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Abstract
Maintaining cognitive control while pursuing several tasks at
the same time is hard, especially when the current problem
states of these tasks need to be represented in memory. We
are investigating the mutual influence of a self-paced and a
reactive task with regard to completion time and error rates.
Against initial expectations, the interruptions from the reac-
tive task did not lead to more errors in the self-paced task, but
only prolonged the completion time. Our understanding of this
result is guided by a combined version of two previously pub-
lished cognitive models of the individual tasks. The combined
model reproduces the empirical findings concerning error rates
and task completion times, but not an unexpected change in the
error pattern. These results feed back into our theoretical un-
derstanding of cognitive control during sequential action.
Keywords: Human Error; Memory for Goals; Working Mem-
ory Updating; Multi-Tasking; Threaded Cognition

Introduction
Multi-tasking and handling interruptions are very common in
daily life. Both have been linked to reduced performance
and increased error rates, even to road accidents (Altmann,
Trafton, & Hambrick, 2014; Kujala & Salvucci, 2015). Ac-
cording to Borst, Taatgen, and van Rijn (2015), the central
problem is the necessity to maintain several problem states
at once. This can lead to interference between the respec-
tive memory traces, which manifests itself as error in one or
several of the concurrently processed tasks.

Starting from this premise, we augmented an existing
paradigm for error research during instruction following with
a working memory updating (WMU) task. The WMU task
should interfere with the primary task by a) periodically in-
terrupting the user and b) additional memory strain. We hy-
pothesized that this would result in increased error rates in the
dual-task condition compared to a single-task baseline (Byrne
& Bovair, 1997). In a previous study by Ament, Cox, Bland-
ford, and Brumby (2010) using a comparable paradigm, high
memory load was connected to higher error rates especially
for device-specific tasks.

Another reason for the choice of the specific WMU task
was the availability of a validated cognitive model of this task
(Russwinkel, Urbas, & Thüring, 2011) that could be com-
bined with the existing model of the primary instruction fol-
lowing task (Halbrügge, Quade, & Engelbrecht, 2016). This
allowed to test the generalizability of the models to the new

paradigm and at the same time provided the possibility to
quantify the expectations from the memory interference ef-
fect that has qualitatively been layed out above.

This paper has two aims. First, we want to replicate the
findings of Byrne and Bovair (1997), Ament et al. (2010) and
others in an applied scenario. Second, we want to explore
how much effort in terms of model development is needed
to combine two existing cognitive models and how well the
resulting model fits to the human data. Before presenting the
empirical evidence, let us first clarify the basic concepts that
are used in this paper.

Sequential Action and Procedural Error
Error research is usually concerned with failures on Ras-
mussen’s rule-based level of action control (Rasmussen,
1983), i.e., well-learned routine activities like commuting to
work or preparing breakfast. Errors on this level of control
are relatively rare (below 5%), but pervasive (Reason, 1990).
They are defined as the violation of the optimal path to the
current goal, either by adding an unnecessary action (called
intrusion), or by skipping an action (called omission).

A promising model for cognitive control during rule-based
behavior is the Memory for Goals theory (MFG; Altmann &
Trafton, 2002). It proposes that the steps that lead to the com-
pletion of a task are represented as subgoals in declarative
memory (as defined within ACT-R, Anderson et al., 2004).
Whether these subgoals can be retrieved and come into action
depends on general memory effects like gradually decaying
activation, interference, and priming. These effects are suf-
ficient to explain important features of sequential action like
postcompletion errors (Byrne & Bovair, 1997) and have been
successfully implemented as computational cognitive mod-
els (e.g., Trafton, Altmann, & Ratwani, 2011; Tamborello &
Trafton, 2015; Halbrügge, Quade, & Engelbrecht, 2015).

Postcompletion errors occur when an action sequence con-
tains a final step after the goal already has been achieved, e.g.,
taking the original from a photocopier (the final step) after
making a copy (the goal). What is so special about this final
step? It does not contribute to the users’ goal, but stems from
the design of the device operated by them. This property of
a task has been coined device-orientation, its opposite being
task-orientation (Ament, Cox, Blandford, & Brumby, 2013;
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Gray, 2000). Within the MFG theory, higher omission rates
for device-oriented tasks can be explained by lower activa-
tion of the corresponding subgoals. While task-oriented sub-
goals receive priming from the overall goal, device-oriented
subgoals do not. Previous modeling studies have shown that
this differentiation is sufficient to explain disadvantages of
device-orientation both in the completion time and the error
domain (Halbrügge & Engelbrecht, 2014; Halbrügge et al.,
2015).

