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Abstract
In this work we consider the problem of identification and reconstruction of doubly-
dispersive channel operators which are given by finite linear combinations of
time-frequency shifts. Such operators arise as time-varying linear systems for example
in radar and wireless communications. In particular, for information transmission in
highly non-stationary environments the channel needs to be estimated quickly with
identification signals of short duration and for vehicular application simultaneous high-
resolution radar is desired as well. We consider the time-continuous setting and prove
an exact resampling reformulation of the involved channel operator when applied to a
trigonometric polynomial as identifier in terms of sparse linear combinations of real-
valued atoms.Motivated by recent works of Heckel et al. we present an exact approach
for off-the-grid super-resolution which allows to perform the identification with real-
izable signals having compact support. Then we show how an alternating descent
conditional gradient algorithm can be adapted to solve the reformulated problem.
Numerical examples demonstrate the performance of this algorithm, in particular in
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comparison with a simple adaptive grid refinement strategy and an orthogonal match-
ing pursuit algorithm.

Keywords Super-resolution · Channel estimation · Doubly-dispersive ·
Time-frequency · Sampling

Mathematics Subject Classification 47A62 · 65R30 · 65T99 · 94A20

1 Introduction

Sensing and information retrieval in highly non-stationary environments are chal-
lenging inverse problems in radar and sonar applications, and their fundamental
understanding is also required for future wireless communication in very rapidly time-
varying mobile scenarios. In such problems, the task is to identify or estimate channel
parameters in a robust manner by probing the channel with a particular identifier signal
w of finite duration, also called pilot signal. In radar, for example, a known radar wave-
form is transmitted and from the received reflections, distance and relative velocity
of a target can be obtained by estimating delay and Doppler shifts. Several reflections
superimpose at the receiver, hence the core task consists in estimating the multiple
time-frequency shifts from finitely many samples of the received signal:

y(t) =
S∑

s=1
ηsw(t − τs)e

2π iνs t

taken within a finite observation interval. Here each triplet (ηs, τs, νs) can be inter-
preted as a particular transmission path with a delay τs and Doppler-shift νs due to
relative distance and velocity, respectively, with a complex-valued attenuation factor
ηs . This so called tapped delay-line model, is a special case of a doubly-dispersive
(or linear time-variant) channel, where the spreading function is a (finite) point mea-
sure. For more details on this terminology, see for example classical works [1,25].
Intuitively, it is clear that simultaneous accuracy in time and frequency are governed
by the uncertainty relation and that the shape of the waveform should fit time and
frequency dispersion of the channel. However, often only few scatterers are affecting
the wave propagation and therefore the number of time-frequency shifts is rather small
compared to the number of samples one may acquire at the receiver.

In so-called coherent communication the wireless channel needs to be estimated to
equalize unknown data signals consecutively or simultaneously transmitted with the
pilot signal. This principle is used for example in orthogonal frequency-division mul-
tiplexing (OFDM) modulation scheme [7] which is implemented in many of today’s
communication technologies like WiFi, LTE and 5G standards, as well as broad-
casting systems like DAB and certain DVB standards [28]. Thus, the first goal here
is to estimate the action of the channel operator on a particular restricted class of
data signals. A channel which is exclusively time- or frequency-selective, reduces
to convolutions or multiplication operators and equalization (inverting the action of
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the channel) is then often possible via conventional deconvolution techniques. In the
doubly-selective case however, more advanced equalization approaches are necessary
to deal with self-interference effects. For this purpose the delay-Doppler shifts are
usually approximated to lie on a-priori fixed lattices leading to leakage effects [10]. In
essence, the intrinsic sparsity of the channel does not carry over to the approximated
model, rendering compressed sensing methods like [34,40] much less effective.

In radar instead it is important to achieve high resolution on the time-frequency
shift parameters itself. However, in future high mobility vehicular communication
[29] and automotive applications both aspects will become relevant, i.e., discover
the instantaneous neighborhood using radar and simultaneous communicating with
other vehicles or road side units. In particular, combined radar and communication
transceivers which simultaneously shall use the same hardware and frequency band
for both tasks, are recently proposed and investigated in the literature, see exemplary
[32]. However, since the propagation environmentmay change in such vehicular appli-
cations as well on a short time-scale and usually in an almost unpredictable manner,
it is also important to perform channel estimation and radar in short time cycles with
short signals. The traffic type in automotive applications also enforces to ensure strict
latency requirements in communication for decoding the equalized data signals.

Beside the practical needs for advanced signal processing algorithms in this chal-
lenging engineering field, the estimation problem itself has been attracted researchers
working in harmonic analysis. First works in this field and from the perspective of
channel identification are due Pfander et al. [35]. Identifiying a linear operator with
restricted spreading, i.e., with bandlimited symbol has been investigated in [27].

Finally, we like to mention that there exist other methods for super-resolution as
Prony-likemethods [13,30,31,37,38]. These are spectralmethodswhich perform spike
localization from low frequency measurements. They not need any discretization and
recover the initial signal as long as there are enough observations. So far we have
not examined if and how such methods could be applied for our specific modulation-
translation setting.

Main contributionThemain contribution of this paper is twofold. First, we establish an
exact sampling formula for operators which are sparse complex linear combinations
of modulation and translation operators

H =
S∑

s=1
ηsMνs Tτs

applied to (truncated) trigonometric polynomials w as identifiers. The basic resam-
pling idea goes back to the work of Heckel et al. [23], where the problem to identify
the parameters ηs , νs , τs of the unknown operator H is approximated by a discrete
formulation without explicitly accounting for the employed function spaces and by
applying an approximate sampling formula. Using trigonometric polynomials as iden-
tifiers, we derive an explicit resampling formula for the continuous problem such that
we can completely avoid the approximation errors in [23]. By this, we also overcome
particular parameter limitations in the original proof since we not directly couple
time-bandwidth limitation of operator and the identifier.
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As a secondmain result we provide explicit algorithmic reconstruction approaches.
Our sampling reformulation allows the straightforward application of standard mod-
ifications of the conditional gradient method, also known as Frank-Wolfe algorithm,
to determine the amplitudes ηs ∈ C and the two-dimensional positions (τs, νs). Here
we focus on the alternating direction conditional gradient (ADCG) algorithm pro-
posed by Boyd et al. [2]. The corresponding optimization problem takes noise into
account and penalizes the sparsity of the above linear combination by the �1-norm
of the amplitudes. The optimization problem can be rephrased in terms of atomic
measures, where the �1-norm is directly related to the total variation norm of the mea-
sure, resp. to the atomic norm of a certain set of atoms. Such problems are known
as BLASSO [16]. Besides Frank-Wolfe like algorithms that minimize the location
parameters over a continuous domain, a common approach consists in constraining
the locations to lie on a grid. This leads to a finite dimensional convex optimization
problems, known as LASSO [41] or basis pursuit [8] , for which there exist numerous
solvers [12,14,20,43]. We will compare the ADCG applied to our resampled problem
with a grid method, where we incorporate an adaptive grid refinement. As a third
group of methods, we like to mention the reformulation of the optimization problem
via its dual into an equivalent finite dimensional semi-definite program (SDP). This
technique was first proposed in [5] and then adapted by many other authors. However,
the equivalence of formulations are only true in the one-dimensional setting and in
higher dimensions one needs to use e.g. the so-called Lassere hierarchy [16]. An SDP
approach for our two-dimensional setting based on a results of [18] was also proposed
in the paper of Heckel et al. [23]. Since this approach appears to be highly expensive
both in time and memory requirement and has moreover to fight with many non spe-
cific local maxima related to the so-called dual certificate, it is not appropriate for our
setting.

This paper is organized as follows: In Sect. 2, we collect the basic notation and
results from Fourier analysis and measure theory which are needed in the following
sections. At the end of the section we establish a theorem which relates trigono-
metric polynomials with periodic functions arising from the Fourier transform of
compactly supported measures. The proof of the theorem is given in Appendix A.
In Sect. 3, we formulate our super-resolution problem for doubly-dispersive chan-
nel estimations. More precisely, we are interested in the two-dimensional parameter
detection of sparse linear combinations of translation-modulation operators. Instead
of treating the original problem, we give a sampling reformulation of the involved
translation-modulation operators for identifiers which are trigonometric polynomi-
als. Here the relation between these polynomials and Fourier transforms of measures
will play a role. Since the identifiers have only to be evaluated at points lying
in a compact interval, our choice implies no restriction for practical purposes. In
Sect. 3, we prove the sampling theorem for translation-modulation operators applied
to trigonometric polynomials. Then, in Sect. 5, we show how an alternating descent
conditional gradient algorithm can be applied to solve the reformulated problem.
Finally, we demonstrate the performance of this algorithm in comparison with sim-
ple adaptive grid refinement algorithm and an orthogonal matching pursuit method in
Sect. 6.
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2 Preliminaries

Function spaces Let I be an open finite interval of R or R itself. By C(I ) we denote
the space of complex-valued, continuous functions on I , by Cb(I ) the Banach space
of bounded, complex-valued, continuous functions endowed with the norm ‖ f ‖∞ =
supx∈I | f (x)|. Further, letC0(R) ⊂ Cb(R) be the closed subspace of complex-valued,
continuous functions vanishing at infinity. Let Lr (I ), r ∈ [1,∞] be the Banach space
of (equivalence classes) of complex-valued Borel measurable functions with finite
norm

‖ f ‖r =
{(∫

I | f (x)|r dx
) 1
r , 1 ≤ r < ∞,

ess supx∈I | f (x)|, r = ∞.

