vertical slab of width 2R, where the volume fraction
of squirmers is equal to the average. This squirmer area fraction is 0.15. However,
we stress that the density in some of the observed states is highly inhomogeneous due
to collective effects. We initialize the system with an approximately uniform distribu-
tion, i.e. choose the squirmer initial positions randomly, such that no overlaps between
squirmers or with walls occur. The initial orientations are random, too.

In the following, we vary the velocity ratio α and the rescaled torque r0/Rα and find
a variety of states that we describe in detail. The phenomenology we found occurred at
values 1 < α ⪅ 7. Since α decreases quadratically with the radius at constant v0, a large
range of values should be experimentally accessible. Furthermore, α decays linearly with
the buoyant mass. The latter can be changed by different materials or by changing the
surrounding fluid, where relative density differences have been adjusted in experiments
(by mixing H2O and D2O) up to ∆ρ/ρ = ±0.02 [144]. Likewise, the bottom-heaviness
of swimmers varies naturally or can be manipulated by experimentalists. Alternatively,
one can introduce a shape-induced gravitational torque, for example, with L-shaped
active colloids [59], where the effective lever arm can be controlled.

6.2 State diagram and phenomenology

Figure 6.1 a) shows the state diagram of neutral squirmers. As stated above, the
varied parameters are α and r0/Rα. We first describe the general properties of the
different states before analysing them in a more detailed way. We focus on states with
α > 1 in this study, i.e., states above the thin dotted horizontal line in Fig. 6.1 a).
As shown in Chapter 4, a single neutral squirmer would explore the simulation box
on cruising trajectories. The background colors in subfigure a) express the general
tendency of the density profile. For the blue regions in the state diagram, the steady
state is mainly concentrated in the top region or at the top wall. In the yellow regions,
squirmers mainly reside at the bottom wall. In the dark grey region we observe a
continuous vertical motion of squirmers. We then classify the simulation data into
more specific states: Sedimentation states (yellow stars), inverted sedimentation (blue
dots), transient plumes that transition into inverted sedimentation (blue stars), stable
plumes and convective rolls (black dots) and spawning clusters (black stars). We have
marked four exemplary parameter pairs (α, r0/(Rα)) in the state diagram, for which
we show the vertical density profile in Fig. 6.1 b) using the same colors. For two of
them, we show snapshots in Fig. 6.1 c).

For the classification of the respective states, we have used several criteria. First, we
consider the shape of the height profile, as is shown in Fig. 6.1 b). The sedimentation
state (red curve) has a characteristic exponential decay over the majority of the system
height. The state diagram shows that the sedimentation state occurs for weak torques
and α ⪅ 3.0. It was shown in Ref. [282] (see also original work [D] in list of publications)
that already at zero torque, the non-equilibrium sedimentation of squirmers has a much
larger sedimentation length than passive systems. Furthermore, squirmers can move
around considerably, in contrast to sedimentation under thermal noise. We call this
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Figure 6.1: a) State diagram of neutral squirmers in the parameter space α versus
r0/Rα. Dashed line: Balance condition from Eq. (5.11), where stokeslet vorticity and
rotation due to bottom heaviness are balanced at a distance of 2R. b) Vertical density
profiles for non-equilibrium sedimentation, inverted sedimentation, stable plumes and
convection rolls, and the spawning cluster state. Colors of the curves refer to the colors
of the large dots in the state diagram c) Left: Snapshot of a system at α = 2.3 and
r0/Rα = 0.11 showing a plume and convection roll. Right: Snapshot at α = 1.50 and
r0/(Rα) = 0.50 showing a spawning cluster.

state conventional sedimentation, because it still shows exponential decay. In contrast,
the exponential function is mirrored for the inverted sedimentation state (blue curve),
as we have introduced for active Brownian particles in Section 2.4.2. Inverted sedimen-
tation occurs at large α and finite torques. Due to the orientational bias, squirmers
accumulate at the top. For high enough α, we can observe this enrichment already at
small torques.

The state of plumes and convective rolls (orange curve) has a local density maximum
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6.3 Conventional and inverted sedimentation

at the bottom of the system, but also includes layers of squirmers at the top wall. Its
main characteristic is the appearance of large sinking clusters, that can be seen in
the left snapshot of Fig. 6.1 c). Such curtain-like microswimmer structures are called
plumes in bioconvection experiments [56, 157, 197, 285]. Furthermore, we observe
squirmer currents in convective rolls close to the bottom of the system in these states,
which we describe below in more detail. Note that plumes and convective rolls have
not been observed in dilute suspensions of active Brownian particles, since they appear
from hydrodynamic interactions.

The spawning cluster state is characterized by a strong density maximum at the
bottom of the system and an almost entirely depleted region in the center of the sim-
ulation box. The large cluster of squirmers floating above the bottom wall and the
depletion above can also be seen in the right snapshot of Fig. 6.1 c). In this state,
no convection occurs and sinking clusters are very rare. However, single squirmers are
sometimes ejected out of the bottom cluster with high velocity, which is why we call
it a spawning cluster. The orientations of the spawning clusters are strongly vertical,
since this state occurs at a high torque. Nonetheless, the cluster stays close to the
bottom wall due to hydrodynamic interaction which decreases the effective friction per
squirmer.

The dashed line describes a hyperbolic function satisfying the torque balance in Eq.
(5.11). It predicts the region where plumes and rolls occur fairly well. The other lines
separating the states from each other were obtained numerically from fitting the state
boundaries.

In the following, we investigate conventional and inverted sedimentation of neutral
squirmers, including transient plumes in Section 6.3 and the state with stable plumes
and convective rolls in Section 6.4. In Section 6.5 we address the spawning-cluster
state. Finally, we show how the state diagram changes for pusher and puller squirmers
in Section 6.6.

6.3 Conventional and inverted sedimentation

6.3.1 Sedimentation states

In Sec. 2.4 we have described the sedimentation of active particles. Furthermore, the
collective sedimentation of squirmers has been previously studied without any external
torque [282]. In agreement with these results, we observe a sedimentation of squirmers
when bottom-heaviness is weak. In Fig. 6.2 b) we show the measured sedimentation
lengths for α = 1.50 and α = 2.31 that we found by fitting an exponential function to
the vertical density profiles. The sedimentation lengths are orders of magnitude larger
than that for passive systems, which is defined as δ0 = kBT0/(mg). Furthermore, the
values are consistent with those found in Ref. [282]. Note that sedimenting squirmers
are mainly restricted to the bottom of the system, even at α > 1, and do not perform
cruising trajectories, as we expect from the single squirmer simulations. This points
to the hydrodynamic influence of squirmers on each other: Gravity-induced stokeslets
create a flow field which pulls nearby squirmers down and a vorticity which reorients
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Figure 6.2: a) Density profiles for the inverted sedimentation state for α = 6.01 and
different torque values. b) Sedimentation lengths for conventional (α = 1.50) and
inverted sedimentation (α = 6.01) versus dimensionless torque. We normalize the
sedimentation length by the passive value δ0 = kBT0/(mg).

nearby squirmers away from the vertical; see Eq. (5.3). These interactions extend the
sedimentation state to α > 1. We consider the dynamics of sedimented squirmers at
α < 1 in more detail when we study the emergent cluster formation of bottom-heavy
squirmers under strong gravity in Chapter 7.

6.3.2 Inverted sedimentation states

Bottom-heaviness leads to an external gravitational torque which can overcome the
hydrodynamic tilting of squirmers. Naturally, the required torque is lower for lower
gravitational forces, which is reflected by the narrowing of the sedimentation state and
the broadening of the inverted sedimentation state at high α in the state diagram in Fig.
6.1 a). We show the density profiles for constant α = 6.01 and an increasing torque in
Fig. 6.2 a). Without the external torque, the profile is almost uniform. With increasing
torque, an inverted exponential profile develops with a (negative) sedimentation length
that decreases with the torque. We plot the sedimentation lengths at α = 6.01 in Fig.
6.2 b). The behaviour of the system agrees qualitatively with results on bottom-heavy
active Brownian particles [158]. However, we also observe the formation of layers at the
top wall when the inversion becomes strong enough. These layers are clearly visible in
the density profile as sharp peaks that break the underlying exponential profile. Note
that the density profile has been determined for only the last 5 · 105 timesteps of the
simulation and that we base the classification as an inverted sedimentation state in Fig.
6.1 a) on this long-time limit. We mention this, because a significant transient state
is observed at high torques, which we discuss in the following. In concrete, we observe
transient plumes that are marked in Fig. 6.1 a) as the blue stars right of the dashed
line.
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6.4 Formation of stable convective structures

Figure 6.3: a) Snapshots of the evaporating plume for α = 6.01 and r0/(Rα) = 0.08.
b) Time-integrated squirmer density during the transient is shown with decreasing α
from left to right.

6.3.3 Evaporating plumes

Transient plumes appear during the formation of layers at the top wall at high torque
and α. First, we observe a protrusion of squirmers which eventually separates from the
layers and forms a sinking cluster. Note that squirmers swimming against the top layers
without advancing still induce a stokeslet and hence a vorticity field is present. This
orients squirmers towards each other and leads to the formation of the sinking cluster.
The structure attracts more squirmers in its wake, leading to the typical elongated
shape of a plume. We show a time series of the sinking plume in Fig. 6.3 a) and the
average density profiles during the transient for different dimensionless torques in Fig.
6.3 b).

After the protrusion has formed, the cluster sinks as a whole, as the first two snap-
shots in subfigure a) show. It then starts to lose single squirmers into the bulk. These
join the top wall layers which now remain stable, as can be seen in the third snap-
shot. The cluster thus becomes smaller and eventually disappears; see fourth snapshot.
Therefore, we call this sinking cluster an evaporating plume. The cluster’s initial size
increases with the gravitational force. It survives for longer times and therefore sinks
deeper. This can be seen in Fig. 6.2 b), where we plot the two-dimensional squirmer
density during the sinking of three different plumes at different values of α. Note that
at the lowest α, the sinking plume almost reaches the bottom wall before it evaporates.
If gravity is increased even more, long-term stable plume and roll states can appear,
which we discuss in Sec. 6.4.

6.4 Formation of stable convective structures

So far, we discussed evaporating plumes that do not form continuously and therefore
end up in an inverted sedimentation state. However, we additionally observe states with
constantly forming plumes. In these states, a convective roll appears at the bottom wall
that absorbs squirmers from the plumes. We have already shown a snapshot of this
state in Fig. 6.1 c). As can be seen in the state diagram Fig. 6.1 a), this happens at
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torques exceeding the conventional and inverted sedimentation, whereas stable plumes
disappear when the torque becomes very strong. In the following, we first characterize
the features of the sinking plumes and then investigate the convective rolls at the bottom
of the system.

