

Real demonstration results of BEM performance simulation using BIM-SPEED Toolset

Deliverable 4.2 – Energy Performance Report – Massy demo

Deliverable Report: Final version, issue date on XXXXX

BIM-SPEED

Harmonised Building Information Speedway for Energy-Efficient Renovation

This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Disclaimer

The contents of this report reflect only the author's view and the Agency and the Commission are not responsible for any use that may be made of the information it contains.

ENERGY REPORT - MASSY

Deliverable 4.2 – Energy Performance Report

Issue Date31st October 2022Produced byRINA, TUBVersion:V 01DisseminationPublic

Colophon

Copyright © 2019 by BIM-SPEED consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the BIM-SPEED Consortium nor any of its members, their officers, employees or agents shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you notice information in this publication that you believe should be corrected or updated, please get in contact with the project coordinator.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted without the author's agreement. This research project has received funding from the European Union's Programme H2020-NMBP-EEB-2018 under Grant Agreement no 820553.

Contents

TAE	TABLE OF FIGURES4				
TAE	TABLE OF TABLES 5				
TAE	TABLE OF FIGURES				
TAE	TABLE OF TABLES				
1.	1. GENERAL INFORMATION				
	1.1	Building description	6		
	1.2	GIS and environmental data	8		
2.	ENERG	Y MODELLING	10		
	2.1	BIM-to-BEM procedure and software tools used	10		
	2.2	Auditing procedures and data collection	10		
	2.3	Description of BEM's technical features	10		
		2.3.1 Envelope components and materials	13		
		2.3.2 HVAC systems	19		
		2.3.3 Occupancy, lighting and equipment patterns	19		
3.	B. BEM CALIBRATION				
4.	BUILDING ENERGY PERFORMANCE SIMULATION RESULTS				
	4.1	General considerations	21		
	4.2	Energy KPIs	21		
5.	BUILDI	NG RENOVATION SCENARIOS	22		
	5.1	Renovation scenarios proposed	22		
	5.2	Optimisation set-up: planning variants considered	23		
	5.3	Ranges of optimal solutions	24		
	5.4	Scenarios 1: description and results	25		
	5.5	Scenarios 2: description and results	26		
6.	TIME REDUCTION EVALUATION 28				

page 3 - 28

Table of Figures

Figure 1: Aerial view of the urban context and building location	7
Figure 2: External view of the building	7
Figure 3: Used weather data in the BEM model	8
Figure 4: Massy demo - DesignBuilder	
Figure 5: Massy demo basement- DesignBuilder	
Figure 6: Massy demo ground floor - DesignBuilder	
Figure 7: Massy demo 1 st floor - DesignBuilder	
Figure 8: Massy demo other floors - DesignBuilder	
Figure 9: 3D graphical representation of the Massy BEM	
Figure 10: Ventilation and the galvanized ducts	19
Figure 11: Daily occupancy schedule	
Figure 12: Daily lighting schedule	
Figure 13: Daily heating schedule	20
Figure 14: Breakdown of losses	
Figure 15: Pareto-graph of simulates renovation scenarios	
Figure 16: Energy related KPIs from the optimization report	25
Figure 17: Energy related KPIs from the optimization report	

page 4 - 28

Table of tables

Table 1: Summary of general data	
Table 2: Summary of general environmental data	9
Table 3: Materials	13
Table 4: Construction systems	14
Table 5: BS.OPED Operational Primary Energy Demand	21
Table 5: Table 6: BS.TED Total Energy Demand	22
Table 7: BS.TEC Total Energy Consumption	22
Table 8: Base BEM simulation results	22
Table 9: Primary factors	23
Table 10: Optimisation setting – Intervention, ranges of variation and number of options	23
Table 11: Renovation setup for the energy-optimal scenario 1 (ID 2519)	25
Table 12: BS.OPED Operational Primary Energy Demand	25
Table 13: BS.TED Total Energy Demand	26
Table 14: BS.TEC Total Energy Consumption	26
Table 15: BS.TES Total Energy Savings	26
Table 16: Renovation setup for the energy-optimal scenario 1 (ID 744)	26
Table 17: BS.OPED Operational Primary Energy Demand	27
Table 18: BS.TED Total Energy Demand	27
Table 19: BS.TEC Total Energy Consumption	27
Table 20: Table 20: BS.TES Total Energy Savings	27

1. General information

1.1 Building description

Massy democase is a residential building located in *avenue de la rèpublique* 91300, Massy, France. Most of the building belongs to a private social housing company 3F and built in 1965. The company does not own the whole building: stairwells 11 and 13 are owned by the lessor RLF.

It consists of 10 floors, a ground floor and a basement with a total of 101 housings. At the beginning of 80s a few renovation works were done on the building. Then in the 90s, halls are restructured and finally in 2017 an important renovation was launched by company 3F, which produced the BIM model of the building.

The building is characterized by a reinforced concrete structure, insulated walls (6cm of polystyrene) and double glazing. Heating and dwelling hot water are provided by a heating network that distribute energy to this building and other surrounding buildings.

