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Zusammenfassung

In der Arbeit wird eine leistungsoptimierte Lösung für das Problem des räumlichen
Multiplexings von unabhängigen Datenströmen in einem Mehrantennen-System vor-
gestellt, unter der Annahme, daß entweder die Sendeantennen oder die Empfangsan-
tennen nicht kooperieren und die Gesamtleistung beschränkt ist.

Kooperation wird durch lineare räumliche Filterung (Beamforming) erzielt, die
gemeinsam mit den Sendeleistungen optimiert wird. Grundlage der Optimierung ist
Kanalkenntnis an der kooperierenden Seite, welche als bekannt vorausgesetzt wird.
Das Optimierungsziel ist die Gewährleistung individueller Signal-zu-Interferenz-plus-
Rausch-Verhältnisse (signal-to-interference-plus-noise ratio, SINR) bei gleichzeitiger
Minimierung der Gesamtleistung. Dieses Problem tritt z.B. in einem zellularen Mo-
bilfunksystem auf, wo eine Basisstation über ein Antennenarray gleichzeitig mit meh-
reren unabhängigen Mobilstationen kommuniziert, welche jeweils mit einer Einzelan-
tenne ausgerüstet sind. Die Signalübertragung erfolgt im Downlink über kooperie-
rende Sendeantennen und im Uplink über kooperierende Empfangsantennen.

Ein erster Schritt zur Lösung dieses Optimierungsproblems ist die Annahme un-
veränderlicher Beamformer. Dies ermöglicht eine Charakterisierung des globalen Op-
timums. Es zeigt sich, daß eine fundamentale Dualität zwischen räumlichem Mul-
tiplexing in Abwärts- und Aufwärtsverbindung besteht. In beiden Kanälen können
die gleichen SINR-Werte erreicht werden, wobei jeweils die gleiche Beschränkung der
Gesamtleistung zugrundegelegt wird. Eine Lösung für das Downlink-Problem, wel-
ches eine komplizierte analytische Struktur aufweist, kann demnach durch Lösen des
„glatteren“ Uplink-Problems gefunden werden.

Ein zweiter wichtiger Schritt zur Lösung der allgemeinen Aufgabenstellung ist die
Untersuchung von Mehrnutzer-Beamforming unter Vernachlässigung des Rauschens,
wie von Gerlach and Paulraj [10] vorgeschlagen. Dies führt zur Minimierung eines
nicht-differenzierbaren `∞ Funktionals. Ein wichtiger Schritt zur Lösung dieser Auf-
gabenstellung ist die Formulierung eines äquivalenten Eigenwert-Optimierungsprob-
lems und der Beweis, daß jedes lokale Optimum auch ein globales Optimum ist. Wei-
terhin wird ein interessanter Zusammenhang zwischen dem optimalen `∞ Problem
und einem in [10] vorgeschlagenen `1-Ansatz aufgezeigt. Die analytischen Ergebnis-
se dieser Untersuchungen führen schließlich zu einer iterativen Lösung mit streng
monotonem Konvergenzverhalten. Das globale Optimum wird bereits nach einigen
wenigen Iterationsschritten erreicht.
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Aufbauend auf den Erkenntnissen aus der Betrachtung des rauschfreien Falls,
wird eine Lösung des allgemeinen Problems hergeleitet. Der neue Algorithmus hat
dieselben exzellenten Konvergenzeigenschaften wie die oben beschriebene Lösung und
minimiert zudem die Gesamtleistung unter Berücksichtigung des Empfangsrauschens.
Mittels individueller Zielvorgaben lassen sich so beliebige SINR-Werte erreichen, so-
lange das Problem lösbar ist. Notwendige und hinreichende Bedingungen für die
Lösbarkeit werden angegeben. Eine geschlossene Lösung für den 2-Nutzer-Fall wird
hergeleitet.

Schließlich wird gezeigt, wie die gefundene Lösung auf das Problem der Raten-
Kontrolle im Gauß’schen Broadcast-Kanal mit vektorwertigem Eingang und skalarem
Ausgang angewendet werden kann. Mit dem obigen Dualitätsresultat folgt, daß es
eine Übereinstimmung erzielbarer Kapazitäten in Broadcast und Multiple-Access-
Kanal gibt, solange eine Kombination aus linearer Filterung und Decision-Feedback-
Entzerrung bzw. -Vorverzerrung betrachtet wird. Dies zeigt, daß die bekannte Ka-
pazitätsregion des Multiple-Access-Kanals eine direkte Entsprechung im Broadcast
Channel hat, einschließlich der maximalen Summenkapazität. Die Dreiecks-Struktur
des Kanals, hervorgerufen durch die Decision-Feedback-Strategie, ermöglicht eine auf
Rücksubstitution basierende Lösung, welche eine effiziente Steuerung individueller
Datenraten erlaubt. Auch für diese Aufgabenstellung wird eine geschlossene Lösung
für den 2-Nutzer-Fall hergeleitet.
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Abstract

This thesis offers a power aware solution to the problem of spatial multiplexing
of independent data streams in a multi-antenna system, assuming that either the
transmit antennas or the receive antennas are not allowed to cooperate and a sum
power constraint is imposed.

Cooperation is achieved by using spatial linear filters (beamformers), which are
optimized jointly with the power allocation. To this end, the spatial channel char-
acteristics must be known at the cooperating side. The design goal is to achieve
individual signal-to-interference-plus-noise ratios (SINR) with minimal power con-
sumption. This problem occurs, e.g., in a cellular wireless communication system,
where a multi-antenna base station communicates simultaneously with several de-
centralized mobile terminals, each equipped with a single antenna. Downlink and
uplink correspond to cooperating transmit and receive antennas, respectively.

As a first approach to this optimization problem, the beamformers are assumed to
be fixed. This allows for a characterization of the global optimum, which will prove
useful for the following analysis. It turns out that there is a fundamental duality
between uplink and downlink spatial multiplexing. In particular, the same SINR
values can be achieved in both channels under the same power constraint. Hence, a
solution of the downlink problem, which has a complicated analytical structure, can
be found by solving the “smoother” uplink problem instead.

A second important step towards a general solution is the investigation of joint
beamforming in the absence of noise, as proposed by Gerlach and Paulraj [10]. This
problem consists of minimizing a non-differentiable `∞ objective function. A key
step in finding a global solution is to formulate an equivalent eigenvalue optimization
problem and to show that each local minimum is a global minimum. Also, there is an
interesting relation between optimal `∞ optimization and the alternative `1 objective
proposed by [10]. The analytical results of this study lead to the development of
globally convergent algorithms with strictly monotone iteration sequences. Typically,
only a few iteration steps are required.

The insight gained from studying interference balancing in the absence of noise
is used to derive a power aware strategy for SINR balancing with minimal power
consumption. This new algorithm has the same excellent convergence behavior as
the one derived for the noiseless case. By choosing individual target thresholds,
arbitrary SINR levels can be achieved as long as the problem is feasible. Necessary
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and sufficient conditions for feasibility are provided and a closed form solution is
derived for the 2-user case.

Finally, it is shown how the solution can be applied to the problem of control-
ling rate tuples in a Gaussian broadcast channel with vector inputs and independent
scalar outputs. By exploiting the above duality result, it is shown that there is a
one-to-one correspondence between capacities achievable in broadcast and multiple
access channel, as long as a combination of linear filtering and decision feedback
equalization is considered. Hence, the well known multiple access capacity region
has a direct counterpart in the broadcast channel, including the point of maximum
throughput. Exploiting the triangular channel structure imposed by decision feed-
back equalization, a rate balancing technique based on back-substitution is derived.
This approach allows to control individual rate tuples with minimal power consump-
tion and high computational efficiency. A closed form solution is given for the 2-user
case.
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1. Introduction

The spatial structure of the wireless propagation channel can be exploited by using
multiple transmit and receive antennas. By adding the spatial dimension to the classi-
cal system resources bandwidth and power, significant gains in spectral efficiency can
be achieved. This has been demonstrated by evaluating the information-theoretical
capacities [11, 12]. The potential gains depend on the spatio-temporal characteristics
of the propagation channel, the degree of cooperation among the antennas, as well as
the channel information available at transmitter and/or receiver. For an overview,
see e.g. [13].

The general problem of spatial multiplexing consists in finding a transmit covari-
ance matrix and a detector, which are jointly optimal with respect to a chosen design
goal. If both transmit and receive antennas cooperate, then the throughput maxi-
mizing strategy is known to be the water-filling solution based on the singular-value
decomposition of the channel matrix [11, 14].

In many wireless systems, however, maximizing the throughput is not the primary
design goal. Additional system constraints should be considered, like bandwidth-
limited channel feedback or the limited ability to resolve fast fading. So it may
be necessary to trade off spectral efficiency against diversity by sending multiple
replicas of the same signal in order to make reception more reliable. For multi-
antenna systems, this leads to the concept of space-time coding [15–17].

Another important constraint is the degree of antenna cooperation. Cooperation
may be impractical, e.g., for antennas belonging to different decentralized users. In
this case the waterfilling power allocation is generally not optimal. A new strategy is
required, which jointly optimizes the power allocation and the spatial transmission
strategy. In general, this leads to the relatively new field of multiuser MIMO (multiple
input, multiple output) transmission, for which only partial results have appeared so
far. The challenging goal is to adaptively allocate individual data rates in a multiuser
environment. These rates should be achieved with minimal transmission power.

1.1. Problem Statement

This thesis deals with a special case of multi-antenna transmission. Unilateral an-
tenna cooperation is considered, which means that cooperation is allowed at either
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1. Introduction

transmitter or receiver. In the following, these scenarios are referred to as downlink
and uplink, respectively. This is in analogy to a cellular wireless communication sys-
tem with a multi-antenna base station and several single-antenna mobile terminals.
Due to the different geographical positions of the mobiles, mutual co-operation is
often impractical. Note, that studying this special scenario is a first step towards the
general case, where also the mobiles are allowed to employ multiple antennas.

The spatial structure of the multiuser channel has to be known at the base station
in order to facilitate meaningful antenna cooperation. The benefit of cooperation is
to enable spatially directed transmission between the base station and the K decen-
tralized mobile terminals. Thereby, mutual interference is reduced and the overall
system performance is enhanced. Such spatial multiplexing provides additional de-
grees of freedom through which communication can take place.

Spatial multiplexing always goes hand in hand with power control, which has to
ensure reliable communication by counterbalancing the joint effects of signal prop-
agation and residual interference. Hence, a reasonable design goal is to achieve a
certain link quality for each channel with minimal transmission power. If this prob-
lem is infeasible, the requirements must be relaxed by the resource management,
e.g., by switching off one or more channels. Such a power aware transmission scheme
exploits the available system resources in an optimal way.

A reasonable and often used model is the transmission of Gaussian distributed
signals. Then, the performance measure for each of the K channels is the signal-to-
interference ratio (SINR). Considering individual target thresholds γ1, . . . , γK > 0,
the design goal can be formulated as

SINRi ≥ γi, 1 ≤ i ≤ K . (1.1)

It is desirable to achieve these targets with minimum total transmission power. This
is a joint optimization problem, since all users are typically coupled by the corporate
effects of channel propagation, power adjustment, and spatial filtering. One difficulty
in understanding such systems stems from the intertwining of the effects of all of the
interferers in the system.

1.2. Related Works

• In the context of a synchronous CDMA system with random spreading se-
quences, a similar multi-user problem was studied by Tse and Hanly [18]. The
temporally spread system considered in this work is the direct equivalent to
the spatially spread system considered here. Tse and Hanly carried out an
asymptotical analysis, which shows the limiting effect of mutual interference
for several linear receiver types. They provided an upper bound on the achiev-
able system performance depending on the number of antennas M and the
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1. Introduction

number of users K. However, this provides no complete answer to the ques-
tion how SINR requirements γ1 . . . γK can be controlled under a sum power
constraint.

• In the context of classical beamforming (for an overview see e.g., [19–23] and
the references therein), the problem of jointly separating several signal sources
in space was addressed. For this purpose, a fixed power allocation is mostly
assumed. The interaction of several users in a power controlled network with
limited transmission power, however, is less well understood.

• Power control strategies for achieving the design goal (1.1) were already stud-
ied [24–28] (assuming fixed beamforming, i.e., each transmitter-receiver pair has
a fixed link gain). An overview is given, e.g. in [29]. This is a special case of
the above problem formulation. The general case that is studied here, how-
ever, is more complicated in that the optimal transmission power can only be
found when knowing the optimal spatial pre-processor. The pre-processor, in
turn, depends on the co-channel interference and therefore on the transmission
powers. Thus, both quantities must be optimized jointly.

• In the context of the Gaussian Broadcast Channel (GBC), a similar prob-
lem was recently studied in [30–34], where strategies for obtaining the sum
capacity and an achievable region were investigated. Most of these results are
based on an information theoretical duality between the BC and the Gaussian
Multiple Access Channel (GMAC), which allows to transfer the well known
principle of decision feedback multiuser equalization (see e.g. [35]) to the GBC.
Yet, an efficient and general strategy for achieving arbitrary target rates within
the resulting achievable region is not known.

• Another line of work is the development of downlink beamforming tech-
niques [10, 36–43], where a joint optimization of beamforming and power allo-
cation is studied. Three different approaches are known:

– In [10, 43] the problem of interference balancing was studied in the absence
of noise. This provides an upper bound on the jointly achievable SINR
margin. This approach will be discussed in detail in Chapter 3.

– Another approach is to minimize the total transmission power while ful-
filling SINR requirements (1.1). This was first proposed in [36] and later
in [37–40]. The disadvantage of this strategy is that it neglects the impor-
tant aspect of feasibility. Algorithms designed under the assumption that
a solution exists may yield unpredictable results in case that the problem
is infeasible.

– A conceptually different approach to the above power minimization prob-
lem appeared in [41, 42], where it was proposed to embed the beamforming
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1. Introduction

problem in a semidefinite optimization program. Thus, recently developed
semidefinite programming techniques can be applied to solve the problem
and infeasible scenarios can be handled. However, the optimization is
performed over matrices with more degrees of freedom than the original
beamforming vectors. Hence, the solution comes at the cost of relatively
high computational complexity.

1.3. Outline

Chapter 2. In order to keep this thesis self-contained, some basic concepts of nar-
rowband space processing are reviewed and discussed in Section 2.1.

In Section 2.2, the two seemingly different beamforming concepts of power
minimization [36–42] and interference balancing [10, 28, 43] are analyzed and
compared. It turns out that both techniques are equivalent, as long as the
problem is feasible, i.e., certain SINR thresholds γ1 . . . γK can be achieved. The
problem of feasibility is studied in Section 2.3, where necessary and sufficient
conditions are given.

An interesting duality between uplink and downlink channels was observed
throughout the last decade in seemingly different contexts, e.g. [27, 33, 39]. In
Section 2.4 it is tried to generalize these results and to provide necessary and
sufficient conditions under which duality holds true.

Chapter 3. In this chapter, the problem of interference balancing by jointly adjust-
ing beamformers and transmission powers is studied in the absence of noise.

As a starting point serves the work of Gerlach and Paulraj [10] who have an-
alyzed this problem and proposed to replace the highly non-smooth `∞-norm
objective function of the original problem by a smoother `1-norm objective.
This leads to an algorithm which was conjectured to solve the original `∞
problem [10]. Another algorithm based on eigenvalue optimization was pro-
posed by Montalbano and Slock [43]. The global convergence of neither of
these algorithms could be proven so far.

In this chapter, both problems are analyzed and a convergence analysis is
carried out. As will turn out, the eigenvalue strategy is globally convergent,
whereas the `1-based strategy only approximates the optimum. These results
provide useful insight into the analytical structure of the general problem ad-
dressed later in Chapter 4, where SINR levels are balanced under the assump-
tion of noise.

Chapter 4. In this chapter the general problem of controlling SINR levels under a
sum power constraint is addressed. Exploiting the duality result, a solution for
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1. Introduction

the complicated downlink problem is found by solving the “smoother” uplink
problem instead. This yields a global optimizer for both uplink and downlink.

A key problem that has to be solved in this context, is to expand the interference
balancing technique derived in Chapter 3, such that receiver noise is taken into
account.

Chapter 5. In this chapter, a multiuser Gaussian channel with coding for known
interference is considered. For this special scenario, controlling user capacities
is equivalent to controlling SINR levels. Hence, the solution found in Chapter 4
immediately carries over to the rate balancing problem. The solution can even
be simplified by exploiting the triangular structure of the channel that is im-
posed by the successive coding strategy. It turns out, that for this special case
no iterative optimization is required. The problem can be solved efficiently by
an algorithm based on back-substitution.

Chapter 6. An overall assessment is given and open problems for future research
are pointed out.

A summary of the notation and symbols used in this work is given in the appendix
on page 81.
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2. Duality Between Downlink and
Uplink Multiplexing

In this chapter we focus on finding the optimal power allocation that ensures SINR
target thresholds γ1 . . . γK under a sum power constraint. To this end, it is assumed
that all beamformers are kept fixed, which has the advantage that the power alloca-
tion can be studied isolated from the effect of spatial processing. Hence the results
can also be seen in the light of classical power control and resource management (see
[29] and the references therein). The insight gained from this approach will prove
useful for the following chapters, where the mutual interaction between beamforming
and power allocation will be studied.

2.1. Narrowband Signal Model

We start with a brief introduction in the signal model and some basic concepts of
spatial signal processing.

2.1.1. Propagation Channel

The wireless propagation channel between transmitter and receiver is characterized
by multipath propagation, which spreads the transmitted signal in three dimensions:
time, frequency and space. In the following, some fundamental properties of wireless
signal propagation are discussed and the vector channel model used in this thesis is
introduced. Note, that this is a special case of the general MIMO channel (see e.g.
[44] for an overview).

Time dispersion is caused by reflections around transmitter and/or receiver, which
cause many delayed replicas of the signal. The channel bandwidth can be
defined as the reciprocal maximum excess delay. If the channel bandwidth is
smaller than the signal bandwidth, then the signal is distorted and the channel
is called “frequency selective”. If the signal is narrowband with respect to the
channel bandwidth, the channel is called “frequency flat”. This means that the
channel impulse response has a multipath delay spread which is much smaller
than the reciprocal bandwidth of the transmitted signal.

6



2. Duality Between Downlink and Uplink Multiplexing

In the following we assume a frequency flat channel. However, most concepts
proposed here immediately carry over to frequency selective channels, e.g. when
assuming independent spatial processing for each channel tap. In principle,
each frequency selective channel can be turned into a flat channel by temporal
equalization.

Frequency dispersion is caused when scattered signals experience a Doppler shift
due to motion. The Doppler increases with the velocity of the transmitter
and/or the receiver. Doppler shifts can even occur when both transmitter
and receiver are static, caused by moving objects in the surrounding. The
superposition of the scattered signals fades in time, due to different angular
frequencies caused by the Doppler shifts.

Space dispersion is caused by multipath reflections with different propagation an-
gles as seen from the array (cf. Fig 2.1). This causes coherence loss in the
spatial domain, depending on the angle spread as well as the distance between
the antenna elements.

In the following it is assumed that the signal is narrowband with respect to the
array aperture, i.e., the propagation time of the signal across the array is much
less than the reciprocal bandwidth of the transmitted signal. No restriction is
made, however, concerning the angle spread or the geometry of the array.

In this thesis, the channel between the ith mobile and the base station antenna array
is modeled as the superposition of Q scattered multipath replicas (see Fig. 2.1). The
multipath channel is characterized by Doppler shifts ω̂iq, 1 ≤ q ≤ Q, complex path
attenuations βiq, and propagation angles θiq. The path attenuation βiq models the
joint effects of path attenuation and phase shifts. The angle θiq is typically measured
with respect to array broadside. From the narrowband assumption follows that the
time delays at the M base station antennas can be modeled as phase shifts collected
in an array response vector a(θ) ∈ CM . The phase shifts are measured with respect
to an arbitrary reference point, which is commonly chosen to be the first antenna
element. Assuming a carrier frequency ωc, the time-varying channel of the ith mobile
is characterized by a vector function

hi(t) =

Q
∑

q=1

βiq a(θiq) ej(ωc+ω̂iq)t , 1 ≤ i ≤ K . (2.1)

MS

base station array

θ1

β1

scatterer 2

scatterer 1

Figure 2.1.: Schematic illustration of multipath propagation
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2. Duality Between Downlink and Uplink Multiplexing

The spatial covariance matrices are given by

Ri = E{hi(t)hHi (t)} , 1 ≤ i ≤ K , (2.2)

where the operator E{·} denotes the ensemble average over the time-fluctuating fad-
ing channel. The variation of hi(t) in time and space is illustrated in Fig. 2.2.

Based on the knowledge of the spatial correlation properties (2.2) at the base
station, allK communication links can be jointly optimized. While the representation
(2.2) is a statistical measure for the propagation channel, it is general enough to
incorporate also the case of perfect channel information. Coherent spatial processing
is possible if rank{Ri} = 1. This is fulfilled, e.g., when the channel does not change
within the observation window, in which case perfect channel information is available.
In general, however, the channel may be rapidly time-variant and the total number
of transmission paths per user easily exceeds the number of antenna elements. Then,
Ri will have full rank.

