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Dynamics of a bacterial flagellum under
reverse rotation

Tapan Chandra Adhyapak* and Holger Stark

To initiate tumbling of an E. coli, one of the helical flagella reverses its sense of rotation. It then

transforms from its normal form first to the transient semicoiled state and subsequently to the curly-I

state. The dynamics of polymorphism is effectively modeled by describing flagellar elasticity through an

extended Kirchhoff free energy. However, the complete landscape of the free energy remains

undetermined because the ground state energies of the polymorphic forms are not known. We

investigate how variations in these ground state energies affect the dynamics of a reversely rotated

flagellum of a swimming bacterium. We find that the flagellum exhibits a number of distinct dynamical

states and comprehensively summarize them in a state diagram. As a result, we conclude that tuning the

landscape of the extended Kirchhoff free energy alone cannot generate the intermediate full-length

semicoiled state. However, our model suggests an ad hoc method to realize the sequence of polymorphic

states as observed for a real bacterium. Since the elastic properties of bacterial flagella are similar, our

findings can easily be extended to other peritrichous bacteria.

1 Introduction

Although much research has been performed on the mechanical
properties of a prokaryotic or bacterial flagellum and how these
properties are related to the overall bacterial dynamics,1–16 still
our understanding of the complex aspects of bacterial locomo-
tion, such as tumbling of an E. coli, remains incomplete.14,17–19

The locomotion of bacteria involves rich and complex physics.20–29

In addition, experiments on the collective behavior of bacteria have
opened new directions of physics per se, demonstrating ground-
breaking phenomena such as turbulence and superfluidity in living
systems.30–33 A comprehensive knowledge of bacterial locomo-
tion is also necessary for a complete understanding of these
novel phenomena.

One main challenge in dealing with the mechanics of the
bacterial flagellum is still to gain a full theoretical understand-
ing of the polymorphic transformations shown by the flagellum
during tumbling.2,17 The flagellum can exist in different stable
polymorphic forms, transitions among which are induced
mechanically, either by the reverse rotation of the flagellum,14,17,18

by the application of stretching forces,3,12 or by external flows.7,34

Rotation induced polymorphic transitions occur during the loco-
motion of the bacterium and affect the overall bacterial
dynamics.17 An E. coli flagellum, for example, usually stays in
the normal form; but under reverse rotation, it transforms first
into the semicoiled state, and then fully assumes the curly-I state.35

A number of approaches using the Kirchhoff free energy
density and extended versions of it, were proposed to deal with
the flagellar multistability.6–8,12 In ref. 14 an extended Kirchhoff
free energy successfully generates the rotation-induced polymorphic
transformations during the locomotion of the bacterium.14

However, the landscape of this free energy with the fixed
positions of the local minima and the harmonic shape in their
neighborhood was not fully explored. Using a linear increase in
the ground state energies of the local minima, the authors were
able to demonstrate an E. coli flagellum transforming from the
normal to the curly-I form. However, the transient semicoiled
form in between was not observed. In our study here, we
explore the flagellar dynamics in the full free energy landscape
by studying the impact of the ground state energies. Changes in
their values affect the heights of the transition barriers between
the local minima,6,8,12 which the flagellum has to pass to locally
transform from one polymorphic state to the other. Thus the
full landscape of the free energy determines the flagellar
dynamics during reverse rotation including possible transient
and final steady states.

In this paper we present a systematic study of how variations
in the unknown local ground state energies affect the dynamics
of a reversely rotated flagellum attached to a cell body. We
study the nature of transitions and the dynamic stability of
polymorphic forms as a function of the barrier heights and
arrive at a comprehensive state diagram that classifies different
scenarios of flagellar dynamics in the parameter space. In
particular, we show that at the level of the present formulation
of flagellar mechanics the experimentally observed transient
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semicoiled state, intermediate in the sequence of polymorphic
states during tumbling, cannot be reproduced. However, we
suggest an alternative way within our model to realize the
desired sequence of transitions.

In the following we first outline in Section 2 the observations
on a reversely rotated flagellum and introduce the extended
Kirchhoff elastic free energy. Section 3 summarizes the equations
of motion of the bacterium and their numerical implementation.
Results are then presented in Section 4, followed by a discussion
and conclusions in Sections. 5 and 6, respectively.

