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Abstract

The miniaturization of MEMS-based inertial measurement units (IMUs) facilitates their
widespread use in a growing number of application domains. IMUs measure angular rate,
specific force, and often the magnetic field strength, each as a 3D vector in a local coordinate
system. Those measurements are processed via sensor fusion methods to estimate motion
parameters of interest. In human motion analysis, IMUs have the potential to overcome the
need for expensive stationary motion capture labs and to enable long-term monitoring in
unsupervised settings. In practice, adoption is limited by the fact that most existing methods
are restrictive: They only yield precise estimates after careful parameter tuning, require the
subjects to perform tedious calibration motions, and rely on a homogeneous magnetic field
that is rarely found in indoor environments. This thesis aims at developing a modular set of
methods for non-restrictive inertial motion analysis that overcome those limitations.

As a fundamental building block for inertial motion analysis, a versatile orientation
estimation algorithm is introduced. This algorithm simultaneously estimates the 6D and 9D
sensor orientation and includes extensions for gyroscope bias estimation and for magnetic
disturbance rejection. The new method is evaluated with a specifically designed, extensive
benchmark dataset. A comparison with eight literature methods shows that the proposed
method provides unprecedented out-of-the-box accuracy.

In order to overcome the need for precise sensor attachment or tedious precise calibration
motions, methods for automatic anatomical calibration are developed. The methods exploit
kinematic constraints of 2-DoF joints and work with arbitrary joint motions. The experimental
evaluation on the elbow joint shows that joint axes can be estimated from only ten seconds of
motion, and joint angles can be obtained with similar accuracy as conventional methods while
being less restrictive.

The same kinematic constraints are then used to recover the missing relative heading
information for long-term stable magnetometer-free motion tracking. A robust window-based
optimization approach for hinge joints and 2-DoF joints is developed. It detects rest phases
and phases in which the constraints become singular. The experimental evaluation shows that
the methods achieve long-term stable tracking in mechanical and finger joints.

Those methods are complemented by a set of non-restrictive methods for gait assessment
with foot-worn IMUs. They support the detection of a comprehensive set of gait phases,
spatiotemporal parameters, and foot position and angle trajectories. The methods are
extensively validated using data recorded with healthy subjects and subjects with diverse gait
pathologies. A pressure-based system and optical motion capture are used as reference. In
contrast to most existing methods, the proposed methods reliably work on patients in addition
to healthy subjects and still produce accurate results.

In summary, the modular set of developed methods addresses the current limitations in
IMU-based human motion analysis. This work contributes toward realizing the full potential
of body-worn IMUs as a measurement technology and enabling non-restrictive plug-and-play
motion tracking in biomedical research, rehabilitation, and other health-related applications.





Zusammenfassung

Die Miniaturisierung von MEMS-basierten Inertialsensoren ermöglicht ihre weitverbreitete
Verwendung in einer wachsenden Zahl von Anwendungsgebieten. Inertialsensoren messen die
Winkelgeschwindigkeit, die Beschleunigung und oft auch die magnetische Feldstärke, jeweils als
3D-Vektor in einem lokalen Koordinatensystem. Diese Messwerte werden mittels Sensorfusion
verarbeitet, um Bewegungsparameter zu schätzen. Bei der Analyse menschlicher Bewegungen
haben Inertialsensoren das Potenzial, teure stationäre Bewegungslabore zu ersetzen und ein
unbeaufsichtigtes Langzeitmonitoring zu ermöglichen. In der Praxis wird die Verbreitung
inertialer Bewegungsanalyse dadurch eingeschränkt, dass die meisten bestehenden Methoden
restriktiv sind: Sie liefern nur nach sorgfältigem Parametertuning genaue Schätzungen, erfordern
mühsame Kalibrierbewegungen von den Probanden und sind auf ein homogenes Magnetfeld
angewiesen. Ziel dieser Dissertation ist es, einen modularen Satz an Methoden zur nicht-
restriktiven inertialen Bewegungsanalyse zu entwickeln, der diese Einschränkungen überwindet.

Als grundlegender Baustein der inertialen Bewegungsanalyse wird ein vielseitiger Al-
gorithmus zur Orientierungsschätzung vorgestellt. Dieser schätzt gleichzeitig die 6D- und
9D-Sensororientierung und enthält Erweiterungen für die Gyroskop-Bias-Schätzung und
für die Unterdrückung magnetischer Störungen. Diese neue Methode wird mittels eines
speziell entwickelten, umfangreichen Benchmark-Datensatzes evaluiert. Ein Vergleich mit
acht Literaturmethoden zeigt, dass die vorgeschlagene Methode eine bisher unerreichte Out-of-
the-Box-Genauigkeit liefert.

Um auf eine präzise Sensoranbringung oder mühsame präzise Kalibrierbewegungen
verzichten zu können, werden Methoden zur automatischen anatomischen Kalibrierung
entwickelt. Die Methoden basieren auf kinematischen Zwangsbedingungen von Gelenken
mit zwei Freiheitsgraden und setzen keine bestimmten Gelenkbewegungen voraus. Die
experimentelle Auswertung am Ellbogengelenk zeigt, dass Gelenkachsen aus nur zehn Sekunden
Bewegung geschätzt werden können und dass die vorgeschlagenen Methoden Gelenkwinkel mit
ähnlicher Genauigkeit wie konventionelle Methoden liefern, dabei aber weniger restriktiv sind.

Dieselben kinematischen Zwangsbedingungen werden anschließend verwendet, um die
fehlende relative Heading-Information zu schätzen und damit auch ohne Magnetometer eine
langzeitstabile Bewegungserfassung zu ermöglichen. Dazu wird ein robuster fensterbasierter
Optimierungsansatz für Scharniergelenke und Gelenke mit zwei Freiheitsgraden entwickelt.
Dieser erkennt Ruhephasen und Phasen, in denen die Zwangsbedingungen singulär werden.
Die experimentelle Auswertung zeigt, dass die Methoden bei mechanischen Gelenken und
Fingergelenken eine langzeitstabile Bewegungserfassung ermöglichen.

Schließlich wird eine Reihe von nicht-restriktiven Methoden zur Ganganalyse mittels am
Fuß angebrachten Inertialsensoren entwickelt. Diese erkennen einen umfassenden Satz an
Gangphasen, Gangparametern sowie Fußwinkel- und Positionstrajektorien. Die Methoden
werden umfassend anhand von Daten gesunder Probanden und Probanden mit verschiedenen
Gangpathologien validiert. Als Referenz werden dabei Daten von einem druckbasierten System
und optischer Bewegungserfassung verwendet. Im Gegensatz zu den meisten bestehenden
Methoden liefern die vorgeschlagenen Methoden auch bei Patienten mit Gangpathologien
zuverlässig genaue Ergebnisse.

Zusammenfassend bietet der modulare Satz an entwickelten Methoden eine Lösung für einige
der derzeitigen Einschränkungen in der Bewegungsanalyse mit Inertialsensoren. Die Ergebnisse
dieser Dissertation tragen dazu bei, das Potenzial von am Körper getragenen Inertialsensoren als
Messtechnologie voll auszuschöpfen und eine nicht-restriktive Plug-and-Play-Bewegungsanalyse
in vielen medizinischen, rehabilitativen und anderen gesundheitsbezogenen Anwendungen zu
ermöglichen.
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1
Introduction

1.1 Scientific Background and Motivation

Human motion analysis is an essential tool in countless applications, for example, in the fields of
rehabilitation [1, 2], sports [3], and entertainment [4]. While various technologies can facilitate
motion tracking, marker-based optical motion capture (OMC) is commonly considered the
gold standard [5, 6]. A promising alternative that has seen growing popularity in recent years
is the use of inertial measurement units (IMUs) based on microelectromechanical systems
(MEMS) [7]. Modern battery-powered wireless IMUs are affordable, small, and lightweight [8],
and IMU-based measurement is not restricted to stationary lab environments. There is no
line-of-sight requirement, and the subject’s clothing does not interfere with the measurement.
Those advantages make motion analysis with IMUs far less cost-intensive and less restrictive
than motion analysis with OMC.

IMUs measure angular rate, specific force (also called proper acceleration), and often the
magnetic field strength, each as a time-dependent 3D vector in an intrinsic sensor coordinate
system [9]. Those measurements are processed to determine the motion parameters of interest,
e.g., the orientation of an object to which the sensor is attached, the object’s velocity or
position, or other application-specific motion parameters [9, 10]. Figure 1.1 illustrates the
typical steps of IMU-based motion analysis in kinematic chains:

1. The orientation of each sensor is estimated by sensor fusion of the gyroscope measure-
ments with the accelerometer measurements and, sometimes, with the magnetometer
measurements.

2. The attachment orientation of the sensor on the body segment is determined in a step
called anatomical calibration or sensor-to-segment calibration.

3. If magnetometer measurements are not employed, the missing relative heading information
has to be recovered by other means.

4. The resulting segment orientations can be used to calculate joint angles or for 3D
visualization.

5. Additional motion parameters are obtained by application-specific algorithms.
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Figure 1.1: Typical steps of inertial motion tracking in kinematic chains. An IMU is attached to
each motion segment of interest. From the raw data of each IMU, its orientation is estimated. Then,
anatomical calibration determines the relative orientation between the sensor and the anatomical
segment coordinate system. If magnetometers are not used, the relative heading information is
recovered, for example, by exploiting kinematic constraints. The resulting orientations can be
used for joint angle calculation and 3D visualization. Furthermore, application-specific motion
parameters are derived from the raw data and the estimated orientations.

IMUs have been employed for motion analysis in many application domains, e.g., in
medicine and rehabilitation [11]. In these fields, IMUs often serve as a measurement tool, e.g.,
for objective outcome measurement [12, 13, 14], rehabilitation monitoring [15], or gait analysis
[16, 17]. Alternatively, they are used to provide immediate feedback in interactive applications,
e.g., in rehabilitation training games for children with cerebral palsy [18] or training systems
based on rehabilitation robotics [19], or to trigger functional electrical stimulation (FES) in
drop foot stimulators [20] or in neuroprosthetic systems that allow people with paraplegia to
perform swimming exercises [21]. Other application domains include sports, such as baseball
[22], kayaking [23], and beach volleyball [24], as well as entertainment [4] and indoor pedestrian
navigation [25]. Beyond human motion analysis, similar IMU-based approaches facilitate
motion tracking in robotic or mechanical applications, such as autonomous vehicles [26], aerial
vehicles [27], or kites [28]. Comprehensive reviews on IMUs-based motion analysis can be
found in [1, 2, 5, 6, 29], and Chapters 3 to 6 include summaries of the state of the art in the
field covered in the respective chapter.

Despite the promise of using IMUs in unsupervised long-term daily-life assessment scenarios,
the actual use of IMUs for motion analysis is mostly still limited to carefully designed
experiments performed by trained personnel in controlled lab environments. Several challenges
and limitations in the state of the art impede the widespread adoption of IMU-based motion
analysis:
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Figure 1.2: The orientation of two bodies is estimated (a) in a homogeneous magnetic field and
(b) in a magnetic field disturbed by ferromagnetic material. The magnetic disturbance causes the
estimated relative orientation of the two bodies to be corrupted, i.e., we obtain wrong joint angles.

• There is a need for sensor fusion algorithms to estimate the orientation, and current
methods only provide high accuracy in certain situations and require careful application-
specific parameter tuning.

• There is a need to know in which orientation the sensors are attached to the body
segments, which is often solved by careful manual sensor placement or by performing
dedicated calibration movements, both of which are time-consuming and error-prone.

• Most applications require heading information and, thus, the use of magnetometers.
However, in indoor environments, the magnetic field is often severely disturbed, leading
to large errors in the obtained motion parameters, as illustrated in Figure 1.2. There is
a need for robust and long-term stable magnetometer-free motion tracking methods.

• Often, advanced estimation tasks are tackled by complex monolithic application-specific
algorithms that solve several problems at once and are therefore hard to reuse.

As summarized in [30], in recent years, many researchers have contributed to overcoming
those limitations. This thesis aims to make a contribution toward this important development
by proposing a modular set of methods, following the structure introduced in Figure 1.1, that
help overcome the challenges mentioned above and facilitate non-restrictive magnetometer-free
motion tracking in kinematic chains.

1.2 Contributions to the State of the Art

The main contributions of this thesis to the state of the art in IMU-based motion analysis are:

1. A modular approach for magnetometer-free IMU-based motion analysis based on the
separation of heading and inclination information.

2. A comprehensive publicly available benchmark dataset for the evaluation of inertial
orientation estimation algorithms.
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3. A highly accurate IMU orientation estimation algorithm that supports online gyroscope
bias estimation and magnetic disturbance rejection and that does not require application-
specific parameter tuning.

4. A set of methods for automatic anatomical calibration for 2-DoF joints that work on
arbitrary motions.

5. A set of methods for magnetometer-free motion tracking in kinematic chains that consist
of hinge joints and 2-DoF joints.

6. A set of methods for gait assessment by foot-worn IMUs that allows for the calculation
of spatiotemporal parameters (such as gait phase durations, stride length, and cadence),
as well as 3D position and angle trajectories, and that is extensively validated on data
recorded with healthy subjects and subjects with various gait pathologies.

The value and impact of those contributions will be discussed in Chapter 7.

1.3 Outline

Following the introduction, this thesis consists of six further chapters. Chapter 2 introduces
fundamental concepts relevant to the understanding of the subsequent chapters. In Chapter 3,
the extensive BROAD dataset for orientation estimation is presented, the VQF orientation
estimation algorithm is introduced, and its accuracy is validated on a diverse collection of
experimental data. Chapter 4 presents methods for automatic anatomical calibration that
allow for the estimation of the sensor-to-segment orientation by exploiting kinematic joint
constraints without using magnetometer measurements and without requiring the subject
to perform specific and precise calibration movements. The same constraints are used in
Chapter 5 to recover the relative heading of body segments in kinematic chains in order to
facilitate long-term stable magnetometer-free motion tracking. Chapter 6 presents methods
for non-restrictive gait assessment via foot-worn IMUs and evaluates the accuracy on a large
number of trials with healthy subjects and subjects with diverse gait pathologies, using a
pressure-based system and optical motion capture as reference. Finally, Chapter 7 provides
general conclusions and an outlook.
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This thesis is based in part on the publications listed below. A detailed statement regarding
the relation between those publications and the content of this thesis is given at the beginning
of Chapters 3 to 6.
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2
Fundamentals

In this chapter, we will take a brief look at fundamental concepts that are relevant to the
understanding of the subsequent chapters and introduce the notation used throughout this
thesis.

2.1 Notation

First, we briefly summarize the notation employed in this thesis. Note that many aspects are
explained in more detail in the subsequent sections of this chapter. The main aspects are also
illustrated in Figure 2.1.

When dealing with sampled signals, we use a sampling index k ∈ {1, 2, . . . , N} to define
the sampling time instants tk = kTs, with the sampling time Ts ∈ R>0. The raw IMU
measurements are denoted ω(tk) ∈ R3 for the gyroscope, a(tk) ∈ R3 for the accelerometer, and
m(tk) ∈ R3 for the magnetometer. In the following, we use the term 9D to refer to sensor fusion
with gyroscopes, accelerometers, and magnetometers, while 6D refers to magnetometer-free
sensor fusion from gyroscopes and accelerometers.

We use unit quaternions in vector notation to represent rotations and orientations, which
will be introduced in Section 2.4. We denote quaternion multiplication by ⊗ and, in this
context, implicitly regard 3D vectors as pure quaternions. Quaternions that represent the
rotation of an angle α ∈ R around an axis v ∈ R3 are written as (α@ v) :=

[︂
cos α2

v⊺
∥v∥ sin α

2

]︂⊺
.

Coordinate systems are denoted by calligraphic letters, the most common being S for IMUs
(sensor), B for (human) body segments (body), and E for reference frames (Earth). A sensor
index i is used to distinguish sensor-specific coordinate systems. In particular, E refers to the
common east-north-up (ENU) reference frame, in contrast to sensor-specific reference frames
E i that are used in 6D orientation estimation and have a vertical z-axis and an undefined
heading.

For quaternions, the coordinate systems are specified in left upper and lower indices.
For example, Si(tk)

Eq is the orientation of IMU i at time tk, relative to the ENU reference
frame E , and Si(tk)

Si(tk−1)q is the rotation of IMU i from time tk−1 to tk. For vectors, we use
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Coordinate Frames

IMU Measurements Quaternions

Si IMU i
(intrinsic sensor frame)

Bi body segment i
(aligned with anatomical axes)

E i 6D reference frame of IMU i
(z-axis up, drifting heading)

up

E 9D ENU reference frame
(x-axis east, y-axis north, z-axis up)

east north

up

gyroscopes:

accelerometers:

magnetometers:

tk = kTs, sampling index k, sampling time Ts

ω(tk) ∈ R3

a(tk) ∈ R3

m(tk) ∈ R3

in rad/s

in m/s2

in µT

6D
9D

Si(tk)
Eq orientation of Si

relative to E

B2
B1

q = B1
Eq−1 ⊗ B2

Eq = E
B1 q ⊗ B2

Eq joint orientation
inverse

quaternion multiplication

[a]E = SEq ⊗ [a]S ⊗ SEq−1 vector rotation

(α@ v) =
[
cos α2

vᵀ
‖v‖ sin α

2

]ᵀ
axis-angle notation

Figure 2.1: Overview of the notation employed in this thesis. Calligraphic letters are used for
coordinate systems, the IMU measurements are ω(tk), a(tk), and m(tk), and left upper and lower
indices are used to indicate coordinate frames of rotation and orientation quaternions.

square brackets to specify the coordinate system in which a vector is expressed. For example,
[a]E = S

Eq ⊗ a ⊗ S
Eq−1 is the accelerometer measurement transformed into frame E .

Furthermore, v⊺ denotes the transpose of the vector v, and ∥·∥ refers to the Euclidean norm.
Scalars are typeset in italics, while bold letters are used for vectors and matrices. The operators
× and · are used for cross and dot products, respectively. The two-argument arctangent, which
calculates the argument to the complex number x+ jy, is denoted atan2(y, x).

2.2 Inertial Sensors

An inertial measurement unit (IMU), sometimes also just called inertial sensor, consists of a
three-axis gyroscope, a three-axis accelerometer, and, often, a three-axis magnetometer. It
measures angular rates, specific force (also called proper acceleration), and magnetic field
strength. The measurements are 3D vectors in a local coordinate system that rotates with the
IMU. In the following, we briefly examine the measurement principles and the main properties
of miniaturized IMUs realized as microelectromechanical systems (MEMS).

2.2.1 Accelerometers

Accelerometers measure specific force [9], which includes both acceleration due to gravity and
acceleration due to change in velocity and is commonly reported in m/s2 or g (i.e., multiples
of Earth’s gravity). Note that gravity is sensed as a vector pointing in upward direction (with
a length of approximately 9.81 m/s2), which becomes clear when considering the displacement
of the mass due to gravity in Figure 2.2a.

This figure illustrates the basic working principle of a MEMS accelerometer, which in the
following is summarized based on the detailed description given in [7]: A mass m is suspended
on the sensor frame via springs to allow for movement in the sensing direction. Due to inertia,
an acceleration a(t) in sensing direction causes a displacement ∆x(t) of the mass (proportional

10



2.2 Inertial Sensors

(a) accelerometer (b) gyroscope (c) magnetometer

m m

−
+VB

−
+VB

CS CS

v

I

+−
VHall

a(t) ω(t) B(t) = m(t)

∆x(t) ∆x(t)
FC(t)

FC(t)

∆x(t)

FD(t)
v(t)

Figure 2.2: Illustration of the working principles of gyroscopes, accelerometers, and magnetometers.
(a) An accelerometer can be realized via a MEMS spring-mass system. Acceleration causes
displacement of a mass m, which causes a change in the sensing capacity CS. [7] (b) MEMS
gyroscopes induce a vibration of a mass m in driving direction (horizontal). The Coriolis force FC,
orthogonal to both rotation direction and the velocity v in driving direction, causes a displacement
and, therefore, a change in the sensing capacity CS [7]. (c) Magnetic fields can, for example, be
measured via the Hall effect [31].

to the acceleration, the mass, and the spring constant). This displacement causes a change in
the sensing capacity CS and, due to the constant bias voltage VB, a change in the charge of
this capacity, which can be measured and converted to a digital acceleration value.

2.2.2 Gyroscopes

Gyroscopes measure the angular velocity, also called angular rate, of the sensor frame with
respect to any inertial frame [9], i.e., a frame that is neither rotating nor accelerating. Note
that, due to Earth’s rotation, an IMU that is stationary on Earth’s surface measures a rotation
of approximately 15 °/h or 0.004 °/s. Often, this rotation is neglected, and the Earth-fixed
reference frame E is assumed to be an inertial frame of reference.

MEMS-based vibratory rate gyroscopes make use of the Coriolis force FC(t) = −2m(ω(t)×
v(t)), i.e., the inertial force that acts on objects of mass m that are moving at velocity v(t) in
a reference frame that is rotated with angular velocity ω(t). The basic working principle is
illustrated in Figure 2.2b and in the following summarized based on the detailed description
given in [7]: A mass m is suspended on the sensor frame via springs to allow for movement in
two orthogonal directions: a driving direction and a sensing direction. A driving force FD(t) is
applied to induce a known sinusoidal velocity v(t) (which, like the sensing capacities, can be
realized via MEMS capacities with a variable gap distance). An angular rate orthogonal to
the driving and the sensing direction experiences a Coriolis force, which can be measured via
the sensing capacity CS.

2.2.3 Magnetometers

Magnetometers measure the magnetic field strength (strictly speaking, the magnetic flux
density) and often report values in µT or in arbitrary units. As further detailed in Section 2.3,
the magnetic field observed by the sensor is a combination of Earth’s magnetic field, influences
from ferromagnetic material and electric devices in the environment, as well as influences from
ferromagnetic material and electric circuits that are rigidly attached to the sensor.
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Magnetometers can be realized with various different approaches, for example, based on
the Hall effect or anisotropic magnetoresistance (AMR) [31]. The Hall effect is illustrated
in Figure 2.2c. In an electric field E(t) and a magnetic field B(t), a particle with charge
q and velocity v experiences the Lorentz force FL = qE + qv × B. When a current flows
through a (semi)conductor, the Lorentz force redirects the charged particles in a direction
that is orthogonal to both the magnetic field and the direction of the current. The resulting
voltage between the sides of the conductor is called the Hall voltage VHall and is proportional
to the magnetic field strength.

2.2.4 Error Characteristics

In the following, we take a brief look at the main errors of IMUs and their characteristics.
The measurements of each sensor axis can be subject to a constant offset, scaling errors,

as well as nonlinearities. Furthermore, the axes of the three sensors of each kind are usually
not perfectly orthogonal (non-orthogonality), and the coordinate systems of the gyroscope,
accelerometer, and magnetometer triads are not perfectly aligned (misalignment). Those errors
can be eliminated via calibration and are therefore collectively called calibration errors [10].
For magnetometers, the calibration errors additionally include soft and hard iron effects caused
by material rigidly attached to the sensor, which we will consider in more detail in Section 2.3.
Even after calibration, some of the errors remain, either due to imperfect calibration, missing
or incomplete compensation of temperature effects, or slow changes in the calibration errors
over time. In practice, the slow change in errors is especially relevant for sensor biases.

For properly calibrated gyroscopes and accelerometers, Gaussian noise and a slowly changing
bias are the main errors of concern [9]. For strapdown integration of gyroscopes, the angular
error due to bias grows linearly with time, while for the angle random walk due to noise, the
standard deviation of the angular error grows with the square root of time [10]. With current
MEMS gyroscopes, the effect of bias on the error is much larger than the effect of random walk
due to noise. Consider a realistic value of angle random walk of 0.4 °/

√
h (Section 3.4.1) and a

very small residual gyroscope bias of 0.05 °/s. Random walk leads to a standard deviation of
the error of

√
10 s 0.4 °/

√
h = 0.02° in ten seconds and 0.4° in one hour, while the drift due to

bias is 0.5° after ten seconds and 180° after one hour.
Inertial sensor errors are often characterized by the Allan variance [9, 10, 32]. Two

particularly useful metrics that can be derived from the Allan variance are the random walk,
corresponding to the Allan deviation for an observation time of 1 s, and the bias instability,
corresponding to the minimum Allan deviation [10].

2.2.5 Inertial Orientation Estimation

Inertial orientation estimation (IOE) is the estimation of the sensor orientation with respect to
a reference frame. This is achieved by sensor fusion of the gyroscope measurements with the
accelerometer and magnetometer measurements. If only gyroscopes and accelerometers are
employed, we use the term 6D IOE, while 9D IOE refers to IOE with the use of magnetometers.
In both cases, strapdown integration of the angular rates is used to track changes in the
orientation, which is only accurate for short time spans, and the fact that the accelerometer
measurements contain information about the vertical direction is used to correct long-term
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drift. In 9D IOE, a further drift correction step exploits the fact that the magnetometer
measurements provide information on the direction of the local magnetic field. Therefore, 9D
IOE yields the sensor orientation with respect to a fixed reference frame, typically using the
ENU convention. Note that, due to the rotation of the Earth, this reference frame is not an
inertial frame in the strict sense. In 6D IOE, there is no horizontal reference, and the resulting
orientations are provided with respect to a reference frame that has one vertical axis, typically
the z-axis, but slowly drifts around this axis.

2.3 Indoor Magnetic Fields

Many IMU-based motion analysis protocols rely on a homogeneous magnetic field since the
direction of the magnetic field is used as a reference for the heading. However, in indoor
environments, the magnetic field is often inhomogeneous, which can cause large errors in the
estimated motion parameters. In the following, we take a closer look at the characteristics of
Earth’s magnetic field, magnetic disturbances, indoor magnetic fields, and the implications for
IMU-based motion analysis.

The fundamental idea of using the magnetic field as a common reference to align the heading
of multiple IMUs is based on the assumption that Earth’s magnetic field is homogeneous, at
least when considering distances relevant for human motion tracking. In the context of IOE,
the two fundamental properties to describe Earth’s magnetic field are the magnitude and the
dip angle (also called magnetic dip or inclination). The dip angle is commonly defined so that
a positive angle indicates that the magnetic field points downward (typically in the northern
hemisphere) and a negative angle indicates that the magnetic field points upward (typically
in the southern hemisphere) [33]. For example, in Berlin, Earth’s magnetic field has a total
magnitude of 49.9 µT and a dip angle of 68.0° [34]. This implies that the magnitude of the
horizontal component is 18.7 µT.

This magnetic field is influenced by hard and soft iron effects due to nearby ferromagnetic
material and electric devices. Hard iron effects are the result of permanent magnetization
of ferromagnetic material [35]. Soft iron effects are caused by the response of materials to
external magnetic fields (e.g., Earth’s magnetic field) [35].

If the source of the hard and soft iron effects is rigidly attached to the IMU (i.e., if it is part
of the IMU itself or a device onto which the IMU is attached), hard iron effects cause a constant
bias and soft iron effects cause a combination of scaling and rotation of the measured magnetic
field [35]. The influence of those effects can be eliminated by magnetometer calibration [35].
Note that, due to changes in magnetization, frequent recalibration is necessary.

If the sources of magnetic disturbances are part of the environment, i.e., not rigidly attached
to the IMU, their influence on the magnetometer measurements depends on the orientation and
distance between the IMU and the source of the disturbance. Thus, magnetometer calibration
cannot eliminate those effects.

Abundant studies have shown that in indoor environments, severe magnetic disturbances
are common and that the local magnetic fields are inhomogeneous, e.g., [36, 37, 38, 39, 40].
One illustrative example from [36] is shown in Figure 2.3. The consequence in the context
of 9D IOE is that the assumption of a common reference frame that is shared by all IMUs
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Figure 2.3: Magnitude of the magnetic field in a lab environment. In indoor environments,
the magnetic field is often severely disturbed, which limits the usefulness of magnetometers as a
heading reference. Image from [36], © 2018 IEEE.

does not hold anymore. This leads to errors when calculating relative orientations and joint
angles, as illustrated in Figure 1.2. Consider three distinct disturbance scenarios that may
occur when using inertial sensors indoors.

1. A magnetic disturbance might be temporary, i.e., in an otherwise homogeneous magnetic
field, the sensor comes close to a ferromagnetic object for a short time (or a ferromagnetic
object moves near the sensor). This type of disturbance can often be detected, for
example, based on the magnetic field strength and the dip angle.

2. If a sensor moves near a large ferromagnetic object and stays there (e.g., the hand rests
on a desk with a ferromagnetic frame), the magnetic field is disturbed permanently or
for long time spans.

3. Indoors, the magnetic field may be different from Earth’s magnetic field but almost
homogeneous in a person’s movement area. When the person moves to a different location
or leaves the building, the magnetic field can also be locally homogeneous but with
different strength and direction.

Different approaches exist in inertial sensor fusion to deal with magnetic disturbances,
which are detailed in the following.

The standard approach is to employ 9D sensor fusion, always relying on the magnetic field
to determine the heading. This method is affected by magnetic disturbances. The only way
to reduce the influence of magnetic disturbances is to use large time constants for the fusion
of the magnetometer readings. This reduces the errors caused by very short disturbances.
However, the choice of the fusion weights is limited by the expected gyroscope drift that is
supposed to be corrected by the magnetic field measurements.

A better solution to deal with short disturbances is gating of the sensor fusion weights, i.e.,
detecting that the magnetic field is disturbed and not employing the magnetic field readings
in that case. Therefore, 9D sensor fusion with proper gating is not influenced by temporary
disturbances. However, while the gating is active, gyroscope bias on the global vertical axis is
not corrected, and the heading of the estimated orientations will slowly drift. This limits the
maximum duration that disturbances can be tolerated.

14



2.4 Representing Rotations and Orientations

A different approach is to use 6D sensor fusion, i.e., to not rely on the magnetic field at
all. In this case, the heading of each sensor’s orientation is unknown and slowly drifts due
to gyroscope bias. However, knowledge of at least the relative heading between the different
IMUs is necessary to calculate many kinematic quantities, such as joint angles. Therefore,
approaches for magnetometer-free motion tracking either focus on quantities that can be
calculated without heading information or on estimating the missing heading information from
other sources.

2.4 Representing Rotations and Orientations

There is a large variety of mathematical representations for rotations in three-dimensional
space, the most common being unit quaternions, rotation matrices, and Euler angles. For many
applications, unit quaternions are the most suitable choice due to the efficient representation
and the lack of singularities. The following is a concise introduction with a focus on the
knowledge needed to employ unit quaternions for representing rotations and orientations.
Comprehensive references that include further information and more mathematical background
include [41, 42, 43].

2.4.1 Quaternions

Quaternions, first described by William Rowan Hamilton in 1843, are often described as
an extension of complex numbers. In contrast to complex numbers a + jb ∈ C with two
components a, b ∈ R and the imaginary unit j2 = −1, quaternions consist of four components,
with the three imaginary units i, j, and k defined by

i2 = j2 = k2 = ijk = −1. (2.1)

For simplicity, we use the vector notation and represent quaternions by four-dimensional
vectors, i.e., we write the quaternion q = qw + iqx + jqy + kqz, with qw, qx, qy, qz ∈ R, as

q =
[︂
qw qx qy qz

]︂⊺
∈ R4. (2.2)

The component qw is called the scalar part, and [ qx qy qz ]⊺ is called the vector part of the
quaternion q. A quaternion with qw = 0 is called pure.

When adding two quaternions, their corresponding components are added, i.e., for q1 =:
[ q1w q1x q1y q1z ]⊺ and q2 =: [ q2w q2x q2y q2z ]⊺,

q1 + q2 = [ q1w + q2w q1x + q2x q1y + q2y q1z + q2z ]⊺. (2.3)

When multiplying a quaternion with a scalar, each element of the quaternion is multiplied
with the scalar, i.e., for q =: [ qw qx qy qz ]⊺ and s ∈ R,

sq = [ sqw sqx sqy sqz ]⊺. (2.4)

Multiplication of two quaternions q1 =: [ q1w q1x q1y q1z ]⊺ and q2 =: [ q2w q2x q2y q2z ]⊺

directly follows from expanding (q1w+ iq1x+ jq1y +kq1z)(q2w+ iq2x+ jq2y +kq2z) and applying
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2. Fundamentals

(2.1). We use the symbol ⊗ to denote quaternion multiplication and obtain

q1 ⊗ q2 =




q1wq2w − q1xq2x − q1yq2y − q1zq2z

q1wq2x + q1xq2w + q1yq2z − q1zq2y

q1wq2y − q1xq2z + q1yq2w + q1zq2x

q1wq2z + q1xq2y − q1yq2x + q1zq2w



. (2.5)

The quaternion [ 1 0 0 0 ]⊺ is the multiplicative identity, i.e., [ 1 0 0 0 ]⊺ ⊗ q = q ⊗
[ 1 0 0 0 ]⊺ = q for all quaternions q. Note that in general, like matrix multiplication,
quaternion multiplication is not commutative.

The conjugate q∗ of a quaternion q =: [ qw qx qy qz ]⊺ is

q∗ :=
[︂
qw −qx −qy −qz

]︂⊺
, (2.6)

and the norm ∥q∥ is
∥q∥ :=

√︂
q2
w + q2

x + q2
y + q2

z . (2.7)

The quaternion norm is multiplicative, i.e., ∥q1 ⊗ q2∥ = ∥q1∥ ∥q2∥, and a unit quaternion, i.e.,
a quaternion with norm 1, can be obtained by dividing a quaternion q by its norm.

For every quaternion q, there is an inverse quaternion q−1 so that q ⊗ q−1 = q−1 ⊗ q =
[ 1 0 0 0 ]⊺, given by

q−1 := q∗

∥q∥2
. (2.8)

Note that for unit quaternions, the inverse and the conjugate are identical.

2.4.2 Representing Rotations and Orientations with Unit Quaternions

Euler’s rotation theorem states that any sequence of rotations can be expressed as a single
rotation. This rotation can be specified by a rotation angle α ∈ R and an axis v ∈ R3. The
same information can be represented as a unit quaternion. This quaternion q, in the following
denoted (α@ v), is given as

q = (α@ v) :=


 cos α2

v
∥v∥ sin α

2


 . (2.9)

Note that, without restricting the values of α or v, a given axis-angle representation of
a rotation is not unique. For example, rotating 90° around the x-axis has the same effect
as rotating 270° around the negative x-axis. For unit quaternions, there are two different
representations of each rotation since q and −q represent the same rotation (the rotation
angle of −q is 2π − α, and the rotation axis is −v).

The rotation angle of a quaternion q =: [ qw qx qy qz ]⊺ can be recovered by α = 2 arccos qw
or, more numerically stable, by α = 2 atan2(

√︂
q2
x + q2

y + q2
z , qw) (both returning an angle in

the interval [0, 2π]). The rotation axis can be recovered by normalizing the vector part of the
quaternion (and choosing an arbitrary axis if the quaternion is [±1 0 0 0 ]⊺).
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2.4 Representing Rotations and Orientations

The rotation matrix equivalent to a rotation expressed as a unit quaternion q =:
[ qw qx qy qz ]⊺ is

R =




1− 2q2
y − 2q2

z 2(qxqy − qzqw) 2(qxqz + qyqw)
2(qxqy + qzqw) 1− 2q2

x − 2q2
z 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1− 2q2
x − 2q2

y


 . (2.10)

The conversion from rotation matrices to unit quaternions is possible via various algorithms
with different numerical properties (see [43] for one example).

The orientation of an object is specified relative to a reference frame and represented
using the imaginary rotation between the coordinate system of the reference frame and the
coordinate system of the object. Note that analogously, a position in 3D space is represented
via the translation from the origin of a reference frame to the origin of the object’s coordinate
system. In the following, we use left upper and lower indices to denote the object’s coordinate
system and the reference frame, respectively. For example, we write the orientation of an IMU
S (sensor) at time t, relative to the time-invariant ENU reference frame E (earth), as S(t)

Eq.

xE

yE

zE

E = S(0)

up

no
rth

east

xS(0)

yS(0)
zS(0)

S(t)

xS(t)

yS(t)

zS(t)

S(t)
Eq =

(
π
2 @ [ 0 1 0 ]⊺

)

= [ 1√
2 0 1√

2 0 ]⊺

90◦ @ [ 0 1 0 ]⊺

Figure 2.4: Example orientation of an IMU coordinate system S at time t, relative to an ENU
reference frame E . The orientation is specified via the rotation from a hypothetical time t = 0, in
which reference frame and IMU coordinate system were aligned, to the current orientation at time
t. In the given example, this is a rotation of 90° around the y-axis. Note that the translation is for
illustration purposes only and does not affect the orientation.

Figure 2.4 illustrates this orientation and the relation to a rotation for a simple example.
In this example, we assume that the reference frame E and the IMU coordinate system S are
initially aligned, i.e., S(t=0)

Eq = [ 1 0 0 0 ]⊺. The orientation of the IMU at time t, i.e., S(t)
Eq, is

represented by the imaginary rotation from E = S(t = 0) to S(t), i.e., a rotation of 90° around
the y-axis. Therefore,

S(t)
Eq = S(t)

S(0)q =
(︁
π
2 @ [ 0 1 0 ]⊺

)︁
=
[︂

1√
2 0 1√

2 0
]︂⊺
. (2.11)

Orientations can also uniquely be defined by two linearly independent vector observations.
In the given example, this means that in order to define S(t)

Eq, we could use two axes of E
expressed in S(t) coordinates or vice versa. The general task of determining the rotation
between two reference frames from vector observations is known as Wahba’s problem [44, 45].

17
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2.4.3 Common Operations with Rotations and Orientations

Multiple rotations can be concatenated using quaternion multiplication (in the same way that
rotations can be concatenated by matrix multiplication of their rotation matrices). Assume
that an IMU S is rigidly attached to a body segment with coordinate system B and that we
know the IMU orientation S

Eq and the orientation in which the IMU is attached to the body
segment, i.e., B

Sq. In this case, we can obtain the orientation of the segment relative to the
reference frame E as

B
Eq = S

Eq ⊗ B
Sq. (2.12)

Note how, with the introduced notation, coordinate system indices – here S – cancel out in
“backslash” direction.

In the context of chaining rotations, the terms intrinsic and extrinsic rotation are sometimes
used. An intrinsic rotation is specified in the rotated coordinate system and corresponds to
multiplying a quaternion on the right side. For example, in (2.12), B

Sq is an intrinsic rotation
that is applied to the IMU orientation S

Eq. For extrinsic rotations, the rotation axis is specified
in the reference frame, which corresponds to multiplying a quaternion on the left side.

The inverse of a rotation and orientation is obtained by inverting the quaternion1, which
effectively multiplies the rotation axis with −1. With the introduced notation, this swaps the
upper and lower index, i.e., S

Eq−1 = E
Sq. In combination with quaternion multiplication, the

inverse allows us to obtain relative orientations. Assume that we know the orientations S1
Eq

and S2
Eq of two IMUs S1 and S2. Their relative orientation S2

S1
q is given by

S1
Eq−1 ⊗ S2

Eq = E
S1q ⊗ S2

Eq = S2
S1

q. (2.13)

When applying the rotation given by the quaternion q to a vector v ∈ R3, the rotated
vector vrot is given by [︄

0
vrot

]︄
= q ⊗

[︄
0
v

]︄
⊗ q−1, (2.14)

which is equivalent to the matrix-vector product of the corresponding rotation matrix R
and the vector v, i.e., vrot = Rv. Note that the operation q ⊗ · ⊗ q−1 preserves the scalar
component (in this case, zero) and the norm of the vector part. For a compact notation, we
implicitly regard 3D vectors as their corresponding pure quaternions and write

vrot = q ⊗ v ⊗ q−1. (2.15)

We use square brackets to specify the coordinate system in which a vector is expressed.
With the introduced quaternion notation, the rotation operation transforms vectors from the
coordinate system specified in the upper index into the coordinate system specified in the lower
index of the quaternion. This means that rotation with a sensor orientation S(t)

Eq transforms a
vector expressed in sensor coordinates [v]S(t) into a vector [v]E expressed in E coordinates:

[v]E = S(t)
Eq ⊗ [v]S(t) ⊗

S(t)
Eq−1 (2.16)

1Remember that for unit quaternions, the norm and the conjugate are the same. We still write q−1 rather
than q∗ to emphasize the effect on the rotation rather than the mathematical operation.
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2.4 Representing Rotations and Orientations

As an example, consider Figure 2.4 and a local measurement in sensor coordinates of [v]S(t) =
[ 1 0 0 ]⊺. As can be seen in the figure, xS(t) points down, and the same vector expressed
in global coordinates is [v]E = [ 0 0 − 1 ]⊺. The vector [ 0 0 − 1 ]⊺ is obtained by rotating
[ 1 0 0 ]⊺ by an angle of 90° around the y-axis, i.e., by rotating with the sensor orientation
S(t)

Eq.
The operation q ⊗ · ⊗ q−1 can also be used to transform the reference frame of rotations

and orientations. In this case, the operation rotates the rotation axis of the quaternion while
the scalar part and therefore the rotation angle do not change. For example, when we consider
the relative sensor orientation S2

S1
q = S1

Eq−1 ⊗ S2
Eq, the rotation axis of this quaternion is

expressed in the coordinate systems of S1 and S2.2 Rotating this axis using S1
Eq expresses the

relative sensor orientation as a rotation in the reference frame E :
[︂

S2
S1

q
]︂

E
= S1

Eq ⊗ S2
S1

q ⊗ S1
Eq−1 = S2

Eq ⊗ S1
Eq−1. (2.17)

Note that the same result is obtained when using S2
Eq instead of S1

Eq, since
[︂

S2
S1

q
]︂

E
= S2

Eq ⊗
S2
S1

q ⊗ S2
Eq−1 = S2

Eq ⊗ S2
S1

q ⊗ E
S2q = S2

Eq ⊗ S1
Eq−1.

2.4.4 Euler Angles

Rotations and orientations can also be described by Euler angles, which are a sequence of three
rotation angles. Those three angles specify a chained rotation sequence around coordinate
axes. When using Euler angles, it is necessary to specify

1. if extrinsic or intrinsic rotations are used (i.e., if the rotation axes stay fixed in the
original coordinate system or if they move with each rotation),

2. which of the 12 possible sequences of rotation axes is used.

When given Euler angles (α, β, γ), a corresponding quaternion can easily be obtained by
concatenating the corresponding rotations. For extrinsic z-x-y Euler angles, for example, the
corresponding quaternion is

qext = (γ@ [ 0 1 0 ]⊺)⊗ (β@ [ 1 0 0 ]⊺)⊗ (α@ [ 0 0 1 ]⊺) , (2.18)

and for intrinsic z-x′-y′′ Euler angles (where ′ and ′′ indicate that the axes are rotated), the
corresponding quaternion is

qint = (α@ [ 0 0 1 ]⊺)⊗ (β@ [ 1 0 0 ]⊺)⊗ (γ@ [ 0 1 0 ]⊺) . (2.19)

Any unit quaternion can be decomposed into Euler angles. For example, for a quaternion
[ qw qx qy qz ]⊺, the intrinsic z-x′-y′′ Euler angles (α, β, γ) can be calculated as

α = atan2(2qwqz − 2qxqy, q2
w − q2

x + q2
y − q2

z), (2.20)

β = arcsin(2qwqx + 2qyqz), (2.21)

γ = atan2(2qwqy − 2qxqz, q2
w − q2

x − q2
y + q2

z). (2.22)
2Note that rotations do not change the coordinates of the rotation axis vector. Therefore, the coordinates of

the rotation axis are the same in S1 and S2.
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2. Fundamentals

Similar equations can be derived for all other possible sequences of rotation axes.
Euler angles are subject to a singularity, often called gimbal lock, that causes two of the

three angles to not be well-defined for certain orientations.3 Even close to this singularity, a
small change in the orientation can lead to a large change in the corresponding Euler angles.
Still, Euler angles are widely used for reporting joint angles, and the recommendations by the
International Society of Biomechanics (ISB) for the reporting of human joint motion [46, 47]
directly translate to intrinsic Euler angles.

2.4.5 Decomposition into Rotation Around Axis and Residual (Projection)

Any given rotation q can be decomposed into a “main” rotation around a given axis v such
that the residual rotation qres is as small as possible, i.e.,

q = (α@ v)⊗ qres, (2.23)

where α and qres are to be determined. Since this operation is similar to vector projection, in
which a vector is decomposed into a vector in a specified direction and the shortest possible
residual vector, we call this method quaternion projection and note two useful properties:

1. The rotation axis of qres is always orthogonal to v.

2. When changing the order of the rotations, i.e., q = q̃res ⊗ (α@ v), we obtain the same
projection angle α, and the residual rotation q̃res has the same angle (but, in general, a
different axis).

In the field of motion planning in robotics, this decomposition is known as the swing-twist
decomposition [48] and is used to decompose a given rotation of a robotic arm into a rotation
around the longitudinal axis (twist) and an orthogonal rotation (swing).

To derive an efficient way of calculating the projection angle, we minimize the rotation angle
of the residual quaternion qres = (α@ − v)⊗ q. With q =: [ qw qx qy qz ]⊺, v =: [ vx vy vz ]⊺

and ∥v∥ = 1, the w-component wres of qres is

wres = qw cos α2 + (qxvx + qyvy + qzvz) sin α2
=
√︂
q2
w + [ qx qy qz ]v cos

(︃
α

2 − atan2([ qx qy qz ]v, qw)
)︃

(2.24)

and has a maximum (corresponding to the smallest possible rotation angle) at

α = 2 atan2([ qx qy qz ]v, qw). (2.25)

The angle of the residual quaternion can be derived from the value of the w-component at this
maximum and is 2 arccos

√︂
q2
w + [ qx qy qz ]v.

3This happens when the second angle is ±90° for Tait-Bryan angles (for which the first and third axes are
different, e.g., z-x′-y′′) and when the second angle is 0° or 180° for proper Euler angles (for which the first and
third axes are the same, e.g., z-x′-z′′).
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2.5 Heading and Inclination

2.5 Heading and Inclination

Different definitions of heading and inclination have been used in the literature. In the following,
we introduce a definition that is particularly useful for magnetometer-free motion tracking
and avoids the use of Euler angles.

Inclination, also called attitude, is the orientation with respect to the vertical axis (or,
equivalently, the horizontal plane) and can be determined from accelerometer measurements
during rest. Heading, also called azimuth or yaw, is a rotation around the vertical axis and is
commonly defined via the direction of magnetic north.

Often, the heading is defined to be the first angle of z-y′-x′′ or z-x′-y′′ Euler angles, while
the other two Euler angles (pitch and roll) are defined to be the inclination [9, 49]. With this
definition, the inclination is a concatenation of two rotations, and, in general, the rotation axis
of the inclination quaternion is not horizontal. Furthermore, the specific value of the heading
angle depends on the arbitrary choice of the Euler rotation sequence. Close to gimbal lock,
small rotations around a horizontal axis can cause large deviations in the observed heading
angle.

E E

E E

measured
orientation

ground
truth

heading
−74◦ @ [ 0 0 1 ]⊺E

heading
−74◦ @ [ 0 0 1 ]⊺E

inclination
61◦ @ [ −0.1 1 0 ]⊺E

inclination
61◦ @ [ 0.9 0.3 0 ]⊺E

total rotation
93◦ @ [ 0.4 0.6 − 0.7 ]⊺E

Figure 2.5: Decomposition of an exemplary orientation difference into heading and inclination.
Heading is a rotation around the vertical axis, and inclination is a rotation around a horizontal axis.
Note that in contrast to other decompositions that are used in literature, the angles commute.

