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Zusammenfassung

Diese Arbeit behandelt verschiedene klassische Probleme der konvexen Geometrie der Zahlen,
unter anderem das Gitterpunkt-Überdeckungsproblem, Ungleichungen durch sukzessive Minima
und den Banach-Mazur Abstand konvexer Körper.

Im ersten Kapitel führen wir grundlegende Konzepte, Definitionen und Resultate ein,
auf denen die Probleme dieser Arbeit aufbauen. Spezifischere Konzepte, die nur für gewisse
Abschnitte relevant sind, werden in den entsprechenden Kapiteln vorgestellt.

Das zweite Kapitel behandelt das Gitterpunkt-Überdeckungsproblem. Dabei ist die kleinste
Skalierung eines konvexen Körpers gesucht, sodass der Körper nach jeder Drehung und
Verschiebung einen Gitterpunkt aus Zn enthält. Im zweidimensionalen Fall beweisen wir eine
notwendige Bedingung an die kleinste Skalierung eines konvexen Körpers, basierend auf der
Beziehung zu den Gitterüberdeckungen des Körpers. Wir beweisen zudem eine hinreichende
Bedingung für die kleinste Skalierung mit Hilfe von Steiner-Symmetrisierung. Danach geben wir
die kleinstmöglichen Skalierungen eines regulären Sechsecks, regulären Achtecks und regulären
4n-Ecks an. Darüber hinaus geben wir die kleinste Skalierung eines Kreuzpolytops in beliebiger
Dimension an.

Im dritten Kapitel geht es um Ungleichungen durch sukzessive Minima. Der sogenannte
zweite Satz von Minkowski liefert optimale obere und untere Schranken an das Volumen
eines konvexen Körpers in Abhängigkeit von seinen sukzessiven Minima. Wir betrachten,
motiviert durch Vermutungen von K. Mahler und E. Makai Jr., Schranken an das Volumen
eines konvexen Körpers, abhängig von den sukzessiven Minima seines polaren Körpers. Durch
genauere Untersuchungen der Form polarer Körper, verbessern wir im zweidimensionalen Fall
die untere Schranke und geben eine Charakterisierung der Gleichheitsfälle an.

Kapitel 4 befasst sich mit dem Banach-Mazur Abstand des Würfels und des Kreuzpolytops.
Der Banach-Mazur Abstand des Lp–Balls zum Lq–Ball, für 1 ≤ p < q ≤ 2, oder 2 ≤ p < q ≤ ∞,
ist genau n1/p−1/q. Dagegen ist für 1 ≤ p < 2 < q ≤ ∞ lediglich bekannt, dass der Abstand von
der Größenordnung nα ist, wobei α = max{1/p−1/2, 1/2−1/q}. Der Banach-Mazur Abstand
zwischen dem Würfel und dem Kreuzpolytop entspricht dem Fall p = ∞ und q = 1. Basierend
auf computergestützten Berechnungen geben wir zunächst mögliche optimale Banach-Mazur
Abstände zwischen Würfeln und Kreuzpolytopen in Dimension 3 bis 8 an. Anschließend
verbessern wir die allgemeine obere und untere Schranke an den Banach-Mazur Abstand
zwischen Würfel und Kreuzpolytop.

Die Resultate aus Kapitel 2 beruhen auf der Arbeit [33], Kapitel 3 ist eine gemeinsame
Arbeit [15] mit Martin Henk, und Kapitel 4 basiert auf [32].



Abstract

This thesis addresses several classical problems in convex geometry of numbers, including the
lattice point covering problem, successive-minima-type inequalities and the Banach-Mazur
distance of convex bodies.

In the first chapter we will introduce basic concepts, definitions and results which provide
the background for the problems in this thesis. Other concepts which are more specific or
limited to certain sections will be introduced in corresponding chapters.

The second chapter deals with the lattice point covering problem, which looks for the
smallest dilation of a given convex body, such that it contains a lattice point of Zn in any
position, i.e., in any translation and rotation. In the 2-dimensional case, we will prove a
necessary condition for the smallest dilation of a convex body based on its relation with lattice
coverings of the convex body. We will also prove a sufficient condition for the smallest dilation
using Steiner Symmetrization. Then, we will provide the smallest dilations of a regular hexagon,
a regular octagon and regular 4n-gons. Moreover, we will provide the smallest dilations of
cross-polytopes in any dimensions.

Chapter 3 focuses on success-minima-type inequalities. The so-called second theorem of
Minkowski on successive minima provides optimal upper and lower bounds on the volume of
a symmetric convex body in terms of its successive minima. Motivated by conjectures of K.
Mahler and E. Makai Jr., we study bounds on the volume of a convex body in terms of the
successive minima of its polar body. In this chapter, by adding restrictions to the shape of
polar bodies, we will improve the lower bound for the 2-dimensional case together with all
equality cases. We will also prove upper bounds for the general case.

Chapter 4 focuses on the Banach-Mazur distance between the cube and the cross-polytope.
The Banach-Mazur distance between the Lp-ball and the Lq-ball for 1 ≤ p < q ≤ 2 or
2 ≤ p < q ≤ ∞ is exactly n1/p−1/q, while for 1 ≤ p < 2 < q ≤ ∞ it has only been proved to
have order nα, where α = max{1/p − 1/2, 1/2 − 1/q}. The Banach-Mazur distance between
the cube and the cross-polytope is the case of p = ∞ and q = 1. We will first list some
conjectured Banach-Mazur distances between the cube and the cross-polytope in dimensions 3
to 8 based on computer-based results. Then we will improve the upper and lower bounds for
the Banach-Mazur distance between the cube and the cross-polytope.

The results from Chapter 2 appeared in [33]. Chapter 3 is joint work with Martin Henk
which appeared in [15]. Chapter 4 is based on [32].
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1
Introduction

This thesis is to be classified in convex geometry and geometry of numbers. We are
mainly interested in the relation between convex bodies and lattices. Lattice packings and
coverings indicate the geometric properties of convex bodies. Successive minima reveal
the way how lattice points restrict convex bodies. The Banach-Mazur distance shows
the relation between convex bodies. Many topics and problems are interesting and easy to
understand, and they have been studied for many decades.

Basic concepts, definitions and results which provide the background for the problems in
this thesis are introduced in Chapter 1. Other concepts which are more specific or limited in
certain sections will be introduced in corresponding chapters.

Chapter 2 deals with the lattice point covering problem. This problem is to find
the convex bodies which contain a lattice point of Zn in any translation and rotation. This
problem is close to lattice coverings but here we also consider the rotations of convex
bodies.

translation rotation

Figure 1.1: Lattice-point-covering property

I. Niven and H. S. Zuckerman [27] firstly provided a complete answer for triangles. That
is, the lattice point covering property of a triangle can be decided by its area and side lengths.
Then, the answer for parallelograms [27] and for ellipsoids [14] have appeared successively. We
will study the lattice point covering property of planar convex bodies. A necessary condition
and a sufficient condition will be provided in Theorem 2.3.2 and Theorem 2.4.1 respectively.
As an application, we will give the answer for regular hexagons, octagons and 4n-gons in
Theorem 2.1.6. Moreover, we will also provide a complete answer for orthogonal crosspolytopes
in Theorem 2.1.8. Chapter 2 is based on my paper [33].
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1.1 Convex bodies

In Chapter 3 we study successve minima type inequalities. The so-called second
theorem of Minkowski on successive minima provides optimal upper and lower bounds on the
volume of a symmetric convex body K ∈ Kn

(s) in terms of its successive minima. These
bounds can be easily generalized for an arbitrary convex body K ∈ Kn as follows

2n

n!

n∏
i=1

1
λi(cs (K)) ≤ vol (K) ≤ 2n

n∏
i=1

1
λi(cs (K)) , (1.1)

where cs (K) is the central symmetral of K. The so-called Mahler conjecture indicates
the relation between vol (K) and vol (K⋆) for K ∈ Kn

(s), where K⋆ is the polar body of K.
For non-symmetric convex bodies there is a similar discussion for vol (K) and vol (cs (K)⋆).
Thus, we are interested in upper and lower bounds of the volume of K with respect to the
successive minima of K⋆ or cs (K)⋆. Moreover, the successive minima of cs (K)⋆ have geometric
meanings like lattice width and etc. We will provide a complete lower bound for dimension
2 in Theorem 3.1.1, with equality cases provided in Section 3.2. Complete upper bounds for
n-dimensional symmetric convex bodies and for convex bodies with centroid at the origin will
be provided in Theorem 3.1.2. Chapter 3 is based on joint work with Martin Henk [15].

Chapter 4 focuses on the Banach-Mazur distance between the cube and the cross-
polytope. This distance between two convex bodies K and L is defined by the smallest
positive number r such that K ⊂ gL ⊂ rK for some linear transformation g. John showed
that for every symmetric convex body K ∈ Kn

(s) there exists an ellipsoid E ∈ Rn such that
E ⊂ K ⊂

√
nE , which provided an upper bound for the Banach-Mazur distance between K

and the Euclidean ball. We are interested in the Banach-Mazur distance between two regular
polytopes, the cube and the cross-polytope. This distance has been proved to have order

√
n

[30, 31].
We will first provide some computer-based results on the distances in lower dimensions.

Then we will provide a new lower bound
√

n√
2 and a new upper bound (

√
2 + 1)

√
n in Theorem

4.1.4. In addition, for the dimensions in which Hadamard matrices exist, the upper bound can
be improved to

√
n. As an example, a conjectured distance in dimension 8 is 2.5, while our

bounds show that the distance is between 2 and
√

8 = 2.828 · · · . Chapter 4 is based on my
paper [32].

In Section 1.1 we will show some concepts related to convex bodies. We will introduce the
gauge function in Section 1.2. The concepts of lattice packings and coverings will appear in
Section 1.3. For general background and information on Convex Geometry and Geometry of
Numbers we refer to the books [10, 11, 28].

1.1 Convex bodies

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the n-dimensional Euclidean
space Rn with non-empty interior. The boundary of a convex body K is denoted by bd (K) and
the interior is denoted by int (K). We denote by Kn

(o) ⊂ Kn the set of all convex bodies having
the origin as an interior point, i.e., 0 ∈ int (K), and by Kn

(s) ⊂ Kn
(o) those bodies which are

symmetric with respect to 0, i.e., K = −K. By symmetric or centrally symmetric we always
mean symmetric with respect to 0. The central symmetral of K is denoted by cs (K) = K−K

2 ,

2



1.2 Gauge functions

while 2cs (K) = K − K is also called the difference body of K. The polar body of K ∈ Kn is
defined as

K⋆ = {y ∈ Rn : ⟨x, y⟩ ≤ 1 for all x ∈ K} ,

which is also an n-dimensional convex body. The volume of a set S ⊂ Rn is its n-dimensional
Lebesgue measure and it is denoted by vol (S) or vol n(S). If S is of positive volume, we define
its centroid as

c(S) := 1
vol (S)

∫
S

x dx,

where dx is the integration with respect to the n-dimensional Lebesgue measure.
An n-dimensional lattice Λ is a subgroup of the additive group Rn which is isomorphic to

Zn, with determinant det(Λ) := | det(B)| for any basis B = (b1, · · · , bn) of the lattice Λ, i.e.,
Λ = BZn.

For K ∈ Kn
(o) and 1 ≤ i ≤ n let

λi(K, Λ) = min {λ > 0 : dim(λ K ∩ Λ) ≥ i}

be its ith successive minimum, which is the smallest positive dilation factor λ such that
λ K contains i linearly independent lattice points of the lattice Λ. Moreover, we write
λi(K) := λi(K,Zn).

Figure 1.2: Successive minima of [−1, 1] × [−1/2, 1/2]

1.2 Gauge functions

Let ⟨ ·, ·⟩ and ∥ · ∥ be the standard inner product and the Euclidean norm in Rn, respectively.
The gauge function of a convex body containing the origin in the interior is a semi-norm with
respect to this convex body. The gauge function of a symmetric convex body is a norm.

For K ∈ Kn
(o) its gauge function ∥·∥K : Rn → [0, ∞) is defined by

∥x∥K = min {t ≥ 0 : x ∈ t K} .

∥·∥K satisfies the following well-known properties:

i) ∥x∥K ≥ 0 with equality if and only if x = 0,

ii) ∥λ x∥K = λ ∥x∥K for λ ∈ R≥0,

iii) ∥x + y∥K ≤ ∥x∥K + ∥y∥K .

3



1.3 Lattice arrangements

Conversely, if ∥·∥ is a function satisfying these three properties, then its unit ball B = {x ∈
Rn : ∥x∥ ≤ 1} is a convex body in Kn

(o) and ∥·∥ = ∥·∥B.
We also note that if T : Rn → Rn is an invertible linear transformation, then ∥x∥T (B) =T −1x


B for all x ∈ Rn.
For a convex body K ∈ Kn its support function hK : Rn → R is given by

hK(u) = max{⟨u, x⟩ : x ∈ K}

for u ∈ Rn. Hence, for K ∈ Kn
(o), λ ∈ R≥0 and x ∈ Rn we have

x ∈ λ K⋆ if and only if hK(x) ≤ λ, (1.2)

and thus
∥x∥K⋆ = hK(x). (1.3)

Together with the linearity of the support function we immediately obtain

∥x∥cs (K)⋆ = hcs (K)(x)

= 1
2 (hK(x) + hK(−x)) = 1

2 (∥x∥K⋆ + ∥−x∥K⋆) .
(1.4)

Combining this with the triangle inequality we conclude for K ∈ Kn
(o) that

∥x + y∥cs (K)⋆ = ∥x∥cs (K)⋆ + ∥y∥cs (K)⋆ if and only if

∥x + y∥K⋆ = ∥x∥K⋆ + ∥y∥K⋆ and ∥−(x + y)∥K⋆ = ∥−x∥K⋆ + ∥−y∥K⋆ .
(1.5)

1.3 Lattice arrangements

Let K ∈ Kn and Λ be an n-dimensional lattice. We call K + Λ a lattice packing, if for each
distinct x, y ∈ Λ,

(int (K) + x) ∩ (int (K) + y) = ∅.

