
Solving Project Scheduling Problems

by Minimum Cut Computations†

Rolf H. Möhring
�

Andreas S. Schulz
���

Frederik Stork‡ Marc Uetz§

July 2000, revised April 2002 and November 2002

Abstract

In project scheduling, a set of precedence-constrained jobs has to be scheduled so as to

minimize a given objective. In resource-constrained project scheduling, the jobs additionally

compete for scarce resources. Due to its universality, the latter problem has a variety of applica-

tions in manufacturing, production planning, project management, and elsewhere. It is one of

the most intractable problems in operations research, and has therefore become a popular play-

ground for the latest optimization techniques, including virtually all local search paradigms.

We show that a somewhat more classical mathematical programming approach leads to both

competitive feasible solutions and strong lower bounds, within quite reasonable computation

times. The basic ingredients of our approach are the Lagrangian relaxation of a time-indexed

integer programming formulation and relaxation-based list scheduling, enriched with a useful

idea from recent approximation algorithms for machine scheduling problems. The efficiency

of the algorithm results from the insight that the relaxed problem can be solved by computing

a minimum cut in an appropriately defined directed graph. Our computational study covers

different types of resource-constrained project scheduling problems, based on several, notori-

ously hard test sets, including practical problem instances from chemical production planning.

†An extended abstract of this work appeared in the Proceedings of the 7th Annual European Symposium on Algo-
rithms (Möhring, Schulz, Stork, and Uetz 1999).

�

Technische Universität Berlin, Fakultät II, Institut für Mathematik, Sekr. MA 6-1, Straße des 17. Juni 136, D-
10623 Berlin, Germany. Email: moehring@math.tu-berlin.de

���

Massachusetts Institute of Technology, Sloan School of Management, E53-361, 77 Massachusetts Avenue, Cam-
bridge, MA 02139, USA. Email: schulz@mit.edu

‡ILOG Deutschland GmbH, Ober-Eschbacher Straße 109, D-61352 Bad Homburg, Germany. Email:
fstork@ilog.de

§Universiteit Maastricht, Faculty of Economics and Business Administration, Quantitative Economics, P.O. Box
616, 6200 MD Maastricht, The Netherlands. Email: m.uetz@ke.unimaas.nl



1 Introduction

We consider the following resource-constrained project scheduling problem. The objective is to

minimize the project duration (the makespan) subject to both temporal and resource constraints.

Temporal constraints usually consist of precedence constraints, that is, certain jobs must be com-

pleted before others can be started. Resource constraints specify that every job requires capacity of

different, renewable resource types while being processed, and the resource availability is limited.

In extension of this basic model, we consider problems where the jobs are subject to minimal and

maximal time lags, or so-called time windows, and may have resource requirements that vary over

time. Not only is the resource-constrained project scheduling problem strongly NP-hard, but it also

is hard to approximate. For instance, it contains graph coloring as a special case.

Following Christofides, Alvarez-Valdés, and Tamarit (1987), we use Lagrangian relaxation in

order to compute lower bounds on the minimal project makespan. The relaxation is based on a

well-known time-indexed integer linear programming formulation of the problem, due to Pritsker,

Watters, and Wolfe (1969). Relaxing the resource-constraints results in a Lagrangian subprob-

lem that is equivalent to project scheduling with start-time dependent costs. The latter problem

can be efficiently solved as a minimum cut problem in a directed graph. This insight is the key

to the practical efficiency of our algorithms, which will be demonstrated in our computational

study. In addition, we compute feasible solutions for resource-constrained project scheduling by

using relaxation-based list-scheduling heuristics. The priority lists are derived from so-called α–

completion times of the jobs in the solutions of the Lagrangian subproblems. Computational exper-

iments show that this approach is very promising in terms of both computation time and solution

quality. Although the paper focuses on the minimization of the project makespan, the proposed

algorithmic scheme can handle many other regular, and even non-regular objective functions as

well. We evaluate our algorithms on various benchmark test sets for resource-constrained project

scheduling. On the one hand, these are different instance sets from the project scheduling library

PSPLIB (2000), systematically generated by Kolisch and Sprecher (1996) and Schwindt (1996).

On the other hand, we use 25 labor-constrained instances in which the jobs have time-varying

resource requirements; these instances are discussed in Heipcke, Colombani, Cavalcante, and de

Souza (2000). They have been designed so as to resemble a real-world chemical production pro-

cess at BASF AG, Ludwigshafen; see also Kallrath and Wilson (1997, Ch. 10.5).

The paper is subdivided into four parts, each of which starts with a brief summary of relevant

related work. Section 2 presents the reduction of the project scheduling problem with start-time

dependent costs to a minimum cut problem in a directed graph. The connection to resource-

constrained project scheduling problems is established in Section 3, where we discuss the La-

2



grangian relaxation approach for computing lower bounds. The Lagrangian-based list scheduling

heuristics are described in Section 4. Finally, Section 5 presents our computational results.

2 Project Scheduling with Start-Time Dependent Costs

We first consider the problem to minimize the total cost of a schedule when the jobs are subject

to temporal constraints only (i.e., there are no resource constraints), but cause arbitrary, start-time

dependent costs. The generality of this objective function encompasses many other, well-known

objective functions like the makespan, the weighted sum of completion times, the net present

value, or earliness-tardiness costs. In this section, we show that the general project scheduling

problem with start-time-dependent costs and arbitrary precedence constraints, and even minimal

and maximal time lags, can be solved as a minimum cut problem in a directed graph.

Gröflin, Liebling, and Prodon (1982) as well as Roundy, Maxwell, Herer, Tayur, and Getzler

(1991) discuss project scheduling problems with start-time-dependent costs and special cases of

precedence constraints (out-trees and chains, respectively). They solve these problems as minimum

cost flow problems. For the special case of unit processing times and ordinary precedence con-

straints, Chang and Edmonds (1985) present a reduction to the minimum weight closure problem

in a directed graph, which is well-known to be equivalent to the minimum cut problem. Chaudhuri,

Walker, and Mitchell (1994) interpret the problem with unit processing times and arbitrary minimal

and maximal time lags as a stable set problem in a comparability graph. Sankaran, Bricker, and

Juang (1999) show that a linear programming formulation of the problem with ordinary precedence

constraints has integral basic feasible solutions. One can essentially deduce from all these papers

that project scheduling problems with start-time-dependent costs can be solved in polynomial time.

For more details we refer to Möhring, Schulz, Stork, and Uetz (2001).

Let us formulate the problem and introduce some notation. Throughout the paper, we let J ��
0 ��������� n � be a set of jobs with integral, non-negative processing times p j, j � J. Jobs 0 and n are

assumed to be artificial jobs indicating the project start and the project completion, respectively.

Their processing time is zero. All jobs must be scheduled non-preemptively, and we represent a

schedule by the vector S �
	 S0 � S1 ��������� Sn � of its start times. We assume that the start times S j of

jobs are integral, and every job j incurs a cost of w jt if it is started at time t. Here, t � 0 � 1 � 2 �������
� T ,

and T is some upper bound on the minimal project makespan. Let di j be the integral length of a

time lag 	 i � j � between two jobs i � j � J, and let L � J � J be the set of all given time lags. We denote

the number of time lags by m : ���L � , and we assume that the temporal constraints always refer to

the start times of jobs. In other words, every time-feasible schedule S has to satisfy S j � Si � di j,

for all 	 i � j � � L. The objective is to find a time-feasible schedule of minimal total cost. Since time

3



lags may be of negative length, time windows of the form Si � di j � S j � Si � d ji between any

two jobs i and j can be modelled. With this interpretation in mind, a time lag of negative length

is also called a maximal time lag. Ordinary precedence constraints can be represented by letting

di j � pi if job i must precede job j. With Bellman’s algorithm (1958), one can check in O 	 mn �
time whether a system of temporal constraints has a feasible solution. We shall assume throughout

the paper that a time-feasible schedule exists.

2.1 Integer programming formulation

Before we discuss the transformation of the project scheduling problem with start-time dependent

costs to a minimum cut problem, we formulate it as an integer programming problem. This for-

mulation will be extended and reused later when we study the Lagrangian relaxation of resource-

constrained project scheduling.

A common way to model scheduling problems as integer linear programs is to use time-indexed

variables. Pritsker, Watters, and Wolfe (1969) were presumably the first to give an integer program-

ming formulation in time-indexed 0 � 1-variables of the type

x jt �
���� 1 if job j starts at time t �

0 otherwise �

where j � J, and t � �
0 ��� � � � T � . This leads to the following integer program.

minimize w 	 x � � ∑
j
∑
t

w jt x jt (1)

subject to ∑
t

x jt � 1 � j � J � (2)

T

∑
s � t

xis �
t � di j 	 1

∑
s � 0

x js � 1 � 	 i � j � � L � t � 0 ��������� T � (3)

x jt � 0 � j � J � t � 0 ��������� T � (4)

x jt integer � j � J � t � 0 ��������� T � (5)

Constraints (2) enforce that each job is started exactly once. Inequalities (3) represent the temporal

constraints imposed by the time lags L. Given the temporal constraints and the time horizon T , it

is easy to compute earliest and latest start times for each job j � J. For convenience of notation, in

the above formulation we assume (without stating it explicitly) that all variables with time indices

outside these boundaries are 0 so that no job is started before its earliest or after its latest start time.

Because of equations (2), any uniform additive transformation of the weights w jt only affects the

4



solution value, but not the solution itself. We therefore assume without loss of generality that

w jt � 0, for all j � J. Instead of (3), another formulation of the temporal constraints is quite

common in the literature, namely

∑
t

t 	 x jt � xit � � di j � 	 i � j � � L � (6)

This formulation of the temporal constraints is weaker in the sense that inequalities (2) and (3)

imply (6), even if the variables x jt are allowed to take on fractional values; see, e.g., Sankaran et al.

(1999). While the original formulation of Pritsker et al. (1969) uses the weak formulation (6), the

strong formulation (3) was proposed by Christofides et al. (1987).