The building features are summarized below:

- the facades have thin exterior insulation(6cm)
- windows frames are in PVC of old generation but in good conditions with metal shutters on the ground floor and 1st floor
- the electrical system of the flats was renovated in the 80s.
- the building's energy label is D based on the EPDs.
- mechanical ventilation is provided (self-adjusting ventilation)
- lack of insulation on the floors
- underperforming insulation on the walls
- underperforming windows
- deterioration of the waterproofing on the terrace
- absence of airlock at R+10

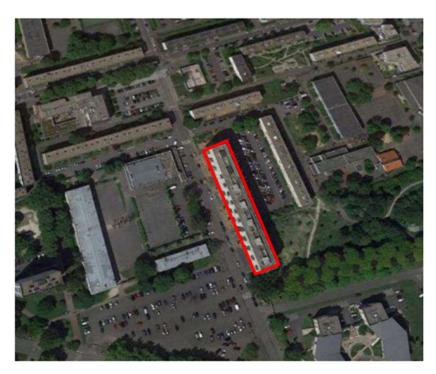


Figure 1: Aerial view of the urban context and building location

Figure 2: External view of the building

General information		
Location	Massy (France)	
Use category	Residential	
Building type	Single building for social housing	
Construction year	1965	
Renovation year	2017	
Number of floors	Basement+ground floor+10	
Number of apartments/units	101	

Table 1: Summary of general data

1.2 GIS and environmental data

Massy is not included in the available weather file list of DesignBuilder. Therefore, the weather data obtained from Paris Orly Airport for 2019 is used. Used weather station is close to the building and given information below shows the properties of the weather station.

Altitude: 89

Latitude: 48.7168

Longitude: 2.3843

Stationindex:79

Below graph is obtained via DesignBuilder software.

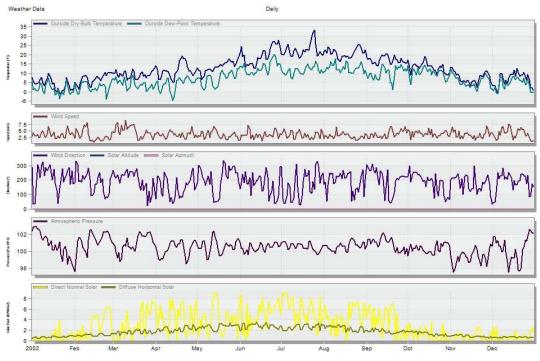


Figure 3: Used weather data in the BEM model

Temperature of the soil in the table below is the mean value of measured temperature of the ground at 100cm depth for each hour in a year.

General information		
Location	Massy (France)	
Weather file	2019.epw	
Altitude [m]	88	
Latitude [degrees]	48°44′2.89″ N	
Longitude [degrees]	2°17′44.11″E	
Undistributed temp. of the soil [°C]	11.88	
Network water temperature [°C]	-	

Table 2: Summary of general	environmental data
-----------------------------	--------------------

2. Energy modelling

2.1 BIM-to-BEM procedure and software tools used

To obtain the baseline BEM model DesignBuilder software is used and the building is modeled from scratch by implementing necessary zones and surfaces. After that, by using tools and algorithms developed by the company Metabuild, different renovation scenarios are created automatically.

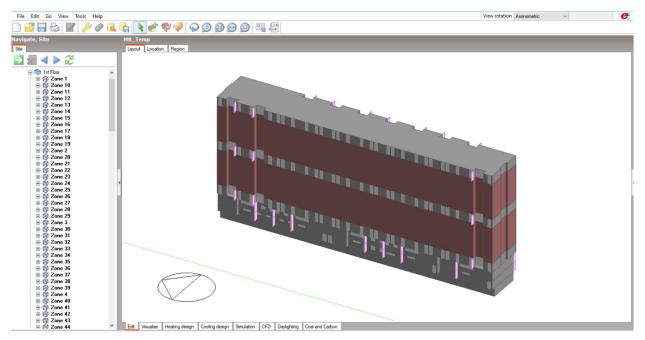
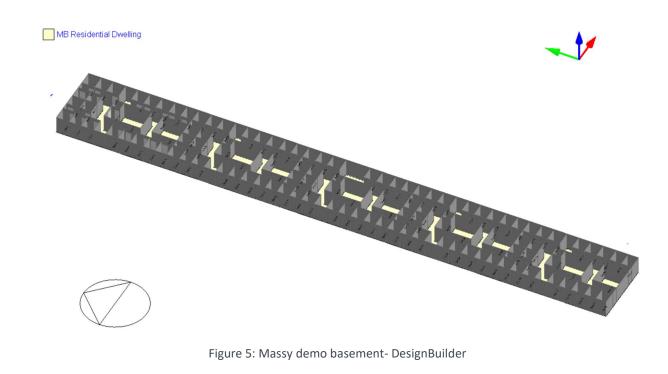


Figure 4: Massy demo - DesignBuilder

2.2 Auditing procedures and data collection


Specific data have been collected both to develop a complete BIM model and suitable BEM. Site surveys on the demo have been carried out by ALTEREA and specific documents have been investigated to retrieve all the required data to characterise the thermal behaviour of the building.

