
Stefan Apostel, Nicholas D. Haynes, Eckehard Schöll, Otti D’Huys,
Daniel J. Gauthier

Reservoir Computing Using Autonomous Boolean

Networks Realized on Field-Programmable Gate

Arrays

Open Access via institutional repository of Technische Universität Berlin

Document type

Book chapter | Accepted version
(i. e. final author-created version that incorporates referee comments and is the version accepted for
publication; also known as: Author’s Accepted Manuscript (AAM), Final Draft, Postprint)

This version is available at

https://doi.org/10.14279/depositonce-14985

Citation details

Apostel S., Haynes N. D., Schöll E., D’Huys O., Gauthier D. J. (2021) Reservoir Computing Using Autonomous
Boolean Networks Realized on Field-Programmable Gate Arrays. In: Nakajima K., Fischer I. (eds.) Reservoir
Computing. pp 239–271. Natural Computing Series. Springer, Singapore.
https://doi.org/10.1007/978-981-13-1687-6_11.

Terms of use

This work is protected by copyright and/or related rights. You are free to use this work in any way permitted by
the copyright and related rights legislation that applies to your usage. For other uses, you must obtain
permission from the rights-holder(s).

https://doi.org/10.14279/depositonce-14985
https://doi.org/10.1007/978-981-13-1687-6_11

Reservoir Computing using Autonomous
Boolean Networks Realized on
Field-Programmable Gate Arrays

Stefan Apostel, Nicholas D. Haynes, Eckehard Schöll, Otti D’Huys, and Daniel J.
Gauthier

Abstract In this Chapter, we consider realizing a reservoir computer on an elec-
tronic chip that allows for many tens of network nodes whose connection topology
can be quickly reconfigured. The reservoir computer displays analog-like behav-
ior and has the potential to perform computations beyond that of a classic Turning
machine. In detail, we present our preliminary results of using a physical reservoir
computer for performing the task of identifying written digits. The reservoir is real-
ized on a commercially-available electronic device known as a field-programmable
gate array on which we create an autonomous Boolean network for information
processing. Even though the network nodes are Boolean logic elements, they dis-
play analog behavior because their is no master clock that controls the nodes. In
addition, the electronic signals related to the written-digit images are injected into
the reservoir at high speed, leading to the possibility of full image classification on
the nanosecond time scale. We explore the dynamics of the autonomous Boolean
networks in response to injected signals and, based on these results, investigate the
performance of the reservoir computer on the written-digit task. For a wide range of

Stefan Apostel
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany, e-mail:
stefan.apostel@gmail.com

Nicholas D. Haynes
Duke University, Department of Physics, Box 90305, Durham, North Carolina 27706 USA, e-mail:
nickdavidhaynes@gmail.com

Eckehard Schöll
Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany, e-mail:
schoell@physik.tu-berlin.de

Otti D’Huys
Department of Mathematics, Aston University, B4 7ET Birmingham, United Kingdom e-mail:
o.dhuys@aston.ac.uk

Daniel J. Gauthier
The Ohio State University, Department of Physics, 191 W. Woodruff Ave., Columbus, Ohio 43210
USA, e-mail: gauthier.51@osu.edu

1

2 Reservoir computing with ABNs

reservoir structures, we obtain a typical performance of ⇠90% for correctly identi-
fying a written digit, which exceeds that obtained by a linear classifier. This work
paves the way for achieving low-power, high-speed reservoir computing on readily-
available field-programmable gate arrays, which are well matched to existing com-
puting infrastructure.

1 Introduction

As demonstrated by the breadth of contributions in this volume, there is great inter-
est in reservoir computing [1], from fundamental studies of their properties to using
them for a wide range of applications. While many studies use a standard Turing-
von Neumann computer to simulate a reservoir computer (RC), physical RCs have
the potential to demonstrate beyond-Turing computing and may increase the infor-
mation processing speed. One challenge in building a physical RC is fabricating a
large enough reservoir, which may require 100’s to 1,000’s of nonlinear input-output
nodes, and a large number of interconnects (links) between the nodes.

A highly successful alternative that is capable of operating at high speeds is to
realize a RC using a single nonlinear node with time-delay feedback with a large
number of ‘virtual’ nodes determined by the ratio of the delay time to the charac-
teristic time scale of the node. Such platforms have been used for a wide variety
of machine learning tasks, such as classifying spoken words [2] at high speed [3],
nonlinear channel equalization [4], and classifying serial digital data [5]. Unfortu-
nately, this approach requires complex temporal time delaying and multiplexing of
the input information (masking) and injection into the loop [6, 7]. In principle, this
masking could be done in real time using dedicated hardware as has been demon-
strated recently [8], but most demonstrations to date perform this preprocessing of-
fline thereby slowing down the overall operation rate of the RC.

A different, potentially scalable, approach is to use nonlinear optical micro-ring
resonators fabricated on a planar photonic chip [9, 10], or arrays of linear micro-ring
resonators or swirls where the nonlinearity is provided by the square-law detectors
(that is, detectors that respond to the intensity of the light rather than the field) in
the read-out layer [11, 12, 13, 14]. This technology is currently limited to a small
(⇠16) number of resonators because of optical loss and the network connectivity is
limited by the planar geometry. But this platform may find future application as the
quality of photonic chips improves.

Here, we focus on an approach using a commercially-available electronic device
known as a field-programmable gate array (FPGA), which greatly simplifies the
creation of a reservoir in comparison to the photonic approaches discussed above.
FPGAs are also much easier to reconfigure in comparison to custom-built boards
with discrete logic [15, 16] (that is, devices using a collection of single-chip logic
gates soldered on the board). Rosin [17] pioneered the application of FPGAs to real-
ize autonomous time-delay Boolean networks [18]. Here, the FPGA is configured to
realize a reservoir, where the FPGA logic elements serve as the network nodes that

Reservoir computing with ABNs 3

nominally perform a Boolean operation on the inputs. The term autonomous indi-
cates that the logic elements are not gated by a master clock; they process new edges
as soon as they arrive on the inputs to the logic elements. Furthermore, because the
network is autonomous, signals traveling along the links have a finite propagation
speed so that the link delays must be accounted for. The autonomous nature of the
complex network allows for the possibility of beyond-Turing computation [19]. Au-
tonomous Boolean networks on FPGAs have been used previously for reservoir
computing and applied to high-speed pattern recognition of digital serial data pat-
terns [5] and high-speed forecasting of chaotic dynamics [20]. The FPGA can also
operate in the clocked mode, thus realizing a finite-state-machine and offering the
possibility of accelerating the software simulation of RCs. This approach has been
applied to channel equalization [21, 22, 23, 24] and speech recognition [8, 25].

In this chapter, we describe our preliminary studies on using an FPGA-based
RC for performing a classification task: identifying images containing human-
written digits (the MNIST task). While RCs are most suited for processing time-
dependent signals, performing a classification task on images presents interesting
challenges, such as identifying efficient methods for injecting data into the reser-
voir. We also take this opportunity to study the dynamics of autonomous Boolean
networks (ABNs) in response to a perturbation, such as a phase transition as the
node in-degree varies. This study helps guide the choice of metaparameters for the
RC.

In the next section, we present the reservoir concept with an associated mathe-
matical model, describe our experimental studies of the dynamics of ABNs as the
network parameters vary in Sec. 3, realize an RC on an FPGA and use it for the
written digit (MNIST) task in Sec. 4, and discuss future directions and conclude in
Sec. 5 [26]. We briefly discuss using FPGAs and describe our experimental work-
flow in the Appendix.

2 Reservoir computers based on autonomous Boolean networks

One aspect that distinguishes RCs from other artificial neural networks is that each
node is itself a dynamical system. Glass and colleagues [27] have studied exten-
sively the dynamics of autonomous Boolean networks using a model where node i

is described by a continuous variable xi whose behavior is governed by a first-order
differential equation with decay rate gi and driven by a Boolean function fi of the
node inputs. The function fi is defined via a lookup table as described below and
can take on essentially any Boolean function consistent with the number of inputs
to the node. In the context of our work, the decay rate gi models the finite rise-time
of the FPGA logic elements due to their input capacitance and inductance and are
nominally identical for all nodes with gi ⇠ 2p/(0.41 ns). When signals propagating
from node j to i experience delay ti, j, the so-called Glass model can be extended
to a set of delay differential equations [28]. Delays appear in our FPGA-based sys-
tem because the signals propagate at a finite velocity along the link wires, where a

4 Reservoir computing with ABNs

typical delay time between nearby logic elements is only a few 10’s of picoseconds.
To purposefully add more delay, we use pairs of series-connected NOT gates along
the network links, where we obtain a delay of ⇠0.52 ns per pair of gates [29]. We
use special care in writing the hardware description language used to configure the
FPGA (described in greater detail in the Appendix) to make sure that the logic gates
used to create delay are not removed from our design.