2.2 Transformation to a minimum cut problem

We now present our main theoretical result, a transformation of the scheduling problem with start-

time dependent costs (1) – (5) to a minimum cut problem in a directed graph. For the special case

of ordinary precedence constraints and unit processing times (that is, di j � 1 for all 	 i � j � � L),

Chang and Edmonds (1985) have previously suggested such a transformation. They show that

this problem can be reduced to the minimum-weight closure problem, which is equivalent to the

minimum cut problem (Rhys 1970; Balinski 1970; Chang and Edmonds 1985). The reduction we

propose is direct, and it typically results in a sparser minimum cut digraph.

For each job j, we denote by e 	 j � � 0 its earliest feasible start time, and by � 	 j � � T � p j its

latest feasible start time. The minimum cut digraph D � 	 V � A � is defined as follows.

Nodes. There is one node v jt for every job j and for all its potential start times t plus the suc-

ceeding period. In other words, V : � �
v jt � j � J � t � e 	 j � ����������� 	 j � � 1 ��� �

a � b � , where the two

additional nodes a and b represent source and sink of D, respectively.

Arcs. The arc set A consists of assignment, temporal, and auxiliary arcs. Assignment

arcs 	 v jt � v j � t � 1 � are defined for all j and t, resulting in directed chains 	 v j � e � j � � v j � e � j � � 1 � ,
	 v j � e � j � � 1 � v j � e � j � � 2 � ��������� 	 v j � ��� j � � v j � ��� j � � 1 � for all j � J. Temporal arcs 	 vit � v j � t � di j � are defined for

all time lags 	 i � j � � L, and for all t which fulfill both e 	 i � � 1 � t � � 	 i � and e 	 j � � 1 � t � di j � � 	 j � .
Finally, a set of auxiliary arcs connects the source and the sink nodes a and b with the remaining

network. The auxiliary arcs are given by 	 a � v j � e � j � � and 	 v j � ��� j � � 1 � b � , for all j � J.

Arc capacities. The capacity of each assignment arc 	 v jt � v j � t � 1 � is given by c 	 v jt � v j � t � 1 � : � w jt ,

and the capacities of all temporal and auxiliary arcs are infinite.

5



PSfrag replacements

0 1

1

1
1

2

2

2

2

2

3

3

3

3

4

4

5

5

-2
a b

p1 � 1

�
v31 � v32 �

Figure 1: Example for the transformation to a minimum-cut problem.

Figure 1 shows an example of the construction of D. The digraph on the left-hand side rep-

resents the relevant data of the underlying example: each node represents a job, and each arc

represents a temporal constraint. The values for the time lags are d12 � 1 � d23 � � 2 � d34 � 2 � and

d54 � 3. The job processing times are p1 � p4 � 1, p2 � p5 � 2, and p3 � 3. The time horizon is

T � 6. Thus the earliest start times are 0, 1, 0, 3, and 0, and the latest start times are 3, 4, 3, 5, and

2, respectively. (Note that we omit the artificial jobs 0 and n in this example.) The digraph on the

right-hand side of Figure 1 is obtained by the above described transformation. Arcs marked by a

white arrowhead have infinite capacity.

To formulate our main result, we use the following notation. Given D � 	 V � A � , an a-b-cut is an

ordered pair 	 X � X � of disjoint sets X � X � V with X � X � V , and a � X , b � X . We say that an arc

	 u � v � � A is in the cut if u � X and v � X . The capacity c 	 X � X � of a cut 	 X � X � is the sum of the

capacities of the arcs in the cut, c 	 X � X � : � ∑ � u � u ��� � X � X � c 	 u � u � . A minimum a-b-cut is an a-b-cut

with minimal capacity. Moreover, let us introduce the following notion.

Definition 1. An a-b cut of the above defined digraph D � 	 V � A � is called an n-cut if for every job

j � J exactly one assignment arc 	 v jt � v j � t � 1 � is in the cut.

The following observation is crucial.

Lemma 1. Let 	 X � X � be a minimum a-b-cut of D. Then there exists an n-cut 	 X � � X � � of D with

the same capacity. Moreover, given 	 X � X � , the n-cut 	 X � � X � � can be computed in time O 	 nT � .

Proof. The proof relies on the fact that all arc capacities of D are non-negative. Let the minimum

cut 	 X � X � of D be given, and assume that its capacity is finite, otherwise the claim is trivial. Since

the auxiliary arcs have infinite capacity, it follows that for each job j � J at least one assignment arc

	 v jt � v j � t � 1 � is in the cut 	 X � X � . Now assume that 	 X � X � contains more than one assignment arc for

6



certain jobs j � J. We construct an n-cut 	 X � � X � � with the same capacity as follows. For j � J, let

t j be the smallest time index such that 	 v j � t j � v j � t j � 1 � � 	 X � X � . Let X � : ��� j � J
�
v jt � t � t j � � � a � and

X � : � V � X � . Clearly, X � � X and the set of assignment arcs in 	 X � � X � � is a proper subset of the

corresponding set of assignment arcs of 	 X � X � . All weights w jt are non-negative. Hence, it suffices

to prove that 	 X � � X � � does not contain any of the temporal arcs in order to show that 	 X � � X � � has

the same capacity as 	 X � X � . Suppose that there exists such a temporal arc 	 vis � v jt � � 	 X � � X � � ,
s � ti, t � t j. Let k : � t � 	 t j � 1 � � 0. Then e 	 j � � 1 � t � k � � 	 j � , since t � k � t j � 1, and all times

t j � t j � 1 ��������� t are feasible start times for job j. Moreover, s � k � � 	 i � , since s � k � s � ti � � 	 i � .
Now suppose that s � k � e 	 i � � 1. This implies that t � k � s � k � 	 t � s � � e 	 i � � 1 � 	 t � s � .
But there is a time lag between i and j of length t � s, hence e 	 i � � 	 t � s � � e 	 j � . This yields

t � k � e 	 j � � 1, a contradiction. Thus s � k � e 	 i � � 1. In other words, we have vi � s 	 k � X � � X

and v j � t 	 k � v j � t j � 1 � X , and there exists a temporal arc 	 vi � s 	 k � v j � t 	 k � � 	 X � X � . Since temporal

arcs have infinite capacity, this is a contradiction to the assumption that 	 X � X � is a minimum cut

of finite capacity. It follows from the definition of 	 X � � X � � that it can be computed from 	 X � X � in

time O 	 nT � .
The following theorem establishes the connection between the scheduling problem and the

minimum cut problem.

Theorem 1. There is a one-to-one correspondence between n-cuts 	 X � X � of D with finite capacity

and feasible solutions x of the project scheduling problem with start-time dependent costs (1) – (5),

namely

x jt �
�

1 if 	 v jt � v j � t � 1 � is in the cut 	 X � X � �
0 otherwise.

(7)

The capacity c 	 X � X � of 	 X � X � is equal to the value w 	 x � of the corresponding scheduling solu-

tion x. Moreover, the capacity c 	 X � X � of a minimum a-b-cut 	 X � X � of D equals the value w 	 x � of

an optimal solution x of (1) – (5).

Theorem 1 is proved with the help of Lemmas 2, 3, and 4 below. Using Lemma 1, any minimum

cut of D can be turned into a minimum n-cut in O 	 nT � time. By Theorem 1, this yields an optimal

solution for the project scheduling problem with start-time dependent costs. Since the digraph D

has O 	 nT � nodes and O 	 mT � arcs, the analysis of the push-relabel-algorithm for maximum flows

by Goldberg and Tarjan (1988) implies the following result.

Corollary 1. The project scheduling problem with start-time dependent costs (1) – (5) can be

solved in time O 	 nmT 2 log 	 n2 T � m � � .

7



If all weights w jt are integer and W is their largest absolute value, Goldberg and Rao’s algo-

rithm (1998) leads to a time complexity of O 	 min
�

n2 � 3 mT 5 � 3 � m3 � 2 T 3 � 2 � log 	 n2 T � m � logW � .
Let us next prove Theorem 1. We start with surjectivity.

Lemma 2. For each feasible solution x of integer program (1) – (5), there exists an n-cut 	 X � X �
of D such that x is the image of 	 X � X � under the mapping (7). Moreover, w 	 x � � c 	 X � X � .

Proof. Let x be a feasible solution of integer program (1) – (5), and let w 	 x � be its cost. Due to (2),

for each job j � J there exists exactly one x j � t j � 1, for some t j. Define a cut in D by setting

X : � � j � J
�
v jt � t � t j � � �

a � , and X : � V � X . By construction of D, all arcs 	 v j � t j � v j � t j � 1 � , j � J,

are arcs of the cut 	 X � X � , and x is the image of 	 X � X � under the mapping (7). Moreover, the sum

of the capacities of the assignment arcs in the cut is w 	 x � . Now suppose that there exists another

arc in the cut. This must be a temporal arc 	 vis � v jt � , s � ti, t � t j. Thus, there is a time lag 	 i � j �
with length di j � t � s between jobs i and j. Since t j � ti � t � s, we obtain a contradiction to the

assumption that x was feasible. Hence, w 	 x � � c 	 X � X � .
The injectivity of the mapping defined by (7) follows by definition. We have to show, though,

that its images are in fact feasible solutions of the integer program (1) – (5).

Lemma 3. For each finite capacity n-cut 	 X � X � in D, the mapping (7) defines a feasible solution x

of integer program (1) – (5) with w 	 x � � c 	 X � X � .

Proof. Since an n-cut contains exactly one assignment arc for each job j � J, the solution x defined

by (7) fulfills equations (2). Given that the n-cut 	 X � X � has finite capacity, it can easily be shown

that x satisfies the temporal constraints (3) as well. Finally, it is obvious that w 	 x � � c 	 X � X � .

Lemma 4. The capacity c 	 X � X � of a minimum a-b-cut 	 X � X � of D equals the value w 	 x � of an

optimal solution x of (1) – (5).

Proof. The claim immediately follows with the help of Lemmas 1, 2 and 3.