There was not any heating/DHW network audit report available, but since the networks were all original (56 years old), corrosion and risk of breakage have been supposed to be the main problems. Sampling and metallographic analysis of the networks were carried out by ALTEREA.

2.3 Description of BEM's technical features

Massy BEM consists of basement, ground floor and 10 floors. Since the floors other 1st floor have similar configurations, they are created by zone multiplier method which decreases the demand of GPU power for the simulation to be conducted. To reflect the impact of shading for the energy calculations, component blocks are defined whenever an element is not used to separate zones but rather exists due to the architectural concerns.

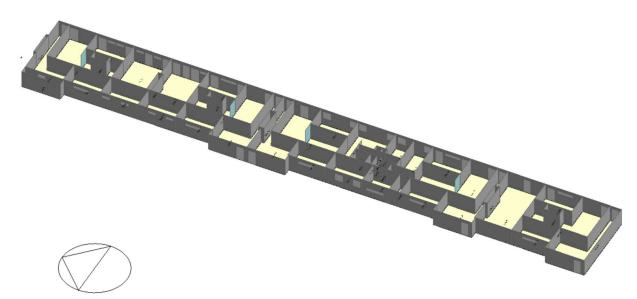
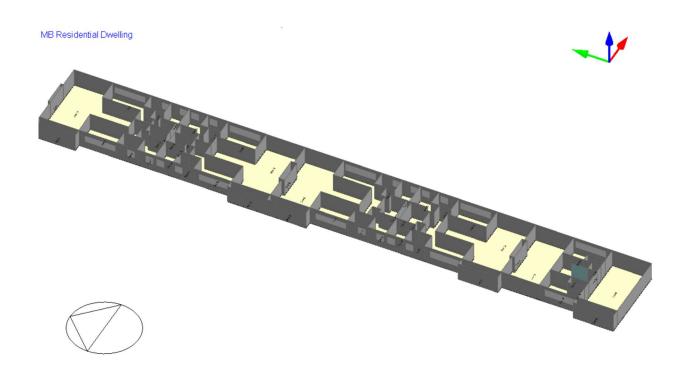
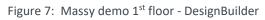




Figure 6: Massy demo ground floor - DesignBuilder

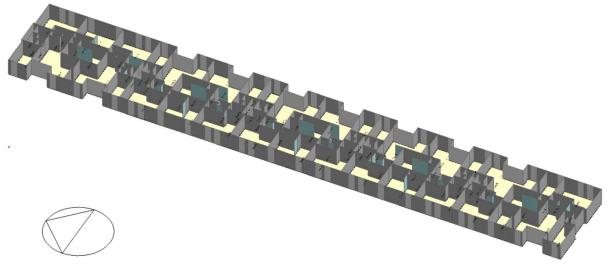


Figure 8: Massy demo other floors - DesignBuilder

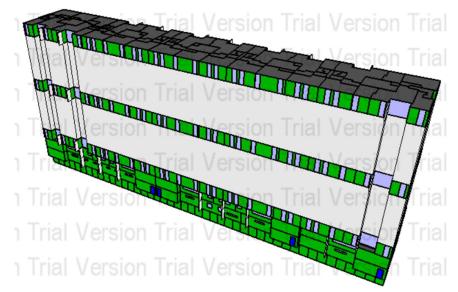


Figure 9: 3D graphical representation of the Massy BEM

2.3.1 Envelope components and materials

The construction systems were created within the Massy BEM to characterise the thermal behaviour of the building. Table 4 summarises all the materials implemented within the BEM.

Material	ρ	λ	RT	Ср
Rock wool	25	0.04	2.5	1450
Brick exterior	775	0.4	0.2965	840
Concrete	2400	2.5	0.072	1000
Gypsum	1200	0.43	0.15	1000
Reinforced concrete	2300	2.3	0.15	1000
PUR foam	35	0.026	0.15	1590
Plaster	1000	0.4	0.15	1000
Mineral fibre/wool	140	0.038	0.15	840
Concrete tiles	2100	1.5	0.15	1000

Table 3: Materials

Used abbreviations

 ρ Density kg/m^3

 λ Thermal conductivity W/(m*K) RT Thermal resistance (m^2*K/W)

Cp Specific heat (J/kg*K)

Within Table 4 all the construction systems created for the Massy BEM using the DesignBuilder.

