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In view of highly decentralized and diversified power generation concepts, in particular with renew-
able energies, the analysis and control of the stability and the synchronization of power networks is
an important topic that requires different levels of modeling detail for different tasks. A frequently
used qualitative approach relies on simplified nonlinear network models like the Kuramoto model
with inertia. The usual formulation in the form of a system of coupled ordinary differential equations
is not always adequate. We present a new energy-based formulation of the Kuramoto model with
inertia as a polynomial port-Hamiltonian system of differential-algebraic equations, with a quadratic
Hamiltonian function including a generalized order parameter. This leads to a robust representation
of the system with respect to disturbances: it encodes the underlying physics, such as the dissipa-
tion inequality or the deviation from synchronicity, directly in the structure of the equations, and it
explicitly displays all possible constraints and allows for robust simulation methods. The model is
immersed into a system of model hierarchies that will be helpful for applying adaptive simulations
in future works. We illustrate the advantages of the modified modeling approach with analytics and

numerical results. Published by AIP Publishing. https://doi.org/10.1063/1.5054850

To reach the goal of temperature reduction to limit the
climate change, as stipulated at the Paris Conference in
2015, it is necessary to integrate renewable energy sources
into the existing power networks. Wind and solar power
are the most promising ones, but the integration into the
electric power grid remains an enormous challenge due
to their variability that requires storage facilities, back-
up plants, and accurate control processing. The current
approach to describe the dynamics of power grids in terms
of simplified nonlinear models, like the Kuramoto model
with inertia, may not be appropriate when different con-
trol and optimization tasks are needed to be addressed.
Under this aspect, we present a new energy-based formu-
lation of the Kuramoto model with inertia that allows for
an easy extension if further effects have to be included
and higher fidelity is required for qualitative analysis. We
illustrate the new modeling approach with analytic results
and numerical simulations carried out for a semi-realistic
model of the Italian grid and indicate how this approach
can be generalized to models of finer granularity.

I. INTRODUCTION

The increasing usage of renewable energy sources,
such as wind and solar power, and the decentralization of
power generation make the stability and synchronization con-
trol of modern power systems very difficult. To address
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different control and optimization tasks, there are different
modeling approaches for the various components of power
networks; we will briefly present a model hierarchy for
synchronous generators and transmission lines. The simplest
model in the hierarchy is the Kuramoto model with inertia,
which is often used for a qualitative analysis of the network
behavior.'

The usual formulation of the Kuramoto model with iner-
tia in the form of a coupled system of ordinary differential
equations as in Refs. 1-7 is, however, not always appropriate,
because physical properties like the conservation of energy
and momentum are only implicitly represented in the equa-
tions, and thus, in numerical simulation or control, they may
be violated and lead to un-physical behavior. To prevent this,
we present a new energy-based formulation of the Kuramoto
model with inertia as port-Hamiltonian system of differential-
algebraic equations (pHDAESs). This formulation is closely
related to the one in Refs. 8 and 9, but it uses a change of vari-
ables, similar to Ref. 10, to turn the system into a polynomial
system with quadratic Hamiltonian.

Port-Hamiltonian (pH) systems (Refs 11-13) have
become a paradigm for multi-physics systems modeling incor-
porated in automated modeling frameworks such as 20-SIM
http://www.20sim.com/; see Ref. 14. To include interface con-
ditions or constraints, in Refs. 15 and 16, ordinary pH systems
have been extended to port-Hamiltonian DAEs (pHDAE:).
Although the discussed systems are nonlinear, we present
here, for simplicity, the definition in a linear time-varying
form, which describes the local behavior in the neighborhood
of solutions; see Ref. 16 for the nonlinear version. Denote for
a compact interval I € R by (I x R", R™) the set of Jj-times
continuously differentiable functions from I x R” to R™.

