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Summary

Pollution externalities have received great attention in environmental economics
and, with mitigation policies on local pollutants becoming increasingly stringent in
recent years, this topic will become even more prevalent in the future. Hence, it is of
crucial importance to quantify the damages incurred by individuals and firms from
local pollution and to improve the general understanding of the costs and benefits
of associated abatement policies. This dissertation explores these interrelated
aspects: First, by assessing the effectiveness of local pollution abatement policies
based on the example of German low emission zones. Second, by disentangling
the direct and indirect effects of air pollution on the well-being of individuals.
Third, by analyzing the impact of pollution externalities on labor market outcomes
of employees, using the example of hydraulic fracturing in the US. Fourth, by
quantifying the impact of groundwater nitrate pollution on the cost of drinking
water supply in Germany. Each aspect is explored through micro-econometric
methods based on extensive data sets on individuals and firms. Three chapters
focus on recovering causal effects, where identification stems from temporal and
geographical variations in pollution exposure and implementations of specific
policy measures.

Keywords: Air pollution, Water pollution, Environmental Policies, Well-being,
Cost functions
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Zusammenfassung

Externe Effekte lokaler Umweltverschmutzung sind ein zentrales Thema der
Umweltökonomie. Da die Maßnahmen zur Minderung lokaler Umweltverschmutzung
in den letzten Jahren immer strenger wurden, wird dieses Thema in Zukunft an Be-
deutung gewinnen. Vor diesem Hintergrund ist es von entscheidender Bedeutung,
die Schäden, die Individuen und Unternehmen durch lokale Umweltverschmutzung
erfahren, zu quantifizieren und das allgemeine Verständnis der Kosten und Nutzen
der damit verbundenen umweltpolitischen Maßnahmen zu verbessern. Diese Dis-
sertation untersucht diese zusammenhängenden Aspekte: Zum einen wird die
Wirksamkeit von Umweltschutzmaßnahmen anhand des Beispiels von Umwelt-
zonen in Deutschland analysiert. Zweitens, werden die direkten und indirekten
Auswirkungen von Luftverschmutzung auf das Wohlbefinden von Menschen un-
tersucht. Drittens, werden die Auswirkungen von Umweltverschmutzung auf das
Arbeitsangebot von Arbeitnehmern anhand des Beispiels von Fracking in den USA
analysiert. Viertens, wird der Einfluss von Nitratbelastung im Grundwasser auf
die Kosten der Trinkwasserversorgung in Deutschland geschätzt. Jeder Aspekt
wird durch mikroökonometrische Methoden untersucht, die auf umfangreichen
Datensätzen zu Individuen und Unternehmen basieren. Die ersten drei Kapitel
konzentrieren sich auf die Schätzung kausaler Effekte, welche durch zeitliche und
geografische Variation in der Schadstoffbelastung und in der Umsetzung von
Politikmaßnahmen identifiziert werden.
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Chapter 1

General Introduction

1.1 Motivation

This doctoral dissertation studies the economic impacts of local pollution on
humans and firms, and evaluates the effectiveness of environmental policies. It
aims at quantifying the effects of air and water pollution using econometric
techniques that allow inference of causal relationships based on extensive micro-
level data.

Reliable and causally attributable estimates of the impacts of pollution are
crucial for grasping the economic costs associated with pollution exposure. Sound
empirical evidence is especially relevant for policymakers who develop mitigation
strategies to limit the negative impacts of pollution on society and the environment.
Having reliable estimates on the pollution impacts enables them to target policies
specifically at sectors where the damages and costs from pollution exposure are
particularly severe. Identifying and quantifying the consequences of pollution
exposure is a necessary prerequisite for designing effective environmental policies;
however, it is also vital to validate whether these policies are effective in achieving
their intended goals. Such empirical ex-post analyses on policies’ effectiveness are
essential in providing policymakers with a better understanding of the consequences
accompanying future regulatory efforts.

Local pollution is often a byproduct of economic activities and affects various
environmental media, like air, water, and soil.1 Air pollution is a particular
concern, as it is considered to be the greatest environmental risk to human health
worldwide, with nine out of ten people breathing polluted air (WHO, 2019). A
major share of air pollution stems from the combustion of fossil fuels that is

1 Local pollutants affect only the area surrounding the emission source, in contrast to global
pollutants like greenhouse gases.
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omnipresent in most economic sectors, e.g., transportation, electricity generation,
or the building industry. The combustion exhaust consists of a myriad of toxic air
pollutants that can penetrate human lungs, enter the bloodstream, or infiltrate
the brain, causing numerous diseases, disabilities, and premature deaths across
the globe. Recent estimates suggest that air pollution is responsible for more than
6 million premature deaths and 93 billion days lived with illness, amounting to
economic costs of more than $ 8.1 trillion, or roughly 6 percent of global GDP
(World Bank, 2022). Other studies point towards even larger mortality effects,
ranging up to eight million premature deaths (18 percent of annual deaths) due to
air pollution from burning fossil fuels (Vohra et al., 2021). Besides causing local
air pollution, fossil fuel combustion also accelerates climate change by releasing
carbon dioxide. Climate change, in turn, aggravates local air pollution problems,
for example, through rising temperatures that increase ground-level ozone (Meleux,
Solmon and Giorgi, 2007; Murazaki and Hess, 2006).

Another central area of concern is water pollution. Water pollution originates
from run-offs from agriculture and urban settlements, the drainage of untreated
wastewaters, and industry discharge, contaminating ground- and surface water
bodies with pathogens, nutrients, toxic substances, and other pollutants. Consum-
ing contaminated drinking water can cause serious harm to human health, which
is mirrored in the UN’s Sustainable Development Goals, listing access to safe and
affordable drinking water as a top priority (Griggs et al., 2013).2 About two billion
people did not have access to basic water services in 2020, primarily in the poorest
countries of the world (WHO, 2021). Waterborne diseases are still a significant
cause of death in these regions, especially among young children and infants, where
estimates range up to half a million diarrheal deaths per year (Troeger et al., 2018).
However, even high-income countries with universal access to safely managed
piped drinking water incur enormous costs related to waterborne diseases. For
example, recent studies from the US point towards more than 7 million waterborne
illnesses occurring annually, leading to $ 3.3 billion in direct health care costs
(Collier et al., 2021). Polluted surface and groundwater resources pose not only a
risk to human health, they also damage ecosystems and reduce biodiversity, e.g.,
excessive nutrient loads from agricultural fertilizer run-offs cause eutrophication
and acidification of water resources.3 Climate change will worsen problems related

2 Equitable access to safe and clean drinking water and sanitation are recognized as human
rights by the UN (UN, 2010).

3 Eutrophication describes the process of water bodies becoming excessively enriched with
nutrients, which increases the abundance of algae and aquatic plants, decreases oxygen levels,
and endangers aquatic species (Smith and Schindler, 2009).
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to water quantity and quality, resulting in higher water temperatures and more
floods and droughts (Schwarzenbach et al., 2010). It can also aggravate feedback
loops, for example, in eutrophication when warmer temperatures foster excessive
algae growth that, in turn, leads to additional releases of greenhouse gas emissions
(Li et al., 2021).

This thesis contributes to a better understanding of the economic consequences
of air and water pollution and related environmental mitigation policies. First, by
examining the effectiveness of command-and-control policies targeting urban air
pollution. Second, by exploring how air pollution affects the well-being of parents
through their kids’ health. Third, by studying the effect of pollution from resource
extraction activities on the labor supply of neighboring individuals. Fourth, by
analyzing the interdependencies between agriculture and groundwater pollution
and by quantifying the impact of groundwater pollution on the cost of drinking
water supply. The remainder of this chapter is structured as follows: Section 1.2
briefly introduces the underlying theory of pollution externalities, underlines the
societal relevance of studying the effects of water and air pollution on individuals
and firms, describes related abatement policies, and gives an overview of the
existing empirical evidence. Section 1.3 describes the empirical methodology of
this dissertation, and section 1.4 summarizes the contents and main conclusions
of each chapter of this dissertation.

1.2 Related literature

The concept of externalities lies at the heart of environmental economics. In
general, the term externality describes the uncompensated effect of an agent’s (a
firm or an individual) actions on other agents’ utilities or production functions.
Externalities might be either positive, when the acting agent does not reap all the
benefits of her actions, or they might be negative, when the agent does not bear
all the costs of her actions.4 Local pollution is a classic example of a negative
economic externality: Pigou (1920) lists air pollution from factory chimneys as an

4 The concept dates back to the ideas of Marshall (1916) about external effects in the industry
sector and the social benefits of infrastructure investments. It was further developed by the
seminal work of Pigou (1920) introducing the concept of social cost as ”divergences between
marginal social net product and marginal private net product” (Pigou, 1920, chapter IX).
Pigou (1920) concludes that these divergences cannot be removed through modifications in
the contractual relations of agents; instead, their removal requires government intervention.
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example, and numerous textbooks have illustrated the concept by means of an
industrial plant dumping waste into a river and hurting downstream users.5

To formalize the concept of negative externalities, it is useful to think about
private costs, external costs, and social costs. Private costs refer to the cost of
the polluter, e.g., the cost of labor or capital inputs to produce a specific good.
External costs are the costs incurred by third parties, e.g., through deteriorated
health.6 Social costs are the sum of private costs and external costs. Neo-classical
economic analysis typically shows that differences between private and social costs
result in inefficient allocations if the polluting agent has no incentive to internalize
the external costs, resulting in welfare losses.

Economists have proposed several approaches to internalize these external
costs. On the one hand, market- or incentive-based instruments regulate either the
price or the quantity of pollution, e.g., environmental taxes or tradable pollution
permits. On the other hand, command-and-control policies set standards or enforce
the adoption of clean technologies. All of these instruments require knowledge
about the responsible polluters, the affected third parties, and the external costs
arising from pollution exposure.7 Empirical estimates are necessary to quantify
the external costs arising from pollution and to assess the potential benefits of
these abatement policies.

The following subsections introduce the empirical literature on the external
effects of air and water pollution, outline commonly applied policies targeting
these local pollution issues, and lists empirical evidence on their effectiveness.

1.2.1 Water pollution

Water pollution results from various substances from anthropogenic activities
being introduced to water bodies. Contamination mainly stems from agricul-
ture, sewage, industry, and urban settlements.8 Common contaminants include

5 Both examples relate to production externalities, but pollution externalities can also arise
from consumption.

6 Pollution externalities can affect human well-being through various channels, either by
impacting market outcomes (e.g., income, profits, production cost, prices) or by affecting
non-marketed goods (e.g., health, environmental amenities) (Freeman III, Herriges and Kling,
2014).

7 For example, an environmental tax must reflect the marginal damages incurred by third
parties to achieve efficient allocations. To set the optimal tax rate, these marginal damages in
terms of the economy, human health, or the environment must be known. A permit trading
scheme creates a market for the externality by issuing allowances to emit (permits) that can
be freely traded among polluting parties. In that case, the total amount of permits must be
set correctly for effective abatement.

8 The sources of water pollution are grouped into two categories: Point-source pollution
originates from a specific source with localized effects, e.g., an industrial plant discharging
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pathogens (e.g., bacteria, viruses), toxic substances (e.g., pesticides, oil, metals),
nutrients (e.g., nitrate, phosphate), biodegradable organic matter (e.g., plant or
animal matter) and other forms of pollution (e.g., thermal energy) (Von Sperling,
2007). These contaminants have a wide range of adverse effects on human health
and the environment. For example, pathogens are responsible for waterborne
diseases, pesticides can be toxic for humans and wildlife, and nutrients can lead
to excessive algae growth (eutrophication). Human health impacts typically arise
from consumption of contaminated drinking water, but can also be related to con-
sumption of plant or animal products affected by water pollution or recreational
activities in polluted waters, e.g., swimming and fishing.

The health impacts of water pollution have been studied for centuries. Early
research dates back to John Snow, a physician who studied the causes of cholera
outbreaks in the 19th century. At the time, it was commonly believed that cholera
is transmitted through poisonous particles in the air (miasma), but John Snow
could not find evidence to corroborate this belief.9 Anecdotal evidence led him
to suspect contaminated drinking water as a cause of cholera, so he tested his
hypothesis using a quasi-experiment: Water supply companies served distinct
areas in London using contaminated water from the Thames River. One company
relocated their intake pipes further upstream, where the river stream was not
yet contaminated by cholera victims’ evacuations. John Snow used this variation
in pollution exposure and compared death rates between households served by
different water suppliers. He discovered that the death rate for dirty-water users
was eight to nine times higher than for clean-water users (Snow, 1855).

Since then, epidemiologists, environmental scientists, and health and environ-
mental economists have contributed to a plethora of empirical evidence on the
health impacts of water pollution. Many studies focus on microbial pathogen
pollution of drinking water that arises from contamination with sewage and causes
infectious diseases, such as cholera and other diarrheal diseases. This type of
pollution is still a significant risk to safe drinking water in low- and middle-
income countries.10 Epidemiologists have consistently found that improvements in
drinking water quality and sanitation decrease the prevalence of diarrheal disease

chemicals, a sewage company draining wastewater into a river, or an oil spill. Non-point
source pollution cannot be attributed to a specific emitter; it has diffuse sources and can enter
the water body at various locations, e.g., agricultural run-offs cannot be traced back to a
specific farm, similar to urban run-offs (Von Sperling, 2007).

9 Today we know that cholera is a waterborne disease that is caused by bacteria and leads to
severe diarrhea, nausea, and dehydration. If untreated, it can be fatal within hours.

10 Although more prevalent in poorer countries, waterborne diseases are also a challenge in
rich countries like the US, where local outbreaks due to pathogen polluted waters frequently
occurred in the last decades (Pandey et al., 2014).
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(Luby et al., 2015; Wolf et al., 2014). Recent contributions from the economics
domain include, for example, Cutler and Miller (2005) showing that mortality
decreases during the 19th and 20th centuries in the US were driven to a large
extent by improvements in water quality preventing deaths from typhoid fever.
These short-term mortality decreases had long-lasting impacts on human capital
formation, as indicated by large increases in earnings and educational attainment
among those not exposed to typhoid in early life (Beach et al., 2016).11,12

Pathogen pollution from sewage and wastewater is not the only threat to water
quality. Another serious problem is nutrient water pollution from nitrogen and
phosphate, with intensive conventional agriculture being a major contributor to
nutrient inputs (Singh and Craswell, 2021).13 The application of mineral fertilizer
and animal manure often leads to over-fertilization, i.e., more nutrients being
applied than the plant can absorb. Excess nutrients can leach into the soil and run
off into surrounding surface and groundwater bodies. Nutrient pollution in surface
waters harms the ecosystems by accelerating harmful algal blooms and creating
low-oxygen waters that are toxic to wildlife. It can also directly affect humans,
e.g., through decreased recreational value or health risks, like gastrointestinal and
dermatological diseases (Smith and Schindler, 2009).

Nutrient pollution in groundwater bodies is particularly worrisome. Groundwa-
ter resources serve as the only source of drinking water in many parts of the world
(Shukla and Saxena, 2019), and water pollution might become irreversible due to
the prohibitive cost of remediation in groundwater bodies (Lall, Josset and Russo,
2020). Groundwater nitrate pollution, for example, has been increasing in recent
decades all over the world.14 This trend is generally linked to the increasing use
of fertilizer nitrogen, and there is ample empirical evidence to support that claim
(e.g., Bawa and Dwivedi, 2019; Gallagher and Gergel, 2017; Wick, Heumesser and
Schmid, 2012). Nitrate polluted drinking water poses a risk to human health when

11 Another strand of economic literature focuses on infant health and child mortality. For example,
Currie et al. (2013) present a quasi-experimental design exploiting a panel of mothers with
multiple children; they find that contaminated drinking water has significant and substantive
impacts on birth weight and gestation among less-educated mothers. Brainerd and Menon
(2014) show that exposure to fertilizer agrichemicals dissolved in drinking water causes higher
mortality rates among infants, using seasonal variation in crop planting in India.

12 Note that the economic literature on water pollution is relatively scarce, in contrast to the
numerous studies exploring the consequences of air pollution. This is a consequence of limited
data availability, as data on water contamination is harder to obtain even in high-income
countries such as the US (Currie et al., 2013).

13 Other sources of nutrient water pollution are fossil fuel combustion (nitrogen oxides), urban
run-offs from densely populated areas, and industry discharge.

14 Globally, mean nitrate levels have risen by about 36 percent since 1990; in some regions in
the Eastern Mediterranean and Africa, nitrate concentrations have more than doubled in the
last decades (Shukla and Saxena, 2019).
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permissible limit values are exceeded.15 Consumption of nitrate-contaminated
water causes methemoglobinemia among infants (blue baby syndrome) and is
suspected of having carcinogenic effects on adults (Shukla and Saxena, 2019).

Polluted groundwater bodies impose costs on society not only through their
detrimental consequences on human health, but also by raising the costs of
drinking water production. When water supply companies abstract raw water
from polluted groundwater bodies to produce drinking water, they must take
preventive measures to protect human health. If raw water nitrate surpasses the
legal threshold, the companies must take additional processing steps to ensure that
the drinking water is safe for human consumption, requiring more chemical inputs,
electricity, or even investments in denitrification plants (Westling, Stromberg
and Swain, 2020). This raises the cost of drinking water production, which are
typically passed through to water consumers in the form of price increases.

The fifth chapter of this dissertation adds to this literature by empirically
investigating the relationship between organically farmed land and nitrate concen-
trations in surrounding groundwater bodies, contributing to a better understanding
of the determinants of groundwater quality. Moreover, the chapter quantifies the
impact of groundwater nitrate pollution on the cost function of water suppliers,
which is necessary to comprehensively assess the external effects of agricultural
fertilizer use.

1.2.2 Air pollution

Air pollution is a consequence of releasing various gases and particles into the
atmosphere. Many air pollutants are directly emitted from burning fossil fuels,
e.g., carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and
particulate matter (PM).16 These primary pollutants originate from different
sources, e.g., CO stems from incomplete combustion in gasoline-powered vehicles
and residential heating systems, while SO2 is mostly emitted from coal- or oil-fired
power plants. NO2 belongs to the group of highly reactive nitrous oxides (NOx)
and forms mostly from motor vehicle exhaust, while PM is also a by-product of
combustion (Seigneur, 2019).17 A notable exception is ground-level ozone (O3),
which is a secondary pollutant that is not directly emitted but forms in the lower

15 The WHO limit value amounts to 50 mg/l. The same limit applies in the EU, whereas the
US limit is 45 mg/l.

16 Other sources are mechanical processes, e.g., in transportation where braking and tire wear
release particulate matter, or natural processes, e.g., forest fires and volcanic eruptions.

17 PM also originates from mechanical processes (e.g., construction activities, farming, braking)
and from natural sources (e.g., dust, sea salt, pollen) (Seigneur, 2019).
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atmosphere as a consequence of chemical reactions between different pre-cursor
pollutants, such as NO2 and volatile organic compounds (VOCs).18 All of these
air pollutants deteriorate human health via inhalation or ingestion. Moreover,
air pollution damages the ecosystem, e.g., SO2 and NO2 cause acid rain that
harms forests and freshwater resources, and NO2 emissions contribute to the
eutrophication of surface waters.

Anthropogenic air pollution started with the discovery of fire tens of thousand
of years ago (Hardy et al., 2012). At that time, human exposure to air pollution
resulted from burning wood and other biomass in poorly ventilated areas. The
health impacts of air pollution were first documented at least 2400 years ago
by Hippocrates in Greece, but it was not until the Industrial Revolution during
the 18th and 19th centuries that outdoor air pollution became a major public
health concern (Fowler et al., 2020). The large-scale burning of coal and oil led
to the emission of significant amounts of air pollution, degrading air quality in
urban areas and in proximity to industrial facilities. In the early 20th century,
industrial centers in Europe and the US suffered from extreme pollution episodes
that caused notable spikes in mortality rates. For example, the London Fog of
December 1952, where smoke from combustion mingled with fog and became
smog, resulted in tripled death rates with more than 3,000 excess deaths during
the first three weeks after the event (UK Ministry of Health, 1954).19,20 These
extreme air pollution episodes changed the public perception of the air pollution
problem and served as a catalyst for epidemiological air pollution research and
policy initiatives to mitigate air pollution (Bell and Davis, 2001).

The field of epidemiology has contributed a vast number of empirical studies on
the health effects of air pollution. It is well established that short-term exposure to
high concentrations and long-term exposure to low concentrations of air pollution
causes cardiovascular and respiratory diseases (Brunekreef and Holgate, 2002;
Kampa and Castanas, 2008). Inhaling polluted air affects the respiratory system,
causing chronic obstructive pulmonary disease, asthma, and lung cancer (Kurt,
Zhang and Pinkerton, 2016). Particulate matter can also penetrate the lung
tissue and cause systemic inflammations in different parts of the body, affecting

18 Ozone occurs naturally in the earth’s stratosphere, where it forms the ozone layer and protects
life on earth from the sun’s ultraviolet radiation. In contrast, ozone in the lower atmosphere
is harmful to human health.

19 Recent estimates suggest even greater numbers of up to 12,000 excess deaths in the three
months after the smog episode (Bell and Davis, 2001).

20 Other examples include the Meuse Valley (Belgium) in 1930, where stable atmospheric
conditions and the accumulation of industrial emissions resulted in mortality rates being ten
times as large as normal, or Donora (PA, US) in 1948, where atmospheric inversions trapped
air pollutants in a valley leading to sixfold increases in death rates (Bell and Davis, 2001).
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blood clotting, obstructing cardiac vessels, and consequently increasing the risk
for heart attacks or failures (Rajagopalan, Al-Kindi and Brook, 2018). Moreover,
evidence of neurodegenerative effects of air pollution is accumulating, showing that
particulate matter can infiltrate the brain, potentially causing strokes, Alzheimer’s
and dementia, and Parkinson’s disease (Block and Calderón-Garcidueñas, 2009;
Grande et al., 2020).

These numerous health impacts of air pollution lead to increases in mortality
(Brunekreef and Holgate, 2002; Hoek et al., 2013), especially among vulnerable
populations like children and infants (Jayachandran, 2009; Knittel, Miller and
Sanders, 2016). The adverse effects also materialize through higher hospitalization
rates (Iskandar et al., 2012; Lleras-Muney, 2010), and medicine intake (Ostro
et al., 2001), resulting in direct costs in the health care system for treating and
curing patients.

Recently, economists have contributed empirical evidence pointing towards the
negative consequences of air pollution exposure for a range of related outcomes.
For example, air pollution exposure affects the process of human capital formation
by increasing school absences (Currie et al., 2009; Komisarow and Pakhtigian,
2022). It also diminishes the labor productivity of workers, both at the extensive
margin by increasing employee absenteeism (Aragon, Miranda and Oliva, 2017;
Hanna and Oliva, 2015), and at the intensive margin by decreasing cognitive
capabilities (Chang, Graff Zivin and Neidell, 2016; Chang et al., 2019; Graff Zivin
and Neidell, 2013). Further, air pollution reduces the subjective well-being of
exposed individuals, either directly by deteriorating their health, or through
indirect channels, like housing costs (Levinson, 2012; Luechinger, 2009). These
adverse effects on labor market outcomes, human capital formation, and well-
being impose indirect costs on society that go beyond direct health care costs.
These costs need to be considered when quantifying the losses from air pollution
exposure, to aid policymakers in designing effective mitigation strategies.

The third chapter of this thesis contributes to this literature by exploring the
mechanism underlying the negative relationship between air pollution and human
well-being, showing that parents are indirectly affected in their well-being through
pollution-induced health impacts on their children. The fourth chapter contributes
by evaluating the effects of the environmental externalities from resource extraction
on the labor market outcomes of individuals living close to a hydraulic fracturing
site.
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1.2.3 Environmental policies

In recent years, increasingly stringent environmental mitigation policies have been
implemented all over the world, especially with respect to local pollutants (Brunel
and Johnson, 2019). These policies aim to minimize the damages incurred by
individuals, firms, and the environment, and consist of many different approaches,
e.g., command-and-control instruments, taxes, subsidies, pollution permits, or a
combination of these instruments. Implementing these policies is costly since it
requires government expenditures for administrative efforts. Furthermore, policy
enforcement causes adaption costs for firms and households that stem from, e.g.,
expenditures for pollution control equipment or fines to be paid in the case of
non-compliance. To offset these costs, the policy measures need to offer sufficiently
large benefits in terms of damage reductions. Hence, it is crucial to assess whether
these policies achieve their goals of reducing pollution. This subsection reviews
the empirical evidence on the effectiveness of important policies combating water
and air pollution in Europe and the US.

Water pollution policies

An important step toward protecting water bodies in the US was the passing
of the federal Clean Water Act (CWA) in the 1970s. The CWA aims to reduce
surface water pollution from point sources, and relies on non-tradable pollution
permits and subsidizing the use of pollution control equipment: It regulates the
amount of pollutants that can be discharged from industrial plants and wastewater
treatment facilities by issuing permits to polluters, and it offers federal grants
to municipalities for improving their wastewater treatment facilities (Keiser and
Shapiro, 2019b). The introduction of the CWA led to substantial improvements
in surface water quality in the following decades, although improvements were
not necessarily achieved in a cost-efficient way (Keiser and Shapiro, 2019a).
However, since the CWA focuses on point-source pollution, the policy could not
significantly reduce pollution from non-point pollution, such as nutrient pollution
from agricultural run-offs.

In addition to the ambient surface water quality regulations, the US government
issued the Safe Drinking Water Act in 1974. It sets and enforces drinking water
standards, authorizes actions to protect groundwater sources, and grants subsidies
for cleaner drinking water (Keiser and Shapiro, 2019b). Empirical evidence on its
effectiveness is scarce because long-term data on actual pollution concentrations
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in drinking water systems are not available in the US,21 but some evidence
links decreases in water quality violations to mandatory information disclosure
requirements (Bennear and Olmstead, 2008).

In contrast to the US, water regulations in the EU have more holistic goals.
The main water quality policy is the Water Framework Directive (WFD) which
seeks to improve water quality in all types of water bodies, including ground- and
surface waters (EU, 2000a). However, the WFD delegates implementation and
enforcement to the member states of the EU, leading to delays in the enforcement
process in single member states (European Commission, 2021b), hence there are
no empirical studies on its overall effectiveness.

An integral part of the WFD is the EU Nitrates Directive, which aims to
protect ground- and surface waters from agricultural pollution (EU, 1991).22 The
directive sets a legally binding limit value of 50 mg/l for nitrate concentrations
in water bodies; member states’ governments are obliged to implement action
plants if nitrate concentrations exceed this value. Moreover, it defines voluntary
guidelines for farmers on the amount and timing of nitrogen application and the
adoption of modern nitrogen management tools. Chabé-Ferret, Reynaud and Tène
(2021) find that the EU Nitrates Directive reduced the concentration of nitrates
in French surface water bodies by eight percent. Large-scale empirical evidence
on its impact on groundwater bodies is lacking so far.23

Air pollution policies

Concerning air pollution control, one of the earliest policies of the 20th century
was the US Clean Air Act (CAA), initially enacted in 1963 and amended several
times since then. It aimed at developing a federal program to address air pollution
problems and fostered research into abatement and monitoring techniques. A major
amendment occurred in 1970, which included the adoption of National Ambient
Air Quality Standards (NAAQS) for ambient concentrations of several criteria
pollutants, e.g., SO2, O3, or coarse particulate matter (PM10). If ambient pollution
21 Keiser and Shapiro (2019b) note that given the importance of water quality, surprisingly little

economic research analyzes policy effectiveness. There are only a few papers studying the
effect of regulations on water quality providing causal inference. The main reasons are limited
data availability on pollution levels and policy implementation. Moreover, policies are often
uniform without spatial variation, spatial computation involves modeling the water networks,
and it is not clear which pollutants are most relevant.

22 The Nitrates Directive mandates regular national monitoring and reporting on nitrate concen-
trations in all EU member states. Data from German groundwater bodies is used in the fifth
chapter of this dissertation.

23 Velthof et al. (2014) conduct an ex-ante modeling exercise suggesting that the Nitrates
Directive reduces agricultural nitrate leaching by up to 16 percent in the EU-27, but they do
not explore consequences for groundwater quality.
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levels in an area, typically a county, exceed these standards, the area is designated
into non-attainment status. As a consequence, the federal state government must
implement stricter regulations to reduce emissions from stationary and mobile
sources.24

Evidence from ex-post studies using quasi-experimental designs suggests that
the increased policy stringency in non-attainment areas led to significant reductions
in ambient O3 and PM10 concentrations:25 Henderson (1996) shows that O3 levels
in non-attainment counties decreased by 8 percent relative to attainment counties.
Auffhammer, Bento and Lowe (2009) find that PM10 concentrations in non-
attainment areas dropped by 11 to 14 percent. These ex-post estimates are three
times larger than the ex-ante estimates of the Environmental Protection Agency
(Aldy et al., 2022), highlighting the importance of conducting ex-post evaluations.

Further amendments to the CAA also introduced market-based environmental
policies, e.g., the national cap-and-trade program on SO2 emissions that was
implemented in the 1990s to address the acid rain problem. These market-based
instruments are typically more cost-effective in achieving emission reductions
by abating emissions where it is cheapest. Indeed, ex-post analysis on the SO2

cap-and-trade program suggests cost savings of about 20 percent relative to a
uniform performance standard (Chan et al., 2018).26

In the European context, the current basis for air pollution control is laid
out in the EU Directive on Ambient Air Quality and Cleaner Air (EU, 2008b).27,

28 The directive sets legally binding limit values for ambient concentrations of
twelve air pollutants that have to be attained by member states. If member
states fall out of attainment, they are obliged to propose air quality plans listing

24 The NAAQS are enforced by the federal states via so-called State Implementation Plans to
ensure attainment of the standards.

25 Concerning SO2, Greenstone (2004) finds that the CAA had a modest effect with significant
reductions of up to 11 percent in the early 1990s.

26 A comprehensive review of regulations implemented under the CAA and related empirical
evidence is given by Aldy et al. (2022).

27 Air pollution control has been a focus of EU policy since the 1980s. After the Convention on
Long-range Transboundary Air Pollution was signed in 1979, more directives targeting local
air pollution came into place in the 1980s, e.g., for SO2 (Directive 80/779/EEC) and NO2
(Directive 85/203/EEC). In 1996, the Air Quality Framework Directive (EU, 1996) established
a comprehensive strategy describing the basic principles of air quality assessment and listing
relevant several pollutants to be regulated. Subsequently, several daughter directives set
monitoring standards and limit values for these pollutants (Directives 96/62/EC, 2000/69/EC,
2002/3/EC, and 2004/107/EC). In 2008, these directives were consolidated and replaced by
the Ambient Air Quality Directive (EU, 2008b).

28 Moreover, sector-specific legislation establishes standards to improve air quality, e.g., con-
cerning industrial emissions (EU, 2001, 2010, 2015), road vehicles (EU, 2008a, 2009b, 2016a),
fuels (EU, 2003, 2016b) and product-design standards (EU, 2009a).



Section 1.3 13

policy measures to improve air quality.29 These air quality plans are typically
implemented on a local level, e.g., in cities or regions, and consist of a variety of
(mostly command-and-control) policy instruments targeting different sectors.

In recent years, air pollution in the EU frequently exceeded the limit values for
NO2 and PM10, mostly in urban areas, with almost two-thirds of NO2 exceedances
being linked to dense traffic or proximity to major roads (EEA, 2022). Conse-
quently, most air quality plans focus on the traffic sector and consist of policy
measures targeting reductions in traffic volumes and a modal shift to cleaner
modes of transport, e.g., by improving public transport, adopting low emission
zones, and promoting cycling (EEA, 2018). Empirical evidence on the effectiveness
of these policy measures is relatively scarce, presumably due to their fragmented
nature and limited data availability. A notable exception are low emission zones,
which are driving restrictions based on motor vehicle emission intensity, that have
been shown to effectively decrease traffic-related pollution inside their boundaries
(Gehrsitz, 2017; Wolff, 2014; Zhai and Wolff, 2021).

The second chapter of this dissertation contributes to the growing literature on
the effectiveness of environmental policies by studying one of the most common
command-and-control policies to reduce traffic-related air pollution. Specifically, it
examines the impacts of low emission zones on air pollution, individual well-being,
and health, while taking policy spillovers into account.

1.3 Methodology

All chapters of this dissertation apply econometric estimation techniques using
micro-level panel data.30 Chapters 2, 3, and 4 use methods to analyze treatment
effects: Chapter 2 focuses on estimating causal policy effects using a novel estimator
robust to time-varying effects developed by Callaway and Sant’Anna (2021).
Chapters 3 and 4 aim at recovering causal effects from observational data with
fixed effects regression models, while Chapter 4 combines this regression approach
with propensity score matching. Chapter 5 estimates dynamic panel data models
using the Generalized Methods of Moments (GMM) estimator. These methods
are briefly introduced in this section.

29 Between 2014 and 2020, 944 air quality plans were reported to the regulatory agency, out of
which 557 were implemented (EEA, 2022).

30 Panel data consist of repeated observations at different points in time on the same set of
cross-sectional units of interest (e.g., firms, individuals, pollution monitors). In terms of
notation, the cross-sectional units are denoted by i = 1, . . . , N and the time periods by
t = 1 . . . T .
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1.3.1 Treatment effect analysis

Treatment effect analysis focuses on estimating the causal effects of a policy
or an intervention on an outcome variable of interest. The standard way of
thinking about treatment effects originates from the potential outcome framework
of Rubin (1974). The basic idea is that the observed outcome, Yit, is only one of
several potential outcomes associated with different treatment states. Suppose
the intervention is of binary nature, where unit i either receives the treatment at
time t, Dit = 1 (treatment group), or remains untreated, Dit = 0 (control group).
In this case, unit i has two potential outcomes for the treatment, Y1it, and the
no-treatment state, Y0it. Researchers are often interested in the average effect of
receiving the treatment, i.e., the Average Treatment Effect on the Treated (ATT):

ATT = E[Y1it|Dit = 1] − E[Y0it|Dit = 1] (1.1)

The fundamental problem of evaluation arises because only one potential
outcome is observed, E[Y1it|Dit = 1], while the other unobserved outcome remains
counterfactual, E[Y0it|Dit = 1]. When treatment assignment is random across units
and compliance with the treatment is perfect, potential outcomes are independent
of treatment assignment.31 In this case, we can estimate the ATT by replacing
the conditional expectations in equation 1.1 with their sample analogues, i.e., the
average outcomes in the treatment and the control group.

Without random treatment assignment, units can self-select into the treatment
based on their potential outcomes, introducing selection bias and preventing
identification of causal effects. With observational data, treatment assignment
is typically not random, such that additional assumptions are necessary to find
a valid counterfactual for the treated group. One possibility is to evoke the
conditional independence assumption, i.e., potential outcomes are independent
of treatment assignment conditional on a set of observable covariates, Xit.32 If
the conditional independence assumption holds, we can estimate the ATT based
on conditional-on-X comparisons between treatment and control groups. This
can be achieved either through regression analysis, matching approaches, or both
(Angrist and Pischke, 2008).33

31 Formally: E[Y1it|Dit = 1] = E[Y0it|Dit = 1].
32 Formally: (Y0it, Y1it) ⊥ Dit|Xit ⇒ E[Y1it|Xit, Dit = 1] = E[Y0it|Xit, Dit = 1] = E[Y0it|Xit].
33 A common matching approach is propensity score matching, which is applied in combination

with regression analysis in Chapter 4 of this thesis. Caliendo and Kopeinig (2008) provide an
overview of the most common matching approaches, their benefits, and pitfalls.
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In practice, the conditional independence assumption might not be credible in
the presence of unobserved confounders that are correlated with treatment assign-
ment. If these confounders are unit specific and do not vary over time, we can use
an alternative identifying assumption, where assignment is random conditional on
time-varying observable covariates, Xit, and time-invariant unit-level heterogeneity,
Ai.34 If we are willing to assume that the conditional expectation function is linear
in parameters, i.e., E[Y0it|Ai, Xit, t] = α + λt + A′

iγ + Xitδ, and the treatment
effect is additive and constant across units and time (homogeneous treatment
effects), i.e., E[Y1it|Ai, Xit, t] = E[Y0it|Ai, Xit, t] + ρ, we can use a two-way fixed
effects regression to recover the ATT:

Yit = αi⏞⏟⏟⏞
=α+A′

iγ

+λt + ρDit + Xitδ + ϵit (1.2)

Equation 1.2 depicts a two-way fixed effects (TWFE) model: The individual
fixed effects αi capture the unobserved time-invariant heterogeneity across individ-
uals. The time fixed effects λt capture the unobserved heterogeneity across time
periods. Equation 1.2 can be estimated using the standard within estimator35 to
obtain unbiased and consistent estimates of the causal parameter ρ, under the
identifying assumption of strict exogeneity.36 Note that regardless of whether
the treatment assignment is random or not, the Stable-Unit-Treatment-Value-
Assumption needs to be satisfied. It requires that the potential outcomes of unit
i, are not affected by the treatment assignment of any other unit j, i.e. there are
no relevant interactions (spillovers) between the members of the population.37

The TWFE model in equation 1.2 has been frequently applied in the empirical
literature to recover causal effects.38 The popularity of the TWFE model stems
from the belief that it is equivalent to a difference-in-differences (DD) design, but
this holds only for the case with two time periods and two groups. In the case of a

34 Formally, this implies E[Y1it|Xit, Ai, t, Dit = 1] = E[Y0it|Xit, Ai, t, Dit = 1] =
E[Y0it|Xit, Ai, t].

35 The within estimator removes the unit fixed effects, αi, by subtracting off unit-level averages
across time from equation 1.2 and applies Ordinary Least Squares (OLS) to the time-demeaned
model. It is also known as Fixed Effects estimator, see Section 10.5 in Wooldridge (2010).

36 Formally: E[ϵit|Dit, Xit, Ai, t] = 0.
37 Formally: (Y1it, Y0it) ⊥ Djt ∀i ̸= j ∀t. Chapter 2 presents an empirical example where spatial

spillovers between treated and controls are present.
38 This is true for environmental economics, but also other economics disciplines: 19 percent of

all empirical papers published by the American Economic Review between 2010 and 2012 have
used a TWFE regression to estimate treatment effects (De Chaisemartin and d’Haultfoeuille,
2020).
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binary treatment with two periods, the TWFE model in equation 1.2 corresponds
to the classical DD model, where the treatment effect is estimated as the difference
between changes in outcomes before and after treatment in a treatment and a
control group.39 The DD identifying assumption relies on parallel trends between
treatment and control group, i.e., the average outcomes in treatment and control
group would have followed the same trend in the absence of treatment.40 However,
identification is not straightforward in the presence of multiple time periods,
multiple treatment groups, or variation in treatment timing.

Recent econometrics literature has pointed out that the TWFE model cannot
recover the causal parameter if treatment effects are heterogeneous across time
or cohorts/groups (De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon,
2021). Goodman-Bacon (2021) shows that under staggered treatment adoption,
i.e., when units receive the treatment at different points in time, and under time-
varying treatment effects, the TWFE model cannot recover the ATT. Instead,
the parameter estimate of ρ in 1.2 represents a weighted average of all possible
two-group two-period estimates, where the weights are determined by sample sizes
in each group and the variance in the treatment variable. De Chaisemartin and
d’Haultfoeuille (2020) show that these weights can even be negative. Following
this criticism, Callaway and Sant’Anna (2021) developed an estimator that yields
unbiased estimates under staggered treatment adoption and treatment effect
heterogeneity. Their approach estimates separate treatment effects for each time
period and treatment group and aggregates these estimates using strictly positive
weights based on treatment group sizes.

1.3.2 Dynamic panel data models

Many economic relationships are dynamic in nature, where today’s outcome
depends on its own past realizations. The availability of panel data enables
empirical researchers to model these dynamic relationships. The standard approach
is to include a lagged dependent variable as a regressor to capture persistence in
the dependent variable.

39 Angrist and Pischke (2008) introduce the difference-in-differences model as a useful alternative
when treatment varies at a more aggregate level, e.g., across federal states. In that case,
conditioning on state-level fixed effects instead of individual-level fixed effects is sufficient,
and the model can be estimated using cross-sectional data (instead of panel data).

40 In general, the strict exogeneity assumption of the TWFE model is stricter than the parallel
trends assumption of the DD model. In the two-period, two-group case, both are equivalent.
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yit = βyit−1 + µi + ϵit (1.3)

Equation 1.3 depicts a dynamic panel data model, where the current outcome,
yit, depends on the outcome of the last period, yit−1, and unobserved time-
invariant heterogeneity captured by unit fixed effects, µi. The inclusion of the
lagged dependent variable violates the assumption of strict exogeneity of regressors
since yit−1 depends on past values of the error term, ϵit. This causes a correlation
between the lagged dependent variable and the residuals of the (time-demeaned)
model, essentially creating an endogeneity issue.41 Estimating equation 1.3 with
the standard within estimator will typically be biased and inconsistent when using
micro-level panel data, where the number of units N is large while the number of
time periods T is small (Nickell, 1981).42

To correct for the bias stemming from the correlation between the lagged
dependent variable and the error term, instrumental variable approaches can be
applied.43 Anderson and Hsiao (1982) propose to estimate equation 1.3 in first-
differences to eliminate the unit-level fixed effects, and then use twice lagged values
of the dependent variables as instruments for the differenced lagged dependent
variable.

∆yit = β∆yit−1 + ∆ϵit (1.4)

Equation 1.4 is the first-differenced version of equation 1.3. Under the assump-
tions that the lagged dependent variable is independent from current disturbances,
i.e., E[yit−1ϵit] = 0, and that the error terms are serially uncorrelated, yit−2 is
a valid instrument for ∆yit−1 = yit−1 − yit−2 as it is correlated with ∆yit−1 and
orthogonal to ∆ϵit. In this framework, the endogenous regressor is instrumented
with one instrumental variable so that the model is just identified. The Anderson
and Hsiao (1982) estimator is consistent, but not necessarily efficient as it relies
only on one moment condition, although there are additional moment conditions
available that could be exploited. Arellano and Bond (1991) developed this idea
further and proposed to use all available lags, yit−h, h ≥ 2, as instruments in
41 Formally: E[ϵit|yit−1, ..., yi0, µi] ̸= 0 since E[yitϵit] = βE[yit−1ϵit]+E[µiϵit]+E[ϵ2

it] = E[ϵ2
it] > 0.

42 The asymptotic bias of the within estimator does not disappear with N → ∞. Alvarez and
Arellano (2003) demonstrate that the asymptotic bias disappears if lim( N

T ) = 0, meaning
that consistency could be achieved if a longer time span was available.

43 Instrumental variable estimators rely on employing instruments that are correlated with the
endogeneous explanatory variable, but independent from the error terms.
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a first-differenced Generalized Methods of Moments (GMM) procedure. This
approach is consistent if T is fixed and N tends to infinity.

The approach was extended by Blundell and Bond (1998). They combined
equations 1.3 and 1.4 into a system of equations in levels and first differences,
and obtained additional instruments for the levels equation (BB system-GMM).
Specifically, the equations in levels are instrumented by first-differenced lagged
values, assuming that these first-differenced instruments are orthogonal to the
unit-specific fixed effects. This improves efficiency by using more information
relative to the first-difference Arellano and Bond (1991) estimator, especially if
the dependent variable is highly persistent, i.e., when β is close to one.

1.4 Outline and contributions

Table 1.1 lists the scientific articles associated with each chapter of this dissertation,
including co-authors, own contribution, and current publication status. The
subsequent sections outline each chapter’s motivation and relevance, contributions,
and main results.

1.4.1 The air quality and well-being effects of low emission
zones

The second chapter, entitled The Air Quality and Well-Being Effects of Low
Emission Zones and co-authored with Luis Sarmiento and Aleksandar Zaklan,
analyzes the effectiveness and well-being consequences of driving restriction policies.
Specifically, we study the most common form of command-and-control policies
targeting urban air pollution in Europe, namely low emission zones (LEZs).