Because of the downsides of device-oriented tasks, they are
usually avoided during the design of user interfaces (UI). In
case this is not possible, device-oriented tasks are often made
obligatory, i.e., the users are forced to perform them by the
application logic. Examples for this practice are the login but-
ton that users have to press after entering their credentials, or
teller machines that return the card before delivering money.
Making a step obligatory is quite effective. In a previous
study, the expected error increase for device-oriented steps
did only occur if the respective step was also non-obligatory
(Halbrügge et al., 2015). Task necessity is therefore an im-
portant factor for the genesis of errors.

According to the MFG and Byrne and Bovair’s (1997) pre-
ceding work, procedural error is caused by goal forgetting
which in turn can be stimulated by high working memory
load. In the context of this paper, we introduce memory load
based on the WMU concept.

Working Memory Updating (WMU)
WMU is a task characteristic rather than a task itself. This
concept describes the ability to maintain accurate repre-
sentations of information changing over time (see Ecker,
Lewandowsky, Oberauer, & Chee, 2010). Ecker et al. identi-
fied three putative phases of WMU – Retrieval (R), Transfor-
mation (T) and Substitution (S) of information.

The complexity of a WMU task can vary on two dimen-
sions: coordinative complexity increases with the number of
representations that have to be maintained at the same time
while sequential complexity increases with update frequency
(Mayr, Kliegl, & Krampe, 1996).

In the case of Ament et al. (2010), a low and a high memory
demand condition was created by manipulating the coordina-
tive complexity of the secondary (WMU) task. During the
course of their experiment, the participants produced virtual
doughnuts (main task) and had to count the amount of pro-
duced items of either one (low coordinative complexity) or
two (high coordinative complexity) specific kinds of dough-
nuts.

For the present purpose, we considered the increase in
complexity from one to several WMU targets as being too
large. Instead, only one target (a pictogram) had to be counted
and the sequential complexity was varied depending on how
quickly the count had to be updated.

Experiment
We examined our assumptions using a kitchen assistant that
has been created by computer scientists of TU Berlin as part

of a smart home project (Feuerstack, 2009). The assistant aids
in the preparation of meals by suggesting recipes, calculating
ingredients and maintaining shopping lists. Its UI features
all four possible combinations of device-orientation and task
necessity, examples are given in Figure 1.

Method

Participants Twelve members of the Technische Univer-
sität Berlin paid participant pool took part in the experiment.
There were four men and eight women, with their age rang-
ing from 18 to 51 (M=33.7, SD=9.5). As the instructions
were given in German, only fluent German speakers were al-
lowed to take part. Written consent was obtained from all
participants.

Materials The experiment was conducted in a neutral lab-
oratory. A personal computer with 23” (58.4 cm) monitor
with optical sensor ‘touch’ technology was used to display
the interface of the kitchen assistant. Seven pictograms of
common household interruptions (e.g., phone ringing, door-
bell, baby crying; see Figure 2) served as stimuli of the WMU
task. The stimuli were superimposed on the UI of the kitchen
assistant using dedicated Javascript code running within the
browser that displayed the assistant. All user actions were
recorded by the computer system. The subjects’ performance
was additionally recorded on videotape for subsequent error
identification.

Figure 2: Examples of the pictograms used in the experiment.
Image credits: Baby © UN OCHA, CC-BY 3.0; Door, Cup
with tea bag © Freepik, CC-BY 3.0

Design We applied a three-factor within-subjects design,
the factors being device- vs. task-orientation, task necessity
(non-obligatory vs. obligatory), and secondary task difficulty
(none vs. onset to onset stimulus intervals 5s, 4s, 3s). User
tasks were grouped into four blocks of eleven to twelve in-
dividual tasks. Each participant was randomly assigned to
one of eight pre-selected block sequences so that block po-
sition and block succession were counterbalanced across par-
ticipants as well. The secondary WMU task was always intro-
duced after the completion of the first block and its sequential
demand was gradually increased from 5s stimulus interval in
the second to 3s in the fourth and last block. Each interval
was split into equally long stimulus and and blank phases.