For compact I , it holds L1(I ) ⊃ Lr (I ) ⊃ Ls(I ) ⊃ L∞(I ), r < s. The r -norm ‖ · ‖r
on higher dimensional domains, sequences and vectors are analogously defined.

An entire (holomorphic) function f : C → C is of exponential type if there exist
positive constants a, b > 0 such that

| f (z)| ≤ aeb|z| for all z ∈ C.

The exponential type of f is then defined as the number

σ := lim sup
t→∞

logM(t)

t
, M(t) := sup

|z|=t
| f (z)|.

The Bernstein space Br
σ , r ∈ [1,∞], consist of all entire functions f of exponential

type σ whose restriction to R belongs to Lr (R). Endowed with the Lr norm, Br
σ

becomes a Banach space, too.Wewill need the following sampling result of Nikol’skiı̆
[33].

Theorem 1 (Nikol’skiı̆’s Inequality [33, Thm 3.3.1]) Let r ∈ [1,∞]. Then, for every
f ∈ Br

σ and a > 0, we have

‖ f ‖rr ≤ sup
x∈R

{
a
∑

k∈Z
| f (x − ak)|r

}
≤ (1+ aσ)r‖ f ‖rr .

Fourier transform of functions The Fourier transform F : L1(R) → C0(R) ⊂
L∞(R) defined by

F f (ξ) :=
∫

R

f (x)e−2π iξ x dx = lim
R→∞

∫ R

−R
f (x)e−2π iξ x dx
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is a bounded linear operator. For 1 < r ≤ 2, this operator can be extended as F :
Lr (R) → Ls(R), 1

r + 1
s = 1 via the limit in the norm of Ls(R) of

F f (ξ) = f̂ (ξ) = lim
R→∞

∫ R

−R
f (x)e−2π iξ x dx .

By Plancherel’s equality, the Fourier transform is an isometry on L2(R). Note that
the Fourier transform of a function f ∈ Lr (R) with r > 2 can be defined in terms
of tempered distributions. However, the distributional Fourier transform f̂ does in
general not correspond to a function. A special role plays the sinus cardinalis defined
as

sinc(x) :=
{ sin(πx)

πx for x 	= 0,
1 for x = 0.

The sinc function is in L2(R) but not in L1(R). Further, we have

χ̂[−L,L](ξ) = 2L sinc(2Lξ),

where χC denotes the characteristic function of a set C ⊆ R, i.e., χC (x) = 1 if x ∈ A
and χC (x) = 0 if x /∈ C . The counterpart of scaled sinc functions in the periodic
setting are the N th Dirichlet kernels given by

DN (x) =
N∑

n=−N

e2π inx = sin ((2N + 1)πx)

sin(πx)
, x ∈ R.

For arbitrary f ∈ L1(R) with f̂ ∈ L1(R), the Fourier inversion formula

f (x) = ( f̂ )∨(x) :=
∫

R

f̂ (ξ) e2π iξ x dξ

holds true almost everywhere and, moreover, pointwise if the function f is continuous.
For two functions f ∈ L1(R) and g ∈ Lr (R), r ∈ [1,∞], the convolution f ∗ g is
defined almost everywhere by

( f ∗ g)(x) =
∫

R

f (y) g(x − y) dy

and is contained in Lr (R). For r ∈ [1, 2], the relation between convolution and Fourier
transform is given by ̂f ∗ g = f̂ ĝ.

For σ > 0 and r ∈ [1,∞], we denote by PWr
σ the Paley-Wiener class of functions

f : C→ C of the form

f (z) =
∫ σ

−σ

g(ξ)e2π izξ dξ, z ∈ C,
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for some g ∈ Lr (−σ, σ ). We have the inclusion PWr
σ ⊂ PWs

σ for 1 ≤ s < r .
Functions of the class PWr

σ are holomorphic and of exponential type 2πσ by

| f (z)| ≤
∫ σ

−σ

| f̂ (ξ)|e2π |ξ ||z| dξ ≤ ‖ f̂ ‖1e2πσ |z|, z ∈ C.

For r ∈ [1, 2], we further have PWr
σ ⊂ Bs

2πσ with 1
r + 1

s = 1, see [24].
Measure spaces Let X be a compact subset of Rd or Rd itself. By M (X) we denote
all regular, finite, complex-valued measures, i.e., all mappings μ : B(X) → C from
the Borel σ -algebra of Rn to C with |μ(X)| < ∞ and

μ

( ∞⋃

k=1
Bk

)
=

∞∑

k=1
μ(Bk)

for any sequence {Bk}k∈N ⊂ B(X) of pairwise disjoint sets. We suppose that the
series on the right-hand side converges absolutely, so that the indices of the sets Bk

can be arbitrarily reordered. The support of a complex measure μ ∈M (X) is defined
by

supp(μ) = supp(ρ+) ∪ supp(ρ−) ∪ supp(ι+) ∪ supp(ι−),

where ρ+ − ρ− = �(μ) and ι+ − ι− = �(μ) are the Hahn decompositions of the
real and imaginary part into non-negative measures. The support of a non-negative
measure ν is the closed set

supp(ν) := {
x ∈ X : B ⊂ X open, x ∈ B �⇒ ν(B) > 0

}
.

The total variation of a measure μ ∈M (X) is defined by

|μ|(B) := sup
{ ∞∑

k=1
|μ(Bk)| :

∞⋃

k=1
Bk = B, Bk pairwise disjoint

}
.

With the norm ‖μ‖M (X) := |μ|(X) the space M (X) becomes a Banach space. The
spaceM (X) can be identified via Riesz’s representation theorem with the dual space
of C0(X) and the weak-∗ topology on M (X) gives rise to the weak convergence of
measures.

We will need that, for a bounded Borel-measurable function g, the measure gμ
defined by gμ(B) := ∫

B g(x) dμ(x) for open B ⊂ Rd is again in M (Rd) and
‖gμ‖M (X) ≤ ‖g‖∞‖μ‖M (X).
Fourier transform of measures For our purposes, it is enough to consider the Fourier
transform of measures on X = R. If we consider the open balls BR := {x : |x | < R}
of radius R > 0, then

|μ|(BR) → ‖μ‖M (R) and |μ|(R \ BR) → 0 as R →∞.
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Indeed, the integral with respect to a measure μ ∈ M (R) is also well defined for
every ϕ ∈ Cb(R) and

〈μ, ϕ〉 ≤ ‖μ‖M (R) ‖φ‖∞.

Consequently, we can define the Fourier transform F : M (R) → Cb(R) by

Fμ(ξ) := μ̂(ξ) := 〈μ, e−2π ixξ 〉 =
∫

R

e−2π ixξdμ(x).

The Fourier transform is a linear, bounded operator from M (R) into Cb(R) with
operator norm one. Moreover, it is unique in the sense that μ ∈ M (R) with μ̂ ≡ 0
implies thatμ is the zeromeasure.We are especially interested in the Fourier transform
of atomic measures μ :=∑

k∈Z ckδ(· − tk) with ck ∈ C, tk ∈ R given by

μ̂(ξ) =
∑

k∈Z
ck e

−2π iξ tk .

If the point masses are equispaced located at tk = k
K with K ∈ N, the Fourier

transform becomes a K -periodic Fourier series. Moreover, restricting the support of
μ to [−σ, σ ], we obtain the K -periodic trigonometric polynomial

μ̂(ξ) =
N∑

k=−N

ck e
−2π i ξkK ,

where N = �σK � and tk = k
K , k = −N , . . . , N . The following theorem shows that

also the reverse direction is true, i.e., every periodic function given as the Fourier
transform of a compact measure is a finite trigonometric polynomials.

Theorem 2 Let f = μ̂ f withμ f ∈M (R) fulfill suppμ f ⊆ [−σ, σ ] for some σ > 0.
Suppose that f is K -periodic for K ∈ N. Then f is a trigonometric polynomial of
the form

f (ξ) =
N∑

k=−N

f̂ (k)e2π i
kξ
K , f̂ (k) := 1

K

∫ K

0
f (ξ)e−2π i

kt
K dt, (1)

where N = �σK �.
The proof of the theorem is given in Appendix A.

3 Super-resolution in doubly-dispersive channel estimation

In doubly-dispersive channel estimation we are both interested in the detection of
shifts and modulations of signals. Recall that the shift operator Tτ and themodulation
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operator Mν are defined for x, τ, ν ∈ R by

Tτ f (x) := f (x − τ) and Mν f (x) := f (x)e2π iνx ,

respectively. Their concatenation is given by

MνTτ f (x) = e2π iνx f (x − τ) and Tτ Mν f (x) = e2π iν(x−τ) f (x − τ).

Similarly, for f ∈ Lr (R) with r ∈ [1, 2], it holds

̂Tτ f = M−τ f̂ and ̂Mν f = Tν f̂ .

Both operators are unitary on L2(R). Note that a similar definition of shifts and
modulations can be given for tempered distributions, see, e.g., [36, Section 4.3.1]. For
S ∈ N and T ,Ω > 0, we consider the operator

H :=
S∑

s=1
ηsMνs Tτs , ηs ∈ C∗, τs ∈

[
−T

2 , T
2

]
, νs ∈

[−Ω
2 , Ω

2

]
(2)

with C∗ := C \ {0}. We are interested in the following super-resolution problem:
for a known function w ∈ Cb(R), determine the amplitudes ηs ∈ C∗ and positions
τs, νs ∈ R, s = 1, . . . , S from certain samples of

Hw =
S∑

s=1
ηsMνs Tτsw. (3)

In this context, the function w is often called identifier.
Our solution will be based on an exact sampling formula of Hw which contains

sparse linear combination of certain real-valued “atoms”. The idea to use such a
reformulation for later computations originates from a paper of Heckel et al. [23].
However, the approach of those authors uses only an approximate sampling formula
without given error bound and not an exact one, see Remark 2. The main sampling
result is given in the following theorem.