Adopting this theoretical approach for reservoir computing with time-delay
ABNs, illustrated in Fig. 1, the dynamics of the RC are given by [30]

dxi

dt
= �gixi + gi fi

J

Â
j=1

W
in

i, ju j(t)+
N

Â
n=1

Wi,nxn(t � ti,n)

!
, i = 1, . . . ,N (1)

ym(t) =
N

Â
n=1

W
out

m,nxn, m = 1, . . . ,M. (2)

Here, u j(t) are the J signals input to the RC, which are connected to the N reservoir
nodes with random fixed weights W

in

i, j, Wi,n are the random fixed internal weights of
the reservoir, ym(t) are the M outputs of the RC with trained (morphable) weights
Wm,n. Often, the W ’s are sparse so that the typical node in-degree (number of inputs)
Ki is small. The reservoir embeds the input data to a higher-dimension phase space
when N > J because of the nonlinear response of the node, known as dimension ex-
pansion and often a key requirement for effective information processing. Because
of the time delays, the phase-space dimension of the reservoir is infinite, which
can be seen by considering that the initial conditions of the time-delay differential
equations must be specified over the real interval of the maximum link delay.

Evaluating fi is particularly simple when the arguments u j and xn are Boolean,
but the W ’s are real. Here, the multiplications and additions appearing in the argu-
ment of fi can be done a single time after the W ’s are chosen, thereby defining the
Boolean look-up table (LUT). Thereafter, only the LUT is used and no further op-
erations are required. This procedure maps perfectly onto the structure of the FPGA
logic elements, which are based on LUTs, as discussed in the Appendix.

Models similar to Eq. (1) have been used to understand the dynamics of time-
delay ABNs representing simple genetic regulatory networks realized on an FPGA,
for example, and can capture the extremely long transient behavior observed exper-
imentally [5, 29, 31]. While we do not consider solutions to Eq. 1 here, we include
it for completeness because it is a good starting point for a theoretical analysis of
FPGA-based RCs.

For the classification task considered here, we adjust W
out

k,n using a finite-size
training data set so that the resulting output properly classifies each input in a least-
square sense, know as supervised learning. Specifically, the output weight matrix
Wout is determined by injecting a finite-length input training data set U(t) and
recording the network dynamics X(t). Here, we assume that the state of the net-
work is sampled at equal discrete time intervals D t so that the matrices are finite
dimensional. Based on these observations, we modify Wout to minimize the error of
the output Y (the classes) to the expected output Yexpected , resulting in

Reservoir computing with ABNs 5

Ϯ

KƵƚƉƵƚ�ůĂǇĞƌ
;ĐůĂƐƐĞƐͿ

ZĞƐĞƌǀŽŝƌ

ƚ

/ŶƉƵƚ�ůĂǇĞƌ

/ŶƉƵƚ�ĚĂƚĂ

τ

ƌĂŶĚŽŵ͕
ĨŝǆĞĚ�
ŝŶƉƵƚ�

ǁĞŝŐŚƚƐ

ƌĂŶĚŽŵ͕�ĨŝǆĞĚ�
ƌĞĐƵƌƌĞŶƚ
ǁĞŝŐŚƚƐ

ƚƌĂŝŶĞĚ�
;ŵŽƌƉŚĂďůĞͿ�

ŽƵƚƉƵƚ�ǁĞŝŐŚƚƐ

Fig. 1 Illustration of the reservoir computer architecture.

Wout = YexpectedXT
�
XXT +b 2I

��1
, (3)

where b is a regularization parameter, I is the identity matrix, and T indicates the
transpose. A nonzero value of b ensures that the norm of Wout does not become
large, prevents sensitivity of the training to noise, and improves the generalizability
of the RC to different inputs. We stress that X(t) is a concatenation of the network
dynamics over all input data, which is a collection of image data described below
in Sec. 4.1. We can also find a solution to Eq. (3) using gradient descent methods,
which are helpful when the matrix dimensions are large. Gradient-descent routines
are readily found in modern toolkits developed by the deep learning community and
they can operate at high speed using graphical processing units. Another approach
is to use recursive least-squares.

3 Dynamics of random autonomous Boolean networks

Before discussing the performance of the RC applied to the MNIST classification
task, we explore the dynamics of time-delay ABNs realized on an FPGA for dif-
ferent network parameters. We seek to identify a phase transition from ordered to
disordered (chaotic) behavior and compare our observation to the prediction for
clocked Boolean networks. Identifying the location of the phase transition is impor-
tant because the performance of the RC is expected to be highest near the border of
the transition from order to chaos [32].

3.1 Dynamics of clocked random Boolean Networks

There exists a considerable literature on the dynamics of clocked random Boolean
networks and we briefly summarize some of the findings here. A clocked random

6 Reservoir computing with ABNs

Boolean network (RBN) is typically taken to consist of N nodes each of which
receives exactly K inputs. The Boolean node function fi is defined in terms of a
random LUT, where the probability of an entry in the LUT taking on the value 0 (1)
is p (1� p) and is often called the node bias [33, 34, 35].

For a clocked RBN with random and fixed (quenched) functions and connections,
the network is a deterministic system with a finite number of states (a finite-state
machine) and must show periodic behavior with a maximum period of 2N . Different
network behaviors are observed as K and p varies. One behavior is called ordered

when the dynamics go to a fixed point or to a low-period periodic orbit. Another
behavior, often called chaotic, is when the period approaches its maximum value
and the specific periodic orbit followed is sensitive to a change in the initial value
of a single network node. Of course, chaos cannot exist in an RBN because all
behaviors are periodic, but the term is suggested because of the sensitivity of the
dynamics on the initial conditions. Using an annealed network approach [33], the
order-chaos transition is given by

Kc =
1

2p(1� p)
(4)

in the limit N ! • and shown in Fig. 2.

Fig. 2 Order-chaos phase transition in a clocked RBN.

3.2 Dynamics of ABNs on an FPGA

Guided by the results on clocked RBNs, we investigate experimentally the dynamics
of random ABNs on an FPGA. Here, we measure the Booleanized state of each
node at discrete (clocked) time intervals using the finite-state machine described in
the Appendix. We choose a subset of networks from the full range of possibilities
described by Eq. 1 so we can make a comparison to the previous work on clocked
networks. In particular, we consider networks with N = 64 each having exactly K

Reservoir computing with ABNs 7

inputs and outputs so that Wi,n appearing in Eq. 1 is quite sparse. Here, we consider
only K 4. Each node is assigned a random and fixed Boolean function fi with bias
p under the restriction that fi = 0 when all the inputs are zero so that the network is
in the quiescent state (no self-oscillation) when the FPGA is first turned on or reset
to this value. This restriction limits the bias to pmax = 1�1/2K , but is advantageous
for realizing an RC because it results in a well-defined initial state of the reservoir. In
addition, to slow down the network dynamics [20] to better match the rate at which
we can inject data into the RC (see the next section), and to more closely match
the clock RNB theory, we use a nominally constant link delay ti,n = 12.8±0.5 ns.
Here, the link time delay is set by using pairs of series-connected NOT gates, where
each pair of gates causes a delay of ⇠0.52 ns [29]. For this study, we investigate the
dynamics of 6,000 randomly chosen networks.

The initial condition of the network is set using an OR logic gate at the output of
each node as illustrated in Fig. 3. Initially, the state of all nodes are set to 0 to reset
the network, and then the desired initial condition is set during a 5-ns-long window
and passed to the link delay lines. This is accomplished using the OR gate, where
u j(t) appears at the output while the node is in the state 0. Once signals appear at
the input of the node from other network nodes (after a delay time t j,s), any signals
related to u j(t) still being injected into the node will be ‘blended’ with the incoming
node signals via the OR gate.

In general, setting the initial conditions to a random binary value will destabi-
lize the initial stable network state where all nodes are equal to 0, giving rise to a
transient that can last for a time beyond our data-collection window for p ⇠ 0.5.
After initializing the network, we measure the state of each node every 5 ns for 200
samples (1 µs total record length), and transfer the data to a computer for analysis.
The network is reset to the 0 state at the end of data collection for initial condition.
For each network realization, we use 1,000 randomly chosen initial conditions and
repeat the experiment 50 times for each initial condition. We do not attempt to study
the duration of the transient beyond 1 µs because it is not relevant for reservoir
computing although we note the extremely long (second to minutes) chaotic time
transient times have been observed in simple Boolean networks with similar bias
[5].