6.4.1 Characterization of plumes

In the stable plume and convective roll state, plumes form continuously at the top wall
and sink down. We discuss the mechanism of this sinking, and the clusters’ statistics
and sizes.

Collective sinking

The left snapshot in Fig. 6.1 c) suggests that squirmers in plumes have overwhelmingly
an upright orientation. Since α is larger than 1, it is not immediately clear why the
plumes are sinking. Therefore, we consider the statistics of down-moving squirmers,
i.e., those whose vertical velocity is negative. In Fig. 6.4 a), we plot the mean vertical
squirmer orientation ⟨cosϑ⟩xy as a function of height z for squirmers with vz < 0 at
different values of rescaled velocity α and torque r0/(Rα). This allows us to contrast
the plume state with the sedimentation and inverted sedimentation states. To support
our argument, we have included a dashed line for every curve at the respective threshold
orientation cosϑth = 1/α. This orientation, for a given α, indicates the maximum value
that allows a single squirmer to sink down.

As we explained before, squirmers in the sedimentation state are tilted by the flow
vorticities of their neighbors. As a consequence, their mean vertical orientation is
always below the threshold value, as Fig. 6.4 a) shows: Squirmers in the sedimentation
state (red curve) sink down due to the sedimentation velocity dominating the active
part v0 cosϑ. For the inverted sedimentation states (blue curve), the orientation is also
below its threshold value. However, this orientation is negative, which means that both
sedimentation and self-propulsion contribute to the downward motion. We conclude
that the squirmers are swimming down in this case, rather than sinking down.

The mean orientation of squirmers in the plume state (orange curve) is markedly
different: The threshold value cosϑth is overcome in the center of the simulation box
(away from the walls), which is where sinking plumes can be found. For a single
squirmer in bulk this implies upward swimming. Thus, single squirmer dynamics cannot
explain the sinking of the squirmers in the plume. In fact, the sedimentation velocity is
increased compared to a single squirmer in bulk due to hydrodynamic interactions with
other squirmers in the plume. Stated another way, the friction per squirmer is reduced
in the plume. The leading order hydrodynamic contribution from a squirmer’s neighbor
is again the stokeslet contribution, which indeed reinforces the downward drift from the
external force, as the flow in Eq. (4.7) has a negative z component. Studies on the
Rotne-Prager mobilities of passive colloids have also found this increase in downward
mobility [198, 286–288].

We have thus identified three different forms of squirmer motion in negative z-
direction in our system: Individual sinking for the sedimentation state, down-swimming
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Figure 6.4: a) Mean vertical squirmer orientation ⟨cosϑ⟩xy as a function of height z for
all squirmers with drift velocity vz < 0. Red: sedimentation, blue: inverted sedimen-
tation, orange: plumes and convective rolls. Horizontal lines: condition cosϑth = 1/α.
b) Distribution of vertical velocities of neutral squirmers at α = 2.31 and r0/Rα = 0.11
for different cumulative cluster sizes Ncl. Left black vertical line: mean velocity of
all squirmers, which is almost zero. Right black vertical line: maximum bulk velocity
v = v0 −mg/γ∞. Orange vertical line: velocity for the mean vertical orientation of all
squirmers from ρ(vz) for Ncl ≥ 10. Inset: probability density of cluster sizes. c) Mean
number of squirmers in sinking clusters (N− ≥ 2) versus simulation time. Plumes and
transient plumes (orange and purple curves) show characteristic spikes. d) Effective
friction coefficient experienced by squirmers in a cluster as a function of cluster size.

in the inverted sedimentation state and collective sinking in the plume state. The latter
is now investigated further.

Cluster velocity distribution

Cluster definition In order to verify the mechanism of collective sinking, we measure
the velocity distributions of the plumes. In order to do this, we first need a way to
identify squirmers inside a cluster. This is done by identifying groups of squirmers with
a sufficiently small distance d from at least one neighbor within the same cluster. Here,
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we choose d < R/4. We call the number of squirmers in a cluster the cluster size Ncl.
Every 1000th timestep we determine the clusters in the system and then measure the
vertical velocity distribution of all squirmers within each cluster. This way, we are able
to distinguish the distributions at different cluster sizes from each other, and also from
solitary squirmers with Ncl = 1.

Velocity distributions We restrict the measurement to squirmers with medium
heights 60 < z/a0 < 160. The reason is that we want to avoid including clusters or
layers at either wall into our statistics, since these clusters are not the sinking plumes
we are interested in. The parameters for which we performed this specific measurement
are α = 2.31 and r0/(Rα) = 0.11, thus placing it within the grey area of plume states
in the state diagram of Fig. 6.1 a).

We show the velocity distributions of the plumes in the main plot of Fig. 6.4 b).
The solid black curve corresponds to the distribution of all squirmers in the chosen
range. It is roughly symmetric around vz = 0, which is also its approximate mean
(left solid black vertical line). Thus, in total, the recorded squirmers fulfill a zero-flux
condition and sinking plumes are balanced with up-swimming squirmers. This is an
indication that steady state is reached. Furthermore, we include the vertical velocity
distributions of solitary squirmers (red line) and for the clusters with 2 squirmers or
more (blue line), as well as those with at least 10 squirmers (orange line). In addition
to the mean of the entire distribution at approximately vz = 0, we include two other
characteristic velocities: The right black vertical line indicates the maximum upward
velocity achievable in bulk v = v0 −mg/γ∞ at the chosen value of α. Last, the dashed
vertical orange line indicates the expected single squirmer vertical velocity

vsing,z = v0⟨cosϑ⟩ −mg/γ∞, (6.1)

when assuming its polar angle to be the mean vertical orientation ⟨cosϑ⟩ of all squirmers
contributing to the orange curve.

Single squirmers move both up- and downwards, visible in the broad shape of their
velocity distribution (red curve). However, the up-swimming squirmers are in the ma-
jority and the peak of their distribution is close to the bulk maximum velocity, indicated
by the right vertical black line. Interestingly, a single squirmer’s velocity can exceed
this value, and more remarkably, even the free-swimming limit vz = v0. The reason
for this are the flow fields originating from the convective rolls at the bottom of the
system, which give the up-swimming squirmers a boost. We have verified that this
velocity boost is not present for inverted sedimentation states where the bottom cluster
is missing.

Next, we analyse clusters with a size of 2 and larger. We observe that increasing the
lower limit of the cluster sizes considered — the integer k such that Ncl ≥ k — shifts
the vertical velocities in negative direction. This can be seen by comparing the blue
(Ncl ≥ 2) with the orange curve (Ncl ≥ 10), and also comparing both of them against
the black curve (Ncl ≥ 1). Furthermore, the distributions become narrower than both
the total distribution and the single squirmer distribution. While the blue curve with
k = 2 still retains a long positive velocity tail, this gets significantly reduced for the
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orange curve, indicating that squirmers in large clusters move down most of the time.
We here stress again that the orientations of these squirmers are still biased towards
the top. Thus, the expected velocity of a non-interacting single squirmer, written in
Eq. 6.1 and shown as the orange dashed vertical line, is positive, but only a negligible
amount of squirmers with a comparable velocity are measured. Incidentally, the orange
line agrees reasonably well with the peak of the single squirmer distribution (red curve),
which underlines that the orientations of single squirmers and squirmers in clusters are
similar on average.

Effective friction The actual peak of the orange distribution is near the negative
self-propulsion velocity −v0. It follows that the effective sedimentation velocity acting
on the clusters’ squirmers has increased, as predicted above, due to hydrodynamic
interactions. The correction can be neatly expressed in terms of the friction experienced
by a squirmer. For the dashed orange line, we used the friction of a single squirmer in
bulk. We now quantify the influence of the close presence of the other squirmers on the
friction in Fig. 6.4 d).

The effective friction coefficient, depending on the cluster size Ncl, is given by

γeff(t, N
′
cl) =

(︁
−mg/⟨veff⟩Ncl=N ′

cl

)︁
, (6.2)

using the effective sedimentation velocity

veff = vz − v0 cosϑ (6.3)

and averaging it over all squirmers within clusters of size Ncl. We subsequently took
a time average over a range of 106∆t, in order to obtain the curve in Fig. 6.4 d).
Additionally, we normalized the data points by the bulk friction. We observe a strong
size dependence of the effective friction coefficient, which saturates at large cluster sizes.

Cluster sizes

We show the distribution of cluster sizes in the inset of Fig. 6.4 b), this time exclud-
ing the case of individual squirmers. It shows a monotonic decrease with cluster size.
In order to find a further characteristic signature of plumes, we look at the time se-
ries of the average number of squirmers in each sinking cluster. We call this number
N−, which exists for each cluster. We stress that for finding the cluster size Ncl all
squirmer velocities were allowed, whereas now we restrict ourselves to those squirmers
with vz < 0.

We calculate the average number N− in sinking clusters with two squirmers or more
for each timestep, and plot this quantity for squirmers within the range 60 < z/a0 < 160
in Fig. 6.4 c). The upper plot shows the time series for both a transient plume (purple)
and a continuous plume (orange) simulation. The lower plot shows sedimentation,
inverted sedimentation and spawning cluster states.

We can clearly see sharp peaks in the plume states, setting them apart from the other
states. These sudden events signal the sinking clusters falling through the observation
window. The measurement for the transient plume state was done for the same number
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of timesteps, but we clearly see that the spikes disappear around 1.3 · 106∆t, due to
evaporation. In contrast to the high spikes in these two states, the curve for the inverted
sedimentation (blue line) stays relatively constant at a low value. The conventional
sedimentation state (red line) shows some small variation, visible as occasional flat
spikes. The reason for this is that small clusters can transiently form that then sink
down again, as was also observed in Ref. [282]. The same applies for the spawning
cluster state (green curve), but with very few and rare spikes.

Effect of flow vorticity

While the hydrodynamic flow fields are responsible for the reduction of friction per
squirmer, the flow vorticity is decisive for the formation of the clusters. It is determined
by the stokeslet fields everywhere, since we simulate neutral squirmers. As we have
described for squirmer pairs, flow vorticity and external torque combined create the
conditions of a stable configuration: Due to the flow field originating from a cluster,
nearby squirmers are oriented towards it and approach it. They arrive slightly above it,
since the cluster sinks, while the joining squirmers swim upwards. A vertically extended
wake of squirmers develops, resulting in the curtain- or finger-like shape of a plume.
The mechanism of plume formation that we describe here is similar to that of gyrotactic
algae forming so-called ‘bottom-standing’ plumes [56]. It is not achieved in a stable way
for the transient plumes, where squirmers ultimately escape from the sinking cluster
towards the top wall. The transient states lie beyond the dashed hyperbolic curve which
indicates the balance between external and hydrodynamic torques, thus we conclude
that the external torque is too high.