Procedure Every block started with comparatively easy
recipe search tasks, e.g., “search for German main dishes
and select lamb chops”. Users would then have to change
the search attributes, e.g., “change the dish from appetizer to
dessert and select baked apples”. The second half of each
block was made of more complex tasks that were spread over
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Figure 1: Screenshot of the English version kitchen assistant. Search attributes on the left are task-oriented and non-obligatory.
The “Start Search” button is device-oriented and obligatory. The entries of the search results list on the right unhide subsequent
options, they are therefore task-oriented and obligatory.

more screens of the interface and/or needed memorizing more
items. The subjects either had to create ingredients lists for a
given number of servings, or had to make shopping lists using
a subset of the ingredients list, e.g., without salt and flour. All
instructions were read to the subjects by the experimenter.
Every individual trial was closed by a simple question the
subjects had to answer to keep them focused on the kitchen
setting, e.g., “how long does the preparation take?” During
each instruction phase the complete screen was blanked (see
Figure 3).

? 5

Recipe Task

Instruction

Present

WMU Target

Perform

Recipe Task

Ask

WMU Count

WMU

Feedback

Figure 3: Sequence of screens within a single trial in the dual
task condition.

In the dual-task condition, one of the seven WMU stim-
uli was selected as target for the current trial and presented
to the participants after the instructions for the next trial had
been given. Subsequently, the UI of the kitchen assistant was
uncovered. WMU stimuli appeared in random order on the
lower right of the screen and the participants had to count
the number of appearances of the target stimulus. After the
completion of the trial, the screen was blanked again and the
participants were asked how often they had seen the WMU
target. With an initial training phase and exit questions the
whole procedure took approximately one hour.

Results

We recorded a total of 3464 user actions and 407 minutes of
video. The system logs were synchronized with the videos
and semi-automatically annotated using ELAN (Wittenburg,
Brugman, Russel, Klassmann, & Sloetjes, 2006).

Recipe Task We recorded a 88 (2.5%) omissions and 133
(3.8%) intrusions. Contrarily to our assumptions, the error
rate did not increase in the dual-task condition, nor when
interruptions by the secondary task became more frequent.
Adding the block (A–D in Figure 4) to a mixed logit model
with task block and subject as random factors (Bates, Maech-
ler, Bolker, & Walker, 2013) did not explain more variance
(c3 = 1.30, p = .730). Descriptively, the error rate even de-
creased while the memory updating task became harder.
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Figure 4: Error probabilities for the recipe task per exper-
iment block. Error bars denote 95% confidence intervals
based on the Agresti-Coull method.
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There was a significant influence of the WMU task on the
time needed to perform the recipe task. In the dual-task con-
dition, participants needed approximately 100 ms longer per
individual click (mixed model with click type1 and subject as
random factors, t2695 = 2.31, p = .021)

The influence of device-orientation and task necessity on
errors was analyzed separately for omissions and intrusions
(see Figure 5). Obligatory tasks led to fewer omissions than
non-obligatory ones (logit mixed model with subject and task
block as random factors, z = �2.56, p = .011). We ob-
served fewer intrusions for obligatory tasks (z = �4.16, p <
.001) and for device-oriented tasks as well (z = �3.01, p =
.003). The significant interaction between both factors (z =
2.41, p = .016) is due to non-obligatory task-oriented actions
(i.e., search attributes, left part of Figure 1) showing the high-
est intrusion rates.

Working Memory Updating Task Contrarily to our as-
sumptions, the error rate in the memory updating task did
not increase with the demand of task. Adding the block to
a mixed logit model with task block and subject as random
factors did not explain more variance (c2 = 0.12, p = .942).
Descriptively, we see a small increase, but the overall error
rate is very high (see Figure 6).
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Figure 6: Error Probabilities per Block for the WMU Task.
Error bars denote 95% confidence intervals based on the
Agresti-Coull method.