ϰ

< ŝŶƉƵƚƐ

τŝ͕ũ

τƌ͕ ũ

< ŽƵƚƉƵƚƐ

EŽĚĞ�ũ
>hd

/ŶƉƵƚ
Ƶũ;ƚͿ

KZ

Fig. 3 Using an OR gate on the output of node j to inject the input data for the node, illustrated
here for K=2. The signal emanating from the OR gate passes to the delay-line links to nodes i and
r.

8 Reservoir computing with ABNs

One issue that arises when using an FPGA is that a randomly assigned node LUT
may have the same output (0 or 1) regardless of the inputs. In this case, the optimizer
within the compiler that converts the Verilog hardware description language to a
bitstream to configure the FPGA removes such nodes from the network. This is
more pronounced for low and high biases and the actual network synthesized on
the chip has fewer than 64 nodes when the network is pruned by the optimizer
(typically, only a few nodes are pruned). In the figures presented below, we use
different color symbols to indicate networks that have been pruned by the compiler.
This behavior does not change the network dynamics or time scales because such a
node would have been inactive. Nodes with high bias (p ⇠ 1) may also be inactive,
but we already exclude nodes with high bias as discussed above.

We observe a wide range of network dynamics as we vary p and K. Again moti-
vated by the research on clocked RBNs, we initially search for the network to settle
down to a fixed-point behavior where all network nodes take on a constant value
(frozen dynamics) after a transient time. While we only measure the network dy-
namics at discrete times, it is unlikely that fast oscillations in between the measure-
ment times would escape unnoticed. We search for fixed-point behavior by measur-
ing the Hamming distance between the state of the network at time t0 with its values
at all later times up to the limit of our 200 samples. Here, the Hamming distance
between two Boolean vectors A and B is defined as

H(A,B) =
N

Â
i=1

Ai �Bi. (5)

Figure 4 shows the number of time steps required for the dynamics of the ABN
to reach a fixed point (network realizations where a fixed point is never observed
are not shown). We also show the probability for a network to reach a fixed point.
Qualitatively consistent with the predictions shown in Fig. 2 for a clocked RBN
with the same network structure as our ANB, we observe longer transients as p

approaches 0.5 from above and below, and the range of biases that do not show
fixed-point behavior widens as K increases. Of course, we are only considering
fixed-point behavior and so these results only suggest the location of the order-
chaos boundary, although we find that chaotic behavior tends to be observed when
the probability for observing a fixed point drops near zero around p = 0.5

Over the range of p where the probability of observing a fixed point is nearly zero
(the region around p ⇠ 0.5 where the green line is near zero), we observe fast, com-
plex behavior after an initial short transient that depends sensitively on the initial
conditions, likely a manifestation of chaos in the ABN [16] as shown in Fig. 5(b).
Here, the dynamics is so fast that our finite sampling rate is too low to faithfully
record the dynamics. As seen in Fig. 5(a), the behavior predicted by a discrete-time
model using the same LUT and initial conditions is similar to our observations of
the ABN on the first few time steps, but disagrees thereafter. This disagreement is
perhaps not too surprising because the discrete map is a finite-state machine and
hence cannot display chaos (the dynamics eventually has to repeat). The fact that
we observe chaos gives a hint that an RC realized with an ABN reservoir on an

Reservoir computing with ABNs 9

Fig. 4 Length of transient for cases when the ABN reaches a stable fixed point for different net-
work parameters. Blue symbols indicate unmodified networks and red symbols indicate optimizer-
pruned networks. The green solid line shows the probability that a network reaches a stable fixed
point.

FPGA could display beyond-Turing computation, although observing chaos is not a
necessary or sufficient condition for beyond-Turning computation.

Fig. 5 Dynamics of a Boolean networks with N = 64, K = 4, and p = 0.55 for (a) a clocked
network simulated numerically and (b) an autonomous network on the FPGA averaged over 50 ex-
perimental runs with the same initial conditions for each. Boolean 0 (1) is colored cyan (magenta).
This network realization has no pruned nodes.

Close inspection of Fig. 5(b) reveals apparent horizontal stripes, indicating that
the average value of the nodes take on different values. For this data set, the average
value of the nodes range from hxii = 0.36 to 0.74, with an average for all nodes of

10 Reservoir computing with ABNs

hxi= 0.57±0.07, which is consistent with the value of p. We currently do not have
an explanation for the appearance of these patterns.

We find that another qualitative measure of the order-chaos boundary can be
obtained by measuring hxi for different network parameters as shown in Fig. 6. Here
we perform the average from time steps 150 through 200 to minimize the effects of
the transients. At p = 0, we expect that hxi = 0 because all nodes in the network
are inactive regardless of their input. As p increases, we see that hxi remains near
zero until an apparent transition to complex behavior indicated by a rapid rise in hxi.
The value p at this transition is smaller as K increases, consistent with the phase-
transition behavior of clocked RBNs shown in Fig. 2. We also show a line indicating
hxi = p, which is expected for a RBN with N,K ! •. As K increases, the average
node value approaches this line, which is an interesting result because our network
is quite different from an RBN. Specifically, we are using an ABN, we restrict the
node LUTs so that the all-zero state is a solution, and N and K are not all that large.

Fig. 6 Average value of the network nodes for different network parameters.

4 Reservoir computing with ABNs on an FPGA

The experiments described in the previous section demonstrate that an ABN-based
reservoir can be constructed on an FPGA whose behavior can be adjusted from or-
dered to chaotic simply by adjusting the node bias and in-degree. Operating near or
within the chaotic domain demonstrates that the reservoir embeds the dynamics in a
high-dimensional phase space, one crucial characteristic needed for reservoir com-
puting. It is also widely believed that the reservoir must display other characteristics
when data is input to the reservoir, including [1]:

• Separation of different input states. Input data in different classes should have
distinct output dynamics.

• Generalization of similar inputs to similar outputs. Different input data within
a class should have similar output dynamics.

Reservoir computing with ABNs 11

• Fading memory. The output dynamics should be correlated with the input dy-
namics over a time known as the consistency window, but this temporal correla-
tion should fade.

Based on these properties, an RC is well suited for classification or prediction
based on correlations in data over time because it inherently has temporal memory.
For classification tasks on static image data such as the MNIST data set, the cor-
relations are inherently spatial. Thus, we break the image up into sub-images and
feed them rapidly into the reservoir (at the 200 MHz limit imposed by our write and
read procedure) to create spatial-temporal correlations. While this process is a bit
contrived, it may be well suited for processing high-speed video imagery data where
the data is usually generated in a progressive scan of the image.

In the next section, we introduce the MNIST classification task and modifications
we make to the input data to make a better match to our reservoir characteristics,
then inject this data into ABNs to verify the behaviors described above. Finally, we
describe the performance of an FPGA-based RC for the classification task.

4.1 The MNIST classification task

The MNIST database [36] of handwritten digits is a collection of 60,000 training
samples and 10,000 test samples of handwritten digits from 0 to 9. Each written
digit in the original data set, referred to as NIST after the U.S. federal agency that
collected the data, is represented by black-and-white 20⇥ 20-pixel, which was mod-
ified (MNIST) by centering the image and padding with white space, resulting in a
gray-scale 28⇥ 28-pixel image. Figure 7 shows four sample MNIST images for
each written digit.

Fig. 7 Four examples for each digit of the MNIST data set shown as gray scale images.

As mentioned above, we seek to inject sub-images into the reservoir to exploit
its fading memory. There is a trade-off in using too many sub-images because the
time interval for injecting data may be longer than the reservoir consistency window.
We also want to use sub-images with no more than pixels than reservoir nodes. To
reduce the parameter space, we choose to map each pixel to a single reservoir node

12 Reservoir computing with ABNs

and thus to have a sub-image size of 64 pixels. Thus, in this case, the input layer is
the sub-image and we use a restricted connectivity of the input layer to the reservoir:
each input node only connects to a single reservoir node. For cases when there is
not enough image data to fill a full 64-element input data vector, we pad the data
with zeros. When the reservoir is pruned by the Verilog compiler, the corresponding
pixel is not mapped into the reservoir and hence this information is lost.

For most of the studies presented below, we reduce the MNIST images to 16⇥16
pixels distributed over 4 sub-images. We tested many methods for creating sub-
images, such as vertical or horizontal image segments, or using random masks. We
find no statistically significant differences in the performance of the RC for the
MNIST classification task for different protocols for sub-images creation; the data
shown below uses vertical image segments.