Furthermore, the state diagram in Fig. 6.1 a) suggests that plumes are more robust
at lower α, where the plume state is broader. This is because high values of α improve
the chance of escape, as we can see from the angle threshold cosϑ > 1/α of a solitary
squirmer, which decreases with α.

6.4.2 Large-scale convective roll

As we indicated before, sinking plumes occur in the middle section of the simulation
box, while at the bottom wall squirmers form a recirculating pattern, which we call a
convective roll. Similar patterns are known from swimmers in experiments [109, 144,
157]. The convective roll is shown from a side-view projection in the left snapshot of
Fig. 6.1 b). We offer additional perspectives in Fig. 6.5. In Fig. 6.5 a) we show a three-
dimensional view of the roll. We have color-coded the squirmers with their respective
vertical velocities. This helps us to clearly distinguish two regions: In yellow or red, we
see the upwards swimming squirmers that escape from a gap between two high-density
regions. There is not much vertical motion in the dense regions themselves, however,
we can see a plume joining the right cluster. Squirmers in the plume are colored blue,
i.e., with negative vertical velocity.
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Figure 6.5: a) 3D snapshot of a convective roll in the region 0 ≤ z/a0 ≤ 100 with
color-coded vertical velocity components vz. b) Cumulated squirmer velocity vectors
during a time period 9 · 105∆t within a layer of width 2R in y-direction. The color
of the arrows marks the horizontal velocity component vx. The color bar applies to
both a) and b). Parameters are α = 2.31 and r0/Rα = 0.11. c) Exemplary squirmer
trajectory inside a convective roll: The squirmer enters the roll (blue dot) and reaches
the bottom cluster (I). It meanders through the cluster and sometimes reaches the
edges of the cluster without escaping (II, III). Finally, it is ejected out of the roll
(IV) and continues to swims upwards (red dot). Blue circles are squirmer positions,
including their orientation vectors (radii are increased for better visibility). Dashed
line: Projection on the x-y plane.

Recirculation pattern

Figure 6.5 b) illustrates the recirculation pattern of the convective roll. We accumulate
the velocity vectors of squirmers on their trajectories over a time period of 9 · 105∆t
within a thin slab of the system with width ∆y = R. Thus, the entire system consists
of many such slabs, and we show one representative example. The color of the velocity
arrows corresponds to its horizontal components. In the upper and middle section of
the simulation box, one sees the traces of squirmers moving up or down, whereas the
majority of squirmers is at height z = 100a0 or lower. In particular, squirmers swimming
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Figure 6.6: a) Mean vertical current density jz(x, y) at α = 2.31 and r0/(Rα) = 0.11.
We averaged over three different regions, where each has a height 40a0. In an intermedi-
ate step, we smoothened the data by applying a low-pass filter. b) Snapshot capturing
a timestep during the averaging procedure.

to the left (blue arrows) and squirmers swimming to the right (orange and red arrows)
combine to visible macroscopic convective patterns. Most notably, a circular structure
emerges in the horizontal center. In the bottom left, a second roll pattern is present,
but is not complete due to the periodic boundaries. The sense of rotation of the two
rolls is opposite. Both rolls exchange squirmers frequently; from the left roll they swim
up and to the right towards the right roll, and vice versa. At the same time, squirmers
also escape the convective rolls entirely, swimming up from the gap between them, in
slightly curved trajectories.

We introduce the mean vertical current density of squirmers [282]

jz(x, y) := ⟨ρ(r)⟩∥⟨vz(r)⟩∥. (6.4)

We use the squirmer density ρ and define · · · as the time average and ⟨. . . ⟩∥ as the
average along the vertical. We show jz(x, y) for the convective roll in Fig. 6.6 a) for
three different subsections of the system. The left plot shows the bottom of the system
(0 ≤ z/a0 ≤ 80), and we clearly see the gap region where squirmers escape (red), as
well as the roll on the right and, weaker, the counterrotating roll on the left (blue). The
convective roll is elongated. However, its size is comparable to the lateral boxsize, and
thus its shape is an effect of the finite system size. We discuss larger simulation boxes
in the following section.

The middle plot shows the middle section of the simulation box (80 ≤ z/a0 ≤ 120),
i.e., where we observe plumes. Indeed, the regions of sinking squirmers are spatially
much more compressed, since squirmers reorient towards each other and sink collec-
tively. Note that the positions and extensions of the sinking regions can change over
time, and thus depend on the period of time integration. The blue peak in the center of
the plot demonstrates that plumes can have a lateral displacement with respect to the
roll underneath. While they sink, they move to the side considerably and are drawn
into the convective roll, illustrating the strong hydrodynamic flows. This is also nicely
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shown by the snapshot of Fig. 6.6 b).
The right plot in subfigure a), corresponding to the top region of the system (120 ≤

z/a0 ≤ 160), shows weak sinking activity in the spots of emerging plumes, otherwise,
up-swimming dominates.

Meandering trajectories

The convective rolls steadily reside at the bottom of the simulation box and form
a regular pattern. However, this structure emerges from an irregular motion of the
individual squirmers. In Fig. 6.5 c), we show the trajectory of a squirmer within the
convective roll in subfigure a), seen from the side and rotated by 90 degrees. We have
compensated for the periodic boundary conditions in the plot of the trajectory, to make
its appearance more clear. Hence, the squirmer does not leave and re-enter from the
boundaries. We start our description of the trajectory at the blue dot. Here, the
squirmer falls towards the bottom cluster and joins the roll at position I. After passing
through positions II and III, the squirmer leaves the cluster at position IV and its
trajectory ends at the red dot. Additional to the three-dimensional motion, we show
the projection on the x− y plane as a dotted line below.

Note that at position II and III, the squirmer is on its way to leave the cluster.
However, it is reoriented too strongly towards the horizontal in both cases. In summary,
the irregular motion of squirmers inside a convective roll, expressed by the plotted
trajectory, appears from self-propulsion with an orientation vector that is constantly
disturbed by vorticity fields, and also influenced by the external torque. Thus, we again
observe gyrotaxis, and we can consider the meandering motion as a many-swimmer
extension of the pair dynamics from Chapter 5. Only stokeslet interactions are necessary
for this, and simulations with neutral squirmers represent this situation well, since their
flow field has zero vorticity.

6.4.3 System with multiple rolls

We now address the finite-size effects limiting convective rolls that we mentioned in Sec.
6.4.2. In order to avoid that a convective roll extends over the whole edge length L of
the simulation, and thus interacts strongly with itself, we double L. Furthermore, we
double the number of squirmers, such that we study a more dilute system, with half the
squirmer volume fraction from before. Since more space is available for the distribution
of squirmers in lateral direction, we observe more convective rolls than before. Fig. 6.7
shows a top and a side view of this system. The islands of convective rolls, seen on
the left, are still supplied by sinking plumes, as before, which is depicted in the right
snapshot.

For the previous geometry, the sizes and distances of the rolls were limited by the
system size. In the larger system, we discover that both the extensions, as well as the
distances of clusters from each other, seem to have a characteristic scale. In order to
check this, we doubled the volume fraction to 10%, which increases the cluster sizes.
As a result, they sometimes touch, but the distances between their centers remain
approximately constant. We revisit the formation of regular clusters from bottom-
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Figure 6.7: Snapshots for an array of convective rolls in a system with a horizontal
cross-section that has been increased by a factor of four in comparison to Fig. 6.5, i.e.,
L = 216a0, while keeping the height constant. Left: Top view showing all squirmers
below z = 100a0. Right: Side view.

heaviness in Chapter 7 at α < 1.

Toroidal squirmer flow

In Fig. 6.8 a) we take a look at the mean squirmer current density in vertical direction
for the larger system. Again, the outlines of the rolls are clearly identifiable: The blue
regions indicate sinking squirmers, both inside the rolls, as well as from the plumes
supplying them with fresh squirmers. Squirmers swim up in the gap regions, shown in
red. The larger system size with more rolls allows us to look at the dynamics within
a single cluster more closely. As we have seen, a squirmer performs a meandering
trajectory and is reoriented often by its neighbors, yet globally a consistent pattern
is seen. In Fig. 6.8 b) we visualize the horizontal velocities of the squirmers within
slices of the system that have a height of 4R. The lower plot shows the bottom of the
convective rolls, and the upper plot shows its top. Scanning through the roll in this way
gives us insight into the three-dimensional flow of the squirmers. In the bottom right
of the right figure, we show the color-code for the directions in which squirmers are
moving. Interestingly, squirmers move radially outwards at the bottom, and inwards
towards the cluster centers on the top. Since we know the vertical motion of squirmers
from Fig. 6.5, we can conclude that the global flow pattern of the squirmer rolls has a
toroidal shape.

6.4.4 Transient rolls

Convective rolls can become unstable, too, when the external torque becomes too
strong. The tendency of squirmers to form plumes is counteracted by a strong ver-
tical bias, as we have seen before. If plumes disappear, the convective rolls at the
bottom wall also slowly disappear, since they continuously lose squirmers without re-
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Figure 6.8: a) Mean vertical current density at L = 216a0, averaged over all squirmers
within z/a0 ∈ [0, 100] and over a time 4.5·105∆t. b) Superimposed squirmer trajectories
on the horizontal plane during the same time period in the top and bottom of the
system. The circular color bar shows the direction of the horizontal velocities. Circles
show squirmer positions from the top view snapshot in Fig. 6.7, left.

ceiving sufficient replacement. This can be seen in Fig. 6.9 a), where we plot the volume
fraction η versus time in the bottom and top half of the box, as well as by the three
snapshots in Fig. 6.9 b), which capture the system at three different times. The volume
fraction η fluctuates around a constant value for sedimentation and inverted sedimenta-
tion steady states, as well as stable plume states. In contrast, in the transient roll state
the density is continuously decreasing in the lower half and increasing in the upper half
of the system; see subfigure a). As can be seen from subfigure b), the depicted process
is rather slow, because the initial fraction of squirmers in the convective roll is high.
Consequently, we did not reach equilibration during our simulation time. However, the
escaped squirmers form an inverted sedimentation steady state for long times.