The article contributes to the literature in several ways: First, by compre-
hensively analyzing the policies’ impacts on traffic-related pollution, ground-level
ozone, and overall air quality. Second, by analyzing spatial policy spillovers
that affect pollution levels in neighboring areas, and by uncovering seasonally
heterogeneous effects. Third, by providing the first evidence of adverse well-being
effects of driving restriction policies.

We identify causal impacts of the policy by exploiting staggered adoption of
LEZs across different cities. In doing so, we use difference-in-differences designs
robust to staggered implementations and time-varying treatment effects. The
identification assumption is that conditional on observables, the implementation
of LEZs is orthogonal to unobserved determinants of air pollution, health, and
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subjective well-being. The analysis of LEZs’ effectiveness is based on air pollution
data on the most frequently measured traffic-related contaminants (CO, PM10,
NO2) and ground-level ozone provided by the German Environmental Agency. To
comprehensively assess the effects on overall air quality, we construct an air quality
index (AQI) based on hourly concentrations of these pollutants. Individual-level
data for the analysis of well-being and health comes from the German Socio-
Economic Panel.

The results confirm that LEZs decrease traffic-related air pollutants, like PM10

and NO2. In contrast, O3 levels increase after policy implementation, both inside
and outside the LEZs’ boundaries. Overall air quality improves inside of the zones,
indicating that the increases in O3 are not large enough to offset the decreases
in traffic-related pollutants. We also show that the frequently used two-way
fixed effects difference-in-differences models tend to underestimate the policy’s
effectiveness due to time-varying policy effects. Moreover, the analysis uncovers
substantial seasonal heterogeneity in LEZs’ air quality impacts, with decreases
in traffic-related pollution being more pronounced in winter. In contrast, ozone
increases mainly occur during summer, when warmer temperatures and longer
sunshine hours accelerate the ozone formation process.

Concerning the effect on individual-level outcomes, we find decreases in self-
reported life satisfaction among people living inside a LEZ after policy implemen-
tation. Decreases are especially pronounced for owners of diesel cars – the engine
class facing the most stringent restrictions – and for working-age individuals. We
further find significant reductions in hypertension cases among LEZ inhabitants,
in line with the empirical evidence showing that LEZs decrease cardiovascular dis-
eases. Moreover, we find similar-sized reductions in life satisfaction for individuals
dwelling near a LEZ. However, the health outcomes of neighboring individuals
are not significantly affected, indicating that people living in the vicinity of LEZs
bear the costs of restricted mobility but do not benefit from improvements in air
quality.

Our findings suggest that policymakers should consider refining the design of
LEZs to minimize pollution spillovers and to mitigate the unintended increases in
ozone, e.g., by imposing seasonal driving restrictions or enlarging coverage. The
negative well-being effects might be reduced by increasing policy acceptance, e.g.,
through information campaigns about the policy’s health benefits.



Section 1.4 21

1.4.2 Indirect effects of ground-level ozone on well-being

The third chapter Indirect Effects of Ground-Level Ozone on Well-Being, written
collaboratively with Julia Rechlitz, Luis Sarmiento, and Aleksandar Zaklan,
explores the heterogeneous impacts of ground-level ozone exposure on human
well-being. The main contribution lies in disentangling the mechanisms through
which air pollution affects individual well-being and eliciting the indirect channel
of children’s health.

Using geo-referenced data on individuals and households from the German
Socioeconomic Panel (SOEP) and air pollution data from the German Environ-
mental Agency from 2005 to 2018, this study examines the relationship between
ozone exposure, subjective well-being, and child health. Based on substantial
literature on the pernicious effects of ozone exposure on child and infant health,
we hypothesize that ozone indirectly affects parents’ life satisfaction through
their children’s health impacts. We test this indirect channel by comparing the
well-being effects of ozone on parents and childless persons. We also examine the
direct channel ozone by estimating the impact on subjective health satisfaction of
exposed adults. Further insights into the mechanism are gained from distinguish-
ing between parents with children with respiratory illness and parents of healthy
children.

The empirical strategy relies on seasonal variation in ozone exposure to identify
the effect of air pollution on well-being and health satisfaction. We exploit the
exact interview date of SOEP individuals and their residential location to calculate
average ozone concentrations for different exposure windows, i.e., the week, month,
and quarter before the interview. We use fixed effects regression models to estimate
the impact of ozone exposure on subjective life and health satisfaction, controlling
for individual- and household-level covariates, weather impacts, interview month
and weekday fixed effects, and individual and year fixed effects. We estimate
separate effects for parents and childless people, assuming that the sensitivity of
individuals’ life satisfaction to ozone is not affected by childbirth.

Results suggest a consistently negative relationship between ozone exposure and
the well-being of parents, whereas childless people are not significantly affected in
their well-being. Health satisfaction of both groups is never significantly impacted
by ozone, indicating that the well-being impacts on adults’ health are too subtle
to notice or stem from another channel. Exploring the mechanism behind the
well-being effect on parents, we find that parents of children with respiratory
illness are driving the effect, whereas parents of healthy kids are not significantly
affected in their well-being. This provides direct evidence that children’s health
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affects the well-being of their parents, either through empathy, worries about
missing work, or costs of providing care. Moreover, the negative well-being effects
are concentrated among below-median earning parents, in line with the literature
showing that children from low-income families are generally less healthy than
children from high-income households. The results suggest that a cost-benefit
analysis of ozone-related environmental policies should take this indirect channel
into account.

1.4.3 Fracking and health-related absenteeism of employ-
ees

The fourth chapter, Fracking and Health-Related Absenteeism of Employees written
in collaboration with Luis Sarmiento, focuses on the adverse labor market impacts
of local pollution externalities stemming from resource extraction. Specifically, we
quantify the impact of pollution externalities from hydraulic fracturing on sur-
rounding households’ labor market outcomes by analyzing health-related employee
absenteeism. This chapter contributes to the empirical evidence on environmental
pollution and its impacts on individuals’ labor supply.

Hydraulic fracturing, commonly referred to as fracking, is a technique to
extract natural gas and oil from shale rock formations by injecting high volumes
of water, sand, and chemicals into the ground. If hydraulic fracturing leads to
significant negative environmental externalities, then individuals living in close
proximity to fracking sites will have poorer health outcomes and a higher number
of sick leave days than comparable individuals.

We combine 2000 to 2014 individual- and household-level data from the Panel
Study of Income Dynamics (PSID) with oil and gas well data from Pennsylva-
nia. We infer causality by using a differences-in-differences design that exploits
intertemporal and geographical variation in construction dates and locations of
fracking wells. We compare households located within a specific distance to a
fracking well to similar households located further away. Propensity-score match-
ing on socio-economic characteristics ensures comparability between both groups.
Moreover, our difference-in-differences specification controls for time-varying con-
founders on the individual- and household-level, for time-invariant unobserved
heterogeneity by including individual fixed effects and for time fixed effects.

Our results provide the first evidence of a significant negative labor market
effect of fracking, indicating that exposure to a well increases absenteeism by two to
three days. The magnitude of the effect is comparable to literature estimates on the
impacts of having a chronic illness, e.g., diabetes or obesity. The results inform the
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cost-benefit perspective of natural resource extraction activities, pointing towards
costs in terms of decreased labor supply that have been previously overlooked.

1.4.4 Organic farming, water quality, and drinking water
supply costs

The fifth chapter, Organic Farming, Water Quality, and Drinking Water Sup-
ply Costs, which is co-authored with Greta Sundermann and Astrid Cullmann,
provides empirical evidence on the relationships between agricultural farming
practices, groundwater pollution, and the cost of drinking water supply. The paper
contributes to the literature by linking organic farming practices and groundwater
nitrate pollution and by quantifying the impact of nitrate-polluted groundwater
on the cost of drinking water supply in Germany.

We merge seven administrative data sources containing geo-referenced in-
formation on groundwater nitrate pollution, organic farming, mineral fertilizer
application, land cover, settlement structure, weather, and firm-level data on
drinking water supply firms. We use a panel of groundwater nitrate monitors
from 2008 to 2016 to quantify the impact of organic farming on nitrate pollution
in groundwater bodies. We model annual nitrate levels as an auto-regressive
process that depends on the share of organically farmed land, conditional on other
factors affecting groundwater nitrates, such as mineral fertilizer application, land
use, weather, and time-invariant hydro-geological characteristics at the nitrate
sampling site. We estimate the auto-regressive model with monitor-level fixed
effects using the system GMM estimator proposed by Blundell and Bond (1998).
Results suggest that an additional percentage point in the share of organically
farmed land decreases nitrate concentrations in surrounding groundwater bodies
by 0.3 mg/l on average.

We quantify the impact of groundwater nitrate pollution on the cost of drinking
water supply based on a panel of groundwater-abstracting water supply companies.
Since water supply firms use different technologies and processes to remove nitrate
from abstracted raw water, we estimate separate effects for water treatment
costs, composed of expenditures for chemical and energy inputs, and total costs,
encompassing treatment costs, labor costs, and capital costs. We model treatment
cost as a function of water quality, conditional on the quantity of water abstracted,
the composition of source intake, and weather impacts. Estimates are obtained
using a two-way fixed effects model that accounts for unobserved firm-level
heterogeneity and common time trends. Our results suggest that an increased
groundwater nitrate concentration increases firms’ treatment costs. More precisely,
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a one percent increase in groundwater nitrate is associated with an increase in
treatment cost by about 0.04 to 0.05 percent. We acknowledge that the process of
nitrate removal might not only increase treatment costs but also labor and capital
costs. Therefore, we quantify the effect of groundwater nitrate pollution on the
total costs of water supply based on a total cost model accounting for labor and
capital prices, physical outputs, and environmental factors like pollution. Our
findings reveal that groundwater nitrate pollution significantly increases total
costs. The estimates show increases in total costs of 0.02 percent for an additional
percentage point in groundwater nitrate pollution.

From a policy perspective, our results suggest that organic farming systems can
contribute to improving groundwater quality. Expanding the share of organically
farmed areas, relative to conventionally farmed agricultural land, could reduce
groundwater nitrate pollution in the long run. This would be beneficial for drinking
water supply firms and their customers because improved water quality lowers
the costs of water supply. This could redeem the current situation, where water
consumers ultimately pay the price for pollution externalities stemming from the
agricultural sector.



Chapter 2

The Air Quality and Well-Being
Effects of Low Emission Zones
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2.1 Introduction

Air pollution is a well-known cause of welfare losses, mainly through its impacts
on health and human capital (e.g. Graff Zivin and Neidell, 2013; Sarmiento,
2022; Simeonova et al., 2021). Pollution levels are especially high in urban areas,
with tailpipe emissions from motorized vehicles being one of the primary sources
(Davis, 2008; Gallego, Montero and Salas, 2013). Governments have responded
to the mitigation challenge through various policy measures aimed at reducing
traffic-related emissions. One increasingly popular approach are low emission
zones (LEZs), which restrict vehicles from entering specific geographical areas
based on their emission intensity.

While the benefits of LEZs regarding traffic-related pollution are well-understood
(e.g. Gehrsitz, 2017; Pestel and Wozny, 2021; Wolff, 2014), the current literature
has yet to broaden its scope to a more general assessment of spatial spillovers
and overall air quality effects. Examining the zones’ impact on overall air quality
is necessary, as air quality goes beyond traffic-related pollution by incorporating
highly relevant secondary pollutants like ozone (O3) currently under-researched in
the LEZ literature.1 Moreover, looking at spatial spillovers is relevant because be-
havioral adaptations of drivers and chemical interactions in the lower atmosphere
can lead to unintended changes in air pollution outside the zones’ borders, raising
questions of environmental justice and policy effectiveness.

Furthermore, although current studies provide convincing evidence that LEZs
improve health outcomes (Margaryan, 2021; Pestel and Wozny, 2021), the liter-
ature is yet to provide a fuller picture of their overall well-being effects. Again,
a broader scope is warranted, as driving restriction policies do not only imply
benefits in the form of improved health outcomes but also costs by restricting
individual mobility, forcing changes in transportation modes, or imposing costly
retrofits on private vehicles. Evaluating the impact of LEZs on self-reported life
satisfaction allows us to understand whether the cost or the benefit side plays a
more prominent role in determining the policy’s impact on individuals’ well-being.
We estimate the impact of LEZs on affected individuals’ health and subjective
well-being outcomes with data from the German Socio-Economic Panel (SOEP).

Like previous studies, we identify the causal effect of LEZs by exploiting
the spatio-temporal variation arising from the staggered implementation of the

1 Primary (point source) pollutants are emitted directly from a source, whereas secondary
(non-point source) pollutants form when other pollutants react in the atmosphere. Examples
of primary pollutants are carbon monoxide (CO) and sulfur dioxide (SO2). Examples of
secondary pollutants are O3 and coarse particulate matter (PM10). It is also worth noting
that nitrogen dioxide (NO2) can both work as a primary and secondary pollutant.
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policy across different cities using difference-in-differences (DD) designs. The
identification assumption is that conditional on observables, the implementation
of LEZs is orthogonal to unobserved determinants of air pollution, health, and
subjective well-being. Furthermore, recent advances in the DD literature show
that two-way fixed effects difference-in-differences (TWFE-DD) estimates are
potentially biased under staggered policy adoption and dynamic treatment effects
(De Chaisemartin and d’Haultfoeuille, 2020; Goodman-Bacon, 2021). We confirm
the existence of this bias in the case of LEZs by decomposing the TWFE-DD
estimate with the methodology outlined by Goodman-Bacon (2021). Specifically,
TWFE-DD point estimates are biased towards zero because of the comparison of
later vs. earlier treated units. To avoid this source of bias, we use the Callaway
and Sant’Anna difference-in-differences (CS-DD) methodology (Callaway and
Sant’Anna, 2021), which allows us to estimate unbiased group and time-specific
average treatment effects on the treated (ATTs).

Our results confirm previous studies on the effectiveness of LEZs at decreasing
the concentrations of coarse particulate matter (PM10) and nitrogen dioxide (NO2)
(Gehrsitz, 2017; Pestel and Wozny, 2021; Wolff, 2014). Furthermore, we also find
robust evidence of an increase in O3, providing, to the best of our knowledge, the
first evidence of LEZs’ unintended effects arising from the inverse relationship
between NO2 and O3 in nitrous-rich regions like urban centers (Monks et al.,
2015) (cf. Section A.1). This O3 increase is quite relevant given the intrinsic
relationship between ozone exposure and exacerbated morbidity. For instance,
the 2019 Global Burden of Disease Study estimates 365,000 ozone-related deaths
per year around the world (DeLang et al., 2021). Nevertheless, even with the rise
in O3, we provide evidence of overall air quality improvements as captured by
the zones’ effect on the air quality index (AQI). Concerning spatial spillovers, we
show increments in the concentration of O3 and CO outside the zones’ borders
and no effects regarding PM10 and NO2.

Examining the effect on individual-level outcomes, we find a significant decrease
in individuals’ self-reported levels of life satisfaction. Decreases are especially
pronounced for owners of diesel cars – the engine class facing the most stringent
restrictions – and for working-age individuals. On average, the life satisfaction
of individuals living inside a LEZ decreases by 0.19 points after policy adoption.
This effect is substantive as it amounts to about 20% of the life satisfaction effect
of becoming unemployed found in the literature (Kassenboehmer and Haisken-
DeNew, 2009). We further show that the drop in life satisfaction is immediate,
lasts for several years after policy implementation but is ultimately transient.
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Additionally, we provide evidence of improvements in objective health outcomes.
Focusing on the subset of individuals with available health data, we estimate a
significant decrease in hypertension cases, while confirming the negative impact on
well-being for this smaller sample. Therefore, our results suggest that the implicit
cost of restricting mobility outweigh the well-being benefits of improved health
outcomes, at least on average. Looking at heterogeneous effects by age groups
reveals that the decrease in hypertension cases accrues mostly to people aged 60
or older, while the life satisfaction decrease is less pronounced within this age
group.

Concerning policy spillovers to outside areas, we find similar-sized reductions
in life satisfaction for individuals dwelling near a LEZ, which is not surprising
given that persons living outside the zone’s borders likely need to enter the
neighboring zone at some point in time for leisure or work-related activities.
However, health outcomes for these individuals show no significant changes after
policy implementation, implying that people in the vicinity of LEZs bear the costs
of restricted mobility but do not benefit from improvements in air quality.

From a policy perspective, our findings suggest that policymakers should
consider refining the design of LEZs to minimize the impact of harmful spatial
spillovers and the unintended effects on secondary air pollutants. Possible strategies
could be to increase LEZs’ coverage area, anticipate the impact on ozone for regions
with high ozone levels, or contemplate restricting traffic only in the winter months
when traffic-related pollution is more elevated. Our well-being results imply that
policymakers should look at both the costs and benefits of driving restriction
policies, as only focusing on the benefits can present a distorted picture of their
actual effects. Particularly for LEZs, policymakers could potentially reduce their
adverse well-being effects through information campaigns about the policy’s health
benefits, nudging, transfer mechanisms like tax credits to purchase cleaner vehicles,
or public transport waivers.
Related literature
Previous studies on the effects of LEZs provide compelling evidence of a statistically
significant reduction in the concentration of traffic-related contaminants within
the zones’ borders. For instance, Wolff (2014) is an important earlier contribution
estimating a significant PM10 decrease with TWFE-DD; a result later confirmed
by Malina and Scheffler (2015) with fixed-effects panel regressions. Gehrsitz (2017)
and Pestel and Wozny (2021) update Wolff (2014)’ estimates regarding PM10 and
provide additional evidence of a negative effect for NO2. Finally, Ellison, Greaves
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and Hensher (2013) and Zhai and Wolff (2021) uncover similar PM10 effects for
the London LEZ.

Regarding spillovers, although Wolff (2014) finds beneficial PM10 spillovers for
the case of the Berlin LEZ, he obtains no significant estimate when looking at
average effects across Germany. Gehrsitz (2017) analyzes PM10 spillovers using
a larger data set covering more LEZs over a longer time period and finds only
suggestive evidence of beneficial effects, with point estimates at outside stations
being negative but insignificant.

Concerning the effects of the policy on objective health outcomes, Margaryan
(2021) uses detailed register data on outpatient and inpatient health care to
show that LEZs have clear health benefits, Pestel and Wozny (2021) provides
evidence of an adverse effect on extreme health outcomes like hospitalizations
due to cardiovascular and respiratory conditions, and Rohlf et al. (2020) provide
evidence of reductions in pharmaceutical expenses. Notably, Gehrsitz (2017)
deviates from the overall positive policy implications by concluding that LEZs’
pollution reductions are too small to affect infant health.

A related but distinct stream of the literature analyzes the effectiveness of the
second dominant type of driving restriction, alternate-day travel policies. Our
results suggest that LEZs are more effective than alternate-day restrictions at
reducing traffic-related air contaminants, as the evidence on the effectiveness of
alternate-day travel policies is mixed. Davis (2008, 2017) analyzes the effect of
driving restrictions in Mexico City and concludes that the program was ineffective
and even counterproductive with respect to pollution. Gallego, Montero and Salas
(2013) echoes this for similar transport reforms in Santiago de Chile. The evidence
on similar instruments in China, however, suggests greater effectiveness. Zhong,
Cao and Wang (2017) show that alternate-day travel policy in Beijing reduces air
pollution. Chen et al. (2013) show that Beijing temporarily improved air quality
with alternate-day travel restrictions on the eve of the 2008 Olympic games. In
the same vein Viard and Fu (2015) show that the same restriction policy in Beijing
is effective at reducing air pollution despite limited compliance (Wang, Xu and
Qin, 2014). To our knowledge, there is currently no evidence on the well-being
effects of any type of driving restriction policy in the literature.
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2.2 Background on LEZs

Policymakers in the European Union try to minimize air pollution’s health risks
by setting limit values to pollutant concentrations.2 The limit values are legally
binding. In the case of non-attainment, the member states must propose and
implement action plans to reduce the risk or duration of future limit violations;
if the member states fail to implement sufficient measures to reduce pollution,
repeated non-attainment results in financial penalties. Table 2.1 portrays current
exposure limits in the European Union.

Table 2.1: EU air quality regulations

Permitted exceedance days
Pollutant Concentration Avg. period Legal nature per year

CO 10 mg/m3 Max. daily 8 h mean Limit value as of 1.1.2005 NA
NO2 200 µg/m3 1 hour Limit value as of 1.1.2010 18
NO2 40 µg/m3 1 year Limit value as of 1.1.2010 NA
O3 120 µg/m3 Max. daily 8 h mean Target value as of 1.1.2010 25 days averaged over 3 years
PM10 50µg/m3 24 hours Limit value as of 1.1.2005 35
PM10 40µg/m3 1 year Limit value as of 1.1.2005 NA

Source: EU (2008b).

Germany implemented the 22nd Ordinance of the Federal Immission Control
Act (Bundes-Immissionsschutzgesetz - BImSchG) to comply with EU legislation.
This law made EU limit values legally binding as of January 2005. In the following
years, many cities could not adhere to the limit values for NO2 and PM10. Between
2005 and 2007, 89 urban centers violated the daily PM10 limit of 50 µg/m3 on
more than 35 days in at least one year. Among these, 52 were large cities with
more than 100,000 inhabitants, which amounts to 65 percent of all large cities
in Germany. 54 cities exceeded the annual NO2 limit of 40 µg/m3 for at least
one year. Consequently, German federal states and local administrations had to
draw up clean air action plans (CAAPs) for improving air quality. These action
plans targeted traffic exhaust-related pollutants and consisted of bundles of policy
measures, commonly involving the introduction of a low emission zone (LEZ).3

The Ordinance on the marking of vehicles (35th BImSchV) provides the legal
basis for introducing low emission zones by giving state and local governments the
2 Directive 1999/30/EC (EU, 1999) defines permissible concentrations for NO2, SO2 and PM10,

Directive 2000/69/EC (EU, 2000b) set limits for carbon monoxide (CO), and Directive
2002/3/EC (EU, 2002) focuses on O3. These legislations were revised in 2008 and unified into
the single Directive 2008/50/EC (EU, 2008b) that defines current limit values and detailed
measurement procedures for all criteria pollutants.

3 Other frequently applied policy measures include the procurement of cleaner public transport
vehicles, closing of heavy traffic roads for commercial vehicles, building of ring roads, and
traffic re-routing.
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right to restrict access to specific city areas for cars not complying with predefined
emission standards. Germany enforces LEZs through colored stickers on car’s
windshields: Only automobiles with a specifically colored sticker can enter the
LEZ. Red stickers represent the highest emitting vehicles, and green stickers the
least emitting ones; Table 2.2 lists details on the stringency of emission standards
and stickers. The policy is enforced by police and municipal authorities and
infringement results in fines for the vehicle driver.4

Table 2.2: Relevant emission standards for LEZ sticker categories

No Sticker Red Yellow Green

Diesel Euro 1 or older Euro 2 / Euro 1
with particle filter

Euro 3 / Euro 2
with particle filter

Euro 4 or better /
Euro 3 with parti-
cle filter

Gasoline Without catalytic
converter

– – Euro 1 with cat-
alytic converter or
better

Notes: Relevant emission standards for LEZ sticker categories defined in the Ordinance on the marking of
vehicles (35th BImSchV). The Euro standards represent the EU emission regulations for new light duty vehicles
based on Directive 70/220/EEC and its amendments.

2.3 Data

We collect granular pollution measures from the German Environment Agency
(UBA) covering 659 monitoring stations scattered throughout Germany. The
data contains daily averages of CO, NO2, O3, and PM10 between 2005 and
2018. Furthermore, we also obtain hourly pollution readings to calculate the AQI
according to the formula of the U.S. Environmental Protection Agency (EPA)
(EPA, 2018). The AQI maps the concentration of all criteria pollutants into an
index between zero and five hundred units, the higher the index, the worse the air
quality conditions.

Figure 2.1 shows the spatial distribution of LEZs, air pollution measuring
stations, and weather stations in Germany. Information on the location and
implementation dates of LEZs comes from UBA’s website. We further collect data
on the implementation of Clean Air Action Plans (CAAP), which are bundes of
local air pollution mitigation policies introduced by city governments that can
come with or without LEZs. In 2018, there were 58 active LEZs that concentrate
in the country’s most populated urban areas around Berlin, Munich, Stuttgart,
4 In 2008, the fine for entering a LEZ without the appropriate sticker amounted to 40 Euro

plus one penalty point at the driving license office. In 2014, the fines were doubled whereas
the penalty point was abolished.
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Frankfurt, Cologne, and the Ruhrgebiet region. In contrast, monitoring and
weather stations are more scattered throughout the country.

Figure 2.1: Spatial distribution of low emission zones, pollution, and weather
stations

(a) Low Emission Zones (b) Air pollution stations (c) Weather stations

Notes: The left-hand panel depicts all low emission zone (LEZ) introduced between 2008 and 2018, the center
panel shows all pollution monitors active during the study period between 2005 and 2018, and the right-hand
side panel plots all weather monitors between 2005 and 2018.

Figure 2.2 compares the evolution of CO, NO2, O3, and PM10 levels between
treated and control stations inside and outside active LEZs, accounting for the
staggered introduction of LEZs. Note that Figure A.1 shows the same common
trends for all specifications of the control group used in our empirical design,
while Table A.1 lists overall average pollutant concentrations for treatment and
control stations. This figure is different from standard common trends plots
because of the staggered introduction of LEZs. In it, we average the values of
all possible event-time combinations across treatment and control groups. For
instance, the value at t = −1 for the treated group is the average value one
year before implementing LEZs across all treatment groups, i.e., all groups of
stations where LEZs were implemented in the same year. Furthermore, we avoid
compositional changes in the treatment group by restricting the time window
to three years around treatment, this is necessary because not restricting the
time-window change the sample of treated stations, i.e., stations treated in 2016
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would drop from the sample at t = −4.5 We observe similar trends between
treated and control units before the introduction of LEZs.

Figure 2.2: Pre- and post-treatment averages for treated and control stations

Notes: Inter-temporal comparison of average pollution between treated and control units. The vertical axis
contains the average of each criteria pollutant and the horizontal axis the time to treatment, i.e., number of
years to the introduction of a LEZ. Each data point corresponds to the average value of all possible event-time
combinations across treated and control units. We restrict the horizontal axis to two periods before and after
treatment because these are the only ones without compositional changes..

To assess the effect of LEZs on individual-level outcomes, we use data from
the German Socio-Economic Panel Study (SOEP) between 2005 and 2018. The
SOEP is a representative longitudinal survey that collects information on persons
and households in Germany since 1984. The data contains our primary outcome
variable; self-rated individual life satisfaction measured on an 11-point Likert
scale,6 as well as a wide range of health and socio-demographic characteristics.
Importantly, we observe the geographic location of households at the street-block
level and the exact interview date of individuals, allowing us to determine whether
they live within LEZs and whether the SOEP interviewed them before or after
the zone became active. For individuals residing outside of LEZs, we observe the
distance to the closest LEZ and the corresponding implementation date.

The SOEP incorporated several enlargements and refreshment samples in
recent years, such that individuals can already live in an active LEZ at the time
of their first interview. Hence, we exclude the always treated because their pre-
treatment outcomes are unobserved and do not contribute to identification in our
empirical setting. By dropping these cases, we avoid unnecessary compositional
5 Specifically, the exposure value τ periods to the treatment date is: Polˆ T reated

τ | Polˆ Control

τ =
1

Nτ

6∑︁
τ=−15

1
Nc

∑︁
c

Polτ c ∀ τ = (Y − G) . Y indicates the year of the observation and G the

treatment group, i.e., the year of LEZ implementation. Nτ is the number of times τ takes an
specific value, e.g., for τ = −1, there are six different combinations of Y and G; (2009-2010,
2010-2011, .... 2016-2017). Finally, N c refers to the number of stations.

6 SOEP individuals rate how satisfied they are with their lives overall on a scale from 0
(“completely dissatisfied”) to 10 (“completely satisfied”).
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changes in our treatment group that hinder the causal interpretation of point
estimates. For similar reasons, we also drop individuals surveyed for one single year
and individuals outside of LEZs who were interviewed by SOEP after the closest
LEZ came into effect. Additionally, we also exclude individuals that changed
their place of residence during our study period to avoid confounding effects from
residential sorting.7

Table 2.3 lists descriptive statistics on all treated and control individuals
in the selected sample described above, while descriptives on two alternative
control groups used in the empirical analysis are shown in Table A.2. Individuals
residing inside LEZs are, on average, more educated, have a higher income, and
fewer children. Moreover, fewer households inside the zones own a motor vehicle.
Regarding health variables, we observe on average one additional doctor visit
per year among treated subjects, while hypertension and cancer shares are very
similar in both groups.

Panel A in Figure 2.3 depicts the number of individuals per treatment group.
We define treatment groups as the first year after treatment, i.e., the year of the
first SOEP interview after LEZ implementation. The fact that new persons are
treated every year between 2008 and 2016 illustrates the variation in treatment
timing induced by the staggered adoption of LEZs. Early LEZs affect around 42%
of all treated persons, with large cities like Berlin and Munich introducing LEZs
between 2008 and 2009.8 Panel B depicts the annual averages of life satisfaction in
the treatment and the control group centered around LEZ implementation dates,
based on the same methodology as for the pollution outcomes. Figure A.2 shows
the same graph for all control samples used in the empirical analysis. In the first
three years prior to LEZ adoption, average life satisfaction develops in parallel for
the treated and control sample. In the year of LEZ implementation, the average
well-being of treated individuals drops visibly. Furthermore, section 2.7.3 provides
further evidence that the common trends assumption between treatment and
control groups cannot be rejected.

7 Results are robust to the inclusion of movers and are listed in Table A.5. Around 30 percent
of SOEP individuals change their place of residence during the study period.

8 We exclude LEZs introduced in 2017 and 2018 because they were all implemented in relatively
small towns, where we observe fewer than 20 treated individuals per treatment group. The
small number of units in these treatment cohorts hinders reliable estimation of group-time
ATTs.
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Table 2.3: Descriptive statistics on SOEP individuals

Inside LEZ Outside LEZ

Total Before After Total

Life satisfaction [0-10] 7.11 7.08 7.14 7.10
(1.73) (1.73) (1.73) (1.76)

Age [years] 54.47 52.86 55.65 54.11
(16.64) (16.04) (16.98) (17.04)

Is female [%] 0.53 0.53 0.53 0.52
(0.50) (0.50) (0.50) (0.50)

Is employed [%] 0.56 0.54 0.57 0.56
(0.50) (0.50) (0.50) (0.50)

Income [Thsd Euro] 44.99 43.90 45.79 42.20
(35.11) (34.61) (35.45) (33.81)

Education [years] 12.89 12.69 13.04 12.26
(3.06) (3.02) (3.08) (2.63)

Number children 0.44 0.51 0.39 0.48
(0.90) (0.93) (0.87) (0.92)

Owns motor vehicle [%] 0.81 0.83 0.80 0.90
(0.39) (0.38) (0.40) (0.30)

Number motor vehicles 1.26 1.28 1.26 1.58
(0.95) (0.91) (0.97) (1.06)

Owns diesel car [%] 0.32 0.33 0.31 0.33
(0.47) (0.47) (0.46) (0.47)

Number doctor visits 11.09 11.30 10.94 10.08
(15.19) (15.60) (14.88) (15.08)

Has hypertension [%] 0.31 0.32 0.31 0.32
(0.46) (0.47) (0.46) (0.47)

Has cancer [%] 0.06 0.06 0.06 0.06
(0.24) (0.23) (0.25) (0.24)

Number individuals 1436 1436 1436 19578
Number observations 12634 5348 7286 141411

Notes: This table shows the average characteristics of treated and control SOEP individuals observed between
2005 and 2018. Treated persons reside within the LEZs area and control individuals outside. For the treated
sample, we present overall, pre-treatment, and post-treatment averages. For control persons, we present overall
averages.
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Figure 2.3: Number of individuals per treatment group and average well-being of
treated and control individuals

Notes: Panel A shows the number of persons per treatment group between 2008 and 2016. We define treatment
groups as the first year we observe individuals after treatment. Panel B shows annual averages of life satisfaction
between treated and control units. The vertical axis contains the average of life satisfaction, and the horizontal
axis the time to treatment (τ). Each data point corresponds to the average value of all possible event-time
combinations across treatment and control groups three years around policy adoption.
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2.4 Research design

2.4.1 Empirical methodology

Identifying the effect of LEZ is not trivial as their implementation across Germany
is not random (see Section 2.2). If we do not consider this systematic difference
between treated and control stations, it can lead to biased estimates of the true
treatment effect. Like previous studies analyzing the impacts of LEZs, we address
the identification challenge by leveraging the spatiotemporal variation in the zones’
implementation date using DD designs.

Additionally, our research design explicitly takes into account that when
implementing DDs with more than two periods and variation in treatment timing,
the weights used to compute ATTs with standard TWFE-DD can lead to biased
estimates (De Chaisemartin and d’Haultfoeuille, 2020). For instance, Goodman-
Bacon (2021) shows that the coefficient of the TWFE-DD design is the weighted
average for all possible two-group two-period combinations of three different
comparison groups: earlier vs. later treated, later vs. earlier treated, and treated
vs. untreated. Figure 2.4 portrays our sample’s PM10 estimates across the three
comparison groups. The dotted line is the weighted TWFE-DD estimate across
all comparison groups, and the solid horizontal lines are average coefficients for
each comparison group.

Figure 2.4: Goodman-Bacon decomposition for the effect of LEZs on the
concentration of coarse particulate matter (PM10)

Notes: Goodman-Bacon (2021) decomposition. Solid horizontal lines represent TWFE-DD estimates on the
impact of LEZs on annual PM10 levels. Treated stations are inside the zone and control stations between 25 and
75 km from the zone’s border. Each estimation sample consists of a balanced panel of stations measuring the
respective pollutant between 2005 and 2018.
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Because already-treated stations (”Earlier Treated” in Figure 2.4) experienced
substantial decreases in pollutant levels after implementation, their results bias
the TWFE-DD towards zero, resulting in an underestimation of the LEZs’ true
impact. In our setting, the bias is so severe that for most Later vs. Earlier Treated
comparisons, the sign of the coefficient reverses relative to other comparisons.9

To obtain unbiased estimates under staggered policy adoption and time-varying
treatment effects, we use the CS-DD estimator that allows us to estimate and
flexibly aggregate group-time ATTs across multiple groups and time periods
(Callaway and Sant’Anna, 2021). Other advantages of CS-DD are that it lets us
compute unbiased event-time estimates suitable to examine time-varying treatment
effects and formally assess the common trends assumption while considering the
effects of selective treatment timing. Equation 2.1 shows the CS-DD empirical
model:

yitg = βgeLEZitg + λi + γt + ϵit , (2.1)

where yitg is the yearly average pollution level for unit i, treated in year g, measured
at time t. The treatment group g corresponds to all units treated in t = g, e.g.,
all units initially treated in 2008 are part of the 2008 treatment group. βge are the
point estimates of interest and represent the ATT for stations in group g at time
since treatment e = t − g. LEZitg is a dummy variable equal to one if, in period
t, unit i in group g is treated. Finally, λi and γt are unit and year fixed effects.

To estimate dynamic treatment effects in the vein of TWFE-DDs event study
designs, we aggregate βge according to equation 2.2. In it, βe is the average
treatment e periods after treatment and P [G = g|G + e ≤ T ] the probability
of being first treated in period g, conditional on being observed e periods after
treatment. Note that because the length of treatment can vary across stations,
treatment groups’ composition can change with e. We provide estimates robust
to this potential pitfall by balancing the groups with respect to e, i.e., we only
aggregate βge for a subset of stations treated for at least n periods.

βe =
∑︂
g∈G

ωe
gtβge ∀ ωe

gt = 1[g + e ≤ T ] × P [G = g|G + e ≤ T ] , (2.2)

9 On average, the 2x2 DD estimates for the Later vs. Earlier Treated comparisons amount to
0.49 micrograms per cubic meter (µg/m3) for PM10. These comparisons get a weight of 12
percent, indicating that this timing group is relatively influential for the overall TWFE-DD
parameter.
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Finally, equation 2.3 aggregates individual group and event-time ATTs into an
average ATT across all treatment group and time periods, where β is the weighted
sum of βge with strictly positive weights and larger weights for larger group sizes.

β = 1
κ

∑︂
g∈G

T∑︂
e=1

ωgtβge ∀ ωgt = 1[t ≥ g] × P [G = g|G ≤ T ] , (2.3)

2.4.2 Specifying the control group

Figure 2.5 illustrates the construction of our baseline control samples. First, the
raw sample encompasses all stations outside LEZs. Second, we restrict the raw
sample with a 25 km exclusion area between the treatment and control group to
avoid spatial spillovers threatening the validity of SUTVA; treated stations are
inside the zone (green), excluded stations are all stations between 0 and 25 km
from the zone’s border (red), and the control group consists of all stations further
away from the 25 km buffer (blue). Third, in the doughnut design, we increase
the comparability of treatment and control units by restricting the outer edge of
the control group to 50 km from the start of our buffer area.10

Figure 2.5: Control group specifications of the CS-DD design (Berlin low
emission zone)

(a) Raw (b) Buffer (c) Doughnut

Notes: These figures illustrate the raw, buffer, and doughnut specifications of the CS-DD using Berlin’s LEZ.

Moreover, we also provide estimates for a fourth specification by restricting
the control group to stations in cities with a CAAP but no LEZ. This final
sample allows us to increase the similarity of treated and controls regarding
pre-treatment pollution levels. We choose the doughnut design as our preferred
specification because it balances the threat of spillovers with a closer geographical

10 Very similar results hold at other distances, i.e., 100, 150, 200 km. They are available upon
request.
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match between the treatment and control groups. However, all specifications are
consistent with the common trend assumption and deliver similar ATT estimates.11

2.5 Effects on air pollution

2.5.1 Average treatment effect on the treated

Table 2.4 shows the ATT for the raw, buffer, doughnut, and CAAP specifica-
tions.12 Concerning CO, coefficients are negative and on the verge of being
statistically significant across specifications. For NO2, all estimates are negative
and statistically significant at the one percent level. They range from 2.85 to
4.09 µg/m3 in the CAAP and doughnut specifications, confirming the findings of
previous studies like Pestel and Wozny (2021) and Gehrsitz (2017) who estimate
respective reductions of 1.6 and 0.5 µg/m3. The difference in magnitude between
our estimates and Pestel and Wozny (2021) or Gehrsitz (2017) likely comes from
the inherent Goodman-Bacon (2021) bias depicted in Figure 2.4.

Next, there is evidence of O3 increases across specifications. In the doughnut
design, we estimate that LEZs increase the concentration of O3 by 1.18 µg/m3.
Also in line with previous TWFE-DD estimates, all specifications point to a
significant PM10 reduction ranging between 1.51 and 1.97 µg/m3. For instance,
Pestel and Wozny (2021) and Gehrsitz (2017) estimate a reduction of 1.4 and
0.7 µg/m3, while Wolff (2014)’s log-linear TWFE-DD model uncovers a 9.1%
reduction, equivalent to a decrease of about 2.1 µg/m3.13

2.5.2 Dynamic treatment effects

Figure 2.6 plots event-time ATTs for the preferred doughnut specification, which
are similar for the raw, buffer, and CAAP samples (see Figures A.3, A.4, and
A.5). Each estimate corresponds to the ATT at each time period before and after
treatment. The grey shaded areas represent 95% confidence intervals.

11 Our choice of control group is in line with an alternative data-driven approach, in which
regression discontinuity (RD) models with time as the running variable are used to estimate
the local average treatment effect (LATE) of LEZs at pollution monitors outside the restriction
area within a narrow time window around their implementation date. We refer the interested
reader to the working paper version (Sarmiento, Wägner and Zaklan, 2021) for further
information.

12 For the curious reader, in section A.4.2 we provide results by type of measuring station, i.e.,
UBA divides stations into traffic and background. Traffic stations are often next to major
roads at street level. Background stations are often on top of buildings in background areas.

13 We obtain a reduction by 2.1 µg/m3 by taking 9.1% of the 2007 average PM10 level of 23.1
reported by Wolff (2014) in Table 1.
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Table 2.4: Effect of the introduction of LEZ on air pollution

(a) Raw

CO NO2 O3 PM10

−0.03 −3.78∗∗∗ 0.96+ −1.77∗∗∗

(0.02) (0.72) (0.58) (0.50)
N.Obs 1759 5799 3914 5051
N.Stations 255 556 365 508
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(b) Buffer

CO NO2 O3 PM10

−0.03 −3.81∗∗∗ 1.27∗∗ −1.90∗∗∗

(0.02) (0.77) (0.59) (0.53)
N.Obs 1394 4504 2943 3849
N.Stations 197 425 271 383
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(c) Doughnut

CO NO2 O3 PM10

−0.03 −4.09∗∗∗ 1.18∗ −1.97∗∗∗

(0.02) (0.87) (0.65) (0.51)
N.Obs 906 2832 1704 2502
N.Stations 134 266 157 248
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(d) CAAP

CO NO2 O3 PM10

−0.02 −2.85∗∗∗ 1.21 −1.51∗∗∗

(0.02) (0.83) (0.80) (0.53)
N.Obs 1016 2588 1087 2163
N.Stations 131 244 106 220
N.Groups 8 8 8 8
N.Periods 14 14 14 14

Notes: CS-DD estimates for the impact of LEZs on annual air pollution concentrations across four different
specifications of the control sample. The raw control group contains all stations outside LEZs. The buffer design
restricts the raw sample to stations beyond 25 km from LEZs’ borders. The doughnut sample further trims the
control group by restricting its outer edge to 75 km. Finally, the CAAP control group contain only stations in
cities with CAAP but no LEZ. The CS-DD model controls for station and year fixed effects. Standard errors are
clustered at the municipality level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; +p < 0.10.
Ozone (O3), nitrogen dioxide (NO2), and coarse particulate matter (PM10) reported in micrograms per cubic
meter (µg/m3) and carbon monoxide (CO) in milligrams per cubic meter (mg/m3).

Figure 2.6: Event-time ATTs

Notes: Event-time CS-DD estimates for the impact of LEZs on annual air pollutant concentrations. Event time
measured in years before/after policy implementation. Treated stations are inside the zone and control stations
between 25 and 75 km from the zone’s border. The CS-DD model controls for station and year fixed effects.
Grey ribbons represent 95% confidence intervals. We cluster standard errors at the municipality level. Ozone
(O3), nitrogen dioxide (NO2), and coarse particulate matter (PM10) reported in micrograms per cubic meter
(µg/m3) and carbon monoxide (CO) in milligrams per cubic meter (mg/m3).

Concerning, CO, although all post-treatment coefficients are negative, we
find no significant effects after the implementation. For NO2, on the other hand,
we observe statistically significant reductions from the second period onward,
with pollutant levels decreasing by 10.3 µg/m3 during the last time interval.
Point estimates for O3 are positive in every post-treatment period but with
wide confidence bands. Finally, the event-time ATTs for PM10 are negative and
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statistically different from zero from the second period onward.14 Reassuringly,
we cannot reject the common trends assumption for any pollutant as there are no
significant pre-treatment effects.