The data is injected into the network using the same method described in Sec. 3.2
above using an OR gate at the output of each node (see Fig. 3) controlled by our data
write/read FSM described in the Appendix. Here, the data is loaded into the links,
which have a nominal propagation delay of 12.8 ns. A sub-image is input every 5 ns
(200 MHz input data rate) and hence some of the data is ‘blended’ with the reservoir
dynamics if the total image time exceeds the link delay time. For example, it takes
4⇥(5 ns) = 20 ns to inject a full image with 4 sub-images so that the first sub-image
is fully blended with the reservoir dynamics, the second sub-image is blended with
the reservoir dynamics for ⇠2.2 ns, while the last two sub-images are presented fully
for 5 ns. We did not realize this shortcoming of our method until after substantial
data collection. This represents a limitation of this initial study and the error rates
of the RC presented in Sec. 4 below are likely lower bounds. This limitation will be
addressed in future studies.

Figure 8 illustrates the steps involved to create the reduced image. This first step
is to determine an image ‘focus,’ which is an image coordinate determined by an
average of the pixel coordinates weighted by their respective gray-scale value. The
intersection of the solid-blue lines shown in Fig. 8(a) shows the image focus, which
is not necessarily the center of the image indicated by the intersection of the black
dashed lines. Next, we determine exterior white pixels to remove the excess padding.
We then create a grid of q⇥ q pixels within this region centered on the focus with
q = 8� 20, but q=16 typically. A resulting pixel is labeled by filling each pixel
like a ‘bucket’ by adding the value overlapping area ⇥ gray-scale weight (0-255)
from each original MNIST pixel to the new grid pixel. The new pixel will be set to
Boolean 1 (0) if the filled value reaches (does not reach) a threshold set at approxi-
mately the half-gray-scale point. This process is depicted in Fig. 8(b) with Boolean
1 shown as blue and the the bucket gray scale shown as an underlay.

Reservoir computing with ABNs 13

Fig. 8 (a) Determining the focus of the MNIST image. (b) Creating a reduced image shown here
for the case of 16⇥16 pixels.

4.2 Dynamics of ABNs with data injection: The consistency
window

As mentioned above, an important feature of an RC is to separate data from dif-
ferent classes and to give similar output for data from the same class. Even if the
reservoir is operating in the chaotic state, the transient dynamics can still be used for
classification when the output data is restricted to the consistency window [5, 37].

Haynes et al. [5] proposed using the Hamming distance for Boolean data given in
Eq. (5) as a measure for the consistency window. We follow the same approach here.
Figure 9 shows examples of the dynamics of the average Hamming distance, where
the bias is set in the ordered regime (panel a) so that the dynamics evolves to a fixed
point for all inputs and the other for a bias in the chaotic regime (panel b). Here, a
random Boolean initial condition is injected into the network for a single 5-ns-long
period, which destabilizes the network dynamics. This is repeated many times for
the same and different initial conditions. The consistency window w quantifies the
interval over which similar and different inputs can be distinguished.

Also apparent in this plot is the fading memory property of the ABNs. Beyond
the consistency window, the output state is uncorrelated with the input state in both
the ordered and chaotic regimes.

We repeat this experiment for a large number of randomly chosen reservoirs as a
function of network parameters. We determine w by finding the intersection point of
lines fit to the early part of the data. This procedure can result in values greater than
the 200 steps over which we collect data when the slopes are shallow. As seen in
Fig. 10, the consistency window sharply peaks for bias values at the ordered-chaotic
boundary (see Fig. 4) and approaches zero for small p. In the chaotic regime, w

takes on it smallest value around p = 0.5 of ⇠50 time steps for K = 3 and ⇠35 time
steps for K = 4.

We also explore the dynamics of the network where all nodes execute the XOR
function, which corresponds to p = 0.5 This is motivated by the previous work of

14 Reservoir computing with ABNs

Fig. 9 Temporal evolution of the normalized Hamming distance using two randomly selected data
sets with 64 pixels injected into the reservoir for 5 ns. The blue symbols indicates repeated injection
of the same data and finding the Hamming distance for each trial, and the red symbols indicate
the difference between this data set and a randomly chosen second data set for a) K = 2 and
p=0.387 and b) K = 4 and p=0.476. The black dashed lines are fits of the data to straight lines, the
intersection point of which are used to indicate the end of the consistency window, about ⇠30 time
steps for both sets of data.

Fig. 10 Average consistency window for as a function of network parameters. Blue symbols indi-
cate unmodified networks and red symbols indicate optimizer-pruned networks.

Haynes et al. [5] who realized an RC for serial digital data pattern recognition using
a single XOR node with self-feedback over two links with different time delays. The
results of this study are contained in the tight cluster of blue data points in Fig. 10
at p = 0.5 and w ⇠ 35 for K = 2, w ⇠ 25 for K = 3, and w ⇠ 20 for K = 4. Given
that these point clusters are below the ‘U’-shaped band of points appearing above
the point cluster, corresponding to the random networks, indicates that the random
networks outperform the XOR network with regards to the consistency window,
which may improve the performance of the RC.

The results presented in this section demonstrate that a random ABN satisfies
the criteria of separation, generalization, and fading memory that is believed to be
required for reservoir computing.

Reservoir computing with ABNs 15

4.3 Realizing an RC for the MNIST classification task

In this section, we report on the performance of the RC on the MNIST classification
task using the following procedures. We use the first 42,000 images from the MNIST
data set and reduce the images to 16⇥16 pixels using the procedure given in Sec. 4.1.
We use less than the total MNIST image database size to reduce the computational
cost of our experiments and subsequent analysis. The output of the reservoir for each
written-digit image is a series of 200 time steps for each of the 64 reservoir nodes.
The resulting data for the output state of the network is transferred to a personal
computer, then to the Open Science Grid (see the Appendix) for training the RC
output weights. Even in binary format, the file size for the network output state
(42,000 images ⇥ 32 bytes/image ⇥ 200 time steps) is 672 MB for a single reservoir
realization. For this reason, we only choose 800 random networks when measuring
RC performance as a function of network parameters rather than the 6,000 used in
Sec. 3.2 above.

These data are used to determine W
out

m,n using a ridge-regression regularization
parameter b 2 = 10�3. The 10-element class output vector Yexpected has a value of
1 for the corresponding image and -1 for the remaining elements. The output data
for each image is reshaped into a single feature vector with a total length 64⇥ 200
= 12,800 elements with a total feature matrix X in R12,800⇥42,000; performing the
matrix inversion given in Eq. 3 with this data set pushes the limits of our accessible
computer hardware in terms of memory to store the matrices and computation time.

The classification performance for each individual written digit is evaluated us-
ing the cross-validation method. Here, our selected data set of 42,000 written-digit
images is split into 5 equal-size groups of 8,400 images each. The training of W

out

m,n
is repeated 5 times using 4 groups for the training and the remaining for testing the
performance of the RC using this ‘unseen’ data set. After repeating this procedure
for all groups, the percent of correct classifications for each written digit is calcu-
lated (that is, the fraction of classification attempts that was completed correctly).
This procedure is then repeated for each of the 800 random reservoirs and for each
network parameter. The performance P is defined as the average of the percentage
correct score for each written digit.

4.3.1 Exploring fading memory in the RC

In the previous section, our observations indicate the presence of fading memory
(see Fig. 9) as quantified by a single metric given by the consistency window. A
more nuanced measure for how the fading memory affects the performance on the
MNIST task is obtained by varying the range of time steps used in the classifica-
tion task (that is, the location and length of the block of data X(t) used during RC
training). We expect that the initial data is highly correlated with the input data and
hence it contains limited new information that can be used for classification. At the
other extreme, there is a loss of correlation at later times as the network short-term

16 Reservoir computing with ABNs

memory fades. We adjust the location and length of the data block by repeating the
classification task using data only from a start time step in the range 0 < tstart < 70
until a final time step of tend = 70 to determine the classification performance P. That
is, X only has data from observation times tstart to tend . At the final time step, there
is is almost no data recorded from the reservoir, explaining the small dip apparent
for the last data point of Fig. 11b).

Figure 11 shows two characteristic dependencies of the performance as a func-
tion of tstart . The performance starts high, followed by a rapid decrease, followed
by a long decaying tail. To compare performance across the random networks, we
find empirically that the initial high-performance section is well-fit with a Gaussian
distribution, which characterizes the duration of ‘short term memory.’ The longer
tail is well-fit by a power-law of the form

P(tstart) = c(tstart)
�a +0.1 (6)

and quantifies the ‘long-term’ memory of the reservoir. As tstart ! •, P ! 0.1,
corresponding to a random guess of the 10 written-digit classes. As seen in the
figure, the fits to these two functions is reasonable.

