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Zusammenfassung 

Gesichtserkennung als aktiver Forschungsbereich der letzten zwei Jahrzehnte stellt immer noch 
viele Herausforderungen dar. Aktuelle Gesichtserkennungs-Systeme liefern nur befriedigende 
Ergebnisse unter kontrollierten Bedingungen. Die Erkennungsgenauigkeit lässt signifikant nach, 
wenn sie mit Änderungen von Blickwinkel, Beleuchtung und Fehlausrichtung konfrontiert 
werden. Das Hauptziel dieser Dissertation ist das Erforschen und Entwickeln neuer Methoden 
für ein vollautomatisches Gesichtserkennungs-System, welches in unkontrollierten Umgebungen 
arbeiten kann.  

Im ersten Teil wird eine Merkmalsbeschreibung eingeführt, die robuster als ein pixel-
basierter Ansatz ist. Sie ist invariant bezüglich Fehlausrichtung bei nicht perfekter Lokalisierung 
der Gesichter. Für die Mehrbild-Gesichtserkennung wird ein vollständiger Leistungsvergleich 
verschiedener Klassifikatoren in unterschiedlichen Merkmalsräumen präsentiert. Viele neue 
Ansätze befürworten die Berechnung von künstlichen Bildern aus verschiedenen Ansichten für 
ein gegebenes Gesichtsbild, um eine betrachtungsinvariante Erkennung zu realisieren. In 
ausführlichen Experimenten wird die Schwäche existierender Gesichtserkennungs-Systeme für 
kleine Mustergrößen demonstriert. Um die Erkennung zu verbessern, wird ein Schema zur 
Kombination von Klassifikatoren für verschiedene Merkmalsräume vorgeschlagen.  

Im zweiten Teil der Arbeit stellen wir ein neues System zur Schätzung der Kopfhaltung vor. 
Die Blickwinkelinformation ist nützlich und für ein vollautomatisches Gesichtserkennungs-
System muss die Ansicht in den Eingangsbildern bekannt sein. Das vorgeschlagene 
Blickwinkelschätzungs-System funktioniert bei hohen Beleuchtungs- und Ausdrucksänderungen. 
In diesem Zusammenhang haben wir eine neue Merkmalbeschreibung mit dem Namen LESH 
eingeführt, welche die zugrunde liegende Form beinhaltet und unempfindlich bezüglich der 
Hautfarbe und verschiedener Beleuchtungen ist. Basierend auf der vorgeschlagenen LESH 
Merkmalsbeschreibung, wird ein generischer Ähnlichkeitsraum generiert, welcher nicht nur eine 
effektive Dimensionalitäts-Reduzierung sondern auch viele repräsentative Vektoren für einen 
bestimmten Testmerkmalsvektor bietet. Dieser wird verwendet, um Wahrscheinlichkeiten für 
verschiedene Blickwinkel zu generieren, ohne explizit die zugrunde liegende Dichte zu schätzen, 
was sehr nützlich für die nachfolgende Gesichtserkennung unter verschiedenen Blickwinkeln ist.  

Im dritten Teil dieser Dissertation integrieren wir das System zur Schätzung der 
Kopfhaltung mit einem neuen vollautomatischen Gesichtserkennungs-System. Wir stellen eine 
betrachtungsinvariante Gesichtserkennungsmethode vor, welche nur ein Einzelbild der Person 
aus einer Galerie zur Erkennung benötigt. Der vorgeschlagene Ansatz konzentriert sich auf das 
Modellieren von Verbundansichten der Galerie und der Testbilder über verschiedene Ansichten 
in einem Bayesschen Ansatz. Diese Methode liefert einen vollständigen Posterior über alle 
möglichen Galeriezuordnungen, welcher auch einfach für Gesichts-Authentifikation genutzt 
werden kann. Unsere Methode benötigt keine strikte Ausrichtung zwischen der Galerie und dem 
Testbild, was es verglichen mit den momentanen Methoden besonders attraktiv macht. Die 
vorgeschlagenen Algorithmen wurden mit mehreren Referenz-Datenbanken ausgewertet, die 
tausende herausfordernder Bilder mit verschiedenen Variationen bezüglich Ausdruck, Ansicht 
und Beleuchtung enthalten. Die Ergebnisse zeigen, dass unsere Methoden eine deutliche 
Verbesserung gegenüber bisherigen Ansätzen darstellen. 
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Abstract 

Face recognition, as an active area of research over the past two decades, still poses many 
challenges. Current face recognition systems yield satisfactory performance only under 
controlled scenarios and recognition accuracy degrades significantly when confronted with 
unconstrained situations due to variations such as pose, illumination and misalignments etc. The 
principal objective of this dissertation is to investigate and introduce new methods towards 
building a fully automatic face recognition system that can work in unconstrained environments. 

In the first part we introduce to use a more robust feature description than pixel based 
appearances that is invariant with respect to misalignments due to non-perfect localization of 
faces. A thorough performance analysis of many different classifiers on different feature spaces 
in the context of multi-view face recognition is presented. Many recent approaches advocate the 
use of generating artificial images at different views for a given face image in order to realize 
pose invariant recognition. It is demonstrated in an extensive experimental setting the weakness 
and applicability of existing face recognition systems with respect to small sample size problem 
in these situations. Furthermore a classifier combining scheme over different feature spaces and 
different classifier is proposed to improve recognition. 

In the second part of the thesis we present a novel head pose estimation system. The pose 
information is valuable and for a fully automatic face recognition system the pose of the 
incoming image has to be known. The proposed front-end pose estimation system functions in 
the presence of large illumination and expression changes. In this context we have introduced a 
new feature description termed as LESH, which encodes the underlying shape and is insensitive 
to skin color and illumination variations. Based on proposed LESH feature description, we 
introduced to generate a generic similarity feature space, that not only provides an effective way 
of dimensionality reduction but also provides us with many representative vectors for a given 
test feature vector. This is used in generating probability scores for each pose without explicitly 
estimating the underlying densities, which is very useful in later face recognition across pose 
scenarios. 

Finally, in the third part of this dissertation we integrate the head pose estimation system 
with a novel fully automatic face recognition system. We introduce a pose invariant face 
recognition method that requires only single image of the person to be recognized, in the gallery. 
The proposed approach is centered on modeling joint appearance of gallery and probe images 
across pose in a Bayesian framework. The method provides us with a full posterior over possible 
gallery matches which can also be easily used for face authentication. Our method does not 
require any strict alignment between gallery and probe images and that makes it particularly 
attractive as compared to the existing state of the art methods. The proposed algorithms have 
been evaluated on a number of benchmark databases, which contain thousands of challenging 
images with different variations in expression, pose, and illumination. Results indicate that our 
methods make appreciable improvement over the previous state-of-the-art approaches. 
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Chapter 1. Introduction 

Identifying persons by looking at their faces is a trivial task for humans. A baby is able 

to recognize his mother after few hours of his birth. Since the advent of digital 

computers, tireless attempts have been made to give them our most complicated sense, 

vision. The significant progress in this direction reflects the ability of current machine 

vision systems to work reliably in variable environments. Most systems are able to 

perform a number of vision tasks reliably e.g. recognizing and categorizing natural 

objects in scenes, advanced vision guided systems are able to perform on practical 

situations such as autonomous vehicle guidance, optical character recognition systems 

and so on. But when it comes to identifying persons based on recognizing their faces, 

what seems to be an overly simple task for humans becomes increasingly difficult and 

challenging for computers. With the increasing demands put on privacy, security and 

surveillance and an increasing range of applications needing a reliable verification 

system [OBRG04] [L02] [A01], automatic person identification has become very 

important topic for the research community. Traditional knowledge-based (password or 

Personal Identification Number ‘PIN’) and token-based (passport, driver license, and ID 

card) identifications are prone to fraud because PIN may be forgotten or guessed by an 

impostor and the tokens may be lost or stolen. A reliable identity authentication system 

will therefore need a biometric component. Among biometric metrics e.g. finger print, 

iris, face and palm, face is the most important metric to be utilized because of its non-

intrusive nature as little or no cooperation is needed from the users in order to capture 

his/her face. 

 Over the past two decades several attempts have been made to address this problem 

and a voluminous literature has been produced. Current face recognition systems are 

able to perform very well in controlled environments e.g. frontal face recognition, where 

face images are acquired under frontal pose with strict constraints as defined in related 
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face recognition standards [ANSI04]. However, in unconstrained situations where a face 

may be captured in outdoor environments, under arbitrary illumination and large pose 

variations these systems fail to work. Nonetheless, due to the very demanding nature of 

the problem, there is a need to overcome these constraints and build face recognition 

systems that can recognize faces reliably even when captured under unconstrained 

scenarios. DARPA in United States has initiated face recognition technology evaluation 

test protocol ‘FERET’ in order to record and streamline the work in this direction. Face 

recognition grand challenge FRGC and face recognition vendor test FRVT are two most 

important events held every few years in order to evaluate the progress for unconstrained 

face recognition. While many systems and approaches are being documented, 

recognizing faces under large pose variations and illumination conditions is still the 

biggest problem as documented by recent FRGC and FRVT reports [FRVT02] 

[PFSBW06].  

This dissertation attempts to address the problem of unconstrained face recognition 

and contributes towards building a fully automatic face recognition system that is able to 

recognize faces under large pose and illumination variations. Let us first briefly survey 

some of the basic concepts in automatic face recognition. 

1.1 Automatic Face Recognition 

A general face recognition system is comprised of different components, Figure 1.1. The 

main parts are typically face detection and face recognition that can be further 

decomposed in normalization, feature extraction and classification steps. Face detection 

is the very first important element in any automated face recognition system. Given an 

arbitrary image or image sequence, the goal of a face detection system is to determine 

the presence of a face in this image as well as its location. If a face is present, the system 

returns the location and its extent. Most of the fully automatic face recognition systems 

presented in the literature involve a separate face detection and/or localization step. 

Numerous approaches have been proposed to tackle the problems of face detection, see 

[YKA02] for a recent survey. We can differentiate face detection from face localization.  
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Face Detection 
/localization 

Recognition 

Normalization/
Preprocessing 

Feature 
Extraction 

Classification / Matching 
with the database. 

 

 

Figure 1-1: Main Components of a General Automatic Face Recognition System 

 

Face detection aims to determine whether or not there are any faces in the image and, if 

present, returns the face location while the goal of face localization is to estimate the 

position of a single face. Localization usually needs to provide a more precise position of 

the face than detection and can be more difficult in this case. 

After a detection and localization stage the face is subject to normalization. 

Normalization or preprocessing usually involves geometric normalization for the 

purpose of alignment and preprocessing for the illumination compensation. The 

alignment means detecting some landmark points on the face and warping the image 

onto a plane where these points are at some fixed locations. Normalized face images are 

then used for extracting features. The features are the meaningful information from the 
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image. These features are then modeled and finally matched by a classification or 

matching stage. 

The purpose of face recognition as a whole is to identify or verify a face against a 

stored database of images. It mainly involves the following three tasks, adapted and 

quoting from [FRVT02]. 

 Verification. The recognition system determines if the query face image and the 

claimed identity match. 

 Identification. The recognition system determines the identity of the query face 

image by matching it with a database of images with known identities, assuming 

that the identity is inside the database. 

 Watch list. The recognition system first determines if the identity of the query 

face image is on the stored watch list and, if yes, then identifies the individual. 

 

The main focus of this dissertation is the task of face identification. In many of the 

previous published literatures, the term ‘face recognition’ is used with the meaning of 

‘face identification’. In this dissertation the task of face identification is referred to as 

face recognition as well. 

1.2 The Problem 

Recognition of human faces, which are three-dimensional ‘3D’ deformable objects, from 

their two-dimensional ‘2D’ images poses many challenges. Today, several systems that 

achieve high recognition rates have been developed, however, such systems work in 

controlled environments. For most of them, face images must be frontal or profile, 

background must be uniform and lighting must be constant. Furthermore, lots of 

published systems are evaluated using manually located faces and the ones which have 

been evaluated using a fully automatic system showed a big degradation in performances 

[PFSBW06]. In most real life applications, the environment is not known a-priori and 

the system should be fully automatic. An unconstrained face recognition system has to 

deal with the following problems: 

o Head Pose changes 
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o Lighting Variation 

o Non-Perfect Detection 

o Alignment/ imperfect localization of faces 

o Occlusion, aging etc. 

In this thesis, we will focus on face recognition approaches towards robust face 

recognition in unconstrained environments. Here, unconstrained means that the 

illumination of the face, the head position and the background are not known a priori 

and can change from the reference images to the probe images. In this context, the face 

recognition task presents new difficulties such as large variability in the images for the 

same identity, the lack of reference images and face alignment problems. To our 

knowledge, no existing face recognition system can combine accuracy and robustness in 

unconstrained environment. 

The main problem of unconstrained face recognition is the large variability between 

face images. In fact the variations of appearance present in the images of the same 

person due to different lighting, pose etc are much larger than the appearance variations 

present between the images of two different persons in same lighting and/or pose. Pose 

change appear when the face changes its position and orientation in 3D space relative to 

the camera. However, a face can also undergo non-rigid motion when its 3D shape 

changes due to other factors such as speech or facial expression. 

In order to cater these in-class variations, it is commonly believed that if a large 

training set is available comprising of all the different images representing these 

variations for each person, one can increase the robustness of the recognition system by 

modeling explicitly these in-class variations for each person. However, collecting many 

images of the same person covering, for instance, wide range of head pose changes, 

different illumination and expressions is very difficult , costly and not practical under 

realistic conditions. Despite this fact, most of the existing security and surveillance 

applications generally can store only one or few images of a particular person of interest. 

Such applications are e.g. police criminal record databases (mug-shots), border control, 

passport control etc. The problem of having very few training images available for each 

person is referred to as small sample size problem in machine learning literature. For 

example from a statistical stand point, number of training images should be 10 times as 
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that of the dimensionality of the problem. [DHS01]. That implies for a 100x100 face 

image, represented as a point in some feature space, by e.g. concatenating all the pixels 

into a vector, will yield a 10000 dimensional feature space. And theoretically, therefore 

we need 100000 training images for that person.  On the other hand, face recognition is 

different from other machine learning tasks in that, here each person defines a unique 

class, and by the very nature of the problem where one has to distinguish among 

thousands of persons, we generally have a plethora of classes. Storing several images for 

each person also puts strong constraints on memory and storage among other factors. 

From a more practical stand point, therefore, it is generally needed to have a system that 

can recognize a person by having seen his/her only one image. Recognizing a person 

reliably having seen only one image and from previously unseen view point is a very 

challenging and unsolved problem.   

1.3 Goals and Contributions of this Work 

In this section we define the main goals and summarize the major contributions of this 

thesis. 

1.3.1 Main goals 

The thesis aims to develop a fully automatic face recognition system that works well 

under large 3D pose variations and requires only one 2D training image per person in the 

database. While true 3D based approaches in theory allow face matching at various 

poses, current 3D sensing hardware has too many limitations [BCF06], including cost 

and range. Moreover unlike 2D recognition, 3D technology cannot be retrofitted to many 

of the existing systems and applications such as surveillance systems, video feeds, 

criminal records; access control etc. 2D face recognition methods are therefore needed to 

be further investigated in order to generalize well under unconstrained scenarios.  

Previous approaches addressing pose variations include the synthesis of new images 

at previously unseen views [BGPV05] [CSCG07], or direct synthesis of face model 

parameters [CSB06]. No matter how one approach to address this problem, the pose of 

the incoming test probe image has to be known a priori in order to realize a fully 
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automatic face recognition system. An efficient front-end head pose estimation system 

is, therefore, needed for any automatic pose invariant face recognition system to work. A 

fully functional head-pose estimation system that may be easily integrable into any of 

the existing face recognition systems is also one of the goals of this thesis. 

Furthermore the ‘one training image per person’ problem needs to be carefully 

addressed. The one sample problem is defined as follows: 

“Given a stored database of faces with only one image per person, the 

goal is to identify a person from the database later in time in any different 

and unpredictable poses, lighting, etc. from just one image” [TCZZ06]. 

Given its challenge and significance for real-world applications, this problem is rapidly 

emerging as an active research area of face recognition. Effective algorithms that deal 

with this problem are also the goal of this dissertation. 

Apart from pose variations, imperfect face localization [RCBM06] is also an 

important issue in a real life recognition system. Imperfect localizations or 

misalignments result in translations as well as scale changes, which adversely affect 

recognition performance. Finding invariant feature descriptions that can handle 

imperfect localizations and do not require strict alignment is also addressed. 

1.3.2 Major contributions  

The major contributions of this dissertation are as follows: 

o A thorough performance analysis of many different classifiers on different feature 

spaces in the context of multi-view face recognition is presented. Many recent 

approaches advocate the use of generating artificial images at different views for a 

given face image or transform the incoming image to its frontal counter part in order 

to realize pose invariant recognition. It is demonstrated in an extensive experimental 

setting the weakness and applicability of existing face recognition systems with 

respect to small sample size problem in these situations. Furthermore a classifier 

combining scheme over different feature spaces and different classifier is proposed to 

improve recognition [SJH06]. 
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o A feature description termed as face-GLOH signatures based on [MS05] has been 

introduced, for the task of face recognition for the first time, that do not require the 

face images to be properly aligned. 

o A front-end head pose estimation system has been developed, that works in the 

presence of large illumination changes and is invariant to person specific appearance 

variations [SH07] [SH09a]. 

o A novel feature description for the purpose of pose estimation termed as LESH 

(Local Energy based Shape Histogram) is proposed. The new feature description 

primarily models the underlying shape and can be used in other similar computer 

vision tasks such as shape based image retrieval, object tracking, object recognition 

etc. [SH08c]. 

o A new classification procedure based on generating a generic multidimensional 

similarity feature space is proposed. The proposed approach is also useful for other 

similar machine vision tasks [SH08a]. 

o A novel fully automatic face recognition system based on probabilistic learning that 

works reliably with just one training image is developed and it is shown robust to 

large pose variations [SH08b]. 

The proposed algorithms have been evaluated on a number of benchmark databases, 

which contain thousands of challenging images with different variations in expression, 

pose, and illumination. Results indicate that our methods make appreciable improvement 

over the previous state-of-the-art approaches. 

1.4 Organization of the Thesis 

The thesis has been divided in three parts.  

Part 1: 

Chapter 1: General introduction 

Chapter 2: Presents a brief survey on state of the art face recognition approaches and 

elaborate more on some of the underlying key elements of face recognition systems. The 

face databases and corresponding protocols used in our experiments are also introduced. 



 11 
 
 

Chapter 3: Presents some of the most important commonly used feature extraction 

techniques and introduces a new feature description to be used in face recognition that is 

robust against misalignments and imperfect localization. 

Chapter 4: Presents a thorough performance analysis of the common classifiers used in 

multi-view face recognition and explores the benefit of classifier combining. 

Furthermore, small sample size problem and its effects, with respect to imperfect 

localization of faces, large pose differences and large number of subjects are studied in 

an extensive experimental setup. 

Part 2: 

Chapter 5: Introduces the problem of head pose estimation and presents a novel feature 

description based on local energy model that encodes the underlying shape well. 

Chapter 6: Introduces the new classification procedure to be used for estimating poses. 

Experimental results and comparison with previous state of the art methods is presented. 

Part 3: 

Chapter 7: Proposes a novel pose invariant face recognition approach that requires only 

single training image per person and works on misaligned images.  

Chapter 8: Presents the experimental results and comparisons with previously published 

methods that demonstrate the effectiveness of the approach. 

Chapter 9: Conclusions and future research directions. 
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Chapter 2. State of the Art in Face 

Recognition 

The goal of this chapter is to provide some background and specifics of automatic face 

recognition. First the particulars of the preprocessing prerequisites of almost all of the 

current face recognition systems are described; the insight into the alignment and 

localization stage and its impact on the overall performance of face recognition system is 

highlighted, then a brief review of the most popular methods used in face recognition is 

provided and finally the description of the face databases and associated evaluation 

protocols used along the thesis are presented. 

2.1 Face Recognition: Prerequisites  

After a face has been detected in an image by a face detector, see a recent survey on face 

detection in [YKA02], the rest of the task of recognition can be categorized largely into 

the following three subtasks. 

o Normalization 

o Feature Extraction 

o Classification  

Normalization, also called preprocessing stage, is a prerequisite of any face recognition 

system and it generally involves geometric normalization and illumination 

normalization. Illumination normalization is used in order to compensate for large 

lighting variations and removing shadows etc, by using any of the lighting normalization 

methods, see [HCM05] for a comparison of different methods. Here we focus on the task 

of geometric normalization, also known as localization and alignment in the face 

processing jargon. 
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Figure 2-1: Difference between aligned and misaligned faces.  (a) Aligned images 

with respect to three detected landmarks i.e. center of eyes and mouth position. (b) 

Localized faces without alignment 

Note that the term localization and alignment is sometimes used interchangeably in the 

literature [M02], while here we differentiate between the two with respect to the strict 

role they play in later recognition stages. 

 The goal of face localization is to estimate the position of a single face. 

