
TECHNISCHE UNIVERSITÄT BERLIN

An Extensible and Customizable Framework for
the Management and Orchestration of
Emerging Software-based Networks

vogelegt von
Master of Science

Giuseppe Antonio Carella
geb. in Brindisi, Italien

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

Promotionsausschuss:

Vorsitzender : Prof. Dr. Rafael Schaefer
Gutachter : Prof. Dr. Thomas Magedanz
Gutachter : Prof. Dr. Paolo Bellavista
Gutachter : Prof. Dr. Odej Kao

Tag der wissenschaftlichen Aussprache: 02.02.2018

Berlin, 2018









Abstract

The 5th Generation Mobile Telecommunications (5G) is supposed to drastically
change network operators’ infrastructures.

The evolution of telecommunication networks has always been influenced by the
parallel evolution within the Information and Communication Technology (ICT)
domain. What started with intelligent networks in the 90’s, namely the centraliza-
tion of service programs and data in central computers controlling remote switching
layers in order to simplify the service creation, deployment and management, led,
at the beginning of the millennium, to Service-Oriented Architecture (SOA) based
distributed Session Description Protocol (SDP) on top of converging networks.

Due to the current approach of “everything is fully connected” , a more efficient
way to manage network operators’ resources and infrastructures is required in or-
der to provide always much greater throughput and much lower latency with high
availability and higher connectivity density. The transition towards “everything as
a software” is the enabler for this transformation where software-based virtualized
network functions can be customized for the particular needs of a particular vertical
domain. Therefore, almost ten years later, cloud principles and technologies have
again changed the way services are developed and provisioned. The novel concept
of “network slicing” allows Telecommunication Service Providers (TSPs) to optimize
the usage of their infrastructure resources, providing on demand to end-customers
different network segments with different capabilities.

This dissertation work will present the extensive research conducted by the au-
thor over the last 5 years in which Network Function Virtualization (NFV) con-
cepts and standards emerged and drastically transformed the telecommunication
networks. The design evolution presented started when requirements for virtualiz-
ing network functions were first described by the research and industrial communi-
ties. Based on the author’s past experiences gained in realizing cloud-based Service
Delivery Platforms (SDPs), the thesis will elaborate the design and development of
an extensible NFV Management and Orchestration (MANO) framework suitable for
managing and orchestrating any kind of software-based networks.

This work was developed in parallel to the international Software-Defined Net-
working (SDN) and European Telecommunications Standards Institute (ETSI) NFV
standardization activities, and the implemented open source Open Baton project is
the result of an agile design and development process, initiated and managed by
the author. Today Open Baton represents one out of four globally recognized ETSI
NFV MANO frameworks, enabling early 5G prototyping and standardization.

The author, a senior scientist at the Technical University of Berlin, conducted
this work in the context of several European research projects, including the su-
pervision of several bachelor and master theses and integrated into various industry
SDN/NFV testbeds in ongoing research projects as well as several industry solutions.





Zusammenfassung

5G wird einen enormen Einfluss auf die Infrastrukturen der Netzbetreiber haben.
Die Entwicklung von Telekommunikationsnetzwerken wurde seit jeher von der

Entwicklung im Bereich der Informations- und Kommunikationstechnik (IKT) be-
einflusst. Um die Erstellung, Bereitstellung und Verwaltung von Diensten zu ver-
einfachen, wurden in den 90er Jahren intelligente Netzwerke erforscht, in denen
Dienstprogramme und Daten in zentralen Computern zusammengefasst sind, die
entfernte Vermittlungsebenen steuern. Das führte zu Beginn des Jahrtausends zur
Entwicklung eines Ansatzes für verteilte und konvergierende Netzwerke, basierend
auf serviceorientierten Architekturen (SOA) und Dienstplattformen (SDP).

Da mit dem Ziel „alles vollständig zu vernetzen” höhere Datendurchsätze, niedri-
gere Latenzzeiten, hohe Verfügbarkeiten und höhere Konnektivitätsdichten benötigt
werden, wird ein deutlich effizienterer Weg zur Verwaltung der Ressourcen und Infra-
strukturen der Netzbetreiber erforderlich. Der Übergang zu „alles als Software” (engl.
“Softwarization”) ist Treiber dieser Transformation, wodurch softwarebasierte, vir-
tualisierte Netzwerkfunktionen (NFV) für die speziellen Bedürfnisse eines bestimm-
ten, vertikalen Anwendungsfalles zugeschnitten werden können. Cloud-Prinzipien
und -Technologien haben daher, fast zehn Jahre später, erneut die Art und Weise,
wie Dienste entwickelt und bereitgestellt werden, weiter verändert. Das aufgekomme-
ne Konzept “Network Slicing“ ermöglicht Telekommunikationsdienstanbietern (TSP)
die Nutzung ihrer Infrastrukturressourcen zu optimieren und den Nutzern auf An-
frage verschiedene Netzwerksegmente mit zugeschnittenen Eigenschaften bereitzu-
stellen.

Diese Dissertationsarbeit spiegelt die umfangreiche Forschung des Autors wäh-
rend der vergangenen 5 Jahre wider, in der NFV-Konzepte und -Standards entstan-
den und Telekommunikationsnetze maßgeblich beeinflusst wurden. Die Designevolu-
tion, die im Zuge dieser Arbeit vorgestellt wird, begann als die Anforderungen für die
Virtualisierung von Netzwerkfunktionen von der Forschungs- und Industriegemein-
schaft beschrieben wurden. Basierend auf den bisherigen Erfahrungen des Autors
bei der Realisierung von Cloud-basierten Dienstplattformen (SDP), wird sich diese
Arbeit auf den Entwurf und die Entwicklung eines erweiterbaren NFV Manage-
ment and Orchestration (MANO) Frameworks zur Verwaltung und Orchestrierung
jeglicher Art von softwarebasierten Netzwerken fokussieren.

Der Autor, ein leitender Wissenschaftler an der Technischen Universität Berlin,
führte diese Arbeit im Rahmen mehrerer Industrie- und europäischer Forschungs-
projekte durch und betreute während dieser Zeit eine Vielzahl von Bachelor- und
Masterarbeiten. Die entwickelten Konzepte wurden umgesetzt und haben zu ver-
schiedenen Open-Source-Projekten beigetragen. Dazu gehört auch Open Baton, das
als Softwareplattform für die prototypische Entwicklung von Netzwerk und Diensten
im 5G dient. Darüber hinaus wurden die Konzepte in laufenden Forschungsprojekten
im industriellen Bereich angewandt und in diverse Testbeds integriert.





Acknowledgments

Stay hungry, stay foolish.
Steve Jobs

During the years, self-motivation has been the main driver for reaching this objec-
tive. However, each one of us, alone, is worth nothing. I would like to thank all the
people who believed in me, and who supported me.

First of all, I would like to thank Professor Magedanz for pushing me forward
with his big vision and believing in me during all these years, and also Prof. Dr.
Paolo Bellavista and Prof. Dr. Odej Kao for their support and valuable suggestions.

A special thank goes to my team, without whom it would not have been pos-
sible to reach such objective. We have started from scratch, and we have reached
the impossible. I’m really proud of you (my friends!) and please remember, im-
possible is nothing! In alphabetical order: Nico Bove, Thomas Briedigkeit, Olek
Gozman, Ahmed Medhat, Marcello Monachesi, Flavio Murgia, Philipp Kuhnz, Ra-
doslav Vlaskovski, and many others who have left or joined the team later, as well as
other colleagues at TU Berlin and Fraunhofer FOKUS who supported me anytime
(the list is too long for being expanded here!). Thanks also to Florian Ermisch for
his incredible skills in administrating our infrastructure. Thanks to Birgit Francis
and Oana Vingarzan for their support. Very very special thank to Lars Grebe,
Lorenzo Tomasini, and Michael Pauls for their superior continuous support.

Special gratitude goes also to Niklas Blum and Florian Schreiner for their initial
supervision and for being always present during these years, as well as to Dragos
Vingarzan, my mentor, always supporting my crazy ideas. Many thanks also to my
friends at CND: Alberto Diez, Jakub Kocur, Alexandru Russu, Valentin Vlad, and
all the others.

I would like to thank also people I’ve met during this journey and who helped me
enhancing my professional skills: Thomas Micheal Bohnert, Gino Carrozzo, Paolo
Crosta, Andy Edmonds, Luca Foschini, Luis Lopez, Roberto Minerva, Fatih Nar,
Prakash Ramchandran, Junnosuke Yamada, and many others.

Thanks to my in-law relatives for supporting me during these years and my best
friend Ilaria for being always present in my life. Very special thank to my sister and
my parents for giving me the possibility to become what I’m.

Finally, the most important thank goes to my wife Laura and my daughter Lena.
I could not make it without their infinite patience and love.

Giuseppe Carella





Contents

Abstract v

Zusammenfassung vii

Acknowledgements ix

Table of Contents xi

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement, and Major Keyword Definition . . . . . . . . . . 6
1.3 Key Questions Addressed by the Dissertation . . . . . . . . . . . . . 9
1.4 Scope of the Thesis and Major Contributions . . . . . . . . . . . . . 9
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 State of the Art 17
2.1 The Evolution of Network Management in Next Generation Network

(NGN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Virtualized Cloud Era . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Network Function Virtualization (NFV) . . . . . . . . . . . . . . . . 44
2.4 Future 5G Network Architectures . . . . . . . . . . . . . . . . . . . 56
2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 The Management and Orchestration for Everything (MANO4X)
Requirements and Features Analysis 65
3.1 ETSI NFV Requirements . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 List of User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3 Final List of Features Derived from User Stories . . . . . . . . . . . . 72
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 The Design Evolution of the MANO4X Framework 75
4.1 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Prototype Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Intermediate Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4 Final Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



xii Contents

5 Specification of the MANO4X Framework 105
5.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Central Domain: NFV Orchestrator (NFVO) and Message Bus . . . 107
5.3 North Domain: User Tools . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 South Domain: NFV Infrastructure (NFVI) . . . . . . . . . . . . . . 113
5.5 West Domain: VNF Manager (VNFM) . . . . . . . . . . . . . . . . . 115
5.6 East Domain: Operations Support System (OSS) . . . . . . . . . . . 116
5.7 MANO4X High-level Procedures . . . . . . . . . . . . . . . . . . . . 127
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6 Implementation of the Open Baton Framework 143
6.1 The Open Baton Framework . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Central Domain: NFVO and RabbitMQ . . . . . . . . . . . . . . . . 147
6.3 North Domain: User Tools . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 South Domain: NFVI . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5 West Domain: VNF Manager (VNFM) . . . . . . . . . . . . . . . . . 153
6.6 East Domain: Operations Support System (OSS) . . . . . . . . . . . 157
6.7 The Open Baton Bootstrapping Command Line Interface (CLI) . . . 164
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Validation and Evaluation 167
7.1 ICT Project Validation and Dissemination . . . . . . . . . . . . . . . 168
7.2 Experimental Use Case Validation . . . . . . . . . . . . . . . . . . . 174
7.3 Comparative Evaluation based on the List of Features . . . . . . . . 203
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8 Summary & Outlook 213
8.1 Resulting Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Final Evaluation of Research Questions . . . . . . . . . . . . . . . . 221
8.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Bibliography 225

List of Acronyms 245

Appendix A Author’s Publications, and Presentations to International
Events 251
A.1 Author’s Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 252
A.2 Presentations to International Events . . . . . . . . . . . . . . . . . . 257

Appendix B Relevant Information 259
B.1 Complete Example of a Network Service Descriptor (NSD) . . . . . . 259
B.2 Definition of the Main NFVO Interfaces . . . . . . . . . . . . . . . . 265
B.3 The Boostrap CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



List of Figures

1.1 Mobile Network Evolution vs Information Technology (IT) Evolution 2
1.2 Cost/Revenue Over Time . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 ETSI NFV Architecture - Simplified Version . . . . . . . . . . . . . . 5
1.4 Simplified Network Service Life Cycle . . . . . . . . . . . . . . . . . . 7
1.5 A High-Level Overview of the Environment . . . . . . . . . . . . . . 10
1.6 Overview of the Main Domains Surrounding the MANO4X Framework 11
1.7 Overview of Used Methodology . . . . . . . . . . . . . . . . . . . . . 13

2.1 NGN Architecture[45] . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 IP-Multimedia Subsystem (IMS) Architecture . . . . . . . . . . . . . 25
2.3 Historical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Cloud Models as Presented by the National Institute of Standards

and Technology (NIST) . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Cloud Computing Benefits . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Architectural Differences between Virtualization and Containerization 31
2.7 Cloud Computing Service Models . . . . . . . . . . . . . . . . . . . . 31
2.8 Cloud Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 The Open Cloud Computing Interface (OCCI) Architectural Model[69] 34
2.10 The OpenStack Logical Architecture . . . . . . . . . . . . . . . . . . 35
2.11 The Scale Cube as Presented in [82] . . . . . . . . . . . . . . . . . . 39
2.12 The TOSCA Service Template Definition[89] . . . . . . . . . . . . . 43
2.13 ETSI NFV Architecture[93] . . . . . . . . . . . . . . . . . . . . . . . 46
2.14 Graph Representation of an End-to-End Network Service (NS) . . . 48
2.15 Graph Representation of a Virtualized End-to-End NS . . . . . . . . 49
2.16 Virtual Network Function (VNF) Composition . . . . . . . . . . . . 50
2.17 VNF Instance State Transitions[94] . . . . . . . . . . . . . . . . . . . 51
2.18 Next Generation Mobile Network (NGMN) Future 5G Architectures[103] 57
2.19 The 5th Generation Mobile Communication Promotion Forum (5GMF)

Network Softwarization Architecture[104] . . . . . . . . . . . . . . . 58
2.20 5G Infrastructure Public Private Partnership (5G-PPP) Service &

Infrastructure Management and Orchestration Architecture [107] . . 59

3.1 Principal Actors and Their Interactions with the Platform . . . . . . 69

4.1 Design Process Following an Agile Methodology . . . . . . . . . . . . 77
4.2 Design Evolution Compared to the ETSI NFV one . . . . . . . . . . 79
4.3 Proposed Information Model for Describing a Service Group . . . . . 81
4.4 Proposed Architecture during the Prototype Phase . . . . . . . . . . 82
4.5 Example of the Implication of the Scale-in Operation . . . . . . . . . 85
4.6 Proposed Architecture during the Intermediate Phase . . . . . . . . . 88



xiv List of Figures

4.7 Message Queue Configuration . . . . . . . . . . . . . . . . . . . . . . 90
4.8 Service Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.9 Service Topology Instance . . . . . . . . . . . . . . . . . . . . . . . . 92
4.10 On-Boarding Service Packages on MANO4X Framework . . . . . . . 93
4.11 High-Level View of a Service Topology . . . . . . . . . . . . . . . . . 94
4.12 Mapping between the ETSI NFV Architecture and the MANO4X

Intermediate Version . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.13 Overview of the Main Domains Composing the MANO4X Framework 101

5.1 MANO4X Framework Functional Architecture . . . . . . . . . . . . . 106
5.2 Virtualized Infrastructure Manager (VIM) Driver Mechanism . . . . 114
5.3 VNFM Architectural Models . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Network Service Life Cycle . . . . . . . . . . . . . . . . . . . . . . . 128
5.5 Virtualized IMS (vIMS) reference use case . . . . . . . . . . . . . . . 130
5.6 VIM Driver Registration Procedure . . . . . . . . . . . . . . . . . . . 131
5.7 VNFM Registration Process . . . . . . . . . . . . . . . . . . . . . . . 132
5.8 OSS Event Endpoint Registration Process . . . . . . . . . . . . . . . 133
5.9 Point of Presence (PoP) Registration Process . . . . . . . . . . . . . 133
5.10 NSD Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.11 VNF States and Transitions . . . . . . . . . . . . . . . . . . . . . . . 137
5.12 Activity Diagram Describing the Instantiate Life Cycle . . . . . . . . 137
5.13 Sequence Diagram Showing the Instantiate Life Cycle Operations . . 138
5.14 Sequence Diagram of the OSS - Uni-directional Category . . . . . . . 140
5.15 Sequence Diagram of the OSS - Bi-directional Category . . . . . . . 140

6.1 Open Baton High Level Architecture . . . . . . . . . . . . . . . . . . 145
6.2 Open Baton Dashboard - Overview Page . . . . . . . . . . . . . . . . 149

7.1 NUBOMEDIA Platform as a Service (PaaS) Architecture . . . . . . 171
7.2 SoftFIRE Functional Architecture . . . . . . . . . . . . . . . . . . . . 172
7.3 The 5G Playground high-level architecture . . . . . . . . . . . . . . . 173
7.4 Performance Measurements of the Virtualized EPC (vEPC) Deploy-

ment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.5 Performance Measurements of the Network Slicing Scenario . . . . . 181
7.6 Emulated Measurement Results for Scenario-1 . . . . . . . . . . . . . 183
7.7 Emulated Measurement Results for Scenario-2 . . . . . . . . . . . . . 184
7.8 Web Service Network Service . . . . . . . . . . . . . . . . . . . . . . 184
7.9 Measurement Results of NFVO-centric Web Server Scenario . . . . . 186
7.10 Measurement Results of the VNFM-centric Web Server Scenario while

Scaling Out a single Virtual Network Function Component (VNFC)
Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.11 Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out five VNFC Instances . . . . . . . . . . . . . . . . . . . . 187



List of Figures xv

7.12 Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out a single VNFC Instance with the Pool Manager . . . . . 188

7.13 Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out five VNFC Instances with the Pool Manager . . . . . . . 189

7.14 Measurement Results of the Third Web Server Scenario . . . . . . . 190
7.15 ’Central Processing Unit (CPU) idle time’ of the two Home Sub-

scriber Server (HSS) VNFC Instances, and related Scaling Out and
In Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.16 Detailed View of the Scale Out Procedure . . . . . . . . . . . . . . . 192
7.17 Detailed View of the Scale In Procedure . . . . . . . . . . . . . . . . 193
7.18 Performance Measurements of the First Fault Management System

(FMS) Testing Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.19 Performance Measurements of the Second FMS Testing Scenario . . 195
7.20 Performance Measurements of the Third FMS Testing Scenario . . . 196
7.21 Measurements Results of the FMS Latency . . . . . . . . . . . . . . 197
7.22 Comparison between the Juju VNFMs and the Generic VNFM . . . 200
7.23 Overview of the Results of the Execution of the Jenkins Pipeline . . 203
7.24 Open Source MANO (OSM) High-Level Architecture[177] . . . . . . 206
7.25 OpenStack Tacker High-Level Architecture[178] . . . . . . . . . . . . 207
7.26 Open Network Automation Platform (ONAP) High-Level Architecture[181]208

8.1 The Institute of Electrical and Electronics Engineers (IEEE) SDN
Catalog of Toolkits and Testbeds . . . . . . . . . . . . . . . . . . . . 216

8.2 Open Baton Website Statistics . . . . . . . . . . . . . . . . . . . . . 217
8.3 Open Baton Stand at the Canonical Booth during the Mobile World

Congress (MWC) 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.4 Open Platform for NFV (OPNFV) Test Results Executing Orchestra

Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.5 Summary Answers to the Key Research Questions of this Dissertation 222





List of Tables

4.1 Lifecycle phases during the deployment phase . . . . . . . . . . . . . 95
4.2 Mapping between the ETSI NFV Information Model and the Inter-

mediate one Proposed in this Thesis . . . . . . . . . . . . . . . . . . 98
4.3 Mapping between ETSI NFV and MANO4X Intermediate Architecture100

5.1 Content of the VNF Dependency . . . . . . . . . . . . . . . . . . . . 138

6.1 Different Components, Their Programming Languages, and Their
GitHub Project Names . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Mapping between Or-Vi-rpc/Vnfm-Vi-rpc Interface and OpenStack
Application Programming Interface (API) Calls . . . . . . . . . . . . 152

6.3 Mapping between the Open Baton and Juju Information Model . . . 156
6.4 Proposed Quality of Service (QoS) Policies Classes . . . . . . . . . . 162

7.1 Mapping between the Use Cases Presented and the Set of Features
under Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2 Virtual Link Quality per Network Service / VNF . . . . . . . . . . . 180
7.3 Overhead Introduced by the FMS while Executing a Switch to Standby

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.4 Measurements Points . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.1 Representational State Transfer (REST) APIs Exposed by the NFVO
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

B.2 Virtual Network Function Descriptor (VNFD) REST APIs Exposed
by the NFVO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.3 REST APIs Exposed by the NFVO . . . . . . . . . . . . . . . . . . . 266
B.4 REST APIs exposed by the NFVO . . . . . . . . . . . . . . . . . . . 267
B.5 REST APIs Exposed by the NFVO . . . . . . . . . . . . . . . . . . . 267
B.6 REST APIs Exposed by the NFVO over the Or-Oss Reference Point 269
B.7 Reference Point Or-Vi-rpc/Vnfm-Vi-rpc . . . . . . . . . . . . . . . . 270
B.8 Reference Point Vi-Mon . . . . . . . . . . . . . . . . . . . . . . . . . 271
B.9 Operations Exposed over the Or-Vnfm Interface . . . . . . . . . . . . 272
B.10 Operations Exposed over the Or-Vnfm-rest Interface . . . . . . . . . 273





Chapter 1

Introduction

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement, and Major Keyword Definition . . . . 6
1.3 Key Questions Addressed by the Dissertation . . . . . . . 9
1.4 Scope of the Thesis and Major Contributions . . . . . . . 9
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Context and Motivation

The continuous evolution of ICT technologies is paving the way towards a radical
transformation on how telecommunication services are currently managed. The in-
troduction of all-Internet Protocol (IP)-based NGN reduces network infrastructures
to a composition of multiple network functions collaborating together for providing
feature-rich communication services to end users. At the beginning of this work
classical NGN infrastructures were comprised of diverse Network Functions (NFs)
implemented as monolithic hardware appliances and designed in a certain way for
providing a desired functionality for a specific vertical domain.

The concept of software-based networks appeared since the seminal work on
programmable networks and mobile code started with the introduction of Java in
1995. “All a user will have to do is go to the C prompt and type ’Java OS,’ which
will bring up the HotJava Web browser and the HotJava views,” mentioned Alan
Baratz, president of JavaSoft, who defined this as the first software-based network
[1][2][3].

Those NFs, also defined as network nodes, are functional building blocks within a
network infrastructure, having well-defined external interfaces and well-defined func-
tional behavior [4]. After some interesting experiences about network programma-
bility, like active networks [5] and intelligent networks [6], the transition towards
“everything as a software” , and in particular the possibility of being able to control
network capabilities offered by those NFs via defined APIs, gained the attraction of
major network operators and academic institutes that, back in 2011, launched the
Open Networking Foundation (ONF) fostering the possibility of defining protocols
for allowing dynamic control of network resources [7], namely SDN.

From a technical perspective, this transition towards “everything as a software”
was primariliy enabled by the introduction of cloud computing technologies. In fact,



2 Chapter 1. Introduction

the evolution of telecommunication networks has always been influenced by the par-
allel evolution within the ICT domain as shown in fig:evolution. Virtualization, the
key enabler technology in cloud computing, gained momentum in the ICT domain
providing cost-efficient means for ICT and Over-The-Top (OTT) communication ser-
vices infrastructure consolidation [8]. Certainly, virtualization of hardware resources
not only reduces infrastructure costs, but also improves time for provisioning new
resources and increases flexibility in management operations.
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Figure 1.1: Mobile Network Evolution vs IT Evolution

On the one hand, the requirement of always being able to cope with the in-
creasing number of users’ demands is transforming operators in just dumb pipe
providers while OTT communication service providers are gaining momentum uti-
lizing network operators’ resources and infrastructures in a more efficient way [9].
On the other hand there is an increasing number of requirements coming from the
5th Generation Mobile Telecommunications addressing the demands and business
contexts of 2020 and beyond. Telecommunication Service Provider have urgent
needs in transforming their network infrastructures, especially for accommodating
the requirements of the approach of “everything is fully connected” , providing al-
ways much greater throughput and much lower latency, with high-availability and
higher connectivity density[10]. Furthermore, “commoditization” represents the way
operators are trying to reduce the gap between revenues and capital spending. This
transformation could at least slow the negativity, which is, in return, also placing
some limits on capital spending towards vendors’ equipment. All in all, what TSPs
are targeting is to simplify the way NFs are managed and orchestrated, especially
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lowering costs of the infrastructure used for executing them.
A large number of NSs, defined as a composition of NFs, are nowadays provided

to end users via network operators’ infrastructures. Thus, to maintain the desired
level of Service Level Agreement (SLA) also in case of high peak situations, oper-
ators’ infrastructures are usually over-provisioned, sometimes by an order of mag-
nitude, generating low resource utilization rate during typical times. The situation
is that an increasing number of TSPs are entering a phase in which infrastructure
costs required to cope with the growing traffic demand are not sustainable any-
more by the gradient of revenue increases (as shown in Figure 1.2), and, therefore,
a radical transformation is required in order to invert this trend and decrease the
revenue gap [11]. This is mainly due to the fact that traditional telecommunication
infrastructures are very intensive in hardware. Therefore, costs for maintaining such
infrastructures are very high.

Time

Cost/Revenue

Inflection	Point

Figure 1.2: Cost/Revenue Over Time

This transformation is very much influenced by the software-defined era. TSPs
are forced to adapt to novel paradigms shifting the focus from harwdare to software
[12]. Hence, if elastic resource provisioning is desirable for best-effort service delivery
models, elastic scalability is definitely crucial for QoS/SLA sensitive services, such
as most telco services[13][14]. Therefore, these technologies and trends are critically
important for reducing Capital Expenditures (CAPEX) and Operating Expenditure
(OPEX) in TSPs infrastructures and justifying the Return on Investment (ROI) for
virtualizing it [15].

Network management plays a critical role for achieving this transformation. Net-
work management is definitely not a novel paradigm. Since the early availability
of distributed systems over large networks, TSPs started defining standard inter-
faces and protocols for managing network devices, with the general objective of
meeting real-time, operational performances and guaranteeing QoS at a reasonable
cost. Network management involved a set of operations applied to the life cycle of
a network component.

Orchestration, a term broadly used in the cloud domain[16], has lately also been
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applied in the context of network management. Basically, the telecommunication
service domain started a transition towards a different way of building networks,
getting closer to what the ICT domain has been doing over the last decade, i.e.,
providing services as composition of multiple software components. Considering
the large advances in software design and development achieved in the ICT do-
main, the TSPs started adopting those new technologies and applying those novel
architectural principles to their NGN infrastructures while moving towards the lat-
est generation of mobile networks. Although a significant amount of research was
conducted in the ICT domain, the elastic provisioning of 3rd Generation Mobile
Telecommunications (UMTS, CDMA2000) (3G)/4th Generation Mobile Telecom-
munications (LTE, WiMAX) (4G) network functions was widely unexplored and
still a challenging issue for the telecommunication domain[13]. Most of the solu-
tions presented were either analyzing state of the art in network virtualization[17]
or proposing basic concepts for virtualizing specific network functions[18][19][20][21],
without considering important characteristics like elasticity and flexibility offered by
cloud computing technologies.

Nevertheless, back in 2012, with the great success of cloud computing and vir-
tualization technologies, a rather large group of operators and vendors published
a white paper [22], paving the way to a new Industry Specification Group (ISG)
group created by ETSI with the scope of defining an architecture for the develop-
ment of virtual network infrastructures by porting and further adapting NFs to the
specific cloud environment. Figure 1.3 shows a simplified version of the architecture
presented by the ETSI NFV group.

Migrating standard 3G/4G functions, such as the 3rd Generation Partnership
Project (3GPP) Evolved Packet Core (EPC) and the 3GPP IMS, from dedicated
hardware-based appliances to software-based artifacts requires the transformation of
network operators’ infrastructures towards multisite cloud-based datacenters built
on top of commodity hardware.

As a first step in order to achieve this objective, those NFs have to be redesigned
to fulfill the requirements of a highly flexible and dynamic environment. In partic-
ular, they will need to support elasticity considered one of the major characteristics
introduced by cloud computing, but maintain, and further improve, the perfor-
mances reached with previous dedicated hardware solutions. Novel principles like
microservices architectures and cloud-native applications should be adopted for de-
signing highly scalable network services. Nevertheless, the transformation towards
cloud-based multisite infrastructures requires the introduction of novel management
and orchestration paradigms allowing a more efficient allocation of resources on an
on-demand schema on such distributed infrastructures.

The requirement of moving processing power, and particularly data, towards
the edge of the network for reducing latency between users and services, foreseen by
the work conducted in the context of Mobile Edge Computing (MEC) [23] required
in future 5G network infrastructures, requires a novel distributed environment, in
which some of the sites maybe implemented with lightweight hardware equipment
on the edge nodes. The industry-standard servers and cloud computing technologies
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Figure 1.3: ETSI NFV Architecture - Simplified Version

represent two of the most important enablers for this transformation process [24].

Therefore, the path forward is clear: A radical change of the operators’ network
infrastructures is required in order to support this huge transformation, otherwise
the chances to reduce revenues will be very low. NFV and SDN trends represent
important enablers for restructuring operators’ networks.

In particular, NFV proposes a new set of components part of the MANO domain,
differing from legacy network management approaches providing a more flexible
solution for incorporating different vendors’ solutions reducing time-to-market of
new network functions. Those novel MANO components are crucial for bringing
the desired flexibility in NGN infrastructures, thus, most of the TSP are moving
towards this architecture using a bottom-up approach. First of all, they need to
virtualize their infrastructure, secondly they have to identify the required MANO
components for simplifying the management of their networks’ life cycle.

As a result, different competitive solutions are under development leveraging
the power of open source to foster innovation in the telecommunication industry to
provide an environment which could answer to those research challenges envisioned
by the industrial and academic communities.



6 Chapter 1. Introduction

1.2 Problem statement, and Major Keyword Definition

The above described evolution outlines several research challenges and imposes a
transformation of operators’ network infrastructures. Management and orchestra-
tion of network services is considered one of the major challenges due to the complex-
ity that is introduced by network functions implemented as software components.
The more NFs are decomposed in micro services, the more complex is the task of the
MANO framework to manage their complete life cycle, also due to the heterogeneity
of the management systems used for controlling them individually.

Focusing on the telecommunication domain, managing networks has always been
a nontrivial task. Back in 1996 Saydam and Magedanz provided a comprehensive
definition of network and service management in a Journal about Network and
System Management [25]:

“[...] Network management involves the deployment, integration and co-
ordination of all the hardware, software and human elements to monitor,
test, poll, configure, analyze, evaluate, and control the network and ele-
ment resources to meet the real-time, operational performance and QoS
requirements at reasonable cost. Service management involves the cre-
ation, access, usage, and management of value-added services using the
logical, virtual, and physical network resources and the network man-
agement systems. The separation of service, service management, and
network resources is crucial in creating open, transparent, and reconfig-
urable services [...]”

Such definition highlights the importance of separating services and networking
resources. The challenge for NFV is that a new management model must pro-
vide efficiency across an entire set of software stacks. Functions that have usually
been implemented as monolithic hardware-based solutions, have to be redesigned
as VNFs following a cloud-native approach and microservices principles. Further-
more, the split of the software elements from the hardware components introduces
an additional level of uncertainty, requiring new mechanisms for ensuring QoS and
SLAs expected from such services. What the ETSI NFV ISG appears to aim for is
the creation of a network management model that plugs into current network man-
agement systems and OSSs/Business Support Systems (BSSs) by offering interfaces
from/to NFV processes and elements.

In effect, this means that from the end user perspective, a VNF, or a complex
composition of individual VNFs defined as NS, emulating the behavior of a physical
appliance (like a firewall), would be a virtual form of that physical device and be
managed in the same way. While this approach would address the stated goal of
exploiting virtualization, it also suggests that overall service deployment and man-
agement practices would change little as NFV is deployed. That makes it difficult
to secure major changes in operating efficiency or service agility. Very recently the
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ETSI NFV ISG identified some priorities that should be addressed for fulfilling the
requirements of future 5G networks, published as a white paper in February 2017.
One of the major priorities has been identified in the end-to-end Service Manage-
ment [26]:

“One of the key challenges that must be addressed is the definition of a
complete management and orchestration framework. Such a framework
should exploit and leverage NFV features (e.g., on-demand instantiation
and scaling of VNFs) together with additional automated network capa-
bilities for guaranteeing reliability and service assurance. Coordination
among a) resource-oriented management tasks performed by MANO, and
b) Fault-management, Configuration, Accounting, Performance, and Se-
curity (FCAPS) management of network application is needed. [...]”

Management and orchestration is still considered a critical challenge for ensuring
reliability and guaranteeing the desired level of Quality of Experience (QoE) to the
end users. Moreover, the ETSI NFV ISG identified the need of coordination between
MANO functions handling the NS deployments and OSSs addressing aspects defined
by the FCAPS model introduced several years ago by the International Organization
for Standardization (ISO)[27]. Figure 1.4 shows a very simplified view of the NS
life cycle. Typically TSPs deploy their NSs for serving end customers over a rather
certain period of time. For instance, considering the mobile core network use cases,
TSPs are deploying necessary NS for serving end customers for at least a couple of
years. Moving towards a fully virtualized environment, the expectation is to reduce
the deployment process defined as the period from the selection of the required
NS up to the actual activation, from months to minutes. This means that the
deployment phase may impact less than 1% of the overall life cycle. Therefore,
correctly handling the state of the NS over the runtime phase becomes crucial for
maintaining the appropriate QoS towards end users.

Network	Service	LifecycleDeployment	
Request

Unexpected	
Fault

Deployment Runtime
~	1%

NS	
deployed

NS	
disposal

Scaling	
in/out

Upgrade	
VNF

Security	
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Figure 1.4: Simplified Network Service Life Cycle

Furthermore, NFV proposes an architecture where the separation of roles be-
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tween the VNF Function Provider (VNFP), the TSP, and the NFVI Provider
(NFVIP) is pretty much clear. This implies a different approach in the way NS
are provisioned. The TSP interacts with the NFVIP for building up the required
NFVI. The VNFP provides VNFs to the TSP in a portable form, typically a pack-
age, on boarding them in their MANO framework[28]. The TSP composes complex
network service topologies wiring together multiple VNFs, and executes the auto-
mated deployment procedure. The deployment may require the execution of several
tasks involving heterogeneous technologies.

Service provisioning and deployment is not a novel topic for the ICT domain.
However, most of the existing technologies are not considering the clear separation
between the VNFP and the Service Provider (SP), requiring a TSP to define also
the management plan of the composed service [10], including details about low-
level operations (i.e., installation procedures) that need to be executed for each
individual VNF. Those details are typically known only by the VNF developer,
making much more complicated the role of the TSP whose objective is to deploy
the end-to-end network service. What is actually required by a TSP is a MANO
framework providing an inventory of the available VNFs and their capabilities, and
providing mechanisms for composing them in the end-to-end NS.

Although there are no doubts about the fact that the virtualization trend, better
definable as cloudification, is the way to go for simplifying management operations,
at the same time, a huge transition towards open source solutions started in differ-
ent telecommunication-oriented domains. Based on a recent survey conducted by
Gigaom Research involving around 600 North American operators (300 enterprises
and 300 service providers), 95% view open source SDN and NFV technologies pos-
itively as they allow fast prototyping of new functionalities without requiring huge
investments in hardware and software components [29]. However, back in 2013, im-
plementing a NFV compliant solution was a not so trivial task due to the lack of
maturity of the specifications provided by the ETSI NFV ISG not yet ready with
the normative work.

Nowadays the situation is becoming a bit uncontrollable: There are many open
source solutions trying to solve the same problem and sometimes they are not com-
patible with each other due to the fact that they are based on proprietary informa-
tion models and interfaces due to the lack of maturity of the respective standards
when those projects were started. Furthermore, for TSPs interoperability among the
different solutions is a crucial aspect: Axel Clauberg, VP of aggregation, transport
and fixed access at Deutsche Telekom AG, coined the term “zoo of orchestration”
at a big telecom event referring to the proliferation of incompatible NFV and SDN
implementations [30]. Creating new silos is exactly what TSPs do not want be-
cause, although they may be open source, it will transform just into a new set of
scenario-specific solutions.

On the one hand, current solutions available in the open source ecosystem are
still focusing on aspects related to the deployment and configuration of NSs without
considering aspects related to the FCAPS model. On the other hand, most of
the scientific work already conducted focuses mainly on specific research challenges
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providing solutions validated with simulators, without considering the complexity
of a real environment.

What is actually needed is a framework capable of i) managing heterogeneous
resources at the infrastructure level, and ii) providing a unified model for orchestrat-
ing heterogeneous software-based networks throughout their life cycle, including the
runtime phase. Such framework should be designed for being further extended and
customized for the needs of a particular use case, and should maintain compatibility
with the standardization work for allowing interoperability between other existing
open solutions.

1.3 Key Questions Addressed by the Dissertation

Therefore, the main objective of this thesis is to design and implement an extensi-
ble and customizable framework for the management and orchestration of emerging
software-based networks. It should support heterogeneous types of VNFs and or-
chestrate their life cycle on top of a distributed NFV-based infrastructure in order
to satisfy the requirements of a particular vertical domain (Internet of Things (IoT),
automotive, e-health, etc.).

Hence, the main aim of this work is to answer the following main research ques-
tion: How to design an extensible and customizable open source Network
Function Virtualization (NFV) Management and Orchestration (MANO)
compliant framework supporting heterogeneous vertical domain require-
ments on a multisite NFV Infrastructure (NFVI)?

The secondary research questions derived as aspects of the main research ques-
tion are:

• Q1: How to design a framework for end-to-end managing and orchestrating
the whole life cycle of network services?

• Q2: How to ensure Quality of Service (QoS) and Service Level Agreement
(SLA) levels required by Next Generation Network (NGN) throughout their
life cycle fulfill the requirements of the FCAPS model?

• Q3: How to develop such framework for being further extended and cus-
tomized by an open community?

1.4 Scope of the Thesis and Major Contributions

With the radical transformation towards software-based network infrastructures ini-
tiated by some of the tier one operators, it is clear that there are several assumptions
underlying the work of this thesis.

First of all, the adoption of those new technologies will require a transformation
of the network operators’ infrastructures.

Even though scalability represents one of the major benefits introduced by the
virtualization of network infrastructures, it is clear that such framework can only



10 Chapter 1. Introduction

provide generic functionalities for supporting scalability operations, and it is the
task of the VNFP to define scalability mechanisms at the network service level.

To answer the research questions presented above, the scope of this thesis is
focused on the MANO domain, providing the design evolution and implementation
process of a framework named MANO4X, compliant with the most relevant stan-
dards in the domain, and capable of fulfilling the requirements of network service
virtualization and life cycle management. A particular care will be given to require-
ments of network functions constituting future 5G software-based networks. The
heterogeneity of the multisite infrastructure will be a key element driving the de-
sign of the solution, particularly devoted to maintaining the level of required QoS
expected by those virtualized network services.

Therefore, the author proposes the concept of “event-based orchestration” as a
major contribution while designing the MANO4X framework, combining several
novel design paradigms for distributed applications, like microservices and cloud-
native applications, with classical approaches like Model View Control (MVC) and
SOA, maintaining compatibility with the proposed ETSI NFV architecture and
information model. Events can be of any type, either generated by humans or
by other active components of the system. Figure 1.5 provides a very high-level
overview of the environment in which the MANO4X framework plays a central role
across different horizontal layers.
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Figure 1.5: A High-Level Overview of the Environment

At the bottom there are physical resources providing computing and networking
capabilities. In the middle, cloud computing technologies play an important role
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abstracting the physical layer using virtualization technologies. At the top, VNFs
(individually exposed through a catalog to the TSP) are composed together in the
end-to-end network service required for fulfilling the specific needs of a particular
vertical domain. The MANO4X framework orchestrates resources at the three dif-
ferent layers, upon requests executed by the TSP via user tools. During runtime
the MANO4X framework coordinates with OSSs for modifying the network service
composition in order to maintain the desired QoS level.

The different elements comprising the proposed MANO4X architecture have
been categorized in four main surrounding domains which should interact with the
central one. The MANO4X framework realizes life cycle management of the network
services through the core functional elements of the central domain, orchestrating
events generated across the four different domains. Figure 1.6 shows the high-level
overview of the different domains identified in the scope of this dissertation.

Virtual 
Network 

Functions

Operational 
Support 
Services

NFV 
Infrastructure

User Tools
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Figure 1.6: Overview of the Main Domains Surrounding the MANO4X Framework

The central domain represents the core of the MANO4X framework, comprising
components providing brokerage functionalities between the events received from
the northbound domain, typically user-driven, and the ones generated by the other
three domains (eastbound, westbound, and southbound) typically generated by com-
ponents contributing to the life cycle management of the end-to-end service.

The proposed framework abstracts the view portion, what users actually see and
interact with, exposed via a northbound domain comprising user tools (CLI, Sofware
Development Kit (SDK) or a web-based dashboard) consuming APIs hiding the com-
plexity of the internal orchestration logic, executing life cycle management. In the
backend, following microservices principles, each individual component is activated
only based on the requirements of a particular use case. This way also the design
and development of a particular component providing specific functionalities for a
particular scenario could be done independently, and plugged into the framework
only if needed.

The southbound domain represents the NFVI comprising heterogeneous sites -
those being central clouds, MEC nodes, or even FOG devices. The commonalities
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between those infrastructures are that they all offer compute, storage, and network-
ing resources as atomic elements. Typically, this domain is comprised of several
kinds of Infrastructure as a Service (IaaS) technologies exposing different interfaces
for the control of the provided resources. One of the major components belonging
to this domain is the Cloud Management System (CMS), also defined as VIM in the
ETSI NFV specification, which provides an interface for the on-demand provisioning
of those atomic resources. The proposed framework should be able to manage the
execution of any kind of compute resources, those being virtual machines, containers,
or bare metal, and connect them using any kind of overlay networking technology,
also SDN-based.

The westbound domain corresponds to the VNF domain. It is the most critical
domain for supporting heterogeneous vertical use cases and satisfying interoperabil-
ity across VNFs provided by different vendors. The ETSI NFV architecture already
decouples the network service life cycle management from the VNF life cycle man-
agement making use of the VNFM functional entity. Although this logical separation
exists as a native separation, MANO4X should support the possibility of incorpo-
rating on demand additional VNFMs in a plug-and-play fashion, and accommodate
different kinds of VNFMs (either specific or generic).

Last but not least, the eastside domain comprises elements usually belonging to
the OSS (and consequently BSS) domain contributing to the overall life cycle of the
end-to-end network service. Particularly, OSS elements contribute to the runtime
phase of the network service execution, ensuring that the aspects defined by the
FCAPS model are guaranteed along the overall service life cycle.

The final solution proposed can be considered an extensible1 and customizable2

NFVMANO-compliant framework in which different elements could be combined for
satisfying the particular requirements of a set of very heterogeneous use cases, being
the deployment of the 3GPP EPC on a typical NFVI environment (i.e., OpenStack-
based), or the deployment of the 3GPP IMS on top of a MEC node (i.e., container-
based).

Open Baton represents the reference implementation of the proposed solution.
“Open” because of the openness of the solution, considering the major objective of
this work to release the source code openly to the community, while “Baton” because
of the similarities between the music domain and the orchestration domain: As the
director needs the baton while managing an orchestra of musicians for playing a
particular song, so the administrator needs a tool for managing different VNFs to
execute a particular network service.

1Extensible without major changes to its architecture and with minimal development efforts.
2Customizable for a particular scenario through specific configurations, without requiring mod-

ification to the architecture and its implementation.
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1.5 Methodology

In order to achieve the results of the work presented in this dissertation, an iterative
agile approach based on the Scrum [31] methodology has been performed. The
work conducted during this research work has been organized in major releases of a
duration of six months, comprising several minor release cycles (sprints in the scrum
terminology) of a duration of around two weeks each. Each major release iterated
over the architectural solution based on the results of a prototype implementation
utilized for validating the design decisions taken in the previous phase. This iterative
approach allowed the definition of an always evolving functional architecture, which
was validated by several proofs of concept in the context of running large research
project collaborations. The initial major release cycle, named the prototype phase,
started back in 2012. An overview of the methodology that will be used in this
thesis is presented in Figure 1.7.
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Figure 1.7: Overview of Used Methodology

Considering the iterative agile approach taken for the realization of this research
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work, it is important to clarify that the inputs coming from different sources (either
standardization activities or advances in open source technologies related to this
topic) have always evolved. In practice:

1. A requirement analysis of the major stakeholders (TSPs, VNFPs, and in-
frastructure providers) as well as a thorough analysis of state-of-the-art and
future trends on the topics addressed by this thesis (network management,
cloud and virtualization technologies, and NFV), have driven the design and
specification of the proposed architecture. Nonfunctional aspects like flexibil-
ity, extensibility, and customizability contributed to the final version of the
proposed MANO4X framework.

2. One of the most relevant influences is the current virtualization trend initi-
ated by SDN and NFV. Virtualization is paving the way to software-based
network services running on top of commodity hardware-distributed infras-
tructures. This trend provides promising OPEX and CAPEX reductions as
well as improved agility in network management operations. ETSI NFV and
SDN standardization are playing an important role in defining a common ap-
proach.

3. Standardization as well as open source activities in the context of NFV served
as influences for the work conducted in this thesis, considering that the align-
ment to standards, and also standard de facto, is foreseen as one of the major
requirements. Other open source solutions, especially the ones claiming com-
pliance with the ETSI NFV architecture, have also been analyzed as influences
and finally compared to the proposed designed framework.

1.6 Overview

The rest of the thesis is structured in additional seven chapters as follows.
Chapter 2 – State of the Art provides an overview of the classical network man-

agement approaches, and orchestration technologies and specifications that are rele-
vant for the work conducted in this thesis. In particular, a thorough analysis of the
cloud computing domain as well as the Network Function Virtualization one will be
provided. Furthermore, relevant research work is also considered.

Chapter 3 – The MANO4X Requirements and Features Analysis lists and dis-
cusses requirements gathered from different stakeholders in the research scope of
this thesis.

Chapter 4 – The Design Evolution of the MANO4X Framework presents the
design process of the MANO4X framework as an evolutionary process, presenting
the ideas and concepts developed at the early beginning of this research work, and
adapted towards the final version of the presented architecture.

Chapter 5 – Specification of the MANO4X Framework describes the design and
specification of the MANO4X framework, providing a deep overview of the designed
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mechanisms and interfaces. A definition of the functionalities provided by the dif-
ferent components is also provided.

Chapter 6 – Implementation of the Open Baton Framework exposes the imple-
mentation details of the implemented Open Baton framework. This chapter provides
a detailed view about the selected technologies and software artifacts used for im-
plementing the MANO4X Framework.

Chapter 7 – Validation and Evaluation shows some validation scenarios focusing
on the achieved results of the implementation. Details about the evaluation scenarios
are given, mainly focusing on those conducted in the context of large research project
collaborations.

Chapter 8 – Summary & Outlook concludes the work with a summary, high-
lighting open research directions.
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The continuous evolution of ICT technologies is paving the way towards a radi-
cal transformation of how telecommunication services are currently managed. The
evolution towards all-IP-based NGN reduces network infrastructures to a composi-
tion of multiple network functions collaborating together for providing feature-rich
communication services to end users. Typically, classical NGN infrastructures com-
prised diverse network functions implemented as monolithic hardware appliances,
and connected in a certain way for providing a desired functionality that the network
is designed to provide.

On the one hand, network management is definitively not a novel paradigm.
Since the early availability of distributed systems over large networks, TSPs started
defining standard interfaces and protocols for managing network devices, with the
general objective of meeting real-time, operational performances and QoS at a rea-
sonable cost. Network management involved a set of operations applied to the life
cycle of a network component.

On the other hand, orchestration is a term broadly used in the IT domain[16], in
particular with the arising interest about cloud computing technologies. Orchestra-
tion is often discussed in the context of SOA with the main objective of automating
system deployments[32].

With the radical transformation currently happening in TSPs’ infrastructures,
classical NGN NFs are decomposed in hardware and software components with the
break-through of cloud computing technologies driven by the virtualization con-
cepts. The great success of cloud computing technologies attracted TSPs that saw
the possibility of reducing CAPEX and OPEX while moving towards a horizontal
infrastructure where hardware components are based on common architectures.

Decoupling network functions into software and hardware components repre-
sents one of the major changes for TSPs that have been used to interoperate with
monolithic network functions provided by vendors as black boxes. One of the ma-
jor aspects of this transition is that network functions that were previously mainly
implemented on dedicated hardware, have to be developed as software components
running on common hardware infrastructure[33].

Basically, the telecommunication domain started a transition towards a different
way of building networks, getting closer to what the IT domain has been doing
since its inception, meaning providing services as composition of multiple software
components, and automating their life cycle management. Considering the large
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advances in software design and development achieved in the IT domain, the TSPs
started adopting technologies and architectural principles and applying them to
their NGN infrastructures.

This work focuses on designing a framework for managing and orchestrating
software-based networks exploiting virtualization technologies provided by cloud-
based IaaSs. Thus, this work intends to provide an extensible and customizable
framework that could be used for managing and orchestrating network services
across heterogeneous cloud-based infrastructures, maintaining compatibility with
the ETSI NFV reference architecture.

Therefore, this chapter introduces the concept of network management starting
from the classical model, moving towards IT-oriented service orchestration, exposing
design principles for managing and orchestrating large scale distributed systems.
Furthermore, an extensive overview about the ETSI NFV standardization activities
is given, considering the relevance of this standard for the final design of the proposed
framework.

2.1 The Evolution of Network Management in Next Gen-
eration Network (NGN)

Management is a very broad term applied to several domains of our society, including
business, computing, and medicine1. The simplest definition of management, mainly
applied to the business domain, is given by “businessdictionary” as the organization
and coordination of the activities of a business in order to achieve defined objectives2.
The “What” is being managed, and the “How” management operations are executed,
these are the key factors for further reducing this general definition.

Focusing on the telecommunication domain, managing networks has always been
a nontrivial task. According to Gartner3, Network Management comprises “[...] ap-
plications designed to isolate and resolve faults on the network, measure and opti-
mize performance, manage the network topology, track resource use over time, ini-
tially provision and reconfigure elements, and account for network elements. Suites
that include fault monitoring and diagnosis, provisioning/configuration, accounting,
performance management, and Transmission Control Protocol (TCP)/IP applica-
tion management — but only for networks — are also included here. This network
management segment is intended for products that are mainly or entirely network-
oriented and used primarily by enterprises [...]” .

Another important definition was given by Saydam and Magedanz in 1996 in a
Journal about Network and System Management [25]: “[...] Network management
involves the deployment, integration and coordination of all the hardware, software
and human elements to monitor, test, poll, configure, analyze, evaluate, and control
the network and element resources to meet the real-time, operational performance

1https://en.wikipedia.org/wiki/Management(disambiguation)
2http://www.businessdictionary.com/definition/management.html
3http://www.gartner.com/it-glossary/network-management/
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and QoS requirements at reasonable cost. Service management involves the creation,
access, usage and management of value-added services using the logical, virtual and
physical network resources and the network management systems. The separation
of service, service management, and network resources is crucial in creating open,
transparent and reconfigurable services [...]” .

