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Zusammenfassung

Diese Dissertation beschäftigt sich mit Problemstellungen aus der Theorie der endlichen
gerichteten Graphen. Ein (endlicher) gerichteter Graph ist eine binäre Relation, deren
Quellmenge endliche Größe besitzt. Gerichtete Graphen stellen damit eine sehr allgemeine
Art und Weise dar, möglicherweise asymmetrische Beziehungen zwischen einer endlichen
Menge von Objekten zu codieren. Selbstverständlich erlaubt es eine solche Allgemeinheit,
viele Probleme durch gerichtete Graphen zu abstrahieren, besonders dann, wenn sich wich-
tige Eigenschaften durch Beziehungen oder Verbindungen zwischen Objekten ausdrücken
lassen. Als ausgewählte Beispiele seien hier Straßennetzwerke, Funknetze, Gasnetzwerke,
das Internet, Schaltkreise in elektronischen Geräten, sowie neuronale Netzwerke genannt.

Ein Schwerpunkt der vorliegenden Arbeit liegt auf der Untersuchung von Graphenei-
genschaften im Zusammenhang mit einem der wohl fundamentalsten Objekte der Gra-
phentheorie, dem sogenannten Kreis. Ein Kreis in einem Graphen wird beschrieben durch
eine geschlossene Folge von zyklisch benachbarten Knoten und Kanten ohne auftretende
Wiederholungen.

In einem Graphen endlicher Größe kann man typischerweise erwarten, eine ganze Rei-
he verschiedenster Kreise zu finden. Aufgrunddessen sind Kreise ein wichtiges und wie-
derkehrendes Motiv in fast allen Zweigen der Graphentheorie und treten beispielsweise
in der strukturellen Graphentheorie auf, in der Theorie von Flüssen auf gerichteten Gra-
phen, in theoretischen Charakterisierungen von Graphenklassen und in der Theorie der
Färbung von Graphen. Zudem spielen Kreise in etlichen Verfahren zur Lösung von al-
gorithmischen Problemen auf Graphen eine entscheidende Rolle, wie beispielsweise dem
Problem des Handlungsreisenden, Algorithmen zur Berechnung eines größten Matchings
oder dem Maximum-Flow-Problem und auch in Subprozeduren wie beispielweise Kruskals
Algorithmus zum Finden eines leichtesten Spannbaums. Aus diesen Gründen hat sich eine
beachtliche Menge an Resultaten der Graphentheorie darauf spezialisiert, die Kreisstruk-
tur in Graphen selbst als Untersuchungsobjekt zu betrachten.

Im ersten Teil dieser Arbeit befassen wir uns mit Kreisen, die in gerichteten Graphen
auftreten, beweisen verschiedene hinreichende und notwendige Bedingungen für die Exis-
tenz solcher Kreise und betrachen algorithmische Fragestellungen in diesem Zusammen-
hang. Im zweiten Teil der Arbeit beschäftigen wir uns mit dem Problem der gerichteten
Graphenfärbung, das auch mit der Existenz gewisser Kreise zu tun hat. Hierbei handelt
es sich um ein Optimierungsproblem, bei dem man die Knoten des Graphen mit möglichst
wenigen Farben so zu färben versucht, dass keine gerichteten Kreise innerhalb einer Farb-
klasse auftreten. Dieses Problem wurde vor vier Jahrzehnten von Paul Erdős und Victor
Neumann-Lara aufgeworfen und seitdem in der Literatur studiert. In dieser Arbeit tragen
wir neue Resultate bei, die einerseits neue Schranken an die Zahl der benötigten Farben
liefern und andererseits die algorithmische Komplexität des Problems beleuchten.

Der dritte Teil der Arbeit knüpft an den zweiten Teil an und liefert neue Resultate
für diverse weitere Arten, einen gerichteten Graphen zu färben oder in möglichst wenige
strukuriertere Subgraphen zu zerlegen.
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Abstract

This thesis deals with problems from the theory of finite directed graphs. A directed
graph (digraph for short) is a binary relation whose domain has finite size. With that
digraphs can be seen as a very general way of representing (possibly asymmetric) relations
between pairs from a finite set of objects. Undoubtedly, such a generality allows to encode
many structures by digraphs. This works particularly well if important properties of the
structure at hand can be expressed as relations or connections between objects. To give
some selected examples, let us mention road networks, electricity networks, radio networks,
the world wide web, circuits in electronic devices, or neural networks.

A main focus of the thesis at hand is the investigation of properties of one of the
most fundamental objects all over graph theory, the so-called cycle (sometimes also called
circuit). A cycle in a graph is determined by a closed alternating sequence of cyclically
connected vertices and edges.

In a graph of finite size one will typically see loads of distinct cycles of various types.
Therefore cycles constitute an important and recurring motive in almost all branches of
graph theory, for instance, they play important roles in structural graph theory, in the
theory of flows on directed networks, in theoretical characterizations of graph classes,
as well as in the theory of graph colorings. Additionally, cycles play a decisive role in
numerous algorithmic problems and their solutions, such as in the Traveling Salesman
Problem, algorithms for finding a largest matching in a given graph, in the max-flow
problem, and also in subprocedures such as Kruskal’s algorithm for finding a minimum
weight spanning tree. For those reasons, a substantial amount of research in graph theory
has specialised on the structure of cycles in graphs.

In the first major part of this thesis we deal with cycles which occur in directed graphs,
and prove several necessary and sufficient theoretical conditions for the existence of cycles
of certain types. Additionally, we deal with algorithmic problems related to cycles in
directed graphs.

In the second part we deal with the problem of acyclic colorings of directed graphs,
which also relates to the (non-)existence of certain cycles. The dichromatic number rep-
resents an optimization problem in which we seek to color the vertices of a given digraph
with the fewest number of colors while avoiding monochromatic directed cycles. This
topic was introduced 40 years ago by Paul Erdős and Victor Neumann-Lara and since
then, particularly in the last two decades, has been considered by many researchers. In
this thesis we contribute new results that on the one hand establish new theoretical bounds
on the dichromatic number and on the other hand shed more light on the computational
complexity of this problem.

The third and last major part of this thesis carries on with the topic of digraph color-
ings and presents new results for various further notions of digraph coloring and ways of
decomposing a given digraph into the fewest number of simpler subdigraphs.
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Introduction

This dissertation is concerned with problems from the theory of finite directed graphs.
To start with, a (finite) directed graph is a binary relation whose domain has finite size.
Directed graphs can be seen as a very general way of representing possibly asymmetric
relations between a finite set of objects. In the language of directed graphs, the elements
of the domain of the relation are called vertices, while the relations between the objects
are called arcs or directed edges. As a matter of course, the generality of the definition of
directed graphs (digraphs for short) allows to encode and abstract many real-world prob-
lems through digraphs. Such an encoding is particularly successful if important properties
of the problem can be expressed by connections between certain objects. To give some
selected examples, let us mention here road networks, electricity networks, radio networks,
the world wide web, circuits in electronic devices, or neural networks.

The definition of directed graphs stands in contrast to the definition of an undirected
graph, whose representing binary relation is required to be symmetric. The unordered
pairs of an undirected graph in relation are called edges, the corresponding vertices adja-
cent. The symmetry condition required for undirected graphs shows that directed graphs
constitute a far-reaching generalization of graphs, as the relation of an unordered pair of
vertices in a simple digraph may assume up to four different states, rather than two as
in simple undirected graphs. Accordingly, it is not very surprising that directed graphs
exhibit more complex structures than the ones found in undirected graphs. For that
reason, a phenomenon that we will witness repeatedly in the course of this thesis is that
many an inconspicuous problem formulated on directed graphs, compared to its undirected
analogue, will turn out quite difficult or will have a very surprising answer.

A main focus of the thesis at hand is the study of properties of directed graphs in
connection with certainly one of the most fundamental objects in graph theory, the so-
called cycle (less commonly also called circuit). A cycle in an undirected graph is a
cyclical repetition-free alternating sequence of vertices and edges such that edges connect
their neighboring vertices in the sequence. In digraphs, we differentiate between oriented
cycles and directed cycles. While an oriented cycle is a cyclical repetition-free alternating
sequence of vertices and arcs such that the arcs connect their neighboring vertices in the
sequence, a directed cycle is a special kind of oriented cycle in which all arcs are oriented
consistently in the direction of circulation.

A finite graph can typically be expected to contain a load of distinct cycles, since
every walk along the edges of the graph will either have to stop or return to an already
visited vertex of the graph after finitely many steps, and thereby create a cycle. Graphs
containing no cycles, known as forests, are very sparse and exceptional. Therefore cycles
constitute an important and recurring motive in almost all branches of graph theory. For
instance, cycles play a fundamental role in structural graph theory, in the theory of flows
on directed networks, in theoretical characterizations of graph classes, and in the theory
of graph coloring. Moreover, cycles play a decisive role in numerous procedures for solving
algorithmic problems on graphs, as exemplified by the famous Traveling Salesman Prob-
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Figure 1: An undirected cycle, an oriented cycle, and a directed cycle, each containing four
vertices. Vertices are represented by points, arcs (u, v) between vertices u and v are represented
by an arrow pointing from u to v.

lem, maximum matching- and maximum flow-algorithms, as well as Kruskal’s algorithm
for finding a minimum-weight spanning tree.

For those reasons a substantial amount of research in graph theory has specialized on
studying the cycle structure of undirected and directed graphs for its own sake. A wide
range of questions has been studied, but many remain open. Accordingly, the first main
goal of the thesis at hand is to contribute new results which enhance the theory of oriented
and directed cycles in digraphs.

The second main topic of this thesis are colorings of directed graphs. Colorings of
graphs in general can be seen as optimization problems which seek to partition the vertex-
set (or sometimes the edge-set) of a given graph into the fewest number of parts which
induce subgraphs with a certain simpler structure. What exactly is meant here by simpler
varies depending on the definition of the coloring concept. However one can hardly disagree
that a graph consisting of a set of isolated vertices (with an empty edge-set) is probably
as simple as it gets. So if we say that an edgeless graph is what we would like to call
simple, then the coloring concept we end up with is exactly the well-known chromatic
number χ(G) of an undirected graph G, i.e., the smallest number of independent sets in
G partitioning the vertex set. Instead of a partition, we may also think of a coloring of
a graph as a mapping c which assigns to every vertex v of the graph an element c(v) of
a finite (color) set, in such a way that the color classes (i.e., the sets of vertices sharing
the same color) induce subgraphs with a simpler structure. The goal is then to find a
coloring minimizing the size of the color set which is used for the coloring. Therefore in its
standard definition, χ(G) is the smallest number of colors which can be used in a proper
coloring, i.e., a vertex-coloring such that adjacent vertices receive distinct colors.

Graph coloring and in particular the study of the chromatic number of graphs consti-
tutes one of the most active and biggest parts of graph theory up until now. Moreover,
graph coloring is also one of the earliest and most influential branches of graph theory,
whose first occurences date back more than 150 years. Maybe the most celebrated prob-
lem in graph theory is the 4-Color-Problem, asking whether the bounded regions of every
planar map can be colored using 4 colors such that regions sharing a common border
receive different colors. This problem was finally resolved in the positive in 1976 when
Appel and Haken [AH76, AHK77] presented a computer-assisted proof of their famous
4-Color-Theorem, which formally states that the chromatic number of every planar graph
is at most four.

While the chromatic number is the most popular graph coloring parameter for undi-
rected graphs, it is not very well-suited for directed graphs, as the independent sets in
a digraph do not depend upon the orientation of the directed edges. Hence, for a more
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meaningful coloring parameter for directed graphs, the definition of what makes a digraph
simple should be dependent not only on the underlying graph. A natural choice for such
a coloring concept was made by Erdős and Neumann-Lara [Erd80, NL82], who defined a
coloring of a digraph (subsequently and throughout the thesis called acyclic coloring) as a
partition into sets inducing acyclic subdigraphs, or equivalently, a vertex-coloring in which
no directed cycle is monochromatic. The corresponding coloring parameter of a digraph
D was named dichromatic number by Neumann-Lara and is denoted by χ⃗(D). Indeed,
acyclic digraphs exhibit several properties which make them very special and a lot more
structured than general digraphs. Since its introduction in the 1980s, the dichromatic
number has grown in importance and has now been an active object of research for two
decades. It may well be considered the most popular and well-studied coloring concept
for directed graphs up to date. Motivated by this development, a main part of this thesis
focuses on deriving new insights concerning the dichromatic number, and in particular
finding structural conditions which enforce a digraph to have small or bounded dichro-
matic number. These structural conditions usually mean that we consider digraphs which
do not contain certain types of substructures, such as minors, subdivisions or induced
subgraphs, and try to find the best possible upper and lower bounds on the dichromatic
number of digraphs in these classes. In another major part of this thesis, we will also
turn our attention to other coloring parameters for directed graphs which were introduced
more recently, and contribute some new results for these parameters.

The thesis at hand starts off with some fundamental definitions as well as notation
used repeatedly throughout the thesis. The main content of the thesis is divided into
three main parts, covering the cycle structure of digraphs, the dichromatic number, and
other coloring concepts for digraphs, respectively. Every one of the three parts is again
subdivided into several chapters, which deal with different problems to which we have
contributed new results. Every chapter has a more specialized introduction on its own. In
the following let us give a broad outline of the three different parts and their chapters. For
detailed definitions we refer to the Preliminaries (Chapter 1) or the respective chapters.

The Chapters of Part I
Part I, entitled Existence and Structure of Oriented Cycles focuses on both theoretical
conditions for digraphs that enforce the existence of oriented and directed cycles of certain
types and lengths, as well as algorithmic problems which are related to oriented cycles in
digraphs.

In Chapter 2 we solve problems raised in a paper by Aboulker, Cohen, Havet, Lochet,
Moura, and Thomassé [ACH+19] concerning subdivisions in digraphs of large minimum
out-degree. A subdivision of a (di)graph is any (di)graph that can be obtained by replacing
the edges (arcs) of the (di)graph by internally vertex-disjoint (directed) paths connecting
the endpoints of the original edges (arcs). In the case of directed graphs, we require that
the directed path replacing the arc (u, v) is oriented consistently from u towards v. Sub-
division is a natural concept that appears in many fundamental graph theory results, such
as Kuratowski’s characterization of planar graphs. It is therefore desirable to find means
which can force any graph to contain a subdivision of a fixed graph, such as K5, as a sub-
graph. For undirected graphs, a classical result by Mader [Mad67] asserts that graphs of
sufficiently large minimum degree contain a subdivision of any given graph. Surprisingly,
the analogous result for directed graphs does not hold true in a strong sense: It follows
from a result by Thomassen [Tho85b] that every so-called even digraph1, including the

1A digraph F is called even, if every subdivision of F contains an even directed cycle.
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complete digraph
↔

K3 consisting of three vertices and all 6 possible connecting arcs2, cannot
be forced as a subdivision by means of large minimum out- and in-degree. However, every
even digraph contains a directed cycle. In 1985, Mader [Mad85] conjectured that maybe
every acyclic digraph containing no directed cycles can be forced as a subdivision by large
minimum out-degree. Despite its popularity, this conjecture so far has not been resolved,
and remains open for acyclic digraphs on only five vertices. Aboulker et al. [ACH+19]
worked on special cases of Mader’s problem and raised the conjecture that every oriented
cycle can be forced as a subdivision by large minimum out-degree. As the main contribu-
tion of Chapter 2 we fully resolve this conjecture. We also show the stronger result that
digraphs of large minimum out-degree contain any given disjoint union of oriented cycles
as a subdivision. Previously this was known only for disjoint unions of directed cycles
(cf. [Tho83, Alo96]). Finally, we provide answers to related open problems raised in the
paper by Aboulker et al.

As mentioned above, it is known that there exists a function f : N → N such that
every digraph of minimum out-degree at least f(k) contains k vertex-disjoint directed
cycles. This was proved in 1983 by Thomassen [Tho83], who showed that we can take
f(k) = (k + 1)! for every k. Several improvements on this bound have been made, but a
famous conjecture by Bermond and Thomassen, claiming that f(k) = 2k−1, still remains
widely open. The proofs for the existence of f known so far, however, do not give any
information concerning the lengths of the disjoint cycles.

In Chapter 3 we are motivated by a conjecture of Lichiardopol [Lic14] from 2014, which
states the existence of a function g : N→ N such that for every k ∈ N every digraph whose
minimum out-degree is at least g(k) contains k vertex-disjoint directed cycles whose lengths
are pairwise different. Note that this is a qualitative strengthening of Thomassen’s result.
Our main contribution of Chapter 3 is to show that Lichiardopol’s conjecture holds true
for digraphs of sufficiently large connectivity. More precisely, we show that there exists
a function s : N → N such that every strongly s(k)-connected digraph contains k vertex-
disjoint directed cycles of pairwise different lengths. In contrast, we give a construction
showing that there are digraphs of arbitrarily large strong connectivity not containing
two disjoint directed cycles of equal length, which strengthens an earlier construction by
Alon [Alo96]. We further verify Lichiardopol’s conjecture for digraphs of bounded directed
tree-width. Directed tree-width is an important structural digraph parameter and will be
used several times in this thesis as a technical tool for some of our proofs.

In Chapter 4 we consider an algorithmic problem involving directed cycles in ori-
ented graphs. Given an undirected graph G and some assignment α : V (G) → N, an
α-orientation of G is an orientation of G such that every vertex v ∈ V (G) has out-degree
exactly α(v). Orientations with a prescribed out-degree pattern have received quite some
attention in the literature previously, and have had applications in enumerative combi-
natorics, discrete geometry and order theory. Sometimes it is possible to find non-trivial
bijections between a set of combinatorial objects and a set of α-orientations of a particular
planar graph with some function α, and in this case the combinatorial objects automati-
cally inherit a beautiful distributive lattice structure from the set of α-orientations of this
graph [Fel04, dFOdM01].

Flip graphs are a ubiquitous class of graphs, which encode relations on a set of combi-
natorial objects by elementary, local changes. Skeletons of associahedra, for instance, are
the graphs induced by quadrilateral flips in triangulations of a convex polygon.

2In general, for an integer t ≥ 1 we denote by
↔
Kt the complete digraph having t vertices and all possible

t(t − 1) ordered pairs of distinct vertices as its arcs.
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Also for the set of α-orientations of a given graph G, such a flip graph exists, whose
vertices are the different α-orientations of G and where two orientations are adjacent if
one can be obtained from the other by reversing all arcs of some directed cycle. It is not
hard to show that the so-defined flip graph is connected.

Given some definition of a connected flip graph, a natural computational problem to
consider is the flip distance: Given two objects, what is the minimum number of flips
needed to transform one into the other? In Chapter 4 we consider this problem for flip
graphs of α-orientations and prove that deciding whether the flip distance between two
α-orientations of a planar graph G is at most two is NP-complete. This also holds in
the special case of perfect matchings, where flips involve alternating cycles. This problem
amounts to finding geodesics on the common base polytope of two partition matroids, or,
alternatively, on an alcoved polytope. It therefore provides an interesting example of a
flip distance question that is computationally intractable despite having a natural inter-
pretation as a geodesic on a nicely structured combinatorial polytope. We also consider
the dual question of the flip distance between graph orientations in which every cycle has
a specified number of forward edges, and a flip is the reversal of all edges in a minimal
directed cut. In general, the problem remains hard. However, if we restrict to flips that
only change sinks into sources, or vice-versa, then the problem can be solved in polyno-
mial time. Here we exploit the fact that the flip graph is the cover graph of a distributive
lattice. This generalizes a recent result by Zhang et al. [ZQZ19].

Part I concludes with Chapter 5. Here we are concerned with yet another algorithmic
problem involving directed cycles. We study directed circuits of even size in a structure
which generalizes directed graphs, known as oriented matroids. A matroid is a dependency
structure which can be described by a finite ground set of elements and a collection of
subsets of the ground set which are called circuits. Matroids can arise both from graphs,
in which the element set consists of the edges of the graph, as well as from matrices over
fields, in which the elements correspond to the column vectors. In the graphic case, the
circuits correspond exactly to the edge-sets of the cycles, while in the column-matroid
generated by a matrix, the circuits form the minimal linearly dependent sets of column
vectors of the matrix.

In a similar vein, oriented matroids are an oriented version of matroids described by
a finite element set and a collection of oriented circuits, which are special subsets of the
ground set whose elements are equipped with either a plus- or a minus-sign. Again, every
digraph gives rise to an oriented matroid, in which the oriented circuits are retrieved from
the oriented cycles in the digraph. In this sense the oriented cycle structure of a digraph
is also represented in its associated oriented matroid. Given a problem related to cycles
in graphs or digraphs, it is therefore natural to consider its generalization to matroids or
oriented matroids. In Chapter 5 we generalize the so-called even cycle problem to oriented
matroids and study its generalization, the even circuit problem.

Until its resolution in 1999 by Robertson, Seymour, and Thomas [RST99], the even
cycle problem was a popular open algorithmic problem for directed graphs, which asked
whether there exists a polynomially bounded algorithm which can check whether a given
digraph contains an even directed cycle or not. Motivated by this problem, Seymour and
Thomassen [ST87] proved in 1987 that the even cycle problem is polynomially equivalent
to the algorithmic problem of recognizing whether a given digraph is even. As mentioned
before, a digraph is called even if every subdivision of it contains a directed cycle of even
length. Alternatively, one may say that a digraph is even if for every labelling of its
arcs with either 0 or 1, there is a directed cycle such that if we sum up the labels on
the arcs of the cycle, we obtain an even number. The equivalence proof of Seymour and
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Thomassen showed that in order to solve the even cycle problem, one may as well first
try to obtain a structural understanding of the class of even digraphs, or alternatively,
its complement, the non-even digraphs. Seymour and Thomassen made the first step
in this direction by showing that a digraph is non-even if and only if it excludes all
bioriented cycles of odd length as butterfly-minors. Here, a butterfly-minor is a concept
of minors for directed graphs which is nowadays used frequently in structural digraph
theory [JRST01, GT11, KK15]. Later on, Robertson, Seymour and Thomas built on the
characterization by Seymour and Thomas to prove a generation theorem for the class of
non-even digraphs. This eventually led to a recognition algorithm and hence a resolution
of the even cycle problem.

The even circuit problem is the algorithmic problem that asks whether a given ori-
ented matroid contains a directed circuit of even size. Finding a sensible definition of
an algorithmic problem for matroids or oriented matroids in general, however, can be a
difficult task, since matroids are lacking a compact encoding scheme, which would allow
for a sensible measure of efficiency of an algorithm solving the problem. As a consequence,
we argue in Chapter 5 that in order to formally treat the even circuit problem, one should
restrict the problem to the class of regular oriented matroids. These are oriented matroids
which allow for compact representations by totally unimodular matrices, a special class of
matrices which is closely related to directed graphs. Regular oriented matroids are still a
general class of matroids and extend the classes of oriented graphic matroids and oriented
bond matroids, which both arise from directed graphs. In comparison to general matroids,
they have the advantage that they allow for the usage of additional tools such as circuit
bases, which is not possible in general oriented matroids. In the rest of the chapter, we
then focus on the even circuit problem for regular oriented matroids and prove general-
izations and supplements of the results of Seymour and Thomassen in this setting. We
define non-even oriented matroids generalizing non-even digraphs and prove that the even
circuit problem for regular matroids is polynomially equivalent to the problem of recog-
nizing whether a given regular oriented matroid is non-even. Our main result is a precise
characterization of the class of non-even oriented bond matroids in terms of forbidden
minors, which complements the result of Seymour and Thomassen [ST87] that amounts
to a characterization of the non-even oriented graphic matroids.

The Chapters of Part II

Part II, entitled Dichromatic Number, focuses on the study of acyclic colorings of digraphs.
In particular, we prove conditions that exhibit well-structured classes of digraphs with
bounded dichromatic number. In addition, motivated by earlier hardness results we revisit
the algorithmic problem of determining the dichromatic number of a digraph and prove
refined hardness results as well as a positive parametrized complexity result.

In Chapter 6 we start off by studying bounds on the dichromatic number of digraphs
exluding the complete digraph

↔
Kt for some integer t ≥ 2 as a strong minor. Strong minors

in a very natural way generalize the ordinary undirected graph minors to directed graphs
and have been introduced by Jagger [Jag96] in 1996. In 2015 Kim and Seymour [KS15]
reconsidered the notion and proved that the set of semi-complete digraphs (digraphs in
which every pair of vertices is adjacent) are well-quasi-ordered by the strong minor relation.

Colorings of minor-closed undirected graph classes such as the planar graphs, and in
particular their chromatic number, have received widespread attention in the history of
graph theory. Maybe the most intriguing and challenging open problem all over graph



23

theory is Hadwiger’s Conjecture, which was formulated back in 1943 by Hugo Hadwiger
as a generalization of the famous 4-Color-Conjecture.

Conjecture 0.1 (Hadwiger [Had43], 1943). If t ∈ N and G is a graph such that χ(G) ≥ t,
then G contains Kt as a minor.

Hadwiger’s conjecture admits an elementary proof for all t ≤ 4. From a result of Wag-
ner [Wag37] it was known that the case t = 5 is equivalent to the Four-Color-Conjecture.
After its resolution in 1976 by Appel and Haken, the next case t = 6 was solved in yet
another breakthrough-result by Robertson, Seymour, and Thomas [RST93] in 1993. All
the cases t ≥ 7 remain open as of today.

Inspired by Hadwiger’s conjecture, Axenovich, Girão, Snyder, and Weber [AGSW20]
recently studied the existence of strong complete minors in digraphs with a given dichro-
matic number or given minimum degree. On the negative side, they showed that (in
contrast to undirected graphs) digraphs of large minimum out- and in-degree might not
have a strong

↔
K3-minor. On the positive side they established that for every integer

t ≥ 1 there exists a smallest natural number smχ⃗(t) such that every digraph D with
χ⃗(D) ≥ smχ⃗(t) contains a strong

↔
Kt-minor, and proved the bounds

t + 1 ≤ smχ⃗(t) ≤ t4t

for every t ≥ 2. They then raised the problem of improving in particular the upper,
exponential, bound. In Chapter 6, we solve this problem by showing the almost linear
upper bound smχ⃗(t) = O(t(log log t)6).

In Chapter 7 we study bounds on the dichromatic number of digraphs excluding a
fixed digraph F as a topological minor. Here we say that a digraph D contains F as a
topological minor if D contains a subdigraph isomorphic to a subdivision of F .

The corresponding problem for undirected graphs has been studied in particular when
the excluded graph is the t-vertex-clique Kt with some t ∈ N, but recently there have also
been results for sparser graphs F , such as grids [HKL20]. In this context a famous problem
known as Hajós’ Conjecture stated that every graph G exluding Kt as a topological minor
satisfies χ(G) ≤ t − 1. Note that if true, this would be a strengthening of Hadwiger’s
conjecture (as topological minors specialize ordinary graph minors). Hajós’ conjecture
follows from Hadwiger’s Conjecture for all t ≤ 4, where the case t = 4 is a classical result
by Dirac [Dir52]. In 1979, Catlin [Cat79] disproved Hajós’ Conjecture for all values t ≥ 7,
by constructing t-chromatic graphs not containing a Kt-subdivision. The cases t = 5, 6 of
the conjecture still remain open. The counterexamples of Catlin were later on strengthened
by Erdős and Fajtlowicz [EF81] in 1981, who used the probabilistic method to show that
large random graphs are counterexamples to Hajós conjecture with probability tending
to 1. Their method also yields that for some positive constant c > 0 and every t ≥ 2
there exists a graph Gt excluding Kt as a topological minor and such that χ(Gt) ≥ c t2

log t .
On the positive side, Bollobás and Thomason [BT98] and independently Komlós and
Szemerédi [KS96] proved that there exists a constant C > 0 such that every graph with
minimum degree at least Ct2 contains a Kt-subdivision. Using degeneracy this implies that
every graph G excluding Kt as a subdivision satisfies χ(G) ≤ Ct2. The precise asymptotics
of the maximum possible chromatic number of a graph exluding Kt as a topological minor
still remain open, but the truth was conjectured to lie with the lower bound, i.e. Θ

(︂
t2

log t

)︂
,

by Fox, Lee, and Sudakov [FLS13].
While for undirected graphs F it follows from the previous discussion that every graph

with sufficiently large chromatic number contains an F -subdivision, the analogous state-
ment for the dichromatic number of digraphs appears more difficult, since it is no longer
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true that digraphs D excluding a fixed digraph F must contain vertices of small degree.
As mentioned above, there are digraphs D of arbitrarily large minimum out- and in-degree
not containing a

↔
K3-subdivision.

Nevertheless, Aboulker et al. [ACH+19] investigated this problem and managed to
find a beautiful proof that there exists a function f : N → N such that every digraph D
with χ⃗(D) ≥ f(t) contains a subdivision of the complete digraph

↔
Kt, and hence of any

other digraph on at most t vertices. This result is truly remarkable, since the dichromatic
number thus far is the only natural digraph parameter one knows of that is capable of
forcing a subdivision of every digraph F . However, the upper bound given by Aboulker
et al. is f(t) ≤ 4t2−2t+1(t − 1) + 1, which is probably quite far from the truth. In their
paper, Aboulker et al. also started a systematic study of the following problem:

For a given (not necessarily complete) digraph F , what is the smallest integer k such
that every digraph D with χ⃗(D) ≥ k contains an F -subdivision? This integer k is called the
(Dichromatic) Mader-number of the digraph F and denoted by maderχ⃗(F ). Determining
this value precisely turns out to be quite difficult, even if F is a rather sparse digraph. In
this context, Aboulker et al. posed several open problems. They proved that maderχ⃗(C) ≤
2ℓ− 3 for every oriented cycle C of length ℓ ≥ 3 and conjectured that maderχ⃗(C) = ℓ for
every such cycle C.

As the first main result of Chapter 7, we prove this conjecture by Aboulker et al.
We further generalize this result and show that maderχ⃗(F ) equals the number of vertices
of F for all digraphs in an inductively defined class which we call octus-digraphs. These
digraphs, among others, contain all bioriented forests and all orientations of cactus graphs.

Our second main result extends the classical result by Dirac [Dir52] that every 4-
chromatic graph contains a subdivision of K4 to digraphs as follows: For every orientation
F of K4, every digraph D with dichromatic number at least 4 contains a subdivision of F .

Our third and last main result proves an asymptotically tight (linear) upper bound on
maderχ⃗(F ) in terms of the number of vertices of F for a large class of (relatively sparse)
digraphs F which we call subcubic. Here a digraph F is called subcubic if it has maximum
degree at most 3, and maximum in- and out-degree at most 2.

The chapter concludes with a discussion of certain digraphs F which we call Mader-
perfect. We say that F is Mader-perfect if it holds that maderχ⃗(F ′) equals the order of F ′

for every subdigraph F ′ ⊆ F . Our first two main results exhibit several digraphs which are
Mader-perfect, and it is natural to ask for a structural characterization of such directed
graphs. We obtain some preliminary results concerning digraphs in this class and pose
several open problems.

In Chapter 8 we study bounds on the dichromatic number of digraphs excluding so-
called butterfly-minors, a minor concept for digraphs that is used in structural digraph
theory. We say that a digraph D contains another digraph F as a butterfly minor if
F can be obtained from a subdigraph of D by contracting certain butterfly-contractible
arcs. These contractions have the property that they leave the directed cycle structure of
the digraph unaffected, and are therefore particularly suited for investigations related to
directed cycles. The notion of butterfly-minors generalizes the topological minors discussed
in the previous section, and hence, given a digraph D of sufficiently large dichromatic
number, it will contain any fixed digraph F as a topological minor and hence also as
a butterfly-minor. However, since butterfly-minors are more general than topological
minors, the concrete bounds for the dichromatic number may improve by a lot if we
consider excluded butterfly-minors instead of topological minors.

Butterfly-minors up to some extent resemble the ordinary minors used in undirected
graph theory, where one is allowed to contract arbitrary edges (or connected subgraphs).
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For t ∈ N let us denote by Gt the inclusion-wise largest minor-closed class of t-colorable
graphs. This class certainly does not contain Kt+1, and Hadwiger’s conjecture states that
Gt is exactly the class of graphs excluding (only) Kt+1 as a minor. In Chapter 8 we are
motivated by the analogous question for directed graphs, where we replace the chromatic
number by the dichromatic number.
Question 0.1. What is the largest butterfly-minor closed class Dt of t-colorable digraphs?

While D1 is the class of acyclic digraphs, the first main contribution of Chapter 8
is to provide a precise characterization of D2, showing that D2 constitutes exactly the
class of non-even digraphs, which we have encountered earlier. We also consider the
recently studied notion of list colorings of digraphs [BHL18] and show that the best-
possible upper bound on the list coloring number of the non-even digraphs is 3. Together
with the characterization of non-even digraphs by Seymour and Thomassen [ST87], our
main result states that every digraph D with χ⃗(D) ≥ 3 contains a bioriented cycle of odd
length as a butterfly-minor. In contrast to graph minor containment, which induces a
well-quasi-ordering on the set of graphs [RS04], the same is not true for directed graphs,
as for instance bioriented cycles cannot be reduced to one another via butterfly minors.

In the chapter we move on by pointing out that Question 0.1 is closely related to the
following problem: For t ≥ 1, what is the smallest integer bmχ⃗(t) such that every digraph
D satisfying χ⃗(D) ≥ bmχ⃗(t) contains the complete digraph

↔
Kt as a butterfly-minor? As

the second main result of Chapter 8 we give an asymptotically almost tight answer to this
question by showing that t + 1 ≤ bmχ⃗(t) = O(t(log log t)6).

Interestingly, there is a bijection between directed graphs and bipartite graphs equipped
with perfect matchings which plays a crucial role in our characterization of D2. Using this
bijection, butterfly minors can be generalized to another minor concept called matching
minors which is used in structural matching theory. Similarly, the dichromatic number
has an analogous concept in graphs with perfect matchings which we call the matching
chromatic number χ(G, M) of a pair (G, M) consisting of an undirected graph G and a
perfect matching M . In this setting, our result concerning D2 has a much nicer formula-
tion: If χ(G, M) ≥ 3 for a bipartite graph G, then G contains K3,3 as a matching minor.
It is remarkable that in this setting we need to exclude only one single minor K3,3 instead
of the infinite anti-chain of bioriented cycles to describe a result of equal strength. This
inspires us to formulate a conjecture very similar to Hadwiger’s conjecture:
Conjecture 0.2 (Matching-Hadwiger). If t ∈ N, G is a bipartite graph and M a perfect
matching such that χ(G, M) ≥ t, then G contains Kt,t as a matching minor.

The conjecture remains open for t ≥ 4. Some evidence for the conjecture can be
retrieved from our result concerning butterfly-minors: If χ(G, M) ≥ O(t(log log t)6), for a
bipartite graph G and a perfect matching M , then G contains Kt,t as a matching minor.

The chapter contains further results concerning the matching chromatic number of
non-bipartite graphs, and an application of our results to so-called forcing matchings in
Pfaffian graphs, an important graph class which is related to the problem of efficiently
counting perfect matchings in graphs.

In Chapter 9 we aim at bounding the dichromatic number of digraphs which exclude
a finite list of digraphs as induced subdigraphs. A subdigraph D′ of a digraph D is called
induced if there exists X ⊆ V (D) such that D′ consists of the vertex-set X and all arcs of
D with both endpoints in X. Given a set F of (di)graphs, we denote by Forbind(F) the
set of (di)graphs containing no induced sub(di)graphs isomorphic to a member of F . We
are motivated by the following natural question posed recently by Aboulker, Charbit, and
Naserasr [ACN20]:
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Question 0.2. For which finite sets F of digraphs is the dichromatic number of digraphs
in Forbind(F) bounded?

If Forbind(F) has bounded dichromatic number, then F is called heroic.
For undirected graph coloring, the analogous question has led to the following famous

Gyárfás-Sumner Conjecture, which remains open in general:

Conjecture 0.3 (Gyárfás-Sumner Conjecture, cf. [Gyá75, Sum81]). For every forest F
and every k ∈ N there exists c(F, k) such that every graph G without induced subgraphs
isomorphic to F or Kk satisfies χ(G) ≤ c(F, k).

Aboulker, Charbit, and Naserasr recently investigated Question 0.2 in [ACN20] and
made the following challenging conjecture, which resembles the Gyárfás-Sumner Conjec-
ture in the setting of directed graphs.

Conjecture 0.4 (Directed Gyárfás-Sumner Conjecture, cf. [ACN20]).

• For every oriented star forest F , and every hero H, the set {
↔
K2, F, H} is heroic.

• For every oriented forest F , and every k ∈ N, the set {
↔
K2, F, K⃗k} is heroic.

Here, K⃗k denotes the transitive tournament on k vertices, and a hero is a special
type of tournament introduced by Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott,
Seymour, and Thomassé in [BCC+13].

In Chapter 9 we present several new results verifying special cases of Conjecture 0.4.
The smallest hero H for which the first part of Conjecture 0.4 gets interesting is the
directed triangle. For this case Aboulker et al. conjectured that every directed triangle-
free oriented graph in which the out-neighborhood of every vertex induces a tournament,
is acyclically 2-colorable, without being able to prove any finite bound on the dichromatic
number. Among other results, in Chapter 9 we prove this conjecture.

Chapter 10 deals with the computational complexity of acyclic colorings of digraphs.
It was shown first by Bokal, Fijavz, Juvan, Kayll, and Mohar [BFJ+04] that deciding
whether a given digraph D satisfies χ⃗(D) ≤ 2 is an NP-complete problem, and therefore
this problem is expected not to admit a polynomial time solution.

In the first part of Chapter 10, we investigate refined hardness results for computing
the dichromatic number. Strengthening the hardness result by Bokal et al., we present a
reduction showing that for every k ≥ 2 deciding whether a given digraph D is acyclically
k-colorable remains NP-hard even if we restrict to input digraphs D which possess a
bounded-size feedback vertex set, i.e., in which we can hit every directed cycle with a small
set of vertices. We conclude that this hardness result rules out parametrized algorithms
computing the dichromatic number with most well-known width measures for directed
graphs, such as directed tree-width.

In the second part of Chapter 10 we present a positive algorithmic result, by presenting
an FPT-algorithm that computes the dichromatic number of a given digraph in polynomial
time, provided that its directed modular width is bounded by a constant. Directed modular
width is a width measure for directed graphs introduced in [SW20], which behaves quite
differently from other width measures in structural digraph theory in the sense that it
may be small on dense networks but quite large on certain sparse digraphs.

The results of Chapter 10 were recently taken up by other researchers, whose re-
sults yield strengthenings of both our results. The first result is improved by Haru-
tyunyan, Lampis, and Melissinos [HLM20], and the second by Gurski, Komander, and
Rehs [GKR20]. In the chapter we give a short summary of these new results.



27

The Chapters of Part III

Part III, entitled Other Coloring Concepts for Digraphs, focuses on the study of colorings
of digraphs which are different from, but sometimes related to, the acyclic colorings of
digraphs treated in Part II.

In Chapter 11 we start off with the notion of complete acyclic colorings of undirected
and directed graphs. This is inspired by the notion of the achromatic number of graphs,
which is a variant of the chromatic number that was introduced in [HHP67] and further
investigated in several works, we refer to [Edw97, HM97] for survey articles. To illustrate
this parameter, let us consider the following naive (polynomial time) coloring algorithm
which outputs a proper graph coloring of a given graph G as follows:

We start by assigning to every vertex in the graph a different color. Next, we repeatedly
go through all different pairs {i, j} of two distinct colors, and check whether there is an
edge in the graph whose endpoints are colored by i and j. If we find a pair for which such
an edge does not exist, we merge those two colors into one common color, preserving a
proper graph coloring, and repeat. Once we do not find a mergeable pair any more, we
return the current coloring.

Clearly, this is not a very sophisticated coloring algorithm, but as graph coloring is
an NP-hard problem, we should not expect a polynomial algorithm to find an optimal
coloring. Yet it is natural to ask how bad a coloring produced by the above procedure
could be in the worst case.

To measure the performance of the algorithm, we may define the achromatic number
Ψ(G) of a graph as the worst-case number of colors used by a coloring generated with
the above algorithm. It is not hard to see that a coloring c : V (G) → {1, . . . , k} can be
produced by the above algorithm if and only if it is a complete coloring, i.e., for every
pair i ̸= j ∈ {1, . . . , k}, there exists an edge e ∈ E(G) whose endpoints are colored i
and j. Hence, the achromatic number is the largest number of colors that can be used in
a complete coloring of G.

Clearly, the same coloring procedure can be applied to any other definition of a conflict
free-coloring. Considering the dichromatic number, we may define in the same spirit a
complete acyclic coloring of a digraph D as an acyclic coloring with the property that
the subdigraph induced by the union of any two color classes contains a directed cycle,
and the adichromatic number adi(D) of a digraph D as the maximum possible number of
colors used by a complete acyclic coloring.

A coloring concept for undirected graphs that is directly analogous to the dichromatic
number of a digraph is the vertex-arboricity. An arboreal coloring of an undirected graph
is a vertex-coloring which avoids monochromatic cycles. Hence, the color classes in an
arboreal coloring induce forests. The smallest number of colors that can be used for an
arboreal coloring of a graph G is called the vertex-arboricity va(G).

Applying the above greedy-coloring scheme also to the arboreal colorings, we define in
the same way a complete arboreal coloring of a graph G as an arboreal coloring such that
the union of any two color classes induces a subgraph containing a cycle, and the a-vertex
arboricity ava(G) as the largest number of colors used by a complete arboreal coloring.

After observing basic properties of the new parameters, in Chapter 11 we first establish
so-called interpolation theorems for the adichromatic number and the a-vertex arboricity,
which have been proved previously for the achromatic number. We then consider the rela-
tion between the parameters adi(D) and ava(G) and the feedback vertex numbers τ(D) and
τ(G), which denote, respectively, the smallest size of a vertex-set in the (di)graph hitting
all (directed) cycles. We show that the parameters adi and ava are bounded from above
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in terms of τ and consider the natural question whether an inverse relationship between
the feedback-parameters and the coloring parameters also holds. While we construct di-
graphs with bounded adichromatic number and unbounded feedback vertex number, we
prove as the main result of the chapter that there exists a function f : N → N such
that τ(G) ≤ f(ava(G)) for every simple graph G, showing that the parameters ava(G)
and τ(G) are tied to one another. As a consequence, we also show that a graph has
large a-vertex-arboricity if and only if it admits an orientation whose adichromatic num-
ber is large. It is interesting that a corresponding relation between vertex-arboricity and
dichromatic number is not known. In fact, it is subject of an open conjecture by Erdős
and Neumann-Lara [Erd80] from 1980 that a graph has large chromatic number (or large
vertex-arboricity3) if and only if it admits an orientation with large dichromatic number.

Chapter 12 deals with majority colorings of digraphs, a coloring concept introduced
rather recently by Kreutzer, Oum, Seymour, van der Zypen, and Wood in [KOS+17], which
is quite different from the coloring notions considered in the previous chapters. Given a
digraph D, a majority k-coloring of D is a vertex-coloring c : V (D)→ {1, . . . , k} such that
for every vertex x ∈ V (D), at most half of the out-neighbors of x have the same color as x.
This notion of coloring was originally inspired by a problem for neural networks [vdZ19].
While the definition in itself might seem a bit artificial, it is not uncommon in graph theory
to seek partitions of the vertex-set of a given graph that satisfy certain degree restrictions,
as they can have useful applications, for instance in order to find disjoint substructures in
graphs. We refer to the Chapters 2 and 3, as well as to the overview article of Alon [Alo06]
with further evidence for this claim.

Kreutzer et al. [KOS+17] proved as their main result that every digraph admits a
majority 4-coloring. While there are digraphs requiring at least 3 colors in any majority
coloring (for instance the directed triangle), Kreutzer et al. conjectured that in fact every
digraph should admit a majority 3-coloring. They provided certain evidence for their
claim by proving it for very dense digraphs, whose out- and in-degrees are large and
relatively balanced, by using a random coloring approach. However, probabilistic methods
seem incapable of proving majority 3-colorability for digraphs which are comparatively
unbalanced, and admit vertices of both very large and very small degrees. In Chapter 12,
we verify the majority 3-coloring conjecture by Kreutzer et al. for several structurally nice
classes of digraphs, which can be both sparse and unbalanced, such as orientations of
properly 6-colorable graphs. Instead of a probabilistic approach, our proofs are based on
deterministic list coloring arguments. In addition, answering a question of Kreutzer et al.,
we prove that there is ε > 0 such that every digraph can be fractionally (4− ε)-colored.

In the last two Chapters of Part III, we deal with variants of acyclic colorings of
digraphs called fractional and circular colorings. While the fractional dichromatic number
of a digraph arises as a linear relaxation of an integer program defining the dichromatic
number, we also consider the star dichromatic number of digraphs and the circular vertex
arboricity of undirected graphs introduced in [HS19] and [WZLW11] respectively, which
are rational refinements of the dichromatic number and the vertex arboricity, respectively.

In Chapter 13 we start by displaying basic properties of these parameters and then go
on to study the complexity of computing these parameters. The results are unfortunately
negative, as we prove strong NP-hardness results for all three parameters. Our results
answer an open question from [HS19] as well as questions in the context of the work
by Wang et al. [WZLW11]. The results resemble the hardness results achieved by Feder,
Hell, and Mohar [FHM03] for the circular dichromatic number, which is another fractional
coloring parameter for digraphs introduced by Bokal et al. [BFJ+04].

3Since every forest is properly 2-colorable, we have va(G) ≤ χ(G) ≤ 2va(G) for every graph G.
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Our NP-hardness reductions make use of the concept of graph homomorphisms which
are certain types of mappings between undirected graphs generalizing proper graph col-
orings. In order to show hardness results for digraphs, we introduce so called circular
homomorphisms. These are mappings acting between digraphs which are appropriate for
the analysis of acyclic colorings of digraphs and the star dichromatic number, and which
generalize undirected graph homomorphisms in a natural way. We think that this concept
could be of independent interest.

In the last Chapter 14 we study circular and fractional acyclic colorings of planar
digraphs, i.e., digraphs whose underlying graphs are planar. Motivated by a famous con-
jecture of Jaeger [Jae84] from 1984 concerning circular colorings of planar graphs without
short cycles as well as by a conjecture of Woodall [Woo78] concerning feedback arc-sets
in planar digraphs, we investigate bounds on the fractional dichromatic number of planar
digraphs without short directed cycles. Using a classical min-max packing result by Luc-
chesi and Younger [LY78] and basic results from the theory of certain set families called
clutters we can show that (1) for every ε > 0 the fractional dichromatic number of planar
digraphs of sufficiently large digirth is at most 1 + ε and (2) the fractional dichromatic
number of a strongly planar digraph equals g/(g − 1), where g denotes the length of its
shortest directed cycle. Here, strongly planar digraphs refer to the subclass of planar di-
graphs which can be embedded in the plane without crossings such that sets of out-arcs
and in-arcs of any vertex form two intervals in the cyclical ordering of incident arcs around
the vertex. Interestingly, (2) means that the fractional dichromatic number of strongly
planar digraphs can be computed in polynomial time, contrasting hardness results from
Chapter 13 for general planar digraphs.
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Chapter 1

Preliminaries

In this chapter we introduce basic notation and fundamental concepts used in the thesis.
The reader very familiar with graph and matroid theory may skip large parts of this
chapter and revisit it to look for special notations or definitions more targetedly.

General Mathematical Notation. Given a subset X ⊆ S of a ground-set S (given
by context), we will use the notation X to denote the complement S \ X of X. By 2S

we denote the power-set of S, and for every integer k ≥ 0 we denote by
(︁S

k

)︁
the set

of all k-element subsets of S. For two sets X, Y we denote their symmetric difference by sym. difference

X +Y := (X∪Y )\(X∩Y ). The smallest natural number is 1, and we write N0 := N∪{0}.
For n ∈ N we denote [n] := {1, 2, . . . , n}. For k ∈ N we use Zk to denote the cyclic group
(Z/kZ, +) and identify its elements with the numbers {0, 1, 2, . . . , k − 1}.

We use standard Landau notation such as f = O(g), f = Ω(g), f = o(g), f = ω(g) to
express relationships between the asymptotic growth of real-valued functions f and g. For
t ∈ R, t > 0 we denote by log t the natural logarithm of t.

Digraphs. For basic notation and facts about graphs and digraphs not included in the
following we refer the reader to the standard reading [Die17, BJG08].

A graph is a tuple G = (V, E) consisting of a finite set V of vertices and a multi-set graph

E ⊆ {{u, v}|u, v ∈ V } of edges, which consist of unordered pairs of vertices or single
vertices. Given a graph G = (V, E), we denote by V (G) := V the vertex-set of G, vertex-set

by E(G) := E the edge-(multi-)set of G, and by v(G) := |V (G)|, e(G) := |E(G)| their edge-set

respective sizes. The value of v(G) is called the order of G, while e(G) is its size. Two order
sizevertices u, v ∈ V (G) are called adjacent in G if {u, v} ∈ E(G), a vertex v ∈ V (G) and an
adjacent

edge e ∈ E(G) are called incident if v ∈ e. For an edge e = {u, v} in a graph, we also use incident

the short notation e = uv and e = vu (symmetrically). For a vertex v ∈ V (G), we denote
by EG(v) ⊆ E(G) the set of edges in G incident with v, and by NG(v) the neighborhood neighborhood

of v, i.e., the set of vertices in G adjacent to v.
An edge e is called a loop if |e| = 1. Two edges e1 ̸= e2 in G are called parallel if they loop

parallelare not loops and have the same endpoints. A graph G is called loopless if it contains no
looplessloops and simple if it contains neither loops nor pairs of parallel edges. simple

The degree of a vertex v in a graph G is defined as dG(v) := |EG(v)|+ |LG(v)|, where degree

LG(v) is the set of loops incident with v. If G is a simple graph, then dG(v) = |NG(v)|.
While using these notations, we sometimes drop the subscript G if it is clear by context.
The largest respectively smallest degree achieved by a vertex in G is the maximum degree extremal

degrees∆(G) or the minimum degree δ(G) of G. The average degree d(G) := 2e(G)
v(G) is the arithmetic

average degree
mean of the vertex-degrees.
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A directed graph is a tuple D = (V, A) consisting of a finite set V of vertices of thedigraph

digraph, and a multi-set A ⊆ V × V of arcs (also called directed edges or sometimes
just edges) of the digraph D. Given a digraph D = (V, A), we denote by V (D) := V
its vertex-set and by A(D) := A its arc-set (sometimes also called edge-set). We denotevertex-set

arc-set v(D) := |V (D)|, a(D) := |A(D)| and call v(D) the order and a(D) the size of D. Given
order
size an arc e = (u, v) ∈ A(D), the vertex u is called the tail of e, while v is the head of e,
tail and head denoted by tail(e), head(e). Given two vertices u, v ∈ V (D) such that (u, v) ∈ A(D), we

say that u sees v and v is seen by u in D. Given two digraphs D′, D we say that D′ is a
subdigraph of D and write D′ ⊆ D, if V (D′) ⊆ V (D) and A(D′) ⊆ A(D). If in additionsubdigraph

V (D′) = V (D), then we say that D′ is a spanning subdigraph of D.spanning

The underlying graph U(D) of a digraph D = (V, A) is an undirected graph defined asunderlying

U(D) = (V, E) where E := {{u, v}|(u, v) ∈ A} is the multi-set obtained from the arc-multi-
set of D by replacing every ordered pair of vertices with the corresponding unordered pair.
Given an undirected graph G, an orientation of G is any digraph D satisfying U(D) = G.orientation

Two vertices of a digraph D are called adjacent if they are adjacent in U(D), andadjacent

a vertex x ∈ V (D) and an arc e ∈ A(D) are incident in D if x ∈ {tail(e), head(e)}.incident

We say that e leaves x or emanates from x or that e is outgoing at x if x = tail(e),outgoing

and that e enters x or that e is incoming at x if x = head(e). An arc e ∈ A(D) isincoming

called a loop if tail(e) = head(e). Two distinct arcs e1, e2 ∈ A(D) are called parallelloop

if tail(e1) = tail(e2) ̸= head(e1) = head(e2), and anti-parallel if tail(e1) = head(e2) ̸=(anti-)parallel

head(e1) = tail(e2). Given a graph G, its biorientation or bidirection
↔
G is defined as thebiorientation

digraph obtained from G by replacing every edge with an anti-parallel pair of arcs, i.e.,
A(
↔
G) := {(u, v), (v, u) | {u, v} ∈ E(G)}. A digraph D is called simple if it does not containsimple

loops nor parallel arcs. If in addition, D does not contain anti-parallel pairs of arcs (i.e.,
if U(D) is a simple graph), then we call D oriented or oriented graph.oriented

During this thesis, we will mostly work with simple digraphs, there are exceptions
however. To make these cases clear, at the beginning of every chapter we emphasize
which kinds of graphs (multi-, simple) or digraphs (multi-, simple, oriented) we deal with.

For a vertex v ∈ V (D), we denote by ED(v) := EU(D)(v) and ND(v) := NU(D)(v)
the set of incident edges respectively the neighborhood of v in D and define dD(v) :=neighborhood

|ED(v)| = dU(D)(v) as the (total) degree of v in D. We furthermore use the notationtotal degree

E+
D(v) := {e ∈ A(D)|tail(e) = v} and E−

D(v) := {e ∈ A(D)|head(e) = v}; and denote by
d+

D(v) := |E+
D(v)| the out-degree and by d−

D(v) := |E−
D(v)| the in-degree of v in D. Weout-degree

in-degree further let N+(v) := {u ∈ V (D)|(v, u) ∈ A(D)}, N−(v) := {u ∈ V (D)|(u, v) ∈ A(D)}
denote the out- and in-neighborhood of v in D. More generally, for a non-empty vertex-setout- and in-

neighborhood U in a digraph D, we denote N+
D (U) :=

⋃︁
u∈U N+

D (u) \U and N−
D (U) :=

⋃︁
u∈U N−

D (u) \U .
Again, we may drop the subscript D while using these notations if it is clear from context.
If D is a simple digraph, then d+

D(v) = |N+
D (v)|, d−

D(v) = |N−
D (v)|, and if D is oriented,

then dD(v) = |ND(v)| = d+
D(v) + d−

D(v). A vertex v ∈ V (D) is called a sink if d+
D(v) = 0sink and source

and a source if d−
D(v) = 0. We say that a digraph D is Eulerian if d+

D(x) = d−
D(x) for everyEulerian

x ∈ V (D) and r-regular for an integer r ≥ 1 if d+
D(x) = d−

D(x) = r for every x ∈ V (D).regular

The extremal out- and in-degrees of vertices in D are denoted as follows: δ(D), ∆(D)
are the minimum and maximum (total) degrees of D, δ+(D) and δ−(D) are the minimumextremal

degrees out- and the minimum in-degree of D, and finally ∆+(D) and ∆−(D) denote the maximum
out- and the maximum in-degree of D.

For a vertex-set X ⊆ V (D) in a digraph D, we denote by D[X] the subdigraph of D
induced by X, that is D[X] := (X, AX) with AX := {e ∈ A(D)|tail(e), head(e) ∈ X}. Forinduced

subdigraph a set X of vertices or arcs in D, we denote by D−X the subdigraph obtained by deleting
deletion

the objects in X from D. We write D − v := D − {v} and D − e := D − {e} for all
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v ∈ V (D) and e ∈ A(D). If A ⊆ A(D), we write D[A] for the subdigraph (V (D), A) of D
induced by A.

A pair of (di)graphs is said to be isomorphic if there is a bijection between the vertex- isomorphic

sets which also induces a bijective map between the edge- or arc-sets, respectively. For
most of our work, it will not matter much whether two graphs are equal or isomorphic.
In this sense, we use a slightly sloppy notation as follows: For k ∈ N we use Kk to denote
any simple graph of order k in which any pair of distinct vertices is adjacent and call such
a graph a (k-)clique or a complete graph of order k. By Pk we denote a path of order clique

path graphk, i.e. a graph isomorphic to ([k], {{i, i + 1}|1 ≤ i < k}). Furthermore, we denote by Ck

for k ≥ 2 any graph isomorphic to the graph ([k], {{i, i + 1}|1 ≤ i < k} ∪ {1, k}) and call
it a k-cycle or cycle of length k. By Sk we denote the graphs which are isomorphic to cycle graph

([k + 1], {{1, i}, i = 2, . . . , k + 1}) and call them k-stars. By Wk we denote the graphs star

isomorphic to ([k + 1], {{1, i}, i = 2, . . . , k + 1}∪{{i, i + 1}|i = 2, . . . , k}∪{2, k + 1})), and
call them k-wheels. Finally, for m, n ∈ N we denote by Km,n any complete bipartite graph wheel

Km,nisomorphic to ([m + n], {{i, j}|1 ≤ i ≤ m < j ≤ m + n}).

Similar definitions apply to digraphs: For k ∈ N we denote by
↔
Kk,

↔
Pk,

↔
Ck any digraphs

isomorphic to a biorientation of a k-clique, a k-path or a k-cycle, and call them bioriented
k-cliques or complete digraphs of order k, bioriented (bidirected) k-path and bioriented biclique

bioriented path(bidirected) k-cycles or k-bicycles, respectively. Further important digraphs are the di-
bicyclerected k-paths P⃗k which are isomorphic to ([k], {(i, i + 1)|1 ≤ i < k}), the directed k-cycles directed path

directed cycleC⃗k isomorphic to ([k], {(i, i + 1)|1 ≤ i < k} ∪ {(k, 1)}), as well as K⃗k, the transitive tour-
naments of order k isomorphic to ([k], {(i, j)|1 ≤ i < j ≤ k}). We denote by S+

k , S−
k the transitive

tournament
out/in-stars

orientations of the graphs Sk where all arcs incident to the central vertex (with label 1)
are oriented outwards (respectively inwards). Similarly we denote by W +

k , W −
k the orien- out/in-wheels

tations of the graphs Wk where all arcs incident to the central vertex (with label 1) are
oriented outwards (respectively inwards) and where the cycle spanned by the remaining
vertices is oriented cyclically. Lastly, for m, n ∈ N we denote by K⃗m,n an orientation of
Km,n isomorphic to ([m + n], {(i, j)|1 ≤ i ≤ m < j ≤ m + n}). These definitions are
illustrated in Figure 1.1.

A walk W in a digraph is an alternating sequence W = v1, e1, v2, . . . , vk−1, ek−1, vk of walk

vertices and arcs such that ei = (vi, vi+1) or ei = (vi+1, vi) for all 1 ≤ i ≤ k − 1. We
will call v1 the first vertex of W , v2 the second vertex of W , vk the last vertex of W , etc.
The walk is called closed if vk = v1. Given a walk W in a digraph, we will often use the first/last vertex

closed walkshort notation W = v1, . . . , vk instead of W = v1, e1, ..., ek−1, vk to express that the walk
W visits the vertices v1, . . . , vk in this order. If a walk does not repeat arcs, then it is
called a trail. If it does not repeat vertices, then it is called oriented path. If in a walk trail

oriented pathv1, e1, v2, . . . , vk−1, ek−1, vk the vertices v1, . . . , vk−1 are pairwise distinct and vk = v1, then
we speak of an oriented cycle in the digraph. oriented cycle

A directed walk in a digraph is a walk v1, e1, v2, . . . , vk−1, ek−1, vk such that tail(ei) = vi, directed walk

head(ei) = vi+1 for all 1 ≤ i ≤ k − 1. We have a closed directed walk if vk = v1. If a
directed walk does not repeat arcs, then it is called a directed trail. If it does not repeat directed trail

vertices, then it is called a directed path. If in a directed walk v1, e1, v2, . . . , vk−1, ek−1, vk directed path

we have k ≥ 2, the vertices v1, . . . , vk−1 are pairwise distinct and vk = v1, then we speak
of a directed cycle in the digraph. directed cycle

It is clear that oriented paths and oriented cycles in a digraph D describe certain
subdigraphs of D isomorphic to an orientation of a path or an orientation of a cycle. In
this sense, we will not distinguish between the vertex-arc-list and the subgraph-definition
of oriented paths and cycles. We may therefore use notations like V (P ), V (C), A(P ), A(C)
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Figure 1.1: From top left to bottom right going in row-wise order the following digraphs are
depicted: The complete digraph of order 4, the bioriented 4-path, the 4-bicycle, S+

3 , W +
3 , the

transitive tournament of order 4, the directed 4-path, the directed 4-cycle, S−
3 , W −

3 , as well as the
complete bipartite graph K3,3 and the one-direction K⃗3,3.

to refer to the vertex- or arc-sets of an oriented path or an oriented cycle P or C in D. We
will also often refer to oriented paths and cycles in digraphs simply as paths and cycles.

Given a directed path P = v1, e1, v2, . . . , vk−1, ek−1, vk, we say that P is a dipath fromdipath

v1 to vk (v1-vk-dipath for short). We denote by |P | = k−1 the length of P (i.e. its number
of arcs). Similarly, for a directed cycle C we define its length as |C| := a(C) = v(C). Alength

directed cycle of length 2 in a digraph corresponds to an anti-parallel pair of arcs and is
called a digon. Given two vertices x, y on a path P , we denote by P [x, y] = P [y, x] thedigon

subpath of P with endpoints x and y. A vertex v in a digraph D is said to be reachablereachable

from a vertex u if there exists a u-v-dipath. In this case, the distance from u to v in Ddistance

is defined as the length of a shortest u-v-dipath. For a pair of walks P, Q such that the
first vertex of Q is the last vertex of P , we denote by P ◦ Q the concatenation of P andconcatenation

Q, i.e. the walk obtained by first traversing P and then traversing Q. When P (resp. Q)
consists of a single arc (x, y), we will sometimes write (x, y) ◦Q (resp. P ◦ (x, y)) instead
of P ◦Q. The directed girth or digirth1 of D, i.e. the minimum length of a directed cycledirected girth

in D, is denoted by g⃗(D). For a directed cycle C and two vertices x, y ∈ V (C), we denote
by C[x, y] the segment of C which forms a dipath from x to y. Two paths or cycles in a
digraph are called vertex-disjoint if they do not share a vertex and two paths are internally
vertex-disjoint if they only intersect at common endpoints.internally

disjoint A vertex-set X ⊆ V (G) in a graph G is called independent if the vertices in X are
independent
set pairwise non-adjacent. Similarly a vertex-set X ⊆ V (D) in a digraph D is independent

if it is independent in U(D). By α(G) (resp. α(D)) we denote the largest size of an
independent set in G (resp. D) and call it the independence number .independence

number A graph G is called a forest or acyclic if it contains no cycles, and a tree if it is also
forest, tree

connected. An out-(in-)arborescence is an orientation of a rooted tree in which all arcsarborescence

1If D does not contain directed cycles, then g⃗(D) := ∞.



35

are directed away from (towards) its root. A (di)graph is bipartite if its vertex-set can be bipartite

partitioned into at most two independent sets.
We call a vertex-set X ⊆ V (G) acyclic, if G[X] is a forest. A feedback vertex-(edge-)set acyclic set

feedback setof G is a set X of vertices (edges) such that G − X is acyclic. By τ(G) we denote the
smallest size of a feedback vertex set in G.

Analogously, a digraph is called acyclic if it does not contain directed cycles. A di- acyclic

graph is acyclic if and only if it admits a topological vertex-ordering, i.e., a linear ordering topological

orderingv1, . . . , vn of V (D) such that (vi, vj) ∈ A(D)⇒ i ≤ j for all i, j ∈ {1, . . . , n}.
We call a vertex-set X ⊆ V (D) acyclic, if D[X] is acyclic. A feedback vertex-(arc-)set acyclic set

of D is a set X of vertices (arcs) such that D − X is acyclic. By τ(D) we denote the
smallest size of a feedback vertex set in D.

A digraph D is called weakly connected (or just connected) if every two vertices can be connected

connected by a path (i.e., if U(D) is connected), and is called strongly connected if for every strongly

connectedordered pair of vertices (x, y) ∈ V (D) × V (D), x can reach y in D. The (vertex-sets of
the) maximal strongly connected subgraphs of a digraph D are called (strong) components strong

componentand induce a partition of V (D).
For a natural number k ∈ N, a graph G is called k-vertex (edge)-connected if it has

at least k + 1 vertices (edges) and for every set K of at most k − 1 vertices (edges) of
G, the digraph G−K is connected. Analogously, a digraph D is called strongly k-vertex (strongly)

k-connected(arc)-connected if it has at least k + 1 vertices (arcs) and for every set K of at most
k− 1 vertices (arcs) of D, the digraph D−K is strongly connected. The smallest integer
k ≥ 0 such that a digraph D is strongly k-vertex (arc)-connected is called the strong vertex
(arc)-connectivity of D, denoted by κ(D) (resp. κ′(D)). strong

connectivityNext we quickly recall Menger’s Theorem, which is a fundamental result relating con-
nectivity in digraphs with the existence of disjoint directed paths. Menger’s Theorem will
be used repeatedly in the course of this thesis.

Menger

Theorem 1.1 (cf. [Men27]). Let D be a digraph and u, v ∈ V (D) be distinct vertices such
that (u, v) /∈ A(D). Then for every k ∈ N, either there are k internally vertex-disjoint
u-v-dipaths in D, or there is a set K ⊆ V (D) \ {u, v} such that |K| < k and D − K
contains no u-v-dipath.

Given a digraph D and two (not necessarily disjoint) subsets A, B ⊆ V (D), an A-B-
dipath is a directed path in D which starts at a vertex of A, ends at a vertex of B, and
is internally vertex-disjoint from A ∪ B (an A-B-dipath is allowed to consist of a single
vertex in A ∩B). If A or B are of size one, say A = {u} or B = {u}, then we will simply
write “u-B-dipath” or “A-u-dipath”, respectively.

We will frequently use the following well-known direct consequences of Menger’s The-
orem for directed graphs.

Theorem 1.2 (cf. [Men27] and [Gör00]). Let D be a digraph and k ∈ N.

(i) If D is strongly k-vertex-connected, then for any two subsets A, B ⊆ V (D) such that
|A|, |B| ≥ k, there are k pairwise vertex-disjoint A-B-dipaths.

(ii) If v ∈ V (D) and A ⊆ V (D) \ {v}, then either there are k different v-A-dipaths
(resp. A-v-dipaths) which pairwise only intersect at v, or there is K ⊆ V (D) \ {v}
such that |K| < k and such that in D−K there is no dipath starting at v and ending
in A (resp. starting in A and ending at v).

Proof. For (i), consider an auxiliary digraph H obtained from D by adding two distinct
artificial vertices vA, vB /∈ V (D), and adding all the arcs (vA, y) with y ∈ A and (y, vB)
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with y ∈ B. We claim that no K ⊆ V (D) = V (H) \ {vA, vB} of size |K| < k can separate
vB from vA. Indeed, for each such K we have A\K, B \K ̸= ∅ (because |A|, |B| ≥ k), and
since D was assumed to be strongly k-vertex-connected, there is an A-B-dipath in D−K,
and hence a vA-vB-dipath in H − K. We can now apply Theorem 1.1 to the vertices
vA and vB to conclude that there must be a collection P of k internally vertex-disjoint
vA-vB-dipaths in H. For each path P ∈ P, let vP,A ∈ A be the last vertex in A we meet
when traversing P from vA towards vB, and let vP,B be the first vertex in B we meet when
traversing P [vP,A, vB] starting from vP,A. Now the family P ′ := {P [vP,A, vP,B]|P ∈ P}
forms a collection of k vertex-disjoint A-B-dipaths in D, proving the claim.

Let us now derive (ii) for the case of v-A-dipaths (the proof for A-v-dipaths is sym-
metrical). Consider an auxiliary digraph H obtained from D by adding an artificial
vertex vA /∈ V (D) and adding the arc (y, vA) for every y ∈ A. The claim now follows
by applying Theorem 1.1 to the vertices v and vA in H: either there are k internally
vertex-disjoint v-vA-dipaths in H, and by cutting these dipaths as soon as they hit A
(similarly as we do in the proof of the first item) we obtain k distinct v-A-dipaths in D
which pairwise only share the vertex v; or we can hit all v-vA-dipaths in H with a subset
K ⊆ V (H) \ {v, vA} = V (D) \ {v} of size |K| < k which means that there are no dipaths
in D −K starting at v and ending in A. This proves the second item.

Given a directed graph D and a subset U ⊆ V (D) of vertices, we denote by ∂(U) the
set of all arcs in A(D) having one end in U and the other in U := V (D) \ U . A cut of aedge-cut

digraph is a non-empty arc set of the form ∂(U) for some U ⊆ V (D). A cut of D is called
minimal or equivalently bond, if there is no other cut of D properly contained in it. Bybond

∂+(U), we denote the set of all arcs in A(D) directed from U to U . If ∂(U) = ∂+(U), we
call S = ∂(U) a directed cut or dicut induced by U , and U is referred to as a cut set of S.directed cut

In the case that D is weakly connected, the cut set is uniquely determined by the dicut.
A minimal directed cut or directed bond is a directed cut which is minimal. A dijoin in adirected bond

dijoin digraph is a set of arcs intersecting every directed cut (resp. every directed bond).

Minor Concepts for Graphs and Digraphs. Given a graph H, an H-minor modelminor model

is any graph G whose vertex-set admits a partition into non-empty sets Xh, h ∈ V (H)
with the following properties: For every h ∈ V (H), the graph G[Xh] is connected and for
every edge e = {h1, h2} ∈ E(H), there exists a representing edge f = {u, v} ∈ E(G) such
that u ∈ Xh1 and v ∈ Xh2 . Note that in case that H is a multi-graph, we require that the
representing edges of distinct parallel edges or loops in E(H) are also pairwise distinct.
Given two undirected graphs G and H, we say that G contains H as a minor and writeminor

G ≽ H if G contains a subgraph which is an H-minor model. An alternative definition of
graph minors uses edge contractions: Given a graph G and an edge e = {u, v} ∈ E(G), thecontraction

graph G/e obtained from G by contracting e is defined by V (G/e) := (V (G)\{u, v})∪{xe},
where xe /∈ V (G) is a newly created vertex representing the contracted edge e, and

E(G/e) = E(G− {u, v}) ∪ {{x, xe}|e = {x, y} ∈ E(G), x /∈ {u, v}, y ∈ {u, v}}.

When working in settings where parallel edges or loops are allowed, we will interpret
G/e as a multi-graph. In contrast and with a slight abuse of notation, when working
in the setting of simple graphs only, we will use the same symbol G/e to denote the
simple graph obtained from G by identifying the endpoints of e, and then deleting all
loops and identifying all parallel edges that have arisen by performing the contraction at
e. Which of the two definitions is used will be clear from context. Using the notion of
edge contractions, we may give the equivalent definition of graph minors as follows: A
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graph G contains another graph H as a minor if and only if there exists a finite sequence
G = G0, G1, . . . , Gk of graphs such that for every 1 ≤ i ≤ k we can obtain Gi from
Gi−1 by a vertex-deletion, an edge-deletion or an edge-contraction, and such that Gk is
isomorphic to H. A class G of graphs is minor-closed if for every graph G ∈ G and every minor-closed

graph H such that G ≽ H we have H ∈ G. Graph minors are certainly one of the most
important tools in graph theory and have been heavily influential to the development of
structural graph theory. One of the main reason for the popularity and importance of
graph minors may be that many important graph parameters, such as tree-width, as well tree-width

as many important topologically defined graph classes, such as the planar graphs or the
graphs embeddable on a fixed surface, are not only closed under the subgraph operation,
but are also well-behaved with respect to taking minors. It is not hard to see that minor
containment defines a quasi-ordering (a reflexive and transitive binary relation) on the set
of graphs. In contrast, it is not an easy question whether this ordering is also a so-called
well-quasi-order, i.e., if or not there exist infinite sequences of graphs G1, G2, . . . with the
property that Gi is not a minor of Gj for any ordered pair (i, j) ∈ N2 (so-called antichains).
A famous conjecture attributed to Wagner stated that the minor relation is indeed a well-
quasi-ordering. This fundamental question in graph theory has inspired much research
in the late 20th and the early 21th century, culminating in the famous Graph Minors
Project by Robertson and Seymour [RS04], a sequence of 20 papers spanning from 1984
to 2004 which resulted in a proof of Wagner’s conjecture, and, on its way, produced a
whole structural theory of minor-closed graph classes. These characterizations still find
applications in present research.

Another important notion of minors in graphs called topological minors also originally
stems from topological graph theory: Given a graph drawn in the plane, the topological
properties of this planar embedding, and in particular whether or not the drawing is
crossing-free, do not change by subdividing the curves representing these edges with further
points (vertices) placed on the interior of these curves. Combinatorially, we define a
subdivision of a graph G to be any graph obtainable from G by (repeatedly) replacing subdivision

an edge e = uv of G by a path which is internally vertex-disjoint from G but intersects
G at its endpoints, u and v. A topological minor of a graph G is defined as any graph topological

minorH such that G contains as a subgraph a subdivision of a graph isomorphic to H. The
fact that planarity is preserved by topological minors allows for beautiful combinatorial
characterizations of topologically defined graph classes by excluded topological minors,
such as Kuratowski’s characterization of planar graphs [Kur30].

Given the tremendous success of undirected graph minors in history, it is only natural
to try and establish an analogous structural theory of digraphs based on a suitable concept
of digraph minors. However, it has turned out that there is not only one natural gener-
alization of minor concepts from undirected graphs to digraphs, and several concurring
notions have been studied in the literature. The maybe least debatable minor concept of
minors for digraphs are topological minors, whose definition is basically the same as for
undirected graphs.

Definition 1.1 (Topological minor). Given a digraph D, a subdivision of D is any digraph digraph

subdivisionD′ obtained from D by replacing every arc e = (u, v) ∈ A(D) by a directed path Pe starting
in u and ending in v, such that the paths Pe, e ∈ A(D) are pairwise internally vertex-
disjoint and intersect V (D) only in their endpoints. Given a subdivision D′, the vertices
in D′ originally contained in D are called branch vertices, while the vertices internal to a branch vertex

path Pe, e ∈ A(D) are called subdivision vertices. Let D1, D2 be digraphs. We say that D2 subdivision
vertexis a topological minor of D1 and write D1 <t D2 if D1 contains a subdivision of a digraph
topological

digraph minorisomorphic to D2 as a subdigraph.
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Given a digraph D and an arc e = (u, v) ∈ A(D), the digraph D/e obtained from D
by contracting e is defined by V (D/e) := (V (D) \ {u, v}) ∪ {xe}, where xe /∈ V (G) is aarc contraction

newly created vertex representing the contracted arc e, and

A(D/e) = A(D − {u, v}) ∪ {(x, xe)|e = (x, y) ∈ A(D), x /∈ {u, v}, y ∈ {u, v}}

∪{(xe, y)|e = (x, y) ∈ A(D), x ∈ {u, v}, y /∈ {u, v}}.
More generally, for a set A ⊆ A(D) of arcs we denote by D/A the digraph obtained from
D by successively2 contracting the arcs in A. Again, depending on whether we work in
the realm of simple digraphs or multi-digraphs, we will identify or keep parallel arcs or
loops arising by arc contractions.

The second minor notion which we discuss in this thesis are the so-called strong minors,
which aim to generalize the definition of undirected graph minors by replacing connectivity
in graphs with strong connectivity in directed ones. Strong minors have been introduced
in 1996 by Jagger [Jag96] and further studied by Kim and Seymour [KS15], who proved
that the strong minor relation induces a well-quasi ordering on the set of semicomplete
digraphs (digraphs in which every pair of vertices is adjacent). The notion has also been
studied more recently by Axenovich, Girão, Snyder, and Weber [AGSW20].

Definition 1.2 (Strong minor). Let H be a digraph. A strong H-minor-model is a digraphstrong minor

model D equipped with a partition V (D) =
⋃︁

h∈V (H) Vh of its vertex-set such that D[Vh] is strongly
connected for every h ∈ V (H), and such that for every arc (h1, h2) ∈ A(H) there exists
e ∈ A(D) with tail(e) ∈ Vh1 and head(e) ∈ Vh2. We say that a digraph D contains a strong
H-minor and write D <s H if D contains a strong H-minor-model as a subdigraph. Lessstrong minor

formally, one may define a strong minor of a digraph D to be any digraph obtainable from
D by repeated application of the followings steps:

• Deleting vertices or arcs, and

• Contracting the arc-set of a strongly connected subdigraph.

The last notion of digraph minors which plays an important role in this thesis are the
butterfly-minors, which is the minor notion for digraphs used most frequently in structural
digraph theory. One of the first appearances of this notion is in [JRST01], and since
then it has reoccurred frequently in digraph literature; let us mention the papers [GT11],
[KK15],[GKKK20] for a small selection of results based on butterfly-minors.

The basic idea of butterfly-minors is to only allow for contractions of certain special
contractible arcs. The reason for that is that when focussing on structural digraph theory
one is mainly concerned with strong connectivity and directed substructures such as di-
rected cycles and directed paths. However, contracting an arbitrary arc in a digraph could
possibly hide information, in the sense that new directed cycles might be created that did
not exist in the digraph before the contraction. In order to be able to keep track of this
directed information, one insists on contracting only such arcs which have the property
that any directed path or cycle in the digraph after contracting the arc corresponds to a
directed path or cycle in the original digraph.

More precisely, for a butterfly-contractible edge e within a digraph D every directed
cycle in D/e either equals one in D or induces one in D by incorporating e, a property
which does not necessarily hold if arbitrary edges are contracted.

Definition 1.3 (Butterfly minor). Let D be a digraph. An arc e = (u, v) ∈ A(D) is called
contractible if d+

D(u) = 1 or d−
D(v) = 1, i.e., if e is the only arc leaving u or the only arccontractible arc

2Up to isomorphism, the outcome of this process does not depend upon the order in which the arcs are
contracted.
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entering v. We say that a digraph D1 contains another digraph D2 as a butterfly minor butterfly

minorand write D1 <b D2, if D2 is isomorphic to a digraph which can be obtained from D1 via
a finite sequence of arc-deletions, vertex-deletions, and contractions of contractible arcs.

We note that it can be proved by induction that if F is a subcubic digraph, that is, a subcubic

digraph satisfying ∆(F ) ≤ 3, ∆+(F ), ∆−(F ) ≤ 2, then D <b F if and only if D <t F .
Let us also note at this point that <t,<s,<b are transitive and therefore define quasi-

orders on the set of digraphs.

Directed tree-width. The tree-width tw(G) of an undirected graph G is a positive
integer measuring the structural similarity between G and a tree or a forest. Intuitively,
graphs with small tree-width are such graphs which are nowhere well-connected in the
sense that they have bounded-size vertex-separators all over the place. For example in
forests, which constitute exactly the graphs with tw(G) ≤ 1, the deletion of any non-leaf
vertex splits the graph into further connected components.

Tree-width has been a very successful and highly popular graph parameter both in
theoretical computer science and structural graph theory. For computer scientists, tree-
width is and has been interesting because a famous result by Courcelle [Cou90] showed
that many natural algorithmic problems on graphs which are known to be NP-complete on
graphs in general, such as the problem of detecting a Hamiltonian cycle in a given graph,
become tractable and in fact admit linear-time algorithms for input graphs of tree-width
at most k, for any fixed value k. Such algorithms which perform in polynomial time given
that some parameter is bounded are known as parametrized algorithms.

In structural graph theory, tree-width has been important mainly because of the famous
Grid Theorem proved by Robertson and Seymour [RS86], which has later turned out to Grid Theorem

be one of the major cornerstones for understanding minor-closed graph classes. Indeed,
tree-width and graph minors act nicely together in the sense that tree-width is minor-
monotone: tw(G) ≥ tw(H) for all graphs G, H such that G < H. The Grid Theorem
states that qualitatively, what makes the tree-width of a graph large, is its containment of
a large grid minor. The precise statement is the following: For every k ∈ N, there exists
t(k) ∈ N such that every graph G either contains a k× k-grid graph as a minor3, or G has
tree-width at most t(k).

Motivated by the success of undirected tree-width, there have been several attempts
to define a structural digraph parameter which unifies nice structural properties such as
monotonicity under taking digraph minors, as well as algorithmic applications for the
design of parametrized algorithms. We refer the interested reader to [GHK+10] for an
interesting theoretical discussion of the possible success of such attempts. In this thesis
we only deal with the oldest and most important of these generalizations of tree-width
to directed graphs, the directed tree-width. This parameter was introduced by Johnson,
Robertson, Seymour, and Thomas in 2001 [JRST01]. The basic idea of directed tree-width
is to measure the richness of the directed cycle structure of a digraph, or how different
the digraph is structurally from an acyclic digraph. In particular, digraphs of directed
tree-width 0 are exactly the acyclic digraphs. We now give the formal definition.

For two distinct vertices r, r′ ∈ V (T ) in an out-arborescence T we write r < r′ if r′

is reachable from r in T . We write r ≤ r′ to express that r = r′ or r < r′. If e ∈ A(T )
whose head is r, then we write e < r′ if r ≤ r′. For a digraph D and a subset Z ⊆ V (D),
we call S ⊆ V (D) \ Z a Z-normal set if the vertex set of every directed walk in D − Z

3The k × k-grid is the graph with vertex set [k] × [k] and where (i, j), (i′, j′) ∈ [k] × [k] are adjacent iff
|i − i′| + |j − j′| = 1.



40 CHAPTER 1. PRELIMINARIES

which starts and ends in S is completely contained in S. Note that every Z-normal set is
a union of certain strong components of D − Z.

Definition 1.4 (cf. [JRST01]). A directed tree decomposition of a digraph D is a tripledirected tree
decomposition (T, β, γ), where T is an out-arborescence, β : V (T ) → 2V (D), γ : A(T ) → 2V (D) are

functions such that

(i) {β(t)|t ∈ V (T )} is a partition of V (D) into non-empty sets and

(ii) if e ∈ A(T ), then
⋃︁
{β(t)|t ∈ V (T ), e < t} is γ(e)-normal.

For every t ∈ V (T ) we denote

Γ(t) := β(t) ∪
⋃︂
{γ(e)|e ∈ A(T ), e ∼ t},

where e ∼ t expresses that e is incident with t in T . Then the width of the tree-
decomposition (T, β, γ) is defined as w = maxt∈V (T ) |Γ(t)| − 1. The directed tree-widthdirected

tree-width of D, denoted by dtw(D), is the smallest possible width of a directed tree-decomposition.

The sets β(t) are called bags, while the sets γ(e) are the guards of the tree-decomposition.bags

guards As for undirected tree-width, there exists a duality theorem for directed tree-width
and the containment of large grid-like substructures as butterfly-minors, known as the
Directed Grid Theorem. This result was conjectured by Johnson et al. in [JRST01] and
proved in a breakthrough-result by Kawarabayashi and Kreutzer [KK15]. Let us specify
what we mean by “grid-like substructures” in digraphs.