Localization usually needs to provide a more precise position of the face than detection.  

Alignment involves the detection of some fiducial points on the face, such as facial 

landmarks e.g. center of eyes, nose tip etc., and fixing these points to predefined 

locations for all images. For instance, the eye centers, the medial line of the nose or 

mouth center etc., are expected to be at the same pixel coordinates in all images. To 

achieve that, special warping procedures are used [MT08]. This warping procedure is 

necessary to guarantee that every image pixel represents the same feature and thus to 
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achieve better recognition, this is known as the correspondence problem [BP96], 

[MK01]. 

2.1.1 Alignment of faces 

Alignment itself has emerged as an important sub-problem in the face recognition 

literature [WTJ06], and a number of systems exist for the detailed alignment of specific 

facial parts [HFT03] [HLLYS04] [M05] [ZZTS05]. All face recognition algorithms 

require some degree of alignment so as to normalize for unwanted shape variations. 

Most of the algorithms use/advocate aligning images with respect to just 2-3 facial 

landmarks such as center of eyes, nose tip etc., faces aligned with 2-3 facial landmarks 

points are also called sparsely registered faces in the literature [LC08]. On the other hand 

some systems identify more than 80 landmarks (densely registered) per face. In a recent 

work Gross et al. [GMB04] demonstrated that improved face recognition performance 

can be attained using dense registration (39–54 fiducial points depending on the pose) 

rather than sparse registration (3 fiducial points located on the eyes and nose tip) 

especially for the task of pose-invariant face recognition. Similarly, Blanz and Vetter 

[BV03] demonstrated good performance using extremely dense offline registration 

(75,972 vertex points on laser scan 3D images) and medium density registration (at least 

7–8 fiducial points depending on pose) with the online 2D images.  

A problem with both these approaches, however, is that automatic dense registration 

of the face across viewpoints remains a very difficult task making most of these 

algorithms still very reliant on manual registration. Sparse registration (i.e., 2–3 fiducial 

points such as the eyes and nose) of the face is generally considered an easier problem 

than dense registration. Techniques for sparse registration are more mature than their 

denser counterpart, and can now perform very well on frontal faces (see [EZ06] for a 

review). However, automatically detecting several or even 2-3 facial landmarks on 

different views of the face is not a trivial task. None of the methods up till now can 

guarantee an acceptable performance in detecting even 2-3 points reliably across 

different views. This is largely due to the fact that when a face rotates from frontal to left 

or right profile view, the appearance of individual facial parts also change considerably 
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and some parts simply disappear, e.g. when a face moves from frontal to right profile the 

left eye will not be visible any more and hence, any methods that try to detect center of 

both eyes will eventually fail. Current algorithms addressing recognizing faces across 

pose variations, therefore, rely mostly on manually located landmarks for the purpose of 

alignment.  

Keeping in view the preceding discussion, one may instantly note that this over 

reliance of almost all of the current face recognition systems on a strict alignment, either 

via sparsely registered faces or with densely registered faces, becomes counterproductive 

for a fully automatic face recognition system, especially in unconstrained scenarios 

where a large pose variation may be expected. This is because automatically detecting 

several facial landmarks with pixel accuracy can never be guaranteed, leading to 

misalignments which in turn has an adverse effect on recognition performance. 

One way of overcoming this limitation for fully automatic face recognition systems 

would be to use large training sets for each person covering all possible variations of the 

faces due to misalignments and/or other variations, as also noted in [M02]. However, as 

indicated earlier, this is practically not achievable. The other possible way would be to 

investigate such facial representations which are inherently robust or invariant against 

such misalignments and therefore do not require a strict alignment procedure. We will 

focus on this goal in the next chapter. 

2.2 Face Recognition: Literature Review 

The development of machines capable of automatic face perception has been multi-

disciplinary. It has benefited from areas as varied as computer science, cognitive science, 

mathematics, physics, psychology and neurobiology. For over three decades a 

voluminous literature on face recognition has been produced. Psychology has shown that 

the factors contributing to successful face recognition are quite complex. Nevertheless 

changes in facial expression and angle do affect recognition of unfamiliar faces whereas 

recognition of familiar faces is not affected by such changes. Moderate changes in 

viewing angle and facial expressions do not affect recognition accuracy. It is clear, 

therefore, that different processes are engaged in the recognition of familiar and 
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unfamiliar faces. Recognition of familiar faces appears to be relatively robust against 

changes in viewing angle, whereas unfamiliar faces are affected by rotation of the head 

[PA03]. 

Neurobiologists have long been studying the mechanism by which the brain 

recognizes faces, many of whom believe that the brain perceives faces as "special" and 

very different from other visual objects. For example, classic studies found that turning 

the image of a face upside down compromises recognition much more than it does for 

similarly inverting other objects. In a ground breaking work [MWB97] demonstrated 

that human mind process faces in a separate special area of the brain called fusiform that 

is separate from the general purpose visual processing system and as such recognizing 

faces is different from recognizing general objects. This has been an overwhelming view 

over the past decade until recently new studies [J06] provide a compelling array of 

evidence supporting the idea that the processing of faces and objects do not rely on 

qualitatively different mechanisms. Computer scientists are using these guidelines to 

enable machines to see and identify faces among other objects. The pattern recognition 

and computer vision techniques developed have largely been investigated to solve the 

problem of machine-based or computer based face recognition. 

Computer-based face recognition can be mainly categorized into appearance-based 

methods and model-based methods. Appearance-based methods tend to describe the 

whole appearance of the face by vectorizing the face image pixels into a n  feature 

space. Subspace analysis is then carried out into this feature space. Since the common 

appearance-based approaches builds on the image pixels, they are very sensitive to 

appearance variations caused due to e.g. lighting and pose. Model based approaches 

builds a person specific model of the face based on modeling selected features on the 

face. Below we review some of the most important methods employed in these two 

domains. 

2.2.1 Appearance-based methods 

Many approaches to object recognition and to computer graphics are based directly on 

images without the use of intermediate 3D models. Most of these techniques depend on a 
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representation of images that induces a vector space structure and, in principle, requires 

dense correspondence. Appearance-based approaches represent an object in terms of 

several object views (raw intensity images). An image is considered as a high-

dimensional vector, i.e. a point in a high-dimensional vector space. Many view-based 

approaches use statistical techniques to analyze the distribution of the object image 

vectors in the vector space, and derive an efficient and effective representation (feature 

space) according to different applications. Given a test image, the similarity between the 

stored prototypes and the test view is then established in the feature space. 

2.2.1.1 Subspace analysis 

Image data can be represented as vectors, i.e., as points in a high dimensional vector 

space. For example, a m n  2D image can be mapped to a vector  mnx R  by 

lexicographic ordering of the pixel elements (such as by concatenating each row or 

column of the image). Despite this high-dimensional embedding, the natural constraints 

of the physical world (and the imaging process) dictate that the data will, in fact, lie in a 

lower-dimensional manifold. The primary goal of the subspace analysis is to identify, 

represent, and parameterize this manifold in accordance with some optimality criteria. 

Principal component analysis ‘PCA’ is the most common way of finding the 

subspace that describes the most variance of the data. One of the benchmark appearance 

based method, Eigenface [TP91] uses PCA to construct this subspace also termed as face 

space. The aim of PCA is to identify a subspace spanned by the training images which 

could decorrelate the variance of pixel values. The PCA finds the orthogonal directions 

that account for the highest amount of variance. The data is then projected into the 

subspace spanned by these directions. In practice, the principal component axes are the 

eigenvectors of the covariance matrix of the data. The corresponding Eigen-values 

indicate the proportion of variance of the data projections along each direction.  Thus for 

‘M’ training images {x1, x2,…., xM}, where each x is a d-dimensional vector, one can 

find the principal components by Eigen analysis of the covariance matrix . 
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Figure 2-2: Eigenvectors corresponding to the 7 largest Eigen-values for a subject 

shown as images (derived from ORL face database [ORL]). 

The largest Eigen-vectors are then found by using corresponding Eigen analysis, 

   E E  (2.2) 

where E  and   are the resulting Eigen vectors, also known as Eigen faces, and Eigen 

values respectively. The representation of a face image in the PCA subspace is then 

obtained by projecting it to the coordinate system defined by the Eigen faces [TP91]. 

The Eigen-faces corresponding to the 7 largest Eigen values, derived from ORL face 

database [ORL], are shown in Fig. 2-2. Several extensions of PCA are developed, such 

as modular Eigen spaces [PMS94] and probabilistic subspaces [BM02]. 

PCA can achieve the optimal representation in the sense of maximizing the overall 

data variance. However, the difference between faces from the same person due to 

illumination and pose (within-class scatter) seems to be larger than that due to facial 

identity (between-class scatter). Based on this observation, linear discriminant analysis 

(LDA) is applied that uses the class information to select a subspace in which different 

classes are optimally represented. LDA uses Fisher face methods [BHK97]. The Fisher 

face algorithm is derived from the Fisher Linear Discriminant (FLD), which uses class 

specific information. By defining different classes with different statistics, the images in 

the learning set are divided into the corresponding classes. Then, techniques similar to 

those used in Eigen face algorithm are applied. The Fisher face algorithm results in a 

higher accuracy rate in recognizing faces when compared with Eigen face algorithm. 

LDA defines a projection that makes the within-class scatter small and the between class 

scatter large. This projection has shown to be able to improve classification performance 

over PCA. However, it requires a large training sample set for good generalization, 

which is usually not available for face recognition applications. To address such Small 

Sample Size (SSS) problems, Zhao et al. [ZKCSW98] perform PCA to reduce feature 

dimension before LDA projection.  
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By using higher order statistical analysis, Independent Component Analysis (ICA) was 

first adopted by [BMS02] for face recognition. The work showed that ICA outperformed 

PCA. However, other researchers [DBBB03] observed that when the right distance 

metric is used, PCA significantly outperforms ICA on the FERET database. 

PCA, LDA and ICA are common linear subspace projections, however, since face 

data defines a non-linear manifold into the feature space, non-linear subspace analysis 

techniques have also been developed. Recently, kernel methods have been successfully 

applied to solve pattern recognition problems because of their capacity to handle 

nonlinear data. By mapping sample data to a higher dimensional feature space, 

effectively a nonlinear problem defined in the original image space is turned into a linear 

problem in the feature space [SS02]. PCA or LDA can subsequently be performed in this 

feature space and are thus called Kernel Principal Component Analysis (KPCA) and 

Generalized Discriminant Analysis (GDA) [BA00]. Experiments show that KPCA and 

GDA are able to extract nonlinear features and thus provide better recognition. 

2.2.2 Model-based approaches 

The model-based face recognition scheme is aimed at constructing a model of the human 

face, which is able to capture the facial variations. The prior knowledge of human face is 

highly utilized to design the model. For example, feature-based matching derives 

distance and relative position features from the placement of internal facial elements 

(e.g., eyes, etc.). Kanade [Kan73] developed one of the earliest face recognition 

algorithms based on automatic feature detection. By localizing the corners of the eyes, 

nostrils, etc. in frontal views, his system computed parameters for each face, which were 

compared (using a Euclidean metric) against the parameters of known faces. A more 

recent feature-based system, based on elastic bunch graph matching, was developed by 

Wiskott et al. [WFKM97] as an extension to their original graph matching system 

[LVBM93]. By integrating both shape and texture, Cootes et al. [LTC97] [CET01] 

developed a 2D morphable face model, through which the face variations are learned. A 

more advanced 3D morphable face model is explored to capture the true 3D structure of 

human face surface. The model-based scheme usually contains three steps: 1) 
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Constructing the model; 2) Fitting the model to the given face image; 3) Using the 

parameters of the fitted model as the feature vector to calculate the similarity between 

the query face and prototype faces in the database to perform the recognition. 

2.2.2.1 Elastic graph matching 

Lades et al. [LVBM93] proposed an approach for face recognition using Gabor filters 

called Dynamic Link Architecture (DLA). In this approach a face is represented by a 

labeled graph. The graph is a rectangular grid placed on the image (Figure 2.3) where 

nodes are labeled with responses of Gabor filters in several orientations and several 

spatial frequencies called jets. The edges are labeled with distances, where each edge 

connects two nodes on the graph. Comparing two faces is accomplished by adapting and 

matching the graph of a reference image to the graph of the test image. 

 

 

Figure 2-3: Example of grid matching. (a) Reference grid, (b) matched grid, 

[LVBM93]. 

Later on, Wiskott et al [WFKM97] extended DLA to Elastic Bunch Graph Matching 

(EBGM), where graph nodes are located at a number of selected facial landmarks, see 

Figure 2-4. The EBGM has shown very competitive performance and been ranked as the 

top method in a previous FERET evaluation [PMRR00]. The goal of Elastic graph  

.  

 (a)  (b) 
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Figure 2-4: Adapted graphs for faces in different views [WFKM97]. 

 

matching is to find the fiducial points on a query image and thus to extract from the 

image a graph which maximizes the graph similarity function. This is performed 

automatically if the face bunch graph is appropriately initialized. A face bunch graph 

consists of a collection of individual face model graphs combined into a stack-like 

structure, in which each node contains the jets of all previously initialized faces from the 

database. To position the grid on a new face, the graph similarity between the image 

graph and the existing face bunch graph is maximized. Graph similarity is defined as the 

average of the best possible match between the new image and any face stored within the 

face bunch graph minus a topographical term (see Equation 2.4), which accounts for 

distortion between the image grid and the face bunch graphs. The similarity ‘ S ’ 

between two jets is defined as: 
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where ja  and ja  are magnitude and phase of the Gabor coefficients in the jth jet, 

respectively; d


 is the displacement between locations of the two jets, k determines the 

wavelength and orientation of the Gabor wavelet kernels. For an image graph GI
 with 

nodes n = 1,….,N and edges e = 1,……,E and a face bunch graph B with model graphs 

m = 1,……,M, the graph similarity is defined as: 
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where λ determines the relative importance of jets and metric structure, Jn is the jets at 

nodes n, and  ex is the distance vector used as labels at edges e. After the grid has been 

positioned on the new face, the face is identified by comparing the similarity between 

that face and every face stored in the bunch graph. Graphs can be easily translated, 

rotated, scaled, and elastically deformed, thus compensating for the variance in face 

images. Based on the elastic graph matching framework, a number of variations have 

been proposed in the literature [MH03] [DFB99] [LL00] [GIAA03] [WQ02]. 

2.2.2.2 Active appearance and shape model 

Another prominent work is the Active Appearance Model (AAM) proposed by [LTC97]. 

An Active Appearance Model (AAM) is an integrated statistical model which combines 

a model of shape variation, active shape model (ASM) with a model of the appearance 

variations in a shape-normalized frame. An AAM contains a statistical model of the 

shape and gray-level appearance of the object of interest which can generalize to almost 

any valid example. Matching to an image involves finding model parameters which 

minimize the difference between the image and a synthesized model example, projected 

onto the image. The potentially large number of parameters makes this a difficult 

problem. To recognize a face image, both ASM and AAM are adjusted to fit the new 

image, which generates a number of shape and texture parameters. Those parameters, 

together with the local profiles at model points, are used for face recognition. The AAM 

is constructed based on a training set of labeled images, where landmark points are 

marked on each example face at key positions to outline the main features, shown in 

Figure 2-5, along with the landmarks the effects of varying the first two parameters of 

shape and appearance models are also shown. 
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Figure 2-5: (a) Landmarks for AAM, (b) variance of facial shape (c) variance of 

facial appearance, [LTC97]. 

The shape of a face is represented by a vector consisting of the positions of the 

landmarks, s = (x1,y1,…..,xn,yn)T, where (xi,yi) denotes the 2D image coordinate of the ith 

landmark point. All shape vectors of faces are normalized into a common coordinate 

system. The principal component analysis is applied to this set of shape vectors to 

construct the face shape model, denoted as: s ss  s  P b  , where s is a shape vector, s  

is the mean shape, Ps is a set of orthogonal modes of shape variation and bs is a set of 

shape parameters. In order to construct the appearance model, the example image is 

warped to make the control points match the mean shape. Then the warped image region 

covered by the mean shape is sampled to extract the gray level intensity (texture) 

information. Similar to the shape model construction, a vector is generated as the 

representation, 1 m( ,...., I ) Tg I  where Ii denotes the intensity of the sampled pixel in the 

warped image. PCA is also applied to construct a linear model,g  g  P b  g g , where g  

is the mean appearance vector, Pg is a set of orthogonal modes of gray-level variation 

and bg is a set of gray-level model parameters. Thus, all shape and texture of any 

example face can be summarized by the vectors bs and bg. The combined model is the 

concatenated version of bs and bg, denoted as follows: 

 

  (a)   (b)   (c) 
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where, Ws is a diagonal matrix of weights for each shape parameter, allowing for the 

difference in units between the shape and gray scale models. 

The model was built based on 300 training face images, each with 122 landmark points 

[ECT98]. A shape model with 23 parameters, a shape-normalized texture model with 

113 parameters and a combined appearance model with 80 parameters are generated.  

For all the training images, the corresponding model parameter vectors are used as the 

feature vectors. The linear discrimination analysis is utilized to construct the 

discriminant subspace for face identity recognition. Given a query image, the AAM 

fitting is applied to extract the corresponding feature vector. The recognition is achieved 

by finding the best match between the query feature vector and stored prototype feature 

vectors, both of which are projected onto the discriminant subspace [CET01]. An 

example of the AAM fitting is shown in Figure 2-6. 

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-6: Example of AAM fitting, [CET01] 

 

initial 3 iter 8 iter 11 iter converged Original  
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2.2.2.3 Other statistical models 

In the 2D context, among others, generative models based on Hidden Markov Modeling 

‘HMM’ and Gaussian mixtures models ‘GMM’ have also been employed. HMM are 

widely used to learn the state and transitional probabilities between a number of hidden 

states. HMMs are normally trained from examples that are represented by a sequence of 

observations. The parameters of the HMM are initialized and then adjusted to maximize 

the probability of the observation of the given training samples. Samaria and Young 

[SY94]  first proposed a HMM architecture for face recognition. A face pattern is divided 

into several regions such as forehead, eyes, nose, mouth and chin. These regions occur in 

the natural order from top to bottom and they are used to form the hidden states of 1D or 

pseudo 2D HMMs. To train a HMM, each face image is represented by a sequence of 

observation vectors, which are constructed from the pixels of a sub window. Nefian and 

Hayes [NH99] proposed the embedded 2D HMM, which consists of a set of super states 

with each super state being associated with a set of embedded states. Super states 

represent primary facial regions while embedded states within each super state describe 

in more detail the facial regions. However, HMM based systems require lots of images 

for training, and are only capable of operating on small databases. The performance 

drops dramatically as the size of database is scaled up. For example, performance of 

Nefian and Hayes’s method drops from 97.5% to 32.5% when the number of subjects 

rises from 40 to 200 [BS03]. Another important issue associated with HMM based 

approaches is the model training process. Usually when there is a database update, e.g. 

there are new faces or images to be enrolled or to be removed, the HMMs need to be 

retrained. This issue affects the flexibility of HMM systems with large or frequently 

updated database. Compared to 1D and pseudo 2D HMM, very recently [Hun08] 

proposed an extension called Joint Multiple-HMM. This approach offers computational 

advantages and the good learning ability from just a single sample per class. The new 

method also includes some improvements over its previous counterparts and does not 

require retraining HMMs for new images or subjects. 

In another recent work, Gaussian mixture models are used, to address the pose 

invariant face recognition. A generic GMM face model is first derived from an 
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independent database of faces for each view, and then this model is adapted for each 

client (person) to be recognized later. A composite model for all views is then generated 

for each person. The method is tested in a verification scenario and provides reasonable 

accuracy in near frontal views [CSB06].  

2.2.3 3D face recognition 

Human face is a surface lying in the 3D space intrinsically. Therefore, in principle, the 

3D model is better for representing faces, especially to handle facial variations, such as 

pose, illumination. Blanz et al. [BV99] [BRV02] proposed a method based on a 3D 

morphable face model that encodes shape and texture in terms of model parameters, and 

an algorithm that recovers these parameters from a single image of a face. To handle the 

extreme image variations induced by these parameters, one common approach taken by 

various authors is to use generative image models. For image analysis, the general 

strategy of all these techniques is to fit the generative model to a new image, thereby 

parameterize it in terms of the model. In order to make identification independent of 

imaging conditions, the goal is to separate intrinsic model parameters of the face from 

extrinsic imaging parameters. The separation of intrinsic and extrinsic parameters is 

achieved explicitly by simulating the process of image formation using 3D computer 

graphics technology. In these works, a 3D face model was usually used to synthesize 

images with different illumination and poses from a frontal face image, 2D techniques 

are then applied to the synthesized images for recognition. Figure 2-7 illustrates the 

scheme.  

Similar work can also be found in [ZC00] [LR03]. With the development of 3D 

capture systems, face recognition using 3D facial data is also attracting much attention. 