2 Flagellar conformations during
reversal and appropriate modeling

The reversal of rotating flagella during locomotion has been
most elaborately studied for E. coli.2,18,35 So, in our study we
take E. coli as the prototype for flagellated bacteria. However,
since prokaryotic flagella of peritrichous bacteria have a common
molecular structure, which ultimately determines their elasti-
city,36,37 we expect our results to be valid for a wide range of
bacteria.

An E. coli has several flagella, which act as propelling units
for the bacterium.35 The flagellum is a passive helical filament,
connected at one end to a rotary motor embedded in the cell
wall. Most of the time the motor rotates the flagellum in the
counterclockwise sense (as viewed along the flagellum from its
free end toward the cell body) generating the thrust force for
propelling the bacterium. At this stage the flagellum assumes
the normal form, a left-handed helix of known radius and
pitch. It forms a bundle with other flagella and thereby defines
a unique direction for the net propulsive force. Frequently,
however, the motor reverses and rotates the flagellum clock-
wise. This forces the bundle to disrupt and the cell body
to tumble. At the same time, a sequence of polymorphic
transitions in the flagellum is observed.2,18 In each case these
transitions start at the cell body and proceed towards the free
flagellar end. The whole flagellum thus changes from the normal
state, first to the right-handed semicoiled form, and then finally
to the right-handed curly-I form [see Fig. 1(b) and (d)].

We try to give an intuitive picture of the observed transition
before becoming more quantitative. The elastic free energy per
unit length of the flagellum, which we quantify below and
which is illustrated in Fig. 1(a), has a number of local minima
separated by transition regions. Each of these minima corre-
sponds to a particular equilibrium polymorphic form of the
flagellum. Under counterclockwise rotation the flagellum
remains in the left-handed normal form. When the motor
rotates clockwise, the sense of rotation of the proximal end of
the flagellum attached to the hook is reversed. But, because of
the surrounding fluid friction, the rest of the flagellum cannot
immediately follow the motion of the proximal end. The
torsional stress created thereby inverts the local torsion of the
filament and thus causes a local transformation to the right-
handed semicoiled and curly-I forms [see local minima with
positive O3 in Fig. 1(a)]. The process then continues until the

whole flagellum transforms to a new polymorphic state. For
sufficiently strong torque, the polymorphic form with the
largest torsion B O3, the curly-I form, is reached.

An understanding of the polymorphic states was developed
based on the molecular structure of the flagellum.37–39 Following
this bottom-up approach, several models describe the dynamics
of polymorphism by coarse-graining over the molecular scale.40–42

However, an alternative approach, where Kirchhoff’s continuum
theory of an elastic rod was extended to incorporate multistability,
turns out to be simpler and more effective.6,7,43 One example of
such an extended Kirchhoff free energy reproduces stretching
induced polymorphism most accurately as demonstrated in
ref. 12 and is also appropriate for modeling rotation-induced
polymorphism in a moving bacterium.14

The model uses a harmonic expansion of the elastic free
energy density about its local minima. Although, the harmonic
approximation is not exact at the transition regions between
two minima, we can provide a number of justifications that our
model accurately describes polymorphic transitions. The study
in ref. 12 involves the transition between two successive
minima under the application of stretching forces. In that
study the model clearly reproduced experimentally observed
force–extension curves and was, in that respect, much better
than a general fourth-order potential function with substantial
deviation from the harmonic approximation near the transition
region. Furthermore, the basic phenomenology during a
rotation-induced polymorphic transition was also successfully
captured by the model as shown in ref. 14. Finally, a similar
model was successful in describing the dynamics of multistable

Fig. 1 (a) The first term of the extended Kirchhoff free energy density, f (1)
EK,

plotted against O2 and O3 for O1 = 0. The local minimum of the normal
form with ground state energy d1 is shown. The true local minima for the
coiled, semicoiled, and curly-I forms are situated at O1 a 0. (b) Planar
projections of four helical polymorphic forms of a filament with a fixed
contour length: normal (blue), coiled (brown), semicoiled (green), and
curly-I (red). (c) A schematic of the model bacterium used in our simula-
tions. The cell body and part of the discrete flagellum with a discretization
length h (drawn out of proportion) are shown. Other components are as
described in the text. (d) Two snapshots from our simulations with a CW
rotated flagellum: (top) a growing semicoiled domain (green) evades the
normal state (blue) and (bottom) a growing curly-I domain (red) evades the
semicoiled state (green).
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helical filaments.43 So, we can assume that the model is a good
approximation for studying flagellar reversal in bacterial loco-
motion. We now describe the model in detail.