To avoid those disadvantages, we instead decompose a given rotation quaternion into a
rotation around the vertical z-axis, called heading, and a rotation around a horizontal axis,
called inclination, as illustrated in Figure 2.5. Mathematically, we achieve this by employing
the quaternion projection method from Section 2.4.5, with the projection axis being [ 0 0 1 ]⊺.
For a given quaternion q = qh ⊗ qi =: [ qw qx qy qz ]⊺, the heading δ is the projection angle,
i.e.,

qh = (δ@ [ 0 0 1 ]⊺) , with δ = atan2(qz, qw), (2.26)
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and the inclination is the residual quaternion

qi = q−1
h ⊗ q, (2.27)

which has a rotation angle of 2 arccos
√︁
q2
w + q2

z . Note that the heading angle and the inclination
angle do not uniquely define the orientation. However, the decomposition can easily be extended
to be reversible by adding a third angle that describes the direction of the inclination rotation
axis in the horizontal plane.

This decomposition into heading and inclination is only valid if the rotation axis of the
quaternion is expressed in a reference frame with vertical z-axis. When using the notation
introduced in Section 2.4, this means that one of the two indices has to be E or E i. If this is not
the case, the rotation has to be transformed into the reference frame (see Section 2.4.3). As
an example, consider the estimate of a sensor orientation S

Eq and a given ground truth for this
orientation Strue

Eq. The relative orientation S
Strueq = Strue

Eq−1 ⊗ S
Eq, describing the estimation

error, is expressed in local sensor coordinates. To decompose this estimation error into heading
and orientation, we first transform the relative orientation into the reference frame E , i.e.,

[︂
S

Strueq
]︂

E
= S

Eq ⊗
(︂

Strue
Eq−1 ⊗ S

Eq
)︂
⊗ S

Eq−1

= S
Eq ⊗ Strue

Eq−1, (2.28)

and then decompose this quaternion into heading and inclination.
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3
Versatile Inertial Orientation

Estimation Algorithm

Inertial orientation estimation (IOE) is the fusion of gyroscope measurements with accelerom-
eter and magnetometer measurements to estimate the orientation of a single IMU. It is
the most fundamental task in inertial sensor fusion and a central building block in most
advanced applications of IMUs. This chapter introduces a robust and versatile open-source
IOE algorithm. It can perform simultaneous 6D and 9D sensor fusion and includes optional
extensions for gyroscope bias estimation and magnetic disturbance rejection. An extensive
benchmark dataset, specifically designed for robust IOE validation, is introduced. Together
with existing publicly available datasets, it is used to evaluate the accuracy of the proposed
method.

Text, figures, and tables found in this chapter have been previously published, with slight
modifications, in the following works:

[50] D. Laidig, M. Caruso, A. Cereatti, and T. Seel. “BROAD—A Benchmark for Robust
Inertial Orientation Estimation”. In: Data 6.7 (7 July 2021), Article 72. doi: 10.3390/

data6070072.

[51] D. Laidig, I. Weygers, S. Bachhuber, and T. Seel. “VQF: A Milestone in Accuracy and
Versatility of 6D and 9D Inertial Orientation Estimation”. In: 2022 25th International
Conference on Information Fusion (FUSION). Linköping, Sweden, July 4–7, 2022,
pp. 1–6. doi: 10.23919/FUSION49751.2022.9841356.

[52] D. Laidig and T. Seel. “VQF: Highly Accurate IMU Orientation Estimation with Bias
Estimation and Magnetic Disturbance Rejection”. In: Information Fusion 91 (Mar. 1,
2023), pp. 187–204. issn: 1566-2535. doi: 10.1016/j.inffus.2022.10.014.

Sections 3.3, 3.4, and 3.5 have been previously published in [50]. Sections 3.6 and 3.7 have been
previously published in [52] (except for Figure 3.14, which was published in [51]). Sections
3.1 and 3.8 include content from both [50] and [52]. Section 3.2 was added in this thesis and
extends the information found in [51] and [52].
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IOE (inertial orientation
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Figure 3.1: Inertial orientation estimation (IOE) is achieved by sensor fusion of the gyroscope
measurements with the accelerometer measurements and, in 9D sensor fusion, the magnetometer
measurements. Obtaining an accurate orientation estimate is the prerequisite for fundamental
further steps in inertial motion tracking, including velocity and position estimation, joint angle
calculation, and 3D visualization.

3.1 Introduction

In applications that employ IMUs for motion tracking, the raw measurements (angular rate,
specific force, and magnetic field strength) are processed to determine the motion parameters
of interest, e.g., the orientation of an object to which the sensor is attached, the object’s
velocity or position, or other application-specific motion parameters [9, 10]. As shown in
Figure 3.1, determining such motion parameters generally requires the prior estimation of
the orientation of the sensor with respect to an inertial frame of reference, a procedure called
inertial orientation estimation (IOE).

Since IOE is such a fundamental step in IMU-based motion analysis and the accuracy of
all further parameters of interest depends on the accuracy of the orientation estimate, it is not
surprising that abundant prior research has aimed at solving this task. This research is briefly
reviewed in Section 3.2.

As illustrated in Figure 3.2, there is a general need for robust IOE algorithms that provide
accurate orientation estimates and perform well for a broad range of motions without the
need to manually adjust tuning parameters for each type of motion [53]. When it comes
to assessing the performance of IOE algorithms, a vast number of contributions evaluate
specific algorithms in specific application contexts, but few papers investigate the ability of
IOE algorithms to perform across different types of motion and environmental conditions. To
the best of the author’s knowledge, only Caruso et al. [54] provide a systematic evaluation
of multiple algorithms with respect to three different movement speeds, and Fan et al. [55]
investigate the influence of magnetic disturbances on the inclination and heading estimates.
However, there are no studies providing a systematic and comprehensive evaluation of the
impact of different magnetic disturbances, the difference between translational and rotational
motions, and different movement speeds on various IOE algorithms.

As will be detailed in Section 3.3, a thorough algorithm comparison is limited by the
lack of an extensive and openly available benchmark that includes a large number of trials
comprising a diverse set of movement types and environmental conditions and therefore allows
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IOE algorithm 1, parametrization 1
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Figure 3.2: The accuracy of IOE depends on the employed algorithm, the chosen algorithm
parametrization, and the specific application scenario. There is a lack of datasets and methods for
systematic evaluation of IOE algorithm performance across a broad range of motion characteristics
and environmental conditions.

for a truly comprehensive evaluation and assessment of IOE solutions. Such a heterogeneous
set of trials with either only rotation, only translation, or combined movements at different
speeds and with different durations is important for two reasons. First, in order to assess the
robustness of an IOE algorithm for a wide variety of motions and environmental conditions,
those motions and conditions must be included in the dataset. Second, comparing the errors
for different trials yields insight into how algorithm performance or the choice of optimal
parameters depends on the characteristics of the motion. As magnetic disturbances represent
a major challenge in orientation estimation, it is crucial to not only consider homogeneous
magnetic fields but to also include a broad range of magnetic disturbances.

In an attempt to fill this gap, this chapter introduces a benchmark dataset that is particularly
useful for the objective assessment and further development of IOE algorithms. In contrast to
existing publicly available datasets, this benchmark dataset

1. includes a broad range of different motions at various speeds,

2. contains separate trials with various deliberate magnetic disturbances,

3. contains separate trials with disturbances that affect the measured accelerations,

4. is already time-synchronized and contains ground truth data that requires no further
preprocessing.

Furthermore, error metrics that separately consider heading, inclination, and the total
orientation error are introduced, well-defined benchmark metrics that can be used to assess
and compare IOE algorithm performance are specified, and example code to calculate those
metrics is provided.

In previous literature that proposes new IOE algorithms, validation is almost only performed
with non-public datasets, and therefore the reported performance figures cannot be compared
directly. This lack of common datasets and suitable benchmarks has recently been addressed
by the publication of the Sassari dataset [53] and the benchmark dataset introduced in this
chapter. Newly proposed algorithms should be validated using such publicly available datasets
in comparison with other state-of-the-art algorithms [56].
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The few existing comparative studies show that the out-of-the-box performance of most
algorithms is poor and that application-specific algorithm selection, as well as laborious
parameter tuning, are necessary to achieve good results [54], which represents a severe
limitation of the state of the art. Even with optimized parameters, the root-mean-square
errors achieved by the best IOE algorithms are in the range of 1° to 3° for slow and smooth
motions and as much as 5° to 15° for fast and challenging motions [54]. Further improving
this accuracy seems highly desirable in view of the numerous applications.

In summary, while there is ample work on various IOE algorithms, evaluation of the
proposed methods is often limited and cannot be compared across publications. Recent
comparative reviews and benchmarks show that there is no one-size-fits-all solution that
works out of the box and yields high accuracy for a wide variety of application scenarios.
Furthermore, the widespread adoption of novel IOE algorithms is not only driven by accuracy
but also depends on the availability of an easy-to-use implementation. In combination, this
demonstrates that there is a need for an algorithm that is validated on a very large and diverse
set of experimental data, provides accurate out-of-the-box orientation estimates without tuning,
and is easy to use and to integrate into existing code projects.

To fill this gap, this chapter introduces a new feature-rich quaternion-based orientation
estimation algorithm and then performs an extensive validation to demonstrate the exception-
ally high accuracy that is achieved by this algorithm. The key differences of the proposed
algorithm with respect to the state of the art are best expressed by the following five features:

1. As a novel approach to sensor fusion of gyroscopes and accelerometers, the accelerometer
information is low-pass filtered in an almost-inertial frame, which yields robust rejection
of accelerations that are caused by velocity changes.

2. Magnetometer-based heading correction is performed in a modular decoupled step,
which eliminates the influence of magnetic disturbances on the inclination and facilitates
simultaneous 6D and 9D estimation.

3. The algorithm includes extensions for online gyroscope bias estimation during rest and
motion and an optional magnetic disturbance rejection strategy.

4. In contrast to the vast majority of previous approaches, an acausal offline version is
available, which further increases the accuracy in situations in which real-time capability
is not required.

5. Easy-to-use open-source implementations of the proposed algorithms are provided in
C++, Python, and Matlab.

The main contributions and results of the extensive accuracy evaluation are:

1. In contrast to most previous work, the proposed method is extensively evaluated using a
large collection of publicly available data, and in comparison with eight existing IOE
algorithms.

2. The results show that the proposed method outperforms all evaluated existing methods,
providing a 1.8-fold to 5-fold increase in orientation estimation accuracy.
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3. For a large variety of motions, speeds, and disturbed environments, the proposed method
works out of the box, and application-specific parameter tuning is not necessary.

3.2 State of the Art in Inertial Orientation Estimation

Because IOE is a fundamental step in inertial motion analysis and the accuracy of all further
parameters of interest depends on the accuracy of the orientation estimate, it is not surprising
that there is a large amount of previous work for solving this task. Comprehensive reviews that
classify and compare the existing solution approaches are found in [54, 56]. In the following,
we take a brief look at the main properties of existing IOE algorithms.

Mainly, IOE algorithms are categorized into Kalman filters, complementary filters, and,
more recently, neural networks [57, 58]. In Kalman filters [59, 60], the estimate of the state of
a system is updated based on a system model, a measurement model of the system outputs,
and the assumption of Gaussian process and measurement noise. Since Kalman filters are
widely used in state estimation and sensor fusion, it is natural that they are also employed for
IOE. Due to the nonlinearity of orientation representations (Section 2.4), nonlinear Kalman
filter variants such as the extended Kalman filter (EKF) [61, 62, 63, 64] or error-state Kalman
filters [65, 66, 67] are often used. However, aiming to reduce computational complexity, several
algorithms also use the original linear Kalman filter formulation [68, 69, 70, 71, 72].

Complementary filters [73] fuse sensor information with different noise characteristics,
typically from a sensor with high-frequency disturbances and a second sensor with low-
frequency disturbances. Applied to IOE, gyroscopes provide an orientation estimate that is
disturbed by slow (i.e., low-frequency) drift, while the orientation estimate from accelerometers
and magnetometers does not drift but exhibits severe high-frequency disturbances. IOE
algorithms based on complementary filters, e.g., [73, 74, 75, 76], are popular due to their low
computational complexity.

Besides estimating the sensor orientations, several IOE algorithms include additional
features, the most common one being gyroscope bias estimation. In IOE algorithms based on
Kalman filters, gyroscope bias is commonly modeled as a constant state with non-zero process
noise [66, 67]. In complementary filters, gyroscope bias is often estimated via integral action,
i.e., bias is estimated via feedback from the accelerometer and magnetometer correction step
[73, 74, 76]. An alternative is to detect phases in which the IMU is at rest and bias can be
estimated directly via low-pass filtering of the gyroscope measurements [75].

It is a well-known fact that the amount of information and certainty that is contained
in each measurement signal varies depending on the performed motion and environmental
factors such as the presence of vibrations and magnetic disturbances [58, 77]. In a fast and
jerky motion, the accelerometer must be used much more carefully than during a smooth
and slow motion. The magnetometer measurements are known to be highly susceptible to
the presence of ferromagnetic material and electronic devices [38] (cf. Section 2.3). Previous
research has led to adaptive algorithms that try to compensate such variations and disturbances.
Approaches range from adapting the gain used for accelerometer correction based on the norm
of the measured accelerations [75] to employing finite state machines [78] or decision trees
[67] to govern how accelerometer and magnetometer information is used. In [79], magnetic
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Table 3.1: Overview of selected state-of-the-art inertial orientation estimation algorithms.

Algorithm 6D 9D Bias Implementation

MAH Mahony et al. [73] ✓ ✓ ✓ https://x-io.co.uk/
open-source-imu-and-ahrs-algorithms/

MAD Madgwick [74] ✓ ✓ ✗ https://x-io.co.uk/
open-source-imu-and-ahrs-algorithms/

VAC Valenti et al. [75] ✓ ✓ ✓ https://wiki.ros.org/imu_complementary_filter

FKF Guo et al. [71] ✗ ✓ ✗ https://github.com/zarathustr/FKF

SEL Seel et al. [76] ✓ ✓ ✓ https://github.com/dlaidig/qmt, qmt.oriEstIMU

MKF Matlab ✓ ✓ ✓ Matlab R2021b (The MathWorks Inc., Natick, MA,
USA), imufilter/ahrsfilter

KOK Kok et al. [81] ✗ ✓ ✓ https://github.com/manonkok/fastRobustOriEst

RIANN Weber et al. [57] ✓ ✗ ✗ https://github.com/daniel-om-weber/riann

VQF proposed method ✓ ✓ ✓ https://github.com/dlaidig/vqf

disturbances are detected based on norm and dip angle. This information is used to weigh
between a 6D and a 9D estimate. An alternative is to employ a model-based approach to
estimate and compensate the current magnetic disturbances [80].

Anticipating the need to compare the performance of the proposed IOE algorithm with
state-of-the-art literature methods, we now take a closer look at eight existing methods. The
algorithms were chosen based on popularity and based on whether an official implementation
from the authors (or, in some cases, another widespread implementation) is available. Table 3.1
lists those algorithms, in order of publication, along with the novel method VQF that is
introduced later in this chapter. This table also shows whether the algorithm can be used
for 6D and 9D orientation estimation, whether it supports gyroscope bias estimation, and
where the implementation is available. Further details on each algorithm are provided in the
following.

MAH is a complementary filter by Mahony et al. [73], popular due to the low computational
complexity and the easy-to-use open-source implementation by Sebastian Madgwick.
Gyroscope bias is estimated via integral action.

MAD is a complementary filter by Madgwick [74] based on a gradient-descent approach
and popular due to the low computational complexity and the easy-to-use open-source
implementation by Sebastian Madgwick. Gyroscope bias is estimated via integral action.
(Note that there is also a second variant [82] of this algorithm that does not include
gyroscope bias estimation.)

VAC is a complementary filter by Valenti et al. [75]. It ensures that magnetic disturbances
do not influence the inclination estimates and estimates gyroscope bias with an approach
based on rest detection. The algorithm is included in ROS (http://www.ros.org/).

FKF (“Fast Kalman Filter”) is a computationally efficient IOE algorithm based on a Kalman
filter by Guo et al. [71].
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SEL is a complementary filter by Seel et al. [76] that ensures that magnetic disturbances do
not influence the inclination estimates. It supports gyroscope bias estimation based on
integral action and easy tuning via half-error time constants for the accelerometer and
magnetometer correction.

MKF is the proprietary EKF-based algorithm included in the Sensor Fusion and Tracking
Toolbox of Matlab.

KOK is a complementary filter by Kok et al. [81] that is influenced by MAD but further
reduces the computational complexity by one third.

RIANN is a recent neural network for 6D orientation estimation by Weber et al. [57].

3.3 Brief Review of Existing Datasets for IOE Validation

Objective assessment of the accuracy of an IOE algorithm requires a highly reliable and
accurate ground truth measurement. The most widely accepted gold standard measurement for
the orientation of a moving object is to derive its orientation from the position measurements
of active or reflective optical markers that are tracked by a set of cameras, a technique that is
known as stereophotogrammetry or optical motion capture (OMC). In the past two decades, a
number of studies have been performed in which an IMU and optical markers are attached
to moving objects, including human body segments, aerial vehicles, and robotic systems.
While many of the datasets used in these studies would be suitable for accuracy evaluation of
IOE algorithms, the data is often not openly available or only available upon request to the
authors, often due to privacy or ethical concerns. Furthermore, there is a lack of systematic
benchmarking approaches for IOE accuracy evaluation. Despite this general lack of datasets
and methods for evaluation, a few datasets have been made publicly available and are briefly
reviewed in the following. Some of these datasets are created for general IOE validation, and
some are provided for evaluation in specific application contexts.

In total, a literature search yielded five publicly available datasets that contain optical
and inertial data from a moving object in a way that allows for accuracy evaluation of IOE
algorithms. An overview of key features of the found datasets and the proposed dataset is
given in Table 3.2.

In order to allow for evaluation of different aspects of an IOE algorithm, a useful universal
benchmark dataset should fulfill a number of requirements. First and foremost, it should
contain a large number of trials and a wide range of movements – including isolated translation
and rotation movements – conducted at different speeds. To evaluate the robustness against
magnetic disturbances, it is crucial to include both data recorded in a magnetically undisturbed
environment and recordings with deliberate magnetic disturbances.

Furthermore, the quality of both the recorded IMU data as well as the ground truth OMC
data is essential. In order to evaluate the performance in state-of-the-art applications, a
state-of-the-art IMU with a sufficiently high sampling rate should be employed. Also, care
should be taken to avoid artifacts due to errors in the reference system or in the recording of the
IMU data. Figure 3.3 shows four examples of artifacts found in the publicly available datasets.
The effects of such issues in the recorded data can often dominate the overall estimation error.
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Table 3.2: Overview of key features of available datasets and the proposed benchmark dataset.
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RepoIMU T-stick [83] Xsens MTi 100 Hz 29 ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗
RepoIMU Pendulum [83] custom [84] 90-166 Hza 22 ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗

Sassari [53] 3 models 100 Hz 3 ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗b ✓
OxIOD [85] iPhone 100 Hz 132 ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗
EuRoC MAV [86] ADIS16448 200 Hz 6c ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗

TUM VI [87] BMI160 200 Hz 6d ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗
BROAD myon aktos-t 286 Hz 39 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

aeffective rate much lower, see description
blocal frames aligned by precise placement, reference frames not aligned, see description
conly counting the Vicon room trials with full OMC ground truth (GT)
donly counting the room trials with full OMC ground truth

In the best case, this makes the resulting observations less distinct, and in the worst case, it
could lead to wrong conclusions. Therefore, measurement data should be carefully checked
before it is used for evaluation.

As can be seen in Table 3.2, each of the previously published datasets covers some of
the mentioned aspects, but none of them fulfill all previously mentioned requirements for a
universal IOE benchmarking dataset. In the following, we will discuss each dataset in detail.

3.3.1 RepoIMU Dataset (T-stick Trials)

Of the five public datasets, RepoIMU [83] is the only dataset specifically aimed at IOE
evaluation and published in a dedicated publication. The dataset consists of two distinct sets
of trials, recorded with a T-stick and a pendulum.

The T-stick data consists of 29 trials with a duration of approximately 90 s each. As the
name implies, the IMU is attached to a T-shaped stick equipped with six reflective markers.
Each trial consists of either slow or fast rotation around one primary sensor axis or translation
along one primary sensor axis. Data from an XSens MTi IMU and a Vicon Nexus OMC
system is synchronized and provided at 100 Hz.

The authors explicitly state that the coordinate systems of IMU and ground truth are not
aligned and propose a method to compensate one of the two required rotations (cf. Section 3.4.4)
by a method based on quaternion averaging. Unfortunately, some of the trials contain gyroscope
clipping (Figure 3.3a) and artifacts in the ground truth orientation (Figure 3.3c) that have a

30



3.3 Brief Review of Existing Datasets for IOE Validation

0 1 2 3 4 5 6
time [s]

−400

−200

0

200

400
an

gu
la

r
ra

te
[°/

s]

(a) gyroscope clipping
x
y
z

0.0 0.1 0.2 0.3
time [s]

−10

−5

0

5

10

ac
ce

le
ra

tio
n

[m
/s

2 ]

(b) repeated samples
x
y
z

0 2 4 6 8 10
time [s]

0

50

100

150

Eu
le

r
an

gl
es

[°]

(c) artifacts in ground truth (1)
z
y
x

0.0 0.2 0.4 0.6 0.8 1.0
time [s]

−100

0

100

Eu
le

r
an

gl
es

[°]

(d) artifacts in ground truth (2)
z
y
x

Figure 3.3: Examples of artifacts found in existing datasets. (a) Gyroscope clipping leading to
large errors in angular rate strapdown integration. (b) Repeated samples in IMU data, leading to
a very low effective sampling rate. (c, d) Two examples of artifacts found in the OMC ground
truth orientations, potentially caused by interpolation of gaps and swapped markers.

substantial effect on the obtained errors. Therefore, careful preprocessing and exclusion of
some trials should be considered when using the dataset for IOE accuracy evaluation.

3.3.2 RepoIMU Dataset (Pendulum Trials)

The second part of the RepoIMU dataset consists of data from a triple pendulum on which
IMUs are mounted. The measurement data is provided at 90 Hz or 166 Hz. However, the IMU
data frequently contains repeated samples, as shown in Figure 3.3b. This is typically a result
of artificial upsampling or transmission problems where lost samples get replaced by copying
the last received sample and effectively reduces the sampling rate. The sampling rate that is
obtained when repeated samples are discarded is around 25 Hz for the accelerometer data and
48 Hz for the gyroscope data. Due to this fact, using the pendulum trials should be avoided for
high-precision IOE accuracy evaluation.

3.3.3 Sassari Dataset

The dataset published in [53] is targeted at the validation of a parameter-tuning approach
based on the orientation difference of two IMUs of the same model. To facilitate this, six
IMUs from three manufacturers (Xsens, APDM, Shimmer) are placed on one wooden board.
Rotation around specific axes and free rotation around all axes are repeated at three different
speeds. The data is synchronized and provided at 100 Hz. The local coordinate frames are
aligned by precise manual placement. The authors clearly describe how they calculate the
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obtained error metrics, including a method of using the initial orientation to align the reference
frames.

This makes the dataset valuable for validating IOE accuracy. The inclusion of different
speeds and multiple IMU types increases the value of this dataset. However, all motions
are performed in a homogeneous magnetic field, and purely translational movements are not
included. The total movement duration of all three trials is 168 s, with the longest movement
phase lasting 30 s.

3.3.4 OxIOD Dataset

The Oxford Inertial Odometry Dataset (OxIOD) [85] is an extensive collection of inertial data
recorded by smartphones (primarily an iPhone 7 Plus) at 100 Hz, consisting of 158 trials and
covering a distance of over 42 km. An OMC ground truth is available for 132 trials. Being
targeted for inertial odometry, it does not include isolated rotation and translation movements,
which are useful for systematic assessment of IOE performance in various conditions, but
instead covers a broad range of everyday motions.

Due to that different focus, some information (e.g., the alignment of the coordinate
frames) is not described in detail. Furthermore, the ground truth orientation contains frequent
irregularities (e.g., spikes in the orientation that are not accompanied by similar jumps in the
IMU data, see Figure 3.3d for one example). In order to use this dataset for IOE assessment,
careful preprocessing should be considered.

3.3.5 EuRoC MAV Dataset

The EuRoC MAV dataset [86] features indoor flight data of a micro aerial vehicle (MAV)
and is aimed at visual-inertial 3D environment reconstruction. The six Vicon room trials
offer a synchronized and aligned OMC-based ground truth and are suitable for IOE accuracy
evaluation. Note that camera images and 3D point cloud data are also included, which are not
relevant in the context of IOE.

Magnetometer data is not included, which limits the evaluation to the inclination component
(cf. Section 3.5). It is noteworthy that due to the nature of the data, the motion mostly
consists of horizontal translation and rotation around the vertical axis, and the inclination
does not vary substantially throughout the trials. As the vibrations due to the flight are clearly
visible in the raw accelerometer data, the EuRoC MAV dataset provides a unique test case for
orientation estimation with disturbed accelerometer data.

Note that there is a similar but older dataset of the same research group [88]. However,
the data files for this dataset do not seem to be available anymore (checked on June 22, 2021).

3.3.6 TUM VI Dataset

The TUM VI dataset [87] for visual-inertial odometry consists of 28 trials with a handheld
object equipped with a camera and an IMU. Due to this application focus, most trials only
include OMC ground truth data at the beginning and at the end of the trial. However, the six
room trials include full OMC data and are suitable for IOE accuracy assessment.
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Time synchronization is straightforward using provided time stamps, and the local and
global coordinate systems of the OMC ground truth are aligned to the IMU frame (cf.
Section 3.4.4). Similar to the EuRoC MAV data, the motion mostly consists of horizontal
translation and rotation around the vertical axis, and magnetometer data is not included.

3.3.7 Summary

All reviewed datasets have in common that inertial measurements have been recorded alongside
an optical ground truth. While some datasets [53, 83] are specifically recorded for evaluating
the accuracy of IOE algorithms, others [85, 86, 87] are recorded with a different focus but still
contain the data necessary for this purpose. The datasets [83] and [53] contain recordings with
isolated rotation and translation movements at different speeds, but the number of trials and
the length of the movement duration are limited. As discussed above, trials with magnetic
disturbances are crucial for objective performance evaluation of high-end IOE algorithms.
However, none of the datasets contain recordings performed in deliberately and realistically
disturbed magnetic fields.

Due to the described lack of a universal benchmark dataset, publications proposing new IOE
algorithms commonly use data for evaluation that is only available to the respective authors
(see, e.g., [63, 82]), and the errors reported in different publications cannot be compared. This
leads to the conclusion that there is a considerable need for an extensive benchmarking dataset
for IOE accuracy assessment.

3.4 Proposed Benchmark Dataset for IOE Validation

This section introduces the Berlin Robust Orientation Estimation Assessment Dataset
(BROAD). This benchmark dataset for orientation estimation consists of a diverse collection
of trials, covering different movement types, speeds, and both undisturbed motions as well as
motions with deliberate accelerometer disturbances and motions performed in the presence
of magnetic disturbances. The dataset is publicly available at https://dx.doi.org/10.

14279/depositonce-12033 and https://github.com/dlaidig/broad under the terms of
the CC-BY 4.0 license.

3.4.1 Hardware Setup

IMU data was recorded at a sampling rate of 286 Hz using a commercially available 9-axis
inertial sensor (myon aktos-t, myon AG, Switzerland). Ground truth data at 120 Hz was
obtained via an Optitrack OMC system (NaturalPoint, Inc., USA) consisting of eight Flex13
cameras.

In order to ensure a highly precise ground truth orientation, the IMU and five reflective
optical markers were placed on a rigid but lightweight 3D-printed structure, which is shown in
Figure 3.4, with a minimum distance of 187 mm between any two corner markers. At those
marker distances, the mean position accuracy of 0.6 mm of the optical system corresponds to
an angular orientation accuracy of approximately 0.2°.

The IMU input ranges were set to ±2000 °/s, ±16 g, and ±1 mT. In the recorded trials,
turn-on gyroscope bias was found to be 0.17 °/s on average (per sensor axis), with 0.50 °/s
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Figure 3.4: Custom 3D-printed rigid body used in the experiments. The IMU is attached to the
center of the board using tape. Four reflective optical markers are attached to the ends of the
X-shaped structure to increase the distance between markers. A fifth marker is used to ensure that
the orientation can uniquely be determined from the marker positions.

being the maximum value. To create realistic conditions, this gyroscope bias is contained in
the recorded data files. Further sensor characteristics were determined from a 49 min recording
of the IMU being at rest. The noise standard deviations in x, y, and z direction were found to
be 0.10 °/s, 0.09 °/s, and 0.12 °/s for the gyroscope, 0.044 m/s2, 0.050 m/s2, and 0.074 m/s2 for
the accelerometer, and 0.71 µT, 0.70 µT, and 0.68 µT for the magnetometer. The gyroscope
random walk was 0.36 °/

√
h, 0.30 °/

√
h, and 0.41 °/

√
h (Allan deviation for observation time

of 1 s), and the bias instability was 6.5 °/h, 4.0 °/h, and 4.3 °/h (minimum Allan deviation).

3.4.2 Trials

The proposed benchmark dataset consists of 39 trials. We can distinguish the performed trials
based on different criteria:

• the type of motion: rotation, translation, and combined (rotational and translational
motions),

• the speed at which the motion was performed: slow and fast,

• whether the trial consists of one uninterrupted continuous motion or of several segments
with short breaks in between: no breaks and with breaks,

• whether there are deliberate disturbances that affect the accelerometer measurements:
undisturbed, tapping, and vibrating smartphone,

• the magnetic environment in which the motion takes place: undisturbed (homogeneous
indoor magnetic field), stationary magnet, attached magnet, and office environment.

An overview of the performed trials can be found in Table 3.3. The considered disturbances
are as follows. In the tapping trials, the IMU was repeatedly tapped using a finger, leading to
spikes in the measured accelerations. In two trials, a vibrating smartphone was placed on the
3D-printed rigid body, causing substantial high-frequency disturbances in the accelerometer
measurements while at the same time disturbing the magnetometer measurements. In the
stationary magnet trials, a small neodymium magnet was placed in the vicinity of the resting
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Table 3.3: Overview of the 39 trials included in the proposed benchmark dataset.

undisturbed slow fast
rotation 1, 2, 3, 4*, 5* 6, 7, 8*, 9*
translation 10, 11, 12, 13*, 14* 15, 16, 17*, 18*
combined 19, 20 21, 22, 23

disturbed (medium speed)
tapping 24, 25
vibrating smartphone 26, 27
stationary magnet 28, 29, 30*, 31*
attached magnet (1–5 cm) 32, 33, 34, 35, 36
office environment 37, 38
mixed (disturbed and undisturbed) 39*

* trial consists of several motion phases with short breaks in between

place, and part of the motion was deliberately performed close to the magnet. In the attached
magnet trials, the magnet was placed on the rigid body at distances of 1, 2, 3, 4, and 5 cm.
The office environment (Figure 3.5) consists of various types of ferromagnetic material and
electronic devices chosen to represent a typical indoor workplace environment. The mixed trial
consists of various short challenging motion phases, both disturbed and undisturbed.

data transceiver

laptop

mobile phone

power socket and chargers

metal frames
(table and chair)

Figure 3.5: Office environment used to provide a realistic indoor scenario with magnetic
disturbances.

All trials contain a rest phase of approximately 30 s at the beginning and at the end, during
which the rigid body with the IMU is resting on a table. A separate annotation signal in
the provided data files shows whether the IMU is at rest or in motion. This annotation was
performed manually based on plots of the measurement data.

The 39 trials have a total duration of 8478 s when considering rest and motion phases and
5274 s when only considering phases with movement. The duration of a single motion phase
ranges from 15 to 358 s. For the 39 trials, the root mean square (RMS) value of the angular
velocity norm during motion ranges from 22 to 490 °/s (slow trials: 22 to 124 °/s, fast trials:
151 to 490 °/s) with peak values (99th percentile) of up to 1116 °/s. The RMS value of the
acceleration norm (with 9.81 m/s2 removed) ranges from 0.5 to 23 m/s2 (slow trials: 0.5 to
1.6 m/s2, fast trials: 1.6 to 23 m/s2) with peak values (99th percentile) of up to 67 m/s2. The
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RMS values of all trials are shown in Figure 3.6 and cover a wider range than the publicly
available datasets.
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Figure 3.6: RMS values of the angular velocity and accelerometer norm for the undisturbed
slow, undisturbed fast, and disturbed trials of the proposed dataset in comparison to the publicly
available datasets (only considering trials suitable for IOE accuracy evaluation, cf. Section 3.3).
The BROAD dataset covers a wider range of motions than the publicly available datasets.

3.4.3 Time Synchronization

Highly precise time synchronization of the IMU and OMC data streams is crucial because even
very short time delays can have a substantial effect on the observed orientation estimation
errors. Synchronization was performed via optimization based on the norm of the angular
velocity measured by the IMU and the norm of the angular velocity derived from the OMC
orientations. In addition to a time offset, a clock drift correction factor was determined in order
to account for small deviations from the nominal sampling frequencies of both measurement
systems. The resulting parameters were used to interpolate the OMC ground truth data to
the exact sampling time instants of the IMU data.

In detail, this time synchronization is performed by the following procedure:
Denote the sampling time of the IMU as Ts and the sampling time of the OMC system

as Ts,OMC. First, we derive an optical angular velocity ωOMC(tk) from the optical orientation
B

Mq(tk) (cf. Figure 3.7):

[ qw qx qy qz ]⊺ := B
Mq(tk−1)−1 ⊗ B

Mq(tk), (3.1)

ωOMC(tk) := 2 arccos qw
Ts,OMC

[ qx qy qz ]⊺
∥[ qx qy qz ]⊺∥ . (3.2)

We then low-pass filter each component of the inertial angular velocity ω(tk) and the optical
angular velocity with a cutoff frequency of 10 Hz.

By nonlinear least-squares optimization, we determine the time offset t0 and the scaling
factor s of the nominal OMC sampling rate that minimize the root mean square error (RMSE)
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between the norms of both angular rates, i.e.,

e :=

⌜⃓
⎷⃓ 1
N

N∑︂

k=1
(∥ω(tk)∥ −

⃦⃦
ωOMC(t′k)

⃦⃦
)2, (3.3)

with

t′k := s
Ts,OMC
Ts

+ t0. (3.4)

To ensure robust convergence, we first determine an initial estimate of the time offset by
evaluating this cost function with linearly spaced time offsets. In a second step, we parametrize
the influence of clock drift via additional time offsets at the beginning and at the end of the
measurement.

As the final step, we use the obtained time shift and OMC sampling rate to resample the
measured OMC data to the IMU sampling instants.

3.4.4 Coordinate System Alignment

In order to obtain an accurate ground truth for the IMU orientation, the different local and
global coordinate frames of both measurement systems have to be aligned [89]. See Figure 3.7
for an illustration of the different coordinate systems. The local coordinate systems of the IMU
S (determined by sensor manufacturing and calibration) and the rigid body B (determined by
the placement of optical markers) can agree well (< 1°) when care is taken to ensure precise
placement, but even this small deviation might affect the results. The IMU reference frame E
is determined by gravity and the horizontal projection of the local magnetic field. In contrast,
OMC systems provide marker position measurements in a different reference frame M that is
defined by a calibration procedure.

E
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M
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B x
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y z
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up

Figure 3.7: Illustration of the different local coordinate systems and reference frames. IOE
algorithms estimate the orientation of the sensor frame S with respect to a frame of reference E ,
defined by gravity and the local magnetic field. The OMC reference system tracks the orientation
of a rigid body B, defined by reflective markers, relative to a reference frame M that is defined
during calibration and, in general, does not coincide with E .

For a precise evaluation of the actual IOE errors, the constant offsets between S and B
and between E and M must be determined [89]. This is done by minimizing the disagreement
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between the IMU measurements and the corresponding quantities derived from the OMC
measurement data. This alignment is performed using a separate alignment recording that was
created on each measurement day. In those recordings, the IMU and the board are carefully
and slowly rotated in all directions in order to ensure a sufficiently rich motion. The obtained
alignment parameters are then used to calculate ground truth orientations from the OMC
measurements of the 39 motion trials.

Note that the rotation between the S frame and the B frame S
Bq and the rotation between

the M frame and the E frame M
Eq are constant throughout the entire duration of the motion.

They only depend on the installation of the markers, the calibration of the optical ground
truth system, the local magnetic field inside the room, and the attachment of the IMU on the
rigid body.

In detail, those two rotations are determined from the alignment recording via the following
procedure.

Assume that the inertial and optical data is already synchronized by the method described
in Section 3.4.3. During this synchronization, we deliberately only considered the norm of
the optical angular velocity ωOMC(tk) and the gyroscope measurements ω(tk) because the 3D
vectors are given in the local coordinate systems B and S, respectively. We can exploit the
direction of those vectors to determine the relative orientation S

Bq. When also considering a
fixed gyroscope bias bω ∈ R3, it can be expected that the correct rotation S

Bq minimizes the
following cost function:

egyr :=

⌜⃓
⎷⃓ 1
N

N∑︂

k=1
ω(tk)− bω − S

Bq−1 ⊗ ωOMC(tk)⊗ S
Bq. (3.5)

Using the central second-order finite difference, we derive an optical acceleration signal
aOMC(tk) from the OMC position measurements. In order to make this measurement agree
with the IMU accelerometer measurements, knowledge of both S

Bq and B
Mq is needed. In the

M frame, the measured gravitational acceleration is [g]M = M
Eq−1 ⊗ [ 0 0 g ]⊺ ⊗M

Eq, with a
fixed but unknown g ≈ 9.8 m/s2. We express the IMU accelerometer measurements in the M
frame using the OMC orientation B

MqOMC(tk):

[a]M (tk) = B
MqOMC(tk)⊗ S

Bq ⊗ (a(tk)− ba)⊗ ( B
MqOMC(tk)⊗ S

Bq)−1. (3.6)

The vector ba ∈ R3 denotes an unknown but constant accelerometer bias. Using those
quantities, we define the following cost function:

eacc :=

⌜⃓
⎷⃓ 1
N

N∑︂

k=1
∥aOMC(tk) + [g]M − [a]M (tk)∥2. (3.7)

We then determine the parameters S
Bq, M

Eq, bω, ba, and g that minimize the sum of
both cost functions, i.e., e := egyr + eacc. This problem can be solved by standard nonlinear
optimization methods. It is generally well-behaved, and the solution is straightforward to
find. Note that for a unique solution, we set the z-component of M

Eq to zero, which ensures
a consistent heading. To increase robustness, we low-pass filter the optical and inertial
measurements with a cutoff frequency of 10 Hz.
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The heading component of M
Eq is determined in a second step: We transform the

magnetometer measurements into the E frame using the OMC orientation and the results
from the previous step and, for each sample, calculate the angle of the measurement in the
horizontal plane. Finally, the mean of the obtained heading angles is used to determine the
heading of M

Eq.

3.4.5 Metrics for Orientation Accuracy

For any of the performed motions, the orientation estimated by an IMU-based algorithm
can be compared with the corresponding optical ground truth measurement. Along with the
dataset, example code to obtain the proposed metrics is provided.

The disagreement between two unit quaternions representing orientations is well described
by the shortest angular distance e between both orientations. As detailed in Section 2.4, for
any estimated sensor orientation S

Eq(t) and corresponding ground-truth orientation S
EqOMC(t)

this error is

qe(t) = S
Eq−1

OMC(t)⊗ S
Eq(t) =: [ qw qx qy qz ]⊺, (3.8)

e(t) := 2 arccos |qw|. (3.9)

This angular performance parameter well describes the overall accuracy of the estimated
orientation, and root-mean-square values can be used to quantify the performance of a motion
interval of interest.

It is important to note that the error e yields only very limited insight into the potential
cause of estimation errors. It is highly desirable to distinguish between the portion of the error
that results from inaccurate heading estimation and the portion that results from inaccurate
inclination estimation. While the accuracy of the former primarily depends on the sensor
fusion between gyroscopes and magnetometers, the accuracy of the latter primarily depends
on the fusion between gyroscopes and accelerometers. In magnetically disturbed environments,
the heading component of the error might easily be ten times larger than the inclination
component of the orientation error.

While different definitions of heading have been used in literature, we use the decomposition
into heading and inclination defined in Section 2.5, which is particularly useful for the current
purpose. To implement this decomposition, the following two steps are carried out. First, we
express the orientation error in the global frame E as follows.

[qe]E (t) := S
Eq(t)⊗

(︂
S
Eq−1

OMC(t)⊗ S
Eq(t)

)︂
⊗ S

Eq−1(t)

= S
Eq(t)⊗ S

Eq−1
OMC(t). (3.10)

We then decompose the orientation error [qe]E (t) =: [ qw qx qy qz ]⊺ into a rotation around
the vertical z-axis and the shortest possible residual rotation. The absolute rotation angle of
the former is called the heading error eh, and the absolute rotation angle of the latter is called

39



3. Versatile Inertial Orientation Estimation Algorithm

the inclination error ei. They are determined mathematically by

eh(t) := 2 arctan
⃓⃓
⃓⃓ qz
qw

⃓⃓
⃓⃓ , (3.11)

ei(t) := 2 arccos
√︂
q2
w + q2

z . (3.12)

The proposed decomposition facilitates the interpretation of the overall estimation error
with respect to potential sources of inaccuracy when comparing the orientations obtained by
an IOE algorithm to the OMC ground truth. In general, large inclination errors ei(t) indicate
non-ideal fusion of accelerometer with gyroscope measurements, while large heading errors
eh(t) are mostly caused by magnetic disturbances. The error e(t) is a suitable metric for the
overall orientation estimation error. The sum of both error portions is always larger or equal
to the overall orientation error, while each portion for itself is smaller than that overall error.

Note that for 6D IOE, absolute heading information is not available. While, in this case,
the heading error eh(t) has a large offset and exhibits a slow drift, the inclination error ei(t) is
a suitable metric for assessing the accuracy of magnetometer-free IOE algorithms.

We can use the previously defined error metrics e(t), eh(t), and ei(t), which are defined for
each time instant, to assess the performance of a given IOE algorithm in different scenarios. In
order to assess the overall performance for one trial, we use the RMSE of the respective metric
while only considering the motion phases (as labeled in the data files). When considering a set
of trials, we report the mean of the RMSE values obtained for each trial as a metric for the
overall accuracy. In both cases, small RMSE values indicate good performance.

3.4.6 Benchmark Metrics

In order to allow for a simple and well-defined performance comparison between different IOE
algorithms, we define two benchmark metrics that can be obtained from the BROAD dataset
for any given IOE algorithm: the trial-agnostic generalized performance (TAGP) and the
individual trial-optimized performance (ITOP). Both metrics are based on the average RMSE
that is obtained as follows:

1. Run the IOE algorithm on all 39 trials with a given parameter setting.

2. For each trial, calculate the orientation RMSE (i.e., the RMS of e(t)) while only
considering the labeled motion phases.

3. Average all 39 RMSE values.

The TAGP is the smallest achievable average RMSE over all 39 trials that can be obtained
with a common parameter setting for all trials.

The ITOP is the smallest achievable average RMSE over all 39 trials that can be obtained
with individual parameter tuning for each trial.

Section 3.5 will demonstrate how to obtain those metrics and how to use the proposed
benchmark for further in-depth evaluation.
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3.4.7 File Format

The benchmark dataset consists of the 39 trials as presented in Table 3.3. Each trial is stored
in a separate file, and the filename indicates the trial number and the type of trial (e.g.,
“01_undisturbed_slow_rotation_A”). A machine-readable “trials.json” file is included, which
can be used to automatically find and filter all trials.

The measurement data is provided both as an HDF5 data file and a Matlab data file (.mat)
with identical content. Each file contains the following variables:

imu_gyr IMU gyroscope measurements in rad/s

imu_acc IMU accelerometer measurements in m/s2

imu_mag IMU magnetometer measurements in µT

opt_quat OMC ground truth orientation as a unit quaternion (w component first, ENU
reference frame)

opt_pos OMC ground truth position in m

movement Boolean array (0/1) indicating movement phases

sampling_rate sampling rate of the measurements in Hz (2000/7 Hz ≈ 286 Hz, HDF5: stored
as an attribute)

info short description of the file contents (HDF5: stored as an attribute)

The data is already synchronized and aligned as described in Section 3.4.3 and Section 3.4.4.
In order to obtain comparable results, orientation estimation algorithms should be run over the
whole trial data but when calculating errors, the movement array should be used to exclude
the rest phases.

3.4.8 Example Code

In addition to the measurement data, example code written in Python is provided. The code
implements the evaluation and benchmark metrics described in Section 3.4.5 and Section 3.4.6,
respectively, and re-creates Figures 3.8 and 3.9 from the case study in Section 3.5. Please refer
to the information provided in the “README.md” file for instructions on how to run the
code.

3.5 Case Study on the Proposed Benchmark Dataset

The following exemplary case study demonstrates the usefulness of the proposed benchmark and
shows how it can be employed to achieve an objective and broad assessment and comparison of
IOE algorithms under different conditions by answering several exemplary research questions.
To this end, we evaluate the performance of two popular orientation estimation algorithms,
the complementary filters proposed in [82] (Algorithm A) and [73] (Algorithm B). For both
filters, we employ the commonly used C implementation by Sebastian Madgwick1.

1https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/
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Figure 3.8: Orientation estimation RMSE (averaged over all trials) obtained with Algorithms A
[82] and B [73] for different values of the tuning parameters. For various motions at different speeds,
a parameter choice of β = 0.12 yields the lowest overall errors for Algorithm A. For Algorithm B,
the parameter combination Kp = 0.74, Ki = 0.0012 yields the lowest overall errors.

Consider orientation estimation in an application setting in which we do not have knowledge
regarding the speed and type of motions and in which we cannot guarantee an undisturbed
environment. Our aim is to find robust parameter settings for Algorithms A and B that
minimize the average error over all possible scenarios. This specific research question is
equivalent to finding the parameter settings associated with the TAGP. In order to determine
this value, we calculate the average RMSE as defined in Section 3.4.6 for many different
parameter values. For Algorithm A, we use linearly spaced values of the single tuning
parameter β (0.01 to 0.3 in steps of 0.01).2 Since Algorithm B has two tuning parameters, a
fusion weight Kp (similar to β) and a parameter for gyroscope bias estimation Ki, we search a
linearly spaced grid of parameter values (Kp: 0.02 to 2.0 in steps of 0.02, Ki: 0 to 0.004 in
steps of 0.0001). The result is shown in Figure 3.8. We can see that, for this broad range
of motions, a value of β = 0.12 yields the lowest overall errors for Algorithm A and that for
Algorithm B, the lowest overall error is obtained for the parameter combination Kp = 0.74,
Ki = 0.0012.

Besides this research question, the details presented in Figure 3.8a can be used to answer
various minor research questions: Consider an application for which only the inclination error
is relevant and therefore should be minimized. As can be seen in Figure 3.8a, β = 0.05 should
be used in this case. Analogously, we see that accurate heading estimation requires larger
values for β, with the optimum being at β = 0.15. The line plot representation also allows us
to answer the question of how non-ideal values for β influence the error: We can see that the
error gradient is much steeper when β is too small than when it is too large, i.e., if in doubt,
larger values for β should be chosen.