The term network management is typically associated to the process of admin-
istering and managing the computer networks of one of many organisations. Al-
though network management is a subset of system management, network manage-
ment principles have influenced quite a lot the progresses in the system management
domain[34]. Initially, in the ICT domain, networks were small and most of the time
local. The job of a network administrator was mainly related to the installation
and configuration of Personal Computers (PCs) and devices for serving the needs of
a particular organization. Since the early days the process of managing a network
infrastructure has been critical for guaranteeing certain levels of QoS for connected
users. This definition underlines the fact that network management is broadly used
for identifying a set of hardware and/or software tools, namely Network Management
System, allowing network administrators to supervise the individual components of
a network infrastructure.

The evolution towards NGN infrastructures paved the way to a different way of
managing networks, dealing with network functions as services exposing standard-
ized interfaces and communicating over the network. Moreover, the convergence
towards an all-IP- based infrastructure as well as the transition towards “everything
as a software” paved the way to an ICT-like approach for managing distributed
systems. Furthermore, automating the process of coordinating and managing those
distributed systems, typically referred to as orchestration4, implies the transition
towards a different set of architectures and solutions.

To limit the scope of this thesis, the focus is set on management of software-based
network functions. Differentiating between “what” is being managed in a network
infrastructure represents a crucial aspect for limiting the scope of this research work.
It is clear that there should be a distinction between network management, as it was
initially conceived, and network function management and orchestration as per the
more recent advances within the ICT domain and the telecommunication domain
as introduced by the ETSI NFV standardization activities.

In order to fully understand the scope of this work, in the following sections the
author i) presents classical network management systems in NGNs, ii) provides an
overview about the ICT domain, mainly focusing on the advances of virtualization
and cloud computing technologies, iii) and finally gives an overview of the novel
concepts introduced by the NFV paradigm.

2.1.1 Classical Network Management Protocols and Interfaces

As already discussed network management can be identified with a set of “tasks”
executed by a network administrator (also referred to as network manager) for meet-

4https://en.wikipedia.org/wiki/Orchestration(computing)
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ing the particular set of requirements of an organization in alignment with the
business requests. In the very early days, a network manager was responsible of
installing PCs, printers on a Local Area Network (LAN), configuring Network In-
terface Controllers (NICs), protocol stacks, user applications, and testing, operating
several kinds of devices (i.e., routers, switches, etc.). This kind of job, dealing only
with the configuration of network elements, was not enough for guaranteeing the
expected performances of end users. Optimize performances, handle failures and
network changes, extend network capacity, manage network usages, and ensure se-
curity, were some of the issues that were identified and paved the way towards the
standardization of network management protocols and tools.

Network management tools and protocols were initially standardized as part of
the International Telecommunication Union (ITU) - Telecommunication Standard-
ization Sector (ITU-T) and IETF standardization activities and included protocols
and tools for managing the network remotely. To control the network a set of three
different protocols and systems were identified (Simple Network Management Pro-
tocol[35], Management Information Base[36], and Network Management System),
while for monitoring the Remote Network MONitoring protocol was proposed. In
particular, Simple Network Management Protocol (SNMP) became the de facto
standard for management of TCPIP networks[37].

2.1.1.1 Telecommunications Management Network (TMN)

In 2000 the ITU-T introduced the concept of Telecommunications Management Net-
work as a protocol model for managing open systems in a communication network.
The TMN concept has been widely adopted for standardizing a set of protocols
and interfaces for managing heterogeneous network elements. The TMN standard
definition span across a large number of ITU-T documents as part of the M.3000
recommendation series[38], in particular M.3010[39], M.3400[27] and X.700[40].

TMN is mainly designed for public networks and its main objective is to optimize
network functionalities in multivendor environments. This set of recommendations
also defined an architecture to support the management requirements of TSP to
plan, provision, install, maintain, operate, and administer telecommunication net-
works and services. TMN defined an architecture for combining various types of
Operating Systems (OSs) for the exchange of management information using stan-
dardized interfaces including protocols and messages.

The approach introduced by the ITU-T M.3010 recommendations was based on
the assumption that a TMN “can vary in complexity from a very simple connec-
tion between an OS and a single piece of telecommunications equipment to a com-
plex network interconnecting many different types of OSs and telecommunications
equipment”[39].

ITU-T M.3200[41] provided the scope of the TMN architecture distinguishing
between Telecommunications Managed Areas (TMA), identifying the different re-
sources being managed, and TMN Management Services relating to the set of pro-
cesses needed to achieve business objectives, while M.3400[27] and X.700[40] defined
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the specification and classification of the management functionalities.
Another relevant aspect of the ITU-T M.3400[27] recommendations is repre-

sented by the FCAPS that was introduced for categorizing those different categories
of network management[42][43]. Recommendations are classified into the following
categories:

• Fault Management: Prevention, detection, and isolation of unexpected sit-
uations (i.e., a malfunction in a network device) in order to guarantee the
continuous network operation.

• Configuration Management: Manage the overall system life cycle, partic-
ularly its configuration, keeping an appropriate level of control of each com-
ponent (software and hardware) of the network. During runtime modify the
network configuration in reaction to external events (i.e., faults, congestion,
etc.).

• Accounting Management: Control the usage of the network resources in
order to properly measure costs and produce appropriate fees.

• Performance Management: Monitor and analyze networking metrics (i.e.,
response time, throughput, packet loss, etc.) identifying risky situations (i.e.,
network congestion), keeping a history for later analysis.

• Security Management: Control access to network and resources, including
authentication and authorization mechanisms.

The research work conducted in the context of this dissertation primarily focuses
on the aspects related to the configuration management applied to NGN elements.
Configuration management has been one of the major aspects of the ETSI NFV
ISG, however, before digging into the novel concepts introduced by the NFV it is
necessary to i) introduce NGN architectures, and ii) provide an overview of the
existing mechanisms for network function management.

2.1.2 Overview of Next Generation Network (NGN) and Key Def-
initions

Back in 2004, ITU-T introduced the NGN term describing the evolution towards a
new generation of network infrastructures based on the all-IP architectural concept[44].
Standard network infrastructures are migrated from circuit-switched networks to
packet-switched networks. Although there are several other novel concepts intro-
duced with the NGN evolution, a key aspect related with the scope of this work
is the separation of transport and service layers. The ITU-T’s general overview
of NGN[45] defines a NGN as “[...]a packet-based network able to provide services
including Telecommunication Services and able to make use of multiple broadband,
QoS-enabled transport technologies, and in which service-related functions are inde-
pendent from underlying transport-related technologies. It offers users unrestricted
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access to different service providers. It supports generalized mobility which will al-
low consistent and ubiquitous provision of services to users[...]” In other words, the
main idea is to move towards a common transport layer for supporting different
kinds of services so that the service provided is independent from the network.

The NGN service network follows ICT concepts having the IT part mainly de-
voted to service delivery, and the communication technology part mainly defining
the data plane. NGN also aims to tackle important concerns raised from the use of
current IP-based services (i.e., QoS and security) [46].

The term convergence describes the combination of all the multimedia services
in a single platform. Video, music, television, telephone, and other services available
from multiple devices must be accessible from one single device. Although today
everything seems already possible, the original idea was to provide full convergence
across different kinds of services through a single infrastructure using IP as a single
network protocol.

An overview of the NGN architecture as formalized by multiple standardization
bodies (ITU-T, 3GPP, and ETSI), is depicted in Figure 2.1.
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Figure 2.1: NGN Architecture[45]

This picture shows the high-level view of the architecture depicting the major
parts as follows [46]:

• Transport Stratum: Comprising various functional elements to provide access,
control, and interworking of the common IP transport infrastructure

• Service Stratum: Layer required for supporting several NGN applications

• Gateways to other networks
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• Customer profile functions

• Comprehensive management functions to manage the overall NGN environ-
ment

As can be seen from the definition given by the ITU-T about NGN, a very
complex and flexible environment will be required for managing NGNs.

The first key-added value of NGN architectures is represented by the decom-
position of network infrastructures into NFs and interfaces. Each individual NF
provides well-defined functionalities based on the input and output information re-
ceived on its exposed interfaces. A NGN comprises several kinds of NFs that may
be connected or chained together for providing a certain business logic required by
a particular communication service (i.e., voice, connectivity, etc.).

The second key-added value of NGN architectures is the separation between the
transport and service layers, enabling a richer spectrum of services than what TSP
typically provided to end customers, in a significantly shorter time. Indeed, the key
success of a TSP is the possibility of always creating, deploying, and delivering new
services to the market. Therefore, versatile mechanisms for creating new services is
the key for the success of future NGN infrastructures.

Several activities have taken place since the time the NGN concept was intro-
duced in order to define an instantiation of the NGN concepts. So far the most ac-
cepted model is represented by the IMS[47]. The term service was initially adopted
in the context of the IMS architecture. Services (standardized by Open Mobile
Alliance (OMA)) like presence, group, and list management, and simple instant
messaging, represented and still represent the most basic functional blocks of many
NGN services. Principles of service composition showed to be, since the very early
stages, very powerful for creating new service landscapes. Lately, the concepts
of IMS were further adopted by other standardization bodies and communication
services. Nowadays IMS is the most recognized NGN infrastructure providing con-
vergence between legacy telephony services and Voice over IP (VoIP). Figure 2.2
provides an architectural diagram of the IMS functions and reference points.

Looking at the IMS architecture, what can be noticed is the complexity of such
systems[48]. One can think of several deployment models of such an architecture.
Considering the complexity of the NGN environment, a management system has to
be comprehensive, integrated, and extremely flexible. Several different approaches
towards classical NGN management were taken in the last decades by different
standardization bodies. Those approaches are further presented in the following
subsections.

2.1.3 ETSI NGN Management Architecture

TeleManagement Forum uses a business and customer services driven approach to
achieving end-to-end automation using integrated Commercial off-the-shelf (COTS)
software[49]. The TeleManagement Forum (TMF) focus is on providing pragmatic
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Figure 2.2: IMS Architecture

solutions to business problems and is based on the business layering principles ar-
ticulated in the ITU-T TMN model.

TMF designed a framework comprising a set of technologies suitable for imple-
menting most of the requirements of an NGN management system. Such system is
typically referred to as New Generation OSS (NGOSS). Such OSS should provide
the following characteristics to fulfill the NGN business vision and optimize system
development speed:

• all systems must be defined in a technology neutral form following a component-
based SOA

• a common information architecture should be adopted across all existing man-
agement applications in order to i) share information across multiple areas of
Management, ii) develop capabilities for retrieving end-to-end service mea-
surement data, and iii) provide policy-based management for already existing
or yet to be defined services

• a common business process framework must be adopted across OSS solutions

• a solution must be provided for managing services independently from network
technologies

As it can be noticed, those characteristics of an OSS system may refer to different
application areas in NGN infrastructures.
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2.2 The Virtualized Cloud Era

Figure 2.3 introduces the different phases during the last decades, providing an
overview about the main “Eras” defined as a period of time in which a particular
development model has been widely used in software design.
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Figure 2.3: Historical Models

Figure 2.3 starts with a very early era when the mainframe was initially intro-
duced as a totally disruptive approach for computing purposes. Although nowadays
this phase may not be too relevant considering the always increasing number of
improvements in miniaturizing processors, it is important to highlight some pros
and cons of such an approach as relevant for its successor phases. This central-
ized model highlights the monolithic approach of putting together the presentation
and business logic with the data storage. A dumb terminal (i.e., a display monitor
with output capabilities) connects directly to the mainframe and provides output
to the end user. On the one hand, with this approach there was no need to manage
client-side applications, and it was rather easy to obtain data consistency. On the
other hand, as for any monolithic application, it was rather complex to maintain
and develop the code between different releases.

The next temporal phase was the introduction of the client-server architecture
that was facilitated by the initial advances achieved in Internet technologies[50].
The so-called middleware [51], defined in an IETF workshop in 2000 as “those ser-
vices found above the transport (i.e., over TCP/IP) layer set of services but below
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the application environment” (i.e., below application level APIs), was a major step
towards distributed architectures with its multitier architectural model. With this
model there was a separation between the different entities composing a service.
All the common aspects related to security, concurrency, performances, etc. were
handled at the middleware level, however, in most of the cases, a thick (also called
fat) client was required for making the user interoperate with the backend service.
The approach of thick clients required huge investments in terms of maintainance:
Every change would need to be propagated to all existing clients. Common Object
Request Broker Architecture (CORBA) was the result of a combination of concepts
from client-server architectures with the newly emerging paradigm of object-oriented
development [52].

The third phase, the so-called “Virtualized Cloud Era” , represents the current
“Era”. The introduction of virtualization technologies enabled novel mechanisms
for conceiving new services and exposing them to end users. Cloud computing
represents the main model facilitating the transition towards a different way of
defining and delivering services.

According to the definition proposed by NIST in the NIST Cloud Comput-
ing Standards Roadmap, dated July 2011, cloud computing is defined as a “model
for enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction. This cloud model promotes availability and is composed of five
essential characteristics, three service models, and four deployment models” [53].

However, the underlying concept of cloud computing dates back to the 1960s
when John McCarthy spoke at the Massachusetts Institute of Technology (MIT)
Centennial saying that “computation may someday be organized as a public utility
just as the telephone system is a public utility” [54].

Figure 2.4 shows the different cloud models as presented by the NIST. Those
cloud models and characteristics will be further detailed in the next sections.

Based on this definition cloud computing can be seen not as a product, but as a
computing model or paradigm. Cloud computing is the evolution of the widespread
adoption of virtualization technologies and SOAs. End users do not have the knowl-
edge anymore about the details of the underneath hardware infrastructure, while
cloud computing technologies support them [55].

Although cloud computing technologies can be considered mature enough and
production-ready, there are still several open research challenges as identified in
2015 by R. Jennings and R. Stadler who provided a comprehensive survey about
resource management in cloud computing[56]. In their article they survey the recent
literature covering 250+ publications, and they identify major challenges that have
to be addressed.
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2.2.1 Cloud Computing Benefits

Cloud computing enables new business models and cost-effective resource usage by
providing virtualized computing resources as a service in a pay-as-you-go manner.
Instead of investing high amounts of resources to maintain their own data centers,
companies can concentrate on their main business purchasing resources only when
needed. Particularly when combining a privately maintained virtual infrastructure
with publicly accessible clouds in a hybrid cloud, the technology can open up new
opportunities for business and help consolidate resources [57].

Figure 2.5 provides an overview of the main benefits introduced by cloud com-
puting. In particular, it is important to underline a few of them, like elasticity and
pay-per-use model, because they introduced a completely innovative approach in a
very static environment like the one of service hosting.

2.2.2 Virtualization and Containerization

Virtualization is the key enabler technology for cloud computing. It represents the
capability of executing multiple logical (virtual) instances on top of physical ones
[58]. Initially virtualization was considered a method for logically dividing main-
frames to allow multiple applications to run simultaneously [59]. In other words,
it is the abstraction of physical hardware to appear as multiple logical instances.
Virtualization technology enables the sharing (splitting) or combining (aggregation)
of computing resources to other virtual ones.

Recently, with the highly increasing interest in cloud computing technologies,
virtualization became a very important technology for the industry, being used in
many different scenarios and use cases. Although virtualization is applied to different
domains, including networking [60][61] and storage, server virtualization represents
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the most dominant technique in cloud computing [62].
Server virtualization allows the execution of multiple OS kernels on top of the

same hardware [63]. Virtualization technologies allow abstracting physical resources
exposing interfaces towards the guest operating systems in a seamless way. Simi-
lar to the OS that abstracts hardware components guaranteeing the users access,
virtualization allows the usage of physical resources through a common interface,
without requiring the knowledge of the available physical resources. There are two
main components on which virtualization technologies are based:

• Virtual Machine (VM) being the representation of a server, provided by the
hardware which is required for hosting a guest operating system. It could
be stored in a form of a disk image, including all the required resources and
characteristics. It is important to underline that in the cloud computing space
a VM could be moved from a physical server to another.

• Hypervisor, also called Virtual Machine Manager (VMM), being the compo-
nent managing the guest OSs in execution on a physical server, presenting
them a virtualized view of the physical resources available.

There are various ways for supporting virtualization differing for the level of
abstraction provided and their performances. There are five different main variants
of virtualization[59][63]:

• Full Virtualization : The guest operating system does not need to be modified,
and all its system calls are intercepted by the hypervisor that is emulating
them. This approach is the most generic and flexible one since it completely
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separates the guest operating system from the underneath hardware compo-
nents. However, it introduces some overhead which is negatively influenc-
ing performances. Examples of hypervisors of this type are XEN5[64] and
KVM6[65].

• Paravirtualization : This approach requires some modifications to the guest
OS since the system calls should be substituted with calls to the hypervisor,
which abstracts the underneath hardware providing similar interfaces. It is a
solution mainly used in cases where the hardware does not support virtualiza-
tion, therefore, hypervisor technologies are installed on top of the OS. Some
modified versions of XEN support this kind of virtualization.

• Hosted Virtualization : The hypervisors are installed on top of the host OS.
Examples of hypervisors of this type are VMWare Workstation7 and Virtual-
box8

• Emulator : Emulates the hardware resources enabling software that was com-
piled for a particular architecture to execute on a different one. QEMU9[66]
is an example of such a hypervisor type.

• Container-based Virtualization : A virtualization technology that is not based
on the hypervisor entity[67]. This solution envisages a shared host operating
system, having a kernel appropriately modified.

In particular, the advent of software containerization during recent years
has drastically transformed the way software is deployed and managed. A software
container, also known as jail10, is an isolated user space instance of an OS. A
relatively large number of containers can be executed on the same physical machine,
all having a dedicated and isolated file system and running processes. The container
behaves like a virtual machine, however, it does not rely on the intermediate layer
provided by the hypervisor, therefore, having less performances overhead[67]. Figure
2.6 shows the architectural differences between standard virtualization technologies
and containerization ones.

The architectural view depicts the lower amount of layers required by container-
ization technologies for executing guest OSs. Some of the most relevant container im-
plementations are currently FreeBSD Jails11, Linux Containers (LXC)12, OpenVZ13,
rkt14, and Docker15.

5http://www.xenproject.org
6http://www.linux-kvm.org
7http://www.vmware.com
8https://www.virtualbox.org
9http://wiki.qemu.org

10https://en.wikipedia.org/wiki/Operating-system-level_virtualization
11https://wiki.freebsd.org/Jails
12https://linuxcontainers.org/
13https://openvz.org/MainP age
14https://coreos.com/rkt
15https://www.docker.com/
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Figure 2.6: Architectural Differences between Virtualization and Containerization

2.2.3 Cloud Computing Service Models

Basically computing resources are delivered over the Internet and elastic scalabil-
ity can be achieved for any kind of application. Instead of regarding individual
machines, cloud computing treats resources as a utility, i.e., computing time and
storage are provisioned on demand and paid per usage without the need for any
upfront commitment [57]. Figure 2.7 shows the different cloud computing service
models.
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Figure 2.7: Cloud Computing Service Models

According to the NIST document, the Cloud Computing Standards Roadmap,
three different major cloud service models are recognized: Cloud Software as a
Service, Cloud Platform as a Service, and Cloud Infrastructure as a Service[68].

Figure 2.8 depicts an overview of the different cloud service models detailing the
different software stacks required by each of the different layers for providing the
specific required functionality.

In the following subsections the three different cloud service models are presented
and an overview is given of the software stacks depicted in the previous Figure 2.8.
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2.2.3.1 Software as a Service (SaaS)

SaaS is an innovative approach for offering the same software to different users in
an isolated way via networking. SaaS is defined by NIST as:

“The capability provided to the consumer is to use the provider’s applica-
tions running on a cloud infrastructure. The applications are accessible
from various client devices through either a thin client interface, such
as a web browser (e.g., Web-based e-mail), or a program interface. The
consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or even individual
application capabilities, with the possible exception of limited user-specific
application configuration settings.”

One of the most important things is that each user thinks he is the only one
using that particular software, without necessarily having multiple instances of that
software. Indeed, the application should be aware of the different users and should
provide the required isolation so that software components could be shared among
multiple users. In some cases it is also required that a particular configuration of the
software is available for a particular user. SaaS typically comprises a middleware
entity, interacting with the PaaS management system for deploying applications and
offering them directly to end users.

2.2.3.2 Platform as a Service (PaaS)

The main objective of a PaaS is to host software artifacts implemented by different
users on top of a shared execution environment, offering the most common func-
tionalities required. PaaS is defined by NIST as:

“The capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using
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programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage,
but has control over the deployed applications and possibly configuration
settings for the application-hosting environment. ”

In order to do so it is necessary to increase the level of isolation that should not
be guaranteed anymore only at the virtual machine level, but also at the software
component level, which could ideally be hosted and executed on the same server.
Therefore, the platform itself should be aware of the multiple users and should avoid
that components of a particular user access data and functionalities of components
developed by other users. In the same cases it should also support the possibility
of sharing components among multiple users, and should provide access to shared
storage.

Such requirements are satisfied providing a set of APIs allowing users to deploy
their applications on top of the platform. Typically, PaaS offers a set of supporting
services (like databases) that could be used on demand by the deployed applications.

The PaaS layer comprises mainly a PaaS management system enabling develop-
ers to deploy on demand their applications, and interacting with the IaaS layer for
acquiring the virtualized resources needed.

2.2.3.3 Infrastructure as a Service (IaaS)

The IaaS layer comprises infrastructure resources in terms of hardware resources,
providing networking, computing, and storage as atomic elements via a virtualiza-
tion layer.

IaaS is defined by NIST as:

“The capability provided to the consumer is to provision processing, stor-
age, networks, and other fundamental computing resources where the
consumer is able to deploy and run arbitrary software that can include
operating systems and applications. The consumer does not manage or
control the underlying cloud infrastructure, but has control over operating
systems, storage, and deployed applications; and possibly limited control
of select networking components (e.g., host firewalls).”

The IaaS management component is in charge of exposing an interface for pro-
viding virtualized resources as a service either to end users or to another layer of
the cloud stack providing a different cloud service model.

2.2.3.4 Open Cloud Computing Interface (OCCI)

OCCI [69] comprises a set of specifications initially released around 2009 through the
Open Grid Forum (OGF) organization. The main aim of the OCCI specification is
to provide a set of APIs for remotely managing cloud resources provided by different
providers. The initial version of the OCCI specification mainly addressed the IaaS
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layer proposing a REST-based API. In such models, resources are identified by a
Uniform Resource Locator (URL), and users can interact with those resources using
standard Hypertext Transfer Protocol (HTTP) methods. Resources could also be
linked together based on user needs.

Figure 2.9: The OCCI Architectural Model[69]

The OCCI architecture is rather modular and extensible. The latest version
available (1.1) comprises three major modules:

• OCCI Core represents the core module of the standard, provides mechanisms
and semantics as well as definitions and classes for describing and managing
cloud resources. This model is independent from the others and could be used
as a stand-alone component in different contexts. It provides an abstraction
of the real resources using the class Resource providing a set of attributes
common across different kinds of resources, interconnected via the Link class.
The Entity abstract class is used together with the Kind and Category classes
for classifying and identifying resources across several cloud providers.

• OCCI Infrastructure represents an extension to the Core module providing
an abstraction specifically for the IaaS layer. The three infrastructural types
defined by this module are the Compute, Network, and Storage resources that
are connected via NetworkInterface or StorageLink.

• OCCI RESTFul HTTP Rendering describes the serialization format used for
the communication between client and server. It is based on the concept of
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Resource Oriented Architecture using the HTTP protocol for identifying and
controlling resources provided by a cloud provider.

The main motivations behind the OCCI specification are interoperability, porta-
bility, integration, innovation, and reusability.

2.2.3.5 OpenStack as De Facto Standard IaaS Solution

OpenStack is an open source project providing an IaaS solution for building pri-
vate cloud infrastructures. OpenStack represents a cloud management layer. It was
released in 2010, initially developed by National Aeronautics and Space Administra-
tion (NASA) and Rackspace. Although other similar solutions exist and provide a
rather comprehensive set of functionalities required at the IaaS level[70][71], Open-
Stack represents the standard de facto platform within the ETSI NFV architecture.

The OpenStack architecture follows microservices principles, having loosely cou-
pled modules that have specific functionality. It is also based on a distributed archi-
tecture using a message bus for the communication between all components. There
are many different projects currently under the OpenStack foundation16. In prin-
ciple, OpenStack is a cloud operating system controlling a large pool of compute,
storage and networking resources available in a datacenter. It is composed of 6 key
core services and 13 optional services. Figure 2.10 shows the high-level functional
architecture of OpenStack including its 6 core services and the dashboard.

Figure 2.10: The OpenStack Logical Architecture

A quick overview of each service provided by OpenStack:
16https://www.openstack.org/software/
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• Compute (codename: nova) manages compute hardware resources providing
virtualized compute (virtual machines) resources. In practice, nova commu-
nicates with the physical servers, also known as compute nodes, on top of
which virtual machines need to be deployed. It interacts with the hypervi-
sor transforming the requirements received via nova APIs to the hypervisor
information model, and deploying them. In the context of this project, the
Compute service is used for on-demand deployments of virtualized compute
resources (virtual machines) on top of which VNFs are executing.

• Network (codename: neutron) provides connectivity as a service controlling
heterogeneous networking equipments. Connectivity is provided in terms of
overlay networks that can be attached to running compute entities. It exposes
an API for users to define their networking requirements. In the context of
this project, the Network service is used for connecting virtualized compute re-
sources hosting VNFs. This service makes use of those additional technologies
in order to realize virtualized networks:

– OpenVSwitch (OvS)17[72] as a software switch implementation for in-
stantiating different virtual network layers between VMs.

– Physical Switch (not necessarily SDN based) for connecting compute
nodes.

• Block storage (codename: cinder) exposes storage resources as a service to end
users that can be consumed by the Compute service. In practice it creates
an abstraction on top of existing block storage management technologies (like
Logical Volume Manager) in order to offer them via a simplified API.

• Identity (codename: keystone) provides authorization and authentication mech-
anisms for all OpenStack services. It supports token-based authentication and
it can be further extended to support several types of security mechanisms.

• Image (codename: glance) manages virtual machine disk images that are used
by the OpenStack compute service during provisioning.

Considering the complexity of setting up such distributed environments, several
“distributions” of the OpenStack platform have been released over the years. Major
companies behind open source initiatives like RedHat and Canonical have launched
OpenStack installers that can be used for easily setting up a whole environment
requiring minimal effort.

2.2.4 Design Principles for Cloud-Native Architectures

The following part of this section presents the different styles of design for distributed
architectures, particularly focusing on those architectural models that have driven
the design of the proposed MANO4X architecture and that will be presented in

17http://openvswitch.org/
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the Chapter 4. For the sake of clarity, design principles and methods presented in
this section can generally be applied to any kind of software architecture. Concepts
presented as follows can be applied to the design process of any kind of software
component for increasing extensibility and customizability. Thus, those approaches
could also be utilized while designing and developing software-based networks.

2.2.4.1 Service-Oriented Architecture (SOA)

SOA is an architectural model in which software applications are decoupled in mod-
ular components, defined as services, and made available either to users or to other
services via networking [73]. SOA is a collection of auto-contained services com-
municating with each other, executing a particular business logic using a standard
language. A system designed using the SOA approach is constituted by well-defined
services, independent from each other. Each service provides a certain functionality
and can make use of functionalities provided by other services.

The term SOA is typically used for defining a software architecture to support
the usage of Web services for ensuring interoperability between different systems, to
allow the usage of single applications as components of the business process and to
satisfy the requests from users in a seamless way. SOA is an architectural style with
the objective of obtaining a loosely coupled interaction between different software
components interoperating with each other. A service is a work unit executed by
a service provider for a user with the objective of obtaining a particular result.
Both the service provider and the users are roles executed by the software acting on
request of the respective owners.

The Organization for the Advancement of Structured Information Standards
(OASIS) defined the notion of SOA as SOA is a paradigm for organizing and utilizing
distributed capabilities that may be under the control of different ownership domains.
[74].

The basic principle of a SOA is that developers build different services of a
monolithic application, and those services should be installable and reusable for
supporting different kinds of applications and processes. The immediate benefits of
such an approach are straight forward: Enhanced reusability of the functionalities
provided by the software, and flexibility, considering that developers could focus on
an individual service without interfering with the consumer of such service. One of
the major requirements of a SOA is the decoupling of the interface of the service
from its implementation.

A service should be discoverable dynamically, self-contained and modular, de-
fined via interfaces and independent from the implementation, loosely coupled, avail-
able on the network, and coarse-grained.

Principle actors in an SOA-based system are:

• Service Provider : It is the entity providing services. Such services should be
visible on the network, therefore, information about these services should be
publicly available via the Service Registry.
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• Service Consumer : It is the entity consuming functions provided by Service
Providers.

• Service Registry : It is the entity maintaining all the information about avail-
able services (URL, access methodology).

2.2.4.2 Cloud Native and Microservices Architectural Principles

Elasticity, defined as the capability of cloud service infrastructures to dynamically
scale (out/in or up/down) compute, storage, and network resources, is one of the
most important characteristics of cloud computing[75]. In order to cope with the
increasing data traffic, applications should be redesigned specifically for meeting
elasticity requirements.

Drawing on SOA principles, cloud native applications are typically based on
loosely coupled cloud services leveraging nonblocking communication patterns[76].
Tasks in cloud native applications are broken down by the developers into separate
services (meets the flexibility demand and improved time-to-market) and thus can
consequently run on several servers in different locations (decentralization of cloud
instances). Separate services enable a more selective failure detection within the
network and a more efficient use of resources.

By using cloud native applications, the pay-as-you-go pricing model prevents
upfront costs and is a step forward in terms of economical reasons as well. If the
demand increases, new resources are automatically added based on proactive and/or
reactive actions, also known as scaling-out actions. On the other hand, if the demand
decreases, resources could be released via scaling-in actions[77]. All those scaling
actions should have almost no impact on the QoE perceived by end users, therefore, a
cloud native application should, by design, support any kind of runtime modification
without lowering performances and QoE[78]. The main aim of these technologies
is, therefore, to host and develop applications which is, at best, a cloud native
solution. In case of resilience optimization handling with failures of commodity
hardware, virtualized resources or services is pointed out[79][80].

Microservices architecture is a novel emergent approach utilized for designing
and developing large-scale cloud applications that require high scalability and fast
evolution. The idea behind microservices architectures is not completely new as it is
an evolution of the Service-Oriented Architecture, defined also as SOA light or SOA
fine-grained[81], as it focuses as well on service-oriented distributed architectures.
One of the major characteristics of the microservices architecture is the structure of
the applications comprised by a certain number of independent services, each one
centered on a particular business aspect, therefore, micro (as the name suggests)
services communicating with each other for realizing more complex services.

Scalability means that the cloud-native applications have the potential of taking
advantage of the cloud features, including rapid elasticity, adjusting capacity by
on-demand adding or removing resources. The book “The Art of Scalability” [82]
introduced a three-dimension scalability model: The scale cube as shown in Figure
2.11.
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Figure 2.11: The Scale Cube as Presented in [82]

Based on this model the most common approach to scale an application is the
one on the X-axis, defined as horizontal duplication. Basically, multiple instances
of the same application are deployed behind a load balancer.

Similar to the X-axis there is the Z-axis where each server executes an identical
copy of the code with the only difference that each server is responsible only for a
subset of the data. In this case there are some components of the system that are
responsible for dispatching the information to the most appropriate server, using
the attribute inside the request as routing key. Scaling on the X-axis as well as on
the Z-axis improves the capacity of the application and its availability. However,
those approaches do not resolve problems related to the complexity of a growing
application. This is the reason why it is required to scale also on the Y-axis, which
deals with the decomposition of an application. The major difference between the
Z-axis and the Y-axis is that scaling on the Z-axis precludes the decomposition of a
single feature of an application, while scaling Y-axis is about scaling the application
based on features. Thus, scaling an application on the Y-axis means to divide
a monolithic application into a group of services, each one implementing a set of
correlated functionalities.

There are several benefits that could be gained from applying a microservice ar-
chitecture into the telco domain. The major objective is that decoupling components
creates a more effective environment for building and maintaining highly scalable
applications. Developing and distributing services in an independent way improves
agility in reacting to environmental changes. Following is a list of additional benefits
that could be gained while adopting microservices concepts:
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• no single point of failure : By separating components of an application it is less
probable that a bug or a problem affects the entire system. Potential faulty
services could be isolated, repaired, and redeployed without causing downtime
on the functionalities of the entire application.

• ease orchestration: Having lightweight services reduces the costs of orchestra-
tion, considering the lower configuration required.

• increase agility : The source code is much easier to understand considering
the lower number of functionalities covered by a microservice. Therefore,
developers could concentrate on specific tasks without impacting on the overall
application, and without requiring coordination with other developers.

• flexible programming decisions : While developing a microservice, developers
are free to choose any programming language that fits the best with that
particular service.

2.2.4.3 Twelve-Factor Applications

Recently a set of guidelines have been provided online via the Twelve-Factor Appli-
cation Manifesto18. Those guidelines are:

• Codebase: Each application exists in a single repository, with a unique ver-
sioning system. However, this does not preclude having to execute multiple
instances of the same application even with different versions.

• Dependencies : The application should explicitly declare dependencies from
other entities, preferably managing them with appropriate packaging systems
without assuming their existence.

• Config : The application configuration should be stored in environment vari-
ables so that minimal modifications of the code will be required while moving
to a different platform.

• Backing services : Supporting services, like databases, log aggregators, message
bus, should be treated as independent resources of the application. Therefore,
their integration with the application should happen using only simple config-
uration files.

• Build, release, run : Those three phases should strictly be separated. For
instance, modifying the code while the application is in execution could be
seen as a violation of this design pattern.

• Processes : The application should be executed as one or more stateless pro-
cesses and without shared data. For satisfying this requirement the application
should be made up of "Backing services".

18https://12factor.net
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• Port binding : The application should independently expose its own services on
the network, binding on its own on ports without making use of intermediate
components.

• Concurrency : Considering an instance of an application, built using one or
more processes (as per point 6), scale-out should be realized using multithread
or multiprocessing programming techniques.

• Disposability : Fast start-up and graceful shutdown, able to manage unex-
pected fault situations, increase robustness, since they allow scalability, main-
tenance, and upgrades in a very fast way.

• Dev/prod parity : There should be consistency between the development and
the production environment. Developing in an environment very close to the
production environment allows continuous release processes, minimizing error
situations.

• Logs : The application should manage its own log files, but should only write
on standard output/error. It is the execution environment with appropriate
backing services that should handle output streams as events, aggregating and
storing them.

• Admin processes : Admin tasks should be executed as one-off processes in the
same environment where the application is executed.

2.2.5 Automation and Orchestration

Automated deployment of services is crucial for TSPs for reducing time-to-market of
new services. Before the introduction of cloud computing technologies, and partic-
ularly Development and Operations (DevOps) principles[83], the process of making
available new services to the end user could require a very long, time-consuming
process due to the fact that an administrator has to manually execute deployment
procedures step by step. Instantiation of compute resources, configuration of net-
working devices, installation and configuration of software components became a
crucial part of the automation of the end-to-end process for rolling out new services
and reducing the time-to-market.

Mike Loukides, author of the book “What is DevOps”[84], recalls a blog post
of James Urquhart19 while providing the definition of the DevOps movement: “[..]
modern applications, running in the cloud, still need to be resilient and fault tolerant,
still need monitoring, still need to adapt to huge swings in load, etc. But those
features, formerly provided by the IT/operations infrastructures, now need to be part
of the application, particularly in “platform as a service” environments. Operation
doesn’t go away, it becomes part of the development. And rather than envision some
sort of uber developer, who understands big data, web performance optimization,
application middleware, and fault tolerance in a massively distributed environment,

19https://www.cnet.com/news/understanding-the-cloud-and-devops-part-1/
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we need operations specialists on the development teams. The infrastructure doesn’t
go away – it moves into the code; and the people responsible for the infrastructure,
the system administrators and corporate IT groups, evolve so that they can write
the code that maintains the infrastructure. Rather than being isolated, they need to
cooperate and collaborate with the developers who create the applications. This is
the movement informally known as “DevOps”[..]” [84].

With DevOps developers and IT managers started collaborating and communi-
cating since the software design phase in order to increase productivity, especially
in rolling out newer versions of a particular service. Several technologies have been
launched trying to address the main idea of describing “Infrastructure as Code”.

Configuration management is the term used for identifying the process of con-
figuring nodes (i.e., servers, etc.) based on the desired final state. Configuration
management tools read configurations from files and apply them to nodes in an au-
tomated and idempotent way. This way the administrator could replicate the same
configuration on multiple nodes using the same approach. Nowadays there are mul-
tiple open source tools available supporting automated configuration management:
salt20, puppet21, chef22, ansible23. Most of these tools are using an master/agent
approach in which the master node acts as a coordinator of actions executed by
agents running in the targeted nodes.

Automation is mainly concerned with single tasks, for instance launching a vir-
tual machine, configuring it for executing a database, stopping a particular service,
while orchestration mainly concerns the automation of a workflow, namely a process.
The deployment process of an application comprises several tasks which has to in-
volve different systems and needs to be executed in a particular workflow for getting
to the desired state. Ultimately, automation focuses on providing programmability
to tasks while orchestration allows programming processes. The latter makes use
of automation by reusing some of the building blocks. The execution of tasks is
the central role of an orchestrator managing the proper execution of a service start-
ing from day-zero operations (onboarding new services) up to day-two operations
(managing its life cycle).

Automating the service deployment is definitely not a novel topic. In 2005,
Talwar et al. already compared manual, script-, language-, and model-based de-
ployment solutions, particularly addressing their complexity and barriers to first
use[85].

Endres et al. discussed the two fundamental approaches for modeling automated
deployments of applications, imperative vs declarative models, identifying patterns
pointing to frequently occurring problems[86]. Breitenbucher et al. [87] discussed
challenges of combining proprietary management services (like the ones offered by
public cloud providers) with script-centric configuration management technologies.
Although there are differences between the imperative and declarative models, they

20https://saltstack.com/
21https://puppet.com
22https://chef.io
23https://ansible.com
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propose a combined solution where a standard-based approach is used for gen-
erating provisioning plans based on TOSCA, which, later on, are executed fully
automatically[88].

2.2.5.1 Topology and Orchestration Specification for Cloud Applications
(TOSCA)

TOSCA is a specification proposed by the OASIS enabling interoperable descrip-
tions of applications and cloud infrastructure resources. TOSCA focuses on the
semiautomatic creation and management of complex services providing a language
for describing relationships between components (using a service topology) and their
operational behaviors (as orchestration process)[89]. The combination between the
topology and orchestration, defined as service template, allows defining the complete
life cycle operations that need to be preserved across deployments in different cloud
environments [90].

The main objective is to define a grammar for describing a service template by
means of topology templates and plans. Basically TOSCA provides a metamodel for
defining services, including both the service structure as well as the mechanisms to
manage it. The topology template defines the structure of the service while the plans
define the operations to be executed for instantiating and terminating it as well as
for managing it throughout the life cycle. Figure 2.12 depicts the service template
definition as an architectural diagram.

Figure 2.12: The TOSCA Service Template Definition[89]
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The topology template is composed by a set of node templates and relationship
templates, together defining the model of the service as a directed graph. Typically,
a node template represents a node in the graph, constituting a component of the
service. The node type defines the properties and interfaces exposed by a particular
component. Node types are referred to by node templates as there could be more
than one occurrence of the same type of component in a service[89].

The relationship template defines the occurrences of a relationship between nodes
in a topology template. As for the node template, for reusability purposes, also the
relationship template is described by a relationship type, defining the semantics and
any properties of the relationship. Relationships are defined as unilateral entities
providing one source and one target element.

The service template instantiation result is the deployed service. In particular,
the instantiation process considers the build plan defined as part of the service
template for deploying the service.

TOSCA has been widely used for model-based orchestration in cloud computing.
Cloudify24 and OpenStack Heat25 (via the TOSCA Heat-translator project26) have
been two of the early adopters of the TOSCA specification for allowing automatic
deployments of complex services across multiple cloud providers.

The initial version (version 1.0) of TOSCA, relying on Extensible Markup Lan-
guage (XML) Schema 1.0, was published in November 2013[89]. More recently, in
December 2016, OASIS published a newer version providing the TOSCA specifica-
tion in a Yet Another Markup Language (YAML) rendering with the objective of
simplifying the authoring of TOSCA service templates [91].

TOSCA also defines a packaging solution in order to simplify portability of mul-
tiple files between different TOSCA-compliant orchestration engines. The TOSCA
Cloud Service Archive (CSAR) may comprise the TOSCA service template as well
as configuration files, software code, and images required for the instantiation of a
particular service.

2.3 Network Function Virtualization (NFV)

In 2012 a large number of TSPs realized that cloud computing was one of the
most suitable models for transforming their infrastructures, and in particular get
rid of a vendor lock-in that would have allowed a huge reduction in COTS hardware
resources. Things changed with NFV paradigms and standards introduced by the
ETSI NFV White Paper[92].

ETSI NFV represents a concerted telco operator initiative fostering the devel-
opment of virtual network infrastructures by porting and further adapting network
functions to the specific cloud environment. NFV aims to move such a network
architecture from hardware-based appliances to standard servers or a cloud-based

24http://cloudify.co/
25https://wiki.openstack.org/wiki/Heat
26https://github.com/openstack/heat-translator
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infrastructure. This opportunity is given by the increase of data center technologies,
allowing deployments of network functions as virtualized entities on top of standard
high-volume servers. NFV decouples software implementations of NFs from the com-
putation, storage, and networking resources they use. NFs are executed as software
components on top of a virtualized environment, meaning Guest OS.

NFV is a new architectural approach, at least from an infrastructure perspective.
It is a transformation moving from interconnected monolithic network functions to-
wards a distributed cloud infrastructure, on top of which NFs are executed. Decou-
pling software from hardware is the first step to achieve this objective. Therefore,
a NF is implemented as software, executing on typical linux-based OSs, running on
top of virtual machines or containers in the cloud. This transition introduces flexibil-
ity in deployment operations, allowing dynamic construction of end-to-end network
services, however, requiring different mechanisms for maintaining the same level of
reliability, availability, and performances obtained with classic hardware-based NFs.
Nevertheless, this flexibility provides the means for novel dynamic operations like
placement and scalability. Last but not least, it is important to consider that inter-
operability with the legacy network should be maintained. Those aspects should be
considered while implementing NFV.

The virtualization insulates the NFs from those resources through a virtualiza-
tion layer. A VNF is a software implementation of a NF that could be deployed
in one or more traditional VMs. The VNFs can be instantiated or moved dynam-
ically (orchestrated) in various locations as required. More VNFs can be chained
together even with Physical Network Functions (PNFs) to form a NS. The NS is
the end-to-end service between two endpoints.

ETSI NFV has defined a large set of virtualization use cases, spanning from the
cloudification of the main core network functions such as IMS, EPC, and Radio
Access Network (RAN), as well as provided on-demand and complete virtualized in-
frastructures as IaaS or PaaS to third parties. That enables the elastic deployments
of cost-efficient network infrastructures.

One of the main concerns of ETSI NFV is to prove the feasibility of the cloud
deployments of the typical NFs through proof of concept trials and prototypes as
well as to provide indications for further standardization in the areas of underlying
infrastructures, software architectures, networking management, and orchestration
to improve performance and grant security of the overall infrastructure. ETSI NFV
limits itself to this level of indications, considering that other standardization bodies
(i.e., 3GPP) and de-facto open source technologies (e.g., OpenStack) should finalize
the specific implementation work.

One of the major benefits is definitely automation: Many operators are currently
trying to follow the Continuous Integration / Continuous Development (CI/CD) ap-
proach for minimizing the time to get new features into the market where automa-
tion represents one of the major methods for achieving that. No manual intervention
should be needed for deploying a new feature into the network. Programmability,
seen as the major approach for automating the service life cycle, is the key for sim-
plifying the management operation and reducing the costs for maintaining these sys-
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tems operational. Furthermore, having a common hardware infrastructure, enabled
by virtualization and multitenancy, and being able to deploy several heterogeneous
vertical use cases on top, is definitely what operators are looking for.

The outcome of the first phase of the ETSI NFV ISG, spanning between 2013
and 2014, materialized in a set of 11 specifications providing the basis for developing
an open, interoperable, and commercial NFV ecosystem, setting the roadmap for
future standardization work.

One major outcome of phase 1 was the ETSI NFV reference architecture defined
in the ETSI Group Specification (GS) NFV 002 v1.1.1 specification[93]. This ar-
chitecture is based on three different major approaches: Decoupling software from
hardware, Flexible network function deployment, and Dynamic operations.

In 2014, as a result of the different activities carried on by different working
groups, the initial version of the NFV architecture was released as shown in Figure
2.13.

Figure 2.13: ETSI NFV Architecture[93]

First of all, functional elements of the architecture were grouped in three differ-
ent domains. The domain separation allows different working groups to focus, in
parallel, on different aspects within the NFV architecture.

On the bottom left we have the NFVI domain constituted by all the hardware
components providing on-demand computing, storage, and networking resources.
Hardware resources are typically exposed through a virtualization layer to the other
domains where VNFs are executed. This domain has been strongly influenced by
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cloud computing methods and technologies where virtual compute, storage, and
networking resources are provided on demand to the components part of the MANO
domain.

Depicted on the top left is the VNF domain, including the VNFs, the EMS, and
the classical OSS/BSS. VNFs could be of any type, and the inital set of use cases
focused mainly on Virtualized CPE (vCPE), vIMS, and vEPC. Nowadays, there are
many other use cases that have been defined as suitable for NFV-like architectures.

Last but not least, on the right side the MANO domain is depicted including
all the components required for managing and orchestrating NSs on top of the
NFVI, representing also the main focus point of this dissertation. It includes the
NFVO, one or more VNFMs, and a VIM27. Starting from the top, the NFVO
represents a completely new entity in the network operators infrastructure, providing
functionalities for the on-demand deployments of network services on top of the
NFVI. The NFVO plays a central role in the architecture and put together resource
orchestration with service orchestration. In order to instantiate network services the
NFVO makes use of two additional logical entities. Firstly, the VIM that is acting as
an intermediate between the NFVO and the NFVI so that virtual resources could be
acquired on demand. Secondly, one or more VNFMs are in charge of instantiating
and configuring VNFs on top of the NFVI.

In the following subsections a brief overview is given of the different domains,
providing more details about the MANO domain as it is a central point for the
research work of this dissertation.

2.3.1 The NFVI Domain

The NFVI comprises a set of physical resources hosting VNFs and NSs. These
resources can also be virtual and are classified in three groups:

• Compute resources: Physical servers, virtual machines, or, in general, re-
sources with a CPU and memory.

• Storage resources: Physical or virtual storage volume.

• Network resources: Links, networks and subnets, addresses, to allow VNF
communications.

2.3.2 The VNF Domain

Considering that the focus of this thesis is to provide an extensible framework for
managing NSs, it is important to give an overview of services and their charac-
teristics. As defined in the ETSI GS NFV 002 v1.1.1 specification[93], a network
service “can be viewed architecturally as a forwarding graph of Network Functions
interconnected by supporting network infrastructure [..] the underlying network func-
tion behavior contributes to the behavior of the higher-level service [..] hence, the

27Multiple VIMs could also exist in case of multisite NFVIs
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network service behavior is a combination of the behavior of its constituent func-
tional blocks that can include individual NFs, NF sets, Network Function Forwarding
Graph (NFFG), and/or the infrastructure network.

Based on this definition, NFs represent atomic functional blocks of a NS pro-
viding individual functionalities which, combined with other NFs, are contributing
to the overall network service. The forwarding graph represents another important
definition that defines the way NFs are communicating with each other inside a NS.

Continuing with the definition provided in the specification, these network func-
tions can be implemented in a single operator network or interwork between different
operator networks. This means that the NFV architecture should support the place-
ment of NFs across multiple locations in order to interconnect them for providing
the end-to-end NS. Figure 2.14 provides a graphical representation of an end-to-end
NS.
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NF
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Figure 2.14: Graph Representation of an End-to-End NS

As can be seen from Figure 2.14 the end-to-end NS is composed of end points
and a nested NFFG. All the elements are interconnected via network infrastructures
(wired or wireless) represented in the figure with dotted lines as logical links. In
this example, the NFFG is composed of three NFs, NF1, NF2 and NF3.

The virtualization process of such an end-to-end NS consists of introducing a
virtualization layer between the hardware resources in different physical locations,
defined PoPs, and the software artifacts implementing the NFs. Figure 2.15 shows
the graphical representation of the network service presented in te previous Figure
2.14.

As already mentioned, a VNF is the combination between the NF, implemented
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Figure 2.15: Graph Representation of a Virtualized End-to-End NS

as a software component, and the virtual resources it uses underneath. A NS is
the composition of one or more VNFs. The NS, and particularly its descriptor
called NSD, is the element containing the relationship between VNFs and possibly
PNFs. The NSD contains one or more VNFDs, defines their dependencies, provides
information about their requirements in terms of virtual network links, describes
the life cyle events and their Connection Points (CPs). The VNFDs describe a VNF
in terms of its deployment and operational behavior requirements. A VNF can be
instantiated either by a single or multiple VNFCs.

A VNFD is generally stored and described as part of a larger NSD, a structure
that represents a network service. Each network service may potentially be com-
posed of multiple VNFs, interconnected by Virtual Links, with possible reciprocal
runtime dependencies. A VNF may require the availability of another component
of its package to carry out its tasks and to function correctly.

Considering that each VNF can be implemented by different vendors, its man-
agement system, the VNFM, can vary between different implementations. The
VNFM makes use of the VNFDs while instantiating and managing the life cycle of
the VNF. The information provided in the VNFD may also be used by the NFVO
to manage and orchestrate network services and virtualized resources on the NFVI.
This information model is internally used by the NFVO, by the VNFM and by the
VIM.
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2.3.2.1 VNF Software Architecture

A VNF can be defined as the software-based version of an NF running on top of
virtualization technologies. A VNF instance uses virtualized resources for executing
software artifacts. A VNF can be composed by multiple VNFCs, either for high-
availability reasons or for decoupling functionalities in different parts. Each VNFC is
mapped 1:1 to a virtualization container, typically implemented as a virtual machine.
In addition to compute resources, a VNF makes use of networking resources for either
interconnecting multiple VNFC instances together or exposing VNFC instances to
other VNFs or users via CPs. The external virtual links are part of the network
service that combines multiple VNFs together. Figure 2.16 shows a diagram about
the VNF composition aspects.
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Figure 2.16: VNF Composition

2.3.2.2 VNF States and Transitions

Based on the ETSI GS NFV-SWA 001 V1.1.1 (2014-12) [94] a VNF can assume
different states representing the internal status of the VNF. For the sake of clarity,
states presented and described in the following relates only to VNF instances, and in
particular, it is a prerequisite that before initiating the life cycle, VNF packages are
already on board on the MANO framework. Figure 2.17 shows the state transitions
of the VNF instance.

