
 Procedia Computer Science 19 (2013) 380 – 388

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki
doi: 10.1016/j.procs.2013.06.052

The 4th International Conference on Ambient Systems, Networks and Technologies
(ANT 2013)

Extensible Software Design of a Multi-Agent Transport
Simulation

D. Grether, K. Nagel

Transport Systems Planning and Transport Telematics, Berlin Institute of Technology (TU Berlin), Salzufer 17-19, D-10587 Berlin,

Germany, Tel: +49-30-314 21383, Fax: +49-30-314 26269, E-mail: grether@vsp.tu-berlin.de,

Abstract

This paper explains the chosen methodology for software design of the Multi-Agent Transport Simulation, MATSim.

The design focusses on standard architectures and design patterns to ease usability and improve extensibility of the

software. Potential for extension is discussed using an example implementation of a traffic signal control module. Both,

MATSim and the extension are using the same concepts for software architecture.

c© 2013 Published by Elsevier Ltd.

Keywords: multi-agent simulation, transport simulation, software design

1. Introduction

Generally speaking, methodology for object-oriented software design is available and well documented

at a lot of places, e.g. see the books of [1, 2, 3]. In the past decades, several concepts and considerations

were established in software design — Modularity, Information Hiding, Abstraction, Reusability, Usability
or Extensibility are prominent examples. These goals are partially competitive. In respect to software

design, this implies some trade-offs and design decisions that are unique for each piece of software. In the

following, trade-offs and methodologies of software design for the software named MATSim, i.e. Multi-

Agent Transport Simulation, are discussed.

Multi Agent Transport Simulation and its acronym MATSim stand for strong words and concepts associ-

ated to them. For each of them, agent-based (transport) models, transport simulation and forecasting models

many books and publications exist. In this paper, MATSim is seen as a software that enables usage of default

functionality to answer transport analysis and forecasting problems on a high, agent-based resolution but for

large scale applications. Large scale implies some level of abstraction to enable computationally cheap sim-

ulation and problem solving. Multi-agent based transport simulation are often implemented separating a

simulation of physics from a simulation of agents. Agents interact with the physical world, e.g. as travellers

in the transport system, or as control algorithms for traffic light control. Interaction may change certain

aspects of the real world modelled. Yet, certain physical constraints should not be violated; for example,

synthetic persons should be required to consume time while physically move from one location to another

rather than being teleported in zero time (which is possible in the computer but not in reality).

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer-review under responsibility of Elhadi M. Shakshuki

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

381 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

Developed by distinct groups of developers, MATSim is the work of many; main developers are located

at ETH Zurich, senozon AG, and TU Berlin. Even more heterogeneous is the group of users. In consequence

there are several, distinct, domain-specific perspectives on the software.

Users of MATSim typically come from transport and civil engineering domains and are heading to

solve problems for which the agent-based modelling approach is more suited than more traditional four step

process modelling. The typical use-case starts with the collection and preparation of data. Then several

simulations are run on a cluster for several days and compared afterwards. Often, this must be repeated

several times as data may contain errors that do not become visible until simulation results are retrieved. If

no automatic calibration is available, repetition of simulation runs might be needed to calibrate the model.

Multi-agent simulation pays off when heterogeneous user preferences, time dependent user reactions or/and

microscopic modelling of public transport are studied, e.g., see [4, 5, 6]. At the time these studies were un-

dertaken, there was no default software support for the required functionality; MATSim had to be extended

by custom model components. Today, some of this functionality is available in MATSim or as a contributing

project. However, modelling problems on this high level of detail makes it hard to define a default method-

ology and implementation that suits every user. So, quickly a user finds himself in the second group, the

researchers.

Advanced users may reach a point at which the model implemented in MATSim is not sufficient to

answer their questions. Then, they start researching extended or distinct modelling approaches. These

models shall be applied and implemented to MATSim, frequently. Addition of functionality to the basic

algorithm or changes to small parts of it are sufficient in most cases. Yet, researchers must be able to write

their model code. A strong computer science background is helpful, but can not be expected. Currently,

such work is done e.g. in the field of evacuation [7] or destination choice of travellers [8].