Published by AIP Publishing.
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Definition 1. A linear variable coefficient system

Ex=[(J —R)Q — ET]x+ (B — P)u,
y=B+P)0x+ (S+ N)u,

with E,Q € C!@ x R, R™), J,RTe CO(]I x R*, R™™"),
B,P e CO(H x R",R™), §,N € CO(H x R*,R™), and § =
ST, N=—NT is called port-Hamiltonian differential-
algebraic system (pHDAE) if

(1

(i) Along all solutions x : I — R” of (1), we have
Q"E)[t,x()] = (ETQ)[t,x(t)] € C' (I, R™")

and for all ¢ € I, we have

d
1@ Blnxml} =[0"ET -0
+ (ET —JQ)" Q]1,x(1)];

(ii) the Hamiltonian function M = IxT[(QTE)(t,x)]x €
C'(I x R",R) satisfies H[t,x(t)] > hy uniformly for
some hy € R, all ¢ € T and all solutions x(z) of (1);

(iii) forallz e I, W = W' > 0, where

W = |:Q1:TRQQ Q;Pi| c CO(]I X Rn,Rn-ﬁ-m,VH—m). (2)

pHDAES satisfy the dissipation inequality

I
Hln, x(11)] — Hlto, x(t0)] 5/ YO u() dt, 3)
fo
which shows that (1) is a passive system (see Ref. 17), and
since H(x) defines a Lyapunov function, pH systems are
implicitly Lyapunov stable. An advantage of pHDAE:s in the
context of power system modeling is that they are closed
under power-conserving interconnection, which allows one
to build-up models in a modularized way (see Ref. 18), and
Galerkin projection (see Ref. 19), which allows systematic
discretization and model reduction.

Il. MODEL HIERARCHIES FOR POWER NETWORKS

A power network consists of many different types of
components, e.g., the synchronous generators, the loads, and
the transmission lines. Each of these components can be mod-
eled with a different degree of fidelity, depending on the state
of the system, the dynamics of the network, the task that has to
be completed, the accuracy requirements, or the allowed com-
putation time. The innate modularity of pH systems allows
one to interconnect different components of the network while
retaining energy-consistency, even between different models
in the hierarchy, and can be easily exploited by automated
modeling frameworks. It can also be combined with structure-
preserving model reduction methods that allow one to speed
up computations while retaining qualitative behavior.

A detailed synchronous generator model including the
electromagnetic phenomena internal to the generator (see,
e.g., Refs. 9 and 20) can be drastically simplified by neglect-
ing the dynamics of the magnetic variables, leading to the
swing equation,” which can be modeled with different accu-
racy (see, e.g., Ref. 21).
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FIG. 1. Model hierarchies for synchronous generators (on the left) and
transmission lines (on the right).

Also, the model of a transmission line, represented as a
circuit with resistive, inductive, and capacitive components
(see, e.g., Refs. 2 and 20) can be further simplified: both the
shunt capacitance and the series resistance are often negligi-
ble when compared with the inductance, and when assuming
steady-state, the phasor model can be used, substituting the
equations for the current through the transmission line by a
linear relation. See Fig. 1 for a summary of the two model
hierarchies.

For the purpose of this paper, we consider a power
network consisting of n synchronous generators, connected
through transmission lines, using the conventional swing
equation for the synchronous generators, and the phasor
L-model for the transmission lines. The resulting system [see
Ref. 9 (subsection 6.2)] can be written as

miey = ~djwo; + ) gisin@ —6) + P, ()
k=1

for j=1,...,n, where 6; is the phase shift, w; = éj is the
deviation from a given (nominal) frequency €2, m; > 0 is the
inertia, d; > 0 is the damping constant, P; € R is the power
balance of the j-th generator, g = BixEjEx > 0, where Bj
is the susceptance of the transmission line between the j-th
and k-th node, and Ej, E; are the respective amplitudes of
the voltage potentials (assumed constant). Note that we allow
the power balance to be negative, so that a generator can
also be interpreted as a load. This model can be written as
an m + n-dimensional ordinary port-Hamiltonian system (see
Refs. 8 and 9) with variables ¢ = [6; — 6;] € R™ (indexed as
the edges of the network graph) and p = [m;w;] € R":

g=A"w,

. . (5)
M® = —Dw — ATl sing + P,
with Hamiltonian
1 7 T
H(g,p) = 5P M~'p—1'Tcosgq, (6)

where M = diag(m;), D = diag(d;) € R™", I = diag[gj] €
R™™", P =[P;] € R", A € R*" is the incidence matrix of the
graph, and 1 is the vector of all ones.