2.5.3 Heterogeneous seasonal effects

Working with annual averages can mask seasonal heterogeneity in the effectiveness
of LEZs. For instance, O3 is more predominant during the spring and summer
months because of its interaction with solar radiation, while NO2 and PM10 are
higher during the winter months because of residential heating and the lower
efficiency of internal combustion engines at low temperatures. Table 2.5 shows
the seasonal results using the doughnut specification.15

Table 2.5: Seasonal effects of the introduction of LEZs on air pollution

(a) Carbon monoxide (CO)

Winter Spring Summer Fall
−0.05∗ −0.04∗∗ −0.02 −0.03
(0.03) (0.02) (0.02) (0.03)

N.Obs 906 874 868 871
N.Stations 134 133 131 131
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(b) Nitrogen dioxide (NO2)

Winter Spring Summer Fall
−3.61∗∗∗ −4.54∗∗∗ −3.96∗∗∗ −4.91∗∗∗

(0.74) (1.15) (0.85) (0.93)
N.Obs 2832 2797 2789 2792
N.Stations 266 266 266 266
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(c) Ozone (O3)

Winter Spring Summer Fall
0.66 1.79∗ 1.99∗∗ 0.76∗

(0.54) (0.93) (0.87) (0.45)
N.Obs 1703 1682 1672 1677
N.Stations 156 155 154 155
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(d) Coarse particulate matter (PM10)

Winter Spring Summer Fall
−1.83∗∗∗ −1.92∗∗∗ −2.02∗∗∗ −2.65∗∗∗

(0.68) (0.69) (0.63) (0.74)
N.Obs 2502 2456 2450 2459
N.Stations 248 247 247 248
N.Groups 8 8 8 8
N.Periods 14 14 14 14

Notes: CS-DD estimates for the impact of LEZs on seasonal air pollution concentrations across four different
seasons. Treated stations are inside the zone and control stations between 25 and 75 km from the zone’s border.
We calculate the average exposure in each season by averaging daily pollution values. The CS-DD model
controls for station and year fixed effects. Standard errors clustered at the municipality level. Significance levels
denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; +p < 0.10. Ozone (O3), nitrogen dioxide (NO2), and coarse
particulate matter (PM10) reported in micrograms per cubic meter (µg/m3) and carbon monoxide (CO) in
milligrams per cubic meter (mg/m3).

Results reveal substantial seasonal heterogeneity in the effectiveness of LEZs.
We estimate significant reductions in the concentration of CO, NO2, and PM10

during the winter months of -0.05, -3.61 , and -1.83 µg/m3. The significant winter
estimate for CO arises because the lower efficiency of internal combustion engines

14 Note that compositional changes may affect the results of the CS-DD estimates. For robustness,
we restrict the sample underlying the event-time ATTs to contain only stations with five
post-treatment periods. Figure A.6 shows the results for the balanced version of the doughnut
specification and confirms that compositional changes do not drive point estimates.

15 Figure A.7 further contains point estimates for the other control group specifications.
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at cold temperatures increases the effectiveness of driving restriction (Suarez-
Bertoa and Astorga, 2018). The result is in line with the literature analyzing the
effectiveness of seasonally differentiated traffic restrictions (Rivera, 2021). In the
spring, estimates for CO, NO2, and PM10 remain broadly unchanged. At the same
time, the coefficient for ozone increases in magnitude and becomes statistically
significant, suggesting that LEZs increase spring concentrations of O3 by 1.79
µg/m3. During summer and autumn, our results for all contaminants except for
CO are statistically significant.

2.5.4 Spillovers

We now estimate the spillover effects of LEZs by considering their impact on
stations between zero and 25 km from the zones’ borders in table 2.6.16 As
with the results for inside stations we provide estimates for four different control
samples; the raw sample contains all stations further away than 25 km; the buffer
draws a 25 km buffer zone between treated and control stations; the doughnut
further excludes from the buffer sample all stations further away than 100 km
from LEZs; and the CAAP only considers stations between 0 and 25 km from
CAAP cities and excludes all control stations within 25 km from LEZs.

In line with existing literature we do not find evidence of spillovers for NO2 or
PM10 (Pestel and Wozny, 2021; Wolff, 2014). However, for O3, we obtain evidence
of harmful spillovers as indicated by statistically significant increases across all
specifications. The O3 increases in adjacent areas are similar in magnitude to
those obtained inside the LEZs, in line with the observation that O3 may be
transported over long distances (Hov, Hesstvedt and Isaksen, 1978). For CO,
the preferred specification hints at harmful pollution spillovers likely due to a
re-direction of traffic flows around LEZs.

Figure 2.7 depicts the results of estimating season-specific spillover effects.
Point estimates reveal that O3 spillovers concentrate in the summer months with
increases as high as 2.37 µg/m3. Moreover, likely due to the higher pollution in-
tensity of internal combustion engines at cold temperatures, we uncover significant
spillovers for CO during the winter months.

16 Results are qualitatively similar for rings of other thickness, i.e., (0-1), (0-5), and (0-10) km.
They are available upon request
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Table 2.6: Spillovers across different control samples

(a) Carbon monoxide (CO)

Raw Buffer Doughnut CAAP

0.03∗ 0.04∗ 0.03+ 0.03
(0.02) (0.02) (0.02) (0.02)

N.Obs 1205 1014 831 774
N.Stations 175 136 110 114
N.Groups 8 7 7 7
N.Periods 14 14 14 14

(b) Nitrogen dioxide (NO2)

Raw Buffer Doughnut CAAP
0.05 −0.13 −0.19 −0.51

(0.60) (0.60) (0.65) (0.66)
N.Obs 4192 3367 2647 2782
N.Stations 395 308 235 252
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(c) Ozone (O3)

Raw Buffer Doughnut CAAP

1.33∗ 1.05+ 1.15∗ 1.09+

(0.61) (0.54) (0.60) (0.49)
N.Obs 3187 2503 1948 2091
N.Stations 293 227 174 181
N.Groups 8 8 8 8
N.Periods 14 14 14 14

(d) Coarse particulate matter (PM10)

Raw Buffer Doughnut CAAP
−0.05 0.06 0.29 −0.10
(0.36) (0.40) (0.41) (0.42)

N.Obs 3672 2957 2374 2398
N.Stations 364 282 220 233
N.Groups 8 8 8 8
N.Periods 14 14 14 14

Notes: CS-DD estimates for the impact of LEZs on annual air pollution concentrations for stations between zero
and 25 km from the zone borders. We provide estimates of four different specifications of the control group. The
raw control sample contains all stations further away than 25 km. The buffer excludes all stations within a 25
km buffer zone. The doughnut further excludes from the buffer sample all stations further away than 100 km
from LEZs. And the CAAP only considers stations between 0 and 25 km from CAAP cities. The CS-DD model
controls for station and year fixed effects. Standard errors clustered at the municipality level. Significance levels
denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; +p < 0.10. Ozone (O3), nitrogen dioxide (NO2), and coarse
particulate matter (PM10) reported in micrograms per cubic meter (µg/m3) and carbon monoxide (CO) in
milligrams per cubic meter (mg/m3).

Figure 2.7: Seasonal spillovers (CS-DD)

Notes: CS-DD estimates of the impact of LEZs on seasonal air pollution concentrations for stations between zero
and 25 km from the zones’ borders. We provide estimates of four different specifications of the control group.
The raw sample contains all stations further away than 25 km, the buffer excludes all stations within a 25 km
buffer zone, the doughnut further excludes from the buffer sample all stations further away than 100 km from
LEZs, and the CAAP only considers stations between 0 and 25 km from CAAP cities. The CS-DD model
controls for station and year fixed effects. Standard errors clustered at the municipality level; 95% confidence
intervals depicted. Ozone (O3), nitrogen dioxide (NO2), and coarse particulate matter (PM10) reported in
micrograms per cubic meter (µg/m3) and carbon monoxide (CO) in milligrams per cubic meter (mg/m3).
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2.6 Effects on overall air quality

Finally, we investigate the overall air quality effects of LEZs using the composite
air quality index (AQI). Table 2.7 shows the ATTs of LEZs on the annual averages
of the AQI, for pollution monitors inside and nearby a LEZ.

Table 2.7: Effectiveness and spillovers of LEZ introduction on the air quality
index (AQI)

Outside LEZ
Inside LEZ Raw Buffer Doughnut CAAP
−5.17∗∗∗ 0.44 −0.17 −0.05 −0.16

(1.62) (1.46) (1.37) (1.43) (1.41)
N.Obs 2970 4602 3714 2875 3023
N.Stations 277 424 329 248 267
N.Groups 8 8 8 8 8
N.Periods 14 14 14 14 14

Notes: CS-DD estimates for the impact of LEZs on annual average AQI values for stations inside and outside
LEZs. For inside stations, treated units are inside the zone and controls between 25 and 75 km from the zones’
borders. For outside stations, treated units are between 0 and 25 km from the zones’ borders and we provide
results for four different specifications of the control group. The raw sample contains all stations further away
than 25 km, the buffer excludes all stations within a 25 km buffer zone, the doughnut further excludes from the
buffer sample all stations further away than 100 km from LEZs, and the CAAP only considers stations between
zero and twenty-five kilometers from CAAP counties. The CS-DD model controls for station and year fixed
effects. Standard errors clustered at the municipality level. Significance levels denoted by ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05; +p < 0.10.

The results show that LEZs improve overall air quality inside their borders,
as the value of the AQI decreases by 5.17 units after the implementation in the
doughnut specification. This amounts to a reduction of 11.4 percent relative
to pre-treatment AQI levels.17 Concerning air quality effects outside the zones’
borders, results are overall statistically insignificant, indicating that the O3 and
CO increases do not translate to overall air quality reductions as measured by the
AQI.

Figure 2.8 depicts seasonal effects for pollution monitors inside and outside
LEZs. Regardless of the season, LEZs consistently reduce the value of the AQI,
suggesting that they are indeed effective at improving air quality within the zones’
borders despite the unintended increases in the concentration of O3. Furthermore,
the analysis of season-specific spillover suggests that LEZs cause statistically
significant increase in summertime AQI values, by about ten percent, in line with
the policy-induced increase in O3 levels during summer months. These results
suggest that persons living outside LEZs bear the costs of the driving restriction
without experiencing the benefits of improved air quality and even suffering a
deterioration in air quality during summertime.

17 Table A.3 shows the AQI results for all four different control groups. Point estimates are
stable in terms of magnitude and significant across specifications.
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Figure 2.8: Seasonal LEZ effects on air quality index (AQI)

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (β) of the impact of low emission
zones on seasonal average air quality for stations inside and outside LEZs. For inside stations, treated stations
are all those stations inside the zone. For outside stations, treated stations are all those stations within the
pre-specified distance. Control stations are all stations further away than 25 km from the zone’s border and up
until 75 km. The CS-DD model controls for station and year fixed effects. Standard errors clustered at the
municipality level; 95% confidence intervals depicted.

2.7 Well-being and health effects

2.7.1 Well-being effects

To analyze LEZs’ impact on individual well-being and health outcomes, we
estimate ATTs for three different control samples. First, we include all SOEP
individuals that do not move and are not always treated, as descriped in Section 3.3.
Second, we exclude control persons residing within 25 km from an LEZ to account
for potential spatial spillovers. Third, we further restrict the control group to
individuals living in CAAP cities to increase the similarity between treatment
and control units. As the sample with the 25 km buffer accounts for spillovers,
is moderately sized, and exhibits parallel pre-trends, we focus on this sample in
the remaining of the study. Appendix A.6 lists the results for the most restrictive
CAAP control group. Table 2.8 shows the estimated effects of LEZ on life
satisfaction for all three samples.

All point estimates are negative and statistically significant, indicating that
LEZs decrease life satisfaction. This negative effect is remarkable as it occurs
despite the policy’s overall effectiveness at improving air quality. In the preferred
buffer specification, LEZs decrease life satisfaction by 0.19 points, or 2.7% of
average pre-treatment values. The magnitude of the effect is quite substantial.
For example, also using SOEP data, Kassenboehmer and Haisken-DeNew (2009)
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Table 2.8: Effect of LEZ introduction on life satisfaction

(1) (2) (3)

ATT −0.162∗∗ −0.190∗∗∗ −0.114+

(0.057) (0.054) (0.065)

N.Obs 154062 94248 25901
N.Individuals 20963 12588 3343
N.Groups 9 9 9
N.Periods 14 14 14

Notes: CS-DD estimates of the impact of LEZs on the life satisfaction. The first column lists results obtained on
the full sample, the second restricts the control group to individuals living further away than 25km from LEZs,
and the third further restricts the control group to persons living in cities with a CAAP but no LEZ. Standard
errors clustered at the household level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05,
+p < 0.1.

find that becoming unemployed decreases life satisfaction by up to 0.9 points,
suggesting that the impact of LEZ amounts to about 20% of the unemployment
effect. Further restricting the control group to persons living in cities with CAAP
quarters the sample size, attenuates point estimates, and increases standard errors.
Nevertheless, we still observe a statistically significant 0.11 point decrease in life
satisfaction.

Although life satisfaction is an ordinal variable, Table 2.8 treats it as continuous.
To alleviate concerns regarding the scale of our outcome measure, and to elicit
the effect of LEZs across the distribution of life satisfaction, we estimate the
impact on different threshold values on the scale by transforming our dependent
variable into a binary indicator equal to one if life satisfaction is larger or equal
to two, four, six, and eight. Table A.4 lists the results of this exercise, indicating
that people who score higher on the well-being scale experience larger decreases
in well-being following LEZ adoption, whereas people at the lower end of the
well-being distribution are less affected.

Figure 2.9 plots event-time ATTs for the preferred specification, while Fig-
ure A.10 depicts dynamic event-time ATTs for all samples. Results show a
significant decrease in life satisfaction in the first year after the LEZ is activated.
The negative impact on life satisfaction is slightly weaker in the second year, but
it persists in subsequent years before reverting to insignificance some five years
after the treatment.18

To highlight potential mechanisms through which LEZs affect life satisfaction,
we analyze heterogeneous effects for various subsamples. In panel (a) of Table 2.9
we split the sample based on motor vehicle ownership and estimate separate
ATTs for persons with and without cars. Note that the SOEP only surveyed

18 Results also hold when controlling for compositional changes of the treatment group at
different event times; e ∈ (1, ..., 5). They are available upon request.
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Figure 2.9: Dynamic LEZ effects on life satisfaction

Notes: Dynamic CS-DD point estimates and 95% confidence bands on the impact of LEZs on life satisfaction.
The sample of control individuals is restricted to residences further than 25km away from the nearest LEZ.
Standard errors clustered at the household level.

mobility-related information in 2015. Consequently, we base the sample split on
cross-sectional differences. As expected, motor vehicle owners’ life satisfaction
declines significantly after LEZ implementation. The point estimate for the sample
of individuals not owning a motor vehicle is around the same magnitude as in
the full sample, but imprecisely estimated. Additionally, panel (b) splits the
subsample of motor vehicle owners into households with and without diesel cars.
In both samples, individuals’ life satisfaction decreases, but the effect on diesel car
owners is almost twice as large as in the other group. This is in line with LEZs’
stricter standards for diesel engines than for gasoline engines (see Table 2.2).

Table 2.9: Heterogeneous LEZ effects on life satisfaction by motor vehicle
ownership

(a) By motor vehicle (MV) ownership

With MV Without MV
ATT −0.186∗∗ −0.162

(0.058) (0.169)
N.Obs 55704 7235
N.Individuals 5227 709
N.Groups 9 9
N.Periods 14 14

(b) By diesel car ownership

Diesel Other Fuels
ATT −0.276∗∗ −0.151∗

(0.099) (0.071)
N.Obs 17917 37626
N.Individuals 1739 3473
N.Groups 9 9
N.Periods 14 14

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction. The control group consists of individuals living further away than 25km from the nearest LEZ.
Subsamples are split based on motor and diesel vehicle ownership. Standard errors clustered at the household
level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

Table 2.10 panel (a) further shows that the negative effect on life satisfaction
persists at similar magnitudes across all income quartiles.19 Still, the impact is
lowest in the first income quartile, which is plausible given that more than a third

19 Quartiles are based on annual net household income (after taxes) averaged over the whole
sample period; the cutoffs are [0; 27,000], (27,000; 34,300], (34,300; 48,700] and > 48,700
Euros.
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of households in this income quartile do not own a motor vehicle; this sample
consists of low-paid workers, retirees, and welfare recipients who typically cannot
afford a car. The largest impact occurs in the second quartile, where the share
of vehicle owners is much higher at over 90%. Effects on the third and fourth
quartiles are lower than in the second, potentially because these individuals can
more easily adapt to the driving restrictions. Nevertheless, LEZs still have a
statistically significant negative effect on their life satisfaction.

Table 2.10: Heterogeneous LEZ effects on life satisfaction by income and age

(a) By income quartiles

Q1 Q2 Q3 Q4

ATT −0.186 −0.265∗ −0.204+ −0.197∗∗

(0.142) (0.119) (0.122) (0.077)
N.Obs 21858 22910 24433 25033
N.Individuals 3145 3145 3146 3144
N.Groups 9 9 9 9
N.Periods 14 14 14 14

(b) By age groups

≥ 65 years old < 65 years old
ATT −0.097 −0.240∗∗∗

(0.112) (0.063)
N.Obs 28856 65392
N.Individuals 4163 9953
N.Groups 9 9
N.Periods 14 14

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction. The control group consists of individuals living further away than 25km from the nearest LEZ.
Subsamples are split based on income quartiles and age groups. Standard errors clustered at the household level.
Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

Panel (b) of the same table also lists results across age subgroups. We focus
on a cutoff of 65 years. People older than 65 are retirees or near retirement - they
are less likely to own a car and, on average, own fewer cars than working-age
individuals. In contrast, people younger than 65 have very different mobility
requirements, e.g., due to the need to commute to work or due to children in the
household. These differences appear in the point estimates, with strong effects
on life satisfaction for individuals younger than 65 and no significant effect for
people aged 65 or older.

Changes in house and rent prices could drive the estimated well-being effects
if these changes are induced by LEZ adoption. Therefore, Table 2.11 splits the
sample into home owners and renters. Life satisfaction of individuals who own
their dwelling decreases significantly, indicating that the well-being effects are not
driven by increases in rents. The effect on renters is more pronounced, but not
statistically different from the effect on owners. Nevertheless, the larger effect on
renters could be potentially attributed to increasing rent prices: We estimate the
impact of LEZ adoption on monthly rent payments in our data and find positive,
but imprecisely estimated coefficients.20

20 Results are available upon request.
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Table 2.11: Heterogeneous LEZ effects on life satisfaction of renters and owners

Owner Renter
ATT −0.192∗∗ −0.269∗∗∗

(0.072) (0.081)
N.Obs 62448 31724
N.Individuals 8357 5381
N.Groups 9 9
N.Periods 14 14

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction. The control group consists of individuals living further away than 25km from the nearest LEZ.
Subsamples are split based on home ownership status. Standard errors clustered at the household level.
Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

2.7.2 Health effects

We complement our results by analyzing the impact of LEZs on objective health
measures and utilization of the health care system as proxied by the number of
doctor visits.21 Since 2009, the SOEP bi-annually surveys several illness categories
and the number of doctor visits within the last twelve months prior to the interview.
We restrict our sample to individuals and time periods where information on
specific illnesses is available. Since health outcomes are only available since 2009,
we drop individuals initially treated in 2008 and 2009 because we do not observe
their pre-treatment outcomes. Since the recent empirical literature shows that
LEZs decrease cardiovascular diseases (Margaryan, 2021; Pestel and Wozny, 2021),
we focus on hypertension as a risk factor for cardiovascular conditions. Moreover,
as a falsification test, we analyze the effect of LEZs on the occurrence of cancer.
Cancer often develops over long time periods and it is unlikely that the effect of
LEZs on pollution would trigger changes in the cancer rate during our sample
period.

Table 2.12: LEZ effect on health care utilization and health outcomes

LS Doctor visits Hypertension Cancer

ATT −0.163+ −1.292 −0.046∗ 0.010
(0.087) (0.938) (0.022) (0.013)

N.Obs 28814 28718 28814 28814
N.Individuals 9218 9208 9218 9218
N.Groups 4 4 4 4
N.Periods 5 5 5 5

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction and objective health outcomes. The control group consists of individuals living further away than
25km from the nearest LEZ. Standard errors clustered at the household level. Significance levels denoted by
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

21 We also looked at subjective health satisfaction that is measured using the same ordinal scale
as for subjective life satisfaction. However, results are largely insignificant, presumably because
the objective health benefits are, on average, too subtle to manifest in overall improvements
of subjective health.



Section 2.7 51

Table 2.12 reports point estimates of the effect of LEZs on life satisfaction,
doctor visits, hypertension, and cancer. The negative effect on life satisfaction
persists in this smaller sample with a magnitude comparable to our baseline
results. Moreover, there is suggestive evidence that LEZs decrease the number of
doctor visits, although we cannot establish statistical significance at conventional
levels. Concerning objective health outcomes, we estimate a significant decrease in
the likelihood of hypertension. The probability of developing hypertension drops
by 4.6 percent after implementation. The effect on hypertension is immediate,
manifesting itself in the first year after LEZ implementation, and point estimates
are rather stable in later years (Figure A.11). Using the pre-treatment hypertension
rate of 31 percentage points among LEZ individuals (cp. Table 2.3) to calculate
the potential reduction in hypertension cases yields an estimate of 1.4 percentage
points. Given that more than 6.6 million people lived inside a LEZ in 2018, a
simple back-of-the-envelope calculation suggests that these driving restrictions
avoided at least 93,000 hypertension cases in Germany. The point estimate of the
LEZ effect on the probability of developing cancer is, as expected, statistically
insignificant.

Lastly, we validate our results by analyzing heterogeneous health effects for
different age groups in Table 2.13. The decrease in the number of doctor visits is
especially pronounced for middle-aged adults and older individuals, with almost
two avoided doctor visits per year for individuals in these age groups. Next, the
decrease in the probability of developing hypertension is visible across all age
groups, with the effect becoming stronger for older individuals. People aged 60
to 80 years benefit the most from LEZs, as their probability for hypertension
decreases by 8.2%, which is in line with recent empirical evidence showing that
health benefits of LEZs accrue mostly to the older population (Margaryan, 2021).
Finally, the probability of developing cancer is not significantly affected by LEZ
implementation in any age group.

2.7.3 Spillovers in life satisfaction and health outcomes

Our results in Section 2.5 show that LEZs generate O3 spillovers in adjacent areas,
which can even cause diminished overall air quality during the summer months.
This implies that individuals living in the affected areas not only have to bear
restricted mobility but also potential costs arising from increased air pollution.
To investigate whether individuals living near LEZs experience life satisfaction
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Table 2.13: LEZ effect on health outcomes by age groups

Number of
Doctor Visits Hypertension Cancer

Age group (20-40] (40-60] (60-80] (20-40] (40-60] (60-80] (20-40] (40-60] (60-80]

ATT −0.08 −1.83+ −1.79 −0.02 −0.03 −0.08∗ −0.005 0.003 0.023
(1.27) (1.10) (2.10) (0.04) (0.03) (0.04) (0.004) (0.015) (0.030)

N.Obs 5157 12736 10954 4113 11463 10954 4113 11463 10954
N.Individuals 2519 4520 3618 2054 4256 3613 2054 4256 3613
N.Groups 4 4 4 4 4 4 4 4 4
N.Periods 5 5 5 5 5 5 5 5 5

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on objective
health outcomes across different age groups. The control group consists of individuals living further away than
25km from the nearest LEZ. Standard errors clustered at the household level. Significance levels denoted by
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

and health effects, we estimate LEZs’ ATTs for individuals within 25 km distance
to a zone.22 Table 2.14 lists the results for the same outcomes as Table 2.12.23

Table 2.14: LEZ spillovers in well-being and health

LS Doctor visits Hypertension Cancer

ATT −0.192∗∗ 0.379 −0.001 −0.003
(0.042) (0.383) (0.010) (0.005)

N.Obs 41079 40935 41079 41079
N.Individuals 12989 12973 12989 12989
N.Groups 4 4 4 4
N.Periods 5 5 5 5

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on the life
satisfaction and health outcomes of individuals living between zero and twenty five kilometers from LEZs. The
control group consists of individuals living further away than 25km away from the nearest LEZ. Standard errors
clustered at the household level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.

The negative well-being effect is also present outside the zones’ limits, with
decreases comparable to those of LEZ residents. This reduction in subjective
well-being for outside dwellers is not surprising, given that people living within
25 km from a LEZ will likely travel into the corresponding city center at some
point in time. In addition, these individuals are affected by harmful pollution
spillovers. In contrast to our findings for residents of LEZs, health outcomes of
neighboring individuals are not impacted by LEZ implementation, implying that
the adverse pollution spillovers are not sufficient to trigger negative health effects,
as measured by healthcare utilization, hypertension, and cancer rates. Our results
therefore suggest that people residing in the vicinity of LEZs bear the costs of
restricted mobility without the health benefits of improved air quality.
22 Using a smaller distance for the treated group, e.g. individuals within 1km, 5km, 10km etc.,

yields point estimates that are very similar in magnitude to the 25km specification.
23 Table 2.14 uses the the bi-annual SOEP sample starting in 2009. Table A.6 lists results for

the full SOEP sample (2005-2018), and suggests a life satisfaction effect of similar magnitude
as in the reduced sample.
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Overall, our results suggest that LEZs decrease subjective well-being of individ-
uals living inside their borders. This negative life satisfaction effect is immediate
but transitory as it disappears several years after policy implementation. We show
that adverse life satisfaction effects are heterogeneous and especially pronounced
among diesel car owners and younger individuals, who are more likely to be
affected by the policy. In addition, we provide evidence that LEZs decrease the
likelihood of developing hypertension, mostly in the older population, though these
health benefits do not seem sufficient to counteract the drop in life satisfaction
due to LEZ implementation. Concerning people living nearby LEZs, we find
comparable decreases in life satisfaction without any significant impacts on health
outcomes.

2.8 Conclusion

This paper contributes to the growing literature on the effects of low emission zones
by providing a comprehensive analysis of their effectiveness concerning overall air
quality and subjective well-being. Moreover, we advance our understanding of
LEZs by paying particular attention to spatial spillovers and seasonal heterogeneity.
Looking at overall air quality instead of specific traffic-related contaminants allows
us to broaden our scope to other determinants of air quality besides traffic-related
pollutants. Notably, we also analyze the impact of the zones on self-reported life
satisfaction and objective health outcomes of individuals in Germany. To the best
of our knowledge, this is the first study looking at the life satisfaction effects of
driving restriction policies. To identify the causal effects of the zones, we use
recent advances in difference-in-differences (DD) designs that are robust to the
potential bias of staggered implementation and time-varying treatment effects.

Results show that LEZs improve overall air quality, despite causing an unin-
tended increase in ground-level ozone. Confirming the previous literature, the
air quality improvement is driven by a decrease in traffic-related pollutants. Our
analysis of seasonal heterogeneity shows that LEZs are especially effective at
reducing traffic contaminants during the winter when the zones’ marginal effects
are more prominent due to a higher pollution intensity of vehicles. In contrast,
they increase ozone levels most during the summer months when greater solar
radiation supports the creation of ozone. We also find that LEZs cause spatial
spillovers, increasing both ozone and carbon monoxide outside the zone limits.
Again, these effects are stronger during summer and winter months, respectively.
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Our analysis of well-being outcomes shows that LEZs cause a significant de-
crease in well-being for individuals residing inside the zones. Effects are more
pronounced for owners of diesel cars, which are more restricted than gasoline
vehicles, and for working-age individuals below the age of 65. We further confirm
previous studies looking at the health effects of the zones by showing that they
improve self-reported health outcomes of individuals in our sample. These results
suggest that the average well-being costs of restricting mobility potentially out-
weigh the well-being benefits of improved health outcomes. Concerning policy
spillovers to outside areas, we find similar-sized reductions in life satisfaction for
individuals dwelling outside but near an LEZ, while health outcomes of persons
living outside the restriction area are not affected by LEZs adoption. These results
imply that people in the vicinity of LEZs bear the costs of restricted mobility
without benefiting from improvements in air quality.

Our findings suggest that policymakers should consider refining the design
of LEZs to minimize the impact of harmful spatial spillovers and unintended
effects on secondary air pollutants. Possible strategies could be to increase LEZs’
coverage area, or focus on restricting traffic mainly during the winter months
when traffic-related pollution is more elevated and the marginal effectiveness
of LEZs on air pollution is highest. Policymakers should also view the drop in
subjective well-being as a cost to the policy and think about ways how to mitigate
it, for example, by more effectively communicating the health benefits of LEZs
or strengthening transfer mechanisms to support the purchase of cleaner vehicles
and the use of public transportation.

An important avenue for future research concerns the mechanisms behind the
reduction in self-reported life satisfaction. For instance, this decrease could be
driven by financial burdens arising from car replacement or the adverse psycho-
logical effects of restricting mobility stemming from various factors like attitudes
towards environmental policies or general trust in the government. Case studies
at the city level that include rich data on mobility behavior and expenses, vehicle
ownership, and political attitudes could be one way to deepen our understanding
of the negative well-being effect.



Chapter 3

Indirect Effects of Ground-Level
Ozone on Well-Being
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3.1 Introduction

Understanding the link between local air pollution, human health, and well-
being is a relevant issue for economists. Air pollution causes economic costs
through exacerbated morbidity (Kampa and Castanas, 2008), increases in mortality
(Jayachandran, 2009; Knittel, Miller and Sanders, 2016), expenditures on health
services (Barwick et al., 2018; Moretti and Neidell, 2011), disruptions to human
capital formation through school absenteeism (Chen, Guo and Huang, 2018; Currie
et al., 2009), shocks to labor supply (Aragón, Miranda and Oliva, 2017; Hanna and
Oliva, 2015), adverse effects on labor productivity (Chang et al., 2019; Zivin and
Neidell, 2012), and reductions in self-reported measures of well-being (Levinson,
2012; Luechinger, 2009).

This paper considers the effect of air pollution on subjective well-being for the
case of ground-level ozone.1 Surprisingly, even though ozone is the second-most
deadly air pollutant in Europe after particulate matter (Wolff, 2014), to the best
of our knowledge, there is no evidence of its effect on self-reported well-being
measures. One possible reason for this counter-intuitive lack of evidence is that
ozone concentrations may not be high enough to affect the life satisfaction of the
average person, although relevant for specific population groups more susceptible
to the negative consequences of exposure.

In this study, we propose that ozone levels can affect adults’ well-being directly
through their health, and indirectly through the effect of exposure on family
members. If the indirect mechanism is present, we expect stronger effects on
the well-being of persons with sensitive family members in their household. We
disentangle the direct and indirect channels by investigating heterogeneous effects
between parents and non-parents. The indirect channel is particularly relevant
in places where ozone levels are not sufficiently high to affect adults’ health but
powerful enough to impact the health of more susceptible household cohabitants
like children. Understanding whether such an indirect effect exists contributes to
a fuller understanding of air pollution’s welfare consequences.

To our knowledge, this paper is the first to examine the indirect effect of family
environments on the relationship between pollution and well-being and the first
to find a consistently negative impact of ozone exposure. We further contribute
by focusing on the mechanisms behind the well-being result, i.e., the health

1 In contrast to ground-level ozone, which is primarily human-made and harmful to flora and
fauna, the bulk of ozone in the earth’s atmosphere occurs naturally in the stratosphere,
between about 10 km and 50 km above the earth’s surface. This ozone layer is vital for
protecting life from the sun’s ultraviolet radiation. In the remainder of the paper, we write
ozone instead of ground-level ozone for brevity.
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of sensitive family members and the role of heterogeneous family environments
proxied by income.

Focusing on the well-being effects of ozone is advantageous for three reasons:
First, substantial epidemiological evidence shows that ozone exposure decreases ob-
jective health outcomes for both adults and children, with children being especially
affected.2 Second, ozone is particularly relevant because while the concentrations
of other pollutants decreased in recent years due to policy interventions, average
ozone levels have remained stable. Furthermore, current levels of ozone are likely
to increase because of climate-change-induced heatwaves (Rosenzweig et al., 2004;
Selin et al., 2009). Third, the correlation of ozone with other contaminants is often
negative, allowing us to provide lower-bound estimates and alleviate spurious
correlation concerns.

We analyze the effects of ozone on two measures of subjective well-being:
satisfaction with one’s health, and satisfaction with one’s life. Health satisfaction
targets the health channel of air pollution, whereas the broader measure of life
satisfaction encompasses further factors affecting an individual’s well-being, such
as indirect welfare effects stemming from the impact of ozone on the environment,
the family, and the community. Evaluating subjective well-being is informative,
especially in contexts of moderate ozone concentrations and healthy populations.
If ozone affects the health of individuals, they may increase their demand for
health services, decrease labor supply, or suffer productivity losses, which leads
to additional economic costs. Conversely, if ozone only moderately deteriorates
objective health outcomes, it may not lead to immediate economic costs when
the individual generally feels well.3 Furthermore, life satisfaction measures are
also attractive from an identification perspective as they respond to short and
medium-term shocks, like the variation in air pollution. Existing literature has
already successfully exploited this sensitivity of life satisfaction to short-term
events (e.g. Levinson, 2012; Luechinger, 2009).

We identify the effect of ozone on individuals from short and medium-term
variations in ozone levels. Specifically, we combine geo-coded data on daily ozone
levels from measuring stations across Germany with geo-coded individual-level
data on subjective health and life satisfaction between 2005 and 2018 from the
German Socio-Economic Panel Study (SOEP), a representative survey of German

2 Additional direct losses in well-being may occur through aesthetic effects, such as foggy air
due to pollution (Levinson, 2012).

3 Validating the results for the subjective variables (well-being and health) using objective data
is beyond this paper’s scope due to data availability. Especially in Germany, administrative
data on children’s objective health outcomes are not publicly available. However, we refer the
reader to the extensive body of literature linking air pollution and objective outcomes.
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individuals. We exploit information on the precise date of the SOEP interview to
assign weekly, monthly, and quarterly exposure levels to each individual through
inverse distance weighting. Our preferred specification estimates the effects of
ozone on the health and life satisfaction of parents and non-parents, controlling
for time and individual fixed effects, individual-level sociodemographic covariates,
and weather impacts.

The study also explores the channels through which parents experience losses
in life satisfaction by analyzing the impact of ozone exposure on parents of
children with respiratory disease, as these children are particularly vulnerable
to exposure. Moreover, we explore heterogeneous effects between high and low-
income households and examine the sensitivity of our results through several
robustness tests. First, we randomize pollution exposure across individuals and
across time allowing us to rule out spurious correlations. Second, we are mindful
of the need to ascertain that estimations are robust to the cardinalization of the
ordinal well-being outcomes (e.g. Bond and Lang, 2019). As such, we re-formulate
the 11-point outcome scales for life and health satisfaction as binary variables
and re-estimate our main specification using a fixed-effects Probit model to check
whether our results depend on the ordinal nature of the well-being outcomes.

Results show statistically and economically significant adverse effects of ozone
on parents’ life satisfaction. In contrast, such effects are absent for childless
persons. The economic significance in families with children increases with the
level of temporal aggregation: point estimates grow in absolute value between
weekly, monthly, and quarterly time windows. This result is in line with the
epidemiological literature, which shows that the effects of ozone on health be-
come more pronounced with prolonged exposure, suggesting that – under the
assumption that the sensitivity of individuals’ life satisfaction to ozone is not
affected by childbirth – ozone pollution diminishes the well-being of parents while
not significantly affecting childless persons. In contrast to our results on life
satisfaction, we do not find any effect of ozone on health satisfaction, neither
for parents nor for persons without children. Our findings suggest that ozone
concentrations in Germany are not high enough to affect the subjective health of
adults in general, but are suggestive regarding the negative consequences of ozone
on children’s health, and their indirect effect on the life satisfaction of the adult
population.

Exploring the mechanism behind the well-being effect, we find that parents who
have a child with a respiratory disease experience decreases in their life satisfaction,
while parents of healthy children are not affected by ozone exposure. This result
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provides direct evidence that the children’s health is one of the elements driving
the well-being effect, either through empathy, worries about missing work, or costs
of providing care. Moreover, below-median earning parents are more affected in
their well-being. This result aligns with the literature showing that children from
low-income families are generally less healthy than children from high-income
households (Currie and Lin, 2007; Reinhold and Jürges, 2012). The indirect
influence of ozone on parents should be taken into account in further research and
policy debates regarding the costs and benefits of reducing air pollution.

In our view, the two contributions most relevant to ours are Luechinger (2009)
and Levinson (2012). Luechinger (2009) analyzes the effect of SO2 on the subjective
life satisfaction of SOEP households using a quasi-experimental design. His study
finds a significant negative impact of SO2 pollution on individuals’ life satisfaction.
Levinson (2012) uses data from the General Social Survey (GSS), collected by the
National Opinion Research Center and daily variation in air pollution to show that
PM10 also diminishes life satisfaction of U.S. individuals. Our paper adds to the
literature compared to Luechinger (2009) and Levinson (2012) in several respects:
First, it studies the effects of a different pollutant, ozone. Second, it explores the
channels through which pollution affects life satisfaction. Third, it leverages the
higher quality of our data, mainly better coverage compared to Levinson (2012)
and better regional granularity compared to Luechinger (2009), to pursue a more
precise identification, and fourth, it explores how different time aggregations of
pollution affect the coefficients of our causal variable.

Further studies on the link between air pollution and life satisfaction provide
additional evidence on the relationship between these variables: Rehdanz and
Maddison (2008) use SOEP data to find a negative association between people’s
claim to be affected by higher air pollution and their levels of life satisfaction.
Ferreira and Moro (2010) use the same method at the level of Irish electoral
districts and find similar results. Cunado and De Gracia (2013), Ferreira et al.
(2013) and Ambrey, Fleming and Chan (2014) also find a negative association
between life satisfaction and air pollution. Zhang, Zhang and Chen (2017) find
that an air pollution index composed of SO2, NO2, and PM10 decreases subjective
mental health and increases hedonic unhappiness. However, to our knowledge,
this literature does not explicitly explore channels through which air pollution
affects well-being.
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3.2 Background: Ozone and health

There is a significant literature on the direct impacts of ozone pollution on objective
health outcomes. Empirical evidence shows that exposure increases the morbidity
and mortality of affected persons (Knittel, Miller and Sanders, 2016; Schwela,
2000). Short-term effects include decreases in lung capacity, inflammations of
the respiratory tract, and a higher frequency of asthma attacks. At the same
time, long-term exposure increases the risk of developing chronic lung disease
(EPA, 2016), and potentially increases the probability of developing lung cancer
(Kim, Shin and Choi, 2018; Rocks et al., 2017). The health effects of ozone
are most potent among vulnerable populations, like children, the elderly, and
individuals suffering from respiratory ailments. Gryparis et al. (2004) use data
from 24 different European urban agglomerations to conclude that an increase
of 10 milligrams per cubic meter (mg/m3) in the levels of 1-hour maximum
daily ozone concentrations raises total mortality rates by 0.31%. Regarding
morbidity, Devlin et al. (1991) conclude that even at ambient levels as low as eight
particles per billion (ppb), ozone exposure has negative impacts on the respiratory
system. Koken et al. (2003) find that ozone correlates with hospitalizations of
elderly adults due to cardiovascular ailments, while Friedman et al. (2001) uses
variations in environmental policies during the Atlanta summer games to infer
that the associated drops in peak daily ozone levels (81.3 to 58.6 ppb) lead to
fewer asthma-related emergency room admissions. Moretti and Neidell (2011)
use instrumental variable techniques to estimate the financial costs of ozone on
hospital admissions. They determine that ozone exposure causes annual costs of
US$ 55m from respiratory hospitalizations and avoidance behavior.

Studies focusing on the effect of ozone on children’s health have also produced
substantial evidence regarding the damaging impact of ozone on respiratory health,
lung capacity, long-term inadequacy of lung growth, increases in hospitalizations,
mortality, and use of asthma medicine (Bates, 1995). The literature shows that
ozone affects children more strongly than adults. Lleras-Muney (2010) studies the
effect of air pollution on children’s hospitalization rates by using the relocation of
military personnel as a source of exogenous variation in exposure. She finds that an
increase in ozone exposure by one standard deviation increases the hospitalization
rates of military children between 8% and 23%. Burnett et al. (2001) analyze
the effects of ozone on the hospitalization rates of children under two years of
age. They find that increasing the average ozone concentration to one-hour
maximum values typically found in summertime (45 ppb) would increase daily
hospitalizations due to respiratory ailments by 35%. Coneus and Spiess (2012)
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analyze SOEP data on children’s health outcomes and find that ozone exposure
leads to bronchitis and other respiratory illnesses among toddlers. Thurston et al.
(1997) find significant correlations between lower lung capacity and high levels of
atmospheric ozone when studying the effect of ozone in children between seven
and thirteen years old. Ostro et al. (2001) find that asthmatic children between
the ages of eight and thirteen increase medicine use during higher ozone episodes.
Lee et al. (2002) observe that, for South Korean children under the age of fifteen,
the risk of asthma-related hospitalization increases between 7% to 13% when
atmospheric ozone rises by 21 ppb. Tolbert et al. (2000) find that increasing the
8-hour maximum ozone level by 20 ppb increases pediatric emergency room visits
due to asthma by 4%. Finally, Gent et al. (2003) show that asthmatic children are
particularly vulnerable to ozone exposure, with levels well below the regulatory
limit values leading to increased shortness of breath and use of rescue medication
use.

Based on the epidemiological evidence and under the reasonable assumption
that the utility of children enters the utility function of their parents, we hypothe-
size that there are two channels for ozone to affect adults’ well-being: The first
channel captures the direct effect of ozone through their health, which is the
channel investigated in the existing literature. The second channel is through
family effects: Parents’ outcomes are affected by their childrens’ welfare. We
hypothesize that in the case of ozone, the second channel is worth examining
because children are a sensitive group to the effects of ground-level ozone.

3.3 Data

3.3.1 Data sources

We obtain household and personal data from the German Socio-economic Panel
Study (SOEP). The SOEP is a representative longitudinal panel study that
started in West Germany in 1984. Our primary outcome variables are responses to
questions asking individuals to rate their life and health satisfaction. The questions
are as follows: ”How satisfied are you with your life, all things considered?” and
”How satisfied are you with your health, all things considered?” Respondents
provide answers on an eleven-point scale from zero (completely dissatisfied) to
ten (completely satisfied) (Richter et al., 2013). SOEP also provides two critical
pieces of information necessary for the causal identification of the effects of
ground-level ozone on life and health satisfaction: First, it contains the geo-
coordinates of surveyed households on a strictly confidential basis. We use these
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geo-codes and inverse distance weighting to match surveyed individuals to nearby
pollution measuring stations, enabling a clean spatial matching of exposure and
individuals.4 Second, the survey also contains information on the exact day of
the interview, allowing for a precise temporal match of individuals and their
ozone exposure. Additionally, the SOEP also has information on a broad set
of sociodemographic and economic controls, such as marital status, age, gender,
income, and employment.

Moreover, the SOEP surveys the birth biography of respondents, including
the month and year of childbirth, allowing us to distinguish between parents and
childless persons. We focus on parents living in the same household with their
minor children, and compare them to childless people.5 Information on children’s
health outcomes is collected via “mother and child” questionnaires that survey
doctor-diagnosed diseases and conditions of the child, e.g., respiratory diseases
such as asthma or bronchitis.6 After matching kids’ health information to their
parents’ responses, we can differentiate between parents with healthy and sick
kids.

Data on the daily concentration of ozone and other air pollutants come from
the German Environmental Agency (Umweltbundesamt, henceforth UBA). UBA
maintains an extensive network of monitoring stations measuring different types
of contaminants. In total, UBA has 387 stations measuring the concentration
of ozone in the environment.7 Figure 3.1 shows the spatial distribution of ozone
monitoring stations across Germany. Stations concentrate in urban clusters such
as Berlin in the northeast, Hamburg in the north, and the Ruhr area in the west.

Additionally, the German meteorological service (Deutscher Wetterdienst,
DWD) provides weather data from its monitoring stations. We also match the
weather data to the individual-level data with inverse distance weighting.

