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CHAPTER I

Introduction

Since the beginning of ultrafast nonlinear optics, it is known, that coherently excited two-level
systems exhibit Rabi oscillations [AE87]: a driving fieldE(t) couples the two energy levels with op-
tical dipole moment d12 and induces oscillations of the population in the levels with Rabi frequency
Ω(t) = E(t)d12/~. As Rabi oscillations are important for a broad range of technical applications
such as quantum information processing, there has been considerably interest in the investigation
of possible Rabi oscillations also in low-dimensional semiconductors. Thereby the focus was ly-
ing mostly on interband Rabi oscillations in quantum dots [BLS+02, FWDK03, Vas04, SMM+04]
and quantum wells [BKL+90]. Recently, also intersubband Rabi flopping between subbands in the
conduction band of quantum wells is getting increasing attention [BC04, LRW+04, MVO03].

At first sight, high excitation phenomena in intersubband systems appear to have a lot in com-
mon with the excitation of well-known atomic two-level systems, as the subbands have almost equal
curvature and therewith a transition energy independent from the in-plane wave vector k. However,
this simplified picture is valid only on the basis of single-particle excitations, i.e. neglecting many-
particle interactions such as carrier-carrier and carrier-phonon interaction. It is well known, that
carrier-carrier and carrier-phonon interaction drastically reduce the similarities to two-level systems
by introducing I. Hartree-Fock effects, which are dependent on a variety of sample parameters and
yield time-dependent renormalizations of subband-dispersion and Rabi-frequency, and II. dephasing
due to carrier-carrier and carrier-phonon scattering. Furthermore, the nonparabolicity of the con-
duction band can have a rather significant impact on the curvature of the subbands, strongest for
small quantum wells, yielding different subband dispersions and thus a variety of possible transi-
tion frequencies. All the above can influence the ability to produce Rabi oscillations and therewith
the coherent nonlinear control of populations in quantum wells considerably. Furthermore radiative
coupling between individual quantum wells in a highly doped multiple quantum well system can
also have a rather strong impact on Rabi oscillations of subband populations, much stronger than the
impact of the mechanisms discussed above.

In the scope of this work, the linear and nonlinear response of intersubband systems shall thus
be investigated - with respect to a possible coherent control of intersubband transitions and density
oscillations. Thereby the impact of the various many-particle effects is investigated first in the linear
regime and then in the nonlinear regime. The knowledge about the impact of the many-particle
effects in the linear regime shall provide the basis to successfully control the nonlinear response of
intersubband systems - in spite of taking into account the (in principle) counteracting many-particle
effects.

A. Structure of this Work

In the following, first, the theoretical background for the investigation of intersubband transitions
is provided. Starting point is the adaption of the Hamilton operator to the microscopic description
of the sample of interest (Chapter II A). In this context, the necessary background informations
for the description of semiconductor quantum wells are revised. Then, the crossover to the macro-
scopic quantities is made and the macroscopic polarization - the connection between microscopic
and macroscopic equations - is determined (Chapter II B). The microscopic equations of motion
for intersubband coherences (which yield the macroscopic polarization) and occupation numbers
(which are the access to the investigation of density dynamics in the nonlinear regime) are derived

10



Chapter I

in Chapter III. For convenience, the equations are first derived in the density matrix approach in the
Heisenberg picture which is a convenient approach for the desired many-body treatment. Addition-
ally, the interesting points, namely the derivations of mean-field and correlation contributions - are
also revised in the projector-operator theory in the Schrödinger picture. Here, the early distinction
between relevant and irrelevant part of the density matrix (directly related to the distinction between
mean-field and correlation contributions) simplifies the access to frequently used approximations
such as the mean-field factorization and therewith hopefully enhances the understanding. Before
the microscopic equations are then coupled to the macroscopic equations, which introduces radia-
tive coupling and thus allows the description of multiple quantum well systems, first the derived
microscopic contributions are investigated for the case of a very basic quantum well (Chapter IV).
This is done in great detail for the example of a single quantum well, where local field effects can
be neglected. Thereby, special attention lies on the nonlinear regime. Here the impact of the vari-
ous many-particle effects on the observed density oscillations is studied. With regard to a possible
coherent control of these oscillations, the attention is focused especially on the finding of methods
or better of cases, where pure Rabi oscillations can be observed - despite destructive many-particle
effects . In Chapter V, finally, the macroscopic equations are derived. Thereby, the theory is derived
with a special attempt to cover a wide area of possible applications. Combining the presented com-
ponents, the theory can either be used to only determine the fields in simplified multiple quantum
wells samples, that is without respect to additional aspects such as different dielectric constants of
well and barrier materials or reflections at an interface, or to determine the fields in more complex
structures taking into account the latter. As examples, applications to both the linear and the nonlin-
ear regime, are presented in Chapter VI. Last, we compare in Chapter VII numerical results of this
work to recent experimental results.

11



CHAPTER II

Theoretical Background

A. Hamiltonian

In the following sections we derive the actual Hamiltonian for the considered quantum well
system. First, we revise the general Hamiltonian for the description of charged particles interacting
with an electromagnetic field. Next, we adapt the Hamiltonian to the description of intersubband
transitions in semiconductor quantum wells using the formalism of second quantization. Last the
actual matrix elements of the various contributions are determined.

1. Basics

In this section, the basics of the derivation of the general Hamiltonian are revised: From the Maxwell-
Lorentz equations the standard Lagrangian is derived which then yields the Hamiltonian in p · A
form.

a) Maxwell-Lorentz equations

The fundamental equations describing the dynamics of a system made up of charged particles
(charge qα, mass mα, position rα(t)) interacting with an electromagnetic field are the Maxwell-
Lorentz equations. They consist of

I. the microscopic Maxwell equations relating electric field E(r, t) and magnetic field B(r, t)

∇ · B(r, t) = 0 (II.A.1a)

∇× E(r, t) = − ∂

∂t
B(r, t) (II.A.1b)

∇ · E(r, t) =
1

ε0
ρ (II.A.1c)

∇× B(r, t) =
1

c2
∂

∂t
E(r, t) +

1

ε0c2
j (II.A.1d)

to charge density ρ(r, t) and current density j(r, t)

ρ(r, t) =
∑

α

qαδ(r − rα(t)) (II.A.2a)

j(r, t) =
∑

α

qαṙαδ(r − rα(t)) (II.A.2b)

and

II. the Newton-Lorentz equations describing the dynamics of the charged particles under the in-
fluence of the electric and magnetic forces exerted by the fields

mα
d2

dt2
rα(t) = qα[E(rα(t), t) + ṙα(t) × B(rα(t), t)] . (II.A.3)

12



Chapter II II.A.1. BASICS

The Helmholtz theorem [Muk95] states that any vector field can be written as the sum of a longitu-
dinal and a transverse part

a(r, t) = aL(r, t) + aT (r, t) (II.A.4a)

aL(r, t) = − 1

4π
∇
∫

d3r′
∇ · a(r′, t)

|r − r′| , (II.A.4b)

aT (r, t) =
1

4π
∇×

∫

d3r′
∇× a(r′, t)

|r − r′| . (II.A.4c)

A longitudinal vector field is characterized by

∇× aL(r, t) = 0 or in reciprocal space ik × ãL(k, t) = 0 , (II.A.5)

a transverse field by

∇ · aT (r, t) = 0 ⇔ ik · ãT (k, t) = 0 . (II.A.6)

Thus, in reciprocal space, the name longitudinal or transverse has a clear geometrical significance:
for all wave vectors k a longitudinal vector field is parallel to k and a transverse field perpendicular
to k [CTDRG89]. Considering Eq. (II.A.1) and Eq. (II.A.4)-Eq. (II.A.6) imposes the ansatz

B(r, t) = ∇× A(r, t) , E(r, t) = − ∂
∂tA(r, t) −∇φ(r, t) , (II.A.7)

where the vector potential A(r, t) and the scalar potential φ(r, t) have been introduced. To de-
termine the four unknown quantities Ax, Ay, Az, φ uniquely, we have to impose another condition
(gauge condition), as can be seen as follows: First we insert Eq. (II.A.7) into Eq. (II.A.1c) and Eq.
(II.A.1d)

∇2φ+
∂

∂t
(∇ · A) = − 1

ε0
ρ (II.A.8)

∇× (∇× A) +
1

c2
∂2

∂t2
A +

1

c2
∇(

∂

∂t
φ) =

1

ε0c2
j . (II.A.9)

and then operate with 1
c2

∂
∂t on Eq. (II.A.8) and with ∇ on Eq. (II.A.9). Next, we subtract the

resulting equations and obtain

∇ · (∇× (∇× A)) =
1

ε0c2
(
∂

∂t
ρ+ ∇× j) . (II.A.10)

The lhs of Eq. (II.A.10) is zero because it is the gradient of a curl and the rhs vanishes since it is the
equation of continuity. Thus the four equations provided by are Eq. (II.A.8) and Eq. (II.A.9) are not
linearly independent and we have to impose another condition to determine Ax, Ay, Az, φ uniquely.
We here use the so-called Coulomb gauge (or transverse or radiation gauge) [Jac98]

∇ · A = 0 , (II.A.11)

where the vector field A is purely transverse. Then longitudinal and transverse part of the electric
field are obtained as

ET (r, t) = − ∂

∂t
A(r, t) , EL(r, t) = −∇φ(r, t) . (II.A.12)

The longitudinal component corresponds to the rearrangement of the charges, the transverse compo-
nent is related to the induced currents. In this gauge, Eq. (II.A.8) simplifies to the Poisson equation
which can be solved with [Nol97]

φ(r, t) =
1

4πε0

∫

d3r′
ρ(r′, t)

|r − r′| . (II.A.13)
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Chapter II II.A.1. BASICS

This shows that in Coulomb gauge the potential is instantaneous and has no retardation. Applying
the identity ∇ × (∇ × A) = ∇(∇ · A) − ∇2A and the gauge condition, Eq. (II.A.11), we can
simplify Eq. (II.A.9) to

−∇2A +
1

c2
∂2

∂t2
A =

1

ε0c2
j − 1

c2
∇(

∂

∂t
φ) (II.A.14)

=
1

ε0c2
j − 1

4πε0c2
∇ ∂

∂t

∫

d3r′
ρ(r′, t)

|r − r′| (II.A.15)

=
1

ε0c2
j +

1

4πε0c2
∇
∫

d3r′
∇ · j(r′, t)
|r − r′| (II.A.16)

=
1

ε0c2
j − 1

ε0c2
jL (II.A.17)

=
1

ε0c2
jT . (II.A.18)

Here, we used in the last steps first the equation of continuity and then Eq. (II.A.4). Thus in the
Coulomb gauge the vector potential A is completely determined by the transverse part of the current

jT =
1

4π
∇×

∫

d3r′
∇× j(r′)

|r − r′| . (II.A.19)

b) Standard Lagrangian and Minimal-Coupling Hamiltonian:

As can be shown [CTDRG89], the Maxwell-Lorentz equations arise naturally as the Lagrange equa-
tions for the so-called standard Lagrangian

L =
1

2

∑

α

mαṙ2
α(t)

︸ ︷︷ ︸

LP

+
ε0
2

∫

d3r
[

E2(r, t) − c2B2(r, t)
]

︸ ︷︷ ︸

LR

+
∑

α

qα

[

ṙα(t) · A(rα(t), t) − φ(rα(t), t)
]

︸ ︷︷ ︸

Lint

(II.A.20)

which consists of the Lagrangian for the particles, LP , the Lagrangian of the electromagnetic field,
LR, and the interaction Lagrangian Lint. Inserting Eq. (II.A.7) and using
∫

d3r (∇φ(r))2 = − 1

4πε0

∫

d3rφ(r)

∫

d3r′∇2
r

ρ(r′)

|r − r′|

=
1

ε0

∫

d3rφ(r)ρ(r) =
1

ε0

∑

α

qαφ(rα) (II.A.21)

we obtain the Lagrangian in Coulomb gauge

L =
1

2

∑

α

mαṙ2
α(t) +

ε0
2

∫

d3r
[

E2
T (r, t) − c2B2(r, t)

]

− 1

2

1

4πε0

∑

α,β

qαqβ
|rα(t) − rβ(t)| +

∑

α

qαṙα(t) · A(rα(t), t)

+ ε0

∫

d3r ET (r, t) · EL(r, t) . (II.A.22)

With the help of the Parseval-Plancherel identity [CTDRG89]
∫

d3r F ∗(r)G∗(r) =

∫

d3k F̃ ∗(k)G̃∗(k) (II.A.23)
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Chapter II II.A.2. SEMICONDUCTOR HAMILTONIAN

and Eq. (II.A.5) and Eq. (II.A.6), we see that the last term in Eq. (II.A.22) vanishes:
∫

d3r ET (r, t) · EL(r, t) =

∫

d3k ẼT (k, t) · ẼL(k, t) = 0 . (II.A.24)

The Hamiltonian is defined by

H =
∑

α

ẋαpα − L (II.A.25)

where the summation goes over all variables xα and their momentum conjugates pα = ∂L
∂ẋα

. We
insert the momentum conjugates for particle position rα, vector potential A and scalar potential φ

pα = mαṙα(t) + qαA(rα(t), t) (II.A.26a)

pφ = 0 (II.A.26b)

pA(r) = −ε0ET (r, t) (II.A.26c)

and obtain the corresponding Hamilton-function

H =
∑

α

pα · ṙα +

∫

d3r pA(r) · Ȧ(r) − 1

2

∑

α

mαṙ2
α − ε0

2

∫

d3r
[

E2
T (r) − c2B2(r)

]

+
1

2

1

4πε0

∑

α,β

qαqβ
|rα − rβ |

−
∑

α

qαṙα · A(rα)

=
∑

α

pα · 1

mα

[

pα − qαA(rα)
]

+ ε0

∫

d3r E2
T (r) − 1

2

∑

α

1

mα

[

pα − qαA(rα)
]2

− ε0
2

∫

d3r
[

E2
T (r) − c2B2(r)

]

+
1

2

1

4πε0

∑

α,β

qαqβ
|rα − rβ |

−
∑

α

qα
1

mα

[

pα − qαA(rα)
]

· A(rα)

=
∑

α

1

2mα

[

pα − qαA(rα)
]2

+
1

2

1

4πε0

∑

α,β

qαqβ
|rα − rβ |

+
ε0
2

∫

d3r
[

E2
T (r) + c2B2(r)

]

. (II.A.27)

which yields the so-called minimal-coupling Hamiltonian [CT84]

Ĥ =
∑

α

1

2mα

[

p̂2
α − 2qαÂ(r̂α) · p̂α + q2αÂ2(r̂α)

]

+
1

2

1

4πε0

∑

α,β

qαqβ
|r̂α − r̂β |

+
ε0
2

∫

d3r
[

Ê2
T (r) + c2B̂2(r)

]

. (II.A.28)

We here used that in Coulomb gauge [p̂, Â(r̂)] = 0, since ∇ ·A = 0. The first part of the minimal-
coupling Hamiltonian includes the kinetic energies of the charges and terms representing the inter-
action between the charges and the electromagnetic radiation, the second the Coulomb interaction
between the charges and the last term the radiative energy. So far we did not specify the system of
particles. Next, we want to adapt the Hamiltonian to the description of the dynamics of electrons in
a semiconductor.

2. Semiconductor Hamiltonian

First, we divide the solid into background ion-cores (referred to as ions and denoted with upper-case
letters N,M ) and outer-shell electrons (referred to as electrons and denoted with lower-case letters

15
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i, j) [Kno97]

Ĥ =
∑

N

1

2mN

[

p̂2
N − 2qNÂ(r̂N ) · p̂N + q2NÂ2(r̂N )

]

+
∑

i

1

2mi

[

p̂2
i − 2qiÂ(r̂i) · p̂i + q2i Â

2(r̂i)
]

+
1

2

1

4πε0

∑

N,M

qNqM
|r̂N − r̂M | +

1

4πε0

∑

i,M

qiqM
|r̂i − r̂M | +

1

2

1

4πε0

∑

i,j

qiqj
|r̂i − r̂j |

+
ε0
2

∫

d3r
[

Ê2
T (r) + c2B̂2(r)

]

. (II.A.29)

In the following, we assume the transverse field to have a negligible influence on the ionic motion
and consider only the influence on the electrons. Furthermore, we invoke the Born-Oppenheimer
approximation and consider that the ions cannot follow the motion of the electrons [YC99]. Thus,
the ions are well localized around their lattice position R̂N and their time-dependent position can be
expressed according to

r̂M = R̂M + ûM (II.A.30)

where ûM denotes the time-dependent elongation of ion M . Therewith the contributions containing
ion coordinates can be expanded around the lattice positions of the ions which yields a decomposition
of ion-ion interaction and electron-ion interaction in contributions as the static background charge
contribution Vii(R̂N − R̂M ) (ion-ion interaction) and periodic lattice potential Vei(r̂i −RM ) (static
electron-ion interaction) for the propagating electrons, electron-phonon interaction (dynamic ion-
electron interaction) and higher order contributions such as phonon-phonon interaction which shall
be neglected in the following. Note, that from now on the hat ”ˆ” denoting an operator is dropped.

In general, one could now proceed by transforming the resulting Hamiltonian into the language
of second quantization. However, the present form of the carrier-field interaction Hamiltonian

Hcf =
∑

i

1

2mi

[

− 2qiA(ri) · pi + q2i A
2(ri)

]

, (II.A.31)

often known as the p · A form [Lou00] is not very convenient for the following calculation as the
electromagnetic field appears via the transverse vector potential, which is not directly observable.
Moreover, the interaction contains an A2 term. This term is often neglected even though it may affect
the optical response in a significant way. For these reasons, we will here consider another form of
the carrier-field Hamiltonian which can be obtained by performing a canonical transformation: the
Power-Zienau transformation [CT84]. With the help of this transformation the p ·A Hamiltonian is
transformed into the so-called r · ET Hamiltonian.

a) r · ET Hamiltonian (Dipole-Approximation)

The Power-Zienau transformation changes any operator as

F ′ = ei SF e−i S (II.A.32)

with [KJHK99]

S = − 1

~

∑

α

qαrα · A(rα) . (II.A.33)

Therewith we transform particle and field operators where we assume that the spatial variations of
the vector potential are small on the scale of an elementary unit cell of the semiconductor lattice,
i.e. we use the dipole approximation. By performing the Power-Zienau transformation, the field and
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material variables mix. The new field variables contain an ”old matter” contribution and the new
material variables contain an ”old field” contribution.

However, it can be shown [Muk95] that in the semiclassical approximation where the field is
treated classically and the material is described in its quantized form, the carrier-field Hamiltonian
can be reduced to an effective semiclassical Hamiltonian of the form

Hcf = −
∫

d3r P(r) · ET (r) . (II.A.34)

Here P(r) is the dipole density operator [KJHK99]. This semiclassical Hamiltonian provides the
basis for most theoretical treatments in the area of the linear or nonlinear response of semiconductors
(cf. for example [Muk95, CK99, Kuh98]) and shall also be used in the scope of this work.

b) Hamiltonian in Second Quantization

Electrons

In order to express the Hamiltonian in the language of second quantization, we introduce the electron
field operator [CK99]

ψ̂(r, t) =
∑

λ

∑

k

∑

σ

aλ,k,σ(t)φλ,k,σ(r) , (II.A.35)

where φλ,k,σ(r) is the single-particle eigenfunction for an electron in the semiconductor and aλ,k,σ(t)
is the annihilation operator for the electron in the corresponding state. Namely, the state with band
index λ = c, v (conduction band, valence band), wave vector k and spin σ. The Hermitean adjoint
a†λ,k,σ(t) is the corresponding creation operator. As Fermion operators, the electron creation and
annihilation operators obey anti-commutation relations

[a†i , aj ]+ = δi,j , [a†i , a
†
j ]+ = 0 , [ai , aj ]+ = 0 . (II.A.36)

These relations are a direct consequence of the Pauli exclusion principle, stating that any given state
can at most be occupied by one Fermion.

Phonons

The ion elongations uM are expanded in terms of phonon creation and annihilation operators [Czy00]

uM =
1√
N

∑

q,j

√

~

2mMωj,q
(bj,q + b†j,−q)eiqRM ej,q (II.A.37)

where the phonon energies ωj,q depend on the 3D wave number q of the j-th phonon mode with
unit vector ej,q. Due to their bosonic nature the phonon operator obey the following commutation
relations

[b†i , bj ]− = −δi,j , [b†i , b
†
j ]− = 0 , [bi , bj ]− = 0 . (II.A.38)

Photons

In the scope of this work, the interaction with the transverse electric is treated in the semiclassical
approximation, i.e., the transverse field enters the Hamiltonian in its classical form.

With this background the Hamiltonian can be cast into

H = H0,e/p +Hcf +Hcc +Hcp . (II.A.39)

where the different contributions are defined as follows:
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• free-carrier and free-phonon Hamiltonian

H0,e =

∫

d3rψ̂†(r)
{

− ~
2∇2

2m
+ VL(r) +

∑

N,M

Vii(RN − RM )
}

ψ̂(r) , (II.A.40)

H0,p =
∑

q,j

~ ωj,q b
†
j,qbj,q (II.A.41)

• carrier-field Hamiltonian (in dipole approximation)

Hcf = −e
∫

d3r ψ̂†(r)rψ̂†(r) · ET (r, t) . (II.A.42)

• carrier-carrier Hamiltonian

Hcc =
1

2

1

4πε0

∫

d3r

∫

d3r′ ψ̂†(r)ψ̂†(r′)
e2

|r − r′| ψ̂(r)ψ̂(r′) (II.A.43)

• carrier-phonon Hamiltonian

Hcp =
∑

M

∫

d3r ψ̂†(r)(uM · ∇RM
)Vei(r − RM )ψ̂(r) (II.A.44)

In order to carry out specific calculations with the Hamiltonian given in Eq. (II.A.39), we have to
determine the actual wave functions necessary for the determination of the required matrix elements.
For this reason, we next take a closer look at the samples of interest, namely semiconductor quantum
wells and the corresponding bandstructure.

3. Quantum Wells: Eigenfunctions and Energies

A quantum well is a heterostructure or in other words a double heterojunction. A heterojunction
emerges, when two dissimilar semiconductors are placed adjacent to each other. The central feature
of a heterojunction is that the bandgaps of the participating semiconductors are usually different.
Thus, the energy of the carriers of at least one of the band edges must change as those carriers
pass through the heterojunction. Most often, there will be discontinuities in both the conduction and
valence band. These discontinuities are the origin of most of the useful properties of heterojunctions.
Heterostructures are formed from multiple heterojunctions (cf. Fig. II.A.1).

If a thin layer with thickness LW of a semiconductor material A with bandgap EA
gap is sand-

wiched between two layers of another semiconductorB of equal thickness LB with bandgapEB
gap >

EA
gap, the result is a semiconductor quantum well. Due to the different bandgaps, the conduction and

valence band edges of A and B do not align with each other. The difference between their band
edges is known as the band offset and responsible for confining the electrons in layer A [YC99].
Thus the free-carrier Hamiltonian has to be extended by including the corresponding confinement
potential which confines the electrons in the dimension perpendicular to the well layers[Kli95]:

H0,e =

∫

d3rψ̂†(r)
{

− ~
2∇2

2m
+ VL(r) +

∑

N,M

Vii(RN − RM ) + Vconf(z)
}

ψ̂(r) .

(II.A.45)
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V(z)

V(z)
band

conduction

valence
band

z

BEgap

AEgap

Figure II.A.1 — Double heterojunction: consisting of a thin layer of a narrower-bandgap material A sand-
wiched between two layers of a wider-bandgap material B.

More complex structures than the simple example given above, consist of several repeating units of
the form B/A/B/A/B/A... They either form a multiple quantum well (MQW) system or a super-
lattice: if the barriers B are much thicker than the penetration depth of the wave functions into the
barrier we speak about a MQW system, if the barriers are thin enough to allow overlap, one has a
super-lattice [Kli95].

As has been shown in [Bas88], the eigenfunctions [cf. Eq. (II.A.35)] of the free-carrier Hamil-
tonian in Eq. (II.A.45) can - in effective mass approximation - be factorized according to

φλ,k,σ(r) =
1√
A
uλ,k≈0,σ(r)Φλ,k,σ(r) (II.A.46)

where uλ,k≈0,σ(r) is the eigenfunction of the lattice periodic part and Φλ,k,σ(r) the wave function
responding to the additional confinement potential Vconf . Note, that this expansion is valid only near
the band edge, i.e., k ≈ 0.

The simplest theoretical approach to the confining potential caused by the band offset of a quan-
tum well is the infinitely deep one-dimensional potential well. More sophisticated models account
for the finite height of the confinement potential or effects of an external electric field [Har00].

a) Infinite Quantum Well

The infinitely deep one-dimensional quantum well is realized by the confinement potential

Vconf(z) =

{

0 |z| < L/2

∞ |z| > L/2 ,
(II.A.47)

thus the electrons are completely confined in z-direction. The quantum-mechanical motion is de-
scribed by the wave function Φ(r, t) which is the solution of the time-dependent Schrödinger equa-
tion

i ~
∂

∂t
Φ(r, t) = HΦ(r, t) (II.A.48)

where H is the corresponding Hamiltonian

H = − ~
2

2m
∇2 + Vconf(z) . (II.A.49)
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As the Hamiltonian does not depend explicitly on time and furthermore, the confinement potential
acts only on the z-component, the wave function can be factorized according to

Φ(r, t) = Φ̃(r||)ζ(z)e
−i ε

~
t . (II.A.50)

This yields decoupled equations for components perpendicular, z, and parallel to the well layer,
r|| = (x, y):

[

− ~
2

2m

d2

d2
z

+ Vconf(z)

]

ζ(z) = εz ζ(z) (II.A.51)

− ~
2

2m
∇2

r||
Φ̃(r||) = ε|| Φ̃(r||) . (II.A.52)

Considering the boundary conditions

ζ(−L
2

) = ζ(
L

2
) = 0 , (II.A.53)

the z-dependent part of the wave function is obtained as

ζn(z) =

√

2

L
cos(knz) , n even , (II.A.54)

ζn(z) =

√

2

L
sin(knz) , n odd (II.A.55)

where the wave numbers kn and the bound state energies are given by

kn =
nπ

L
, εn =

π2
~

2n2

2mL2
. (II.A.56)

In the (x, y)-plane, the particles can move freely and can therefore be described by plane waves

Φ̃(r||) =
1√
A

e±ik·r|| (II.A.57)

with area of the quantum well A, 2D wave numbers k and energies

εk =
~k2

2m
. (II.A.58)

b) Finite Quantum Well

The finitely deep one-dimensional quantum well is realized by the confinement potential

Vconf(z) =

{

0 |z| < L/2

Vc |z| > L/2 ,
(II.A.59)

thus the electrons are not completely confined in z-direction. Following Chapter II.A.3.a the wave
function is again decoupled. But whereas the part Φ̃(r||), which depends on r||, is unchanged, the
z-dependent part, ζ(z), can no longer be determined analytically. For both |z| < L/2 and |z| > L/2,
ζ(z) is the sum of two plane waves of opposite wave vectors: inside the well, |z| < L/2, the waves
propagate; outside the well, |z| > L/2, the waves are evanescent. Introducing

κ =

√

2m

~2
(Vc − εz) , kz =

√

2m

~2
εz (II.A.60)

and considering the boundary conditions (and normalization condition) yields

ζ+(z) =

{

A cos(kzz) |z| < L/2

Be−κ|z| |z| > L/2
(II.A.61)
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with the transcendental conditional equation

kz tan(kz
L

2
) = κ ⇔ √

εz tan(

√

2m

~2
εz
L

2
) =

√

(Vc − εz) (II.A.62)

for even states and

ζ−(z) =







C sin(kzz) |z| < L/2

−Beκz z < −L/2
Be−κz z > L/2

(II.A.63)

with the transcendental conditional equation

−kz cot(kz
L

2
) = κ ⇔ −√

εz cot(

√

2m

~2
εz
L

2
) =

√

(Vc − εz) (II.A.64)

for odd states. The constants A,B and C are given by

A = B
e−κL/2

cos(kzL/2)
, (II.A.65)

C = B
e−κL/2

sin(kzL/2)
, (II.A.66)

B = eκL/2

[(

1 +
κ2

k2
z

)(
L

2
+

1

κ

)]− 1
2

. (II.A.67)

In the scope of this work, in most cases, the finite height of the potential is taken into account, i.e.
the wave functions are determined numerically by solving the transcendental equations given above.
However, there is also the possibility to consider the impact of the finite height of the potential in a
numerically less demanding way.

c) Effective Well-Width Approximation

The effective well-width approximation [Liu94] approximates the wave functions of a finite barrier
well with physical well width L by infinite-barrier wave functions with an effective well width Leff .
The effective well with is thereby chosen so that the bound energy of the lowest subband is equal in
both the infinite-barrier and the finite-barrier well. Together with an overview over the well-width
dependence of the various Coulomb and Fröhlich matrix elements, the impact of this approximation
on the matrix elements is shown in APP B. Generally, one can say, that the difference between a
full calculation with the numerically determined wave functions of the finite-barrier well and the
effective well-width approximation is in most cases negligibly small. Thus, if it is numerically too
demanding to take the finite-barrer well functions into account, the effective well width offers a
reasonable alternative. Considering an infinite-barrier well without effective well width can yield
quite misleading results, since e.g. the depolarization effect depends very strongly on the actual well
width. As the effective well width is usually larger than the physical well width (the electrons can
leak into the barrier region when the barrier height of the well is finite), the infinite-barrier wave
functions underestimate the depolarization effect if the well width is not adjusted to an effective one.
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Figure II.A.2 — Wave functions for different quantum well modells: (infinite-barrier, finite-barrier and
infinite-barrier well with effective well-width approximation) Example of a 10nm GaAs/AlGaAs quantum
well with a finite potential of V0 = 360 meV. Effective well-width Leff = 12.56 nm.

d) Nonparabolicity Effects

In narrow quantum wells the energy levels in the conduction band are of the order of 100 meV above
the bulk conduction-band edge. Thus corrections due to the nonparabolicity of the conduction band,
such as for example modifications of the energy dispersion parallel to the well layers, can be impor-
tant. In the factorization used in Eq. (II.A.46) these effects are not included a priori. A common
way to include nonparabolicity effects is to include a small number of bands in a matrix equation
and treat the other bands in perturbation theory which modifies the effective masses. In the scope of
this work, we follow the approach by Ekenberg [Eke89, Eke87] which is well suited not only for the
idealized case with infinite barriers but also for the more realistic case with finite barriers. Starting
point are the results from a 14-band k · p calculation done by Braun and Rössler [BR85], namely
the conduction-band dispersion in the bulk of a direct-band-gap III-V compound semiconductor ex-
panded up to fourth order in k. The obtained results are then used to determine numerically the
bound state energies and the energy dispersion parallel to the layers. As in the ”common” effective
mass approximation, the obtained energy dispersions are expressed using effective masses for the
subbands. In contrast to the parabolic approximation of the conduction band, the subbands are here
characterized by different subband masses: m1 6= m2. Thus, the subband dispersion derived in Eq.
(II.A.58) is replaced according to:

εk =
~k2

2m
→ εi,k =

~k2

2mi
(II.A.68)

where i denotes the subband and mi the corresponding mass numerically determined with the for-
mula given in [Eke89]. The subband dependence of the in-plane dispersion results in an effectively
wavenumber dependent transition energy

εi,k − εj,k =
~k2

2mi
− ~k2

2mj
. (II.A.69)

For details see [Eke89, Eke87]. In the following, we will frequently compare the linear and nonlinear
response of quantum wells with or without taking into account possible nonparabolicity effects.
As the dominant impact of the nonparabolicity effects lies in the change of the effective subbands
masses, i.e., the subband dispersion, we will mostly distinguish the different models by using the
terminology with equal subband dispersion or with different subband dispersion. However, this
shall not imply that only the impact on the subband masses is taken into account. The impact on
bound state energy is also considered, the chosen terminology might be misleading in this case. In
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Chapter II II.A.4. MATRIX ELEMENTS

order to get first insights on the impact of the nonparabolicity of the conduction band, we present in
Fig. II.A.3 a comparison of the energy dispersion calculated with or without taking into account the
nonparabolicity of the conduction band.
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Figure II.A.3 — Energy Dispersion with/without regard to nonparabolicity effects: Taking into account
the nonparabolicity of the conduction band according to the theory by [Eke89] for a GaAs/AlGaAs quantum
well with Vconf = 350 meV for different well width L = 5, 10, 15 nm. Whereas for wider quantum wells,
the nonparabolicity of the conduction band is almost negligible, it causes a lowering of the upper bound state
energy and larger effective masses for small wells.

4. Matrix Elements

Combining the results of Eq. (II.A.46) with Eq. (II.A.57) and Eq. (II.A.54), Eq. (II.A.63) respec-
tively, the single particle functions are completely determined and thus the field operators are given
by

ψ̂(r, t) =
∑

λ,k,σ

aλ,k,σ(t)φλ,k,σ(r)

=
1√
A

∑

λ,k,σ,n,w

uλ,k≈0,σ(r) ζw,n(r⊥) eik·r|| aλ,k,σ,n,w . (II.A.70)

Besides index λ for the band, 2D wave number k and spin σ we introduced furthermore the index n
denoting the subband and with respect to a multiple quantum well system additionally the index w
for the well number. In the following, only transitions between the subbands in the conduction band
will be considered, i.e. λ = c. For convenience this index is dropped from now on and the other
indices are absorbed into a compound index whenever possible:

ψ̂(r, t) =
1√
A

∑

i

uλ,k≈0,σ(r) ζwi,ni
(r⊥) eiki·r|| ai . (II.A.71)

With Eq. (II.A.71) we can now derive the explicit formulas of the various matrix elements. For the
sake of readability, the derivations are left to APP A and here only the final Hamiltonian is given.