We call K + Λ a lattice covering if
K + Λ = Rn.

We call K + Λ a lattice tiling if it is both a lattice packing and a lattice covering.
Let K + Λ be a lattice packing. We notice that for each distinct x, y ∈ Λ, (int (K) + x) ∩

(int (K) + y) = ∅ is equivalent to y − x /∈ int (K − K). That is,

(int (cs (K)) + x) ∩ (int (cs (K)) + y) = ∅.

Thus, cs (K) + Λ is also a lattice packing. That is,

K + Λ is a lattice packing ⇔ cs (K) + Λ is a lattice packing.

The density of the lattice arrangement K + Λ is vol (K)
det(Λ) .

4



1.3 Lattice arrangements

In detail, the lattice packing density of a lattice packing K + Λ is denoted by

δ(K, Λ) = vol (K)
det(Λ) ,

and the lattice packing density of K is the maximal lattice packing density

δL(K) = sup
K+Λ is a lattice packing

δ(K, Λ).

Moreover, denote by
∆(K) := vol (K)

2nδL(K)

the critical determinant of K, which is 1/2n of the determinant of the lattice with the
maximum lattice packing density, as well as the minimum determinant of a lattice such that
all non-zero lattice points do not lie in the interior of K.

For example, it is proved by Lagrange and Thue that δL(B2) = π√
2 , where B2 is the

two-dimensional unit ball.

Figure 1.3: Lattice packing of B2

It is deduced by H. Minkowski [26] that

δL(K) = vol (K)
vol (cs (K))δL(cs (K)).

The lattice covering density of a lattice covering K + Λ is denoted by

θ(K, Λ) = vol (K)
det(Λ) ,

and the lattice covering density of K is the minimal lattice covering density

θL(K) = inf
K+Λ is a lattice covering

θ(K, Λ).

For example, it is proved by R. B. Kershner [18] that θL(B2) = 2π√
27 .

If K + Λ is a lattice tiling, then K is a centrally symmetric polytope, and each facet of K

is centrally symmetric. Such a polytope is called a parallelohedron. More details can be found
in [10, 11, 28].

5



1.3 Lattice arrangements

Figure 1.4: Lattice covering of B2

Figure 1.5: Lattice tiling of cubes

6



2
Lattice point covering property

We say that a convex body K ∈ Kn has the lattice point covering property if K contains a
lattice point of Zn in any position, i.e., in any translation and rotation of K. That is, no
matter how one translates or rotates K, it always contains a lattice point. Thus, for a given
convex body K ∈ Kn, does there exist a positive number r such that rK has the lattice point
covering property? If so, what is the smallest positive number Z(K) such that Z(K)K has
the lattice point covering property?

The answer for the first question is positive. We notice that the unit cube [0, 1]n always
contains a lattice point of Zn in any translation, since by translating the cube [0, 1]n with the
vector u = (u1, u2, · · · , un) we get a cube [u1, u1 + 1] × [u2, u2 + 1] × · · · × [un, un + 1] which
contains the lattice point

(⌊u1 + 1⌋, ⌊u2 + 1⌋, · · · , ⌊un + 1⌋) ∈ Zn.

Next, we notice that the Euclidean ball Bn(
√

n/2) centered at the origin with radius
√

n/2
contains the cube [−1

2 , 1
2 ]n. Thus the Euclidean ball with radius

√
n/2 always contains a lattice

point of Zn. Finally, since K is a convex body, by scaling K big enough, it will contain an
Euclidean ball with radius

√
n/2, thus it will always contain an Euclidean ball with radius

√
n/2 in any position, and it will have the lattice point covering property.

We are interested in the second question. That is, to find the smallest positive number
Z(K), such that Z(K)K has the lattice point covering property. Is it equivalent to find the
inscribed Euclidean ball with largest radius? For some kinds of convex bodies like the regular
4n-gons and the crosspolytope, the answer is yes. But in general, the answer is no. The results
for triangles, paralellograms, ellipsoids, and our new results for some regular polygons and
some crosspolytopes will be introduced in Section 2.1.

If a convex body K ∈ Kn has the lattice point covering property, then firstly K must
contain a lattice point of Zn in any translation. Since K + u contains v is equivalent to that
−K + v contains u, if one puts −K at every lattice point of Zn, then −K + Zn must be a
lattice covering. Secondly, for each rotation of K it must also have the similar property. A
detailed disccussion will be provided in Section 2.2.

7



2.1 Introduction

According to the result of I. Fáry [5], for an arbitrary centrally symmetric planar convex
body K ∈ K2

(s) such that K +Z2 is a lattice covering, there exists a parallelogram or a centrally
symmetric hexagon P contained in K such that P + Z2 is a lattice tiling. Based on this
observation, we will provide a necessary condition and a sufficient condition of the lattice point
covering property for centrally symmetric planar convex bodies in Section 2.3 and Section 2.4,
respectively.

Based on these necessary and sufficient conditions, we will calculate Z(K) for regular
hexagons, regular octagons and regular 4n-gons in Section 2.5.

Moreover, the result for the smallest dilations of orthogonal crosspolytopes will be proved
in Section 2.7.

2.1 Introduction

Definition 2.1.1. we say that a convex body K ∈ Kn has the lattice point covering property
if K contains a lattice point of Zn in any position, i.e., in any translation and rotation of K.

The results for the lattice point covering property of triangles and parallelograms are
provided by I. Niven and H. S. Zuckerman [27].

Theorem 2.1.2 (Niven&Zuckerman,[27]). A triangle T with sides of lengths a, b, c, with
a ≤ b ≤ c, has the lattice point covering property if and only if 2vol (T )(c − 1) ≥ c2, where
vol (T ) is the area of the triangle.

Theorem 2.1.3 (Niven&Zuckerman,[27]). Let a and b be the distances between the pairs of
opposite sides, say with a ≤ b, of a parallelogram ABCD with an interior angle γ ≤ π/2.
The parallelogram has the lattice point covering property if and only if a ≥ 1 and one of the
following conditions holds:
(i) b ≥

√
2;

(ii) b ≤
√

2 and α + β + γ ≤ π/2, where α = arccos(a/
√

2) and β = arccos(b/
√

2).

M. Henk and G. A. Tsintsifas discussed the ellipsoid case [14].

Theorem 2.1.4 (Henk&Tsintsifas,[14]). Let E ⊂ Rn be an ellipsoid with semi-axes αi, 1 ≤
i ≤ n. The following statements are equivalent:

(i) E contains a lattice point of Zn in any position,

(ii)
n∑

i=1

1
α2

i

≤ 4,

(iii) E contains a cube of edge length 1.

(2.1)

Definition 2.1.5. Let K ∈ Kn. Denote by Z(K) the lattice point covering radius of K, i.e.,
the smallest positive number r, such that rK has the lattice point covering property.

We are here concerned with the lattice point covering properties of regular polygons. Let
us denote by

Hn = conv
{(

cos
(2kπ

n

)
, sin

(2kπ

n

))
: k = 0, 1, · · · , n − 1

}
8



2.2 Covering radius

a regular n-gon.
Our result for polygons is:

Theorem 2.1.6. Let t > 0, n ∈ N.
(1) The following statements are equivalent:

i) t · H4n contains a lattice point of Z2 in any position,

ii) t · H4n contains a ball with radius 1√
2

,

iii) t ≥

√
2

2
cos π

2n

, that is, Z(H4n) =

√
2

2
cos π

2n

.

(2.2)

(2) The following statements are equivalent for n = 1, 2:

i) t · H4n+2 contains a lattice point of Z2 in any position,

ii) t · H4n+2 contains [−1
2 ,

1
2]2,

iii) t ≥ 1
3 −

√
3

≈ 0.788675 . . . for H6, that is, Z(H6) = 1
3 −

√
3

,

t ≥
cos π

5 − sin π
5 + sin 2π

5 − cos 2π
5

2 sin π
5

≈ 0.734342 . . . for H10, that is,

Z(H10) =
cos π

5 − sin π
5 + sin 2π

5 − cos 2π
5

2 sin π
5

.

(2.3)

The detailed proof of Theorem 2.1.6 is contained in Section 2.5.
Moreover, we will discuss the orthogonal cross-polytope case in general dimensions in

Section 2.7.

Definition 2.1.7. An orthogonal cross-polytope C ∈ Kn
(s) is a convex polytope

conv {±α1e1, · · · , ±αnen}

where αi > 0 are called the semi-axes of C.

Theorem 2.1.8. Let C ∈ Kn
(s) be an orthogonal cross-polytope with semi-axes lengths αi,

1 ≤ i ≤ n. The following statements are equivalent:
(i) C contains a lattice point of Zn in any position,
(ii)

∑n
i=1| 1

αi
| ≤ 2.

2.2 Covering radius

The covering radius of K ∈ Kn
(o) with respect to Zn is denoted by

c(K) = c(K,Zn) = min{λ > 0 : λK + Zn = Rn}.

Recall that the gauge function ∥·∥ associated to a K ∈ Kn
(o) is the function

∥·∥K : Rn → [0, ∞)

9



2.3 A necessary and sufficient condition

defined by
∥v∥K = min{t > 0 : v ∈ tK}.

Theorem 2.2.1. Let K ∈ Kn
(o). Then K contains a lattice point of Zn in any position, i.e.,

Z(K) ≤ 1, if and only if c(o(K)) ≤ 1 for any o(K) rotation of K.

Proof. If c(o(K)) > 1 for some rotation o(K), then there exists a point x ∈ Rn, such that for
every u ∈ Z2,

∥x − u∥o(K) > 1 ⇐⇒ ∥u − x∥−o(K) > 1.

Therefore, −o(K) + x does not contain a lattice point of Z2.
If c(o(K)) ≤ 1 for any rotation o(K), then for any point x ∈ Rn, since o(K) + Zn = Rn,

there exists a lattice point u ∈ Z2, such that

∥x − u∥o(K) ≤ 1 ⇐⇒ ∥u − x∥−o(K) ≤ 1.

So, −o(K) + x contain a lattice point u.

Therefore, the lattice point covering property of a convex body depends on the covering
radius of all rotations of this convex body.

2.3 A necessary and sufficient condition

According to the knowledge of the lattice covering for a centrally symmetric convex body, we
have:

Theorem 2.3.1 (I. Fáry,[5]). Let K ∈ K2
(s), such that K + Z2 is a lattice covering. Then K

contains a parallelogram or a centrally symmetric hexagon L, such that L + Z2 is a lattice
tiling.

Figure 2.1: A cube contained in the lattice covering of B2( 1√
2 )

Since the lattice point covering property depends on the lattice covering of all rotations,
we have:

Corollary 2.3.2. Let K ∈ K2
(s). Then K contains a lattice point of Z2 in any position, if and

only if

(1) o(K) + Z2 = R2, or equivalently

10



2.4 An easy-to-use condition

(2) o(K) contains a parallelogram or a centrally symmetric hexagon L, such that L + Z2 is
a lattice tiling,

for any rotation o(K).

Proof. Apply Theorem 2.2.1 and 2.3.1.

2.4 An easy-to-use condition

For a planar convex body, it is possible to check some inscribed parallelograms, i.e., by checking
the Steiner symmetrization of the convex body. We will give a sufficient condition of the lattice
point covering property in this way.

The Steiner symmetrization of K ∈ K2 with respect to {x ∈ R2 : x2 = 0}, denoted by
St1(K), is a convex body symmetric with respect to {x ∈ R2 : x2 = 0}, such that for each line
l orthogonal to {x ∈ R2 : x2 = 0},

vol 1(K ∩ l) = vol 1(St1(K) ∩ l), (2.4)

where vol 1(L) denotes the length of a line segment L. For more information on the Steiner

Figure 2.2: Steiner symmetrization with respect to {x ∈ R2 : x2 = 0}

symmetrization, we refer to [10, Section 9.1]. It is obvious that St1(K) ⊂ St1(L) for two
convex bodies K ⊂ L.

Lemma 2.4.1. Let K ∈ K2
(s). If for each rotation o(K) of K, St1(o(K)) contains [−1

2 , 1
2 ]2,

then K contains a lattice point of Z2 in any position.

Proof. Notice that if St1(o(K)) contains [−1
2 , 1

2 ]2, then since o(K) is convex, o(K) contains
a parallelogram in the form of L = conv {(1

2 , a), (1
2 , a + 1), (−1

2 , −a), (−1
2 , −a − 1)} for some

a ∈ R, which tiles the space with Z2. Therefore, K has the lattice point covering property (cf.
Theorem 2.2.1).

We also have the following proposition of lattice covering for sets symmetric with respect
to {x ∈ R2 : x1 = 0} and {x ∈ R2 : x2 = 0}.

Proposition 2.4.2. Let K ∈ K2
(s). If K is symmetric with respect to {x ∈ R2 : x1 = 0} and

{x ∈ R2 : x2 = 0}, then K + Z2 = R2 if and only if K contains [−1
2 , 1

2 ]2.

Proof. If K contains [−1
2 , 1

2 ]2, then K + Z2 is a lattice covering. Otherwise, if K does not
contain [−1

2 , 1
2 ]2, i.e., (1

2 , 1
2) /∈ K, then since K is symmetric with respect to {x ∈ R2 : x1 = 0}

and {x ∈ R2 : x2 = 0}, K does not contain any point of (1
2 , 1

2) + Z2, thus K + Z2 does not
contain (1

2 , 1
2) + Z2.

11



2.5 Proof of the main theorem

Remark 2.4.3. Let K ∈ Kn
(s). If K is symmetric with respect to {x ∈ R2 : xj = 0} for all

1 ≤ j ≤ n, i.e., K is an unconditional convex body, then K + Zn = Rn if and only if K

contains [−1
2 , 1

2 ]n.