Theorem 3 (Sampling Formula for Translation-Modulation Operators) Choose
T ,Ω > 0, N1, N2 ∈ N and set L1 := 2N1 + 1, L2 := 2N2 + 1. Let

w(x) =
N1∑

n=−N1

wne
2π iΩnx

L1 , x ∈ R, (4)
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be an L1
Ω
-periodic trigonometric polynomial. Then, we have for τ, ν ∈ R and x j =

T j
L2

, j = −N2, . . . , N2 that

MνTτw(x j ) =
N1∑

n1=−N1

N2∑

n2=−N2

e2π i
x j n2
T w

(
x j − n1

Ω

)
[A(τ, ν)](n1,n2), (5)

with so-called atoms A : R2 → CL1L2 given by

[A(τ, ν)](n1,n2) :=
1

L1L2
DN1

(
n1 −Ωτ

L1

)
DN2

(
n2 −T ν

L2

)
, (6)

where (n1, n2) denotes the corresponding, unique index in CL1L2 for n1 =
−N1, . . . , N1, n2 = −N2, . . . , N2.

Figuratively, an atom A(τ, ν) may be interpreted as a vectorized L1 × L2-
dimensional matrix. The proof of Theorem 3 is the content of the next section.

By Theorem 3, we can rewrite the super-resolution problem (3) with an identifier
of the form (4) for given samples y j = Hw(x j ), x j = T j

L2
, j = −N2, . . . , N2 as

y j = Hw(x j ) =
N1∑

n1=−N1

N2∑

n2=−N2

e2π i
x j n2
T w

(
x j − n1

Ω

) S∑

s=1
ηs [A(τs, νs)](n1,n2). (7)

By periodicity of the atoms (6), it makes indeed sense to restrict ourselves to

(τ, ν) ∈ X :=
[
−T

2 , T
2

]
× [−Ω

2 , Ω
2

]
,

and to choose Lk ≥ T Ω , k = 1, 2. In this case, all points x j − n1
Ω

at which the
periodic identifier w in (7) must be evaluated, belong to the interval I = (−T ,T ).

In practice, we would like to use a compactly supported identifier whereas our
theory is based on periodic identifiers. Since only the function values w(x) with
x ∈ (−T ,T ) are involved in the sampling process of Hw, we may theoretically
replace the periodic identifier w by the compactly supported and partially periodic
function χI w without changing the obtained samples. Consequently, we may apply
the resampling formula to identify a doubly-dispersive channel H using compactly
supported and partially periodic signals like χI w, which links our theory to the real-
world setting.

Setting y := (y j )
N2
j=−N2

and introducing the operator

G = [
G j,(n1,n2)

]
j,(n1,n2)

: CL1L2 → CL2

with entries

G j,(n1,n2) := e2π i
x j n2
T w

(
x j − n1

Ω

)
,
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where (n1, n2) is again the corresponding index in CL1L2 as for the atoms, we can
rewrite the super-resulution problem (7) as

y = G
S∑

s=1
ηs A(τs, νs).

In practical applications, the measurements y are often corrupted by noise so that we
finally intend to solve the regularized problem

argminη∈CS∗ ,(τ,ν)∈XS ‖G
S∑

s=1
ηs A(τs, νs)− y‖22 + λ‖η‖1, λ > 0, (8)

where η = (ηs)
S
s=1 and τ = (τs)

S
s=1, ν = (νs)

S
s=1. Indeed, we may choose S larger

than the number of expected translation-modulations,minimize over η ∈ CS , and hope
that the regularization term enforces the sparsest solution. Especially in the numerics,
we allow ηs to become zero; the captured triple (ηs, τs, νs) with ηs = 0 may then be
neglected.

Remark 1 The above problem is closely related to an inverse problem in the space of
measures. To this end, we consider the linear, continuous operatorA : CL1L2 → C(X)

defined by Ay := {(τ, ν) �→ 〈A(τ, ν), y〉} for y ∈ CL1L2 . Its adjoint A∗ :M (X) →
CL1L2 is given by

A∗μ :=
∫

X
A(τ, ν) dμ(τ, ν).

Then, we may consider the inverse problem

min
μ∈M (X)

1

2
‖GA∗μ− y‖22 + λ‖μ‖M (X). (9)

Problems of this kind are also known as BLASSO [5,16] and were studied in several
papers, e.g., by Bredies and Pikkarainen [3] and Denoyelle et al. [17]. In partic-
ular, it was shown that the problem has a solution. Since GA∗ is not injective,
the solution is in general not unique. Restricted to atomic measures in M (X), i.e.
μ =∑S

s=1 ηsδ (· − (τs, νs)), problem (9) takes the form (8).
The super-resolution problemmay be also seen from the point of view the so-called

atomic norm formulation addressed in a couple of papers [6,9,17,19,39]. Since ηs =
|ηs |e2π iφs is complex-valued, the set of atoms must be redefined as {e2π iφ A(τ, ν) :
φ ∈ [0, 1), (τ, ν) ∈ X} to take real linear combinations of atoms.

As already mentioned, super-resolution problem (3) has been already considered
by Heckel et al. [23]. However, these authors proposed to use a different identifier, an
issue addressed in the next remark.
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Remark 2 (Relation to the work of Heckel et al. [23]) The authors of [23] considered
the case N1 = N2 = N and L1 = L2 = L := T Ω , so that the resampling formula
(7) becomes

Hw

(
j

Ω

)
= 1

L2

S∑

s=1
ηs

N∑

n1=−N

N∑

n2=−N

e2π i
jn2
L w

(
j − n1

Ω

)

× DN

(
n1 −Ωτs

L

)
DN

(
n2 −T νs

L

)
.

(10)

However, as identifier they propose

w(x) =
K∑

k=−K

N∑

n=−N

wn sinc

(
Ω

(
x − kL + n

Ω

))

with some K ∈ N. Actually, K = 1 was applied in [23]. Since the sinc function is
not periodic, the resampling formula (10) does not hold exactly and only gives an
approximation.

4 Resampling results for translation-modulation operators

In this section, we prove Theorem 3. The basis is a Sampling Theorem 4 for L1

functions. Then we prove certain sampling formulas which are of interest on their
own. First, in Lemma 2, we show a sampling formula for p H(q̂ ∗ w), where p, q
are compactly supported functions with Fourier transform in L1(R), for general w ∈
L∞(R) using certain compactly supported helper functions φ and ψ . Restricting to
identifiers w which are Fourier transforms of measures, we will see in Theorem 5
that the helper functions can be avoided. Finally, we will use this theorem together
with approximation arguments involving sequences of compactly supported Schwartz
functions {pn}n and {qn}n to prove Theorem 3. We start by recalling a sampling
theorem for L1-functions, which is an extension of the classical sampling theorem
of Shannon, Whittaker, and Kotelnikov, see for instance [36, Thm 2.29], by the L1-
convergence of the interpolation formula for L1-sampling functions.

Theorem 4 (Sampling Theorem for L1-functions) Let f ∈ L1(R) ∩ C0(R) be a
band-limited function with supp f̂ ⊆ [−Ω

2 , Ω
2 ]. Choose 0 < a < 1/Ω . Then for any

low-pass kernel φ ∈ L1(R) ∩ C0(R) satisfying

φ̂(ξ) =
{
a, |ξ | ≤ Ω

2 ,

0, |ξ | ≥ 1
2a ,
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we have

f (x) =
∑

k∈Z
f (ak)φ(x − ak)

for all x ∈ Rwith absolute and uniform convergence onR and convergence in L1(R).

For convenience, the proof is given inAppendixB. In the classical sampling theorem
of Shannon, Whittaker, and Kotelnikov, the function φ is the sinus cardinalis, which
however prevents the convergence in L1. In the following, we will further need the
next auxiliary lemma.

Lemma 1 Let w ∈ L∞(R) and p, q ∈ L1(R) with p̂, q̂ ∈ L1(R). For F ∈ L1(R2),
we define the linear operator Dw : L1(R2) → L∞(R) by

(DwF)(x) :=
∫∫

R2
F(t, ξ)w(x − t)e2π iξ t dt dξ.

Then Dw is continuous and for all τ, ν ∈ R we have

p(x)MνTτ (q̂ ∗ w)(x) = Dw(Tτ q̂ ⊗ Tν p̂)(x) a.e. (11)

Proof For any x ∈ R, we have

|(DwF)(x)| ≤
∫∫

R2
|F(t, ξ)||w(x − t)| dt dξ ≤ ‖w‖∞ ‖F‖1.

Thus ‖Dw‖L1(R2)→L∞(R) ≤ ‖w‖∞ and the first claim follows.
For the left-hand side of (11) we have by Young’s convolution inequality, see [36],

that

‖q̂ ∗ w‖∞ ≤ ‖q̂‖1‖w‖∞.