[BA00] developed both surface matching and central/lateral profiles for recognition, the 

results show that the two methods give the same level of performance. Some works also 

applied 2D techniques to 3D range data for recognition, e.g., 3D Eigenfaces [HE02]. In 

addition to using 3D data only, multi-modal 3D+2D face recognition has also been 

proposed [WCH02]. 
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Figure 2-7: The goal of the 3D model fitting process is to find shape and texture 

coefficients α and β such that rendering Rp produces an image Imodel that is as 

similar as possible to Iinput [BRV02]. 

While 3D shape is defined independent of illumination, it is sensed dependent of 

illuminations. “Holes” may occur in areas where data is missing [BCF06], even under 

ideal illuminations, 3D depth resolution also needs to be improved to benefit the 

recognition algorithms. 

2.2.4 Other approaches 

A large number of other important approaches for face recognition systems have been 

investigated, here we have reviewed the most important and key ideas. Some more 

recent methods addressing view-point invariant face recognition will be discussed in part 

3 of this thesis.  For a more complete list on the existing literature, see some of the 

recent face recognition literature reviews [ZCRP03] [ANRS07]. 

2.3 Facial Databases and Protocols  

A number of face databases have been collected for different face recognition tasks and 

the choice of the ones used in order to evaluate the performances has to be considered 

carefully. Actually, there is no ideal database and the test data should represent as 

loosely as possible the data encountered in real life and thus depends on the final 

application. A large variability occurs in the existing face databases in terms of camera 

quality, time lapse between the different images and capture of images under variable 

environment. The variable environment includes head pose variability, illumination 

conditions, background, expression etc.   
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Keeping in mind these parameters, we have chosen two large and comprehensive face 

databases, FERET and CMU-PIE face databases that are publically available and 

includes thousands of images depicting large variations due to pose and illumination and 

expression. The choice is also motivated by the fact that most of the competitive face 

recognition methods use these to report the performance, and this provides a standard 

benchmark to compare our method with that of others. Despite these, another face 

database, the ORL face database, is also used. The ORL face database however is a 

small database (in terms of the variability presented in images of each person) and is 

primarily used for preliminary experiments and some validation and parameter setting 

procedures. However, all these three databases are very popular and being used by the 

face recognition community in order to design, evaluate and compare their systems. 

With the primary focus of this thesis to develop techniques for recognition across 

pose and illumination variations, the chosen databases provide a very good platform. 

2.3.1 The ORL database 

The Olivetti Research Ltd. (ORL) database (http://www.cam-orl.co.uk) contains images 

from 40 individuals, each providing 10 different images. Each image contains a face area 

mainly (with little background). All the images are grayscale at a resolution of 92 x 112 

pixels. The 10 different images of each person include variations of pose (some tilting 

and rotation of the face of up to 20 degrees) and facial expressions, while the 

illumination is almost constant. In addition, there is variation in the scale of up to about 

10 percent. Moreover, the images are not aligned. About half of the faces are upright and 

have a small rotation on the y-axis. The other half of the faces show different amounts of 

perspective variations. Thus the ORL face images are very similar to those produced 

from an automatic face detection system in terms of precision in localization, scale, pose 

and normalization. Figure 2-8 shows all 10 examples per subject for a number of 

subjects. 
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Figure 2-8: Example images of different subjects in ORL face database 

2.3.2 The CMU-PIE database 

The CMU Pose Illumination Expression (PIE) database [SBB02] contains a total of 

41,368 images taken from 68 individuals. The subjects were imaged in the CMU 3D 

Room using a set of 13 synchronized high-quality color cameras and 21 flashes. The 

resulting images are 640x480 in size, with 24-bit color resolution.  Each of the 13 poses 

is separated by approximately 22.5o, and thus varies from full left profile to frontal and 

so on to full right profile. Some typical pose variations for one subject are shown in 

figure 2-9. Four expression variations are captured in each pose for each subject. These 

are neutral, smiling, blinking and talking. Illumination variations are captured for each 

subject in each pose with each of 21 flashes both with and without ambient lighting, see 

figure 2-10 for an example. 4 of the 13 cameras (c25,c09, c07,and c37, figure 2-9) are 

placed above the head in frontal and ¾ profile views, so as to capture the up and down 

tilt of the face. This is done to mimic a typical surveillance camera capture situation. 
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Figure 2-9: An example of pose variation in the CMU PIE database. Images of one 

person from 8 of the 13 cameras are shown. The other 5 camera are arranged 

symmetrically to the 5 cameras on the left. The pose varies from full left profile to 

full frontal and so on to full right profile [SBB02]. 

 

 

 
 
 
 
 
 
 



 32 
 
 

 
 
 
 
 
 

Figure 2-10: PIE expression and Illumination variations captured in each pose for 

each person. (a) Different expression variations (b) Different illumination 

conditions with ambient lighting (c) Different illumination conditions without 

ambient lighting. 
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2.3.3 The FERET database 

The Facial Recognition Technology database ‘FERET’ [PMRR00] has been distributed 

primarily for documenting the advances in automatic face recognition and is 

administered by National Institute of Standards and Technology ‘NIST’ in United States.  

This is the most comprehensive publically available database and contains a large 

number of subjects captured under different expression, pose, illumination and aging. 

The most common FERET protocol defines evaluation strategy by giving standard 

training and test sets, mainly used in frontal face recognition scenarios in different 

illumination, expression and aging effects. While, here we used the subset of FERET 

database that concerns pose variations, called the pose subset. The database contains a 

total of 14,126 images that includes 1199 individuals. Where, the pose subset includes 

images of 200 persons in 9 different poses. Tabel 2-1 summarize the distribution and 

nomenclature of the pose subset used in this thesis. Figure 2-11 shows typical pose 

variations for one of the subjects in FERET. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11: Pose variations in FERET pose subset. 
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Table 2-1: Nomenclature of Pose subset in FERET Database [PMRR00] 

Two letter 
code 

Pose Angle 
(degrees) 

Description Number in 
Database 

Number of 
Subjects 

fa 0 = frontal  Regular facial expression 1762 1010 
fb 0 Alternative facial 

expression 
1518 1009 

ba 0 Frontal “b” series 200 200 
bj 0 Alternative expression to 

ba 
200 200 

bk 0 Different illumination to 
ba 

200 200 

bb +60 200 200 
bc +45 200 200 
bd +25 200 200 
be +15 

Subject faces to his left 
which is the photographer’s 
right 

200 200 
bf -15 200 200 
bg -25 200 200 
bh -45 200 200 
bi -60 

Subject faces to his right 
which is the photographer’s 
left 

200 200 
ql -22.5 763 508 
qr +22.5 

Quarter left and right 
763 508 

hl -67.5 1246 904 
hr +67.5 Half left and right 1298 939 
pl -90 1318 974 
pr +90 Profile left and right 1342 980 

 
 

2.4 Conclusion 

In this chapter we have elaborated on the background and specifics of an automatic face 

recognition process. More specifically, we differentiate the face localization from 

alignment and argue that the alignment stage has to be avoided in order to realize a fully 

automatic system especially when considering the pose variations. A brief but 

comprehensive literature review of the current state of the art methods is presented, and 

the facial databases used along this thesis have been described. 
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Chapter 3. Feature Extraction for 

Face Recognition 

The goal of feature extraction is to find a specific representation of the data that can 

highlight relevant information. This representation can be found by maximizing a 

criterion or can be a pre-defined representation. Usually, a face image is represented by a 

high dimensional vector containing pixel values (holistic representation) or a set of 

vectors where each vector summarizes the underlying content of a local region by using 

a high level transformation (local representation). Typically, the vectors are projected 

into a new space (the feature space), then, the least relevant features can be removed to 

reduce the dimension of the feature vector according to some criterion. 

In this chapter we present an overview of the most relevant feature extraction 

techniques used in face recognition and propose a feature extraction technique, to be 

used in face recognition for the first time, which has a number of advantages over the 

commonly used feature descriptions in the context of face recognition. 

3.1 Holistic Vs Local Features-What Features to Use? 

Holistic representation is the most typical to be used in face recognition. It is based on 

lexicographic ordering of raw pixel values to yield one vector per image. An image can 

now be seen as a point in a high dimensional feature space. The dimensionality 

corresponds directly to the size of the image in terms of pixels. Therefore, an image of 

size 100x100 pixels can be seen as a point in a 10,000 dimensional feature space. This 

large dimensionality of the problem prohibits the use of any learning to be carried out in 

such a high dimensional feature space. This is called the curse of dimensionality in the 

pattern recognition literature [DHS01]. A common way of dealing with it is to employ a 

dimensionality reduction technique such as PCA to pose the problem into a low-
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dimensional feature space such that the major modes of variation of the data are still 

preserved.   

Local feature extraction refers to describing only a local region/part of the image by 

using some transformation rule or specific measurements such that the final result 

describes the underlying image content in a manner that should yield a unique solution 

whenever the same content is encountered. In doing so, however it is also required to 

have some degree of invariance with respect to commonly encountered variations such 

as translation, scale and rotations. 

A number of authors [PMS94] [CSB06] [ZJN07] do not differentiate the holistic and 

local approaches according to the very nature they are obtained, but rather use the terms 

in lieu of global (having one feature vector per image) and a bag-of-feature (having 

several feature vectors per image) respectively. Here we want to put the both terms into 

their right context, and hence a holistic representation can be obtained for several local 

regions of the image and similarly a local representation can still be obtained by 

concatenating several locally processed regions of the image into one global vector, see 

figure 3-1 for an illustration. An example of the first usage is local-PCA or modular- 

PCA [GA04] [TC05], where an image is divided into several parts or regions, and each 

region is then described by a vector comprising underlying raw-pixel values, PCA is 

then employed to reduce the dimensionality. Note that it is called local since it uses 

several local patches of the same image but it is still holistic in nature. An example of 

the second is what usually found in the literature, e.g. Gabor filtering, Discrete Cosine 

Transform ‘DCT’, Local Binary Pattern ‘LBP’  etc where each pixel or local region of 

the image is described by a vector and concatenated into a global description [ZJN07], 

note that they still give rise to one vector per image but they are called local in the 

literature because they summarize the local content of the image at a location in a way 

that is invariant with respect to some intrinsic image properties e.g. scale, translation 

and/or rotation. 

Keeping in view the above discussion it is common in face recognition to either 

follow a global feature extraction or a bag-of-features approach. The choice, of what is 

optimal, depends on the final application in mind and hence is not trivial. However, there 

are a number of advantages and disadvantages with both the approaches.  
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Figure 3-1: Global and bag-of-feature representation for a face image. 

1 2 3  N-1 N 

One global vector per image 
obtained by concatenating pixels 
(holistic) or processed local 
regions/patches (local). 

A “bag-of-features” approach, where N vectors are obtained for N local 
patches/regions. Each feature vector may be obtained by holistic or local feature 
extraction. 
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For instance, a global description is generally preferred for face recognition since it 

preserves the configural (i.e., the interrelations between facial parts) information of the 

face, which is very important for preserving the identity of the individual as have been 

evidenced both from psychological [MCVC06], neurobiological [SWCG06] [HRS08] 

and computer vision [BHK97] [CLLH01] communities. On the other hand, a bag-of-

features approach has been taken by a number of authors [BP93] [M02] [KY03] and 

shown improved recognition results in the presence of occlusion etc., nonetheless in 

doing so, these approaches are bound to preserve the configural information of the facial 

parts either implicitly or explicitly by comparing only the corresponding parts in two 

images and hence put a hard demand on the requirement of proper and precise alignment 

of facial images.  

Note that while occlusion may be the one strong reason to consider a bag-of-

features approach, the tendency of preserving the spatial arrangement of different facial 

parts (configural information) is largely compromised. As evidenced from the many 

studies from interdisciplinary fields that this spatial arrangement is in fact quite crucial 

in order to preserve the identity of an individual, we therefore, advocate the use of a 

global representation for a face image in this dissertation, as has also been used by many 

others.  

One may, however, note that a global representation does not necessarily mean a 

holistic representation, as described before. In fact, for the automatic unconstrained face 

recognition, where there may be much variation in terms of scale, lighting, 

misalignments etc, the choice of using local feature extraction becomes imperative since 

holistic representation can not generalize in these scenarios and is known to be highly 

affected by these in-class variations. 

3.2 Holistic Feature Extraction 

Holistic feature extraction is the most widely used feature description technique in 

appearance based face recognition methods. Despite its poor generalization abilities in 

unconstrained scenarios, it is being used for the main reason that any local extraction 
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technique is a form of information reduction in that it typically finds a transformation 

that describes a large data by few numbers. Since from a strict general object recognition 

stand point, face is one class of object, and thus discriminating within this class puts very 

high demands in finding subtle details of an image that discriminates among different 

faces. Therefore each pixel of an image is considered valuable information and holistic 

processing develops. However, a holistic-based global representation as been used 

classically [TP91] can not perform well and therefore more recently many researchers 

used a bag-of-features approach, where each block or image patch is described by 

holistic representation and the deformation of each patch is modeled for each face class 

[KY03] [LC06] [ALC08]. 

3.2.1 Eigenface-A global representation 

Given a face image matrix F of size Y x X, a vector representation is constructed by 

concatenating all the columns of F to form a column vector f


of dimensionality YX. 

Given a set of training vectors 1{ } 
Np

i if


 for all persons, a new set of mean subtracted 

vectors is formed using: 

 , 1, 2,....,  i i pg f f i N

 
 (3.1) 

The mean subtracted training set is represented as a matrix 1 2[ , ,..., ] NpG g g g   . The 

covariance matrix is then calculated using,   TGG . Due to the size of , calculation 

of the eigenvectors of   can be computationally infeasible. However, if the number of 

training vectors (Np) is less than their dimensionality (YX), there will be only Np-1 

meaningful eigenvectors. Turk and Pentland [TP91] exploit this fact to determine the 

eigenvectors using an alternative method summarized as follows. Let us denote the 

eigenvectors of matrix GTG as jv  with corresponding eigenvalues j : 

  T
j j jG Gv v   (3.2) 

 
Pre-multiplying both sides by G gives us:  T

j j jGG Gv Gv  , Letting je Gv   and 

substituting for   from equation 3.1: 



 41 
 
 

   j j je e   (3.3) 

Hence the eigenvectors of   can be found by pre-multiplying the eigenvectors of GTG 

by G. To achieve dimensionality reduction, let us construct matrix 1 1[ , ,..., ] DE e e e   , 

containing D eigenvectors of with largest corresponding eigenvalues. Here, D<Np, a 

feature vector x  of dimensionality D is then derived from a face vector f


  using: 

 ( ) Tx E f f
   (3.4) 

Therefore, a face vector f


 is decomposed into D eigenvectors, known as eigenfaces. 

Similarly, employing the above mentioned Eigen analysis to each local patch of the 

image results into a bag-of-features approach. Pentland et al. extended the eigenface 

technique to a layered representation by combining eigenfaces and other eigenmodules, 

such as eigeneyes, eigennoses, and eigenmouths [PMS94]. Recognition is then 

performed by finding a projection of the test image patch to each of the learned local 

Eigen subspaces for every individual. 

3.3 Local Feature Extraction 

[GA04] argued that some of the local facial features did not vary with pose, direction of 

lighting and facial expression and, therefore, suggested dividing the face region into 

smaller sub images. The goal of local feature extraction thus becomes to represent these 

local regions effectively and comprehensively. Here we present the most commonly 

used local feature extractions techniques in face recognition namely the Gabor wavelet 

transform based features , discrete cosine transform DCT-based features and more 

recently proposed Local binary pattern LBP features.  

3.3.1 2D Gabor wavelets 

The 2D Gabor elementary function was first introduced by Granlund [Gra78]. Gabor 

wavelets demonstrate two desirable characteristic: spatial locality and orientation 

selectivity. The structure and functions of Gabor kernels are similar to the two-

dimensional receptive fields of the mammalian cortical simple cells [HW78]. [OF96] 
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[RB95] [SC00] indicates that the Gabor wavelet representation of face images should be 

robust to variations due to illumination and facial expression changes. Two-dimensional 

Gabor wavelets were first introduced into biometric research by Daugman [D93] for 

human iris recognition. Lades et al. [LVBM93] first apply Gabor wavelets for face 

recognition using the Dynamic Link Architecture framework. 

A Gabor wavelet kernel can be thought of a product of a complex sinusoid plane 

wave with a Gaussian envelop. A Gabor wavelet generally used in face recognition is 

defined as [Liu04]: 

 

2 2 2,
2 ,

2
, 2 2

, 2( ) [ ]
 

 
u

u

k z
u ik z

u

k
z e e e






 




 (3.5) 

where z = (x, y) is the point with the horizontal coordinate x and the vertical coordinate 

y in the image plane. The parameters u and v define the orientation and frequency of the 

Gabor kernel, . denotes the norm operator, and   is related to the standard derivation 

of the Gaussian window in the kernel and determines the ratio of the Gaussian window 

width to the wavelength. The wave vector ,k  is defined as ,  ui
uk k e 
  . 

Following the parameters suggested in [LVBM93] and used widely in prior works 

[Liu04] [LW02], maxv v

kk
f

 and 
8

u
u

 . kmax is the maximum frequency, and fv is the 

spatial frequency between kernels in the frequency domain. {0,...,4}v and {0,...,7}u  

in order to have a Gabor kernel tuned to 5 scales and 8 orientations. Gabor wavelets are 

chosen relative to 2   , max 2
k   and 2f . The parameters ensures that 

frequencies are spaced in octave steps from 0 to  , typically each Gabor wavelet has a 

frequency bandwidth of one octave that is sufficient to have less overlap and cover the 

whole spectrum. 

The Gabor wavelet representation of an image is the convolution of the image with 

a family of Gabor kernels as defined by equation (3.5). The convolution of image I and a 

Gabor kernel , ( )u z is defined as follows: 

 , ,( ) ( ) ( ) u v uG z I z z  (3.5) 
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where ( , )z x y denotes the image position, the symbol ‘ ’ denotes the convolution  

operator, and , ( )u vG z  is the convolution result corresponding to the Gabor kernel at scale 

v and orientation u . The Gabor wavelet coefficient is a complex with a real and 

imaginary part, which can be rewritten as , ( )
, ,( ) ( ).e u vi z

u v u vG z A z  , where Au,v is the 

magnitude response and ,u v  is the phase of Gabor kernel at each image position. It is 

known that the magnitude varies slowly with the spatial position, while the phases rotate 

in some rate with positions, as can be seen from the example in figure 3-2. Due to this 

rotation, the phases taken from image points only a few pixels apart have very different 

values, although representing almost the same local feature [WFKM97]. This can cause 

severe problems for face matching, and it is just the reason that all most all of the 

previous works make use of only the magnitude part for face recognition. 

 

 
 
 
 
 
 
 
 
  
 
Figure 3-2: Visualization of Gabor magnitude (a) and phase response (b) for a face 

image with 40 Gabor wavelets (5 scales and 8 orientations). 

Note that, convolving an image with a bank of Gabor kernel tuned to 5 scales and 8 

orientations results in 40 magnitude and phase response maps of the same size as image. 

Therefore, considering only the magnitude response for the purpose of feature 

description, each pixel can be now described by a 40 dimensional feature vector (by 

concatenating all the response values at each scale and orientation) describing the 

response of Gabor filtering at that location.  

Note that Gabor feature extraction results in a highly localized and over complete 

response at each image location. In order to describe a whole face image by Gabor 

feature description the earlier methods take into account the response only at certain 

(a) (b) 
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image locations, e.g. by placing a coarse rectangular grid over the image and taking the 

response only at the nodes of the grid [LVBM93] or just considering the points at 

important facial landmarks as in Wiskot et al [WFKM97]. The recognition is then 

performed by directly comparing the corresponding points in two images. This is done 

for the main reason of putting an upper limit on the dimensionality of the problem. 

However, in doing so they implicitly assume a perfect alignment between all the facial 

images, and moreover the selected points that needs to be compared have to be detected 

with pixel accuracy.  

One way of relaxing the constraint of detecting landmarks with pixel accuracy is to 

describe the image by a global feature vector either by concatenating all the pixel 

responses into one long vector or employ a feature selection mechanism to only include 

significant points [WYS02] [LLS04] . One global vector per image results in a very high 

and prohibitive dimensional problem, since e.g. a 100x100 image would result in a 

40x100x100=400000 dimensional feature vector. Some authors used Kernel PCA to 

reduce this dimensionality termed as Gabor-KPCA [Liu04], and others [WYS02] 

[LLS04] [WCH02] employ a feature selection mechanism for selecting only the 

important points by using some automated methods such as Adaboost etc.. Nonetheless, 

a global description in this case still results in a very high dimensional feature vector, 

e.g. in [WCH02] authors selected only 32 points in an image of size 64x64, which 

results in 32x40=1280 dimensional vector, due to this high dimensionality the 

recognition is usually performed by computing directly a distance measure or similarity 

metric between two images. The other way can be of taking a bag-of-feature approach 

where each selected point is considered an independent feature, but in this case the 

configural information of the face is effectively lost and as such it can not be applied 

directly in situations where a large pose variations and other appearance variations are 

expected. 