From a computer science perspective MATSim can be seen as substrate delivering plausible, network

wide traffic patterns that can be used to test agent-based concepts, e.g., see [9]. Furthermore computer sci-

ence may provide programming languages and methodology that makes extension of the software as simple

as possible. Choosing the most suitable approach, set-up of methodology and core concept implementation

is the task of computer engineering. Optimally, this should be invisible to other users.

Unfortunately, invisibility is not reached. This paper explains which methodology and set-up was chosen

in the last years in order to improve the first prototypical version of MATSim from 2007. Motivated by the

domain-specific perspectives on the software the main goals are Modularity, Reusability and Extensibility.

As most users come with a non computer science background practical solutions for achievement of goals

are needed. Full knowledge of [1, 2, 3] can not be expected, thus a subset of these concepts is required.

This paper reviews the chosen subset. Two software design patterns, i.e. Abstract Factory and Observer [1],

in conjunction with some other standard software design approaches improve the main design goals. As

example for an extension of the MATSim core algorithm the paper shows how a traffic signal implementation

can be attached to MATSim.

The rest of the paper is organized as follows: In Sec. 2 the current design of MATSim is explained,

while Sec. 3 shows how an extension for the simulation of traffic signals is designed. The paper ends with a

discussion and conclusion.

2. Software Design of MATSim

In this section, first the central algorithm of MATSim is reviewed, followed by a description of overall

sofware design. For the different parts of MATSim potential extensions are discussed.

Theory and Algorithm. In MATSim, each traveler of the real system is modeled as an individual virtual

person. The approach consists of an iterative loop that has the following important steps: 1. Plans genera-
tion: All virtual persons independently generate daily plans that encode, among other things, their desired

activities during a typical day as well as the transportation mode. Virtual persons typically have more than

one plan (“plan database”). 2. Traffic flow simulation: All selected plans are simultaneously executed in

a simulation of the physical system (often called “network loading”). 3. Scoring: All executed plans are

scored by a utility function which can be personalized for every individual. 4. Learning: At the beginning of

382 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

(b) A layered architecture for MATSim

Fig. 1: Overall software architecture

every iteration, some virtual persons obtain new plans by modifying copies of existing plans. This is done

by several modules that correspond to the choice dimensions available, e.g. time choice, route choice, and

mode choice. All other virtual persons choose between their plans according to a Random Utility Model

(RUM).

The repetition of the iteration cycle coupled with the plan database enables the virtual persons to improve

(learn) their plans over many iterations. This is why it is also called learning mechanism which is described

in more detail in [10]. The iteration cycle continues until the system has reached a relaxed state. At this

point, there is no quantitative measure of when the system is “relaxed”; users allow the cycle to continue

until the outcome is stable.

Overall Architecture. The overall architecture of the first release of MATSim in 2007 was rather fuzzy.

Coupling was high and modularization at a preliminary stage. Complex code inheritance hierarchies and

global variables persisting the state of modules reduced Reusability and Extensibility. Especially Hybrids [3,

pp. 93], i.e. objects that possess properties of data structures and provide functionality, reduced Modularity.

A more detailed discussion of issues can be found in [11].

Layered architectures, “that should be familiar to anyone who works with information systems” [12] can

help to reduce coupling, improve modularization and sort out dependencies between modules. The typical

overall layer structure is shown in Fig. 1a. It consists of a Database, a Mapper implementation accessing

the concrete Database, an abstract interface for Mappers, the Domain to be modelled in the software and

a User interface. This typical layered approach is applied to MATSim. Fig. 1b shows a colored version

of the control flow of MATSim that is used for documentation at many places. In yellow, the mapper to

the Database is depicted, blue elements represent the main modules of the Domain while green is the User

interface layer. Note that the arrows don’t show dependencies but are oriented at the general course of action

and thus may point into opposite direction than arrows in Fig. 1a. Dependencies between the layers are as

shown in Fig. 1a.