6.5 Spawning clusters

At high gravitational force and torque, squirmers are constrained to the bottom of the
system, but are oriented vertically. This has the effect that both the translational,
as well as the orientational range of motion is strongly restricted. As a consequence,
a large cluster appears above the bottom wall, which can be seen in Fig. 6.10 a), at
α = 1.50 and r0/(Rα) = 0.50. The color code is equal to Fig. 6.5, thus we see that
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Figure 6.9: a) Time evolution of the volume fraction η at α = 2.31. Top: upper half of
the system (H/2 < z < H). Bottom: lower half of the system (0 < z < H/2). Dashed
line: global volume fraction ηglob = 0.10. The curves show conventional sedimentation
(blue), stable plumes and convective rolls (orange), and transient rolls (green). b)
Snapshots of the corresponding transient roll, as it slowly disappears.

squirmers hardly move in vertical direction. Interestingly, the cluster is not compact,
but has a porous structure with large holes completely depleted of squirmers. Thus,
despite the small mobility of the squirmers, they still tend to form island and gap
regions. Furthermore, on some occasions, squirmers leave the clusters through the gap
regions at high velocity. These squirmers are the reason for the term spawning clusters.
They either rejoin it or escape to the top wall. Thus, a stratum of squirmers develops
there, as can be seen from the density profile in Fig. 6.1 b) and the right snapshot in
Fig. 6.1 c), whereas the middle region becomes almost completely depleted.

In Fig. 6.10 b) we track the disappearance of convective motion in the central
region between both walls with increasing gravitational torque. Therefore, we choose
the region z/a0 ∈ [80, 120] for the three plots in Fig. 6.10 b), and set α = 1.50, while
the external torque is varied. In the sedimentation state, r0/(Rα) = 0.08, squirmers
can occasionally form convective patterns that are unstable. These become visible
in the mean vertical current densities as separated regions of up- and down-swimming
squirmers, if the period for time averaging is chosen not too long. These areas disappear
if the torque is increased, as the middle plot for r0/(Rα) = 0.17 shows. We identified
this system as the beginning of the spawning cluster state in our state diagram in
Fig. 6.1 a). At r0/(Rα) = 0.50 (right plot), a nearly uniform value of zero for the
current density is reached, except for some small remaining patches. However, as we
have explained, these up-swimming squirmers are very characteristic for the spawning
cluster state. Note that the same range of height is used in all three plots of Fig. 6.10
b), and all systems experience the same gravitational force.
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Figure 6.10: a) Top-view snapshot for the spawning cluster state at α = 1.50 and
r0/(Rα) = 0.50. Vertical velocities are color-coded with the same scale as in Fig. 6.5.
b) Mean vertical current density jz(x, y) in the horizontal plane at α = 1.5 in the region
80 ≤ z/a0 ≤ 120 and averaged over a time period of 9 · 105∆t. The torque value r0/Rα
corresponds to sedimentation (left) and a spawning cluster (middle and right).

6.6 Pusher and puller dynamics

An analysis of the dynamics of puller and pusher squirmers with β = ±5 yields the
state diagrams in Fig. 6.11 a) and c). We observe less distinct states than for neutral
squirmers. Conventional and inverted sedimentation still occurs. Here, higher torques
and higher values of α are needed in order to reach the inversion, as can be seen by
comparing the respective separation lines to the neutral squirmer case. Convective rolls
and spawning clusters do not occur for either of the two swimmer types, while we do
observe plumes. However, they are more fragile than for neutral squirmers. As we
describe below, for pullers they are more pronounced than for pushers, and we consider
them a separate state. Therefore, we show a grey shaded area in the state diagram.

6.6.1 Sedimentation of bottom-heavy pushers and pullers

Pushers and pullers show a transition from conventional to inverted sedimentation
profiles. This is shown in Fig. 6.12 a) for the example of the puller at α = 6.01.
However, as shown by the state diagrams, the necessary torque for achieving inversion
is higher for β ̸= 0. We can see in the angular distributions in Fig. 6.12 b) why this
is the case: The neutral squirmers’ vertical alignment is stronger than for pushers and
pullers, using the same parameters α = 6.01 and r0/(Rα) = 0.04.

The force dipole component of their flow fields distinguishes pushers and pullers
from neutral squirmers. Decaying with 1/r2, it is more long-ranged than the source
dipole field. Furthermore, the force dipole has a non-zero vorticity. This interferes
strongly with the orientations of nearby squirmers, as has been shown in studies of
microswimmer suspensions: Polar order in clusters is weakened due to force dipole fields,
for pushers more than for pullers [41, 199, 289, 290]. The perpetual deviation from the
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Figure 6.11: a) State diagram for the strong puller with β = 5. b) Puller plume for
system with α = 2.01, r0/(Rα) = 0.19 (see red circle in a)). c) State diagram for the
strong pusher with β = −5. d) Pusher plume for system with α = 2.01, r0/(Rα) = 0.19
(see red circle in c)). Color coding of squirmers shows their vertical velocities.

vertical alignment by the pusher and puller vorticity fields necessitates stronger external
torques, in order to achieve inverted sedimentation. Furthermore, we hardly observe
layering for pullers and pushers at the top wall, as can be seen in the sedimentation
profiles. We suggest that the reason is the same.

6.6.2 Pusher and puller plumes

In Fig. 6.12 c), we show the density profiles of pushers, pullers and neutral squirmers at
α = 2.00. We immediately see that the peak at lower heights is much less pronounced
for pushers and pullers, which is due to the missing convective rolls in that region.
However, we picked the parameters such that we still observe plumes. This necessitates
increasing the rescaled torque to r0/(Rα) = 0.19 for pushers and pullers.

The plumes we observed by visual inspection are more fragile than for neutral
squirmers. The snapshots in Fig. 6.11 b) and d) confirm this. Puller plumes form
at the top wall and disintegrate before the bottom wall is reached. Pusher plumes are
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Figure 6.12: a) Exponential, constant and inverted height profiles of strong pullers
(β = 5) at α = 6.01. b) Distributions of the vertical orientation for different squirmer
parameters β at α = 6.01 and r0/Rα = 0.04. c) Height distributions of neutral, pusher,
and puller squirmers in their respective plume states at α = 2. Inset: Cluster size
distribution of the sinking plumes. d) Mean size of sinking clusters ⟨N−⟩ for strong
pullers (β = 5) as a function of the rescaled torque. Averaging is performed for the
region 20 ≤ z/a0 ≤ 120 and over more than 5 ·105 time steps. We considered all sinking
clusters with N− ≥ 2.

even more volatile. The inset of Fig. 6.12 c) depicts the distribution of cluster sizes and
shows that large clusters are less probable for pushers and pullers, thus their plumes
have smaller sizes on average. As a consequence, we cannot identify the sinking plumes
clearly as spikes in the time series of the mean size of sinking clusters N−, as we did for
neutral squirmers in Fig. 6.4 b). As an alternative, we perform a time average over this
series, which we show in Fig. 6.12 d). We plot it versus the rescaled torque and show
curves for different velocity ratios α.

As we explained, the plumes are more stable for pullers (solid lines and circles).
Since the average cluster sizes have an approximately sigmoidal dependence on the
rescaled torque for α < 6, we classify the systems with plumes as a distinct state. For
α = 6.01, there is no crucial change or trend. The state boundaries of the plume state in
Fig. 6.11 a) numerically approximate the values of (α, r0/(Rα)), where the largest jump
in the sinking cluster size occurs. We plot a dashed instead of a solid line in the state
diagram for the transition from the sedimentation state, since the jump for α = 2.01
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and α = 1.50 is less clear. Likewise, since the average cluster size merely increases
steadily for pushers (dashed lines and triangles), without jumping, we do not identify
a transition between two states in pusher systems. We therefore left them classified
as sedimentation and inverted sedimentation states, but indicated in the state diagram
that sinking plumes occur.

6.7 Conclusions

Fascinating patterns arise for squirmer suspensions which experience a gravitational
force and torque. Observing over 900 neutral squirmers, pullers or pushers, we tracked
the different states that occur depending on the strength of gravity and bottom-
heaviness. Conventional sedimentation profiles occur at low ratios of swimming ve-
locity to sedimentation velocity α, and low rescaled torques r0/(Rα). Increasing α and
using finite torques, the exponential height profiles invert. If the external torque be-
comes comparable to viscous orientation interactions, squirmers start to accumulate,
most strongly for neutral squirmers. Since the friction is reduced in a cluster configu-
ration, collective sinking occurs and we observe plumes. At the bottom of the system
a convective roll develops for neutral squirmers, which is supplied with squirmers by
plumes, while it releases single squirmers into the bulk. These structures appear from
gyrotaxis, i.e., a combination of directional alignment with gravity (gravitaxis) and by
nearby flow fields (rheotaxis). This is underlined by the fact that plumes and rolls be-
come transient as the external torque becomes too large and starts to dominate. Strong
torques at α ⪆ 1 lead to the formation of porous squirmer structures that float above
the bottom wall. We call them spawning clusters because they sometimes eject fast
single squirmers.

We find that the force dipole flow fields and vorticities induced by strong pushers
and pullers disturb the density inversion, as well as the cluster formation, which we
observe for neutral squirmers. Thus, the state diagram loses features for β ̸= 0. The
plumes we observe are fragile and no stable convective rolls appear.

Gyrotaxis is definitely relevant for bioconvection, as discussed in the literature [56,
203, 209–211]. However, alternative descriptions of plume formation exist, where a
gravitational instability occurs at the top layer. It resembles a Rayleigh-Taylor con-
vection instability and flow vorticity is not needed [56, 157, 197, 206, 207, 291]. For
example, these descriptions seem to be relevant for plumes of Tetrahymena, where gy-
rotaxis was ruled out [202]. While this mechanism requires a top wall, collective sinking
from gyrotaxis can also emerge in the bulk fluid.

We only observed fragile plumes of pusher and puller squirmers, however stable
plumes and convection cells occur in nature for these types of swimmers [109, 157, 203].
Thus, for a concrete microswimmer, one cannot neglect additional effects from their
propulsion mechanism. This includes steric interactions due to flagella [89, 292, 293],
shape-induced gravitational torques [71, 195], and alternative forms of taxis, such as
phototaxis [197, 212] and chemotaxis [157, 200]. Furthermore, the force dipole strength
of biological microswimmers is often less than the value corresponding to β = ±5, which
we used [269, 294, 295], and can also vary during a flagellar beating cycle [171, 172].
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7. Gyrotactic cluster formation

In this chapter, gyrotactic clusters under stronger gravity, their emergence and their
properties are studied. Most of the following results are based on our original work [C].

