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Abstract

An existing agent-based simulation framework and congestion pricing methodology is extended towards a consistent consideration

of non-linear, user- and trip-specific values of travel time savings (VTTS). The heterogeneous VTTS are inherent to the model and

result from each agent’s individual time pressure. An innovative approach is presented which accounts for the non-linear, user-

and trip-specific VTTS (i) when converting external delays into congestion tolls and (ii) when generating new transport routes.

The innovative pricing and routing methodology is applied to a real-world case study of the Greater Berlin area, Germany. The

proposed methodology performs better than assuming a constant value of travel time savings or randomizing the routing relevant

costs. The improved consistency of setting congestion toll levels, identifying transport routes and evaluating travel plans is found

to result in a higher system welfare.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

In this study, an existing agent-based simulation framework and congestion pricing methodology is extended to-

wards a consistent consideration of heterogeneous VTTS (values of travel time savings). The applied congestion

pricing methodology makes use of an iterative market mechanism: First, user-specific and dynamic tolls are com-

puted based on the delay imposed on other travelers. Second, the transport demand is allowed change its travel

behavior to avoid these toll payments. In this study, the transport users (agents) are enabled to generate new routes

based on the generalized travel cost, taking into account both the travel time and the congestion tolls. Third, each

agent’s daily behavior, including the transport route, is evaluated to obtain the agent’s affinity to repeat that behavior,

i.e. to use the same transport route in the next iterations. Hence, the VTTS is required (i) to compute congestion tolls,

(ii) to identify routes which minimize (generalized) costs and (iii) to evaluate transport routes.
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The approach uses the transport simulation framework MATSim.1 The VTTS which is used for evaluation (iii) is

inherent to the model and results from each agent’s individual schedule delay costs and time pressure. However, the

VTTS which is used for tolling (i) and routing (ii), normally is assumed to be constant and equal for all agents.

As an issue of increasing interest, heterogenous VTTS have been addressed in several studies. Empirical studies

reveal that the VTTS depends on certain trip-specific attributes, such as the transport mode6, trip distance7 or traffic

state5. Additionally the VTTS may vary with person-specific characteristics, such as the income10.

Several studies address the importance of schedule delay costs. Based on Vickrey’s bottleneck model17, dynamic

approaches allow for a consideration of the activity at the trip destination, to compute schedule delay costs, and to

consider dynamic tolls. In several studies, the bottleneck model is extended to account for heterogenous transport

users18,3,15. The level of heterogeneity is found to affect the increase in system welfare. For a larger heterogeneity in

the user preferences, pricing will result in more diverse choices which reinforces the increase in system welfare3,16.

In the present study, an innovative approach is presented which accounts for true VTTS when (i) converting external

delays into congestion tolls (Sec. 3) and (ii) when generating new transport routes (Sec. 4). The advantage of an

iterative simulation-based approach is that complex VTTS can be taken into account. In this study, the VTTS is

considered to be non-linear, user- and trip-specific. Moreover, the VTTS is subject to destination-related constraints.

As an illustrative example, the innovative pricing and routing methodology is applied to a real-world case study of the

Greater Berlin Area, Germany.

2. Transport Simulation Framework MATSim

In MATSim, each transport user is simulated as an individual agent. The agents’ initial behavior has to be provided

in the form of travel plans describing the daily activity patterns (e.g. home-work-shopping-home), the activity end

times and information about the trips between these activities. The initial travel behavior is then modified applying

an evolutionary iterative approach. In each iteration, (1) the travel plans are executed (Traffic flow simulation), (2)

scored (Evaluation) and (3) modified (Learning).

1. Traffic Flow Simulation All travel plans are simultaneously executed and the transport users interact in the

simulated physical environment. Traffic congestion and vehicle movements are simulated applying a queue

model4. Each road segment (link) is modeled as a First In First Out queue with certain attributes, i.e. a free

speed travel time, a flow capacity c f low, and a storage capacity (causing spill-back). The aggregation of individual

vehicle movements to traffic flows is considered to be consistent with the fundamental diagram1.