Motivated by the considerations in [11], the software design for MATSim uses mainly two software

design patterns from [1]. First, Abstract Factories are provided that construct the central components of the

software and force use of Interfaces instead of implementations. Second, in order to make control flow and

object communication translucent, Observer is frequently used.

Database &Mapper Layer. Microscopic transport simulation requires lots of data. None of the institutions

participating in the development focusses on data modelling, nor is expert knowledge for modelling data

ubiquitous at the developer side. Due to this consideration, the amount of data structures required by the

383 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

core algorithm are reduced to a minimum: An abstract graph representation of a transport network, and a

population of virtual persons that are travelling within the transport network. For both data structures, cor-

responding mapper interfaces and implementations are provided. These can be added to a mapper container,

the Scenario. Additionally, access to the mapper for the configuration is provided in Scenario. Within

the iteration cycle, access to the data is granted via Scenario.

For many studies, more data is needed than provided by network and population. Data sources are

heterogeneous and may vary from study to study. In contrast, a manually programmed simulation logic

must be encoded against specific concepts derived from data. Effort of implementation is reduced if these

concepts can be accessed in a type-safe manner. Maintenance cost increase significantly and extensibility

is reduced if central parts of the central algorithm need to parse Strings that have to be well formed. Thus,

modules that extend the core simulation functionality are expected to implement their own data mappers.

These can be added to Scenario as shown in Listing 1.

public void addScenarioElement (Object o) ;

public boolean removeScenarioElement (Object o) ;

public <T> T getScenarioElement (Class<? extends T> klass) ;

Listing 1: Extension of Scenario: Signature

The Signature of the getScenarioElement(..) method may look a bit scary, but usage is simple, as

shown in Listing 2: A custom data mapper of type MyData is added to an instance of Scenario. Later it is

retrieved via the getScenarioElement(..) method in a type-safe manner.

MyData data = new MyData () ;

scenario . addScenarioElement (data) ;

. . .

MyData data2 = scenario . getScenarioElement (MyData . class) ;

Listing 2: Extension of Scenario: Usage

Domain: Simulation, Scoring and Replanning. The central algorithm of MATSim consists of three steps:

Simulation, Scoring and Replanning. As indicated by Fig. 1b, each step is associated with a separate mod-

ule. In 2007, the functionality of these modules was rather limited, while the number of users willing to

extend the software was growing fast. Thus, a simple method for functional extension of these modules was

required. The control flow and communication between these modules, however, should become invisible

to enforce modularization.

In order to hide implementation details of the core modules, Java interfaces are extracted from the

concrete implementations of the 2007 prototype. Use of these interfaces is encouraged by Abstract Factories
creating the modules. On this top-level view on the domain, interfaces can be rather abstract. E.g. Listing 3

shows the top-level interface that a mobility simulation needs to implement in order to work within MATSim,

while Listing 4 shows the appropriate interface of the factory creating the mobility simulation.

public interface Mobsim {
public void run () ;

}
Listing 3: Top-level interface for a mobility simulation

public interface MobsimFactory {
public Mobsim createMobsim (Scenario sc , EventsManager eventsManager) ;

}
Listing 4: Top-level factory to create a mobility simulation

This enables users to replace the mobility simulation completely if their requirements are not met by the

default implementation.

384 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

In order to hide control flow and communication between modules, the Observer pattern is used at two

places:

• First, the mobility simulation uses the same Observer implementation as found in the first 2007 re-

lease. Each time, something is happening in the simulation, e.g. a virtual person departs for a trip,

or a vehicle enters a new link of the transport network, an Event is generated and sent via the class

EventsManager to all EventHandler instances registered for the concrete event class. Essentially

this is an Observer implementation for the mobility simulation where the simulation is the Model
and Controller while EventHandler is the top level interface for the Views. The mobility simulation

retrieves access to an EventsManager when it is created via the factory method, see Listing 4.