7.1 Introduction

Active constituents, whether they are biological or synthetic, frequently form clusters.
The interactions leading to cluster formation can be very different from system to
system. They can be merely local, as in motility-induced phase separation of active
Brownian particles [7] or the steric interactions among bacteria [296], or long-ranged,
such as chemical interactions [8, 9, 106, 297] or hydrodynamics [15, 42]. The impact
of such clusters is considerable. Microfabrication of active particle aggregates could
become a promising technology [105, 298, 299] and organic patches in the oceans have
profound environmental impact [70, 276, 300]. In the last chapter, we found appeal-
ing patterns emerging from gyrotaxis, such as plumes and convective rolls. For large
systems, the convective rolls separate into several clusters with characteristic distances
and sizes. We study the gyrotactic mechanism of cluster formation more quantitatively
in the following. In particular, we analyse the structural properties of clusters and test,
which parameters influence their size and distance.

While the patterns observed in the last chapter extended over the whole height of
the simulation box, we now focus on stronger gravity, comparable to Chapter 4. Thus,
vertical motion is still possible, but we expect it to be restricted by the floating heights
found previously. At the same time, hydrodynamic interactions continue to strongly
influence the collective dynamics.

7.2 Phenomenology of gyrotactic clusters

In order to investigate the formation of neutral squirmer clusters, we vary the external
torque, as well as the squirmer density. Furthermore, we consider the effect of hydro-
dynamic flow fields. As before, we are also interested in pusher and puller squirmers.
In addition, we introduce rotlet-dipole squirmers, which we have not used previously,
but which have evoked interest in literature [301, 302]. They could be used to model
bacteria, such as E.coli.

Again, we use the parameter α as a measure of gravity and the rescaled torque
r0/(Rα). We first provide an overview over the phenomenology, before analysing the
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7.2 Phenomenology of gyrotactic clusters

Figure 7.1: a) Top view of simulation snapshots. They show clusters that form at
squirmer numbers N and rescaled torques r0/(Rα). Other parameters are β = 0 and
α = 0.8. b) Density profiles of systems with N = 110 squirmers at different torques. c)
Density profiles of systems with r0/Rα = 0.32 at different squirmer numbers N . The
profiles were obtained after averaging over 105 timesteps.

clustering quantitatively.

7.2.1 Initial condition

Squirmers are either initialized with random positions and orientations, such that they
do not overlap with walls or with each other, or on a regular horizontal grid in a
wall-parallel plane, where we usually choose the central plane at z = H/2 with upright
orientations. The phenomenology that we describe below is not influenced by the choice
of the initial condition. For the random initial conditions, some squirmers can escape to
the top wall and stay there pointing upwards, when the external torque is strong. These
squirmers have no influence on the rest of the system during the remaining simulation.
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7.2.2 Onset of cluster formation

We show a variety of representative snapshots of neutral squirmers in Fig. 7.1 at different
values for the rescaled torque and the global squirmer number N . The states are seen
from the top, therefore illusory overlaps can be visible. In reality, squirmers do not
overlap with each other. The value of α = 0.8 is constant in all cases.

From Fig. 7.1 we observe that clusters of squirmers start appearing at a finite torque.
These clusters have a typical distance ∆ (see central snapshot at r0/(Rα) = 0.32).
When the torque is absent, as shown in the top row, squirmers can touch during col-
lisions, but do not stay in contact over a longer time. The reason is that rotational
noise and hydrodynamic interactions drive the squirmers’ orientations towards the hor-
izontal. A typical interaction without torque therefore consists of the squirmers coming
into contact randomly, tilting their respective orientations towards the horizontal, and
then swimming past each other.

Two-dimensional density profiles

While squirmer pairs perform oscillations, reminiscent of Volvox’ ‘minuet dance’ [61],
the interactions of many squirmers in clusters is more complex. They do not show a clear
oscillating mode, but reorganize by switching their positions inside the cluster. This
can create geometrical structures with high symmetry, such as triangles and pentagons,
that we have drawn into some of the snapshots in Fig. 7.1 a), but we stress that they
are very fragile. When the torque gets higher, the clusters become more static.

We show two-dimensional density profiles of squirmers in Fig. 7.1 b) and c). For
averaging, we choose 105 time steps and use the squirmers in the bottom half of the
simulation box. In subfigure b), we increase the rescaled torque from zero to 0.63
at a constant squirmer number of N = 110. In the course of increasing the torque,
the unstructured profile at zero torque changes more and more into clearly defined
cluster regions. We attribute the occasional patches at r0/(Rα) = 0 to the bottom
wall, which induces floating squirmers like in Chapter 4. These floaters move only little
in horizontal direction and therefore create the patches, but no clusters appear. In
contrast, we observe stable clusters at r0/Rα = 0.16, as we can see from the stronger
peaks. There is still strong horizontal motion, showing that squirmers frequently leave
clusters into the gap regions, or join a different one. The gap regions get less and less
explored, if the torque is further increased. At the same time, the clusters get more
stable and compactify. Therefore, as an effect of the increased torque, the vertical
alignment increases and the horizontal velocities decrease, which prevents the motion
away from a cluster. We have already seen this effect of a torque increase when we
studied the oscillating squirmer pairs.

In Fig 7.1 c), we keep the external torque constant, but instead vary the number of
squirmers. We do this in order to test, how much of an influence the global area frac-
tion NπR2/L2 has on the evolving patterns. However, we find that the patterns look
quite similar over the range of N = 16 to N = 110. The main difference is the disap-
pearance of the white gap regions, which implies that horizontal motion increases with
more squirmers. This is expected, because of the additional hydrodynamic stokeslet
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Figure 7.2: a) Vertical density profile versus squirmer height z at α = 0.8 and N = 64,
using different rescaled torques. Inset: Distributions of vertical orientations. b) Side
views of simulation snapshots at r0/(Rα) = 0.16 and 0.32 for a system with N = 110
squirmers.

interactions that each new squirmer brings, and which tilts its neighbors towards the
horizontal plane.

Vertical density profile

Stacking While overlaps between squirmers in the snapshots are purely a visualiza-
tion effect, they show that squirmers sometimes organize on top of each other. Figure
7.2 a) shows the vertical density profiles, and confirms this impression for high torques.
A double peak appears, which indicates a stacked bilayer configuration. Accordingly,
the distance ∆z between the peaks is approximately one squirmer diameter. We show
snapshots seen from the side for two systems with N = 110 squirmers in Fig. 7.2 b),
which confirm this.

Collective sinking As introduced in the last chapter, squirmers sink collectively. We
can also see this effect in the vertical density profiles in Fig. 7.2 a). The probability to
find squirmers at large heights is greater at a rescaled torque of zero than at finite values.
This can clearly be seen in the snapshots in Fig. 7.2 b), as well. The reason for this
is the reduced friction experienced by squirmers that have self-organized into clusters,
in contrast to the individual motion at zero torque, as presented in Sec. 6.4.1. This
effect overcompensates the stronger directional alignment at finite torques (see inset of
Fig. 7.2 a)), which would lead to upwards swimming in the absence of hydrodynamic
interactions.

110
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Figure 7.3: a) Mean cluster radius ⟨|r−r|⟩cl versus rescaled torque r0/Rα. b) Standard
deviation of the cluster size ∆Ncl versus rescaled torque, normalized by its mean. Inset:
Mean cluster sizes ⟨Ncl⟩ versus rescaled torque. Dotted vertical lines: equality condition
of Eq. (5.11) for α = 0.8.

7.3 Parameter study

In the following, we investigate the gyrotactic clusters systematically by measuring the
cluster size and cluster extension, and by calculating the radial distribution functions.
We vary the global density, the external torque and the external force, and consider the
effects of the squirmer flow fields.

7.3.1 Cluster radius and size

In the two-dimensional density profiles in Fig. 7.1 b), we observe a compactification of
clusters with increasing torque. We now investigate this in more detail by measuring
the mean cluster radius and the cluster size, as a function of the torque. First, we
identify clusters using a maximum squirmer-squirmer distance d < R/4, as previously
described in Sec. 6.4.1, and then determine the cluster size Ncl. For each cluster, we
can determine the cluster position

rcl =
1

Ncl

Ncl∑︂
i=1

ri. (7.1)

The mean distance of squirmers from rcl within a cluster then defines a cluster radius.
We now average over all kcl clusters in a timestep and over time, which introduces the
mean cluster radius

⟨︃
1

kcl

kcl∑︂
µ=1

⎛⎝ 1

Ncl,µ

Ncl,µ∑︂
i=1

|ri − rcl,µ|

⎞⎠⟩︃ =:

⟨︃
|r− rcl|

⟩︃
cl

, (7.2)
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where we introduced the short-hand notation ⟨· · · ⟩cl for averaging over all clusters
(which are indexed by µ) and over time. We also refer to the mean cluster radius as
the mean cluster extension. Note, following this definition, a solitary squirmer has a
cluster extension of zero.

Furthermore, we measure the mean cluster size ⟨Ncl⟩, i.e., the average number of
squirmers in a cluster. We additionally measure the standard deviation of this quantity

∆Ncl =
√︁

⟨(Ncl − ⟨Ncl⟩)2, (7.3)

in order to capture the width of the underlying distribution. Since we want to sample
the steady states, we use only the last 2.5 · 105 timesteps for averaging.

The aforementioned quantities are plotted versus the rescaled torque in Fig. 7.3,
where the standard deviation in part b) is normalized by the mean. We observe a
distinct maximum of both the cluster radius and the cluster size Ncl (inset of b))
at r0/(Rα) = 0.32, with a steep increase at small torque values. The maximum is
particularly pronounced for N = 110. For torques below the maximum, we can follow
the onset of gyrotactic cluster formation. First, squirmers have only transient contact,
thus both the cluster sizes and their variance remain small. With increasing torque,
squirmers are attracted to each other and clusters can form, as explained before. Since
the external torque cannot consistently balance the hydrodynamic interactions, these
clusters are short-lived, and their sizes fluctuate strongly. The standard variation of
the cluster sizes reaches a maximum around r0/(Rα) = 0.2, before the cluster size and
radius reach their respective maxima. Thus, with increasing torque, clusters become
more stable and reach a maximum extension. An inspection of the snapshots in Fig.
7.1 a), as well as Fig. 7.2 b) reveals that clusters at the maximum value r0/(Rα) = 0.32
are still relatively loosely bound.