The Null state represents the initial state when the VNF instance does not exist
and it is about to be created. The instantiate procedure brings the VNF instance
into the Instantiated Not Configured state, which means that the VNF instance
exists, but it is not yet configured. During the instantiate procedure allocated
NFVI resources are required. The next logical transition is triggered by the configure
procedure that brings the VNF instance into a Instantiated Configured - Inactive
state. The start procedure triggers the state change from Instantiated Configured
- Inactive to Instantiated Configured - Active. Basically, the VNF instance starts
performing its provided functionality and is ready to accept any incoming requests
from external users or other VNF instances. At the end, the terminate procedure
deletes the VNF instance, and, therefore, all the NFVI resources associated to it are
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Figure 2.17: VNF Instance State Transitions[94]

deallocated. The state of the VNF instance after termination is Terminated.
While the VNF instance is either in the Instantiated Not Configured or Instan-

tiated Configured state, a set of additional procedures may be executed either for
scaling up/down/in/out a number of VNFC instances, or updating/upgrading/roll-
back a particular version of the VNF.

2.3.2.3 EMS

The EMS is responsible for the FCAPS management of a VNF. The EMS is a
component that handles the task of configuring the VNFC instances of a VNF. The
EMS may be aware of the virtualization technologies used and collaborates with the
VNFM to perform those functions that require exchanges of information regarding
the NFVI resources associated with the VNF.

2.3.2.4 OSS/BSS

The OSS/BSS are the combination of the TSP’s other operations and business sup-
port functions. They usually exchange data with the functional blocks in the NFV-
MANO architectural framework, and may provide management and orchestration
to legacy systems not covered by NFV-MANO.

2.3.3 The MANO Domain

As mentioned before, the MANO domain comprises these three functional blocks:
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• one NFV Orchestrator

• one or more Virtualized Infrastructure Managers

• one or more VNF Managers

The standard also provides a definition about several repositories where to store
descriptors and records about NS and VNF instances.

2.3.3.1 NFVO

The NFVO is the component responsible for managing virtualized resources pro-
vided by the multisite NFVI and orchestrating the life cycle of NSs. These two
responsibilities of the NFVO are typically split in two independent functional ele-
ments:

• The Resource Orchestration satisfied through functions handling the allocation
and release of the NFVI resources, like computation, storage and network
resources.

• The Network Service Orchestration satisfied through the provisioning of func-
tions handling the onboarding, instantiation, scaling, update, and termination
of NSs and any operation on their associated Virtual NFFG (VNFFG)

The NFVO uses the Network Service Orchestration functions to coordinate groups
of VNF instances together to provide NSs that realize more complex functions. It
manages their joint instantiation, the required connections between different VNFs,
and dynamic configuration as required during the runtime life cycle (e.g., for scaling
the capacity of the NS in case of high demand).

Resource Orchestration The NFVO uses its resource orchestration functional
element to abstract access to the resources provided by the NFVI to other internal
functional elements, avoiding them to depend on any particular VIM interface. Some
of the features provided by this aspect are the following[28]:

• Validation and authorization of NFVI resource requests from the VNFMs to
control how the allocation of the requested resources interacts within one
NFVI-PoP or across multiple NFVIs-PoPs.

• NFVI resource management, including the distribution, reservation, and allo-
cation of NFVI resources to NS and VNF instances; these are either retrieved
from a repository of already known NFVI resources or queried from VIMs as
needed. The NFVO also resolves the location of VIMs, providing it to the
VNFMs if required.

• Management of the relationship between a VNF instance and the NFVI re-
sources allocated to it, using NFVI resource repositories and information re-
ceived from the VIMs.
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• Policy management and enforcement, implementing policies on NFVI resources.
This may involve access control, reservation, and/or allocation of resources,
optimization of their placement based on affinity, geographical or regulatory
rules, limits on resource usage, etc.

• Collection of metrics regarding the usage of NFVI resources by single or mul-
tiple VNF instances.

Network Service Orchestration The network service orchestration functional
element uses services exposed by the VNFM function and by the resource orches-
tration function to provide several capabilities, often exposed by means of interfaces
consumed by other NFV-MANO functional blocks or external users[28]:

• Management of NSD and VNF Packages, including the onboarding of new NSs
and VNF Packages. The NFVO validates the integrity, authenticity, and con-
sistency of deployment templates, and stores the software images provided in
VNF Packages in one or more of the available NFVIs-PoPs, using the support
of a VIM.

• NS life cycle management through operations like instantiation, updating,
querying, scaling, and termination. This also includes collecting performance
measurement results and recording events.

• Management of the instantiation of VNFs, in coordination with VNFMs.

• Validation and authorization of any NFVI resource request that may come
from a VNF to control its impact on the current Network Services.

• Management of the VNFFG defining the topology of a NS instance.

• Automated management of NS instances, using triggers to automatically exe-
cute operational management actions for NS and VNF instances, following the
instructions captured in the on-boarded NS and VNF deployment templates.

• Policy management and evaluation for the Network Service and VNF in-
stances, implementing policies related with affinity/anti-affinity, scaling, fault
and performance, geography, regulatory rules, NS topology, etc.

• Management of the integrity and visibility of the NS instances through their
life cycle; the NFVO also manages the relationship between the NS instances
and the VNF instances.

2.3.3.2 VNFM

The VNFM is a NFV-MANO function taking care of the management and or-
chestration aspects of individual VNFs through the life cycle management of their
instances. A single VNF instance is uniquely associated with a given VNFM. This
manager may handle several other instances of the same or different types. While a
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VNFM must support the requirement of the VNFs associated with it, most of the
VNFM functions are generic and do not depend on any particular type of VNF.
Like the other functions, the VNFM exposes functionalities to other elements of the
NFV-MANO architecture, often as interfaces. These functionalities include[28]:

• VNF instantiation and (if needed) VNF configuration, using a VNF descriptor
as a deployment template.

• Checking if the instantiation of VNF instantiation is feasible.

• Update the software contained in a VNF instance.

• Modify a running VNF instance.

• Handle the scaling out/in and up/down of instances.

• Collect NFVI performance measurement results, faults, and events correlated
with its VNF instances.

• Provide NFVI or automated healing of VNF instances.

• Handle the termination of VNF instances.

• Handle notifications caused by changes in the VNF life cycle.

• Management and verification of the integrity of a VNF instance through its
life cycle.

• Coordinate and handle configuration and event reporting between the VIM
and the Element Manager (EM).

Each VNF is defined in a template called VNFD, stored in a VNF catalog that
corresponds to a VNF Package. A VNFD defines the operational behavior of a
VNF and specifies how it should be deployed providing a full description of its at-
tributes and requirements. NFV-MANO uses VNFDs to create instances of VNFs,
to manage their life cycle, and to associate to a VNF instance the NFVI resources
it requires; to ensure full portability of VNF instances from different vendors and
different NFVI environments, the requirements must be expressed in terms of ab-
stracted hardware resources. The VNFM has access to a repository of available VNF
Packages; each package may be present in several versions, all represented using a
VNFDs to allow for different implementations of the same function on different ex-
ecution environments (like different hypervisor technologies and implementations).

2.3.3.3 NFV-MANO Reference Points

Several reference points are defined between NFV-MANO and external functions:

• Os-Ma-nfvo: A reference point between OSS and NFVO that involves NSD
management (and VNF Packages), management of NS, and forwarding of
requests between OSS, plus policy enforcement and event forwarding.
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• Ve-Vnfm-em and Ve-Vnfm-vnf : Two reference points between a VNFM and
EM or a VNF, respectively, used by a VNFM for management and control of
VNFs.

• Nf-Vi : A reference point used by VIMs to control a NFVI, including the man-
agement of VMs and forwarding of events, configurations, and usage records.

• Or-Vnfm: A reference point between NFVO and VNFM used to authorize
the allocation and release of resources to VNFs, to instantiate VNFs and to
retrieve and update information regarding VNF instances.

• Or-Vi : A reference point between NFVO and VIMs, used by the NFVO to
handle NFVI resources, to receive events and reports, and for management of
VNF software images.

• Vi-Vnfm: A reference point used by VNFMs for NFVI resources information
retrieval and allocation from VIMs.

These interfaces allow the NFV-MANO components to receive information about
the systems under their management, using standard defined interfaces.

2.3.3.4 Life Cycle Management of a NS

The life cycle of a VNF is composed of different states where the VNF can transit.
The transition between states is triggered by VNF management functions such as
instantiate, scale, update, upgrade, and terminate VNF. The VNF management
operations are executed by the VNFM functional block.

The deployment requirements of a VNF reside in a template. All the information
regarding the virtualized resources needed, life cycle management, and dependencies
are present in the template and stored in a catalog during the onboarding of the
VNF. The template allows to deploy simple and complex VNFs in a standard
way, significantly increasing their reuse. The introduction of the network services
as a combination of more VNFs requires further orchestration and management
functions. These functions, labeled as Network Service Orchestration, regard the
life cycle of an NS and include:

• Onboarding of the NSD, storing the relative deployment descriptor in a cata-
log.

• Instantiate the NS according to the NSD.

• Scale the NS whenever it needs additional resources or needs to reduce the
capacity.

• Updating and/or upgrading the NS, it may include changes in the VNF con-
nectivity, VNF dependency, VNF instances.

• Modify the VNFFGs associated with the NS.
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• Terminate the network service, it regards different phases like terminate all
the VNFs, deallocate the associated NFVI virtual resources in order to restore
the initial condition.

2.3.4 Brief Overview of ETSI NFV Phase 2 (2015-2016)

At the end of 2016, ETSI NFV published a set of new specifications defined dur-
ing Phase 2, including over 30 new work items, including normative specifications.
Topics such as interoperability, operations, and collaboration with other industry
groups and Open Source initiatives were considered as part of the ETSI NFV work
program. ETSI NFV Phase 2 extends the NFV work towards technology adoption,
while addressing areas such as testing/validation, performance/assurance, security,
stability, interoperability, reliability, availability, and maintainability, including also
collaborations with external bodies.

The new Interfaces and Architecture (IFA) working group had the responsi-
bilities of delivering information and data models, as well as information flows for
enhancing interoperability between different elements of the NFV architecture. This
led to the production of a new set of detailed specifications. As of July 2015, 14 IFA
Work Items were active, including the following with direct impact on this research
work:

• IFA001 [95]: Acceleration Technologies; Report on Acceleration Technologies
Use Cases.

• IFA005 [96]: Or-Vi reference point - Interface and Information Model Specifi-
cation.

• IFA006 [97]: Vi-Vnfm reference point - Interface and Information Model Spec-
ification.

• IFA007 [98]: Or-Vnfm reference point - Interface and Information Model Spec-
ification.

• IFA008 [99]: Ve-Vnfm reference point - Interface and Information Model Spec-
ification.

• IFA011 [100]: VNF Packaging Specification.

• IFA013 [101]: Os-Ma-Nfvo reference point - Interface and Information Model
Specification.

• IFA014 [102]: Network Service Templates Specification.

2.4 Future 5G Network Architectures

The ETSI NFV initiative generated a lot of interest in several other standardization
bodies and academic research initiatives. In the following subsections an overview
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is provided of the NGMN, IETF, ETSI, ONF, and 5G-PPP standardization efforts
and academic initiatives where NFV plays a central role in future 5G network ar-
chitectures. One of the common aspects that have been identified among all the
different activities towards the next generation of mobile networks is the “network
slicing” concept.

2.4.1 The NGMN 5G Network Architecture

The 5G is supposed to address the requirements and business contexts required by
2020 and beyond. 5G introduces concepts like a fully mobile and connected society,
requiring a multilayer diversification of networks in order to enable differentiation
of services based on the requirements of each business model. These 5G use cases
are expected to demand even higher performances in terms of flexibility, reliability,
scalability, security, and latency than what the current NGN infrastructures are
providing. 5G network functions are expected to increase traffic by a thousand
times, requiring an increase of the average speed connection. Some of the use cases
will have rigid requirements in terms of bandwidth usage, others in terms of latency.
This means that high flexibility is required in terms of network resources allocation
to different network services. Network slicing represents a new concept providing
a logical separation of the physical network resources into “slices” where each slice
has different characteristics in terms of network capabilities. The NGMN Alliance
foresees future 5G network architectures as composed by multiple slices supporting
different requirements for each different application domain[103].

Figure 2.18: NGMN Future 5G Architectures[103]

All technologies that will be used to compose the 5G architecture will rely on
logical instead of physical resources, which enables the possibility of delivering the
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network on an as-a-service base. This flexibility allows operators to create network
topologies on demand and configure the network slices as requested. From the
dynamic composition of multiple VNFs it is possible to generate multiple slices.
Those slices will be managed on a shared infrastructure that can be controlled by
NFV and SDN technologies.

2.4.2 The 5GMF Network Architecture

5GMF released a white paper[104] addressing future 5G networks, focusing also on
aspects related to network softwarization and particulary network slicing. 5GMF
supports the ideas and concepts already proposed and standardized by the NFV
and SDN activities, also proposing an architecture, shown in Figure 2.19, that uses
the concept of slices defined as “a collection of virtual or physical network functions
connected by links to create an end-to-end networked system” . In particular, it
classifies the different mobile networks in three major categories: Ultra Reliable and
Low Latency Communications (uRLLC), massive MTC (mMTC), and enhancecd
Mobile BroadBand (eMBB).

Figure 2.19: 5GMF Network Softwarization Architecture[104]

The proposed architecture is fully compatible with the ETSI NFV architecture,
and the role of deploying the different slices is actually executed by the Network
Management and Orchestration component. A generic control mechanism of the
different slices is provided by the Slice Control element exposing APIs to external
users or applications.

2.4.3 3rd Generation Partnership Project

As described in this report[105] published by the 3GPP initiative, the networking
requirements would be specific and different for each slice. For example, Machine-
to-Machine (M2M) applications will require ultra-low latency without stringent re-
quirements on the network bandwidth, while for Real-time Communication services
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guaranteed bitrate is one of the most critical requirements, as already analyzed by
the author’s publication [13]. To satisfy every use case, several issues have to be
solved as described in another report[106] of the 3GPP initiative.

2.4.4 5G-PPP

The 5G-PPP association produced a white paper[107] capturing novel trends and
key technology enablers for the realization of the 5G architecture, as shown in Figure
2.20.

5G-PPP envisions that 5G infrastructures will provide tailored network solutions
specialized in supporting vertical markets such as automotive, energy, food and agri-
culture, healthcare, etc. [..] Network slices will contain specialized networking and
computing functions that meet the desired Key Performance Indicators (KPIs) of
the service providers.

Figure 2.20: 5G-PPP Service & Infrastructure Management and Orchestration Ar-
chitecture [107]

Based on an indicative list provided by the 5G-PPP white paper, Slice support
(configuration mode selection, adaptation), Flexible placement of VNFs and inter-
faces, Multi-domain orchestration and life cycle management, are just a few key
research issues in the context of service management, orchestration, and control
that need to be addressed in future 5G network architectures.
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2.4.4.1 IETF

Almost in parallel with the evolution of the ETSI NFV ISG, IETF started a new
research group focusing on NFV. The IETF Network Function Virtualization Re-
search Group (NFVRG) primarily focuses on research challenges related to NFV
with the main objective of bringing the NFV research community together. In fact,
several conferences and workshops were organized during major scientfic events by
the IETF NFVRG over the last years.

The areas of interest cover a large set of research challenges that have been
identified by this research group, some of them also addressing the MANO aspects
in future TSP infrastructures. Among the near-term work items, the IETF NFVRG
also identified the “Policy-Based Resource Management” , described as follows:

“NFV Point of Presences (PoPs) will be likely constrained in compute
and storage capacity. Since practically all NFV PoPs are foreseen to be
distributed, inter-datacenter network capacity is also a constraint. Addi-
tionally, energy is also a constraint, both as a general concern for NFV
operators, and in particular for specific-purpose NFV PoPs such as those
in mobile base stations. This work item will focus on optimized resource
management and workload distribution based on policy.”

During the last years, several drafts were produced [108][109][110] addressing
NFV MANO aspects. Results achieved by this research group are planned to be
integrated within other standardization activities of IETF Working Groups (WGs)
as well as directly provided as inputs to the ETSI NFV ISG.

Very recently, another working group named “NetSlicing” was formed28, respon-
sible for the definition of network slicing requirements and models. As mentioned in
the “Network Slicing - Revised Problem Statement” document draft[111] “The pur-
pose of the network slicing work in IETF is to develop a set of protocols and/or pro-
tocol extensions that enable efficient slice creation, activation/deactivation, composi-
tion, elasticity, coordination/orchestration, management, isolation, guaranteed SLA,
and safe and secure operations within a connectivity network or network cloud/-
data centre environment that assumes an IP and/or Multiprotocol Label Switch-
ing (MPLS)-based underlay” .

Several relevant drafts have been released as part of the the IETF working group:
[112][113][114][115].

2.4.5 Software-Defined Networking

Software-Defined Networking represents an emerging paradigm spearating the net-
work’s control logic from the underlying routers and switches, which is paving the

28https://datatracker.ietf.org/wg/netslicing/about/
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way to network programmability paradigms [116]. SDN is focused on the separa-
tion of the network control layer from its forwarding layer to make the network
dynamic and directly programmable. It is important to clarify that although this
thesis covers aspects of management and orchestration of software-based networks,
it does not include aspects related to network programmability that are introduced
by SDN technologies.

One of the major technological challenges of the SDN paradigm is represented
by the centralization of the control logic: This would allow applications in having an
abstracted view of the network, as it was managed by a control plane conceptually
centralized. It becomes possible to implement control logic abstracting the com-
plexity of the physical layer comprised by heterogeneous networking elements. The
control plane has the objective of providing a single and globally centralized view,
managing the network topology and distribution of the information required for im-
plementing the application logic. The introduction of different levels of abstraction
of the network together with the virtualization of the IT resources increases flexi-
bility in network operators’ infrastructure, allowing programmability based on each
individual vertical domain.

Based on Scott Shenker [117] and Nick McKeown [118] the main objective for
SDN is to redesign the networking architecture introducing appropriate levels of
abstraction in order to operate a transformation similar to what already happened
in the context of computer architectures where developers could easily implement
complex systems without dealing with the low-level details of the physical infras-
tructure.

Although the vision proposed by the SDN paradigm was very ambitious, most
of the time SDN has been wrongly associated with particular aspects having a
limited impact: Some are focusing on separating the control plane from networking
appliances, others are focusing on providing control interfaces in existing routers.
Both innovations are only part of broader and more complex solutions that allow
the interaction between the network and the applications running on top.

One of the major outcomes of the SDN activities is the definition of a protocol,
named OpenFlow, whose main objective is to abstract the networking forwarding
elements providing a unified interface for managing flow tables. OpenFlow was ini-
tially proposed by several academic institutions (including the Stanford and Prince-
ton Universities) [119], and is currently part of the Open Networking Foundation as
principal standardization activity.

2.4.5.1 Service Function Chain

Focusing closer on the mobile core network architecture, being the most relevant part
in future 5G infrastructures, the SGi-LAN is the network between the Packet Data
Network Gateway (PGW) and Packet Data Network (PDN) (e.g., Internet) where
Internet and operators typically Service Functions (SFs) reside. Service Function
Chain (SFC) is applied on the SGi-LAN interconnecting a set of SFs, such as Deep
Packet Inspection (DPI), Firewall (FW), and Network Address Translation (NAT)
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to process the traffic of a specific service. SFC is not a completely novel concept. It
has been realized by mobile and fixed network operators for many years.

Using NFV and SDN technologies in applying SFC provides more efficiency in
controlling the traffic and elasticity in deploying and scaling up/down virtual SFs.
However, there are still challenges that need to be considered while designing and
implementing NFV/SDN-based SFC solution[120].

2.4.5.2 Relationship between SDN and NFV

NFV is considered to be complementary to the SDN but not dependent on it and vice
versa. An NFV solution can be realized with or without SDN capabilities, providing
the possibility to add on demand these functionalities. SDN functionalities consist
in an abstraction layer to decouple the control plane to the data plane. The control
plane exposes the functionalities to make decisions about where the traffic is sent,
the data plane defines the underlying systems that forward the traffic data to a
certain destination.

Such technology, combined with NFV, significantly improves network perfor-
mances, and deployment decisions. Moreover, the SDN software can be deployed in
the infrastructure provided by the NFV.

2.4.6 ETSI NFV Priorities for 5G

As presented in Chapter 1, in February 2017 the ETSI NFV ISG published a white
paper identifying some priorities that should be addressed for fulfilling the require-
ments of future 5G networks[26], providing a definition also a definition of network
slicing from an NFV perspective: “Although standardisation bodies and industry fo-
rums have produced their own definitions of network slicing, available definitions
in different Standards Developing Organizations (SDOs) and industry forums seem
to have one thing in common: all of them refer to the creation of multiple logical
network instances (i.e., slices) on the same underlying network. The parameters
for each “slice” are optimized according to different criteria and possibly used by
different tenants/organizations. This is reminiscent of the way NFV is typically
used to support use cases such as creating on-demand enterprise customer networks
(e.g. vCPE). Indeed, network slices can be viewed as on-demand networks. In NFV
parlance, a slice would typically be deployed as one or more NFV Network Service
instances. NFV technology thus provides a solid platform to support 5G network
slicing. With regard to NFV-MANO, we believe that most features required to en-
able network slicing are already incorporated in the NFV Architectural Framework
[...] however, a few areas do deserve further attention and standardisation work, in
particular in the fields of multi-site/multi-tenant orchestration, isolation of resources
at different layers, and security enforcement.”

Based on their point of view, most of the features required to enable network
slicing are already supported by the ETSI NFV architecture, and the few areas that
require more attention are in the context of isolation of resources at different layers.
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2.5 Conclusions

This chapter provided an extensive overview of the different research activities
and standardization initiatives that have strongly influenced the evolution of man-
agement systems in telecommunication networks. As presented, ICT technologies
played a central role in the radical transformation on how telecommunication ser-
vices have been managed. In particular, the evolution in cloud computing technolo-
gies and new concepts arising in the area of distributed systems, like microservices
architecture and cloud-nativeness, are paving the way to this radical transformation.

The work conducted by the ETSI NFV ISG enabled a novel approach for build-
ing future network infrastructures, moving from monolithic hardware appliances
towards common cloud-based distributed infrastructures.

Management and orchestration play a central role in this evolution, especially
considering the expectations foreseen by different standardization bodies trying to
provide a definition for future 5G network architectures in having a common infras-
tructure providing network slices as a service to different vertical market segments.
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Chapter 2 – State of the Art extensively analyzed the environment in which
the research of this thesis belongs. A definition of network management and the
evolution towards network service orchestration was presented. The ETSI NFV
MANO reference architecture was discussed, and additional insights about research
work conducted in the context of the IT and telecommunication service domain were
provided.

In order to further elaborate on the research issues addressed by this dissertation,
this chapter introduces the MANO4X requirements analysis, finally providing a list
of features that shall be supported by the MANO4X framework for satisfying the
main research objectives addressed by this dissertation.

The first section focuses on providing an overview of existing requirements gath-
ered from the different standardization activities within the scope of this research
work. The second section from presents the list of user stories based on the require-
ments identified. Finally, a comprehensive list of features, to be supported by the
MANO4X framework, is derived from the user stories and requirements presented.

As mentioned in Chapter 1, one of the objectives of this research work is to sup-
port different vertical scenarios to be delivered through independent slices on the
network operators’ infrastructure. The final list of features presented, have been gen-
erated considering different system architectures of the vIMS[121], the vEPC[122],
and the Virtualized M2M (vM2M)[123] as fundamental elements for building end-
to-end network services which have to be supported by the MANO4X framework.

3.1 ETSI NFV Requirements

This section presents the most relevant requirements as discussed in different ETSI
NFV specification documents, particularly ETSI GS NFV-IFA 010 V2.1.1[124],
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keeping the categorization as presented in the original documents. In particular,
nine major categories have been identified and presented in the following.

General
[Gen.4] The NFV framework shall be able to support a network service composed

of PNFs and VNFs as a VNFFG implemented across N-PoP multivendor environ-
ments that may be instantiated in a single operator or in cooperating inter-operator
environments.

Portability
[Port.1] The NFV framework shall be able to provide the capability to load,

execute and move VNFs across different but standard N-PoP multivendor environ-
ments.

Performance
[Perf.3] For any running VNF instance, the NFV framework shall be able to

collect performance related information regarding the usage of compute, storage and
networking resources by that VNF instance.

Elasticity
[Elas.1] The VNF vendor shall describe in an information model for each com-

ponent capable of parallel operation the minimum and maximum range of such in-
stances it can support as well as additional information such as the required compute,
packet throughput, storage, memory and cache requirements for each component.

[Elas.2] The NFV framework shall be able to provide the necessary mechanisms
to allow virtualised network functions to be scaled with SLA requirements. Different
mechanisms shall be supported: e.g. on-demand scaling, automatic scaling.

[Elas.3] The scaling request or automatic decision may be granted or denied de-
pending on e.g. network-wide views, rules, policies, resource constraints or external
inputs.

[Elas.4] The VNF user, through standard information model, shall be capable
of requesting, for each component capable of scaling, specific minimum and maxi-
mum limits within the range specified by the VNF vendor to fulfill individual SLA,
regulatory or licensing constraints.

Resiliency
[Res.1] The NFV framework shall be able to provide the necessary mechanisms

to allow network functions to be recreated after a failure.
Security
[Sec.3] Management and orchestration functionalities shall be able to use stan-

dard security mechanisms wherever applicable for authentication, authorization, en-
cryption and validation.

Service Continuity
[Cont. 2] In the event of an anomaly that causes hardware failure or resource

shortage/outage, the NFV framework shall be able to provide mechanisms such that
the functionality of impacted VNF instance(s) shall be restored within the service
continuity SLA requirements for the impacted VNF instance(s).

Service Assurance
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[SeA.3] A (set of) VNF instance(s) and/or a management system shall be able
to detect the failure of such VNF instance(s) and/or network reachability to that
(set of) VNF instance(s) and take action in a way that meets the fault detection and
remediation time objective of that VNF resiliency category.

Operational and Management requirements
[OaM.1] The NFV framework shall incorporate mechanisms for automation of

operational and management functions, e.g. creation, scaling and healing of VNF
instances based on pre-defined criteria described in the VNF information model, net-
work capacity adaptation to load, software upgrades and new features/nodes intro-
duction, functions configuration and relocation and intervention on detected failures.

[OaM.2] The NFV framework shall be able to provide an management and or-
chestration functionality that shall be responsible for the VNF and VNF instances
lifecycle management: instantiation, allocation and relocation of resources, scaling,
and termination.

[OaM.3] The management and orchestration functionality shall be limited to the
differences introduced by the Network Function Virtualisation process. The man-
agement and orchestration functionality shall be neutral with respect to the logical
functions provided by the VNFs.

[OaM.4] As part of VNF life cycle management, monitoring and collection of
information related to usage, the management and orchestration functionality shall
be able to interact with other operations systems (when they exist) managing the
Virtual Network Functions and/or the NFV infrastructure comprised of compute/s-
torage machines, network software/hardware and configurations and/or software on
these devices.

[OaM.5] The management and orchestration functionality shall be able to use
standard information models that describe how to manage the VNF life cycle.

[OaM.6] The management and orchestration functionality shall be able to man-
age the lifecycle of VNFs and VNF instances using the information models in com-
bination with run-time information accompanying scheduled or on- demand requests
regarding VNF instances and run-time policies/constraints.

[OaM.7] The management and orchestration functionality shall be able to manage
the NFV infrastructure in coordination with other applicable management systems
(e.g. CMS) and orchestrate the allocation of resources needed by the VNF instances.

[OaM.8] The management and orchestration functionality shall be able to main-
tain the integrity of each VNF instance with respect to its allocated NFV infrastruc-
ture resources.

[OaM.9] The management and orchestration functionality shall be able to mon-
itor and collect NFV infrastructure resource usage and map such usage against the
corresponding particular VNF instances.

[OaM.10] The management and orchestration functionality shall be able to mon-
itor resources used on a per-VNF basis, and shall be made aware of receiving events
that reflect NFV Infrastructure faults, correlate such events with other VNF related
information, and act accordingly on the NFV Infrastructure that supports the VNF.
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[OaM.11]: The management and orchestration functionality shall support stan-
dard APIs for all applicable functions (e.g. VNF instantiation, VNF instances al-
location/release of NFV infrastructure resources, VNF instances scaling, VNF in-
stances termination, and policy management) that it provides to other authorized
entities (e.g. OSS, VNF instances, 3rd parties).

[OaM.12] The management and orchestration functionality shall be able to man-
age policies and constraints (e.g. regarding placement of VMs).

[OaM.13] The management and orchestration functionality shall enforce policies
and constraints when allocating and/or resolving conflicts regarding NFVI resources
for VNF instances.

[OaM.14] The NFV framework shall be able to manage the assignment of NFVI
resources to a VNF in a way that resources (compute hardware, storage, network)
can be shared between VNFs.

3.2 List of User Stories

Based on the list of requirements presented in the previous section, the author
generated a list of user stories[125] serving as drivers for the definition of the final
list of features to be designed and developed as part of the MANO4X framework.
User stories have been categorized following the domain classification proposed by
ETSI for the definition of the NFV architecture, taking into account the perspective
of the three main actors as shown in Figure 3.1: the TSP, the VNFP, and the NFVI
Provider.

Most of the user stories listed here have been gathered after a deep analysis of the
standardization and research activities which have been presented in the previous
chapter.

3.2.1 NFV Infrastructure Domain

NFVIP eligible to provide a NFVI are required to support certain functionalities
and capabilities within their infrastructure. Those user stories are listed below:

• NFVIP1 - Resource Discovery : As a NFVI user, I need to be able to discover
resources available, so that I’m aware of what resources are provided by the
NFVI.

• NFVIP2 - Quota Definition : As a NFVIP, I need to be able to set quota, so
that NFVI users can’t make use of all resources available in the infrastructure.

• NFVIP3 - Resource Provisioning : As a NFVI user, I need to be able to provi-
sion on-demand resources, so that I can make use of them in a programmable
way.

• NFVIP4 - Resource Upload : As a NFVI user, I need be able to upload my
custom resources (i.e. VM images) on the NFVI, so that I can make use of
them during the deployment phase.
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Figure 3.1: Principal Actors and Their Interactions with the Platform

• NFVIP5 - Resource Configuration : As a NFVI user, I need to be able to
configure provisioned resources, so that in case of any changes required it is
not needed a new deployment operation.

• NFVIP6 - Multiple Networks : As a NFVI user, I need to attach multiple
networks to virtual compute resources, so that for instance data and control
plane are separated.

• NFVIP7 - Virtualization Technologies : As a NFVI user, I need the NFVI
to support different virtualization technologies, so that my virtual compute
resources do not have any particular restrictions.

• NFVIP8 - SLA: As a NFVI user, I need to be able to establish a SLAs with the
NFVIP, so that I can expect certain levels of QoS from the deployed resources.

3.2.2 Virtual Network Function Domain

The main objective of a VNFP is to design and develop VNFs, and provide them
to TSP, typically in a standardized packaging format. Depending on the business
model, a VNFP could release its VNF package as open source or as closed source.
The list of user stories is as following:
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• VNFP1 - Packaging : As a VNFP, I need to package the VNFs in a standard-
ized format, so that it can be delivered to the TSPs and on boarded on their
MANO framework using standard-compliant procedures.

• VNFP2 - Configuration Management : As a VNFP, I need to use any kind
of configuration management system (i.e. Puppet, Juju, Chef, Salt, etc.), so
that I can benefit from any particular feature they provide for the runtime
configuration of the VNF.

• VNFP3 - Specific VNFM: As a VNFP, I need to be able to integrate my spe-
cific VNFM within the MANO framework, so that I could design and develop
any particular extensions required by the TSP.

• VNFP4 - Generic VNFM: As a VNFP, I need a Generic VNFM, so that I do
not need to provide also the VNFM solution to the TSP.

• VNFP5 - Versioning : As a VNFP, I need to keep track of different versions
of the VNF Package (VNFP) and its compatibility with a particular MANO
version, so that any incompatibility issue is avoided while onboarding them
on the MANO framework.

• VNFP6 - Continuous Integration : As a VNFP, I need a CI/CD system, so
that the full integration process is executed automatically from an end-to-end
perspective.

• VNFP7 - Monitoring : As a VNFP, I need to be able to monitor VNFC in-
stances, so that collected metrics could be further analyzed.

3.2.3 MANO Domain

The most important actor within the MANO domain is the TSP being the one
controlling and observing resources which are deployed on the multi-site NFVI.
The main objective of the TSP is to compose multiple VNFs in a network service
in order to satisfy the needs of its end-users. Therefore, simplified mechanisms for
composing new services comprised by heterogeneous VNFs should be supported to
avoid vendor lock-in effects. In the following list is given a short description of the
main user stories mainly from the TSP perspective:

• TSP1 - Inventory : As a TSP, I need to be able to discover available VNFs, so
that I know what kind of VNFs are available. Information about the supported
VNFs should be part of a global catalog, and their information and data model
should be based on open standards, like the ETSI NFV one, in order to allow
portability of VNFs from/to different platforms. Nevertheless, the information
about the VNF should provide details about its unique type, its dependencies
with other VNFs, and what kind of resources are needed for being deployed
(e.g., container, VM images, etc.).
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• TSP2 - NS Composition : As a TSP, I need to be able to select VNFs from the
catalog and compose them in a network service, so that new services may be
created based on the requirements of a particular vertical domain. This might
also include exchange of configuration information between VNFs provided by
different vendors.

• TSP3 - NS Onboarding : As a TSP, I need to be able to on board a NS
composition on the catalog, so that can be stored for future usage.

• TSP4 - NS Deployment : As a TSP, I need to be able to deploy a NS selecting
it from the catalog and passing runtime configuration elements on the fly, so
that specific configuration can be achieved without need of building a new
composition.

• TSP5 - VNF Placement : As a TSP, I need to be able to specify the PoP where
VNFCs should be deployed, so that the NS satisfies latency requirements for
a particular set of use cases.

• TSP6 - NS VNF Monitoring : As a TSP, I need to be able to monitor the
status of NSs, so that I can take any decision during their execution.

• TSP7 - NS Runtime Management : As a TSP, I need to be able to execute
any runtime operations (exposed through a set of Create Read Update Delete
(CRUD) primitives) once the NS has been deployed, so that I can satisfy the
requirements of the end users anytime within the lifetime of the NS.

• TSP8 - NS Termination : As as TSP, I need to be able to terminate the
deployed NS, so that resources allocated to it are released when not needed
anymore.

• TSP9 - Authentication : As a TSP, I need to be authenticated into the system
using well established security mechanisms, so that every request received by
the framework is verified before authorizing the execution of any operations.

• TSP10 - Authorization : As a TSP, I need to be able to authorize other users
based on user roles and policies, so that they can execute only determined
operations after being authenticated.

• TSP11 - Well-defined APIs: As a TSP, I need to have access to a set of well-
defined APIs, so that it is possible to interoperate with the framework in a
programmable way.

• TSP12 - User Tools : As a TSP, I need a set of user tools (e.g., dashboard,
CLI, etc.) for interacting with the platform, so that can execute operations in
a simplified way.
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3.3 Final List of Features Derived from User Stories

The list of user stories identified in the previous sections served as backlog for
the execution of each individual release. For the sake of clarity, it is important to
underline that the list of user stories previously presented is the result of an iterative
process, being always updated with latest requirements coming from different input
sources (standardization bodies, open source communities, etc.). Here is presented
a backlog including the minimal set of features required for demonstrating and
validating the implementation of the proposed MANO4X architecture:

• MANO-1 - Inventory : The MANO4X framework should provide inventory ca-
pabilities for storing all the static and dynamic information related to the in-
frastructure (particularly VNFM endpoints and PoP locations), to the VNFs
and NSs (packages and descriptors), runtime information like records of in-
stances deployed, and finally external OSSs.

• MANO-2 - Lifecycle management : The MANO4X framework should support
lifecycle management of network services.

• MANO-3 - Multi Tenancy : Considering that the proposed framework will be
employed for several vertical domains, it should support user management,
and particular multi-tenancy, so that different deployments maybe logically
isolated from each other.

• MANO-4 - OpenStack support : OpenStack represents the standard de-facto
VIM, thus the MANO4X framework should be capable of interacting with
OpenStack for the deployment of virtualized compute, network, and storage
resources.

• MANO-5 - Support for heterogeneous NFVI: Generic mechanism for integrat-
ing heterogeneous cloud technologies. Solving the heterogeneity problem is
not a trivial task. Each individual resource management system at the level
of the infrastructure exposes a different set of APIs for being managed. An
adapter should be designed generically in order to support current and future
infrastructure technologies.

• MANO-6 - Multi-site NFVI: The MANO4X framework should enable the
deployment of a NS on top of a distributed and heterogeneous NFVI. Each
individual node in the NFVI should be identified as PoP. Although each
PoP may expose a particular version of APIs for being managed, the MANO
framework shall support the execution of VNF Packages without requiring any
changes on them.

• MANO-7 - VNF Placement : A generic module for controlling VNFC instances’
placement across multiple PoPs. Considering that the NFVI shall be composed
by geographically distributed PoP, the framework shall support the possibility
of instantiating a particular VNFC on a selected PoP.
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• MANO-8 - Support for heterogeneous VNFs: Generic mechanism for integrat-
ing various network functions. Heterogeneity at the level of network functions
managed needs also to be considered. The framework should be designed in a
generic way to support any kind of current and future VNFs.

• MANO-9 - Generic VNFM: The MANO4X framework should provide a Generic
VNFM supporting the deployment of VNFs using scripting languages. The
Generic VNFM should be designed following the guidelines provided by the
ETSI NFV specification.

• MANO-10 - Support for specific VNFM: The MANO4X framework should
provide a simple mechanism allowing VNFP to integrate their own VNFM, so
that it is possible to make use of it during the deployment operations of the
VNFs under their control.

• MANO-11 - Monitoring support : Considering the large number of existing
technologies in the monitoring system domain, the MANO4X framework should
be designed in such a way that any kind of existing monitoring system can
be plugged in and used for monitoring network service deployments across the
NFVI.

• MANO-12 - Manual Scaling support : The MANO4X framework should pro-
vide manual scaling functionality so that individual VNF instances can be
scaled in or out via programmable APIs.

• MANO-13 - Autoscaling support : Based upon the manual scaling and monitor-
ing support, the MANO4X framework should provide an additional component
capable of automatically scale VNFC instances, based on policies defined by
the TSP.

• MANO-14 - Fault Management support : The MANO4X framework should
provide mechanisms for detecting potential faults and executing recovery ac-
tions (e.g., switch to standby instances, execute a healing operation, etc.).
Those mechanisms should be exposed to the TSP as policies.

• MANO-15 - Network Slicing support : The MANO4X framework should sup-
port the creation of isolated slices on top of the physical infrastructure. This
feature should allow TSP defining the required networking capabilities which
should be guaranteed at the physical layer.

• MANO-16 - SFC management support : The MANO4X framework should pro-
vide mechanisms for establishing a certain data path between VNFs. This
mechanism should be compatible with the one proposed by the SFC architec-
ture.

• MANO-17 - Integration with existing OSS/BSS components : A generic mech-
anism for integrating already existing OSS/BSS components should be pro-
vided.
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• MANO-18 - User Tools : The MANO4X framework should provide a set of
user tools allowing users to interact with the framework in a simplified and
programmable way.

In addition, the author gathered a set of non-functional features as presented in
the following:

• Extensibility and customizability: The framework should be extensible with-
out major changes to its architecture and with minimal development efforts.
Customization should also be supported, allowing meeting the requirements of
a particular scenario through specific configurations, without requiring modi-
fication to the architecture and its implementation.

• Scalability and reliability: The framework should be designed following cloud-
native principles, so that any component can be horizontally scaled for pro-
viding high-availability increasing its reliability.

• Security: The framework should provide mechanisms for authorizing and au-
thenticating users based on well established security mechanisms.

• Standard compliance and openness: The framework should be aligned with
standardized architectures and interfaces, and it should provide an open solu-
tion available to the public community.

• Lightweight and easy to install: The final solution should be lightweight
enough to be executed with minimal hardware resources, and its installation
should be easy to realize.

3.4 Conclusion

This chapter introduced a number of requirements seen from the perspective of the
different actors involved in the lifecycle management of software-based Networks.
Based on this list, and especially after having extensively analyzed the state of the
art in Chapter 2 – State of the Art, some potential issues can be identified.

The first issue is represented by the fact that several VNF implementation may
differ from the way they are instantiated and managed. Therefore, the MANO4X
framework should support the smooth integration of already existing VNF manage-
ment systems (like Juju) with very low impacts on the integration costs.

The second issue is represented by the heterogeneity of the infrastructure re-
sources. NFVIP could offer the same kind of resource (i.e. a VM) via a different
API model. This means that the MANO4X framework should provide a solution
for incorporating those heterogeneous system in a simple way without affecting the
overall lifecycle of the entire network service. This means that a SP should be able to
place a VNF on top of any kind of NFVI, as long as the same kind of virtualization
resources are offered.
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Chapter 3 exposed and motivated the requirements and features driving the
design evolution and consequent development of the MANO4X architectural frame-
work.

The concept of “event-driven orchestration” proposed by this research work is
the result of an iterative design process divided into different phases, each of them
providing concepts and methods that were reutilized up to the final version of the
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proposed architecture. The major objective has been the design of an architecture
supporting management and orchestration of network services integrating heteroge-
neous components. The parallel evolution of the ETSI NFV standardization work
also has some influence on some design decisions taken during these phases.

It is important to underline that this thesis does not focus primarily on aspects
related to the information and data model, while it intends to reuse the ones already
available as part of different standardization activities, thus avoiding introducing yet
another proprietary model that will make impossible interoperability and portability
of VNFs and NSs across different existing implementations of similar frameworks.
Structuring data is consistently crucial for allowing coherent interpretation of the
information passed to such complex environments. Information models have typi-
cally been used for specifying data semantics for a particular logical element of a
specific knowledge domain. A definition about the difference between information
and data model utilized in this dissertation is provided by RFC3444 [126].

The solution finally proposed aims mainly at providing an extensible framework
adopting and adapting existing information and data models primarily focusing
on aspects like extensibility and customizability as the basis for enabling further
research in this direction.

4.1 Design Methodology

The design process has been performed following an iterative agile approach based
on the scrum [31] methodology. Scrum has become one of the most used design
methodologies in software engineering. The main concept of the scrum methodology
is to divide the design and development process in smaller cycles that could be
executed iteratively. Each cycle, defined as sprint, has as the main objective the
realization of particular features selected from an always evolving backlog.

The work conducted during this research work was organized in major releases of
a duration of six months, accompanied by minor intermediate release cycles (sprints
in the scrum terminology). Each major release comprised an architectural redesign
process based on the results achieved in the previous release and validated by a pro-
totype implementation. This iterative approach allowed the definition of an always
evolving functional architecture that was validated by several proof-of-concept use
cases in the context of running large projects (as will extensively be presented in
Chapter 7). Figure 4.1 depicts an overview of the iterative design process executed
during this thesis.

In total, ten major releases were executed during the time of this dissertation,
divided into three main phases:

• Prototype phase (2012), presented in Section 4.2, having as the major objec-
tive the design and implementation of a prototype system capable of orches-
trating and autoscaling the 3GPP IMS Application Servers. Such prototype,
initially part of the Fraunhofer FOKUS Cloud Broker, further evolved and
adapted to become the Elasticity Engine (EE) component utilized in the con-
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Figure 4.1: Design Process Following an Agile Methodology

text of the BonFIRE project (see Section 7.1.0.1 for more information). During
this phase, the author did significant research addressing one of the major is-
sues in cloud orchestration, namely elasticity. Several scientific publications
[127][14][13][128][129] were published during this period addressing scalability
issues faced in telecommunication networks. This prototype phase helped in
further detailing technical requirements for evolving the framework, keeping
in mind the extensibility objective.

• Intermediate phase (2013-2014), presented in Section 4.3, focused on designing
and developing the very initial version of the MANO4X framework. The de-
sign and development work conducted during this period was done as part of
the OpenSDNCore1 project. During this phase the author focused primarily
on addressing the need of managing and orchestrating complex software-based
NGN infrastructures (i.e., 3GPP EPC and 3GPP IMS), always considering the
extensibility requirements for supporting different vertical domains. This pro-
totype was utilized primarily in the context of the Mobile Cloud Networking
(MCN)2 project (see Section 7.1.0.2), a large research project involving several
research institutes, operators and vendors in Europe. Several scientific publica-
tions [130][131][132][133][134][135][123][136][137][138][122][121] were published

1www.opensdncore.org
2www.mobile-cloud-networking.eu
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during this period mainly addressing the issue of orchestrating complex net-
work services like NGN infrastructures.

• Final phase (2015-2017), presented in Section 4.4, aiming at designing and
implementing the final version of the proposed MANO4X framework, being
implemented and openly available to the community as part of the the open
source Open Baton3 project. During this phase the author developed the in-
termediate version of the architecture firstly aligning its definition to the ETSI
NFV MANO specification, secondly working on aspects like extensibility and
customizibility for supporting a large variety of use cases. The design evolu-
tion was done in combination with the research work conducted in the context
of NUBOMEDIA4 and SoftFIRE5 ICT research projects, and as part of the
Fraunhofer Fraunhofer Institute for Open Communication Systems (FOKUS)
5G Playground. Several scientific publications [139][140][141][142][143][120]
[144][145][146][147][148][149] were published, and several presentations in in-
dustry Research and Development (R&D) conferences and technology intro-
duction tutorials as listed in Section A.2 were given during this phase of re-
search.

Each individual phase is presented in the following sections. For the sake of
clarity, the author does not provide all low-level details of the prototype and in-
termediate phases, considering that the main objective of presenting such phases is
only to understand the design evolution underlining the limitations and gaps en-
countered in each phase. Nevertheless, additional details about the research work
conducted in each of the first two phases is available as part of scientific publications
and technical reports already presented earlier, and with software toolkits as part
of the Fraunhofer FOKUS 5G Playground.

4.1.1 Design Evolution Compared to the ETSI NFV One

Considering the relevance of the ETSI NFV specification influences on the research
work addressed by this dissertation, it is important to present the design evolution
of the MANO4X framework compared to the ETSI NFV timeline. On the top of
Figure 4.2 the major phases of this research work are shown and on the bottom the
ETSI NFV evolution.

In January 2012 the author was inspired by the increasing achievements in cloud
computing technologies and principles, especially by existing CMSs (like OpenNeb-
ula and OpenStack) and decided to start investigating mechanisms for cloudifying
IMS Application Servers (ASs). This triggered the beginning of the prototype phase.
At that time, NFV concepts were not yet announced to the public audience. The
intermediate phase started immediately after the release of the first version of the

3http://openbaton.github.io/
4https://www.nubomedia.eu
5https://softfire.eu/
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Figure 4.2: Design Evolution Compared to the ETSI NFV one

ETSI NFV white paper published in October 2012, the time when the author de-
cided to further extend the scope of his work towards a more comprehensive solution
addressing the research challenges foreseen by the ETSI NFV ISG.

During the intermediate phase, the initial version of the ETSI NFV architecture
was published as part of the ETSI GS NFV 002 v1.1.1 specification[93]. Overlapping
functionalities between the architecture proposed by the author during this phase
and the ETSI NFV one were identified.

The end of 2014 the public release of the first set of specifications including
the information and data model as well as reference point definitions were used as
inputs for the beginning of the final phase, in which the author decided to redesign
the intermediate solution for providing a reference architectural framework fully
compliant with the specification.

4.1.2 Design Assumptions and Architectural Design Principles through-
out all Design Phases

Before presenting the different design phases, it is important to clarify some design
assumptions that were considered throughout the design phases.

The first assumption regards the way NGN NFs are designed and implemented
as software components. The author assumes that NF providers follow cloud-native
principles while designing their solutions, particularly addressing aspects related to
elasticity and scalability. Moreover, the author considers NF as stateless compo-
nents, therefore, does not focus on managing the state of particular NFs while exe-
cuting scaling operations. Nevertheless, the final solution proposed could be further
extended for allowing NF-specific functionalities, like state recovery or state sharing
between multiple instances of an NF. Furthermore, the author assumes that NFs
could execute on any common hardware infrastructure on top of virtualized compute
resources.

A second, rather important assumption regards the multisite networking envi-
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ronment. It is assumed that inter-site networking (defined as connectivity across
geographically dislocated sites) is centrally managed by using a Wide Area Net-
work (WAN) or a layer-3 Virtual Private Network (VPN). The proposed solution
does not focus on the dynamic creation of virtual networks across multiple sites,
however, it could easily be extended adding an additional functional element that
could deal with such functionality.

4.2 Prototype Phase

The demand of mechanisms for flexibly and cost-efficiently outsource NGN infras-
tructures to multiple external cloud providers has driven the results achieved during
this phase. In particular, compared to best-effort Internet services, Real-time Com-
munication (RTC) services have different levels of QoS requirements, calling for
management functionality able to cope with all the aspects defined by the FCAPS
model[129][150].

Elastic deployments and autoscaling of IMS-based application servers was widely
unexplored at that time[128][13]. Some solutions were already addressing Web ser-
vices’ elastic scalability [151][152], but without focusing primarily on the telecom-
munication domain, where NGN infrastructures put much more emphasis on end-
to-end QoS. Those research activities dealing with cloud-based deployments of IMS
infrastructures [20][153] did not take into consideration important characteristics
like elasticity and flexibility offered by cloud technologies for meeting end-to-end
QoS requirements[129].

Therefore, the prototype phase had as the major objective the realization of a
solution capable of satisfying the requirement of deploying one or more instances of
an NF on a particular cloud infrastructure and runtime autoscale it.

4.2.1 Information and Data Model

The information and data model were based on the concept of the Service Group[14].
A Service Group is used to indicate the entire set of service components, deployed
on either private or public clouds (or both), providing a certain service functional-
ity by assuming, with no loss of generality in practical deployment scenarios, that
each VM corresponds either to a Service Instance or a Load Balancer. A simple
representation of the information model is provided in Figure 4.3.

A Service Group contains:

• one or more Service Instances of a particular service type.

• one Load Balancer6.