This concludes the proof of Theorem 1. Note that if all weights w jt are strictly positive, there

is a one-to-one correspondence between minimum a-b-cuts of D and optimal solutions of (1) –

(5). This can be inferred from the proof of Lemma 1, since in this case any minimum a-b-cut is

already an n-cut. In our computational experiments, arc weights are non-negative. Changing them

to strictly positive arc weights is not beneficial.

8



2.3 Additional remarks

The project scheduling problem with start-time dependent costs can be solved in time O 	 nm � by

longest path calculations (Bellman 1958) if the costs w jt are either monotonically non-decreasing

or monotonically non-increasing in t, for all jobs j � J. Other special cases can also be solved

more efficiently than the general problem; for instance, the problem with out-tree precedence con-

straints can be solved in O 	 nT � time (Gröflin et al. 1982). Notice, however, that with respect to

polynomiality results one has to distinguish between problems which require an encoding length

of Ω 	 nT � , which is the case for the problem with general costs w jt discussed here, and problems

which allow a more succinct encoding like, e.g., the net present value problem, or problems with

piecewise linear, convex cost functions. We refer to Möhring et al. (2001) for a detailed discussion

of these issues.

3 Lower Bounds for Resource-Constrained Project Scheduling

We now consider resource-constrained project scheduling problems: In addition to observing tem-

poral constraints, jobs need resources when they are in process. In the model with constant resource

requirements, we are given a finite set R of different, renewable resource types, and the capacity of

resource k � R is denoted by Rk. This means that an amount of Rk units of resource k is available

throughout the project. During its processing, job j requires an amount of r jk units of resource k

(for j � J and k � R). The jobs have to be scheduled in such a way that the resource consumption

does not exceed the resource capacity at any time. The objective considered now is different from

the one studied in the previous section. It is the project makespan, which is the completion time

of the last job. Resource-constrained project scheduling problems are among the most intractable

combinatorial optimization problems. Their hardness is perhaps best underlined by the observa-

tion that the node coloring problem in graphs can be formulated as a resource-constrained project

scheduling problem with makespan objective; see Schäffter (1997) and Blazewicz, Lenstra, and

Rinnooy Kan (1983). Thus, as for node coloring, there is no polynomial-time approximation al-

gorithm with a performance guarantee of n1 	 ε for any ε � 0, unless NP � ZPP (Feige and Kilian

1998). This also implies limits on the computation of lower bounds. Yet, real-world instances still

call for good and fast computable solutions and lower bounds. For surveys on resource-constrained

project scheduling, we refer to Wȩglarz (1999) and Brucker, Drexl, Möhring, Neumann, and Pesch

(1999).

In fact, there are numerous publications on the computation of lower bounds on the minimal

makespan for resource-constrained project scheduling problems; let us briefly review those which

9



are most relevant to our work. For problems with ordinary precedence constraints, lower bounds

from time-indexed linear programming relaxations were analyzed by Christofides et al. (1987) as

well as Cavalcante, de Souza, Savelsbergh, Wang, and Wolsey (2001b). Several other linear pro-

gramming based lower bounds were proposed by Mingozzi, Maniezzo, Ricciardelli, and Bianco

(1998). For problems that also involve maximal time lags between jobs, lower bounds were com-

puted by Heilmann and Schwindt (1997), using a destructive approach. The idea is to reject ficti-

tious upper bounds by proving infeasibility; this concept was also used for problems with ordinary

precedence constraints by Klein and Scholl (1999). Based on one of the relaxations by Mingozzi

et al. (1998) and using a destructive approach combined with constraint propagation techniques,

Brucker and Knust (2000) obtain the strongest lower bounds currently known on one of the bench-

mark test sets. Recently, Demassey, Artigues, and Michelon (2001a, 2001b) have started further

experiments to combine constraint programming and linear programming techniques; while their

initial results do not show a clear trend, they remain interesting.

In this section, we revert to the Lagrangian relaxation suggested by Christofides et al. (1987),

which is based on the previously mentioned time-indexed integer programming formulation of

Pritsker et al. (1969). Appropriate Lagrangian multipliers are calculated with the help of standard

subgradient optimization techniques. Since every Lagrangian subproblem can be interpreted as

a project scheduling problem with start-time dependent costs, we solve it by using the preflow-

push algorithm of Goldberg and Tarjan (1988) in its implementation by Cherkassky and Goldberg

(1997). In our computational study, we compare the Lagrangian lower bounds as well as the

required computation times to the hitherto best lower bounds, on all benchmark instances. In ad-

dition, we report on our experience with two different linear programming relaxations that emerge

from the time-indexed problem formulation. It turns out that the Lagrangian approach offers a

favorable tradeoff between the quality of the lower bounds and the necessary computational effort.

Computational results on Lagrangian lower bounds are presented in Sections 5.2 and 5.4.

3.1 Integer programming formulation

In order to model the resource-constrained project scheduling problem as an integer program, recall

that the project makespan is given by the start time Sn of the artificial job n. Hence, we obtain:

minimize ∑
t

t xnt (8)

subject to (2), (3), (4), (5), and

∑
j

r jk

� t

∑
s � t 	 p j � 1

x js � � Rk � k � R � t � 0 ��� � � � T � (9)

10



Inequalities (9) ensure that the jobs simultaneously processed at time t do not consume more re-

sources than available. This formulation can easily be generalized to time-dependent, piecewise

constant resource profiles, i.e., Rk � Rk 	 t � and r jk � r jk 	 t � , t � 0 ��������� T . In fact, although we

discuss in the following the case of time-independent resource profiles only, the presented results

carry over to the general case. Computational results for both models are discussed in Section 5.

3.2 Lagrangian relaxation

In order to compute lower bounds on the optimal objective value, Christofides et al. (1987) propose

to dualize the resource constraints (9), and introduce non-negative Lagrangian multipliers λ �
	 λtk � , t � �

0 ��� � � � T � , k � R. One obtains the following Lagrangian subproblem.

minimize ∑
t

t xnt � ∑
j
∑
t

�
∑
k � R

r jk

t � p j 	 1

∑
s � t

λsk � x jt � ∑
t

∑
k � R

λtk Rk (10)

subject to (2), (3), (4), and (5) �

If one introduces weights

w jt : � ∑
k � R

r jk

t � p j 	 1

∑
s � t

λsk if j �� n � and w jt : � t if j � n � (11)

the Lagrangian subproblem (10) can be rewritten as

minimize ∑
j
∑
t

w jt x jt � ∑
t

∑
k � R

λtk Rk subject to (2), (3), (4), and (5). (12)

Evidently, once the constant term ∑t ∑k � R λtk Rk is neglected, (12) is a project scheduling prob-

lem with start-time dependent costs as discussed in Section 2 before. The weights w jt defined in

(11) depend on the vector of Lagrangian multipliers λ; since these multipliers are non-negative,

the weights w jt are non-negative as well. Note that the above Lagrangian relaxation of (2), (3),

(4), (5), (8), and (9) is not restricted to makespan minimization, but can as well be applied to

any objective function which can be expressed linearly in the x-variables. Hence, the procedure

proposed below is applicable to a variety of scheduling problems, including the minimization of

the weighted sum of completion times, problems with earliness-tardiness costs, resource invest-

ment problems (Möhring 1984), and net-present-value objectives (Grinold 1972). Inspired by a

preliminary version of our paper (Möhring et al. 1999), Drexl and Kimms (2001), Kimms (2001),

and Selle (1999) have exploited the transformation of Lagrangian subproblems to minimum cut

problems for some of the objective functions mentioned above.

11



3.3 Lagrangian and linear programming relaxations

For any vector of non-negative Lagrangian multipliers λ �
	 λtk � , t � 0 ��������� T , k � R, the optimal

solution value of the Lagrangian subproblem (12) is a lower bound on the value of an optimal

solution of the resource-constrained project scheduling problem (2), (3), (4), (5), (8), and (9). If

wλ denotes the value of an optimal solution for the Lagrangian subproblem for a fixed vector of

multipliers λ, the Lagrangian dual is the maximization problem maxλ � 0 wλ. Since the polytope

described by inequalities (2), (3), and (4) is integral (see Möhring et al. (2001) for references), the

optimal solution for the Lagrangian dual equals the value of an optimal solution for the linear pro-

gramming relaxation (2), (3), (4), (8), and (9) (Everett III 1963). Hence, the optimal solution value

for the linear programming relaxation (2), (3), (4), (8), and (9) is an upper bound for the solution

of the Lagrangian subproblem, for any vector of non-negative multipliers λ. Our computational

evaluation of the two alternative approaches shows that the Lagrangian dual can typically be solved

more efficiently in practice; we refer to Section 5.2 for details. If inequalities (3) are replaced by

the weaker inequalities (6), however, it turns out that the corresponding linear programming relax-

ation is generally much easier to solve. This was also observed by Cavalcante et al. (2001b). The

weaker linear programming relaxation may yield worse lower bounds, though, as is demonstrated

in the following example.

Observation 1. For the makespan objective, there exist instances for which the optimal objective

function value of the strong LP relaxation (2), (3), (4), (8), and (9) is arbitrarily close to being 3 � 2

times the optimal objective function value of the weak LP relaxation (2), (4), (6), (8), and (9).

Proof. We consider a family of instances with five jobs with unit processing times, and one re-

source of capacity N � IN. There are two jobs which consume N units of the resource; they are

forced to start at times 0 and 2, respectively, using corresponding minimal and maximal time lags.

There is one job which requires one unit of the resource, predecessor of two more jobs which re-

quire N � 1 units each. The optimal makespan for the weak LP relaxation is 3, whereas the optimal

makespan for the strong LP relaxation is arbitrarily close to 4 � 5 for large N.

Consequently, the Lagrangian relaxation may also yield stronger bounds than the weak linear

programming relaxation. This is indeed confirmed by our computational results presented in Sec-

tion 5. Finally, it is worth mentioning that simple examples show that the integrality gap, that is,

the ratio of the value of an optimal integral solution to the value of an optimal fractional solution

is in general unbounded for both linear programming formulations.