2.5 Proof of the main theorem

In this section we discuss the lattice point covering property of some regular polygons. The
proofs have the following steps:

1. Prove that the Steiner symmetrizations of all rotations of the convex body contain
[−1

2 , 1
2 ]2 (using Lemma 2.4.1).

2. Prove that a smaller copy of the convex body does not have the lattice point covering
property (using Corollary 2.3.2(1) and Proposition 2.4.2).

Denote by o(K, θ) the counterclockwise rotation of K by angle θ, i.e.,

o(Hn, θ) = conv {(cos(2kπ

n
+ θ), sin(2kπ

n
+ θ)) : k = 0, 1, · · · , n − 1}.

We first look at the regular 4n-gon.

Proof of Theorem 2.1.6(1). (i) to (ii): if t · H4n contains B2(
√

2
2 ), where B2(r) denotes the

Euclidean disk of radius r centered at 0, then each rotation o(t · H4n) also contains B2(
√

2
2 ).

Notice that B2(
√

2
2 ) contains [−1

2 , 1
2 ]2, therefore o(t · H4n) + Z2 is always a lattice covering,

thus t · H4n has the lattice point covering property (cf. Theorem 2.2.1).
(ii) to (i): if t · H4n does not contain B2(

√
2

2 ), then o(t · H4n, π
4 + π

n) + (1
2 , 1

2), does not
contain any lattice point of Z2, where o(t · H4n, π

4 + π
n) is the rotation of t · H4n by angle π

4 + π
n .

Since t · H4n contains B2(
√

2
2 ) if and only if t ≥

√
2

2
cos π

2n
, both (i) and (ii) are equivalent to

(iii).

Then we look at the regular hexagon.

Proof of Theorem 2.1.6(2), n = 1. Due to the symmetry of H6 fits well with the symmetries
of Z2, the case π

12 ≤ θ ≤ π
6 is actually symmetric to the case 0 ≤ θ ≤ π

12 with respect to the
line {x ∈ R2 : x2 = x1}. We are going to prove that St1(o( 1

3−
√

3H6, θ)) contains [−1
2 , 1

2 ]2 for
0 ≤ θ ≤ π

12 (cf. Lemma 2.4.1).

Figure 2.3: Steiner symmetrization of o(H6, π
8 ) with respect to {x ∈ R2 : x2 = 0}

By calculation,

St1(o(H6, θ)) = conv {(± cos θ, 0), (± cos(θ − π

3 ), ±
sin π

3
2 sin(θ + π

6 )),

(± cos(θ + π

3 ), ±
√

3
2 cos θ

)},

12



2.5 Proof of the main theorem

which is also symmetric with respect to {x ∈ R2 : x1 = 0}. In order to check whether
St1(o( 1

3−
√

3H6, θ)) contains [−1
2 , 1

2 ]2 for 0 ≤ θ ≤ π
12 , notice that when 0 ≤ θ ≤ π

12 , it holds

cos(θ + π

3 ) ≤
√

3
2 cos θ

(2.5)

(cf. Proposition 2.6.1), therefore the line {x ∈ R2 : x2 = x1} may intersect the boundary of
St1(o(H6, θ)) with the edge

conv {(cos θ, 0), (cos(θ − π

3 ),
sin π

3
2 sin(θ + π

6 ))}

or the edge

conv {(cos(θ − π

3 ),
sin π

3
2 sin(θ + π

6 )), (cos(θ + π

3 ),
√

3
2 cos θ

)}.

Case 1: cos(θ − π
3 ) ≤ sin π

3
2 sin(θ+ π

6 ) , i.e., 0 ≤ θ ≤ arcsin
( 4√3

2

)
− π

6 .
In this case, the line {x ∈ R2 : x2 = x1} intersects the edge

conv {(cos θ, 0), (cos(θ − π

3 ),
sin π

3
2 sin(θ + π

6 ))}

with (s(θ), s(θ)), where

s(θ)
s(θ) − cos θ

=
sin π

3
2 sin(θ+ π

6 )

cos(θ − π
3 ) − cos θ

,

thus
s(θ) =

sin π
3 cos θ

sin π
3 − 2 sin2(θ + π

6 ) + 2 cos θ sin(θ + π
6 )

. (2.6)

This function s(θ) is increasing in [0, arcsin
( 4√3

2

)
− π

6 ] (cf. Proposition 2.6.2), therefore,

s(θ) ≥ s(0) =
√

3√
3 + 1

,

and
1

3 −
√

3
s(θ) ≥ 1

2 .

So St1(o( 1
3−

√
3H6, θ)) always contains [−1

2 , 1
2 ]2 when θ ∈ [0, arcsin

( 4√3
2

)
− π

6 ].

Case 2: cos(θ − π
3 ) ≥ sin π

3
2 sin(θ+ π

6 ) , i.e., arcsin
( 4√3

2

)
− π

6 ≤ θ ≤ π
12 .

In this case, the line {x ∈ R2 : x2 = x1} intersects the edge

conv {(cos(θ − π

3 ),
sin π

3
2 sin(θ + π

6 )), (cos(θ + π

3 ),
√

3
2 cos θ

)}.

with (t(θ), t(θ)), where

2t(θ) −
√

3
cos θ

t(θ) − cos
(
θ + π

3
) =

sin π
3

sin(θ+ π
6 ) −

√
3

cos θ

cos
(
θ − π

3
)

− cos
(
θ + π

3
) ,

13



2.5 Proof of the main theorem

i.e.,

t(θ) =
2
√

3 sin
(
θ + π

6
)

+
√

3 cos
(
θ + π

3
)

4 cos θ sin
(
θ + π

6
)

+
√

3
. (2.7)

This function t(θ) is decreasing in [arcsin
( 4√3

2

)
− π

6 , π
12 ], and in fact decreasing in [arcsin

( 4√3
2

)
−

π
6 , π

6 ] (cf. Proposition 2.6.3), therefore

t(θ) ≥ t( π

12) > t(π

6 ) =
√

3√
3 + 1

,

and
1

3 −
√

3
t(θ) >

1
2 .

Thus St1(o( 1
3−

√
3H6, θ)) always contains [−1

2 , 1
2 ]2 when θ ∈ [arcsin

( 4√3
2

)
− π

6 , π
12 ].

To see that 1
3−

√
3 is the minimum number, ρH6 + (1

2 , 1
2) does not contain any lattice point

of Z2 for ρ < 1
3−

√
3 .

Now we look at the regular 10-gon.

Proof of Theorem 2.1.6(2), n = 2. Due to the symmetry of H10 fits well with the symmetries
of Z2, the case π

20 ≤ θ ≤ π
10 is actually symmetric to the case 0 ≤ θ ≤ π

20 with respect to
the line {x ∈ R2 : x2 = x1}. We are going to prove that St1(o( cos π

5 −sin π
5 +sin 2π

5 −cos 2π
5

2 sin π
5

H10, θ))
contains [−1

2 , 1
2 ]2 for 0 ≤ θ ≤ π

20 (cf. Lemma 2.4.1).
By calculation,

St1(o(H10, θ)) = conv { ± (cos θ, 0),(
± cos(θ − π

5 ), ±
sin π

10 sin π
5

sin( π
10 + θ)

)
,

(
± cos(θ + π

5 ), ±
sin π

5 sin 3π
10

sin(3π
10 − θ)

)
,(

± cos(θ − 2π

5 ), ±
sin 3π

10 sin 2π
5

sin(3π
10 + θ)

)
,

(
± cos(θ + 2π

5 ), ±
sin 2π

5
cos θ

)
}.

While θ ∈ [0, π
20 ], it holds

cos(θ − π

5 ) >
sin π

10 sin π
5

sin( π
10 + θ) (cf. 2.6.5),

cos(θ + π

5 ) >
sin π

5 sin 3π
10

sin(3π
10 − θ)

(cf. 2.6.6),

cos(θ − 2π

5 ) <
sin 3π

10 sin 2π
5

sin(3π
10 + θ)

(cf. 2.6.7),

cos(θ + 2π

5 ) <
sin 2π

5
cos θ

(cf. 2.6.8).

Therefore, the line {x ∈ R2 : x2 = x1} intersects St1(o(H10, θ)) with the edge

conv
{(

cos(θ + π

5 ),
sin π

5 sin 3π
10

sin(3π
10 − θ)

)
,

(
cos(θ − 2π

5 ),
sin 3π

10 sin 2π
5

sin(3π
10 + θ)

)}

14



2.6 Some inequalities

at the point (t(θ), t(θ)), where

t(θ) − sin 3π
10 sin 2π

5
sin( 3π

10 +θ)

t(θ) − cos(θ − 2π
5 )

=
sin π

5 sin 3π
10

sin( 3π
10 −θ) − sin 3π

10 sin 2π
5

sin( 3π
10 +θ)

cos(θ + π
5 ) − cos(θ − 2π

5 )
. (2.8)

The function t(θ) is increasing in [0, π
20 ] (cf. Proposition 2.6.4), therefore

t(θ) ≥ t(0) =
sin π

5
cos π

5 − sin π
5 + sin 2π

5 − cos 2π
5

,

and
cos π

5 − sin π
5 + sin 2π

5 − cos 2π
5

2 sin π
5

t(θ) ≥ 1
2 .

So St1(o( cos π
5 −sin π

5 +sin 2π
5 −cos 2π

5
2 sin π

5
H10, θ)) always contains [−1

2 , 1
2 ]2 when θ ∈ [0, π

20 ].
To see that 1

3−
√

3 is the minimum number, ρH10 + (1
2 , 1

2) does not contain any lattice point

of Z2 for ρ <
cos π

5 −sin π
5 +sin 2π

5 −cos 2π
5

2 sin π
5

.

2.6 Some inequalities

In this section, the calculations are based on trigonometric addition formulas.

Proposition 2.6.1.

cos(θ + π

3 ) ≤
√

3
2 cos θ

for 0 ≤ θ ≤ π
12 .

Proof. It is equivalent to

2 cos θ cos(θ + π

3 ) ≤
√

3

⇐⇒ cos π

3 + cos(2θ + π

3 ) ≤
√

3

⇐⇒ cos(2θ + π

3 ) ≤
√

3 − 1
2 ,

which holds true since cos(2θ + π
3 ) is decreasing in θ ∈ [0, π

12 ] and cos π
3 <

√
3 − 1

2 .

Proposition 2.6.2.

s(θ) =
sin π

3 cos θ

sin π
3 − 2 sin2(θ + π

6 ) + 2 cos θ sin(θ + π
6 )

≥ s(0)

for 0 ≤ θ ≤ arcsin
( 4√3

2

)
− π

6 .

Proof. Notice that

s(θ) =
√

3 cos θ

−3 +
√

3 + 4 cos2 θ
.

Since x
−3+

√
3+4x2 is decreasing in x ∈ [cos

(
arcsin

( 4√3
2

)
− π

6

)
, 1] and cos θ is decreasing in

θ ∈ [0, arcsin
( 4√3

2

)
− π

6 ] then s(θ) is increasing.
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2.6 Some inequalities

Proposition 2.6.3.

t(θ) =
2
√

3 sin
(
θ + π

6
)

+
√

3 cos
(
θ + π

3
)

4 cos θ sin
(
θ + π

6
)

+
√

3
≥ t(π

6 )

for arcsin
( 4√3

2

)
− π

6 ≤ θ ≤ π
6 .

Proof. Notice that

t(θ) =
3 sin(θ + π

3 )
4 sin2(θ + π

3 ) +
√

3 − 1
. (2.9)

Since x
4x2+

√
3−1 is decreasing in x ∈ [sin

(
arcsin

( 4√3
2

)
− π

6

)
, 1

2 ] and sin(θ + π
3 ) is increasing in

θ ∈ [arcsin
( 4√3

2

)
− π

6 , π
6 ] then t(θ) is decreasing.

Proposition 2.6.4.
t(θ) ≥ t(0)

for 0 ≤ θ ≤ π
20 where

t(θ) − sin 3π
10 sin 2π

5
sin( 3π

10 +θ)

t(θ) − cos(θ − 2π
5 )

=
sin π

5 sin 3π
10

sin( 3π
10 −θ) − sin 3π

10 sin 2π
5

sin( 3π
10 +θ)

cos(θ + π
5 ) − cos(θ − 2π

5 )
.

Proof. Notice that

t(θ) =
2 sin 3π

10 cos π
10 cos θ

2 cos2 θ + sin 3π
5 − cos 3π

5 − 1
. (2.10)

Since x
2x2+sin 3π

5 −cos 3π
5 −1 is decreasing in x ∈ [cos π

20 , 1] and cos θ is decreasing in θ ∈ [0, π
20 ]

thus t(θ) is increasing.

Proposition 2.6.5.

cos(θ − π

5 ) >
sin π

10 sin π
5

sin( π
10 + θ) (2.11)

for 0 ≤ θ ≤ π
20 .

Proof. The statement is equivalent to

sin( π

10 + θ) cos(θ − π

5 ) > sin π

10 sin π

5
⇔ sin(2θ − π

10) + sin 3π

10 > 2 sin π

10 sin π

5
⇔ sin(2θ − π

10) > 2 sin π

10 sin π

5 − sin 3π

10 .

(2.12)

Since sin(2θ − π
10) is increasing for 0 ≤ θ ≤ π

20 , and

sin 3π

10 − sin π

10 − 2 sin π

10 sin π

5 > 0, (2.13)

the inequality holds for 0 ≤ θ ≤ π
20 .

Proposition 2.6.6.

cos(θ + π

5 ) >
sin π

5 sin 3π
10

sin(3π
10 − θ)

(2.14)
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2.6 Some inequalities

for 0 ≤ θ ≤ π
20 .

Proof. The statement is equivalent to

sin(3π

10 − θ) cos(θ + π

5 ) > sin π

5 sin 3π

10
⇔ sin π

2 + sin( π

10 − 2θ) > 2 sin π

5 sin 3π

10
⇔ sin( π

10 − 2θ) > 2 sin π

5 sin 3π

10 − sin π

2 .