The Gabor based feature description of faces although have shown superior results 

in terms of recognition, however we note that this is only the case when frontal or near 

frontal facial images are considered. Due to the problems associated with the large 

dimensionality, and thus the requirement of feature selection, it can not be applied 

directly in scenarios where large pose variations are present. 
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3.3.2 2D Discrete cosine transform 

Another popular feature extraction technique has been to decompose the image on block 

by block basis and describe each block by 2D Discrete Cosine Transform ‘DCT’ 

coefficients. An image block ( , )f p q , where ,  {0,1.., N 1} p q (typically N=8), is 

decomposed terms of orthogonal 2D DCT basis functions. The result is a NxN matrix 

C(v,u) containing 2D DCT coefficients: 

 
1 1

0 0
( , ) ( ) ( ) ( , ) ( , , , )

 

 

 
N N

y x
C v u v u f p q p q v u    (3.6) 

where , 0,1,2,..., 1 v u N , 1( )  Nv for v=0, and 2( )  Nv for v=1,2,…,N-1 and  

 (2 1) (2 1)( , , , ) cos cos
2 2
           

p v q up q v u
N N

   (3.7) 

The coefficients are ordered according to a zig-zag pattern, reflecting the amount of 

information stored [GW93]. For a block located at image position (x,y), the baseline 2D 

DCT feature vector is composed of: 

 ( , ) ( , ) ( , )
1 1[ ... ] x y x y x y T

o Mx c c c  (3.8) 

Where ( , )x y
nc  denotes the n-th 2D DCT coefficient and M is the number of retained 

coefficients3. To ensure adequate representation of the image, each block overlaps its 

horizontally and vertically neighboring blocks by 50% [EMR00]. M is typically set to 15 

therefore each block yields a 15 dimensional feature vector. Thus for an image which 

has Y rows and X columns, there are (2 1) (2 1)   Y X
D N NN blocks [sanderson04]. 

DCT based features have mainly been used in HMM based methods in frontal 

scenarios. More recently [] proposed an extension of conventional DCT based features 

by replacing the first 3 coefficients with there corresponding horizontal and vertical 

deltas termed as DCTmod2, resulting into an 18-dimensional feature vector for each 

block. The authors claimed that this way the feature vectors are less affected by 

illumination change. They then use a bag-of-feature approach to derive person specific 

face models by using GMM.  
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3.3.3 Local Binary Pattern Histogram and other features 

Local binary pattern (LBP) was originally designed for texture classification [OPM02] , 

and was introduced in face recognition in [AHP04]. As mentioned in [AHP04] the 

operator labels the pixels of an image by thresholding some neighborhood of each pixel 

with the center value and considering the result as a binary number. Then the histogram 

of the labels can be used as a texture descriptor. See figure 3-3 for an illustration of the 

basic 2
,

U
P RLBP  operator. The face area is divided into several small windows. Several LBP 

operators are compared and 2
8,2
ULBP  the operator in 18x21 pixel windows is 

recommended because it is a good tradeoff between recognition performance and feature 

vector length. The subscript represents using the operator in a (P, R) neighborhood. 

Superscript U2 stands for using only uniform patterns and labeling all remaining patterns 

with a single label, see [AHP04] for details. The chi square statistic and the weighted chi 

square statistic were adopted to compare local binary pattern histograms.  

Recently Zhang et al. [ZSGCZ05] proposed local Gabor binary pattern histogram 

sequence (LGBPHS) by combining Gabor filters and the local binary operator. 

[BSXW07] further used LBP to encode Gabor filter phase response into an image 

histogram termed as Histogram of Gabor Phase Patterns (HGPP).  

 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 3-3: (a) the basic LBP operator. (b) The circular (8,2) neighborhood. The 

pixel values are bilinearly interpolated whenever the sampling point is not in the 

center of a pixel [AHP04]. 

(a) 

(b) 
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3.4 Face-GLOH-Signatures –Introduced feature 

representation for face recognition 

The mostly used local feature extraction and representation schemes presented in 

previous section have mainly been employed in a frontal face recognition task. There 

ability to perform equally well when a significant pose variation is present among 

images of the same person can not be guaranteed, especially when no alignment is 

assumed among facial images. This is because when these feature representations are 

used as a global description the necessity of having a precise alignment becomes 

unavoidable. While representations like 2D-DCT or LBP are much more susceptible to 

noise, e.g. due to illumination change as noted in Jie Zou et al [ZJN07] or pose variations, 

Gabor based features are considered to be more invariant with respect to these 

variations. However, as discussed earlier the global Gabor representation results in a 

prohibitively high dimensional problem and as such can not be directly used in statistical 

based methods to model these in-class variations due to pose for instance. Moreover the 

effect of misalignments on Gabor features has been studied [SGCCY04], where strong 

performance degradation is observed for different face recognition systems. 

As to the question, what description to use, there are some guidelines one can 

benefit from. For example, as discussed in section 3.1 the configural relationship of the 

face has to be preserved. Therefore a global representation as opposed to a bag-of-

features approach should be preferred. Further in order to account for the in-class 

variations the local regions of the image should be processed in a scale, rotation and 

translation invariant manner. Another important consideration should be with respect to 

the size of the local region used. Some recent studies [M02] [UVS02] [ZLG05] show 

that large areas should be preferred in order to preserve the identity in face identification 

scenarios.  

Keeping in view the preceding discussion we use features proposed in [MS05], used 

in other object recognition tasks, and introduce to employ these for the task of face 

recognition for the first time [SJH06][SH08b]. Our approach is to extract whole 

appearance of the face in a manner which is robust against misalignments. For this the 
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feature description is specifically adapted for the purpose of face recognition. It models 

the local parts of the face and combines them into a global description 

We use a representation based on gradient location-orientation histogram (GLOH) 

[MS05], which is more sophisticated and is specifically designed to reduce in-class 

variance by providing some degree of invariance to the aforementioned transformations. 

GLOH features are an extension to the descriptors used in the scale invariant feature 

transform (SIFT) [L04], and have been reported to outperform other types of descriptors 

in object recognition tasks [MS05]. Like SIFT the GLOH descriptor is a 3D histogram of 

gradient location and orientation, where location is quantized into a log-polar location 

grid and the gradient angle is quantized into eight orientations. Each orientation plane 

represents the gradient magnitude corresponding to a given orientation. To obtain 

illumination invariance, the descriptor is normalized by the square root of the sum of 

squared components.  

Originally [MS05] used the log-polar location grid with three bins in radial direction 

(the radius set to 6, 11, and 15) and 8 in angular direction, which results in 17 location 

bins. The gradient orientations are quantized in 16 bins. This gives a 272 bin histogram. 

The size of this descriptor is reduced with PCA. 

While here the extraction procedure has been specifically adapted to the task of face 

recognition and is described in the remainder of this section. 

The extraction process begins with the computation of scale adaptive spatial 

gradients for a given image I(x,y). These gradients are given by: 

 ( , , ) ( , ; )   tw x y t t L x y txy xyt
 (3.9) 

where L(x,y; t) denotes the linear Gaussian scale space of I(x,y) [L94] and w(x,y,t) is a 

weighting, as given in equation 3.10. 

 

4
( , ; )

( , , ) 4
( , ; )






tt L x y txy
w x y t

tt L x y txyt

 (3.10) 
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The gradient magnitudes obtained for an example face image (Figure 3-4 e) are shown in 

Figure 3-4 b. The gradient image is then partitioned on a grid in polar coordinates, as 

illustrated in Figure 3-4 c. As opposed to the original descriptor the partitions include a 

central region and seven radial sectors. The radius of the central region is chosen to 

make the areas of all partitions equal. Each partition is then processed to yield a 

histogram of gradient magnitude over gradient orientations. The histogram for each 

partition has 16 bins corresponding to orientations between 0 and 2π, and all histograms 

are concatenated to give the final 128 dimensional feature vector, that we term as face-

GLOH-signature, see Figure 3-4 d. No PCA is performed in order to reduce the 

dimensionality. 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3-4: : Face-GLOH-Signature extraction (a-b) Gradient magnitudes (c) 

polar-grid partitions (d) 128-dimentional feature vector (e) Example image of a 

subject. 
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The dimensionality of the feature vector depends on the number of partitions used. A 

higher number of partitions results in a longer vector and vice versa. The choice has to 

be made with respect to some experimental evidence and the effect on the recognition 

performance. We have assessed the recognition performance on a validation set by using 

ORL face database. By varying the partitions sizes from 3 (1 central region and 2 

sectors), 5, 8, 12 and 17, we found that increasing number of partitions results in 

degrading performance especially with respect to misalignments while using coarse 

partitions also affects recognition performance with more pose variations. Based on the 

results, 8 partitions seem to be the optimal choice and a good trade off between 

achieving better recognition performance and minimizing the effect of misalignment. 

The efficacy of the descriptor is demonstrated in an extensive experimental setup in the 

presence of pose variations and misalignments, in the next chapter. 

It should be noted that, in practice, the quality of the descriptor improves when care 

is taken to minimize aliasing artifacts. The recommended measures include the use of 

smooth partition boundaries as well as a soft assignment of gradient vectors to 

orientation histogram bins.  

3.5 Conclusion 

A comprehensive account of almost all the feature extraction methods used in current 

face recognition systems is presented. Specifically we have made distinction in the 

holistic and local feature extraction and differentiate them qualitatively as opposed to 

quantitatively. It is argued that a global feature representation should be preferred over a 

bag-of-feature approach. The problems in current feature extraction techniques and there 

reliance on a strict alignment is discussed. Finally we have introduced to use face-GLOH 

signatures that are invariant with respect to scale, translation and rotation and therefore 

do not require properly aligned images. The resulting dimensionality of the vector is also 

low as compared to other commonly used local features such as Gabor, LBP etc. and 

therefore statistical based methods can also benefit from it. In the next chapter we will 

study the performance of this feature description in a typical face recognition scenario. 
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Chapter 4. Performance Analysis of 

Classifiers in Multi-view Face 

Recognition Scenarios 

In this chapter we present a rigorous analysis of several conventional classifiers in a 

typical multi-view face recognition task. The objective of this chapter is to assess the 

performance with respect to small sample size problem as well as the effects when a 

proper alignment is not assumed and there exist large pose differences. The effectiveness 

of the face-GLOH signatures, as opposed to most commonly used feature description as 

introduced in chapter 3, is demonstrated in an extensive experimental setting under these 

more practical conditions. In particular we discuss the applicability of different 

classifiers in a sparse representation domain and give insights into the classifier 

overtraining problem and biased error estimates with respect to varying training set sizes 

and the high dimensionality of data. 

4.1 Introduction 

As described earlier, generally the face recognition task is a two-stage process: a face 

detection/localization stage consisting of a fast detector and a classification/recognition 

stage using a complex classifier. A face recognition system should be able to deal with 

significant changes in the appearance of a single face. Within-class variations due to 

pose and viewing direction are almost always larger than between-class variations due to 

change in face identity. Two issues are central; the first is what features to use to 

represent a face. An effective representation should ideally be invariant to in-class 

variations, but distinctive with respect to face identity. The second issue is how to 

classify a new face image using the chosen representation.   
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In order to perform multi-view face recognition (recognizing faces under different poses) 

it is generally assumed to have examples of each person in different poses available for 

training. The problem is solved form a typical machine learning point of view where 

each person defines one class. A classifier is then trained that seek to separate each class 

by a decision boundary.  Multi-view face recognition can be seen as a direct extension of 

frontal face recognition in which the algorithms require gallery images of every subject 

at every pose [B96]. In this context, to handle the problem of one training example, 

recent research direction has been to use specialized synthesis techniques to generate a 

given face at all other views and then perform conventional multi-view recognition 

[LK06][GMB04].   

4.1.1 Performance considerations in multi-view face 

recognition 

Here we focus on studying the effects on classification performance when a proper 

alignment is not assumed and there exist large pose differences. With these goals in 

mind, the generalization ability of classifier is evaluated with respect to the small sample 

size problem. Small sample size problem stems from the fact that face recognition 

typically involves thousands of persons in the database to be recognized. Since multi-

view recognition treats each person as a separate class and tends to solve the problem as 

a multi-class problem, it typically has thousands of classes. From a machine learning 

point of view any classifier trying to learn thousands of classes requires a good amount 

of training data available for each class in order to generalize well. Practically, as 

discussed in previous chapters, we have only a small number of examples per subject 

available for training and therefore more and more emphasis is given on choosing a 

classifier that has good generalization ability in such sparse domain. 

The other major issue that affects the classification is the representation of the data. 

The most commonly used feature representations in face recognition have been 

introduced in chapter 3. Among these the Eigenface by using PCA is the most common 

to be used in multi-view face recognition. The reason for that is the associated high 

dimensionality of other feature descriptions such as Gabor, LBPH etc. that prohibits the 
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use of any learning to be done. This is the well known curse of dimensionality issue in 

pattern recognition [DHS01] literature and this is just the reason that methods using such 

over complete representations normally resort to performing a simple similarity search 

by computing distances of a probe image to each of the gallery image in a typical 

template matching manner. While by using PCA on image pixels an upper bound on the 

dimensionality can be achieved.  

In line with the above discussion, we therefore demonstrate the effectiveness of the 

proposed face-GLOH signatures with that of using conventional PCA based features in 

multi-view face recognition scenarios. Here we choose two of the well known face 

databases, the ORL face database and the FERET database, in order to assess the 

performance with regards to misalignments and pose variations. ORL database is chosen 

as many of the previous methods report near perfect performance by using conventional 

classifiers. In [SH97], a hidden Markov model (HMM) based approach is used, and the 

best model resulted in an error rate of 13%. Later, they extend the top-down HMM with 

pseudo two-dimensional HMMs  reducing the error rate to 5%, [LG97] takes the 

convolutional neural network (CNN) approach for the classification of ORL database, 

and the best error rate reported is 3.85%. Whereas [GLK00] reports an average 

minimum error rate of 3.0% by using a SVM trained on 50% of the dataset and 

remaining for testing. 

We show, in an extensive experimental setting, that even better classification scores 

can be obtained by carefully choosing the feature representation and using rather simpler 

classifiers. One of the contributions is the finding that these results are rather 

insignificant in the sense that problem is too simple: if simple even linear classifiers 

suffice, there is no sense in evaluating more complex and sophisticated classifiers on 

ORL database. For a more practical real world problem, because of the fact that detected 

faces are artificially aligned, we show that by introducing an arbitrary scale and shift 

variation in each of the example images the recognition results with almost all of the 

classifiers are severely affected for the conventional feature representation of the face.  

ORL face database is mainly used to study the effects on classification performance 

due to misalignments since variations due to pose are rather restricted (not more than 
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20o). To study the effects of large pose variations and a large number of subjects, we 

therefore repeat our experiments on FERET database. 

 In the next section we introduce the commonly used classifiers in the context of 

face recognition. 

4.2 Linear and non-Linear Classifiers 

Generally classifiers can be partitioned into linear classifiers and non-linear classifiers. 

Linear classifiers implement a linear decision boundary to discriminate classes. Some of 

the most widely used and bench-marked linear classifiers in face recognition includes 

the linear discriminant classifier (LDC), fisher discriminant analysis, nearest mean 

classifier  (NMC) and support vector machine (SVM) classifier. While classifiers like 

quadratic discriminant classifier (QDC), non-parametric k-nearest neighbour (k-NN), the 

decision tree classifier and kernel based Parzen density estimator are examples of non-

linear classifiers. 

In addition to these, several classifier combining schemes have been proposed in the 

literature [SK02] [D02] [K02]. Several classifiers can be combined using fixed rules or 

using a trainable combiner on single or several representation sets. A complete and in-

depth discussion of all of the classifiers mentioned above can be found in [W02]. Here 

we give a brief overview of these classifiers, since we are using these in our 

experiments. 

4.2.1 Normal density-based classifiers 

The most widely used classifiers are based on normal densities. Classification is 

achieved by assigning a pattern x to class wi for which the posterior probability p(wi |x) is 

largest by assuming normal density for class conditional densities p(x|wi). The 

discriminant rule is to assign x to wi  if gi > gj for all j ≠ i, where  

 1 1 1( ) log( ( )) log(| |) ) ( )
2 2

       Tg x p w i ii i i i   (4.1) 
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The parameters mean µ and covariance ∑ are the maximum likelihood estimates for each 

class, which when inserted in Equation (4.1) gives the Gaussian or quadratic QDC 

classifier.  

LDC assumes the class covariance matrices ∑i,…,∑c for C classes are equal, which 

simplifies Equation (4.1) and makes discriminant linear  

 1 11( ) log( ( ))
2

   T T
i i W i W ig x p w S x Si     (4.2) 

where SW  is the within class group covariance matrix also termed as within class scatter. 

For a total of ‘N’ samples in training data this scatter can be found simply by  
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When the Scatter matrix SW is taken to be identity and the class priors p(wi) are 

equal, discriminant in Equation (4.2) reduces to the NMC, each test point is assigned the 

class label of the class whose mean is nearest. 

4.2.2 Non-parametric and kernel-based classifiers 

The k-NN, Parzen density estimator and SVM all come under this category. k-NN is a 

simple method of density estimation in which the probability of a test point x´ falling 

within a volume V centered at some point x is approximated by the proportion of 

samples K falling within V  

  p x
 nV


K  (4.4) 

The k-NN approach is to fix k and determine the volume V that contains k samples 

centred on point x. The decision rule is assign x to the class that yields the smallest 

volume for the k nearest neighbours.  

The kernel variant of this method, namely the parzen density estimator, fixes the 

volume and finds the number of samples within the volume to estimate density. 
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Where K(:) is the kernel function, the most widely used is the normal form, which we 

also used in our experiments. h, (the proportion of observations falling within a fixed 

interval) is a smoothing parameter which determines the shape of the density. An 

optimal value can be determined during training to give an optimal width for each class 

separately. 

4.2.2.1 Support vector machine 

SVMs have demonstrated excellent performance for recognition tasks in computer 

vision [SS02]. They perform classification between two classes by finding a decision 

surface that maximizes the distance to the closest points in the training (the so called 

support vectors). For a binary classification problem a set of training vectors belonging 

to two separate classes (x1,y1),…..,(xi,yi), where x  i nR and  y 1, 1 i , are separated 

by a hyper-plane( w + b=0 x ) with maximum margin called optimal separating hyper-

plane (OSH). The OSH is obtained by minimizing an objective function of the form

  

 1 2( , )
2 1

  


k
w w C ii

    (4.6) 

subject to constraints  y w x b   1       i i i , ξi ≥ 0 for i=1,..., k , where C is the 

regularization constant and ξi are the slack variables introduced to penalize errors when 

data are not linearly separable. The whole formulation is a constrained optimization 

problem. A test point x can now be classified by using the sign of the OSH decision 

surface function. 

 
1

( ) ( , )
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k
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i

f x y K x x b  (4.7) 

where αi ≥ 0 are the Langrangian multipliers corresponding to support vectors, and b is 

found by solving the above mentioned optimization problem. K(.,.) is the kernel trick 

used to transform data onto a higher dimensional space where initially non-separable 

data can then be separated linearly by a hyper-plane. The most popular choices for the 

kernel function are the polynomial and Gaussian radial basis function (RBF) kernel. The 
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polynomial kernel is of the form    k x, y 1 x y   d , d specifies all the possible 

monomials of the input components up to degree d. The RBF kernel is of the form 

 
2

2
x yK x,  exp  

     
 

y 
. 

The whole formulation can be extended for the multiclass SVM classification by 

using one of two strategies. In the one-vs-all approach, m classifiers are trained for an m-

class problem. Each of the SVM separates single class from the rest. In the pair-wise 

approach m(m-1)/2 SVMs are needed. Each SVM is trained on a pair of class and then 

all SVMs are arranged in a tree structure. There is no theoretical analysis of the two 

strategies with respect to classification performance. Regarding the training effort, the 

one-vs-all approach is preferable since only m SVMs have to be trained compared to 

m(m-1)/2 in the pair-wise case. Since the number of classes in face recognition can be 

rather large we opted for the one-vs-all strategy where the number of SVMs is linear 

with the number of classes. 

4.2.3 Classifier combining 

Classifier combining is a well studied subject and is used to improve classifier 

performance. Usually parallel and stacked combining are used. Stacked combining 

typically applies to different classifiers for the same feature space, while parallel 

classifier combiner uses different feature spaces. Combination is achieved using either 

fixed rules [D02] or the combiner itself can be trained using the training set. The details 

involved are an ongoing subject of the research [K02] [SK02]. An in-depth discussion 

on combining classifiers can be found in [K04]. 

 In our experiments, we chose to test several fixed rules for combining using both 

parallel and stacked combining schemes. We use 6 fixed combining rules, namely 

median, maximum, minimum selection as well as mean, product and voting combiner. 

 As noted in [D02], it is necessary to scale the outputs of different classifiers in a 

way such that the outputs become comparable. For our experiments the output of 

different classifiers is normalized by fitting a sigmoid on the outputs such that the sum of 

the outputs becomes 1. This out put normalization is necessary for two reasons. Firstly 
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for fixed combining rules, comparable outputs of base classifiers are needed and 

secondly output normalization may inject non-linearity and hence significantly improve 

the combiner performance. 