2. Evaluation For each agent, the executed plan is scored based on agent-specific predefined behavioral parameters

and scoring functions. A plan’s score is typically consists of two parts: (i) the generalized travel cost or trip-

related disutility (e.g. travel time, toll payments) and (ii) the utility gained from performing activities. In the

existing simulation framework, (ii), i.e. the utility person p gains from performing activity a, is computed as

Vp,a = β
per f · ttyp

a · ln
(
tper f
p,a

/
t0,a
)
, (1)

where tper f
p,a is the time person p performs activity a, ttyp

a is an activity’s “typical” duration, βper f is the marginal

utility of performing an activity at its typical duration, and t0,a is a scale parameter which is not relevant as long

as activities cannot be dropped from the daily travel plans. Further activity-related constraints can easily be

incorporated, for example activity opening and closing times2.

3. Learning For the majority of agents, the plan to be executed in the next iteration is chosen based on a multinomial

logit model. Some agents generate new travel plans by cloning an existing plan and changing parts of the cloned

plan, for example the transport route (sequence of links between one activity location and another one).

A repetition of these steps enables the agents to improve and obtain plausible travel plans, and the simulation results

stabilize14. Assuming that the set of each agent’s travel plans represents a valid choice set, the system state is an

approximation of the stochastic user equilibrium11.

1 Multi-Agent Transport Simulation, see www.matsim.org
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3. Congestion pricing

Existing approach. The computation of external congestion costs builds on the queue model described in Sec. 2.

Each time a transport user is delayed, i.e. cannot move from one link to the next one, the causing agent is identified

and charged. The delay imposed on other travelers is converted into monetary units. Thereby, the affected agent p’s

cost of being delayed at activity a is composed of two parts:

cp,a = ctrip
p,a + cper f

p,a , (2)

where ctrip
p,a is the increase in generalized cost related to the trip to activity a, and cper f

p,a is the decrease in utility from

having less time available to perform activity a. The trip related delay costs are

ctrip
p,a = dp,a ·

(
−βtravel

/
βmoney

)
, (3)

where dp,a is the total delay of person p at activity a, βtravel is the normally negative marginal utility of traveling and

βmoney is the marginal utility of money. βtravel and βmoney in this study are constant for all car users and trips.

For the conversion of activity related delays into monetary units, the existing approach9,8 makes the approximation

that users perform activities for their predefined typical durations (tper f
p,a = ttyp

a ), which means that the marginal utility

is approximated as

∂

∂tper f
p,a

Vp,a ≈ ∂

∂tper f
p,a

Vp,a

∣∣∣∣∣∣∣
tper f
p,a =ttyp

a

= βper f · ttyp
a · 1

tper f
p,a

∣∣∣∣∣∣∣
tper f
p,a =ttyp

a

= βper f . (4)

However, depending on the number and types of activities in a daily plan, transport users have more or less time

available to perform their activities. Hence, they are differently pressed for time, thus being delayed in traffic affects

different transport users differently. Furthermore, activities have certain constraints such as opening and closing times.

If the activity is still closed, being delayed may for example result in zero activity delay cost. In the existing approach,

all this is ignored, and the above leads to

cper f
p,a ≈ dp,a ·

(
βper f
/
βmoney

)
. (5)

In total, the marginal costs of being delayed are, for tolling purposes, assumed as

VTTS delay = ∂cp,a

/
∂dp,a ≈

(
−βtravel + βper f

)/
βmoney , (6)

where VTTS delay is the value of travel time saving which is used to convert delays into congestion tolls. Consequently,

congestion tolls payed by the causing agent may not correctly reflect the affected agent’s true delay cost.

Extension 1: Non-linear and user-specific conversion of delays into tolls. In this extension, delays are now converted

into monetary payments accounting for the affected agent’s trip-specific VTTS making the tolls reflect true external

congestion costs. Total activity delay costs are computed as

cper f
p,a =

[
Vp,a

(
tper f
p,a + dp,a

)
− Vp,a

(
tper f
p,a

)]/
βmoney . (7)

The costs for being delayed by one time unit are computed as cper f
p,a

/
dp,a. The person and trip specific VTTS is thus

approximated as

VTTS delay
p,a ≈ ∂ctrip

p,a

/
∂dp,a + cper f

p,a

/
dp,a = −βtravel

/
βmoney +

[
Vq,a

(
tper f
q,a + dp,a

)
− Vq,a

(
tper f
p,a

)]/ (
βmoney · dp,a

)
. (8)

The amount payed by each causing agent then is mq,p,a = dq,p,a · VTTS delay
p,a , where mq,p,a is the monetary toll payed

by the causing agent q for delaying person p during the trip to activity a; and dq,p,a is the delay which the causing

agent q imposes on person p during the trip to activity a.
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4. Time- and cost-sensitive routing