System (4) is a generalization of the canonical second-
order Kuramoto model with inertia, which consists of a
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system of n fully-coupled oscillators satisfying

mf; + dify = Q+ K Y sin(@ — 6)), 7)
k=1

for j=1,...,n, where 6;,m;,d; are as before, Q; are the
natural frequencies, and K > 0 is the coupling constant of
the system. We will refer to system (4) as the generalized
Kuramoto model (GKM). To study qualitatively the synchro-
nization of oscillatory networks, typically the complex order
parameter (COP)

) 1 < .

ip . i0; .

re ._——Ee-/e ceC: <1
nj:l {z lz| <1}

is used where r = 1 when the system is in a fully synchronized
state and O when it is completely desynchronized.

lll. THE GENERALIZED ORDER PARAMETER

While the COP is linked to the fully-coupled canonical
Kuramoto model with inertia, (see Ref. 3) in the case of sparse
networks, it can show weird behavior (see, e.g., Fig. 3 or
Ref. 22), because it does not take the topology of the system
into account, and so it fails to capture well the transitions in
the partially phase locked regime. To address this problem, we
introduce a generalized order parameter (GOP) that applies
to the GKM and is consistent with the COP. Treating (7) as a
special case of (4) with a complete graph and gjx = K, we can

write

L D U = L > cos(O — 6))

n2 o2 kT
Jik Jik

= |re'?)? =

2 1 2 1
= — E —0)+-=—1'T" -
3 7 cos(6r — 6)) + =T cosq + o

thus, in this case, 1’T'cosg = %Kn2r2 — % Since the pH
formulation does not change if we add a constant to its
Hamiltonian, we can replace (6) with

._l Thr—1 l 201 _ 2
Hilg,p) = P M~'p+ an [1-=r(@1=0. (8)

To extend the definition of the order parameter to the gen-
eral case, without losing its connection to the Hamiltonian,
we define the GOP £(g) := al”T cos g + b for some network-
dependent constants a,b € R, which should satisfy the
following conditions:

(1) In the case of system (7), we have £(q) = r*(q);

(2) the maximum value of £(g) is 1, and it corresponds to the
fully synchronized state;

(3) the minimum value of £(g) is greater or equal to a fixed
value &, € R.

We can restate these conditions in terms of a and b:

(1) Since in (7) we have r> = #ITF cosq + %, for that
network we must have a = 2/Kn* and b = 1/n.

(2) The fully synchronized state g corresponds to cosg =
1 and £(@) =al’T'1+ b, so £(g) is the maximum if
and only if a > 0, and it is equal to 1 if and only if
b=1-al'T1.

Chaos 28, 101102 (2018)

(3) If we assume (2), then £(q) > —al’T'1 + b = 2b — 1 for
all g. Whether this value can actually be reached depends
on the network, however, there is no clear general formula
for ming £(q). In any case, b > # is sufficient to imply
condition (3).

Using the given freedom, we choose b = 1/n and a = (n —
1)/(n17T'1), so that conditions (1)—(3) are satisfied with &y =
-1+ %, in particular £(q) € (—1, 1]. Note that typically we
will have £(g) > 0. We can express the Hamiltonian (6) in
terms of the GOP. Changing H(g,p) again by an additive
constant, we obtain

H ( _l Tag—1 n T _
2q.p) = Sp M- p+ — 1TTI —&(@] )

= %pTMflp— 1"Tcosq +1'T1, (10)
which has 0 as its minimum. We will show in Sec. V that the
GOP &(g) behaves better than the ordinary COP, especially for
sparsely coupled networks. Note that a similar GOP has been
formulated simultaneously to Ref. 23 in Ref. 22; however, it
has not been related to a pH formulation nor applied to power
grid networks.