• Second, new functionality to the steps of the central algorithm can also be added via an Observer:

The state of the iterative relaxation process represents the Model element of the pattern. States are

e.g. startup and initialization completed, the start of an iteration, the end of microsimulation execution,

the end of the scoring or the end of the iteration cycle1. The Controller element of the pattern, that

alternates the states, is the central algorithm of MATSim (currently implemented in the Controler

class). Users can provide custom implementations for the View elements of the Observer pattern. This

allows addition of functionality at each point of the iterative process. E.g. code for analysis could be

added at the end of each iteration without touching any code concerning setup and control flow of the

whole simulation process.

The combination of Abstract Factories and Observer makes the central algorithm extensible, as users can

connect to the core algorithm at each step adding their specific View implementation providing any additional

functionality required. If the core modules do not fit needs, they can be replaced completely. Thus, the

overall process is considered to be flexible and extensible. However, replacing a whole module of the core

algorithm, as e.g. a complete replacement of the mobility simulation, can result in much effort. Therefore,

well designed default models and implementations are needed, which are also suited for extension and

customization.

Default Models & Implementations. Obviously, specifications of abstract interfaces can not be run as there

is no implementation. Thus, there is a certain amount of default implementations that can be used and

configured via the configuration file of the simulation. If a user states he uses MATSim, he should refer to

the default implementation. His specific set of configuration options should be documented, if non-default

parameters are used. If users add or modify code, it is expected that code modifications are also docu-

mented and published. In order to reduce documentation effort and amount of code to be rewritten, certain

parts of the default implementations may be reused. To ease effort, in an ongoing debate and refactoring

process, default implementations are hidden behind abstract type specifications and interfaces suitable for

customization.

If Delegation and the Patterns Abstract Factory and Observer are used consequently, extensibility can

be realized up to a certain extent [11]. In addition, the resulting software architecture can be understood by

knowledge of the two patterns and the concept of delegation. E.g. the default production mobility simulation

of TU Berlin (referred as QSim) uses the Observer pattern twice: First, the Event mechanism can be used

by Views to get informed about things that happen in the simulation. A second Observer is provided for

the control flow of the mobility simulation. E.g. one can register a View that is informed when the mobility

simulation is set up, incremented or shut down. By use of a Factory creation of objects for virtual persons

or other agents fed into the mobility simulation can be changed. Default behaviour of virtual persons thus

can be customized. This repetition of concepts and patterns results in a Matryoshka Doll. Each time one

of the modules of overall simulation is unfold, same concepts appear, thus reducing overhead to understand

design concepts before extensions and modifications can be provided.

Provided that existing source code should not be touched functional extension is possible by use of

patterns as Abstract Factory and Observer in conjunction with the OO language concepts of Java. However,

1see www.matsim.org/node/602 for the official documentation, last access 17.01.2013

385 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

extensibility is also restricted by this subset of programming concepts. Restrictions can be decreased by

use of patterns as e.g. Visitor. The understandability of code, however, also decreases by more sophisticated

patterns. Especially the addition of new operations to existing types is considered hard if the code should not

be modified. A detailed discussion can be found in [11]. New operations can also be added as completely

separated modules. This may reduce cohesion, but on the other hand leads to very modular extensions.

The default modules require some interface definitions to communicate with the extensions. The Observer
implementations provide this interfaces. The next section shows the design of such an extension for a

module to simulate traffic signal control.

3. Traffic Signals Extension

Traffic signal control is an important element of urban transport systems. For the purpose of transport

forecasting and simulation, the inclusion of traffic signal control may be desired, but because of the need of

extensive amounts of data, it may not be feasible.

Fixed-time and traffic-actuated signal control are probably the most frequently used traffic signal control

strategies. In contrast, using “agents” for traffic signal control is subject of current research. The agent

paradigm here typically refers to agents that control all traffic signals of a signalized junction. The specific

type of agent, e.g. rule-based or learning, in the sense of [13] is not specified. Such a wide use of the agent

paradigm covers all approaches for traffic-signal control as even a fixed-time control can be seen as a rule

based agent. An agent for traffic signal control needs to be able to capture the state of its environment, e.g.

the number of cars approaching the junction controlled by the agent. Furthermore, the agent is responsible

to compute a state of traffic signalization that should be conform to legal requirements. Finally, it should

result in a good performance of traffic flow.