(2.15)

Since sin( π
10 − 2θ) is decreasing for 0 ≤ θ ≤ π

20 , and

0 > 2 sin π

5 sin 3π

10 − sin π

2 , (2.16)

the inequality holds for 0 ≤ θ ≤ π
20 .

Proposition 2.6.7.

cos(θ − 2π

5 ) <
sin 3π

10 sin 2π
5

sin(3π
10 + θ)

(2.17)

for 0 ≤ θ ≤ π
20 .

Proof. The statement is equivalent to

sin(3π

10 + θ) cos(θ − 2π

5 ) < sin 3π

10 sin 2π

5
⇔ sin(2θ − π

10) + sin 7π

10 < 2 sin 3π

10 sin 2π

5
⇔ sin(2θ − π

10) < 2 sin 3π

10 sin 2π

5 − sin 7π

10

(2.18)

Since sin(2θ − π
10) is increasing for 0 ≤ θ ≤ π

20 , and

0 < 2 sin 3π

10 sin 2π

5 − sin 7π

10 , (2.19)

the inequality holds for 0 ≤ θ ≤ π
20 .

Proposition 2.6.8.

cos(θ + 2π

5 ) <
sin 2π

5
cos θ

(2.20)

for 0 ≤ θ ≤ π
20 .

Proof. The statement is equivalent to

cos θ cos(θ + 2π

5 ) < sin 2π

5
⇔ cos(2θ + 2π

5 ) + cos 2π

5 < 2 sin 2π

5
⇔ cos(2θ + 2π

5 ) < 2 sin 2π

5 − cos 2π

5 .

(2.21)

Since cos(2θ + 2π
5 ) is decreasing for 0 ≤ θ ≤ π

20 , and

cos 2π

5 < 2 sin 2π

5 − cos 2π

5 , (2.22)
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2.7 Note

the inequality holds for 0 ≤ θ ≤ π
20 .

2.7 Note

For the planar case, it is possible to calculate Z(K) for (4n + 2)-gons with more values of n in
the same way, but it is getting more and more technical.

In general, compared with Theorem 2.3.1, in higher dimensions there always exists a convex
body K ∈ Kn, such that K +Zn is a lattice covering but there is not a convex polytope P ⊆ K

such that P + Z2 is a lattice tiling [34].
However, compared with the ellipsoid case, we are able to deal with the case of the

orthogonal cross-polytope.

Lemma 2.7.1. Let C0 be the orthogonal cross-polytope {x ∈ Rn :
∑n

i=1| xi
αi

| ≤ 1}. Then for
any (y1, · · · , yn) ∈ Rn with yi ̸= 0 for all i and satisfying

∑n
i=1| yi

αi
| = 1, there is an inscribed

ellipsoid E of C0 containing the points (±y1, · · · , ±yn).

Proof. This ellipsoid is actually

{y ∈ Rn :
n∑

i=1

x2
i

|αiyi|
≤ 1.}

The boundary of the ellipsoid intersects with the boundary of the cross-polytope at the points
(±y1, · · · , ±yn), and the supporting hyperplanes of the points (±y1, · · · , ±yn) on the ellipsoid
are the facets of the cross-polytope.

Proof of Theorem 2.1.8. To see that (ii) is necessary, we consider the following example. Let
ρ < n

2 and let Cρ be the orthogonal cross-polytope with all semi-axes ρ centered at the
(1

2 , · · · , 1
2)T . Then we have

∑n
i=1|1

ρ | > 2 and C ∩ Zn = ∅.
Now assume that C is an orthogonal cross-polytope with semi-axes αi, 1 ≤ i ≤ n, such

that
∑n

i=1| 1
αi

| ≤ 2. Therefore, (1
2 , · · · , 1

2)T ⊂ C. By Lemma 2.7.1, C contains an ellipsoid E

containing a cube of edge length 1. By Theorem 2.1.4, E contains a lattice point of Zn in any
position, therefore C also contains a lattice point of Zn in any position.

But it is not easy to deal with other convex bodies. For example, the smallest size of a
cube with lattice point covering property has not been decided yet [14].
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3
Successive-minima-type Inequalities

The so-called Minkowski’s second theorem gives upper and lower bounds on the volume of K

with respect to the successive minima (see (1.1)) of K. For example, if 0 < a1 ≤ a2 ≤ · · · ≤ an,
then the cube P1 = {x ∈ Rn : |aixi| ≤ 1, 1 ≤ i ≤ n} and the cross-polytope P2 = {x ∈ Rn :∑n

i=1 |aixi| ≤ 1} have the successive minima λi(P1) = λi(P2) = ai, while

vol (P1) = 2n
n∏

i=1

1
ai

, vol (P2) = 2n

n!

n∏
i=1

1
ai

.

The Minkowski’s second theorem shows that 2n and 2n

n! are the upper and lower bounds of the
factor. These results can be generalized to K ∈ Kn with λi(cs (K)) instead of λi(K).

We are interested in upper and lower bounds of the volume of K with respect to the
successive minima of K⋆ or cs (K)⋆. For K ∈ Kn

(s) it is conjectured in [23] that

vol (K) ≥ 2n

n!

n∏
i=1

λi(K⋆).

For not necessarily symmetric bodies one can conjecture that

vol (K) ≥ n + 1
n!

n∏
i=1

λi(cs (K)⋆).

A detailed introduction will be given in Section 3.1.
In dimension 2, we notice that the lower bound 3

2λ1(cs (K)⋆)λ2(cs (K)⋆) for K ∈ K2 is not
the best bound. That is, we find a family of triangles Ts,t with details in Section 3.2, such
that λ1(cs (Ts,t)⋆) = s, λ2(cs (Ts,t)⋆) = t and

vol (Ts,t) = 2ts − 1
2 ≥ 3

2st.

We will give a better bound in Section 3.1 with the equality case contained in Section 3.2 and
the proof contained in Section 3.4 .
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3.1 Introduction

For the upper bound, we have a complete picture. Our result for the upper bound will be
contained in Section 3.1 with the proof contained in Section 3.3.

3.1 Introduction

The so-called second theorem of Minkowski on successive minima provides optimal upper and
lower bounds on the volume of a symmetric convex body K ∈ Kn

(s) in terms of its successive
minima. These bounds can be easily generalized to the class K ∈ Kn as follows

2n

n!

n∏
i=1

1
λi(cs (K)) ≤ vol (K) ≤ 2n

n∏
i=1

1
λi(cs (K)) . (3.1)

where we recall that cs (K) = 1
2(K − K) ∈ Kn

(s) is the central symmetral of K. The n-
dimensional unit cube Cn shows that the upper bound is optimal, and its polar body Cn

⋆, the
n-dimensional cross-polytope, attains the lower bound. K. Mahler [22] studied for K ∈ Kn

(s)
the volume product M(K) = vol (K)vol (K⋆) and conjectured

M(K) ≥ M(Cn) = 4n

n! . (3.2)

K. Mahler [21] verified the conjecture in dimension 2, and there was a recent announcement of
its proof in dimension 3 in [16]. In the general case, it is conjectured that for K ∈ Kn

M(K) ≥ M(Sn) = (n + 1)n+1

(n!)2 , (3.3)

where Sn is a simplex with the centroid at the origin. This is only known to be true in the
plane [21].

Combining the upper bound in (3.1) with the conjectured lower bound (3.2) leads for
K ∈ Kn

(s) to the inequality

vol (K) ≥ 2n

n!

n∏
i=1

λi(K⋆). (3.4)

This inequality, which would be best possible, for instance, for the cross-polytope Cn
⋆, was

also conjectured by K. Mahler [23], and the previous mentioned results on the volume product
M(K) imply that it is true for n = 2 and (probably) for n = 3. Even the weaker inequality,

vol (K) ≥ 2n

n! λ1(K⋆)n, (3.5)

which has also been studied by Mahler, is open for n ≥ 4.
For not necessarily symmetric bodies the same problem was studied by E. Makai Jr., and

he conjectured for K ∈ Kn

vol (K) ≥ n + 1
n! λ1(cs (K)⋆)n, (3.6)
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3.1 Introduction

and proved it for n = 2 ([6, 24]). In view of (3.4), one might conjecture the stronger inequality

vol (K) ≥ n + 1
n!

n∏
i=1

λi(cs (K)⋆), (3.7)

which would be best possible as the simplex Sn = conv {e1, . . . , en, −1} shows, where ei is the
ith unit vector and 1 is the all 1-vector. For n = 2 this is an immediate consequence of the
upper bound in (3.1) and H. G. Eggleston [4] inequality for planar convex bodies

vol (K)vol (cs (K)⋆) ≥ 6. (3.8)

Actually, we believe that taking into account all successive minima, one should even get a
stronger lower bound than the one in (3.7). Here we show it in the planar case.

Theorem 3.1.1. Let K ∈ K2. Then

vol (K) ≥ 3
2λ1(cs (K)⋆)λ2(cs (K)⋆)

+ 1
2λ1(cs (K)⋆)

(
λ2(cs (K)⋆) − λ1(cs (K)⋆)

)
,

(3.9)

and equality holds if and only if K is up to translations and unimodular transformations equal
to the triangle Ts,t = conv {(−s, t − s), (s, t), (0, −t)} with t ≥ s ∈ R>0.

For a detailed discussion of the family of triangles Ts,t and the successive minima of
cs (Ts,t)⋆ we refer to Section 3.2, but here we mention already that

vol (Ts,t) = 2ts − 1
2s2, and

λ1(cs (Ts,t)⋆) = s, e1 ∈ (s cs (Ts,t)⋆), λ2(cs (Ts,t)⋆) = t, e2 ∈ bd (t cs (Ts,t)⋆) .
(3.10)

For example, for the triangle T2,3, we have 2 cs (T2,3)⋆ ∩ Z2 = {0, ±e1} and 3 cs (T2,3)⋆ ∩ Z2 =
{0, ±e1, ±e2, ±(e1 − e2)}.

(2
5 , 1

5)

(−1
5 , 2

5)

(−3
5 , 1

5)

(−2
5 , −1

5)

(1
5 , −2

5)

(3
5 , −1

5)

cs (T2,3)⋆

3cs (T2,3)⋆

2cs (T2,3)⋆

Figure 3.1: cs (T2,3)⋆ as well as 2 cs (T2,3)⋆, 3 cs (T2,3)⋆.

We remark that Makai&Martini [25, Proposition 3.1] (see also E. Makai Jr.[24, Proposition
1]) verified for simplices S ∈ Kn the conjectured higher-dimensional analogue of (3.8), namely

vol (S)vol (cs (S)⋆) ≥ 2n n + 1
n! .
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3.1 Introduction

Application of Minkowski’s upper bound (3.1) shows inequality (3.7) for simplices. For arbitrary
convex bodies K ∈ Kn one may write (cf. [25])

vol (K)vol (cs (K)⋆) = vol (K)
vol (cs (K))M(cs (K)) ≥ 2n(2n

n

) πn

n! ≥ (π/2)n

n! ,

where the lower bound on the volume product is Kuperberg’s bound [20], the lower bound
on the ratio vol (K)

vol (cs (K)) is the Rogers-Shephard bound (cf., e.g., [28, Theorem 10.4.1]), and(2n
n

)
≤ 4n. Hence, in general, we have the bound

vol (K) ≥ (π/4)n

n!

n∏
i=1

λi(cs (K)⋆). (3.11)

In contrast to the lower bounds, in the case of upper bounds, we have a complete picture.

Theorem 3.1.2. Let K ∈ Kn.

i) Then

vol (K) ≤ 2n
n∏

i=1
λi(cs (K)⋆). (3.12)

The inequality is best possible.

ii) If the centroid of K is at the origin, then

vol (K) ≤ (n + 1)n

n!

n∏
i=1

λi(K⋆). (3.13)

The inequality is best possible.

iii) For arbitrary K ∈ Kn
(o), the volume is in general not bounded from above by the product

of λi(K⋆).

Observe, that λi(K⋆) ≤ λi(cs (K)⋆), 1 ≤ i ≤ n, cf. Proposition 3.3.1.
Finally, we would like to mention that a weaker inequality than (3.6) was recently studied

by Álvarez et al.[1]. They conjecture for K ∈ Kn
(o)

vol (K) ≥ n + 1
n! λ1(K⋆)n (3.14)

with equality if and only if K is a simplex whose vertices are the only non-trivial lattice points.
By the discussion above we know that it is true in the plane, for simplices, and with (π/4)n/n!
instead of (n + 1)/n! (cf. [1, Theorem II]). Moreover, according to Theorem 3.1.2 iii), there
is no upper bound on the volume of this type. For an optimal lower bound on the volume
of a centered convex body K, i.e., the centroid of K is at the origin, in terms of λi(K) we
refer to [13]. Instead of extending Makai’s conjecture (3.6) via higher successive minima (cf.
(3.6)), González Merino & Schymura [9] studied possible extensions via the so-called covering
minima.
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3.2 The triangle Ts,t

3.2 The triangle Ts,t

Recall that
Ts,t = conv {(−s, t − s), (s, t), (0, −t)}

with t ≥ s ∈ R>0. Obviously,

(s, t)

(−s, t − s)

(0, −t)

Ts,t

Figure 3.2: The shape of the triangle Ts,t.

vol (Ts,t) = 2ts − 1
2s2,

and
cs (Ts,t) = conv

{
±(s

2 , t), ±(s,
s

2), ±(s

2 ,
s

2 − t)
}

.

Hence, by definition we have

cs (Ts,t)⋆ =
{

x ∈ R2 :
⏐⏐⏐⏐s2x1 + tx2

⏐⏐⏐⏐ ≤ 1,

⏐⏐⏐⏐sx1 + s

2x2

⏐⏐⏐⏐ ≤ 1,⏐⏐⏐⏐s2x1 + (s

2 − t)x2

⏐⏐⏐⏐ ≤ 1
}

.