4 Specifically, the inverse distance weighting is based on pollution measuring stations within a
radius of twenty kilometers to a SOEP household. Results are robust to using a ten-kilometer
radius, although estimates are often less precise due to smaller sample size.

5 Childless people are those who have not given birth before the end of our sample period. We
discard childless people who live with children in the same household, e.g., adult siblings.
We also eliminate responses of (future) parents if the child is not yet born, and responses of
(former) parents whose children have reached the legal age or have moved out of their parent’s
household.

6 Mothers/fathers of children younger than eleven years are prompted the question “Has
your child been diagnosed by a doctor as having one of the following health conditions or
impairments?”. Answers are either yes or no for specific disease categories, e.g., respiratory
disease (asthma, bronchitis or similar), allergies, neurodermatitis, or vision impairment.

7 Because of malfunction and routine maintenance, stations measuring ozone have missing
values around 10% of the time.
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Figure 3.1: Ozone monitoring stations in Germany

100 km

Notes: The figure depicts the locations of ozone monitoring stations in Germany between 2005 and 2018.
Source: German Environmental Agency.

3.3.2 Ground-level ozone in Germany

Our primary explanatory variable is ground-level ozone. In Germany, over the
period 2005-2018, ozone had an average annual concentration of 48.3 micrograms
per cubic meter (µg/m3), with a standard deviation of 24.4 µg/m3 and a maximum
of 199.9 µg/m3. Ozone levels are higher in rural areas (58.7 µg/m3) than in
suburban (45.9 µg/m3) and urban (42.7 µg/m3) districts. Furthermore, the
annual average concentration of ozone has remained stable throughout our sample
period, whereas the concentration of traffic-related pollutants like nitrogen dioxide
(NO2) and coarse particulate matter (PM10) decreased (Figure 3.6, right panel),
mostly because of the adoption of environmental policies such as clean air action
plans and low emission zones.

Both the higher level of ozone in rural areas and its steady long term trend
mirror the fact that ozone is a secondary environmental pollutant.8 On the one
hand, ozone is formed through solar radiation in combination with precursor
contaminants, such as nitrogen oxides (NOx) and volatile organic compounds. On
the other hand, NOx also degrades ozone into oxygen, leading to a non-linear
relationship between ozone and its precursors. For example, in areas with high
levels of NOx, such as urban centers and traffic areas, ozone degrades at faster
8 In contrast to primary pollutants (e.g., carbon monoxide or sulfur dioxide), secondary pollu-

tants are not directly emitted from a source. Instead, secondary pollutants form in the lower
atmosphere through chemical interactions with different precursor pollutants.
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rates, leading to lower ozone levels than in rural areas with lower levels of ozone
precursors. This phenomenon is referred to as the ”ozone paradox” (Monks et al.,
2015).

Despite its stable trend in annual average values, ozone still varies significantly
within the year. Given that primary contaminants’ interaction with solar radiation
triggers the creation of ozone, its levels are higher during the summer months
(center panel in Figure 3.6). Moreover, as the levels of primary pollutants and solar
radiation vary across locations, the ozone concentration also varies substantially
across space. Figure 3.2 shows the spatial distribution of average ozone levels
across German federal states during the year’s four seasons. We observe lower
ozone levels in densely populated states such as North Rhine-Westphalia, Hamburg,
and Bremen, and higher levels in more rural areas, such as Schleswig-Holstein and
Saxony. Regional concentrations vary significantly by season. In the winter, the
states with higher ozone levels are the more rural Eastern and Northern states.
In the summertime, due to the influence of solar radiation on ozone formation,
southern states such as Baden-Wuerttemberg and Bavaria exhibit higher exposure
levels.

Figure 3.2: Ozone concentrations in Germany by season

Spring Summer Autumn Winter

Ozone [20,30) [30,40) [40,50) [50,60) [60,70]

Notes: The figure depicts seasonal average ozone levels across German federal states. Seasonal ozone averages
are calculated by averaging over daily values in the respective season over the period 2005-2018. Ozone averages
are reported in micrograms per cubic meter (µg/m3).
Source: German Environmental Agency.

We assign daily ozone exposure to individuals using inverse distance weighting
(IDW) between ozone monitoring stations and individuals’ dwellings. IDW is a
spatial interpolation technique that approximates the value of a point in space
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by weighting the values of comparable neighbors.9 It assigns location-specific
pollution averages to each person by providing more weight to stations located
near the person’s dwelling.

3.3.3 Individual-level data

Table 3.1 presents basic descriptive statistics for the subsample of SOEP individuals
residing within twenty kilometers of ozone measuring stations. The mean of both
life and health satisfaction is in the upper part of their categorical distribution,
with a mean value of 7.25 for life satisfaction and 6.93 for health satisfaction.
On average, surveyed individuals have an income of 43.6 thousand Euro, are in
their 40s, and are employed 68% of the time. We observe differences between
individuals by child status. Parents are younger, generate a higher income, and are
employed more frequently than childless people. We control for these differences
in the regression analysis. In terms of pollution, parents are exposed to higher
ozone levels because they live in more rural areas relative to childless people.

Figure 3.3 shows the distribution of answers for health and life satisfaction.
For both variables, the highest frequency of responses is between seven and nine.
On average, individuals were mostly satisfied with their life during the sample
period. We observe that life and health satisfaction are correlated, although the
correlation is not perfect. Scores for health satisfaction are spread across the scale
more than for life satisfaction. Table B.1 shows that the distributions of life and
health satisfaction ratings are very similar among parents and non-parents.

Figure 3.4 portrays the temporal evolution of life and health satisfaction. The
graphs exhibit similarities and differences in the evolution of both variables over
time. Both life and health satisfaction decrease during the financial and economic
crisis in 2008/2009. In the ensuing years, they increase in line with the positive
development of the German business cycle and the concurrent rise in employment.

9 Formally, IDW interpolation takes the form:

Vjt =

⎧⎨⎩
∑︁N

i
ω(distij)∗polit∑︁N

i
ω(distij)

polit → distij = 0

⎫⎬⎭ =⇒ ω(distij) = 1
distance(xi, xj)p

where Vjt is the weighted value of pollution at household j at time t, polit is the value
of pollution at station i at time t, xi and xj the geographical coordinates of station i and
households j, and distij is the distance between pollution station i and household j. The power
factor p modifies the weighting load; the greater p, the greater the weight of closer stations.
We use a weight of two, as recommended by De Mesnard (2013) for air pollution. To focus on
local ozone concentration, we cut off stations located further away than twenty kilometers.
Finally, we use the great circle distance formula for maximum precision in calculating the
distance between coordinate points (Shumaker and Sinnott, 1984).
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Table 3.1: Descriptive overview

Full sample Parents Childless
Mean SD Mean SD Mean SD

SOEP variables
Life satisfaction 7.25 1.72 7.39 1.65 7.07 1.79
Health satisfaction 6.93 2.15 7.07 2.05 6.76 2.26
Age 43.79 14.95 41.92 7.47 46.16 20.63
Income 43.60 32.23 46.63 31.33 39.75 32.93
Is employed 0.67 0.47 0.79 0.41 0.53 0.50
Is married 0.60 0.49 0.80 0.40 0.35 0.48
Number kids 1.07 1.18 1.91 0.95 0.00 0.00
Pollution
Ozone (O3) 49.57 17.32 51.62 17.28 46.96 17.01
Nitrogen dioxide (NO2) 32.05 15.04 30.61 14.61 33.88 15.38
Coarse particulate matter (PM10) 23.59 10.95 22.37 10.03 25.15 11.82
Weather
Temperature 7.72 6.70 9.19 6.66 5.87 6.27
Precipitation 1.84 1.11 1.91 1.17 1.77 1.02
Sunshine 4.62 2.29 5.05 2.25 4.08 2.23
Individuals 16,423 9,600 6,823
Observations 86,101 48,100 38,001

Notes: The table lists descriptives on socio-demographic variables and pollution exposure of SOEP individuals,
averaged over the period 2005-2018. Employment (marriage) is a binary variables indicating if the person is
employed (married) in each year or not. Income is monthly net household income measured in thousand Euro.
All pollutants are measured in µg/m3.
Source: SOEP, version 35, and German Environmental Agency.

Figure 3.3: Life and health satisfaction of SOEP individuals

Notes: The figure depicts the number of SOEP responses per category of life and health satisfaction, respectively,
for the period 2005-2018.
Source: SOEP, version 35.

Since then, average life and health satisfaction have remained relatively stable.
Average life and health satisfaction of parents are higher than for non-parents,
but both groups exhibit similar trends (Table B.2).



Section 3.4 67

Figure 3.4: Life and health satisfaction of SOEP individuals over time

Notes: The figure depicts annual average values of life and health satisfaction of SOEP individuals for the period
2005-2018.
Source: SOEP, version 35.

3.4 Research Design

3.4.1 Identification

The research design identifies the effect of ozone on individuals from within-year
variation in ozone levels at weekly, monthly, and quarterly frequencies.10 Our
identification strategy helps mitigate concerns about the endogeneity of pollution
levels, and it is similar to the approach by Levinson (2012), except that the higher
quality of our data allows us to exploit more variation in ozone concentrations
across space and time (Figure 3.2). The design controls for unobservable het-
erogeneity through individual, year, month, and day-of-the-week fixed effects.
Additionally, we control for differences in observables at the individual level, as
well as for weather conditions that play a role in ozone generation.

SOEP interviews take place at different times of the year all over Germany.
Roughly half of the surveys take place between September and March — months
with low ozone concentrations — while the other half occurs from April to August
when ozone levels are higher (Figure 3.5, left panel). Besides, the interview dates
also vary at the individual level across the years. On average, SOEP interviews for
each person occur with a standard deviation of 37 days (Figure 3.5, right panel).
In addition to variation across the year, interviews also vary by weekday. Even
if the questionnaire were filled on the same date in two consecutive years, ozone

10 Our data only allow us to map ozone levels to each person’s dwelling. However, especially
kindergartens and primary schools are usually close to people’s homes. We thus consider
our assumption that ozone levels at individuals’ dwellings are similar to those at schools and
kindergartens to be fair.
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values likely change because of differences in ozone concentrations depending on
the day of the week (Figure 3.6, left panel). Together, these sources of temporal
variation provide significant in-person variation in exposure.

Figure 3.5: Distribution of SOEP interviews over days of the year

Notes: The left panel shows the distribution of the day-of-the-year of SOEP interviews for the period 2005-2018.
The right panel depicts the distribution of individual-level standard deviations of interview dates.
Source: SOEP, version 35.

One concern is self-selection through moving behavior. Some individuals may
move to areas with less pollution. To avoid this issue from contaminating our
results, we exclude individuals that moved dwellings during the sample period:
By eliminating movers, we estimate a lower bound of the effect of ozone, as people
that relocate due to ozone exposure are likely to be more sensitive than those who
remain in their prior location. Another potential concern is that ozone levels may
be highly correlated with other pollutants so that multicollinearity may hinder the
identification of effects. Figure 3.6 shows that ozone variation differs strongly from
PM10 and NO2 across the week, the year, and over our sample period. In addition
to differences in variation over shorter intervals, ozone is the only air pollutant
that has not seen a significant decrease throughout the study period (Figure
3.6, right panel). We check the robustness of our results using a multi-pollutant
specification that controls for other relevant contaminants besides ozone.11

11 We include additional pollutants that are highly correlated with ozone, i.e., coarse particulate
matter (PM10) and nitrogen dioxide (NO2). Results for the multi-pollutant specification are
listed in Tables B.2, B.3, and B.4.
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Figure 3.6: Temporal variation in ozone, fine particulate matter and nitrogen
dioxide

Weekday Variation Monthly Variation Yearly Variation
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Notes: The figure depicts percentage deviations of weekday, monthly, and annual average pollution
concentrations from their overall average for the period 2005-2018.
Source: German Environmental Agency.

3.4.2 Empirical model

Our main analysis estimates the following equations:

LSit = α + ρ Ozoneit + X ′
itα + W ′

itβ + Γt + λi + ϵit, (3.1)

HSit = α + ρ Ozoneit + X ′
itα + W ′

itβ + Γt + λi + ϵit, (3.2)

LSit and HSit are subjective life and health satisfaction values for each indi-
vidual i on the interview date t. Ozoneit is the exposure of individual i to ozone.
ρ represents the coefficient of interest on pre-interview ozone exposure of different
lengths. We estimate short-term effects by using the ozone exposure during the
week prior to the interview as the main explanatory variable and capture longer-
term effects by using rolling averages of ozone concentrations during the month
and quarter before the interview. X ′

it is a matrix of time-varying individual level
controls and W ′

it contains weather controls based on weekly, monthly, or quarterly
rolling averages prior to the interview. Γt contains the matrix of year, month,
and weekday fixed effects. λi are individual fixed effects, and ϵit is the error term,
clustered at the household level. Finally, we address the dependent variable’s
ordinal nature using panel probit models with individual and year fixed effects in
the robustness section.
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3.5 Results

3.5.1 Full sample

We begin our analysis by considering if variation in exposure to ozone concentra-
tions during the week before the interview affects the life or health satisfaction of
individuals in the full sample. For each outcome, we run six different specifications,
building up from a model containing only the level of ozone and individual and
year fixed effects (Table 3.2, column 1) to the full specification corresponding to
Equation 3.4.2 (column 6). The latter is our preferred specification, controlling for
differences in income, marital and employment status, and five-year age bins al-
lowing for non-linear relationships between age and life satisfaction, and interview
month and weekday fixed effects. Additionally, it flexibly controls for weather
impacts by including indicator variables for weather quintiles.

Table 3.2: Short-term effect of ozone on life satisfaction, full sample

Dependent Variable: Life satisfaction
(1) (2) (3) (4) (5) (6)

Ozone -0.0010∗ -0.0010∗ -0.0008 -0.0008 -0.0013∗ -0.0011∗

(0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005)
Income 0.0008∗ 0.0009∗ 0.0009∗ 0.0009∗ 0.0009∗

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Is married 0.2442∗∗∗ 0.2435∗∗∗ 0.2435∗∗∗ 0.2433∗∗∗ 0.2438∗∗∗

(0.0570) (0.0569) (0.0568) (0.0568) (0.0568)
Is employed 0.0588∗∗ 0.0550∗ 0.0552∗ 0.0568∗∗ 0.0562∗∗

(0.0215) (0.0214) (0.0214) (0.0214) (0.0214)
Fixed-effects
Individual Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month No No Yes Yes Yes Yes
Day-of-the-week No No No Yes Yes Yes
Control variables
Age bins No Yes Yes Yes Yes Yes
Weather controls No No No No Linear Non-linear
Fit statistics
Individuals 16,423 16,423 16,423 16,423 16,423 16,423
Observations 86,101 86,101 86,101 86,101 86,101 86,101
Adjusted R2 0.53711 0.53809 0.53844 0.53848 0.53856 0.53848

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction on average ozone
exposure during the week prior to the SOEP interview. All regressions contain individual and year fixed effects.
Specification (1) contains ozone, individual fixed effects and year fixed effects. Column (2) adds the
sociodemographic covariates income, employment status, marital status, and categorical five-year age bins; (3)
adds fixed effects for the month of the interview; (4) adds day-of-the-week fixed effects; (5) adds linear weather
controls (sunshine duration, temperature, precipitation); (6) controls for non-linear weather impacts through
indicator variables for weather quintiles. Robust standard errors clustered at the household level in parentheses.

Table 3.2 lists results for the impact of average ozone exposure during the
week prior to the SOEP interview on life satisfaction. The point estimate for
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ozone is consistently negative across all specifications, and statistically significant
in the preferred specification. The results for other covariates are as expected
and in concordance with Frijters, Haisken-DeNew and Shields (2004): Income,
being employed, and being married are positively related to life satisfaction. The
point estimates on the five-year age bins suggest a U-shaped relationship between
life satisfaction and age, consistent with the evidence presented by Baetschmann
(2013).12 As we are not only interested in the effect of ozone on subjective
evaluations of people’s lives but also their subjective health, we run the same
specifications with health satisfaction as the dependent variable.13 In line with
Levinson (2012), we find that ozone has no short-term effect on individuals’ health
satisfaction.

Next, we analyze the effect of different time aggregations of exposure to
ozone on life satisfaction. Doing so is of interest as the epidemiological literature
suggests that the adverse effects of ozone accumulate over time. We run additional
estimations for average ozone concentrations during the month and quarter before
the interview. Table 3.3 shows the coefficients on ozone for the weekly, monthly,
and quarterly time aggregations and across all models.14 Again, there is some
evidence of a negative link between ozone and life satisfaction in the full sample,
with varying significance levels across specifications. The impact on life satisfaction
appears to accumulate over time because coefficient magnitude increases with
longer exposure windows. In contrast, the results for health satisfaction are never
significant for any time aggregation of ozone exposure.

These initial results for the full sample show that ozone levels are negatively
related to how individuals assess their life satisfaction. In contrast, ozone expo-
sure does not affect adults’ health satisfaction, potentially because health effects
on adults are rather moderate and too subtle to impact their self-rated health.
Nevertheless, we cannot rule out that these health effects translate to decreases in
life satisfaction. Next, we test whether this direct health effect, or the hypothe-
sized indirect effect operating through children’s health, is driving the negative
relationship between ozone and life satisfaction. We revisit our hypothesis by
studying if ozone has differential impacts on life and health satisfaction of parents
and childless people. All further analyses focus on our preferred specification.

12 For brevity, we do not list the coefficients on age bins. They are available upon request.
13 Table B.1 lists the results for health satisfaction.
14 We also run our regressions using daily pollution data. Ozone is never found to be significant.

We believe this result is reasonable due to the short measurement period. The results are
available upon request.



72 Chapter 3

Table 3.3: Effect of ozone on life and health satisfaction, full sample and different
time aggregations of pollution

Dependent Variable: Life satisfaction
Ozone average (1) (2) (3) (4) (5) (6)
Weekly -0.0010∗ -0.0010∗ -0.0008 -0.0008 -0.0013∗ -0.0011∗

(0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0005)
Monthly -0.0013∗∗ -0.0013∗∗ -0.0013 -0.0012 -0.0015+ -0.0014+

(0.0005) (0.0005) (0.0008) (0.0008) (0.0008) (0.0008)
Quarterly -0.0020∗∗ -0.0019∗∗ -0.0021+ -0.0021+ -0.0023+ -0.0024+

(0.0006) (0.0006) (0.0012) (0.0012) (0.0013) (0.0013)
Dependent Variable: Health satisfaction

Weekly 0.0000 0.0001 0.0001 0.0001 -0.0003 -0.0002
(0.0005) (0.0005) (0.0006) (0.0006) (0.0006) (0.0006)

Monthly 0.0000 0.0000 -0.0005 -0.0005 -0.0011 -0.0009
(0.0006) (0.0006) (0.0009) (0.0009) (0.0010) (0.0009)

Quarterly 0.0011 0.0011 0.0010 0.0010 -0.0002 0.0006
(0.0007) (0.0007) (0.0014) (0.0014) (0.0015) (0.0014)

Fixed-effects
Individual Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month No No Yes Yes Yes Yes
Day-of-the-week No No No Yes Yes Yes
Control variables
Age bins No Yes Yes Yes Yes Yes
Weather controls No No No No Linear Non-linear
Fit statistics
Individuals 16,423 16,423 16,423 16,423 16,423 16,423
Observations 86,101 86,101 86,101 86,101 86,101 86,101

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction on ozone exposure. All
regressions contain individual and year fixed effects. Specification (1) contains ozone, individual fixed effects and
year fixed effects. Column (2) adds the sociodemographic covariates income, employment status, marital status,
and categorical five-year age bins; (3) adds fixed effects for the month of the interview; (4) adds day-of-the-week
fixed effects; (5) adds linear weather controls (sunshine duration, temperature, precipitation); (6) controls for
non-linear weather impacts through indicator variables for weather quintiles. Estimations are performed using
three different temporal aggregations of pollution exposure: weekly, monthly, and quarterly. Robust standard
errors clustered at the household level in parentheses.

3.5.2 Parents and childless individuals

Recall that our central hypothesis is that ozone affects adults’ well-being through
the impact of ozone on their children’s health. If it holds, we expect the point
estimate of ozone exposure on the life satisfaction of parents to be significant
and negative in sign, while the same point estimate for persons without children
should remain insignificant. Table 3.4 contains the estimation results from our
preferred specification across three different time aggregations of ozone exposure,
for the subsamples of parents and childless persons, and for both life and health
satisfaction.



Section 3.6 73

Table 3.4: Effect of ozone on life and health satisfaction, by child status

Dependent Variables: Life satisfaction Health satisfaction
Ozone average Parents Childless Parents Childless
Weekly -0.0018∗ -0.0003 0.0010 -0.0016+

(0.0007) (0.0008) (0.0009) (0.0009)
Monthly -0.0025∗ 0.0002 -0.0005 -0.0007

(0.0011) (0.0013) (0.0013) (0.0014)
Quarterly -0.0041∗ 0.0001 0.0004 0.0012

(0.0017) (0.0019) (0.0019) (0.0022)
Individuals 9,600 6,823 9,600 6,823
Observations 48,100 38,001 48,100 38,001

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure among parents and non-parents. All regressions control for individual fixed effects, year fixed
effects, month fixed effects and day-of-the-week fixed effects, sociodemographic covariates income, employment
status, marital status, and categorical five-year age bins, and indicator variables for weather quintiles (sunshine
duration, temperature, precipitation). Estimations are performed using three different temporal aggregations of
pollution exposure: weekly, monthly, and quarterly. Robust standard errors clustered at the household level in
parentheses.

We find a statistically significant effect of ozone on the life satisfaction of
parents. In contrast, we find no significant results for persons without children.
Results show that a marginal increase in ozone decreases parents’ life satisfaction
between 0.002 and 0.004 points, depending on the level of temporal aggregation.
When extending the time interval for measuring exposure before the interview, the
coefficient grows in size, pointing to time accumulation of adverse outcomes. Our
results suggest that a one-standard-deviation increase in ozone exposure decreases
life satisfaction of parents by 0.04 to 0.07 points. This effect corresponds to about
4-8% of the impact of becoming unemployed, as estimated by Kassenboehmer
and Haisken-DeNew (2009). Given that job loss is one of the strongest shocks
on life satisfaction found in the literature, the magnitude of the ozone impact on
well-being appears substantive.

Concerning health satisfaction, we do not find any significant effects for
parents.15 This result implies that the effect of ozone on the well-being of parents
works - at least partially - indirectly: Ozone exposure diminishes parents’ well-
being due to the negative impact of ozone on their children, a well-known high-risk
group.

15 For childless people, the impact of weekly ozone exposure on health satisfaction is borderline
significant. A possible explanation is that the childless people are on average older than the
parents in our sample and, hence, more vulnerable to the health impacts of ozone.
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3.6 Mechanism

3.6.1 The role of parents’ income

We have shown that ozone affects parents’ life satisfaction while remaining in-
nocuous to childless persons. An intuitive explanation is that children’s health
influences parents’ well-being. We investigate this claim by using household income
as a proxy for kids’ health. There is consensus in the empirical literature that
children from low-income households have generally worse health status, and are
more likely to suffer from chronic and acute medical conditions (Currie and Lin,
2007). The negative relationship between children’s health and parents’ income
has also been confirmed for Germany (Reinhold and Jürges, 2012). Hence, we
expect more pronounced well-being effects on parents in low-income households,
because their children are more vulnerable to ozone exposure due to worse health
status. We investigate this hypothesis by examining heterogeneous life and health
satisfaction effects of ozone in high- and low-income households.16 To do so, we
split the sample of parents into above-median and below-median earners and
estimate separate effects for each subsample.

Table 3.5: Effect of ozone on life and health satisfaction of parents, by income
group

Dependent Variables: Life satisfaction Health satisfaction
Ozone average Low income High income Low income High income
Weekly -0.0024+ -0.0014 0.0012 0.0005

(0.0013) (0.0009) (0.0014) (0.0012)
Monthly -0.0046∗ -0.0008 -0.0001 -0.0012

(0.0018) (0.0014) (0.0021) (0.0018)
Quarterly -0.0039 -0.0004 0.0013 -0.0014

(0.0029) (0.0022) (0.0032) (0.0027)
Individuals 6,640 5,723 6,640 5,723
Observations 24,048 24,052 24,048 24,052

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure among below-median and above-median income parents. All regressions control for individual
fixed effects, year fixed effects, month fixed effects and day-of-the-week fixed effects, sociodemographic covariates
income, employment status, marital status, and categorical five-year age bins, and indicator variables for weather
quintiles (sunshine duration, temperature, precipitation). Estimations are performed using three different
temporal aggregations of pollution exposure: weekly, monthly, and quarterly. Robust standard errors clustered
at the household level in parentheses.

The results in Table 3.5 show that the well-being effect of weekly and monthly
ozone exposure is more pronounced for low-income parents than for high-income
16 Using income as a proxy for kids’ health is advantageous because it also captures undiagnosed

illnesses of children. This circumvents the “diagnosis bias” where children from high-income
households are more likely to be diagnosed with chronic conditions even if they are healthier
on average (Reinhold and Jürges, 2012).
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parents. In contrast to above-median earners, the well-being of below-median
earning parents significantly declines. This supports the hypothesis that children
in low-income households have a lower health status, and react more strongly to
ozone exposure.

3.6.2 The impact of children’s respiratory health

We have provided evidence that the negative relationship between ozone and
parents’ well-being is more pronounced in low-income households, presumably
due to worse child health. Next, we corroborate this claim by directly relating
parents’ well-being to objective health outcomes of their children. As shown in
section 3.2, a large stream of epidemiological literature demonstrates the negative
consequences of ozone exposure for kids’ health. Ozone exposure does not only
increase the prevalence of respiratory diseases among children (Coneus and Spiess,
2012), it can also exacerbate pre-existing respiratory conditions like asthma (Gent
et al., 2003). Hence, we expect children with a respiratory disease to be more
vulnerable and react more strongly to ozone exposure. We exploit these findings
by differentiating between parents of children with a doctor-diagnosed respiratory
disease and parents of healthy children.17

Table 3.6 lists the regression results on life and health satisfaction for parents
with sick children and parents with healthy children.18 Effects on health satis-
faction are never significantly different from zero, confirming again that parents’
health assessment is unaffected by ozone exposure. Concerning life satisfaction, we
observe pronounced decreases among parents of kids with a respiratory condition:
Across all exposure lengths, point estimates obtained from the subsample of
sick-child parents are about twice as large as in Table 3.4 and highly significant.
In contrast, the life satisfaction of healthy-child parents is not affected by ozone.

Moreover, the literature provides evidence that high-income children are better
able to cope with the adverse consequences of chronic conditions (Case, Lubotsky
and Paxson, 2002; Reinhold and Jürges, 2012), which would imply smaller well-
being decreases among high-income parents with a sick child being exposed to
ozone. To investigate this, we split the samples of low- and high-income parents

17 Table B.5 lists descriptives on both subsamples of parents. Both groups are similar in terms of
life and health satisfaction, age, and number of kids, but parents of children with a respiratory
disease are more frequently employed and have a higher income. We investigate heterogeneous
effects by income groups in Tables 3.7 and B.6.

18 Note that the sample size decreases because health outcomes are only surveyed for children
younger than eleven years. Hence, we discard parents of older children due to a lack of data.
Since older children are less susceptible to pollution exposure, the estimated well-being effects
in Table 3.6 likely represent upper bounds.
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Table 3.6: Effect of ozone on life and health satisfaction of parents, by child
health

Dependent Variables: Life satisfaction Health satisfaction
Ozone average Respiratory Healthy Respiratory Healthy
Weekly -0.0038∗ -0.0013 0.0020 0.0005

(0.0015) (0.0012) (0.0019) (0.0014)
Monthly -0.0071∗∗∗ -0.0005 -0.0037 -0.0008

(0.0021) (0.0017) (0.0027) (0.0021)
Quarterly -0.0107∗∗∗ -0.0030 -0.0066 0.0006

(0.0032) (0.0028) (0.0043) (0.0032)
Individuals 1,477 3,488 1,477 3,488
Observations 9,896 18,212 9,896 18,212

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure among parents with at least one child with doctor-diagnosed respiratory disease and parents
with healthy children. All regressions control for individual fixed effects, year fixed effects, month fixed effects
and day-of-the-week fixed effects, sociodemographic covariates income, employment status, marital status, and
categorical five-year age bins, and indicator variables for weather quintiles (sunshine duration, temperature,
precipitation). Estimations are performed using three different temporal aggregations of pollution exposure:
weekly, monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

by health status of their children. Table 3.7 presents suggestive evidence that low-
income parents of children with respiratory illness experience stronger decreases
in well-being due to ozone exposure at the weekly and monthly frequency, relative
to their high-income counterparts. This is in line with the idea that high-income
parents are better at managing the health problems of their children, e.g., by
diligently following treatment regimes or modifying the child’s environment to
avoid pollution exposure. For longer-term exposures at the quarterly frequency,
point estimates are very similar across income groups, but less precisely estimated
for low-income parents. Notably, parents of healthy children are never significantly
affected by ozone exposure.19

Taken together, these results suggest that the negative well-being effect of ozone
is driven by parents whose child has developed a respiratory illness. The respiratory
condition makes children more vulnerable to ozone exposure than healthy children,
and their health status is more likely to deteriorate as a consequence of ozone
exposure, which is reflected in lower life satisfaction of their parents.

19 Table B.6 lists the corresponding results for health satisfaction, which is never significantly
affected.
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Table 3.7: Effect of ozone on life satisfaction of parents, by income group and by
child health

Low income High income
Ozone average Respiratory Healthy Respiratory Healthy
Weekly -0.0059∗ -0.0013 -0.0021 -0.0015

(0.0029) (0.0019) (0.0018) (0.0016)
Monthly -0.0109∗∗ -0.0009 -0.0035 -0.0004

(0.0039) (0.0029) (0.0025) (0.0024)
Quarterly -0.0093 -0.0019 -0.0097∗ -0.0017

(0.0062) (0.0046) (0.0039) (0.0036)
Individuals 962 2,544 1,035 2,003
Observations 4,233 9,768 5,632 8,417

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction on ozone exposure
among above-median and below-median earning parents with sick vs. healthy children. The income subsamples
are split into parents with at least one child with doctor-diagnosed respiratory disease and parents of healthy
children. All regressions control for individual fixed effects, year fixed effects, month fixed effects and
day-of-the-week fixed effects, sociodemographic covariates income, employment status, marital status, and
categorical five-year age bins, and indicator variables for weather quintiles (sunshine duration, temperature,
precipitation). Estimations are performed using three different temporal aggregations of pollution exposure:
weekly, monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

3.7 Robustness tests

3.7.1 Randomization of ozone exposure

This section runs two sets of placebo regressions to test whether our main results
are an artifact of a defect in our research design. First, we randomize pollutants
across space by randomizing exposure over individuals from different parts of the
country in a given year. Second, we randomize across time by randomizing the
exposure values of the same individual over different years. We then re-estimate
our preferred specification. Table 3.8 contains the results of these additional
estimations. Point estimates are mostly insignificant and very close to zero. Only
two coefficients are close to statistical significance, amounting to a false positive
rate of 6.25%. Since these point estimates occur in the childless group and have
opposite directions, we are confident that our main results are not driven by
spurious correlations.

3.7.2 Cardinalization of well-being measures

One caveat of this paper and others attempting to explain variation in subjective
health and well-being is the cardinalization of ordinal data when running OLS type
regressions (Bond and Lang, 2019; Levinson, 2012). When cardinalizing ordinal
scales, we implicitly assume that the distance between values is the same along
the scale, for example, the gap between zero and one is the same as between nine
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Table 3.8: Spatial and temporal randomization of pollutants, by child status

Life satisfaction Health satisfaction
Ozone average Parents Childless Parents Childless
Spatial randomization
Weekly 0.0101 -0.0007 0.0046 0.0035

(0.0076) (0.0027) (0.0055) (0.0025)
Monthly -0.0138 0.0064+ -0.0090 0.0022

(0.0087) (0.0033) (0.0072) (0.0030)
Quarterly -0.0042 -0.0048+ -0.0119 0.0041

(0.0106) (0.0028) (0.0083) (0.0036)

Temporal randomization
Weekly 0.0006 0.0002 -0.0001 0.0004

(0.0004) (0.0004) (0.0005) (0.0005)
Monthly 0.0005 -0.0000 -0.0002 0.0004

(0.0004) (0.0005) (0.0005) (0.0006)
Quarterly -0.0000 0.0001 -0.0000 0.0003

(0.0005) (0.0005) (0.0006) (0.0006)
Individuals 9,467 6,731 9,467 6,731
Observations 48,036 38,008 48,036 38,008

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on randomized ozone exposure. All regressions control for individual fixed effects, year fixed effects, month fixed
effects and day-of-the-week fixed effects, sociodemographic covariates income, employment status, marital status,
and categorical five-year age bins, and indicator variables for weather quintiles (sunshine duration, temperature,
precipitation). Estimations are performed using three different temporal aggregations of pollution exposure:
weekly, monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

and ten. The linearity assumption corresponds to a monotonic transformation
of the ordinal scale. Such monotonic transformations may alter and even reverse
regression results obtained by treating ordinal data as cardinal (Bond and Lang,
2019).

We run fixed-effects probit models to analyze if our results hold up when
treating our subjective outcomes as ordinal.20 We transform the health and life
satisfaction scales into binary variables using a number of different cut-off points
cj for j = (1, ..., 9). For example, consider the cut-off point 2: If an individual’s
life satisfaction is smaller than or equal to 2, we assign a value of zero; that is, the
individual is deemed ”unhappy.” If life satisfaction is greater than 2, we assign a
1; that is, the individual is considered ”happy.” Therefore, low cut-offs place more
people in the ”happy” group, while the reverse is true for high cut-off points. In
this setting, identification is based on people who transition from the happy to
the unhappy group, or vice versa. Note that the location of the cut-off is arbitrary.
Without information on the underlying distribution of happiness, it isn’t possible

20 We use the unconditional bias-corrected probit algorithm developed by Stammann, Heiss and
McFadden (2016). The algorithm uses the unconditional probit framework that corrects for
the incidental parameters problem (Neyman and Scott, 1948) with the jackknife procedure
developed in Hahn and Newey (2004).
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to make precise assessments of the suitability of a cut-off. We thus consider our
results to be robust if they hold for multiple cut-off points.

Table 3.9 contains the Probit estimations for the sample of parents in the
preferred specification. Results show that point estimates for life satisfaction are
always negative. We observe significant effects for multiple cut-off points in the
middle and the upper end of the life satisfaction scale, where sample sizes are
much larger than for lower cut-offs. As in our baseline analysis, there are no
significant results for health. Moreover, the corresponding table for the sample of
childless people yields no significant results for life satisfaction (Table B.7), also
confirming the results from the baseline regressions.21

Table 3.9: Probit estimations of effect of ozone on life and health satisfaction of
parents

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ozone average Dependent variable: Life satisfaction
Weekly -0.0098 -0.0005 -0.0053 -0.0065∗ -0.0058∗∗ -0.0025 -0.0029∗ -0.0008 -0.0024+

(0.0112) (0.0072) (0.0042) (0.0027) (0.0022) (0.0016) (0.0013) (0.0011) (0.0014)
Monthly 0.0003 -0.0172 -0.0141 -0.0074 -0.0033 -0.0081∗ -0.0049 -0.0048+ -0.0064∗

(0.0322) (0.0167) (0.0096) (0.0064) (0.0051) (0.0037) (0.0031) (0.0026) (0.0031)
Quarterly 0.0006 -0.0178 -0.0142 -0.0077 -0.0033 -0.0081∗ -0.0049 -0.0047+ -0.0062∗

(0.0322) (0.0167) (0.0096) (0.0064) (0.0051) (0.0037) (0.0031) (0.0026) (0.0031)
Individuals 78 173 437 909 1,440 2,722 3,672 4,851 3,767
Observations 434 1,036 2,628 5,501 8,692 16,213 21,924 29,199 22,461

Ozone average Dependent variable: Health satisfaction
Weekly -0.0041 -0.0039 -0.0003 0.0012 0.0023 0.0012 0.0017 0.0007 0.0006

(0.0063) (0.0042) (0.0029) (0.0019) (0.0016) (0.0013) (0.0012) (0.0011) (0.0013)
Monthly -0.0094 -0.0087 -0.0008 0.0026 0.0014 0.0005 0.0009 -0.0016 -0.0033

(0.0097) (0.0060) (0.0040) (0.0027) (0.0023) (0.0019) (0.0018) (0.0016) (0.0020)
Quarterly -0.0100 -0.0157 -0.0113+ 0.0014 0.0024 0.0022 0.0027 -0.0006 -0.0016

(0.0172) (0.0100) (0.0062) (0.0043) (0.0036) (0.0029) (0.0027) (0.0026) (0.0029)
Individuals 215 420 879 1,714 2,452 3,639 4,327 4,919 3,901
Observations 1,289 2,633 5,412 10,744 15,179 22,149 26,363 29,790 22,928

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. Fixed-effects probit regressions of life satisfaction and
health satisfaction on ozone exposure of parents. All regressions control for individual fixed effects, year fixed
effects, month fixed effects and day-of-the-week fixed effects, sociodemographic covariates income, employment
status, marital status, and categorical five-year age bins, and indicator variables for weather quintiles (sunshine
duration, temperature, precipitation). Estimations are performed using three different temporal aggregations of
pollution exposure: weekly, monthly, and quarterly. Each columm relates to a specific cut-off point between 1
and 9 used to transform the original 11-point scale into a happiness status of 0 or 1. The estimated specifications
and cut-off points cj ∈ j = (1, ..., 9) are related as follows: [(1) = c1, ...., (9) = c9]. Robust standard errors
clustered at the household level in parentheses.

3.8 Conclusion

This paper hypothesizes that air pollution may – in addition to a direct health
effect – decrease adults’ well-being through its impact on their children. The
21 Table B.7 shows that health satisfaction of childless individuals decreases in the lower part of

the distribution, but effects are not consistently significant across different exposure windows.
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study tests this hypothesis for the case of ground-level ozone by analyzing whether
ozone exposure affects parents and childless persons in different ways. We use a
representative panel of German individuals, the Socio-Economic Panel (SOEP), to
study the effect of exposure to ground-level ozone on two measures of subjective
well-being, health and life satisfaction. Moreover, we provide direct evidence on the
children’s health channel to parents’ life satisfaction by estimating separate effects
for parents of sick and healthy children. Our analysis also evaluates heterogeneity
in the well-being effect introduced by parents’ income.

We exploit information on the precise date of the SOEP interview to identify
the effect of ozone on individuals from short-term variation in ozone levels. To
do so, we match pollution levels from measuring stations across Germany with
geo-coded SOEP data between 2005 and 2018 and compute the individual level
of exposure through inverse distance weighting techniques. The study estimates
the effects of ozone on the health and life satisfaction of parents and non-parents
using fixed effects regressions. In the preferred specification, we control for time
and individual fixed effects and include a battery of individual-level covariates
and weather controls to account for time-varying observable and time-invariant
unobservable heterogeneity.

We find statistically and economically significant adverse effects of ozone on
parents’ life satisfaction while finding no impacts on childless people. In contrast
to life satisfaction, our analysis finds no evidence of a direct effect of ozone on
adults’ health satisfaction. Examining the children’s health mechanism to losses
in parents’ life satisfaction, we find that higher ozone exposure strongly affects
the well-being of parents whose child suffers from a respiratory disease, whereas
parents of healthy kids are not affected. In line with the literature on the negative
relationship between children’s health and parents’ income, the well-being effect
is concentrated among below-median earners. Our results suggest that ozone
concentrations in Germany are not high enough to affect the subjective health of
adults, but that they do have negative consequences for the health of vulnerable
children, which in turn diminishes the well-being of their parents.

Based on our analysis, we recommend considering the indirect influence of
ozone on parents for future research dealing with the cost-benefit analysis of
ozone-related environmental policies. One limitation of this study is the lack of
exogenous variation in ozone exposure. Although we account for self-selection by
excluding movers, and control for time-invariant unobservables and differences
in observables in our regression framework, we cannot rule out the possibility of
time-varying confounders entirely.



Chapter 4

Fracking and Health-Related
Absenteeism of Employees
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4.1 Introduction

Labor is one of the primary inputs to production in any economy and, hence,
a crucial component to sustain economic growth. A key determinant of the
labor supply is human health, because individuals’ health outcomes affect overall
productivity of the labor force: Poor health outcomes can have negative short-run
impacts by decreasing employees’ labor supply due to illness-related absenteeism,
but they can also assert detrimental long-run effects by limiting human capital
formation (Graff Zivin and Neidell, 2013), which would impose economic costs on
society and decrease social welfare (DeLeire and Manning, 2004). There is growing
evidence that poor health outcomes are causally linked to negative environmental
externalities, such as pollution (e.g., Lavaine and Neidell, 2017; Currie and Neidell,
2005; Chay and Greenstone, 2003), suggesting that those externalities might have
considerable impact on the labor market through adverse health effects (e.g.,
Hanna and Oliva, 2015; Carson, Koundouri and Nauges, 2010).

Hydraulic fracturing, commonly referred to as fracking, is a potential source
of localized environmental externalities. It is a technique to extract natural gas
and oil from shale rock formations by injecting high volumes of water, sand and
additional chemicals into the ground. While its positive labor market effects, such
as increases in local employment and wages, have been investigated extensively
(e.g., Komarek, 2016; Cosgrove et al., 2015, Paredes, Komarek and Loveridge,
2015), little is known about its potential detrimental impacts on individuals’ labor
supply.

In this paper, we assess the short-run impact of fracking on surrounding
households’ labor market outcomes in terms of health-related absenteeism of
employees, measured by the number of sick leave days. If fracking exerts significant
negative environmental externalities, we expect individuals living in close proximity
to fracking sites to have poorer health outcomes than comparable individuals,
resulting in a higher number of sick leave days for those individuals exposed to
fracking.

Our results inform the ongoing debates about the expansion of shale exploration
activities in the US, where the “shale revolution” has fueled discussions about the
costs and benefits of fracking: The proponents embrace it as a technology bridging
the transition to renewable energy and emphasize its economic and socio-political
benefits, e.g., local economic growth, lower energy prices or increased energy
security. The opponents, on the other hand, believe that the costs arising from
exposure to negative environmental externalities and subsequent health effects
outweigh the benefits of exploitation. Negative externalities of fracking include
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diminished local air quality, surface and groundwater contamination, community
character impacts through additional noise and traffic and an increased potential
for seismic activity. In order to mitigate these adverse environmental and public
health impacts of fracking, some federal states in the US have banned shale
exploration activities entirely, for example New York (Leff, 2015). While the
benefits of fracking are mainly of economic nature and are generally acknowledged,
the associated costs have been explored only incompletely. But in order to conduct
comprehensive cost-benefit analyses and to assess the net welfare effects of shale
exploration, the costs induced by adverse health effects need to be taken into
account. Quantifying the degree to which fracking-induced illnesses affect the
labor market outcomes of individuals, in the form of decreases in labor supply as
measured by sick leave days, allows us to estimate the economic costs imposed on
the labor market.

There is a growing body of literature on the environmental externalities
of fracking, exploring many potential channels through which fracking affects
individuals’ health. Adverse health effects could arise, e.g., from air pollutants like
volatile organic compounds that are emitted during development and operation of
the site (e.g., McKenzie et al., 2012; Colborn et al., 2014; Colborn et al., 2011),
or from ground water sources that are contaminated with methane, chemicals or
toxic heavy metals from fracking waste water (e.g., Hill and Ma, 2017; Fontenot
et al., 2013; Jackson et al., 2013; Osborn et al., 2011).The numerous pollutants are
related through complex interactions and accounting for all of them simultaneously
is crucial to assess the net health effect of exposure to fracking sites. By looking at
the number of sick leave days of individual employees, we capture several potential
channels through which fracking impacts human health in the short run, allowing
us to quantify a net health effect on labor market outcomes.