4.3 Experimental Setup 

As discussed before, we perform experiments in order to assess the performance of 

various classifiers in a typical multi-view recognition scenario with respect to the 

following factors. 

o Feature representations 

o When facial images are not artificially aligned 

o When there are large pose differences 

o Large number of subjects 

o Number of examples available in each class (subject) for training. 

In order to show the effectiveness of face-GLOH signature feature representation against 

misalignments, we use ORL face database. ORL face database has 40 subjects depicting 

moderate variations among images of same person due to expression and some limited 

pose. However, all the images are depicted in approximately the same scale and thus 

have a strong correspondence among facial regions across images of the same subject. 

We therefore generate a scaled and shifted ORL dataset by introducing an arbitrary scale 

change between 0.7 and 1.2 of the original scale as well as an arbitrary shift of 3 pixels 

in random direction in each example image of each subject. This has been done to ensure 

having no artificial alignment between corresponding facial parts. This new misaligned 

dataset is denoted scaled-shifted SS-ORL (see Figure 4-1). The experiments are 

performed on both the original ORL denoted O-ORL and SS-ORL using PCA based 

features and face-GLOH signatures. 

Next we use FERET database pose subset (comprising 200 subjects in 9 pose 

variations), as introduced in chapter 2. Experiments on FERET are performed in order to 

assess the performance with regards to increasing number of subjects and large pose 

variations. All the images are cropped from the database by using standard normalization 

methods i.e. by manually locating eyes position and warping the image onto a plane 
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where these points are in a fixed location. The FERET images are therefore aligned with 

respect to these points. This is done in order to only study the effects on classifier 

performance due to large pose deviations. All the images are then resized to 92x112 

pixels in order to have the same size as that of ORL faces. An example of the processed 

images of a FERET subject depicting all the 9 pose variations is shown in Figure 4-2. 

 

 

 

 

 

  

Figure 4-1: An example of a subject from O-ORL and its scale and shifted 

examples from SS-ORL 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4-2: Cropped faces of a FERET subject depicting all the 9 pose variations. 
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4.3.1 Feature Extraction 

For our first representation we extract one global feature vector per face image by using 

lexicographic ordering of all the pixel grey values. Thus, for each 92 x 112 image, one 

obtains a 10384 dimensional feature vector per face. We then reduce this dimensionality 

by using unsupervised PCA. Where the covariance matrix is trained using 450 images of 

50 subjects from FERET set. The number of projection Eigen-vectors are found by 

analysing the relative cumulative ordered eigenvalues (sum of normalized variance) of 

the covariance matrix. We choose first 50 largest Eigen vectors that explain around 80% 

of the variance as shown in figure 4-3. By projecting the images on these, we therefore 

obtain a 50-dimentional feature vector for each image. We call this representation the 

PCA-set.  

The second representation of all the images is found by using face-GLOH-signature 

extraction, as detailed in the chapter 3. An obtained face-GLOH-signature for a subject 

from ORL database is shown in figure 4-4. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3: Plot of relative cumulative ordered eigenvalues for choosing PCA 

components. 
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Figure 4-4:  face-GLOH-signature extraction for a subject in O-ORL database 

4.3.2 Classifier performance measure 

The ultimate measure of a classifier performance is the classification error or simply the 

error rate ( eP ). Competing classifiers can also be evaluated based on their error 

probabilities. Other performance measures include the cost of measuring features and the 

computational requirements of the decision rule [JDM00]. 

The performance measure eP  should be an unbiased estimate. The error estimate of 

a classifier, being a function of the specific training and test sets used, is a random 

variable. Given a classifier, suppose   is the number of test examples (out of a total of 

N) that are misclassified. It can be shown that the probability density function of   has a 

binomial distribution. The maximum-likelihood estimate, êP  of eP  is given by ˆ /eP N  

with ˆ( ) e eE P P  and ˆvar( ) (1 ) / e e eP P P N . eP , is therefore an unbiased and consistent 

estimator.  

The classifier is first designed using training examples, and then it is evaluated 

based on its classification performance on the test examples. The percentage of 

misclassified test examples is taken as an estimate of the error rate. In order for this error 

estimate to be reliable, the training examples and the test examples must be independent. 
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This requirement of independent training and test examples is still often overlooked in 

practice. There are no good guidelines available on how to divide the available samples 

into training and test sets, if the training set is small, then the resulting classifier will not 

be very robust and will have low generalization ability. On the other hand, if the test set 

is small, then the confidence in the estimated error rate will be low. No matter how the 

data is split into training and test sets, it should be clear that different random splits (with 

the specified size of training and test sets) will result in different error estimates.  

Keeping these factors in mind we have used two procedures to ensure a fair estimate 

of errors of all classifiers. The first is to use different varying training set sizes by using 

different number of examples per class and testing on the remaining. Tests at each size 

are repeated 5 times, with different training/test partitioning of the examples per 

subject/class, and the errors are averaged. The second uses a 10-fold cross validation 

procedure to produces 10 sets of the same size as original dataset each with a different 

10% of objects being used for testing. All classifiers are evaluated on each set and the 

classification errors are averaged. 

4.3.3 Experiments on ORL datasets 

In all of our experiments we assume equal priors for training, SVM experiments on O-

ORL use a polynomial kernel of degree 2, to reduce the computational effort, since using 

RBF kernel with optimized parameters C and kernel width σ did not improve 

performance. For SS-ORL a RBF kernel is used with parameter C=500 and σ = 10, these 

values were determined using 5-fold cross validation and varying sigma between 0.1 and 

50 and C between 1 and 1000. All the experiments are carried out for classifiers on each 

of two representations for both O-ORL and SS-ORL. 

First set of experiment use 10-fold cross validation as described before. The results 

from this experiment on both O- ORL and SS-ORL for both feature representations are 

reported in table 4-1. 
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Table 4-1: Classification errors in 10-fold cross validation tests on ORL  

O-ORL   Representation  sets 
SS-ORL Representation 

sets Classifiers 

PCA face-GLO H PCA face-GLOH 

NMC 0.137 0.152 0.375 0.305 

LDC 0.065 0.020 0.257 0.125 

Fisher 0.267 0.045 0.587 0.115 

Parzen 0.037 0.030 0.292 0.162 

3-NN 0.097 0.062 0.357 0.255 

Decision Tree 0.577 0.787 0.915 0.822 

QDC 0.64 0.925 0.760 0.986 

SVM 0.047 0.037 0.242 0.105 

 

 

Table 4-1 shows how classification performance degrades, when the faces are not 

aligned i.e. arbitrarily scaled and shifted, on PCA based feature representation. The 

robustness of the face-GLOH-signature representation against misalignments can be 

seen by comparing the results on O-ORL and SS-ORL, where it still gives comparable 

performance in terms of classification accuracy. Best results are achieved by using LDC 

or SVM in both cases. 

The second set of experiments uses varying training set sizes of 2,4,6 and 8 

examples per subject and testing on the remaining, tests at each size are repeated 5 times, 

with different training/test partitioning, and the errors are averaged. The resulting error 

curves for SS-ORL and O-ORL are shown in figure 4-5. This experiment specifically 

address the problem of biased error estimates with respect to varying training and test 

sizes of the dataset. Figure 4-5 (b) and 4-5 (d) shows the effect on classifier performance 

with respect to misalignments and the advantage of a better feature representation.  
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Figure 4-5: Classifiers evaluation by varying training set sizes (a) On O-ORL using 

PCA-set (b) On SS-ORL using PCA-set (c) On O-ORL using face-GLOH-signature 

set (d) On SS-ORL using face-GLOH-signature set. 

 

 

(a)  (b) 

(c) (d) 
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4.3.4 Experiments on FERET dataset 

As described before, 50 out of 200 FERET subjects are used for training the covariance 

matrix for PCA. The remaining 1350 images of 150 subjects are used to evaluate 

classifier performance with respect to large pose differences. Following the same 

procedure, experiments on FERET set are performed with respect to varying training/test 

sizes by using 2, 4, 6, and 8 examples per subject and testing on the remaining. 

Similarly, tests at each size are repeated 5 times, with different training/test partitioning, 

and the errors are averaged. Figure 4-6 shows the averaged classification errors for all 

the classifiers on FERET set for both the feature representations with respect to varying 

training and test sizes. As shown in figure 4-6, increasing number of subjects and pose 

differences has an adverse affect on the performance of all the classifiers as compared to 

ORL. 

 
 
 
 
 
 

 
Figure 4-6: Classifiers evaluation On FERET by varying training/test sizes 

(a) Using PCA-set (b) Using face-GLOH-signature set 
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Table 4-2: Classification errors in 10-fold cross validation tests on FERET  

FERET Representation sets 
Classifiers 

PCA face-GLOH-signature 

NMC 0.789 0.703 

LDC 0.465 0.399 

Fisher 0.576 0.475 

Parzen 0.735 0.553 

3-NN 0.815 0.673 

Decision Tree 0.881 0.852 

QDC 0. 751 0.916 

SVM 0.550 0.297 

 
 

Table 4-2 lists the classification errors in a 10-fold cross validation setting on FERET by 

using each of the two feature representations. As shown, the best score on PCA based 

representation is achieved by LDC i.e. 46.5% that amounts to a classification accuracy 

of 53.5%, where as a significant improvement is observed for the classification scores of 

almost all the classifiers on face-GLOH-signature representation. The best classification 

accuracy is about 70.3% by using SVM on face-GLOH-signature representation. These 

results indicate the advantage of using a more robust feature representation as opposed to 

commonly used PCA based features in a typical multi-view face recognition task. 

4.3.4.1 Results using classifier combining 

As compared to the results on ORL database, the effect, of large pose differences and 

large number of subjects, on the classification performance is quite severe. A drop of 

about 20 % to 30% of performance is observed on FERET for the best performing 

classifiers including LDC and SVM as compared to the results on O-ORL and SS-ORL 

datasets. In [SJH06] we have proposed to use classifier combining to further improve the 

results. We first explore the use of six fixed combining rules on each of the feature set 
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(stacked combining) by using two simple LDC and fisher as base classifiers. The results 

(table 4-3) indicate the significant performance gain on both of the feature sets. Further, 

we use LDC as base combiner on both of the feature set. This experiment specifically 

explores the benefit of using multiple feature representation for the same object, in our 

case the faces. We have used 50% (randomly chosen) of the data for training the 

classifiers and rest for testing. This amounts to having 5 examples per subject for 

training and 4 for testing. Compared to the results reported in figure 4-6 for 5 training 

examples/objects per subject, the classifier combining improves the classification 

accuracy significantly.    

 

Table 4-3:  Classification scores by combining classifiers on FERET 

Stacked over each of the feature set 

using  LDC and fisher as base 

classifier 

Parallel on both feature sets 
Classifier 

combiners 

PCA Face-GLOH-signature 
Using LDC as base combiner 

on both representation sets 

Product 

combiner 
0.223 0.266 0.207 

Mean 

combiner 
0.531 0.213 0.196 

Median 

combiner 
0.531 0.213 0.196 

Maximum 

selection 
0.491 0.218 0.197 

Minimum 

selection 
0.286 0.396 0.209 

Voting 

combiner 
0.383 0.388 0.218 
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As can be seen from the results in table 4-3, best scores in stacked combining are 

achieved for product and mean combiner. The classification errors dropped from 44.5 % 

to 22.3% on PCA set, and from 39.9% to 21.3% on face-GLOH-signature set. These 

results by combining two simple classifiers are significantly better than by suing a more 

complex classifier such as SVM.  

Parallel combining on both the feature sets using LDC as base combiner achieves 

the best result i.e. 19.6% classification error, a drop of about 20% classification error 

when compared to the best performing classifier on each of the representation set by 

using same number of training and test examples per subject (see figure 4-6). These 

results are much better than the best performing SVM (29.7% classification error) as 

reported in table 4-2. Overall classification accuracy improves form about 68% to 81.4% 

by using classifier combing on FERET. 

4.4 Conclusion 

In a typical multi-view face recognition task, where it is assumed to have several 

examples of a subject available for training, we have shown in an extensive experimental 

setting the advantages and weaknesses of commonly used classification methods. Our 

results show that under more realistic assumptions, most of the classifiers failed on 

conventional features. While using the introduced face-GLOH-signature representation 

is relatively less affected by large in-class variations. This has been demonstrated by 

providing a fair performance comparison of several classifiers under more practical 

conditions such as misalignments, large number of subjects and large pose variations. 

The reason for a good performance for simple linear classifiers on O-ORL database 

lies in the fact that the problem is very sparse and the classes are linearly separated in 

such high dimensions, but as shown by our results on scaled and shifted dataset, a more 

robust feature representation is needed to cater the large in-class variance. One reason 

for poor performance of QDC as compared to others is that in such high dimensions with 

too few objects, there is less hope to estimate any density based on parametric methods. 

For such problems a regularization imposed on the covariance matrix is needed.  
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Our results on FERET indicate a consistent performance degradation of all the 

classifiers. As compared with ORL our experiments confirm the fact that to achieve 

good generalization performance of classifiers, one needs a large and more difficult 

dataset. Classifier combining does improve the classification, for our problem fixed 

combining on all feature sets has produced appreciable improvements in results. 

An important conclusion is to be drawn from the results on FERET is that 

conventional multi-view face recognition can not cope well with regards to large pose 

variations. Even using a large number of training examples in different poses for a 

subject do not suffice for a satisfactory recognition. In order to solve the problem where 

only one training example per subject is available, many recent methods propose to use 

image synthesis to generate a given subject at all other views and then perform a 

conventional multi-view recognition[BP95][GMB04].  Besides the fact that such 

synthesis techniques cause severe artefacts and thus can not preserve the identity of an 

individual, a conventional classification can not yield good recognition results, as has 

been shown in an extensive experimental setting. More sophisticated methods are 

therefore needed in order to address pose invariant face recognition. Large pose 

differences cause significant appearance variations that in general are larger than the 

appearance variation due to identity. One possible way of addressing this is to learn 

these variations across each pose, more specifically by fixing the pose and establishing a 

correspondence on how a person’s appearance changes under this pose one could reduce 

the in-class appearance variation significantly, we will elaborate more on that in later 

chapters. The pose information is valuable and for a fully automatic face recognition 

system the pose of the incoming probe/test image has to be known in this context. An 

effective pose estimation framework for the purpose of automatic face recognition is the 

subject of next part of this thesis. 

Next we plan to use some of these insights in developing a more generic face 

recognition framework that is able to recognize faces from just one training image per 

subject. We hope that a fair comparison, with respect to carefully chosen training and 

test sizes and different feature representations, gives a useful review and guidance while 

developing different face recognition tasks. 
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On Head Pose Estimation in Face 
Recognition 

 
 
 
 
 
 
 



 73 
 
 

 
 
 



 74 
 
 

Chapter 5. Head Pose Estimation for 

Automatic Face Recognition 

In this chapter we introduce the problem of head pose estimation in the context of face 

recognition. Facial pose plays an important role while recognizing faces in different 

poses. Besides face recognition, head pose estimation has other many useful applications 

in different automated vision tasks. Here we provide a brief discussion on associated 

problems in pose estimation and the existing pose estimation methods in the context of 

face recognition. Furthermore, this chapter introduces a novel feature description termed 

as LESH (Local Energy based Shape Histogram) that encodes the underlying shape in an 

illumination and skin texture invariant manner for the purpose of face pose estimation. 

5.1 Background 

The primary concern of this thesis is recognizing persons in the presence of large pose 

and illumination variations. When considering pose variations, the test input image can 

be transformed to all the reference poses before performing face recognition [BP95] or 

else more preferably the problem can be approached by first estimating the pose of the 

test input image and then transform it to a reference pose where face recognition can be 

performed at that pose or the top few poses [LK06] [CSB06]. In the context of automatic 

face recognition, we therefore need a front-end face pose estimation system that is able 

to estimate the pose of an incoming test input face image in some discrete pose labels. 

Besides this head pose estimation finds many useful applications in other computer 

aided vision tasks e.g. human computer interaction [FH07] [MSLD07], driver assistance 

[CPT06] [CT08] etc. 

In the context of computer vision, head pose estimation is most commonly 

interpreted as the ability to infer the orientation of a person’s head relative to the view of 
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a camera. At the coarse level, head pose estimation applies to algorithms that identify a 

head in one of a few discrete orientations, e.g., a frontal versus left/right profile view. At 

the fine (i.e., granular), a head pose estimate might be a continuous angular measurement 

along the rotation of head in multiple Degrees of Freedom (DOF) as is done in head 

tracking systems [ZCSC07]. The human head is limited to 3 DOF in pose, which can be 

characterized by pitch, roll, and yaw angles as illustrated in Fig. 5-1. 

 

 

 

 
 

 
Figure 5-1:  Head Orientation in 3DOF 

 

Yaw describes the in-depth rotation of the head relative to the camera. Pitch corresponds 

to up and down tilt of the face and roll is the side tilt of the face. It is common to use the 

geometric normalization based on eyes location to remove this tilt bias of the face by 

rotating the face such that both the eyes lies on the same horizontal line. The variations 

in facial appearance caused by yaw are much greater than variations by either pitch or 

roll. Some face representation or feature extraction techniques may provide inherent 

invariance to some degree towards pitch or roll of the face e.g. Gabor, LBPH or our 

introduced face-GLOH-signature. However, it is not directly possible to extract invariant 

features with respect to yaw rotation, this is because of the fact that yaw or in-depth 

rotation of the face results in a significant loss of information, e.g. when a face turns 

Yaw Pitch Roll 
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from frontal to full left or right profile view almost half of the face is not visible and the 

position and appearance of the facial parts looks vastly different. Pose estimation, 

therefore, refers to estimating this in-depth rotation (yaw) of the face in order to use this 

information for the benefit of face recognition.  

5.1.1 Related work 

Head pose estimation has become a broad area of research over the recent years. 

Generally, methods for face pose estimation can be categorized into model-based 

approach or appearance based methods [BT02]. 

Model-based algorithms are based on feature detection and usually need several 

manually localized landmark points on the face and use this information to model the 

displacement of these points with respect to different poses. Among these are Active 

Appearance Models [MB04] that are nonlinear parametric models derived from linear 

transformations of a shape model and an appearance model, as discussed in chapter 2. 

Also, Neural Network based algorithms can be trained to distinguish between different 

persons or to distinguish poses of one persons face [RBK98].   

Gee and Cipolla [GC94] chose a few relatively stable feature points, or anchor 

points, to estimate the gaze direction under weak perspective, with an assumption that 

the ratios of these points did not change significantly for different facial expressions. 

Gao et al. [GLWH01] presented an efficient pose recovery approach using locations of 

the two eyes and the symmetric axis of the face, but their method is very sensitive to the 

location error of the facial features. A statistical 3D morphable model [BV03] is 

proposed to deal with pose variations as well as illuminations, which requires textured 

3D scans of heads and involves expensive computations. Dias and Buxton [DB04] 

proposed an integrated model by combining Active Shape Models [CT95] with Ullman 

and Basri’s Linear Combination of Views (LCV) [UB97]. The LCV technique, however, 

requires accurately locating at least three corresponding feature points in each of the 2D 

images of different views.  

 Appearance based approaches avoids the expensive feature localization and tend to 

learn the whole appearance of a face in different poses. PCA is typically used by finding 

a subspace where pose variation can be described linearly. Many subspace-based 
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techniques have been used to tackle pose-invariant face recognition. Pentland et al used 

a view-based subspace method by producing separate subspaces each constructed from 

faces at the same viewpoint [PMS94]. Murase and Nayar used a parametric eigen-space 

method by representing each known person by compact manifolds in the subspace of the 

eigenspace [MN95], recognition is performed by first finding the subspace most 

representative of the test face and then matching using a simple distance metric in this 

subspace. Analytical subspace method is used by Valentin and Abdi [VA96]. 

Characteristic subspace method is used by McKenna et al [MGC96].  PCA based 

algorithms in general assume that appearance variation due to pose are larger than 

appearance variations due to subject identity. This assumption in general is not true since 

different subjects across same pose may have large appearance variations due to e.g. 

glasses, expressions, illumination and skin color. To overcome this some recent 

appearance-based approaches use filtering and image segmentation techniques to extract 

information from the image.  In [SGO99] [WFT01] authors use Gabor response to 

construct the eigenspaces, [KS02] used Gabor wavelet network to estimate pose. 

Similarly [PC05] construct a filter trained on different poses for later recognition of 

facial pose.  

Recently some hybrid methods have been presented that combine the appearance 

based approaches and model based methods. Gründig and Hellwich [GH04] use 3 

landmarks detected on the face for initial pose estimate and combine it with PCA based 

Eigen basis functions to refine the pose estimate. In [CT08] authors combine PCA 

embedded template matching with optical flow, [CT04] used PCA based template 

matching with a continuous density hidden Markov model. A more comprehensive 

account of various head pose estimation approaches can be found in a very recent survey 

[CT08b]. 