Next we claim: λ1(cs (Ts,t)⋆) = s. Obviously, e1 ∈ s cs (Ts,t)⋆ and so let z ∈ s′ cs (Ts,t)⋆ ∩Z2

for an s′ with 0 < s′ < s . Then by the triangle inequality we get

3
2s|z2| ≤

⏐⏐⏐⏐(2t − s

2)z2

⏐⏐⏐⏐ ≤
⏐⏐⏐⏐s2z1 + tz2

⏐⏐⏐⏐+ ⏐⏐⏐⏐s2z1 + (s

2 − t)z2

⏐⏐⏐⏐ ≤ 2s′.

Hence, z2 ∈ {−1, 0, 1}. If z2 = 0, then from |sz1 + s
2z2| ≤ s′ we get z = 0. If z2 = ±1 we may

assume by symmetry that z2 = 1. From |sz1 + s
2z2| ≤ s′ we find z1 ∈ {0, −1}. On the other

hand, | s
2z1 + tz2| ≤ s′ implies z1 ≠ 0, whereas | s

2z1 + ( s
2 − t)z2| ≤ s′ gives z1 ̸= −1. Therefore

s′ cs (Ts,t)⋆ ∩ Z2 = {0}.
To see that λ2(cs (Ts,t)⋆) = t, we first observe that e2 ∈ t cs (Ts,t)⋆. So let 0 < t′ < t and

z ∈ t′ cs (Ts,t)⋆ ∩ Z2. Notice that

3
2 t|z2| ≤

⏐⏐⏐⏐(2t − s

2)z2

⏐⏐⏐⏐ ≤
⏐⏐⏐⏐s2z1 + tz2

⏐⏐⏐⏐+ ⏐⏐⏐⏐s2z1 + (s

2 − t)z2

⏐⏐⏐⏐ ≤ 2t′,

and so we have z2 ∈ {−1, 0, 1}. Since e1 ∈ λ1(cs (Ts,t)⋆) cs (Ts,t)⋆ and by symmetry we may
assume z2 = 1. Then, | s

2z1 + tz2| ≤ t′ implies z1 < 0, whereas | s
2z1 + ( s

2 − t)z2| ≤ t′ gives
z1 > −1. Therefore, t′ cs (Ts,t)⋆ ∩ Z2 ⊂ lin{e1}.
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3.3 Proof of Theorem 3.1.2

3.3 Proof of Theorem 3.1.2

First, we observe a simple relation between the successive minima of K ∈ Kn
(o) and its central

symmetral cs (K) which, for i = 1 was already pointed out by Álvarez et al. [1].

Proposition 3.3.1. Let K ∈ Kn
(o). Then, for 1 ≤ i ≤ n,

λi(K⋆) ≤ λi(cs (K)⋆).

Proof. Let λi
⋆ = λi(cs (K)⋆) and let z1, . . . , zi ∈ Zn be linearly independent lattice points

with zj ∈ λj
⋆ cs (K)⋆, 1 ≤ j ≤ i, and so λj

⋆ = ||zj ||cs (K)⋆ . Then, by the linearity of the
support function (cf. (1.4))

λi
⋆ ≥ h 1

2 (K−K)(zj) = 1
2 (hK(zj) + hK(−zj)) ≥ min{hK(zj), hK(−zj)}.

Hence, either zj or −zj belongs to λi
⋆K⋆ for 1 ≤ j ≤ i, and thus λi(K⋆) ≤ λi

⋆ = λi(cs (K)⋆).

For the proof of Theorem 3.1.2 ii) we will also need a classical result of B. Grünbaum [12],
saying that for K ∈ Kn

(o) and for any halfspace H+ = {x ∈ Rn : ⟨a, x⟩ ≥ 0} containing the
centroid of K it holds

vol (K ∩ H+) ≥
(

n

n + 1

)n

vol (K). (3.15)

Proof of Theorem 3.1.2. For i), let z1, . . . , zn ∈ Zn be linearly independent lattice points with
zi ∈ λi(cs (K)⋆) cs (K)⋆, 1 ≤ i ≤ n. Then we certainly have

K ⊆ P = {x ∈ Rn : −hK(−zi) ≤ ⟨zi, x⟩ ≤ hK(zi), 1 ≤ i ≤ n}.

In order to estimate the volume of the parallelepiped on the right-hand side we observe that
in view of (1.4), 2 λi(cs (K)⋆) = hK(zi) + hK(−zi), 1 ≤ i ≤ n, and thus

vol (K) ≤ vol (P ) = 1
| det(z1, . . . , zn)|

n∏
i=1

2 λi(cs (K)⋆) ≤ 2n
n∏

i=1
λi(cs (K)⋆),

where in the last inequality we used det(z1, . . . , zn) ∈ Z \ {0}. The cube Cn with its polar
body Cn

⋆ = conv {±e1, . . . , ±en} shows that the equality is best possible.
Now assume that the centroid of K is at the origin. Let λi

⋆ = λi(K⋆), 1 ≤ i ≤ n, and let
z1, . . . , zn ∈ Zn be linearly independent lattice points with zi ∈ λi

⋆ K⋆. Then, for 1 ≤ i ≤ n,
(cf. (1.3))

hK(zi) = λi
⋆. (3.16)

Moreover, we consider the halfspace

H+ =
{

x ∈ Rn :
⟨ 1

λ⋆
1
z1 + · · · + 1

λ⋆
n

zn, x

⟩
≥ 0

}
.
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3.4 Proof of Theorem 3.1.1

Then we conclude from (3.16)

K ∩ H+ ⊆ S = {x ∈ Rn : ⟨zi, x⟩ ≤ λi
⋆, 1 ≤ i ≤ n} ∩ H+. (3.17)

In order to calculate the volume of the simplex S we observe that

A S = S = {x ∈ Rn : ⟨ei, x⟩ ≤ 1, 1 ≤ i ≤ n, ⟨1, x⟩ ≥ 0},

where A is the matrix with rows 1
λ⋆

1
z1, . . . , 1

λ⋆
n

zn. Hence,

vol (S) = 1
| det(z1, . . . , zn)|

n∏
i=1

λi
⋆vol (S) = 1

| det(z1, . . . , zn)|

n∏
i=1

λi
⋆ nn

n! , (3.18)

and together with Grünbaum’s bound (3.15) and (3.17) we conclude

vol (K) ≤
(

n + 1
n

)n

vol (K ∩ H+)

≤
(

n + 1
n

)n

vol (S) = 1
| det(z1, . . . , zn)|

(n + 1)n

n!

n∏
i=1

λi
⋆.

Again, since det(z1, . . . , zn) ∈ Z \ {0} we get the desired bound. The simplex Tn = {x ∈ Rn :
⟨ei, x⟩ ≤ 1, 1 ≤ i ≤ n, ⟨1, x⟩ ≥ −1} with volume (n + 1)n/n! and Tn

⋆ = conv {e1, . . . , en, −1}
shows that the bound is best possible.

Finally, we point out that the assumption on the centroid is crucial for ii). To this end,
for s ≥ 1 we consider the simplices T (s) = {x ∈ Rn : ⟨ei, x⟩ ≤ 1, 1 ≤ i ≤ n,

⟨
1
s 1, x

⟩
≥ −1}.

Then T (s)⋆ = conv {−1
s 1, e1, . . . , en} and thus λi(T (s)⋆) = 1, 1 ≤ i ≤ n. On the other hand,

vol (T (s)) → ∞ as s approaches ∞. This verifies iii).

3.4 Proof of Theorem 3.1.1

Since the inequality of Theorem 3.1.1, i.e.,

vol (K) ≥ 3
2λ1(cs (K)⋆)λ2(cs (K)⋆)

+ 1
2λ1(cs (K)⋆)

(
λ2(cs (K)⋆) − λ1(cs (K)⋆)

)
= 2λ1(cs (K)⋆)λ2(cs (K)⋆) − 1

2λ1(cs (K)⋆)2

is invariant with respect to translations and unimodular transformations of K, we may assume
that K ∈ Kn

(o), λ2(cs (K)⋆) = 1 and the successive minima λi(cs (K)⋆) are obtained in the
direction of the unit vectors, i.e., ei ∈ λi(cs (K)⋆)cs (K)⋆, i = 1, 2. The latter is due to the
fact that in the plane we can always find zi ∈ λi(cs (K)⋆)cs (K)⋆ ∩ Z2 building a basis of Z2

[11, Theorem 4, p.20].
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3.4 Proof of Theorem 3.1.1

Hence, for a fixed t ≥ 1 we are interested in the minimal volume among all convex bodies
in the set

A(t) =
{

K ∈ K2
(o) : λ1(cs (K)⋆) = 1

t
, λ2(cs (K)⋆) = 1,

ei ∈ λi(cs (K)⋆) cs (K)⋆ ∩ Z2, i = 1, 2
}

.

Observe, that all bodies in A(t) are contained in the rectangle [−1/t, 1/t] × [−1, 1] and since
the volume of all these bodies is lower bounded by 3/2 · 1/t (cf. (3.7), which is true for n = 2),
Blaschke’s selection theorem (cf., e.g., [10, Theorem 6.3]) ensures the existence of convex bodies
in A(t) having minimal positive volume. That is, for a sequence of convex bodies contained in
a bounded set with monotonic decreasing volumes, there exists a subsequence converging to a
convex body, and this convex body has the minimal volume. We denote these bodies by M(t),
i.e.,

M(t) = {M ∈ A(t) : vol (M) = min{vol (K) : K ∈ A(t)}} .

Since (cf. (3.10))

T1/t,1 = conv {(−1/t, 1 − 1/t), (1/t, 1), (0, −1)} ∈ A(t),

we know that for K ∈ M(t)

vol (K) ≤ vol (T1/t,1) = 2 1
t

− 1
2

1
t2 , (3.19)

and Theorem 3.1.1 claims that this is indeed the minimum.
In the following, we will prove different geometric properties of bodies S ∈ M(t) (or better

of S⋆) and at the end in Proposition 3.4.8 we conclude that M(t) contains only — up to
translations and unimodular transformations — the triangle T1/t,1. This proves Theorem 3.1.1.

Due to the definition of the successive minima and A(t), all the lattice points of cs (K)⋆

for K ∈ A(t) are either contained in the boundary of cs (K)⋆ or lie on the line lin{e1}. For
such a K ∈ A(t) we set

C0(K) = {z ∈ Z2 : ∥z∥cs (K)⋆ = 1} ∪ {±e1},

C(K) =
{

z/ ∥z∥K⋆ : z ∈ C0(K)
}

⊂ bd (K⋆).

The points in C(K) are our main objective by which we will show geometric properties of
bodies in M(t).

Proposition 3.4.1. Let K ∈ M(t). Then K is a polygon and the relative interior of each
edge of K⋆ contains a point of C(K).

Proof. First, we prove that K⋆ and thus K is a polygon. Since K⋆ is bounded, it is strictly
contained in a square CN = [−N, N ]2 for some large N ∈ R>0. For any non-zero lattice point
z ∈ CN , there is a supporting hyperplane of K⋆ through the boundary point z

∥z∥K⋆
. Let C be

the intersection of the corresponding halfspaces containing K⋆ together with the halfspaces
bounding CN .
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3.4 Proof of Theorem 3.1.1

Obviously, C⋆ ⊆ K is a polygon and we claim that C⋆ ∈ A(t). In order to avoid confusion,
we set P = C⋆ and so C = P ⋆ and we want to show P ∈ A(t).

To this end, we observe that for all z ∈ CN ∩ Z2 we have by construction

∥z∥P ⋆ = ∥z∥K⋆

and hence, in view of (1.4)
∥z∥cs (P )⋆ = ∥z∥cs (K)⋆ .

For z ∈ Z2 \ CN we know by construction that ∥z∥P ⋆ > 1 and so

∥z∥cs (P )⋆ > 1.

Hence, P ∈ A(t), P ⊆ K and since K ∈ M(t), we must have K = P .
Next assume that there is an edge of K⋆ which does not contain in its relative interior a

point of C(K). Then we may move the edge a bit outward so that for this new polygon Kϵ
⋆,

considered as the polar of a polygon Kϵ, it holds

∥z∥Kϵ
⋆ = ∥z∥K⋆ and thus ∥z∥cs (Kϵ)⋆ = ∥z∥cs (K)⋆

for all z ∈ C(K). For all other lattice points z (which are not contained in lin{e1}), we know
∥z∥cs (K)⋆ > 1 and hence we also have ∥z∥cs (Kϵ)⋆ > 1 for these points.

Thus Kϵ ∈ A(t) but Kϵ is strictly contained in K, contradicting its minimality with respect
to the volume.

In order to give a bound on the size of C(K), K ∈ M(t), we need the next lemma.

Lemma 3.4.2. Let K ∈ M(t), and let (m, n) ∈ C0(K). Then n ∈ {−1, 0, 1}.

Proof. Assume that there exists an (m, n) ∈ C0(K) with n ≥ 2. Since λ2(cs (K)⋆) = 1 we
certainly have that m and n are relatively prime.

Since (t, 0), (−t, 0) ∈ cs (K)⋆ and (m, n) ∈ cs (K)⋆, the intersection of

conv {(t, 0), (−t, 0), (m, n)}

with the line {x ∈ R2 : x2 = 1} has length greater than or equal to n−1
n 2t ≥ 1. If this length

is strictly greater than 1, this intersection contains a lattice point v ∈ Z2 with ∥v∥cs (K)⋆ < 1
contradicting λ2(cs (K)⋆) = 1. Thus, the only remaining case is n = 2 and t = 1, and since
then e1, e2 are in the boundary, we may assume cs (K)⋆ = conv {±e1, ±(1, 2)}. Hence up to
translations K is the parallelogram conv {±e1, ±(1, −1)} of volume 2, which shows K /∈ M(t)
(cf. (3.19)).