Definition 1.5 (Cylindrical Grid, cf. [GKKK20]). A cylindrical grid of order k for k ∈ N,cylindrical grid

k ≥ 1 is a digraph Gk consisting of k directed cycles C1, . . . , Ck, pairwise vertex-disjoint,
together with a set of 2k pairwise vertex-disjoint directed paths P1, . . . , P2k, satisfying the
following properties:

(i) Pi has length k − 1 for 0 ≤ i ≤ 2k, Cj has length 2k for 1 ≤ j ≤ k.

(ii) each path Pi has exactly one vertex in common with each cycle Cj and both endpoints
of Pi are in V (C1) ∪ V (Ck),

(iii) the paths P1, . . . , P2k appear on Ci in this order, and

(iv) for odd i the cycles C1, . . . , Ck occur on Pi in this order and for even i they appear
in reverse order Ck, . . . , C1.

Definition 1.6 (Cylindrical Wall, cf. [GKKK20]). An elementary cylindrical wall of order
k for k ∈ N is the planar digraph Wk obtained from the cylindrical grid Gk of order k byelementary wall

replacing every vertex v ∈ V (Gk) by two new vertices vs, vt connected by an arc (vs, vt)
such that for every arc (v, w) ∈ A(Gk), we have the corresponding arc (vt, ws) ∈ A(Wk).
A cylindrical wall of order k is any digraph isomorphic to a subdivision of Wk.cylindrical wall

We remark that Gk is a butterfly-minor of Wk obtained by contracting all the split-
edges (vs, vt), v ∈ V (Gk), while it can be observed that Wk ⊆ G2k for every k ∈ N.
It is convenient to imagine grids, elementary cylindrical walls and their subdivisions as
embedded in the plane, as depicted in Figure 1.2. Every cylindrical wall W of order k
contains in this canonical embedding k pairwise vertex-disjoint “vertical” directed cycles
Q1, . . . , Qk, as well as 2k pairwise vertex-disjoint directed “horizontal” directed paths
P 1

i , P 2
i , i = 1, . . . , k which are alternately directed from left to right or from right to left.

To make references to specific vertices in a cylindrical wall easier, we assign coordinates
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to the branch vertices of a cylindrical wall of order k based on its canonical embedding as
follows: For every 1 ≤ i ≤ k, and 1 ≤ j ≤ 2k, the j-th branch vertex on the directed path
P 1

i receives coordinates (j, 2i−1), while the j-th branch vertex on P 2
i receives coordinates

(2k + 1− j, 2i).

C1

C2

C3

C4

P1

P2

P3

P4P5

P6

P7

P8 Q1 Q2 Q3 Q4

P 1
1

P 2
1

P 1
2

P 2
2

P 1
3

P 2
3

P 1
4

P 2
4

Figure 1.2: Left: The cylindrical grid G4 of order 4. Right: The elementary cylindrical wall
W4 in its canonical depiction with the cycles Q1, . . . , Q4 (marked red) and the horizontal paths
P 1

1 , P 2
1 . . . , P 1

4 , P 2
4 . The red half-edges at the top and the bottom of the wall indicate arcs connecting

the paths P 1
1 and P 2

4 .

We are now ready to state the Directed Grid Theorem.

Theorem 1.3 (cf. [KK15]). For every k ∈ N there exists an integer d(k) such that every Directed Grid
Theoremdigraph D with dtw(D) ≥ d(k) contains the cylindrical grid of order k as a butterfly-minor.

Since Wk ⊆ G2k, every digraph containing a G2k-butterfly-minor also contains a Wk-
minor and hence a subdivision of Wk, since Wk is subcubic. We conclude that every
digraph with sufficiently high directed tree-width (at least d(2k)) contains a wall of order
k as a subdigraph.

Matroids. Matroids can be used to represent several algebraic and combinatorial struc-
tures of dependencies. For missing terminology and basic facts from matroid theory not
mentioned or mentioned without proof in the following, please consult the standard read-
ing [Oxl11, Wel76].

In this thesis we will mostly use the representation of a matroid as a tuple M = (E, C)
consisting of a finite ground set E(M) := E containing the elements of M and the family ground set

C ⊆ 2E of circuits of M , which satisfy certain so-called circuit axioms [Oxl11, Wel76]. A circuits

subset of E(M) is called independent in M if it does not contain a circuit as a subset, independence

and a basis if it is inclusion-wise maximally independent. Bases of a matroid satisfy the basis

following important so-called exchange property: If B1, B2 are bases of M , then for any exchange
propertye ∈ B1 \ B2 there exists f ∈ B2 \ B1 such that (B1 \ {e}) ∪ {f} is a basis of M as well.

Finally, we call a set X ⊆ E coindependent in M if there exists a basis B of M such that coindependent

X ∩B = ∅. Instead of by their circuits, matroids may as well be represented uniquely by
their collections of independent sets/bases/coindependent sets.

Two matroids M1 = (E1, C1), M2 = (E2, C2) are called isomorphic, in symbols M1 ≃ isomorphic

M2, if there exists a bijection f : E1 → E2 such that C ∈ C1 ⇔ f(C) ∈ C2 for all C ⊆ E1.
Important examples of matroids are the so-called linear or representable matroids linear matroid
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induced by vector configurations in linear spaces. Let V = Fn be a vector-space over
a field F and let X = {x1, . . . , xk} ⊆ V for some k ∈ N. Let A be the n × k-matrix
over F whose columns are x1, . . . , xk. Then we define the column matroid induced by Acolumn

matroid as M [A] := ({x1, . . . , xk}, CA), where its set of circuits CA consists of the inclusion-wise
minimal collections of linearly dependent vectors from {x1, . . . , xk}.

It is a well-known fact that M [A] is indeed a matroid for any choice of a matrix A. A
matroid M is called F-linear or representable over the field F if there is a matrix A withrepresentable

entries in F such that M ≃M [A].
Classical examples of matroids can further be derived from undirected graphs. Let

G = (V, E) be a graph. The graphical matroid of G, denoted by M(G), is the matroid
(E, C) where the set C of circuits consists of all edge-sets of the cycles of G. Analogously,
the bond matroid of G is M∗(G) = (E,S) where S is the set of bonds (or minimal non-
empty edge cuts) of G. Note that M(G) and M∗(G) are the dual matroids of one another,
that is, the bases of M(G) are complementary to the bases of M∗(G).

A matroid is called a graphic matroid (respectively a bond matroid or cographic) if itgraphic

matroid
bond matroid

is, respectively, isomorphic to the graphical or the bond matroid of some graph.
Graphic matroids and bond matroids form part of a larger matroid class, the so-called

regular matroids. A matroid M is called regular if it is F-linear for every field F. Theregular matroid

following equivalent characterization of regular matroids shows that they possess a very
special structure which is not shared by general linear matroids. A matrix with entries in
R is called totally unimodular if every square submatrix has determinant −1, 0 or 1.totally

unimodular

Theorem 1.4 ([Tut58]). Let M be a matroid. Then M is regular if and only if M ≃M [A]
for a totally unimodular real-valued matrix A. Furthermore, for any field F, reinterpreting
the {−1, 0, 1}-entries of A as elements of F, we obtain an F-linear representation of M .

Every graphic and every bond matroid is regular, but not vice-versa. Regular matroids
are in turn generalized by the binary matroids, which are the F2-linear matroids.binary matroid

We conclude this paragraph with the important notion of matroid minors, which gen-matroid minors

eralizes the concept of minors in graph theory. Given a matroid M and an element
e ∈ E(M), we denote by M − e and M/e the matroids obtained from M by deleting and
contracting e. The circuits of M − e are defined as the circuits of M not containing e,deletion and

contraction while the circuits of M/e are the inclusion-wise minimal sets of the form C \ {e} ̸= ∅
where C is a circuit of M . These operations are consistent with deletions and contractions
in graph theory in the following sense: If G is a (multi-)graph and e ∈ E(G), then it
holds that M(G/e) ≃M(G)/e, M(G−e) ≃M(G)−e, M∗(G−e) = M∗(G)/e, and finally
M∗(G/e) ≃M∗(G)− e. A minor of M is any matroid isomorphic to a matroid obtainedmatroid

minor from M by a sequence of element deletions and contractions.

Oriented Matroids. For missing terminology and basic facts from the theory of ori-
ented matroids not mentioned or mentioned without proof in the following, please consult
the standard reading [BLVS+99].

An oriented matroid M⃗ is a tuple (E, C) consisting of a ground set E of elements andoriented
matroid a collection C of signed subsets of E, i.e., ordered partitions (C+, C−) of subsets C of E

into positive and negative parts such that the following four axioms are satisfied:signed set

(i) (∅, ∅) /∈ C

(ii) If (C+, C−) ∈ C, then (C−, C+) ∈ C.

(iii) If (C+
1 , C−

1 ), (C+
2 , C−

2 ) ∈ C such that C+
1 ∪C−

1 ⊆ C+
2 ∪C−

2 , then one of the equations
(C+

1 , C−
1 ) = (C+

2 , C−
2 ) or (C+

1 , C−
1 ) = (C−

2 , C+
2 ) holds.
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(iv) Let (C+
1 , C−

1 ), (C+
2 , C−

2 ) ∈ C such that (C+
1 , C−

1 ) ̸= (C−
2 , C+

2 ), and let e ∈ C+
1 ∩ C−

2 .
Then there is a (C+, C−) ∈ C with C+ ⊆ (C+

1 ∪C+
2 )\{e} and C− ⊆ (C−

1 ∪ C−
2 ) \ {e}.

In case these axioms are satisfied, the elements of C are called signed circuits of M⃗ . signed circuit

Two oriented matroids M⃗1 = (E1, C1) and M⃗2 = (E2, C2) are called isomorphic if there isomorphic

exists a bijection σ : E1 → E2 such that {(σ(C+), σ(C−)) | (C+, C−) ∈ C1} = C2. For
every oriented matroid M⃗ = (E, C) and a signed circuit X = (C+, C−) ∈ C, we denote
by X := C+ ∪ C− the so-called support of X. From the axioms for signed circuits it support

follows that the set family C := {X | X ∈ C} over the ground set E defines a matroid
M = (E, C), which we refer to as the underlying matroid of M⃗ , and vice versa, M⃗ is called underlying

an orientation of M . A matroid is called orientable if it admits at least one orientation. orientation
orientableA signed circuit (C+, C−) is called directed if either C+ = ∅ or C− = ∅. We use this

definition also for the circuits of the underlying matroid M , i.e., a circuit of M is directed directed circuit

in M⃗ if (C, ∅) (or equivalently (∅, C)) is a directed signed circuit of M⃗ . We say that M⃗ is
totally cyclic if every element of M is contained in a directed circuit, and acyclic if there totally cyclic

acyclicexists no directed circuit.
Classical examples of oriented matroids can be derived from vector configurations in

real-valued vector spaces and, most importantly for the investigations in this thesis, from
directed graphs.

Given a configuration {x1, x2, . . . , xk} ∈ Rn of vectors for some k ∈ N, consider the
matroid M [A] with A = (x1, x2, . . . , xk) ∈ Rn×k. For a circuit C = {xi1 , xi2 , . . . , xiℓ

} ∈ CA,
there are scalars α1, . . . , αℓ ∈ R\{0} such that

∑︁ℓ
j=1 αjxij = 0, and the coefficients αj are

determined up to multiplication with a common scalar. It is therefore natural to assign
two signed sets to the circuit as follows: X(C) := (C+, C−) and −X(C) := (C−, C+),
where C+ := {xij | αj > 0} and C− := {xij | αj < 0}. The oriented column matroid
induced by A is then defined as M⃗ [A] = ({x1, . . . , xk}, {X(C),−X(C) | C ∈ CA}). oriented

column
matroid

Given a digraph D we can, as in the undirected case, associate with it two differ-
ent kinds of oriented matroids with ground set A(D). Unsurprisingly, their underlying
matroids are exactly the graphical respectively the bond matroid of U(D).

Definition 1.7. Let D be a digraph.

• For every (oriented) cycle C in D, let (C+, C−), (C−, C+) be the two tuples describ-
ing a partition of A(C) into sets of forward and backward edges, according to some
choice of cyclical traversal of C. Then oriented

graphic

matroid{(C+, C−), (C−, C+) | C cycle in D}

forms the set of signed circuits of an orientation M(D) of M(U(D)), called the
oriented graphic matroid induced by D.

• For every bond S = ∂(X) in D, let S+ = ∂+(X) be the set of edges in S with tail in
X and head in Y := V (D) \X, and let S− := ∂+(Y ). Then oriented

bond matroid

{(S+, S−), (S−, S+) | S is a bond in D}

forms the set of signed circuits of an orientation M∗(D) of M∗(U(D)), called the
oriented bond matroid induced by D.

Note that the directed circuits of an oriented graphic matroid are exactly the arc-sets
of the directed cycles of the corresponding digraph D. Similarly, the directed circuits
in an oriented bond-matroid are the arc-sets of the directed bonds in the corresponding
digraph. Given an oriented matroid M⃗ = (E, C) and an element e ∈ E(M⃗), we denote by
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M⃗ − e and M⃗/e the oriented matroids obtained from M⃗ by deleting and contracting e,deletion and
contraction respectively. The signed circuits of these matroids are defined as follows:

C(M⃗ − e) := {(C+, C−) ∈ C | e /∈ C+ ∪ C−},

and the signed circuits of M⃗/e are the (inclusion-wise) support-minimal members of

{(C+ \ {e}, C− \ {e}) | (C+, C−) ∈ C} \ {(∅, ∅)}.

These definitions generalize to subsets Z ⊆ E(M⃗), here we denote by M⃗−Z and M⃗/Z,
respectively, the oriented matroids obtained from M⃗ by successively deleting (resp. con-
tracting) all elements of Z (in arbitrary order4). We also denote M⃗ [Z] = M⃗−(E(M⃗−Z)).

Again, in the case of graphic and cographic oriented matroids, the deletion and con-
traction operations resemble the same operations in directed graphs:

If D is a digraph and e ∈ A(D), then M(D)− e ≃M(D− e), M(D)/e ≃M(D/e) and
M∗(D)− e ≃M∗(D/e), M∗(D)/e ≃M∗(D − e).

For an oriented matroid M⃗ with a collection C of signed circuits, let S be defined as
the set of signed vectors (S+, S−) satisfying the following orthogonality property for every
signed circuit C = (C+, C−) ∈ C:orthogonality

(S+ ∩ C+) ∪ (S− ∩ C−) ̸= ∅ ⇐⇒ (S+ ∩ C−) ∪ (S− ∩ C+) ̸= ∅. (∗)

Then S is called the set of signed cocircuits of M⃗ . The supports of the signed cocircuits
form exactly the cocircuits of the underlying matroid M . A signed cocircuit (S+, S−) is
called directed if S+ = ∅ or S− = ∅. If the underlying matroid M of M⃗ is regular, then the
following stronger orthogonality holds for every signed circuit (C+, C−) ∈ C, and every
signed cocircuit (S+, S−) ∈ S:strong

orthogonality

|S+ ∩ C+|+ |S− ∩ C−| = |S+ ∩ C−|+ |S− ∩ C+|. (∗∗)

For any digraph D the signed cocircuits of M(D) are the same as the signed circuits of
M∗(D), while the signed cocircuits of M∗(D) are exactly the signed circuits of M(D).

We conclude this first part of the preliminary section by stating a couple of important
facts concerning orientations of (regular) matroids from the literature.

Theorem 1.5 ([BLVS+99]). Let M⃗ be an orientation of a regular matroid M . Then there
exists a totally unimodular matrix A such that M⃗ ≃ M⃗ [A] and M ≃M [A].

We will also need the following matroidal version of the famous Farkas’ Lemma:Farkas’ Lemma

Theorem 1.6 ([BLVS+99]). Let M⃗ be an oriented matroid and e ∈ E(M). Then e is
contained in a directed circuit of M⃗ if and only if it is not contained in a directed cocircuit.

Posets and lattices. A partially ordered set, or poset for short, is a pair (P,≼), whereposet

P is a set and ≼ is a reflexive, antisymmetric, and transitive binary relation on P . We
write x ≺ y for two elements of P if x ≼ y and x ̸= y.

Posets can be represented more compactly by their minimal comparabilities: We say
that x ≺ y is a cover relation, or y covers x, if there is no z in the poset with x ≺ z ≺ y.cover relation

This defines the cover graph of P , which has the elements of P as vertices, and an edge forcover graph

every cover relation. A Hasse diagram of P is a drawing of the cover graph in the plane,Hasse diagram

where vertices are represented by distinct points and for every cover relation x ≺ y, the
edge between x and y is drawn as a straight line going upwards from x to y. A poset P

4It is well-known that the order in which elements are deleted and contracted, respectively, does not
affect the outcome of the process, up to isomorphism.
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is called a lattice, if for any two elements x and y in P there is a unique smallest element lattice

z such that x ≼ z and y ≼ z, and a unique largest element z such that z ≼ x and z ≼ y.
These elements are called the join and the meet of x and y, respectively. A lattice is called join and meet

distributive, if the join and meet operations distribute over each other. The downset (resp. distributive
down/up-setupset) of an element y in P is the set of all x with x ≼ y (resp. y ≼ x).
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Part I

Existence and Structure of
Oriented Cycles





Chapter 2

Oriented Cycles in Digraphs of
Large Out-Degree

2.1 Introduction
The graphs and digraphs considered in this chapter are always simple.

Recall that a subdivision of a graph F is a graph obtained from F by replacing its
edges with internally vertex-disjoint paths. This notion appears in some of the most fun-
damental results of graph theory, such as Kuratowski’s characterization of planar graphs,
as well as many classical results in the structure theory of sparse graphs. Because of these
applications, it is desirable to understand by which means a given graph G can be forced
to contain a subdivision of a fixed graph F . One such direction of study that has received
a great amount of attention in the literature is the question of how “dense” G should be
to guarantee a subdivided F . For undirected graphs, this problem has been solved with
great precision. Mader [Mad67] was the first to prove that for every fixed k ∈ N, every
graph of sufficiently large average degree contains a subdivision of Kk, and hence also of
any other graph on at most k vertices. The precise asymptotic dependence of the average
degree on k, that is required to force Kk as a subdivision, was independently determined
by Bollobás and Thomason [BT98] and by Komlós and Szemerédi [KS96].

Theorem 2.1 ([BT98, KS96]). There is an absolute constant C > 0 such that every graph
with average degree at least Ck2 contains a subdivision of Kk. This bound is best-possible
up to the value of C.

In view of the analogous definition of subdivisions in the directed setting (cf. Defini-
tion 1.1, Chapter 1), it is natural to ask to what extent the above phenomenon, that every
“sufficiently dense” graph contains a subdivision of a fixed graph F , extends to digraphs.

Aboulker et al. [ACH+19] introduced the following handy terminology for the study
of forcing subdivisions of digraphs through various digraph parameters. Given a digraph
parameter γ ranging in N, a digraph F is called γ-maderian if there exists a (smallest)
number maderγ(F ) ∈ N such that every digraph D with γ(D) ≥ maderγ(F ) contains
a subdivision of F as a subdigraph. We call maderγ(F ) the Mader number of F (with
respect to γ). For example, using the natural analogue of these notions for undirected
graphs, Theorem 2.1 states that the Mader number of Kk with respect to the graph
parameter d̄, namely the average degree, is quadratic in k, and in particular every graph
F is d̄-maderian.

The average out-degree (or, equivalently, average in-degree) of a digraph D is defined
by d(D) := a(D)

v(D) . As the transitive tournament is a digraph of very high average out-degree



50 CHAPTER 2. ORIENTED CYCLES IN DIGRAPHS OF LARGE OUT-DEGREE

which does not even contain a subdivision of any directed cycle, it should be clear that an
analogue of Theorem 2.1 for digraphs cannot hold in its full generality. It turns out that
the family of d-maderian digraphs is limited to the so-called anti-directed forests: forests
in which every vertex is a sink or a source. The positive direction of this result is the
consequence of a theorem of Burr [Bur82], who proved that every digraph of sufficiently
large average degree contains every anti-directed forest as a subgraph (and hence also as a
subdivision). The negative direction, as pointed out by Aboulker et al. [ACH+19], follows
by considering bipartite graphs of large average degree and girth and orienting all their
edges from one side of the bipartition to the other.

The above constructions of dense digraphs without certain subdivisions all contain
sinks (i.e. vertices of out-degree zero); this motivates the study of subdivisions in digraphs
with large minimum out-degree.

Since δ+ ≤ d, every d-maderian digraph is obviously also δ+-maderian. However, a
characterization of δ+-maderian digraphs is still widely unknown. Thomassen [Tho85b],
answering a question of Seymour in the negative, constructed digraphs of arbitrarily large
minimum out-degree not containing directed cycles of even length. As a consequence,
if a digraph F has the property that each of its subdivisions contains a directed cycle
of even length, then F is not δ+-maderian. As mentioned in the introduction, digraphs
with this property are known in the literature as even digraphs, and have been extensively
studied due to their relation to the so-called even cycle problem. For further information
on this topic we refer the reader to Chapters 5 and 8, and to [RST99, ST87, Tho85b,
Tho86, Tho92] for a selection of relevant literature. As can easily be verified by hand,
the smallest even digraph is the bioriented clique

↔
K3 of order 3. This is also the smallest

non-δ+-maderian digraph; indeed, the following theorem, which constitutes the first new
result of this chapter, states that

↔
K3 − e, the digraph obtained from

↔
K3 by removing a

single arc, is δ+-maderian. The proof of this theorem appears in Section 2.5.

Theorem 2.2. Every digraph D with δ+(D) ≥ 2 contains a subdivision of
↔
K3 − e.

Observe that for every digraph F it holds that maderδ+(F ) ≥ v(F ) − 1, since the
bioriented clique on v(F )−1 vertices has minimum out-degree v(F )−2 but no subdivision
of F . Hence, the bound in Theorem 2.2 is optimal.

Theorem 2.2 strengthens an earlier result by Thomassen (cf. [Tho85a], Theorem 6.2),
who proved that every digraph of minimum out-degree 2 contains two directed cycles shar-
ing precisely one vertex (this configuration is present in every subdivision of

↔
K3−e). On the

negative side, another construction by Thomassen [Tho85b] shows that there are digraphs
of arbitrarily high minimum out-degree having no three directed cycles which share exactly
one common vertex (and are otherwise disjoint). In other words, the bioriented 3-star

↔
S3

is not δ+-maderian. This result is somewhat surprising when compared to another positive
result of Thomassen [Tho83], which shows that for every k ∈ N the digraph k

↔
K2 (i.e., the

disjoint union of k digons) is δ+-maderian. More concretely, Thomassen proved that for
every k ∈ N we have maderδ+(k

↔
K2) ≤ (k + 1)!. The first linear bound on maderδ+(k

↔
K2)

was proven by Alon [Alo96], and then further improved by Bucić [Buc18]. The famous
Bermond-Thomassen-Conjecture [BT81] states that in fact maderδ+(k

↔
K2) = 2k − 1, but

this remains widely open.
A further negative result was established by DeVos et al. [DMMS12]. Building on

previous work of Mader [Mad85], they constructed digraphs of arbitrarily high minimum
out-degree having no pair of vertices x, y with two arc-disjoint dipaths from x to y as
well as two from y to x (see [DMMS12, Observation 8]). This result shows that every
δ+-maderian digraph F has arc-connectivity κ′(F ) ≤ 1. Yet another restriction follows
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from a construction we will present in Remark 2.20 in Section 2.3: Every δ+-maderian
digraph F had directed tree-width at most one.

On the positive side, Aboulker et al. [ACH+19] proved that if F is a digraph consisting
of two vertices x and y and three internally vertex-disjoint dipaths between x and y – two
from x to y and one from y to x – then F is δ+-maderian.

The negative results above indicate that digraphs F with a sufficiently rich directed
cycle structure are not δ+-maderian. However, to this date, no acyclic digraph is known
that is not δ+-maderian. This led Mader [Mad85] to the following intriguing conjecture.

Conjecture 2.1 (Mader, 1985). Every acyclic digraph is δ+-maderian.

Clearly, it would suffice to prove Mader’s conjecture for the transitive tournaments
K⃗k. Mader [Mad96] proved that maderδ+(K⃗4) = 3, but the existence of maderδ+(K⃗k)
remains unknown for any k ≥ 5. In view of the apparent difficulty of Mader’s question, it
is natural to try and verify Mader’s conjecture for subclasses of acyclic digraphs. Mader
himself [Mad95] considered the digraph consisting of two vertices x and y and k dipaths
of length two from x to y, and showed that it is δ+-maderian for all k ∈ N. Aboulker et
al. [ACH+19] proposed to study the following two special cases of Mader’s conjecture:

Conjecture 2.2 ([ACH+19]). Every orientation of a forest is δ+-maderian.

Conjecture 2.3 ([ACH+19]). Every orientation of a cycle is δ+-maderian.

Aboulker et al. [ACH+19] proved two special cases of Conjecture 2.2, showing that
every orientation of a path and every in-arborescence is δ+-maderian1. They also proved
Conjecture 2.3 for oriented cycles consisting of two blocks2, i.e., oriented cycles having
exactly one source and one sink.

Our main contribution in this chapter is to verify Conjecture 2.3 in its full generality.
Moreover, we show that the Mader number maderδ+ of an oriented cycle grows (only)
polynomially with the cycle length. Let Cℓ denote the undirected cycle of length ℓ.

Theorem 2.3. There exists a polynomial function K : N→ N such that for every ℓ ≥ 2,
every digraph D with δ+(D) ≥ K(ℓ) contains a subdivision of every orientation of Cℓ.

The proof of Theorem 2.3 is presented in Section 2.2.
Disjoint union is a basic graph operation under which one might naturally anticipate

the δ+-maderian property to be preserved. Aboulker et al. formulated this as a conjecture.

Conjecture 2.4 (cf. [ACH+19], Conjecture 7). If F1 and F2 are δ+-maderian, then also
the disjoint union F1 ∪ F2 of F1 and F2 is δ+-maderian.

Yet, despite quite a bit of effort, Conjecture 2.4 is only known to hold in a few special
cases. Thomassen’s Theorem for example states that the disjoint union of k digons is
δ+-maderian for all k. As noted by Aboulker et al., Conjecture 2.4 would follow from a
positive resolution of the following well-known problem raised by Stiebitz and Alon:

Problem 2.1 (cf. [Alo96, Alo06]). Given an integer k ≥ 1, does there exist an integer
f(k) such that every digraph D with δ+(D) ≥ f(k) contains (non-empty) disjoint sets
A, B ⊆ V (D) satisfying δ+(D[A]), δ+(D[B]) ≥ k?

1It is an easy exercise to show that every out-arborescence is δ+-maderian as well.
2By a block in an oriented cycle we mean a maximal directed subpath.
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The difficulty of this problem is remarkable. While f(1) = 3 follows from the results
of Thomassen [Tho83] on disjoint dicycles, even the existence of f(2) remains unknown.

As the second main result of this chapter we prove Conjecture 2.4 for a large class
of digraphs. We say that a digraph F is a topological grid minor if there exists an ele-
mentary wall (cf. Section 1) containing F as a topological minor. The proof circumvents
Problem 2.1 by using directed tree-width as well as the Directed Grid Theorem 1.3.

Theorem 2.4. If F1, F2, . . . , Fr are topological grid minors and each of them is δ+-
maderian, then also their disjoint union F1 ∪ F2 . . . ∪ Fr is δ+-maderian.

It is an easy observation that in particular, every orientation of a cycle is a topolog-
ical grid minor. Combining Theorem 2.3 and Theorem 2.4 we can therefore generalize
Thomassen’s result that disjoint unions of digons are δ+-maderian to arbitrary oriented
cycles as follows.

Corollary 2.5. Any disjoint union of (arbitrarily) oriented cycles is δ+-maderian.

The proof of Theorem 2.4 is given in Section 2.3.
Let k1, k2 ∈ N. Following the notation in [ACH+19], we denote by C(k1, k2) the two-

block cycle consisting of two vertices x, y and two internally vertex-disjoint dipaths from
x to y of length k1 and k2, respectively. As mentioned above, we have the trivial lower
bound maderδ+(C(k1, k2)) ≥ k1 + k2 − 1. Aboulker et al. (see [ACH+19, Theorem 24])
proved the upper bound maderδ+(C(k1, k2)) ≤ 2(k1 + k2) − 1. They also observed that
the trivial lower bound gives the truth if k2 = 1, showing that maderδ+(C(k, 1)) = k for
every k ≥ 1. They then asked whether or not their bound on maderδ+(C(k1, k2)) is tight.

Problem 2.2 ([ACH+19], Problem 25). What is the value of maderδ+(C(k1, k2))?

Our next result improves upon the bound given by Aboulker et al. [ACH+19].

Theorem 2.6. Let k1 ≥ k2 ≥ 2 be integers. Then maderδ+(C(k1, k2)) ≤ k1 + 3k2 − 5.

Theorem 2.6 improves upon the result of [ACH+19] for all values of k1, k2 ≥ 2, and
is asymptotically better if k1 ≫ k2. Furthermore, if k2 = 2 then the bound in Theorem
2.6 is optimal, as it matches the aforementioned trivial lower bound, thus showing that
maderδ+(C(k, 2)) = k+1 for every k ≥ 1. The proof of Theorem 2.6 appears in Section 2.4.

To conclude, let us mention that in contrast to the aforementioned negative results
for general directed graphs, if we restrict our attention to the class of tournaments, which
have an inherent density property, then it can be proved that every digraph is forcible as
a subdivision by means of large minimum out-degree. This is a recent result by Girão,
Popielarz, and Snyder [GPS21], which in addition gives a best-possible asymptotic bound
of Ck2 on the minimum out-degree of a tournament required to guarantee the existence
of a subdivision of the bioriented k-clique.

As the family of δ+-maderian digraphs is still somewhat limited, Aboulker et al. [ACH+19]
initiated the study of the effect of even stronger density conditions, involving the strong
vertex-connectivity κ, and the strong arc-connectivity κ′ of digraphs. Since κ ≤ κ′ ≤ δ+,
every δ+-maderian digraph is obviously κ′- and κ-maderian. Not much is known however
concerning how much richer the families of κ- and κ′-maderian digraphs are. The following
interesting questions were posed in [ACH+19]:

Problem 2.3 ([ACH+19], Problem 16). Is every digraph κ-maderian? Is every digraph
κ′-maderian?
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While the first question remains open, we can resolve the second question in the neg-
ative by proving that neither the bioriented 4-clique

↔
K4 nor the bioriented 4-star

↔
S4 is

κ′-maderian:

Proposition 2.7. For every k ∈ N, there exists a digraph Gk with κ′(Gk) ≥ k such that
Gk contains no subdivision of

↔
K4.

Proposition 2.8. For every k ∈ N, there exists a digraph Hk with κ′(Hk) ≥ k such that
Hk contains no subdivision of

↔
S4.

The proofs of Propositions 2.7 and 2.8 are presented in Section 2.6.
We note that a main difficulty arising when studying subdivisions in digraphs (as op-

posed to undirected graphs) is that digraphs of large (strong) vertex-connectivity may
not be linked. A digraph is called k-linked if for every 2k-tuple of distinct vertices
x1, . . . , xk, y1, . . . , yk, there are vertex-disjoint dipaths P1, . . . , Pk such that Pi goes from
xi to yi. In undirected graphs, it is known that a graph with sufficiently large vertex-
connectivity is k-linked (see [BT96]), and linkedness has proven very useful for embedding
subdivisions. In stark contrast, a construction of Thomassen [Tho91] shows that for every
k ∈ N there is a strongly k-vertex-connected digraph which is not 2-linked. This makes
subdivision questions for digraphs significantly more challenging.

2.2 Subdivisions of Oriented Cycles

In this section, we prove Theorem 2.3, which we restate here for convenience.

Theorem 2.9. For every ℓ ≥ 2 there is a polynomially bounded K = K(ℓ) such that every
digraph D with δ+(D) ≥ K contains a subdivision of every oriented cycle of length ℓ.

It is well-known and easy to show that every digraph with minimum out-degree k
contains a directed cycle of length at least k + 1. Thus, in what follows we restrict our
attention to acyclic oriented cycles. For integers a, b ≥ 1, let Ca,b be the oriented cycle
consisting of 2a vertices s1, . . . , sa, t1, . . . , ta and 2a internally-disjoint length-b dipaths:
one from si to ti and one from si+1 to ti for each 1 ≤ i ≤ a (with indices taken modulo
a). See Figure 1 for an illustration of C2,3. It is easy to see that for every acyclic oriented
cycle C, there are a, b ≥ 1 such that every subdivision of Ca,b is also a subdivision of C
(specifically, a is the number of sources (or, equivalently, sinks) in C, and b is the largest
length of a dipath contained in C). Therefore, it is sufficient to show that digraphs with
minimum out-degree at least k(a, b) contain a subdivision of Ca,b (for some suitable choice
of k(a, b) = poly(a, b)). For a = 1, this statement was proven in [ACH+19], and we also
give a new proof in Section 2.4. Consequently, it is sufficient to consider the case a ≥ 2
(and, in fact, the assumption a ≥ 2 is required by our method).

Dellamonica, Koubek, Martin, and Rödl [DKMR11] proved that for every k ≥ 1 and
g ≥ 3 there exists K = K(k, g) such that every digraph D with δ+(D) ≥ K contains a
subdigraph D′ with δ+(D′) ≥ k and with directed girth g⃗(D′) at least g. Thus, in order
to prove Theorem 2.9, it suffices to establish the following:

Theorem 2.10. There is a constant C > 0 such that for any pair of integers a ≥ 2, b ≥ 1,
every digraph D with δ+(D) ≥ Cab7 and g⃗(D) ≥ 4b2 contains a subdivision of Ca,b.
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s1

t1

s2

t2

Figure 2.1: The oriented cycle C2,3

A quantitative version3 of the aforementioned result of [DKMR11] is that K(k, g) ≤
O(kg2 log g). It follows that minimum out-degree at least a · poly(b) is enough to force a
subdivision of Ca,b, and that the conclusion of Theorem 2.9 holds with K(ℓ) = poly(ℓ).

For the rest of this section we set g := 4b2. Our proof of Theorem 2.10 will use a
certain structure we call a chain, that will consist of some carefully chosen gadgets. This
structure will enable us to embed subdivisions of Ca,b in the given digraph. We start by
presenting these key definitions.

2.2.1 The Gadgets

We will use three types of gadgets. Each of the gadgets will have a special pair of vertices
p, q with an arc from p to q. The gadgets are defined as follows:

(I) A gadget of type I is a directed cycle of length at least g through the arc (p, q).

(II) A basic gadget of type II is a digraph consisting of vertices p, q, r and a dipath P1
from r to p, such that P1 has length at least 2b2 + b− 2, q /∈ V (P ), and every vertex
of P1 has an arc to q (so in particular, (p, q) is an arc). An extended gadget of type II
consists of a basic gadget of type II, comprised of vertices p, q, r and a dipath P1 as
above, as well as an additional dipath P2 of length at least b having the following
properties:

(a) The last vertex of P2 is r, V (P1) ∩ V (P2) = {r}, and q /∈ V (P2).

(b) Either there is an arc from the first vertex of P2 to the second vertex of P1, or
there is an arc from some vertex in V (P1) \ {r} to the first vertex of P2.

For an extended type-II gadget G, the basic part of G is the corresponding basic
type-II gadget, namely the subgraph of G induced by V (P1) ∪ {q}.

(III) A gadget of type III is a digraph consisting of vertices p, q, r, the arc (p, q), and two
internally disjoint dipaths P1, P2 from p and q, respectively, to r, such that P1 and
P2 have length at least 2b− 1 each.

3In fact, the bound on K(k, g) appearing in [DKMR11] was slightly weaker — in that the logarithmic
factor depended on k — but it is easy to see that by using the argument from [DKMR11] and replacing
a union bound used there with a tighter concentration inequality (say, Chernoff’s bound), one obtains the
stronger estimate stated here.
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Figure 2.2: A basic gadget of type II (left) and a gadget of type III (right)
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Figure 2.3: The two options for an extended gadget of type II: either there is an arc from the first
vertex of P2 to the second vertex of P1 (left), or there is an arc from some vertex in V (P1) \ {r}
to the first vertex of P2 (right).

The various types of gadgets are depicted in Figures 2-3. For convenience, we also intro-
duce the notion of a trivial gadget: a trivial gadget simply consists of vertices p, q and the
arc (p, q) (and no other vertices).

We now introduce another useful definition. For integers a, b ≥ 1, an (a, b)-alternating-
path is an oriented path R consisting of vertices s1, . . . , sa, t1, . . . , ta and pairwise internally-
disjoint dipaths Q1, . . . , Qa, Q′

1, . . . , Q′
a−1, such that Qi is a dipath from si to ti (for each

1 ≤ i ≤ a), Q′
i is a dipath from si+1 to ti (for each 1 ≤ i ≤ a − 1), and Q2, . . . , Qa−1,

Q′
1, . . . , Q′

a−1 have length at least b each. We note that Q1 or Qa may have length zero
(in which case s1 = t1 or sa = ta, respectively). In particular, for vertices u, v, any dipath
from u to v is a (1, b)-alternating-path with s1 = u and t1 = v (for any value of b); and
any dipath of length at least b from u to v is a (2, b)-alternating-path with s2 = t2 = u and
s1 = t1 = v. The path R is called strong if Q1 and Qa also have length at least b. When
several paths are considered at the same time, we will write si(R), ti(R), Qi(R), Q′

i(R)
(instead of si, ti, Qi, Q′

i) so as to prevent confusion. The following observation follows
immediately from the definitions of Ca,b and alternating-paths.
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Observation 2.11. Let a1, a2, b ≥ 1 be integers, and for each i = 1, 2, let Ri be a strong
(ai, b)-alternating path. Suppose that s1(R1) = ta2(R2), s1(R2) = ta1(R1) and that R1 and
R2 do not share any other vertices. Then R1 ∪R2 spans a subdivision of Ca1+a2−2,b.

Let us now prove some simple facts about type I and type II gadgets.

Lemma 2.12. Let G be a gadget of type I or II (either basic or extended). Then:

1. G contains a (2, b)-alternating path R0 with s1(R0) = t1(R0) = p and t2(R0) = q.

2. {p, q} is reachable from every vertex of G.

Proof. Item 2 follows immediately from the definitions of these gadgets. Let us prove
Item 1. If G is of type I, i.e. a directed cycle of length at least g > b through (p, q), then
define R0 by letting s1(R0) = t1(R0) = p, s2(R0) = t2(R0) = q and Q′

1(R0) = G[q, p] (i.e.,
Q′

1(R0) is simply the q-p-dipath obtained from the cycle by removing the arc (p, q)). If
G is of type II then define R0 by letting s1(R0) = t1(R0) = p, s2(R0) = r, t2(R0) = q,
Q′

1(R0) = P1 and Q2(R0) = (r, q).

Lemma 2.13. Let G be an extended gadget of type II, and let p, q, r and P1, P2 be as in
the definition of such a gadget. Then:

1. For every x ∈ V (G) \ {p, q}, there exists 1 ≤ a ≤ 2 and an (a, b)-alternating-path R
with ta(R) = x, s1(R) ∈ {p, q} and |V (R) ∩ {p, q}| = 1.

2. For every set ∅ ≠ X ⊆ V (P1)\{p, r}, there exists 1 ≤ a ≤ 2 and an (a, b)-alternating-
path R with ta(R) ∈ X, s1(R) ∈ {p, q} and |V (R) ∩ {p, q}| = |V (R) ∩X| = 1.

Proof. We start by proving Item 2, from which Item 1 will then follow. So let ∅ ̸= X ⊆
V (P1) \ {p, r}. Denote by z the first vertex of P2, and by y the second vertex of P1.
By the definition of an extended type II gadget, either (z, y) ∈ A(G) or there is some
w ∈ V (P1) \ {r} such that (w, z) ∈ A(G). Suppose first that (z, y) ∈ A(G). Traverse the
dipath P1 starting from y until the first vertex of X is reached, and denote this vertex by
x. Evidently, we have X ∩V (P1[y, x]) = {x}. Now define R by setting s1(R) = t1(R) = q,
s2(R) = z, t2(R) = x, Q′

1(R) = P2 ◦ (r, q) and Q2(R) = (z, y) ◦ P1[y, x]. Then R is indeed
a (2, b)-alternating-path (since |P2| ≥ b), and we have V (R) ∩ {p, q} = {q} (since x ̸= p)
and V (R) ∩X = {x}, as required.

Suppose now that there is w ∈ V (P1) \ {r} such that (w, z) ∈ A(G). If w = p then,
as before, we let x be the first vertex of X reached when traversing P1[y, p]. Observe that
(w, z) ◦ P2 ◦ P1[r, x] is a dipath from p = w to x, and thus also a (1, b)-alternating-path R
with s1(R) = p and t1(R) = x. Moreover, our choice of x implies that V (R) ∩X = {x},
as required.

So from now on we assume that w ̸= p. In this case, choose an element x′ ∈ X, which
is closest to w in the undirected path underlying P1. In other words, we choose x′ ∈ X
such that the subpath of P1 between w and x′ contains no vertex of X other than x′ itself.
We consider two cases, based on the relative position of x′ and w along P1. Assume first
that when traversing the dipath P1 (starting from r), w is reached before x′ is (here we
allow w = x′). In this case, define R by setting s1(R) = t1(R) = q, s2(R) = w, t2(R) = x′,
Q′

1(R) = (w, z) ◦ P2 ◦ (r, q) and Q2(R) = P1[w, x′]. Assume now that x′ is reached before
w when traversing P1. In this case, define a (2, b)-alternating-path R by setting s1(R) =
t1(R) = q, s2(R) = t2(R) = x′ and Q′

1(R) = P1[x′, w] ◦ (w, z) ◦ P2 ◦ (r, q). Observe that in
both cases, R is indeed a (2, b)-alternating-path (because |P2| ≥ b), V (R) ∩ {p, q} = {q}
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(because w, x′ ̸= p), and V (R) ∩X = {x′} (by our choice of x′). This concludes the proof
of Item 2.

It remains to prove Item 1. So let x ∈ V (G) \ {p, q}. If x ∈ V (P2), then we define
a (2, b)-alternating-path R by setting s1(R) = t1(R) = p, s2(R) = t2(R) = x as well
as Q′

1(R) = P2[x, r] ◦ P1. This path is indeed (2, b)-alternating since |Q′
1(R)| ≥ |P1| ≥

2b2 + b− 2 ≥ b. And if x ∈ V (G) \ (V (P2) ∪ {p, q}) = V (P1) \ {p, r}, then we obtain the
required alternating-path R by applying Item 2 with X := {x}. It is easy to see that in
both cases, R satisfies the assertion of Item 1. This completes the proof of the lemma.

2.2.2 Gadget Chains

We now define the notion of a chain of gadgets, a structure which will be instrumental to
our proof of Theorem 2.10. In what follows, for a gadget G, we will denote by p(G) and
q(G) the designated vertices p and q of G, respectively.

Definition 2.1. A chain C consists of a directed path P = v0, . . . , vm, a partition A1∪A2 =
A(P ) = {(v0, v1), . . . , (vm−1, vm)} of the arc-set of P , and a collection of (non-trivial)
gadgets (Ge : e ∈ A2) having the following four properties:

1. For every e ∈ A2, the gadget Ge is either of type I, basic type II, or type III.

2. For every e = (vi, vi+1) ∈ A2, p(Ge) = vi and q(Ge) = vi+1.

3. V (G(vi,vi+1)) ∩ {v0, . . . , vm} = {vi, vi+1} for every (vi, vi+1) ∈ A2.

4. V (Ge) ∩ V (Gf ) ⊆ {v0, . . . , vm} for every pair of distinct e, f ∈ A2.

We will use the following terminology and notation in relation with gadget chains:

• With a slight abuse of notation, we identify the chain C and the digraph consisting
of the union of P and the gadgets Ge, e ∈ A2.

• For convenience, for (vi, vi+1) ∈ A1 we denote by G(vi,vi+1) the trivial gadget with
vertices vi, vi+1 and arc (vi, vi+1).

• In cases where several chains are considered at the same time, we will write A1(C),
A2(C) and Ge(C) to indicate that we are considering the chain C.

• The dipath P is called the spine of the chain, and |P | = m is the length of the chain.

• The vertex set of C, denoted V (C), is defined as V (C) = V (P ) ∪
⋃︁

e∈A2 V (Ge).

• For integers 0 ≤ i < j ≤ m, we denote by C[vi, vj ] the subchain of C whose spine
is P [vi, vj ] = vi, vi+1, . . . , vj ; so Aℓ(C[vi, vj ]) = Aℓ(C) ∩ A(P [vi, vj ]) for ℓ = 1, 2, and
C[vi, vj ] inherits the gadgets of C.

The next sequence of lemmas is concerned with embedding subdivisions of Ca,b using
gadget chains. The following lemma asserts that such chains can be used to find (a, b)-
alternating-paths.

Lemma 2.14. Let a, b ≥ 1 be integers. Let C be a chain, let P = v0, . . . , vm and A1, A2
be as in Definition 2.1, and suppose that |A2| ≥ a(b + 1) − 1. Then C contains a strong
(a, b)-alternating-path R with s1(R) = v0 and ta(R) = vm.
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Proof. The proof is by induction on a. In the base case a = 1, the condition in the lemma
states that |A2| ≥ b. This implies that m = |P | ≥ b, meaning that P is a dipath of length
at least b from v0 to vm, and hence also a strong (1, b)-alternating-path with s1(P ) = v0
and t1(P ) = vm.

We now move on to the induction step. So let a ≥ 2. Let j be the largest integer in
the set {0, . . . , m − b − 1} satisfying (vj , vj+1) ∈ A2. Set C′ := C[v0, vj ]. Then |A2(C′)| ≥
|A2(C)| − (b + 1) ≥ (a − 1)(b + 1) − 1. By the induction hypothesis, C′ contains a strong
(a− 1, b)-alternating-path R′ with s1(R′) = v0 and ta−1(R′) = vj .

Setting e := (vj , vj+1), suppose first that Ge is either of type I or a basic gadget of
type II. By Item 1 of Lemma 2.12, Ge contains a (2, b)-alternating path R0 with s1(R0) =
t1(R0) = vj and t2(R0) = vj+1. Now let R be the (a, b)-alternating-path obtained by
attaching to R′ the dipaths Q′

1(R0) and Q2(R0) ◦ P [vj+1, vm]. Formally, R is defined by
setting si(R) = si(R′) and ti(R) = ti(R′) for every 1 ≤ i ≤ a−1 (so in particular, s1(R) =
v0), sa(R) = s2(R0), ta(R) = vm, Qi(R) = Qi(R′) for every 1 ≤ i ≤ a−1, Q′

i(R) = Q′
i(R′)

for every 1 ≤ i ≤ a− 2, Q′
a−1(R) = Q′

1(R0) and Qa(R) = Q2(R0) ◦P [vj+1, vm]. Note that
|Qa(R)| ≥ b because j ≤ m− b− 1. It follows that R is indeed a strong (a, b)-alternating-
path, as required.

Suppose now that Ge is of type III. Then Ge consists of the vertices vj , vj+1, a vertex r,
and two internally vertex-disjoint dipaths P1, P2 from vj and vj+1, respectively, to r, such
that P1 and P2 have length at least 2b−1 ≥ b each. Now let R be the (a, b)-alternating-path
obtained by attaching to R′ the dipaths P1, P2 and P [vj+1, vm]. Formally, R is defined by
setting si(R) = si(R′) for every 1 ≤ i ≤ a−1 (so in particular, s1(R) = v0), ti(R) = ti(R′)
for every 1 ≤ i ≤ a − 2, ta−1(R) = r, sa(R) = vj+1, ta(R) = vm, Qi(R) = Qi(R′) and
Q′

i(R) = Q′
i(R′) for every 1 ≤ i ≤ a − 2, Qa−1(R) = Qa−1(R′) ◦ P1, Q′

a−1(R) = P2 and
Qa(R) = P [vj+1, vm]. Again, it is easy to check that R is a strong (a, b)-alternating-path,
as required.

Lemma 2.15. Let G, G∗ be gadgets such that V (G) ∩ V (G∗) ̸= ∅, p(G∗), q(G∗) /∈ V (G),
and G∗ is an extended gadget of type II. Then there exists 1 ≤ a ≤ 3 such that G ∪ G∗

contains an (a, b)-alternating-path R with ta(R) ∈ {p(G), q(G)}, s1(R) ∈ {p(G∗), q(G∗)}
and |V (R) ∩ {p(G), q(G)}| = |V (R) ∩ {p(G∗), q(G∗)}| = 1.

Proof. For convenience, let us put p := p(G), q := q(G), p∗ := p(G∗) and q∗ := q(G∗).
The assumption p∗, q∗ /∈ V (G) will be used implicitly throughout the proof. We proceed
by a case analysis over the type of G.

Case 1. G is trivial, a gadget of type I, or a gadget of type II. Recall that by assumption,
V (G)∩V (G∗) ̸= ∅. By Item 2 of Lemma 2.12, {p, q} is reachable from every vertex of V (G)
via a dipath inside G (this is evident if G is trivial). In particular, G contains a dipath from
V (G) ∩ V (G∗) to {p, q}. Fix a shortest such dipath P ⊆ G, and let x ∈ V (G) ∩ V (G∗)
be the first vertex of P . The minimality of P implies that V (P ) ∩ V (G∗) = {x} and
|V (P )∩{p, q}| = 1. By Item 1 of Lemma 2.13, there is 1 ≤ a ≤ 2 such that G∗ contains an
(a, b)-alternating-path R∗ with ta(R∗) = x, s1(R∗) ∈ {p∗, q∗} and |V (R∗) ∩ {p∗, q∗}| = 1.
(The condition x /∈ {p∗, q∗} appearing in Item 1 of Lemma 2.13 is satisfied here because
x ∈ V (G)∩V (G∗) whereas p∗, q∗ /∈ V (G) by assumption.) Note that V (P )∩V (R∗) = {x}
because V (P )∩V (G∗) = {x} and V (R∗) ⊆ V (G∗). Now it is easy to see that by combining
P and R∗ we obtain an (a, b)-alternating-path R with ta(R) ∈ {p, q}, s1(R) ∈ {p∗, q∗} and
|V (R) ∩ {p, q}| = |V (R) ∩ {p∗, q∗}| = 1. Formally, R is defined by setting Qa(R) :=
Qa(R∗) ◦ P (so ta(R) ∈ {p, q} is the last vertex of P ); si(R) = si(R∗) for every 1 ≤ i ≤ a;
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and ti(R) = ti(R∗), Qi(R) = Qi(R∗) and Q′
i(R) = Q′

i(R∗) for every 1 ≤ i ≤ a − 1. This
completes the proof in Case 1.

Case 2. G is a gadget of type III. In this case G consists of the arc (p, q), a vertex r, and
two internally vertex-disjoint dipaths P1, P2 from p and q, respectively, to r, such that P1
and P2 have length at least 2b− 1 each.

As G∗ is an extended gadget of type II, it consists of the vertices p∗, q∗, a vertex
r∗ and dipaths P ∗

1 , P ∗
2 , all satisfying the properties stated in the definition of a type II

gadget. We start by handling the case that there is some x ∈ V (P ∗
1 ) ∩ V (G) such that

the distance from {p, q} to x in G is at least b− 1. Since V (G) = V (P1)∪ V (P2), we have
either x ∈ V (P1) or x ∈ V (P2). Suppose without loss of generality that x ∈ V (P1) (the
case x ∈ V (P2) is symmetric). Our assumption on x then means that |P1[p, x]| ≥ b − 1.
Now, R := P1[p, x] ◦ (x, q∗) is a dipath of length at least b from {p, q} to q∗ (note that
we have (x, q∗) ∈ A(G∗) by the definition of a type II gadget). Hence, R constitutes a
(2, b)-alternating-path with s1(R) = t1(R) = q∗ and s2(R) = t2(R) ∈ {p, q}. Moreover,
|V (R) ∩ {p, q}| = 1 and V (R) ∩ {p∗, q∗} = {q∗} (since p∗ /∈ V (G)), as required.

So from now on we assume that every x ∈ V (P ∗
1 ) ∩ V (G) is at distance at most

b − 2 from {p, q} in G (in particular, if b = 1 then V (P ∗
1 ) ∩ V (G) = ∅). It follows that

|V (G) ∩ V (P ∗
1 )| ≤ 2(b − 1). Moving forward, we will consider two cases, based on the

intersection of V (G) with V (P ∗
2 ).

Case 2.1. V (G)∩V (P ∗
2 ) = ∅. Set X := V (G)∩V (G∗), noting that X ̸= ∅ by assumption.

From V (G)∩V (P ∗
2 ) = ∅ and p∗, q∗ /∈ V (G), we conclude X ⊆ V (G∗)\(V (P ∗

2 )∪{p∗, q∗}) =
V (P ∗

1 )\{p∗, r∗}. By Item 2 of Lemma 2.13, there exists 1 ≤ a ≤ 2 and an (a, b)-alternating-
path R∗ contained in G∗, such that ta(R∗) ∈ X, s1(R∗) ∈ {p∗, q∗} and |V (R∗)∩{p∗, q∗}| =
|V (R∗)∩X| = 1. For convenience, put x := ta(R∗). Note that V (R∗)∩V (G) = {x} by our
choice of X and R∗. We now see that if x ∈ {p, q}, then R := R∗ satisfies the requirements
of the lemma. Suppose then that x /∈ {p, q}. Since x ∈ V (G), we have either x ∈ V (P1)
or x ∈ V (P2). Without loss of generality, we assume that x ∈ V (P1) (the case that
x ∈ V (P2) is symmetric). Recall that by our assumption, x is at distance at most b − 2
from {p, q} in G; in other words, the length of the dipath P1[p, x] is at most b − 2. As
|P1| ≥ 2b−1 ≥ 2b−2, we get that |P1[x, r]| = |P1|−|P1[p, x]| ≥ b. Now let R be the (a+1, b)-
alternating-path obtained by combining R∗ with the dipaths P1[x, r] and P2. Formally, R
is defined by setting si(R) = si(R∗) for every 1 ≤ i ≤ a; ti(R) = ti(R∗), Qi(R) = Qi(R∗)
and Q′

i(R) = Q′
i(R∗) for every 1 ≤ i ≤ a − 1; ta(R) = r; sa+1(R) = ta+1(R) = q;

Qa(R) = Qa(R∗)◦P1[x, r]; and Q′
a(R) = P2. Note that R is indeed an (a+1, b)-alternating-

path; this follows from our choice of R∗, the fact that V (R∗)∩V (G) = {x}, and the bounds
|Q′

a(R)| = |P2| ≥ 2b−1 ≥ b and |Qa(R)| ≥ |P1[x, r]| ≥ b. We also have |V (R)∩{p∗, q∗}| = 1
(as V (R) ∩ {p∗, q∗} = V (R∗) ∩ {p∗, q∗}) and V (R) ∩ {p, q} = {q} (by our definition of R
and as x /∈ {p, q}). Since a + 1 ≤ 3, we see that the assertion of the lemma holds in Case
2.1.

Case 2.2. V (G) ∩ V (P ∗
2 ) ̸= ∅. In this case, we traverse the dipath P ∗

2 backwards (i.e.,
starting from its last vertex, r∗), until the first time a vertex of V (G) is reached, and
denote this vertex by w. Evidently, V (G) ∩ V (P ∗

2 [w, r∗]) = {w}. For convenience, let us
set P ∗ := P ∗

2 [w, r∗] ◦ P ∗
1 , noting that P ∗ starts at w, ends at p∗, and has length at least

|P ∗
1 | ≥ 2b2+b−2 (by the definition of a type II gadget). For every u ∈ V (G)∩(V (P ∗)\{w}),

denote by eu the (unique) arc of P ∗ whose head is u. Let R1, . . . , Rm be the connected
components of the digraph obtained from the path P ∗ by deleting the arcs eu for every
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u ∈ V (G) ∩ (V (P ∗) \ {w}) (this digraph is a dipath forest). Then for each 1 ≤ i ≤ m, Ri

is a dipath whose first vertex is in V (G) and all of whose other vertices are not in V (G).
Recall that by our assumption, |V (G) ∩ V (P ∗

1 )| ≤ 2(b− 1). Now, our choice of w implies
that V (G)∩V (P ∗) = (V (G)∩V (P ∗

1 ))∪{w}. The number of edges we deleted from P ∗ to
obtain R1, . . . , Rm is, one the one hand, equal to m − 1, and on the other hand equal to
|V (G)∩(V (P ∗)\{w})| ≤ |V (G)∩V (P ∗

1 )| ≤ 2(b−1). It follows that m ≤ 2(b−1)+1 = 2b−1
and |R1|+ · · ·+ |Rm| ≥ |P ∗| − 2(b− 1) ≥ 2b2 + b− 2− 2(b− 1) = 2b2 − b. By averaging,
there is some 1 ≤ i ≤ m such that |Ri| ≥ 2b2−b

m ≥ 2b2−b
2b−1 ≥ b.

Let u (resp. v) be the first (resp. last) vertex of Ri. Note that v ∈ V (P ∗
1 ) due to our

choice of w. Define a dipath R∗ as follows: if v = p∗ then set R∗ := Ri, and otherwise set
R∗ := Ri ◦ (v, q∗). (That (v, q∗) ∈ A(G∗) follows from the definition of a type II gadget
and the fact that v ∈ V (P ∗

1 ).) Then |V (R∗) ∩ {p∗, q∗}| = 1 and V (G) ∩ V (R∗) = {u}
(because V (G)∩V (Ri) = {u} and q∗ /∈ V (G)). In particular, u ∈ V (G) = V (P1)∪V (P2).
Suppose, without loss of generality, that u ∈ V (P1) (the case u ∈ V (P2) is symmetric).
Now define a (2, b)-alternating-path R as follows: s1(R) = t1(R) = q∗, s2(R) = t2(R) = p,
Q′

1(R) = P1[p, u] ◦ R∗. Note that Q′
1(R) is indeed a dipath (because V (P1) ∩ V (R∗) ⊆

V (G)∩V (R∗) = {u}), and that |Q′
1(R)| ≥ |V (R∗)| ≥ |V (Ri)| ≥ b. Furthermore, q /∈ V (R)

and V (R)∩ {p∗, q∗} = V (R∗)∩ {p∗, q∗}. Thus, R satisfies the requirements of the lemma.
This completes the proof.

Note that the gadget G in Lemma 2.15 is allowed to be trivial.
In the following lemma we show that if a sufficiently “rich” chain (i.e., a chain C

with |A2(C)| large enough) “self-intersects” in some well-defined way, then it contains a
subdivision of Ca,b. Roughly speaking, this can be thought of as closing the alternating-
path obtained from Lemma 2.14 to form a cycle (i.e., a Ca,b-subdivision). The purpose of
Lemma 2.15 is to achieve this closure.

Lemma 2.16. Let a ≥ 2 and b ≥ 1 be integers, let C be a chain contained in a digraph D
and let P = z0, . . . , zℓ and A1, A2 be as in Definition 2.1. Suppose |A2| ≥ (a+3)(b+1)−2
and that at least one of the following two conditions is satisfied:

1. There exists x ∈ V (G(z0,z1)) such that (zℓ, x) ∈ A(D).

2. There exists a vertex z∗ ∈ V (D)\V (C) such that (zℓ, z∗) ∈ A(D), and there exists an
extended type II gadget G∗ such that p(G∗) = zℓ, q(G∗) = z∗, V (G(z0,z1))∩V (G∗) ̸= ∅
and V (C) ∩ V (G∗) ⊆ V (G(z0,z1)) ∪ {zℓ}.

Then D contains a subdivision of Ca,b.

Proof. For convenience, put G := G(z0,z1). We start by showing that for some 1 ≤ a1 ≤ 3,
G ∪ G∗ contains an (a1, b)-alternating-path R∗ with the properties ta1(R∗) ∈ {z0, z1},
s1(R∗) ∈ {zℓ, z∗} and |V (R∗) ∩ {z0, z1}| = |V (R∗) ∩ {zℓ, z∗}| = 1. If Condition 2 in the
lemma holds, then this assertion follows immediately from Lemma 2.15. Note that the
conditions of Lemma 2.15 are indeed satisfied in our setting: we have V (G)∩V (G∗) ̸= ∅ and
z∗ /∈ V (G) by assumption, and zℓ /∈ V (G) by the definition of a chain and as m ≥ |A2| ≥ 2.

Suppose now that Condition 1 in the lemma holds. Let x ∈ V (G) be such that
(zℓ, x) ∈ A(D). If x ∈ {z0, z1} then the arc (zℓ, x) itself constitutes a (1, b)-alternating-
path R∗ with the required properties. Suppose from now on that x /∈ {z0, z1}. So in
particular, G is not a trivial gadget. Assume first that G is of type I or II. By Item 2 of
Lemma 2.12, {z0, z1} is reachable from x inside G. Fix a shortest path P0 from x to {z0, z1}
contained in G. Then |V (P0)∩{z0, z1}| = 1. Now R∗ := (zℓ, x) ◦P0 is a dipath from zℓ to
{z0, z1}, and hence also a (1, b)-alternating-path with t1(R∗) ∈ {z0, z1} and s1(R∗) = zℓ,
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as required. Assume now that G is of type III. Let r ∈ V (G) and P1, P2 ⊆ V (G) be as
in the definition of a type III gadget (so P1, P2 are dipaths from z0, z1, respectively, to r,
each having length at least 2b − 1). Suppose without loss of generality that x ∈ V (P1)
(the case that x ∈ V (P2) is symmetric). Now define a (2, b)-alternating-path R∗ by
setting s1(R∗) = zℓ, t1(R∗) = r, s2(R∗) = t2(R∗) = z1, Q1(R∗) = (zℓ, x) ◦ P1[x, r] and
Q′

1(R∗) = P2, noting that |Q′
1(R∗)| = |P2| ≥ 2b − 1 ≥ b by the definition of a type III

gadget. Note that z0 /∈ V (R∗) because x /∈ {z0, z1} by assumption. Thus, the oriented
path R∗ satisfies our requirements.

We have thus shown that for some 1 ≤ a1 ≤ 3, G ∪G∗ contains an (a1, b)-alternating-
path R∗ satisfying ta1(R∗) ∈ {z0, z1}, s1(R∗) ∈ {zℓ, z∗} as well as |V (R∗) ∩ {z0, z1}| =
|V (R∗) ∩ {zℓ, z∗}| = 1. Let R1 be the (a1, b)-alternating-path obtained by combining R∗

with the dipaths P [ta1(R∗), zb+1] and (P ◦ (zℓ, z∗))[zℓ−b, s1(R∗)]. Formally, we set

s1(R1) = zℓ−b, si(R1) = si(R∗), 2 ≤ i ≤ a1,

ti(R1) = ti(R∗), 1 ≤ i ≤ a1 − 1, ta1(R1) = zb+1

and

Q1(R1) = (P ◦ (zℓ, z∗))[zℓ−b, s1(R∗)] ◦Q1(R∗), Qa1(R1) = Qa1(R∗) ◦ P [ta1(R∗), zb+1],

Qi(R1) = Qi(R∗), 2 ≤ i ≤ a1 − 1,

Q′
i(R1) = Q′

i(R∗), 1 ≤ i ≤ a1 − 1.

Note that R1 is strong, i.e., that Q1(R1) and Qa1(R1) have length at least b each.
Put a2 := a+2−a1. Then 1 ≤ a2 ≤ a+1 because a ≥ 2 and 1 ≤ a1 ≤ 3. Now set C′ :=

C[zb+1, zℓ−b], noting that |A2(C′)| ≥ |A2(C)|−(2b+1) ≥ (a+1)(b+1)−1 ≥ a2(b+1)−1. By
Lemma 2.14, applied with parameter a2, the chain C′ contains a strong (a2, b)-alternating-
path R2 with s1(R2) = zb+1 = ta1(R1) and ta2(R2) = zℓ−b = s1(R1). Let us note that
V (R1)∩V (R2) = {zb+1, zℓ−b}, since V (R1) ⊆ V (G)∪V (G∗)∪{z0, . . . , zb+1}∪{zℓ−b, . . . , zℓ},
V (R2) ⊆ V (C′) = V (C[zb+1, zℓ−b]) and V (C)∩V (G∗) ⊆ V (G)∪{zℓ}, and by the definition of
a chain (see Items 3-4 in Definition 2.1). By Observation 2.11, R1∪R2 spans a subdivision
of Ca,b, as required.

2.2.3 Embedding Gadgets

In this section we prove two lemmas, each asserting that one can find certain gadgets in
digraphs D possessing some suitable properties. Recall that g is chosen as g = 4b2.

Lemma 2.17. Let D be a digraph of directed girth at least g, and assume that for every
(x, y) ∈ A(D), either D contains a directed cycle of length exactly g through (x, y), or
there is z ∈ V (D) \ {x, y} such that (z, x), (z, y) ∈ A(D). Then for every (p, q) ∈ A(D),
there is a type I or extended type II gadget G contained in D such that p(G) = p, q(G) = q
and v(G) ≤ 2g.

Proof. Let (p, q) ∈ A(D). We inductively define a sequence of vertices ri, i ≥ 0, with the
property that (ri, q) ∈ A(D) for every i ≥ 0 and (ri, ri−1) ∈ A(D) for every i ≥ 1. Set
r0 := p. Let i ≥ 1, and suppose we have already defined r0, . . . , ri−1. By assumption,
either D contains a directed cycle C of length exactly g through (ri−1, q), or there is
z ∈ V (D)\{ri−1, q} such that (z, ri−1), (z, q) ∈ A(D). In the latter case, we set ri := z. In
the former case, we stop, noting that ri−1, . . . , r1, r0 = p, q, C[q, ri−1] is a closed directed
walk of length i + (|C| − 1) = g + i − 1 containing the arc (p, q). It follows that if we
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stop at step i, then there is a directed cycle of length at most g + i− 1 containing (p, q).
Therefore, if the process stopped at step i for some 0 ≤ i ≤ 2b2 + b − 2, then D must
contain a directed cycle of length at most g + 2b2 + b− 3 ≤ 2g through (p, q). Moreover,
this cycle must have length at least g since the directed girth of D is at least g. So we see
that in this case, D contains a gadget G of type I with p(G) = p, q(G) = q and v(G) ≤ 2g,
as required by our claim.

Suppose then that the process carried through to step 2b2 + b− 2 (inclusive), and let
r0, r1, . . . , r2b2+b−2 be the vertices produced by the process. The vertices r2b2+b−2, . . . , r1, p
describe a directed walk in D, all of whose vertices have an arc to q. Let r := r2b2+b−2 and
u := r2b2+b−3 denote the first and second vertex of this directed walk, respectively. We now
inductively define a sequence of vertices wi, i ≥ 0, with the property that (wi, u) ∈ A(D)
for every i ≥ 0 and (wi, wi−1) ∈ A(D) for every i ≥ 1. Set w0 := r. Let i ≥ 1,
and suppose we have already defined w0, . . . , wi−1. By assumption, either D contains a
directed cycle C of length exactly g through (wi−1, u), or there is z ∈ V (D) \ {wi−1, u}
such that (z, wi−1), (z, u) ∈ A(D). In the latter case, we set wi := z. In the former case,
we stop and output the directed cycle C.

Suppose first that the process carried through to step b, and let w0 = r, w1, . . . , wb be
the vertices produced by the process. Note that

P := (wb, wb−1, . . . , w0 = r = r2b2+b−2, r2b2+b−3, . . . , r1, r0 = p, q)

is a directed walk of length at most 2b2 +2b−1 in D. Since g⃗(D) ≥ g = 4b2 > 2b2 +2b−1,
the vertices of P must be pairwise distinct. Now set P1 := (r = r2b2+b−2, . . . , r1, r0 = p)
and P2 := (wb, . . . , w1, w0 = r), and observe that P1 and P2 satisfy all the requirements in
the definition of an extended type II gadget (note that there is an arc from the first vertex
of P2, namely wb, to the second vertex of P1, namely u, by our choice of the vertices wi,
i ≥ 0). Moreover, the resulting gadget has 2b2 + 2b ≤ 2g vertices, as required.

Suppose now that the process stopped at step i for some 1 ≤ i ≤ b, and let C be
the outputted directed cycle of length (exactly) g through the arc (wi−1, u). As be-
fore, the 2b2 + b + i − 1 vertices wi−1, . . . , w0 = r = r2b2+b−2, . . . , r1, r0 = p, q are
pairwise distinct because g⃗(D) ≥ g = 4b2 > 2b2 + b + i − 1 (as i ≤ b). Traverse the
directed cycle C backwards, starting from wi−1, until the first time a vertex v in the
set V := {wi−2, . . . , w0 = r2b2+b−2, . . . , r1, p, q} is hit (this will surely happen because
u = r2b2+b−3 ∈ V (C) ∩ V ). By our choice of v we have V (C[v, wi−1]) ∩ V = {v}. We now
rule out the possibility that v ∈ {w0, . . . , wi−2}. To this end, suppose by contradiction that
v = wj for some 0 ≤ j ≤ i− 2. Since wi−1, wi−2, . . . , wj = v, C[v, wi−1], wi−1 is a directed
cycle and g⃗(D) ≥ g, it must be the case that |C[v, wi−1]| ≥ g − (i − 1 − j) ≥ g − b + 1.
Now, as C consists of the arc (wi−1, u) and the dipaths C[v, wi−1] and C[u, v], we have
|C[u, v]| = |C| − 1 − |C[v, wi−1]| = g − 1 − |C[v, wi−1]| ≤ b − 2. Finally, we get that
v = wj , (wj , u), u, C[u, v], v = wj is a (non-trivial) directed closed walk of length at most
b− 1 < g, a contradiction.

We have thus shown that v /∈ {w0, . . . , wi−2}. If v = q then the vertex-sequence
wi−1, u = r2b2+b−3, . . . , r1, r0 = p, q = v, C[v, wi−1] describes a directed cycle which goes
through the arc (p, q) and has length at most g + 2b2 + b − 1 ≤ 2g and at least g.
Hence, in this case D contains a gadget of type I with the required properties. It remains
to handle the case that v ∈ {u = r2b2+b−3, . . . , r1, r0 = p}. In this case, let s be the
second vertex of C[v, wi−1] (so in particular, (v, s) ∈ A(D)). Now define the dipaths
P1 := (r2b2+b−2 = r, . . . , r1, r0 = p) and P2 := C[s, wi−1] ◦ (wi−1, . . . , w1, w0 = r). We
claim that |P2| ≥ b. Indeed, since (v, s)◦P2◦P1[r, v] is a directed cycle in D and g⃗(D) ≥ g,
it must be the case that |P2| ≥ g − 1− |P1| = g − 1− (2b2 + b− 2) ≥ b. We now see that
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all of the requirements in the definition of an extended type II gadget are met (note that
the vertex v ∈ V (P1) \ {r} has an arc to the first vertex of P2, namely s). Finally, observe
that the resulting type II gadget has 2b2 + b + (i − 1) + |C[s, wi−1]| ≤ 2b2 + 2b + g ≤ 2g
vertices, as required.

Lemma 2.18. Let b, h, d ≥ 1 be integers, let D′ be a digraph and let v ∈ V (D′). Suppose
that the following two conditions hold.

1. Every vertex of D′ reachable from v has out-degree at least (h+1) ·(d(2b−2)+1)+d;

2. There are less than dh vertices in D′ at distance at most (h + 1)(2b− 1) from v.

Then D′ contains a type III gadget G and a dipath P0 from v to p(G) with the properties
V (P0) ∩ V (G) = {p(G)}, v(G) ≤ (2h + 2)(2b− 1) and v(P0) ≤ h(2b− 1).

Proof. We describe a process for producing a (specific) out-arborescence T ⊆ D with root
v. The idea is as follows: going level by level (in a breadth-first manner), we will try to
attach to each vertex u of the (current) lowest level a collection of d dipaths of length 2b−1
each, which intersect only at u and do not intersect the (current) tree in any other vertex.
In this manner, we will construct a (2b− 1)-subdivision of a d-ary out-arborescence, where
an s-subdivision of a digraph F is a subdivision of F in which every arc is replaced with a
dipath of length (exactly) s, and a d-ary out-arborescence is an out-arborescence in which
every non-leaf vertex has exactly d children. We will then use Item 2 to argue that rather
soon in this process, intersections of branches must occur. Such an intersection will give
rise to the desired type III gadget. The details follow.

Throughout the process, we will maintain and update an out-arborescence T and sets
Li, i ≥ 0. We start by setting L0 = {v} and initializing T to be the one-vertex tree with
root v. Let i ≥ 0, and suppose that we have already defined L0, . . . , Li. If Li = ∅ then
we stop and say that the process terminated at step i. Otherwise, initialize Li+1 to be
the empty set and proceed as follows. Let u1, . . . , ut be an enumeration of the vertices in
Li. Going over j = 1, . . . , t in increasing order, we let P(uj) be the set of all dipaths of
length 2b− 1 which start at uj and are otherwise disjoint from V (T ). If P(uj) contains d
dipaths Q1, . . . , Qd with V (Qk) ∩ V (Qℓ) = {uj} for all 1 ≤ k < ℓ ≤ d, then attach these
dipaths to T and add their endpoints to Li+1. Otherwise, i.e. if Pj does not contain d
dipaths Q1, . . . , Qd which pairwise intersect only at uj , then do nothing; in this case uj

will remain a leaf of T throughout the process.
Consider the out-arborescence T at the end of the process. It is easy to see that T is

indeed the (2b − 1)-subdivision of some d-ary out-arborescence T0, and that the branch
vertices of this subdivision are precisely the elements of

⋃︁
i≥0 Li. It follows that |Li| ≤ di

for every i ≥ 0.
We claim that there is 0 ≤ i ≤ h such that Li contains a leaf of T . Indeed, suppose

by contradiction that for every 0 ≤ i ≤ h, no vertex of Li is a leaf. Then |Li| = di for
every 0 ≤ i ≤ h + 1. Observe that the number of vertices of T which are at distance at
most (h + 1)(2b− 1) from v (in T ) is exactly |Lh+1| +

∑︁h
i=0

(︁
d(2b− 2) + 1

)︁
· |Li|. Hence,

the number of such vertices is at least
h∑︂

i=0

(︁
d(2b− 2) + 1

)︁
· |Li| =

(︁
d(2b− 2) + 1

)︁
·

h∑︂
i=0

di ≥ dh,

in contradiction to the assumption in Item 2 of the lemma.
So let 0 ≤ i ≤ h be such that Li contains a leaf of T , and let u ∈ Li be such a leaf.

Let X be the set of vertices of T which are at distance at most (i + 1) · (2b − 1) from
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the root v. In other words, X consists of the sets L0, . . . , Li+1 and the (vertices of the)
subdivision dipaths connecting Lj to Lj+1 for j = 0, . . . , i. Let us say that a d-tuple of
dipaths (Q1, . . . , Qd) is good if

(a) For every k = 1, . . . , d, it holds that |Qk| ≤ 2b − 1, V (Qk) ∩X = {u}, and u is the
first vertex of Qk.

(b) V (Qk) ∩ V (Qℓ) = {u} for all 1 ≤ k < ℓ ≤ d.

Choose (Q1, . . . , Qd) among all good d-tuples of dipaths such that |Q1| + · · · + |Qd| is
maximized (note that taking Q1, . . . , Qd to be empty dipaths (starting at u) gives a good
d-tuple, so the set of good d-tuples is non-empty). If we had |Q1| = · · · = |Qd| = 2b−1, then
the algorithm would have attached Q1, . . . , Qd to T , in contradiction to our assumption
that u is a leaf. Thus, there must be some 1 ≤ k ≤ d such that |Qk| ≤ 2b − 2. Suppose
without loss of generality that |Q1| ≤ 2b−2, and let w be the last vertex of Q1. Evidently,
w is reachable from u and hence also from v, implying that d+(w) ≥ (h+1)·(d(2b−2)+1)+d
by Item 1. If w had an out-neighbour in V (D′) \ (X ∪ V (Q1) ∪ · · · ∪ V (Qd)), then we
could extend Q1 and thus obtain a longer good d-tuple of dipaths, in contradiction to the
maximality of (Q1, . . . , Qd). Thus, N+(w) ⊆ X ∪ V (Q1) ∪ · · · ∪ V (Qd). Since we have

|N+(w) ∩ (V (Q1) ∪ · · · ∪ V (Qd))| ≤ |V (Q1) ∪ · · · ∪ V (Qd)| − 1

= |V (Q1)|+ · · ·+ |V (Qd)| − (d− 1)− 1 ≤ d · 2b− 1− d = d(2b− 1)− 1,

it follows that |N+(w) ∩X| ≥ d+(w)− d(2b− 1) + 1 ≥ hd(2b− 2) + h + 2.
For each vertex x ∈ X, let y(x) denote the lowest common ancestor of u and x in the

tree T . Let X ′ be the set of all vertices x ∈ X such that (at least) one of the vertices u, x
is at distance at most 2b− 2 from y(x) in T . We now show that |X ′| ≤ hd(2b− 2) + h + 1.
Let P be the unique dipath (in T ) from v to u. For each 0 ≤ j ≤ i − 1, let yj be the
unique element of V (P ) ∩ Lj . Observe that if x ∈ X ′, then either x ∈ V (P ), or there is
0 ≤ j ≤ i−1 such that x is an internal vertex of one of the d−1 subdivision dipaths which
start at yj and are not subpaths of P . (Recall that every non-leaf branching vertex of T is
the first vertex of exactly d subdivision dipaths. It is evident that for every 0 ≤ j ≤ i− 1,
exactly one of the d subdivision dipaths starting at yj is a subpath of P , while the other
d − 1 only intersect P at yj .) It follows that |X ′| = |V (P )| + i · (d − 1) · (2b − 2) =
i · (2b− 1) + 1 + i · (d− 1) · (2b− 2) = i · d · (2b− 2) + i + 1 ≤ hd(2b− 2) + h + 1, as claimed.

As |N+(w) ∩ X| ≥ hd(2b − 2) + h + 2 > |X ′|, there exists x ∈ N+(w) ∩ (X \ X ′).
Setting y = y(x), let P ′

1 (resp. P ′
2) be the unique dipath (in T ) from y to x (resp. u).

Since x /∈ X ′, we have |P ′
1|, |P ′

2| ≥ 2b− 1. As u ∈ Li, we have |P ′
2| ≤ i(2b− 1) ≤ h(2b− 1),

and as x ∈ X we have |P ′
1| ≤ (h + 1)(2b − 1). Let z be the second vertex of P ′

2. Now
set P0 := P [v, y], P1 := P ′

1 and P2 := P ′
2[z, u] ◦ Q1 ◦ (w, x). Observe that P0, P1, P2

are internally vertex-disjoint (as y is the lowest common ancestor of x and u), and that
P1 and P2 have length at least 2b − 1 each (indeed, we have |P1| = |P ′

1| ≥ 2b − 1 and
|P2| ≥ |P ′

2| − 1 + |Q1|+ 1 ≥ |P ′
2| ≥ 2b− 1). So we see that P1, P2 form a type III gadget G

with p(G) = y and q(G) = z, and that this gadget satisfies V (P0)∩V (G) = {y} = {p(G)}.
Finally, observe that |P0| ≤ (i− 1)(2b− 1) ≤ h(2b− 1), |P1| = |P ′

1| ≤ (h + 1)(2b− 1) and
|P2| = (|P ′

2| − 1) + |Q1| + 1 ≤ h(2b − 1) + 2b − 2 = (h + 1)(2b − 1) − 1. It follows that
v(G) = |P1|+ |P2|+ 1 ≤ (2h + 2)(2b− 1). This completes the proof.

2.2.4 Putting It All Together

Proof of Theorem 2.10. Let a ≥ 2 and b ≥ 1. Recall that we set g := 4b2. We also fix
an integer k = O(ab7), to be chosen later. Suppose, for the sake of contradiction, that
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the theorem is false, and let D be a counterexample to the theorem which minimizes
v(D) + a(D). Namely, we assume that δ+(D) ≥ k, g⃗(D) ≥ g and D does not contain a
subdivision of Ca,b, but every digraph D′ with v(D′) + a(D′) < v(D) + a(D), δ+(D′) ≥ k
and g⃗(D′) ≥ g does contain a subdivision of Ca,b.

Claim 1. d+(v) = k for every v ∈ V (D).

Proof. Suppose, by contradiction, that d+(v) ≥ k + 1 for some v ∈ V (D). Let D′ be the
digraph obtained from D by deleting an (arbitrary) arc whose tail is v. Then δ+(D′) ≥ k
and g⃗(D′) ≥ g, but D′ does not contain a subdivision of Ca,b (as D′ is a subgraph of D).
This contradicts the minimality of D. �

Claim 2. For every (x, y) ∈ A(D), either D contains a directed cycle of length exactly
g through (x, y), or there is z ∈ V (D) \ {x, y} such that (z, x), (z, y) ∈ A(D).

Proof. Let (x, y) ∈ A(D). Suppose by contradiction that the assertion of the claim is
false. Let D′ be the digraph obtained from D by deleting x and adding the arc (z, y) for
every z ∈ N−

D (x). Evidently, v(D′) + a(D′) < v(D) + a(D). We claim that δ+(D′) ≥ k
and g⃗(D′) ≥ g. First, note that d+

D′(y) = d+
D(y) = k because (y, x) /∈ A(D) (as g⃗(D) ≥

g > 2). Next, observe that for every z ∈ V (D′) \ {y} = V (D) \ {x, y} we also have
d+

D′(z) = d+
D(z) = k, because z does not have both x and y as out-neighbors (by our

assumption). It follows that δ+(D′) ≥ k. Now suppose, for the sake of contradiction, that
D′ contains a directed cycle C ′ of length at most g − 1. If there is no z ∈ N−

D (x) such
that (z, y) ∈ A(C ′), then C ′ is also contained in D, which is impossible as g⃗(D) ≥ g. So
let z ∈ N−

D (x) be such that (z, y) ∈ A(C ′), and let C be the directed cycle obtained from
C ′ by deleting the arc (z, y) and adding the arcs (z, x), (x, y). Then C is contained in D
and has length |C ′|+ 1 ≤ g, implying that |C| = g. But this is impossible as we assumed
that D contains no directed cycle of length g through the arc (x, y). We conclude that
g⃗(D′) ≥ g, as claimed.