Note, that most techniques derived in this thesis are general enough to hold for
channels of arbitrary rank, except for the results in Chapter 5. Here, a block fading
channel model is assumed. The channel gains are approximated as piecewise constant
over many symbol intervals, which is fulfilled if the Doppler spread is much less than
the bandwidth of the transmitted signal. This model reflects the need for perfect
channel information, which is required for the techniques described in Chapter 5.

2.1.2. Cooperating Transmit Antennas (Downlink)

Consider a signal vector s def
= [S1, . . . , SK ]T to be transmitted from the base station

to the K mobiles. The components of s can be modeled as wide-sense stationary
stochastic processes which are mutually and temporally uncorrelated, with zero mean.
The variances E{|Si|2}, 1 ≤ i ≤ K are stacked in a vector p = [p1 . . . pK ]T . A sum
power constraint

‖p‖1 ≤ Pmax (2.3)

is imposed. A matrix U ∈ CM×K is used to map the signal vector s on the M
transmit antennas. The ith data stream is spread over the antenna array by the ith

column of U , which is denoted by ui ∈ CM and constrained to fulfill

‖ui‖2 = 1, 1 ≤ i ≤ K . (2.4)

The base station antennas are uncoordinated if the operator U = [u1, . . . ,uK ] has a
diagonal structure. This, is the case, e.g., for the Bell Laboratory Layered Space-Time
(BLAST) architecture [45], which assumes that no channel information is available
at the transmitter. Large performance gains are possible, however, by allowing the
antennas to cooperate.

Cooperation requires that channel information is available prior to transmission.
Then, the vectors ui can be interpreted as beamformers which can be adjusted so as

8
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Figure 2.2.: Space-time fading caused by angle/frequency dispersion

to focus energy in space. This approach has a positive impact on the SINR measured
at the antenna output of the ith mobile:

SINRDL
i (U ,p) =

piu
H
i Riui

K
∑

k=1
k 6=i

pkuHk Riuk + σ2
i

, 1 ≤ i ≤ K , (2.5)

where σ2
i is the variance of the additive white Gaussian noise. The stochastic noise

processes are assumed to be mutually uncorrelated, i.e., the vector

σ = [σ2
1, . . . , σ

2
K ]T (2.6)

satisfies E{σσH} = I.
In order to illustrate the impact of antenna cooperation on the SINR, think of a

single user channel h1 = βa(θ1), as illustrated in Fig. 2.3, for which maximum ratio
combining u1 = h1/‖h1‖2 is the optimal transmit strategy. It can easily be verified
that SINR1 = p1β

2‖a(θ1)‖2/σ2
1, which is an improvement by a factor ‖a(θ1)‖2 = M

as compared to single antenna transmission. The SINR linearly increases with the
number of antenna elements. Note, that the same does not necessarily hold for a
multi-user channel, which is limited by the effects of mutual interference, as will be
shown in the remainder of this chapter.

2.1.3. Cooperating Receive Antennas (Uplink)

Now, assume an uplink scenario, with M cooperating receive antennas at the base
station. The K non-cooperating mobiles are equipped with single antennas. Inde-
pendent data streams with powers q1 . . . qK are multiplexed from the mobiles to the

9



2. Duality Between Downlink and Uplink Multiplexing
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Figure 2.3.: SNR improvement by coordinated multi-antenna transmission for a single
user scenario

base station. As in the downlink, the transmission powers are stacked in a vector
q = [q1, . . . , qK ]T . The same beamforming matrix U = [u1 . . .uK ] that has been
used for downlink transmission is now used for reception and can be interpreted as
a linear multiuser receiver. The uplink SINR is given by

SINRUL
i (ui, q) =

qiu
H
i Riui

uHi

(

K
∑

k=1
k 6=i

qkRk + σ2
i I

)

ui

, 1 ≤ i ≤ K . (2.7)

Observe, that the uplink SINR levels (2.7) are coupled by the transmission powers
q, but not by the beamformers U . This special structure makes the uplink SINR
more tractable than the downlink SINR expressions (2.5), which are intertwined in
a complicated way. This is the reason why most studies in the literature so far have
focused on uplink processing. One key result of this chapter will be to show that
albeit their seemingly different structure, there exists a fundamental duality between
multiuser processing in uplink and downlink, thus both links can be optimized jointly.

Again, a first motivating example is provided by the single user scenario depicted
in Fig. 2.3. By reversing the role of transmitter and receiver, the problem immediately
carries over to the uplink. It can easily be verified that the same gainM is achievable
for both links. Does this observation also hold true for a multiuser scenario? This
problem will be studied in the remainder of this chapter. To this end, we assume
that the uplink transmission powers are constrained in the same way as the downlink
powers, i.e.,

‖q‖1 ≤ Pmax . (2.8)

2.1.4. Crosstalk

The SINR values in uplink and downlink are mutually coupled by cross-talk, which
can be collected in a K ×K matrix

[Ψ(U)]ik =

{

uHk Riuk , k 6= i
0 , k = i

. (2.9)

In general, this matrix is non-negative and asymmetric.

10
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If the spatial covariance matrices are full rank, then uHk Riuk > 0 always holds.
Then, it is impossible to completely cancel out the interference by using a zero-forcing
strategy. This situation occurs, e.g., when Ri is obtained by averaging over the time-
fluctuating fading channel and the channel has several spatially resolved propagation
paths, as discussed in Section 2.1.1. Then, the matrix Ψ is strictly positive and all
users are coupled by interference.

Another, more extreme assumption is perfect channel information. If, in addition,
K ≤M , then all covariance matrices have rank one and interference can be canceled
out completely. This results in Ψ = 0, thus the users are no longer coupled by
interference.

However, complete interference cancellation is not necessarily optimal when a
power constraint is imposed. In the uplink, linear zeroforcing mostly comes at the
cost of noise enhancement, whereas in the downlink a power enhancement is caused.
Hence, zeroforcing only performs well in the high SNR regime. whereas the aim of this
thesis is to find a power aware transmission strategy that shows good performance
over the whole SNR range. Therefore, the design objective can be seen as to find the
optimal tradeoff between residual interference and signal-to-noise ratio (SNR).

Now, let’s make the notion of “cross-talk coupling” more precise:

Coupled users. A set of users is called coupled by cross-talk if an increase in one
user’s transmission power has direct or indirect impact on the interference ex-
perienced by the other users. This is obviously fulfilled if the link gains between
all users are positive. If, however, there is no direct connection between two
users A and B, they may still be connected via a third party C. Suppose that
A causes interference to C. Then C has to increase its power level to maintain
the same SINR. This in turn may increase the interference level at user B.

An appropriate mathematical model is provided by the theory of directed
graphs (see e.g. [46]). Suppose that each user is represented by a node. The
nodes are connected by directed edges which are given by the positive entries
of the link gain matrix Ψ. If Ψij > 0 then there is a connection from node
i to node j. A system of nodes is called strongly connected if for each pair of
nodes (Ni, Nj) there is a sequence of directed edges leading from Ni to Nj. In
the following, a set of users will be called coupled by cross-talk if and only if
its directed graph is strongly connected. An example scenario is illustrated in
Fig. 2.4.

Uncoupled users. A user is defined to be uncoupled in terms of cross-talk if he
does not belong to a set of coupled users. There are two possible scenarios for
which this is fulfilled:

1. the user receives no crosstalk from other users,

2. the user causes no cross-talk to other users.

11
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Figure 2.4.: All users are coupled by cross-talk. The directed graph is strongly con-
nected

In both cases the transmission power of the user can be increased without the
penalty of increasing its own interference level by the control mechanism of the
multiuser power control. Then, arbitrary levels SINRi ≥ γi can be achieved
(provided that the transmission power is unconstrained). An example scenario
is illustrated in Fig. 2.5.
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Figure 2.5.: All users are uncoupled. Such a matrix structure is imposed, e.g., by
coding for known interference (see Chapter 5 for a detailed study of this scenario)

Note, that even when the users are completely uncoupled in terms of interference,
i.e., Ψ = 0, their SINR levels are still connected via the sum power constraint. The
absence of interference does not imply independent AWGN channels, as it is the case
for independent power constraints. That is, increasing one users power immediately
forces one or more other users to decrease their power in order for the sum power
constraint to be fulfilled. This aspect will be considered in the next section.

2.2. Uplink Power Allocation under a Sum Power
Constraint

Let’s begin studying the multiuser uplink scenario for a fixed beamforming matrix
Ũ = [ũ1, . . . , ũK ]. The goal is to find the power allocation that jointly achieves
SINRUL

i ≥ γi, 1 ≤ i ≤ K under a sum power constraint (2.8). This goal may be
infeasible, thus one important aspect of the problem is to find necessary and sufficient
conditions for feasibility.
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2.2.1. Maximizing the Balanced SINR Margin

The SINR requirements are fulfilled if and only if min1≤i≤K SINRUL
i /γi ≥ 1. A

straightforward strategy to achieve this design goal is to solve the following opti-
mization problem:

CUL(Ũ , Pmax) = max
q

min
1≤i≤K

SINRUL
i (ũi, q)

γi
, (2.10)

subject to ‖q‖1 ≤ Pmax and q ∈ RK+ .

Observe that SINRUL
i ≥ γi is feasible for i = 1, . . . , K if and only if CUL(Ũ , Pmax) ≥ 1.

The function CUL is characterized by the following two lemmas:

Lemma 1. Let q̃ be a global maximizer of the optimization problem (2.10), then

CUL(Ũ , Pmax) =
SINRUL

i (ũi, q̃)

γi
, 1 ≤ i ≤ K , (2.11)

Pmax = ‖q̃‖1 . (2.12)

Proof. Assume that there exists an index i0 such that SINRUL
i0
/γi0 > min

1≤k≤K
SINRUL

k /γk.

From (2.7) it can be observed that each SINRUL
i is strictly monotonically increasing

in qi and monotonically decreasing in qk for k 6= i. Thus, qi0 can be reduced without
decreasing the minimum level. This leads to a new power vector q̂ with ‖q̂‖1 < Pmax.
This power saving can be redistributed among all users by using a scaled power vec-
tor αq̂, where the scalar α > 1 is chosen such that ‖αq̂‖1 = Pmax. It can be verified
that SINRUL

i (αq̂) > SINRUL
i (q̂) for all i = 1, . . . , K. Thus, it would be possible to

obtain a point with the cost function larger than the global maximum, which is a
contradiction. �

Lemma 2. The function CUL(Ũ , Pmax) is strictly monotonically increasing in Pmax.

Proof. This follows from SINRUL
i (ũi, αq) > SINRUL

i (ũi, q), with 1 ≤ i ≤ K and
α > 1. �

The monotony result stated in Lemma 2 is illustrated in Fig. 2.6. It can be
observed that there is a one-to-one relationship between each balanced SINR margin
and a total transmission power. Each point is characterized by the set of equations
(2.11) and (2.12), which can be rewritten using matrix notation. To this end we
define

D = diag

{

γ1

uH1 R1u1

, . . . ,
γK

uHKRKuK

}

, (2.13)

Λ(U , Pmax) =

[

DΨT (U) Dσ
1

Pmax
1TKDΨT (U) 1

Pmax
1TKDσ

]

. (2.14)

13
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Figure 2.6.: Balanced SINR margin CUL(Ũ , Pmax) vs. total transmission power Pmax

It can be verified that (2.11) and (2.12) together form an eigensystem

Λ(Ũ , Pmax)

[

q̃
1

]

=
1

CUL(Ũ , Pmax)

[

q̃
1

]

. (2.15)

The balanced level CUL(Ũ , Pmax) is a reciprocal eigenvalue of the non-negative ex-
tended coupling matrix Λ. However, not all eigenvalues represent physically mean-
ingful balanced levels. In particular, q ∈ RK+ and CUL(Ũ , Pmax) ∈ R+ must be
fulfilled.

Lemma 3. For any non-negative real matrix BK×K ≥ 0 with spectral radius ρ(B),
there exists a vector q ≥ 0 and λ(B)

max = ρ(B) such that Bq = λ
(B)
maxq.

Proof. See e.g. [46, p. 670]. �

It was shown by Yang and Xu [28] that if the non-negative matrix has the spe-
cial structure (2.14), then the non-negative eigenvector associated with the maximal
eigenvalue, denoted by λmax(Λ), is strictly positive and the solution is unique. The
uniqueness of λmax(Λ) also follows immediately from Lemma 2, which rules out the
existence of two different balanced levels with the same sum power. For each eigen-
value the power constraint ‖q̃‖1 = Pmax can be ensured by scaling the eigenvector
such that the last component equals one. If there are two eigenvalues with strictly
positive eigenvectors, then we know from Lemma 2 that they must have the same
value. Hence, the solution of the SINR balancing problem (2.10) is given by

CUL(Ũ , Pmax

)

=
1

λmax

(

Λ(Ũ , Pmax)
) . (2.16)

2.2.2. Minimizing the Sum Power

In the previous section it was shown how to take full advantage of the available total
transmission power Pmax in a fair (balanced) fashion. From a network operator’s
perspective, however, it is desirable to multiplex as many channels as possible under
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the given SINR constraints (1.1). Thus, another optimization strategy is to mini-
mize the total transmission power while maintaining SINRUL

i ≥ γi for i = 1, . . . , K.
Mathematically, this can be expressed as

min
q>0
‖q‖1 subject to SINRUL

i (ũi, q) ≥ γi , 1 ≤ i ≤ K . (2.17)

If problem (2.17) is feasible, then it leads to a balanced solution with active con-
straints. This is a direct consequence of Lemma 2. Thus, (2.17) can be seen as a
special case of the balancing problem (2.10), where Pmax is chosen such that the bal-
anced optimum equals one (cf. Fig. 2.6 on p. 14). In this case, the global optimum
is characterized by the set of equations (2.11) with CUL

(

Ũ , Pmax

)

= 1. This can be
rewritten as

(

I −DΨT (Ũ)
)

q̃ = Dσ . (2.18)

where q̃ is the optimizer of (2.17).
Note, that CUL

(

Ũ , Pmax

)

= 1 is not always feasible. This can be best illustrated
by considering a 2-user scenario with fixed link gains αik

def
= ũHi Rkũi, i, k ∈ [1, 2].

With (2.7) the constraints SINRUL
i ≥ γi can be expressed as

q2 ≥
γ2α12

α22

q1 +
γ2σ

2
2

α22

, (2.19)

q2 ≤
α11

γ1α21

q1 −
σ2

1

α21

. (2.20)

These inequalities describe half spaces, as illustrated in Fig. 2.7. If these half spaces
intersect in the positive quadrant, both targets γ1 and γ2 can be supported and the
solution is feasible. The power minimum is characterized by the intersection point.
It can be easily verified that a feasible solution exists if and only if the slope of (2.20)
is larger than the one of (2.19). This leads to the following necessary and sufficient
condition for feasibility:

α12α21γ1γ2 < α11α22 . (2.21)

In the next section, necessary and sufficient conditions for an arbitrary number of
users are derived.

P1

power minimumP2

γ2σ
2
2

α22

− σ2
1

α21

feasibility
region

Figure 2.7.: Geometric interpretation of the power minimization problem for fixed
beamformers
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2.3. Uplink Feasibility in the Absence of Power
Constraints

In this section, conditions are derived under which the power minimization problem
(2.17) is feasible in the absence of power constraints. A scenario is called feasible
if there exist transmission powers such that SINR target thresholds γ1 . . . γK are
achieved. The achievable balanced SINR margin (2.10) is tightly upper bounded by

BUL
Inf (Ũ)

def
= sup

q: q>0

(

min
1≤i≤K

SINRUL
i (ũi, q)

γi

)

. (2.22)

Since CUL(Ũ , Pmax) is strictly monotonically increasing in the sum power ‖q‖1, the
bound BUL

Inf is asymptotically approached in the high power regime, where crosstalk
dominates over noise (see the illustration in Fig. 2.6).

2.3.1. Feasibility of Coupled Users

Let’s start by assuming that all users are coupled by crosstalk, as defined in Sec-
tion 2.1.4. Then, the asymptotic limit BUL

Inf can be found by dropping the noise term
and balancing the signal-to-interference ratios

SIRUL
i (ui, q) =

qiu
H
i Riui

uHi

(

K
∑

k=1
k 6=i

qkRk

)

ui

, 1 ≤ i ≤ K . (2.23)

Observe that each SIR is invariant with respect to a scaling of q, thus without loss
of generality we can assume ‖q‖1 = 1. The limit BUL

Inf (Ũ) is obtained by solving the
following max-min balancing problem

BUL
Inf (Ũ) = max

q

(

min
1≤i≤K

SIRUL
i (ũi, q)

γi

)

subject to ‖q‖1 = 1 . (2.24)

Since all SIR are coupled, (2.24) has a solution q̃ that balances all quantities SIRUL
i (ũi, q̃)

at a level BUL
Inf (Ũ). Using matrix notation, this can be expressed as

DΨT (Ũ) · q̃ =
1

BUL
Inf
· q̃ . (2.25)

It can be observed that BUL
Inf (Ũ) is a reciprocal eigenvalue of the coupling matrix

DΨT (Ũ). Since coupled users are assumed, the directed graph associated with the
non-negative matrix ΨT (Ũ) is strongly connected (see Section 2.1.4). This implies
that DΨT (Ũ) is irreducible [46]. From the Perron-Frobenius Theorem it can be
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concluded that DΨT (Ũ) has a simple, real and strictly positive maximal eigenvalue
λmax

(

DΨT (Ũ)
)

, which equals the spectral radius. The eigenvector associated with
the maximal eigenvalue is strictly positive. Moreover, all other eigenvectors have at
least one negative component. Hence, the maximal eigenvalue is the only valid one.
It follows that

BUL
Inf (Ũ) =

1

λmax

(

DΨT (Ũ)
) . (2.26)

To conclude, the power minimization problem (2.17) is feasible for a set of coupled
users if and only if λmax

(

DΨT (Ũ)
)

< 1. For K = 2 users, condition (2.26) reduces
to λmax(DΨT ) =

√
α12α21γ1γ2 <

√
α11α22. This is in good agreement with the

feasibility condition (2.21) derived for the 2-user case in Section 2.2.2.
Note, that the problem of achieving SINR targets was already studied by Zander

[25–27, 29] in the context of classical power control. The result (2.26) was derived in
[26], under the implicit assumption that Ψ is irreducible and the Perron-Frobenius
Theorem can be applied. This is always fulfilled in the context of classical power con-
trol. However, when additional spatial filtering is used, some users may be decoupled
by nullsteering beamforming, as discussed in Section 2.1.4.

2.3.2. General Feasibility

Now, consider a mixed scenario with some uncoupled users and (possibly) several
subsets of coupled users. The subsets are mutually uncoupled, so each of them can
be regarded as a separate system with an individual performance bound. This leads
to the following observations:

• If all user are uncoupled then λmax(DΨT ) = 0, which means that the system
is not limited by crosstalk. An example has already been given in Fig. 2.5 on
page 12.

• Suppose that there is one subsystem consisting of two or more coupled users,
characterized by an irreducible coupling matrix Ψ1. All other users are un-
coupled. Then, the performance is limited by the coupled subsystem, i.e.,
λmax(DΨT ) = λmax(DΨT

1 ).

• Suppose that there are L subsystems with irreducible coupling matrices Ψ1, . . . ,ΨL.
The systems are mutually uncoupled. Then, the performance is limited by
λmax(DΨT ) = max

(

λmax(DΨT
1 ), . . . , λmax(DΨT

L)
)

.

The results are further specified by the following theorems:

Theorem 1. Suppose that the power minimization problem (2.17) is feasible for given
noise variances σ̃2

i > 0, 1 ≤ i ≤ K, that is, there exists a power vector q̃ > 0 such
that SINRUL

i (ũi, q̃, σ̃
2
i ) ≥ γi. Then (2.17) is feasible for any σ2

i > 0, 1 ≤ i ≤ K.
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Proof. See the appendix on page 72. �

Theorem 2. For any noise vector σ > 0, problem (2.17) has a feasible solution
q̃ > 0 if and only if λmax

(

DΨT (Ũ)
)

< 1.

Proof. See the appendix on page 73. �

These results hold for both coupled and uncoupled users. It can be concluded
that asymptotic feasibility depends on the one hand on the target thresholds γ1 . . . γK
(included in D), on the other hand on the channel properties and spatial filters
(included in the cross-talk matrix Ψ).

2.4. The Dual Downlink Problem

Now, let’s turn our attention to the downlink channel, where M cooperating trans-
mit antennas are used to transmit independent data streams to K non-cooperating
receive antennas. As for the uplink, a sum power constraint is imposed and a fixed
beamforming matrix Ũ is assumed. Many arguments used for the uplink analysis
obviously hold for the downlink as well, thus some proofs can be omitted.

2.4.1. Downlink Power Allocation

A necessary and sufficient condition for the achievability of individual SINR thresh-
olds γ1 . . . γK under a sum power constraint ‖p‖1 ≤ Pmax is given by CDL(Ũ , Pmax) ≥
1, where

CDL(Ũ , Pmax) = max
p

min
1≤i≤K

SINRDL
i (Ũ ,p)

γi
, (2.27)

subject to ‖p‖1 ≤ Pmax and p ∈ RK+ .