Since p̂ ∈ L1(R), we know that p ∈ L∞(R). This implies p MνTτ (q̂ ∗w) ∈ L∞(R).
Using that p(x) = ∫

R p̂(ξ)e2π iξ x dξ a.e., we obtain for almost every x ∈ R that

p(x)MνTτ (q̂ ∗ w)(x) = p(x)e2π ixν
∫

R

q̂(t)w(x − τ − t) dt

=
∫

R

p̂(ξ)e2π iξ x dξ e2π ixν
∫

R

q̂(t)w(x − τ − t) dt

=
∫

R

∫

R

p̂(ξ)e2π ix(ξ+ν)q̂(t)w(x − τ − t) dt dξ

=
∫

R

∫

R

q̂(t − τ) p̂(ξ − ν)w(x − t)e2π iξ x dt dξ

= Dw(Tτ q̂ ⊗ Tν p̂)(x).

��
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We use the above lemma to show the following intermediate sampling formula.

Lemma 2 Let H be given by (2). Let w ∈ L∞(R) and p, q ∈ L1(R) ∩ C0(R) with

p̂, q̂ ∈ L1(R) and supp p ⊆ [−Tp
2 ,

Tp
2 ] as well as supp q ⊆ [−Ωq

2 ,
Ωq
2 ]. Choose

step-sizes 0 < a < 1/Ωq and 0 < b < 1/Tp. Then for any φ,ψ ∈ L1(R) ∩ C0(R)

with φ̂, ψ̂ ∈ L1(R) obeying

ψ(x) =
{
b, for |x | ≤ Tp

2 ,

0, for |x | ≥ 1
2b ,

φ(x) =
{
a, for |x | ≤ Ωq

2 ,

0, for |x | ≥ 1
2a .

we have

p(x)H(q̂ ∗ w)(x) = ψ(x)
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1(φ̂ ∗ w)(x) (12)

for all x ∈ R, where

ck1,k2 :=
S∑

s=1
ηs q̂(ak1 − τs) p̂(bk2 − νs), k1, k2 ∈ Z.

The series on the right side of (12) converges uniformly on R.

Proof By linearity it suffices to consider the case H = MνTτ . Since p, q ∈ L1(R),
we have p̂, q̂ ∈ C0(R) so that F := Tτ q̂ ⊗ Tν p̂ ∈ L1(R2) ∩ C0(R

2). Moreover,

by the support properties of p and q, we get supp F̂ ⊂ [−Ωq
2 ,

Ωq
2 ] × [−Tp

2 ,
Tp
2 ].

Consequently, we can apply Theorem 4 to F along each dimension w.r.t. the step-
sizes a and b and low-pass kernels φ̂ and ψ̂ to obtain

F(x, y) =
∑

k1∈Z

∑

k2∈Z
F(ak1, bk2)φ̂(x − ak1)ψ̂(y − bk2),

which converges absolutely and uniformly. For the L1-convergence, we have to show
that

∫

R

∫

R

∣∣∣∣
∑

|k1|≥K

∑

|k2|≥K

F(ak1, bk2)φ̂(x − ak1)ψ̂(y − bk2)

∣∣∣∣ dy dx

≤
∫

R

∣∣∣∣
∑

|k1|≥K

q̂(ak1 − τ)φ̂(x − ak1)

∣∣∣∣ dx ·
∫

R

∣∣∣∣
∑

|k2|≥K

p̂(bk2 − ν)ψ̂(y − bk2)

∣∣∣∣ dy

vanishes for K → ∞, which follows for both integrals as discussed in the proof of
Theorem 4.
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As the operator Dw : L1(R2) → L∞(R) defined in Lemma 1 is continuous we
conclude

p(x) H(q̂ ∗ w)(x) = Dw(F)(x) =
∑

k1∈Z

∑

k2∈Z
F(ak1, bk2)Dw(Tak1 φ̂ ⊗ Tbk2 ψ̂)(x) a.e.

By applying Lemma 1 once again, we obtain

Dw

(
Tak1 φ̂ ⊗ Tbk2ψ̂

)
(x) = ψ(x) Mbk2Tak1(φ̂ ∗ w)(x) a.e.

Consequently we get for almost every x ∈ R that

p(x) H(q̂ ∗ w)(x) =
∑

k1∈Z

∑

k2∈Z
F(ak1, bk2)ψ(x) Mbk2Tak1(φ̂ ∗ w)(x)

= ψ(x)
∑

k1∈Z

∑

k2∈Z

[
q̂(ak1 − τ) p̂(bk2 − ν)

]
Mbk2Tak1(ψ̂ ∗ w)(x).

(13)

Note that by Theorem 1 the sequences
(
q̂(ak1 − τ)

)
k1∈Z and

(
p̂(bk2 − ν)

)
k2∈Z are

absolutely summable. The functions Mbk2Tak1(ψ̂ ∗ w) are bounded by

‖Mbk2Tak1(φ̂ ∗ w)‖∞ ≤ ‖φ̂ ∗ w‖∞ ≤ ‖φ̂‖1‖w‖∞.

Thus, the series (13) converges uniformly onR and, since the partial sums in (13) are
continuous functions, we conclude that the series converges to a continuous bounded
function. As p and q̂ ∗w are also continuous and bounded, we see that (12) holds for
all x ∈ R. ��

Although Theorem 2 works on arbitrary bounded identifiers w ∈ L∞(R), the fact
that the left side of (12) does not depend on φ and ψ suggests that there might be a
way to avoid the use of these functions. For this purpose, we restrict our attention to a
subset of L∞(R), namely functions f = μ̂ f with μ f ∈ M (R). Having the Fourier
convolution theorem in mind, for a Borel measurable, bounded function φ, we define
the convolution

(φ�F f )(x) := ̂(φμ f )(x) =
∫

R

φ(ξ)e−2π ixξ dμ f (ξ),

which yields a continuous and bounded function. If φ ∈ L1(R) ∩ C0(R) such that
φ̂ ∈ L1(R), then our convolution may be expressed by the Fourier convolution as

φ�F f = φ̂ ∗ f .

We have the following convergence result.
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Lemma 3 Let f = μ̂ f with μ f ∈ M (R) and let g be a bounded Borel-measurable
function. Assume that the uniformly bounded and Borel measurable functions gm :
R → C converge pointwise to g : R → C. Then gm�F f converges uniformly to
g�F f , i.e.,

‖gm�F f − g�F f ‖∞ → 0, as m →∞.

Proof Applying Fatou’s lemma, we obtain

lim sup
m→∞

‖gm�F f − g�F f ‖∞ = lim sup
m→∞

{
sup
x∈R

∣∣
∫

R

(gm(ξ)− g(ξ))e−2π ixξ dμ f (ξ)
∣∣
}

≤ lim sup
m→∞

{∫

R

|gm(ξ)− g(ξ)| d|μ f |(ξ)

}

≤
∫

R

lim sup
m→∞

|gm(ξ)− g(ξ)|
︸ ︷︷ ︸

=0

d|μ f |(ξ) = 0.

The lemma of Fatou is applicable since ‖g − gm‖∞ ≤ 2M for some M > 0 and
constant functions are integrable w.r.t. μ f ∈M (R). ��
Theorem 5 Let H be given by (2). Letw = μ̂w withμw ∈M (R) and p, q ∈ L1(R)∩
C0(R) with p̂, q̂ ∈ L1(R) and supp p ⊆ [−Tp

2 ,
Tp
2 ] and supp q ⊆ [−Ωq

2 ,
Ωq
2 ].

Choose 0 < a < 1/Ωq and 0 < b < 1/Tp. Then, for all x ∈ R, we have

p(x)H(q̂ ∗ w)(x) = ab χ(− 1
2b , 1

2b )(x)
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1

(
χ(− 1

2a , 1
2a )�Fw

)
(x),

(14)

where

ck1,k2 =
S∑

s=1
ηs q̂(ak1 − τs) p̂(bk2 − νs), k1, k2 ∈ Z.

The series on the right-hand side of (14) converges uniformly on R.

Proof Let (ψm)m∈Z and (φm)m∈N be uniformly bounded sequences of Schwartz func-
tions with

ψm(x) =
{
b, for |x | ≤ Tp

2 ,

0, for |x | ≥ 1
2b ,

φm(x) =
{
a, for |x | ≤ Ωq

2 ,

0, for |x | ≥ 1
2a

for all m ∈ N which converge for m →∞ pointwise as

ψm(x) →
{
b, for |x | < 1

2b ,

0, for |x | ≥ 1
2b ,

φm(x) →
{
a, for |x | < 1

2a ,

0, for |x | ≥ 1
2a .
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Abbreviating y := pH(q̂ ∗ w), we obtain by Theorem 2 that

y(x) = ψm1(x)
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1(φ̂m2 ∗ w)(x) for all x ∈ R and m1,m2 ∈ N.

Note that neither y(x) nor ck1,k2 depend on m1 or m2. Letting m1 →∞, we immedi-
ately obtain the pointwise limit

y(x) = b χ(− 1
2b , 1

2b )(x)
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1(φ̂m2 ∗ w)(x) for all x ∈ R and m2 ∈ N.

Now consider the series:We already used in the proof of Theorem 2 that by Theorem 1
the coefficients (ck1,k2)k1,k2∈Z ∈ �1(Z2) are absolutely summable. Moreover, writing
φ := aχ(− 1

2a , 1
2a ) we know by construction that φm2(x) → φ(x) as m2 → ∞ for

every x ∈ R and (φm2)m2∈Z is uniformly bounded. We can therefore apply Lemma 3
to obtain

‖φm2�Fw − φ�Fw‖∞ → 0, as m2 →∞.

Since we have φ̂m2 ∗ w = φm2�Fw for all m2 ∈ N, we estimate

∥∥
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1(φ̂m2 ∗ w − φ�Fw)

∥∥∞

≤
∑

k1∈Z

∑

k2∈Z
|ck1,k2 |‖φ̂m2 ∗ w − φ�Fw‖∞

= ‖(ck1,k2)k1,k2∈Z‖1‖φm2�Fw − φ�Fw‖∞.