5.1.2 Concerns in pose estimation 

Most of the existing approaches for head pose estimation make some strong assumptions 

with regards to the problem at hand that are very hard to meet in practice. Model based 

approaches, for example, requires several detected landmark points in order to estimate 

pose, they therefore are very sensitive with the localization of these points and as 
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discussed in chapter 2, an automatic localization of these points is not trivial. Besides 

this, the general assumption of modeling the displacement of these points across 

different poses is based on a very strong assumption of having much less shape variation 

within same pose (intra-pose) than among different pose (inter-pose). Appearance based 

methods on the other hand, although avoids these problems of landmarks localization 

and modeling, but it also assumes that inter-pose appearance variations are always larger 

than intra-pose appearance variations. This, generally, is not true since different subjects 

across same pose may have large appearance variations due to e.g. glasses, expressions, 

illumination and skin color. It is therefore not easy to discriminate among the shape 

variations due to pose and variations due to identity (different faces). Illustration in 

Figure 5-2, adapted from [ZG06], serves to illustrate this point. 

 

 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2: Inter-pose and Intra-pose shape variations 
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As shown in figure 5-2, these shape variations have to be taken into account while 

designing any pose estimation system. In order to have a fully automatic system 

appearance based methods are preferable since they avoid an expensive 

localization/detection of landmark points. To overcome problems with regards to 

appearance variation in same pose due to different subjects, ideally one needs an identity 

invariant representation that is invariant to skin texture and other subject specific 

variations. This is in contrast with the face recognition paradigm where the goal of 

common feature representations is to preserve the identity.  

Keeping in view these factors, we propose an appearance-based head pose 

estimation method in this part of the thesis that overcomes some of these problems and 

addresses issues such as, a suitable representation and efficient estimation procedures in 

the context of automatic face recognition. 

5.2 A New Feature Description for Pose Estimation 

In this section we propose a new feature description that is based on a pure shape 

representation. This is in-line with our preceding discussion that any feature description 

or representation for the purpose of pose estimation should be invariant to subject 

identity i.e. skin texture, color etc. In current appearance based methods, as mentioned 

before, image filtering such as using a Gabor wavelet transform is used in order to 

enhance the image shape information such as edges etc. Recently, Baochang et al, 

[BSXW07] has shown that local Gabor phase patterns can provide a very informative 

description. This however, is still dependant on the person specific appearance 

variations, since multi resolution Gabor filtering results in a highly localized response at 

each image position dependant on the underlying surface properties. Despite this, such 

representations are sensitive to illumination variations present in images. In the context 

of unconstrained face recognition, the pose estimation has to be robust with regards to 

the lighting variations. Nonetheless, in a recent work (Bingpeng et al, [BWSXW06]) has 

shown that Gabor phase response is quite useful in order to model the orientation of the 

head.  
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 Another body of work exists which uses this phase information to compute the local 

energy content of the underlying signal, for detecting interest points such as corners, 

edges, or contours etc.. We introduce a novel feature descriptor LESH (Local Energy 

based Shape Histogram) that is based on this local energy model of feature perception.  

5.2.1 Local energy model  

The local energy model developed by Morrone and Owens [MO87] postulate that 

features are perceived at points in an image where the local frequency components are 

maximally in phase. Morrone and Owens define the phase congruency function in terms 

of the Fourier series expansion of a signal at some location x as 

 
cos( ( ) ( ))

( ) max
( ) [0,2 ]




 

A x xn n nE x
x An n

 

 
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Where nA  and n  are the magnitude and phase of the nth Fourier component. This 

frequency information must be obtained in a way such that underlying phase information 

is preserved. For this linear phase filters must be used in symmetric anti symmetric pair. 

This is achieved by convolving the image with a bank of Gabor wavelets kernels tuned 

to 5 spatial frequencies and 8 orientations. At each image location, for each scale and 

orientation, it produces a complex value comprising the output of even symmetric and 

odd symmetric filter, which gives the associated magnitude and phase of that pixel. 

 G(e ,o ) = ( , ) ( ), , ,I x y zn v n v n v  (5.2) 

Where ,n  is the bank of Gabor kernel, , v n is the scale and orientation and ( )G  is the 

response at image position  x, y  having a real and imaginary part comprising output of 

even symmetric and odd symmetric filter at scale n and orientation v.  The amplitude 

nA and phase n  thus can be written in terms of these responses at a given scale n. 

 12 2 tan   n
n n n

n

eA e o andn o
  (5.3) 

 
Originally [RO97] has proposed to use cosine of the deviation of each phase component 

from the mean phase as a measure of the symmetry of phase, however, this measure 
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results in poor localization and is sensitive to noise. Kovesi [K00] extended this 

framework and developed a modified measure, as given in equation 5.4, consisting of 

sine of the phase deviation, including a proper weighing of the frequency spread W and 

also a noise cancellation factor T. 
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The normalization by summation of all component amplitudes makes it independent of 

the overall magnitude of the signal, making it invariant to illumination variations in 

images. For details of this measure see [K00]. This illumination invariance property can 

be seen in Figure 5-3 that depicts the local energy response on an image that is very 

badly illuminated, the bright spots show the points of high local energy. As can be seen 

it is only high at edges, corners etc. 

 

 

 

 

Figure 5-3: Local energy response for a badly illuminated image 
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5.2.2 LESH - Local Energy based Shape Histogram 

The local energy analysis in the preceding section is intended to detect interest points in 

images with a high reliability in presence of illumination and noise. Hence, to detect 

these intrinsic two dimensional i2D structures. Kovesi [K03] proceeds by constructing 

principal moments of this normalized energy measure, also termed as phase congruency. 

In contrast to this, we rather use this raw energy information and attempt to encode the 

underlying shape. This is done in a way that makes it invariant to scale variations but not 

to rotation since rotation is precisely what, we are trying to model. 

Motivated by the fact that this local orientation energy response varies with respect 

to the underlying shape, in our case the rotation of the head and since local energy 

signifies the underlying corners, edges or contours, we generate a local histogram 

accumulating the local energy along each filter orientation on different sub-regions of 

the image. The local histograms are extracted from different sub-regions of the image, 

and then concatenated together, to keep the spatial relationship between facial parts.  

We proceed by obtaining an orientation label map where each pixel is assigned the 

label of the orientation at which it has largest energy across all scales. The local 

histogram ‘h’ is extracted according to the following 

 ,   h w Er b r Lb  (5.5) 

where subscript ‘b’ represents the current bin, ‘L’ is the orientation label map, ‘E’ is the 

local energy, as computed in equation 5.4, Lb  is the Kronecker delta 
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 and ‘w’ is a Gaussian weighing function centered at region ‘r’.  
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This weight is used to provide soft margins across bins by small weighted overlap 

among neighbouring sub-regions to overcome the problems induced due to scale 

variations.  
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As mentioned earlier, in order to keep the spatial relation between facial parts, we 

extract 8 bins local histogram corresponding to 8 filter orientations on a 4x4 location 

grid (16 image partitions), which makes it a 128-dimentional feature vector. Figure 5-4 

illustrates the schematic.  

 

 
Figure 5-4: Schematic of LESH extraction: (a) Original image (b) 4x4 location grid 

imposed on corresponding Local energy map (c) 8-bin local histogram extracted 

from each partition and concatenated together into a 128-dimensional feature 

vector 

 

(a) 

(b) 

(c) 
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Example feature extraction and associated energy and orientation maps on two different 

subjects in frontal and left profile pose, from CMU-PIE database, are shown in Figure 5-

5. Figure 5-5 provides an intuitive look at the notion of similarity across same pose 

among different subjects, in terms of extracted local energy and LESH features. This 

notional similarity is validated empirically in chapter 6 by computing similarities 

between extracted LESH features. Note how they are quite invariant to person specific 

appearance variations. 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 

Figure 5-5: Two different subjects at frontal and left profile pose. Their associated 

energy and orientation maps and extracted LESH feature vectors. 
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5.3 Conclusion 

In this chapter we have presented some background relating to head pose estimation in 

the context of face recognition. In addition to that, we have introduced a new feature 

description based on local energy model of feature perception, termed as LESH, which 

encodes the underlying shape and is insensitive to skin color and illumination variations. 

The effectiveness of LESH descriptor in the context of pose estimation will be shown in 

the next chapter. 
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Chapter 6. Head Pose Estimation 

Framework 

The derived LESH features in the preceding chapter provide a strong foundation on 

which to base our pose estimation framework. These features are robust against slight 

misalignments and scale changes, but this comes with the cost of rather loose description 

of facial landmark positions. Although, this does not affect while discriminating among 

large pose variations such as between frontal and right or left profile view, but 

discriminating among nearest pose changes, by simply looking at similarity scores, may 

be quite error prone. Therefore, in order to discriminate between adjacent poses and to 

cater in-pose variations, due to other factors such as glasses, expressions and to some 

extent illumination (shadows), we need to learn these variations in a training phase. 

We therefore, learn these variations across same pose from a training procedure in a 

novel way. In particular, we lay down an effective classification procedure that attempts 

to model these in pose variations and performs quite well in discriminating among slight 

pose variations. 

6.1 Overview 

In the context of face recognition pose estimation generally means identifying the pose 

of the incoming test image as one of some discrete pose labels. We therefore, can solve 

the pose estimation as a classification problem from a strict machine learning point of 

view. Pose estimation can be seen as a multi-class problem where the goal is to classify 

the test pose into one of the pose classes.  
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6.1.1 Estimation as a classification problem 

Some recent works on estimating facial pose for later face recognition stage employ the 

same approach i.e. solve the pose estimation as a classification problem [PC05] [YC05]  

[BWSXW06].  All of these approaches tend to use a pure multi-class learning strategy 

where a classifier is trained on each of the predefined pose class. A test image is then 

assigned the label of the pose class for which the trained classifier gives the highest 

score. A fundamental problem with such a strategy is two-fold. On the one hand, fixing 

the discrete pose labels intrinsically requires any test image to be classified into one of 

these poses. In this context adding more pose classes to be recognized (depending on a 

given application), will require repeating the whole expensive training phase all over 

again. Secondly, usually such methods are discriminative in nature, which means, based 

on the classification result these systems return a hard pose label for any given test 

image.  

From a practical stand point, the training should be an offline component, where it 

should be able to incorporate any new pose classes without the need of an expensive re-

training phase. Moreover for a test image, instead of a black and white decision the 

classification method should provide the probabilities for each pose it might belong. This 

is more useful for the later face recognition stage, since this can be incorporated as a 

strong prior knowledge in the statistical sense. We will elaborate more on that in the next 

chapter. 

Keeping in view these goals, in this chapter we propose an efficient learning 

procedure that turns this multi-class problem into a two-class one by modeling a newly 

introduced pose similarity feature space (PSFS) obtained from extra-pose (different 

pose) and intra-pose (same pose) similarities in the training phase. This, as will be 

explained shortly, effectively avoids the problem of re-training the classifier for each of 

the class separately when a new pose class is added. For a test image it outputs a 

measure of confidence or probability for all poses without explicitly estimating 

underlying densities. 

To show the effectiveness of our method, in the presence of large illumination 

differences and expression variations, our system is evaluated on CMU-PIE face 
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database. It is chosen since it is the largest database that exhibits each subject in large 

pose and illumination differences. Also, it enables us to compare our results with some 

of the recent pose estimation methods that uses the same database and are able to 

recognize poses in the presence of large lighting variations. 

6.1.2 Database setup 

We used a subset of PIE database to evaluate our pose estimation algorithm. The portion 

of PIE database, we used, consists of 21 illumination differences of 68 subjects at 13 

poses. Each 640x480 pixel PIE image is converted to greyscale. A 128x128, closely 

cropped face part is used. We note that this is standard procedure and any state of the art 

face detector like [RBK98] [JV03] can be used for this purpose. A subject imaged under 

21 illumination variations (with background lighting off) is shown in Figure 6-1. Out of 

13, the main 9 poses are considered for estimation whereas the remaining 4 poses 

corresponding to up/down tilt (pitch) of the face (see Figure 6-2) are treated as 

previously unseen test poses, in order to see how well the system performs in assigning 

these into one of the corresponding poses.  

 

 

Figure 6-1: A subject from PIE imaged under 21 illumination conditions. 
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Figure 6-2: The main 9 pose variations in PIE along with 4 pitch variations in the 

corresponding poses. 

 

Each pose is approximately 22.5o apart with full right profile +90o (pose 1), frontal 0o 

(pose 5) to left profile -90o (pose 9). 15 subjects are used for training and rest of 53 

subjects for testing.  

For training, the main 9 poses (pose 1 -9) in 4 different illumination variations (out 

of 21) and 3 PIE expression variations per subject in each pose are considered, see figure 

6-3 for an example. Following the PIE naming convention illumination variations 

correspond to flash 01, 04, 13 and 16, which capture well the extent of illumination 

variations present (see figure 6-1). The expression variations are neutral, smiling and 

blinking at frontal lighting.  

For testing, all 21 illumination conditions per subject are considered, where the 17 

illumination conditions, not used in training, provides a way to assess the performance of 

the pose estimation method in previously unseen lighting variations. 

In such scenarios one can expect that there will be a huge overlap between nearest 

or adjacent poses in the derived feature space. We therefore introduce a new 

classification framework that overcomes this and models well the in-pose variations due 

to large illumination and expression changes. 
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 Figure 6-3: (Along Rows) All 9 pose variations in CMU-PIE; pose 1(right profile) 

to pose 9 (left profile) views; (Along columns) 7 imaging conditions; illumination 

and expression variations. 

6.2 Proposed Approach 

For the reasons stated earlier, we solve the pose estimation as a classification problem 

from a machine learning point of view. Instead of directly modelling the extracted LESH 

features and solve it as a multiclass problem, we rather use similarity scores of these 

features within same pose and among different poses. This implies the construction of a 

new feature space based on these computed similarities. Such an approach has huge 

benefit in that it effectively turns a multiclass problem into a binary two-class one while 

still representing well all the in-pose variations. We model this new feature space. 
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6.2.1 Pose Similarity Feature Space ‘PSFS’ 

We transform the whole problem into a new feature space termed as pose similarity 

feature space (PSFS). This PSFS is derived by computing similarities between LESH 

features, coming from same pose examples and similarities between features from all the 

different pose examples. 

As measure of similarity, we use modified Kullback-Leibler (KL) divergence 

[KL51], also known as Jeffrey-divergence, which is numerically stable, symmetric and 

robust with respect to noise and size of histogram bins [RTG00]. It actually gives a 

measure of dissimilarity between two histograms. Thus low values means more similar. 

It is defined as 

 , ,( , ) log log, ,
, ,

h ki r i rd H K h kr i r i rm mr i i r i r


 
   
 
 

 (6.1) 

where, subscript ‘r’ runs over total number of regions(partitions) and ‘i’ over number of 

bins in each corresponding local histogram h and k, ‘m’ is the corresponding bin’s mean 

and ‘ r ’ is used as a provision to weigh each region of the face while computing 

similarity scores. This could be used, for instance, in overcoming the problems due to 

expressions, by assigning a lower weight to regions that are mostly affected. In our 

experiments, for now, this   is set to 1.  

For each example in our training set, we compute these similarities with the rest of 

the examples in the same pose on derived LESH features. Concatenating them, give rise 

to an intra pose ‘IP’ (same pose) similarity vector. Similarly computing these similarities 

for each example with all other examples in a different pose give rise to an extra pose 

‘EP’ similarity vector. Thus each example is now represented in a PSFS as a function of 

its similarities by these IP or EP vectors. 

Note however, the dimensionality of this PSFS is a direct function of the total 

number of examples per pose in the training set. Therefore to put upper limit on the 

dimensionality of this derived PSFS and also to generate many representative IP and EP 

vectors for a test face, as explained shortly, we partition our training sets into some 

disjoint subsets in such a way that each subset has same number of subjects in each pose. 
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To understand it better, consider, for example, our training set comprising of 15 subjects, 

where each subject is in 7 different illumination and expression imaging conditions in 

each of the 9 poses, see figure 6-3. Therefore we have 15x7(105) examples per pose.  

 Deriving a PSFS directly means a 105 dimensional feature space, while 

partitioning it into some disjoint subsets, such as each subset has all the 15 subjects but 

in some different combination of the imaging conditions, would yield a 15 dimensional 

features space while still representing all the variations we want to model. 

6.2.2 Formal description of our approach 

Formally, our approach is that we first partition the training set into ‘k’ disjoint subsets 

(all N training examples per pose per subset), the subsets are disjoint in terms of the 7 

imaging conditions (chosen such as each subject is at a different imaging condition in 

that subset).  

In each subset, we then compute for each example, its similarity to the rest of the 

examples in the same pose on derived LESH features. Thus for ‘N’ examples per pose, 

we compute ‘N-1’ similarities for each example, concatenating them, give rise to a ‘N-1’ 

dimensional intra-pose (IP) similarity feature vector for each of the N examples. Extra-

pose (EP) vectors are obtained similarly by computing these similarities between each 

example in one pose with N-1 examples in a different pose by leaving the same subject 

each time (since we use a symmetric similarity measure).  Thus we will have  

IP samples and 
1

1
( )

P

i
K N P i





 
 

 
  EP samples for training. Where ‘N’ is number of 

examples/pose and ‘P’ is the total number of pose.  

Although there will be a large number of EP samples as compared to IP in the 

derived PSFS but we note that, IP samples tend to have low values as compared to EP 

and form a compact cluster in some sub-space of the PSFS. This is validated in Figure 6-

4 which shows a 3-D scatter plot of IP and EP samples from one of the subset, by 

randomly choosing 3 features from IP and EP similarity vectors. Note that IP samples 

are depicted from all of the 9 poses while only those EP samples are depicted which are 

computed among large pose variations, such as between frontal and left/right profile 

view or between left and right profile view. The scatter plot is shown in logarithmic 



 94 
 
 

scale for better viewing. Figure 6-4 provides an intuitive look at how the problem is 

easily separable when there are large pose variations, while EP samples coming from 

nearest pose examples can be seen as causing a marginal overlap with the IP class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4: 3-D scatter plot of IP and EP vectors from one of the subset. IP samples 

are drawn by randomly choosing 3 features from IP vectors from all of the 9 poses, 

while EP samples are depicted only for large pose variations i.e. between frontal 

and left or right profile or between left and right profile view. 
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The training set is used as a gallery and thus for a test face, computing its similarity with 

all of the examples in each pose in each subset of the gallery produces many 

representative similarity vectors for that test image. Therefore there is a good chance that 

more of the similarity vectors, coming from where the pose of the test face and gallery 

are same, falls in the IP class as compared to those which are coming from even slight 

pose variations.  

To learn the structure of this PSFS, we therefore seek to separate the two classes. 

Any classifier can be used for this purpose. However, since the way problem is posed, a 

classifier that can find a nonlinear boundary between the two classes is preferred. We 

therefore use a simple AdaBoost classifier originally proposed by Schapire and Singer 

[SS99]. AdaBoost is known for its good generalization ability and an extremely good 

performance in binary classification tasks. An AdaBoost classifier using nearest 

neighbour rule in each iteration is trained in this feature space for that purpose. It 

provides a non-linear boundary between the two classes.  

For a test image, k vectors are obtained for each pose by computing similarities 

from N-1 subjects in each pose in each training subset. All of these are classified to 

belong to either of the class. Final decision is then made by considering only those 

classified as IP, and assigning the label of the pose from which majority of these are 

coming. This probability for each pose is calculated simply by:  

 γ = p
p

n
K

 (6.2) 

 where pn is the number of IP vectors computed from the corresponding gallery pose 

p and K  is the total number of IP vectors possible for each pose p , that always 

corresponds to the number of subsets. It is then further normalised such as probabilities 

for all poses always sum to one, the final probability for each pose is therefore computed 

as 
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γ
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As stated earlier, the rational of making subsets of training set is now evident, as on one 

hand it limits the dimensionality of the feature space, while still representing well all the 

in-pose variations, and on the other hand it generates many representative vectors per 

pose for a test image, which provides us with a probability score and helps in 

overcoming the short comings of the classifier itself. 

6.3 Experimental Setup and Results 

As described in the preceding section, for the 15 training subjects we have (105)15x7 

examples per pose. We partition them into 7 disjoint sets (each with 15 examples) for 

each pose as described earlier. This generates a 14 dimensional PSFS by computing all 

the IP and EP vectors using LESH features. AdaBoost is then trained on this PSFS.  

For a test face, after extracting LESH feature vector, we compute similarities with 

14 examples in each pose, for each training subset. This will generate one 14 

dimensional similarity vector for each representative pose in each subset; therefore, we 

will have 7x1x9 (63) similarity vectors for that particular test image. They are then 

classified as either IP or EP. Those which are assigned label as IP are then further used 

to compute probability scores, by using Equations 6.2 and 6.3, for each of the 9 poses.  

Final pose estimate is based on by assigning the pose, which has the highest score. 

This way we hope to overcome the problem of any misclassified nearest pose EP 

vectors.  

For the 53 test subjects, we considered three sets of tests to evaluate our pose 

estimation method. In the first, we use test images at seen imaging conditions and poses. 