2Note that two slightly different versions of Madgwick’s algorithm exist. For illustration purposes, we now
use the version from [82] with a single parameter, while the version found in [74] and used in Section 3.7
supports gyroscope bias estimation and has two parameters.
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In order to take an in-depth look at the strengths and weaknesses of a given IOE algorithm,
we pose the following research question: How does the estimation accuracy of Algorithms A
and B depend on the type of motion and environmental conditions? Unlike previous datasets,
the BROAD benchmark is well suited for answering this question. This can be achieved for
example as follows. We calculate the average inclination, heading, and total RMSE for the
groups of trials as defined in Table 3.3 with the TAGP parametrization. Furthermore, we
determine the minimum achievable error when using different parameters for each trial. In
Figure 3.9, the TAGP performance is shown with bars, and the minimum achievable error is
indicated with black dots.
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Figure 3.9: Averaged RMSE values for Algorithms A [82] and B [73] for various groups of trials.
The bars show errors with the trial-agnostic parameters, and the black dots indicate the minimum
error achievable with individual parameters for each trial. The lines originating from the center
show the difference between the errors obtained with Algorithm A and B. It can be seen that for
most groups of trials, Algorithm A yields smaller errors.

We see that for the TAGP benchmark metric, Algorithm A reaches a score of 4.96°, and
Algorithm B reaches a score of 7.49°, i.e., Algorithm A yields a better overall performance.
Furthermore, the breakdown into trial groups allows for a detailed evaluation of the estimation
accuracy in various scenarios. For example, we can see that, for both algorithms, pure
rotational movements yield lower errors than translational movements. For Algorithm A, the
error for combined motions is larger than for translational movements, while for Algorithm B,
the error obtained for combined motions is smaller than for pure translational movements.
Unsurprisingly, faster movements lead to larger errors with both algorithms. As can be seen in
Figure 3.9, the estimation errors do not show any notable difference between long continuous
movement phases and short phases with breaks in between. The decomposition into heading
and inclination error, in combination with the magnetic disturbances included in the dataset,
allows for insight into potential sources of errors. In the undisturbed trials, heading and

43



3. Versatile Inertial Orientation Estimation Algorithm

inclination contribute to the total error almost equally. In contrast, for the attached-magnet
trials and Algorithm B, the heading error is twice as large as the inclination error.

Comparing the results of the two algorithms in Figure 3.9 enables us to easily answer
another research question: Which of the algorithms provides the best overall accuracy, and
which algorithm is more accurate for any given motion scenario? To facilitate the comparison of
algorithm performance, we plot the error difference for each group of trials as lines originating
from the center of Figure 3.9. We see that when using the common robust parameter settings,
the performance of Algorithm A is better than the performance of Algorithm B when considering
the average performance of all trials. Algorithm A also yields lower or almost equal errors for
most trial groups except for the vibration and office environment trials, where the performance
of Algorithm B is better.

The differences between TAGP and ITOP performance allow us to answer another research
question: How well do algorithms A and B generalize, i.e., can they provide near-optimum
performance for a wide variety of motions with a single common parameter choice? The
ability to generalize is a desirable property since individual parameter tuning depending
on the expected motion is often not possible in practice [53]. In Figure 3.9, we see that
for Algorithm B, the ITOP errors are much smaller than the TAGP errors, whereas for
Algorithm A, the difference between individual tuning and a common parameter choice is
much smaller. This shows that there is more potential for parameter tuning with Algorithm B
while Algorithm A generalizes better.

As a final research question, we aim to determine how well the two considered IOE
algorithms perform compared to other state-of-the-art algorithms. Since Algorithm A and
B are complementary filters, we choose two algorithms based on Kalman filters for which an
implementation is available in [54]: the method proposed by Ligorio et al. [69] (Algorithm C,
LIG in [54]) that yielded the best performance in [54] and the computationally efficient Fast
Kalman Filter proposed by Guo et al. [71] (Algorithm D, GUO in [54], FKF in Section 3.7).
To answer this question, we determine the benchmark metric TAGP for all algorithms.
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Figure 3.10: TAGP for Algorithms A [82], B [73], C [69], and D [71]. The overall performance
of Algorithm D is comparable to the performance of Algorithm B, while Algorithm C slightly
outperforms Algorithm A.

The results are shown in Figure 3.10. As can be seen, Algorithm D yields an overall
performance that is very similar to the performance of Algorithm B. With a TAGP of 3.98°,
Algorithm C provides the best overall performance and outperforms Algorithm A by around
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1°. The breakdown of the TAGP into heading and inclination components shows that, while
the errors are lower for both heading and inclination, a larger part of the overall improvement
of Algorithm C can be attributed to more accurate inclination estimates.

3.6 Proposed Orientation Estimation Algorithm

The following section introduces a modular method for simultaneous 6D and 9D orientation
estimation.

3.6.1 Terminology and Notation

As illustrated in Figure 3.1, the following measurements are available in inertial orientation
estimation (IOE): gyroscope readings ω(tk) ∈ R3, accelerometer readings a(tk) ∈ R3, and
magnetometer readings m(tk) ∈ R3, sampled at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0.

If only gyroscopes and accelerometers are employed, we use the term 6D IOE, while 9D
IOE additionally uses magnetometers. Therefore, 9D IOE yields the sensor orientation with
respect to a fixed inertial reference frame, typically using the east-north-up (ENU) convention
(i.e., z is pointing up, and y is pointing north). In contrast, only vertical reference information
is available in 6D IOE, and the resulting orientations are thus provided with respect to an
almost-inertial reference frame, which has one vertical axis and slowly drifts around this axis
(at a rate determined by the gyroscope bias, i.e., typically ≤ 1 °/s).

We denote the moving sensor frame, i.e., the coordinate system in which the sensor readings
are provided, by Si(tk). The ENU inertial reference frame used in 9D IOE is denoted E , and the
sensor-specific almost-inertial reference frame used in 6D IOE is denoted E i(tk). Anticipating
the common application scenario with multiple IMUs on different segments of a kinematic
chain, a sensor index i is used for sensor-specific quantities.

3.6.2 A Modular Estimation Approach

The most fundamental state of any IOE algorithm is the current orientation estimate, which
is commonly represented by a single orientation quaternion. For the proposed method, we use
a more modular approach and represent the 6D estimate Si(tk)

Ei(tk)q as the concatenation of an
inclination correction quaternion Ii(tk)

Ei(tk)q with a gyroscope strapdown integration quaternion
Si(tk)
Ii(tk)q. Furthermore, the 9D estimate Si(tk)

Eq is the concatenation of a heading correction
rotation Ei(tk)

Eq, represented by the scalar heading offset δi(tk), with the 6D estimate, i.e.,

Si(tk)
Eq

⏞ ⏟⏟ ⏞
9D estimate

=

magnetometer
correction⏟ ⏞⏞ ⏟

(δi(tk) @ [ 0 0 1 ]⊺)⏞ ⏟⏟ ⏞
Ei(tk)

E q

⊗

accelerometer
correction⏟ ⏞⏞ ⏟
Ii(tk)
Ei(tk)q ⊗

strapdown
integration⏟ ⏞⏞ ⏟

Si(tk)
Ii(tk)q⏞ ⏟⏟ ⏞

6D estimate

. (3.13)

The introduced auxiliary coordinate system Ii(tk), with Ii(t0) = Si(t0), is an almost-inertial
frame that slowly drifts around arbitrary axes due to errors in gyroscope strapdown integration.
See Figure 3.11 for an illustration of the four distinct coordinate systems that are used in
(3.13).
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Figure 3.11: Illustration of the different coordinate systems used by the proposed method. The
aim of IOE is to determine the orientation of the sensor Si relative to an ENU reference frame E
(in 9D sensor fusion) or relative to a reference frame E i with vertical z-axis (in 6D sensor fusion).
The angle δi describes the slowly drifting heading offset between E and E i. Internally, the auxiliary
Ii frame is used to represent the orientation obtained by pure gyroscope strapdown integration
and slowly drifts due to the integration of gyroscope bias.

As demonstrated in [76], a drawback of many existing methods is that magnetic disturbances
can severely impact the inclination estimates. While previous methods [75, 76] have already
ensured that the magnetometer correction can only influence the heading but not the inclination,
the proposed modular state representation makes this property very explicit by representing the
heading offset with a scalar variable δi(tk). Furthermore, this state representation facilitates
simultaneous 6D and 9D orientation estimation.

The chosen approach of separating strapdown integration, inclination correction, and
heading correction in the state is also represented in the filter structure as shown in Figure 3.12.
Unlike conventional methods, the correction steps are decoupled from the previous steps,
i.e., there is no feedback loop from the heading correction to the strapdown integration and,
therefore, neither to the inclination correction.

This basic filter structure is extended by an optional gyroscope bias estimation algorithm
and an algorithm for magnetic disturbance detection and rejection. The bias estimation
algorithm includes a rest detection algorithm and automatically adjusts to whether the IMU
is at rest or in motion. The extended filter structure is shown in Figure 3.13. Note that it is
also possible, and supported by the reference implementation (Section 3.6.8), to independently
enable or disable rest bias estimation, motion bias estimation, and magnetic disturbance
rejection.

In the following, we call the extended algorithm VQF (Versatile Quaternion-based Filter)
and the basic version BasicVQF. Furthermore, we introduce an acausal implementation called
OfflineVQF in Section 3.6.7.
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Figure 3.12: Illustration of conventional and proposed filter structures (z−1 denotes the unit
delay). The proposed filter structure avoids the feedback of the 9D estimate on the strapdown
integration. It thereby enables simultaneous 6D and 9D orientation estimation and ensures that
the inclination cannot be influenced by magnetic disturbances.
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Figure 3.13: Variants of the proposed algorithm. BasicVQF consists of strapdown integration,
inclination correction, and heading correction. The full version VQF additionally includes rest
detection, gyroscope bias estimation, and magnetic disturbance rejection (which can be enabled or
disabled independently).

3.6.3 Fusion of Gyroscope, Accelerometer, and Magnetometer Measure-
ments

The basic filter update consists of gyroscope-based prediction, followed by accelerometer
correction and, in 9D IOE, by magnetometer correction. The algorithm is given in Algorithm 1
and illustrated as a block diagram in Figure 3.14.

Gyroscope prediction is performed via strapdown integration of the measured angular rate.
Errors due to gyroscope bias, noise, and other measurement errors lead to slow drift of the Ii
frame.

To obtain a vertical reference, we transform the measured accelerations into the almost-
inertial frame Ii and then apply a second-order Butterworth low-pass filter to each component.
This low-pass filter effectively averages the accelerometer measurements and allows for short-
term acceleration and deceleration to cancel out. The inclination of the orientation estimate
is then corrected so that the filtered acceleration points in upward direction. Conventional
IOE algorithms typically regard each single accelerometer sample as a 3D vector and perform
a nonlinear correction step based on the comparison of this vector to a vertical reference
vector. Compared to those approaches, the use of a linear low-pass filter in the Ii frame
more effectively and robustly separates the gravitational acceleration component from the
acceleration caused by velocity changes.

If magnetometer measurements are provided, a heading offset is derived from the projection
of the magnetic field vector into the horizontal plane and tracked via an exponential filter.
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Algorithm 1 BasicVQF
1: procedure InitializeFilter
2: Si

Ii
q← [ 1 0 0 0 ]⊺ ▷ Gyroscope strapdown integration quaternion

3: Ii

Ei
q← [ 1 0 0 0 ]⊺ ▷ Accelerometer correction quaternion

4: δi ← 0 ▷ Magnetometer correction angle
5: initialize low-pass filter state
6: end procedure
7: procedure FilterUpdate(ω = ω(tk),a = a(tk),m = m(tk), fc,acc, kmag, Ts)
8: Si

Ii
q← Si

Ii
q ⊗ (Ts ∥ω∥ @ ω) ▷ Perform gyroscope strapdown integration

9: [a]Ii
← Si

Ii
q ⊗ a ⊗ Si

Ii
q−1 ▷ Transform acceleration into Ii frame

10: [aLP]Ii
← lpfStep([a]Ii

, fc = fc,acc) ▷ Apply low-pass filter
11: [aLP]Ei

← Ii

Ei
q ⊗ [aLP]Ii

⊗ Ii

Ei
q−1 ▷ Transform into E i frame

12: [ ax ay az ]⊺ ← [aLP]Ei⃦⃦
[aLP]Ei

⃦⃦ ▷ Normalize

13: qw ←
√︂

az+1
2

14: Ii

Ei
q← [ qw

ay

2qw

−ax

2qw
0 ]⊺ ⊗ Ii

Ei
q ▷ Update correction quaternion

15: Si

Ei
q← Ii

Ei
q ⊗ Si

Ii
q ▷ Calculate 6D orientation estimate

16: if m is given then
17: [mx my mz ]⊺ ← Si

Ei
q ⊗m ⊗ Si

Ei
q−1 ▷ Transform magnetometer sample into E i frame

18: δmag ← atan2(mx,my) ▷ Calculate heading offset from mag. sample
19: δi ← δi + kmag wrapToPi(δmag − δi) ▷ Update correction angle
20: end if
21: Si

Eq← [ cos δi

2 0 0 sin δi

2 ]⊺ ⊗ Si

Ei
q ▷ Calculate 9D orientation estimate

22: return Si

Ei
q, Si

Eq ▷ Provide 6D and 9D orientation estimate
23: end procedure
lpfStep: update step of second-order Butterworth low-pass filter with cutoff frequency fc

wrapToPi: bring angle into the interval [−π, π] by adding integer multiples of 2π

gyroscope prediction

inclination correction

heading correction

1
2

Ts ‖ω‖ @ ωω
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Figure 3.14: Block diagram of the proposed BasicVQF algorithm. The filter performs simultaneous
6D and 9D orientation estimation, and there is no feedback loop from the correction steps to the
previous filter steps. For quaternion multiplication, the small numbers indicate the operand order
(q1 ⊗ q2).
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In the following, the update steps are described in more detail.

3.6.3.1 Gyroscope Prediction

Gyroscope prediction via strapdown integration is performed by multiplying the previous
estimate with a quaternion based on the norm and direction of the measured angular rate:

Si(tk)
Ii(tk)q = Si(tk−1)

Ii(tk−1)q ⊗ (Ts∥ω∥@ ω) . (3.14)

The rotation due to the gyroscope measurement is composed of the true change of sensor
orientation and an error, due to gyroscope bias, noise, and other measurement errors (e.g.,
scaling errors, nonlinearity, misalignment, and clipping). This error can be regarded as a
small drift in the Ii frame, i.e., as Ii(tk−1)

Ii(tk)q, which can be shown via quaternion algebra (cf.
Appendix A.1).

3.6.3.2 Accelerometer Correction
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Figure 3.15: Example of unfiltered and low-pass filtered accelerations in the original sensor frame
Si and the almost-inertial frame Ii. Applying a low-pass filter with a low cutoff frequency to
each component in the sensor frame does not give a meaningful output. In the Ii frame, low-pass
filtering each component of the acceleration effectively averages the measurement, allowing for
acceleration and deceleration to cancel out, and the result shows the drift of the Ii frame due to
errors in gyroscope integration.

The accelerometer measurements consist of the gravitational acceleration, change of velocity,
as well as noise, bias, and other measurement errors. Most existing methods [73, 74, 76]
interpret each single accelerometer sample as a 3D vector and use the angle between this
vector and the expected vertical direction to derive the correction step. In contrast, to better
separate the gravitational acceleration from the other components of the measurement, we
transform the measured accelerations into the almost-inertial frame Ii and then apply a linear
low-pass filter to each component. The resulting signal provides a vertical reference in the Ii
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Figure 3.16: Illustration of the inclination correction step based on the filtered accelerometer
measurement. In E i coordinates, the filtered and normalized acceleration a = [ ax ay az ]⊺ is
expected to point in positive z-direction. This can be achieved by a correction rotation with angle
arccos az and axis [ ay − ax 0 ]⊺.

frame, which slowly drifts due to errors in gyroscope integration, as shown in Figure 3.15. As
a low-pass filter, we use a second-order Butterworth filter. The cutoff frequency fc,acc of this
filter defines the weight between gyroscope prediction and accelerometer correction. To ensure
a fast and robust convergence when the algorithm is initialized, we calculate the arithmetic
mean for the first few samples instead of using the Butterworth filter. Then, the filter state is
initialized based on this mean value.

As illustrated in Figure 3.16, we can use this vertical reference to correct the inclination
estimate. If [ ax ay az ]⊺ denotes the filtered and normalized acceleration measurement in the
E i frame, the shortest rotation for inclination correction has an angle of arccos az around the
axis [ ax ay az ]⊺ × [ 0 0 1 ]⊺ = [ ay − ax 0 ]⊺. The quaternion qcorr that corresponds to this
rotation can be expressed without trigonometric functions as

qw = cos
(︃arccos az

2

)︃
=
√︃
az + 1

2 , (3.15)

qcorr =
[︂
qw

ay

2qw

−ax
2qw

0
]︂⊺
. (3.16)

This quaternion is used to correct the estimate of the quaternion Ii
Ei

q, i.e.,

Ii(tk)
Ei(tk)q = qcorr(tk)⊗ Ii(tk−1)

Ei(tk−1)q. (3.17)

After the correction step, the low-pass filtered acceleration will perfectly point in upward
direction, i.e., in z-direction of the E i and E frames.

3.6.3.3 Magnetometer Correction

If magnetometer measurements are given, we use them to correct the heading estimate. As
shown in (3.13), the heading is tracked via a scalar state δi(tk) that represents the vertical
rotation from the global E frame (with the y-axis pointing north) to the E i frame. As illustrated
in Figure 3.17, we can use the current magnetometer sample to derive a measurement δmag(tk)
for this state by projecting the magnetic field vector into the horizontal plane. The state is
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Figure 3.17: Illustration of the heading correction step based on the magnetometer measurement.
In many parts of the world, Earth’s magnetic field is dominated by the vertical component, e.g., in
Berlin, the magnetic field is pointing down with a dip angle of 68°. An estimate of the magnetic
north direction can be obtained by projecting the measured magnetic field into the horizontal
plane.

then corrected by a fixed fraction kmag of the deviation between state and measurement. This
corresponds to a first-order low-pass filter with exponential convergence.

The parameter kmag defines the fusion weight between gyroscope prediction and magne-
tometer correction. To ensure robust and fast convergence when the filter is initialized with
the default value δi(t0) = 0, we average the first measurements by choosing the filter weight
kmag as 1, 1

2 ,
1
3 , . . . during the first 1

kmag
steps.

3.6.4 Definition of Intuitive Fusion Weights

As it is common in IOE algorithms, the behavior can be influenced by fusion weights that
balance between rejecting gyroscope drift and rejecting disturbances in the accelerometer and
magnetometer measurements. In Algorithm 1, those parameters are the cutoff frequency fc,acc

and the magnetometer correction gain kmag. Like for many existing methods, the meaning of
the values assigned to those parameters is hard to interpret, depends on the sampling time (for
kmag), and does not allow for a comparison between the trust assigned to the accelerometer
and the trust assigned to the magnetometer. To provide a more intuitive parametrization, we
replace those parameters with time constants τacc and τmag that can be changed by the user
to influence the algorithm behavior. Small time constants lead to fast correction and indicate
high trust in the accelerometer or magnetometer measurements, while large time constants
indicate trust in the gyroscope measurements.

Those time constants map to the internal values fc,acc and kmag as follows.
In order to specify the gain kmag of the first-order exponential filter for magnetometer

correction, we use the time constant τ = 1
2πfc

that is commonly used to characterize first-order
systems. This time constant corresponds to the time needed for the step response to reach
1− e−1 ≈ 63.2 % of its final value. The filter weight for the proportional update can be derived
from it as

kmag = 1− exp
(︄
− Ts
τmag

)︄
. (3.18)
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Figure 3.18: Step response for first- and second-order low-pass filters. The time axis is normalized,
i.e., divided by the time constant τ of the proposed parametrization. Both filter outputs are
roughly close to 0.5 at t = τ and converge up to a deviation of ≤ 5 % at t = 3τ .

The second-order Butterworth filter used for accelerometer correction is characterized
by the cutoff frequency fc,acc. In order to obtain a parametrization that is similar to the
parametrization of the magnetometer correction, we use a time constant that corresponds to
the undampened part of the step response, i.e., τacc =

√
2

2πfc,acc
. The cutoff frequency used to

determine the Butterworth filter coefficients is then given as

fc,acc =
√

2
2πτacc

. (3.19)

See Figure 3.18 for a comparison of the step responses of both filter types in relation to the
time constant τ .

This mapping is used to derive the internal parameters fc,acc and kmag from the user-
specified time constants τacc and τmag. The same parametrization via time constants is also
used for the other first-order and second-order filters introduced in the following subsections.
Note that we will later determine default values for τacc and τmag that yield excellent out-of-
the-box accuracy for a large range of application scenarios, and manual tuning by adjusting
these time constants is therefore only required in rare edge cases.

3.6.5 Gyroscope Bias Estimation

To ensure high accuracy in the presence of gyroscope bias, we extend the BasicVQF algorithm
from Section 3.6.3 by a method to estimate and compensate such bias. This method is given
in Algorithm 2. In existing IOE algorithms, bias estimation is commonly realized by integral
action [73, 74, 76]. However, this approach requires feedback of both accelerometer and
magnetometer correction [74], making the gyroscope bias estimate susceptible to magnetic
disturbances. To prevent this, the proposed method for gyroscope bias estimation avoids using
any information from the magnetometer correction step. Instead, during motion, the bias
is estimated solely from the disagreement between strapdown integration and accelerometer
measurements.
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Algorithm 2 Gyroscope Bias Estimation
1: procedure RestDetection(ω,a)
2: Trest ← Trest + Ts
3: ωLP ← low-pass filter ω with τ = 0.5 s
4: aLP ← low-pass filter a with τ = 0.5 s
5: if ∥ω − ωLP∥ ≥ 2 °/s or ∥a − aLP∥ ≥ 0.5 m/s2 then
6: Trest ← 0
7: end if
8: if Trest ≥ 1.5 s then
9: rest detected

10: else
11: movement detected
12: end if
13: end procedure
14: procedure InitializeKalmanFilter
15: b̂← [ 0 0 0 ]⊺ ▷ Gyroscope bias estimate
16: P ← (0.5 °/s)2I3×3 ▷ Covariance matrix
17: v ← (0.1 °/s)2Ts(100 s)−1 ▷ System noise
18: wmotion ← (0.1 °/s)4v−1 + (0.1 °/s)2 ▷ Motion update variance
19: wrest ← (0.03 °/s)4v−1 + (0.03 °/s)2 ▷ Rest update variance
20: end procedure
21: procedure BiasEstimationStep(Ii

Ei
q, ax, ay, az)

22: R ← rotation matrix corresponding to Ii

Ei
q

23: RLP ← low-pass filter R with τ = τacc
24: b̂Ei,LP ← low-pass filter Rb̂ with τ = τacc
25: if rest detected then
26: y ← b̂
27: C ← I3×3
28: W ← wrest[ 1 1 1 ]⊺
29: else
30: y ← T−1

s [ ay − ax 0 ]⊺ + diag(1, 1, 0)b̂Ei,LP
31: C ← RLP
32: W ← wmotion[ 1 1 1

0.0001 ]⊺
33: end if
34: P ← P + v[ 1 1 1 ]⊺ ▷ Kalman filter update
35: K ← PC⊺(W + CPC⊺)−1

36: b̂← b̂ + K clip(y −Cb̂,−2 °/s, 2 °/s) ▷ Limit disagreement to 2 °/s
37: P ← P −KCP
38: b̂← clip(b̂,−2 °/s, 2 °/s) ▷ Limit bias estimate to 2 °/s
39: end procedure
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Moreover, note that in many application scenarios, the IMU will occasionally be at rest
for several seconds, and those phases can be detected reliably. The proposed bias estimation
algorithm leverages this and determines the bias directly from low-pass-filtered gyroscope
measurements whenever it detects a period of rest.

To detect whether the IMU is at rest (procedure RestDetection in Algorithm 2), we first
filter each component of the gyroscope and accelerometer measurements with a second-order
Butterworth filter and a time constant of τ = 0.5 s. Note that, unlike the low-pass filter for
the acceleration used for inclination correction, we apply the filter directly in the sensor frame.
We then calculate the Euclidean norm of the deviation between the current measurement and
the filtered measurement. Rest is detected if, in the last 1.5 s, the gyroscope and accelerometer
deviations are always less than 2 °/s and 0.5 m/s2, respectively. Note that we deliberately do
not use magnetometer measurements for rest detection since the rest detection was found to
be very reliable when only using gyroscope and accelerometer measurements, whereas using
magnetometers did not provide additional value.

To estimate the gyroscope bias during rest and motion, we employ a Kalman filter [59, 60],
with the gyroscope bias as state and a time-dependent output matrix:

b(tk) = b(tk−1) + v(tk), v(tk) ∼ N (0,V), (3.20)

y(tk) = C(tk)b(tk) + w(tk), w(tk) ∼ N (0,W(tk)). (3.21)

During rest, we use the low-pass filtered gyroscope readings ωLP (which we calculated
in the rest detection procedure) as a direct measurement of the bias, i.e., C(tk) = I3×3 and
y(tk) = ωLP(tk). Because the IMU is at rest and gyroscope readings are already filtered, we
can assign a comparatively large weight (i.e., a small covariance) to this measurement update
and achieve fast convergence for the bias estimate b̂(tk).

During motion, we estimate the gyroscope bias from the inclination correction steps. At
every time step, the new error due to gyroscope bias is a local rotation (i.e., in Si) with the
rotation vector Ts(b− b̂), and the inclination correction is a global rotation (i.e., in E i) with
a horizontal rotation vector c = [ cx cy 0 ]⊺. In ideal conditions (i.e., in a steady state and
without noise or other errors), the correction rotation will exactly compensate the inclination
portion of the bias rotation. As illustrated in Figure 3.19, in this case, the correction is the
inverse of the horizontal projection of the bias rotation.

With R being the rotation matrix corresponding to Si
Ei

q, we can express this as

R(b− b̂) = − 1
Ts




cx

cy

∗


 , (3.22)

where the star indicates that the gyroscope bias in the current vertical direction is not
observable by accelerometer measurements.

To achieve slow forgetting of the bias for the special case in which the same axis is vertical
for a long time, we set the corresponding measurement to zero, with a substantially larger
variance to slow down convergence.
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Figure 3.19: Illustration of the principle behind gyroscope bias estimation from the inclination
correction step. In the steady state, the correction angular rate ωcorr that corresponds to the
accelerometer-based correction is the (negative) horizontal projection of the remaining gyroscope
bias b− b̂.

With an output matrix of Ck = R =: (rij) and the correction vector [ ay − ax 0 ]⊺, we
obtain the following measurement equation:

yk =




− 1
Ts
ay + r11b̂x + r12b̂y + r13b̂z

1
Ts
ax + r21b̂x + r22b̂y + r23b̂z

0


 . (3.23)

This measurement equation does not take into account that the measured accelerations are
low-pass filtered in the Ii frame. In order to substantially improve the accuracy and robustness
of the bias estimation, we low-pass filter the components of R and Rb̂ with the same filter
used for the accelerometer measurements in the Ii frame. See Appendix A.2 for a detailed
derivation of this full measurement equation.

The tuning parameters of a Kalman filter are the initial covariance, the covariance of the
process noise, and the covariance of the measurement noise. Since the real values of those
covariances are hard to obtain and would furthermore depend on the sampling rate, we employ
a parametrization that ensures the following properties:

1. The initial estimation uncertainty is σinit = 0.5 °/s.

2. During motion, the uncertainty converges to σmotion = 0.1 °/s (for the non-vertical axes).

3. During rest, the uncertainty converges to σrest = 0.03 °/s.

4. Without updates, the estimation uncertainty increases from 0 to 0.1 °/s in the forgetting
time tforget = 100 s.

How those parameters translate to the covariances internally used by the Kalman filter is
specified in Algorithm 2 and further explained in Appendix A.3. Note that the absolute values
of the provided parameters are arbitrary and chosen to facilitate an intuitive understanding of
the estimation uncertainty. For the behavior of the Kalman filter, only the relation between
the parameters is relevant.
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Figure 3.20: Step response for the Kalman filter with the proposed parametrization. The blue
bands show the standard deviation σ of the estimate. At t = 0, the Kalman filter either starts in
the initial state (σ = 0.5 °/s) or in a converged state of either the motion or rest update with an
estimate of 0 °/s. At t = 0, the measurement changes to 1 °/s. Directly after initialization, the
filter converges much faster than in cases where a (contradictory) previous estimate was already
obtained. In general, the motion update converges much slower than the rest update.

Figure 3.20 shows how the Kalman filter behaves with the proposed parametrization. The
relation between the uncertainty of the measurement (large during motion, small during rest)
and the uncertainty of the current estimate determines how fast the bias estimation converges.
After initialization without prior knowledge, the estimation uncertainty is large, which leads to
fast convergence. From a converged estimate during motion (i.e., with medium uncertainty), a
contradicting but much more reliable observation during rest is adopted within several seconds.
From a converged rest estimate, a contradicting observation during motion is adopted much
slower due to the larger uncertainty of the measurement.

3.6.6 Magnetic Disturbance Rejection

We extend the proposed IOE algorithm with a set of methods that enable adaptive filtering of
the magnetometer measurements with the aim of reducing the influence of temporary magnetic
disturbances. The employed strategy is composed of three parts: magnetic disturbance
detection, magnetic disturbance rejection, and new magnetic field acceptance. The full algorithm
is given in Algorithm 3.

The magnetic disturbance detection uses a user-defined or automatically determined
reference for the norm and dip angle of the local magnetic field. The magnetometer
measurements are considered to be undisturbed only if they have been close to the reference
for at least 0.5 s – and disturbed otherwise. Whenever the magnetic field is considered to be
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Algorithm 3 Magnetic Disturbance Rejection
1: procedure MagDistDetection(m, Si

Ei
q)

2: n← ∥m∥ ▷ Norm of magnetic field
3: θ ← − arcsin

(︂
[ 0 0 1 ]

(︂
Si

Ei
q ⊗m ⊗ Si

Ei
q−1

)︂
n−1

)︂
▷ Dip angle

4: low-pass filter n and θ with τ = 0.05 s
5: if |n− nref | < 0.1nref and |θ − θref | < 10° then
6: Tundist ← Tundist + Ts
7: if Tundist ≥ 0.5 s then
8: disturbed ← false
9: nref ← kref (n− nref), with τref = 20 s

10: θref ← kref (θ − θref) ▷ Track slow changes of norm and dip
11: else
12: disturbed ← true
13: Tundist ← 0
14: end if
15: end if
16: end procedure
17: procedure NewMagFieldAcceptance(n, θ, ∥ω∥)
18: if |n− ncand| < 0.1ncand and |θ − θcand| < 10° then
19: if ∥ω∥ ≥ 20 °/s then ▷ Only count the time if there is movement
20: Tcand ← Tcand + Ts
21: end if
22: ncand ← kref (n− ncand)
23: θcand ← kref (θ − θcand)
24: if disturbed and Tcand ≥ 20 s then ▷ Accept candidate as new reference
25: disturbed ← false
26: nref ← ncand
27: θref ← θcand
28: end if
29: else ▷ Reset candidate to current value
30: Tcand ← 0
31: ncand ← n
32: θcand ← θ
33: end if
34: end procedure
35: procedure MagDistRejection
36: if disturbed then
37: if Treject < 60 s then
38: Treject ← Treject + Ts
39: do not perform heading correction
40: else
41: perform heading correction with 1

2kmag
42: end if
43: else
44: Treject ← max(Treject − 2Ts, 0)
45: perform heading correction with kmag
46: end if
47: end procedure
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3. Versatile Inertial Orientation Estimation Algorithm

undisturbed, the reference values are slowly updated to track slow changes in the norm and
dip angle.

The magnetic disturbance rejection adjusts the speed of the first-order filter used for
heading correction if magnetic disturbances are detected. For disturbances of up to 60 s, the
magnetometer update is fully disabled. For longer periods that are considered to be disturbed,
updates are performed, but at a lower speed.

Finally, the new magnetic field acceptance is used to deal with sudden changes in the
environment, e.g., after changing the terrain from outdoor to indoor or moving to a different
indoor room with a different local magnetic field. Whenever the magnetic field is considered
to be disturbed but seems homogeneous (for a sufficiently long time during which the IMU
was not stationary), the norm and dip angle of the current magnetic field is used as the new
reference.

3.6.7 Offline Variant of the Orientation Estimation Algorithm

In application scenarios in which the complete time series of recorded data is available (offline
data processing), we can employ acausal signal processing methods to further improve accuracy.
As commonly done in signal processing for zero-phase filtering [90], we first run the filtering
steps forward and then again backward in time. This allows us to leverage the existing real-time
implementation to create the offline variant OfflineVQF detailed in Algorithm 4.

In short, the steps performed for offline orientation estimation are:

1. Run the proposed VQF algorithm twice, once forward and once backward in time.

2. Average both gyroscope bias estimates, using the inverse of the variance as weight.

Algorithm 4 Offline Orientation Estimation Algorithm
1: procedure OfflineVQF(ω[t1:N ],a[t1:N ],m[t1:N ])
2: . . . ,dist1, b̂1,P1 ← VQF(ω[t1:N ],a[t1:N ],m[t1:N ]) ▷ Run real-time filter in forward direction
3: . . . ,dist2, b̂2,P2 ← VQF(−ω[tN :1],a[tN :1],m[tN :1])

▷ Run real-time filter in backward direction
4: dist[t1:N ]← dist1[t1:N ] ∧ dist2[t1:N ]

▷ Regard magnetic field as disturbed if both runs detected disturbances
5: b̂[t1:N ]← (P1[t1:N ]−1 + P2[t1:N ]−1)−1(P1[t1:N ]−1b̂1[t1:N ]−P2[t1:N ]−1b̂2[t1:N ])

▷ Average bias estimates of both filter runs via covariance
6: Si

Ii
q[t1:N ]← integrateGyr(ω[t1:N ]− b̂[t1:N ) ▷ Perform gyroscope strapdown integration

7: [a]Ii
[t1:N ]← Si

Ii
q[t1:N ]⊗ a[t1:N ]⊗ Si

Ii
q[t1:N ]−1 ▷ Transform acceleration into Ii frame

8: [aLP]Ii
[t1:N ]← filtfiltLPF([a]Ii

[t1:N ], τ = τacc) ▷ Forward-backward low-pass filtering
9: Ii

Ei
q[t1:N ]← perform inclination correction based on [aLP]Ii

[t1:N ]

10: [mx my mz ]⊺[t1:N ]←
(︂

Ii

Ei
q[t1:N ]⊗ Si

Ii
q[t1:N ]

)︂
⊗m[t1:N ]⊗

(︂
Ii

Ei
q[t1:N ]⊗ Si

Ii
q[t1:N ]

)︂−1

11: δmag[t1:N ]← atan2(mx[t1:N ],my[t1:N ])
12: δi[t1:N ]← run heading correction filter with magnetic disturbance rejection on δmag[t1:N ]
13: δi[tN :1]← run heading correction filter with magnetic disturbance rejection on δi[tN :1]
14: return Ii

Ei
q[t1:N ]⊗ Si

Ii
q[t1:N ], ▷ 6D sensor orientation Si

Ei
q

15: [ cos δi[t1:N ]
2 0 0 sin δi[t1:N ]

2 ]⊺ ⊗ Ii

Ei
q[t1:N ]⊗ Si

Ii
q[t1:N ] ▷ 9D sensor orientation Si

Eq
16: end procedure
VQF: real-time implementation, returns magnetic disturbance state, bias estimate, and bias estimation covariance
integrateGyr: gyroscope strapdown integration by (3.14)
filtfiltLPF: forward-backward filtering with second-order Butterworth low-pass filter
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3. Transform the accelerometer measurements into the Ii frame and perform acausal
forward-backward low-pass filtering, then use this filtered acceleration to perform the
inclination correction.

4. Regard the magnetic field as disturbed if both the forward and backward estimates
detected magnetic disturbances.

5. Run the first-order filter for the state δi twice, once forward and once backward in time,
with magnetic disturbance rejection.

3.6.8 Open-Source Implementation

Implementations of the proposed orientation estimation algorithm are available at https:

//github.com/dlaidig/vqf under the MIT license. Native implementations are provided in
C++, Python, and Matlab. Furthermore, the fast C++ implementation can easily be used
from Python code. The Python package is available at https://pypi.org/project/vqf/

and can be installed via pip. Documentation is available at https://vqf.readthedocs.io/.

3.7 Evaluation of the Proposed IOE Algorithm

In this section, we evaluate the performance of the proposed IOE algorithm on six publicly
available datasets and compare the results obtained with the proposed method to results
obtained with eight state-of-the-art IOE algorithms.

3.7.1 Datasets and Algorithms

To evaluate the accuracy of IOE, we consider publicly available datasets consisting of IMU
measurements and a ground truth orientation obtained from marker-based optical motion
capture (OMC). In the present evaluation, we use the BROAD dataset introduced in Section 3.4
and all datasets containing data that is suitable for IOE accuracy evaluation as reviewed in
Section 3.3, i.e.,

• BROAD (Section 3.4): 39 trials (23 undisturbed trials with different motion types and
speeds and 16 trials with various deliberate disturbances),

• Sassari [53]: 18 trials (3 speeds, 3 IMU models, and 2 IMUs of each model),

• RepoIMU [83]: 21 trials (T-Stick only; test 5, test 6 trial 1, and test 10 excluded due to
artifacts, as explained in Section 3.3),

• OxIOD [85]: 71 trials (only handbag, handheld, pocket, running, slow walking, and trolley
trials),

• TUM VI [87]: 6 trials (room only; no magnetometer data),

• EuRoC MAV [86]: 6 trials (Vicon room only; no magnetometer data).

Combined, the collection of evaluation data consists of 161 trials with a total duration of 12.9 h.
The data includes motions of handheld IMUs (various combinations of fast and slow rotations
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3. Versatile Inertial Orientation Estimation Algorithm

and translations), walking and running, as well as flight data from a micro aerial vehicle. It
contains data from eight different IMU models, recorded at sampling rates ranging from 100 Hz
to 286 Hz. This large collection of experimental data allows us to evaluate the robustness
of the proposed method for different motion characteristics, different sensor hardware, and
different sampling rates.

For comparison with the proposed method, we use the eight state-of-the-art algorithms
listed in Table 3.1 of Section 3.2.

3.7.2 Algorithm Parametrization

Before assessing the IOE accuracy, we need to determine suitable tuning parameters for each
algorithm. Section 3.4.6 introduced a metric to assess the performance of an IOE algorithm,
the TAGP. This metric is defined as the smallest possible RMSE, averaged over all 39 trials of
the BROAD dataset, that can be obtained with a common algorithm parametrization for all
trials. The associated parametrization can then be expected to provide good results for a wide
variety of motions and disturbance scenarios.

However, one limitation of the BROAD dataset is that all trials are performed with the
same IMU model. To find parameters that are not only robust against movement speed, type
of motion, and various disturbances, but also work well for different sensor characteristics, we
define an extended TAGP metric, the TAGPx.

Similar to the TAGP, the TAGPx is the smallest possible RMSE, averaged over the
aforementioned trials for each of the six datasets. The errors are first averaged separately
for each dataset. Then, the resulting errors are averaged, where the dedicated benchmark
dataset BROAD is given a five times larger weight than all other datasets, which are weighted
equally. For trials without magnetometer data (and for RIANN, which does not support
magnetometers), the inclination error, as defined in Section 3.4.5, is used instead of the
orientation error.

Figure 3.21 shows how the weighted error as defined above depends on the tuning parameters
for the default and the basic variant of the proposed VQF algorithm. The TAGPx is the
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Figure 3.21: RMSE (weighted average over all datasets) achieved with the proposed VQF
algorithm and with the reduced BasicVQF variant, for different values of the tuning parameters.
The default algorithm parameters are chosen such that the mean of both errors is minimized, i.e.,
τacc = 3 s and τmag = 9 s.
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3.7 Evaluation of the Proposed IOE Algorithm

Table 3.4: Results of TAGPx-based parameter tuning for all IOE algorithms used in the evaluation.

Algorithm TAGPx Parameter Value Search grid (start : step : end)

VQF 2.64° τacc 3 1 : 0.5 : 10
τmag 9 1 : 1 : 30

MAH [73] 14.83° KP 1.44 0.02 : 0.02 : 4
KI 0.0027 0 : 0.0001 : 0.004

MAD [74] 12.01° β 0.29 0.01 : 0.01 : 1
ζbias 0 0 : 0.00001 : 0.001

VAC [75] 5.63° αacc 0.00085 0.0001 : 0.00005 : 0.001
βmag 0.0005 0.0001 : 0.00005 : 0.001
αbias 0.00055 0.0001 : 0.00005 : 0.001
best true {false, true}
αadapt false {false, true}

FKF [71] 9.19° σ2
gyr 0.001 0.001 : 0.001 : 0.001
σ2

acc 0.002 0.001 : 0.0001 : 0.005
σ2

mag 0.0033 0.001 : 0.0001 : 0.005

SEL [76] 4.58° τacc 3.2 1 : 0.2 : 5
τmag 10 1 : 1 : 20
ζbias 5 0 : 1 : 10
racc 2 0 : 1 : 10

MKF 7.58° σ2
acc 0.00028171 MKF parameters were

iteratively determined with line
searches instead of a grid search.

σ2
mag 14.55188
σ2

gyr 0.15625
σ2

gyrdrift 3× 10−21

σ2
linacc 0.49128
dlinacc 0.81297
σ2

magdist 0.12329
dmagdist 0.51005

KOK [81] 11.70° σgyr 0.185 0.01 : 0.005 : 0.5
ζbias 0 0 : 0.00001 : 0.001
mest true {false, true}

RIANN [57] 1.32° no parameters
TAGPx value not comparable to other algorithms because
the inclination RMSE is used instead of the orientation
RMSE.
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3. Versatile Inertial Orientation Estimation Algorithm

minimum value of this error, i.e., 2.59° for VQF and 3.41° for BasicVQF, which shows that
gyroscope bias estimation and magnetic disturbance rejection lead to improved accuracy. The
optimal values for the time constants τacc and τmag are similar for both variants, but not equal.
To avoid having to specify different default parameters for VQF and BasicVQF, we simply use
the average of the errors obtained with both variants to determine the default values τacc = 3 s
and τacc = 9 s.

To provide a fair comparison between the proposed and the state-of-the-art methods, we
also optimize the parameters for all other algorithms according to the TAGPx, i.e., we find
the parameters that allow each algorithm to provide the best possible performance across
all datasets. To determine the parameters, a grid search was performed, i.e., the algorithm
performance was evaluated on a grid defined by the Cartesian product of the linearly spaced
parameter sets presented in Table 3.4. This search grid was iteratively adjusted to ensure that
the distance between parameter values is sufficiently small and that the TAGPx parameters
do not lie at the border of the grid. The resulting averaged error, the associated parameters,
and the parameter search range are presented in Table 3.4.

Due to the high dimensionality of the search space and the slow implementation, the
parameters for MKF were only evaluated using a line search, i.e., only one parameter was
changed while the other parameters are kept at the previously found minimum. The search
range was also iteratively adjusted until it converged to a stable minimum.

In the following, we always use the optimal parameters given in Table 3.4 to evaluate and
compare algorithm performance.

3.7.3 Orientation Estimation Accuracy

To assess the performance of all algorithms, we apply each to the data of all trials of all
datasets. In the case of 6D (magnetometer-free) sensor fusion, we determine the inclination
error (Section 3.4.5), and for 9D sensor fusion the orientation error, in each case between the
IMU-based estimate and the OMC ground truth. We then calculate the RMSE while only
considering the motion phases. Since the TUM VI and EuRoC MAV datasets do not include
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Figure 3.22: RMSE (weighted average over all datasets) for the proposed VQF algorithm and
all state-of-the-art algorithms. VQF outperforms all eight literature methods, and only RIANN
provides similar 6D performance. Even the errors obtained with the simple BasicVQF variant are
clearly lower than for the other seven algorithms. When real-time capability is not required, using
the offline variant is advisable to further increase the accuracy of the orientation estimates.
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magnetometer data, they are only considered for the 6D results. We average the errors by
dataset analogously to the definition of the TAGPx in Section 3.7.2. The resulting values for
all algorithms are presented in Figure 3.22.

One main observation from this figure is that the proposed method VQF consistently
provides considerably lower errors than the existing orientation estimation algorithms. For
9D IOE, there is a 1.8-fold to 5-fold increase in accuracy. For 6D IOE, the increase is 17 %
for RIANN and between 2.1-fold and 5-fold for the other methods. The only algorithm that
achieves similar inclination errors is the neural network RIANN. It should be noted that this
algorithm cannot perform 9D sensor fusion and was trained on some of the datasets that are
used in the present evaluation (see [57] for details).

Figure 3.22 also allows us to compare the variants of the proposed method. Unsurprisingly,
the errors obtained with the BasicVQF variant (no bias estimation and no magnetic disturbance
rejection) are slightly larger. However, with the exception of RIANN, even the 6D and 9D
errors of BasicVQF are still clearly lower than the corresponding errors obtained with any
of the existing algorithms. Compared to the real-time-capable implementation, the offline
variant OfflineVQF is able to further increase the estimation accuracy by 20 percent. Therefore,
employing this variant is advisable when analyzing recorded data.

While Figure 3.22 shows a clear improvement in accuracy with respect to the state of the
art when looking at errors averaged over a large number of trials, a comprehensive comparison
should also include a closer look at individual trials. Figure 3.23 differentiates the errors by
dataset and shows a marker for each single trial. Comparing medians, the interquartile ranges,
the lengths of the whiskers, or the distributions of outliers yields the same conclusion: The
proposed method not only performs better on average but consistently and robustly provides
lower errors than the existing methods.

It is noticeable that unusually large errors of ∼ 23° are observed for some trials of the
OxIOD dataset. As those large errors are observed across all methods, the most likely cause
of those errors are irregularities in the measurement or ground truth data that have been
discussed in Section 3.3.

To go beyond the level of comparing performance on different datasets, we now investigate
algorithm performance for seven different motion characteristics and six different disturbance
characteristics. This is facilitated by the different trial groups of the BROAD dataset.
Figure 3.24 compares the average RMSE across those groups of trials. In each case, the
proposed VQF method is compared with the best of the other 9D-capable algorithms, i.e.,
the algorithm that achieves the lowest errors for the respective group of trials. Except for
the tapping and vibration groups, VQF always achieves lower errors than even the best of the
other algorithms. For the vibration group, it is worth noticing that, while the orientation error
is slightly larger than the error obtained with FKF, the inclination errors obtained with VQF
are clearly lower.

In summary, compared with eight other IOE algorithms and using a collection of six
publicly available datasets that cover a wide range of motions, speeds, disturbances, and
different sensor hardware, the proposed method VQF consistently provides the best IOE
accuracy, both for 6D and 9D orientation estimation.
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Figure 3.23: Orientation estimation errors for all evaluated algorithms and for all trials of the
(a, b) BROAD dataset and (c, d) the five other datasets and for (a, c) 6D and (b, d) 9D sensor
fusion. The numbers below the algorithm names indicate the RMSE averaged over all trials. For
(c, d), the boxplots and average values are weighted to give each dataset the same weight regardless
of the number of trials. The proposed VQF algorithm consistently provides the best performance.
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Figure 3.24: Averaged RMSE errors for various groups of trials of the BROAD dataset. The
proposed algorithm VQF is compared with the best of the seven other evaluated 9D-capable
algorithms, i.e., the algorithm that provides the lowest orientation error for the respective group of
trials. The lines originating from the center highlight the difference between the errors. For all
groups except for the tapping and vibration trials, the proposed algorithm outperforms even the
best-performing literature method.