2.1 Flagellar elasticity: extended Kirchhoff elastic free energy

We treat the flagellum as a slender body and parameterize its
centerline r(s) by the contour length s.12 The conformation of a
distorted flagellum including twist deformations is characterized
by orthonormal material tripods {e1(s), e2(s), e3(s)} at each point
on the centerline, where e3 is the local tangent to the centerline
at s and unit vectors e1 and e2 point along the principal axes of
the flagellar cross section. The rotational strain vector X in

qsen = X � en, (1)

with n = 1, 2, 3, transports the material tripod along the
centerline. Therefore, together with the position r(s = 0) of
one flagellar end, X(s,t) carries the complete information for
the conformation of the flagellum at time t. Conversely, given
the conformation in terms of the centerline r(s) and the
material tripods at each s, the rotational strain vector X can
be worked out from eqn (1). Introducing the angle a between e1

and the local normal to the centerline, n p qs
2r(s), one can

relate the components O1, O2 and O3 of X with respect to the
local material frame to the curvature k and torsion t of the
flagellum:12

O1 = k sin a, O2 = k cos a, O3 = t + qsa. (2)

In harmonic approximation, the energy required per unit
length of the flagellum to induce small deformations dX =
X � X(n) from the stable ground state X(n), is the Kirchhoff
elastic free energy density,44

fK X;XðnÞ
� �

¼ A

2
dO1ð Þ2þ dO2ð Þ2

h i
þ C

2
dO3ð Þ2; (3)

where A and C are the respective bending and twist rigidities of
the flagellum, assuming a circular cross section. Assigning
fK(X,X(n)) and a ground state energy dn to each polymorphic
form X(n), an extended version of the Kirchhoff free energy
density, capable of describing the multistability of a flagellum,
is formulated as14

fEK ¼ min
8n

fK X;XðnÞ
� �

þ dn
h i

þ A

2
x2 @sXð Þ2: (4)

Here, X(n), n = 1–4, correspond, respectively, to the normal,
coiled, semicoiled, and curly-I forms of an E. coli flagellum.14

We include the experimentally unobserved left-handed coiled
form that is intermediate in k and t between the normal and
semicoiled forms and thus also in O-space.39 The first term in
eqn (4) implies that for any rotational strain X(s) at a given
point s on the flagellum, the elastic free energy density is
chosen to be that of the polymorphic form with the lowest
energy. The second term in eqn (4) enforces a smooth transi-
tion region of width x between two polymorphic domains.

For an E. coli flagellum, we use A = 5.5 pN mm2 and C =
3.5 pN mm2.3,18 The stable ground states X(n) � {O(n)

1 , O(n)
2 , O(n)

3 }
for the normal, coiled, semicoiled, and curly-I forms are, respectively

(in mm�1): {0.00, 1.30, �2.11}, {�0.51, 1.74, �0.56}, {�1.18, 1.84,
0.98}, and {�1.80, 1.56, 2.53}.14 For comparison, the values of the
mechanical properties of an E. coli flagellum as inferred from
experiments are listed in Table 1.

The ground state energies dn in eqn (4) are not known yet.
Their relative values determine both the height and shape of
transition barriers between consecutive minima [Fig. 1(a)]. The
positions X(n) of the minima of fEK are already fixed, as are the
parabolic shapes in the neighborhood of those minima. Hence,
the full landscape of the extended Kirchhoff energy density is
known once the ground state energies dn or equivalently the
transition barriers are specified.