Empirical evidence on human health effects from exposure to fracking focuses
either on very specific health outcomes, such as dermal and respiratory conditions
(Rabinowitz et al., 2014; Rasmussen et al., 2016), on measures of infant health
(Casey et al., 2016; Currie, Greenstone and Meckel, 2017; Hill, 2018), or on
extreme health outcomes that lead to hospitalization of individuals (Jemielita
et al., 2015; Willis et al., 2018). We contribute to this literature by assessing
the effect of fracking on sick leave days. This outcome measure captures more
subtle changes in health outcomes than hospitalization rates and can serve as a
basis to approximate the economic costs imposed by fracking on the labor market.
We provide first evidence of an ambiguous labor market effect of fracking, i.e. a



84 Chapter 4

decrease in labor supply due to short-term illness, which has not yet been explored
in the literature.

To assess the localized health effects in terms of labor market outcomes, we use
individual- and household-level data from the Panel Study of Income Dynamics
(PSID), which contains our dependent variable, i.e. the number of sick leave
days, locational identifiers as well as various socio-economic control variables.
We combine the PSID data with a panel data set on oil and gas wells from the
Pennsylvania Department of Environmental Protection (PA DEP), covering the
years from 2000 to 2014, which are characterized by enhanced shale exploration
activity. To establish a causal link between fracking and labor market outcomes,
we implement a differences-in-differences approach that exploits the intertemporal
and geographical variation in construction dates and locations of fracking wells:
To estimate the effect of living close to a fracking site on the number of sick leave
days, we compare households located within a specific radius from the fracking
well (treatment group) to similar households located further away (control group).
To ensure comparability, we use propensity-score matching on socio-economic
characteristics of households. Our differences-in-differences specification controls
for time-varying confounders on the individual- and household-level, for time-
invariant unobserved heterogeneity by including individual fixed effects, and for
time fixed effects. Our results suggest that living in proximity to a fracking site
increases absenteeism by two to three days per year per employee. The magnitude
of the effect is comparable to literature estimates on the impacts of having a
chronic illness, e.g., diabetes or obesity (Asay et al., 2016; Finkelstein, Fiebelkorn
and Wang, 2005).

The next section describes the process of hydraulic fracturing and discusses the
costs and benefits of shale exploration. Section 4.2 provides details on the data used.
Section 4.4 outlines the research design and explains the identification strategy
employed. Section 4.5 presents results. Section 4.6 discusses the advantages and
limitations of the research design. Section 4.7 concludes.

4.2 Background and related literature

4.2.1 Technical background

The recent “shale revolution” observed in the US has been fueled by technolog-
ical advancements that made it economically viable to extract unconventional
resources of natural oil and gas trapped in geological formations of low perme-
ability, such as shale rock and tight sandstone. The techniques to exploit these
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unconventional resources rely on horizontal drilling and hydraulic fracturing of
the rock formations.1

The first step of shale exploration activities consists of constructing the neces-
sary production infrastructure. This includes building access roads, compressor
stations, and pipeline networks as well as clearing and leveling the well pad, which
requires typically between 12,000 and 20,000 m2 of land. A new well is spudded2

when the process of drilling begins: Horizontal drilling can take place several
kilometers underground and spread over horizontal distances of two kilometers and
more. After drilling and casing activities have been completed, fracking is used
to stimulate oil and gas production of the well: The rock formations are cracked
through high-pressure injection of large volumes of water, sand and additional
chemicals, which creates fractures that enable the oil and gas to flow through the
well to the surface, such that the well enters its production phase (Jackson et al.,
2014).

The average production lifetime of an unconventional well varies with the
shale play in which the well is located. E.g., in the Marcellus shale located in
the North-East of the US, an average well produces 97 percent of its Estimated
Ultimate Recoverable (EUR) gas quantity of 3.16 billion cubic feet within the
first 7 years of production (Moeller and Murphy, 2016). When the well’s oil and
gas production is no longer economic, the well should be permanently plugged
in order to prevent well safety issues in the future. Plugging entails removal of
the pumping equipment and sealing with cement and other materials to prevent
leaks. It is generally the operator’s responsibility. However, because fracking
regulations vary widely across the US federal states, the number of unplugged,
abandoned wells on US territory is uncertain due to a lack of reporting standards
(Townsend-Small et al., 2016).

4.2.2 Benefits of fracking

The proponents of fracking argue that it brings socio-political, environmental and
economic benefits. The availability of fracking techniques made the extraction

1 The main distinction between conventional and unconventional wells lies in the geological
formation they are tapping: To exploit the conventional sedimentary formations, vertical
well bores are typically sufficient and the stimulation of conventional wells generally does
not require the volume of fluids typically required for unconventional wells, since the natural
pressure in conventional sources is sufficient to pump the resources to the surface. Moreover,
conventional wells typically have less drilling depth, smaller well pads, lower well head pressure
and less equipment needs in terms of trucks, roads and pipeline systems (PA DEP, 2012).

2 Spudding is an industry-specific term describing the process of beginning to drill an oil or gas
well.
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of unconventional resources economically viable, which increased the accessible
energy reserves. This supply abundance increased energy security and decreased
natural gas prices, leading in turn to an increase in energy affordability (Sovacool,
2014). The technology might also contribute to lowering greenhouse gas emissions
if the natural gas from unconventional sources replaces other fossil fuels, such as
oil and coal. If fracking led to a higher share of natural gas in the energy mix,
e.g. in electricity generation, this could facilitate the achievement of climate goals,
since the carbon content of natural gas is much lower than in most other fossil
fuels (Jenner and Lamadrid, 2013).

The most apparent benefits of fracking are of economic nature: The oil and
gas industry can foster local economic growth, thus creating additional jobs and
tax revenues for the local communities. The positive labor market effects of
fracking have been investigated extensively. For example, Paredes, Komarek and
Loveridge (2015) explore the employment and income effects on the county level
using propensity score matching and fixed effects regressions. The estimated
average employment effects range from 71 to 181 total jobs for counties in which
fracking takes place. Cosgrove et al. (2015) use county- and zip-code level data
from 2001 to 2013 to study the regional economic impact of shale exploration
in terms of wages and employment. They exploit the fracking moratorium that
was passed by the federal government of New York in 2008 and implement a
differences-in-differences approach that compares counties at the border between
Pennsylvania and New York. Their results suggest that shale gas development
increases employment and wages in the mining and construction sectors, while it
might reduce employment levels in the manufacturing industries due to a crowding
out effect. They find no evidence for an aggregate increase in employment levels
or wages at the county level. In a similar vein, Komarek (2016) compares counties
with fracking activity in Pennsylvania, Ohio and West Virginia to counties in
New York, based on data from 2001 to 2013. The panel regressions indicate that
fracking activity increases total employment by 3 to 6 percent and total wages by
8 to 12 percent. Bartik et al. (2019) confirm these findings on total employment
and additionally show that household income, consisting of wages and royalty
payments, increases by up to 6 percent.

4.2.3 Costs of fracking

The opponents of the technology emphasize that the environmental costs of frack-
ing are likely to outweigh its benefits. Fracking is associated with a variety of
environmental externalities that arise at all stages of shale exploration activity:
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Prior to well spudding, during the process of drilling and fracturing the well,
during the actual production phase and, if the well is not properly plugged, after
its productive life. For example, the construction of the production infrastruc-
ture requires trucks and construction machines, resulting in noise pollution and
additional traffic that impact the local communities. During development and
operation of the well, air pollutants like volatile organic compounds are emitted,
which contributes to diminishing local air quality (e.g., McKenzie et al., 2012;
Colborn et al., 2014; Colborn et al., 2011; Vinciguerra et al., 2015). Furthermore,
the exploitation of shale resources requires large amounts of water, for example,
drilling and fracking of a single well in the Marcellus shale uses on average 15
million liters of water (NETL, 2009). The produced waste water, which is often
highly saline and contaminated with barium, arsenic and radioactive radium, can
contaminate water sources by diffusing into surface and groundwater bodies (e.g.,
Fontenot et al., 2013; Jackson et al., 2013; Osborn et al., 2011). For example, Hill
and Ma (2017) show that fracking wells in the proximity of groundwater source
intakes of community water system increase the concentration of shale gas-related
contaminants in the municipal drinking water supply, even after treatment of raw
waters. Moreover, air and water pollution can be aggravated by failures in well
integrity, where damaged casing cannot prevent leakage of fracking fluids and
gases, or from the improper handling of waste water, including surface leaks from
open ponds and inadequate treatment before discharge (Jackson et al., 2014).
Similarly, wells that have been abandoned or plugged incorrectly pose a long-term
risk to the environment, e.g., by continuously emitting the greenhouse gas methane
(e.g., Kang et al., 2014; Townsend-Small et al., 2016).

These environmental externalities translate into risks for human health. Since
fracking is associated with a vast number of potentially harmful pollutants that
interact with each other in complex ways, it is very challenging to disentangle the
health effects of one single pollutant. Instead, the existing empirical studies focus
on the effect of being exposed to fracking on specific health outcomes. Rabinowitz
et al. (2014) assess the effect of household proximity to natural gas wells on reported
health symptoms by means of a survey of 492 individuals living in households with
ground-fed drinking wells in Washington County, Pennsylvania. They find that
proximity of natural gas wells may be associated with the prevalence of several
health symptoms, including dermal and respiratory conditions. Currie, Greenstone
and Meckel (2017) study the impact of fracking on infant health using birth records.
They combine data on 1.1 million birth certificates issued from 2004 to 2015 in
Pennsylvania, including information on infant health and maternal addresses, with
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official oil and gas well data. The results of their differences-in-differences design
reveal significant negative effects on infant health for mothers living within 1 km of
a fracking site, whereas there is little evidence of health effects at distances further
than 3 km away. Using similar data from 2003 to 2010, Hill (2018) compares birth
outcomes of mothers next to an active fracking well and outcomes of mothers
living close to a permitted but not-yet-drilled well. She finds that drilling activity
increases the likelihood of low birthweight and premature birth among mothers
living within 2.5 km of a well. Jemielita et al. (2015) investigate the relationship
between fracking wells and healthcare utilization rates on the zip code level, using
data from 2007 to 2011. They discover that an increasing number of wells is
related to increases in cardiology and neurology inpatient prevalence rates. Using
similar data, Willis et al. (2018) show that drilling activity increases pediatric
asthma hospitalizations, especially among children between the age of two and
six.3 We contribute to this literature by assessing the effect of fracking on sick
leave days, which captures more subtle changes in health outcomes than, for
example, hospitalization or mortality rates. Furthermore, we are the first to assess
these health impacts in terms of illness-related employee absenteeism, which allows
us to approximate the economic costs imposed by fracking on the labor market.
This provides first evidence of ambiguous labor market effects of fracking, i.e. a
decrease in labor supply due to short-term illness, which has not yet been explored
in the literature.

4.3 Data

4.3.1 Data on oil and gas wells

Our analysis focuses on the federal state of Pennsylvania (PA) for two reasons:
First, PA is located above the Marcellus shale play and has the largest proven
shale gas reserves among all federal states, adding up to 89.5 trillion cubic feet
(TCF) out of a US total of 307.9 TCF in 2017 (EIA, 2018). Also, PA is one of
the leading states in shale gas production, with 5.3 TCF of shale gas produced in
2017 (see Figure 4.1). Second, the official oil and gas data provided by the PA
Department of Environmental Protection (DEP) is well documented, regularly
updated and provides information on a sufficiently detailed level, e.g. information
on the exact spud and plug dates of wells.

3 Health effects may not only arise due to exposure to pollution, but also due to psychosocial
factors. Hirsch et al. (2018) review the available literature and conclude that individuals from
fracking communities may experience worry, anxiety and depression about lifestyle and health.
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Figure 4.1: Gas production in PA (2000-2017)
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Source: PA DEP Oil and Gas Production Reports, retrieved from
http://www.depreportingservices.state.pa.us, accessed on May 31, 2022, own illustration.

We use two data sets from the PA DEP covering oil and gas wells with
construction dates ranging from 2000 to 2017: We combine the Oil and Gas
Operator Well Inventory, containing information on well identifiers, exact geo
locations, types of wells, spud and plug dates, permit issue and expiration dates
of all oil and gas wells ever drilled or proposed, with the Oil and Gas Production
Reports, comprising information on the annual production quantities and the
number of production days of each oil and gas well.4

The PA DEP data covers conventional as well as unconventional oil and gas
wells. Since we want to assess the health effects of shale gas production activities,
we exclude all conventional wells. Furthermore, we consider all shale gas wells
that have been spudded, regardless of whether they are in the process of drilling,
actively producing or have been plugged or abandoned. Hence, we assume that
the negative externalities from fracking arise not only during the processes of
drilling and producing, but can also occur at a later point in time, e.g., due to
casing damages resulting in waste water leakage into the ground, even after the
well has been plugged.

The locations of fracking wells exhibits considerable variation across space
and time: Figure 4.2 depicts the locations of wells that have been drilled during
different time periods. Prior to 2005, there were less than ten fracking wells in

4 See Table C.1 for descriptive statistics on the data sets.

http://www.depreportingservices.state.pa.us
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Figure 4.2: Locations of unconventional wells in PA (2000-2014)

Source: PA DEP Oil and Gas Operator Well Inventory, retrieved from
http://data-padep-1.opendata.arcgis.com, accessed on May 31, 2022, own illustration.

PA, but their number increased drastically since 2005. At the end of 2014, there
were over 12,000 unconventional wells drilled in the Marcellus shale with more

http://data-padep-1.opendata.arcgis.com
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than half of them actively producing. This yields a large degree of intertemporal
variation to exploit in our differences-in-differences approach.

4.3.2 Data on individuals and households

We use individual- and household-level data from the Panel Study of Income
Dynamics (PSID), which is a longitudinal household survey in the US. The
survey covers a broad range of socio-economic characteristics, such as employment,
income, wealth, expenditures, health, childbearing, education and numerous other
topics. The PSID is a biennial survey, i.e. interviews are conducted every other
year.5 Some core economic measures are surveyed for the two years prior to the
survey year, but most variables refer only to the previous period, such as our
dependent variable, the number of sick leave days,6 which leaves us effectively
with eight time periods between 2000 and 2014 to analyze. Besides our dependent
variable and various sociodemographic controls, the PSID contains information
on the location of each household on the census block level, which is the smallest
geographic unit used by the US Census Bureau. The locational data is subject to
stringent privacy regulations and reporting of results is restricted to cell sizes of
more than ten observations.7

Since we are interested in adverse health-related labor market effects, we
exclude individuals that are not employed. We consider only individuals that have
been employed in all eight time periods and did not move out of the state PA,
which yields a sample of 92 individuals with 736 observations. Consequently, we
focus on a specific subpopulation of middle-aged employees, excluding students,
unemployed and retired people.

4.4 Research design

4.4.1 Defining the treatment status

Since we do not know the exact coordinates of households in the PSID but only
their census blocks, we have to make an identifying assumption on the location of
each household within the census block to obtain exact coordinates: We assume
5 The interviews were conducted in 2001, 2003, 2005, ..., 2015.
6 The specific wording of the PSID questionnaire is “We’re interested in time you spent away

from work last year, during [YEAR]. Did you miss any work because you/someone else
were/was sick?”. Answers can be given in days, weeks or months. Note that we pool two
questions (you or someone else in the household) to capture sick leave times of parents whose
children become ill.

7 The restricted PSID is remotely accessible and exporting results requires approval from PSID.
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that households are located in the centroid of their respective census blocks, which
allows us to draw a treatment radius around each household to define its treatment
status. A household is considered as treated if a fracking well is located within the
pre-defined radius. To achieve a clear distinction between treatment and control
group, we set up a ban radius around the treatment radius: Households with
a fracking well within the ban radius, but not the treatment radius, do neither
enter the control nor the treatment group, but are discarded. The control group
consists of households that are not affected by any wells within the ban radius.
Figure 4.3 illustrates the method graphically. Our baseline specification considers
a treatment radius of 10 km with a ban radius of 5 km. Under this specification,
we obtain 35 individuals that have been treated in any year between 2006 and
2014.8

Figure 4.3: Treatment radius approach

Treated household

×
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×

Excluded household

×

Alternatively, we could define the treatment on the census block level, i.e.
consider a household as treated if there is at least one fracking well located in its
census block. The average area of a census block in PA is less than one square
kilometer (see Table C.2), so the distances between households and fracking sites in
treated census blocks are less than one kilometer, in most cases. However, although
census blocks are generally small in area, their sizes can differ substantially. For
example, census blocks in metropolitan areas are often rectangular city blocks
bounded by streets from all sides, while census blocks in rural areas are typically
much larger and their shapes are highly irregular since the blocks might be
bounded by various features, such as roads, rivers or transmission lines. Hence,
the distances between fracking wells and treated households are likely to vary
across census blocks under this alternative approach, such that the households in
our treatment group would exhibit varying levels of exposure to the externalities

8 We would like to impose smaller radii, but with smaller distances the treatment group gets
too small to obtain any meaningful results.
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arising from fracking.9 In contrast, the treatment radius approach allows us to
consider radii that exceed the boundaries of the census blocks.

4.4.2 Identification strategy

In order to ensure causality of the relationship between proximity to fracking sites
and labor market outcomes, we have to make the assumption that, in the absence of
treatment, treatment and control groups’ outcomes would have followed a common
trend over time. This common trend assumption is not testable empirically because
we cannot observe the counterfactual, i.e. the outcomes of the treatment group in
the absence of treatment. To ensure comparability between treatment and control
group, we apply propensity score (PS) matching on individual- and household
level variables, which is described in more detail in the next subsection. We also
include time-varying confounders in our differences-in-differences regression to
account for any remaining differences in observables.

Moreover, we have to assume that our treatment is exogenous, i.e. the construc-
tion of fracking sites must be independent of the outcome variable, conditional on
the observed covariates. Endogenous treatment could either arise due to residential
sorting or due to endogenous construction. In the case of residential sorting, the
affected population changes over time such that the outcome is systematically
altered, for example, wealthier households with a better health status move away
after a fracking well was constructed in their neighborhood. To account for residen-
tial sorting during the observation period, we exclude households that moved into
and out of treatment. Excluding movers does not account for the possibility that
fracking wells could be build close to poorer households that were already present
at this location, but we account for this possibility by including individual-level
fixed effects.

Additionally, construction of the fracking sites could be endogenous: For
example, residents who own large areas of land might lease their property to
mining companies to build fracking sites and receive royalties from the companies.
To reduce the potential for endogenous construction, we exclude self-employed
farmers, since they are more likely to lease land to oil and gas well operators.
Moreover, we cannot account for any avoidance behavior besides mobility, for
example, individuals spending less time outside during episodes of high pollution
or households installing water filtration systems to protect against water contami-
nation. Therefore, our approach measures the intention-to-treat and our estimates

9 Implicitly, this approach assumes that fracking exerts its influence only within the census
block of its location, which seems quite arbitrary given the varying sizes of blocks.
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are interpretable as lower bounds based on individuals who do not move out of
treatment.

4.4.3 Propensity score matching

Shale exploration in PA typically takes place in rural areas, therefore, individuals
from the treatment group might not necessarily be comparable to individuals from
the control group. Indeed, there are statistically significant differences between
our treatment group and the unmatched control group, e.g., the treatment group
is characterized by a higher share of people living in rural areas, a lower share
of self-employed people and significantly lower health care expenditures, labor
incomes, and house values.10 Our treatment group consists, on average, of less
wealthy individuals with poorer health outcomes, so we need to make both groups
comparable.

To increase comparability of both groups and plausibility of the common trend
assumption, we implement PS matching in the form of one-to-one nearest neighbor
matching without replacement on the following household-level characteristics:
Location in rural or urban area, the type of housing, the house value, the number
of births per household, as well as household health care expenditure. These
covariates are chosen based on their potential to influence treatment status and
outcome simultaneously, and statistical significance levels in the binary outcome
regressions. We match on the type of locations because rural households are more
likely to be located close to a fracking well and, at the same time, potentially
exhibit different patterns in sick leave absence. A similar argument applies to
the type of housing and the house value, where apartments in more expensive
areas have a lower likelihood of being treated. We also match on health care
expenditure as a proxy for individual’s health status, and the number of births as
a predictor for work absences. PS matching is conducted on pre-treatment values
of the covariates to rule out that they have been affected by the fracking activity.
We present results for two different matching specifications: First, we match on
values from 2000, since extensive shale exploration activity started only in 2005
and the first treated individuals in our sample are observed in 2006. Second,
we match on average pre-treatment values from 2000 to 2004 of the continuous
household-level variables and on 2002 values of the categorical characteristics.

10 Table C.5 lists descriptive statistics on continuous and binary covariates for the unmatched
sample, including t-tests on mean equivalence for treatment and control groups. Table C.7
lists descriptives for the categorical covariates for the unmatched sample, including Pearson’s
χ2 tests on equal distributions in treatment and control groups.
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Table 4.1: Descriptives on matched sample (PS matching on 2000 values)

Mean Mean
difference

Normalized
differenceVariable Control Treated

Individual-level variables
Number of sick leave days 3.5107 5.1214 1.6107* 0.0988
Age in years 45.4821 44.2464 -1.2357 -0.0893
Education in years 13.7750 13.4929 -0.2821 -0.0948
Is male 0.4571 0.4857 0.0286 0.0404
Is self-employed 0.0536 0.0964 0.0429* 0.1152
Is government employeeb 0.2643 0.1818 -0.0825* -0.1405
Labor incomeac 53.5309 48.0010 -5.5298* -0.1272
Health status 2.0893 2.4107 0.3214* 0.2663
Number of nights in hospital 0.1500 0.1250 -0.0250 -0.0194
Ever had heart attack 0.0357 0.0179 -0.0179 -0.0782
Ever had heart disease 0.0607 0.0393 -0.0214 -0.0695
Ever had hypertension 0.2821 0.3071 0.0250 0.0387
Ever had asthma 0.1464 0.1000 -0.0464* -0.1000
Ever had lung disease 0.0071 0.0000 -0.0071 -0.0847
Ever had diabetes 0.0786 0.1179 0.0393 0.0934
Ever had cancer 0.0500 0.0321 -0.0179 -0.0636
Ever had psychological problems 0.0500 0.0643 0.0143 0.0435
Household-level variables
Number of children 1.0214 0.9500 -0.0714 -0.0439
Age of youngest child 4.5214 3.4893 -1.0321* -0.1375
Number of births c 0.0179 0.0286 0.0107 0.0503
Household member plus 60 0.1000 0.0964 -0.0036 -0.0085
Is home owner 0.8393 0.8357 -0.0036 -0.0068
House value a,c 152.8057 130.0429 -22.7629* -0.1432
Health care expenditureac 2.9209 2.3995 -0.5214* -0.1132
Expenditure for doctors visits etc.a 0.6593 0.3886 -0.2707* -0.2105
Expenditure for prescriptions etc.a 0.4041 0.3180 -0.0861 -0.0906
Number of observations 280 280
Number of individuals 35 35
a In thousand dollars.
b This covariate exhibits missings: it is based on 280 observations in the control and 264

observations in the treatment group.
c These are the covariates used for PS matching.

Note: The fourth column reports the mean differences between treatment and control
group, including significance levels of t-tests on mean equality: * p < 0.1; ** p < 0.05
; *** p < 0.01. The last column lists the normalized mean difference, calculated as
(x̄1 − x̄0)/

√︂
σ2

1 + σ2
0, where x̄1 and x̄0 are the means in treatment and control group,

respectively, and σ2
1 and σ2

0 are the respective variances.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.
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Table 4.1 lists descriptive statistics for the PS matching on 2000 values.11 Our
matching approach improves covariate balance relative to the unmatched sample,
as indicated by decreasing mean differences in, e.g., labor incomes by 40 percent
(from -8,459 to -5,529 dollars), house values by 60 percent (from -57,194 to -22,763
dollars) and health care expenditures by 60 percent (from -1,284 to -521 dollars).
However, there are still remaining mean differences that are borderline statistically
significant at the ten percent level. For example, the share of asthmatics is by
4.6 percentage points lower in the treatment group than in the control group.
With respect to all other chronic illnesses, such as diabetes, both groups are quite
balanced. We also report the normalized mean difference for each covariate, which
is – in contrast to a t-test – insensitive to sample size. According to Imbens and
Wooldridge (2009), linear regressions tend to be sensitive to specification if values
of the normalized mean difference are larger than 0.25. This threshold is exceeded
by only one of our covariates, namely the self-reported subjective health status:
This variable is assessed on a five-point Likert scale, where 1 represents excellent
and 5 indicates poor health status. Individuals in our treatment group have, on
average, worse subjective health relative to the control group, although this is
not mirrored through differences in objective health outcomes. Nevertheless, this
suggests that we cannot rule out selection bias completely, and we should interpret
our estimates as upper bounds, given that less healthy individuals are generally
more vulnerable to pollution exposure.

Figure 4.4 depicts average outcomes over time in the treated and control
groups. The first individuals are treated in 2006, so prior to this year, time trends
should evolve in parallel for both groups. Since the error bars of the mean values
in treatment and control group are overlapping in each period prior to 2006, the
difference in means is not statistically significant. Hence, we cannot reject the
parallel trend assumption after matching on pre-treatment values.

4.4.4 Differences-in-differences specification

We implement a differences-in-differences design that exploits the intertemporal
and geographical variation in construction dates and locations of fracking wells.

yit = αi + ρDit + βXit + λt + ϵit (4.1)

11 The results for PS matching on average pre-treatment values are largely similar; they are
listed in Table C.6.
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Figure 4.4: Time trend in treatment and matched control group (PS matching on
2000 values)
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Note: This figure depicts the average number of sick leave days per year in treatment (N1 = 35)
and matched control (N0 = 35) group. The control group is based on PS matching on
pre-treatment values from 2000. The error bars depict standard errors for each group and year.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.

In Equation 4.1, we regress the number of sick leave days of individual i in
year t, yit, on the treatment indicator, Dit, which is equal to one if individual i

has a fracking well within its treatment radius in year t, and zero otherwise. We
include a set of potential individual-level and household-specific confounders, Xit,
such as the number of children and the age of youngest child in the household,
individual’s labor income, and health-related covariates, e.g., the annual number
of nights spend in a hospital or the subjective health status. We also control for
time-invariant unobserved heterogeneity by including individual fixed effects, αi.
Time fixed effects, λt, are included to account for unobservables that commonly
affect all individuals in the same period.

4.5 Results

Tables 4.2 and 4.3 list the regression results for the samples matched on 2000
values and on average values from 2000 to 2004, respectively. All specifications
include individual and year fixed effects.
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Table 4.2: Regression results (PS matching on 2000 values)

Dependent variable: Number of sick leave days
(1) (2) (3) (4) (5) (6)

Treatment indicator 3.204* 2.980* 3.351* 3.258* 2.474 2.419
(1.769) (1.772) (1.763) (1.772) (1.684) (1.686)

Age of youngest child -0.104 -0.054
(0.122) (0.117)

Number of births 10.245*** 8.447***
(3.323) (3.172)

Number of children 0.289 0.526
(0.794) (0.759 )

Labor income -0.045 -0.032
(0.036) (0.034)

Health care expenditure 0.226 0.144
(0.227) (0.216)

Expenditure for doctors visits etc. 0.503 0.551
(0.762) (0.727)

Expenditure for prescriptions etc. -0.767 -0.434
(1.052 ) (0.994)

Health status -0.653 -0.584
(0.865) (0.866)

Number of nights in hospital 3.822*** 3.780***
(0.522) (0.523)

Observations 560 560 560 560 560 560
Adjusted R2 0.007 0.029 0.019 0.012 0.107 0.141
F Statistic 3.281* 3.605*** 3.154** 1.431 19.086*** 7.022***

Note: All regressions include individual and year fixed effects. Robust standard errors are clustered
at the individual level in parentheses. Significance levels of the coefficient estimates are denoted
by * p < 0.1; ** p < 0.05 ; *** p < 0.01.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own calculations.
Produced and distributed by the Survey Research Center, Institute for Social Research, University
of Michigan, Ann Arbor, MI.

The first column depicts the baseline regression model including the binary
treatment indicator as well as individual and time fixed effects. For both matching
specifications, the baseline estimates suggest a positive treatment effect of about
three additional sick leave days, significant at the ten percent level. This provides
evidence of a significant negative effect of the fracking externalities on human
health, resulting in a higher number of sick leave days for individuals living in
close proximity to fracking sites. The magnitude of the effect appears substantial
relative to other estimates from the literature: Having diabetes is associated with
two additional sick leave days per year (Asay et al., 2016), and obesity increases
employee absenteeism by two days (Finkelstein, Fiebelkorn and Wang, 2005).

The second column contains our preferred specification. It includes time-
varying controls related to children living in the household, since our dependent
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Table 4.3: Regression results (PS matching on average values from 2000 to 2004)

Dependent variable: Number of sick leave days
(1) (2) (3) (4) (5) (6)

Treatment indicator 2.939* 2.966* 3.308** 3.021* 2.444 2.916*
(1.667) (1.663) (1.662) (1.667) (1.654) (1.652)

Age of youngest child -0.119 -0.086
(0.114) (0.113)

Number of births 7.641*** 6.968**
(2.759) (2.735)

Number of children 0.099 0.182
(0.703) (0.709)

Labor income -0.032 -0.030
(0.024) (0.024)

Health care expenditure 0.148 0.062
(0.219) (0.217)

Expenditure for doctors visits etc. 0.855 0.940
(0.674) (0.662)

Expenditure for prescriptions etc. -0.672 -0.492
(0.964) (0.944)

Health status -0.135 0.048
(0.844) (0.842)

Number of nights in hospital 2.206*** 2.043***
(0.606) (0.606)

Observations 560 560 560 560 560 560
Adjusted R2 0.006 0.026 0.026 0.013 0.033 0.075
F Statistic 3.109* 3.247** 4.299*** 1.632 5.530*** 3.462***

Note: All regressions include individual and year fixed effects. Robust standard errors are
clustered at the individual level in parentheses. Significance levels of the coefficient estimates
are denoted by * p < 0.1; ** p < 0.05 ; *** p < 0.01.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own calculations.
Produced and distributed by the Survey Research Center, Institute for Social Research, Univer-
sity of Michigan, Ann Arbor, MI.

variable captures absence days due to own illness and due illness of other household
members. Specifically, we control for the number and the average age of children
living in a household, since parents whose children fall ill might have to take sick
leave days, especially when the children are young. Moreover, we include the
number of births per household in a given year to account for sick leave days
after childbirth. The estimated treatment effect is of similar magnitude as in
the baseline specification and remains statistically significant at the ten percent
level. The highly significant coefficient on the number of births implies that one
additional birth per year in the household increases employee absenteeism on
average by roughly eight to ten days.

The third column adds a potentially endogenous covariate, namely an indi-
vidual’s labor income. The estimated treatment effect increases to 3.3 in both
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matching specifications, most likely due to endogeneity bias. Income is an estab-
lished determinant of an individual’s health status in the sense that higher income
is associated with better health outcomes (e.g., Lynch et al., 2000; Kawachi and
Kennedy, 1999; Ettner, 1996). So labor income could credibly affect health status,
but the labor income itself can be affected by shale exploration activities: If
the treated individuals are more likely to work in sectors that benefit from the
employment and wage effects of fracking, such as mining or construction, their
labor income would increase as a consequence of treatment. In this case, we
cannot disentangle the direct effect of proximity to a fracking well on sick leave
days from the indirect effect of increased income.12 The estimated coefficients in
Tables 4.2 and 4.3 have the expected negative sign, but they are not statistically
significant.

In column four, we add several controls for medical expenditures on the
household level, but none of them asserts any significant effect on the number
of sick leave days. This is also confirmed by the insignificant F-tests that occur
under both matching strategies in this specification. Column five considers the
self-reported health status and the number of nights spend in a hospital during a
year. Only the latter is significant with positive coefficient estimates, indicating
that one additional hospital night increases the number of sick leave days by 3.8 in
the first matching specification and by 2.2 in the second specification. This result
makes sense intuitively and the number of hospital nights seem to explain a large
degree of variation in the number of sick leave days, since including them makes
our estimated treatment effect insignificant. Nevertheless, this specification might
suffer from endogeneity bias, since exposure to fracking has been shown to increase
hospitalization rates (Jemielita et al., 2015; Willis et al., 2018).13 The last column
includes a full model specification with all time-varying covariates. Notably the
estimated treatment effect remains significant for the matching specification based
on average-pre-treatment values in Table 4.3, despite potential endogeneity bias.

4.6 Discussion

The general framework presented here limits the scope of the analysis: We focus
only on one particular aspect related to health and labor market outcomes, namely
the number of sick leave days, and our differences-in-differences specification does

12 Results are robust against excluding individuals working in the mining and construction sector
and are available upon request.

13 We do not observe any statistically significant effects of fracking exposure on the number of
nights spend in a hospital, most likely due to our small sample size.
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not allow for a full cost-benefit analysis. For example, our analysis does not
directly assess the positive labor market effects of fracking. Neither do we provide
an estimate of the employment effects of shale exploration, since we only consider
employed individuals to look at their number of sick leave days, nor do we directly
estimate any wage effects. However, these positive labor market effects in terms of
employment and wages are generally acknowledged and a vast body of empirical
research aims at quantifying them.

Furthermore, pollution-induced illnesses can result in a variety of economic
costs for society. Deteriorating public health as a consequence of shale gas explo-
ration does not only impose costs on the labor market, but a significant share
of costs arises in the health care system due to medical therapy and treatment
of illnesses. Estimating these costs is outside the scope of this analysis; a com-
prehensive cost-benefit analysis would be necessary to assess them. Note that
fracking also affects the health status of unemployed people, retired persons and
people in education, but due to the nature of our research question, we can only
quantify the effect on employees. Furthermore, we cannot account for long-term
impacts that limit the process of human capital formation, which might arise
through indirect channels, e.g., education. Young children, for example, are more
severely affected by environmental externalities; their illness might not only force
one or both of their parents to temporarily stay at home, causing short-term
employee absenteeism, but it might also have long-term consequences for the child
by impacting educational achievements.

Another feature of our approach is that the composite effects of fracking
on human health cannot be disentangled. Negative health effects can arise, for
example, from the various air and water pollutants that are emitted during
exploration and operation of the site as well as from psychological effects. Due to
the wide range of potentially harmful pollutants that are emitted simultaneously,
and due to their complex interactions, it is very challenging to isolate the health
effects arising from one particular channel. Therefore, we leave this task for
future research and rather focus on estimating the net effect of fracking on health-
related decreases in labor supply, i.e. we account for all potential externalities
simultaneously. In doing so, we provide estimates of the adverse labor market
impacts that can be readily used to approximate the economic costs imposed by
fracking on the labor market.
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4.7 Conclusion

Hydraulic fracturing, which has recently become an important process to extract
fossil resources, is a source of localized negative environmental externalities that
have the potential to adversely affect human health. Deteriorating public health
due to fracking exposure does not only impose economic costs on the health
care system, but also on the labor market in the form of short-term employee
absenteeism, which have been ignored in the empirical literature so far. We
assess the relationship between proximity to fracking sites and short-term labor
market outcomes by asking whether exposure to fracking wells has any impact
on the number of sick leave days of individuals living close-by. The answer to
this question contributes to the ongoing debates about the expansion of fracking
activities, since they can inform decision makers about the costs imposed by
adverse health effects on the labor market.

We use individual- and household-level data from the PSID and combine it
with oil and gas data from Pennsylvania covering the years from 2000 to 2014. We
implement a differences-in-differences approach that exploits the intertemporal
and geographical variation in construction dates and locations of fracking wells.
To estimate a causal relationship, the treatment and control groups need to be
comparable, hence we apply propensity-score matching techniques on household-
level covariates. In addition, our regression equation controls for time-varying
confounders, time-invariant unobserved heterogeneity by including household fixed
effects and common time fixed effects. Our results indicate that employees who
reside within ten kilometer distance to a fracking well take about two to three
additional days of sick leave, providing first evidence on an adverse labor market
effect of fracking. We show that exposure to fracking increases health-related
absenteeism, which imposes short-term costs on the labor market.

These short-term costs imposed by employee absenteeism need to be considered
when conducting comprehensive cost-benefit analyses of the technology. When it
comes to the labor market effects of fracking, the focus has been on the apparent
benefits of shale exploration activities, namely employment and wage increases in
the local economy. But our results show that employees living close to fracking
wells are affected by the pollution externalities, since these individuals are more
likely to decrease their labor supply, because the employees themselves or another
household member, like young children, fall ill. These adverse labor market
effects need to be taken into account as well. When deciding on the expansion or
contraction of fracking activities, decision makers and regulators need to carefully
weigh the expected costs and benefits: In terms of labor market consequences,
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there is the potential for increased employment and wage growth, especially in
the mining and construction sectors. But these benefits come at the cost of
a short-term decrease in labor supply due to health-related absenteeism that
potentially occurs in all sectors of the local economy. So it is crucial to quantify
the population at risk, i.e. the number of individuals and households exposed
to unconventional natural gas drilling, and to evaluate the potential costs and
benefits of shale gas exploration.

We have quantified the net effect of fracking on health-related decreases in
labor supply, since we accounted for all potential externalities simultaneously. This
leaves room for future research to explore the potential channels through which
fracking could affect human health, for example, water pollution: Individuals
living in houses with ground-fed water supply are probably at a larger risk of
drinking water contamination, relative to households that are connected to a
piped water distribution network. Disentangling the potential channels would also
allow for assessing potentially heterogeneous treatment effects.



Chapter 5

Organic Farming, Water Quality,
and Drinking Water Supply Costs
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5.1 Introduction

In the past half-century, the amount of nitrogen losses in the environment has
increased significantly (Leach et al., 2012). Rockström et al. (2009) refer to the
nitrogen cycle as one of the most perturbed geochemical cycles on earth, where
excess nitrogen pollution has severe consequences on humans and the environment
by fueling climate change, destroying habitats, driving species extinction, and
threatening human health (Erisman et al., 2013; Townsend et al., 2003). Agri-
culture is one of the main sources of nitrogen pollution. In many high-income
countries, the sector has overtaken contamination from settlements and industries
(Parris, 2011).1 With the application of mineral and organic fertilizers, nitrogen
loads can reach surface and groundwater bodies through runoffs, diminishing
surface and groundwater quality (Gomiero, Pimentel and Paoletti, 2011).2 In-
creased nitrate levels threaten aquatic biodiversity via the eutrophication process,
creating algal blooms and dead zones (Canfield, Glazer and Falkowski, 2010).
Apart from impairing the ecosystem, nitrate-polluted drinking water can damage
human health. Consumption of contaminated water causes methemoglobinemia
among infants (blue baby syndrome) and is suspected of having carcinogenic
effects on adults (Shukla and Saxena, 2019).

Reducing nitrate pollution to curb its considerable environmental and social
costs represents a key priority for governments worldwide (Parris, 2011) and
is high on the agenda of the European Commission (European Commission,
2021a). Despite a large body of legislation, e.g., the Nitrates Directive (EU, 1991),
the Water Framework Directive (EU, 2000a), or the Reform of the Common
Agricultural Policy (European Commission, 2010), excessive nitrogen emissions to
water bodies are still occurring throughout Europe. Nitrate-polluted groundwater
bodies are a particular concern since they serve as the primary source of drinking
water, and pollution might become irreversible due to the prohibitive cost of
remediation in groundwater bodies (Lall, Josset and Russo, 2020).

In this context, understanding the causes and consequences of groundwater
nitrate pollution is necessary to quantify the associated economic costs and
inform policymakers about effective mitigation strategies. This paper uses a

1 For example, in the EU, 38 percent of water bodies are under significant pressure from
agricultural water pollution. In the US, agriculture is the main source of pollution in rivers
and streams. In China, agriculture is almost exclusively responsible for groundwater pollution
by nitrogen (Evans et al., 2018).

2 At the same time, nitrogen can also dissolve in the atmosphere, where it forms nitrous oxides
and accelerates global warming. Nitrous oxide is a greenhouse gas hundreds of times more
potent than carbon dioxide.
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two-fold approach to provide empirical evidence on the causes and consequences
of groundwater nitrate pollution: In the first stage, we analyze whether organic
farming practices contribute to lowering groundwater nitrates. In a second stage,
we investigate the economic consequences of nitrate pollution for a sector directly
affected by groundwater quality, the drinking water supply sector. We empirically
estimate the effect of groundwater nitrate pollution on firms’ costs.

This paper makes three important contributions: First, we build a unique
and extensive panel data set for Germany for the years 2008-2016 by merging
seven administrative data sources which retain geo-referenced information on
nitrate pollution, organic farming, mineral fertilizer application, land cover, set-
tlement structure, weather, and firm-level data on drinking water supply firms.
Second, the paper provides the first large-scale evidence of the negative association
between organic farming and groundwater nitrates. Third, this paper presents
robust empirical evidence on the increased cost of drinking water supply due to
groundwater nitrate pollution based on administrative firm-level data.

Organic farming systems are crucial for the transformation towards sustainable
agriculture, as recognized in the European Green Deal (European Parliament,
2021). Under the Farm-To-Fork Strategy, the EU seeks to expand its agricultural
land under organic farming to 25 percent until 2030 (European Commission, 2020).
Organic farming has to comply with higher standards for environmental protection
and animal welfare than conventional farming. These standards include, among
others, the prohibition of synthetic pesticides and mineral fertilizer application, a
ban on landless livestock production, and reliance on multi-annual crop rotation
and cultivation of nitrogen-fixing plants (EU, 2018). Consequently, organic farming
can reduce some of the negative environmental impacts of agriculture, e.g., by
increasing soil fertility and biodiversity, system stability, and erosion control,
relative to conventional farming (Caporali, Mancinelli and Campiglia, 2003; Stolze
et al., 2000). Moreover, several small-scale field studies suggest that organic
farming can reduce nitrogen leaching by up to 64 percent (Schader, Stolze and
Gattinger, 2012). Nevertheless, its impact on groundwater quality remains unclear
due to a lack of empirical evidence.3

We build an econometric model to estimate the impact of organic farming
on groundwater nitrate pollution. We hypothesize that organic farming in the
vicinity of the groundwater sampling station reduces groundwater nitrate pol-
lution, compared to agricultural land under conventional farming. We model

3 Previous research mostly focused on the interrelations between land utilization and groundwa-
ter pollution (Bawa and Dwivedi, 2019; Gallagher and Gergel, 2017; Lawniczak et al., 2016;
Mair and El-Kadi, 2013; Wick, Heumesser and Schmid, 2012).



Section 5.1 107

annual nitrate levels as an auto-regressive process that depends on the share
of organically farmed land, conditional on other factors affecting groundwater
nitrate, such as mineral fertilizer application, land use, weather, and time-invariant
hydro-geological characteristics. Estimating the marginal contribution of organic
farmland to nitrate groundwater pollution using the system GMM estimator by
Blundell and Bond (1998), we find that the share of organically farmed land
decreases nitrate concentrations in surrounding groundwater bodies. Results
suggest that an additional percentage point in the share of organically farmed
land decreases nitrate concentrations in surrounding groundwater bodies by 0.3
mg/l on average.