Note, that as the focus of this works lies with heterostructures made from compound semicon-
ductors, where the dominant electron-phonon interaction is with the longitudinal optical phonon
(LO) phonon[Har00], we considered only these contributions. The LO phonon dispersion curve [see
for example [YC99] p.110 et sqq.], is relatively flat. Therefore the LO phonon is almost dispersion-
less and the phonon energy ~ωL can be approximated well with a constant value (taken as 36 meV
in GaAs).
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In total the Hamiltonian is given by

H0 =
∑

i

εi a
†
i ai +

∑

q

~ ωLO b†qbq (II.A.72)

Hcf = e
∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2

[

F i′,j′

|| (Q, t) + F i′,j′

⊥ (Q, t)
]

δσi′ ,σj′
(II.A.73)

Hcc =
1

2

∑

a,b,c,d

Vabcd a
†
aa

†
badac (II.A.74)

Hcp =
∑

a,b,k,q

[

ga,b
q a†a,ka

bqab,ka−q
||

+ g∗a,b
q a†b,ka−q

||

b†qaa,ka

]

(II.A.75)

The introduced abbreviations in the carrier-field Hamiltonian read

F i′,j′

|| (Q, t) = i

∫

L⊥

dR⊥ζ
∗
wi′ ,ni′

(R⊥)ζwj′ ,nj′
(R⊥)∇Q · E||(Q, R⊥, t) (II.A.76)

F i′,j′

⊥ (Q, t) =

∫

L⊥

dR⊥ζ
∗
wi′ ,ni′

(R⊥)ζwj′ ,nj′
(R⊥)R⊥E⊥(Q, R⊥, t) (II.A.77)

with

E(Q,R⊥) =
1

N||

∑

R||

e−iQ·R||E(R||,R⊥, t) . (II.A.78)

Coulomb and Fröhlich matrix element are given by

Vabcd =
1

A

e2

2ε0

∫

dz

∫

dz′
e−|ka−kc||z−z′|

|ka − kc|
ζ∗wa,na

a(z)ζ∗wb,nb
(z′) (II.A.79)

× ζwc,nc
(z)ζwd,nd

(z′)δka+kb,kc+kd
δσa,σc

δσb,σd
(II.A.80)

gab
q = −i

√

e2~ωLO

2V

(
1

ε∞
− 1

εs

)
1

|q|

∫

dzφa(z)φb(z)e
iq

⊥
z . (II.A.81a)

B. Microscopic/Macroscopic

Starting from the microscopic Maxwell-Lorentz Equations and corresponding standard Lagrangian
we derived in the last sections the microscopic Hamiltonian for the quantum well system. The
derived Hamiltonian is the starting point for the derivation of the microscopic equations of motions
[cf. Chapter III], the backbone of the microscopic source calculation. Before actually immersing
into the connected derivation, we first make the crossing to the so-called macroscopic equations
which are the starting point of the field calculation.

1. Macroscopic Maxwell Equations

As a macroscopic sample contains of the order of 1023±5 electrons and nuclei [Jac98], which are
all in incessant motion, the microscopic fields produced by these charges vary rapidly in space and
time. However, macroscopic measuring devices used in experiments generally average over intervals
in space and time longer than the fluctuations of the microscopic charges yielding relatively smooth

24



Chapter II II.B.1. MACROSCOPIC MAXWELL EQUATIONS

and slowly varying macroscopic quantities. The macroscopic electric and magnetic field quantities
are thus defined as the averages of the microscopic fields

E(r, t) = 〈E(r, t)〉 (II.B.1)

B(r, t) = 〈B(r, t)〉 . (II.B.2)

Note that only a spatial average is necessary (for details see [Jac98]). The spatial average of a
function F (r, t) with respect to a test function f(r) is defined as

〈F (r, t)〉 =

∫

d3r′f(r′)F (r − r′, t) . (II.B.3)

This test function is real and normalized to unity over all space. Here the spatial average over one
elementary cell with volume ΩEC is sufficient [Kno97], thus we choose

f(r) =

{
1

ΩEC
for r ∈ EC,

0 for r /∈ EC.

Using that the operations of space and time differentiation commute with the averaging operation,
we obtain the macroscopic Maxwell equations as the averages of the microscopic Maxwell equations
(cf. Eq. (II.A.1)). For the here considered system they are given by

∇ · B(r, t) = 0 (II.B.4)

∇× E(r, t) = − ∂

∂t
B(r, t) (II.B.5)

ε0εb∇ · E(r, t) = −∇ · P(r, t) (II.B.6)

∇× B(r, t) = µ0
∂

∂t

[

ε0εbE(r, t) + P(r, t) .

]

(II.B.7)

Pt(r, t) denotes the total macroscopic polarization

Pt(r, t) = P(r, t) + ε0χbE(r, t) . (II.B.8)

composed of the polarization of the electrons

P(r, t) =

〈

Pelectrons(r, t)

〉

(II.B.9)

and the polarization of the ions (approximated by a linear background polarisation)
〈

Pions(r, t)

〉

≈ ε0χbE(r, t) . (II.B.10)

Combining Eq. II.B.4 - Eq. II.B.7 yields the wave equation for the macroscopic field E(r, t)

∇×∇× E(r, t) = −∇× ∂

∂t
B(r, t)

⇔
[

∇2 − εb
c2

∂2

∂t2

]

E(r, t) −∇(∇ · E(r, t)) = µ0
∂2

∂t2
P(r, t)) . (II.B.11)

The macroscopic field enters the microscopic Hamiltonian and therewith the microscopic equations.
On the other hand, the microscopic equations yield the the macroscopic polarization, i.e. the source
for the electromagnetic field. Thus macroscopic and microscopic equations of motion are coupled.
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2. Macroscopic Polarization (Dipole Density)

As a last point we derive the explicit formula for the macroscopic polarization, the connection be-
tween microscopic and macroscopic equations for the here considered system. We start from the
microscopic dipole density operator which in second quantization is given by

P(r, t) = e ψ̂†(r, t) r ψ̂(r, t) . (II.B.12)

Similar to the derivation of carrier-field and carrier-carrier matrix elements given in APP A, we insert
the expansion of the field operators in electron creation and annihilation operators [cf. Eq. (II.A.71)]
which yields

P(r, t) =
e

A

∑

i,j

e−i (ki−kj)·r||ζ∗wi,ni
(r⊥)ζwj ,nj

(r⊥)u∗σi,ki=0(r)uσj ,kj=0(r) r a†iaj .

(II.B.13)

Taking the quantum mechanically expectation value and averaging as described in Chapter II.B.1,
we obtain the macroscopic polarization (dipole density)

P(r, t) =
e

A

∑

ni,nj

Q||,q||

e−iQ||·r||ζ∗ni
(r⊥)ζnj

(r⊥) r⊥ 〈a†ni,q||+Q||/2anj ,q||−Q||/2〉

− e

A
i
∑

ni,nj

Q||,q||

e−iQ||·r||ζ∗ni
(r⊥)ζnj

∇Q||
〈a†ni,q||+Q||/2anj ,q||−Q||/2〉

(II.B.14)

where we have switched to centre of mass coordinates and relative coordinates:

q|| =
ki|| + kj||

2
, Q|| = ki|| − kj|| . (II.B.15)

As can be seen in Eq. (II.B.14), the macroscopic polarization is composed of both intrasubband drift
contributions and contributions due to optical (intersubband) processes. According to the focus of
this work, only the latter will be considered in the following.

In the next chapter, we will now derive the microscopic equations of motions for quantities
〈a†ia 〉, which determine the polarization and thus eventually drive the macroscopic fields.
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CHAPTER III

Microscopic Equations of Motion:
Source Calculation

As we have seen in Chapter II.B.2, the quantities of interest as polarization or population all
depend on expectation values of the form 〈a†kal 〉, where indices k, l are compound indices, which
contain the subband numbers nk, nl, 2D-wave numbers kk,kl in the free propagation direction (xy-
plane), spin σk, σl and well numbers wk, wl. For different indices, the expectation values yield
coherences (for example nk 6= nk′ : intersubband coherence), for equal indices, i.e., k = k′ they
yield occupation numbers. The dynamics for the expectation values

〈O〉 = tr(Oσ) (III..16)

reside either in the operator O (Heisenberg picture) or in the density operator σ (Schrödinger pic-
ture).

A. Introduction:
Schrödinger Picture vs. Heisenberg Picture

In the Schrödinger picture, operators (observables) are time-independent if they do not dependent
explicitly on the time (for example due to time-dependent external fields) and the density operator σ
obeys the von-Neumann equation (Liouville equation)

i ~
d

dt
σ = [H,σ] . (III.A.1)

H denotes the total Hamiltonian and the commutator is given by

[A,B] = AB −BA . (III.A.2)

With Eq. (III.A.1) expectation values of observables reads

i ~
d

dt
〈O〉 = i ~

[

tr({ d

dt
O}σ) + tr(O{ d

dt
σ})
]

= i ~〈 ∂
∂t
O〉 + tr(O[H,σ])

= i ~〈 ∂
∂t
O〉 − tr([O,H]σ]) = i ~〈 ∂

∂t
O〉 − 〈[H,O]〉 , (III.A.3)

where in the last step the cyclic property of the trace has been used [cf. Eq. (III.C.6)].
In the Heisenberg picture, operators (observables) are time-dependent and obey the Heisenberg

equation|seeequations, Heisenberg:

−i ~
d

dt
O = [H,O] − i ~

∂

∂t
O . (III.A.4)

The states are time-independent and consequently the same applies for the density operator . This
yields

−i ~
d

dt
〈O〉 = 〈[H,O]〉 − i ~〈 ∂

∂t
O〉 . (III.A.5)
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Chapter III III.B.1. FREE-PARTICLE HAMILTONIAN

Thus both pictures give the same expectation values for the operator O. However, in the deter-
mination of the expectation values considered here, certain approximations have to be made. As we
will see in the following, the Heisenberg picture is the more convenient approach in the many-body
treatment. The Schrödinger picture is more difficult to handle, but does on the other hand give ad-
ditional insight into the background of common approximations frequently used in the Heisenberg
picture. Therefore, we will proceed as follows: we first derive the equations of motion in the Heisen-
berg picture using well-known approximations. After that, we revise the theory in the Schrödinger
picture in the framework of the projector-operator theory and compare directly with the derivation
performed in the Heisenberg picture. This will give more insight into the background of the applied
approximations and therewith hopefully enhance the understanding.

B. Heisenberg Picture

In order to determine polarization and population, we derive the equation of motion for the density
matrix elements 〈a†kal 〉. We start with the Heisenberg equation for a†kal and take the expectation
value

−i ~
d

dt
〈a†kal 〉 = 〈[H, a†kal ]〉 = 〈[H0 +Hcf +Hcc +Hcp, a

†
kal ]〉 (III.B.1)

= −i ~
d

dt
〈a†kal 〉|0 − i ~

d

dt
〈a†kal 〉|cf − i ~

d

dt
〈a†kal 〉|cc − i ~

d

dt
〈a†kal 〉|cp .

For conciseness, in the following the contributions shall be derived for each Hamiltonian separately.

1. Free-Particle Hamiltonian

The free-particle Hamiltonian describes the motion of electrons of mass m0 in the periodic lattice
Vg with the superposed confinement potential Vconf (cf. Chapter II.A.3). Inserting the results of Eq.
(APP E.1) we obtain

d

dt
〈a†kal 〉|0 =

i

~
(εk − εl)〈a†kal 〉 , (III.B.2)

where εi denotes the energy of an electron in subband i (of quantum well wi) with wave number ki

and spin σi. This contribution thus directly reflects the bandstructure of the quantum well system.
We can distinguish bound state energy or subband energy εwi,ni

and in-plane energy dispersion,
εwi,ki

[cf. Chapter II.A.3.a, II.A.3.b, II.A.3.d]. Dependent on the underlying bandstructure, or to be
more exact, the curvature of the conduction band, the energy dispersion of different subbands (in one
quantum well) can differ either only in the bound state energies, for example εwi,2 = εwi,1 +~ωG or
additionally also in the in-plane energy dispersion. The latter being due to a non-parabolic curvature
of the conduction band [cf. Chapter II.A.3.d].

2. Carrier-Field Hamiltonian

In the semiclassical approach the carrier-field Hamiltonian describes the interaction of the electrons
with the classical electromagnetic field. Using the results of Eq. (APP E.11) and separating contri-
butions due to optical transitions and electrical current, the contributions due to the interaction with
the classical electromagnetic field read

d

dt
〈a†kal 〉|cf =

d

dt
〈a†kal 〉|

opt
cf +

d

dt
〈a†kal 〉|cur

cf (III.B.3)
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with

d

dt
〈a†kal 〉|

opt
cf = e

i

~

∑

i

∫

L

dz
{

dwi,wk
ni,nk

(z) 〈a†ial 〉δσi,σk
Ez(ki − kk, z, t)

− dwl,wi
nl,ni

(z) 〈a†kai 〉δσl,σi
Ez(kl − ki, z, t)

}

, (III.B.4)

d

dt
〈a†kal 〉|cur

cf = − e

~

∑

i

∫

L

dz
{

Ψwi,wk
ni,nk

(z)E||(ki − kk, z, t) · ∇kk
〈a†ial 〉δσi,σk

+ Ψwl,wi
nl,ni

(z)E||(kl − ki, z, t) · ∇kl
〈a†kai 〉δσl,σi

}

. (III.B.5)

Whereas Eq. (III.B.5) describes the acceleration of carriers in the free directions, i.e., current in
the x,y-plane, Eq. (III.B.4) describes optically induced transitions between the subbands [Kuh98].
In the scope of this work, the focus lies on the description of the latter and therefore only these
contributions are considered in the following. Remember, that due to applying the Coulomb gauge
in II.A.1.b, only the transverse part of the electromagnetic fields enters the equations of motion.

3. Carrier-Carrier Hamiltonian

Introducing carrier-carrier interaction, the electrons are no longer considered as non-interacting par-
ticles. Interaction between different electrons yields microscopic effects such as dephasing and
screening.

With the results given in Eq. (APP E.16) we obtain

d

dt
〈a†kal 〉|cc =

i

~

∑

a,b,c

[

Vabkc 〈a†aa†bacal 〉 − Vlabc 〈a†ka†aacab〉
]

. (III.B.6)

Regarding Eq. (III.B.6) it becomes obvious, that the system of equations does not close. Coulomb
interaction couples the two-operator dynamics to four-operator terms which describe correlations
between electrons. Thus, in order to solve Equation III.B.6, the four-operator terms have to be
determined, which can be done using again the Heisenberg equation of motion. However, carrier-
carrier interaction then couples the four-operator terms to six-operator terms, six-operator terms to
eight-operator terms and so: Equation III.B.6 is the starting point of an infinite hierarchy involving
higher-order density matrix elements. This so-called hierarchy problem is a common problem in
many-particle physics. To obtain a solution, the hierarchy has to be truncated at some level. In
the scope of this work, we use a correlation expansion based on the idea, that correlations, i.e.,
higher-order density matrix elements, involving an increasing number of carriers are of decreasing
importance [Kuh98].

Therefore, we do the following: we factorize the foursome operators into products of two-
operator terms,〈a†1a†2a3a4〉f , and a correction term, 〈a†1a†2a3a4〉c, according to

〈a†1a†2a3a4〉 = 〈a†1a†2a3a4〉f + 〈a†1a†2a3a4〉c (III.B.7)

with

〈a†1a†2a3a4〉f = 〈a†1a4〉〈a†2a3〉 − 〈a†1a3〉〈a†2a4〉 . (III.B.8)

This factorization is a common way to obtain a systematic hierarchy of equations [HK94, CK99]
and as we will see later, the factorization according to Eq. (III.B.8), can be derived very neatly in the
framework of projector-operator theory. Inserting Eq. (III.B.7) in Eq. (III.B.6), the equation of mo-
tion can be decomposed into mean-field or Hartree-Fock contributions (dependent on the factorized
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contributions) and collision or correlation contributions (dependent on the correction contributions):

d

dt
〈a†kal 〉 =

d

dt
〈a†kal 〉|MF,cc +

d

dt
〈a†kal 〉|corr,cc (III.B.9)

with

d

dt
〈a†kal 〉|MF,cc =

i

~

∑

a,b,c

[

Vabkc 〈a†aa†bacal 〉f − Vlabc 〈a†ka†aacab〉f
]

, (III.B.10)

d

dt
〈a†kal 〉|corr,cc =

i

~

∑

a,b,c

[

Vabkc 〈a†aa†bacal 〉c − Vlabc 〈a†ka†aacab〉c
]

. (III.B.11)

In general, the motion of the carriers is correlated because they interact, either directly or through
the intermediary of other carriers in the system. As a first approximation, these correlations may be
neglected, i.e., the carriers are assumed to propagate completely independently of each other. In this
case, the equation of motion is approximated by Eq. (III.B.10), the mean-field contributions, only.

a) Carrier-Carrier Mean-Field Contributions (1st Order)

Inserting Eq. (III.B.8) in Eq. (III.B.6) yields the lowest order in the hierarchy, the mean-field
contributions due to carrier-carrier interaction:

d

dt
〈a†kal 〉|MF,cc =

i

~

∑

a,b,c

[

Vabkc

(

〈a†aal 〉〈a
†
bac〉 − 〈a†aac〉〈a†bal 〉

)

− Vlabc

(

〈a†kab〉〈a†aac〉 − 〈a†kac〉〈a†aab〉
)]

.

(III.B.12)

The expression mean-field contributions results from the fact, that the decomposition of the four-
particle correlations in Eq. (III.B.6) leads to the same result as approximatingHcc by the one-particle
Hamiltonian Hcc

MF:

Hcc
MF =

∑

ab

(∑

cd

[

Vacbd − Vcabd

]

〈a†cad〉
)

a†aab . (III.B.13)

Thus we see that the mean-field or Hartree-Fock approximation describes the many-particle system
as a set of independent particles, each particle, however, moving through the average field produced
by all particles - without possibility for collisions [KB89].

In the case of intersubband transitions, the mean-field contributions due to carrier-carrier inter-
action introduce three effects:

I. exchange shift: a renormalization of the free-carrier contributions,

II. excitonic contribution: a renormalization of the carrier-field interaction,

III. depolarization contribution: another renormalization of the carrier-field interaction, although
of very different origin.

A detailed investigation of these contributions and their interplay is given in Chapter IV.

b) Carrier-Carrier Correlation Contributions (2nd Order)

The next step in the hierarchy is obtained by considering the correction terms to the mean-field
factorization, i.e., Eq. (III.B.11). However, the correlation contributions are not determined as easily
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as the mean-field contributions, since we have to derive equations of motion for the correction terms
themselves. Using Eq. (III.A.5) we obtain

d

dt
〈a†1a†2a3a4〉c =

d

dt
〈a†1a†2a3a4〉 −

d

dt
〈a†1a†2a3a4〉f

=
i

~
〈[H, a†1a†2a3a4]〉 −

i

~
〈[H, a†1a4]〉〈a†2a3〉 −

i

~
〈a†1a4〉〈[H, a†2a3]〉

+
i

~
〈[H, a†1a3]〉〈a†2a4〉 +

i

~
〈a†1a3〉〈[H, a†2a4]〉 . (III.B.14)

In principle here the full Hamiltonian has to be considered, but in order to obtain a manageable the-
ory, certain approximations have to be made. In the scope of this work, we neglect the contributions
of transverse field and carrier-phonon interaction on the correction terms. Thus, we neglect that the
correlations are also influenced by carrier-field and carrier-phonon interaction and focus on the more
fundamental contributions due to free-particle and carrier-carrier Hamiltonian [Kuh98]:

d

dt
〈a†1a†2a3a4〉c ≈

d

dt
〈a†1a†2a3a4〉c|0 +

d

dt
〈a†1a†2a3a4〉c|cc . (III.B.15)

Straightforward calculations yield

d

dt
〈a†1a†2a3a4〉c|0 =

i

~
(ε1 + ε2 − ε3 − ε4)〈a†1a†2a3a4〉c , (III.B.16)

d

dt
〈a†1a†2a3a4〉c|cc =

i

~

∑

a,b,c

[

Vab12〈a†aa†ba3a4〉 − V43cb〈a†1a†2abac〉
]

+
i

~

∑

a,b,c

∑

m,h

[

(δm,3δh,4 − δm,4δh,3)

{(

Vab1c〈a†aa†bacam〉 − Vamcb〈a†aa†1abac〉
)

〈a†2ah〉

+

(

Vab2c〈a†aa†bacah〉 − Vhabc〈a†aa†2abac〉
)

〈a†1am〉
}

+ Vabmc(δm,2δh,1 − δm,1δh,2)〈a†ha†aa
†
baca3a4〉

+ Vmacb(δm,4δh,3 − δm,3δh,4)〈a†1a†2a†aahabac〉
]

.

(III.B.17)

As already announced before, carrier-carrier interaction couples the correction terms not only to
four-operator terms and combinations of four and two-operator terms but also to six-operator terms.
Again we factorize higher order terms in products of two-operator terms. Four-operator terms are
factorized with Eq. (III.B.7) and Eq. (III.B.8), six-operator terms are factorized according to

〈a†1a†2a†3a4a5a6〉 = 〈a†1a†2a†3a4a5a6〉f + 〈a†1a†2a†3a4a5a6〉c (III.B.18)

with

〈a†1a†2a†3a4a5a6〉f = 〈a†1a4〉 {〈a†2a6〉〈a†3a5〉 − 〈a†2a5〉〈a†3a6〉}
+ 〈a†1a5〉 {〈a†2a4〉〈a†3a6〉 − 〈a†2a6〉〈a†3a4〉}
+ 〈a†1a6〉 {〈a†2a5〉〈a†3a4〉 − 〈a†2a4〉〈a†3a5〉} . (III.B.19)
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Chapter III III.B.3. CARRIER-CARRIER HAMILTONIAN

This factorization scheme can also be derived in the framework of projector-operator theory [cf.
Appendix APP D]. Inserting the factorizations gives finally

d

dt
〈a†1a†2a3a4〉c|cc

=
i

~

∑

a,b,c

[

〈a†1ac〉〈a†2ab〉
{

W4abcδa,3 + 〈a†aa4〉W3abc + 〈a†aa3〉W4acb

}

(III.B.20a)

+ 〈a†aa4〉〈a†ba3〉
{

Wabc2δc,1 + 〈a†2ac〉Wba1c + 〈a†1ac〉W4ab2c

}]

(III.B.20b)

+
i

~

∑

a,b

[

Vab12〈a†aa†ba3a4〉c − V43ab〈a†1a†2abaa〉c
]

(III.B.20c)

+
i

~

∑

a,b,c

∑

m,h

[

(δm,3δh,4 − δm,4δh,3) (III.B.20d)

{(

Vab1c〈a†aa†bacam〉c − Vamcb〈a†aa†1abac〉c
)

〈a†2ah〉 (III.B.20e)

+

(

Vab2c〈a†aa†bacah〉c − Vhabc〈a†aa†2abac〉c
)

〈a†1am〉
}]

(III.B.20f)

+
i

~

∑

a,b,c

∑

m,h

[

Vabmc(δm,2δh,1 − δm,1δh,2)〈a†ha†aa
†
baca3a4〉c (III.B.20g)

+ Vmacb(δm,4δh,3 − δm,3δh,4)〈a†1a†2a†aahabac〉c
]

, (III.B.20h)

where for conciseness the abbreviation W1234 = V1234 − V2134 has been introduced. The simplest
approximation to Eq. (III.B.20) is obtained by keeping only Eq. (III.B.20a)-Eq. (III.B.20b) and
neglecting all higher contributions. In this case, the equation of motion for the correction terms is
given by

d

dt
〈a†1a†2a3a4〉c|0,cc =

i

~
∆ε0 〈a†1a†2a3a4〉c +Q(t) (III.B.21)

with the abbreviations

∆ε0 = ε1 + ε2 − ε3 − ε4 , (III.B.22)

Q(t) =
i

~

∑

a,b,c

[

〈a†1ac〉〈a†2ab〉
{

W4abcδa,3 + 〈a†aa4〉W3abc + 〈a†aa3〉W4acb

}

+ 〈a†aa4〉〈a†ba3〉
{

Wabc2δc,1 + 〈a†2ac〉Wba1c + 〈a†1ac〉W4ab2c

}]

. (III.B.23)

With the intent to solve Eq. (III.B.21), we make a slight excursion and concentrate for a short while
on the differential equation

d

dt
S(t) = aB(t)S(t) +Q(t) , (III.B.24)

where S(t), B(T ) and Q(t) are complex valued functions depending explicitly on time. Formally
integrating1 Eq. (III.B.24) yields

∫ t

t0

dt1S(t1) =

∫ t

t0

dt1aB(t1)S(t1) +

∫ t

t0

dt1Q(t1) (III.B.25a)

⇔ S(t) − S(t0) = a

∫ t

t0

dt1B(t1)S(t1) +

∫ t

t0

dt1Q(t1) (III.B.25b)

1We here use this lengthy derivation in order to underline the analogy to the calculations in Appendix APP C.

32



Chapter III III.B.3. CARRIER-CARRIER HAMILTONIAN

If we iterate Eq. (III.B.25b) twice, we obtain2

S(t) =

[

1 + a

∫ t

t0

dt1B(t1) + a2

∫ t

t0

dt1

∫ t1

t0

dt2B(t1)B(t2)

]

S(t0)

+

∫ t

t0

dt1Q(t1) + a

∫ t

t0

dt1

∫ t1

t0

dt2B(t1)Q(t2)

+ a2

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3B(t1)B(t2)Q(t3)

+ a3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3B(t1)B(t2)B(t3)S(t3)

=

[

1 + a

∫ t

t0

dt1B(t1) +
1

2
a2

∫∫ t

t0

dt1dt2B(t1)B(t2)

]

S(t0)

+

∫ t

t0

dt1Q(t1)

[

1 + a

∫ t

t1

dt2B(t2) +
a2

2

∫∫ t

t1

dt2dt3B(t2)B(t3)

]

+ a3

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3B(t1)B(t2)B(t3)S(t3) .

(III.B.29)

Keeping on reinserting Eq. (III.B.25b), we find the solution for Eq. (III.B.24) to be of the form

S(t) =

∞∑

n=0

A(n)(t)S(t0) +

∫ t

t0

dt1Q(t1)

∞∑

n=0

D(n)(t) , (III.B.30)

A(n)(t) =
an

n!

∫ t

t0

..

∫ t

t0

dt1..dtnB(t1)..B(tn) , (III.B.31)

D(n)(t) =
an

n!

∫ t

t1

..

∫ t

t1

dt2..dtnB(t2)..B(tn) (III.B.32)

which is equivalent to

S(t) = e
a

R t
t0

dt1B(t1)S(t0) +

∫ t

t0

dt1Q(t1)e
a

R t
t1

dt2B(t2) . (III.B.33)

With t0 → −∞ and 〈a†1a†2a3a4〉c(−∞) = 0, we can use the obtained result to obtain the solution
to Eq. (III.B.21):

〈a†1a†2a3a4〉c(t) =

∫ t

−∞

dt1 Q(t1)e
i
~
(t−t1)∆ε0

= −
∫ 0

∞

ds Q(t− s)e
i
~
∆ε0 s = ~

∫ ∞

0

ds′ Q(t− ~s′)ei ∆ε0 s′

.

(III.B.34)

2In the last step of the iteration we used the following transformations
Z t

t0

dt1

Z t1

t0

dt2B(t1)B(t2) =
a2

2

ZZ t

t0

dt1dt2B(t1)B(t2) , (III.B.26)

Z t

t0

dt1

Z t1

t0

dt2B(t1)Q(t2) =
a2

2

Z t

t0

Z t

t1

dt1dt2B(t1)B(t2) , (III.B.27)

Z t

t0

dt1

Z t1

t0

dt2

Z t2

t0

dt3B(t1)B(t2)Q(t3) =
a2

2

Z t

t0

dt1Q(t1)

ZZ t

t1

dt2dt3B(t2)B(t3)

(III.B.28)
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This shows that the correction term at time t depends on the past history, on the evolution of the
system from −∞ to t. This time dependence is the so-called Coulombic memory effect [CK99].

c) Memory effect and Markov approximation

Quantum mechanically, the wave functions of the carriers are smeared out so that there is always
some overlap of wave functions and as a result the carriers retain some memory of the collisions
they have experienced through the correlations with other particles in the system [KB89]. The mem-
ory of past behavior is greatly influenced by damping processes as damping destroys the memory.
Within the scope of this work, we assume that the remaining memory is not very long and can be
neglected, i.e., we make the Markov approximation [CK99, HK94, Kuh98]3: 〈a†ia

†
k〉(t − ~s′) ≈

〈a†ia
†
k〉(t)e−i (εi−εk)s′

. This yields

〈a†1a†2a3a4〉c(t) = i
∑

a,b,c

∫ ∞

0

ds′
[

〈a†1ac〉(t)〈a†2ab〉(t)e−i (ε1−εc+ε2−εb)s
′

{

W4abcδa,3

+ 〈a†aa4〉(t)e−i (εa−ε4)s
′

W3abc + 〈a†aa3〉(t)e−i (εa−ε3)s
′

W4acb

}

+ 〈a†aa4〉(t)〈a†ba3〉(t)e−i (εa−ε4+εb−ε3)s
′

{

Wabc2δc,1 + 〈a†2ac〉(t)

e−i (ε2−εc)s
′

Wba1c + 〈a†1ac〉(t)e−i (ε1−εc)s
′

Wab2c

}]

ei (ε1+ε2−ε3−ε4)s
′

= −
∑

a,b,c

[

〈a†1ac〉〈a†2ab〉
{

ζ(εc + εb − ε3 − ε4)W4abcδa,3

+ 〈a†aa4〉ζ(εc + εb − εa − ε3)W3abc + 〈a†aa3〉ζ(εc + εb − εa − ε4)W4acb

}

+ 〈a†aa4〉〈a†ba3〉
{

ζ(ε1 + ε2 − εa − εb)Wabc2δc,1 + 〈a†2ac〉

ζ(ε1 + εc − εa − εb)Wba1c + 〈a†1ac〉ζ(εc + ε2 − εa − εb)Wab2c

}]

.

(III.B.35)

In the last step we have used the definition of the Heitler Zeta function [Hei84] given on page 69:

ζ(x) = −i

∫ ∞

0

ds ei as = PV

(
1

x

)

−iπδ(x) , (III.B.36)

3For an inclusion of Non-Markovian effects in the description of carrier-carrier scattering in the case of quantum wires
see [Pre98].
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where PV denotes the principal value and δ(x) the Dirac δ-function. Inserting the result in Eq.
(III.B.11) we obtain the carrier-carrier correlation contributions

d

dt
〈a†kal 〉|corr,cc =

i

~

∑

a,b,c
u,v,w

[

Vlabc

(

〈a†uab〉〈a†vac〉 − 〈a†vab〉〈a†uac〉
){

〈a†kaw〉Vuvaw ζwauv

+ Vuvka ζwauvδw,k − 〈a†aaw〉Vuvkw ζkwuv

}

+ Vabkc

(

〈a†val 〉〈a†uac〉 − 〈a†ual 〉〈a†vac〉
){

〈a†aaw〉Vuvbw ζwbuv

+ Vuvab ζwbuvδw,a − 〈a†baw〉Vuvaw ζawuv

}

+ Vabkc

(

〈a†aaw〉〈a†bav〉 − 〈a†aav〉〈a†baw〉
){

−〈a†uac〉Vluwv ζwvul

+ Vlcwv ζwvcuδu,l − 〈a†ual 〉Vcuvw ζwvuc

}

+ Vlabc

(

〈a†aav〉〈a†kaw〉 − 〈a†aaw〉〈a†kav〉
){

〈a†uac〉Vbuwv ζwvub

+ Vbcvw ζwvcuδu,b − 〈a†uab〉Vcuvw ζwvuc

}]

. (III.B.37)

For convenience, ζ(ε1 + ε2 + ε3 − ε4) is abbreviated by ζ1234. Inserting the definition of the ζ-
function, we see that the correlation contributions derived above, account for dephasing effects (δ-
function part) and renormalizations of the mean-field effects (principal value part). Next orders
could be obtained by deriving an equation of motion for the correction terms 〈a†1a†2a†3a4a5a6〉c.
Again carrier-carrier interaction would couple the correction terms to even higher contributions, at
this point eight-operator expectation values. However, with increasing order the contributions are
expected to become less important and are thus neglected in this work.

d) Screening

The derived scattering rates diverge for a bare Coulomb potential due to the long-range nature of
the potential [Kuh98]. Usually this divergence is removed by replacing the unscreened Coulomb
potential with a screened one. The question of the appropriate screening model is still controversial
in the literature. For further details on appropriate screening models see for example [LG99, LG00]
or recently [AK04, WAK03]. As we will also see in Chapter III.C.4.c, in the projector operator
formalism the correlation contributions are in the simplest approximation screened via the Lindhard
screening.

4. Carrier-Phonon Hamiltonian

The contribution due to carrier-phonon interaction, cf. Appendix APP E.4,

d

dt
〈a†k,kk

al,kl
〉|cp =

i

~

∑

a,q

{

ga,k
q 〈a†a,kk+q

||

bqal,kl
〉 − gl,a

q 〈a†k,kk
bqaa,kl−q

||

〉

+ g∗k,a
q 〈a†a,kk−q

||

b†qal,kl
〉 − g∗a,l

q 〈a†k,kk
b†qaa,kl+q

||

〉
}

(III.B.38)

couples the expectation values of two electron operators to expectation values of two electrons and
a phonon, the latter often referred to as phonon assisted density matrix elements. These phonon
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Chapter III III.B.4. CARRIER-PHONON HAMILTONIAN

assisted density matrices in turn couple to higher elements and thus we are again facing a hierarchy
problem. Similar to the treatment of the carrier-carrier interaction, we factorize the occurring matrix
elements into elements of lower order and decompose the equation of motion in mean-field and
correlation contributions

d

dt
〈a†k,kk

al,kl
〉|cp =

d

dt
〈a†k,kk

al,kl
〉|MF,cp +

d

dt
〈a†k,kk

al,kl
〉|corr,cp (III.B.39)

with

d

dt
〈a†k,kk

al,kl
〉|MF,cp =

i

~

∑

a,q

{

ga,k
q 〈a†a,kk+q

||

bqal,kl
〉f − gl,a

q 〈a†k,kk
bqaa,kl−q

||

〉f

+ g∗k,a
q 〈a†a,kk−q

||

b†qal,kl
〉f − g∗a,l

q 〈a†k,kk
b†qaa,kl+q

||

〉f
}

(III.B.40)

d

dt
〈a†k,kk

al,kl
〉|corr,cp =

i

~

∑

a,q

{

ga,k
q 〈a†a,kk+q

||

bqal,kl
〉c − gl,a

q 〈a†k,kk
bqaa,kl−q

||

〉c

+ g∗k,a
q 〈a†a,kk−q

||

b†qal,kl
〉c − g∗a,l

q 〈a†k,kk
b†qaa,kl+q

||

〉c
}

.