First, it can be shown that the optimum of (2.27) is balanced:

Lemma 4. Let p̃ be a global maximizer of the optimization problem (2.27), then

CDL(Ũ , Pmax) =
SINRDL

i (Ũ , p̃)

γi
, 1 ≤ i ≤ K , (2.28)

Pmax = ‖p̃‖1 . (2.29)

Proof. This can be shown in analogy to Lemma 1. �

Lemma 5. The function CDL(Ũ , Pmax) is monotonically increasing in Pmax.

Proof. This follows from SINRDL
i (Ũ , αp) > SINRDL

i (Ũ ,p), with 1 ≤ i ≤ K and
α > 1. �
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Hence, the function CDL(Ũ , Pmax) has the same properties as the corresponding
uplink function CUL(Ũ , Pmax) discussed in Section 2.2. Defining

Υ(U , Pmax) =

[

DΨ(U) Dσ
1

Pmax
1TKDΨ(U) 1

Pmax
1TKDσ

]

, (2.30)

the set of equations (2.28) and (2.29) can be written as

Υ(Ũ , Pmax)

[

p̃
1

]

=
1

CDL(Ũ , Pmax)

[

p̃
1

]

. (2.31)

Using the same monotony argument as in Section 2.2, it can be shown that

CDL(Ũ , Pmax

)

=
1

λmax

(

Υ(Ũ , Pmax)
) , (2.32)

where λmax

(

Υ(Pmax)
)

is the maximal eigenvalue of the extended coupling matrix Υ.
In analogy to the uplink, the power minimum is achieved for CDL

(

Ũ , Pmax

)

= 1.
If the SINR requirements are feasible, then a power allocation that minimizes the
total transmission power is found by solving

min
p>0
‖p‖1 subject to SINRDL

i (Ũ ,p) ≥ γi , 1 ≤ i ≤ K . (2.33)

Problem (2.33) is called feasible if there exists a solution p̃ > 0 that fulfills the
constraints in (2.33). Moreover, since SINRDL

i is strictly monotonically increasing
in pi and monotonically decreasing in pk, k 6= i, this optimum is characterized by
SINRDL

i (Ũ , p̃) = γi. Using matrix notation, this point can be found by solving the
following set of equations

(

I −DΨ(Ũ)
)

p̃ = Dσ . (2.34)

As in the uplink case, an interesting question is: under which conditions is (2.33)
feasible in the asymptotic limit for Pmax → ∞? This will be answered in the next
section.

2.4.2. Feasibility Conditions for the Downlink

Comparing (2.34) and (2.18), it can be observed that the downlink users are coupled
by cross-talk matrix Ψ, whereas the uplink users are coupled by the transpose ΨT .
Hence, the same arguments that have been used in Section 2.3 to derive a feasibil-
ity bound for the uplink, immediately carry over to the downlink. The results are
summarized by the following theorems:
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2. Duality Between Downlink and Uplink Multiplexing

Theorem 3. Suppose that the power minimization problem (2.33) is feasible for given
noise variances σ̃2

i > 0, 1 ≤ i ≤ K, that is, there exists a power vector p̃ > 0 such
that SINRDL

i (Ũ , p̃, σ̃2
i ) ≥ γi. Then (2.33) is feasible for any σ2

i > 0, 1 ≤ i ≤ K.

Proof. This can be shown by using the same technique as for Theorem 1. �

Theorem 4. For any noise vector σ > 0, problem (2.33) has a feasible solution
p̃ > 0 if and only if λmax

(

DΨ(Ũ)
)

< 1.

Proof. This can be shown by using the same technique as for Theorem 2. �

2.4.3. Weak Duality

Now we compare uplink and downlink performance in terms of their feasibility range.
To this end we need the following lemma, which will prove very useful throughout
the remainder of this thesis.

Lemma 6. The maximal eigenvalue of any non-negative real matrix BK×K can be
expressed as

λmax(B) = max
x>0

min
y>0

xTBy

xTy
= min

x>0
max
y>0

xTBy

xTy
. (2.35)

Proof. See [47, p. 28]. �

With Lemma 6 the following result can be proven:

Lemma 7. Let ΨK×K be non-negative real and D as defined in (2.13). Then

λmax(DΨ) = λmax(DΨT ) . (2.36)

Proof. Using Lemma 6 and λmax(B) = λmax(BT ), we have

λmax(DΨT ) = λmax(ΨD)

= min
y>0

max
x>0

xTΨDy

xTy
. (2.37)

The matrix D is regular, thus we can substitute x1
def
= D−1x and y1

def
= Dy. Hence,

(2.37) can be rewritten as

λmax(DΨT ) = min
y1>0

max
x1>0

xT1DΨy1

xT1 y1

= λmax(DΨ) . (2.38)

�
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2. Duality Between Downlink and Uplink Multiplexing

Lemma 7 shows that the asymptotic feasibility bounds for uplink and downlink
are identical. We refer to this result as weak duality:

Theorem 5. The uplink problem (2.17) is feasible if and only if the downlink problem
(2.33) is feasible. Then both problems are feasible for arbitrary noise vectors σ > 0.

Proof. The theorem follows directly from Theorem 2, Theorem 4, and Lemma 7. �

An alternative proof for Theorem 5 was provided by Zander [27].

2.4.4. Strong Duality

Next, λmax

(

DΨ(Ũ)
)

< 1 is taken for granted, i.e., both uplink and downlink targets
are feasible. Let A def

=
(

D−1 −Ψ(Ũ)
)−1. It was already shown that the power mini-

mizing uplink and downlink allocation can be found by solving the sets of equations
(2.18) and (2.34), respectively. Hence, there exist positive downlink and uplink power
vectors

p = Aσ , (downlink) (2.39)

q = ATσ . (uplink) (2.40)

We now whish to know under what conditions does the total uplink power equal the
total downlink power, i.e.,

‖p‖1 =
K
∑

k=1

pk =
K
∑

k=1

qk = ‖q‖1 . (2.41)

If (2.41) holds together with weak duality, i.e., the same SINR levels are achievable
in uplink and downlink, then we say that strong duality holds.

Theorem 6. Let σ = ν · 1K with ν ∈ R+. Then strong duality is fulfilled for any
non-negative A.

Proof. This is an immediate consequence of

‖q‖1 = 1TKq = ν · 1TKAT1K = ν · 1TKA1K = 1TKp = ‖p‖1. (2.42)

The result was published by Boche and Schubert in [6] and was independently derived
by Tse and Viswanath in [34]. �

Now, we are interested in a more general characterization of the noise vectors
that guarantee strong duality.
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2. Duality Between Downlink and Uplink Multiplexing

Lemma 8. Let σ(1) > 0 and σ(2) > 0 be noise vectors. The resulting downlink and
uplink power vectors follow directly from (2.39) and (2.40). They are denoted by p(1),
p(2), q(1), and q(2). Also, consider a noise vector σ = ασ(1)+βσ(2), where the positive
scalars α and β satisfy α+ β = 1. The resulting power vectors are denoted by p and
q. Then, ‖p‖1 = ‖q‖1 holds for all α, β ≥ 0 if and only if ‖p(l)‖1 = ‖q(l)‖1, l = 1, 2.

Proof. Assume ‖p‖1 = ‖q‖1. Substituting σ = ασ(1) + βσ(2) in (2.39) and (2.40)
we have p = αp(1) + βp(2) and q = αq(1) + βq(2), respectively. From the assumption
follows ‖p(l)‖1 = ‖q(l)‖1, l = 1, 2. To prove the reverse direction, assume ‖p(l)‖1 =

‖q(l)‖1, l = 1, 2. This implies ‖p‖1 = α‖p(1)
k ‖1 + β‖p(2)

k ‖1 = ‖q‖1. �

Lemma 9. Suppose that p = Aσ and q = ATσ fulfill (2.41), where σ > 0 is an
arbitrary positive noise vector and A is non-negative. Then (2.41) is fulfilled for all
noise vectors σ ≥ 0.

Proof. Let σ̂ be an arbitrary noise vector with [σ̂]l = 0 for some index l. Let
p̂ = Aσ̂ and q̂ = AT σ̂. Now, consider the convergent sequence σ̂(n) = σ̂+ 1

n
1K with

[σ̂(n)]l > 0, 1 ≤ l ≤ K. Since the linear operator A is continuous, the sequences
p̂(n) = Aσ̂(n) and q̂(n) = AT σ̂(n) are also convergent. With the assumption that
(2.41) holds for any σ > 0, we have ‖p̂(n)‖1 = ‖q̂(n)‖1 for all n. Hence,

lim
n→∞

‖p̂(n)‖1 = ‖p̂‖1 = lim
n→∞

‖q̂(n)‖1 = ‖q̂‖1 .

From this we can conclude that (2.41) holds for σ̂ ≥ 0. �

Lemma 10. Given a matrix A, the relation (2.41) is fulfilled for all σ > 0 if and
only if it is fulfilled for

[e(k)]l =

{

1, l = k

0, l 6= k
, 1 ≤ k ≤ K . (2.43)

Proof. If (2.41) is fulfilled for all σ > 0, then it follows from Lemma 9 that it is also
fulfilled for vectors (2.43). On the other hand, if (2.41) is fulfilled for (2.43), we know
from Lemma 8 that it is fulfilled for all linear combinations, i.e., for all σ > 0. �

Using the above results, it can be shown that strong duality holds for any noise
vector if and only if the matrix A has a specific structure specified by the following
theorem (the result was published by Boche and Schubert in [1]).

Theorem 7. Relation (2.41) holds for all σ > 0 if and only if
K
∑

l=1

Akl =
K
∑

l=1

Alk , 1 ≤ k ≤ K . (2.44)

Proof. This follows directly from Lemma 10 with p(k) = Ae(k) =
K
∑

l=1

Alk and q(k) =

ATe(k) =
K
∑

l=1

Akl, where e(k) is defined as in (2.43). �

22



2. Duality Between Downlink and Uplink Multiplexing

2.5. Discussion

In this chapter, a fundamental duality between the downlink point-to-multipoint
channel and the uplink multipoint-to-point channel has been found. If one of the
conditions formulated by Theorem 6 and Theorem 7 hold true, then identical SINR
levels can be achieved in both links with the same total transmission power.

This duality relation is extremely useful, as will be shown in the following. In
particular, each SINR-based signaling strategy that is designed for the uplink imme-
diately carries over to the downlink. One merely has to ensure that the condition in
Theorem 6 is fulfilled, i.e., all receivers have the same noise level.

For the downlink, this is easily achieved by scaling the SINR (2.5) such that
σ = 1K. Then, the optimization has to be performed with respect to scaled matrices
R1/σ

2
1, . . . ,RK/σ

2
K . Such a scaling has no impact on the downlink SINR. However,

when applying the same matrices to the uplink problem, one has

SINRUL
i (ui,p) =

piu
H
i
Ri
σ2
i
ui

uHi

(

K
∑

k=1
k 6=i

pk
Rk
σ2
k

+ I

)

ui

, 1 ≤ i ≤ K . (2.45)

This scaled SINR may in general be different from the true uplink SINR (2.7). Thus,
strong duality only holds between the scaled channels. But by solving the scaled
“virtual” uplink problem, one always gets a solution for the “true” downlink problem.

If one is interested in the uplink problem, the condition σ = 1K can likewise be
ensured. While the downlink channel is invariant to a scaling of the link gains, the
uplink channel is invariant to a scaling of the beamforming weights. By constraining
σ2
iu

H
i ui = 1, it would in principle be possible to achieve target SINR’s in the uplink

by considering the dual “virtual” downlink problem instead. However, this is less
interesting from a practical point of view since the downlink has a more difficult
analytical structure.

Finally, note that the duality found in this chapter stands in an interesting rela-
tionship to other results in the literature:

• In [39, 40] an iterative algorithm for joint beamforming and power control was
proposed which uses virtual uplink power control in each iteration step.

• In [48] it was shown that the capacity of the MIMO channel remains the same
when reversing the role of transmitter and receiver

• In [33] duality was found in an information theoretical context, between the
Gaussian broadcast channel and the multiple access channel.

The generalization of these independent observations is still an open problem. Partial
results will be presented later in Chapter 5.
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3. Joint Beamforming in the
Absence of Noise

In the previous chapter it was shown how the achievable SINR margin is limited by
the effects of mutual interference. Assuming coupled users, an upper bound on the
system performance can be found by balancing the signal-to-interference ratios (SIR)
in the absence of noise.

In this chapter the problem of SIR balancing is studied with additional optimiza-
tion over the beamforming filters. This problem was first addressed by Gerlach and
Paulraj [10] in the context of downlink beamforming. Algorithms have been pre-
sented in [10, 43]. However, no proof of global convergence was found so far. One
goal of this chapter is to analyze both optimization strategies and to carry out a
convergence analysis.

By studying the joint beamforming problem in the absence of noise, necessary and
sufficient conditions for feasibility are obtained, as discussed in Section 2.3. Moreover,
it is expected that the results provide deeper insight into the analytical structure of
the general problem of controlling SINR levels.

3.1. Optimal Interference Balancing based on
`∞-Norm Minimization

We start with the downlink SIR balancing problem, as formulated by Gerlach and
Paulraj [10]. For given channel matrices R1, . . . ,RK , one is interested in the beam-
forming matrix U and power allocation p, which jointly balance the values SIRDL

i /γi,
1 ≤ i ≤ K, as high as possible. Each SIR is a function of p and U , i.e.,

SIRDL
i (p,U) =

piu
H
i Riui

K
∑

k=1
k 6=i

pkuHk Riuk

, 1 ≤ i ≤ K . (3.1)

This problem can be expressed mathematically as

BDL
Inf = max

U ,p

(

min
1≤i≤K

SIRDL
i (U ,p)

γi

)

subject to ‖ui‖2 = 1, 1 ≤ i ≤ K ,

‖p‖1 = 1 .
(3.2)
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3. Joint Beamforming in the Absence of Noise

Note, that this problem is only defined as long as each user receives interference, in
which case the optimum is characterized by balanced relative SIR levels. Thus, min-
max operations are interchangeable and one can equivalently balance the reciprocal
quantities γi/SIRDL

i . Hence, problem (3.2) is solved by minimizing the `∞-norm of
the vector

ξ(U ,p) =

[

γ1

SIRDL
1 (U ,p)

, . . . ,
γK

SIRDL
K (U ,p)

]T

. (3.3)

By optimizing over both U and p, the optimally balanced level BDL
Inf is found:

1

BDL
Inf

= min
U ,p
‖ξ(U ,p)‖∞ . (3.4)

Note, that (3.4) has a non-differentiable objective function which in general may have
many local minima. Thus, there is no obvious way for finding the global optimum.
Fortunately, the analytical results of Chapter 2 provide a characterization of the
global optimum, which leads to a form that is better suited for optimization. This
will be shown in the following section.

3.1.1. Eigenvalue Minimization

In Section 2.3.1 it has been shown that for any fixed beamforming matrix Ũ the
balanced optimum is given by the inverse maximal eigenvalue λmax

(

DΨ(Ũ)
)

. Hence,
the global optimum of the `∞ optimization problem (3.4) is found by solving an
eigenvalue optimization problem

BDL
Inf =

1

min
U

λmax

(

DΨ(U)
) subject to ‖ui‖2 = 1, 1 ≤ i ≤ K . (3.5)

Note, that this problem no longer depends on p. Once an optimizer U opt is found,
the associated popt is given as the dominant right-hand eigenvector of the matrix
DΨ(U opt), as shown in Section 2.3.1.

Another straightforward observation is that the eigenvalue optimization problem
(3.5) not only provides a solution of the `∞ balancing problem (3.2), but also provides
a necessary and sufficient criterion for the feasibility of SINR ≥ γi, 1 ≤ i ≤ K. It has
been shown in Section 2.3.2, that this does not require the assumption of coupled
users, which can therefore be dropped as long as the eigenvalue optimization problem
(3.5) is concerned. The maximal eigenvalue is always defined, even if the users are
completely decoupled. If (3.5) has a solution BDL

Inf = 0, then SINR ≥ γi is always
feasible, but (3.4) is not defined.

While the problem formulation (3.5) has less degrees of freedom than the original
problem (3.2), it is still very unlikely to allow for efficient algorithmic solution. As
the objective function may generally be non-convex, global optimization may be
prevented by local minima.
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3. Joint Beamforming in the Absence of Noise

In this situation one can make use of the weak duality formulated in Section 2.4.3.
From this result it is known that instead of balancing the downlink quantities SIRDL

i /γi
one can equivalently balance the uplink quantities SIRUL

i /γi, where SIRUL
i is defined

in (2.23). The following balanced level can be achieved by optimizing over both U
and q:

BUL
Inf = max

U ,q

(

min
1≤i≤K

SIRUL
i (ui, q)

γi

)

subject to ‖ui‖2 = 1, 1 ≤ i ≤ K ,

‖q‖1 = 1 .
(3.6)

Note, that SIRUL
i (ui, q) is scalable in q, thus ‖q‖1 = 1 can be assumed without

loss of generality. As in the downlink, the max-min balancing problem (3.6) can be
equivalently stated as an eigenvalue optimization problem

BUL
Inf =

1

min
U

λmax

(

DΨT (U)
) , subject to ‖ui‖2 = 1, 1 ≤ i ≤ K . (3.7)

From Lemma 7 in Section 2.4.3 it is known that BDL
Inf = BUL

Inf for any beamforming
matrix, including the global minimizers of (3.5) and (3.7). Hence, any beamformer
that solves the uplink problem (3.7) also solves the downlink problem (3.5) and
vice versa. Note that this one-to-one correspondence pertains to the beamforming
solution, but not to the transmission powers. The optimal power allocation in uplink
and downlink may in general be different. Having found a global minimizer U opt,
the power allocations are found by solving the following two eigenvalue problems (see
Section 2.3):

DΨT (U opt) · qopt =
1

BUL
Inf
· qopt , (uplink) (3.8)

DΨ(U opt) · popt =
1

BDL
Inf
· popt . (downlink) (3.9)

3.1.2. Characterization of the Global Minimizer

Next, the global optimum of (3.7) is characterized. With Lemma 6 we have

λmax

(

DΨT (U)
)

= max
x>0

min
y>0

xTDΨT (U)y

xTy
= min

x>0
max
y>0

xTDΨT (U)y

xTy
. (3.10)

Using (3.10), the eigenvalue minimization problem (3.7) can be rewritten as

1

BUL
Inf

= min
U : ‖ui‖2=1

min
q>0

f̂(U , q), with f̂(U , q) = max
x>0

xTDΨT (U)q

xTq
. (3.11)

Here, x is an auxiliary variable which has no physical meaning. The vector q can
be interpreted as the uplink power vector. Now, the idea is to find an alternating
optimization scheme that keeps one of the variables U and q fixed while minimizing
with respect to the other.
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3. Joint Beamforming in the Absence of Noise

Theorem 8. For a fixed beamforming matrix Û the objective function f̂(Û , q) is
minimized by the dominant eigenvalue of DΨT (Û).

Proof. From (3.10) we know that the minimum of the objective function is min
q>0

f̂(Û , q) =

λmax

(

DΨT (Û)
)

. Let q̂ be a solution of

DΨT (Û) · q̂ = λmax

(

DΨT (Û)
)

· q̂ . (3.12)

Then the following relation holds for any x > 0:

xTDΨT (Û)q̂

xT q̂
= λmax

(

DΨT (Û)
)

.

This can be shown by left-hand multiplying both sides of (3.12) with xT/xT q̂. Hence,
f̂(Û , q̂) = λmax

(

DΨT (Û)
)

. �

Theorem 9. For a fixed power allocation q̃ the objective function f̂(U , q̃) is mini-
mized by Ũ = [ũ1, . . . , ũK ], where ũi is the dominant eigenvector of the generalized
eigenproblem

Riui = λmaxQi(q̃)ui (3.13)

with Qi(q) =
K
∑

k=1
k 6=i

[q]kRk . (3.14)

Proof. There exists an x0 > 0 such that

f̂(U , q̃) = max
x>0

xTDΨT (U)q̃

xT q̃
=
xT0DΨT (U)q̃

xT0 q̃

=
1

xT0 q̃

K
∑

i=1

[x0]iγi
uHi Qi(q̃)ui
uHi Riui

. (3.15)

Observe that the minimization with respect to U = [u1, . . . ,uK ] leads to a set of K
decoupled problems. The optimizers can equivalently be found by maximizing the
reciprocal value, i.e.,

ũi = arg max
ui

uHi Riui
uHi Qi(q̃)ui

subject to ‖ui‖2 = 1 , 1 ≤ i ≤ K . (3.16)

Hence, the ith beamforming vector ũi is given by the dominant generalized eigenvector
of the matrix pair

(

Ri,Qi(q̃)
)

. �
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3. Joint Beamforming in the Absence of Noise

Note, that (3.16) maximizes the ratio between the desired signal power of the ith

user and the interference received by all other users, which provides an additional
interpretation. Interestingly, the SIR requirements contained in D play no role for
the beamforming optimization. However, they are used for each power allocation
step, thus they indirectly influence the optimal beamforming solution.