3.7.4 Algorithm Execution Time

In addition to accuracy, the execution time of an IOE algorithm is often relevant, especially
in real-time applications or when the algorithm is running on low-powered microcontrollers
directly on the IMU. To compare the execution times, we repeatedly process the entire BROAD
dataset with all algorithms on an AMD Ryzen 5 3600 CPU while measuring the elapsed time.
Figure 3.25 shows the average execution time for one update step in combination with the
orientation estimation error for the respective algorithm. The results show that execution
time mostly depends on the programming language used for the implementation and that the
algorithms written in C++ are considerably faster than the algorithms written in Matlab or
using the ONNX machine learning runtime. While the VQF algorithms achieve clearly higher
accuracy, the execution times are in the same order of magnitude as for the existing state-of-
the-art methods with a C++ implementation. VQF is fast enough for use on microcontrollers,
which was verified by integrating it into an IMU firmware running on a Cortex M4 with a
comparatively high IMU sampling rate of 1600 Hz.

3.7.5 Gyroscope Bias Estimation

We now investigate the performance of the gyroscope bias estimation method. Besides the
proposed algorithm, we also evaluate the performance of the five other algorithms that are
able to estimate gyroscope bias.
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Figure 3.25: Execution time for one update step on an AMD Ryzen 5 3600 CPU vs. orientation
estimation RMSE (weighted average over all datasets) for the proposed VQF and all state-of-the-art
algorithms. Accuracies vary largely, and execution times mainly depend on the programming
language used for implementing the algorithm. The execution time of VQF is in the same order of
magnitude as for the other algorithms implemented in C++, while the errors are clearly smaller.

For the BROAD and Sassari datasets, we derive a ground truth for the gyroscope bias by
averaging the gyroscope measurements during the rest phases at the beginning and at the end
of each trial and linearly interpolating in between to account for slow changes in bias. For each
IOE algorithm, we calculate the root-mean-square over time of the residual bias norm, i.e., of
the norm of the difference between the estimated bias and the true bias. Figure 3.26 shows
the achieved relative reduction of the gyroscope bias, the true bias norm, and the residual bias
norm, averaged over all trials for each dataset. Since the proposed VQF and the literature
method VAC use rest detection for bias estimation, while the other algorithms do not, we also
test the performance of all algorithms on a cut version of the BROAD dataset, in which the
initial and final rest phases were removed.

For the proposed algorithms VQF and OfflineVQF, we present the bias estimates obtained
with the default parameters. For the existing methods, the parameters that yield the best
orientation estimation results often do not yield the best bias estimates. We therefore optimize,
separately for each dataset, all parameters of all literature methods (except MKF) across the
search grid presented in Table 3.4, such that the bias estimation error is minimized. Despite
this disparity, the proposed method clearly outperforms the bias estimation methods of all
other IOE algorithms. Even though the results obtained with the cut BROAD dataset are
worse than for the datasets with long rest phases, the proposed method is still able to reduce
the bias by 39 %, while the best literature method only achieves a reduction of 18 %. As
with orientation estimation, using the OfflineVQF variant further improves the accuracy in
comparison to the real-time capable VQF algorithm. MKF only achieves a slight reduction of
gyroscope bias for the Sassari dataset, while for BROAD the bias norm increases compared to
the original bias found in the measurement data.

66



3.7 Evaluation of the Proposed IOE Algorithm
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Figure 3.26: Bias estimation results for different IOE algorithms. Green bars and percentages
indicate the reduction of the bias norm with respect to the true bias contained in the measurement
data. For all datasets, VQF with default parameters surpasses the best possible performance of
the existing algorithms. Using the OfflineVQF variant further improves accuracy.
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Figure 3.27: Behavior of the bias estimation method for the first 60 seconds of trial 4 of the
BROAD dataset (undisturbed slow rotation with breaks, initial rest cut). During motion, the
estimated bias slowly converges toward the true value. Once rest is automatically detected by
Algorithm 2, the convergence speed increases, and the error and the estimation uncertainty suddenly
drop.

To illustrate how the bias estimation method of VQF works, Figure 3.27 shows the estimated
bias, the estimation error, and the estimation uncertainty for an exemplary trial of the BROAD
dataset. It can be seen that the bias estimation method works as intended: During the initial
motion phase, the estimated bias slowly converges to the true bias. Once rest is automatically
detected, the alternative update is used, causing the estimate to rapidly converge.

In summary, both in a systematic comparison and in an exemplary case study, the proposed
gyroscope bias estimation method was found to work reliably and to clearly outperform existing
bias estimation approaches.

67



3. Versatile Inertial Orientation Estimation Algorithm

−100

0

100

magnetometer measurements m [µT]

mx my mz ‖m‖

0

10

20

RMSE: 1.8°
RMSE: 6.1°

max: 3.7°

max: 20.0°
orientation error with and without magnetic disturbance rejection [°]

with mag. dist. rejection
without mag. dist. rejection

0 20 40 60 80 100 120 140
time [s]

−40

0

40

mag. dist. detected by VQF

true heading disturbance of the local magnetic field (derived with OMC data) [°]

Figure 3.28: Performance of the magnetic disturbance rejection method for trial 37 of the
BROAD dataset (disturbed office environment). Whenever magnetic disturbances are detected by
Algorithm 3 (light red background), the magnetometer-based correction is automatically disabled.
In comparison to the same algorithm with disabled magnetic disturbance rejection, the RMSE is
considerably reduced, and the large error peak of 20° is avoided.

3.7.6 Magnetic Disturbance Rejection

To further illustrate the difference in performance between the proposed BasicVQF and VQF
algorithms, we now take a brief look at the performance of the magnetic disturbance detection
and rejection method. Figure 3.28 shows the behavior of this extension on an example of
the BROAD dataset. For the sake of evaluation, OMC data was used to determine the true
disturbance of the local magnetic field caused by ferromagnetic material and electric devices
in the office environment. This ground truth information shows that the detection is triggered
whenever disturbances are present. Without magnetic disturbance rejection, the orientation
estimation error reaches a maximum of 20.0°, and the RMSE is 6.1°. In contrast, enabling
magnetic disturbance rejection reduces the maximum error to just 3.7° and the RMSE to 1.8°,
which translates to an at least three times better accuracy. This example demonstrates how
the optional magnetic disturbance rejection can improve the reliability of 9D IOE in real-world
scenarios inside buildings, near ferromagnetic material and electric devices.

3.7.7 Summary of the Results

The proposed VQF algorithm achieved an average RMSE of 2.9° for 9D IOE, while the average
errors obtained with state-of-the-art methods range from 5.3° to 16.7°. For 6D IOE, VQF
attained an average RMSE of 1.1°, compared to 2.4°–6.3° obtained with existing methods, and
it achieved even 17 % lower errors than a neural network that was trained on large portions
of the benchmark data. For the 13 characteristic trial groups of the BROAD dataset, the
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proposed method outperforms even the best-performing literature method for all seven motion
characteristics and for four out of six disturbance characteristics. Furthermore, the gyroscope
bias estimation of VQF clearly outperformed all existing state-of-the-art literature methods
and compensated ∼ 90 % of the bias. Even for the challenging case without rest phases, the
bias could still be reduced by ∼40–60 %, while the existing algorithms barely achieved any bias
reduction. For an exemplary case in a simulated office environment, the magnetic disturbance
rejection algorithm was shown to achieve a five-fold reduction of the maximum orientation
error.

Even the variant BasicVQF, without bias estimation and magnetic disturbance rejection,
was shown to provide clearly more accurate 9D orientation estimates than all state-of-the-art
methods. For applications in which real-time capability is not required, the variant OfflineVQF
can be used to further increase accuracy.

3.8 Conclusions

This chapter introduced a novel IOE algorithm that simultaneously performs 6D and 9D sensor
fusion, estimates gyroscope bias, and performs magnetic disturbance detection and rejection.
An open-source implementation is provided in C++, Python, and Matlab, making it easy to
use the algorithm.

The validation of novel IOE algorithms is typically performed with not-openly-available
application-specific datasets that only contain certain types of motions. This makes it difficult
to compare performance across different algorithms, to gain insight into the robustness of
different algorithms in a broad range of scenarios, and to investigate the influence of tuning
parameters. There is a lack of publicly available datasets that are suitable for robust IOE
accuracy evaluation.

The proposed BROAD benchmark contributes toward filling this gap, both for the evaluation
of the proposed IOE algorithm VQF and for a range of other potential applications. In contrast
to previously published datasets, it encompasses a wide range of undisturbed motions as well
as motions in disturbed environments. As shown in the exemplary case study with two widely
used orientation estimation algorithms, this benchmark dataset allows for

1. the determination of robust algorithm parameters for a given IOE algorithm that perform
well for a broad range of motions and environmental conditions,

2. an in-depth analysis of strengths and weaknesses of a given IOE algorithm in different
scenarios, while considering heading and inclination separately,

3. a detailed comparison of the performance of different algorithms with respect to a wide
range of possible application and motion scenarios,

4. an objective comparison of different literature algorithms as well as targeted development
of new algorithms with improved performance by using the well-defined benchmark
metrics described in Section 3.4.6.

The BROAD benchmark is particularly useful for the objective assessment of IOE algorithms
across different types of motions and environmental conditions. Therefore, together with five
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other publicly available datasets, it provided the main dataset used for the evaluation of the
proposed IOE algorithm in comparison with eight other IOE algorithms. As summarized in
Section 3.7.7, the proposed algorithm VQF consistently provided the best performance, both
for 6D and 9D orientation estimation, as well as for gyroscope bias estimation, and it proved
capable of magnetic disturbance rejection.

The proposed method provides a highly accurate out-of-the-box performance, which means
that – unlike existing literature methods – VQF requires no parameter tuning for a vast range
of motions and application scenarios. For rare edge cases, the proposed method facilitates easy
and intuitive tuning via the time constants τacc and τmag.

The achieved improvements in ease of use and in orientation estimation accuracy are
expected to advance the broad field of inertial motion tracking by enabling more accurate
IMU-based position and velocity estimation, joint angle estimation, and 3D visualization. This,
in turn, leads to improved performance in many existing application areas of miniature inertial
sensor technology, and it likewise facilitates the applicability in novel application domains with
increased accuracy demands.

To further broaden the development of robust and accurate IOE algorithms for human
motion analysis, future research should aim at complementing the BROAD dataset by adding
existing or newly recording data from human motion trials with a reliable, synchronized, and
aligned optical ground truth as well as recordings obtained with different IMU hardware.

Besides employing the VQF algorithm in various applications (for example in Chapters
4, 5, and 6), future work on the IOE algorithm should focus on integrating continuous and
automatic magnetometer calibration.
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4
Automatic Anatomical Calibration via

Kinematic Constraints

After estimating sensor orientations, e.g., with the algorithm introduced in the previous
chapter, a common next step in inertial human motion tracking is the derivation of segment
orientations based on a physiologically meaningful segment coordinate system. To avoid
the need for laborious and error-prone precise calibration motions or manual precise sensor
placement, this chapter introduces methods for automatic anatomical calibration (also known
as sensor-to-segment calibration) by exploiting kinematic constraints of joints with two degrees
of freedom (DoF).

Text, figures, and tables found in this chapter have been previously published, with slight
modifications, in the following works:

[91] D. Laidig, P. Müller, and T. Seel. “Automatic Anatomical Calibration for IMU-based
Elbow Angle Measurement in Disturbed Magnetic Fields”. In: Current Directions in
Biomedical Engineering 3.2 (2017), pp. 167–170. doi: 10.1515/cdbme-2017-0035.

[92] D. Laidig, I. Weygers, and T. Seel. “Self-Calibrating Magnetometer-Free Inertial
Motion Tracking of 2-DoF Joints”. In: Sensors 22.24 (24 Dec. 2022), Article 9850. issn:
1424-8220. doi: 10.3390/s22249850.

While the rotation-based constraint was first published in [91], most of the content of this
chapter is based on the more extensive description found in [92].

4.1 Introduction

In order to derive anatomically meaningful kinematic quantities, e.g., joint angles, from IMU
measurements, the orientation of each IMU with respect to its body segment must be known, as
illustrated in Figure 4.1. Even small misalignments between the assumed and actual orientation
of the IMUs on the body lead to errors in the obtained kinematic quantities. To ensure accurate
motion tracking, it is therefore desirable to accurately determine this orientation.
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Figure 4.1: Anatomical calibration, also called sensor-to-segment calibration, is the task of
determining how the IMUs are attached to the body segments. To be more specific, the rotations
between the IMU coordinate systems S1,2, defined by the sensor housing, and the corresponding
body segments B1,2, defined by anatomical axes such as the joint axes j1,2, have to be determined.
Conventional methods rely on precisely defined calibration movements and poses, whereas the
proposed methods use kinematic constraints to derive this information from arbitrary joint motion.

In practice, this is often achieved by manual placement of the IMUs on the respective body
segments in a specified orientation [93], which is error-prone, especially when the attachment
of sensors is to be performed by patients or by non-medical personnel.

An alternative is to employ a procedure that determines the orientation of each IMU with
respect to its body segment based on data measured by the sensors. This procedure is called
anatomical calibration or sensor-to-segment calibration, which is not to be confused with sensor
calibration. Sensor calibration determines parameters such as scaling and bias in order to
increase the accuracy of the sensor orientation estimates. Anatomical calibration determines
how the sensors are attached to the body segments to ensure that the rotation axes used for
calculating joint angles match the anatomical axes of joint rotation.

As detailed in Section 4.2, anatomical calibration traditionally relies on precisely defined
calibration poses or motions. Less restrictive approaches aim for anatomical calibration based
on arbitrary joint motion. Such approaches have been proposed for (approximate) hinge joints
[94, 95]. In the following, we consider the more challenging case of 2-DoF joints, such as the
elbow joint (capable of flexion/extension and pronation/supination), the metacarpophalangeal
joints (MCP) of the finger (capable of flexion/extension and adduction/abduction), or the
ankle joint (capable of plantar-/dorsiflexion and inversion/eversion). This chapter introduces
methods for self-calibrating joint angle tracking that

• use two kinematic constraints for 2-DoF joints, one that must be fulfilled by the angular
rates and a constraint that must be fulfilled by the relative segment orientations at any
time and for any motion,

• do not make use of magnetometer measurements and are therefore insensitive to magnetic
disturbances (otherwise, temporary magnetic disturbances could permanently deteriorate
accuracy until calibration is repeated),

• instead simultaneously estimate the heading offset to facilitate magnetometer-free joint
angle tracking.

The methods are evaluated based on two experiments. The first experiment, with a known
sensor attachment as ground truth, compares a simple and a complex motion and is used
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to show that estimation over a short time window of just ten seconds of joint motion yields
plausible and consistent joint axes. The second experiment, with OMC as ground truth, is used
to validate that the proposed self-calibrating joint angle tracking provides the same accuracy
as a conventional IMU-based approach while being less restrictive.

4.2 State of the Art in Anatomical Calibration

Anatomical calibration is the task of determining how the IMUs are attached to the body
segments. In a broader sense, this also encompasses the pairing of IMUs to body segments
[96, 97] and the estimation of joint center positions [98, 99, 100, 101]. The most relevant
aspect, however, is to determine how the sensor coordinate system is rotated with respect to
anatomical body segment axes (cf. Figure 4.1). In order to uniquely define this orientation, the
coordinates of two anatomical axes need to be known in the sensor frame (or vice versa). Since
errors in the sensor-to-segment orientations lead to kinematic cross-task and thus directly cause
errors in the obtained joint angles [102, 103, 104], the reliability and accuracy of anatomical
calibration methods are of fundamental interest in IMU-based motion analysis.

There are four main approaches for how to deal with the need for sensor-to-segment
alignment in IMU-based human motion analysis [93]:

1. relying on a precisely defined sensor attachment (assumed alignment),

2. calibration via measurements from additional devices (augmented data),

3. calibration based on precisely defined poses or motions (functional alignment),

4. calibration from arbitrary motions (model-based alignment).

Using a precisely defined attachment of the sensors on the body is a common approach and,
according to the survey by Vitali et al. [93], used by 42 % of recent publications. The advantage
of this approach is that it is simple to implement and only requires minimum effort from the
subject, i.e., no extra calibration movements are required. However, placing the sensors on the
body so that predefined sensor axes correspond to functional joint axes is error-prone even for
experienced medical personnel and even more so when patients themselves attach the sensors.
In a study with three operators, Bouvier et al. [105] report reproducibility in the range of 4°
to 12° and agreement with OMC in the range of 8° to 23°.

An example of an augmented data method for anatomical calibration is the use of an
additional custom device equipped with an IMU that is used to determine the sensor orientation
with respect to anatomical landmarks [106, 107].

The third approach is to ask the subject to assume precisely defined postures or perform
a sequence of precisely defined motions. In the simplest form, this consists of a single pose
calibration, often in the N-pose or T-pose [108, 109, 110, 111], and requires magnetometers in
order to be able to define two axes from one pose. A magnetometer-free alternative is to use
two poses, e.g., one standing up and one lying down [112], or to derive the anatomical axes
from angular rate measurements of precisely defined motions, typically around the functional
axes of the joint [113, 114, 115]. Often, both approaches are combined, and one axis is derived
from a static pose and one from a functional motion. Those hybrid approaches have been
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demonstrated for the upper body [116, 117] and lower body [118, 119, 120]. For thorax and
lumbar joint angles, however, a recent study by Cottam et al. [121] found that calibration
via functional motions did not improve accuracy in comparison to relying on manual sensor
placement. Bouvier et al. [105] observe similar accuracy for precise attachment and for
various calibration approaches based on precise poses and motions and point out that accuracy
depends more on the rigor of the experimental procedure and operator training than on the
calibration method. Furthermore, performing those motions can be tedious for the subject,
especially considering that a precise execution is required. For patients with motor disabilities,
performing precise motions can be hard or impossible. Even after solving those obstacles,
the main drawback of those methods is that the accuracy of the calibration depends on the
accuracy of performing the motion. An elegant recent approach is to use the actual motions of
interest for calibration, e.g., during cycling [122] or walking [123]. However, this is only feasible
in a limited amount of applications and relies on strong assumptions on the analyzed motions.

In many cases, e.g., clinical applications, it would render the use of IMUs much more
practical if both a precisely known attachment and precisely specified calibration poses and
motions could be avoided by determining the sensor-to-segment orientations from arbitrary
motions, usually by relying on kinematic constraints of biomechanical models. This was
demonstrated for the knee joint by exploiting a kinematic constraint in the angular rates of
(approximate) hinge joints [94, 99]. Furthermore, it was shown that extending this constraint
for a combined optimization of a three-segment chain improves robustness [124] and that
other methods, such as principal component analysis [125] and factor graph optimization
[126, 127], can be used to exploit hinge joint constraints. In [95, 128], the gyroscope-based
hinge joint constraint introduced in [99] and an accelerometer-based constraint are combined
with an elaborate sample selection strategy, and in [129], both constraints are analyzed for
observability of the joint axis. Taetz et al. [130] introduce an approach based on sliding-window
weighted least-squares optimization that uses hinge-joint and range-of-motion constraints and
a body-shape prior to simultaneously estimate the sensor-to-segment orientation along with
the body motion. Zimmermann et al. [97] demonstrate that deep learning can be used for
lower body anatomical calibration from just two seconds of walking data.

For anatomical calibration based on arbitrary motions of 2-DoF joints, the existing work
is limited. Müller et al. [131] introduce a gyroscope-based kinematic constraint for 2-DoF
joints such as the elbow. Norden et al. [132] demonstrate that the same constraint can be
employed for real-time estimation of hip and knee joint axes. However, the constraint used
in both [131] and [132] assumes knowledge of the relative sensor orientation and therefore
requires magnetometers. This poses a severe limitation for the applicability of those methods in
indoor environments [38] and implies that temporary magnetic disturbances during calibration
can lead to wrong joint axis estimates and thus permanently deteriorate the accuracy of the
obtained joint angles.

4.3 Kinematic Model of 2-DoF Joints

The methods proposed in this chapter perform automatic anatomical calibration for joints
with two degrees of freedom (DoF). Those methods are suitable for any 2-DoF joint and can
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be applied to a range of biological or robotic 2-DoF joints. To improve comprehensibility, the
following description of the kinematic model and the calibration method focuses on the human
elbow joint as an exemplary joint, which is later also used in the experimental evaluation.

Furthermore, even though in the following we always only consider two body segments
connected by a single joint, the proposed methods can be used to analyze longer kinematic
chains consisting of multiple segments. In this case, the calibration methods can be applied to
each pair of segments that are connected by a 2-DoF joint.

Figure 4.2 shows an anatomical model of the elbow joint as an exemplary biological 2-DoF
joint. This joint can perform two functional motions. Flexion and extension (FE) are performed
by the humeroulnar joint, while pronation and supination (PS) are the result of the radius
pivoting around the ulna.

j1 (FE)

j2 (PS)

B1 (upper arm) B2 (forearm)

humerus
radius

ulna

Figure 4.2: Anatomical model of the elbow joint. The humeroulnar joint is a hinge joint with
the rotation axes j1, allowing for flexion and extension (FE). The radioulnar joint also has one
degree of freedom (j2) and allows for pronation and supination (PS). In this chapter, we refer to
the combined joint with two degrees of freedom as elbow joint.

As an approximation, we can model this joint – as well as any other 2-DoF joint – as a
kinematic chain consisting of two hinge joints and one fixed rotation in between, as depicted
in Figure 4.3. Including the fixed rotation, the sequence of rotations consists of flexion and
extension (FE), a fixed carrying angle [47], and pronation and supination (PS).

(a)

(b)

j1 (FE)

j2 (PS)

B1 (upper arm)

B2 (forearm)

S1

S2

carrying angle β0

B1

B2

S1

S2

j1

j2

Figure 4.3: (a) Geometric kinematic model of the elbow joint. Inertial sensors S1 and S2 are
placed in arbitrary orientation on the upper arm B1 and forearm B2. Upper arm and forearm are
connected by two hinge joints that allow for FE (j1) and PS (j2). (b) View onto the j1-j2 plane.
The fixed rotation between FE and PS is called carrying angle.
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Mathematically, we can express the orientation of the forearm B2 relative to the upper
arm B1 using the FE joint angle α(t), the carrying angle β0, and the PS angle γ(t) as

B2
B1

q = (α(t) @ j1)⊗ (β0 @ j1 × j2)⊗ (γ(t) @ j2) . (4.1)

The ISB [47] also recommends this joint model for the elbow and precisely defines coordinate
systems B1 and B2 so that [j1]B1

= [ 0 0 1 ]⊺ and [j2]B2
= [ 0 1 0 ]⊺. When using this definition,

the joint angles are intrinsic z-x′-y′′ Euler angles of B2
B1

q. Please note that this also means that
the axis j1 (FE) is fixed in the coordinate system of a sensor attached to the upper arm, while
the axis j2 (PS) is fixed in the coordinate system of a sensor attached to the forearm.

Instead of using regular Euler angles, we could consider modeling a 2-DoF joint with
axes that are all potentially non-orthogonal (including the carrying angle axis). However,
as Appendix B.1 shows, any generic model with non-orthogonal axes can also be expressed
using standard z-x′-y′′ Euler angles by redefining the segment coordinate systems accordingly.
This means that the choice of z-x′-y′′ Euler angles according to the ISB recommendations
[47] does not restrict the generality of the proposed methods. Also, note that the orientation
of the IMUs on the body segments is independent of this definition. The goal of anatomical
calibration is to determine the fixed coordinates j1 and j2 of the functional joint axes in the
local coordinate systems of the respective IMUs.

4.4 Proposed Methods for Anatomical Calibration

Two IMUs S1 and S2 are placed on the subject in unknown orientations, one on each body
segment connected by the 2-DoF joint (i.e., in case of the elbow, one on the upper arm and
one on the forearm). Assume that we can estimate the sensor orientation quaternions S1

Eq(tk),
S2

Eq(tk) relative to a common inertial frame E . We also measure the angular rates ω1(tk) ∈ R3,
ω2(tk) ∈ R3 of the IMUs, in their respective local coordinate systems. All measurements
are sampled at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0. Note that the assumption of a
common reference frame E is restrictive in practice as it assumes 9D sensor fusion in a perfectly
homogeneous magnetic field and will later be dropped.

In the following, we derive two different kinematic constraints for 2-DoF joints, one based
on the joint rotation and one based on the relative segment orientations. Both constraints are
suitable for 6D sensor fusion with unknown heading offset. Given a short sequence of recorded
IMU data, we use the Gauss-Newton algorithm to determine the joint axis coordinates in the
sensor frame and the heading offset that best fit either the rotation-based or the orientation-
based constraint in a least-squares sense. We use these joint axis coordinates to determine
segment orientations from the sensor orientations and use the heading offset to align the
reference frames of the 6D orientations. From this result, we calculate the relative segment
orientation, which we then decompose via Euler angles to obtain magnetometer-free estimates
of the joint angles.
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4.4.1 Rotation-Based Kinematic Joint Constraint

As shown in Section 4.3, a 2-DoF joint cannot perform arbitrary joint rotation in all directions.
Instead, rotation is only possible around the two joint axes. In the following, we will investigate
how this translates to a kinematic constraint in the angular rates measured by the two IMUs.
We will later exploit this constraint to estimate joint axes from arbitrary joint motion.

Using the addition theorem for angular velocities, we express the relationship between the
gyroscope measurements ω1(tk) and ω2(tk) as

[ω2]E = [ω1]E + ωj1 [j1]E + ωj2 [j2]E . (4.2)

The scalars ωj1 and ωj2 are the rotation rates of the joint around the respective joint axes. In
case of joints with two degrees of freedom according to the model in Figure 4.3, this corresponds
to the anatomical joint motions, i.e., in case of the elbow, ωj1 is the FE angular rate and ωj2

the PS angular rate. In other words, the angular rate ω2 measured by the forearm IMU S2 is
composed of three components:

1. the common rotation of the whole arm, also observed by IMU S1 as ω1,

2. the FE rotation ωj1 around j1,

3. the PS rotation ωj2 around j2.

Note that the carrying angle does not appear since it is time-invariant. Also note that in (4.2),
the angular rates and joint axes are transformed into a common coordinate system, here E .

Let us first take a look at hinge joints, for which a similar constraint has already been
proposed in [94]. For hinge joints, there is only one rotation axis, which has different coordinates
in both sensors’ local coordinate systems depending on how the sensors are placed on the body,
i.e., j1 ̸= j2. However, when transforming those axes into the global frame, the coordinates are
the same, i.e., [j1]E = [j2]E =: [j]E . Therefore, we can write

[ω1]E + ωj1 [j]E = [ω2]E − ωj2 [j]E . (4.3)

Taking the cross product with [j]E on both sides yields

[ω1]E × [j]E = [ω2]E × [j]E , (4.4)

and when only considering the Euclidean norm, we can calculate the cross product using local
sensor coordinates and obtain the constraint as given in [94]:

∥ω1 × j1∥ − ∥ω2 × j2∥ = 0. (4.5)

Since this version of the constraint only uses quantities given in local sensor coordinates, it
is independent of sensor orientations with respect to a fixed frame and thus not affected by
magnetic disturbances.

For joints with two degrees of freedom, we need to know the relative sensor orientation
or sensor orientations with respect to a common fixed frame. In order to derive a similar
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constraint from (4.2) for 2-DoF joints, we calculate the scalar product with the normalized1

axis [j1]E × [j2]E on both sides, i.e.,

([ω2]E − ωj2 [j2]E) · [j1]E × [j2]E
∥[j1]E × [j2]E∥

= ([ω1]E + ωj1 [j1]E) · [j1]E × [j2]E
∥[j1]E × [j2]E∥

(4.6)

and employ the fact that a · (a × b) = a · (b × a) = 0. This yields

([ω1]E − [ω2]E) · [j1]E × [j2]E
∥[j1]E × [j2]E∥

= 0. (4.7)

For perfect 2-DoF joints and ideal IMU measurements, this constraint must be fulfilled for each
sampling instant. For biological joints, and when taking soft tissue motion and measurement
errors into account, the constraint is still valid in a least-squares sense when considering a
short motion sequence consisting of multiple samples.

However, the constraint as formulated in (4.7) uses the reference frame E and is only suitable
for use in combination with 9D IOE, i.e., with the use of magnetometers. Since magnetic fields
are often severely disturbed [38], we want to avoid using magnetometer measurements and
therefore only employ 6D sensor fusion to estimate the sensor orientations, e.g., using the VQF
algorithm proposed in Chapter 3. This implies that the heading of the estimated orientations
is not well-defined. Mathematically, this can be described by the estimated orientations S1

E1
q

and S2
E2

q being given in different global reference frames E1 and E2, which are rotated around
the vertical global z-axis, i.e.,

E2
E1

q= (δ(t) @ [ 0 0 1 ]⊺) =
[︂
cos

(︂
δ(t)

2

)︂
0 0 sin

(︂
δ(t)

2

)︂]︂⊺
. (4.8)

The heading offset δ(t) has an unknown initial value and then slowly drifts due to gyroscope
bias. Please note that both E1 and E2 have some unknown heading offset with respect to the
fixed frame E used in 9D sensor fusion and defined by gravity and the Earth’s magnetic field.
However, knowing those individual offsets is not necessary for calculating relative orientations
and joint angles.

We take the heading offset into account by evaluating the constraint (4.7) in one of the
slowly-drifting global frames (here E1), i.e.,

(︂
[ω1]E1

− [ω2]E1

)︂

⏞ ⏟⏟ ⏞
=: ωrel

·
[j1]E1

× [j2]E1⃦⃦
⃦[j1]E1

× [j2]E1

⃦⃦
⃦

⏞ ⏟⏟ ⏞
=: jn/∥jn∥

= 0. (4.9)

This version of the constraint implicitly depends on δ, as we need the quaternion S2
E1

q =
E2
E1

q(δ)⊗ S2
E2

q to transform ω2 and j2 into E1 coordinates. This means that instead of (4.7) we
can use (4.9) with magnetometer-free 6D orientations and that, in addition to the joint axes
coordinates, we also identify the current heading offset δ(t) as an additional parameter.

1Normalizing the axis was found to improve robustness compared to the constraint presented in [91].
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4.4.2 Orientation-Based Kinematic Joint Constraint

As an alternative, we derive a second kinematic joint constraint. In contrast to the constraint
introduced in the previous section, this constraint is not based on the joint rotation but on
the joint orientation, i.e., the relative orientation between the two body segments connected
by the joint.

As in Section 4.4.1, assume that we have 6D sensor orientation estimates S1
E1

q(tk), S2
E2

q(tk),
e.g., estimated with the VQF algorithm proposed in Chapter 3. As before, our aim is to
identify [j1]S1

, [j2]S2
, and the heading offset δ(t). For any given estimate of those values, we

are able to calculate joint angles. If the joint follows the 2-DoF joint model introduced in
Section 4.3, the following statement holds true: With the correct sensor-to-segment orientation
and the correct heading offset, the second joint angle (for the elbow joint: the carrying angle)
is constant.

Mathematically, we can formulate this by calculating the joint orientation and then
decomposing this orientation into Euler angles. First, we determine the shortest-possible
rotations that align the estimated joint axes in sensor coordinates with the defined joint axes:

B1
S1

q =
(︂
arccos

(︂
[ 0 0 1 ]⊺ · [j1]S1

)︂
@ [ 0 0 1 ]⊺ × [j1]S1

)︂
, (4.10)

B2
S2

q =
(︂
arccos

(︂
[ 0 1 0 ]⊺ · [j2]S2

)︂
@ [ 0 1 0 ]⊺ × [j2]S2

)︂
(4.11)

and calculate the rotation quaternion between the reference frames

E2
E1

q = (δ@ [ 0 0 1 ]⊺) . (4.12)

Using those quaternions, we calculate the joint orientation

B2
B1

q = S1
B1

q ⊗ E1
S1

q ⊗ E2
E1

q ⊗ S2
E2

q
⏞ ⏟⏟ ⏞

=S2
S1

q

⊗ B2
S2

q, (4.13)

which depends on the sensor orientations, the estimated joint axes j1 and j2, and the heading
offset δ.

Therefore, B2
B1

q =: [ qw qx qy qz ]⊺ can be calculated from the measured data and the
estimated parameters. The second intrinsic z-x′-y′′ Euler angle of this quaternion, i.e., the
estimated carrying angle, is

β̂0 = arcsin (2qwqx + 2qyqz) . (4.14)

Due to the joint constraint, this angle has to be constant over the whole measurement window,
i.e., with the fixed constant carrying angle β0,

arcsin (2qwqx + 2qyqz) = β0. (4.15)

Similar to (4.9), the constraint (4.15) can be used to identify the joint axes coordinates and
the heading offset δ. Additionally, unless the actual value of the carrying angle β0 is known,
β0 has to be identified as an additional parameter.
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4.4.3 Parametrization of Joint Axes

The aim of the anatomical calibration is to identify the joint axes j1 ∈ R3 and j2 ∈ R3 with
∥ji∥ = 1, i = 1, 2. Parametrizing the axes as Cartesian vectors in an optimization problem is
inconvenient as we would need an additional constraint to ensure unit length. Therefore, we
employ spherical coordinates and represent each axis by two parameters φi and θi, e.g.,

ji = [ sin θi cosφi sin θi sinφi cos θi ]⊺, i = 1, 2. (4.16)

With the parametrization given in (4.16), ∂ji
∂φi

= 0 if sin θi = 0. To avoid this singularity,
we introduce an alternative spherical representation of the same joint axis vector, as shown
in Figure 4.4. During optimization, we always use a parametrization with | sin θi| ≫ 0 by
converting the axis to Cartesian coordinates and then to the other representation whenever
the current representation comes close (< 30°) to that singularity.

ji =




sin θi cosϕi

sin θi sinϕi

cos θi


 ji =



ji,x

ji,y

ji,z


 ji =




cos θi

sin θi sinϕi

sin θi cosϕi




|sin θi| < 1
2

|sin θi| < 1
2

Figure 4.4: Two spherical parametrizations are used to represent the joint axes ji, i = 1, 2, with
two parameters each, θi and φi. To avoid the derivative becoming close to zero, we convert the
respective axis to Cartesian coordinates and then to the other representation whenever | sin θi| < 0.5.

Note that both spherical parametrizations represent exactly the same 3D vector. Therefore,
changing the parametrization in between optimization iterations does not influence the joint
axis vectors or the value of the cost function but ensures that the derivatives with respect to
the joint axis parameters are always sufficiently sensitive.

4.4.4 Cost Function and Optimization

Sample selection is performed to fill a sample buffer of M data sets
{︂

S1
E1

q(tk), S2
E2

q(tk), [ω1 ]E1
(tk), [ω2 ]E2

(tk)
}︂

(4.17)

for the rotation-based constraint and
{︂

S1
E1

q(tk), S2
E2

q(tk)
}︂

(4.18)

for the orientation-based constraint from the 6D orientation quaternions and angular rates
measured at a (potentially very high) sampling frequency of fs. The proposed method employs
a regular (equidistant) sample selection strategy that stores one sample every 0.05 s. Note that
this method can easily be extended by more sophisticated sample selection strategies since the
optimization procedure does not require equidistant sampling.

In order to determine the joint axes and heading offset that best satisfy the rotation-based
constraint (4.9) in a least-squares sense, we define the error for each sampling instant tk as

e(Φ, tk) := ωrel(δ, tk) ·
jn(Φ, tk)
∥jn(Φ, tk)∥

, (4.19)
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with the parameter vector Φ := [ θ1 φ1 θ2 φ2 δ ]⊺. Note that we assume the heading offset
δ(t) to be constant for all samples in the current buffer, which is valid for short window lengths.

Similarly, for the orientation-based constraint (4.15), we define the error as

e(Φ, tk) := arcsin (2qwqx + 2qyqz)− β0, (4.20)

with a parameter vector Φ := [ θ1 φ1 θ2 φ2 δ β0 ]⊺ that additionally includes the carrying
angle.

To estimate the joint axes j1 and j2 and the heading offset δ given a set of M samples, we
find the parameter vector Φ̂ that minimizes the sum of squares of either the error defined in
(4.19) (for the rotation-based constraint) or (4.20) (for the orientation-based constraint), i.e.,

Φ̂ = arg min
Φ

∑︂

tk∈B
e(Φ, tk)2 = arg min

Φ
e(Φ)⊺e(Φ), (4.21)

with e ∈ RM×1 being the error vector and B denoting the set of M sampling times tk in the
buffer.

For any given parameter vector, we can evaluate the Jacobian J with

[J]ij = ∂ei
∂Φj

. (4.22)

Analytical expressions for all elements of J that only depend on the parameters Φ and on the
measurements are given in Appendix B.2 for the rotation-based constraint and in Appendix B.3
for the orientation-based constraint.

The Gauss-Newton algorithm [133] is used to minimize the error. Starting with an initial
parameter vector Φ0, we iteratively obtain the estimate by

Φl+1 = Φl + αpl with J⊺Jpl = J⊺e (4.23)

until convergence is achieved, with the iteration index l ∈ N, the step direction pl , and the
step length α = 1. In between iterations, we switch from one joint axis representation to the
other via Cartesian coordinates if | sin θi| < 1

2 , i = 1, 2 (cf. Section 4.4.3).
Note that the proposed optimization method can not only be applied to recorded datasets

but is also suitable for real-time application. In the simplest case, samples are saved while
the subject performs a motion, and afterward, the optimization is performed on the stored
samples, and the resulting calibration parameters are applied to all subsequent samples. For
an improved online implementation that continuously updates the axes estimates (if desired)
and that starts to provide estimates as early as possible, the method can be extended to the
following moving window approach:

1. New samples are continuously selected every 0.05 s and stored in a ring buffer containing
M = 200 data sets, i.e., old data sets are automatically discarded.

2. As soon as the buffer is half full, optimization starts.

3. One Gauss-Newton step is performed every time a sample is added to the buffer (to
continuously update the solution while spreading the computational load over time).
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Note that it is also possible to keep the parameters for the joint axes θ1, φ1, θ2, and φ2 fixed
after the initial estimate and only track the heading offset δ – a concept that is investigated in
depth in Chapter 5.

Further note that, for the orientation-based constraint, the value of the carrying angle β0

is only included in the parameter vector to provide the necessary degree of freedom in joints
with an unknown carrying angle. The value obtained via the optimization is not used further
for joint angle calculation. If the true carrying angle is known or expected to be zero, it is
equally possible to remove this degree of freedom in the optimization and instead insert a fixed
value or zero into the cost function.

As a result of the optimization step, we obtain the joint axes j1 and j2 in the coordinate
systems of sensors S1 and S2, respectively, and the heading offset δ between the reference
frames E1 and E2.

4.4.5 Joint Angle Calculation

Using the optimization results, we calculate FE and PS joint angles based on the ISB
recommendations [47]. Those joint angles are defined as intrinsic z-x′-y′′ Euler angles of
the forearm B2 relative to the upper arm B1, i.e., B2

B1
q, with B1 and B2 being the segment

coordinate systems as defined in [47].
From 6D IOE, we get the sensor orientation quaternions S1

E1
q and S2

E2
q. After performing the

optimization, we know the coordinates of both joint axes j1 and j2 in local sensor coordinates
and the heading offset δ. Note that additional knowledge is needed to determine the absolute
value of the joint angles without any offset – for example, for the elbow joint, which joint
orientation corresponds to zero flexion and zero pronation is only a matter of convention and
not an inherent property of the 2-DoF joint. To obtain offset-free angles, we employ reference
values of the FE and PS joint angles at one arbitrary time instant tref , e.g., obtained from a
known pose or by exploiting the maximum range of motion of the joint. With those values,
the joint angles can be calculated by the algorithm described below:

First, we calculate E2
E1

q via (4.8) and use this to obtain S2
E1

q = E2
E1

q⊗S2
E2

q. Then we determine
rotations that ensure that the identified joint axes match the joint axes defined in [47]:

B′
1

S1
q = (arccos([0 0 1]⊺ · j1) @ [0 0 1]⊺ × j1) , (4.24)

B′
2

S2
q = (arccos([0 1 0]⊺ · j2) @ [0 1 0]⊺ × j2) . (4.25)

Using those rotations, we calculate the relative segment orientation

B′
2

B′
1
q =

(︂
S1
E1

q ⊗ B′
1

S1
q
)︂−1
⊗ S2

E1
q ⊗ B′

2
S2

q. (4.26)

For any quaternion q =: [ qw qx qy qz ]⊺, the z-x′-y′′ Euler angles (α, β, γ) can be calculated
as

α = atan2(2qwqz − 2qxqy, q2
w − q2

x + q2
y − q2

z), (4.27)

β = arcsin(2qwqx + 2qyqz), (4.28)

γ = atan2(2qwqy − 2qxqz, q2
w − q2

x − q2
y + q2

z). (4.29)
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By calculating z-x′-y′′ Euler angles (α′, β′, γ′) of B′
2

B′
1
q, we obtain the FE angle α′ and the PS

angle γ′ that only differ from the well-defined joint angles according to [47] by a constant offset
that depends on the actual placement of the IMUs.

We can eliminate this offset by exploiting knowledge of the actual joint angles αref and
γref at the time instant t = tref . The segment-to-sensor orientations

B1
S1

q = B′
1

S1
q ⊗ (︁α′(tref)− αref @ [0 0 1]⊺

)︁
, (4.30)

B2
S2

q = B′
2

S2
q ⊗ (︁γref − γ′(tref) @ [0 1 0]⊺

)︁
(4.31)

allow us to calculate B2
B1

q = (S1
E1

q ⊗ B1
S1

q)−1 ⊗ S2
E1

q ⊗ B2
S2

q. The Euler angles (α, β0, γ) of B2
B1

q are
the offset-free FE and PS joint angles α and γ, respectively, and the carrying angle β0 (cf.
Figure 4.3), which is almost constant and rarely reported [47].

4.4.6 On-Chip Sensor Fusion, Soft Tissue Motions, and Axis Ambiguity

In the following, we introduce an optional extension that allows for the rotation-based constraint
to be used when only orientation data is available (e.g., if on-chip sensor fusion is used), add a
low-pass filter to reduce the influence of soft tissue motion artifacts, and discuss options for
how to resolve the ambiguity in the signs of the joint axes.

4.4.6.1 Extension to On-Chip 6D Sensor Fusion

Especially in wireless inertial sensor networks, it is desirable to perform on-chip sensor
fusion, potentially with a high sampling rate of the gyroscopes, and then to only transmit
the orientation quaternions at a regular (and typically much lower) sampling rate to the
processing unit. However, the constraint (4.9) is based on angular rates, i.e., on the gyroscope
measurements.

Instead of transmitting the gyroscope measurements as well, which requires extra bandwidth,
increases power consumption, and might not be possible without changing hardware or
communication protocols, the angular rates can easily be approximated from the change of
orientation

[︂ Si(tk)
Si(tk−1)q

]︂
Ei

= Si(tk)
Ei

q ⊗ Si(tk−1)
Ei

q−1 =: [ qw qx qy qz ]⊺, i = 1, 2, (4.32)

by

[ω(tk)]Ei
= 2
Ts

arccos(qw) [ qx qy qz ]⊺
∥[ qx qy qz ]⊺∥ . (4.33)

Note that due to the order of quaternion multiplication, we already obtain the angular rate in
each sensor’s global frame E i, thus avoiding another transformation step.

Of course, when the gyroscope and accelerometer readings are available, it is equally
possible to perform 6D sensor fusion in the processing unit, e.g., using the VQF algorithm
proposed in Chapter 3, and directly employ the angular rates measured by the gyroscopes for
evaluation of the kinematic constraint. Therefore, this proposed extension is not restrictive
but instead broadens the scope of applicability of the method.
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Note that the orientation-based constraint is already quaternion-based and does not require
any other measurement data. Therefore, employing the proposed extension is not necessary
when using this constraint.

4.4.6.2 Measurement and Soft Tissue Motion Artifact Reduction

Measurement anomalies, such as the sensor accidentally touching objects, or soft tissue motion
can cause artifacts in the measured angular rates ω1 and ω2. This leads to high-frequency
disturbances (compared to the frequency of the functional joint motions) that violate the
rotation-based constraint (4.9) and therefore deteriorate the estimation accuracy. Low-pass
filtering of the angular rates used for evaluating the rotation-based constraint with a cutoff
frequency of fc = 5 Hz improves the accuracy and robustness of the anatomical calibration.

4.4.6.3 Ambiguity in the Signs of the Joint Axes

The joint constraints cannot be used to determine the signs of the joint rotation axes, as
for any pair of axes, the value of the cost function for (j1, j2), (−j1,−j2) and also (j1,−j2) is
exactly the same. Correspondingly, whether, for example, supination is defined as a positive or
negative rotation around an axis pointing proximally along the right forearm is only a matter
of convention and not an inherent property of the 2-DoF joint.

In practical applications, it is essential to ensure that a specific definition is always followed,
e.g., the ISB recommendations [47]. In order to determine the sign, two approaches are
practical: The first is to ensure a sensor placement that is roughly known, i.e., the half-space
in which each joint axis points is predetermined. The second is to exploit the joint’s range of
motion in combination with the offset-removal method described in Section 4.4.5. For example,
by defining that an extended and supinated elbow corresponds to α = 0, γ = 0 and choosing
the signs of the joint axes so that the mean joint angles during calibration are positive, we
ensure that we follow the definitions given in [47].

4.5 Experimental Evaluation

We evaluate the proposed magnetometer-free anatomical calibration and joint angle calculation
methods based on two experiments.

The first experiment is designed to evaluate if the obtained joint axis estimates are plausible
and consistent. To this end, IMU data from two different motions is recorded from five subjects
and a mechanical joint, while carefully attaching the sensors in a known orientation. Each
trial is split into overlapping time windows to which the anatomical calibration methods are
applied. The obtained joint axis estimates are compared to the axes obtained by the more
restrictive method of careful manual sensor placement. Furthermore, this experiment is used
to evaluate the sensitivity of the method with respect to the choice of cutoff frequency, sample
selection frequency, and window duration.

The second experiment is designed for the evaluation of the accuracy of the joint angles
obtained with the proposed self-calibrating magnetometer-free joint angle calculation method.
This experiment consists of recordings of natural everyday life motions of two subjects. It uses
marker-based OMC as a reference, which allows for the comparison of the obtained joint angles
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to joint angles obtained from optical markers and from a conventional 9D IMU-based approach.
As a further validation step, we consider the variability of the expected-to-be-constant carrying
angle as a metric for how well the estimated joint axes describe the functional joint motion.

Note that in all experiments, the sensors are carefully attached in a known orientation to
facilitate a plausibility check of the obtained results. To still verify that the proposed methods
do not make assumptions regarding the sensor orientation, we simulate a random sensor
attachment by multiplying all gyroscope and accelerometer measurements with a random
rotation matrix that is different for each analyzed time window.

The extension for on-chip sensor fusion introduced in Section 4.4.6.1 is always used, i.e.,
the angular rates used for evaluating the rotation-based kinematic constraint are derived from
the orientation estimates. Since the impact on the results is negligible, the results obtained
using the actual gyroscope measurements are not shown separately.

4.5.1 Robustness of Joint Axis Estimation

The first experiment is performed to answer the following two research questions:

1. Are the estimated joint axes plausible, i.e., do they agree with the values expected based
on careful manual placement?

2. Are the estimated joint axes consistent, i.e., do we always obtain the same result when
using different parts of the trial?