The minimality of D implies that D′ contains a subdivision S′ of Ca,b. If there is no
z ∈ N−

D (x) such that (z, y) ∈ A(S′), then S′ is also contained in D, contradicting our
assumption that D contains no subdivision of Ca,b. We may therefore assume that the set
Z := {z ∈ N−

D (x) : (z, y) ∈ A(S′)} is non-empty. Since the maximum in-degree of Ca,b is
2, we have |Z| ≤ 2. Assume first that |Z| = 1, and write Z = {z}. By replacing the edge
(z, y) of S′ with the path (z, x), (x, y) (which is present in D), we obtain a subdivision of
Ca,b contained in D, a contradiction. Suppose now that |Z| = 2, and write Z = {z1, z2}.
Then y must be a branch vertex in S′, and we must have d+

S′(y) = 0 (since every branch
vertex of Ca,b is either a source or a sink). Let S be the subgraph of D obtained from
S′ by deleting the edges (z1, y), (z2, y) and adding the edges (z1, x), (z2, x). Then S is a
subdivision of Ca,b in which x plays the branch-vertex role played in S′ by y. Again, we
arrive at a contradiction to our assumption that D contains no subdivision of Ca,b. �

Let C be a chain with spine P = v0, . . . , vm and partition A(P ) = A1 ∪ A2 (as in
Definition 2.1). We say that C is good if the following conditions are satisfied:

(a) Every gadget in C has at most (8g + 6)(2b− 1) vertices;

(b) (vm−1, vm) ∈ A2;

(c) Among any (4g + 3)(2b− 1) consecutive arcs of P , there is an arc belonging to A2.
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Let C be a good chain contained in D of maximal length, and let P = v0, . . . , vm, A1, A2
and (Ge)e∈A2 be as in Definition 2.1. Define i0 := max

{︁
0, m−(4g+3)(2b−1)(a+3)(b+1)

}︁
and C′ := C[vi0 , vm]. Item (a) implies that

|V (C′)| ≤ (8g + 6)(2b− 1) · (m− i0) ≤ 2(4g + 3)2(2b− 1)2(a + 3)(b + 1)
≤ 8b2(4g + 3)2(a + 3)(b + 1).

(2.1)

Our choice of i0 implies that i0 = 0 and C′ = C, or i0 = m− (4g + 3)(2b− 1)(a + 3)(b + 1),
in which case we have by Item (c) that

|A2(C′)| ≥
⌊︃

m− i0
(4g + 3)(2b− 1)

⌋︃
= (a + 3)(b + 1).

Let D′ be the digraph obtained from D by deleting the vertex-set V (C) \ {vm}.

Claim 3. Every u ∈ V (D′) which is reachable from vm in D′ satisfies d+
D′(u) ≥ k−|V (C′)|.

Proof. If i0 = 0, then C′ = C and the claim follows directly by definition of D′. So assume
now that i0 > 0 and hence |A2(C′)| ≥ (a + 3)(b + 1) ≥ (a + 3)(b + 1) − 2. Let Q be a
dipath from vm to u in D′. Suppose by contradiction that d+

D′(u) < k − |V (C′)|. Since
d+

D(u) ≥ k and V (D) \ V (D′) ⊆ V (C), we must have |N+
D (u) ∩ V (C)| > |V (C′)|. Hence,

there must be some x ∈ V (C) \ V (C′) such that (u, x) ∈ A(D). Let 0 ≤ j ≤ m be such
that x ∈ G(vj ,vj+1), and note that j < i0 because x /∈ V (C′). Now let C′′ be the chain
formed by concatenating C[vj , vm] with the dipath Q (in this chain, all arcs of Q belong
to A1(C′′)). This is indeed a chain because V (Q) ∩ V (C) = {vm}. As C′ is contained in
C′′, we have |A2(C′′)| ≥ |A2(C′)| ≥ (a + 3)(b + 1)− 2. Observe that we are precisely in the
setting of Item 1 of Lemma 2.16 with respect to the chain C′′. Indeed, the last vertex of
the spine of C′′, namely u, sends an arc to x ∈ V (G(vj ,vj+1)), and (vj , vj+1) is the first arc
of the spine of C′′. So we may apply Item 1 of Lemma 2.16 to deduce that D contains a
subdivision of Ca,b, a contradiction. �

Claim 4. Let u ∈ V (D′) be a vertex which has distance at most (4g + 3)(2b − 1) from
vm in D′. Then D contains a dipath of length at most 2g from V (C′) to u.

Proof. Let Q = (w0 = vm, w1, . . . , wt−1, wt = u) be a shortest dipath from vm to u in D′.
Then t = |Q| ≤ (4g + 3)(2b− 1). Claim 2 states that D satisfies the condition of Lemma
2.17. By applying Lemma 2.17 to the arc (wt−1, u), we infer that D contains a gadget
G∗ which is either of type I or extended type II, such that p(G∗) = wt−1, q(G∗) = u and
v(G∗) ≤ 2g.

We now show that if V (G∗) ∩ V (C′) ̸= ∅, then the assertion of the claim holds. So
suppose that V (G∗) ∩ V (C′) ̸= ∅, and let x ∈ V (G∗) ∩ V (C′). By Item 2 of Lemma 2.12,
G∗ contains a dipath from x to {wt−1, u}, and hence also to u, as (wt−1, u) ∈ A(G∗).
Evidently, this dipath has length at most v(G∗) ≤ 2g. So we see that D contains a dipath
of length at most 2g from V (C′) to u, as required. To complete the proof, it hence suffices
to show that V (G∗) ∩ V (C′) ̸= ∅. For the rest of the proof we assume, for the sake of
contradiction, that V (G∗)∩V (C′) = ∅. We proceed by a case analysis over the type of G∗.

Case 1. G∗ is an extended gadget of type II. Let G∗
0 be the basic part of G∗. We claim

that V (G∗
0) ∩ V (Q) = {wt−1, u}. Suppose otherwise, and let 0 ≤ j ≤ t − 2 be such that

wj ∈ V (G∗
0). By the definition of a basic type II gadget, every vertex in V (G∗

0) \ {u}
has an arc to q(G∗

0) = u. In particular, (wj , u) ∈ A(D), and hence also (wj , u) ∈ A(D′)
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(as wj , u ∈ V (D′)). It follows that w0, . . . , wj−1, wj , u is a dipath from w0 = vm to u
in D′ which is shorter than Q, in contradiction to our choice of Q. So indeed we have
V (G∗

0) ∩ V (Q) = {wt−1, u}.
We claim that V (G∗)∩V (C) ̸= ∅. So suppose by contradiction that V (G∗)∩V (C) = ∅.

Then one can extend the chain C into a longer good chain C1 by adding the dipath Q and
the gadget G∗

0; the definition of C1 includes setting (wt−1, u) ∈ A2(C1), G(wt−1,u)(C1) = G∗
0,

and (wj , wj+1) ∈ A1(C1) for every 0 ≤ j ≤ t − 2. Then C1 is indeed a chain because
V (G∗

0) ∩ V (Q) = {wt−1, u} and due to our assumption that V (G∗) ∩ V (C) = ∅. The
goodness of C1 (i.e. that C1 satisfies Items (a)-(c) above) follows from the goodness of C
and the fact that |Q| ≤ (4g+3)(2b−1) and v(G∗

0) ≤ 2g ≤ (8g+6)(2b−1). As the existence
of C1 stands in contradiction to the maximality of C, our assumption V (G∗) ∩ V (C) = ∅
must have been wrong, as required.

We have thus shown that V (G∗)∩V (C) ̸= ∅. Since V (G∗)∩V (C′) = ∅ by assumption, we
must have V (G∗)∩(V (C)\V (C′)) ̸= ∅. This means that V (G∗)∩V (G(vi,vi+1)) ̸= ∅ for some
0 ≤ i < i0 (as V (C)\V (C′) is contained in the union of V (G(vi,vi+1)) over all 0 ≤ i < i0). Let
i1 be the largest such 0 ≤ i < i0, and set G := G(vi1 ,vi1+1). Now let C1 be the chain obtained
by attaching to C[vi1 , vm] the dipath Q − u = (w0 = vm, w1, . . . , wt−1). This is indeed a
chain because V (Q) ∩ V (C) = {vm} (as V (Q) ⊆ V (D′) and (V (C) \ {vm}) ∩ V (D′) = ∅).
Then |A2(C1)| ≥ |A2(C′)| ≥ (a+3)(b+1)−2 because C1 contains C′ and i0 > 0. Observe that
Condition 2 in Lemma 2.16 holds for the chain C1 with respect to the vertex z∗ := u (and
with zℓ = wt−1, z0 = vi1 and z1 = vi1+1). Indeed, there is an arc from the last vertex of the
spine of C1, namely wt−1, to u /∈ V (C1), and there is an extended type II gadget G∗ such
that p(G∗) = wt−1, q(G∗) = u, V (G) ∩ V (G∗) ̸= ∅ and V (C1) ∩ V (G∗) ⊆ V (G) ∪ {wt−1}
(here we use our choice of i1). By Lemma 2.16, D contains a subdivision of Ca,b, a
contradiction.

Case 2. G∗ is of type I, i.e., a directed cycle of length at least g through (wt−1, u). Let j
be the smallest integer in {0, . . . , t− 1} satisfying wj ∈ V (G∗); note that j is well-defined
because wt−1 ∈ V (G∗). Let w′ be the vertex of the directed cycle G∗ immediately following
wj , and consider the dipath Q′ := (w0 = vm, w1, . . . , wj , w′). Our choice of j implies that
w′ /∈ {w0, . . . , wj−1} (so Q′ is indeed a path) and that V (G∗) ∩ V (Q′) = {wj , w′}. Note
also that j ≥ 1 because w0 = vm ∈ V (C′) and V (G∗) ∩ V (C′) = ∅ by assumption. Hence,
we have wj /∈ V (C).

Similarly to the previous case, if V (G∗)∩V (C) = ∅, then one can extend C into a longer
good chain C1 by adding the dipath Q′ and the gadget G∗; the definition of C1 includes
setting (wj , w′) ∈ A2(C1), G(wj ,w′)(C1) = G∗, and (wi, wi+1) ∈ A1(C1) for every 0 ≤ i < j.
Then C1 is indeed a chain because V (G∗)∩V (Q′) = {wj , w′} and V (G∗)∩V (C) = ∅, and the
goodness of C1 follows from the goodness of C and the fact that |Q| ≤ (4g + 3)(2b− 1) and
v(G∗) ≤ 2g ≤ (8g + 6)(2b − 1). So we see that having V (G∗) ∩ V (C) = ∅ contradicts the
maximality of C, and hence V (G∗) ∩ V (C) ̸= ∅.

Walk along the directed cycle G∗, starting from wj , until the first time that a vertex of
V (C) is met. Denote this vertex by x, and the preceding vertex on G∗ by y. Consider the
dipath Q′′ := (w0 = vm, w1, . . . , wj) ◦ G∗[wj , y], and observe that V (Q′′) ∩ V (C) = {vm}
because V (Q) ∩ V (C) = {vm} and by our choice of x. Since V (G∗) ∩ V (C′) = ∅, we must
have x ∈ V (G∗)∩(V (C)\V (C′)) ̸= ∅. This means that x ∈ V (G(vi,vi+1)) for some 0 ≤ i < i0.
Now let C1 be the chain obtained by concatenating C[vi, vm] with the dipath Q′′. This is
indeed a chain because V (Q′′)∩V (C) = {vm} . Then |A2(C1)| ≥ |A2(C′)| ≥ (a+3)(b+1)−2
because C1 contains C′ and i0 > 0. Observe that Condition 1 in Lemma 2.16 holds for the
chain C1 (with y playing the role of zℓ). Indeed, there is an arc from the last vertex of
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the spine of C1, namely y, to x ∈ V (G(i,i+1)), and (vi, vi+1) is the first arc of the spine of
C1. By Lemma 2.16, D contains a subdivision of Ca,b, a contradiction. This completes the
proof of Claim 4. �

With Claims 3-4 at hand, we can complete the proof of the theorem. To this end,
we will apply Lemma 2.18. By combining Claim 4 with the fact that ∆+(D) = k, we
conclude that the number of vertices of D′ at distance at most (4g + 3)(2b − 1) from vm

(in D′) is at most |V (C′)| · k2g. We will apply Lemma 2.18 with parameters h := 4g + 2
and d := 2b(4g + 3)(a + 3)(b + 1). To this end, we will need to verify that

k − |V (C′)| ≥ (4g + 3) · (d(2b− 2) + 1) + d and |V (C′)| · k2g < d4g+2. (2.2)

This is the point where we choose the value of k; set k := 12b2(4g + 3)2(a + 3)(b + 1),
noting that k = O(ab7) because g = 4b2. Both inequalities in (2.2) follow from (2.1) and
our choice of k and d. Indeed, we have:

|V (C′)|+ (4g + 3) · (d(2b− 2) + 1) + d ≤ |V (C′)|+ (4g + 3) · 2db

≤ 8b2(4g + 3)2(a + 3)(b + 1) + (4g + 3) · 2db

≤ 12b2(4g + 3)2(a + 3)(b + 1) = k,

and

|V (C′)| · k2g ≤ 8b2(4g + 3)2(a + 3)(b + 1) · k2g

= 8 · 122g · b4g+2(4g + 3)4g+2(a + 3)2g+1(b + 1)2g+1

= 8 · 122g · 2−4g−2 · (a + 3)−2g−1(b + 1)−2g−1 · d4g+2

= 2 · 32g · (a + 3)−2g−1(b + 1)−2g−1 · d4g+2 < d4g+2.

Claims 3 and 4 imply that D′ satisfies Conditions 1 and 2 in Lemma 2.18, respectively,
with the role of v played by vm, and with the parameters h and d chosen above. By
Lemma 2.18, D′ contains a type III gadget G and a dipath P0 from vm to p(G) such
that V (P0) ∩ V (G) = {p(G)}, v(G) ≤ (2h + 2)(2b − 1) = (8g + 6)(2b − 1) and v(P0) ≤
h(2b − 1) = (4g + 2)(2b − 1) ≤ (4g + 3)(2b − 1) − 1. Now, let C1 be the chain formed by
appending to C the dipath P0 and the gadget G; so the spine of C1 is P ◦P0 ◦ (p(G), q(G)),
A1(C1) = A1(C) ∪ A(P0) and A2(C1) = A2(C) ∪ {(p(G), q(G))}. It is easy to see that C1
is indeed a chain and that it satisfies Conditions (a)-(c) above. But this contradicts the
maximality of C. This final contradiction means that our initial assumption, that D is a
counterexample to Theorem 2.10, was false. This completes the proof of the theorem.

2.3 Disjoint Oriented Cycles

In this section, we prove Theorem 2.4. The proof relies on the notion of directed tree-width
introduced in 1, and the Directed Grid Theorem by Kawarabayashi and Kreutzer [KK15].
The crucial ingredient of the proof is Proposition 2.19, a digraph-splitting result which
gives a positive answer to Problem 2.1 for digraphs of bounded directed tree-width.

Proposition 2.19. Let k, ℓ, d ∈ N, and let D be a digraph such that dtw(D) ≤ d and
δ+(D) ≥ (d+1)(ℓ−1)+k. Then there exist disjoint non-empty subsets X1, . . . , Xℓ ⊆ V (D)
such that δ+(D[Xi]) ≥ k for every i ∈ [ℓ].
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Let us note at this point that in contrast to undirected graphs, digraphs of bounded
directed tree-width may have arbitrarily large minimum out-degree, and hence, Proposi-
tion 2.19 addresses a non-trivial class of digraphs. An illustrating example is constructed
in the following remark.

Remark 2.20. For any k ∈ N there exists a digraph Fk such that δ+(Fk) = k and
dtw(Fk) = 1.

Proof. Let k ∈ N be fixed. Let us denote by Tk the unique k-ary out-arborescence of
depth k (that is, every non-leaf vertex has k children, and every leaf has distance k from
the root). Let r denote the root of Tk. Let Fk be the digraph obtained from Tk by adding
the arc (u, v) for every leaf u ∈ V (Tk) and every vertex v ∈ V (Tk) such that u > v
in Tk. Since every leaf of Tk has k ancestors, Dk has minimum out-degree k. To see
that dtw(Fk) = 1, let us consider the directed tree-decomposition (T, β, γ) of Fk, where
T := Tk, β(t) := {t} for every t ∈ V (T ) and γ(e) := {tail(e)} for every arc e ∈ A(T ).
To see that this forms a directed tree-decomposition, let e = (u, v) ∈ A(T ) be arbitrary.
Then S :=

⋃︁
{β(t)|t ∈ V (T ), e < t} is the set of vertices in Fk contained in the subtree

of Tk rooted at v. We need to show that S is γ(e) = {u}-normal in D. However, in
Fk − u, there exists no arc starting in a vertex outside S and ending in S, which directly
shows that a directed walk in Fk − u ending in S must be contained in S. This shows
that (T, β, γ) indeed is a directed tree-decomposition. By definition of β and γ we have
Γ(t) = β(t)∪

⋃︁
{γ(e)|e ∈ A(T ), e ∼ t} = {t, parent(t)} for every vertex t ∈ V (T )\{r}, and

Γ(r) = {r}. It follows that the width of (T, β, γ) is 2−1 = 1, proving that dtw(Fk) = 1.

Proposition 2.19 will be derived as a consequence of Lemma 2.22 below, which shows
that classes of strongly connected digraphs possess the so-called Erdős-Pósa-property within
digraphs of bounded directed tree-width. Here a class of (di)graphs H is said to have
the Erdős-Pósa-property within another class G of (di)graphs, if there exists a function
f : N→ N such that for every ℓ ∈ N and every digraph D ∈ G one of the following holds:

• D contains ℓ vertex-disjoint subdigraphs, all members of H, or

• there exists a subset X ⊆ V (D) such that |X| ≤ f(ℓ) and D−X contains no member
of H as a subdigraph.

For the proof of Lemma 2.22 we need a result from [AKKW16]. In the following, given
a tree-decomposition (T, β, γ) of a digraph, we use the notation

β(≥ t) :=
⋃︂

t′∈V (T ),t′≥t

β(t′)

for the vertices of D contained in the bags of the sub-arborescence of T rooted at t.

Lemma 2.21 (cf. Lemma 3.6 in [AKKW16]). Let (T, β, γ) be a directed tree-decomposition
of a digraph D and let H be a strongly connected subdigraph of D. Let r be the root
of T , and let t∗ ∈ V (T ) be a node in T of maximal distance from r in T such that
β(≥ t∗) ⊇ V (H). Then for every t ∈ V (T ) with t ≥ t∗ and β(≥ t) ∩ V (H) ̸= ∅, we have
Γ(t) ∩ V (H) ̸= ∅.

Proof. Suppose towards a contradiction that Γ(t)∩V (H) = ∅. This means that in particu-
lar β(t)∩V (H) = ∅, and since β(≥ t)∩V (H) ̸= ∅, there must be a child t′ of t in T such that
β(≥ t′)∩V (H) ̸= ∅. Since t′ > t ≥ t∗, the definition of t∗ implies that V (H) \β(≥ t′) ̸= ∅.
Let us denote e = (t, t′) ∈ A(T ) and note that β(≥ t′) =

⋃︁
{β(s)|s ∈ V (T ), e < s} by

definition of a tree-decomposition, is a γ(e)-normal set in D.
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Pick some x ∈ V (H) ∩ β(≥ t′), y ∈ V (H) \ β(≥ t′) arbitrarily. Since H is strongly
connected, there exist directed paths P1, P2 in H from x to y (resp. y to x). The con-
catenation W = P1 ◦ P2 of these two paths yields a directed walk in H ⊆ D starting and
ending in β(≥ t′) and intersecting V (D) \ β(≥ t′). Since β(≥ t′) is γ(e)-normal, it follows
that γ(e) ∩ V (H) ⊇ γ(e) ∩ V (W ) ̸= ∅. However, this contradicts the fact γ(e) ⊆ Γ(t)
and our assumption that Γ(t) ∩ V (H) = ∅. This shows that this assumption was wrong,
concluding the proof.

Lemma 2.22. Let H be a set of strongly connected digraphs, and let k, d ∈ N. The
following holds for every digraph D with dtw(D) ≤ d:

For every ℓ ∈ N, D contains ℓ vertex-disjoint subdigraphs contained in H, or there is
a subset X ⊆ V (D) with |X| ≤ (d + 1)(ℓ− 1) such that D −X contains no member of H
as a subdigraph.

Proof. Let us proof the claim by induction on ℓ. If ℓ = 1 the claim holds trivially. Now
suppose that ℓ ≥ 2 and the claim has been proved for ℓ − 1. Let (T, β, γ) be a directed
tree-decomposition of D of width at most d. We may assume w.l.o.g. that D contains at
least one member of H as a subdigraph, for otherwise the claim holds trivially. Since the
sets β(t), t ∈ V (T ) partition V (D), there exists at least one t ∈ V (T ) such that D[β(≥ t)]
contains a member of H. Let t0 ∈ V (T ) be a vertex with this property maximizing the
distance to the root in T . Let D′ := D − β(≥ t0). Since dtw(·) is monotone under
taking subgraphs, we have dtw(D′) ≤ dtw(D) ≤ d. By the induction hypothesis, there
exist ℓ − 1 vertex-disjoint subdigraphs of D′ which are members of H, or we can hit
all members of H contained in D′ by a set X ′ ⊆ V (D′) with |X ′| ≤ (d + 1)(ℓ − 2).
In the first case, we can simply join a collection of ℓ − 1 vertex-disjoint members of
H contained in D′ by an (arbitrarily chosen) digraph in H contained in D[β(≥ t0)] to
obtain a collection of ℓ vertex-disjoint subdigraphs of D contained in H, which in this case
concludes the proof. So we may assume that we are in the second case and that the set
X ′ with the stated property exists. We now define X := X ′ ∪ Γ(t0) ⊆ V (D), noting that
|X| ≤ |X ′|+ |Γ(t0)| ≤ (d + 1)(ℓ− 2) + (d + 1) = (d + 1)(ℓ− 1), since (T, β, γ) has width at
most d. We claim that D−X contains no subdigraph contained in H, which if true, proves
the inductive claim. Suppose towards a contradiction that there exists a digraph H ∈ H
such that H ⊆ D and V (H) ∩ X = ∅. Since D′ − X ′ contains no subdigraph contained
in H, we must have V (H) ∩ β(≥ t0) ̸= ∅. Let t∗ ∈ V (T ) be such that β(≥ t∗) ⊇ V (H)
and such that the distance of the root to t∗ in T is maximized. There are three possible
cases concerning the relationship of t0 and t∗ in T : (1) t0 and t∗ are incomparable, (2)
t0 < t∗ and (3) t0 ≥ t∗. In case (1), we have that β(≥ t0) and β(≥ t∗) are disjoint,
yielding a contradiction since V (H) ∩ β(≥ t0) ̸= ∅ and V (H) ⊆ β(≥ t∗). In case (2), t∗

is a vertex in V (T ) which is further from the root than t0, but still β(≥ t∗) contains a
member of H (namely H). This yields a contradiction to the definition of t0. In case (3),
noting that H is a strongly connected subdigraph of D, we can apply Lemma 2.21 to find
that Γ(t0) ∩ V (H) ̸= ∅. This contradicts the facts V (H) ∩X = ∅ and Γ(t0) ⊆ X. Since
all three cases lead to a contradiction, our assumption was wrong, X indeed hits all the
subdigraphs of D contained in H. This concludes the inductive proof of the claim.

We can now give the proof of Proposition 2.19.

Proof of Proposition 2.19. Let k, ℓ, d ∈ N, and let D be a digraph such that δ+(D) ≥
(d + 1)(ℓ − 1) + k and dtw(D) ≤ d. Let H be the set of all strongly connected digraphs
H satisfying δ+(H) ≥ k. By applying Lemma 2.22 to D and H we find that either
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(1) D contains ℓ vertex-disjoint subdigraphs in H, or (2) there exists X ⊆ V (D) such that
|X| ≤ (d + 1)(ℓ− 1) such that D −X contains no member of H as a subdigraph.

If (1) occurs, then the vertex sets X1, . . . , Xℓ of the ℓ vertex-disjoint subdigraphs in H
confirm the claim of the Proposition. Hence, to conclude the proof it suffices to rule out
(2). Suppose towards a contradiction that a set X ⊆ V (D) as in (2) exists. Then we have
δ+(D −X) ≥ δ+(D)− |X| ≥ (d + 1)(ℓ− 1) + k − (d + 1)(ℓ− 1) = k. Let U ⊆ V (D −X)
be the vertex-set of a strong component of D − X which has no arcs leaving it (such a
component always exists, as can be seen by considering a topological sorting of the strong
components). Then clearly, δ+(D[U ]) ≥ δ+(D −X) ≥ k and D[U ] is strongly connected.
It follows that D[U ] ∈ H and D[U ] ⊆ D −X, which contradicts the assumptions on X in
(2). This concludes the proof of the Proposition.

Finally, we are prepared for the proof of Theorem 2.4.

Proof of Theorem 2.4. Let F1, . . . , Fr be δ+-maderian topological grid minors. Let us
denote by d : N → N be the function from the Directed Grid Theorem 1.3. For every
i ∈ [r] there exists Ki ∈ N such that every digraph D with δ+(Di) ≥ Ki contains a
subdivision of Fi. Further, since Di is a topological grid minor, there is ki ∈ N such
that the elementary wall Wki

contains a subdivision of Fi. Let K := max{K1, . . . , Kr},
k := k1 + · · ·+kr and let D be any given digraph such that δ+(D) ≥ d(2k)(r−1)+K. We
claim that then D must contain a subdivision of F := F1 ∪ · · · ∪ Fr, which will then show
that F is δ+-maderian, as claimed by the Theorem. For this we apply the Directed Grid
Theorem to D and find that either dtw(D) ≤ d(2k)−1 or that dtw(D) ≥ d(2k), and hence,
D contains a subdivision of Wk. In the first case, we have δ+(D) ≥ (d + 1)(r − 1) + K
with d := d(2k) − 1, and hence Proposition 2.19 implies that there exist disjoint subsets
X1, . . . , Xr such that δ+(D[Xi]) ≥ K ≥ Ki for i = 1, . . . , r, implying that D[Xi] contains
a subdivision of Fi for every i. The union of these subdivisions then clearly defines a
subdivision of F in D and concludes the proof in this case. In the second case D contains
a subdivision of Wk. Note that Wk contains r vertex-disjoint subdigraphs isomorphic to
Wk1 , . . . , Wkr , and by definition of ki the copy of Wki

contains a subdivision of Fi for every
1 ≤ i ≤ k. Hence, D contains a subdivision of Wk, which in turn contains a subdivision of
F . This shows that D contains an F -subdivision in any case and concludes the proof.

2.4 Oriented Cycles with Two Blocks
In this section, we prove Theorem 2.6. We will repeatedly use the following observation:

Lemma 2.23. Let ℓ1, ℓ2 ∈ N, and D a digraph with δ+(D) ≥ ℓ1 + ℓ2. Then for every
v ∈ V (D), there are dipaths P1 and P2 in D of length ℓ1 and ℓ2, respectively, which start
in v and satisfy V (P1) ∩ V (P2) = {v}.

Proof. Greedily build two disjoint dipaths starting at v by attaching out-neighbors at their
ends until they have lengths ℓ1 and ℓ2, respectively.

Proof of Theorem 2.6. Let D be an arbitrary digraph such that δ+(D) ≥ k1 + 3k2 − 5.
We have to show that there exist two internally vertex-disjoint dipaths in D which start
and end in the same vertices, one of length at least k1, the other of length at least k2.
Throughout the proof, we will say that a dipath P in D with terminal vertex x is k2-good if
there exist dipaths P1 and P2 of length k2−1 starting at x such that V (P1)∩V (P2) = {x}
and V (Pi)∩V (P ) = {x} for i ∈ {1, 2}. Note that D contains a k2-good dipath of positive
length. Indeed, choose some arbitrary vertex u ∈ V (D) and some out-neighbor v of u.
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Since δ+(D−u) ≥ δ+(D)−1 ≥ k1 +3k2−6 ≥ (k2−1)+(k2−1), we can apply Lemma 2.23
with ℓ1 := ℓ2 := k2 − 1 to the vertex v in the digraph D − u to infer that P := (u, v)
is a k2-good dipath. Let P0 be a longest k2-good dipath in D. We have just shown that
|P0| > 0. Denote by x the end-vertex of P0 and by P1, P2 two dipaths of length k2 − 1
starting in x such that V (Pi) ∩ V (Pj) = {x} for i ̸= j ∈ {0, 1, 2}. Let a be the terminus
of P1 and b the terminus of P2.

Claim 1. There exist dipaths Pa, Pb which start in a and b respectively and end in
vertices a′, b′ ∈ V (P0) \ {x} such that both Pa and Pb are internally vertex-disjoint from
V (P0) ∪ V (P1) ∪ V (P2).

Proof. We prove the existence of Pa and a′; the proof for the existence of Pb and b′ is
completely analogous. Let D′ := D−((V (P1)∪V (P2))\{a}). As |(V (P1)∪V (P2))\{a}| =
2k2−2, we have that δ+(D′) ≥ δ+(D)−(2k2−2) ≥ k1+k2−3 ≥ 2k2−3. Let R ⊆ V (D′) be
the set of vertices reachable from a by a dipath in D′. We claim that R∩(V (P0)\{x}) ̸= ∅.
Suppose towards a contradiction that R∩ (V (P0) \ {x}) = ∅. Since for every vertex r ∈ R
we have N+

D′(r) ⊆ R, we see that δ+(D′[R]) ≥ δ+(D′) ≥ 2k2 − 3. We can now apply
Lemma 2.23 to the vertex a of D′[R] with ℓ1 := k2 − 1, ℓ2 := k2 − 2 and find that
D′[R] contains dipaths P ′

1 and P ′
2 of lengths ℓ1 and ℓ2, respectively, which start at a

and satisfy V (P ′
1) ∩ V (P ′

2) = {a}. Let w be the end-vertex of the path P ′
2. We have

N+
D (w)∩ (V (P0) \ {x}) ⊆ R∩ (V (P0) \ {x}) = ∅. Since d+

D(w) ≥ k1 + 3k2 − 5 > 3k2 − 4 =
|V (P1)∪V (P ′

1)∪ (V (P ′
2) \ {w})|, there must exist w′ ∈ N+

D (w) \ (V (P1)∪V (P ′
1)∪V (P ′

2)).
Now the dipaths P ′

1 and P ′
2 ◦ (w, w′) are of length k2 − 1, have only the starting vertex

a in common and are disjoint from the set (V (P0) ∪ V (P1)) \ {a}. Hence, P0 ◦ P1 is a
k2-good dipath in D which is longer than P0, a contradiction. This shows that indeed
R ∩ (V (P0) \ {x}) ̸= ∅. Hence, by the definition of R, there is a shortest dipath Pa from
a to R ∩ (V (P0) \ {x}) in D′[R]. Write V (Pa) ∩ (V (P0) \ {x}) =: {a′}. Now Pa and a′

satisfy the claimed properties. �

Let A, B ⊆ V (P0)\{x} be the sets of vertices on P0−x reachable from a, b, respectively,
by a dipath which is internally vertex-disjoint from V (P0)∪V (P1)∪V (P2). By the previous
claim we have A, B ̸= ∅. Let a∗ respectively b∗ denote the vertex in A respectively B
whose distance from x on P0 is maximum. By symmetry, we may assume without loss of
generality that distP0(a∗, x) ≥ distP0(b∗, x). Hence, B ⊆ V (P0[a∗, x]). Fix some dipath
Pa∗ from a to a∗ in D which is internally disjoint from V (P0) ∪ V (P1) ∪ V (P2). Set
Q := P1 ◦ Pa∗ , and note that |Q| = |P1| + |Pa∗ | = k2 − 1 + |Pa∗ | ≥ k2. Let Q′ ⊆ Q be
defined as follows: if the length of Q is at most k1 then Q′ := Q, and otherwise Q′ is the
unique subpath of Q which starts at x and has length exactly k1. In the following, let r
denote the length of Q′. Observe that r = |Q′| = min{|Q|, k1}, and hence k2 ≤ r ≤ k1.
Moreover, P1 ⊆ Q′ because P1 consists of the first k2 vertices of Q. Let y ∈ V (Q) be
the terminus of Q′, and let us define B∗ as the subset of B consisting of those vertices in
B ⊆ V (P0 − x) which are reachable from b by a dipath which is internally vertex-disjoint
from V (P0) ∪ V (Q) ∪ V (P2).

Claim 2. We either have |B∗| ≥ k1 − r + 1, or there exists a dipath starting at b and
ending in V (Q) which is vertex-disjoint from (V (P0) ∪ V (Q′) ∪ V (P2)) \ {b, y}.

Proof. Suppose towards a contradiction that |B∗| ≤ k1 − r but there exists no dipath
starting at b and ending in V (Q) which is disjoint from (V (P0)∪V (Q′)∪V (P2))\{b, y}. Let
us consider the digraph D′′ := D−((V (P0)∪V (Q′)∪V (P2))\{b, y}). Let R ⊆ V (D′′) denote
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the set of vertices reachable from b in D′′. By our assumption, we have R ∩ V (Q) = ∅,
and hence R ∩ (V (P0) ∪ V (Q) ∪ V (P2)) = {b} (since R ⊆ V (D′′) and by the definition
of D′′). We claim that N+

D (u) ∩ (V (P0) \ {x}) ⊆ B∗ for all u ∈ R. Indeed, let u ∈ R
and v ∈ N+

D (u) ∩ (V (P0) \ {x}). By definition, there exists a b-u-dipath Pu in D′′, and
V (Pu) ⊆ R. Then the dipath Pu ◦ (u, v) starts at b, ends in V (P0) \ {x} and is internally
vertex-disjoint from V (P0) ∪ V (Q) ∪ V (P2), certifying that v ∈ B∗.

Since |(V (Q′) ∪ V (P2)) \ {y, b}| = r + k2 − 2, for every u ∈ R we have:

d+
D′′(u) ≥ d+

D(u)− |N+
D (u) ∩ (V (P0) \ {x})| − |(V (Q′) ∪ V (P2)) \ {y, b}|

≥ k1 + 3k2 − 5− |B∗| − (r + k2 − 2) ≥ 2k2 − 3,

where in the last inequality we used our assumption that |B∗| ≤ k1 − r. As N+
D′′(u) ⊆ R

for every u ∈ R (by the definition of R), we get that δ+(D′′[R]) ≥ 2k2 − 3. Applying
Lemma 2.23 to the vertex b in D′′[R] with ℓ1 := k2−1, ℓ2 := k2−2, we find dipaths P ′′

1 and
P ′′

2 in D′′[R] starting at b of lengths ℓ1 and ℓ2, respectively, such that V (P ′′
1 )∩V (P ′′

2 ) = {b}.
By the definition of D′′ we have V (P ′′

i ) ∩ (V (P0) ∪ V (P2)) = {b} for every i = 1, 2. Let
z denote the end-vertex of P ′′

2 . We have |V (P2) ∪ V (P ′′
1 ) ∪ (V (P ′′

2 ) \ {z})| = 3k2 − 4 and
|N+

D (z) ∩ (V (P0) \ {x})| ≤ |B∗| ≤ k1 − r ≤ k1 − k2. Here we used the fact that z ∈ R and
hence N+

D (z) ∩ (V (P0) \ {x}) ⊆ B∗. So we see that

|N+
D (z)\(V (P0)∪V (P2)∪V (P ′′

1 )∪V (P ′′
2 ))| ≥ k1+3k2−5−(k1−k2)−(3k2−4) = k2−1 > 0.

Let z′ /∈ V (P0) ∪ V (P2) ∪ V (P ′′
1 ) ∪ V (P ′′

2 ) be an out-neighbor of z. The two dipaths P ′′
1

and P ′′
2 ◦ (z, z′) start at b and have length k2 − 1 each. Moreover, the three dipaths P ′′

1 ,
P ′′

2 ◦(z, z′) and P0 ◦P2 intersect each other only in the vertex b. Hence, P0 ◦P2 is a k2-good
dipath in D which is strictly longer than P0, a contradiction. This contradiction shows
that our initial assumption was wrong, concluding the proof of Claim 2. �

We will now show how to find a subdivision of C(k1, k2) in D using Claim 2. Consider
the two alternatives in the conclusion of this claim. The first case is that |B∗| ≥ k1−r +1.
Since B∗ ⊆ B ⊆ V (P0[a∗, x]), this clearly implies that there exists a vertex b∗ ∈ B∗

whose distance from a∗ on the dipath P0 is at least k1 − r. By definition of B∗, there
exists a dipath Pb∗ in D starting in b and ending at b∗ which is internally disjoint from
V (P0) ∪ V (Q) ∪ V (P2). Now the two dipaths Q ◦ P0[a∗, b∗] and P2 ◦ Pb∗ in D both start
at x and end at b∗, are internally vertex-disjoint, and have lengths |Q| + |P0[a∗, b∗]| ≥
r + k1 − r = k1 and |P2| + |Pb∗ | ≥ k2 − 1 + 1 = k2, respectively. Hence, they form a
subdivision of C(k1, k2).

The second case is that there exists a dipath in D starting at b and ending in V (Q),
which is vertex-disjoint from (V (P0) ∪ V (Q′) ∪ V (P2)) \ {b, y}. Let P ∗ be a shortest such
dipath, and let q ∈ V (Q) denote its end-vertex. Then clearly V (P ∗)∩V (Q) = {q}, as well
as q /∈ V (Q′)\{y} and q ̸= a∗ (as a∗ ∈ V (P0)). This readily implies that Q′ ̸= Q, and hence
by definition of Q′ we conclude that Q′ has length exactly k1. Let us consider the two
dipaths Q[x, q] and P2 ◦ P ∗ in D, which both start in x and end in q. They are internally
vertex-disjoint, and have lengths |Q[x, q]| ≥ |Q′| = k1 and |P2| + |P ∗| ≥ k2 − 1 + 1 = k2,
respectively. Hence, they form a subdivision of C(k1, k2) in D.

Summarizing, we have shown that D contains a subdivision of C(k1, k2) in all the
cases, which concludes the proof of the theorem.

2.5 Subdivisions of K3 − e

In this section we give a proof of Theorem 2.2. As it turns out, it is convenient to prove
the following slightly stronger result, which clearly implies that maderδ+(

↔
K3 − e) = 2.
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Proposition 2.24. Let D be a digraph and v0 ∈ V (D) such that d+(v0) ≥ 1 and d+(v) ≥ 2
for every v ∈ V (D) \ {v0}. Then D contains a subdivision of

↔
K3 − e.

Proof. Suppose towards a contradiction that the claim is false, and let D be a coun-
terexample which minimizes v(D) with first priority and a(D) with second priority. Let
v0 ∈ V (D) be a vertex such that d+(v0) ≥ 1 and d+(v) ≥ 2 for all v ∈ V (D) \ {v0}.

Claim 1. We have d+(v0) = 1 and d+(v) = 2 for all v ∈ V (D) \ {v0}.

Proof. If d+(v0) > 1 or d+(v) > 2 for some v ∈ V (D) \ {v0}, then we may delete an arc of
D and be left with a digraph D′ which still satisfies d+

D′(v0) ≥ 1 and d+
D′(v) ≥ 2 for every

v ∈ V (D) \ {v0}. This contradicts the assumed minimality of D (as D′ evidently contains
no subdivision of

↔
K3 − e either). �

Claim 2. D is strongly connected.

Proof. If not, then there is ∅ ̸= X ( V (D) such that no arc of D leaves X. Then clearly
d+

D[X](x) = d+(x) for all x ∈ X, and hence D[X] meets the conditions of the Lemma. But
as D[X] contains no subdivision of

↔
K3 − e and is smaller than D, we get a contradiction

to the minimality of D. �

Claim 3. There exists no partition (W, K, Z) of V (D) such that W, Z ̸= ∅, v0 ∈ K ∪ Z,
|K| ≤ 1 and there is no arc in D with tail in W and head in Z.

Proof. Suppose towards a contradiction that a partition (W, K, Z) with the described
properties exists. Since D is strong, we must have |K| = 1; say K = {s0} for some vertex
s0 ∈ V (D). Since v0 /∈W and since no arc of D goes from W to Z, every vertex in W has
out-degree 2 in D[W ∪{s0}]. Since D is strongly connected, there must be an s0-W -dipath
P in D. Denoting the last vertex of P by w ∈ W , we note that V (P ) \ {s0, w} ⊆ Z. Let
D′ be the digraph obtained from D[W ∪ {s0}] by adding the arc (s0, w). We clearly have
d+

D′(s0) ≥ 1, as well as d+
D′(v) = 2 for every v ∈ W by the above. Since v(D′) < v(D),

the minimality of D implies that D′ contains a subdivision S′ of
↔
K3 − e. If S′ does not

use the arc (s0, w) then S′ ⊆ D. And otherwise, the subdigraph S ⊆ D of D defined by
V (S) := V (S′) ∪ V (P ), A(S) := (A(S′) \ {(s0, w)}) ∪A(P ) forms a subdivision of

↔
K3 − e

in D. In both cases we obtain a contradiction to our assumption that D does not contain
a subdivision of

↔
K3 − e. This concludes the proof of the claim. �

In the following, let v1 ∈ V (D) denote the unique out-neighbor of v0. The rest of the
proof is divided into two cases depending on whether v0 and v1 have common in-neighbors.

Case 1. N−(v0)∩N−(v1) = ∅. Since d+(v1) = 2, there exists v2 ∈ N+(v1)\{v0}. Let
D′ be the digraph obtained from D− v1 by adding the arc (v0, v2) and the arcs (x, v0) for
all x ∈ N−

D (v1)\{v0}. We clearly have d+
D′(v0) = 1 and d+

D′(v) = 2 for all v ∈ V (D′)\{v0},
since no vertex in D has arcs to both v0 and v1. Since v(D′) < v(D), there must be a
subdivision S′ of

↔
K3 − e contained in D′. If v0 /∈ V (S′), then S′ is a subdigraph of D,

which contradicts our assumption that D contains no (
↔
K3 − e)-subdivision. Hence we

must have v0 ∈ S′. Since v2 is the only out-neighbor of v0 in D′, we must have d+
S′(v0) = 1

and (v0, v2) ∈ A(S′). We now distinguish between two subcases depending on the in-
degree of v0 in S′. Note that every vertex of

↔
K3 − e has in-degree either 1 or 2. Hence,

d−
S′(v0) ∈ {1, 2}.
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Case 1(a). d−
S′(v0) = 1. Let x0 ∈ N−

D′(v0) be the unique in-neighbor of v0 in S′. By
definition of D′, we must have either x0 ∈ N−

D (v0) \ {v1} or x0 ∈ N−
D (v1) \ {v0}. Define a

subdigraph S ⊆ D of D as follows: If x0 ∈ N−
D (v0)\{v1}, then we put V (S) := V (S′)∪{v1}

and A(S) := (A(S′) \ {(v0, v2)}) ∪ {(v0, v1), (v1, v2)}, and if x0 ∈ N−
D (v1) \ {v0}, then we

put V (S) := (V (S′)\{v0})∪{v1}, A(S) := (A(S′)\{(x0, v0), (v0, v2)})∪{(x0, v1), (v1, v2)}.
It is easy to see that in each case S is isomorphic to a subdivision of S′, and hence forms
a subdivision of

↔
K3 − e contained in D, a contradiction to our assumption on D.

Case 1(b). d−
S′(v0) = 2. Let x1, x2 ∈ N−

D′(v0) be the two in-neighbors of v0 in S′. By
definition of D′, we have xi ∈ N−

D (v0) \ {v1} or xi ∈ N−
D (v1) \ {v0} for each i = 1, 2. Let

us define a subdigraph S ⊆ D of D as follows. Firstly, if x1, x2 ∈ N−
D (v0) \ {v1}, then we

set V (S) := V (S′) ∪ {v1} and A(S) := (A(S′) \ {(v0, v2)}) ∪ {(v0, v1), (v1, v2)}. Secondly,
if xi ∈ N−

D (v0) \ {v1} and x3−i ∈ N−
D (v1) \ {v0} for some i ∈ {1, 2}, then we set V (S) :=

V (S′) ∪ {v1} and A(S) := (A(S′) \ {(v0, v2), (x3−i, v0)}) ∪ {(v0, v1), (v1, v2), (x3−i, v1)}.
Lastly, if x1, x2 ∈ N−

D (v1) \ {v0} then we set V (S) := (V (S′) \ {v0}) ∪ {v1} and A(S) :=
(A(S′)\{(v0, v2), (x1, v0), (x2, v0)})∪{((v1, v2), (x1, v1), (x2, v1)}. It is easy to check that in
each of the three cases, S is isomorphic to a subdivision of S′, and hence forms a subdivision
of
↔
K3−e which is contained in D. This contradiction to our initial assumption on D rules

out Case 1.
Case 2. There exists a vertex z0 ∈ N−(v0) ∩ N−(v1). Let now A := {v0, z0} and

apply Theorem 1.2 to the vertex v1 versus the set A in D. We conclude that either there
are two v1-A-dipaths intersecting only at v1, or there is a set K ⊆ V (D) \ {v1} such that
|K| ≤ 1 and there is no dipath in D −K starting in v1 and ending in A.

In the first case, let P1 and P2 be dipaths such that V (P1) ∩ V (P2) = {v1} and such
that P1 ends in v0, while P2 ends in z0. Now the subdigraph S ⊆ D with vertex set
V (S) := V (P1) ∪ V (P2) and arc-set A(S) := A(P1) ∪ A(P2) ∪ {(v0, v1), (z0, v0), (z0, v1)}
forms a subdivision of

↔
K3− e with branch vertices v0, v1, z0. This is a contradiction to our

initial assumption on D.
In the second case, let W ⊆ V (D)−K be the subset of vertices reachable from v1 by

a dipath in D−K and let Z := V (D) \ (W ∪K). Since there is no v1-A-dipath in D−K,
we must have v0 ∈ A ⊆ K ∪Z. We further have v1 ∈W and A \K ⊆ Z, hence W, Z ̸= ∅.
Moreover, by definition of W , no arc in D starts in W and ends in Z. All in all, this shows
that the partition (W, K, Z) of V (D) yields a contradiction to Claim 3.

Since we arrived at contradictions in all possible cases, we conclude that our initial
assumption about the existence of D was wrong. This concludes the proof.

2.6 Subdivisions and Arc-Connectivity

In this section we give the proofs of Propositions 2.7 and 2.8, which show that
↔
K4 and

↔
S4

are not κ′-maderian.

Proof of Proposition 2.7. A construction of Thomassen [Tho85b] shows that for every in-
teger k ≥ 1, there exists a digraph Dk such that δ+(Dk) = k and Dk contains no directed
cycle of even length. For every k ≥ 1 let

←
Dk denote the digraph obtained from Dk by

reversing all its arcs. Then clearly we have δ−(
←
Dk) = k. Let G′

k be the digraph obtained
from the vertex-disjoint union of a copy of Dk with vertex-set A and a copy of

←
Dk with

vertex-set B by adding all the arcs in B × A (i.e., all arcs from B to A). Note that since
|A| = |B| = v(Dk) > k, we have δ+(G′

k) = δ−(G′
k) = k. Finally, we define Gk as the

digraph obtained from G′
k by adding a vertex v /∈ V (G′

k) as well as all arcs (v, x), (x, v) for
x ∈ V (G′

k). We claim that Gk is strongly k-arc-connected. Indeed, let E ⊆ A(Gk) be a
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set of arcs such that |E| < k. We claim that in Gk−E, every vertex x ∈ V (G′
k) can reach

and is reachable from v via a dipath. This will show that Gk − E is strongly connected,
as required. Let x ∈ V (G′

k) be given arbitrarily, and let x1, . . . , xk ∈ V (G′
k) be k pairwise

distinct out-neighbors of x in G′
k. Consider the k arc-disjoint dipaths Pi := (x, xi)◦(xi, v),

i = 1, . . . , k. At least one of these dipaths must be disjoint from E and hence constitute
an x-v-dipath in D − E. With a symmetric argument considering k distinct in-neighbors
of x, we also obtain that there is a v-x-dipath in Gk − E, as required. We further claim
that Gk contains no subdivision of

↔
K4. Indeed, suppose this was the case, then clearly

there would be S ⊆ Gk − v = G′
k such that S is a subdivision of

↔
K3. As is easy to see, S

must contain an even directed cycle. Since there is no arc in G′
k from A to B, we find that

this cycle must be entirely contained in either G′
k[A] ≃ Dk or G′

k[B] ≃
←
Dk. This however

means that Dk contains an even directed cycle, a contradiction. This contradiction shows
that Gk contains no subdivision of

↔
K4, and this concludes the proof.

Proof of Proposition 2.8. A construction of Thomassen [Tho85b] shows that for every in-
teger k ≥ 1, there exists a digraph Rk such that δ+(Rk) = k and Rk contains no subdivision
of the bioriented 3-star

↔
S3. For k ≥ 1, let us denote by

←
Rk the digraph obtained from Rk

by reversing all its arcs. Let H ′
k be the digraph obtained from the disjoint union of a copy

of Rk with vertex-set A and a copy of
←
Rk with vertex-set B by adding all the arcs in B×A.

Since Rk and
←
Rk have at least k vertices, we obtain that δ+(H ′

k) = δ−(H ′
k) = k. We now

define Hk to be the digraph obtained from two disjoint copies of H ′
k with vertex-sets X

and Y by adding two distinct new vertices u and v as well as the following arcs: (u, x)
and (x, v) for every x ∈ X, and (y, u) and (v, y) for every y ∈ Y . We claim that Hk is
strongly k-arc-connected. Indeed, let E ⊆ A(Hk) be an arbitrarily given set of arcs such
that |E| < k. We must prove that Hk − E is strongly connected. For this, it clearly
suffices to show that in Hk − E, every vertex in X can reach v and is reachable from u,
and every vertex in Y can reach u and is reachable from v. Let x ∈ X be any given vertex,
and let x−

1 , . . . , x−
k ∈ X denote k distinct in-neighbors of x in Hk[X] ≃ H ′

k. Among the k
arc-disjoint u-x-dipaths (u, x−

i ) ◦ (x−
i , x), i = 1, . . . , k in Hk, at least one must also exist

in Hk − E, and hence x is reachable from u in Hk − E. Similarly, considering k distinct
out-neighbors x+

1 , . . . , x+
k ∈ X of x in Hk[X], and considering the arc-disjoint x-v-dipaths

(x, x+
i ), (x+

i , v), i = 1, . . . , k, we find that there is an x-v-dipath in Hk − E. With a sym-
metric argument for the vertices in Y , we can verify the above claim, showing that Hk−E
is strongly connected. This shows that indeed κ′(Hk) ≥ k.

Next we claim that Hk does not contain a subdivision of
↔
S4. Suppose otherwise.

Then there exists a vertex w ∈ V (Hk) and directed cycles C1, C2, C3, C4 in Hk such that
w ∈ V (Ci) for i = 1, . . . , 4, and such that the sets V (Ci) \ {w}, 1 ≤ i ≤ 4, are pairwise
disjoint. Suppose first that w ∈ {u, v}. Without loss of generality, we may assume that
w = u (the case w = v is symmetric). Then for each 1 ≤ i ≤ 4, Ci − w is a dipath which
starts in X and ends in Y (since the vertex of Ci preceding w = u must be in Y , and
the vertex of Ci succeeding w = u must be in X). It follows that Ci − w, 1 ≤ i ≤ 4, are
pairwise vertex-disjoint dipaths from X to Y , contradicting the fact that X and Y can
be disconnected in Hk by deleting only two vertices, namely u and v. Suppose now that
w ∈ X∪Y . Note that every directed cycle in Hk is either contained in Hk[X], or contained
in Hk[Y ], or contains both u and v. It follows that if w ∈ X, then at least three of the
cycles Ci, 1 ≤ i ≤ 4, are contained in Hk[X] ≃ H ′

k, and if w ∈ Y then three of the cycles
Ci, 1 ≤ i ≤ 4, are contained in Hk[Y ] ≃ H ′

k. So we see that in each case, H ′
k must contain

a subdivision of
↔
S3. Since every subdivision of

↔
S3 is a strongly connected digraph, and

since there are no arcs from A to B in H ′
k, we find that this subdivision must be entirely
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contained in either H ′
k[A] ≃ Rk or H ′

k[B] ≃
←
Rk. Since

↔
S3 is invariant under the reversal of

all arcs, we obtain that in each case Rk must contain a subdivision of
↔
S3. This contradicts

our initial assumptions on the sequence (Rk)k≥1. This contradiction proves the claim of
the proposition; namely, Hk is indeed a k-strongly arc connected digraph not containing
↔
S4 as a subdivision.

2.7 Conclusion
In this concluding section, we mention further open problems related to subdivisions in
digraphs of large minimum out-degree, which were discovered during the work presented
in this chapter.

Theorem 2.3 shows that orientations of cycles are δ+-maderian, and that for an ori-
entation C of a cycle, maderδ+(C) grows polynomially in |C|. Aboulker et al. actually
conjectured the very explicit bound of maderδ+(C) ≤ 2|C| − 1 (cf. [ACH+19], Conjec-
ture 27). However, it is unclear to us whether maderδ+(C) should be linear in |C| at all.

Problem 2.4. Does it hold that maderδ+(C) = O(|C|) for every orientation C of a cycle?

We remark that Theorem 2.10 gives a positive answer to this question when the size
of a longest block in C is bounded by a constant.

Digraph subdivision is a natural graph operation under which it is plausible to expect
that the δ+-maderian property is preserved.

Conjecture 2.5. If a digraph F is δ+-maderian, then all the subdivisions of F are δ+-
maderian as well.

Conjecture 2.5 would follow if we could show that every digraph of sufficiently large out-
degree contains a subdivision of some digraph of out-degree k in which every subdivision
path is long.

Conjecture 2.6. There is a function f : N→ N such that for every k ∈ N and for every
digraph D with δ+(D) ≥ f(k), there exists a digraph D′ such that δ+(D′) ≥ k and D
contains a subdivision of D′ in which every subdivision-path has length at least two.

An important step towards Conjecture 2.2 would be to show that attaching an out-leaf
to any vertex of a δ+-maderian digraph yields still a δ+-maderian digraph.

Conjecture 2.7. If F is a δ+-maderian digraph, v0 ∈ V (F ) and F ∗ is the digraph obtained
from F by adding a new vertex v1 and the arc (v0, v1), then F ∗ is δ+-maderian as well.

Conjecture 2.7 would follow directly from the following natural statement. We call a set
of vertices X in a digraph D an in-dominating set if every y ∈ V (D) \X has at least one
out-neigbor in X.

Conjecture 2.8. There exists a function f : N → N such that the following holds for
every k ≥ 1. If D is a digraph with δ+(D) ≥ f(k), then there exists an in-dominating set
X ( V (D) such that δ+(D −X) ≥ k.

Another interesting direction is to characterize the undirected graphs F for which the
biorientation

↔
F of F is δ+-maderian. If

↔
F is δ+-maderian, then F must be a forest, since

every bioriented cycle has arc-connectivity two and hence is not δ+-maderian (see the nec-
essary properties of δ+-maderian digraphs mentioned in the introduction). Furthermore,
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it is known that
↔
S3 is not δ+-maderian [Tho85b]. Thus, if

↔
F is δ+-maderian then F must

be a path-forest. Thomassen’s result [Tho83] shows that a biorientation of any matching
is δ+-maderian. By Theorem 2.2,

↔
S2 =

↔
P3 is δ+-maderian (where Pℓ denotes the path on

ℓ vertices). The first open case is that of
↔
P4.

Problem 2.5. Is
↔
P4 δ+-maderian?

Finally, several open problems arise from the questions considered in Section 2.6. Given
that

↔
K4 and

↔
S4 are not κ′-maderian (see Propositions 2.7-2.8), it is natural to ask whether

↔
K3 and

↔
S3 are.

Problem 2.6. Is
↔
K3 κ′-maderian? Is

↔
S3 κ′-maderian?

As mentioned in the introduction, every subdivision of
↔
K3 contains an even dicycle,

and one cannot force an even dicycle by means of minimum out-degree [Tho85b]. Thus,
even dicycles can be thought of as an obstacle to forcing subdivisions of

↔
K3. Interestingly,

this obstacle disappears when considering arc-connectivity (rather than out-degree), as a
theorem of Thomassen [Tho92] shows that every digraph D with κ′(D) ≥ 3 contains an
even dicycle. This can be thought of as a hint that

↔
K3 could in fact be κ′-maderian.

A critical first step towards the resolution of Problem 2.3 for the strong vertex-
connectivity would be to answer the following.

Problem 2.7. Is there a constant K ∈ N such that every K-strongly-vertex connected
digraph contains two vertices x ̸= y and four pairwise internally vertex-disjoint dipaths,
two from x to y and two from y to x?



Chapter 3

Disjoint Directed Cycles with
Length Constraints

3.1 Introduction

All graphs and digraphs considered in this chapter are simple.

Cycles are amongst the most fundamental graph objects, and a large body of work has
dealt with understanding which conditions force a graph to contain cycles of certain types
and lengths. In many cases, the conditions require the graphs to be sufficiently dense,
which usually means that they should have either large minimum degrees or should be
highly connected.

The problem of packing vertex-disjoint cycles in undirected graphs of large minimum
degree has received a lot of attention, see [CY18] for a survey on this topic. For example,
for every k ∈ N an undirected graph whose minimum degree is sufficiently large in terms
of k contains

• k vertex-disjoint cycles of equal lengths [Häg85, Alo96, Ega96],
• k vertex-disjoint cycles of pairwise distinct lengths [BHL+17],
• k vertex-disjoint cycles of even lengths [CFKS14].

In each case, the precise degree bounds required to obtain k disjoint cycles with these
properties are known.

In contrast, the analogous problems for directed graphs in large amounts remain open.
In 1981, Bermond and Thomassen [BT81] stated the following conjecture.

Conjecture 3.1. For every k ∈ N, every digraph D with δ+(D) ≥ 2k − 1 contains k
vertex-disjoint directed cycles.

As mentioned in the previous chapter, Thomassen [Tho83] was the first to prove that
for every k there exists a finite number f(k) such that all digraphs of minimum out-
degree f(k) contain k disjoint directed cycles, and he showed that f(k) ≤ (k + 1)!. This
estimate was improved by Alon [Alo96] to f(k) ≤ 64k, and then further by Bucić [Buc18]
to f(k) ≤ 18k, which remains the state of the art.

Thomassen [Tho83] also conjectured that his result may be strengthened in the sense
that digraphs of sufficiently large minimum out-degree as a function of k always contain k
disjoint directed cycles of equal lengths. This conjecture was disproved by Alon [Alo96],
who gave a construction of digraphs with arbitrarily large minimum out-degree contain-
ing no two arc-disjoint directed cycles of equal lengths. On the other hand, Henning
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and Yeo [HY12] initiated the study of the question whether every digraph of sufficiently
large minimum out-degree contains two disjoint directed cycles of distinct lengths. This
was resolved by Lichiardopol [Lic14] in the positive, proving that every digraph D with
δ+(D) ≥ 4 contains two vertex-disjoint directed cycles of distinct lengths. Lichiardopol
conjectured the following far-reaching qualitative generalization of his result:

Conjecture 3.2 (cf. [Lic14]). For every k ∈ N there exists an integer g(k) ∈ N such that
every digraph D with δ+(D) ≥ g(k) contains k vertex-disjoint directed cycles of pairwise
distinct lengths.

Remarkably, Lichiardopol’s conjecture remains open even for k = 3. In addition to
Lichiardopol’s proof for the existence of g(2), quite some work has been done on forcing
two vertex-disjoint directed cycles of distinct lengths in more special classes of digraphs,
see [GM13, Tan14, Tan15, Tan17, Tan20] for some results on this topic. Bensmail, Haru-
tyunyan, Le, Li, and Lichiardopol [BHL+17] took up Lichiardopol’s conjecture and proved
it in some special cases, namely for tournaments (orientations of complete graphs), for reg-
ular digraphs (all vertices have out- and in-degree exactly r for some number r ∈ N) and
for digraphs of bounded order. In the latter two cases, the rough idea of their probabilistic
proof is as follows: We randomly split the vertex-set of the digraph into k parts. Then
every vertex is expected to have roughly a 1

k -fraction of its out-neighbors in its part, and
using Chernoff’s bound a large deviation from the expected value is very unlikely. Finally,
it can be proved using the Lovász Local Lemma (or a union bound in the bounded order
case) that with positive probability, the random partition gives a splitting into vertex-
disjoint subdigraphs with still large minimum out-degree, and in each of those parts we
can find directed cycles of many distinct lengths. Grouping the cycles from different parts
together, it is then possible to obtain many disjoint directed cycles with distinct lengths.

It however seems difficult to extend the proof methods of Bensmail et al. to general
digraphs. For this recall from Chapter 2, Problem 2.1 that whether or not digraphs with
large minimum out-degree contain vertex-disjoint subdigraphs with given minimum out-
degree is a fundamental open problem posed by several researchers. Concrete reasons why
the method of Bensmail et al. does not work for general digraphs are that it relies on
(1) special properties of tournaments (such as the fact that strong tournaments contain
directed cycles of every length) or (2) the assumption that the digraph is balanced, i.e. that
its maximum in-degree is upper-bounded by a function of its minimum out-degree, a
requirement for the Lovász Local Lemma in their argument for regular digraphs.

Our results. A natural strengthening of the condition of having large minimum degree
is to require large connectivity. The main result of this chapter verifies Lichiardopol’s
conjecture for digraphs of large (strong) connectivity. This is the first result guaranteeing
arbitrarily many vertex-disjoint directed cycles of distinct lengths which is applicable to
general digraphs and allows for digraphs with very unbalanced out- and in-degrees.

Theorem 3.1. For every k ≥ 1 there exists an integer s(k) such that every strongly s(k)-
connected digraph contains k vertex-disjoint directed cycles of pairwise distinct lengths.

The relationship between minimum degree, strong connectivity and the existence of
directed cycles of particular lengths in digraphs has received attention previously. For
instance, a long-standing open problem posed by Lovász [Lov75, Tho92] asked whether
(1) every digraph of sufficiently large minimum out-degree contains an even directed cy-
cle, and (2) whether every digraph of sufficiently large strong connectivity contains an
even directed cycle. Both questions were resolved by Thomassen in [Tho83] and [Tho92],
answering (1) in the negative and (2) in the positive.
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With Theorem 3.1 at hand, it is natural to ask whether a sufficiently high degree of
strong connectivity also guarantees the existence of many vertex-disjoint directed cycles
of equal length. We can show that the answer to this question is, maybe surprisingly,
negative1.

Proposition 3.2. For every k ∈ N there exists a strongly k-connected digraph Dk which
contains no two arc-disjoint directed cycles (and hence no two vertex-disjoint cycles) of
equal length.

Our next result makes progress on the question concerning the existence of g(3), guar-
anteeing three vertex-disjoint directed cycles of distinct lengths in digraphs of large out-
and in-degree.

Theorem 3.3. There exists K ∈ N such that every digraph D with δ+(D), δ−(D) ≥ K
contains three vertex-disjoint directed cycles of pairwise distinct lengths.

Our proofs for Theorem 3.1 and Theorem 3.3 make use of the Directed Flat Wall
Theorem, a tool from structural digraph theory established recently by Giannopoulou,
Kawarabayashi, Kreutzer, and Kwon [GKKK20]. We believe it might be fruitful to inves-
tigate applications of this structural result to other packing problems in digraphs.

Theorem 3.1 shows that a counterexample to Lichiardopol’s conjecture, if it exists,
cannot contain any large well-connected parts. Intuitively, this means that the digraph
does not have a “rich” directed cycle structure, and other methods might apply to fully
resolve the conjecture in this case. To illustrate this intuition, we prove Lichiardopol’s
conjecture for digraphs whose directed tree-width is bounded. Recall that directed tree-
width is supposed to be small for digraphs which have a “sparse” directed cycle structure
(we refer to Chapter 1 for details on this parameter).

Proposition 3.4. Let k, d ∈ N. Every digraph D with δ+(D) > (d+2)(k−1) and directed
tree-width at most d contains k vertex-disjoint directed cycles of pairwise distinct lengths.

Recall from Chapter 2, Remark 2.20 that digraphs of large minimum out-degree need
not have large directed tree-width. Hence, Proposition 3.4 verifies Lichiardopol’s conjec-
ture for a non-trivial class of digraphs.

Structure of the chapter. In Section 11.2 we introduce important definitions and
make some preliminary observations required later in the chapter. Most importantly, we
explain the statement of the Directed Flat Wall Theorem from [GKKK20]. In Section 3.3
we give the proofs of Theorem 3.1 and Theorem 3.3. The directed flat wall theorem yields
a natural division of our proofs into three different cases, which are prepared separately in
the Subsections 3.3.1, 3.3.2 and 3.3.3. In Subsection 3.3.1 we study digraphs of bounded
directed tree-width and give the proof of Proposition 3.4. In Subsection 3.3.2 we show that
digraphs containing a large complete butterfly-minor have many disjoint directed cycles
of distinct lengths. In Subsection 3.3.3 we study digraphs containing large flat walls and
prove sufficient conditions for the existence of disjoint directed cycles of different lengths.
In Subsection 3.3.4 we put the insights from the previous subsections together to conclude
the proofs of Theorems 3.1 and 3.3. Finally, in Section 3.4, we present the construction
for Proposition 3.2. We conclude with a conjecture in Section 3.5.

1Note that Proposition 3.2 is not implied by Alon’s construction of digraphs having large minimum
out-degree without two disjoint cycles of equal length, since the digraphs constructed in [Alo96] contain
vertices of in-degree 1, and hence are not strongly 2-connected.
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3.2 Preliminaries
We start this chapter by introducing some important definitions and auxiliary results
related to directed tree-width.

Similar to the Directed Grid Theorem, which relates high directed tree-width to the
existence of large grid minors, there exists yet another concept dual to directed tree-width,
called havens, which was introduced in [JRST01].

Definition 3.1. Let D be a digraph and let k ∈ N. A haven of order k for D is a function
h, assigning to every set X ⊆ V (D) of size |X| < k a set h(X) ⊆ V (D) \X, which forms
a strong component of D − X, and which has the property that h(X) ⊇ h(Y ) for every
X ⊆ Y ⊆ V (D) with |Y | < k.

Theorem 3.5 (cf. [JRST01], Theorem 3.1). Let D be a digraph. If D admits a haven of
order k, then dtw(D) ≥ k − 1.

Let us observe the following simple consequence of Theorem 3.5 for later use.

Corollary 3.6. Let k ∈ N, and let D be a strongly k-connected digraph. Then dtw(D) ≥ k.

Proof. Let us define h :
(︁V (D)

≤k

)︁
→ 2V (D) as follows: For every X ⊆ V (D) with |X| ≤ k, we

let h(X) := V (D) \X, if |X| < k, while h(X) is defined as the vertex-set of an arbitrarily
chosen strong component of D −X if |X| = k. We claim that h is a haven of order k + 1
for D. Indeed, for every X ⊆ V (D) such that |X| < k, D −X is strongly connected and
hence h(X) = V (D) \X is the unique strong component of D −X. If |X| = k, then by
definition h(X) is a strong component of D − X. Let now X ⊆ Y ⊆ V (D) be arbitary
such that |Y | ≤ k. If |Y | < k, then we clearly have h(X) = V (D) \ X ⊇ V (D) \ Y . If
|Y | = k, then either X = Y and h(X) = h(Y ) or |X| < k and h(X) = V (D) \X ⊇ h(Y ),
since h(Y ) is a strong component of D−Y ⊆ D−X. This shows that indeed, h is a haven
of order k + 1 in D and the claim follows by applying Theorem 3.5.

Let us now turn to a strengthening of the Directed Grid Theorem, the so-called Directed
Flat Wall Theorem established recently by Giannopoulou, Kawarabayashi, Kreutzer, and
Kwon [GKKK20]. To do so, we need a definition of flatness of a wall contained in a digraph.
Giannopoulou et al. (cf. [GKKK20], Definition 2.14) give a complex definition including
3 different items. For our purposes, only the properties of a flat wall guaranteed by the
second item of their definition are required. To not complicate matters unnecessarily, we
use a weakened definition of flatness as stated below. Intuitively, the definition asserts
that directed paths in the digraph do not jump far across the wall. Recall from Chapter 1
that a cylindrical wall is any subdivision of an elementary cylindrical wall of arbitrary
order. We start with some additional terminology.

Definition 3.2 (Perimeter, Bricks cf. [GKKK20]). Let W be a cylindrical wall of order
k. The perimeter per(W ) of W is defined as the union V (Q1) ∪ V (Qk), where Q1 and
Qk are the first resp. last vertical directed cycles in the canonical embedding of W . We
further define the interior of W by int(W ) := V (W ) \ per(W ).

A brick of W is a cycle in the canonical embedding of W induced by the boundary of
an inner face of W (i.e., distinct from the two faces bounded by the cycles Q1 and Qk).
Every brick contains exactly 6 branch vertices of W .

Definition 3.3. Let D be a digraph, and let W ⊆ D be a cylindrical wall. We say that
W is weakly flat in D, if for every directed path in D which is internally vertex-disjoint
from int(W ) with both endpoints x, y contained in int(W ), there exists a brick B of W
such that x, y ∈ V (B).
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We can now finally state a weakened version of the Directed Flat Wall Theorem
from [GKKK20] as follows.

Theorem 3.7 (cf. [GKKK20], Theorem 2.3). For every k, t ∈ N there are integers d(k, t)
and a(t) such that for every digraph D at least one of the following is true:

(i) dtw(D) < d(k, t),

(ii) D contains
↔
Kt as a butterfly-minor,

(iii) there is a set X ⊆ V (D) of order |X| ≤ a(t) and a cylindrical wall W ⊆ D −X of
order k which is weakly flat in D −X.

3.3 Finding Disjoint Dicycles of Distinct Lengths

In this section we give the proofs of Theorem 3.1 and Theorem 3.3.
The structure of the section follows the three possible cases given by Theorem 3.7:

(i) digraphs of bounded directed tree-width,

(ii) digraphs containing a large complete butterfly-minor,

(iii) digraphs containing a weakly flat wall.

In the last subsection we then prove Theorem 3.1 and Theorem 3.3 by applying Theo-
rem 3.7 and using the insights from the three previous subsections.

At this point it is worth pointing out why our proof strategy needs to make use of
the Direced Flat Wall Theorem 3.7 to make progress on Lichiardopol’s conjecture, and
why its weakening, the Directed Grid Theorem 1.3, would not be as helpful. The main
reason for this is that while walls of large order contain many vertex-disjoint directed
cycles, they might not even contain two directed cycles whose lengths are different, as
shown by the Remark 3.8 below. Hence, it seems unlikely that Theorem 1.3 will be
helpful in obtaining disjoint directed cycles of distinct lengths in digraphs, since it gives
no information concerning the relation between the wall contained in the digraph and the
rest of the digraph. This disadvantage is improved by the Directed Flat Wall Theorem,
which restricts the ways in which directed paths can intersect a weakly flat wall.

Remark 3.8. For every k ∈ N there exists a cylindrical wall of order k containing no two
directed cycles of different lengths.

Proof. A subdivision of Wk is determined by the lengths of the subdivision-paths replacing
its arcs. Hence, we may as well give an assignment w : A(Wk) → N of positive integers
to the arcs of Wk such that the sum of the labels on any directed cycle is the same. To
do so, let R denote the set of arcs in Wk starting in V (P 2

k ) and ending in V (P 1
1 ), and

observe that every directed cycle in Wk contains exactly one arc in R. As a consequence,
the digraph Wk − R is acyclic. Let v1, . . . , v4k2 be a topological ordering of this digraph,
i.e., such that (vi, vj) /∈ A(Wk − R) whenever i > j. Let us define w(e) := j − i for
every e = (vi, vj) ∈ A(Wk) \ R. Let L := 4k2. By definition of the arc-weighting w, for
every directed path P = vi1 , vi2 , . . . , viℓ

in Wk − R, it now holds that
∑︁

e∈A(P ) w(e) =
iℓ − iℓ−1 + iℓ−1 − iℓ−2 ± . . . + i2 − i1 = iℓ − i1 < L. In particular, the total weight of
any directed path in A(Wk) depends only on its endvertices and is smaller than L. We
conclude that for every arc e = (u, v) ∈ R, there exists a number Luv ∈ N, Luv < L such
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that every directed path in Wk−R starting in v and ending in u has total arc-weight Luv.
Let us now put w(e) := L− Luv ∈ N for every e = (u, v) ∈ R.

Every directed cycle C in Wk intersects R in exactly one arc e = (u, v) ∈ R. Then C−e
is a directed v-u-path in Wk − R, and we conclude

∑︁
e∈A(C) w(e) = L − Luv + Luv = L.

This shows that w is an arc-weighting of Wk with positive integers in which all directed
cycles have total arc-weight equal to a number L ∈ N. This concludes the proof.

3.3.1 Digraphs of Bounded Directed Tree-Width

Before giving the proof of Proposition 3.4, let us introduce the crucial definition of k-
trains. These are digraphs containing many distinct cycle lengths, which are useful for
embedding disjoint directed cycles of distinct lengths.

Definition 3.4. Let k ∈ N. A k-train is a digraph consisting of a directed path P
with vertex-trace u0, u1, . . . , uℓ directed from u0 to uℓ together with k arcs of the form
(uℓ, uℓj

), j = 1, . . . , k, where 0 = ℓ1 < ℓ2 < · · · < ℓk < ℓ.

Note that every k-train contains k directed cycles of pairwise distinct lengths, namely
the directed cycles through the arcs (uℓ, uℓj

), j = 1, . . . , k. This fact has the following
useful consequences.

Observation 3.9. If a digraph D contains k vertex-disjoint k-trains as subdigraphs, then
D contains k vertex-disjoint directed cycles of pairwise distinct lengths.

Proof. Let D1, . . . , Dk ⊆ D be vertex-disjoint k-trains. For i = 1, 2, 3, . . . , k we succes-
sively pick a directed cycle Ci in Di whose length is distinct from the lengths of the already
chosen directed cycles C1, . . . , Ci−1, which is possible since Di contains directed cycles of
k different lengths. Eventually the process returns k vertex-disjoint directed cycles of
pairwise distinct lengths.

The next observation shows that k-trains exist in digraphs of large out-degree.

Observation 3.10. Let D be a digraph with δ+(D) ≥ k. Then D contains a k-train.

Proof. Let P be the longest directed path in D. Then P together with the arcs leaving its
end-vertex u contains a k-train, as all the out-neighbors of u are contained in V (P ).

Observation 3.9 motivates studying packings of disjoint k-trains in digraphs. Combined
with Observation 3.10, one way to obtain many disjoint directed cycles with distinct
lengths in digraphs is to find k vertex-disjoint subdigraphs with minimum out-degree at
least k each. Recalling Proposition 2.19 from Chapter 2, we know that it is possible to
find such subdigraphs if the minimum out-degree is large and the directed tree-width is
bounded. Therefore we can easily obtain Proposition 3.4 as follows.

Proof of Proposition 3.4. Let D be any given digraph such that δ+(D) > (d + 2)(k − 1)
and dtw(D) ≤ d. This means δ+(D) ≥ (d + 2)(k − 1) + 1 = (d + 1)(k − 1) + k, and hence
we may apply Proposition 2.19 to D. We find disjoint vertex-sets X1, . . . , Xk satisfying
δ+(D[Xi]) ≥ k, i = 1, . . . , k. By Observation 3.10, every D[Xi] contains a k-train. The
claim now follows from Observation 3.9.
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3.3.2 Digraphs Containing a Large Complete Minor

In this subsection, we show that every digraph containing as a butterfly-minor a complete
digraph of sufficiently large order must also contain k disjoint directed cycles of distinct
lengths. To achieve this goal, it is more convenient to prove an arc-weighted generalization
of this statement as follows.

Lemma 3.11. Let k ∈ N, t = k2+3k
2 . Let D be a digraph containing

↔
Kt as a butterfly-

minor, and let w : A(D) → (0,∞) be an arc-weighting of D. Then D contains k
pairwise vertex-disjoint directed cycles C1, . . . , Ck such that the total weights w(Ci) =∑︁

e∈A(Ci) w(e), i = 1, . . . , k of the cycles are pairwise distinct.

Proof. By induction on v(D)+a(D). We clearly have v(D) ≥ t and a(D) ≥ a(
↔
Kt) = t(t−1)

for every D as in the lemma, so in the base case we have v(D) + a(D) = t2 and D =
↔
Kt.

Since t = 2 + 3 + · · · + k + (k + 1), we can partition V (D) into subsets V1, . . . , Vk, such
that |Vi| = i + 1 for 1 ≤ i ≤ k. We claim that D[Vi] contains at least i directed cycles with
pairwise distinct total weights, for every i ∈ {1, . . . , k}. Indeed, for 1 ≤ i ≤ k let us pick
some vertex vi ∈ Vi and order the vertices in Vi \ {vi} as vi,1, . . . , vi,i in such a way that

w((vi,1, vi)) ≤ w((vi,2, vi)) ≤ w((vi,3, vi)) ≤ . . . ≤ w((vi,i, vi)).

For 1 ≤ j ≤ i, let us denote by Ci,j the directed cycle in D[Vi] induced by the arcs (vi, vi,1),
(vi,1, vi,2), . . . , (vi,j−1, vi,j), (vi,j , vi). We then have

w(Ci,j)− w(Ci,j−1) = w((vi,j−1, vi,j))⏞ ⏟⏟ ⏞
>0

+ (w((vi,j , vi))− w((vi,j−1, vi)))⏞ ⏟⏟ ⏞
≥0

> 0

for 2 ≤ j ≤ i, showing that Ci,1, . . . , Ci,i are i directed cycles in D[Vi] of pairwise distinct
total weights. For i = 1, 2, . . . , k we can now successively pick a cycle Ci ∈ {Ci,j |1 ≤ j ≤ i}
whose weight is distinct from the weights of the already chosen cycles C1, . . . , Ci−1. This
proves the claim in the base case of the induction.

Suppose now that v(D) + a(D) > t2 and that the claim holds for all digraphs D′ such
that v(D′) + a(D′) < v(D) + a(D). Then either there is a proper subdigraph D1 ( D

such that D1 still contains
↔
Kt as a butterfly-minor, or D contains a contractible arc

e = (u, v) ∈ A(D) such that D2 := D/e contains
↔
Kt as a butterfly-minor. In the first case,

we can apply the induction hypothesis to D1 (with arc-weights inherited from D) to find
that there exists k vertex-disjoint directed cycles in D1 (and hence also in D) of pairwise
distinct weights. In the second case, we know that either d+

D(u) = 1 or d−
D(v) = 1. Let

us assume w.l.o.g. that e is the only arc leaving u, as the proof in the other case works
symmetrically. By identifying the contraction vertex of e in D2 with v, we may represent
D2 as follows:

V (D2) = V (D) \ {u},

A(D2) = A(D − u) ∪ {(x, v)|(x, u) ∈ A(D), x ̸= v}.

Let us define an arc-weighting w2 : A(D2)→ (0,∞) by w2(e) := w(e) for all e ∈ A(D−u)
and w2((x, v)) := w((x, u)) + w((u, v)) for all x ∈ N−

D (u) \ ({v} ∪N−
D (v)). Since we have

v(D2) + a(D2) < v(D) + a(D), the induction hypothesis yields that D2 contains k vertex-
disjoint directed cycles C1, . . . , Ck with pairwise distinct total weights. If none of these
cycles uses an arc of the form (x, v) with x ∈ N−

D (u) \ ({v} ∪N−
D (v)), then the cycles also

exist in D with the same weights, and hence the inductive claim holds. Otherwise, exactly
one of the cycles, say C1, uses an arc of the from (x, v) with x ∈ N−

D (u) \ ({v} ∪N−
D (v)).
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But then replacing the arc (x, v) on C1 with the path (x, u), (u, v) in D, we find a directed
cycle C ′

1 in D such that V (C ′
1) = V (C1)∪{u}, and such that the weight of C1 in (D2, w2)

equals the weight of C ′
1 in (D, w). Hence, C ′

1, C2, . . . , Ck are k vertex-disjoint directed
cycles in D with pairwise distinct weights also in D, again proving the inductive claim.
This concludes the proof by induction.

By putting w(e) := 1 for all e ∈ A(D) in Lemma 3.11, we obtain the following.

Corollary 3.12. Let D be a digraph containing
↔
Kt as a butterfly-minor, where t ≥ k2+3k

2 .
Then D contains k vertex-disjoint directed cycles of pairwise distinct lengths.

3.3.3 Digraphs Containing a Flat Wall

In this subsection we give conditions which guarantee many vertex-disjoint directed cycles
of distinct lengths in digraphs of large minimum degree containing a weakly flat wall of
large order. Let us start by introducing a useful notation: Let D be a digraph, and let
W ⊆ D be a cylindrical wall. For a vertex w ∈ int(W ), in the rest of this section we
denote by R+

W [w] and R−
W [w] the sets of vertices in V (D) \ int(W ) which are reachable

from w in D − (int(W ) \ {w}), respectively which can reach w in D − (int(W ) \ {w}).

Lemma 3.13. Let D be a digraph containing a cylindrical wall W ⊆ D. Let a, b ∈ N such
that δ+(D) ≥ a + b, and let w ∈ int(W ). Then at least one of the following holds.

• There exists x ∈ V (D), a w-x-dipath P in D such that V (P ) ∩ int(W ) = {w} and
distinct vertices v1, . . . , va ∈ int(W ) \ {w} such that (x, vi) ∈ A(D), i = 1, . . . , a, or

• D[R+
W [w]] has minimum out-degree at least b.

Proof. If R+
W [w] = ∅, then putting x = w verifies the first item. Now suppose R+

W [w] ̸= ∅.
By definition of R+

W [w], for every vertex x ∈ R+
W [w], we have N+

D (x) \ int(W ) ⊆ R+
W [w].

Now suppose that D[R+
W [w]] has minimum out-degree less than b. Then there exists

x ∈ R+
W [w] such that

b > d+
D[R+

W [w]](x) = |N+
D (x) \ int(W )|

= d+
D(x)− |N+

D (x) ∩ int(W )| ≥ a + b− |N+
D (x) ∩ int(W )|.

Consequently, |N+
D (x) ∩ (int(W ) \ {w})| ≥ |N+

D (x) ∩ int(W )| − 1 ≥ a, and we find that x
has a distinct out-neighbors v1, . . . , va ∈ int(W ) \ {w}. Since x ∈ R+

W [w], there exists a
dipath P from w to x such that V (P ) ∩ int(W ) = {w}, and the claim follows.

To state our next lemma we need the following definition.

Definition 3.5. Let W be a cylindrical wall. Let GW denote the auxiliary undirected
graph on the vertex-set int(W ) in which two vertices x ̸= y ∈ int(W ) are adjacent if
there exists a brick B of W such that x, y ∈ V (B). Then we define the brick-distance
distW (w1, w2) of two vertices w1, w2 ∈ int(W ) as their distance in the graph GW .

Lemma 3.14. Let D be a digraph, and let W ⊆ D be a cylindrical wall which is weakly
flat in D. Let w1, w2 ∈ int(W ). Then

(i) R+
W [w1] ∩R−

W [w2] = ∅, if distW (w1, w2) ≥ 2, and

(ii) R+
W [w1] ∩R+

W [w2] = ∅, if D is strongly connected and distW (w1, w2) ≥ 3.
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Proof.