With (3.10) and Theorem 9 we are able to prove the following necessary and
sufficient condition for global optimality:

Theorem 10. A beamforming matrix Ū solves the eigenvalue minimization problem
(3.7) if and only if for all x > 0

xTDΨT (Ū)q̄

xT q̄
= min

U

xTDΨT (U)q̄

xT q̄
, (3.17)

where q̄ fulfills DΨT (Ū) · q̄ = λmax

(

DΨT (Ū)
)

· q̄ . (3.18)

Proof. See the appendix on page 75. �

It can be concluded from Theorem 10 that the beamformersU opt and transmission
powers qopt that solve the uplink SIR balancing problem (3.6) are always linked in
the special way described by (3.17) and (3.18). Hence, the optimum is completely
determined if either qopt andU opt is known. This will be exploited in the next section.

3.1.3. Subspace Characterization of the Optimal
Beamforming Solutions

Suppose that the power allocation qopt solves the SIR balancing problem (3.6). The
optimal beamforming solution that is associated with qopt need not be unique. The
set of possible solutions is denoted as M∞. From Theorem 10 we know that an
optimal beamformer U opt fulfills

DΨT (U opt) · qopt = λoptmax · qopt , (3.19)

where λoptmax
def
= 1/BUL

Inf . The set of equations (3.19) can be rewritten as

(uopti )H Ωi(λ
opt
max, q

opt) uopti = 0 , 1 ≤ i ≤ K , (3.20)

where the functions Ωi are defined as

Ωi(λ, q) = λ qiRi − γi
K
∑

k=1
k 6=i

qkRk, 1 ≤ i ≤ K . (3.21)

It can be observed from (3.20) that a solution U opt ∈ M∞ exists as long as the
matrices Ωi(λ

opt
max, q

opt) are singular. This provides a new criterion for feasibility.
Unlike the criterion used in Section 2.3.1, this criterion is not based on a given
set of beamforming weights. Instead, feasibility is characterized for a given power
allocation.
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Theorem 11. The constraints SINRUL
i ≥ γi, 1 ≤ i ≤ K, are feasible if and only if

there exist λ < 1 and q̃ > 0 such that the matrices Ωi(λ, q̃) are singular. Then, each
ũi chosen from the nullspace of Ωi(λ, q̃) fulfills SIRUL

i (ũi, q̃) > γi.

Proof. See the appendix on page 76. �

From Theorem 11 some useful properties can be derived:

Corollary 1. An alternative strategy for solving the eigenvalue optimization problem
(3.6) is as follows. Let Ωi(λ, q) be singular matrices as defined in (3.21), then

1

BUL
Inf

= min
q,λ

λ subject to singular matrices Ωi(λ, q), 1 ≤ i ≤ K , (3.22)

which provides the smallest positive λ for which representation (3.20) holds true.

Corollary 2. Let (U opt, qopt) be a minimizer of (3.6), then U opt is unique if and
only if the matrix Ωi(1/B

UL
Inf , q

opt) has a one-dimensional null space.

Corollary 3. If the balancing problem (3.6) has two distinct solutionsU I = [uI1, . . . ,u
I
K ]

and U II = [uII1 , . . . ,u
II
K ], then ũk = µuIk + (1− µ)uIIk with 0 < µ < 1 is also a solu-

tion. All solutions are associated with the same power allocation.

3.2. A Globally Convergent Algorithm

The analytical results in Section 3.1.2 motivate an alternating optimization strategy
for problem (3.6). By keeping either U or q fixed and minimizing f̂(U , q) with
respect to the other variable, one can expect to approach a minimum. The required
optimization steps are provided by Theorems 8 and 9. This motivates Algorithm 1,
which was first described in [43], but without proof of convergence. A complete
convergence analysis will be provided in the next section. The result was published
by Schubert and Boche in [5].

3.2.1. Monotony and Global Convergence

Next, monotony and global convergence of Algorithm 1 will be proven. This is
perhaps surprising, since the objective function is non-convex and may have local
minima. Similar strategies based on alternating variables are known to have very
poor convergence properties and may even get stuck before reaching a minimum.

However, the following results show that this is not the case for Algorithm 1, which
exhibits excellent convergence behavior. A key step in the proof is Theorem 10, which
shows that each local minimum of the objective f̂(U , q) is a global minimum. Hence,
it remains to prove convergence.
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Algorithm 1 Solution of the eigenvalue minimization problem (3.7)
1: n⇐ 0
2: q(0) ⇐ [1, . . . , 1]T

3: λmax(0)⇐ 0
4: repeat
5: n⇐ n+ 1

6: u
(n)
i ⇐ arg max

ui

uHi Riui
uHi Qi(q

(n−1))ui
, subject to ‖ui‖2 = 1, 1 ≤ i ≤ K

7:
(

λmax(n), q(n)
)

⇐ solution of DΨT (U (n)) · q(n) = λmax(n) · q(n)

8: until |λmax(n)− λmax(n− 1)| ≤ ε

Theorem 12. The iteration sequence λmax(n) provided by Algorithm 1 is monoton-
ically decreasing and converges towards the global optimum of the eigenvalue mini-
mization problem (3.7).

Proof. Define

λ̃n(x)
def
=
xTDΨT (U (n))q(n−1)

xTq(n−1)
, x > 0 . (3.23)

By the same argumentation as in the proof of Theorem 9, it can be shown that U (n)

is a minimizer of xTDΨT (U)q(n−1) =
K
∑

i=1

[x]iγi
uHi Qi(q

(n−1))ui
uHi Riui

for any x > 0. Thus

λ̃n(x) ≤ x
TDΨT (U (n−1))q(n−1)

xTq(n−1)
= λmax(n− 1) . (3.24)

This follows directly from DΨT (U (n)) · q(n) = λmax(n) · q(n). Combining (3.10) and
(3.23), we have

λmax(n) = max
x>0

min
y>0

xTDΨT (U (n))y

xTy

≤ max
x>0

xTDΨT (U (n))q(n−1)

xTq(n−1)
= max

x>0
λ̃n(x) . (3.25)

Likewise, it can be shown that λmax(n) is lower bounded:

λmax(n) = min
x>0

max
y>0

xTDΨT (U (n))y

xTy

≥ min
x>0

xTDΨT (U (n))q(n−1)

xTq(n−1)
= min

x>0
λ̃n(x) . (3.26)

Combining (3.24), (3.25), and (3.26) we have

min
x>0

λ̃n(x) ≤ λmax(n) ≤ max
x>0

λ̃n(x) ≤ λmax(n− 1) . (3.27)
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Hence, the iteration sequence λmax(n) is monotonically decreasing and there exists a
limit value λ∞ def

= limn→∞ λmax(n). Using the fact that the quantities q(n) and U (n)

are both bounded, there must exist limit values q∞ and U∞ such that

lim
n→∞

‖U (n) −U∞‖F = 0

lim
n→∞

‖q(n) − q∞‖1 = 0 .

Since Ψ(U) is continuous, we have

lim
n→∞

‖DΨT (U (n))−DΨT (U∞)‖F = 0

and therefore

lim
n→∞

DΨT (U (n))q(n) = DΨT (U∞)q∞

lim
n→∞

λmax(n)q(n) = λ∞q∞ .

Consequently, λ∞ is a solution of DΨT (U∞)q∞ = λ∞q∞ and

U∞ = arg min
U

xTDΨT (U)q∞

xTq∞
.

From Theorem 10 we know that U∞ fulfills the condition for global optimality. Thus
it solves the `∞-norm minimization problem (3.4). �

3.2.2. Stopping Criterion

The above results show that the iteration sequence is strictly monotonically decreas-
ing as long as the global optimum is not found. A stopping criterion is needed
that allows to control the desired accuracy by defining a threshold ε. Obviously,
λmax(n− 1)− λmax(n) ≤ ε is such a criterion. Necessary and sufficient conditions for
the optimality of a solution U (n) are provided in the following.

Firstly, a solution U (n) solves the eigenvalue minimization problem (3.7) if and
only if λmax(n) = λmax(n + 1), which follows directly from Theorem 10. This crite-
rion, however, requires the computation of U (n+1), which means that an additional
iteration step has to be carried out. It is therefore desirable to assess the optimality
of U (n) directly, without the need of additional eigenvalue decompositions.

Theorem 13. U (n) is a global minimizer of the eigenvalue minimization problem
(3.7) if and only if λ̃n(x) = λmax(n) for any x > 0 .

Proof. See the appendix on page 77. �
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Theorem 13 implies that the global optimum is achieved if and only if maxx λ̃n(x) =
minx λ̃n(x). If this is fulfilled then λmax(n) = λmax(n + 1). The converse also holds,
thus both conditions are equivalent.

Lemma 11. Let x, b, and c be positive, K-dimensional vectors, then the following
two equalities hold:

max
x

xTb

xTc
= max

1≤k≤K

[b]k
[c]k

(3.28)

min
x

xTb

xTc
= min

1≤k≤K

[b]k
[c]k

. (3.29)

Proof. See the appendix on page 70. �

Applying Lemma 11 to the function λ̃n(x), as defined in (3.23), and using the
monotony result (3.27), we have

min
1≤k≤K

(

γk

SIRUL
k (q(n−1),u

(n)
k )

)

≤ λmax(n) ≤ max
1≤k≤K

(

γk

SIRUL
k (q(n−1),u

(n)
k )

)

≤ λmax(n−1).

Combining Lemma 11 with Theorem 13, it becomes clear how the optimality of a
solution U (n) is related to the SIR balancing problem (3.6). The global optimum
is achieved if and only if all relative SIR are balanced at the same level after the
beamforming step. Note, that the upper bound for λmax(n) is always smaller than
λmax(n− 1). This explains the rapid convergence of the algorithm. Typically, only a
few iteration steps are required. The convergence behavior is illustrated in Fig. 3.1.

step 1 step 2 step 3

λmax(n)

min
1≤k≤K

(

γk

SIRUL
k (q(n−1),u

(n)
k )

)

max
1≤k≤K

(

γk

SIRUL
k (q(n−1),u

(n)
k )

)

Figure 3.1.: Typical convergence behavior of the proposed Algorithm 1

3.3. Alternative Strategy based on `1-Norm
Minimization

Gerlach and Paulraj [10] proposed a different strategy for solving the downlink SIR
balancing problem (3.2). Instead of minimizing the non-differentiable objective func-
tion ‖ξ(U ,p)‖∞ defined in (3.3), they proposed to minimize the `1-norm ‖ξ(U ,p)‖1
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instead. In general, this approach has the advantage that one has a smoother objec-
tive

F1(U ,p) =
1

K
‖ξ(U ,p)‖1 =

1

K

K
∑

i=1

piu
H
i Gi(p)ui , (3.30)

where Gi(p) =
K
∑

k=1
k 6=i

γkRk

pk
. (3.31)

The following optimization problem has been considered in [10]:

B1 = min
U , p

F1(U ,p) subject to uiRiui = 1, 1 ≤ i ≤ K ,

‖p‖1 = 1 .
(3.32)

This will now be compared with the `∞ approach

BDL
Inf = max

U ,p

(

min
1≤i≤K

SIRDL
i (U ,p)

γi

)

subject to uiRiui = 1, 1 ≤ i ≤ K ,

‖p‖1 = 1 .
(3.33)

Note, that both (3.32) and (3.33) pose quadratic constraints on the beamforming
vectors ui, whereas the `∞ approach (3.2) studied in Section 3.1 uses a different
constraint ‖ui‖2 = 1. This, however, will not affect the level on which the relative
SIR are be balanced, but only the transmission powers and the scaling of the vectors
ui. Quadratic constraints will be assumed exclusively in the remainder of this section
in order to compare the `∞ and `1 based strategies proposed in [10].

In the following we denote M1 the set of beamforming matrices U that solve
(3.32). Also (Û , p̂) is a global minimizer of (3.32), thus B1 = F1(Û , p̂). The set of
optimizers of the `∞ problem (3.33) is denoted byM∞.

It was conjectured in [10] that each Û ∈ M1 solves the original SIR balancing
problem (3.33), i.e.,M1 ⊆M∞. Now, an interesting question is, whether or not this
is fulfilled. This was not ultimately answered in [10]. In order to find an answer, we
start by characterizing the optimum of the `1 problem. The `∞ problem was already
studied in Section 3.1.

3.3.1. Characterization of the `1 Minimizer

We start by assuming a fixed beamforming matrix U . The power vector p that
minimizes the cost function F1(U ,p) is characterized by the following lemma:

Lemma 12. For any fixed U the optimization problem minp F1(U ,p) has a unique
solution p̃ = [p̃1, . . . , p̃K ]T with ‖p̃‖1 = 1. This solution is characterized by

p̃i
K
∑

k=1
k 6=i

p̃kuHk γiRiuk

=
1

p̃iuHi

(

K
∑

k=1
k 6=i

γkRk

p̃k

)

ui

. (3.34)
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Proof. See the appendix on page 71. �

Next, assume that p is the given parameter and that F1(U ,p) is minimized with
respect to U . From (3.30) it can be observed that this leads to a set of K decoupled
problems

min
ui
uHi Gi(p)ui , s.t. uHi Riui = 1, 1 ≤ i ≤ K . (3.35)

The optimizers are given as the dominant generalized eigenvectors of the matrix
pairs (Ri,Gi(p)). With these results we are able to characterize the optimal solution
(Û , p̂) that solves (3.32):

Theorem 14. The global minimizer (Û , p̂) of the cost function F1(U ,p) is charac-
terized by the following two equations:

Ri ûi = λmax

(

Ri,Gi(p̂)
)

·Gi(p̂) ûi , 1 ≤ i ≤ K , (3.36)

p̂i
K
∑

k=1
k 6=i

p̂kû
H
k γiRiûk

=
1

p̂iû
H
i Gi(p̂)ûi

, 1 ≤ i ≤ K . (3.37)

Proof. This can be shown by combining (3.35) and Lemma 12. �

3.3.2. Optimality Conditions

Next, necessary and sufficient conditions will be derived for the optimality of the `1

solution (Û , p̂) with respect to the original `∞ problem (3.33). Then, a necessary and
sufficient condition will be derived for the optimality of the beamforming solution Û
alone.

The optimality of Û was conjectured in [10], where it was proposed to solve (3.32),
then to solve an eigenproblem

ΓΨ(Û) pg = λmax

(

ΓΨ(Û)
)

pg , (3.38)

where Γ = diag{γ1, . . . , γK}. Note, that the power allocation pg balances the quan-
tities SIRDL

i /γi at the same level.
Now, consider the `∞ solution (U opt,popt), which also balances all SIRDL

i /γi at the
same level, thus 1/BDL

Inf = λoptmax = F1(U opt,popt). This optimal level can be compared
with the `1 optimum B1 = F1(Û , p̂) by using the following relation:

B1 =
1

K
min
U ,p

K
∑

i=1

γi

SIRDL
i (U ,p)

≤ 1

K
min
U ,p

K
∑

i=1

max
1≤k≤K

γk

SIRDL
k (U ,p)

= λoptmax . (3.39)
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It can be concluded that

B1 ≤ λoptmax ≤ λmax

(

ΓΨ(Û)
)

= = =

F1(Û , p̂) ≤ F1(U opt,popt) ≤ F1(Û ,pg) .

(3.40)

Using this result the following theorem can be proven:

Theorem 15. The global minimizer (Û , p̂) of the cost function F1(U ,p) solves the
`∞-problem (3.33), i.e., F1(Û , p̂) = F1(U opt,popt), if and only if one of the following
two equivalent conditions holds true:

ΓΨ(Û) · p̂ = λmax

(

ΓΨ(Û)
)

· p̂ , (3.41)
(

p̂−1
)T · ΓΨ(Û) =

(

p̂−1
)T · λmax

(

ΓΨ(Û)
)

. (3.42)

where p̂−1 def
= [p̂−1

1 , . . . p̂−1
K ]T .

Proof. See the appendix on page 78. �

From Theorem 15 we can conclude that the `1 solution solves the `∞ problem
if and only if the resulting levels SIRDL

i (Û , p̂)/γi are balanced. It was shown in
Section 3.1.1 that this corresponds to the case where p̂ is the right-hand eigenvector
of ΓΨ(Û). Now, Theorem 15 shows that this is equivalently fulfilled when p̂−1 is the
left-hand eigenvector. Comparison with (3.8) reveals that p̂−1 is the optimal power
allocation of the dual uplink problem. This provides additional insight in how uplink
and downlink transmission powers are related.

Theorem 15 can also be expressed in terms of the quantities B1 and λoptmax, which
leads to the following corollary:

Corollary 4. The global minimizer (Û , p̂) of the cost function F1(U ,p) solves the
`∞-problem (3.33) if and only if B1 = λoptmax.

Proof. From (3.39) it can be concluded that B1 = λoptmax if and only if the quantities
SIRDL

i (Û , p̂)/γi are balanced. Then p̂ is the right-hand eigenvector of ΓΨ(Û). From
Theorem 15 follows that (Û , p̂) solves (3.33). In the reverse direction assume that
(Û , p̂) solves the `∞ problem (3.33). Theorem 15 implies that p̂ solves (3.41), from
which we can conclude that λoptmax = B1. �

Further insight is gained by multiplying both sides of (3.38) with (p̂−1)T , i.e.,

(p̂−1)Tλmax

(

ΓΨ(Û)
)

pg = (p̂−1)TΓΨ(Û)pg

=
K
∑

i=1

pgi û
H
i Gi(p̂)ûi . (3.43)
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Multiplying (3.30) by K and subtracting the result from both sides of (3.43) we
obtain

( K
∑

i=1

pgi
p̂i

)

λmax

(

ΓΨ(Û)
)

−K ·B1 =
K
∑

i=1

(pgi − p̂i)û
H
i G(p̂)ûi . (3.44)

It can be observed from (3.44) that for small pgi − p̂i, we can approximate

λmax

(

ΓΨ(Û)
)

≈ B1 . (3.45)

This provides additional interpretation for Theorem 15 and Corollary 4.
Next, a necessary and sufficient condition for the optimality of the balanced `1

solution (Û ,pg) with respect to the `∞ problem (3.33) is provided:

Theorem 16. Let Û ∈ M1. Furthermore, let qg and pg denote the dominant
left- and right-hand eigenvectors of the matrix ΓΨ(Û), respectively. Let (qg)−1 def

=
[(qg1)−1, . . . , (qgK)−1]T . The solution (Û ,pg) solves the `∞-problem (3.33) if and only
if

min
U

F1(U , (qg)−1) = F1(Û , (qg)−1) . (3.46)

Proof. See the appendix on page 78. �

If Û fulfills the condition in Theorem 16, then the right side of inequality (3.40)
is satisfied with equality. The same, however, need not be true for the left side. That
is, Û may be an optimizer of the `∞ problem although the quantities SIRi(Û , p̂)/γi
are not balanced.

Up to this point, necessary and sufficient conditions have been given for the
optimality of the `1 solution (Û , p̂) and the balanced `1 solution (Û ,pg) with respect
to the `∞ optimization problem (3.33). Now we are interested in finding out whether
these problems are actually equivalent or not.

3.3.3. Closed-Form Solution for the 2-User Scenario

For K = 2, the `1 minimization problem (3.32) reduces to

B1 = min
p1,p2,u1,u2

1

2

(

γ1p2u
H
2 R1u2

p1

+
γ2p1u

H
1 R2u1

p2

)

s.t. uiRiui = 1, ∀i ,
‖p‖1 = 1 .

(3.47)

It can be observed that the minimization with respect to u1 and u2 does not depend
on the transmission powers. Each summand of the cost function can be minimized
independently. The minimizers û1, û2 are obtained by solving the following two
generalized eigenproblems

R2û2 = λ(2)
maxR1û2 , (3.48)

R2û1 = λ
(2)
minR1û1 , (3.49)

36



3. Joint Beamforming in the Absence of Noise

where λ(2)
max and λ(2)

min denote the maximal and minimal generalized eigenvalue of the
matrix pair (R2,R1), respectively. Considering the constraint uHi Riui = 1, we have
λ

(2)
max = 1/ûH2 R1û2 and λ(2)

min = ûH1 R2û1, which can be substituted back into (3.47).
This leads to a new cost function

C(p1, p2) =
1

2

(

γ1p2

p1λ
(2)
max

+
γ2p1λ

(2)
min

p2

)

. (3.50)

Since SIRDL
i (U ,p) is scalable in p, we can set p = [µ, 1], where µ denotes the

ratio between the transmission powers p1 and p2. This leads to a 1-dimensional
optimization problem

B1 = min
µ

1

2

(

γ1

µλ
(2)
max

+ µγ2λ
(2)
min

)

. (3.51)

The unique minimizer

µ̂ =

√

γ1

γ2λ
(2)
maxλ

(2)
min

(3.52)

is obtained from computing the derivative of the cost function. Putting (3.52) into
(3.51) it can be observed that

SIRDL
1 ([û1, û2],

[

µ̂
1

]

)

γ1

=
SIRDL

2 ([û1, û2],
[

µ̂
1

]

)

γ2

=

√

√

√

√

λ
(2)
max

γ1γ2λ
(2)
min

. (3.53)

The SIR levels are balanced. From the results in Section 3.3.2 we know that in this
case the `1 solution solves the optimal `∞ problem. Thus, for the 2-user case both
problems are indeed equivalent.