Letting m2 →∞ the right side converges to 0 which proves that

y(x) = b χ(− 1
2b , 1

2b )(x)
∑

k1∈Z

∑

k2∈Z
ck1,k2Mbk2Tak1(φ�Fw)(x)

for all x ∈ R, which is equivalent to (14).
The uniform convergence of the series follows immediately from (ck1,k2)k1,k2∈Z ∈

�1(Z2) and χ(− 1
2a , 1

2a )�Fw ∈ Cb(R). ��
Now we can prove our main theorem.

Proof (Theorem 3) 1. Since |n|Ω
L1

≤ (L1−1)Ω
2L1

for n = −N1, . . . , N2 in the represen-

tation (4) of the identifier w, we see that suppμw ⊂ [− L1−1
2L1

Ω, L1−1
2L1

Ω]. Choose
max{ L1−1

L1
, L2−1

L2
} < β < 1 and let (γm)m∈N and (λm)m∈N be sequences of positive

numbers such that 1 < γm and β < λm < 1 and γmλm < 1 for all m ∈ N that
converge to 1 as m →∞. Then, for m ∈ N, define

Tm := γmT , Ωm := γmΩ, am := λm

Ω
, bm := λm

T
,
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as well as the functions

wm(x) := w

(
x

λm

)
, x ∈ R.

Clearly, we have for all m ∈ N that wm = μ̂wm , where μwm ∈M (R) fulfills

suppμwm ⊂
[
− (L1 − 1)Ω

2L1λm
,
(L1 − 1)Ω

2L1λm

]
⊂
(
−Ω

2
,
Ω

2

)
.

Further, the function wm is amL1-periodic. Let (pm)m∈N, (qm)m∈N be sequences of
Schwartz functions with

pm(x) =
{
1, for |x | ≤ T

2 ,

0, for |x | ≥ Tm
2 ,

qm(x) =
{
1, for |x | ≤ Ω

2 ,

0, for |x | ≥ Ωm
2 .

We consider the signal

ym(x) := pm(x)MνTτ (q̂m ∗ wm)(x), x ∈ R.

Now pm, qm as well as am = λm
Ω

< 1
Ωm

and bm = λm
T < 1

Tm
satisfy the assumptions

of Theorem 5. Hence we get

ym(x) = ambmχ(− 1
2bm

, 1
2bm

)(x)
∑

k1∈Z

∑

k2∈Z
cm,k1,k2Mbmk2Tamk1

(
χ(− 1

2am
, 1
2am

)�F wm

)
(x)

(15)

with cm,k1,k2 := q̂m(amk1 − τ) p̂m(bmk2 − ν) for k1, k2 ∈ Z.

Since 1
am

= Ω
λm

> Ω it follows that suppμwm ⊂ (−Ω
2 , Ω

2 ) ⊂ (− 1
2am

, 1
2am

).
Therefore we have for all x ∈ R and m ∈ N that

χ(− 1
2am

, 1
2am

)�Fwm(x) =
∫

(− 1
2am

, 1
2am

)

e−2π iξ x dμwm (ξ) = wm(x).

Thus for |x | < 1
2bm

we can simplify (15) to

ym(x) = ambm
∑

k1∈Z

∑

k2∈Z
cm,k1,k2Mbmk2Tamk1wm(x).

2. For j = −N2, . . . , N2, we consider

ym

(
j

bmL2

)
= ambm

∑

k1∈Z

∑

k2∈Z
cm,k1,k2wm

(
j

bmL2
− amk1

)
e
2π i k2 j

L2 . (16)
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Since p̂m, q̂m are Schwartz functions, we know that (cm,k1,k2)k1,k2∈Z ∈ �1(Z2). Fur-
ther wm is bounded, so that the series in (16) converges absolutely. Consequently
we can rearrange the summation and use the substitution k1 = �1L1 + n1 and
k2 = �2L2+ n2 for �1, �2 ∈ Z and n1 = −N1, . . . , N1 as well as n2 = −N2, . . . , N2
to obtain

ym
( j

bmL2

)

= ambm
∑

�1∈Z

∑

�2∈Z

N1∑

n1=−N1

N2∑

n2=−N2

cm,�1L1+n1,�2L2+n2

× wm

( j

bmL2
− amn1 − amL1�1

)
e
2π i(�2 j+ n2 j

L2
)

= ambm

N1∑

n1=−N1

N2∑

n2=−N2

wm

( j

bmL2
− amn1

)
e
2π i n2 j

L2
∑

�1∈Z

∑

�2∈Z
cm,�1L1+n1,�2L2+n2

= ambm

N1∑

n1=−N1

N2∑

n2=−N2

wm

( j

bmL2
− amn1

)
e
2π i n2 j

L2 Qm,n1(ν)Pm,n2(τ ), (17)

where in the last line we abbreviate

∑

�1∈Z

∑

�2∈Z
cm,�1L1+n1,�2L2+n2

=
∑

�1∈Z
q̂m

(
am(�1L1 + n1)− τ

)

︸ ︷︷ ︸
=:Qm,n1 (τ )

∑

�2∈Z
p̂m

(
bm(�2L2 + n2)− ν

)

︸ ︷︷ ︸
=:Pm,n2 (ν)

. (18)

We can significantly simplify (18) via Poisson’s summation formula: Indeed, q̂m, p̂m
are band-limited, integrable functions, so by Lemma 4 we obtain

Qm,n1(τ ) =
∑

�1∈Z
q̂m

(
am(�1L1 + n1)− τ

) = 1

amL1

N1∑

�1=−N1

qm
( −�1

amL1

)
e
2π i �1(amn1−τ )

am L1

and

Pm,n2(ν) =
∑

�2∈Z
p̂m

(
bm(�2L2 + n2)− ν

) = 1

bmL2

N2∑

�2=−N2

pm
( −�2

bmL2

)
e
2π i �2(bmn2−τ )

bm L2 .

We used that qm( −�1
am L1

) = 0 if |�1| ≥ L1
2 since this implies |�1|

am L1
≥ 1

2am
> Ωm

2 and

also pm( −�2
bm L2

) = 0 if |�2| ≥ L2
2 because then |�2|

bm L2
≥ 1

2bm
> Tm

2 . 3. Finally, we take
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limits. By continuity of w it is easy to compute

lim
m→∞wm

( j

bmL2
− amn1

)
= lim

m→∞w
( j

λmbmL2
− am

λm
n1
)
= w

(T j

L2
− n1

Ω

)
.

Now consider the limits of Qm,n1(τ ) and Pm,n2(ν). It follows from amΩ = λm >

β > 2N1
L1

that |�1|
am L1

≤ N1
am L1

< Ω
2 for �1 = −N1, . . . , N1, which in turn implies

qm( −�1
am L1

) = 1. Similarly, since bmT = λm > β > 2N2
L2

we have |�2|
bm L2

≤ N2
am L2

< T
2

and thus p( −�2
bm L2

) = 1 for all �2 = −N2, . . . , N2. Consequently, it follows

lim
m→∞ Qm,n1(τ ) = lim

m→∞
1

amL1

N1∑

�1=−N1

e
2π i �1(amn1−τ )

am L1

= Ω

L1

N1∑

�1=−N1

e
2π i �1(n1−Ωτ)

L1 = Ω

L1
DN1

(
n1 −Ωτ

L1

)

and by the an analogous computation,

lim
m→∞ Pm,n2(ν) = T

L2
DN2

(
n2 −T ν

L2

)
.

Therefore taking the limit of (17) yields

lim
m→∞ ym

( j

bm L2

)

= 1

T Ω

N1∑

n1=−N1

N2∑

n2=−N2

w
(T j

L2
− n1

Ω

)
e
2π i n2 j

L2
Ω

L1
DN1

(n1 −Ωτ

L1

)T
L2

DN2

(n2 −T ν

L2

)

= 1

L1L2

N1∑

n1=−N1

N2∑

n2=−N2

w
(T Ω j − n1L2

ΩL2

)
e
2π i n2 j

L2 DN1

(n1 −Ωτ

L1

)
DN2

(n2 −T ν

L2

)
.

(19)

Next we consider the limit of the definition of ym(
j

bm L2
), i.e.,

lim
m→∞ ym

( j

bmL2

)
= lim

m→∞ pm
( j

bmL2

)
MνTτ (q̂m ∗ wm)

( j

bmL2

)
. (20)
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Using the assumptions on qm we obtain

q̂m ∗ wm(x) =
∫

R

wm(t)q̂m(x − t) dt =
∫

R

∫

R

e−2π iξ t dμwm (ξ) q̂m(x − t) dt

=
∫

R

e−2π iξ x
∫

R

e2π iξ t q̂m(t) dt
︸ ︷︷ ︸
=qm (ξ)=1 on suppμwm

dμwm (ξ) = wm(x)

for all m ∈ N, so that (20) can be written as

lim
m→∞ ym

( j

bmL2

)
= lim

m→∞ pm
( j

bmL2

)
wm

( j

bmL2
− τ

)
e
2π i jν

bm L2 .