(III.B.41)

and

〈a†k,kk
bqaa,kl−q

||

〉f = 〈a†k,kk
aa,kl−q

||

〉〈bq〉 . (III.B.42)

a) Carrier-Phonon Mean Field Contributions (1st Order)

Approximating the phonon assisted density matrix elements by the factorized part only, the 1st order
in the hierarchy is obtained

d

dt
〈a†k,kk

al,kl
〉|MF,cp =

i

~

∑

a,q

{

ga,k
q 〈a†a,kk+q

||

al,kl
〉〈bq〉 − gl,a

q 〈a†k,kk
aa,kl−q

||

〉〈bq〉

+ g∗k,a
q 〈a†a,kk−q

||

al,kl
〉〈b†q〉 − g∗a,l

q 〈a†k,kk
aa,kl+q

||

〉〈b†q〉
}

(III.B.43)

In the bath approximation, where the phonon system acts as a thermal reservoir for the dynamical
electronic system, no coherent phonons are created. Thus 〈bq〉 = 0 and the lowest order of the
correlation expansion vanishes in this case.

b) Carrier-Phonon Correlation Contributions (2nd Order)

Analog the lines of III.B.3.b, we derive an equation of motion for the correction terms where we
again focus on the dominant contributions, i.e., we neglect the influence of transverse field and
Coulomb interaction on the phonon assisted density matrices

d

dt
〈a†abqab〉c ≈

i

~
〈[H0+Hcp, a

†
abqab]〉−

i

~
〈[H0+Hcp, a

†
bab]〉〈bq〉−

i

~
〈a†bab〉〈[H0+Hcp, bq]〉.

(III.B.44)

With the results given in Chapter APP E, we obtain

d

dt
〈a†abqab〉c|0 =

i

~
(εa − εb − ~ωL0)〈a†abqab〉c (III.B.45)
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and

d

dt
〈a†abqab〉c|cp =

i

~

∑

f,q′

(

gf,a
q′ 〈a†f,ka+q′

||

abbq′bq〉 − gb,f
q′ 〈a†aaf,kb−q′

||

bq′bq〉

+ g∗af
q′ 〈a†f,ka−q′

||

abb
†
q′bq〉 − g∗fb

q′ 〈a†aaf,kb+q′
||

b†q′bq〉

+

{

gb,j
q′ 〈a†aaj,kb−q′

||

〉 − gj,a
q′ 〈a†j,ka+q′

||

ab〉
}

〈bq′〉〈bq〉

+

{

g∗j,b
q′ 〈a†aaj,kb+q′

||

〉 − g∗a,j
q′ 〈a†j,ka−q′

||

ab〉
}

〈b†q′〉〈bq〉
)

− i

~

∑

j,f,kj

(

g∗jf
q 〈a†aaba

†
f,kj−q

||

aj,kj
〉 − 〈a†aab〉〈a

†
f,kj−q

||

aj,kj
〉
)

.

(III.B.46)

The expectation values of two electron and two phonon operators are decomposed according to

〈a†1a2b
†
qbq〉 = 〈a†1a2b

†
qbq〉f + 〈a†1a2b

†
qbq〉c (III.B.47)

〈a†1a2b
†
qbq〉f = 〈a†1a2〉〈b†qbq〉 + 〈a†1a2〉〈b†q〉〈bq〉 + 〈a†1a2b

†
q〉〈bq〉 + 〈a†1a2bq〉〈b†q〉

(III.B.48)

which yields in bath approximation

d

dt
〈a†abqab〉c|cp =

i

~

∑

j,q′

(

g∗aj
q′ 〈a†j,ka−q′

||

ab〉〈b
†
q′bq〉 − g∗jb

q′ 〈a†aaj,kb+q′
||

〉〈b†q′bq〉
)

(III.B.49a)

+
i

~

∑

j,f,kj

g∗jf
q 〈a†aaj,kj

〉〈a†f,kj−q
||

ab〉 −
i

~

∑

j

g∗jb
q 〈a†aaj,kb+q

||

〉

(III.B.49b)

+
∑

j,q′

(

gj,a
q′ 〈a†j,ka+q′

||

abbq′bq〉c − gb,j
q′ 〈a†aaj,kb−q′

||

bq′bq〉c (III.B.49c)

+ g∗aj
q′ 〈a†j,ka−q′

||

abb
†
q′bq〉c − g∗jb

q′ 〈a†aaj,kb+q′
||

b†q′bq〉c
)

(III.B.49d)

−
∑

j,f,kj

g∗jf
q 〈a†aa†f,kj−q

||

abaj,kj
〉c . (III.B.49e)

Similar to section III.B.3.b, we proceed in the simplest approximation. We consider only Eq.
(III.B.49a)-Eq. (III.B.49b) of Eq. (III.B.49). Therewith the equation of motion for the correction
terms is given by

d

dt
〈a†abqab〉c|0,cp =

i

~
∆ε0 〈a†abqab〉c +Q(t) (III.B.50)

with the abbreviations

∆ε0 = εa − εb − ~ωL0 , (III.B.51)

Q(t) =
i

~

∑

j,q′

(

g∗aj
q′ 〈a†j,ka−q′

||

ab〉〈b
†
q′bq〉 − g∗jb

q′ 〈a†aaj,kb+q′
||

〉〈b†q′bq〉
)

+
i

~

∑

j,f,kj

g∗jf
q 〈a†aaj,kj

〉〈a†f,kj−q
||

ab〉 −
i

~

∑

j

g∗jb
q 〈a†aaj,kb+q

||

〉 . (III.B.52)
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Analog the lines of sec. III.B.3.b we obtain

〈a†abqab〉c(t) =

∫ ∞

0

ds Q(t− s)e
i
~
∆ε0 s .

(III.B.53)

In Markov approximation this can be cast into

〈a†abqab〉c(t) = −
∑

j,q′

(

g∗aj
q′ 〈a†j,ka−q′

||

ab〉〈b
†
q′bq〉ζ(εa,ka

− εj,ka−q
||
− ~ωL0)

− g∗jb
q′ 〈a†aaj,kb+q′

||

〉(〈b†q′bq〉 + δq,q′)ζ(εj,kb+q
||
− εb,kb

− ~ωL0)

)

−
∑

j,f,kj

g∗jf
q 〈a†aaj,kj

〉〈a†f,kj−q
||

ab〉ζ(εj,kj
− εf,kj−q

||
− ~ωL0) .

(III.B.54)

Inserting the obtained result in Eq. (III.B.41), the second order in the hierarchy is obtained. Again,
the principal value part is associated with renormalizations of the energies while the δ-part describes
scattering and dephasing processes [Kuh98].

C. Schrödinger Picture:
The Projector-Operator Theory

Next, the equations of motions shall be derived in the Schrödinger picture, using projector-operator
theory. Although, the Heisenberg picture is somewhat easier to handle, the Schrödinger picture
has the advantage that some of the approximations connected with the treatment of the hierarchy
problem come along more self-evidently.

Before applying the projector-operator formalism to the description of intersubband transitions
in a multiple quantum well system, a short review of the underlying theory shall be given. A more
detailed introduction into the projector-operator theory can be found in [FS90, BKP01].

1. The Density Operator

In a many particle system, only the expectation values of a certain set of observables {O}, the
so-called observation level, are of interest. The observation level {O}, is typically not a complete
system in the space of observables. Therefore, the knowledge of the true density operator σ(t) of
the system contains more information than necessary and it is possible to decompose the density
operator with respect to the observables of interest, Oµ ∈ {O}, into a relevant part, σrel(t), and an
irrelevant part, σirr(t), with the properties:

σ(t) = σrel(t) + σirr(t) , tr(Oµσ(t)) = tr(Oµσrel(t)) , tr(Oµσirr(t)) = 0 . (III.C.1)

When t0 is the switch-on time of the interaction, we assume in the following a Hartree-Fock ground-
state, i.e.,

σ(t0) = σrel(t0) . (III.C.2)

Thus, the initial states under consideration, σ(t0) shall have no irrelevant part. The relevant part,
σrel(t), is a mapping of the density operator σ(t), i.e., σ(t) and σrel(t) are related by a functional f :

σrel(t) = f [σ(t)] . (III.C.3)
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For a differential variation of σrel(t), the variation of f [σ(t)] defines an idempotent superoperator
P[σ(t)] in Liouville space

dσrel(t) = d f [σ(t)] = P[σ(t)] dσ(t) = P[σrel(t)] dσ(t) , (III.C.4)

where we claimed P[σ(t)] = P[σrel(t)].

a) Super-Operators and Liouville Space

As a super-operator we define the mapping of an operator F onto another operator G where the op-
erators F,G are elements of the Hilbert space of quantum mechanical operators known as Liouville
space. In the following, we denote super-operators with calligraphic letters, for expample P,L,Q,
in order to avoid confusion with general operators. For convenience, the suffix ”super-” will dropped
wherever possible. The unity super-operator is denoted by I. If there exists a super-operator inverse
to a given super-operator A it shall be denoted by A−1:

AA−1 = A−1A = I . (III.C.5)

The most important super-operator is probably the so-called Liouville operator L(t), mediating the
mapping of an element G of the Liouville space via the commutation (1/~)[H(t), G]. Using the
cyclic property of the trace we find the important rule

tr(G · LF ) = tr(GHF −GFH) = tr(GHF −HGF ) = −tr([H,G]F )

= −tr(LG · F ) . (III.C.6)

Here the point indicates where the action of the Liouville operator ends. Another important relation-
ship for the Liouville operator is

ecLF = e
c
~

HF e−
c
~

H (III.C.7)

which shows, that the superoperator ecL denotes the transformation of an operator F due to the linear
operator e

c
~

H [FS90].

2. The Relevant Part of the Density Operator

As we have stated before, the knowledge of the relevant part of the density operator, σrel, is sufficient
for the calculation of the expectation values 〈Oµ〉 with Oµ ∈ {O}. To derive an equation of motion
for σrel(t) we start with the von Neumann-equation (Liouville equation) for the full density operator:

d

dt
σ(t) = −iL(t) σ(t) . (III.C.8)

In the following, the Hamiltonian H(t) is assumed to be a many particle Hamiltonian including
time-dependent external fields. Using Eq. (III.C.4) and Eq. (III.C.8) the time derivative of σrel(t)
reads

d

dt
σrel(t) = P[σrel(t)]

d

dt
σ(t) = −i P[σrel(t)]L(t)σ(t) = −i P[σrel(t)]L(t)

(
σrel(t)+σirr(t)

)
.

(III.C.9)

In order to get a closed equation of motion for σrel(t) the irrelevant part of the density operator σirr

in Eq. (III.C.9) is now related to σrel. For this purpose, we introduce the superoperator Q[σrel(t)]:

Q[σrel(t)] + P[σrel(t)] = I , (III.C.10)
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which we then use to decompose the Liouville operator L in relevant and irrelevant part, L(t) =
LP(t) + LQ(t):

Lrel(t) := LP(t) = P[σrel(t)] L(t), Lirr(t) := LQ(t) = Q[σrel(t)] L(t) . (III.C.11)

Applying the operator identity

U(t, t0) = UQ(t, t0) − i

∫ t

t0

dt′ UQ(t, t′) LP(t′) U(t′, t0) , (III.C.12)

where U and UQ = QU denote the time evolution operator for L and LQ (for details see Appendix
APP C) and Eq. (III.C.9), the density operator can be written as:

σ(t) = U(t, t0) σ(t0) (III.C.13)

= UQ(t, t0) σ(t0) +

∫ t

t0

dt′ UQ(t, t′)
d

dt′
σrel(t

′) .

An integration by parts1

σ(t) = UQ(t, t0) σ(t0) + σrel(t) − UQ(t, t0) σrel(t0) − i

∫ t

t0

dt′ UQ(t, t′)Q[σrel(t
′)] L(t′) σrel(t

′)

= σrel(t) − i

∫ t

t0

dt′ UQ(t, t′)Q[σrel(t
′)] L(t′) σrel(t

′)

(III.C.14)

and comparison with Eq. (III.C.1) leads to the desired connection between irrelevant and relevant
part of the density operator:

σirr(t) = −i

∫ t

t0

dt′ UQ(t, t′)Q[σrel(t
′)] L(t′) σrel(t

′) . (III.C.15)

Inserting Eq. (III.C.15) into Eq. (III.C.9) one finally obtains a closed equation of motion for σrel:

d

dt
σrel(t) = −iLP(t)σ(t) = −iLP(t)(σrel(t) + σirr(t)) (III.C.16)

= −iLP(t)σrel(t) − LP(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′) .

The expectation values of the observables of interest On ∈ {O} can be calculated by using Eq.
(III.C.1):

d

dt
〈On〉 =

d

dt
tr(On σ(t)) =

d

dt
tr(On σrel(t)) (III.C.17)

= −i tr
(
On LP(t)σrel(t)

)
− tr

(
On LP(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′)

︸ ︷︷ ︸

i σirr(t)

)

=
d

dt
〈On〉|MF +

d

dt
〈On〉corr . (III.C.18)

Equation Eq. (III.C.17) shows, that even though 〈On〉 = tr(Onσrel) depends only on the relevant
part of the density operator, the equation of motion for 〈On〉 depends on both the relevant and the

1Here Eq. (III.C.2) and the following two properties of the time evolution operator have been used:

∂

∂t′
UQ(t, t′) = i UQ(t, t′) Q[σrel(t

′)] L(t′) , UQ(t, t) = 1
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irrelevant part of the density matrix (although the latter can be expressed in terms of σrel) and both
relevant and irrelevant part have to be known in order to determine the time development of the
expectation values. In anticipation of future results, the part dependent on σrel will be referred to as
mean-field part d

dt 〈On〉|MF, the part dependent on σirr as correlation part d
dt 〈On〉|corr.

In order to use Eq. (III.C.17), the relevant density matrix operator has to be determined. As
known from non-equilibrium statistical physics, the generalized canonical density operator

σcan(t) =
e−

P

n λn(t)On

tr(e−
P

n λn(t)On)
(III.C.19)

is the density operator which has the maximum uncertainty measure within a fixed set of observables.
As can be found in textbooks [FS90], the mapping σ(t) onto σcan(t) has the required properties for
the relevant density matrix operator Eq. (III.C.1). Thus, in the following we choose σrel = σcan.
Note that the expression for the canonical density operator does not imply a restriction to equilibrium
processes, the full time dependence is included in the Lagrange parameters λn.

It can be shown that P is the Kawasaki-Gunton operator [FS90]

P[σrel(t)]Y =

(

σrel(t) −
n∑

ν=1

∂σrel(t)

∂〈Oν〉(t)
〈Oν〉(t)

)

tr(Y ) +
n∑

ν=1

∂σrel(t)

∂〈Oν〉(t)
tr(OνY ) . (III.C.20)

With this knowledge we can derive the useful identity

tr(OµLPσrel) = tr(OµLσrel) (III.C.21)

for an element Oµ of the observation level {O}:

tr(OµPLσrel) =
{

tr(Oµσrel(t)) − tr
(

Oµ

n∑

ν=1

∂σrel(t)

∂〈Oν〉(t)
)

〈Oν〉(t)
}

tr(Lσrel)

+ tr
(

Oµ

n∑

ν=1

∂σrel(t)

∂〈Oν〉(t)
)

tr(OνLσrel)

=
{

〈Oµ〉(t) −
n∑

ν=1

δµν〈Oν〉(t)
}

tr(Lσrel) +

n∑

ν=1

δµν tr(OνLσrel)

= tr(OµLσrel) ,

(III.C.22)

where we have used

tr
(

Oµ

n∑

ν=1

∂σrel(t)

∂〈Oν〉(t)
)

=

n∑

ν=1

∂

∂〈Oν〉(t)
tr
(

Oµσrel(t)
)

=

n∑

ν=1

∂〈Oµ〉(t)
∂〈Oν〉(t)

=

n∑

ν=1

δµν . (III.C.23)

Using Eq. (III.C.21), we rewrite the mean-field contributions:

d

dt
〈On〉|MF = −i tr

(
Oµ P(t)L(t)σrel(t)

)
(III.C.24)

= −i tr
(

OµL(t)σrel(t)
)

.

(III.C.25)

3. The Irrelevant Part of the Density Operator

As can be seen in Eq. (III.C.17), the equation of motion for the expectation value 〈Oµ〉, with
Oµ ∈ {O}, depends not only on the relevant part but also on the irrelevant part of the density
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operator

d

dt
〈Oµ〉|corr = −i tr

(
Oµ LP(t)σirr(t)

)
= −tr

(
Oµ LP(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′)
)
.

(III.C.26)

In order to simplify the calculation of Eq. (III.C.26), we insert the Kawasaki-Gunton operator:

d

dt
〈On〉|corr = −i tr

(
Oµ P(t)L(t)σirr(t)

)
(III.C.27)

= −i
{

〈Oµ〉(t) −
n∑

ν=1

δµν〈Oν〉(t)
}

tr
(

L(t)σirr(t)
)

+

n∑

ν=1

δµν tr
(

OνL(t)σirr(t)
)

= −i tr
(

OµL(t)σirr(t)
)

.

Furthermore, we rewrite the irrelevant density operator,Eq. (III.C.15), using time ordering and
anti-ordering operators (cf. Appendix APP C:Eq. (APP C.9) and Eq. (APP C.18))

σirr(t) = −i

∫ t

t0

dt′ UQ(t, t′) LQ(t′) σrel(t
′)

= −i

∫ t

t0

dt′ T+e−i
R t

t′
dt′′LQ(t′′)LQ(t′) T−ei

R t
t′

dt′′LP(t′′)(σrel(t) + σirr(t)) . (III.C.28)

Next, we consider the case t0 → −∞ and introduce the superoperator X (t)

X (t) = −i

∫ t

−∞

dt′T+e−i
R t

t′
dt′′LQ(t′′)LQ(t′) T−ei

R t
t′

dt′′LP (t′′) , (III.C.29)

which yields

σirr(t) = (I − X (t))−1X (t)σrel(t) . (III.C.30)

Often, this expression for the irrelevant part of the density operator is a good starting point for
approximation schemes to many particle correlations.

4. Equations of Motion for Quantum Well Excitations

In Chapter III.C.2 we have seen, that the expectation values of certain observables On, elements of a
specific observation level {O}, depend only on the corresponding relevant part of the density oper-
ator whereas the equation of motion depends also on the irrelevant part suggesting a decomposition
in mean-field and correlation contributions:

d

dt
〈On〉(t) =

d

dt
tr(On σ(t)) =

d

dt
tr(On σrel(t))

=
d

dt
〈On〉(t)|MF +

d

dt
〈On〉(t)|corr (III.C.31a)

with

d

dt
〈On〉(t)|MF = −i tr

(
On L(t)σrel(t)

)
(III.C.31b)

d

dt
〈On〉(t)|corr = −i tr

(
On L(t)σirr(t)

)

= −tr
(
On L(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′)
)
. (III.C.31c)

We now want to apply this knowledge to the description of quantum well excitations.
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a) Observation Level, Canonical Density Operator, Initial Conditions

In Section III.C.2, we have already chosen σrel = σcan with

σcan(t) =
e−

P

n λn(t)On

tr(e−
P

n λn(t)On)
, (III.C.32)

but did not specify the level of observation any further. As we have seen, in our case the quanti-
ties of interest as polarization or population all depend on expectation values of the form 〈a†kak′〉,
where indices k, k′ are compound indices, which contain the subband number nk, nk′ , 2D-wave
number kk,kk′ in the free propagation direction (xy-plane), spin σk, σk′ and well number w,w′.
For different indices, the expectation values yield coherences (for example nk 6= nk′ : intersubband
coherence), for equal indices, i.e. k = k′, they yield occupation numbers. Therefore, it seems
reasonable to choose the observation level {O} = {a†kak′}, since we are only interested in the
expectation values of these operators. The corresponding canonical operator is thus given by

σcan,e =
e−

P

i,j λij(t)a
†
i aj

tr
(

e−
P

i,j λi,j(t)a
†
i aj

) . (III.C.33)

This is a good starting point for the description of the dynamics of the electronic system Σe.
To incorporate the interaction of electronic system Σe and phonon system Σp, we assume in the

following that Σp is not strongly influenced by the coupling to system Σe, i.e., the phonon system
acts as a thermal reservoir (bath) described by the statistical operator

σcan,p(t) =
e−Hp/(kBT )

tr(e−Hp/(kBT ))
. (III.C.34)

This means, that the phonons are treated as a bath for the dynamical electronic system (phonon bath
approximation) and the space of the whole system Σ is the product space of the two subspaces Σe,p

with the canonical operator

σrel(t) = σcan(t) =
e
−

P

i,j λij(t)a
†
i aj−~/(kBT )

P

q
ωqb†

q
b
q

tr(e−
P

i,j λij(t)a
†
i aj−~/(kBT )

P

q
ωqb†qbq)

. (III.C.35)

With the chosen observation level, we can now calculate the expectation values of the observables
a†iaj by applying Eq. (III.C.31a):

d

dt
〈a†w,kaw′,k′〉(t) = −i tr

(
a†w,kaw′,k′ LP(t)σrel(t)

)

− tr
(
a†w,kaw′,k′ LP(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′)
)
. (III.C.36)

The equation can be decomposed into mean-field contributions (1st part) and correlation contribu-
tions (2nd part). For nk 6= nl, the temporal dynamics of field induced intersubband transitions, i.e.
the destruction and creation of electrons in different subband, for nk = nl the temporal dynamics of
field induced intrasubband transitions are described. As initial conditions we assume that there exist
no coherences at the switch-on time of the interaction:

〈a†kak′〉(t0) = 0 if k 6= k′ . (III.C.37)

If not otherwise stated, we will choose Fermi-Dirac quasi-equilibrium distributions as initial condi-
tions for the occupation numbers 〈a†kak〉(t0). The expectation values of the phonon number opera-
tors are given by the Bose-Einstein distribution.

In order to obtain a theory applicable to a range of different situations, we derive the equation of
motion for the observable 〈a†kal 〉 and delay the assignation to special boundary conditions such as
electronically uncoupled / coupled wells, weak / strong excitation, number of subbands etc . . .
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b) Mean-Field Contributions

On the basis of Eq. (III.C.31b), we obtain the equation of motion for the mean-field contributions in
the form:

d

dt
〈a†kal 〉|MF = i tr(L(t)a†kalσrel(t)))

=
i

~
tr([H, a†kal ]σrel(t)) (III.C.38)

=
i

~
tr([H0 +Hcf +Hcc +Hcp, a

†
kal ]σrel(t)) . (III.C.39)

The evaluation of Eq. (III.C.38) is for conciseness performed for each Hamiltonian separately.

Free-Particle Hamiltonian and Carrier-Field Hamiltonian

Commutation with both free-particle Hamiltonian and carrier-field Hamiltonian yields elements
which are again part of the specified observation level

[H0 +Hcf , Oµ] ∈ {O} with {O} = {a†w,kaw′,k′} (III.C.40)

and the corresponding equations are equivalent to their counterparts in the Heisenberg picture:

d

dt
a†kal |MF,0 =

i

~
(εk − εl)a

†
kal , (III.C.41)

d

dt
〈a†kal 〉|MF,cf =

d

dt
〈a†kal 〉|

opt
cf +

d

dt
〈a†kal 〉|cur

cf . (III.C.42)

The optical and current contributions are given in Eq. (III.B.4) and Eq. (III.B.5).

Carrier-Carrier Hamiltonian

In contrast to free-carrier and carrier-field Hamiltonian, commutation with carrier-carrier Hamilto-
nian does not yield elements which are again part of the specified observation level

[Hcc, Oµ] /∈ {O} (III.C.43)

and thus the system of equations does not close:

d

dt
〈a†kal 〉|MF,cc =

i

~

∑

a,b,c

[

Vabkc tr
(

a†aa
†
bacalσrel(t)

)

− Vlabc tr
(

a†ka
†
aacabσrel(t)

)]

. (III.C.44)

Note, that we can here not replace tr(a†ia
†
jakalσrel(t)) by 〈a†ia

†
jakal 〉 since foursome operators do

not lie in the chosen observation level {O} = {a†kak′}. Expectation values of the latter can be
obtained according to

〈O〉 = tr(Oσ(t)) = tr(Oσrel(t)) → 〈a†kak′〉 = tr(a†kak′σ(t)) = tr(a†kak′σrel(t))

(III.C.45)

due to

tr(Oσirr(t)) = 0 ,

which does not hold for expectation values of operators beyond the observation level.
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Mean-field Factorization

To simplify the calculation of tr(a†ia
†
jakalσrel(t)), we first diagonalize the electronic part of the

relevant density operator given in Eq. (III.C.33). The matrix elements of the hermitian matrix
λ with respect to a complete set of orthonormal functions, {φn}, are given by λij = 〈φi|λ|φj〉.
Introducing a complete set of orthonormal functions,{λn}, with 〈λn|λ|λm〉 = λnδn,m and matrix
U with elements Uni = 〈λn|φi〉, we can rewrite λ according to

λij =
∑

n,m

〈φi|λn〉〈λn|λ|λm〉〈λm|φj〉 =
∑

n

U∗
niλnUnj . (III.C.46)

Therewith we obtain

σrel,e =
e−

P

n λn

P

i U∗
nia

†
i

P

j Unjaj

tr
(

e−
P

n λn

P

i U∗
nia

†
i

P

j Unjaj

) =
e−

P

n λnd†
ndn

tr
(

e−
P

n λnd†
ndn

) (III.C.47)

=

∏

n e−λnn̂n

∑

{nα}〈{nα}|
∏

n e−λnn̂n |{nα}〉
=
∏

n

e−λnn̂n

1 + e−λn
(III.C.48)

where we first introduced new operators di , d
†
i with

di =
∑

j

Uijaj , (→ ai =
∑

j

U∗
jidj) , d†i =

∑

j

U∗
ija

†
j , (→ a†i =

∑

j

Ujid
†
j) (III.C.49)

and for convenience then switched to number operators n̂i = d†idi with number states |{nα}〉 =
|n1, . . . , nα, . . .〉 (nα ∈ {0, 1} due to the fermionic nature of electrons).

In order to determine tr(a†1a
†
2a3a4σrel,e) we first insert the diagonalized electronic part of the

relevant density operator and the new creation and annihilation operators:

tr(a†1a
†
2a3a4σrel,e) =

∑

{nα}

∑

a,b,c,d

Ua1Ub2U
∗
c3U

∗
d4〈{nα}|d†ad†bdcdd

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉 .

(III.C.50)

Having in mind

d†i |N ; ..ni..〉 = (−1)Niδni,0|N + 1; ..ni + 1..〉 (III.C.51)

di |N ; ..ni..〉 = (−1)Niδni,1|N − 1; ..ni − 1..〉 (III.C.52)

(III.C.53)

with Ni =
∑i−1

j=1 nj , we can simply further

tr(a†1a
†
2a3a4σrel,e) =

∑

{nα}

∑

a,b

Ua1Ub2U
∗
a3U

∗
b4〈{nα}|d†ad†bdadb

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉

+
∑

{nα}

∑

a,b

Ua1Ub2U
∗
b3U

∗
a4〈{nα}|d†ad†bdbda

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉

= −
∑

{nα}

∑

a,b

Ua1Ub2U
∗
a3U

∗
b4〈{nα}|nanb

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉

+
∑

{nα}

∑

a,b

Ua1Ub2U
∗
b3U

∗
a4〈{nα}|nanb

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉

=
∑

a

Ua1U
∗
a4

1 + eλa

∑

b

Ub2U
∗
b3

1 + eλb
−
∑

a

Ua1U
∗
a3

1 + eλa

∑

b

Ub2U
∗
b4

1 + eλb
. (III.C.54)
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For simplicity, we switched to number operators after using the commutator relations. A similar
procedure yields

tr(a†1a2σrel,e) =
∑

a

Ua1U
∗
a2

1 + eλa
(III.C.55)

and therewith we obtain

tr(a†1a
†
2a3a4σrel,e) = tr(a†1a4σrel,e)tr(a

†
2a3σrel,e) − tr(a†1a3σrel,e)tr(a

†
2a4σrel,e) . (III.C.56)

Since the phonon part of the relevant density operator does - in the bath approximation - not change
the number states of the whole system, |{nα}〉|{ñQ}〉, we obtain

tr(a†1a
†
2a3a4σrel) = 〈a†1a4〉〈a†2a3〉 − 〈a†1a3〉〈a†2a4〉 (III.C.57)

which is the so-called mean-field factorization for four-particle correlations. Note that in the same
way the factorization of six-operator terms which has been used in Eq. (III.B.18) can be derived [cf.
Chapter APP D].

Comparison with the Heisenberg picture Note that this is the same factorization we have used
in Eq. (III.B.8) to factorize the occurring foursome operators. But whereas in Eq. (III.B.7), the
foursome operator was split into factorized terms and correction/correlation contributions, the fac-
torization of the four-particle correlations is exact here. This is due to the separation of the density
operator in relevant and irrelevant part which yields the separation of mean-field and correlation
contributions already on a earlier level. The division in Eq. (III.B.7) is thus the counterpart to

〈a†1a†2a3a4〉 = tr(a†1a
†
2a3a4σ) = tr(a†1a

†
2a3a4σrel) + tr(a†1a

†
2a3a4σirr) (III.C.58)

Carrier-Phonon Hamiltonian

Commutation with the carrier-phonon Hamiltonian also yields elements which are not part of the
specified observation level:

d

dt
〈a†k,kk

al,kl
〉|MF,cp =

i

~

∑

a,q

{

ga,k
q tr

(

a†a,kk+q
||

bqal,kl
σrel(t)

)

− gl,a
q tr

(

a†k,kk
bqaa,kl−q

||

σrel(t)
)

+ g∗k,a
q tr

(

a†a,kk−q
||

b†qal,kl
σrel(t)

)

− g∗a,l
q tr

(

a†k,kk
b†qaa,kl+q

||

σrel(t)
)}

(III.C.59)

and we have to deal with expectation values of the form tr(a†a,k+q′
||

bq′ab,kσrel). Using the diagonal-

ized relevant density operator σrel for the full system we obtain

tr(a†abq
1
abσrel)

=
∑

nα,ñq

〈{ñq}|〈{nα}|
∑

i,j

UiaU
∗
jb d

†
idj bq

1

∏

n

e
−λnn̂n−

P

q′ ~/(kBT )ω
q′ n̂q′

(1 + e−λn)tr(e−
P

q′ ~/(kBT )ω
q′nq′

)
|{nα}〉|{ñq}〉

=
∑

j

UjaU
∗
jb

1 + eλj

∑

ñq

〈{ñq}|bq
1

e
−

P

q′ ~/(kBT )ω
q′ n̂q′

tr(e−
P

q′ ~/(kBT )ω
q′nq′ )

|{ñq}〉 = 〈a†aab〉 tr(bq
1
σrel)

= 0 , (III.C.60)

and thus the electron-phonon mean-field contribution for the here considered phonon bath vanishes:

d

dt
〈a†k,kk

al,kl
〉|MF,cp = 0 . (III.C.61)

This is consistent with the assumption that treating the phonons as a bath does not allow coherent
phonon fields.
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c) Correlation Contributions

Next, the correlation contributions, i.e., the part of the expectation value dependent on σirr, have to
be determined. As the complete derivation is very lengthy, only the most important steps are given
below. The main purpose of this section is to illustrate that already with quite rigid approximations
in the irrelevant part of the density operator, the correlation contributions can be derived in a form
similar to the results obtained in the Heisenberg picture (the only difference is the self-consistently
occurring Lindhard screening in the case of carrier-carrier scattering). The starting point of the
derivation is given by

d

dt
〈a†kal 〉(t)|corr = −i tr

(
a†kal L(t)σirr(t)

)

= −tr
(
a†kal L(t)

∫ t

t0

dt′ UQ(t, t′) LQ(t′)σrel(t
′)
)
. (III.C.62)

In Section III.C.4.b we have already seen, that only commutation with many-particle Hamiltonians,
Hcc and Hcp yields elements which are not part of the specified observation level, i.e.,

[H0 +Hcf , Oµ] ∈ {O}, [Hcc +Hcp, Oµ] /∈ {O} (III.C.63)

with {O} = {a†w,kaw′,k′}. Having in mind that elements of the observation level do yield only
vanishing contributions to the expectation value with the irrelevant part, i.e., tr(Oµσirr(t)) = 0
[cf. Eq. (III.C.1)], we can thus restrict the Liouville operator L to the many particle Liouvillian
Lmp = Lcc + Lcp. Assuming that the relevant and irrelevant Liouvillians depend only weakly on
time (Markovian approximation), we approximate the integral kernels in Eq. (III.C.29) by:

T+e−i
R t

t′
dt′′ LQ(t′′) ≈ e−i (t−t′)LQ , T−ei

R t
t′

dt′′ LP(t′′) ≈ ei (t−t′)LP (III.C.64)

and rewrite Eq. (III.C.29) by changing the integration variable:

X = −i

∫ ∞

0

ds e−iLQs LQ eiLPs . (III.C.65)

Since Eq. (III.C.65) contains an exponential of LQ, we approximate LQ in the free-particle Liouvil-
lian L0 and a correction LC (LQ = L0 + LMF + LC ≈ L0 + LC) and derive a perturbation series
of the term e−iLQs with respect to L0 [Kno97], which is comparable to the approximation in Eq.
(III.B.15). We rewrite Eq. (III.C.65)2 by introducing the operator Ξ:

X = −i

∫ ∞

0

dsΞ(s)LQeiL0s , (III.C.66)

Ξ(s) = (1 +

∫ s

ds′e−i (L0+QLC)s′

[−iQLC ]eiL0s′

)e−iL0s , (III.C.67)

d

ds
(Ξ(s)) = X (s)[−iQLC ] + Ξ(s)[−iL0] (III.C.68)

and use the Laplace-transformation Ξ̃(z) = L(Ξ(s)) for the operator X (s) to derive the homoge-
neous equation

X̃ (z)(z + iL0) = Ξ̃(z)(−iQLC) , (III.C.69)

which can be solved by iteration (with Ξ0 = 1, Ξ̃0 = (z + iL0)
−1 as initial values):

X̃ (z) = (1 − U0(z)[−iQLC ])−1U0(z), U0(z) = (z + iL0)
−1 . (III.C.70)
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Therewith we rewrite X :

X = −i lim
z→0

∫ ∞

0

ds e−szΞ(s)e−iL0sLQeiL0s (III.C.71)

= −i lim
z→0

(1 − U1(z)[−iQLC ])−1U1(z)LQ(2) (III.C.72)

U1(z) = (z + iL0(3) − iL0(1))
−1 . (III.C.73)

Here the arguments in the operators denote the order of application to the right. Collecting all results,
the electron-electron correlation part of the equations of motion can be cast into:

d

dt
〈a†kal 〉corr,cc = −tr(ε−1LMPa

†1
k a

2
kε

−1QLMP(2)ζ(L0(1) − L0(3))σrel) (III.C.74)

= −tr(ε−1
∑

abc

(Vab1ca
†
aa

†
baca2 − V2abca

†
1a

†
aacab)× (III.C.75)

× ε−1QLMP(2)ζ(L0(3) − L0(1))σrel) (III.C.76)

where we ζ denotes again the Heitler’s zeta-function [Hei84] and the super-operator ε is given by

ε = 1 + LQ(L0(3) − L0(1))
−1 . (III.C.77)

Equation Eq. (III.C.74) shows that the cc-correlations have to be calculated with many particle
Liouvillianes screened by the operator ε, which in its simplest approximation contributes via the
Lindhard screening of the Coulomb interaction matrix elements Vabcd. To show this, we have to
calculate the action of ε on the 4-particle operator products, cf. Eq. (III.C.76). In order to apply
ε as a whole to the 4-particle functions, we restrict to its eigenfunctions by choosing the index
combinations which conserve the 4-particle function and find:

ε−1
∑

abc

Vab1ca
†
aa

†
baca2 = 〈ε〉−1

∑

abc

Vab1ca
†
aa

†
baca2

=



1 − Vq

∑

a, ~ka

σaa
~ka

− σaa
~ka−~q

εa
~ka

− εa
~ka−~q




∑

abc

Vab1ca
†
aa

†
baca2 (III.C.78)

Then, by applying the second screening operator ε and the remaining superoperators (QLMP ≈
LMP − L0) and using a similar treatment for the correlation contribution of the electron-phonon
interaction, we finally obtain the correlation contributions already given in Eq. (III.B.37) and Eq.
(III.B.54).