Beyond the maximum, the clusters compactify and become more static, as the
standard deviation decreases. Clusters consist of less squirmers on average, as the
cluster sizes in the inset of Fig. 7.3 b) show. On the other hand, the last row of Fig. 7.1
a) demonstrates that the number of clusters kcl increases with increasing torque. The
compactification of clusters coincides with the regime where the external torque starts
to dominate over the hydrodynamic interactions. This is demonstrated by applying the
balance of angular velocities from Eq. (5.9) to α = 0.8, which yields r0/(Rα) = 0.313
and is therefore approximately at the measured maximum of 0.32. We show this value as
dotted vertical lines in all graphs of Fig. 7.3. For torques higher than at the maximum,
the cluster radius decreases, and also the standard deviation decreases sharply. The
decrease in cluster extension happens because the horizontal mobility of the squirmers
is more limited from stronger vertical alignment. Furthermore, as we have shown,
squirmers evade in negative z-direction, leading to a stacked arrangement. At high
torques beyond r0/(Rα) = 0.5, both cluster radius and standard deviation approach a
constant value and do not strongly decrease.

7.3.2 Radial distribution function

The radial distribution function g(r) is a good measure for the structure of a liquid or
colloidal system and here describes the probability to find a squirmer at a distance r
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Figure 7.4: a) Radial distribution functions for a larger system with 256 squirmers
and box width L = 216a0. Dashed lines: nearest neighbor and next-nearest neighbor
distances at 2R and 2

√
3R. Inset: Mean cluster distance ∆ versus torque for N =

32, 64, 110 at the smaller system width L = 108a0 and N = 256 at the larger width
L = 216a0. b) The cluster configuration of a finished simulation with r0/(Rα) = 0.28
(orange line) is used as the initial condition at r0/(Rα) = 0.63 and we measure the
changed radial distribution function after simulating for 3 Million timesteps (blue line).
Dashed green line: Radial distribution function of a separate simulation at N = 64
and r0/(Rα) = 0.63. c) Top view of spheres in hexagonal configuration. Nearest and
next-nearest neighbor distances are colored in red.

from another squirmer [303]. The radial distribution function is defined as [303]

g(r) =
1

N/L2
⟨
∑︂
i ̸=j

δ(|r2Di − r2Dj |)⟩. (7.4)

The value g(r) = 1 corresponds to a completely unordered system, a non-interacting
ideal gas. We here use the two-dimensional version and therefore only take the pro-
jection of the squirmer positions on the x-y-plane into account. L2 is the total area,
where L is the lateral boxsize. Furthermore, the r2Di are the positions of the squirmers
projected onto the plane. We calculate the average over the configurations found in
the last 2.5 · 105 timesteps. Furthermore, we restrict the distances |r2Di − r2Dj | to values
below L/2, because the radial distribution function does not give meaningful values

113



7.3 Parameter study

beyond this value. In order to work around that limitation, we performed additional
simulations with an increased system width of L = 216a0. We arrive at the same area
fraction as in the smaller system, since we increase the number of squirmers to N = 256.

Our measurement of the radial distribution function in the larger system is shown
in Fig. 7.4 a), for several different values of the rescaled torque. We observe several
maxima, which hints at the existence of characteristic distances in the system. First, a
peak at the nearest neighbor distance r = 2R is visible for all curves. Left of the peak,
the radial distribution function is broadened due to the partial overlap of squirmers
in the planar projection. Most curves possess a further maximum at the next nearest
neighbor distance

√
12R = 2

√
3R = 3.46R (right dashed line). The only exception is

the curve for zero torque, which decays to a constant value of one after the first maxi-
mum. This underlines that the squirmers are unstructured and more or less distributed
randomly, if the external torque is missing. The next nearest neighbor peak becomes
more pronounced at higher torque. It represents a distance within a cluster, namely
when a second shell is formed around the center. We plot a hexagonal configuration
of spheres in Fig. 7.4 c) in order to explain the values of the nearest and next-nearest
neighbor distances.

The third peak for torque values of r0/(Rα) = 0.16 and beyond represents distances
on a larger scale. In concrete, it is the typical distance ∆ between two nearest clusters.
In the case of r0/(Rα) = 0.16 (orange curve), a minimum around r = 6R is visible, and
another very flat peak follows afterwards. After doubling the torque to r0/(Rα) = 0.32
(green curves), the maximum amplitude around r = 10R− 11R is much higher. Thus,
squirmer clusters with a characteristic distance of separation appear in the system.
Interestingly, the peak shifts to lower distances, when the torque is increased, as can be
clearly seen in the radial distribution function for r0/(Rα) = 0.63 (red curve). On the
other hand, increasing it further to 0.95 (purple curve) does not bring about a further
shift. This agrees well with the previous result, that the cluster sizes and extensions
do not change much after compactification is achieved. For the larger system shown in
the main plot of Fig. 7.4 a), a further peak around r = 17R− 18R is visible for torque
values beyond r0/(Rα) = 0.32. The peak corresponds to the typical distance from a
cluster to the next nearest cluster.

We plot the characteristic cluster distance ∆ versus the rescaled torque in the inset
of Fig. 7.4 a), both for the larger system shown in the main plot, as well as for several
squirmer numbers N in the smaller system with L = 108a0. The cluster distance ∆
consistently decreases with increasing torque, for all squirmer numbers. Furthermore,
we confirm that a saturation is reached once clusters become compact at high torques,
which happens around r0/Rα = 0.64.

We find that the cluster distance depends only weakly on the number of squirmers,
and thus on the area fraction. Only a small shift to smaller distances is observed for
increasing N . Furthermore, the results for the larger system (blue curve) with N = 256
agrees well with the corresponding smaller system with the same area fraction, using
N = 64 (orange curve).

The decrease of ∆ with the torque is an intriguing property of gyrotactic clusters.
It can be explained by the fact that clusters get smaller at larger torques, as we found
above. Since the number of squirmers stays the same, this implies that the total number
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Figure 7.5: a) Radial distribution functions at r0/Rα = 0.32, α = 0.8 for pusher, puller
and neutral squirmer systems. b) Radial distribution functions at r0/Rα = 0.63, α =
0.8. c) and d) Vertical density profiles. Insets: Distributions of vertical orientations.

of clusters is higher. Consequently, the space between the clusters has to shrink. This
connection between the cluster distance and the gyrotactic mechanism suggests that
∆ emerges from the system parameters, rather than from the initial conditions. In
order to investigate this, we run a simulation at r0/(Rα) = 0.28 and let it reach a
cluster state, as shown by the radial distribution function in Fig. 7.4 b) (orange curve).
The final configuration is then used as the initial condition of a new simulation using
r0/(Rα) = 0.63, which we run for 3 · 106 timesteps. Indeed, we observe that the typical
cluster distance decreases in this simulation, as we can also see in Fig. 7.4 b) (blue
curve). Importantly, the radial distribution function shows excellent agreement with
a separate simulation at r0/(Rα) = 0.63, which uses random initial conditions and is
shown as the dashed green curve in Fig. 7.4 b). Thus, we confirm that the typical
cluster distance is reached consistently at the chosen parameters and is an intrinsic
property of the system, not an effect of initial conditions.

7.3.3 Influence of squirmer flow fields

So far, we have considered the neutral squirmer for gyrotactic cluster formation, induc-
ing source dipole singularities in the far field. As we have established, the hydrodynamic
signatures of biological and artificial swimmers often include force and rotlet dipoles,
as well. Therefore, we analyse the effects of the squirmer parameter β and the chirality
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parameter χ in the following.

Force dipole

In Fig. 7.5 we show radial distribution functions for pushers and pullers in subfigure a)
and b) at different torques, as well as the vertical density profiles and vertical orientation
profiles in subfigures c) and d).

The force-dipole flow fields, induced by pusher and puller squirmers, add a finite
vorticity, see Eq. (5.5). It competes with the external torque and the stokeslet vorticity
[87, 269]. Thus, their flow fields interfere directly with the gyrotactic mechanism, in
contrast to neutral squirmers. This strongly influences the structural properties of the
system, as we can see in the radial distribution functions for β = ±2 in Figs. 7.5 a) and
b). In comparison to neutral squirmers, no peak corresponding to the nearest cluster
distance ∆ exists at low torques, meaning that no clusters exist at these values. This is
confirmed by the density profiles in subfigure c), where pushers and pullers are shown to
reach larger heights than neutral squirmers. This is possible when there is no collective
sinking, hence squirmers swim individually.

When the external torque is doubled, the pusher system still does not show cluster-
ing, see subfigure b). In contrast, we observe a peak in the radial distribution function
of the puller system at r ≈ 8R in subfigure b), which indicates cluster formation. Ac-
cordingly, the density profile in Fig. 7.5 d) is more concentrated at the bottom wall. It
includes two sharp peaks. The first one corresponds to squirmers directly at the bottom
wall, and the second around r ≈ 4R belongs to a further layer on top of it. Hence, we
find a stacked vertical distribution of squirmers in clusters, similar to neutral squirmers.

Structure of puller clusters Still, the structure of the puller clusters is different
from the neutral squirmer clusters. The snapshot in Fig. 7.6 a) shows that the pullers
point inwards towards the cluster center. There are two hydrodynamic aspects relevant
for this behaviour. First, two interacting force dipoles that start in a parallel configu-
ration, reorient each other until they reach a head-to-head or tail-to-tail arrangement,
as has been described in Chapter 5 for the far field regime and also by Ref. [37]. It
therefore makes sense that several pullers would point towards a common point. Fur-
thermore, in this configuration, the flow fields lead to a mutual attraction of the pullers,
which stabilizes the structure. Second, the near field of a puller close to a no-slip wall
also induces a tilt away from the vertical, as has been described in Chapter 4 and Refs.
[187, 266]. In Fig. 7.5 d), we show the distribution of vertical orientations. It confirms
this tilt, as a small local maximum at cosϑ ̸= 1 appears in the angular distribution.

Note the additional peak below the nearest neighbor distance r = 2R in the radial
distribution function in Fig. 7.5 b) for β = 2 (green curve). This effect is a combination
of stacking and the inwards pointing pullers in the bottom layer. The squirmer layer that
settles on top experiences a flow towards the center of the cluster, and thus squirmers
settle in a dense packing. This results in a pyramidal three-dimensional structure,
which can be seen in the simulation snapshot in Fig. 7.6 a). Indeed, if we assume
an equilateral triangle at the base, the horizontal distance between nearest squirmers
yields w =

√
3/2R. One of these two squirmers resides in the upper and the other one
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Figure 7.6: a) Snapshot of a puller system with β = 2 and α = 0.8 at r0/(Rα) = 0.64.
Pullers strongly incline towards the center of the cluster. b) Sketch of a pyramidal
structure with equilateral base, including the nearest neighbor vertical distance h and
horizontal distance w. Upper figure: Top view. Lower figure: Side view.

in the lower layer of the stacked structure. The closest vertical distance in the pyramid
yields h = 3/2R. These values can be understood from the sketches in Fig. 7.6 b).
Furthermore, we include these lengths as dashed vertical lines in Figs. 7.5 b) and d).
The agreement with the additional peaks is very good, thus the simulation results agree
with the suggested pyramidal structure.