We already showed in a previous argument that pm(
j

bm L2
) = 1 for j = −N2, . . . , N2

for all m ∈ N. Then it follows from continuity that

lim
m→∞ ym

( j

bmL2

)
= lim

m→∞w
( j

λmbmL2
− τ

λm

)
e
2π i jν

bm L2

= w
(T j

L2
− τ

)
e
2π iT jν

L2 = MνTτw
(T j

L2

)
. (21)

Combining (19) with (21) then proves (5). ��

5 Numerical algorithms

In this section, we propose to solve problem (8), i.e.,

argminη∈CS ,(τ,ν)∈XS ‖G
S∑

s=1
ηs A(τs, νs)− y‖22 + λ‖η‖1, λ > 0

by two kind of algorithms. We adapt the alternating descent conditional gradient
method from [2] to our setting in Sect. 5.2. We will address the theoretical conver-
gence behaviour in a forthcoming manuscript and refer only to the literature here. For
numerical comparisons, we start with a simple grid refinement algorithm in the next
Sect. 5.1.

5.1 Multi-level time–frequency refinement algorithm

Insteadof solving theoptimizationproblemover the continuous set X = [−T /2,T /2]
× [−Ω/2,Ω/2], we may discretize X on a gridJ of cardinality J . For instance we
could choose an equidistant grid. Then we consider the atoms on the grid points
(τ j , ν j ), j ∈J . Setting

ZJ := [A(τ1, ν1), . . . , A(τJ , νJ )] ∈ CL1L2×J
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and η ∈ CJ , we reduce (9) to the convex minimization problem

min
η∈CJ

‖GZJ η − y‖22 + λ ‖η‖1. (22)

The sparsity of the discrete measure is here promoted by the 1-norm. In other words,
we hope that η has only S � J entries which are not near zero. For one-dimensional
problems on the torus, Duval and Peyré [19] showed that the discretized problem Γ -
converges to the continuous problem in the sense of Remark 1 if the regular grid gets
finer and finer under certain assumptions; so if the grid is fine enough, we should obtain
a sufficient precise solution. On the contrary, a fine grid blows up the problem dimen-
sion and make its numerically intractable. Further, as described in [17] and references
therein for general total variation minimization problems, the true point masses are
usually approximated by several point masses of the grid in a small neighbourhood.
These clusters may be detected and replaced by an averaged point mass. Further, the
minimization problem (22) is a basis pursuit often encountered in compressed sensing
and can be solved using toolboxes like CVX [22] or, approximately, by greedymethods
like matching pursuits [4,15,42].

Algorithm 1 Orthogonal matching pursuit
Require: y, J .
1: Set r := y, τ := [ ], ν := [ ], Z := [ ].
2: for k = 0, 1, 2, . . . do
3: Expand τ ∈ Rk , ν ∈ Rk by

(τk+1, νk+1) := argmax(τ,ν)∈J |〈r ,GA(τ,ν)〉|
‖GA(τ,ν)‖2 .

4: Expand Z ∈ CL1L2×k by A(τk+1, νk+1).
5: Compute the least-square solution of

min
η∈Ck+1 ‖GZη − y‖22.

6: Set r := y − GZη.
7: return (τ, ν, η).

Instead of choosing a fine grid on the entire domain, we would like to solve the �1

minimization problem (22) on a small set J that, in the ideal case, only covers the
neighbourhoods of the unknown true parameters in X to reduce the numerical effort.
For this purpose, we initially apply the orthogonal matching pursuit in Algorithm 1
on a fine regular grid until the residuum r gets small or a certain number of atoms is
determined. Although the performance of the greedy method strongly depends on the
current instance, the computed atoms are usually located near the true point masses.
Surrounding the computed atoms with a fine local grid, we obtain a good starting set
J0 for (22). Next, we would like to let the local grid become finer and finer to improve
the solution and to let the number of atoms be nearly the same. Having an optimal η∗
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of (22) for Jr , we may chose a new finer grid Jr+1 around the interesting features
by one of the following refinement strategies:

1. Determine the dominant atoms corresponding to (τ j , ν j ) ∈ Jr with |η∗j | ≥ ε.
Discretize the neighbourhood around these atoms by a finer grid. Chose Jr+1 as
the union of these finer grids.

2. Determine the importance γ j of the atom corresponding to (τ j , ν j ) ∈Jr by

γ j :=
∑

(τk ,νk )∈Jr∩Uj

|η∗k |,

where the coefficients of all atoms with parameters in a neighbourhood Uj around
(τ j , ν j ) are summed up. For the most important neighbourhood Uj , compute the
barycenter by

(τ̃ j , ν̃ j ) :=
∑

(τk ,νk )∈Jr∩Uj

|η∗k |
γ j

(τk, νk).

Add a finer grid around (τ̃ j , ν̃ j ) to Jr+1, remove the atoms in Uj from Jr , and
repeat the procedure as long as there are important points with γ j ≥ ε.

The new local grids should cover a smaller neighbourhood. For instance, these grids
could again be regular with decreasing step size according to r . Notice that the numer-
ical effort of the first refinement strategy is less than for the second one. On the other
hand, the second strategy can leave the local grids due to the barycenters. After deter-
mining a final atomic setJ ∗ containing the most dominant atoms or barycenters, the
corresponding coefficients can be computed by solving the least square problem

min
η∈C|J ∗|

‖GZJ ∗η − y‖22. (23)

In summary, we obtain Algorithm 2.

Algorithm 2Multi-level time-frequency refinement
Require: y.
1: Construct an initial gridJ0 using Algorithm 1.
2: Compute the minimizer η∗ of (22).
3: for r = 0, 1, 2, . . . do
4: Determine a new atomic set Jr+1 using strategy 1 or 2.
5: Compute the minimizer η∗ of (22).
6: Determine the dominant atoms or centers as in strategy 1 or 2.
7: Compute η by solving (23).
8: return (τ, ν, η).
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5.2 Alternating descent conditional gradient algorithm

Next, we adapt the ADCG from [2] to our setting. This algorithm minimizes over
the continuous domain X . The ADCG is a modification of the conditional gradient
method (CGM) – also known as the Frank-Wolfe algorithm introduced in [21] –
for total variation regularization. The original Frank-Wolfe algorithm on Rd solves
optimization problems of the form argminx∈V f (x), where the feasible set V ⊂ Rd

is compact and convex and the function f is a differentiable and convex. Given the
kth iterate xk each iteration consists basically of two steps, namely

(i) minimizing a linearized version of f in xk over the feasible set

vk = argminv∈V f (xk)+ 〈∇ f (xk), v − xk〉,

(ii) updating with

xk+1 = xk + γ (vk − xk).

In super-resolution, the first step always consists in an update of the support of the
measure as it is also done in the first step of our Algorithm 3.

Concerning the second step, all important convergence guarantees of the algorithms
are still valid, if we replace xk+1 in the second step by any feasible x̃k+1 that fulfills
f (x̃k+1) ≤ f (xk+1). This flexibility has led to several successful variations of the
classical Frank-Wolfe algorithm. ADCG related algorithms which differ in the second
step are for example the algorithm in [3] and the so-called sliding Frank-Wolfe in [17].
While the first one uses soft shrinkage to update the amplitudes and a discrete gradient
flow over the locations, the second one uses a non-convex solver to jointly minimize
over the amplitudes and positions with a suitable starting values for the amplitudes.

Adapting the ADCG to our setting results in Algorithm 3, whose details are dis-
cussed in the following. For convergence results we refer to [2]. The expansion step
of the ADCG algorithm is very similar to the greedy matching pursuit in Algorithm 1
without normalization of the atoms. To find a solution

(τJk+1, νJk+1) := argmax(τ,ν)∈X |〈r ,GA(τ, ν)〉|,

the objective can first be evaluated on a fine regular grid of X . The obtained
(τJk+1, νJk+1) may then be improved using a gradient descent method. In our numer-
ical simulations, we however notice that this improvement step has no crucial impact
on the recovered measure for our problem and can be skipped.

The second step consists in the update of the parameters by

(η, τ, ν) := argminη∈CJk+1,(τ,ν)∈X Jk+1 ‖GZ(τ, ν)η − y‖22 + λ‖η‖1

with Z(τ, ν) := [A(τ1, ν1), . . . , A(τS, νS)]. In difference to the general algorithm in
[17], the coefficient of the point masses η are complex numbers such that the above
update consists in the minimization of a non-smooth objective. Therefore, we use the
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Algorithm 3 ADCG
Require: y.
1: Set r := y, τ := [ ], ν := [ ].
2: for k = 0, 1, 2, . . . do
3: Expand τ ∈ RJk , ν ∈ RJk by

(τJk+1, νJk+1) := argmax(τ,ν)∈X |〈r ,GA(τ, ν)〉|.

4: for � = 0, 1, 2, . . . do
5: Compute a minimizer

η := argmin
η∈CJk+1 ‖GZ(τ, ν)η − y‖22 + λ‖η‖1.

6: Compute a minimizer

(τ, ν) := argmin
(τ,ν)∈X Jk+1 ‖GZ(τ, ν)η − y‖22

7: Remove point masses with zero coefficients.
8: Set r := y − GZ(τ, ν)η.
9: return (η, τ, ν).

alternating minimization proposed in [2], which splits up the minimization into the
basis pursuit or LASSO problem

η := argminη∈CJk+1 ‖GZ(τ, ν)η − y‖22 + λ‖η‖1.

and the smooth minimization problem

(τ, ν) := argmin(τ,ν)∈X Jk+1 ‖GZ(τ, ν)η − y‖22︸ ︷︷ ︸
=:F(τ,ν)

.