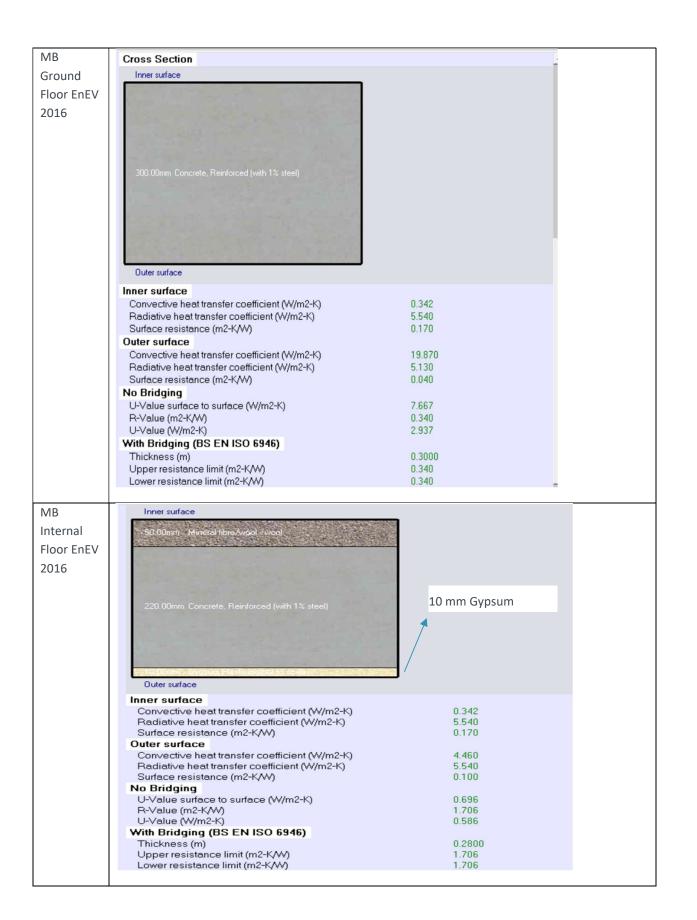
page 13 - 28

	Table 4: Construction systems		
Exterior	Cross Section		
wall Massy	Inner surface		
280 brick	180.00mm Brick Massy balcony exterior 100.00mm Prock weel Massy Outer surface		
	Inner surface		
	Convective heat transfer coefficient (W/m2-K)	3.075	
	Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W)	4.617 0.130	
	Outer surface		
	Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	19.870 5.130	
	Surface resistance (m2-K/W)	0.040	
	No Bridging U-Value surface to surface (W/m2-K)	0.400	
	R-Value (m2-K/W)	2.670	
	U-Value (W/m2-K) With Bridging (BS EN ISO 6946)	0.375	
	Thickness (m)	0.2800	
	Upper resistance limit (m2-K/W) Lower resistance limit (m2-K/W)	2.670 2.670	
		2.070	
Exterior	Inner surface		
wall Massy 180			
	180.00mm Brick Massy balcony exterior Outer surface		
	Outer surface	3.075	
	Outer surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	3.075 4.617	
	Outer surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W)		
	Outer surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	4.617	
	Duter surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Badiative heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	4.617 0.130 3.075 4.617	
	Outer surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Surface resistance (m2-K/W) Surface resistance (m2-K/W)	4.617 0.130 3.075	
	Outer surface Duter surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) No Bridging U-Value surface to surface (W/m2-K)	4.617 0.130 3.075 4.617 0.130 10000.000	
	Duter surface Duter surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface U-value surface to surface (W/m2-K) R-Value (m2-K/W)	4.617 0.130 3.075 4.617 0.130 10000.000 0.260	
	Outer surface Duter surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) No Bridging U-Value surface to surface (W/m2-K)	4.617 0.130 3.075 4.617 0.130 10000.000	
	Duter surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface to surface (W/m2-K) Surface resistance (m2-K/W) V-Value surface to surface (W/m2-K) R-Value (m2-K/M) U-Value (W/m2-K) With Bridging (BS EN ISO 6946) Thickness (m)	4.617 0.130 3.075 4.617 0.130 10000.000 0.260 3.845 0.1800	
	Outer surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface to surface (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Building U-Value surface to surface (W/m2-K) R-Value (m2-K/M) U-Value (W/m2-K) With Bridging (BS EN ISO 6946)	4.617 0.130 3.075 4.617 0.130 10000.000 0.260 3.845	

Table 4: Construction systems

page 14 - 28

Interior			
wall Massy	lunes surfaces		
brick 150	Inner surface	. .	
	and the second		
	and the second		
		A	
		10 0	
	130.00mm Brick Massy	10 mm Gypsum	
	100.00mm Direk messy		
	CARDINAL CONTRACTOR AND		
	10 from Superior Macental 1 Plate tot		
	Outer surface		
	Inner surface	2.152	
	Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	5.540	
	Surface resistance (m2-K/W)	0.130	
	Outer surface		
	Convective heat transfer coefficient (W/m2-K)	2.152	
	Radiative heat transfer coefficient (W/m2-K)	5.540	
	Surface resistance (m2-K/W)	0.130	
	No Bridging	5 000	
	U-Value surface to surface (W/m2-K)	5.089 0.457	
	R-Value (m2-K/W) U-Value (W/m2-K)	2.191	
	With Bridging (BS EN ISO 6946)	2.101	
	Thickness (m)	0.1500	
	Upper resistance limit (m2-K/W)	0.457	
	Lower resistance limit (m2-K/W)	0.457	
Interior	Outer surface		
wall Massy	10.00mm - Gypsum MassyALT Plaire Int		
brick 120	the second se		
	A REAL PROPERTY AND A REAL		
		10 mm Cunsum	
	100.00mm Brick Massy	10 mm Gypsum	
		1	
	Inner surface		
		2.152	
	Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	2.152 5.540	
	Inter surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface	2.152 5.540 0.130	
	Ittuting Discontiscovial (March) Inner surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K)	2.152 5.540 0.130 2.152 5.540	
	Inner surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W)	2.152 5.540 0.130 2.152	
	Inter surface Inter surface Inter surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Dutace resistance (m2-K/W) No Bridging U-Value surface to surface (W/m2-K)	2.152 5.540 0.130 2.152 5.540 0.130 2.915	
		2.152 5.540 0.130 2.152 5.540 0.130	
	Inner surface Inner surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) Outer surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W) U-Value surface to surface (W/m2-K) R-Value (m2-K/W) U-Value (W/m2-K) With Endging (BS EN ISO 6946) Thickness (m)	2.152 5.540 0.130 2.152 5.540 0.130 2.152 5.540 0.130 2.915 0.603 1.658 0.1200	
	Inter surface Inter surface Convective heat transfer coefficient (W/m2-K) Radiative heat transfer coefficient (W/m2-K) Badiative heat transfer coefficient (W/m2-K) Bufface resistance (m2-K/W) U-Value surface to surface (W/m2-K) Bufface (W/m2-K) Buf	2.152 5.540 0.130 2.152 5.540 0.130 2.915 0.603 1.659	