12



3.4 Strengthening lower bounds by feasible cuts

In our computations, we have actually used a strengthened version of the resource constraints,

which replaces (9). The stronger inequalities were proposed by Christofides et al. (1987) and

reinforce that no job should be scheduled at the same time or after the artificial job n.

∑
j �� n

r jk

� t

∑
s � t 	 p j � 1

x js � � Rk

�
1 � t

∑
s � 0

xns � � k � R � t � 0 ��������� T � (13)

The use of (13) has a nice interpretation in terms of the Lagrangian relaxation (12), since, instead

of wnt � t, it leads to the weights wnt � t � ∑T
s � t ∑k � R λsk Rk for the artificial job n. Hence, an early

start of job n is penalized stronger by using inequalities (13) instead of (9).

The Lagrangian approach is capable of incorporating other families of valid inequalities as

well. Once these feasible cuts are dualized, the structure of the minimum-cut digraph D remains

the same, only the corresponding arc capacities w jt change. Hence, for some of our experiments

we have considered additional inequalities. Let F � J be a subset of jobs no two of which can

be scheduled simultaneously, either because of resource consumption, or because of temporal con-

straints. This leads to the following family of inequalities, which has also been used by Christofides

et al. (1987):

∑
j � F

� t

∑
s � t 	 p j � 1

x js � � 1 t � 0 ��������� T � (14)

In order to compute a collection of such inclusion-maximal sets F , we use a simple greedy heuris-

tic: Consider the jobs in some given order, start with F being the first job in this order, and add job j

to F if j cannot be processed simultaneously with any job that has been previously added to F . We

have used ten folklore priority lists of jobs to obtain a collection of inequalities of this type. The

improvements obtained by additionally using inequalities (14) are documented in Tables 1 and 2

in Section 5.2.

3.5 Lagrangian multiplier computation

We use a standard subgradient method to compute near-optimal vectors of Lagrangian multipli-

ers λtk, t � 0 ��������� T , k � R, as described, e.g., in Bertsekas (1999, Ch. 6.3). Given the vector of

Lagrangian multipliers λi of the i-th iteration, we define λi � 1 : ��� λi � δi gi � �
, where, as usual, ����� �

denotes the non-negative part of a vector. Moreover, gi is a subgradient at λi of the function that

maps λ to the optimal objective value of (12). If xi is an optimal solution of (12) for the vector λi

of Lagrangian multipliers, then gi
k � t � ∑ j r jk 	 ∑t

s � t 	 p j � 1 xi
js � � Rk 	 1 � ∑t

s � 0 xns � . Eventually, the

step size δi is given by δi : � δ 	 w � � wλi 	 xi ��� � � � gi � � 2, where w � is an upper bound for the optimal

13



value of the Lagrangian dual. The scalar parameter δ is adjusted as a function of the lower bound

improvement: If the lower bound does not improve substantially within three iterations, then δ is

reduced by a factor of 0 � 8. If no substantial improvement can be achieved within ten iterations,

we stop the algorithm. The corresponding parameter adjustments result from our empirical ex-

periments. In fact, the following refinement proposed by Camerini, Fratta, and Maffioli (1975)

leads to improved convergence. Instead of moving into the direction of the subgradient gi, we use

λi � 1 : � � λi � δi di � �
, where di : � gi, if i � 0, and di : � gi � βgi 	 1, otherwise. Here, 0 � β � 1 is

a scalar that depends on the angle between two successive subgradients.

4 From Minimum Cuts to Feasible Solutions

Relaxation-based list scheduling algorithms have recently led to several approximation results for

NP-hard machine scheduling problems. The general idea is to solve some relaxation of the problem

at hand, e. g., a linear programming relaxation, and then extract information from this solution to

construct provably good schedules. Scheduling jobs in order of their so-called α-completion times

in the respective relaxation is one way of doing this. The papers by Phillips, Stein, and Wein

(1998), Hall, Schulz, Shmoys, and Wein (1997), Chekuri, Motwani, Natarajan, and Stein (2001),

Goemans, Queyranne, Schulz, Skutella, and Wang (2002), and Munier, Queyranne, and Schulz

(2002) are just some of the references in this direction. Cavalcante et al. (2001b) as well as

Savelsbergh et al. (1998) show that such approaches can also be successfully applied to real-world

instances. Likewise, our empirical studies in Sections 5.3 and 5.4 show that Lagrangian relaxation

is not only useful to compute lower bounds on the project makespan, but is also suited to compute

feasible solutions with relatively small computational effort. The basic idea is motivated by the

intuition that in the course of the subgadient optimization, violations of the resource constraints

tend to be reduced. Hence, a solution of the Lagrangian relaxation contains valuable information

on how resource conflicts can be resolved. We take advantage of this information by using simple

list scheduling algorithms that are based on α–completion times of the jobs in the solutions of the

Lagrangian subproblems.

To relate the results obtained to other algorithms from the literature, we utilize a survey on

heuristic approaches by Kolisch and Hartmann (1999). Therein, some of the recent local search

and list scheduling heuristics are evaluated with respect to their performance on the instances from

Kolisch and Sprecher (1996). This includes a genetic algorithm by Hartmann (1998, 2002), a

simulated annealing algorithm by Bouleimen and Lecocq (2002) as well as sampling-based list-

scheduling heuristics by Kolisch (1996). Additionally, we compare our algorithm to an ant colony

optimization algorithm by Merkle, Middendorf, and Schmeck (2000), a tabu search algorithm

14



by Nonobe and Ibaraki (2001) as well as a constraint propagation based branch-and-bound al-

gorithm by Dorndorf, Pesch, and Phan Huy (2000a). Our computational results suggest that the

Lagrangian-based approach is capable of providing solutions that are comparable to those pro-

duced by state-of-the-art algorithms. Moreover, in contrast to purely primal heuristics the La-

grangian approach simultaneously provides strong lower bounds. We also evaluate our algorithm

on the labor-constrained instances described by Heipcke et al. (2000) and compare it to previous

approaches, including linear programming based list scheduling algorithms by Cavalcante et al.

(2001b), a tabu search algorithm by Cavalcante and de Souza (1997), recently improved by Cav-

alcante, Cavalcante, Ribeiro, and de Souza (2001a), as well as a constraint propagation based

branch-and-bound algorithm by Heipcke (1999).

4.1 List scheduling

The literature typically distinguishes two list scheduling rules, which are referred to as the parallel

and the serial scheme, respectively. The parallel scheme goes back to Graham (1966); it is therefore

also called Graham’s list scheduling, whereas the serial scheme is sometimes also called job-based

list scheduling. In both cases a priority list is given that determines the order in which the jobs are

considered. Parallel list scheduling proceeds over time, starting at time t � 0. At any time t, as

many available jobs as possible are scheduled, picked in the order given by the list. If no further job

can feasibly be scheduled at time t, t is augmented to the time of the next event. (Here, an event is

either a completion time Si � pi, or a date Si � di j, 	 i � j � � L). Serial list scheduling proceeds job by

job. In the order given by the priority list, each job is scheduled as early as possible with respect to

the jobs already scheduled. Both list scheduling algorithms can be implemented to run in O 	 �R � n2 �
time when the resource availability and the resource consumption of every job is constant; see,

e.g., Kolisch and Hartmann (1999). List scheduling algorithms can easily be adapted to handle the

case when resource consumption varies over time, which results in a higher running time that also

accounts for the breakpoints in the resource profiles. It is well-known that both list scheduling rules

are incomparable with respect to the quality of the schedules they produce. In order to combine the

respective advantages of the parallel and the serial scheme, we have additionally implemented a

serial list scheduling algorithm with limited look-ahead: Given a natural number � , we compute the

earliest start times of the first � available jobs from the list, and schedule the job with the smallest

earliest start time. The time complexity of this algorithm is O 	 � �R � n2 � . Within our computations,

we have used values of 1, 2, 4, and 8 for � .

15



4.2 List scheduling by α-completion times

Recall that, for any vector of Lagrangian multipliers, the solution of the Lagrangian relaxation (12)

is a time-feasible schedule which, in general, violates some of the resource constraints (9). We gen-

erate schedules that are time-feasible and resource-feasible by applying the previously described

list scheduling algorithms fed with priority lists derived from the order of the jobs in the solu-

tion of the Lagrangian relaxation. Given a time-feasible schedule S and some 0 � α � 1, the

α-completion time of job j in S is C j 	 α � : � S j � α p j. If the temporal constraints are acyclic and if

di j � max
�
0 � pi � p j � for all 	 i � j � � L, which is, e.g., the case for ordinary precedence constraints,

then the ordering of the jobs according to non-decreasing α-completion times is compatible with

the given temporal constraints. It can therefore be used as a priority list for both list scheduling

schemes. Furthermore, the number of different priority lists emerging from different values of α is

polynomially bounded.

Observation 2. Let S be a time-feasible schedule, and let q be the maximal number of parallel

jobs in S. The number of different orderings of the jobs according to their α-completion times for

α � � 0 � 1 � is at most nq � 1.

4.3 The Lagrangian heuristic

Let us now sketch the combined algorithm that computes both lower bounds and feasible solutions.

First, to obtain an initial valid upper bound T on the makespan, we use the parallel list scheduling

algorithm described in Section 4.1, on the basis of 10 folklore priority lists, such as shortest/longest

processing time first, minimum slack, etc. Then, in each iteration of the subgradient optimization

algorithm, a time-feasible, but likely resource-infeasible schedule is computed by solving the La-

grangian subproblem (12) as described in Section 2. The cost of this time-feasible schedule, in

terms of the w jt defined in (11), minus the constant term in (12), is a valid lower bound for the

makespan of the resource-constrained project scheduling problem (2), (3), (4), (5), (8), and (9).