6In the case of vIMS the Subscriber Locator Function (SLF) acts as a Load Balancer for the HSS,
while a standard Session Initiation Protocol (SIP) dispatcher maybe satisfactory for distributing
load among different SIP ASs
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Figure 4.3: Proposed Information Model for Describing a Service Group

• one or more Scaling Policies used for describing alarms conditions and
actions to be executed.

Considering the vIMS use case, one can think of the AS as the Service Instance
and the Serving CSCF (S-CSCF) as the Load Balancer. In this case the dependency
between the two components is mainly unidirectional whereas the S-CSCF requires
networking information and the endpoint configuration whenever a new instance of
an AS is deployed or an existing one is disposed.

4.2.2 Initial Architecture

The architecture shown in Figure 4.4 has been proposed in order to achieve the goals
of having an initial prototype solution supporting the aforementioned requirements,

The proposed solution comprised two major components:

• the cloud infrastructure providing compute, storage, and networking resources
needed by a Service Group. The cloud infrastructure comprises several Compute
Nodes (CNs) managed by the Cloud Management System

• the EE providing functionalities for deploying and autoscaling a Service
Group

A running instance of the EE was able to handle only one Service Group at the
time, without any support for multitenancy. It comprised three major components
dynamically composing a pipeline:

• Monitoring Aggregator (MA) aggregating metrics and alarms based on condi-
tions defined in the Scaling Policies

• Rules Engine (RE) evaluating the alarms and making decisions about which
action to execute
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Figure 4.4: Proposed Architecture during the Prototype Phase

• Cloud Manager (CM) managing the deployment of Service Instances using
adapters for interacting with heterogeneous cloud infrastructures and reconfig-
uring the Load Balancer (via the Load Balancer Manager) whenever a scale
out/in action was executed

Each stage of the pipeline receives output data from the previous stage to trig-
ger control actions towards the following one. First the MA receives either raw
monitoring data or alarms from the monitoring system and passes them to a RE
that analyzes this data and makes a decision based on the current situation of the
pool of utilized resources about action requests to send to the CM. Finally, the
CM translates those commands into specific requests to the CMS (OpenNebula and
Amazon EC2 as supported cloud infrastructures)[127].

4.2.3 Service Group Life Cycle

This initial solution did not support any inventory functionality for storing templates
of the desired service to be deployed. The design phase required the creation of a
XML Topology file providing the definition of the Service Group to be deployed.
The on-boarding phase consisted in placing the XML file in a specific path that
could be accessed during runtime by the EE. While booting, the EE firstly parses
the provided file, and later on starts creating the necessary runtime processes for
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handling the life cycle of the Service Group.

4.2.3.1 Dynamic Service Placement

As mentioned, one of the major targets during this phase was the instantiation
of services across a multisite heterogeneous infrastructure. During this phase, the
author contributed to the service placement problem, providing an algorithm that
uses static profiles based on TSPs’ KPIs preferences, and monitoring data gathered
from the MA (i.e., available bandwidth between endpoints) for selecting the most
suitable location where to dynamically instantiate service instances[128]. The first
step of the proposed algorithm involves the TSP determining a weight value for each
KPI. Let us define CPi as the i-th cloud provider, with i ∈ [1, n], and Kj as the
j-th KPI value, with j ∈ [1,m]. We call λij the weight assigned by the TSP to the
j-th KPI for the i-th cloud provider, where:

m∑
j=1

λij = 1, ∀i ∈ [1, n] (4.1)

In addition, different KPIs are normalized in order to create a sort of provider
ranking table. Defining with Vij the monitored value for a KPI Kj for the cloud
provider CPi (i.e., the current latency measured between the TSP infrastructure
and a given cloud provider) and MVj the maximum value for this column, for each
KPI and cloud provider the normalized value NVij is:

NVij =
Vij
MVj

λij (4.2)

Choosing the best provider simply means selecting the one with best normalized
KPI sum. More precisely, by identifying with KPI+ the set of KPIs to maximize
and with KPI- the others, we define:

Ti =
∑

j inKPI+

NVij −
∑

j inKPI−
NVij (4.3)

where Ti is the score of the i-th provider.

4.2.3.2 Service Elasticity

Another important contribution regards the service elasticity concept, particularly
dynamic scalability of the deployed service instances[13][129]. The critical point is
that overloaded services cannot maintain the expected satisfactory QoS causing an
immediate QoE deterioration. Scaling operations are typically used by cloud service
providers for elastically increasing or decreasing the capacity of their offered services
based on specific KPIs. Scaling out or in implies adding or removing on-demand
capacity based on the needs.

In the following subsections algorithms are introduced that have been used as
part of the RE logic. It is important to highlight that the algorithms proposed
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assume that multiple instances of the same service behave similarly under load
conditions. This means that the averaged KPI value for all service instances is almost
equal to the actual individual value. Such condition can be commonly achieved
making use of dynamic load balancing algorithms where the load balancer entity is
dynamically checking KPIs of the destination service instance for deciding where to
dispatch upcoming requests[154].

4.2.3.3 Threshold-based Scale-out Procedure

The first step of a service in/out scaling process is to analyze the information col-
lected by the MA. Scaling policies, defined in the form of a set of triggers<–>actions,
are managed during runtime by the RE, taking the final decision whether to execute
a scaling action or not. When a simple load function goes above a certain threshold
for a sufficient time interval (to avoid bouncing effects and too reactive behaviors),
MA sends a trigger to RE that is in charge of deciding whether to scale out based on
the overall load of the Service Group. MA can also send a notification because a
VNF is in an incorrect state, namely there is at least one process in the VM that is
not working properly and, for instance, the CPU is consequently getting overloaded.

In order to avoid such situations, the RE also considers the total number of
service instances that are over the threshold, in addition to the average of the CPU
usage. Basically the action is triggered only when more than 50% of the units’ part
of the Service Group have a CPU usage over the threshold. The RE decisions
depend on the overall resource utilization (current and in a limited time window) of
the Service Group under control. In case it decides to scale out it requests the CM
the instantiation of a new service instance by choosing the most suitable provider
through the decision algorithm described in the previous subsection.

4.2.3.4 Optimized Scale-in Procedure

A scale-in operation is required in order to minimize the costs of resources utilization.
The most common approach is to implement scaling-in also based on thresholds. It
is important to consider that in a typical elastic Service Group the removal of a
VM hosting a service instance causes a redistribution of the load to the other ones.
Therefore, scaling-in operation has to be efficient, but at the same time should avoid
fluctuations, where the load redistribution causes the triggering of scale-out actions.

Therefore, the proposed scaling-in algorithm is based on the assumption that a
VM can be removed from the Service Group only if its removal does not bring the
other VMs in a state where the scaling-out mechanism would be triggered. To fulfill
such requirement, RE analyzes every single VM to check if it is a good candidate
for removal according to the proposed algorithm.

To better understand the problem, one can think of the following example shown
in Figure 4.5 with two VMs having the thresholds set to 30% for scaling-in and 70%
for scaling-out. The two graphs on the left show the individual CPU usage of two
VMs. As it can be noticed by the graph on the right, when one of the two VMs is
removed, the load on the remaining one will consequently increase.
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Figure 4.5: Example of the Implication of the Scale-in Operation

This approach works properly for a rather small Service Group. It is important
to understand that when the number of service instances start increasing exponen-
tially, the usage of the resources is not optimized anymore. For example, considering
the case when 1000 service instances are deployed, scaling-in will cause the load re-
distribution of the removed one on the 999 remaining ones. But this situation might
freeze for another unpredictable time period until the average value goes under the
scaling-in threshold (30%) again. This is not the most optimized solution consider-
ing that those service instances only use around 30% of their capacity.

Furthermore, considering that each VM can be deployed on different physical
machines, the associated performance may be significantly different. For this reason,
in cases where the decision made is based on average values, it is important that for
each type of metric a specific KPI is considered. For instance, for the CPU usage
case, while calculating the Total Power (TP) consumption, as the simple sum of
all the CPU usage of each service instance in the Service Group, it is taken into
account the BogoMips7 value, i.e., ρi, a common index calculated in every Linux
system to calibrate an internal busy-loop.

Based on these considerations, in this formula, N is the number of VMs in the
Service Group and Ui is the current CPU utilization of the i-th VM.

TP =

N∑
j=1

ρiUi (4.4)

Then RE determines the list of candidate VMs as the ones in a given Service

7https://en.wikipedia.org/wiki/BogoMips
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Group for which the following property holds:

Ci =
TP∑M
j=1 ρi

(4.5)

where UT is the Upper Threshold defined in the scale-out policy and M refers to the
subset of VMs excluding the i-th VM. After creating this list a simple algorithm can
easily find the candidate that best improves the performance of the whole Service
Group (this holds because of the round-robin weight-based algorithm):

candidate = i− thmachinewithmaxCi (4.6)

This formula can easily be extended in order to support more sophisticated and
service-specific metrics.

4.2.4 Limitations Encountered during the Prototype Phase

This initial phase helped the author in having a better overview of the research
issues investigated in the context of his research work, and some of the algorithms
proposed for optimized scaling and placement were reused in the follow-on phases.
Although concepts investigated during this period satisfied some of the requirements
identified in the initial phase of design, like dynamic deployments of software-based
networks and elasticity, the solution was not satisfactory for handling complex net-
work services. Dependencies between network functions were only managed for a
specific kind of service, either SIP- or HTTP-based. A generic approach for solving
runtime dependencies between service instances was not supported by this solution.

The monolithic architectural pattern provided a fast way for designing a pro-
totype solution satisfying the aforementioned requirements, with low development
efforts. Deployment resulted to be also simple to handle, however, there have been
several drawbacks that became significant to be considered while moving to the
second intermediate phase. Nevertheless, during the release cycles of this initial
prototype, several additional features and user stories were not considered as part
of the backlog.

First of all, the solution was pretty tied to the particular cloud infrastructure
chosen. Extensibility, one of the major requirements identified as a research chal-
lenge by this dissertation, was pretty hard to achieve with the proposed solution.
Moving towards a new cloud infrastructure required several changes in the internal
codebase of the proposed framework, hence, would have slowed down developments
of additional features.

Furthermore, the system supported only the deployment of a single type of ser-
vice with strong impacts also on how those service instances need to be packaged
for being managed during runtime. No contextualization of running VMs was exe-
cuted. The approach taken was based on the fact that the service to be deployed
and scaled was already preinstalled and preconfigured in the VM image disk. Al-
though this approach goes in contrast with the cloud-native principles presented in
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Chapter 2, there are still many solutions adopting this mechanism as a primary way
for distributing them.

Although scaling conditions could be defined via scaling policies, the algorithm
implementing the logic of solving a particular issue was directly embedded in the
RE codebase. Design of a new algorithm would have required a redesign of the RE
component itself.

Continuous development was also complex to achieve, considering that any
changes on a single part of the system were affecting the entire application, re-
quiring its full redeployment. Last but not least, scaling the framework itself was
not an option. Although some clustering solutions would have been enough for stat-
ically increasing the number of parallel instances, there was no way of scaling each
particular component independently.

4.3 Intermediate Phase

The experiences gained with the design and implementation of the EE during the
prototype phase paved the way to a more complex solution having as main objective
the deployment of a complex software-based network service. Compared to the
previous phase, the major difference was the integration of multiple elements coming
from the NGN domain. Some of the requirements that have driven this second phase,
have been gathered analyzing different system architectures of the vIMS[121], the
vEPC[122], and the vM2M[123].

Furthermore, the technological advances of the OpenStack open source IaaS
solution as well as the publication of the first ETSI NFV white paper enabled
a redesign of the cloud management modules in order to be easily extended for
supporting novel heterogeneous cloud infrastructures.

A redesign process was executed taking into account the limitations encountered
during the prototype phase, and for allowing the seamless integration of different
kinds of NFs. The proposed functional architecture included the adapter concept
as intermediate entity dealing with the management of NF instances.

4.3.1 Intermediate Architecture

The experiences and lessons learned during the prototype and intermediate phases
as well as the knowledge acquired analyzing the different network management so-
lutions presented in the Chapter 2 have driven the definition of the first version of
the extensible and customazible MANO4X framework, designed in order to simplify
end-to-end network service orchestration.

The major architectural changes applied in this intermediate design phase mainly
took in consideration the heterogeneity aspects of the environment that has to be
managed by the MANO4X framework, both from the perspective of the infrastruc-
ture and NFs.

The first assumption is that the infrastructure could be comprised of multiple
sites, managed by different CMS technologies exposing (in most of the cases) hetero-
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geneous APIs. Solving the heterogeneity at the infrastructure level is not a trivial
task, considering that different existing technologies do not expose a common inter-
face for offering the on-demand provisioning of compute, storage, and networking
resources.

The second assumption is that for supporting the needs of different vertical do-
mains the MANO4X framework should be capable of composing and orchestrating
services comprising different kinds of NFs. Orchestrating heterogeneous NFs re-
quires interoperability between different configuration management systems. There-
fore, another key aspect that was considered during this phase was the capability of
the framework to integrate existing solutions for managing any kind of software com-
ponent, obtained decoupling the orchestration logic from the actual configuration
management of NFs. The proposed solution is presented in Figure 4.6.
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Figure 4.6: Proposed Architecture during the Intermediate Phase

This architectural diagram highlights the first distinction between this version
and the previous one, especially with the introduction of the concept of service
topologies. Services exist as types and instances. A service type is used for describing
what kind of services are provided by this entity. In the context of this research
work it is assumed that a service can be implemented by one or more software
components, exposing certain functionalities via either standardized or proprietary
input/output interfaces. Services could be of any types. In the telecommunication
domain a service corresponds to an NF. Thus, the difference between service types
and instances can be exemplified: A service type could generally be used to describe
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a standard NF, basically providing information about its capabilities and exposed
interfaces, however, a concrete instance running on a particular compute resource
represents a service instance. A service can be instantiated multiple times in multiple
instances.

The service topology, represented in Figure 4.6 as a dotted-lined rectangle, is a
collection of services. A service topology exists in the form of template and instance.
A service topology template is the result of the design process executed by the TSP
selecting services from a catalog. There could be several flavors of the same service
topology, each one describing a particular end-to-end service supporting the require-
ments for a particular vertical domain. A service topology instance is the result of
the overall orchestration process executed by the MANO4X framework.

Following on with the approaches made during the initial phase of design, the
cloud infrastructure is composed by several Compute Node managed by a Cloud
Management System. In this second phase, the multisite requirement was supported
with the introduction of a resource orchestration layer abstracting the complexity
of the infrastructure topology providing a unified interface exposing CRUD func-
tionalities towards the Service Orchestrator (SO). As already mentioned, typically
the semantics and primitives offered by the CMS are implementation-specific (for
instance OpenStack, OpenNebula, etc. expose their own proprietary APIs), there-
fore, creating an abstraction layer providing a common interface across multiple
cloud resources is crucial for deploying compute resources on heterogeneous cloud
infrastructures. This layer exposes an interface compliant with the OCCI specifi-
cation presented in Chapter 2 limiting its functionality only to the provisioning of
virtual compute resources also defined as units [135][130][131].

The SO layer comprises all the functional elements driving the life cycle man-
agement of a service topology. It exposes a set of APIs that could be consumed by
the TSP for retrieving services, creating service topology templates, and triggering
their deployments. The Unit Orchestrator (UO) functional element of the SO man-
ages virtual compute resources consuming the interface exposed by the Resource
Orchestrator (RO). This allows the SO to orchestrate services across the multisite
infrastructure. The SO entity usually represents the entry point for the TSP dealing
with the life cycle management of service topologies.

The Service Adapter (SA) layer comprises all the individual SA entities in charge
of managing the life cycle of a particular service type. The SA is an intermediate
entity between the SO and the actual service instance, providing an abstract inter-
face to the SO for triggering the execution of the installation and the configuration
of a service instance.

The communication between the SO and the SAs was realized over a message
queue. The specific communication mechanism selected is the pub/sub model, al-
lowing fully decoupling the SA layer from the SO. Basically, a topic-based pub/sub
mechanism was used for distributing messages to multiple subscribers. As shown in
Figure 4.7 a messageSelector parameter was used for targeting the receiver of the
messages published.

Whenever a new SA is activated, it registers to the SO, particularly to the
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Figure 4.7: Message Queue Configuration

Service Lifecycle Management (SLM) module, announcing its “messageSelector”
parameter that can be used later on by the SO to send life cycle management
operations.

4.3.2 Information Model

As mentioned before, a common information and data model is crucial for allowing
interoperability between different orchestration solutions, however, back in 2013, the
ETSI NFV ISG had not yet released the information and data model for describ-
ing network services, which could have been a perfect match for defining a service
topology. Therefore, the approach taken during this phase was to adopt and further
adapt the model introduced during the prototype phase. The approach outlined
in this phase is mainly based on the practical need perceived by the author while
further investigating aspects related with management and orchestration of complex
software-based networks, like the vEPC and vIMS use cases. In order to simplify the
portability of such templates across multiple MANO frameworks, a common format
based on the TOSCA specification was adopted. A representation of the service
topology template in a TOSCA format is provided as part of the Appendix B. Fig-
ure 4.8 provides the Unified Modeling Language (UML) representation of the service
topology template.

A service topology consists of multiple service containers. A service container
defines all the properties required for instantiating the virtualized compute resources
on top of which the service instances are deployed. For example, properties like
disk image name, flavours type, min and max number of instances, are all defined
as part of the service container. In addition, the service container references the
subnets object defining what kind of virtual networks should be used for this specific
container, and the service object. The service object defines generic configuration
parameters (like the port numbers that should be used for a particular interface,
etc.), the service type that is used by the SO in order to identify which SA is
responsible for this particular service instantiation, as well as the autoscaling policy,
following the model adopted in the prototype phase. Last but not least, the service
object contains a requires parameter that is used for defining which other services
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are required for being fully functional.
A logical representation of the service topology instance designed during this

phase is provided in Figure 4.9.
The major difference between the service topology template and the service topol-

ogy instance object is represented by the Relation Element. As mentioned, solving
dependencies (also defined as relationships) between multiple services represents one
of the most challenging operations executed by any management and orchestration
system as it requires maintaining compatibility also between services implemented
by different vendors. Thus, the concept of the Relation Element exemplifies the ser-
vice topology instance graph, identifying every single atomic element of the graph.
A Relation Element is basically constituted by a unit and a service instance.

4.3.3 Service Topology Life Cycle

A service topology instance is the result of the orchestration process executed by
the SO entity receiving as input the service topology template. A service topology
template provides information about the service components and their relationship.
The concept of relationship represents a crucial aspect in the service orchestration
process, therefore, it is important to provide additional details about the way rela-
tionships are defined and realized.

4.3.3.1 Design and On-Boarding Phases

The first step of the life cycle is represented by the design phase. This operation
consists of two different steps executed by two different actors: The SP and the
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TSP8. This phase consists of designing and implementing a service, and creating
a portable package that could be distributed to any TSPs. Considering that a ser-
vice could be of any type, the SP should package the solution in a specific format
which is portable across multiple orchestration solutions, and a description of the
service should be based on the information model previously introduced. The ap-
proach taken by the author during this phase was to define a service package as the
combination between:

• Disk Image: Containing the software components of the service that could be
instantiated in form of virtual compute resources.

• SA: An executable binary in charge of the life cycle of this particular service
type.

During the on-boarding phase the SP delivers the package to the TSP that
installs its content inside its MANO4X framework. The launch of the SA process
represents the service registration phase. In fact, the SA publishes over a message
bus a registration message including a description of the service under its control.

8In this context, the SP corresponds to the VNFP actor identified in Chapter 3
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The SO entity receives the registration message and stores the service definition in
its catalog.

Figure 4.10: On-Boarding Service Packages on MANO4X Framework

The second design phase is represented by the service topology composition. The
TSP could either create the service topology manually combining different services in
a service topology template, or using a Graphical User Interface that could facilitate
its creation via drag-and-drop functionality. While generating the service topology
template, the TSP could specify requirements in terms of:

• site locations: the TSP could (optionally specify the sites where such service
should be deployed. In cases where the TSP does not specify any particular
site, the orchestration process should decide based on placement algorithm
decisions which site to select for the specific deployment.

• infrastructure resource capabilities: the TSP could specify how many
compute resources should be used for a particular service instance.

• service specific configurations: each service may expose configuration pa-
rameters (defined as key-value sets) which could dynamically be configured by
the TSP at each deployment. For instance, in case of a Domain Name Sys-
tem (DNS) service, the TSP could decide either to modify the default realm
with its own specifics or modify the number of a port exposed by such service
once instantiated.

• autoscaling policies: policies could be of any types, and the TSP could
provide them as part of the service topology to instruct the operational support
service during the runtime phase.

The result of this operation is the service topology template, which is uploaded to
the SO catalog by the TSP. The separation of the design phase and the on-boarding
phase is critical for understanding the orchestration process further outlined in the
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following. While creating a service topology template, the TSP should not be aware of
the details of the service life cycle management process that is completely delegated
to the SO entity. The TSP focuses on the overall end-to-end service required for
their end customers. While composing the service topology template, the TSP selects
services based on their capabilities in terms of functionalities provided. The low-
level details of how these services will be instantiated, and which virtualization
technologies are required for their execution, are defined by the SP and consumed
by the SO and SA during the deployment phase.

4.3.3.2 Deployment Phase

The actual orchestration process starts with the execution of the deployment op-
eration triggered by the TSP selecting a service topology from the catalog. The
orchestration process consists of several intermediate steps that are executed with
the objective of generating a service topology instance based on the service topology
template received as input. As already mentioned, the service topology template
could be instantiated several times (also in parallel), however, service topology in-
stances differ between each other because of different runtime information.

To better understand the deployment process, in Figure 4.11 a simple service
topology is shown.
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Service SW 
Configuration

Service-A1

Service Container-A

Host-A

Service SW 
Artifacts

Service SW 
Configuration

Requires

Subnet

Figure 4.11: High-Level View of a Service Topology

The first step in the orchestration process is the instantiation of the infrastruc-
ture resources required by the different service instances. This step consists of several
operations involving the SO and the RO. As the initial step, the SO iterates over the
services defined in the service topology and starts instantiating via the RO entity,
the subnets required by the service topology, as well as the number of units required
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by each individual service, based on the properties defined in the service container.
The SO (using the UO functional element) starts interacting with the RO of the
selected sites in order to instantiate the compute units required. The result of this
process is the infrastructure resource graph instance, comprising running compute
and subnets resources across the different sites. This means that the infrastructure
resources needed for hosting the service instances are ready.

The second step executed by the SO is the instantiation of the service itself.
This step handled by the SLM involves the SA entities, being the components in
charge of instantiating a service. The interaction between the SLM and the SA has
been realized over a message bus. Table 4.1 defines the three major phases executed
for each individual service instance of the service topology during the instantiation
procedure.

Lifecycle Event Description Input

INSTALL Instantiation phase Service Template
ADDRELATION Relation management phase Relation Element
START Start phase -

Table 4.1: Lifecycle phases during the deployment phase

During the INSTALL phase, the SO requests the SA to instantiate services under
its control, passing as input the service template including the information about
infrastructure resources allocated to that particular service instance. In order to
install the required software artifacts, the SA can make use of any mechanism/tech-
nology for instrumenting the virtualized compute resources allocated to the service
component under its control. An example of such process is the execution of in-
stallation scripts comprising the download and installation of the required software
components.

After this phase, each individual component is available as a stand-alone com-
ponent, however, not contextualized for interacting with other components. Inter-
service dependencies represent one of the major issues that need to be solved during
the deployment phase by the SO. Following the example presented before, it is
clear that for the proper functioning of the service composition, it is required that
each relation (defined by the requires line) between service instances is satisfied be-
fore starting the service instance components. For example, the typical problem
is represented by dynamic address resolution of the service instance peers that are
composing the service.

The approach proposed in the following is a generalized approach that could be
applied to any kind of services. Basically, each service declares:

• what information is required by this service instance from other peers

• what information is provided by this service instance to other peers

Clear separation between the service topology specification and the service man-
agement operations enables to further elaborate a generic orchestration logic. The
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logical correlation between the service topology specification and the executable
orchestration logic is performed by the SO function.

4.3.3.3 Runtime Phase

The experiences gained during the prototype phase about elastically autoscaling
service instances were adopted and further extended as part of the runtime phase
of the service life cycle. Basically, the architectural components designed in the
previous phase were integrated in this version of the architecture as additional func-
tional elements providing policy management functionalities. After the deployment,
the RE execution is activated based on the policy contained in the service object.
The mechanism for detecting the need to scale, and deciding what action to trigger,
remained pretty much the same.

The major difference between the previous phase and the one outlined in this
section is represented by the integration between the RE and the SLM as intermedi-
ate entity towards the CMS. In the previous version, the RE was directly interacting
with the CM entity for requesting the instantiation or disposal of a VM hosting a
certain service instance. In this current approach, the RE interacts with the SLM
for requesting the addition or removal of a service instance from an already deployed
service topology instance.

4.3.4 Limitations Encountered during the Intermediate Phase

This intermediate architectural solution, followed by its implementation as part
of the Fraunhofer FOKUS Open Software Defined Network Core (OpenSDNCore)
toolkit9, provided the basis for managing and orchestrating complex end-to-end
network services on top of a multisite cloud infrastructure. This solution satis-
fied additional requirements, like composition of multiple service types in a service
topology, however, additional limitations were identified during this intermediate
process.

The first limitation encountered was that, although the SA entity provided a
mechanism for separating the overall end-to-end service life cycle from the manage-
ment of a particular service, the solution adopted required a dedicated SA compo-
nent for each type of service to be managed. One of the major drawbacks of such
solution is that the SA entity is also responsible for publishing the service description
in the SO catalog. This was a major limit in terms of extensibility as the integration
of a new service into this architecture would require the deployment of a new SA
entity.

Furthermore, management of virtual networks was not realized. The assumption
made during this phase was that the TSP would prepare, in advance, the virtual
networks on its cloud infrastructure required for hosting service topology instances.

Last but not least, runtime management only covered elasticity aspects of a
service. Although the approach taken was policy-driven, autoscaling functions were

9http://www.opensdncore.org/
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embedded within the service orchestration entities.

4.4 Final Phase

The final phase was mainly influenced by the parallel evolution of the ETSI NFV
ISG standardization work. In 2015 the ISG completed the first phase of its work
providing 11 comprehensive specifications covering several aspects related to the
different NFV domains, including MANO [155]. Most importantly, a specification
was provided concerning the information and data model for describing NSs and
VNFs, as already presented in Section 2.3.

After a conceptual study conducted by the author about the major differences
between the models and concepts defined in the previous phases, and the ones
introduced by the ETSI NFV ISG as part of the first specification set, the decision
made was to adopt and further extend the ETSI NFV MANO information and data
model as the core model of the MANO4X framework, while keeping the orchestration
and runtime management processes proposed in the previous phases. This was
mainly achieved due to the fact that the information and data model proposed by
ETSI had a large set of similarities with the one proposed by the author during the
intermediate phase.

Nevertheless, most of the work carried out during this period was mainly devoted
to the design of the framework itself, targeting extensibility and customizability as
major driving requirements. The final version of the architecture, provided at the
end of this phase, can be considered the most comprehensive ETSI NFV MANO
compliant solution combining several innovative design principles and concepts in-
vestigated during the research work.

4.4.0.1 Extensions to the ETSI NFV Information and Data Model

The final approach used in this thesis intends to reuse the information and data
model proposed by the ETSI NFV MANO specification and extend it with any
additional parameter needed for supporting the end-to-end life cycle. For the sake
of clarity, the reference information and data model considered during the period of
this research work is the first version published at the end of 2014[28]. The second
version of this model, which was published at the end of 2016, is considered an
evolution of the first one, therefore, concepts and extensions applied in the context
of this research work can also be applied to the newest version available.

As already presented in Chapter 2, the NFV information model is generally
divided in two sets of entities: descriptors and records. Information inside descriptor
elements are rather static, mainly used for initiating the on-boarding process of
VNFs and NSs. Information inside record elements are instead dynamic, generated
by the deployment process and modified during runtime during the life cycle. The
cause of this variation can be a life cycle operation completion or even a result of an
operation executed because of an expected (i.e., scaling) or unexpected (i.e., fault)
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event. Table 4.2 provides a mapping between the information model proposed by
ETSI NFV and the one defined during the intermediate phase.

ETSI NFV Information
Model

Intermediate Information
Model

NS Service Topology
NSD Service Topology Template

Network Service Record
(NSR)

Service Topology Instance

VNF Service

VNF Record (VNFR)
Service Instance

VNFC Service Instance Component

Table 4.2: Mapping between the ETSI NFV Information Model and the Intermediate
one Proposed in this Thesis

As it can be noticed from Table 4.2, the information model proposed by the au-
thor during the intermediate phase can be mapped 1:1 to the one proposed by ETSI
NFV. Basically, the service topology template corresponds to the NSD as it provides
static information about the composition that has to be deployed, while the service
topology instance corresponds to the NSR as it contains all runtime information gen-
erated during the life cycle management operations. The NSD references VNFDs,
Virtual Link Descriptors (VLDs), VNFFG Descriptors (VNFFGDs) describing the
different elements composing the network service.

Few modifications have been applied to the data model of the different descrip-
tors for supporting the different features required during life cycle management. In
most of the cases, extensions were needed also because the specification did not pro-
vide a detailed definition of these parameters. Starting with the NSD, a new field,
the vnf_dependency attribute, has been added in order to describe dependencies
between VNFs. This object comprises a set of parameters exchanged by a pair of
VNFs. Following the dependency resolution approach designed during the interme-
diate phase with the concept of Relation Element, a dependency between two VNFs
is exemplified in terms of source and target VNF.

Focusing on the VNFD, extensions were mainly done for allowing VNF place-
ment, as well as policies required by the external OSSs components. In particular, a
new parameter VimInstance is added to the VNFD, which can be used for defining
the list of potential PoPs where VNFCs should be deployed. During the deployment
phase, the NFVO can utilize any kind of VNF placement algorithm for selecting the
most suitable PoP where to deploy the VNF.
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4.4.1 Mapping Between the Intermediate MANO4X Architecture
and the ETSI NFV Architecture

Following on with the mapping between the approaches taken in the ETSI NFV ISG
and the ones presented during the intermediate phase of this research work, it is
important to highlight also similarities between the two architectural models. Figure
4.12 shows the mapping between the architecture proposed in the intermediate phase
and the ETSI NFV one.

Figure 4.12: Mapping between the ETSI NFV Architecture and the MANO4X
Intermediate Version

As it can be noticed, there have been similar approaches between the two dif-
ferent architectural models. The following Table 4.3 provides an overview of the
mapping between functional components proposed by ETSI NFV and the MANO4X
intermediate architecture.

Most of the functions of the SO and the RO can be mapped on the NFVO
functional element. In fact, the NFVO comprises functionalities for managing the
life cycle of virtualized resources as well as network services. The SA corresponds
to the VNFM as it is basically an intermediate element between the orchestration
layer and the actual VNF. The NFVI is by definition a cloud infrastructure, initial
Proof of Concepts (PoCs) showcased the NFVI implemented using OpenStack[156].
The OSS/BSS layer, especially the OSS one, correspond to the Monitoring Sys-
tem, MA and RE as they enhance the orchestration capabilities providing runtime
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ETSI NFV ISG MANO4X Intermediate
Phase

NFVO Most of the modules of the SO
& RO

VNFM SA
VIM CMS
NFVI Cloud Infrastructure
OSS/BSS Monitoring System, MA and

RE

Table 4.3: Mapping between ETSI NFV and MANO4X Intermediate Architecture

management functionalities, fulfilling the FCAPS model requirements.

4.4.2 Architectural Design Principles

The aforementioned limitations identified in the first two design phases put strong
emphasis on the need of an extensible architecture where different components could
be introduced using plug-and-play mechanisms. The intermediate version of the ar-
chitecture provided the means for understanding the complexity of building up an
extensible and customizable framework. The concept of service adapters allows
decoupling the management and configuration of service instances from the gen-
eral orchestration function. However, the approach made was not scalable enough,
especially for large and complex network services.

The Hollywood Principle "Don’t call us; we’ll call you (if we want you)" to-
gether with SOA and microservices architectural patterns, have driven the design of
the final version of the architecture. In Chapter 2 microservices architectural pat-
terns were introduced as a novel concept for building distributed applications with
loosely coupled services. As it was extensively discussed in Chapter 2, microservices
architecture suppose that a particular application must be decomposed in several
microservices.

Those patterns share some common objectives[157] that have driven the design
of the proposed final version of the MANO4X framework architecture:

• Domain Driven Design : The architecture should be decomposed in different
domains so that developers could focus on the core logic of each individual
domain.

• Information Hiding : Each component that is part of the final architecture
should have an independent life cycle, being still part of the big structure. In
order to increase the ability to scale independently of the others, components
should use ligthweight communication mechanism (i.e., REST over HTTP, or
Pub/Sub) in order to hide implementation details.

• Decentralization : Each individual component makes use of its own persistency
layer, without having a single logical database across a range of applications.
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• Failure Isolation: Decoupling the architecture into multiple microservices re-
duces the risk of failure of the overall system.

From this perspective, the designed solution enables the integration of any kind
of infrastructure resources and configuration management through the employment
of the adapter design pattern. In order to realize such distributed architecture the
Event-Driven Architecture (EDA) design pattern was employed. The main idea is
to have a central message bus acting as a broker between the different domains,
distributing events generated by the central orchestrator entity to external entities
contributing to the overall service life cycle.

The final approach, the key contributions of this dissertation, is hereby defined
as “event-driven orchestration” , providing an extensible and customizable framework
with a predefined state machine in which each state transition is based on a partic-
ular event, being a user request or a message from another internal component.

4.4.3 The Final Architecture of the MANO4X Framework

Following the Domain Driven Design, the final architecture proposed comprises
different elements that have been categorized in four main surrounding domains
interacting with the main components as part of the central domain. Figure 4.13
shows the high-level overview of the different domains identified in the scope of this
dissertation.

Virtual 
Network 

Functions

Operational 
Support 
Services

NFV 
Infrastructure

User Tools

Core

Figure 4.13: Overview of the Main Domains Composing the MANO4X Framework

The central domain represents the core of the MANO4X framework, executing
the network service life cycle management using an event-driven engine brokering
event received from the northbound domain, typically user-driven, and the ones gen-
erated by the other three domains (eastbound, westbound, and southbound). Using
microservices principles, each individual function acts as a stand-alone component
being activated/deactivated based on events generated during the life cycle. In this
way, also the design and development of a particular function providing specific fea-
tures for a particular use case can be done independently, and can be plugged into
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the system whenever it is needed. This approach satisfies the information hiding,
decentralization, and failure isolation design patterns aforementioned.

The proposed framework abstracts the view portion, what users actually see
and interact with, exposed via a northbound domain comprising user tools (CLI,
SDK, or a web-based dashboard), from the internal orchestration logic. The main
objective is to expose towards this domain the view layer providing functionalities
for controlling the life cycle of network services and VNFs, consumed either via an
APIs, SDKs and/or Graphical User Interface (GUI).

The southbound domain comprises heterogeneous infrastructures: central clouds,
MEC nodes, or even FOG devices. The commonality between those infrastructures
is that they all offer compute, storage, and networking resources as atomic elements.
One of the major components belonging to this domain is the VIM that provides
an interface for the on-demand provisioning of those atomic resources. Typically,
this domain is comprised by several kinds of IaaS exposing different interfaces for
the control of the individual resources. The proposed framework should be able to
manage the execution of any kind of compute resources such as virtual machines,
containers or bare metal, and to on-demand connect them to each other. A driver-
based mechanism, following the adapter design pattern, has been designed in order
to support interoperability with multiple infrastructure providers. Even though
OpenStack[158] represents the standard de facto implementation of the VIM[159]
the MANO4X framework should be decoupled from it, and should be extensible
enough to easily accommodate other VIM implementations.

The westbound domain corresponds to the VNF domain. It is the most critical
domain for supporting heterogeneous vertical use cases and satisfying interoperabil-
ity across VNFs provided by different vendors. The ETSI NFV architecture already
decouples the network service life cycle management from the VNF life cycle man-
agement making use of the VNFM functional entity. Although this logical separation
exists as a native separation, MANO4X should support the possibility of incorpo-
rating on demand additional VNFMs in a plug-and-play fashion, and accommodate
different kinds of VNFMs (either specific or generic).

Last but not least, the eastside domain comprises elements usually belonging to
the OSS (and consequently BSS) domain contributing to the overall life cycle of the
end-to-end network service. Particularly, OSS elements contribute to the runtime
phase of the network service execution, ensuring that the aspects defined by the
FCAPS are guaranteed along the overall service life cycle.

4.5 Conclusion

The present chapter introduced the design evolution of the MANO4X framework.
Following an agile methodology, three major phases were executed during the re-
search work conducted by the author. Each individual phase contributed to achiev-
ing the overall research objectives.

In particular, the results achieved during the final phase of design have integrated
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concepts and methods designed in the previous phases, as well as influenced by the
evolution of the ETSI NFV ISG activities.

The final solution proposed can be considered an extensible and customizable
NFV MANO-compliant framework in which different elements could be combined
together for satisfying the particular requirements of a set of very heterogeneous
use cases, being the deployment of the 3GPP EPC on a typical NFVI environment
(i.e., OpenStack-based), or the deployment of the virtual caching system on top of
an MEC node (i.e., container-based).
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The previous Chapter 4 – The Design Evolution of the MANO4X Framework
introduced the design evolution of the MANO4X architectural framework and pro-
vided the MANO4X reference architecture as a result of different design phases.

The final architecture proposed supports the integration of various types of net-
work services and virtualization technologies, and provides a horizontal solution to
support multiple vertical stakeholders. The aim of this architecture is to satisfy
the list of identified user stories and to support the specified, relevant functional
and nonfunctional requirements while taking into consideration heterogeneous and
distributed NFVIs.

This chapter presents the specification of the main functional elements of the
MANO4X framework. The first part elaborates the different domains, particularly
focusing on the functional elements comprising the MANO4X functional architec-
ture. The second part outlines the high-level procedures executed for managing the
entire life cycle of a network service.

5.1 General Overview

The MANO4X framework is designed for managing and orchestrating software-based
network services on top of a multisite NFVI. As already introduced in Section 4.4.3,
the framework is composed of a central domain surrounded by four other individual
domains contributing to the overall life cycle. The functional architecture is depicted
in Figure 5.1. It includes the interfaces with the NFVI as well as external entities,
like VNFMs and OSSs.
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Following the domain separation a short overview is given about the functional
elements of each domain serving as intermediate elements between the MANO4X
framework and the external entities.

The central domain comprises the NFVO and message bus. The NFVO orches-
trates NSs through their life cycle while the message bus provides a loosely coupled
communication mechanism for integrating elements from the other domains.

The user tools north domain is composed of the dashboard, the CLI, and a set of
SDKs, providing support for interacting with the MANO4X. All these tools interact
with the NFVO through REST APIs, and no state is maintained on the client side
except for authorization and authentication information (i.e., security tokens).

The south domain comprises the VIM drivers and monitoring plugins allowing
the integration with the multisite NFVI. VIM drivers can be of different types,
depending on the actual cloud technologies used as part of the NFVI (e.g., Open-
Stack, OpenNebula, etc.). In particular, a VIM driver type corresponds to the type
of APIs exposed by a VIM.

The west domain includes one or more VNFMs handling the life cycle of a
particular VNF and their respective EMSs.

Last but not least, the east domain comprises external OSSs handling a par-
ticular aspect of the network service life cycle (i.e., scalability, fault management,
security, etc.). This domain comprises OSSs designed as part of the MANO4X frame-
work (i.e., the FMS, the AES, the SFCO, and the NSE) as well as OSS adapters
allowing integrating existing OSSs external to the MANO4X framework.

In the following subsections a description is provided about each domain and
their respective components.

5.2 Central Domain: NFVO and Message Bus

The central domain comprises the two main functional elements of the MANO4X
framework: The NFVO and the message bus. The NFVO represents the main
entity within the MANO4X architecture orchestrating the life cycle of software-
based network services, while the message bus is the messaging system allowing
decoupled communication between the NFVO and functional elements composing
other domains.

The NFVO has a central role within the framework driving the life cycle manage-
ment operations. It exposes a REST-based northbound API that can be consumed
through the user tools provided by the north domain.

All in all, the major responsibility of the NFVO is to correctly handle the order
in which certain operations are carried out, executing life cycle management of the
VNFs belonging to a certain NS. This encompasses tasks such as:

1. Allocating infrastructure resources on the multisite NFVI.

2. Satisfying the VNFs dependencies defined in the NS, matching the target of
each dependency with a source able to satisfy its requirements (in terms of
statically and dynamically defined information).
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3. Modifying the configuration contained in the VNF to specify the address at
which the dependency source resides in the scope of the Virtual Link (VL)
between them.

4. Starting VNFs respecting the order defined by their dependencies. Ordered
start could be an optional choice that could be enabled or disabled based on
the needs of the TSP.

5. Executing runtime operations (e.g., scaling, healing, etc.) throughout the NS
life cycle based on decisions made by external OSSs.

The task defined under 1) requires interactions with the VIM, thus the south
domain, in order to allocate infrastructure resources on top of the multisite NFVI.
Alongside the NS life cycle management, the NFVO has a global overview of the
infrastructure resources available at the multisite NFVI level, interfacing with the
VIM of each individual site, over the Or-Vi interface. Thus, the NFVO is responsible
for granting the allocation of certain resources on a particular NFVI-PoP. Selection
of the NFVI-PoP maybe directly provided by the TSP while deploying the NS, or
left to the NFVO based on advanced placement algorithms. Information about the
allocated virtualized resources are later on provided to the VNFM that handles the
life cycle of VNFs, taking care of installing, configuring, and starting the software-
based network functions.

The tasks defined under 2) and 4) do not usually require intervention by compo-
nents external to the NFVO itself which is capable to resolve dependencies through
its internal dependency management services, and to handle the ordered issuing of
events if configured to do so. Nevertheless, the NFVO functionality concerns more
the overall end-to-end network service orchestration as the particular VNF manage-
ment task is delegated to the VNFM. Although this may be seen as a limitation
of functionality, delegating the VNF life cycle management to the VNFM allows
defining a generic orchestration logic composing heterogeneous VNFs in a network
service, without knowing the details about how VNFs are actually instantiated and
configured.

The task defined under 3) instead heavily relies on the VNFM, which needs to be
able to modify the configuration of the target VNF to introduce in it the parameters
resolved by the NFVO, and on the VIM, which needs to expose to the NFVO exact
knowledge about the location of the source VNF. The NFVO uses the Or-Vnfm
interface to instruct it to carry out the VNF life cycle operations it needs to do on
a given function.

The task defined under 5) requires support of the OSSs. Basically, the OSS,
based on external conditions and events, may require modifications of the deployed
network services requesting the NFVO to execute particular actions towards the
network service.

As it can be seen in Figure 5.1, the NFVO comprises the following functional
elements:
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• API Handler: Exposing a set of REST-based APIs to components from the
other domains, and transforming incoming requests to specific API calls to
other internal functional elements.

• Security: Providing a set of functionalities for the authentication and autho-
rization of users. Furthermore, this functional element ensures multitenancy
providing logically separated spaces, called projects, where multiple users can
work together utilizing a subset of the resources provided by the framework.

• Catalog: Exposing a set of APIs for storing information and data related
to the different domains. Those repositories can be used for storing network
service descriptors and respective records, as well as maintaining an overview
of the different components running in the system (i.e., available VIM drivers
and VNFMs).

• TOSCA Parser: Providing a parser functionality capable of translating the
TOSCA topology template into an NSD. Once transformed, the template
is stored into the catalog in the form of a descriptor. Having a separated
functional element for parsing TOSCA topology templates allows decoupling
the external description language from the internal information model and
orchestration logic.

• VNF Management: Providing an abstracted API to other functional ele-
ments for allowing them to communicate with VNFMs.

• Resource Orchestration: Orchestrating virtualized resources provided by
the multisite NFVI. It acts as a broker among other internal functional ele-
ments and VIM drivers, abstracting the complexity of the NFVI, allowing in-
stantiating virtualized resources without necessarily knowing the underneath
technologies used.

• Service Orchestration: Representing the core functional element of the
NFVO having the responsibility of managing the overall network service life
cycle. It receives external requests from the API Handler, interacts with the
Resource Orchestration function for acquiring virtualized resources, drives the
deployment of network services through the VNF management, and collabo-
rates with external OSS for managing the runtime phase of network services.

• Scheduler: Providing a generic scheduler for executing periodic tasks of a
different nature.

• Data Collection: Retrieving external monitoring information.

• Event Engine: Managing event endpoints and generating events to external
consumers subscribed to particular life cycle events.
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In the following subsections details will be provided about the most important
functions of the NFVO. A definition of the interfaces exposed towards functional ele-
ments of other domains is provided in Section B.2. The interface naming convention
follows the one proposed by the ETSI NFV MANO specification[28].

5.2.1 Catalogs of Descriptors and Records

The MANO4X framework uses a set of catalogs and repositories for storing in-
formation and data regarding the different domains. This information is usually
on-boarded on the MANO4X framework either using packages or descriptors. To
this end, both statically defined information provided by the TSP and dynamically
generated information about the running NSs and VNFs, are typically stored in
private catalogs hosted within an instance of the MANO4X framework.

Following the ETSI NFV MANO specification, the MANO4X framework pro-
vides the following set of catalogs:

• NS Catalog : This catalog contains the on-boarded NSDs, including informa-
tion of the network service composition as set of multiple dependent VNFs,
VL and VNFFG. Such catalog is typically populated by TSPs while creating
new network services as composition of multiple VNFs available in the VNF
catalog.

• VNF Catalog : This catalog is used to store information about the on-boarded
individual VNFDs and VNF Packages. It supports the creation and manage-
ment of new VNFs providing details on the software images used by the VNF
and their descriptors. The catalog is typically populated by the VNF providers
while being queried by the TSP while creating new network services.

• NSR Catalog : This catalog contains records of instantiated NSs.

• VNFR Catalog : This catalog contains records of instantiated VNFs.

Statically defined information can also be available as part of a public catalog,
defined as marketplace, acting as a global catalog shared among multiple instances
of an existing MANO4X framework. The marketplace is a shared catalog containing
packages and descriptors that have been validated and tested for a particular version
of the MANO4X framework. A TSP can decide to download existing packages and
descriptors from the marketplace to its local catalog.

In addition to the above list, MANO4X defines an additional set of catalogs for
storing information related to components needed for interacting with the NFVI,
the VNF, and OSS domains, as well as security-related ones. In particular:

• NFVI Catalog: Contains information about registered VIM Drivers (particu-
larly their endpoint and state) and NFVI-PoPs.

• VNF Catalog: Contains information about registered VNFMs (particularly
their endpoint and state).
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• OSS Catalog: Maintains an active list of external OSSs subscribed for receiving
life cycle changes events of any types.

A definition of the different REST APIs exposed by each different catalog is
provided in Section B.2.1.

5.2.2 Security and Multitenancy

Based on the requirements identified in Chapter 3, authentication and authorization
are needed for allowing multiple users to interact with the framework and manage
their individual resources without interfering with each other.

On the one hand, authentication is the most common feature required for know-
ing who the user is. During the installation process, the platform administrator is
granted some user credentials, having the rights to perform any kind of operations
within the system. Authentication of additional users is supported in the MANO4X
framework, following a standard registration procedure accomplished by the plat-
form administrator providing details about new users who need to be registered.
For administrative purposes, the MANO4X framework also supports the removal of
a particular user from the platform.

On the other hand, authorization is the most common feature required for defin-
ing what each user can do. Typically, authorization requires the definition of differ-
ent roles assigning users different permission levels. Before introducing the different
roles that can be assigned to users, it is important to highlight also the concept of
multitenancy.

Multitenancy is a mechanism that becomes very prominent in the cloud comput-
ing domain, and it refers to the concept of running multiple logically isolated spaces
dedicated to one or more users. In the context of this work, a tenant is a project,
a logically separated space in which multiple users could work together utilizing a
subset of the overall services managed by the MANO4X framework. In general, to
each project there could be assigned a limited set of resources defined as quota.

In the MANO4X framework, three major users’ roles have been identified:

• GUEST : A user able to perform read operations, but without any rights to
modify the status of any resources.

• USER: A user able to perform any actions in a particular project.

• ADMIN : A user able to perform any kind of action on the whole system
without any restrictions.

A definition of the authentication and authorization REST APIs exposed by the
security functional element is provided in Section B.2.3.

5.2.3 The Message Bus as Primary Internal Communication Mech-
anism

The communication paradigm between loosely coupled components of the MANO4X
framework leverages primarily the message bus approach providing a higher degree
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of flexibility and extensibility in adding and removing components from the architec-
ture. The MANO4X framework’s internal communication is mainly based on topic-
based pub/sub asynchronous communication and Remote Procedure Call (RPC)
patterns. For the sake of clarity, RPC over the message bus follows the pub/sub
communication approach, requiring a queue for handling requests sent to external
components and another queue for handling their responses.

Thus, the communication between components is completely asynchronous, re-
ducing the overall risks of employing synchronous communications, especially for
requests that may require some time to generate a response (i.e., the allocation of
virtualized resources). Another advantage in employing the message bus relates to
the scalability problem: There could be multiple instances of the same component
handling a particular request, thus allowing horizontal scalability of the framework
in case of increasing load. The particular communication pattern employed depends
on the interface type exposed by the NFVO.

The NFVO requires six queues associated with the openbaton-exchange topic:

• nfvo.vnfm.register: Messages on this queue are related to the subscription
of a VNFM component that became available in the system.

• nfvo.vnfm.unregister: Messages on this queue are related to the unsub-
scription of a VNFM component that became unavailable in the system.

• vnfm.nfvo.actions: Messages on this queue are actions sent by the VNFM .

• vnfm.nfvo.actions.reply: Messages on this queue are actions sent by the
VNFM expecting a reply message.

• nfvo.event.register: Messages on this queue are related to the subscription
of an external component interested in receiving events after any life cycle state
change.

• nfvo.event.unregister: Messages on this queue are related to the unsub-
scription of an external component not interested in receiving events anymore.

All components have to register themselves to the message bus controlling which
messages are allowed to be published and consumed by the component, based on
their read/write permissions. The subscriptions to a particular topic can be either
specific, allowing a component to subscribe exactly to a particular topic of interest,
or generic, allowing a component to subscribe to a set of topics that may be of
interest.

5.3 North Domain: User Tools

The different functionalities provided by the NFVO (as described in the previous
sections) are exposed to the north domain via REST-based API, on the Or-Oss
interface. Although this API could be directly consumed by the TSP via common
HTTP clients, a set of user tools are provided as part of the framework:
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• A dashboard providing a GUI for executing operations directly from the
browser, without knowing low level details about the API.

• A CLI providing a console-based approach for interacting with the most com-
monly used NFVO operations.

• A set of SDKs allowing service orchestration programmability using an Object
Oriented Programming (OOP) paradigm.