An additional interpretation is obtained by rewriting (3.53) as an eigenvalue de-
composition

ΓΨ([û1, û2]) ·
[

µ̂1/2

µ̂−1/2

]

=

√

γ1γ2λ
(2)
min

λ
(2)
max

·
[

µ̂1/2

µ̂−1/2

]

.

Hence, [µ̂1/2, µ̂−1/2]T is a (scaled) eigenvector of the coupling matrix ΓΨ. Likewise,
it can be shown that [µ̂−1/2, µ̂1/2]T is a dominant eigenvector of (ΓΨ)T . From The-
orem 15 it can be concluded, that the closed-form solution (û1, û2, p̂1, p̂2) not only
solves the `1-problem (3.32), but also the `∞-problem (3.33). Thus we have

BDL
Inf = 1/B1 =

√

λ
(2)
max/(γ1γ2λ

(2)
min) . (3.54)
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Now, assume that SIRDL
i ≥ γi is required for i = 1, 2. These requirements can only

be fulfilled if BDL
Inf ≥ 1 holds. This leads to the following condition

λ(2)
max/λ

(2)
min ≥ γ1γ2 . (3.55)

Thus, the feasibility of a certain scenario, characterized by the channel covariance
matricesR1,R2 and SIR requirements γ1, γ2, is determined by (3.55). An illustration
of this result is given in Fig. 3.2.

infeasible

γ1 (target SIR user 1)

γ
2
(t
ar
ge
t
SI
R

us
er

2)

feasible

Figure 3.2.: 2-user scenario: tradeoff between SIR requirements γ1 and γ2

From (3.55) it becomes clear that we must avoid situations where the ratio
λ

(2)
max/λ

(2)
min becomes small. Clearly, the worst case is given for R1 = R2, where

λ
(2)
min = λ

(1)
min holds. This corresponds to a situation where the users cannot be distin-

guished by spatial filtering.

3.3.4. Numerical Counterexample for K > 2

Now, consider the general case K > 2. Even when assuming the most simple scenario
K = 3 andM = 1, the `∞ problem becomes quite complicated and there is no obvious
way to decide whether or not it is equivalent to the `1 approach. Fortunately, optimal
numerical solutions are known for the `1 problem (see [10]) and the `∞ problem (see
Section 3.2 and the corresponding paper [5]). Thus, together with the optimality
conditions derived in Section 3.3.2, it is possible to find a numerical counterexample
that disproves general equivalence. The results for a specific channel scenario are
illustrated in Fig. 3.3.

From Fig. 3.3.a it can be observed that the SIR levels resulting from (Û , p̂) are
not balanced. From Theorem 15 it can be concluded that in this case the `1 solution
does not solve the `∞ optimization problem (3.33). Hence, both problems are not
equivalent.

Is it possible that the balanced `1 solution (Û ,pg) is optimal? From Corollary 4
it is known that this holds true as long as `1 and `∞ balancing achieves the same
level. A counterexample is depicted in Fig. 3.3.b, where F1(U opt,popt) < F1(Û ,pg)
holds. Hence, Û is not always an optimizer of the `∞ optimization problem (3.33).
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Figure 3.3.: Comparison of a) `1 optimization b) `∞ optimization strategies in the
absence of noise. The normalized beam patterns are depicted for a 5-user scenario.
The results have been found with the `1-based algorithm proposed in [10] and
the optimal `∞ optimization scheme summarized on p. 30. The same simulation
parameters were assumed for both optimization techniques.

While the observations in Fig. 3.3 only hold for a specific scenario, the statistical
analysis in Fig. 3.4 shows, that the same behavior holds for most other scenarios
as well, including the case K = 3. However, the difference becomes smaller as the
number of users increases. It can be concluded that for most scenarios the `1-based
strategy proposed in [10] only approximates the `∞ optimum. In the next section, a
modified algorithm will be proposed that always converges to the `∞ optimum.

3.3.5. Optimal Algorithm Based on `1-Optimization

From Theorem 16 it is known that the global optimum of the `∞ problem (3.33) is
characterized in two different ways: An optimal solution U opt ∈M∞ can be found by
minimizing the cost function F1

(

U , (qg)−1
)

, which requires knowledge of the optimal
qg. On the other hand, if U opt is known, then the associated qg is given as the
dominant left-hand eigenvector of the matrix ΓΨ(U opt). This provides intuition
for a new alternating optimization scheme, which is based on the `1 cost function
F1, as proposed by Gerlach and Paulraj in [10], but which uses a different way of
adjusting the power vector in each iteration step. Instead of minimizing F1(U ,p)
with respect to p, the power update is done by solving the eigenvalue problem (3.38).
The algorithm is summarized below. It was published by Boche and Schubert in [4].
The optimal beamforming strategy for given q(n−1) is found by evaluating
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Figure 3.4.: Achievable levels B1 and BUL
Inf averaged over 1000 Monte Carlo runs.

Random channel matrices are assumed and γ1 = · · · = γK = 1

U (n) = arg min
U

F (U , (q(n−1))−1) , s.t. uHi Riui = 1, 1 ≤ i ≤ K

= arg min
U

K
∑

i=1

[x]iu
H
i

( K
∑

k=1
k 6=i

[q(n−1)]kγkRk

)

ui , for any x ∈ RK+

= arg min
U

xT
(

ΓΨ(U)
)T
q(n−1)

xTq(n−1)
. (3.58)

This strategy is similar to the approach chosen for Algorithm 1 on p. 30. However,
it differs in the way the targets γ1 . . . γK affect the iteration process. In Algorithm 2,
they influence both beamforming and power control steps, while in Algorithm 1 only
the power control step is involved.

Global convergence of Algorithm 2 can be shown by defining a function

λ̌n(x)
def
=
xT
(

ΓΨ(U (n))
)T
q(n−1)

xTq(n−1)
, where x > 0. (3.59)

It follows from (3.58) that

λ̌n(x) = min
U

xT
(

ΓΨ(U)
)T
q(n−1)

xTq(n−1)

≤
xT
(

ΓΨ(U (n−1))
)T
q(n−1)

xTq(n−1)
= λmax(n− 1)
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Algorithm 2 Optimal SIR balancing based on `1 optimization.
1: n⇐ 0
2: q(0) ⇐ [1, . . . , 1]T

3: λmax(0)⇐ 0
4: repeat
5: n⇐ n+ 1
6: for given q(n) minimize the `1 cost function

U (n) ⇐ arg min
U

F1(U , (q(n−1))−1) , s.t. uHi Riui = 1, 1 ≤ i ≤ K (3.56)

7: for given U (n) solve the eigenproblem

(

ΓΨ(U (n))
)T · q(n) = λmax(n) · q(n) . (3.57)

8: until λmax(n− 1)− λmax(n) ≤ ε

for any x > 0. Hence,

λmax(n) = max
x>0

min
y>0

xT
(

ΓΨ(U (n))
)T
y

xTy

≤ max
x>0

xT
(

ΓΨ(U (n))
)T
q(n−1)

xTq(n−1)

= max
x>0

λ̌n(x) ≤ λmax(n− 1) . (3.60)

The sequence λmax(n) is strictly monotonically decreasing and converges to λoptmax. In
analogy to the proof in Section 3.2.1, it can be shown that the optimality condition
(3.46) is fulfilled after convergence. The resulting beamforming solution U opt is an
optimizer of the `∞ problem (3.33).

3.4. Discussion

Joint beamforming and power allocation in the absence of noise consists of minimizing
the `∞ norm of the vector (3.3). This objective function is non-differentiable, so at
first sight it seems unlikely that a globally convergent algorithm can be found. The
equivalent eigenvalue optimization problem has a smoother objective function, but
may still have local minima. So a key result of this chapter is to prove that each
local minimum is a global minimum. This allows to develop a rapidly converging
algorithm, which typically requires only a few iteration steps. These results complete
the studies in [43], where the same problem was studied.

An interesting aspect of the solution is, that it need not be unique. Knowing the
optimal allocation, all optimal beamforming solutions can be found by the subspace
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3. Joint Beamforming in the Absence of Noise

characterization proposed in Section 3.1.3. This is practically relevant since it allows
to choose the solution that is best suited, e.g. with respect to additional design
criteria, like the peak to average ratio of the beamforming filters.

Finally, the `1-norm based optimization strategy proposed in [10] is studied. By
providing necessary and sufficient conditions for optimality along with counterexam-
ples, it is shown that this approach is in general not equivalent to the original `∞
norm optimization problem. A modified version of the `1 strategy is proposed. This
new algorithm has the same convergence properties as the one above and always
converges to the global `∞ optimum.
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4. Power-Aware Spatial
Multiplexing under a Sum
Power Constraint

Next, the results are extended to the case where each receiver has a certain noise
level and a sum power constraint is imposed. The goal is to achieve SINR thresholds
γ1 . . . γK by jointly optimizing over all beamforming vectors and transmission powers.
The solution builds on the duality result in Chapter 2 and the interference balancing
technique in the absence of noise, which has been derived in Chapter 3. From the
discussion in Section 2.5 it becomes clear that multiuser channels can always be
scaled, so without loss of generality, σ = 1K can be assumed in the remainder of this
thesis.

4.1. Joint Beamforming and Power Allocation

4.1.1. SINR Balancing in the Downlink

The design goal min1≤i≤K SINRDL
i ≥ γi motivates the following optimization strategy:

CDL
opt(Pmax) = max

U ,p
min

1≤i≤K

SINRDL
i (U ,p)

γi
,

subject to ‖p‖1 ≤ Pmax

‖ui‖2 = 1, 1 ≤ i ≤ K .

(4.1)

The achievable level CDL
opt(Pmax) provides a single performance measure for the quality

of several spatially multiplexed channels. Individual targets γ1 . . . γK can be achieved
if and only if CDL

opt(Pmax) ≥ 1. Each beamforming solution obtained by (4.1) is optimal
in the sense that no other beamforming algorithm can achieve a balanced level larger
than CDL

opt(Pmax) under the same power constraint. Since CDL
opt(Pmax) is monotonically

increasing in Pmax, the SINR levels SINRDL
i = CDL

opt(Pmax)γi are achieved with minimal
transmission power.
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In Section 2.2.1 it was shown that for any fixed U the maximal balanced level
CDL(U , Pmax) is given by the reciprocal maximal eigenvalue of the extended coupling
matrix Υ(U , Pmax). Hence, the global optimum CDL

opt(Pmax) = maxU C
DL(U , Pmax) is

found by solving

CDL
opt(Pmax) =

1

min
U

λmax

(

Υ(U , Pmax)
) . (4.2)

Any U opt that solves (4.2) is an optimizer of the SINR balancing problem (4.1).
The eigenvalue minimization problem (4.2) has a reduced dimensionality as com-

pared to the original problem (4.1). Yet, it is still very unlikely to allow for an efficient
and global algorithmic solution because the objective is typically non-convex in U
and may have many local minima.

4.1.2. The Dual Uplink Problem

The same SINR balancing problem that was discussed for the downlink in Sec-
tion 4.1.1 can be formulated for the uplink:

CUL
opt(Pmax) = max

U ,q
min

1≤i≤K

SINRUL
i (ui, q)

γi
,

subject to ‖q‖1 ≤ Pmax

‖ui‖2 = 1, 1 ≤ i ≤ K .

(4.3)

Again, this leads to a beamforming solution, which is optimal in terms of the design
goal SINRUL

i ≥ γi. For given Pmax, a maximal balanced level CUL
opt(Pmax) is achieved.

The associated levels SINRUL
i = CUL

opt(Pmax)γi are achieved with minimal power. The
global optimum CUL

opt(Pmax) = maxU C
UL(U , Pmax) is found by solving an eigenvalue

optimization problem

CUL
opt(Pmax) =

1

min
U

λmax

(

Λ(U , Pmax)
) . (4.4)

The relationship between the downlink problem (4.2) and the uplink problem (4.4)
is described by the following corollary, which is an immediate consequence of the
duality observed in Section 7.

Corollary 5. Suppose that strong duality, as defined in Section 2.4.4, holds. Then,
the same balanced level CDL

opt(Pmax) = CUL
opt(Pmax) can be achieved in uplink and down-

link under the same sum power constraint ‖q‖1 = ‖p‖1 = Pmax. This implies that
each beamforming solution which solves the uplink problem (4.4) also solves the down-
link problem (4.2) and vice versa.
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As discussed in Section 2.5, the downlink channel can always be scaled such
that σ = 1K holds. Hence, without loss of generality the downlink beamforming
problem (4.2) can be solved by considering the dual uplink problem (4.4) instead.
This approach is motivated by the results of Chapter 3, where it was observed that
the uplink has a “smoother” analytical structure.

Finally, it is important to notice that the optimizer of (4.4) need not be unique.
LetM denote the set of optimal solutions, thenU opt ∈M solves the uplink balancing
problem (4.3). Hence, U opt is characterized by CUL

opt = SINRUL
i (U opt, qopt)/γi, which

can be rewritten as

(uopti )H
(

1

CUL
opt
qopti Ri − γiZi(q

opt)

)

uopti = 0 , 1 ≤ i ≤ K , (4.5)

where Zi is the spatial interference+noise covariance matrix

Zi(q) =
K
∑

k=1
k 6=i

[q]kRk + I , 1 ≤ i ≤ K . (4.6)

In analogy to Theorem 11 it can be shown that all vectors ũi that are chosen from
the nullspace of

(

1
CUL
opt
qopti Ri − γiZi(q

opt)
)

are elements ofM. This important char-
acterization is discussed in more detail in Section 3.1.3, where the same result has
been derived in the absence of noise.

4.1.3. Problem Reformulation

Using (2.35), the maximal eigenvalue of the extended coupling matrix Λ can be
expressed as

λmax

(

Λ
)

= max
x>0

min
y>0

xTΛy

xTy
= min

x>0
max
y>0

xTΛy

xTy
. (4.7)

Introducing a function

λ̂n(U ,y) = max
x>0

xTΛ(U , Pmax)y

xTy
, (4.8)

problem (4.4) can be rewritten as

CDL
opt(Pmax) =

1

min
U

min
qext>0

λ̂n(U , qext)
. (4.9)

Here, qext =
[

q
1

]

is the extended uplink power vector, as introduced in (2.15), whereas
the auxiliary variable x > 0 has no physical meaning. The global optimum is found
by minimizing the cost function λ̂n(U , qext) over all U and qext > 0. At first sight,
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the problem (4.9) seems to be more complicated than the original problem (4.4), since
it depends on more variables. However, the representation (4.9) allows for an efficient
algorithmic solution. By keeping either U or qext fixed and minimizing λ̂n(U , qext)
with respect to the other variable, the minimum of (4.9) is approached.

For fixed Ũ , the cost function λ̂n(Ũ , qext) is minimized by the vector q̂ext, which
fulfills

Λ(Ũ , Pmax) · q̂ext = λmax

(

Λ(Ũ , Pmax)
)

· q̂ext with [q̂ext]K+1 = 1 . (4.10)

This can easily be shown by multiplying both sides of (4.10) by xT ∈ RK+1
+ and

dividing by xT q̂ext. Combining (4.7) and (4.8) we have

xTΛ(Ũ , Pmax)q̂ext

xT q̂ext

= λmax

(

Λ(Ũ , Pmax)
)

= min
qext

λ̂n(Ũ , qext) .

Having found the optimal power control strategy, we are now interested in finding
the beamformer Û that is optimal for given q̂ext, i.e.,

Û = arg min
U

λ̂n(U , q̂ext) . (4.11)

To this end we need the following lemma:

Lemma 13. The cost function λ̂n(U , qext) does not depend on the last row of the
extended coupling matrix Λ, i.e.,

max
x>0

xTΛ(U , Pmax)qext

xTqext

= max
x: [x]K+1=0

xTΛ(U , Pmax)qext

xTqext

= max
1≤i≤K

γi

SINRUL
i (ui, q)

, where q = [qext]1:K . (4.12)

The same relation holds when replacing max by min.

Proof. See the appendix on page 71. �

A beneficial consequence from Lemma 13 is that minimizing the cost function
λ̂n(U , qext) with respect toU (keeping qext =

[

q
1

]

fixed) leads to a set ofK decoupled
problems

ûi = arg max
ui

SINRUL
i (ui, q)

= arg max
ui

uHi Riui
uHi Zi(q)ui

, 1 ≤ i ≤ K . (4.13)

The matrices Zi, as defined in (4.6), are non-singular and symmetric, thus (4.13) is
solved by the dominant generalized eigenvectors of the matrix pairs

(

Ri,Zi(q)
)

, 1 ≤
i ≤ K.
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4.1.4. Necessary and Sufficient Condition for Global
Optimality

Using Lemma 13, a characterization of each global optimizer U opt ∈M can be found.
The result is summarized by the following theorem, which will prove very useful in
Section 4.2, where an iterative solution will be derived.

Theorem 17. A matrix Û = [û1, . . . , ûK ] is optimal, i.e., Û ∈ M if and only if
there exists a q̂ext such that

λ̂n(Û , q̂ext) = min
U

λ̂n(U , q̂ext) , (4.14)

and Λ(Û , Pmax) q̂ext = λmax

(

Λ(Û , Pmax)
)

q̂ext . (4.15)

Proof. Assume that (4.14) and (4.15) hold. Let x ∈ RK+1
+ be an arbitrary vector.

Left-hand multiplication on both sides of (4.15) with xT/xT q̂ext leads to

xTΛ(Û , Pmax)q̂ext

xT q̂ext

= λmax

(

Λ(Û , Pmax)
)

. (4.16)

The same Û that minimizes λ̂n(U , q̂ext) = max
1≤i≤K

γi
SINRUL

i (ui,q̂)
is also a minimizer of

min
1≤i≤K

γi
SINRUL

i (ui,q̂)
. It follows from Lemma 13 that

min
x>0

xTΛ(Û , Pmax)q̂ext

xT q̂ext

= min
U

min
x>0

xTΛ(U , Pmax)q̂ext

xT q̂ext

. (4.17)

Since (4.16) holds for any x > 0, relation (4.17) can be rewritten as

min
U

min
x>0

xTΛ(U , Pmax)q̂ext

xT q̂ext

= λmax

(

Λ(Û , Pmax)
)

. (4.18)

Combining (4.4), (4.7), and (4.18) we have

1/CUL
opt(Pmax) = min

U
λmax

(

Λ(U , Pmax)
)

= min
U

min
x>0

max
y>0

xTΛ(U , Pmax)y

xTy

≥ min
U

min
x>0

xTΛ(U , Pmax)q̂ext

xT q̂ext

= λmax

(

Λ(Û , Pmax)
)

. (4.19)

Inequality (4.19) can only be satisfied with equality, since 1/CDL
opt(Pmax) is the global

minimum. From this we can conclude that Û ∈M holds.
To prove the reverse direction, suppose that Û is optimal, i.e., Û ∈ M. This

implies λmax

(

Λ(Û , Pmax)
)

≤ λmax

(

Λ(U , Pmax)
)

for all U . Let q̂ext be the dominant
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eigenvector of Λ(Û , Pmax) with q̂ext =
[

q̂
1

]

and ‖q̂‖1 = Pmax. With (4.7) and (4.8)
the following inequality is obtained:

λmax

(

Λ(Û , Pmax)
)

≤ λmax

(

Λ(U , Pmax)
)

= min
y>0

max
x>0

xTΛ(U , Pmax)y

xTy

≤ max
x>0

xTΛ(U , Pmax)q̂ext

xT q̂ext

= λ̂n(U , q̂ext) . (4.20)

This holds for any U . Thus, using (4.16) it follows that

min
U

λ̂n(U , q̂ext) ≥ λmax

(

Λ(Û , Pmax)
)

= max
z>0

zTΛ(Û , Pmax)q̂ext

zT q̂ext

= λ̂n(Û , q̂ext) . (4.21)

Inequality (4.21) can only be fulfilled with equality, which concludes the proof. �

4.2. Global Optimization with Alternating Variables

The method of alternating variables in its simplest form keeps all but one variable
fixed and seeks a value of this variable so as to minimize the objective function. This is
repeated successively for all variables. In general, this strategy is know to approach
the optimum very slowly and may even get stuck. The variant proposed in this
section, however, exploits the analytical structure of the given problem and therefore
rapidly converges towards the global optimum of the eigenvalue minimization problem
(4.4).

4.2.1. Algorithm Summary

In Section 4.1.4 it was shown how the objective function λ̂n(U , qext) is minimized
when either U or qext is kept fixed. Also, a necessary and sufficient condition for
global optimality is provided by Theorem 17. This motivates the alternating algo-
rithm summarized below. The quantities associated with the nth iteration step are
denoted by the superscript (·)(n).