3 Equations of motion and numerical
methods
3.1 Dynamics of the flagella

3.1.1 Equations of motion. We consider the dynamics of
an elongated cell body with a flagellum emanating from an
arbitrary point on its surface and moving in an unbounded
fluid of viscosity Z. The equations of motion of the flagellum
are given by the Langevin equations for the dynamics of the
centerline r(s,t) and the twist angle f(s,t) about the centerline:45

qtr = lt(Fel + Fs + Fth) + vh, (5)

qtf = mr(Tel + Tth). (6)

Here the F’s and T’s are, respectively, the local forces and
torques acting on the flagellum due to elastic deformations,
steric interactions, and thermal noise. We will describe them
below. They are connected to the linear (qtr) and angular (qtf)
velocities by the respective self-mobilities lt = e3 # e3/gJ +
(I � e3 # e3)/g> and mr = 1/gR, where gJ = 1.6 � 10�3 pN s mm�2,
g> = 2.8 � 10�3 pN s mm�2 and gR = 1.26 � 10�6 pN s are the
anisotropic friction coefficients per unit length for the flagel-
lum of an E. coli.13 Finally, vh describes hydrodynamic inter-
actions between different parts of the flagellum as detailed below.

The elastic forces and torques follow from the total elastic
free energy F[r(s), f(s)] as:

Fel ¼ �
dF
dr

and Tel ¼ �
dF
df

: (7)

Here F rðsÞ;fðsÞ½ � ¼
Ð
ds fEK þ fstð Þ, where fEK is the Kirchhoff

elastic free energy density described in the previous section and

Table 1 Mechanical properties of the flagellum and the hook of an E. coli
as inferred from experiments

Parameter Value Ref.

A [pN mm2] 3.5 to B5.5 3 and 18
C [pN mm2] 3.5 3 and 18
Ah [pN mm2] 10�5 b 49
Ch [pN mm2] 0.2a,b 52

a Considering a uniform cross section of radius B10 nm for the hook.4
b In the simulations the detailed deformation of the hook is not
resolved. The effective values of Ah and Ch are chosen to generate the
universal joint feature of the hook correctly within the model.
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fst = K(qsr)2/2 with K = 103 pN is a stretching free energy density
introduced to prevent local stretching of the flagellum.14

3.1.2 Discretization procedure, thermal noise, steric and
hydrodynamic interactions. Before we address the other force
and torque contributions in eqn (5) and (6), we discuss the
numerical scheme to update the flagellar configuration in time.
In order to discretize the Langevin equations, we consider
discrete positions ri � r(si) along the flagellum and assign
{e1(i), e2(i), e3(i)} to the straight segment of length h between
ri�1 and ri [see Fig. 1(c)]. The forces now act on the discrete
points, while the torques are applied to the straight segments.
To find the discretized versions of Fel and Tel, we discretize the
derivatives in eqn (7) and write F ¼

Ð
ds fK þ fstð Þ as a sum over

the segments.
The thermal forces Fth and torques Tth in eqn (5) and (6),

respectively, are negligible for the forward propulsion of
bacteria46 but play an important role in the polymorphic
transformations during reversal of the flagellum.13 We, there-
fore, include them here. As usual, they are Gaussian random
numbers with zero mean and variances h(FJ/>

th )2i = 2kBTgJ/>/Dt,
where Dt is the discrete time step used in the simulation, and J

and > denote the directions along and normal to the local
tangent of the flagellum, respectively. Similarly, hTth

2i = 2kBTgR/Dt.
The steric force Fs enforces excluded-volume interactions

among different parts of the flagellum. This is needed in case
distant flagellar parts try to go through each other, e.g., during a
strongly buckled state. We model the steric forces following
ref. 45.

In order to model hydrodynamic interactions between dif-
ferent flagellar parts, we treat each discrete point ri as a sphere
of diameter equal to the thickness of the flagellum. Thus, we
write vh rið Þ ¼

P
jai

mijF rj
� �

, where the summation runs over all

points of the flagellum. Here mij is the Rotne–Prager mobility
matrix47 for spheres at ri and rj and F(rj) is the force acting at rj.
To be consistent with the picture that the spheres are parts of
the discretized flagellum, we neglect the hydrodynamic influence
of their rotation.48 Furthermore, to avoid huge computational
expenses, we also neglect any correlations between thermal forces
Fth acting on different points, which occur due to hydrodynamic
interactions.

3.2 The cell body, rotary motor, and flagellar hook

The elongated cell body is modeled as a spherocylinder of
length Lb = 2.5 mm and width db = 0.8 mm35,45 [see Fig. 1(c)].
A flagellum with total contour length L is attached to the point
r0 on the surface of the cell body. To represent a typical
flagellum undergoing a reverse rotation, we choose r0 to be
on the cylindrical surface. Flagella of an E. coli are distributed
randomly over the entire cell body.35 This implies that an
arbitrarily chosen flagellum is more likely to be found on the
cylindrical surface that has a larger area compared to that of the
spherical ends of the cell body.