(i) For a contradiction suppose that distW (w1, w2) ≥ 2 and R+
W [w1] ∩ R−

W [w2] ̸= ∅.
Pick some x ∈ R+

W [w1] ∩ R−
W [w2]. Then by definition, there exists a w1-x-dipath

P1 and a x-w2-dipath P2 with V (P1) ∩ int(W ) = {w1}, V (P2) ∩ int(W ) = {w2}.
Let z be the first vertex of V (P2) we meet when traversing P1 starting at w1. Then
P := P1[w1, z]◦P2[z, w2] is a w1-w2-dipath in D satisfying V (P )∩int(W ) = {w1, w2}.
Since W is weakly flat in D, this means that there is a brick B of W such that
w1, w2 ∈ V (B), and hence distW (w1, w2) ≤ 1, a contradiction to our initial assump-
tions. This proves the claim.

(ii) Suppose towards a contradiction that R+
W [w1] ∩ R+

W [w2] ̸= ∅, that D is strongly
connected and that distW (w1, w2) ≥ 3. Pick a vertex x ∈ R+

W [w1] ∩R+
W [w2].

By definition, there exists a w1-x-dipath P1 and a w2-x-dipath P2 in D such that
V (P1) ∩ int(W ) = {w1}, V (P2) ∩ int(W ) = {w2}. Since D is strongly connected,
there exists a directed path in D starting in x and ending in a vertex of int(W ).
Let P3 be a shortest directed path with this property. Then V (P3)∩ int(W ) = {y},
where y denotes the last vertex of P3. The triangle inequality yields that 3 ≤
distW (w1, w2) ≤ distW (w1, y)+distW (y, w2), and hence we have distW (w1, y) ≥ 2 or
distW (w2, y) ≥ 2. W.l.o.g. suppose that the former is true. Let z be the first vertex
of V (P3) we meet when traversing P1 starting at w1. Then P := P1[w1, z]◦P3[z, y] is
a w1-y-dipath in D satisfying V (P )∩int(W ) = {w1, y}. Since W is weakly flat in D,
we conclude that there exists a brick B of W such that w1, y ∈ V (B), contradicting
the fact that distW (w1, y) ≥ 2. Hence our initial assumption was wrong, and the
proof concludes.

The next lemma is the main technical result of this subsection, yielding conditions
which guarantee a k-train intersecting a weakly flat wall only in a “thin strip”.

Lemma 3.15. Let k ∈ N, let D be a digraph with δ+(D) ≥ 7k − 5, and let W ⊆ D
be a cylindrical wall which is weakly flat in D. Let w be a branch-vertex of D, whose
coordinates in W are (c1, c2) for c1, c2 ∈ N such that c1 = 2ℓ− 1 is odd and c2 is even.

Let S ⊆ V (W ) be defined as the set consisting of all branch vertices of W whose first
coordinate is in {c1− 2, c1− 1, c1, c1 + 1, c1 + 2, c1 + 3}, together with all vertices contained
in the interior of a subdivision-path of W spanned between two such branch vertices.

If S ∩ per(W ) = ∅, then D[S ∪R+
W [w]] contains a k-train.

Proof. By definition of S and since S ∩ per(W ) = ∅, we have w ∈ S ⊆ int(W ). Since the
definition of S depends only on the first coordinate of w, and by the cylindrical symmetry
of W , we may assume w.l.o.g. c2 = 2. Note that w is contained in the directed cycle Qℓ

of W , and that V (Qℓ−1) ∪ V (Qℓ) ∪ V (Qℓ+1) ⊆ S.
By Lemma 3.13 applied with a = 6k − 5 and b = k, either (1) there exists a vertex

x ∈ V (D) \ int(W ), a w-x-dipath P in D such that V (P ) ∩ int(W ) = {w}, and distinct
out-neighbors v1, . . . , v6k−5 ∈ int(W ) \ {w} of x, or (2) δ+(D[R+

W [w]]) ≥ k.
If (2) occurs, then we can apply Observation 3.10 to conclude that D[R+

W [w]] and
therefore also D[S∪R+

W [w]] contains a k-train as a subdigraph, which proves the assertion
in this case. Hence, assume for the rest of the proof that (1) occurs.

Note that V (P )∩ int(W ) = {w} implies that x ∈ V (P ) ⊆ {w}∪R+
W [w] ⊆ S ∪R+

W [w].
Further note that for every i ∈ {1, . . . , 6k − 5}, the dipath P ◦ (x, vi) intersects int(W )
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Q` Q`+1

u1 u2 u3

u4

Q`−1

u5 u6 u7

u8 u9 u10 u11 u12

B1

B2 B3

u13

u14 u15 u16

Figure 3.1: The local situation around the vertex w in the proof of Lemma 3.15, showing the
bricks incident to w and relevant branch vertices within S. The non-filled central vertex represents
w, while the green fat path represents part of the cycle Qℓ.

only in its first and last vertex, and hence the weak flatness of W in D implies that vi is
contained in one of the three bricks of W meeting at w.

For further reasoning, we fix the following notation (compare Figure 3.1): We denote
by u1, . . . , u16 16 distinct branch vertices of W contained in S, given by the following
coordinates:

(c1 − 1, 1), (c1, 1), (c1 + 1, 1), (c1 − 2, 2), (c1 − 1, 2), (c1 + 1, 2), (c1 + 2, 2),

(c1−2, 3), (c1−1, 3), (c1, 3), (c1 +1, 3), (c1 +2, 3), (c1 +3, 3), (c1 +1, 4), (c1 +2, 4), (c1 +3, 4).

Let us label the bricks incident to w as B1, B2, B3, where B1 contains the branch vertices
u1, u2, u3, u5, w, u6, B2 contains u4, u5, w, u8, u9, u10, and B3 contains w, u6, u7, u10, u11, u12.

In the following, for two distinct branch-vertices s, t of W which are connected by a
directed subdivision-path, let us denote this path by W [s, t] = W [t, s].

Let P1, P2, P3, P4, P5, P6 be 6 directed paths in D[S] defined by

P1 = W [u1, u2] ◦W [u2, u3] ◦W [u3, u6] ◦W [u6, w], P2 = W [u1, u5],

P3 = W [w, u5] ◦W [u5, u4] ◦W [u4, u8] ◦W [u8, u9] ◦W [u9, u10],

P4 = W [w, u10] ◦W [u10, u11] ◦W [u11, u12],

P5 = W [u7, u6], P6 = W [u7, u12].

Then we have V (B1)∪V (B2)∪V (B3) = V (P1)∪V (P2)∪V (P3)∪V (P4)∪V (P5)∪V (P6).
By the above, we have {v1, . . . , v6k−5} ⊆ (V (B1) ∪ V (B2) ∪ V (B3)) \ {w}, and hence
there is j ∈ {1, . . . , 6} such that Pj contains at least k of the vertices v1, . . . , v6k. Let
y1, . . . , yk ∈ V (Pj)\{w} be the ordering of these k vertices on the path Pj when traversing
it starting from its first vertex. The rest of the proof shows how to find a k-train in
D[S ∪R+

W [w]] for every value of j.

• Case j = 1. Let us consider the directed path Q := P1[y1, w] ◦P , which starts at y1
and ends at x. Then Q ⊆ D[S∪R+

W [w]], and the last vertex x of Q has the k distinct
out-neighbors y1, . . . , yk on Q, showing that D[S ∪R+

W [w]] contains a k-train.

• Case j = 2. Consider the directed path Q := P2[y1, u5] ◦P3[u5, u10] ◦Qℓ[u10, w] ◦P ,
which starts at y1 and ends at x (recall that Qℓ[u10, w] denotes the directed subpath
of the directed cycle Qℓ starting at u10 and ending at w). Then Q ⊆ D[S ∪R+

W [w]],
and the last vertex x of Q has the k distinct out-neighbors y1, . . . , yk on Q. Hence,
D[S ∪R+

W [w]] contains a k-train.
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• Case j = 3. Consider the directed path Q := P3[y1, u10] ◦ Qℓ[u10, w] ◦ P , which
starts at y1 and ends at x. Then Q ⊆ D[S ∪R+

W [w]], and the last vertex x of Q has
the k distinct out-neighbors y1, . . . , yk on Q, showing that D[S ∪R+

W [w]] contains a
k-train.

• Case j = 4. Consider the directed path

Q := P4[y1, u12] ◦W [u12, u13] ◦W [u13, u16] ◦W [u16, u15] ◦W [u15, u14] ◦Qℓ[u14, w] ◦P,

which starts at y1 and ends at x. Then Q ⊆ D[S ∪ R+
W [w]], and the last vertex x

of Q has the k distinct out-neighbors y1, . . . , yk on Q, showing that D[S ∪ R+
W [w]]

contains a k-train.

• Case j = 5. Consider the directed path Q := P5[y1, u6] ◦W [u6, w] ◦ P , which starts
at y1 and ends at x. Then Q ⊆ D[S ∪ R+

W [w]], and the last vertex x of Q has
the k distinct out-neighbors y1, . . . , yk on Q, showing that D[S ∪R+

W [w]] contains a
k-train.

• Case j = 6. Consider the directed path

Q := P6[y1, u12] ◦W [u12, u13] ◦W [u13, u16] ◦W [u16, u15] ◦W [u15, u14] ◦Qℓ[u14, w] ◦P,

which starts at y1 and ends at x. Then Q ⊆ D[S ∪ R+
W [w]], and the last vertex x

of Q has the k distinct out-neighbors y1, . . . , yk on Q, showing that D[S ∪ R+
W [w]]

contains a k-train.

In every case, D[S ∪R+
W [w]] contains a k-train. This concludes the proof.

Before moving on, let us note the following symmetrical version of Lemma 3.15. In
the following we refer to a digraph obtained from a k-train by reversing the orientations
of all its arcs as a reverse-k-train.

Corollary 3.16. Let k ∈ N, let D be a digraph with δ−(D) ≥ 7k − 5, and let W ⊆ D
be a cylindrical wall which is weakly flat in D. Let w be a branch-vertex of D, whose
coordinates in W are (c1, c2) for c1, c2 ∈ N such that c1 = 2ℓ− 1 and c2 are odd.

Let S ⊆ V (W ) be defined as the set consisting of all branch vertices of W whose first
coordinate is in {c1− 2, c1− 1, c1, c1 + 1, c1 + 2, c1 + 3}, together with all vertices contained
in the interior of a subdivision-path of W spanned between two such branch vertices.

If S ∩ per(W ) = ∅, then D[S ∪R−
W [w]] contains a reverse-k-train.

Proof. Let m denote the order of the wall W . Let
←
D denote the digraph obtained from D

by reversing its arcs. Then δ+(
←
D) ≥ 7k−5 and

←
D contains

←
W , the digraph obtained from

W by reversing the orientations, as a subdigraph. Then
←
W itself forms a wall with the

following associated coordinates: Any branch-vertex of W at coordinates (t1, t2) receives
the coordinates (t1, 2m + 1− t2) in

←
W . In particular w has cordinates (c1, 2m + 1− c2) in

←
W , where c1 is odd and 2m + 1− c2 is even. Since per(W ) = per(

←
W ), the weak flatness

of W in D implies that also
←
W is weakly flat in

←
D. Also note that the set S remains

invariant when changing between W and
←
W . We may thus apply Lemma 3.15 to

←
D and

the vertex w in
←
W ⊆

←
D to find that

←
D[S ∪R+

←
W

[w]] =
←
D[S ∪R−

W [w]] contains a k-train. It
directly follows that D[S ∪R−

W [w]] contains a reverse-k-train, and the claim follows.

The following consequences of Lemma 3.15 are used in the proofs of Theorem 3.1 and
Theorem 3.3.
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Lemma 3.17. Let D be a strongly connected digraph, and let W ⊆ D be a cylindrical
wall of order 3k + 2 which is weakly flat in D. If δ+(D) ≥ 7k − 5, then D contains k
vertex-disjoint directed cycles of distinct lengths.

Proof. Let us pick distinct branch vertices w1, . . . , wk ∈ int(W ) of W given by the follow-
ing coordinates (compare Figure 3.2): For every 1 ≤ i ≤ k, wi is at position (6i − 1, 2)
in W . We note that wi is contained in the cycle Q3i of W for every 1 ≤ i ≤ k, and that
distW (wi, wj) ≥ 3 for every 1 ≤ i < j ≤ k. Using Lemma 3.14, (ii) we conclude that the
sets R+

W [wi], i = 1, . . . , k are pairwise disjoint. For every 1 ≤ i ≤ k, let us define the i-th
strip Si ⊆ int(W ) as the set of vertices v ∈ V (W ), such that either v is a branch vertex
of W whose first coordinate is in {6i− 3, 6i− 2, . . . , 6i + 2}, or such that v is contained in
a subdivision-path of W between two branch vertices in Si. Note that the sets S1, . . . , Sk

are pairwise vertex-disjoint. For every i = 1, . . . , k we can now apply Lemma 3.15 to D
and the vertex wi in W , and we find that D[Si∪R+

W [wi]] contains a k-train. Since the sets
Si ∪R+

W [wi], i = 1, . . . , k are pairwise disjoint, it follows that D contains k vertex-disjoint
k-trains. The assertion now follows by applying Observation 3.9 to D.

... ... ... ... ... ... ... ... ... ... ... ...

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13

S1 S2 S3 S4

...

Q1 Q14

...

Figure 3.2: Illustration of the placement of the vertices w1, . . . , w4 in the wall W14 in the proof of
Lemma 3.17. The vertices wi are marked by big non-filled vertices, and the three incident bricks
of every wi are shaded. The directed cycles Q3i, i = 1, . . . , 4 containing the vertices wi are marked
fat and green.

Lemma 3.18. Let D be a digraph, and let W ⊆ D be a cylindrical wall of order 8 which
is weakly flat in D. Suppose further that δ+(D), δ−(D) ≥ 16. Then D contains 3 vertex-
disjoint directed cycles of distinct lengths.

Proof. Let us place two distinct vertices w1, w2 in the interior of W as follows: w1 is
the branch-vertex of W with coordinates (5, 2), and w2 is the branch vertex of W with
coordinates (11, 3). Then we have distW (w1, w2) = 3 ≥ 2, and by Lemma 2.21, (i) we have
R+

W [w1]∩R−
W [w2] = ∅. Let the strips S1, S2 ⊆ int(W ) be defined as the sets consisting of

the branch-vertices of W with first coordinates in {3, 4, . . . , 8} respectively {9, 10, . . . , 14}
as well as the vertices on the subdivision-paths of W spanned between those vertices. It
now follows from Lemma 3.15 applied to w1 with k = 3, respectively from Corollary 3.16
applied to w2 with k = 3, that D[S1∪R+

W [w1]] contains a 3-train and that D[S2∪R−
W [w2]]

contains a reverse-3-train. Noting that V (Q1), S1 ∪R+
W [w1] and S2 ∪R−

W [w2] are pairwise
disjoint, we conclude that D contains the directed cycle Q1, a 3-train, and a reverse 3-
train as subdigraphs, pairwise vertex-disjoint. Since every 3-train and every reverse 3-train
contains 3 directed cycles of distinct lengths, it follows that D contains 3 vertex-disjoint
directed cycles of distinct lengths.
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3.3.4 Proofs of Theorem 3.1 and Theorem 3.3

We are now ready to give the proofs of Theorem 3.1 and Theorem 3.3.

Proof of Theorem 3.1. Let k ∈ N and put s(k) := max{d(3k + 2, t), a(t) + 7k − 5}, where
t := k2+3k

2 and d(·, ·), a(·) are the functions from Theorem 3.7.
Let D be any given strongly s(k)-connected digraph. By Theorem 3.7, applied to D

with parameters 3k + 2 and t, we find that one of the following must be true.

(i) dtw(D) < d(3k + 2, t), or

(ii) D contains
↔
Kt as a butterfly-minor, or

(iii) there exists X ⊆ V (D) with |X| ≤ a(t) and a cylindrical wall W ⊆ D −X of order
3k + 2 which is weakly flat in D −X.

Case (i) is impossible, since we have dtw(D) ≥ s(k) ≥ d(3k + 2, t) by Corollary 3.6. If
Case (ii) occurs, then we can apply Corollary 3.12 to D and we find that D contains k
vertex-disjoint directed cycles of pairwise distinct length, as required. Finally, if Case (iii)
occurs, we know from s(k) ≥ a(t) + 7k − 5 that D − X is strongly (7k − 5)-connected.
This in particular implies that D −X is strongly connected and δ+(D) ≥ 7k − 5. Since
there exists a cylindrical wall W ⊆ D −X of order 3k + 2 which is weakly flat in D −X,
we can apply Lemma 3.17 to D − X and find that there exist k vertex-disjoint directed
cycles of pairwise distinct lengths in D −X ⊆ D, yielding the assertion also in this case.
This concludes the proof.

Proof of Theorem 3.3. Let K := max{2d(8, 9) + 3, a(9) + 16}, where d(·, ·), a(·) are the
functions from Theorem 3.7.

Let D be any given digraph such that δ+(D), δ−(D) ≥ K. By applying Theorem 3.7
to D with parameters 8 and 9, we find that one of the following must hold:

(i) dtw(D) < d(8, 9), or

(ii) D contains
↔
K9 as a butterfly-minor, or

(iii) There exists X ⊆ V (D) with |X| ≤ a(9) such that D−X contains a wall W of order
8 which is weakly flat in D −X.

If Case (i) occurs, then we have dtw(D) ≤ d(8, 9) − 1. Since δ+(D) ≥ K ≥ 2d(8, 9) + 3
= (d(8, 9) + 1)(3 − 1) + 1 > (d(8, 9) + 1)(3 − 1), we can apply Proposition 3.4 to D with
parameters d := d(8, 9) − 1 and k = 3 and find that indeed, D contains 3 vertex-disjoint
directed cycles of distinct lengths in this case, proving the assertion in this case. If Case
(ii) occurs, then we can apply Corollary 3.12 to D with t = 9, k = 3 and find that D
contains 3 vertex-disjoint directed cycles of distinct lengths. Finally, if (iii) occurs, then
we have δ+(D−X) ≥ δ+(D)−|X| ≥ a(9)+16−a(9) = 16 and δ−(D−X) ≥ δ−(D)−|X| ≥
a(9) + 16 − a(9) = 16. Since D −X contains a weakly flat wall W of order 8, it follows
from Lemma 3.18 that D − X ⊆ D contains 3 vertex-disjoint directed cycles of distinct
lengths also in this case. This concludes the proof.

3.4 Equicardinal Disjoint Directed Cycles
In this section we give the proof of Proposition 3.2, by constructing for every k ∈ N a
strongly k-connected digraph containing no two arc-disjoint directed cycles of equal length.



92 CHAPTER 3. DISJOINT DIRECTED CYCLES WITH LENGTH CONSTRAINTS

Proof of Proposition 3.2. Let k ∈ N. Let N := 4k2 and let a(1), . . . , a(k2), b(1), . . . , b(k2)
be defined as a(ℓ) := N + 2ℓ−1, b(ℓ) := N + 2k2+ℓ−1, 1 ≤ ℓ ≤ k2. Note that all possible
subset-sums of {a(1), a(2), . . . , a(k2), b(1), b(2), . . . , b(k2)} are pairwise distinct.

Let Dk denote a digraph on 2Nk vertices whose vertex-set is partitioned into 2N
disjoint parts V1, . . . , V2N , each of size exactly k, and having the following arcs:

For every 2 ≤ ℓ ≤ N , Dk contains all possible arcs of the form (u, v), u ∈ Vℓ, v ∈ Vℓ−1.
Label the vertices in V1 and VN as V1 = {u1, . . . , uk}, VN = {w1, . . . , wk}. For every

i ∈ {1, . . . , k}, ui has k distinct out-arcs ei,j , j = 1, . . . , k, where ei,j connects ui to a vertex
chosen arbitrarily from Va(k(i−1)+j). Similarly, vi has k distinct in-arcs fi,j , j = 1, . . . , k,
where fi,j connects a vertex chosen arbitrarily from V2N−b(k(i−1)+j)+1 to vi.

This concludes the description of Dk. Please note that all out-neighbors of the vertices
in V1 are contained in VN+1 ∪ · · · ∪ V2N while all the in-neighbors of the vertices in V2N

are contained in V1 ∪ · · · ∪ VN . We next show that Dk is strongly k-vertex-connected. To
this end, let S ⊆ V (Dk) with |S| < k be arbitrary and let us prove that Dk−S is strongly
connected. Since |S| < k, we have Vℓ \ S ̸= ∅, 1 ≤ ℓ ≤ 2N , and hence in Dk − S every
vertex in Vℓ \ S can reach every vertex in Vℓ′ \ S provided 1 ≤ ℓ′ < ℓ ≤ 2N . For strong
connectivity of Dk − S it now is sufficient to check that for every i, j ∈ {1, . . . , k} such
that ui ∈ V1 \S, wj ∈ V2N \S, there exists a directed path P in Dk −S starting at ui and
ending in wj . Since ui and wj have out-degree respectively in-degree k in Dk, there exist
vertices x, y ∈ V (Dk) \ S such that (ui, x), (y, wj) ∈ A(Dk). Note that by construction,
x ∈ Vℓ \ S, y ∈ Vℓ′ \ S for some ℓ ∈ {N + 1, . . . , 2N}, ℓ′ ∈ {1, . . . , N}. Hence, from the
above it follows that x can reach y in Dk − S, and hence also ui can reach wj in Dk − S.
This shows that Dk − S is indeed strongly connected for every S ⊆ V (Dk), |S| < k, and
hence that Dk is strongly k-vertex-connected.

Let us now show that D does not contain two arc-disjoint directed cycles of equal
lengths. To this end, let us call E := {ei,j , fi,j |1 ≤ i, j ≤ k} the set of forward arcs
of Dk and define the lengths of the forward arcs as L(ei,j) := a(k(i − 1) + j), L(fi,j) :=
b(k(i − 1) + j), 1 ≤ i, j ≤ k. Let now C be a directed cycle in Dk using the forward arcs
e1, . . . , er ∈ E in this cyclical order, and for 1 ≤ s ≤ r let 1 ≤ t(s) < h(s) ≤ 2N be such
that es starts in Vt(s) and ends in Vh(s). Since all non-forward arcs on C connect a vertex
of Vℓ to Vℓ−1 for some 2 ≤ ℓ ≤ 2N , C − {e1, . . . , er} decomposes into directed paths of
lengths h(1)− t(2), h(2)− t(3), h(3)− t(4), . . . , h(r − 1)− t(r), h(r)− t(1). It follows that

|C| = r + (h(1)− t(2)) + . . . + (h(r − 1)− t(r)) + (h(r)− t(1)) =
r∑︂

s=1
(h(s)− t(s) + 1).

Noting that h(s) − t(s) + 1 = L(es) for every 1 ≤ s ≤ k, we obtain that the length of
any directed cycle in Dk equals the sum of the lengths of the forward arcs it is using.
The multi-set of the edge lengths of forward-arcs equals {a(1), . . . , a(k2), b(1), . . . , b(k2)}.
Since the subset-sums of this set are pairwise distinct, two directed cycles in Dk have the
same length iff they use the same forward-arcs. This concludes the proof.

3.5 Conclusion
In this chapter, we have studied the existence of vertex-disjoint directed cycles with length
constraints in digraphs of large connectivity. We have found that while we are guaranteed
to find many disjoint cycles of different lengths in such digraphs, we cannot even be sure to
find two arc-disjoint directed cycles of equal lengths. It would be interesting to complete
this picture by understanding whether further length constraints, such as parities, can be
enforced on the disjoint cycles. Clearly, bipartite digraphs of large connectivity show that
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we cannot expect the containment of odd dicycles. As mentioned in the introduction, a
result by Thomassen [Tho85b] states that the existence of an even directed cycle cannot
be forced by large minimum out-degree and in-degree. In contrast, he showed that every
strongly 3-connected digraph contains an even directed cycle [Tho92]. We propose the
following strengthening of Thomassen’s result.

Conjecture 3.3. For every k ∈ N, there exists an integer s(k) ∈ N such that every
strongly s(k)-connected digraph contains k vertex-disjoint directed cycles of even lengths.
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Chapter 4

Cycle-Reversion Distance between
Graph Orientations

4.1 Introduction
Graphs and digraphs in this chapter are loopless but may have multiple parallel and
anti-parallel arcs.

The term flip is commonly used in combinatorics to refer to an elementary, local,
reversible operation that transforms one combinatorial object into another. Such flip
operations naturally yield a flip graph, whose vertices are the considered combinatorial
objects, and two of them are adjacent if they differ by a single flip. A classical example is
the flip graph of triangulations of a convex polygon [STT88, Pou14]; see Figure 4.1. The
vertex set of this graph are all triangulations of the polygon, and two triangulations are
adjacent if one can be obtained from the other by replacing the diagonal of a quadrilateral
formed by two triangles by the other diagonal. Similar flip graphs have also been inves-
tigated for triangulations of general point sets in the plane [DLRS10], triangulations of
topological surfaces [Neg94], and planar graphs [BH09, BV11]. The flip distance between
two combinatorial objects is the minimum number of flips needed to transform one into
the other. It is known that computing the flip distance between two triangulations of a
simple polygon [AMP15] or of a point set [LP15] is NP-hard. The latter is known to be
fixed-parameter tractable [KSX17]. On the other hand, the NP-hardness of computing the
flip distance between two triangulations of a convex polygon is a well-known open ques-
tion [LZ98, Rog99, DP02, CSJ09, CSJ10, LEP10]. Flip graphs involving other geometric
configurations have also been studied, such as flip graphs of non-crossing perfect match-
ings of a point set in the plane, where flips are with respect to alternating 4-cycles [HY02],
or alternating cycles of arbitrary length [HHNRC05]. Other flip graphs include the flip
graph on plane spanning trees [AAHV07], the flip graph of non-crossing partitions of a
point set or dissections of a polygon [HHNOP09], the mutation graph of simple pseudoline
arrangements [Rin57], the Eulerian tour graph of an Eulerian graph [ZG87], and many
others. There is also a vast collection of interesting flip graphs for non-geometric objects,
such as bitstrings, permutations, combinations, and partitions [FKMS18].

In essence, a flip graph provides the considered family of combinatorial objects with
an underlying structure that reveals interesting properties about the objects. It can also
be a useful tool for proving that a property holds for all objects, by proving that one
particularly nice object has the property, and that the property is preserved under flips.
Flip graphs are also an essential tool for solving fundamental algorithmic tasks such as
random and exhaustive generation, see e.g. [AF96], [PW98] and [BKV19].
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Figure 4.1: The flip graph of triangulations of a convex polygon.

The focus of the present chapter is on flip graphs for orientations of graphs satisfying
some constraints. First, we consider so-called α-orientations, in which the outdegree of
every vertex is specified by a function α, and the flip operation consists of reversing the
orientation of all arcs in a directed cycle. We study the complexity of computing the
flip distance between two such orientations. An interesting special case of α-orientations
corresponds to perfect matchings in bipartite graphs, where flips involve alternating cycles.
We also consider the dual notion of c-orientations, in which the number of forward arcs
along each cycle is specified by a function c. Here a flip consists of reversing all arcs in a
directed cut. We also analyze the computational complexity of the flip distance problem
in c-orientations.

There are several deep connections between flip graphs and polytopes. Specifically,
many interesting flip graphs arise as the (1-)skeleton of a polytope. For instance, flip
graphs of triangulations of a convex polygon are skeletons of associahedra [CSZ15], and flip
graphs of regular triangulations of a point set in the plane are skeletons of secondary poly-
topes (see [DLRS10, Chapter 5]). Associahedra are generalized by quotientopes [PS19],
whose skeletons yield flip graphs on rectangulations [CSS18], bitstrings, permutations,
and other combinatorial objects. Moreover, flip graphs of acyclic orientations or strongly
connected orientations of a graph are skeletons of graphical and co-graphical zonotopes,
respectively (see [Pos09, Section 2]). Similarly, as we show below, flip graphs on α-
orientations are skeletons of matroid intersection polytopes. We also consider vertex
flips in c-orientations, inducing flip graphs that are distributive lattices and in partic-
ular subgraphs of skeletons of certain distributive polytopes. These polytopes specialize
to flip polytopes of planar α-orientations, are generalized by the polytope of tensions of a
digraph, and form part of the family of alcoved polytopes (see [FK11]).

In the next section, we give the precise statements of the computational problems
we consider, connections with previous work, and the statements of our main results.
In Section 4.3, we give the proof of our first main result, showing that computing the
flip distance between α-orientations and between perfect matchings is NP-hard even for
planar graphs. Section 4.4 presents the proof of our second main result, where we give
a polynomial time algorithm to compute the vertex flip distance between c-orientations.
Finally, in Section 4.5 we show that computing the distance between c-orientations, when
double vertex flips are also allowed, is NP-hard.
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Figure 4.2: Two α-orientations of a graph and a flip between them, where the values of α are
depicted on the vertices.

4.2 Problems and Main Results

Flip distance between α-orientations. Given a graph G and some α : V (G) → N0,
an α-orientation of G is an orientation of the edges of G in which every vertex v has
outdegree α(v). An example for a graph and two α-orientations for this graph is given in
Figure 4.2. A flip of a directed cycle C in some α-orientation X consists of the reversal of
the orientation of all arcs of C, as shown in the figure. Arcs with distinct orientations in
two given α-orientations X and Y induce an Eulerian subdigraph of both X and Y . They
can therefore be represented by an edge-disjoint union of cycles in G which are directed
in both X and Y . Hence the reversal of each such cycle in X gives rise to a flip sequence
transforming X into Y and vice versa. We may thus define the flip distance between two α-
orientations X and Y to be the minimum number of cycles in a flip sequence transforming
X into Y . We are interested in the computational complexity of determining the flip
distance between two given α-orientations.

Problem 4.1. Given a graph G, some α : V (G) → N0, a pair X, Y of α-orientations of
G and an integer k ≥ 0, decide whether the flip distance between X and Y is at most k.

The crucial difficulty of this problem is that a shortest flip sequence transforming X
into Y may flip arcs that are oriented the same in X and Y an even number of times, to
reach Y with fewer flips compared to only flipping arcs that are oriented differently in X
and Y ; see the example in Figure 4.3. This motivates the following variant of Problem 4.1:

Problem 4.2. Given G, α, X, Y, k as in Problem 4.1, decide whether the flip distance
between X and Y is at most k, where we may only flip arcs that are oriented differently
in X and Y .

From α-orientations to perfect matchings. The flexibility in choosing a function α
for a set of α-orientations on a graph allows us to capture numerous relevant combinatorial
structures, some of which are listed below:
• domino and lozenge tilings of a plane region [Rém04, Thu90],
• planar spanning trees [GL86],
• (planar) bipartite perfect matchings [LZ03],
• (planar) bipartite d-factors [Pro02, Fel04],
• Schnyder woods of a planar triangulation [Bre00],
• Eulerian orientations of a (planar) graph [Fel04],
• k-fractional orientations of a planar graph with specified outdegrees [BF12],
• contact representations of planar graphs with homothetic triangles, rectangles, and k-

gons [Fel13, GLP12, FSS18b, FSS18a].
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Figure 4.3: An α-orientation X of a graph. The α-orientation Y obtained by flipping the four
directed facial cycles C1, . . . , C4 can be reached with fewer flips by flipping only the three directed
facial cycles D1, D2, D3 in this order.
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Figure 4.4: An α-orientation of a bipartite graph and the corresponding perfect matching.

In the following, we focus on perfect matchings of bipartite graphs. Consider any
bipartite graph G with bipartition (V1, V2) such that |V1| = |V2| equipped with

α : V (G)→ N0, α(x) :=
{︄

1 if x ∈ V1,

dG(x)− 1 if x ∈ V2.

With this definition, in each α-orientation of G, the arcs directed from V1 to V2 form
a perfect matching. This is illustrated in Figure 4.4. Conversely, given a perfect matching
M of G, orienting all edges of M from V1 to V2 and all the other edges from V2 to V1 yields
an α-orientation of the above type. Furthermore, the directed cycles in any α-orientation
of G correspond to the alternating cycles in the associated perfect matching. Flipping
an alternating cycle in a perfect matching corresponds to exchanging matching and non-
matching edges. An example of the flip graph of perfect matchings of a graph is given in
Figure 4.5. In this special case, Problem 4.1 boils down to:

Problem 4.3. Given a bipartite graph G, a pair X, Y of perfect matchings in G and an
integer k ≥ 0, decide whether the flip distance between X and Y is at most k.

The example from Figure 4.3 can be easily modified to show that when transforming
X into Y using the fewest number of flips, we may have to flip alternating cycles that are
not in the symmetric difference of X and Y ; see the example in Figure 4.6. If we restrict
the flips to only use cycles in the symmetric difference of X and Y , then the problem
of finding the flip distance becomes trivial, as the symmetric difference is a collection of
vertex-disjoint cycles, and each of them has to be flipped, so Problem 4.2 is trivial for
perfect matchings.
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Figure 4.5: The flip graph of perfect matchings of a graph. The solid edges indicate flips along
facial cycles, and the dashed edges indicate flips along non-facial cycles.

C1 C2 C3 C4

D1

D2

D3

Figure 4.6: A perfect matching X in a graph. The perfect matching Y obtained by flipping the
four alternating facial cycles C1, . . . , C4 can be reached with fewer flips by flipping only the three
alternating facial cycles D1, D2, D3 in this order.
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Flip graphs and matroid intersection polytopes. We proceed to give a geometric
interpretation of the flip distance between α-orientations as the distance in the skeleton
of a 0/1-polytope.

Recall that a matroid M can be described as (E,B), where E contains the elements of
M and B ⊆ 2E its bases. A common base of two matroids M1 = (E1,B1), M2 = (E2,B2)
is simply an element of B1 ∩ B2.

It is well-known that perfect matchings in a bipartite graph G = (V1 ∪ V2, E) are the
common bases of two partition matroids1 (E, I1) and (E, I2), in which a set of edges is
independent if no two share an endpoint in V1, or, respectively, in V2.

Similarly, α-orientations can be defined as common bases of two partition matroids.
In this case, every edge of the graph G is replaced by an anti-parallel pair of arcs, one arc
for each possible orientation of the edge. One matroid ensures that in a basis, for every
edge exactly one orientation is chosen. The second matroid encodes the constraint that in
a basis, each vertex v has exactly α(v) outgoing arcs.

The common base polytope of two matroids is a 0/1-polytope obtained as the convex
hull of the characteristic vectors of the common bases. Adjacency of two vertices of this
polytope has been characterized by Frank and Tardos [FT88]. A shorter proof was given
by Iwata [Iwa02]. We briefly recall their result in the next theorem. To state the theorem,
consider a matroid M = (E, I), a base B ∈ I, and a subset F ⊆ E. The exchangeability
graph G(B, F ) of M is a bipartite graph with B \ F and F \ B as vertex bipartition,
and edge set {ij | i ∈ B \ F, j ∈ F \ B, B \ {i} ∪ {j} is a basis}. This definition and the
theorem are illustrated in Figure 4.7 for the two partition matroids whose common bases
are perfect matchings of a graph.

Theorem 4.1 ([FT88, Iwa02]). For two matroids M+ = (E, I+) and M− = (E, I−), two
common bases A,B ∈ I+ ∩I− are adjacent on the common base polytope if and only if all
the following conditions hold:

(i) the exchangeability graph G(A, B) of M+ has a unique perfect matching P +,
(ii) the exchangeability graph G(B, A) of M− has a unique perfect matching P −,

(iii) P + ∪ P − is a single cycle.

From this theorem we can conclude that the flip graphs we consider on perfect match-
ings and α-orientations are precisely the skeletons of corresponding polytopes of common
bases of the two associated partition matroids.

It is interesting to compare Problems 4.1 and 4.3 with the analogous problems for
other families of matroid polytopes. For instance, it is known that for two bases A, B of
a matroid, the exchangeability graph G(A, B) has a perfect matching [Bru69]. Hence A
can be transformed into B by performing |A∆B|/2 exchanges of elements (where A∆B
is the symmetric difference of A and B), which is also the distance in the skeleton of the
base polytope of the matroid. On the other hand, the problem of computing the flip dis-
tance between two triangulations of a convex polygon amounts to computing distances in
skeletons of associahedra, which are known to be polymatroids (see [AA17] and references
therein). This problem is neither known to be polynomial-time solvable nor known to be
NP-hard. Also note that for other families of combinatorial polytopes, testing adjacency
is already intractable. This is the case for instance for the polytope of the Traveling Sales-
man Problem (TSP) [Pap78], whose skeleton is known to have diameter at most 4 [RC98].
On the other hand, the corresponding polytope is known to be the common base polytope

1In a partition matroid, we are given a partition S1, . . . , Sk of the ground-set E and numbers c1, . . . , ck ∈
N0. A subset I ⊆ E is independent in the corresponding partition matroid if |I ∩ Si| ≤ ci for all 1 ≤ i ≤ k.
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Figure 4.7: Two common bases A and B (left and middle) of the matroids M+ and M−, where
M+ and M− have as independent sets all subsets of edges of the graph where no two share an
endpoint in the set of circled vertices, or the set of squared vertices, respectively. The right hand
side shows the exchangeability graphs G(A, B) of M+ (solid edges) and G(B, A) of M− (dashed
edges). As the conditions of Theorem 4.1 are met, the two bases are adjacent in the common base
polytope, and adjacent in the flip graph shown in Figure 4.5.

of three matroids. Another important class of combinatorial polytopes are alcoved poly-
topes, see [LP07]. It is known that the flip graphs of planar α-orientations are skeletons
of alcoved polytopes, see [FK11]. Thus, by our results below, flip distances in this class
are also NP-hard to compute.

Hardness of flip distance between perfect matchings and α-orientations. We
prove that Problem 4.3 is NP-complete, even for 2-connected bipartite subcubic planar
graphs and k = 2. This clearly implies that Problem 4.1 is NP-complete as well.

Theorem 4.2. Given a 2-connected bipartite subcubic planar graph G and a pair X, Y
of perfect matchings in G, deciding whether the flip distance between X and Y is at most
two is NP-complete.

As direct consequences of the proof of Theorem 4.2 we get:

Corollary 4.3. Unless P = NP, deciding whether the flip distance between two perfect
matchings is at most k is not fixed-parameter tractable with respect to parameter k.

Corollary 4.4. Unless P = NP, the flip distance between two perfect matchings is not
approximable within a multiplicative factor 3/2− ϵ in polynomial time, for any ϵ > 0.

We also prove that Problem 4.2 is NP-complete, even for 4-regular graphs and k = 2.

Theorem 4.5. Given a 4-regular graph G and a pair X, Y of α-orientations of G, deciding
whether the flip distance between X and Y is at most two is NP-complete. Moreover, the
problem remains NP-complete if we only allow flipping arcs that are oriented differently
in X and Y .

The proofs of Theorem 4.2 and 4.5 are presented in Section 4.3.

From α-orientations in planar graphs to c-orientations. In what follows, we gen-
eralize the problem, via planar duality, to flip distances in so-called c-orientations.

Consider an arbitrary 2-connected plane graph G and its planar dual G∗. Then for any
orientation D of the edges of G, the directed dual D∗ of D is obtained by orienting any
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Figure 4.8: Duality between flips in α-orientations (solid) and in c-orientations (dashed).

dual edge forward if it crosses a left-to-right arc in D in a simultaneous plane embedding
of G and G∗, and backward otherwise; see Figure 4.8. Arc sets of directed cycles in
D correspond to arc sets of directed bonds in D∗ and vice-versa. Hence D is acyclic
(respectively, strongly connected) if and only if D∗ is strongly connected (respectively,
acyclic). A directed vertex cut is a cut consisting of all arcs incident to a sink or a source
vertex. Directed facial cycles in D are in bijection with the directed vertex cuts in D∗,
and vice versa. The unbounded face in the plane embedding of D can be chosen such that
it corresponds to a fixed vertex ⊤ in D∗.

Let D be an α-orientation of G. For every vertex-set U ⊆ V (D) we have

|∂+(U)| =
∑︂
v∈U

d+
D(v)− e(G[U ]) =

∑︂
v∈U

α(v)− e(G[U ]),

which only depends on α and G. Consequently, the set of orientations of G∗ which are
directed duals of α-orientations of G can be characterized by the property that for every
cycle C in G∗, the number of arcs in clockwise direction is fixed by a certain value c(C)
independent of the orientation. The flip operation between α-orientations of D consists
of the reversal of a directed cycle. In the corresponding set of dual orientations of D∗,
this translates to the reversal of the orientations of the arcs in a minimal directed cut, as
shown on Figure 4.8.

The same notion has been investigated more generally without planarity conditions
under the name of c-orientations by Propp [Pro02] and Knauer [Kna07]. Given a graph
G, we can fix an arbitrary direction of traversal for each cycle C. Given a graph and an
assignment c(C) ∈ N0 to each cycle in G, one may define a c-orientation of G to be an
orientation having exactly c(C) arcs in forward direction for every cycle C in G. Note
that it is sufficient to define the function c on a cycle basis of G, which consists of no more
than e(G) cycles2. The flip operation on the set Rc of such c-orientations of a graph is
defined as the reversal of all arcs in a minimal directed cut. It is not difficult to see that
flips make the set of c-orientations of a graph connected (this will be noted in Section 4.4).

From the duality between planar α-orientations and planar c-orientations, determining
flip distances between α-orientations of 2-connected planar graphs reduces to determining
flip distances between the dual c-orientations. Note that planar duals of bipartite graphs
are exactly the Eulerian planar graphs. Theorem 4.2 therefore directly yields:

Corollary 4.6. Given an Eulerian planar graph G and a pair X, Y of c-orientations of
G, deciding whether the flip distance between X and Y is at most two is NP-complete.

2The existence of such a cycle basis can be easily seen by considering an ear-decomposition of G.



4.2. PROBLEMS AND MAIN RESULTS 103

c-orientations and distributive lattices. A more local operation consists of flipping
only directed vertex cuts, induced by sources and sinks, excluding a fixed vertex ⊤. We
will refer to this special case as a vertex flip. Specifically, given a pair of c-orientations
X, Y of a graph G with a fixed vertex ⊤, we aim to transform X into Y using only vertex
flips at vertices distinct from ⊤.

A c-orientation X of G might contain a cycle C in G which is directed in X. According
to the definition of a c-orientation, this means that C keeps the same orientation in every
c-orientation of G. Consequently, any (minimal) directed cut in a c-orientation of G
is disjoint from A(C). Contracting the cycle C in G, we end up with a smaller graph
G′ containing the same (minimal) directed cuts, such that the c-orientations of G are
determined by their corresponding orientations on G′. We can therefore assume without
loss of generality that the c-orientations that we consider are all acyclic. Similarly, G will
be assumed to be connected.

Problem 4.4. Given a connected graph G, the fixed vertex ⊤ and a pair X, Y of acyclic
c-orientations, what is the length of a shortest vertex flip sequence from X to Y ?

We should convince ourselves that under the assumptions made above, every pair of
c-orientations is reachable from each other by vertex flips. This property is provided in a
much stronger way by a distributive lattice structure on the set Rc; see Figure 4.9. The
next theorem is a special case of Theorem 1 in Propp [Pro02] for acyclic c-orientations.

Theorem 4.7 ([Pro02, Kna07]). Let G be a graph with fixed vertex ⊤ and Rc a set of
acyclic c-orientations of G. Then the partial order ≤c on Rc in which a c-orientation
Y covers another c-orientation X if and only if Y can be obtained from X by flipping a
source distinct from ⊤, defines a distributive lattice on Rc.

Hence Problem 4.4 consists of finding shortest paths in the cover graph of a distributive
lattice, where the size of the lattice can be exponential in the size of the input G.

Every distributive lattice is a lattice of c-orientations. We next point out that
every distributive lattice is isomorphic to the distributive lattice induced by a set of c-
orientations of a graph. This relationship was described by Knauer [Kna08].

In order to represent a given distributive lattice L by an isomorphic lattice of c-
orientations, we need to construct a corresponding digraph D(L). For this purpose, we
shortly recall a classical result from lattice theory, Birkhoff’s Theorem (see [DP02]).

For any distributive lattice L, J (L) is the subposet of L induced by the set of join-
irreducible elements, these are the elements of L covering exactly one element. On the
other hand, given any poset P we may look at the distributive lattice O(P ) formed by
the downsets of P ordered by inclusion. Birkhoff’s Theorem in our setting asserts that
those two operations are inverse in the sense that P ∼= J (O(P )) for any finite poset P
and O(J (L)) ∼= L for any finite distributive lattice.

The idea is to define a digraph D(L) whose vertex set consists of the elements of
J (L) with an additional vertex ⊤. The digraph is obtained from the natural upward-
orientation of J (L) plus additional arcs from all the sinks and sources to ⊤. Let G(L) be
the underlying graph of D(L), and for every cycle C of G(L), fix c(C) to be the number
of forward-arcs on c in the orientation D(L). Let Dc be the set of c-orientations of G(L).
Fix ⊤ as the unique non-flippable vertex.

We now define Lc(D(L)) as the distributive lattice induced on D according to Theo-
rem 4.7. An example of this construction is provided in Figure 4.10.

The next theorem (Theorem 4.8 below) is an easy consequence of Birkhoff’s Theorem.
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0

0 0 0

⊤

0

0 1 0

⊤

0

1 1 1

⊤

1

1 1 1

⊤

0
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⊤

0
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⊤

Figure 4.9: The distributive lattice induced by vertex flips in c-orientations. The reference
orientation at the bottom is the directed dual D∗ of the orientation D of the graph G used in
Figures 4.4 and 4.5, where some parallel arcs incident with ⊤ are grouped together for simplicity.
The numbers depicted at the vertices are the number of times that each vertex is flipped with
respect to the reference orientation.
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L J (L) D(L)

>

Figure 4.10: A distributive lattice L represented by its Hasse diagram (left), the corresponding
subposet of join-irreducible elements J (L) (middle), and the digraph D(L) associated with the
lattice (right).

Theorem 4.8 ([Kna08]). Let L be any distributive lattice and D(L) be the corresponding
digraph as defined above. Then L ∼= Lc(D(L)).

Theorem 4.13 below gives a natural geometric embedding of the lattice L depending
on the digraph D(L). This embedding is such that all values zX(x) are 0 or 1, and the
vectors zX(.) are exactly the characteristic vectors of the downsets of J (L). The convex
hull of those vectors is known as the order polytope of J (L) [Sta86], which is a particular
case of the above-mentioned alcoved polytopes. The problem of computing vertex flip
distances between elements of L encoded by c-orientations of G(L) therefore boils down
to computing the distance between two downsets of J (L) in their inclusion lattice, which
is a simple special case of Problem 4.4.

Facial flips in planar graphs. When we consider Problem 4.4 on planar graphs, re-
stricting to vertex flips and considering the dual plane graph amounts to considering only
flips of directed facial cycles, excluding the outer face whose dual vertex is ⊤. We refer to
these as facial flips. Felsner [Fel04] considered distributive lattices induced by facial flips.
The following computational problem is a special case of Problem 4.4.

Problem 4.5. Given a 2-connected plane graph G and a pair X, Y of strongly connected
α-orientations, what is the length of a shortest facial flip sequence from X to Y ?

Zhang, Qian, and Zhang [ZQZ19] recently provided a closed formula for this flip dis-
tance, which probably could be turned into a polynomial-time algorithm for computing a
shortest face flip sequence. We prove the analogous stronger statement for Problem 4.4.

Theorem 4.9. There is an algorithm that, given a graph G with a fixed vertex ⊤ and a
pair X, Y of c-orientations of G, outputs a shortest vertex flip sequence between X and Y ,
and runs in time O(m3) where m is the number of edges of G.

In the planar case, this directly translates to a polynomial-time algorithm for Prob-
lem 4.5. The proof of Theorem 4.9 is presented in Section 4.4. In [FK09], the distributive
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lattice structure on c-orientations is generalized to so-called ∆-bonds, also known as ten-
sions. We believe that our proof of Theorem 4.9 can be generalized to these objects.

Flip distance with larger cut sets. While computing the cut flip distance between
c-orientations is an NP-hard problem in general (Theorem 4.2), there is a polynomial-
time-algorithm for computing the distance when only using vertex flips (Theorem 4.9). It
is natural to ask for a threshold between the hard and easy cases of flip distance problems.
Our hardness reduction in Section 4.3 involves very long directed cycles, which correspond
to flips of directed cuts in the dual c-orientations with cut sets of large size. Consequently,
one may hope that the problem gets easier when restricting the sizes of the cut sets involved
in a flip sequence. Our last result destroys this hope:

Theorem 4.10. Let X, Y be c-orientations of a connected graph G with fixed vertex ⊤. It
is NP-hard to determine the length of a shortest cut flip sequence transforming X into Y ,
which consists only of minimal directed cuts with interiors of order at most two.

We will present the proof of Theorem 4.10 in Section 4.5.

4.3 Flip Distance between Perfect Matchings and between
α-Orientations

The proof of Theorem 4.2 is by reduction from the following NP-complete problem.

Theorem 4.11 (Plesńik [Ple79]). Deciding directed Hamiltonicity of orientations of cubic
planar graphs is NP-complete.

The above problem remains NP-complete if we additionally assume 2-connectivity of
the cubic graph and that the orientation does not have sinks or sources (otherwise, there
is no directed Hamiltonian cycle).

Proof of Theorem 4.2. As each flip sequence of length at most two can be used as a poly-
nomially verifiable certificate, the problem is clearly in NP.

We now provide a reduction of the decision problem in Theorem 4.11 to Problem 4.3.
So suppose we are given an orientation D of a 2-connected cubic planar graph without
sinks and sources, and assume without loss of generality that v(D) ≥ 3. Given D, we define
an undirected graph G = G(D) as follows; see Figure 4.11: For each vertex v ∈ V (D) we
create a vertex xv in G, and for each arc e ∈ A(D) we create a pair of vertices x+

e , x−
e in G.

The edges of G are defined as follows: For each arc e ∈ A(D), we connect x+
e and x−

e with
an edge in G. Furthermore, we denote by V1 and V2 the vertices of D with outdegree 1
or 2, respectively. For each v ∈ V1, if e, f ∈ A(D) are the two incoming arcs at v and g
is the outgoing arc, then we add the edges x+

e xv, x+
f xv, x+

e x−
g , and x+

f x−
g to G. Similarly,

for each v ∈ V2, if e, f ∈ A(D) are the two outgoing arcs at v and g is the incoming arc,
then we add the edges x−

e xv, x−
f xv, x−

e x+
g , and x−

f x+
g to G. We refer to the 4-cycles in G

formed by these edges as C4-gadgets. Note that G is subcubic, planar, 2-connected, and
bipartite. Specifically, the bipartition is given by {xv | v ∈ V1} ∪ {x−

e | e ∈ A(D)} and
{xv | v ∈ V2} ∪ {x+

e | e ∈ A(D)}.
We construct a pair of perfect matchings X, Y on G as follows. The first matching X is

defined by fixing a particular perfect matching on each C4-gadget, and the second matching
Y is obtained from X by flipping all cycles formed by the C4-gadgets; see Figure 4.11. We
claim that X and Y have flip distance at most two in G if and only if D has a directed
Hamiltonian cycle. From this the theorem follows.
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Figure 4.11: C4-gadgets to construct the undirected graph G = G(D) (right) from the digraph
D (left) in the proof of Theorem 4.2. The edges of the matchings X and Y in G are indicated by
bold solid and dashed lines, respectively.

First, assume there is a directed Hamiltonian cycle H in D. We define a pair of
cycles C1, C2 in G, where C1 and C2 both contain all the edges {x+

e x−
e | e ∈ A(H)}, plus

additional edges defined as follows. For each vertex v ∈ V (D), consider the corresponding
C4-gadget in G with the two incident edges corresponding to the arcs incident with v
on H. The endpoints of those edges on the gadget divide it into two alternating paths in
X, one with matching edges at both ends and one with non-matching edges at both ends.
We add the edges on those two types of paths to C1 or C2, respectively. Note that C1 is
an alternating cycle in X. Moreover, after flipping C1, the cycle C2 is alternating, and
flipping C2 yields Y , as each edge in a C4-gadget gets flipped once while the remaining
edges are flipped an even number of times and thus remain unchanged.

For the reverse implication, assume that X and Y are transformable into each other
by flipping at most two alternating cycles. As the symmetric difference X∆Y contains at
least three disjoint cycles (recall the assumption v(D) ≥ 3), exactly two cycles C1, C2 are
flipped to transform X into Y , and neither C1 nor C2 is one of the 4-cycles formed by
the C4-gadgets. As the edges outside the gadgets remain unchanged, they are covered by
both C1, C2 or by neither of them. We claim that H := {e ∈ A(D) | x+

e x−
e ∈ E(C1)} is

the arc set of a directed Hamiltonian cycle in D. Since up to isomorphism, H is obtained
from E(C1) by contraction of the C4-gadgets, H forms a cycle in D (here we need that
D is cubic). If the cycle H is not a directed cycle in D, there would be some v ∈ V1 with
two incoming incident arcs from H. However, in this case, the path in the corresponding
C4-gadget contained in C1 consists of two edges, one of which is not in X, contradicting
that C1 is an alternating cycle in X. Finally, the directed cycle H has to be spanning.
Indeed, if there is a C4-gadget not traversed by C1, then C2 would be equal to the 4-cycle
in the corresponding gadget, a contradiction.
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Proof of Theorem 4.5. We use the following hardness result of Peroche [Pér84]. Given a
digraph D, where each vertex has indegree and outdegree equal to 2, it is NP-complete to
decide if A(D) is the union of two directed Hamiltonian cycles. Given such a digraph D,
let ←−D be the digraph obtained from D by reversing the direction of every arc. We regard
D and ←−D as α-orientations X and Y of the same underlying graph G, where α(v) = 2 for
all v ∈ V (G). The theorem follows by observing that the flip distance between X and Y
is at most 2 if and only if A(D) is the disjoint union of two directed Hamiltonian cycles.
Moreover, the same statement holds when we only allow flipping arcs that are oriented
differently in X and Y .

4.4 Vertex Flip Distance between c-Orientations
In this section we prove Theorem 4.9.

Recall that, given a graph G with a fixed vertex ⊤, we only allow vertex flips at vertices
distinct from ⊤. In the case that G is connected, we distinguish between two types of
dicuts as follows: we say that a dicut S in an orientation of G is positive with respect to
⊤ if and only if the uniquely determined cut set U of S does not contain ⊤. Otherwise
the dicut is called negative. We also define the interior of S, denoted Int(S), as the cut
set U of S if S is positive and as its complement U if S is negative. That is, Int(S) is the
set of vertices on the side of the cut opposite to ⊤.

The following lemma is needed to decompose the arc-sets of certain digraphs into dicuts
with nested cut sets. Formally, for a digraph D and dicuts S1 = δ(U1) and S2 = δ(U2), the
pair S1, S2 is called laminar if either U1 ⊆ U2, U2 ⊆ U1, U1 ∩ U2 = ∅, or U1 ∪ U2 = V (D);
see Figure 4.12. A family of dicuts in D is called laminar if all of its pairs are laminar.
A balanced digraph is a digraph in which every oriented cycle has the same number of
forward and backward arcs.
Lemma 4.12. Let D be a balanced digraph. Then A(D) can be decomposed into a laminar
family of disjoint dibonds.
Proof. We prove the statement by induction on a(D). It is clearly true if A(D) = ∅.
Assume for the induction step that a(D) = k ≥ 1 and the statement holds for all digraphs
with less than k arcs.

As D is balanced, it is obviously acyclic and therefore contains a source s ∈ V (D).
Each cycle in the underlying graph of D that contains s has exactly one forward and one
backward arc incident to s. Therefore, the digraph D′ obtained from D by contracting the
set E+

D(s) of arcs incident to s is still balanced and has less than k arcs. By the induction
hypothesis, there exists a laminar decomposition of A(D′) = A(D) \ ED(s) into disjoint
dibonds in D′ and thus in D. Note that the dicuts in D′ are exactly those of D disjoint
from ED(s), and laminarity is preserved. Hence adding a decomposition of the directed
vertex cut ED(s) into dibonds to the collection gives rise to a decomposition of A(D) into
disjoint dibonds. This resulting decomposition is also laminar. To see this, let V1, . . . , Vl

denote the vertex sets of the weak components of D − s (l = 1 is possible). The new
minimal cuts added to the decomposition are induced by the cut sets Ui := V (D) \ Vi for
i ∈ [l]. We clearly have Ui ∪Uj = V (D) for i ̸= j ∈ [l]. Moreover, for any dibond S in the
laminar decomposition of D′, the cut set corresponding to S in D fully contains Ui or is
disjoint from Ui for some i ∈ [l] (otherwise S would not be a minimal cut). This finally
implies that each pair of cuts in the new decomposition is laminar, as desired.

For every pair X, Y of c-orientations on a graph G, the difference X \Y denotes the set
of arcs in X whose orientation is reversed in Y . Because X and Y are c-orientations, every
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cycle in G has the same number of forward- and backward-arcs in X \ Y . The digraph
trans(X, Y ) obtained from X by contracting X \ Y therefore forms a balanced digraph.
Consequently, Lemma 4.12 provides another proof that c-orientations can be reached from
one another by flipping dibonds.

We now consider the partial order defined on acyclic c-orientations of an n-vertex
graph such that the cover relation corresponds to flipping a source vertex. Recall that
by Theorem 4.7, this partial order is a distributive lattice. We now reuse a result from
Propp [Pro02] and Felsner and Knauer [FK09] that gives an embedding of this distributive
lattice into Nn−1

0 , which led to the introduction of distributive polytopes by Felsner and
Knauer [FK11]. This theorem is illustrated in Figure 4.9, where the values of the functions
zX are depicted in the vertices of the graph G.

Theorem 4.13 ([Pro02, FK09]). Let G be a graph on n vertices with a fixed vertex ⊤, X
an acyclic c-orientation of G, and denote by Xmin the minimal element of the associated
distributive lattice. Then the number of times zX(x) a vertex x ∈ V (G)\{⊤} is flipped in an
upward lattice path from Xmin to X is independent of the sequence. The resulting function
zX : Rc → Nn−1

0 is a lattice embedding. That is, for every x, y ∈ Nn−1 corresponding to
c-orientations of G, the join and meet correspond to min(x, y) and max(x, y), respectively.

In other words, the distributive lattice on Rc is isomorphic to an induced sublattice of
the componentwise dominance order on Nn−1

0 . We call a vertex flip sequence monotone if
every flipped vertex is either only flipped as a source or only as a sink. With this definition,
Theorem 4.13 yields the following:

Corollary 4.14. Let G be a graph with fixed vertex ⊤ and X, Y a pair of acyclic c-
orientations on G. Then every monotone vertex flip sequence transforming X into Y has
minimal length.

Consider two c-orientations X, Y of G. Our goal is to construct a monotone flip
sequence from X to Y . By Lemma 4.12, there is a laminar decomposition of the arcs
in trans(X, Y ) into dibonds. The latter also form a laminar collection S = S(X, Y ) of
dibonds in X which partition X \ Y . Therefore reversing these dicuts yields Y .

We construct a poset P on S by the inclusion order of the interiors of the dibonds.
That is, for S, T ∈ S, S is ordered before T in P if and only if Int(S) ⊆ Int(T ); see
Figure 4.12. Since S is laminar, the cover graph of P is a forest, with the additional
property that every non-maximal element S is covered by a unique other element, which
we denote by cov(S). Moreover, for each vertex x ∈ V (G) in the interior of at least one
of the cuts in S, we let Sx be the (unique) minimal element of the poset P such that
x ∈ Int(Sx). Also, for each S ∈ S we denote by Int(S) := {x ∈ V (G) | Sx = S} ⊆ Int(S)
the set of vertices in the interior of S but in none of the interiors of the cuts which are
covered by S in the poset.

For each dicut S ∈ S we define an integer weight w(S) and a sign sgn(S) ∈ {+, 0,−}
as follows; see Figure 4.12. If S ∈ S is a maximal element in P then we define w(S) := 1,
and sgn(S) := + if S is positive and sgn(S) := − otherwise. For every sign s ∈ {+, 0,−}
and dicut S ∈ S, we say that S agrees with s, if either s = 0, or if s = + and S is positive,
or s = − and S is negative. For every non-maximal S ∈ S, we inductively define

w(S) :=
{︄

w(cov(S)) + 1 if S agrees with sgn(cov(S)),
w(cov(S))− 1 otherwise,
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Figure 4.12: A laminar collection S of disjoint dibonds of X \ Y (left), where the positive ones
are dashed, and the negative ones are dotted, and the corresponding poset P of dicuts in S ordered
by inclusion (right) with its associated signed weights sgn(S) · w(S), S ∈ S.

and

sgn(S) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sgn(cov(S)) if sgn(cov(S)) ̸= 0 and w(S) ̸= 0,

+ if sgn(cov(S)) = 0, w(S) ̸= 0 and S is positive,

− if sgn(cov(S)) = 0, w(S) ̸= 0 and S is negative,

0 if w(S) = 0.

It follows from this definition that the weights are non-negative and that sgn(S) = 0
if and only if w(S) = 0 for every S ∈ S. We will see that given a dibond S in S, the
weight w(S) describes the number of times each vertex which lies in Int(S) will be flipped,
whereas sgn(S) captures the direction in which (all) these vertices are flipped. That is, a
positive sign means that vertices are flipped from sources to sinks, while a negative sign
means that vertices are flipped from sinks to sources.

We will need the following auxiliary statement.

Lemma 4.15. Let X, Y be acyclic c-orientations of a connected graph G with fixed vertex
⊤. If S = X \ Y is a positive dicut, then there is a vertex flip sequence transforming X
into Y such that only vertices in Int(S) are flipped, each exactly once from source to sink.
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The analogous statement for negative dicuts holds with sources and sinks exchanged.

Proof. We prove the statement by induction on | Int(S)|. If Int(S) is a single vertex, then
S corresponds to the arcs incident to a source, and the statement holds.

For the induction step assume | Int(S)| = k ≥ 2 and that the claim holds for all positive
cuts in c-orientations of G whose interiors have order less than k. Since X is acyclic, the
induced subdigraph X[Int(S)] is also acyclic and thus contains a source x ∈ Int(S). Since
Int(S) is the cut set of S, x is a source in X as well. Let Z be the c-orientation obtained
from X by a vertex flip at x. It follows that the cut δ(Int(S) \ {x}) in Z is positive with
interior of order k−1. By induction, there is a vertex flip sequence from Z to Y such that
only vertices in Int(S) \ {x} are flipped, each exactly once from source to sink. Starting
with a vertex flip at x and continuing with this flip sequence yields a flip sequence from
X via Z to Y with the desired properties.

We are now in position to prove the main result of this section.

Theorem 4.16. Let X, Y be acyclic c-orientations of a connected graph G. There is a
monotone vertex flip sequence transforming X into Y which can be computed in cubic time
in terms of e(G).

Proof. Consider the following strengthening of the theorem:

Claim. Let X, Y be acyclic c-orientations of a connected graph G and S = S(X, Y ) a
laminar decomposition of X \ Y into disjoint dibonds. Then there is a monotone vertex
flip sequence from X to Y , such that every flipped vertex x is contained in the interior of
the dicut Sx ∈ S, and x is flipped w(Sx) times from source to sink if sgn(Sx) = +, and
w(Sx) times from sink to source otherwise.

We prove this claim by induction on the size of S. The statement is clearly true if
|S| = 0 (which means that X = Y ), settling the base case of the induction. Assume
for the induction step that we are given a pair X ̸= Y of c-orientations and a laminar
decomposition S of X \ Y of size k ≥ 1. Assume that the claim holds for all pairs of
c-orientations with a laminar decomposition of size less than k.

In the poset P on S we consider a minimal element corresponding to a cut S ∈ S, i.e.,
we have Int(S) = Int(S) and all vertices x ∈ Int(S) satisfy Sx = S. Lemma 4.15 gives a
vertex flip sequence F1 that flips only vertices in Int(S), each exactly once from source to
sink if S is positive and from sink to source if S is negative. Applying this flip sequence
to X, we obtain an intermediate c-orientation Z that differs from X only by the reversal
of all arcs in S. Consequently, S \ {S} is a laminar decomposition of Z \ Y into dibonds
in Z of size k − 1. By induction, we also have a vertex flip sequence F2 transforming Z
into Y with the aforementioned properties.

Note that the weights and signs of all dicuts T ∈ S \ {S} defined with respect to S
or S \ {S} are the same, so we may simply write w(T ) and sgn(T ). Furthermore, the set
Int(T ) defined with respect to S is a subset of the same set defined with respect to S \{S}.
To complete the induction step, we distinguish two cases.

The first case is that S is a maximal element in P , or that S agrees with sgn(cov(S)).
In this case, we claim that the concatenation F of F1 and F2 is a flip sequence transforming
X via Z into Y with the desired properties. It suffices to check this for the vertices in
Int(S) = Int(S), since for all other vertices, the claimed properties follow inductively (they
are never flipped in F1, so their behavior in F will be the same as in F2). If S is a maximal
element in P , then w(S) = 1 and every vertex x ∈ Int(S) will be flipped exactly once.
Moreover, according to Lemma 4.15, if S is positive, i.e., sgn(S) = +, then x is flipped
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from source to sink, and if S is negative and sgn(S) = −, then x is flipped sink to source.
It remains to consider the subcase that S is not maximal, i.e., cov(S) exists. Consider
any vertex x ∈ Int(S). During the flip sequence F , the vertex x is flipped once in F1 and
w(cov(S)) times in F2, so w(S) = w(cov(S)) + 1 times in total, as required. Moreover,
the assumption that S agrees with sgn(cov(S)) means that either sgn(cov(S)) = + and
S is positive or sgn(cov(S)) = − and S is negative, or w(cov(S)) = sgn(cov(S)) = 0. We
conclude from the inductive assumption that in those three cases, x is only flipped from
source to sink in both F1 and F2, or only sink to source in both, or only once in F1 but
not in F2, respectively. Consequently, x satisfies the inductive claim in all cases.

The second case is that S is not maximal, i.e., cov(S) exists, and that S does not agree
with sgn(cov(S)). This means that w(S) = w(cov(S)) − 1. Without loss of generality,
assume that S is positive and consequently sgn(cov(S)) = − (the other case is symmetric).
Consider again the vertex flip sequence F obtained by concatenating F1 and F2. This flip
sequence would transform X via Z into Y , however, we will not actually apply F , but
modify the sequence as follows. By Lemma 4.15, F1 flips each vertex in Int(S) exactly once
from source to sink. By induction, in F2, each vertex in Int(S) contained in the interior
of cov(S) (defined with respect to S \ {S}) is flipped from sink to source. Let x be the
last element of F1 and consider the subsequence x, x1, . . . , xk, x of F starting with x and
ending with the first occurrence of x in F2. None of the vertices x1, . . . , xk is adjacent to
x in G, because after the first vertex flip at x (from source to sink) all arcs incident with
x are incoming, and in F2 we only flip sinks to sources. This shows that deleting the first
two occurrences of x from F preserves the number of and direction of all flips at vertices
distinct from x, and still transforms X into Y . Repeated application of this argument
produces a reduced vertex flip sequence F ′ transforming X into Y such that each vertex
x ∈ V (G) \ Int(S) is flipped the same number of times and in the same direction as in
F2. By the inductive assumption, this means that x is flipped w(Sx) times from source
to sink if sgn(Sx) = +, and w(Sx) times from sink to source if sgn(Sx) = −. On the
other hand, every x ∈ Int(S) is missing its first occurrence in F2 but is flipped in the
same way from sink to source for all remaining occurrences. This implies that x is flipped
w(S) = w(cov(S)) − 1 times from sink to source, as it should. This proves that F ′ is a
vertex flip sequence from X to Y satisfying the conditions in our claim. This completes
the proof of our claim.

It remains to verify that the recursive algorithm obtained from this inductive argu-
ment runs in cubic time in m := e(G). First of all, the number of dicuts in any laminar
decomposition, which corresponds to the number of induction steps, is bounded by the
number of edges m. Consequently, it suffices to bound the number of operations needed
in one induction step in terms of m. Specifically, we need to compute the cover relations
of P , the weights and signs of the dicuts, find a minimal element of the poset P , test its
properties for the case distinction and construct the resulting flip sequence by concatena-
tion and possibly deletion of double occurrences, all of which can be done in time O(m2).
This proves an upper bound of O(m3) for the total number of steps performed for the
construction of the monotone flip sequence to transform X into Y . Finally, a laminar
decomposition S of X \ Y as guaranteed by Lemma 4.12 can be computed in time O(m3)
as well, by following the recursive strategy explained in the proof of the lemma. This
completes the proof.

Combining Corollary 4.14 and Theorem 4.16 yields Theorem 4.9.
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4.5 Flip Distance with Larger Cut Sets
In this section we prove Theorem 4.10 by reduction from the following NP-hard problem.

Given a (finite) poset (P,≺), its height is the maximum size k of a so-called chain
x1 ≺ x2 ≺ · · · ≺ xk of elements in P . A linear extension of P is a linear ordering
(x1, . . . , xn) of all elements of P such that xi ≺ xj implies that i < j. Given a linear
extension L = (x1, . . . , xn) of P , a jump is a pair xi, xi+1 in L for which xi ̸≺ xi+1 in P .
Conversely, a bump is a pair xi, xi+1 such that xi ≺ xi+1. The jump number s(P ) of P
is the minimum number of jumps among all linear extensions of P . The Jump Number
Problem is the algorithmic problem of computing the jump number of a poset encoded by
its comparabilities.

Theorem 4.17 ([Pul75, Mül90]). Determining the jump number of a poset of height two
is an NP-hard problem.

Proof of Theorem 4.10. We provide a Turing-reduction of the Jump Number Problem for
posets of height two to the problem stated in the theorem. For this purpose, assume we
are given a poset (P,≺) of height two with bipartite Hasse diagram G = (P1∪P2, E) as an
instance for the Jump Number Problem. We may assume that P has no isolated elements
and that P1 contains all minimal elements and P2 all maximal elements of the poset. We
construct an auxiliary graph G′ from G by adding an additional unique maximal element
⊤, and connecting it with edges to all vertices of G. We construct two orientations X, Y
of G′ as follows: In both orientations all edges are oriented from P1 to P2. Moreover, in X
all edges incident with ⊤ are oriented towards ⊤, while in Y all these edges are oriented
away from ⊤. As X, Y are obtained from each other by flipping all arcs incident with ⊤
(this flip is not allowed, though, as ⊤ is the fixed vertex), they are c-orientations with
respect to the same c.

Let d denote the minimal flip distance between these c-orientations according to the
conditions of the theorem. We will complete the proof by showing that s(P ) = d− 1.

We first show that s(P ) ≥ d−1. For this argument, let L = (x1, . . . , xn) be an arbitrary
linear extension of P . As P has height two, the elements {x1, . . . , xn} of P are partitioned
into subsets B1, . . . , Bm of size one or two, such that for all Bi, Bj with i < j, the elements
from Bi appear before the elements from Bj in L, and such that the two-element sets Bi

contain exactly all bump pairs. We define a flip sequence that starts with the orientation
X and consecutively flips the cuts induced by B1, . . . Bm. Since for all 1 ≤ i ≤ m, each
of Bi and Bi := (P ∪ {⊤}) \ Bi induces a connected subgraph of G′, these are indeed
minimal cuts. Moreover, each of these cuts is flippable. This is obviously true for B1, as
B1 induces a dicut in X. Now assume inductively that the cuts induced by B1, . . . , Bk−1
for some k ≥ 2 have been flipped. As L is a linear extension of P , all elements in the
downset of Bk in P but not in Bk are in one of the Bi with i < k. This implies that every
arc between some x ∈ Bk and y /∈ Bk is oriented from x to y in the current orientation,
and thus Bi is indeed flippable.

In this flip sequence, every arc in X not incident to ⊤ will be flipped zero or two times
and thus maintains its original orientation, while all the arcs incident to ⊤ get reversed, as
they are incident to exactly one set Bi. Consequently, the flip sequence transforms X into
Y , proving that d ≤ m. As m equals the number of jumps in L plus 1 (every non-jump is
a bump within one of the Bi), this yields d− 1 ≤ s(P ).

We now show that s(P ) ≤ d − 1. Assume that B1, . . . , Bd ⊆ P are the cut sets of
size one or two appearing (in this order) in a shortest flip sequence transforming X into
Y . We may assume that among all shortest flip sequences, this sequence also minimizes
|B1| + |B2| + . . . + |Bd|. Since each vertex x ∈ P has an outgoing arc to ⊤ in X which
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must be reversed during the flip sequence, x must be contained in at least one of the
Bi. We claim that x is contained in at most one of the Bi. That is, the Bi are pairwise
disjoint. Assume to the contrary that x ∈ Bi ∩ Bj for some i < j and that Bi, Bj is the
only intersecting pair among Bi, Bi+1, . . . , Bj (by minimizing j − i). In particular, none
of the cut sets Bi+1, . . . , Bj−1 contains x, and x is the only vertex flipped multiple times
in this subsequence. We are then in one of the four cases Bi = Bj = {x}, or Bi = {x, y}
and Bj = {x}, or Bi = {x} and Bj = {x, z}, or Bi = {x, y} and Bj = {x, z} for some
elements y, z ∈ P distinct from x. Since no vertex adjacent to x in G′ can be flipped by
Bi+1, . . . , Bj−1, it follows that in each of these cases, the sequence

B1, . . . , Bi−1, Bi \ {x}, Bi+1, . . . , Bj−1, Bj \ {x}, Bj+1, . . . , Bd

is a valid flip sequence from X to Y of length at most d and with decreased sum |B1| +
|B2|+ . . . + |Bd|, a contradiction. This proves that the cut sets Bi are pairwise disjoint.

The Bi are flipped one after the other and by definition of X, the dicut induced by
Bi is flippable if and only if all the elements in the downset of Bi with respect to P but
not in Bi were flipped before. Therefore, by listing the elements in the sets B1, . . . , Bd

in this relative order, and ordering the elements within each Bi according to their order
in P , we obtain a linear extension L of P whose jumps are exactly those pairs having
elements in two consecutive sets Bi. It follows that there are d − 1 jumps in L, proving
that s(P ) ≤ d− 1.

Combining these arguments shows that s(P ) = d − 1, and using Theorem 4.17 we
obtain the claimed hardness result.

4.6 Conclusion
Recall that Problem 4.2 asks for a shortest flip sequence of directed cycles transforming one
α-orientation X into another one Y , where we only allow flipping arcs that are oriented
differently in X and Y . Since the set of arcs that are oriented differently in X and Y
induce an Eulerian subdigraph in both X and Y , we have the following natural question:

Question 4.1. What is the smallest number of directed cycles into which an Eulerian
digraph can be decomposed?

We have seen in Theorem 4.5 that from a computational point of view, this problem is
hard for general digraphs, but we wonder what happens when adding planarity constraints.
The aforementioned question can also be studied in terms of upper bounds as a function
of the number of vertices, which is related to the famous Hajós conjecture on undirected
Eulerian graphs, see [Lov68]. Another interesting variant of Question 4.1 is the following:

Question 4.2. Given a graph G with an Eulerian subgraph H, what is the smallest number
of cycles of G such that their symmetric difference is H?

Concerning our proof of Theorem 4.10, we believe that for any bound on the size
of the cuts, the corresponding flip distance will be NP-hard to compute. On the other
hand, we use very particular graphs as gadgets, and we do not know the complexity of the
corresponding problem for planar α-orientations. We think the following is an interesting
special case:

Question 4.3. Let X, Y be perfect matchings of a planar bipartite 3-connected graph G.
What is the complexity of determining the distance of X and Y with respect to alternating
cycles that are either a face or the symmetric difference of two touching faces?
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The feeling that this problem might be tractable is supported by the following obser-
vation. It is not difficult to show that every height two poset with bipartite planar Hasse
diagram has dimension at most two. It then follows from [SS87] that the restriction of
the Jump Number Problem to such posets is solvable in polynomial time, and thus, the
hardness reduction presented in the previous section fails.
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Chapter 5

Even Circuits in Regular Oriented
Matroids

5.1 Introduction
Graphs and digraphs in this chapter are allowed to have multiple parallel arcs, anti-parallel
arcs and loops. The reader is assumed to have basic familiarity with matroid theory.

Deciding whether a given digraph contains a directed cycle, briefly dicycle, of even
length is a fundamental algorithmic problem for digraphs and often referred to as the even
dicycle problem. The computational complexity of this problem was unknown for a long
time and several interesting polynomial time equivalent problems have been found [KLM84,
MS86, Tho86, McC04]. The question about the computational complexity was resolved
by Robertson, Seymour, and Thomas [RST99] and independently by McCuaig [McC04]
who stated polynomial time algorithms for one of the polynomially equivalent problems,
and hence also for the even dicycle problem.

One of these polynomially equivalent problems makes use of the following definition.

Definition 5.1 ([ST87]). Let D be a digraph. We call D non-even, if there exists a set J
of arcs in D such that every directed cycle C in D intersects J in an odd number of arcs.
If such a set does not exist, we call D even.

The arc-set J can be seen as a special kind of feedback arc-set in D.
Seymour and Thomassen proved that the decision problem whether a given digraph is

non-even, is polynomially equivalent to the even dicycle problem.

Theorem 5.1 ([ST87]). The problem of deciding whether a given digraph contains an
even directed cycle, and the problem of deciding whether a given digraph is non-even, are
polynomially equivalent.

Furthermore, the main result of Seymour and Thomassen [ST87] characterized being
non-even in terms of minimal forbidden subdigraphs. Their result can however be stated
much more compactly by formulating it in terms of forbidden butterfly minors instead of
forbidden subgraphs. We can state the result of Seymour and Thomassen as follows.

Theorem 5.2 ([ST87]). A digraph D is non-even if and only if no butterfly minor of D

is a
↔
Ck for some odd k.

The main purpose of the results presented in this chapter is to lift the even dicycle
problem to oriented matroids, and to extend Theorem 5.1 and partially Theorem 5.2 to
oriented matroids.
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5.1.1 The Even Directed Circuit Problem in Oriented Matroids

In what follows we introduce a generalisation of the graph theoretic notion of being non-
even to oriented matroids and state the main results of this chapter. For our purposes,
the most important examples of matroids are graphical matroids and bond matroids.

Digraphs can be seen as a special case of oriented matroids in the sense that every di-
graph D has an associated oriented graphic matroid M(D) whose signed circuits resemble
the oriented cycles in the digraph D. In this spirit, it is natural to lift questions concern-
ing cycles in directed graphs to more general problems on circuits in oriented matroids.
The following algorithmic problem is the straightforward generalisation of the even dicycle
problem to oriented matroids, and the main motivation of the research in this chapter.

Problem 5.1. Given an oriented matroid M⃗ , decide whether there exists a directed circuit
of even size in M⃗ .

Our first contribution is to generalize the definition of non-even digraphs to oriented
regular matroids in the following sense.

Definition 5.2. Let M⃗ be an oriented matroid. We call M⃗ non-even if its underlying
matroid is regular and there exists a set J ⊆ E(M⃗) of elements such that every directed
circuit in M⃗ intersects J in an odd number of elements. If such a set does not exist, we
call M⃗ even.

The reader might wonder why the preceding definition concerns only regular ma-
troids. This has several reasons. The main reason is a classical result by Bland and
Las Vergnas [BLV78] which states that a binary matroid is orientable if and only if it is
regular. Hence, if we were to extend the analysis of non-even oriented matroids beyond
the regular case, we would have to deal with orientations of matroids which are not rep-
resentable over F2. This has several disadvantages, most importantly that cycles bases,
which constitute an important tool in all of our results, are not guaranteed to exist any
more. Furthermore, some of our proofs make use of the strong orthogonality property
of oriented regular matroids (Equation ∗∗ from Chapter 1), which fails for non-binary
oriented matroids. Lastly, since Problem 5.1 is an algorithmic question, oriented regular
matroids have the additional advantage that they allow for a compact encoding in terms
of totally unimodular matrices, which is not a given for general oriented matroids.

The first result of this chapter generalizes Theorem 5.1 to oriented matroids as follows:

Theorem 5.3. The problems of deciding whether an oriented regular matroid represented
by a totally unimodular matrix contains an even directed circuit, and the problem of recog-
nising whether an oriented regular matroid given by a totally unimodular matrix is non-
even, are polynomially equivalent.

Theorem 5.3 motivates a structural study of the class of non-even oriented matroids,
as in many cases the design of a recognition algorithm for a class of objects is based on
a good structural understanding of the class. In order to state our main result, which is
a generalisation of Theorem 5.2 to graphic and cographic oriented matroids, we have to
introduce a new minor concept. We naturally generalize the concept of butterfly minors
to regular oriented matroids, in the form of so-called generalized butterfly minors.

Definition 5.3. Let M⃗ be an orientation of a regular matroid M . An element e ∈ E(M⃗)
is called butterfly-contractible if there exists a cocircuit S in M such that (S \ {e}, {e})
forms a signed cocircuit of M⃗ .1 A generalized butterfly minor (GB-minor for short) of

1For a definition of a signed (co)circuit see Chapter 1.
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M⃗ is any oriented matroid obtained from M⃗ by a finite sequence of element deletions and
contractions of butterfly-contractible elements (in arbitrary order).

Note that the generalized butterfly-contraction captures the same fundamental idea
as the initial one for digraphs while being more general: Given a butterfly-contractible
element e of a regular oriented matroid M⃗ , we cannot have a directed circuit C of M⃗/e
such that (C, {e}) is a signed circuit of M⃗ 2, and hence either C or C ∪ {e} must form a
directed circuit of M⃗ .

Replacing the notion of butterfly minors by GB-minors allows us to translate Theo-
rem 5.2 to the setting of oriented matroids in the following way:

Theorem 5.4. An oriented graphic matroid M⃗ is non-even if and only if none of its
GB-minors is isomorphic to M(

↔
Ck) for some odd k ≥ 3.

As the main result of this chapter, we complement Theorem 5.4 by determining the list
of forbidden GB-minors for cographic non-even oriented matroids. Recall the following
notation from Chapter 1: For integers m, n ≥ 1 we denote by K⃗m,n the digraph obtained
from the complete bipartite graph Km,n by orienting all edges from the partition set of
size m towards the partition set of size n.

Theorem 5.5. An oriented bond matroid M⃗ is non-even if and only if none of its GB-
minors is isomorphic to M∗(K⃗m,n) for any m, n ≥ 2 such that m + n is odd.

To prove Theorem 5.5 we study those digraphs whose oriented bond matroids are non-
even. Equivalently, these are the digraphs admitting an odd dijoin, which is an arc set
hitting every directed bond an odd number of times. After translating GB-minors into a
corresponding minor concept on directed graphs, which we call cut minors3, we show that
the class of digraphs with an odd dijoin is described by two infinite families of minimal
forbidden cut minors (Theorem 5.31). Finally, we translate this result to oriented bond
matroids in order to obtain a proof of Theorem 5.5.