2Here we use a disentangling formula for superoperators [FS90] to decompose the exponential e−iLQs:

ei (A+B)t = ei At +

Z t

dt′ei (A+B)t′ i Bei A(t−t′)

→ e−iQ(L0+LC)s
≈ e−i (L0+QLC)s = (1 +

Z s

ds′e−i (L0+QLC)s′ [−iQLC ]eiL0s′ )e−iL0s .
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After deriving the equations of motion for the observables of interest, we will now adapt them to
different situations. In the scope of this work, we always consider only transitions between the two
lowest subbands of the conduction band.
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CHAPTER IV

Single Quantum Well with
Homogeneous Electric Field

The aim of this chapter is to introduce all microscopic effects at the example of a very basic
model system (single quantum well, homogenous electric field). Thereby, the impact of different
microscopic contributions such as mean-field effects or correlation contributions and their interplay
can be examined in its pure form, that is without mixing microscopic and macroscopic effects. In
addition to this, the following chapter serves to familiarize with concepts or approximations fre-
quently used in the scope of this work. All in all, the chapter provides the microscopic basis for the
description of more complex systems, e.g., a multiple quantum well system embedded in a special
geometry, - then also with respect to macroscopic effects.

In the following the microscopic theory derived above is applied to the case of a single quantum
well where local field effects are negligible. We therefore assume that the local field is equivalent
to the external applied field. For further simplification we take the field to be spatially homogenous
which is a common approximation well justified for a wide range of applications [see for example
[Kuh98]]. As we consider only a single quantum well, the index w denoting the well number is
dropped in the following.

A. Initial Conditions and Approximations

1. Homogeneous Field

As stated above, we assume the electric field entering the microscopic equations of motion to be
spatially homogeneous, i.e., we can replace the electric field in the equations according to

E(Q, z, t) → E(t) δQ,0 . (IV.A.1)

Furthermore we concentrate on contributions describing optical processes i.e., we neglect current
contributions in the framework of this work [cf. Chapter III.B.2]. Using that the wave functions of
the two lowest subbands are orthonormal and have different parity, the contributions due to carrier-
field interaction are reduced to

d

dt
σ12
k,k′

σ,σ′

|cf = i Ω(t)
(
σ11
k,k′

σ,σ′

− σ22
k,k′

σ,σ′

)
)
, (IV.A.2a)

d

dt
σii
k,k′

σ,σ′

|cf = i Ω(t)
(
σij

k,k′

σ,σ′

− σji

k,k′

σ,σ′

)
[i, j = 1, 2, i 6= j] . (IV.A.2b)

Here we have introduced the Rabi frequency

Ω(t) = e
D2,1Ez(t)

~
(IV.A.3)
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with dipole matrix element

Dn1,n2 =

∫

dz dn1,n2(z) =

∫

dzφ∗n1(z) z φn2(z) . (IV.A.4)

As can be seen in Eq. (IV.A.2) a spatially homogenous field couples only density matrix elements
with identical wave vectors k,k′ and spin σ, σ′. This means that in the case of homogeneous initial
conditions, where no coherences exist at the switch-on time t0, i.e.,

σij

k,k′

σ,σ′

(t0) = 0 if i 6= j ∧ k 6= k′ ∧ σ 6= σ′ , (IV.A.5)

coherences between different wave numbers and different spin are not driven by the electric field:

d

dt
σ12
k,k′

σ,σ′

|cf ≡
d

dt
σii
k,k′

σ,σ′

|cf ≡ 0 if k 6= k′ ∧ σ 6= σ′ . (IV.A.6)

Hence, only equations of motion for the intersubband coherences, p12
k,σ = σ12

k,k
σ,σ

, and occupation

numbers, f i
k,σ = σii

k,k
σ,σ

will be solved in the following.

2. Matrix Elements

We restrict the analysis here to the description of a symmetric quantum well which reduces the
number of non-vanishing Coulomb matrix elements considerably.

a) Coulomb Matrix Elements

For real wave functions the Coulomb matrix elements are given by [cf. Eq. (APP E.13)]

V nanbncnd

q =
1

A

e2

2ε0

∫

dz

∫

dz′
e−q|z−z′|

q
φna

(z)φnb
(z′)φna

(z)φnb
(z′) (IV.A.7a)

=
1

A

e2

2ε0

1

q
Fnanbncnd

q . (IV.A.7b)

Taking into account only the lowest two subbands in the conduction band, there exist thus only eight
non-vanishing Coulomb form factors in a symmetric quantum well1:

I. V1111 and V2222 which describe purely intrasubband processes, i.e., two electrons interact in
the same subband and remain in the initial subband (intrasubband interaction, intrasubband
transitions)

II. V1212 and V2121 which describe an inter-intrasubband process, i.e., two electrons interact in
different subbands and remain in the initial subband (intersubband interaction, intrasubband
transitions)

III. V1221 and V2112 which describe purely inter-intersubband process, i.e., two electrons interact
in different subbands and scatter to a different subband (intersubband interaction, intersubband
transitions)

IV. V1122 and V2211 which describe an intra-intersubband process, i.e., two electrons interact in
the same subbands and scatter to a different subband (intrasubband interaction, intersubband
transitions) .

1Note, that in a symmetric quantum well all matrix elements corresponding to Auger processes are of zero value.
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Because of the symmetry of the Coulomb matrix elements, we find that although they belong to
different processes, the following matrix elements are the same

V1212 = V2121 , V1221 = V2112 = V1122 = V2211 . (IV.A.8)

A sketch of the Coulomb matrix elements is given in Fig. IV.A.1. A detailed overview over the
matrix elements and their dependence on wave vector and well width can be found in APP B.

1111

2

1

2

1

2

1

2

V
V

1212

2121

V
V

2112

1221
V2211

(a) (b) (c) (d)V

1

Figure IV.A.1 — Sketch of Coulomb Matrix Elements: The different matrix elements describe intrasubband,
inter-intrasubband, inter-intersubband and intra-intersubband processes [cf. Chapter IV.A.2.a].

b) Fröhlich Matrix Elements

The Fröhlich matrix elements are given by

gab
q = −i

√

e2~ωLO

2V

(
1

ε∞
− 1

εs

)
1

|q|

∫

dzφa(z)φb(z)e
iq

⊥
z, (IV.A.9a)

= −i

√

e2~ωLO

2V

(
1

ε∞
− 1

εs

)
1

|q|F
ab
q
⊥

(IV.A.9b)

and taking into account the lowest two subbands we have intrasubband matrix elements g11
q , g

22
q and

intersubband matrix elements g12
q = g∗21q . Note that in a symmetric quantum well products of inter-

and intrasubband Fröhlich matrix elements vanish, gii
q g

ij
q = 0. Again an overview over the matrix

elements and their dependence on wave vector and well width can be found in APP B. The underline
below q denotes, that this a 3D wave vector in contrast to 2D−in-plane vectors k.

B. Equations of motion

To proceed we evaluate Eq. (III.B.2), Eq. (III.B.4), Eq. (III.B.12), Eq. (III.B.37) and Eq. (III.B.41)
with Eq. (III.B.54) for intersubband coherence p12

k,σ and occupation numbers f i
k,σ . This is a very

straightforward although lengthy task, therefore only the final result shall be given here. For the
following analysis, it is convenient to distinguish different contributions of the equations of motion
as done below

d

dt
p12
k,σ =

d

dt
p12
k,σ|0 +

d

dt
p12
k,σ|cf +

d

dt
p12
k,σ|mf,

A
+

d

dt
p12
k,σ|mf,

B
+

d

dt
p12
k,σ|mf,

C

+
d

dt
p12
k,σ|cc−corr +

d

dt
p12
k,σ|cp−corr , (IV.B.1)

d

dt
f i
k,σ =

d

dt
f i
k,σ|cf +

d

dt
f i
k,σ|mf,

B
+

d

dt
f i
k,σ|mf,

C

+
d

dt
f i
k,σ|cc−corr +

d

dt
f i
k,σ|cp−corr . (IV.B.2)
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The free-carrier, carrier-field and mean-field contributions read

d

dt
p12
k,σ|0 = − i

~
(ε2,k − ε1,k)p12

k,σ (IV.B.3)

d

dt
p12
k,σ|cf = i Ω(t)

[

f1
k,σ − f2

k,σ

]

(IV.B.4)

d

dt
p12
k,σ|mf,

A
=

i

~

∑

q

[

(V 2222
q − V 2112

q ) f2
k+q,σ − (V 1111

q − V 2112
q ) f1

k+q,σ

]

p12
k,σ (IV.B.5)

d

dt
p12
k,σ|mf,

B
=

i

~

∑

q

[

V 1212
q p12

k−q,σ + V 2112
q p21

k−q,σ

]

(f1
k,σ − f2

k,σ) (IV.B.6)

d

dt
p12
k,σ|mf,

C
= − i

~
V 2112

0

∑

ka,σa

[

p12
ka,σa

+ p21
ka,σa

]

(f1
k,σ − f2

k,σ) (IV.B.7)

d

dt
f i
k,σ|cf = i Ω(t) pij

k,σ − c.c. (IV.B.8)

d

dt
f i
k,σ|mf,

B
=

i

~

∑

q

[

V ijij
q pji

k−q,σ + V jiij
q pij

k−q,σ

]

pij
k,σ − c.c. (IV.B.9)

d

dt
f i
k,σ|mf,

C
= − i

~
V jiij

0

∑

ka,σa

[

pij
ka,σa

+ pji
ka,σa

]

pij
k,σ + c.c. . (IV.B.10)

Here, we already took into account that the divergent mean-field contributions

i

~
(V 1111

0 − V 1212
0 ) p12

k
σ

∑

ka,σa

f1
ka
σa

+
i

~
(V 1212

0 − V 2222
0 ) p12

k
σ

∑

ka,σa

f2
ka
σa

,

which occur in the equation of motion for the intersubband coherence, cancel with the ionic back-
ground [Kuh98, N+97]. The three mean-field contributions A,B,C are exchange shift, excitonic
contribution and depolarization effect, respectively, which will be discussed in separate sections in
the following.

As we have seen in Chapter III.B.3.b and Chapter III.B.4.b, the correlation contributions consist
of two parts: a principal value part and a δ-function part. Just like in interband transitions, the princi-
pal value part can be associated with second order renormalizations of the energies and the δ-function
part with scattering and dephasing processes [BSP+92, Kuh94]. As the first order renormalizations
(mean-field effects) are expected to dominate the overall renormalizations [Kuh98], the second order
renormalizations (principal value parts) are neglected in the following. The remaining correlation
contributions for the intersubband coherence consist of diagonal terms, Ξd(p

ij
k ), dependent on the

intersubband coherence at same wavenumber, p21
k , non-diagonal terms, Ξnd(p

ij
k+k′′), which couple

intersubband coherences at different wave vectors and terms nonlinear in the polarization Ξnl:

d

dt
p21
k,σ|cc/cp-corr = −π

~
Ξd(p

21
k ) +

π

~

∑

k′′

Ξnd(p
ij
k+k′′) +

π

~
Ξnl, (IV.B.11)

(IV.B.12)

with

Ξd(p
21
k ) = Γd p

21
k =

1

2

∑

i=1,2

(Γi,cp
d + Γi,cc

d ) p21
k , (IV.B.13)
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Chapter IV
IV.C.1. LINEAR VERSUS NONLINEAR EXCITATION:
ABSORPTION SPECTRA AND RABI OSCILLATIONS

∑

k′′

Ξnd(p
ij
k+k′′) =

∑

i=1,2




∑

q

Γi,cp
nd p21

k+q
||

+
∑

k′,q

Γi,cc
nd1 p21

k′−q +
∑

q

Γi,cc
nd2 p21

k+q −
∑

k′

Γi,cc
nd3 p21

k′





+
∑

i=1,2




∑

q

Γ̃i,cp
nd p̃12

k+q
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(IV.B.14)

The explicit contributions and Ξnl are given in Chapter APP F. The corresponding equation for the
occupation numbers read

d

dt
f i
k,σ|cc/cp-corr = −π

~
f i
k,σΓi,out

d +
π

~
(1 − f i

k,σ)Γi,in
d + Ξnl,fi

i, j = 1, 2; i 6= j . (IV.B.15)

where Γi,in
d denotes the diagonal in-scattering and Γi,out

d the corresponding diagonal out-scattering
rate (Γi

d = Γi,in
d + Γi,out

d ). Ξnl,fi
denotes the contributions to the equation which are nonlinear in

the polarization. In the following sections, the impact of the both mean-field and second order
correlation contributions is investigated.

C. Preliminary Remarks

Before we really immerse into the application of the derived theory, some general remarks shall
be made.

1. Linear versus Nonlinear Excitation:
Absorption Spectra and Rabi Oscillations

Generally, we distinguish two regimes in which intersubband transitions are investigated: the linear
and the nonlinear regime. The first denoting the response to a weak external field, the second to a
strong field, respectively.

In the following, we generally assume, that the carriers are in equilibrium before the external ex-
citation. In this case, the occupation numbers of the electrons are given by Fermi-Dirac distributions.
While determining the actual Fermi-Dirac function, it has to be considered that even in equilibrium
the electrons are not as a whole entirely located in the lowest subband. Depending on the gap-energy
between the subbands, the actual carrier density and temperature, they can also be spread about the
subbands [cf. Fig. IV.C.1].

a) Relaxation of a Non-Equilibrium Electron Distribution

The assumption of an initial equilibrium situation can be easily justified as any non-equilibrium car-
rier distribution, resulting for example from a previous external excitation, is rapidly modified by
many-particle interactions so that it approaches the corresponding Fermi-Dirac distribution [CK99].
As an example, we show in Fig. IV.C.2, Fig. IV.C.3 and Fig. IV.C.4 the relaxation of an initially
prepared non-equilibrium situation in the lowest subband - with respect to different many-particle
interactions. The presented relaxations have been calculated using Eq. (IV.B.2). The lattice tem-
perature has been taken as TL = 50 Kelvin. In order to get some insight into the interplay of
carrier-carrier and carrier-phonon interaction, we first consider carrier-carrier and carrier-phonon in-
teraction separately and then include both mechanisms simultaneously. If only carrier-carrier or only
carrier-phonon interaction is included in the calculation, the calculated distributions fail to reach the

54



Chapter IV
IV.C.1. LINEAR VERSUS NONLINEAR EXCITATION:
ABSORPTION SPECTRA AND RABI OSCILLATIONS

0 2 4
0

0.2

0.4

0.6

0.8

1

T=50 K
T=100 K
T=200 K
T=300 K

0

0.2

0.4

0.6

0.8

1

0 2 4
0

0.2

0.4

0.6

0.8

1

f 1(k
)

f 2(k
)

(a) (b1)

(b2)

Wave number k [1/a
0
]

f 1(k
)

2
1

2
1

Figure IV.C.1 — Occupation Numbers (Equilibrium): Fermi-Dirac Distributions: Occupation numbers for
quasi-equilibrium shown for carrier-density n = 1.212cm−2: (a) subbands are separated by large gap-energy
(shown: 5 nm AlGaAs/GaAs quantum well); (b) subbands are separated by small gap-energy (shown: 15 nm
AlGaAs/GaAs quantum well). At low temperature, the electrons tend to occupy the lowest available states.
With increasing thermalization, the distributions broadens and for a small gap energy, figures (b), an increasing
number of electrons populates the upper subband.

corresponding Fermi-Dirac distribution. Only including both dephasing mechanisms simultaneously
yields satisfactory results.

In Fig. IV.C.2, we provide only carrier-phonon scattering as a relaxation mechanism. As carrier-
phonon interaction is considered only semi-classically, i.e. in Markovian approximation, electrons
can only scatter to lower energies by the emission of optical phonons with constant energy ~ω =
36 meV. This results in a step-like distribution function, where the electrons have cooled down to
roughly the lattice temperature. The occurring substructures are due to the completely dispersion-
less LO-phonons and the sharp energy conservation in the Markovian approximation. In [But04], it
has been shown that including Non-Markovian scattering processes, the distribution function is able
to relax into the correct Fermi-Dirac function.

In Fig. IV.C.3, only carrier-carrier interaction has been included in the theory. Although the
occupation function does relax into a Fermi-Dirac distribution, the effective plasma temperature is
in the range of T = 370 Kelvin which is well above the lattice temperature of TL = 50 Kelvin.

In Fig. IV.C.4, we finally included both carrier-phonon and carrier-carrier interaction in the
calculation. The combination of both scattering mechanisms obviously yields the desired result.
After 3500 fs, the electron occupation is function almost identical to the Fermi-Dirac distribution of
the corresponding density - although the lattice temperature has not been reached completely. The
initially hot electrons have cooled down to a plasma temperature of roughly 70 Kelvin.

b) Linear Regime

In the case, of weak excitation, the change of occupation in the subbands is negligible small. Con-
sequently, the initial occupation of the subbands can assumed to be constant for all times and the
corresponding equations of motions (for the occupation numbers) do not have to be solved. Further-
more, diagonal correlation contributions can be calculated before the actual time wrap and thus only
the non-diagonal contributions have to be computed in every time step, which does save cpu-time to
a great extent. In addition to this, contributions nonlinear in the field, such as products of field-driven
coherences, are also negligible [cf. Eq. (IV.B.11) and Eq. (IV.B.15)]. For weak excitation, the main
focus lies on the investigation of linewidth and lineshape of absorption spectra. Within the scope
of the approximations described above the absorption can be determined to be proportional to the
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Figure IV.C.2 — Relaxation of Non-Equilibrium Electron Distribution through c-p scattering: The density
is n = 1.12×1012cm−2, the lattice temperature is TL = 50 Kelvin. Parameters taken for a quantum well with
L = 10 nm. Electrons are cooled down to lattice temperature but substructures occur at energies ε = n~ωL0 =
n36 meV (n=1, 2, . . . ) as carrier-phonon scattering (LO) is included only semi-classically.
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b) cc-scattering

Figure IV.C.3 — Relaxation of Non-Equilibrium Electron Distribution through c-c scattering: Parame-
ters as above. Carrier-carrier scattering efficiently redistributes electrons, but fails in cooling down to lattice
temperature.
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Figure IV.C.4 — Relaxation of Non-Equilibrium Electron Distribution through c-c & c-p scattering:
Inclusion of both mechanisms yields redistribution without substructures and cooling down to (almost) lattice
temperature. The missing 20 Kelvin might still be achieved in the future.
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imaginary part of the susceptibility [for details cf. for example[CK99, HK94]]

α(ω) ∝ Im(χ(ω)) (IV.C.1)

where the susceptibility connects the macroscopic polarization and the incident external field ac-
cording to

P(z, t) = χ(ω)E(z, t) . (IV.C.2)

c) Nonlinear Regime

In the case of nonlinear excitation, the occupations can not be assumed to be constant for all times.
On the contrary, the investigation of the temporal behavior of the occupations or populations is one
of the main focus points. The time-dependence of the occupation numbers yields a huge increase
of the required cpu-time as not only additional equations of motion have to be solved, but also all
correlation contributions have to be determined in each step.

The most dominant reason for the interest in the nonlinear excitation of matter in general is the
prospect to observe Rabi oscillations. Since the beginning of ultrafast nonlinear optics, it is known,
that coherently excited atomic systems exhibit Rabi oscillations: a driving field E(t) couples the
two energy levels with optical dipole moment d12 and induces sinusoidal oscillations of the pop-
ulation in the levels with Rabi frequency Ω(t) = E(t)d12/~. Hereby resonant pulses with areas
of π, 2π, 3π, and so on, are obviously particularly important as they have the power to invert the
population 1, 2, 3, and so on, times. As Rabi oscillations are important for a broad range of technical
applications such as quantum information processing to name only one, there has been considerably
interest in the investigation of possible Rabi oscillations in low-dimensional semiconductors. Up to
this time the attention was mostly focused on interband Rabi oscillations in quantum dots [BLS+02,
FWDK03, Vas04, SMM+04] and quantum wells [BKL+90, CKF+94, BHKP96, SBD+99]. Re-
cently, also intersubband Rabi flopping between subbands in the conduction band of quantum wells
has been observed experimentally [LRW+04] and first theoretical studies have been presented in
[BC04, MVO03, SRW+04]. Thereby it has been shown, that already first-level many-particle inter-
actions can influence the ability to produce Rabi oscillations and therewith the coherent nonlinear
control of populations in quantum wells considerably. Furthermore, the nonparabolicity of the con-
duction band can have a rather significant impact on the curvature of the subbands, strongest for
small quantum wells [Eke89], yielding different subband dispersions and thus a variety of possible
transition frequencies.

D. Applications

The general plan for the investigation of intersubband transitions in both linear and nonlinear
regime is the following:

In the linear regime we will examine the impact of bandstructure (subband dispersion) and many-
particle effects (mean-field effects and dephasing contributions) on lineshape and linewidth of the
absorption spectra. Furthermore, the dependence on parameters such as lattice-temperature, well
width and carrier density is investigated. The gained insights into the impact of the afore said con-
tributions will then be used in order to control coherently the nonlinear excitation of the quantum
well. That is, we try to take advantage of the information extracted in the linear regime in order to
enhance the ability of the system to exhibit Rabi oscillations in spite of many-particle interactions
which thwart the latter.
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1. Comparison with Kohn’s Theorem (Numerics Test)

It is always worthwhile performing convergence tests, i.e., taking the theoretical / computational
model to established limits, which often have been derived analytically [Har00]. The idea is to
increase confidence in the theory and to demonstrate that previous theories are limits of the new
ones.

For this reason, before we now investigate the linear and nonlinear response of the quantum well
in detail, we first concentrate on the special case of a quantum well sample, where the Coulomb and
Fröhlich form factors can be approximated by

Fnanbncnd
q ≈ δna,nc

δnb,nd
, Fab

q
⊥
≈ δa,b . (IV.D.1)

This means that the intersubband formfactors vanish and the intrasubband formfactors all have the
same value. Considering the Coulomb and Fröhlich formfactors [cf. also Eq. (IV.A.7) and Eq.
(IV.A.9)]

Fnanbncnd
q =

∫

dzφna
(z)φnc

(z)

∫

dz′φnb
(z′)φnd

(z′)e−|q||z−z′| ,

Fab
q
⊥

=

∫

dzζ∗a(z)ζb (z)ei Q⊥z, (IV.D.2)

we see that this approximation holds in the limit

e−|q||z−z′| ≈ 1 and ei Q⊥z ≈ 1 (IV.D.3)

i.e., in the limit of thin quantum wells and low densities [N+97].
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Figure IV.D.1 — Absorption in limit of thin wells and low carrier density: (a) including all contributions
the spectra are identical to those of single-particle excitation, (b) neglecting the exchange contribution, (c)
neglecting non-diagonal correlation contributions.

If we approximate the matrix elements using Eq. (IV.D.1), we neglect the three-dimensional
character of the matrix elements. Taking the sum over all k contributions one can show by renum-
bering the summation indices in Eqs. (IV.B.3) to (IV.B.15), that within this approximation and in the
case of equal subband dispersion (m1 == m2), the total contribution of the Coulomb interaction
among the carriers and the total contribution of the electron-phonon interaction to the macroscopic
polarization vanishes completely. Thus the linear susceptibility χ(ω) is that of non-interacting sin-
gle particle excitations, Im[χ(ω)] ∝ δ(ω − ω0). This result can be compared to Kohn’s Theorem
[Koh61] which states that, for a parabolic potential or in the presence of a magnetic field, the ab-
sorption is independent of the electron-electron interaction. In contrast to Kohn’s Theorem, however,
which is valid for all strengths of the parabolic potential and for all carrier densities, the approxi-
mation for the formfactors used above is justified only for (−|q||z − z ′|) ≈ 0 and (iQ⊥z) ≈ 0,
i.e., in the limit of thin wells and low densities.[N+97]. Nevertheless, an investigation of this limit
can be used to scrutinize the credibility of common approximations concerning the equations of
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motions and additionally, the numerics used to solve the very. As can be seen in Fig. IV.D.1 (a)
solving the full equations of motions yields indeed absorption spectra completely identical to those
of non-interacting single particle excitations. Note, that this finding does not mean, that the specific
contributions vanish on their own, only contributions connected with intersubband transitions van-
ish, the other contributions cancel. This is demonstrated in Fig. IV.D.1 (b) where one mean-field
effect (exchange contribution) has been excluded from the theory. Finally, in Fig. IV.D.1 (b), we
avail ourselves of the frequently used relaxation rate approximation, i.e., we approximate the corre-
lation contribution by the diagonal contributions (the inverse of the T2 time) only. In this case, the
corresponding spectra show a strong temperature-dependent broadening. This demonstrates clearly
the cancellation effects between diagonal and non-diagonal terms. Disregarding the non-diagonal
terms completely neglects possible interference effects between various scattering events and yields
a strong overestimation of the linewidth.

In the following sections, the optical response of a single quantum well shall now be investigated
- with respect to the three dimensional character of the matrix elements.

2. Single Particle Excitation

To begin with, we include only contributions due to free-particle Hamiltonian and carrier-field
Hamiltonian explicitly in the equations of motion and neglect many-particle contributions due to
carrier-carrier and carrier-phonon interaction. To include dephasing, which is indispensable for the
calculation of absorption spectra, a phenomenological dephasing constant γp is introduced in the
equation for the intersubband coherence. Note, that we choose γp 6= 0 only if the sample is ex-
citated in the linear regime, i.e., only for the calculation of absorption spectra. At this level, the
microscopic equations describe simply the excitation of non-interacting electrons by an external ap-
plied field - with respect to the considered bandstructure: The corresponding equations of motion
are given by

d

dt
p12
k,σ ≈ d

dt
p12
k,σ|0 +

d

dt
p12
k,σ|cf − γpp

12
k,σ (IV.D.4)

d

dt
f1
k,σ ≈ d

dt
f1
k,σ|cf (IV.D.5)

To bring up the impact of the considered bandstructure, we investigate first an idealized quan-
tum well, where a possible nonparabolicity of the conduction band is a priori neglected. We then
consider a more realistic quantum well model which takes the nonparabolicity of the bandstructure
into account. As we have seen in Chapter II.A.3.d, the nonparabolicity of the conduction band yields
mainly a difference in subband dispersion: in effective mass approximation the subbands have dif-
ferent effective masses. Additionally, the bound state energies are also shifted to some degree. As
the impact on the subband masses is the dominating effect, we will mostly refer to the neglect of
nonparabolicity as a quantum well with equal subband dispersion in contrast to a quantum well with
different subband dispersion. Note that this denotation shall not indicate that the difference in bound
state energies is not taken into account.

a) Equal Subband Dispersion

If the in-plane dispersion is identical in both subbands, the transition frequency is independent of
the in-plane vector k, ε2,k − ε1,k = ωG. The excitation of electrons between the two subbands is
comparable with an atomic two-level system oscillating at frequency ωG.

Linear Regime

Due to the phenomenological dephasing introduced in Eq. (IV.D.4), the spectral width of the cor-
responding linear absorption spectra is not infinitely sharp. The shape of the absorption spectrum
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is pure Lorentzian with the finite linewidth ~γp (here ~γp = 1 meV). The absorption of a single
quantum well with equal subband dispersion is plotted in Fig. IV.D.2 for different well width L
and temperatures T . The carrier density is n = 1.212cm−2. The absorption peak is located at the
gap-energy (or transition energy). The lineshape is neither influenced by the well width nor the
temperature, which enters through the Fermi-Dirac distribution determining the occupance of the
subbands. The well width does only influence the peak position, as the bound state energies are
directly connected with the gap energy, ~ωG = ε2,k=0 − ε1,k=0 [cf. Chapter II.A.3.a and Chapter
II.A.3.b]. Note, however, that the absolute height of the spectrum is - for the high carrier density con-
sidered here - dependent on well width and temperature. For wide quantum wells which have a small
gap energy electrons may occupy the upper subband depending on the temperature and density. If
this is the case, the number of electrons in the lower subband is reduced which results consequently
in a reduced absorption. Apart from this, no further temperature dependency can be observed.

Nonlinear Regime

For strong excitation, the population oscillates between the subbands. Here, again, the strong re-
semblance to an atomic two-level system is visible. Excited resonantly with a pulse with pulse area
Θ = nπ, the population will make 0.5n Rabi flops, i.e., for pulse areas with odd multiples of π
the system is inverted, for even multiples of π the system is in the initial condition again. No matter
how temporally broad the pulse (and therewith spectrally small), electrons at all energies will exhibit
perfect Rabi flops, since the excitation frequency is k-independent. These general statements hold,
however, only, if a possible dephasing of the system is on a time-scale much longer than the external
excitation. Otherwise, the oscillations will be suppressed as we will see later when considering de-
phasing due to carrier-carrier and carrier-phonon interaction. For the present, we neglect dephasing,
whenever we excite the system nonlinearly.

In Fig. IV.D.3 we investigate the nonlinear response of the quantum well considered in Fig.
IV.C.1 (b) (L = 10nm, n = 1.212cm−2) for temperature T = 50 Kelvin. Particularly with respect
to later results, we show the results of excitation by two different Gaussian pulse: a short (τ = 100 fs,
solid lines) and a longer (τ = 100 fs, dashed lines) one, both resonant to the transition energy. The
energy spectrum of the two pulses is given in Fig. IV.D.3 (a2). As an example of the time-resolved
incident field, the short pulse is shown in Fig. IV.D.3 (a1). As can be seen, the relative population
in the upper subband, i.e. the time-dependent population in the upper subband divided by the carrier
density, oscillates exactly as a two-level system. For a pulse area of Θ = 1π the system is inverted,
for Θ = 2π the electrons are all in the lower subband again, and so on. As the transition energy is
k-independent, all electrons (independent of their wave vector) have the same excitation frequency.
In this case the temporal pulse duration does not influence the number of excited electrons.
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Figure IV.D.2 — Free-Carrier Absorption (Equal Subband Dispersion): Absorption of a quantum well
with carrier density n = 1.2 × 1012cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm
assuming equal subband dispersion. With increasing temperature the height of the absorption spectra in (b) and
(c) decreases which is due to the increase of population in the upper subband. In (a) this effect does not occur,
since the transition energy is very high in this case and the upper subband is not populated in equilibrium.
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Figure IV.D.3 — Rabi Flops in Free-Carrier Model (Equal Subband Dispersion): Relative population in the
upper subband (carrier density n = 1.212cm−2, well width L = 10 nm, temperature T = 50 Kelvin, γp ≡ 0)
excited by a Gaussian pulse with pulse area Θ = 1π, 2π, 4π for two different pulse durations τ = 100 fs (solid
lines) andτ = 500 fs (dashed lines). (a1) shows the time-resolved incident pulse (τ = 100 fs), (a2) shows the
energy spectrum for both pulse durations. As the transition energy is k-independent, the pulse duration does
only influence the time in which the oscillations of the population take place and does not have any influence
on the overall number of excited electrons.
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b) Different Subband Dispersion: Inhomogeneous Broadening
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Figure IV.D.4: Interband vs. Intersubband
Transitions: In contrast to interband transitions,
for intersubband transitions the transition energy
is largest at k = 0. Consequently, the absorption
spectrum covers energies equivalent to or smaller
as the subband-gap energy.

A difference in subband dispersion yields a va-
riety of excitation frequencies. In this case
the absorption spectrum is the superposition of
a large number of Lorentzian lines, each with
linewidth ~γ and each with a distinct frequency
ωG. The spectrum is said to be inhomoge-
neously broadened.

The term ”inhomogenous” originates from
the description of atomic dipole oscillations.
Here the origin of the different effective reso-
nance frequencies possessed by otherwise iden-
tical oscillators can be traced back to slightly
different environments (random dislocation,
impurities, strain fields) in which the resonant
atoms find themselves [AE87]. With increasing
temperature, the electron distribution broadens
and a range of energies exist in which the states
are partially filled [cf. Fig. IV.C.1]. With the
increasing occupation of energetically higher
states the impact of the different subband dis-
persion, i.e., of the k-dependent transition en-
ergy, increases. Note that the smallest transition energy exists for k = 0, with increasing wave
vector k the transition energy decreases. Thus, absorption can be observed only at frequencies
equivalent to or smaller as the subband-gap energy. Due to the different subband dispersion, the
corresponding absorption spectrum covers thus the range of energies equivalent to or smaller than
the gap-energy.