All those tools make use either of the REST API or the message bus for inter-
acting with the NFVO. Through user tools, the TSP can discover and request NFV
resources along with the runtime information that are generated during the service
orchestration process.

A definition of the REST APIs exposed by the NFVO towards the north domain
is provided in Section B.2.4.

5.4 South Domain: NFVI

VNF deployment scenarios, regardless if multidomain or single-domain, is supposed
to happen in different sites within the NFV infrastructure of an operator (i.e., cen-
tral clouds or edges). Based on the design assumptions presented in Section 4.1.2,
those sites are typically interconnected via WAN networking technologies. Those
sites correspond to NFVI-PoP according to the ETSI NFV specification. Each indi-
vidual NFVI-PoP provides compute, storage and networking resources via the VIM
entity. Although the VIM interface is a central part of the standardization activities
conducted by the ETSI NFV specification group, not all existing VIM technologies
are currently aligned to such definition. Hence, VIM implementations may expose
their own set of northbound and southbound interfaces and can be specialized in
handling a specific type of NFVI resource.

Based on the above considerations, the MANO4X framework, and in particu-
lar the NFVO, uses the Resource Orchestration functional element abstracting the
VIM-specific northbound APIs from the Service Orchestration logic requiring NFVI
resources for deploying VNFC instances. Therefore, the concept of a VIM driver fol-
lows a common Adapter architectural design pattern, serving as intermediate entity
translating requests coming from the Resource Orchestrator defined in compliance
with the ETSI NFV specification, to a particular VIM technology. The VIM driver
approach allows to continuously extend the set of VIM technologies supported, as
well as always upgrading the existing ones to the latest releases available, without
requiring changes on the orchestration logic.

The VIM driver is a functional element that is uniquely identified in the system
by its ‘name.type’, and it is actually activated upon requests coming from the
NFVO having as objective the deployment of certain resources on a particular NFVI-
PoP. A driver could serve as intermediate between the NFVO and multiple NFVI-
PoPs. The translation from an incoming request to the actual ongoing call is VIM
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type specific and can ideally be mapped to any kind of VIM, managing either a
private or a public NFVI-PoP. Figure 5.2 shows the VIM driver mechanism.
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VIM-2

PoP-N

VIM-N

VIM Driver
(‘name.type’)

VNFM

Or-Vi-rpc / 
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Figure 5.2: VIM Driver Mechanism

As can be noticed, a single VIM driver could be used for interoperating with
multiple (N ) PoPs of the same type. For scalability reasons, multiple VIM drivers
of the same type can also coexist in the same environment.

The VIM driver exposes the Or-Vi interface towards the NFVO and VNFM
over the message bus using an RPC-based communication mechanism. Each driver
creates a queue under the plugin-exchange topic having the following syntax:
vim-drivers.plugin-type.plugin-name, where plugin-type corresponds to the
VIM type supported by the driver (i.e., in the case of OpenStack, the plugin-type
may correspond to ‘openstack’) while plugin-name may be defined by set by the
VIM driver provider to differentiate VIM drivers of the same type.

A definition of the Or-Vi interface between NFVO/VNFM and VIM driver is
provided in Section B.2.5.

5.4.1 Monitoring integration

Monitoring of the virtualized resources is also a task belonging to the NFVI domain.
Typically this is obtained installing a monitoring system based on a server-agent
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model (i.e., Zabbix1, Nagios2, etc.), or making use of the ones already provided
by the NFVI solution (i.e., Telemetry in OpenStack3). Those monitoring systems
usually collect information from both, the physical and virtualized resources, and
could be further customized to retrieve also application-level metrics.

The approach utilized for allowing the different components of the MANO4X
framework retrieve monitoring data, is similar to the adapter concept utilized for
integrating heterogeneous VIM technologies. A monitoring plugin acts as an in-
termediate entity between the monitoring system and any consumer interested in
retrieving monitoring data. It allows any component connected to the message bus
to perform operations towards the monitoring system, consuming an interface com-
pliant with the ETSI NFV IFA 006 specification[97]. In particular this interface
supports managing performance jobs and alarms.

A definition of the Vi-Mon interface between NFVO/VNFM and VIM driver is
provided in Section B.2.6.

5.5 West Domain: VNFM

Handling the current state of a VNF is a responsibility solely reserved for its VNFM.
Each VNF is associated with one VNFM. One of the major requirements for a
MANO framework is to be able to interoperate with multiple VNFMs. This means
that the NFVO expects the VNFM to provide a common interface for being orches-
trated. The VNFM should provide an interface to the NFVO for receiving requests
triggering the execution of each specific life cycle event.

However, considering the large number of existing management and configuration
solutions, not all of them expose an interface compliant with the Or-Vnfm standard
definition. Therefore, the MANO4X framework provides a mechanism to integrate
both kinds of VNFMs: Those compliant with the Or-Vnfm interface (like the Generic
VNFM described in the next section), directly integrated with the NFVO, and those
having their own interfaces for being managed, integrated with the NFVO using the
VNFM-adapter functional element. Figure 5.3 shows the architectural model of such
definition.

In Figure 5.3 there are three different kinds of VNFMs:

• VNFM-A: External VNFM exposing a REST interface compliant with the
ETSI NFV definition of the Or-Vnfm reference point. It interacts with the
NFVO using the Or-vnfm-rest APIs provided.

• VNFM-B: MANO4X-compliant VNFM interacting with the NFVO over the
message bus. This VNFM uses the Or-vnfm-amqp without any intermediate
component. An example of such VNFM is the Generic VNFM.

1http://www.zabbix.com/
2https://www.nagios.org
3https://wiki.openstack.org/wiki/Telemetry
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Figure 5.3: VNFM Architectural Models

• VNFM-C: External VNFM integrated within the MANO4X framework using
an adapter. This adapter translates incoming requests over the message bus
into specific calls to the external VNFM. An example of such VNFM is the
Juju VNFM.

The translation from the incoming function call into the actual outgoing manage-
ment procedure is VNF-specific and can be mapped, for example, to cloud-config4,
Puppet5 or Chef6 recipes deployments, or common bash commands executed via
Secure Shell (SSH). Ve-Vnfm-vnf (or Ve-Vnfm-em) reference point is used by the
manager to access the VNFC hosting the actual software artifacts (or to contact the
EMS), and for executing management operations on it.

A definition of the Or-Vnfm interface between NFVO and the VNFM is provided
in Section B.2.7.

5.6 East Domain: OSS

Deployed network services are in continuous evolution and are being affected by
changing external or internal conditions, defined also as events. Such events could be
external in the sense that they are generated by user actions, or internal because they
are generated by other functional elements (i.e., OSS/BSS runtime decisions). Loop-
based self-organization mechanisms should guarantee the network service operations
throughout the complete life cycle.

4http://cloudinit.readthedocs.io/en/latest/topics/examples.html
5https://puppet.com/
6https://www.chef.io/chef/
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While analyzing possible mechanisms for realizing the integration of OSS com-
ponents in the MANO4X it has been considered that i) OSSs should be decoupled
from the NFVO, so that they could be optionally used only when needed in a partic-
ular scenario or particular VNF, ii) should not follow any implementation schema,
so that already existing OSSs could easily be integrated within the framework.

In the context of this research work, two major categories of OSSs have been
identified from the perspective of the interactions they are having with the NFVO:

1. uni-directional : Comprising systems that, in order to realize the desired state
defined in the policies under their control, do not require any interaction with
the NFVO, thus do not modify the overall state of the network services and
VNFs.

2. bi-directional : Comprising systems that, in order to realize the desired state
defined in the policies under their control, need to trigger state transitions via
the Or-Oss, impacting directly on the state of the NSR (e.g., scaling in and
out, or switch to standby actions). Typically, those systems apply a control
loop7 for modifying the NSR in order to reach the desired state.

OSSs of both categories need to be aware of the actual NSR instantiated, partic-
ularly they need to retrieve either static information set by the TSP (i.e., policies)
or runtime information (i.e., IPs, hostnames, etc.) of a particular network service.
Hence, the main approach is to provide a mechanism for i) keeping track of exist-
ing external OSSs components using a registration process so that they get notified
whenever an NSR is modified, ii) allowing those external components to interact
with the NFVO in order to apply any kind of modification on existing network ser-
vices. In some cases, OSSs may expose an independent interface towards the users,
for providing more detailed information about the specific operations under their
control.

In the next subsections the different OSSs functional elements designed for ful-
filling the FCAPS model requirements along the network service life cycle are pre-
sented. All the OSS solutions presented use the same approach in order to register
and get notified by the NFVO whenever new NSRs are instantiated.

5.6.1 Fault Management System (FMS)

The FMS is one of the fundamental functions in a management framework, as per
definition in the FCAPS model (as defined in Section 2.1.1.1), especially because it
has strong impacts on the QoE and QoS perceived by end-users. The FMS is part
of the bi-directional category. With the introduction of virtualization technologies,
fault management becomes even more complex, considering that network functions
running on VMs are independent from the underlying infrastructure, thus, faults at
the physical infrastructure level may consequently cause several faults at the upper

7Although control loop is a term typically applied in the context of industrial control systems,
it is employed here for defining the overall similar objective addressed by those systems
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layers. In NFV, at least three different layers can be identified: Physical layer,
virtualization layer, and VNF layer.

Moreover, the multi-layer fault dependency can generate major issues within an
NFV environment, especially because of a potential storm of alarm notifications
that may happen whenever a fault occurs. Due to a single fault at the physical
layer, several fault notifications may be fired. Therefore, a mechanism is needed for
properly correlating notifications and adequately propagating the message to the
decision maker. Moreover, in order to take the appropriate decision about the fault
recovery action to be executed, a sufficient set of information regarding the fault
that occurred is required .

The FMS has the overall objective of identifying the root cause of a fault and to
take corrective actions aiming at containing the fault and recovering the status of
the network service. It is composed of three main functional elements: Monitoring
Manager (MM), Fault Correlator (FC), High Availability Manager (HAM).

In the following subsections a short overview is given about the functionality
provided by those three functional elements.

5.6.1.1 Monitoring Manager (MM)

The Monitoring Manager communicates with the monitoring system via the moni-
toring plugin (as presented in Section 5.4.1 through the Or-Vi interface), creating
performance management jobs and related thresholds, based on the fault manage-
ment policies defined in the descriptor of the instantiated network service.

When the criteria defined in the policy is met, the monitoring plugin fires an
alarm. Such alarms can be of either type VNF or Virtualized Resource depending
on the failure value defined. The VNF type relates to the VNF service execution, for
instance whenever a particular process stops executing. The Virtualized Resource
type relates to the virtualized resources, for instance the virtual machine is not
reachable anymore or the virtual link is dropping packets.

5.6.1.2 Fault Correlator (FC)

The Fault Correlator is in charge of correlating alarms and identifying the root
cause of the issue so that the appropriate recovery action can be executed through
the High Availability Manager. The Fault Correlator is policy-based, allowing the
user to define specific rules on each individual VNF. The Fault Correlator receives
as input alarms from the Monitoring Manager and the NSR from the NFVO. The
correlation consists in associating an alarm with the relative VNFC. The Root Cause
Analysis (RCA) consists of finding the alarm causing the failure and executing an
action through the High Availability Manager. The RCA is necessary since the Fault
Correlator could receive several alarms at the same time.
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5.6.1.3 High Availability Manager (HAM)

The High Availability Manager is in charge of maintaining the redundancy scheme of
the Virtual Deployment Units (VDUs), executing recovery actions. The redundancy
scheme is specified in the VDU descriptor and it can be K:N, meaning that for N
VNF active components of such VDU there should be K VNF standby components.
The standby VNFCs protect the active components against failures. The recovery
actions provided are the healing and the switch to standby. The execution of those
actions is triggered by the Fault Correlator. The healing action allows to call the
heal life cycle event of the VNFM providing the root cause of the fault. The switch
to standby action activates a VNFC that was in standby mode. This operation
typically requires a notification of change in configuration to the dependent VNFs.
Subsequently, the High Availability Manager removes the failed VNFC and creates
a new standby VNFC reestablishing the desired redundancy scheme.

5.6.1.4 Fault Management Policy

The FMS receives as input from the NFVO the instantiated NSR containing mon-
itoring parameters and fault management policies. The monitoring parameters are
used to create performance jobs while the fault management policies are used to
create thresholds. Listing 5.1 provides an example of fault management policy in a
JavaScript Object Notation (JSON) format.

Listing 5.1: Example of a fault management policy contained in the VNFD
1 {
2 "name ":" policy name",
3 "VNF_failure ":" false",
4 "criteria ": [
5 {
6 "parameter_ref ":" monitoring_paramenter",
7 "function ":" last()",
8 "vnfc_selector ":" at_least_one",
9 "comparison_operator ":"=" ,

10 "threshold ":1,
11 }],
12 "severity ":" severity",
13 "period ":30
14 }

The parameters are explained as follows:

• name: name of the fault management policy.

• VNF_failure: it defines if it is a VNF failure or not.

• criteria: this is the criteria of the fault management policy. Basically it
specifies the condition that should be met for firing alarms.
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• parameter_ref: KPI subject of this criteria.

• function: function to be applied to the parameter_ref. For example last() is
the last available value.

• vnfc_selector: specifies scope of the criteria. Possible values: at_least_one
or all.

• comparison_operator: the comparison_operator defines how to compare the
final measurement result with the threshold. Possible values are: =, >, >=,
<, <=, !=.

• threshold: the threshold defines the value that is compared with the final
measurement.

• severity: the severity of the alarm produced when the criteria is met. Possi-
ble values: INDETERMINATE, WARNING, MINOR, MAJOR, CRITICAL.

• period: this is the criteria updating time. For example, a value of 5 indicates
that every 5s the criteria is checked.

5.6.2 Autoscaling Engine System (AES)

The AES provides a policy-based engine for automatically scale in and out VNFs.
The AES is part of the bi-directional category. Before describing in details the
proposed solution, it is important to analyze the autoscaling problem starting with
some definitions8.

The scaling problem can be decomposed into three main functions (or phases):
“detecting the need to scale” , “determining the scaling actions” , and “executing the
scaling actions” [145].

“Detecting the need to scale” is typically regarded from the resources’ and ca-
pacities’ points of view. Detection methods have already been presented in Sec-
tion 4.2.3.2 as part of the research work conducted by the author during the initial
phase of design. Usually, in threshold-based policies, this operation is the result
of a specific measurement being crossed. Several scaling algorithms may be de-
signed and implemented in order to optimize resource utilization. Furthermore, this
module may be extended for including concepts coming from the usage of machine
learning techniques as also presented in the Section 8.3. Hence, autoscaling policies
may become much more complex, and the challenge is to aggregate multiple KPIs
ensuring that the required QoS is maintained during scaling operations.

“Determining the scaling actions” is usually realized analyzing the type of KPIs
that are being deteriorated in order to counteract and recover the normal situation.
Typical scaling actions can be: Adding (scale-out), removing (scale-in), increasing

8Concepts and ideas presented as part of the AES are based on the research conducted by the
author around autoscaling concepts during the initial and intermediate phases[129][128][13][14]
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(scale-up) or decreasing (scale-down) number of VNFCs. Those scaling actions are
associated with scaling conditions contained in the autoscaling policies.

“Executing the scaling actions” is the last step that has to be executed. Any
action taken implies changes in the NS configuration, therefore, it is required that
those modifications are executed by the NFVO that is the component having the
overall view of the NS.

Therefore, the AES follows this logical split comprising three major functional
elements for detecting the need of scaling (Detector), making decisions (Decision-
maker) and finally executing the required mitigation actions (Executor). This mod-
ular approach of the AES itself provides the opportunity to replace a functional
element with another one fulfilling the requirements of a particular scenario[145].

The following subsections provide an overview of each of the proposed functional
elements, focusing on their main functionality provided as well as the interactions
with other functional elements of the MANO4X framework.

5.6.2.1 Detector

The detector is in charge of monitoring VNFCs and generating alarms in case con-
ditions defined in the autoscaling policies are met. These conditions are defined
as alarms included in the policies included in the NSR received from the NFVO
whenever a new NSR reaches the INSTANTIATE_FINISH life cycle event. The
detector retrieves metrics related to the virtualized resources instantiated on the
NFVI used by the VNFCs via the monitoring plugin over the Vi-Mon interface.
Therefore, the detector communicates with the monitoring layer to get measure-
ments filtering them based on host names, metrics and the period of time under
consideration. Based on those metrics, the detector collects and processes data to
detect the need to scale. These measurement results are aggregated and processed,
and finally evaluated against a threshold-crossing function as defined in the alarm.
Furthermore, it operates a threshold-checking function where previously calculated
final measurement results are compared with the threshold defined in the policy. If
the threshold is crossed, the alarm is handled internally as fired. Multiple alarms
can be combined in a weighted and prioritized way. Finally, if a predefined number
of alarms are fired, the detector sends the high-level alarm to the next functional
element of the pipeline, the decision-maker.

5.6.2.2 Decision-Maker

The decision-maker is responsible for making decisions based on the types of alarms
received from the detector. The decision-maker checks if the execution of the ac-
tions defined in the policy is feasible or not, i.e., scaling-in and scaling-out is only
executable in case the minimum/maximum limit has not been reached yet. For the
feasibility check it may request the NFVO to grant operations and other information
that are essential for the decision-making process.

Once decisions are made, the decision-maker submits them to the next functional
element of the pipeline, the executor.
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5.6.2.3 Executor

Based on the decisions made by the decision-maker, the executor requests either
the NFVO or, in case granting mechanism is enabled, the VIM directly to scale-
in/scale-out or allocate/release resources. Depending on the approach, the AES
communicates with the corresponding VNFM of the VNF using these two different
mechanisms:

• In case of an NFVO-centric approach the AES may communicate indirectly
with the VNFM by calling scaling function through the NFVO. The NFVO
forwards these requests to the corresponding VNFM following the standard
procedure for scaling in/out VNFs.

• In the VNFM-centric approach the AES is closely related or even directly
integrated into the VNFM and can call respective methods of the VNFM
based on the specific needs. Additionally, if the AES is directly integrated, it
can act as a part of the VNFM by processing customized tasks9.

After all the actions are executed, the executor blocks, for a certain period of
time defined in the cooldown parameter of the autoscaling policy, further incoming
scaling requests for the VNF already in scaling state. The reason of introducing the
cooldown period is to avoid fluctuations where the load redistribution may cause
the triggering of other scaling actions.

5.6.2.4 Autoscaling Policy

The need of scaling and corresponding actions are defined as part of the autoscaling
policy contained in the corresponding VNFD. Listing 5.2 shows an example of such
policy in JSON format.

Listing 5.2: Example of an autoscaling policy
1 {
2 "name ":"scale -out",
3 "threshold ":100,
4 "period ":30,
5 "cooldown ":60,
6 "mode ":" REACTIVE",
7 "type ":" VOTED",
8 "alarms ": [
9 {

10 "metric ":" item",
11 "statistic ":" avg",
12 "comparisonOperator ":"<=",
13 "threshold ":40,

9Such approach was utilized in the context of the NUBOMEDIA project and will further be
presented in Section 7.1.0.3 – ICT NUBOMEDIA Project



5.6. East Domain: OSS 123

14 "weight ":1
15 }
16 ],
17 "actions ": [
18 {
19 "type ":" SCALE_OUT",
20 "value ":"2"
21 }
22 ]
23 }

The autoscaling policy contains the following parameters:

• name: name of the policy.

• threshold: a value in percentage indicating how many alarms have to be
raised before firing the notification to the Decision-Maker module.

• period: the time between different alarm checks.

• cooldown: the minimum amount of time between the execution of different
scaling actions towards the same VNF. Further scaling actions requested
during the cooldown period are rejected.

• mode: it defines the way alarms and conditions should be evaluated, like:
REACTIVE, PROACTIVE, PREDICTIVE.

• type: it defines the way alarms should be processed. Three different types are
available: VOTED, WEIGHTED, SIMPLE.

• alarms: it defines a list of alarms belonging to the same policy. Each alarm
is composed of the following:

– metric: the name of the metric that is considered when checking the
alarm (e.g., cpu idle time, memory consumption, network traffic, etc).
This metric must be available through the monitoring system.

– statistic: it defines the way the final measurement should be calcu-
lated. Possible values are: avg, min, max, sum, count.

– comparisonOperator: it defines how to compare the final measurement
result with the threshold. Possible values are: =, >, >=, <, <=, !=.

– threshold: it defines the value that is compared with the final measure-
ment.

– weight: it defines the weight of the alarm and it is used when combining
all the alarms to a final indicator that says how many alarms are fired.
This way prioritized alarms can be handled with different weights.

• actions: a list defining the actions that should be executed once the conditions
(alarms) are met.
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Each action is composed of a type and a value. The type defines the type of the
action to be executed. Possible types of actions are:

• SCALE_OUT: scaling-out a specific number of instances

• SCALE_IN: scaling-in a specific number of instances

• SCALE_TO: scaling-out or scaling-in to a specific number of instances

• SCALE_TO_FLAVOR: scaling-out or scaling-in to specific deployment-flavor

While the value is related to the type of action. SCALE_OUT and SCALE_IN
expects a value that defines how many instances should be scaled-out or scaled-
in, SCALE_TO expects a number to what the instances should be scaled and
SCALE_TO_FLAVOR expects a reference to the which deployment flavor the
VNFR should be scaled.

5.6.3 Network Slicing Engine (NSE)

Following the overview given in Section 2.4, network slicing represents a novel con-
cept addressing the need of a logical separation of the physical networking resources
into “slices” where each slice can offer different capabilities to the end-users. Multi-
tenancy can be already considered as one of the features provided by the MANO4X
framework for supporting network slicing, however, it is not sufficient as it does
not guarantee any specific level of QoS whenever multiple NSs are deployed on
the same infrastructure. The NSE is a component that can be plugged into the
MANO4X framework for increasing network isolation between NSs sharing the same
infrastructure[142]. Therefore, the NFVO handles the whole life cycle of the network
service (or slice) while the management of the specific networking requirements of
a particular service is delegated to the NSE. For this reason, the NSE is part of the
uni-directional category.

Basically the NSE extracts the requirements contained in the NSR in terms of
required networking capabilities (e.g., bandwidth), and forces them onto the NFVI
either using functionalities provided directly by the VIM10 or via the Connectivity
Manager Agent (CMA), a component making use of SDN technologies for steering
traffic inside virtualized networks. The CMA provides a simplified API for associ-
ating a specific level of QoS required between VNFs composing the NS11.

The NSE subscribes to the NFVO for receiving the NSR at the end of the
INSTANTIATE_FINISH life cycle event. In particular, the NSE subscribes to
three events:

• INSTANTIATE_FINISH: published once any NSR is instantiated success-
fully.

10OpenStack neutron supports allocating maximum bandwidth to each individual VM via remote
APIs: https://docs.openstack.org/mitaka/networking-guide/config-qos.html

11Concepts and ideas presented here as part of the NSE have been based on previous research
done during the intermediate phase with Nippon Telegraph and Telephone (NTT)[135]
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• SCALED: published whenever a scale in or out operation is executed.

• ERROR: published when the NSR goes into error state.

The event payload, containing the NSR, is then parsed by the NSE to retrieve
information about the placement of each VNFC instance (in particular the NFVI-
PoP where the VNFC has been deployed), in order to enforce the required network
capacities, and the NSE policy (defined in the following subsection) providing QoS
requirements for each virtual link. The NSE parses the record and gets an overall
vision of logical resource location, checks the slice requirements and sees whether
they are feasible with the available network resources.

5.6.3.1 NSE Policy

The NSE includes a policy model that is inspired by the DiffServ[160] mechanism
for classifying and managing network traffic. The policies are divided into classes,
and each class has its specific slice parameters. These supported parameters are
the maximum and minimum bandwidth rates. The model includes by default three
classes of slices (GOLD, SILVER and BRONZE ), but it can be extended to the bare
number of parameters.

The NSE policy needs to be defined at the vnfd:virtual_link level inside the
NSD, using the qos field to set the requirements. Listing 5.3 shows an example of
the NSE policy to be included in the virtual link definition in a JSON format.

Listing 5.3: Example of the NSE policy to be included in the virtual link definition
1 "virtual_link ":[
2 {
3 "name ":" private",
4 "qos":[
5 "minimum_bandwidth:GOLD"
6 ]
7 }
8 ],

In particular, the qos parameter is a list of parameters defining the required net-
work capacity. For instance, the minimum_bandwidth is a parameter that indicates
the class of quality the particular VNF requires.

5.6.4 Service Function Chain Orchestrator (SFCO)

Chaining NFs is a concept typically applied to mobile core network architectures. In
Section 2.4.5.1 an overview was presented about the ongoing standardization work
around the concept of dynamic SFC. The SFCO is an additional component, part
of the MANO4X framework, capable of instantiating SFCs on the data paths, and
supporting the heterogeneity of network requirements such as the SFC forwarding
approaches (e.g., Network Service Header (NSH)[161] or MPLS[162])[140][147][134].
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The SFCO can update the SFC data paths dynamically and manage the full life
cycle ofa SFC including several vertical scenarios (e.g., faulty, overloaded, or hijacked
SFs). For this reason, the SFCO belongs to the uni-directional category.

Following the approaches taken in other OSSs, one of the main functionalities
required by the SFCO is the capability of subscribing to the NFVO for receiving
updates whenever a new NS is created or deleted, as well as a particular VNFC
instance is healed or scaled. An internal repository is used by the SFCO to store
SFs, SFCs, Service Function Paths (SFPs) and SFC Classifiers objects so that they
can be retrieved anytime by the other modules. The SFCO relies on a southbound
interface for interacting with the underneath SDN Controllers/SFC Agents. The
Deployment module uses this southbound interface to provide CRUD operations of
SFC objects via the REST APIs of the SDN Controller/SFC Agent supporting SFC
data plane implementations.

Based on the SFC policy defined in the VNFFG, the SFC driver manages and
deploys SFCs by interoperating with the SDN Controller/SFC Agent and the NFVO.
It executes CRUD operations on top of the SDN Controller for managing SFCs and
SFC rules. Furthermore, it updates the SFP via the SDN Controller in case of
faults on one of the SF instances or scaling out/in of an SF. The Driver abstracts
the specific SDN Controller technology used. The Path Creation functional element
is responsible for creating the path in deployment phase and in runtime phase.
Several algorithms can be used: Random, Round Robin Load balancing, Shortest
Path based on Dijkstra algorithm and our previously proposed scheme, Trade-off
delay and load [134].

Runtime, the monitoring agent module, is responsible for collecting the (traffic/CPU)
load statistics for each SF instance via the monitoring plugin and statistics from
the SDN controller (OpenFlow Plugin), via a southbound SDN controller interface,
about the traffic load per each SFP updating the repository with these live statistics.

5.6.4.1 SFC Policy

In order to instantiate SFCs, an SFC policy has to be defined as part of the
VNFFGD. Such policy provides a definition of the chain as well as network re-
quirements (e.g., QoS level, classification rules). The VNFFGD is defined at the
level of the NSD (as specified in [28]). SFs are mapped into different VNFDs, and
chains are used to define different Network Forwarding Paths (NFPs) between them.
Listing 5.4 includes an example of the VNFFGD in a JSON format including the
NFP used by the SFC Classifier to create the chain.

Listing 5.4: Example of the SFC policy as part of the VNFFG to be included in the
NSD definition

1 "vnffgd ":[
2 {
3 "symmetrical ":false ,
4 "dependent_virtual_link ":[
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5 {
6 "name ":"sfc -network"
7 }
8 ],
9 "network_forwarding_path ":[

10 {
11 "connection ":{
12 "0":"fw -sf",
13 "1":"http -sf"
14 },
15 "policy ":{
16 "acl_matching_criteria ":{
17 "source_port ":0,
18 "destination_port ":5001 ,
19 "protocol ":17,
20 "source_ip ":"172.0.0.23/32" ,
21 "destination_ip ":"172.0.0.33/32"
22 },
23 "qos_level ": "GOLD"
24 }
25 }
26 ]
27 }
28 ]

The VNFFGD contains the following parameters:

• symmetrical: defines whether the NFP is uni- or bi-directional.

• dependent_virtual_link: references the virtual_link that should be used
while creating the NFP

• network_forwarding_path: defines the NFP that provides the following pa-
rameters:

– connection: defines the ordered sequence of SFs in the chain.

– policy: defines the policy to be used by this NFP in terms of:

∗ acl_matching_criteria: Access Control List (ACL) rule defined
using source and destination IP/ports, as well as protocol used.
∗ qos_level: specifying the QoS level class required for this particular

NFP.

5.7 MANO4X High-level Procedures

After having presented functional elements and interfaces composing the MANO4X
architectural framework, this section outlines the main procedures driving the life
cycle management of a software-based network service from an end-to-end perspec-
tive. Figure 5.4 depicts the network service life cycle.
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Figure 5.4: Network Service Life Cycle

Before providing a definition of the different phases and procedures executed, a
brief overview is given here about the entire process.

Let us consider as a starting point the MANO4X comprising only functional
elements of the central and north domain: the NFVO, the message bus and the
dashboard. The first two phases (depicted in green in Figure 5.4) are the design and
onboarding phases. During these phases, the TSP activates the required functional
elements to satisfy a particular scenario, sets up the NFVI provided by the NFVIP
and registers it as a PoP to the NFVO. Afterwards the TSP on-boards on the
catalog the VNFPs provided by VNFP, and designs the end-to-end network service,
based on the required features to provide to its end customers, composing one or
more VNFs together. As a result of the design phase the TSP creates the NSD and
on-boards it on the catalog.

The second phase is represented by the actual life cycle management of the
network service. The TSP selects the NSD from the catalog and triggers its de-
ployment. During this step the NFVO executes several operations involving the
VNFMs responsible for the VNFs to be deployed, and the VIMs responsible for the
NFVI PoP where the VNFs should be deployed. This process usually requires the
deployment of virtualized resources on the NFVI PoP and the configuration of the
software artifacts comprising the VNF. At the end of the deployment phase, in case
there are no errors, the network service becomes active and a record is stored in the
catalog of the NFVO.

The following phase is represented by the runtime management. Typically, this
phase consists of different kinds of operations executed by OSSs for maintaining
the desired level of reliability following the FCAPS model. Typically, OSSs have
a control loop consisting of gathering monitoring data from a monitoring system,
making a decision based on policies provided by the TSP and executing actions (in
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case of bi-directional OSS, see Section 5.6) which may modify the overall configura-
tion of the network service. Those actions are typically requests generated towards
the NFVO that is the only component maintaining the overall state of the network
service throughout the complete life cycle.

At any time, the TSP could decide to trigger the disposal of the network service
because it is not needed anymore. For the sake of clarity, a disposal operation
consists only of releasing all the resources that were allocated to a particular record.
Therefore, the TSP could decide to again execute a new deployment based on the
static descriptors available in the catalog without having to reexecute the design
and onboarding phase.

5.7.1 The Virtualized IMS (vIMS) as the Reference Use Case

As already presented in Chapter 2 the ETSI NFV specification presented a set of
use cases driving the standardization activities. Although the objective of this thesis
is to provide a framework supporting any kinds of software-based NFs, the vIMS
use case was selected as the reference use case for exemplifying the whole life cycle
process.

Following the definitions given in Section 2.1.2, it is important to clarify that
although the 3GPP IMS architecture has been defined in terms of NFs and interfaces,
a design, and consequent implementation of such architecture as software, may result
in multiple deployment options. For the vIMS use case, the author proposes three
different deployment options [121]:

• vIMS – an architectural option in which each 3GPP IMS functional entity is
mapped 1:1 with a VNF

• Split-IMS – an architectural option in which each 3GPP IMS component is
split into multiple sub-components in order to be deployed on top of multiple
hosts and containers

• Merge-IMS – an architectural option in which components are merged into
less components enabling a low delay and functional reduced processing for
external requests by a single VNF

In this dissertation, the vIMS was considered as reference one, as it emphasizes
important characteristics of software-based network services. Figure 5.5 depicts the
functional architecture of the proposed vIMS deployment option as presented in
[121].

In order to better understand the orchestration process of such complex network
service it is important to consider the following aspects:

• Individual VNFs can be composed by multiple VNFC instances. Assuming
that the selected NFVI site provides standard virtualization technologies, each
VNFC corresponds to a virtual machine or container hosting the software
components of a particular NF.
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Figure 5.5: vIMS reference use case

• Each line in the previous diagram represents a dependency (sometimes also
defined as relationship). A dependency between two VNFs may be needed for
exchanging information like IP, ports, configuration parameters, etc, that are
needed for creating the end-to-end network service.

• A VNF may scale horizontally increasing/decreasing the number of VNFCs.
Each time a new VNFC is added/removed, all the VNFCs of the dependent
VNF must be informed so that they can be reconfigured accordingly.

5.7.2 Initial Phase: Design and Onboarding

As briefly mentioned in Section 5.7, the design and onboarding phase consists of
preparing the NFVI and designing the network service. The first part involves the
preparation of the hardware resources to be used as part of the NFVI: The TSP
could decide to build up a private NFVI installing the software components himself,
or make use of the NFVI provided by a third-party NFVIP (like public clouds).

The following step is represented by the activation of the MANO4X functional
elements required for the specific life cycle of the selected network service. Following
the SOA and microservices architectural model, each individual component (being
a VIM driver, a VNFM, or an external OSS) must register itself so that the NFVO
becomes aware of their availability. Assuming that the central domain functional
elements (NFVO and message bus) are already activated, the TSP needs to activate
VIM drivers, VNFMs, and OSS components that will be needed during the life cycle
and runtime management phases. The registration process differs depending on the
type of components. In the following, a brief overview is given about the registration
mechanisms designed within the scope of this dissertation. The registration process
uses standard pub/sub mechanism over the message bus on a dedicated registration
topic.
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5.7.2.1 VIM Drivers and Monitoring Plugins

Figure 5.6 shows how a VIM driver is registered and activated within the MANO4X
framework. Although the process described here refers to the VIM driver, the same
concepts and mechanisms apply in case of a monitoring plugin.

Figure 5.6: VIM Driver Registration Procedure

The first step is represented by the TSP selecting the VIM driver needed in
order to deploy VNFs on a certain NFVI PoP. Upon its activation (1) the VIM
driver generates an endpoint object and publishes (2) it on the message bus regis-
tration topic consumed by the NFVO. The endpoint object contains the following
information:

• type: representing the VIM type supported by this driver (i.e., OpenStack,
Amazon EC2, etc.).

• name: representing a unique identifier for differentiating multiple instances of
a driver of the same type (i.e., multiple VIM drivers of type ‘openstack’ may
receive two different names for differentiating two different implementations).

The NFVO receives (4) the registration requests via the registration topic, and
creates a new entry in the database for that VIM driver. Furthermore, the NFVO
also keeps information about the state of the driver. A driver (same for a monitoring
plugin), can have two different states of type boolean:

• enabled : it is a parameter that can be set by the TSP for deciding whether
the driver is enabled or not.

• active: it is a parameter set by the NFVO itself, constantly checking via a
heartbeat mechanism whether the driver is active or not.
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5.7.2.2 VNFM Adapters

Considering the heterogeneity of VNFs to be supported by the MANO4X framework,
it is expected that different kinds of VNFMs will exist. Thus, it is required to
maintain an inventory of those entities, particularly for defining which ones could
be supported by a particular VNF. Therefore, the MANO4X framework provides
a registration mechanism that should be used by the VNFM to announce itself to
the NFVO upon activation. The NFVO requires that the VNFM provides its own
type, and the endpoint where it could be reached at runtime for triggering life cycle
management operations. The registration process is depicted in Figure 5.7.

Figure 5.7: VNFM Registration Process

The steps executed for registering a new VNFM are similar to the ones already
presented in the previous subsection Section 5.7.2.1 about the VIM driver and mon-
itoring plugin. The approach is the same, however, the content of the type param-
eter represents the VNFM type, and it is used within the MANO4X framework for
uniquely identifying the VNFM capabilities provided. In practice, this parameter
is referred to the VNFD endpoint property so that the NFVO knows about the
VNFM responsible for the life cycle management of that particular VNF.

5.7.2.3 Operations Support System

In order to take part on the network service life cycle, in most of the cases during
the runtime phase, OSSs shall subscribe to receive notifications about any life cycle
events they are interested in. The subscription process usually involves the OSS
entity registering an event endpoint to the NFVO via its REST APIs.

The first step is represented by the TSP configuring and activating (1) the OSS
component needed. Upon activation (2), the OSS entity sends (3) a subscription
message to the NFVO including the life cycle event type it is interested in receiving
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Figure 5.8: OSS Event Endpoint Registration Process

notifications from, and the endpoint that can be used as callback by the NFVO to
notify about the event. The NFVO registers (4) the event in its own repository, and
acknowledges (5) the OSS about the successful registration of the subscription.

5.7.2.4 PoP Registration

Once all the required components are activated, the TSP should provide details
about the NFVI. Considering the multisite requirement, in order to deploy a VNF
at a particular site, the NFVO should keep a list of available NFVI PoPs. This is
obtained via a registration mechanism where the TSP provides to the NFVO details
about the available PoPs. The registration process is depicted in Figure 5.9.

Figure 5.9: PoP Registration Process

The first step is represented by the TSP sending (1) to the NFVO a registration
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request of a new PoP of a certain type. Listing 5.5 shows an example of the JSON
descriptor that should be sent to the NFVO for registering a new PoP.

Listing 5.5: Example of a PoP JSON file
1 {
2 "name ":" OpenStack -PoP",
3 "authUrl ":" http ://192.168.85.54:5000/ v2.0",
4 "tenant ":" admin",
5 "username ":" admin",
6 "password ":" password",
7 "keyPair ":"key -pair -name",
8 "securityGroups ": [
9 "default"

10 ],
11 "type ":" openstack",
12 "location ":{
13 "name ":" Berlin",
14 "latitude ":"52.525876" ,
15 "longitude ":"13.314400"
16 }
17 }

In particular, the NFVO expects information like name, credentials, URL end-
points, default security groups, and locations of the PoP being registered, as well as
the type of PoP that is being registered. As already mentioned, the type represents
the unique identifier mapping the registered PoP to the responsible VIM driver to
use for interacting with it.

After acknowledging (2) the received request, the NFVO starts the registration
process requesting (3) the responsible driver (selected by name.type) the list of
resources available in that particular PoP. The driver requests the list of networks,
flavors, and images already available on the PoP calling respectively the listNetworks
(4), listFlavors (5), and listImages (6) APIs exposed by the actual VIM. The list
of available resources is stored in the NFVO catalog as a PoP object so that it can
be retrieved during the onboarding phase for validating the content passed inside
VNFDs and NSDs.

5.7.2.5 VNFP and NSD Design and Onboarding

After configuring the required functional elements and registering available PoPs in
the multisite NFVI, the MANO4X framework is ready for the onboarding phase.
In order to manage a VNF through the MANO4X framework, it is required to
build a VNFP. A VNFP is an archive containing all the information required for
instantiating and managing a VNF. Listing 5.6 shows an example of a VNFP.

Listing 5.6: Internal structure of a VNFP



5.7. MANO4X High-level Procedures 135

1 $ tree scscf -vnf -package/
2 .
3 |__ Metadata.yaml
4 |__ scripts
5 | |__bind9_relation_joined.sh
6 | |__fhoss_relation_joined.sh
7 ...
8 | |__instantiate.sh
9 | |__var_scscf.xml

10 |__ vnfd.json

Particularly, it includes a vnfd.json file representing the VNFD, the scripts folder
containing executable files used runtime by the VNFM for managing the VNF life
cycle, a Metadata file using the YAML format for defining the essential properties
of the VNF, and optionally the image disk to be used while instantiating it. After
onboarding the VNFP, the NFVO stores its content into the different catalogs.

After uploading the VNFPs into the catalog, the TSP can start composing the
network service, describing it using the NSD. Figure 5.10 provides an overview of
the major elements composing the NSD in a JSON format.

5.7.3 Network Service Life Cycle Management

One of the fundamental functions of the NFVO is to manage and orchestrate the
life cycle of network services as composition of one or more VNFs. In most of the
cases, network services are composed of multiple dependent VNFs, thus, resolving
dependencies among them represent the most crucial functionality that the NFVO
has to fulfill as part of the network service orchestration life cycle. In particular,
the overall network service life cycle depends upon the individual life cycle of each
VNF composing it.

For the individual VNF life cycle, it has been adopted and further adapted
the VNF states and transitions as presented in Section 2.3.2.2. Basically, while
orchestrating a network service, the individual VNFs composing it move towards
different states in which a set of operations are executed. Figure 5.11 shows the
adapted VNF state diagram and highlights the most important transitions between
different states.

The transitions between one state to the other are triggered by the execution of
one or more life cycle events.

5.7.3.1 Network Service Deployment

The instantiate life cycle operation is the first step executed during the network
service orchestration process, triggered by the TSP request of deploying a network
service12. The NFVO instantiates a new NSR using the statically defined informa-

12A POST request at the URL /api/v1/ns-records passing the NSD in the body, or a POST
request to the URL /api/v1/ns-records/nsr-id specifying the NSD-id already onboarded in the
catalog
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Figure 5.10: NSD Overview
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Figure 5.11: VNF States and Transitions

tion contained in the NSD. The initial state of the newly instantiated NSR is set to
NULL as the VNFRs have been created and stored in the catalog, but the actual
instantiate life cycle is under execution. Figure 5.12 provides an activity diagram
of the internal execution workflow during the instantiate life cycle.

Figure 5.12: Activity Diagram Describing the Instantiate Life Cycle

Figure 5.13 shows the sequence diagram of the operations executed during the
instantiate life cycle operation. The MANO4X framework, and in particular the
NFVO, provides a granting mechanism used for the allocation of the resources on
the NFVI. In particular, depending on the approach adopted by the VNFM the
resources are either allocated by the NFVO directly or by the VNFM.

Once all the VNFs composing the NS have been instantiated, their records are
stored in the catalog of the NFVO. At this point, the NFVO can start executing
the next life cycle operation, the modify. In the example under consideration, VNF-
A provides some information to VNF-B, therefore, their dependency is defined in
such a way that VNF-A represents the source providing information to the target
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Figure 5.13: Sequence Diagram Showing the Instantiate Life Cycle Operations

VNF-B. A VNF dependency is composed by:

Parameter Description

source The name of the VNF, as specified in the
descriptor, that provides one or more pa-
rameters

target The name of the VNF, as specified in the
descriptor, that requires one or more pa-
rameters

parameters The name of the parameters that the tar-
get requires

Table 5.1: Content of the VNF Dependency

The information passed through the dependency can be of two types:

• Dynamic: this type of information includes IP addresses and host names.
Their values are generated runtime by the resource orchestrator process, thus
set by the NFVO or VNFM directly.

• Custom: information provided by the VNFP as part of the configuration object
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contained in the VNFD. This information can be modified by the TSP either
during the onboarding or deployment operation in order to customize the VNF
for the specific scenario required.

An alternative approach to define a dependency between VNFs, is to define
the requires field at the level of the VNFD. This approach allows simplifying the
generation of the NSD as the VNF dependency is automatically generated by the
NFVO based on the actual requirements of each VNF.

In cases where some VNFs do not depend on any parameters from other VNFs,
the modify life cycle operation is skipped, and the NFVO immediately triggers the
start life cycle operation after the instantiation process is finished.

Once all the dependencies have been solved, and the NSR reached the INAC-
TIVE state, all the individual VNFs are basically configured but not yet activated.
In order to move the NSR to the ACTIVE state, the NFVO has to execute the start
life cycle operation. This transition is mainly driven by the start primitive call from
the NFVO to the VNFMs.

5.7.3.2 Network Service Runtime Management

Reaching the ACTIVE state determines the beginning of the runtime phase of a
network service. As already presented in the previous sections, most of the OSS
functional elements start their internal control loop upon receiving a notification
event from the NFVO about the successful instantiation of the network service.
Depending on the category, the OSS may have (bi-directional) or (uni-directional)
interaction with the NFVO. In the following, examples are provided of high-level
procedures for both cases.

Figure 5.14 shows the sequence diagram of the interactions between the different
functional elements in case of the uni-directional case.

In particular, after every state transition, the NFVO checks the list of subscribed
entities interested in that particular life cycle event. Thus, it generates an event (1)
and publishes it (2) to the destinations via the message bus. The destination entity,
in this case the OSS, handles the request (3) extracting the payload of the message
providing the NSR containing all the dynamic information generated during the
deployment phase. With the content of the NSR the OSS can execute any kind of
operation (4-5) towards other components like the VIM.

Figure 5.15 shows the sequence diagram of the interactions between the different
functional elements in case of the bi-directional case. As already presented, OSSs
part of the bi-directional category, may need to request state transitions, via the
Or-Oss, impacting directly on the state of the NSR (e.g., scaling in and out, or
switch to standby actions).

Steps [1-3] are the same as the ones presented for the case of the uni-directional
category. The major difference is represented by steps executed upon reception of the
event message. Typically, those systems apply a control loop gathering KPIs from
the monitoring system (potentially done using the monitoring plugin as per steps
described in [4-7]), detecting (8) whether a particular condition (usually defined



140 Chapter 5. Specification of the MANO4X Framework

Figure 5.14: Sequence Diagram of the OSS - Uni-directional Category

Figure 5.15: Sequence Diagram of the OSS - Bi-directional Category

in the received NSR) is met, and executing (9) an action towards the NFVO for
modifying the NSR in order to reach the desired state. After receiving the response
(10) the control loop can start again.

5.7.3.3 Network Service Disposal

The last stage of the network service life cycle is represented by its termination. This
stage involves a set of requests executed by the NFVO towards the VIM drivers and
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the VNFMs requesting the termination of the resources under their control. After all
resources have been released, the NFVO publishes an event about the termination of
the NSR which can be consumed by any OSSs subscribed for consequently releasing
any resources under their control.

5.8 Conclusion

The present chapter has introduced the overall MANO4X framework architecture
and its specification. Following the Chapter 4 – The Design Evolution of the
MANO4X Framework, the first part of the present chapter has specified the final
architecture of the proposed framework.

Following SOA, microservices architectural patterns and the EDA design pat-
tern, the proposed framework is based on a central message bus and orchestration
system acting as a broker between different elements contributing to the overall net-
work service life cycle. The logical separation in domains allows the integration of
any kind of infrastructural resources and configuration management systems.

The last part of the present chapter detailed the high-level procedures executed
for managing the entire life cycle of a network service. The information here serves
as the foundation for the implementation of the proposed architecture described in
the next chapter.
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This chapter follows on exposing details about the software implementation of
the proposed MANO4X architectural framework presented in Chapter 4 – The De-
sign Evolution of the MANO4X Framework and Chapter 5 – Specification of the
MANO4X Framework. The focus of this chapter is to provide details about the
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reference implementation of the final architecture of which specification has been
proposed in the previous Chapter 5 – Specification of the MANO4X Framework.

As already presented in Chapter 1 - Introduction, Open Baton is the name given
to the implementation of the proposed framework, launched publicly in October
2015[163]. Open Baton represents the reference implementation of the proposed
solution. “Open” because of the openness of the solution, considering the major
objective of this work to release the source code openly to the community, while
“Baton” because of the similarities between the music domain and the orchestration
domain: As the director needs the baton while managing an orchestra of musicians
for playing a particular song, so the administrator needs a tool for managing different
VNFs to execute a particular network service.

6.1 The Open Baton Framework

Open Baton is the result of the agile design process previously presented, with
the main objective of building a framework capable of orchestrating network ser-
vices across heterogeneous infrastructural resources. The implementation follows the
functional architecture design proposed in the previous chapter, having the NFVO
and the message bus as central components, a Generic VNFM as a generic imple-
mentation of the VNFM able to manage any kind of VNFs using a ligthweight EMS,
one or more specific VNFMs, integrated via VNFM adapters, different drivers for
interoperating with external VIMs and monitoring systems, and a FMS, an AES, a
SFCO, and a NSE, as exemplary OSS components handling the runtime phase of
the network service life cycle. Figure 6.1 depicts the high level architecture of the
the Open Baton framework.

A comprehensive list of features supported is provided as follows:

• Installation, deployment and configuration of a large number of VNFs and
NSs (i.e. vIMS, vM2M, vEPC, etc.).

• Management of a multi-site NFVI, supporting heterogeneous virtualization
and cloud technologies (i.e. OpenStack, Docker, etc.).

• Ensures multi-tenancy at the infrastructure level, making use of SDN tech-
nologies (i.e. OpenVSwitch) for ensuring isolation between multiple network
services deployed

• Provides a Generic VNFM.

• Integrates with existing VNFMs, which could be easily plugged either directly
implementing the Or-Vnfm interface exposed by the NFVO, or via SDK avail-
able in different programming languages (Java, Python, and Go). The Juju
VNFM adapter is an example of integration using the Python SDK.

• Supports runtime operations fulfilling the need of the FCAPS model integrat-
ing external OSS systems, and providing fault management and autoscaling.
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Figure 6.1: Open Baton High Level Architecture

The development of new VIM drivers, monitoring plugins, OSS components, al-
lows extending and customizing the framework for supporting any kind of use cases.
Furthermore, the availability of SDKs allows developers to focus on their specific
use cases requirements, hiding most of the component management complexity, like
registration procedures.

6.1.1 Main Technologies Used

The extreme flexibility required for the MANO4X framework, led to the implementa-
tion of a loosely coupled microservice-oriented architecture, allowing each individual
component to be implemented with the most suitable programming language. The
following Table 6.1 summarizes the different components available as part of the
fourth release of Open Baton, and their programming languages.

A large part of the components available have been implemented using Java.
One of the main reasons is that, when the implementation activities started, Java
was the programming language supported by most OSs, and therefore increases
portability of the final solution between different environments. In particular, the
Java Enterprise Edition (Java 2 Enterprise Edition (J2EE)) has been employed
as computing platform for the development and deployment of those components.
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Project Programming
Language

GitHub Repository Project Name

NFVO Java NFVO
Dashboard Javascript dashboard
CLI Java, Python openbaton-client1

Dummy VNFM
Advanced Mes-
sage Queuing
Protocol (AMQP)

Java, Python,
Go2

dummy-vnfm-amqp3

Dummy VNFM
REST

Java dummy-vnfm-rest

Generic VNFM Java generic-vnfm
Generic EMS Python ems
Juju VNFM
Adapter

Python juju-vnfm

Docker VNFM Go go-docker-vnfm
OpenStack VIM
driver

Java openstack4j-plugin

Test VIM driver Java, Go4 test-plugin5

Docker VIM
driver

Go go-docker-driver

Autoscaling
Engine

Java autoscaling-engine

Fault Manage-
ment System

Java fm-system

Network Slicing
Engine

Java network-slicing-engine

Marketplace Java marketplace
Zabbix Plugin Java zabbix-plugin
Integration Tests Java integration-tests
OpenIMSCore
Packages

Bash openimscore-packages

ClearWater Pack-
ages

Bash clearwater-packages

Table 6.1: Different Components, Their Programming Languages, and Their GitHub
Project Names

J2EE provides an advanced API for distributed enterprise applications, which ex-
tends the basic functionalities available in the Java Standard Edition version. J2EE
is based on specifications: basically each functionalities which is exposed via APIs
must meet certain requirements in order to be declared J2EE compliant. Such APIs
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are typically documented via specification documents. Each specification could be
implemented by different technologies. As mentioned, J2EE is an abstract specifi-
cation which requires applications to be executed on application servers, or make
use of supporting libraries implementing the J2EE APIs.