A motor tripod {e1(0), e2(0), e3(0)} is introduced at r0, where
e3(0) coincides with the shaft of the rotary motor driving the
flagellum. A motor torque Tm = Tme3(0) drives the flagellum by

rotating this tripod. The main part of the flagellum is coupled
to the motor tripod through the Kirchhoff elastic free energy
density fK with a bending rigidity A - Ah = 10�3 pN mm2, and a
twist rigidity C - Ch = 2.0 pN mm2.45,49 Thus, the flagellum is
connected to the motor shaft through a ‘hook’ that acts like a
universal joint with low bending and high twist rigidities50 and
allows the first flagellar segment along e3(1) to be at any angle
to the motor shaft and yet efficiently transferring the driving
torque to the flagellum.

The cell body translates and rotates with velocities given,
respectively, by

vb = lt
bFb and ob = lr

b(Tb + Tm), (8)

where Fb and Tb are the net force and torque acting on the
center of mass of the cell body. They result from the force Fel +
Fs that acts on the flagellar anchoring point. For simplicity, the
mobilities lt

b and lr
b are assigned the analytically available

values for a prolate spheroid of aspect ratio Lb/db.51 As in
ref. 45 the angle between e3(0) and the long axis of the cell
body is set to 551 to tune the ratio for the bundle-to-body
rotation rates during forward propulsion, to the experimentally
observed range.18

Finally, the excluded volume interaction between the cell
body and the flagellum is again modeled as in ref. 45.

4 Results
4.1 Effect of barrier heights: transition from semicoiled state

As pointed out earlier, since the positions of the minima of our
model elastic free energy are already fixed by the polymorphic
states of the flagellum, the full energy landscape is determined
once the transition barriers between consecutive minima are
specified. Within our model, the barriers are determined by the
differences in the ground-state energies {d1, d2, d3, d4}, which
we vary in the following, in order to test how the free energy
landscape affects the flagellar dynamics. Since only the relative
heights of the minima are important, we set d1 = 0.

As a starting point for a systematic study, we investigate a
single transition barrier connecting two consecutive minima.
In E. coli a typical transition between two neighboring poly-
morphic forms occurs between the semicoiled and curly-I state.
So, we take d2 = d3 = 0 and vary d4. We start with the flagellum
entirely in the semicoiled form (minimum 3) and apply a motor
torque in the CW sense (as viewed from outside the cell) for
a duration comparable to the average tumbling time of B1 s.
The magnitude of the torque is fixed to a constant value of
Tm = �3.0 pN mm, in agreement with experimental values.35 A
typical snapshot from our simulations for this case is shown in
Fig. 1(d) (bottom).

Our observations on the nature of the semicoiled-to-curly-I
transition and the stability of the curly-I form are summarized
in Fig. 2. In graph (a) we plot the fraction of the flagellum in the
curly-I state, Lcurly/L, versus time t. Below d4 = 0.4 pN the
flagellum always transforms to the curly-I form, since a nonzero
Lcurly eventually appears as time progresses. Stability of the
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curly-I state increases with decreasing d4 and, ultimately, for
d4 o 0.1 pN, after an initial rapid build-up, Lcurly remains close
to its maximum value as long as the flagellum is reversely
rotated. However, for d4 4 0.1 pN (and o0.4 pN) fluctuations
in Lcurly are huge.

These fluctuations are due to flagellar portions in the curly-I
form transforming back to the semicoiled state. As d4 increases,
the barrier height for the return jump from curly-I to semi-
coiled decreases and local elastic stresses built up on the curly-I
portion are sufficient to induce the return transition. We find
the localized elastic stresses to be due to the enhanced buckling
of the curly-I form. The clockwise rotated curly-I state with its
right-handed helical structure generates a thrust force towards
the tumbling cell body, which is hardly translating. Thus the
highly flexible curly-I form buckles more easily and produces
localized elastic stresses.