This is different from interband transitions between conduction and valence band, two bands
with opposite curvature, where absorption can take place only at frequencies equivalent to or larger
as the band-gap energy.

Linear Regime

The impact of the k- dependent difference in subband dispersion is investigated for six different
single quantum wells in Fig. IV.D.5. The parameters of the individual wells are given by (a1)
carrier density n = 1.2 × 1012cm−2, well width L = 5 nm, (a2) n = 5.0 × 1010cm−2, L = 5, (b1)
n = 1.2×1012cm−2,L = 10, (b2) n = 5.0×1010cm−2,L = 10, (b1) n = 1.2×1012cm−2,L = 15,
(b2) n = 5.0 × 1010cm−2, L = 15. In all cases the absorption is calculated for T = 50, 100, 200
and 300 Kelvin. The difference in subband dispersion is due to the nonparabolicity of the conduction
band, which is strongly dependent on the well width of the quantum well. Consequently, absorption
spectra of small quantum wells [cf. Fig. IV.D.5 (a1, a2)] are strongly inhomogeneously broadened
and the lineshape has no alikeness with a Lorentzian. For wider quantum wells [cf. Fig. IV.D.5
(c1, c2)] nonparabolicity effects are almost neglectable, the corresponding spectra are comparable
to those of Fig. IV.D.2 where the nonparabolicity of the conduction band has not been taken into
account.

Nonlinear Regime

Similar to Chapter IV.D.2.a.2 we focus on the 10 nm quantum well considered in Fig. IV.D.5 (b1)
with T = 50 Kelvin. Due to the k-dependent transition energy, the pulse duration now has a strong
influence on the number of electrons excited to the upper subband (in contrast to Fig. IV.D.3).
Whereas a temporally short pulse (τ = 100 fs, solid lines) is spectrally wide enough to cover the
variety of transition energies and thus can excite a large amount of electrons to the second subband,
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Figure IV.D.5 — Free-Carrier Absorption (Equal Subband Dispersion): Absorption of a quantum well with
carrier density n = 1.212cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm taking into
account the different subband dispersions due to the nonparabolicity of the conduction band.
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Figure IV.D.6 — Rabi Flops in Free-Carrier Model (Different Subband Dispersion): Relative population
in the upper subband (carrier density n = 1.212cm−2, well width L = 10 nm, temperature T = 50 Kelvin,
γp ≡ 0) excited by a Gaussian pulse with pulse area Θ = 1π, 2π, 4π for two different pulse durations τ = 100
fs (solid lines) and τ = 500 fs (dashed lines). (a1) shows the time-resolved incident pulse (τ = 100 fs), (a2)
shows the energy spectrum for both pulse durations. Due to the k-dependent transition energy, the number of
excited electrons is strongly dependent on the pulse duration. Whereas the shorter pulse is still spectrally wide
enough to excite most electrons, only a small number of electrons is excited by the longer pulse. The number
of excitations can be enhanced, if the sample is excited at a slightly detuned frequency.
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the frequency spectrum of the longer pulse (τ = 500 fs, dashed lines) does not cover same amount
of the transition range and is thus too small to excite the same number of electrons. The number
of excitations can be enhanced, if the sample is excited at a slightly detuned frequency. Thereby, a
wider range of transition frequencies is covered by the pulse (remember that the absorption spectrum
is not Lorentzian).
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3. Inclusion of Mean-Field Contributions 1

In the following sections, the impact of the different mean-field contributions is taken into account.
As we will see, these contributions introduce wave vector dependent renormalizations of single-
particle energies and Rabi frequency and thus we expect a strong influence on the ability of the
system to produce Rabi oscillations.

a) Exchange Contribution

If we regard the exchange contribution together with the free-carrier contribution

d

dt
p12
k,σ|0 +

d

dt
p12
k,σ|mf,

A
=

i

~

{
− (ε2,k − ε1,k)

+
∑

q

[
(V 2222

q − V 2112
q ) f2

k+q,σ − (V 1111
q − V 2112

q ) f1
k+q,σ

]}
p12
k,σ

= − i

~
Ẽ21
k,σ p

12
k,σ , (IV.D.6)

we see immediately that this contribution renormalizes the single-particle energies and consequently
the transition energies. The renormalization depends on the occupation in the subbands and the re-
lation between the different Coulomb matrix elements. As matrix elements V iiii

q are always larger
than matrix element V 2112

q [cf. APP B], the transition energy is thus shifted to higher energies if all
electrons are in the lower subband. The energy is shifted to lower energies, if all electrons are in the
upper subband. Due to the k-dependence of the Coulomb matrix elements and much more important
the occupation numbers, the shift is strongly k-dependent. This means, that even if the initial transi-
tion energy can be considered as almost (or completely) k-independent, the actual transition energy
is k-dependent due to Coulomb interaction. Besides the k-dependence the renormalized transition
energy is dependent on well width, temperature, carrier density and - depending on the excitation
strength - also on time. Including the exchange contribution in the theory, we thus consider that
due to the interaction of electrons inside one subband, the electrons can occupy energetically more
favorable states which yields a lowering of the corresponding energy subband. If the interacting
electrons are in the lower subband, the energy difference of the two subbands is thus increased, if
they occupy the upper subband, the transition energy is decreased. The whole process is slightly
reduced by the possibility of electrons interacting in different subbands. In the following, the impact
of the exchange shift is investigated. Therefore, we expand the theory for single-particle excitations
by including additionally the exchange contribution in equations of motion for the intersubband
coherence

d

dt
p12
k,σ ≈ d

dt
p12
k,σ|0 +

d

dt
p12
k,σ|cf +

d

dt
p12
k,σ|mf,

A
− γpp

12
k,σ , (IV.D.7)

d

dt
f1
k,σ ≈ d

dt
f1
k,σ|cf . (IV.D.8)

Linear Regime

In the linear regime, where the populations in the subbands do not change with time, the renormal-
ization is constant in time. In Fig. IV.D.8 and Fig. IV.D.9, we show a comparison of original and
renormalized transition energy. In order to visualize the dependencies of the exchange contribution
on well width and carrier density, the corresponding values are given for six different quantum well
samples: (a) well width L = 5nm, (b) L = 10nm and (c) L = 15nm with carrier densities of
n = 1.2 × 1012cm−2 and n = 5.0 × 1010cm−2 - always for temperatures T = 50 Kelvin (dashed

1The impact of mean-field contributions on the linear gain spectrum has already been published in [Wal02], some results
of the impact on the linear absorption spectra in [F0̈4, WFL+04, WFK04]
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Figure IV.D.7 — Impact of Exchange Contribution: Coulomb interaction renormalizes the initial subband
dispersion as the electrons can occupy energetically more favorable states which yields a lowering of the cor-
responding energy subband. (a) initial subband dispersion, (b, c) effective subband dispersion (solid lines)
compared to initial subband dispersion (dashed lines) for (b) all electrons located in the lower subband, (c) all
electrons located in the upper subband.

lines) and T = 300 Kelvin (dotted lines). In Fig. IV.D.8, the subband dispersion is calculated with-
out respect to nonparabolicity effects (equal subband dispersion), in Fig. IV.D.9 nonparabolicity
effects are taken into account (different subband dispersion). Whether nonparabolicity effects are
considered or not, does have almost no impact on the shift of transition energy at k = 0. In both
cases, the shift is weakest for the wide quantum well and strongest for the small well. For the low
temperature of T = 50 Kelvin, the shift ranges from about 16 − 17 meV to 23 − 24 meV for the
high density and only 2−3 meV for the low density. For the higher temperature of T = 300 Kelvin,
it ranges from 9 meV to 19.3 for the high density and from 0.06 − 0.1 meV for the low density. In
addition to this, the k-dependence of the renormalization is almost the same, although it does appear
to preponderate more strongly when the subband dispersions are initially the same. Knowing of the
effects of the exchange shift, the consequences for the linear absorption spectra are near at hand. In
all cases, the spectra will be overall shifted to higher energies. Furthermore, not only the spectra of
quantum wells with initially different subband dispersion but also the spectra of quantum wells with
initially equal subband dispersion will be broadened inhomogeneously. The effects will be strongest
for small wells with high carrier density and low temperature. The corresponding spectra are given
in Fig. IV.D.11 and Fig. IV.D.10. For comparison the corresponding free-carrier spectra are plotted
as well.
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Figure IV.D.8 — Effective transition energy (Equal Subband Dispersion): k-dependent renormalization of
transition energy due to exchange-energy for different carrier density n and well width L: (a) L = 5 nm,(b)
L = 10 nm, (c) L = 15 nm. The dashed lines show the original transition energy, ε2,k − ε1,k, due to the
considered bandstructure. Neglecting possible nonparabolicity effects, as done here, the original transition
energy is k-independent. The dashed and dotted lines show the effective transition energy, which results, when
the exchange contribution is included in the theory for T = 50 Kelvin (dashed) and T = 300 Kelvin (dotted).
Note, that due to the exchange contribution the effective transition energy is now k-dependent.
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Figure IV.D.9 — Effective transition energy (different subband dispersion): k-dependent renormalization
of transition energy due to exchange-energy for different carrier density n and well width L: (a) L = 5 nm,(b)
L = 10 nm, (c) L = 15 nm. The red, solid lines show the original transition energy, ε2,k − ε1,k, due to the
considered bandstructure. Considering possible nonparabolicity effects, as done here, the original transition
energy is k-dependent, strongest for small quantum wells. The dashed and dotted lines show the effective
transition energy, which results, when the exchange contribution is included in the theory for T = 50 Kelvin
(dashed) and T = 300 Kelvin (dotted).
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Figure IV.D.10 — Absorption: Inclusion of Exchange Shift (Equal Subband Dispersion): Absorption of a
quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n = 5.0 × 1010cm−2 and
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and with inclusion of exchange shift. Due to the k-dependent renormalizations of the transition energy (cf.
Fig. IV.D.8) the spectra are now inhomogeneously broadened. Furthermore, the absorption peaks are shifted to
higher energies.
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Figure IV.D.11 — Absorption: Inclusion of Exchange Shift (Different Subband Dispersion): Same as in
Fig. IV.D.11, but with regard to nonparabolicity effects (different subband dispersion)
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Nonlinear Regime

In the nonlinear regime, the impact of the exchange contribution is a little more complicated. Whereas
in the linear regime the exchange shift yields a time-independent renormalization of the transition
energy, since the occupation numbers remain constant by weak excitation, this is not the case in
the nonlinear regime. Together with the occupation numbers, the exchange shift is now strongly
dependent on time. Thus, the system has a time-dependent transition energy and therewith it seems
to be impossible to excite resonantly at all times while using a laser field with a time-independent
laser frequency ωL. In addition to this, the k-dependence of the effective transition energy also
complicates the excitation of complete Rabi oscillations. To illustrate this, we investigate first the
artificial case where the exchange shift is still time-independent, i.e. we approximate the mean-field
contribution by

d

dt
p12
k,σ|mf,

A
≈ i

~

{∑

q

[
(V 2222

q − V 2112
q ) f2

k+q,σ(t0) − (V 1111
q − V 2112

q ) f1
k+q,σ(t0)

]}
p12
k,σ

(IV.D.9)

where t0 denotes a time before the external excitation sets in.
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Figure IV.D.12: Rabi Oscillation with constant
exchange contribution: Artificial situation of a
constant exchange contribution [cf. Eq. (IV.D.9)]
is comparable to the excitation of a quantum well
with initial different subband dispersion.

This is a very rigid approximation and shall
only demonstrate that even a time-independent
but k-dependent renormalization does change
to ability to excite complete Rabi oscillations
to some extent. In Fig. IV.D.12, we show the
corresponding numerical results for a 10 nm
quantum well with carrier density n = 1.2 ×
1012cm−2 and temperature T = 50 Kelvin
without or with taking into account different
subband dispersion. As can be seen in Fig.
IV.D.10 (b1) and Fig. IV.D.11 (b1), the linear
absorption spectra are in both cases inhomo-
geneously broadened and the lineshapes differ
strongly from a Lorentzian. This is reflected in
the oscillations of the population presented in
Fig. IV.D.12. Similar to the free-carrier ex-
citation of a quantum well system with sub-
band dispersion, the best oscillation is achieved
for excitation slightly detuned to the peak fre-
quency of the linear absorption spectrum. The
artificial situation of a time-independent ex-
change shift, is completely comparable to a
quantum well system with initial different sub-
band dispersion. We only have to take into ac-
count, that the actual transition energy differs
from the initial one.

However, the exchange shift is not time-
independent. The occupation numbers are
changing with time. The strength of the change
of the occupation numbers is strongly con-
nected with the degree of excitation: the change
is strongest for strong and resonant excitation.
The impact of the exchange shift is therefore
connected with the laser frequency or more spe-
cific the actual detuning and the pulse duration.
Consider the following scenario (we focus on a

70



Chapter IV IV.D.3. INCLUSION OF MEAN-FIELD CONTRIBUTIONS

quantum well with equal subband dispersion, n = 1.2×1012cm−2, L = 10 nm, T = 50 K, τ = 100
fs):

• Fig. IV.D.13 (a) we excite the quantum well with a 2π pulse resonant to the initial transition
energy, i.e. ~ωL ≈ 0.1036. Due to the interaction of the electrons in their initial allocation,
the actual transition energy at k = 0 is ~ωL ≈ 0.123. Thus, we start the external excitation
with a detuning of about 20 meV.

• Fig. IV.D.13 (b) we excite the quantum well with a 2π pulse resonant to the actual transition
energy at the beginning of the external excitation, i.e. ~ωL ≈ 0.123. At the beginning of the
external excitation, the system is thus excitated resonantly.

• Fig. IV.D.13 (c) we excite the quantum well with a 2π pulse with ~ωL ≈ 0.1105, thus we
start the excitation with a detuning of ≈ 7 meV.

Dependent on the initial detuning and the spectral width of the pulse, the occupation in the upper
subband is increased thus yielding a decrease of the actual, effective transition energy. With all
electrons in the upper subband, the effective transition energy reaches the minimum value. With
increasing depopulation of the upper subband, the transition energy increases again. Thus, the ac-
tual transition energy oscillates - the strength of the oscillation is dependent on the oscillations of
the population which in turn dependent on the extent of (resonant) excitation. In order to observe
complete oscillations of the population, most preferably Rabi oscillations which follow the area
theorem, we have in principle to excite the system with a time-dependent laser frequency which bal-
ances the associated oscillations of the effective transition energy. If this is not the case, best results
are achieved, if the system is excited with a laser frequency settled in the intermediate region of
initially transition energy and effective transition energy due to exchange shift at t = t0. In the case
of ultrashort excitation, where the exciting pulse is spectrally wide enough to cover a substantial area
of the transition range, we thereby can excite almost complete oscillations which are consistent with
the area theorem [cf. the oscillations due to exciting with a 4π pulse in Fig. IV.D.13].
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Figure IV.D.13 — Density Oscillations and Time-Dependent Renormalized Transition Energy: (Equal
Subband Dispersion) Absorption of a quantum well with carrier density n = 1.2 × 1012cm−2, well width
L = 10 nm assuming equal subband dispersion. Same external field as in Fig. IV.D.3 with τ = 100 fs but with
different laser frequencies (a1) resonant to the original transition energy, ~ωL ≈ 0.1036, (b1) resonant to the
renormalized transition energy at t = t0, ~ωL ≈ 0.123, (c) intermediate value ~ωL ≈ 0.1105
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b) Excitonic Contribution

Next, we investigate the impact of the excitonic contribution. Grouping this mean-field contribution
together with the carrier-field interaction, we see immediately that the Rabi frequency is renormal-
ized:

d

dt
p12
k,σ|cf +

d

dt
p12
k,σ|mf,

B
= i

{

Ω(t)

+
1

~

∑

q

[

V 1212
q p12

k−q,σ + V 2112
q p21

k−q,σ

] }

(f1
k,σ − f2

k,σ)

= i
{

Ω(t) + Ωexc(t)
}

(f1
k,σ − f2

k,σ)

= i Ωren(t) (f1
k,σ − f2

k,σ) (IV.D.10)

The excitonic contribution yields an internal field, Ωexc(t), which renormalizes the external field.
The dominant contribution of the internal field is due to inter-intrasubband processes, i.e. two elec-
trons interact in different subbands and remain in the initial subband (intersubband interaction, in-
trasubband transitions). If an electron is excited from the initially filled lower subband to the upper
subband, a ”hole” is created in the lower subband. Note that the denotation ”hole” is in most cases
only applied to the descriptions of carriers in the valence band (electron-hole description). The use
of this denotation shall here simply underline, that the excitonic contribution is due to the interaction
of electrons in one subband with empty states between electrons in the other subband. Therewith
this mean-field contribution is comparable to the interband-exciton [CK99, HK94]. In contrast to
interband transitions, which take place between the opposed-curved valence and conduction band,
the subbands in the conduction have similar curvature, the subband of the upper band being slightly
larger than the mass of the lower subband. Consequently, the reduced mass of the ”exciton” is
negative, the interaction is repulsive [N+97, NIS99]. The repulsive interaction results in a strong
redistribution of the oscillator strength, strongest for small quantum wells where the overlap of the
wave functions reaches maximal values. With increasing well width, the overlap of the wave func-
tions is reduced, thus the corresponding matrix elements and therewith the impact of the excitonic
contribution decrease.

Linear Regime

Similar to the investigation of the exchange contribution, we first examine the impact in the linear
regime before exciting the quantum well nonlinearly. Before concentrating on actual absorption
spectra, we focus on the strength of the excitonic contribution in Fig. IV.D.14 and Fig. IV.D.15.
At the example of a 10 nm quantum well (without nonparabolicity effects in Fig. IV.D.14, with
nonparabolicity effects in Fig. IV.D.15) with carrier density n = 1.2 × 1012cm−2 and temperature
T = 50 Kelvin, we show the actual impact of the internal field which results from the redistribution
of the carriers. For comparison we present in Fig. IV.D.14 (a) the slowly-varying envelope of the
initial Rabi frequency in time-domain and in (b) the absolute value of the Fourier transformed Rabi
frequency. The real-part of the time-resolved internal field due to the excitonic contribution is given
in Fig. IV.D.14 (c). Note that due to the dependence on the complex intersubband coherence pij

q ,
the local field has also a small imaginary part. However, the real part is the dominant contribution.
In congruence with the intersubband coherence, the local field is strongly dependent on the time
and the wave vector. For the example presented here, the actual magnitude is similar to that of the
initial Rabi frequency. In Fig. IV.D.14 (d), the Fourier transformation of the resulting effective Rabi
frequency Ωren(t) shows, that the initial field is almost unaltered for higher in-plane wave vectors
k. For wave vectors near the subband edge, where the excitonic contribution is the most effective,
the shape of the initial frequency is strongly redistributed. Now a much stronger contribution can be
found slightly below the laser frequency [cf. Fig. IV.D.14 (a)] and a second (weaker) contribution
located around ~ω = 85 meV. Figure IV.D.15 shows the same comparison for a quantum well
with different subband dispersion. Similar to IV.D.14 the initial Rabi frequency is almost unaltered
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for large wave numbers. For wave number around the subband edge, we again, observe a strong
renormalization.

The corresponding linear absorption spectra are presented in Fig. IV.D.16 and Fig. IV.D.17. A
comparison of absorption spectra for a variety of quantum wells (well width L = 5 nm, 10 nm, 15
nm, carrier density n = 1.2× 1012cm−2 and n = 5.0× 1010) shows that the excitonic contribution
is strongest for high carrier densities and low temperatures. Furthermore, the initially very different
absorption spectra of quantum wells with or without different subband dispersion have become more
akin. Note the small second absorption peak in Fig. IV.D.16 (a1, b1, c1).
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Figure IV.D.14 — Renormalization of Rabi Frequency (Equal Subband Dispersion): (Excitonic Contri-
bution) The excitonic contribution yields a renormalization of the external applied Rabi frequency. Here shown
for a quantum well with n = 1.2×1012cm−2, L = 10 nm, T = 50 Kelvin with equal subband dispersion. Top:
external Rabi frequency Ω(t) [resonant to the gap-energy]: (a) time-resolved (slowly-varying envelope), (b) in
Fourier domain. Middle: (c) time-resolved k-dependent change of Rabi frequency due to excitonic contribution
Ωexc(t,k). Bottom: (d) Fourier Transform of renormalized k-dependent Rabi frequency FT(Ωren(t,k)) with
Ωren(t,k) = Ω(t) + Ωexc(t,k)
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Figure IV.D.15 — Renormalization of Rabi Frequency (Different Subband Dispersion): (Excitonic Con-
tribution) The excitonic contribution yields a renormalization of the external applied Rabi frequency. Here
shown for a quantum well with n = 1.2 × 1012cm−2, L = 10 nm, T = 50 Kelvin with equal subband
dispersion. Top: external Rabi frequency Ω(t) [resonant to the gap-energy]: (a) time-resolved (slowly-varying
envelope), (b) in Fourier domain. Middle: (c) time-resolved k-dependent change of Rabi frequency due to
excitonic contribution Ωexc(t,k). Bottom: (d) Fourier Transform of renormalized k-dependent Rabi frequency
FT (Ωren(t,k)) with Ωren(t,k) = Ω(t) + Ωexc(t,k)
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Figure IV.D.16 — Absorption: Inclusion of Excitonic Contribution (Equal Subband Dispersion): Absorp-
tion of a quantum well with carrier density (a1, b1, c1) n = 1.2×1012cm−2, (a2, b2, c2) n = 5.0×1010cm−2

and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with equal subband dispersion - without (free)
and with inclusion of excitonic contribution.
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Figure IV.D.17 — Absorption: Inclusion of Excitonic Contribution (Different Subband Dispersion):
Absorption of a quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2)
n = 5.0 × 1010cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with different sub-
band dispersion - without (free) and with inclusion of excitonic contribution.
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Nonlinear Regime

For the case of nonlinear excitation, the excitonic contribution now yields oscillating internal fields.
Analogous to the lines of Chapter IV.D.3.a.2, we try nevertheless to excite the quantum well in
the aspiration to detect Rabi oscillations - despite the excitonic contributions. As we have already
seen in the linear regime, the internal field is dependent on both wave vector and time. Due to the
dependence of the excitonic contribution on the intersubband coherence which in turn is driven by the
Rabi frequency, the renormalized Rabi frequency now also depends on the laser frequency and the
pulse duration of the incident field. Similar to the investigation of the exchange contribution, we first
examine the relative population if the system is excited resonant to the initial transition frequency,
i.e, ~ωL ≈ 0.103 eV. In this case, the renormalized Rabi frequency is almost bisected at wave
vectors near the subband edge, which are the most populated ones for the low temperature considered
here. The bisected Rabi frequency can also be seen in the bisected Rabi oscillations presented in
Fig. IV.D.18 (a1). Second, we excite resonantly to the peak position of the corresponding linear
absorption spectrum, i.e., ~ωL ≈ 0.085 eV, which yields almost the opposed result: a strongly
enhanced Rabi frequency and more, albeit suppressed, density oscillations [cf. Fig. IV.D.18 (b1,
b2)]. Again, excitation at an intermediate frequency (~ωL ≈ 0.096 eV) yields almost perfect Rabi
oscillations - despite the inclusion of the collective excitonic contribution.
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Figure IV.D.18 — Impact of Exc. Contribution in Nonlinear Regime (Equal Subband Dispersion): Den-
sity Oscillations of a quantum well with n = 1.2×1012cm−2, L = 10 nm, T = 50 K. Top: relative population
in upper subband for excitation with 2π and 4π pulse and different laser frequencies (a1) resonant to the orig-
inal transition energy, ~ωL ≈ 0.10336 eV, (b1) resonant to the linear absorption spectrum [cf. Fig. IV.D.2],
~ωL ≈ 0.085 eV [cf. Fig. IV.D.16], (c) ~ωL ≈ 0.096 eV. For the 2π pulse the corresponding renormalized
Rabi frequencies and the initial Rabi frequency (thin black line in front) are plotted below.
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c) Depolarization

Last, the impact of the depolarization effect shall be examined. Grouping this mean-field contribu-
tion together with the carrier-field interaction, we see immediately that here also the Rabi frequency
is renormalized by the carrier-carrier interaction:

d

dt
p12
k,σ|cf +

d

dt
p12
k,σ|mf,

C
= i

{

Ω(t)

− 1

~
V 2112

0

∑

ka,σa

[

p12
ka,σa

+ p21
ka,σa

]}

(f1
k,σ − f2

k,σ)

= i
{

Ω(t) + Ωdep(t)
}

(f1
k,σ − f2

k,σ)

= i Ωren(t)(f1
k,σ − f2

k,σ) (IV.D.11)

Although the effective impact, namely a renormalization of the Rabi frequency, is comparable to
that of the excitonic contribution, the background of this contribution is a very different one [N+97,
Zal91, LN03]. The depolarization effect is caused by the inhomogeneous carrier distribution in the
semiconductor and the overall contribution is therefore directly proportional to the difference of the
carrier population in the lower subband, n1, and the upper subband n2:

∑

k,σ

d

dt
p12
k,σ|mf,

C
= − i

~
V 2112

0

∑

ka,σa

[

p12
ka,σa

+ p21
ka,σa

] ∑

k,σ

(f1
k,σ − f2

k,σ)

= − i

~
V 2112

0

∑

ka,σa

[

p12
ka,σa

+ p21
ka,σa

]

(n1 − n2) . (IV.D.12)

It can be shown, that the depolarization contribution is equivalent to the longitudinal part of the
electric field [cf. Chapter V] [WFK04, WFL+04]. In contrast to the excitonic contribution, the
impact of the depolarization contribution increases with increasing well width [GSKB00, TRN+00]
and does yield an internal field independent of the wave number.

Linear Regime

An example of the renormalization of the Rabi frequency due to the depolarization contribution
is given in Fig. IV.D.19 for a 10 nm quantum well with equal subband dispersion and in Fig.
IV.D.20 for a well with different subband dispersion. As can be seen by direct comparison of
the resulting contributions, the impact of the depolarization is strongest for quantum wells with
different subband dispersion and counteracts the otherwise dominating inhomogeneous broadening
[WGW+96, Zal84]. The overall effect can best be observed by comparison of the Fourier transfor-
mation of the initial and the renormalized Rabi frequency [cf. Fig. IV.D.19 (b, d) and Fig. IV.D.20
(b, d)], which demonstrates the resulting shift to higher frequencies and in the case of a quantum well
with subband dispersion, additionally, the almost trebled maximum value. The resulting absorption
spectra are presented in Fig. IV.D.21 and Fig. IV.D.23, showing clearly the dependence on well
width, carrier density and subband dispersion.
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Figure IV.D.19 — Renormalization of Rabi Frequency (Equal Subband Dispersion): (Depolarization)
Renormalization of the external applied Rabi frequency due to depolarization effect. Here shown for a quantum
well with n = 1.2 × 1012cm−2, L = 10 nm, T = 50 Kelvin with equal subband dispersion. Top: external
Rabi frequency Ω(t) [resonant to the gap-energy]: (a) time-resolved (slowly-varying envelope), (b) in Fourier
domain. Middle: (c) time-resolved k-dependent change of Rabi frequency due to depolarization Ωdep(t,k).
Bottom: (d) Fourier Transform of renormalized k-dependent Rabi frequency FT(Ωren(t,k)) with Ωren(t,k) =
Ω(t) + Ωdep(t,k)
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Figure IV.D.20 — Renormalization of Rabi Frequency (Different Subband Dispersion): (Depolarization)
Renormalization of the external applied Rabi frequency due to depolarization effect. Here shown for a quantum
well with n = 1.2 × 1012cm−2, L = 10 nm, T = 50 Kelvin with different subband dispersion. Top:
external Rabi frequency Ω(t) [resonant to the gap-energy]: (a) time-resolved (slowly-varying envelope), (b)
in Fourier domain. Middle: (c) time-resolved k-dependent change of Rabi frequency due to depolarization
Ωdep(t,k). Bottom: (d) Fourier Transform of renormalized k-dependent Rabi frequency FT(Ωren(t,k)) with
Ωren(t,k) = Ω(t) + Ωdep(t,k)

81



Chapter IV IV.D.3. INCLUSION OF MEAN-FIELD CONTRIBUTIONS

220 225 230 235 240
Photon Energy [meV]

0

0.1

0.2

0.3

0.4

Im
[ χ

( ω
)]

  ∝
 α

(ω
)  

 [
ar

b.
 u

ni
ts

]
free, T = 50 K
free, T = 300 K
+ depol, T = 50 K
+ depol, T = 300 K

45 50 55 60 65
Photon Energy [meV]

0

0.1

0.2

0.3

0.4

95 100 105 110 115
Photon Energy [meV]

0

0.1

0.2

0.3

0.4
220 230 240 250

0

2

4

6

8

100 120
0

2

4

6

8

40 50 60 70 80
0

2

4

6

8
L = 5 nm L = 10 nm L = 15 nm

(a1) (b1) (c1)

     density:

1.2 x 10
12 

cm
-2

    density :

5.0 x 10
10 

cm
-2

(a2) (b2) (c2)

Figure IV.D.21 — Absorption: Inclusion of Depolarization (Equal Subband Dispersion): Absorption of a
quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n = 5.0 × 1010cm−2 and
well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with equal subband dispersion - without (free) and
with inclusion of depolarization.
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Figure IV.D.22 — Absorption: Inclusion of Depolarization (Different Subband Dispersion): Absorption
of a quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n = 5.0 × 1010cm−2

and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with different subband dispersion - without (free)
and with inclusion of depolarization.
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Nonlinear Regime

Considering a double quantum well structure with equal subband dispersion, Batista et. al. showed
very recently [cf. [BC04]] the impact of the depolarization effect on density oscillations excited by
pulses with a pulse duration of roughly 15 ps. They showed, that even for excitation with compara-
tively long pulses Rabi oscillations can in principle be detected the oscillations of the internal field
are balanced by using chirped excitation pulses. As we can see in Fig. IV.D.23, for the parameter
range considered here, i.e. excitation pulses with pulse duration τ ≈ 100 fsec, that the impact of the
depolarization contribution can - similar to the other mean-field contributions - already be balanced
by using a detuned pulse.
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Figure IV.D.23 — Impact of Depol. Effect in Nonlinear Regime (Equal Subband Dispersion): Density
Oscillations of a quantum well with n = 1.2 × 1012cm−2, L = 10 nm, T = 50 K. Top: relative population
in upper subband for excitation with 2π and 4π pulses and different laser frequencies (a1) resonant to the
original transition energy, ~ωL ≈ 0.10336, (b1) resonant to the linear absorption spectrum, ~ωL ≈ 0.118,
(c) ~ωL ≈ 0.109. The dashed line show the population for a 2π pulse without considering the depolarization
effect. For the 2π pulse the initial Rabi frequency, the contribution due to the depolarization effect and the
corresponding renormalized Rabi frequency are plotted below.
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d) All Mean-Field Contributions

The impact of the simultaneously inclusion of all mean-field contributions is strongly depend on
well width, temperature and carrier density, as can already be anticipated from the dependencies of
the various contributions.

Linear Regime

For a quantum well with equal subband dispersion, the actual impact of exchange and excitonic
contribution almost completely compensate each other [cf. also the limit considered in Chapter
IV.D.1] and the spectra are dominated by the depolarization effect [cf. Fig. IV.D.24]. The same
applies for wide quantum wells, where the nonparabolicity of the conduction band has been taken
into account [cf. Fig. IV.D.25 (b, c)]. Thus, for this parameter range, the impact of nonparabolicity
effects and exchange and excitonic contribution, respectively, on the absorption spectra is almost
negligible. For small quantum wells, where the depolarization effects is generally less pronounced
and the nonparabolicity effects are getting more important, the resulting absorption spectra differ
(a) from absorption spectra including only depolarization effect and (b) also from absorption spectra
neglecting nonparabolicity effects [cf. Fig. IV.D.24 (a) and Fig. IV.D.25 (a)].
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Figure IV.D.24 — Absorption: Inclusion of all Mean-Field Contrib. (Equal Subband Dispersion): Absorp-
tion of a quantum well with carrier density (a1, b1, c1) n = 1.2×1012cm−2, (a2, b2, c2) n = 5.0×1010cm−2

and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with equal subband dispersion - without (free)
and with inclusion of all mean-field contributions.
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Figure IV.D.25 — Absorption: Inclusion of all Mean-Field Contrib. (Different Subband Dispersion):
Absorption of a quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n =
5.0 × 1010cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with different subband
dispersion - without (free) and with inclusion of all mean-field contributions.
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Nonlinear Regime

As in the preceding sections, we want to excite Rabi oscillations of the carrier populations. Prefer-
ably, deep Rabi flops, comparable to those observed in the simplified system of non-interacting
particles. In the preceding sections, we have seen that we are able to obtain coherent control over
Rabi oscillation of electrons as long as they can be considered as non-interacting particles and their
transition energy does not depend too strongly on their wave vector. Furthermore, we saw, that we
could - under certain conditions - enhance the ability to excite Rabi oscillations even to the situation
of interacting particles (in lowest order). However, so far we considered the occurring mean-field
contributions only separately. Simply by detuning the laser frequency from the resonance of the
corresponding linear absorption spectrum, we could in all occasions recover completely or (almost
completely) the Rabi oscillations of the free-carrier model. Even, if the considered mean-field con-
tribution introduced a strong wave vector dependence of either transition energy or Rabi frequency.
Admittedly, we should in this context remember that we excited with ultrashort pulses, which still
have a considerably spectral width. For longer pulses, which are thus spectrally smaller, the oscil-
lations will be suppressed to some degree. On the other hand, the considered pulse durations are of
comparable magnitude to those recently applied in [LRW+04]. Thus, we next include all mean-field
contributions simultaneously. This implies, that

• the effective transition energy of the electrons is time and wave-vector dependent

• and simultaneously the effective Rabi frequency is also time and wave-vector dependent.

The linear absorption spectra presented in Fig. IV.D.25 and Fig. IV.D.24 demonstrate that mean-
field contributions cancel to some extent and the resulting absorption spectra are less different from
the free-carrier absorption if all mean-field effects are included simultaneously than if the contri-
butions are considered separately. However, this does not necessarily mean, that the outcome will
be the same in the nonlinear regime. In Fig. IV.D.26 we excite in (a) resonant to the free-carrier
absorption and in (b) resonant to the absorption of the corresponding mean-field calculation. Com-
plete oscillations can not be observed. Similar to the results achieved for separate inclusion of the
various mean-field contributions, the time and wave vector dependence of renormalized transition
energy and effective Rabi frequency is strongly dependent on the laser frequency. Consequently, the
strength of the observed oscillations is quite different.