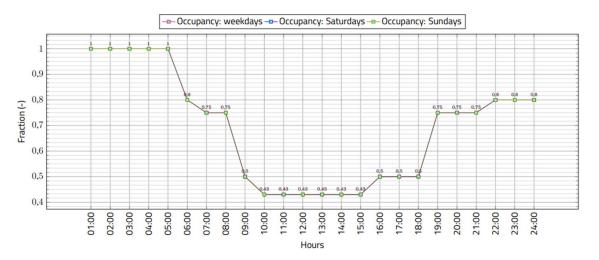


Interior	Inner surface	
wall Massy	- 16 dümm - Gyesom Masser(ALT Plate Int)	
	and the second	
brick 100		
	and the second	
	and the second	
	80.00mm Brick Massy	10 mm Gypsum
	The second s	
	THE REPORT OF A DEPARTMENT OF A STATE OF A DEPARTMENT OF A DEPARTMENT A DEPARTMENT OF A DEPARTMENT	
	10 tillinin - Grestin MassvIALT Plane Inth	
	Outer surface	
	Inner surface	
	Convective heat transfer coefficient (W/m2-K)	2.152
	Radiative heat transfer coefficient (W/m2-K)	5.540
	Surface resistance (m2-K/W)	0.130
	Outer surface	
	Convective heat transfer coefficient (W/m2-K)	2.152
	Radiative heat transfer coefficient (W/m2-K)	5.540
	Surface resistance (m2-K/W)	0.130
	No Bridging	0.015
	U-Value surface to surface (W/m2-K)	2.915 0.603
	R-Value (m2-K/W) U-Value (W/m2-K)	1.658
	With Bridging (BS EN ISO 6946)	1.650
	Thickness (m)	0.1000
	Upper resistance limit (m2-K/W)	0.603
	Lower resistance limit (m2-K/W)	0.603
		0.005

MB Flat	Cross Section	
Roof EnEV	Outer surface	
2016	60.00mm PUR Polyurethane Board (Diffusion TIGHT)	
	370.00mm Concrete, Reinforced (with 1% steel)	
	Inner surface	
	Inner surface	
	Convective heat transfer coefficient (W/m2-K)	4.460
	Radiative heat transfer coefficient (W/m2-K)	5.540
	Surface resistance (m2-K/W)	0.100
	Outer surface	10.070
	Convective heat transfer coefficient (W/m2-K)	19.870
	Radiative heat transfer coefficient (W/m2-K) Surface resistance (m2-K/W)	5.130 0.040
	No Bridging	0.040
	U-Value surface to surface (W/m2-K)	0.405
	R-Value (m2-K/W)	2.609
	U-Value (W/m2-K)	0.383
	With Bridging (BS EN ISO 6946)	0.000
	Thickness (m)	0.4300
	Upper resistance limit (m2-K/W)	2.609
	Lower resistance limit (m2-K/W)	2.609

2.3.2 HVAC systems

The HVAC heat supplier of the building is a condensation boiler (gas) and the used system is hot water radiators. Building's ventilation system is the self-adjusting controlled mechanical ventilation. Stale air is extracted through galvanized ducts connected to boxes located on the roof terrace.


Figure 10: Ventilation and the galvanized ducts

The production of heating and DHW is ensured instantly by a heat substation connected to the Massy urban heating network operating at 64% renewable energy. The service substation is located in a neighboring building and supplies several residences.

2.3.3 Occupancy, lighting and equipment patterns

Relevant operating schedules and occupational patterns have been assumed based on standard residential uses and following figures are taken from the report generated by MTB tool. These are used for the calculation of energy outputs.