Varying d4 also affects the maximum length Lcurly
max of curly-I

form, attained along the flagellum during each run, and the
transition time tmax to reach Lcurly

max . A continuous increase in the
length Lcurly

max is observed, when d4 decreases below the threshold
value 0.4 pN [inset, Fig. 2(b)]. This resembles the behavior of an
order parameter characterizing a continuous phase transition.
Furthermore, the transition time tmax increases or the transi-
tion rate 1/tmax decreases with growing d4, indicating a slowed-
down transition to the curly-I form with maximum length
[Fig. 2(b)].

4.2 Effect of barrier heights: transition from normal state

Having established the importance of changing the height of
one transition barrier, we now turn to the more complex
problem, which is to test the dynamics of the flagellum under

reverse rotation starting from the normal state. Now all three
transition barriers, i.e., all three ground state energies d2, d3,
and d4 become relevant. We vary them systematically as
explained below. We start with a flagellum entirely in the normal
form and apply a motor torque, Tm = �3.0 pN mm, in the CW
sense for a time similar to the average tumbling duration. In the
following, we first summarize the nature of the transition and
the stability of different states and then discuss distinct dynamic
phases that emerge out of our observation.

4.2.1 Nature of transition and stability. First we set d2 =
d3 = 0 pN and observe the time evolution of Lcurly/L as we vary d4

[Fig. 3(a)]. We find that Lcurly begins to increases from t = 0 ms
and reaches its maximum very early for each d4. This implies
that the flagellum directly transforms into the curly-I state
without residing in a full-length semicoiled state as observed
for real bacteria. Moreover, the final curly-I state is highly
unstable against fluctuations for any non-zero d4.

We find that these fluctuations in Lcurly can be greatly
reduced, when d3 is also shifted up [blue and violet curve,
Fig. 3(b)]. This becomes evident when comparing the corres-
ponding curves of Fig. 3(a) and (b) for the same values of d4 but
with d3 = 0 pN and d3 = 0.2 pN, respectively. As explained in the
previous section, an increase in d4 reduces the barrier height
for leaving the curly-I state. A simultaneous increase in d3,
however, restores the barrier height and thereby stabilizes the
final curly-I form.

All curves in Fig. 3(a) and (b) (with d2 = 0) attain approxi-
mately the same maximum value at nearly the same time. More-
over, for d3 or d4 4 0.35 pN a transition to the curly-I state does
not occur at all [see Fig. 5(b)]. This implies that Lcurly

max jumps from
zero to a non-zero value at the threshold d3 E d4 4 0.35 pN.

Fig. 2 Transition from semicoiled to curly-I form studied for different
ground-state energies d4 (in pN) and d1 = d2 = d3 = 0.0 pN. (a) Time
evolution of the fraction of the flagellum in the curly-I state, Lcurly/L.
(b) Transition rate 1/tmax plotted versus d4, where tmax is the time to achieve
maximum length Lcurly

max in the curly-I state. Inset: Lcurly
max /L as a function of d4.

Fig. 3 Transition from the normal form under reverse rotation. (a) Time
evolution of the fraction of the flagellum in the curly-I state, Lcurly/L, for
various values of d4 (in pN) and d1 = d2 = d3 = 0.0 pN. (b) Lcurly/L plotted
against time for selected values of d2, d3 and d4.
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Similarly, tmax also remains nearly constant during the transition
from the normal to the curly-I state. This behavior is unlike the
transition from the semicoiled to the curly-I state, where both
Lcurly

max and tmax
�1 continuously decrease to zero when increasing d4

to 0.4 pN [see Fig. 2(b)]. Note while the semicoiled and curly-I
states are separated by a single barrier, the flagellum has to be
pass three barriers during the transition from the normal to the
curly-I state. This might explain the discontinuous transition.

Next, we examine the effect of non-zero values of d2. A
comparison of the time evolution of Lcurly/L for the same set
of d3, d4 values but with different values of d2 is shown in
Fig. 3(b) (yellow and green curves). It is clear that a non-zero but
small value of d2 does not affect the above results qualitatively.
The nature of the transition from the normal form and the
stability of the curly-I state remain the same as before as long as
d2 is small.

This shows that in our quest of identifying the influence of
the free energy landscape on the polymorphic transformation,
the most important parameters to study are d3 and d4. In the
following we therefore ignore any variation in d2.