Using orderings according to α-completion times of jobs, we then compute feasible solutions by

means of the list scheduling algorithms described above. In fact, we observed that the number

of combinatorially different values of α was roughly n � 4 for the considered instances. For our

computations, however, we did not evaluate the priority lists for all relevant values of α, but we

only considered 10 different values for α. According to our experiments, this gives a reasonable

tradeoff between the required compution times and the solution quality, for the instances consid-

ered. The stopping criterion of the algorithm depends on the rate of convergence of the subgradient

optimization procedure as described in Section 3. Of course, the algorithm is also aborted as soon

as lower and upper bounds match.

16



5 Computational Study

The computational study is divided into four parts. We start by describing the setup as well as

the benchmark instances. In Section 5.2, we analyze the Lagrangian lower bounds, and compare

them with the corresponding linear programming relaxations as well as the currently best known

lower bounds. Section 5.3 discusses the computation of feasible solutions. Finally, in Section 5.4

we report on our experiments with instances that mimic a typical chemical production process at

BASF AG, Ludwigshafen, Germany.

5.1 Setup and benchmark instances

Our experiments were conducted on a Sun Ultra 2 with 200 MHz clock pulse and 512 MB of

memory, operating under Solaris 2.7. The code was written in C++ and compiled with the GNU

g++ compiler version 2.91.66. For solving minimum cut problems, we used the highest-label

maximum flow code by Cherkassky and Goldberg (1997). It was written in C and compiled with

the GNU gcc compiler version 2.91.66. Both compilers used the -O3 optimization option. To solve

the linear programming relaxations, we used ILOG CPLEX version 6.5.3.

We tested our algorithm using three different types of benchmark instances. First, we con-

sidered ProGen instances with 60, 90, and 120 jobs. These are project scheduling problems with

ordinary precedence constraints. They are part of the project scheduling problem library PSPLIB

(2000). These instances have been generated by Kolisch and Sprecher (1996), systematically mod-

ifying three parameters. The network complexity reflects the average number of direct successors

of a job, the resource factor describes the average number of resource types required by a job, and

the resource strength is a scaling factor which measures the scarcity of the resources. The resource

strength varies between 0 and 1. If it is equal to 1, the earliest start schedule with respect to the

precedence constraints is already feasible. If it is equal to 0, the resource availability is minimal in

the sense that for each resource type there exist jobs which require the full capacity. The library

contains 480 instances with 60 and 90 jobs, respectively, and 600 instances with 120 jobs. Each of

the instance sets with 60 and 90 jobs contains 120 instances with a resource strength parameter 1.

Hence, we only considered the remaining 360 non-trivial instances for our computations. The job

processing times for all instances are uniformly distributed between 1 and 10, and the number �R �
of different resource types is four. The library also contains best known upper and lower bounds

on the optimal makespan for all instances. The makespan of the currently best known solutions for

the instances with 60 jobs varies between 44 and 157, for the instances with 90 jobs it is between

60 and 182, and for the instances with 120 jobs it is between 66 and 301.

The ProGen/max instances generated by Schwindt (1996) additionally feature maximal time

17



lags between the jobs. We considered 1059 instances which consist of 100 jobs each. The num-

ber �R � of different resource types is five. The control parameters are similar to those of the ProGen

instances described above, except that an additional parameter controls the number of cycles in the

digraph of temporal constraints. They are also part of the library PSPLIB (2000), and benchmark

solutions and lower bounds are maintained at the library PSPLIB/max (2000). The makespan of

the best known solutions for these instances varies between 185 and 905. For further details on the

test sets we refer to Kolisch and Sprecher (1996), Schwindt (1996) and Kolisch et al. (1999).

We also considered a set of 25 instances which mimic a labor-constrained scheduling problem

at BASF AG, Ludwigshafen. Two of these instances stem directly from a chemical production pro-

cess at BASF AG, Ludwigshafen, and the remaining 23 instances have been generated accordingly

(Heipcke et al. 2000). In these instances, each job consists of several consecutive production steps,

so-called tasks, which must be executed consecutively without interruption. Each task requires a

certain amount of personnel, hence jobs have time-varying resource requirements. The resource

constraints are imposed by a limited number of available personnel, which is constant over time.

More details can be found in Kallrath and Wilson (1997, Ch. 10.5), Heipcke (1999), and Heipcke

et al. (2000). For these instances, the number of jobs varies between 21 and 109, and the number

of tasks, that is, the number of breakpoints in the resource profiles, varies between 49 and 2014.

5.2 Lower bounds by Lagrangian relaxation

First, we will relate the lower bounds obtained by Lagrangian relaxation to the currently best

known lower bounds, based on the ProGen instances from the PSPLIB (2000). For all results

in this section, the upper bound T for the minimal project makespan is the currently best known

solution value, taken from the PSPLIB (2000). These currently best known bounds are due to

Brucker and Knust (2000); they have been obtained by a composition of two different algorithms,

constraint propagation and a linear programming relaxation of Mingozzi et al. (1998). The rows

in Table 1 refer to the ProGen instances with 60, 90 and 120 jobs, respectively. The columns show

respectively the number of instances considered (#inst.), the average improvement over the critical

path lower bound in percent (Dev. CP), the average computation time (CPU), as well as the average

number of iterations of the subgradient optimization algorithm (#it). Unless stated differently, all

computation times are in seconds. The last two columns show the bounds of Brucker and Knust

(2000) in terms of the deviation from the critical path lower bound and computation times. These

bounds are also available from the PSPLIB (2000), and the computation times have been taken

from Brucker and Knust (2000). All figures are averaged over the respective number of instances,

and all figures in parenthesis denote the corresponding maxima. Notice that we included additional

18



Table 1: Comparison of quality and computation times for lower bounds.

Lagrangian LB + (14) Brucker & Knust
#jobs #inst. Dev. CP CPU #it Dev. CP CPU

�

60 360 7.46% 2.4 49 10.56% 6.7
(79%) (32) (172) (86%) (62)

90 360 7.73% 7.2 45 9.6% 96
(85%) (77) (175) (90%) (165)

120 600 19.96% 41 86 23.48% 355
���

(146%) (537) (218) (168%) (72h)
�

On a Sun Ultra 2 with 167 MHz (Brucker and Knust 2000)
���

Refers to 481 inst.; CPU time for all remaining 119 inst.: 72h

cuts of the type (14) for these experiments. Obviously, the bounds by Brucker and Knust (2000)

are stronger than the ones computed by the Lagrangian approach proposed here. However, even

though their computations have not been conducted in exactly the same setting, one can infer that

the corresponding computation times are significantly higher, especially for the large instances

with 120 jobs. For these instances, the Lagrangian approach requires a maximal computation time

of less than 9 minutes (537 sec.), which is in sharp contrast to the 72 hours needed by Brucker and

Knust (2000).

Table 2 compares the Lagrangian approach to the corresponding linear programming relaxation

(2), (3), (4), (8), and (9), again based on the ProGen instances with 60, 90, and 120 jobs. The

computation times for the LP relaxation are given for both primal simplex (ps) and barrier solver

(ba). We excluded the additional inequalities (14) for this experiment, since we could not solve the

strong LP relaxation within days of computation time for some of the instances. Hence, the quality

of the Lagrangian lower bounds in Table 2 is slightly inferior in comparison to Table 1. Again, all

figures are averaged over the respective number of instances, and figures in parenthesis denote the

corresponding maxima. Unless stated differently, all computation times are in seconds.

It turns out that the primal simplex method solves this linear programming relaxation much

faster than the barrier method does. With the barrier method, the instances with 120 jobs could

not be solved in reasonable time, hence the data is missing in Table 2. More importantly, these

computation times are in fact drastically higher than the computation times required to (approx-

imately) solve the Lagrangian dual. The gap between the respective average improvements over

the critical path lower bound is caused by slow convergence of the subgradient optimization al-

gorithm in some of the cases. We additionally experimented with linear programming relaxations

which use time-indexed variables z jt � ∑t
s � 0 x jt instead. These formulations have also been used

by Cavalcante et al. (2001b), and in some cases they can be solved faster. However, on average the

19



Table 2: Lagrangian and linear programming relaxations.

Lagrangian LB strong LP
#jobs #inst. Dev. CP CPU #it Dev. CP CPU(ps) CPU(ba)

60 360 6.91% 2.1 49 7.28% 124 203
(79%) (30) (168) (82%) (1h) (1.5h)

90 360 7.52% 6.8 44 7.96% 245 920
(85%) (77) (174) (88%) (1.5h) (8.5h)

120 600 19.63% 39 85 20.51% 2241 —
(146%) (475) (220) (155%) (23h) —

computation times are of the same order of magnitude as the computation times required to solve

the linear programming relaxations in x-variables.

Moreover, a comparison of the figures in Tables 1 and 2 shows that the additional inequali-

ties (14) do not have a substantial effect on the computation times for the Lagrangian approach.

This is due to the fact that the addition of these inequalities affects the capacities of the maximum

flow networks, but not their topology. Although the capacities clearly have an impact on the per-

formance of the preflow-push algorithm, it turned out that the overall impact on the computation

times was marginal. Using the additional feasible cuts (14), the quality of the lower bounds can be

improved, though.

Table 3 suggests that almost the same lower bounds are obtained when using the weak instead

of the strong linear programming relaxation. While the computation times for the instances with 60

Table 3: Weak LP relaxation and impact of additional inequalities (14).

weak LP weak LP + (14)
#jobs #inst. Dev. CP CPU(ps) CPU(ba) Dev. CP CPU(ps) CPU(ba)

60 360 6.93% 4.0 3.2 7.38% 8.5 3.7
(82%) (279) (27) (82%) (490) (28)

90 360 7.67% 6.2 6.1 7.82% 14 6.8
(88%) (80) (36) (88%) (362) (37)

120 600 20.10% 30 17 20.50% 79 19
(155%) (448) (134) (155%) (2817) (147)

and 90 jobs are comparable to those of the Lagrangian approach, the barrier method (ba) requires

less computation time than the Lagrangian approach for the instances with 120 jobs. The averages

shown in Table 3, however, do not tell the full truth about the quality of the lower bounds: For

example, the strong linear program provides better bounds than the weak linear program for 208

20



out of the 600 instances with 120 jobs. For 117 of these 208 instances, the Lagrangian approach

achieves a stronger lower bound than the weak linear program as well, with a maximum deviation

of 3%. For 187 instances, however, the Lagrangian bound is weaker than the one obtained with the

weak linear program.