Gradle6 has been utilized as project management system. Gradle is an open
source tool based on the ideas of Apache Ant7 and Apache Maven8 introducing a
Domain Specific Language (DSL) language based on Groovy9 instead of the XML
one used by Maven for configuring a project. Gradle scripts could be executed
directly without having a declaration as it is for Maven. Differently from Maven
and Ant, Gradle utilizes a Directed Acyclic Graph (DAG)10 for determining the
order in which processes can be executed.

The message bus represents the central component of the system, allowing loosely
coupled communication using topic-based pub/sub mechanisms. RabbitMQ11 has
been selected as message bus implementation. The specific format of the messages
exchanged between components is defined by the JSON schema. RabbitMQ has a
Mozilla Public License (MPL) license, provides a central broker entity, supporting
pub/sub communication mechanisms as well as RPC, including topic-based per-
missions based on queue and exchanges. The main transport mechanism used is
TCP, and supports several programming languages as bindings. Other solutions
available, like ActiveMQ12, ZeroMQ13, Kafka14, were evaluated, but not finally con-
sidered either because of their licensing model (i.e. ZeroMQ is having a GNU’s Not
Unix! (GNU) General Public License (GPL) license) or no support of topic-based
permission, which is one of the most important requirements for allowing secure-
communication between components dealing with confidential information.

6.2 Central Domain: NFVO and RabbitMQ

The NFVO implements almost all the key functionalities required for supporting the
requirements and list of features presented. It maintains an overview on the infras-
tructure, supporting dynamic registration of PoPs. Currently uses the OpenStack
as standard de facto VIM. It maintains an inventory of VNFPs including VNF im-
ages and VNFDs. Deploys on-demand VNFs on top of a multi-site NFVI. Supports
multi tenancy allowing deployment of parallel slices, consisting of one or multiple
VNF. Accepts TOSCA CSAR as packaging format for VNFPs and descriptors. It
interoperates with the other components of the different domains via the RabbitMQ
message bus.

6https://gradle.org/
7http://ant.apache.org/
8https://maven.apache.org/
9http://www.groovy-lang.org/

10https://en.wikipedia.org/wiki/Directed_acyclic_graph
11https://www.rabbitmq.com
12http://activemq.apache.org
13http://zeromq.org
14https://kafka.apache.org
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6.2.1 NFV Orchestrator Modules

The NFVO is the central component, basically acting as a workflow executor, dis-
patching tasks across elements from different domains via the message bus. Con-
sidering that the main objective is to manage the life cycle of network services,
the NFVO aggregates the different states of each individual resource composing
it. Therefore, it maintains an active state diagram of all the resources which are
involved in a network service.

The NFVO modules presented in the previous chapter:design have been imple-
mented as separated gradle modules and grouped as part of the NFVO component.
The NFVO comprises eight major modules:

• api: providing the REST APIs exposed to the different consumers (being a
human, or another component, like the Dashboard or the CLI).

• cli: Providing an implementation of a simple CLI used as part of the console
of the NFVO. This module is different from the external CLI which is utilized
by users for interoperating with this component, as it provides methods which
are specific for the management of internal part of the NFVO.

• common: Including all the common source code across different other modules.

• core: Implementing the orchestration logic. This module will be further de-
scribed in the following subsections.

• repository: Including all the Java Entities which are used by other modules
for persisting information in the database. This module makes use of the Java
Persistence APIs (JPA) specification for abstracting the low level details of
the database entity used, providing interfaces to other modules making use of
object-oriented programming for storing information.

• security: Comprising all the classes which are dealing with authentication
and authorization.

• tosca-parser: Including all the classes used for parsing TOSCA templates.

• vnfm: Providing the interfaces for communicating with available VNFMs.

6.2.2 Information and Data Model

The information and data model implemented follows the one presented in the
previous Chapter 4. The information and data model specified by ETSI in MANO
v1.1.1[28] has been mapped to different Java classes, as JPA entities. All the classes
providing the information and data model of the core elements have been packaged
as part of the repository module in four different packages.
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6.3 North Domain: User Tools

This section provides implementation details about the main user tools which have
been developed as part of the Open Baton project. Firstly, it is provided an overview
about the dashboard, and in particular about the technologies used while implement-
ing it. Secondly, a set of SDKs are presented. SDKs can be easily imported in other
applications (automating the execution of certain operations) interacting with the
NFVO via its northbound interface. Last but not least, it is introduced the CLI,
allowing users interacting via command line with the framework.

6.3.1 The Dashboard

The dashboard represents a comprehensive web-based GUI exposing a set of web
pages allowing end users to manage infrastructure resources and network services.
The dashboard has been implemented using Hypertext Markup Language (HTML),
Cascading Style Sheets (CSS), and Javascript. The dashboard source code has
been included as git submodule inside the NFVO project, so that after starting the
NFVO the dashboard is automatically available15. Figure 6.2 shows a screenshot of
the overview page of the dashboard available immediately after login.

Figure 6.2: Open Baton Dashboard - Overview Page

The dashboard supports authentication and authorization using cookies. Basi-
cally, it requests a token to the NFVO (through its REST APIs) using the content

15the dashboard is reachable by default on port 8080 exposed by the Tomcat Application Server
executing the NFVO process
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provided via the login function. The token is stored in a cookie and maintained
until the user log out (or until its expiration16).

6.3.2 The Sofware Development Kit (SDK)

A set of SDKs have been developed in order to support developers in implementing,
packaging and deploying VNFs and network services using the Open Baton frame-
work. SDKs have been implemented in three different languages (Java, Python, and
Go) mainly with the objective of providing classes implementing the information and
data model following a OOP paradigm.

To further support developers in making use of those libraries in their applica-
tions, compiled version of the different SDKs have been uploaded in common central
repositories: Sonatype17 for Java, Pypi18 for Python, and GitHub for Go.

For instance, the Java sdkmodule provides the NFVORequestor class which could
be utilized for interacting with the NFVO via its REST APIs. The sdk module im-
ports the catalog (‘org.openbaton:catalogue’) in order to serialize the objects
received via the REST APIs. The NFVORequestor makes use of a RequestFactory
implemented as a Singleton, providing instances of different agent objects imple-
menting a particular API call. The different categories of agents follows the same
classification done for the NFVO API.

6.3.3 The Open Baton Command Line Interface (CLI)

The first version of the CLI has been implemented in Java as part of the openbaton-
client19 project.

The CLI, imports the Java sdk module, and it instantiates the NFVORequestor
passing as arguments information needed to the class for authenticating itself with
the NFVO.

Listing 6.1: Example of Instantiation of the NFVORequestor Class
1 ...
2 NFVORequestor nfvo =
3 new NFVORequestor(
4 properties.getProperty("NFVO_USERNAME"),
5 properties.getProperty("NFVO_PASSWORD"),
6 properties.getProperty("NFVO_PROJECT_ID"),
7 Boolean.parseBoolean(properties.getProperty("

NFVO_SSL_ENABLED")),
8 properties.getProperty("NFVO_IP"),
9 properties.getProperty("NFVO_PORT"),

10 properties.getProperty("NFVO_API_VERSION"));

16in this case the user will be logged out and will need to re-authenticate again
17http://central.sonatype.org/
18https://pypi.python.org/pypi
19https://github.com/openbaton/openbaton-client
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11 ...

Since Open Baton release two, a new version of the CLI implemented in Python
has been provided as part of the openbaton-cli project20. Compared to the Java
version, this Python version is more lightweight, allowing its execution on any OS
without the installation of a Java Virtual Machine (JVM). In terms of functionali-
ties, both versions of the CLI provide the same.

6.4 South Domain: NFVI

This section analyzes the south domain, focusing on providing implementation de-
tails about the mechanisms developed for integrating a multi-site NFVI. This do-
main comprises VIM drivers allowing the seamless integration of heterogeneous in-
frastructure technologies, controlled via remote APIs exposed by a VIM, as well
as monitoring plugins used for integrating existing monitoring systems. Both VIM
drivers and monitoring plugins, are based on a plug-and-play mechanism so that
they can be added during runtime to the Open Baton framework.

In order to simplify the development of VIM drivers and monitoring plugins a
set of SDKs have been provided in three different programming languages:

• Java: source code available as part of the plugin-sdk21 project repository.
Compiled libraries have been published on the maven central repository and
could be imported in any projects using gradle or maven.

• Python: source code available under the python-plugin-sdk22 project reposi-
tory. These python classes have been published directly on pip23

• Go: source code available under the go-openbaton24 project repository. In
order to import them in any project, it is only required to import the github
repository URL in the Go classes.

6.4.0.1 The OpenStack Driver as the Reference Implementation

The OpenStack driver allows the integration of OpenStack as NFVI-PoP. The driver
has been implemented as a standalone standard Java application, making use of the
Java plugin-sdk. Considering the large amount of libraries available in many differ-
ent programming languages25, the approach taken was to select the most suitable
one supporting the functionalities required for querying available resources and in-
stantiating them. Initially, Apache JClouds26 was chosen because of its support of
a large number of cloud providers.

20https://github.com/openbaton/openbaton-cli
21https://github.com/openbaton/plugin-sdk
22https://github.com/openbaton/python-plugin-sdk
23https://pypi.python.org/pypi/python-plugin-sdk
24https://github.com/openbaton/go-openbaton
25https://wiki.openstack.org/wiki/SDKs
26https://jclouds.apache.org
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Lately, the driver was re-implemented making use of the OpenStack4J27 library
because of its support of the latest version (V3) of the Keystone APIs introduced in
recent versions of OpenStack. The latest version of the driver is available as part of
the openstack4j project28 and supports Pike as the latest stable OpenStack version
available. Table 6.2 provides the mapping between the VIM driver interface exposed
towards the NFVO/VNFM and the OpenStack API29 called.

Function OpenStack APIs

listImages GET /v2/images
listServer GET /servers
listNetworks GET /v2.0/networks
listFlavors GET /flavors
launchInstanceAndWait POST /servers
deleteServerByIdAndWait DELETE /servers/{server_id}
createNetwork POST /v2.0/networks
getNetworkById GET /v2.0/network s/{network_id}
updateNetwork PUT /v2.0/networks/{network_id}
deleteNetwork DELETE /v2.0/networks/{network_id}
createSubnet POST /v2.0/subnets
updateSubnet PUT /v2.0/subnets/{subnet_id}
deleteSubnet DELETE /v2.0/subnets/{subnet_id}
getSubnetsExtIds GET /v2.0/subnets/{subnet_id}
addFlavor POST /flavors
updateFlavor NA
deleteFlavor DELETE /flavors/{flavor_id}
addImage POST /v2/images
updateImage PATCH /v2/images/{image_id}
copyImage NA
deleteImage DELETE /v2/images/{image_id}
getQuota GET /os-quota-sets/{tenant_id}
getType NA

Table 6.2: Mapping between Or-Vi-rpc/Vnfm-Vi-rpc Interface and OpenStack API
Calls

6.4.0.2 The Docker VIM Driver

Another VIM driver available as part of the Open Baton project is the one allowing
the integration of docker as VIM, supporting the instantiation of containers instead
of classical VMs[139]. Considering that docker containers have a different behavior

27http://www.openstack4j.com
28https://github.com/openbaton/openstack4j-plugin
29https://developer.openstack.org/api-ref/
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than VMs (docker containers are practically processes of the VNF software compo-
nents, see Section 2.2.2 for more details), the role of the docker VIM driver is to
ensure that the required networks and container images are available upon request
of instantiation of certain network services. In this case, the role of instantiating the
actual docker container is delegated to the docker VNFM which will be presented
in Section 6.5.3.

6.4.0.3 The Zabbix Monitoring Plugin

Zabbix30 has been selected as one potential monitoring system31. Zabbix is an
enterprise-level software designed for monitoring availability and performance of IT
infrastructure components. An agent installed on the target resources continuously
collects metrics and push them to the central server. Zabbix provides a set of
APIs allowing pulling monitoring information regarding monitored resources from
the Zabbix server. Moreover, Zabbix provides notifications (i.e. e-mails, Short
Messaging Service (SMS), custom alert scripts, etc.) whenever a certain condition
(i.e., defined as a threshold on a particular metric) is met.

The Zabbix monitoring plugin has been implemented as a standalone stan-
dard Java application. It provides an implementation of the Vi-Mon interface,
allowing creating and deleting items, triggers and actions, as well as retrieving
on demand metrics based on the needs of the plugin consumer. The two in-
terfaces exposed by this plugin are: VirtualisedResourceFaultManagement and
VirtualisedResourcePerformanceManagement.

In terms of features, the Zabbix plugin provides: Creation/deletion of metrics,
triggers and actions from the Zabbix server; Abstracts the Zabbix APIs providing
an NFV compliant interface; Local caching of metrics that are of interest for the
plugin’s consumers.

The specific mapping between the specified ETSI data model and the Zabbix
one is:

• PerformanceMetric: zabbix item32

• Threshold : zabbix trigger33

6.5 West Domain: VNF Manager (VNFM)

The west domain comprises VNFMs, and VNFM adapters needed for supporting
the life cycle of a VNF. Also in this case, in order to simplify the development
of the VNFM a set of libraries have been provided in three different programming
languages:

30https://www.zabbix.com/
31The solution presented can be easily extended for supporting any other type of monitoring

system
32https://www.zabbix.com/documentation/3.0/manual/config/items
33https://www.zabbix.com/documentation/3.0/manual/config/triggers
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• Java: source code available as part of the vnfm-sdk34 project repository. Com-
piled libraries have been published on the maven central repository and could
be imported in any projects using gradle or maven.

• Python: source code available under the python-vnfm-sdk35 project repository.
These Python classes have been published directly on pip36

• Go: source code available under the go-openbaton37 project repository. In
order to import them in any project, it is only required to import the github
repository URL in the Go classes.

The three SDKs versions follow a similar approach providing a set of classes
that can be used for building the skeleton of a VNFM ready to handle operations
triggered by the NFVO. A developer has to focus exclusively on the implementation
of the functions executing the life cycle management operations of the VNF. In
order to better understand the different mechanisms provided by those three SDKs
it is provided an overview of three different VNFMs implemented in three different
languages.

6.5.1 Generic VNFM and Element Management System (EMS) as
Reference Implementation of a VNFM

The Generic VNFM is the reference VNFM used inside the Open Baton framework.
It has been implemented as standalone spring boot Java application making use
of the Java SDK for the marshaling and unmarshaling of the data received over
the message bus. It provides a generic mechanism for managing the life cycle of
any kind of VNFs based on the remote triggering of execution of scripts inside the
VDUs deployed on the NFVI. It allows integrating any kind of VNF making use of
a contextualization process managed by a lightweight agent, named Generic EMS,
running inside the VMs.

The major task performed by the Generic VNFM is the instantiation of a VNFC.
The instantiation is the first operation performed by the Generic VNFM aiming at
instantiating all VNFCs of a VNF accordingly to the VNFD and related scripts (con-
tained in the VNFP) received from the NFVO. During the instantiation life cycle
operation, the Generic VNFM requests the instantiation of the virtualized resources
to the NFVO, passing the user-data38 containing installation scripts to be performed
while booting (including a Universally Unique Identifier (UUID) for uniquely iden-
tifying that particular VNFC instance). In practice, the Generic VNFM stores the
UUIDs in a local list, and

34https://github.com/openbaton/vnfm-sdk
35https://github.com/openbaton/python-vnfm-sdk
36https://pypi.python.org/pypi/python-vnfm-sdk
37https://github.com/openbaton/go-openbaton
38Using the cloud-init functionality available in standard cloud image:

https://cloudinit.readthedocs.io/en/latest/
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Upon activation, the Generic EMS sends a registration message to the Generic
VNFM via the message bus. The Generic VNFM extracts the information received,
in particular the UUID, and requests the execution of particular scripts through the
Generic EMS API. Once the instantiation procedure is finished, the Generic VNFM
sends back to the NFVO the VNFR containing all the details about the instantiated
resources.

Injection of configuration parameters provided by the TSP via the VNFD, as well
as of the runtime information provided through dependency resolution during the
modify operation, is done using environment variables. In particular, the Generic
EMS exports those environment variables before executing any scripts inside the
VM.

In order to make use of those environments variables, VNFP have to follow a
particular syntax. All the configuration parameters contained in the parent VNFD
of the VNFC are passed directly without modifications. The runtime informa-
tion (i.e., fixed and floating IPs) are extended by the Generic VNFM including
the network-name (name contained in the VLD) as prefix. The information pro-
vided during the modify lifecycle operations are also extended runtime for uniquely
identifying the VNFC instance source of the relation. In particular, the Generic
VNFM includes the source-name as prefix of the parameter.

6.5.2 The Juju VNFM Adapter

Juju is an open source tool released by Canonical for deploying applications in multi
cloud environments. It can be used for deploying applications and even clusters of
applications over public or private clouds. Juju supports a large number of pub-
lic cloud providers including Amazon Amazon Web Services (AWS) and Microsoft
Azure, as well as several private cloud open source tools like OpenStack. Applica-
tions are defined as charms consisting of data and executable files, which are used
by Juju for deploying the application on any kind of cloud environment. Those
charms are stored in a public Charm Store (or private local repositories), currently
containing more than 200 different types of applications’ charms.

In the NFV context, Juju is typically associated with a generic VNFM. It
consists of a client and a controller. Typically, the client bootstraps a controller on
top of the target cloud environment on which a user is willing to deploy charms.
One can think of OpenStack as the target cloud environment where the juju client
bootstraps a controller in a virtual machine. Once the controller is available, a user
can trigger the instantiation of a particular charm, or a set of charms defined as
bundle, either via the CLI or the GUI.

Juju differentiates between machines and units: machines are the virtual re-
sources (either VMs or containers) on top of which the charm is executed, while
units represent instances of the running charms. In practice, it means that when
instantiating a charm, Juju creates a new unit and associate it with the machine
on which the application actually runs. However, it is possible to associate multiple
units (of the same or different types) to run on the same machine. Table 6.3 shows
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the mapping between Open Baton and Juju entities.

Open Baton entity Juju entity

VNFP Charm
VNFD Charm
VDU Machine
NSD Bundle
NSR Running application
VNFC Unit
life cycle operation action

Table 6.3: Mapping between the Open Baton and Juju Information Model

In order to satisfy dependencies between charms, Juju makes use of the concept
of hooks and actions. Those are executable files (part of the charm package) which
may run on the deployed machines. Juju uses a strict syntax for hooks names, so that
the particular hooks refers to a specific life cycle stage. For instance, the executable
file named install corresponds to the installation script which is executed right
after the machine is created.

The main approach utilized makes use of a VNFM adapter transforming the
method calls received by the NFVO into specific calls towards the Juju controller.
On the one hand, the Juju VNFM adapter makes use of the Open Baton Python
SDK to communicate with the NFVO, handling the basic functionalities like regis-
tration, handling incoming messages calling appropriate methods, and sending back
responses. On the other hand, the Juju VNFM adapter communicates with Juju us-
ing the python-jujuclient39, consuming the WebSocket API exposed by the Juju
controller.

The Juju VNFM adapter extends the AbstractVNFM class implementing a subset
of the functions available on the Or-Vnfm interface. In particular, it focuses on
the main methods required for deploying and scaling a VNF. The AbstractVNFM
contains a private method _on_message_(self,body) being called whenever the
message bus publishes a message on the queue of the VNFM type (in this case defined
as “juju”). Basically this method implements generic operations required before
calling the actual methods implementing the business logic of a specific life cycle
operation. It provides all the required functions for handling incoming messages, and
returning responses to the NFVO, as well as managing the granting mechanisms in
a seamless way, so that the developer shall only take care of configuring a parameter
in the config file (allocate = True/False) for deciding whether the allocation of
resources should be done by the NFVO or is done by the juju itself. In particular,
the adapter can be configured in order to:

• allocate = True: allow Juju allocating infrastructure resources on the NFVI-
PoP under its control. In this case, the Juju controller must be bootstrapped
on the cloud provider where VNFs should be deployed.

39https://github.com/juju/python-libjuju
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• allocate = False: allow the NFVO to allocate infrastructure resources and
let Juju only taking care of the life cycle management of the VNF.

The instantiate function is the first one being called by the NFVO. The Juju
VNFM adapter transforms the VNFP content into a Juju Charm, deploys the charm
according to the VNF structure (i.e. number of VDUs), triggers the instantiate life
cycle for the deployed charms, builds the VNFR object based on the information
received from Juju.

6.5.3 The Docker VNFM

The Docker VNFM is a component implemented in Go capable of managing VNFC
instances executing as docker containers. It uses the AMQP library to interact with
the remote VIM docker driver over the message bus. The set of libraries provided
by the Go packages, already implement for the most part a complete VNFM, leaving
the developer the only task to implement the functional logic for correctly handling
life cycle events issued by the NFVO.

The first operation invoked by the NFVO is the instantiate life cycle event. This
operation is invoked after resources have been correctly allocated. The VNFM uses
the Check(id) method to connect to the VIM and ensure that all VNFCs belonging
to the VNF have been correctly instantiated.

The second operation executed is the modify, with the purpose of modifying
and updating configuration settings of the instantiated VNFCs. Considering that
docker containers are handled differently than VMs, the role of the docker VNFM
is to launch a docker container passing all the parameters required for configuring
the VNFs processes. In practice, those configurations are injected to the docker
containers as environment variables, and are read by the VNF process after booting.

6.6 East Domain: Operations Support System (OSS)

The east domain comprises OSSs cooperating and interacting with the NFVO in
order to support the runtime life cycle of network services. In the following are
presented implementation details for all the functional elements presented in Chap-
ter 5.

6.6.1 Fault Management System (FMS)

The FMS is implemented in J2EE as a standalone spring boot Java application.
The monitoring manager communicates with the monitoring plugin via the message
bus. The functional flow of the monitoring manager begins when it receives the
INSTANTIATE_FINISH event from the NFVO. For any NSR instantiated a thread
is launched and executed periodically. Such thread creates the performance jobs and
the thresholds accordingly to the fault management policy on any VNFC instance.

The fault correlator has been implemented as a rule-based system. The rules are
expressed in Drools rule language and processed by the business rule management
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system Drools40. Having the fault correlation policy as rules, allow the user to
define the logic to cope with the alarms and choose whether or not execute a specific
recovery action. Listing 6.2 shows an example of the Drools policy defined for the
recovery action switch to standby.

Listing 6.2: Drools Rules for the Recovery Action switch to standby
1 rule "Get␣a␣CRITICAL␣Virtualized␣Resource␣Alarm␣and␣switch␣to␣

standby"
2
3 when
4 a : VRAlarm( hostname : managedObject , alarmState ==

AlarmState.FIRED ,
5 perceivedSeverity == PerceivedSeverity.CRITICAL)
6 not RecoveryAction(status == RecoveryActionStatus.

IN_PROGRESS)
7 then
8 logger.info("(VIRTUALIZATION␣LAYER)␣A␣CRITICAL␣alarm␣

is␣received␣regarding␣the␣managedObject:␣" +
hostname);

9 VNFCInstance failedVnfcInstance = nfvoRequestorWrapper
.getVNFCInstance(hostname);

10
11 VirtualNetworkFunctionRecord vnfr =

nfvoRequestorWrapper.
getVirtualNetworkFunctionRecordFromVNFCHostname(
hostname);

12
13 VirtualDeploymentUnit vdu = nfvoRequestorWrapper.

getVDU(vnfr ,failedVnfcInstance.getId());
14
15 logger.info("Switch␣to␣standby␣fired!");
16 highAvailabilityManager.switchToStandby(vnfr.getId(),

failedVnfcInstance.getId());
17
18 RecoveryAction recoveryAction= new RecoveryAction(

RecoveryActionType.SWITCH_TO_STANDBY ,vnfr.
getEndpoint (),"");

19 recoveryAction.setStatus(RecoveryActionStatus.
IN_PROGRESS);

20 recoveryAction.setNsrId(vnfr.getParent_ns_id ());
21 insert(recoveryAction);
22 logger.debug("Recovery␣action␣in␣progress!␣:"+

recoveryAction);
23 delete(a);
24 end

40https://www.drools.org/
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The HighAvailabilityManager executes the fault recovery actions and maintain
the redundancy scheme. The actual execution of the switch to standby function is
delegated to the NFVO by the HighAvailabilityManager via the switchToStandby
method provided by the Open Baton SDK, passing the UUID of the failed and the
standby VNFC instances. This recovery action is composed by three phases. First,
the NFVO activates the standby VNFC instance. Second, it executes the modify
life cycle operation solving dependencies with other ACTIVE VNFC instances de-
pending from it. Once finished, the NFVO sends a heal message to the dependent
VNFC instances so that they can re-execute the start operation and re-configure
the VNFC software components based on the latest configuration.

The healing action is executed sending a heal request to the NFVO via its REST
APIs. The request contains the cause (derived by the FaultCorrelatorManager)
and the target VNFC where to execute the healing action. The NFVO forwards the
healing request to the generic VNFM triggering the execution of the heal life cycle
operation.

The solution proposed can also be applied in case of a specific VNFM. In such
cases, the FMS identify the potential fault and notifies the VNFM (through the
NFVO) about the root-cause of the issue. The specific VNFM receives the heal life
cycle operation event and can implement the healing action for solving the issue at
the VNF level without having to re-instantiate the complete VNF.

6.6.2 Autoscaling Engine System (AES)

The AES is implemented in J2EE as a standalone spring boot Java application.
Two different approaches can be taken while instantiating the AES component:
NFVO-centric and VNFM-centric.

Typically, the NFVO-centric approach is the most general one, where the AES
is instantiated as an external component providing autoscaling mechanisms as an
independent component. This case is the most common one, as it can be used for
any kind of VNFs that follow a common life cycle execution.

In the VNFM-centric approach the AES is embedded within the VNFM compo-
nent enabling customizing the autoscaling logic for a certain type of VNF. In such
case, the VNFM plays the central role in managing autoscaling policies, deciding
when to activate/deactivate detection tasks and providing specific features while
executing scaling actions. Depending on the approach taken by the VNFM for allo-
cating resources, instantiation requests of virtual resources towards the VIM maybe
directly triggered by the VNFM and AES component without the intervention of
the NFVO.

Following the design methodology described in the previous chapter, the AES
consists of three main classes: the Detector, the DecisionMaker and the Executor.
Those three components correspond to individual spring beans, which compose a
single spring boot application. Their implementation is described more in details in
the following subsections.
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6.6.2.1 Detector

The main functionalities of this component are implemented by the following classes:

• DetectionManagement: this class acts as a scheduler and provides methods
to start and stop the detection mechanism. Every time the start() method
is called it creates a new DetectionTask. This means a DetectionTask is
created for each policy contained in the corresponding VNFR.

• DetectionEngine: this class provides specific methods used for requesting
measurements, calculating final values, checking thresholds and firing events.

• DetectionTask: this class is in charge of detecting the need to scale. There-
fore, it periodically checks the conditions defined in the policy by interacting
with the monitoring system (through the monitoring driver). These mea-
surements are aggregated based on the statistic method defined in the pol-
icy and finally checked against a specific condition. When the number of
weighted alarms cross the defined threshold percentages, a specific method of
the DecisionMaker is called.

6.6.2.2 DecisionMaker

The DecisionMaker implements the logic for taking decisions about scaling actions.
Therefore, it receives alarms from the Detector and triggers the execution of certain
actions. In general, an alarm sent by the Detector identifies the corresponding par-
ent autoscaling policy. In this way the DecisionMaker knows what actions might
be executed. Based on the specific implementation of this component it can just
forward these actions to the Executor. A more complex DecisionMaker may im-
plement a different logic for checking additional conditions or request operations
granted by the NFVO. Additional classes are used by the DecisionMaker:

• DecisionManagement: This class implements high-level management function-
alities and exposes it to other components via its API. One functionality pro-
vided by this class is the decide()method. This method decides which actions
to execute based on inputs received from the Detector. For each decision-
making it is created an own task that is executed every time the method is
called. Another function is the stop() function that interrupts the current
decision process, either gracefully or interrupting directly after a predefined
timeout.

• DecisionEngine: This class is used by the DecisionTask and allows request-
ing information to the NFVO, granting operations, or sending decisions to the
corresponding Executor.

• DecisionTask: This class is in charge of taking the final decision about the
action to execute based on the alarm received. It makes use of the functional-
ities provided by the DecisionEngine to take into account all the information
available for taking the final decision about the scaling actions.
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6.6.2.3 Executor

The Executor is in charge of executing actions towards the NFVO. This depends on
the approach and on the communication flow of the specific AES. If the execution
of actions are requested, it may process them either by using the NFVO or the VIM.
The Executor module comprises three main classes:

• ExecutionManagement: This class implements functionalities exposed through
external APIs. When the request of executing an action is received it creates
an ExecutionTask for each request containing a list of actions to be executed.

• ExecutionEngine: This class provides functionalities for executing different
kind of scaling actions, such as scaling out, scaling in, scaling to a specific
number of instances or scaling to a specific deployment flavor.

• ExecutionTask: This class is responsible of processing scaling requests by
using the capabilities of the ExecutionEngine. This class executes actions
step-by-step and triggers the cooldown period if at least a scaling action was
executed properly. Every time a new scaling request is received, it creates
a new ExecutionTask. If it processes already a scaling request and another
request of executing scaling actions is received for a particular VNF, the second
request will be rejected as long as the VNF is still in SCALING state.

As already presented before, the instantiation of virtualized compute resources
has strong impacts on the overall instantiation of a VNF. While executing scaling
out operations, the time needed for instantiating a new VNFC instance may influ-
ence the overall QoE perceived by the end-users consuming that network service.
The AES provides a PoolManager entity managing a pre-defined pool of already
instantiated VNFC instances which could be added directly to the network services.
While executing the scale out action the Executor requests new instances through
the PoolManager instead of requesting them to the NFVO/VIM. The PoolManager
selects one of the available instances compliant with the requirements provided by
the Executor from the pool, and provides the details to the Executor.

6.6.3 Network Slicing Engine (NSE)

The NSE is implemented in J2EE as a standalone spring boot Java application.
The event subscription has been realized using the SDK consuming the REST APIs
exposed by the NFVO. As introduced in the design chapter, the NSE subscribes ba-
sically for three events (INSTANTIATE_FINISH, SCALED, and ERROR). During
the subscription, the NSE creates three different queues in rabbitmq:

• core.nse.nsr.create: used for receiving events of type INSTANTIATE_FINISH

• core.nse.nsr.scale: used for receiving events of type SCALED

• core.nse.nsr.error: used for receiving events of type ERROR
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The NSRmanagement is delegated to a Spring bean, part of the TemplateProcessing
class, instantiating a different thread for parsing each record received from the
NFVO, and collecting all the information related with the QoS policies assigned
to the VLD. The subscription expects that the events are delivered through two
message queues, one for instantiation and one for termination.

Each class may provide a guaranteed bandwidth as proposed in Table 6.441,
which is preserved also in case of network congestion, limiting packet loss.

QoS Class Guaranteed Bandwidth Maximum Band-
width

GOLD 250 Mbps 500 Mbps
SILVER 100 Mbps 250 Mbps
BRONZE 1 Mbps 100 Mbps

Table 6.4: Proposed QoS Policies Classes

The TemplateProcessing class of the NSE is responsible for receiving NSRs from
the NFVO whenever are instantiated. In particular, a MessageListenerAdapter is
bound to the event INSTANTIATE_FINISH (issued after all resources are allocated
and configured) calling the method receiveNSR, which starts the parsing process
iterating through these VNFR and check if they contain requirements on the net-
work, this means they at least contain one quality of service class inside one of their
VLDs.

If none of the VNFRs part of the received NSR contain any NSE policy, the
complete NSR is ignored to avoid unnecessary further treatment. In case at least
one VNFR included in the NSR contains requirements on the network level, the
NSR will be forwarded to the Core class, taking care of applying the needed policies
on the NFVI. Summarizing the functionality of the TemplateProcessing class is to
filter out those NSRs which do not need to be handled, and forwarding to the core
module the VNFRs requiring dedicated network resources.

In order to extract the minimal information needed to realize the network re-
quirements, the core module first needs to extract from the VNFRs the service class
defined in at least one of their VLDs. Afterwards the Core Module should collect
the necessary information to contact the related driver responsible for the specific
VNFR. Therefore it should poll the NFVO for information how to reach and access
the NFVI by using the id of the VIM of the specific VNFR. With the information
from the VIM which includes credentials as well as the type of virtualized infras-
tructure the Core Module can now decide which driver to choose for pushing the
network requirements onto the NFVI. Those drivers are used by the Core Mod-
ule for communicating with the available components at the NFVI able to perform
operations for enforcing bandwidth requirements at the physical level.

41Specific values provided in the table are just example ones. Different values can be configured
while instantiating the NSE component
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6.6.3.1 CMA and its Driver

The CMA exposes a well-defined interface towards the NSE and acts as a wrapper
for potentially any kind SDN Controller. It is implemented in Python and utilizes
the Bottle Python web framework42 to expose northbound REST APIs enabling an
independent programming language interaction with any tool that allows enforce-
ment of QoS related configuration capabilities.

In this work, the CMA provides a high-level APIs for enforcing QoS policies and
it is composed by three sub-modules, namely:

• The API module that exposes REST endpoints to the NSE to instantiate
queues, define flows and retrieve the updated topology of the distribution of
virtual resources inside the data center.

• The Core module that acts as broker to forward the requests to the right
clients implementation along with the information retrieved.

• The Clients module which locates the implementation of clients used by the
Core module to interact with the client-specific endpoint.

The CMA’s Core module receives and parses the requests for applying QoS
enforcement. In addition, it checks if all the requested resources are available by
using the southbound layer to retrieve all the information. In case of feasibility, the
same interface is used to configure the QoS parameters on the correct instance(s)
among the controllable virtual switch instances. The southbound layer uses the
OpenStack python clients to retrieve the data of all VMs that compose the network
service and their network topology (such as mapped port to the virtual switch, and
port number in the virtual switch).

6.6.3.2 OpenStack Neutron Driver

The OpenStack Neutron Driver acts as an intermediate between the NSE and the
OpenStack‘s network service, Neutron. To be able to push the network requirements
such as bandwidth limitations to a VNF using Neutron, a mapping between the
information taken from the VNFR and OpenStack data models needs to be done.
The necessary QoS policies together with their bandwidth limitation rules can be
initialized or reused as well as attached to the virtual link as defined in the VNFR.

6.6.4 Service Function Chain Orchestrator (SFCO)

The SFCO in J2EE as a standalone spring boot Java application. It interacts with
the NFVO and monitoring plugin over the message bus, and with the OpenDayLight
(ODL) SDN Controller through its northbound REST APIs. The SFCO relies on

42http://bottlepy.org/docs/dev/index.html
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the extended OpenStack version supporting SFC provided as part of the open source
OPNFV43 project44.

Therefore, assuming that the SDN Controller provides SFC data plane, the
role of the SFCO is to interact with it for instantiating specific SFPs. The SFCO
uses the Java SDK module for registering to specific lifecycle events (INSTANTI-
ATE_FINISH, RELEASE_RESOURCE_FINISH, HEAL, and SCALED).

Once a NS is instantiated, the SFCO receives an event containing its NSR, and
extracts the VNFFG required for setting up the SFPs. For deploying the SFC
instances the SFCO uses the ODL REST API.

One of the advanced features provided by the SFCO is to work in combination
with the FMS and AES in re-establishing a certain SFP whenever a failure occurs,
or a VNF is scaled out/in.

For instance, once a VNFC instance failure occurs, the FMS triggers either the
heal or the switch to standby operation. In case of heal operation, the NFVO
publishes the Heal lifecycle event on the message bus, including the corresponding
VNFR payload. The SFCO consumes the event parsing the VNFR and starting
searching the SFPs involving the failed VNFC instance in order to update it based
on the SF selection algorithm configured at runtime. Then it updates the SFC
Classifiers with the updated SFP.

6.7 The Open Baton Bootstrapping CLI

Being mostly implemented with common programming languages and technologies,
Open Baton can be easily installed and executed on any kind of OS. Building and
starting a component directly using its source code is rather easy using the gradle
framework. The only requirement is to have a running instance of RabbitMQ, so that
such component can communicate with the NFVO. A typical workflow execution
for starting an individual component is shown in 6.3.

Listing 6.3: Example of the workflow for building and starting an individual com-
ponent (in this case the dummy-vnfm-amqp)

1 git clone https :// github.com/openbaton/dummy -vnfm -amqp.git
2 cd dummy -vnfm -amqp.git
3 ./ gradlew build run

In order to simplify the installation of the Open Baton framework on Ubuntu,
CentOS, and Debian OSs, a bootstrapping CLI has been provided allowing, with a
single command, to perform the installation and complete configuration of an all-in-
one Open Baton instance. A minimal installation requires 2 GB of Random Access

43OPNFV, online:https://www.opnfv.org
44In this work, the OPNFV Apex installer has been selected as it provides support to SFC:

https://wiki.opnfv.org/display/apex
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Memory (RAM), 2 CPU cores, and around 2 GB of disk space45. More information
about the boostrap CLI are available in Section B.3.

6.8 Conclusion

This chapter has introduced the Open Baton project as the open source reference
implementation of the final version of the MANO4X framework architecture pre-
sented in Chapter 5 – Specification of the MANO4X Framework. The implemen-
tation followed the same agile approach presented for the design process, including
major/minor releases accordingly to the semantic versioning process. Several soft-
ware components have been implemented and publicly released as part of the Open
Baton GitHub organization using an open source licensing model. A single boot-
strapping procedure has been provided in order to simplify the setup of the complete
environment.

45It depends also on the installation version selected
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The present chapter, first presents an overview of the adoption of the methods
and technologies designed and developed during this research work within large scale
ICT projects. Next, a set of experimental use cases are presented, including their
results indicating how well the proposed solution performed.

Particular attention is given to the analysis of the results based on the list
of features presented in Chapter 3 – The MANO4X Requirements and Features
Analysis. Finally, the Open Baton framework is compared against other existing
similar open source platforms.

7.1 ICT Project Validation and Dissemination

This subsection focuses on the research results generated during the different phases
of research presented in The Design Evolution of the MANO4X Framework and
contributed towards international ICT research projects.

7.1.0.1 ICT BonFIRE

BonFIRE1 was a research project funded by the European Commission under the 7th
Framework Programme (FP7) Future Internet Research Experimentation (FIRE)
initiative. It was launched in 2010, with a duration of 36 months, and ended in
2013. The main objective was to provide a multi-site cloud testing facility, enabling
third-party developers to do experimental research across an heterogeneous cloud
infrastructure, composed by six sites across Europe. Most of the BonFIRE sites
adopted, and further adapted, OpenNebula2 as IaaS solution, on top of which a set
of additional BonFIRE core components were designed in order to provide access as
a service to external experimenters. Network connectivity across sites was realised
over public internet, as well as VPN connections. Basically VMs could connect
across sites either via public IPs or via private IPs part of the internal VPN network.
The BonFIRE infrastructural resources were exposed via a REST interface, based
on OCCI[127].

During the last year of the project, the author contributed with the work con-
ducted during the initial phase of his doctoral research, particularly on topics related

1http://www.bonfire-project.eu/
2https://opennebula.org/
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with elastic scalability[13][129][128]. In BonFIRE, there have been three possible
approaches for supporting scalability: manual, programmed and managed.

The first two approaches, the manual and the programmed one, were supported
by the BonFIRE core components through a web-based portal allowing various
performance related metrics to be observed and the BonFIRE Resource Manager’s
OCCI API through which resources may be created or deleted.

The managed approach was achieved integrating the EE, providing “Elasticity
as a Service (EaaS)” . As already presented in Section 4.2.2, the functionality of the
EE is to automatically increase or decrease the number of compute resources based
on autoscaling policies. The configuration of the EE autoscaling policies was real-
ized putting some contextualization variables in theOCCI request. Among others,
the experimenter could set the number of minimum and maximum instances to be
created at runtime during the experiment. Furthermore, the name of the created
image and the instance type to be used for deploying compute resources had to be
specified. In addition, the experimenter had to configure, using contextualization,
the KPI that should be taken into account as alarm condition.

7.1.0.2 ICT Mobile Cloud Networking (MCN) Project

MCN3 is a large scale project funded by the European Commission under the FP7
ICT initiative. It was launched in 2012 for the period of 36 months, it ended in 2016.
The author contributed with the work conducted during the intermediate and final
phase of his doctoral research, particularly focusing on the cloudification of the IMS
architecture, resulting in the IMS as a Service (IMSaaS) concept[143][131][133][121].
The main objective of the MCN project was to exploit cloud computing technologies
for future mobile network deployments and operations[164]. The main assumption
of MCN was that future TSP’s infrastructures would comprise micro and macro
cloud-based datacenters, on top of which network functions will be deployed as a
service. MCN proposes an high-level architecture[130] for managing and orchestrat-
ing network services across a multi-site cloud-based infrastructure.

One of the most relevant aspects of the MCN architecture is represented by
the dynamic service composition, having as main objective an end-to-end mobile
core network comprising the RAN and EPC core elements, as well as end-users
applications.

The MCN core model is based on OCCI, providing general interoperability
among different kind of solutions, paving the way to a fast adoption in different
domains and deployment scenarios. The MCN framework solutions are also “func-
tionally” compliant with the ETSI NFV MANO specifications in order to further
facilitate its adoption and easy integration. In particular, as better detailed in Sec-
tion V, our framework covers many of the functional requirements of ETSI NFV
MANO, but with a slightly different architecture of solution.

There have three major contributions driven by the author during the MCN
activities:

3https://github.com/MobileCloudNetworking/
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1. Integration of the Open Baton framework as IMS SO.

2. IMS lifecycle management, and particularly autoscaling of Media Gateway
(MGW) functional elements.

3. A fault management system for the IMS use case.

7.1.0.3 ICT NUBOMEDIA Project

NUBOMEDIA is a research project funded by the European Commission, launched
in 2014 for the period of 36 months. The main objective of the NUBOMEDIA
project was to design and develop an open source cloud PaaS for RTC. The author
strongly contributed with the work conducted during the intermediate and final
phase of his doctoral research, designing the NUBOMEDIA architecture integrating
the MANO4X elements for realizing a PaaS for multimedia applications[144][145][149].
NUBOMEDIA represents also one of the catalyst projects of the final phase of re-
search.

In NUBOMEDIA, multimedia applications are decomposed following a three
tier model architecture, in which media processing elements are separated from the
media control logic. A NUBOMEDIA application comprises one or more containers
implementing the application logic using the Kurento APIs and (optionally) one or
more supporting services (like Database Management System (DBMS), etc.). The
NUBOMEDIA PaaS system designed and developed in the context of the NUBO-
MEDIA project, provides support for managing and orchestrating independently
the two layers of the NUBOMEDIA application, meaning the media services and
application services. The NUBOMEDIA system architecture is depicted in Figure
7.1.

This architecture complies with the ETSI NFV specification. At a very high-level
perspective, and following a top down approach, these are the core components:

• NUBOMEDIA PaaS being the intermediate level between the infrastructural
resources and the users of the platform. Particularly it includes the NUBO-
MEDIA PaaS Manager exposing an interface to developers for deploying and
runtime managing their applications. This layer also holds the NUBOMEDIA
PaaS, a system hosting the applications and exposing their capabilities to the
end-users.

• NUBOMEDIA Media Plane composed by the media plane capabilities whose
lifecycle is managed by the Open Baton framework. Those media service enti-
ties are executed on top of virtual containers.Open Baton has been further ex-
tended with a specific VNFM, called VNFM-Elastic Media Manager (EMM),
able to manage the lifecycle of the media servers and to dynamically allocate
sessions on top of available instances.

• NUBOMEDIA IaaS composed by the infrastructure resources in terms of CNs
providing virtual compute, storage and networking resources to the upper lay-
ers, and the VIM providing the abstracted APIs for controlling their lifecycle.
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Figure 7.1: NUBOMEDIA PaaS Architecture

The NUBOMEDIA IaaS has been realized using OpenStack extended for fully
supporting instantiation of Docker containers on distributed Compute Nodes.

The runtime information related to the available media server instances are pro-
vided to the application service layer dynamically. In order to retrieve dynamically
information about the media service layer, the PaaS Manager injects runtime in-
formation (like the endpoint of the VNFM-EMM and additional unique identifiers)
inside the containers executing the application logic as environment variables.

Concepts and methods presented as part of the VNFM domain were partially
conceived in NUBOMEDIA. For instance, the VNFM-centric approach has been
introduced in this project because of the need of a specific autoscaling mechanism
for media applications. A cross-layer interface between the applications running on
the PaaS and the VNFM-EMM has been defined: basically the VNFM-EMM is
aware of the number of open sessions for a certain application, thus, whenever the
capacity (defined as number of sessions per media server) is not enough anymore, it
triggers scaling out/in operations.

Furthermore, the introduction of the Pool Management was also required for
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speeding up the deployment process of new media server instances anytime scaling
out operations were triggered.

7.1.0.4 ICT SoftFIRE Project

SoftFIRE is a research project under the Horizon 2020 (H2020) FIRE+ initiative
funded by the European Commission, launched in January 2016. SoftFIRE aims
at building a large-scale federated infrastructure across Europe, leveraging SDN,
NFV, and 5G technologies, providing access to third parties experimenters via open
calls. After an initial design phase, Open Baton has been utilized as central entity
for federating, from a NFV perspective, the multi-site NFVI comprising different
OpenStack-based PoP in Germany, Italy, and United Kingdom.

The contributions given by the authors to the SoftFIRE project were twofold.
First, he provided his knowledge in the MANO domain while designing the SoftFIRE
middleware. Second, he provided his technical knowledge in the NFV technology
ecosystem integrating the Open Baton framework as the NFV MANO framework
of the SoftFIRE infrastructure. The SoftFIRE middleware architecture is shown in
Figure 7.24.

Figure 7.2: SoftFIRE Functional Architecture

The SoftFIRE middleware comprises the experiment manager as the central en-

4Additional concepts and ideas have been evaluated on top of the SoftFIRE infrastructure as
presented in [139][140]
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tity between the experimenters and the SoftFIRE testbeds. The experiment man-
ager exposes a REST API to external experimenters to provision a particular ex-
periment requiring heterogeneous resources at the infrastructure level. TOSCA has
been selected as description language for describing resources which needs to be
deployed.

7.1.0.5 5G Berlin and the Fraunhofer FOKUS 5G Playground

The Open Baton project has been one of the central components within the Fraun-
hofer FOKUS 5G Playground5, providing the MANO functionality required for fu-
ture 5G based networks. Established in 2015, the 5G Playground represents a state
of the art 5G testbed for performing applied research using 5G-ready technologies.
Figure 7.3 shows the high-level architecture of the 5G Playground.

Figure 7.3: The 5G Playground high-level architecture

In addition to the Open Baton framework, the 5G Playground comprises the
following set of technologies:

• Open5GCore6 as reference implementation of the 3GPP EPC architecture.

• OpenIMSCore7 as reference implementation of the 3GPP IMS architecture[165].

• Open5GMTC8 extending the Open5GCore set of components for addressing
Machine Type Communication (MTC) scenarios.

5https://www.fokus.fraunhofer.de/go/en/fokustestbeds/5gplayground
6https://www.open5gcore.org/
7http://openimscore.org/
8https://www.open5gmtc.org/
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• OpenSDNCore9 providing an SDN backhaul.

The success gained by the Open Baton framework increased the public visibility
of the 5G Playground. Several collaborations with industry as well as academia
took place after the launch of the testbed. In particular, a new initiative, named 5G
Berlin10, was launched as a large collaboration between the two Fraunhofer research
institutes located in Berlin (FOKUS and Heinrich-Hertz-Institut (HHI)), two ma-
jor TSP in Germany (Vodafone and Deutsche Telekom), and a local organization,
Berlin Partners11. 5G Berlin, aims at providing a large scale testbed across the city
of Berlin, which can be utilized by third parties (mainly startups and Small and
Medium Enterprisess (SMEs)) for experimenting with state-of-the-art technologies
in this domain.

7.2 Experimental Use Case Validation

This section presents a set of use cases selected for validating the usability and
effectiveness of the methods and concepts outlined in the course of this research
work. The scope of this section focuses on validating requirements and features
identified in Chapter 3 – The MANO4X Requirements and Features Analysis. Each
scenario intentionally focuses on validating only a subset of the features provided,
and most of the results presented have been either published as part of scientific
publications or technological deliverables of ICT research projects. The following
Table 7.1 presents a mapping between the use cases presented, and the set of features
under evaluation.

Most of the use cases presented are also addressing the following features: MANO-
1 - Inventory ,MANO-2 - Lifecycle management ,MANO-3 - Multi Tenancy ,MANO-
4 - OpenStack support , MANO-7 - VNF Placement , MANO-8 - Support for hetero-
geneous VNFs, MANO-12 - Manual Scaling support (indirectly validated using the
AES component) MANO-17 - Integration with existing OSS/BSS components , and
MANO-18 - User Tools . Additional validation use cases addressing the remain-
ing features (MANO-5 - Support for heterogeneous NFVI, MANO-6 - Multi-site
NFVI, and MANO-16 - SFC management support) presented in Section 3.3 have
been presented in scientific papers and international demonstrations as presented in
Chapter 8.

Most of the use cases presented follow a similar structure as:

• introduction: provides a high-level overview of the selected scenario.

• testing setup: describes the testing environment, focusing on the hardware
resources and software components selected for executing the experiment.

• testing scenario: details the scenario which has been executed in order to
validate the proposed functionality.

9https://www.opensdncore.org/
10http://www.5g-berlin.org/
11https://www.berlin-partner.de/en/
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Use Case List of Features

vEPC Deployment MANO-8 - Support for het-
erogeneous VNFs, MANO-9 -
Generic VNFM

Network slicing MANO-15 - Network Slic-
ing support , MANO-13 - Au-
toscaling support , MANO-11 -
Monitoring support

Multimedia applications MANO-13 - Autoscaling sup-
port , MANO-11 - Monitoring
support , MANO-10 - Support
for specific VNFM

Autoscaling MANO-13 - Autoscaling sup-
port , MANO-11 - Monitoring
support

Fault management in an
OpenStack environment

MANO-14 - Fault Manage-
ment support

Juju integration MANO-10 - Support for spe-
cific VNFM

Continuous integration Covering most of the features
presented

Table 7.1: Mapping between the Use Cases Presented and the Set of Features under
Evaluation

• functional validation and performance measurements : presents the functional
and non functional results collected while executing the proposed testing sce-
nario in the testing environment.