Data from five healthy subjects is recorded. The subjects are adult volunteers with no
history of upper-limb injury that might affect upper-limb movement. Inertial sensors (Xsens
MTw, Xsens Technologies B.V., Netherlands) are placed on the upper arm close to the elbow
and on the forearm close to the wrist. The sensors are placed in a defined orientation on the
skin so that one local sensor axis coincides roughly with the functional joint axis.

We define two different motions:

1. The simple motion consists of FE of the elbow and PS of the forearm, performed
alternatingly while keeping the longitudinal axes of upper arm and forearm parallel to
the sagittal plane.

2. For the complex motion, we ask the subject to perform random combinations of FE and
PS, allowing for 3D rotation of the shoulder including humeral rotation.

Each subject performs both motions for approximately one minute.
In addition to the five human subjects, an additional dataset is recorded using a mechanical

joint. This joint has dimensions similar to the human arm and consists of two hinge joints as
shown in Figure 4.3. During the recordings, the joint was held in hand and moved in a way
that mimics the motions performed by the five subjects.

For each recording, the proposed methods are applied to 21 partially overlapping moving
windows w, w = 1, 2, . . . , 21, of length 10 s with data sets taken every 0.05 s. Note that
we will later investigate the effect of window length and sampling time and show that this
window length is usually sufficient to identify the joint axes and that collecting data sets more
frequently does not considerably improve the robustness.
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α
εw

axis obtained
via manual sensor
attachment jatt

estimated
joint axes jw

mean

Figure 4.5: Variability angle εw and misalignment angle α used to evaluate the axis estimation
results. The variability angle εw is the angle between the estimated axis for a single window and
the mean estimate. The misalignment angle α is the angle between the mean estimate and the
axis obtained by careful manual sensor attachment. For a good anatomical calibration method, εw

should be small, showing that the estimates are consistent, and α should be within 30°, showing
that the estimates are plausible.

Since the only available ground truth are approximate axis coordinates that we know due
to the orientation in which the sensor was attached, we define suitable evaluation metrics that
allow us to quantify the consistency and plausibility of the estimates. See Figure 4.5 for an
illustration of the definitions. First, denote the estimated joint axes jw, with w being the index
for the estimation window.2 To assess if the estimates are consistent, we define the variability
angle

εw = ∢(jw, jmean), (4.34)

where ∢ denotes the positive angle between two 3D vectors and

jmean = 1
21

21∑︂

w=1
jw (4.35)

is the mean of all estimates. In other words, εw is the angular deviation between the estimate
for window w and the mean of all estimates. If this angle is always small, the estimation
results agree well for all time windows.

To also check if this result is plausible, we introduce the misalignment angle

α = ∢(jmean, jatt), (4.36)

with jatt being the joint axis obtained via careful manual sensor attachment. Therefore, α
is the angle between the mean estimation result and the axis obtained via manual sensor
attachment. While precise manual sensor attachment is hard and error-prone, we can at least
expect both axes to coincide roughly and therefore consider the result plausible if α ≤ 30°.

Figure 4.6 shows the results obtained in the first experiment with the rotation-based and
orientation-based constraints. In general, we see that the proposed methods for anatomical
calibration produce good results: with both constraints, the methods are able to determine
plausible FE and PS joint axes from 10-second recordings, and in all cases except for Subject
2 with the orientation-based constraint and the complex motion, the median of the variability
angle εw is below 10°. In other words, almost all time windows lead to axis estimates within the

2For a compact notation, we now omit the segment index i = 1, 2, denoting whether the axis is a FE axis or
a PS axis.
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(b) orientation-based constraint
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Figure 4.6: Consistency and plausibility results for the first experiment with the (a) rotation-
based constraint and the (b) orientation-based constraint, for two motion types and for five
human subjects and a mechanical joint (m). The proposed methods estimate plausible axes for
all subjects and all motions. The rotation-based constraint yields more consistent estimates than
the orientation-based constraint, and the simple motion leads to better results than the complex
motion.

upper arm forearm

expected FE axis j1

estimated FE axes j1

expected PS axis j2

estimated PS axes j2

Figure 4.7: 3D visualization of the estimation results for an exemplary trial (Subject 2, simple
motion, rotation-based constraint). The joint axis estimates from all windows agree well (blue
arrows). The PS axis agrees very well with the expected value (red arrow), while for the FE axis
there is a misalignment of 17°, most likely due to imprecise manual sensor attachment.
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expected range. As a main result, it is noticeable that the rotation-based constraint performs
better than the orientation-based constraint and that a slight increase in the variability angles
εw can be observed in the complex motion. This is likely due to soft tissue motion caused by
humeral rotation. Furthermore, the randomness of the complex motion can lead to longer
periods of motion that do not excite both degrees of freedom of the joint.

The results obtained with the mechanical joint agree very well with the expected axes
(α ≤ 2°), and the joint axis estimates are more consistent than for the biological elbow joints.
This is to be expected since precisely attaching the sensors is easier with the mechanical joints,
there are no soft tissue motion artifacts, and the mechanical joint constructed with two hinge
joints follows the kinematic model (Figure 4.3) more precisely than the human elbow.

To facilitate an intuitive understanding of the results, Figure 4.7 shows the estimated and
expected joint axes in a 3D visualization of the respective IMU coordinate systems. We can
see that, for both FE and PS, the joint axis estimates of all time windows agree well. While
the PS axis agrees very well with the axis expected due to sensor alignment, a systematic
disagreement of ∼17° between the estimated and expected FE axes is noticeable. Since all
estimates are very consistent, this is most likely due to an imprecise manual attachment of
the sensor, causing the y-axis of the IMU to disagree with the functional FE axis of the joint.
In general, we see in Figure 4.6 that the misalignment angle α is larger for the FE axis j1

than for the PS axis j2. This is plausible, given the fact that the longitudinal x-axis of the
IMU is easier to precisely align with the longitudinal axis of the forearm, whereas aligning the
y-axis of the upper arm IMU, corresponding to a shorter dimension of the sensor case, with
the functional FE axis was found to be much harder while conducting the experiments.

However, it is noticeable that also for the variability angle εw, the values are typically
larger for the FE axis than for the PS axis, indicating that it is not only harder to perform
a precise manual alignment of this axis but it is also harder for the proposed methods to
accurately and consistently estimate this axis. This effect is especially pronounced for the
complex motion.

To investigate one potential effect, we take a closer look at Subject 2 and the rotation-based
constraint. In the complex motion trials, Subject 2 stands out as the range of motion of the
upper arm IMU is considerably lower than for the other subjects (to be more specific, the
mean pairwise orientation difference within a window is 16° for Subject 2 and between 46°
and 56° for the other four subjects) while the FE axis deviations are larger than for all other
subjects. In Figure 4.8a, we visualize the estimated FE joint axes and notice that all estimates
lie approximately within the y-z-plane of the sensor. During the trial, the x-axis of the upper
arm IMU was approximately vertical, i.e., the y-z-plane was approximately horizontal. When
calculating the angle of the joint axis in this y-z-plane and plotting this angle together with
the estimated heading offset δ in Figure 4.8b, we notice that there is an obvious correlation.

This correlation can be explained when considering the kinematic constraint in (4.9) for
the special case in which the upper arm does not move, i.e., the orientation B1

E1
q is constant,

ω1 = 0, and the coordinates of [j1]E1
are constant. In this case, there is no difference between

a change in δ, i.e., the heading offset between E1 and E2, and a rotation of the joint axis
estimate j1 around the vertical axis. The observation in Figure 4.8 is likely caused by the real
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Figure 4.8: Investigation into the variability of the FE axis estimates (Subject 2, complex motion,
rotation-based constraint). (a) 3D visualization of the axis estimates for all windows. (b) Plot
of the estimated heading offset δ and the angle of the FE axis in the (approximately horizontal)
y-z-plane of the upper arm IMU coordinate system. There is an obvious correlation, indicating that
without sufficient upper arm movement, the kinematic constraint does not allow for distinguishing
between a heading rotation of the joint axis and a heading offset between the sensor orientations.

situation being too close to this singular case. To mitigate this, care should be taken to avoid
calibration motions during which one of the body segments is always stationary.

In summary, the evaluation of the first experiment has shown that the proposed methods
yield consistent and plausible joint axis estimates. The rotation-based constraint performs
better than the orientation-based constraint. To ensure that the axes converge, the subject’s
motion should include sufficient motion from both the upper arm and the forearm.

4.5.2 Sensitivity to Cutoff Frequency, Sample Selection Frequency, and
Window Duration

As a further part of the evaluation, we use the data from the first experiment to investigate
the influence of the following parameters:

• the cutoff frequency fc for measurement and soft tissue motion artifact reduction
(employed value: 5 Hz, cf. Section 4.4.6.2, rotation-based constraint only),

• the sample selection frequency (employed value: 20 Hz, Ts = 0.05 s),

• the duration of the measurement window (employed value: 10 s).

We apply the proposed methods to all trials of the five subjects of the first experiment
for different values of the respective parameter while keeping the other two parameters at
the previously employed default value. In order to condense the obtained information (cf.
Figure 4.6), we calculate the mean and the 99th percentile of the variability angles εw of all
windows of all trials.

For the angular rate cutoff frequency fc for measurement and soft tissue motion artifact
reduction, the obtained results are shown in Figure 4.9. If the cutoff frequency is chosen too
low (fc = 2 Hz), the mean and 99th percentile of εw increase compared to the smallest possible
value. At those frequencies, valuable information about the movement gets lost, leading to
more inconsistent estimation results. However, when choosing 3 Hz ≤ fc ≤ 7 Hz, the results
are more consistent than without any low-pass filter. Therefore, we can conclude that low-pass
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Figure 4.9: Variability of the obtained axis estimates (mean and 99th percentile of εw, relative
to minimum value) for different values of the cutoff frequency of the soft tissue motion artifact
reduction low-pass filter. Low-pass filtering of the angular rates increases the consistency of the axis
estimates, but for too low cutoff frequencies, important information gets lost, and the deviations
increase. Choosing a cutoff frequency of 5 Hz gives robust estimates.

filtering of the angular rates helps to increase robustness and that fc = 5 Hz is a reasonable
choice for the cutoff frequency.

To determine how much data is needed to get consistent estimates, we repeat the same
evaluation for the other two parameters, i.e., window duration and sample selection frequency,
which is shown for both constraints in Figure 4.10. As expected, using more data in
the optimization, i.e., increasing the window duration or increasing the sample selection
frequency, leads to more consistent estimates. However, this comes at a cost. Longer window
durations cause inconvenience for the subject that has to perform the movements and limit
the applicability of the method. Therefore, the duration of 10 s was chosen as a compromise
between ease of use and accuracy, and to demonstrate that such short durations lead to good
results. If the data is available, employing longer motion sequences should be considered (up
to a point where the assumption of δ being constant is not valid anymore due to integration
drift). The sampling selection frequency is less critical as it only affects the computational
time. However, the results show that increasing the frequency past 10 Hz does not substantially
affect the results. The chosen frequency of 20 Hz is more than sufficient while still considerably
reducing the number of samples compared to typical IMU raw data sampling rates of 50–500 Hz.

4.5.3 Accuracy of Magnetometer-Free Joint Angle Tracking

The second experiment is performed to validate that the proposed methods can be used to
obtain accurate elbow joint angles for functional motions without relying on a precisely known
sensor attachment and without relying on the magnetic field. An optical motion capture
system (Vicon Motion Systems Ltd. UK) is used as reference. In addition to the two inertial
sensors positioned as in the previous experiment, optical markers are placed on bony landmarks
in a way that facilitates joint angle measurement as recommended by the ISB [47]. Note that
by placing reflective markers on anatomical landmarks and not, like many previous works, on
the IMUs, we ensure that we compare against the gold standard for measuring joint angles,
taking soft tissue motion into account.

Two healthy adult volunteers, with no history of upper-limb injury that might affect
upper-limb movement, performed two motions:
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(b) orientation-based constraint
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Figure 4.10: Variability of the obtained axis estimates (mean and 99th percentile of εw, relative
to minimum value) for different values of the window duration and the sample selection frequency
for (a) the rotation-based constraint and (b) the orientation-based constraint. In general, using
more data (long windows at high sampling rates) leads to more consistent estimates but increases
inconvenience for the subject and processing time.

1. During the pick-and-place motion, the subject placed a small box in a sequence of
predefined orientations and locations on a table.

2. The drinking motion consists of the subject repeatedly placing the hand on a table,
grabbing a cup, simulating a drinking motion, and then placing the cup back on the
table.

Each of the two subjects repeats the two motions four times (twice slow and twice fast),
resulting in a total of 16 trials, with durations between 14 and 44 s.

For each trial, calculate four different types of joint angles.

1. The OMC-based ground truth angles are derived from the optical markers placed on
anatomical landmarks and calculated as described in [47].

2. Conventional IMU-based joint angles are calculated using 9D sensor fusion (with the
VQF algorithm proposed in Chapter 3), i.e., using the magnetic field to determine the
heading and relying on the careful placement of the sensors on the body.

3. In contrast, the proposed IMU-based joint angles use 6D sensor fusion (with the VQF
algorithm proposed in Chapter 3), and the joint axes and heading offset are identified
from the trial motion using the

• rotation-based joint constraint and the

• orientation-based joint constraint.
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4. Automatic Anatomical Calibration via Kinematic Constraints

Note that the application of the proposed methods tests the most challenging case, i.e., we use
a standard everyday motion to identify the joint axes and the heading offset without requiring
a separate calibration phase.

To determine the sign and the required offset for the joint angles, we use the OMC-based
angles. The IMU-based joint angles obtained by the different methods are compared to the
OMC-based ground truth, and the RMSE is calculated. Results from all trials are shown in
Figure 4.11.
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Figure 4.11: Joint angle estimation errors for all trials with a conventional 9D approach and with
the proposed plug-and-play magnetometer-free methods, using OMC-based angles as ground truth.
The numbers below the axis labels indicate the mean RMSE of all 16 trials. The proposed method
with the rotation-based constraint yields the same accuracy as the more restrictive conventional
9D method.

When comparing the two variants of the proposed method, we see that the rotation-based
constraint outperforms the orientation-based constraint. This coincides with the results of the
first experiment presented in Section 4.5.3. It is noteworthy that for many trials, the accuracy
achieved with both constraints is comparable, and the difference in the mean accuracy is
caused by several outliers obtained with the orientation-based constraint, which is consistent
with the lower robustness observed for this constraint in Figure 4.6.

However, when considering the results obtained with the proposed method and the rotation-
based constraint, the accuracy is similar to the conventional 9D IMU-based method. For the
FE angles, the mean RMSE of 2.1° is 0.2° lower than for the conventional method, while
for the PS angles, the mean RMSE of 3.7° is 0.1° larger. In contrast to the results with the
orientation-based constraint, there are no outliers, and the maximum RMSE of the proposed
method and the conventional method is comparable. Note that the conventional method
relies on properly calibrated magnetometer measurements, a controlled environment without
ferromagnetic material or electric devices, and a precise and known sensor attachment and is
therefore more restrictive than the proposed magnetometer-free plug-and-play method.

To illustrate the performed motions and the obtained results, Figure 4.12 shows the OMC
ground truth joint angles, the conventional IMU-based joint angles, and the proposed joint
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Figure 4.12: Joint angle trajectories for an exemplary (a) drinking and (b) pick-and-place
trial obtained with the proposed IMU-based method (and the rotation-based constraint), the
conventional 9D IMU-based approach, and the OMC ground truth. While being less restrictive,
the proposed method is able to obtain FE and PS joint angles that agree well with the angles
obtained with the other two methods.

angles with the rotation-based constraint for two exemplary trials. In several short time
periods, ground truth data is not available due to occlusion, i.e., at least one of the required
markers could not be tracked by the OMC system. Those phases were excluded from the
RMSE calculation. As can be seen, the joint angles obtained with the proposed plug-and-play
method agree well with both the conventional IMU-based joint angles and the OMC-based
ground truth angles.

Note that the joint constraint is only used for identifying the joint axes and that the joint
angle calculation uses standard Euler angles and is therefore not directly restricted by this
constraint. As a result, the obtained carrying angles, which are also shown in Figure 4.12 but
rarely reported in practice, are not perfectly constant.

We can use the carrying angle as an indicator of how well the measured joint motion
adheres to the 2-DoF joint model (Figure 4.3). For a perfect 2-DoF joint, we would expect a
perfectly constant carrying angle, while a 3-DoF joint will show considerable movement in all
three joint angles. Also, if the joint is in fact a 2-DoF joint but the joint axis estimates are
wrong, the Euler decomposition will show variability in all three joint angles.
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Figure 4.13: Standard deviation of the carrying angle for all trials with the different angle
calculation methods. The proposed method induces the smallest variation in the assumed-to-be-
constant carrying angle. This indicates that the estimated joint axes describe the functional motion
axes better than the axes obtained via careful manual IMU placement (conventional IMU) and via
placing markers on anatomical landmarks (OMC ground truth).

Therefore, we calculate the standard deviation of the carrying angle as a measure of
variability, which is shown in Figure 4.13 for all 16 trials and all four angle calculation methods.
With both constraints, the median of the standard deviations is slightly lower than for the
conventional IMU-based joint angles and the OMC-based ground truth. This indicates that
the joint axis estimates obtained with the proposed method are better suited to describe the
functional motion of the joint than the axes obtained via careful IMU placement and the axes
obtained via the placement of optical markers on anatomical landmarks. This agrees with
previous research showing that anatomical joint axes defined based on anatomical landmarks do
not coincide with the rotation axes of functional joint motion [134]. For joint angle calculation,
the use of functional rotation axes seems preferable in order to minimize kinematic cross-talk.

In summary, the evaluation of the second experiment has shown that for the challenging
case of using recordings of everyday motions for calibration, the proposed methods are able
to obtain joint angles with the same accuracy as a conventional IMU-based approach while
not relying on precise sensor placement or magnetometer measurements. As also shown via
the first experiment, the rotation-based constraint performs better than the orientation-based
constraint and should therefore be used for anatomical calibration.

4.6 Conclusions

This chapter introduced methods for automatic anatomical calibration for 2-DoF joints, such as
the elbow, that do not require the subject to perform precise calibration movements but instead
work on arbitrary motions by exploiting one of two kinematic constraints: a rotation-based
constraint for the angular rates and an orientation-based constraint. The methods do not make
use of magnetometer measurements. Instead, the heading offset is simultaneously estimated
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via the kinematic constraint, which facilitates plug-and-play magnetometer-free joint angle
estimation.

The proposed methods were evaluated using two experiments. The first experiment, without
OMC ground truth, showed that the proposed methods yield consistent and plausible joint
axis estimates from only ten seconds of motion data. The second experiment, performed with
OMC as ground truth, showed that the proposed plug-and-play method can estimate accurate
joint angles while being less restrictive than a conventional IMU-based approach. In both
experiments, the rotation-based joint constraint performed better than the orientation-based
joint constraint.

The proposed methods overcome mounting and calibration restrictions and facilitate
magnetometer-free motion tracking. Therefore, they are highly suitable for indoor environments
and improve the practical usability of IMU-based motion tracking in many clinical and
biomedical applications.

In the subsequent chapter, we will consider the case in which the joint axes are already
known, either via the proposed calibration method or by other means, and the kinematic
constraints are only used to determine the relative heading information to facilitate long-term
stable magnetometer-free motion tracking.

To further advance the proposed methods, it should be evaluated if combining the rotation-
based and the orientation-based constraint can increase the robustness and consistency of
the joint axes estimates. Furthermore, introducing and evaluating metrics to quantify the
estimation uncertainty and methods for automatic (re-)triggering of the calibration when
suitable motions are detected are important next steps to increase the usability of the method.

95





5
Magnetometer-Free Motion Tracking

of Kinematic Chains

When magnetometer measurements are not used, the heading of each sensor’s orientation
estimate has a different arbitrary heading offset. This circumstance impedes many possible
applications that require knowledge of at least the relative heading between body segments,
such as joint angle calculation and 3D visualization. This chapter introduces methods to
obtain this relative heading information from kinematic constraints.

Text, figures, and tables found in this chapter have been previously published in the
following works:

[135] D. Laidig, T. Schauer, and T. Seel. “Exploiting Kinematic Constraints to Compensate
Magnetic Disturbances When Calculating Joint Angles of Approximate Hinge Joints
from Orientation Estimates of Inertial Sensors”. In: 2017 International Conference on
Rehabilitation Robotics (ICORR). London, UK, July 17–20, 2017, pp. 971–976. doi:
10.1109/ICORR.2017.8009375.

[136] D. Lehmann, D. Laidig, and T. Seel. “Magnetometer-Free Motion Tracking of
One-Dimensional Joints by Exploiting Kinematic Constraints”. In: Proceedings on
Automation in Medical Engineering 1.1 (Feb. 16, 2020), Article 027. url: https:

//www.journals.infinite-science.de/index.php/automed/article/view/335.

[137] D. Laidig, D. Lehmann, M.-A. Bégin, and T. Seel. “Magnetometer-Free Realtime
Inertial Motion Tracking by Exploitation of Kinematic Constraints in 2-DoF Joints”.
In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC). Berlin, Germany, July 23–27, 2019, pp. 1233–1238. doi:
10.1109/EMBC.2019.8857535.

Sections 5.3 and 5.4 have been previously published in [135]. The extended version found
in this chapter includes an additional magnetometer-free variant of the proposed method.
Sections 5.5 and 5.6 have been previously published in [136] and [137]. In this chapter, the
experimental evaluations performed in [136] and [137] are combined in order to provide a
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5. Magnetometer-Free Motion Tracking of Kinematic Chains

consistent analysis of 1-DoF and 2-DoF joints. Sections 5.1 and 5.7 include content from both
[135] and [137]. Section 5.2 was added in this thesis and extends the information found in [135,
136, 137].

5.1 Introduction

In order to measure joint angles with IMUs, an IMU is attached to each of the two body
segments connected by the joint, as illustrated in Figure 5.1. The raw measurements are fused
in order to estimate the sensor orientations (cf. Chapter 3). Then, anatomical calibration
(sensor-to-segment calibration) is performed in order to determine the relation between sensor
axes and segment or joint axes (cf. Chapter 4). With this information, segment orientations
and then joint angles can be calculated.

(a) knee joint [94]
(b) finger joints [138]

(c) mechanical joints (d) elbow joint

Figure 5.1: Examples of IMU motion analysis for mechanical and biological joints. In many
cases, the joints under consideration have only one or two degrees of freedom (DoF).

9D sensor fusion, i.e., the fusion of gyroscope, accelerometer, and magnetometer
measurements, yields the orientation of the sensors with respect to a common inertial frame,
which is crucial for determining the joint angles between neighboring segments in robotic or
biomechanical limbs. However, 9D sensor fusion only yields accurate orientation estimates if
the magnetic field is homogeneous. Magnetometer readings are known to be highly unreliable
in indoor environments and near ferromagnetic material and electronic devices. Abundant
research shows that inside buildings, the local magnetic field vector may easily vary by more
than a factor of two in less than 20 centimeters [37, 38, 39, 40], cf. Section 2.3. Therefore,
9D sensor fusion fails in numerous environments that are relevant for most robotic and
biomechanical applications [138].
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In 6D inertial sensor fusion, the magnetometer readings are omitted, and the orientations
of the sensors are determined only from the measured accelerations and angular rates. The
heading of such an orientation exhibits an unknown and arbitrary offset, i.e., there is no
absolute heading information (cf. Section 3.6).

This offset is often recovered via a calibration pose that ensures precise initial alignment of
the sensors at the beginning of a measurement. As shown in [138], this approach improves
results compared to conventional 9D sensor fusion, especially in realistic indoor environments.
However, the heading still drifts slowly due to the integration of gyroscope bias around the
vertical axis. Even with very precise bias calibration, this drift can easily reach 90° and more
within a few minutes. This renders it impossible to determine long-time stable joint angles
from 6D sensor orientations.

One way to suppress the influence of magnetic disturbances in 9D sensor fusion or to
obtain the missing relative heading information in 6D sensor fusion is to exploit the kinematic
models and constraints of different joint types. An overview of existing approaches is given in
Section 5.2. In this chapter, we make use of the fact that biological and mechanical joints are
often approximate hinge joints with a single degree of freedom or approximate 2-DoF joints.

Experimental validation in previous studies has almost exclusively been carried out under
idealistic assumptions of either

1. rigid mechanical setups with perfect joint kinematics,

2. short time durations without sufficient focus on long-time stability, or

3. motions that avoid poses near singularities of the kinematic constraints and thus yield
sufficient relative-heading information at all times.

Motions during which the joint segments remain close to singularities of the constraints (i.e.,
poses with unobservable relative heading) for more than a few seconds have barely been
considered or discussed in previous studies.

This chapter presents two methods for relative heading tracking via kinematic constraints.
First, we consider the task of IMU-based joint angle measurements for approximate hinge
joints moving in inhomogeneous magnetic fields and introduce a quaternion-based method that
uses the hinge joint constraint to determine and correct the error in heading, caused either by
magnetic disturbances or by missing magnetometer measurements. Unlike previous methods,
we employ a filter for singularity treatment. Using simulations, we test the performance of this
method in homogeneous and in heavily disturbed magnetic fields and investigate the sensitivity
to the joint not being a perfect hinge joint and to errors in the sensor-to-segment calibration.

Building on this method, we introduce a window-based magnetometer-free method for real-
time motion tracking in 1-DoF and 2-DoF joints. This method exploits two different orientation-
based constraints to determine the relative heading by window-based online optimization. In
contrast to previous approaches, the proposed method requires neither an initial-pose calibration
nor sensor-to-joint position parameters, its long-time stability is validated experimentally in
human finger joints and mechanical joints, and its advantage over a conventional magnetometer-
free method is demonstrated.
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5.2 State of the Art in Magnetometer-Free Motion Tracking

While some motion parameters can be derived without heading information and thus without
magnetometers [139], many applications require knowledge of the relative orientation between
body segments. When magnetometers are not available or deliberately not used due to
disturbances, the missing heading information has to be directly or indirectly estimated by
other means. In practice, this is often achieved by asking the subject to initially or periodically
assume a known pose [117, 138]. To facilitate non-restrictive long-term stable measurement,
various approaches can be used to automatically estimate the missing heading information
from joint constraints.

Ample research exists on exploiting the fact that two adjacent segments of a kinematic chain
are connected at the joint center of rotation. This connection constraint can be formulated
based on the joint center’s position, velocity, or acceleration. The three formulations are
mathematically equivalent with regard to observability [140].

Kok et al. [141] use the position-based connection constraint in an optimization-based
smoothing approach that also allows for additional hinge joint constraints. This method
requires prior knowledge about segment lengths and the positions of the IMUs with respect to
the joint center. Taetz et al. [130] extend this method by a real-time capable sliding-window
approach and simultaneously estimate joint center positions. For an EKF-based approach
using the position-based connection constraint, Teufl et al. [142] evaluate lower extremity
motion tracking during walking and report joint angle errors of 2.4° with respect to optical
markers attached to the IMUs. The position-based formulation of the connection constraint
was recently exploited via factor graph optimization [126, 127], and it was demonstrated that
EKF-based tracking of a kinematic chain with the connection constraint can be combined with
magnetometer measurements from a single IMU to achieve 9D motion tracking of the whole
kinematic chain [143].

Wenk et al. [144] employ a velocity-based formulation of the connection constraint as part
of the measurement model of an EKF.

Fasel et al. [145] propose a method that expresses the joint center acceleration in the
reference frames of both segments and derives a correction quaternion to align those reference
frames. Similarly, the approaches based on two cascaded Kalman filters proposed in [146,
147, 148] first estimate the 6D orientation and then exploit the acceleration-based connection
constraint to correct the estimates. In contrast, the optimization-based smoothing approach
and the EKF-based filtering approach proposed by Weygers et al. [149] tightly couple IOE
and the connection constraint to estimate relative orientations, without assuming that the
accelerometer measurements are dominated by gravity. For a robotic joint and with the
smoothing method, an RMSE of 0.9° is achieved. For the knee joint and with respect to optical
markers attached to the IMUs, the reported errors are 1.9° to 3.7° for the smoothing method
and 2.4° to 4.5° for the filtering method. Remmerswaal et al. [150] propose a computationally
efficient method to exploit the acceleration-based connection constraint with a complementary
filter.

While the connection constraint has the advantage that it can potentially be applied to
any joint type, knowledge of the joint center positions is required, either as prior knowledge
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or by estimation methods such as [99]. The observability analysis by Kok et al. [140] shows
that, with perfect measurements, the relative heading is almost always observable via the
connection constraint. In practice, soft tissue motion and measurement errors play a large role,
and information about the heading offset is contained in the horizontal components of the
joint center acceleration, which is often small compared to gravity. Thus, it is not surprising
that validation of existing work is commonly performed either with mechanical or robotic
joints [144, 146, 147, 148] or on walking [141, 142, 149] or other high-excitation motions [130,
145, 150] of the lower body. To the best of the author’s knowledge, there are no validation
results of the connection constraint for upper body or finger motions.

A promising alternative is to exploit kinematic constraints resulting from the limited
degrees of freedom or range of motion of many joints (cf. Chapter 4). For the knee joint as an
approximate hinge joint, it was shown that the flexion angle can be calculated from orientations
with uncertain heading [151] or directly from accelerometer and gyroscope measurements via a
complementary filter, skipping the estimation of orientations [94]. Vitali et al. [152] propose a
method for knee angle estimation that transforms the hinge joint axis into global coordinates
and then calculates a correction quaternion. In contrast to the methods introduced in this
chapter, the correction is not restricted to a rotation around the vertical axis, and violations
of the joint constraint can therefore affect the inclination as well as the heading. Kortier et al.
[153] propose a method to estimate hand kinematics that integrates 1-DoF and 2-DoF joint
constraints in the measurement model of an EKF. Luinge et al. [115] propose a least-squares
filter for 2-DoF elbow angle measurement that constrains the carrying angle to zero. Caruso
et al. [154] introduce an optimization-based approach to determine orientations that agree
with a kinematic model of the upper limb while matching the IOE orientations as closely
as possible. For 3-DoF joints, the fact that most joints have a limited range of motion can
be exploited to recover heading information [155, 156]. In [157], it has been shown that the
methods presented in this chapter can be generalized for arbitrary joints with range-of-motion
constraints. Finally, Butt et al. [110] demonstrated that full body tracking with a sparse
6-IMU setup can be achieved via deep learning and using the pitch and roll angles of the IMU
orientations as input.

The existing approaches for magnetometer-free motion tracking often tightly couple IOE
and heading tracking. As a result, errors in the joint model can potentially influence the
inclination estimates, and errors from 6D IOE and from heading tracking are hard to separate.
The present chapter presents a modular approach that builds upon the 6D IOE method
introduced in Chapter 3 and limits the estimation to the heading offset angle.

5.3 Method for Heading Tracking of Hinge Joints

Consider a hinge joint with one IMU on each segment, as illustrated in Figure 5.2. The joint
moves freely in three-dimensional space. Each IMU performs 9D sensor fusion to determine
its orientation with respect to a fixed inertial frame. Furthermore, assume that the sensor-to-
segment orientations have been identified, e.g., from arbitrary joint motions using the methods
in [99]. Thus, we are given two quaternions B1

Eq(t) and B2
Eq(t) that describe the orientations of

the two body segments B1 and B2 relative to a common fixed inertial frame E .
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Figure 5.2: Kinematic model of a hinge joint with the joint axis j (red) and coordinate systems
of segments B1 and B2 (black axes). The coordinate systems of IMUs S1 and S2 do not have to
be aligned with the segment coordinate systems. The relative orientation between B1 and B2 is a
rotation of the joint angle α around the joint axis j.

Denote the coordinates of the hinge joint axis in the coordinate system of B1 by j1 and the
coordinates of the hinge joint axis in the coordinate system of B2 by j2. Note that j1 and j2

do not change when the joint moves. Furthermore, transformed into the fixed inertial frame E ,
j1 and j2 have the same coordinates, i.e.,

B1
Eq(t)⊗ j1 ⊗ B1

Eq(t)−1 = B2
Eq(t)⊗ j2 ⊗ B2

Eq(t)−1 (5.1)

holds for all times t.
However, the estimates of the sensor orientations B1

Eq and B2
Eq are only accurate if the

magnetic field is homogeneous. When magnetic disturbances occur, the IMU can no longer
determine its true orientation since accelerometer and magnetometer readings are required to
compensate integration drift effects that are due to gyroscope bias. When the sensor fusion
algorithm of an IMU uses disturbed magnetometer data, then the inclination and the heading
portion of the orientation are typically affected. However, it was demonstrated recently that
sensor fusion can be carried out in a way that assures accurate inclination even in severely
disturbed magnetic fields, e.g., in [76], which is also the case for the VQF algorithm introduced
in Chapter 3.

We assume that such an algorithm is employed, and therefore only the heading portions
of the estimated segment orientations become inaccurate. Due to these heading errors, the
measured segment orientations B1

E1
q and B2

E2
q no longer describe the orientation of the segments

with respect to a common fixed frame but with respect to two reference frames E1 and E2.
With respect to the common ENU reference frame E , those reference frames are shifted by a
rotation around the vertical z-axis (by the angles δ1 and δ2, respectively):

B1
Eq = E1

Eq ⊗ B1
E1

q = (δ1 @ [ 0 0 1 ]⊺)⊗ B1
E1

q, (5.2)
B2

Eq = E2
Eq ⊗ B2

E2
q = (δ2 @ [ 0 0 1 ]⊺)⊗ B2

E2
q. (5.3)

In the unrealistic case that both orientation estimates are affected in exactly the same way, E1

and E2 coincide. In general, however, the relative orientation B2
B1

q = B1
Eq−1 ⊗ B2

Eq between the

102



5.3 Method for Heading Tracking of Hinge Joints

first and second segment can only be calculated if the rotation between E1 and E2 is known:

B2
B1

q = (E1
Eq ⊗ B1

E1
q)−1 ⊗ E2

Eq ⊗ B2
E2

q
= B1

E1
q−1 ⊗ E1

Eq−1 ⊗ E2
Eq

⏞ ⏟⏟ ⏞
=: E2

E1
q

⊗ B2
E2

q, (5.4)

where E2
E1

q represents the combined effect of both disturbances and corresponds to a rotation
around the global z-axis:

E2
E1

q = (δ@ [ 0 0 1 ]⊺) =
[︂
cos

(︂
δ
2

)︂
0 0 sin

(︂
δ
2

)︂]︂⊺
, (5.5)

with δ(t) = δ2(t) − δ1(t) being the heading offset of B2
B1

q that is caused by the magnetic
disturbance. In order to determine the correct relative orientation B2

B1
q and then calculate

accurate joint angles, the heading offset δ(t) must be determined.
In addition to 9D IOE, the introduced method can also be used in combination with

6D IOE. In 6D IOE, i.e., when magnetometer readings are not used, we observe a similar
situation: As detailed in Section 3.6, the magnetometer-free orientation estimates are provided
in sensor-specific almost-inertial reference frames that differ from the common ENU reference
frame E by a slowly drifting heading offset. Mathematically, we can describe this in the same
way with orientation estimates B1

E1
q and B2

E2
q, the heading offsets δ1(t) and δ2(t) with respect

to the ENU frame, and the relative heading offset δ(t). Compared to the heading offset due to
magnetic disturbances, the heading offset found in 6D sensor fusion differs in two ways:

1. In 9D sensor fusion, the heading offset is small if the magnetic field is homogeneous and
the maximum value is limited by the severity of the magnetic disturbances. In 6D sensor
fusion, the heading offset has an arbitrary value that depends on the initial conditions of
the orientation estimation algorithm.

2. In 9D sensor fusion, the heading offset may change rapidly when magnetic disturbances
occur. In 6D sensor fusion, the heading offset drifts slowly, and the rate of change is
limited by the typical values of gyroscope bias (i.e., ≤ 1 °/s).

5.3.1 Determining the Heading Offset

We determine the heading offset δ(t) as follows. First, we transform the coordinates of the
local joint axis vectors of both segments into their respective reference frames:

[j1]E1
= B1

E1
q ⊗ j1 ⊗ B1

E1
q−1 =: [ j1x j1y j1z ]⊺, (5.6)

[j2]E2
= B2

E2
q ⊗ j2 ⊗ B2

E2
q−1 =: [ j2x j2y j2z ]⊺. (5.7)

According to the joint constraint (5.1), [j1]E1
and [j2]E2

should have the same coordinates. Due
to magnetic disturbances and other errors, the measured values will deviate in practice. Since
we know that E2

E1
q is a rotation around the z-axis, we project those vectors in the x-y-plane,

i.e., we set j1z and j2z to zero. Then, the heading offset δ is given by the difference of the
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q
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Figure 5.3: Two segments B1 and B2 are connected by a hinge joint. Due to magnetic disturbances,
the measured orientations are subject to the heading offset δ. This heading offset can be obtained
from the projections of the joint axes into the global x-y-plane.

angles of the projected vectors in the x-y-plane, i.e.,

δ = atan2 (j2y, j2x)− atan2 (j1y, j1x) . (5.8)

See Figure 5.3 for a graphical illustration of this approach.

5.3.2 Heading Correction and Joint Angle Calculation

From δ(t), we calculate E2
E1

q(t) and obtain segment orientations in a common reference frame1,
e.g., by

B2
E1

q = E2
E1

q ⊗ B2
E2

q. (5.9)

This allows us to obtain the relative orientation of one segment with respect to the other, i.e.,
the joint orientation

B2
B1

q = B1
E1

q−1 ⊗ B2
E1

q =: [ qw qx qy qz ]⊺. (5.10)

We then calculate the joint angle from the joint orientation quaternion. Without loss of
generality, we define the segment coordinate systems so that the joint axis is the local z-axis,
i.e., j1 = j2 = [ 0 0 1 ]⊺.

The most commonly used approach is to calculate Euler angles and discard the two angles
that are assumed to be zero. Using z-x′-y′′ Euler angles, as recommended by the ISB for the
interphalangeal finger joints [47], the angle around the z-axis can be obtained from B2

B1
q as

α = atan2(2qzqw − 2qyqx, q2
w + q2

y − q2
x − q2

z). (5.11)
1Note that any common reference frame will work, i.e., instead of adjusting the orientation of B2, we can

also bring the orientation of B1 to E2.
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5.3 Method for Heading Tracking of Hinge Joints

The drawback of this approach is that the arbitrary choice of a rotation axis sequence will
have an influence on the joint angle. In practice, when there is almost no rotation around the
x and y-axes, the effect will be small, but using z-y′-x′′ Euler angles and discarding the last
two angles will yield a slightly different joint angle than using z-x′-y′′ Euler angles.

To avoid this effect, we use an alternative joint angle calculation method. Using the
quaternion projection method introduced in Section 2.4, we split the joint orientation into a
rotation around the z-axis and a residual quaternion, i.e.,

B2
B1

q =
[︂
cos

(︁
α
2
)︁

0 0 sin
(︁
α
2
)︁]︂⊺ ⊗ qres. (5.12)

Then, the joint angle α that minimizes the rotation angle of the residual quaternion qres is
given by

α = 2 atan2(qz, qw). (5.13)

5.3.3 Singularity Treatment

x

y

z

measured
orientation of B1

B1
E1

q

B2
E1

q

measured
orientation of B2

B2
E2

q

[j1]E1
= [j2]E2

= [ 0 0 − 1 ]ᵀ

j1,proj = j2,proj = 0

δ

Figure 5.4: When the two segments B1 and B2 are oriented so that the joint axis is vertical, it is
impossible to differentiate between joint rotation and changes in the heading offset δ. When this
happens, the horizontal projections of the joint axes are zero.

When the segments are oriented so that the joint axis is vertical, it is impossible to
differentiate between joint rotation and heading offsets induced by magnetic disturbances or
integration drift, as illustrated in Figure 5.4. In this case, the kinematic constraint becomes
useless, and δ cannot be calculated since the horizontal projections of the joint axes become
zero.

To suppress the correction during time periods with vertical joint axis, we design a filter
that gives small trust to new values of the heading offset δ(t) when the joint axis is almost
vertical and large trust when being far from this singularity.

Assume that δ(tk) is calculated according to (5.8) at a fixed sampling rate fs = T−1
s ,

sampled at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0.
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5. Magnetometer-Free Motion Tracking of Kinematic Chains

At each sampling instant, we determine the Euclidean norms of the horizontal projections
of the joint axes (dashed arrows in Figure 5.3) and use their product as the trust rating2

r(tk) := j1,projj2,proj, (5.14)

with j1,proj := ∥[ j1x(tk) j1y(tk) ]⊺∥ and j2,proj := ∥[ j2x(tk) j2y(tk) ]⊺∥.
The filtered heading offset δf(tk) is obtained with an extended version of an exponential

weighted moving average, starting with δf(t0) = δ0:

δf(tk) = δf(tk−1) + r(tk)
(︃

1− exp
(︃
−Ts
τδ

)︃)︃
clip(δ(tk)− δf(tk−1)), (5.15)

with the time constant τδ = 0.05 s. The clip function

clip(δ) :=





−0.2 δ ≤ −0.2,

0.2 δ ≥ 0.2,

δ else

(5.16)

limits the angle difference to ±0.2 rad and therefore restrains the filter from following quick
changes, which may occur close to the singularity.

5.3.4 Optimality of the Constraint

The geometric approach of extracting the heading offset δ(t) from the horizontal joint axis
projections, as described in Section 5.3.1, is intuitive and easy to implement. When considering
an ideal hinge joint with perfect inclination estimates, it is easy to see that this method
provides the correct result, as illustrated in Figure 5.3. However, it is not immediately clear in
which sense the solution is ideal in case of additional errors, e.g., if the joint is not a perfect
hinge joint or if the inclination of the orientation estimates is wrong.

Therefore, we now consider an alternative approach based on the quaternion projection
method introduced in Section 2.4. We decompose the joint orientation into a rotation around
the joint axis qj = (α@ j) and residual quaternion qres:

B2
B1

q = B1
E1

q−1 ⊗ E2
E1

q ⊗ B2
E2

q = qj ⊗ qres. (5.17)

Minimizing the absolute rotation angle of the residual quaternion

qres(α, δ) = (α@ j)−1 ⊗ B1
E1

q−1 ⊗ E2
E1

q(δ)⊗ B2
E2

q (5.18)

leads to a unique combination of joint angle α and heading offset δ (except at singularities).
Numerical simulations show that the obtained heading offsets are exactly the same as for the
geometric approach. Therefore, this approach does not provide a new method but demonstrates
in which sense the solution provided by the geometric approach is ideal.

2In contrast to [135], we now use the product of the two axis norms instead of the minimum. This change
does not affect the conclusions drawn from the evaluation but improves consistency with the methods introduced
later in this chapter.
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Figure 5.5: 3D visualization of the reference movement. The motion is designed to mimic a fast
three-dimensional finger motion, with repeated phases in which the joint axis is almost vertical.

5.4 Validation by Simulation Study

To evaluate the proposed method, we perform a validation study in which we simulate an
approximate hinge joint that moves through an experimentally determined inhomogeneous
magnetic field. Unlike an experimental evaluation with optical motion capture as reference, this
approach has the advantage of perfect repeatability and perfectly known reference values (i.e.,
without measurement errors of a reference system). Furthermore, it allows us to investigate
the effect of an imprecise sensor-to-segment calibration and of the joint not being a perfect
hinge joint.

5.4.1 Simulation

We simulate the motion of two segments, each with an IMU attached centrally and both
connected by an approximate hinge joint. The motion and segment sizes are chosen to mimic
a fast three-dimensional motion of an interphalangeal finger joint with a duration of 22 s. To
obtain a challenging example, the movement is chosen to excite all translatory and rotational
degrees of freedom and to avoid any periods of translational or rotational rest.

In light of the discussion of the singularity of the joint constraint in Section 5.3.3, we
choose the motion such that the inclination of the joint axis is close to 90°, i.e., vertical, for
several time periods throughout the course of the motion. See Figure 5.5 for an illustration of
the movement.

The simulation consists of the following steps (cf. Figure 5.6):

1. We generate IMU raw measurement data (angular rate, acceleration, and magnetic
field) at fs = 100 Hz using a realistic measurement model that includes noise on all
measurements and a randomized time-variant bias for the gyroscope.

2. We estimate the segment orientation using the BasicVQF algorithm described in
Chapter 3.

3. We calculate joint angles, once without and once with the proposed heading correction.

Three scenarios are considered. The undisturbed scenario is based on a perfectly
homogeneous magnetic field. In addition to this unrealistic case, we consider a magnetic
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Figure 5.6: Overview of the data processing steps and the error sources considered in the simulation
study. Simulated IMU measurements with various errors and disturbances are generated, and joint
angles are calculated with and without the proposed heading correction method.

disturbance that was determined experimentally by moving an IMU in the proximity of
ferromagnetic metal plates. A marker-based optical motion capture system was used as a
reference to allow extraction of the disturbance from the magnetometer readings. Under
the influence of the disturbance, both the dip angle and the heading of the magnetic field
vector varied by about 100°. As a third scenario, we do not make use of the magnetometer
measurements at all and use the 6D orientation estimates provided by BasicVQF. Note that
in this scenario, estimating the heading offset is necessary for the calculation of the joint
orientation, and we therefore cannot calculate joint angles without heading correction.

5.4.2 Segment and Motion Dimensions

To ensure that the results are not limited to the case of small body segments, we repeat all
simulations for segment dimensions and movement space dimensions that are ten times larger
than the initially used finger segment dimensions. The segment lengths are increased from
about 4 cm to about 40 cm, and the horizontal distance traveled is increased from about 1 m
to about 10 m, which leads to much larger accelerations. Thereby, the simulated motion is
changed to resemble a quick acrobatic motion of a human knee.

5.4.3 Results

We perform the described simulation with and without the magnetic disturbance and calculate
joint angles with and without the proposed correction. To account for noise, we perform 100
simulation runs for each case. First, consider a perfect sensor-to-segment calibration and a
perfect hinge joint. For this case, the obtained RMSE values are given in Table 5.1.

When the magnetic field disturbance is not applied to the simulated magnetometer
measurements, the obtained joint angle estimates are found to have an RMSE of about
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Table 5.1: RMSE (mean and standard deviation) for different parameter combinations

9D, homogeneous 9D, disturbed 6D, magnetometer-free
Correction off 0.57°± 0.18° 21.60°± 0.22°
Correction on 0.55°± 0.21° 1.59°± 0.15° 0.56°± 0.22°

0.6°. This result is in the same range as accuracies reported for similar experimental studies
[94] and thus verifies that the IMU measurement model is sufficiently realistic.

Comparing “Correction on/off” without the simulated disturbance shows that the heading
correction does not increase the error. However, enabling the simulated magnetic disturbance
leads to large errors in the uncorrected joint angles. With the proposed heading correction
method, the errors slightly increase compared to the undisturbed scenario but are clearly lower
than without correction.
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Figure 5.7: Joint angles and heading offsets for a simulation with a strong magnetic disturbance.
(a) True (αtrue), uncorrected (αuncorr), and corrected (αcorr) joint angle. (b) True (δtrue), unfiltered
(δest), and filtered (δest,f) estimated heading offset. Orange bars mark time periods in which the
joint axis is near vertical (< 10°). The heading filter increases accuracy, especially when the joint
axis is near vertical, and the corrected joint angles exhibit much smaller errors than the uncorrected
joint angles.

For the numbers highlighted in Table 5.1, which indicate the errors with enabled magnetic
disturbance, one typical corresponding angle-over-time plot is given in Figure 5.7. This figure
also shows the estimated heading offset before (δest) and after (δest,f) filtering, as well as the
true value δtrue.