IV. ANEW PHDAE FORMULATION FOR THE GKM

Similar to Ref. 10, we introduce (p, o) := (cos9,sinf),
viewed componentwise, and express (4) in x = (w, p,0).
Using g = 0 when there is no edge connecting the j-th and
k-th node, and introducing again P =[P;] in R", D=
diag(d;), and G = [gj] in R™", and the matrix functions D, =
diag(p;), D, = diag(o;) with values in R™", we can write the
GKM as

M@ = —Dw — D,Gp + D,Go + P,

0 =—-Dsw, (11)
o =D,w.
Since all terms with coefficients g; for j=1,...,n

vanish in (11), we are free to choose gj; our choice is
gj = —Zk#j gjk> so that G < 0. This can be interpreted
as a pHDAE formulation Ex = (J/ — R)Ox + Bu with x =
o7, pT, 071", u=P, E=diagM,I,1,), 0<R=R" =
diag(D,0,,0,), QO = diag(l,,, —G, —G),

0 D, -D, 1
J=-J'=|-D, 0 0 |, B=|0],
D, 0 0 0
and Hamiltonian function
1 1 1 1
Hs(x) = ExTQTEx = Ea)TMa) - E,oTG,o - EO’TGO'.

In particular, we have

1 1 1
szGp + EGTGG = 3 %:gjk cos(r — 6))

= gilcos(® — ) — 1]

Jj<k
=1'r cosq — 111,
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so that H3(x) = H,(q, p). This model has a larger state space
than a modified version of (5) (3n instead of 2n), but it has
several advantages.

» Using (p, o) instead of 0 as variables helps removing some
redundancy from the state, without having to adjust 6; €
[—7, 7] numerically at each step. One can also consider a
formulation with angles defined relative to a fixed oscilla-
tor; then, the zero state is the only fully synchronized state,
and the matrix G becomes invertible (see Ref. 23).

» Although (11) is still a nonlinear system, it is now poly-
nomial and has a quadratic Hamiltonian with respect to x;
an advantage of this is, e.g., that, for P =0 and D =0, it
can be integrated preserving H, without discretization error
(see Ref. 24).

e While (11) is still an ODE, we are allowed to add algebraic
equations without losing the port-Hamiltonian structure.
These could be, e.g., the relations linking the mechan-
ical variables w, p,o to the electrical variables (voltage
and currents), Kirchhoff’s laws, or the implicit relation
,oj2 + aj2 =1

Since we omitted the dependence of p and o on 6, the
variables p, o implicitly need to satisfy ,oj2 + aj2 = 1. Unfor-
tunately, in numerical integrators for (11), such implicit rela-
tions are typically not preserved, due to discretization and
roundoff errors.2’ To address this, we can add these conditions
explicitly to the system, by introducing Lagrange multipli-
ers i = [p;] € R", adding the equation 0 = D,p + D,0 — 1
to the system, and modifying correspondingly the matrices
E,J,R, O, B (see Ref. 23 for details). One must also make sure
that the initial conditions are consistent and include u = 1.
Employing geometric integrators helps one to preserve these
conditions, as we show in Sec. V.

V. NUMERICAL RESULTS

In this section, we illustrate the advantages of our
new pHDAE formulation by some numerical examples. We
use a model of the Italian high-voltage (380kV) power
grid of n = 127 nodes, divided in 34 sources and 93 con-
sumers, connected by 342 links, (see Ref. 26) and low aver-
age connectivity n, = 2.865. See http://www.geni.org and
https://www.entsoe.eu/map/Pages/no-webgl.html for a map
and the data.