All the experiments presented in the following subsections have been executed
within the Fraunhofer FOKUS laboratories. Here it is provided an overview of the
characteristics of the individual testbeds used:

• “orange-box-testbed”: As testing environment it has been employed the Tran-
quil PC V4n box12, typically known also as the “Ubuntu Orange box”13. It is
equipped with 11 hot-swappable nodes, all with Intel R© CoreTMi5 5300U pro-
cessors (with 4 cores) and 16GB of DDR3 RAM. Node-0 acts as the jump-host
where the OpenStack controller services are installed, and the other nodes act
as compute nodes. OpenStack was installed using the OPNFV JOID installer
(Colorado release).

• “micro-dc-testbed”: comprising one or more LenovoTMThinkCentre M93p with
a 64-bit architecture, an Intel R© CoreTMi7-4785T processor with 2.20 GHz and

12https://www.tranquilpc.co/v4n
13https://insights.ubuntu.com/wp-content/uploads/DS_The_Orange_Box.pdf
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16GB RAM. Typically, one or more hosts were used as NFVI, running an
all-in-one OpenStack, installed on a CentOS version 7.2 OS using the RedHat
Packstack installer14. Another one was used for executing the Open Baton
framework, installed using the bootstrap procedure on an Ubuntu 14.04/16.04
OS, the components needed in the specific validation scenario.

7.2.1 Virtualized EPC (vEPC) Deployment

This subsection focuses on validating the effectiveness of the proposed lifecycle man-
agement method. The main objective of this use case is to validate the lifecycle man-
agement operations executed by the NFVO and Generic VNFM while deploying a
complex network service, like the vEPC one.

7.2.1.1 Testing Setup

As testing environment has been used the “micro-dc-testbed”.

7.2.1.2 Testing Scenario

The vEPC use case has been selected as testing scenario. The Fraunhofer FOKUS
Open5GCore project has been utilized as the reference implementation for develop-
ing this scenario. The network service deployed was composed by multiple VNFs
having several dependencies among each other. In particular, the network service is
composed by a DNS, implemented using the open source Bind915, an Mobility Man-
agement Entity (MME), an HSS, an emulated eNodeB, a Serving Gateway (SGW)
and PGW, an Internet Gateway, an User Equipment/Endpoint (UE) and a Mobility
Manager (MM).

It is important to clarify that in this testing scenario it was used a customized
qcow2 16 disk image including already the software required by the VNFs, mainly
because the binaries of the software used were not available for being downloaded
on demand during the deployment phase. The NFVO was evaluated calculating the
time required for instantiating the network service selecting its NSD published in
the NFVO catalog. Six deployments were executed in series and the measurements
of multiple steps were collected.

7.2.1.3 Functional Validation and Performance Measurements

From a functional perspective, the lifecycle management operations have been val-
idated using the UE component: a set of emulated attachment and detachment
procedures were executed to ensure that the vEPC deployed was functioning cor-
rectly. The values shown in Figure 7.4 represent the average of the six consecutive
deployment operations.

14https://www.rdoproject.org/install/packstack/
15https://wiki.debian.org/Bind9
16https://en.wikipedia.org/wiki/Qcow
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Figure 7.4: Performance Measurements of the vEPC Deployment Scenario

It is important to clarify that the execution of a particular lifecycle event done by
a VNFM may differ among different VNFs composing the network service. Results
presented in Figure 7.4 for each individual lifecycle event, represent an average of
all the VNFs included in the network service.

As it can be noticed the most expensive operation (in terms of time) during the
lifecycle management is represented by the INSTANTIATE lifecycle event. This is
mainly due to the fact that during this lifecycle event there are two major operations
executed by the NFVO and VNFM:

• instantiation of the virtual resources required by the VNF: this time differs
between different technologies used at the NFVI level.

• execution of the installation scripts for installing the VNF software inside the
virtual container: this time depends primarily on the mechanism used for
installing the software. For instance, in case of source code based installation,
compilation time may have strong influences on the overall results, while in
case of binaries installation, this time can be reduced further, but the overall
results are still dependent from the networking performances of the virtualized
environment.

As a global result it has been obtained that the time required for deploying a
vEPC instance is about 70s.

7.2.2 Network Slicing

In order to evaluate the NSE, it has been realized a scenario very similar to the
one foreseen by the 5G white paper about network slicing, presented in Section 2.4:
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multiple mobile core networks were deployed in parallel on the same physical infras-
tructure, but were customized for supporting different verticals’ requirements (e.g.,
mMTC, uRLLC, etc.).

The main objective of this use case is to validate the concepts designed and
developed within the context of the NSE component. In particular, the main focus
is to validate that the NSE is capable of enforcing networking requirements on the
physical infrastructure. Although the main objective of this use case was to evaluate
the effectiveness of the NSE capabilities on enforcing networking requirements on
the physical infrastructure, autoscaling policies were applied to one of the network
slices deployed in order to validate also scenarios in which multiple OSSs are em-
ployed together. Similar results obtained with the execution of this scenario have
been published as part of [142]. Results obtained during the intermediate phase of
research addressing the network slicing topic were published in [135]

7.2.2.1 Testing Setup

The “orange-box-testbed” was configured with five different tenants, for logically
separating different slices deployed on the cluster from control functional elements
(i.e. Open Baton and Zabbix):

1. admin: comprising two VMs. One hosting an Open Baton installation in-
stalled using the bootstrap procedure, including the NFVO, the Generic VNFM,
the OpenStack VIM driver, the AES, the Zabbix monitoring plugin, and the
NSE on a VM with Ubuntu 14.04, 4 Virtual CPUs (vCPUs) and 8 acsGB of
RAM. The other one hosting the Zabbix monitoring system installed on a
VM with Ubuntu 14.04, 2 vCPUs and 2 GB of RAM.

2. support-services : comprising 4 VMs (using a flavour of 1vCPU and 512 MB
of RAM), of which 2 hosting emulated eNodeBs and the UE/MM acting as
testing tools for the deployed mobile core networks, and the other 2 hosting
different traffic endpoints, used by the testing tools as traffic anchors.

3. slice-low-latency : used to deploy the so called “low-latency” network service,
being a customized version of the mobile core network optimized for low-
latency use cases. Each VM used for hosting VNFs has a flavour of 1vCPU
and 1 GB of RAM.

4. slice-ultra-reliability :used to deploy the so called “ultra-reliability” network ser-
vice, being a customized version of the mobile core network optimized for scal-
ing horizontally the data-plane. Each VM used for hosting VNFs has a flavour
of 1vCPU and 1 GB of RAM.

5. slice-iperf : used to deploy a network service comprising two VNFs imple-
mented using the iperf tool, and configured to act as server and client. Each
VM used for hosting VNFs has a flavour of 1vCPU and 1 GB of RAM.
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Some of the components of the Open5GCore toolkit were selected as VNFs in
the slice-low-latency and the slice-ultra-reliability. More details about the number
of VNFC instances deployed will be provided in the next subsection.

7.2.2.2 Testing Scenario

The NSE was validated deploying three different network services running on the
same physical infrastructure, and sharing the same physical resources. A more
detailed description of the three network services deployed during this experiment
can be found below:

• slice-low-latency : this service emulates the mMTC scenario requiring low la-
tency. It comprises a set of VNFs provided by the Open5GCore project,
customized by grouping together multiple VNFCs in single VNFs in order to
reduce the communication latency.

• slice-ultra-reliability : this service emulates the uRLLC scenario where band-
width and reliability play a central role. Also in this case, a set of VNFs
provided by the Open5GCore project have been customized for supporting
ultra reliability, achieved by splitting components as much as possible for sup-
porting horizontal scalability. In this scenario, an autoscaling policy was added
to the MME VNF (being the component able to maintain an overview about
the number of attached subscribers to the core network) so that scale out/in
procedures could be applied to the switch VNF (comprising the merged PGW
and SGW). A scale out action was executed whenever the number of attached
users crossed the value of 60 users per available VNFC instance.

• slice-iperf : this service emulates a best effort network service, with the main
objective of flooding the physical network resources with TCP/User Datagram
Protocol (UDP) traffic in order to validate if the other slices get affected.
This service was implemented using the iPerf tool17, following a client/server
approach where the client tries to send a predefined amount of data to the
server.

For ensuring traffic isolation, thus validating the NSE capabilities, a QoS policy
has been applied to virtual link of the PGW and SGW user network (net-a) as show
in tab:qos18.

Initially, for the slice-iperf slice was not applied any particular policy, thus the
communication between VNFCs comprising this slice can be considered best effort.
For measuring latency between components within a slice, one user from the sup-
port services tenant was attached to each slice, and frequently trying to ping the
related traffic endpoint VM. The test scenario had a total duration of one hour

17https://iperf.fr/
18Dimensioning of policies has been done considering the physical limits of the networking envi-

ronment in the “orange-box-testbed”
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Network Service VNF Quality Traffic/User

slice-low-latency sgwu_pgwu BRONZE - 1024
Kbps

1,8 Kbps

slice-ultra-reliability sgwu_pgwu GOLD - 102400
Kbps

125Kbps

Table 7.2: Virtual Link Quality per Network Service / VNF

and 30 minutes. After the successful deployment of the different slices, a bench-
marking tool[166] was employed for emulating different attachment and detachment
procedures (240 users each 30 minutes) against the mobile core network deployed
in the slice-low-latency. After 30 minutes, the benchmarking tool started sending
an increasing number (12 users every 5 minutes) of attachments to the mobile core
network deployed in the slice-ultra-reliability. The autoscaling condition for the
slice-ultra-reliability was set to a threshold of 12 users.

After 30 minutes a network bandwidth test is started by the VNFCs of the slice-
iperf. The client starts sending UDP traffic which is increased by 90 Mbps every 5
minutes. Once it reaches 360 Mbps it starts reducing the traffic again in the same
steps until it reaches 0 Mbps. As last step of this scenario a QoS policy (SILVER)
was applied to the slice-iperf and same tests aforementioned were re-executed.

7.2.2.3 Functional Validation and Performance Measurements

Figure 7.5 shows the results gathered executing the testing scenarios described in
the previous section. It shows the monitored data of the different network slices
each condensed into two graphs displayed in a single row. The first one represents
the slice-low-latency, the middle one slice shows the sliceultra-reliability and the last
one presents the slice-iperf.

The left graph in the first two rows combines the number of attached users (total
and average) to the mobile core network together with the number of switch VNFCs
instances. The right graph of the first two rows combines the information of the
outgoing network traffic from the mobile core network and incoming in the related
traffic endpoint together with the experienced latency for the respective users. The
last row’s graphs show the network traffic generated within the slice-iperf.

As expected, in the time from 11:05 to 12:05 it can be seen that there are
no interference among the different slices. The mobile core network deployed in the
slice-low-latency following the distinct attach-detach pattern, while the one deployed
in the slice-ultra-reliability attaching the users and scaling the switch VNF.

This situation changes when Iperf NSs, deployed without any network slicing
policy, starts generating traffic. The spikes of the network traffic among the Iperf-
client VNF and Iperf-server VNFC instances at about 12:07 results in a spike of
the experienced user latency in the 5G core designated for ultra reliability. Same
situation happens at 12:25 and 12:27 where both slices are affected by the spikes
of network traffic among the VNFC instances of the slice-iperf. This can be ex-
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Figure 7.5: Performance Measurements of the Network Slicing Scenario

plained by the fact that the outgoing physical network interface of the compute
nodes reach the total available bandwidth limit, thus generating a congestion which
delays Internet Control Message Protocol (ICMP) packets and user traffic in the
other two slices.

From 12:35 to 12:41 the last experiment is repeated but allocating the SILVER
QoS policy to the slice-iperf. This time, the generated traffic does not burst the
physical limits of the networking elements and there are no side effects on the ex-
perienced user latency among other network slices. It can be concluded that the
allocation of bandwidth limitations, in compliance with the physical limits of the
NFVI, allows the creation of isolated network slices.

7.2.3 Autoscaling

This scenario focuses on validating the methods and related implementation of the
AES. In particular, are provided three different scenarios:

• Emulated scale-in procedure : focuses on validating the scale-in algorithm pro-
posed in Section 4.2.3.2.
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• Web Service network service : focuses on validating the effectiveness of the
AES implementation with a typical OTT scenario.

• vIMS network service: focuses on validating the effectiveness of the AES im-
plementation with the reference vIMS scenario.

Parts of the results presented in the following subsections have been published
in [145][167]. In addition, similar other experiments have been conducted over the
past years with the objective of validating the autoscaling approaches defined during
this dissertation, with results published in [144][131][14][129][133][138].

7.2.3.1 Emulated Scale-in Procedure

In order to evaluate the scale-in algorithm proposed in Section 4.2.3.4 two different
scenarios have been emulated using the Matlab19 multi-paradigm numerical comput-
ing environment. Two different scenarios have been simulated considering a different
number of VMs (scenario-1 with 10, and scenario-2 with 100) as initial state of the
scale-in procedure. Assuming that the load gets equally distributed among VNFC
instances comprising a VNF, a decreasing CPU load average in a period of 300 sec-
onds has been taken as input for the algorithm presented in Section 4.2.3.4. The
expected behavior is that applying the proposed algorithm, VMs will be removed
earlier than using a classical threshold based approach.

Figure 7.6 and Figure 7.7 show on the left graph the average of the CPU uti-
lization, and on the right graph the number of VMs per time for the scenario-1
comparing a common trigger-based approach (blue line) with the scale-in algorithm
proposed in this dissertation (red line).

As it can be noticed from the results collected, there is a large optimization
obtained by utilizing the proposed scale-in algorithm. In particular, in both cases,
VNFC instances (VMs) are terminated earlier in time, thus providing better resource
utilization over time.

7.2.3.2 Web Service Network Service

The following tests were done in order to show the reliability, stability and resource
efficiency of the AES.

Testing Setup: The “micro-dc-testbed” was utilized as testing environment.

Testing Scenarios: The testing scenarios selected in this case include a network
service, shown in Figure 7.8 designed as composition of two VNFs: a load balancer
VNF dispatching requests (using Round Robin load balancing algorithm) to the
backend VNF, referred to as the elastic-app, instantiated with one or more VNFC
instances serving a simple web service. The load balancer has been implemented
using the HAProxy20 load balancer, while the elastic-app has been implemented us-

19https://de.mathworks.com/products/matlab.html
20HAProxy, online: http://www.haproxy.org/
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Figure 7.6: Emulated Measurement Results for Scenario-1

ing the apache2 web server exposing a simple web application that for each requests
starts a shell process21 consuming CPU cycles. A load generator (Httperf22) was
used in order to simulate different traffic patterns emulating user requests.

The AES functionality has been validated by three different testing scenarios:

1. NFVO-centric: validating the scale out procedure when using an NFVO-
centric approach.

21The linux stressapptest application available at: https://github.com/stressapptest/stressapptest
22http://www.labs.hpe.com/research/linux/httperf/
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Figure 7.7: Emulated Measurement Results for Scenario-2
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Figure 7.8: Web Service Network Service



7.2. Experimental Use Case Validation 185

2. VNFM-centric: validating the scale out procedure when using an VNFM-
centric approach.

3. Long run: validating the AES on a scenario over a long period of time.

In the first scenario, the AES has been executed as an independent component,
while in the second scenario the AES has been integrated within the VNFM. More-
over, the second scenario validates also the pool mechanism proposed as an extension
for optimizing scale out procedures.

In both scenarios, tests were repeated ten times in order to gather averaged mea-
surement results. The collection of measurements started from the activation of the
detection procedure (measurements fetching and alarm detection), and ended after
the scale-out procedure was executed (indicated by the execution of the cooldown
procedure). One of the major differences between the first and the second scenario
is represented by the different way VNFC are deployed. In the NFVO-centric sce-
nario, it was used the generic VNFM, thus instantiation time is also influenced by the
time needed for installing the generic EMS. While in the VNFM-centric scenario, it
was employed and further adapted the VNFM-EMM designed and developed in the
context of the NUBOMEDIA project, making use of cloud-init functionalities for
provisioning VNFC instances. In this last scenario was validated also the possibility
of scaling out multiple VNFC instances in a row.

The third testing scenario covered a long run experiment with a duration of
eight hours with increasing and decreasing number of requests per minute following
an sine-based curve. The conditions and actions for scaling-out and scaling-in were
defined in autoscaling policy as follows:

• scale-out an instance if the average of all measurements of metric ’CPU idle
time’ 23 is less than 40%.

• scale-in an instance if the average of all measurements of metric ’CPU idle
time’ is greater than 60%.

Both conditions were checked every 60 seconds, and if scaled successfully, the AES
waits for 120 seconds (defined as cooldown period) before accepting the next scaling
request. To satisfy the current number of requests the descriptor and corresponding
autoscaling policy are able to scale in to a VNFC instance whereas scaling-out is
limited by eight components. Theoretically, if the number of requests are close to
zero, a single VNF component should be enough to handle the load produced. If the
number of requests are close to 10000, eight VNFC instances are close to be fully
exhausted caused by the load produced. This means more than 10000 requests per
minute are not supported by this VNF and leads to an overloaded system.

Performance Measurements: Starting with the first scenario, as shown in Fig-
ure 7.9 most of the time is required by the instantiate procedure.

23https://en.wikipedia.org/wiki/Idle(CPU)
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Figure 7.9: Measurement Results of NFVO-centric Web Server Scenario

Specifically, it takes 48 ms to detect the need to scale, 32 ms to decide about
the scaling actions to execute and then, around 40 seconds to launch and prepare
a new VNFC instance. The time to launch and provision the VNFC instance takes
around 8 seconds for booting, further 26 seconds until the generic EMS registers to
the generic VNFM, and 6 more seconds for executing the configure lifecycle. The
last step depends mainly on the VNF software which has to be installed, and may
vary from a very short time to a very long time depending on the installation and
configuration procedures which have to be executed.

Moving to the second testing scenario, as depicted by figures Figure 7.10 and
Figure 7.11, the detection part varied between 56 ms and 78 ms, where the gap,
although almost irrelevant, was basically due to the response time of the monitoring
system. Scaling-out adding a single VNFC instance took around 17 seconds whereas
scaling-out adding five VNFC instances took around 83 seconds. This was mainly
due to the fact that scaling out operation were executed sequentially and not in
parallel.

In case of scaling-out a single component it takes 99,36% of the overall time
from detecting to finish scaling. In the case of scaling-out five components in a
row the scaling took around 99,9% of the entire time. As seen, scaling-out five
components in a row needs five times more and is caused by scaling-out step-by-
step. Obviously, the time needed for scaling-out 5 components can be improved by
executing in parallel scaling out operations. As part of the VNFM-centric scenario
has been validated also the proposed pool mechanism, useful for optimizing the scale
out procedure. Two scenarios were taken into account equally to the two scenarios
described before. One test covers the scaling-out of a single VNFC instance and
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Figure 7.10: Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out a single VNFC Instance

Figure 7.11: Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out five VNFC Instances

the other scenario scales out five VNFC instances step-by-step. As presented in the
previous section, the time for launching new components takes most of the time of
the entire scaling process, and therefore, it decreases the reaction time of the AES
dramatically in order to provide new instances on demand.

Figure 7.12 and Figure 7.13 present the measurements obtained while using the
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pool mechanism in the case of scaling-out a single or multiple (five in this case)
VNFC instances. Similar to the previous case (without the pool mechanism) the
detection and decision time had minimal impact (24 ms) on the overall scaling
procedure. As expected, differently from the previous case, the execution time
required was minimal while requesting the allocation of new VNFC instances to the
Pool Manager instead of asking the VIM directly. As depicted in Figure 7.12 in case
of adding a single component, the whole scaling operation required around 140 ms.
Figure 7.13 reveals that scaling out five components in a row required only 350 ms.

Figure 7.12: Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out a single VNFC Instance with the Pool Manager

Compared with the detection time needed, the scaling procedure itself (in case
of adding a single component) took 65,7% of the total time, whereas scaling-out five
components took 87,93%. Compared with the time needed in the scenarios without
the pool mechanism, scaling-out a single component and five components in a row
is drastically improved. In fact, the scaling out action to add a new component
took in this case 0,85% of the time that was needed without the pool mechanism.
Scaling out five components took in this case 0,42% only compared with the time
in the previous scenario.

The execution of the third testing scenario provided some performance results
of the AES over a longer duration of time. Results of the execution of the third
scenario are shown in Figure 7.14, including 4 graphs where each graph covers two
hours of the test.

The measurements obtained validate the expected functional behavior of the
AES component. In general, as soon as the number of requests (thick blue line)
increases, the AES scales out adding new VNFC instances, while whenever the
number of requests decreases, the AES scales in removing VNFC instances.
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Figure 7.13: Measurement Results of the VNFM-centric Web Server Scenario while
Scaling Out five VNFC Instances with the Pool Manager

Ideally, the measurement results of each instance should start with 100% ’CPU
idle time’, but unfortunately, the first values shown indicates that the scaled in-
stances received requests before the Monitoring System starts to track this specific
metric. Nevertheless, each curve appearing or disappearing in the graphs shows the
scaling activities and the load situation of a certain instance in the considered time
frame. If a new curve pops up, an VNFC instance was scaled-out and viceversa, if
a curve disappears, it means that a VNFC instance was scaled-in.

The bigger red line depicts the number of errors in a certain period of time.
The errors appearing during this scenario execution are caused by two particular
conditions. The first case happened when the number of requests is greater than
10000. In this case the number of VNFC instances available were not able anymore
to handle the load, and the AES cannot scale out anymore as the maximum number
of instances was reached ( as indicated in the VNFD). In turn, the second case was
due to the fact that the load increased too fast and the AES was not able to react
quickly. As soon as the AES scaled-out, the number of errors decreases immediately.
This depends basically on the autoscaling policy defined in the VNFD and is mainly
due to the cooldown period defined. So between two consequent scaling operations
the time needed may be more than three minutes. Besides the cooldown parameter,
additional time was due to the duration of the instantiate lifecycle while scaling out
adding new instances.

7.2.3.3 IMS Network Service

This subsection focuses on validating the proposed AES with the vIMS use case.
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Figure 7.14: Measurement Results of the Third Web Server Scenario

Testing Setup: The “micro-dc-testbed” has been utilized as testing environment.

Testing Scenario: For this scenario it was used the vIMS network service, and
enabled High-Availbility for the HSS VNF. This has been achieved making use of the
Diameter Routing Agent (DRA) component into the vIMS solution. For this sce-
nario it was employed and further adapted Open Source IMS Core (OpenIMSCore)24

[165], an open source implementation of the 3GPP IMS standard. The scale out
threshold has been configured as 65% ’CPU idle time’ (therefore when the CPU

24http://openimscore.org
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of the system crosses 35% of utilization). Scaling in should be executed when the
measurement results crosses the threshold of 80% in average over both instances,
particularly, when the aggregated values are greater than 80%.

Performance Measurements: Performance results obtained by executing the
scenario presented in the previous paragraph are shown in Figure 7.15. The load
produced by simulated users’ requests started at 50 seconds and ended at 1010
seconds. It reflects the situation where a total number of 24000 calls are generated
in a time range of 960 seconds, indicating 25 requests per second (req/s) or 125
requests in a 5 second interval as shown in the graph. Since the requests that are
calls in the end are remaining for either a shorter or a longer time, the number of
successful calls varies from 80 up to 160.

Figure 7.15: ’CPU idle time’ of the two HSS VNFC Instances, and related Scaling
Out and In Thresholds

The graph in Figure 7.15 illustrates that the first HSS VNFC instance (line
labeled in the graph as ‘Chess-882-cpu’) was idle in the first 50 seconds before it
started processing the incoming requests (it can be noticed by the decreasing ’CPU
idle time’ and the outgoing network traffic as well). In the following 210 seconds it
handled almost the first 5250 incoming requests. At around 260 seconds, the first
HSS VNFC instance crossed the threshold of 65% ’CPU idle time’, defined as the
scaling out threshold, thus the AES initiated the scale out procedure. The scaling
procedure itself is depicted by the two grey dotted lines, and further analyzed in
Figure 7.16.

It took around 81 seconds from detecting the need to scale until the second HSS
VNFC instance (line labeled in the graph as ‘Chess-847-cpu’) was instantiated and
used for receiving requests besides the initial instance. Similarly to the scenarios
presented in the previous section, the execution phase took most of the time of the
overall process, with 99,8% of the entire time, namely 81.7 seconds. This time was
required for launching the new instance and preparing it by installing and configuring
the VNFC software component. Moreover, dependent components (e.g. the DRA
VNFC instances) are notified about the additional HSS VNFC instance in order to
reconfigure related services.
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Figure 7.16: Detailed View of the Scale Out Procedure

Looking again at Figure 7.15, once the scaling out process was finished (at 342
seconds) the incoming requests were spread over both instances, thus the CPU
load was equally distributed between them. This covers the time interval from 342
seconds to 1010 seconds where the generation of load ended. Afterwards, once all
the requests were processed, the number of calls decreases immediately and both
HSS VNFC instances got less loaded. As soon as the AES recognized that the CPU
idle time of both instances in average crosses the upper threshold of 80%, executes
a scale-in action.

Concrete timings of scaling-in operation from the initial check of conditions to
finishing the corrective action is show in Figure 7.17. As depicted the scaling-in
process itself took around 350 ms leading to a final time of 513 ms for the whole
procedure.

The scaling-in process ended at 1045 seconds and the second HSS VNFC instance
was removed.

7.2.4 Fault Management in an OpenStack-based NFVI

The test scenario described in this subsection has been performed in order to validate
the FMS in scenarios involving failures at both the VNF and the infrastructure level.
The main objective is to functionally validate the functions provided by the FMS and
to evaluate the performance results obtained by using this additional component.
Parts of the results presented as part of this experiment have been published in
deliverables of the MCN project [168][169].

7.2.4.1 Testing Setup

The “orange-box-testbed” was utilized as testing environment configured with two
tenants:
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Figure 7.17: Detailed View of the Scale In Procedure

1. tenant admin: comprising the Open Baton and Zabbix Server VMs. Open Ba-
ton was installed on a VM with ubuntu 16.04 OS, 8 Giga Bytes (1,073,741,824
bytes) (GB) of RAM and 2 vCPUs, including the NFVO, the message bus, the
generic VNFM, the OpenStack VIM driver, the FMS, and the Zabbix plugin.
While the Zabbix Server was installed on a VM with an ubuntu 14.04 OS.

2. tenant fm-scenario: used for deploying the scenarios under tests. The details
about the network service used as System under Test (SuT) are explained in
the following subsection.

7.2.4.2 Testing Scenario

In order to validate the FMS, it was reused the Web Service network service pre-
sented in Section 7.2.3.2. Differently from the previous scenario, the elastic-app
VNFD included only the fault management policy adopting the 1:N redundancy
scheme, and a minimal number of VNFC instances (scale_in_out parameter set
to 2). the NFVO deployed two VNFC instances (EA1 and EA2), and a third one
(EA3) was automatically instantiated by the FMS and put in standby status. Fur-
thermore, the FMS created the required performance jobs and the related thresholds
in order to actively monitor the active VNFC instances and the virtual resources
needed.

Once the network service was on boarded and instantiated, the load balancer
VNFC instance was configured in order to forward all the requests coming from
the outside to the elastic-app VNFCs instances available in the backend. The load
balancer has been configured for automatically discovering whenever an elastic-app
VNFC instance is no more available, so that the number of failed requests was
minimized, whenever a fault affected any of the VNFC instances. Therefore, the
expected behavior is that as soon as the load balancer detected the unavailability
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of one of the elastic-app VNFC instances (e.g. EA1), it will forward all the requests
to the other ones active at that point in time (e.g. EA2).

Three different testing scenario have been designed and executed for validating
the functionality provided by the FMS:

1. In the first test, it has been simulated a fault at the VNFC level by killing the
elastic-app process running in the EA1 instance. This test has been utilized
to validate the correct detection of the fault at the VNF level and consequent
execution of the the heal lifecycle event.

2. In the second test, it has been simulated a fault at the infrastructure level
by manually terminating one of the virtualized compute resources utilized by
the elastic-app VNFC instances. In particular, it has been simulated a virtual
machine failure in the EA1. This test has been utilized to validate the proper
detection of the fault, in particular the root cause analysis executed by the
fault correlation function, and consequent execution of the switch to standby
action. As already explained in the previous chapter, this action consists in
activating the standby VNFC instance (in this case EA3), and re-configuring
the load balancer (via the dependency resolution logic executed by the NFVO)
in order to remove the failed VNFC (EA1) and add the newly activated VNFC
instance (EA3).

3. In the third test, a comprehensive final experiment has been performed in
order to validate the FMS injecting repeated failures during one hour. The
main objective was to validate the FMS in scenarios with repeated faults.

Although in all the presented testing scenarios the load balancer may represent
a potential bottleneck, it is assumed here that the resources allocated to its VNFC
instance are enough to serve the load injected by the client emulator.

7.2.4.3 Functional Validation and Performance Measurements

The different testing scenarios presented in the previous subsections have been per-
formed and evaluated separately.

The execution of the first testing scenario provided a functional validation as
well as some performance results of the FMS healing functionality. After simulating
the fault at the VNFC layer, the FMS required around 25 seconds to recover the
VNF to an ACTIVE state. Most of the time required for recovering the VNF while
performing the heal functionality was due to the latency of the monitoring system
in sending the notification about the fault. In particular, 24 seconds were needed
by Zabbix for notifying the FMS (through the zabbix monitoring plugin), while
1 second was the time needed by the FMS to execute the heal recovery function
itself. Figure 7.18 shows the workload of the EA2 while the EA1 was experiencing
the failure. As can be noticed, all the requests were forwarded to the EA2 because
the load balancer automatically detected that EA1 did not respond anymore to
incoming requests.
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Figure 7.18: Performance Measurements of the First FMS Testing Scenario

The execution of the second testing scenario provided a functional validation
as well as some performance results of the FMS switch to standby functionality.
Figure 7.19 shows the CPU usage of EA1, EA2 and EA3. The failure was injected
at t0 = 15(s) .
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Figure 7.19: Performance Measurements of the Second FMS Testing Scenario

After the failure, the load balancer required about 40 seconds for taking the
decision of forwarding all the requests to EA2. This can be noticed in Figure 7.19
as the CPU usage of EA2 increases up to 45%. The switch to standby action
is performed at t1 = 109(s). Considering the network service composition, while
executing the switch to standby action triggered by the NFVO executes in sequence
the SCALE_IN, MODIFY, and START lifecycle events against the load balancer
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VNF. The SCALE_IN is required to remove the failed VNFC instance (EA1) from
the backend pool, the MODIFY is used for including the new VNFC instance (EA3)
to the pool, while the START is used for re-loading the pool configuration.

Around t2 = 115(s) can be noticed that the CPU usage of the two instances (EA2
and EA3) reached similar levels, thus the re-configuration of the load balancer was
properly executed. It is also important to notice that during this testing scenario
the fault correlator properly identified the root cause of the problem: the monitor-
ing system sent several failure notifications (i.e. VM unreachable, VNFC software
components not running, etc.), however the system properly identified that the root
cause was at the infrastructure level.

The execution of the second testing scenario (very similar to the previous one)
provided a functional validation as well as some performance results of the FMS
switch to standby functionality during repeated failure events. Within this scenario
have been gathered also the errors reported by the client during the execution of
the switch to standby functionality.

Figure 7.20: Performance Measurements of the Third FMS Testing Scenario

The red horizontal line is the total number of requests performed per minute
(12.000 req/min - 200 req/sec). The green line on the bottom represents the number
of failed requests. In correspondence of the VM failures the number of failed requests
reached approximately 3000 req/min.

The colored lines on the top of the graph represent the averaged metric ’CPU
idle time’ of the VM hosting the EA1. Looking closely is possible to note a small
decrease of this value (meaning an increase of the CPU usage KPI) as soon as one of
the elastic-apps VNFC instances fails. That is due to the load balancer forwarding
all the 200 req/sec to the other VNFC instances available. The impact is minimal
since the FMS executes in a rather short time the switch to standby recovery action.

The average of the total latency, from the occurrence of the failure until the
network service is fully recovered, has been calculated and illustrated in Figure
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7.21. The reported results are the average of the six cases of failure emulated in our
tests.

Figure 7.21: Measurements Results of the FMS Latency

The interval t0− t1 represents the time between the occurrence of the failure and
its detection by the Zabbix Server. Such interval can be optimized (e.g reduced)
by tuning the delay of the KPI retrieval via proper configuration of the Zabbix
monitoring system. In the considered scenario, the Zabbix Server updated the mon-
itored indicators every 60 seconds, which is considered very usual for many related
deployment environments (limited overhead with acceptable latency introduced in
management operations).

The interval t1 − t2 is the latency introduced by the Zabbix Server to send
the notification to the monitoring plugin. Ideally, the Zabbix Server should only
detect the condition specified in the trigger, and execute the alert script. Although
executing the alert script takes few milliseconds, the notification is received by the
monitoring driver not before 23 seconds. Such interval could not be reduced since
cause by the internal mechanism used by the Zabbix Server to send notifications.

The interval t2−t3 is the overhead introduced by the fault restoration procedure.
In this interval different components of the Open Baton framework are involved,
including the FMS itself.

Although this interval had the lowest impact on the overall procedure, it has been
analyzed in details and the specific results obtained are reported in the following
tab:fm-perf.

The total overhead was around 691 ms, due to the different actions performed
by the different components as succinctly described above. The monitoring plugin
introduced an overhead of 28 ms due to the mapping of the Zabbix Server notification
to the internal VirtualizedResourceAlarmNotification. The FMS introduced an
overhead of about 96 ms, in which the major fraction has demonstrated to be caused
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Component Overhead

Monitoring Plugin 28 ms
FMS 96 ms
NFVO & VNFM 567 ms
Total 691 ms

Table 7.3: Overhead Introduced by the FMS while Executing a Switch to Standby
Operation

by the execution of the Drools policies.
Last, the NFVO executed the switch to standby action in about 15 ms by sending

a message with the cause "switch-to-standby" to the Generic VNFM. The overhead
introduced by the VNFM during the activation of the standby VNFC instance is
around 220 ms, mostly caused by the execution of the script to start the Apache
Web server. After that, the NFVO executed the dependency resolution procedure
and sent to the VNFM the SCALE_IN, MODIFY, and START actions in order to
reconfigure the load balancer VNFC. Such actions are grouped with an overhead of
around 40 ms.

Although the overhead of the FMS depends on the number of the rules to be
processed, those evaluation activities demonstrated that the overhead of the FMS
is largely acceptable.

7.2.5 Juju Integration

The testing scenario presented in this section has been performed in order to val-
idate the Juju VNFM adapter. The main objective is to functionally validate the
integration of an external VNFM within the Open Baton framework, as well as
to provide some performance results comparing the Juju VNFM and the Generic
VNFM.

7.2.5.1 Testing Setup

For this experiment, it has been employed the “micro-dc-testbed”. In this case, the
Open Baton NFVO, the RabbitMQ broker, Juju and the Juju VNFM adapter were
executed on a Dell Precision Tower 5810 with a 64-bit architecture, an Intel R© Xeon R©

CPU E5-1650 v3 processor with 3.50 GHz and 14GB RAM running Ubuntu 16.04.
Considering that the Open Baton components have been deployed on a different
host, OpenStack has been configured with only one tenant, used for deploying the
complete network service instance.

Before starting the actual experiments, Juju has been bootstrapped in order
to be able to allocate resources on the OpenStack instance. The controller’s name
used is controller-vim. After configuring and starting the NFVO and Juju VNFM
adapter, the Juju VNFM adapter registers to the NFVO following the registration
procedure presented in Section 5.7.2.2. A PoP named as the Juju controller was
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registered to the NFVO for establishing the reference to the Juju controller created
previously.

In addition the Open Baton Generic VNFM was added to the setup by starting
it on the same host on which the NFVO, and the Juju VNFM adapter were running.

7.2.5.2 Testing Scenario

For validating the Juju integration, and in particular for collecting performance
results of the deployment of a network service using the Juju VNFM, it was selected
the vIMS network service, implemented, as in previous cases, by the Fraunhofer
FOKUS OpenIMSCore toolkit. In particular, it has been generated a comparison
(in terms of execution time) between the deployment of the OpenIMSCore network
service using the Juju VNFM and the one making use of Generic VNFM. Therefore,
during the OpenIMSCore deployment procedure, the average time of each lifecycle
operation was measured.

Three testing scenarios were executed. First, the deployment with the Generic
VNFM, second the deployment with the Juju VNFM with resource allocation per-
formed by the NFVO, and lastly the deployment with the Juju VNFM with resource
allocation performed by Juju itself. Each of the three cases were executed ten times
in order to take comprehensive measurements of the lifecycle operations performed.

After the execution of the three testing scenarios, the following processes were
measured and compared. The actual deployment of the network service, by launch-
ing the corresponding NSD from the NFVO. The triggering of a scale out operation
of the IMS Proxy CSCF (P-CSCF) VNF. The termination of the network service, by
deleting the NSR from the NFVO. Considering that individual lifecycle events are
executed for each VNFC instance of the network service, the duration of a lifecycle
operation was measured as an average of the duration of each individual one.

Table 7.4 shows which lifecycle operations are measured and when the measure-
ment begins and ends for each VNFC instance of the vIMS network service. All the
measurements are taken from the NFVO log files.

7.2.5.3 Functional Validation and Performance Measurements

The results of the execution of the aforementioned scenarios are visualized in Figure
7.22. The orange and red bars represents the lifecycle duration when using the Juju-
VNFM. In particular, the orange one shows the case when Juju allocated resources
on the NFVI, while the red one shows the case in which the allocation was done by
the NFVO.

The blue bar represents the time required when the Generic VNFM is used
instead of the Juju VNFM. As one can see, the differences between the orange and
red bars are minimal indicating that the decision on whether the NFVO allocates
the resources or it is done by Juju directly, does not have a great impact on the
deployment time.

However, the differences among the orange/red bars and the blue bars are sig-
nificant. The instantiate operation took about four to five times longer when the
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Lifecycle Oper-
ation

Start End

INSTANTIATE After the NFVO sends the
INSTANTIATE message the
VNFM

When the NFVO receives the
response message

MODIFY After the NFVO sends the
MODIFY message the VNFM

When the NFVO receives the
response message

START After the NFVO sends the
START message the VNFM

When the NFVO receives the
response message

SCALE_OUT After the NFVO sends the
SCALE_OUT message the
VNFM

When the NFVO receives the
response message

TERMINATE After the NFVO sends the
TERMINATE message the
VNFM

When the NFVO receives the
response message

Table 7.4: Measurements Points

Figure 7.22: Comparison between the Juju VNFMs and the Generic VNFM

Juju VNFM was used. The time that an average modify lifecycle operation required
is about 46 times longer when using the Juju VNFM instead of the Generic VNFM
and in case of the start lifecycle operation the Generic VNFM is about nine times
faster than the Juju VNFM. Similarly to the instantiation lifecycle, the scale out
operation of the P-CSCF VNF was four times faster when using the Generic VNFM.
Finally, the termination of the network service was even 100 to 140 times faster.
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One of the main reasons behind the drastic differences in terms of time required
for executing the lifecycle events, is mainly due to the fact that while launching
a VNFC instance via Juju, it starts a VM using public ubuntu cloud disk images
and triggering the OS upgrade procedures. Thus, a first optimization of the results
obtained in the previous experiments, can be obtained downloading the most recent
version of the needed disk image from the official ubuntu repository, and disabling
the automatic upgrade procedure from the Juju controller. Another important factor
which had large impacts on the overall results is the installation of the juju agent
inside the VM during the first instantiation. Furthermore, some of the time maybe
also due to the internal scheduler utilized by Juju. Infact, while using the Juju via
its CLI it has been noticed that it requires some time between receiving the request
and triggering the execution of the action requested.

7.2.6 Continuous Integration

This last subsection introduces the CI/CD testing environment, having as main
objective the automated functional validation of the framework whenever changes
are committed in the source code repositories of the different projects. As already
introduced in previous Chapter 2, a CI/CD system allows merging all latest devel-
opments, and testing them into a single system in an automated way.

7.2.6.1 Testing Setup

The “micro-dc-testbed” has been utilized as testing environment. In addition to the
OpenStack PoP, the setup included one node running the Jenkins server25.

7.2.6.2 Testing Scenario

The CI/CD system which has been used in the context of this testing environment,
make use of Jenkins as a generic continuous integration system allowing setting
periodic testing jobs. In particular, it makes use of the Pipeline suite of plugins26

enabling writing testing scenarios involving multiple stages, including builds and
deployments of the SuT. Furthermore, the integration with docker allows ease
composition of different components in the SuT, so that particular features can be
validated individually.

Considering that the major objective is to test the Open Baton framework itself,
several network services (i.e. simple client/server network service, complex network
service, etc.) should be on boarded and deployed runtime by the CI/CD system. In
order to minimize the effort of writing testing jobs, and in particular for minimizing
the effort in updating the testing jobs between different releases of the Open Baton
framework, an integration-tests framework has been developed and released on the
Open Baton GitHub repository27. Such framework specifically addresses the dif-

25https://jenkins.io/
26https://jenkins.io/doc/book/pipeline/
27https://github.com/openbaton/integration-tests
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ferent steps of the network service lifecycle. Moreover, a dummy VNFM and VIM
driver have been implemented and integrated as part of the SuT in order to validate
that the lifecycle management operations are correctly executed by the NFVO.

A set of scenarios28 have been implemented:

• scenario-dummy-iperf : dummy network service composed by eleven VNFs
acting as client and server, using the dummy VNFM and VIM driver. Thus,
it enables testing the actual dependency resolution between VNFs.

• scenario-many-dependencies : similarly to the previous case, dummy network
service composed by VNFs having dependency to each other, using the dummy
VNFM and VIM driver. Thus, it enables testing the actual dependency reso-
lution between VNFs with complex network services.

• scenario-real-iperf : network service composed by two VNFs acting as client
and server. The IPerf tool has been used as VNF software, and the expected
behavior is that the IPerf client VNFC can connect successfully to the IPerf
server VNFC and send traffic. It enables testing the Generic VNFM and the
OpenStack VIM driver.

• scenario-complex-ncat : complex network service consisting of five VNF each
instantiated with only one VNFC instance. Once deployed, the ncat29 linux
command line tool will be executed on the five VNFC instances and act as
peers in dependency among each other. The target peer receives messages
from the source peer and stores the received IP address so that it is possi-
ble to verify which peer has connected to which. In addition, this scenario
includes multiple VLs deployments, so that it is also validated the scenario
when multiple networks are allocated to deployed VNFC instances.

• scenario-scaling : network service composed by two VNFs acting as client and
server and tests the execution of several scaling actions. It starts by deploying
one VNFC instance per VNF and executes scaling in and out actions checking
if new instances of the server and the client are deployed correctly, analyzing
if the client instances are provided with the IP addresses of the new server
instances, so that they are able to connect to them.

• error-in-configure, error-in-instantiate, error-in-start, error-in-terminate : each
one deploys a network service using a NSD which contains a failing script in
the particular lifecycle event and tests if the NFVO handles it correctly.

• wrong-lifecycle-event : it tries to on board a NSD to the NFVO which contains
an undefined lifecycle event. The test will pass if the on boarding is not
successful.

28scenarios and related descriptors can be found at: https://github.com/openbaton/integration-
tests/tree/master/src/main/resources

29https://nmap.org/ncat/
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• stress-test : it deploys in parallel a large number of network services using
different NSDs. This test uses the dummy VNFM and VIM driver as the
major objective is to validate the internal orchestration logic.

7.2.6.3 Functional Validation

The Jenkins server has been configured for executing periodically the scenarios afore-
mentioned. After registering the PoP, each individual scenario is executed. Figure
7.23 shows the Jenkins dashboard providing the results obtained by the execution
of the pipeline.

Figure 7.23: Overview of the Results of the Execution of the Jenkins Pipeline

As it can be noticed in Figure 7.23, tests are executed once after the other, and
the green status means that they are successfully executed. In case of errors, it
is possible to troubleshoot the issues either looking directly at the logs provided
underneath the test execution or analyzing the logs of the Open Baton components
also collected through the Jenkins server.

7.3 Comparative Evaluation based on the List of Fea-
tures

This section introduces similar projects addressing the research challenges identified
for building future 5G networks, and having as one of the objectives to provide
solutions for the management and orchestration of network services in virtualized
environments. ICT research projects and other open source initiatives are firstly
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presented, and a final comparison overview, based on the list of features identified
in Section 3.3, is provided.

7.3.1 ICT Research Projects

During the past years, several large ICT projects addressed research issues and chal-
lenges identified as part of this research work. As already presented in Section 7.1
MCN represents one of the initial projects trying to address the cloudification of
telecommunication services, in which the author was directly involved.

The FP7 Unifying Cloud and Carrier Networks (UNIFY)30 started in 2013 with
the objective of making use of virtualization and automation technologies across the
whole networking and cloud infrastructures[170]. The main focus is unifying carrier
networks and cloud technologies in production environments using a set of enablers
playing a central role for their overall orchestration[171]. The abstraction model
proposed is based on a service creation language for enabling dynamic deployments
of network components across the whole infrastructure. Several toolkits have been
developed during the project: DoubleDecker31, RateMon32, Verigraph33, Univer-
salNode34, and several others. However, most of the technologies developed have
been discontinued after the project ended. The author collaborated with the team
from the Politecnico of Turin for integrating the UniversalNode as an alternative
NFVI in the context of the SoftFIRE project.

T-NOVA35 (Network Function as a Service over Virtualized infrastructures) is
an FP7 project executed between 2014 and 2016 with the main objective of imple-
menting a framework fully compatible with the ETSI NFV architecture allowing the
management and orchestration of NFs over the NFVI[172]. In addition, T-NOVA
objective was to provide an open marketplace which could be used by operators as
a public catalogue. The public GitHub repository36 lists several projects including
management functions as well as VNFs. In particular, TeNOR37 represents the T-
NOVA orchestrator. Ruby was selected as programming language also following a
microservice oriented architecture. However, as in the case of the previous project,
development activities have been discontinued after the project ended in December
2016.

SONATA38 is a project from 5G-PPP phase 1[173][174], started in 2015, with
the objective of developing a NFV framework for providing a programming model
and development toolchain for network services, fully integrated with the proposed
DevOps-enabled service orchestration platform. In practice, they released a set of

30http://www.fp7-unify.eu/
31https://github.com/acreo/doubledecker
32https://github.com/nigsics/ramon
33https://github.com/netgroup-polito/verigraph
34https://github.com/netgroup-polito/un-orchestrator
35http://www.t-nova.eu/
36https://github.com/T-NOVA
37https://github.com/T-NOVA/TeNOR
38http://www.sonata-nfv.eu/
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SDKs facilitating the generation of network services, a service orchestration platform
for orchestrating network services. Although the project is still executing, primary
results were already contributed towards other open source communities, like the
ETSI OSM one presented in the following subsection.

Selfnet39 is another project from 5G-PPP phase 1, started also in 2015, having
as main objective the design and implementation of a framework able to fully auto-
mate the mitigation of certain common networking issues, reducing operational costs
and manual intervention. In particular, Selfnet is driven by three major use cases
addressing major network management problems: self-protection, for providing ca-
pabilities against security attacks, self-healing, for providing capabilities against
network failures, and self-optimization, for providing capabilities to automatically
re-configure network resources improving performances and enhancing QoE. The
Selfnet project made use of some of the Open Baton framework for fulfilling some
of the functionalities designed as part of its architecture[175].

5GTANGO40 is a project from 5G-PPP phase 2 having as main objective the
creation of a set of toolkits for enabling programmability of 5G networks[176]. It will
develop a set of NFV-enabled SDKs, tools for validating and verifying VNFs and
qualifying NSs, and a modular orchestration platform for bridging the gap between
the business requirements and OSSs. 5GTANGO will move from static templates
to dynamic ones going towards orchestration programmability for scaling and place-
ment of VNFs. 5GTANGO technologies will be most probably based on the ones
developed in the context of the SONATA project. Its GitHub repository41 currently
includes only one project42 containing schema files for the various descriptors used
by 5GTANGO.

7.3.2 The Open Source NFV Ecosystem

In the following it is provided a brief overview describing main goals, objectives, and
a description about the most relevant open source projects providing a reference
implementation of the ETSI NFV MANO specification.

7.3.2.1 ETSI Open Source MANO (OSM)

ETSI OSM is an operator-led ETSI community providing an open source implemen-
tation of the ETSI NFV MANO stack. This community has been launched by Intel,
Telefonica, BT, Telenor, Canonical and Rift.IO in February 2016 combining existing
projects which have already started earlier. As of November 2017, the OSM com-
munity counts around 85 companies. OSM official Release ONE has been launched
in October 2016. It includes Network Service Orchestrator (NSO), RO and the VNF
Configuration Manager. Most of the components are written in Python and their
integration is achieved via direct API calls between components. In November 2017,

39https://5g-ppp.eu/selfnet/
40http://5gtango.eu/
41https://github.com/5gtango
42https://github.com/5gtango/tango-schema
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the OSM community launched release THREE. Figure 7.24 shows its architecture
as provided in the OSM White Paper[177].

Figure 7.24: OSM High-Level Architecture[177]

OSM provides has three major components:

• The service orchestrator based on the Riftware component initially contributed
by Rift.IO

• The resource orchestrator based on the OpenMANO component initially con-
tributed by Telefonica

• The VNF Configuration and Abstraction (VCA) based on the Juju component
initially contributed by Canonical

Most of the OSM components have been implemented in Python and the com-
munication among components is based on REST APIs or direct python API calls.
OSM release THREE integrated also monitoring (still experimental). Basically the
service orchestrator plays the central role in the architecture communicating with
the resource orchestrator for the allocation of resources across different VIM types
(OpenStack, Amazon EC2, OpenVIM, and VMWare), and with the VCA for the
configuration and execution of actions towards VNFs. Looking at the runtime phase
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support, OSM provides also support for network service scaling, however not au-
toscaling.

7.3.2.2 OpenStack Tacker

OpenStack Tacker is an official project within the OpenStack foundation[178]. Ini-
tially driven by Brocade, Cisco, and Intel, Tacker main objective was to provide an
implementation of a VNFM for deploying VNFs on OpenStack. Recently, Tacker
extended its scope towards NFV orchestration. It provides an API which can be
consumed directly from either the Horizon or the OpenStack CLI, for on boarding
VNFPs and NSDs into its catalogue. Tacker follows the TOSCA specification for
modeling descriptors, and makes use of the Heat engine to deploy resources on top
of OpenStack.