Drinking water companies are directly affected by water pollution as they
supply drinking water by abstracting raw water from ground and surface water
sources. The European Drinking Water Directive limits the amount of nitrate
in potable water by 50 mg/l (EU, 1998). If raw water nitrate surpasses the
legal threshold, companies must take additional measures to secure its safety and
purity. In the short run, water quality can influence factors such as chemical
dosage, electricity use, and the need for extra personnel (Westling, Stromberg
and Swain, 2020). Moreover, the companies might blend water sources, drill new
wells, purchase water from nearby suppliers, or construct new treatment plants
(Jensen et al., 2012; Jones, Hill and Brand, 2007; Oelmann, Czichy and Hormann,
2017). These measures give rise to additional costs that are passed through to
water consumers through higher prices. However, the magnitude of cost increases
is unknown since large-scale empirical evidence on the cost effects of groundwater
nitrate pollution for water supply firms is lacking.4

To remove nitrate from raw water, water suppliers use different treatment
processes and technologies that have varying impacts on operating and capital
costs. We derive different econometric cost models to estimate the effect of
groundwater nitrate pollution on firms’ water treatment costs and total costs
(including capital and labor costs). First, we hypothesize that raw water from
catchment areas with higher nitrate concentrations requires additional treatment
and, thus, is associated with higher treatment costs. We model treatment cost as
a function of water quality, conditional on the quantity of water abstracted, the
composition of source intake, and weather impacts. Estimates are obtained using
a two-way fixed effects model that accounts for unobserved firm-level heterogeneity
and common time effects. Our results suggest that higher groundwater nitrate

4 The existing literature focuses on other forms of water pollution, mainly turbidity (Danelon,
Augusto and Spolador, 2021; Lopes et al., 2019; Price and Heberling, 2018; Westling, Stromberg
and Swain, 2020).
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concentrations increase firms’ treatment costs. More precisely, a one percent
increase in groundwater nitrate is associated with an increase in treatment cost
by about 0.04 to 0.05 percent. Second, we posit that water quality and the use of
nitrate removal technologies do not only imply higher treatment costs but might
also affect labor and capital costs. We estimate a total cost model to quantify
the effect of groundwater nitrate on firms’ total costs. Our findings reveal that
groundwater nitrate pollution significantly increases total costs. The estimates
show increases in total costs of 0.02 percent for an additional percentage point
in groundwater nitrate pollution. These cost increases are likely to be passed
through to consumers, who ultimately pay the price for water pollution stemming
from the agricultural sector.

The structure of this paper is as follows: The next section provides background
information on EU policies regulating water quality and organic farming practices
and describes nitrate removal techniques used by water supply firms. Section 5.3
summarizes the relevant literature. Section 5.4 describes the data on water quality
and the water supply firms. Section 5.5 outlines the empirical strategy. Section
5.6 presents results and Section 5.7 concludes.

5.2 Institutional background

5.2.1 Nitrate pollution and sustainable farming

Given its relevance for human, animal and plant life, and the economy, water
protection is a central part of the EU’s agenda on sustainability. Issued in
2000, the Water Framework Directive (WFD) represents the heart of the legal
framework for European water regulation. Its main objective is to achieve a good
environmental status for all EU waters. To do so, it establishes guidelines for the
protection, management, and long-term sustainable use of inland surface waters,
transitional waters, coastal waters, and groundwater bodies. It requires member
states to develop and implement River Basin Management Plants5 including
specific measures to improve and uphold water quality (EU, 2000a).

The WFD is complemented by a set of specific directives, such as the Drinking
Water Directive (DWD) (EU, 1998) and the Nitrates Directive (EU, 1991).6

The DWD sets quality standards for water intended for human consumption.

5 Management plans must be based on the natural geographical river basin, they are valid for
six years, and a major tool to implement the WFD.

6 Other examples are the Groundwater Directive, the Urban Waste Water Treatment Directive,
the Environmental Quality Standards Directive and the Floods Directive.
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Its purpose is to protect human health from any harm caused by contaminated
water. The DWD applies to drinking water from distribution systems, tanks,
and bottles, and those intended for the food processing industries. The policy
mandates the monitoring of 48 microbiological, chemical, and other indicator
parameters. The Nitrates Directive aims at protecting water bodies against
nitrate pollution from agricultural sources. It imposes a maximum permissible
level of 50 mg/l of nitrates in surface and groundwater bodies, mandates regular
monitoring of nitrate pollution, and establishes nitrogen management requirements
for farmers, including limitations on the amount and timing of fertilization. If the
permissible level is frequently exceeded, member states are obliged to establish
action programmes to reduce nitrate pollution.

Germany has a long history of exceeding the limit value of 50 mg/l in groundwa-
ter bodies. In 2018, the European Court of Justice pronounced Germany guilty of
violating the Nitrates Directive by failing to implement sufficient countermeasures
(European Court of Justice, 2018). Since then, the German Federal Government
has reformed the German Fertilizer Law and Ordinance (Federal Ministry of
Justice and Consumer Protection, 2009, 2017, 2020), which transpose the Nitrates
Directive into national law. Despite legal efforts and repetitive reforms, agriculture
remains the principal cause of water-related problems in Germany and Europe, and
thus, farming practices have to become more sustainable (European Commission,
2021a).

The past two reforms of the EU’s Common Agricultural Policy (CAP) aimed
at contributing towards more sustainable agriculture but they fell short in delivery;
important aspects such as the promotion of organic farming, water protection and
soil quality were hardly addressed.7 The next CAP (2023-2027) is supposed to be
greener and fairer, such that it contributes to the goals of the European Green Deal
and Farm-To-Fork Strategy. This includes the implementation of eco-schemes,
where funding is re-allocated from direct payments, to provide stronger incentives
for climate-and environmental-friendly farming practices and approaches (EU,
2021).

7 The CAP comprises around 30 percent of the total EU budget. It is divided into two pillars.
The first involves direct payments to farmers in the member states (70 percent), which
are linked mainly to the area farmed and certain conditions. The second pillar includes
subsidies that support rural communities in the modernization and establishment of a socially,
ecologically and economically sustainable structural change (30 percent).
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5.2.2 Nitrate removal from drinking water

In Germany, nitrate is removed from drinking water via separation processes and
biological denitrification. Common separation processes are reverse osmosis and
CARIX method. Reverse osmosis is pressure-driven and forces water molecules
through a semi-permeable membrane. It takes place almost fully automatic and
thus, has low personnel requirements. Nevertheless, the technology is associated
with high operating costs due to membrane replacement and high energy demand
(Malaeb and Ayoub, 2011). Without an energy recovery system in place, energy
consumption ranges between six and eight kWh/m3 (Khawaji, Kutubkhanah
and Wie, 2008; Moch and Moch, 2002). Also, it involves the usage of chemicals
to protect the membranes from deposit formation. The CARIX method is a
special ion-exchange process with lower operating costs than reverse osmosis. It
is a chemical-free process, uses less water, and requires less energy, with energy
consumption ranging between 0.15 and 0.25 kWh/m3 for modern plants (Veolia,
2021). However, investment costs are considerably higher.

Both separation processes generate (saline) wastewater as a by-product, the
disposal of which can also increase the company’s operating cost. Given permission
by the local authorities, treatment companies are allowed to directly discharge their
wastewater into surrounding surface waters free of charge. The approval practice
is based on the Surface Water Ordinance and not granted easily, as high nutrient
concentrations harm the ecosystem and impair surface water quality. Hence,
water companies must often resort to one of the following two options: they can
either discharge their wastewater to the sewerage system or wastewater treatment
plant for considerable wastewater fees or treat the wastewater themselves before
discharging it. The latter would lead to increases in capital and operating costs
(Oelmann et al., 2017).

In contrast to separation processes, biological denitrification is a microbio-
logical process that decomposes nitrate into gaseous nitrogen (N2) rather than
separating nitrate from drinking water. While post-treatment of water is re-
quired downstream of the bioreactors, the process virtually does not produce
wastewater and only a small amount of sludge (Oelmann et al., 2017). In this
way, biological denitrification is favorable over separation processes because it
selectively eliminates nitrate and is more efficient in terms of resource recovery.8

Disadvantageous is, however, the fact that this process does not simultaneously
soften nor remove trace substances. In general, it is more complex and thus,

8 Biological denitrification has a resource recovery rate of more than 95 percent, while separation
processes’ efficiency rate is at most 90 percent.
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requires more personnel and maintenance. All in all, these removal technologies
vary in their functioning and effectiveness, resource and disposal requirements, as
well as capital and operating costs (Oelmann et al., 2017).

5.3 Related literature

Keiser and Shapiro (2019b) note that given the importance of water quality
surprisingly little economic research analyses it. The few papers studying the
effectiveness of water quality regulations focus on the impacts on surface water
quality, e.g., Keiser and Shapiro (2019a) study the U.S. Clean Water Act, and
Chabé-Ferret, Reynaud and Tène (2021) analyze the EU Nitrates Directive.
Empirical evidence on the impact of these regulations on groundwater bodies is
lacking, despite the growing importance of mitigating groundwater pollution. In
contrast, the determinants of groundwater nitrate pollution have been studied
frequently over the past two decades. We list the available evidence in the following
subsection. Moreover, we review the empirical literature on the consequences of
groundwater pollution for drinking water supply costs in subsection 5.3.2.

5.3.1 Groundwater nitrate pollution and land use

Table 5.1 lists an overview of the recent empirical contributions. These studies pre-
dominately focus on the implications of land use on nitrate and other groundwater
pollutants, in particular agricultural crop production, grassland areas, urban or
residential areas, and forest coverage (e.g., Bawa and Dwivedi (2019), Lawniczak
et al. (2016)). Typically, these studies control for a range of other factors influ-
encing groundwater nitrate, such as seasonality (Lawniczak et al., 2016), aquifer
and soil characteristics (Mair and El-Kadi, 2013), weather conditions (Wick,
Heumesser and Schmid, 2012), and groundwater table depth (Gallagher and
Gergel, 2017). Most are ex-post evaluations based on large data sets. For example,
Wick, Heumesser and Schmid (2012) study the factors influencing groundwater
nitrate levels using a multivariate regression framework controlling for land use,
soil type, and weather impacts. Based on a panel of 1200 Austrian municipalities
from 1992 to 2008, they find that agricultural activity leads on average to higher
nitrate levels in groundwater bodies. In contrast, grassland and forest decrease
nitrate content.

While the positive relationship between agricultural cultivation and nitrate
pollution is well established in the international empirical literature, only a few
studies consider the impact of specific farming practices as an influencing factor.



112 Chapter 5

Ta
bl

e
5.

1:
Em

pi
ric

al
lit

er
at

ur
e

on
la

nd
us

e
an

d
gr

ou
nd

wa
te

r
ni

tr
at

e
po

llu
tio

n

A
ut

ho
rs

R
eg

io
n

T
im

e
pe

rio
d

M
et

ho
d

D
ep

en
de

nt
va

ria
bl

e
In

de
pe

nd
en

t
va

ri-
ab

le
Eff

ec
t

B
aw

a
an

d
D

w
iv

ed
i

(2
01

9)
Fl

or
id

a
20

08
-2

01
8

Li
ne

ar
re

gr
es

sio
n

N
itr

at
e,

Po
ta

ss
iu

m
La

nd
us

e
A

gr
ic

ul
tu

re
(+

)

Su
n,

C
he

ng
an

d
C

he
n

(2
01

8)
C

hi
na

20
10

M
ul

tiv
ar

ia
te

lin
ea

r
re

gr
es

sio
n

N
itr

at
e,

ph
os

ph
or

us
Pr

ec
ip

ita
tio

n,
la

nd
us

e
C

ro
pl

an
d

(+
),

fo
r-

es
t

(–
),

re
sid

en
tia

l
(+

),
gr

as
sla

nd
G

al
la

gh
er

an
d

G
er

ge
l(

20
17

)
U

SA
,C

an
ad

a
20

05
-2

01
6

M
ul

tiv
ar

ia
te

lin
ea

r
re

gr
es

sio
n

N
itr

at
e

La
nd

us
e,

wa
te

r
ta

-
bl

eh
eig

ht
,d

ep
th

be
-

lo
w

wa
te

r

Cr
op

la
nd

(+
/-

),
fo

r-
es

t
(+

/-
),

ur
ba

n
(+

),
ba

re
(–

)
La

w
ni

cz
ak

et
al

.
(2

01
6)

Po
la

nd
20

12
M

ul
tiv

ar
ia

te
an

al
y-

sis
N

itr
at

e,
ph

os
ph

o-
ru

s,
am

m
on

iu
m

la
nd

us
e,

se
as

on
,f

er
-

til
iz

er
su

pp
ly

C
ro

pl
an

d
(+

),
fo

r-
es

t
(–

),
re

sid
en

tia
l

ar
ea

(–
),

sp
rin

g
(+

),
fe

rt
ili

ze
r

(+
)

M
ai

r
an

d
El

-K
ad

i
(2

01
3)

H
aw

ai
i

20
00

-2
01

2
Lo

gi
st

ic
re

gr
es

sio
n

N
itr

at
e,

fu
m

ig
an

ts
,

ch
lo

rin
at

ed
so

lv
en

ts
La

nd
us

e,
wa

te
r

de
pt

h,
so

il,
an

d
aq

ui
fe

r
m

ed
ia

C
ro

pl
an

d
(+

)

W
ick

,
H

eu
m

es
se

r
an

d
Sc

hm
id

(2
01

2)
A

us
tr

ia
19

92
-2

00
8

Po
ol

ed
O

LS
,F

ix
ed

Eff
ec

ts
N

itr
at

e
La

nd
co

ve
r,

pr
ec

ip
i-

ta
tio

n,
so

il
po

ro
sit

y,
ai

r
te

m
pe

ra
tu

re

C
ro

pl
an

d
(+

),
fo

r-
es

t
(–

),
ci

ty
(–

),
gr

as
sla

nd
(–

),
pr

e-
ci

pi
ta

tio
n

(–
),

te
m

-
pe

ra
tu

re
(–

)
N

ot
es

:
T

he
ta

bl
e

pr
ov

id
es

an
ov

er
vi

ew
of

th
e

in
te

rn
at

io
na

le
m

pi
ri

ca
ll

it
er

at
ur

e
on

th
e

im
pa

ct
of

la
nd

us
e

on
gr

ou
nd

w
at

er
ni

tr
at

e
co

nc
en

tr
at

io
ns

.
T

he
la

st
co

lu
m

n
su

m
m

ar
iz

es
th

e
re

su
lt

s
of

ea
ch

st
ud

y,
w

he
re

+
(–

)
re

pr
es

en
ts

a
po

si
ti

ve
(n

eg
at

iv
e)

re
la

ti
on

sh
ip

be
tw

ee
n

th
e

de
pe

nd
en

t
va

ri
ab

le
an

d
th

e
re

sp
ec

ti
ve

in
de

pe
nd

en
t

va
ri

ab
le

.



Section 5.3 113

There are several agricultural field experiments from different countries and regions
that support this hypothesis, see Kirchmann and Bergström (2001), Korsaeth
and Eltun (2000), and Tuomisto et al. (2012).9 Moreover, Wick, Heumesser and
Schmid (2012) review the impact of conventional farming by crop cultivation
types (oilseed and protein, forage, cereal and maize, row crops and vegetables,
and grassland) on groundwater nitrate. Their results suggest that municipalities
with a larger share of conventionally farmed areas record higher groundwater
nitrate levels. Yet, to our knowledge, this is the first study to evaluate the effect of
organic farming on nitrate groundwater pollution, conditional on mineral fertilizer
supply, land use, and weather.

5.3.2 Water quality and drinking water supply costs

There are several international studies available that review the effect of surface
water quality on treatment cost, in particular on the impact of turbidity, which is
an indicator of the water’s relative clarity.10 Excessive values are a risk to human
health, as turbidity is a proxy for the presence of pathogenic microorganisms,
which can lead to waterborne disease outbreaks (WHO, 2017). Earlier studies have
already found a positive correlation between turbidity and the treatment plant’s
chemical and filtration cost (Dearmont, McCarl and Tolman, 1998; Holmes, 1988),
but these results are based on small samples. Over the past years, increased data
availability has allowed researchers to move on to larger sample sizes and apply
advanced empirical methods, such as panel approaches and spatial econometric
models. Price and Heberling (2018) summarize 24 of these studies and derive cost
elasticities where marginal improvements in turbidity result in gains in avoided
treatment costs.

Recently, empirical studies started to look into measures of water quality
beyond turbidity and the influence of natural ecosystem services on treatment
cost. Table 5.2 lists an overview of the most recent empirical evidence. Westling,
Stromberg and Swain (2020) estimate the marginal contribution of Escherichia coli
(E.coli) levels in river water on chemical water treatment cost based on a panel
of 76 Swedish water treatment plants. Danelon, Augusto and Spolador (2021)
analyze a sample of 172 Brazilian water treatment companies that rely on surface
water abstraction. The authors use fixed-effects panel models to estimate the

9 Results confirm that the nitrogen input intensities are typically lower for organic farming
systems, and in turn, is nitrate leaching per unit of area, but this effect does not necessarily
hold for nitrogen leaching per product unit.

10 There are different materials that turbid water, such as algae, plankton, and other microscopic
organisms, clay and slit.
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influence of total phosphorus, biochemical demand of oxygen, dissolved oxygen,
E.coli, and turbidity levels on total costs. Both analyses do not find statistically
significant relationships besides turbidity. In contrast, empirical evidence from
Portugal, France, and Malaysia suggests that forest coverage can lower drinking
water treatment costs by providing valuable ecosystem services such as water
purification (Abildtrup, Garcia and Stenger, 2013; Lopes et al., 2019; Vincent
et al., 2016). To our knowledge, we are the first to study the relationship between
groundwater nitrate pollution and water treatment costs.

5.4 Data

We describe the data we use to investigate nitrate groundwater pollution, organic
farming, and drinking water supply costs. In total, we use seven types of data. We
first summarize the data we use to analyze the link between organic farming and
nitrate groundwater pollution. We then move to the firm-level data to analyze
drinking water supply costs with respect to water pollution.

Data on groundwater nitrate concentrations: Nitrate readings are pro-
vided by the German Environment Agency (UBA, 2019). The data contains
nitrate concentrations measured from 2008 to 2016 at 1,350 groundwater sampling
stations scattered across Germany. At most sampling stations, nitrate is measured
once per year, but roughly 35 percent of sampling stations record several nitrate
readings per year. Thus, we average over sub-annual readings at these sampling
stations to obtain annual average nitrate levels, which yields 8,821 station-year
observations.11

Data on organic farming: We collect data on organic farming at the dis-
trict level from the Regional Statistics of the Statistical Offices of the Federation
and the Länder. The data is available for 2007, 2010, and 2016; we interpolate
missing years linearly. We derive the proportion of organic farmland relative to
the utilized agricultural area for each district. We merge this information with
nitrate readings based on the district where each nitrate station is located.

Data on mineral fertilizer: Likewise, we add data on the annual supply
of mineral fertilizer measured at the district level for the years 2008 to 2016

11 Figure D.1 depicts the locations of nitrate sampling sites in Germany.
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obtained from Häußermann et al. (2019).12

Data on land use: Data on land use is obtained from the Corine Land Cover
(CLC) Database. For each nitrate sampling station, we calculate the share of
various land use classes (farmland, wine growing, fruit cultivation, grassland, and
forest) within a 500 meter radius around the sampling station.13 The CLC is
a grid-based land use database with a 25ha resolution in 2000 and 5ha in 2012,
2015, and 2018. We implement the radius approach for each available year, and
afterward linearly interpolate between years at each sampling station to impute
the data in missing years.

Weather data: Lastly, weather data is provided by the German Weather Agency
(Deutscher Wetterdienst, DWD). The data consists of daily weather measurements
between 2008 and 2016 from 612 monitors. We impute daily weather values at
the nitrate sampling site’s locations using an inverse distance-weighting approach
and average daily to annual mean values. Specifically, we calculate weighted daily
weather measurements for each nitrate sampling station based on all weather
monitors within a 100 km radius of its location using the following formula:

W (Yjt) =
∑︁N

i ωij · Yit∑︁N
i ωij

with ωij = 1
distance(mi, mj)p

where, W (Yjt) is the weighted value of weather at nitrate sampling station
j and time t, Yit refers to the value of weather measured at monitor i at time
t, and distance(mi, mj) is the distance between nitrate sampling station j and
weather monitor i. The weights ωij are based on the inverse distance, while the
power factor p modifies the heaviness of the distance-based weight of each weather
monitor. The higher p, the larger the weight of closer stations. We choose a
weight of p = 2 and limit the maximum distance to 100 km.14

Table 5.3 lists descriptive statistics on all nitrate sampling sites in Germany.15

The average nitrate concentration is about 28 mg/l, which is below the European

12 Data was obtained via email request.
13 Results based on a 1000-meter radius look very similar and are available upon request.
14 Imputing weather values via inverse-distance weighting with p = 2 is a standard approach in

the literature studying the economic impacts of air pollution. The choice of p does not affect
the inverse-distance weighted weather or air pollution values to a large degree (Zalakeviciute
et al., 2020).

15 A full overview on all variables, their descriptions, and data sources is provided in Table D.1
in the Appendix.
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allowable threshold of 50 mg/l. However, the distribution is positively skewed,
with the maximum annual average exceeding the legal limit value by as much as
over 700 percent. About 18 percent of nitrate readings in our sample exceed the
legal limit value of 50 mg/l; roughly 14 percent of observation measures nitrate
concentration below but close to the limit value. The average share of organically
farmed agricultural area is relatively low in German districts, with the distribution
showing a large degree of cross-sectional heterogeneity. A total of 75 districts do
not have any organically farmed land, whereas eight districts farm more than 25
percent of their agricultural area organically. However, the total average of five
percent is still well below the EU’s 2030 target value of 25 percent (European
Commission, 2020).

Table 5.3: Descriptives on groundwater sampling sites

Variable Mean Median SD Min Max

Nitrate [mg/l] 28.21 12.40 41.07 0.00 380.72
30 mg/l < Nitrate < 50 mg/l [%] 13.63 0.00 34.31 0.00 100.00
Nitrate ≥ 50 mg/l [%] 18.30 0.00 38.67 0.00 100.00
Organic farming [%] 6.29 4.78 5.42 0.00 36.32
Mineral fertilizer [kg/ha] 98.52 98.42 22.96 30.00 211.75
Mineral fertilzer > 100 kg/ha [%] 47.22 0.00 49.93 0.00 100.00
Farmland [%] 36.90 33.72 32.71 0.00 99.95
Wine growing [%] 0.75 0.00 6.60 0.00 94.85
Fruit cultivation [%] 0.50 0.00 4.10 0.00 72.75
Grassland [%] 19.42 12.04 22.46 0.00 99.95
Forest [%] 27.57 11.48 33.20 0.00 99.95
Mean temperature [°C] 9.46 9.57 1.02 2.68 12.25
Mean precipitation [mm/day] 1.98 1.93 0.45 1.02 4.76
Sum precipitation [mm/year] 648.41 640.17 157.23 0.32 1588.68

Notes: This table lists descriptive statistics on 7,311 annual observations from 1,323 groundwater sampling sites
for the years 2008 to 2016.

Figure 5.1 depicts the spatial distribution of nitrate and organic farming
shares across Germany. The left panel shows average nitrate concentrations, with
the darkest shade representing values above the legal limit of 50 mg/l. Nitrate
pollution is particularly problematic in the north, east, and southwest of Germany.
These areas typically have very low shares of organic farming between zero and
five percent, as illustrated in the right panel of Figure 5.1. At the same time,
a high share of organic farming appears to correlate with lower average nitrate
readings.

Figure 5.2 shows the distribution of annual nitrate averages and shares of
organically farmed area across time. Nitrate concentrations exhibit a slightly
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Figure 5.1: Nitrate concentrations and share of organically farmed area per
district in Germany
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Notes: This figure depicts annual nitrate concentrations and shares of organically farmed land in German
districts (Landkreise), averaged over the years 2008 to 2016.

decreasing trend, with annual median nitrate values decreasing from 15 mg/l
in 2008 to 12.1 mg/l in 2016 (19 percent). The share of organically farmed
agricultural land steadily increases over time, with median values increasing by
about 43 percent from 2008 to 2016.

Data on drinking water companies: Company data comprises the pub-
lic water supply survey (RDC, 2016) and the AFiD-panel of energy and water
supply companies (RDC, 2017), both provided by the German Federal Statistical
Office and Statistical Offices of the Federal States.16 The public water supply
survey covers the universe of water supply companies in Germany. It contains
detailed information on the physical components of their production processes,

16 Both surveys are subject to strict privacy regulations and can only be accessed on-site at the
statistical offices’ Research Data Centers (RDC). Exported results must be based on at least
three observation units to prevent (re-)identification, implying that minima/maxima must
not be reported.
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Figure 5.2: Nitrate concentrations and share of organic farming across time
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Notes: This figure depicts the annual distribution of nitrate concentrations and the share of organic farmland at
the level of sampling stations using boxplots. The lower and upper edges of the boxes indicate the first and third
quartile, respectively; the middle bar represents the median. The diamonds represent annual mean values.
Whiskers depict the interquartile range multiplied by 1.5 and dots are individual observations outside the
whisker’s range.

e.g., the volume of abstracted ground- or surface water, the amount of distributed
drinking water, and the number of customers served. We also observe the volumes
and sources of water extracted at each single abstraction plant of a company. We
focus on companies with at least one plant abstracting raw water from ground-
water sources, which amounts to 70 percent of all German water suppliers.17

To obtain information on the treatment cost of water suppliers, we merge the
water survey with the AFiD-panel that provides information on various cost and
revenue components at the firm level.18 The AFiD-panel contains information
on total costs and water treatment cost, as measured by expenditures for raw
materials, energy and supplies. This includes the cost of chemicals applied in the
water treatment process, which are potentially affected by changes in groundwater
quality. Moreover, we observe physical labor input (number of hours worked), as
well as expenses for labor, interest payments, and depreciation.19 We deflate all
cost components (e2015) using a price index for the German water supply sector
(Destatis, 2020).
17 The biochemical composition of the abstracted raw water is not surveyed.
18 We use all firm-year combinations for which we have complete data in both surveys. This

yields a panel of 2,369 firms with 17,802 annual observations.
19 This allows us to calculate input prices for labor and capital at the company level. The labor

price is the ratio between annual labor cost and total hours worked. The capital price is
defined as the sum of annual depreciation and interest divided by the capital stock. Capital
stocks are estimated as annual depreciation multiplied by the average economic lifetimes of
buildings and equipment in the German water sector (Wagner, 2010).
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To approximate water quality at the plant’s location, we use information on the
municipality where a plant is located, which is provided in the water supply sur-
vey. We merge the plant-level data with nitrate measurements from surrounding
sampling sites by taking their spatial relationship into account: First, we obtain
exact coordinates of plant locations by assuming that each plant is located at the
geographic center of its municipality. Next, we calculate the distance between the
plant’s location and all nitrate sampling sites nearby. To determine water quality
at the plant location, we calculate inverse-distance weighted averages of nitrate
readings within a pre-specified distance.20 We select a radius of four kilometers as
our preferred specification,21 which yields a sample of 512 water companies. We
report results for varying radii around the plant location as a robustness check.
Moreover, we account for the hydrogeological dependencies between the point of
extraction and the underlying groundwater bodies by considering only nitrate
monitors located in the same groundwater body as the municipality center.22

Lastly, we aggregate these plant-level nitrate values to the company level by
calculating a weighted average across all plants of a company, where weights
are based on the amount of groundwater abstracted at the corresponding plant
location.

Data on settlement structure: We add municipality-level data on population
density from the Regional Statistics of the Statistical Offices of the Federation and
the Länder. We merge this data with the firm-level data based on administrative
shapefiles from the Federal Agency of Cartography and Geodesy.23

Table 5.4 lists descriptive statistics on the cost structure and the inputs and
outputs for drinking water supply for our sample of water supply companies.24

These companies abstract on average about 75 % of their raw water from groundwa-
ter sources; the remaining share consists of water purchased from other companies
and abstraction from surface water resources. The water suppliers deliver about

20 Alternatively, we could assume that groundwater bodies overlap with administrative units
and assign nitrate values to water plants by averaging over all sampling sites within their
municipality. However, this assumption is quite restrictive and disregards the spatial dimension
of nitrate sampling sites. Our IDW approach incorporates the spatial dependencies by
weighting nitrate readings by geographic proximity.

21 The median size of German municipalities is about 50 km2, which is represented by a radius of
about four km around its center, assuming that municipalities are roughly circular in shape.

22 Figure D.2 visualizes the approach.
23 We add this measurement via company location, using the official municipality key (Amtlicher

Gemeindeschlüssel (AGS)).
24 Table D.1 provides an overview of variable definitions and data sources.



Section 5.4 121

two-thirds of their treated water to end-users, such as residential and industrial
customers. The rest of the water output is sold and distributed to other water
suppliers in the form of bulk water.

Table 5.4: Descriptives on drinking water supply companies

Variable Mean Med SD

Cost components
Total cost [1000 e] 14701.92 4154.18 48489.24
Treatment cost [1000 e] 2064.64 325.73 13539.91

Physical inputs and outputs
Total water abstraction [1000 m3] 3032.33 1224.50 8532.12
Groundwater abstraction [1000 m3] 2388.82 983.50 6132.05
Water purchase [1000 m3] 623.34 12.17 2474.51
Total water delivered [1000 m3] 3655.66 1447.33 9670.68
Water delivered to endusers [1000 m3] 2453.46 1104.00 6932.04
Residential water delivered [1000 m3] 1877.11 825.17 5079.21
Bulk water delivered [1000 m3] 853.04 18.00 4375.44
Population served [number] 43837.87 18560.00 106026.49
Employees [number] 67.32 19.00 195.30
Abstraction plants [number] 10.02 4.00 16.33

Environmental variables
Nitrate [mg/l] 28.74 17.47 35.24
30 < Nitrate < 50 [%] 17.76 0.00 38.22
Nitrate ≥ 50 [%] 17.65 0.00 38.13
Mean precipitation [mm/day] 2.00 1.97 0.42
Sum precipitation [mm/year] 655.12 654.43 161.17
Mean temperature [° C] 9.57 9.65 1.01

Notes: This table lists descriptive statistics on the panel of drinking water supply companies that abstract
groundwater resources within a four km radius of a nitrate groundwater sampling site. The panel consists 512
companies with 2,754 company-year observations between 2008 and 2016.
Source: RDC (2016) and RDC (2017), own calculations.

The average nitrate content in the groundwater bodies around the firms’
abstraction plants amounts to 29 mg/l. More than 80 percent of our sample
exhibit groundwater nitrate levels below the legal limit value of 50 mg/l, indicating
that the majority of the raw water does not require additional processing for
human consumption, at least with respect to its nitrate content. However, about
17 percent of our sample exhibit groundwater nitrate levels above the legal limit
value. These water suppliers have to take additional measures to remove nitrate
from their raw water, resulting in higher cost of producing drinking water. Indeed,
water suppliers with limit exceeding nitrate levels not only have higher absolute
treatment cost, but treatment cost also account for a larger share of total cost,
as indicated by a series of mean equivalence tests in Table D.3. Moreover, unit
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treatment cost tend to be significantly higher when nitrate levels exceed the legal
limit value.

Table D.4 lists descriptives on the subsample of firms we use to estimate the
impact of nitrate pollution on total costs. To estimate the total cost model, we
need additional information on physical labor inputs, i.e., the number of hours
worked per year, and physical outputs, i.e., the population served with water
deliveries. We discard all observations with missing values in these variables,
leaving 1,846 observations on 342 companies to analyze.

5.5 Empirical strategy

5.5.1 Effect of organic farming on nitrate groundwater
pollution

We model annual nitrate levels as an auto-regressive process that depends on the
share of organically farmed land, conditional on other factors affecting groundwater
nitrate, such as mineral fertilizer application, land use, and weather.25 Equation 5.1
depicts the econometric model.

Nit = αNit−1 + βOit + ϕFit + γ′Lit + δ′Wit + µi + θt + ϵit (5.1)

In it, Nit represents the annual average nitrate concentration at groundwater
monitor i in year t, which depends on its own past realizations from last year,
Ni,t−1, to account for the high degree of persistence in annual nitrate readings. We
include the share of organically farmed land relative to the utilized agricultural
area, Oit, where β is the corresponding coefficient of interest that is expected to
be negative according to our hypothesis.26 We control for the supply of mineral
fertilizer, Fit, a vector of land use shares, Lit, including farmland, wine growing,
fruit cultivation, grassland, and forest coverage, and a vector of weather covariates,
Wit, containing annual average temperature and precipitation and the sum of
annual precipitation. We include station fixed effects, µi, to account for time-

25 We base the selection of control variables on the international literature on land utilization
and nitrate groundwater pollution outlined in Section 5.3.

26 Organic farming shares are measured at the district level, while the analysis presented here is
at the station level. This is problematic since there is no variation in organic farming shares
at stations within the same district. Tables D.6 and D.7 in the Appendix confirm that all
results also hold when aggregating to the district level.
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invariant heterogeneity at the sampling site and year fixed effects, θt, to net out
time trends common to all nitrate stations.

We estimate the model using the General Method of Moments (GMM) es-
timator initially developed by Arellano and Bond (1991). Specifically, we use
Blundell and Bond (1998) (BB) type system-GMM estimators that account for
the bias stemming from the inclusion of a highly persistent lagged dependent
variable, Nit−1, and station fixed effects, µi. Inclusion of the lagged dependent
variable, Nit−1, violates the assumption of strict exogeneity of regressors: Nit−1

depends on past values of the error term, ϵit, which causes a correlation between
the lagged dependent variable and the residuals of the (time-demeaned) model,
essentially creating an endogeneity issue. Nickell (1981) proves that the Within
estimator of a dynamic panel data model is biased and inconsistent in a framework
with a small number of time periods T and a large number of sampling units
N and that the asymptotic bias does not disappear with N → ∞. Alvarez and
Arellano (2003) demonstrate that the asymptotic bias disappears if lim(N

T
) = 0.

The analysis presented here cannot rely on those asymptotic properties with only
nine years available. Hence, Within-estimates are expected to be biased for our
panel dimensions, although consistency could be achieved, in theory, if a longer
time span was available. Consequently, we rely on GMM to obtain consistent
estimates.

The BB system-GMM consistently estimates the impact of the lagged depen-
dent variable, even for high degrees of persistence of the dependent variable, by
reformulating Equation 5.1 into a system of equations in levels and first differences.
The equations in levels are instrumented by first-differenced lagged values, assum-
ing that these first-differenced instruments are orthogonal to the unit-specific fixed
effects. Similarly, the equations in first-differences are instrumented by lagged
level values. Theoretically, the system GMM approach should yield more efficient
estimates than the first-difference Arellano and Bond (1991) GMM approach since
it uses more information. Our preferred BB system-GMM specification uses two
lags of the instrumenting variables for the endogenous lagged nitrate levels.27

To ensure the validity of our GMM estimates, we check whether our instruments
are exogenous by reporting p-values of Sargan and Hansen tests on over-identifying
restrictions (Hansen, 1982; Sargan, 1958). In our system-GMM framework, the
Hansen test is most appropriate since it is robust to heteroscedasticity and
autocorrelation, though it might be weakened by too many instruments (Roodman,
2009a). Hence, all system GMM estimates rely on collapsed instruments to

27 GMM results using different lag lengths of instruments are very similar, see Table D.5.
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avoid the problem of too many instruments (Roodman, 2009b). All estimates
report standard errors that are robust to within-station heteroscedasticity and
autocorrelation and clustered at the level of sampling stations.

5.5.2 Effect of water pollution on firms’ costs

As firms use different nitrate removal technologies that have distinct implications
for operating and capital costs, we investigate different cost impacts. First, we
consider the effect on treatment costs, covering the expenditures for chemicals,
energy and other materials used in the removal process. Second, we look at total
costs, consisting of treatment, labor and capital costs.

Effect on treatment costs

We model the firm’s water treatment cost as a function of water quality and
quantity, conditional on the total volume of water abstraction, the composition of
source intake, weather impacts, and unobservable time-invariant characteristics at
the firm level.28 We account for non-linear cost functions by taking the natural
logarithm of costs and covariates.

ln(Cit) = α ln(Nit) + β ln(Qit) + δ ln(Git) + γ′ln(Wit) + µi + θt + ϵit (5.2)

Equation 5.2 shows the econometric model, where Cit represents annual water
treatment cost of firm i in year t. Nit represents nitrate groundwater content
averaged across all abstraction sites of firm i in a given year t. Moreover, treatment
costs depend on the total quantity of water abstracted, Qit. We control for the
share of abstracted groundwater, Git, to capture differences in groundwater and
surface water quality. Since weather can influence the availability of groundwater
resources, we include a vector of weather covariates, Wit. Specifically, we control
for annual average precipitation, the sum of annual precipitation, and the annual
average temperature in close vicinity of the abstraction plants. We add year fixed
effects, θt, to net out time trends common to all drinking water companies, and
firm-level fixed effects, µi, to account for time-invariant heterogeneity across water
companies, e.g., hydro-geological characteristics at the water abstraction sites. We

28 We only include physical quantities and no input price data. We do not observe any input
prices for the material inputs for nitrate removal. Implicitly, we assume that input prices
are the same for all firms. The input price development is taken into account by deflating
treatment costs. In fact, we conduct a cost driver analysis and do not estimate a real cost
function from a theoretical point of view.
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estimate the two-way fixed effects model via the Within estimator with standard
errors clustered at the firm level.29

Effect on total costs

To assess whether nitrate pollution has also an effect on total costs, including labor
and capital costs of the firm, we estimate a total cost function of water supply
that depends on the nitrate levels in abstracted raw waters. We assume that
water suppliers minimize the total cost of producing output, q, by choosing the
optimal combination of inputs, x, given a vector of input prices, w, and production
technology, T .

c(w, q) = min
x

[w′x : (q, x) ∈ T ] (5.3)

Equation 5.3 implies that firms choose a technically feasible combination of
inputs, which minimizes the cost of producing the given output. Markets for inputs
are assumed to be perfectly competitive, such that firms act as price takers.30 To
estimate the total cost function empirically we assume that the cost function is
non-negative, non-decreasing in inputs and outputs, linearly homogeneous, and
concave in input prices (Coelli et al., 2005). We specify the following Cobb-Douglas
functional form:

ln(TCit) = β0+
K∑︂

k=1
βkln(wkit)+

M∑︂
m=1

ϕmln(qmit)+
R∑︂

r=1
δrln(zrit)+µi+θt+ϵit (5.4)

In Equation 5.4, TCit represents total cost of firm i in year t, wkit denotes
prices for k = 1, . . . , K inputs, and qmit represents quantities of m = 1, . . . , M

outputs. We assume that the operating environment can impact total cost of a
water supplier, hence we include several environmental factors, zrit, e.g., nitrate
pollution in groundwater bodies. To ensure that the cost function is non-decreasing,
homogeneous, and concave in inputs, we assume that ∑︁K

k=1 βk = 1 and substitute
this constraint into Equation 5.4, which yields our final estimation equation 5.5.

29 We assessed the appropriateness of a fixed-effects model relative to a random-effects model
using a Hausman specification test, which suggests that the fixed effects specification is the
preferred model since the error term and regressors are correlated.

30 Again, we do not observe an input price for material inputs. Thus, our cost minimization
problem includes only capital and labor prices. We implicitly assume that all firms face the
same input prices for materials (like energy, chemicals etc.)
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ln(TCit/wKit) =β0 +
K−1∑︂
k=1

βkln(wkit/wKit) +
M∑︂

m=1
ϕmln(qmit)+

R∑︂
r=1

δrln(zrit) + µi + θt + ϵit

(5.5)

According to the international literature on water distribution (Filippini,
Hrovatin and Zorić, 2008; Saal and Parker, 2000; Urakami and Parker, 2011),
we estimate equation 5.5 with R = 2 outputs: the volume of water delivered as
the main output of a water supply firm, and the number of customers served.We
include K = 2 input prices for labor and capital. Labor prices are calculated as
the sum of expenses for labor divided by the number of work hours. Capital prices
are defined as the ratio between capital cost (sum of depreciation and interest)
and estimated capital stock.31 We also include R = 4 environmental variables,
among them groundwater nitrate pollution as a proxy for water quality. We also
control for the share of households served, defined as water delivered to residential
customers relative to total water delivered. Since residential customers typically
have lower volumes of water delivered per connection than industrial customers,
we expect an increasing effect on total cost due to decreased capacity utilization
of the water network. We include the share of groundwater abstraction, defined
as abstracted groundwater volumes relative to total water intake, to incorporate
differences in the quality of water intake. Moreover, we account for the average
population density of the municipalities supplied by each water firm. Firms serving
more densely populated areas can benefit from higher capacity utilization rates
within their network, hence we expect an inverse relationship between total cost
and population density.

In addition to input prices, output quantities, and environmental conditions,
we include fixed effects for firms and years in Equation 5.5 to exploit the panel
dimension of our data. Estimates are obtained by Within estimation with firm-level
clustering of standard errors.

31 We follow the approach proposed by Wagner (2010) and estimate the capital stock of a firm
based on annual depreciation and average economic lifetimes of buildings and equipment in
the German water sector.
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5.6 Results

5.6.1 Organic farming and groundwater nitrate pollution

We first consider the effect of organic farming on groundwater nitrate. Table
5.5 summarizes the GMM estimates of different model specifications. The first
column includes only the lagged dependent variable and our variable of interest,
the share of organic farming. The second column adds an indicator for excessive
mineral fertilizer application (> 100 kg/ha) and land use shares within a 500m
radius around the sampling site location. The third column adds weather controls
and is our preferred specification, corresponding to the full Equation 5.1.

The point estimate on organic farming is statistically significant and negative
across all model specifications. Our preferred specification indicates that a one
percentage point increase in the share of organically farmed land in the district
of a monitor decreases groundwater nitrate concentrations by 0.3 mg/l, which is
roughly one percent relative to the overall sample average.32 This effect is in line
with previous literature showing that organic farming reduces nitrate leaching
loads per area (Biernat et al., 2020), even after controlling for mineral fertilizer
application. Our results suggest that organic farming can contribute to improved
water quality in the long-run.

The highly significant positive coefficient on the lagged dependent variable
confirms that groundwater nitrate concentrations are very persistent over time.
This is typically a result of legacy storage, where dissolved nitrogen is retained in
the ground and accumulates over time (Van Meter et al., 2016; Winter et al., 2021),
and low water table dynamics limit the stream nitrate export (Molenat et al.,
2008). The coefficient estimates on the other control variables have the expected
direction, and many of them are statistically different from zero: Higher shares of
farmland and wine-growing areas in the vicinity of a groundwater monitor increase
nitrate readings, whereas grassland and forest coverage are associated with lower
nitrate pollution. Temperature positively affects nitrate readings, possibly due to
higher soil mineralization rates, as discussed in the literature (Schweigert, Pinter
and Ploeg, 2004; Thomsen, Lægdsmand and Olesen, 2010).

32 Tables D.6 and D.7 present results for the same analysis using district-level data. Point
estimates are slightly lower but still confirm the negative impact of organic farming on nitrate
levels.