The �1 regularized problem can be solved as discussed above and the second one
by a gradient descent or quasi Newton method like BFGS. A short computation shows
that the gradients of the objective F are just given by

gradτ F(η, τ, ν) = 2
{(
GZ τ (τ, ν) diag(η)

)∗
(GZ(τ, ν)η − y)

}
,

gradν F(η, τ, ν) = 2
{(
GZν(τ, ν) diag(η)

)∗
(GZ(τ, ν)η − y)

}
,

where ·∗ denotes the conjugation and transposition of a matrix. The partial derivatives
of the atoms A(τ j , ν j ) with respect to τ j and ν j are collected in the matrices

Z τ (τ, ν) := [ d
dτ A(τ1, ν1), . . . ,

d
dτ A(τs, νs)],

Zν(τ, ν) := [ d
dν A(τ1, ν1), . . . ,

d
dν A(τs, νs)]
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with

[ d
dτ A(τ, ν)](n1,n2) = − Ω

L2
1L2

D′N1

(n1 −Ωτ

L1

)
DN2

(n2 −T ν

L2

)
,

[ d
dν A(τ, ν)](n1,n2) = − T

L1L2
2
DN1

(n1 −Ωτ

L1

)
D′N2

(n2 −T ν

L2

)
.

The derivative of the N -th Dirichlet kernel DN is given by

D′N (x) = −4π
N∑

n=1
n sin(2πnx) =

(
sin((2N + 1)πx)

sin(πx)

)′
.

Finally, we like tomention that the numerical effort ofADCGalgorithm ismuch higher
compared with the multi-level refinement in Algorithm 2 since several optimization
problems have to be solved for each added point mass.

6 Numerical results

In the following experiments, we compare the orthogonal matching pursuit, the multi-
level time-frequency refinement, and the ADCG. First, we consider the performance
for a specific synthetic instance. Then we study the general performance with respect
to the noise level and how many measurements are needed to estimate the unknown
channel. Finally, the influence of the identifier model is discussed.

Channel estimation from synthetic measurements For this experiment, we assume
that the unknown channel or operator H in (2) has exactly S = 10 features and
that this number is known in advance. The shifts and modulations (τ j , ν j ) are inde-
pendently generated with respect to the uniform distribution on [−T /2,T /2] ×
[−Ω/2,Ω/2] = [−1.5, 1.5] × [15.5, 15.5]. The coefficients η j are independently
and uniformly drawn from the complex unit circle. The employed identifier w is
a trigonometric polynomial of degree N1 = 50, i.e. L1 = 101, whose coeffi-
cients are independently drawn from the complex unit circle too. The true samples
y j = Hw(

T j
L2

)with j = −N2, . . . , N2 and L2 = 101 are corrupted by additive com-

plex Gaussian noise such that ‖y − yδ‖2/‖y‖2 = 0.1, which corresponds to−10 db1
white noise – the noisy data are again denoted by yδ .

To recover the unknown channel parameters, we apply the orthogonal matching
pursuit (Algorithm 1) with the regular grid J of [−T /2,T /2] × [−Ω/2,Ω/2]
consisting of 1024 points in each direction. The same grid is used to compute the
locationof the newpointmasses in theADCG(Algorithm3).Bothmethods are stopped
after computing exactly 10 features. The multi-level refinement in Algorithm 2 is
initializedby applying the orthogonalmatchingpursuit to a coarser gridwith 256points

1 The unit decibel henceforth refers to the scale 10 log10(‖ · −p‖/‖p‖) for a reference point p – usually
the true measurements or operator. Depending on the context, the norm refers to the Euclidean or operator
norm.
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(a) Orthogonal matching pur-
suit (Algorithm 1).
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(b) Multi-level grid refinement
(Algorithm 2).
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(c) ADCG (Algorithm 3).

Fig. 1 Estimated shifts and modulations of a channel with S = 10 features, where S is exactly known in
advance. The degree of the identifier and the number of samples are L1 = L2 = 101. The additive Gaussian
noise corresponds to −10 db

Table 1 Mean absolute reconstruction errors over 50 experiments for channels with S = 10 features, where
S is exactly known in advance. The degree of the identifier and the number of samples are L1 = L2 = 101.
The additive Gaussian noise corresponds to −10 db

Absolute error Algorithm 1 Algorithm 2 Algorithm 3

max |τ†j − τ j | 4.778 · 10−2 2.809 · 10−2 3.336 · 10−2

max |ν†j − ν j | 1.995 · 10−1 9.476 · 10−2 1.331 · 10−1

max |η†j − η j | 2.322 · 10−1 1.491 · 10−1 1.508 · 10−1
Mean run time 194 seconds 45 seconds 404 seconds

in each direction. The local 5×5 grids are then refined 15 times by reducing the stepsize
by a factor of 0.75. We always use the second refinement strategy. The multi-level
refinement and theADCGare applied to the Tikhonov regularization (9)withλ = 500.
The recovered shifts andmodulations of all threemethods are shown in Fig. 1. The true
parameters are denoted with an additional †. The absolute errors of the estimation are
recorded in Table 1, where the experiment has been repeated 50 times and the errors
are averaged. For this instance, all three methods yield comparable results, where
the shifts τ j and modulations ν j are quite accurate. The multi-level refinement and
the ADCG method achieve slightly higher accuracies than the orthogonal matching
pursuit, but, on the downside, the ADCG method is much more time-consuming than
the others. Considering the noise level, the results are nevertheless satisfying and
show that in particular the shifts and modulations are recoverable from highly noisy
measurements.

Influence of Noise Next, we study the influence of the noise on the recovery quality
of the algorithms in more details. Therefore, the unknown channel is again randomly
generated with respect to 10 coefficients on the complex unit circle. In contrast to
the first numerical example, the algorithms are henceforth stopped if the residuum
becomes small or if the objective stagnates; in other words, the algorithms have no
knowledge of the true sparsity S. The degree of the random identifier with unimodular
coefficients and the number samples is L1 = L2 = 101 once more. The remaining
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parameters are T = 1 and Ω = 101. The parameter λ is chosen with respect to
the noise level and goes to zero for vanishing noise. Differently from the experiment
before, we want to measure how well the estimated channel approximates the true
one. Since we are only interested on the behavior of the true channel on the sampled
interval [−T /2,T /2], we interpret the restriction of H as an operator from the
space of L1/Ω-periodic trigonometric polynomialsPN1 ⊂ L2([−L1/2Ω, L1/2Ω))

of degree N1 at the most to the square-integrable functions L2([−T /2,T /2]), i.e.

H :PN1 → L2([−T
2 , T

2 ]).

The difference between the true operator H† and the estimated operator H is hence-
forth measured by the operator norm

‖H† − H‖op := sup
w∈PN1\{0}

‖H†w − Hw‖L2([−T /2,T /2])
‖w‖L2([−L1/2Ω,L1/2Ω])

,

where ‖ · ‖L2(I ) is the 2-norm of the restriction to the specified interval I . Due to
Parseval’s identity, the considered subspace is isometrically isomorph to the coefficient
space CL1 . After discretizing [−T /2,T /2] and employing the midpoint rule, the
operator norm may be computed numerically using the singular value decomposition.

The mean performance of the discussed algorithms is shown in Fig. 2, where for
every noise level the experiment has been repeated 50 times. During the multi-level
refinement, the step size of the local grids is decreased 25 times by a factor of 2/3.
For the ADCG method the �1 and least-square minimization is alternated 25 times.
The observation of the first experiment for −10 dB noise carry over. Notice that
already small parameter errors lead to large relative errors in the operator norm. The
reconstruction error for the multi-level method and the ADCG method corresponds
nearly one-to-one to the noise level of the measurements. The reconstruction by the
orthogonal matching pursuit does not improve if the noise is decreasing. Although the
orthogonal matching pursuit yields sufficient results as starting point for the refine-
ment method, the problem cannot be solved sufficiently accurate by applying only this
greedy method.
Number of requiredmeasurementsDuring our numerical experiments,we have noticed
that around 10 times more samples than unknown features are required to estimate the
parameters of the channel sufficiently well. In the following, we explore the question
howmanymeasurements are needed in more details. For this, we consider the solution
of Algorithm 3 for different numbers of features and numbers of measurements. The
remaining parameters of the setting are Ω = L1 = L2 = 101 and T = 1. The
coefficient of the unknown channel are unimodular, and the measurements are exact.
We declare a reconstruction as success if the relative error ‖H† − H‖op/‖H†‖op is
less than−40 dB, and repeat the experiment 50 times for each data point. The success
rate and the mean relative error in the operator norm are shown in Fig. 3 and sustain
our observation.

This experiment is the numerical analogon to the theoretical recovery guarantee
in [23, Thm 1], where the unknown parameters (ηs, τs, νs) of (10) in Remark 2 are
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Fig. 2 The recovery error of the
orthogonal matching pursuit
(Algorithm 1), the refinement
strategy (Algorithm 2), and the
Frank–Wolfe method
(Algorithm 3) over varying
levels of complex Gaussian
noise to recover a channel with
10 features from 101 samples.
The regularization parameter λ

has been chosen with respect to
the current noise level
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(b) Mean error in operator norm.

Fig. 3 Empirical probability that the operator norm satisfies ‖H† − H‖op/‖H†‖op ≤ −40 dB depending
on the number of measurements and features. The coefficients of the unknown operators have been chosen
unimodular

determined by solving an atomic norm problem. More precisely, the minimizer of
the atomic norm problem yields the wanted parameters with high probability under
certain assumptions. For the theoretical statement, at least L ≥ 1024 measurements
are required. Considering the phase transition in Fig. 3, we see that, from a numerical
point of view, much less measurements are needed to recover the unknown channel. In
particular for higher sparsity levels, the transition between failure and success becomes
non-linear, which corresponds to the theoretical results.