In (c) we then present the results of excitation at the intermediate frequency ωL = 0.1085 eV.
The inclusion of nonparabolicity effects yields only a small suppression of the observed flops, if
the sample is again excited with a well-chosen detuning. In conclusion, we can thus state, that it
is indeed possible to excite (almost) complete Rabi oscillations, which follow the area theorem -
even in the high-carrier regime where (first-order) many-particle effects are in principle dominantly
influencing the linear and nonlinear response. The key to the successful excitation can be found in
the combination of short pulse duration and deliberately introduced detuning.
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Figure IV.D.26 — Incl. of all Mean-Field Effects (Nonlinear Regime, Equal Subband Dispersion): Non-
linear excitation of a quantum well with n = 1.2×1012cm−2, L = 10 nm, T = 50 K. Top: relative population
in upper subband for excitation with 2π and 4π pulses and different laser frequencies (a1) resonant to the orig-
inal transition energy, ~ωL ≈ 0.10336 eV [cf. Fig. IV.D.2], (b1) resonant to the linear absorption spectrum,
~ωL ≈ 0.114 eV [cf. Fig. IV.D.24]. For comparison the free-carrier excitation is plotted for a 2π as well
(dashed line). For the 2π pulse the renormalized transition energy and Rabi frequency are plotted in a2(b2) and
a3(b3), respectively.
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Figure IV.D.27 — Incl. of all Mean-Field Effects (Nonlinear Regime, Equal Subband Dispersion): Same
situation as in Fig. IV.D.26, but for excitation at the intermediate frequency ωL = 0.1085 eV. For comparison
the free-carrier excitation is plotted for a 2π as well (dashed line). For the 2π pulse the renormalized transition
energy and Rabi frequency are plotted below.
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Figure IV.D.28 — Incl. of all Mean-Field Effects (Nonlinear Regime, Different Subband Disp.): Same
situation as in Fig. IV.D.26, i.e., for excitation at an intermediate frequency (for different subband dispersion
the intermediate frequency is ωL = 0.099 eV). For comparison the free-carrier excitation is plotted for a 2π as
well (dashed line). For the 2π pulse the renormalized transition energy and Rabi frequency are plotted below.
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4. Correlation Contributions:
Carrier-Carrier and Carrier-Phonon Scattering

Up to this moment, we concentrated on the impact of first order correlation contributions. Hence,
we either approximated second order contributions by a phenomenological dephasing constant γp

(γp = 1 meV, linear regime/ absorption spectra) or excluded second order contributions completely
from the theory (γp = 0, nonlinear regime/ density oscillations). In the following, these contri-
butions shall now be investigated. As has already been mentioned shortly in Chapter IV B, the
correlation contributions in the equation of motion for the intersubband coherence can be divided in
three different parts similar to the description of interband transitions [JKK97, BSP+92]

d

dt
p21
k,σ|cc/cp-corr = −π

~
Ξd(p

21
k ) +

π

~

∑

k′′

Ξnd(p
ij
k+k′′) +

π

~
Ξnl, (IV.D.13)

namely

• diagonal contributions,

Ξd(p
21
k ) = Γd p

21
k =

1

2

∑

i=1,2

(Γi,cp
d + Γi,cc

d ) p21
k , (IV.D.14)

dependent on the intersubband coherence at same wavenumber, p21
k ,

• nondiagonal contributions,

∑

k′′

Ξnd(p
ij
k+k′′) =

∑

i=1,2




∑

q

Γi,cp
nd p21

k+q
||

+
∑

k′,q

Γi,cc
nd1 p21

k′−q +
∑

q

Γi,cc
nd2 p21

k+q −
∑

k′

Γi,cc
nd3 p21

k′





+
∑

i=1,2




∑

q

Γ̃i,cp
nd p̃12

k+q
||

+
∑

k′,q

Γ̃i,cc
nd1 p̃12

k′−q +
∑

q

Γ̃i,cc
nd2 p̃12

k+q −
∑

k′

Γ̃i,cc
nd3 p̃12

k′



 ,

(IV.D.15)

which couple intersubband coherences at different wave vectors,

• contributions nonlinear in the polarization Ξnl, which are thus important under nonlinear ex-
citation, where a large induced intersubband polarization is present.

The corresponding equation for the occupation numbers reads

d

dt
f i
k,σ|cc/cp-corr = −π

~
f i
k,σΓi,out

d +
π

~
(1 − f i

k,σ)Γi,in
d + Ξnl,fi

i, j = 1, 2; i 6= j . (IV.D.16)

where Γi,in
d denotes the diagonal in-scattering and Γi,out

d the corresponding diagonal out-scattering
rate (Γi

d = Γi,in
d + Γi,out

d ). Ξnl,fi
denotes the contributions to the equation which are nonlinear in the

polarization. The complete diagonal and non-diagonal contributions and the nonlinear contributions
Ξnl and Ξnl,fi

are given in APP F.

a) Scattering Rates

As an example for the general form of scattering rates we discuss a typical intrasubband rate, taken
form the diagonal contribution Γi

d, first for carrier-phonon and afterwards for carrier-carrier scatter-
ing.
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Carrier-Phonon Scattering Rates

The intrasubband carrier-phonon rate

Γcp = 2
∑

q

[

δ(−εik + εik+q
||
− ~ωLO)|gii

q |2
{

nq(1 − f i
k+q

||
) +

(

nq + 1
)

f i
k+q

||

}

+ δ(−εik + εik+q
||

+ ~ωLO)|gii
q |2
{(

nq + 1
)

(1 − f i
k+q

||
) + nqf

i
k+q

||

}]

(IV.D.17)

describes scattering events where an electron is scattered in or out a state with vector k in subband
i - either by absorption or emission of a LO-phonon with 3D wave vector q. In detail, the terms
proportional to (1 − f i

k+q
||

) describe the transition from state k into state k + q
||

(out- scattering

rate), the terms proportional to f i
k+q

||

the transition from state k + q
||

into k (in- scattering rate)

-always under emission or absorption of a phonon. As before, nq denotes the phonon population
which in bath approximation is given by the Bose function

nq =
1

eβ~ωLO−1
. (IV.D.18)

The probability for the scattering processes is given by the corresponding Fröhlich matrix elements,
which are strongly dependent on wave vector and well width [cf. APP B]. Note, that although
the Fröhlich matrix elements are divergent for q|| = 0, it is not necessary to consider screened
matrix elements, as the corresponding contributions cancel. Therefore, the matrix elements will
remain unscreened in the scope of this work. An investigation of the impact of static or dynamic
screening on the carrier-phonon scattering rates is given in [PAL00, Ahn94]. Due to the Marko-
vian approximation performed in Chapter III.B.4.b, only scattering events which obey strict energy
conservation are taken into account. First results of recently performed investigations of carrier-
phonon scattering in intersubband transitions with regard to non-Markovian results can be found
in [BFWK04, But04, F0̈4]. A small comparison of intrasubband scattering rates, where the elec-
tron stays in its initial subband and intersubband scattering rates where the subband is changed, is
given in Fig. IV.D.29. These scattering rates are often calculated on the basis of Fermis golden rule
[AW97, Har00] and frequently used to introduce dephasing due to carrier-phonon scattering in the
framework of a relaxation rate approximation. As we will see in Chapter IV.D.4.b.1 an approxima-
tion of this kind overestimates the actual dephasing to a large extent. Note, that these contributions
are time-independent only in the linear regime, where for all times the occupation functions fi can be
approximated by Fermi-Dirac distributions. In the nonlinear regime, the electronic occupation func-
tions are time-dependent and thus the scattering rates for the examples presented in Fig. IV.D.29
also vary with time.

Carrier-Carrier Scattering Rates

The diagonal intrasubband carrier-carrier scattering rate for scattering in subband i

Γcc = 2
∑

k′,q

[

δ(εik + εik′ − εik′−q − εik+q)V iiii
q (2V iiii

q − V iiii
k′−k−q)

{
f i
k′(i− f i

k′−q)(1 − f i
k+q) + f i

k′−qf
i
k+q(1 − f i

k′)
}]

.

(IV.D.19)

describes scattering processes of two electrons between states k,k′,k + q,k′ − q due to carrier-
carrier interaction. Again, the total contributions consists of in- and out-scattering contributions:
whereas terms proportional to (1 − f i

k′−q)(1 − f i
k+q) describe scattering from states k and k′
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Figure IV.D.29 — Intra- vs intersubband carrier-phonon scattering rates (Linear Regime): Diagonal scat-
tering contributions of a 10nm GaAs/AlGaAs quantum well without (a) or with (b) respect to nonparabolicity
effects for carrier density n = 5.0 × 1010cm−2 or n = 1.2 × 1012cm−2 and temperatures T = 50, 300
Kelvin. The upper row shows intrasubband rates (terms with δ(−εi

k + εi
k+q

||
± ~ωLO), i = 1, 2), the lower

row intrasubband rates (terms with δ(−εi
k + ε

j
k+q

||
± ~ωLO), i, j = 1, 2 and i 6= j). The explicit scattering

rates are given in APP F

into states k + q and k′ − q, terms proportional to f i
k′−qf

i
k+q describe scattering from states

k + q and k′ − q into states k and k′. Non-Markovian events are again excluded, only scatter-
ing processes which obey the strict energy conservation are taken into account. A detailed inves-
tigation of non-Markovian effects of carrier-carrier scattering in semiconductor quantum wires is
given in [Pre98, PS99]. Besides the direct scattering contributions, i.e., contributions with Coulomb
matrix elements ∝ 2|V iiii

q |2, we find exchange contributions with Coulomb matrix elements ∝
V iiii
q V iiii

k−k′−q which effectively reduce the scattering rates [cf. also [LG00]] similar to interband
transitions [JKK+96]. In Chapter IV.D.4.b.1 we will see however, that even though the diagonal
scattering rates are decreased by the exchange contributions, the effective linewidth remains almost
completely unchanged due to large compensating effects between diagonal and non-diagonal cor-
relation contributions. A comparison of carrier-carrier scattering rates with / without inclusion of
exchange contributions is given in Fig. IV.D.30 for the example of a 10 nm quantum well with
carrier densities (a) n = 1.2 × 1012cm−2 and (b) n = 5.0 × 1010cm−2.

b) Dephasing Rate Approximation

The inverse of the diagonal correlation contributions Γd can be identified with the T2 time known
from atomic two-level systems [HK94], i.e., (Γd)

−1 = T2 [cf. Eq. (IV.B.15)]. Therefore, the
diagonal scattering rates are frequently used to approximate the microscopic dephasing on the ba-
sis of the relaxation or dephasing rate approximation. In this approximation the dephasing is so
strong, that almost all differences which could initially be observed in the absorption spectra (on
the level of mean-field calculations) are damped out. The corresponding absorption spectra show
almost no dependence on well width or subband dispersion. As we have already seen in the special
limit considered in Chapter IV.D.1 at the beginning of this chapter, the dephasing rate approxima-
tion overestimates the actual dephasing to a large extent. If we exclude mean-field contributions and
consider a quantum well with equal subband dispersion, i.e. without inhomogeneous broadening,
the linewidth due to carrier-carrier and carrier-phonon scattering is completely additive. As can al-
ready be seen at the structure of the corresponding equations, the linewidth of the absorption spectra
including both carrier-carrier and carrier-phonon interaction simultaneously is in this case identical
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Figure IV.D.30 — Carrier-carrier scattering rates (Linear Regime): Diagonal scattering contributions of a
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n = 5.0 × 1010cm−2 or n = 1.2 × 1012cm−2 and temperatures T = 50, 300 Kelvin. The upper row shows
diagonal scattering rates with inclusion of exchange scattering contributions, the lower row intrasubband rates
terms without inclusion of exchange scattering contributions. The explicit scattering rates are given in APP F.

to the linewidth of the absorption spectra where these contributions have been considered separately.
Due to excitonic contribution and depolarization effect, two mean-field contributions which couple
intersubband coherences at different wave vectors, the complete additive-ness is lost. The inclusion
of inhomogeneous broadening naturally reduces the additive-ness even further. However, the differ-
ence in linewidth is small compared to the overall linewidth in the dephasing rate approximation.
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Figure IV.D.31 — Absorption in Dephasing Rate Approximation (Equal Subband Dispersion): of a quan-
tum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n = 5.0 × 1010cm−2 and well
width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm. The initially observed differences due to mean-field
effects [cf. Fig. IV.D.24] are completely damped out.
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Figure IV.D.32 — Absorption in Dephasing Rate Approximation (Different Subband Dispersion): for the
parameters given above. The spectra are almost identical to those in Fig. IV.D.31 in contrast to the differences
in Fig. IV.D.24 / Fig. IV.D.25.

95



Chapter IV
IV.D.4. CORRELATION CONTRIBUTIONS:

CARRIER-CARRIER AND CARRIER-PHONON SCATTERING

Full Microscopic Theory

Last, we now include all contributions in the theory, i.e., all mean-field contributions and all cor-
relation contributions. As can be seen in Fig. IV.D.33 and Fig. IV.D.34 the corresponding linear
absorption spectra are quite different from those calculated within the dephasing rate approximation
[cf. Fig. IV.D.31 and Fig. IV.D.32]. The most striking difference being the very small linewidths.
Whereas in the dephasing rate approximation, the linewidth of the absorption spectra was in the
range of up to 60 meV, we here encounter linewidth in all cases smaller than 10 meV. This clearly
shows, the enormous cancellation effects between diagonal and non-diagonal correlation contribu-
tions which are even stronger than in the interband case [LK88, JKK+96, IR01, HKK+96, WFK04,
LN04]. Furthermore, investigating the additive-ness of the various scattering mechanisms as done in
Chapter IV.D.4.b, we see that including non-diagonal correlation contributions, the dephasing contri-
butions are not-additive, not even in the simplified case, where the non-diagonal mean-field contribu-
tions (excitonic contribution and depolarization effect) and inhomogeneous broadening are excluded.
This is because including the non-diagonal correlation contributions as done in Fig. IV.D.33 and
Fig. IV.D.34 takes into account the interference phenomena between various scattering mechanisms
which are completely left out on the basis of a diagonal dephasing rate approximation [WFL+04].
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Figure IV.D.33 — Absorption: Incl. of Mean-Field and Corr. Contrib. (Equal Subband Dispersion):
Absorption of a quantum well with carrier density (a1, b1, c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n =
5.0× 1010cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with equal subband dispersion.
Note the different y-scales of (a1, b1, c1).
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Figure IV.D.34 — Absorption: Incl. of Mean-Field and Corr. Contrib. (Different Subband Disp.):
Absorption of a quantum well with carrier density (a1 ,b1 ,c1) n = 1.2 × 1012cm−2, (a2, b2, c2) n =
5.0 × 1010cm−2 and well width (a) L = 5 nm, (b) L = 10 nm, (c) L = 15 nm with different subband
dispersion. Note the different y-scales of (a1, b1, c1).
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Chapter IV
IV.D.4. CORRELATION CONTRIBUTIONS:

CARRIER-CARRIER AND CARRIER-PHONON SCATTERING

c) Nonlinear Regime

To conclude the investigations of the impact of the various microscopic many-particle contributions
on the ability of the system to experience Rabi oscillations, we finally investigate the influence of
second order correlation contributions on the nonlinear response of intersubband transitions. As the
occupation numbers are time-dependent in the nonlinear regime, now all correlation contributions
have to be calculated completely anew in every time step. The corresponding extension of the
required cpu-time is consequently very huge - especially for carrier-carrier scattering.

In Fig. IV.D.35 and Fig. IV.D.36, we present the density oscillations in a quantum well sample
with different subband dispersion and the following parameters: well width L = 10 nm, carrier
density n = 1.2 × 1012cm−2 and temperature T = 50, 300 Kelvin. The sample is excited by a
Gaussian pulse with τ = 100 fs and pulse areas as indicated in the figures. We compare the actual
oscillations calculated for inclusion of carrier-carrier and carrier-phonon scattering first separately
and finally simultaneously. As can be seen in the examples presented above, for the here considered
parameters, the impact of carrier-carrier scattering on the actual density oscillations is actually very
small.
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Figure IV.D.35 — Impact of correlation contributions on Density Oscillations: Comparison of density
oscillations with respect to different correlation contributions for a single quantum well with T = 50K, n =
1.2e12, L = 10nm
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Figure IV.D.36 — Impact of correlation contributions on Density Oscillations: Comparison of density
oscillations with respect to different correlation contributions for a single quantum well with T = 300K, n =
1.2e12, L = 10nm
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CHAPTER V

Macroscopic Equations of Motion:
Field Calculation

In the previous chapters we derived the microscopic equations for the quantum well system. We
started with the microscopic Maxwell-Lorentz Equations and corresponding standard Lagrangian
and derived the Hamiltonian and the equations of motion for the quantities of interest (intersubband
coherence and occupation). Although we already made the crossover to the macroscopic equations
of motion and commented on their connection to the microscopic equations, we did not actually
consider the coupling in practice.

A. Multiple Quantum Well Systems

In Chapter IV we applied the derived microscopic theory in order to investigate the linear and
nonlinear response of a single quantum well, where local field effects and thus the coupling to the
macroscopic equations are neglectable. In this chapter we concentrated on the microscopic aspect
of intersubband transitions, i.e. we examined in great detail the impact and interplay of the var-
ious many-particle effects such as mean-field contributions and correlation contributions. In the
following, we will now focus on quantum well samples where the coupling of microscopic and
macroscopic equations can not a priori be neglected. With respect to experimental setups and mea-
surements, we aim to adapt the derived theory to the description of multiple quantum well samples
as the one presented in Fig. V.A.1. At the end of this chapter we want to be able to determine the
actual macroscopic fields emitted by a multiple quantum well system - with respect to

• the radiative coupling between the wells

• special effects due to the sample geometry, for example total reflection at a prism base

• different dielectric constants of barrier and well material.
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Figure V.A.1 — General Setup of Arbitrary MQW-Sample: Sketch of a MQW with respect to different
dielectric constants of barrier and well material. Additionally added layers can be used to simulate effects due
to spacer layer or reflection at a prism base.
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Chapter V

Generally spoken, the theory shall be able to determine the local fields in a MQW system like the
one given in Fig. V.A.1: a sample consisting of N quantum wells followed by layers of two -so far-
unspecified materials. In principle this is nothing else than a multi-layer geometry with sheets of
polarization in the well areas and the following dielectric constants:

εb =







εB , if −∞ < z < 0 ∨ (n− 1)D + L < z < nD ;
εW , if (n− 1)D < z < (n− 1)D + L ;
εS , if ND < z < PB ;

εPB , if PB < z <∞ .

(V.A.1)

Thereby, we can then investigate the linear and nonlinear response of multiple quantum wells sys-
tems - with respect to both microscopic and macroscopic effects - for a variety of realistic experi-
mental setups.

The coarse outline of this chapter is the following: Adapting the Greens function approach pre-
sented in [Sip87], we first derive the fields generated by a sheet of polarization embedded in a
medium with dielectric constant εb. If a possible mismatch of dielectric constants in barrier and
well is neglected, the obtained results can easily be generalized to describe the fields generated by
a number of quantum wells. At this level the theory concentrates on the contributions due to the
polarization of the wells, effects due to material and sample parameters are not included. Therefore
we will in the following refer to this level as the description of a simplified multiple quantum well
sample. In order to account for reflection effects due to a mismatch of dielectric constants, we revise
shortly the basic concept of the transfer matrix approach, which we then combine with the results
of the Greens function approach. Thereby a ”mismatch of dielectric constants” can refer to different
permittivities of well and barrier material but also to a basic reflection at an interface as in the case
of a single-pass-prism geometry where total reflection at an interface effectively enhances the local
field. A sketch of the outline of this chapter is given in Fig. V.A.2.
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Figure V.A.2 — Basic Outline of Build-Up of Field Derivation: I. Greens function formalism to derive fields
generated by (a) a sheet of polarisation or (b) a number of quantum wells, II. Combination of transfer matrix
formalism for the description of multiple reflections in a multi-layer geometry (a) with the results of the Greens
function formalism to determine the fields generated by a (b) sheet of polarization or (c) multiple quantum wells
with respect to a mismatch of barrier and well dielectric constants.
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Chapter V V.B.1. FIELDS GENERATED BY A SINGLE SHEET OF POLARIZATION

B. Field Calculation for Monochromatic Stationary
Fields

For convenience, we consider first only stationary fields, monochromatic F(r, t) with a frequency
ω,

F(r, t) = F̂(r) e−i ω t . (V.B.1)

From the basic solutions for the monochromatic fields, we can afterwards build general solutions by
Fourier superposition. We start with a derivation of the fields generated by a sheet of polarization at
z = z′ with a spatial variation in the plane characterized by a wave vector q|| [Sip87]:

P(r) = Pδ(z − z′) ei q||·r|| . (V.B.2)

and generalize the result later to account for the polarization of a single quantum well or a MQW
system.

1. Fields Generated by a Single Sheet of Polarization

First, we derive the solution of the homogeneous wave equation (i.e. we set P(r) = 0):

[

∇2 +
εbω

2

c2

]

E(r) −∇(∇ · E(r)) = 0 . (V.B.3)

a) Homogeneous Equation

Bearing in mind, that the sheet of polarization is parallel to the (x, y) plane, we divide the fields in
right- and leftward propagating waves

E+(r) = E+ei q+·r , E−(r) = E−ei q−·r, (V.B.4)

where

q± = qxx̂ + qyŷ ± q⊥ẑ = q||q̂|| ± q⊥ẑ (V.B.5)

lies in the plane of incidence spanned by unit vectors q̂|| and ẑ. The wave-vector projection parallel

to the well layers, q|| =
√

q2x + q2y , is chosen to be real and the projection perpendicular to the well

layers is given by

q⊥ =
√

q2 − q2|| =

√

ω2

c2
εb − q2|| (V.B.6)

and can also take on complex values. Next, we introduce a unit vector perpendicular to the plane of
incidence

ŝ = q̂|| × ẑ = q−1
|| (qyx̂ − qxŷ) . (V.B.7)

Considering that the solution of the homogeneous wave equation must be transverse (∇ ·E = 0 →
q± ⊥ E), it is convenient to introduce two vectors perpendicular to q± that span the possible E

[Sip87]. One of these vectors can obviously be taken as the unit vector ŝ, the other can be taken as

p̂± =
1

q
(q|| ẑ ∓ q⊥ q̂||) =

1

q
(q|| ẑ ∓ q⊥

q||
[qxx̂ + qyŷ]) . (V.B.8)
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Chapter V V.B.1. FIELDS GENERATED BY A SINGLE SHEET OF POLARIZATION

It is clear that while choosing q± as the wave vector, E can have only ŝ and p̂± components:

E+(r) = (Es+ ŝ + Ep+ p̂+) ei q+·r , E−(r) = (Es− ŝ + Ep− p̂−) ei q−·r . (V.B.9)

An electric field with only Ep± components is often referred to as a p±-polarized, parallel polarized
or transverse magnetic (TM) field, with onlyEs± components a s-polarized, perpendicular polarized
or transverse electric (TE) field. Once E(r) is specified, B(r) follows from ∇× E = iωB

B+(r) =

√
εb
c

(Ep+ ŝ−Es+p̂+)ei q+·r , B−(r) =

√
εb
c

(Ep− ŝ−Es−p̂−)ei q−·r . (V.B.10)

b) Inhomogeneous Equation

Next, we determine the field in the presence of the polarization given in Eq. (V.B.2). Therefore we
have to solve
[

∇2 +
εbω

2

c2

]

E(r) −∇(∇ · E(r)) = − ω2µ0P(r) . (V.B.11)

Since for z 6= z′ the solutions of Eq. (V.B.11) also fulfill the homogenous wave equation, we make
the ansatz

E(r) = E+(r) e−i q⊥ z′

Θ(z − z′) + E−(r) ei q⊥ z′

Θ(z′ − z) + E δ(z − z′) ei q||·r||

(V.B.12)

with

E = Es ŝ + Eq|| q̂|| + Ez ẑ . (V.B.13)

To ensure physically reasonable behavior for z → ∞ and z → −∞, we choose here a rightward
wave for z > z′ and a leftward wave for z < z′. The factors e−i q⊥ z′

, ei q⊥ z′

are included for
convenience [Sip87]. Inserting the ansatz, Eq. (V.B.12), into the inhomogeneous wave equation, Eq.
(V.B.11), the unknown coefficients Ei and Ei can be determined. Using

d

dx
Θ(±x) = ±δ(x) , δ(x− x′) f(x) = δ(x− x′) f(x′) (V.B.14)

which yields

∂2

∂z2
ei q⊥ (z−z′) Θ(z − z′) = −q2⊥Θ(z − z′)ei q⊥ (z−z′) + i q⊥δ(z − z′) + δ′(z − z′) ,

∂2

∂z2
e−i q⊥ (z−z′) Θ(z′ − z) = −q2⊥Θ(z′ − z)e−i q⊥ (z−z′) + i q⊥δ(z − z′) − δ′(z − z′)

we find three equations
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(−i q qx

q||
(Ep+ − Ep−) + Eq||q

2 qx

q||
+ i q⊥

q||
qy(Es+ + Es−) + Es

q2
⊥

q||
qy + ω2 µ0 Px) δ(z − z′)

+ (− q⊥qx

q||q
(Ep+ + Ep−) +

qy

q||
(Es+ − Es−) − Ez i qx) δ′(z − z′)

+ (
qy

q||
Es + qx

q||
Eq||) δ′′(z − z′) = 0

(−i q
qy

q||
(Ep+ − Ep−) − i q⊥

qx

q||
(Es+ + Es−) + Eq|| q

2 qy

q||
+ Es

q2
⊥

q||
qx + ω2 µ0 Py) δ(z − z′)

+ (− q⊥qy

q||q
(Ep+ + Ep−) − qx

q||
(Es+ − Es−) − Ez i qy) δ′(z − z′)

+ (
qy

q||
Eq|| − qx

q||
Es) δ′′(z − z′) = 0

(i
q|| q⊥

q (Ep+ + Ep−) + Ez q
2
⊥ + ω2 µ0 Pz) δ(z − z′)

− i q|| Eq|| δ′(z − z′) = 0 .

(V.B.15)
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MULTIPLE QUANTUM WELLS

Since the different orders of singularities in Eq. (V.B.15) must vanish separately, the coefficients are
obtained as

Eq|| = Es = 0, Ez = −c
2 µ0

εb
Pz, Es± = − ω2 µ0

2 i q⊥
ŝ · P, Ep± = −ω2 µ0

2 i q⊥
p̂± · P . (V.B.16)

The field generated by the sheet of polarization at z = z′ is thus given by

E(r) = − ω2 µ0

↔

G (z, z′) P ei q||·r|| (V.B.17)

where we introduced the retarded Green’s function tensor in dyadic form

↔

G (z, z′) =
ei q⊥ |z−z′|

2 i q⊥
[(ŝŝ + p̂+p̂+)Θ(z − z′) + (ŝŝ + p̂−p̂−)Θ(z′ − z)] +

c2

ω2 εb
δ(z − z′) ẑẑ .

(V.B.18)

Thus we are now able to determine the fields generated by a sheet of polarization - embedded in an
infinite medium of dielectric constant εb.

2. Generalization to the Polarization of
Multiple Quantum Wells

Next, we generalize the derived results to describe the fields generated by the polarization of a single
quantum well or a system of quantum wells. Therefore, we express the polarization of a single
quantum well through its Fourier transform

PQW(r) =
1

(2π)2

∫

d2q||PQW(q||, z)e
iq||·r|| (V.B.19)

=
1

(2π)2

∫

d2q||

∫

dz′{PQW(q||, z
′)δ(z − z′)eiq||·r||} (V.B.20)

with

PQW(q||, z) =

∫

d2r||PQW(r)e−iq||·r|| (V.B.21)

and find immediately that Eq. (V.B.2) is nothing else than a Fourier component of Eq. (V.B.20).
Thus, we obtain the fields generated by the polarization of a single quantum well by adding up the
fields generated by sources of the form of Eq. (V.B.2) with different z ′ and q||, i.e. by summing up
the different Fourier components:

E(r) =
1

(2π)2

∫

d2q||E(q||, z)e
iq||·r|| (V.B.22)

with

E(q||, z) =

∫

dz′E(q||, z
′) . (V.B.23)

Here E(q||, z
′) denotes the field generated by the corresponding Fourier component of the polar-

ization and is equivalent to the field derived in Eq. (V.B.17). Inserting the result in Eq. (V.B.23)
yields

E(q||, z) = − ω2 µ0

∫

dz′
↔

G (z, z′)PQW(q||, z
′) (V.B.24)

for a single quantum well or

E(q||, z) = − ω2 µ0

N∑

m=1

∫

dz′
↔

G (z, z′)P
(m)
QW(q||, z

′) (V.B.25)

for a system of N electronically uncoupled quantum wells. The Green’s function tensor is given in
Eq. (V.B.18).
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MULTIPLE QUANTUM WELLS

a) Coupling of Microscopic and Macroscopic Equations: Distinction of Lon-
gitudinal and Transverse Field

If we actually want to couple microscopic and macroscopic equations by inserting the local field
in the microscopic equations of motions derived in Chapter III we have to consider that only the
transverse part of the field enters the carrier-field Hamiltonian. In Chapter A we used Helmholtz’s
theorem [Nol97] to divide the field in the Hamiltonian in longitudinal and transverse part, a(r, t) =
aL(r, t) + aT (r, t), with

aL(r, t) = − 1

4π
∇
∫

d3r′
∇ · a(r′, t)

|r − r′| = ∇α(r) , (V.B.26)

aT (r, t) =
1

4π
∇×

∫

d3r′
∇× a(r′, t)

|r − r′| = ∇× β(r) .

Using the Coulomb gauge, we incorporated the longitudinal field in the Coulomb interaction. If we
now inserte the complete field in the microscopic equations, we would double count the longitudinal
part.

Therefore, the field in the layer of the polarization (cf. Eq. (V.B.56)) shall next be decomposed
in transverse and longitudinal part. The divergence of this field is given by

∇ · E(r) = (vp+ − vp−)
q||

q
eiq||·r||δ(z − z′) − c2µ0

εb
Pzδ

′(z − z′)eiq||·r|| (V.B.27)

and thus α(r) is obtained as

α(r) = − 1

4π

∫

d3r′′
1

|r − r′′|
[

(vp+ − vp−)
q||

q
δ(z′′ − z′) − c2µ0

εb
Pzδ

′(z′′ − z′)
]

eiq||·r
′′
||

= − 1

4π
eiq||·r||

∫

dz′′
[

(vp+ − vp−)
q||

q
δ(z′′ − z′) − c2µ0

εb
Pzδ

′(z′′ − z′)
]

∫ ∞

0

dr̂ r̂

∫ 2π

0

dφ
ei q||r̂ cos(φ)

r2 + |z − z′′|2

= − 1

2
eiq||·r||

∫

dz′′ e−|z−z′′|q||
[

(vp+ − vp−)
q||

q
δ(z′′ − z′) − c2µ0

εb
Pzδ

′(z′′ − z′)
]

= − 1

2
eiq||·r||

[

(vp+ − vp−)
q||

q
+
c2µ0

εb
Pz[Θ(z − z′) − Θ(z′ − z)]

]

e−|z−z′|q||

(V.B.28)

where in the last step we used the identity

e−|z−z′′|q||
∂

∂z′′
δ(z′′ − z′) = δ(z′′ − z′)

∂

∂z′
e−|z−z′|q||

= − δ(z′′ − z′) q|| e−|z−z′|q|| [Θ(z − z′) − Θ(z′ − z)] . (V.B.29)

The longitudinal field can therewith be written as

E
(m)
L (r) =

(

−c
2µ0

εb
Pzδ(z − z′) ẑ − 1

2
E

(m)
pL (z)

)

e−|z−z′|q|| eiq||·r|| (V.B.30)

with

E
(m)
pL (z) =







i qx{(vp+ − vp−)
q||
q + c2µ0

εb
Pz[Θ(z − z′) − Θ(z′ − z)]}

i qy{(vp+ − vp−)
q||
q + c2µ0

εb
Pz[Θ(z − z′) − Θ(z′ − z)]}

(vp− − vp+)
q2
||

q [Θ(z − z′) − Θ(z′ − z)] − q||
c2µ0

εb
Pz[Θ(z − z′) + Θ(z′ − z)]






.

(V.B.31)
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Note, that the longitudinal part of the field derived in Eq. (V.B.30) is identical to the depolarization
effect investigated in Chapter IV. For a coupling of micro- and macroscopic equations we can now
either insert only the transverse part of the local field, E(m)

T (z) = E(m)(z)−E
(m)
L (z), in the carrier-

field contribution or exclude the depolarization contribution from the microscopic equations.
As a last step, the theory is expanded in order to account for effects due to the presence of a multi-

layer geometry. To do so, we first neglect the sheet of polarization and concentrate on the effects of
interfaces on the propagation of fields in general - by employing the transfer matrix formalism.

3. Transfer Matrix Formalism for
Propagation in Multi-Layer Structures

The basic idea of the transfer matrix formalism [Kni76] is to calculate the propagation of fields
through structures composed of layers which are linear with a scalar dielectric constant by expressing

I. the fields in each layer with the help of so-called matrices of the separated field,

II. the transformation of the fields upon penetration through the boundary of two adjoining layers
with different refractive index in form of transfer matrices

III. the propagation inside one layer with propagation matrices.

Therewith, the series of reflections and transmissions connected with a multi-layer geometry can be
easily obtained by matrix multiplication.