The structure of this chapter is as follows. In Section 5.2, we prove that non-even ori-
ented matroids are closed under GB-minors (Proposition 5.6), which is then used to derive
Theorem 5.4 in the same section. We start Section 5.3 by showing that the even directed
circuit problem for general oriented matroids cannot be solved using only polynomially
many calls to a signed circuit oracle (Proposition 5.7). The remainder of the section is de-
voted to the proof of Theorem 5.3. We also note that odd directed circuits in orientations
of regular oriented matroids can be detected in polynomial time (Proposition 5.17). In
Section 5.4 we characterize those digraphs that admit an odd dijoin (Theorem 5.31) and
use this result to deduce our main result, Theorem 5.5. We conclude with a discussion of
open problems and a conjecture in Section 5.5.

5.2 Non-Evenness and GB-minors

Our main result, Theorem 5.5, builds on the important fact that the non-even oriented
matroids are closed under the GB-minor relation. In this subsection we present a proof of
this fact and use it to derive Theorem 5.4 from Theorem 5.2.

Lemma 5.6. Every GB-minor of a non-even oriented matroid is non-even.
2In this case, (C, {e}) together with a signed cocircuit (S \ {e}, {e}) would contradict the orthogonality

property (see Chapter 1, (∗)) for oriented matroids.
3See the beginning of Section 5.4 for a precise definition.
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Proof. It suffices to show the following two statements: For every non-even oriented ma-
troid M⃗ and every element e ∈ E(M⃗), the oriented matroid M⃗−e is non-even as well, and
for every element e ∈ E(M⃗) which is butterfly-contractible, the oriented matroid M⃗/e is
non-even as well. The claim then follows by repeatedly applying these two statements.

For the first claim, note that since the underlying matroid M of M⃗ is regular, so is
the underlying matroid of M⃗ − e. Let J ⊆ E(M⃗) be a set of elements intersecting every
directed circuit in M⃗ an odd number of times. Then clearly the set J \{e} intersects every
directed circuit in M⃗ − e an odd number of times, proving that M⃗ − e is non-even.

For the second claim, let e ∈ E(M⃗) be butterfly-contractible. Let S be a cocircuit of
M such that (S \ {e}, {e}) forms a signed cocircuit of M⃗ . Then the underlying matroid
of M⃗/e is a matroid minor of the regular matroid M and is hence regular. Let us define
J ′ ⊆ E(M⃗) \ {e} via

J ′ :=
{︄

J if e /∈ J

J + S if e ∈ J.

We claim that for every directed circuit C in M⃗/e, the intersection C∩J ′ is odd. Indeed, by
definition either C is a directed circuit also in M⃗ not containing e, or C ∪{e} is a directed
circuit in M⃗ , or (C, {e}) is a signed circuit of M⃗ . The last case however is impossible, as
then the signed circuit (C, {e}) and the signed cocircuit (S \ {e}, {e}) in M⃗ would yield a
contradiction to the orthogonality property (∗) of oriented matroids.

In the first case, since e /∈ C, we must have S ∩ C = ∅ as otherwise again C and the
signed cocircuit (S \{e}, {e}) form a contradiction to the orthogonality property (∗). This
then shows that indeed |C∩J ′| = |C∩(J ′\S)| = |C∩(J \S)| = |C∩J | is odd, as required.

In the second case, the orthogonality property (∗∗) of regular oriented matroids applied
with the directed circuit C ∪ {e} and the signed cocircuit ({e}, S \ {e}) within M⃗ yield
that the equation |(C ∪ {e}) ∩ (S \ {e})| = |(C ∪ {e}) ∩ {e}| = 1 holds. So let C ∩ S =
{f} for some element f ∈ E(M⃗) \ {e}. By definition of J ′, if e /∈ J , then we have
|C ∩ J ′| = |C ∩ J | = |(C ∪ {e}) ∩ J |, which is odd. If e ∈ J , then we have (modulo 2)

|C ∩ J ′| = |C ∩ (J + S)| = |(C ∩ J) + (C ∩ S)| ≡ |C ∩ J |+ |{f}| = |(C ∪ {e}) ∩ J |,

which is odd. Hence, we have shown that |C ∩ J ′| is odd in every case, which yields that
M⃗/e is a non-even oriented matroid. This concludes the proof.

Proposition 5.6 allows us to immediately prove the correctness of Theorem 5.4.

Proof of Theorem 5.4. We prove both directions of the equivalence. Suppose first that M⃗
is non-even. Then by Theorem 5.6 every oriented matroid isomorphic to a GB-minor of
M⃗ is non-even as well. Hence it suffices to observe that none of the matroids M(

↔
Ck) for

odd k ≥ 3 is non-even. However, this follows directly since any element set J in M(
↔
Ck)

intersecting every directed circuit an odd number of times corresponds to an arc set in
↔
Ck intersecting every directed cycle an odd number of times, which cannot exist since by
Theorem 5.2 none of the digraphs

↔
Ck is non-even for an odd k ≥ 3.

Vice versa, suppose that no GB-minor of M⃗ is isomorphic to M(
↔
Ck) for any odd k ≥ 3.

Let D be a digraph such that M⃗ ≃M(D). We claim that D must be non-even. Suppose
not, then by Theorem 5.2 D admits a butterfly minor isomorphic to

↔
Ck for some odd

k ≥ 3. We now claim that M(D) has a GB-minor isomorphic to M(
↔
Ck). For this, it

evidently suffices to verify the following general statement:
If an arc e of a digraph F is butterfly-contractible in F , then within M(F ) the corre-

sponding element e of M(F ) is butterfly-contractible.
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Indeed, let e = (u, v) for distinct vertices u, v ∈ V (D). Then by definition either u
has out-degree 1 or v has in-degree 1 in D. In the first case, e is the unique arc leaving u
in the cut ∂({u}), while in the second case e is the only arc entering v in the cut ∂({v}).
Since every cut is a disjoint union of bonds, we can find in both cases a bond containing
e where e is the only arc directed away (towards, respectively) the side of the bond that
contains u (v, respectively).

Since the oriented bonds in D yield the signed cocircuits of M(D), this shows that
there is a cocircuit S in M(D) such that (S \ {e}, {e}) is a signed cocircuit. Hence, e

is a butterfly-contractible element of M(D). This shows that M(
↔
Ck) is isomorphic to a

GB-minor of M(D) ≃ M⃗ which contradicts our initial assumption that no GB-minor of
M⃗ is isomorphic to M(

↔
Ck). Hence, D is non-even, and there exists J ⊆ A(D) such that

every directed cycle in D contains an odd number of arcs from J . The same set J also
certifies that M⃗ ≃M(D) is non-even, and this concludes the proof of the equivalence.

5.3 The Complexity of the Even Directed Circuit Problem

The formulation of Problem 5.1 is rather vague, as it is not clear by which means the
oriented matroid M⃗ is given as an input to an algorithm designed for solving the problem,
and in which way we will measure its efficiency. For the latter, it is natural to aim for an
algorithm which performs a polynomial number of elementary steps in terms of the number
of elements of M⃗ . This also resembles the even dicycle problem in digraphs, where we aim
to find an algorithm running in polynomial time in a(D) (or, equivalently, v(D)).

For the former, it is not immediately clear how to encode the (oriented) matroid, and
hence how to make information contained in the (oriented) matroid available to the algo-
rithm. For instance the list of all circuits of a matroid, if given as input to an algorithm,
will usually have exponential size in the number of elements, and therefore disqualify as
a good reference value for efficiency of the algorithm. For that reason, different computa-
tional models (and efficiency measures) for algorithmic problems in matroids (see [HK81])
and oriented matroids (see [BR89]) have been proposed in the literature. These models
are based on the concept of oracles. For a family F ⊆ 2E(M) of objects characterising the
matroid M , an oracle is a function f : 2E(M) → {true, false} assigning to every subset
a truth value indicating whether or not the set is contained in F . If F for instance cor-
responds to the collection of circuits, cocircuits, independent sets, or bases of a matroid,
we speak of a circuit-, cocircuit-, independence-, or basis-oracle. Similarly, for oriented
matroids we can define several oracles [BR89]. Maybe the most natural choice for an
oriented matroid-oracle for Problem 5.1 is the circuit oracle, which given any subset of
the element set together with a {+,−}-signing of its elements, reveals whether or not this
signed subset forms a signed circuit of the oriented matroid. This computational model
applied to Problem 5.1 yields the following question.

Question 5.1. Does there exist an algorithm which, given an oriented matroid M⃗ , decides
whether there exists a directed circuit in M⃗ of even size, by calling the circuit-oracle of M⃗
only O(|E(M⃗)|c) times for some c ∈ N?

However, as it turns out, the answer to the above problem is quite trivially negative,
even when the input oriented matroid M⃗ is graphic.

Proposition 5.7. Any algorithm deciding whether a given oriented (graphic) matroid on
n elements, for some n ∈ N, contains an even directed circuit must use at least 2n−1 − 1
calls to the circuit-oracle for some instances.
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Proof. Suppose towards a contradiction there was an algorithm which decides whether a
given oriented graphic matroid contains an even directed circuit and uses at most 2n−1−2
oracle calls for any input oriented graphic matroid on elements E := {1, . . . , n}. Now,
playing the role of the oracle, we will answer all of the (at most 2n−1 − 2) calls of the
algorithm by false. Since there are exactly 2n−1− 1 non-empty sets Y ∈ 2E of even size,
there must be an even non-empty subset Y of E such that the algorithm did not call the
oracle with any input signed set whose support is Y . But this means the algorithm cannot
distinguish between the oriented graphic matroids (E, C0) and (E, CY ), where C0 := ∅
and CY := {(Y, ∅), (∅, Y )}, which result in the same oracle-answers to the calls by the
algorithm, while (E, C0) contains no even directed circuit, but (E, CY ) does. This shows
that the algorithm does not work correctly, and this contradiction proves the assertion.

The above result and its proof give a hint that maybe in general the use of oriented
matroid-oracles to measure the efficiency of algorithms solving Problem 5.1 is doomed to
fail. One should therefore look for a different encoding of the input oriented matroids in
order to obtain a sensible algorithmic problem. Here we solve this issue by restricting
the class of possible input oriented matroids to oriented regular matroids, which allow
for a much simpler and compact encoding via their representation by totally unimodular
matrices (cf. Theorem 1.4, Theorem 1.5). The following finally is the actual algorithmic
problem we are going to discuss in this chapter.

Problem 5.2. Is there an algorithm which decides, given as input a totally unimodular
matrix A ∈ Rm×n for some m, n ∈ N, whether M⃗ [A] contains an even directed circuit,
and runs in time polynomial in mn?

The alert reader might be wondering what happens if in the above problem we aim to
detect odd instead of even directed circuits. The reason why this problem is not a center
of study in our paper is that it admits a simple polynomial time solution, which is given
in the form of Proposition 5.17 at the end of this section.

The next statement translates the main results from [RST99] and [McC04] to our
setting to show that Problem 5.2 has a positive answer if we restrict to graphic oriented
matroids as inputs.

Lemma 5.8. There exists an algorithm which, given as input any totally unimodular
matrix A ∈ Rm×n for some m, n ∈ N such that M⃗ [A] is a graphic oriented matroid,
decides whether M⃗ [A] contains a directed circuit of even size, and which runs in time
polynomial in mn.

Proof. The main results of Robertson et al. [RST99] and McCuaig [McC04] yield polyno-
mial time algorithms which, given as input a digraph D (by its vertex- and arc-list) returns
whether or not D contains an even directed cycle. Therefore, given a totally unimodular
matrix A ∈ Rm×n such that M⃗ [A] is graphic, if we can construct in polynomial time in
mn a digraph D such that M⃗ [A] ≃ M(D), then we can decide whether ⃗M [A] contains a
directed circuit of even size by testing whether D contains an even directed cycle using
the algorithms from [McC04, RST99]. Such a digraph can be found as follows:

First, we consider the unoriented matroid M [A] defined by the matrix A, which is
graphic. It follows from a result of Seymour [Sey81] that using a polynomial number in
|E(M [A])| = n of calls to an independence-oracle for M [A], we can compute a connected
graph G with n edges such that M(G) ≃ M [A]. For every given subset of columns of
A we can test linear independence in polynomial time in mn, and hence we can execute
the steps of Seymour’s algorithm in polynomial time. Since M(G) ≃ M [A], there must
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exist an orientation of M(G) isomorphic to M⃗ [A], and this orientation in turn can be
realized as M(D) where D is an orientation of G4. To find the desired orientation D of
G in polynomial time, we first compute a decomposition of G into its blocks G1, . . . , Gk

(maximal connected subgraphs without cutvertices).
Next we (arbitrarily) select for every i ∈ {1, . . . , k} a special “reference”-edge ei ∈

E(Gi). Note that two different orientations of G obtained from each other by reversing all
edges in one block result in the same oriented matroid, as cycles in G are always entirely
contained in one block. Hence for every i ∈ {1, . . . , k} we can orient ei arbitrarily and
assume w.l.o.g. that this orientation coincides with the orientation in D. Note that every
block of G which is not 2-connected must be a K2 forming a bridge in G. In this case, the
only edge of the block is our chosen reference-edge and already correctly oriented. Now,
for every i ∈ {1, . . . , k} such that Gi is 2-connected and every edge e ∈ E(Gi) \ {ei} there
is a cycle C in Gi containing both ei and e. This cycle can be computed in polynomial
time using a disjoint-paths algorithm between the endpoints of e and ei. Now we consider
the minimally linearly dependent set of columns in A corresponding to C, and compute
the coefficients of a non-trivial linear combination resulting in 0. As we already know the
orientation of ei ∈ E(C), this yields us the orientations of all edges on the cycle C in D
and hence of the edge e. In this way, we can compute all orientations of edges in D in
polynomial time in mn and find the digraph D such that M⃗ [A] ≃ M(D). As discussed
above, this concludes the proof.

5.3.1 Proof of Theorem 5.3

We prepare the proof by a set of useful definitions and lemmas dealing with circuit
bases of regular matroids.

Definition 5.4. Let M be a binary matroid. The circuit space of M is the F2-linear
vector space generated by the incidence vectors 1C ∈ FE(M)

2 defined by 1C(e) := 1 for
e ∈ C and 1C(e) := 0 for e /∈ C and all circuits C of M . A circuit basis of M is a set of
circuits of M whose incidence vectors form a basis of the circuit space. Equivalently, we
can consider the circuit space as a F2-linear subspace of the vector space whose elements
are all the subsets of E and where the sum X + Y of two sets X, Y ⊆ E(M) is defined as
their symmetric difference.

Definition 5.5. Let M⃗ be a regular oriented matroid and M be its underlying regular
matroid. We call a circuit basis B of M directed if all its elements are directed circuits
of M⃗ .

The next proposition is a well-known fact about the circuit space of a binary matroid.

Proposition 5.9. Let M be a binary matroid. Then the dimension of the circuit space of
M equals |E(M)| − r(M).

The following lemma is crucial for the proof of Theorem 5.3 as well as for our work on
digraphs in Section 5.4.

Lemma 5.10. Let M⃗ be an oriented regular matroid. If M⃗ is totally cyclic, then the un-
derlying matroid M admits a directed circuit basis. Furthermore, for every coindependent

4The fact that every orientation of M(G) can be realized as M(D) for an orientation D of G follows
from a classical result by Bland and LasVergnas [BLV78], who show that regular matroids (and particularly
graphic ones) have a unique reorientation class.
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set A in M such that M⃗ − A is totally cyclic, there exists a directed circuit basis of M
such that every a ∈ A is contained in exactly one circuit of the basis.

Proof. We start by proving the first assertion concerning the existence of a directed circuit
basis of M . We use induction on |E(M)|. If M consists of a single element, the claim holds
trivially, since every circuit is a loop and thus directed. Moving on to the induction step,
assume that |E(M)| = k ≥ 2 and that the statement of the lemma holds for all oriented
regular matroids on at most k− 1 elements. Choose some e ∈ E(M) arbitrarily. Since M⃗
is totally cyclic, there exists a directed circuit Ce containing e. Let us now consider the
oriented regular matroid M⃗−e. If M⃗−e is totally cyclic, then we can apply the induction
hypothesis to M⃗ − e and find a directed circuit basis B− of M − e. Now consider the
collection B = B− ∪{Ce} of directed circuits in M⃗ . The incidence vectors of these circuits
are linearly independent over F2, as Ce is the only circuit yielding a non-zero entry at
element e. Furthermore, we get by induction that |B| = |E(M)| − 1 − r(M − e) + 1 =
|E(M)| − r(M − e) = |E(M)| − r(M). The last equality holds since e is contained in the
circuit Ce and hence is not a coloop. As this matches the dimension of the circuit space
of M , we have found a directed circuit basis of M , proving the inductive claim.

It remains to prove the case where M⃗ − e is not totally cyclic, i.e., there is an element
not contained in a directed circuit. By Farkas’ Lemma (Lemma 1.6) applied to M⃗ − e and
this element there exists a directed cocircuit S in M⃗ − e. Then either (S, ∅), (S ∪ {e}, ∅)
or (S, {e}) form a signed cocircuit of M⃗ . Since M⃗ is totally cyclic, it contains no directed
cocircuits, and hence only the latter case is possible, (S, {e}) must form a signed cocircuit.

Let us now consider the oriented regular matroid M⃗/e. Since M⃗ is totally cyclic, so
is M⃗/e. By the induction hypothesis there exists a directed circuit basis B− of M/e.
By definition, for every directed circuit C ∈ B−, either C is a directed circuit in M⃗ not
containing e, or C ∪ {e} is a directed circuit in M⃗ , or (C, {e}) forms a signed circuit of
M⃗ . The latter is however impossible, as in this case we can consider the signed cocircuit
X = (S, {e}) and the signed circuit Y = (C, {e}) of M⃗ , which satisfy e ∈ X− ∩ Y − ̸= ∅
but furthermore (X+ ∩ Y −) ∪ (X− ∩ Y +) = ∅, violating the orthogonality property (∗) of
oriented matroids.

Hence, the set B := {C | C ∈ B− circuit in M}∪{C∪{e} | C ∈ B−, C∪{e} circuit in M}
consists of |B| = |B−| = |E(M)|−1− r(M/e) = |E(M)|− r(M) many circuits of M which
are all directed ones in M⃗ . Note that for the last equality we used that e is not a loop, as
it is contained in the cocircuit S ∪ {e} of M . Finally, we claim that the binary incidence
vectors of the elements of B in FE(M)

2 are linearly independent. This follows since the
restriction of these vectors to the coordinates E(M) \ {e} equals the characteristic vectors
of the elements of B−, which form a circuit basis of M/e. This shows that we have found
a directed circuit basis of M , proving the inductive claim.

For the second assertion, let a coindependent set A in M be given and suppose that
M⃗ − A is totally cyclic. We claim that for every a ∈ A there exists a directed circuit
Ca in M⃗ such that Ca ∩ A = {a}. Equivalently, we may show that the oriented matroid
M⃗ − (A \ {a}) has a directed circuit containing a. Towards a contradiction, suppose not,
then by Farkas’ Lemma (Lemma 1.6) there exists a directed cocircuit S in M⃗ − (A \ {a})
containing a. Since A is coindependent, a is not a coloop of M − (A \ {a}) and hence
S \ {a} ̸= ∅. Every directed circuit in M⃗ − (A \ {a}) must be disjoint from S, and hence
no f ∈ S \ {a} is contained in a directed circuit of M⃗ − A, contradicting our assumption
that M⃗ − A is totally cyclic. It follows that for each a ∈ A a directed circuit Ca with
Ca ∩A = {a} exists.

Next we apply the first assertion of this lemma to the totally cyclic oriented matroid
M⃗ − A. We find that there exists a directed circuit basis BA of M − A. We claim that
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B := BA ∪ {Ca | a ∈ A} forms a directed circuit basis of M satisfying the properties
claimed in this lemma. Indeed, every circuit in B is a directed circuit of M⃗ , and for
every a ∈ A the circuit Ca is the only circuit in B containing a. Since the characteristic
vectors of the elements of BA are linearly independent as BA is a circuit basis of M − A,
we already get that the characteristic vectors of elements of B are linearly independent
using that the characteristic vector of Ca is the only basis-vector having a non-zero entry
at the position corresponding to element a. To show that B indeed is a circuit basis
of M , it remains to verify that it has the required size. We have |B| = |A| + |BA| =
|A| + |E(M − A)| − r(M − A) = |E(M)| − r(M), where for the latter equality we used
that r(M − A) = r(M) since A is coindependent. This concludes the proof of the second
assertion.

In order to prove our next lemma, we need the following result, which was already
used by Seymour and Thomassen.

Lemma 5.11 ([ST87], Prop. 3.2). Let E be a finite set and F a family of subsets of E.
Then precisely one of the following statements holds:

(i) There is a subset J ⊆ E such that |F ∩ J | is odd for every F ∈ F .

(ii) There are sets F1, . . . , Fk ∈ F , where k ∈ N is odd, such that
∑︁k

i=1 Fi = ∅.

Please note that (i) and (ii) cannot hold simultaneously because if k is odd and
F1, . . . , Fk all have odd intersection with A, then the symmetric difference

∑︁k
i=1 Fi has

odd intersection with A.
We now derive the following corollary for totally cyclic oriented regular matroids by

using Lemma 5.10 and applying Lemma 5.11 to a directed circuit basis.

Corollary 5.12. Let M⃗ be a totally cyclic oriented regular matroid, and let B be a directed
circuit basis of M . Then there exists J ⊆ E(M⃗) such that |C ∩ J | is odd for every C ∈ B.

Proof. The claim is that (i) in Lemma 5.11 with E = E(M⃗) and F := B holds true, so it
suffices to rule out (ii). However, the latter would contradict the linear independence of
the basis B.

Building on this corollary we derive equivalent properties for an oriented matroid to
be non-even.

Proposition 5.13. Let M⃗ be a totally cyclic oriented regular matroid and let B be a
directed circuit basis of M . Furthermore, let J ⊆ E(M) be such that |C ∩ J | is odd for all
C ∈ B. Then the following statements are equivalent:

(i) M⃗ is non-even.

(ii) If C1, . . . , Ck are directed circuits of M⃗ where k ∈ N is odd, then
∑︁k

i=1 Ci ̸= ∅.

(iii) Every directed circuit of M⃗ is a sum of an odd number of elements of B.

(iv) |C ∩ J | is odd for all directed circuits C of M⃗ .

Proof.

“(i) ⇒ (ii)” This follows from Lemma 5.11 applied to the set of directed circuits of M⃗ .
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“(ii) ⇒ (iii)” Let C be a directed circuit of M⃗ . Since B is a circuit basis of M , we can
write C =

∑︁k
i=1 Ci for some k ∈ N and C1, . . . , Ck ∈ B. If k were even, then the sum

C +
∑︁k

i=1 Ci = ∅ would yield a contradiction to (ii).

“(iii) ⇒ (iv)” Let C be a directed circuit of M⃗ . By assumption, C =
∑︁k

i=1 Ci with
C1, . . . , Ck ∈ B and k ∈ N being odd. Since J has odd intersection with all Ci, the
set J has also odd intersection with C.

“(iv) ⇒ (i)” This implication follows directly from the definition of non-even.

Before we turn towards the proof of Theorem 5.3 we need the following result, yielding
a computational version of Farkas’ Lemma for oriented regular matroids. Although we
suspect the statement is well-known among experts, in the following we give a proof for
the sake of completeness.

Lemma 5.14. There exists an algorithm that, given as input a regular oriented matroid
M⃗ represented by a totally unimodular matrix A ∈ {−1, 0, 1}m×n such that M⃗ ≃ M⃗ [A],
and an element e ∈ E(M⃗), outputs either a directed circuit of M⃗ containing e or a directed
cocircuit of M⃗ containing e, and which runs in polynomial time in mn.

Proof. We first observe that we can decide in polynomial time in mn whether e is contained
in a directed circuit or in a directed cocircuit of M⃗ (by Farkas’ Lemma, we know that
exactly one of these two options must be satisfied). Let us denote for every element
f ∈ E(M⃗) by xf ∈ {−1, 0, 1}m the corresponding column-vector of A. Let us first prove
the following auxiliary claim:

The element e is contained in a directed circuit of M⃗ if and only if there exist non-
negative scalars αf ≥ 0 for f ∈ E(M⃗) \ {e} such that −xe =

∑︁
f∈E(M⃗\{e}) αf xf .

The necessity of this condition follows directly by definition of M⃗ [A]: If e is contained
in a directed circuit with elements e, f1, . . . , fk, then there are coefficients βe > 0 and
βi > 0 for 1 ≤ i ≤ k such that βexe +

∑︁k
i=1 βixfi

= 0, i.e., −xe =
∑︁k

i=1
βi
βe

xfi
. On

the other hand, if −xe is contained in the conical hull of {xf |f ∈ E(M⃗) \ {e}}, then we
can select an inclusion-wise minimal subset F ⊆ E(M⃗ \ {e}) such that −xe is contained
in the conical hull of {xf |f ∈ F}. We claim that {e} ∪ F forms a directed circuit of
M⃗ . By definition of F , it suffices to verify that the vectors xe and xf for f ∈ F are
minimally linearly dependent. However, this follows directly by Carathéodory’s Theorem:
The dimension of the subspace spanned by {xf |f ∈ F} equals |F |, for otherwise we could
select a subset of at most |F |−1 elements from {xf |f ∈ F} whose conical hull also contains
−xe, contradicting the minimality of F . This shows the equivalence claimed above.

We can now use the well-known linear programming algorithm for linear programs
with integral constraints by Khachiyan [Kha79, GL81] to decide in strongly polynomial
time5 (and hence in polynomial time in mn) the feasibility of the linear inequality system∑︂

f∈E(M⃗\{e})

αf xf = −xe, with αf ≥ 0.

Therefore, we have shown that we can decide in polynomial time in mn whether or not e
is contained in a directed circuit of M⃗ . Next we give an algorithm which, given that e is
contained in a directed circuit of M⃗ , finds such a circuit in polynomial time:

5Here we use the fact that all coefficients appearing in the linear system are −1, 0 or 1.
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During the procedure, we update a subset Z ⊆ E(M⃗), which maintains the property
that it contains a directed circuit including e. At the end of the procedure Z will form
such a directed circuit of M⃗ . We initialize Z := E(M⃗). During each step of the procedure,
we go through the elements f ∈ Z \ {e} one by one and apply the above algorithm to test
whether M⃗ [Z] − f contains a directed circuit including e. At the first moment such an
element is found, we put Z := Z \ {f} and repeat. If no such element is found, we stop
and output Z.

Since we reduce the size of the set Z at each round of the procedure, the above
algorithm runs in at most n rounds and calls the above decision algorithm for the existence
of a directed circuit including e at most n−1 times in every round. All in all, the algorithm
runs in time polynomial in mn. It is obvious that the procedure maintains the property
that Z contains a directed circuit including e and that at the end of the procedure all
elements of Z must be contained in this circuit, i.e., Z forms a directed circuit with the
desired properties.

To complete the proof we now give an algorithm which finds either a directed circuit
or a directed cocircuit through a given element e of M⃗ as follows: First we apply the first
(decision) algorithm, which either tells us that e is contained in a directed circuit of M⃗ ,
in which case we apply the second (detection) algorithm to find such a circuit. Otherwise
we know that e is contained in a directed cocircuit of M⃗ , in which case we compute in
polynomial time a totally unimodular representing matrix A∗ with at most n rows and
n columns6 of the dual regular oriented matroid M⃗∗. As we know that e is included in
a directed circuit of M⃗∗, we can apply the second (detection) algorithm to A∗ and M⃗∗

instead of A and M⃗ to find a directed cocircuit in M⃗ containing e in polynomial time.

Given a regular oriented matroid M⃗ we shall denote by TC(M⃗) the largest totally
cyclic deletion minor of M⃗ , i.e. the deletion minor of M⃗ whose ground set is

E(TC(M⃗)) :=
⋃︂
{C | C is a directed circuit of M⃗}.

From Lemma 5.14 we directly have the following.

Corollary 5.15. Let M⃗ be a regular oriented matroid represented by a totally unimodular
matrix A ∈ {−1, 0, 1}m×n for some m ∈ N and n = |E(M)|. Then we can compute a
representative matrix of TC(M⃗) in time polynomial in mn.

The last ingredient we shall need for the proof of Theorem 5.3 is a computational
version of the first statement of Lemma 5.10 combined with Corollary 5.12.

Lemma 5.16. Let M⃗ be a totally cyclic regular oriented matroid represented by a totally
unimodular matrix A ∈ {−1, 0, 1}m×n for some m ∈ N and n = |E(M)|. Then we
can compute a directed circuit basis B of M⃗ together with a set J ⊆ E(M⃗) such that
|J ∩B| ≡ 1(mod 2) for every B ∈ B in time polynomial in mn.

Proof. We shall follow the inductive proof of Lemma 5.10 to obtain a recursive algorithm
for finding a desired directed circuit basis together with the desired set J . If n = 1, the
unique element e of E(M⃗) is a directed loop, since M⃗ is totally cyclic, and forms our
desired directed circuit basis of M⃗ . Furthermore, we may simply set J := {e}.

6To find such a representing matrix, one can use Gaussian elimination to compute a basis B of ker(A).
Since A is totally unimodular, the vectors in B can be taken to be {−1, 0, 1}-vectors such that the matrix
A∗ consisting of the elements of B written as row-vectors is totally unimodular as well. It then follows
from the orthogonality property of regular oriented matroids that A∗ indeed forms a representation of M⃗∗,
using the fact that the row spaces of A and A∗ are orthogonal complements.
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In the case n ≥ 2, let us fix an arbitrary element e of E(M⃗) and compute a directed
circuit Ce of M⃗ containing e by applying Lemma 5.14. Also using Lemma 5.14, we can test
in time polynomial in mn whether M⃗ − e is totally cyclic. If so, we fix Ce as an element
of our desired directed circuit base B of M⃗ and proceed as before with M⃗ − e instead of
M⃗ . The set J is updated as follows: Suppose we have already computed a directed circuit
base B− and a set J− as in the statement of this lemma, but with respect to M⃗ − e. Then
we set B := B− ∪ {Ce}. Now we check the parity of |J− ∩ Ce| and set

J :=
{︄

J− if |J− ∩ Ce| ≡ 1 (mod 2)
J− ∪ {e} if |J− ∩ Ce| ≡ 0 (mod 2).

As Ce is the only element of B that contains e, the set J has odd intersection with every
element of B, as desired.

If M⃗ − e is not totally cyclic, we compute a totally unimodular representative matrix
A′ ∈ {−1, 0, 1}m×(n−1) of M⃗/e. This task can be executed in time polynomial in mn 7.
Now M⃗/e is totally cyclic as M⃗ is totally cyclic and we proceed as before with M⃗/e instead
of M⃗ . However, when our recursive algorithm already yields a directed circuit basis B−

of M⃗/e as well as a set J− for M⃗/e as in the statement of this lemma, we know as argued
in the proof of Lemma 5.10 that each element C of B− either is a directed circuit of M⃗
or C ∪ {e} is a directed circuit of M⃗ . Depending on this distinction we define our desired
circuit basis B of M⃗ as in the proof of Lemma 5.10 via

B := {C | C ∈ B− circuit in M} ∪ {C ∪ {e} | C ∈ B−, C ∪ {e} circuit in M}.

To decide for each element C ∈ B− whether C or C ∪ {e} is a directed circuit of M⃗ we
calculate A1C where 1C denotes the incidence vector of C with respect to A. Then C
forms a directed circuit of M⃗ if and only if A1C = 0. As |B−| = |B| = |E(M⃗)| − r(M⃗) as
argued in the proof of Lemma 5.10 and by Proposition 5.9, we have to do at most n of
these computations to compute B from B−.

Regarding the set J we can simply set J := J−.

We are now ready for the proof of Theorem 5.3.

Proof of Theorem 5.3. Assume first we have access to an oracle deciding whether an ori-
ented regular matroid given by a representing totally unimodular matrix is non-even.
Suppose we are given a regular oriented matroid M⃗ represented by a totally unimodular
matrix A ∈ {−1, 0, 1}m×n for some m, n ∈ N and we want to decide whether it contains a
directed circuit of even size.

First we compute TC(M⃗), which can be done in time polynomial in mn by Corol-
lary 5.15. Now we use Lemma 5.16 to compute a directed circuit basis of TC(M⃗) in time
polynomial in mn. Then we go through the |E(TC(M⃗))| − r(TC(M⃗)) many elements of
the basis and check whether one of these directed circuits has even size. If so, the algo-
rithm terminates. Otherwise, every member of the basis has odd size. By Proposition 5.13
with J := E(TC(M⃗)), we know that TC(M⃗) contains no directed circuit of even size if
and only if TC(M⃗) is non-even. Since TC(M⃗) is the largest deletion minor of M⃗ , which

7To compute A′, select a non-zero entry in the column of A belonging to the element e. Pivoting on
this element and exchanging rows transforms A in polynomial time in mn into a totally unimodular matrix
A′′ ∈ {−1, 0, 1}m×n of M⃗ in which the column corresponding to the element e of M⃗ is (1, 0, . . . , 0)⊤. Then
M⃗ [A] = M⃗ [A′′], and the matrix A′ obtained from A′′ by deleting the first row as well as the column
corresponding to e is a totally unimodular representation of M⃗/e.
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has the same directed circuits as M⃗ , we know that TC(M⃗) is non-even if and only if M⃗
is non-even. So we can decide the question using the oracle.

Conversely, assume we have access to an oracle which decides whether a given oriented
regular matroid contains a directed circuit of even size. Again, our first step is to compute
TC(M⃗) using Corollary 5.15. By Lemma 5.16 we then compute a directed circuit basis of
TC(M⃗) and a set J ⊆ E(TC(M⃗)) such that every circuit in the basis has odd intersection
with J . Let M⃗ ′ be the oriented matroid obtained from TC(M⃗) by duplicating every
element e ∈ E(TC(M⃗)) \ J into two copies e1 and e2

8. This way, every directed circuit in
M⃗ ′ intersects E(M⃗ ′)\J in an even number of elements. Thus, for every directed circuit C
in TC(M⃗), the size of the corresponding directed circuit in M⃗ ′ is odd if and only if |C ∩J |
is odd. Hence, J intersects every directed circuit in TC(M⃗) an odd number of times if and
only if M⃗ ′ contains no even directed circuit. By Proposition 5.13 this shows that TC(M⃗)
is non-even if and only if M⃗ ′ has no directed circuit of even size. Since TC(M⃗) is non-even
if and only if M⃗ is non-even, we can decide the non-evenness of M⃗ by negating the output
of the oracle with instance M⃗ ′.

With the tools developed in this section we can give the proof of Proposition 5.17.

Proposition 5.17. There is an algorithm which given as input a totally unimodular ma-
trix A ∈ Rm×n for some m, n ∈ N, either returns an odd directed circuit of M⃗ [A] or
concludes that no such circuit exists, and runs in time polynomial in mn.

Proof. Let A ∈ Rm×n be a totally unimdoular matrix given as input and let M⃗ := M⃗ [A].
To decide whether M⃗ contains a directed circuit of odd size, we first use Corollary 5.15
to compute a totally unimdoular representation of TC(M⃗) in polynomial time in mn.
We now apply Lemma 5.16 to compute in polynomial time a directed circuit basis B of
TC(M⃗). Going through the elements of B one by one, we test whether one of the basis-
circuits is odd, in which case the algorithm stops an returns this circuit. Otherwise, all
circuits in B are even. Since every circuit in the underlying matroid of TC(M⃗) can be
written as a symmetric difference of elements of B, every circuit in this matroid must be
even. In particular, TC(M⃗) and hence M⃗ do not contain any odd directed circuits, and
the algorithm terminates with this conclusion.

5.4 Digraphs Admitting an Odd Dijoin
This section is dedicated to the proof of our main result, Theorem 5.5. The overall strategy
to achieve this goal is to work on digraphs and their families of bonds directly. The object
that certifies that the bond matroid of a digraph is non-even is called an odd dijoin.

Definition 5.6. Let D be a digraph. A subset J ⊆ A(D) is called an odd dijoin if |J ∩S|
is odd for every directed bond S in D.

Let D be a digraph. The contraction D/A of an arc-set A ⊆ A(D) in D is understood
as the digraph arising from D by deleting all arcs of A and identifying each weak connected
component of D[A] into a corresponding vertex. Note that this might produce new loops
arising from arcs spanned between vertices incident with A but not included in A. Note
that contracting a loop is equivalent to deleting the loop.

8In particular, we transform every signed circuit of T C(M⃗) into a signed circuit of M⃗ ′ by replacing
every occurrence of an element e ∈ E(T C(M⃗)) \ J in a signed partition by the two elements e1, e2 in the
same set of the signed partition. It is not hard to see that this indeed defines an oriented matroid, which
is still regular.
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An arc e = (x, y) of a digraph D, which is not a loop, is said to be deletable (or
transitively reducible) if there is a directed path in D starting in x and ending in y which
does not use e. Note that an arc e ∈ A(D) is deletable if and only if e is a butterfly-
contractible element of M∗(D).

For two digraphs D1, D2, we say that D1 is a cut minor of D2 if it can be obtained
from D2 by a finite series of arc contractions, deletions of deletable arcs, and deletions of
isolated vertices.

Our next lemma guarantees that the property of admitting an odd dijoin is closed
under the cut minor relation.

Lemma 5.18. Let D1, D2 be digraphs such that D1 is a cut minor of D2. If D2 admits
and odd dijoin, then so does D1.

Proof. The statement follows by applying Proposition 5.6 to M∗(D1) and M∗(D2), noting
that deleting isolated vertices from a digraph does not change the induced oriented bond
matroid, and that by definition, an arc in a digraph D is deletable if and only if it is a
butterfly-contractible element of M∗(D).

Our goal will be to characterize the digraphs admitting an odd dijoin in terms of
forbidden cut minors. In the following, we prepare this characterization by providing a set
of helpful statements. For an undirected graph G, we define the cutspace of G as the F2-
linear vector space generated by the bonds in G, whose addition operation is the symmetric
difference and whose neutral element is the empty set. The following statements are all
obtained in a straightforward way by applying the oriented matroid results Lemma 5.10,
Corollary 5.12 respectively Proposition 5.13 to the oriented bond matroid M∗(D) of D.

Corollary 5.19. Let D be a weakly connected and acyclic digraph with underlying multi-
graph G. Then the cut space of G admits a basis B whose elements are directed bonds
in D. Moreover, if A ⊆ A(D) is a set of arcs such that D/A is acyclic and G[A] is a
forest, then one can choose B such that every arc e ∈ A appears in exactly one bond of the
basis.

Corollary 5.20. Let D be a digraph and let B be a basis of the cut space consisting of
directed bonds. Then there is an arc set J ′ ⊆ A(D) such that |J ′ ∩ B| is odd for all
S ∈ B.

Proposition 5.21. Let D be a digraph, B be a basis of the cut space consisting of directed
bonds, and let J ′ ⊆ A(D) be such that |B ∩ J ′| is odd for all B ∈ B. Then the following
statements are equivalent:

(i) D has an odd dijoin.

(ii) If B1, . . . , Bk are directed bonds of D with k odd, then
∑︁k

i=1 Bi ̸= ∅.

(iii) Every directed bond of D can be written as
∑︁k

i=1 Bi with k odd.

(iv) J ′ is an odd dijoin of D.

5.4.1 Forbidden Cut Minors for Digraphs with an Odd Dijoin

Next we characterize the digraphs admitting an odd dijoin in terms of minimal forbid-
den cut minors. For this purpose, we identify the digraphs without an odd dijoin for which
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every proper cut minor has an odd dijoin. We call such a digraph a minimal obstruction.
Recall that a digraph D = (V, E) is said to be oriented if it has no loops, no parallel,
and no anti-parallel arcs. Furthermore, D is called transitively reduced if for every arc
e = (v, w) ∈ E the only directed path in D starting at v and ending in w consists of e
itself, or equivalently, if no arc in D is deletable.

We start with the following crucial lemma, which will be used multiple times to suc-
cessively find the structure minimal obstructions must have.

Lemma 5.22. Let D be a minimal obstruction. Then the underlying multi-graph G of D
is 2-vertex-connected. Furthermore, D is oriented, acyclic, and transitively reduced.

Proof. Assume that D has no odd dijoin, but every proper cut minor of D has one. Then
it is easy to check that v(D) ≥ 4.

To prove that G must be 2-vertex-connected, suppose towards a contradiction that
G can be written as the union of two proper subgraphs G1, G2 with the property that
|V (G1) ∩ V (G2)| ≤ 1. Then the orientations D1, D2 induced on G1, G2 by D are proper
cut minors of D: Indeed, for i ∈ {1, 2} we can obtain Di from D by contracting all arcs
in D3−i and then deleting all the resulting isolated vertices outside V (Di). Since D1, D2
are proper cut minors of D, they must admit odd dijoins J1, J2, respectively. However,
since D1 and D2 share at most a single vertex, the directed bonds of D are either directed
bonds of D1 or of D2. Hence, the disjoint union J1 ∪ J2 defines an odd dijoin of D and
yields the desired contradiction.

To prove acyclicity, assume towards a contradiction that there is a directed cycle C
in D. Let us consider the digraph D/A(C). This is a proper cut minor of D and therefore
must have an odd dijoin J . However, the directed bonds in D/A(C) equal the directed
bonds in D which are arc-disjoint from C, and since C is directed, these are already all
the directed bonds of D. Hence J is an odd dijoin also for D, which is a contradiction.

To prove that D is transitively reduced, assume towards a contradiction that there was
an arc e = (x, y) ∈ A(D) and a directed path P from x to y not containing e. Then e is
a deletable arc and D − e is a cut minor of D, which therefore must have an odd dijoin
J ⊆ A(D) \ {e}. Note that a directed cut in D either does not intersect {e} ∪ A(P ) at
all or contains e and exactly one arc from P . It follows from this that for every directed
bond B in D, we get that B − e is a directed bond of D − e. This directly yields that J
is also an odd dijoin of D, contradiction.

Clearly, the fact that D is oriented follows from D being simultaneously acyclic and
transitively reduced. This concludes the proof of the lemma.

From this, we directly have the following useful observations.

Corollary 5.23. Let D be a minimal obstruction. Then for every arc e ∈ A(D), the
digraph D/e is acyclic. Similarly, for every vertex v ∈ V (D) which is either a source or a
sink, the digraph D/ED(v) is acyclic.

Proof. Let e be an arc of D. Since D is a minimal obstruction, we know by Lemma 5.22
that e is no loop. Now assume towards a contradiction that there was a directed cycle in
D/e. As D itself is acyclic according to Lemma 5.22, this implies that there is a directed
path P in D connecting the end vertices of e, which does not contain e itself. This path
together with e now either contradicts the fact that D is acyclic or the fact that D is
transitively reduced, both of which hold due to Lemma 5.22.

For the second part assume w.l.o.g. (using the symmetry given by reversing all arcs)
that v is a source. Suppose for a contradiction there was a directed cycle in D/ED(v).
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This implies the existence of a directed path P in D − v which connects two different
vertices in the neighbourhood of v, say it starts in w1 ∈ N(v) and ends in w2 ∈ N(v).

Now the directed path (v, w1)+P witnesses that the arc (v, w2) is deletable contradict-
ing that D is transitively reduced. This concludes the proof of the second statement.

Lemma 5.24. Let D be a minimal obstruction. If A ⊆ A(D) is such that D/A is acyclic
and such that D[A] is an oriented forest, then there is a directed bond in D which fully
contains A.

Proof. By Corollary 5.19 there is a basis B of the cut space consisting of directed bonds
such that each e ∈ A is contained in exactly one of the bonds in the basis. Moreover, by
Corollary 5.20 there is J ′ ⊆ A(D) such that each B ∈ B has odd intersection with J ′.
Since D has no odd dijoin, there has to be a directed bond B0 in D such that |B0 ∩ J ′|
is even. Let B0 = B1 + . . . + Bm be the unique linear combination with pairwise distinct
B1, . . . , Bm ∈ B. Clearly, m must be even. Let D′ be the cut minor obtained from D by
contracting the arcs in A(D) \

⋃︁m
i=1 Bi. The bonds B0, B1, . . . , Bm are still directed bonds

in D′ and satisfy B0 + . . . + Bm = ∅, while m + 1 is odd.
The equivalence of (i) and (ii) in Proposition 5.21 now yields that D′ has no odd dijoin.

By the minimality of D we thus must have D = D′ and
⋃︁m

i=1 Bi = A(D). It follows that
every e ∈ A is contained in exactly one of the bonds Bi and thus also in B0. We obtain
that A is fully included in the directed bond B0, as required.

Corollary 5.25. Let D = (V, A) be a minimal obstruction. For i ∈ {1, 2} let ∅ ≠ Ai ⊆ E
be such that D[Ai] is a forest and D/Ai is acyclic. Suppose there is a directed cut ∂(X)
in D separating A1 from A2, i.e., such that A1 ⊆ A(D[X]) and A2 ⊆ A(D[V \X]). Then
there exists a directed bond in D containing A1 ∪A2.

Proof. Let A := A1 ∪̇A2. As A1 and A2 induce vertex-disjoint forests, D[A] is a forest as
well. Since no arc is directed from a vertex in V \X to a vertex in X, no directed circuit in
D/A can contain a contracted vertex from A1 and a contracted vertex from A2, so every
directed circuit must already exist in D/A1 or in D/A2. Because these two digraphs are
acyclic, D/A is acyclic. Hence, by Lemma 5.24, A is fully included in a directed bond of
D. This proves the assertion.

With the next proposition we shall make the structure of minimal obstructions much
more precise. To state the result, we shall make use of the following definition.

Definition 5.7. Let n0, n1, n2 ∈ N. Then we denote by D(n0, n1, n2) the digraph (V, E),
where V = V0 ∪̇ V1 ∪̇ V2 with Vi = [ni] for i ∈ {1, 2, 3}, and E = (V0 × V1) ∪̇ (V1 × V2).

Proposition 5.26. Let D = (V, E) be a minimal obstruction. Then D is isomorphic to
D(n1, n2, n3) for some integers n1, n2, n3 ≥ 0.

Proof. We shall split the proof into several claims, starting with the following one.

Claim I. D contains no directed path of length 3.

Suppose towards a contradiction that v0, e1, v1, e2, v2, e3, v3 is a directed path of length
3 in D with e1 = (v0, v1), e2 = (v1, v2), e3 = (v2, v3). By Corollary 5.23, D/e1 and D/e3
are acyclic. Moreover, because D is acyclic by Lemma 5.22, the arc e2 is contained in
a directed cut ∂(X) in D, separating {e1} and {e3}. By Corollary 5.25 this means that
there is a directed bond ∂(Y ) in D containing both e1 and e3. This however means that
v0, v2 ∈ Y and v1, v3 /∈ Y . Hence, e2 is an arc in D starting in V (D) \ Y and ending in Y ,
a contradiction since ∂(Y ) is a directed bond. This completes the proof of Claim I.
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For i ∈ {0, 1, 2} let Vi denote the set of vertices v ∈ V such that the longest directed
path ending in v has length i. By definition of the Vi and since D is acyclic, there is no
arc from a vertex in Vi to a vertex in Vj for i ≥ j, as otherwise this would give rise to a
directed path of length i + 1 ending in a vertex of Vj .

By Claim I we know that V = V0 ∪̇ V1 ∪̇ V2. We move on by proving the following
claim.

Claim II. Every vertex v ∈ V1 is adjacent to every vertex u ∈ V0.

Let v ∈ V1 and u ∈ V0. Assume for a contradiction that u is not adjacent to v. By
definition of V1 there is an arc f = (u′, v) with u′ ∈ V0. By Corollary 5.23, D/f and
D/ED(u) are acyclic because u is a source. Let X ⊇ {u′, v} be the set of all vertices from
which v can be reached via a directed path. Clearly ∂(X) is a directed cut in D. As
u ∈ V0 \X is a source which is not adjacent to v, we conclude that {u} ∪N(u) ⊆ V \X.
This however means that the directed cut ∂(X) separates f from the arcs in ED(u). By
Corollary 5.25, this means that there is a directed bond ∂(Y ) in D containing ED(u)∪{f}.
Since ED(u) = ∂({u}) itself is a directed cut in D, this contradicts the fact that ∂(Y ) is
an inclusion-wise minimal directed cut in D, and proves Claim II.

We proceed with another claim.

Claim III. D does not contain any arc from V0 to V2.

Let u ∈ V0 and w ∈ V2. By definition of V2 there is some v ∈ V1 such that (v, w) ∈ A.
By Claim II, (u, v) ∈ E. Because D is transitively reduced by Lemma 5.22, we obtain
(u, w) /∈ A. So the proof of Claim III is complete.

Now we come to the last claim we need for the proof of this proposition.

Claim IV. Every vertex v ∈ V1 sees every vertex w ∈ V2.

Let v ∈ V1, w ∈ V2 and suppose for a contradiction that w is not adjacent to v. Let
f = (u, v) be an arc with u ∈ V0. By Lemma 5.24, D/f and D/ED(w) are acyclic
because w is a sink. Let X ⊇ {u, v} be the set of all vertices from which v can be
reached via a directed path. Again, ∂(X) forms a directed cut in D. Claim III implies
that N(w) ⊆ V1 \ {v} ⊆ V \ X. This means ∂(X) separates f from the arcs in ED(w),
contradicting Corollary 5.25 again.

By combining all four claims we obtain A = (V0×V1)∪̇(V1×V2), and the proof of this
proposition is complete.

Now Proposition 5.26 puts us in the comfortable situation that the only possible min-
imal obstructions to having an odd dijoin are part of a 3-parameter class of simply struc-
tured digraphs. The rest of this section is devoted to determine the conditions on n1, n2, n3
that need to be imposed such that D(n1, n2, n3) is a minimal obstruction. It will be helpful
to use the well-known concept of so-called T -joins.

Definition 5.8. Let G be an undirected graph and T ⊆ V (G) be some vertex set. A subset
J ⊆ E(G) of edges is called a T -join, if in the spanning subgraph H := G[J ] of G, every
vertex in T has odd, and every vertex in V (G) \ T has even degree.

The following result is folklore.

Lemma 5.27. A graph G with some vertex set T ⊆ V (G) admits a T -join if and only if
T has an even number of vertices in each connected component of G.

We continue with an observation about odd dijoins in digraphs of the form D(n1, n2, 0).
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Observation 5.28. Let n1, n2 ≥ 1. Then the digraph D(n1, n2, 0) ≃ D(0, n1, n2) has an
odd dijoin if and only if min(n1, n2) ≤ 1 or n1, n2 ≥ 2 and n1 ≡ n2 (mod 2).

Proof. If min(n1, n2) ≤ 1, then all directed bonds in D(n1, n2, 0) consist of single arcs
and thus, J := A(D(n1, n2, 0)) defines an odd dijoin. If n1, n2 ≥ 2, the directed bonds
in D(n1, n2, 0) are exactly those cuts with one vertex on one side of the cut and all other
vertices on the other side. Hence, there is an odd dijoin if and only if the complete
bipartite graph with partition classes of size n1, n2 has a T -join, where T contains all
n1 + n2 vertices. The statement is now implied by Lemma 5.27.

Next we characterize when the digraphs D(n1, n2, n3) admit an odd dijoin.

Proposition 5.29. Let n1, n2, n3 ≥ 1 be integers. Then D(n1, n2, n3) has an odd dijoin
if and only if one of the following holds:

(i) n2 = 1.

(ii) n2 = 2 and n1 ≡ n3 (mod 2).

(iii) n2 ≥ 3, and n1 ≡ n3 ≡ 1 (mod 2).

Proof. If n2 = 1, then D(n1, n2, n3) is an oriented star. Clearly, here, the directed bonds
consist of single arcs, and therefore, J := A(D(n1, 1, n3)) defines an odd dijoin.

If n2 = 2, it is easily seen that D(n1, 2, n3) is a planar digraph, which admits a directed
planar dual isomorphic to a bicycle

↔
Cn1+n3 of length n1 + n3.

By planar duality, we know that D(n1, 2, n3) has an odd dijoin if and only if there is
a subset of arcs of

↔
Cn1+n3 which intersects every directed cycle an odd number of times.

By Theorem 5.2 we know that such an arc set exists if and only if n1 + n3 is even, that is,
n1 ≡ n3 (mod 2).

Therefore, we assume that n2 ≥ 3 for the rest of the proof. We now first show the
necessity of (iii). So assume that D := D(n1, n2, n3) has an odd dijoin J . We observe that
the underlying graph of D is 2-connected. Hence, for every vertex x ∈ V1∪V2∪V3, the cut
ED(x) of all arcs incident with x is a minimal cut of the underlying graph, and it is directed
in D whenever x ∈ V1 ∪ V3. Therefore, U(D[J ]) must have odd degree at every vertex in
V1∪V3. Moreover, we observe that for any proper non-empty subset X ( V2, the cut in D
induced by the partition (V1 ∪X, (V2 \X)∪V3) is minimal and directed. In the following,
we denote this cut by F (X). Now for every vertex x ∈ V2, choose some x′ ∈ V2 \ {x} and
consider the minimal directed cuts F ({x′}), F ({x, x′}). Both are minimal directed cuts
(here, we use that n2 ≥ 3) and thus must have odd intersection with J . Moreover, the
symmetric difference F ({x′}) + F ({x, x′}) contains exactly the set ED(x) of arcs incident
with x in D. We conclude the following:

|ED(x) ∩ J | = |(F ({x′}) + F ({x, x′})) ∩ J | ≡ |F ({x′}) ∩ J |+ |F ({x, x′}) ∩ J |
≡ 1 + 1 ≡ 0 (mod 2)

As x ∈ V2 was chosen arbitrarily, we conclude that J must be a T -join of the under-
lying multi-graph of D(n1, n2, n3) where T = V1 ∪ V3. Now Lemma 5.27 implies that
|T | = n1 + n3 must be even and hence n1 ≡ n3 (mod 2).

We claim that (iii) must be satisfied, i.e., n1 and n3 are odd. Assume towards a contra-
diction that this is not the case. Hence, by our observation above both n1 and n3 are even.
Let x ∈ V2 be some vertex, and consider the directed bond F ({x}). We can rewrite this
bond as the symmetric difference of the directed cut ∂(V1) = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}
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and the cut ED(x) of all arcs incident with x. Because |ED(u) ∩ J | is odd for every
u ∈ V1, we obtain that |∂(V1)∩J | =

∑︁
u∈V1 |ED(u) ∩ J | must be even. However, since also

|ED(x)∩J | is even, this means that |F ({x})∩J | ≡ |∂(V1)∩J |+ |ED(x)∩J | ≡ 0 (mod 2),
which is the desired contradiction, as J is an odd dijoin. So (iii) must be satisfied.

To prove the reverse direction, assume that (iii) is fulfilled, i.e., n1 ≡ n3 ≡ 1 (mod 2).
We shall construct an odd dijoin of D(n1, n2, n3). For this purpose, we choose J to be
a T -join of the underlying graph where T = V1 ∪ V3. We claim that this defines an odd
dijoin of D(n1, n2, n3). It is not hard to check that the directed bonds of D(n1, n2, n3)
are the cuts ED(v) for vertices v ∈ V1 ∪ V3 and the cuts F (X) as described above, where
∅ ≠ X ( V2. By the definition of a T -join, all of the directed bonds of the first type
have an odd intersection with J , so it suffices to consider the bonds of the second type.
Consider again the directed cut ∂(V1) in D(n1, n2, n3). For any ∅ ≠ X ( V2, we can write
F (X) as the symmetric difference F (X) = ∂(V1) +

∑︁
x∈X E(x). We therefore conclude

that

|F (X) ∩ J | ≡ |∂(V1) ∩ J |+
∑︂
x∈X

|E(x) ∩ J |⏞ ⏟⏟ ⏞
even

(mod 2)

≡ |∂(V1) ∩ J | =
∑︂

x∈V1

|E(x) ∩ J |⏞ ⏟⏟ ⏞
odd

≡ n1 ≡ 1 (mod 2).

This verifies that J is an odd dijoin, and completes the proof of the proposition.

We shall now use these insights to characterize minimal obstructions. For this let us
first introduce new notation.

Let D be a digraph consisting of a pair h1, h2 of “hub vertices” and other vertices
x1, . . . , xn, where n ≥ 3, such that for every i ∈ [n], the vertex xi has either precisely
two outgoing or precisely two incoming arcs to both h1, h2, and these are all arcs of D.
In this case, we refer to D as a diamond. Alternatively, we may define an odd diamond
as any digraph isomorphic to D(n1, 2, n3) for some n1, n3 ∈ N0 such that n1 + n2 ≥ 3.
Furthermore, we call any digraph isomorphic to K⃗n1,n2 for some n1, n2 ≥ 2, a one-direction.
We shall call both, diamonds and one-directions, odd if the total number of vertices of
these digraphs is odd.

Lemma 5.30. All odd diamonds and all odd one-directions are minimal obstructions.

Proof. It is directly seen from Observation 5.28 and Proposition 5.29 that indeed, odd
diamonds and odd one-directions do not posses an odd dijoin. Therefore it remains to show
that all proper cut minors of these digraphs have odd dijoins. Because both odd diamonds
and odd one-directions are transitively reduced and acyclic, the only cut minor operation
applicable to them in the first step is the contraction of a single arc. By Lemma 5.18
it therefore suffices to show that for both types of digraphs, the contraction of any arc
results in a digraph admitting an odd dijoin.

We first consider odd diamonds. Let D = D(n1, 2, n3) with n1, n2 ≥ 1 and n1 + n2
odd, and let e ∈ A(D) be arbitrary. In the planar directed dual graph of D, an odd bicycle
with n1 + n2 vertices, there is a directed dual arc corresponding to e. It is easily seen by
duality that D/e has an odd dijoin if and only if the odd bicycle of order n1 + n2 ≥ 3
with a single deleted arc has an arc set intersecting every directed cycle an odd number
of times. However, this is the case, because such a digraph is non-even by Theorem 5.2.

Now we consider odd one-directions. Let D = D(n1, n2, 0) with n1, n2 ≥ 2 and n1 + n2
odd, and let e = (x, y) ∈ A(D) be arbitrary. Then in the digraph D/e, define J to be the
set of all arcs incident with the contraction vertex. It is easily observed that J intersects
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every minimal directed cut exactly once and thus indeed, every proper cut minor has an
odd dijoin. This completes the proof.

Now we are able to prove a dual version of Theorem 5.2 and characterize the existence
of odd dijoins in terms of forbidden cut minors.

Theorem 5.31. A digraph admits an odd dijoin if and only if it does neither have an odd
diamond nor an odd one-direction as a cut minor.

Proof. By Lemma 5.18, a digraph has an odd dijoin if and only if it does not contain
a minimal obstruction as a cut minor. Hence it suffices to show that a digraph D is a
minimal obstruction if and only if it is isomorphic to an odd diamond or an odd one-
direction. The fact that these digraphs indeed are minimal obstructions was proved in
Lemma 5.30. So it remains to show that these are the only minimal obstructions.

Let D be an arbitrary minimal obstruction. By Proposition 5.26 there are integers
n1, n2, n3 ≥ 0 such that D ≃ D(n1, n2, n3). By the definition of a minimal obstruction, we
know that D has no odd dijoin, while for every arc e ∈ A(D), the digraph D/e is a cut
minor of D and therefore has one.

We know due to Lemma 5.22 that D is weakly 2-connected. Hence, we either have
min(n1, n3) = 0, so (by symmetry) w.l.o.g. n3 = 0, or n1, n3 ≥ 1 and therefore n2 ≥ 2.

In the first case, we know by Observation 5.28 and using that D has no odd dijoin,
that n1, n2 ≥ 2 and n1 ̸≡ n2 (mod 2). So D is an odd one-direction, which verifies the
claim in the case of min(n1, n3) = 0.

Next assume that n1, n3 ≥ 1 and n2 ≥ 2. Let e = (x1, x2) ∈ A(D) with xi ∈ Vi for
i = 1, 2 be an arbitrary arc going from the first layer V1 to the second layer V2. Denote by
c the vertex of D/e corresponding to the contracted arc e. Then in the digraph D/e, all
arcs {(c, v3) | v3 ∈ V3} as well as all the arcs in {(v1, v2) | v1 ∈ V1 \ {x1}, v2 ∈ V2 \ {x2}}
admit parallel paths since n2 ≥ 2 and, therefore, are deletable. Successive deletion yields
a cut minor D′ of D/e, and thus of D, with vertex set

V (D′) = (V1 \ {x1}) ∪ {c} ∪ (V2 \ {x2}) ∪ V3

and arc set

{(v1, c) | v1 ∈ V1 \ {x1}}∪{(c, v2) | v2 ∈ V2 \ {x2}}∪{(v2, v3) | v2 ∈ V2 \ {x2}, v3 ∈ V3}.

Now after contracting all arcs of D′ in the set {(v1, c) | v1 ∈ V1 \{x1}} we find that D′,
and hence D, has a proper cut minor isomorphic to D(1, n2 − 1, n3) with corresponding
layers {c}, V2 \ {x2} and V3.

Applying a symmetric argument (starting by contracting an arc going from V2 to V3),
we find that D also has a proper cut minor isomorphic to D(n1, n2 − 1, 1).

Using these insights, we now show that n2 = 2 holds. Suppose for a contradiction that
n2 ≥ 3 holds. Assume first that n2 ≥ 4, and therefore n2 − 1 ≥ 3. Using statement (iii)
of Proposition 5.29 and that D(1, n2 − 1, n3) and D(n1, n2 − 1, 1) both have odd dijoins,
we must have n1 ≡ n3 ≡ 1 (mod 2). In the case that n2 = 3, we similarly observe from
statement (ii) of Proposition 5.29 with the digraphs D(1, 2, n3) and D(n1, 2, 1) that both
n1 and n3 must be odd.

Now using statement (iii) of Proposition 5.29 with the digraph D ≃ D(n1, n2, n3) we
can conclude that D must admit an odd dijoin as well, a contradiction.

Hence, we must have n2 = 2. Using again statement (ii) of Proposition 5.29 with
D ≃ D(n1, 2, n3), we get that n1 + n3 must be odd. Therefore D is isomorphic to an odd
diamond with 2 + n1 + n3 many vertices. This concludes the proof of the theorem.
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We are now ready to give the proof of Theorem 5.5.

Proof of Theorem 5.5. Let M⃗ be an oriented bond matroid, and let D be a digraph such
that M⃗ ≃M∗(D). Let us first note that by definition, M⃗ is non-even if and only if D has
an odd dijoin. Hence, for the equivalence claimed in this theorem it suffices to show that
D has an odd dijoin if and only if M∗(D) does not have a GB-minor isomorphic to K⃗m,n

for m, n ≥ 2 such that m + n is odd. Suppose first that D has an odd dijoin and M∗(D)
is non-even. Then by Proposition 5.6, every GB-minor of M∗(D) is non-even as well, and
hence, no such minor can equal M∗(K⃗m,n) for any m, n ≥ 2 with m+n is odd, since K⃗m,n

does not have an odd dijoin for any such m and n by Lemma 5.30. This proves the first
implication of the equivalence.

Conversely, let us suppose that M∗(D) does not have a GB-minor isomorphic to
M∗(K⃗m,n) for any m, n ≥ 2 such that m + n is odd. We shall show that D admits an
odd dijoin. For this we use Theorem 5.31 and verify that D has neither an odd diamond
nor an odd one-direction as a cut minor. This however follows directly from the fact that
the bond-matroid induced by any odd diamond of order n is isomorphic to M∗(K⃗2,n−2)
as well as the easy observation that if D′ is a cut minor of D, then M∗(D′) is a GB-minor
of M∗(D). This finishes the proof of the claimed equivalence.

5.5 Conclusion
For every odd k ≥ 3 it holds that M(

↔
Ck) ≃M∗(K⃗k,2) ≃M∗(K⃗2,k), and hence, the list of

smallest excluded GB-minors characterising non-evenness for cographic oriented matroids
strictly extends the list for graphic ones. This is quite surprising and was not expected
when we initiated our research on the subject.

Seymour [Sey80] has proved a theorem about generating the class of regular matroids,
showing that every regular matroid can be built up from graphic matroids, bond matroids
and a certain 10-element matroid R10 by certain sum operations. The matroid R10 is
regular, but neither graphic nor cographic. It is given by the following totally unimodular
representing matrix:

R10 = M

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0 −1 1 0 0 1
0 1 0 0 0 1 −1 1 0 0
0 0 1 0 0 0 1 −1 1 0
0 0 0 1 0 0 0 1 −1 1
0 0 0 0 1 1 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦ .

Seymour introduced three different kinds of sum operation which join two regular
matroids M1 and M2 whose element sets are either disjoint (1-sum), intersect in a single
non-loop element (2-sum) or in a common 3-circuit (3-sum) into a bigger regular matroid
M1∆M2 (for a precise definition of these operations we refer to the introduction of [Sey80]).

Theorem 5.32 ([Sey80]). Every regular matroid can be built up from graphic matroids,
bond matroids and R10 by repeatedly applying 1-sums, 2-sums and 3-sums.

This theorem shows that graphic matroids, bond matroids and R10 constitute the most
important building blocks of regular matroids. Using a brute force implementation, we
checked by computer that every orientation of R10 containing no M∗(K⃗m,n) as a GB-minor
for any m, n ≥ 2 such that m + n is odd, is already non-even. We therefore expect the
total list of forbidden minors for all non-even oriented matroids to not be larger than the
union of the forbidden minors for graphic (Theorem 5.4) and cographic (Theorem 5.5)
non-even oriented matroids. In other words, we conjecture the following.
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Conjecture 5.1. A regular oriented matroid M is non-even if and only if none of its
GB-minors is isomorphic to M∗(K⃗m,n) for some m, n ≥ 2 such that m + n is odd.

A natural way of working on this conjecture would be to try and show that a smallest
counterexample is not decomposable as the 1-, 2- or 3-sum of two smaller regular matroids.

Apart from the obvious open problem of resolving the computational complexity of
the even circuit problem (Problem 5.2) for regular oriented matroids in general, already
resolving the case of bond matroids would be interesting.

Problem 5.3. Is there a polynomially bounded algorithm that, given as input a digraph
D, decides whether or not D contains a directed bond of even size? Equivalently, is there
a polynomially bounded recognition algorithm for digraphs admitting an odd dijoin?

Conclusively, given our characterization of digraphs admitting an odd dijoin in terms
of forbidden cut minors, the following question naturally comes up.

Problem 5.4. Let F be a fixed digraph. Is there a polynomially bounded algorithm that,
given as input a digraph D, decides whether D contains a cut minor isomorphic to F?



Part II

Dichromatic Number





General Comments

Given a digraph D, an acyclic k-coloring of D is a mapping c : V (D)→ [k] such that for
every color i ∈ [k], the color class c−1(i) ⊆ V (D) induces an acyclic subdigraph of D. The
dichromatic number χ⃗(D) of D is defined as the smallest k ∈ N for which an acyclic k-
coloring of D exists. Introduced in 1980 by Erdős and Neumann-Lara [Erd80, NL82], this
parameter was rediscovered and popularized by Mohar and Bokal et al. [Moh03, BFJ+04],
and since then has received further attention, see [ACH+19, AH15, BHL18, HLTW19,
HM17, LM17, Moh16] for a selection (of only a small fraction) of recent results.

The investigation of acyclic colorings of digraphs has constituted a major part of the
research I have conducted during my PhD. In this second part of the thesis, I collect several
new results I obtained on this topic during the last years. I hope that they contribute to
a better understanding of the digraph chromatic number χ⃗.

Many of the previous results on the dichromatic number have shown that it shares
qualitative properties with the chromatic number of undirected graphs, and have thereby
established it as a natural directed analogue of the chromatic number.

In the same spirit, my research was often motivated by the goal of extending classical
results about the chromatic number to the directed setting. Since much research in graph
theory has concentrated on substructures contained in graphs with large chromatic num-
ber, a focus of the research presented in this chapter has been to relate the dichromatic
number to the existence of natural substructures in digraphs such as minors, subdivisions
and induced subgraphs.
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Chapter 6

Excluding Strong Minors

6.1 Introduction
All graphs and digraphs considered in the chapter are simple.

In this first chapter we are concerned with the existence of strong minors in digraphs
with a given dichromatic number.

Hadwiger’s conjecture (Conjecture 0.1) for undirected graphs seeks to force minors of
complete graphs through the chromatic number, claiming that every t-chromatic graph
G contains Kt as a minor. However, this conjecture remains widely open for any value
t ≥ 7, and hence it is natural to aim for asymptotic versions of the conjecture first. For
t ∈ N let us denote by mχ(t) the least integer for which it is true that every graph with
chromatic number at least mχ(t) contains a Kt-minor. A commonly expressed relaxation
of Hadwiger’s conjecture, called Linear Hadwiger Conjecture, states that mχ(t) = O(t)
grows linearly. Eventhough this relaxed version of the conjecture remains open, through
the history of research on the problem one has come quite close to a linear bound. For
many years, the best general upper bound on mχ(t) was due to Kostochka [Kos84] and
Thomason [Tho84], who independently proved that every graph of average degree at least
O(t
√

log t) contains a Kt-minor, implying via degeneracy coloring that mχ(t) = O(t
√

log t).
Recently, however, there has been progress. First Norine, Postle, and Song [NPS19] showed
that mχ(t) = O

(︂
t(log t)β

)︂
(for any β > 1

4), and then this was further improved by
Postle [Pos20] to give the following state of the art-bound.

Theorem 6.1 (cf. [Pos20]). There exists an absolute constant C > 0 such that for t ≥ 3:

mχ(t) ≤ Ct(log log t)6.

Hadwiger’s famous conjecture has influenced many researchers and different variations
of it have been studied in various frameworks, one of which is directed graphs. Axenovich,
Girão, Snyder, and Weber [AGSW20] recently considered the analogue of Hadwiger’s
problem for digraphs, where the chromatic number is replaced by the dichromatic number
and undirected minors by strong minors. Concretely, they raised the following problem.

Problem 6.1. For a given integer t ≥ 1, what is the smallest integer smχ⃗(t) ≥ 1 such
that every digraph D with χ⃗(D) ≥ smχ⃗(t) contains

↔
Kt as a strong minor?

In the first place, it is not clear why such a number smχ⃗(t) should even exist for every
t ∈ N. Axenovich, Girão, Snyder, and Weber [AGSW20] showed that smχ⃗(t) indeed exists
for every t ≥ 1 and proved the bounds

t + 1 ≤ smχ⃗(t) ≤ t4t
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for every t ∈ N. They expressed that they expect the exponential upper bound t4t to be
quite far from the true value of smχ⃗(t) and that it would be very interesting to find an
improved upper bound.

As the main result of this chapter, we indeed find a substantially improved upper
bound by reducing the problem to the undirected setting as follows.

Theorem 6.2. For every t ≥ 1 we have

mχ(t) ≤ smχ⃗(t) ≤ 2mχ(t)− 1.

By combining Theorem 6.2 with Theorem 6.1 we get that

smχ⃗(t) = Θ(mχ(t)) = O
(︂
t(log log t)6

)︂
.

The lower bound in Theorem 6.2 can be quite easily observed as follows: For every graph
G with χ(G) ≥ smχ⃗(t), we have1 χ⃗(

↔
G) = χ(G) ≥ smχ⃗(t), and hence

↔
G contains a strong

↔
Kt-minor. Since every strongly connected branch set of this strong minor in

↔
G corresponds

to a connected subgraph of G, we can see by taking the same branch sets that G contains
a Kt-minor. Hence, mχ(t) ≤ smχ⃗(t).

Theorem 6.2 also has direct consequences for the other two minor notions in digraphs
considered in this thesis, namely topological minors and butterfly-minors. These conse-
quences can be found in Chapters 7 and 8, respectively.

6.2 Proof of Theorem 6.2
The proof of Theorem 6.2 is based on the following result.

Theorem 6.3. For every digraph D there is an undirected graph G such that

1. D is a strong
↔
G-minor-model, and

2. χ⃗(D) ≤ 2χ(G).

Proof. To start with, let us first fix a partition X1, X2, . . . , Xm of V (D) for some m ∈ N
such that for every i ∈ {1, 2, . . . , m} the set Xi is an inclusion-wise maximal subset of V (D)
such that D[Xi] is strongly connected, χ⃗(D[Xi]) ≤ 2 and Xi ∩ (X1 ∪ · · · ∪Xi−1) = ∅.

Note that the Xi’s are well-defined since the one vertex-digraph is strongly connected
and 2-colorable. Now we define G to be the undirected simple graph with vertex set
{X1, . . . , Xm} and XiXj ∈ E(G) if and only if there is an arc in D starting in Xi and
ending in Xj , as well as an arc starting in Xj and ending in Xi. Then, by definition
(cf. Definition 1.2 from Chapter 1), D is a strong

↔
G-minor-model, as one can simply take

X1, X2, . . . , Xm as the branch sets.
Therefore, what remains to prove is property (2). For this let us assume that χ(G) = k

and fix a proper coloring fG : V (G) → {c1, c2, ...., ck} of G. Now, for every i take an
arbitrary acyclic two-coloring of D[Xi] (which exists by assumption) with colors {c′

i, c′′
i }.

The rest of the proof is about showing that by putting these colorings together we obtain
an acyclic coloring fD of D with the 2k colors {c′

1, c′′
1, c′

2, c′′
2, . . . , c′

k, c′′
k}.

Assume for contradiction that this is not the case, and there is a directed cycle C in D
which is monochromatic. We may, without loss of generality, assume that C is a shortest

1For every undirected graph G we have χ⃗(
↔
G) = χ(G), since every adjacent pair of vertices in G induces

a digon in
↔
G and hence adjacent vertices must be colored distinctly in every acyclic coloring.
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such cycle, in particular, it is an induced cycle2. Let i0 be the smallest index for which C
contains a vertex from Xi0 . Note that, in particular, V (C) ⊆ V (D) \ (X1 ∪ · · · ∪Xi0−1)
and, as fD is a proper coloring on D[Xi0 ], the cycle C cannot be fully contained in
Xi0 .It follows that C contains a subsequence u, w1, . . . , wℓ, v of consecutive vertices on C
such that (u, w1), (w1, w2), . . . , (wℓ, v) ∈ A(C), u, v ∈ Xi0 (possibly u = v), as well as
w1, . . . , wℓ ∈ Xi0+1 ∪ · · · ∪Xm, and ℓ > 0.

Let s ∈ {1, . . . , ℓ} be the smallest index such that ws has an out-neighbour in Xi0 , and
denote this out-neighbor by x ∈ Xi0 .

We claim that ws has no in-neighbor in D that is contained in Xi0 . Suppose towards a
contradiction that there exists y ∈ Xi0 such that (y, ws) ∈ A(D). Let j > i0 be such that
ws ∈ Xj . Then, because of the arcs (y, ws), (ws, x) ∈ A(D), we have Xi0Xj ∈ E(G) and
hence fG(Xi0) ̸= fG(Xj). This in turn implies that fD(u) ̸= fD(ws) and fD(v) ̸= fD(ws)
which contradicts the monochromaticity of C. Hence, we may assume that ws has no
in-neighbor contained in Xi0 . In particular, this implies s ≥ 2. Let us now consider

X := Xi0 ∪ {w1, . . . , ws} ⊆ V (D) \ (X1 ∪ · · · ∪Xi0−1) .

The digraph D[X] is strongly connected, as D[Xi0 ] is so and u, w1, . . . , ws, x induce a
directed path (or cycle in case of u = x) starting and ending in Xi0 . Moreover, any exten-
sion of an acyclic {1, 2}-coloring of D[Xi0 ] to a {1, 2}-coloring of D[X] where w1, . . . , ws−1
receive color 1 and ws receives color 2 is acyclic. Indeed, by the definition of s, there are
no arcs starting in {w1, . . . , ws−1} and ending in Xi0 , and by the inducedness of C the
subdigraph of D induced by {w1, . . . , ws−1} is a directed path and therefore acyclic. Since
also ws has no in-neighbors in Xi0 , any directed cycle in D[X] is either fully contained
in D[Xi0 ], or contains both ws and at least one vertex in {w1, . . . , ws−1}. In any case,
it is not monochromatic. However, the existence of the set X then contradicts with the
maximality of Xi0 , which completes the proof.

Now we can easily deduce Theorem 6.2 from Theorem 6.3.

Proof of Theorem 6.2. Let D be a digraph with χ⃗(D) ≥ 2mχ(t) − 1. By Theorem 6.3
there exists an undirected graph G such that χ⃗(D) ≤ 2χ(G) and D <s

↔
G. This implies

that χ(G) ≥ mχ(t), and hence G contains a Kt-minor. Taking the same branch sets as
for the Kt-minor in G also in

↔
G shows that

↔
G <s

↔
Kt (since the biorientation of every

connected graph is a strongly connected digraph). By transitivity we obtain D <s

↔
Kt.

Since D was arbitrarily chosen such that χ⃗(D) ≥ 2mχ(t)− 1, this proves that we have
smχ⃗(t) ≤ 2mχ(t)− 1, as required.

6.3 Conclusion
In this chapter we showed that mχ(t) ≤ smχ⃗(t) ≤ 2mχ(t)− 1 for any t ≥ 1.

Therefore, smχ⃗(t) = Θ(mχ(t)), and the question about the asymptotics of smχ⃗(t)
raised by Axenovich, Girão, Snyder and Weber, reduces to the well-studied undirected
version of the problem, namely Hadwiger’s conjecture. Also, as Hadwiger’s conjecture is
known to be true for small values, for 2 ≤ t ≤ 6 we have

t + 1 ≤ smχ⃗(t) ≤ 2t− 1

We believe that the upper bound should not be tight. To support this intuition, let
us mention that a more careful analysis of our proof of Theorem 6.2 yields the stronger

2A cycle in a digraph is called induced if it forms an induced subdigraph.
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statement that any digraph D with χ⃗(D) ≥ 2mχ(t)−1 contains a strong
↔
Kt-minor model in

which between any two branch sets, there are at least two arcs spanned in both directions.
Under the assumption that Hadwiger’s conjecture is true, the bound 2t−1 for this stronger
property would be sharp, as shown by

↔
K2t−2. This indicates that our proof should not be

expected to give a tight bound for the problem of forcing a strong
↔
Kt-minor. Instead it

seems plausible that smχ⃗(t) = t + 1 for any t ≥ 3.

Conjecture 6.1. Every digraph D with χ⃗(D) ≥ t + 1 contains
↔
Kt as a strong minor.

Already resolving the first open case t = 3 of this problem would be quite interesting.
A notion of list colorings of digraphs was introduced and studied by Bensmail et

al. [BHL18]. A digraph is said to be k-choosable if for every assignment of color-lists of
size k to its vertices there is a choice of colors from the lists resulting in an acyclic coloring.
Interestingly, we do not know the answer to the following intriguing problem.

Problem 6.2. Does there exist f : N → N such that every digraph D excluding
↔
Kt as a

strong minor is f(t)-choosable?



Chapter 7

Excluding Topological Minors

7.1 Introduction
All graphs and digraphs considered in this chapter are simple.

The chromatic number is one of the fundamental graph parameters, and is well-known
to be intractable. Therefore, meaningful sufficient and necessary conditions for it to be
large are of high interest. In the previous chapter, we have discussed the famous conjecture
of Hadwiger, relating chromatic number and the containment of graph minors. Hadwiger’s
conjecture claims that any t-chromatic graph contains a Kt-minor. An even stronger
conclusion than that was suggested in a conjecture attributed possibly falsely1 to Hajós,
who conjectured that every t-chromatic graph contains a subdivision of Kt, that is, a graph
which can be obtained from Kt by replacing its edges with pairwise internally vertex-
disjoint paths connecting their original endpoints. Hajós’ conjecture is easily verified for
t ≤ 3, and Dirac [Dir52] proved the case t = 4.

Theorem 7.1 ([Dir52]). Every graph G with χ(G) ≥ 4 contains a K4-subdivision.

While the cases t = 5, 6 of Hajós’ conjecture remain open (and the case t = 5 would rep-
resent a strengthening of the 4CT), it was disproved for all values t ≥ 7 by Catlin [Cat79],
who constructed explicit counterexamples, i.e., graphs with chromatic number k which
contain no Kt-subdivision (see also [Tho05] for many more explicit constructions of coun-
terexamples). An even more devastating blow to the conjecture was delivered by Erdős
and Fajtlowicz [EF81], who showed that almost all graphs on Θ(t2) vertices do not contain
a Kt-subdivision, even though their chromatic number is Ω

(︁
t2/ log t

)︁
.

On the positive side, it turned out that large enough chromatic number does in fact
necessitate the existence of a Kt-subdivision. As a matter of fact, the following classical
result established that even large density is sufficient.

Theorem 7.2 (Bollobás and Thomason [BT98], Komlós and Szemerédi [KS96]). There
exists an absolute constant C > 0 such that for every t ∈ N, every graph G with minimum
degree at least Ct2 contains a subdivision of Kt.

Since (via degeneracy coloring) every graph G contains a subgraph of minimum degree
at least χ(G)− 1, one can deduce from Theorem 7.2 that having chromatic number larger
than Ct2 (for some absolute constant C) is sufficient to guarantee a Kt-subdivision. For
t ∈ N, let f(t) be the smallest integer such that every graph with chromatic number at
least f(t) contains a Kt-subdivision. Theorem 7.2 then implies a quadratic upper bound

1See the discussion in the introduction of [Tho05].
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f(t) = O(t2), while the result of Erdős and Fajtlowicz [EF81] establishes a lower bound
of f(t) = Ω

(︁
t2/ log t

)︁
. These remain the best known bounds on f(t); Fox et al. [FLS13]

conjectured that the truth lies with the lower bound.
The upshot of the above discussion is that a subdivision of any given graph is contained

in any graph of sufficiently large chromatic number. In this chapter we investigate this
phenomenon in the realm of directed graphs; we ask in what form, and to what extent, it
holds. This follows up previous work of Aboulker et al. [ACH+19] on the same topic. As
explained in Chapter 1, the notion of subdivision extends naturally to directed graphs. It
is less obvious, however, what would be the most suitable digraph coloring concept, which
would provide a rich family of forcible digraph subdivisions.

The chromatic number χ(D) of a digraph D is defined as the chromatic number of
U(D). The fact that any graph, however high its chromatic number is, can be oriented
acyclically and hence avoid containing any directed cycle, already hints that χ(D) being
large might only have limited impact on digraph subdivision containment. In fact, as was
noted by Aboulker, Cohen, Havet, Lochet, Moura, and Thomassé [ACH+19], the family
of digraphs F which can be forced as a subdivision by high chromatic number is very
limited: it consists of the orientations of forests, see [Bur80] and [CHLN18], respectively,
for the positive and negative directions of this result. As a consequence, we see that
high chromatic number of the underlying graph is not even strong enough to force the
subdivision of any particular orientation of a cycle.