Rotlet dipole

We now repeat the analysis for the C2 mode. Again, we show the radial distribu-
tion function and the distribution of heights in Fig. 7.7 a)-b), comparing rotlet-dipole
squirmers to neutral squirmers. Additionally we show the distribution of horizontal
velocities in subfigure c).

At the depicted rescaled torque of 0.63, clusters form for χ < 3.3, as evident from
the radial distribution functions and the vertical distributions, which show the familiar
shapes in this range. Stronger rotlet dipole strengths inhibit cluster formation. We
note, that for a smaller torque of 0.32, the clusters disappear already at χ = 1.0 for
neutral squirmers. Puller clusters disappear altogether, if a rotlet dipole component is
present.

Subfigure c) shows that the vertical velocity distribution gets broader with the rotlet
dipole strength χ, and thus includes higher absolute velocities. We suggest that this
enhanced advection prevents further cluster formation. In subfigure d) we can follow
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Figure 7.7: a) Radial distribution function at r0/Rα = 0.63, α = 0.8. b) Vertical density
profiles. Inset: Distributions of vertical orientations with dashed line corresponding to
cosϑ = 1/

√︁
(3). c) Horizontal velocity distributions. d) Mean swirling parameter ⟨W ⟩cl

versus χ (blue dots), and mean cluster size ⟨Ncl⟩ versus χ (green triangles).

the disappearance of clusters in the plot of the mean cluster size ⟨Ncl⟩ versus χ (green
triangles). It applies to both positive and negative χ.

Swirling clusters We show snapshots of a rotlet-dipole squirmer system with χ = 1.0
in Fig. 7.8 that follow the squirmer positions over a time period of 104∆t. The squirmer
clusters visible in the snapshot are more loosely bound than for purely neutral squirmers
at r0/(Rα) = 0.63. This underlines the role of advection induced by the additional flow
fields. More importantly, we observe that rotlet-dipole squirmers swirl around their
cluster center. We show this for one exemplary cluster in the snapshots, where we
have colored the individual squirmers, and plotted their trajectories. The sense of
rotation is counter-clockwise and therefore the inverse of what E.coli bacteria show at
no-slip walls [169, 170]. The reason for this is that our squirmers swirl with a strongly
vertical orientation, whereas the bacteria are oriented parallel to the wall. According
to Eq. (4.25) Ωff

z ∝ −χ(1 − 3 cos2 ϑ)(R/z)4. Accordingly, a sign change of the angular
velocity occurs for cosϑ >

√︁
1/3 ≈ 0.58. This threshold orientation is exceeded by

the squirmers, as shown by the dashed line in the inset of Fig. 7.7 b). In conclusion,
squirmers are kept on circular trajectories due to the bottom wall interaction, which
leads to swirling behaviour of clusters.

In order to quantify this swirling, we define the swirling parameter W for a cluster
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Figure 7.8: Series of snapshots that span over a time of 104∆t of the system with
χ = 1.0, r0/(Rα) = 0.63. We show an exemplary rotating cluster, where the individual
squirmers are colored and their trajectories are plotted with dotted lines.

with cluster center rcl:

W =
1

Ncl

Ncl∑︂
i=1

⟨︃
(ri − rcl)× vi

|ri − rcl|2
· ez
⟩︃
. (7.5)

We calculate the average ⟨W ⟩cl over all clusters and time, but choose only clusters with
Ncl > 2, ignoring solitary squirmers and pairs. In Fig. 7.7 d) we show the averaged
swirling parameter, normalized by the inverse of the ballistic time scale R/v0. We
observe that the swirling parameter jumps from zero to around 0.15v0/R when the
rotlet dipole is switched on. Varying χ, it fluctuates somewhat between 0.15v0/R and
0.2v0/R. Note that we can still measure the average of W for |χ| = 3.3, due to transient
cluster formation. We also measured swirling for negative values of χ. As expected,
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Figure 7.9: Mean cluster size versus α for β = 0 and a rescaled torque of r0/(Rα) = 0.32.
Inset: Mean vertical squirmer orientation versus α.

the chirality of the motion reverses, leading to clock-wise swirling.

7.3.4 Influence of gravity

Last, we consider the effect of changing the gravitational acceleration, and thus the
velocity ratio α. We expect several overlapping effects: On the one hand, α controls
the stokeslet flow fields of the squirmers. Thus, at lower α, we can expect stronger flow
vorticities, and therefore more tilted squirmers. On the other hand, a lower value of
α puts the squirmers closer to the bottom wall and thus intensifies the wall-induced
effects. In particular, it makes neutral squirmers orient perpendicular to the wall, which
is the opposite of the previous effect. On top of that, the gravitational torque also acts
towards a vertical orientation, with a strength we left constant at r0/Rα = 0.32, .

In Fig. 7.9 we plot the mean cluster size ⟨Ncl⟩ versus α to investigate the competition
between these effects. For N = 32 and N = 64 squirmers, we observe a monotonic in-
crease with α. Thus, higher gravity implies smaller clusters, which can even disintegrate
completely into single squirmers. In the inset, we show the mean vertical orientation.
It shows a trend of increasing vertical alignment with decreasing α. This means that
the hydrodynamic interaction with the wall, combined with the external torque, are
able to overcome the stronger stokeslet interactions. As a result, clusters compactify
for smaller α, similar to an increased gravitational torque.

The system with N = 110 squirmers shows a similar trend, except that the mean
cluster size appears to increase for the lowest value α = 0.3. We can not be completely
sure of this, due to a large statistical error. However, we can rationalize an increase
of the cluster size at strong gravity for larger squirmer numbers, since squirmers come
into close contact with each other more easily under strong confinement to the bottom
wall. This increases the size of the clusters found with our classification method.
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7.4 Conclusions

We have demonstrated how gyrotaxis can lead to cluster formation of a bottom-heavy
squirmer suspension under strong gravity: Stokeslet vorticities result in horizontal
squirmer orientations and an effective attraction between squirmers, which is then sta-
bilized by the external torque. Measuring density distributions and radial distribution
functions, we investigated the structural properties of the clustering state. For neutral
squirmers, gyrotactic clusters only appear at finite torques, are initially volatile, and
then stabilize with increasing torque. This happens due to a reduction of the horizontal
motion of squirmers. We observe a compactification of clusters at high torques. Thus
the cluster size, as well as the cluster extension, have a maximum. This maximum hap-
pens at an external torque which agrees well with the value that balances the vorticity
reorientation of two squirmers at close distance.

Furthermore, the distance between clusters also decreases with increasing torque.
In fact, it is a characteristic length that reliably emerges from simulations at a specific
torque and does not depend on initial conditions. The clustering phenomenology is
mainly a result of varying the external torque, whereas the areal density has little
qualitative effect.

Introducing pusher, puller and rotlet-dipole squirmers changes the clustering dy-
namics significantly, due to additional flow fields and vorticities. Pullers preferentially
point inwards towards the cluster center, which increases the horizontal motion and
thus requires larger torques for cluster formation. We do not observe pusher clusters
in our simulations. Indeed, previous studies indicate that cluster formation is difficult
for pushers [41, 289]. Rotlet dipole squirmers form clusters, as long as the chirality
parameter χ < 3. The rotlet dipole interaction with the bottom wall induces swirling
motion in the clusters.

We investigated how increasing the gravitational force impacts gyrotactic cluster
formation for neutral squirmers. We find that the dominating effect is the upright di-
rectional alignment induced by the hydrodynamic wall interaction for neutral squirmers.
This decreases the cluster size at lower α.

Many microswimmers are bottom-heavy or experience a shape-induced gravitational
torque, including Janus colloids, Volvox algae, or phytoplankton [59, 61, 71, 91]. Both
effects could be used to create gyrotactic clusters, since the source of the torque is
not important for the validity of our results. This even includes other forms of direc-
tional alignment, such as phototaxis [204, 304] or aerotaxis [200]. However, as previ-
ously stated, the generic hydrodynamic effects we found cannot be applied directly to
these systems: for example, the phototactic torque of a Janus particle is orientation-
dependent [212], and molecular diffusion is relevant for the alignment towards an oxygen
source [200].
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8. Conclusions and Outlook

Swimming under gravity is an intriguing aspect of the non-equilibrium motion of
squirmer microswimmers. This is demonstrated by the variety of dynamical states
and collective patterns displayed by squirmers under gravity, which we found in our
studies. In particular, we have shown the importance of hydrodynamic interactions
with surfaces and between squirmers, highlighting the role of their vorticity fields.

We have used the mesoscale simulation technique of multi-particle collision dynamics
for computing the hydrodynamic flow fields and the motion of squirmers in a Newtonian
fluid. A parallelized code enabled us to consider large systems and high squirmer
numbers. We presented the physical properties of the simulated fluid, and calculated
the effective friction experienced by a colloidal particle under gravity. Afterwards, we
used this method to simulate both single squirmer systems and collective dynamics.

While for a passive particle gravity results in confinement, single squirmers perform
cruising motion, stable and recurrent floating or wall sliding in our simulations, backed
up by theory. We find that floating behaviour results from a height-dependent friction
coefficient and a vertical orientation of the squirmer. Furthermore, puller and pusher
squirmers can be pinned to the bottom-wall, and their orientation vectors are pointing
vertically up for pullers and down for pushers. The occurring states depend on the ratio
between self-propulsion velocity and sedimentation velocity, as well as on the squirmer
parameter β, which controls the flow fields. In particular, the squirmer orientations
are determined by the hydrodynamic interactions with the bottom wall, which also
influence the squirmer velocities. We demonstrate the importance and subtleties of
both near field and far field hydrodynamic effects.

Introducing bottom-heaviness to the single squirmer leads to gravitaxis, as the ori-
entation vector develops a strong vertical bias. Consequently, neutral squirmers and
pushers continuously float above the wall. Pullers keep their wall-pinned state, and the
hydrodynamic wall attraction gets even stronger with strongly vertical alignment.

We demonstrate how the addition of a second squirmer with bottom-heaviness leads
to coupled oscillations, reminiscent of dancing Volvox algae. If the viscous reorientation
velocity due to the squirmer flow fields is similar to the bottom-heavy angular velocity,
both terms balance and stable pairs can develop. This is an example of gyrotaxis,
where, in our case, the source of the viscous reorientation is the gravitational stokeslet
vorticity.