People per m^2 floor area: 0.0417

Apartment building: Daily occupancy schedule

Figure 11: Daily occupancy schedule

Apartment building: Daily lighting schedule

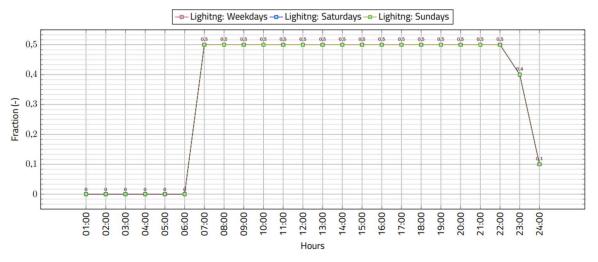
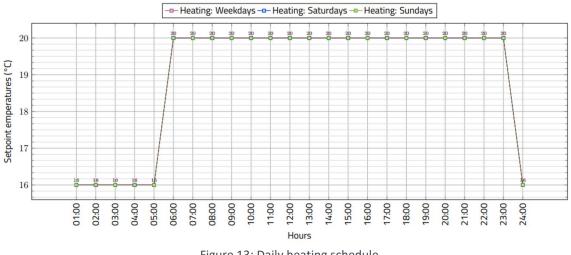
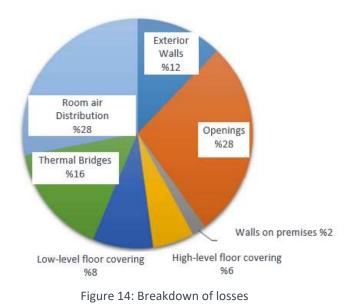



Figure 12: Daily lighting schedule

Apartment building: Daily heat schedule

3. BEM calibration


The BEM has not been calibrated with the BIM SPEED new procedure (sufficiently detailed data were not available from both the energy bills side and the energy model side).

4. Building energy performance simulation results

4.1 General considerations

The share of energy loss in the building linked to exterior walls and thermal bridges is relatively low and can be explained by the good compactness of the building. The openings represent 28% of losses and the room air distribution is responsible %28 of losses. Below can be seen the whole loss distribution.

Breakdown of losses by type

The replacement of openings can create improvements in the thermal performance of the envelope. Also, replacing the existing ventilation with a humidity sensitive system will reduce energy losses related room air distribution.

4.2 Energy KPIs

BS.OPED: Operational Primary Energy Demand

The primary energy demand has been calculated from the total energy consumption at consumption point and multiplied by the conversion factor (specific for France) for final energy to primary energy. According to the generated report of the MTB Tool, it is calculated as,

Table 5: BS.OPED Operational Primary Energy Demand				
BS.OPED: Operational Primary Energy Demand				
Ep [l	kWh/m²*a]	61.02		

BS.TED: Total Energy Demand

Total energy demand of the building is obtained as follows,

Table 6: Table 6: BS.TED Total Energy Demand

BS.TED: Total Energy Demand	
Energy demand for cooling [kWh/m ² *a]	not present
Energy demand for domestic hot water [kWh/m ² *a]	10.01
Electricity demand[kWh/m ² *a]	3.87
Energy demand for heating[kWh/m ² *a]	41.34
Energy demand total[kWh/m ^{2*} a]	55.22

BS.TEC: Total Energy Consumption

Total Energy Consumption has been calculated directly using the simulation engine of MTB.

Table 7: BS.TEC Total Energy Consumption		
BS.TEC: Total Energy Consumption		
EP [kWh/m ²]	55.22	

General results of the simulation are given below.

Investment costs	0.00 Mio. €
Operating costs	1.87 €/(m ² GFA · month
Life cycle costs	15.70 Mio. €
Gross surface (GFA)	10,038.59 m ²
Residential surface	9,811.30 m ²
Surface efficiency (UA/GFA)	97.74%
Rental income	43.63 Mio. €
Primary energy	$61.02 kWh/(m^2 GFA \cdot a)$
CO ₂ -Balance	$13.67~kgCO_2/(m^2GFA\cdot$
Daylight comfort	Score: 4/10
Thermal comfort	Score: 6/10
Air quality	Score: 5/10

5. Building renovation scenarios

To perform and assess multiple energy simulations for building renovation scenarios, the MTB Optimisation tool has been applied.

5.1 Renovation scenarios proposed

For the Massy democase, the following building renovation elements have been assessed.

• External walls (indoor) insulation

- Windows replacement (incl. shading system)
- Energy generation
- Boilers replacement

5.2 Optimisation set-up: planning variants considered

Used primary energy factors in the simulations are given below.

Table 9: Primary factors

Primary energy factor electricity	1.95
Primary energy factor Verdrängungsstrom	2.8
Specific CO2 Emissions from electricity (kg/MWh)	490
Primary energy factor of district heating	0.3
Specific CO2 Emissions from district heating (kg/MWh)	54.6
Primary energy factor of gas	1.1
Specific CO2 Emissions from gas (kg/MWh)	240
Thermal bridge surcharge flat rate (W/m²K)	0.1

The following table summarizes the optimization setting applied to the Massy BEM model. For each type of intervention, different solutions were examined, making the characteristic parameters vary between a certain range of values.