Existing approach. The existing simulation framework generates new transport routes assuming a constant VTTS for

all trips. The routing relevant costs are assumed as

gq,a = VTTS travel · tq,a + mq,a = gtrip
q,a + gper f

q,a , (9)

where gq,a is the total routing relevant cost of person q traveling to activity a; VTTS travel is the VTTS which is used

to convert travel time into travel cost; tq,a is the total travel time of person q traveling to activity a; mq,a is the total

amount payed by person q during the trip to activity a; gtrip
q,a is the generalized cost related to the trip to activity a; and

gper f
q,a is the opportunity cost of time (that could have been spent performing activity a). The trip related travel costs

and the opportunity cost of time are

gtrip
q,a = tq,a ·

(
−βtravel

/
βmoney

)
+ mq,a and gper f

q,a ≈ tq,a ·
(
βper f
/
βmoney

)
, (10)

where the same approximation as in Eq. (5) was made that activities are assessed at their typical durations. Hence, in

the existing routing approach, the VTTS for all agents and car trips is assumed as

VTTS travel = ∂gq,a

/
∂tq,a ≈

(
−βtravel + βper f

)/
βmoney. (11)

However, as described in Sec. 3, the utility gained from performing an activity depends on the transport users’ indi-

vidual time pressure. In Eq. 10, this utility is assumed to be equal to βper f . Hence, the routing costs, and in particular

the opportunity costs of time, neglect the non-linear, user- and trip-specific VTTS which is given by Eq. 1 (see Sec. 2,

Evaluation). Thus, the existing routing approach may not correctly account for the agents’ trip-specific weighting of

travel time and monetary costs.

Extension 2: Non-linear and user-specific routing. In this extension, the opportunity costs of time are computed as

gper f
q,a ≈ tq,a ·

[
Vq,a

(
tper f
q,a + ε

)
− Vq,a

(
tper f
p,a

)]/
βmoney, (12)

where Vq,a(·) is the utility person q gains from performing activity a (see Sec. 2, Evaluation, Eq. 1); and ε is one time

unit. In this study, ε is set to 1 sec which implies that tq,a and tper f
q,a is given in sec. Hence, the opportunity costs of

time are linearized accounting for the non-linearity in Eq. 1. The resulting user- and trip-specific VTTS is

VTTS travel
q,a = ∂gtrip

q,a

/
∂tq,a + ∂g

per f
q,a

/
∂tq,a ≈

[
−βtravel + Vq,a

(
tper f
q,a + ε

)
− Vq,a

(
tper f
p,a

)]/
βmoney , (13)

where VTTS travel
q,a is the value of travel time savings of person q traveling to activity a.

5. Real world case study and simulation experiments

The proposed routing and congestion pricing approach is applied to the real-world MATSim model of the Berlin

metropolitan area13. The road network contains all major and minor roads of the Greater Berlin area. The demand side

is modeled as survey-based “population-representative” agents and “non-population representative” agents to include

for example freight traffic. The transport demand was calibrated accounting for mode shares, travel times and travel

distances. As initial plans the executed plans of the relaxed travel demand are taken from Neumann et al. (2014)13.

The population size is reduced to a 10% sample.

The following simulation experiments are carried out: In experiment 0, the existing pricing and routing method-

ology is applied in which the VTTS is considered to be equal for all car trips and road users. Experiment 1 and

2 investigate both of the above described methodological extensions separately: Experiment 1 applies the extended

pricing approach (extension 1) and the existing routing approach. Experiment 2 applies the extended routing approach

(extension 2) and the existing pricing approach. Finally, simulation experiment 3 combines extension 1 and 2. The

pricing experiments are compared with a simulation run without pricing which is considered as the base case. The

adaptation of demand to supply is repeated for 100 iterations. During the first 80 iterations, choice sets are generated:

In every iteration, 10% of the agents are rerouted based on link- and time-specific costs in the previous iteration.

Thereby, the number of travel alternatives per agent is limited to 4 plans, thus poor plans are replaced by better plans.