In the second, we use test images at unseen 17 illumination conditions, and in the third, 

we evaluate how well the system does in assigning the 4 unseen poses (pitch variations) 

to the corresponding 1 of the 9 poses. 

6.3.1 Test results for seen imaging conditions 

In this test, the input images are at one of the imaging conditions and poses seen in the 

training stage. The test set, therefore, consists of 4 illumination differences and 3 
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expression variations of the 53 subjects (15-68) not included in the training set at each of 

the nine poses. Thus, there are 53x7x9 (3339) test images. 

Each test image is classified as one of the pose based on the probability scores 

obtained from Equation 6.3, this corresponds to rank-1 rates. Whereas in order to see 

how well it performs in assigning a given image to the nearest poses, the results are 

summarized in the form of a confusion matrix. Figure 6-5 provides average estimation 

results for each pose. While Table 6-1 summarizes the classification results obtained on 

all the (3339) test examples in a confusion matrix. The overall average estimation 

accuracy is 84.06% in terms of rank-1 rates and 96.62% for estimates within +22.5o of 

accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-5: Average classification scores for each pose 
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Table 6-1: Confusion Matrix for test examples at seen imaging conditions 

System Pose Estimates 

 1 2 3 4 5 6 7 8 9 

1 365 4 2 0 0 0 0 0 0 

2 47 291 24 6 2 0 0 1 0 

3 31 59 244 31 5 1 0 0 0 

4 0 0 21 295 39 2 0 0 0 

5 0 0 0 10 359 2 0 0 0 

6 0 0 0 0 17 348 5 1 0 

7 0 0 1 0 23 44 198 85 20 

8 0 0 0 0 0 4 11 334 22 

 

T 

R 

U 

E 

 

P 

O 

S 

E 9 0 0 0 0 0 2 4 22 343 

 

In confusion matrix, the rows entries are indexed by the true pose of the input images, 

while column entries are labelled by our classification procedure-determine pose. The 

entries on the diagonal indicate the number of correctly classified images at each pose. 

The sum of each row is 371 (an entry of 371 on the diagonal indicates perfect 

classification for that pose). 

6.3.2 Test results for previously unseen illumination conditions 

In this test, we evaluate our pose estimation system on images of the 53 test subjects that 

exhibit one of those illumination differences not used in training. The test set, therefore 

consists 17 illumination differences of 53 subjects, all at neutral expression, at each of 

the nine poses. This amounts to 53x17x9 (8109) test examples. 

The results are reported similarly in a confusion matrix. An entry of 53x17 (901) on 

the diagonal indicates perfect classification for that pose. An average estimation 

accuracy of 85.15% is achieved in terms of rank-1 rates and 97.5% for estimates within 

+22.5o of accuracy. 
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Table 6-2: Confusion Matrix for test examples at 17 unseen illumination conditions 

System Pose Estimates 

 1 2 3 4 5 6 7 8 9 

1 845 44 12 0 0 0 0 0 0 

2 58 774 68 1 0 0 0 0 0 

3 21 42 745 71 22 0 0 0 0 

4 0 0 8 749 139 5 0 0 0 

5 0 0 0 21 868 12 0 0 0 

6 0 0 0 13 141 701 31 15 0 

7 0 0 0 2 34 105 643 85 32 

8 0 0 0 0 0 27 108 711 55 

 

T 

R 

U 

E 

 

P 

O 

S 

E 9 0 0 0 0 1 2 4 25 869 

 

6.3.3 Test results for unseen poses 

The four poses 10, 11, 12 and 13 that corresponds to the pitch variations of the 

corresponding poses 5, 2 and 8 respectively are used in this test to evaluate the 

performance of the system for unseen poses. The system should estimate the pose of the 

test images at one of these four unseen poses as one of the corresponding adjacent pose 

in the training set, e.g. an image at pose 10 should be assigned a pose label of 5 or 6. 

Therefore, here the performance of the system should primarily be assessed with regards 

to estimating the pose within +22.5o of accuracy (adjacent poses). 

The test set in this case consists of images of 53 subjects at each of the four unseen 

poses with all 21 lighting differences. It, therefore, amounts to 53x21x4 (4452) test 

examples. An entry of 53x21 (1113) at the corresponding pose in a row indicates perfect 

classification. The average overall rank-1 accuracy in this case is 63.1%, whereas the 

performance of system with-in +22.5o of accuracy is 97.1 %. 
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Table 6-3: Confusion Matrix for 04 unseen poses at 21 illumination conditions 

System Pose Estimates 

 1 2 3 4 5 6 7 8 9 

10 0 0 19 111 791 168 24 0 0 

11 0 0 16 153 684 241 19 0 0 

12 95 701 307 9 1 0 0 0 0 

 

 

True 

Pose 

 13 0 0 8 0 0 41 267 637 168 

 

6.4 Discussion and Conclusion 

We can compare our results with few of the recent works [YC05] and [PC05] which use 

same database and approximately the same setup, where former achieved 82.4% rank-1 

and later achieved 84.11% rank-1 and 96.44% within +22.5o, they however, pre- 

registered a test face to top 3 to 4 poses by using 3 landmark locations on the face and 

did not include expression variations.  

The recognition at previously unseen illumination conditions is slightly better than 

the seen ones. This is surprising, but it may be due to the fact that the effect of shadow at 

most of these illumination differences is much less than those of the extreme 

illumination variations included in the training set. The extracted LESH features are 

sensitive to this since a strong casting shadow may introduce an unwanted edge and 

hence affects the energy distribution in the corresponding local region. Our system 

achieves best recognition scores most of the time on full profile views, the reason, 

perhaps, stems from the fact that a face at these views is most distinguishable in terms of 

pure shape. Since our system is build on a pure shape representation, these results 

provides an intuitive relation if one looks at the corresponding cropped faces at these 

poses, see Figure 6-2.  
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The performance of our method on registering a given face to the nearest pose (adjacent 

poses) is above 97%. It provides us with probabilities for each pose and that makes it 

very attractive from a practical stand point, since this can be used directly as our 

confidence in a given pose in the further face recognition stage. 

On concluding remarks, we have presented a front-end pose estimation system 

which functions in presence of large illumination and expression changes. A new feature 

description that encodes the underlying shape well is proposed, and an efficient 

classification procedure is suggested which turns the multi-class problem into a binary 

one and solves the problem of discriminating between nearest poses. 

Based on proposed LESH feature description, we introduced to generate a generic 

similarity feature space, that not only provides an effective way of dimensionality 

reduction but also provides us with many representative vectors for a given test feature 

vector. This is used in generating probability scores for each pose without explicitly 

estimating the underlying densities, which is very useful in later face recognition across 

pose scenarios. 

We hope that the proposed feature description and the notion of modelling the 

similarity space will prove very useful in similar computer vision problems. 
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Chapter 7. Statistical Models for 

Automatic Pose Invariant Face 

Recognition 

In this chapter we specifically address the problem of recognition across pose when there 

is only one image per person available for training. Recognizing a person reliably having 

seen only one image and from previously unseen view point is a very challenging 

problem. Current state-of-the-art methods address this problem by explicitly learning the 

appearance variations of a face at different views. This can be achieved by using a pool 

of generic faces at different views and attempting to model how a face relates at two 

different views.  Here we assume that only one image per person (e.g. frontal) is 

available in the database. The relationship between frontal and non frontal images is 

treated as a statistical learning problem.  

7.1 Introduction 

Several previous studies have presented algorithms which can take a single probe image 

at one pose and attempt to match it to a single gallery image at a different pose. One 

successful approach is to create a full 3D head model for the subject based on just one 

image [RBV02] [BGPV05] and compare the 3D models. This is the current-state-of-the-

art for view independent face recognition from a single image. A drawback of this, 

however, is a precise registration of the probe in order to guide the fitting process and 

moreover the computation involved is too restrictive for a practical face recognition 

system.  

An alternative approach in the 2D context is to treat this as a learning problem in 

which we aim to predict frontal images from non-frontal ones. The other approach in this 
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context is to only model what is discriminative between images of the same subject in 

different poses and images of the different subjects in these poses. Lucey and Chen 

[LC08] categorized these into view-point generative and view-point discriminative 

approaches respectively. The emphasis in view-point generative methods is to find a 

mapping function that can be used to generate a given non-frontal image to its frontal 

counterpart [BP95] [ZC00] [GMB04] [BGPV05]. A simple distance metric is then 

utilized to compute similarity between a frontal gallery image and the transformed probe 

image. The assumption in generative methods, of finding a transformation function that 

can be used to generate a near perfect frontal image of its non-frontal counterpart in any 

pose, is not realistic and in practice the transformed images exhibit strong variations that 

accounts for degradation in recognition performance. The view-point discriminative 

approaches, on the other hand, has some inherent advantages over the viewpoint-

generative approach as more emphasis is given to discrimination, rather than the 

generation of a gallery view image from the probe view appearance [KY03] [LC05] 

[KK05] [LC08]. This, however, is a very naive assumption in that it assumes that the 

appearance variations among different subjects across different pose mismatches is 

always larger than variations among same subject in different poses. This practically 

may not be true since the discrimination of appearance across large pose differences of 

the same subject becomes significant enough that it can not preserve the identity.  

We can overcome these associated problems by first finding a generative function 

for each pose and then following a view-point discriminative approach to model the 

associated appearance variations specific to each pose explicitly. The goal of such an 

approach is creating a model that can predict how a given face will appear when viewed 

at different poses. This seems a natural formulation for a recognition task especially in 

unconstrained scenarios. In this chapter we develop this idea in a full Bayesian 

probabilistic setting. 

7.1.1 Overview 

In the context of the recent discriminative or generative appearance based methods the 

emphasis has been to directly model the local appearance change, due to pose, across 

same subjects and among different subjects. Differences exist among different methods 
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in how these models are built, but the goal of all is same i.e. trying to approximate the 

joint probability of a gallery and probe face across different pose. Such an approach is 

particularly attractive in that it automatically solves the one training image problem in a 

principled way as these appearance models can be learned effectively from an offline 

database of representative faces, see Figure 7-1. Another benefit of such a line of work is 

that adding a new person’s image in the database does not require training the models 

again. We note, however, almost all of these methods proposed in literature until now 

intrinsically assume a perfect alignment between a gallery and probe face in each pose. 

This alignment is needed, because, otherwise, in current appearance-based methods it is 

not possible to discern between the change of appearance due to pose and change of 

appearance due to the local movement of facial parts across pose.  

In this chapter, we introduce novel methods in this line of work and propose to build 

models on features which are robust against misalignments and thus do not require the 

facial landmarks to be detected as such. Our approach, briefly, is to learn statistical 

models describing the approximated joint probability distribution of a gallery and probe 

image at different poses. Since we address the problem where at most one training image 

(e.g. frontal) is available, we learn such models by explicitly modeling facial appearance 

change between frontal and other views when identity of a person is same and when it is 

different across pose. This is done by computing similarities between extracted features 

of faces at frontal and all other views. The distribution of these similarities is then used 

to obtain the likelihood functions of the form  

  ( , | ) , ,g pP I I C C S D  (7.1) 

where C  refers to classes when the gallery Ig and probe I p  images are similar S and 

dissimilar D  in terms of subject identity. For this purpose an independent generic set of 

faces, at views we want to model, is used for offline training. Figure 7-1 illustrates the 

underlying concept. 

 

 

 

 

 



 107 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
  

 

Figure 7-1: Recognition using single image. The offline component trains the face 

recognizer on how to handle mismatch. Offline images are representative of the 

appearance variations we anticipate seeing in the gallery and probe images. 
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A contribution is made towards improved recognition performance across pose without 

the need of properly aligning gallery and probe images. To achieve this, we propose to 

use face-GLOH-signature description introduced in chapter 3. This feature description 

captures the whole appearance of a face in a rotation and scale invariant manner, and is 

shown robust with regards to variation of facial appearance due to misalignments in 

chapter 4. Furthermore, we propose to synthesize these features at non-frontal views to 

frontal by using multivariate regression techniques. The benefit of this in recognition 

performance is demonstrated empirically. To approximate the likelihood functions in 

Equation 7.1, local kernel density estimation as opposed to commonly used Gaussian 

model is suggested for deriving these prior models. 

7.1.2 Related work 

Our contribution lies in the body of work that concerns estimating the joint likelihood 

for the purpose of recognition in the presence of pose mismatch. Here, therefore, we 

introduce the related existing work in this direction in order to put our work into the 

right context. 

There are three main methodologies in this domain. The first tries to model the joint 

likelihood function ( , | )g pP I I S  directly in the presence of pose mismatch. The 

likelihood ( , | )g pP I I D  is typically omitted due to the complexity associated with its 

estimation. Due to the large dimensionality of the whole face I , subspace methods based 

on PCA are employed to approximate the likelihood from a generic face dataset. To 

match a known gallery image gI  against an unknown probe pI  the following 

approximation is then used 

 ( , )g pI
I I P I I dI   (7.2) 

The vectors gI  and pI  are then matched using some canonical distance measure. The 

Tensorface [VT02] and Eigen Light Field [GMB04] are very recent techniques that fall 

into this category. 
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The second methodology attempts to model the differential appearance between gallery 

and probe images. In order to make the approximation, an offline generic set of 

examples is used. 

 ( , | ) ( | )g p g pP I I C P I I C   (7.3) 

These likelihoods are attempting to model the whole face, for both similar and dissimilar 

classes by using absolute difference in pixels. The most well known method in using 

differential appearance has been the intra-personal and extra-personal approach of 

Moghaddam and Pentland [MP97]. The similar and dissimilar classes of the differential 

appearance likelihood in equation 7.3 are modeled through a normal distribution. These 

distributions are estimated within a subspace, found using PCA. Techniques centered on 

LDA [KK05] also employ a similar paradigm, in terms of differential appearance, 

although they are not framed within a strict probabilistic framework. 

The third methodology is to decompose the face into an ensemble of salient 

patches/regions. [BP93] [M02] reported superior recognition performance, in the 

presence of occlusion and expression variations, with respect to approaches that treat the 

face as a whole. Recently Kanade and Yamada [KY03] proposed an effective technique 

for pose invariant recognition within this framework. Their extension was centered on 

the hypothesis that individual patches/regions can be treated as independent and 

modeling the change of appearance of these small regions is more effective as opposed 

to the whole face appearance. They thus approximate the appearance likelihood as 

follows. 

 
1

( , | ) ( | )
i

R

g p i C
i

P I I C P s 


  (7.4) 

where is  is the sum of squared difference (SSD) in pixels between gallery and probe 

patch r at position i , and   is the assumed Gaussian parametric form. Their approach, 

therefore, can be thought of a direct extension of the differential appearance paradigm in 

that they combine the differential appearance likelihoods of several local patches to 

approximate the joint likelihood. Some extensions to this approach have been reported in 

the literature [LC05] [LC08] with improved performance. 

We argue, however, that the strong assumption of patch independence is not 

statistically right, since face is a highly symmetrical object and different regions of a 
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face are not independent. Such an assumption, nonetheless, was needed in order to 

overcome the problems that arise, in modeling differential change of appearance across 

pose, in holistic appearance based methods. In this thesis, we suggest that one should, 

instead, derive such whole-face appearance representations that are easily tractable 

across pose and can take into account, to certain extent, the change of appearance of 

different parts of face due to pose. 

As mentioned previously, a commonality exists among all these approaches in that 

they try to build models based on pixel appearances and thus require a perfect alignment 

between gallery and probe images. This alignment is usually artificially imposed in the 

face normalization stage by using at least 3 or more facial landmark points, such that all 

of these points are in a fixed location in the final image. We note that detecting several 

facial landmarks with pixel accuracy is not trivial and thus localization of face in 

different poses for the purpose of registration can never be guaranteed. For the purpose 

of automatic pose invariant face recognition, this is a major bottleneck for above 

mentioned methods. 

7.2 Modeling Whole-Face Appearance Change across 

Pose 

Our approach is to extract whole appearance of the face in a manner that is robust 

against misalignment due to localization. For this we use face-GLOH-signature feature 

description introduced earlier. It models the local parts of the face and combines them 

into a global description. Figure 7-2 shows example feature extraction for two subjects at 

different poses from PIE database.  

As noted earlier, following a view-point discriminative approach directly by 

modeling the appearance across each pose can not preserve the identity in general, 

across large pose differences, especially when we do not assume a strict alignment 

between images. We therefore, synthesize the obtained feature vectors at non-frontal 

views to frontal by finding a generative function for each pose and then follow a view-

point discriminative approach to model the remaining associated appearance variations 
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specific to each pose explicitly. Computing similarities using these synthesized features 

between frontal and other poses provides us with prior distribution for each pose. 

 

 

 
 Figure 7-2: Face-GLOH-Signature extraction of two subjects at different 

poses. 

 

7.2.1 Generative pose models for synthesizing features  

It is well known that when a large number of subjects are considered, the recognition 

performance of appearance-based methods deteriorates significantly. It is due to the fact 

that distribution of face patterns is no longer convex as assumed by linear models. By 

transforming the image into a scale and rotation invariant manner, we assume that there 

exists a certain relation between these features of frontal and posed image that we can 

linearly transform. We justify this assumption by comparing the similarity distributions 

estimated from non-synthesized features and synthesized features. One simple and 

powerful way of relating these features is to use the regression techniques. Let us 

suppose that we have the following multivariate linear regression model, for finding 

relation between the feature vectors of offline gallery FI (frontal) and any other probe PI  

view examples. 
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where n corresponds to number of examples such that n D 1  , with D being the 

dimensionality of each FI


 and PI


. Note that FI


 and PI


 are column vectors 

corresponding to each other in terms of subject identity. B  is a pose transformation 

matrix of unknown regression parameters. Under the sum-of-least-squares regression 

criterion, B can be found using Moor-Penrose inverse. 

 1( )T T
P P P FI I I IB  (7.6) 

This transformation matrix B  is found for each of the poses 

PI (e.g. 22.5 , 45 , 65 , 90       ) with frontal 0
FI . Given a set of a priori feature vectors 

representing faces at frontal FI  and other poses PI , we can thus find the relation between 

them. 

Any incoming probe feature vector can now be transformed to its frontal counterpart 

online using: 

  ·[ 1]T T
P P PI I B  (7.7) 

  

 

7.3 Obtaining Prior Appearance Models for 

Recognition 

The likelihood of joint occurrence of a probe and gallery face at different poses is 

obtained by using an offline generic set of faces at views we want to model. These 

models explicitly describe the appearance variations between frontal and other poses for 

when the identity is same and when it is different. These prior models can be used to 

compute a match score between an online probe and gallery image in a Bayesian setting.  

We approximate the joint likelihood of a probe and gallery face as: 
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 ( | , , ) ( | , ,, )g p g p pg g pP I I C P C      (7.8) 

where { , }C S D  refers to classes when the gallery Ig  and probe I p  images are similar 

( S ) and dissimilar ( D ) in terms of subject identity.   is the pose angle for the 

corresponding gallery and probe image and pg  is the similarity between gallery and 

probe image. These likelihoods for the similar and dissimilar class are then found by 

modeling the distribution of similarities of extracted features between frontal and every 

pose from offline training set. Cosine distance is used as a similarity metric 
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
 (7.9) 

where   denotes the Euclidean norm of the vectors.  

Figure 7-4 depicts the histograms for the prior same and different distributions of 

the similarity  for gallery and probe images across a number of pose mismatches. These 

distributions depicted here are obtained by using images of half of the subjects in all 9 

poses from PIE database. To make the estimation of pose transformation matrix B  

feasible, 200 images in each pose of these subjects (illumination and expression variants) 

are used. The images used in our evaluation are cropped from the database without using 

any commonly employed normalization procedure. The face images therefore contain 

typical variations that may arise from miss localization such as back ground, part 

clippings and scale. Example images at frontal and 4 pose differences of a subject from 

PIE database are shown in figure 7-3. 

  

 

 

 

 

 

Figure 7-3: Example images of a subject at 5 poses 
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Note that, in Figure 7-4 the more separated the two distributions are the more 

discriminative power it has to tell if the two faces are of the same person or not for that 

particular pose. It is clear that the discriminative power decreases as the pose moves 

away from frontal. As shown, synthesizing features to frontal significantly improves this 

discrimination ability over a wide range of poses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7-4: x-axis denotes the similarity measure   and y-axis denotes the density 

approximation. First row depicts histograms for the same and different classes on 

non-synthesized features across 4 pose mismatches (see figure 7-3 for the 

approximate pose angles). Second row depicts the kind of separation and 

improvement we get by using feature synthesis. 
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7.3.1 Local kernel density estimation 

In order to compute ( | , )pg pP S   and ( | , )pg pP D  1 i.e. conditional probabilities 

describing similarity distributions when subject identity is same S  and when it is 

different D , these distributions must be described by some form. The most common 

assumption is the Gaussian. Functional density estimators like the Gaussian assume a 

functional form of the distribution and therefore depend heavily on the accuracy of that 

assumption. It is especially deceitful that a functional estimation always ‘looks’ correct, 

no matter how poor the assumption is for the underlying distribution. In [LC06] authors 

noted that describing such prior appearance models by a normal density is not optimal 

and results in biased recognition results. We also note that employing a normal density 

results in a poor fit, see Figure 7-5. We therefore propose to use local kernel density 

estimate. 
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There exist various methods to automatically estimate appropriate values for the width 

  of the kernel function [W07]. In this work, we simply set   to be the average nearest 

neighbor distance: 

 2
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i ji i j
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
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
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 (7.12) 

As depicted in Figure 7-5, the kernel density estimate is a better fit. It is because the 

assumption of Gaussian distribution in such scenarios is generally not fulfilled. Kernel 

density estimator, on the other hand, is known to approximate arbitrary distributions 

[S92]. 