4.2.2 Dynamic states exhibited by a flagellum under
reverse rotation. According to our findings, we take d2 = d1 = 0
and explore the dynamic behavior of the flagellum as we vary d3

and d4. After a thorough examination, six distinct dynamic states
emerged, which are listed in Fig. 4 in panels I–VI, respectively.

Each panel plots for specific values of d3 and d4 the color-coded
polymorphic forms spread along the flagellum as the flagellum
evolves in time t. The distinct dynamic states are characterized
as follows.

(I) Direct transition from normal to curly-I state, which
nearly spreads along the whole flagellum and is dynamically
very stable.

(II) Transition to a dynamically stable curly-I state, which is
accompanied by small transient regions of semicoiled form,
which appear and disappear locally.

(III) Transition to a dynamically stable curly-I state with
large transient regions of semicoiled form. The semicoiled
domains appear repeatedly over time near the cell body (s = 0)
and move towards the free end of the flagellum, where they
shed off.

(IV) An initial nearly full-length transition to the curly-I state,
followed by a reverse transition to a full-length, relatively stable
semicoiled state.

(V) Transition to a dynamically stable semicoiled form, the
curly-I state is not reached.

(VI) Dynamically stable normal form. No significant flagellar
portion transforms to other polymorphic forms.

4.2.3 Energy landscape and state diagram. Combining
information obtained from a range of values for d3 and d4, we
finally arrive at a comprehensive picture of the flagellar
dynamics under reversal. Fig. 5(a) shows how the average
length hLotheri of the flagellar portion, which is not in the
curly-I state, varies in the d3–d4 plane. Here h� � �i represents
an average over time excluding the initial period of transition
from the normal form. So, a low value of hLotheri implies a
dynamically stable curly-I state, whereas a high value implies
either large fluctuations in the curly-I state or no transition to
this state. We already recognize that the curly-I state is unstable
for high values of both d3 and d4. However, more interestingly,
we also notice that a very stable curly-I state occurs even for
higher values of d4 provided we increase d3 accordingly.

Going into depth, we now monitor the detailed time evolu-
tion of the polymorphic states along the whole flagellum
(like in Fig. 4) for the complete d3–d4 plane. We identify all
the dynamic states listed in the previous section and find that
states I–VI are characterized by values of hLotheri in the ranges
011%, 1115%, 1590% and 490% of the flagellar length. The
respective regions in the d3–d4 plane are extracted from Fig. 5(a)
and represented by colors in Fig. 5(b). The corresponding
dynamic states are indicated by their roman numbers. Note
that states III and IV are not distinguishable from each other by
the range defined for hLotheri. The same holds for states V and
VI. However, the full time evolution of the polymorphic forms
along the flagellum clearly identifies them as separate states
and we mark their occurrence in the d3–d4 plane.

5 Discussion

A comparison of our findings with experimental results should,
in principle, give the unknown parameters of our extended

Fig. 4 Distinct dynamical states exhibited by a flagellum under reverse
rotation starting from the normal state. Panels I–VI show how the poly-
morphic forms indicated by different colors evolve in time along the
flagellum. Arclength s gives the position on the flagellum. For d1 = d2 =
0, typically observed dynamic states are: (I) dynamically stable C state, (II)
stable C state with transient SC regions, (III) repeated emergence of large
transient SC regions, (IV) reverse transition from curly-I to a full-length,
relatively stable SC state, (V) stable SC state, and (VI) stable N state. See text
for a detailed description.
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Kirchhoff free energy. It should also reveal how accurately the
elastic properties of the flagellum are described by this energy.

The relevance of our findings becomes clear, when we
consider the full time evolution of a flagellum under reversal
of the driving torque as observed in experiments.2,18 For a real
E. coli, a reversely rotated flagellum first transforms in full
length to the semicoiled form, followed by the curly-I form,
which persists until the rotation switches back to the CCW
sense. Even though the appearance of the semicoiled domain is
brief, it extends over the full flagellum and does not fluctuate
into other forms until the curly-I domain grows from the cell
body and takes over the whole flagellum. So, to model the
flagellar dynamics under reversal correctly, the intermediate
full-length semicoiled state should occur.