4.2.2. Monotony and Global Convergence

Theorem 18. The iteration sequence λmax(n) obtained from Algorithm 3 is monoton-
ically decreasing and converges to the global optimum of the eigenvalue minimization
problem (4.4), regardless of the chosen initialization.
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Algorithm 3 Algorithmic solution of the eigenvalue minimization problem (4.4)
1: n⇐ 0
2: q

(0)
ext ⇐ [0, . . . , 0, 1]T

3: repeat
4: n⇐ n+ 1
5: for given q(n−1)

ext compute U (n) = [u
(n)
1 , . . . ,u

(n)
K ] as the solution of

u
(n)
i = arg max

ui

uHi Riui

uHi Zi(q
(n−1)
ext )ui

, 1 ≤ i ≤ K (4.22)

6: for given U (n) compute q(n)
ext as the solution of

Λ(U (n), Pmax) q
(n)
ext = λmax(n) q

(n)
ext , with [q

(n)
ext]K+1 = 1

7: until λmax(n− 1)− λmax(n) < ε

Proof. From Lemma 13 follows that for given q(n−1)
ext , the solution U (n) minimizes the

cost function λ̂n(U , q
(n−1)
ext ) , i.e,

λ̂n(U (n), q
(n−1)
ext ) ≤ λ̂n(U (n−1), q

(n−1)
ext ) = λmax(n− 1) . (4.23)

Using (4.7) and (4.23) we have

λmax(n) = min
y>0

max
x>0

xTΛ(U (n), Pmax)y

xTy

≤ λ̂n(U (n), q
(n−1)
ext )

≤ λmax(n− 1) . (4.24)

Hence, the iteration sequence λmax(n) is monotonically decreasing. Using (4.7), it
can be shown that the quantity λmax(n) is lower bounded:

λmax(n) = max
y>0

min
x>0

xTΛ(U (n), Pmax)y

xTy

≥ min
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

. (4.25)

Combining (4.12), (4.24), and (4.25) we have

min
1≤i≤K

γi

SINRUL
i (u

(n)
i , q(n−1))

≤ λmax(n) ≤ max
1≤i≤K

γi

SINRUL
i (u

(n)
i , q(n−1))

≤ λmax(n− 1) .

(4.26)
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Figure 4.1.: Typical convergence behavior of Algorithm 3

The monotony result (4.26) implies the existence of a limit λ∞ = limn→∞ λmax(n)
(an illustration is given in Fig. 4.1). Using the continuity of Λ(U), as well as the
fact that both ‖q(n)

ext‖1 and ‖U (n)‖F are bounded, it can be shown in the same way
as in Section 3.2.1, that λ∞ is a solution of Λ(U∞)q∞ext = λ∞q∞ext. Thus,

min
U

λ̂n(U , q∞ext) = λ̂n(U∞, q∞ext) . (4.27)

From Theorem 17 we know that (4.27) is necessary and sufficient for the optimality
of U∞. �

4.2.3. Stopping Criteria

Next, stopping criteria are derived in analogy to the noiseless case (see Section 3.2.2).
A solution U (n) is a global optimizer of the eigenvalue minimization problem

(4.4) if and only if λmax(n) = λmax(n + 1). This is an immediate consequence from
Theorem 17. Thus, the algorithm can be stopped as soon as the difference λmax(n)−
λmax(n+ 1) falls below a threshold ε.

A drawback of this approach is that the quantity U (n+1) must be computed in
order to assess the optimality of U (n), which means that an additional iteration step
must be carried out. A more direct stopping criterion can be found by considering
the ratios SINRUL

i (U (n), q(n−1))/γi, where q = [qext]1:K . If they are balanced at the
same level, the global optimum is reached.

Theorem 19. A solution U (n) is optimal with respect to (4.4), i.e., U (n) ∈ M, if
and only if

min
1≤i≤K

SINRUL
i (U (n), q(n−1))

γi
= max

1≤i≤K

SINRUL
i (U (n), q(n−1))

γi
. (4.28)

Proof. See the appendix on page 80. �
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Theorem 19 provides an additional interpretation in terms of SINR balancing.
As long as the optimum is not reached, the quantity CUL(U (n), Pmax) = 1/λmax(n)
is lower and upper bounded as in (4.26). The iteration process can be stopped as
soon as the difference between the relative SINR levels in (4.28) is smaller than a
threshold ε.

4.3. Minimizing Excess Transmission Power

If CUL
opt(Pmax) > 1, then there are excess degrees of freedom which can be used to

minimize the total transmission power:

min
U , q

K
∑

i=1

qi subject to SINRUL
i ≥ γi , 1 ≤ i ≤ K

‖ui‖2 = 1, 1 ≤ i ≤ K .

(4.29)

In Section 2.2.2 it was shown that (4.29) can be seen as a special case of the SINR
balancing problem (4.1). Thus, the global optimum (4.29) can be found by extending
Algorithm 3.

4.3.1. Iterative Power Minimization

The first step for solving the power minimization problem (4.29) is to make sure
that the constraints SINRUL

i ≥ γi can be fulfilled. As discussed in Section 2.2,
this is exactly the case when there exists a beamforming solution U (n) such that
CUL(U (n), Pmax) ≥ 1 (the function CUL is defined by (2.10) and illustrated in Fig. 2.6).
The problem is infeasible if and only if Algorithm 3 yields a solutionCUL(U (n), Pmax) <
1 for n → ∞. Such a situation should be avoided by proper countermeasures taken
by the dynamic resource management.

As soon as it turns out that the problem is feasible, the global power minimum
(4.29) can be found by changing the power control policy. Instead of computing
the power allocation which maximizes the balanced ratio SINRUL

i /γi for given Pmax,
we are now interested in finding the allocation that minimizes the total tranmis-
sion power while satisfying SINRUL

i /γi = 1. This problem was already discussed in
Section 2.2.2. The solution is found by solving the set of linear equations (2.18).
These steps are repeated until convergence. The algorithm is summarized below and
illustrated in Fig. 4.2.

Theorem 20. Suppose that the power minimization problem (4.29) is feasible, then
Algorithm 4 approximates the global power minimum up to a desired accuracy.

Proof. Suppose that (4.29) is feasible. In Section 2.2.2 it was shown that for given
U (n) the allocation q(n) =

(

I −DΨT (U (n))
)−1
Dσ achieves the SINR targets with
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Algorithm 4 Algorithmic solution of the power minimization problem (4.29)
1: initialize: n⇐ 0, q(0) ⇐ [0, . . . , 0]T , C(0) ⇐ 0
2: repeat
3: n⇐ n+ 1
4: U (n) = [u

(n)
1 , . . . ,u

(n)
K ]⇐ arg max

ui

uHi Riui
uHi Zi(q

(n−1))ui
, 1 ≤ i ≤ K

5: if C(n) < 1 then
6: P

(n)
sum ⇐ Pmax

7: solve Λ(U (n), P
(n)
sum)

[

q(n)

1

]

= λmax(n)
[

q(n)

1

]

8: C(n) ⇐ 1/λmax(n)
9: else

10: q(n) ⇐
(

I −DΨT (U (n))
)−1

Dσ

11: P
(n)
sum ⇐ ‖q(n)‖1

12: C(n) ⇐ 1
13: end if
14: until max

1≤i≤K
SINRUL

i (u
(n)
i , q(n−1))− min

1≤i≤K
SINRUL

i (u
(n)
i , q(n−1)) < ε

minimal transmission power. Hence, P (n)
sum ≤ P

(n−1)
sum , as illustrated in Fig 4.2. The

algorithm converges towards a solution P (∞)
sum. That is, for a given sum power P (∞)

sum, the
beamforming step achieves no further improvement. With the results in Section 4.2
it can be concluded that

CUL(U (∞), P (∞)
sum) = max

U
CUL(U , P (∞)

sum) . (4.30)

Now, assume that there exists a beamforming solution Ũ which fulfills the SINR
constraints with a minimal power level P̃ < P

(∞)
sum. Since CUL is strictly monotonically

increasing in the total power, this implies CUL(Ũ , P
(∞)
sum) > CUL(U (∞), P

(∞)
sum), which

is a contradiction to (4.30). �

1

global
power minimum

initialization (infeasible)

feasible

sum power

CUL(U , Psum)

U (1)

U (2)

U (3)

U (4)

U (∞)

PmaxP
(3)
sumP

(4)
sumP

(∞)
sum

Figure 4.2.: Schematic illustration of Algorithm 4 (iterative power minimization)
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If the power minimization problem (4.29) is not feasible, then convergence is
achieved with C(∞) < 1. Then, the algorithm does not differ from the SINR balancing
algorithm in Table 3. As discussed before, C(∞) ≥ 1 is a necessary and sufficient
condition for feasibility required by the dynamic resource allocation.

4.3.2. Closed-Form Solution for the 2-User Scenario

Consider a 2-user scenario with perfect channel information Ri = hih
H
i , i = 1, 2,

and equal noise levels σ2
1 = σ2

2 = 1. The goal is to balance the quantities CUL
i =

SINRUL
i (ui, q1, q2)/γi, i = 1, 2, with minimal transmission power. The first user

achieves a level

CUL
1 =

SINRUL
1 (u1, q1, q2)

γ1

=
q1|uH1 h1|2

γ1(q2|uH1 h2|2 + 1)
. (4.31)

This is maximized by the normalized MMSE solution

uopt1 =

(

q2h2h
H
2 + I

)−1
h1

‖
(

q2h2h
H
2 + I

)−1
h1‖2

. (4.32)

Putting (4.32) in (4.31) we have

CUL
1 =

q1h
H
1

(

q2h2h
H
2 + I

)−1
h1

γ1

.

Using the Sherman-Morrison inversion lemma (see e.g. [46]) this can be rewritten as

CUL
1 =

q1

γ1

(

hH1 h1 −
q2|hH1 h2|2

1 + q2h
H
2 h2

)

. (4.33)

Likewise, the level of the second user is given by

CUL
2 =

q2

γ2

(

hH2 h2 −
q1|hH2 h1|2

1 + q1h
H
1 h1

)

. (4.34)

Now, assume that both users are balanced at the same level CUL
1 = CUL

2 = 1. Solving
(4.33) for q1, then putting q1 in (4.34), then solving for q2 yields

q2 =
−a2 +

√

a2
2 + 4b2c2

2c2

(4.35)

where a2 = ‖h2‖2‖h1‖2(1 + γ1 − γ2 − γ1γ2) + γ2|hH1 h2|2 − γ1|hH2 h1|2

b2 = γ2‖h1‖2(1 + γ1)

c2 = ‖h2‖4‖h1‖2(1 + γ1)− ‖h2‖2|hH1 h2|2 − γ1‖h2‖2|hH2 h1|2 .
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Likewise, we can derive a closed form expression for user 1:

q1 =
−a1 +

√

a2
1 + 4b1c1

2c1

(4.36)

where a1 = ‖h1‖2‖h2‖2(1 + γ2 − γ1 − γ2γ1) + γ1|hH2 h1|2 − γ2|hH1 h2|2

b1 = γ1‖h2‖2(1 + γ2)

c1 = ‖h1‖4‖h2‖2(1 + γ2)− ‖h1‖2|hH2 h1|2 − γ2‖h1‖2|hH1 h2|2 .

The power levels (4.35) and (4.36) achieve the targets γ1 and γ2 with minimum total
transmission power Pmax = q1 + q2. The optimal beamformer uopt1 is obtained from
(4.32). Likewise, uopt2 can be computed. With the duality stated in Theorem 6 it
is known that uopt1 and uopt2 are optimal for both uplink and downlink. Finally, the
optimal downlink powers can be found by the power control strategy discussed in
Section 2.2.1.

4.4. Discussion

In this chapter the problem of joint beamforming and power control under a sum
power constraint has been solved. A generic solution has been presented, which
shares the available power resource in a fair manner, taking into account individual
SINR targets. This technique can be used in two different ways:

1. by maximizing the balanced SINR margin CUL(U , Pmax) while maintaining a
sum power constraint ‖q‖1 ≤ Pmax,

2. by minimizing the total power ‖q‖1 while ensuring target SINR’s γ1 . . . γK .

Both design goals are closely linked. If the latter is infeasible, this can be detected by
the necessary and sufficient condition provided by Algorithm 3. Infeasible scenarios
must be handled by proper resource management.

Given an optimal beamforming solution, an optimal power allocation follows di-
rectly from (4.15). On the other hand, an optimal beamforming solution is obtained
from (4.14) if an optimal power allocation is known. This fundamental relationship
will prove useful in the next chapter in order to find the maximum throughput of the
Gaussian multiuser channel.

The solution derived in this chapter is general enough to hold for spatial covariance
matrices of arbitrary rank. This is important, since perfect spatial channel knowledge
is rarely available, due to channel fluctuations in time. Incoherent beamforming
can be performed based on knowledge of the spatial covariance matrices that are
obtained by averaging over several fading cycles (see Section 2.1.1). Such a “long-
term” approach is robust due to the slowly changing geometry of the multipath
directions. The rapid convergence behavior of the algorithm makes this approach
suitable for real time applications.
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5. Rate Balancing for Gaussian
Broadcast and Multiple Access
Channels

In this chapter we study the SINR balancing problem in an information theoretical
context with i.i.d. Gaussian signaling under a sum power constraint. Assuming
perfect channel knowledge at the base station, the multiplexed data streams can be
decoupled by a combination of linear equalization and successive coding for known
interference. This leads to a triangularized channel structure, which is a special
case of the general scenario considered so far. As will be shown in this chapter,
the triangular structure allows for an efficient solution based on back substitution.
By defining threshold targets, rate tuples can be controlled according to individual
capacity needs. Such a strategy is required when strict delay constraints are imposed
and throughput has to be traded off against fairness.

The results presented in this chapter were published by Boche and Schubert in
[1, 2].

5.1. Duality between Broadcast and Multiple
Access Channel

5.1.1. Multiple Access Channel with Successive Decoding

We start by considering a Multiple Access Channel (MAC) with K scalar inputs
and a vector output. The K independent transmitters use i.i.d. Gaussian random
codebooks. The M receive antennas are jointly processed. From the discussion in
Section 2.5 it is clear that a noise vector σ = 1K can be assumed without loss of
generality.

An optimal receiver structure for the MAC has been found in [35], where it was
shown that the vertices of the capacity region can be achieved by using a combination
of successive decoding and linear MMSE receivers uMMSE

i , i = 1, . . . , K. Assuming a
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decoding order K . . . 1, the following signal is obtained at the ith cancellation step:

yi(t) = si(t)u
H
i hi +

i−1
∑

k=1

sk(t)(u
MMSE
i )Hhk + ni(t) , 1 ≤ i ≤ K . (5.1)

This leads to “coded” SINR’s

SINRUL,SD
i (uMMSE

i , q1 . . . qi) =
qi|(uMMSE

i )Hhi|2

(uMMSE
i )HẐi(q1 . . . qi−1)uMMSE

i

= qih
H
i Ẑ

−1

i hi . (5.2)

where uMMSE
i = Ẑ

−1

i hi/‖Ẑ
−1

i hi‖2 and

Ẑi(q1 . . . qi−1) = I +
i−1
∑

k=1

qkhkh
H
k . (5.3)

There is a one-to-one correspondence between (5.2) and the maximal spectral effi-
ciency

RUL
i = log2 |qihihHi + Ẑi| − log2 |Ẑi|

= log2 |I + qiẐ
−1/2

i hih
H
i Ẑ

−1/2

i |

= log2(1 + qih
H
i Ẑ

−1

i hi)

= log2(1 + SINRUL,SD
i (uMMSE

i , q1 . . . qi)) . (5.4)

For simplicity we will also refer to Ri as the rate in the following.
Hence, data rates can be controlled by jointly adjusting transmission powers and

MMSE beamformers. By defining target thresholds γ1 . . . γK , the SINR balancing
strategy developed in Chapter 4 can be used to achieve rate tuples within the capacity
region, including the maximal sum capacity. Provided that γ1 . . . γK are achievable
under the given power constraint, the optimal power allocation and the optimal
MMSE filters can be found by solving the power minimization problem

min
q,U

K
∑

i=1

qi subject to SINRUL,SD
i (ui, q1, . . . , qi) ≥ γi, 1 ≤ i ≤ K . (5.5)

Note, that each optimizer (U opt, qopt) of the joint power minimization problem (5.5)
is characterized by Theorem 17 (with Lemma 13) in two different ways:

1. Given qopt, the optimal beamformer U opt is found by K independent SINR
maximization problems.

2. GivenU opt, the optimal power allocation qopt can be found by the power control
strategies described in Section 2.2.

Unlike the general problem treated in Chapter 4, problem (5.5) always feasible in
the absence of power constraints. This is due to the triangular channel structure
imposed by the successive decoding (see the discussion in Section 2.3 and the example
in Fig. 2.5).
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5.1.2. Broadcast Channel with ‘Dirty Paper’ Precoding

Next, consider a Gaussian broadcast channel (BC) with M cooperating transmit
antennas and K non-cooperating receivers. This channel belongs to the class of
non-degraded broadcast channels for which the general capacity region is not known
[49].

A partial solution was recently found by Caire and Shamai [30] for the special
case of two users and two transmit antennas. The result shows that throughput-
wise optimal transmission is possible by using a combination of linear pre-filtering
and coding for non-causally known interference at the transmitter. Such a precoder
triangularizes the channel in a similar way as the decision-feedback equalizer does.
The channel capacity is the same as if the non-causal interference would not exist.
No further power enhancement is caused as long as optimal precoding is assumed.

The existence of such a an optimal precoder was first shown by Costa [50] for a
Gaussian channel with Gaussian interference. More recently, this was expanded to
the case of non-Gaussian interference [51]. Also, strategies for achieving this capacity
were proposed [32, 51]. The principle is very much reminiscent of classical Tomlin-
son/Harashima precoding [52, 53], which can also be expanded to vector broadcast
channels [54].

In this work we make use of these results, i.e., we assume that perfect channel
state information is available at the transmitter and an optimal precoding scheme
exists. We refer to this optimal strategy as “Dirty Paper” precoding after Costa’s
famous title “Writing on Dirty Paper” [50].

Assume a precoding order 1 . . . K. Having chosen a codeword for the first user,
the interference experienced by the users 2 . . . K is known non-causally at the receiver
and can be taken into account when precoding the following users. Repeating this
strategy for all users, a channel with a triangular structure is created (see Fig. 2.5).

The K receiving mobiles are non-cooperating and thus independently decoded.
Multi-user interference appears as independent, zero-mean and non-Gaussian addi-
tive noise. It was shown in [55] that in this case the capacity of the ith user is given
by

RDL
i = log2(1 + SINRDL,CO

i ) , 1 ≤ i ≤ K , (5.6)

where

SINRDL,CO
i (U ,p) =

pi|uHi hi|2
K
∑

k=i+1

pk|uHk hi|2 + 1

, 1 ≤ i ≤ K . (5.7)

Again, by jointly adjusting the beamformers U = [u1 . . .uK ] and transmission power
p = [p1 . . . pK ]T , individual capacities can be controlled. Individual targets γ1 . . . γK
can be achieved by solving the optimization problem

min
p,U

K
∑

i=1

pi subject to SINRDL,CO
i (U ,p) ≥ γi . (5.8)
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As for the MAC, this problem is always feasible in the absence of power constraints,
which is a consequence of the triangular channel structure (see Section 2.3).

5.1.3. Duality

Suppose that both MAC and BC have the same sum power constraint. From Theo-
rem 7 follows that certain SINR targets γ1 . . . γK can be achieved in the uplink if and
only if the same targets can be achieved in the downlink. The optimization problems
(5.5) and (5.8) have the same global optimum, which is achieved by the same uplink
MMSE beamforming solution, but with different power allocations.

For the Gaussian channel studied here, this duality immediately carries over to
a duality in terms of achievable rates. Hence, the MAC capacity region has a direct
counterpart in the BC. This coincides with recent results [33, 56], where a similar
duality was observed by using a different approach. It is still not clear, however,
whether the “dirty paper” achievable region is actually the capacity region of the BC
or not.

In the following, the theoretical framework of SINR balancing is used to solve the
optimization problems (5.5) and (5.8). The general solution for this power minimiza-
tion problem was already given in Chapter 4. An even more efficient approach will
be derived in the next section, by exploiting the special triangular channel structure
imposed by successive decoding and “dirty paper” precoding.

5.2. Rate Balancing under a Sum Power Constraint

Having shown the duality between the rate balancing problems (5.8) and (5.5), we
can now focus on the multiple access channel, which has a less complicated analytical
structure.

5.2.1. Joint Beamforming and Power Control via
Back-Substitution

Consider the power minimization problem (5.5) with a decoding order K . . . 1. It was
already shown in Section 2.2.2 that the global minimizer (U opt, qopt) fulfills all SINR
constraints with equality, i.e.,

SINRUL,SD
i (uopti , qopt1 . . . qopti ) = γi, 1 ≤ i ≤ K . (5.9)

It can be exploited that the solution of the power minimization problem is a special
case of the more general SINR balancing problem (see discussion in Section 2.2.2).
Theorem 17 states that for given qopt, the optimal beamforming matrix U opt can be
found directly by solving K decoupled optimization problems

uopti = arg max
ui

SINRUL,SD
i (ui, q1 . . . qi), 1 ≤ i ≤ K . (5.10)
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Now, we exploit that the interference of the first user is completely canceled out,
thus

SINRUL,SD
1 (u1, q1) = q1|uH1 h1|2 . (5.11)

This provides a way to find a globally optimal beamforming solution directly, without
the need of iterative beamforming and power adjustment, as it is required for coupled
user (see Chapter 4). The strategy that maximizes (5.11) is the spatial matched filter
uopt1 = h1/‖h1‖2. With (5.2), the minimal transmission power qopt1 , that is needed to
achieve SINRUL,SD

1 = γ1 is given by

qopt1 =
γ1

(‖h1‖2)2
. (5.12)

Note, that the transmission power (5.12) is optimal with respect to all users, because
the functions SINRUL,SD

2 , . . . SINRUL,SD
K are monotonically decreasing in qopt1 .