Fig. 11 Fading memory of two example random reservoirs with (a) K = 4 and p = 0.912 and (b)
K = 4 and p = 0.553.

From the Gaussian fit, we extract a short-term memory coefficient s equal to the
1/e half-width of the Gaussian function in units of start samples used for classifica-
tion and gives a characteristic time scale for the short-term memory. Already after a
few time steps, the performance drops substantially, for which the output data con-
tains only partial information of the input image (recall we insert data into the net-
work over 4 time steps for the 16⇥16-pixel images). Figure 12 shows the short-term
memory as a function of the network parameters. Similar to the time to reach a fixed
point shown in Fig. 4, the short-term memory increases near the ordered-chaotic
transition boundary, but remains high throughout the chaotic regime for K = 2. For
K = 2 and 3, there is less scatter in the data, the domain of long memory time in-
creases with K, the memory scale peaks at the transition boundary, and there exists a

Reservoir computing with ABNs 17

minima in the memory time at p ⇠ 0.5 between the peaks, although the dependence
is fairly flat. The longer short-term memory time for K = 2 may suggest a reason for
the slightly higher best performance found for this network connectivity described
below in Sec. 4.

Fig. 12 Short-term memory of the RC for different reservoir parameters.

From the power-law fit, we extract a long-term memory coefficient M defined as
the time at which the the performance drops to 0.11. This is a measure of the time
needed for almost all information to vanish from the system. As seen from Fig. 13,
M is peaked near the ordered-chaotic boundary, with a larger separation between the
two boundaries as K increases, and takes on a minimum value in the chaotic domain
when p⇠ 0.5. Interestingly, it is possible to create networks with long memory (10’s
of samples corresponding to >50 ns) even for reservoirs with biases as low as 0.1
when K > 2, likely due to the large number of recurrent loops in the network and
the relatively long link time delays.

Fig. 13 Long-term memory of the RC for different reservoir parameters.

It is not possible to give an appropriate scale for the long-term memory because
it appears to be well described by a power law, which has no scale. As a substitute,
we determine the power-law exponent a for different network parameters as shown
in Fig. 14. For a power-law with a negative exponent (a > 0 in Eq. 6), its integral is

18 Reservoir computing with ABNs

finite for a > 1 and will diverge otherwise. The exponent becomes large for p ! 0
and p ! 1, which is due to fact that these networks reach a fix point within a few
time steps and almost all nodes are in the inactive (active) state for low (high) bias.
For p close to the phase transition, a < 1, suggesting the existence of substantial
long-term memory and hence long-term retention of information in the network. For
p ⇠ 0.5, a ⇡ 2 for all K, demonstrating that the long-term memory nearly absent
(a > 1) and fairly insensitive to K, whereas the short-term memory is more sensitive
to this parameter.

Fig. 14 Power-law exponent for long-term memory in the RC for different network parameters.

4.3.2 RC Performance for different reservoir parameters

The previous sections demonstrate that an FPGA-based RC shows a fairly strong
dependence of the consistency window and memory on network parameters K and
p. Based on the vast literature on RCs that states it is important to optimize the
consistency window and fading memory, we find a surprising lack of dependence of
the RC performance on K and p for the MNIST task as seen in Fig. 15. As in our
previous plots, the red symbols correspond to networks whose inactive nodes are
pruned by the Verilog compiler and optimizer. These pruned networks tend to have
lower performance; the lowest performer outliers have only a few active nodes and
hence there is little information available for classifying the written digits. For fully
realized networks with no pruning, indicated by the blue symbols, the performance
is only weakly dependent on K and p, although the domain of well-performing
networks increases with K. Interestingly, we obtain good performance throughout
the chaotic domain and well into the ordered domains [32].

Zooming in on the high-performance, un-pruned networks (Fig. 16), some struc-
ture is evident with the largest spread of 4% for K = 2. Evident is a slight peaking in
performance near the ordered-chaotic boundaries, although the spread in the data is
comparable to the peak sizes. Even within the middle of the chaotic domain, we find
some networks that perform nearly as well as the best performers near the ordered-
chaotic boundaries, especially for K = 3 and 4.

Reservoir computing with ABNs 19

Fig. 15 The classification performance for various network parameters. The black line at P ⇡
0.82 indicates the score of the linear classifier for comparison. Blue symbols indicate unmodified
networks and red symbols indicate optimizer-pruned networks.

Fig. 16 Higher resolution plots of the data shown in Fig. 15, but only including the results from
full (un-pruned) networks.

4.3.3 RC Performance dependence on output data sample size

We find that it is not necessary to use the data characterizing the network dynamics
X(t) collected over the entire 200 time steps. As above, we use the cross-validation
method but with the smaller recorded network data. Figure 17 shows the dependence
of the performance on the number of time steps used in the training where we always
start with the first time step. The performance saturates only after ⇠10 time steps
(corresponding to a interval of only 50 ns). Note that all nodes are connected to
the input layer and hence are activated immediately, but information injected to a
node does not fully spread fully throughout the network because of the substantial
link time delay (⇠13 ns). This suggests that the recurrent connections, which allow
for arbitrarily long loops in the reservoir, may not be as important for the MNIST
classification task.

4.3.4 Best results

After an exhaustive search over network parameters, we find the highest perfor-
mance over all p, finding the results given in Table 1. For comparison, we find that

20 Reservoir computing with ABNs

Fig. 17 Performance score as a function of the length of the data record used for training the RC
for K=2 and p = 0.222. The black dashed line represents the performance of a linear classifier.

a linear classifier (no reservoir) has P ⇡ 82.4% for all K and thus the RC has better
performance in all cases. For a linear classifier with the full 28⇥28 image, LeCun
et al. [38] obtained P = 88%. Our results with a compressed image still outperform
a full-image linear classifier. Furthermore, the image data is processed by the reser-
voir within 1 µs, suggesting high-speed prediction could be possible if the weights
are applied in real time on the FPGA (after off-line completion of the training of the
output weights), which we will explore in future studies. The best performing net-
works occurred for p near the ordered-chaotic transition, although the dependence
on p is weak as discussed in Sec. 4.3.2 above.

Table 1 Observed RC best performance on the MNIST task
K PK optimum p

2 90.5% p = 0.688
3 89.9% p = 0.668
4 89.0% p = 0.229

The performance in a typical classification experiment is about 90%. In particu-
lar, the classification results were quite different for each written digit. Figure 18a)
shows the average classification accuracy Pi for each written digit i over all ex-
periments. When the classification fails (that it, the actual digit injected into the
RC is mis-classified), the RC will incorrectly classify the data as a different digit.
Figure 18b) shows the probability that the RC selects a digit for the case when it
mis-classified the image.

The digit ‘1’ is classified with the highest accuracy with a score of P1 = 94.6%,
while digit ‘5’ has the worst result of P5 = 76.0%, nearly a 20% difference from
the best digit. Surprisingly, digit ‘1’ is selected with much higher probability when
the RC fails to correctly classify an image. The digit selected least during a mis-
classification are ‘0’, ‘2’, and ‘6.’

To go deeper into understanding the errors, Fig. 19 shows the confusion matrix
quantifying how often a certain digit is mis-identified as a function of the input
digit. Here, the rows of the matrix are normalized to one; in each row, a blue color

Reservoir computing with ABNs 21

Fig. 18 a) Average classification accuracy over all experiments and b) mis-classification of the
written digit images.

indicates that this digit is hardly chosen while magenta pixels contribute the most to
the error probability.

Fig. 19 The confusion matrix visualizing the error for each digit.

From the confusion matrix, we see that if a digit is mis-classified as another digit
with high likelihood, the same can be said about the other digit. The most obvious
mis-classification pairs are 4 $ 9, 7$9, 1$7 and 3$5. Given the similarities of the
strokes to write these numbers, their confusion is sensible. However, it is surprising
that the pair 3$8 is not pronounced.

We now turn to investigate the influence of the image size on the performance.
For images compressed to a very small number of pixels, there is loss of information
because the coarse representation will effectively merge features in the written digit.
On the other hand, once the image has ⇠ 13⇥ 13 pixels, some of the data input to
the reservoir is lost because of the shortcoming of the way in which we inject data
into the reservoir as discussed above in Sec. 3.2. Figure 20 shows the performance

22 Reservoir computing with ABNs

of four different randomly chosen reservoirs for each connectivity K. In addition,
we show the performance of the linear classifier for the same data sets.