The results for the ProGen/max instances of the PSPLIB are shown in Table 4, again in terms of

deviation from the critical path lower bound (Dev. CP). We compare the Lagrangian approach with

and without additional inequalities (14) to the weak LP-relaxation. The strong LP relaxation could

not be solved at all for several of these instances. Again, the table shows the average and the max-

imal CPU time required by the primal simplex method (ps) and the barrier method (ba). The table

also contains the currently best known lower bounds, which can be obtained from (PSPLIB/max

2000). These lower bounds have been computed by means of different preprocessing algorithms

(Heilmann and Schwindt 1997), and as a by-product from branch-and bound algorithms (Dorndorf

et al. 2000b; Schwindt 1998; Fest et al. 1998). Computation times are not available. All figures

are averaged over only 403 instances of the test set, since the optimal solution matches the critical

path lower bound for the remaining 656 instances. Figures in parenthesis denote the corresponding

maxima, and unless stated differently, all computation times are in seconds.

Using the primal or dual simplex algorithm, we could not solve the weak LP relaxation with

the additional inequalities (14), due to excessive computation times. The ILOG CPLEX barrier

code, however, was able to solve the weak LP relaxation with the additional inequalities (14). The

average (maximal) computation time for the 403 instances was 411 seconds (2.1 hours), and the

average (maximal) improvement over the critical path lower bound was 6.08% (62%). For 204

out of these 403 instances the Lagrangian approach provides stronger lower bounds than the weak

linear program, with a maximum deviation of 6 � 5%. Moreover, in comparison to the running times

of the Lagrangian approach, the computation times to solve the weak LP relaxation are quite large,

even with the barrier code. Finally, note that for 91 out of the 403 non-trivial instances, we could

improve upon the previously best known lower bounds with the Lagrangian approach.

Let us next analyze the dependence of the running times on the input parameters, based on the

ProGen instance set of the PSPLIB. Since our approach is based on a time-indexed formulation,

Table 4: Lagrangian, weak LP, and best known lower bounds for ProGen/max instances.

Lagr. LB + (14) Lagr. LB weak LP best known LB
#jobs #inst. Dev. CP CPU Dev. CP CPU Dev. CP CPU(ps) CPU(ba) Dev. CP

100 403 6.70% 45 6.07% 29 5.68% 1923 184 8.64%
(57%) (538) (57%) (424) (62%) (61h) (2.5h) (65%)

21



it is not surprising that the time horizon T turns out to be the dominating parameter. A large time

horizon T can be due to scarce resources, a high resource factor, and a high network complexity.

Figure 2 shows (a) how the computation time per iteration of the subgradient optimization depends

on T , and (b) how the convergence rate of the subgradient optimization varies with T . The data is

based on the 600 ProGen instances with 120 jobs. The regression curve in Figure 2 (a) corresponds

PSfrag replacements

C
PU

(s
ec

)
/i

te
r.

(a) time horizon

(b) time horizon
iterations

0.5

1.0

1.5

2.0

2.5

50 100 150 200 250 300

PSfrag replacements
CPU(sec) / iter.

(a) time horizon

(b) time horizon
it

er
at

io
ns

0.5

1.0
1.5
2.0
2.5

50

50

100

100

150

150

200

200 250 300

Figure 2: CPU per iteration and rate of convergence depending on T .

to the theoretical bound of T 2
�

T (we use the highest-label implementation of the preflow-push

algorithm). The fact that the number of iterations increases with the time horizon, as suggested

by Figure 2 (b), is not because a large time horizon necessarily leads to slow convergence. This

is mainly due to the fact that a large time horizon is correlated with scarce resources. For such

instances, the deviation between the critical path lower bound and the Lagrangian lower bound is

high (see Figure 3). In this case the subgradient optimization tends to converge slower. In fact,

we observed a correlation of all three parameters (network complexity, resource factor, resource

strength) with both the computation time per iteration and the convergence rate. However, while

the time horizon is the dominating parameter for the computation time per iteration, it is the re-

source strength that is mainly responsible for the number of required iterations in the subgradient

optimization. (Both parameters are strongly correlated.)

Figure 3 relates the quality of the Lagrangian lower bounds to the strong LP bounds, the cur-

rently best known lower bounds by Brucker and Knust (2000) and the currently best known feasible

solutions for the 600 ProGen instances with 120 jobs. The figure depicts the average deviation from

the critical path lower bound (in %), depending on the resource strength parameter, and it also con-

tains a plot for the feasible solutions we computed with the Lagrangian approach (see Sections 4

and 5.3 below).

22



PSfrag replacements

D
ev

ia
ti

on
fr

om
C

P
(i

n
%

)

0.50.40.30.20.1
0

20

40

60

80

100

resource strength

Lagrangian lower bound

LP bound (strong)

Lower bounds by Brucker and Knust (2000)

Best known upper bounds (PSPLIB 2000)

Lagrangian-based upper bound (Sect. 4)

Figure 3: Quality of lower bounds and solutions.

5.3 Lagrangian-based feasible solutions

In this section, we discuss the performance of the combined algorithm which computes both lower

bounds and feasible solutions as proposed in Section 4, in comparison to other algorithms from

the literature, based on the ProGen instances (Kolisch and Sprecher 1996). For results on the

labor-constrained instances from BASF AG, we refer to Section 5.4.

The first two columns of Table 5 display the number of jobs per instance and the number of

instances considered. The table further shows the deviation of the time horizon T from the critical

Table 5: Quality and computation times for Lagrangian-based solutions.

Time Horizon T Lagrangian UB
#jobs #inst. Dev. CP CPU #it. Dev. CP Dev. LBLR Dev.UBbest opt. best

60 360 20.8 % 6.9 53 16.3 % 7.3 % 1.0 % 193 228
(130 %) (57) (195) (116 %) (36 %) (9.0 %)

90 360 19.6 % 16.2 49 15.6 % 6.4 % 1.0 % 215 234
(120 %) (119) (189) (110 %) (36 %) (8.1 %)

120 600 42.1 % 72.9 95 36.0 % 11.6 % 2.4 % 156 182
(226 %) (654) (222) (217 %) (42 %) (9.5 %)

path lower bound (Dev. CP). Here, T has been computed using the parallel list scheduling algo-

rithm with ten different standard priority rules. The next columns display the average computation

times per instance in seconds (CPU), and the corresponding average number of iterations in the

subgradient optimization (#it). Next, we list the deviations of the solutions from two different lower

23



bounds, the critical path lower bound (Dev. CP) and the Lagrangian lower bound (Dev. LBLR). In

addition, the deviation from the currently best known solutions (Dev.UBbest) is shown. The latter

are maintained at the library PSPLIB (2000) and have been obtained by various authors over the

years, using different, partly time-intensive algorithms including branch-and-bound and several lo-

cal search algorithms. Finally, we display the number of instances that have been solved optimally

with our procedure by computing matching lower and upper bounds (opt.) as well as the number

of instances where a solution was found which matches the currently best known solution (best).

We did not improve upon the currently best known solutions. Numbers in parenthesis denote the

corresponding maxima.

In order to relate these figures to other algorithms, Table 6 shows the average deviations from

the critical path lower bound for a collection of recent algorithms from the literature. The figures

Table 6: Comparison of a collection of different algorithms from the literature.

Algorithm Type Reference Av. dev. from crit. path (in %)

genetic algorithm Hartmann (2002) 35.4
tabu search Nonobe and Ibaraki (2001) 35.9
Lagrangian heuristic this paper 36.0
ant colony optimization Merkle et al. (2000) 36.6
genetic algorithm Hartmann (1998) 36.7
constraint propagation Dorndorf et al. (2000a) 37.1
simulated annealing Bouleimen and Lecocq (2002) 37.7
sampling Kolisch (1996) 38.7

are based on 600 ProGen instances with 120 jobs, and have been taken from the survey paper

by Kolisch and Hartmann (1999) as well as from the papers of Merkle et al. (2000), Dorndorf

et al. (2000a), Hartmann (2002), and Nonobe and Ibaraki (2001). The local search algorithms by

Hartmann (1998, 2002), Merkle et al. (2000), Bouleimen and Lecocq (2002), and the sampling

heuristic by Kolisch (1996) ran for 5000 iterations each. Computation times are available for

the algorithm of Hartmann (2002), which requires 14.1 seconds on average (coded in ANSI C,

tested on a Pentium PC at 133MHz under Linux), and for the algorithm of Merkle et al. (2000),

which requires 25 seconds on average (tested on a Pentium III with 500MHz). The tabu search

algorithm by Nonobe and Ibaraki (2001) ran for 5000 iterations as well, resulting in an average

(maximal) computation time of 110 (576) seconds (coded in C, tested on a Sun Ultra 2 with 300

MHz). The constraint propagation based branch-and-bound algorithm of Dorndorf, Pesch, and

Phan Huy (2000a) had an average (maximal) computation time of 205 (300) seconds (coded in

C++ using ILOG Solver, tested on a Pentium Pro/200 under Windows NT 4.0). The average

24



number of schedules generated within the Lagrangian approach was 4750, at an average (maximal)

computation time of 72.9 (654) seconds per instance. Of course, these figures are not directly

comparable. Yet, they show that the computational investment is at least roughly of the same order

of magnitude for the algorithms mentioned above.

The comparison shows that the Lagrangian based approach is competitive with state-of-the-

art algorithms. In particular, the solutions of the Lagrangian relaxation seem to contain valuable

information to construct good feasible schedules. We note that the respective local search algo-

rithms shown in Table 6 are capable of computing better solutions if more iterations are allowed,

see, e.g., Merkle et al. (2000) and Valls, Ballestı́n, and Quintanilla (2001) for benchmark results.