Remark 3.4.3. Let K ∈ M(t). By Lemma 3.4.2 we get

i) if |C(K)| = 4 then C0(K) = {±e1, ±e2},

ii) if |C(K)| = 6, then

C0(K) = {±e1, ±e2, ±(e1 + e2)} or {±e1, ±e2, ±(e2 − e1)}.

27



3.4 Proof of Theorem 3.1.1

Observe that both configurations are unimodularly equivalent.

Next we show that C(K) cannot have more than 6 points.

Proposition 3.4.4. Let K ∈ M(t). Then |C(K)| ≤ 6, that is, |C(K)| = 4 or 6.

Proof. Let K ∈ M(t) and assume |C(K)| > 6. Then in view of Lemma 3.4.2, since there is
no point in C0(K) with last coordinate not in {−1, 0, 1}, there are at least three points in
C0(K) with last coordinate 1, and at least three points with last coordinate −1 by symmetry.
All these points lie in the boundary of cs (K)⋆ and hence, cs (K)⋆ has an edge contained in
the line {x ∈ R2 : x2 = 1} and one contained in {x ∈ R2 : x2 = −1}. Hence, cs (K) has the
vertices ±e2, which shows that K has two vertices x, y with x − y = 2e2.

On the other hand, we have ∥e1∥cs (K)⋆ = 1
t and thus hcs (K)(e1) = 1

t . Hence, K contains
also two vertices differing in the first coordinate by 2

t . Altogether, this shows that the volume
of K is at least 2/t and hence, K /∈ M(t) (cf. (3.19)).

Now we study the number of points of C(K) in each edge of K⋆. The following lemma
shows that, under some translations of K, the relation between the points of C(K) and the
edges of K⋆ does not change.

Lemma 3.4.5. Let K ∈ K2
(o) and −u ∈ int (K). Let v ∈ R2, such that v

∥v∥K⋆
lies in the

relative interior of the edge E = {x ∈ K⋆ : ⟨x, f⟩ = 1} ∩ K⋆ of K⋆. Then v
∥v∥(K+u)⋆

lies in the
relative interior of the edge E′ = {x ∈ (K + u)⋆ : ⟨x, f + u⟩ = 1} ∩ (K + u)⋆ of (K + u)⋆.

Proof. By assumption, f is a vertex of K and so f + u is a vertex of K + u. Hence E′ is an
edge of (K + u)⋆. Next, since ⟨v, f⟩ = ∥v∥K⋆ and

∥v∥(K+u)⋆ = hK+u(v) = hK(v) + ⟨v, u⟩ = ∥v∥K⋆ + ⟨v, u⟩ ,

we find
⟨v, f + u⟩ = ⟨v, f⟩ + ⟨v, u⟩ = ∥v∥K⋆ + ⟨v, u⟩ = ∥v∥(K+u)⋆ .

Thus v
∥v∥(K+u)⋆

∈ E′, and since v/ ∥v∥K⋆ was only contained in the edge E, v
∥v∥(K+u)⋆

also
belongs to the relative interior of E′.

Next we describe in more detail the relation of the points of C(K) and the edges of K⋆.

Proposition 3.4.6. M(t) contains a polygon K such that the relative interior of each edge
of K⋆ contains

i) at least two points of C(K), or

ii) one point of C(K), while e1
∥e1∥K⋆

or −e1
∥−e1∥K⋆

is a vertex of this edge.

(P)

Moreover, each K ∈ M(t) has at most 4 edges, and if K ∈ M(t) is a triangle, then K satisfies
property (P).
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3.4 Proof of Theorem 3.1.1

Proof. In the following we show that for each K ∈ M(t) there exists another polygon K ′ ∈ M(t)
with the same number of edges as K satisfying property (P). Together with Proposition 3.4.4
this implies that each K ∈ M(t) has at most 4 edges.

So let K ∈ M(t) be a polygon which does not fulfill (P). Then, in view of Proposition
3.4.1 we may assume that K⋆ has an edge

E =
{

x ∈ R2 : ⟨f , x⟩ = 1
}

∩ K⋆

with outer normal vector f , say, containing only one point u = (x0, y0) ∈ C(K) in its relative
interior and such that ±e1

∥±e1∥K⋆
is not a vertex of E. The supporting line of an edge E is

denoted by
E =

{
x ∈ R2 : ⟨f , x⟩ = 1

}
and the K⋆ containing halfspace is denoted by

E− =
{

x ∈ R2 : ⟨f , x⟩ ≤ 1
}

.

Let {f , f1, . . . , fk} be the vertices of K, Ei =
{
x ∈ R2 : ⟨fi, x⟩ = 1

}
, 1 ≤ i ≤ k, be the

supporting lines of the other edges of K⋆, and Ei = Ei ∩ K⋆ be the edges. The corresponding
halfspaces are denoted by E−

i , i.e.,

K⋆ = E− ∩
k⋂

i=1
E−

i .

Let us parametrize E by the angle θ0 ∈ [0, 2π) such that

E = {(x, y) ∈ R2 : (cos θ0)(x − x0) + (sin θ0)(y − y0) = 0}.

Then for a small ϵ > 0 and θ ∈ (θ0 − ϵ, θ0 + ϵ) we consider the line

E(θ) = {(x, y) ∈ R2 : (cos θ)(x − x0) + (sin θ)(y − y0) = 0},

i.e., we rotate E around u. We denote by E−(θ) the corresponding halfspace, and denote by
fθ the corresponding normal vector. We consider the new polygon

Kθ
⋆ = E−(θ) ∩

k⋂
i=1

E−
i .

We denote by E(θ) = E(θ) ∩ Kθ
⋆ the corresponding edge of Kθ

⋆. Observe, that

Kθ := (Kθ
⋆)⋆ = conv {fθ, f1, . . . , fk}

with
fθ =

( cos θ

cos θ x0 + sin θ y0
,

sin θ

cos θ x0 + sin θ y0

)
.
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3.4 Proof of Theorem 3.1.1

We assume that ϵ > 0 is small enough so that the possible rotations do not change the number
of edges. Since

fθ ∈ {x ∈ R2 : ⟨u, x⟩ = 1}, (3.20)

the volume of Kθ, as a function in θ, is monotonic in [θ0 − ϵ, θ0 + ϵ].
Next we argue that for |θ − θ0| small the body Kθ or a unimodular image of it is still in

A(t): For each v = (v1, v2) ∈ Z2 \ C0(K) with v2 ̸= 0, we have ∥v∥cs (K)⋆ > 1. Therefore,
there exists s > 1 such that ∥v∥cs (K)⋆ ≥ s for each v ∈ Z2 \ C0(K) with v2 ̸= 0. Thus, there
exists 0 < ϵ′ < ϵ, such that for θ ∈ [θ0 − ϵ′, θ0 + ϵ′], it holds ∥v∥cs (Kθ)⋆ > 1 for v ∈ Z2 \ C0(K),
v2 ̸= 0. Since all the points v ∈ C(K) \ {u} are (also) contained in an edge of K⋆ different
from E, we have ∥v∥Kθ

⋆ ≥ ∥v∥K⋆ for |θ − θ0| small, and so ∥v∥cs (Kθ)⋆ ≥ 1 for all v ∈ C0(K).
Therefore, after a possible unimodular transformation Kθ ∈ A(t).

Since vol (Kθ) is monotonic for |θ − θ0| being small and K ∈ M(t), we conclude vol (Kθ) =
vol (K), and thus Kθ ∈ M(t) for |θ − θ0| small.

If K is a triangle, i.e., K⋆ has edges E, E1, E2, then K has vertices f , f1, f2. Since vol (Kθ) =
vol (K), (3.20) shows that the line {x ∈ R2 : ⟨u, x⟩ = 1} must be parallel to the edge [f1, f2] of
K.

Let u′ ∈ C0(K) be such that u = u′

∥u′∥K⋆
. If u′ ̸= ±e1 then its last coordinate is 1

(cf. Lemma 3.4.2) and hence, after a unimodular transformation we may always assume
u′ ∈ {±e1, ±e2}.

If u′ ∈ {±e1} then the edge [f1, f2] has normal vector e1, and in view of (1.4) we get
1 = ∥e2∥cs (K)⋆ = 1

2 (hK(e2) + hK(−e2)), i.e., the edge [f1, f2] has length 2. In the same way
we conclude that the height of f with respect to [f1, f2] is 2/t. Hence, the volume of the triangle
is 2/t which is not minimal (cf. (3.19)) and so we are violating K ∈ M(t). Analogously, if
u′ ∈ {±e2} then the edge [f1, f2] has normal vector e2, and then the length of the edge [f1, f2]
is 2/t and the height of f with respect to [f1, f2] is 2. Again, the volume of the triangle is
contradicting K ∈ M(t). Thus, K is not a triangle, and, in particular, all triangles in M(t)
have property (P).

So let K be not a triangle. By Lemma 3.4.5, we may apply a translation to K such that
the origin is contained in the relative interior of the convex hull of the vertices adjacent to f ,
namely, fk and f1, such that fk, f , f1 are in clockwise order. Let

E1 = [w1, w2], E = [w2, w3], Ek = [w3, w4]

be the associated edges of K⋆, where wi, 1 ≤ i ≤ 4, are the vertices of these edges.
Since the origin 0 can only lie in at most one of the triangles conv {u, w2, w1} and

conv {u, w3, w4}, we assume 0 /∈ conv {u, w2, w1}. Let θ1 ∈ [θ0 − π, θ0] be such that E(θ1) ⊇
[u, w1]. If the line {tw3 : t ∈ R} intersects the edge [w1, w2], we denote the point of intersection
by w′, and we define θ2 ∈ [θ0 − π, θ0] be such that E(θ2) ⊇ [u, w′].

For x, y ∈ R2 we denote by cone {x, y} = {λx + µy : λ, µ ≥ 0} the cone generated by x

and y. Now we start again to rotate E = E(θ0) clockwise around u. Then, for each point

x ∈ C1 = cone {w1, u} ∩ cone{u, −w3}
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3.4 Proof of Theorem 3.1.1

[hbt]

0

E(θ1)
E(θ2)

E(θ)

E(θ)

w′

w4 w3

u

w2w1

E = E(θ0)

Ek

E1

K⋆

Figure 3.3: Rough sketch of the non-triangle case

its norm ∥x∥K⋆
θ

is non-decreasing and ∥−x∥K⋆
θ

does not change; and for each point

x ∈ C2 = cone {u, w3} ∩ cone {u, −w1},

∥x∥K⋆
θ

is non-increasing while ∥−x∥K⋆
θ

does not change. Therefore,

x ∈ C1 ⇒ ∥x∥cs (Kθ)⋆ ≥ ∥x∥cs (K)⋆

x ∈ C2 ⇒ ∥x∥cs (Kθ)⋆ ≤ ∥x∥cs (K)⋆ .
(3.21)

Now let ϵ0 be maximal, such that Kθ belongs to M(t), for all θ ∈ [θ0 − ϵ0, θ0].
If ϵ0 ≥ θ0 − θ1, then Kθ1 ∈ M(t), and for small positive numbers r we still have Kθ1+r ∈

M(t). For sufficiently small r, the corresponding edge E1 ∩ Kθ1+r
⋆ of Kθ1+r

⋆ has no point of
C(Kθ1+r) in its relative interior. According to Proposition 3.4.1 this contradicts Kθ1+r ∈ M(t).

Hence, we know ϵ0 < θ0 − θ1. If 0 ∈ conv {w1, u, w3} and ϵ0 ≥ θ0 − θ2, then it still holds
0 /∈ {u, w′, w1}, and we replace K by Kθ2 and start the rotating process again.

Hence, we may assume ϵ0 < θ0 − θ1 and if 0 ∈ conv {w1, u, w3} we may also assume
ϵ0 < θ0 − θ2. Since Kθ0−ϵ0 ∈ M(t) and ϵ0 is maximal, for each small positive number s we
know Kθ0−ϵ0−s /∈ M(t). Since the volume has not changed, a lattice point restriction in the
definition of A(t) is violated and there are five cases to distinguish:

(1) There exists a v′ ∈ Z2 \ {±e1, ±e2} such that ∥v′∥cs (Kθ0−ϵ0 )⋆ = 1 and ∥v′∥cs (Kθ0−ϵ0−s)⋆ < 1
for all small s > 0. Then we have v′ ∈ C1 ∪ C2, since the norms of other points are not
changed. By (3.21) we conclude v′ ∈ cone {u, w3}, which implies that v′

∥v′∥cs (Kθ0−ϵ0 )⋆
is a new

point of C(Kθ0−ϵ0) lying in the relative interior of the edge E(θ0 − ϵ0). In this case, the edge
E(θ0 − ϵ0) of Kθ0−ϵ0 has now two points of C(Kθ0−ϵ0) in the relative interior and hence, it
fulfills property i) of (P).

(2) ∥e1∥cs (Kθ0−ϵ0 )⋆ = 1
t and ∥e1∥cs (Kθ0−ϵ0−s)⋆ < 1

t for all small s > 0. Again, we may assume
e1 ∈ C1 ∪ C2 and by (3.21) we have e1 ∈ cone {u, w3}. Then e1

∥e1∥cs (Kθ0−ϵ0 )⋆
is a new point of

C(Kθ0−ϵ0) in the relative interior of the edge E(θ0 − ϵ0). But then we have ∥e1∥cs (K)⋆ > 1
t ,

implying λ1(cs (K)⋆) > 1
t , contradicting K ∈ M(t).
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3.4 Proof of Theorem 3.1.1

(3) ∥e2∥cs (Kθ0−ϵ0 )⋆ = 1 and ∥e2∥cs (Kθ0−ϵ0−s)⋆ < 1 for all small s > 0. Then e2 ∈ C1 ∪ C2 and
by (3.21) we have e2 ∈ cone {u, w3}. Then e2

∥e2∥cs (Kθ0−ϵ0 )⋆
is a new point of C(Kθ0−ϵ0) in the

relative interior of the edge E(θ0 − ϵ0). This implies ∥e2∥cs (K)⋆ > 1, contradicting K ∈ M(t).