In that sense it is natural to investigate other digraph coloring parameters, which,
in contrast to the chromatic number, take into account the direction of edges. Here we
investigate the dichromatic number as such a parameter.

Previously, Aboulker et al. [ACH+19] initiated the study of the existence of various
subdivisions in digraphs of large dichromatic number.

In one of their main results, they show that a subdivision of any given digraph is
contained in digraphs of sufficiently large dichromatic number. This is quite remarkable,
as (to the best of our knowledge) no other natural digraph parameter is known which is
capable of forcing subdivisions of arbitrary digraphs.

Theorem 7.3 ([ACH+19], Theorem 32). Let F be a digraph with n vertices and m arcs.
Then every digraph D with χ⃗(D) ≥ 4m(n− 1) + 1 contains a subdivision of F .

Following the terminology introduced in Chapter 2, for a digraph F we denote by
maderχ⃗(F ) the smallest integer k ≥ 1 such that every digraph D with χ⃗(D) ≥ k contains
a subdivision of F . We call maderχ⃗(F ) the (dichromatic) Mader number of F .

The problem of obtaining a polynomial bound (in terms of the number of vertices and
arcs of F ) on the Mader number remains open, and seems quite challenging. One reason
for the increased difficulty compared to the undirected case is that there is no analogue
of Theorem 7.2 for directed graphs. In fact, as explained in Chapter 2, it follows from a
result of Thomassen [Tho85b] that there exist digraphs of arbitrarily high minimum out-
and in-degree, which do not even contain a subdivision of

↔
K3, the bioriented triangle.

Consequently, entirely new methods have to be developed to force clique-subdivisions in
digraphs of large dichromatic number, since any methods for addressing this problem must
differ substantially from the established density-based ideas used in the undirected theory.

In light of the difficulty of improving the bound in Theorem 7.3 in general, it is natural
to vie for obtaining better upper bounds for special classes of digraphs. One appealing
conjecture in this vein was raised by Aboulker et al. [ACH+19].

Conjecture 7.1 ([ACH+19], Conjecture 39). For every orientation C of Cℓ, it holds that
maderχ⃗(C) = ℓ.
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In [ACH+19], Conjecture 7.1 is proved for directed cycles and an upper bound of 2ℓ − 1
is established for arbitrary orientations.

7.1.1 Our Results

Note that the Mader number of every digraph F is at least the number of its vertices.
Indeed, the complete digraph of order v(F )−1 has dichromatic number v(F )−1, but does
not have enough vertices to host a subdivision of F . Hence Conjecture 7.1 states that, in
a sense, the Mader number of orientations of cycles is as small as it could be.

In this chapter we resolve Conjecture 7.1 and go on to study the more general question:
for which digraphs F does it hold that maderχ⃗(F ) = v(F )? In the first main result of
the chapter we prove that this equality holds for a large class of digraphs, which includes
orientations of cactus graphs2 (and hence all orientations of cycles), as well as all biori-
ented forests. This class of digraphs, a member of which we refer to as octus3, is defined
inductively as follows.

Definition 7.1. The class of octi digraphs is defined as follows.

• K1 is an octus.

• Let F be an octus, and let v0 ∈ V (F ). Let P = v1, . . . , vk, k ≥ 1, be an orientation
of a path which is disjoint from V (F ). Let F ∗ be obtained from F by adding the path
P , both arcs (v0, v1), (v1, v0), and exactly one of the arcs (v0, vk), (vk, v0). Then F ∗

is also an octus.

• If F is an octus then every subdigraph of F is also an octus.

Figure 7.1: An example of an octus.

2Cactus graphs are usually defined as the graphs which do not contain a pair of cycles sharing at least
two vertices (or, equivalently, as the graphs which do not contain K4 − e as a minor).

3The name alludes to the fact that every orientation of a cactus graph is an octus.
We should warn, however, that the class of octi is strictly larger than the class of orientations of cacti,

as is explained following Theorem 7.4.
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We note that the path P in the second item of Definition 7.1 is allowed to consist of a
single vertex, which corresponds to attaching a digon to F at v0. The operation described
in Item 2 of Definition 7.1 will be called ear addition. Our first main result is as follows:

Theorem 7.4. For every octus F , we have maderχ⃗(F ) = v(F ).

This theorem has a couple of immediate consequences, each of which extends results
of [ACH+19]. It is not difficult to see that orientations of cacti are precisely the octi which
have no digons. Therefore, we have the following:

Corollary 7.5. For every orientation F of a cactus, we have maderχ⃗(F ) = v(F ).

Since every cycle is a cactus, Corollary 7.5 immediately implies Conjecture 7.1.
Another immediate corollary of Theorem 7.4 is concerned with biorientations of forests.

Every bioriented tree can be obtained from K1 by a sequence of ear additions where, at
each step, we add a new vertex and connect it by a digon to one of the vertices of the
existing digraph. Hence, every bioriented of forest is an octus, and we have the following:

Corollary 7.6. If T is an (undirected) forest, then maderχ⃗(
↔
T ) = v(

↔
T ).

Corollary 7.6 strengthens another result from [ACH+19], where the conclusion was
shown to hold for every orientation of a forest.

Next we discuss digraphs on a small number of vertices. The smallest digraph not
covered by Theorem 7.4 is the bioriented triangle minus an edge. It turns out that this
digraph, too, has the property that its Mader number equals its number of vertices.

Proposition 7.7. maderχ⃗(
↔
K3 − e) = 3.

In the second main result of this chapter, we show that the Mader number of every
4-vertex tournament is 4.

Theorem 7.8. For every orientation K of K4, we have that maderχ⃗(K) = 4.

Theorem 7.8 is a strict extension to the directed setting of Dirac’s theorem on K4-
subdivisions (namely, Theorem 7.1). In fact, Theorem 7.1 can be easily derived from
Theorem 7.8 as follows. First, observe that χ⃗(

↔
G) = χ(G) for every graph G. Now, if G

is an undirected graph with χ(G) ≥ 4, then by Theorem 7.8,
↔
G contains a subdivision of

any orientation of K4, which translates to a K4-subdivision in G.
In the third and last main result of this chapter, we prove a linear upper bound on the

Mader number for another class of relatively sparse digraphs which we call subcubic4. A
digraph F is called subcubic if ∆(F ) ≤ 3 and ∆+(F ), ∆−(F ) ≤ 2.

Theorem 7.9. If F is a subcubic digraph, then maderχ⃗(F ) ≤ 22 · v(F ).

The rest of the chapter is organized as follows. After establishing some preliminary
results in Section 7.2, we prove Theorem 7.4 in Section 7.3. Section 7.4 is devoted to
proving Theorem 7.8. In Section 7.5 we derive Theorem 7.9 from the results of Chapter 6.
Finally, in Section 7.6 we conclude with a discussion of Mader numbers of biorientations
of complete digraphs and cycles, give the proof of Proposition 7.7, and pose some open
problems. A main focus of Section 7.6 is on digraphs which we call Mader-perfect; these are
digraphs F with the property that every subdigraph F ′ of F satisfies maderχ⃗(F ′) = v(F ′).
We propose the further study of these digraphs and establish some preliminary results.

4This name is a slight abuse of notation, since we do not allow arbitrary orientations of subcubic graphs.
In [HMM18] subcubic digraphs are instead called digraphs without big vertices.
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7.2 Preliminaries

In this section we gather a number of definitions, observations and auxiliary results about
the dichromatic number and about subdivisions in digraphs which will be used in the
course of the chapter. We start by observing that maderχ⃗ is subadditive with respect to
taking disjoint unions.

Observation 7.10. Let F be the disjoint union of two digraphs F1, F2. Then

maderχ⃗(F ) ≤ maderχ⃗(F1) + maderχ⃗(F2).

Proof. For convenience, put ki := maderχ⃗(Fi), i = 1, 2. Let D be a digraph with dichro-
matic number at least k1 + k2. Let A1 ⊆ V (D) be such that χ⃗(D[A1]) = k1 (such a set A1
can be obtained by repeatedly deleting vertices as long as the dichromatic number of the
current digraph is strictly larger than k1). Put A2 := V (D) \ A1. Then χ⃗(D[A2]) ≥ k2,
for otherwise one could color D with less than k1 + k2 colors. By our choice of ki, we
get that D[Ai] contains a subdivision of Fi for each i = 1, 2. It follows that D contains a
subdivision of F , as required.

Let k ∈ N. A digraph D is called k-dicritical, if χ⃗(D) = k, but χ⃗(D′) < k for all proper
subdigraphs D′ ( D.

Lemma 7.11. Let D be k-dicritical. Then δ+(D), δ−(D) ≥ k − 1.

Proof. Since the reversal of all arcs preserves the k-dicriticality of D, it suffices to show
that δ+(D) ≥ k − 1. Suppose towards a contradiction that there exists some v ∈ V (D)
such that d+(v) < k − 1. By assumption, D − v admits an acyclic coloring with color-set
{1, . . . , k − 1}. We can extend this to a (k − 1)-coloring of D by assigning to v a color in
{1, . . . , k − 1} that does not appear on N+(v). Then the resulting coloring is an acylic
(k − 1)-coloring of D (since no monochromatic directed cycle can pass through v), in
contradiction to our assumption that χ⃗(D) = k.

Lemma 7.12. Let D be k-dicritical. Then D is strongly connected.

Proof. Assume, for the sake of contradiction, that D is not strongly connected. Then
there is a partition V (D) = A ∪ B such that A and B are non-empty and there are no
arcs going from B to A. Since D is k-dicritical, both D[A] and D[B] have an acyclic
(k − 1)-coloring. But putting these colorings together is an acyclic (k − 1)-coloring of D,
since D contains no directed cycles which intersect both A and B. Thus, we have arrived
at a contradiction to χ⃗(D) = k.

We will further need the following two deep results by Mader on so-called non-critical
vertices and on subdivisions in digraphs of sufficiently large out-degree.

Theorem 7.13 ([Mad91], see also Section 7.11 in [BJG08]). Let k ∈ N, and let D be
a strongly k-vertex-connected digraph with δ+(D), δ−(D) ≥ 2k. Then there is v ∈ V (D)
such that D − v is (also) strongly k-vertex-connected.

Theorem 7.14 ([Mad96]). Let D be a digraph such that δ+(D) ≥ 3. Then D contains a
subdivision of K⃗4, the transitive tournament of order 4.
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7.3 Oriented Cacti and Bioriented Forests
In this section we prove Theorem 7.4. The main step in the proof consists of showing that
if F ∗ is a digraph obtained from a digraph F via ear addition (i.e., the operation described
in the second item of Definition 7.1), then maderχ⃗(F ∗) ≤ maderχ⃗(F ) + k where k is the
number of newly added vertices. This is done in the following theorem.

Theorem 7.15. Let F be a digraph and let v0 ∈ V (F ). Let P = v1, . . . , vk be an ori-
entation of a path disjoint from V (F ). Let F ∗ be a digraph obtained from F by adding
the path P , both arcs (v0, v1), (v1, v0), and exactly one of the arcs (v0, vk), (vk, v0). Then
maderχ⃗(F ∗) ≤ maderχ⃗(F ) + k.

To prove Theorem 7.15 we will need the following useful lemma, which describes a
generalization of the idea of Kempe-switches to directed graphs.

Lemma 7.16. Let D be a digraph, k ∈ N, and let c : V (D) → {1, . . . , k} be an acyclic
coloring of D. Let i ̸= j ∈ {1, . . . , k}, Di,j := D[c−1({i, j})], and let X ⊆ c−1({i, j}) be
the vertex set of a strong component of Di,j. Then the coloring c′ : V (D) → {1, . . . , k},
defined by

c′(x) :=

⎧⎪⎪⎨⎪⎪⎩
c(x) if x ∈ V (D) \X,

j if x ∈ X ∩ c−1(i),
i if x ∈ X ∩ c−1(j)

is an acyclic coloring of D as well.

Proof. Suppose towards a contradiction that there is a directed cycle C in D which is
monochromatic under c′. If V (C) ∩ X = ∅, then c and c′ agree on V (C), contradicting
our assumption that c is an acyclic coloring of D. Therefore V (C) ∩ X ̸= ∅. Since c′

has only colors i or j on X, we find that C is monochromatic under c′ either in color i
or j. This means that V (C) ⊆ (c′)−1({i, j}) = c−1({i, j}) according to the definition of
c′. Hence, C is a directed cycle in Di,j , and since X is a strong component of Di,j , we
conclude V (C) ⊆ X. By the definition of c′ the colors i and j are switched in X, so C
must have been monochromatic under c in color j or i. This contradicts to the fact that
the coloring c of D is acyclic and concludes the proof.

Proof of Theorem 7.15. First, we argue that by symmetry, it is enough to handle the
case that (v0, vk) ∈ A(F ∗). For a digraph D, denote by

←
D the digraph on the same

vertex set obtained from it by reversing the orientations of all arcs, that is, with arc-set
A(
←
D) := {(x, y) | (y, x) ∈ A(D)}. For all digraphs D and F , we have χ⃗(D) = χ⃗(

←
D)

and D contains a subdivision of F if and only if
←
D contains a subdivision of

←
F . As a

consequence, we have maderχ⃗(F ) = maderχ⃗(
←
F ) for every digraph F . Therefore, the case

(vk, v0) ∈ A(F ∗) follows from the case (v0, vk) ∈ A(F ∗) via this symmetry. So for the rest
of the proof let us assume that (v0, vk) ∈ A(F ∗).

For brevity, in the following we put M := maderχ⃗(F ). Consider any given digraph D
such that χ⃗(D) = M + k. We have to show that D contains a subdivision of F ∗.

Let us start by fixing an acyclic coloring c0 : V (D) → {1, 2, . . . , M + k} of D that
maximizes |c−1

0 ({1, . . . , k})|. Set Y1 := c−1
0 ({1, . . . , k}) and Y2 := c−1

0 ({k + 1, . . . , M + k}).
Note that V (D) = Y1∪Y2 is a partition of V (D). Since c0 is an acyclic coloring of D with
χ⃗(D) colors, we have χ⃗(D[Y1]) = |{1, . . . , k}| = k and χ⃗(D[Y2]) = |{k+1, . . . , M+k}| = M .

From the definition of M we conclude that there exists a subgraph S ⊆ D[Y2] which is
a subdivision of F . In the following, let us denote by x0 ∈ V (S) ⊆ Y2 the branch-vertex
in this subdivision corresponding to v0 ∈ V (F ).
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For each acyclic k-coloring c : Y1 → {1, . . . , k} of D[Y1], let v(c) ∈ Zk denote the vector
defined by v(c)i = |N+(x0) ∩ c−1(i)|, for i = 1, . . . , k. Let us consider the pre-order ≺ on
the set of acyclic {1, . . . , k}-colorings of D[Y1], where c1 ≺ c2 iff v(c1) <lex v(c2). Here <lex
denotes the lexicographical order on Zk. In the following, let c : Y1 → {1, . . . , k} denote
an acyclic coloring of D[Y1] that is minimal with respect to ≺. For i < j ∈ {1, . . . , k}, let
Di,j := D[c−1({i, j})].

Claim 1. For every 1 ≤ i < j ≤ k and every vertex x ∈ N+(x0) ∩ c−1(i), there is a
vertex y ∈ N+(x0) ∩ c−1(j) such that x and y lie in the same strong component of Di,j .

Proof. Denote by X ⊆ c−1({i, j}) the unique strong component of Di,j containing x.
Suppose towards a contradiction that X ∩ (N+(x0) ∩ c−1(j)) = ∅. Let c′ be the coloring
of D[Y1] obtained from c by switching colors i and j within X. According to Lemma 7.16,
c′ is an acyclic coloring of D[Y1]. By definition, we furthermore have v(c′)ℓ = v(c)ℓ for all
ℓ ∈ {1, . . . , k} \ {i, j}, and since no vertex in N+(x0) is switched from color j to color i
while x is switched from color i to color j, we have v(c′)i < v(c)i. However, since i < j,
this means that c′ ≺ c, contradicting our minimality assumption on c. This shows that
our assumption was wrong, namely there does exist a vertex y ∈ X ∩ (N+(x0) ∩ c−1(j)).
This yields the claim. �

Claim 2. There are vertices x1, x2, . . . , xk ∈ N+(x0) ∩ Y1 such that
• c(xi) = i, for i = 1, . . . , k.

• There is a directed cycle C in D containing x0 and x1 such that V (C)\{x0} ⊆ c−1(1).

• For every 2 ≤ i ≤ k, there exists a directed path Pi−1,i in D[Y1] with endpoints
xi−1, xi such that V (Pi−1,i) ⊆ c−1({i − 1, i}). In addition, Pi−1,i is directed from
xi−1 to xi if (vi−1, vi) ∈ A(P ), and directed from xi to xi−1 if (vi, vi−1) ∈ A(P ).

Proof. We start by showing that there is a directed cycle C in D through x0 such that
V (C) \ {x0} ⊆ c−1(1). Assume, towards a contradiction, that no such cycle exists, and
consider the coloring c′

0 : V (D)→ {1, . . . , M + k} defined by

c′
0(x) :=

⎧⎪⎪⎨⎪⎪⎩
c(x), if x ∈ Y1

1, if x = x0

c0(x), if x ∈ Y2 \ {x0}.

Our assumption implies that c′
0 is an acyclic coloring of D, because there is no directed

cycle containing x0 which is monochromatic under c′
0. However, the coloring c′

0 has one
more vertex in colors {1, ..., k} than c0, contradicting our maximality assumption on c0.
Therefore, a cycle C with the claimed properties exists.

Now define x1 ∈ N+(x0) ∩ V (C) to be the unique out-neighbor of x0 on C. We have
c(x1) = 1 since x1 ∈ V (C)\{x0}. We now successively define vertices x2, . . . , xk as follows:
for i = 2, 3, . . . , k, define the vertex xi to be a vertex in N+(x0) ∩ c−1(i) chosen such that
xi−1 and xi lie in the same strong component of Di−1,i. Notice that such a choice is
possible by Claim 1.

The first and second items of the claim follow directly from our choice of the vertices
x1, . . . , xk. For the last item, for each 2 ≤ i ≤ k, we choose a directed path Pi−1,i in
Di−1,i, such that Pi−1,i is directed from xi−1 to xi if (vi−1, vi) ∈ A(P ) and from xi to xi−1
if (vi, vi−1) ∈ A(P ). The existence of such a path follows in each case since xi−1, xi are
in the same strong component of Di−1,i. Clearly, V (Pi−1,i) ⊆ V (Di−1,i) = c−1({i− 1, i}).
This proves the last item. �
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Claim 3. There are vertices z1, z2, . . . , zk ∈ Y1 such that

• c(zi) = i, for i = 1, . . . , k.

• z1 ∈ V (C) and zk ∈ N+(x0).

• For every 2 ≤ i ≤ k, there exists a directed path Qi−1,i in D[Y1] with endpoints
zi−1, zi such that Qi−1,i is directed from zi−1 to zi if (vi−1, vi) ∈ A(P ), and directed
from zi to zi−1 if (vi, vi−1) ∈ A(P ).

• The paths Qi−1,i, i = 2, . . . , k are pairwise internally vertex-disjoint.

• V (C) ∩ V (Q1,2) = {z1} and V (C) ∩ V (Qi−1,i) = ∅ for i = 3, . . . , k.

Proof. We define the vertices zi as follows: We define z1 ∈ V (C) to be the unique last
vertex in V (C) we meet when traversing the trace of the path P1,2 starting from x1 ∈ V (C).
Since P1,2 uses only colors 1 and 2, we must have z1 ∈ V (C) \ {x0} and thus c(z1) = 1.
For i = 2, . . . , k − 1, we successively define zi to be the first vertex of Pi,i+1 we meet
when traversing the trace of the path Pi−1,i[zi−1, xi] starting from zi−1 (such a vertex
exists, since xi ∈ V (Pi−1,i) ∩ V (Pi,i+1) by Claim 2). Since V (Pi−1,i) ⊆ c−1({i − 1, i}),
V (Pi,i+1) ⊆ c−1({i, i + 1}), it follows that c(zi) = i. Finally, we put zk := xk ∈ N+(x0).
For each i ∈ {2, 3, . . . , k}, we define Qi−1,i := Pi−1,i[zi−1, zi].

Let us now verify the correctness of the claim. The first three items follow directly
from Claim 2 and the definition of the vertices zi and the paths Qi−1,i.

For the fourth item, let i < j ∈ {2, . . . , k} be given. We need to show that Qi−1,i and
Qj−1,j can only intersect in their endpoints. If j − i ≥ 2, then we directly conclude that
V (Qi−1,i) ∩ V (Qj−1,j) ⊆ V (Pi−1,i) ∩ V (Pj−1,j) ⊆ c−1({i − 1, i}) ∩ c−1({j − 1, j}) = ∅. If
on the other hand j = i + 1, then by definition of zi, no vertex on Qi−1,i = Pi−1,i[zi−1, zi]
except for zi lies on Pi,i+1, and therefore also not on Qj−1,j = Pi,i+1[zi, zi+1]. Hence,
V (Qi−1,i) ∩ V (Qj−1,j) = {zi} = {zj−1}. This concludes the proof of the fourth item. The
claim that V (C) ∩ V (Q1,2) = {z1} in the fifth item directly follows from our choice of
Q1,2 = P1,2[z1, z2] and the definition of z1 as being the last vertex on C we meet when
traversing P1,2 starting at x1. For i ∈ {3, . . . , k}, we can conclude the second part of the
last item from the inclusion V (C)∩V (Qi−1,i) ⊆ (c−1({1})∪{x0})∩c−1({i−1, i}) = ∅. �

Let S∗ be the subdigraph of D formed by joining S ⊆ D[Y2], the pairwise distinct
vertices z1, . . . , zk and the connecting dipaths Qi−1,i, i = 2, . . . , k, the two anti-parallel
directed paths C[x0, z1], C[z1, x0] between x0 and z1 as well as the arc (x0, zk). From
Claim 3 and since

(︂⋃︁k
i=2 V (Qi−1,i) ∪ (V (C) \ {x0})

)︂
∩ V (S) ⊆ Y1 ∩ Y2 = ∅, it follows that

S∗ is isomorphic to a subdivision of F ∗, with x0, z1, z2, . . . , zk playing the roles of the
vertices v0, v1, v2, . . . , vk of F ∗.

We have thus shown that every digraph D with χ⃗(D) = maderχ⃗(F ) + k contains a
subdivision of F ∗, and this concludes the proof of the theorem.

By definition, every octus is obtained from K1 via a sequence of operations of two
types: ear addition and taking a subdigraph. For an octus F , let s(F ) be the (minimal)
number of operations needed to obtain F . Let us say that F is a maximal octus if it can be
obtained from K1 by a sequence of ear additions only. By repeatedly applying Theorem
7.15, we see that maderχ⃗(F ) = v(F ) for every maximal octus F . To complete the proof
of Theorem 7.4, we also need to address non-maximal octi. This will be done using the
following two lemmas.

Lemma 7.17. Every octus is a subdigraph of a maximal octus.
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Proof. The proof is by induction on s(F ). If s(F ) = 0 then F = K1 and the assertion
is trivial. Suppose then that s(F ) ≥ 1. By the definition of an octus (see Definition
7.1), either F is a subdigraph of some octus F ′ with s(F ′) < s(F ), or F is obtained by
ear addition from some octus F ′ with s(F ′) < s(F ). In the former case, the induction
hypothesis implies that F ′ — and hence also F — is a subdigraph of a maximal octus,
as required. Suppose then that F is obtained by ear addition from some octus F ′ with
s(F ′) < s(F ). By the induction hypothesis, F ′ is a subdigraph of some maximal octus F ′′.
By performing on F ′′ the same ear addition which turns F ′ into F , we obtain a maximal
octus which contains F . This completes the proof.

Lemma 7.18. For every connected subdigraph F ′ of a maximal octus F , there is a maximal
octus F̄ such that F ′ is a spanning subdigraph of F̄ .

Proof. The proof is by induction on s(F ). If s(F ) = 0 then F = K1 and the assertion
is trivial. Let then F be a maximal octus with s(F ) ≥ 1, and let F ′ be a connected
subdigraph of F . By the definition of maximal octi, there is some maximal octus F0 with
s(F0) < s(F ) and v0 ∈ V (F0) such that F is obtained from F0 by ear addition, namely, by
adding an oriented path P = v1, . . . , vk with {v1, . . . , vk} ∩ V (F0) = ∅, as well as the arcs
(v0, v1), (v1, v0) and (w.l.o.g.) (v0, vk). Consider the subdigraph F ′

0 := F ′[V (F ′) ∩ V (F0)]
of F0. If V (F ′) ∩ V (F0) = ∅, namely if V (F ′) ⊆ {v1, . . . , vk}, then F ′ is an oriented path,
and is hence a spanning subgraph of a bioriented path, which is a maximal octus. Suppose
then that V (F ′)∩V (F0) ̸= ∅. The way F is constructed from F0 and the assumption that
F ′ is connected imply that F ′

0 is connected as well. By the induction hypothesis (applied
to F ′

0), there is a maximal octus F̄0 such that F ′
0 is a spanning subdigraph of F̄0. If F ′ = F ′

0
then we are done, and otherwise we must have V (F ′) ∩ {v1, . . . , vk} ̸= ∅, which in turn
implies that v0 ∈ V (F ′

0) = V (F̄0) because F ′ is connected. Now, if {v1, . . . , vk} ⊆ V (F ′)
then F ′ is a spanning subdigraph of the maximal octus obtained from V (F̄0) by adding the
path P and connecting its endpoints to v0 ∈ V (F̄0) using the arcs (v0, v1), (v1, v0), (v0, vk).
Otherwise, i.e. if {v1, . . . , vk} ̸⊆ V (F ′), then there must be some 1 ≤ i < j ≤ k such
that V (F ′) = V (F̄0) ∪ {v1, . . . , vi} ∪ {vj , . . . , vk} (as F ′ is connected). Now, let F̄ be the
maximal octus obtained from F̄0 by a sequence of two ear additions: we first add the path
v1, . . . , vi and the arcs (v0, v1), (v1, v0), (v0, vi) and then the path vj , . . . , vk and the arcs
(v0, vj), (vj , v0), (v0, vk). Then F ′ is a spanning subdigraph of F̄ , as required.

Proof of Theorem 7.4. Our goal is to show that maderχ⃗(F ) = v(F ) for every octus F .
First, observe that it suffices to prove this statement for connected F , since the general
statement would then follow by invoking Observation 7.10. So let F be a connected
octus. By combining Lemmas 7.17 and 7.18, we see that F is a spanning subdigraph of
some maximal octus F̄ . As mentioned before, Theorem 7.15 implies that maderχ⃗(F̄ ) =
v(F̄ ) = v(F ). As F is a subdigraph of F̄ , we have maderχ⃗(F ) ≤ maderχ⃗(F̄ ) and hence
maderχ⃗(F ) = v(F ), as required.
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7.4 Tournaments of Order 4
In this section we prove Theorem 7.8. We give a separate proof for each of the 4-vertex
tournaments. There are exactly four non-isomorphic tournaments on 4 vertices: K⃗4, the
transitive tournament of order 4; K⃗s

4 , the unique strongly connected tournament of order
4; and the tournaments W +

3 , W −
3 obtained from the directed triangle C⃗3 by adding a

dominating source or sink, respectively. See Figure 7.2 for an illustration.

~K4
~Ks
4

W+
3 W−

3

Figure 7.2: The four non-isomorphic tournaments of order 4.

Since W +
3 and W −

3 are obtained from each other by reversing the orientations of all
arcs, it suffices to prove Theorem 7.8 for K⃗4, K⃗s

4 and W +
3 . While we can derive the result

for the transitive tournament K⃗4 directly from Theorem 7.14, the proofs for K⃗s
4 and W +

3
are more involved and require some preparation.

Proof of maderχ⃗(K⃗4) = 4. Let D be a given digraph with χ⃗(D) ≥ 4. Then D contains a
4-dicritical subdigraph D′ ⊆ D. By Lemma 7.11, we have δ+(D′) ≥ 3. We now apply
Theorem 7.14 to conclude that D′ and thus also D contains a subdivision of K⃗4. This
completes the proof.

We prepare the proofs of maderχ⃗(K⃗s
4) = 4 and maderχ⃗(W +

3 ) = 4 with a set of useful
lemmas, providing reduction operations which preserve the property that the digraph
does not contain a certain subdivision.

Lemma 7.19. Let D be a digraph, let (u, w) ∈ A(D), and let D′ be the digraph obtained
from D by deleting u and adding the arc (x, w) for each x ∈ N−

D (u) \ ({w} ∪N−
D (w)).

Let F be a sink-free orientation of a cubic graph. If D′ contains a subdivision of F ,
then so does D.

Proof. Let S′ ⊆ D′ be a subdivision of F contained in D′. If (x, w) /∈ A(S′) for all
x ∈ N−

D (u), then S′ is also a subdigraph of D and hence we have found a subdivision of
F in D. So suppose that (x, w) ∈ A(S′) for some x ∈ N−

D (u).
We now distinguish between two cases.
Case 1: There exists x′ ∈ N−

D (u) \ {x} such that (x′, w) ∈ A(S′). Then w must be a
branch vertex of the subdivision S′, and since F is a sink-free orientation of a 3-regular
graph, there exists a third neighbor x′′ of w in S′ satisfying (w, x′′) ∈ A(S′) ⊆ A(D′). By
definition of D′, we have (w, x′′) ∈ A(D) as well. We now see that the subdigraph S of D
defined by V (S) := V (S′)∪{u}, A(S) := (A(S′)\{(x, w), (x′, w)})∪{(x, u), (x′, u), (u, w))}
forms a subdivision of F in D, where the branch vertex w of S′ is moved to the new branch
vertex u of S (and w becomes a subdivision vertex).
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Case 2: x is the unique vertex in N−
D (u) such that (x, w) ∈ A(S′). Then the sub-

digraph S of D defined by the vertex-set V (S) := V (S′) ∪ {u} and arc-set A(S) :=
(A(S′) \ {(x, w)}) ∪ {(x, u), (u, w)} forms a subdivision of F contained in D.

Lemma 7.20. Let D be a strongly connected digraph, let v ∈ V (D), and let (X, Y ) be a
non-trivial partition of V (D) \ {v} such that (x, y) /∈ A(D) for all x ∈ X, y ∈ Y . Suppose
further that D[X] is strongly connected. Let D1 := D[X ∪ {v}] and let D2 be defined by
V (D2) := Y ∪ {v} and A(D2) := A(D[Y ∪ {v}]) ∪ {(y, v) | y ∈ Y, x ∈ X, (y, x) ∈ A(D)}.
Let further F be a sink-free orientation of a cubic graph. Then

1. If D1 or D2 contains a subdivision of F , then so does D.

2. χ⃗(D) ≤ max{χ⃗(D1), χ⃗(D2)}.
Proof.

1. The claim is trivial for D1, since D1 ⊆ D. Now suppose that D2 contains a subdivi-
sion of F . The vertex v in D must have an in-neighbor in the set X, for otherwise
(X, Y ∪{v}) would form a directed separation of D, contradicting the assumed strong
connectivity. Since D[X] is strongly connected, it follows that there exists an in-
arborescence T ⊆ D[X ∪ {v}] rooted at x0 := v which spans X ∪ {v}. Let n := |X|,
and fix an ordering x0, x1, . . . , xn of the vertices of T such that each vertex of T
appears before its children in the ordering (i.e., if (xi, xj) ∈ A(T ) then i > j). For
every i = n, n−1, n−2, . . . , 1, 0, let Hi be the digraph obtained from D by removing
all arcs in A(D[X ∪ {v}]) \ A(T ), deleting the vertices {xi+1, . . . , xn} and adding
the arc (y, xj) for every y ∈ Y and j ∈ {0, 1, . . . , i} such that y has an out-neighbor
x ∈ {xi+1, . . . , xn} in D and the first intersection of the unique x-x0-path in T with
{x0, x1, . . . , xi} is xj . Note that Hn is a subdigraph of D and that H0 = D2. Fur-
ther we can observe that for every 1 ≤ i ≤ n, the digraph Hi−1 is obtained from
Hi by deleting xi, and adding an arc from every x ∈ N−

Hi
(xi) to the parent of xi in

T . Hence, repeated application of Lemma 7.19 yields that if D2 = H0 contains a
subdivision of F , then the same is true for all Hi, 0 ≤ i ≤ n. Hence Hn ⊆ D contains
a subdivision of F , and this proves the claim.

2. Let k := max{χ⃗(D1), χ⃗(D2)}, let c1 : X ∪ {v} → {1, . . . , k} be an acyclic coloring of
D1 and c2 : Y ∪{v} → {1, . . . , k} an acyclic coloring of D2, respectively. Without loss
of generality we may assume c1(v) = 1 = c2(v). We now define a k-coloring of V (D)
by putting c(x) := c1(x) for every x ∈ X, c(v) := 1, and c(y) := c2(y) for every y ∈ Y .
We claim that this defines an acyclic k-coloring of D. Indeed, if not, then there exists
a directed cycle C in D which is monochromatic under c. If v /∈ V (C), then since
there is no arc from X to Y in D, we must have either V (C) ⊆ X or V (C) ⊆ Y , which
in both cases yields a contradiction to our choice of c1 and c2 as acyclic colorings.
Hence, v ∈ V (C) and V (C) ⊆ c−1(1). If V (C) ∩ Y = ∅, then C is a monochromatic
cycle in the coloring c1 of D1 = D[X ∪ {v}], a contradiction. We therefore have
v ∈ V (C), V (C) ∩ Y ̸= ∅. Since there are no edges from X to Y , there must be
w ∈ Y such that (v, w) ∈ A(C). Let C[v, w′] be a maximal directed subpath of C
starting at v such that V (C[v, w′]) \ {v} ⊆ Y . (In other words, C[v, w′] is obtained
by traversing C starting from the arc (v, w) and stopping just before the cycle leaves
Y .) Then either (w′, v) ∈ A(D), or (w′, x) ∈ A(D) for some x ∈ X and hence
(w′, v) ∈ A(D2) by definition of D2. Therefore, C[v, w′] + (w′, v) forms a directed
cycle in D2, all of whose vertices have color 1 under c2, contradicting our assumption
on c2. This contradiction shows that our initial assumption was wrong, namely that c
is indeed an acyclic coloring of D, proving that χ⃗(D) ≤ k = max{χ⃗(D1), χ⃗(D2)}.
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Lemma 7.21. Let D be a digraph, and let u, v, w ∈ V (D) be pairwise distinct such that
v, w ∈ N+(u) ∩ N−(u) (i.e., {u, v} and {u, w} induce digons). Let D∗ be obtained from
D by deleting v and w and adding the arcs

{(u, x) | x ∈ V (D) \ {u, v, w}, N−(x) ∩ {v, w} ≠ ∅}

and
{(x, u) | x ∈ V (D) \ {u, v, w}, N+(x) ∩ {v, w} ≠ ∅}.

Let F be an oriented cubic graph. If D∗ contains a subdivision of F , then so does D.

Proof. Let S∗ be a subdigraph of D∗ isomorphic to a subdivision of F . If u /∈ V (S∗),
then S∗ is also a subdigraph of D and we are done. Hence, suppose in the following that
u ∈ V (S∗). If u is a subdivision vertex in S∗, then let u− ∈ N−

D∗(u) and u+ ∈ N+
D∗(u)

denote the in- and the out-neighbor of u in S∗, respectively. By definition of D∗ there exist
x−, x+ ∈ {u, v, w} such that (u−, x−), (x+, u+) ∈ A(D). Let P denote the bioriented path
with vertex-trace v, u, w. Then clearly P contains a directed x−, x+-path Px−,x+ . Now
A(S) := (A(S∗) \ {(u−, u), (u, u+)}) ∪ {(u−, x−), (x+, u+)} ∪ A(Px−,x+) forms the arc-set
of a subdigraph S ⊆ D isomorphic to a subdivision of F . For the next case suppose
that u is a branch vertex of the subdivision S∗. For every in-neighbor y ∈ N−

S∗(u) in S∗,
let x(y) ∈ {u, v, w} be a vertex such that (y, x(y)) ∈ A(D), and for every out-neighbor
y ∈ N+

S∗(u), let x(y) ∈ {u, v, w} be a vertex such that (x(y), y) ∈ A(D). Let y1, y2, y3
be the three distinct neighbors of u in S∗, ordered in such a way that x(y2) lies on the
unique bioriented subpath Px(y1),x(y3) of P connecting the vertices x(y1) and x(y3). It
is now evident that the subdigraph of D obtained from S∗ by deleting u and adding
Px(y1),x(y3) and the arcs (yi, x(yi)) for yi ∈ N−

S∗(u) and (x(yi), yi) for yi ∈ N+
S∗(u), contains

a subdivision of F with x(y2) as a branch vertex. This verifies the claim in the second
case as well and concludes the proof.

Proof of maderχ⃗(K⃗s
4) = 4. Suppose towards a contradiction that the claim is wrong, and

let D be a counterexample minimizing lexicographically the pair (v(D), a(D)); namely,
the number of vertices is minimized with first priority and the number of arcs with second
priority. Clearly, v(D) ≥ 5, D is 4-dicritical, and it contains no subdivision of K⃗s

4 . By
Lemma 7.12, D is strongly connected.

Claim 1. D is strongly 2-vertex-connected.

Proof. Suppose towards a contradiction that there exists a vertex v ∈ V (D) such that D−v
is not strongly connected. This means that D − v has more than one strong component.
Let X ⊆ V (D − v) be the vertex set of a strong component of D − v which is a “sink”
in D − v, that is, there is no arc leaving X. Let Y := V (D) \ (X ∪ {v}). Then (X, Y )
forms a partition of V (D) \ {v}, D[X] is strongly connected and (x, y) /∈ A(D) for all
x ∈ X, y ∈ Y . We can therefore apply Lemma 7.20 with F = K⃗s

4 to obtain a pair D1, D2
of digraphs with vertex-sets X ∪ {v}, Y ∪ {v}, respectively, such that neither D1 nor D2
contains a subdivision of K⃗s

4 and 4 = χ⃗(D) ≤ max{χ⃗(D1), χ⃗(D2)}. However, this means
that there is some i ∈ {1, 2} such that χ⃗(Di) ≥ 4, Di contains no K⃗s

4-subdivision and
clearly v(Di) < v(D). This contradicts the assumed minimality of D, thus showing that
the assumption was wrong, namely that D is indeed strongly 2-vertex-connected. �
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Claim 2. δ+(D), δ−(D) ≥ 4.

Proof. Note that K⃗s
4 is isomorphic to the tournament obtained from it by reversing all

arcs. It follows that since D is a counterexample to the claim, so is
←
D, which is the digraph

obtained from D by reversing all its arcs. Evidently, we have (v(
←
D), a(

←
D)) = (v(D), a(D)),

meaning that
←
D is also a minimal counterexample (in the sense defined above). Since

δ−(D) = δ+(
←
D), it suffices to prove δ+(D) ≥ 4.

Suppose towards a contradiction that there exists a vertex u ∈ V (D) with d+(u) ≤ 3.
Since D is 4-dicritical, Lemma 7.11 implies that d+(u) = 3. We now distinguish between
two cases depending on the structure of the out-neighborhood of u.

Case 1: There exists some w ∈ N+(u) such that (w, u) /∈ A(D). In this case, let D′ be
the digraph defined as in Lemma 7.19. Namely, D′ is obtained from D by deleting u and
adding the arcs (x, w) for all x ∈ N−(u). By Lemma 7.19, D′ contains no subdivision of
K⃗s

4 . Since v(D′) = v(D)− 1, the minimality assumption on D implies that χ⃗(D′) ≤ 3. So
let c′ : V (D) \ {u} → {1, 2, 3} be an acyclic 3-coloring of D′. Write N+

D (u) = {w, w1, w2}.
Fix a color cu ∈ {1, 2, 3} \ {c′(w1), c′(w2)} (which clearly exists). Let c : V (D)→ {1, 2, 3}
be the coloring of D defined by c(x) := c′(x) for all x ∈ V (D) \ {u} and c(u) := cu. Since
χ⃗(D) = 4, there has to be a directed cycle C in D which is monochromatic under c. Clearly,
C has to pass through u, for otherwise it would have been a monochromatic dicycle already
in the coloring c′ of D′. Since none of the out-arcs (u, w1), (u, w2) is monochromatic, we
must have (u, w) ∈ A(C). Let u′ ∈ N−

D (u) be the unique predecessor of u on C. Then
u′ ̸= w because (w, u) /∈ A(D) by assumption. It follows from the definition of D′ that
replacing the directed subpath u′, (u′, u), u, (u, w), w of C with the (“direct”) arc (u′, w)
in D′ defines a directed cycle C ′ in D′ such that V (C ′) = V (C) \ {u}. Hence, C ′ is a
monochromatic dicycle in the acyclic coloring c′ of D′. This contradiction shows that our
initial assumption d+(u) ≤ 3 was wrong.

Case 2: (w, u) ∈ A(D) for all w ∈ N+(u). We claim that in this case, we can find a pair
w1, w2 ∈ N+(u) of distinct neighbors of u such that (w1, w2) /∈ A(D). Indeed, suppose this
were not the case. Then the vertices {u}∪N+(u) induce a

↔
K4 in D. However, this clearly

means that D contains K⃗s
4 ⊆

↔
K4 as a subdigraph, contradicting our initial assumption on

D. So let us fix, in the following, a pair of distinct w1, w2 ∈ N+(u) ⊆ N−(u) such that
(w1, w2) /∈ A(D). Let D∗ be the digraph obtained from D by applying the operation of
Lemma 7.21 to {u, w1, w2}; that is, we delete w1 and w2 and add the arc (u, x) for every
x ∈ V (D) \ {u, w1, w2} which has an in-neighbor in {w1, w2} and the arc (x, u) for every
x ∈ V (D) \ {u, w1, w2} which has an out-neighbor in {w1, w2}. By Lemma 7.21, D∗ does
not contain a subdivision of K⃗s

4 . We clearly have v(D∗) < v(D) and so the minimality
assumption on D yields that there is an acyclic 3-coloring c∗ : V (D∗) → {1, 2, 3} of
D∗. Write N+(u) = {w1, w2, w3}, and let cu ∈ {1, 2, 3} be a color distinct from both
c∗(u) and c∗(w3). We now define a 3-coloring c of D by putting c(x) := c∗(x) for all
x ∈ V (D) \ {u, w1, w2}, c(u) := cu, and c(w1) := c(w2) := c∗(u). Since χ⃗(D) = 4, there
must be a dicycle C in D which is monochromatic under c. Then C cannot contain u,
for otherwise it would have to leave u through one of the out-arcs (u, w1), (u, w2), (u, w3),
but by the definition of the coloring c, none of these arcs is monochromatic. On the other
hand, we must have V (C) ∩ {w1, w2} ̸= ∅, for otherwise C would be a monochromatic
dicycle in (D∗, c∗), which is impossible. Observe also that V (C) \ {w1, w2} ≠ ∅ because
(w1, w2) /∈ A(D). Let x0, x1, . . . , xℓ = x0 be the vertex-trace of C in D. Now consider the
closed sequence y0, y1, . . . , yℓ = y0 of vertices in D∗, where yi := xi if xi /∈ {w1, w2} and
yi := u if yi ∈ {w1, w2}. The definitions of D∗ and c and the fact that u /∈ V (C) imply that
c∗(yi) = c(xi) for every i = 1, . . . , ℓ, and that either (yi−1, yi) ∈ A(D∗) or yi−1 = yi = u for
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every i = 1, . . . , ℓ. This means that in D∗ there is a monochromatic closed directed walk
which contains at least two vertices: it contains u because V (C) ∩ {w1, w2} ̸= ∅ and at
least one other vertex because V (C)\{w1, w2} ≠ ∅ and u /∈ V (C). Therefore, D∗ contains
a monochromatic dicycle. All in all, this contradicts the fact that c∗ was chosen as an
acyclic coloring of D∗, implying that our initial assumption d+(u) ≤ 3 was wrong.

To sum up, we have arrived at a contradiction in both cases, which means that we
indeed must have δ+(D) ≥ 4. As argued above, we can derive δ−(D) = δ+(

←
D) ≥ 4 with

the same arguments applied to the minimal counterexample
←
D. This proves the claim. �

With Claims 1 and 2 at hand, we can now apply Theorem 7.13 to D with k = 2, and
thus obtain a vertex v ∈ V (D) such that D − v is strongly 2-vertex-connected. We now
complete the proof of the Theorem by explicitly constructing a subdivision of K⃗s

4 in D.
We start with the following observation.

Claim 3. There are 3 directed cycles C1, C2, C3 in D such that V (Ci) ∩ V (Cj) = {v}
for any two distinct i, j ∈ {1, 2, 3}.

Proof. Since D is 4-dicritical, D − v admits an acyclic coloring with colors {1, 2, 3}. For
every i ∈ {1, 2, 3}, if we try and extend this coloring to D by assigning color i to v, we
have to find a monochromatic directed cycle Ci in D, which has to pass through v. Note
that V (Ci)∩ V (Cj) = {v} for all 1 ≤ i < j ≤ 3, because all vertices in V (Ci) \ {v} receive
color i (1 ≤ i ≤ 3). �

The rest of the proof is divided into two cases depending on the lengths of the cycles Ci.
Case 1. All the three cycles C1, C2, C3 have length two, i.e., are digons. Let v1, v2, v3

be vertices such that V (Ci) = {v, vi} (i = 1, 2, 3). Since D − v is strongly connected,
there has to be a directed path in D − v starting in v1 and ending in {v2, v3}. Let P be
a shortest such directed path, and without loss of generality assume that it ends in v2.
By the minimality assumption on P we know that v3 /∈ V (P ). Now put A := V (P ). We
clearly have |A| ≥ |{v1, v2}| = 2, and since D − v is strongly 2-vertex-connected we may
apply Theorem 1.2 to obtain that there are two vertex-disjoint A-v3-dipaths P1 and P2 in
D− v. For i = 1, 2, let us define V (P )∩ V (Pi) =: {wi}. Then P1 and P2 only intersect at
v3, and P only intersects Pi at wi (for i = 1, 2). Without loss of generality (by relabeling
if necessary), we may assume that when traversing P from v1 towards v2, we first meet w1
before we meet w2. Now let S be the subdigraph of D defined by the union of the following
dipaths in D: P , P1, P2, (v, (v, v1), v1), (v3, (v3, v), v) and (v2, (v2, v), v). It is now easy
to observe that S constitutes a subdivision of K⃗s

4 whose branch vertices are v, w1, w2, v3.
This contradicts our initial assumption that D contains no subdivision of K⃗s

4 .
Case 2. There is some i ∈ {1, 2, 3} such that |Ci| ≥ 3. Without loss of generality

we may assume that i = 1. Let v2 be the unique out-neighbor of v on C2. Define
B := V (C1) \ {v} ⊆ V (D − v). Clearly, |B| ≥ 3 − 1 = 2, and hence we may apply
Theorem 1.2 to the strongly 2-connected digraph D − v to conclude that there are two
vertex-disjoint v2-B-dipaths P1, P2 in D − v. For i = 1, 2, let xi ∈ A and yi ∈ B be the
endpoints of Pi. It is now clear that the union of C1 and the internally vertex-disjoint
dipaths Q := (v, (v, v2), v2), P1 and P2 is a subdivision of K⃗s

4 in D with branch vertices
v, v2, y1, y2. This contradicts our initial assumption that D contains no subdivision of K⃗s

4 .
Since we arrived at a contradiction in both cases, it follows that our initial assumption

that there exists a (smallest) digraph D with χ⃗(D) ≥ 4 not containing a subdivision of
K⃗s

4 was wrong. This finishes the proof.
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We now move on to show that maderχ⃗(W +
3 ) = 4. This proof is partly inspired by a

method used in [HMM18].

Proof of maderχ⃗(W +
3 ) = 4. Suppose towards a contradiction that there exists a digraph

D such that χ⃗(D) ≥ 4, but D contains no subdivision of W +
3 . Assume additionally that D

lexicographically minimizes the pair (v(D), a(D)) (i.e., the number of vertices is minimized
with first priority, and the number of arcs is minimized with second priority). Clearly,
v(D) ≥ 5 and D is 4-dicritical. Hence, δ+(D), δ−(D) ≥ 3 by Lemma 7.11, and D is
strongly connected by Lemma 7.12.

Claim 1. D is strongly 2-vertex-connected.

Proof. Suppose towards a contradiction that there exists a vertex v ∈ V (D) such that D−v
is not strongly connected. This means that D − v has more than one strong component.
Let X ⊆ V (D − v) be the vertex set of a strong component of D − v which is a “sink” in
D−v, that is, there is no arc leaving X. Let Y := V (D)\ (X ∪{v}). Then (X, Y ) forms a
partition of V (D)\{v}, D[X] is strongly connected and (x, y) /∈ A(D) for all x ∈ X, y ∈ Y .
We can therefore apply Lemma 7.20 with F = W +

3 to obtain a pair D1, D2 of digraphs
with vertex-sets X ∪ {v}, Y ∪ {v}, respectively, such that neither D1 nor D2 contains
a subdivision of W +

3 and 4 = χ⃗(D) ≤ max{χ⃗(D1), χ⃗(D2)}. However, this means that
there is some i ∈ {1, 2} such that χ⃗(Di) ≥ 4, Di contains no W +

3 -subdivision and clearly
v(Di) < v(D). This contradicts the assumed minimality of D. This contradiction shows
that the assumption was wrong, namely that D is indeed strongly 2-vertex-connected. �

Claim 2. The underlying graph of D is 3-vertex-connected.

Proof. Suppose towards a contradiction that there is a set K ⊆ V (D) such that |K| ≤ 2
and D − K is not weakly connected. Let (X1, X2) be a partition of V (D) \ K into two
non-empty sets such that there is no arc between X1 and X2 in D − K. Since D is
strongly 2-vertex-connected, we must have |K| = 2, say K = {s1, s2} for some distinct
s1, s2 ∈ V (D). For i = 1, 2, let Di be the digraph with vertex-set V (Di) := Xi ∪ K
and arc-set A(Di) := A(D[Xi ∪ K]) ∪ {(s1, s2), (s2, s1)}. We claim that none of D1, D2
contains a subdivision of W +

3 . Indeed, suppose towards a contradiction that for some
i ∈ {1, 2}, there exists a subdigraph S ⊆ Di which is isomorphic to a subdivision of W +

3 .
If A(S) ∩ {(s1, s2), (s2, s1)} = ∅, then S would also be a subgraph of D, contradicting our
assumptions on D. Hence, S has to contain an arc between s1 and s2, and without loss of
generality we may assume that (s1, s2) ∈ A(S). Since W +

3 contains no digons, the same
is true for S and hence (s2, s1) /∈ A(S). We now claim that there exists an s1-s2-dipath
in D − Xi. To this end, choose an arbitrary vertex w ∈ X3−i. Since both D − s1 and
D − s2 are strongly connected (by Claim 1), there are dipaths P1 and P2 in D − s1 resp.
D − s2 such that P1 starts at w and ends at s2, while P2 starts at s1 and ends at w.
Since D contains no arcs between X1 and X2, we must have V (P1) ⊆ X3−i ∪ {s2} and
V (P2) ⊆ X3−i ∪ {s1}. Finally, we see that the concatenation of P1 and P2 is a directed
walk from s1 to s2, implying that P1 ∪ P2 ⊆ D[X3−i ∪ {s1, s2}] = D − Xi contains an
s1-s2-dipath P . Clearly, P is internally vertex-disjoint from all dipaths in S−(s1, s2) ⊆ D,
and hence the subdigraph S′ := (S − (s1, s2)) ∪ P of D is isomorphic to a subdivision of
S, which in turn is a subdivision of W +

3 . This contradicts our initial assumption that D is
W +

3 -subdivision-free. We conclude that neither D1 nor D2 contains a subdivision of W +
3 ,

as claimed. Since clearly v(D1), v(D2) < v(D), the assumed minimality of D yields that
D1 and D2 admit acyclic 3-colorings c1 and c2, respectively. Since the pair s1, s2 induces a



162 CHAPTER 7. EXCLUDING TOPOLOGICAL MINORS

digon in both D1 and D2, we must have c1(s1) ̸= c1(s2), c2(s1) ̸= c2(s2). Hence, possibly
after permuting the color set, we may assume that c1(s1) = c2(s1) = 1, c1(s2) = c2(s2) = 2.
We now claim that the common extension c : V (D) → {1, 2, 3} of c1 and c2 to D defines
an acyclic coloring of D. Indeed, a monochromatic directed cycle C in (D, c) would have
to contain vertices of both X1 and X2, for otherwise it would also be a monochromatic
dicycle in (D1, c1) or (D2, c2), contradicting the assumption that these are acyclic colorings.
However, since K = {s1, s2} separates X1 and X2, this is only possible if {s1, s2} ⊆ V (C).
But then C is not monochromatic because c(s1) = 1 and c(s2) = 2. This shows that c is
indeed an acyclic coloring of D, which in turn contradicts χ⃗(D) = 4. So we see that our
initial assumption that the underlying graph of D admits a 2-separator was wrong. This
concludes the proof of Claim 2. �

Claim 3. For every x ∈ V (D) there is a directed cycle C in D − x such that |C| ≥ 3.

Proof. Let x ∈ V (D) be given arbitrarily. Suppose towards a contradiction that every
directed cycle in the digraph D − x has length two, i.e., is a digon. Recall that in a
strongly connected digraph, every arc lies on a directed cycle. Since D − x is strongly
connected (Claim 1), every arc of D − x is contained in a digon, and hence D − x is a
symmetric digraph. Since D − x contains no directed cycle of length at least 3, this is
only possible if D− x is a biorientation of a forest. But then the bipartition of this forest
defines an acyclic 2-coloring of D − x. By assigning to x a distinct third color, we obtain
an acyclic 3-coloring of D, a contradiction to χ⃗(D) = 4. This proves the claim. �

Claim 4. For every pair (x, C) of a vertex in D and a directed cycle C in D−x of length
at least 3, there exists a partition (W, K, Z) of V (D) with the following properties:

• x ∈W and V (C) ⊆ K ∪ Z

• There is no arc in D with tail in W and head in Z.

• |K| = 2.

A partition (W, K, Z) with these properties will be called a good separation for (x, C).

Proof. We claim that there are no three x-V (C)-dipaths in D which pairwise intersect only
at x. Indeed, three such dipaths joined with C would form a subdivision of W +

3 , which
does not exist in D by assumption. By Theorem 1.2, there is a set K ⊆ V (D)\{x} of size
at most 2 such that there are no x-V (C)-dipaths in D−K. Let W ⊆ V (D) \K be the set
of vertices reachable in D−K via a dipath starting at x, and let Z := V (D)\ (W ∪K). It
follows now directly by definition that x ∈W and V (C) ⊆ K ∪Z, and there is no arc with
tail in W and head in Z. We have |K| ≤ 2, and since D is strongly 2-vertex-connected (by
Claim 1), it follows that |K| = 2. Therefore (W, K, Z) is a good separation of (x, C). �

In the following, for every pair (x, C) of a vertex x ∈ V (D) and a directed cycle C
in D − x of length at least 3, we denote by ω(x, C) the minimum of |W | over all good
separations (W, K, Z) of (x, C). Let

ω0 := min{ω(x, C) | x ∈ V (D), C dicycle in D − x, |C| ≥ 3}.
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Claim 5. Let x ∈ V (D), let C be a directed cycle in D − x of length at least 3, and let
(W, K, Z) be a good separation for (x, C) such that |W | = ω(x, C). Then every vertex of
W is reachable from x by a dipath in D[W ].

Proof. Let W ′ be the set of all vertices w ∈ W which are reachable from x in D[W ].
Evidently, x ∈ W ′ ⊆ W . Observe that (W ′, K, (W \W ′) ∪ Z) forms a good separation
for (x, C), because D has no edge with tail in W ′ and head in W \W ′. It follows that
|W ′| ≥ ω(x, C) = |W |. This implies that W ′ = W , as required. �

Claim 6. There exists a pair (x∗, C∗) of a vertex x∗ ∈ V (D), a dicycle C∗ of length at
least 3 in D − x∗, as well as a good separation (W, K, Z) of (x∗, C∗), such that:

• |W | = ω0,

• there exist z∗ ∈ Z, w∗ ∈W \ {x∗} such that (z∗, w∗) ∈ A(D).

Proof. Let (x0, C0) be a pair of a vertex and a disjoint dicycle in D, such that |C0| ≥ 3,
and such that (x0, C0) attains the minimum ω0 = ω(x0, C0). Let (W, K, Z) be a good
separation for (x0, C0) such that |W | = ω(x0, C0) = ω0. Note that (W, K, Z) is also a
good separation for every pair (x, C0) where x ∈W \ {x0}.

Observe that there has to exist an arc between Z and W , for if not, then D−K is not
weakly connected, contradicting the facts that |K| = 2 and that the underlying graph of
D is 3-vertex-connected (Claim 2). As there are no arcs from W to Z, there has to exist
an arc from Z to W . Let (z0, w0) be such an arc. If w0 ̸= x0, then we directly obtain that
(x0, C0) together with (W, K, Z) and the arc (z0, w0) satisfy all the required properties in
the statement of the claim. If x0 = w0, then choose some x1 ∈W \ {x0}. Such a selection
is possible, since N+(x0) \K ⊆ W and N+(x0) \K ̸= ∅ as d+(x0) ≥ δ+(D) ≥ 3. Since
(W, K, Z) is a good separation also for (x1, C0), and since x1 ̸= w0 = x0, it follows now
that (x1, C0) together with (W, K, Z) and the arc (z0, w0) have all the claimed properties.
This concludes the proof of Claim 6. �

In the following, let us consider a pair (x∗, C∗) together with the good separation (W, K, Z)
and the arc (z∗, w∗) as given by Claim 6. Since D − x∗ is strongly connected (Claim 1),
and since (z∗, w∗) ∈ A(D−x∗), there exists a directed cycle C ′ in D−x∗ passing through
(z∗, w∗). As D has no arc from W to Z, the dicycle C ′ must use at least one vertex from
K, which means that |C ′| ≥ 3. Let us write K = {s1, s2} and assume (without loss of
generality) that s1 ∈ V (C ′).

By Claim 4, there exists a good separation (W ′, K ′, Z ′) for the pair (x∗, C ′); choose
it such that |W ′| = ω(x∗, C ′), and such that it minimizes |K ′ ∩ Z| among all such good
separations. We claim that K ′ ∩W ̸= ∅. Indeed, if we had K ′ ∩W = ∅ then we would
have D[W ] ⊆ D −K ′, which would imply that w∗ ∈ W is reachable from x∗ by a dipath
in D −K ′ (as every vertex of W is reachable from x∗ by a dipath in D[W ] by Claim 5).
However, this would contradict the facts that x∗ ∈ W ′, w∗ ∈ V (C ′) ⊆ K ′ ∪ Z ′, and that
there is no path from W ′ to Z ′ in D−K ′ (by the definition of a good separation). Let us
write K ′ = {s′

1, s′
2}, where s′

1 ∈W .

Claim 7. K ′ ∩ Z = ∅.

Proof. Suppose towards a contradiction that K ′ ∩ Z ̸= ∅, which means that s′
2 ∈ Z

(because s′
1 ∈ W ). Let R be the set of vertices reachable from x∗ via a dipath in the

digraph D − {s′
1, s2}. We claim that R ⊆ W ′. Suppose towards a contradiction that
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R \W ′ ̸= ∅. Then there is an (x∗, R \W ′)-dipath P in D−{s′
1, s2}. Note that V (P ) ⊆ R

by the definition of R. Let y ∈ R \W ′ be the end-vertex of P and y′ its predecessor.
Then y′ ∈ W ′ because only the last vertex y of P is in R \W ′. Since (y′, y) cannot have
its tail in W ′ and head in Z ′, we must have y ∈ (V (D) \ {s′

1, s2}) \ (W ′ ∪ Z ′) ⊆ {s′
2};

hence y = s′
2 ∈ Z. Since x∗ ∈ W , and since K separates W from Z, there must be a

vertex on P − y which belongs to K = {s1, s2}. However, this vertex can be neither s1
nor s2; indeed, s1 /∈ V (P ) \ {y} because V (P ) \ {y} ⊆W ′ and s1 ∈ V (C ′) ⊆ K ′ ∪ Z ′, and
s2 /∈ V (P ) because P is contained in D − {s′

1, s2}.
This contradiction shows that R ⊆W ′, as claimed.
There is no arc from R to V (D) \ (R ∪ {s′

1, s2})) by the definition of R, which means
that |{s′

1, s2}| = 2 since D is strongly 2-vertex-connected (by Claim 1). We furthermore
have x∗ ∈ R and V (C ′) ⊆ V (D)\W ′ ⊆ V (D)\R. Hence, (R, {s′

1, s2}, V (D)\(R∪{s′
1, s2}))

defines a good separation for the pair (x∗, C ′). By the choice of (W ′, K ′, Z ′), this means
that R = W ′ and |R| = ω(x∗, C ′). We further have |{s′

1, s2} ∩ Z| = 0 < 1 = |K ′ ∩ Z|
(because s′

1 ∈W and s2 ∈ K), contradicting our choice of (W ′, K ′, Z ′). This contradiction
shows that the assumption K ′ ∩ Z ̸= ∅ was wrong, concluding the proof of the claim. �

Claim 8. W ′ ∩ Z ̸= ∅ and Z ′ ∩ Z ̸= ∅.

Proof. We start by showing that W ′ ∩ Z ̸= ∅. Suppose towards a contradiction that
W ′ ∩ Z = ∅. Since {w∗, s1} ⊆ V (C ′) ⊆ K ′ ∪ Z ′, we have W ′ ∩ {w∗, s1} = ∅ and hence
W ′ ⊆ V (D) \ (Z ∪ {w∗, s1}) = (W ∪ K) \ {w∗, s1} = (W \ {w∗}) ∪ {s2}. On the other
hand, we have |W ′| = ω(x∗, C ′) ≥ ω0 = |W |, and hence W ′ = (W \ {w∗}) ∪ {s2}.
In particular, s2 ∈ W ′. Since D is strongly 2-vertex-connected, s2 must have an out-
neighbor y ∈ Z, for otherwise there would be no dipath from x∗ to Z in D − s1. Using
Claim 7 and our assumption that W ′ ∩ Z = ∅, we have (W ′ ∪ K ′) ∩ Z = ∅, and hence
y ∈ V (D)\ (W ′∪K ′) = Z ′. However, this means that (s2, y) is an arc from a vertex in W ′

to a vertex in Z ′, a contradiction. This contradiction shows that the initial assumption
W ′ ∩ Z = ∅ was wrong, proving the first part of claim.

For the second part, recall that z∗ ∈ Z and z∗ ∈ V (C ′) ⊆ K ′ ∪ Z ′. Since K ′ ∩ Z = ∅
(by Claim 7), we conclude that z∗ ∈ Z ′ ∩ Z and hence Z ′ ∩ Z ̸= ∅, as required. �

Claim 9. Every dipath in D starting in W ′ ∩ Z ̸= ∅ and ending in Z ′ ∩ Z ̸= ∅ must
contain s1.

Proof. We first establish that s2 ∈ W ′. To see this, pick some vertex v ∈ W ′ ∩ Z. By
Claim 5 and as |W ′| = ω(x∗, C ′), there exists an x∗-v-dipath in D[W ′]. Since x∗ ∈W and
v ∈ Z, this dipath must contain a vertex from K. However, since s1 /∈ W ′, this vertex
must be s2, implying that s2 ∈W ′.

Now to prove the claim, let P be a dipath starting in a vertex a ∈W ′ ∩Z and ending
in a vertex b ∈ Z ′ ∩ Z. Let y ∈ V (P ) be the last vertex on P contained in W ′ ∪ K ′

when traversing P starting from a. Let y′ be the successor of y on P ; then (y, y′) ∈ A(D)
and y′ ∈ Z ′. Hence, we must have y ∈ K ′ (since D has no arcs from W ′ to Z ′). It now
follows from Claim 7 that y ∈ W ∪K. Now let us consider the subpath P [y, b] starting
at y and ending at b. By definition of y, no vertex on P [y, b] is contained in W ′, and
hence s2 does not lie on this path. However, P [y, b] starts in a vertex of W ∪K and ends
in a vertex of Z, which means that it must contain a vertex from K = {s1, s2}. Hence,
s1 ∈ V (P [y, b]) ⊆ V (P ). This proves the claim. �
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Since s1 is contained in none of the two non-empty sets W ′ ∩ Z and Z ′ ∩ Z, Claim 9
shows that D − s1 is not strongly connected, contradicting Claim 1. This shows that our
very first assumption, namely that a digraph D with χ⃗(D) ≥ 4 which does not contain a
subdivision of W +

3 , exists, was wrong. This completes the proof of maderχ⃗(W +
3 ) = 4.

7.5 Subcubic Digraphs

In this section we give a proof of Theorem 7.9 using Theorem 6.3 from Chapter 6.

Proof of Theorem 7.9. As a first step let us note that given n ∈ N, every undirected graph
G with δ(G) ≥ 10.437n contains every n-vertex subcubic graph as a minor. This follows
directly from a result of Reed and Wood [RW16], who proved that every graph with
average degree at least n + 6.291m contains every graph with n vertices and m edges as a
minor and since m ≤ 3

2n for subcubic graphs.
Let now D be any digraph with χ⃗(D) ≥ 22n, F a subcubic digraph on n ≥ 2 vertices

and H its underlying undirected subcubic graph. By Theorem 6.3 there exists an undi-
rected graph G such that D is a strong

↔
G-minor-model and χ(G) ≥ 11n. In particular,

G contains a subgraph of minimum degree at least 11n− 1 > 10.437n and hence, by our
earlier remark, an H-minor. This implies that

↔
G contains a strong

↔
H-minor-model and

hence D does so. However, as F ⊆
↔
H, it also follows that D contains a strong F -minor-

model. Let {Xf : f ∈ V (F )} be a branch set partition of V (D) witnessing this. Recall
that, by definition, for every arc e = (u1, u2) ∈ A(F ) there exist vertices v(e, u1) ∈ Xu1

and v(e, u2) ∈ Xu2 such that (v(e, u1), v(e, u2)) ∈ A(D).
Let next u ∈ V (F ) be an arbitrary vertex with total degree d = dF (u) ∈ {0, 1, 2, 3}

and let us denote the arcs incident to u by e1, . . . , ed. Furthermore, for i = 1, . . . , d we put
vi := v(ei, u). We claim that there exists a vertex b(u) ∈ Xu and for every i = 1, . . . , d a
directed path P u

i in D[Xu] such that

• P u
1 , . . . , P u

d are internally vertex-disjoint;

• if u is the tail of ei, then P u
i is a directed path from b(u) to vi;

• if u is the head of ei, then P u
i is a directed path from vi to b(u).

This claim holds trivially if d = 0, and if d = 1 then we can simply put b(u) = v1 and let
P u

1 be the trivial one-vertex path consisting of v1.
If d = 2 then, without loss of generality, by the symmetry of reversing all arcs in D

and F , we may assume that u is the head of e1. We then can put b(u) := v2, let P u
1 be

any directed path in D[Xu] from v1 to v2 (given by strong connectivity), and take P u
2 to

be the trivial one-vertex path consisting only of v2.
Finally suppose d = 3. Since F is subcubic, u either has in-degree one and out-degree

two, or vice versa. As before, without loss of generality, by symmetry we may assume that
the first case occurs, and it is e1 that enters u and e2 and e3 that emanate from it. Take
now P12 and P13 to be directed paths in D[Xf ] starting at v1 and ending at v2 and v3,
respectively. We define now b(u) as the first vertex in V (P12) that we meet when traversing
P13 backwards (starting at v3); P u

1 as the subpath of P12 directed from v1 to b(u); P u
2 as

the subpath of P12 directed from b(u) to v2; and P u
3 as the subpath of P13 directed from

b(u) to v3. It follows by definition that P1, P2, P3 are internally vertex-disjoint, and hence
the claim follows.
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To finish the proof, let S ⊆ D be a subdigraph with vertex set

V (S) :=
⋃︂

u∈V (F )

⎛⎝d(u)⋃︂
i=1

V (P u
i )

⎞⎠ ,

and arcs

A(S) :=
{︂(︂

v(e, u1), v(e, u2)
)︂ ⃓⃓⃓

e = (u1, u2) ∈ A(F )
}︂
∪

⎛⎝ ⋃︂
u∈V (F )

⎛⎝d(u)⋃︂
i=1

A(P u
i )

⎞⎠⎞⎠ .

Then S is a digraph isomorphic to a subdivision of F in which a vertex u ∈ V (F ) is
represented by the branch-vertex b(u). This concludes the proof.

7.6 Mader-Perfect Digraphs and Conclusion
In this chapter, and in particular Sections 7.3 and 7.4, we investigated under which cir-
cumstances the simple inequality maderχ⃗(F ) ≥ v(F ) is tight. Observe that tightness is
trivially preserved under taking spanning subdigraphs. It turns out however, that the
optimality of the bound does not necessarily carry over to arbitrary subdigraphs. In
fact, in Proposition 7.22 below we show that for any digraph F there exists a constant
kF such that adding kF isolated vertices to F produces a digraph whose Mader number
equals its number of vertices. This suggests that the class of digraphs F which satisfy
maderχ⃗(F ) = v(F ) may not have a meaningful characterization. This motivates the fol-
lowing definition. We call a digraph F Mader-perfect if for every (induced) subdigraph F ′

of F , the Mader number of F ′ equals its order.

Proposition 7.22. For every digraph F there is kF ∈ N such that for every k ≥ kF , the
digraph F ′ obtained from F by adding k new isolated vertices satisfies maderχ⃗(F ′) = v(F ′).
In fact, it suffices to take kF = 2 ·maderχ⃗(F )− v(F )− 1.

Proof. Let k ≥ kF := 2 ·maderχ⃗(F )− v(F )− 1 be arbitrary. Consider any given digraph
D such that χ⃗(D) ≥ k + v(F ). We need to show that D contains a subdivision of F which
misses at least k of the vertices of D.

Let X ⊆ V (D) be a vertex set such that χ⃗(D[X]) = maderχ⃗(F ). Then D[X] contains
a subdivision of F , and we have m := χ⃗(D −X) ≥ k + v(F )−maderχ⃗(F ), for otherwise
we could color D with less than k +v(F ) colors. Let Y1, . . . , Ym be a partition of V (D)\X
into m acyclic sets. Let us first consider the case that at most v(F )− 1 of these sets are
singletons. Then

v(D)− |X| = |Y1|+ . . . + |Ym| ≥ 2m− (v(F )− 1)

≥ 2k + 2v(F )− 2 ·maderχ⃗(F )− (v(F )− 1) = k + (k − kF ) ≥ k.

Evidently, the subdivision of F contained in D[X] does not use any of the ≥ k vertices in
V (D) \X, concluding the proof in this case.

In the other case, at least v(F ) of the sets Yi are singletons; without loss of generality,
say Yi = {yi} for 1 ≤ i ≤ v(F ). Since Y1 . . . , Ym form an optimal acyclic coloring of
D −X, we cannot merge any two color classes to obtain an acyclic coloring with m − 1
colors. It follows that (yi, yj), (yj , yi) ∈ A(D) for every 1 ≤ i < j ≤ v(F ). This implies
that D contains a copy of F on the vertices y1, . . . , yv(F ). By deleting the v(F ) vertices
y1, . . . , yv(F ), we obtain a digraph of dichromatic number at least χ⃗(D) − v(F ) ≥ k, and
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hence, the remaining digraph consists of at least k vertices. So we see that D indeed
contains a subdivision of F missing at least k vertices in this second case as well. This
concludes the proof.

The first two main results of this chapter — namely Theorems 7.4 and 7.8 — can be
restated as saying that all octi digraphs and all tournaments of order 4 are Mader-perfect.
For octi digraphs this follows immediately from Theorem 7.4, since octi are closed under
taking subdigraphs; and for 4-vertex tournaments this follows from the fact that every non-
spanning subdigraph F ′ of a 4-vertex tournament is a subgraph of an oriented triangle,
and for those F ′ the equality maderχ⃗(F ′) = v(F ′) follows from Theorem 7.4. In a similar
vein, Proposition 7.7 implies that

↔
K3 − e is Mader-perfect. Although Proposition 7.7 can

be obtained as a consequence of Theorem 2.2, let us give an independent shorter proof.

Proof of Proposition 7.7. It is sufficient to show that every 3-dicritical digraph D contains
a subdivision of

↔
K3−e. So let D be a 3-dicritical digraph. Then δ+(D), δ−(D) ≥ 2 and D

is strongly-connected, as guaranteed by Lemmas 7.11 and 7.12, respectively. By Theorem
7.13 applied for k = 1, there is v ∈ V (D) such that D−v is strongly connected. Since D is
3-dicritical, there exists an acyclic 2-coloring c : V (D) \ {v} → {1, 2}. Evidently, c cannot
be extended to an acyclic 2-coloring of D. This means that for each i = 1, 2, D contains
a directed cycle Ci which contains v, such that all vertices in V (Ci) \ {v} are colored with
color i (under c). Note that V (C1)∩V (C2) = {v}. Since D−v is strongly-connected, there
is a path in D from V (C1) to V (C2) which avoids v. Let P be a shortest path from V (C1)
to V (C2) avoiding v, and let us denote the endpoints of P by x1, x2 (where xi ∈ V (Ci)).
The minimality of P implies that V (P )∩V (Ci) = {xi} (for each i = 1, 2), since otherwise
P could be replaced by a shorter path. Now it is easy to see that the vertices v, x1, x2
and the (internally vertex-disjoint) dipaths C1[v, x1], C1[x1, v], C2[v, x2], C2[x2, v], P form
a subdivision of

↔
K3 − e, as required.

Altogether, we see that the class of Mader-perfect digraphs is quite rich. We believe
it would be interesting to obtain a precise characterization of this class.

Problem 7.1. Characterize Mader-perfect digraphs.

On the negative side,
↔
K3 is the smallest digraph F satisfying maderχ⃗(F ) > v(F ), hence

no bioriented clique of order at least 3 is Mader-perfect. In fact for any t ≥ 3, the digraph
obtained from

↔
Kt+2 by removing a bioriented

↔
C5 has dichromatic number t but contains

no subdivision of
↔
Kt. This shows that the Mader number of

↔
Kt is at least t + 1.

The analogous problem for undirected graphs seems to be interesting as well: Call
an undirected graph F Mader-perfect if for every subgraph F ′ ⊆ F , every graph G of
chromatic number at least v(F ′) contains an F ′-subdivision.

Problem 7.2. Characterize Mader-perfect graphs.

Since we have χ⃗(
↔
G) = χ(G) for every undirected graph, it follows that if F is an

undirected graph such that at least one of the orientations of F is Mader-perfect, then
F is Mader-perfect. In particular, it follows that every forest, every cactus graph, and
K4 are Mader-perfect graphs. Using our terminology, Catlin’s counterexamples to Hajós’
conjecture say that Kk is not Mader-perfect for every k ≥ 7.

Already determining maderχ⃗(
↔
K3) exactly seems to be a challenging problem. From

above we can only show that maderχ⃗(
↔
K3) ≤ 9, where the upper bound follows from a

combination of Proposition 7.7 and Theorem 7.23 below. We believe that the truth lies
with the lower bound, provided by the above construction.
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Conjecture 7.2. We have maderχ⃗(
↔
K3) = 4, i.e., every digraph D with no

↔
K3-subdivision

admits an acyclic 3-coloring.

It is natural to ask how dense Mader-perfect digraphs can be. For k ∈ N, let m(k)
denote the maximum possible number of arcs of a Mader-perfect digraph of order k. Using
a variant of the classical probabilistic argument of Erdős and Fajtlowicz [EF81], we can
show that m(k) = O(k3/2√log k), which means that Mader-perfect digraphs have to be
(at least somewhat) sparse. In fact, let us show the slightly more general claim that

maderχ⃗(F ) ≥ cm2

k2 log m
(7.1)

for every digraph F on k vertices and m ≥ c1k log k arcs, where c1 is a suitably large
absolute constant. The bound (7.1) shows that if maderχ⃗(F ) = v(F ) = k (which has to
be the case if F is Mader-perfect), then m = O(k3/2√log k), as claimed.

In order to prove (7.1), consider any fixed digraph F consisting of k ≥ 2 vertices
and m ≥ c1k log k arcs. Let D(n, p) be the random digraph5 with parameters n = ⌊m

2 ⌋
and p = m

4k2 . We claim that with positive probability, D(n, p) contains neither a set of
k vertices spanning at least m/2 arcs nor an acyclic set of more than c2k2 log m

m vertices
for some suitable absolute constant c2. To see this, note that the expected number of
arcs spanned by some fixed set of k vertices in D(n, p) is pk(k − 1) < m

4 , and hence the
Chernoff-bound yields that the probability that some k fixed vertices span at least m

2 arcs
is bounded by exp(−m

12). Therefore the probability that there are k vertices spanning at
least m

2 arcs is at most
(︁n

k

)︁
exp(−m

12) ≤ (m/2)k exp(−m
12) = exp(k log(m/2) − m

12) < 1
2 ,

provided c1 is chosen large enough.
Similarly, the probability that any fixed set of α > c2k2 log m

m vertices is acyclic in
D(n, p) is at most α!(1 − p)(

α
2). Hence, the probability that D(n, p) contains an acyclic

set of size at least α is at most
(︁n

α

)︁
α!(1− p)(

α
2) ≤ exp(α log n− p

(︁α
2
)︁
) < 1/2, provided c2 is

chosen large enough (where in the last inequality we plugged in our choice of n, p and α).
We conclude that there exists a digraph D on n = ⌊m

2 ⌋ vertices containing no k vertices
spanning at least m

2 arcs and whose dichromatic number is at least

χ⃗(D) ≥ n(︂
c2k2 log m

m

)︂ = Ω
(︄

m2

k2 log m

)︄
.

Observe that D contains no subdivision of F ; indeed, if D contained a subdivision of F ,
then since D has at most m

2 vertices, at least m
2 of the subdivision paths would have to be

of length 1, i.e. be “direct” arcs between the k branch vertices of the subdivision. But this
is impossible as D contains no set of k vertices spanning at least m

2 arcs, a contradiction.
This proves (7.1).

We note that if F is symmetric, i.e. if it is a biorientation of an undirected graph,
then we can improve the bound (7.1) to maderχ⃗(F ) ≥ Ω(m/ log m). To see this, let D be
a tournament of order m/2 and dichromatic number Ω(m/ log m) (it is well-known that
such tournaments exist, see [Erd80]). Then D contains no subdivision of F . Indeed, since
D contains no digons, any subdivision of F in D must contain at least m/2 subdivision
vertices, one per every digon in F . But as v(D) = m/2 < m/2+v(F ), there are not enough
vertices in D to fit a subdivision of F . As a corollary, we see that if F is Mader-perfect
and symmetric, then a(F ) ≤ O(k log k), where k = v(F ).

5Recall that D(n, p) is the random digraph on the vertex-set {1, . . . , n}, where for each 1 ≤ i ̸= j ≤ n
we put the arc (i, j) independently with probability p.
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So far we have shown that m(k) = O(k3/2√log k). As for a lower bound, consider
the digraph obtained from

↔
K3 − e by performing k − 3 ear additions, where at each step

we attach a digon to the existing digraph. Then the resulting digraph Fk has k vertices
and 2k − 1 arcs. By combining Proposition 7.7 with Theorem 7.15, we see that Fk is
Mader-perfect. Hence, m(k) ≥ 2k − 1. It would be interesting to close the gap between
the upper and lower bounds. We conjecture that the truth lies with the latter.

Conjecture 7.3. m(k) = O(k).

Aboulker et al. [ACH+19] studied the behaviour of the Mader number with respect to
the insertion of arcs, and proved the following bound using a beautiful argument based on
breadth-first-search trees.

Theorem 7.23 ([ACH+19], Lemma 31). If F is a digraph and e ∈ A(F ), then

maderχ⃗(F ) ≤ 4 ·maderχ⃗(F − e)− 3.

Using this upper bound and a lower-bound-construction for tournaments, they ob-
tained the following bounds on maderχ⃗(

↔
Kt).

Theorem 7.24. For every integer t ≥ 2,

Ω
(︄

t2

log t

)︄
≤ maderχ⃗(

↔
Kt) ≤ 4t2−2t+1(t− 1) + 1.

Consider the digraph Ft on t vertices and 2t− 1 as constructed above. Then we have
maderχ⃗(Ft) = t, and hence by starting from Ft and repeatedly applying Theorem 7.23, we
get the (slightly) improved bound maderχ⃗(

↔
Kt) ≤ 4t2−3t+1(t− 1) + 1.

Still, the gap between the lower and upper bounds on maderχ⃗(
↔
Kt) remains huge.

Unfortunately, the techniques used in this chapter to tackle sparse digraphs do not seem
to allow for substantial improvements of the upper bound. Our attempts to improve the
lower bound to a super-quadratic growth have also been unsuccessful. It is tempting to
conjecture the following:

Conjecture 7.4. There exists an absolute constant c > 0 such that maderχ⃗(
↔
Kt) ≤ ct2 for

every positive integer t.

It is worth noting that by a result of Girão et al. [GPS21], every tournament T with
minimum out-degree at least ct2 (for some absolute constant c) contains a subdivision of
↔
Kt. This implies that in tournaments, having dichromatic number larger than ct2 forces
a subdivision of

↔
Kt. As mentioned in the introduction, however, extending the result of

[GPS21] to general digraphs is impossible, since having large minimum out- and in-degree
does not force

↔
Kt-subdivisions in general digraphs for any t ≥ 3.

Another intriguing question is to determine the Mader number of bioriented cycles.
Specifically, is it the case that maderχ⃗(

↔
Cℓ) = ℓ for all ℓ ≥ 4?

Problem 7.3. What is maderχ⃗(
↔
Cℓ)?

A related problem is to determine the maximum possible chromatic number of a di-
graph which does not contain a subdivision of any bioriented cycle. We conjecture that
the answer is 2.

Conjecture 7.5. Let D be a digraph with χ⃗(D) ≥ 3. Then there is ℓ ≥ 3 such that D

contains a subdivision of
↔
Cℓ.
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Chapter 8

Excluding Butterfly Minors

8.1 Introduction
Graphs and digraphs considered in this chapter are simple.

One of the arguably most influential problems in graph theory was the Four-Color-
Conjecture, answered positively by Appel and Haken in 1976. A directed version of this
famous problem, the Two-Color-Conjecture posed by Erdős and Neumann-Lara and inde-
pendently by Skrekovski (see [BFJ+04, Erd80]), still stands open. Recall that a digraph
D is called oriented if its underlying undirected graph is simple.