Our study of the emergent dynamics in systems with over 900 bottom-heavy squirm-
ers reveals both sedimentation and inverted sedimentation states, known from active
Brownian particles, as well as convective patterns. Plumes of neutral squirmers form
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at the top wall due to gyrotaxis and sink down, despite a strong upright bias in the
orientations of the individual squirmers. We find the reason for this is a reduction
in friction, resulting in collective sinking. If the gravitational torque dominates the
stokeslet vorticities, plumes initially emerge but then evaporate. If both gravitational
and hydrodynamic angular velocities are more balanced, plumes appear continuously
and convective rolls with a macroscopic circulation pattern form at the bottom of the
system. The individual meandering trajectories of squirmers in the roll are also a result
of gyrotaxis. Spawning clusters appear at strong torques and α slightly above one.
They float above the bottom wall and have a porous structure, where single squirmers
are ejected from their gap regions. For pushers and pullers, collective sinking can also
occur, and we observe plumes. However, they are more fragile, due to additional hy-
drodynamic squirmer-squirmer interactions. In particular, force dipole vorticities con-
stantly disturb the squirmer orientations. For the same reason, the onset of inverted
sedimentation requires larger torques in these systems.

Finally, we studied the emerging clusters of bottom-heavy squirmers more quanti-
tatively. We demonstrate that neutral squirmer clusters start forming at finite external
torques, and stabilize and later compactify with growing torques, leading to more and
smaller clusters. The cluster distances are a characteristic property of the system, de-
termined by the chosen parameters α and r0/(Rα). Increasing the gravity also leads to
stronger interactions with the bottom wall and smaller clusters. Puller clusters have a
pyramidal structure where the upper layers point inwards towards the cluster center,
due to hydrodynamic squirmer-wall and squirmer-squirmer interactions. Rotlet dipole
squirmers form swirling clusters, as long as the rotlet dipole parameter χ is not too
large. The swirling direction is consistent with the hydrodynamic wall interaction of a
single squirmer.

Our studies can stimulate further research, since our setting can easily be adapted to
several interesting extensions. One idea is to change the interaction of the squirmer with
the interface. For example, there is recent interest in slip walls [137]. It is known that
the sense of circulation of E. coli bacteria reverses compared to no-slip walls [305], which
could be used to manipulate trajectories via surface patterns [306]. Microswimmers at
a soft penetrable interface have also been studied recently [307].

A further idea is to change the nature of the fluid. Non-Newtonian fluids are a
better approximation to many biological fluids, which strongly implicates the dynamics
of microswimmers. Viscoelastic fluids allow for the breaking of the no-scallop theorem
and have been found to enhance the swimming speeds of active agents [73, 76, 99]. On
the other hand, swimmers in liquid crystals experience additional rotational interactions
with the nematic director, which differs between pushers and pullers and can be used
for guiding swimmers [308, 309]. Extensions of the MPCD algorithm for viscoelastic or
liquid crystalline fluids have already been suggested or implemented [65, 310].

The nature of the swimmer can be changed, as well. This can either occur by
adapting the geometry to the non-spherical cases [71, 195, 311], as demonstrated by
studies of elongated squirmers [162, 167]. We expect that their collective dynamics are
strongly influenced by steric interactions, which would affect the formation of plumes
and clusters. On the other hand, using other swimmer types than squirmers can be an
option, for example, in order to model and simulate phoretic interactions or chemotaxis
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explicitly [92, 312] or in order to study specific biological organisms [76, 161, 313, 314].
Finally, we mention the exciting possibility to use machine learning for active matter

research [315]. It has been mainly applied to navigation problems [316], such as steering
active particles through a potential landscape [317], or navigating swimmers through
flow [318, 319]. It has been suggested that phytoplankton can adapt their body shape
to surrounding flows in the ocean, and thus influence its migration via gravitaxis [71].
This suggests that learning an optimal steering strategy can also apply to motion under
gravity.

In summary, our studies show that the motion under gravity, exemplified by the
numerical simulation of squirmers, is an intriguing aspect of microswimmer dynamics
influenced by an external field. The omnipresence of gravity gives further relevance to
the phenomenology we have discovered and described. Including both single-swimmer
and collective dynamics, the various future avenues of research we mentioned can fur-
ther deepen our understanding and, thus, may also open the door to technological
applications.
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A. Lamb’s solution

Lamb’s solution to the Stokes equations draws on the solution of the simpler Laplace
equation

∇2f = 0 (A.1)

in spherical coordinates. The solution can be expressed in spherical harmonics [84]:

f(r, ϑ, φ) =
∞∑︂

n=−∞

fn (A.2)

with

fn = rn
n∑︂

m=0

nPm
n (cosϑ)(amn cos(mφ) + bmn sin(mφ)). (A.3)

Here, Pm
n are the associated Legendre polynomials of degree n and order m. They

are defined via the ordinary Legendre polynomials Pn

Pm
n (x) = (−1)m(1− x2)m/2 d

m

dxm
Pn(x) (A.4)

The first three ordinary Legendre polynomials are: P0 = 1, P1 = x, and P2 =
1

2
(3x2−1).

The usefulness of the series solution to the Stokes equation is given since taking
the divergence of the Stokes equations while exploiting incompressibility leads to the
Laplace equation for the pressure field

∇2p = 0. (A.5)

Hence we can write the pressure as a series

p =
∞∑︂

n=−∞

pn, (A.6)

where the pn take the form of eq. (A.3). Lamb’s solution then constructs homogeneous
and particular solutions to the Stokes equation [81, 82, 84], that we present in the
following. For the homogeneous solution we have to solve for ∇2u = 0, therefore we
can write u again as an expansion in spherical harmonics un which all satisfy both
the Laplace equation and the relation ∇ · un = 0 individually [84]. Using ∇2un =
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∇(∇ · un)−∇× (∇× un), we immediately see that we can write

∇× un = ∇χn (A.7)

with χn that are also harmonic. Furthermore the term r · un =: ϕn is also harmonic,
which can easily be verified. But then consider

∇× (rχn) = ∇χn × r = (r · ∇)un −∇(un · r) + un. (A.8)

It follows with (r · ∇)un = nun (from eq. (A.3)) that

(n+ 1)un = ∇ϕn +∇× (rχn). (A.9)

The factor (n+ 1) is unimportant for the definition and is therefore dropped in the
following. A particular solution in spherical coordinates, using the spherical harmonics
of the pressure pn, is given by [81, 82]

u =
∞∑︂

n=−∞
n ̸=1

[︃
(n+ 3)r2∇pn − 2nrpn
2η(n+ 1)(2n+ 3)

]︃
. (A.10)

Combining the particular and the homogenous solution yields the formula for Lamb’s
solution in spherical coordinates, shown in Section 2.1.3.
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B. Image singularities at a no-slip wall

In the following, we present the image systems of Stokes flow singularities at a no-slip
wall. They can be found in Ref. [87]. The complete singularities, as with the Blake
tensor, consist of the image system and the original singularity, and are zero at z = 0.

The image system for the stokeslet was presented in Section 2.3:

G∗
S(r− r0, e) =−GS(r− r∗0, e)+

sinϑ
[︁
2∆zGD(r− r∗0, eρ, ez)− 2∆z2GSD(r− r∗0, eρ)

]︁
+

cosϑ
[︁
−2∆zGD(r− r∗0, ez, ez) + 2∆z2GSD(r− r∗0, ez)

]︁
.

(B.1)

The image system of the force dipole is

G∗
D(r− r0, e, e) = sin2 ϑ [−GD(r− r∗0, eρ, eρ)+

2∆zGQ(r− r∗0, eρ, eρ, ez)− 2∆z2GSQ(r− r∗0, eρ, eρ)
]︁
+

cos2 ϑ [−GD(r− r∗0, ez, ez)

+4∆zGSD((r− r∗0, ez) + 2∆zGQ(r− r∗0, ez, ez, ez)−
2∆z2GSQ(r− r∗0, ez, ez)

]︁
.

(B.2)

The image system of the source dipole is

G∗
SD(r− r0, e) = sinϑ [−GSD(r− r∗0, eρ)+

2GQ(r− r∗0, eρ, ez, ez)− 2∆zGSQ(r− r∗0, eρ, ez)] +

cosϑ [−3GSD(r− r∗0, ez)

−2GQ(r− r∗0, ez, ez, ez) + 2∆zGSQ(r− r∗0, ez, ez)] .

(B.3)

The image system of the rotlet is

R∗(r− r0, e, e) = sinϑ [−R(r− r∗0, eρ) + 2∆zGSD(r− r∗0, eφ)−
GD(r− r∗0, eφ, ez)−GD(r− r∗0, ez, eφ)] +

cosϑR(r− r∗0, ez).

(B.4)
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Finally, the image system of the rotlet dipole is

R∗
D(r− r0, e, e) = sin2 ϑ [−RD(r− r∗0, eρ, eρ)−

GQ(r− r∗0, eρ, eφ, ez)−GQ(r− r∗0, eρ, ez, eφ)+

2∆zGSQ(r− r∗0, eρ, eφ)] +

cos2 ϑRD(r− r∗0, ez, ez)+

sinϑ cosϑ [RD(r− r∗0, ez, eρ)−RD(r− r∗0, eρ, ez)+

2GSD(r− r∗0, eφ)+

GQ(r− r∗0, eφ, ez, ez) +GQ(r− r∗0, eφ, eφ, ez)−
2∆zGSQ(r− r∗0, eφ, ez)] .

(B.5)
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C. List of symbols

Table C.1: Overview of physical parameters

Parameter R v0 vsed α

meaning squirmer
radius

active
velocity

sedimentation
velocity

velocity
ratio

Parameter β χ r0 r0/(Rα)

meaning force dipole
parameter

rotlet dipole
parameter

center of mass
shift

rescaled bottom-
heavy torque

Parameter γ, Γ µ, M Re Pe

meaning translational
friction

translational
mobility

Reynolds
number

active Péclet
number

Parameter Ω u ω ∆

meaning angular
velocity flow field flow vorticity typical

cluster distance

Table C.2: Overview of simulation parameters

Parameter a0 m0 T0 ∆t

meaning edge length of
collision cell

mass of
fluid particle

temperature of
fluid

duration of
streaming step

Parameter nfl η ν dshift

meaning fluid particle
number density

dynamic fluid
viscosity

kinematic fluid
viscosity grid shift vector
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