 

 
                                                   
1 Note that angle g  is typically omitted since the gallery pose is fixed to frontal. 
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Figure 7-5: 1st row shows fitting a normal density, 2nd row shows the kernel 

density fits on the distribution of similarities obtained previously. 
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7.4 Recognition across Pose 

Obtained likelihood estimates ( | , )pg pP S   and ( | , )pg pP D   in the previous section, 

can now be directly used to compute the posterior probability. 

For an incoming probe image PI  at some pose p , of unknown identity, we can now 

decide if it is coming from the same subject as gallery gI , with each of the gallery image, 

by using this posterior as a match score. Employing these likelihoods, using Bayes rule, 

we write: 

 
( | , ) ( )

( | , )
( | , ) ( ) ( | , ) ( )

pg p
pg p

pg p pg p

P S P S
P S

P S P S P D P D
 

 
   




 (7.13) 

Since the pose p  of the probe image is in general not known, we can marginalize over 

it. In this case the conditional densities for similarity value pg  can be written as  

 ( | ) ( ) ( | , )pg p pg p
p

P S P P S     (7.14) 

and 

 ( | ) ( ) ( | , )pg p pg p
p

P D P P D     (7.15) 

Similar to the posterior defined in equation 7.13, we can compute the probability of the 

unknown probe image coming from the same subject (given similarity pg ) as 
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


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


 (7.16) 

If no other knowledge about the probe pose is given, one can assume the pose prior 

( )pP   to be uniformly distributed. We, however, use the pose estimates for a given 

probe face by our developed front-end pose estimation procedure as detailed in chapter 5 

and 6. The pose estimation system provides us with probability scores for each pose that 

can be used directly as priors ( )pP   in Equation 7.14 and Equation 7.15. Due to a 

reasonably high accuracy of these pose estimates, these probabilities can act as very 

strong priors and thus increase the chances of a probe to be recognized correctly.  
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We compute this posterior for an unknown probe image with all of the gallery images 

and choose the identity of the gallery image with the highest score as recognition result. 

Figure 7-6 details the general flow of the developed framework in a block diagram. 

 

 

 

Figure 7-6: Overview of the developed fully automatic face recognition system 
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7.5 Conclusion 

We have presented a pose invariant face recognition method that requires only a single 

image of the person to be recognized in the gallery. The proposed approach is centered 

on modeling joint appearance of gallery and probe images across pose in a Bayesian 

framework. We have proposed novel methods in this direction by introducing to use a 

more robust feature description as opposed to pixel-based appearances. The variation of 

these features across pose is modeled by a multivariate regression approach. 

Furthermore using kernel density estimate, instead of commonly used normal density 

assumption, is proposed to derive the prior models. Our method does not require any 

strict alignment between gallery and probe images and that makes it particularly 

attractive as compared to the existing state of the art methods.  

In the next chapter we present several experimental results and comparisons with 

the previous state-of-the-art methods in order to show the effectiveness of the proposed 

method. 
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Chapter 8. Automatic Pose Invariant 

Face Recognition Results 

In this chapter we test the method and models developed in the previous chapter on two 

of the large databases i.e. CMU-PIE database and FERET database. Where Images of 

half of the subjects from PIE and FERET are used as generic offline set for training of 

the models, while remaining are used for gallery and probe sets. 

8.1 Experimental Setup 

The pose subsets of both the databases are used in our experiments. From CMU-PIE all 

images of 68 subjects imaged under 13 poses in neutral expression are used. The 

approximate pose difference between images of the same subject is 22.5o varying from 

frontal 0o  to 90o  profile. FERET set includes images of 200 subjects in 9 pose 

variations with an approximate pose difference of 15o, varying from 0o  frontal to 

60o profile view. 

We test our system for the automatic case without any manual localization. We, 

therefore, use Viola-Jones face detector [JV03] to automatically localize faces. Detected 

Face windows are then cropped from the database without employing any commonly 

used normalization procedure. Therefore images contain typical variations that may arise 

due to miss-localization like scale, part clippings and background. All images are then 

resized to 128x128 pixels. Typical variations present in the database are depicted in few 

of the example images in Figure 8-2. Note that, since we do not employ any kind of 

normalization such as detecting and fixing eye location or eye-distance, face images 

across pose suffer from typical misalignments. 
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Figure 8-1: Examples of detected face windows depicting typical variations due to 

misalignments e.g. scale, part clipping, background etc. 

 

As mentioned, half of the subjects are used for training the models, this amount to 

images of 32 subjects for the experiments on PIE database and 100 subjects for the 

experiments on FERET.  

As the gallery, the frontal images of all the subjects are used. For the tests on PIE 

database, since we do not assume any alignment between gallery and probe images, 

therefore models are trained for the main 9 poses i.e. pose 1-9 in Figure 8-2. While pose 

10,11,12 and 13 corresponding to up/down tilt of the face are treated as the variations 

due to misalignment for corresponding poses in the test set. All 13 poses for a subject in 

the test set are therefore considered. Class priors  P S  and  P D  are set to ( ) 1P S   

and ( ) 1 ( )P D P S   in all of our experiments. 

8.2 Test Results 

We provide results of several experiments demonstrating the effectiveness of our 

method. The first set of results are obtained by using PIE database 
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Figure 8-2: 13 poses covering left profile (9), frontal (1) to right profile(5), and 

slightly up/down tilt in pose 10, 11, 13 and 12 of corresponding poses in 8, 1 and 4 

respectively. 

 

8.2.1 Experiment 1: Known probe pose 

For our first experiment, we assume probe pose to be known and therefore use equation 

7.13 to compute the posterior. In order to show the effectiveness of our method, we 

include the results of Kanade and Yamada's [KY03] Bayesian Face Sub-region 'BFS' 

algorithm and Eigenface algorithm [MP97] for comparison, where the former is 

considered since our method is similar to it in the principled approach while Eigenface is 

included as it is the common benchmark in facial image processing. Results are reported 

on PIE database. 

In order to use BFS on our dataset, the face image is divided into 32x32 pixel 

overlapping patches, with an overlap of 16 pixels. This is done since we do not assume 

aligned probe and gallery with respect to eyes and mouth positions. Prior models are 

obtained as described in the original paper [KY03] by using sum of square difference 

measure for each patch. Our results, as depicted in Figure 8-3, shows the robustness of 

our method against misalignments between probe and gallery while the results of BFS 

are much worse on misaligned images as compared to what they originally reported on 

the same database, see Table 8-1. 
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Figure 8-3: Recognition performance for each of the 13 PIE poses for the test set. 

Results of our method and comparison with BFS and Eigenface for known probe 

pose. 

8.2.2 Experiment 2: Unknown probe pose 

For our second experiment, we report results for the fully automatic case, where pose of 

the probe images is not known a priori.  

For an incoming probe image, we extract face-GLOH-Signature as described in 

chapter 3. In order to synthesize these features to frontal we need to know the probe 

pose, as we have to use the corresponding pose transformation matrix B . Since we use 

the front-end pose estimation step, as described earlier that provides us with the 

probabilities for different possible poses, we therefore use marginalization (Equation 

7.14 and 7.15) by transforming the extracted feature vector of given probe to frontal for 

all poses. Note that, still using marginalization after a pose estimation step may seem 

counterproductive at first but since our system is based on models learned from 
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synthesized features, and as shown in Figure 7-4, the distributions depicting the similar 

class are almost same for the nearest pose mismatches, therefore this in fact improves the 

recognition performance in most cases. This is due to the fact that these pose prior 

probabilities, obtained from the pose estimation system, act as weights and they are only 

high for the nearest poses. As shown in Figure 8-4 performance of our method with 

marginalization, by using strong pose priors, improves recognition accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-4: Comparison of recognition performance with and without 

marginalization on PIE database. 

8.2.3 Experiment 3: Comparison with and without feature 

synthesis 

We compare the performance with and without feature synthesis. Figure 8-5 shows the 

performance gain achieved by using feature synthesis. As much as 20% of performance 
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gain is observed for probe poses moving away from frontal. These results provide an 

insight into the effectiveness of the learned generative pose models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8-5: Comparison of our method for with and without feature synthesis 

(results reported here are obtained using marginalization). 

8.2.4 Experiment 4: Evaluation on FERET 

Following a similar procedure, the results on FERET are summarized here. We use 100 

subjects as probe where frontal images of all 200 subjects are used as gallery. Note that 

there is a significant pose difference between FERET and PIE images, the average pose 

difference across FERET is 15o. The results reported here are obtained in a fully 

automatic setting where probe poses are obtained by using marginalization. The 

recognition accuracy up till 45o of pose difference is above 90%. The overall average 

recognition accuracy on FERET is 92.1%. Figure 8-6 plots the average recognition 

accuracy across each probe pose. 
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Figure 8-6: Average recognition accuracy across each pose on FERET 

8.2.5 Experiment 5: Recognition across databases 

For all experiments shown so far the training and gallery/probe subjects were taken from 

the same database. Here we demonstrate the generalization ability of the learned models 

across different databases. For this purpose prior models are learned by using FERET 

database and tested on PIE database. Note, however, there is a significant pose 

difference among the two databases. In order to cope with that we use 7 PIE poses (pose 

1, 2, 3, 4, 6, 7 and 8) that loosely correspond to the corresponding FERET poses 

( 0 , 25 ; 45 , 60o o o o   ). In Figure 8-7 we show recognition accuracies for tests with seven 

poses of the PIE database. Training for both prior appearance models and pose 

generative model is performed by using all the 200 subjects of the FERET database. 

Correspondence between FERET and PIE poses is determined manually. 
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Figure 8-7: Recognition accuracy for test on 7 PIE poses. Prior models are obtained 

using all the FERET subjects and tested using only the PIE subjects. 

 

The results indicate the good generalization ability of our method. The overall accuracy 

is 87.7% that compares favorably with the results obtained previously using the same 

respective database for training and testing. 

8.3 Comparison with Contemporary Methods 

We summarize and compare the average recognition accuracy of our method with that of 

some of the most representative algorithms that achieved state-of-the art results on face 

identification studies on the same databases so far. When comparing identification 

results, one should keep in mind the over restrictive assumptions behind these methods 

that hinders a direct generalization of these methods to fully automatic case. In particular 

the degree of manual intervention should be noted. Almost all of the previous studies 

rely on manual localization of some points on the face in order to align images or to 

establish a direct correspondence to model local patches around these points. Our 
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method does not require any manual registration and is fully automatic in this sense. 

With these considerations in mind, we present a summary of identification performance 

from other studies in Table 8-1. 

 
Table 8-1: Comparison with state-of-the-art face identification studies across pose 

Study Alignment Database Pose Difference 
 

% Correct 
 

Kanade and 
Yamada [KY03] 

3 points CMU-PIE Average on all 13 poses 81 

Gross et al. 
[GMB04] 

3 points FERET Average on all 9 poses 75 

Gross et al.  
39 points 

CMU-PIE Average on all 13 poses 78.8 

Blanz et al. 
[BGPV05] 

11 points FRVT  45o 86 

Chai et al. 
[CCG07] 

3 points CMU-PIE 23o / 45o 98.5 / 89.7 

Prince et al. 
[PEWF08] 

21 points 
CMU-PIE 45o / 67.5o 100 / 91 

  FERET 15o / 45o  100 / 99  

Our Method No 
alignment CMU-PIE Average on all 13 poses 

23o / 45o / 67.5o 
80.4 

91.5 / 87.9 /81 

Our Method No 
alignment FERET Average on all 9 poses 

15o / 45o / 60o 
92.1 

100 / 90.3 / 82.5 
 
 
Our results compares favorably with the previous approaches. Gross et al. (Eigen light 

filed method) [GMB04] reports an overall 75 percent first-match results over 100 

subjects from the FERET database, by using three manually marked feature points. Our 

system achieves 92.1 percent performance, with out manual registration. In the same 

study, they also report 39 percent and 93 percent performance for the PIE database 

conditions 67.5o and 23o, respectively, with a large number (> 39) of manually labeled 

key points. For the same conditions, we report 81 percent and 91.5 percent, respectively, 

with no annotation. Kanade and Yamada’s BFS method achieves an average of 

approximately 81% performance on PIE database. Their method however, is sensitive to 

the manually annotated points on the face. As has been shown in our experiments 

(Figure 8-3) the performance of their method is much worse when we do not assume any 
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alignment. Blanz et al. [BGPV05] report results for a test database of 87 subjects with a 

horizontal pose variation of 45o from the Face Recognition Vendor Test FRVT 2002 

[FRVT02] database, using, on the average, 11 manually established feature points. They 

investigate estimating the 3D model and creating a frontal image to compare to the test 

database (86.25 percent correct). Our system produces better performance at larger pose 

differences for comparable databases. 

Probably the best results reported up till now are those of Chai et al. [CCG07] and 

Prince et al. [PEWF08]. Both of the methods use a similar pose contingent linear 

transformation of non-frontal views to frontal, where Chai et al. synthesize raw pixels 

and thus it cannot generalize directly to the automatic case where typical variations due 

to miss localization are expected, while Prince et al. transforms the local features 

extracted from manually located 21 points on the face image (at a different pose) to 

frontal and then model the variation of the corresponding local features across pose, their 

method therefore puts a hard constraint on the precise correspondence of these points 

across each pose. The comparison in Table 8-1 shows that our method is able to achieve 

comparable or better results in a fully automatic sense even without the need of properly 

aligning the gallery and probe images. That is especially attractive in the context of fully 

automatic pose invariant face recognition. 

 

8.4 Conclusion 

We have presented several experimental results and comparisons with previous state-of-

the-art approaches, demonstrating the effectiveness and weakness of the proposed 

approach. Our method is able to achieve above 80 % of performance within a pose 

difference of approximately 65o.  

The performance of our system, as depicted by experiments on PIE database, on full 

profile views i.e. 90o of pose difference is around 45 %. A relatively low performance on 

these conditions depends on a number of factors and among others suggests that using a 

linear model for pose transformation is not able to cope well with these extreme pose 

differences.  
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Note that when a probe is at frontal, the scores are 100% since exactly the same images 

are used in the gallery for frontal pose. 

 The results reported here are for the fully automatic case, where faces are localized by 

using a face detector and we do not assume probe pose to be known. Our results show 

that one can achieve comparable performance without requiring the facial landmarks to 

be detected. Current methods rely on this information for the purpose of registration. For 

the purpose of automatic pose invariant face recognition, this is a major bottleneck for 

the current methods. Our approach tries to lift off this barrier and works directly on the 

output of a face detector. Although, we have presented results by using gallery as fixed 

at frontal pose, we note that it is straight forward to use our method for any pose as 

gallery. 
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Chapter 9. Outlook and Future 

Directions 

This dissertation is concerned with the automatic machine recognition of human faces 

for the purpose of identification in unconstrained scenarios. Here we present a cursory 

overview of the main contributions and some directions for future work. 

9.1 Summary 

We have elaborated on the background and specifics of an automatic face recognition 

process. More specifically, we differentiate the face localization from alignment and 

argue that the alignment stage has to be avoided in order to realize a fully automatic 

system especially when considering the pose variations. A brief but comprehensive 

literature review of the current state of the art methods is presented.  

A comprehensive account of almost all the feature extraction methods used in 

current face recognition systems is presented. Specifically we have made distinction in 

the holistic and local feature extraction and differentiate them qualitatively as opposed to 

quantitatively. It is argued that a global feature representation should be preferred over a 

bag-of-features approach. The problems in current feature extraction techniques and 

there reliance on a strict alignment is discussed. We have introduced to use face-GLOH 

signatures that are invariant with respect to scale, translation and rotation and therefore 

do not require properly aligned images. The resulting dimensionality of the vector is also 

low as compared to other commonly used local features such as Gabor, LBP etc. and 

therefore statistical based methods can also benefit from it. 

In a typical multi-view face recognition task, where it is assumed to have several 

examples of a subject available for training, we have shown in an extensive experimental 

setting the advantages and weaknesses of commonly used classification methods. Our 
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results show that under more realistic assumptions, most of the classifiers failed on 

conventional features. While using the introduced face-GLOH-signature representation 

is relatively less affected by large in-class variations. This has been demonstrated by 

providing a fair performance comparison of several classifiers under more practical 

conditions such as misalignments, large number of subjects and large pose variations. 

An important conclusion is to be drawn from the results is that conventional multi-view 

face recognition can not cope well with regards to large pose variations. Even using a 

large number of training examples in different poses for a subject does not suffice for a 

satisfactory recognition 

Large pose differences cause significant appearance variations that in general are 

larger than the appearance variation due to identity. One possible way of addressing this 

is to learn these variations across each pose, more specifically by fixing the pose and 

establishing a correspondence on how a person’s appearance changes under this pose, 

one could reduce the in-class appearance variation significantly. The pose information is 

valuable and for a fully automatic face recognition system the pose of the incoming 

probe/test image has to be known in this context. An effective pose estimation 

framework for the purpose of automatic face recognition is developed. The proposed 

front-end pose estimation system functions in the presence of large illumination and 

expression changes. In this context we have introduced a new feature description based 

on local energy model of feature perception, termed as LESH, which encodes the 

underlying shape and is insensitive to skin color and illumination variations. Based on 

proposed LESH feature description, we introduced to generate a generic similarity 

feature space, that not only provides an effective way of dimensionality reduction but 

also provides us with many representative vectors for a given test feature vector. This is 

used in generating probability scores for each pose without explicitly estimating the 

underlying densities, which is very useful in later face recognition across pose scenarios. 

Finally we integrate the head pose estimation system with a novel fully automatic 

face recognition system. We introduced a pose invariant face recognition method that 

requires only single image of the person to be recognized in the gallery. The proposed 

approach is centered on modeling joint appearance of gallery and probe images across 

pose in a Bayesian framework. We have proposed novel methods in this direction by 
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introducing to use a hybrid approach to generative and discriminative models. The 

generative pose models are obtained by modeling the variation of the suggested features 

across pose by a multivariate regression approach. Furthermore using kernel density 

estimate, instead of commonly used normal density assumption, is proposed to derive 

the discriminative prior appearance models. The method provides us with a full posterior 

over possible gallery matches which can also be easily used for face authentication. Our 

method does not require any strict alignment between gallery and probe images and that 

makes it particularly attractive as compared to the existing state of the art methods. We 

have presented several experimental results and comparisons with previous state-of-the-

art approaches, demonstrating the effectiveness and weakness of the proposed approach. 

 

9.2 Future work 

The different methods introduced and developed in this dissertation may be extended in 

many ways. In unconstrained scenarios, one of the main problems addressed in this 

regard is the misalignment or poor localization of face caused by a face detector stage. 

The problem of misalignments is addressed by using a whole face representation that is 

robust against variations caused by scale, rotation or translation of the facial parts. Our 

approach however is sensitive to the detection output. In particular the noise caused by 

face detector module such as back ground, face part clippings etc. induce unwanted 

appearance variations that compromise the recognition accuracy. This can be improved, 

by using a refinement stage e.g. using procedures to precisely localize only the face in 

the detected support of the image. To automate this, an effective approach would be to 

use human skin color. Skin colors are distributed over a small area in the chrominance 

plane with the major difference between skin tones being variations in intensity 

[MM99]. After detecting a skin probability image an ellipse fitting method can be used 

to approximate the skin blob. The work in [BS03] details one such procedure. 

The performance of our system, on full profile views i.e. 90o of pose difference is 

around 45 %. A relatively low performance on these conditions depends on a number of 

factors and among others suggests that using a linear model for pose transformation is 
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not able to cope well with these extreme pose differences. In this regard a non-linear 

approach to model the underlying generative process can be followed. The non-linear 

regression can be carried out by projecting the data into kernel space, see [B06] for 

recent developments in this direction. 

In order to address the single training image problem, we have proposed to follow a 

hybrid approach by explicitly modeling the joint distribution of a gallery and probe 

image across pose. Our framework uses a very simple Bayesian formulation. More 

complex Bayesian models can be used to approximate the true underlying generative 

distributions. Moreover our current formulation only incorporates a single probe image, 

in many situations such as video feeds we can have several images of a same subject to 

be recognized. In such cases the proposed framework can be easily extended to use 

multiple probe images and hence improve performance. 

With the substantial increase in processing powers and computational speeds of the 

digital computers, it is perhaps best to use 3D methods along with 2D approaches. 

Future works on addressing face recognition may benefit from using multi modal 

2D+3D approach, promising works in this directions are [BGPV05] [ANRS07]. 
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