During the final 20 iterations, choice sets are fixed and plans are selected based on a multinomial logit model.
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Table 1: Comparison of the pricing experiments with the base case (no pricing)

Changes in ... Experiment 0 Experiment 1 Experiment 2 Experiment 3

travel time (car mode) −13,800 hours −14,422 hours −15,563 hours −17,012 hours

travel related user benefits

(including toll payments) −752,998 EUR −1,179,869 EUR −676,355 EUR −1,033,819 EUR

toll revenues +1,107,293 EUR +1,559,639 EUR +1,073,998 EUR +1,484,971 EUR

system welfare +354,295 EUR +379,770 EUR +397,643 EUR +451,152 EUR

6. Results and discussion

Analysis of the model-inherent VTTS. In a first step, the base case is analyzed and the VTTS is calculated for each

car trip non-linearly and for each user separately. The resulting distribution of the VTTS (see Fig. 1) reveals that

for most trips the observed VTTS strongly differs from the VTTS which is assumed in the existing approach where

non-linearities and user-specific differences are ignored. The median is 10 EUR/hour which corresponds to the VTTS

assumed in the existing approach. For 9% of all car trips, the VTTS amounts to 4 EUR/hour which is the case if the

opportunity cost of time is zero, e.g. if the activity at the destination is not open. However, for 30% of all car trips,

the VTTS is larger than 16 EUR/hour.
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Fig. 1: Distribution of VTTS/hour (base case)

Improved pricing and routing. Next, extension 1 and 2 are used to compute congestion tolls to which transport users

are enabled to react by adjusting their route choice decisions. Tab. 1 depicts the changes in welfare relevant parameters

as a result of the pricing policy. In all pricing experiments, the travel time is reduced and the system welfare, defined

as the sum of toll revenues and travel related user benefits, is higher compared to the base case situation. The travel

related user benefits refer to the population wide utility converted to monetary units.

In experiment 1, congestion tolls that are payed by the causing agents better reflect the affected agents’ true delay

cost. Since transport users are allowed to react to these tolls, delays imposed on transport users with high VTTS are

avoided and congestion costs decrease. A comparison of the different pricing approaches reveals that extension 1

(Experiment 1) improves the overall system welfare by 7% more compared to the existing approach (Experiment 0).

Furthermore, in experiment 1, the toll revenues are higher compared to the existing pricing approach. This is explained

by the overall higher level of the affected agents’ VTTS. In turn, a higher VTTS results in a higher congestion toll to

be charged from the causing agent.

In experiment 2, tolls are computed following the existing congestion pricing methodology. However, transport

users are enabled to generate routes which take into account the user- and trip-specific VTTS. The improved routing

approach (Extension 2) improves the overall system welfare by 12% more compared to the existing routing approach.

The increase in welfare is explained by the agents’ capability to identify better routes which do not only consider the

trip related cost but also the expected gains from performing the activity at the destination.

In pricing experiment 3, extension 1 and 2 are combined. Congestion tolls are computed and transport users

are routed accounting for the non-linear, user- and trip-specific VTTS. This pricing experiment results in the largest

decrease in congestion and the highest welfare level. The welfare increases by 27% more compared to the existing

approach. This is due to two effects. First, the tolls better reflect the delayed transport users’ congestion cost. Second,

the transport routes better reflect the agents’ individual weighting of time and money.
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Randomization. 12 have addressed the problem related to the router (Sec. 4) in a different way, by randomizing the

VTTS before each run of the router, rather than computing an agent- and trip-specific approximation. Experiment 3

is thus repeated with the randomizing router instead of extension 2. First, the number of iterations is observed to have

a crucial effect on the simulation outcome. For a total of 100 iterations, the randomizing routing approach results in a

system welfare which is below the welfare level resulting from the extended routing approach without randomization

(experiment 3). In contrast, for a total of 500 iterations, the system has more time to evolve. Using the randomizing

router now results in a system welfare similar to the welfare level resulting from the extended routing approach without

randomization (experiment 3). One can conclude that the randomizing router of12 has a similar effect as extension 2

of this paper (Sec. 4), but extension 2 of this paper reaches similar results within a factor of five fewer iterations.

7. Conclusion

Overall, in this study, an innovative agent-based congestion pricing and routing approach was presented and suc-

cessfully applied to a real-world case study. The study has shown that it is worth the effort to extend the routing

and congestion pricing approach to account for heterogeneous VTTS which are inherent to the model and result from

each agent’s individual time pressure. Similar to the activity related travel cost, the proposed methodology may be

applied to account for non-linear and user-specific trip related travel costs. The results of the case study reveal that

the proposed methodology performs better than assuming a constant VTTS or randomizing the VTTS. The improved

consistency of setting congestion toll levels, identifying transport routes and evaluating plans translates into a higher

system welfare.
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