128 Chapter 5

Table 5.5: Regression results for groundwater nitrate pollution

DV: Nitrate (1) (2) (3)

Lagged Nitrate 0.546∗∗∗ 0.552∗∗∗ 0.550∗∗∗

(0.121) (0.114) (0.115)
Share organic −0.684∗∗∗ −0.317∗∗∗ −0.298∗∗∗

(0.182) (0.101) (0.096)
Mineral fertilizer dummy 1.419∗ 1.598∗

(0.812) (0.820)
Share farmland 0.133∗∗∗ 0.134∗∗∗

(0.040) (0.041)
Share wine 0.423∗∗ 0.411∗∗

(0.181) (0.180)
Share fruit 0.059 0.049

(0.111) (0.111)
Share grassland −0.045∗ −0.041∗

(0.024) (0.024)
Share forest −0.061∗∗∗ −0.058∗∗∗

(0.021) (0.020)
Mean temperature 1.086∗

(0.609)
Sum precipitation 0.001

(0.003)
Mean precipitation 0.563

(1.121)

Year FEs Yes Yes Yes
Station FEs Yes Yes Yes

Nobs 7311 7311 7311
N [stations] 1323 1323 1323
% explained 0.838 0.857 0.857
sarganp 0.807 0.775 0.789
hansenp 0.974 0.972 0.975
No. instruments 12 18 21

Notes: This table shows BB system-GMM regression results for the impact of the share of organically farmed
land on groundwater nitrate concentrations. Control variables include lagged nitrate levels, a dummy for mineral
fertilizer use ≥ 100kg/ha, shares of land use within a 500m radius around nitrate monitor locations (farmland,
wine growing, fruit cultivation, grassland, and forest), and inverse-distance weighted weather controls (annual
average of daily temperature and precipitation, sum of annual precipitation). We also include year and station
fixed effects. We treat lagged nitrate levels as endogenous and instrument it with two lags in the levels- and
first-differenced equations using collapsed instruments. All other controls are treated as exogenous. Reported
model statistics are the p-value of the Hansen test of overidentifying restrictions (hansenp), the p-value of the
Sargan test of overidentifying restrictions (sarganp), and % is the percent of variation in the dependent variable
explained by factors other than time dummies, measured as one minus the mean squared error of the respective
regression divided by the mean squared error of a regression on the time dummies alone. Standard errors are
clustered at the level of nitrate sampling sites. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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5.6.2 Groundwater nitrate pollution and firms’ costs

Effect on treatment costs

Next, we analyze the effect of groundwater nitrate on treatment costs. Table 5.6
lists OLS estimates for different model specifications including firm-level and
year fixed effects. The first column includes only groundwater nitrate, the second
column adds the volume of abstracted water as a proxy for firms’ size, and the third
column augments the model with the share of water abstracted from groundwater
sources relative to the sum of total water abstraction and water purchases. The
last three columns control for weather: The fourth column includes linear weather
variables and corresponds to Equation 5.2. The fifth column adds quadratic
weather terms, and the last column flexibly controls for non-linear weather effects
by adding firm-specific quintile dummies.

Table 5.6: Regression results for treatment costs

DV: ln(Treatment cost) (1) (2) (3) (4) (5) (6)

ln(Nitrate) 0.046∗∗ 0.043∗∗ 0.043∗∗ 0.044∗∗ 0.044∗∗ 0.042∗∗

(0.019) (0.020) (0.020) (0.020) (0.020) (0.020)
ln(Water abstracted) 0.838∗ 0.807 0.732 0.716 0.777

(0.488) (0.496) (0.482) (0.483) (0.500)
ln(Share groundwater) 0.150 0.152 0.154 0.144

(0.096) (0.096) (0.095) (0.098)

Firm FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
Weather controls No No No Linear Quadratic Quintiles

Nobs 2754 2754 2754 2754 2754 2754
N 512 512 512 512 512 512
Adj.R2 0.890 0.891 0.891 0.891 0.891 0.891

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on treatment costs of water
suppliers. Nitrate is measured as a volume-weighted average of nitrate measurements within a four kilometer
radius around the plant location. Control variables include the volume of water abstracted, the share of
abstracted groundwater relative to total abstraction, and different specifications of weather controls (annual
average of daily temperature and precipitation, sum of annual precipitation). All models include firm and year
fixed effects. Standard errors are clustered at the firm level. Significance levels denoted by ∗∗∗p < 0.01;
∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.

The point estimate for groundwater nitrate is highly significant and relatively
stable across model specifications, indicating that a one percent increase in ground-
water nitrate is associated with an increase in treatment cost by about 0.04 to 0.05
percent. This aligns with the literature arguing that water companies affected by
nitrate pollution take costly extra measures to reduce the nitrate load in potable
water (Westling, Stromberg and Swain, 2020). Our point estimates are very close
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in magnitude to those obtained by Lopes et al. (2019), who estimate an elasticity of
-0.04 between forest coverage and water treatment cost of groundwater abstracting
water suppliers in Portugal. Moreover, we find that the volume of abstracted
water has a positive impact on treatment cost across model specifications, also
in line with Lopes et al. (2019). The coefficient on the share of groundwater
abstraction is not significant buis nevertheless consistently positive. This could
imply that raw water abstracted from groundwater bodies has lower quality than
raw water from surface water or water purchased from other firms.

The results in Table 5.6 are based on a volume-weighted average of all nitrate
measurements available within a four kilometer radius around the plant location.
Concerning the pre-specified radius, we face a trade-off between sample size
and spatial accuracy: A larger radius increases sample size but might introduce
bias since the spatial relationship is incorrectly approximated. We check the
robustness of our results using different radii in Table 5.7: The first three columns
calculate the weighted nitrate averages using the same approach as before but
allowing for varying distances. The last three columns introduce an additional
restriction to account for hydro-geological dependencies of water abstraction. Here,
weighted averages are based only on nitrate monitors that are located in the same
groundwater body as the water abstraction plant.

Table 5.7: Regression results for treatment costs using different nitrate measures

DV: ln(Treatment cost) (1) (2) (3) (4) (5) (6)
Nitrate radius 3km 4km 5km 3km restr. 4km restr. 5km restr.

ln(Nitrate) 0.033∗ 0.044∗∗ 0.045∗∗∗ 0.042∗∗ 0.063∗∗∗ 0.050∗∗

(0.019) (0.020) (0.015) (0.020) (0.024) (0.020)
ln(Water abstracted) 0.280 0.716 0.721∗ 0.254 0.330 0.480

(0.470) (0.483) (0.410) (0.523) (0.470) (0.443)
ln(Share groundwater) 0.026 0.154 0.008 0.006 0.225∗∗ 0.060

(0.090) (0.095) (0.082) (0.122) (0.114) (0.096)

Firm FEs Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes
Weather controls Quadratic Quadratic Quadratic Quadratic Quadratic Quadratic

Nobs 1851 2754 3808 1523 2146 2857
N 354 512 696 290 401 527
Adj.R2 0.900 0.891 0.892 0.903 0.902 0.901

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on treatment costs of water
suppliers. In the first three columns, nitrate is measured as a volume-weighted average of all available nitrate
measurements within a pre-specified radius around the plant location. In the last three columns,
volume-weighted nitrate averages are based on nitrate measurements from nitrate monitors in the same
groundwater body as the water abstraction plant. Control variables include the volume of water abstracted, the
share of abstracted groundwater relative to total abstraction, and quadratic weather controls (annual average of
daily temperature and precipitation, sum of annual precipitation). All models include firm and year fixed effects.
Standard errors are clustered at the firm level. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.
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Results in Table 5.7 suggest a robust positive association between nitrate and
treatment cost for different volume-weighted nitrate averages. Point estimates vary
between .03 and .05 percentage points for the unrestricted averages. Imposing
the restriction of groundwater bodies decreases the sample size, nevertheless
point estimates become more pronounced in magnitude, most likely because the
hydro-geological dependencies are depicted better in the restricted case.33

Lastly, we analyze heterogeneity in the relationship between groundwater
nitrate and water supplier’s treatment cost. In Table 5.8, we split our sample
into water suppliers with groundwater abstraction shares below and above the
sample median. The first column depicts regression results for firms with less
than 90 percent of groundwater abstraction. The estimated coefficient on nitrate
is indeed lower than in the full sample, since these firms rely to a larger extent
on surface water abstraction and water purchases from other firms, where nitrate
pollution is typically less of a problem. In contrast, treatment costs of firms with
groundwater abstraction shares above 90 percent are more heavily affected by
nitrate pollution, as indicated by the point estimates in the second column. The
coefficient is about 50 percent larger than in the full sample, consistent with the
idea that groundwater-dependent firms bear a larger share of cost increases due to
nitrate pollution. These firms might have fewer possibilities to substitute polluted
raw water from groundwater resources, e.g., by purchasing bulk water from other
suppliers. Nevertheless, the difference between point estimates of both groups
is not statistically significant, making it difficult to render a definite conclusion
about the extent of heterogeneity in the relationship between groundwater nitrate
and treatment cost.

33 As another robustness check, we re-run the estimates for different subsamples of firms, e.g.,
restricted by duration of observation in the panel or share of abstracted groundwater. Results
are listed in Table D.8, showing that point estimates are robust across subsamples.



132 Chapter 5

Table 5.8: Heterogeneous effects on treatment cost

DV: ln(Treatment cost) (1) (2)
Share groundwater Below median Above median

ln(Nitrate) 0.030 0.061∗

(0.020) (0.033)
ln(Water abstracted) 1.099∗ 0.354

(0.578) (0.692)
ln(Share groundwater) 0.020 0.169∗

(1.322) (0.093)

Firm FEs Yes Yes
Year FEs Yes Yes
Weather controls Quadratic Quadratic

Nobs 1383 1371
N 248 264
Adj.R2 0.900 0.881

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on treatment costs of water
suppliers for two different samples: The first column is based on water suppliers with a share of groundwater
abstraction that is lower than the median share, and the second column is based on water suppliers with
above-median shares. Nitrate is measured as a volume-weighted average of nitrate measurements within a four
kilometer radius around the plant location. Control variables include the volume of water abstracted, the share
of abstracted groundwater relative to total abstraction, and quadratic weather controls (annual average of daily
temperature and precipitation, sum of annual precipitation). All models include firm and year fixed effects.
Standard errors are clustered at the firm level. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.

Effect on total costs

Table 5.9 depicts regression results for the total cost model. The first column uses
only input prices and outputs on the right-hand side, the second column adds
control variables. Both models include firm and year fixed effects.

The statistically significant and positive coefficient on nitrate suggests a 0.02
percent increase in total costs for each additional percent of groundwater nitrate.
For an average firm, this would imply more than e335,000 in additional costs per
year. The other coefficients have the expected direction and magnitude: Labor
price increases raise total costs, and producing more output raises total costs. The
sum of output coefficients is very close to one, pointing towards constant returns
to scale in water supply. Results are robust to the inclusion of additional control
variables; none of them is significantly related to total costs, presumably because
we already explain a large share in variation through the fixed effects, prices, and
output quantities.

Table D.9 in the Appendix presents results for an alternative definition of
capital cost. Instead of considering only the depreciation expenses and interest
payments, we define capital cost as the residual between total cost and labor
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Table 5.9: Regression results for total costs

DV: ln(Total cost) (1) (2)

ln(Nitrate) 0.019∗ 0.018∗

(0.010) (0.010)
ln(Labor price) 0.733∗∗∗ 0.733∗∗∗

(0.143) (0.143)
ln(Water delivered) 0.884∗∗∗ 0.840∗∗∗

(0.159) (0.163)
ln(Population served) 0.187 0.236

(0.147) (0.157)
ln(Share groundwater) 0.040

(0.061)
ln(Share residential) −0.024

(0.098)
ln(Population density) −0.058

(0.086)

Firm FEs Yes Yes
Year FEs Yes Yes

Nobs 1846 1846
N 342 342
Adj.R2 0.986 0.986

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on total costs of water suppliers.
Nitrate is measured as a volume-weighted average of nitrate readings within a four kilometer radius around the
plant location. We include the labor price and delivered water volumes and population served as outputs. Total
cost and labor price are standardized by capital price. The capital price is defined as the sum of depreciation
and interest payments divided by the capital stock. Control variables are the share of groundwater abstraction,
the share of residential water deliveries, and the population density of the area served by the water company. All
models include firm and year fixed effects. Standard errors are clustered at the firm level. Significance levels
denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.

expenses. Point estimates and standard errors are very similar to those listed in
Table 5.9.

Taken together, the results suggest that water supply companies incur sub-
stantial costs through groundwater nitrate pollution, both through increases in
their treatment and total costs. Differential cost impacts can arise from different
water treatment processes. For example, since reverse osmosis takes place almost
fully automatic, no further labor costs are involved; instead, this technology is
associated with high treatment costs through increased expenditures for energy
and chemicals. In contrast, the CARIX method is more capital intensive, with
lower operating costs relative to reverse osmosis.
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5.7 Conclusion

Over the past decades, nitrate groundwater pollution has become a severe problem
in many countries that has recently gained more attention from policymakers
and researchers. In Germany, groundwater nitrate concentrations have been
consistently high for many years. Currently, more than every fourth observed
sampling site reports nitrate concentrations above the permissible value of 50
mg/l that must be attained in the EU. This potentially increases water prices for
households, as treatment becomes more complex and elaborate, and consequently
more costly.

This study provides the first large-scale evidence on the relationship between
organic farming practices and water quality as proxied by groundwater nitrate
pollution. Moreover, we quantify the consequences of groundwater pollution for
drinking water supply firms by assessing the cost-driving effect of nitrate-polluted
raw water on treatment and total cost. Our analysis is based on unique and novel
panel data sets on groundwater nitrate pollution, agricultural indicators, and water
companies in Germany, covering the years 2008 to 2016. Using geo-referenced
micro-level data on nitrate monitors and water supply companies enables us to
account for the spatial dependencies in groundwater abstraction in our analysis.

First, we analyze the determinants of nitrate concentrations using data on
groundwater sampling sites. Our results suggest that organic farming in the
vicinity of groundwater sampling stations is associated with lower groundwater
nitrate levels relative to conventional agriculture. One additional percentage point
in the share of organically farmed land corresponds to nitrate concentrations that
are one percent lower, which implies an elasticity roughly equal to one. This
relationship remains statistically significant even after controlling for mineral
fertilizer use, suggesting that the positive impact of organic farming on water
quality stems not only from mineral fertilizer applications being prohibited but also
from other mechanisms. This implies that expanding organic farming activities
could contribute to improving water quality.

Second, we estimate the impacts of groundwater nitrate pollution on the
cost of drinking water supply using firm-level panel data. Our results indicate
that treatment costs of water suppliers increase with higher levels of nitrate
groundwater pollution, where a one percentage point increase in nitrate levels is
associated with a 0.04 to 0.05 percentage point increase in treatment cost. The
point estimates are robust to using different measures of groundwater nitrate
pollution. Moreover, we find suggestive evidence that the negative relationship
between nitrate pollution and treatment costs is more pronounced among water
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suppliers that rely to a large extent on groundwater abstraction. These firms might
have fewer possibilities to substitute the raw water from groundwater resources
by abstraction from other sources or water purchases. Estimating a total cost
function, we further find that groundwater nitrate pollution also affects total costs
(including capital and labor costs) and not only treatment costs. Our estimates
point to a 0.02 percent increase in total costs for an additional percentage point in
groundwater nitrate pollution. These cost increases will likely be passed through
to water customers. Effective mitigation policies to improve groundwater quality
could contribute to protecting water consumers from price increases stemming
from agricultural nitrate pollution.

The analyses presented here suffer from several drawbacks related to data
availability. First, data on organic farming practices and mineral fertilizer supply
is only available at the district level. Detailed geo-referenced data on fertilizer
application and the location and extent of organically farmed areas would certainly
improve the accuracy of our estimates since the spatial dependencies between
groundwater bodies, nitrate monitors, and organically farmed areas could be
exactly represented. Second, we assume that water companies and their abstraction
plants are located at the center of municipalities. Knowing the exact location of
water abstraction would be beneficial to improve accuracy. These data limitations
prevent us from further exploring relevant aspects of the agriculture-water quality
nexus. For example, the question of why organic farming has benefits for water
quality that go beyond reduced fertilizer application provides a promising avenue
for future research. Detailed micro-level data on conventional and organic farming
practices would be an essential prerequisite for identifying specific practices and
mechanisms through which organic farming affects groundwater resources.
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Cunha-e-Sá, M. A. and Dias, A. C. (2019). “Surface vs. groundwater: The
effect of forest cover on the costs of drinking water”. Water Resources and
Economics 28, p. 100123.

Luby, S. P., Halder, A. K., Huda, T. M., Unicomb, L., Islam, M. S., Arnold, B. F.
and Johnston, R. B. (2015). “Microbiological contamination of drinking water
associated with subsequent child diarrhea”. The American Journal of Tropical
Medicine and Hygiene 93 (5), pp. 904–911.

Luechinger, S. (2009). “Valuing air quality using the life satisfaction approach”.
The Economic Journal 119 (536), pp. 482–515.

Lynch, J. W., Smith, G. D., Kaplan, G. A. and House, J. S. (2000). “Income
inequality and mortality: Importance to health of individual income, psychoso-
cial environment, or material conditions”. British Medical Journal 320 (7243),
pp. 1200–1204.

Mair, A. and El-Kadi, A. I. (2013). “Logistic regression modeling to assess ground-
water vulnerability to contamination in Hawaii, USA”. Journal of Contaminant
Hydrology 153, pp. 1–23.

Malaeb, L. and Ayoub, G. M. (2011). “Reverse osmosis technology for water
treatment: State of the art review”. Desalination 267 (1), pp. 1–8.

Malina, C. and Scheffler, F. (2015). “The impact of low emission zones on particu-
late matter concentration and public health”. Transportation Research Part
A: Policy and Practice 77, pp. 372–385.

Margaryan, S. (2021). “Low emission zones and population health”. Journal of
Health Economics 76, p. 102402.

Marshall, A. (1916). Principles of Economics. 7th ed. London, UK: Macmillan.
McKenzie, L. M., Witter, R. Z., Newman, L. S. and Adgate, J. L. (2012). “Human

health risk assessment of air emissions from development of unconventional
natural gas resources”. Science of the Total Environment 424, pp. 79–87.

Meleux, F., Solmon, F. and Giorgi, F. (2007). “Increase in summer European
ozone amounts due to climate change”. Atmospheric Environment 41 (35),
pp. 7577–7587.

Moch, I. and Moch, J. (2002). “A 21st century study of global seawater reverse
osmosis operating and capital costs”. In: Proceedings of the IDA World Congress
on Desalination and Water Reuse (Manama, Bahrain, March 8–13, 2002).
International Desalination Association.

Moeller, D. and Murphy, D. (2016). “Net energy analysis of gas production from
the Marcellus Shale”. BioPhysical Economics and Resource Quality 1 (1), p. 5.



150 Bibliography

Molenat, J., Gascuel-Odoux, C., Ruiz, L. and Gruau, G. (2008). “Role of water
table dynamics on stream nitrate export and concentration in agricultural
headwater catchment (France)”. Journal of Hydrology 348 (3-4), pp. 363–378.

Monks, P. S., Archibald, A., Colette, A., Cooper, O., Coyle, M., Derwent, R.,
Fowler, D., Granier, C., Law, K. S., Mills, G., et al. (2015). “Tropospheric
ozone and its precursors from the urban to the global scale from air quality
to short-lived climate forcer”. Atmospheric Chemistry and Physics 15 (15),
pp. 8889–8973.

Moretti, E. and Neidell, M. (2011). “Pollution, health, and avoidance behavior
evidence from the ports of Los Angeles”. Journal of Human Resources 46 (1),
pp. 154–175.

Murazaki, K. and Hess, P. (2006). “How does climate change contribute to
surface ozone change over the United States?” Journal of Geophysical Research:
Atmospheres 111 (D05301).

Neyman, J. and Scott, E. L. (1948). “Consistent estimates based on partially
consistent observations”. Econometrica 16 (1), pp. 1–32.

Nickell, S. (1981). “Biases in dynamic models with fixed effects”. Econometrica
49 (6), pp. 1417–1426.

Oelmann, M., Czichy, C. and Hormann, L. (2017). Gutachten zur Berechnung der
Kosten der Nitratbelastung in Wasserkörpern für die Wasserwirtschaft. BDEW
Gutachten. Bundesverband der Energie- und Wasserwirtschaft e.V. (BDEW).
Available at: https://www.bdew.de/media/documents/20170113_BDEW_
Gutachten_Nitrat_final.pdf, accessed on May 31, 2022.

Oelmann, M., Czichy, C., Scheele, U., Zaun, S., Dördelmann, O., Harms, E., Pen-
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A.1 Why ground-level ozone is special

Ground-level ozone differs from the other criteria pollutants in that it is a secondary
pollutant, i.e., it requires precursors as it is created through the interaction of
solar radiation with nitrous oxides (NOx) and volatile organic compounds (VOC),
whose concentration in the air is much increased beyond natural levels by the
combustion of fossil fuels. Road traffic is one of the major causes of this increase.

The relationship between the concentrations of ozone and its precursors is
complex, as there are two sides to the interaction. On the one hand, the interaction
of solar radiation with NOx and VOC forms ozone. On the other, it also degrades
it. The balance between the two sides leads to patterns in ozone concentrations
that deviate from those of other criteria pollutants: In areas with high levels
of precursor pollution, such as urban centers with dense vehicle traffic, ozone
concentrations are lower than in suburban areas. The reason is that at high
concentrations of precursor pollutants, ozone degrades faster than it is formed,
whereas the formation process dominates at lower levels of precursors, e.g., in
rural areas. This phenomenon is sometimes referred to as the ”ozone paradox”
(Monks et al., 2015).

A.2 Data

Figure A.1: Pre- and post-treatment averages in treatment and control groups

Notes: Inter-temporal comparison of the AQI between treated and control units. The vertical axis contains the
average of each criteria pollutant and the horizontal axis the time to treatment, i.e., number of years to the
introduction of a LEZ. Each data point corresponds to the average value of all possible event-time combinations
across treatment and control groups.



Section A.2 161

Table A.1: Descriptive statistics on pollution levels

Inside LEZ Outside LEZ

Total Before After Raw Buffer Doughnut CAAP

CO 0.44 0.50 0.39 0.38 0.38 0.36 0.43
(0.16) (0.18) (0.13) (0.14) (0.14) (0.13) (0.14)

NO2 42.41 43.57 41.77 23.12 21.97 20.57 30.82
(17.34) (18.01) (16.94) (12.48) (12.54) (10.95) (12.77)

O3 40.84 40.51 41.06 49.16 50.32 48.69 44.91
(5.87) (5.13) (6.32) (10.38) (9.98) (8.51) (8.61)

PM10 24.51 26.65 23.27 20.31 20.00 19.86 22.76
(5.72) (6.09) (5.11) (5.27) (5.24) (5.24) (4.89)

AQI 46.49 46.38 46.54 39.98 39.90 40.34 41.44
(13.22) (12.59) (13.57) (11.65) (11.77) (11.06) (12.71)

Notes: This table lists annual average pollution levels at monitors inside and outside LEZs, with standard
deviations in parentheses. For monitors inside LEZs, overall averages from 2005 to 2018 and pre- and
post-treatment averages are listed. For monitors outside LEZs, the first column lists overall averages from 2005
to 2018 using all monitors outside of LEZs, the second column excludes monitors within 25km distance to the
nearest LEZ, the third column restricts the control group to monitors within 25 km to 75 km distance to a LEZ,
and the fourth column includes only monitors located in cities with a CAAP but without LEZ. Ozone (O3),
nitrogen dioxide (NO2), and coarse particulate matter (PM10) reported in micrograms per cubic meter (µg/m3)
and carbon monoxide (CO) in milligrams per cubic meter (mg/m3). The AQI is defined on a scale from 0 to 500.

Table A.2: Descriptive statistics on SOEP individuals - all control groups

Inside LEZ Outside LEZ

Total Before After Raw Buffer CAAP

Life satisfaction [0-10] 7.11 7.08 7.14 7.10 7.08 7.18
(1.73) (1.73) (1.73) (1.76) (1.75) (1.73)

Age [years] 54.47 52.86 55.65 54.11 54.09 55.36
(16.64) (16.04) (16.98) (17.04) (17.06) (17.61)

Is female [%] 0.53 0.53 0.53 0.52 0.52 0.53
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Is employed [%] 0.56 0.54 0.57 0.56 0.56 0.51
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50)

Income [Thsd Euro] 44.99 43.90 45.79 42.20 39.23 41.45
(35.11) (34.61) (35.45) (33.81) (29.96) (34.57)

Education [years] 12.89 12.69 13.04 12.26 12.09 12.72
(3.06) (3.02) (3.08) (2.63) (2.49) (2.90)

Number children 0.44 0.51 0.39 0.48 0.48 0.40
(0.90) (0.93) (0.87) (0.92) (0.90) (0.81)

Owns motor vehicle [%] 0.81 0.83 0.80 0.90 0.90 0.82
(0.39) (0.38) (0.40) (0.30) (0.30) (0.38)

Number motor vehicles 1.26 1.28 1.26 1.58 1.57 1.23
(0.95) (0.91) (0.97) (1.06) (1.06) (0.92)

Owns diesel car [%] 0.32 0.33 0.31 0.33 0.32 0.27
(0.47) (0.47) (0.46) (0.47) (0.47) (0.44)

Number doctor visits 11.09 11.30 10.94 10.08 9.87 11.44
(15.19) (15.60) (14.88) (15.08) (14.61) (17.12)

Has hypertension [%] 0.31 0.32 0.31 0.32 0.34 0.34
(0.46) (0.47) (0.46) (0.47) (0.47) (0.47)

Has cancer [%] 0.06 0.06 0.06 0.06 0.06 0.09
(0.24) (0.23) (0.25) (0.24) (0.23) (0.28)

Number individuals 1436 1436 1436 19578 11130 1866
Number observations 12634 5348 7286 141411 81514 13167

Notes: This table shows the average characteristics of treated and control SOEP individuals. Treated persons
reside within the LEZs area and control individuals outside. For the treated sample, we present overall,
pre-treatment, and post-treatment averages. For control persons, the first column uses all individuals outside of
LEZs, the second excludes persons living within 25 km to the nearest zone, and the third column includes only
individuals living in cities with a CAAP but without LEZ.
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Figure A.2: Average well-being of treated and control individuals

Notes: This figure shows annual averages of life satisfaction between treated and control units. The vertical axis
contains the average of each criteria pollutant, and the horizontal axis the time to treatment (τ). Each data
point corresponds to the average value of all possible event-time combinations across treatment and control
groups three years around policy adoption.

A.3 Difference-in-differences design robustness
checks

Figure A.3: Event-time ATTs for the full control sample (raw specification)

Notes: Event-time Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (βe) of the impact of
LEZs on annual air pollutant concentrations for the raw design. Event time measured in years before/after LEZ
introduction. Treated stations are all those stations inside a zone, and control stations all stations outside of a
zone. The CS-DD model controls for station and year fixed effects. Grey ribbons represent 95% confidence
intervals. Standard errors clustered at the municipality level. Effects on ozone (O3), nitrogen dioxide (NO2),
and coarse particulate matter (PM10) reported in micrograms per cubic meter (µg/m3). For carbon monoxide
(CO) in milligrams per cubic meter (mg/m3).
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Figure A.4: Event-time ATTs for the buffer control sample

Notes: Event-time Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (βe) of the impact of
LEZs on annual air pollutant concentrations for the buffer design. Event time measured in years before/after
LEZ introduction. Treated stations are all those stations inside a zone, and control stations all stations outside
of a zone. The CS-DD model controls for station and year fixed effects. Grey ribbons represent 95% confidence
intervals. Standard errors clustered at the municipality level. Effects on ozone (O3), nitrogen dioxide (NO2),
and coarse particulate matter (PM10) reported in micrograms per cubic meter (µg/m3). For carbon monoxide
(CO) in milligrams per cubic meter (mg/m3).

Figure A.5: Event-time ATTs for the buffer CAAP control sample

Notes: Event-time Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (βe) of the impact of
LEZs on annual air pollutant concentrations for the CAAP design. Event time measured in years before/after
LEZ introduction. Treated stations are all those stations inside a zone, and control stations all stations outside
of a zone. The CS-DD model controls for station and year fixed effects. Grey ribbons represent 95% confidence
intervals. Standard errors clustered at the municipality level. Effects on ozone (O3), nitrogen dioxide (NO2),
and coarse particulate matter (PM10) reported in micrograms per cubic meter (µg/m3). For carbon monoxide
(CO) in milligrams per cubic meter (mg/m3).
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Figure A.6: Event-time ATTs for the balanced doughnut specification

Notes: Event-time Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (βe) of the impact of
LEZs on yearly air pollution levels for the doughnut design in a balanced panel for treated units at least for
e > 3. Event time measured in years before/after LEZ introduction. Treated stations are all those stations inside
the zone, and control stations all stations further away than 25 km from the zone’s border and up until 75 km.
The CS-DD model controls for station and year fixed effects. Grey ribbons represent 95% confidence intervals.
Standard errors clustered at the municipality level. Effects on ozone (O3), nitrogen dioxide (NO2), and coarse
particulate matter (PM10) reported in micrograms per cubic meter (µg/m3). For carbon monoxide (CO) in
milligrams per cubic meter (mg/m3).

Table A.3: Effect of LEZ introduction on the air quality index (AQI) across
control groups

Raw Buffer Dght CAAP
−4.58∗∗∗ −4.57∗∗∗ −5.17∗∗∗ −4.43∗∗∗

(1.48) (1.47) (1.45) (1.66)
N.Obs 6301 4887 2970 2719
N.Stations 589 451 277 251
N.Groups 8 8 8 8
N.Periods 14 14 14 14

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (β) of the impact of LEZs on the
yearly average of the AQI for six different specifications and air pollutants. Control units in the raw specification
are stations outside the LEZs. In the buffer design, we restrict control units to stations beyond 25 km from the
LEZs. The doughnut design further trims the control group by restricting its outer edge to 75 km. Next, the
control groups in the CAAP specification contain only stations in cities with Clean Air Action Plans (CAAP)
but without LEZ. The CS-DD model controls for station and year fixed effects. Standard errors are clustered at
the municipality level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Figure A.7: Seasonal ATTs across different control samples

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates (β) of the impact of LEZs on
seasonal air pollution concentrations for four different specifications of the control group.In the buffer design, we
restrict control units to stations beyond 25 km from the LEZs. The doughnut design further trims the control
group by restricting its outer edge to 75 km. Next, the control groups in the CAAP specification contain only
stations in cities with Clean Air Action Plans (CAAP) but without LEZ. The CS-DD model controls for station
and year fixed effects. Standard errors are clustered at the municipality level; 95% confidence intervals depicted.
Effects on ozone (O3), nitrogen dioxide (NO2), and coarse particulate matter (PM10) reported in micrograms
per cubic meter (µg/m3), and for carbon monoxide (CO) in milligrams per cubic meter (mg/m3).
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A.4 Difference-in-differences design heterogene-
ity analysis

A.4.1 Analysis by the type of station

Although we find no evidence opposing the common trends assumption, it is still
possible that treated pollution monitors are not comparable to control stations
due to their local environments being inherently different. To address this concern,
we separate the sample of stations into traffic and background stations.1 Traffic
stations are often placed next to major roads or traffic junctions, while background
stations are located in residential areas further away from direct pollution sources.

Figure A.8: Heterogeneous effects by type of measuring station

Notes: CS-DD estimates for the impact of LEZs on traffic and background stations for different samples of
control stations. The raw sample uses all stations outside LEZs. The doughnut specification only includes
stations between 25 and 75 km from the zones border. And the CAAP design only considers stations in cities
with CAAPs but no LEZs. ”Traffic” implies that we only look at traffic stations. ”Background” that we only
look at background stations. The CS-DD model controls for station and year fixed effects. Standard errors
clustered at the municipal level; 95% confidence intervals displayed.

Figure A.8 shows the ATT at traffic and background stations for the raw,
doughnut and CAAP control groups. Across all control group specifications,
traffic stations show significant reductions in CO, NO2, and PM10 after LEZ
implementation. This significant reduction across all traffic contaminants arises
because traffic stations’ inherent environment allows them to catch changes in
transit emissions more easily than background stations. At background stations,
on the other hand, we only uncover a decrease in NO2 after policy adoption.
Notably, background stations are the ones capturing the O3 increase because of a
larger share of measuring values and the spread-out nature of O3 .
1 UBA provides the classification. We do not look at industry stations separately since LEZs

only cover seven industry stations (one percent of all stations in the raw sample).
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A.4.2 Analysis by LEZ stages

Next, we look at the effects of stringency levels on our point estimates. Throughout
the study, we have assigned treatment with a dichotomous variable indicating the
presence of a LEZ, assuming that all LEZs are equally strict. However, LEZs can
have three stringency levels. In the first stage, only gasoline vehicles with catalytic
converters and diesel cars with Euro 2 (or Euro 1 with particle filter) can enter
the LEZs. Stage 2 restricts diesel cars to Euro 3 (or Euro 2 with particle filter).
And finally, stage three restrains diesel cars to Euro 4 (or Euro 3 with particle
filter) and gasoline automobiles to Euro 1. The date on which each LEZ went
through each stage is heterogeneous. Furthermore, some zones skipped stages by
jumping straight to stage two, three, or missing two on their way to three.

To explore the effect of each stage, we run the CS-DD for five different samples
of the Doughnut design. The ”First Stage” sample restricts the treatment group
to LEZs shifting from no LEZ to the first stage. Moreover, we further limit the
sample to the years before implementing any other step to reduce confounding
effects. The ”Second Stage” sample measures the impact of moving from the first
to the second stage; the control group corresponds to not yet treated stations
still in the first stage and the treatment group to already treated stations before
implementing the third stage. The ”Third Stage” sample is analogous to the
”Second Stage” and estimates the effect from jumping from the second to the
third stage. Finally, the direct third and second samples assess the impact of
jumping directly from no LEZ to the second or third stage by using the control
group of never-treated stations vs. the treated group of zones skipping the first
stage. Figure A.9 shows the point estimates of all of these comparisons.

Figure A.9: Heterogeneous treatment effects by policy stringency

Results show that the AQI has significant decreases in the First, Second, and
Third stages as well as when the LEZ jumps straight to the third stage. There are
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significant reductions for CO for the Direct Second and Third Stage. For NO2, we
uncover statistically significant decreases for all samples except the shift from the
first to the second stage. Concerning O3, coefficients are positive and statistically
different from zero in the Direct Second and Third Stage samples, borderline
significant for the First and Second Stages, and not statistically different from
zero in the Direct Third sample. Finally, point estimates for PM10 are all negative
and statistically significant for the First Stage, Third Stage, and Direct Second
samples.
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A.5 Effect of LEZs on well-being and health
outcomes, additional results and robustness
checks

Table A.4: Effect of LEZ introduction on different threshold values of life
satisfaction

LS ≥ 2 LS ≥ 4 LS ≥ 6 LS ≥ 8

ATT 0.003 −0.012∗ −0.034∗∗ −0.060∗∗∗

(0.003) (0.006) (0.012) (0.016)

N.Obs 94248 94248 94248 94248
N.Individuals 12588 12588 12588 12588
N.Groups 9 9 9 9
N.Periods 14 14 14 14

Notes: CS-DD estimates of the impact of LEZs on threshold values of life satisfaction. Thresholds values are
based on the ordinary scale from 0 to 10 and correspond to binary variables: LS ≥ 2 is equal to one if
individuals rate their well-being to be at least 2 or higher, and zero otherwise, etc. ATTs are identified based on
individuals switching between both categories of the binary well-being measure. The treatment group consists of
all individuals inside a LEZ, the control group includes individuals living further away than 25km from LEZs.
Standard errors clustered at the household level. Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01;
∗p < 0.05, +p < 0.1.

Table A.5: Effect of LEZ introduction on life satisfaction (including moving
households)

(1) (2) (3)

ATT −0.112∗∗ −0.150∗∗∗ −0.122∗

(0.042) (0.042) (0.051)

N.Obs 238711 144922 45379
N.Individuals 30953 19146 6190
N.Groups 9 9 9
N.Periods 14 14 14

Notes: CS-DD estimates of the impact of LEZs on life satisfaction. The first column lists results obtained on the
full sample including moving households, the second restricts the control group to individuals living further away
than 25km from LEZs, and the third further restricts the control group to persons living in cities with a CAAP
but no LEZ. Standard errors clustered at the household level. Significance levels denoted by ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05, +p < 0.1.
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Figure A.10: Dynamic effects of LEZs on life satisfaction across samples

(a) Full sample (b) Buffer (c) CAAP

Notes: Dynamic CS-DD estimates (βe) of the impact of LEZs on life satisfaction of individuals living inside the
LEZs. We use three different control groups: First, all SOEP individuals outside LEZs, second, individuals
further than 25km away from the nearest LEZ, and third, individuals in cities with a CAAP but without LEZ.
Standard errors clustered at the household level; 95% confidence bands displayed.

Figure A.11: Dynamic LEZ effects on hypertension

Notes: Dynamic CS-DD estimates (βe) of the impact of LEZs on the probability to develop hypertension of
individuals living inside the LEZs. Dynamic effects refer to years before/after LEZ introduction.The sample of
control individuals is restricted to residences further than 25km away from the nearest LEZ. Standard errors
clustered at the household level.

Table A.6: Spatial spillovers in life satisfaction across different control groups

(1) (2) (3)

ATT −0.197∗∗∗ −0.195∗∗∗ −0.122∗∗

(0.031) (0.036) (0.047)

N.Obs 141377 95966 60491
N.Individuals 19554 11717 6892
N.Groups 11 11 11
N.Periods 14 14 14

Notes: Group-time difference-in-differences (gtDD) estimates of the impact of LEZs on life satisfaction of
individuals living within 25km distance to any LEZ. Point estimates represent the simple aggregation across all
groups and time periods (β). The control group in the first column consists of all individuals residing further
than 25km away from the nearest LEZ, the second column restricts the control group to individuals in residences
between 25 and 75 km from the nearest LEZ, and the third column restricts the control group to individuals
living in cities with a CAAP. Standard errors clustered at the household level. Significance levels denoted by
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1.
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A.6 Effect of LEZs on well-being and health out-
comes, additional results using alternative
control group

Table A.7: Heterogeneous LEZ effects on life satisfaction

(a) By MV ownership

With MV Without MV

ATT −0.092 −0.153
(0.070) (0.185)

N.Obs 14547 3309
N.Individuals 1339 341
N.Groups 9 9
N.Periods 14 14

(b) By diesel car ownership

Diesel Other fuels

ATT −0.301∗∗ −0.140+

(0.103) (0.077)

N.Obs 11832 24740
N.Individuals 1152 2290
N.Groups 9 9
N.Periods 14 14

(c) By income quartiles

Q1 Q2 Q3 Q4

ATT −0.158 −0.190 −0.147 −0.134
(0.165) (0.125) (0.141) (0.088)

N.Obs 6286 6004 5428 8181
N.Individuals 899 810 676 956
N.Groups 9 9 9 9
N.Periods 14 14 14 14

(d) By age groups

≥ 65y ¡ 65y

ATT 0.001 −0.158∗

(0.121) (0.078)
N.Obs 8381 17520
N.Individuals 1113 2669
N.Groups 9 9
N.Periods 14 14

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction using subsets of individuals living inside the LEZs. The control sample of is restricted to individuals
living in cities with CAAP but without LEZ. Subsamples are split based on motor vehicle ownership, diesel
vehicle ownership, income quartiles and age groups. Point estimates represent the simple aggregation across all
groups and time periods (β). Standard errors clustered at the household level. Significance levels denoted by
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1

Table A.8: LEZ effect on health outcomes

LS Doctor visits Hypertension Cancer

ATT −0.132 −1.411 −0.046+ 0.006
(0.102) (0.960) (0.024) (0.015)

N.Obs 7540 7540 7540 7540
N.Individuals 2121 2120 2121 2121
N.Groups 4 4 4 4
N.Periods 5 5 5 5

Notes: Callaway and Sant’Anna difference-in-differences (CS-DD) estimates of the impact of LEZs on life
satisfaction and objective health outcomes of individuals living inside the LEZs. The control sample is restricted
to individuals living in cities with CAAP but without LEZ. Standard errors clustered at the household level.
Significance levels denoted by ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05, +p < 0.1
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Figure B.1: Life and health satisfaction of SOEP individuals, by child status

Notes: The figure depicts the number of responses of SOEP parents and childless individuals per category of life
and health satisfaction, respectively, for the period 2005-2018.
Source: SOEP, version 35.