Conjecture 8.1. Every oriented planar digraph D is acyclically 2-colorable.

Although this conjecture appears quite innocent, there seems to be a lack of methods
for attacking it. The strongest partial result proved so far is due to Mohar and Li [LM17],
who showed the following:

Theorem 8.1. Every oriented planar digraph without directed triangles is acyclically 2-
colorable.

While the class of oriented planar digraphs is a very natural class of digraphs to
consider, structurally it does not behave quite as nicely as undirected planar graphs:
While the planar graphs can be described as the minor-closed class of graphs excluding
K5 and K3,3 and are therefore linked to Hadwiger’s conjecture, it is not possible to describe
oriented planar digraphs by forbidden digraph minors. Indeed, for any of the three minor
concepts considered in this thesis, an oriented planar digraph may have a

↔
K2 as a minor,

which is not an oriented graph.
This difference between the undirected and directed setting leads us to the natural

question what actually are the classes of directed graphs closed under minors that can
be acyclically colored with a given number of colors. In the undirected case, Hadwiger’s
conjecture states that for every t ≥ 1, the largest minor-closed class of t-colorable graphs
equals the Kt+1-minor-free graphs. In this chapter we raise the analogous problem for
directed graphs, where undirected minors are replaced by butterfly-minors.

Problem 8.1. Given t ∈ N, what is the inclusion-wise largest butterfly-minor closed class
Dt of acyclically t-colorable digraphs?

It follows directly from the definition that D1 equals the class of acyclic digraphs
(since every butterfly-minor of an acyclic digraph is still acyclic). Already characterizing
the next class, D2, is non-trivial. As the first main contribution of this chapter we solve
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this problem by proving that D2 is exactly the class of the non-even digraphs, which we
have previously encountered in Chapters 2 and 5. Recall that a digraph D is non-even
if there exists an arc-weighting w : E(D)→ {0, 1} such that every directed cycle has odd
total arc-weight. Let us restate Theorem 5.2 here for convenience.

Theorem 8.2 (Seymour and Thomassen [ST87]). A directed graph is non-even if and
only if it does not contain an odd bicycle as a butterfly minor.

Since χ⃗(
↔
Ck) = 3 for every odd k ≥ 3, it is clear that D2 must exclude every odd bicycle

as a butterfly-minor, and hence that every digraph in D2 is non-even. The non-trivial part
of our characterization of D2 therefore amounts to the following result.

Theorem 8.3. Let D be a non-even digraph. Then χ⃗(D) ≤ 2.

As illustrated by Figure 8.1, there are both non-planar non-even digraphs and planar
even digraphs. In that sense, Theorem 8.3 does not contribute to a resolution of Con-
jecture 8.1. On the other hand, D2 contains a relatively large and interesting class of
planar digraphs, which are called strongly planar (compare [Gue01], [GT11]). A digraph
D is said to be strongly planar if it admits a crossing-free embedding into the plane such
that around every vertex v ∈ V (D), the incident out- and in-arcs form intervals in the
rotational order around v. As we will see further below, every strongly planar digraph is
non-even, and in that sense, Theorem 8.3 verifies Conjecture 8.1 for an interesting subclass
of the planar digraphs, which are allowed to contain many directed triangles and in fact,
even digons. The strongly planar digraphs will be further discussed in Chapter 14.

R
↔
C5

Figure 8.1: The non-planar non-even digraph R and the bidirection of C5, a planar even digraph.

Problem 8.1 is closely related to the question of forcing complete butterfly-minors in
digraphs. Analogously to the definition of smχ⃗(t) in Chapter 6, for a given integer t ≥ 1 let
us denote by bmχ⃗(t) the smallest integer such that every digraph D with χ⃗(D) ≥ bmχ⃗(t)
contains the complete digraph

↔
Kt as a butterfly-minor. Since every topological minor is

also a butterfly-minor, we can see from the remarks following Theorem 7.24 that bmχ⃗(t)
indeed exists for every t ≥ 1 and that bmχ⃗(t) ≤ 4t2−3t+1(t − 1) + 1. Define the integer
inverse function of bmχ⃗(·) by

b(x) := max
{︁
t ≥ 1 | bmχ⃗(t) ≤ x

}︁
Let us further denote, for any t ≥ 1, by Kt the class of all digraphs with no

↔
Kt as a

butterfly-minor. Then, on the one hand, every digraph excluding
↔
Kb(t+1) as a butterfly-

minor is colorable with bmχ⃗(b(t + 1)) − 1 ≤ t colors. On the other hand, every digraph
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in Dt must exclude
↔
Kt+1 as a butterfly-minor, since its dichromatic number exceeds t.

Therefore, for every t we have the inclusions

Kb(t+1) ⊆ Dt ⊆ Kt+1.

These inclusions show that the classes Dt and Kt are sandwiched between one another
and hence can be expected to share similar structural properties. To see how tight the
above inclusions are one needs to obtain good lower bounds on b(·), or equivalently good
upper bounds on bmχ⃗(·). In this direction, we have the following second main result of
this chapter, which is an application of Theorem 6.2 from Chapter 6.

Theorem 8.4. For every t ≥ 1, we have bmχ⃗(t) ≤ 2mχ(2t)− 1 = O(t(log log t)6).

A non-even digraph D may be characterised by the property that there exists a labelling
of its arcs with elements from the cyclic group (Z2, +) such that the sum of the arc-labels
of any directed cycle equals 1 (is non-zero). Replacing the group Z2 by an arbitrary finite
Abelian group in this definition, we obtain a family of digraph classes which naturally
generalize non-even digraphs as follows.

Definition 8.1. Let (A, +) be any finite Abelian group. We say that an arc-labelling
w : A(D)→ A of D using elements from A is zero-sum free if∑︂

e∈A(C)
w(a) ̸= 0

(summation as in (A, +)) holds for every directed cycle C in D.
We say that a digraph D is A-non-zero if it admits a zero-sum free A-arc-labelling,

and otherwise we say that D is A-zero.

With this terminology, a digraph is even (non-even) iff it is Z2-zero (non-zero).
As a qualitative generalization of Theorem 8.3 to these more general classes, we prove

the following result as a consequence of Theorem 8.4 and the main result from [MS21b].

Corollary 8.5. There exists an absolute constant C > 0 such that the following holds for
every finite Abelian group (A, +) with |A| ≥ 3: If a digraph D is A-non-zero, then

χ⃗(D) ≤ C · |A|(log log |A|)6.

So-called list colorings naturally generalize several types of colorings of graphs and
have been widely investigated. The basic idea of list coloring is that every vertex of a
graph receives its own respective palette of colors, from which it is supposed to pick its
own color for a proper coloring of the graph. The main difference to the chromatic number
is that different vertices may have completely different lists of colors. The choice number
χℓ(G) of an undirected graph G is the smallest integer k such that for every assignment of
color lists of length at least k to the vertices, a proper graph coloring with colors chosen
from the lists exists. Clearly, we have χ(G) ≤ χℓ(G). Maybe more surprisingly there are
graphs with χ(G) = 2, in particular the complete bipartite graphs, for which χℓ(G) can
grow arbitrarily large.

It is natural to apply the concept of list coloring also to acyclic colorings of digraphs. In-
deed, such a notion was investigated in [BHL18]. Therein, for a given digraph D equipped
with an assignment of finite color lists L = {L(v)|v ∈ V (D)} to the vertices, an L-list-
coloring of D is defined to be a choice function c : V (D) →

⋃︁
L such that for any vertex

v ∈ V (D), we have c(v) ∈ L(v), and moreover, c defines an acyclic digraph coloring, that
is, D[c−1(i)] is acyclic for all i ∈

⋃︁
L.
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Putting L(v) := {1, . . . , k} for each vertex simply yields the definition of a usual
digraph k-coloring. In [BHL18], a digraph D is called k-list colorable (also k-choosable) if
for any list assignment L, where |L(v)| ≥ k for every v ∈ V (D), there is an L-list coloring
of D. The smallest integer k ≥ 1 for which a digraph D is k-choosable now is defined to be
the list dichromatic number (also choice number) χ⃗ℓ(D). Again, we have χ⃗(D) ≤ χ⃗ℓ(D)
for every digraph. However, as pointed out in [BHL18], this estimate can be arbitrarily
bad for bipartite oriented graphs.

It is therefore desirable to identify classes of digraphs with bounded choice number.
In the context of Conjecture 8.1, the authors of [BHL18] observed that oriented planar
digraphs are 3-choosable and posed the question whether they are even 2-choosable.

From Theorem 8.3 we know that all non-even digraphs are 2-colorable, and so it is
natural to ask whether they are also 2-choosable. This question can rather easily be
answered in the negative, see Figure 8.2 for an example of a strongly planar digraph with
choice number 3. In the last main result of this chapter that concerns directed graphs, we
show that 3 is the (best possible) upper bound for the choice number of non-even digraphs.
Theorem 8.6. Let D be a non-even digraph. Then χ⃗ℓ(D) ≤ 3.

{0, 1}

{1, 2}

{0, 2}

{0, 1}

{1, 2}

{0, 2}

Figure 8.2: A non-2-choosable strongly planar digraph.

Applications to Matching theory. We have seen in Chapter 5 that non-even digraphs
and their recognition problem are equivalent to the even cycle problem, and that there
are many polynomial-time equivalent versions of this problem. One of these variations
amounts to a famous problem from structural matching theory which we describe in the
following. An undirected graph G is called matching covered if G is connected and for
every edge e ∈ E(G) there is some M ∈M(G) with e ∈M , where M(G) denotes the set
of all perfect matchings of G. A set S ⊆ V (G) of vertices is called conformal if G− S has
a perfect matching. A subgraph H ⊆ G is conformal if V (H) is a conformal set and H
has a perfect matching. A cycle C in G is called M -alternating if it alternately uses edges
from M and E(G)\M . Clearly, the conformal cycles of G are exactly the cycles occurring
as an alternating cycle in at least one perfect matching.

Counting the number of perfect matchings in a given graph (also known as the dimer
problem) is an important and well-known task which is known to be #P -hard on general
graphs [Val79]. However, there is a rather rich class of graphs for which the number of
perfect matchings can be expressed in terms of the determinant of a well-known matrix
and can thus be computed in polynomial time [Kas67, Lit75, Tho06]. These graphs are
known as the Pfaffian graphs:

A graph G is called Pfaffian if there exists an orientation G⃗ of G such that every
conformal cycle of G contains an odd number of directed edges going in one and an odd
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number of directed edges going in the other direction in G⃗. Such an orientation is also
called Pfaffian. It is well-known that any planar graph is Pfaffian (see [Kas67]). Since edges
that are not contained in a perfect matching do not contribute to a Pfaffian orientation
in any way, one usually just considers matching covered graphs in this context. Similar
to non-even digraphs, bipartite matching covered Pfaffian graphs can be described by
excluded minors. To state the complete theorem, we need a connection between directed
graphs and bipartite graphs with perfect matchings, as well as the definition of minors in
the context of matching covered graphs.

Let G be a matching covered graph and let v0 be a vertex of G of degree two incident
to the edges e1 = v0v1 and e2 = v0v2. Let H be obtained from G by contracting both
e1 and e2 and deleting all resulting parallel edges. We say that H is obtained from G by
bicontraction or bicontracting the vertex v0. We say that H is a matching minor of G if
H can be obtained from a conformal subgraph of G by repeatedly bicontracting vertices
of degree two. Similar to how topological minors specialize graph minors, there is the
following specialisation of matching minors: A bisubdivision of an edge is a subdivision
using an even number of subdivision-vertices (possibly 0). We call H2 a bisubdivision of
H1 if H1 is a matching covered graph and H2 can be obtained by bisubdividing the edges
of H1. If a matching covered graph G contains a conformal bisubdivision of a matching
covered graph H, then H is a matching minor of G, but the converse is not true. If G
contains no conformal bisudivision of H, it is called H-free.

The following operation, called M -direction, describes a fundamental bijection be-
tween bipartite graphs G equipped with perfect matchings and directed graphs which
reveals intimate relationships between these objects and opens the doors for applications
of our digraph-theoretic results in this setting. Vice versa, this bijection makes tools from
matching theory available to the proof of our first main result, Theorem 8.3.

Definition 8.2. Let G = (A ∪B, E) be a bipartite graph and let M =
{︂

a1b1, . . . , a|M |b|M |
}︂

with ai ∈ A, bi ∈ B for 1 ≤ i ≤ |M | be a perfect matching of G. The M -direction D(G, M)
of G is a digraph defined as follows.

1. V (D(G, M)) :=
{︂

v1, . . . , v|M |
}︂

and

2. A(D(G, M)) := {(vi, vj) | aibj ∈ E(G) , i ̸= j}.

Note that the above operation is reversible and that every digraph D is the M -direction
of its bipartite splitting-graph equipped with the canonical perfect matching.

The M -directions of a bipartite matching covered graph G inherit important properties
from G. Most importantly, the directed cycles in an M -direction are in bijection with the
M -alternating cycles of G. Another relation is about connectivity. A graph G is called
k-extendable if it is connected, has at least 2k + 2 vertices and every matching of size k is
contained in a perfect matching of G. The following statement is folklore, it is mentioned
in [RST99] and a proof can be derived from [AHLS03].

Theorem 8.7 (Robertson et al. [RST99], Aldred et al. [AHLS03]). Let G be a bipartite
matching covered graph and M a perfect matching of G. Then G is k-extendable if and
only if D(G, M) is strongly k-(vertex-)connected.

The next result describes an intimate connection between matching minors of bipartite
graphs and butterfly-minors of directed graphs.

Lemma 8.8 (McCuaig [McC00]). Let G and H be bipartite matching covered graphs.
Then H is a matching minor of G if and only if there exist perfect matchings M ∈M(G)
and M ′ ∈M(H) such that D(H, M ′) is a butterfly minor of D(G, M).
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Finally, non-even digraphs relate to Pfaffian bipartite graphs via the following impor-
tant theorem of Little [Lit75], which characterizes bipartite Pfaffian graphs by excluding
the single graph K3,3 as a matching minor.

Theorem 8.9 (Little [Lit75], Seymour and Thomassen [ST87]). Let G be a bipartite graph
with a perfect matching M . The following statements are equivalent.

1. G is Pfaffian.

2. G does not contain K3,3 as a matching minor.

3. D(G, M) is non-even.

4. D(G, M) does not contain an odd bicycle as a butterfly minor.

It is not hard to see that a further correspondence induced by the bijection from
Definition 8.2 is between strongly planar digraphs and planar bipartite graphs equipped
with perfect matchings. In other words, given a bipartite graph G and a perfect matching
M of G, the digraph D(G, M) is strongly planar if and only if G is a planar graph. Instead
of proving this formally, we have illustrated this relation in Figure 8.3.

Figure 8.3: Left: An oriented grid where all arcs point from the empty to the filled vertices,
equipped with a perfect matching. Right: The arising M -direction, a strongly planar digraph.

Given the correspondence between directed cycles in non-even digraphs and alternating
cycles in bipartite Pfaffian graphs equipped with perfect matchings, it is natural to also
translate Theorem 8.3 to bipartite graphs. For that purpose, the dichromatic number can
be translated to a coloring concept for perfect matchings in graphs as follows.

Given a graph G and a perfect matching M ∈M(G), an M -coloring of G with k colors
is a function c : M → [k]. An M -coloring is called proper if there is no M -alternating cycle
whose matching edges are all of the same color, i.e., c−1(i) is the unique perfect matching
of the subgraph of G induced by the endpoints of the edges in c−1(i) for all i. The
M-chromatic number χ(G, M) of G is the smallest integer k such that G has a proper M -
coloring with k colors. By the correspondence of M -alternating cycles in G and directed
cycles in D(G, M), we have χ(G, M) = χ⃗(D(G, M)) for any bipartite graph G with a
perfect matching M .

We can now translate Theorem 8.3 using Theorem 8.9 to derive the following corollary.

Corollary 8.10. Let G be a bipartite graph with a perfect matching M . If χ(G, M) ≥ 3,
then G contains K3,3 as a matching minor.

In the context of M -colorings of graphs one can identify certain subsets of perfect
matchings, namely the forcing sets. Given a perfect matching M of a graph, a subset
S ⊆ M of edges is called forcing if M is the unique perfect matching extending S. S
is called rigid if S is the only matching in G on its vertex-set (in other words, there is
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no M -alternating cycle with vertices in V (S)). Pause to note that given S ⊆ M , the
matching S is forcing if and only if M \ S is rigid. With these definitions, an M -coloring
with k colors corresponds to a partition M = S1 ∪ · · · ∪ Sk such that for any i, Si is rigid.

The forcing number f(G, M) of a perfect matching M denotes the size of a smallest
forcing set for M . This notion arises from resonance theory in chemistry. Bounds on the
forcing numbers of perfect matchings have attracted quite some interest in the last three
decades. We refer to [CC11] for a comprehensive survey on this topic.

With the above terminology we can reformulate Corollary 8.10 as follows:

Corollary 8.11. Every perfect matching M of a Pfaffian bipartite graph G can be parti-
tioned into two disjoint partial matchings, which are simultaneously rigid and forcing.

This directly yields the following corollary.

Corollary 8.12. For any Pfaffian bipartite graph G and every perfect matching M of G,
we have f(G, M) ≤ |M |

2 = v(G)
4 .

This generalizes Theorem 2.9 in [CC11] from bipartite graphs without a(n ordinary)
K3,3-minor to Pfaffian bipartite graphs, which is a more general class of graphs.

The definition of the matching chromatic number is not limited to bipartite graphs only.
In Section 8.5 we therefore consider a generalisation of the above results to non-bipartite
matching covered graphs. As these graphs bare a much more complicated structure than
their bipartite cousins, we are not able to extend our coloring results in their full strength
to the non-bipartite world. Even in the planar case there are graphs with perfect matchings
that are not 2-colorable. A smallest example of such a graph is found in the triangular
prism, which is the complement of C6. However, we are able to bring down the planar
case to exactly this graph in the sense that planar graphs excluding C6 as a conformal
bisubdivision are matching-2-colorable.

Theorem 8.13. Let G be a planar graph, and M a perfect matching of G. If G contains
no conformal bisubdivision of C6, then χ(G, M) ≤ 2.

Structure of the chapter. In Section 8.2 we prepare and present the proof of Theo-
rem 8.3. In Section 8.3 we derive Theorem 8.4 from Theorem 6.2 and prove Corollary 8.5.
In Section 8.4 we prove Theorem 8.6. Finally, in Section 8.5 we study matching-colorings
of non-bipartite graphs and prove Theorem 8.13. Section 8.6 contains concluding remarks.

8.2 2-Colorings of Non-Even Digraphs
This section is dedicated to the proof of Theorem 8.3. The key idea of our proof is
to consider a minimal (with respect to the number of vertices) non-2-colorable non-even
digraph. We introduce a number of local reductions of digraphs transporting 2-colorability
while ensuring that the reduced digraph is still non-even and prove that for any non-even
digraph with at least 3 vertices one of our reductions is applicable.

Each of our reductions can be applied in polynomial time and thus this technique
implies a polynomial time algorithm for 2-coloring a non-even digraph.

We start with two splitting operations, reducing the 2-coloring problem to the strongly
2-connected non-even digraphs.

Definition 8.3. Let D, D1 and D2 be digraphs. Then D is called a 0-sum of D1 and D2
if there is a partition of V (D) into non-empty sets X and Y such that no arc of D has its
head in X and its tail in Y , and D1 = D[X], D2 = D[Y ].
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We call a strongly connected digraph D the 1-sum of D1 and D2 at a vertex v ∈ V (D)
if there is a partition of V (D) \ {v} into non-empty sets X and Y such that no arc in D
has its head in X and its tail in Y , and such that D1 arises from D by identifying Y ∪{v}
into a single vertex and D2 arises by identifying X ∪ {v} into a single vertex. In both
cases, we unify possible multiple occurences of parallel arcs into single arcs.

In the context of perfect matchings in bipartite graphs, the described reduction of D
to D1 and D2 corresponds to a so-called tight cut contraction. Let G be an undirected
graph and X ⊆ V (G). Recall that the cut around X, denoted by ∂(X), is the set of all
edges in G with exactly one endpoint in X. If G is matching covered and |∂(X) ∩M | = 1
for every perfect matching M ∈ M(G), we call ∂(X) a tight cut. If ∂(X) is a tight cut
and |X| , |X| ≥ 2, it is non-trivial. Identifying the cut set X of a non-trivial tight cut
∂(X) into a single vertex (ignoring arising parallel edges) is called a tight cut contraction
and the resulting graph G′ can easily be seen to be matching covered again. Among many
other things, tight cut contractions can be used to produce reductions of Pfaffian graphs
as shown by Vazirani and Yannakakis.

Theorem 8.14 ([VY89], Theorem 4.2). Let G be a matching covered graph, X ⊆ V (G)
such that ∂(X) is a non-trivial tight cut and G1, G2 the two graphs obtained by the tight
cut contractions of X and X in G respectively. Then G is Pfaffian if and only if G1 and
G2 are Pfaffian.

To combine the theory of tight cuts and digraphs we need to be able to translate
between the two more smoothly. Given a bipartite graph G with bipartition V (G) = A∪B
and a set X ⊆ V (G) such that |X ∩A| < |X ∩B|, we call A the minority and B the
majority of X, and analogously if the roles of A and B are reversed. Consider the following
characterization of tight cuts in bipartite graphs.

Lemma 8.15 ([LDCM15], Proposition 5). Let G = (A ∪B, E) be a bipartite match-
ing covered graph and X ⊆ V (G) of odd size. Then ∂(X) is a tight cut if and only if⃓⃓
|X ∩A| − |X ∩B|

⃓⃓
= 1 and no vertex of the minority of X has a neighbour in X.

Given a digraph D, in the following let us call a pair (X, Y ) of vertex subsets a directed
separation if X ∪ Y = V (D) and there is no edge with tail in Y \X and head in X \ Y .
The order of the separation is defined as |X ∩ Y |. While the following result is folklore,
we provide a proof for completeness.

Lemma 8.16. Let G = (A ∪B, E) be a bipartite matching covered graph, M a per-
fect matching in G and let X ⊆ V (G). Moreover let MS := (E(G[S]) ∪ ∂(X)) ∩M for
S ∈

{︂
X, X

}︂
and let ve for e ∈ M denote the vertex of the M -direction of G correspond-

ing to the edge e. Then ∂(X) is tight if and only if
(︁
{ve | e ∈MX} ,

{︁
ve | e ∈MX

}︁)︁
or(︁{︁

ve | e ∈MX

}︁
, {ve | e ∈MX}

)︁
is a directed separation of order 1 in D(G, M).

Proof. First suppose ∂(X) is tight. By Lemma 8.15 no vertex of the minority of X has
a neighbour in X. By symmetry, we may assume that B ∩ X is the minority of X. By
Theorem 8.7, the M -direction of G must be strongly connected, however there cannot
exist an arc in D(G, M) with head ve and tail ve′ where e ⊆ X and e′ ⊆ X since the
corresponding edge in G would link a vertex of X ∩B to a vertex of X ∩A. Hence every
directed path from v′

e to ve must contain the vertex vf where f is the unique edge of M in
∂(X). Thus

(︁
{ve | e ∈MX} ,

{︁
ve | e ∈MX

}︁)︁
is a directed separation and vf is the unique

vertex in the intersection of the two sets.
For the other direction let

(︁
{ve | e ∈MX} ,

{︁
ve | e ∈MX

}︁)︁
be a directed separation of

order 1 inD(G, M). The other case follows analogously. Let f be the unique matching edge
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corresponding to the cut vertex. Then every directed cycle inD(G, M) must contain vf and
has exactly one edge with endpoints in {ve | e ∈MX}\{vf} and

{︁
ve | e ∈MX

}︁
\{vf}. This

means that every M -alternating cycle in G contains exactly two edges of ∂(X), namely
f and one non-matching edge. We have established that |∂(X) ∩M | = |{f}| = 1, and
so to prove that ∂(X) is tight, we must show that any other perfect matching M ′ of
G has the same number of edges on ∂(X) as M . For this, observe that the symmetric
difference M∆M ′ decomposes into a vertex-disjoint union of cycles C1, . . . , Ct which are
simultaneously M - and M ′-alternating. Consequently, exchanging matching with non-
matching edges for each Ci one after the other (“flipping”) transforms M into M ′. Clearly,
this operation can change the number of matching edges on ∂(X) only if a cycle containing
vertices of both X and X is flipped, but according to the above, each such cycle must
contain f , and so at most one Cj can intersect ∂(X), and E(Cj) ∩ ∂(X) = {f, f ′} for
a non-matching edge f ′. Flipping Cj now makes f ′ into a matching and f into a non-
matching edge. In any case, after having performed the sequence of flips, we thus obtain
that M ′ ∩ ∂(X) consists of a single edge, and, hence, ∂(X) must be tight.

From Theorem 8.14 and Lemma 8.16 we obtain the following corollary.

Corollary 8.17. Let D be a digraph and i ∈ {0, 1} such that D is the i-sum of the digraphs
D1 and D2. Then D is non-even if and only if D1 and D2 are non-even.

Proof. For i = 0, this can be seen directly from the definition of an even digraph: D is
non-even if and only if there is a subset A ⊆ A(D) of arcs intersected an odd number
of times by each directed cycle. However, the set of directed cycles in D consists of the
directed cycles in D[X] = D1 and D[Y ] = D2 for a partition (X, Y ) as in Definition 8.3,
because no directed cycle can pass trough X and Y at the same time. Thus, the above is
the same as saying that there are arc sets Ai ⊆ E(Di), i = 1, 2, intersecting each directed
cycle in Di an odd number of times, which is the same as saying that D1, D2 are non-even.

For i = 1, the claim is a direct consequence of Lemma 8.16 and Theorem 8.14.

So 0- and 1-sums preserve non-evenness. Next, we need to make sure we can obtain
an acyclic 2-coloring of D from acyclic 2-colorings of its sumands D1 and D2.

Lemma 8.18. Let D be a non-even digraph and D1, D2 digraphs such that D is the i-sum
of D1 and D2 for i ∈ {0, 1}. If D1 and D2 are 2-colorable, so is D.

Proof. Assume first that D is the 0-sum of D1 = D[X], D2 = D[Y ] for a partition X, Y of
V (D). Then the directed cycles in D are exactly the directed cycles in D1 together with
the directed cycles in D2, and thus any acyclic 2-coloring of D1 joined with an acyclic
2-coloring of D2 yields an acyclic 2-coloring of D.

Now assume D is the 1-sum of D1 and D2 at a vertex v, and let (X, Y ) be the
corresponding directed separation such that X ∩ Y = {v}. Let v1 be the vertex of D1
obtained from identifying Y ∪ {v}, and let v2 be the vertex in D2 obtained by identifying
X ∪ {v}. For i ∈ {1, 2} let ci : V (Di)→ {0, 1} be an acyclic 2-coloring of Di. By possibly
exchanging 0 and 1 in c2, we may assume that c1(v1) = c2(v2). We define a coloring c for
D as follows.

c(u) :=

⎧⎪⎨⎪⎩
c1(u) , u ∈ X
c1(v1) = c2(v2) , u = v
c2(u) , u ∈ Y

To see that this defines an acyclic 2-coloring of D, assume towards a contradiction that C
is a monochromatic directed cycle in D. If C stays within X ∪{v} or Y ∪{v}, then it also
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appears as a directed cycle in D1, or D2 respectively, contradicting the feasibility of the
2-colorings c1 and c2. Otherwise, C traverses vertices of both X and Y and thus, as there
are no arcs starting in X and ending in Y , C also contains v. Moreover, C − v can be
decomposed into exactly two directed paths P1 and P2, one contained in X and the other
in Y . Hence C corresponds to the directed cycles Ci = Pi +vi in Di for each i ∈ {1, 2} and
both Ci must be monochromatic under their respective colorings ci. This again violates
the feasibility of the ci. Consequently, c defines a coloring of D as desired.

Robertson et al. [RST99] defined in total five different sum operations which they used
to prove a generation theorem for non-even digraphs. One of the consequences of this
generation theorem is the following.

Theorem 8.19 ([Tho06], Corollary 5.4). Let D be a strongly 2-connected non-even di-
graph. Then a(D) ≤ 3v(D)− 4.

Corollary 8.20. Any strongly 2-connected, non-even digraph D contains at least two
vertices of out-degree 2.

Proof. Let n := v(D). By Theorem 8.19 we have a(D) < 3(n− 1). If at most one vertex
in D had out-degree less than 3 we would have a(D) =

∑︁
v∈V (D) d+(v) ≥ 0 + 3(n − 1),

a contradiction, and so there are at least two vertices of out-degree at most, and thus,
because D is strongly 2-connected, exactly two.

Besides arc deletions, butterfly contractions and 0- and 1-sums, we will use another
special operation in order to further reduce our digraphs. If we encounter an out-degree
2 vertex v in a digraph D such that v is contained in at most one digon, we will need to
delete some arcs incident with v in order to create a butterfly contractible arc. However,
if v is contained in two different digons, we will directly contract the three digon vertices,
namely v and the two vertices with which v forms a digon each, into a single vertex. While
this is not a standard butterfly contraction, it is natural in the context of our proof and it
preserves the property of being non-even, which we show below by using matching theory.

Note that bicontractions in matching covered graphs are a special case of tight cut
contractions. To see this, consider X as the set of size 3 containing a degree 2 vertex v
together with its two neighbours. Then ∂(X) is tight since every perfect matching must
match v to one of its neighbours and thus exactly one matching edge can and must leave
X. Thus one can derive the following corollary from Theorem 8.14 or Theorem 8.9.

Corollary 8.21. Let G be a Pfaffian matching covered graph. Then every matching minor
of G is Pfaffian.

Lemma 8.22. Let D be a non-even digraph with a vertex v ∈ V (D) with N+(v) = {v1, v2}
such that v induces a digon together with vi for both i ∈ {1, 2}. Then the digraph D∗,
obtained by first deleting all arcs of the form (u, v) with u /∈ {v1, v2}, and then identifying
v1, v and v2 into a single vertex (while deleting occurring loops and identifying occurring
parallel arcs into single arcs afterwards), is non-even as well.

Proof. Let D be the digraph together with the vertices v, v1, and v2 as in the assertion.
By Theorem 8.2, when deleting all incoming arcs of v with tails other than v1 or v2 we
obtain a subdigraph D′ which is non-even as well. Moreover, by Lemma 8.17, D′ is non-
even if and only if every strongly connected component of D′ is non-even. Since v, v1 and
v2 are contained in two digons sharing a vertex, they all must appear in the same strong
component of D′, say, D′

0. It suffices to show that the identification of the three vertices
{v, v1, v2} in D′

0 preserves non-eveness.
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With D′
0 being strongly connected, there exists a bipartite matching covered graph G

together with a perfect matching M ∈ M(G) such that D′
0 = D(G, M). We identify the

vertices v, v1 and v2 of D′
0 with edges ev, ev1 and ev2 , respectively, in M . Additionally let

A and B be the two color classes of G. Then we denote by ax the vertex of ex in A and
by bx the vertex in B for all x ∈ {v, v1, v2}. Since v and v1 form a digon in D′

0, the edges
avbv1 and av1bv exist in G and, thus, together with ev and ev1 they form a conformal cycle
of length 4. Therefore we can obtain a new perfect matching from M as follows.

M ′ := (M \ {ev, ev1}) ∪ {avbv1 , av1bv}

Now consider G − ev and note that it still has M ′ as a perfect matching and that it is
a matching minor of G (see Figure 8.4 for an illustration). By our assumptions, v has
exactly two out- and two in-neighbours in D′

0 and therefore the two vertices av and bv

must be of degree 2 in G − ev. Hence we can bicontract these two vertices and identify
bv1 , av, and bv2 into bv1vv2 and the other three vertices into av1vv2 respectively. Let us call
the resulting bipartite graph G∗ and denote the edge av1vv2bv1vv2 by ev1vv2 . One can easily
check that G∗ still is matching covered and since it is a matching minor of G it must be
Pfaffian by Corollary 8.21. Moreover, the strongly connected digraph D∗

0 := D(G∗, M∗)
must be non-even. Since M∗ \ {ev1vv2} = M ′ \ {avbv1 , av1bv, ev2} = M \ {ev1 , ev, ev2} and
the two edges ev1 and ev1vv2 can be identified (again see Figure 8.4) D∗

0 is isomorphic to
the digraph obtained from D′

0 identifying the three vertices v, v1, and v2 into one, and so
the latter has to be non-even as well. From this we deduce that all strong components of
D∗ are non-even, proving the assertion.

D′
0 = D(G, M) G and M, M ′ ∈M(G) G∗ and M∗

D∗
0 = D(G∗, M∗)

vv1 v2
evev1 ev2 ev1vv2 uv1vv2

Figure 8.4: The four steps of the contraction of v, v1, and v2 in Lemma 8.22. The matching M ′

is given by dashed edges while the edges of M are thicker.

We are now ready to prove our main theorem, concluding this section.

Proof of Theorem 8.3. Assume towards a contradiction that there is a non-even digraph
D that is not 2-colorable. Furthermore, let us assume D to be minimal (with respect to
v(D)) with this property. Clearly v(D) ≥ 3.

First observe that, due to Lemma 8.18, D is neither a 0-sum nor a 1-sum of some other
non-even digraphs D1 and D2. Hence, D does not have a directed cut or a cut vertex, and
must therefore be strongly 2-connected. By Corollary 8.20 there exists a vertex v ∈ V (D)
with d+(v) = 2. Let e1 = (v, v1) and e2 = (v, v2) be the two outgoing arcs of v. We now
distinguish two cases:

Case 1: Both arcs e1 and e2 are contained in digons.
If e1 and e2 are contained in digons, we can construct a non-even digraph D∗ from D

by applying the operation from Lemma 8.22 on v and its two out-neighbours. First, we
delete all incoming arcs of v except (v1, v) and (v2, v) from the digraph and then contract
v1, v, and v2 into a single vertex. Since |V (D∗)| = |V (D)| − 2 and D∗ is non-even, by the
minimality of D, D∗ admits an acyclic 2-coloring c∗ : V (D∗) → {0, 1}. Denote by uv1vv2
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the vertex of D∗ into which v1, v and v2 were identified. We now define a 2-coloring for
the vertices x ∈ V (D) as follows.

c(x) :=

⎧⎪⎨⎪⎩
c∗(uv1vv2) , x ∈ {v1, v2}
1− c∗(uv1vv2) , x = v
c∗(x) , otherwise

By assumption, D is not acyclically 2-colorable and thus there must be a directed cycle C
whose vertices receive the same color from c. Moreover, C must avoid v, since any directed
cycle in D containing v must either contain v1 or v2 and thus, by the definition of c, cannot
be monochromatic. Consequently, C must be contained in D− v. By identifying possible
occurrences of v1 or v2 with uv1vv2 , the existence of a closed directed monochromatic walk
C∗ in D∗ follows. Note that v1 and v2 do not form a digon, as otherwise v, v1 and v2 would
be an odd bicycle in D, contradicting the assumption that D is non-even. Hence, the walk
C∗ is non-trivial (consists of at least two vertices) and therefore contains a directed cycle
which, in turn, must also be monochromatic with respect to c∗. However, the existence of
such a cycle contradicts the choice of c∗.

Case 2: At least one of the arcs e1 or e2 is not contained in a digon.
Without loss of generality assume e1 to not be part of a digon in D. We now delete all

arcs with endpoints v and v2, thereby obtaining a non-even digraph in which v has a single
out-going arc, which is e1. With this, e1 is now butterfly contractible. Let D′ = D/e1 be
the digraph obtained by contracting e1 and let xe1 denote the contraction vertex. Since
the non-even digraphs are closed under butterfly-minors, D′ is again non-even. Moreover,
as v(D′) = v(D) − 1, D′ must admit an acyclic 2-coloring c′ : V (D′) → {0, 1} by the
minimality of D. Similar to the first case we use c′ to define a 2-coloring c of D as follows:

c(x) :=

⎧⎪⎨⎪⎩
c′(xe1) , x = v1
1− c′(v2) , x = v
c′(x) , otherwise.

Again, we assumed D to not be 2-colorable and thus there must be a monochromatic
(with respect to c) directed cycle C in D. If C contains v, it cannot contain v2 as
c(v2) ̸= c(v). Therefore, it must contain the arc e1. Since e1 is not contained in a
digon we have |C| ≥ 3 and thus there exists a directed cycle C ′ in D′ through xe1 with
V (C ′)\{xe1} = V (C)\{v, v1}. By definition of c, C ′ must be monochromatic with respect
to c′, which yields the desired contradiction in this case. Otherwise, C does not contain
v. Then, possibly after replacing v1 with xe, C again yields a directed cycle in D′ which,
again, has to be monochromatic with respect to c′, contradicting our choice of c′.

The proof of Theorem 8.3 yields a polynomial time algorithm to find an acyclic 2-
coloring of a non-even digraph. One first reduces a digraph D into its strong components,
then finds the cut vertices and decomposes D into strongly 2-connected digraphs using
1-sums. Each of these strongly 2-connected digraphs can then be colored as follows:

Repeatedly, one searches for an out-degree 2 vertex. If such a vertex is found, we can
reduce the digraph as described in Case 1 and Case 2 of the proof.

After reiterating these reduction steps we have reduced the stronlgy 2-connected di-
graph to a digraph on one or two vertices, which we can trivially 2-color.

Then, by reversing the reductions step by step, we can successively extend the acyclic
2-coloring to finally obtain acyclic 2-colorings of each of the strongly 2-connected digraphs
we have decomposed D into. Finally, we can join these acyclic 2-colorings together to
obtain an acyclic 2-coloring of D as described in Lemma 8.18.
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Additionally, the works of Robertson et. al. and McCuaig [RST99, McC04] imply
polynomial time algorithms to recognize non-even digraphs. Hence, given a digraph D we
can decide whether it is non-even and then find an acyclic 2-coloring in polynomial time.

8.3 Complete Butterfly Minors and Zero Sum Cycles via
Dichromatic Number

In this section we give the proofs of Theorem 8.4 and Corollary 8.5.
Let us first consider Theorem 8.4. We prove the following Lemma, which states that

every sufficiently large strong complete minor also contains a complete butterfly-minor of
given order. Note that once having established the Lemma, the assertion of Theorem 8.4
is then a direct consequence of Theorem 6.2 from Chapter 6.

Lemma 8.23. Let t ∈ N, and let D be a strong
↔
K2t-minor-model. Then D contains

↔
Kt

as a butterfly-minor.

Proof. Let D be a strong
↔
K2t-minor model and let {X+

1 , X−
1 , . . . , X+

t , X−
t } be a corres-

ponding partition of V (D) into 2t branch sets. Then for every i ∈ {1, . . . , t} there exist
r+

i ∈ X+
i and r−

i ∈ X−
i such that (r−

i , r+
i ) ∈ A(D). Since D[X−

i ] and D[X+
i ] are strongly

connected digraphs, there exist1 oriented spanning trees T −
i ⊆ D[X−

i ] and T +
i ⊆ D[X+

i ]
such that T −

i is an in-arborescence rooted at r−
i and T +

i is an out-arborescence rooted at
r+

i . Let us consider the spanning subdigraph D′ of D consisting of the arcs contained in

T :=
t⋃︂

i=1

(︂
{(r−

i , r+
i )} ∪A(T +

i ) ∪A(T −
i )
)︂
,

as well as all arcs of D starting in X+
i and ending in X−

j for i ̸= j. Then every arc of
D′ contained in T is either the unique arc in D′ emanating from its tail or the unique
arc in D′ entering its head. It follows that all arcs in T are butterfly-contractible. Note
that the contraction of an arc does not affect the butterfly-contractibility of other arcs,
hence the digraph D′/T , obtained from D′ by successively contracting all arcs in T , is a
butterfly-minor of D. The vertices of D′/T can be labelled v1, . . . , vt, where vi denotes
the vertex corresponding to the contraction of the (weakly) connected component of D′

inside X+
i ∪X−

i . As D is a strong
↔
K2t-minor model, by definition of D′ for every (i, j) ∈

{1, . . . , k}2 with i ̸= j, there exists an arc in D′ starting in X+
i and ending in X−

j .
Therefore, D′/T is a butterfly-minor of D isomorphic to

↔
Kt, concluding the proof.

Proof of Theorem 8.4. From the preceding lemma and Theorem 6.2 it follows that

bmχ⃗(t) ≤ smχ⃗(2t) ≤ 2mχ(2t)− 1 = O(2t(log log(2t))6) = O(t(log log t)6).

Let us now move on to colorings of A-non-zero digraphs. In order to establish Corol-
lary 8.5, we use of the following result proved recently by Tamás Mészáros and myself.

Theorem 8.24 (cf. [MS21b]). Let (A, +) be a finite Abelian group. Then K8|A| is A-
zero. In other words, for every A-arc-labelling of

↔
K8|A| there exists a directed cycle whose

arc-labels sum up to zero.
1Such trees can easily be obtained by considering a breadth-first in-search (resp. out-search) starting

from r−i (resp. r+
i ).
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The next Lemma shows that in the same way as non-even digraphs form a butterfly-
minor closed class of digraphs, for every fixed Abelian group (A, +) also the A-non-zero
digraphs are closed under taking butterfly minors.

Lemma 8.25. Let (A, +) be a finite Abelian group, and let D, D′ be digraphs such that
D <b D′. If D is A-non-zero, then so is D′.

Proof. It is clear that any zero-sum free A-arc-labelling of a digraph, restricted to the arc-
set of any subdigraph, forms a zero-sum free A-arc-labelling of this subdigraph as well. It
is therefore sufficient to prove the assertion of the lemma in the case that D′ is obtained
from D by the contraction of one contractible arc.

So suppose that e = (u, v) ∈ A(D) is a butterfly-contractible arc in D such that
D′ = D/e. W.l.o.g. we may assume d+

D(u) = 1. Then D′ may be represented as follows.

V (D′) = V (D) \ {u}, A(D′) = A(D − u) ∪ {(x, v)|x ∈ N−
D (u) \ {v}}.

Now suppose that D is A-non-zero and let w : A(D) → A be a zero-sum free A-arc-
labelling of D. Define an arc-labelling w′ of D′ by putting w′(e) := w(e) for e ∈ A(D− u)
and w′(x, v) := w(x, u) + w(u, v) (summation in (A, +)) for every x ∈ N−

D (u) \ {v}. We
claim that w′ is a zero-sum free arc-labelling of D′. Indeed, let C by any directed cycle in
D′. If C does not contain an arc of the form (x, v) with x ∈ N−

D (u) \ {v}, then C is also a
directed cycle in D whose arc-labels in w and w′ are equivalent, and hence the sum of its
arc-labels must be non-zero. Next suppose that (x, v) ∈ A(C) for some x ∈ N−

D (u) \ {v}.
By replacing the arc (x, v) of C with the directed path x, (x, u), u, (u, v), v in D, we obtain
a directed cycle C∗ in D. It now follows by definition of w′ that the total sum of arc-labels
of C with respect to w′ equals the total sum of arc-labels of C∗ with respect to w, and
hence must be non-zero. This shows that w′ is indeed zero-sum free, and as required, it
follows that D′ is A-non-zero as well. This completes the proof of the lemma.

We now conclude this section by deriving Corollary 8.5 as a direct consequence of
Theorem 8.4, Theorem 8.24, and Lemma 8.25.

Proof of Corollary 8.5. Let (A, +) be a finite Abelian group such that |A| ≥ 3, and let D
be any A-non-zero digraph. By Lemma 8.25, every butterfly-minor of D is A-non-zero. By
Theorem 8.24, the complete digraph

↔
K8|A| is A-zero, and hence it follows that D ̸<b

↔
K8|A|.

We may thus apply Theorem 8.4 to D and obtain:

χ⃗(D) < bmχ⃗(8|A|) = O(8|A|(log log(8|A|))6) = O(|A|(log log |A|)6),

proving the assertion of the corollary.

8.4 List Colorings of Non-Even Digraphs
In this section, we prove Theorem 8.6. It will be convenient to prove the following (slightly)
strengthened version.

Theorem 8.26. Let D be a non-even digraph. Then for any choice of a designated vertex
v0 ∈ V (D), D is L-list colorable for every list assignment L = {L(v)|v ∈ V (D)} fulfilling
|L(v0)| = 1 and |L(v)| ≥ 3 for all v ∈ V (D) \ {v0}.

Proof. Assume towards a contradiction that there is a non-even digraph D which does
not satisfy the assertion, and assume D to be chosen minimal with respect to the number
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of vertices. Let in the following L be a fixed list assignment for D, where |L(v0)| = 1 for
some designated v0 ∈ V (D), |L(v)| ≥ 3 for all v ∈ V (D) \ {v0}, and such that D is not
L-choosable. Clearly, we have v(D) ≥ 3.

We first show that D must be strongly 2-connected: Assume for a contradiction that
there is a directed separation of order i ∈ {0, 1} in D. By Lemma 8.17, we find that there
are non-even digraphs D1 and D2 with fewer vertices than D such that D is the i-sum of
D1 and D2. By the assumed minimality of D, we know that D1 and D2 both satisfy the
assertion of the Theorem.

If i = 0, consider a partition (X, Y ) of V (D) such that D1 = D[X], D2 = D[Y ] and no
arc in D starts in Y and ends in X.. Restricting L to X resp. Y defines list assignments
for D1 and D2 (each with at most one list of size less than 3), and we find that Dj admits
a choice function cj for j = 1, 2 that defines an acyclic digraph coloring and satisfies
cj(x) ∈ L(x) for all x ∈ V (Dj). Let c be the common extension of c1, c2 to D, i.e.,

c(x) :=
{︄

c1(x) , x ∈ X
c2(x) , x ∈ Y

now defines a valid choice of colors for D without a monochromatic directed cycle, proving
that D is L-choosable. This is a contradiction to our initial assumption.

If i = 1, let w ∈ V (D) be such that D is the 1-sum of D1 and D2 along w. Consider a
partition (X, Y ) of V (D) \ {w} such that no arc in D has its head in X and its tail in Y ,
and such that D1 arises from D by identification of Y ∪ {w} into a single vertex v1, and
D2 by identification of X ∪ {w} into a vertex v2.

We have that v0 ∈ X∪{w} or v0 ∈ Y ∪{w}. Assume for the following that v0 ∈ X∪{w},
the other case works symmetrically. Define an assignment L1 of lists to the vertices of
D1 according to L1(x) := L(x) for all x ∈ X and L1(v1) := L(w). Because D1 satisfies
the assertion, we find a choice function c1 which defines an acyclic digraph coloring of D1
while satisfying c1(x) ∈ L(x), x ∈ X, and c̃ := c1(v1) ∈ L(w). Now define a list assignment
L2 for D2 according to L2(x) := L(x) for x ∈ Y and L2(v2) := {c̃}. Because we have
|L2(x)| = |L(x)| ≥ 3 for all x ∈ Y = V (D2) \ {v2}, we can apply the assertion to D2
and thus find a choice function c2 on V (D2) satisfying c2(x) ∈ L(x) for all x ∈ Y and
c2(v2) = c̃ = c1(v1). Now define a choice function c on V (D) by

c(x) :=

⎧⎪⎨⎪⎩
c1(x) , x ∈ X
c̃, x = w
c2(x) , x ∈ Y

By the above it is clear that we have c(x) ∈ L(x) for all x ∈ V (D). Because D is not
L-choosable, this implies that there is a directed cycle C in D which is monochromatic
under c. Because c1 and c2 are a digraph colorings of D1 and D2, C must contain vertices
of both X and Y and therefore must visit w as well as exactly one arc with tail in X
and head in Y . Therefore, identifying all vertices in Y ∪ {v} on C into a single vertex
results in a directed cycle in D1, which has to be monochromatic as well. This finally is a
contradiction to the definition of c1.

As both cases led to a contradiction, for the rest of the proof we may assume that
v(D) ≥ 3 and D is strongly 2-connected. Applying Corollary 8.20 we find that there
is a vertex u ∈ V (D) \ {v0} of out-degree two. Clearly, D − u is non-even as well and
has less vertices, so the minimality of D implies that, for the induced list assignment
L′ := {L(x)|x ∈ V (D)\{u}}, there is a choice function c′ which defines an acyclic digraph
coloring of D−u. Let u1, u2 be the two out-neighbours of u. As |L(u)\{c′(u1), c′(u2)}| ≥ 1,
we can extend c′ to a choice function c on V (D) such that c(x) = c′(x) ∈ L(x) for all
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x ∈ V (D) \ {u} and c(u) ∈ L(u) \ {c(u1), c(u2)}. Because D is by initial assumption not
L-choosable, this implies that there is a directed cycle in D which is monochromatic with
respect to c. Since c′ defined a valid digraph coloring, this is only possible if the cycle
traverses u and thus one of the arcs (u, u1) or (u, u2). However, this gives a contradiction
to the fact that both of these arcs are bi-colored.

This final contradiction shows that our initial assumption was false and concludes the
proof of the Theorem.

8.5 Non-Bipartite Graphs
In the previous sections we were concerned with digraphs which, via the bijection described
in Definition 8.2 correspond exactly to the bipartite graphs with perfect matchings. How-
ever, a matching covered graph does not need to be bipartite. In fact, most parts of
(bipartite) matching theory directly translate into the world of general matching covered
graphs. This includes, especially, tight cuts, their contractions, and Pfaffian orientations.

In particular, the M -chromatic number is defined on all graphs. By Corollary 8.10
every bipartite Pfaffian graph has M -chromatic number at most 2 for every perfect match-
ing. A natural question to ask would be whether this generalizes to all (also non-bipartite)
Pfaffian graphs. To this question there exists a rather easy negative answer:

The triangular prism is the complement C6 of the 6-cycle. It is planar and therefore

Figure 8.5: The triangular prism C6 together with a perfect matching M .

Pfaffian, but when considering the perfect matching M from Figure 8.5, one can see that
any two of the three edges in M lie together on a 4-cycle. Hence, in any M -coloring, no
two of the three edges may receive the same color and therefore χ

(︂
C6, M

)︂
= 3.

In Corollary 8.10 we studied the matching chromatic number for a class closed under
matching minors, so a natural next step would be to consider a subclass of the C6-matching
minor-free graphs. The triangular prism is one of two graphs appearing in a fundamental
theorem by Lovász on non-bipartite matching covered graphs.

Theorem 8.27 (Lovász [Lov87]). Every non-bipartite matching covered graph contains a
conformal bisubdivision of K4 or C6.

A matching covered graph without a non-trivial tight cut is called a brace if it is
bipartite and a brick otherwise. In his seminal paper [Lov87], Lovász introduced a de-
composition procedure, known under the name tight cut decomposition, which, given a
matching covered graph, searches for non-trivial tight cuts, computes both tight cut con-
tractions, and iterates this for both reduced matching covered graphs, until a list of bricks
and braces, which are not reducible any more, is obtained. Among many other things,
Lovász proved that the list of bricks and braces does not depend on the chosen order in
which the tight cuts are contracted. As the following theorem shows, braces correspond
exactly to the strongly 2-connected digraphs.

Theorem 8.28 (Lovász and Plummer [LP68]). A bipartite graph G is a brace if and only
if it is 2-extendable.
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Bricks have a more complicated structure and although every 2-extendable graph is
either a brick or a brace as seen in Theorem 8.29 below, there are bricks that are not
2-extendable. For an example of such a brick consider the triangular prism.
Theorem 8.29 (Plummer [Plu80]). Let G be a 2-extendable graph. Then, G is either a
brace or a brick.

There exists a generalisation of tight cuts that is useful for the study of bricks. Given
a matching covered graph G and a set X ⊆ V (G) we call the graph GX obtained from G
by identifying X into a single vertex the X-contraction of G. Now a cut ∂(X) is called
separating if both GX and GX are matching covered.
Theorem 8.30 (de Carvalho, Lucchesi, and Murty [dCLM02b]). Let G be a matching
covered graph and X ⊆ V (G). The cut ∂(X) is separating if and only if for every edge
e ∈ E(G) there is a perfect matching Me of G containing e such that |∂(X) ∩Me| = 1.

In what follows we call a matching covered graph solid if every non-trivial separating
cut already forms a tight cut.

One can easily check the following lemma on bipartite graphs, showing that any bi-
partite matching covered graph is solid.
Lemma 8.31 (de Carvalho, Lucchesi, Kothari, and Murty [LDCKM18]). Let G be a
bipartite matching covered graph. Then ∂(X) is separating if and only if it is tight.

Moreover, being solid is preserved by tight cut contractions (cf. [dCLM02b]) and thus
a matching covered graph is solid of and only if all of its bricks are solid.

Please note that even bricks may contain non-trivial separating cuts. Again consider
the triangular prism from Figure 8.5 and take a cut around one of the two triangles.
Such a cut is separating. In fact, the existence of a prism as a conformal bisubdivision
immediately implies the existence of a non-trivial and non-tight separating cut.
Lemma 8.32 (cf. [LDCKM18]). Every solid graph is C6-free.

The goal of this section is to establish an extension of Corollary 8.10 to non-bipartite
matching covered graphs in the form of a conjecture.
Conjecture 8.2. Let G be a solid and Pfaffian graph and M a perfect matching of G.
Then χ(G, M) ≤ 2.

To provide some evidence towards Conjecture 8.2, the remainder of this section is
dedicated to proving Theorem 8.13, which settle the planar case of this conjecture.

For this we first establish a more general version of Lemma 8.18 by proving it directly
for tight cut contractions. We will need a bit of notation here. If G is matching covered,
M a perfect matching, and GX is a tight cut contraction of ∂(X) with contraction vertex
vX , we denote by MX the perfect matching {e ∈M | e ⊆ V (GX)} ∪ {uvX} where u is the
unique vertex of X covered by the edge of M in ∂(X).
Lemma 8.33. Let G be a matching covered graph, ∂(X) a non-trivial tight cut in G and
M a perfect matching. If χ(GX , MX) ≤ 2 and χ

(︁
GX , MX

)︁
≤ 2, then χ(G, M) ≤ 2.

Proof. For S ∈
{︂

X, X
}︂

let cS be a matching 2-coloring of MS in GS . Let eS ∈MS be the
edge covering the contraction vertex. Then we can rename the colors for cX and cX such
that cX(eX) = cX

(︁
eX

)︁
and we define a coloring for M as follows.

c(e) :=

⎧⎪⎨⎪⎩
cX(e) , e ∈MX

cX(eX) = cX

(︁
eX

)︁
, e ∈ ∂(X) ∩M

cX(e) , e ∈MX
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Suppose G contains an M -alternating cycle C that is monochromatic with respect to c. If
V (C) is a subset of either X or X, by definition of c, C must be a monochromatic cycle in
either GX or GX and, thus, C must cross ∂(X). Since ∂(X) is tight, C − (∂(X) ∩ E(C))
contains exactly 2 components. Each of them is a path of even length and M covers all
vertices but exactly one endpoint. Moreover, each of these paths forms, together with the
corresponding edges in ∂(X), an MS-alternating cycle in their respective contraction GS ,
for both S ∈ {X, X}. By definition of c, these two cycles must also be monochromatic
which ultimately contradicts the choice of the colorings cX , cX and completes the proof.

Using the tight cut decomposition and the above Theorem, Theorem 8.13 reduces to
the task of showing that every perfect matching of a solid planar brick or planar brace is
2-colorable. The brace case is of course taken care of by Corollary 8.10 and thus our only
concern are the solid planar bricks2. By Lemma 8.32 we only have to consider C6-free
planar bricks. Kothari and Murty (cf. [KM16]) gave a precise description of these bricks.
To state this description, we need some additional terminology.

A wheel graph Wk with k ≥ 3 is called odd if k is odd. It is not hard to see that every
odd wheel is a brick.

Figure 8.6: The tricorn with one perfect matching of type I (solid) and one of type II (dashed).

Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two disjoint paths with k ≥ 2. The graph
SC2k+2 obtained from the union of these paths by adding the edges uivi for all i ∈
{1, . . . , k}, two new vertices x and y joined by an edge and the edges xu1, xv1, yuk, yvk,
is called a staircase of order 2k + 2. The graph SC2k+2 is a brick and SC6 is isomorphic
to the triangular prism.

The following is the main result of Kothari and Murty from [KM16].

Theorem 8.34 (Kothari and Murty [KM16]).

1. A matching-covered graph is C6-free if and only if all the bricks and braces in its
tight cut decomposition are C6-free.

2. The only planar C6-free bricks are the odd wheels, the staircases of order divisible by
4 and the tricorn (see Figure 8.6).

If we have a planar and matching covered graph G that does not contain a conformal
bisubdivision of C6, by Theorem 8.34 the only bricks G can have are odd wheels, staircases
of orders divisible by 4 and tricorns. Along with these bricks, G can have any set of planar
braces. Planar braces are Pfaffian and thus by Corollary 8.10 matching-2-colorable. In the
following we prove Theorem 8.13 by showing that all three families of bricks mentioned
above are matching 2-colorable as well.

2Here we use the fact that given a planar matching-covered graph G, arbitrary contractions, and thus
also all bricks and braces in the tight cut decomposition of G, are planar as well.



8.5. NON-BIPARTITE GRAPHS 189

Proof (of Theorem 8.13). As we have seen, it suffices to show that the perfect matchings
of the odd wheels, staircases of order 4k and the tricorn are 2-colorable.

Odd Wheels. For K4 = W3 we have exactly two edges in every perfect matching and
thus are done. Let k ≥ 4 be any odd number. For the odd wheel Wk on k + 1 vertices,
let x be the unique vertex of degree k. Clearly every perfect matching M has to cover
x with an edge, say, eM

x , and every other matching edge lies on the cycle induced by the
neighbourhood of x. Consider the graph induced by

⋃︁
M \

{︂
eM

x

}︂
. Since N(x) induces a

cycle, this graph is a path and thus every M -alternating cycle in Wk must contain eM
x .

Hence, by coloring eM
x with 0 and every other edge of M with 1 we have found a matching

2-coloring for M in Wk.

Staircases of Order 4k. For the staircases SC4k we give a 2-coloring c : E(SC4k) →
{0, 1} of the edges that induces a matching-2-coloring on every perfect matching. Let xy
be the unique edge with endpoints in two disjoint triangles. Let (u1, . . . , u2k−1) be the
path from the construction of S4k not on the outer face and assume xu1 to be an edge
of SC4k. We color xy with 0. Then, going counter-clockwise around the outer face, we
assign 0 as the color of the edges xv1 and v1v2, the next two edges receive the color 1,
then two times color 0 and so forth until the edge v2k−1y is colored. Since SC4k is of order
4k we color 2k − 2 edges this way and the last two edges receive color 1. With this the
path (x, v1, . . . , v2k−1, y) on the outer face is colored. We set c(uiui+1) := 1 − c(vivi+1)
for i ∈ {1, . . . , 2k − 2} and c(xu1) := 1 while c(yu2k−1) := 0. At last we need to color
the spokes. Let c(viui) := i mod 2 for i ∈ {1, . . . , 2k − 1}. For an illustration consider
Figure 8.7. To show that c induces a matching-2-coloring for every perfect matching,
we must show that there is no conformal cycle C such that every second edge has the
same color. Assume for a contradiction that SC4k

[︁
c−1(0)

]︁
contains a conformal cycle C.

However, this graph contains a single even length cycle and this cycle contains exactly
the vertices incident with at most one edge of color 1 in G. Therefore V (G) \ V (C) is a
stable set and thus C is not conformal, a contradiction. Thus C must contain an edge of
color 1 and therefore, by construction, also two consecutive such edges. Consequently, we
must have i = 1, and every second edge must be of color 1. There does not exist a path
of length 5 in SC4k such that the first, third, and fifth edge are colored with 1, hence C
must have length 4. Clearly none of the 4-cycles contains two disjoint edges of the same
color, which yields the desired contradiction, a cycle C with the stated properties cannot
exist.

Figure 8.7: The staircase of order 16 together with a 2-coloring of the edges inducing a matching-
2-coloring for every perfect matching. The solid edges are considered to be of color 0, while the
dashed ones are of color 1.
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Tricorn. For the tricorn we first observe that we can classify its perfect matchings
into two types. Any perfect matching either contains exactly one edge on the outer face
(compare Figure 8.6) that belongs to a triangle or none. If we fix such an edge e on
the outer face belonging to a triangle for our perfect matching M1, the remaining edges
of M1 are uniquely determined. This can be seen as follows: Taking an edge from one
of the triangles forces us to match the remaining vertex of said triangle to the middle
vertex. Then the remaining neighbors of the middle vertex have to be matched within
their respective triangles in such a way that the remaining two vertices are adjacent. There
is only one way to do this after e has been chosen and thus {e} is in fact a forcing set for
M1. Hence coloring e with 0 and all other edges of M1 with 1 yields the desired coloring.
We call such a matching type I.

A matching of type II is a matching not containing any edge on the outer face belonging
to a triangle. Note that any perfect matching must contain two edges of the outer face.
So let e1 and e2 be these two edges. One of the three triangles contains an endpoint from
both e1 and e2, and its third vertex has to be matched to the middle one. This is already
enough to determine the last two edges and we obtain M2. Hence {e1, e2} is a forcing set
of M2 and, since the tricorn contains no 4-cycle, by coloring e1 and e2 with 0 and the rest
of M2 with 1 we are done.

By the above discussion it is clear that any perfect matching of the tricorn is either of
type I or II and this concludes the proof.

It is easy to see that any cut around a triangle in the tricorn or a staircase is separating.
Moreover, one can check that the odd wheels are solid. Hence we have the following.

Corollary 8.35 (de Carvalho, Lucchesi, and Murty [dCLM02a]). The only planar solid
bricks are the odd wheels.

Corollary 8.36. It holds that χ(G, M) ≤ 2 for every planar solid graph G and a perfect
matching M of G.

8.6 Conclusion

In Section 8.3 we have shown that bmχ⃗(t) ≤ 2mχ(2t) − 1 = O(t(log log t)6). Similar as
in the case of strong minors, for every undirected graph G with χ(G) ≥ bmχ⃗(t) we have
χ⃗(
↔
G) = χ(G) and hence

↔
G <b

↔
Kt, implying that G < Kt. This shows that mχ(t) ≤ bmχ⃗(t)

for any t ≥ 1, and it follows that the asymptotic behavior of bmχ⃗(t) is the same as that
of mχ(t). Concerning explicit lower bounds, the best we can show is that bmχ⃗(t) ≥ t + 1
for any t ≥ 3, which follows by considering the biorientation of the undirected graph
G = Kt+2−C5 obtained from the complete graph on t + 2 vertices by removing the edges
of a 5-cycle. In fact, χ⃗(

↔
G) = χ(G) = t but

↔
G does not contain

↔
Kt as a butterfly-minor.

As Hadwiger’s conjecture is known to be true for t ≤ 6, we have the bounds

t + 1 ≤ bmχ⃗(t) ≤ 4t− 1

for 3 ≤ t ≤ 6. The upper bound should certainly not be tight, and it seems plausible that
the truth lies with the lower bound.

Conjecture 8.3. For every t ≥ 3, we have bmχ⃗(t) = t + 1.

Note that since topological minors specialise butterfly-minors, the case t = 3 of Con-
jecture 8.3 would follow from Conjecture 7.2 stated in Chapter 7.
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In Section 8.4 we have shown that the list dichromatic number of non-even digraphs is
at most 3, that is, digraphs in the class D2 have bounded choice number. It is natural to ask
whether this result at least qualitatively generalizes to the minor-closed classes Dk, k ≥ 3.
Since the classes Dk are sandwiched between the classes Kt of digraphs excluding

↔
Kt as a

butterfly-minor (compare the discussion in the introduction of this chapter), the following
question comes up naturally.

Problem 8.2. Is there a function f : N→ N such that every digraph D with χ⃗ℓ(D) ≥ f(t)
contains

↔
Kt as a butterfly minor?

In the undirected case, it is known that Kt-minor free graphs have choice number at
most O(t(log log t)6) (cf. [Pos20]), so here the same asymptotic bound as for the chromatic
number applies. Yet, problem 8.2 seems to be extremely tricky, since none of the standard
approaches for bounding the choice number applies. As mentioned earlier, already non-
even digraphs may have unbounded minimum out- and in-degree, and so a degeneracy-
coloring approach seems infeasible. Also the methods for bounding smχ⃗(t) and bmχ⃗(t) we
have seen previously do not apply for list coloring, since they are eventually based on the
fact that χ⃗(D) ≤ χ⃗(D[X]) + χ⃗(D[Y ]) holds for any digraph D and a partition X ∪ Y =
V (D) of its vertex-set. The same inequality however is false for the list dichromatic
number: Bipartite digraphs can be partitioned into two independent sets but still may
have arbitrarily large choice number [BHL18].

Due to the existence of infinte antichains (such as the odd bicycles) in the butterfly-
minor order of digraphs, we believe that for larger values of k, possibly no very simple
description of the forbidden butterfly minors for Dk can be obtained. Looking at the
case k = 2, this drastically changed when moving from digraphs to the corresponding
bipartite graphs, where we only needed to exclude K3,3 as a matching minor. While by
now the K3,3-matching minor-free bipartite graphs (that is, the Pfaffian bipartite graphs)
have many equivalent characterizations and can be recognized in polynomial time, not
much is known about the classes of Kt,t-matching minor-free graphs with t ≥ 4. Clearly,
the complete bipartite graph Kt,t has M -chromatic number t for any perfect matching.
Inspired by Corollary 8.10, we think that the following analogue of Hadwiger’s Conjecture
for M -colorings of bipartite graphs could be true.

Conjecture 8.4. Let t ∈ N, G be a bipartite graph and M an arbitrary perfect matching
of G, such that χ(G, M) ≥ t. Then G contains Kt,t as a matching minor.

While for t = 1, 2, the statement is trivial, the case t = 3 amounts to Corollary 8.10.
At the current state, we do not have a good approach for proving this conjecture even
in the first open case of t = 4. One of the reasons for this is that our proof for t = 3
relied on a certain sparsity of Pfaffian bipartite graphs, in the sense that every bipartite
graph of sufficiently large extendability and minimum degree is not Pfaffian. Without this
fact we could not have been sure to be able to apply our reduction operations to smallest
counterexamples. Hence, it would be very helpful to prove similar results also for classes
excluding larger complete bipartite graphs as matching minors.

Question 8.1. Is there a function f : N → N such that every f(t)-extendable bipartite
graph G contains Kt,t as a matching minor?

The following observation, which is a direct consequence of Theorem 8.4, provides some
evidence towards Conjecture 8.4.

Corollary 8.37. There is an absolute constant C > 0 such that for any sufficiently
large t ∈ N every bipartite graph G with a perfect matching M satisfying χ(G, M) ≥
Ct(log log t)6 contains Kt,t as a matching minor.
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Proof. Set f(t) := bmχ⃗(t) and let G be a bipartite graph with a perfect matching M such
that χ(G, M) ≥ f(t). We deduce from Theorem 8.4 that χ⃗(D(G, M)) = χ(G, M) ≥ f(t)
implies that D(G, M) contains

↔
Kt, which is the unique perfect matching-direction of Kt,t,

as a butterfly-minor. The claim now follows from Lemma 8.8.

Figure 8.8: A planar bipartite graph such that for any 2-coloring of its edges, there is a perfect
matching with a monochromatic alternating cycle.

Considering the notion of M -colorings, it is natural to ask whether it is necessary to
have different colorings of the matching edges for every perfect matching, or whether one
might strengthen Corollary 8.10 by finding a single 2-coloring of all edges in a bipar-
tite Pfaffian graph, such that for any perfect matching M the induced 2-coloring on the
matching edges yields a proper M -coloring. For an example consider the 2-coloring of the
staircase in Figure 8.7. Although it seems to be possible to find such a “super”-coloring
for many interesting bipartite Pfaffian graphs such as the Heawood graph or grid graphs,
there are small examples of (even planar) Pfaffian bipartite graphs without such a coloring,
one of which is depicted in Figure 8.8.



Chapter 9

Excluding Induced Subdigraphs

9.1 Introduction
All graphs and digraphs considered in this chapter are simple.

In the previous chapters we have investigated bounds on the dichromatic number of
a digraph provided that it excludes certain substructures such as minor models or subdi-
visions of other digraphs. Each of these notions of substructure generalizes subdigraphs
in the sense that if D′ is a subdigraph of another digraph D, then D′ is also a strong
(topological, butterfly) minor of D. The alert reader might therefore wonder about the
following natural question: Given a set of digraphs F , under which circumstances do the
digraphs not containing any F ∈ F as a subdigraph have an interesting structure which
yields a bound on the dichromatic number?

The reason why the above question has not been considered so far is that it is hard to
provide a satisfying answer: If we would allow F to be of infinite size, then the question is
too general, as every class of digraphs closed under taking subdigraphs can be described
as those digraphs excluding the minimal non-members of the class as subdigraphs. For
instance, for any k ∈ N we might simply define F to contain all (k+1)-dicritical digraphs F .
Then a digraph D excludes all members of F as subdigraphs if and only if it is acyclically
k-colorable. This class of digraphs has bounded dichromatic number, but we cannot hope
for a nice characterization of such digraphs, as the problem of deciding whether a digraph
has dichromatic number at most k is NP-hard for any k ≥ 2 (we will further elaborate on
this topic in the next Chapter 10).

In contrast, if F is finite, then the answer to our question is unsatisfyingly simple:

Observation 9.1. Let F be a finite set of digraphs. Then the class of the digraphs
excluding all digraphs isomorphic to members of F as subdigraphs has bounded dichromatic
number if and only if at least one F ∈ F is an orientation of a forest.

Proof. Suppose first that F does not contain an oriented forest. Then every member of
F contains an oriented cycle, let g be the maximum length of any oriented cycle appear-
ing in any member of F (here we use the finiteness of F). A result of Harutyunyan and
Mohar [HM12b] now shows that there exist digraphs of arbitrarily large dichromatic num-
ber not containing any oriented cycle of length at most g, and hence not containing any
member of F as a subdigraph.

Therefore the digraphs excluding F have unbounded dichromatic number.
Next suppose that F ∈ F is an oriented forest. Then any digraph D excluding all

members of F as subdigraphs must also exclude F . Then min{δ+(D), δ−(D)} < v(F )−1.
For if δ+(D), δ−(D) ≥ v(F ) − 1, we could easily construct a copy of F in D by picking
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some starting vertex, identifying it as the root of F , and successively expanding a subtree
of F by attaching out- and in-leafs (the degree conditions ensure that we can pick a leaf
we want to attach disjoint from the already built subtree).

This implies that every digraph excluding the members of F has dichromatic number at
most v(F )−1, for otherwise it would contain a v(F )-dicritical subdigraph, which according
to Lemma 7.11 from Chapter 7 must have minimum out- and in-degree at least v(F )− 1,
a contradiction. This shows that the dichromatic number of the digraphs excluding F is
bounded, concluding the proof.

Hence, the exclusion of subdigraphs is maybe not the right track towards obtaining in-
teresting classes of digraphs with bounded dichromatic number. A more restricted concept
of substructure is that of an induced subdigraph. Indeed, the classes of digraphs obtained
by excluding induced subdigraphs are much richer.

For instance, while the digraphs excluding K⃗2 (the single arc) as a subdigraph consist
only of isolated vertices, the digraphs excluding K⃗2 as an induced subdigraph constitute
all biorientations of undirected graphs.

Aboulker, Charbit, and Naserasr [ACN20] recently initiated a systematic study of the
relation between excluded induced subdigraphs and the dichromatic number and asked
the following intriguing question.

Problem 9.1. For which finite sets F of digraphs does there exist a constant C such that
digraphs D without an induced subdigraph isomorphic to a member of F satisfy χ⃗(D) ≤ C?

Following the terminology introduced by Aboulker et al. [ACN20], we denote by
Forbind(F) the set of digraphs containing no induced subdigraph isomorphic to a member
of F . We say that F is heroic if the digraphs in Forbind(F) have bounded dichromatic
number and in this case we denote χ⃗(Forbind(F)) := max{χ⃗(D)|D ∈ Forbind(F)}.

The following analogue of Problem 9.1 for undirected graphs and the chromatic number
is quite famous and was the main inspiration of the work by Aboulker et al.

Problem 9.2. For which finite sets F of graphs does there exist a constant C such that
graphs G without an induced subgraph isomorphic to a member of F satisfy χ(G) ≤ C?

Let us observe some necessary conditions on a finite set of graphs F whose exclusion
bounds the chromatic number. First of all, the complete graphs (Kn)n∈N have unbounded
chromatic number and since the only induced subgraphs of complete graphs are complete
again, a necessary condition on F is that it contains at least one clique graph. Secondly, a
famous result by Erdős [Erd59] states the existence of graphs which simultaneously have
arbitrarily large chromatic number and large girth, hence making it necessary for F to
contain at least one forest. After having made these simple observations, it is natural
to ask whether any further graphs must be contained in F to guarantee bounded chro-
matic number. Quite interestingly, Gyárfás [Gyá75] and Sumner [Sum81] independently
conjectured that no further conditions are required.

Conjecture 9.1 (Gyárfás 1975, Sumner 1980). If F is a forest and k ∈ N, then the graphs
excluding F and Kk as induced subgraphs have bounded chromatic number.

Over the years, despite its innocent appearance and attacks by several renowned re-
searchers, the Gyárfás-Sumner-Conjecture still stands unresolved. Known special cases
include when F is a path ([Gyá75]), a subdivided star ([Sco97]), a tree of radius two
([KP94]) and special kinds of caterpillars ([CSS19b]).

Just as in the undirected case, Aboulker et al. [ACN20] observed several necessary
conditions for a finite set F of digraphs to be heroic, which we summarize in the following.
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Proposition 9.2 (cf. [ACN20]). Let F be a heroic set of digraphs. Then F must contain

• a bioriented clique
↔
Kk for some k ∈ N,

• a biorientation of a forest,

• an orientation of a forest,

• a tournament, i.e., an orientation of a complete graph.

These items can be respectively verified by considering the following families of di-
graphs with unbounded dichromatic number:

• The complete digraphs (
↔
Kn)n∈N,

• biorientations of graphs with large chromatic number and large girth (cf. [Erd59]),

• oriented digraphs with large dichromatic number and large girth (cf. [HM12b]),

• tournaments with large dichromatic number.

Inspired by yet another important conjecture in graph theory, the Erdős-Hajnal-
Conjecture, in [BCC+13] Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour,
and Thomassé studied the dichromatic number of tournaments which exclude a single
fixed tournament H as a(n induced) subdigraph. In this paper, the authors defined a hero
to be a tournament H such that the tournaments exluding isomorphic copies of H have
bounded dichromatic number. In other words, a digraph H is a hero if the set {

↔
K2, K2, H}

is heroic, where Kα for α ≥ 1 denotes the arcless digraph on α vertices. The main result
of Berger et al. in [BCC+13] was a recursive characterization of heroes as follows.

Theorem 9.3. A tournament H is a hero if and only if either H is the single-vertex
digraph, or one of the following holds:

• There are heroes H1, H2 such that H is obtained from the disjoint union of H1 and
H2 by adding all arcs in V (H1)× V (H2).

• There exist heroes H1, H2, at least one of which is a transitive tournament, and a
vertex v /∈ V (H1) ∪ V (H2) such that H is obtained from the disjoint union of H1,
H2 and v by adding all the arcs in V (H1)× V (H2), {v} × V (H1) and V (H2)× {v}.

It follows directly from this characterization that every transitive tournament and all
tournaments on at most four vertices are heroes.

It is a natural aim to characterize the finite heroic sets F of digraphs similar to what
is claimed by the Gyárfás-Sumner-Conjecture for undirected graphs. In contrast to undi-
rected graphs, only heroic sets of size at least 3 are interesting to consider, as the necessary
conditions from Proposition 9.2 directly imply that {

↔
K2, K⃗2} is the only heroic set of size

two (and is so trivially). Aboulker et al. in [ACN20] proved that every heroic set of size
three must be of one of the following three types:

• {K⃗2,
↔
F,
↔
Kk} for a forest F and a number k ∈ N,

• {
↔
Kk, Kα, H} for k, α ∈ N and a hero H such that k = 2 or H is transitive, or

• {
↔
K2, F, H} for some oriented star forest1 F and a hero H, or

1An oriented star forest is a disjoint union of orientations of stars.
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• {
↔
K2, F, K⃗k} for some oriented forest F and some k ∈ N.

They then ventured to propose the conjecture that every one of the above triples is indeed
heroic, thus claiming a complete description of the heroic sets of size 3.

Note that since K⃗2-free digraphs amount exactly to the biorientations of undirected
graphs, and since dichromatic number and chromatic number coincide on these, the conjec-
ture of Aboulker et al. corresponds exactly to the undirected Gyárfás-Sumner-Conjecture
when restricting to the triples of the first type above. Triples of the second type as above
were shown to be indeed heroic by Aboulker et al. (cf. [ACN20], Theorem 4.1). Finally,
for the third and fourth types of triples we deal with oriented graphs. Let us explicitly
state the conjecture for these cases.

Conjecture 9.2. For every oriented star forest F and every hero H the oriented graphs
excluding F and H as induced subdigraphs have bounded dichromatic number.

Conjecture 9.3. For every oriented forest and every k ∈ N the oriented graphs excluding
F and K⃗k as induced subdigraphs have bounded dichromatic number.

In the main results of this chapter we will solve several special cases of Conjecture 9.2
and Conjecture 9.3.

Aboulker et al. [ACN20] noted that in case that H is a transitive tournament, Conjec-
ture 9.2 follows from a result of Chudnovsky, Scott, and Seymour [CSS19a]. They observed
that Conjecture 9.2 is true in the case that F has at most two vertices. Finally they fo-
cused on the case when H = C⃗3 is the smallest non-trivial hero and F has 3 vertices.
Then F must be one of the following:

• K3, the forest consisting of three isolated vertices,

• P⃗3, the directed path on three vertices,

• K⃗2 + K1, the oriented star forest consisting of an arc plus an isolated vertex,

• S+
2 , the 2-out-star, or

• S−
2 , the 2-in-star.

They proved that {
↔
K2, F, C⃗3} is indeed heroic if F is one of the first three star forests. Al-

ready in the case F ∈ {S+
2 , S−

2 } however, the could not to prove heroicness. Nevertheless,
they made the following explicit conjecture.

Conjecture 9.4 (cf. [ACN20], Conjecture 6.2).

χ⃗(Forbind(
↔
K2, S+

2 , C⃗3)) = χ⃗(Forbind(
↔
K2, S−

2 , C⃗3)) = 2.

Note that by symmetry of reversing all arcs, it suffices to prove Conjecture 9.4 for the
out-star S+

2 . The digraphs in Forbind(
↔
K2, S+

2 , C⃗3) are exactly the directed triangle-free
oriented graphs such that the out-neighborhood of every vertex induces a tournament. As
the first main result of this chapter, we prove Conjecture 9.4.

Theorem 9.4.

χ⃗(Forbind(
↔
K2, S+

2 , C⃗3)) = χ⃗(Forbind(
↔
K2, S−

2 , C⃗3)) = 2.

In fact, we deduce Theorem 9.4 as an immediate Corollary of the following stronger
result involving the hero W +

3 obtained from the directed triangle C⃗3 by attaching a dom-
inating source (cf. Figure 1.1).
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Theorem 9.5. χ⃗(Forbind(
↔
K2, S+

2 , W +
3 )) = 2.

In order to prove Theorem 9.5, we need to establish several auxiliary results which
deal with the structure of digraphs in the class Forbind(

↔
K2, S+

2 , W +
3 ), which is surprisingly

complicated (these are exactly the oriented graphs in which the out-neighborhood of every
vertex induces a transitive tournament).

Considering Theorem 9.5 it is natural to try and verify Conjecture 9.2 for more triples
of the form {

↔
K2, S+

2 , H}, where H is some hero. In this direction, we can prove the
following result involving the hero W −

3 obtained from C⃗3 by attaching a dominating sink.

Theorem 9.6. χ⃗(Forbind(
↔
K2, S+

2 , W −
3 )) ≤ 4.

Our last result concerning Conjecture 9.2 generalizes Theorem 9.6 qualitatively and
proves that for every k ∈ N, the triple {

↔
K2, S+

2 , Hk} is heroic, where Hk is the hero on
k vertices obtained from the disjoint union of W +

3 and K⃗k−4 by adding all possible arcs
from W +

3 towards K⃗k−4.

Theorem 9.7. Let H be a hero and let H− be the hero obtained from H by adding a
dominating sink. If {

↔
K2, S+

2 , H} is heroic, then so is {
↔
K2, S+

2 , H−}.

Our last new result in this Chapter concerns Conjecture 9.3. As mentioned above,
Conjecture 9.3 holds true whenever F is an oriented star forest, and therefore particularly
for forests on at most 3 vertices. The first open cases therefore appear when F is an ori-
entation of the P4. Aboulker et al. considered the directed path P⃗4 and showed in one of
their main results that the set {

↔
K2, P⃗4, K⃗3} is heroic. It remains an open problem whether

{
↔
K2, P⃗4, K⃗k} is heroic for k ≥ 4. There are three other oriented paths on four vertices.

Two of them, which are called P +(2, 1) and P −(2, 1) in [ACN20], consist of two oppositely

P+(2, 1) P−(2, 1)

~P4
P+(1, 1, 1)

oriented dipaths of length two and one, respectively. Chudnovsky, Scott, and Seymour
proved in [CSS19a] that for every k ∈ N, digraphs in the set Forbind(

↔
K2, P, K⃗k) have un-

derlying graphs with bounded chromatic number (and thus bounded dichromatic number)
for P ∈ {P +(2, 1), P −(2, 1)}. Hence, Conjecture 9.3 holds for these two orientations of P4.
The same result however is wrong for the remaining orientation of P4, which we denote by
P +(1, 1, 1), as it consists of 3 alternatingly oriented arcs. Here we complement the result
of Aboulker et al. [ACN20] concerning the directed path P⃗4 and k = 3 by showing that
also the set {

↔
K2, P +(1, 1, 1), K⃗3} is heroic.

Theorem 9.8. χ⃗(Forbind(
↔
K2, P +(1, 1, 1), K⃗3)) = 2.

We remark that the class Forbind(
↔
K2, P +(1, 1, 1), K⃗3) is quite rich, as it (among others)

contains all oriented line digraphs.