In the following, we focus on multi-layer geometries composed of layers parallel to the xy-plane.
As the boundary conditions connect only fields with the same polarization, s and p-polarized light
can be considered separately. First, we divide the field in the m-th layer into left- and rightward
propagating waves according to

E(m)
s (r) = E

(m)
s+ ŝm ei qm+·r + E

(m)
s− ŝm ei qm−·r , (V.B.32)

E(m)
p (r) = E

(m)
p+ p̂m+ ei qm+·r + E

(m)
p− p̂m− ei qm−·r . (V.B.33)

Vectors p̂m±, ŝ and qm± are given again by Eq. V.B.5 - Eq. V.B.8 but with εb replaced by the
corresponding value of the m-th layer ε(m)

b . As already announced above, the fields in the m-th
layer are now expressed in form of single-column matrices of the separated field (separated in the
sense that one knows the components of the right- and leftward propagating waves of the field)

e(m)
s (z) =

(

E
(m)
s+ ei q

(m)
⊥ z

E
(m)
s− e−i q

(m)
⊥ z

)

, e(m)
p (z) =

(

E
(m)
p+ ei q

(m)
⊥ z

E
(m)
p− e−i q

(m)
⊥ z

)

. (V.B.34)

The transformation of the field matrices upon penetration through the boundary of two adjoining
layers, m and m+ 1, with ε(m)

b and ε(m+1)
b can be expressed as

e(m)
s (zm,m+1) = Ms

m,m+1e
(m+1)
s (zm,m+1) , e(m)

p (zm,m+1) = M
p
m,m+1e

(m+1)
p (zm,m+1)

(V.B.35)

where zm,m+1 denotes the position of the boundary or interface between layer m and layer m + 1
and M

s,p
m,m+1 are the corresponding transfer matrices

Ms
m,m+1 =

1

tsm,m+1

(
1 rs

m,m+1

rs
m,m+1 1

)

, M
p
m,m+1 =

1

tpm,m+1

(
1 rp

m,m+1

rp
m,m+1 1

)

.

(V.B.36)
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rs,p
m,m+1 and ts,p

m,m+1 are the Fresnel coefficients for s- and p-polarized light

rs
m,m+1 =

q
(m)
⊥ − q

(m+1)
⊥

q
(m)
⊥ + q

(m+1)
⊥

, tsm,m+1 =
2 q

(m)
⊥

q
(m)
⊥ + q

(m+1)
⊥

, (V.B.37)

rp
m,m+1 =

q
(m)
⊥ ε

(m+1)
b − q

(m+1)
⊥ ε

(m)
b

q
(m)
⊥ ε

(m+1)
b + q

(m+1)
⊥ ε

(m)
b

, tpm,m+1 =
2

√

ε
(m)
b

√

ε
(m+1)
b q

(m)
⊥

q
(m)
⊥ ε

(m+1)
b + q

(m+1)
⊥ ε

(m)
b

(V.B.38)

with

q
(m)
⊥ =

√

(q(m))2 − (q
(m)
|| )2 , q

(m+1)
⊥ =

√

(q(m+1))2 − (q
(m)
|| )2 . (V.B.39)

Propagation inside one layer is expressed with the propagation matrix

Mm(z) =

(
ei q⊥z 0

0 e−i q⊥z

)

(V.B.40)

according to

e(m)
s,p (za) = Mm(za − zb)e

m
s,p(zb) . (V.B.41)

With these definitions, the propagation of fields in a multi-layer geometry can be obtained easily and
includes already multiple reflections.

As an example, the propagation of a p-polarized field in the multi-layer geometry sketched in
Fig. V.B.1 is determined in the following.

Using Eq. V.B.35 - Eq. V.B.41, we first relate the field matrices of layer 0 and 2 according to

e(0)
p (z0,1) = M

p
0,1e

(1)
p (z0,1)

= M
p
0,1M1(z0,1 − z1,2)e

(1)
p (z1,2)

= M
p
0,1M1(z0,1 − z1,2)M

p
1,2e

(2)
p (z1,2) . (V.B.42)

Next, we consider the boundary conditions of the situation of interest in order to determine the field
matrices from medium 0 and medium 2. Here, they are given by (cf. Fig. V.B.1)

e(0)
p (z) =

(

E0 ei q
(0)
⊥ z

ER e−i q
(0)
⊥ z

)

, e(2)
p (z) =

(

ET ei q
(2)
⊥ z

0

)

, (V.B.43)

where we took into account that there is no wave incident from z = ∞ and denoted E(0,2)
p± analog

to Fig. V.B.1. The unknown amplitudes ER and ET can be determined by inserting Eq. (V.B.43) in
Eq. (V.B.42) and once they are known, Eq. (V.B.42) can also be used to determine the field in layer
1.
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Figure V.B.1 — Propagation through a Multi-Layer Geometry: Example of a propagation through a multi-
layer geometry for the case of an incident p-polarized field with amplitude E0.
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4. Combination of Transfer Matrix Formalism and
Green-Function Formalism

In order to investigate the effect of the presence of a multilayer structure on the fields generated by
the sheet of polarization, the Green-function formalism is now combined with the transfer matrix
formalism as done in [Sip87]. From chapter V.B.1.b we know that the field generated by a sheet of
polarization at z = z′, i.e. P(r) = Pδ(z − z′)ei q||·r|| , is given by

E(r) = −ω2 µ0

{
ei q⊥ |z−z′|

2 i q⊥
[(ŝŝ + p̂+p̂+)Θ(z − z′) + (ŝŝ + p̂−p̂−)Θ(z′ − z)]

+
c2

ω2 εb
δ(z − z′)ẑẑ

}

P ei q||·r|| . (V.B.44)

Using Eq. (V.B.34), we find that we can connect the field matrices left and right from the disconti-
nuity at z = z′ according to

es,p(z
′
+) = es,p(z

′
−) + vs,p , (V.B.45)

where z′+(z′−) is infinitesimal larger (smaller) than z′ and vs,p is defined as

vs,p =

(
vs,p+

−vs,p−

)

, vs = − ω2 µ0

2 i q⊥
ŝ · P , vp± = − ω2 µ0

2 i q⊥
p̂± · P . (V.B.46)

In contrast to the generated field, reflections of the generated fields due to the presence of interfaces
will not be discontinuous at z = z′. Thus the generated fields in the presence of a multi-layer
geometry can be derived by simply combining Eq. (V.B.45) with Eq. V.B.35 - Eq. V.B.41. As an
example, we again consider the multi-layer geometry given in Fig. V.B.1 but add the polarization
P(r) = Pδ(z − z′)ei q||·r|| with z′ = 0.5(z1,2 − z0,1), i.e. we now have a sheet of polarization in
the middle of layer 1. This yields

e(0)
p (z0,1) = M

p
0,1e

(1)
p (z0,1) (V.B.47)

= M
p
0,1M1(z0,1 − z′)e(1)

p (z′−) (V.B.48)

= M
p
0,1M1(z0,1 − z′−)[e(1)

p (z′+) − vp] (V.B.49)

= −M
p
0,1M1(z0,1 − z′−)vp + M

p
0,1M1(z0,1 − z1,2)e

(1)
p (z1,2) (V.B.50)

= −M
p
0,1M1(z0,1 − z′−)vp + M

p
0,1M1(z0,1 − z1,2)M

p
1,2e

(2)
p (z1,2) . (V.B.51)

The boundary conditions are still the same, thus the field matrices from medium 0 and medium 2 are
given by

e(0)
p (z) =

(

E0 ei q
(0)
⊥ z

ER e−i q
(0)
⊥ z

)

, e(2)
p (z) =

(

ET ei q
(2)
⊥ z

0

)

. (V.B.52)

The only difference to Eq. (V.B.52) lies in the definition of ER and ET . Whereas in Eq. (V.B.52),
ER, ET consist only of the reflected/transmitted parts of the incident field, here also contributions of
the generated fields (including their multiple reflections) are included. The amplitudes, E(1)

p+ , E
(1)
p− ,

of the fields in layer 1 can again be determined whenER, ET are known. The easiest way is probably
to express the field in layer 1 according to

E(1)
p (r) = [E

(1)
p+ + vp+e−i q1

⊥z′

Θ(z − z′)] p̂1+ ei q1+·r + [E
(1)
p−

+ vp−ei q1
⊥z′

Θ(z′ − z)] p̂1− ei q1−·r − c2µ0

εb
δ(z − z′)(ẑ · P)ẑ ei q||·r|| . (V.B.53)
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Here, the amplitudes E(1)
p+ and E(1)

p− contain all contributions, which are continuous at z = z′ (in-
cident field and all reflections). The direct contributions of the generated fields, which are discon-
tinuous at z = z′, are added explicitly. Thus, E(1)

p+ should be determined using the equation for
z0,1 < z < z′, i.e. Eq. (V.B.48), as in this area the rightward contribution of the field does not
contain direct contributions of the generated field (only reflected ones, which are thus continuous at
z = z′). Respectively, E(1)

p− should be determined using the equation for z′ < z < z1,2:

e(2)
p (z1,2) = M

p
2,1M1(z1,2 − z′+)e(1)

p (z′+) . (V.B.54)

To summarize, in a multi-layer structure, the fields in layers n without sources can always be written
according to

E(n)(r) = (E
(n)
s+ ŝn + E

(n)
p+ p̂n+)ei qn+·r + (E

(n)
s− ŝn + E

(n)
p− p̂n−)ei qn−·r (V.B.55)

in layer m 6= n which contains a sheet of polarization at z = z′ (and therewith is discontinuous)
according to

E(m)(r) = [E
(m)
p+ + vp+e−i qm

⊥ z′

Θ(z − z′)] p̂m+ ei qm+·r

+ [E
(m)
p− + vp−ei qm

⊥ z′

Θ(z′ − z)] p̂m− ei qm−·r

+ [E
(m)
s+ + vse

−i qm
⊥ z′

Θ(z − z′)] ŝm ei qm+·r

+ [E
(m)
s− + vse

i qm
⊥ z′

Θ(z′ − z)] ŝm ei qm−·r

− c2µ0

εb
δ(z − z′)(ẑ · P)ẑ ei q||·r|| . (V.B.56)

To this point, we are now able to derive the macroscopic fields generated by a given sheet of
polarization, in the presence of a multi-layer geometry. If the polarization of the MQW system
would be known, the generalization of the obtained results could be achieved by adding up the
fields generated by different sheets of polarization. However, the polarization of the MQW system
is not known beforehand as it is dependent on the local field (which in turn is dependent on the
polarization) and leads back to the coupling of microscopic and macroscopic equations.
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CHAPTER VI

Coupling of Microscopic and
Macroscopic Equations of Motion:
Multiple Quantum Well Samples

In the following, the derived macroscopic equations are coupled to the microscopic equations
which have been derived in Chapter III and already analyzed for the case of a single quantum well
in Chapter IV. Consequently, the derived theory is enhanced to the description of multiple quantum
well samples. For convenience, we focus on the description of multiple quantum well samples
composed of N electronically uncoupled - in principle identical - quantum wells. Note, however,
that the theory can be easily adjusted to the description of quantum well samples composed of
different quantum wells.

Due to the different dependence on the electric field, the distinction between linear and nonlinear
excitation is stronger than before. In Chapter IV, the theoretical approach was mainly the same in
linear and nonlinear regime. The only differences being (a) a reduction of the required cpu-time due
to simplified equations of motion (time-independent occupation numbers) and (b) different quantities
of interest (absorption spectra vs. density oscillations). However, the actual numerical implemen-
tation was (apart from the recently addressed difference in cpu-requirements) completely the same.
As we will see in the following, the coupling of macroscopic and microscopic equations is quite
different in linear and nonlinear regime. Thereby, the investigation of the nonlinear regime is again
the challenging one and certain approximations have to be made in order to obtain an applicable
theory.

A. Application to the Linear Regime

In the case of linear absorption, the Fourier transformation of the equation of motion for the
intersubband coherence (which gives the macroscopic polarization1) yields an equation linear in
∫

dz dab(z) · E(z, ω):

p(n)(ω) = χ(n)(ω)

∫

dz d
(n)
ab (z) · E(n)(z, ω), (VI.A.1)

where χ(n) denotes the general linear susceptibility in quantum well n (see Chapter IV) which is
defined in terms of the intersubband coherences and can be evaluated once the latter are determined
[WFK04, WFL+04]. p(n)(ω) denotes the sum over the intersubband coherences in Fourier domain
p(n)(ω) =

∑

k p
(n)
k (ω) . In the linear regime χ(n) is independent of the electric field. This can be

used to simplify the determination of the susceptibility according to

χ(n)(ω) =
p(n)21(ω)

1
~

∫
dz d

(n)
ab (z) · E(n)(z, ω)

, (VI.A.2)

=
p̂(n)21(ω)

1
~
E(n)(z0, ω)

∫
dz d

(n)
ab (z)

. (VI.A.3)

1Note that the overline indicating the macroscopic nature is dropped in the following.
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In this notation p̂(n)21(ω) denotes the IS coherence obtained by approximating
∫

dz d
(n)
ab (z) · E(n)(z, ω) ≈ E(n)(z0, ω)

∫

dz d
(n)
ab (z) (VI.A.4)

in the corresponding equation of motion. z0 denotes the center of quantum well n. Thus, we can
here resort to the susceptibilities calculated in Chapter IV. Using Eq. (VI.A.1) we obtain the dipole
density P(n)(z′, ω) as a function of the local field E(n)(z, ω)

P(n)(z, ω) =

∫

(n)

↔
χ

(n)

z,z′(ω) · E(n)(z′, ω) dz′, (VI.A.5a)

where
↔
χ

(n)

z,z′(ω) is the nonlocal susceptibility tensor in dyadic form

↔
χ

(n)

z,z′(ω) :=
1

A~
χ(n)(ω)d

(n)
21 (z)d

(n)
21 (z′) . (VI.A.6)

For the case of identical quantum wells, which have thus the same linear susceptibility, this can be
further simplified according to

↔
χ

(n)

z,z′(ω) =
1

A~
χ(ω)d

(n)
21 (z)d

(n)
21 (z′) . (VI.A.7)

In a nutshell this means, that we can - in the linear regime - account for the coupling of macro-
scopic and microscopic separately. We can first determine the linear susceptibility of a single quan-
tum well excited by a homogenous external field and can then use the determined susceptibility to
investigate the linear response of a multiple quantum well sample (with respect to a variety of ge-
ometrical or material parameters) by solving the corresponding macroscopic equations of motions,
namely Eq. (V.B.56) or a modification of this equation.

1. Absorption of a Simplified MQW System Sample

To elucidate the general procedure, we discuss in the following the very basic example of a MQW
without respect to any geometrical complications such as different dielectric constants or additional
layers. A coarse sketch of the considered geometry is given in Fig. VI.A.1.
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Figure VI.A.1 — Example of a Simplified MQW System Sample: A possible mismatch of dielectric con-
stants of barrier and well layers is neglected. The sample consists of N electronically uncoupled (identical)
quantum wells. E0 denotes the incident (p-polarized) field, ET and ER the transmitted and reflected fields.
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In this case, we insert Eq. (VI.A.6) and Eq. (V.B.18) in Eq. (V.B.17) (which we have generalized
according to section V.B.2). This yields

E(n)
x (z) = −E0

q⊥
q

ei q⊥ z − µ0 ω
2 1

A~
χ(ω)

e2 q⊥ q||

2 i q⊥ q2

N∑

m=1

Γ(m)
z (VI.A.8)

×
∫

(m)

dz′ d
(m)
21 (z′) [ei q⊥|z−z′|(Θ(z′ − z) − Θ(z − z′))],

E(n)
z (z) = E0

q||

q
ei q⊥ z − µ0 ω

2 1

A~
χ(ω) e2

N∑

m=1

Γ(m)
z (VI.A.9)

×
∫

(m)

dz′ d
(m)
21 (z′) [

q2||

2 i q⊥ q2
ei q⊥|z−z′|(Θ(z′ − z) + Θ(z − z′))

+
c2

ω2 εb
δ(z − z′)] .

Here we have applied

Γ(m)
z =

∫

(m)

dz′′ d
(m)
21 (z′′) E(m)

z (z′′) . (VI.A.10)

In order to determine the unknown quantity Γ
(m)
z , Eq. (VI.A.9) is multiplied with the dipole moment

d
(n)
21 (z) and the resulting equation is integrated over z across the n-th quantum well [Liu94] leading

to

Γ(n)
z = E0

q||

q

∫

(n)

dz ei q⊥ z d
(n)
21 (z) (VI.A.11)

− µ0 ω
2 1

A~
χ(ω) e2

N∑

m=1

Γ(m)
z

∫

(n)

dz d
(n)
21 (z)(

∫

(m)

dz′ d
(m)
21 (z′)

q2||

2 i q⊥ q2

[ei q⊥|z−z′|(Θ(z′ − z) + Θ(z − z′)) +
c2

ω2 εb
δ(z − z′)]).

Equation VI.A.11 forms a system of N linear equations which can be solved numerically. The
calculation of Γ

(n)
z yields the determination of the local field which in turns yields the transmitted

and reflected fields and therewith the absorbance (optical absorption strength):

A = 1 −R− T = 1 − |ER|2/|E0|2 − |ET |2/|E0|2 . (VI.A.12)

In the same way, the absorption of more complicated multiple quantum well systems can be
determined. Combining transfer matrix formalism and Green’s function formalism as described in
Section V.B.4, we can not only take into account reflections at a prism base and a possible mismatch
of dielectric constants but also consider the existence of polarization in the barriers in the case of
a finite potential. Once, an expression for the considered structure has been derived (which can be
done in a very general way for example for the structure sketched in Fig. V.A.1), the local fields can
be determined in the same way as described for the simplified example in Section VI.A.1.
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2. Numerical Results

In the following, we investigate the influence of radiative coupling on the linear absorption spectra.
First, we focus on the simplified MQW sample [cf. Fig. VI.A.1], we considered in the preceding
section. The sample shall consist of N GaAs quantum wells each with well width L, and separated
by Al0.35Ga0.65As barriers, each with a thickness of D = 2L nm. In order to directly demonstrate
the dependence of radiative coupling on well width and carrier density, we consider quantum wells
with (A) carrier density n = 1.2 × 1012cm−2 and (B) n = 5.0 × 1010cm−2. The temperature is
T = 50 Kelvin. As can be seen, the impact of radiative coupling is strongly dependent on the carrier
density. Whereas for a small carrier density an increase in well number yields mainly a proportional
enhancement of the absorption, for the high density, increasing the well number yields only first an
enhancement. Further increasing yields an effective lower but more strongly broadened absorption.
The same difference can be seen for a variation of the angle of incidence. For the low carrier density
a larger angle of incidence yields a larger overall absorption, as the coupling to the electric field is
increased. For the high density the overall absorption is first enhanced and then reduced as the light
is reflected to a large extent at the high susceptibility.
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Figure VI.A.2 — Absorption in Multiple Quantum Well System: Absorption in different MQWs. Upper
row: carrier density n = 1.2× 1012cm−2, lower row: carrier density n = 5.0× 1010cm−2 with different well
number and different angle of incidence

Next, we vary the geometry of the sample, by including total reflection at an interface located
behind the wells, similar to Fig. V.A.1 but without taking into account different dielectric constants
for well and barrier material. The spacing between wells and interface and angle of incidence is
chosen so that the sample is excited in a total-reflection geometry - with the center of the quantum
wells located in the middle of the resulting standing wave. The corresponding spectra are given in
Fig. VI.A.3. Due to the standing wave effect, the radiative coupling is enhanced. Although the
lineshape is in some cases differently shaped and the maximum absorption is altered, the tendencies
are the same as in Fig. VI.A.2.
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Figure VI.A.3 — Absorption of MQW in total reflection geometry: Absorption in different MQWs. Upper
row: carrier density n = 1.2 × 1012cm−2, lower row: carrier density n = 5.0 × 1010cm−2 with different
well number and different angle of incidence. The distance from the interface is chosen so that in all cases the
center of the wells is located in the middle of the standing wave

Last, we investigate the impact of a dismatch of the dielectric constants of well and barrier
material. As can be seen in Fig. VI.A.4 the inclusion of different dielectric constants yields, for
the here considered example [50 quantum wells in total reflection geometry], a slight change in the
lineshape, but the overall impression does not change. In conclusion one can say, that linewidth
and lineshape can be altered strongly by changing macroscopic quantities or parameters. Whereas
for low densities, the main effect is simply an enhancement of the overall absorption, the response
is more complex for quantum well samples with higher carrier densities. Thus for a successful
comparison with experimental results or more general for a valuable prediction of lineshape and
linewidth of linear absorption spectra especially of highly doped multiple quantum well samples,
the actual geometry of the sample should be taken into account.
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Figure VI.A.4 — Absorption of MQW in total reflection geometry with εB = εW or εB 6= εW : Absorption
in different MQWs. Upper row: carrier density n = 1.2 × 1012cm−2, lower row: carrier density n =
5.0 × 1010cm−2 with different well number and different angle of incidence. The distance from the interface
is again chosen so that in all cases the center of the wells is located in the middle of the standing wave

B. Application to the Nonlinear Regime

To account for the impact of radiative coupling/dephasing in the nonlinear regime, i.e. the in-
teraction with reemitted photons, the solution of Maxwell’s Equations has to be combined with the
equation for the polarization density in time domain: in the microscopic equations of motion the
actual local field consisting of external field and fields generated by the polarization in the MQW-
sample has to be considered while solving the equations of motion. Thus, both macroscopic and
microscopic equations have to be solved simultaneously.

In the preceding chapter, we derived the fields generated by the monochromatic polarization

P(r, t) = P(r)e−i ωt . (VI.B.1)

which is a Fourier component of the arbitrary polarization given by

P(r, t) =
1

2π

∫ ∞

−∞

dωP(r, ω)e−i ωt . (VI.B.2)

Based on the solutions of Maxwell’s Equations in Fourier domain we can thus obtain the desired
z-component of the field generated by the polarization density of the quantum wells by Fourier
superposition. In the following, we again consider the simplest possible multiple quantum well
system for explaining the derivation [cf. Fig. VI.A.1]):

Ez(r, t) =
1

√
2π

3

∫

d2Q||

∫ ∞

−∞

dωei (Q||·r||−ωt)
N∑

m=1

∫

(m)

dz′ P(m)(Q||, z
′, ω)

×
{ iµ0ω

2

2Q⊥

Q2
||

Q2
ei Q⊥|z−z′|

[
Θ(z − z′) + Θ(z′ − z)

]
− 1

ε∞
δ(z − z′)

}

.

(VI.B.3)

In contrast to the linear regime, we can here not consider a homogenous field while solving the
microscopic equations of motion as done in the previous section, as the intersubband coherence is
not linearly dependent on the exciting field. Thus, if we want to include the radiative coupling in
the theory, we now have to consider the actual space-dependent field in the microscopic equations
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of motion. However, in the parameter range considered here, we can simplify the actual space-
dependence to a large extent. Therefore we rewrite the macroscopic polarization according to

P(r, t) =
∑

Q

P(Q, z, t)eiQ·r|| (VI.B.4)

with

P(Q, z, t) =
1

A

∑

q

{

〈a†1,q−Q/2a2,q+Q/2〉 + c.c.
}

d12(z) (VI.B.5)

=
1

A

∑

k

{

〈a†1,k−Qa2,k〉 + c.c.
}

d12(z) . (VI.B.6)

Next, we focus on a simplified equation of motion for the intersubband coherence. Simplified in the
sense, that we consider only free-carrier and carrier-field contributions and neglect the many-particle
contributions for a while.

d

dt
〈a†1,k−Qa2,k〉 =

i

~
(ε1,k−Q − ε2,k)〈a†1,k−Qa1,k〉

− e
i

~

∑

q

∫

dzd12(z)Ez(q, z, t)
{

〈a†1,k−Q+qa1,k〉 − 〈a†2,k−Qa2,k−q〉
}

.

(VI.B.7)

As can be seen, in the case of initial homogenous electron distributions:

〈a†1,k−Q+qa1,k〉(t0) = 〈a†1,ka1,k〉(t0)δk−Q+q,k

only for intersubband coherences with Q = q the dynamics is driven directly by the field. In the
following, we consider the external field (only the z−component is important here) to be of the form

Eext
z (r, t) ∝ Cos(ωLt − kL

xx − kL
z z)e−

(t−t0−kL
x /ωLx−kL

z /ωLz)2

2τ2 (VI.B.8)

where ωL is the laser frequency and kL = (kL
x , 0, k

L
z ) is the corresponding wave vector. The Fourier

transform of Eq. (VI.B.8) with respect to in-plane space coordinates and time can be expressed
according to

Ẽext
z (q, z, ω) = Êext

z (q, z, ω)δ(qx − ω

ωL
kL

x )δ(qy) . (VI.B.9)

Note, that Êext
z (q, z, ω) is only an abbreviation for the explicit function as we here are mainly

interested in the part with the delta-function. Inserting Eq. (VI.B.9) in the (time) Fourier Transform
of Eq. (VI.B.7), we find that thus only intersubband coherences with Q′ = ω

ωL
kL

x ex are driven
directly by the external field. Assuming that these contributions are the dominant ones and having
in mind the parameter range considered here, we thus approximate the macroscopic polarization
according to

P(r, t) ≈ 1√
2π

∫ ∞

−∞

dω
∑

Q

P(z, ω)ei (Q·r||−ωt)δQ, ω
ωL

kL
x ex

with

P(z, ω) =
1

A

∑

k,m

{

p
(m)

k− ω
ωL

kL
x ex,k

(ω) + c.c.
}

d12(z) . (VI.B.10)
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As for the parameter range considered here kL
x ex << k and the dominant contributions to the

intersubband coherence can be expected for ω ≈ ωL, we can simplify Eq. (VI.B.10) further

P(z, ω) ≈ 1

A

∑

k,m

{

p
(m)
k (ω) + c.c.

}

d12(z)

and find that the macroscopic polarization is here composed of intersubband coherences which are
diagonal in k.

Using −iωe−i ωt = d/dt e−i ωt we obtain therewith the generated field in the form

Ez(z, t) = −
N∑

m=1

∫

(m)

dz′
{µ0ωL

2QL
⊥

sin2θL

[
Θ(z − z′) + Θ(z′ − z)

] d

dt
P(m)(z′, t− QL

⊥

ωL
|z − z′|)

+
1

ε∞
δ(z − z′)P(m)(z′, t)

}

(VI.B.11)

Next, we insert the complete transverse field, i.e. the transverse part of Eq. (VI.B.11) together with
the external applied field E0(z, t) in the carrier-field part of the microscopic equations of motion
for the intersubband coherence and the occupation numbers. In this way, the influence of radiative
coupling can be investigated by solving the microscopic equations for every quantum well with a
self-consistently determined radiation field.

Note, that in contrast to the linear regime, where we could determine the linear response of a
multiple quantum well system by solving the microscopic equations of motion for the intersubband
coherence of one single quantum well only, we now have to solve an equation of motion for the
intersubband coherence of each single quantum well. In addition to this, we have to solve equations
of motion for the occupation of the two subbands. This means, that we have to solve the microscopic
equations for 3N quantities in a N quantum well sample. Thereby, for each quantity we have to
solve nk single equations of motions, where nk is the number of wave vectors k, as intersubband
coherence and occupation are dependent on the wave number. Consequently, the required cpu-time is
increasing enormously. Whereas a calculation including mean-field calculations and carrier-phonon
interaction is still settled in an acceptable time frame, the inclusion of carrier-carrier scattering is
almost impossible without a draw back on certain approximations. For example, the calculation
of the nonlinear response of a 51 quantum well sample would - with inclusion of carrier-carrier
scattering in its complete form - have a run-time of at least 3 months. The time frame could in
principle be reduced by reducing the number of wave vectors, but this yields the risk of inaccuracies
and misleading results. Therefore, we here include ”only” mean-field carrier-carrier contributions
and carrier-phonon scattering in the microscopic equations of motion.

1. Numerical Results

In the following, we investigate the temporal behavior of the relative population in the upper subband
in each well in a multiple quantum well system - with and without regard to different dephasing
contributions. The system is composed of 80 electronically uncoupled quantum wells, each a 10 nm
AlGaAs/GaAs well with a carrier density of n = 1.0×12 cm−2 at a lattice temperature of T = 50
Kelvin, separated by Al0.35Ga0.65As barriers with a thickness of D − L = 20 nm. The system
is assumed to be in quasi-equilibrium before excited resonantly by an external applied field. We
consider two different scenarios: a) complete neglection of possible nonparabolicity effects, i.e. the
subbands are supposed to be parallel and thus the transition energy is independent from the in-plane
wave vector and b) consideration of nonparabolicity effects in effective mass approximation.

We start with scenario a and concentrate first only on one of the quantum wells described above.
Without carrier-phonon interaction the well reacts exactly as a simple two level system. Excited
resonantly by a Gaussian pulse with pulse area Θ = 1π, all electrons in the lower subband of
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the well are exited to the upper subband [cf. thick grey line in the front of Fig. VI.B.1(a1)]. In-
cluding carrier-phonon interaction as dephasing contribution, the excitation is suppressed partly and
complete inversion can not be achieved [cf. thick grey line in Fig. VI.A.2(a2)]. Including the non-
parabolicity of the conduction band, i.e. different in-plane energy dispersion for the two subbands,
the excitation of all electrons is not possible [cf. thick grey line in the front of Fig. VI.B.2(b1)]; the
remaining excitation even further suppressed by carrier-phonon interaction [cf. thick grey line in the
front of Fig. VI.B.2(b1)].
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Figure VI.B.1 — Density oscillations in 80 QW System (Equal Subband Dispersion): Relative population
in the upper subband in each quantum well of a 80 quantum well sample for equal in-plane energy dispersion
(a1) without carrier-phonon interaction and (a2) with inclusion of carrier-phonon interaction. In all cases, the
population excited in a sample containing only a single-quantum well, is plotted additionally in the front (grey
line)
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Figure VI.B.2 — Density oscillations in 80 QW System (Different Subband Dispersion): Relative popu-
lation in the upper subband in each quantum well of a 80 quantum well sample for different in-plane energy
dispersion (b1) without carrier-phonon interaction and (b2) with inclusion of carrier-phonon interaction. In all
cases, the population excited in a sample containing only a single-quantum well, is plotted additionally in the
front (grey line)

Next, we consider the full system with all 80 quantum wells (still in scenario a). In Fig. VI.A.2a,
we present the population in the upper subband of each quantum well with and without carrier-
phonon interaction, angle of incidence θ = 63◦. Due to radiative coupling between the wells,
the local field in each quantum well is varying strongly in the sample. Whereas the first quantum
wells exhibit a local field strong enough to excite all electrons in the upper subband, only a weak
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field is present at the rear wells exciting only a small number of electrons in the upper subband.
Dephasing due to carrier-phonon interaction suppresses the overall excitation of electrons, similar to
the case of the single quantum well considered before. But radiative damping is clearly the dominant
contribution in the example considered here. The same conclusion is valid for scenario b. Whereas
the first wells in the 80 quantum well sample experience a local field strong enough to excitate
electrons to the upper sample, almost none electrons are excited in the rear wells. Again, the impact
of carrier-phonon interaction is strongest for the 1 quantum well sample and has almost negligible
impact on the 80-wells sample.

Generally, the impact of radiative coupling is mostly dependent on the relation of oscillator
strength to pulse area/amplitude of external applied field. If the applied field is considerably larger
than contributions of the generated fields, local field effects become less important. Two different
examples are shown in Fig. VI.B.3 (in both cases nonparabolicity and carrier-phonon interaction is
neglected). For small angle of incidence, where the oscillation strength is comparatively weak, the
impact of radiative coupling is almost neglectable - as can be seen in Fig. VI.B.3(a) for the example
of a 1π pulse. The electrons in all wells are excited to roughly the same extent (with a small time
delay) and there is almost no difference between the excitation of a single well and the whole sample.
In contrast to the situation arising for a larger angle, cf. again Fig. VI.A.2. The same is valid for
MQW samples with low carrier density (not shown). For a larger angle of incidence, here θ = 63◦,
exciting with a stronger pulse yields a similar effect. With increasing pulse area, the sample reacts
longer like one quantum well exhibiting complete Rabi flops. However, different states of excitation
can still be observed at the end of the excitation [cf. Fig. VI.B.3(b)].

Thus, radiative coupling between the quantum wells of a multiple quantum well system can dom-
inate the Rabi oscillations of the subband populations. Especially for samples with high oscillator
strength due to large carrier density, radiative coupling between wells can yield completely different
excitation states in the wells of a MQW sample. However, the effect can be evaded or at least re-
duced by either exciting under a small angle which results in a reduced oscillator strength or on the
other hand using external fields with amplitudes considerably stronger than those of the generated
fields.
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Figure VI.B.3 — Density oscillations in 80 QW System: Relative population in the upper subband in each
quantum well of the 80 quantum well sample: (a) Weak oscillator strength due to small angle of incidence
θ = 23◦; (b) Exciting with a pulse considerably larger than the contributions due to generated fields (here with
area Θ = 8π) the MQW sample exhibits complete Rabi oscillations. At the end of the excitation the influence
of local field effects become visible.
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CHAPTER VII

Comparison with Experimental
Results1

In a last part, we will now compare the derived theory with experimental results - in both the
linear and the nonlinear regime. All experiments compared with, have been performed at the Max-
Planck Institute in Berlin in the group of T. Elsaesser, M. Woerner and K. Reimann.

A. Experimental Setup

The sample geometry is the same in all measurements. The actual probe differs in carrier density.
In detail we distinguish sample A and B.

• Sample A is a multiple quantum well sample consisting of 51 GaAs quantum wells, each
with width L = 10 nm, and separated by Al0.35Ga0.65As barriers, each with a thickness of
D−L = 20 nm (Fig. VII.A.1). The center of every barrier is n-type δ-doped with Si, resulting
in an electron concentration of ne = 5 × 1010 cm−2 in each quantum well.

• Sample B has the same sample geometry, but a different carrier density ne = 1.2×1012 cm−2

in each quantum well.

In both cases, the sample was processed into a prism and mounted in the total-reflection geometry
(single-pass prism geometry) shown in Fig. VII.A.1. This achieves a strong coupling between
the p-polarized light and the intersubband transition dipoles. Mid-infrared absorption spectra were
measured using a Biorad FTS 45-A Fourier transform spectrometer. The samples were mounted
inside a closed-cycle cryostat equipped with broadband KRS-5 windows to allow measurements at
different sample temperatures. A small aperture with razor blade edges ensures that light is only
transmitted through the sample facets. Furthermore, a broadband wire-mesh polarizer allows to
obtain polarization-dependent spectra both for p polarization (the electric field has a component
perpendicular to the quantum well layers) and for s polarization (electric field parallel to the quantum
well layers). This serves to clearly identify intersubband transitions, since they are dipole-allowed
only for p polarization [WFL+04].

The corresponding theoretical setup is presented in Fig. VII.A.2.