Fig. 20 Classification performance variation with the number of pixels representing the written
digit. The colored lines are for 4 randomly chosen reservoirs, while the black line is for the linear
classifier. The parameters are: K = 2, p=0.5 (red), 0.566 (green), 0.719 (blue), 0.352 (yellow);
K = 3, p=0.758 (red), 0.521 (green), 0.170 (blue), 0.482 (yellow); and K = 4, p=0.176 (red), 0.244
(green), 0.297 (blue), 0.743 (yellow).

We see that the FPGA-based reservoirs always outperform the linear classifier for
all image sizes. As expected based on increased image resolution, the performance
of the linear classifier increased monotonically but there is a noticeable decrease in
the slope beyond ⇠ 12⇥ 12-pixel image size. On the other hand, the RC classifier
performance peaks around a ⇠ 14⇥ 14-pixel image size and then decreases some-
what. This decrease is likely due to the fact that only part of these images are input
to the reservoir by our method for data injection as mentioned above and discussed
in Sec. 3.2, a limitation we will address in future studies. However, for all cases, the
performance is above the linear classifier.

4.3.5 Parallel RCs

One method to possibly improve the performance of our reservoir computer is to
use multiple reservoirs, which we explore here in some preliminary studies. Similar
to deep learning artificial neural networks, a hierarchical structure can allow for
forecasting dynamical systems with different time scales or to focus the network on
different temporal or spatial features [39]. Also, a serial cascaded of RCs improves
the chaotic time series prediction performance [40]. A recent review summarizes
variations on these architectures [41].

Specific to the MNIST task Jalalvand et al. [42], showed improved performance
of an RC using multiple RCs in a parallel, serial, or parallel-serial geometries. Their
work is based on a software simulation with each RC having ⇠10,000 reservoir
nodes, but only feeding in a single column of pixel data from the original MNIST
28⇥28-pixel images. It is not apparent whether a similar approach will work here

Reservoir computing with ABNs 23

where we consider using ABNs with link time delays, whereas Ref. [42] considers
nodes with a hyperbolic tangent nonlinearity and no link delays. There is some hope
for an improvement using a parallel approach because specific reservoir realizations
perform somewhat better on some digits than others. We use the data collected from
the different reservoir realizations in a parallel configuration with ` RCs where we
choose the ` best reservoirs. The results are combined using a majority vote for
classification. As seen in Fig. 21, there is a modest increase in the performance,
peaking at P = 91.8% with `⇠ 8.

ϯ

A

Fig. 21 Classification performance for parallel RCs that each classify all written digits (blue line)
and the best combination of reservoirs where each only classifies a sub-set of the digits (green
line).

To obtain a sense of a possible optimal FPGA-based reservoir with 64-nodes, we
search through our database of results to find the ` reservoirs that perform the best
for a single digit. The performance of this hypothetical machine is shown by the
green line. Better performance can likely only be obtained by increasing the various
resources as discussed in the next section.

5 Discussion and Conclusions

In this Chapter, we demonstrate that an FPGA-based RC can perform the written-
digit classification task. The performance over a wide range of reservoir parameters
exceeds that of a linear classifier, although the error rate is still relatively high in
comparison to the state-of-the-art deep learning feed-forward artificial neural net-
works with fully trained weights. One way to improve the performance of our RC
is to increase the number of connections of the input data to the reservoir and to
increase the number of reservoir nodes; in other related studies, we find that the
performance scales approximately as the square root of the number of input connec-
tions and reservoir nodes. In the future, we will also investigate full on-chip training
and classification [22], which should lead to extremely fast operation of an RC.
The FPGA platform is an especially appealing RC physical substrate because it is
commercially available, operates at low power, runs at high speed, easily integrated

24 Reservoir computing with ABNs

with traditional computer infrastructure, and can potentially lead to beyond-Turing
computing because we run the reservoir in the autonomous mode.

Acknowledgements S.A. and E.S. gratefully acknowledge the financial support of the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - Projektnummer 163436311- SFB
910. N.D.H., O.D. and D.J.G. gratefully acknowledge financial support from the U.S. Army Re-
search Office through Grant No. W911NF-12-1-0099. O.D. also gratefully acknowledges financial
support from the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No. 713694. We gratefully acknowledge the IT support
of Jimmy Dorff of the Duke University Department of Physics for extensive help in developing the
server to automate our experiments.

Appendix: FPGAs and project workflow

Brief introduction to FPGAs
An extensive discussion on using FPGAs for experiments on autonomous Boolean
networks, including hardware description language metacode, can be found in
Rosin [17], D’Huys et al. [31], Lohmann et al. [29], and Canaday et al. [20].
Briefly, FPGA’s contain more than 105 programmable logic elements (LE) that can
be linked via programmable connections. The logic elements are based on CMOS
technology and are arranged in a grid system. Each of these elements consists of a
look-up table (LUT) with four inputs for the Altera Cyclone IV chip family used
here (EP4CE115F29C7N, Terasic DE2-115 demonstration board), a flip-flop and a
multiplexer. Figure A.1 illustrates the layout of a logic element.

Fig. A.1 Structure of a single logic element on the FPGA. The figure is adapted from [17].

The multiplexer is used to switch between clocked and unclocked (autonomous)
mode and the flip-flop provides the clocked output. The look-up table can be used
to define an operation for K inputs, so having a length of 2K bits and thus can be
used to realize up to 22K different Boolean functions. The Altera Cyclone IV logic
elements used in this FPGA have a maximum input number of K = 4 so a total
number of 65,536 different operation can be performed by a single LE. This makes

Reservoir computing with ABNs 25

it easy to create an arbitrary setup on the device. Their relatively low costs and
their operation time on the nanosecond time scale are ideally suited for reservoir
computing applications.

The network is defined using the hardware description language Verilog, which
instructs the FPGA how to configure itself, including the function of the nodes and
the network links. This code is compiled using the proprietary software Quartus II,
version 14.0 [43]. The resulting bitstream is loaded onto the FPGA, which causes the
configuration of the RC. See the references above for details. Unique to this project
is the way in which the input and output state data are handled and interfaced with
the autonomous network forming the reservoir. We use a finite state machine (FSM)
synthesized from clocked logic and communicates with a personal computer (PC)
via a USB controller chip (FTDI part #FT232H), which is connected directly to the
FPGA pins via the GPIO connector on the demonstration board.

The FSM has the distinct states: idle, receive, acquire, send, program
and reset whose possible transitions are depicted in Fig. A.2. It starts in the idle
state and remains without any action as long as it does not receive any input over the
USB connection via the PC. After a signal is detected on the USB, the FSM changes
to the receive state. Next, the first available byte read from the USB determines
the next state of the FSM. The program state reads a number of bytes from the
USB connection and stores it onto the RAM onboard the chip. This number is set
in the Verilog code defining the reservoir (see below) and can only be changed by
recompiling the Verilog code. The data transferred to the FPGA in this manner sets
the initial state for a reservoir.

Fig. A.2 Illustration of the transition between the six states of the FSM.

When the state changes to acquire, all nodes in the reservoir are set to the
value zero and the data from the RAM that was transferred during the program
process is fed into the reservoir. Because the FSM operates with clocked logic, the
initial state is inserted over one clock cycle with the length of 5 ns (corresponding
to a data rate of 200 MHz). After this data insertion, the reservoir runs freely and

26 Reservoir computing with ABNs

autonomously. The only restrictions for the dynamics arise from the finite response
time of electric elements within the FPGA. On every clock cycle (5 ns period), a
snapshot of the reservoir is taken by saving the current value of each node to the
RAM. In this fashion, a series of 200 samples is captured and stored. Note that the
dynamics in between clock cycles can’t be measured using this method.

After all data is collected, the FSM is set to the send state, which will send
all the data stored in the RAM to the USB connection and is available to a Python
program running on the PC. The same reservoir can be used to collect data for the
same input word by sending several acquire commands or a new input word can
be used just by changing the initial-state RAM contents without having to recompile
the Verilog code and transferring the resulting bitstream to the FPGA.

The Verilog code for the FSM has not been presented in our previous publications
so we give the module below for completeness.