We use the GKM and assume for simplicity that each
node has the same inertia and damping constant (m; = m = 6
andd;=d =1,j=1,...,n), and each transmission line has
the same coupling coefficient, i.e., either g = K or gjx = 0.
To have a stable fully locked state as a possible solution of (4)
(i.e., w(r) = 0), it is necessary that ) ;_, P; = 0, which we
get, e.g., by setting P; = —P¢ = —1 for all consumers, and
P; = Pg = 2.7353 for all generators. This corresponds to a
Kuramoto model with inertia with perfectly balanced bimodal
§-distribution of the natural frequencies. Since in a real power
grid the power of the generators (or consumers) will not have
exactly the same values, we analyzed also the case where
the P; are chosen as random variables with distribution given
by the superposition of two almost non-overlapping Gaussian
distributions. See Ref. 23 for further computational results.

Chaos 28, 101102 (2018)
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FIG. 2. Conservation of Lagrange multiplier p for different integration
schemes [Symplectic Euler (SE), Implicit Midpoint (IMP), Explicit Mid-
point (EMP)] and K = 0.5. The orange and magenta curves differ in the
convergence threshold in the nonlinear solver (10~ and 10~1?).

We have integrated (11) with different integration schemes
and compared the results for the symplectic Euler method,
the implicit and the explicit midpoint method, as well as a
4th order explicit Runge-Kutta scheme applied to the old
model (4). We used stepsize 0.002, transient time 100, and
simulation time 5000. As illustrated in Fig. 2, on short time
intervals, the different solvers deliver similar results for the
multiplier . However, if we want its exact conservation, a
geometric integrator like the implicit midpoint method should
be applied with a sufficient accuracy for the nonlinear solver at
every integration step. When the accuracy is not sufficient, the
multiplier drifts from the value 1, as for the explicit midpoint
method.

To understand the transition from the non-synchronized
state for small K to synchronized state for large K, we
performed sequences of simulations by increasing the param-
eter K with random initial conditions for {6;} and {6;}, for

! (@) 3
Rl 12222 7% 2 13
L o )
N °.... * r1/2
_unauﬁiiﬁ.“i.l | * &
O s 10 15 L_'Ki 3
() T P “.oooooooooooooovvvvvvvv
L I .
0.5 §§§ ® VRN 7 ee 00‘.’_"
. ?EE //\\ .-...'....‘.. v
;ﬁ;ﬁﬁﬁﬁiiﬁ i
0 . I .
0 ig 15 20

FIG. 3. Time-averaged order parameters vs coupling constant K, with (a) per-
fectly balanced bimodal §-distribution or (b) Gaussian distributions of the
Q;. rgy is the average standard Kuramoto parameter, calculated via a 4th
order Runge-Kutta scheme in the original formulation [i.e., via integrating
Eq. (4)]. 7 and £'/? are the average standard Kuramoto parameter and gener-
alized order parameter, respectively, obtained with the implicit midpoint rule
applied to the pHDAE formulation. The data have been obtained by changing
adiabatically the coupling constant, starting from K = 0 and with AK = 0.5.
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FIG. 4. Average order parameter £ '/2

coupling constants K.