The magnetic disturbance causes a heading offset of up to 90° in the estimated orientations,
which leads to very large errors in the uncorrected joint angles (21.9° RMSE). The joint
axis is almost vertical during five time periods (marked by orange bars), including sampling
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instants in which it is perfectly vertical. During those periods, the estimated heading offset
δest fluctuates notably. The filter limits the deviation due to the singularity while tracking the
calculated heading offset closely at other times. With the filtered heading offset, we obtain
joint angles with a considerably lower error (1.7° RMSE) compared to the uncorrected angles
(21.9° RMSE).

The magnetometer-free method is able to provide joint angles with the same accuracy
as the 9D methods but, as magnetometer measurements are not used, is not affected by
magnetic disturbances at all. Since the proposed method does not make assumptions that
the heading offset δ(t) is typically small (when the magnetic field is homogeneous), employing
magnetometer measurements does not provide any benefits. In contrast, the fast-changing
offset due to the strong magnetic disturbance is detrimental to the performance of the heading
filter (5.15). With 6D orientation estimates, the cutoff frequencies of this filter could be lowered
to exploit the fact that the rate of change of the heading offset δ(t) is limited, making the
estimation even more robust. When possible, the magnetometer-free approach should therefore
be preferred.

5.4.4 Sensitivity to Joint and Attachment Errors

We now investigate how sensitive the heading-corrected angles are when we simulate an error
in the IMU attachment and allow for small joint rotations around other axes.

Sensor-to-segment error In practice, the accuracy of the sensor-to-segment calibration may
vary depending on the employed calibration method. With the parameter ES, we model
the fact that the sensor-to-segment orientations are not precisely known, for example, due
to inaccurate anatomical calibration or because the sensors slipped after the calibration.
We consider a large number of different combinations of possible sensor-to-segment errors,
for each of which both sensor orientations are rotated by random angles around random
axes. To quantify the overall magnitude of the modeled error, denote the absolute sum
of the two rotation angles by ES.

Joint constraint violation Biological joints, such as the knee joint or the interphalangeal
joints, are only approximate hinge joints and allow for small rotations around other
axes. Therefore, we introduce additional rotations around the second and third axis3 of
the joint. Both angles are modeled as sinusoids with random amplitude and phase. To
quantify the overall magnitude of the modeled error, denote the absolute sum of both
amplitudes by EJ.

Again, for each parameter value, 100 simulation runs with the simulated magnetic disturbance
are evaluated. The results are shown in Figure 5.8. On average, an additional error of ES = 5.0°
in the sensor-to-segment orientation raises the RMSE from 1.6° to 3.4°. Likewise, the RMSE
increases from 1.6° to 2.4° when we relax the hinge joint assumption and allow for rotations
around the second and third joint axis with an amplitude sum of EJ = 5.0°.

3Without loss of generality, we model the joint orientation using z-x′-y′′ Euler angles as recommended for
finger joints by the ISB [47].
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Figure 5.8: Sensitivity of the RMSE of the heading-corrected joint angles to errors in the IMU
attachment ES and joint rotations around other axes EJ. The dashed lines indicate mean +
standard deviation. An IMU attachment error of 5.0° increases the joint angle error from 1.6° to
3.4°, and a hinge joint violation of 5.0° increases the joint angle error from 1.6° to 2.4°.

Note that the effect of the error depends on the axis, which is chosen randomly for both
simulated errors. This explains that the standard deviation of the RMSE considerably increases
when simulating joint rotation and sensor attachment errors.

Finally, comparing the simulation results for small (finger) and large (leg) motions did not
yield any notable differences. The error with magnetic disturbance and heading correction
slightly increased from 1.6° to 1.8°, but overall, the presented results are equally valid for both
cases.

5.5 Window-Based Heading Tracking Method

In the following, we extend the method introduced in Section 5.3 to be suitable for 2-DoF
joints in addition to hinge joints and to be more robust, especially for biological joints. This
robustness is achieved by employing an approach based on moving windows and by improved
handling of phases near singularities and phases without motion. Based on the findings of
Section 5.4, we directly design the method to not make use of magnetometer measurements.

B2

S2

B1

S1

j2

j1

β0

Figure 5.9: Kinematic model of a 2-DoF joint with segments B1, B2, joint axes j1, j2, and IMUs
S1, S2. Right: View in the j1-j2-plane. The 2-DoF joint can be modeled as a kinematic chain of
two hinge joints. The angle β0 describes the deviation of the angle between j1 and j2 from 90°.
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Two segments, B1 and B2, are connected by a hinge joint (Figure 5.2) or a joint with two
degrees of freedom, which can be modeled as a kinematic chain of two hinge joints, as shown
in Figure 5.9. Denote the joint axes as j1, j2 ∈ R3, with ∥j1∥ = ∥j2∥ = 1. The coordinates of j1

are fixed in frame B1, and the coordinates of j2 are fixed in frame B2. For hinge joints, we
define the coordinate systems B1 and B2 so that j1 = j2 = [ 0 0 1 ]⊺ (cf. Section 5.3). Without
loss of generality, for 2-DoF joints, we define the coordinate systems B1 and B2 such that
j1 = [ 0 0 1 ]⊺ and j2 = [ 0 1 0 ]⊺.

For 2-DoF joints, the angle between j1 and j2 is fixed but not necessarily 90°. As shown in
Figure 5.9, we use β0 to denote the deviation of this angle from 90°.4 This kinematic model is
general enough to describe many different joints, such as saddle joints, Cardan joints, and the
human wrist, elbow, or ankle joints (cf. Section 4.3).

Two IMUs, S1 and S2, are placed on the segments in known orientation, i.e., the orientations
of the sensors w.r.t. the segments S1

B1
q and S2

B2
q are known. This can be achieved by precise

attachment or by using the automatic sensor-to-segment calibration methods introduced in
[95] or in Chapter 4. The sensors measure the angular rates ω1(t) and ω2(t) as well as the
accelerations a1(t) and a2(t) in local coordinates, perform 6D sensor fusion, potentially on-chip
and with the algorithm described in Chapter 3, and report their orientations, described by
the quaternions S1

E1
q(t) and S2

E2
q(t). We can easily calculate the body segment orientations

Bi
Ei

q(t) = Si
Ei

q(t)⊗ Bi
Si

q, i = 1, 2.
Without the use of magnetometers, the absolute heading of each sensor is unknown, which

can be described by the orientations being estimated in two different reference frames, E1 and
E2. At each moment in time, the difference between the reference frames E1 and E2 is only a
rotation around the vertical axis, which has the coordinates [ 0 0 1 ]⊺ in both E1 and E2. Let
δ(t) be the angle of this rotation. Then the corresponding quaternion is

E2
E1

q(δ) = (δ@ [ 0 0 1 ]⊺) =
[︂
cos

(︂
δ
2

)︂
0 0 sin

(︂
δ
2

)︂]︂⊺
. (5.19)

In 6D sensor fusion, without a common reference for the heading, δ(t = 0) is unknown. Even
if δ(t = 0) would be known, for example from a known initial calibration pose, this knowledge
soon loses its value because δ(t) drifts slowly due to non-zero gyroscope bias in both IMUs.

5.5.1 Orientation-Based Kinematic Constraint for Hinge Joints

As detailed in Section 5.3, the joint axis of hinge joints must have the same coordinates when
transformed into a common coordinate system, i.e.,

B1
E1

q(t)⊗ j1 ⊗ B1
E1

q(t)−1
⏞ ⏟⏟ ⏞

[j1]E1

= B2
E1

q(t)⊗ j2 ⊗ B2
E1

q(t)−1
⏞ ⏟⏟ ⏞

[j2]E1

, (5.20)

and for each sampling instant, the heading offset can be calculated from the horizontal
projection of the joint axes as

δ = atan2 (j2y, j2x)− atan2 (j1y, j1x) , (5.21)
4For the elbow joint, this angle β0 is commonly called carrying angle and is approximately 5–15°, see for

example [47].
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with [j1]E1
=: [ j1x j1y j1z ]⊺ and [j2]E2

=: [ j2x j2y j2z ]⊺.
This allows us to express (5.20) as a constraint that can be evaluated using the orientations

B1
E1

q and B2
E2

q and an estimate of the heading offset δ̂(t) as

atan2 (j2y, j2x)− atan2 (j1y, j1x)− δ̂(t) = 0. (5.22)

5.5.2 Orientation-Based Kinematic Constraint for 2-DoF Joints

B2
E1

q B2
E2

qB2
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q
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β̂0 6=β0 B1
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q
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orientation

actual
orientation

δ

Figure 5.10: Orientations of segments B1 and B2. Calculating the relative orientation between
B1
E1

q and B2
E2

q without accounting for the heading offset δ leads to a wrong joint orientation and
wrong joint angles.

Calculating relative segment orientations and joint angles directly from B1
E1

q and B2
E2

q while
ignoring the difference between E1 and E2 leads to false results, as illustrated in Figure 5.10.
Instead, we must first determine an estimate δ̂(t) of the heading offset δ(t) and use it to bring
both body segment orientations into a common reference frame, i.e.,

B2
B1

q = B1
E1

q−1 ⊗ B2
E1

q = B1
E1

q−1 ⊗ E2
E1

q(δ̂(t))⊗ B2
E2

q. (5.23)

Note that any estimate δ̂(t) yields a relative orientation B2
B1

q =: [ qw qx qy qz ]⊺. The intrinsic
z-x′-y′′ Euler angle decomposition of this relative orientation is

α̂ = atan2(2qwqz − 2qxqy, q2
w − q2

x + q2
y − q2

z), (5.24)

β̂0 = arcsin(2qwqx + 2qyqz), (5.25)

γ̂ = atan2(2qwqy − 2qxqz, q2
w − q2

x − q2
y + q2

z). (5.26)

According to the definitions of B1 and B2 above, α̂ and γ̂ are estimates of the joint angles,
corresponding to rotations around j1 and j2, respectively, and the angle β̂0 corresponds to
the fixed angle between j1 and j2. In general, a false δ̂(t) ̸= δ(t) leads to a false β̂0 ̸= β0, cf.
Figure 5.10. This deliberation leads to the orientation-based constraint

arcsin(2qwqx + 2qyqz)− β0 = 0, (5.27)

which can be exploited to find the true heading offset δ(t) without using any magnetometer
readings.
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5. Magnetometer-Free Motion Tracking of Kinematic Chains

5.5.3 Singularity Detection

The kinematic constraints (5.22) and (5.27) become singular, i.e., yield no relative-heading
information if the segment orientations are such that one of the joint axes is perfectly vertical.
In such a case, a change of relative heading and a rotation around the vertical joint axis cannot
be distinguished, and the constraint is perfectly fulfilled for arbitrary values of δ̂.

j2
j1

j1,proj

j2,proj

Figure 5.11: Projections of the joint axes j1 and j2 in the horizontal plane. When a joint axis
becomes close to vertical, corresponding to the singularity of the kinematic constraint, the length
of the horizontal projection becomes close to zero.

Due to inaccuracies in the estimated segment orientations, this singularity will already
deteriorate the results if any of the joint axes are close to vertical. In order to obtain a measure
of how close the axes are to vertical, we transform the joint axis vectors into their respective
6D reference frame

[j1]E1
(t) = B1

E1
q(t)⊗ [j1]B1

⊗ B1
E1

q(t)−1 =: [ j1x j1y j1z ]⊺, (5.28)

[j2]E2
(t) = B2

E2
q(t)⊗ [j2]B2

⊗ B2
E2

q(t)−1 =: [ j2x j2y j2z ]⊺ (5.29)

and define the sample rating r(t) as the product of the lengths of their horizontal projections
(cf. Figure 5.11):

r(t) := j1,projj2,proj, (5.30)

j1,proj := ∥[ j1x j1y ]⊺∥, (5.31)

j2,proj := ∥[ j2x j2y ]⊺∥, (5.32)

which approaches zero if any of the axes get close to vertical.
Note that for hinge joints, both j1 and j2 will get close to vertical at the same time. It is

still useful to consider both vectors to account for measurement inaccuracies.

5.5.4 Optimization-Based Estimation of the Heading Offset

Instead of using the constraint sample-by-sample to estimate δ(t) like in Section 5.3, we employ
a window-based estimation method. This is done to account for measurement inaccuracies
and for the fact that biological joints only approximately fulfill the joint constraint.

At regular time intervals Test, we perform an estimation of δ(t) based on data in a time
window immediately preceding the estimation time. We denote the corresponding quantities
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5.5 Window-Based Heading Tracking Method

with an index w ∈ N+, i.e., the estimation time instants are

tw := wTest. (5.33)

Each window consists of N samples with a sample index k = 1, . . . , N , taken with a regular
sampling interval Ts (which might be larger than the sampling interval of the sensor at which
orientation estimation is performed) at the sampling instants

tw,k := wTest + (k −N)Ts, (5.34)

leading to a window duration of Twin := TsN .
This implies that only previous data is used to estimate δ(t), making this approach suitable

for real-time applications. See Figure 5.12 for a visual representation of the estimation time
windows. Note that for applications in which real-time capability is not needed, the approach
can easily be modified to use windows centered around the estimation time instants tw in
order to improve accuracy.

Ts Twin Test

w =1
w =2

w =3

t1 t2 t3 t
t2,Nt2,1 · · ·

Figure 5.12: Graphical representation of the estimation windows, the estimation time instants
tw, the sample time instants tw,k, and the durations Ts, Test, Twin. Estimation is performed on
overlapping moving windows. Each window consists of N samples and has a duration of Twin.
After each estimation, the window is shifted by Test.

Let [j1]E1
=: [ j1x j1y j1z ]⊺ and [j2]E2

=: [ j2x j2y j2z ]⊺ be the joint axis vectors in the
respective 6D reference frames and B2

B1
q(tw,k) =: [ qw qx qy qz ]⊺ be the relative orientation that

(5.23) yields for a given δ̂. For each sample of the window, we define the weighted constraint
error

ew,k(δ̂) = wrapToPi(atan2 (j2y, j2x)− atan2 (j1y, j1x)− δ̂) rw,k (5.35)

in case the joint is a hinge joint and

ew,k(δ̂) = (arcsin(2qwqx + 2qyqz)− β0) rw,k (5.36)

in case the joint is a 2-DoF joint, with rw,k := r(tw,k) and wrapToPi being a function that
brings angles into the interval [−π, π] by adding integer multiples of 2π.

Since the heading offset δ(t) only changes slowly over time, we assume that it is constant
during each window and find the angle δw that minimizes the sum of squares of the errors
given in (5.35) or (5.36) over the window w:

δw = arg min
δ̂

N∑︂

k=1
ew,k(δ̂)2. (5.37)
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We use analytical expressions for the Jacobian Jw ∈ RN×1 (see Appendix B.3) with

[Jw]k = ∂ew,k

∂δ̂
(5.38)

and employ the Gauss-Newton algorithm to minimize the error for each window w, while using
the estimate of the previous window as the initial value for each new window.

5.5.5 Singularity Treatment and Heading Filter

The sample rating rw,k allows the method to focus on the parts of a window that contain
most relative-heading information. However, if the segments stay close to the singularity for
durations that exceed the window duration Twin, the estimate of the corresponding windows
might be wrong. To mitigate this, we first introduce the window rating

rw :=

⌜⃓
⎷⃓ 1
N

N∑︂

k=1
r2
w,k. (5.39)

Then we design a filter that

• smoothes the δw trajectory, taking the rating into account,

• extrapolates linearly if the rating is below a certain threshold,

• does not introduce a delay if δw changes linearly.

To achieve this, we determine a filtered estimate δf,w by applying the following nested
adaptive filter that estimates the heading bias bw and uses it to extrapolate the heading offset
whenever the rating is below a certain threshold:

bw = bw−1 + swkb,w wrapToPi(δw − δw−1 − bw−1), (5.40)

δf,w = δf,w−1 + bw + swkδ,w wrapToPi(δw − δf,w−1 − bw), (5.41)

sw =




rw rw ≥ rmin

0 else,
(5.42)

with a rating threshold rmin ∈ [0, 1] and filter gains

kb,w := max
(︃

1− exp
(︃
− ln 2Ts

τb

)︃
,

1
w

)︃
, (5.43)

kδ,w := max
(︃

1− exp
(︃
− ln 2Ts

τδ

)︃
,

1
w

)︃
. (5.44)

The parameters τb and τδ are tunable half-error time constants for the bias and heading filter,
respectively. The filter gains are increased for small w to ensure fast initial convergence.

5.5.6 Rest Detection

To further improve the heading tracking robustness during phases in which the segments do
not move, we extend the heading filter by a rest detection algorithm. Rest is detected when,
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5.5 Window-Based Heading Tracking Method

for both segments, the mean of the angular velocity norm is below ωrest for a duration of at
least Trest.

If both segments are at rest, the joint orientation, i.e., the relative orientation of both
segments, does not change. We can exploit this fact to accurately track the drift in the heading
offset δ(t) as long as rest is detected.

As soon as rest is detected, we store a reference B2
B1

qref for the joint orientation based on
the orientation estimates and the estimate of the heading at the current time trest:

B2
B1

qref = B1
E1

q(trest)−1 ⊗
(︂
δ̂(trest) @ [ 0 0 1 ]⊺

)︂
⊗ B2

E2
q(trest). (5.45)

At any later time instant t during the current rest phase, we can use this reference
orientation to estimate the current heading offset δ(t). The quaternion representing the
heading offset E2

E1
q = (δ@ [ 0 0 1 ]⊺) can be calculated from the current orientation estimates

and the reference joint orientation by rearranging (5.45):

E2
E1

q(t) = B1
E1

q(t)⊗ B2
B1

qref ⊗ B2
E2

q(t)−1. (5.46)

E2
E1

q(t) will typically be mostly a rotation around the vertical z-axis, corresponding to the
current heading offset, and small rotations in other directions due to measurement errors and
minimal joint movement. To recover the heading angle, we employ the quaternion projection
method introduced in Section 2.4.5, i.e.,

δ̂(t) = 2 atan2(qz, qw), with E2
E1

q(t) =: [ qw qx qy qz ]⊺. (5.47)

As long as rest is detected, we set the filter output δf,w to this heading offset.

5.5.7 Heading Correction

We finally use (5.19), (5.23) and the filtered estimate δf(t) to determine the correction
quaternion

E2
E1

q(t) = (δf(t) @ [ 0 0 1 ]⊺) =
[︂
cos

(︂
δf(t)

2

)︂
0 0 sin

(︂
δf(t)

2

)︂]︂⊺
, (5.48)

the orientation of the second segment B2 in the reference frame of the first segment E1

B2
E1

q(t) = E2
E1

q(t)⊗ B2
E2

q(t), (5.49)

and the relative orientation between both segments, i.e., the joint orientation

B2
B1

q(t) = B1
E1

q−1 ⊗ E2
E1

q(t)⊗ B2
E2

q(t). (5.50)

The resulting quaternions can be used for joint angle calculation and for 3D visualization.
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5.6 Experimental Validation

The proposed method is validated experimentally with a mechanical 3D-printed hinge joint
and human finger joints. For the mechanical joint, marker-based OMC is used as ground
truth. For the finger joints, we design an experiment that allows us to obtain an approximate
ground truth for the heading offset δ(t). The motions are chosen to facilitate investigation of
the long-time stability of the obtained estimates during phases with and without sufficient
excitation, i.e., during motions that yield sufficient relative-heading information and during
motions for which the segments remain close to the singularity.

5.6.1 Setup

(a)

(b)

(c)

S1

S2S3
S4

DIP PIP MCP

j2

j1

Figure 5.13: Experimental setup and example scenes from the conducted experiments.
(a) The mechanical joint data was recorded with a 3D-printed hinge joint, XSens MTw IMUs, and
marker-based OMC as reference. (b) For the hand data, a recently developed modular system
[138, 158] was used. (c) The hand experiments consist of functional motions and of rest phases
near the singularities of the kinematic constraints.

The 3D-printed mechanical hinge joint is shown in Figure 5.13a. Each segment is equipped
with one IMU (Xsens MTw, Xsens Technologies B.V., Netherlands) and five optical markers,
which are tracked by Flex13 cameras of an Optitrack OMC system (NaturalPoint, Inc., USA).
Due to the custom mount for IMUs and optical markers, the segment coordinate systems are
precisely known. The IMUs measure the angular velocity and the acceleration at a rate of
50 Hz, and 6D sensor fusion is performed using the BasicVQF algorithm presented in Chapter 3.

To measure the 6D orientation of the finger segments, a recently developed modular finger
and hand motion capturing system [138, 158] is used, as shown in Figure 5.13b. One inertial
sensor is attached to the back of the hand and tracks the movements of the metacarpal bones
of the fingers. Six additional sensors are attached to the phalanges of the index and middle
finger. The sensor-to-segment attachment is known due to a precise and careful attachment of
the IMUs to the finger segments. The IMUs measure the angular velocity and the acceleration
at a rate of 100 Hz, and 6D sensor fusion is performed using the BasicVQF algorithm presented
in Chapter 3.
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Figure 5.14: Kinematic model of a finger (excluding the thumb). The metacarpophalangeal joint
(MCP) connects the metacarpal bone and the proximal phalanx and can be modeled as a 2-DoF
joint. The proximal interphalangeal joint (PIP) and the distal interphalangeal joint (DIP) connect
the proximal, intermediate, and distal phalanges and can be modeled as hinge joints.

We consider the metacarpophalangeal joint (MCP), the proximal interphalangeal joint
(PIP), and the distal interphalangeal joint (DIP) of the index and middle finger. As illustrated
in Figure 5.14, the finger can be modeled as a kinematic chain consisting of four segments.
The MCP, which connects the proximal finger segments to the metacarpals, is an approximate
2-DoF joint. The abduction axis j1 of the MCP is fixed in the coordinate system of the back of
the hand. The flexion axis j2 is fixed in the coordinate system of the proximal phalange. Since
the axes are approximately perpendicular, we assume that β0 =0. The PIP and DIP, which
connect the phalanges, are only capable of flexion and therefore approximate hinge joints.

5.6.2 Conducted Experiments

To evaluate the mechanical hinge joint, seven experiments were conducted in which the joint
was held and excited by both hands (cf. Figure 5.13a). The individual trials have a duration
ranging from 60 s to 6 min 56 s. Several of the trials include phases in which the joint axis is
near vertical and phases in which the joint is stationary.

To evaluate the PIP and DIP joints of the finger, three long-time experiments were
conducted, with durations of 10 min 54 s, 12 min 7 s, and 7 min 25 s. In the first experiment,
vertical joint axes were avoided, while the second experiment consists of distinct phases with
various speeds and rest phases with horizontal and vertical joint axis, as detailed in Table 5.2.
The third experiment consists of natural functional hand motions (Figure 5.13c).

To evaluate the MCP joints of the finger, two long-time experiments were conducted. The
first experiment, with a total duration of 8 min 41 s, was designed with distinct movement
phases that include phases with natural movement and longer phases with rest near the
singularities. See Table 5.3 for an overview of the different movement phases and their
duration. The motion phases were chosen to include phases with and without excitation.

Table 5.2: Movement phases of the second experiment for the PIP/DIP joints

Phase Description Start End Duration
M1 normal movement 0 s 121 s 121 s
M2 slow movement 121 s 264 s 143 s
M3 no movement, j horizontal 264 s 363 s 99 s
M4 normal movement 363 s 497 s 134 s
M5 no movement, j vertical 497 s 602 s 105 s
M6 normal movement 602 s 727 s 125 s
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Table 5.3: Movement phases of the first experiment for the MCP joint

Phase Description Start End Duration
M1 normal movement 0 s 90 s 90 s
M2 slow movement 90 s 153 s 63 s
M3 normal movement 153 s 247 s 94 s
M4 no movement, j2 vertical 247 s 290 s 43 s
M5 normal movement 290 s 382 s 92 s
M6 no movement, j1 vertical 382 s 424 s 42 s
M7 normal movement 424 s 521 s 97 s

Phases with movement are expected to yield good estimation results (M1, M3, M5, M7).
During phases with approximately vertical axes (M4, M6), the data contains almost no heading
information, but the singularity treatment and rest detection, as described in Sections 5.5.5
and 5.5.6, should mitigate this. The second experiment consists of functional movements like
counting, typing, and moving objects in and out of a box to test the method in real-world
scenarios (Figure 5.13c). The second experiment has a total duration of 3 min 26 s.

5.6.3 Real-Time Heading Tracking

To evaluate the performance of real-time estimation of δ(t), the proposed algorithm is applied
to the recorded data. For the estimation at a given time instant tw, only data from the past is
used. The parameters are chosen as follows: Every Test = 1 s, we analyze a window with a
duration of Twin = 5 s for the mechanical joint and Twin = 25 s for the finger joints, consisting
of N = 25 or N = 125 samples taken every Ts = 0.2 s. We choose the filter time constants as
τb = 8 s and τδ = 8 s, with a rating threshold of rmin = 0.4. For the rest detection algorithm,
we choose a duration of Trest = 3 s and a threshold of ωrest = 5 °/s.

5.6.4 Comparison with Conventional 6D and 9D Sensor Fusion

For comparison, we additionally evaluate a conventional 6D and a conventional 9D method.
For the conventional 6D comparison, we employ the method proposed in [138]. During a

phase without movement at the start of the measurement, the gyroscope readings are averaged
to obtain an estimate of the gyroscope bias. After removing this bias, 6D sensor fusion is
performed. At the beginning of the measurement, an initial-pose reset is performed, which
makes use of the known initial pose to determine and correct the heading offset. However, it is
an inevitable fact that the resulting orientations are only valid for a limited time until they are
deteriorated by integration drift resulting from residual and from time-varying gyroscope bias.

For the conventional 9D method, we directly use the 9D orientation estimates provided by
the BasicVQF method introduced in Chapter 3.

5.6.5 Obtaining an Approximate Ground Truth

For validation of the experiments with the mechanical hinge joints, we compare the 6D IMU
orientations of each segment to the OMC-based orientations and use the heading/inclination
decomposition introduced in Section 2.5 to split the relative orientation into a heading offset
and a residual rotation angle. The difference of the heading offsets for both segments, denoted
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δref , serves as ground truth for the heading offset δf(t) that we estimate with the proposed
method. To account for noise in the OMC marker positions, we apply a low-pass filter to this
slowly changing ground truth trajectory.

For validation of the finger experiments, for which an OMC ground truth is not available,
we define a reference pose that is taken several times during the experiment: The hand is lying
flat on a horizontal surface with all fingers straight. For that pose, the coordinate systems
of all sensors are approximately aligned. Therefore, whenever that pose is taken, the ground
truth δref is determined as the heading offset that minimizes the rotation angle of the relative
quaternion B2

B1
q in (5.23). Assuming that the heading drift is slow and approximately linear,

we linearly interpolate δref between the reference time instants. Since this method relies on the
precise attachment of the sensors as well as the exact positioning of the hand during the resting
phases, it yields only an approximate ground truth. Still, this ground truth is suitable for
determining whether the relative heading estimates δf(t) of the proposed method are long-time
stable.

To mitigate some of the inaccuracy of the heading ground truth due to relying on a precise
sensor attachment, we apply a small constant offset for each trial based on the mean difference
between the estimated heading offset and the ground truth. The average absolute value of the
applied offset is 1.6°, with a maximum of 4.8°.

5.6.6 Error of the Relative Orientation

As explained above, accurate relative heading estimation is crucial for obtaining accurate
relative segment orientations, which are required to determine joint angles and forward
kinematics. We use δref(t) to determine the approximate true relative orientation for each joint
and calculate the absolute rotation angle between this orientation and the relative segment
orientation that is estimated by the proposed method. Denote this error by erelori(t). For each
trial, we further condense this error to a single value by calculating the RMSE.

The results for all trials of all three joint types are presented in Figure 5.15 and summarized
in Table 5.4.

Table 5.4: Average relative orientation RMSE for the different joints with the proposed heading
tracking method (HT) and a conventional 6D and 9D method

Joint DoF Trials HT 9D 6D
Mechanical hinge joint 1 7 0.3° 3.1° 3.3°
Biological (finger, PIP+DIP) 1 12 1.7° 5.9° 55.7°
Biological (finger, MCP) 2 4 3.9° 12.5° 19.3°

For the mechanical joint, the proposed method yields very good results with an average
error of 0.3°. Also, for the biological finger joints, the average errors of 1.7° and 3.9° are very
low and within the accuracy of the approximate ground truth. The slightly larger error for the
biological 2-DoF joint compared to the hinge joints fits the expectation that the additional
degree of freedom in the joint movement impedes accurate estimation of the heading offset.
However, as the errors are still within the accuracy of the approximate ground truth, the
observed difference in the error might be coincidental or caused by other differences in the
performed experiments.
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Figure 5.15: Relative orientation RMSE for the three different joint types with the proposed
heading tracking method and conventional 6D and 9D methods for comparison. The proposed
heading tracking method consistently provides the smallest relative orientation errors.

Considering the long duration of the performed experiments, we can conclude that the
proposed method achieved stable tracking of the heading offset for all trials. This cannot be
said for the conventional methods. Due to the long trial durations, the accumulated gyroscope
drift is substantial, leading to large errors when using the conventional 6D method with initial
reset. The magnitude of this error depends on the duration of the trial, the quality of the
IMUs, as well as the accuracy of the gyroscope bias estimate.

With the conventional 9D method, the error depends mostly on the homogeneity of the
magnetic field and the quality of the magnetometer calibration. Even for the mechanical
joint, where the RMSE of 3.1° does not suggest substantial issues with the magnetometer
measurements, the errors obtained with the proposed method are considerably smaller than
the errors obtained with the 9D method.

5.6.7 Cost Function Analysis and Evaluation of Singularity Treatment

For a detailed analysis of the behavior of the proposed method, we take a detailed look at
one exemplary trial for each joint type: Figure 5.16 shows results for the mechanical joint,
Figure 5.17 for a DIP joint, and Figure 5.18 for an MCP joint.

To analyze the properties of the optimization problem for the different motion phases, we
evaluate the cost function in (5.37) for each time instant tw and for many evenly spaced angles
δ ∈ [0°, 360°]. The result is shown in Figures 5.16a, 5.17a, and 5.18a, with a red dot indicating
the location of the minimum for the respective time instant. In general, for hinge joints, there
is one distinct minimum for each time instant, while the 2-DoF constraint exhibits a second
local minimum. Still, it can be seen that a distinct global minimum exists for phases with
movement. In contrast, the cost function becomes flat and exhibits a distinct second local
minimum for phases without movement and a vertical joint axis (M4 and M6). During those
phases, no relative-heading information is available, and the minima do not reflect the true
value of δ.
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Figure 5.16: Results for an exemplary trial with the mechanical hinge joint, showing (a) the
value of the cost function and the minimum for each time instant (red), (b) the unfiltered and
filtered heading offset as well as the window rating, and (c) the orientation errors for the proposed
heading tracking method (HT) and the conventional 6D and 9D approaches. The mechanical hinge
joint allows for very accurate heading tracking (RMSE: 0.2°), even in phases when the joint axis is
near vertical and the window rating rw is small.

From the overall trend, it can be seen that the minimum remains almost constant in
5.16a, indicating good sensor calibration and small gyroscope bias, and drifts slowly with an
approximately constant slope of 0.6 °/s in 5.18a. In 5.17a, it is noticeable that the drift of the
heading offset is quite slow, except during phase M5, in which the joint axis is vertical. This
is likely due to gyroscope bias being larger in the sensor axis corresponding to the joint axis.
Since extrapolation of the previous heading drift will not lead to a good estimate, this presents
a challenging case for the heading filter.

Figures 5.16b, 5.17b, and 5.18b show the time series of the estimated heading offsets δ(t)
and δf(t) as well as the approximate ground truth δref(t) and the window rating rw. The
ground truth is depicted with a band of ±10° to indicate the low accuracy. It can be seen that
during the phases with a small window rating rw, the unfiltered estimate δ(t) diverges from
the ground truth. However, the filtered estimate δf(t) remains close to the true value, even
for long time periods near the singularities, especially in motion phase M5 in Figure 5.17 and
motion phases M4 and M6 in Figure 5.18 with deliberate rest with a vertical joint axis. This
is especially noteworthy for the challenging case mentioned above, i.e., M5 in Figure 5.17, and
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Figure 5.17: Results for the 1-DoF DIP joint of the index finger and the second experiment,
showing (a) the value of the cost function and the minimum for each time instant (red), (b) the
unfiltered and filtered heading offset as well as the window rating, and (c) the orientation errors
for the proposed heading tracking method (HT) and the conventional 6D and 9D approaches. For
a short duration during M2 (slow movement) and, as expected, during M5 with a near-vertical
joint axis, the kinematic constraint does not yield the correct heading offset δ, which is mitigated
by the singularity treatment.

shows that the rest detection algorithm works as intended and is able to accurately track the
previously unknown heading drift.

Finally, the relative orientation errors erelori(t) for the proposed and the conventional
methods are shown in Figures 5.16c, 5.17c, and 5.18c. For the conventional 6D method
presented in [138], the error erelori is zero at the start of the measurement and then slowly
increases to values > 100° after several minutes. To obtain long-time stable motion tracking,
the subject would have to repeat the initial reset procedure at least once per minute. The
conventional 9D method does not exhibit drift but yields large errors. Accurate motion
tracking with 9D sensor fusion requires accurately calibrated magnetometers and a laboratory
environment that is kept free of any potential magnetic disturbances. In contrast, the
proposed constraint-based heading tracking method yields accurate results throughout the
entire measurement, and for all three examined trials, the relative orientation error erelori(t)
always stays within the accuracy band of the approximate ground truth.

124



5.7 Conclusions

0

100

200

300
he

ad
in
g
off

se
t
δ
[°]

M1 M2 M3 M4 M5 M6 M7(a)

0 100 200 300 400 500
time [s]

0

25

50

er
ro
r
e r

el
or

i
[°]

(c)
HT, RMSE: 4.6°
9D, RMSE: 10.3°
6D, RMSE: 44.6°

0.0

0.2

0.4

0.6

0.8

1.0

w
in
do

w
ra
tin

g
r w

rw (window rating)

20

40

er
ro
r
[°]

0

100

200

300

400

he
ad

in
g
off

se
t
δ
[°]

(b)
δ (estimated via constraint)
δf (filtered)
δref (determined from resting poses)

Figure 5.18: Results for the 2-DoF MCP joint of the index finger and the first experiment,
showing (a) the value of the cost function and the minimum for each time instant (red), (b) the
unfiltered and filtered heading offset as well as the window rating, and (c) the orientation errors
for the proposed heading tracking method (HT) and the conventional 6D and 9D approaches. In
contrast to the hinge joint constraint, the 2-DoF constraint often exhibits a second local minimum.
During phases M4 and M6, one joint axis is near vertical, and the constraint does not yield the
correct heading offset δ, which is mitigated by the singularity treatment.

5.7 Conclusions

This chapter introduced two methods for magnetometer-free motion tracking of kinematic
chains based on exploiting kinematic constraints of the joints.

The first sample-based method is designed for approximate hinge joints and works on 9D
orientation estimates obtained in inhomogeneous magnetic fields as well as on magnetometer-
free 6D orientation estimates. The method uses an orientation-based constraint to determine
the relative heading between the sensor orientations. Since the constraint becomes singular
when the joint axis becomes vertical, a filter was designed that allows for accurate tracking
with a temporarily vertical joint axis. The results of the performed simulation study indicate
that the method is highly useful in the presence of ferromagnetic material or other magnetic
disturbances. Furthermore, the results show that the method still gives good results when
the ideal conditions of a perfect hinge joint and a perfect sensor-to-segment calibration are
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not met and that the dimensions of the segments and the motion volume hardly influence the
accuracy of the method.

Based on the first method, an extended method for magnetometer-free inertial motion
tracking was introduced. This method is suitable for hinge joints and joints with two degrees
of freedom. A real-time-capable window-based optimization scheme was introduced to increase
robustness. Furthermore, a method for rating the reliability of the optimization result was
proposed, and an adaptive filter was introduced that takes this rating into account and
extrapolates the estimate when no relative-heading information is available. The experimental
validation based on a mechanical hinge joint and the MCP, PIP, and DIP joints of the fingers
shows that the method facilitates accurate and long-term stable motion tracking, in contrast
to conventional 6D and 9D methods.

With the proposed method, it is possible to track the relative orientations and joint angles
of joints with one or two degrees of freedom in real-world applications with realistic magnetic
environments. The method is real-time capable in the sense that only current and previous
information is used. It is therefore highly suitable for rehabilitation applications, including
real-time visualization of motions and feedback control of rehabilitation robotics or functional
electrical stimulation systems. While previous research is often limited to short-time analysis
of rich motions, the proposed method yields long-time stable results and is capable of handling
phases in which no movement is performed or in which the movement does not contain heading
information. Furthermore, in contrast to previously proposed methods, the current method
works on arbitrary motions without the need to perform an initial reset with a predefined pose
and without the need to determine sensor-to-joint position parameters.

In future work, the proposed heading tracking method should be combined with the
automatic anatomical calibration methods introduced in Chapter 4 to enable plug-and-play
magnetometer-free motion tracking.
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6
Non-restrictive Gait Assessment by

Foot-Worn IMUs

Gait assessment is an essential tool in various medical and therapeutic fields and is typically
performed by trained medical experts and with expensive and restrictive stationary motion
capture systems. As an emerging alternative, IMUs can be employed to provide objective, low-
cost gait assessment that is non-restrictive and can be used outside of laboratory environments.
To facilitate this development, this chapter introduces a modular set of methods to detect
gait events and derive various spatiotemporal gait parameters and 3D foot position and angle
trajectories.

Text, figures, and tables found in this chapter have been previously published or submitted
for publication, with slight modifications, in the following works:

[159] D. Laidig, A. J. Jocham, B. Guggenberger, K. Adamer, M. Fischer, and T. Seel.
“Calibration-Free Gait Assessment by Foot-Worn Inertial Sensors”. In: Frontiers in
Digital Health 3 (2021), Article 147. issn: 2673-253X. doi: 10.3389/fdgth.2021.

736418.

[160] A. J. Jocham, D. Laidig, B. Guggenberger, and T. Seel. “Measuring Highly Accurate
Foot Position and Angle Trajectories with Foot-Mounted IMUs in Clinical Practice”.
[Manuscript submitted for publication]. 2023.

Most of the content of this chapter has been published in [159]. While most of Section 6.2 has
been published in [159], the version found in this chapter was extended to cover 3D position
and angle trajectory tracking in addition to the derivation of spatiotemporal gait parameters.
Sections 6.3.11 to 6.3.13 and Section 6.5 have been submitted for publication in [160]. Sections
6.6 and 6.7 have been slightly extended from the version published in [159] to cover the results
of Section 6.5.
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Figure 6.1: Inertial gait analysis can be realized with two miniaturized IMUs on the shoes,
enabling daily-life assessment outside of laboratory environments. From the raw sensor data, the
foot orientation, gait phases, and velocity and position trajectories can be estimated. Parameters
commonly used in gait analysis, such as stride length, cadence, and walking speed, can easily be
derived from this.

6.1 Introduction

Walking is a central activity of daily life, and restrictions of this ability lead to a reduction
in the quality of life [161, 162]. Therefore, gait analysis is an important tool in different
medical and therapeutic fields [163, 164]. The measurement of various gait characteristics
can either facilitate diagnosis or be used to track the progress of rehabilitation. Gait can
be measured by spatial (e.g., step or stride length) and temporal (e.g., stride time, cadence)
parameters, relative durations of gait phases, and kinematic and kinetic gait variables [165].
These parameters are used to quantify gait deviation in both clinical practice and research,
and their use varies with the medical field, the research question, and the analysis options.
While gait assessment in clinical practice is mostly based on visual observation by medical
experts [166], it is desirable to support expert knowledge and time by objective measurements.
This is also important because relevant gait changes are often too subtle to be detected by the
naked eye [167].

Traditionally, sensor-based gait assessment is performed with stationary systems like
marker-based optical motion tracking, instrumented treadmills, or pressure-sensitive walkways
[166, 168]. Besides being expensive, one major drawback of those systems is that they are
limited to a small capture space or require the subject to walk on a treadmill [164, 169, 170, 171,
172]. Furthermore, the use of walking aids is often not possible or restricted in combination
with such systems.

A promising, more ambulatory, and less restrictive alternative is inertial gait analysis, i.e.,
gait analysis with inertial sensor technology. Lightweight and battery-powered IMUs are used,
which transmit the data wirelessly.

The transition from expensive stationary systems to small wearable sensors opens up
possibilities that go beyond replacing the measurement technology used for gait assessment
in clinical settings. Integrating objective long-term gait monitoring into day-to-day life – as
illustrated in Figure 6.1 – could provide more powerful tools for clinicians to help patients in
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rehabilitation and to gain further insight into disease progression. Furthermore, non-obtrusive
wearable plug-and-play systems facilitate applications in neuroprosthetics [173] or exoskeletons
and can be used to provide biofeedback [174]. In the last years, wireless battery-powered
IMUs have become smaller, lighter, more accurate, and, at the same time, cheaper and more
energy-efficient. It is to be expected that this development will continue. For those new trends,
it is important to develop methods that can provide a wide variety of gait parameters that
are useful to medical experts. At the same time, the methods need to be robust so that the
system can be used by patients in unsupervised settings, outdoors as well as indoors.

It has been shown by previous contributions [16, 175, 176] that major gait parameters
can be determined with two IMUs that are placed on the feet or the shoes, as illustrated in
Figure 6.1. This includes stride length, gait phase durations (e.g., stance and swing percentage),
and also cadence and walking speed.

This chapter aims to propose methods for gait assessment that meet the requirements
for daily life monitoring in unsupervised settings and that are validated on a broad group
of subjects, including patients with various gait pathologies. The proposed methods do not
assume a precisely fixed orientation of the sensor on the foot and do not require the subject to
perform dedicated calibration movements. Furthermore, magnetometers are not used since
the magnetic field is known to be severely disturbed in indoor environments [38]. This makes
the use of inertial gait analysis easy and practical in clinical settings and facilitates future
applications of ubiquitous gait analysis in home environments.

6.2 State of the Art in IMU-Based Gait Assessment

Several methods have been proposed that employ IMUs to obtain gait parameters. In the
following, we first consider methods that estimate spatiotemporal parameters. At the end of
the section, we take a brief look at the estimation of position and angle trajectories.

For spatiotemporal parameter estimation, we take a brief overview of the current state
of the art and summarize the different hardware setups that are used, which parameters
are calculated, and how the methods were validated. Table 6.1 categorizes 23 publications
that provide a range of examples for the variety of existing approaches in the estimation of
spatiotemporal gait parameters with IMUs.

There are different hardware setups based on the number of IMUs and their placement.
The chosen setup impacts which and how many parameters can be derived from the measured
data. The most commonly used setup consists of two IMUs. As shown in Table 6.1, sensors are
typically placed on the feet or shoes and sometimes on the shank. This setup is occasionally
extended by adding a third sensor on the pelvis or lumbar spine [177, 178]. Note that it has
even been shown that temporal gait events can be obtained from a single IMU at the pelvis
[179], but the potential for extracting further spatial parameters is limited. Full (lower) body
motion tracking opens up additional possibilities, as demonstrated with 7 IMUs on the lower
body and pelvis in [180] and with 8 to 15 IMUs in [181]. Another, less common, option consists
of combining IMUs with further measurement devices, e.g., a camera on one foot and LEDs
on the other foot to facilitate the direct measurement of relative positions [182].
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Table 6.1: Overview of IMU-based spatiotemporal gait parameter estimation literature

Employed sensor setup
2 IMUs on feet/shoes [16, 176, 183, 184, 185, 186, 187, 188, 191, 192, 193, 194,

195, 196, 197]
2 IMUs on shank [173, 175, 187, 189, 190, 195]
3 or more IMUs [177, 178, 180, 181]

Detected gait phases
stance/swing [173, 175, 176, 178, 180, 183, 184, 187, 189, 190, 195]
4 unilateral events [16, 185, 186, 191, 192, 193]
single/double support [181, 197]

Ground truth used for evaluation
optical motion capture (OMC) [177, 180, 185, 186, 188, 192, 196, 197]
pressure-sensitive walkways [175, 176, 178, 184, 189, 190]
instrumented treadmills [194, 195]
pressure insoles [16, 187]
others/none [181, 183, 191, 193]

Non-healthy subjects included in evaluation
none (healthy only) [177, 180, 181, 183, 185, 186, 193, 194, 195, 196]
≤ 20 [178, 187, 188, 190, 192]
> 20 [16, 175, 176, 184, 189, 197]

A total of 23 publications that describe the estimation of spatiotemporal gait parameters with
IMUs are categorized based on sensor setup, detected gait phases, and the ground truth and
number of non-healthy subjects for evaluation.

Some methods require that a known orientation of the sensor axes with respect to the
anatomical foot axes has to be ensured by precise placement. Many literature methods are
based on such assumptions, including [16, 173, 175, 176, 183, 184, 185, 186, 187, 188, 189, 190].
In practice, however, ensuring a precise placement is a challenge, especially in non-supervised
application scenarios and during activities of daily life. Alternatives are to develop methods
that are agnostic to the sensor-to-segment orientation – e.g., by relying only on signal norms
– or to determine this orientation in a process commonly called anatomical calibration (cf.
Chapter 4).

The calculation of spatiotemporal gait parameters is usually implemented in a two-stage
approach. In the first step, gait events and corresponding gait phases are detected. In the
second step, spatial parameters are calculated.

Existing methods vary in the set of detected gait phases or events. In many cases, the
focus is only on the separation between stance and swing (cf. Table 6.1), although sometimes
additional events, such as mid-swing [190], are also detected. It is also common to detect four
events that occur during the gait cycle and are only defined by the ipsilateral (same) foot. Those
events are initial contact, full contact, heel rise, and toe-off, although the terminology varies.
Despite being common practice in gait analysis [165, 198], employing bilateral information,
i.e., combining information from both feet to define the gait phase, is far less common in
IMU-based methods. One example is [181], in which single and double limb support durations
are calculated.

There are various approaches for the detection of gait phases or events using IMUs. It
has been shown that exploiting features of the angular rate signal in the sagittal plane is
sufficient to achieve reliable gait event detection [175, 183, 185, 187, 189]. Many other methods
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use both accelerometers and gyroscopes and detect characteristic signal features in the IMU
data, including [16, 173, 176, 184, 188, 190, 191, 192, 193]. Sometimes automatic adaptation
mechanisms are used to adjust thresholds based on the subject’s walking style [190, 191, 192,
193]. An alternative to the signal-based methods is to rely on a kinematic model to detect gait
events [180, 181]. Machine learning methods, often based on hidden Markov models [178, 186],
are also used for event detection, cf. [199].

In addition to the detection of gait events, spatial parameters, such as stride length and
walking speed, are often calculated. Those parameters are obtained by either signal integration,
human gait models, or by machine learning methods [200]. By far the most common approach
is numerical strapdown integration of the accelerations [175, 176, 180, 183, 188, 189, 195, 196].
The cyclic nature of gait and the fact that there is frequent ground contact are exploited
to correct for drift resulting from double integration. It has been shown that Fourier-based
integration is an alternative to numerical integration [177], that spatial parameters can be
obtained from kinematic models [181, 195], and that convolutional neural networks can also
be used to estimate spatial parameters [184].

Most publications focus on common spatiotemporal parameters such as stride length,
walking speed, and cadence. Other than those spatiotemporal parameters, there is a multitude
of spatiotemporal gait parameters that are relevant in a clinical context for various pathologies
[166]. Examples that can be estimated using IMUs include step width [180] and swing width
[180, 188].