However, the results obtained with the Lagrangian approach can be improved by straightforward

local improvement heuristics. A rudimentary test of such a local improvement heuristic resulted in

an average deviation of 35.3% from the critical path lower bound, at an average (maximal) com-

putation time of 88 (678) seconds. More importantly, we like to point out that the Lagrangian

approach—in contrast to the local search algorithms—provides both lower and upper bounds at

the same time, which leads to improved performance bounds. This can be seen by comparing the

deviations from the Lagrangian lower bound (Dev. LBLR) to the deviations from the critical path

lower bound (Dev. CP) in Table 5.

5.4 Results for labor-constrained instances

Let us finally report on the experiments with the BASF-type instances described in Heipcke et al.

(2000). For these instances, previous work includes linear programming relaxations and corre-

sponding ordering-based heuristics by Cavalcante et al. (2001b), a tabu search algorithm by Cav-

alcante and de Souza (1997), an extended implementation of which has been recently studied by

Cavalcante et al. (2001a), as well as a constraint propagation based branch-and-bound algorithm

by Heipcke (1999). Heipcke et al. (2000) give a brief overview and comparison of results up to

the year 2000. Due to space limitations, we only report on a sample of six of the 25 instances of

Heipcke et al. (2000). Our results on the remaining instances are reported in Uetz (2001).

Table 7 compares the weak linear programming relaxation (2), (4), (6), (8), and (9) to results

obtained with the Lagrangian approach. Note that the computation times for solving the strong lin-

ear programming relaxation (2), (3), (4), (8), and (9) are prohibitively high for the larger of these

benchmark instances, for both primal and dual simplex and the barrier code of ILOG CPLEX.

Hence, we only considered the weak formulation. Moreover, we did not consider the additional

valid inequalities (14), since they did not lead to better results. The number of iterations of the

subgradient optimization procedure was limited to values between 100 and 300. In Table 7, the

25



Table 7: Comparison of linear programming and Lagrangian lower bounds.

weak LP Lagrangian LB
Instance #jobs #tasks CP LB CPU(ps) CPU(ba) LB CPU #it. T

4o 21j A 21 126 78 80 � 1 � 1 80 � 1 100 82
6o 41j A 41 295 90 103 5 4 102 4 121 141
8o 63j A 63 504 174 186 42 18 184 20 148 261
10o 84j A 84 953 270 379 353 103 378 482 233 636
10o 102j A 102 1679 550 622 5067 557 616 1447 212 1166
10o 106j A 106 1653 383 600 4526 709 599 1714 245 1094

columns #jobs and #tasks show the number of jobs and tasks of an instance, respectively. (Re-

member that each job consists of consecutive tasks, resulting in a piecewise constant requirement

of resources.) CP is the length of a longest (critical) path in the project network, and the next

columns show the respective lower bound values obtained with the weak linear program (2), (4),

(6), (8), and (9) and the Lagrangian relaxation. The corresponding computation times are again

in seconds. We display the computation times with the primal simplex (ps) as well as the bar-

rier solver (ba); for the Lagrangian approach, the table also shows the number of iterations. The

last column (column T ) contains the time horizons which have been used for these experiments;

they have been taken from Cavalcante et al. (2001b). The results suggests that, using Lagrangian

relaxation, one can obtain essentially the same lower bounds as with the weak linear program-

ming relaxation. In comparison to the primal simplex algorithm, the computation times with the

Lagrangian approach are significantly smaller. Yet, the barrier solver of ILOG CPLEX performs

even better on these instances.

In Table 8, we compare the quality of the feasible solutions that we obtained with the

Lagrangian-based heuristic to the results with the Tabu Search algorithm (Tabu S.) of Cavalcante

et al. (2001a), the linear programming based heuristics (LP-Heur.) of Cavalcante et al. (2001b),

and the constraint propagation approach (Const. Pr.) by Heipcke (1999). For the algorithms from

the literature, the table shows the makespan of the best solutions found after several computational

experiments. For the Lagrangian approach, we display both first and best found solutions for the

better of two experiments (with fixed parameter setting): one with the original instance, and one

with an equivalent instance where all temporal restrictions have been reversed. This sometimes

leads to better results and has also been exploited in the computational experiments of all papers

mentioned above. The last column (column T ) again shows the time horizon that has been used.

Notice that in this case the time horizon has been obtained by parallel list scheduling using ten

standard priority rules, hence the time horizons are larger in comparison to those given in Table 7.

26



Table 8: Comparison of the Lagrangian-based heuristic to algorithms from the literature.

Tabu S. LP-Heur. Const. Pr. Lagrangian Heuristic
Instance UBbest UBbest UBbest UB f irst CPU UBbest CPU T

4o 21j A 82 82 82 82 � 1 82 � 1 82
6o 41j A 140 145 152 151 � 1 145 5 150
8o 63j A 259 273 281 283 1 276 34 287
10o 84j A 634 – 730 731 3 699 668 715
10o 102j A 1155 – 1239 1228

�

13 1206
�

2124 1233
10o 106j A 1087 – 1166 1143

�

11 1122
�

2203 1146
�

The solution has been obtained using an equivalent ‘reversed instance’.

The computation times for the algorithms from the literature are not directly comparable, and

thus not shown in Table 8. The computation times are moderate for all of the algorithms for small

instance sizes (less than 40 jobs). The tabu search algorithm by Cavalcante et al. (2001a) requires

up to 2,000 seconds for the medium sized instances (40-80 jobs), and between 2,000 and 14,000

seconds for large sized instances (more than 80 jobs), on a Sun Sparc 1000. The LP-based ordering

heuristics by Cavalcante et al. (2001b) require between 43 and 3,575 seconds for the medium sized

instances (between 40 and 80 jobs), on a Pentium II with 200 MHz. Results for the large sized

instances (more than 80 jobs) are not given by Cavalcante et al. (2001b), due to excessive compu-

tation times to solve the corresponding LP-relaxations. The computations by Heipcke (1999) have

been conducted on a Sun Ultra 2 with 248 MHz. Her branch-and-bound algorithm has been aborted

on reaching 200,000 nodes in the enumeration tree, resulting in computation times between 118

and 985 seconds for medium sized instances (40 to 80 jobs), and between 325 and 1,350 seconds

for the larger instances (more than 80 jobs).

Table 8 suggests that the Lagrangian-based heuristic is also capable of finding reasonable good

solutions for these notoriously hard instances, in reasonable time. The solutions obtained by list

scheduling with standard priority rules (shown in column T ) can be substantially improved in most

of the cases. For 16 out of the 25 instances from the test set described by Heipcke et al. (2000),

our solutions improve upon those obtained with constraint propagation by Heipcke (1999). The

tabu search algorithms by Cavalcante et al. (2001a) obviously yield the currently best known

solutions for these instances. However, these results are obtained at the expense of relatively large

computation times.

27



6 Conclusions

We have presented a Lagrangian-based approach to compute both lower bounds and feasible so-

lutions for resource-constrained project scheduling problems. Although the ingredients of our ap-

proach are classic, they are spiced with some ideas which—we believe—make it attractive. First,

there is the insight that scheduling problems with start-time dependent costs can be solved fast by

minimum cut computations, which eventually allows one to attack large-scale problem instances of

practical relevance. Second, we have demonstrated that the solution of the Lagrangian relaxation,

combined with the concept of α-completion times, gives rise to good schedules. The computa-

tional results show that our approach offers a fair tradeoff between the quality of the lower bounds

and feasible solutions on the one hand and the necessary computational effort on the other hand.

The approach could benefit further from a faster method to solve the sequence of minimum cut

problems. (We currently solve each minimum cut problem from scratch.) This method should

allow an efficient ‘warm start’ to re-compute a minimum cut after the arc capacities have changed.

Acknowledgments. This work was done while the last two authors were with the Technis-

che Universität Berlin; they received support from the Deutsche Forschungsgemeinschaft (DFG),

grant Mo 446/3-3, and from the Bundesministerium für Bildung und Forschung (bmb+f), grant

03-MO7TU1-3, as well as the German-Israeli Foundation for Scientific Research and Develop-

ment (GIF), grant I 246-304.02/97, respectively. The authors are grateful to Carola Schaad and

Lars Stolletz for their help with implementing and testing various parts of the algorithms, and to

Matthias Müller-Hannemann for helpful discussions on maximum flow codes.

References

Balinski, M. (1970). On a selection problem. Management Science 17, 230–231.

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics 16, 87–90.

Bertsekas, D. P. (1999). Nonlinear Programming (2nd ed.). Belmont (MA): Athena Scientific.

Blazewicz, J., J. K. Lenstra, and A. H. G. Rinnooy Kan (1983). Scheduling subject to resource con-

straints: Classification and complexity. Discrete Applied Mathematics 5, 11–24.

Bouleimen, K. and H. Lecocq (2002). A new efficient simulated annealing algorithm for the resource

constrained project scheduling problem. European Journal of Operational Research. To appear.

Brucker, P., A. Drexl, R. H. Möhring, K. Neumann, and E. Pesch (1999). Resource-constrained project

scheduling: Notation, classification, models, and methods. European Journal of Operational Re-

search 112, 3–41.

28



Brucker, P. and S. Knust (2000). A linear programming and constraint propagation-based lower bound

for the RCPSP. European Journal of Operational Research 127, 355–362.

Camerini, P. M., L. Fratta, and F. Maffioli (1975). On improving relaxation methods by modified gradient

techniques. Mathematical Programming Studies 3, 26–34.

Cavalcante, C. B. C., V. C. Cavalcante, C. C. Ribeiro, and C. C. de Souza (2001a). Parallel cooperative

approaches for the labor constrained scheduling problem. In C. C. Ribeiro and P. Hansen (Eds.),

Essays and Surveys in Metaheuristics, Chapter 10, pp. 201–226. Dordrecht: Kluwer.

Cavalcante, C. C. B. and C. C. de Souza (1997). A tabu search approach for scheduling problems un-

der labour constraints. Technical Report IC-97-13, Instituto de Computação, UNICAMP, Campinas,

Brazil.