In the following, the design and implementation of a software architecture is proposed that allows agent-

based modelling of traffic signal control as an optional component of MATSim. Software design and imple-

mentation follow the design patterns used in the core of MATSim. Instead of being modelled as extensions

to the MATSim type hierarchy, the model is a stand-alone extension that is coupled to MATSim via one con-

crete interface declaration that must also be implemented by the core of the simulation framework. It was

possible to solve all other coupling by using the Abstract Factory or Observer implementations reviewed in

the previous section.

The traffic signal module for MATSim consists of three components: A data mapper providing access to

a database, a component that plugs the module into MATSim, and a default implementation for fixed-time

control. The latter also makes the implementation of further models for traffic signal control easier.

Data. For microscopic simulation of traffic signals, minimally a description of the real world traffic signals

is needed, i.e. at which locations in the network traffic signals are located and which edges or turning moves

of the network are influenced by them. Individual traffic signals are often assigned to groups; each traffic

signal of a group shows the same color all time. In addition, the data format should allow to specify the

control strategy used for sets of groups. Optionally, one should be able to specify legal constraints. This

includes the time of amber or red-amber a traffic signal needs to show before it can switch to red or green.

Intergreens specify the time signals have to be all red before a signal can switch to green. All this data is

provided by a mapper interface to a database called SignalsData providing access to the subcomponents.

The mapper is added to the Scenario and is available at relevant places within the simulation process. The

SignalsData mapper and its child containers are behind interfaces to ensure that the current XML Schema

based data format can be replaced by something else.

Default Model & Implementation. Several components are identified that can be used to model and mi-

crosimulate traffic signals. Fig. 2 shows types of the MATSim core modules from the package org.matsim

(blue). Furthermore, main types of the traffic signal extension are shown with their dependencies to the core

modules. These components and dependencies are reviewed in the following.

First, a component that represents the real world infrastructure is required. It serves as interface to a

mobility simulation, i.e. it communicates the color of traffic signals to links of the transport network. The

386 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

Fig. 2: Components of the default signal systems module and their connection to MATSim

communication is realized by the interfaces Signal and SignalizeableItem of Fig. 2. The latter is the

interface within org.matsim. It has to be implemented by mobility simulations in order to support traffic

signals. Two currently available example implementations are QLinkImpl and PedestrianSignal.

The second required component provides traffic signal control strategies for signalized intersections. For

real world applications, it should be possible to control each signalized intersection with a different control

strategy. For this, the SignalSystemController interface of Fig. 2 can be used. This component can

be seen as agent if an agent-paradigm is used. Via the SignalSystem, the control strategy can access and

switch the state of the infrastructure representation, i.e. the Signal instances. Furthermore, access to the

EventsManager instance of org.matsim is provided in order to feed changes of signalization back to the

central Events’ Observer implementation.

The third component provides a tool for control strategies to reduce the amount of implementation in

control strategies for switches between red and green light. In between, colors red-amber and amber may be

shown for a certain time. The time depends completely on legal constraints which, in turn, may depend on

the layout of the crossing or on the speed-limit. The AmberLogic interface is accessible via SignalSystem

and receives requests to change color between red and green and translates them into a color sequence that

shows also the required time of red-amber and amber light.

The last component is a logic that checks if conflicting approaches of a junction got a right-of-way at the

same time, producing a warning or throwing an error in such a case. This component is necessary since none

of the current mobility simulations available within org.matsim represents vehicle collisions. Thus, this

component is quite important as validity of the control strategy can be ensured. The IntergreensLogic in

Fig. 2 provides this functionality. It is a View on the EventsManager of org.matsim and thus completely

decoupled from other components of the traffic signal extension.

Integration into MATSim. The Observer implementation of the top-level simulation process is used to plug

the traffic signal extension into MATSim. After notification that the simulation is at start-up, the signals data

is loaded, and the simulation model for traffic signal control is set up. At the beginning of each iteration, the

model is triggered to reset its components, and at the end of simulation some data is persisted. The Observer
for the control flow of the mobility simulation is used to update the state of the traffic signal control during

execution of mobility simulation.