Some publications [173, 185, 190, 191, 192, 193] focus on real-time detection of events, e.g.,
to trigger FES in a drop foot stimulator [20, 201]. While the approaches used are usually
similar to the ones used in offline gait analysis, this typically implies a focus on minimizing
the detection delay rather than the accuracy of the reported values.

As shown in Table 6.1, evaluation is often performed with marker-based optical motion
capture as ground truth. Systems based on the detection of pressure, such as pressure-sensitive
walkways, instrumented treadmills, and pressure insoles, are a common alternative. In some
cases, no validation with respect to a gold standard is performed. Instead, the settings of
a (calibrated) treadmill are used as the ground truth for walking speed and incline [183],
a manually counted number of steps is combined with the detection of irregularities [193],
validation is performed by visual inspection of the results [191], or the focus is only on test-retest
reliability [181].

Even though it has been shown that the accuracy of gait analysis methods decreases when
applied to non-healthy subjects [199], the evaluation of inertial gait analysis methods is often
only based on healthy subjects. When data obtained from non-healthy subjects is part of the
evaluation, the number of subjects is often small, for example, five transfemoral amputees
[192], ten stroke patients [190], ten hemiparetic patients and ten Huntington’s disease patients
[178], or ten patients with Parkinson’s disease [188].

To the best of the author’s knowledge, few publications [16, 175, 176, 184, 189, 197] exist
that propose methods for IMU-based spatiotemporal gait parameter estimation and validate
the methods on a larger set of subjects with gait pathologies. In the following, we briefly
summarize those publications.
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In [16], sensors are placed on the forefoot in a known orientation, and four different
unilateral gait events are detected based on features of the angular velocity in the sagittal
plane, the norm of the accelerometer signal, and the derivative of the angular velocity norm.
Using pressure insoles as reference, the method is validated on ten healthy and 32 orthopaedic
subjects.

The commercial Gait Up system is evaluated in [197] with 25 subacute stroke patients as
subjects and marker-based optical motion capture as reference.

Gait events and stride length are calculated in [175] based on shank-mounted IMUs.
Events are detected based on the angular rate in the sagittal plane, and stride length is
obtained via double integration of the accelerations. The latter relies on the proprietary
orientation estimation algorithm provided by the sensor manufacturer. Experimental evaluation
is performed using the GAITRite pressure-sensitive walkway as reference on ten healthy elderly
and 30 non-healthy subjects.

In [189], the same method is validated on a much larger group of subjects, consisting of
236 community-living older adults, including 31 mild cognitive impaired subjects and 125
Parkinson’s disease patients.

In [176], IMUs are placed laterally on the shoe in a fixed orientation, stance and swing
durations are calculated based on characteristic signal features, and the stride length is
obtained via double integration. The method is evaluated using a large dataset of 101 geriatric
inpatients, with reference data obtained from a GAITRite pressure-sensitive walkway.

Using the same gait event detection method and the same dataset for evaluation as [176],
[184] estimates stride length, stride width, mediolateral change in foot angle, heel contact
times, and toe contact times using deep convolutional neural networks.

In comparison to IMU-based gait analysis via spatiotemporal parameters, the amount of
publications that investigate the calculation of position and angle trajectories is more limited.
Many studies focus on the estimation of a single metric, such as foot clearance [196, 202,
203, 204] or the foot progression angle [205, 206]. Other publications only evaluate the foot
pitch angle [207, 208, 209, 210], often not over time but only at certain gait events [207, 209].
There is a lack of studies such as [211] that evaluate the full 3D position and angle trajectories
over time. The mentioned publications all employ marker-based OMC for validation, and the
number of subjects ranges from four to 20.

In summary, the main shortcoming of existing approaches for the vision of plug-and-play
ambulatory gait analysis is that most methods – especially those with broad validation –
require a precise attachment of the sensor to the subject’s foot. Some methods only focus
on gait events and do not provide spatial parameters, and some methods rely on proprietary
algorithms of the sensor manufacturers. Work on leveraging the full 3D position and angle
trajectories that can be obtained by IMUs is limited. Furthermore, very few of the proposed
methods are validated on a large group of subjects with diverse gait pathologies.

In the following section, a set of methods is introduced that combines the valuable
achievements of existing methods with additional features that overcome the remaining
limitations.
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6.3 Methods

In the following, a set of methods to determine gait parameters from two foot-worn IMUs is
introduced. The proposed methods are based on the following assumptions and requirements:
An IMU is attached to each foot or shoe in an arbitrary orientation. This implies that
the proposed method does not make any assumption about the orientation of the sensor
coordinate system, which means it does not require any specific sensor axis to be aligned with
an anatomical or functional axis of the foot. In order to avoid artifacts caused by toe or ankle
motions and also to not limit the subject’s freedom of movement, we propose to attach the
IMU on the instep, i.e., the dorsal side of the midfoot. If functional foot motion angles (yaw,
pitch, and roll) are to be determined, we have to impose one slight restriction to the mounting
of the sensor: In this case, one known sensor axis has to lie in the sagittal plane, pointing
roughly forward (which is usually easy to achieve when mounting the IMU on the instep). The
calculation of all other gait parameters does not make use of this assumption.

We obtain the gyroscope and accelerometer readings of both IMUs at a fixed sampling
rate (typically in the range 50–1000 Hz). We assume that data for several steps is processed at
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Figure 6.2: Overview of the proposed modular set of methods to determine spatiotemporal gait
parameters and position/angle trajectories from foot-worn IMUs. While gait phase durations
and cadence are determined from gait events, stride length and walking speed are derived from a
position trajectory obtained via piecewise strapdown integration of the acceleration.
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once, which allows us to employ acausal signal processing to increase the accuracy compared
to sample-by-sample real-time capable methods. This processing can either be performed in
batches while the subject is walking, e.g., for use in biofeedback applications, or after the
recording is completed. During the recording, the subject walks either on a treadmill or on
indoor or outdoor ground.

The set of proposed methods is explained in the following subsections, and the presentation
is structured as follows. Separately for each foot, we use the recorded sensor data to separate
phases in which the foot is in full contact with the ground from phases in which the foot moves,
i.e., we detect when strides take place (Section 6.3.3). For each detected stride, we then detect
toe-off (Section 6.3.5) and initial contact (Section 6.3.6). The gait events from the ipsilateral
and contralateral foot are combined to define gait phases. We calculate the relative duration
of each gait phase and the cadence (Section 6.3.7). We then estimate the sensor orientation by
sensor fusion of the gyroscope and accelerometer readings (Section 6.3.8) and double-integrate
the acceleration to obtain the position (Section 6.3.9). From this position, we obtain the
stride length and the walking speed (Section 6.3.10) as well as the vertical lift and lateral shift
position trajectories (Section 6.3.13). Based on a sensor-to-foot alignment (Section 6.3.11),
we derive physiologically meaningful yaw, pitch, and roll angles from the sensor orientation
(Section 6.3.12). Figure 6.2 provides an overview of the proposed set of methods.

In the remainder of this section, we define several parameters that are used by the method.
For an overview of those parameters and proposed values, please refer to Table 6.2 in Section 6.4.
Note that we define the parameters in a way so that they are not sensitive to different gait
styles or velocities. Section 6.4 demonstrates that this approach works by only employing one
common set of parameters for validation on a very broad dataset with healthy and non-healthy
subjects walking at different speeds.

6.3.1 Notation

Denote the gyroscope readings ω(tk) ∈ R3 and the accelerometer readings a(tk) ∈ R3, sampled
at times tk = kTs, k ∈ {1, 2, . . . , N}, Ts ∈ R>0.

In the following, all times t with any index are multiples of Ts. If any calculation yields
a time that is not a multiple of Ts, we assume that this value is rounded to the nearest
multiple of Ts and do not explicitly write this for the sake of a compact notation. Furthermore,
any summation over τ should be interpreted as a summation with a non-integer step size
of Ts, i.e., we write ∑︁t2

τ=t1 x(τ) instead of the longer but mathematically precise notation
∑︁k2
k=k1

x(tk), k1 = t1
Ts
, k2 = t2

Ts
.

6.3.2 Gait Events and Gait Phases

According to standard literature [198] and as illustrated in Figure 6.3, the gait cycle starts
at initial contact. Each stride can be separated into stance and swing. Stance consists of
the gait phases loading response, mid-stance, terminal stance, and pre-swing. Swing can be
separated into initial swing, mid-swing, and terminal swing. The combination of mid-stance
and terminal stance is called single limb support and corresponds to the swing phase of the
contralateral foot. In standard literature [198], the initial contact is commonly considered to
be a very short gait phase with a duration of 2 %. As it is common practice in IMU-based gait
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Figure 6.3: Definition of gait phases as used in standard literature, cf. [198], and transitions
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characteristic events and a rest instant trest,i in the middle of the phase in which the foot is fully
on the ground (foot flat).

analysis [16, 186, 191, 193], we define the initial contact as an event without duration. Note
that sometimes the initial contact is also called foot strike [186] or heel strike [16].

The separation between stance and swing and the separation of stance into loading response,
mid-stance, terminal stance, and pre-swing is defined based on three events that describe a
change of ground contact of the feet: initial contact, heel rise, and toe-off. In contrast, the
separation of swing into initial swing, mid-swing, and terminal swing is based on positional
information of the feet and on the tibia orientation. The gait phases are defined based on
bilateral events, i.e., the gait phase of the ipsilateral foot is not only described based on the
events of the same (ipsilateral) foot but also based on toe-off and initial contact of the other
(contralateral) foot.

We will now discuss how to use IMUs to determine five of those gait phases (swing and
the four sub-phases of stance) in a two-step approach. First, we detect four gait events
independently for each foot. We then use this gait event cycle of both feet to derive gait phases
for each foot.
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Figure 6.5: Derivation of clinically relevant gait phases from the gait event cycles. Following
standard literature [198], events from both the left foot (filled arrows) and the right root (outlined
arrows) are necessary to define the gait phase of each foot. Furthermore, support phases based on
the number of feet that are in contact with the ground can be defined based on the gait events.

To this end, for each stride i ∈ {1, 2, . . . ,M}, we define the following events that we aim
to detect independently for the right and left foot from the raw measurement data of the
corresponding IMU:

• initial contact – tic,i,

• full contact – tfc,i,

• heel rise – thr,i,

• toe-off – tto,i.

Note that in addition to the three events used to define gait phase transitions in Figure 6.3, we
introduce an event called full contact, which indicates that the foot is in full contact with the
ground. For various processing steps, such as zero-velocity updates and position integration,
we further define a rest instant trest,i in the middle of the foot flat phase, i.e.,

trest,i := 1
2 (tfc,i + thr,i) . (6.1)

See Figure 6.4 for a plot of the raw accelerometer and gyroscope data measured during one
stride, along with a graphical representation of the gait event cycle defined by the introduced
events. In the following subsections, we will discuss in detail how we determine those time
instants from the raw sensor data.

After having determined the gait events for both feet, we use the gait event cycles from
both feet to determine the gait phase according to the commonly used definitions by [198].
As shown in Figure 6.5, finite automata for the gait phases of the left and right foot are each
driven by the gait event cycles of both feet.
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Since time instants from both sensors are used for the definition of the gait phase transitions,
both feet must be equipped with sensors, and precise time synchronization is required. However,
note that the separation into stance and swing directly follows from the gait event cycle (as
shown in Figure 6.5) and is independent of the contralateral foot. Therefore, we can determine
stance and swing regardless of the synchronization between the sensors. This is also useful if
only one foot is equipped with a sensor and facilitates on-chip data processing.

Note that the three sub-phases of stance in the gait event cycle hold further information
that is not directly captured by the standard gait phase definitions as given in Figure 6.3. We
denote the phase from tfc,i to thr,i, in which the foot is fully on the ground, as foot flat. Note
that the other two sub-phases of the stance phase, tic,i to tfc,i and thr,i to tto,i, are sometimes
called loading response and pre-swing [191, 193] but do not correspond to the phases with the
same name as defined in standard literature [198].

Furthermore, as also shown in Figure 6.5, time-synchronized events from both feet also allow
for the distinction of double support, single support, and (during running [198]) zero-contact
phases.

6.3.3 Foot Flat Detection

As the first step of gait phase detection, the phases in which the foot is fully on the ground
(foot flat) are detected. When the foot is fully on the ground, the Euclidean norm of the
accelerometer readings will be close to 9.81 m/s2, and the norm of the gyroscope readings will
be close to zero. During a stride, we will typically see an increase in the signal norms. However,
it is possible that during the motion phase, there are long periods with only small changes in
velocity or small rotations. To obtain a robust stride detection, we therefore first find activity
using either the accelerometer or the gyroscope readings and then combine this information.

For an acceleration-based rest signal ra(tk), in which zero denotes rest and one denotes
motion, we consider the absolute difference of the accelerometer norm from 9.81 m/s2,

a(tk) := |∥a(tk)∥ − 9.81| . (6.2)

We then perform acausal thresholding using a threshold ath and a hysteresis factor ha by
applying hysteresis in forward and backward direction, i.e.,

r∗
a(tk) :=





1 a(tk) > (1 + ha)ath

0 a(tk) < (1− ha)ath

ra(tk−1) otherwise,

(6.3)

ra(tk) :=





1 r∗
a(tk) = 1

0 a(tk) < (1− ha)ath

ra(tk+1) otherwise,

(6.4)

with r∗
a(0) = 0 and ra(tN ) = r∗

a(tN ). In the resulting signal, zero-phases shorter than T0,min

are set to one, and afterward, one-phases shorter than T1,min are set to zero.
The same acausal thresholding with the removal of short phases is applied to the gyroscope

norm signal ω(tk) := ∥ω(tk)∥ using a threshold ωth and hysteresis factor hω, which yields
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Figure 6.6: Foot flat detection. (a) Illustration of the thresholding algorithm. Acausal hysteresis
and the removal of short phases ensure the robust detection of the desired rest phase. (b) Illustration
of the combination of rω(tk) and ra(tk) into r(tk). By using the Boolean OR combination of the
accelerometer- and gyroscope-based signals, we are able to robustly detect when the foot is not
fully on the ground.

a gyroscope-based rest signal rω(tk). See Figure 6.6a for an illustration of the thresholding
method.

Both rest signals, ra(tk) and rω(tk), are combined into r(tk), which is set to one if at least
one of the two signals is one. Afterward, zero-phases shorter than T0,min are set to one, and
then one-phases shorter than 2T1,min are set to zero. This process is illustrated in Figure 6.6b.
Each zero-to-one transition of the resulting signal marks a heel rise thr,i, and each one-to-zero
transition marks a full contact tfc,i+1.

6.3.4 Automatic Threshold Adaptation

A common issue with thresholding approaches is that the thresholds have to be adapted based
on gait velocity and also other gait and sensor characteristics [191, 192]. Therefore, instead of
performing the thresholding of the accelerometer and gyroscope norm using manually tuned
thresholds ath and ωth, we employ an algorithm that automatically determines these thresholds
for each trial based on the measured data.

The threshold ath is determined using an iterative algorithm similar to [212], with l ∈ N
being the iteration index and wa ∈ [0, 1] being a weighting parameter:

ath,0 = 1
2

(︄
max

tk∈[t1,tN ]
a(tk) + min

tk∈[t1,tN ]
a(tk)

)︄
, (6.5)

T+ = {tk ∈ [t1, tN ]|a(tk) > ath,l}, (6.6)

T− = {tk ∈ [t1, tN ]|a(tk) ≤ ath,l}, (6.7)

ath,l+1 = wa
|T−|

∑︂

tk∈T−
a(tk) + 1− wa

|T+|
∑︂

tk∈T+

a(tk). (6.8)

We perform 200 iterations to ensure convergence, i.e., ath := ath,200. Figure 6.7 illustrates the
result of this process. Further, we define a lower bound ath,min for this threshold.
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Figure 6.7: Illustration of the result of the automatic thresholding algorithm for a short segment
of accelerometer data. The threshold ath is chosen such that the mean of the values above and the
mean of the values below are in a certain proportion.

Similarly, we determine the threshold ωth based on the gyroscope norm ω(tk) and a
weighting factor wω.

6.3.5 Toe-off Detection

After determining heel rise and full contact, we detect the beginning of the swing phase, i.e.,
the toe-off. During toe-off, the foot first rotates approximately along the mediolateral axis as
the heel rises, then loses contact with the ground and rotates in the opposite direction. An
IMU attached to the foot cannot directly measure when the foot fully loses contact with the
ground, in contrast to, e.g., pressure-sensitive walkways. Note that the accuracy of toe-off
detection using pressure sensors also depends on calibration and the chosen thresholds [172].

As rotation can be measured precisely with IMUs, we exploit the fact that the direction
of the foot rotation changes when transitioning from the phase in which the heel rises while
the toe stays on the ground to the phase in which the toe leaves the ground. This approach
is commonly used in existing literature, as detailed in Section 6.2. However, most methods
directly rely on the angular rate measured in the sagittal plane and thereby require at least
one sensor axis to be well-aligned with a functional axis of the foot.

To be independent of the sensor orientation and also to obtain a reliable detection if the
subject exhibits strong inversion or eversion during toe-off, we define a signal called tilt-rate
Γi(tk) [191], from each heel rise thr,i to the subsequent full contact tfc,i+1, as

Γi(tk) := ω(tk)⊺
∑︁tk
τ=thr,i

ω(τ)
⃦⃦
⃦
∑︁tk
τ=thr,i

ω(τ)
⃦⃦
⃦
, tk ∈ [thr,i, tfc,i+1]. (6.9)

The rationale behind the definition of the tilt-rate Γi(tk) is to identify the main axis of rotation
since the last heel rise and compute the current rate of rotation around this main axis. This
enables us to detect a zero-crossing of the main rotation without making any assumptions
about the orientation of the sensor with respect to the foot.

In general, the tilt-rate Γi(tk) will exhibit a change of sign after a distinct peak, as illustrated
in Figure 6.8a. Since there might be noise, leading to frequent sign changes right after thr,i,
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Figure 6.8: Detection of toe-off and initial contact events that define the swing phase. (a)
Illustration of the toe-off detection. Between heel rise and full contact, the tilt rate might exhibit
multiple local maxima and zero-crossings. For a robust detection of the correct zero-crossing, we
first find the maximum value during the first half of the phase from thr,i to tfc,i+1 and search for
the first zero-crossing after the tilt rate has reached half of this maximum. (b) Illustration of
the initial contact detection based on the jerk norm. Note how the jerk norm reflects the sudden
change when the foot touches the ground much better than the accelerometer norm signal a(tk).

as well as large peaks later during the stride, we employ the following strategy to robustly
determine the sign change of interest:

Let Γmax,i denote the maximum value of Γi(tk) during the first half of the movement phase:

Γmax,i := max
tk∈[thr,i,

1
2 (thr,i+tfc,i+1)]

Γi(tk). (6.10)

We then find the first time instant for which Γi(tk) ≥ 1
2Γmax,i. Starting from this time instant,

we find the first time instant at which Γi(tk) ≤ 0. We assume this time instant to be the
toe-off tto,i, i.e., the start of the swing phase. Figure 6.8a illustrates this process.

Note that tto,i is defined based on a feature of the rotation of the foot and not directly
as the lift-off of the toes. Using the maximum of the tilt rate or any weighted average of the
maximum and zero-crossing time instant are also plausible approaches.

6.3.6 Initial Contact Detection

The initial contact marks the beginning of the loading response and can be detected by the
jerk, i.e., the change of acceleration, caused by the foot touching the ground. We calculate the
jerk using the first-order backward difference approximation, i.e.,

j(tk) := 1
Ts

(a(tk)− a(tk−1)) . (6.11)

For every stride, we only consider a sub-window of the phase between toe-off and the beginning
of the subsequent foot-flat phase and denote the start time of this window as twin,i :=
jwintto,i−1 + (1− jwin)tfc,i, jwin ∈ [0, 1]. In this time window, we determine the maximum value
of the jerk norm, i.e.,

jmax,i := max
tk∈[twin,i,tfc,i]

∥j(tk)∥. (6.12)
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We then mark the first time instant in this window with ∥j(tk)∥ ≥ jthjmax,i as the start of the
loading response tic,i. See Figure 6.8b for an illustration of the initial contact detection.

6.3.7 Stride and Gait Phase Durations and Cadence

For each detected stride, we calculate the stride duration as the duration from one initial
contact to the subsequent initial contact of the same foot, i.e.,

Tstride,i := tic,i+1 − tic,i. (6.13)

For each detected stride, the duration of the swing phase is the time between toe-off and initial
contact of the subsequent stride, i.e.,

Tswing,i := tic,i+1 − tto,i. (6.14)

The stance duration is the remaining duration of the stride:

Tstance,i := Tstride,i − Tswing,i. (6.15)

Since relative gait phase durations are easier to interpret, we calculate

Tswing,rel,i := Tswing,i
Tstride,i

, (6.16)

Tstance,rel,i := Tstance,i
Tstride,i

. (6.17)

Similarly, for every stride, we calculate relative gait phase durations for loading response
Tlr,rel,i, single limb support Tsl,rel,i, terminal stance Tts,rel,i, and pre-swing Tps,rel,i, based on
the bilateral gait phases as defined in Figure 6.3. Note that analogously, we can also calculate
absolute and relative durations for all other gait phases defined in Figure 6.3.

To calculate the cadence, we multiply the inverse of the stride duration by two in order to
express the cadence as the number of steps per minute instead of strides per minute, i.e.,

ci := 2
Tstride,i

. (6.18)

6.3.8 Orientation Estimation

By fusing the gyroscope and accelerometer measurements, we obtain an estimate of the sensor
orientation S

Eq(tk) with respect to a global frame that has a vertical z-axis and an arbitrary
heading.1 Since data is processed in batches, we employ the OfflineVQF method introduced in
Chapter 3.

Note that in the version of this method published in [159], a predecessor of the OfflineVQF
method was introduced. This predecessor used a moving average low-pass filter instead of
a Butterworth low-pass filter for inclination correction and did not support gyroscope bias

1To avoid confusion with the stride index i, we omit the sensor index and use E instead of Ei to denote the
slowly-drifting 6D reference frame.
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estimation. In this thesis, the IOE algorithm is only changed for sake of consistency, and the
impact on the obtained results is marginal.

6.3.9 Foot Velocity and Position Tracking

Using the estimated orientation, we perform double integration of the measured accelerations
to estimate the length of each stride, i.e., the horizontal displacement between two adjacent
foot-flat phases.

To integrate the accelerations, they are first transformed into the reference frame

[a]E (tk) := S
Eq(tk)⊗ a(tk)⊗ S

Eq(tk)−1. (6.19)

Assuming that the velocity is zero in the middle of the foot-flat phase, i.e., at trest,i, we
integrate those accelerations for each stride which yields the velocity

vi(tk) := Ts

tk∑︂

τ=trest,i

([a]E (τ)− [ 0 0 9.81 ]⊺) , tk ∈ [trest,i, trest,i+1]. (6.20)

Due to measurement errors, mainly accelerometer bias and orientation estimation errors,
this velocity is usually not zero at trest,i+1, even if the foot is perfectly at rest. We correct this
drift linearly over the duration of the stride:

vdf,i(tk) := vi(tk)−
tk − trest,i

trest,i+1 − trest,i
vi(trest,i+1), tk ∈ [trest,i, trest,i+1]. (6.21)

See Figure 6.9 for an example velocity trajectory with and without drift correction.
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Figure 6.9: Velocity trajectories with (solid) and without (dashed) linear drift correction. The
dotted lines represent the subtracted linear drift approximation. For demonstration purposes, the
drift has been artificially increased by a factor of 10.

By integrating this drift-free velocity over the stride duration, we obtain a position trajectory

pi(tk) := Ts

tk∑︂

τ=trest,i

vdf,i(τ) =: [ pi,x(tk) pi,y(tk) pi,z(tk) ]⊺, tk ∈ [trest,i, trest,i+1]. (6.22)
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6.3.10 Stride Length and Walking Speed

We calculate the stride length Li as the horizontal displacement during stride i. Since
pi(trest,i) = 0,

Li :=
√︂
pi,x(trest,i+1)2 + pi,y(trest,i+1)2. (6.23)

Note that this method does not make any assumption about the orientation in which the
sensor is attached to the foot. Also, note that we integrate from trest,i to trest,i+1 and not from
tic,i to tic,i+1 since this makes the zero-velocity assumption more robust.

By dividing the stride length by the stride duration, we obtain the walking speed

vi := Li
Tstride,i

. (6.24)

6.3.11 Sensor-to-Foot Alignment

To facilitate the derivation of physiological foot angles, sensor-to-foot alignment is performed,
i.e., the relative orientation between the sensor coordinate system S and the foot coordinate
system F , as illustrated in Figure 6.10, is determined. To define this relative orientation, two
axes of F need to be known in S coordinates.

An estimate for the z-axis [zF ]S of the foot, expressed in sensor coordinates, is obtained
by averaging the accelerometer measurements during all foot-flat phases and normalizing the
resulting vector:

[zF ]S =
∑︁M
i=1

∑︁thr,i

τ=tfc,i
a(τ)

⃦⃦
⃦
∑︁M
i=1

∑︁thr,i

τ=tfc,i
a(τ)

⃦⃦
⃦
. (6.25)

Making use of the fact that the negative y-axis of the IMU points forward and down (due to
the sensor attachment on the instep), the y-axis of the foot in sensor coordinates is given by

[yF ]S = [zF ]S ×
[︂
0 −1 0

]︂⊺
. (6.26)

Those two axes define the foot-to-sensor quaternion F
Sq, which we obtain by converting the

corresponding rotation matrix

F
SR =

[︃
[yF ]S×[zF ]S
∥[yF ]S×[zF ]S∥

[yF ]S
∥[yF ]S∥

[zF ]S
∥[zF ]S∥

]︃
(6.27)

to a quaternion.
Finally, this foot-to-sensor quaternion F

Sq is used to determine the orientation of the foot
F relative to the reference frame E :

F
Eq(tk) = S

Eq(tk)⊗ F
Sq. (6.28)

6.3.12 Foot Orientation Angles

Foot orientation angles are obtained by calculating intrinsic z-x′-y′′ Euler angles of the foot
orientation F

Eq(tk).
The third Euler angle, corresponding to the y′′-axis, is called pitch, and the sign is inverted

so that dorsal flexion corresponds to a positive angle.
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Figure 6.10: Illustration of the foot coordinate system and position trajectories for an exemplary
gait cycle of a left foot. The foot coordinate system F is defined with the x-axis pointing forward,
the y-axis pointing to the right, and the z-axis pointing up and, in general, different from the IMU
coordinate system S. The angles pitch, roll, and yaw are defined so that dorsal flexion, inversion,
and out-toeing, respectively, are positive. (Notice the small amount of out-toeing at trest,i). The
position trajectories lateral shift and vertical lift are defined based on the line of progression of gait.
For illustration purposes, the displayed lateral shift and vertical lift are increased by a factor of 3.

The second Euler angle (x′) is roll. The sign is inverted for the left foot so that inversion
corresponds to positive angles.

The first Euler angle (z) is yaw. Since magnetometers are not used, the original yaw angle
has an arbitrary offset. To obtain the foot progression angle (i.e., an angle that is zero when
the x-axis of the foot points along the line of progression of gait), the heading of the line of
progression of gait is estimated from the position trajectory as

δprogression,i = atan2(pi,y(trest,i+1)− pi,y(trest,i), pi,x(trest,i+1)− pi,x(trest,i)). (6.29)

This offset δprogression,i is removed from the original yaw angle. To ensure that out-toeing
corresponds to positive angles, the sign of the angle is inverted for the right foot.

6.3.13 Foot Position Trajectories

From the full 3D position pi(tk), two scalar position trajectories are derived: vertical lift and
lateral shift. Vertical lift is defined as the vertical position of the IMU relative to the position
during stance. Assuming level ground, a linear drift is subtracted for each stride, i.e., the
vertical lift is calculated as

plift,i(tk) = pi,z(tk)− pi,z(trest,i)−
tk − trest,i

trest,i+1 − trest,i
(pi,z(trest,i+1)− pi,z(trest,i)) . (6.30)

The lateral shift pshift,i(tk) is defined as the deviation of the position in the horizontal plane from
the straight line of progression of gait, i.e., the distance of the point (pi,x(tk), pi,y(tk)) from
the line defined by the two points (pi,x(trest,i), pi,y(trest,i)) and (pi,x(trest,i+1), pi,y(trest,i+1)).
Figure 6.10 illustrates the definitions of the foot coordinate systems, the angles, and the
position trajectories.
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6.3.14 Summary of the Estimated Parameters

After performing the steps presented above, the set of proposed methods provides the time
instants of the defined gait events, the sensor orientation quaternion for each time instant,
and velocity and position trajectories. From those time-based signals, the following scalar gait
parameters are extracted for each stride i:

• swing duration Tswing,rel,i [%],

• stance duration Tstance,rel,i [%],

• analogously, relative durations for the other gait phases as defined in Figure 6.5,

• stride length Li [cm],

• walking speed vi [km/h],

• cadence ci [steps/min].

The accuracy of those gait parameters is validated in Section 6.4.
Furthermore, the following position and angle trajectories are calculated for each stride i:

• pitch angle (positive angle: dorsal flexion) [°],

• roll angle (positive angle: inversion) [°],

• yaw angle (positive angle: out-toeing) [°],

• vertical lift position plift,i [cm],

• lateral shift position pshift,i [cm].

The accuracy of those gait parameters is validated in Section 6.5.
Note that all quantities are calculated separately for each stride of each foot. In many

cases, only the mean of those values over multiple steps will be of interest. However, this
stepwise calculation also allows for the analysis of the variability and the detection of trends.

6.4 Experimental Validation of Spatiotemporal Parameters

This section validates that the less restrictive IMU-based setup combined with the methods
proposed in Section 6.3 is able to determine the same parameters as stationary systems that
are used in clinical practice while providing similar accuracy. To this end, with a large dataset
consisting of three different subject groups, we compare the parameters calculated by the
proposed methods with values reported by instrumented treadmills.

6.4.1 Setup

One IMU (PABLO Motion Sensor, Tyromotion GmbH, Graz, Austria) was attached to each
shoe, as shown in Figure 6.11a. The sensors measure angular rate and acceleration at a sampling
frequency of 110 Hz. Each sensor has a size of 56 mm× 34 mm× 21 mm and transmits the
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(a)

(b)

Figure 6.11: Experimental setup. (a) Patient with inertial sensors attached to the shoe. (b)
Instrumented treadmill at NTK Kapfenberg. Gait parameters are derived from the measurement
data of the inertial sensors with the proposed methods and validated against parameters obtained
from the instrumented treadmill serving as ground truth.

data wirelessly using Bluetooth. The sensors were attached to the subjects’ shoes with special
Velcro straps.

Zebris Rehawalk instrumented treadmills (Zebris Medical, Isny, Germany) were used as
reference systems. Since the data collection took place in various institutions (FH Joanneum
Graz, NTK Kapfenberg, Rehabilitation Center Kitzbühel), different systems with identical
function were used. See Figure 6.11b for a picture of the setup at NTK Kapfenberg.

• FH Joanneum (Graz, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos, Nussdorf, Germany), walking
speed: 0–22 km/h in 0.1 km/h steps, walking surface: 150 cm× 50 cm.

– Pressure measuring platform: FDM-THM-M-3i (Zebris Medical, Isny, Germany),
120 Hz, sensor area: 108.4 cm× 47.4 cm, 7168 sensors.

• NTK (Kapfenberg, Austria)

– Treadmill: h-p-c Locomotion Med Treadmill (HP Cosmos, Nussdorf, Germany),
walking speed: 0–10 km/h in 0.1 km/h steps, walking surface: 150 cm× 50 cm.

– Pressure measuring platform: FDM-THM-M-2i (Zebris Medical, Isny, Germany),
120 Hz, sensor area: 111.8 cm× 49.5 cm, 3432 sensors.
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• Rehabilitation Center Kitzbühel (Kitzbühel, Austria)

– Treadmill: h-p-c Mercury Med Treadmill (HP Cosmos, Nussdorf, Germany), walking
speed: 0–22 km/h in 0.1 km/h steps, walking surface: 150 cm× 50 cm.

– Pressure measuring platform: FDM-THM-M-2i (Zebris Medical, Isny, Germany),
120 Hz, sensor area: 111.8 cm× 49.5 cm, 3432 sensors.

6.4.2 Subjects and Experimental Procedure

The data collection was carried out in three different institutions with different groups
of subjects. Approval from the ethics committee of the University of Graz was obtained
(GZ. 39/55/63 ex 2017/18, 28 May 2018), and an informed consent form was signed by all
participants.

Healthy participants were recorded at three different walking speeds, each for two minutes:
1.5 km/h, 3 km/h, and 5 km/h. A prerequisite for participation was the ability to walk on
a treadmill at different speeds. The healthy participants (n = 39) were recruited from the
students at the Physiotherapy Institute of FH Joanneum Graz.

Non-healthy participants with affected ability to walk were asked to walk on a treadmill at a
self-selected comfortable walking speed. Patients who were unable to walk on a treadmill were
excluded during participant selection. The following groups of participants were recruited:

• Participants with different neurological diseases (n = 36) were recruited from patients
who were in neurological inpatient rehabilitation at NTK Kapfenberg at the time of data
collection. This comprises 20 post-stroke patients, six patients with Parkinson’s disease,
two with multiple sclerosis, two with meningioma, two after polytrauma, and one patient
each with epilepsy, spinocerebellar ataxia, low back pain, and polyneuropathy.

• Participants with various orthopaedic diseases (n = 62) were recruited from the patients
who were in orthopaedic inpatient rehabilitation at Rehabilitation Center Kitzbühel at
the time of data collection. Of these, four patients had pathologies in the area of the
ankle or lower leg (e.g., ankle joint fractures, tibia fractures), 21 patients at the knee
(e.g., osteoarthritis, total knee arthroplasty), 18 patients in the area of the thigh and hip
(e.g., osteoarthritis, total hip arthroplasty, femur fractures), 16 patients in the area of
the lumbar spine (low back pain, lumbar vertebrae fractures) as well as three patients in
whom different body areas were affected (polytrauma, polymyositis).

All participants had time to get used to walking on the treadmill prior to the data collection.
All participants were free to use the treadmill support (handrail, fall protection system). For
the data collection, two minutes of walking was recorded simultaneously by both systems. IMU
data was recorded with a tool of the TyroS software (Tyromotion, Graz, Austria) that allows
the export of raw gyroscope and accelerometer data. Zebris data was recorded, analyzed, and
exported with the software FDM v1.18.38 (Zebris Medical, Isny, Germany).
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6.4.3 Data Processing

For each trial, we obtain the following gait parameters from the Zebris Rehawalk instrumented
treadmill:

• loading response duration,

• single limb support duration,

• pre-swing duration,

• swing duration,

• stride length,

• walking speed,

• cadence.

These parameters are reported as averages over the whole trial. The gait phase durations are
given relative to the stride duration and reported separately for the left and right foot. We
add the loading response, single limb support, and pre-swing durations to obtain the stance
duration (cf. Figure 6.3).

From phases in which the treadmill is not moving and the foot is resting on the ground for
approximately 5 s at the beginning and end of each trial, gyroscope turn-on bias is automatically
estimated and removed. Using the methods described in Section 6.3, each recorded trial is
processed with the parameter values given in Table 6.2. Note that we use the same set of
parameters for all different subject groups and walking speeds in order to demonstrate that the
method works well without adjusting the parameters for the specific gait velocity and style.

The sensor attachment used for recording the trials, as shown in Figure 6.11a, ensures that
one sensor axis is always roughly aligned with the mediolateral axis of the foot. To show that
the proposed methods do not make assumptions regarding the sensor orientation, we simulate
a random sensor attachment by multiplying all gyroscope and accelerometer measurements
with a random rotation matrix that is different for each trial.

Table 6.2: Parameter values used for the proposed IMU-based methods

Symbol Description Value
ha hysteresis factor for acceleration 0.23
hω hysteresis factor for angular rate 0.23
wa factor for ath auto-tuning 0.85
ath,min lower bound for ath 1.8 m/s2

wω factor for ωth auto-tuning 0.8
ωth,min lower bound for ωth 0 rad/s
T0,min minimum duration of zero-phase 120 ms
T1,min minimum duration of one-phase 180 ms
jwin ratio of the window to look for initial contact 0.7
jth threshold for jerk norm (relative to maximum) 0.95

This parametrization is used for the processing of all trials, regardless of gait pathology, walking
speed, or style, in order to show that the method works well without tuning the parameters for
specific gait characteristics.
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Finally, we calculate the same gait parameters as reported by the reference system by
averaging the respective parameters, excluding the first and last three strides of each foot,
and compare the resulting values to the values reported by the Zebris system. The results are
found in the following section.

6.4.4 Results

For each trial, we first consider the five main parameters stance duration, swing duration,
stride length, walking speed, and cadence, and evaluate the difference between the proposed
methods (IMU) and the Zebris Rehawalk reference system (REF). The results are presented
separately for each of the three subject groups in scatter plots and Bland-Altman plots [213]
and can be found in Figure 6.12 for the healthy participants walking at three different speeds,
in Figure 6.13 for the participants with orthopaedic diseases, and in Figure 6.14 for the
participants with neurological diseases.

The error (mean ± standard deviation) for the relative stance duration is 1.05± 1.34 % for
healthy subjects, −0.31± 1.48 % for orthopaedic patients, and 2.07± 1.63 % for neurological
patients. For relative swing duration, the errors are −1.02± 1.35 % for healthy subjects,
0.34± 1.50 % for orthopaedic patients, and −2.02± 1.64 % for neurological patients. This
means that the average swing/stance duration error is in the range of 1–2 % for all subject
groups.

For the stride length, the errors are −1.47± 1.60 cm, −1.62± 1.66 cm, and 0.69± 1.32 cm
for healthy subjects, orthopaedic patients, and neurological patients, respectively. This means
that the average stride length error is below 2 cm for all subject groups.

The mean errors and standard deviations for the walking speed are −0.02± 0.06 km/h
for healthy subjects, −0.03± 0.05 km/h for orthopaedic patients, and 0.03± 0.03 km/h for
neurological patients. This means that the average walking speed error is below 0.05 km/h for
all subject groups.

The cadence estimates show deviations of 0.71± 0.52 steps/min for healthy subjects,
0.58± 0.31 steps/min for orthopaedic patients, and 0.57± 0.51 steps/min for neurological
patients. This means that the average cadence error is below 1 step/min for all subject groups.

As an additional evaluation metric, we calculate the mean of the absolute difference (MAD)
between the values reported by Zebris and the IMU-based analysis over all trials. Table 6.3
summarizes the results for the three subject groups and all 215 evaluated trials.

The MAD of the stance and swing durations is approximately 1.3 % for healthy subjects
and orthopaedic patients and 2.2 % for neurological patients. Note that Table 6.3 also contains
the deviations for the three sub-phases of stance that the Zebris Rehawalk reference system
reports, i.e., loading response, single limb support, and pre-swing. The results show that the
proposed methods can estimate the duration of those phases with the same accuracy as stance
and swing.

To summarize, for all subject groups, the MAD is in the range of 1–2 % for the gait phase
durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below
1 step/min for the cadence.
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Figure 6.12: Scatter plots and Bland-Altman plots for stance and swing duration, stride length,
walking speed, and cadence of 39 healthy subjects walking at 1.5, 3, and 5 km/h. Red: 45-degree
lines (y = x). Values obtained with the proposed IMU-based methods (IMU) are compared to the
ground truth from the Zebris reference system (REF). The average deviation is approximately 1 %
for gait phase durations, below 2 cm for the stride length, below 0.05 km/h for the walking speed,
and below 1 step/min for the cadence.
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Figure 6.13: Scatter plots and Bland-Altman plots for stance and swing duration, stride length,
walking speed, and cadence of 62 orthopaedic patients. Red: 45-degree lines (y = x). Values
obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from
the Zebris reference system (REF). The average deviation is below 1 % for gait phase durations,
below 2 cm for the stride length, below 0.05 km/h for the walking speed, and below 1 step/min for
the cadence.
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Figure 6.14: Scatter plots and Bland-Altman plots for stance and swing duration, stride length,
walking speed, and cadence of 36 neurological patients. Red: 45-degree lines (y = x). Values
obtained with the proposed IMU-based methods (IMU) are compared to the ground truth from
the Zebris reference system (REF). The average deviation is approximately 2 % for gait phase
durations, below 1 cm for the stride length, below 0.05 km/h for the walking speed, and below
1 step/min for the cadence.
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Table 6.3: Deviation between IMU-based and Zebris gait parameters

Stance [%] Swing [%] Stride Walking Cadence

LR [%] SLS [%] PS [%] length [cm] speed [km/h] [steps/min]

Healthy subjects (n = 39)
MAD 1.32 1.29 1.27 1.33 1.31 1.63 0.04 0.73
µ ± σ 1.05±1.34 0.98±1.33 -0.98±1.30 1.05±1.35 -1.02±1.35 -1.47±1.60 -0.02±0.06 0.71±0.52
rx,y 0.93 0.93 0.93 0.93 0.93 > 0.99 > 0.99 > 0.99
LoA −1.58..3.68 −1.64..3.60 −3.54..1.57 −1.59..3.69 −3.66..1.62 −4.60..1.66 −0.14..0.10 −0.31..1.72
SDC 5.26 5.23 5.11 5.28 5.29 6.26 0.24 2.03

Orthopaedic patients (n = 62)
MAD 1.12 1.10 1.13 1.08 1.14 1.89 0.04 0.60
µ ± σ -0.31±1.48 -0.34±1.47 0.33±1.49 -0.30±1.45 0.34±1.50 -1.62±1.66 -0.03±0.05 0.58±0.31
rx,y 0.85 0.85 0.85 0.85 0.84 > 0.99 > 0.99 > 0.99
LoA −3.21..2.60 −3.22..2.54 −2.58..3.24 −3.14..2.54 −2.59..3.27 −4.87..1.63 −0.12..0.07 −0.02..1.19
SDC 5.80 5.76 5.82 5.68 5.86 6.50 0.19 1.22

Neurological patients (n = 36)
MAD 2.26 2.21 2.23 2.22 2.22 1.16 0.04 0.60
µ ± σ 2.07±1.63 2.04±1.65 -2.04±1.64 2.07±1.65 -2.02±1.64 0.69±1.32 0.03±0.03 0.57±0.51
rx,y 0.89 0.89 0.89 0.89 0.89 > 0.99 > 0.99 > 0.99
LoA −1.13..5.26 −1.19..5.28 −5.26..1.18 −1.16..5.30 −5.23..1.19 −1.89..3.27 −0.03..0.09 −0.43..1.58
SDC 6.40 6.47 6.44 6.46 6.42 5.16 0.12 2.01

All trials (215 trials)
MAD 1.42 1.39 1.39 1.40 1.41 1.62 0.04 0.67
µ ± σ 0.83±1.65 0.78±1.64 -0.78±1.63 0.83±1.64 -0.79±1.65 -1.15±1.78 -0.01±0.06 0.65±0.47
rx,y 0.88 0.88 0.88 0.88 0.88 > 0.99 > 0.99 > 0.99
LoA −2.40..4.06 −2.44..4.00 −3.98..2.41 −2.39..4.05 −4.03..2.44 −4.63..2.34 −0.13..0.10 −0.28..1.57
SDC 6.46 6.44 6.39 6.44 6.48 6.97 0.22 1.85

LR, SLS, PS: loading response, single limb support, pre-swing
MAD: mean absolute difference between IMU-based and Zebris values
µ ± σ: mean and standard deviation of difference between IMU-based and Zebris values
rx,y: Pearson correlation coefficient (p < 0.01 for all values)
LoA: limits of agreement, µ − 1.96σ to µ + 1.96σ
SDC: smallest detectable change, range between both LoA

153



6. Non-restrictive Gait Assessment by Foot-Worn IMUs

6.5 Experimental Validation of Position and Angle Trajectories

In addition to the validation of the obtained spatiotemporal parameters in the previous
section, we now validate the obtained position and angle trajectories. Since the pressure-based
instrumented treadmill used in the previous section is not able to provide a ground truth for
those gait parameters, we now employ marker-based OMC as the reference system.

6.5.1 Setup

IMU

OMCIMU

OMCSHOE

Figure 6.15: Experimental setup. An IMU is attached to the subject’s shoe using Velcro straps,
and reflective markers for OMC are attached to the sole of the shoe (OMCSHOE) and to the
IMU (OMCIMU). The position and angle trajectories obtained from the IMU-based methods are
compared to the ground truth obtained from the optical marker positions.

One IMU (PABLO Motion Sensor, Tyromotion GmbH, Graz, Austria) was attached on the
instep of each shoe with three-point Velcro straps, as shown in Figure 6.15. Each sensor has a
size of 56 mm× 34 mm× 21 mm, a weight of 40 g, and measures angular rate and acceleration
at a rate of 110 Hz. For all measurements, the same set of IMUs and the same pairing of the
IMUs to the left and right foot were used. An OMC system with 16 cameras (MX3, Vicon
Inc., Oxford, UK) and an operating framerate of 120 Hz was used as the reference system.
Three reflective markers were attached to a 3D printed console that was plugged onto the
IMUs (OMCIMU) and four on the edge of the sole of the subject’s shoes (OMCSHOE).

6.5.2 Subjects and Experimental Procedure

Twenty-three healthy volunteers (17 females, 6 males) with an average age of 24.8 ± 5.2 years,
a height of 173.4 ± 8.9 cm, and a body weight of 67.2 ± 12.1 kg participated in this study.
Since comparable studies analyzed data from 4 to 20 participants [196, 202, 203, 204, 205,
206, 207, 208, 209, 210, 211], a sample size of at least 20 participants was aimed for. To be
included, participants had to be capable of walking on a treadmill at different speeds and
with a simulated gait pathology. Exclusion criteria were current pain while walking or the
presence of any disease that influences the gait pattern (e.g., due to orthopaedic or neurological
conditions). All participants gave written informed consent prior to participation. The present
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study was approved by the Ethics Committee of the University of Graz (GZ. 39/55/63 ex
2017/18, 28 May 2018).

Gait data was recorded simultaneously with IMUs and OMC while walking on a motorized
treadmill (mercury med, h/p/cosmos, Traunstein, Germany) without incline. Subjects were
instructed to stand still with both feet side by side immediately before acceleration and after
deceleration of the treadmill. The measurements were taken under four different conditions:
very slow (1.5 km/h), slow (3 km/h), and normal walking speed (5 km/h), as well as with a
simulated gait pathology at slow walking speed (3 km/h), for 90 seconds each. To simulate
pathological gait, the range of motion of the subject’s left knee joint was restricted with a
brace fixed in neutral position. Prior to each trial, the subjects had time to get familiar with
the respective condition. The participants were allowed to use the handrail of the treadmill,
which none of them took advantage of.

6.5.3 Data Processing and Analysis

The IMU data is processed with the algorithms described in Section 6.3. As ground truth for
comparison, analogous quantities are derived from the OMC marker positions. First, the IMU
and OMC data is synchronized using the procedure described in Section 3.4.3. Then, a sensor
orientation quaternion is derived from the three markers attached to the IMU (OMCIMU,
cf. Figure 6.15), and a sensor position trajectory is obtained by averaging the three marker
positions. Further data processing is then carried out analogously to the IMU data processing.
Additionally, the same processing steps are applied to the foot orientation obtained from the
four markers attached to the shoe (OMCIMU, cf. Figure 6.15).