Type of intervention	Optimisation settings and ranges of variation	Number of options
External walls insulationInsulation Types: (1) Stone wool (λ 0,035 W/mK); (2) Mineral wool (λ 0,032 W/mK); (3) Wood derivates wood wool (λ from 0,038 W/mK)		3
	Thickness options: 1 cm – 30 cm in 10 regular steps (1, 4, 7, 11, 14, 17, 20, 23, 27, 30 cm)	10
Roof insulationInsulation Types: (1) Stone wool (λ 0,035 W/mK); (2) Mineral wool (λ 0,032 W/mK); (3) PUR foam (λ 0,026 W/mK)		3
	Thickness options: 1 cm – 32 cm in 10 regular steps (1, 4, 7, 11, 14, 18, 21, 25, 29, 32 cm)	10
Windows replacement	U-values from 1,9 to 0,62 kWh/m ² K (steps: 1,9; 1,3; 0,9; 0,7; 0,62) 0,7: Low-E,PVC frame; argon an optical enhancement panes Double glazing with argon and double-coated sputter LoE no change in windows dimensions	7
Shading system	 (1) Interior blind with low reflectivity slats; (2) Exterior shade roll medium translucent; (3) Exterior blinds w. low/med/high reflectivity and 30°-135° angle (4) No shading 	21

Table 10: Optimisation setting – Intervention, ranges of variation and number of options

	Туре:	5
	(1) No PV	
	(2) PV polycrystalline, eff. 0.15	
	(3) PV polycrystalline, eff. 0.17	
	(4) PV monocrystalline, eff. 0.19	
Energy	(5) PV monocrystalline, eff. 0.21	
generation(Photovoltaic)	Photovoltaic surface:	2
	(1) 20	
	(2) 50	
	Battery type:	
	(1) Lithium iron phosphate batteries	
	(2) Saltwater batteries	
	Heat distribution:	2
	(1) Hot water radiator;	
HVAC	(2) Hot water underfloor heating	
	Heat supply:	1
	(1) Condensation boiler	
	Total number of theoretical combinations	10.260.000

5.3 Ranges of optimal solutions

Following the specific optimization set-up of the project, the theoretical number of possible renovation scenarios to be assessed is 10,26 Million. Out of these, 4.080 scenarios have been automatically simulated and assessed, controlled by an evolutionary optimization algorithm. This process took a computation time of approx. 146hrs (146hrs 25min on a server cluster with 288 cores and 470 GB RAM).

Figure 15 shows the Pareto-graph of simulates renovation scenarios, sorted by construction costs and energy demand. The solution space includes renovation scenarios with resulting end energy demands between $5 - 42 \text{ kWh/(m^2 year)}$ and construction costs between EUR 2.200.000 and EUR 3.800.000.

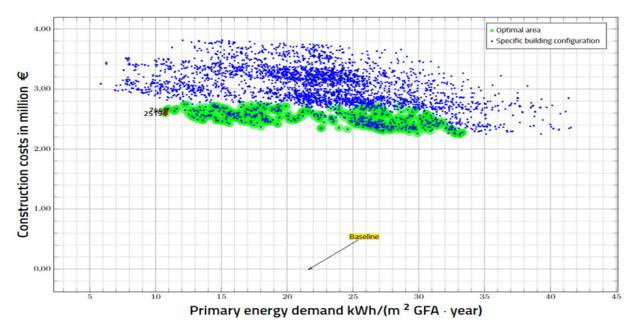


Figure 15: Pareto-graph of simulates renovation scenarios

Out of this solution space, four renovation scenarios have been identified as among optimal solutions:

- Energy-optimal: Two solutions with best results in end energy demand, while still having a good costs and comfort performance (ID 2519 & ID 744)
- Cost-optimal: Two solutions with best results in cost performance, while still having a good energy and comfort performance (ID 2172 & ID 47)

Those two Energy-optimal renovation alternatives are being described in the following.

5.4 Scenarios 1: description and results

Scenario 1 (ID 2519) has been identified as an energy-optimal renovation scenario. In comparison with all simulated renovation scenarios, this scenario has a very good end energy demand, while still having a good costs and comfort performance (17). Its configuration and its simulation results are described in the following tables.

Type of intervention	Optimisation settings and ranges of variation	
	Insulation material: Stone wool	0,21 m
External walls insulation	Total thickness of external wall	0,43 m
	U-Value	0,16 W/m²K
	Insulation material: Mineral wool	0,26 m
Roof insulation	Total thickness	0,63 m
	U-Value	0,11 W/m²K
Windows replacement	Glazing type: Triple glazing, Low-E, PVC frame	Ug = 0,7
Shading system	Exterior blind low reflectivity slats 45°	
Energy	Type: PV monocrystalline, eff. 0.19	
generation(Photovoltaic)	Battery type: Lithium iron phosphate batteries	70 kWh
HVAC	Heat distribution: Hot water underfloor heating	

Table 11: Renovation setup	for the energy-optimal	scenario 1 (ID 2519)
Table II. Renovation Secup	TOT THE CHERRY OPTIMU	

Figure 16: Energy related KPIs from the optimization report

Sustainability insights

	AI-generated solution (ID 2519)
Primary energy consumption	$10.73 \ kWh/(m^2 \cdot a)$
Energy demand for cooling	$0.00 \ kWh/(m^2 \cdot a)$
Energy demand for domestic hot water	$4.82 \text{ kWh}/(\text{m}^2 \cdot \text{a})$
Electricity demand	$-6.09 \text{ kWh}/(\text{m}^2 \cdot \text{a})$
Energy demand for heating	$15.73 kWh/(m^2 \cdot a)$
Energy demand total	14.46 kWh/(m ² · a)
PV electricity production	11.31 kWh/(m ² · a)