1 /*

2 Master FSM monitors bytes sent from the PC to

3 look for command signals

4 Valid command signals are:

5 Begin aquiring data

6 Send data from RAM to PC

7 Program input words

8 Reset

9 When a valid command is recognized, the FSM flips

10 a signal bit that other modules are monitoring

11 */

12

13 module master_fsm(CLOCK_50, KEY, rcvd_sig,

byte_from_pc, acquire_signal, send_signal,

prog_word_signal, reset);

15

16 // Parameters

17 parameter IDLE = 0, RCVD = 1, ACQD_I = 2,

ACQD_II = 3, SEND_I = 4, SEND_II = 5, PROG_I = 6,

PROG_II = 7, RST_I = 8, RST_II = 9;

18

19 // Internal elements

20 input CLOCK_50;

21 input KEY;

22 input rcvd_sig;

23 input [7:0] byte_from_pc;

24

25 output acquire_signal;

26 output send_signal;

27 output prog_word_signal;

28 output reset;

29

Reservoir computing with ABNs 27

30 reg [3:0] state;

31 reg [5:0] count;

32

33 wire hardware_reset;

34

35 reg acq_sig, send_sig, prog_sig, rst_sig;

36 assign acquire_signal = acq_sig;

37 assign send_signal = send_sig;

38 assign prog_word_signal = prog_sig;

39 assign hardware_reset = ˜KEY;

40 assign reset = hardware_reset | rst_sig;

41

42 // The finite state machine

43 always @(*)

44 begin

45 case (state)

46 IDLE:

47 begin

48 acq_sig <= 1’b0;

49 send_sig <= 1’b0;

50 prog_sig <= 1’b0;

51 rst_sig <= 1’b0;

52 end

53 RCVD:

54 begin

55 acq_sig <= 1’b0;

56 send_sig <= 1’b0;

57 prog_sig <= 1’b0;

58 rst_sig <= 1’b0;

59 end

60 ACQD_I:

61 begin

62 acq_sig <= 1’b1;

63 send_sig <= 1’b0;

64 prog_sig <= 1’b0;

65 rst_sig <= 1’b0;

66 end

67 ACQD_II:

68 begin

69 acq_sig <= 1’b1;

70 send_sig <= 1’b0;

71 prog_sig <= 1’b0;

72 rst_sig <= 1’b0;

73 end

74 SEND_I:

28 Reservoir computing with ABNs

75 begin

76 acq_sig <= 1’b0;

77 send_sig <= 1’b1;

78 prog_sig <= 1’b0;

79 st_sig <= 1’b0;

80 end

81 SEND_II:

82 begin

83 acq_sig <= 1’b0;

84 send_sig <= 1’b1;

85 prog_sig <= 1’b0;

86 rst_sig <= 1’b0;

87 end

88 PROG_I:

89 begin

90 acq_sig <= 1’b0;

91 send_sig <= 1’b0;

92 prog_sig <= 1’b1;

93 rst_sig <= 1’b0;

94 end

95 PROG_II:

96 begin

97 acq_sig <= 1’b0;

98 send_sig <= 1’b0;

99 prog_sig <= 1’b1;

100 rst_sig <= 1’b0;

101 end

102 RST_I:

103 begin

104 acq_sig <= 1’b0;

105 send_sig <= 1’b0;

106 prog_sig <= 1’b0;

107 rst_sig <= 1’b1;

108 end

109 RST_II:

110 begin

111 acq_sig <= 1’b0;

112 send_sig <= 1’b0;

113 prog_sig <= 1’b0;

114 rst_sig <= 1’b1;

115 end

116 default:

117 begin

118 acq_sig <= 1’b0;

119 send_sig <= 1’b0;

Reservoir computing with ABNs 29

120 prog_sig <= 1’b0;

121 rst_sig <= 1’b0;

122 end

123 endcase

124 end

125

126 always @(posedge CLOCK_50 or posedge

hardware_reset)

127 begin

128 if (hardware_reset)

129 state <= IDLE;

130 else

131 case (state)

132 IDLE:

133 begin

134 if (rcvd_sig)

135 state <= RCVD;

136 else

137 state <= IDLE;

138 end

139 RCVD:

140 begin

141 case (byte_from_pc[7:0])

142 8’b00000001: state <= ACQD_I;

143 8’b00000010: state <= SEND_I;

144 8’b00001000: state <= PROG_I;

145 8’b00010000: state <= RST_I;

146 default:

147 state <= IDLE;

148 endcase

149 end

150 ACQD_I:

151 state <= ACQD_II;

152 ACQD_II:

153 state <= IDLE;

154 SEND_I:

155 state <= SEND_II;

156 SEND_II:

157 state <= IDLE;

158 PROG_I:

159 state <= PROG_II;

160 PROG_II:

161 state <= IDLE;

162 RST_I:

163 state <= RST_II;

30 Reservoir computing with ABNs

164 RST_II:

165 state <= IDLE;

166 default:

167 state <= IDLE;

168 endcase

169 end

170

171 endmodule

Experimental pipeline
Creating networks, running the experiments, and analyzing the results presented in
this chapter was simplified by automating the process with the following feature
specifications:

• The system runs in an automated fashion with as few manual steps as possible
• The system is separated into the distinct steps: creating the network; compiling

the network; running the experiment; and analyzing the data
• Scalability: Each individual step has any number of computers that can be

added or removed to or from the system at any time to run tasks in parallel
• Extensibility: New methods for running experiments or analyzing data can be

added at any time and all connected machines will automatically receive all
updates

• Supervision: The system is accompanied by a website that always shows the
current state of all ongoing actions

The code for this project is extensive; we provide it on a repository on an as-is basis
for those interested in exploring or extending the system [44].

The entire system is implemented in Python and runs on a centralized server
set up for us by the Duke University Physics Department IT staff. The core of the
system is based on a MySQL database that provides tables for reservoir, experiment

and analysis. All tables contain the data unique to each step of the workflow, such
as the number of reservoir nodes, number of delay elements, network connectivity,
number of written-image input words, and experimental repetitions. The pipeline is
controlled by two additional fields: status and tag, which are assigned to all items.
The status is an integer number that indicates open, running, successful, error, or
canceled. All sub-systems have a unique identifier that creates a tag on each item,
which allows us to determine which machine creates a certain item. The run-time
order is usually random and depends on the internal ordering of the database. If
some items are preferred over others, we assign a priority tag to force a schedule
order.

It is challenging to interact with the Quartus II system to automate creating dif-
ferent reservoirs in an automated manner. Therefore, this step was completed by a
user who creates a new python script to add new reservoirs. This process was fa-
cilitated as much as possible by providing many functions to create random nodes
and links and assign a bias to node functions. Finally, the Verilog code defining the
reservoir is created with appropriate metadata to identify the reservoir.

Reservoir computing with ABNs 31

After uploading a compiled bitstrea file, a new entry is inserted into the database
with a unique id and all attributes extracted from the reservoir file. The new item
is created as status open and has no tag assigned. For this step, a compile daemon
checks for new reservoirs, specifically looking for status open. If a new item is
found, it is updated to status running with the tag of the machine that claimed the
reservoir, thus preventing any other machine from taking the same item. The daemon
then downloads the reservoir file from the server and use the Quartus II software to
compile it. If the process ends successfully, the new file is then uploaded back to the
server and the status becomes successful. Otherwise the status is set to error and a
file containing the error message is uploaded instead.

To run experiments, an input creation function must exist. This function defines
the initial values of the network nodes. If a new function is required by a user, it
is developed and added to the system. Developing the project is managed by the
versioning software git, which has its repository on the Duke University centralized
data storage system.

Creating a new experiment is undertaken by inserting the experimental defini-
tion for an existing reservoir with input method and all required parameters into
the database with status open. An experiment daemon similar to reservoir daemon
checks for new experiments that have their status open, but additionally requires
the used reservoir to have status successful. It then assigns status running and sets
the tag identifier. If a new experiment is found, the daemon checks if an update has
been made to the code via the git repository and updates if necessary. Next, the in-
put creation function is called with all parameters and returns the defined number of
different input words. These initialize the network and each input is run with the set
repetition number. The entire data is stored in a single binary file that is uploaded if
the collection succeeds. An error message is uploaded in case of an error.

To analyze the data, we use the Open Science Grid (OSG) [45], which is a giant
computer cluster that includes machines from many universities all over the United
States of America. This platform allows us to start hundreds of jobs at the same
time and distributes the work to all connected machines, thus providing massive
computational power. However, this resource is not always reliable and sometimes
fails.

To account for this possibility, we use an analysis daemon that runs on local
machines as a fall back. All analysis code is developed in advance and synchronized
with git repository. The local and OSG daemons check for open analyses that have
successful experiments as their predecessor, and verifies that the latest version of
the code is in use. For the OSG, the data is uploaded and a configuration file sent
with all analysis parameters. When the analysis completes successfully, the results
files are uploaded back to the Duke University data storage system and all data on
the OSG belonging to this analysis is deleted. In case of an error, the data remains
on the OSG for further investigation. In any case, the status is set to the result.

32 Reservoir computing with ABNs

References

1. H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving energy
in wireless communication. Science 304, 78 (2004).

2. L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B.
Schrauwen, C. R. Mirasso, and I. Fischer. Information processing using a single dynamical
node as complex system, Nat. Commun. 2, 468 (2011).