1The here presented results are partially published in [WFL+04] and [SRW+04]
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Figure VII.A.1 — Experimental Setup: Single-pass prism geometry as used in the experiments. Details are
given in the text and in [WFL+04]
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Figure VII.A.2 — Theoretical Model System for single-pass prism geometry: :MQW system with respect
to total reflection at a medium-1/medium-2 interface in order to enhance the absorption (standing wave): E in =
Einp̂+eiq+·r (Eout = Eoutp̂−eiq−·r) denotes the ingoing (outgoing) p-polarized field. In the experiment the
spacing between the last well and the prism base (medium-1/medium-2 interface) is d = 1.26 µm to center the
wells at the anti-node of the standing wave, and the angle of incidence is θ = 63◦.

B. Results

1. Linear Regime

In Fig. VII.B.1, measurements of the linear absorption on sample A are given for three different
temperatures. One can clearly see the symmetric IS absorption line around 100 meV. With increasing
temperature we observe a shift towards lower energy, a decrease of the amplitude, and an increase
of the linewidth.

As can be seen in Fig. VII.B.2 the theory yields satisfactory agreement with the experiment (line
shape, linewidth, peak position, and height). For this sample, at low temperatures the linewidth is
determined to approximately equal amounts by the lifetime in subband 2, by intrasubband scattering
processes, and by radiative coupling. The absorption lines are almost Lorentzian-like. With increas-
ing temperature, the absorption peak shifts (≈ 3 meV between 100 and 300 K) to lower energies.
As stated before, the non-diagonal correlation contributions have the effect of compensating the di-
agonal ones to a large extent. Neglecting the non-diagonal correlation contributions in this case, the
linewidth varies between 20 meV at 100 K to 50 meV at 300 K (not shown). Comparing the broad-
ening due to the different dephasing contributions [Fig. VII.B.2(II)], we see that carrier-carrier and
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Chapter VII VII.B.1. LINEAR REGIME

carrier-phonon interactions yield here again not additive dephasing mechanisms, due to interference
effects of the diagonal and non-diagonal correlation contributions. Remember that the strength of
these interference effects depends on both carrier density and the difference in the effective masses
[cf. Chapter IV]. Comparing the linewidth including cc- and cp-correlations of a single quantum
well only (c) and all 51 wells (d), we find that even for the moderate density considered here, radia-
tive damping leads to an additional broadening of ∆Erad ≈ 1 meV, which is about 12% (at 300 K)
to 25% (at 100 K) of the final linewidth.
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Figure VII.B.1 — Linear Absorption: Experimental Results: Linear Absorption at sample A consisting of
51 GaAs quantum wells, each with width L = 10 nm, and separated by Al0.35Ga0.65As barriers, each with a
thickness of D − L = 20 nm (Fig. VII.A.1). The center of each barrier is n-type δ-doped with Si, resulting in
an electron concentration of ne = 5 × 1010 cm−2 in each quantum well. With courtesy of R.A. Kaindl et al.
[cf. [WFL+04]]

80 90 100
Photon Energy (meV)

0

0.2

0.4

0.6

0.8

A
bs

or
pt

io
n 

A
(ω

)

100 200 300

Temperature  (K)

0

2

4

6

8

L
in

ew
id

th
 (

m
eV

)

100 150 200 250 300

Temperature  (K)

96

96.5

97

97.5

98

Pe
ak

 P
os

iti
on

 (
m

eV
)

a

b
c

d

Theory

Figure VII.B.2 — Linear Absorption: Theoretical Results: (I) Simultaneous inclusion of cc-/cp-correlation
contributions and different effective masses of the MQW sample. (II) Comparison of the linewidth with regard
to different dephasing contributions: linewidth of a single quantum well with (a) only cc-correlations, (b) only
cp-correlations, (c) cc- and cp-correlations; (d) linewidth of full theory, i.e., with radiative interaction.
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2. Nonlinear Results

To conclude we compare very recently obtained theoretical and experimental results in the nonlin-
ear regime. The experimental situation is the following: A coherent IS excitation is created by a
femtosecond MIR pulse with a center frequency resonant to the 1 ↔ 2 IS transition. The incident
applied excitation pulseEin(t) and the light transmitted through the sampleEout(t) are fully charac-
terized by measuring their amplitude and phase using ultrafast electro-optic sampling. Experiments
were performed for different field strengths of the excitation pulses. The mid-infrared pulses with
a duration of 200 fs and electric field amplitudes of up to 1 MV/cm are generated via difference
frequency mixing of intense 25-fs pulses at 800 nm in thin GaSe crystals [LRW+04].

In Fig. VII.B.3 we compare the measured and calculated transmitted field of Sample B with
increasing excitation (a) 5 KV/cm, (b) 45 kV/cm, (c) 100 kV/cm. Whereas for low excitation the
field amplitude is slightly reduced, for an intermediate amplitude a surprisingly low amplitude is
observed, for high amplitude the transmitted field gradually approaches the shape and amplitude of
the incident field. Remember, that in the total-reflection geometry considered here, the transmit-
ted field is composed of both the reflected field and the field which really is transmitted through
the structure. The observed effect can be completely explained with radiative coupling. For low
external excitation, the incident field is largely reflected at the high oscillator strength of the first
quantum wells (similar to the discussion in Chapter B). With increasing excitation, the amplitudes
of the re-emitted fields reach the saturation values. For further increasing excitation fields, e.g. 100
kV/cm, the incident field is stronger than the saturated re-emitted fields decreasing the importance
of radiative coupling. Further details are given in [SRW+04].
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Figure VII.B.3 — Transmitted Field of High-Density Sample (Experiment, Theory): Comparison of the
measured and calculated field of Sample B with increasing excitation (a) 5 KV/cm, (b) 45 kV/cm, (c) 100
kV/cm. Whereas for low excitation the field amplitude is slightly reduced, for an intermediate amplitude a
surprisingly low amplitude is observed, for high amplitude the transmitted field gradually approaches the shape
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CHAPTER VIII

Conclusion

In conclusion, we have presented a microscopic theory for the linear and nonlinear description
of intersubband excitations. Thereby many particle interactions such as carrier-carrier and carrier-
phonon interaction and radiative coupling have been taken into account. Considering first only a
single quantum well, we have investigated the impact of the microscopic contributions for a wide
range of parameters in the linear regime. Furthermore, we have seen that in the nonlinear regime,
where the many-particle effects destroy the ability of the system to oscillate in a manner comparable
to Rabi oscillations, we could counteract the impact of these contributions by exciting the quantum
well with a controlled detuning. Best results were achieved for ultrashort pulses which still have a
wide spectral width. After including radiative coupling into the theory, we investigated the linear
and nonlinear response of multiple quantum well systems. Especially interesting is the impact of ra-
diative coupling in the nonlinear regime. The impact of radiative coupling in highly doped quantum
wells on the density oscillations is effectively stronger than the impact of many-particle interactions.
Comparison with experimental results showed excellent agreement in both the linear and nonlinear
regime.
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APPENDIX A

Matrixelements

In the following the carrier-field and carrier-carrier matrix elements are derived.

1. Carrier-Field: Semiclassical

Inserting Eq. (II.A.71) in Eq. (II.A.42) the semiclassical carrier-field Hamiltonian reads

Hcf = e

∫

V

d3r ψ̂†(r)E(r, t) · rψ̂(r) (APP A.1)

=
e

A

∑

i,j

a†iaj

∫

d3r e−i (ki−kj)·r||ζ∗wi,ni
(r⊥)ζwj ,nj

(r⊥)u∗σi,ki≈0(r)uσj ,kj≈0(r)

×
[
E(r, t) · r

]

=
e

A

∑

i,j

a†iaj

∑

R

∫

ΩEC

d3r̂ e−i (ki−kj)·(R||+r̂||)ζ∗wi,ni
(R⊥ + r̂⊥)ζwj ,nj

(R⊥ + r̂⊥)

× u∗σi,ki≈0(R + r̂)uσj ,kj≈0(R + r̂)
[
E(R + r̂, t) · (R + r̂)

]
,

(APP A.2)

where in the last step we have split the position vector r in lattice vector R of the underlying Bravais
lattice and intra-cell vector r̂ according to r = R + r̂. Using a Taylor expansion around the lattice
vector, we can express any function f(R + r̂) as

f(R + r̂) =

∞∑

n0

1

n!
(r̂ · ∇)nf(R) . (APP A.3)

Therewith we obtain

e−i (ki−kj)·(R||+r̂||)
[
E(R + r̂, t) · (R + r̂)

]
ζ∗wi,ni

(R⊥ + r̂⊥)ζwj ,nj
(R⊥ + r̂)

= (1 + r̂ · ∇)
{

e−i (ki−kj)·R||
[
E(R, t) · R

]
ζ∗wi,ni

(R⊥)ζwj ,nj
(R⊥)

}

+ ... (APP A.4)

Keeping only the first two contributions (monopole and dipole contribution) yields the carrier-field
Hamilton in dipole approximation

Hcf =
e

A

∑

i,j

a†iaj

∑

R

∫

ΩEC

d3r̂
[
1 + r̂ · ∇R

]
u∗σi,ki≈0(r̂)uσj ,kj≈0(r̂)

× e−i (ki−kj)·R||ζ∗wi,ni
(R⊥)ζwj ,nj

(R⊥)
[
E(R, t) · R

]

=
e

A
ΩEC

∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2

∑

R

e−iQ·R|| (APP A.5)

× ζ∗wi′ ,ni′
(R⊥)ζwj′ ,nj′

(R⊥)
[
E(R, t) · R

]
δσi′ ,σj′

Here we have used that the Bloch factors of the conduction band are (a) orthogonal and (b) symmetric
functions [YC99]

(a)
1

ΩEC

∫

ΩEC

d3r̂ u∗σi,ki≈0(r̂)uσj ,kj≈0(r̂) = δσi,σj
(APP A.6)

(b)

∫

ΩEC

d3r̂ u∗σi,ki≈0(r̂) r̂ uσj ,kj≈0(r̂) = 0 (APP A.7)
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and switched to centre of mass coordinates and relative coordinates:

q =
ki + kj

2
, Q = ki − kj (APP A.8)

Therefore the compound indices i, j are replaced by new indices i′, j′ containing only well number,
subband number and spin.

Note that Eq. (APP A.5) consists only of the monopole contribution, the dipole contribution of
the multipole expansion has vanished. This is due to the restriction of transitions in the conduction
band. Allowing transitions between conduction and valence band, the dipole contribution would not
vanish, because of the interband dipole moment (cf. for example [War96, Kuh98]).

For convenience we proceed for the two contribution (Hcf |R||
, Hcf |R⊥

) separately.

Hcf |R||
= e

∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2 l⊥
∑

R⊥

ζ∗wi′ ,ni′
(R⊥)ζwj′ ,nj′

(R⊥) (APP A.9)

× 1

N||

∑

R||

e−iQ·R|| R|| · E(R||,R⊥, t)δσi′ ,σj′
(APP A.10)

= e
∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2 l⊥
∑

R⊥

ζ∗wi′ ,ni′
(R⊥)ζwj′ ,nj′

(R⊥) (APP A.11)

× i∇Q · 1

N||

∑

R||

e−iQ·R||E||(R||,R⊥, t)

︸ ︷︷ ︸

:=E||(Q,R⊥,t)

δσi′ ,σj′
(APP A.12)

= e
∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2δσi′ ,σj′
(APP A.13)

× i

∫

L⊥

dR⊥ζ
∗
wi′ ,ni′

(R⊥)ζwj′ ,nj′
(R⊥)∇Q · E||(Q, R⊥, t)

︸ ︷︷ ︸

F i′,j′

||
(Q,t)

. (APP A.14)

Note that we have replaced the sum over R⊥ in the continuum limit by an integral expression (using
dx
∑

x →
∫
dx,where dx denotes the distance between the different x-values, i.e. the discretisation

of x).

Hcf |R⊥
= e

∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2 l⊥
∑

R⊥

ζ∗wi′ ,ni′
(R⊥)ζwj′ ,nj′

(R⊥) (APP A.15)

× R⊥ · 1

N||

∑

R||

e−iQ·R||E(R||,R⊥, t)

︸ ︷︷ ︸

:=E(Q,R⊥)

δσi′ ,σj′
(APP A.16)

= e
∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2δσi,σj
(APP A.17)

×
∫

L⊥

dR⊥ζ
∗
wi′ ,ni′

(R⊥)ζwj′ ,nj′
(R⊥)R⊥E⊥(Q, R⊥, t)

︸ ︷︷ ︸

F i′,j′

⊥ (Q,t)

.

Eventually we arrive at the final result

Hcf = e
∑

i′,j′

∑

q,Q

a†i′,q+Q/2aj′,q−Q/2

[

F i′,j′

|| (Q, t) + F i′,j′

⊥ (Q, t)
]

δσi′ ,σj′
. (APP A.18)
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2. Carrier-Carrier

Hcc =
1

2

∑

a,b,c,d

Vabcda
†
aa

†
badac (APP A.19)

with

Vabcd =
1

A2

e2

4πε0

∫

d3r

∫

d3r′e−i (ka−kc)·r|| e−i (kb−kd)·r′||
1

|r − r′|
× ζ∗wa,na

(r⊥)ζ∗wb,nb
(r′⊥)ζwc,nc

(r⊥)ζwd,nd
(r′⊥)

× u∗σa,ka≈0(r)u
∗
σb,kb≈0(r

′)uσc,kc≈0(r)uσd,kd≈0(r
′)

(APP A.20)

Similar to Sec.APP A.1 we split the position vectors in lattice vectors and intracell-vectors and
use multipole expansions over the elementary lattice cells. Again only the monopole and dipole
contributions of the expansions are taken into account. Due to the restriction to transitions in the
conduction band [cf. Eq. (APP A.7)], monopole-dipole and dipole-dipole contributions vanish,
leaving only monopole-monopole contributions:

Vabcd =
1

A2

e2

4πε0

∑

R,R′

∫

d3r̂

∫

d3r̂′e−i (ka−kc)·(R||+r̂||) e−i (kb−kd)·(R′
||+r̂′||)

1

|R + r̂ − R′ − r̂′|

× ζ∗wa,na
(R⊥ + r̂⊥)ζ∗wb,nb

(R′
⊥ + r̂′⊥)ζwc,nc

(R⊥ + r̂⊥)ζwd,nd
(R′

⊥ + r̂′⊥)

× u∗σa,ka≈0(R + r̂)u∗σb,kb≈0(R
′ + r̂′)uσc,kc≈0(R + r̂)uσd,kd≈0(R

′ + r̂′),

=
1

A2

e2

4πε0
Ω2

0

∑

R,R′

e−i (ka−kc)·R|| e−i (kb−kd)·R′
||

1

|R − R′|

× ζ∗wa,na
(R⊥)ζ∗wb,nb

(R′
⊥)ζwc,nc

(R⊥)ζwd,nd
(R′

⊥)δσa,σc
δσb,σd

,

=
1

A2

e2

4πε0

∫

d3R

∫

d3R′e−i (ka−kc)·R|| e−i (kb−kd)·R′
||

1

|R − R′|
× ζ∗wa,na

(R⊥)ζ∗wb,nb
(R′

⊥)ζwc,nc
(R⊥)ζwd,nd

(R′
⊥)δσa,σc

δσb,σd
. (APP A.21)

For convenience we switch to center and relative coordiante R̃|| = 0.5(R|| + R′
||) and r̃|| = R|| −

R′
|| and replace R⊥ by z. Using 1

N||

∑

R ei (q−q′)·R = δq,q′ → 1
A

∫
d2Rei (q−q′)·R = δq,q′ [cf.

[Czy00, p. 35 (3.37)]] and
∫

d2r̃
e−ik·r̃

√
r̃2 + z2

=

∫ ∞

0

dr̃ r̃

∫ 2π

0

dζ
e−i |k| r̃ cos ζ

√
r̃2 + z2

=

∫ ∞

0

dr̃ r̃
2πJ0[|k|r̃]√
r̃2 + z2

= 2π
e−|k||z|

|k|
(APP A.22)

we obtain finally

Vabcd =
1

A2

e2

4πε0

∫

d2R̃||e
−i (ka−kc+kb−kd)·R̃||δσa,σc

δσb,σd

×
∫

dz

∫

dz′
∫

d2r̃||e
−0.5i (ka−kc−kb+kd)·r̃||

× 1
√

r̃2|| + (z − z′)2
ζ∗wa,a(z)ζ∗wb,nb

(z′)ζwc,nc
(z)ζwd,nd

(z′),

=
1

A

e2

2ε0
δka+kb,kc+kd

δσa,σc
δσb,σd

×
∫

dz

∫

dz′
e−|ka−kc||z−z′|

|ka − kc|
ζ∗wa,na

(z)ζ∗wb,nb
(z′)ζwc,nc

(z)ζwd,nd
(z′) .

(APP A.23)
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Here, the final result is

Hcc =
1

2

∑

a,b,c,d

Vabcda
†
aa

†
badac, (APP A.24)

with

Vabcd =
1

A

e2

2ε0

∫

dz

∫

dz′
e−|ka−kc||z−z′|

|ka − kc|
ζ∗wa,na

a(z)ζ∗wb,nb
(z′)× (APP A.25)

× ζwc,nc
(z)ζwd,nd

(z′)δka+kb,kc+kd
δσa,σc

δσb,σd
. (APP A.26)
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APPENDIX B

Coulomb and Fröhlich Form Factors

In the following the form factors of the various Coulomb and Fröhlich matrix elements are plot-
ted for different well width. At the end the influence of the actual quantum well model is investigated.
Thereby IW denotes the infinite-barrier well, FW the finite-barrier well and EWL the effective well
width approximation.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

10 nm

7 nm

15 nm
20 nm

25 nm

F1111

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

10 nm
7 nm

15 nm
20 nm

25 nm

F
2222

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

10 nm

7 nm

15 nm
20 nm

25 nm

F
1212

F
2121

=

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.05

0.1

0.15

0.2

10 nm 7 nm15 nm20 nm
25 nm

F
1221

F
2211

=
2112 1122FF =

Wave vector k [1/a  ]

=

0

Fo
rm

 F
ac

to
r

Figure VIII.APP B.1 — Coulomb Form Factors for a quantum well with infinite barriers
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Figure VIII.APP B.2 — Phonon Form Factors for a quantum well with infinite barriers

137



Appendix B

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

EWL

IW

FW

7 nm

,

F
1111

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

EWL

IW

FW

25 nm

,

F
1111

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.5

1

EWL

IW

FW

7 nm

F
2222

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.5

1

EWL

IW

FW

25 nm

,

F
2222

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.5

1

EWL

IW

FW

7 nm

F
1212

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

EWL

IW

FW

25 nm

,

F
1212

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.05

0.1

0.15

0.2

EWL
IW

FW

7 nm

F
2112

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

0 2 4 6 8
0

0.05

0.1

0.15

0.2

EWL

IW

FW

25 nm

,

F
2112

Wave vector k [1/a  ]0

Fo
rm

 F
ac

to
r

Figure VIII.APP B.3 — Coulomb Form Factors II: Comparison of Coulomb Form Factors of a quantum
well with infinite barriers, finite barriers and in effective well-width approximation
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Figure VIII.APP B.4 — Fröhlich Form Factors II: Comparison of Phonon Form Factors of a quantum
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APPENDIX C

Time Evolution Operator and Time (Anti-)Ordering
Operator

In the following we derive the superoperator for the time evolution of the density matrix operator
(time evolution superoperator) [FS90]

σ(t) = U(t, t′)σ(t′), with U(t′, t′) =
�
. (APP C.1)

Combining Eq. (APP C.1) with the von Neumann-equation, Eq. (III.C.8), yields an equation of
motion

d

dt
U(t, t′) = −iL(t)U(t, t′) , (APP C.2)

which can be formally integrated

∫ t

t′
dt1

d

dt1
U(t1, t

′) = −i

∫ t

t′
dt1L(t1)U(t1, t

′) (APP C.3)

→ U(t, t′) =
�
− i

∫ t

t′
dt1L(t1)U(t1, t

′) . (APP C.4)

An iteration of this result shows, that U(t, t′) can be expressed in form of the von Neumann series

U(t, t′) =
�
+

∞∑

n=1

U (n)(t, t′),

U (n)(t, t′) = (−i )n

∫ t

t′
dt1

∫ t1

t′
dt2...

∫ tn−1

t′
dtnL(t1)L(t2)...L(tn)

with (t ≥ t1 ≥ t2 ≥ ... ≥ tn ≥ t′) . (APP C.5)

With the time ordering superoperator

T+

(

A(t1)B(t2)
)

=

{

A(t1)B(t2) for t1 > t2,

B(t2)A(t1) for t2 > t1.

we can express the time evolution superoperator in a very compact form:

U(t, t′) =
�
+

∞∑

n=1

(−i )n 1

n!

∫ t

t′
dt1...

∫ t

t′
dtnT+

(

L(t1)...L(tn)
)

,

→ U(t, t′) = T+e−i
R t

t′
dt′′L(t′′) . (APP C.7)

In the same way, we derive a time evolution operator for the irrelevant part of the Liouville operator,
QU = UQ, with

d

dt
UQ(t, t′) = −iLQ(t)UQ(t, t′) , UQ(t′, t′) =

�
(APP C.8)

and obtain

UQ(t, t′) = T+e−i
R t

t′
dt′′LQ(t′′) . (APP C.9)
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The two operators are then connected by the two operator identities [FS90]

U(t, t′) = UQ(t, t′) − i

∫ t

t′
dt′′ U(t, t′′) LP(t′′) UQ(t′′, t′) , (APP C.10)

U(t, t′) = UQ(t, t′) − i

∫ t

t′
dt′′ UQ(t, t′′) LP(t′′) U(t′′, t′) . (APP C.11)

Similar to the derivation of Eq. (APP C.7), we can express the density operator at a given time t′ < t
using the time-antiordering operator:

T−
(

A(t1)B(t2)
)

=

{

A(t1)B(t2) for t1 < t2,

B(t2)A(t1) for t2 < t1.

Therefor we integrate the von-Neumann equation formally in time

∫ t

t′
dt1

d

dt1
σ(t1) = −i

∫ t

t′
dt1L(t1)σ(t1),

→ σ(t′) = σ(t) + i

∫ t

t′
dt1L(t1)σ(t1) (APP C.13)

and iterate the result

σ(t′) = σ(t) + i

∫ t

t′
dt1L(t1)σ(t) + i 2

∫ t

t′
dt1

∫ t

t1

dt2L(t1)L(t2)σ(t) (APP C.14)

+ · · · + i n−1

∫ t

t′
dt1

∫ t

t1

dt2..

∫ t

tn−2

dtn−1L(t1)L(t2)..L(tn−1)σ(t)

+ i n

∫ t

t′
dt1

∫ t

t1

dt2..

∫ t

tn−1

dtnL(t1)L(t2)..L(tn)σ(tn)

with (t ≥ tn ≥ .. ≥ t2 ≥ t1 ≥ t′) . (APP C.15)

Since limn→∞(t− tn−1) = 0, the last term is infinitesimal small. Thus we obtain

σ(t′) =
[ �

+ i

∫ t

t′
dt1L(t1) + i 2

∫ t

t′
dt1

∫ t

t1

dt2L(t1)L(t2) (APP C.16)

+ · · · + i n−1

∫ t

t′
dt1

∫ t

t1

dt2..

∫ t

tn−2

dtn−1L(t1)L(t2)..L(tn−1)
]

σ(t),

= T−ei
R t

t′
dt′′L(t′′)σ(t) (APP C.17)

and along the lines for the relevant part of the density operator:

d

dt
σrel(t) = −i P[σrel(t)] L(t) σ(t)

→ σrel(t
′) = σrel(t) + i

∫ t

t′
dt1P[σrel(t1)]L(t1)σ(t1),

= T−ei
R t

t′
dt′′P[σrel(t

′′)]L(t′′)σ(t) . (APP C.18)
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APPENDIX D

Factorization of Six-Operator-Terms

In this section we derive an expression for six operator terms which is needed for the derivation
of the carrier-carrier correlation contributions. Proceeding analog the lines of III.C.4.b.3 yields first

tr(a†1a
†
2a

†
3a4a5a6σrel,e) = (APP D.1)

=
∑

{nα}

∑

a,b,c,d,e,f

Ua1Ub2Uc3U
∗
d4U

∗
e5U

∗
f6〈{nα}|d†ad†bd†cdddedf

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉,

=
∑

{nα}

∑

a,b,c

[

Ua1U
∗
a4 (Ub2Uc3U

∗
c5U

∗
b6 − Ub2Uc3U

∗
b5U

∗
c6)

+ Ua1U
∗
a5 (Ub2Uc3U

∗
c6U

∗
b4 − Ub2Uc3U

∗
b6U

∗
c4)

+ Ua1U
∗
a6 (Ub2Uc3U

∗
c4U

∗
b5 − Ub2Uc3U

∗
b4U

∗
c5)

]

〈{nα}|nanbnc

∏

n

e−λnn̂n

1 + e−λn
|{nα}〉,

= tr(a†1a4σrel,e)tr(a
†
2a

†
3a5a6σrel,e) + tr(a†1a5σrel,e)tr(a

†
2a

†
3a6a4σrel,e)

+ tr(a†1a6σrel,e)tr(a
†
2a

†
3a4a5σrel,e) (APP D.2)

and thus we obtain

tr(a†1a
†
2a

†
3a4a5a6σrel) = 〈a†1a4〉tr(a†2a†3a5a6σrel) + 〈a†1a5〉tr(a†2a†3a6a4σrel)

+ 〈a†1a6〉tr(a†2a†3a4a5σrel),

= 〈a†1a4〉 {〈a†2a6〉〈a†3a5〉 − 〈a†2a5〉〈a†3a6〉}
+ 〈a†1a5〉 {〈a†2a4〉〈a†3a6〉 − 〈a†2a6〉〈a†3a4〉}
+ 〈a†1a6〉 {〈a†2a5〉〈a†3a4〉 − 〈a†2a4〉〈a†3a5〉}

(APP D.3)
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APPENDIX E

Commutators

During the scope of this work, the following commutators appear:

[a†i aj , a
†
k al ] = a†i al δj,k − a†k aj δi,l (APP E.1)

[a†1a
†
2a3a4, a

†
5a6] = −[a†5a6, a

†
1a

†
2a3a4],

= a†1a
†
2a3a6δ5,4 − a†ka

†
2a3a4δ6,1

− a†1a
†
5a3a4δ6,2 − a†1a

†
2a4a6δ5,3 (APP E.2)

[a†aa
†
badac, a

†
1a

†
2a3a4] = a†aa

†
bada

†
2a3a4δ1,c − a†aa

†
baca

†
2a3a4δd,1 + a†1a

†
aa

†
bada3a4δc,2

− a†1a
†
aa

†
ba3a4acδd,2 + a†1a

†
2a

†
aa4adacδb,3 − a†1a

†
2a

†
ba4adacδ3,a

+ a†1a
†
2a3a

†
aadacδb,4 − a†1a

†
2a3a

†
badacδ4,a (APP E.3)

[a†1bQ′a2, a
†
3bQa4] = a†1a4bQ′bQδ2,3 − a†3a2bQ′bQδ1,4 , (APP E.4)

[a†1b
†
Q′a2, a

†
3bQa4] = a†1a4b

†
Q′bQδ2,3 − a†3a2b

†
Q′bQδ1,4 − a†3a4a

†
1a2δQ′,Q (APP E.5)

1. Free-Carrier: Bandstructure

H0,e =
∑

i

εi a
†
i ai (APP E.6)

[H0, a
†
k al ] =

∑

i

εi [a†i ai , a
†
k al ],

=
∑

i

εi ( a†i al δi,k − a†k ai δi,l),

= (εk − εl) a
†
k al (APP E.7)

2. Carrier-Field: Semiclassical

Hcf = e
∑

i,j

∑

q,Q

a†i,q+Q/2aj,q−Q/2

[

F i,j
|| (Q, t) + F i,j

⊥ (Q, t)
]

δσi,σj
(APP E.8)

index i, j contain well number, subband number and spin.

[Hcf , a
†
k,kk

al,kl
] = e

∑

i,j

∑

q,Q

F i,j(Q, t)[a†i,q+Q/2aj,q−Q/2, a
†
k,kk

al,kl
]δσi,σj

,

= e
∑

i,j

∑

q,Q

F i,j(Q, t)
{

a†i,q+Q/2al,kl
δk,jδkk,q−Q/2 − a†k,kk

aj,q−Q/2δl,iδkl,q+Q/2

}

δσi,σj
,

= e
∑

i

∑

Q

{

F i,k(Q, t)a†i,kk+Qal,kl
δσi,σk

− F l,i(Q, t)a†k,kk
ai,kl−Qδσl,σi

}

.

(APP E.9)
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Appendix E APP E.3. CARRIER-CARRIER

Inserting the definition of F i,j(Q, t) yields

[Hcf , a
†
kal ] = e

∑

i

∑

Q

{∫

dzφ∗wi,ni
(z)φwk,nk

(z)
[

zEz(Q, z, t)),

+ i ∇Q · E||(Q, z, t)
]

a†i,kk+Qal,kl
δσi,σk

−
∫

dzφ∗wl,nl
(z)φwi,ni

(z)
[

zEz(Q, z, t))

+ i ∇Q · E||(Q, z, t)
]

a†k,kk
ai,kl−Qδσl,σi

}

(APP E.10)

which can be rewritten using integration by parts

[Hcf , a
†
kal ] = e

∑

i

∑

Q

{∫

dzφ∗wi,ni
(z)φwk,nk

(z)
[

zEz(Q, z, t))a
†
i,kk+Qal,kl

,

− i E||(Q, z, t) · ∇Q a†i,kk+Qal,kl

]

δσi,σk

−
∫

dzφ∗wl,nl
(z)φwi,ni

(z)
[

zEz(Q, z, t))a
†
k,kk

ai,kl−Q

− i E||(Q, z, t) · ∇Q a†k,kk
ai,kl−Q

]

δσl,σi

}

(APP E.11)

3. Carrier-Carrier

Hcc =
1

2

∑

a,b,c,d

Vabcda
†
aa

†
badac (APP E.12)

with

Vabcd =
1

A

e2

2ε0

∫

dz

∫

dz′
e−|ka−kc||z−z′|

|ka − kc|
φ∗wa,na

a(z)φ∗wb,nb
(z′)× (APP E.13)

× φwc,nc
(z)φwd,nd

(z′)δka+kb,kc+kd
δσa,σc

δσb,σd
(APP E.14)

[Hcc, a
†
kal ] =

1

2

∑

a,b,c,d

Vabcd[a
†
aa

†
badac, a

†
kal ],

=
1

2

∑

a,b,c,d

Vabcd

{

− a†ka
†
badacδl,a − a†aa

†
kadacδl,b

− a†aa
†
bacal δk,d + a†aa

†
badal δk,c

}

,

=
1

2

{

−
∑

b,c,d

Vlbcda
†
ka

†
badac −

∑

a,c,d

Valcda
†
aa

†
kadac

−
∑

a,b,c

Vabcka
†
aa

†
bacal +

∑

a,b,d

Vabkda
†
aa

†
badal

}

.

(APP E.15)

Using the symmetry of the Coulomb matrix element, Vabcd = Vbadc (cf. Eq. (APP E.13)), and the
commutation relations we can simplify further Eq. (APP E.15)

[Hcc, a
†
kal ] =

∑

a,b,c

[

Vabkc a
†
aa

†
bacal − Vlabc a

†
ka

†
aacab

]

. (APP E.16)
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4. Carrier-Phonon

Hamiltonian:

Hcp =
∑

a,b,k,q

[

ga,b
q a†a,ka

bqab,ka−q
||

+ g∗a,b
q a†b,ka−q

||

b†qaa,ka

]

(APP E.17)

q denotes a 3d wave vector, indices a, b denotes well number, subband and spin.
Using Eq. (APP E.1) we obtain immediately

[Hcp, a
†
k,kk

al,kl
] =

∑

a,b,ka,q

{

ga,b
q bq

(

a†a,ka
al,kl

δb,kδka−q
||

,kk
− a†k,kk

ab,ka−q
||

δa,lδka,kl

)

+ g∗a,b
q b†q

(

a†b,ka−q
||

al,kl
δa,kδka,kk

− a†k,kk
aa,ka

δb,lδka−q
||

,kl

)}

,

=
∑

a,q

{

ga,k
q bq a

†
a,kk+q

||

al,kl
− gl,a

q bqa
†
k,kk

aa,kl−q
||

+ g∗k,a
q b†q a

†
a,kk−q

||

al,kl
− g∗a,l

q b†qa
†
k,kk

aa,kl+q
||

}

(APP E.18)
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APPENDIX F

Correlation Contributions (Scattering Rates)

Below, the used abbreviations are given for subband i = 1, the terms for i = 2 are obtained by
exchanging the subband indices 1 and 2.
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F

Γ1,cp
d = 2

∑

q

[

δ(−ε1k + ε1k+q
||
− ~ωLO)|g11

q |2
{

nq(1 − f1
k+q

||
) +

(

nq + 1
)

f1
k+q

||

}

+ δ(−ε1k + ε1k+q
||

+ ~ωLO)|g11
q |2

{(

nq + 1
)

(1 − f1
k+q

||
) + nqf

1
k+q

||

}

+ δ(−ε2k + ε1k+q
||
− ~ωLO)|g12

q |2
{

nq(1 − f1
k+q

||
) +

(

nq + 1
)

f1
k+q

||

}

+ δ(−ε2k + ε1k+q
||

+ ~ωLO)|g12
q |2

{(

nq + 1
)

(1 − f1
k+q

||
) + nqf

1
k+q

||

}]

(APP F.1)

Γ1,cc
d = 2

∑

k′,q

[

δ(ε1k + ε1k′ − ε1k′−q − ε1k+q)V 1111
q (2V 1111

q − V 1111
k′−k−q)

{
f1
k′(1 − f1

k′−q)(1 − f1
k+q) + f1

k′−qf
1
k+q(1 − f1

k′)
}

+ δ(ε1k + ε1k′ − ε2k′−q − ε2k+q)V 1122
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The contributions nonlinear in the polarization are given by

Ξnl =
∑

k′,q

Γcc
nl (APP F.3)

with
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(APP F.4)
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Ξnl,fi
=
∑

q

Γcp
nl,fi

+
∑

k′,q

Γcc
nl,fi

(APP F.5)
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with
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