With qopt1 , the SINR of the 2nd user becomes

SINRUL,SD
2 (u2, q1, q2) =

q2|uH2 h2|2

uH2 Ẑ2(qopt1 )u2

, with Ẑ2(qopt1 ) = qopt1 h1h
H
1 + I . (5.13)

This is maximized by the normalized MMSE solution

uopt2 =
Ẑ
−1

2 (qopt1 )h2

‖Ẑ−1

2 (qopt1 )h2‖2

. (5.14)

Putting (5.14) in (5.13) leads to

SINRUL,SD
2 (u2, q1, q2) = q2 h

H
2 Ẑ

−1

2 (qopt1 )h2 . (5.15)

Hence, the minimal transmission power qopt2 needed for the 2nd user to achieve an
SINR level γ2 is given by

qopt2 =
γ2

hH2 Ẑ
−1

2 (qopt1 )h2

. (5.16)

Using the same monotony argument as above, the solution (5.16) is optimal for all
users in the sense that it causes the least interference. Continuing this strategy,
all optimal beamformers uopt1 . . .uoptK and uplink transmission powers qopt1 . . . qoptK are
found successively. The algorithm is summarized below: The beamforming matrix
U opt = [uopt1 , . . . ,uoptK ] yielded by Algorithm 5 is optimal for both, uplink and down-
link. However, the same does not hold for the power allocation. Thus, it remains
to find the optimal downlink power allocation popt = [popt1 , . . . , poptK ]T , which fulfills
SINRDL,CO

i (U opt,popt) = γi, where SINRDL,CO
i is defined as in (5.7).

It is important to note that a MAC decoding order K . . . 1 corresponds to a BC
pre-coding order 1 . . . K. Only then does the duality between both channels hold
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Algorithm 5 Rate balancing for the multiple access channel, decoding order K . . . 1
1: for i = 1 to K do

2: Ẑi(q
opt
1 , . . . , qopti−1)⇐

i−1
∑

k=1

qoptk hkh
H
k + I

3: uopti ⇐
Ẑ
−1
i hi

‖Ẑ−1
i hi‖2

4: qopti ⇐ γi/(h
H
i Ẑ

−1

i hi)
5: end for

true. Under this assumption, the Kth user in both channels sees no interference,
which implies that the same transmission power poptK = γK/(‖hK‖2)2 is required to
fulfill the target γK . Having found poptK , all other power levels popt(K−1) . . . p

opt
1 can be

determined in descending order of their indices. This leads to Algorithm 6, which is
summarized below:

Algorithm 6 Rate balancing for the broadcast channel, precoding order 1 . . . K

1: optimal beamformers U opt are obtained by Algorithm 5 with inverse decoding
order K . . . 1

2: for i = K to 1 do

3: popti ⇐
γi

|uHi hi|2

(

K
∑

k=i+1

pk|uHk hi|2 + 1

)

4: end for

5.2.2. Closed Form Solution for the 2-User Case

Now, a closed form solution is derived for K = 2. The solution balances individual
targets γ1 and γ2 with minimal power consumption. The solution is derived for the
MAC. From the duality result discussed in Section 5.1.3 it is known that each MAC
optimizer also solves the equivalent BC problem.

Assume a decoding order 2, 1. Thus, the first user sees no interference after
demodulation. By adjusting the transmission power q1, the following relative SINR
value can be achieved:

SINRUL,SD
1 (u1, q1)

γ1

=
q1|uH1 h1|2

γ1

. (5.17)

The spatial matched filter uopt1 = h1/‖h1‖2 is optimal among all possible beamform-
ing solutions, since it maximizes (5.17). Hence, a target threshold C1 is achieved
with minimal transmission power

qopt1 =
C1γ1

(‖h1‖2)2
. (5.18)

60



5. Rate Balancing for Gaussian Broadcast and Multiple Access Channels

Thus, the individual solution uopt1 causes the least interference to all other users.
In analogy to Section 5.2.1, it can be concluded that uopt1 is globally optimal with
respect to the joint optimization problem (5.5).

The second user is interfered by the first user, i.e.,

SINRUL,SD
2 (u2, q1, q2)

γ2

=
q2|uH2 h2|2

γ2(q1|uH2 h1|2 + 1)
. (5.19)

The optimal beamformer is the MMSE solution

uopt2 =

(

q1h1h
H
1 + I

)−1
h2

‖
(

q1h1h
H
1 + I

)−1
h2‖2

. (5.20)

Putting (5.20) in (5.19) and applying the Sherman-Morrison formula (see e.g. [46]),
we have

SINRUL,SD
2 (u2, q1, q2)

γ2

=
q2h

H
2

(

q1h1h
H
1 + I

)−1
h2

γ2

=
q2

γ2

(

hH2 h2 −
q1|hH2 h1|2

1 + q1h
H
1 h1

)

. (5.21)

Assume that target thresholds C1 and C2 are given for (5.17) and (5.21), respectively.
These targets can are jointly achieved with minimal transmission power qopt1 and

qopt2 =
γ2C2(1 + C1γ1)

hH2 h2(1 + C1γ1)− C1γ1
|hH2 h1|2
hH1 h1

. (5.22)

This can be verified by putting (5.18) in (5.21), setting (5.21) to C2 and solving for
q2.

Now, assume that both users are balanced at the same level C = C1 = C2 and
the transmission powers are constrained to fulfill Pmax = q1 + q2. Defining

a
def
=
‖h2‖2

‖h1‖2
− |h

H
2 h1|2

‖h1‖4
,

b
def
=
‖h2‖2

‖h1‖2
+
Pmax|hH2 h1|2

‖h1‖2
− Pmax‖h2‖2 ,

and combining (5.18) and (5.22), we obtain a unique positive solution

C =
−γ1b− γ2

2(γ2
1a+ γ1γ2)

+

√

(γ1b+ γ2)2

4(γ2
1a+ γ1γ2)2

+
Pmax‖h2‖2

(γ2
1a+ γ1γ2)

.

(5.23)

61



5. Rate Balancing for Gaussian Broadcast and Multiple Access Channels

As discussed in Chapter 2, individual SINR targets γ1, γ2 can be fulfilled if and only
if C ≥ 1. With this additional constraint, (5.23) can be rewritten as an inequality
that characterizes the achievable SINR region under a given sum power constraint
q1 + q2 ≤ Pmax and a coding order 2, 1. As shown before, this result immediately
carries over to the problem of balancing data ratesRi = log2(1+γi) in both MAC and
BC. By taking the convex hull of the regions resulting from both coding orders, an
achievable rate region is found. This regions contains all rates that can be achieved
by a combination of linear equalization and successive coding. The duality result
of Chapter 2 implies that these rates can be achieved in both MAC and BC (see
discussion in Section 5.1.3). Two examples are illustrated in Fig. 5.1.

Note, that the region can always be expanded by increasing the total transmis-
sion power. Thus, arbitrary rate tuples can be achieved in the absence of power
constraints. This behavior differs from the one observed for the interference limited
scenarios in Chapter 3 and Chapter 4.

5.2.3. Maximizing the Sum Rate

The uplink/downlink duality can be used to find a strategy that maximizes the
downlink throughput (rate sum) under a given power constraint ‖p‖1 ≤ Pmax.

The maximal throughput of the downlink broadcast channel was characterized
in [31], where it was shown that this point lies on the closure of the “Dirty Paper”
region and can be achieved by a combination of decision feedback precoding and
beamforming. The rate-sum

CDL
sum = max

U
‖p‖1≤Pmax

K
∑

i=1

RDL
i (5.24)

is achieved by optimizing over all beamformers U and power allocations p.
The optimization problem (5.24) has a complicated analytical structure. For-

tunately, a solution can be found indirectly by exploiting the one-to-one monotonic
relationship betweenRDL

i and SINRDL,CO
i (U ,p). The optimum CDL

sum can be achieved
by controlling the SINR levels (5.7) such that SINRDL,CO

i = γ̃i for the given power
constraint. Here γ̃1 . . . γ̃K denote the unknown target thresholds that lead to the
maximal throughput (5.24).

The duality theory states that the same targets γ̃1 . . . γ̃K are achievable for BC
and MAC. By using a combination of beamforming and successive interference can-
cellation, we can achieve

γ̃i = SINRUL,CO
i =

qi|uHi hi|2

uHi Zi(q1, . . . , qi−1)ui
, 1 ≤ i ≤ K . (5.25)

In particular, γ̃1 . . . γ̃K also maximize the uplink rate sum CULsum = CDL
sum, which is
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Figure 5.1.: “Dirty paper” achievable regions obtained by combined beamforming and
precoding for non-causally known interference for a micro-cell cellular environment.
In scenario a) interference is suppressed by the linear beamformer, thus the users
are nearly decoupled, in which case precoding has only little impact. In scenario
b), linear spatial filtering is ineffective because of the small angular separation of
the mobiles. In this case the impact of precoding is more pronounced. Within
the “Dirty paper” region, the corresponding MAC regions for individual power
constraints are depicted for each power pair.
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given by

CULsum = max
U

‖q‖1≤Pmax

K
∑

i=1

RUL
i

= max
‖q‖1≤Pmax

log2

∣

∣

∣I +
K
∑

k=1

qkhkh
H
k

∣

∣

∣. (5.26)

The objective in (5.26) is concave in the transmission powers. The optimal power
allocation qopt, with ‖qopt‖1 = Pmax, can be found, e.g. by using the interior point
technique proposed in [57]. Knowing qopt, the optimal MAC spatial receivers are
given by

uopti =
Zi(q1, . . . , qi−1)−1hi
‖Zi(q1, . . . , qi−1)−1hi‖2

, 1 ≤ i ≤ K . (5.27)

Here, a coding order K . . . 1 has been assumed. However, the sum capacity (5.26)
does not depend on the coding order (cf. Fig. 5.1). Additional optimizers are found
for other coding orders.

From the duality result in Section 2.4.4 we know that the solutions (5.27) are
optimal for both uplink and downlink. Thus, it remains to find the optimal downlink
power allocation p that achieves SINRDL,CO

i = γ̃i. This can be done with Algo-
rithm 6.

5.3. Discussion

In this chapter it was shown how the generic results from Sections 2-4 can be used to
solve existing problems in communication theory. By studying the Shannon capacity
of the multi-user channel, we can find theoretical limits and understand how to
achieve those limits with practical schemes.

Considering Gaussian signaling and coding for known interference, the problem
of controlling SINR levels is equivalent to the one of controlling data rates. By
properly choosing target thresholds γ1 . . . γK , rate tuples within the capacity region
of the Gaussian MAC can be achieved with the algorithm derived in Chapter 4. The
duality result found in Chapter 2 implies that this strategy immediately carries over
to the downlink. Thus, the MAC capacity region has a direct equivalence in the
broadcast channel, where a combination of downlink beamforming and precoding for
non-causally known interference is used. It is still unknown, however, whether this
is the actual BC capacity region or not.

The throughput-wise optimal transmission strategy proposed in Section 5.2.3
achieves the capacity of a fully cooperating MIMO system under a worst case noise
covariance. This follows from the results in [31, 58]. Hence, cooperation between
transmitters (or receivers) need not always be beneficial. Under certain conditions,
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beamforming is the optimal strategy. This is an interesting aspect, which may influ-
ence the design of future multi-user MIMO communication systems.

The choice of the optimal coding order is still an open problem. Here, ‘optimal’
means that certain target rates are achieved with minimum total transmission power.
The error propagation issue is neglected since perfect channel knowledge and optimal
power control is assumed. Numerical simulations indicate that for the MAC it is
almost always a good choice to decode the channels in decreasing order of their
average path gains ‖hi‖2, 1 ≤ i ≤ K. For the broadcast channel, the inverse order
seems to be preferable.
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6. Conclusions

This thesis provides the solution to the problem of spatial multiplexing for a multi-
antenna system, if either the transmit antennas or the receive antennas are not
allowed to cooperate and a sum power constraint is imposed. The solution proposed
here is power-aware, in a sense that each channel is allocated only as much power as
it needs to fulfill individual SINR requirements. This allows to trade-off capacities
between the multiplexed channels and provides necessary and sufficient conditions
for feasibility.

6.1. Summary and Discussion of the Main Results

• In Section 2.4.4 it is shown that there is a fundamental duality between the
downlink point-to-multipoint channel and the uplink multipoint-to-point chan-
nel. This duality holds as long as either all receiver noise levels are equal or
the crosstalk-matrix Ψ satisfies the symmetry condition in Theorem 7. If this
is fulfilled, SINR targets are achievable in the downlink if and only if the same
targets are achievable in the uplink under the same sum power constraint.

This result is very useful in that many results known for the uplink immediately
carry over to the downlink. For a longtime, very few results appeared for down-
link processing due to the more complicated analytical structure. The uplink
has a smoother structure, which allows for the design of efficient algorithms.
This has been exploited in the Chapters 3, 4, and 5, where globally convergent
algorithmic solutions have been derived.

• The problem of SIR balancing in the absence of noise [10, 43] has been solved
in Chapter 3. This not only provides insight into the analytical structure of
the general problem, but also yields a necessary and sufficient condition for the
achievability of certain SINR targets in the high SNR regime.

It is proven that the global optimum can be achieved by an iterative strategy,
as conjectured in [43]. This is perhaps surprising, since the original problem
consists of minimizing an `∞ norm objective function that is highly non-smooth
and non-differentiable. The other algorithm proposed in [10], which is based
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on a smoother `1-norm objective, however, is in general not globally conver-
gent. This could be shown by providing necessary and sufficient conditions for
optimality along with a numerical counter-example. An exception is the 2-user
scenario for which `1-norm minimization and `∞-norm are indeed equivalent.

Finally, it is shown how the algorithm proposed in [10] should be modified
in order to solve the original SIR balancing problem. This new algorithm is
presented in Section 3.3.

• The general problem of controlling SINR levels under a sum power constraint
is solved in Chapter 4. A simple iterative solution is proposed, which rapidly
converges to the global optimum. The first key step in the convergence analysis
is the characterization of the iteration sequence in Section 4.1.4. It turns out
that each local minimum is also a global one. Monotony and global convergence
are proven in Section 18. The algorithm, which is summarized in Section 4.2,
can be applied to systems with both perfect and covariance channel information.

Important aspects of the solution are:

– A necessary and sufficient condition for the achievability of SINR targets
under a given sum power constraint is provided. The targets are achievable
if and only if the global optimum of the iterative solution is greater than
one. This plays an important role for the resource management. Only
if this condition is fulfilled, the power minimization problem studied in
[36–42] has a solution.

– A modified version of the iterative technique is proposed, which mini-
mizes the total power while satisfying SINR constraints (see Section 4.3).
In combination with the necessary and sufficient condition for feasibility
described above, this provides a complete solution of the problem studied
in [36–42]. Minimizing the total power is preferable from an operator’s
perspective, since it maximizes the number of users that can be accom-
modated per cell.

• A power aware rate balancing strategy for Gaussian multiuser channels with
unilateral antenna cooperation is proposed in Chapter 5. The algorithm ex-
ploits the triangular channel structure imposed by decision feedback decod-
ing/precoding. For this specific case, all users are uncoupled and the SINR
control problem can be solved very efficiently by back-substitution. As com-
pared to the algorithm proposed in Chapter 4, the solution is not found iter-
atively, but can be computed directly. By properly choosing targets γ1 . . . γK ,
it is possible to achieve arbitrary rate tuples within the MAC capacity region.
With the above duality result, this strategy immediately carries over to the
BC, where rates within the “dirty paper” achievable region can be achieved.
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Whether or not this achievable region is the actual BC capacity region remains
to be shown.

• Finally, closed-form solutions for the 2-user case are derived for all scenarios
under consideration.

6.2. Future Work

• The generic solution for power aware spatial multiplexing presented in Chap-
ter 4 can be applied to related vector systems with unilateral cooperation, e.g.,

– synchronous CDMA systems with random sequences [18]

– wireline communication systems such as digital subscriber lines (DSL),
where co-channel interference is caused by electromagnetic coupling and
cooperation is only possible at one side [59].

– Bell Laboratory Layered Space-Time (BLAST) architecture [45] with ad-
ditional power control at the transmitter

• While multiplexing aims at optimizing throughput, diversity is often required
in oder to make the transmission more robust. Hence, an optimal trade-off
between multiplexing and diversity is desirable (see, e.g., the work in [60–62]
and the reference therein). The technique proposed here can be seen as a step
in this direction, in a sense that it allows to smoothly trade-off throughput
against robustness by varying the noise parameter.

• If the base station only has covariance channel knowledge, the information
theoretical capacity may be achieved by transmitting several independent data
streams per user. In this case, the beamforming strategy proposed here is
suboptimal. The optimality range depends on the channel properties as well as
the SNR, as was recently shown for a single user scenario in [63, 64]. Optimal
balancing strategies for multiuser scenarios are still unknown.

• Similarly, the general problem of controlling data rates in a multiuser MIMO
channel with minimum total transmission power is still open. A partial result
is the iterative waterfilling solution [65], which maximizes the sum rate under
independent power constraints.

• Multiuser diversity can be exploited by a scheduler, which transmits only to
the user with the best channel at any time. This is optimal in an information
theoretical sense as long as the base station is equipped with a single antenna
[66, 67]. When several antennas are employed, however, the maximal through-
put may be achieved by simultaneously multiplexing severals users in space
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[30]. The algorithm proposed in Section 4.2 provides a single measure for the
quality of the instantaneous spatially multiplexed channel. This could lead to
the development of new space-time scheduling strategies.

69



Proofs

P.1. Proof of Lemma 11

Substituting [z]k
def
= [x]k · [c]k, 1 ≤ k ≤ K, we have

max
x

xTb

xTc
= max

z

K
∑

k=1

[z]k
[b]k
[c]k

K
∑

k=1

[z]k

. (P.1)

Observe that (P.1) is invariant with respect to a scaling of z, hence the maximization
can be restricted to the set {z : ‖z‖1 = 1}, i.e.,

max
x

xTb

xTc
= max
‖z‖1=1

K
∑

k=1

[z]k
[b]k
[c]k

.

Next, we have

K
∑

k=1

[z]k
[b]k
[c]k
≤ max

1≤l≤K

[b]l
[c]l

K
∑

k=1

[z]k

= max
1≤l≤K

[b]l
[c]l

.

(P.2)

Denote by k0 the index that fulfills

[b]k0

[c]k0

= max
1≤k≤K

[b]k
[c]k

.

Now, we use z̃ with

[z̃]k =

{

1 k = k0

0 , k 6= k0
.

With z̃ the inequality (P.2) is always satisfied with equality, hence (3.28) is fulfilled.
Relation (3.29) can be proven in the same way, by replacing the max operator by
min.
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P.2. Proof of Lemma 12

For arbitrary U and p > 0 we have

F1(U ,p) ≥ 1

K

γi

SIRDL
i (U ,p)

, 1 ≤ i ≤ K,

=
γi
Kpi

K
∑

k=1
k 6=i

pku
H
k Riuk > 0 , 1 ≤ i ≤ K .

For fixed pk, k 6= i, we have

lim
pi→0

F1(U ,p) = +∞ , 1 ≤ i ≤ K .

Thus, there exists a component-wise positive optimizer p̃ > 0 with ‖p̃‖1 = 1 such
that

min
p:‖p̃‖1=1

F1(U ,p) = inf
p
F1(U ,p) = F1(U , p̃) .

Hence, the function F1, as defined in (3.30), is infinitely often differentiable with
respect to p. The first partial derivative is given by

∂F1(U ,p)

∂pl
=

1

K
uHl Gl(p)ul −

1

Kp2
l

K
∑

k=1
k 6=l

pku
H
k γlRluk 1 ≤ l ≤ K . (P.3)

Setting (P.3) to zero finally leads to (3.34).

P.3. Proof of Lemma 13

From Lemma 11 we know that

λ̂n(U , qext) = max
1≤k≤K+1

eTkΛ(U)qext

eTk qext

,

where ek is defined as a vector whose kth component equals one, while all other
components are zero. The same relation can be formulated for the minimum.