(4) ∥e1∥cs (Kθ0−ϵ0 )⋆ = 1
t and ∥e1∥cs (Kθ0−ϵ0−s)⋆ > 1

t for all small s > 0. Then e1 ∈ C1 ∪ C2 and
in view of (3.21) we get e1 ∈ cone {u, w1}. The intersection of E1 and E(θ0 − ϵ0) is actually

e1
∥e1∥cs (Kθ0−ϵ0 )⋆

. In this case, the edge E(θ0 − ϵ0) of Kθ0−ϵ0 has u of C(Kθ0−ϵ0) in the relative

interior and e1
∥e1∥Kθ0−ϵ0

⋆
as a vertex. Hence, it satisfies property ii) of (P).

(5) There exists a v′ ∈ Z2 \ {±e1} such that ∥v′∥cs (Kθ0−ϵ0 )⋆ = 1 and ∥v′∥cs (Kθ0−ϵ0−s)⋆ > 1 for
all small s > 0. Then v′ ∈ cone {u, w1} (cf. (3.21)), and the intersection of E1 and E(θ0 − ϵ0)
is actually the point v′

∥v′∥cs (Kθ0−ϵ0 )⋆
. If v′ ̸= ±e2 then rotation would not stop here. Hence, and

without loss of generality, we may assume that v′ = e2. Since Kθ0−ϵ0 has at least 4 edges, and
the relative interior of each edge of Kθ0−ϵ0

⋆ contains a point of C(Kθ0−ϵ0) (cf. Proposition
3.4.1), and since now e2 is also a vertex of C(Kθ0−ϵ0) we find |C(Kθ0−ϵ0)| = 6 (cf. Proposition
3.4.4). Thus, in view of Remark 3.4.3 there exists a unimodular transformation U mapping
e2 to a point of C(Kθ0−ϵ0) \ {±e1, ±e2} and e1 to e1. Setting K̃ = U Kθ0−ϵ0 then K̃ ∈ M(t),
and we can continue to rotate the edge U E of K̃ around U u without leaving the class M(t).
Since in each execution of case (5) the number of lattice points in the corresponding edge Ek

is decreased by one, this case can occur only finitely many times.

Next we exclude the quadrilateral case.

Proposition 3.4.7. There are no quadrilaterals in M(t).

Proof. Let K be a quadrilateral in M(t). According to the proof of Proposition 3.4.6 we may
assume that K satisfies property (P).

Together with Proposition 3.4.4 we conclude that e1
∥e1∥K⋆

and −e1
∥−e1∥K⋆

are two opposite
vertices of K⋆ and each of the four edges of K⋆ has a point of C(K) in the relative interior.
In view of Remark 3.4.3 we may assume C0(K) = {±e1, ±e2, ±u1} with u1 = e1 + e2.

Next we translate K into a position, such that ∥u1∥K⋆ = ∥−u1∥K⋆ = 1 and ∥e2∥K⋆ =
∥−e2∥K⋆ = 1. In order to do so, we first find the four supporting hyperplanes of K with normal
vectors ±u1, ±e2 and find the center of this parallelogram. The center of this parallelogram
lies in the interior of K, and thus we can translate the origin to the center of this parallelogram.

Let t1 = ∥e1∥K⋆ and t2 = ∥−e1∥K⋆ . Then t1 + t2 = 2
t .

1
t1

e1

u1e2

− 1
t2

e1

−u1 −e2

K⋆

Figure 3.4: The polar body of a quadrilateral satisfying the condition (P)
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3.4 Proof of Theorem 3.1.1

In order to find the vertices of K we calculate the linear equations describing the edges of
K⋆ and so we get

K = conv {(t1, 1 − t1), (−t2, 1), (−t2, −1 + t2), (t1, −1)}.

Therefore, vol (K) = 4
t − 2

t2 , and hence K /∈ M(t) (cf. (3.19)).

Finally, we consider the triangles in M(t).

Proposition 3.4.8. Up to translations and unimodular transformations, M(t) contains only
the triangle T1/t,1 = conv {(−1/t, 1 − 1/t), (1/t, 1), (0, −1)} of volume 2

t − 1
2

1
t2 .

Proof. Let K ∈ M(t). According to Proposition 3.4.6 and Proposition 3.4.7, K is a triangle
satisfying property (P). |C(K)| cannot be 4 according to property (P). Therefore |C(K)| has
to be 6 (cf. Proposition 3.4.4). According to Remark 3.4.3, we may assume that C0(K) =
{±e1, ±e2, ±(e2 − e1)} (up to a unimodular transformation). There are two cases: either

1. only one edge of K⋆ contains three points of C(K) in its relative interior, while the other
two edges share a vertex in C(K) and separately have one point of C(K) in the relative
interior of each edge, or

2. C(K) can be separated into three pairs of points, such that each edge contains a pair of
points in its relative interior.

Next we discuss the above two different cases.

1. Here we may assume that e1
∥e1∥K⋆

is a vertex of K⋆. Then −e1
∥−e1∥K⋆

has to be in the edge
opposite to this vertex. Since the two edges of K⋆ sharing the vertex e1

∥e1∥K⋆
must contain

e2
∥e2∥K⋆

and e1−e2
∥e1−e2∥K⋆

in their relative interior, respectively, the remaining edge contains the
two points −e2

∥−e2∥K⋆
, e2−e1

∥e2−e1∥K⋆
.

Since ∥e2∥K⋆ + ∥−e2∥K⋆ = 2 and ∥e2 − e1∥K⋆ + ∥e1 − e2∥K⋆ = 2, we may choose as
in the proof of Proposition 3.4.7 a translation of K such that ∥e2∥K⋆ = ∥−e2∥K⋆ = 1 and
∥e2 − e1∥K⋆ = ∥e1 − e2∥K⋆ = 1.

e2e2 − e1

−e2 e1 − e2

e1
∥e1∥K⋆−1

2e1 0 K⋆

1
t1

e1

e2e2 − e1

− 1
t2

e1

−e2 e1 − e2

K⋆0

Figure 3.5: The impossible case 1. of a triangle satisfying condition (P) (left) and the other case
2. (right).

Then one edge of K⋆ contains e1
∥e1∥K⋆

and e2, one edge contains e2 − e1 and −e2, and
one edge contains e1 − e2 and e1

∥e1∥K⋆
. From this we get ∥−e1∥K⋆ = 2 and thus ∥e1∥K⋆ =
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3.5 Note

2 ∥e1∥cs (K)⋆ − ∥−e1∥K⋆ = 2
t − 2 < 0, which is impossible (see left drawing in Figure 3.5).

Hence, it remains only to consider the second case, i.e., we assume

2. each edge of K⋆ contains two points of C(K). Up to a rotation by π, i.e., up to a unimodular
transformation, we may assume that the three edges contain the following points of C0(K):

e1
∥e1∥K⋆

and e2
∥e2∥K⋆

lie in an edge, e2−e1
∥e2−e1∥K⋆

and −e1
∥−e1∥K⋆

are contained in an edge, and finally
−e2

∥−e2∥K⋆
and e1−e2

∥e1−e2∥K⋆
lie in the last edge.

Since ∥e2∥K⋆ + ∥−e2∥K⋆ = 2 and ∥e2 − e1∥K⋆ + ∥e1 − e2∥K⋆ = 2, we choose as in the first
case a translation of K, such that ∥e2∥K⋆ = ∥−e2∥K⋆ = 1 and ∥e2 − e1∥K⋆ = ∥e1 − e2∥K⋆ = 1.
Let (see right drawing in Figure 3.5)

t1 = ∥e1∥K⋆ , t2 = ∥−e1∥K⋆ .

Since ∥e1∥cs (K)⋆ = 1
t , we have

t1 + t2 = 2
t
. (3.22)

As before we compute the vertices of K and find

K = conv {(t1, 1), (−t2, 1 − t2), (0, −1)}.

Thus

vol (K) = 1
2(t1(1 − t2) + t2) + 1

2 t2 + 1
2 t1 = 2

t
− 1

2 t1t2 ≥ 2
t

− 1
2

1
t2 ,

where in the last inequality we have used (3.22) and the arithmetic-geometric mean inequality.
Hence, we have equality if and only if

t1 = t2 = 1
t
. (3.23)

Since K is supposed to have minimal volume (cf. (3.19)) we must have equality. Therefore, in
this case, K is a translation of conv {(1

t , 1), (−1
t , 1 − 1

t ), (0, −1)} = T1/t,1.

3.5 Note

Similarly, we believe that the best lower bound in dimension n is better than

n + 1
n!

n∏
i=1

λi(cs (K)⋆)

in (3.7). However, our method can not be generalized into n-dimensional case due to the
following reasons.

For the first reason, when we fix a point in one edge of a polygon P ⋆ ∈ K2 and rotate the
edge, our method shows that one vertex of P is moving in a line and that vol (P ) is monotonic
until an adjacent vertex is no longer a vertex. Equivalently, one edge of P disappears after the
rotation. By repeating the process, the number of edges will decrease to a small number.
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3.5 Note

✓

✗

P

Figure 3.6: The rotation works only in the green case.

However, this is different in dimension 3. For example, if P is the cube, then there does
not exist such a line for a vertex of P moving that guarantees vol (P ) monotonic. Furthermore,
if each facet of P is not a simplex, then similarly there is no rotation available.

For the second reason, compared to Proposition 3.4.4 where |C(K)| is at most 6, such
|C(K)| will be large in higher dimensions. Even if it is small, say no more than n(n + 1), due
to the last reason we need to check all such polytopes with no more than n(n + 1) facets.
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4
Banach-Mazur distance

The Banach-Mazur distance between two symmetric convex bodies K and L is the smallest
positive number r, such that K ⊂ gL ⊂ rK for some linear transformation g. John’s theorem
on the maximal volume ellipsoid contained in a convex body shows that the Banach-Mazur
distances between K ∈ Kn

(s) and the n-dimensional ball is at most
√

n, which is attained
by the cube and the crosspolytope. Thus we are interested in the Banach-Mazur distance
between the cube and the crosspolytope. According to results in Functional Analysis [30], the
Banach-Mazur distance between the cube and the crosspolytope has order

√
n, that is, there

exist absolute constants c, C > 0 such that

c
√

n ≤ dBM (Cn, C⋆
n) ≤ C

√
n.

However, such upper and lower bounds are not very tight. A detailed introduction and our
result for the upper and lower bounds of the distance will be contained in Section 4.1.

Assume that there is a linear transformation of the crosspolytope. We can decide the
smallest scaling of the unit cube containing the crosspolytope by finding the largest coordinate
of the vertices of the crosspolytope. We can also decide the largest scaling of the unit cube
contained in the crosspolytope since the reversed linear transformation of the cube is contained
in the original crosspolytope. Therefore, each linear transformation will provide an upper
bound of the Banach-Mazur distance. In Section 4.2 we will introduce some computer-based
results that might be best possible.

In dimension 2n there are linear transformations from the so-called Hadamard matrices.
Based on the Hadamard matrices a nice upper bound in dimension 2n is deduced. Furthermore,
we find an upper bound in arbitrary dimension. We will prove the upper bound in Section 4.3.

Finally, we will prove the lower bound in Section 4.4.

4.1 Introduction

Let Rn be the n-dimensional Euclidean space, and in this chapter an n-dimensional vector
x ∈ Rn is always treated as a column vector.
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4.1 Introduction

We recall that the Hausdorff distance between two convex bodies K and L is defined as:

dH(K, L) = max{sup
x∈K

inf
y∈L

d(x, y), sup
y∈L

inf
x∈K

d(x, y)},

where d(x, y) is the usual Euclidean distance.
For a real number p ≥ 1, the p-norm of x ∈ Rn is defined by

∥x∥p = (|x1|p + |x2|p + · · · + |xn|p)
1
p .

The maximum norm is the limit of the p-norm for p → ∞. It is equivalent to

∥x∥∞ = max{|x1|, |x2|, . . . , |xn|}.

Denote by
Cn = {x ∈ Rn : ∥x∥∞ ≤ 1} = [−1, 1]n

the n-dimensional unit cube, and denote the vertices of the n-dimensional unit cube by
{−1, 1}n. Denote by

C⋆
n = {x ∈ Rn : ∥x∥1 ≤ 1} = conv {±ei}

the n-dimensional unit cross-polytope. Denote by

Bn = {x ∈ Rn : ∥x∥2 ≤ 1}

the n-dimensional unit ball. For example, it is easy to check that the Hausdorff distance
between Cn and C⋆

n is n−1√
n

because the distance from any vertex of Cn to C⋆
n is n−1√

n
, and the

Hausdorff distance between Cn and Bn is
√

n − 1 because the distance from any vertex of Cn

to Bn is
√

n − 1.
The Banach-Mazur distance between two centrally symmetric convex bodies K and L is

defined as:
dBM (K, L) = min{r > 0 : K ⊂ gL ⊂ rK, g ∈ GL(n,R)}

where GL(n,R) is the group of invertible linear operators. It can be deduced that

dBM (K1, K3) ≤ dBM (K1, K2)dBM (K2, K3).

There are some results on the Banach-Mazur distance for some special convex bodies. For
example:

Theorem 4.1.1 ([31]). The Banach-Mazur distance between Bn and Cn is
√

n. The Banach-
Mazur distance between Bn and C⋆

n is
√

n.

John’s theorem on the maximal volume ellipsoid contained in a convex body gives the
estimate:

Theorem 4.1.2 (John’s theorem [17]). The Banach-Mazur distance between an n-dimensional
centrally symmetric convex body K and the n-dimensional ball is at most

√
n.
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4.2 Some computational results

As a corollary, for any two centrally symmetric convex bodies K and L,

dBM (K, L) ≤ dBM (K, Bn)dBM (Bn, L) ≤ n.