Figure B.2: Life and health satisfaction of SOEP individuals over time, by child
status

Notes: The figure depicts annual average values of life and health satisfaction of SOEP parents and childless
individuals for the period 2005-2018.
Source: SOEP, version 35.
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Table B.1: Short-term effect of ozone on health satisfaction, full sample

Dependent Variable: Health satisfaction
Model: (1) (2) (3) (4) (5) (6)
Ozone 0.0000 0.0001 0.0001 0.0001 -0.0003 -0.0002

(0.0005) (0.0005) (0.0006) (0.0006) (0.0006) (0.0006)
Income 0.0006+ 0.0006+ 0.0006+ 0.0006+ 0.0006+

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Is married -0.0693 -0.0685 -0.0687 -0.0686 -0.0685

(0.0541) (0.0541) (0.0541) (0.0541) (0.0541)
Is employed -0.0143 -0.0119 -0.0119 -0.0105 -0.0109

(0.0250) (0.0251) (0.0251) (0.0251) (0.0251)
Fixed-effects
Individual Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month No No Yes Yes Yes Yes
Day-of-the-week No No No Yes Yes Yes
Control variables
Age bins No Yes Yes Yes Yes Yes
Weather controls No No No No Linear Non-linear
Fit statistics
Individuals 16,423 16,423 16,423 16,423 16,423 16,423
Observations 86,101 86,101 86,101 86,101 86,101 86,101
Adjusted R2 0.57661 0.57699 0.57703 0.57703 0.57705 0.57702

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of health satisfaction on average ozone
exposure during the week prior to the SOEP interview. All regressions contain individual and year fixed effects.
Specification (1) contains ozone, individual fixed effects and year fixed effects. Column (2) adds the
sociodemographic covariates income, employment status, marital status, and categorical five-year age bins; (3)
adds fixed effects for the month of the interview; (4) adds day-of-the-week fixed effects; (5) adds linear weather
controls (sunshine duration, temperature, precipitation); (6) controls for non-linear weather impacts through
indicator variables for weather quintiles. Robust standard errors clustered at the household level in parentheses.
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Table B.2: Effect of ozone on life and health satisfaction, full sample,
multi-pollutant model

Dependent Variable: Life satisfaction Health satisfaction
Ozone average: Weekly Monthly Quarterly Weekly Monthly Quarterly
Ozone -0.0009 -0.0014 -0.0021 -0.0005 -0.0013 -0.0001

(0.0006) (0.0009) (0.0013) (0.0007) (0.0010) (0.0015)
Income 0.0009∗ 0.0009∗ 0.0009∗ 0.0006+ 0.0006+ 0.0007+

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Is married 0.2552∗∗∗ 0.2552∗∗∗ 0.2544∗∗∗ -0.0649 -0.0653 -0.0661

(0.0583) (0.0581) (0.0581) (0.0554) (0.0554) (0.0554)
Is employed 0.0505∗ 0.0502∗ 0.0524∗ -0.0138 -0.0123 -0.0119

(0.0221) (0.0221) (0.0220) (0.0259) (0.0259) (0.0259)
Coarse particulate matter -0.0008 -0.0015 0.0011 -0.0007 -0.0010 -0.0031

(0.0007) (0.0012) (0.0019) (0.0009) (0.0014) (0.0022)
Nitrogen dioxide 0.0010 0.0013 0.0003 -0.0005 0.0004 -0.0006

(0.0010) (0.0014) (0.0017) (0.0011) (0.0016) (0.0019)
Fixed-effects
Individual Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Month Yes Yes Yes Yes Yes Yes
Day-of-the-week Yes Yes Yes Yes Yes Yes
Control variables
Age bins Yes Yes Yes Yes Yes Yes
Weather controls Non-linear Non-linear Non-linear Non-linear Non-linear Non-linear
Fit statistics
Individuals 15,868 15,868 15,877 15,868 15,868 15,877
Observations 81,839 81,921 82,067 81,839 81,921 82,067
Adjusted R2 0.53878 0.53887 0.53917 0.57644 0.57644 0.57668

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure for the full sample based on a multi-pollutant specification. All regressions control for
individual fixed effects, year fixed effects, month fixed effects and day-of-the-week fixed effects, sociodemographic
covariates income, employment status, marital status, and categorical five-year age bins, indicator variables for
weather quintiles (sunshine duration, temperature, precipitation), and rolling averages of coarse particulate
matter and nitrogen dioxide. Estimations are performed using three different temporal aggregations of pollution
exposure: weekly, monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

Table B.3: Effect of ozone on life and health satisfaction, by child status,
multi-pollutant model

Dependent Variables: Life satisfaction Health satisfaction
Ozone average Parents Childless Parents Childless
Weekly -0.0014+ -0.0003 0.0009 -0.0021∗

(0.0008) (0.0009) (0.0009) (0.0010)
Monthly -0.0026∗ 0.0005 -0.0010 -0.0008

(0.0011) (0.0014) (0.0014) (0.0015)
Quarterly -0.0038∗ 0.0006 -0.0004 0.0007

(0.0018) (0.0020) (0.0021) (0.0023)
Individuals 9,277 6,591 9,277 6,591
Observations 45,682 36,157 45,682 36,157

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure among parents and non-parents based on a multi-pollutant specification. All regressions
control for individual fixed effects, year fixed effects, month fixed effects and day-of-the-week fixed effects,
sociodemographic covariates income, employment status, marital status, and categorical five-year age bins,
indicator variables for weather quintiles (sunshine duration, temperature, precipitation), and rolling averages of
coarse particulate matter and nitrogen dioxide. Estimations are performed using three different temporal
aggregations of pollution exposure: weekly, monthly, and quarterly. Robust standard errors clustered at the
household level in parentheses.
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Table B.4: Effect of ozone on life and health satisfaction of parents, by child
health, multi-pollutant model

Dependent Variables: Life satisfaction Health satisfaction
Ozone average Respiratory Healthy Respiratory Healthy
Weekly -0.0034∗ -0.0010 0.0025 0.0013

(0.0016) (0.0012) (0.0020) (0.0016)
Monthly -0.0066∗∗ -0.0005 -0.0040 -0.0009

(0.0022) (0.0018) (0.0028) (0.0022)
Quarterly -0.0105∗∗ -0.0016 -0.0059 0.0012

(0.0034) (0.0029) (0.0045) (0.0034)
Individuals 1,429 3,354 1,429 3,354
Observations 9,441 17,307 9,441 17,307

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of life satisfaction and health satisfaction
on ozone exposure among parents with at least one child with doctor-diagnosed respiratory disease and parents
with healthy children based on a multi-pollutant specification. All regressions control for individual fixed effects,
year fixed effects, month fixed effects and day-of-the-week fixed effects, sociodemographic covariates income,
employment status, marital status, and categorical five-year age bins, indicator variables for weather quintiles
(sunshine duration, temperature, precipitation), and rolling averages of coarse particulate matter and nitrogen
dioxide. Estimations are performed using three different temporal aggregations of pollution exposure: weekly,
monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

Table B.5: Descriptives on sample of parents, by child health

Respiratory Healthy
Mean SD Mean SD

SOEP variables
Life satisfaction 7.53 1.55 7.58 1.59
Health satisfaction 7.03 2.04 7.32 1.99
Age 40.55 6.70 39.64 7.22
Income 51.12 32.40 43.87 25.45
Is employed 0.81 0.39 0.75 0.43
Is married 0.81 0.39 0.81 0.39
Number kids 2.27 1.05 2.12 0.99
Pollution
Ozone (O3) 53.55 17.11 52.54 17.13
Nitrogen dioxide (NO2) 29.04 14.13 29.43 14.13
Coarse particulate matter (PM10) 21.36 9.43 21.22 9.56
Weather
Temperature 10.12 6.74 10.27 6.56
Precipitation 1.90 1.19 1.94 1.22
Sunshine 5.32 2.22 5.32 2.22
Individuals 1,477 3,488
Observations 9,896 18,212

Notes: The table lists descriptives on socio-demographic variables and pollution exposure of SOEP parents with
at least one child with doctor-diagnosed respiratory disease and parents with healthy children, averaged over the
period 2005-2018. Employment (marriage) is a binary variables indicating if the person is employed (married) in
each year or not. Income is monthly net household income measured in thousand Euro. All pollutants are
measured in µg/m3.
Source: SOEP, version 35, and German Environmental Agency.
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Table B.6: Effect of ozone on health satisfaction of parents, by income group and
by child health

Low income High income
Ozone average Respiratory Healthy Respiratory Healthy
Weekly 0.0017 0.0008 0.0023 -0.0005

(0.0034) (0.0023) (0.0026) (0.0020)
Monthly -0.0015 -0.0007 -0.0056 -0.0017

(0.0046) (0.0033) (0.0039) (0.0030)
Quarterly 0.0011 0.0010 -0.0098 -0.0038

(0.0076) (0.0052) (0.0059) (0.0046)
Individuals 962 2,544 1,035 2,003
Observations 4,233 9,768 5,632 8,417

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. OLS regressions of health satisfaction on ozone exposure
among above-median and below-median earning parents with sick vs. healthy children. The income subsamples
are split into parents with at least one child with doctor-diagnosed respiratory disease and parents of healthy
children. All regressions control for individual fixed effects, year fixed effects, month fixed effects and
day-of-the-week fixed effects, sociodemographic covariates income, employment status, marital status, and
categorical five-year age bins, and indicator variables for weather quintiles (sunshine duration, temperature,
precipitation). Estimations are performed using three different temporal aggregations of pollution exposure:
weekly, monthly, and quarterly. Robust standard errors clustered at the household level in parentheses.

Table B.7: Probit estimations of effect of ozone on life and health satisfaction of
childless people

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ozone average Dependent variable: Life satisfaction
Weekly 0.0006 0.0020 -0.0005 -0.0013 -0.0024 -0.0019 -0.0014 -0.0002 0.0019

(0.0113) (0.0060) (0.0037) (0.0024) (0.0019) (0.0016) (0.0013) (0.0012) (0.0016)
Monthly -0.0104 0.0017 -0.0019 0.0027 -0.0019 -0.0012 0.0005 -0.0022 0.0031

(0.0150) (0.0089) (0.0054) (0.0038) (0.0030) (0.0024) (0.0021) (0.0019) (0.0024)
Quarterly -0.0102 0.0032 -0.0051 -0.0012 -0.0045 -0.0024 -0.0000 -0.0039 0.0065.

(0.0193) (0.0118) (0.0083) (0.0060) (0.0046) (0.0036) (0.0031) (0.0028) (0.0037)
Individuals 94 217 471 921 1,406 2,288 2,909 3,526 2,401
Observations 685 1,572 3,419 6,786 10,099 16,037 20,203 23,453 15,267

Dependent variable: Health satisfaction
Weekly -0.0088. -0.0085∗∗ -0.0026 -0.0014 -0.0009 -0.0015 -0.0026∗ -0.0012 -0.0004

(0.0047) (0.0033) (0.0024) (0.0017) (0.0015) (0.0013) (0.0013) (0.0013) (0.0015)
Monthly -0.0031 -0.0078 -0.0038 -0.0024 -0.0023 -0.0022 -0.0017 0.0005 0.0025

(0.0079) (0.0054) (0.0037) (0.0028) (0.0025) (0.0021) (0.0020) (0.0020) (0.0023)
Quarterly -0.0004 -0.0172∗ -0.0008 0.0002 0.0009 -0.0003 0.0011 0.0019 0.0026

(0.0122) (0.0084) (0.0059) (0.0042) (0.0037) (0.0032) (0.0030) (0.0030) (0.0035)
Individuals 259 475 881 1,435 1,974 2,577 2,922 3,282 2,600
Observations 1,896 3,492 6,801 10,879 14,960 19,057 21,125 21,924 15,766

Notes: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, +p < 0.1. Fixed-effects probit regressions of life satisfaction and
health satisfaction on ozone exposure of childless people. All regressions control for individual fixed effects, year
fixed effects, month fixed effects and day-of-the-week fixed effects, sociodemographic covariates income,
employment status, marital status, and categorical five-year age bins, and indicator variables for weather
quintiles (sunshine duration, temperature, precipitation). Estimations are performed using three different
temporal aggregations of pollution exposure: weekly, monthly, and quarterly. Each columm relates to a specific
cut-off point between 1 and 9 used to transform the original 11-point scale into a happiness status of 0 or 1. The
estimated specifications and cut-off points cj ∈ j = (1, ..., 9) are related as follows: [(1) = c1, ...., (9) = c9].
Robust standard errors clustered at the household level in parentheses.



Appendix C to accompany Chapter 4



Table C.1: Gas (Trillion cf), condensate (Million bbl), oil (Million bbl)
production and number of wells per year in PA

Unconventional wells Conventional wells

Year Gas Cond. Oil Count Gas Cond. Oil Count

2000 0.00 0.00 0.00 0 0.14 0.00 1.38 39,733
2001 0.00 0.00 0.00 0 0.15 0.00 1.47 44,361
2002 0.00 0.00 0.00 0 0.15 0.00 1.64 42,305
2003 0.00 0.00 0.00 0 0.16 0.00 1.95 45,492
2004 0.00 0.00 0.00 5 0.16 0.00 1.88 45,313
2005 0.00 0.00 0.00 11 0.18 0.00 1.94 51,915
2006 0.00 0.00 0.00 26 0.20 0.00 2.07 52,374
2007 0.00 0.00 0.03 89 0.17 0.00 1.47 41,432
2008 0.01 0.00 0.09 212 0.21 0.00 2.39 63,304
2009 0.08 0.00 0.30 520 0.20 0.00 1.91 56,314
2010 0.37 0.38 0.30 1,255 0.20 0.01 2.49 70,823
2011 1.06 0.68 0.39 2,288 0.25 0.02 2.33 71,842
2012 2.04 1.79 0.06 3,628 0.22 0.16 2.30 73,612
2013 3.10 2.96 0.21 4,973 0.21 0.13 2.01 73,115
2014 4.07 3.98 0.38 6,111 0.19 0.26 2.22 78,314
2015 4.60 5.25 0.04 7,077 0.17 0.17 1.63 77,176
2016 5.10 4.71 0.03 7,705 0.12 0.13 1.36 73,857
2017 5.36 5.28 0.01 8,403 0.11 0.05 1.13 71,789

Source: PA DEP Oil and Gas Production Reports, https:
//www.paoilandgasreporting.state.pa.us, accessed on
November 21st 2018, own tabulations.

Table C.2: Descriptive statistics on census block area [km2] in PA

Min Q1 Q5 Q25 Med Mean Q75 Q95 Q99 Max Var
Area [km2] 0.0000 0.0004 0.0016 0.0069 0.0190 0.2858 0.0994 1.4294 4.2890 83.4048 1.3640

Share of land 0.0009 98.1641 100.0000 100.0000 100.0000 99.7179 100.0000 100.0000 100.0000 100.0000 20.9801
Share of water 0.0000 0.0000 0.0000 0.0000 0.0000 0.2821 0.0000 0.0000 1.8359 99.9991 20.9801

Source: Cartographic boundary shapefiles from US Census Bureau, own calculations.

https://www.paoilandgasreporting.state.pa.us
https://www.paoilandgasreporting.state.pa.us
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Figure C.1: Number of sick leave days in treatment group for centered pre- and
post-treatment periods (2000-2014)

Note: The time periods have been centered such that zero indicates the period in which an
individual is treated. Positive values of the centered period indicate observations from
post-treatment years; negative values indicate observations from pre-treatment years. Table C.3
lists the underlying descriptive statistics.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.
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Table C.3: Descriptive statistics on number of sick leave days in treatment group
for centered pre- and post-treatment periods

Centered period N Mean Std. Dev. Std. Err.

-12 x x x x
-10 18 3.28 4.70 1.11
-8 34 3.10 7.15 1.23
-6 35 3.70 7.33 1.24
-4 35 3.23 4.88 0.83
-2 35 2.74 4.45 0.75
0 35 9.31 19.62 3.32
2 32 6.70 11.02 1.95
4 30 6.43 13.31 2.43
6 17 0.76 2.49 0.60
8 x x x x

Sum 280

Note: The time periods have been centered such
that zero indicates the period in which an indi-
vidual is treated. Positive values of the centered
period indicate observations from post-treatment
years; negative values indicate observations from
pre-treatment years. Note that x stands for cells
with 10 or less observations that must not be re-
ported.
Source: Panel Study of Income Dynamics, 2001-
2015, restricted use data, own tabulations. Pro-
duced and distributed by the Survey Research
Center, Institute for Social Research, University
of Michigan, Ann Arbor, MI.
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Figure C.2: Time trend in treatment and unmatched control group
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Note: This figure depicts the average number of sick leave days per year in treatment (N1 = 35)
and unmatched control group (N0 = 57). The error bars depict standard errors for each group
and year.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.

Figure C.3: Time trend in treatment and matched control group (PS matching
on average values from 2000 to 2004)
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Note: This figure depicts the average number of sick leave days per year in treatment (N1 = 35)
and matched control (N0 = 35) group. The control group is based on PS matching on
pre-treatment average values from 2000 to 2004. The error bars depict standard errors for each
group and year.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.
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Table C.4: Descriptives on number of sick leave days per sample and year

Median Mean Variance Std. Dev. Sum N
Full sample
2000 0 3.6902 251.7958 15.8681 339.5 92
2002 0 4.3152 87.7677 9.3684 397 92
2004 0 3.2663 36.953 6.0789 300.5 92
2006 0 3.1467 69.8491 8.3576 289.5 92
2008 0 3.8587 57.9414 7.6119 355 92
2010 0 5.8478 208.1085 14.426 538 92
2012 0 4.5326 70.8176 8.4153 417 92
2014 0 4.7283 197.6616 14.0592 435 92
Treatment group
2000 0 6.6429 647.8466 25.4528 232.5 35
2002 1 4.4 84.5853 9.197 154 35
2004 0 2.7429 21.1966 4.604 96 35
2006 0 2.5714 21.6639 4.6544 90 35
2008 0 2.8857 19.7513 4.4442 101 35
2010 3 10.4857 384.2571 19.6025 367 35
2012 0 6.5571 120.0702 10.9577 229.5 35
2014 0 4.6857 140.7071 11.862 164 35
Unmatched control group
2000 0 1.8772 7.0382 2.653 107 57
2002 0 4.2632 91.2599 9.553 243 57
2004 0 3.5877 46.9029 6.8486 204.5 57
2006 0 3.5 100.0179 10.0009 199.5 57
2008 1 4.4561 81.2079 9.0115 254 57
2010 0 3 83.1786 9.1202 171 57
2012 0 3.2895 38.0442 6.168 187.5 57
2014 0 4.7544 235.7689 15.3548 271 57
Matched control group (PS matching on 2000 values)
2000 0 2.0571 8.3496 2.8896 72 35
2002 0 2.7143 20.3866 4.5151 95 35
2004 0 4.4429 63.4231 7.9639 155.5 35
2006 0 4.7286 156.7256 12.519 165.5 35
2008 0 2.6286 13.6521 3.6949 92 35
2010 0 1.8286 7.9109 2.8126 64 35
2012 0 2.8571 21.7731 4.6662 100 35
2014 0 6.8286 373.9256 19.3372 239 35
Matched control group (PS matching on 2000-2004 average values)
2000 0 1.7714 7.0639 2.6578 62 35
2002 0 1.9429 14.6437 3.8267 68 35
2004 0 3.6 36.1294 6.0108 126 35
2006 0 4.6429 156.9349 12.5274 162.5 35
2008 1 3.7286 39.3433 6.2724 130.5 35
2010 0 4.4 130.1294 11.4074 154 35
2012 0 2.8286 21.7345 4.662 99 35
2014 0 4.1571 102.8349 10.1408 145.5 35

Source: Panel Study of Income Dynamics, 2001-2015, restricted use data,
own tabulations. Produced and distributed by the Survey Research
Center, Institute for Social Research, University of Michigan, Ann Arbor,
MI.
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Table C.5: Descriptives on unmatched sample

Control Treated
Variable Mean Nobs Mean Nobs Mean difference
Individual-level variables
Number of sick leave days 3.5910 456 5.1214 280 1.5304*
Age in years 45.9408 456 44.2464 280 -1.6944**
Education in years 13.9123 456 13.4929 280 -0.4194*
Is male 0.4737 456 0.4857 280 0.0120
Is self-employed 0.1820 456 0.0964 280 -0.0856***
Is government employee 0.2721 408 0.1818 264 -0.0902***
Labor incomea 56.4604 456 48.0010 280 -8.4594***
Health status 2.0066 456 2.4107 280 0.4041***
Number of nights in hospital 0.1447 456 0.1250 280 -0.0197
Ever had heart attack 0.0241 456 0.0179 280 -0.0063
Ever had heart disease 0.0373 456 0.0393 280 0.0020
Ever had hypertension 0.2895 456 0.3071 280 0.0177
Ever had asthma 0.1491 456 0.1000 280 -0.0491**
Ever had lung disease 0.0066 456 0.0000 280 -0.0066*
Ever had diabetes 0.0548 456 0.1179 280 0.0630***
Ever had cancer 0.0439 456 0.0321 280 -0.0117
Ever had psychological problems 0.0504 456 0.0643 280 0.0138
Household-level variables
Number of children 0.8925 456 0.9500 280 0.0575
Age of youngest child 4.1140 456 3.4893 280 -0.6247
Number of births per year 0.0285 456 0.0286 280 0.0001
Household member older than 60 0.1053 456 0.0964 280 -0.0088
Is home owner 0.8311 456 0.8357 280 0.0046
House valuea 187.2365 455 130.0429 280 -57.1936***
Health care expenditurea 3.6836 456 2.3995 280 -1.2840***
Expenditure for doctors visits etc.a 0.7339 456 0.3886 280 -0.3453***
Expenditure for prescriptions etc.a 0.3863 456 0.3180 280 -0.0682
a In thousand dollars.

Note: The last column reports the mean differences between treatment and control group,
including significance levels of t-tests on mean equality: * p < 0.1; ** p < 0.05 ; *** p < 0.01
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research, University
of Michigan, Ann Arbor, MI.
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Table C.6: Descriptives on matched sample (PS matching on average values from
2000 to 2004)

Mean Mean
difference

Normalized
differenceVariable Control Treated

Individual-level variables
Number of sick leave days 3.3839 5.1214 1.7375* 0.1110
Age in years 44.4821 44.2464 -0.2357 -0.0167
Education in years 13.8964 13.4929 -0.4036* -0.1370
Is male 0.4571 0.4857 0.0286 0.0404
Is self-employed 0.0786 0.0964 0.0179 0.0446
Is government employeeb 0.2684 0.1818 -0.0866* -0.1471
Labor incomeac 60.2347 48.0010 -12.2337* -0.2155
Health status 2.0000 2.4107 0.4107* 0.3423
Number of nights in hospital 0.1214 0.1250 0.0036 0.0032
Ever had stroke 0.0000 0.0000 0.0000 −−
Ever had heart attack 0.0357 0.0179 -0.0179 -0.0782
Ever had heart disease 0.0357 0.0393 0.0036 0.0133
Ever had hypertension 0.2536 0.3071 0.0536 0.0843
Ever had asthma 0.1571 0.1000 -0.0571* -0.1209
Ever had lung disease 0.0071 0.0000 -0.0071 -0.0847
Ever had diabetes 0.0214 0.1179 0.0964* 0.2723
Ever had cancer 0.0286 0.0321 0.0036 0.0147
Ever had psychological problems 0.0321 0.0643 0.0321* 0.1062
Household-level variables
Number of children 1.0071 0.9500 -0.0571 -0.0344
Age of youngest child 4.2107 3.4893 -0.7214 -0.0961
Number of birthsc 0.0357 0.0286 -0.0071 -0.0286
Household member plus 60 0.0929 0.0964 0.0036 0.0086
Is home owner 0.9143 0.8357 -0.0786* -0.1689
House valueac 181.5914 130.0429 -51.5486* -0.3124
Health care expenditureac 2.8396 2.3995 -0.4400 -0.0969
Expenditure for doctors visits etc.a 0.6351 0.3886 -0.2466* -0.1862
Expenditure for prescriptions etc.a 0.4008 0.3180 -0.0827 -0.0863
Number of observations 280 280
Number of individuals 35 35
a In thousand dollars.
b This covariate exhibits missings: it is based on 272 observations in the control and 264

observations in the treatment group.
c These are the covariates used for PS matching.

Note: The fourth column reports the mean differences between treatment and control
group, including significance levels of t-tests on mean equality: * p < 0.1; ** p < 0.05
; *** p < 0.01. The last column lists the normalized mean difference, calculated as
(x̄1 − x̄0)/

√︂
σ2

1 + σ2
0, where x̄1 and x̄0 are the means in treatment and control group,

respectively, and σ2
1 and σ2

0 are the respective variances .
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations.
Produced and distributed by the Survey Research Center, Institute for Social Research,
University of Michigan, Ann Arbor, MI.
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Table C.7: Descriptives on categorical variables per sample

Variable Levels N0 N1 N χ2-statistic
Full sample
Rural or urbana Metro 442 225 667 54.1468***
Rural or urbana Nonmetro 14 55 69

Sum 456 280 736
Type of housinga One-family house 395 252 647 24.2888***
Type of housinga Two-family house 15 0 15
Type of housinga Apartment 30 12 42
Type of housinga Mobile home x x 24
Type of housinga Row or town house x x x
Type of housinga Other x x x

Sum 456 280 736
Industry Agriculture, Forestry, Fishing, Mining x x x 50.3116***
Industry Construction 18 27 45
Industry Finance, Insurance and Real Estate x x 49
Industry Manufacturing 70 42 112
Industry Public Administration and Active Duty Military 51 11 62
Industry Services industries 156 118 274
Industry Transportation, Communication and Other Public Utilities 54 31 85
Industry Wholesale and Retail Trade 53 46 99

Sum 456 280 736
PS matching on 2000 values
Rural or urbana Metro 266 225 491 26.4471***
Rural or urbana Nonmetro 14 55 69

Sum 280 280 560
Type of housinga One-family house 249 252 501 8.2653**
Type of housinga Two-family house x 0 x
Type of housinga Apartment 19 12 31
Type of housinga Mobile home x x 24
Type of housinga Row or town house x 0 x
Type of housinga Other 0 0 0

Sum 280 280 560
Industry Agriculture, Forestry, Fisheries, Mining x x x 30.3691***
Industry Construction 16 27 43
Industry Finance, Insurance and Real Estate x x 18
Industry Manufacturing 53 42 95
Industry Public Administration and Active Duty Military 29 11 40
Industry Services industries 96 118 214
Industry Transportation, Communication and Other Public Utilities 33 31 64
Industry Wholesale and Retail Trade 30 46 76

Sum 280 280 560
PS matching on 2000-2004 average values
Rural or urbana Metro 266 225 491 26.4471***
Rural or urbana Nonmetro 14 55 69

Sum 280 280 560
Type of housinga One-family house 259 252 511 8.5626*
Type of housinga Two-family house x x x
Type of housinga Apartment x x 20
Type of housinga Mobile home x x 24
Type of housinga Row or town house x 0 x
Type of housinga Other 0 0 0

Sum 280 280 560
Industry Agriculture, Forestry, Fisheries, Mining x x x 26.0460***
Industry Construction 18 27 45
Industry Finance, Insurance and Real Estate x x 18
Industry Manufacturing 46 42 88
Industry Public Administration and Active Duty Military 29 11 40
Industry Services industries 101 118 219
Industry Transportation, Communication and Other Public Utilities 30 31 61
Industry Wholesale and Retail Trade 33 46 79

Sum 280 280 560
a These are the covariates used for PS matching.

Note: This table displays the number of observations per category of the rural-urban-dummy, the type-of-housing
variable and the industries of employees: N0 is the number of observations from the control group; N1 is the number of
observations from the treatment group; N is the total number of observations. Note that x stands for cells with 10 or
less observations that must not be reported. The last column reports results of Pearson’s χ2 tests on equal distributions
in treatment and control groups; significance levels are denoted by * p < 0.1; ** p < 0.05 ; *** p < 0.01.
Source: Panel Study of Income Dynamics, 2001-2015, restricted use data, own tabulations. Produced and distributed by
the Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI.
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D.1 Additional descriptives

Figure D.1: Locations of nitrate sampling sites and weather monitors in Germany

Nitrate sampling sites Weather monitors

Notes: This figure depicts the locations of nitrate sampling sites and weather monitors in Germany. Each dot
represents a sampling site or weather monitor, respectively, that was active between 2008 and 2016.
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Table D.1: Organic farming and groundwater nitrate: variables, descriptions, and
data sources

Variable Definition Unit Data Source

Nitrate Yearly average nitrate concentration mg/l Umweltbundesamt
Mineral fertil-
izer dummy

Mineral fertilizer supply of more than 100
kg/ha in the sampling station’s district

kg n/ha Häußermann et al.
(2019)

Share organic Share of organic farmland relative to UAA
of the sampling station’s district

ha Regional Statistics

Share farmland Share of arable land (CLC211) within a
500 meter radius around the sampling
station

% CORINE Land Cover

Share wine Share of wine growing (CLC221) within
a 500 meter radius around the sampling
station

% CORINE Land Cover

Share fruit Share of fruit cultivation (CLC222)
within a 500 meter radius around the sam-
pling station

% CORINE Land Cover

Share green-
land

Share of greenland (CLC231) within a 500
meter radius around the sampling station

% CORINE Land Cover

Share forest Share of forest (CLC311+312+313)
within a 500 meter radius around the sam-
pling station

% CORINE Land Cover

Mean precipita-
tion

Average daily precipitation rate at site mm/year German Weather Ser-
vice

Sum precipita-
tion

Yearly sum of precipitation at site mm/year German Weather Ser-
vice

Mean tempera-
ture

Average daily temperature at site C° German Weather Ser-
vice

Notes: This table describes all variables and data sources used to analyze the link between nitrate pollution and
organic farming.
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Table D.2: Water quality and firm’s treatment cost: variables, descriptions, and
data sources

Variable Definition Unit Data Source

Nitrate Weighted average groundwater nitrate
content, based on a 4km radius surround-
ing the water abstraction plant

mg/l UBA

Total cost Total expenditures 1000 € RDC (2017)
Treatment cost Expenditures for raw materials and sup-

plies
1000 € RDC (2017)

Total water abstraction Total volume of abstracted raw water 1000 m3 RDC (2016)
Total water abstraction Total volume of ground and surface water

abstracted
1000 m3 RDC (2016)

Groundwater abstrac-
tion

Total volume of groundwater abstracted 1000 m3 RDC (2016)

Water purchase Total volume of external water purchases 1000 m3 RDC (2016)
Total water delivered Total volume of water delivered to en-

dusers and other water supply firms
1000 m3 RDC (2016)

Water delivered to en-
dusers

Water delivered to endusers (households
and industry)

1000 m3 RDC (2016)

Residential water deliv-
ered

Water delivered to residential customers
(households)

1000 m3 RDC (2016)

Bulk water delivered Water delivered to other water suppliers 1000 m3 RDC (2016)
Employees Total number of employees RDC (2017)
Abstraction plants Total number of water abstraction plants

of the water supplier
RDC (2016)

Labor price Labor costs divided by hours worked € RDC (2017)
Capital price Capital costs (sum of depreciation and in-

terest payments) divided by capital stock
€ RDC (2017)

Capital stock Industry capital stock estimated accord-
ing to (Wagner, 2010)

10002 €

Population served Total number of citizens supplied with
water

RDC (2016)

Population density Number of citizens per km2 [0,1] Regional
Statistics

Mean precipitation Average daily precipitation rate
(municipality-level)

mm/year German
Weather Ser-
vice

Sum precipitation Yearly sum of precipitation rate
(municipality-level)

mm/year German
Weather Ser-
vice

Mean temperature Average daily temperature (municipality-
level)

C° German
Weather Ser-
vice

Notes: This table describes all variables and data sources used to analyze the link between nitrate pollution and
water supply costs.
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Figure D.2: Visualization of approach to approximate nitrate concentrations at
water abstraction plants

r = 20km
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Notes: This figure depicts the approach to impute nitrate concentrations at the plant location, using Berlin as
an example. The abstraction plant is denoted by x and assumed to be located in the municipality’s center.
Groundwater sampling sites are displayed by red triangles, and the underlying groundwater bodies are plotted
by blue lines. Depending on the chosen radius more or less monitoring stations are taken into account in the
inverse-distance weighted average. E.g., imposing a 10km radius yields two groundwater monitors to calculate
the weighted average of nitrate concentrations. Additionally imposing the hydrogeological restriction leaves only
one monitor to approximate nitrate in the concerning groundwater water.
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Table D.3: Mean equivalence tests for companies with limit exceeding nitrate
levels vs. without limit exceedances

Mean Mean Difference
Variable NO3 < 50 mg/l NO3 ≥ 50 mg/l in Means

Total cost [1000 e] 13056.57 19880.82 -6824.25 ∗∗∗

Treatment cost [1000 e] 1801.81 2891.91 -1090.09 ∗

Treatment cost per abstracted unit [eper m3] 0.65 0.78 -0.14 ∗

Treatment cost per supplied unit [eper m3] 0.38 0.54 -0.16 ∗∗∗

Share treatment cost [%] 13.01 15.03 -2.03 ∗∗∗

Total water abstraction [1000 m3] 2632.31 4291.44 -1659.13 ∗∗∗

Groundwater abstraction [1000 m3] 1919.06 3867.41 -1948.35 ∗∗∗

Water purchase [1000 m3] 581.32 755.59 -174.28
Total water delivered [1000 m3] 3213.62 5047.03 -1833.41 ∗∗∗

Water delivered to endusers [1000 m3] 2114.19 3521.34 -1407.15 ∗∗∗

Residential water delivered [1000 m3] 1611.71 2712.51 -1100.81 ∗∗∗

Bulk water delivered [1000 m3] 789.70 1052.39 -262.68
Population served [number] 37246.54 64584.68 -27338.13 ∗∗∗

Employees [number] 56.86 100.25 -43.39 ∗∗∗

Abstraction plants [number] 9.68 11.07 -1.39 ∗

Nitrate [mg/l] 14.77 72.71 -57.95 ∗∗∗

Mean precipitation [mm/day] 2.04 1.88 0.16 ∗∗∗

Sum precipitation [mm/year] 665.05 623.89 41.16 ∗∗∗

Mean temperature [° C] 9.49 9.82 -0.33 ∗∗∗

Notes: This table list mean values and differences in means across two groups: Water supply firms with average
nitrate content below the legal limit value of 50 mg/l (nobs = 2090), and firms with limit exceeding nitrate levels
in at least one year (nobs = 664). Significance levels of t-tests on mean equivalence are denoted by ∗∗∗p < 0.01;
∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.
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Table D.4: Descriptives on subsample of companies for total cost analysis

Variable Mean Median SD

Cost and input prices
Total cost [1000 e] 16794.28 4752.57 53096.52
Labor price [e] 34.87 34.11 8.45
Capital price [e] 0.18 0.06 2.97

Input quantities
Capital stock [10002 e] 63490.06 26537.64 128963.30
Labor hours [1000 h] 114.65 36.00 328.87
Total water abstraction [1000 m3] 3052.09 1288.50 8617.35
Water purchase [1000 m3] 567.16 20.00 1772.10

Output quantities
Total water delivered [1000 m3] 3619.25 1557.00 9026.48
Population served [number] 53415.56 24250.33 118626.48

Environmental variables
Share groundwater abstraction [%] 73.25 89.06 31.60
Share residential water [%] 66.85 68.39 15.13
Population density [inh/km2] 352.16 214.82 403.61
Nitrate [mg/l] 29.48 17.00 36.59
30 < Nitrate < 50 [%] 18.31 0.00 38.69
Nitrate ≥ 50 [%] 18.04 0.00 38.46

Notes: This table lists descriptive statistics on the panel of drinking water supply companies that abstract
groundwater resources within a four km radius of a nitrate groundwater sampling site. The panel consists of 342
companies companies with 1,846 company-year observations between 2008 and 2016.
Source: RDC (2016) and RDC (2017), own calculations.
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D.2 Robustness

Table D.5: GMM regression results with different instrument specifications

(1) (2) (3) (4) (5) (6)

Lagged nitrate 0.553∗∗∗ 0.550∗∗∗ 0.551∗∗∗ 0.553∗∗∗ 0.551∗∗∗ 0.550∗∗∗

(0.115) (0.115) (0.115) (0.115) (0.115) (0.115)
Share organic −0.297∗∗∗ −0.298∗∗∗ −0.298∗∗∗ −0.296∗∗∗ −0.297∗∗∗ −0.298∗∗∗

(0.097) (0.096) (0.096) (0.096) (0.096) (0.096)
Mineral fertilizer dummy 1.589∗∗ 1.598∗ 1.594∗ 1.587∗ 1.593∗ 1.597∗

(0.808) (0.820) (0.818) (0.814) (0.818) (0.819)
Mean temperature 1.079∗ 1.086∗ 1.083∗ 1.077∗ 1.082∗ 1.085∗

(0.609) (0.609) (0.608) (0.606) (0.607) (0.608)
Sum precipitation 0.001 0.001 0.001 0.001 0.001 0.001

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
Mean precipitation 0.564 0.563 0.563 0.564 0.563 0.563

(1.114) (1.121) (1.118) (1.113) (1.118) (1.120)
Share farmland 0.134∗∗∗ 0.134∗∗∗ 0.134∗∗∗ 0.133∗∗∗ 0.134∗∗∗ 0.134∗∗∗

(0.041) (0.041) (0.041) (0.041) (0.041) (0.041)
Share wine 0.409∗∗ 0.411∗∗ 0.410∗∗ 0.408∗∗ 0.410∗∗ 0.411∗∗

(0.179) (0.180) (0.180) (0.179) (0.180) (0.180)
Share fruit 0.049 0.049 0.049 0.049 0.049 0.049

(0.110) (0.111) (0.111) (0.110) (0.110) (0.111)
Share greenland −0.040∗ −0.041∗ −0.040∗ −0.040∗ −0.040∗ −0.041∗

(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)
Share forest −0.058∗∗∗ −0.058∗∗∗ −0.058∗∗∗ −0.058∗∗∗ −0.058∗∗∗ −0.058∗∗∗

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

Year FEs Yes Yes Yes Yes Yes Yes
Station FEs Yes Yes Yes Yes Yes Yes

Nobs 7311 7311 7311 7311 7311 7311
N [stations] 1323 1323 1323 1323 1323 1323
% explained 0.858 0.857 0.857 0.858 0.857 0.857
sarganp 0.655 0.789 0.142 0.188 0.067 0.083
hansenp 0.918 0.975 0.875 0.912 0.816 0.889
No. instruments 20 21 22 23 24 25

Notes: Similar to Table 5.5, this table shows BB system-GMM regression results for the effect of the share of
organically farmed land on groundwater nitrate concentrations with a varying number of instruments. Control
variables include lagged nitrate levels, a dummy for mineral fertlizer use ≥ 100kg/ha, shares of land use within
500m radius around nitrate monitor locations (farmland, wine growing, fruit cultivation, greenland and forest),
and inverse-distance weighted weather controls (annual average of daily temperature and precipitation, sum of
annual precipitation). We also include year and station fixed effects. We treat lagged nitrate levels as
endogenous and instrument it with two lags in the levels- and first-differenced equations using collapsed
instruments. All other controls are treated as exogenous. Reported model statistics are the p-value of the
Hansen test of overidentifying restrictions (hansenp), the p-value of the Sargan test of overidentifying restrictions
(sarganp), and % is the percent of variation in the dependent variable explained by factors other than time
dummies, measured as one minus the mean squared error of the respective regression divided by the mean
squared error of a regression on the time dummies alone. Standard errors are clustered at the level of nitrate
sampling sites. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D.6: GMM regression results for water quality at the district level

(1) (2) (3)

Lagged nitrate 0.586∗∗∗ 0.591∗∗∗ 0.593∗∗∗

(0.139) (0.131) (0.130)
Share organic −0.562∗∗∗ −0.242∗∗ −0.220∗∗

(0.174) (0.105) (0.105)
Mineral fertilizer dummy 0.651 1.011

(0.892) (0.876)
Share farmland 0.137∗∗∗ 0.155∗∗∗

(0.048) (0.053)
Share wine 0.749∗ 0.696

(0.451) (0.443)
Share fruit −0.066 −0.080

(0.150) (0.152)
Share greenland −0.070 −0.023

(0.057) (0.055)
Share forest −0.063 −0.015

(0.062) (0.054)
Mean temperature 1.797∗

(0.923)
Sum precipitation −0.004

(0.004)
Mean precipitation 0.571

(1.433)

Year FEs Yes Yes Yes
Station FEs Yes Yes Yes

Nobs 2448 2448 2448
N [districts] 335 335 335
% explained 0.855 0.866 0.868
sarganp 0.000 0.000 0.000
hansenp 0.090 0.087 0.080
No. instruments 12 18 21

Notes: Similar to Table 5.5, this table shows BB system-GMM regression results for the effect of the share of
organically farmed land on groundwater nitrate concentrations for the aggregated district level. Control variables
include lagged nitrate levels, a dummy for mineral fertlizer use ≥ 100kg/ha, shares of land use within 500m
radius around nitrate monitor locations (farmland, wine growing, fruit cultivation, greenland and forest), and
inverse-distance weighted weather controls (annual average of daily temperature and precipitation, sum of
annual precipitation). We also include year and station fixed effects. We treat lagged nitrate levels as
endogenous and instrument it with two lags in the levels- and first-differenced equations using collapsed
instruments. All other controls are treated as exogenous. Reported model statistics are the p-value of the
Hansen test of overidentifying restrictions (hansenp), the p-value of the Sargan test of overidentifying restrictions
(sarganp), and % is the percent of variation in the dependent variable explained by factors other than time
dummies, measured as one minus the mean squared error of the respective regression divided by the mean
squared error of a regression on the time dummies alone. Standard errors are clustered at the level of nitrate
sampling sites. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D.7: GMM regression results with different instrument specifications at the
district level

(1) (2) (3) (4) (5) (6)

Lagged nitrate 0.530∗∗∗ 0.593∗∗∗ 0.599∗∗∗ 0.555∗∗∗ 0.554∗∗∗ 0.537∗∗∗

(0.152) (0.130) (0.123) (0.129) (0.128) (0.129)
Share organic −0.251∗∗ −0.220∗∗ −0.218∗∗ −0.239∗∗ −0.240∗∗ −0.248∗∗

(0.122) (0.105) (0.104) (0.111) (0.110) (0.114)
Mineral fertilizer dummy 1.155 1.011 0.999 1.099 1.101 1.139

(0.966) (0.876) (0.861) (0.932) (0.934) (0.965)
Mean temperature 2.087∗∗ 1.797∗ 1.772∗ 1.974∗∗ 1.978∗∗ 2.056∗∗

(1.052) (0.923) (0.910) (0.951) (0.947) (0.973)
Sum precipitation −0.004 −0.004 −0.004 −0.004 −0.004 −0.004

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Mean precipitation 0.676 0.571 0.562 0.635 0.637 0.664

(1.610) (1.433) (1.420) (1.534) (1.536) (1.581)
Share farmland 0.177∗∗∗ 0.155∗∗∗ 0.153∗∗∗ 0.168∗∗∗ 0.169∗∗∗ 0.174∗∗∗

(0.064) (0.053) (0.052) (0.057) (0.057) (0.058)
Share wine 0.827 0.696 0.685∗ 0.776 0.778 0.812

(0.527) (0.443) (0.415) (0.503) (0.502) (0.523)
Share fruit −0.085 −0.080 −0.079 −0.083 −0.083 −0.085

(0.171) (0.152) (0.150) (0.163) (0.164) (0.169)
Share greenland −0.028 −0.023 −0.023 −0.026 −0.026 −0.028

(0.062) (0.055) (0.054) (0.059) (0.059) (0.061)
Share forest −0.019 −0.015 −0.014 −0.017 −0.017 −0.018

(0.061) (0.054) (0.053) (0.058) (0.058) (0.060)

Year FEs Yes Yes Yes Yes Yes Yes
Station FEs Yes Yes Yes Yes Yes Yes

Nobs 2448 2448 2448 2448 2448 2448
N [districts] 335 335 335 335 335 335
% explained 0.852 0.868 0.869 0.859 0.859 0.854
sarganp 0.015 0.000 0.001 0.000 0.000 0.000
hansenp 0.623 0.080 0.170 0.027 0.052 0.008
No. instruments 20 21 22 23 24 25

Notes: Similar to Table 5.5, this table shows BB system-GMM regression results for the effect of the share of
organically farmed land on groundwater nitrate concentrations with varying instruments at the district-level.
Control variables include lagged nitrate levels, a dummy for mineral fertlizer use ≥ 100kg/ha, shares of land use
within 500m radius around nitrate monitor locations (farmland, wine growing, fruit cultivation, greenland and
forest), and inverse-distance weighted weather controls (annual average of daily temperature and precipitation,
sum of annual precipitation). We also include year and station fixed effects. We treat lagged nitrate levels as
endogenous and instrument it with two lags in the levels- and first-differenced equations using collapsed
instruments. All other controls are treated as exogenous. Reported model statistics are the p-value of the
Hansen test of overidentifying restrictions (hansenp), the p-value of the Sargan test of overidentifying restrictions
(sarganp), and % is the percent of variation in the dependent variable explained by factors other than time
dummies, measured as one minus the mean squared error of the respective regression divided by the mean
squared error of a regression on the time dummies alone. Standard errors are clustered at the level of nitrate
sampling sites. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
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Table D.8: Regressions results for treatment cost across different samples

DV: ln(Treatment cost) (1) (2) (3)

ln(Nitrate) 0.044∗∗ 0.045∗∗ 0.030
(0.020) (0.021) (0.020)

ln(Water abstracted) 0.716 1.128∗ 1.171∗∗

(0.483) (0.669) (0.591)
ln(Share groundwater) 0.154 0.125 0.065

(0.095) (0.395) (0.100)

Firm FEs Yes Yes Yes
Year FEs Yes Yes Yes
Weather controls Quadratic Quadratic Quadratic

Nobs 2726 2124 2030
N 484 397 387
Adj.R2 0.891 0.886 0.871

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on treatment costs of water
suppliers for three different samples: The first column is based on water suppliers that are observed for at least
two years in the panel. The second column is based on water suppliers with at least 50 percent of raw water
abstracted from groundwater resources. The third column is based on water suppliers that are “pure water
utilities” that do not operate in any other economic sector, e.g., sewage. Nitrate is measured as a
volume-weighted average of nitrate measurements within a four kilometer radius around the plant location.
Control variables include the volume of water abstracted, the share of abstracted groundwater relative to total
abstraction, and quadratic weather controls (annual average of daily temperature and precipitation, sum of
annual precipitation). All models include firm and year fixed effects. Standard errors are clustered at the firm
level. Significance levels denoted by ∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.
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Table D.9: Regression results for total costs with alternative capital price
definition

DV: ln(Total cost) (1) (2)

ln(Nitrate) 0.020∗ 0.020∗

(0.011) (0.011)
ln(Labor price) 0.790∗∗∗ 0.789∗∗∗

(0.109) (0.109)
ln(Water delivered) 0.861∗∗∗ 0.794∗∗∗

(0.169) (0.171)
ln(Population served) 0.214 0.296∗

(0.156) (0.162)
ln(Share groundwater) 0.032

(0.066)
ln(Share households) −0.048

(0.098)
ln(Population density) −0.070

(0.088)

Nobs 1846 1846
N 342 342
Adj.R2 0.984 0.984

Notes: This table depicts OLS estimates on the impact of groundwater nitrate on toal costs of water suppliers.
Nitrate is measured as a volume-weighted average of nitrate measurements within a four kilometer radius around
the plant location. We include the labor price, and delivered water volumes and population served as outputs.
Total cost and labor price are standardized by capital price. The capital price is defined as residual between
total cost and labor cost divided by the capital stock. Control variables are share of groundwater abstraction,
share of residential water deliveries, and population density of the area served by the water company. All models
include firm and year fixed effects. Standard errors are clustered at the firm level. Significance levels denoted by
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1.
Source: RDC (2016) and RDC (2017), own calculations.
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