As traffic signals are considered important but still optional for transport simulations, a central factory at

the top level of the domain layer is added. Using this factory, the complete module can be exchanged easily,

or the default implementation can be retrieved for further customization of its components. Each component

can be exchanged or customized via factories.

387 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

(a) Changes per day (b) Changes per day, without some bugfixes

Fig. 3: Changes on package org.matsim and org.matsim.signalsystem

4. Discussion

Overall Design of MATSim. The overall software design of MATSim was improved since the first release in

2007 appeared. All global singletons were removed from MATSim core components. Hybrids are vanishing

because of the layered architecture. Extensions to standard input data can be added to the Scenario. The

mechanism described in this paper can also be found in the API offered by the ApplicationContext of the

spring2 framework. Thus, this appears to be standard functionality for extensible Java software. As Design
Patterns mainly Abstract Factory and Observer are used. Usage of these two patterns can be understood

relatively easy, especially when comparing to other patterns e.g. Visitor. Furthermore, they are the standard

solution for many problems, and are probably two of the best known and most frequently used patterns in

OO languages.

Modularity of MATSim was improved because of the use of Java interfaces in conjunction with Abstract
Factory and Observer. The patterns encourage use of interfaces instead of implementations. The existence

of a Java interface communicates a certain level of design thoughts for a module. The mental barrier of

developers to jump over the hurdle to change an interface seems to be higher than just to change imple-

mentation. Thus, the development towards principle software design goals and especially Modularity is

encouraged.

Using standard Java, Delegation, Abstract Factory and Observer Extensibility can be provided up to a

certain extent without changing core components. But the approach is limited. Abstract Factory implemen-

tations using delegation get hard to understand if several modules are interlaced and used together. Observer
lacks a definition of the sequence in that Views are informed about changes of the Model. This might be

seen as drawback, but is actually the quintessence of Observer application – encapsulating functionality in

modules that can be used independently and thereby reducing control flow between them to a minimum.

The Model object informs the View objects in a not defined sequence about changes, i.e. “you don’t want
these objects tightly coupled” [1, p. 294]. This strong decoupling results in plugins that don’t depend on

each other.

Traffic Signals Extension. MATSim now comes with a traffic signal module containing a default implemen-

tation for fixed-time traffic signal control. The paper shows how the module can be attached to MATSim

with the current software design. The module requires the mobility simulation of MATSim to implement a

single interface (SignalizeableItem). The architecture of the module follows the same concepts as the

core software in order to reduce complexity. All communication between the MATSim core and the traffic

signal module can be realized by use of the different Observer implementations.

All components of the traffic signal module can be customized, replaced or extended without changing

the default implementation or core components of MATSim. Due to the use of Interfaces, Delegation and

2www.springsource.org/, last access 19.03.2013

388 D. Grether and K. Nagel / Procedia Computer Science 19 (2013) 380 – 388

Abstract Factory each component can be exchanged separately. The default traffic signal module provides

an implementation for fixed-time traffic signal control. In [14] an extension modelling a traffic-actuated

signal control strategy was added by only implementing the algorithm for traffic-actuated control and the

code building the software. For the representation of real world infrastructure, computation of amber times,

and coupling to MATSim core modules code from the default implementation is used. Thus, the chosen

architecture seems to have the required flexibility for extensions.

Maintenance of the implementation was quite cheap during the last years. Fig. 3a shows in green

the changes recorded by subversion to all code within the package org.matsim between 2010 and 2012.

Changes to the package org.matsim.signalsystems, which contains the model specification and the

fixed-time control implementation, are shown in red. While org.matsim in total was changed quite fre-

quently, changes to org.matsim.signalsystems are rare. This means that for all classes within org.

matsim.signalsystems, coupling is low. The changes to the signal systems package occurred mainly due

to feature improvements and bug fixes by the developer responsible for the extension. E.g. during the period

2010–2012 a feature for visualization was added to the package, also the intergreen logic was developed.