As a matter of fact, the optimal upper bound of dBM (K, L) is still unknown, but E. Gluskin
[8] proved that it is at least cn for some universal constant c > 0. Moreover, J. Bourgain and S.
J. Szarek [2] proved that the Banach-Mazur distance from any convex body to the cube is at
most cn for some universal constant c > 0, which is improved to cn5/6 by A. A. Giannopoulos
[7].

Denote by
{x ∈ Rn : |x1|p + · · · + |xn|p ≤ 1}

the n-dimensional Lp-ball. The Banach-Mazur distance between Lp-ball and Lq-ball for
1 ≤ p < q ≤ 2 or 2 ≤ p < q ≤ ∞ is exactly n1/p−1/q, while for 1 ≤ p < 2 < q ≤ ∞ it has only
order nα, where α = max{1/p − 1/2, 1/2 − 1/q} [30, Proposition 37.6]. We are interested in
the Banach-Mazur distance between Cn and C⋆

n, i.e., p = ∞ and q = 1. It is shown by [30, 31]
that the distance has order

√
n:

Theorem 4.1.3 ([30, 31]). There exist absolute constants c, C > 0 such that

c
√

n ≤ dBM (Cn, C⋆
n) ≤ C

√
n.

To be exact, for the upper bound it is shown that

C = 1
4√2 − 1

= 5.2852 · · ·

from Proposition 37.6 in [30]. For the lower bound, the constant c is not explicitly stated in
[30].

Here we discuss the upper and the lower bounds of this distance. Our main result is:

Theorem 4.1.4. √
n√
2

≤ dBM (Cn, C⋆
n) ≤ (

√
2 + 1)

√
n.

4.2 Some computational results

In order to find the Banach-Mazur distance between the cube and the cross-polytope, one
needs to find the minimum r > 0 such that there exists g ∈ GL(n,R) with

1
r

Cn ⊂ gC⋆
n ⊂ Cn.

Assume that g is the linear transformation g = (xij)n×n, then the cross-polytope

gC⋆
n = conv {±(xi1, . . . , xin)T : i = 1, . . . , n},

and gC⋆
n ⊂ Cn implies that |xij | ≤ 1 for i, j = 1, . . . , n. The left part 1

r Cn ⊂ gC⋆
n with

miminum r implies that the vertices of the cube 1
r Cn are contained in the cross-polytope gC⋆

n,
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4.2 Some computational results

which is
max

v∈{−1,1}n

g−1v


1
= r.

Therefore the Banach-Mazur distance is

dBM (Cn, C⋆
n) = min

g=(xij )n×n∈GL(n,R)
|xij |≤1,i,j=1,...,n

max
v∈{−1,1}n

g−1v


1
.

An approximate solution can be obtained via a computer program like Wolfram
Mathematica v.11.2.0. We can use the code here on Mathematica:

dim = 3 ;
T = Array [ Subscript [TT, ##] &, {dim , dim } ] ;
B1 = IdentityMatrix [ dim ] ;
B1 = Join [−B1 , B1 ] ;
Binf = Tuples [{ −1 , 1} , dim ] ;
NMinimize [
Join [ {Max[ Table [Norm[ Inverse [T ] . Binf [ [ j ] ] , 1 ] ,
{ j , Length [ Binf ] } ] ] , Det [T] != 0} ,
Table [Norm[T. B1 [ [ i ] ] , Inf inity ] <= 1 ,
{ i , Length [ B1 ] } ] ] , Flatten [T ] ]

where we can change 3 to any dimension we need. Since the computer only gives the numerical
results, we made some adjustment to make them to be the probably optimal ones. That is,
we will adjust mainly the numbers that are close with each other to the same number, since
the computer process might be not accurate enough, and it is reasonable to believe that the
optimal cases might be regular. We need to point out here, that the numerical results might
be the global optimal ones but also might be only locally optimal ones due to the reason that
this is a non-linear optimization problem.

For each example of g, it decides a crosspolytope gC⋆
n as well as a corresponding r, which

is not only a potentially minimum but also an upper bound of the Banach-Mazur distance,
since the Banach-Mazur distance is the global minimum of all r.

In dimension 3 the numerical result shows that the distance is at most 9
5 and the cross-

polytope g3C⋆
3 is determined by:

g3 =


1 1 −1/3

−1/3 1 1
1 −1/3 1

 .

In dimension 4 the numerical result shows that the distance is at most 2.26515 and the
cross-polytope g4C⋆

4 is determined by:

g4 =


−0.164392 0.902819 1 −1

−1 −0.0286877 −0.999908 −0.760687
0.192848 −1 0.16027 −1

−1 −0.70927 1 0.518805

 .
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4.2 Some computational results

But, we know that the distance is at most 2 if we choose the cross-polytope ḡ4C⋆
4 to be

determined by:

ḡ4 =


1 1 1 −1

−1 1 1 1
1 −1 1 1
1 1 −1 1

 .

In dimension 5 the numerical result shows that the distance is at most 2.32871 and the
cross-polytope g5C⋆

5 is determined by:

g5 =



0.792559 1 0.0387439 −1 −0.704555
1 0.792092 0.999411 0.855944 1

−1 −0.0773263 1 −1 0.888962
0.925403 −1 1 −0.115724 −0.822648

1 −0.79255 −0.999989 −0.856439 1


.

It seems to be highly irregular.
In dimension 6 the numerical result shows that the distance is at most 2.45449 and the

cross-polytope g6C⋆
6 is determined by:

g6 =



−1 1 0.999902 0.999988 −0.331954 0.436841
0.991908 0.339038 −1 1 −0.454488 1
0.971694 1 −0.319982 0.454287 1 −1

−1 1 −0.999995 −0.998472 0.976994 0.999489
0.998897 1 0.435783 −1 −1 0.266908

−1 0.429375 −0.999995 0.335729 −1 1


.

It is always appropriate to switch some rows or some columns, as well as to change the sign of
some row or some column. Then, we replace the numbers that are close to ±1, ±0.33, and
±0.45, by ±1, ±x, and ±y, respectively. Finally, we calculate the minimum value with respect
to the variables x, y, and get a probably optimal result: the distance is at most 2.4488 and the
cross-polytope ḡ6C⋆

6 is determined by:

ḡ6 =



1 1 1 1 1 1
−1 x 1 y −1 1
−1 1 x 1 y −1
−1 −1 1 x 1 y

−1 y −1 1 x 1
−1 1 y −1 1 x


where x = 0.324842, y = −0.434446.

In dimension 7 the numerical result shows that the distance is at most 2.6 and the
cross-polytope g7C⋆

7 is determined by:

g7 =


1 1 0.736632 1 −1 3.22206×10−7 −0.903055

−0.763516 0.763516 −1 0.763516 0.763516 −0.763516 −1
−1 2.60819×10−7 0.736632 −1 −1 −1 −0.903054
1 1 −0.736632 −1 8.08984×10−8 −1 0.903055
1 −1 0.736632 −3.02552×10−7 1 −1 −0.903055

−3.25631×10−7 −1 −0.736632 1 −1 −1 0.903054
0.833018 −0.833018 −1 −0.833019 −0.833019 0.833018 −1

 .
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We replace the numbers that are close to 0, ±0.73, ±0.76, ±0.83, and ±0.90, by 0, ±x,
±y, ±z, and ±w, respectively. Up to a change of rows and columns, we find that by simply
changing these variables to 1 or −1 we can get a matrix, whereas the corresponding r is still 2.6.
Therefore, we get a probably optimal result: the distance is at most 2.6 and the cross-polytope
ḡ7C⋆

7 is determined by:

ḡ7 =



1 1 1 1 1 1 1
1 0 1 −1 −1 1 −1
1 1 0 1 −1 −1 −1
1 −1 1 0 1 −1 −1
1 −1 −1 1 0 1 −1
1 1 −1 −1 1 0 −1
1 −1 −1 −1 −1 −1 1


.

In dimension 8 we are not sure how long it takes to wait for the numerical result. However,
we find a crosspolytope g8C⋆

8 with a Hadamard matrix g8, showing that the distance is at most
2.5, smaller than in dimension 7, and the cross-polytope g8C⋆

8 is determined by:

g8 =



1 1 1 1 1 1 1 1
−1 −1 −1 1 −1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1


.

4.3 Upper bound

Recall that the Banach-Mazur distance between the cube and the cross-polytope is

dBM (Cn, C⋆
n) = min

g
max

v∈{−1,1}n

g−1v


1

where g = (xij)n×n with |xij | ≤ 1. By giving a special g one can get an upper bound of the
distance.

4.3.1 Hadamard matrix

A Hadamard matrix is a square matrix whose entries are either +1 or −1, whose rows are
mutually orthogonal.

Sylvester [29] provided one way to construct Hadamard matrices. Let

M1 = (1)

M2 =
(

1 1
1 −1

)
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4.3 Upper bound

and

M2k =
(

M2k−1 M2k−1

M2k−1 −M2k−1

)

for k ≥ 2, then M2k are all Hadamard matrices.
The Hadamard conjecture proposes that a Hadamard matrix of order 4k exists for

every positive integer k. Sylvester’s construction yields Hadamard matrices of order 2k.
A generalization of Sylvester’s construction proves that if Mn and Mm are Hadamard matrices
of orders n and m respectively, then there exists a Hadamard matrix of order nm [29]. Due
to a recent result of Doković [3] who construct a Hadamard matrix of order 764, so far the
Hadamard matrices of order 4n with

n = 167, 179, 223, 251, 283, 311, 347, 359, 419, 443, 479, 487, 491

have not been discovered among n ≤ 500.

4.3.2 Proof of the upper bound in Theorem 4.1.4

In dimension n = 2k, there exists a Hadamard matrix Mn. Choose the matrix gn = Mn, then
g−1

n = 1
ngT

n where gT
n is still a Hadamard matrix with row vectors r1, . . . , rn. So

max
v∈{−1,1}n

g−1
n v


1

= 1
n

max
v∈{−1,1}n

(|⟨r1, v⟩| + · · · + |⟨rn, v⟩|)

≤ 1
n

max
v∈{−1,1}n

√
n(⟨r1, v⟩2 + · · · + ⟨rn, v⟩2) (Cauchy-Schwarz Inequality)

= max
v∈{−1,1}n

1
n

√
n · n · ∥v∥2

2 (ri mutually orthogonal)

=
√

n.

By induction, assume that in dimension t ≤ 2k the upper bound is not bigger than
(
√

2 + 1)
√

t with cross-polytope determined by gt. Then in dimension n = 2k + t where t ≤ 2k,
let

g2k+t =
(

g2k 0
0 gt

)
.

The distance is therefore

max
v∈{−1,1}n

g−1
2k+t

v


1

= max
v∈{−1,1}2k

g−1
2k v


1

+ max
v∈{−1,1}t

g−1
t v


1

≤
√

2k + (
√

2 + 1)
√

t

≤ (
√

2 + 1)
√

2k + t

= (
√

2 + 1)
√

n.

The proof for the upper bound is finished.
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4.4 The proof of the lower bound in Theorem 4.1.4

The Hadamard conjecture predicts the existence of a Hadamard matrix in dimension
n = 4k. When the Hadamard matrix exists in dimension n = 4k, denoted by Mn, the distance
between Cn and the cross-polytope determined by M4k will be

√
n.

When n = 4k + j, j < 4, let the cross-polytope be determined by

g4k+j =
(

Ij 0
0 M4k

)
.

Then the distance is

max
v∈{−1,1}n

g−1
4k+jv


1

= max
v∈{−1,1}4k

M−1
4k v


1

+ max
v∈{−1,1}j

I−1
j v


1

≤
√

4k + j <
√

n + 3.

Therefore the upper bound will be
√

n + 3 for all n.

4.4 The proof of the lower bound in Theorem 4.1.4

The Banach-Mazur distance of the cube and the cross-polytope is the minimum value of

max
v∈{−1,1}n

g−1v


1

with respect to all g = (xij)n×n with |xij | ≤ 1. Without loss of generality, consider only
det(g) > 0. Write g−1 = det(g−1)1/nN , where N ∈ SL(n,R), the group of special linear
operators. Let the row vectors of N be N j , i.e. N =

(
N j

)
n×1, then we have

∥Nv∥1 = |⟨N1, v⟩| + · · · + |⟨Nn, v⟩|.

Also, since det(N) = 1, from the geometric point of view we have:

n∏
j=1

∥N j∥2 ≥ 1

and by the arithmetic-geometric mean inequality

n∑
j=1

∥N j∥2 ≥ n(
n∏

j=1
∥N j∥2)1/n ≥ n. (4.1)

The Khintchine inequality [19] provides

1
2n

∑
v∈{−1,1}n

|⟨x, v⟩| ≥ 1√
2

∥x∥2 . (4.2)
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4.5 Remark

Based on these results, we can infer that:

max
v∈{−1,1}n

g−1v


1

= det(g−1)1/n max
v∈{−1,1}n

∥Nv∥1

= det(g−1)1/n max
v∈{−1,1}n

n∑
j=1

|⟨N j , v⟩|

≥ det(g−1)1/n 1
2n

∑
v∈{−1,1}n

n∑
j=1

|⟨N j , v⟩|

= det(g−1)1/n 1
2n

n∑
j=1

∑
v∈{−1,1}n

|⟨N j , v⟩|

≥ 1√
2

det(g−1)1/n
n∑

j=1
∥N j∥2 (Khintchine Inequality (4.2))

≥ 1√
2

det(g−1)1/nn(
n∏

j=1
∥N j∥2)1/n (Arithmetic-geometric Inequality (4.1))

≥ 1√
2

det(g−1)1/nn

≥ 1√
2

√
n.

The last inequality comes from
det(g) ≤ nn/2

since |xij | ≤ 1.

4.5 Remark

The proof of the lower bound is different from [32], where we only conjectured for the lower
bound

√
n√
2 . Here we apply the Khintchine inequality and get the lower bound

√
n√
2 .
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⟨ ·, ·⟩ the standard inner product, page 3
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