Discussion
Interruptions are often used in error research as a means to
increase the error base rates (e.g., Trafton et al., 2011; Li,
Blandford, Cairns, & Young, 2008). In line with this thinking
and based on the results of previous research (e.g., Byrne &
Bovair, 1997; Ament et al., 2010), we expected that the in-
creased memory load due to the WMU task would result in
degraded performance in the main recipe task. But the empir-
ical data tells a different story. While the participants needed
more time to complete the recipe tasks, they did not make
significantly more errors. Why is this the case?

First, the baseline error rate of 7% is already quite high, in
particular compared to the 1.3% observed during a previous

1Four click type groups: same button, same group of buttons, dif-
ferent group of buttons, buttons on different UI screens; see Quade,
Halbrügge, Engelbrecht, Albayrak, and Möller (2014) for reference.

study using a similar paradigm (Halbrügge et al., 2015). This
could be due to the blanking of the screen during the instruc-
tion phase that was added to the procedure in the present ex-
periment. The blanking should have impaired the learning of
the UI of the kitchen assistant. In previous studies, the partic-
ipants could visually plan their actions during the instruction
phase, while the current experiment demanded memorizing
all subgoals without any visual reference.

Second, the high error rate of the WMU task suggests that
the participants spent most attention on the recipe task. But
as we only observed a very slight decrease of WMU perfor-
mance with increased difficulty, this point remains unsatisfac-
tory.2 The analysis of the tasks based on the cognitive model
presented below will provide additional insights.

The prolongation of the time needed to perform the recipe
task in the dual-task condition is in line with the expected
interference between both tasks. The real effect is probably
underestimated by our analysis, because we found learning
effects of approximately -50 ms per block in previous studies
(Halbrügge & Engelbrecht, 2014). Assuming that learning
still took place in the current study, it should have counter-
acted the prolongation effects of increasing WMU complex-
ity.

Cognitive Model
Based on the well-established MFG theory, we proposed that
having to perform two memory-intensive tasks would lead
to more errors, but the data did not confirm our hypothesis.
Does this disprove the theory, or was our understanding of
it insufficient? In order to elaborate on the second option,
we combined an existing MFG-based model of sequential
behavior (Halbrügge et al., 2015) with an existing model of
WMU (Russwinkel et al., 2011) using the threaded cognition
extension of ACT-R (Anderson et al., 2004). The threaded
cognition theory (Salvucci & Taatgen, 2008) assumes that
task switching is not necessarily conscious behavior, but may
emerge as concurrent tasks have to wait for cognitive re-
sources (e.g., memory, vision) that are currently held by other
tasks.

Recipe Task Model
The recipe task model extends on the MFG theory (Altmann
& Trafton, 2002) by highlighting the importance of environ-
mental cues during sequential behavior. Whenever the purely
memory-based process as proposed by the MFG fails, the
model reverts to a vision-based strategy that searches the en-
vironment for appropriate cues for the next action to take (see
flowchart in Figure 7). This addition has been shown to be ex-
plain the effects of obligatory vs. non-obligatory steps with
regards to omissions (Halbrügge et al., 2015), it has expanded
MFG-based models to intrusion errors, and it has recently
been confirmed by gaze data (Halbrügge et al., 2016).

For the current paper, the model was adapted to threaded
cognition by adding extra checks for the current availability

2Unfortunately, Ament et al. (2010) give no results of the sec-
ondary task that could be used for comparison.
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Figure 5: Omission and intrusion probabilities per UI element type. Error bars denote 95% confidence intervals based on the
Agresti-Coull method.

of the declarative module to several productions. All numeri-
cal ACT-R parameters remained unchanged.

attend-goal-element

select/click-element

search-goal-element attend-random-ui-element

try-retrieve-goal-for-element

try-retrieve-next-goal

Knowledge in-the-head Knowledge in-the-world

Figure 7: Simplified Flow Chart of the recipe task model.
Dashed arrows denote retrieval errors, the dotted arrow de-
notes visual search failure.