However, we do not observe such a behavior in the dynamic
states reported in Fig. 4. The flagellum either transforms
directly into the curly-I form [regions I and II in Fig. 5(b)] or
it remains in the semicoiled state [region V in Fig. 5(b)]. Thus,
for any combination of d3 and d4 there is never an intermediate
transition to the full-length semicoiled state followed by an
automatic transition to the curly-I form. This result of our

model clearly is in contrast to what is often observed for real
bacteria. Non-zero but small values of d2 should not change this
behavior because, as we have shown earlier, d2 does not affect
the dynamics in any significant way.

One possible reason for this discrepancy with experiments is
the harmonic approximation of the Kirchhoff free energy in the
deformation dO. For large deformations anharmonic terms
become important. Inclusion of higher powers of dO in the
Kirchhoff free energy would result in a highly non-trivial energy
landscape, which is expected to modify the flagellar dynamics
observed in our present study. Possible reasons for inclusion
of extra terms might also be related to the finer details of
the molecular structure of the flagellum and the hook, not
investigated fully so far. Effects of such extra terms in the
Kirchhoff free energy, allowed by symmetries, will be examined
in the future.

An alternative way to capture the experimental pathway of
the observed polymorphic transitions in E. coli within the
present model is the following. There could be an internal
switch, realized by some biological mechanism, that causes an
effective jump in the d3–d4 plane during the dynamics. Thus,
the free energy in the first period of the flagellar reversal
corresponds to the region V of Fig. 5(b), until the transforma-
tion to the semicoiled form is complete. Then, the values of
d3, d4 switch to the region I + II for the remaining part of the
dynamics as long as the reversal continues.

6 Conclusions

In conclusion, we examined the dynamics of a reversely rotated
E. coli flagellum attached to a moving cell body by thoroughly
exploring the elastic free energy landscape of the flagellum. We
considered a general form of the extended Kirchhoff free energy
that was shown to be most appropriate for both stretching and
rotation-induced polymorphism. Minima of this free energy
correspond to the known polymorphic forms of the flagellum.
However, the relative values of the ground state energies of
those minima are not known.

We systematically studied how changes in the ground state
energies influence the transition of a flagellum in two cases:
from a semicoiled to the curly-I state, and from a normal to the
curly-I state, respectively. These transitions are relevant during
flagellar reversal.

We find that under reverse rotation, a normal flagellum can
transform to a curly-I state, whose stability depends sensitively
on the relative ground state energies of the involved polymorphic
forms. The transition to the curly-I form can even be forbidden,
making the flagellum either to continue in the normal form or to
transform to a stable semicoiled state. We have classified these
distinct dynamical states and obtained a state diagram for
varying ground state energies. From this, one infers that for
any combination of the ground state energies in our model, an
intermediate transition to a full-length semicoiled state followed
by a transition to the final curly-I form cannot be realized.
However, we suggest an alternative way to reproduce within

Fig. 5 Dynamic stability of curly-I state and state diagram for d1 = d2 =
0 pN. (a) Mean length of the flagellar portion, which is not in the curly-I
form, hLotheri/L, represented in the d3–d4 plane by a color code. (b) Colored
regions in the d3–d4 plane represent different length ranges of hLotheri in
units of the total flagellar length; dark red: 0–11%, light red: 11–15%, beige:
15–90%, and blue: 490%. Roman numbers indicate the distinct dynamic
phases shown in Fig. 4.
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our model such a sequence of transitions observed for a real
bacterium.

Our study provides a complete picture of how the elastic free
energy landscape determines the dynamics of a reversely
rotated flagellum attached to a movable cell body. Therefore,
our findings are important for the proper modeling of the
locomotion of a bacterium including its tumbling. We show
that the full phenomenology of an E. coli flagellum cannot be
realized by simply adjusting the parameters of the extended
Kirchhoff free energy. This calls for alternative approaches.
Investigating the importance of anharmonic terms in the free
energy or how finer details of the hook53 influence the flageller
dynamics could be two possibilities in this direction.

On the other hand, based on the established state diagram
we suggested an ad hoc method to realize the correct poly-
morphic sequence of an E. coli flagellum. Implementing this
method allows a thorough theoretical investigation of the
complex and still not fully understood tumbling event of an
E. coli. Moreover, since the elastic properties of bacterial
flagella are similar, our method can also be applied to explore
the sequence of polymorphic forms seen in other peritrichous
bacteria during tumbling.
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