Cavalcante, C. C. B., C. C. de Souza, M. W. P. Savelsbergh, Y. Wang, and L. A. Wolsey (2001b). Schedul-

ing projects with labor constraints. Discrete Applied Mathematics 112, 27–52.

Chang, G. and J. Edmonds (1985). The poset scheduling problem. Order 2, 113–118.

Chaudhuri, S., R. A. Walker, and J. E. Mitchell (1994). Analyzing and exploiting the structure of the

constraints in the ILP approach to the scheduling problem. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 2, 456–471.

Chekuri, C., R. Motwani, B. Natarajan, and C. Stein (2001). Approximation techniques for average

completion time scheduling. SIAM Journal on Computing 31, 146–166.

Cherkassky, B. V. and A. V. Goldberg (1997). On implementing the push-relabel method for the maxi-

mum flow problem. Algorithmica 19, 390–410.

Christofides, N., R. Alvarez-Valdés, and J. M. Tamarit (1987). Project scheduling with resource con-

straints: A branch and bound approach. European Journal of Operational Research 29, 262–273.

Demassey, S., C. Artigues, and P. Michelon (2001a). Comparing lower bounds for the RCPSP under

a hybrid constraint-linear programming approach,. In Proceedings of the Workshop on Cooperative

Solvers in Constraint Programming, Paphos (Cyprus), pp. 109–123.

Demassey, S., C. Artigues, and P. Michelon (2001b). Constraint propagation based cutting planes: An ap-

plication to the resource-constrained project scheduling problem. Technical Report 237, Laboratoire

d’Informatique d’Avignon, Avignon, France.

Dorndorf, U., E. Pesch, and T. Phan Huy (2000a). A branch-and-bound algorithm for the resource-

constrained project scheduling problem. Mathematical Methods of Operations Research 52, 413–

439.

Dorndorf, U., E. Pesch, and T. Phan Huy (2000b). A time-oriented branch-and-bound algorithm for

resource-constrained project scheduling with generalized precedence constraints. Management Sci-

ence 46, 1365–1384.

Drexl, A. and A. Kimms (2001). Optimization guided lower and upper bounds for the Resource Invest-

ment Problem. Journal of the Operational Research Society 52, 340–351.

29



Everett III, H. (1963). Generalized Lagrange multiplier method for solving problems of optimum alloca-

tion of resources. Operations Research 11, 399–417.

Feige, U. and J. Kilian (1998). Zero-knowledge and the chromatic number. Journal of Computer and

System Sciences 57, 187–199.

Fest, A., R. H. Möhring, F. Stork, and M. Uetz (1998). Resource constrained project scheduling with time

windows: A branching scheme based on dynamic release dates. Technical Report 596/1998 (revised

1999), Institut für Mathematik, Technische Universität Berlin, Berlin, Germany. Submitted.

Goemans, M. X., M. Queyranne, A. S. Schulz, M. Skutella, and Y. Wang (2002). Single machine schedul-

ing with release dates. SIAM Journal on Discrete Mathematics 15, 165–192.

Goldberg, A. and S. Rao (1998). Beyond the flow decomposition barrier. Journal of the Association for

Computing Machinery 45, 783–797.

Goldberg, A. V. and R. E. Tarjan (1988). A new approach to the maximum-flow problem. Journal of the

Association for Computing Machinery 35, 921–940.

Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45,

1563–1581.

Grinold, R. C. (1972). The payment scheduling problem. Naval Research Logistics Quarterly 19, 123–

136.

Gröflin, H., T. M. Liebling, and A. Prodon (1982). Optimal subtrees and extensions. Annals of Discrete

Mathematics 16, 121–127.

Hall, L. A., A. S. Schulz, D. B. Shmoys, and J. Wein (1997). Scheduling to minimize average completion

time: Off-line and on-line approximation algorithms. Mathematics of Operations Research 22, 513–

544.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling. Naval

Research Logistics 45, 733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource constraints.

Naval Research Logistics 49, 433–448.

Heilmann, R. and C. Schwindt (1997). Lower bounds for RCPSP/max. Technical Report 511, WIOR,

Universität Karlsruhe, Karlsruhe, Germany.

Heipcke, S. (1999). Combined Modelling and Problem Solving in Mathematical Programming and Con-

straint Programming. Ph. D. thesis, School of Business, University of Buckingham, U.K.

Heipcke, S., Y. Colombani, C. C. B. Cavalcante, and C. C. de Souza (2000). Scheduling under labour

resource constraints. Constraints 5, 415–422.

Kallrath, J. and J. M. Wilson (1997). Business Optimisation using Mathematical Programming. London:

Macmillan Business.

30



Kimms, A. (2001). Maximizing the net present value of a project under resource constraints using a

lagrangian relaxation based heuristic with tight upper bounds. Annals of Operations Research 102,

221–236.

Klein, R. and A. Scholl (1999). Computing lower bounds by destructive improvement: An application to

resource-constrained project scheduling. European Journal of Operational Research 112, 322–346.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods revisited: Theory

and computation. European Journal of Operational Research 90, 320–333.

Kolisch, R. and S. Hartmann (1999). Heuristic algorithms for the resource-constrained project scheduling

problem: Classification and computational analysis. In J. Wȩglarz (Ed.), Project Scheduling: Recent

Models, Algorithms and Applications, Chapter 7, pp. 147–178. Dordrecht: Kluwer.

Kolisch, R., C. Schwindt, and A. Sprecher (1999). Benchmark instances for project scheduling problems.

In J. Wȩglarz (Ed.), Project Scheduling: Recent Models, Algorithms and Applications, Chapter 9, pp.

197–212. Dordrecht: Kluwer.

Kolisch, R. and A. Sprecher (1996). PSPLIB - A project scheduling problem library. European Journal

of Operational Research 96, 205–216.

Merkle, D., M. Middendorf, and H. Schmeck (2000). Ant colony optimization for resource-constrained

project scheduling. In Proceedings of the Genetic and Evolutionary Computation Conference, Las

Vegas, Nevada, pp. 893–900.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, and L. Bianco (1998). An exact algorithm for the multiple

resource-constained project scheduling problem based on a new mathematical formulation. Manage-

ment Science 44, 714–729.

Möhring, R. H. (1984). Minimizing costs of resource requirements subject to a fixed completion time in

project networks. Operations Research 32, 89–120.

Möhring, R. H., A. S. Schulz, F. Stork, and M. Uetz (1999). Resource-constrained project scheduling:

Computing lower bounds by solving minimum cut problems. In J. Nešetřil (Ed.), Proceedings of the

7th Annual European Symposium on Algorithms, Prague, Czech Republic, Volume 1643 of Lecture

Notes in Computer Science, pp. 139–150. Berlin: Springer.

Möhring, R. H., A. S. Schulz, F. Stork, and M. Uetz (2001). On project scheduling with irregular starting

time costs. Operations Research Letters 28, 149–154.

Munier, A., M. Queyranne, and A. S. Schulz (2002). Approximation bounds for a general class of prece-

dence constrained parallel machine scheduling problems. SIAM Journal on Computing. To appear.

Nonobe, K. and T. Ibaraki (2001). Formulation and tabu search algorithm for the resource constrained

project scheduling problem. In C. C. Ribeiro and P. Hansen (Eds.), Essays and Surveys in Meta-

heuristics, Chapter 25, pp. 557–588. Dordrecht: Kluwer.

Phillips, C. A., C. Stein, and J. Wein (1998). Minimizing average completion time in the presence of

release dates. Mathematical Programming 82, 199–223.

31



Pritsker, A. A. B., L. J. Watters, and P. M. Wolfe (1969). Multi project scheduling with limited resources:

A zero-one programming approach. Management Science 16, 93–108.

PSPLIB (2000). ftp://ftp.bwl.uni-kiel.de/pub/operations-research/psplib/

HTML/.

PSPLIB/max (2000). http://www.wior.uni-karlsruhe.de/RCPSPmax/progenmax/.

Rhys, J. M. W. (1970). A selection problem of shared fixed costs and network flows. Management Sci-

ence 17, 200–207.

Roundy, R. O., W. L. Maxwell, Y. T. Herer, S. R. Tayur, and A. W. Getzler (1991). A price-directed

approach to real-time scheduling of product operations. IIE Transactions 23, 149–160.

Sankaran, J. K., D. L. Bricker, and S.-H. Juang (1999). A strong fractional cutting-plane algorithm for

resource-constrained project scheduling. International Journal of Industrial Engineering 6, 99–111.

Savelsbergh, M. W. P., R. N. Uma, and J. Wein (1998). An experimental study of LP-based approximation

algorithms for scheduling problems. In Proceedings of the Ninth Annual ACM-SIAM Symposium on

Discrete Algorithms, San Francisco (CA), pp. 453–462.

Schäffter, M. (1997). Scheduling with respect to forbidden sets. Discrete Applied Mathematics 72, 141–

154.

Schwindt, C. (1996). Generation of resource constrained project scheduling problems with minimal and

maximal time lags. Technical Report 489, WIOR, Universität Karlsruhe, Karlsruhe, Germany.

Schwindt, C. (1998). A branch-and-bound algorithm for the resource-constrained project duration prob-

lem subject to temporal constraints. Technical Report 544, WIOR, Universität Karlsruhe, Karlsruhe,

Germany.

Selle, T. (1999). Lower bounds for project scheduling problems with renewable and cumulative resources.

Technical Report 573, WIOR, Universität Karlsruhe, Karlsruhe, Germany.

Uetz, M. (2001). Algorithms for Deterministic and Stochastic Scheduling. Ph. D. thesis, Fakultät II –

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany. Published: Cuvillier Verlag,

Göttingen, Germany.

Valls, V., F. Ballestı́n, and S. Quintanilla (2001). A population-based approach to the resource-constrained

project scheduling problem. Technical Report 10-2001, Departamento de Estadı́stica e Investigación

Operativa, Universitat de València, Spain.

Wȩglarz, J. (Ed.) (1999). Project Scheduling: Recent Models, Algorithms, and Applications. Dordrecht:

Kluwer.

32