3. L. Larger, A. Baylóon-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, and M.
Jacquot. High-Speed Photonic Reservoir Computing Using a Time-Delay-Based Architec-
ture: Million Words per Second Classification. Phys. Rev. X 7, 011015 (2017).

4. Y. Paquot, F. Dupart, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and S. Massar.
Optoelectronics reservoir computing. Sci. Rep. 2, 287 (2012).

5. N. D. Haynes, M. C. Soriano, D. P. Rosin, I. Fischer, and D. J. Gauthier. Reservoir computing
with a single time-delay autonomous Boolean node. Phys. Rev. E 91, 020801 (2015).

6. L. Appeltant, G. Van der Sande, J. Danckaert, and I. Fischer. Constructing optimized binary
masks for reservoir computing with delay systems, Sci. Rep. 4, 3629 (2014).

7. A. Röhm, and K. Lüdge. Multiplexed networks: reservoir computing with virtual and real
nodes. J. Phys. Commun. 2, 085007 (2018).

8. B. Penkovsky, L. Larger, and D. Brunner. Efficient design of hardware-enabled reservoir com-
puting in FPGAs. J. Appl. Phys. 124, 162101 (2018).

9. C. Mesaritakis, A. Bogris, A. Kapsalis, and D. Syvridis. High-speed all-optical pattern recog-
nition of dispersive Fourier images through a photonic reservoir computing subsystem. Opt.
Lett. 40, 3416-3419 (2015).

10. F. Denis-Le Coarer, M. Sciamanna, A. Katumba, M. Freiberger, J. Dambre, P. Bienstman and
D. Rontani. All-Optical Reservoir Computing on a Photonic Chip Using Silicon-Based Ring
Resonators. IEEE J. Sel. Top. Quantum Electron. 24 1-8 (2018).

11. K. Vandoorne, P. Mechet, T. Van Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B.
Schrauwen, J. Dambre, and P. Bienstman. Experimental demonstration of reservoir comput-
ing on a silicon photonics chip. Nat Commun 5, 3541 (2014).

12. H. Zhang, Z. Feng, B. Li, Y. Wang, K. Cui, F. Lin, W. Dou, and Y. Huang. Integrated pho-
tonic reservoir computing based on hierarchical time-multiplexing structure. Opt. Express. 22
31356-31370 (2014).

13. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, and S.
Massar. High-performance photonic reservoir computer based on a coherently driven passive
cavity. Optica 2 438-446 (2015).

14. A. Katumba, J. Heyvaert, B. Schneider, S. Uvin, J. Dambre, and P. Bienstman. Low-loss
photonic reservoir computing with multimode photonic integrated circuits. Sci. Reports 8,
2653 (2018).

15. J. P. Mason, P. S. Linsay, J. J. Collins, L. Glass. Evolving complex dynamics in electronic
models of genetic networks. Chaos 14, 707 (2004).

16. R. Zhang, H. L. D. de S. Cavalcante, Z. Gao, D. J. Gauthier, J. E. S. Socolar, M. M. Adams,
and D. P. Lathrop. Boolean Chaos. Phys. Rev. E. 80, 045202(R) (2009).

17. D. P. Rosin. Dynamics of Complex Autonomous Boolean Networks. (Springer, Heidelberg,
2015).

18. M. Ghil and A. Mullhaupt. Boolean delay equations. II. Periodic and aperiodic solutions. J.
Stat. Phys. 41, 125 (1985).

19. M. Ghil, I. Zaliapin, and B. Coluzzi. Boolean delay equations: A simple way of looking at
complex systems. Physica D 237, 2967 (2008).

20. D. Canaday, A. Griffith, and D. J. Gauthier. Rapid Time Series Prediction with a Hardware-
Based Reservoir Computer. Chaos 28, 123119 (2018).

21. P. Antonik, A. Smerieri, F. Duport, M. Haelterman, and S. Massar. FPGA Implementation
of Reservoir Computing with Online Learning. Benelearn (24: 19 June 2015: Delft, Nether-
lands), 24th Belgian-Dutch Conference on Machine Learning (Benelearn).

Reservoir computing with ABNs 33

22. Y. Yi, Y. Liao, B. Wang, X. Fu, F. Shen, H. Hou, and L. Liu. FPGA based spike-time depen-
dent encoder and reservoir design in neuromorphic computing processors. Microprocessors
and Microsystems 46B, 175 (2016).

23. P. Antonik. Application of FPGA to Real-Time Machine Learning. (Springer, Cham, Switzer-
land, 2018).

24. E. S. Skibinsky-Gitlin, M. L. Alomar, C. F. Frasser, V. Canals, E. Isern, M. Roca, and J. L.
Rosselló. Cyclic Reservoir Computing with FPGA Devices for Efficient Channel Equaliza-
tion. In: Rutkowski L., Scherer R., Korytkowski M., Pedrycz W., Tadeusiewicz R., Zurada J.
(eds.) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer
Science, vol 10841. (Springer, Cham, 2018).

25. M. L. Alomar, M. C. Soriano, M. Escalona-Morán, V. Canals, I. Fischer, C. R. Mirasso, and J.
L. Rosselló. Digital Implementation of a Single Dynamical Node Reservoir Computer. IEEE
Trans. Circuits Sys. II: Exp. Briefs 62, 977 (2015).

26. S. Apostel. Dynamics of driven complex autonomous Boolean networks with application to
reservoir computing. M.S. Thesis, Technische Universität Berlin. Unpublished (2017).

27. R. Edwards and L. Glass. A calculus for relating the dynamics and structure of complex
biological networks. In: Adventures in Chemical Physics: A Special Volume of Advances in
Chemical Physics. R. S. Berry and J. Jortner, Eds. (John Wiley & Sons, Inc., Hoboken, 2006),
pp. 151-178.

28. R. Edwards, P. van den Driessche, and L. Wang, Periodicity in piecewise-linear switching
networks with delay. J. Math. Bio. 55, 271 (2007).

29. J. Lohmann, O. D’Huys, N. D. Haynes, E. Schöll, and D. J. Gauthier. Transient dynamics
and their control in time-delay autonomous Boolean ring networks. Phys. Rev. E 95, 022211
(2017).

30. D.J. Gauthier. Reservoir computing: Harnessing a universal dynamical system. SIAM News
51:2, 12 (2018).

31. O. D’Huys, J. Lohmann, N. D. Haynes, and D. J. Gauthier. Super-transient scaling in time-
delay autonomous Boolean network motifs. Chaos 26, 4954274 (2016).

32. I. B. Yildiz, H. Jaeger, and S. J. Kiebe. Re-visiting the echo state property. Neural Networks
35, 1 (2012).

33. B. Derrida and Y. Pomeau. Random networks of automata: a simple annealed approximation.
Europhys. Lett. 1, 45 (1986).

34. H. Flyvbjerg. An order parameter for networks of automata. J. Phys. A. 21, L955 (1988).
35. B. Luque and R. V. Solé. Lyapunov exponents in random Boolean networks. Physica A. 284,

33 (2000).
36. http://yann.lecun.com/exdb/mnist/
37. A. Uchida, R. McAllister, and R. Roy. Consistency of nonlinear system response to complex

drive signals. Phys. Rev. Lett. 93, 244102 (2004).
38. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings IEEE, 86, 2278 (1998).
39. H. Jaeger. Discovering multiscale dynamical features with hierarchical echo state networks.

Technical report 10, School of Engineering and Science, Jacobs University, unpublished.
40. R. Y. Webb. Multi-layer corrective cascade architecture for one-line predictive echo state

networks. Appl. Artif. Intell. 22, 811 (2008).
41. G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata,

D. Nakano, and A. Hirose. Recent advances in physical reservoir computing: A review.
https://arxiv.org/abs/1808.04962v2 (2018).

42. A. Jalalvand, K. Demuynck, W. De Neve, R. Van de Walle, and J.-P. Martens. Design of
Reservoir Computing Systems for Noise-Robust Speech and Handwriting Recognition. In:
Conference on graphics, patterns and images, 28. (SIBGRAPI), 2015, Salvador. Porto Alegre:
Sociedade Brasileira de Computação, 2015. On-line. IBI: 8JMKD3MGPBW34M/3JUJ5DP.
Available from: http://urlib.net/rep/8JMKD3MGPBW34M/3JUJ5DP.

43. https://www.intel.com/content/www/us/en/programmable/downloads/download-center.html
44. https://github.com/nickdavidhaynes/boolean-reservoir-computer
45. https://opensciencegrid.org/