With qext =
(

q
1

)

we have

max
1≤k≤K

eTkΛ(U)qext

eTk qext

= max
1≤k≤K

γk

SINRUL
k (uk, q)

. (P.4)

We also have

eTK+1Λ(U)qext

eTK+1qext

=
1

Pmax

(

1TKDΨT (U)q + 1TKD1K

)

. (P.5)
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Using

1TKDΨT (U)q =
K
∑

i=1

qi
γi

SIRUL
i (ui, q)

and

1TKD1K =
K
∑

i=1

qi
γi

SNRUL
i (ui, qi)

,

where SNRUL
i (ui, qi)

def
= qiu

H
i Riui/σ

2
i , we can conclude that

eTK+1Λ(U)qext

eTK+1qext

=
1

Pmax

K
∑

i=1

qiγi

(

1

SIRUL
i (ui, q)

+
1

SNRUL
i (ui, qi)

)

=
1

Pmax

K
∑

i=1

qi
γi

SINRUL
i (ui, q)

. (P.6)

Now we can use

1

Pmax

K
∑

i=1

qi
γi

SINRUL
i (ui, q)

≤
(

max
1≤k≤K

γk

SINRUL
k (uk, q)

)

1

Pmax

K
∑

i=1

qi

= max
1≤k≤K

γk

SINRUL
k (uk, q)

, (P.7)

which shows that (P.5) is never greater than (P.4), i.e.,

λ̂n(U , qext) = max
1≤k≤K+1

eTkΛ(U)qext

eTk qext

= max
1≤k≤K

eTkΛ(U)qext

eTk qext

.

P.4. Proof of Theorem 1

For any ν > 0 and noise variances σ2
i > 0, 1 ≤ i ≤ K, we have

SINRUL
i (ũi, νq̃, σ

2
i ) ≥ SINRUL

i

(

ũi, νq̃, max
1≤k≤K

σ2
k

)

, 1 ≤ i ≤ K. (P.8)

The power allocation q̃ > 0 solves (2.17), i.e., SINRUL
i (ũi, q̃, σ̃

2
i ) ≥ γi. This implies

SINRUL
i

(

ũi, q̃,
min1≤k≤K σ̃

2
k

2

)

> γi, 1 ≤ i ≤ K . (P.9)

From (P.8) and (P.9) it can be concluded, that q̃ can always be scaled by a factor

ν0 = 2 · max1≤k≤K σ2
k

min1≤k≤K σ̃2
k
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such that

SINRUL
i (ũi, ν0q̃, σ

2
i ) ≥ SINRUL

i (ũi, ν0q̃, max
1≤k≤K

σ2
k)

= SINRUL
i (ũi, q̃,

max1≤k≤K σ
2
k

ν0

)

= SINRUL
i

(

ũi, q̃,
min1≤k≤K σ̃

2
k

2

)

> γi, 1 ≤ i ≤ K ,

holds for arbitrary noise powers σ2
i > 0.

P.5. Proof of Theorem 2

Define Ψ̃
def
= Ψ(Ũ). Assume that λmax(DΨ̃

T
) < 1 and therefore ρ(DΨ̃

T
) < 1 (see

Lemma 3). This implies [46, p. 618]

(

I −DΨ̃
T )−1

=
∞
∑

r=0

(DΨ̃
T

)r . (P.10)

All terms of the Neuman series (P.10) are non-negative, thus for any σ > 0 the vector
q̃ = (I −DΨ̃

T
)−1Dσ is component-wise positive. With the results of Section 2.2.2

it can be concluded that q̃ is an optimizer of the power minimization problem (2.17),
which is therefore feasible.

To prove the reverse direction, assume that (2.17) is feasible. Thus, there exists
a positive solution q̃ > 0 for any σ > 0. It was shown in Section 2.2.2 that this
solution fulfills

Φq̃ = z , where Φ
def
=
(

I −DΨ̃
T )

and z def
= Dσ. (P.11)

Now, it will be shown that Φ is regular. Observe that each z lies in the range of Φ,
i.e., z ∈ Φ(RK+ ). The operator Φ is linear and continuous, thus the range Φ(RK+ ) is
a closed subspace of RK+ . Let ek, 1 ≤ k ≤ K, be non-negative orthogonal vectors
spanning RK+ . The Cauchy sequences

z
(n)
k = ek +

1

n
1K, 1 ≤ k ≤ K

always have strictly positive components, which follows from [z
(n)
k ]l ≥ 1/n > 0, 1 ≤

l ≤ K. Thus, for each z(n)
k there exists a q̃ such that (P.11) is fulfilled. Consequently,

each z(n)
k lies in the range of Φ. With

lim
n→∞

‖z(n)
k − ek‖

2
2 = lim

n→∞

K
∑

l=1

1

n2
= 0, 1 ≤ k ≤ K ,
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it can be concluded that ek ∈ Φ(RK+ ). Consequently, the operator Φ maps RK+ on
RK+ . It follows from Banach’s homomorphism theorem that Φ is regular.

It remains to show that the assumption of feasibility implies ρ(DΨ̃
T

) < 1. It is
known from Theorem 1 that the power minimization problem (2.17) has a strictly
positive solution for any noise vector σ ∈ RK+ with [σ]l > 0, l = 1, . . . , K. Consider-
ing special noise vectors σk(α) with

[σk(α)]l =

{

1, l = k

α, l 6= k
, 1 ≤ k, l ≤ K , α > 0

it can be concluded that the power vectors qk = lim
α→0

Φ−1Dσk(α) are strictly positive,

i.e., [qk]l > 0, l, k = 1, . . . , K. This implies that each component of Φ−1 is non-
negative.

Next, consider noise vectors 1K and σ, where ‖σ‖1 ≤ 1. Since Φ−1 is non-
negative, we have

[Φ−1Dσ]m ≤ [Φ−1D1K]m, 1 ≤ m ≤ K . (P.12)

Using these noise vectors we can define sequences

q(k+1) = Dσ + (DΨ̃
T

)q(k) , q(0) = Dσ,

q
(k+1)
1 = D1K + (DΨ̃

T
)q

(k)
1 , q

(0)
1 = D1K .

Hence,

q(k+1) =
k+1
∑

r=0

(DΨ̃
T

)rDσ ,

q
(k+1)
1 =

k+1
∑

r=0

(DΨ̃
T

)rD1K .

Since the components of DΨ̃
T
are non-negative, we have

[q(k+1)]l ≥ [q(k)]l , 1 ≤ l ≤ K .

That is, the lth component of q(k+1) is monotonically increasing in k. The same holds
for q(k+1)

1 . Using (P.10) we have

q(k+1) = (I −DΨ̃
T

)−1b(k) ,

where b(k) def
= (I − (DΨ̃

T
)k+2)Dσ. The components of (DΨ̃

T
)k+1 are non-negative,

thus [b(k)]l ≤ [Dσ]l for 1 ≤ l ≤ K. Since Φ−1 has been shown to be non-negative, it
follows

[q(k+1)]l = [Φ−1b(k)]l ≤ [Φ−1Dσ]l , 1 ≤ l ≤ K . (P.13)
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Combining (P.12) and (P.13), it can be concluded that for any σ with ‖σ‖1 ≤ 1 we
have

[q(k+1)]l ≤ [(I −DΨ̃
T

)−1D1K]l , 1 ≤ l ≤ K . (P.14)

Now, it is known form Lemma 3 that DΨ̃
T
can be decomposed as follows:

DΨ̃
T
q∗ = λ∗maxq∗ = ρ(DΨ̃

T
)q∗ , (P.15)

where λ∗max is the maximal eigenvalue ofDΨ̃
T
equaling the spectral radius ρ(DΨ̃

T
).

The associated non-negative eigenvector q∗ can be scaled such that q∗ ≤ 1. Now
consider a series

q(k+1)
∗ = q∗ +DΨ̃

T
q(k)
∗ , q(0)

∗ = q∗ . (P.16)

Defining ρ def
= ρ(DΨ̃

T
) and using (P.15), the series (P.16) can be expressed as

q(k)
∗ =

k
∑

r=0

ρrq∗ =

{

1−ρk+1

1−ρ q∗ , ρ 6= 1

(k + 1)q∗ , ρ = 1
.

The case ρ = 1 can be ruled out since I −DΨ̃
T
has been shown to be regular. For

ρ > 1, the relation (P.14) implies

ρk+1 − 1

ρ− 1
[q∗]l ≤ [(I −DΨ̃

T
)−1D1K]l . (P.17)

There is at least one l for which [q∗]l 6= 0, thus relation (P.17) cannot hold for all
k and ρ > 1 (the left side tends to infinity for k → ∞ and the right side does not
depend on k). This leaves ρ < 1. From Lemma 3 we know that this is equivalent to
λmax(DΨ̃

T
) < 1.

P.6. Proof of Theorem 10

Assume that Ū solves the eigenvalue minimization problem (3.7). This implies

max
x>0

xTDΨT (U)q̄

xT q̄
≥ min

y>0
max
x>0

xTDΨT (U)y

xTy

= λmax

(

DΨT (U)
)

← Eq. (3.10)

≥ λmax

(

DΨT (Ū)
)

=
zTDΨT (Ū)q̄

zT q̄
← Eq. (3.18)

for any U and z > 0. Thus,

min
U

max
x>0

xTDΨT (U)q̄

xT q̄
≥ z

TDΨT (Ū)q̄

zT q̄
.
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There always exists an optimizer x0 > 0 such that

min
U

xT0DΨT (U)q̄

xT0 q̄
≥ x

T
0DΨT (Ū)q̄

xT0 q̄
.

This inequality can only be fulfilled with equality. Moreover, it can be observed from
(3.15) that the minimization with respect to U is independent of x0. Thus, for all
x > 0 and U we have

min
U

xTDΨT (U)q̄

xT0 q̄
=
xTDΨT (Ū)q̄

xT q̄
.

In the reverse direction assume that a certain matrix Ū fulfills (3.17), thus for all
x > 0 we have

xTDΨT (U)q̄

xT q̄
≥ x

TDΨT (Ū)q̄

xT q̄
. (P.18)

Using (3.10) we have

λmax

(

DΨT (U)
)

= min
x>0

max
y>0

xTDΨT (U)y

xTy

≥ min
x>0

xTDΨT (U)q̄

xT q̄
. (P.19)

Combining (P.18) and (P.19) we can conclude that

λmax

(

DΨT (U)
)

≥ min
x>0

xTDΨT (Ū)q̄

xT q̄
= λmax

(

DΨT (Ū)
)

. (P.20)

Hence, Ū is the global minimizer of the function λmax

(

DΨT (U)
)

.

P.7. Proof of Theorem 11

Suppose that SINRUL
i ≥ γi, 1 ≤ i ≤ K, is feasible. This implies that the eigenvalue

optimization problem (3.7) has a solution BUL
Inf = 1/λoptmax > 1. The optimizers

qopt > 0 and uopti fulfill SIRUL
i (uopti , qopt) ≥ SIRUL

i (ui, q
opt) for any ui ∈ CM . Thus,

λoptmax =
γi

SIRUL
i (uopti , qopt)

≤ γi

SIRUL
i (ui, qopt)

, 1 ≤ i ≤ K ,

which can be rewritten as

uHi Ωi(λ
opt
max, q

opt)ui ≤ 0 , 1 ≤ i ≤ K . (P.21)

Thus, Ωi(λ
opt
max, q

opt) is negative semidefinite. Inequality (P.21) can only be fulfilled
with equality if ui lies in the nullspace of Ωi(λ

opt
max, q

opt).
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Conversely, assume that there exists a power allocation q̃ > 0 and λ < 1 such
that the matrices Ωi(λ, q̃), 1 ≤ i ≤ K, are singular. This implies that there exist
non-trivial solutions ũk 6= [0, . . . , 0]T such that 0 = ũHi Ωi(λ, q̃)ũi, 1 ≤ i ≤ K. This
can be rewritten as γi/SIRUL

i (ũi, q̃) = λ. Thus, SIRUL
i (ũi, q̃) > γi, which implies

feasibility and concludes the proof.

P.8. Proof of Theorem 13

Assume λ̃n(x) = λmax(n) for any x > 0. This implies

λmax

(

DΨT (U)
) (a)

= max
y>0

min
x>0

xTDΨT (U)y

xTy

≥ min
x>0

xTDΨT (U)q(n−1)

xTq(n−1)

≥ min
x>0

min
U

xTDΨT (U)q(n−1)

xTq(n−1)

(b)
= min

x>0
λ̃n(x)

= λmax(n) , (P.22)

where (a) follows from Lemma 6 and (b) follows from the fact that U (n) minimizes
xTDΨT (U)q(n−1) for an arbitrary x > 0 (see the proof of Theorem 9). Inequality
(P.22) holds for any U , thus we can conclude that

λmax

(

DΨT (U (n))
)

= λmax(n) ≤ min
U

λmax

(

DΨT (U)
)

= λoptmax . (P.23)

Since λoptmax is the global minimum, (P.23) can only be satisfied with equality. Thus,
U (n) ∈MDL.

To prove the reverse direction assume thatU (n) solves the eigenvalue minimization
problem (3.7), i.e., U (n) ∈MDL. Since U (n) is computed by Algorithm 1, we have

U (n) = arg min
U

xTDΨT (U)q(n−1)

xTq(n−1)
.

Since U (n) is the global optimizer of (3.7), Theorem 10 implies

DΨT (U (n))q(n−1) = λmax(n)q(n−1) . (P.24)

Combining (3.23) and (P.24) we have

λ̃n(x) =
xTDΨT (U (n))q(n−1)

xTq(n−1)
= λmax(n) ,

for any x > 0, which concludes the proof.
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P.9. Proof of Theorem 15

The equivalence of (3.41) and (3.42) for a given `1 solution (Û , p̂) follows from (3.34).
Now, assume that (3.41) holds true. This implies that the `1 solution is balanced,
thus

B1 = F1(Û , p̂) =
γi

SIRDL
i (Û , p̂)

, 1 ≤ i ≤ K

= λmax

(

ΓΨ(Û)
)

≥ λoptmax . (P.25)

From (3.40) we know that this can only be satisfied with equality, thus λoptmax = B1

must hold.
In the reverse direction, assume that (Û , p̂) solves the `∞ problem (3.33). The

solution is balanced, thus λoptmax = γi/SIRDL
i (Û , p̂), ∀i and p̂ is the dominant right-

hand eigenvector of ΓΨ(Û). With Theorem 14, the optimum is characterized by

BDL
Inf =

1

λoptmax

=
p̂i

γi
K
∑

k=1
k 6=i

p̂kû
H
k Riûk

, 1 ≤ i ≤ K (P.26)

=
1

p̂iû
H
i Gi(p̂)ûi

, 1 ≤ i ≤ K . (P.27)

Using matrix notation, (P.26) and (P.27) can be rewritten as (3.41) and (3.42),
respectively.

P.10. Proof of Theorem 16

Assume that Û solves (3.46) and qg is the dominant left-hand eigenvector of the
matrix ΓΨ(Û). With (3.30), this implies that for all x > 0,

Û = arg min
U

F1(U , (qg)−1), s.t. uHi Riui = 1, 1 ≤ i ≤ K

= arg min
U

K
∑

i=1

[x]iu
H
i

( K
∑

k=1
k 6=i

[qg]kγkRk

)

ui, s.t. uHi Riui = 1, 1 ≤ i ≤ K

= arg min
U

xT
(

ΓΨ(U)
)T
qg

xTqg
, s.t. uHi Riui = 1, 1 ≤ i ≤ K . (P.28)

Hence, the following relation holds for all U and x > 0:

xT
(

ΓΨ(U)
)T
qg

xTqg
≥
xT
(

ΓΨ(Û)
)T
qg

xTqg
. (P.29)
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Using (3.10) we have

λmax

(

(

ΓΨ(U)
)T
)

= min
x

max
y

xT
(

ΓΨ(U)
)T
y

xTy

≥ min
x

xT
(

ΓΨ(U)
)T
qg

xTqg
. (P.30)

Combining (P.29) and (P.30) we can conclude that

λmax

(

(

ΓΨ(U)
)T
)

≥ min
x

xT
(

ΓΨ(Û)
)T
qg

xTqg
= λmax

(

(

ΓΨ(Û)
)T
)

. (P.31)

Hence, Û is the global minimizer of the function λmax

(

ΓΨ(U)
)

. From the discussion
in Section 3.1.1 it is known that in this case Û and pg solve the `∞-problem (3.33).

In the reverse direction, assume that Û is the `∞-optimizer, which implies

λmax

(

ΓΨ(Û)
)

≤ λmax

(

ΓΨ(U)
)

.

Thus, the following inequality holds for any U and z > 0:

max
x>0

xT
(

ΓΨ(U)
)T
qg

xTqg
≥ min

y>0
max
x>0

xT
(

ΓΨ(U)
)T
y

xTy

= λmax

(

(

ΓΨ(U)
)T
)

← Eq. (3.10)

≥ λmax

(

(

ΓΨ(Û)
)T
)

=
zT
(

ΓΨ(Û)
)T
qg

zTqg
. ← Eq. (3.18)

The above inequality holds for any U , thus

min
U

max
x>0

xT
(

ΓΨ(U)
)T
qg

xTqg
≥
zT
(

ΓΨ(Û)
)T
qg

zTqg
.

There exists an optimizer x0 > 0 such that

min
U

xT0
(

ΓΨ(U)
)T
qg

xT0 q
g

≥
xT0
(

ΓΨ(Û)
)T
qg

xT0 q
g

.

This inequality can only be fulfilled with equality. Moreover, it can be observed from
(3.15) that the minimization with respect to U is independent of x0. Thus, for all
x > 0 and U we have

min
U

xTΓΨT (U)qg

xT0 q
g

=
xTΓΨT (Û)qg

xTqg
.

It can be concluded with (P.28) that Û solves (3.46).
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Proofs

P.11. Proof of Theorem 19

Assume that (4.28) holds. Combining (4.12) and the monotony result (4.26) we have

min
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

= λmax

(

Λ(U (n), Pmax)
)

. (P.32)

The same arguments that have led to (4.17) can be used to show that U (n) fulfills

min
U

min
x>0

xTΛ(U , Pmax)q
(n−1)
ext

xTq
(n−1)
ext

= min
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

. (P.33)

Combining (P.32) and (P.33) we have

min
U

λmax(Λ(U , Pmax)) = min
U

min
x>0

max
y>0

xTΛ(U , Pmax)y

xTy

≥ min
U

min
x>0

xTΛ(U , Pmax)q
(n−1)
ext

xTq
(n−1)
ext

= min
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

= λmax

(

Λ(U (n), Pmax)
)

.

This can only be satisfied with equality, thus U (n) ∈M.
To prove the reverse direction, assume that U (n) ∈ M. From Theorem 17 we

know that U (n) is characterized by

Λ(U (n), Pmax)q
(n−1)
ext = λmax(n)q

(n−1)
ext . (P.34)

Left-hand multiplication on both sides of (P.34) with xT/(xTq(n−1
ext ), x ∈ RK+ , leads

to

λmax(n) =
xTΛ(U (n), Pmax)q

(n−1)
ext

xTq
(n−1)
ext

. (P.35)

Equation (P.35) holds for all x > 0, hence

min
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

= max
x>0

xTΛ(U (n), Pmax)q
(n−1)
ext

xTq
(n−1)
ext

.

With Lemma 13 this implies (4.28).
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Notation and Symbols

E{·} expectation operator
[·]ij component with index i, j of a matrix or a vector

(a)−1 if applied to a vector: component-wise inversion
(·)T transpose
(·)H Hermitian (complex conjugate) transpose

(·)(n) nth iteration step
(·)UL uplink quantity
(·)DL downlink quantity
B1 optimum of the `1 cost function p. 33
BInf asymptotically achievable upper bound for mini SINRi p. 16

C(U , Pmax) balanced SINR optimum for a given beamforming matrix U p. 13,18
Copt(Pmax) balanced SINR optimum optimized over all beamformers

and power allocations
p. 43,44

D normalized threshold matrix p. 13
F1 `1 cost function p. 33

Gi(p) =
∑K

k 6=i
γkRk
pk

p. 33
γi target threshold for the ith user
Γ threshold matrix Γ = diag{γ1, . . . , γK} p. 34
hi channel vector of the ith user p. 7
K number of users (non-cooperating terminals)

λmax(·) maximal eigenvector
λoptmax optimum of the eigenvalue minimization problem in the

absence of noise
p. 28

λ̃n cost function for SIR balancing p. 30
λ̌n cost function for extended `1 balancing p. 40
λ̂n cost function for SINR balancing p. 45

Λ(U , Pmax) extended uplink coupling matrix p. 13
M number of base station antennas (cooperating terminals)

Ψ(U) coupling matrix p. 10
Pmax maximal total power
pi downlink power of the ith user
p downlink power allocation p. 8
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Notation and Symbols

qi uplink power of the ith user
q uplink power allocation p. 10

qext extended uplink power vector qext =
(

q
1

)

p. 45
Qi(q) interference covariance in the absence of noise p. 27

σ2
i noise variance of the ith user
σ noise vector σ = [σ2

1, . . . , σ
2
K ]T

SIR signal-to-interference ratio p. 16,24
SINR signal-to-interference-plus-noise ratio p. 9,10
ui beamforming vector of the ith user (both uplink an

downlink)
U beamforming matrix U = [u1, . . . ,uK ] p. 8

Υ(U , Pmax) extended downlink coupling matrix p. 19
x auxiliary variable p. 45
ξ vector with ratios SIRi/γi p. 25

Zi(q) interference-plus-noise spatial covariance matrix p. 45
Ẑi(q1 . . . qi−1) interference-plus-noise spatial covariance matrix with

successive decoding, order K . . . 1
p. 56
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