The angles (pitch, roll, and yaw) and positions (vertical lift and lateral shift) are then
time-normalized based on the gait cycle. Figure 6.16 shows an example over time for one
subject. The gait cycle starts and ends at the initial contact, i.e., stride i occurs from tic,i (0 %)
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Figure 6.16: Example for the pitch angle and vertical lift trajectories over two gait cycles of one
subject. The vertical lines represent the initial contacts of the corresponding foot, which mark the
beginning and end of each gait cycle. The trajectories are time-normalized based on this gait cycle.
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to tic,i+1 (100 %). For each stride, the values are resampled to a fixed length of 100 samples.
The analyzed trajectories and their standard deviations are obtained by calculating the mean
and standard deviation of the gait-cycle-normalized quantities for each trial while excluding
the first and last five strides.

6.5.4 Results

All recorded trials of all subjects were analyzed, resulting in a total number of 9747 gait cycles
(106 ± 30 gait cycles per trial).

The angle and position trajectories for IMU and OMCIMU and the standard deviation for
different walking conditions of one subject are presented in Figure 6.17a and Figure 6.18a.
To compare the metrics for all subjects, the MAD is calculated. The results are shown in
Figures 6.17b and 6.18b. The maximum MAD occurs at a walking speed of 5 km/h and is
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Figure 6.17: Results for the angle trajectories. (a) Time-normalized angle trajectories of one
subject at different gait conditions. (b) MAD between IMU and OMCIMU for the angle trajectories
of all subjects (n = 23). The IMU and OMCIMU trajectories agree well, and the MAD always
stays below 2.2° during the whole gait cycle.
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Figure 6.18: Results for the position trajectories. (a) Time-normalized position trajectories of
one subject at different gait conditions. (b) MAD between IMU and OMCIMU for the position
trajectories of all subjects (n = 23). The IMU and OMCIMU trajectories agree well, and the MAD
always stays below 2.1 cm for vertical lift and 1 cm for lateral shift during the whole gait cycle.
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Figure 6.19: RMSE between IMU and OMCIMU for angle and position trajectories of all subjects
(n = 23) at different gait conditions. For pitch, roll, vertical lift, and lateral shift, the mean and
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are slightly larger.
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Figure 6.20: Time-normalized trajectories of the MAD between IMU and OMCIMU as well as
IMU and OMCSHOE of all subjects (n = 23) and all 62 trials. When using the optical markers
attached to the shoe instead of the markers attached to the IMU, the disagreement increases by
approximately 4° for pitch and by approximately 1° for roll and yaw.

1.78° for pitch, 1.36° for roll, and 2.12° for yaw, as well as 2.07 cm for vertical lift and 0.93 cm
for lateral shift.

Furthermore, for each trial, the RMSE between the IMU and OMCIMU trajectories is
calculated and represented as a boxplot in Figure 6.19. The average RMSE of all trials 0.66 ±
0.26° for pitch, 0.63 ± 0.19° for roll, 1.17 ± 0.69° for yaw, 0.72 ± 0.10 cm for vertical lift, and
0.40 ± 0.17 cm for lateral shift.

Finally, to evaluate the influence of the motion of the IMU relative to the shoe, the MAD
of the angle trajectories between the IMU-based values and OMCIMU and between IMU and
OMCSHOE is calculated. The result is shown in Figure 6.20. It shows a maximum MAD
between IMU and OMCSHOE of 5.11° for pitch, 1.83° for roll, and 2.49° for yaw. In contrast,
the maximum MAD between IMU and OMCIMU is 0.94° for pitch, 0.86° for roll, and 1.22° for
yaw.

6.6 Discussion

The present chapter introduced a set of methods for gait analysis based on two IMUs attached
to the feet.

The methods allow for the calculation of the main spatiotemporal gait parameters that are
also reported by stationary laboratory systems: gait phase durations, stride length, walking
speed, and cadence. Using a large dataset consisting of healthy subjects walking at three
different speeds, subjects with orthopaedic diseases, and subjects with neurological diseases,
the calculation of those parameters was validated, using a Zebris Rehawalk instrumented
treadmill as reference. All parameters show a very strong correlation (Pearson’s r between
0.83 and 0.99, p < 0.01) [214]. Figures 6.12 to 6.14 display consistent results over this large
and diverse group of subjects. Averaged over all trials, the MAD with respect to the reference
system is 1.4 % for the gait phase durations, 1.6 cm for the stride length, 0.04 km/h for the
walking speed, and 0.7 steps/min for the cadence.

Furthermore, the methods allow for the calculation of position and angle trajectories, which
were evaluated using OMC as reference. The results in Figures 6.17 and 6.18 show a good
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agreement between the IMU and OMC trajectories. The maximum MAD between IMU and
OMCIMU over the gait cycle is below 2° for pitch and roll. The maximum occurs in the areas of
the largest amplitudes in the respective angles during the swing phase, with a MAD generally
below 1° for the remaining gait cycle. Comparable results can be seen for the trajectories of
vertical lift as well as the lateral shift of the foot, with a maximum MAD of about 2 cm for
vertical lift and 1 cm for lateral shift. For yaw, the MAD is larger due to an offset in the right
yaw angle that is likely caused by inaccurate factory calibration of the right IMU. The average
RMSE for all parameters and all conditions is clearly below 1.5° and 1 cm, respectively, as
shown in Figure 6.19. A comparison of the results with those of other studies that investigate
the measurement accuracy of foot-mounted IMUs for positions and angles is only possible
to a limited extent, since samples, measurement protocols, and evaluated parameters differ
considerably between studies. However, it can be stated that the measurement error of the
presented method for angle trajectories is comparable to other publications [196, 203, 205,
206, 211] or even lower [207, 208, 209, 210]. The measurement error for position trajectories is
comparable [196, 204] or lower [202, 203, 211].

In clinical practice and research, the obtained gait parameters are used to quantify gait ab-
normalities and to document changes in the walking behavior of patients. Associations between
gait parameters and functional capacity, or increased mortality, have been demonstrated [215,
216, 217]. A positive correlation with cardiovascular-related mortality was found for cadence
[218]. A reduction in walking speed has been shown to correlate with fall risk, frequency of
hospitalization, and mortality [219, 220, 221]. Stride length describes a strong correlation with
walking speed, according to the research of [222]. Slower walking speed, altered gait phase
duration, and increased variability of walking increase the risk of falls [223]. Furthermore,
it was found that psychological modalities, such as fear of falling, can also influence stride
length and gait phase durations [224]. The minimal clinically important difference (MCID)
can be used to determine how precisely these changes must be detected in order to make a
statement about their relevance. Despite thorough research, specific values for the MCID
could only be found for the walking speed, ranging from 0.36 to 0.72 km/h [225, 226, 227]. For
IMU-based measurement with the proposed methods, the smallest detectable change (SDC)
for walking speed is 0.21 km/h and clearly within the MCID for all examined groups. For
the other parameters, no reported MCID values could be found, which is consistent with the
statement of [197].

The SDC for the cadence is 2.01 steps/min across all studied groups of subjects. This allows
for much smaller changes to be detected than those described as relevant in the literature
(e.g., a reduction in cadence of 10 steps per minute increases mortality by 4 % [228]). The
achieved SDC for the stride length of 5.3 cm in the patients with neurological diseases seems
to be sufficiently accurate to capture the differences occurring, for example, in Parkinson’s
disease [229]. The stance and swing phase durations show an SDC of 6.5 % across all trials.

Unlike many existing contributions, the evaluation showed that the proposed methods
reliably work on patients in addition to healthy subjects and still produce accurate results. This
is noteworthy since it has been shown that pathological walking deteriorates the accuracy of
many gait analysis methods [199] and specifically that neurologically induced gait abnormalities
are challenging for IMU-based gait analysis [197].
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A fundamental challenge of IMU-based gait event detection is that IMUs do not directly
measure the gait parameters of interest. For toe-off detection, the time instant of load relief
cannot directly be measured, and instead, the inversion of the direction of rotation is used.
Similarly, initial contact is not detected based on the onset of load but based on the change
of acceleration. It is therefore important to properly validate the IMU-based methods by
comparing the estimated gait parameters to a reliable ground truth.

As reference system, treadmills instrumented with Zebris pressure measurement platforms
were used, which are frequently employed for gait analysis in clinical practice as well as
scientific data collection [172]. This system shows good reliability [230], but no studies could
be found in which the validity of the gait parameters was investigated. It should be noted
that due to the length of the pressure sensors (FDM-THM-M-3i: 0.85 cm; FDM-THM-M-2i:
1.27 cm), there may be inaccuracies in the recording of spatial parameters, which may have
an effect on the results of the comparative measurements. Moreover, calibration and proper
thresholding pose challenges in gait event detection based on pressure measurement [172].

For the neurological patients, the reported duration of stance is, on average, 2 % longer
than the reference duration. While this is still a small deviation, it is worth noting because
this bias suggests a pattern that is common to this subject group. One likely explanation
is that toe-off is being detected later than with the Zebris system. This might be due to a
comparatively long phase of load relief that causes the pressure to fall below the threshold too
early. Furthermore, the reversal of the rotation direction might happen later than for healthy
subjects or orthopaedic patients. Still, even though both systems measure inherently different
phenomena, the observation deviation is only 2 %.

As a replacement for traditional stationary gait analysis systems, which are commonly
used in clinical practice, IMU-based gait analysis offers several advantages. Measurement is
possible both on treadmills and overground and not restricted to a dedicated laboratory. The
small and lightweight IMUs do not restrict the movement of the subject and can be used in
conjunction with walking aids such as wheeled walkers. Furthermore, only a very short setup
time is required before starting the actual measurement.

Unlike most existing methods (cf. Section 6.2), the proposed method makes gait analysis
easier and faster by not requiring any specific sensor attachment for the derivation of most
gait parameters, which was demonstrated by simulating a different random sensor-to-foot
orientation in each trial. It does not make use of magnetometers and can therefore be used in
both indoor and outdoor environments.

While evaluation was limited to the gait phases reported by the reference system, the
proposed set of methods further allows for the calculation of many gait phases (Figure 6.5), i.e.,
swing and stance for each foot, four unilateral gait phases for each foot, five bilateral gait phases
following standard literature [198] for each foot, and finally the distinction between double
and single support. To the best of the author’s knowledge, no existing work on IMU-based
gait analysis describes the calculation of this set of gait phases.

Besides the more fine-grained gait phases, there are many more parameters that can be
extracted, e.g., from the velocity and position trajectories, such as the maximum velocity
during swing, foot clearance, and symmetry parameters. While it is not surprising that the
prevalence of pressure-based systems has led researchers to focus on features based on ground
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contact, it is to be expected that the focus of clinical gait analysis will be directed toward
other parameters as IMU-based systems become more popular.

Furthermore, miniaturized lightweight sensors with a long battery life open up possibilities
for objective gait analysis outside of clinical laboratories. Daily-life gait assessment over the
course of multiple days can bring insight that is not possible with short sessions in a laboratory.
If patients place the sensors on or in the shoes themselves in an unsupervised telemedicine
setting, not requiring the sensor to be oriented in a special way becomes even more important.

Technological advancement also facilitates real-time biofeedback applications. While there
are methods for real-time applications that require event detection during a step [94], e.g., to
trigger FES, the proposed set of methods is real-time capable in the sense that during walking,
sections of data containing a small number of strides can be processed and used to provide
feedback to the subject.

In most applications, the IMUs are attached to or integrated into the shoe. This is especially
relevant for applications in daily life, but also the case in almost all identified studies [196,
202, 203, 204, 205, 206, 207, 208, 209, 211] in which positions and angles were investigated
with foot-mounted IMUs (except for [210], which includes additional barefoot measurements).
However, none of the publications investigated the influence of the shoe on the results. In this
context, the present setup with both OMCIMU and OMCSHOE yields new findings. As shown
in Figure 6.20, the MAD between IMU and OMCIMU is considerably smaller than between
IMU and OMCSHOE for all angle trajectories. This shows that the impact of OMC marker
placement on the obtained measurement is as large or even larger than the disagreements
between OMC and IMU-based measurements. For IMU-based gait analysis, attaching the
IMUs on the shoe vs. the foot, the location of the IMUs on the shoe or foot, and the method
of attachment are likely to affect the obtained results in a similar way. Future studies should
clarify which sensor position and attachment on the shoe results in the least measurement
error.

The presented work exhibits a few remaining limitations. In the statistical analysis, the
gait parameters were averaged over the duration of the trial before comparison with the
reference. While it allows for single-stride errors to cancel out, this methodology corresponds
well with the use case of clinical gait analysis, in which a subject is asked to walk for several
steps, and averaged parameters are then used to assess the gait. An additional stride-by-stride
comparison was not performed because the employed Zebris reference system can only export
averaged gait parameters. In addition, it should be noted that all recordings were made on
treadmills and not while walking overground, which has an influence on the movement pattern
of gait [231, 232]. Despite the known differences between treadmill walking and overground
walking, treadmill gait analysis is considered a standard method in clinical practice [233, 234],
especially when weight support and handrails are required for safety reasons. Furthermore, in
contrast to the extensive validation of the spatiotemporal parameters with patient data, the
experiments with OMC as reference were only performed with healthy subjects and with a
simulated gait pathology.
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6.7 Conclusions

The present chapter proposed a set of methods for IMU-based gait analysis. Based on gyroscope
and accelerometer measurements from two IMUs on the feet, durations of five gait phases,
stride length, walking speed, cadence, as well as position and angle trajectories are estimated.
Using a Zebris Rehawalk instrumented treadmill as reference, the spatiotemporal parameters
obtained with the proposed methods were validated based on a large dataset consisting of
healthy subjects (n = 39) walking at three different speeds, subjects with orthopaedic diseases
(n = 62), and subjects with neurological diseases (n = 36). Averaged over all trials, the
MAD with respect to the reference system is 1.4 % for the gait phase durations, 1.6 cm for the
stride length, 0.04 km/h for the walking speed, and 0.7 steps/min for the cadence. Position
and angle trajectories obtained with the proposed method were validated using data from 23
healthy subjects and marker-based OMC as reference. The results showed that the obtained
trajectories agree well and that, for all walking conditions, the average RMSE is below 1.5° for
the angle trajectories and below 1 cm for the position trajectories. It was also demonstrated
that the proposed methods work reliably not only in healthy subjects but also in patients and
still provide accurate results under different pathological gait patterns.

This shows that the proposed setup, in combination with the proposed methods, can
accurately calculate relevant gait parameters from the inertial sensor data and thus has the
potential to replace traditional stationary gait analysis systems.

Furthermore, the validation showed that the proposed methods work well regardless of the
orientation in which the sensor is attached to the foot, and dedicated calibration movements
and magnetometer measurements are completely avoided. The combination of these advantages
facilitates long-term ambulatory gait analysis in day-to-day situations without the need for
supervision by health professionals.

Future research should focus on the estimation of additional gait parameters, on the
validation on stairs and slopes, and on a detailed investigation of the motion artifacts introduced
by attaching IMUs and optical markers on the shoe instead of directly placing them on the
skin.
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This thesis introduces a modular set of methods facilitating non-restrictive magnetometer-free
inertial motion tracking in kinematic chains. This set of methods consists of four major
parts: (1) a versatile orientation estimation algorithm, (2) methods for automatic anatomical
calibration via kinematic constraints, (3) methods for heading tracking in kinematic chains
with 1-DoF and 2-DoF joints, and (4) methods for non-restrictive inertial gait analysis.

7.1 General Summary

In Chapter 3, a versatile IOE algorithm is developed. This algorithm employs a novel
approach of filtering the accelerometer measurements in an almost-inertial frame, simultaneously
estimates the 6D and 9D orientation, and includes extensions for online gyroscope bias
estimation and magnetic disturbance rejection. A comprehensive evaluation of the proposed
algorithm shows that it provides highly accurate orientation estimates, with 1.8 to 5 times
smaller errors than literature methods. For this evaluation, an extensive benchmark dataset,
encompassing a wide range of undisturbed motions and motions in disturbed environments, is
introduced, and the method is compared to eight state-of-the-art methods. Unlike most existing
algorithms, the proposed algorithm works out of the box without requiring application-specific
parameter tuning. IOE is the fundamental building block for almost all inertial motion-tracking
applications and for the methods developed in Chapters 4 to 6. Therefore, the accuracy gain
achieved by the proposed IOE algorithm is expected to benefit all those applications.

Chapter 4 presents methods for automatic anatomical calibration that are based on
kinematic constraints of 2-DoF joints and do not use magnetometer measurements. They work
with arbitrary motions, in contrast to most existing methods that require the subject to perform
precisely defined motions or to assume precisely defined poses. The methods are evaluated
using two experiments. The first experiment validates the consistency and plausibility of
joint axes that are estimated from just ten seconds of motion. In the second experiment, the
analyzed natural everyday life motions are directly used for anatomical calibration instead of
recording a separate calibration motion, and accurate joint angles are obtained. The developed
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methods overcome mounting and calibration restrictions and facilitate plug-and-play motion
tracking.

In Chapter 5, methods are developed that facilitate long-term stable magnetometer-free
motion tracking in kinematic chains by exploiting kinematic constraints. In contrast to most
existing approaches, the heading offset is represented via a scalar state, and information from
the kinematic constraint is only used for heading correction, without affecting the inclination
estimates. Robust estimation of the heading offset is achieved with the introduction of a
real-time-capable window-based approach. It handles phases in which the kinematic constraint
becomes singular and in which no movement is performed. The developed methods are
validated with mechanical joints and with the MCP, PIP, and DIP joints of the fingers. The
methods facilitate accurate long-term motion tracking, without magnetometers and without
the need to repeatedly assume a known rest pose.

Chapter 6 considers gait analysis as an important application area of IMU-based motion
analysis. A comprehensive set of non-restrictive methods for gait assessment via foot-worn
IMUs is introduced. The methods support calculating various spatiotemporal parameters
(such as gait phase durations, stride length, and cadence), as well as 3D foot position and
angle trajectories. The accuracy of the obtained parameters is evaluated on a large dataset.
It consists of walking data from healthy subjects and subjects with various diverse gait
pathologies. The methods reliably work on patients in addition to healthy subjects and still
produce accurate results, unlike many literature methods. In comparison to the stationary
pressure-based systems that are the state of the art in gait analysis, the developed methods
support the calculation of a more comprehensive set of gait parameters, while being less
restrictive.

7.2 Impact of This Work

This thesis proposes a modular set of methods for non-restrictive magnetometer-free human
motion analysis. The modularity of the proposed methods is the result of a novel approach
of consistently separating inclination and heading information. In contrast to most existing
work, the proposed methods limit the unknown quantity in magnetometer-free motion tracking
to a scalar heading offset. In the IOE algorithm of Chapter 3, this scalar represents the
heading offset with respect to the ENU reference frame. Similarly, the methods in Chapter 4
and Chapter 5 use this scalar to represent the estimated relative heading offset between the
6D reference frames of adjacent body segments. This separation of heading and inclination
ensures that the highly accurate inclination estimates obtained by the proposed IOE algorithm
cannot be affected by subsequent heading correction steps. It also reduces complexity and
enables the introspection of intermediate estimation results, e.g., by plotting the estimated
heading offsets over time. Furthermore, this separation facilitates fusing multiple sources of
heading information and integrating custom application-specific algorithms. As an example
for the former, one could average the magnetometer-based heading estimates of multiple
sensors, obtained via the proposed IOE algorithm, to obtain an overall heading estimate
while only relying on the more trusted relative heading offsets from the constraint-based
methods of Chapter 5 for adjacent body segments. This enables drift-free 3D visualization
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while ensuring that joint angles are not affected by magnetic disturbances. As an example of
an application-specific algorithm that is facilitated by the proposed separation of heading and
inclination, the foot progression angle method introduced in Section 6.3.12 estimates a scalar
heading offset to align the 6D reference frame with the walking direction.

The proposed set of methods can be employed in various combinations in a wide range of
applications. In the following, this will be illustrated based on three exemplary scenarios.

As the first example, consider the assessment of a subject’s elbow range of motion, which
is relevant, e.g., for patients in post-stroke rehabilitation [235] or patients with cerebral palsy
[18]. In this setting, the IOE algorithm from Chapter 3 could be integrated directly into the
IMU firmware, which then wirelessly transmits 6D quaternions to a computer or smartphone.
The methods for automatic anatomical calibration proposed in Chapter 4 can be used to
estimate joint axes, followed by the heading tracking methods from Chapter 5 to obtain joint
angles. In comparison to conventional approaches, the proposed methods are less restrictive:
Magnetometers are not used, which eliminates the need to carefully prepare a lab environment
free from potential magnetic disturbances and makes it possible for the subject to interact
with electronics or objects containing ferromagnetic material. Furthermore, the subject does
not need to perform calibration motions or repeatedly assume a known pose. Note that the
modularity of the proposed methods makes it easy to adapt the combination of methods to the
requirements of the specific use case. For example, it is easily possible to skip the anatomical
calibration step and instead rely on a known sensor attachment.

As a second example in a different application area, consider workplace ergonomics. The
proposed methods can be combined in a similar manner as in the first example to enable
automatic work assessment. Such an assessment tool could, among other metrics, automatically
evaluate phases during which the joint angles indicate unhealthy motions and postures [236].
In this setup, the automatic anatomical calibration methods reduce the risk of operating errors
in unsupervised use. Additionally, they could be used to automatically detect and compensate
accidental repositioning of the IMUs during the workday. By not relying on magnetometer
measurements, this approach is suitable for both industrial and office environments, which are
both prone to strong magnetic disturbances due to ferromagnetic material and electronics.

The gait analysis methods introduced in Chapter 6 provide a third example of the versatility
of the proposed methods. The minimal two-sensor setup makes the methods suitable for
unsupervised use in home environments to facilitate long-term daily-life assessment. For
scenarios that require more elaborate motion analysis, the gait analysis methods can easily be
combined with the anatomical calibration methods from Chapter 4 and the magnetometer-free
motion tracking methods from Chapter 5 to realize full lower-body motion tracking with seven
IMUs on feet, shanks, thighs, and hip.

As illustrated by these examples, the proposed modular set of methods facilitates non-
restrictive motion analysis that works in indoor environments, does not require the IMUs to
be attached in a precise orientation, and does not require the subject to perform tedious and
error-prone calibration movements. The proposed methods are therefore important building
blocks for achieving plug-and-play motion analysis with IMUs and are expected to help realize
the full potential of body-worn IMUs in many application domains.
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7.3 Outlook and Future Work

Several aspects of future work were mentioned at the end of the respective chapters. Here
they are summarized, and the potential for future work in the context of the global topic of
this thesis is discussed.

The IOE benchmark dataset could be broadened further by adding data recorded with
different hardware and data from human motion trials. The next step in improving the IOE
algorithm should be the integration of continuous and automatic magnetometer calibration.
For the anatomical calibration methods, combining both kinematic constraints is the most
promising path to increase robustness. The next steps needed for achieving robust plug-and-
play motion tracking are the development of methods for assessing the estimation uncertainty,
the automatic triggering of the calibration, and the combination of the anatomical calibration
with the heading tracking methods. In order to extend the applicability to all joint types, a
method based on the connection constraint should be integrated into the heading tracking
framework. Research on the gait analysis methods should focus on the estimation of additional
parameters, the validation on stairs and slopes, and the automatic segmentation of walking
and non-walking phases.

In a broader context, many recent developments in IMU-based motion analysis complement
the work pursued in this thesis.

The observability analysis of kinematic constraints for joint axis and heading offset
estimation is a novel field with limited but promising results [129, 140, 237, 238]. Insight
obtained from observability analysis can contribute to the development of more robust methods
and better detection of phases in which the kinematic constraints do not yield information.

In an effort to increase the practicability of full-body motion tracking, methods for sparse
motion tracking have recently gained traction. While this can be achieved via constraint-based
methods [239, 240, 241], many of the recent achievements are based on machine learning [110,
242, 243, 244, 245]. In general, like in many fields in science and engineering, the advance
of machine learning is prominent inertial motion tracking, ranging from IOE [57] and gait
analysis [184] to sparse motion tracking and other novel approaches, e.g., to facilitate motion
tracking with IMUs attached to loose clothing [246].

With microcontrollers found on IMUs becoming more powerful, an increasing number
of algorithms can be implemented directly on-chip. While this is already common for IOE,
many processing steps, such as gait event detection, have the potential to run directly on the
sensor hardware. Even complex methods for analyzing kinematic chains could potentially be
implemented in a distributed manner directly on the sensors. This on-chip data processing can
be combined with emerging intelligent sampling and data transmission strategies [247, 248,
249] to reduce the communication load and power consumption of wireless IMU networks.

In summary, the recent progress in accuracy, miniaturization, and power efficiency of
MEMS-based IMUs goes hand in hand with the recent progress in methods for inertial sensor
fusion to which this thesis contributed. Still, to realize the vision of robust plug-and-play
long-term motion assessment in unsupervised daily living scenarios, further work is required to
increase robustness and to design intelligent systems that are aware of their current accuracy
and automatically detect anomalies.
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A
Details on the Inertial Orientation

Estimation Method

A.1 Effect of Gyroscope Integration Errors

Every gyroscope prediction step causes a small error, due to gyroscope bias, noise, and other
measurement errors. Without correction by accelerometers and magnetometers, those errors
will add up and lead to drift in the orientation estimates. We can show that this error can
be regarded as a small drift in the Ii frame, i.e., all rotation that happens in the gyroscope
prediction and that is not the true change of sensor orientation can mathematically be expressed
as a rotation Ii(tk−1)

Ii(tk)q.
The gyroscope prediction step consists of multiplication of the previous estimate with an

update quaternion based on the measured angular rate:

Si(tk)
Ii(tk)q = Si(tk−1)

Ii(tk−1)q ⊗ (Ts∥ω∥@ ω) . (A.1)

This update quaternion can be expressed as the true change in sensor orientation multiplied
with an error quaternion qe, i.e.,

(Ts∥ω∥@ ω) = Si(tk)
Si(tk−1)q ⊗ qe. (A.2)

We can transform the error rotation qe into any frame, here Ii(tk−1):

qe = Ii(tk−1)
Si(tk)q ⊗ [qe]Ii(tk−1) ⊗

Ii(tk−1)
Si(tk)q

−1. (A.3)
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When putting this into the prediction step, we obtain

Si(tk)
Ii(tk)q = Si(tk−1)

Ii(tk−1)q ⊗ (Ts∥ω∥@ ω)

= Si(tk−1)
Ii(tk−1)q ⊗

Si(tk)
Si(tk−1)q ⊗ qe

= Si(tk)
Ii(tk−1)q ⊗

Ii(tk−1)
Si(tk)q ⊗ [qe]Ii(tk−1) ⊗

Ii(tk−1)
Si(tk)q

−1

= [qe]Ii(tk−1)⏞ ⏟⏟ ⏞
Ii(tk−1)

Ii(tk)q

⊗ Si(tk)
Ii(tk−1)q. (A.4)

Therefore, expressed in the almost-inertial frame Ii(tk−1), the gyroscope prediction error
quaternion qe corresponds to the drift rotation Ii(tk−1)

Ii(tk)q of the almost-inertial frame Ii.

A.2 Measurement for Motion Bias Estimation

The approach for gyroscope bias estimation during motion, as shown in Figure 3.19, is based
on the assumption that the current inclination correction step corresponds to the gyroscope
bias that is transformed into the global frame using the current sensor orientation. This works
well if the sensor orientation does not change much. In reality, due to the low-pass filter used
for the acceleration, the inclination correction corresponds to the bias-induced rotations from
the last few seconds, taking the respective sensor orientations into account. In the following,
we show that this effect is well-described by applying the same low-pass filter to the elements
of the rotation matrices R corresponding to Si

Ii
q, and also to the rotated bias estimates Rb̂.

To simplify the notation, we introduce the rotation operator

rot (q,v) := q ⊗ v ⊗ q−1. (A.5)

Assume that the accelerometer measurements are always a perfect vertical vector
([a(tk)]Etrue

= [v]Etrue = [ 0 0 1 ]⊺), i.e., there are no disturbances or measurement errors
(unit length is only used to simplify the notation). In the accelerometer update step, those
measurements are transformed into the Ii(tk) frame and then low-pass filtered with an infinite
impulse response (IIR) filter with impulse response bn, i.e.,

[aLP(tk)]Ii(tk) =
∞∑︂

n=0
bn
[︂
rot

(︂
Etrue

Ii(tk−n)q, [v]Etrue

)︂]︂

=
∞∑︂

n=0
bn [v]Ii(tk−n) . (A.6)

One time step earlier, the filter output is

[aLP(tk−1)]Ii(tk−1) =
∞∑︂

n=0
bn [v]Ii(tk−1−n)

=
∞∑︂

n=0
bn rot

(︂ Ii(tk−n)
Ii(tk−1−n)q, [v]Ii(tk−n)

)︂
. (A.7)
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From Rodrigues’ rotation formula follows that for a small rotation θ around axis k,

prot ≈ p + θk × p. (A.8)

We use this approximation for the rotation of the Ii frame due to gyroscope bias in one sample
step Ii(tk−1−n)

Ii(tk−n)q (cf. Appendix A.1). Note that this rotation is only caused by the uncorrected
part of the gyroscope bias, i.e., by b′(tk) := b − b̂(tk). Therefore, we obtain

[aLP(tk−1)]Ii(tk−1) ≈
∞∑︂

n=0
bn
(︂
[v]Ii(tk−n) − Ts

[︁
b′(tk−n)

]︁
Ii(tk−n) × [v]Ii(tk−n)

)︂
. (A.9)

The difference between two consecutive filtered accelerations is then

[aLP(tk)]Ii(tk) − [aLP(tk−1)]Ii(tk−1)

≈ Ts

∞∑︂

n=0
bn
(︂[︁

b′(tk−n)
]︁
Ii(tk−n) × [v]Ii(tk−n)

)︂

= Ts

∞∑︂

n=0
bn
(︂
rot

(︂Si(tk−n)
Ii(tk−n)q,b

′(tk−n)
)︂
× [v]Ii(tk−n)

)︂
. (A.10)

Now, we express this difference in the frame E i(tk−1) that is used to perform the inclination
correction step, assuming that E i and Ii do not change much over the duration that is relevant
for the filter (since the influence of bias and the inclination correction is limited during short
time spans), and assuming that the true vertical axis is approximately [ 0 0 1 ]⊺ in the E i(tk−1)
frame.

[aLP(tk)]Ei(tk−1) − [aLP(tk−1)]Ei(tk−1)

≈ Ts

∞∑︂

n=0
bn
[︂
rot

(︂ Si(tk−n)
Ei(tk−1−n)q,b

′(tk−n)
)︂
×
[︂
0 0 1

]︂⊺]︂

= Ts

[︄ ∞∑︂

n=0
bn rot

(︂ Si(tk−n)
Ei(tk−1−n)q,b

′(tk−n)
)︂]︄
×
[︂
0 0 1

]︂⊺
. (A.11)

Expressing the rotation by Si(tk−n)
Ei(tk−n−1)q with a rotation matrix R(tk−n) and introducing the

LPF operator to simplify the notation of the low-pass filter yields

[aLP(tk)]Ei(tk−1) − [aLP(tk−1)]Ei(tk−1)

= Ts

[︄ ∞∑︂

n=0
bn
(︁
R(tk−n)b′(tk−n)

)︁
]︄
×
[︂
0 0 1

]︂⊺

= Ts LPF
(︁
R(tk)b′(tk)

)︁×
[︂
0 0 1

]︂⊺
. (A.12)

Since [aLP(tk−1)]Ei(tk−1) is always [ 0 0 1 ]⊺ as the result of the previous inclination correction
step, we get

[aLP(tk)]Ei(tk−1) =
[︂
0 0 1

]︂⊺
+ Ts LPF

(︁
R(tk)b′(tk)

)︁×
[︂
0 0 1

]︂⊺
. (A.13)
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The inclination correction rotation vector c(tk), i.e., expressing the correction quaternion qcorr

from (3.16) as a rotation vector, is (neglecting the small change of the norm of [aLP(tk)]Ei(tk−1))

c(tk) = [aLP(tk−1)]Ei(tk) ×
[︂
0 0 1

]︂⊺

=
(︂[︂

0 0 1
]︂⊺

+ Ts LPF
(︁
R(tk)b′(tk)

)︁×
[︂
0 0 1

]︂⊺)︂
×
[︂
0 0 1

]︂⊺

= −diag(1, 1, 0)Ts LPF
(︁
R(tk)b′(tk)

)︁

= −diag(1, 1, 0)Ts
(︂
LPF(R(tk))b − LPF(R(tk)b̂(tk))

)︂
. (A.14)

Therefore, when choosing the system output matrix as C(tk) = LPF(R(tk)), we obtain
the following measurement in the horizontal plane:

diag(1, 1, 0)y(tk) = − 1
Ts

c(tk) + diag(1, 1, 0) LPF(R(tk)b̂(tk)). (A.15)

A.3 Parametrization of the Bias Estimation Method

Gyroscope bias is estimated using the system model

bk = bk−1 + vk, vk ∼ N (0,V), (A.16)

yk = Ckbk + wk, wk ∼ N (0,Wk), (A.17)

where the index k denotes sampling at tk, and the standard Kalman filter update equations
for the estimated state b̂k:

P−
k = P+

k−1 + V, (A.18)

Kk = P−
k C⊺

k(Wk + CkP−
k C⊺

k)
−1, (A.19)

b̂k = b̂k−1 + Kk(yk −Ckb̂k−1), (A.20)

P+
k = P−

k −KkCkP−
k . (A.21)

The tuning parameters are the initial covariance P+
0 , the variance of the process noise V,

and the variance of measurement noise W(tk). In the following, we derive an intuitive
parametrization for those values that is independent of the sampling frequency. Note
that scaling all parameters of the Kalman filter with the same value will not change the
system behavior. For heuristically determined parameters, the actual quantities are therefore
arbitrary. However, a good parametrization still helps to make the behavior of the algorithm
understandable and facilitates tuning.

A fixed amount of variance, the variance of the process noise V, is added to the covariance
matrix in every update step. To be independent of the sampling frequency, scaling with the
sampling time Ts is necessary. To facilitate interpretation of the value as a forgetting time, we
parametrize the process noise by the time needed for the standard deviation of the estimation
uncertainty to increase from 0 to 0.1 °/s in the absence of measurements, i.e.,

V = (0.1 °/s)2 Ts
tforget

I3×3. (A.22)
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We use the initial estimation uncertainty, i.e., the standard deviation σinit, to initialize the
covariance matrix, i.e.,

P+
0 = σ2

initI3×3. (A.23)

For the rest and motion updates, instead of directly specifying the variance of the motion
and rest update measurements, we provide the uncertainties σrest and σmotion to which the
estimate will eventually converge when the respective filter update is active. This ensures
independence of the sampling rates and makes it easy to compare the parameters to the initial
estimation uncertainty. The relation to the measurement variance wrest/motion is given by

wrest/motion =
σ4

rest/motion
v

+ σ2
rest/motion, (A.24)

with v being the process noise variance.
To derive this, consider the update equations for a simplified case of a Kalman filter for a

system with one constant state (xk = xk−1) and direct measurement of the state (C = 1):

p−
k = p+

k−1 + v, (A.25)

kk = p−
k

w + p−
k

, (A.26)

x̂k = x̂k−1 + kk(yk − x̂k−1), (A.27)

p+
k = p−

k − kkp−
k . (A.28)

In the converged state, kk = kk−1 and p+
k = p+

k−1. From (A.28) follows

p+
k = p+

k + v − p+
k + v

p+
k + v + w

(p+
k + v), (A.29)

v = (p+
k + v)2

p+
k + v + w

, (A.30)

w = (p+
k + v)2

v
− p+

k − v = (p+
k )2

v
+ p+

k . (A.31)

The relation given in (A.24) is then obtained by replacing the variance pk with σ2.
Note that, for the 3-dimensional bias estimate, the 3 × 3 covariance matrix might not

be close to a diagonal matrix, especially if the same sensor axis is vertical for a long time.
The uncertainty σ of the bias estimate (in the worst-case direction) can be derived from the
largest eigenvalue of the covariance matrix P. In order to avoid calculating eigenvalues, we
can leverage the Gershgorin circle theorem to obtain an upper bound estimate via the largest
absolute row sum of P.
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B
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Methods

B.1 General 2D Joint Model to Euler Angles

The methods for automatic anatomical calibration in Chapter 4 use z-y′-x′′ Euler angles to
decompose the relative segment orientation into joint angles. This decomposition was chosen
because it is recommended by the ISB for the elbow [47]. However, this choice is not restrictive
in any way. In the following, we show that any joint model with two degrees of freedom can be
transformed to fit the chosen Euler angle representation. For example, instead of using regular
Euler angles, we could consider modeling a 2-DoF joint with axes that are all potentially
non-orthogonal (including the carrying angle axis), i.e.,

B′
2

B′
1
q =

(︁
α′(t) @ j′

1
)︁⊗

(︂
β′

0 @ j′
β

)︂
⊗ (︁γ′(t) @ j′

2
)︁
, (B.1)

or assume that the relative segment orientation is a sequence of two non-orthogonal rotations
(which is a special case of the above model with β′

0 = 0). Furthermore, the joint model might
include additional fixed rotations, similar to the carrying angle, at the beginning or at the end
of the rotation sequence.

To capture all those possibilities, we start with a very general model of a joint with two
degrees of freedom, described as the following decomposition of the relative body segment
orientation quaternion:

B′
2

B′
1
q = q1 ⊗ (α@ j1)⊗ q2 ⊗ (γ@ j2)⊗ q3. (B.2)

The 3D vectors j1 and j2 are arbitrary but constant joint rotation axes, α(t) and γ(t) are the
two time-varying joint angles, and q1, q2 and q3 are arbitrary but constant rotations.

Without loss of generality, we can write (α@ j1) = q4⊗(α@ [ 0 0 1 ]⊺)⊗q−1
4 and (γ@ j2) =

q5 ⊗ (α@ [ 0 1 0 ]⊺)⊗ q−1
5 , with some constant rotations q4, q5 that rotate between the given
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joint axes and the z-axis and y-axis, respectively. Inserting this into (B.2) gives

B′
2

B′
1
q = q1 ⊗ q4 ⊗ (α@ [ 0 0 1 ]⊺)⊗ q−1

4 ⊗ q2 ⊗ q5 ⊗ (γ@ [ 0 1 0 ]⊺)⊗ q−1
5 ⊗ q3. (B.3)

Since we can decompose any quaternion into Euler angles, we can write

q−1
4 ⊗ q2 ⊗ q5 = (α0 @ [ 0 0 1 ]⊺)⊗ (β0 @ [ 1 0 0 ]⊺)⊗ (γ0 @ [ 0 1 0 ]⊺) . (B.4)

Furthermore, we can define new body segment coordinate systems B1 and B2:

B1
B′

1
q = q1 ⊗ q4, (B.5)

B′
2

B2
q = q−1

5 ⊗ q3. (B.6)

Putting (B.4), (B.5), and (B.5) into (B.3) yields

B2
B1

q = (α@ [ 0 0 1 ]⊺)⊗ q−1
4 ⊗ q2 ⊗ q5 ⊗ (γ@ [ 0 1 0 ]⊺)

= (α+ α0 @ [ 0 0 1 ]⊺)⊗ (β0 @ [ 1 0 0 ]⊺)⊗ (γ + γ0 @ [ 0 1 0 ]⊺) . (B.7)

This represents z-x′-y′′ Euler angles as recommended for the elbow by [47], with a constant
carrying angle β0. The time-varying joint angles in the generic model (B.2) and in the Euler
angle model (B.7) are only shifted by constant offsets α0 and γ0. Therefore, all joints that
can be represented with two sequential rotations around arbitrary but constant axes can be
described using z-x′-y′′ Euler angles.

B.2 Gradient of Rotation-Based Cost Function

For efficient optimization using the rotation-based joint constraint introduced in Section 4.4.2,
we need to calculate the elements of the Jacobian J ∈ RM×5, i.e.,

[J]ij = ∂ei
∂Φj

= ωrel ·
∂

∂Φj

jn
∥jn∥

+ jn
∥jn∥

· ∂

∂Φj
ωrel. (B.8)

The derivative of the normalized axis is

∂

∂Φj

jn
∥jn∥

=
∂
∂Φj

jn

∥jn∥
− jn

jn · ∂
∂Φj

jn

∥jn∥3
. (B.9)

All necessary subsequent derivatives are detailed in the following. Note that while jn depends
on all parameters in Φ, the relative angular rate ωrel only depends on δ.

200



B.2 Gradient of Rotation-Based Cost Function

B.2.1 Derivative with Respect to the Joint Axes

We exploit the fact that the product rule holds for quaternion multiplication [42].1

∂jn
∂θ1, φ1

=
(︃

S1
E1

q ⊗ ∂

∂θ1, φ1
j1 ⊗ S1

E1
q−1

)︃
× [j2]E1

, (B.10)

∂jn
∂θ2, φ2

= [j1]E1
×
(︃

S2
E1

q ⊗ ∂

∂θ2, φ2
j2 ⊗ S2

E1
q−1

)︃
. (B.11)

Deriving the axes in local sensor coordinates with respect to θ and φ as defined in (4.16) is
straightforward:

∂ji
∂θi

= [ cos θi cosφi cos θi sinφi − sin θi ]⊺, (B.12)

∂ji
∂φi

= [− sin θi sinφi sin θi cosφi 0 ]⊺, i = 1, 2. (B.13)

The same is possible for the alternative joint axis parametrization.

B.2.2 Derivative with Respect to the Heading Offset

Instead of quaternion multiplication, we can make use of Rodrigues’ rotation formula to express
the transformation of a vector v ∈ R3 from E2 into E1, i.e.,

[v]E1
= E2

E1
q ⊗ [v]E2

⊗ E2
E1

q−1

= [v]E2
cos(δ) +

(︂
[ 0 0 1 ]⊺ × [v]E2

)︂
sin(δ)

+ [ 0 0 1 ]⊺
(︂
[ 0 0 1 ]⊺ · [v]E2

)︂
(1− cos(δ)) . (B.14)

This allows us to calculate the derivatives

∂ωrel
∂δ

= − ∂

∂δ
[ω2]E1

= [ω2]E2
sin(δ)−

(︂
[ 0 0 1 ]⊺ × [ω2]E2

)︂
cos(δ)

− [ 0 0 1 ]⊺
(︂
[ 0 0 1 ]⊺ · [ω2]E2

)︂
sin(δ) (B.15)

and

∂jn
∂δ

= [j1]E1
× ∂

∂δ
[j2]E1

with (B.16)
∂

∂δ
[j2]E1

= − [j2]E2
sin(δ) +

(︂
[ 0 0 1 ]⊺ × [j2]E2

)︂
cos(δ)

+ [ 0 0 1 ]⊺
(︂
[ 0 0 1 ]⊺ · [j2]E2

)︂
sin(δ). (B.17)

1Similarly, we could argue that the rotation can be expressed using a rotation matrix and make use of the
product rule for matrix multiplication.
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B.3 Gradient of Orientation-Based Cost Function

Analogously to the derivation in Appendix B.2, we now show how to calculate the elements of
the Jacobian J ∈ RM×6 for the orientation-based constraint introduced in Section 4.4.2, i.e.,

[J]ij = ∂ei
∂Φj

= ∂

∂Φj

(︂
arcsin (2qwqx + 2qyqz)⏞ ⏟⏟ ⏞

=: s(θ1,φ1,θ2,φ2,δ)

−β0
)︂
, (B.18)

with B2
B1

q =: [ qw qx qy qz ]⊺.
Trivially, the derivative with respect to the fixed carrying angle β0 is

∂ei
∂β0

= −1. (B.19)

For the derivatives with respect to the other parameters, we make use of the fact that

∂

∂Φj
arcsin s(Φj) =

∂
∂Φj

s(Φj)
√︂

1− s(Φj)2
(B.20)

and that
∂

∂Φj
s(Φj) = 2

(︄
∂qx
∂Φj

qw + qx
∂qw
∂Φj

+ ∂qy
∂Φj

qz + qy
∂qz
∂Φj

)︄
. (B.21)

To determine the derivative of the quaternion components qw, qx, qy, and qz, remember that
the relative segment orientation B2

B1
q, as defined in (4.13), is the multiplicative concatenation

of five quaternions:

B2
B1

q = S1
B1

q(θ1, φ1)⊗ E1
S1

q ⊗ E2
E1

q(δ)⊗ S2
E2

q ⊗ B2
S2

q(θ2, φ2). (B.22)

Since for each parameter, only a single of those five quaternions depends on the respective
parameter, the other four quaternions are constant factors, i.e.,

∂

∂θ1, φ1
B2
B1

q =
(︃

∂

∂θ1, φ1
S1
B1

q
)︃
⊗ E1

S1
q ⊗ E2

E1
q ⊗ S2

E2
q ⊗ B2

S2
q, (B.23)

∂

∂δ
B2
B1

q = S1
B1

q ⊗ E1
S1

q ⊗
(︃
∂

∂δ
E2
E1

q
)︃
⊗ S2

E2
q ⊗ B2

S2
q, (B.24)

∂

∂θ2, φ2
B2
B1

q = S1
B1

q ⊗ E1
S1

q ⊗ E2
E1

q ⊗ S2
E2

q ⊗
(︃

∂

∂θ2, φ2
B2
S2

q
)︃
. (B.25)

B.3.1 Derivative with Respect to the Joint Axes

The sensor-to-segment orientation for the first segment can be expressed as

S1
B1

q =


 cos(ψ2 )

sin(ψ2 ) v
∥v∥


 , with ψ = arccos(j1,z) and v = j1 ×




0
0
1


 =




j1,y

−j1,x
0


 . (B.26)
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B.3 Gradient of Orientation-Based Cost Function

For the scalar part of the quaternion,

∂

∂θ1, φ1
cos

(︃
ψ

2

)︃
= −1

2 sin
(︃
ψ

2

)︃
∂ψ

∂θ1, φ1
(B.27)

and

∂

∂θ1, φ1
ψ = −

∂j1,z

∂θ1,φ1√︂
1− j2

1,z
. (B.28)

The derivative of the vector part of the quaternion is

∂

∂θ1, φ1
sin
(︃
ψ

2

)︃ v
∥v∥ = 1

∥v∥2
(︄

v ∥v∥ ∂ sin(ψ2 )
∂θ1, φ1

+ sin
(︃
ψ

2

)︃
∥v∥ ∂v

∂θ1, φ1
− sin

(︃
ψ

2

)︃
v ∂ ∥v∥
∂θ1, φ1

)︄
,

(B.29)

with

∂

∂θ1, φ1
sin
(︃
ψ

2

)︃
= 1

2 cos
(︃
ψ

2

)︃
∂ψ

∂θ1, φ1
(B.30)

and

∂

∂θ1, φ1
∥v∥ = 1

∥v∥

(︃
j1,y

∂j1,y
∂θ1, φ1

− j1,x
∂j1,x
∂θ1, φ1

)︃
. (B.31)

For the derivatives of the Cartesian joint axis vector j1 with respect to θ1 and φ1, refer to
Appendix B.2.

The derivative with respect to θ2 and φ2 follows analogously for the second sensor-to-
segment orientation

B2
S2

q =


 cos(ψ2 )

sin(ψ2 ) v
∥v∥


 , with ψ = arccos(j2,x) and v =




0
1
0


× j2 =




j1,z

0
−j1,x


 . (B.32)

B.3.2 Derivative with Respect to the Heading Offset

The derivative of the heading offset quaternion

E2
E1

q =
[︂
cos( δ2) 0 0 sin( δ2)

]︂⊺
(B.33)

with respect to the heading offset δ is

∂

∂δ
E2
E1

q =
[︂
−1

2 sin( δ2) 0 0 1
2 cos( δ2)

]︂⊺
. (B.34)
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