Influence of the minimal separation Continuing the discussion of the theoretical guar-
antees, we recall that one of the crucial assumptions is a lower bound for the minimal
separation

min
{ |τ j−τk |

T ,
|ν j−νk |

Ω

}
.

If the distance between two or more features in the parameter space become to close,
they cannot be resolved numerically and are often combined into one feature. This
well-known effectmay heavily lower the quality of the reconstruction and also occur in
our setting. To study this behaviour numerically, we again consider random channels
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Fig. 4 The recovery error for
unknown channels with certain
relative minimal separation
between the 10 features. The
employed 101 measurements
have been free of noise
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with 10 unimodular features for L1 = L2 = 101, T = 1, Ω = 101. The shifts
and modulations are generated such that the parameter set exactly possesses a certain
minimal separation. The results with respect to the operator norm onPN1 are shown
in Fig. 4, where the experiments have been repeated 50 times without noise. If the
separation falls below 0.01, then the error increases rapidly. Note that this transition
point depends on the problem dimension L1, L2 and on the number of unknown
features.

Importance of the identifier model Finally, we study how the chosen identifier model
affects the recovery quality. During the entire paper, we used trigonometric polyno-
mials as identifier w for the unknown channel. On the basis of w, the given samples
Hw(T d/L2) are related to the unknown parameters by Theorem 3, which are then
determined by solving the Tikhonov functional (9) with respect to the total variation
norm for measures. In [23], for the special case L := L1 = L2, N := N1 = N2, and
odd L = T Ω , Heckel, Morgenshtern, and Soltanolkotabi have suggested to solve an
atomic norm problem based on a model approximation where the identifier is chosen
as sum of shifted sinc functions

w(x) =
L+N∑

n=−L−N

cn sinc(xΩ − n). (24)

The real coefficients are chosen partially periodic as cn = cn+L = cn−L for n =
−N , . . . , N . We denote the L-dimensional span of the sinc functions (24) bySL . The
given samples are then only approximated by (5) in Theorem 3 Fig. 5.

The replacement of the trigonometric polynomial by a sum of sinc functions leads
to a model error. Considering a channel with 10 features and 101 samples as before,
and studying the recovery error of Algorithm 3 measured in the operator norm, we see
that the model mismatch corresponds to a noise level of around −25 db. Notice that
the comparison with respect to trigonometric polynomials is somehow subjective. For
this reason, we also compute the relative reconstruction error based on the subspace of
sinc functions (24). Numerically, the difference between both error terms is negligible.
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(b) Operator norm onSL.

Fig. 5 Influence of the identifier model on the reconstruction error depending on additive Gaussian noise.
For each noise level, 50 channels with 10 features have been recovered from 101 samples. The regularization
parameter has been chosen proportional to the noise level

The clearly visible approximation for sinc functions does not occur for trigonometric
identifiers.

A Proof of Theorem 2

To prove Theorem 2 we need the following auxiliary lemmata.We start with Poisson’s
summation formula for bandlimited functions. Since we have not found it directly in
the literature we give the proof for convenience.

Lemma 4 (Poisson Summation Formula for Bandlimited L1-Functions) Let f ∈
L1(R)∩C0(R) be bandlimited. Then, for a > 0, the a-periodic function Fa given by

Fa(x) :=
∑

k∈Z
f (x − ak), x ∈ R,

converges absolutely for all x ∈ R, and we have

Fa(x) = 1

a

∑

k∈Z
f̂

(
k

a

)
e2π i

kx
a .

In particular, Fa is a trigonometric polynomial for all a > 0.

Proof By assumption, we have supp f̂ ⊆ [−σ, σ ] for some σ > 0 so that we may
identify f as an element in B1

2πσ . By Theorem 1, we know that

∑

k∈Z
| f (x − ak)| ≤ 1+ 2πσa

a
‖ f ‖1 (25)
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for all x ∈ R. This shows that Fa is indeed well-defined and bounded. In particular,
Fa ∈ L∞(R/aZ) ⊂ L1(R/aZ) and we can compute the Fourier coefficients

F̂a(k) = 1

a

∫ a

0

∑

�∈Z
f (x − a�)e−2π ix

k
a dx = 1

a

∑

�∈Z

∫ a

0
f (x − a�)e−2π ix

k
a dx

= 1

a

∑

�∈Z

∫ a(�+1)

a�

f (x)e−2π ix
k
a dx = 1

a

∫

R

f (x)e−2π ix
k
a dx = 1

a f̂
( k
a

)
. (26)

Interchanging the series and integral in (26) is allowed by the theorem of Fubini–
Tonelli since x �→∑

�∈Z | f (x−a�)| is uniformly bounded by (25) and thus integrable
on [0, a].

Since f̂ has compact support, only finitely many Fourier coefficients are non-zero,
so the Fourier series

Fa(x) = 1

a

∑

k∈Z
f̂

(
k

a

)
e2π i

kx
a

converges uniformly and is indeed a trigonometric polynomial. ��
Lemma 5 Let f = μ̂ f , where μ f ∈ M (R) fulfills suppμ f ⊆ [−σ, σ ] for some
σ > 0. Then f is infinitely often differentiable and f (n) = μ̂ f (n) ∈ M (R) for all
n ∈ N with

μ f (n) = (−2π i·)nμ f .

In particular, suppμ f (n) ⊆ [−σ, σ ].

Proof Consider the difference quotients gh(x, ξ) := 1
h (e−2π i(x+h)ξ − e−2π ixξ ) for

x ∈ R, ξ ∈ [−σ, σ ] and h 	= 0. Due to the mean value theorem, they are uniformly
bounded by

|gh(x, ξ)| = | 1h (e−2π i(x+h)ξ − e−2π ixξ )| ≤ sup
x∗∈[x,x+h]

|(−2π iξ)e−2π ix∗ξ | ≤ 2πσ.

Since constant functions are integrable w.r.t. μ f ∈M (R), it follows from the domi-
nated convergence theorem that

f ′(x) = lim
h→0

∫ σ

−σ

gh(x, ξ) dμ f (ξ) =
∫ σ

−σ

lim
h→0

gh(x, ξ) dμ f (ξ)

=
∫ σ

−σ

(−2π iξ)e−2π ixξ dμ f (ξ).

Repeating the above argument starting with f ′, then f (2), and so forth, we obtain the
claim inductively for all n ∈ N. ��
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Lemma 6 ([26, Thm 4.4, p. 25]) Let f be an infinitely often differentiable, T -periodic
function for T > 0. Denote the Fourier coefficients of f by

f̂ (k) = 1
T

∫ T

0
f (x)e−2π i

kx
T dx .

Then for all j ∈ N0 there exists C j > 0 such that

| f̂ (k)| ≤ C j |k|− j for all k ∈ Z.

Proof (Theorem 2) By Lemma 5 we know that f is infinitely often differentiable and
by Lemma 6 we have for all j ∈ N that | f̂ (k)| ≤ C j |k|− j for some C j > 0, so in
particular ( f̂ (k))k∈Z ∈ �1(Z). Define the Borel measure μ by

μ := 1

K

∑

k∈Z
f̂ (k)δ

(
· + k

K

)
.

We have to show that μ ∈M (R) and we will use that (M (R), ‖ · ‖M (R)) is the dual
space of (C0(R), ‖ · ‖∞). Let ϕ ∈ C0(R) be arbitrary, then

∣∣∣
∫

R

ϕ(ξ) dμ(ξ)

∣∣∣ =
∣∣∣
1

K

∑

k∈Z
f̂ (k)ϕ

(
− k

K

)∣∣∣ ≤ 1

K

∥∥( f̂ (k))k∈Z
∥∥
1

∥∥ϕ
∥∥∞.

This shows thatμ indeed defines a continuous linear functional onC0(R). The Fourier
transform of μ is

μ̂(x) = 1

K

∑

k∈Z
f̂ (k)e2π i

kx
K = f (x), x ∈ R.

Since the Fourier transform is unique this implies μ = μ f . Finally, by assumption
suppμ = suppμ f ⊆ [−σ, σ ], so that f̂ (k) = 0 for all k ∈ Z satisfying |k| > σK
and we obtain (1). This concludes the proof. ��

B Proof of Theorem 4

Proof (Theorem 4) The first part can be proved exactly following the lines of the
classical sampling theorem of Shannon, Whittaker, Kotelnikov, see [36, Thm 2.29]
for instance. It remains to show the convergence in L1(R). Applying Theorem 1 to φ,
we obtain

∑

|k|>M

| f (ak)||φ(x − ak)| ≤ sup
|k|>M

{| f (ak)|}
∑

k∈Z
|φ(x − ak)|

≤ sup
|k|>M

{| f (ak)|} 1+π
a ‖φ‖1.
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Since the right-hand side vanishes for M →∞ independently of x due to f ∈ C0(R),
the pointwise convergent series

∑
k∈Z | f (ak)||φ(x − ak)| also converges uniformly.

The partial sums are continuous functions such that the limit is continuous too and, in
particular, measurable. Using Levi’s monotone convergence theorem [11, Thm 2.4.1],
we have

∫

R

∣∣∣
∑

|k|>M

f (ak)φ(x − ak)
∣∣∣ dx ≤

∫

R

∑

|k|>M

| f (ak)||φ(x − ak)| dx

=
∑

|k|>M

| f (ak)|
∫

R

|φ(x − ak)| dx

= ‖φ‖1
∑

|k|>M

| f (ak)|.

Since Theorem 1 ensures
(
f (ak)

)
k∈Z ∈ �1(Z), the last expression converges to zero

as M →∞, which establishes the L1-convergence. ��
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