Figure 7.25: OpenStack Tacker High-Level Architecture[178]

7.3.2.3 Open Network Automation Platform (ONAP)

ONAP is a project officially formed in March 2017 by the Linux Foundation[179].
ONAP represents the merge between two other existing individual projects:

• Enhanced Control, Orchestration, Management & Policy (ECOMP) a project
developed by AT&T focusing on providing a comprehensive platform for or-
chestrating and controlling any kind of services[180].
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• Open-O a project initially driven by China Mobile, China Telecom and Hong
Kong Telecom and later on (in October 2016) moved to the Linux Foundation
with a similar scope.

Due to the large similarities between the two projects, the Linux Foundation
decided to merge them into a single project. As of October 2017 ONAP counts
around 60 members, with a large number of service providers and major vendors.
Unfortunately, by the time in which this dissertation was written, ONAP did not
have yet an official release publicly available. Thus, the author provides an overview
of the project based on the information available on the public wiki page of the
project43.

Figure 7.26: ONAP High-Level Architecture[181]

ONAP has definitively a broader scope than just being a reference implemen-
tation of the ETSI MANO specification, especially including aspects related with
SDN orchestration and cross-domain orchestration. Its architecture consists of two
major subsystems: the “design-time environment” and the “execution-time environ-
ment”. In practice, the design-time environment represents a collection of tools and
repositories for defining and describing deployable services. The execution-time en-
vironment comprises all the components required for automating the policy-driven
service lifecycle and control loops. ONAP follows as well a micro-service oriented
architecture in which the Micro Service Bus (MSB) plays the central role provid-
ing common functionalities and services across the different components of the ar-
chitecture. Access to the ONAP subsystems is provided via the portal and CLI
components.

43https://wiki.onap.org/
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7.3.3 Summary and Comparison of Related Solutions

Although several scientific activites as well as ICT research projects addressed the
scope of this research work, the final comparison provided in this section focuses
only on the three major projects presented in the previous section. This decision is
based on the results identified by a recent survey conducted by SDxCentral [182] in
which around 150 survey respondents provided an answer to the question “are you
considering open-source MANO?”. Although a large portion of the respondents said
that will consider them once they are more mature, selected platforms included ETSI
OSM, and ONAP44, OpenStack Tacker, and Open Baton solutions, including also
the potential usage of commercial ones which are out of scope for the comparison
provided here. The comparison provided below is based on the list of features
identified by the author and presented in Chapter 3.

Feature MANO-1 - Inventory is supported by all of them via internal reposi-
tories used for collecting descriptors/templates and runtime information. Feature
MANO-2 - Lifecycle management is also supported by all projects. Tacker and
ONAP follow the TOSCA approach allowing TSPs defining management plans as
part of the service template, while OSM follows a similar approach utilized by Open
Baton decoupling the VNFP definition from the network service one. However,
Open Baton provides a more comprehensive approach allowing both mechanisms
(i.e., TOSCA-based, and descriptor based), and especially allowing different for-
mats for their definitions (TOSCA and JSON). Feature MANO-3 - Multi Tenancy
is supported by all projects (very recently added in OSM release 3). Feature MANO-
4 - OpenStack support is also supported by all projects. OpenStack represents the
standard de facto VIM, thus most of those projects support it naively. Feature
MANO-5 - Support for heterogeneous NFVI is supported by all the projects, how-
ever the mechanism utilized differs among them. Tacker uses the OpenStack Heat
infrastructure orchestrator, thus supports only what heat provides. OSM and ONAP
supports public and private clouds as NFVI. In most of these projects, the abstrac-
tion layer required for interoperating with different VIMs is directly embedded in
the orchestrator components. The clean separation introduced in Open Baton with
the external VIM driver approach and communication over the message bus results
the most extensible solution. Feature MANO-6 - Multi-site NFVI and MANO-7 -
VNF Placement are consequently supported by all projects, as per MANO-5 - Sup-
port for heterogeneous NFVI. However, not all of them allow the instantiation of
VNFs part of the same network service across multiple sites, and most importantly,
not all allow defining VNF instance locations, as it can be done with Open Baton.
Open Baton provides also additional capabilities for extending the VNF placement
mechanism used just changing the scheduling class.

Looking at the list of features related with lifecycle management, feature MANO-
8 - Support for heterogeneous VNFs is supported by all platforms as most of them
have been validated with very different use cases making use of different VNFs. Fea-
ture MANO-9 - Generic VNFM is supported by all of them. In particular, Tacker

44Open-O at the time of the survey
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started as a Generic VNFM project and recently added the NFVO layer. OSM
makes use of Juju as Generic VNFM, while ONAP provides the VNFM as part of
the Virtual Function Controller. Also in this case, Open Baton provides a Generic
VNFM which can be further customized for using any configuration management
technology during the instantiation procedures. Feature MANO-10 - Support for
specific VNFM is supported by ONAP (mentioned on the general architecture, but
no specific information available elsewhere in the documentation), is partially sup-
ported by OSM using specific charm types in Juju, but not supported by Tacker.
Open Baton seems to provide the most comprehensive solution allowing integration
of third parties VNFMs via the Or-Vnfm-rest and Or-Vnfm-amqp interfaces. The
process of integrating a specific VNFM is farther simplified by the availability of the
SDKs.

Looking at the runtime lifecycle, featureMANO-11 - Monitoring support support
is provided by all the platforms. Tacker relies on the OpenStack default monitor-
ing system (Telemetry45), ONAP does not specify the monitoring tool used, but it
provides the Data Collection, Analytics and Events (DCAE) module supporting it,
OSM integrates, in an experimental way since latest release THREE, different mon-
itoring systems (OpenStack Aodh/Gnocchi, Amazon CloudWatch, VMWare vRe-
alise Operations). Also in this case, the plug-and-play approach utilized provided by
the Open Baton project can be considered the cleanest solution for integrating any
kind of external monitoring systems. Feature MANO-12 - Manual Scaling support
is supported by all projects, but using different approaches. Feature MANO-13 -
Autoscaling support is supported by all projects. As already mentioned in previous
chapters, the most common solution adopted is to allow users defining policies con-
taining threshold-based conditions. Feature MANO-14 - Fault Management support
is currently not supported by OSM. Tacker follows the same approach used for the
previous feature, allowing users defining specific condition as part of the monitoring
policies. ONAP provides a solution similar to the Open Baton one, using an analytic
engine to correlate faults and taking decisions.

Feature MANO-15 - Network Slicing support , in this case intended as the capa-
bility of enforcing certain bandwidth requirements on the data plane, seems not to
be supported by OSM and Tacker, and no information are available with regards to
ONAP. The solution provided by Open Baton allows the smooth integration with
the Neutron QoS APIs and SDN Controllers. Feature MANO-16 - SFC manage-
ment support is supported by all projects, and most of them make use of the same
technology (OpenDayLight) for the actual creation of the SFCs and SFPs at the
networking layer. However, in some cases the SFC orchestration logic is embedded
directly in the service orchestrator layer (i.e., Tacker and OSM), complicating its
extension in case of different technologies used on the southbound interfaces. The
approach designed with the SFCO external component, allow replacing any network-
ing technologies without modifying the lifecycle management operations executed
by the NFVO. Feature MANO-17 - Integration with existing OSS/BSS components

45https://wiki.openstack.org/wiki/Telemetry
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is supported by almost all the existing projects since they all expose APIs for allow-
ing the management and orchestration of network services. However, the approach
taken with Open Baton framework allows the integration of external existing OSSs
also via Pub/Sub mechanisms. Feature MANO-18 - User Tools is supported by all
tools via classical CLIs and dashboards.

All the projects employed Apache 2.0 as the reference one license model. Look-
ing at the information and data model, ONAP, Tacker, and Open Baton support
TOSCA, however at the moment it is not possible to utilize a service template from
one tool in another, because of the usage of specific type attributes. OSM uses
a YANG[183] representation of the ETSI MANO model, which results also rather
similar to the JSON representation utilized by Open Baton.

As a summary, all the four projects provide more or less the same features,
however, as stated before, the different information and data model adopted limit
interoperability between those solutions. Anyway, when the Open Baton project was
started ONAP and ETSI OSM were not yet existing, while OpenStack Tacker was
only targeting to provide a VNFM solution only for OpenStack-based PoPs. From an
installation perspective, Open Baton and OpenStack Tacker have less requirements,
while ONAP requires a large amount of resources for being installed46.

All in all, Open Baton provides a feature-rich set of functionalities for being
further extended and customized.

7.4 Summary

This chapter presented the evaluation of the MANO4X framework, based on the
employment of its implementation (Open Baton) in different research projects and
scenarios. The concepts and methods developed during the course of this research
work have been integrated and validated as part of different academic and industry
relevant projects as presented in Section 7.1.

The results obtained by the extensive validation of the proposed framework and
its implementation have been presented in Section 7.2. Different use cases have been
selected for evaluating the different features designed and implemented as part of
the Open Baton project.

The last section provides an overview of existing similar projects and provides
a comparison between the list of features generated as part of the Chapter 3 and
implemented in the MANO4X framework, and the other projects.

46http://onap.readthedocs.io/en/latest/guides/onap-developer/settingup/fullonap.htmlfootprint
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This chapter provides an overview of the impacts achieved throughout the re-
search activities towards industry and academia, based on concepts and methods
conceived as well as the MANO4X architecture designed and developed. The sec-
ond part of this chapter provides the final answers to the main research questions
identified at the beginning of the dissertation.

8.1 Resulting Impacts

The results obtained by the author and his team around the topics presented in
the context of this research work had a huge impact towards the industry as well
as academia, with several scientific articles, papers, and presentations published by
the author as well as master and bachelor theses directly supervised by the author.

Moreover, the launch of the open source Open Baton project[163] as the first
comprehensive reference implementation of the ETSI NFV MANO architecture gen-
erated an indirect impact by enabling researchers from all over the world experi-
menting with such technologies. For a certain period of time being the only available
comprehensive open source solution addressing the NFV MANO challenges and pro-
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viding a concrete reference implementation of the specification, several researchers
started employing the tool with the objective of producing research results mak-
ing use of state-of-the-art technologies in the NFV context. Several universities
were able to employ the tool at practical zero costs, enabling the learning pro-
cess to happen in a vendor-independent manner. Several scientific results were
collected and published by other independent research institutions (most relevant
ones[175][184][185][186][187][188][189]).

Open Baton has also been at the core of several European and international
projects directly involving the author (as noted in Section 7.1) or just making use
of the Open Baton project as a reference NFV MANO framework[175]. Additional
results obtained are presented in the following subsections.

8.1.1 Summary of Academic Thesis Contributions

To date this author authored and co-authored 29 scientific peer-reviewed publica-
tions that were submitted to international scientific conferences and workshops as
listed in Section A.1. In particular, ideas, concepts, and design methods were pub-
lished since 2012, including practical evaluation scenarios that served for validating
the solution outlined in this dissertation. Especially noteworthy are the following
most relevant and cited publications:

• [129] in the proceedings of the 1st IEEE International Conference on Cloud
Networking (CLOUDNET), representing the author’s first publication.

• [121] in the proceedings of the 2014 IEEE Symposium on Computers and Com-
munications (ISCC), discussing the IMS cloudification research challenges and
presenting the results obtained within the MCN European research project.

• [135] in the proceedings of the 2015 IEEE International Conference on Com-
munications (ICC), presenting the results obtained within the intermediate
phase, about the cross-layer orchestration solution developed during the inter-
mediate phase and further extended as part of the NSE component.

• [145] in the proceedings of the 2016 IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), presenting the au-
toscaling module demonstrating the easy extensibility of the MANO4X frame-
work.

• [142] and [139] published recently in 2017, providing an overview about the
latest results obtained with the use of the Open Baton project.

8.1.1.1 Talks and Tutorials

During the research activities, the author gave talks at international scientific con-
ferences and academic workshops. Moreover, several tutorials were presented at sci-
entific and industrial conferences. A comprehensive list is available in Section A.2,
while the most relevant ones are the following:
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• “Network Virtualization and Network Slicing for 5G-Ready Networks” , FUture
SEamless COmmunication (FUSECO) Forum1, November 2017, Berlin

• “Software Networks in 5G – An Overview from the Core, Management, NFV,
SDN, Programmability and Security” , FUSECO Forum2, November 2016, Berlin

• “Open Baton – The First Comprehensive and Standard-Compliant NFV Frame-
work”, IEEE NFV-SDN, November 20153 and 20164, San Francisco

• “5G Foundations and Core Network Evolution: Radio, Convergence Core, Cog-
nitive Management and Virtualization (SDN/NFV)” , FUSECO Forum 2014,
Berlin

8.1.1.2 Demos

Several demonstrations were shown over the years at different scientific events. Fol-
lowing is a list of the most relevant ones:

• “The NFV MANO Framework for Orchestrating Network Services from the
Edge to the Cloud, IEEE NFV-SDN, November 2017, Berlin.

• “NUBOMEDIA – The First Open Source PaaS for Developing Multimedia
Services”, IEEE NFV-SDN5, November 2016, Palo Alto. This demonstration
received the best demonstration award at the conference6.

• “Deploying a Virtualized Core Network on Top of a Cloud Infrastructure as a
Service Using Open Baton” , KuVS, 2017, Berlin.

• “Mobile Cloud Networking - Orchestration of a Mobile Core Network on Top
of an OpenStack Cloud” , EUCNC and FIA, 2014.

• “Mobile Cloud Networking - End-to-end Deployment of a Virtualized Mobile
Core Network”, GlobeCom, 2015, Austin.

• “Elasticity applied to Real-Time Communication Services” , NTT R&D Forum,
2013, Tokyo.

8.1.1.3 The IEEE SDN Initiative

The author actively contributed to the IEEE SDN initiative with the results achieved
during his research work. First, and most importantly, the author enabled the first
version of the publicly available catalog of toolkits and testbeds7. The main objective

1https://www.fokus.fraunhofer.de/fff2017/day1
2https://www.fokus.fraunhofer.de/fff2016/day1
3http://nfvsdn2015.ieee-nfvsdn.org/tutorials.htmlT3
4http://nfvsdn2016.ieee-nfvsdn.org/program/tutorials/T2
5http://nfvsdn2016.ieee-nfvsdn.org/program/demonstrations/
6https://twitter.com/nubomedia/status/796647064499343360
7https://wiki.sdn.ieee.org/
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of this initiative is to collect, in a single place, information related to SDN, NFV,
MEC technologies and standards that can be used by the research community for
building prototypes boosting the development of future 5G networks. The main
idea, as shown in Figure 8.1, was to combine the approach already taken by other
open information catalogs, like Wikipedia, with the peer-review approach utilized
for scientific publications. Any IEEE member can contribute to the catalog, either
providing content or reviewing contributions uploaded by others.

Figure 8.1: The IEEE SDN Catalog of Toolkits and Testbeds

Second, the author also contributed to the IEEE SDN newsletter with articles
focusing on the Open Baton open source project:

• [190] providing an overview of the potential employment of the Open Baton
framework in MEC scenarios.

• [191] presenting features and functionalities available as part of the Open
Baton release 2.

Last but not least, two e-learning modules8 were generated by the author based
on the results obtained during his research activities. Those modules provide an
analysis of the state-of-the-art standards and technologies around MANO topics as
well as a deep overview of the Open Baton project.

8.1.1.4 Additional Contributions to the Scientific Community

The author organized and chaired several workshops at different editions of the
FUSECO Forum. In particular, at the last one titled ‘‘Network Virtualization
and Network Slicing for 5G-Ready Networks” around 15 TSPs shared their lessons
learned based on practical experiences using NFV technologies. Especially notewor-
thy is the fact that several presentations mentioned Open Baton as a NFV MANO

8Available at: https://sdn.ieee.org/education/elearningopenbaton
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solution, and a few of them also presented their PoCs developed using it9. More-
over, the author was involved in several international conferences and workshops
as Technical Program Committee (TPC): The Third IEEE International Workshop
on Management of 5G Networks (5GMan) in conjunction with the IEEE Network
Operations and Management Symposium (NOMS), 2018; the IEEE Global Com-
munications Conference: Next-Generation Networking and Internet (Globecom2017
NGNI), 2017; the Second International Workshop on Software-Driven Flexible and
Agile Networking (SWFAN), 2017; The Fourth International Workshop on 5G Ar-
chitecture (WT01 - 5GArch) in conjunction with the IEEE International Conference
on Communications (ICC), 2017.

8.1.1.5 Teaching Contributions

Between 2013 and 2016 the author was a frequent lecturer at the Technical Uni-
versity Berlin for the Chair Architekturen der Vermittlungsknoten (AV) in the
Future Internet Technologies (FIT) and Next Generation Network Technologies Ser-
vices (NGNCourse). Moreover, the author directly supervised numerous Master of
Science (MSc) theses and student projects.

8.1.2 Industry Impact of the Author’s Work

The Open Baton project source code was published over the GitHub public git
repository since its first release. Up to date, Open Baton comprises 38 individual
projects, either hosting a particular component or a set of auxiliary scripts or li-
braries commonly used by other components. As shown in Figure 8.2, the Open
Baton public website received a large number of visitors from all over the world,
especially from the United States of America (USA) and India.

Figure 8.2: Open Baton Website Statistics
9https://www.youtube.com/watch?v=lfVy7bKamtU
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8.1.2.1 Events Associated with the Launch of Major Open Baton Re-
leases

The first public release of the Open Baton platform was announced and demon-
strated at the 6th FUSECO Forum10, an event organized by Fraunhofer FOKUS
and Technische Universität Berlin (TUB), bringing together industry and academia
to discuss research challenges in the context of 5G, NFV, and SDN technologies.

The second Open Baton release was presented and demonstrated at the OPNFV
Summit, held in Berlin in May 2016. In front of quite a large audience the author
presented the numerous features that were added during the second major release
of the project, receiving a lot of attraction from both the academic community and
industry11.

The third Open Baton release integrating Juju as VNFM culminated in a joint
demonstration at the Canonical booth during the MWC 201712. Figure 8.3 shows
the picture of the Open Baton stand at the Canonical booth.

Figure 8.3: Open Baton Stand at the Canonical Booth during the MWC 2017

The demonstration scenario focused on the management and orchestration of
the Open Evolved Packet Core (OpenEPC)[192] virtualized mobile core network,
provided by Core Network Dynamics13, using the Juju VNFM. Autoscaling was en-
abled for showcasing the runtime feature provided by the Open Baton framework for
dynamically scaling the user plane based on application-level metrics (i.e., number
of subscribers attached to the mobile core network).

10https://www.fokus.fraunhofer.de/go/fuseco-forum-2015
11https://youtu.be/HKQpCjqrrcY
12https://insights.ubuntu.com/2017/03/01/mobile-world-congress-2017-day-3-recap/
13https://www.corenetdynamics.com/
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8.1.2.2 Presentations at Major Industrial Events

In addition, several talks were given at industrial conferences, especially providing
an overview of the work conducted as part of the open source Open Baton project:

• “Open Baton Overview” , OPNFV Summit14, May 2016, Berlin.

• “OpenSDNCore: a Framework for Prototyping Virtualized Network Function
Orchestration in Emerging SDN-based 5G Infrastructures” , Carrier Network
Virtualization, December 2014, Palo Alto.

• “Smart Communication Platforms for OTT and Telco-integrated Communica-
tion Services”, and “SDP and Core Network Virtualization” , 9th SDP Global
Summit – Service Delivery Virtualization, September 2013, Rome.

8.1.2.3 Public Blog Posts

Two interviews were also given by the author to SDxCentral15, a relevant online
blog covering topics around “Software Defined Everything” [193][194].

8.1.2.4 The OPNFV Orchestra Project

OPNFV16 is a Linux Foundation open source initiative aiming at creating a ref-
erence NFV platform for accelerating the transformation of TSP infrastructures.
Since the very beginning, the major objective has been to reduce the gap between
what TSPs require for building future network infrastructures and what existing
open source projects provide. The scope has been very focused on the NFVI and
VIM functional elements of the NFV architecture. For this reason, OPNFV inte-
grates and extends components from upstream projects such as OpenDayLight17,
Open Network Operating System (ONOS)18, OpenStack, OpenVSwitch, and Linux,
directly working with the respective communities providing patches, blueprints, and
new code.

In August 2016 the author proposed the creation of the Orchestra project19

aiming at integrating Open Baton within the OPNFV platform. The initial scope of
the project included 1) the integration of the Open Baton bootstrapping procedure
in one of the OPNFV installers, 2) the integration of the Open Baton Continuous
Integration (CI) system within OPNFV testing projects, and 3) the integration of
Open Baton OSS components with existing OPNFV feature projects (like Doctor20)
for extending the set of use cases supported.

14https://wiki.opnfv.org/display/EVNT/Berlin+Design+Summit+Schedule
15https://www.sdxcentral.com/
16https://www.opnfv.org/
17https://www.opendaylight.org/
18http://onosproject.org/
19https://wiki.opnfv.org/display/PROJ/Orchestra+Home
20https://wiki.opnfv.org/display/doctor/Doctor+Home
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Objectives 1) and 2) were accomplished and published as part of the Euphrates
release. In particular, an Open Baton charm21 was designed and developed for
integrating the bootstrapping procedure within the JOID project22 as well as two
different testing use cases, automatically deploying a vIMS network service via Open
Baton, were implemented as part of the FuncTest project23.

Figure 8.4 shows a snippet24 of the test results obtained executing some of the
Orchestra scenarios using FuncTest.

Figure 8.4: OPNFV Test Results Executing Orchestra Use Cases

Since 2016 OPNFV has extended its scope towards the MANO domain, primarily
for providing the means for deploying and orchestrating network functions on top of
the OPNFV platform comprising heterogeneous technologies. The author has been
involved in the MANO working group25 since its inception, providing his knowledge
in the domain for assessing goals and options suitable for integrating upstream
MANO projects into OPNFV.

8.1.2.5 The ETSI NFV Plugtests

The first ETSI NFV plugtest took place in January 2017, with the main objective
of assessing the level of interoperability between heterogeneous MANO, NFVI, and
VNF solutions. A preliminary phase consisted of preparing the infrastructure and
installing components participating in the plugtest, as well as defining a set of
testing scenarios to be evaluated. Around 160 test sessions combining solutions from
different providers were executed during the plugtest, with over 1,500 test results
reported[195]. Currently, the author and his team are already actively contributing
to the second edition of the ETSI NFV plugtest that will be conducted in Sophia
Antipolis in mid-January 2018.

21https://github.com/openbaton/juju-charm
22https://wiki.opnfv.org/display/joid/JOID+Home
23https://wiki.opnfv.org/display/functest/Opnfv+Functional+Testing
24The live version of this webpage can be found at the following URL:

http://testresults.opnfv.org/reporting/euphrates/functest/status-daisy.html
25https://wiki.opnfv.org/display/mano/MANO+Group+Home
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8.2 Final Evaluation of Research Questions

At the beginning of this research work (see Section 1.3), the author identified the
following main research question to be answered throughout this dissertation:

How to design an extensible and customizable open source Network
Function Virtualization Management and Orchestration compliant

framework supporting heterogeneous vertical domain requirements on a
multisite NFV Infrastructure?

In order to properly design an extensible and customizable NFV MANO com-
pliant framework, an extensive state-of-the-art analysis and consequent requirement
analysis were performed and presented in Chapter 2 and Chapter 3, providing an
overview about the transition towards software-based networks and network man-
agement challenges in future 5G networks. Different ideas, concepts, standards, as
well as scientific publications were extensively analyzed and discussed. Based on the
analysis conducted by the author, a set of requirements were presented in Chapter 3
while looking at the optimal solution for managing and orchestrating software-based
networks.

Extensibility and customizability had been considered throughout the design
process. The “event-driven orchestration” concept presented in Chapter 4 is the
result of the iterative design process of the MANO4X architecture, initiated and
managed by the author, and characterized by the parallel evolution of the ETSI
NFV standardization work. The final version of the MANO4X architecture, fully
compliant with the ETSI NFV MANO one, includes all concepts and methods con-
ceived during the years of research. A functional architecture of the MANO4X
framework and different methods required for orchestrating heterogeneous resources
were specified in Chapter 5. The final solution proposed can be extended without
major changes to its architecture (through domain-driven integration) and with very
minimal development efforts (through SDKs provided). Customization is also sup-
ported through specific configurations (all components provide several configuration
parameters), without requiring modification to the architecture and its implemen-
tation.

The open source Open Baton project, launched in 2015, is the result of the
implementation activities presented in Chapter 6. Its validation and evaluation was
presented in Chapter 7 including results obtained in different research activities
performed by the author in the European research ecosystem. As presented in this
chapter, today Open Baton represents one out of four globally recognized ETSI
NFV MANO frameworks, enabling early 5G prototyping and standardization.

The secondary research questions derived as aspects of the main research ques-
tion are further explained below, with an overview available in Figure 8.5.

Q1: How to design a framework for end-to-end managing and
orchestrating of the whole life cycle of network services?
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Main	Question:	How	to	design	an	extensible	and	customizable	open	source	NFV	MANO	compliant	
framework	supporting	heterogeneous	vertical	domains	requirements	on	a	multisite	NFV	

Infrastructure?

Q1:	How	to	design	a	framework	for	end-
to-end	managing	and	orchestrating	the	
whole	lifefcyleof	network	services?

Q2:	How	to	ensure	QoS and	SLA	levels	
required	by	NGN	throughout	their	

lifecycle	fulfilling	the	requirements	of	
the	FCAPS	model?

Q3:	How	to	develop	such	framework	for	
being	further	extended	and	customized	

by	an	open	community?

A1:	Chapter	4

A2:	Chapter	5

A3:	Chapter	6

Chapter	7	providing	validation	results	throughout	this	research	work

Figure 8.5: Summary Answers to the Key Research Questions of this Dissertation

The research question Q1 was extensively covered in Chapter 4. The design
process followed an agile approach, starting from simple scenarios targeting the de-
ployment of individual NF on cloud environments, moving towards more complex
scenarios targeting the deployment of complex network services comprising hetero-
geneous NFs. The separation of the design process in different macro phases allowed
the author to identify limitations encountered with the different proposed solutions.
Microservices architectures and cloud-native principles influenced the final design de-
cisions made. Following the Domain Driven Design the final architecture proposed
comprises different domains whose functional elements interact using an event-based
approach, enabling end-to-end life cycle orchestration.

Q2: How to ensure Quality of Service and Service Level Agreement
levels required by Next Generation Network throughout their life cycle

fulfill the requirements of the FCAPS model?

The research question Q2 was extensively covered in Chapter 5, with the speci-
fication of the MANO4X framework. One of the critical aspects for software-based
networks is that overloaded services cannot maintain the expected satisfactory QoS
causing an immediate QoE deterioration. Thus, methods for elastic scalability and
recovery, as well as guaranteed QoS were considered and defined as part of the final
MANO4X architecture. In particular, dynamic scalability of the deployed service
instances[13][129] and QoS management were addressed as part of the east domain
(Section 6.6) where OSSs were introduced for extending the MANO4X framework
towards runtime critical operations during the runtime life cycle.
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Q3: How to develop such framework for being further extended and
customized by an open community?

The research question Q3 was extensively covered in Chapter 6, with the imple-
mentation of the open source Open Baton framework. The validation proof comes
from the different evaluation scenarios presented in Chapter 7 where the author di-
rectly contributed, as well as from the usage of the Open Baton framework in several
testbeds worldwide, as presented in Section 8.1, allowing researchers from all over
the world to experiment with state-of-the-art technologies in the NFV context.

8.3 Outlook

After five years since the ETSI NFV ISG published the first version of the White
Paper, the research work around NFV topics starts consolidating, with major tier-1
operators deploying virtualized solutions in production environments.

Looking at the Gartner hype cycle from July 2017[196], there are complementary
technologies that could also be considered in the context of this research domain.
In particular, edge computing and machine learning technologies are currently in
the “Peak of Inflated Expectations” , and research challenges related with those tech-
nologies have started appearing also as part of new industry-driven initiatives that
are extending the work conducted primarily by ETSI NFV so far. ETSI MEC and
the Open Edge Computing (OEC) are just a few initiatives around edge comput-
ing technologies, while ETSI Zero Touch (under elaboration) and TMF Zero-touch
Orchestration, Operations and Management (ZOOM) (started in 2015) are related
with machine learning techniques.

8.3.1 MANO4X as the Enabler for Edge Computing Orchestration

Nowadays edge computing starts consolidating, with infrastructure providers de-
ploying computational resources at the edge of the network that can be exploited
also for executing VNFs. Those VNFs are in fact better suited for being executed at
the edge of the network, possibly even in the Customer Premises Equipment (CPE)
residing in the users’ homes (sometimes defined also as FOG devices).

The ETSI MEC ISG proposed a set of use cases[197] (and consequently also
requirements[198]) for exploiting edge computing technologies in the telecommuni-
cation domain. On the one hand, moving network services to the edge is particularly
important in scenarios where latency and networking capacity are important factors
for the end-user QoE. On the other hand, the complexity of such environment will
increase, especially because the edge will be comprised of a set of heterogeneous
technologies and hardware devices (e.g., resource-constrained home gateways able
to execute lightweight linux containers, servers located near the base station pro-
viding common virtualization technologies, etc.) that will need to be administered
via a centralized system.
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Although some of the features required for supporting edge computing tech-
nologies, like multisite and VNF placement, were already covered by this research
work[190], MEC requires some alternative solutions for managing in real-time and
in a more efficient way VNFs at the edge of the network.

One approach could be to decouple even further the orchestration logic, placing
local orchestrators at the edge of the network. Those local entities would be in
charge of managing the resources of a particular edge node, executing operations
that do not require the intervention of the central orchestration entity.

In this decentralized (asynchronous) approach, the local orchestrator entity could
make faster decisions compared to the centralized (synchronous) approach. Exten-
sions to the orchestration logic of the MANO4X framework are required in order to
provide asynchronous orchestration at the edge of the network.

8.3.2 Towards Zero Touch Orchestration

Ensuring carrier grade QoS while providing cost efficiency motivates the need for
improving MANO operations reducing manual interventions. Although life cycle
management operations can be automated with the support of frameworks like the
MANO4X, current approaches are based on reactive methods where the system
makes decisions based on predefined rules set by the user. Using predefined rules
can have an adverse outcome in cases where the user does not have good knowledge
of the expected system load and how it changes from one step to the next.

What is actually needed is a framework able to autonomously determine opera-
tions that should be executed, making use of predictive machine learning techniques.
Time series predictions and reinforcement learning can be beneficial when applied
to the MANO domain.

Extending the MANO4X framework for achieving zero touch orchestration would
require an adaptation of the external OSS elements in order to make use of machine
learning techniques for detecting the need to scale and correlating alarms. One
approach could be the replacement of the detection systems already presented in
the context of the AES and FMS entities, with a component that uses proactive
techniques for detecting conditions and making decisions about next steps to be
executed.
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The present appendix provides additional support for Chapter 5, and Chapter 6.
In particular, it provides a complete example of a NSD and the definition of the main
interfaces exposed by the NFVO.

B.1 Complete Example of a Network Service Descriptor
(NSD)

This section provides the extended version of the Network Service Descriptor (NSD)
presented in Figure 5.10 of Section 5.7.2.5.

Listing B.1: Extended Version of the NSD presented in Figure 5.10 of Section 5.7.2.5
1 {
2 "name":"nsd",
3 "vendor":"vendor",
4 "version":"version",
5 "vld":[
6 {
7 "name":"private"
8 }
9 ],

10 "vnfd":[
11 {
12 "name":"vnf -a",
13 "vendor":"vendor",
14 "version":"version",
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15 "lifecycle_event":[
16 {
17 "event":"INSTANTIATE",
18 "lifecycle_events":[
19 "install.sh"
20 ]
21 },
22 {
23 "event":"CONFIGURE",
24 "lifecycle_events":[
25 "configure.sh"
26 ]
27 }
28 ],
29 "vdu":[
30 {
31 "vm_image":[
32 "image -name"
33 ],
34 "scale_in_out":5,
35 "vnfc":[
36 {
37 "connection_point":[
38 {
39 "floatingIp":"random",
40 "virtual_link_reference":"private",
41 "interfaceId":0
42 }
43 ]
44 }
45 ],
46 "high_availability":{
47 "resiliencyLevel":"ACTIVE_STANDBY_STATELESS"

,
48 "redundancyScheme":"1:N"
49 },
50 "monitoring_parameter":[
51 "agent.ping"
52 ],
53 "fault_management_policy":[
54 {
55 "name":"Sipp␣Server␣not␣available",
56 "criteria":[
57 {
58 "parameter_ref":"agent.ping",
59 "function":"nodata (1m)",
60 "vnfc_selector":"at_least_one",
61 "comparison_operator":"=",
62 "threshold":"1"
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63 }
64 ],
65 "severity":"CRITICAL",
66 "period":60
67 }
68 ],
69 "vimInstanceName":[
70
71 ]
72 }
73 ],
74 "configurations":{
75 "configurationParameters":[
76 {
77 "confKey":"PARAM -1",
78 "value":"0",
79 "description":"Controls␣the␣length␣(in␣

milliseconds)␣of␣calls.␣More␣precisely ,␣
this␣controls␣the␣duration␣of␣’pause ’␣
instructions␣in␣the␣scenario ,␣if␣they␣do␣
not␣have␣a␣’milliseconds ’␣section.␣
Default␣value␣is␣0."

80 }
81 ],
82 "name":"configuration"
83 },
84 "virtual_link":[
85 {
86 "name":"private",
87 "qos":[
88 "minimum_bandwith:BRONZE"
89 ]
90 }
91 ],
92 "deployment_flavour":[
93 {
94 "flavour_key":"m1.small"
95 }
96 ],
97 "auto_scale_policy":[
98 {
99 "name":"scale -out",

100 "threshold":100,
101 "comparisonOperator":">=",
102 "period":30,
103 "cooldown":60,
104 "mode":"REACTIVE",
105 "type":"VOTED",
106 "alarms":[
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107 {
108 "metric":"system.cpu.util[,idle]",
109 "statistic":"avg",
110 "comparisonOperator":"<=",
111 "threshold":40,
112 "weight":1
113 }
114 ],
115 "actions":[
116 {
117 "type":"SCALE_OUT",
118 "value":"1"
119 }
120 ]
121 },
122 {
123 "name":"scale -in",
124 "threshold":100,
125 "comparisonOperator":">=",
126 "period":30,
127 "cooldown":60,
128 "mode":"REACTIVE",
129 "type":"VOTED",
130 "alarms":[
131 {
132 "metric":"system.cpu.util[,idle]",
133 "statistic":"avg",
134 "comparisonOperator":">=",
135 "threshold":60,
136 "weight":1
137 }
138 ],
139 "actions":[
140 {
141 "type":"SCALE_IN",
142 "value":"1"
143 }
144 ]
145 }
146 ],
147 "type":"client",
148 "endpoint":"generic",
149 "vnfPackageLocation":"https :// github.com/openbaton/

vnf -scripts.git"
150 },
151 {
152 "name":"vnf -b",
153 "vendor":"vendor",
154 "version":"version",
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155 "lifecycle_event":[
156 {
157 "event":"INSTANTIATE",
158 "lifecycle_events":[
159 "install.sh"
160 ]
161 },
162 {
163 "event":"CONFIGURE",
164 "lifecycle_events":[
165 "configure.sh"
166 ]
167 }
168 ],
169 "vdu":[
170 {
171 "vm_image":[
172 "image -name"
173 ],
174 "scale_in_out":5,
175 "vnfc":[
176 {
177 "connection_point":[
178 {
179 "floatingIp":"random",
180 "virtual_link_reference":"private",
181 "interfaceId":0
182 }
183 ]
184 }
185 ],
186 "vimInstanceName":[
187
188 ]
189 }
190 ],
191 "configurations":{
192 "configurationParameters":[
193
194 ],
195 "name":"configuration"
196 },
197 "virtual_link":[
198 {
199 "name":"private",
200 "qos":[
201 "minimum_bandwith:BRONZE"
202 ]
203 }
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204 ],
205 "deployment_flavour":[
206 {
207 "flavour_key":"m1.small"
208 }
209 ],
210 "auto_scale_policy":[
211
212 ],
213 "type":"vnf -b",
214 "endpoint":"generic",
215 "vnfPackageLocation":"https :// github.com/openbaton/

vnf -scripts.git"
216 }
217 ],
218 "vnffgd":[
219 {
220 "symmetrical":false ,
221 "dependent_virtual_link":[
222 {
223 "name":"sfc -network"
224 }
225 ],
226 "network_forwarding_path":[
227 {
228 "connection":{
229 "0":"vnf -a",
230 "1":"vnf -b"
231 },
232 "policy":{
233 "acl_matching_criteria":{
234 "source_port":0,
235 "destination_port":5001 ,
236 "protocol":17,
237 "source_ip":"172.0.0.42/32",
238 "destination_ip":"172.0.0.43/32"
239 },
240 "qos_level":"GOLD"
241 }
242 }
243 ]
244 }
245 ],
246 "vnf_dependency":[
247 {
248 "source":{
249 "name":"vnf -a"
250 },
251 "target":{
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252 "name":"vnf -b"
253 },
254 "parameters":[
255 "private"
256 ]
257 }
258 ]
259 }
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B.2 Definition of the Main NFVO Interfaces

This section provides the definition of the interfaces exposed towards functional ele-
ments of other domains. The interface naming convention follows the one proposed
by the ETSI NFV MANO specification[28].

B.2.1 NS Catalog

The following Table B.1 provides the REST API definition of the NSD catalog.
Those APIs are exposed at the URL: /api/v1/ns-descriptors and supports stan-
dard CRUD operations over those resources.

Endpoint Method Description Returned
Code

/ GET Returns the list of NSDs 200 OK
/ POST On boards and validates an

NSD
200 OK

/nsd-id GET Returns the NSD identified by
nsd-id

200 OK

/nsd-id PUT Updates an NSD identified by
nsd-id

202 Ac-
cepted

/nsd-id DELETE Removes an NSD identified by
nsd-id

204 No
Content

/nsd-id/
vnfdescriptors

POST Adds a new VNFD to the NSD
identified by nsd-id

200 OK

/nsd-id/
vnfdescriptors

GET Returns the list of VNFDs part
of a NSD identified by nsd-id

200 OK

/nsd-id/
vnfdescriptors/
vnfd-id

GET Returns the VNFDs identified
by vnfd-id part of a NSD iden-
tified by nsd-id

200 OK

/nsd-id/
vnfdescriptors/
vnfd-id

PUT Updates the VNFD identified
by vnfd-id contained by NSD
identified by nsd-id

202 Ac-
cepted

/nsd-id/
vnfdescriptors/
vnfd-id

DELETE Deletes a VNFDs identified by
vnfd-id part of a NSD identi-
fied by nsd-id

204 No
Content

/nsd-id/
vnfdependencies

POST Adds a new VNF dependency to
the NSD identified bynsd-id

204 No
Content

Table B.1: REST APIs Exposed by the NFVO Interface
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B.2.2 VNF Catalog

The following tables list the REST API definition of the VNF catalog. The APIs
listed in Table B.2 are exposed at the URL: /api/v1/vnf-descriptors.

Endpoint Method Description Returned
Code

/ GET This operation returns the list
of VNFDs

200 OK

/ POST This operation allows on
boarding and validating a
VNFD

200 OK

/vnfd-id GET This operation returns the
VNFD identified by vnfd-id

200 OK

/vnfd-id PUT This operation updates a NSD
identified by vnfd-id

202 Ac-
cepted

/vnfd-id DELETE This operation is used to re-
move a VNFD identified by
vnfd-id

204 No
Content

Table B.2: VNFD REST APIs Exposed by the NFVO

The APIs listed in Table B.3 are exposed at the URL: /api/v1/vnf-packages.

Endpoint Method Description Returned
Code

/ GET This operation returns the list
of VNFDs

200 OK

/ POST This operation allows on
boarding and validating a
VNF Package

200 OK

/vnfp-id GET This operation returns the
VNF Package identified by
vnfp-id

200 OK

/vnfp-id PUT This operation updates a VNF
Package identified by vnfp-id

202 Ac-
cepted

/vnfp-id DELETE This operation is used to re-
move a VNF Package identi-
fied by vnfp-id

204 No
Content

Table B.3: REST APIs Exposed by the NFVO
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B.2.3 Security REST APIs

The APIs listed in Table B.4 are exposed at the URL: /api/v1/users.

Endpoint Method Description Returned
Code

/ GET This operation returns the list
of registered users

200 OK

/ POST This operation allows register-
ing a new user

200 OK

/username GET This operation returns the
user identified by username

200 OK

/username PUT This operation allows updat-
ing a user

202 Ac-
cepted

/user-id DELETE This operation allows to re-
move a user

204 No
Content

Table B.4: REST APIs exposed by the NFVO

The APIs listed in Table B.5 are exposed at the URL: /api/v1/projects.

Endpoint Method Description Returned
Code

/ GET This operation returns the list
of projects

200 OK

/ POST This operation allows creating
a new project

200 OK

/project-id GET This operation returns the
project selected by project-id

200 OK

/project-id PUT This operation allows updat-
ing a project

202 Ac-
cepted

/project-id DELETE This operation allows to re-
move a project

204 No
Content

Table B.5: REST APIs Exposed by the NFVO

B.2.4 Or-Oss

The Or-Oss interface correspond to the one exposed by the NFVO and consumed
either by the TSP via user tools, or by other functional elements of the MANO4X
framework, especially the ones in the OSS and user tools domain.

The APIs listed in Table B.6 are exposed at the URL: /api/v1/ns-records.
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Endpoint Method Description Returned
Code

/ GET This operation returns the list
of NSRs

200 OK

/ POST This operation allows instan-
tiating a NSR from the NSD
passed in input

201 Cre-
ated

/nsr-id GET This operation returns the
NSR identified by nsr-id

200 OK

/nsd-id POST This operation allows instan-
tiating a NSR using the NSD
identified by nsd-id

201 Cre-
ated

/nsr-id PUT This operation updates a NSR
identified by nsr-id

202 Ac-
cepted

/nsr-id DELETE This operation is used to re-
move a NSD identified by nsd-
id

204 No
Content

/nsr-id/ vnfrecords GET Returns the list of VNFRs
part of a NSR identified by
nsr-id

200 OK

/nsr-id/ vnfrecords POST This operation allows adding
a new VNFR to the NSR iden-
tified by nsr-id

200 OK

/nsr-id/ vnfrecords/
vnfr-id/ vdunits/
vnfcinstances

POST This operation allows adding
a new VNFC instance to the
VNFR. It corresponds to a
scale out operation.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/ vdunits/
vnfcinstances

DELETE This operation allows remov-
ing a new VNFC instance
from the VNFR. It corre-
sponds to a scale in operation.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances

POST This operation allows adding
a new VNFC instance to the
VNFR specifying the specific
VDU to be used via the vdu-
id. It corresponds to a scale
out operation.

200 OK
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/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances

DELETE This operation allows remov-
ing a new VNFC instance
from the VNFR specifying the
specific VDU to be used via
the vdu-id. It corresponds to
a scale in operation.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances/vnfc-id/
start

POST This operation allows starting
a VNFC instance part of the
VNFR.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances/vnfc-id/
stop

POST This operation allows stop-
ping a VNFC instance part of
the VNFR.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances/vnfc-id/
standby

POST This operation allows adding
a new VNFC instance in
standby state instance to the
VNFC instance.

200 OK

/nsr-id/ vnfrecords/
vnfr-id/
vdunits/vdu-id/
vnfcinstances/vnfc-id/
switchtostandby

POST This operation allows execut-
ing the switch to standby op-
eration removing the VNFC
instance.

200 OK

Table B.6: REST APIs Exposed by the NFVO over the Or-
Oss Reference Point

B.2.5 Or-Vi and Vi-Vnfm

The Or-Vi and Vi-Vnfm interfaces correspond to the ones exposed by the VIM
driver and consumed either by the NFVO or by the VNFM. This abstraction allows
the implementation of the orchestration logic to be agnostic to the selected VIM
technology and be reusable with different implementations.

Table B.7 provides the definition of the Or-Vi interface as a list of methods
exposed by the VIM driver over the message bus.

B.2.6 Vi-Mon

Table B.8 provides the Vi-Mon interface definition.
Whenever one of those operations is called, the monitoring plugin creates the

performance metric in the specific monitoring system. Once the PM job is created,
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Function Description

launchInstanceAndWait Creates an instance of a Server, waiting for
it to start if necessary

listServer Returns a list of the server under control
of the VIM

deleteServerByIdAndWait Deletes a Server with a given ID, waiting
for it to shut down if necessary

createNetwork Creates a new network
listNetworks Returns all of the known networks
getNetworkById Returns the network having the given ID
updateNetwork Updates a network
deleteNetwork Deletes a network
createSubnet Creates a new subnet
updateSubnet Updates a subnet
deleteSubnet Deletes a subnet
getSubnetsExtIds Returns the list of the external IDs of sub-

nets
addFlavor Adds a new flavour
listFlavors Returns a list of available flavours
updateFlavor Updates a flavour
deleteFlavor Deletes a given flavour
addImage Adds a new NFV Image
listImages Queries the VIM for a list of the available

NFV Images
updateImage Updates an NFV Image
copyImage Copies a NFV Image to a new one
deleteImage Deletes an NFV Image
getQuota Returns the resource Quota of the VIM
getType Returns the type supported by the VIM

driver

Table B.7: Reference Point Or-Vi-rpc/Vnfm-Vi-rpc

it is possible to create a certain threshold condition so that the monitoring system
can notify the consumer whenever the threshold is crossed. Such notifications are
later on delivered to the consumers in form of alarms.

B.2.7 Or-Vnfm

The interface Or-Vnfm is the interface produced by the VNFM and consumed by
the NFVO. This interface allows performing lifecycle operations on VNFs in con-
formance with the content of the VNF Package. Thus, in most of the operations,
the payload provided is the content (or a subset of its content) of the VNF Package.



274 Appendix B. Relevant Information

Function Description

createPMJob This operation allows creating a Performance Man-
agement job, setting specific metrics required, and en-
abling the consumer to specify a resource (or a set of
resources), under the responsibility of the VIM.

deletePMJob This operation allows the consumer deleting one or
more Performance Management (PM) job(s).

queryPMJob This operation allows the consumer to retrieve the ac-
tual values of one or more PM job(s).

createThreshold This operation allows the consumer to create a thresh-
old to specifying levels on specified performance met-
rics associated to certain resources. Whenever the
threshold is crossed a notification is generated. Creat-
ing a threshold does not trigger collection of metrics.
In order for the threshold to be active, there should be
a PM job collecting the needed metric for the selected
entities.

deleteThreshold This operation allows the consumer to delete existing
thresholds.

subscribeForFault This operation enables the consumer to subscribe for
notifications related to a particular threshold and their
state changes resulting from the virtualized resources
faults. This also enables the consumer to specify the
scope of the subscription in terms of the specific alarms
for the virtualized resources to be reported by the VIM
using a filter as the input.

unsubscribeForFault This operation allows to unsubscribe to any fault no-
tifications

getAlarmList This operation enables the consumer to query for ac-
tive alarms.

Table B.8: Reference Point Vi-Mon

Table B.9 provides the or-vnfm-amqp interface definition, as well as the ETSI NFV
corresponding operation.

B.2.8 Or-vnfm-rest

The APIs exposed in Table B.10 allow integrating external VNFM which are not
communicating over the message bus. Those APIs are typically consumed by the
VNFM to communicate to the NFVO the end of a certain lifecycle operation. The
APIs listed in Table B.10 are exposed by the NFVO at the URL: /api/v1/admin.
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Function Description ETSI NFV Opera-
tion

instantiate Requests the instantia-
tion of a VNFR

Instantiate VNF

query Retrieves the state of a
VNF instance

Query VNF

scale Scales a VNF (in/out,
up/down)

Scale VNF

checkInstantiationFeasibility Checks if a VNF can be
instantiated

Check VNF instantia-
tion feasibility

heal Handles a failed VNF
instance, to support
healing capabilities

Heal VNF

updateSoftware Applies a very limited
software update

Update VNF software

modify Instructs the VNFM to
make structural changes
to a VNF instance

Modify VNF

upgradeSoftware Applies a new software
release to a VNF in-
stance

Upgrade VNF software

terminate Manages the termina-
tion of a VNF instance

Terminate VNF

handleError Handles an NFVO er-
ror, in response to a pre-
vious action

NA

start Starts a previously cre-
ated VNF instance

NA

stop Stops a previously
started VNF instance

NA

startVNFCInstance Starts a VNFC NA
stopVNFCInstance Stops a VNFC NA
configure Configures a VNF NA
resume Resumes a VNF NA
notifyChange Provides notifications

about the state changes
of a VNF instance

Notify

Table B.9: Operations Exposed over the Or-Vnfm Interface
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Endpoint Method Description Returned
Code

/vnfm-core-actions-
reply

POST This API is called whenever 200 OK

/vnfm-core-actions POST This operation allows 200 OK
/vnfm-core-grant POST This operation allows 202 Ac-

cepted
/vnfm-core-allocate POST This operation allows 202 Ac-

cepted
/vnfm-core-scale POST This operation allows 202 Ac-

cepted

Table B.10: Operations Exposed over the Or-Vnfm-rest Interface
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B.3 The Boostrap CLI

The bootstrap CLI has been written in bash, and it allows installing three different
versions of Open Baton:

• release version: binary installation of the latest stable version

• nightly version: binary installation of the latest nightly build

• develop version: source code installation of the latest sources contained in the
develop branches of each individual repository

It accepts some arguments as following:

• –openbaton-bootstrap-version: allowing selecting a particular version of
Open Baton to be installed

• –config-file: allowing passing the path of the config file which could be used
as input instead of interactively passing them while executing the script. This
mechanism is typically used for non interactive installation

The following B.2 shows the single command needed for performing the installa-
tion of the Open Baton framework on top of a standard Ubuntu 16.04 OS in a non
interactive mode.

Listing B.2: Bootstrap command needed for installing Open Baton on a standard
Ubuntu 16.04 OS

1 sh <(curl -s http :// get.openbaton.org/bootstrap) release \
2 --config -file =./ config.cfg

In order to perform a binary installation on the OSx OS a brew1 formula has
been provided for the NFVO 2 and generic VNFM3.

Last but not least, the installation has been also automated for virtualized en-
vironments like Docker and Vagrant. For Docker, a docker compose file has been
provided4, so that each individual component can be executed as individual con-
tainer. Using the docker approach each component may be installed on a different
host, and can be easily scaled in/out based on the requirements of the use cases
executed. While for Vagrant, a Vagrantfile5 has been provided which automate the
deployment of an Ubuntu based virtual machine and executes the non-interactive
bootstrap procedure.

1https://brew.sh
2http://get.openbaton.org/homebrew/openbaton-nfvo.rb
3http://get.openbaton.org/homebrew/openbaton-vnfm-generic.rb
4https://github.com/openbaton/bootstrap/tree/master/distributions/docker
5http://get.openbaton.org/vagrant/Vagrantfile
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