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 12: BS.OPED Operational Primary Energy Demand

BS.OPED: Operational Primary Energy Demand		
Ep [kWh/m ²]	10,73	

BS.TED: Total Energy Demand

Table 13: BS.TED Total Energy Demand	
BS.TED: Total Energy Demand	
QTOT [kWh/m ² year]	14,46

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 14: BS. TEC Total Energy Consumption			
BS.TEC: Total Energy Consumption			
$EP_{heat}[kWh/m^2]$	/h/m²] 15,73		
EP _{cool} [kWh/m ²]	/m ²] 0.00 (Cooling not present)		
EP _{light} [kWh/m ²]	_{ight} [kWh/m ²] Not relevant for the demo		
EP _{dhw} [kWh/m ²]	4,82		
EPTOT[kWh/m ²]	14,46		

Table 14: BS.TEC Total Energy Consumption

Table 15: BS.TES Total Energy Savings

BS.TES: Total Energy Savings			
	Baseline	Scenario 01	SAVING
$EP_{heat}[kWh/m^2]$	41.34	15,73	25,61
EP _{cool} [kWh/m ²]	Cooling not present		
EP _{light} [kWh/m ²]	Not relevant for the demo		
EP _{dhw} [kWh/m ²]	10,01	4,82	5,19
EP _{TOT} [kWh/m ²]	55.22	14,46	40,76

5.5 Scenarios 2: description and results

Scenario 2 (ID 744) has been identified as an energy-optimal renovation scenario. In comparison with all simulated renovation scenarios, this scenario has a very good end energy demand, while still having a good costs and comfort performance (**Error! Reference source not found.**). Its configuration and its simulation results are described in the following tables.

Type of intervention	Optimisation settings and ranges of variation	
	Insulation material: Mineral wool	0,24 m
External walls insulation	Total thickness of external wall	0,46 m
	U-Value	0,13 W/m²K
Roof insulation	Insulation material: Mineral wool	0,23 m
	Total thickness	0,60 m
	U-Value	0,13 W/m²K
Ground floor insulation	Insulation material: EPS	0,18 m
	Total thickness	0,49 m
	U-Value	3,75 W/m²K
Windows replacement	Glazing type: Triple glazing, argon and optical enhancement	Ug = 0,7
	panes	
	no change in windows dimensions	
Shading system	Exterior blind high reflectivity slats 60°	

Table 16: Renovation setup for the energy-optimal scenario 1 (ID 744)

Energy	Type: PV monocrystalline, eff. 0.21	
generation(Photovoltaic)	Battery type: Lithium iron phosphate batteries	82 kWh
HVAC	Heat distribution: Hot water radiator	

Sustainability insights

AI-generated solution (ID 744)Primary energy consumption10.78 kWh/(m² · a)Energy demand for cooling0.00 kWh/(m² · a)Energy demand for domestic hot water4.55 kWh/(m² · a)Electricity demand-7.14 kWh/(m² · a)Energy demand for heating17.92 kWh/(m² · a)Energy demand total15.32 kWh/(m² · a)PV electricity production12.50 kWh/(m² · a)

Figure 17: Energy related KPIs from the optimization report

The following KPIs have been calculated:

BS.OPED: Operational Primary Energy Demand

Table 17: BS.OPED Operational Primary Energy Demand		
BS.OPED: Operational Primary Energy Demand		
Ep [kWh/m ²]	10,78	

BS.TED: Total Energy Demand

Table 18: BS.TED Total Energy Demand		
BS.TED: Total Energy Demand		
QTOT [kWh/m ² year]	15,32	

BS.TEC: Total Energy Consumption (and sub KPIs; Energy consumption for heating, cooling, lighting, DHW)

Table 19: BS.TEC Total Energy Consumption		
BS.TEC: Total Energy Consumption		
$EP_{heat}[kWh/m^2]$	17,92	
EP _{cool} [kWh/m ²]	0.00 (Cooling not present)	
$EP_{light}[kWh/m^2]$	Not relevant for the demo	
EP _{dhw} [kWh/m ²]	4,55	
EΡ _{τοτ} [kWh/m ²]	15,32	

Table 20: Table 20: BS.TES Total Energy Savings

BS.TES: Total Energy Savings			
	Baseline	Scenario 02	SAVING
$EP_{heat}[kWh/m^2]$	41,34	17,92	23,42
EP _{cool} [kWh/m ²]	Cooling not present		
EP _{light} [kWh/m ²]	Not relevant for the demo		
EP _{dhw} [kWh/m ²]	10,01	4,55	5,46
EP _{TOT} [kWh/m ²]	55,22	15,32	39,9

6. Time reduction evaluation

The time reduction evaluation for the BIM-to-BEM process is not relevant from the Massy democase as the BEM was created with a traditional process using directly BEM software and not starting from a BIM model.

page 28 - 28