vs the damping constant d for different

both (4) and (11). In each case, the simulation was ini-
tialized by employing the last values of the previous sim-
ulation. The average COP 7 and its GOP counterpart £'/2
(assuming &(g) > 0) both show a non-monotonic behav-
ior in K, especially the former (see Fig. 3). For the
bimodal §-distributions [panel (a)] and small coupling val-
ues 7 1/+/N, we observe an abrupt jump for K = 6.5.
Subsequently, 7 decreases, reaching a minimum at K = 9.
For larger K, then 7 increases monotonically toward full
synchronization. The generalized order parameter &£'/2, on
the other hand, does not show such an irregular behav-
ior for small coupling values but has almost constant
value until K = 6.5, where the transition to synchronization
takes place and from then on rapidly increases toward 1.
Since £ takes into account the topology of the network, the
analysis of the synchronization level is more stable for small
coupling constants, while it is still able to identify the tran-
sition to synchronization at K = 6.5. The correctness of the
critical value for the transition to synchronization can be
confirmed indirectly by calculating the maximal Lyapunov
exponent (see Ref. 23). The COP 7 fails in identifying the cor-
rect level of synchronization because, for K < 6.5, the system
splits in two clusters: one consisting of the sources, oscillat-
ing close to their proper frequency, and one consisting of the
consumers, which rotates with negative average velocity. This
non-trivial form of partial synchronization already present in
the network is not detected by 7, whose value around 1/ VN
indicates that the system behaves asynchronously. By increas-
ing the coupling to K > 7.5, the two clusters merge into a
single cluster, which is reflected in a monotonic increase of
the average order parameters (see Ref. 23). For a bimodal
Gaussian frequency distribution, the average order param-
eters 7, £!/2 as a function of the coupling constant reveal
that, in this setup, it is more difficult to achieve synchroniza-
tion, due to the inhomogeneity of the natural frequencies [see
Fig. 3(b)]. Here, r is still irregular and unstable, irrespective of
whether we use the original Kuramoto model with inertia or
the pHDAE formulation, while &£'/2 is stable and informative,
with a continuous transition to synchronization, instead of a
jump from partial to full synchronization. It should be noted
that, while in these examples the pHDAE and the original
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, , . ©
d 4 6

FIG. 5. Time t, necessary to reach good synchronization (£!/? > 0.95), as
a function of the parameters K, m, d, which represent the values to which
the parameters are tuned initially in order to calculate the time needed to
reach synchronization. To efficiently control the system, when stability is
affected by emerging disturbances, it is more convenient to increase the cou-
pling constant. On the other hand, bigger inertia prevents the system from fast
synchronization recovery since it slows down the dynamics. f; is expressed in
nondimensional time units.

formulation present similar qualitative behaviour [with a few
noticeable differences in Fig. 3(b)], the discretization of the
quadratic pHDAE with the implicit midpoint is usually more
adequate in limiting situations.

We conclude this section by testing how adjusting the
inertia m and the damping constant d could help with the syn-
chronicity control of the system. For larger inertia, the critical
coupling value for transition to synchronization increases, so
that larger coupling strength is necessary to achieve the syn-
chronized state; see also Ref. 23. On the other hand, for fixed
K, larger damping constants d help reaching synchronization,
as shown in Fig. 4. However, a consistent increase is possible
only for K close to the critical value K = 6.5 as in Fig. 3, thus
illustrating that the coupling strength plays a more important
role in the transition than the damping constant. This effect
is also observed when varying the mass m, while keeping K
constant (see Ref. 23).

When a generator is diverging from the synchronized
regime, it is important to react to this perturbation as fast as
possible in order to avoid a shut-down of the generator. Start-
ing from a slightly asynchronous model (K = 6), we can also
control the time to synchronization f; by changing K, d, or
m; see Fig. 5. Adjusting mechanically some parameters of the
system can thus be useful both to not drift away from syn-
chronicity and to return to a synchronous state in a shorter
time.

VL. CONCLUSIONS

We have presented a new port-Hamiltonian differential-
algebraic formulation of the Kuramoto model of coupled
rotators, as well as a new definition of the order parameter.
The new pHDAE model formulation is structured in such a
way that it can be easily extended to analogous pHDAE for-
mulations of finer granularity as they are used in quantitative
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stability and synchrony analysis of power systems. The new
order parameter is more robust in limiting situations. We have
also shown the advantage of the port-Hamiltonian formulation
in the preservation of conserved quantities. Future work will
include the analysis of the whole model hierarchy, whose low-
est level is represented by the Kuramoto model with inertia
described here.
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