Working Memory Updating Model

The code was adapted from an existing model that has been
tested in different kind of tasks and settings (Russwinkel et
al., 2011; Pape & Urbas, 2009; Russwinkel & Schinkmann,
2011). The WMU model uses a single representation (i.e.,
memory chunk) for each target that pairs it with its current
count. This representation is manipulated using the three Re-
trieval, Transformation, and Substitution phases as proposed
by Ecker et al. (2010). After its retrieval (R), the count slot
of the chunk is updated (T). The resulting new representation
is encoded in declarative memory (S), where it may interfere
with older versions featuring outdated count values.

In the combined model, buffer stuffing is used to detect
the visual targets of the WMU task. In case a new object is
found at the right bottom of the screen and both the visual
and the declarative modules are available, the model attends
the new object and at the same time retrieves the most highly
activated WMU count chunk. Because of activation noise, the
declarative module may return an older copy of that chunk
which subsequently leads to an error.

Goodness-of-Fit
The combined model3 was run 500 times and all resulting
errors and completion times were recorded. Contrarily to our
expectations, but consistent with the empirical findings, the
combined model does not show an increased error rate when
the WMU task is present (odds ratio = 1.04, well within the
empirical 95% CI from 0.62 to 1.20).

Regarding the effects of device-orientation and task ne-
cessity, the overall model fit is not good with R2=.174 and
RMSE=.029. This is mainly due to the unexpectly high in-
trusion rate for non-obligatory task-oriented steps (see Fig-
ure 8). When regarding only omissions, the fit is much better
with R2=.789 and RMSE=.014.
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Figure 8: Model Predictions and Empirical Error Rates.

The combined model does show longer click times in the
dual-task condition. Here, each click takes 120 ms longer on
average, which is close to the empirical effect of 94 ms (95%
CI from 14 ms to 174 ms).

Discussion
When the combined model performs both the recipe and the
WMU task, the number of errors in the recipe task does not
increase, it just takes longer to perform the individual ac-
tions. This means that our empirical results, although being
unexpected, fit with the theoretical underpinnings presented
above. Close inspection of the model traces shows that the

3The source code of the cognitive model is available for down-
load at http://dx.doi.org/10.5281/zenodo.55224
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model predictions are caused by both tasks demanding vi-
sual and memory ressources. Only during the motor phase
of the recipe task model (i.e., when a click is performed,
“select/click-element” in Figure 7), the WMU task can take
over. This observation is also consistent with the high error
rate of the WMU task during the experiment.

Combining both models using threaded cognition was less
easy than expected. A central assumption of threaded cog-
nition is that ACT-R buffers are shared between all running
tasks. In our case, this made some states ambigous. Es-
pecially retrieval errors could not easily be attributed to the
recipe or the WMU task (R phase of the WMU model vs.
dashed arrows in Figure 7). This problem was solved by us-
ing the visual system. Retrieval errors are only attributed to
the WMU task if the model visually attends a WMU target at
the same time.

General Discussion and Conclusions
We have presented empirical data and a cognitive model of
human performance and error in a dual-task scenario. Con-
trarily to our expectations, the dual-task condition did not
lead to more errors, but longer task completion times, only.
These results are nonetheless consistent with the Memory for
Goals theory that had led to our expectations, as shown by the
cognitive model simulations. The good fit is remarkable as no
numerical parameter fitting was applied to achieve it. To our
knowledge, this is also the first time that a MFG model has
been combined with the threaded cognition theory.

The model has several limitations. First, the increased
overall error rate, especially concerning intrusions, is not cov-
ered by the model. Second, the model does not show any
specific visual behavior during the instruction phase, but only
listens to the experimenter. Compared to previous studies
that did not use a blank screen during the instruction phase
(Halbrügge et al., 2015, 2016), the current data show rela-
tively high error rates even in the single-task condition. This
suggests that the human participants visually prepared their
action sequence while listening to the experimenter in pre-
vious studies. More research is needed to elaborate on this
point. We are therefore planning to examine the visual pro-
cessing of the screen during sequence planning using eye-
tracking.

As final remark we would like to highlight how the ap-
proach taken here exemplifies the benefits of computational
cognitive modeling as a method. Because of the use of ACT-
R as common denominator, is was possible to take two cog-
nitive models created by different researchers and to com-
bine them to something new that created new evidence and
sparked new questions.
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