Fig. 3b shows same information as Fig. 3a, but removes all changes due to this bug fixes and improvements.

Red changes nearly disappear, reinforcing the argument that coupling is low.

Overall, this shows that the chosen approach is modular, uses few patterns, but is extensible.

5. Conclusion

This paper explains the chosen methodology for software design of the Multi-Agent Transport Simu-

lation, MATSim. The design focusses on standard architectures and design patterns to ease usability and

improve extensibility of the software. Potential for extension is discussed using an example implementation

of a traffic signal control module. Both, MATSim and the extension are using the same concepts for software

architecture. Reduction of concepts leads to a clear and in terms of OO software straight-forward architec-

ture that reduces overhead of maintenance by enforcing modularization while extensibility is possible.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns. Elements of reusable object-oriented software, Addison-Wesley,

1995.

[2] M. Fowler, Refactoring: Improving the design of existing code, Addison-Wesley, 2004.

[3] R. C. Martin, Clean code. A Handbook of Agile Software craftsmanship, Pearson Education, Inc., Right and Contracts Depart-

ment, 501 Boylston Street, Suite 900, Boston, MA 002116, USA, 2009.

[4] M. Rieser, U. Beuck, M. Balmer, K. Nagel, Modelling and simulation of a morning reaction to an evening toll, in: Innovations in

Travel Modeling (ITM) ’08, Portland, Oregon, 2008, also VSP WP 08-01, see www.vsp.tu-berlin.de/publications.

[5] D. Grether, B. Kickhöfer, K. Nagel, Policy evaluation in multi-agent transport simulations considering income-dependent user

preferences, in: Proceedings of The 12th Conference of the International Association for Travel Behaviour Research (IATBR),

Jaipur, India, 2009, also VSP WP 09-13, see www.vsp.tu-berlin.de/publications.

[6] A. Neumann, K. Nagel, Avoiding bus bunching phenomena from spreading: A dynamic approach using a multi-agent simulation

framework, VSP Working Paper 10-08, TU Berlin, Transport Systems Planning and Transport Telematics (2010).

[7] G. Flötteröd, G. Lämmel, Evacuation simulation with limited capacity sinks – an evolutionary approach to solve the shelter allo-

cation and capacity assignment problem in a multi-agent evacuation simulation, in: Proceedings of the International Conference

on Evolutionary Computation, SciTePress, 2010, pp. 249–254.

[8] A. Horni, K. Nagel, K. Axhausen, High-resolution destination choice in agent-based demand models, Annual Meeting Preprint

12-1989, Transportation Research Board, Washington D.C., also VSP WP 11-17, see www.vsp.tu-berlin.de/publications (2012).

[9] A. Bazzan, Opportunities for multiagent systems and multiagent reinforcement learning in traffic control, Autonomous Agents

and Multi-Agent Systems 18 (2009) 342–375, 10.1007/s10458-008-9062-9.

[10] M. Balmer, B. Raney, K. Nagel, Adjustment of activity timing and duration in an agent-based traffic flow simulation, in: H. Tim-

mermans (Ed.), Progress in activity-based analysis, Elsevier, Oxford, UK, 2005, pp. 91–114.

[11] D. Grether, Software design of a multi-agent transport simulation, VSP WP 13-01, see www.vsp.tu-berlin.de/publications (2013).

[12] M. Fowler, Reducing coupling, Software, IEEE 18 (4) (2001) 102–104. doi:10.1109/MS.2001.936226.

[13] S. Russel, P. Norvig, Artificial Intelligence – A Modern Approach, 3rd Edition, Pearson Education, Inc., 1 Lake Street, Upper

Saddle River, New Jersey 07458, USA, 2010.

[14] D. Grether, J. Bischoff, K. Nagel, Traffic-actuated signal control: Simulation of the user benefits in a big event real-world scenario,

in: 2nd International Conference on Models and Technologies for ITS, Leuven, Belgium, 2011.