Structure of the chapter. In Section 9.2 we investigate the structure of digraphs in
the class Forbind(

↔
K2, S+

2 , W +
3 ) and use these insights to prove Theorem 9.5. In Section 9.3

we give the proof of Theorem 9.6. In Section 9.4 we prove Theorem 9.7. Finally, in
Section 8.5 we conclude this chapter by proving Theorem 9.8.
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9.2 {S+
2 , W +

3 }-Free Oriented Graphs

In this section, we will prove Theorem 9.5 and thereby show that {
↔
K2, S+

2 , W +
3 } is a

heroic set. Note that Forbind(
↔
K2, S+

2 , W +
3 ) is the class of oriented graphs D with the

property that the out-neighbourhood of every vertex in D induces a transitive tournament.
Given D ∈ Forbind(

↔
K2, S+

2 , W +
3 ), we define F = F (D) to be the spanning subdigraph

of D consisting of the arcs (x, y) ∈ A(D) such that y is the source in the transitive
tournament induced by the out-neighbourhood of x in D. Observe that for every x ∈ V (D),
if d+

D(x) ≥ 1 then d+
F (x) = 1, and otherwise d+

F (x) = 0. From the definition of F (D) we
immediately obtain the following property:

Fact 9.1. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ) and (x, y) ∈ A(F (D)). Then we have

N+
D (x) ⊆ N+

D (y) ∪ {y}.

The next fact follows immediately from Fact 9.1 via induction.

Fact 9.2. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ) and let x1, . . . , xk be the vertex-trace of a dipath

in F (D). Then
N+

D (x1) \ {x2, . . . , xk} ⊆ N+
D (xk).

From Fact 9.2 we can derive that the vertex-sets of directed cycles in F (D) form so-called
out-modules in D. Modules in digraphs will further be discussed in Chapter 10.

Definition 9.1. Let D be a digraph, and ∅ ≠ M ⊆ V (D). We say that M is an out-
module in D if (x, z) ∈ A(D) implies that (y, z) ∈ V (D) \M for every x, y ∈ M and
z ∈ V (D) \M .

Phrased differently, the definition says that a non-empty vertex-set M is an out-module
if N+

D (x) \M = N+
D (y) \M holds for all x, y ∈M .

Fact 9.3. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ), and let C be a directed cycle in F (D). Then

V (C) is an out-module in D.

Proof. Let x1, x2, . . . , xk, x1 be the vertex-trace of C. Let y ∈ V (D) \ {x1, . . . , xk} and
1 ≤ i ≤ k be arbitrary such that (xi, y) ∈ A(D). Let j ∈ [k] \ {i}. By Fact 9.2,
applied to the directed subpath of C starting in xi and ending in xj , we know that
N+

D (xi) \ {x1, . . . , xk} ⊆ N+
D (xj) \ {x1, . . . , xk}. Hence (xj , y) ∈ A(D). This shows that

{x1, . . . , xk} is indeed an out-module.

For a non-empty vertex-set U in a digraph D, we denote by D/U the digraph obtained
by identifying U , that is, the digraph with vertex set (V (D)\U)∪{xU} where xU /∈ V (D)
is some newly added vertex representing U , and the following arcs: the arcs of D inside
V (D) \ U , the arc (xU , v) for every v ∈ N+

D (U), and the arc (v, xU ) for every v ∈ N−
D (U).

In the following we prepare the proof of Theorem 9.5 with a set of useful Lemmas. We
start with two lemmas yielding modifications of digraphs which preserve the containment
in the class Forbind(

↔
K2, S+

2 , W +
3 ).

Lemma 9.9. For every D ∈ Forbind(
↔
K2, S+

2 , W +
3 ) and for every out-module U ⊆ V (D) it

holds that D/U ∈ Forbind(
↔
K2, S+

2 , W +
3 ).
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Proof. We need to show that D/U is induced {
↔
K2, S+

2 , W +
3 }-free. We argue by con-

tradiction. Suppose first that D/U contains a
↔
K2, namely a pair of vertices x, y with

(x, y), (y, x) ∈ A(D/U). If x, y ̸= xU then x, y also span a copy of
↔
K2 in D, a contradic-

tion. Next assume that x = xU or y = xU ; say x = xU . By the definition of D/U , there
are (not necessarily distinct) u1, u2 ∈ U such that (u1, y), (y, u2) ∈ A(D). Since U is an
out-module, (u2, y) ∈ A(D). Hence, u2, y span a copy of

↔
K2 in D, a contradiction.

Suppose next that D/U contains an induced copy of S+
2 , namely, distinct vertices

x, y, z ∈ V (D/U) with (x, y), (x, z) ∈ A(D/U) and with no arc in D/U between y and
z. If x, y, z ̸= xU then x, y, z also span an induced S+

2 in D, a contradiction. Now
consider the case that y = xU , and let u ∈ U be such that (x, u) ∈ A(D). We have
(u, z), (z, u) /∈ A(D) because (xU , z), (z, xU ) /∈ A(D/U). Hence, x, u, z span an induced
S+

2 in D, a contradiction. The case z = xU is analogous. Suppose now that x = xU . Since
(xU , y), (xU , z) ∈ A(D/U) and U is an out-module, we must have (u, y), (u, z) ∈ A(D)
for every u ∈ U , implying that u, y, z span an induced S+

2 in D for every such u, again
yielding the desired contradiction.

Now let us consider the last case, i.e., that D/U contains a copy of W +
3 with vertices

x, y, z, w and arcs (x, y), (x, z), (x, w), (y, z), (z, w), (w, y). Again, if x, y, z, w ̸= xU then D
also has a copy of W +

3 , a contradiction. Suppose now that x = xU , and fix any u ∈ U .
Since U is an out-module, we have (u, y), (u, z), (u, w) ∈ A(D), implying that u, y, z, w
span a copy of W +

3 in D, a contradiction. Suppose finally that one of y, z, w equals xU ,
say y = xU (without loss of generality). Since (x, xU ), (xU , z), (w, xU ) ∈ A(D/U), there
are u1, u2, u3 ∈ U (not necessarily distinct) such that (x, u1), (u2, z), (w, u3) ∈ A(D). Since
U is an out-module, we have (u1, z), (u3, z) ∈ A(D). Since (x, w), (x, u1) ∈ A(D) and D is
induced S+

2 -free, we must have either (w, u1) ∈ A(D) or (u1, w) ∈ A(D). If (u1, w) ∈ A(D)
then also (u3, w) ∈ A(D) because U is an out-module, but this is impossible as then u3, w
would induce a digon in D. Finally, if (w, u1) ∈ A(D) then x, u1, z, w span a copy of W3
in D, again yielding the desired contradiction.

As the assumption D/U /∈ Forbind(
↔
K2, S+

2 , W +
3 ) led to a contradiction in every case,

we may conclude the proof of the lemma.

Lemma 9.10. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ), and let (x, y) ∈ A(F (D)). Let z ∈ N+

D (y)
such that (x, z), (z, x) /∈ A(D). Then the digraph D + (x, z) obtained from D by adding
the arc (x, z) is contained in Forbind(

↔
K2, S+

2 , W +
3 ).

Proof. We need to show that D + (x, z) is induced {
↔
K2, S+

2 , W +
3 }-free. Again, we argue

by contradiction. Clearly D + (x, z) does not contain a
↔
K2, since (z, x) /∈ A(D) by

assumption. Suppose next that D + (x, z) contains an induced copy of S+
2 , i.e. distinct

vertices a, b, c such that (a, b), (a, c) ∈ A(D + (x, z)), and (b, c), (c, b) /∈ A(D + (x, z)). If
(x, z) /∈ {(a, b), (a, c)}, then a, b, c induce a copy of S+

2 also in D, a contradiction. We may
therefore assume w.l.o.g. that (x, z) = (a, b). Then we have c ̸= y, since (c, b) /∈ A(D), but
(y, b) = (y, z) ∈ A(D) by assumption. Since (x, c) = (a, c) ∈ A(D), we have c ∈ N+

D (x).
But (x, y) ∈ A(F (D)), and hence Fact 9.1 implies that c ∈ N+

D (x) ⊆ {y} ∪ N+
D (y). It

follows that (y, c) ∈ A(D). We further have (y, b) = (y, z) ∈ A(D) and (b, c), (c, b) /∈ A(D).
Hence, y, b, c induce an S+

2 in D, a contradiction.
Moving on, suppose that D + (x, z) contains an induced copy of W +

3 , i.e., distinct
vertices a, b, c, d such that (a, b), (a, c), (a, d), (b, c), (c, d), (d, b) ∈ A(D) ∪ {(x, z)}.

Suppose first that (x, z) /∈ {(a, b), (a, c), (a, d)}. Then (a, b), (a, c), (a, d) ∈ A(D) and
since D does not contain an induced copy of S+

2 , the vertices b, c, d are pairwise adjacent.
Since x and z are non-adjacent in D, it follows that {x, z} ̸⊆ {b, c, d}. Hence we have
(b, c), (c, d), (d, b) ∈ A(D), yielding that a, b, c, d induce a copy of W +

3 in D, a contradiction.
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Hence we may suppose that (x, z) ∈ {(a, b), (a, c), (a, d)}. By symmetry we may assume
that (x, z) = (a, b) w.l.o.g. Again using Fact 9.1 we then have c, d ∈ N+

D (x) ⊆ N+
D (y)∪{y}.

Let us first consider the case that c, d ̸= y. Then (y, c), (y, d) ∈ A(D), and since
(y, b) = (y, z) ∈ A(D) by assumption, it follows that the vertices y, b, c, d induce a copy of
W +

3 in D, a contradiction. For the next case suppose that y ∈ {c, d}. The first option,
namely that y = c, is impossible, since then we would have (y, z) ∈ A(D) (by assumption)
and (z, y) = (b, c) ∈ A(D), a contradiction since D is

↔
K2-free. Therefore, we must have

y = d. Then c ∈ N+
D (y) as well as (c, y) = (c, d) ∈ A(D). It follows that y, c induce a

↔
K2

in D, so again, we conclude with a contradiction.
Having reached a contradiction in all possible cases, it follows that our initial assump-

tion, was wrong, indeed, D + (x, z) ∈ Forbind(
↔
K2, S+

2 , W +
3 ). This concludes the proof.

The next lemma shows the existence of out-modules with special properties.

Lemma 9.11. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ), and let v ∈ V (D). If N−

D (v) ̸= ∅, then
there exists an out-module M in D such that M ⊆ N−

D (v) and N+
D (M) ⊆ N+

D (v) ∪ {v}.

Proof. We prove by induction on n ≥ 1 the statement of the lemma for all digraphs
D ∈ Forbind(

↔
K2, S+

2 , W +
3 ) and vertices v ∈ V (D) such that d−

D(v) ≤ n.
If n = 1, then N−

D (v) = {w} for a vertex w ∈ V (D). Then M := {w} is an out-
module of D. Hence, it suffices to verify that N+

D (w) ⊆ N+
D (v) ∪ {v}. Suppose towards a

contradiction that (w, v′) ∈ A(D) for v′ ∈ N+
D (w) \ (N+

D (v) ∪ {v}). Since N−
D (v) = {w},

we have v′ /∈ N−
D (v), and hence v, v′ are non-adjacent in D, while (w, v), (w, v′) ∈ A(D).

Hence, w, v, v′ induce an S+
2 in D, a contradiction.

Now let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ) and v ∈ V (D) such that d−

D(v) = n ≥ 2, and assume
that the claim holds for all pairs of digraphs in Forbind(

↔
K2, S+

2 , W +
3 ) and vertices whose

in-degree is less than n.
First let us assume that there exists a vertex w ∈ N−

D (v) such that (w, v) ∈ A(F (D)).
Then M := {w} is an out-module of D, and by Fact 9.1 we have N+

D (w) ⊆ N+
D (v) ∪ {v}.

This proves the assertion in this case.
Hence, for the rest of this proof we may suppose that (w, v) /∈ A(F (D)) for every

w ∈ N−
D (v). For any w ∈ N−

D (v) we clearly have d+
D(w) ≥ 1 and hence it follows that

d+
F (D)(w) = 1. Furthermore, for every arc (w, w′) ∈ A(F (D)) such that w ∈ N−

D (v)
by Fact 9.1 we must have v ∈ N+

D (w) ⊆ N+
D (w′) ∪ {w′}. Since (w, v) /∈ A(F (D)), we

have v ̸= w′ and hence (w′, v) ∈ A(D). This shows that the out-neighbor in F (D) of any
vertex in N−

D (v) is again contained in N−
D (v). It follows that F (D) restricted to N−

D (v) has
minimum out-degree 1 and therefore contains a directed cycle C such that V (C) ⊆ N−

D (v).
By Fact 9.3, N := V (C) is an out-module in D. Consider the digraph D′ := D/N ,

which by Lemma 9.9 is a member of Forbind(
↔
K2, S+

2 , W +
3 ). Then by definition of D/N

and since N ⊆ N−
D (v), we have v ∈ V (D′) and N−

D′(v) = (N−
D (v) \N) ∪ {xN} ≠ ∅. Since

|N | = |V (C)| ≥ 3, this implies that d−
D′(v) = 1 + d−

D(v) − |N | ≤ d−
D(v) − 2 < n. We

may therefore apply the induction hypothesis to the digraph D′ ∈ Forbind(
↔
K2, S+

2 , W +
3 )

and the vertex v ∈ V (D′). We thus find an out-module M ′ in D′ with the properties
M ′ ⊆ N−

D′(v) = (N−
D (v) \ N) ∪ {xN} and N+

D′(M ′) ⊆ N+
D′(v) ∪ {v} = N+

D (v) ∪ {v}. Let
us define the set M ⊆ N−

D (v) as M := M ′, if xN /∈ M ′, and M := (M ′ \ {xN}) ∪ N if
xN ∈ M ′. We claim that M satisfies the assertions of the Lemma with respect to D and
v. In the following, we verify both parts of the inductive claim separately.

Claim 1. N+
D (M) ⊆ N+

D (v) ∪ {v}.
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Proof. In the proof we will use the fact that

N+
D′(M

′) ⊆ N+
D′(v) ∪ {v} = N+

D (v) ∪ {v},

which holds by the induction hypothesis.
Let x ∈ N+

D (M) be given arbitrarily. Let m ∈ M such that (m, x) ∈ A(D). Our goal
is to show that x ∈ N+

D (v) ∪ {v}.
Let us first consider the case that xN /∈ M ′ and hence M = M ′. By definition of

D′ = D/N we either have x /∈ N and (m, x) ∈ A(D′), or x ∈ N and (m, xN ) ∈ A(D′).
Then since m ∈ M = M ′ and x, xN /∈ M = M ′, we obtain that either x /∈ N and
x ∈ N+

D′(M ′), or x ∈ N and xN ∈ N+
D′(M ′). As N+

D′(M ′) ⊆ N+
D (v) ∪ {v}, in the first

case we have x ∈ N+
D (v) ∪ {v}, as desired. The second case does not occur, since it yields

xN ∈ N+
D (v)∪ {v}, which is impossible as xN is not a vertex of D. Hence, we have shown

the claim that x ∈ N+
D (v) ∪ {v}.

For the second case, suppose that xN ∈ M ′ and hence M = (M ′ \ {xN}) ∪ N . Note
that x /∈ N , since x /∈M ⊇ N . Hence, the existence of the arc (m, x) ∈ A(D) yields that
either m ∈ N and (xN , x) ∈ A(D′), or m /∈ N and (m, x) ∈ A(D′). In both cases, this
implies that x ∈ N+

D′(M ′) ⊆ N+
D (v) ∪ {v}, proving the assertion. �

Claim 2. M is an out-module in D.

Proof. Let x ̸= y ∈ M and z ∈ V (D) \M arbitrary, and assume that (x, z) ∈ A(D).
We need to show that also (y, z) ∈ A(D). Note that by Claim 1 we have z /∈ N−

D (v), as
otherwise z ∈ N+

D (M) ∩N−
D (v) = ∅. In particular, z /∈ N .

Observe that z ∈ N+
D′(M ′). Indeed, if x /∈ N then x ∈ M ′ and (x, z) ∈ A(D′), and if

x ∈ N then xN ∈M ′ and (xN , z) ∈ A(D′); in any case, z ∈ N+
D′(M ′).

Since y ∈M , we have either y ∈M ′ or y ∈ N and xN ∈M ′. Suppose first that y ∈M ′.
Then (y, z) ∈ A(D′) because z ∈ N+

D′(M ′) and M ′ is an out-module. Hence, in this case
(y, z) ∈ A(D), as required. Now suppose that y ∈ N and xN ∈ M ′. Since z ∈ N+

D′(M ′)
and M ′ is an out-module, we have (xN , z) ∈ A(D′). This means that there is w ∈ N such
that (w, z) ∈ A(D). Now, as N is itself is an out-module in D and y ∈ N, z /∈ N , we have
(y, z) ∈ A(D), as required. �

By Claim 1 and 2 the out-module M certifies that the pair (D, v) satisfies the inductive
claim. This concludes the proof of the Lemma by induction.

Lemma 9.12. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ), let M ⊆ V (D) be an out-module in D and

let v ∈ V (D) \M . Let T be the set of vertices defined by

T := {t ∈M |∃u ∈ V (D) \M : (v, u), (u, t) ∈ A(D)}.

If T ̸= ∅, then D[T ] is a transitive tournament.

Proof. Suppose that T ̸= ∅. The assertion will follow directly from the following two
claims and the fact that every directed triangle-free tournament is transitive.

Claim 1. If t1 ̸= t2 ∈ T , then t1 and t2 are adjacent in D.

Proof. By definition of T there exist vertices u1, u2 ∈ V (D) \M (not necessarily distinct)
such that (v, ui), (ui, ti) ∈ A(T ) for i = 1, 2. If u1 = u2, then t1, t2 must be adjacent, for
otherwise the vertices u1, t1, t2 would induce an S+

2 in D, a contradiction. Suppose now
that u1 ̸= u2. Since u1, u2 ∈ N+(v), they must be adjacent, w.l.o.g. let (u1, u2) ∈ A(D).
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Then t1 ∈ M and u2 ∈ V (D) \M are distinct out-neighbors of u1, and hence they must
be adjacent in D. If (t1, u2) ∈ A(D), then M being an out-module implies that also
(t2, u2) ∈ A(D), yielding a

↔
K2 in D induced by t2 and u2, a contradiction. Therefore we

have (u2, t1) ∈ A(D). Then t1 and t2 are distinct out-neighbors of u2 in D, which implies
that they must be adjacent. This concludes the proof. �

Claim 2. D[T ] contains no directed triangle.

Proof. Suppose towards a contradiction that there are three distinct t1, t2, t3 ∈ T inducing
a directed triangle in D. Let u1, u2, u3 ∈ V (D) \M be (not necessarily distinct) such that
(v, ui), (ui, ti) ∈ A(D), i = 1, 2, 3. We distinguish three different cases depending on the
size of the set {u1, u2, u3}.

For the first case, suppose that u1 = u2 = u3. Then t1, t2, t3 are three distinct out-
neighbors of u1 spanning a directed triangle. Hence, u1, t1, t2, t3 induce a W +

3 in D, a
contradiction to our assumption that D ∈ Forbind(

↔
K2, S+

2 , W +
3 ).

For the second case, suppose that {u1, u2, u3} contains exactly two distinct vertices,
w.l.o.g. u1 ̸= u2 = u3. Since u1 and u2 are two distinct out-neighbors of v in D, they
must be adjacent. Suppose first that (u1, u2) ∈ A(D). Then t1 and u2 are two distinct
out-neighbors of u1 in D, and hence they must be adjacent. If (t1, u2) ∈ A(D), then by
the module-property of M , also (t2, u2) ∈ A(D), and hence t2, u2 induce a

↔
K2 in D, a

contradiction. If (u2, t1) ∈ A(D), then t1, t2, t3 ∈ N+
D (u2) and hence u2, t1, t2, t3 induce a

W +
3 in D, a contradiction. Next suppose that (u2, u1) ∈ A(D). Then u1, t2, t3 are three

distinct out-neighbors of u2 in D, and hence u1 must be adjacent to both t2 and t3. If
(t2, u1) ∈ A(D) or (t3, u1) ∈ A(D), then (t1, u1) ∈ A(D) since M is an out-module, and
hence u1, t1 induce a

↔
K2 in D, a contradiction. Otherwise, we have (u1, t2), (u1, t3) ∈ A(D)

and hence u1, t1, t2, t3 induce a W +
3 in D, again yielding the desired contradiction.

For the third case, suppose that u1, u2, u3 are pairwise distinct. Since u1, u2, u3 are
three distinct vertices in the transitive tournament D[N+(v)], they form a transitive tri-
angle, and we may assume W.l.o.g. that (u1, u2), (u1, u3), (u2, u3) ∈ A(D). Then t1 and
u3 are distinct out-neighbors of u1 in D, while t2 and u3 are distinct out-neighbors of u2
in D. Hence, u3 must be adjacent to both t1 and t2. If (ti, u3) ∈ A(D) for some i = 1, 2,
then we also have (t3, u3) ∈ A(D) since M is an out-module, and hence u3, t3 induce a

↔
K2

in D, contradiction. Finally, if (u3, t1), (u3, t2) ∈ A(D), then u3, t1, t2, t3 induce a W +
3 in

D, yielding again a contradiction to the containment of D in Forbind(
↔
K2, S+

2 , W +
3 ).

Since we arrived at a contradiction in each case, we conclude that the initial assumption
concerning the existence of t1, t2, t3 was wrong. This concludes the proof of Claim 2. �

We are now sufficiently prepared to give the proof of Theorem 9.5. In fact, we will prove
the following slightly stronger version of the result, which allows to enforce a monochro-
matic coloring on the closed out-neighborhood of an arbitrarily chosen vertex.

Theorem 9.13. Let D ∈ Forbind(
↔
K2, S+

2 , W +
3 ), and v ∈ V (D). Then there exists an

acyclic coloring c : V (D)→ {1, 2} of D such that c(u) = c(v) for every u ∈ N+
D (v).

Proof. Suppose towards a contradiction that the claim is wrong, and let D be a coun-
terexample to the claim minimizing v(D). Let v ∈ V (D) be a vertex such that D does
not admit an acyclic 2-coloring c with the property that c(u) = c(v) for every u ∈ N+

D (v).
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Claim 1. N−
D (v) ̸= ∅.

Proof. Suppose towards a contradiction that N−
D (v) = ∅. If also N+

D (v) = ∅, then v
is an isolated vertex of D. Then any acyclic 2-coloring of D − v could be extended to
an acyclic 2-coloring of D by coloring v with color 1, and the statement that v has the
same color as its out-neighbors would hold vacuously. Since this is impossible, we must
have χ⃗(D − v) ≥ 3, which however contradicts the minimality of D as a counterexample.
This shows that N+

D (v) ̸= ∅. Let u ∈ N+
D (v) be the unique out-neighbor of v in F (D).

Then N+
D (v) ⊆ N+

D (u) ∪ {u} by Fact 9.1. The minimality of D as a counterexample
now implies that the digraph D − v ∈ Forbind(

↔
K2, S+

2 , W +
3 ) admits an acyclic 2-coloring

c− : V (D) → {1, 2} satisfying c−(x) = c−(u) for every x ∈ N+
D−v(u) = N+

D (u). Let
c : V (D)→ {1, 2} be defined as c(x) := c−(x) for every x ∈ V (D) \ {v} and c(v) := c−(u).
Since c restricted to V (D) \ {v} is an acyclic coloring, and no directed cycle in D contains
v (recall N−

D (v) = ∅), it follows that c is an acyclic coloring of D. Moreover, for every
x ∈ N+

D (v) ⊆ N+
D (u) ∪ {u} we have c(x) = c−(x) = c−(u) = c(v). This is a contradiction

to our initial assumption that D does not admit an acyclic 2-coloring with this property.
This shows that our assumption N−

D (v) = ∅ was wrong, concluding the proof. �

By Lemma 9.11 applied to the vertex v of D, there exists an out-module M in D such
that M ⊆ N−

D (v) and N+
D (M) ⊆ N+

D (v) ∪ {v}. Let T ⊆ M be the set of vertices t ∈ M
for which there exists u ∈ N+

D (v) such that (u, t) ∈ A(D). Since N+
D (v) ∩M = ∅, the

definition of T here coincides with the one in Lemma 9.12. Now, Lemma 9.12 implies that
either T = ∅ or D[T ] is a transitive tournament.

Claim 2. The digraph D[M ] admits an acyclic 2-coloring cM : M → {1, 2} satisfying
cM (t) = 2 for all t ∈ T .

Proof. Since v(D[M ]) ≤ v(D − v) < V (D), the minimality of the counterexample D

implies that D[M ] ∈ Forbind(
↔
K2, S+

2 , W +
3 ) satisfies the assertion of Theorem 9.13. If

T = ∅, Claim 2 is satisfied by an arbitrary choice of an acyclic 2-coloring for D[M ]. If
T ̸= ∅, let t0 ∈ T be the source of the transitive tournament D[T ]. Applying the assertion
of the theorem to D[M ] and the vertex t0, we find that there exists an acyclic 2-coloring
of D[M ] in which t0 has the same color as all its out-neighbors. W.l.o.g. we may choose
this color to be 2, and since N+

D[M ](t0) ⊇ T , the claim follows. �

Claim 3. D[M ] contains a directed cycle.

Proof. Suppose towards a contradiction that D[M ] is acyclic. Let D′ := D −M . Clearly,
D′ ∈ Forbind(

↔
K2, S+

2 , W +
3 ). Since v(D′) ≤ v(D) − 1 and by the minimality of D as a

counterexample, we know that D′ admits an acyclic 2-coloring c′ : V (D) \M → {1, 2}
in which c′(v) = c′(u) = 1 for every u ∈ N+

D (v). Let c : V (D) → {1, 2} be defined by
c(x) := c′(x) for all x ∈ V (D)\M and c(x) := 2 for all x ∈M . We claim that c is an acyclic
coloring of D. Suppose towards a contradiction that C is a directed cycle in D which is
monochromatic in the coloring c. We must have V (C)∩M ̸= ∅, for otherwise C would form
a monochromatic directed cycle in the coloring c′ of D′. Since D[M ] is acyclic, we must
also have V (C)\M ̸= ∅. It follows that there exists an arc (x, y) ∈ A(C) such that x ∈M
and y ∈ V (D) \M . Then y ∈ N+

D (M) ⊆ N+
D (v) ∪ {v}, and therefore c(y) = c′(y) = 1,

while c(x) = 2 by definition. This contradicts the fact that C is monochromatic, and
hence we have shown that indeed c is an acyclic coloring of D. Moreover, c(v) = c(u) = 1
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for every u ∈ N+
D (v). This contradicts our initial assumptions on D that such a coloring

does not exist. Hence, D[M ] cannot be acyclic, proving the claim. �

Claim 3 in particular implies that |M | ≥ 3 and M \ T ̸= ∅.
Let us further note that since M forms an out-module in D, M \ T ̸= ∅ is an out-

module in the digraph D−T ∈ Forbind(
↔
K2, S+

2 , W +
3 ), and hence by Lemma 9.9 we also have

D0 := (D − T )/(M \ T ) ∈ Forbind(
↔
K2, S+

2 , W +
3 ). Also note that since T ⊆ M ⊆ N−

D (v),
we still have N+

D (v) ∪ {v} ⊆ {xM\T } ∪ (V (D) \M) = V (D0), where we denote by xM\T

the vertex in D0 obtained by identifying M \ T .

Claim 4. We have N+
D0

(v) = N+
D (v), (xM\T , v) ∈ A(F (D0)), and for every u ∈ N+

D0
(v),

we have (u, xM\T ) /∈ A(D0).

Proof. The very first claim follows directly from the definition of D0.
We have M \ T ⊆ N−

D (v) and N+
D (M) ⊆ {v} ∪ N+

D (v). This directly implies that
(xM\T , v) ∈ A(D0) and that N+

D0
(xM\T ) ⊆ N+

D (M) ⊆ N+(v) ∪ {v} = N+
D0

(v) ∪ {v}.
Hence, v ∈ N+

D0
(xM\T ) has an out-arc to every other out-neighbor of xM\T in D0, and

this shows (by definition) that (xM\T , v) ∈ A(F (D0)).
For the second claim, suppose towards a contradiction that there exists u ∈ N+

D0
(v)

such that (u, xM\T ) ∈ A(D0). By definition of D0, this means that u ∈ N+
D (v) and that

there exists a vertex m ∈M \T such that (u, m) ∈ A(D). By definition of T , this however
shows that m ∈ T , a contradiction. �

In the following, let D∗ be the digraph defined by

V (D∗) := V (D0), A(D∗) := A(D0) ∪ {(xM\T , u)|u ∈ N+
D0

(v)}.

Claim 5. D∗ ∈ Forbind(
↔
K2, S+

2 , W +
3 ).

Proof. Let ei = (xM\T , ui), i = 1, . . . , k be a list of the arcs contained in A(D∗) \ A(D0)
for some k ≥ 0. For 0 ≤ i ≤ k let Di denote the digraph defined by V (Di) := V (D0) and
A(Di) := A(D0) ∪ {e1, . . . , ei}. Note that Dk = D∗.

We now claim that Di ∈ Forbind(
↔
K2, S+

2 , W +
3 ) and (xM\T , v) ∈ A(F (Di)) for every

i ∈ {0, 1, . . . , k} and prove this claim by induction on i.
For i = 0 the claim holds true by the previous discussions and Claim 4. Now let

1 ≤ i ≤ k and suppose we know that the claim holds for Di−1.
Note that Di is the digraph obtained from Di−1 by adding the arc ei = (xM\T , ui),

where ui ∈ N+
D0

(v) = N+
Di−1

(v), (xM\T , v) ∈ A(F (Di−1)). Further note that ei /∈ A(Di−1),
as well as (ui, xM\T ) /∈ A(Di−1) by Claim 4. Hence, we may apply Lemma 9.10 to the
digraph Di−1 with x = xM\T , y = v, z = ui to find that indeed Di ∈ Forbind(

↔
K2, S+

2 , W +
3 ).

It remains to show that (xM\T , v) ∈ A(F (Di)). However, the only new out-neighbor of
xM\T in Di compared to Di−1 is the vertex ui, which is still dominated by the vertex
v ∈ N+

Di
(xM\T ) via the arc (v, ui) ∈ A(Di), and hence v still dominates all other out-

neighbors of xM\T in Di. This shows that Di satisfies the induction claim.
We have proved that D∗ = Dk ∈ Forbind(

↔
K2, S+

2 , W +
3 ) and (xM\T , v) ∈ A(F (Di)).

This concludes the proof of Claim 5. �

The number of vertices of D∗ satisfies

v(D∗) = v(D0) = v(D)− |T | − (|M \ T | − 1) ≤ v(D)− (|M | − 1) ≤ v(D)− 2 < v(D)
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since |M | ≥ 3 by Claim 3. Hence, the minimality of D implies that the assertion of the
theorem holds for D∗. Applying this assertion to the vertex xM\T in D∗, we find that there
exists an acyclic 2-coloring c∗ : V (D∗)→ {1, 2} of D∗ such that c∗(xM\T ) = 1 = c∗(u) for
every u ∈ N+

D∗(xM\T ). Using the facts N+
D0

(xM\T ) ⊆ N+
D (v) ∪ {v}, N+

D0
(v) = N+

D (v) and
(xM\T , v) ∈ A(D0), the definition of D∗ yields that N+

D∗(xM\T ) = N+
D (v) ∪ {v}. Hence,

we have c∗(xM\T ) = c∗(v) = c∗(u) = 1 for every u ∈ N+
D (v).

Let c : V (D) → {1, 2} be the coloring of D defined by c(x) := cM (x) for every
x ∈ M , and c(x) := c∗(x) for every x ∈ V (D) \M . We note that c(v) = c(u) for all
u ∈ N+

D (v). Hence, by the initial assumption on D, the coloring c cannot be acyclic,
i.e., there is a directed cycle C in D which is monochromatic in the coloring c. Then
we must have V (C) \M ̸= ∅, for otherwise C would be a monochromatic directed cycle
in the acyclic coloring cM of DM . Analogously, if V (C) ∩M = ∅, then C would be a
directed cycle in D −M ⊆ (D − T )/(M \ T ) = D0 ⊆ D∗, a contradiction. Therefore
we also have V (C) ∩M ̸= ∅, and hence there must be an arc (x, y) ∈ A(C) such that
x ∈ M and y /∈ M . However, this means that y ∈ N+

D (M) ⊆ {v} ∪ N+
D (v), and hence

c(y) = 1 by the above. Since C is monochromatic, it follows that V (C) ⊆ c−1(1). In
particular, since c(t) = cM (t) = 2 for every t ∈ T , it follows that C is a directed cycle in
D − T . Let z be the first vertex of M we meet when traversing the directed cycle C in
forward-direction, starting at y. Then z ∈ M \ T , and P := C[x, y] is a monochromatic
directed x, z-path in D − T of length at least two, such that V (P ) ∩ M = {x, z} and
V (P ) ⊆ c−1(1). Now (V (P ) \ {x, z}) ∪ {xM\T } forms the vertex-set of a directed cycle
C∗ in (D − T )/(M \ T ) = D0 ⊆ D∗ containing xM\T , and we have c∗(x) = c(x) = 1 for
every vertex x ∈ V (C∗) \ {xM\T } = V (P ) \ {x, z} ⊆ V (D) \M . We have c∗(xM\T ) = 1
by definition of c∗, and hence C∗ forms a monochromatic directed cycle of color 1 in the
acyclic coloring c∗ of D∗. This contradiction finally shows that our very first assumption,
namely that a (smallest) counterexample D to the claim of the theorem exists, was wrong.
This concludes the proof of the theorem.

9.3 {S+
2 , W−

3 }-Free Oriented Graphs

In this section we prove Theorem 9.6, showing that every digraph in Forbind(
↔
K2, S+

2 , W −
3 )

is acyclically 4-colorable. Note that Forbind(
↔
K2, S+

2 , W −
3 ) is the class of oriented graphs

D such that the out-neighborhood of any vertex in D spans a tournament, and the in-
neighborhood of any vertex spans a directed triangle-free graph. In fact, we show the
following strengthened statement.

Theorem 9.14. Let D ∈ Forbind(
↔
K2, S+

2 , W −
3 ) and let (u, v) ∈ A(D). Then D admits

an acyclic coloring c : V (D) → {1, 2, 3, 4} satisfying the additional conditions c(u) = 1,
c(x) = 1 for all x ∈ N+

D (u) \N+
D (v) (so c(v) = 1) and c(x) ∈ {1, 2} for all x ∈ N+

D (v).

Proof. Suppose towards a contradiction the claim of the theorem was wrong, and let D be a
counterexample minimizing v(D). Then there exists an arc (u, v) ∈ A(D) such that D does
not admit an acyclic coloring c : V (D) → {1, 2, 3, 4} satisfying the additional conditions
c(u) = 1, c(x) = 1 for all x ∈ N+

D (u) \N+
D (v) and c(x) ∈ {1, 2} for all x ∈ N+

D (v). Let us
define A := N+

D (u) \ (N+
D (v) ∪ {v}) and B := N−

D (u) ∩N+
D (v). We start with some useful

observations concerning these sets.

Claim 1. A ⊆ N−
D (v), and D[A] and D[B] are (possibly empty) transitive tournaments.
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Proof. To show A ⊆ N−
D (v), let x ∈ A = N+

D (u) \ (N+
D (v) ∪ {v}) be arbitrary. Since

(u, x), (u, v) ∈ A(D) and x, u, v cannot induce an S+
2 in D, the vertices x and v must be

equal or adjacent in D. Since x /∈ N+
D (v) ∪ {v}, it follows that x ∈ N−

D (v), as claimed.
Since D[N+

D (u)] is a tournament and A ⊆ N+
D (u), also D[A] is a tournament. Fur-

thermore D[N−
D (v)] is directed triangle-free, and with A ⊆ N−

D (v) also D[A] is directed
triangle-free, i.e., a transitive tournament, as claimed.

Similarly, since D[N−
D (u)] is directed triangle-free, and since D[N+

D (v)] is a tourna-
ment, B = N−

D (u) ∩ N+
D (v) implies that D[B] must be both directed triangle-free and a

tournament, i.e., a transitive tournament. �

In the following, let us denote by D′ := D − (N−
D (u) ∪ {u}) the induced subdi-

graph of D obtained by deleting the closed in-neighborhood of u. We clearly have
D′ ∈ Forbind(

↔
K2, S+

2 , W −
3 ) and v(D′) < v(D), and hence, by minimality of D, the theorem

statement holds for D′.

Claim 2. There exists an acyclic coloring c′ : V (D′) → {1, 2, 3, 4} of D′ such that
c′(v) = 1, c′(x) = 1 for all x ∈ A and c′(x) ∈ {1, 2} for all x ∈ N+

D′(v).

Proof. We distinguish the two cases A = ∅ and A ̸= ∅.
Suppose first that A = ∅. If N+

D′(v) = ∅, then applying the theorem statement to D′

(for an arbitrarily chosen arc) yields that χ⃗(D′) ≤ 4, and hence there exists an acyclic
coloring c′ : V (D′)→ {1, 2, 3, 4}. Since v is a sink in D′, no directed cycle in D′ contains
v. Consequently, we may assume w.l.o.g. (possibly by recoloring) that c′(v) = 1. In
particular, since A = ∅, N+

D′(v) = ∅, the remaining two statements of Claim 2 are satisfied
vacuously for c′, concluding the proof in this case.

On the other hand, if N+
D′(v) ̸= ∅, then there exists an arc in D′ leaving v. Fix an

arbitrary such arc (v, y). Applying the Theorem statement to this arc in D′, we find that
there is an acyclic coloring c′ : V (D′) → {1, 2, 3, 4} such that c′(v) = 1, c′(x) = 1 for all
x ∈ N+

D′(v) \N+
D′(y) and c′(x) ∈ {1, 2} for all x ∈ N+

D′(y); in particular, and c′(x) ∈ {1, 2}
for all x ∈ N+

D′(v). Again, this shows that the claim holds true.
Next suppose that A ̸= ∅. By Claim 1, D[A] is a transitive tournament. Let a

be the unique source-vertex of this tournament. Since a ∈ A ⊆ N−
D (v), it follows that

(a, v) ∈ A(D′). Hence, we may apply the theorem statement to the arc (a, v) in D′ and
find that there exists an acyclic coloring c′ : V (D′) → {1, 2, 3, 4} such that c′(a) = 1,
c′(x) = 1 for all x ∈ N+

D′(a) \ N+
D′(v) (in particular c′(v) = 1), and c′(x) ∈ {1, 2} for all

x ∈ N+
D′(v). Since a is the source of D[A] = D′[A] and since A ∩ N+

D (v) = ∅, we have
{a} ∪ (N+

D′(a) \N+
D′(v)) ⊇ A and thus c′(x) = 1 for all x ∈ A, as required. This shows the

assertion of Claim 2 and concludes the proof. �

Claim 3. There exists an acyclic coloring c− : N−
D (u)→ {2, 3, 4} of D[N−

D (u)] such that
c−(x) = 2 for all x ∈ B and c−(x) ∈ {3, 4} for all x ∈ N−

D (u) \B.

Proof. Since D ∈ Forbind(
↔
K2, S+

2 , W −
3 ), we have D[N−

D (u)] ∈ Forbind(
↔
K2, S+

2 , C⃗3). By
Theorem 9.4 there exists an acyclic coloring of D[N−

D (u)] − B using only colors 3 and 4.
Clearly, D[B] as a transitive tournament (see Claim 1) admits an acyclic coloring only
with color 2. Putting these colorings together yields an acyclic coloring c′ of D[N−

D (u)]
with the required properties. �

Let c : V (D) → {1, 2, 3, 4} be the coloring defined by c(u) := 1, c(x) := c−(x) for all
x ∈ N−

D (u) and c(x) := c′(x) for all x ∈ V (D) \ (N−
D (u) ∪ {u}).
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Note that from the properties of c′ given by Claim 2 we have c(u) = c(v) = 1 and
c(x) = 1 for all x ∈ A = N+

D (u) \ (N+
D (v)∪{v}). Furthermore, since N+

D (v) = N+
D′(v)∪B,

the properties of c′ and c− imply that c(x) ∈ {1, 2} for all x ∈ N+
D (v).

Given these properties, our initial assumption concerning D implies that c cannot be
an acyclic coloring of D, that is, there is a directed cycle C in D which is monochromatic
under c. Since c′ = c|V (D′) and c− = c|N−D (u), we must have V (C) ∩ (N−

D (u) ∪ {u}) ̸= ∅
and V (C) \ N−

D (u) ̸= ∅, for otherwise c′ resp. c− would not be acyclic. Further note
that u /∈ V (C), for every arc in D entering u has its tail colored with either 2, 3 or 4,
while its head, u, receives color 1 under c (so a directed cycle containing u cannot be
monochromatic). Hence, there must exist an arc (x, y) ∈ A(C) such that x ∈ N−

D (u) and
y ∈ V (D) \ (N−

D (u) ∪ {u}). Since (x, u), (x, y) ∈ A(D) and D is induced S+
2 -free, u and

y must be equal or adjacent, and since y /∈ N−
D (u) ∪ {u}, we have y ∈ N+

D (u). By the
properties of c′ and c−, we have N+

D (u) \ N+
D (v) = A ∪ {v} ⊆ c−1({1}), B ⊆ c−1({2})

and N−
D (u) \ B ⊆ c−1({3, 4}). The cycle C is monochromatic, therefore c(x) = c(y).

From this we conclude that y ∈ N+
D (v), and hence c(y) ∈ {1, 2}. This is only possible if

c(x) = c(y) = 2, and hence x ∈ B. It follows that x, y, u, v ∈ V (D) are distinct vertices
satisfying (x, y), (u, y), (v, y) ∈ A(D), as well as (x, u), (u, v), (v, x) ∈ A(D) (here we used
that x ∈ B = N−

D (u) ∩N+
D (v)). This however means that x, y, u, v induce a copy of W −

3
in D, which is absurd considering that D ∈ Forbind(

↔
K2, S+

2 , W −
3 ). This shows that our

very first assumption concerning the existence of a smallest counterexample D was wrong.
This concludes the proof of the Theorem.

9.4 Adding a Dominating Sink to a Hero
In this section our goal is to prove Theorem 9.7. Let us first prove the following lemma.

Lemma 9.15. Let D ∈ Forbind(
↔
K2, S+

2 ) and let C ∈ N be such that χ⃗(D[N−
D (x)]) ≤ C

for every x ∈ V (D). Let u, v ∈ V (D) and let P be a shortest u-v-dipath in D. Let
X := V (P ) ∪N−

D (V (P )). Then χ⃗(D[X]) ≤ 3C + 2.

Proof. Let u = x0, x1, . . . , xℓ−1, xℓ = v be the vertex-trace of P and consider the partition
(Ai)ℓ

i=1 of N−
D (V (P )) where Ai := N−

D (xi) \ (V (P ) ∪
⋃︁

1≤j<i Aj), i = 0, . . . , ℓ.

Claim. Let 0 ≤ i < j ≤ ℓ with j − i ≥ 3. Then there exists no arc in D starting in Ai

and ending in Aj .

Proof. Suppose towards a contradiction that there are vertices x ∈ Ai, y ∈ Aj with
(x, y) ∈ A(D). Since (x, xi) ∈ A(D), (x, y) ∈ A(D) and xi ̸= y (since xi ∈ V (P ) and
y /∈ V (P )), xi and y must be adjacent in D. By definition of Aj we have Aj ∩N−

D (xi) = ∅
and hence (xi, y) ∈ A(D). However, now the directed path described by the vertices
u = x0, x1, . . . , xi, y, xj , . . . , xℓ = v is a u-v-dipath in D shorter than P , a contradiction.
This proves the claim. �

For every 0 ≤ i ≤ ℓ we have χ⃗(D[Ai]) ≤ χ⃗(D[N−
D (xi)]) ≤ C. Let us define the set

Br :=
⋃︁
{Ai|i ≡ r (mod 3)} for every r ∈ {0, 1, 2}. From the above claim it follows that

no directed cycle in D[Br] intersects two different sets Ai, Aj . Hence, we have

χ⃗(D[Br]) ≤ max{χ⃗(D[Ai])|i ≡ r (mod 3)} ≤ C

for r = 0, 1, 2. Further note that the two sets

V0 := {xi|i ∈ {0, . . . , ℓ} even}, V1 := {xi|i ∈ {0, . . . , ℓ} odd}
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both induce acyclic subdigraphs of D, for otherwise D would not be a shortest u-v-dipath
in D. Since X is the disjoint union of B0, B1, B2, V0, V1, we conclude

χ⃗(D[X]) ≤ χ⃗(D[B0]) + χ⃗(D[B1]) + χ⃗(D[B2]) + χ⃗(D[V0]) + χ⃗(D[V1]) ≤ 3C + 2,

as required.

Proof of Theorem 9.7. Let {
↔
K2, S+

2 , H} be heroic and C := χ⃗(Forbind(
↔
K2, S+

2 , H)).
We claim that every digraph D ∈ Forbind(

↔
K2, S+

2 , H−) admits an acyclic coloring with
C− := v(H)(C + 1) + 3C + 2 colors.

Suppose towards a contradiction that there exists some D ∈ Forbind(
↔
K2, S+

2 , H−) with
χ⃗(D′) > C ′, and choose such a D minimizing v(D). Then we have χ⃗(D) > C ′ ≥ C
and hence there is Y ⊆ V (D) such that D[Y ] is isomorphic to H. Furthermore, since
the dichromatic number of D is the maximum of the dichromatic numbers of its strong
components, the minimality of v(D) implies that D is strongly connected.

Let S ⊇ Y denote a set of vertices in D defined as follows:
If D[Y ] (resp. H) is strongly connected, put S := Y . Otherwise, let Y1, . . . , Yt be a

partition of Y into the t ≥ 2 strong components of D[Y ] such that all arcs between Yi and
Yj start in Yi and end in Yj , for any 1 ≤ i < j ≤ t (note that since D[Y ] is a tournament
all elements of Yi × Yj are arcs of D[Y ] for 1 ≤ i < j ≤ t). Now pick u ∈ Yt, v ∈ Y1
arbitrarily, let P be a shortest u-v-dipath in D and put S := V (P ) ∪ Y . Let us note that
in any case, D[S] is strongly connected.

Let Z := S∪N−
D (S). Then we have Z = X∪Y ∪N−

D (Y ), where X := V (P )∪N−
D (V (P )).

For every x ∈ V (D) we know that since D is H−-free, the digraph D[N−
D (x)] is contained

in Forbind(
↔
K2, S+

2 , H), and hence χ⃗(D[N−
D (x)]) ≤ C. Using Lemma 9.15 we obtain that

χ⃗(D[X]) ≤ 3C + 2. Putting it all together, we find that

χ⃗(D[Z]) ≤
∑︂
y∈Y

χ⃗(D[{y} ∪N−
D (y)])⏞ ⏟⏟ ⏞

≤C+1

+ χ⃗(D[X]) ≤ v(H)(C + 1) + 3C + 2 = C ′.

Claim. No arc in D leaves Z.

Proof. We first show that there do not exist z ∈ S, w ∈ V (D)\Z such that (z, w) ∈ A(D).
Suppose towards a contradiction that such an arc (z, w) exists. We claim that then
(s, w) ∈ A(D) for every s ∈ S. Consider s ∈ S arbitrarily. Since D[S] is strongly
connected, there exist vertices z = s0, s1, . . . , sk = s in S such that (si−1, si) ∈ A(D),
1 ≤ i ≤ k. We show (si, w) ∈ A(D) for all i = 0, . . . , k by induction on i. Clearly it is
true for i = 0, so suppose that 1 ≤ i ≤ k and we have established that (si−1, w) ∈ A(D).
Since w /∈ Z, si ∈ Z, we have w ̸= si and (si−1, w), (si−1, si) ∈ A(D). Since D is S+

2 -free,
it follows that si and w are adjacent. However, since w /∈ Z = S ∪N−

D (S) ⊇ N−
D (si), we

must have (si, w) ∈ A(D), as claimed.
This shows that indeed (s, w) ∈ A(D) for all s ∈ S. However, since S ⊇ Y and

since D[Y ] is isomorphic to H, it follows that D[Y ∪ {w}] is an induced subdigraph of D

isomorphic to H−, a contradiction to D ∈ Forbind(
↔
K2, S+

2 , H−). This shows that there
are no arcs from S to V (D) \ Z.

To complete the proof, let us show that there are no arcs starting in Z \ S = N−
D (S)

that end in V (D) \ Z. Suppose towards a contradiction that there exist z ∈ N−
D (S) and

w ∈ V (D) \ Z with (z, w) ∈ A(D). Then there is a vertex s ∈ S such that (z, s) ∈ A(D).
Since s ̸= w, (z, s), (z, w) ∈ A(D) and D is S+

2 -free we find that s and w are adjacent.
Since w /∈ Z ⊇ N−

D (s), it follows that (s, w) ∈ A(D). However, this yields a contradiction,
since we showed above that no arc in D starts in S and ends in V (D) \ Z.
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All in all, the claim follows. �

Since D is strongly connected and Z ̸= ∅ (since Z ⊇ Y ), it follows that Z = V (D),
and hence that χ⃗(D) = χ⃗(D[Z]) ≤ C ′, a contradiction to our initial assumption. This
concludes the proof of the theorem.

9.5 Oriented 4-Vertex-Paths

In this section we establish that {
↔
K2, K⃗3, P +(1, 1, 1)} is heroic, proving Theorem 9.8.

Proof of Theorem 9.8. We prove by induction on n that every directed graph on n vertices
D ∈ Forbind(

↔
K2, K⃗3, P +(1, 1, 1)) admits an acyclic 2-coloring. The claim trivially holds

for n = 1, so let n ≥ 2 and suppose that every digraph in Forbind(
↔
K2, K⃗3, P +(1, 1, 1))

having less than n vertices is 2-colorable. Pick some x ∈ V (D) arbitrarily. Let us define
a sequence X0, X1, X2, . . . of subsets of V (D) as follows:

Xi :=

⎧⎪⎪⎨⎪⎪⎩
{x}, if i = 0,

N+(Xi−1) \
⋃︁i−1

j=0 Xj , if i odd,

N−(Xi−1) \
⋃︁i−1

j=0 Xj , if i ≥ 2 even.

The sets (Xi)i≥0 are pairwise disjoint by definition, and so there exists k ≥ 1 such that
X1, . . . , Xk ̸= ∅ and Xi = ∅ for all i > k.

Claim. Xi is an independent set of D for every i ≥ 0.

Proof. We prove the claim by induction on i. The claim trivially holds for i = 0 since
X0 = {x}, and since D does not contain a transitive triangle, also X1 = N+(x) must be
an independent set in D. Now let i ≥ 2 and suppose that we already established that
X0, . . . , Xi−1 are independent. To show that Xi is independent, let us suppose towards
a contradiction that there are x, y ∈ Xi such that (x, y) ∈ A(D). By definition of the
sets Xi there are vertices x1, y1 ∈ Xi−1 and x2, y2 ∈ Xi−2 such that the following holds:
(x1, x2), (x1, x), (y1, y2), (y1, y) ∈ A(D) if i is odd, respectively (x2, x1), (x, x1), (y2, y1),
(y, y1) ∈ A(D) if i is even. We must have x1 ̸= y1 in any case, since otherwise the
vertices x1 = y1, x, y would induce a K⃗3 in D. Let us now consider the oriented 4-vertex-
path P in D defined as P = x, (x, y), y, (y1, y), y1, (y1, y2), y2 if i is odd, respectively as
P = x2, (x2, x1), x1, (x, x1), x, (x, y), y if i is even. In order for this path not to be an
induced copy of P +(1, 1, 1), two non-consecutive vertices of the path must be adjacent.
However, since D does not contain transitive triangles, this is only possible if x and y2 (i
odd) respectively x2 and y (i even) are adjacent. Since x /∈ Xi−1, we have x /∈ N−(Xi−2) if
i is odd and y /∈ N+(Xi−2) if i is even. Since x2, y2 ∈ Xi−2 we find that (y2, x) ∈ A(D) if i is
odd and (y, x2) ∈ A(D) if i is even. In both cases we conclude that x2 ̸= y2, since otherwise
the vertices x2 = y2, x1, x respectively x2 = y2, y1, y would induce a transitive triangle in D.
Now consider the oriented path Q in D defined as Q = y2, (y2, x), x, (x1, x), x1, (x1, x2), x2
if i is odd and as Q = y2, (y2, y1), y1, (y, y1), y, (y, x2), x2 if i is even. In order for Q not to be
an induced copy of P +(1, 1, 1) in D and since D does not contain transitive triangles, this
implies in both cases that the endpoints x2 and y2 of Q must be adjacent. This contradicts
the induction hypothesis that Xi−2 is an independent set. Hence, our assumption was
wrong, Xi is indeed independent. This concludes the proof of the claim. �
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Let X := X0 ∪ · · · ∪Xk and D′ := D −X. By the induction hypothesis D′ admits an
acyclic 2-coloring c′ : V (D′)→ {1, 2}. Let us now define c : V (D)→ {1, 2} by c(x) := c′(x)
for every x ∈ V (D) \ X, c(x) := 1 for every x ∈ Xi such that i is even, and c(x) := 2
for every x ∈ Xi such that i is odd. We claim that D defines an acyclic coloring of D.
Suppose towards a contradiction that there exists a monochromatic directed cycle C in
(D, c). Since c′ is an acyclic coloring of D′, we must have V (C) ∩ (X0 ∪ · · · ∪ Xk) ̸= ∅.
Note that by definition of the sets (Xi)i≥0 we have N+ (

⋃︁
i even Xi) , N− (

⋃︁
i odd Xi) ⊆ X.

Hence, no arc of D starts in c−1({1}) ∩X and ends in V (D) \X, and no arc of D starts
in c−1({2}) ∩ X and ends in V (D) \ X. Since V (C) ⊆ c−1(t) for some t ∈ {1, 2}, the
strong connectivity of C shows that in fact V (C) ⊆ c−1(t) ∩ X for some t ∈ {1, 2}.
Let i0 ≥ 0 be smallest such that Xi0 ∩ V (C) ̸= ∅. Let u ∈ Xi0 ∩ V (C) ̸= ∅, and let
u−, u+ ∈ V (C) be such that (u−, u), (u, u+) ∈ A(C). Since Xi0 is an independent set,
and by definition of the coloring c, we must have u− ∈ Xi0+2s− , u+ ∈ Xi0+2s+ for integers
s−, s+ ≥ 1. On the other hand, we have u+ ∈ N+(Xi0)\

⋃︁i0−1
j=0 Xj = Xi0+1 if i0 is even and

u− ∈ N−(Xi0) \
⋃︁i0−1

j=0 Xj = Xi0+1 if i0 is odd, in both cases yielding a contradiction since
Xi0+2s+ , Xi0+2s− are disjoint from Xi0+1. This shows that our assumption was wrong,
indeed, c is an acyclic coloring of D. Hence, χ⃗(D) ≤ 2, concluding the proof.

9.6 Conclusion
In the first three sections of this chapter we have proved that set {

↔
K2, S+

2 , H} is heroic
for several small heroes H and, in particular, we resolved Conjecture 9.4. It would be
interesting to prove that in fact, for any hero H, {

↔
K2, S+

2 , H} is heroic, as this would
be a generalization of the main results of Berger et al. [BCC+13] from tournaments to
locally out-complete oriented graphs, i.e., oriented graphs in which the out-neighborhood
of every vertex induces a tournament. The smallest open case of this problem, would be
to show that {

↔
K2, S+

2 , K⃗s
4} is heroic, where K⃗s

4 denotes the unique strong tournament on
four vertices. It seems that already for this small case a new method is required. We do
however believe that the following is true.

Conjecture 9.5. χ⃗(Forbind(
↔
K2, S+

2 , K⃗s
4)) = 3.

Here, a tight lower bound would be provided by the following construction: Take a
3-fold blow-up of a directed 4-cycle (every arc being replaced by a K⃗3,3) and connect each
of the three blow-up triples by a directed triangle. This oriented graph is contained in
Forbind(

↔
K2, S+

2 , K⃗s
4) and has dichromatic number 3.

Let us further remark at this point that there exists a very simple proof that if we
exclude both S+

2 and S−
2 , i.e., we consider locally complete oriented graphs (where the in-

and out-neigborhood of every vertex induces a tournament), then we can show that the
exclusion of any hero indeed bounds the dichromatic number as follows.

Remark 9.16. For any hero H, we have

χ⃗(Forbind(
↔
K2, S+

2 , S−
2 , H)) ≤ 2χ⃗(Forbind(

↔
K2, K2, H)) <∞.

Proof. By the result of Berger et al. [BCC+13] we have C := χ⃗(Forbind(
↔
K2, K2, H)) <∞.

Let us now prove that χ⃗(Forbind(
↔
K2, S+

2 , S−
2 , H)) ≤ 2C. Towards a contradiction suppose

that χ⃗(D) > 2C for some D ∈ Forbind(
↔
K2, S+

2 , S−
2 , H), and pick D such that v(D) is

minimum. Pick v ∈ V (D) arbitrarily and define D′ := D − ({v} ∪ND(v)).
Since v(D′) < v(D), there exists an acyclic 2C-coloring c′ : V (D′) → {1, . . . , 2C} of

D′. Since D is induced S+
2 , S−

2 -free, we further know that D+ := D[{v} ∪ N+
D (v)] and



9.6. CONCLUSION 211

D− := D[N−
D (v)] are tournaments excluding H. It follows from the definition of C that

there exists an acyclic C-coloring c+ : V (D+) → {1, . . . , C} of D+ as well as an acyclic
coloring c− : V (D−) → {C + 1, . . . , 2C} of D−. Let c be the 2C-coloring of D defined
as the common extension of c′, c+, c− to V (D). Since χ⃗(D) > 2C there exists a directed
cycle C which is monochromatic under c. Since c′, c+, c− are acyclic colorings and since
the color sets used by c+ and c− are disjoint, we must have V (C) ∩ ({v} ∪ ND(v)) ̸= ∅,
V (C) \ ({v} ∪ ND(v)) ̸= ∅. Since all in-neighbors of v have a distinct color from v,
we further have v /∈ V (C). We conclude that there are vertices x1, x2 ∈ V (C) ∩ ND(v),
y1, y2 ∈ V (C)\({v}∪ND(v)) such that (x1, y1), (y2, x2) ∈ A(C). We claim that x1 ∈ N+

D (v)
and x2 ∈ N−

D (v). Indeed, otherwise we would have (x1, v) ∈ A(D) or (v, x2) ∈ A(D), and
then either the vertices x1, v, y1 induce an S+

2 in D, or x2, v, y2 induce an S−
2 in D, in

each case yielding a contradiction to D ∈ Forbind(
↔
K2, S+

2 , S−
2 , H). Finally, we conclude

that c(x1) = c+(x1) ≤ C < c−(x2) = c(x2), a contradiction to the facts that C is
monochromatic and x1, x2 ∈ V (C). This shows that our initial assumption concerning the
existence of D was wrong, concluding the proof of the remark.

In the last section of this chapter we investigated oriented graphs excluding the anti-
oriented 4-vertex-path P +(1, 1, 1). It would certainly be interesting and insightful to
generalize both Theorem 9.8 as well as the result of Aboulker et al. concerning P⃗4 by
proving that {

↔
K2, P⃗4, K⃗k} and {

↔
K2, P +(1, 1, 1), K⃗k} are heroic for any k ≥ 4.
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Chapter 10

Complexity Results

10.1 Introduction
The graphs and digraphs considered in this chapter are simple.

In the previous chapters, we have investigated theoretical upper and lower bounds
on the dichromatic number. However, given a concrete digraph, these upper bounds
might not be tight enough to help us determine its dichromatic number, or an optimal
acyclic coloring of the digraph, in a reasonable amount of time. While determining the
dichromatic number of a fixed digraph is certainly a finite problem (at worst we could
enumerate all possible colorings of the digraph with a given number of colors and check
for each such coloring whether every color class induces an acyclic digraph), the running
time of a brute force search is at least exponential and therefore explodes rather quickly.
For that reason, in this chapter, we study the dichromatic number from an algorithmic
point of view. Concretely, for a fixed number k ∈ N, we aim at finding algorithms solving
the following decision problem (possibly provided that the input digraphs D have some
additional structure).

Problem 10.1 (Digraph k-Coloring (k-DCP)). Given as input a digraph D, does there
exist a proper k-coloring for D?

It is a well-known NP-hardness result [GJ90] that testing whether a given undirected
graph G is properly k-colorable is NP-complete for any fixed value of k ≥ 3.

Along similar lines, the problem of deciding whether a given digraph D has dichromatic
number at most k has been shown to be NP-complete for all k ≥ 2, see [BFJ+04, FHM03]
for the first proofs of this fact.

Although NP-complete problems do not admit polynomial-time solution algorithms for
general inputs provided that P ̸=NP, if the input objects are guaranteed to have additional
structure, polynomial-time algorithms for these restricted input classes may still be found.
This idea has given rise to a whole branch in the field of algorithm design, which is still
quite actively pursued at present. In particular, much research has focused on the existence
of parametrized algorithms for NP-hard problems, whose most prominent representatives
are the so-called XP-and FPT-algorithms. The following is the formal definition of these
concepts which we will use in this chapter.

Definition 10.1 (XP- and FPT-algorithms). Let P be an algorithmic problem whose inputs
come from a set X of objects, and let ℓ : X → N0 be a function measuring the coding length
of the objects in X . Let further p : X → N be a parameter for problem P.

An algorithm solving problem P correctly on the input set X is called an XP-algorithm
with respect to parameter p if there exists a computable function f : N → N and an
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absolute constant C > 0 such that for every x ∈ X the running time1 r(x) of the algorithm
satisfies

r(x) ≤ Cℓ(x)f(p(x)).

Further, if there exist k ∈ N and a computable function f : N→ N such that

r(x) ≤ f(p(x))ℓ(x)k

for all x ∈ X , then the algorithm is called an FPT-algorithm with respect to parameter p.

It follows directly from the definition that every FPT-algorithm is also an XP-algorithm,
however with a qualitatively better running-time guarantee. The main benefit of having
an XP-algorithm for a particular problem is that it becomes possible to solve the problem
in polynomial time on any class {x ∈ X |p(x) ≤ k} of inputs for which the parameter
p(x) is bounded by a fixed number k ∈ N (this also explains the term fixed-parameter-
tractability). For further details and more extensive background on this topic we refer the
interested reader to [DF99].

A famous result in the theory of parametrized algorithms, Courcelle’s Theorem [Cou90]
implies that a wide range of problems2, and in particular the computation of the chromatic
number of a given graph, admit FPT-algorithms with respect to undirected tree-width as a
parameter. Unfortunately, a similarly powerful meta theorem is not known for the directed
relatives of tree-width such as directed tree-width, and in fact, such a meta-theorem is
unlikely to exist as justified in [GHK+10].

Still it is natural to explore interesting algorithmic problems for directed graphs whose
directed tree-width is bounded. Intuitively, one might guess that the dichromatic number
problem 10.1 should be particularly suited for a parametrization by directed tree-width:
Directed tree-width is small for digraphs which are structurally similar to acyclic digraphs,
and for acyclic digraphs, computing the dichromatic number is utterly trivial.

However, quite surprisingly the first main result of this chapter refutes this intuition by
showing that the k-DCP remains NP-complete, even if the input digraphs are of bounded
directed tree-width. In fact, we can show a stronger result3: The problem is NP-complete
for input digraphs admitting a feedback vertex set of bounded size. Given d ∈ N, a digraph
D is called d-out-degenerate if it can be reduced to the empty digraph by successively
deleting vertices of out-degree at most d, and the out-degeneracy dgn+(D) is the smallest
integer d such that D is d-out-degenerate.

Theorem 10.1. For every k ≥ 2, Digraph k-Coloring is NP-hard even if restricted to
input digraphs D satisfying τ(D) ≤ k + 4 and dgn+(D) ≤ k + 1.

Theorem 10.1 is relatively tight with respect to τ(D) and dgn+(D): If τ(D) ≤ k − 1,
we can find a feedback vertex set S of size at most k − 1 in time f(k)nO(1) [CLL+08],
assign each vertex of S a different color in [k−1] and the remaining vertices the remaining
color k. Further, one can easily find an acyclic (dgn+(D) + 1)-coloring of a digraph by
successively reinserting vertices of out-degree at most dgn+(D) and greedily assigning the
vertex a color which does not appear on its out-neighborhood. Hence, if dgn+(D) ≤ k− 1
or τ(D) ≤ k − 1, finding an acyclic k-coloring of D can be done in f(k)nO(1) time. In
contrast, our hardness result excludes the existence of an nf(k)-time algorithm if we only

1i.e., number of elementary operations required to execute the algorithm with input x, for an appropriate
definition of elementary.

2so-called MSO2-definable problems
3It is a simple exercise to show that dtw(D) ≤ τ(D) for every digraph D, as the addition of a vertex to

a digraph increases the directed tree-width by at most one.
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assume τ(D) ≤ k+4 and dgn+(D) ≤ k+1 instead, leaving only the cases k ≤ τ(D) ≤ k+3
and dgn+(D) = k open. These cases were recently resolved in a paper by Harutyunyan,
Lampis, and Melissinos [HLM20]. Let us mention their improvement of Theorem 10.1 here
for the sake of completeness.

Theorem 10.2 (cf. [HLM20]). For every k ≥ 2, Digraph k-Coloring is NP-hard even
if τ(D) ≤ k, where D is the input digraph.

Note that dgn+(D) ≤ τ(D) for every digraph D, and hence Theorem 10.2 also closes
the {k, k+1}-gap for the degeneracy. Among other results, Harutyunyan et al. also showed
that the k-DCP does admit an FPT-algorithm with respect to undirected tree-width,
which reveals yet another interesting example where undirected and directed structural
parameters show a significant difference in behavior.

Given a boolean formula in conjunctive normal form in which each clause contains
at most k literals, k-SAT is the problem of deciding whether or not this formula admits
a truthful variable assignment. Famously, k-SAT is NP-complete for every fixed value
k ≥ 3, and our proof of Theorem 10.1 actually works by reducing from the satisfiability
problem. While P ̸=NP would imply the non-existence of polynomial-time algorithms for
k-SAT, in fact, not even a subexponential-time algorithm, i.e., an algorithm with running
time 2o(n)nO(1) is known4. Impagliazzo and Paturi [IP01] provided evidence that no such
algorithm for k-SAT exists, and formulated the following famous hypothesis.

Hypothesis (Exponential Time Hypothesis (ETH) [IP01]). For each k ≥ 3 there is some
sk > 0 such that no 2sknnO(1)-time algorithm for k-SAT exists.

Assuming the ETH, we can use our reduction in the proof of Theorem 10.1 to also
show lower bounds on the running time of algorithms solving the k-DCP.

Theorem 10.3. For each k ≥ 2 there is some ϵ > 0 such that no 2ϵnnf(τ) algorithm for
Digraph k-Coloring exists, where D is the input digraph, τ = τ(D) and f is some
function, unless the ETH is false.

In the second part of this chapter, we present a positive algorithmic result for Digraph
k-Coloring based on another parameter called directed modular width. This parameter
was introduced in [SW19, SW20] inspired by module-decompositions of directed graphs as
studied in [MdM05] as well as the corresponding notion of modular width for undirected
graphs from [GLO13]. See also [MR84, Möh85] for results on modular decompositions of
more general combinatorial structures.

Modules in graphs are sets of vertices which have the same relations to vertices outside
the set. For digraphs, we have the following similar definition.

Definition 10.2. Let D be a digraph. A subset ∅ ≠ M ⊆ V (D) of vertices is called a
module, if all the vertices in M have the same sets of out-neighbours and the same sets
of in-neighbours outside the module. Formally, we have N+

D (u1) \M = N+
D (u2) \M and

N−
D (u1) \M = N−

D (u2) \M for all u1, u2 ∈M . Consider Figure 10.1 for an illustration.

The following gives the precise recursive definition of directed modular width. For an
illustration see Figure 10.2.

Definition 10.3 (Directed Modular Width). Let k ∈ N0, and let D be a digraph. We say
that D has directed modular width at most k, if one of the following holds:

4Here n is the number of variables in the input formula.
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Figure 10.1: A digraph D together with a module M .

• v(D) ≤ k, or

• There exists a partition of V (D) into ℓ ∈ {2, . . . , k} modules M1, . . . , Mℓ such that
for every i, D[Mi] has directed modular width at most k.

The least k ≥ 1 for which a digraph D has directed modular width at most k is defined to
be the directed modular width, denoted by dmw(D), of D.

M1
M2

M3

M4

v3
v2

v1

v4

Figure 10.2: A digraph D together with a decomposition into modules (left) and the correspond-
ing module-digraph (right) together with the modules Mi represented by vertices vi.

Intuitively, the directed modular width is small on dense but structured networks,
and is thus quite different from tree-width based parameters which are small for digraphs
with a sparse directed cycle structure. In [SW19, SW20] it was shown that many NP-
hard problems which are intractable by means of most other known structural digraph
parameters, admit FPT-algorithms with respect to the parameter dmw.

Here we present only the corresponding result for digraph coloring, which opposes the
negative result from Theorem 10.1.

Theorem 10.4. The dichromatic number of a given digraph D can be computed in time

O(n3 + f(ω)n log2 n),

where n := v(D), ω := dmw(D) and f(ω) = 2O(ω2ω).

Again, there has been follow-up work inspired by Theorem 10.4. Recently, Gurski,
Komander, and Rehs [GKR20] studied the parameter directed clique-width which is a lower
bound for directed modular width. They extended the positive result from Theorem 10.4
to this parameter, however, with a worse running time bound, as they only constructed
an XP-algorithm. In fact, they argued that no FPT-algorithm for the k-DCP with respect
to directed clique-width should exist under reasonable complexity theoretic assumptions.

The rest of this chapter is organized as follows. In Section 10.2 we give the proofs of
Theorem 10.1 and Theorem 10.3. In Section 10.3 we then explain the necessary background
on directed modular width and give the proof of Theorem 10.4.
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10.2 Parametrization by Feedback Vertex Set
We start this section by proving Theorem 10.1, which will be a simple consequence of the
following Lemma. It establishes the case k = 2 of Theorem 10.1 by reducing from the
satisfiability problem.

Lemma 10.5. Digraph 2-Coloring is NP-hard even if τ(D) ≤ 6 and dgn+(D) ≤ 3,
where D is the input digraph.

Proof. We provide a reduction from SAT to Digraph 2-Coloring. Let C1, C2, . . . , Cm

denote the clauses and X1, X2, . . . , Xn the variables in the SAT instance. We construct a
digraph D which is 2-colorable if and only if there is a satisfying assignment for the SAT
instance. For each clause Ci we add the vertex ci to D, and for each literal Lj ∈ Ci we add
the vertex lj,i. That is, we add the vertex xj,i if Xj ∈ Ci and the vertex xj,i if Xj ∈ Ci. To
simplify our notation, we assume that a literal Lj is associated with the variable Xj , that
is Lj = Xj or Lj = Xj , and that lj corresponds to the lower-case variant of Lj , that is
lj = xj if Lj = Xj and lj = xj if Lj = Xj . We want the color of a vertex xj,i to correspond
to an assignment of the variable Xi. To this end, we add a set S = {t1, t2, t3, f1, f2, f3} of
vertices which will correspond to a feedback vertex set in D. Furthermore, for each literal
Lj we add a vertex lj . We now add directed cycles to D in such a way that any acyclic
coloring c : V (D)→ {0, 1} of D must have the following properties.

(i) c(lj,i) = c(lj,h) for all j ∈ [n] and i, h ∈ [m], and

(ii) c(xj,h) ̸= c(xj,i) for all j ∈ [n] and i, h ∈ [m].

These properties will allow us to obtain a variable assignment from any acyclic 2-coloring.
To ensure (i), we construct a literal gadget (illustrated in Figure 10.3(a)). First, we

add the digon t1, f1. Then, for each literal Lj and each clause Ci with Lj ∈ Ci we add the
directed triangles lj , lj,i, t1 and lj , lj,i, f1. In any acyclic 2-coloring of the literal gadget,
if there are i, h ∈ [n] such that lj,i and lj,h have different colors, one of them, say, lj,i,
must have the same color as lj . Since t1, f1 are connected by a digon, they must have
different colors in any acyclic 2-coloring. Hence, the cycle lj , lj,i, t1 or the cycle lj , lj,i, f1
is monochromatic if li,j and li,h have different colors. This proves (i).

For (ii), we construct a variable gadget (illustrated in Figure 10.3(b)). First, we add
the digon t2, f2. Then, we add the directed triangles xj , xj , t2 and xj , xj , f2 for each j ∈ [n]
where both Xj and Xj appear in the formula. In any acyclic 2-coloring of the gadget,
if xj and xj receive the same color, then one of the added cycles is monochromatic as t2
and f2 must receive different colors. Because of the literal gadgets, we know that lj and
lj,i have different colors for all j ∈ [n] and i ∈ [m]. As xj and xj have different colors, it
follows from (i) that xj,i and xj,h have different colors for all j ∈ [n] and all h, i ∈ [m].
This implies (ii).

We now construct a clause gadget (illustrated in Figure 10.3(c)) that ensures that each
clause is satisfied by at least one of its literals. We first add the digon t3, f3. Then, for each
clause Ci we add the digon ci, t3. Finally, we add the directed cycle ci, lj1,i, lj2,i, . . . , ljh,i, f3,
where lj1,i, lj2,i, . . . , ljh,i are the literals of Ci. We sort the literals in such a way that
j1 < j2 < · · · < jh and such that positive literals are ordered before negative literals.

This concludes the construction of the digraph D.
We first show that τ(D) ≤ 6. We claim that the set S = {t1, t2, t3, f1, f2, f3} is a

feedback vertex set of D. We prove that D − S is acyclic by providing a topological
ordering of its vertices. We first take the positive literal vertices xj and the clause vertices
ci into the ordering, as these are sources in D − S. Removing these vertices, all negative
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x1x1,1 x1,2

t1 f1

(a) Literal gadget.

x1 x1

t2 f2

(b) Variable gadget.

x1,2 x2,2c2

f3t3

(c) Clause gadget.

Figure 10.3: Variable, literal and clause gadgets of the proof of Lemma 10.5 for the variable X1
and the clause (X1 ∨X2) in the SAT formula (X1 ∨X2) ∧ (X1 ∨X2) ∧ (X1 ∨X2).

literal vertices xj become sources, which we then add to the end of the current topological
ordering. The only remaining vertices are the variable vertices lj,i. It follows from the
construction of the clause gadget that ordering the lj,i monotonically in j, with positive
literals preceding corresponding negative literals, yields a topological ordering of D − S.

To show that the degeneracy of D is 3, we construct a linear ordering of the vertices
as follows. The first vertices of the ordering are t1, f1, t2, f2, t3 and f3. These have at
most one outgoing arc to vertices which are smaller. Afterwards come all positive literal
vertices xj , then all negative literal vertices xj , followed by the variable vertices lj,i. The
vertices xj have arcs to t2 and f2, and xj has no arc to smaller vertices. Hence, they have
at most two arcs to smaller vertices. The vertices lj,i have arcs to t1, f1 and potentially
to some other lh,i or to f3, but never both. Hence, they have at most 3 arcs to smaller
vertices. The last vertices in the ordering are the clause vertices ci. These have an arc to
t3 and another to some lj,i. Hence, the out-degeneracy of D is at most 3.

We now prove that D is acyclically 2-colorable if there is a truth assignment of the
variables satisfying all clauses.

Let β : {Xj | j ∈ [n]} → {0, 1} be a satisfying truth assignment of the variables. We
construct a coloring c : V (D)→ {0, 1} as follows.

1. c(fi) := 0 and c(ti) := 1 for i ∈ [3].

2. c(ci) := 0 for i ∈ [m].

3. c(xj,i) := β(Xj) for all j ∈ [n] and i ∈ [m] with Xj ∈ Ci.

4. c(xj,i) := 1− β(Xj) for all j ∈ [n] and i ∈ [m] with Xj ∈ Ci.

5. c(xj) := 1− β(Xj) and c(xj) := β(Xj) for all j ∈ [n].

This concludes the construction of c.
We now argue that each color class induces an acyclic digraph in D.
Let d ∈ {0, 1} be some color. Since S is a feedback vertex set of D, it suffices to show

that there are no directed cycles using vertices of Sd := c−1(d) ∩ S in D
[︁
c−1(d)

]︁
.

Assume, without loss of generality, that t1, t2 ∈ c−1(d), i.e., d = 1. The case f1, f2 ∈
c−1(d), i.e., d = 0, follows analogously. We prove that no cycle contains t1 or t2 by
progressively identifying and removing sinks from D

[︁
c−1(d)

]︁
. As for all j ∈ [n] and i ∈ [m]

we have c(xj) ̸= c(xj) = c(xj,i), it follows that all xj are sinks in D
[︁
c−1(d)

]︁
. Removing

all xj , we can see that t2 is now a sink. Hence, no directed cycle in D[c−1(d)] contains t2.
As c(xj) ̸= c(xj,i), it follows that xj is now a sink and we can remove it. Without literal
vertices, t1 becomes a sink, implying no cycle goes through t1 in D

[︁
c−1(d)

]︁
, as desired.

Consequently, for any d ∈ {0, 1}, no directed cycle in D[c−1(d)] can possibly use one of
the vertices t1, t2, f1, f2 and therefore must either contain t3 or f3.
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If t3 ∈ c−1(d), then ci ̸∈ c−1(d) for all i ∈ [m], as c(t3) = 1 and c(ci) = 0. Hence, t3 has
no neighbours in D

[︁
c−1(d)

]︁
and cannot be in any directed cycle. If f3 ∈ c−1(d), assume

towards a contradiction that there is a directed cycle C in D
[︁
c−1(d)

]︁
containing f3. Note

that this cycle must also contain ci for some i ∈ [m], as these are the only out-neighbours
of f3 in D

[︁
c−1(d)

]︁
. Furthermore, the out-neighbour of ci in C is some lj,i, and the only

out-neighbours of lj,i are t1 and potentially some lh,i or f3, as these were the arcs added in
the clause gadgets. The vertices lj,i in C correspond to the literals in ci. In order to form
a monochromatic directed cycle, all literals in ci must be in C. However, this means that
c(xj,i) = 0 for all Xj in clause Ci and c(xj,i) = 0 for all Xj in clause Ci. By construction
of c, this implies that all literals in Ci are set to false, which means that the clause is
not satisfied, a contradiction to our initial assumption. Hence, the digraph D

[︁
c−1(d)

]︁
is

acyclic, and D is acyclically 2-colorable.
We now show that the formula is satisfiable if χ⃗(D) ≤ 2 by constructing a satisfying

variable assignment β from an acyclic 2-coloring of D. Let c : V (D)→ {0, 1} be an acyclic
coloring of D. Without loss of generality, we assume that c(t3) = 1, which implies c(f3) = 0
and c(ci) = 0 for i ∈ [m]. We set β(Xj) to true if c(xj) = 0 and to false if c(xj) = 1.

Assume towards a contradiction that there is some clause Ci which is not satisfied by
β. By simply renaming the variables, we can assume without loss of generality that the
literals of Ci are L1, L2, . . . , La. As Ci is not satisfied, it follows that all Lj evaluate to false
with β. By construction of the literal gadget, c(lj) ̸= c(lj,i) for all i ∈ [m] with Lj ∈ Ci.
From (i) and (ii), for all j ∈ [n] it follows that c(lj,i) = 1 if the literal Lj is true, and that
c(lj,i) = 0 if the literal Lj is false. As Ci is not satisfied, c(ci) = c(f3) = c(lj,i) = 0 for all
j ∈ [a]. Hence, the directed cycle C = ci, l1, l2, . . . la, f3 is monochromatic, contradicting
our assumption that c is an acyclic coloring. This implies that β is a satisfying variable
assignment, concluding our proof.

With a simple self-reduction, we can extend the previous result to all k ≥ 2.

Proof of Theorem 10.1. We prove the statement by induction on k. The case k = 2 follows
from Lemma 10.5. We provide a reduction from Digraph (k−1)-Coloring to Digraph
k-Coloring such that τ(D′) ≤ τ(D) + 1 and dgn+(D′) ≤ dgn+(D) + 1, where D is the
input instance and D′ is the reduced instance. We obtain D′ by adding a new vertex x
to D, together with the edges {(x, v) , (v, x) | v ∈ V (D)}. If D is (k − 1)-colorable, then
setting the color of x to k gives an acyclic k-coloring for D′. If D′ is k-colorable, then
no vertex in D has the same color as x. Hence, D is (k − 1)-colorable. Furthermore, all
new cycles created by adding x go through x. If D − S is acyclic for some vertex set S,
then D′ − (S ∪ {x}) = D − S is also acyclic. Hence, τ(D′) ≤ τ(D) + 1. To show that the
degeneracy of D′ increased by at most one, we consider some ordering of V (D) certifying
that dgn+(D) ≤ k. By placing v as the smallest vertex with respect to the ordering, we
increase the outdegree of the vertices in D by one. Hence, the degeneracy of D′ is at most
dgn+(D) + 1 = k + 1, as desired.

As an immediate consequence of the above theorem arises the following corollary.

Corollary 10.6. There is no nf(k,τ)-time algorithm deciding Digraph k-Coloring
where τ = τ(D) and f is some function, unless P=NP.

A finer analysis of the reduction provided in Lemma 10.5 gives us the stronger hardness
result 10.3 under the assumption of the Exponential Time Hypothesis.

Note that the ETH only considers the running time with respect to the number of
variables in the input formula, not the number of clauses. In several reductions, however,
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it is difficult to ensure that the size of the reduced instance depends only on the number of
variables. For example, the reduction in Lemma 10.5 contains one vertex for each clause.
This would prevent us from directly applying the ETH. Fortunately, [IPZ01] showed that
it is possible to assume that m ∈ O(n), where m is the number of clauses, by proving the
following lemma.

Lemma 10.7 (Sparsification Lemma, Impagliazzo, Paturi, and Zane [IPZ01]). For all
ϵ > 0 and k > 0 there is a constant C so that any k-SAT formula Φ with n variables
can be expressed as Φ =

⋁︁t
i=1 Ψi, where t ≤ 2ϵn and each Ψi is a k-SAT formula with at

most Cn clauses such that each variable appears in constantly many clauses. Moreover,
this disjunction can be computed by an algorithm running in time 2ϵnnO(1).

By first applying the sparsification lemma to the input formula and then the reduction
from Theorem 10.1, we can show the following.

Proof of Theorem 10.3. First note that the reduction from Digraph (k − 1)-Coloring
to Digraph k-Coloring from Theorem 10.1 increases the input instance by one vertex.
Hence, it suffices to show the statement for k = 2, as the remaining cases follow by induc-
tion. We first use the sparsification lemma to obtain at most 2ϵn many 3-SAT instances
where each variable appears in constantly many clauses. Applying the reduction from
Lemma 10.5 to each instance, we obtain at most 2ϵn many digraphs where for each vari-
able we have constantly many vertices and for each clause we have one vertex. This means
that the number of vertices on the reduced instances is linear in the number of variables of
the formula. Hence, a subexponential-time algorithm for Digraph 2-Coloring implies
a subexponential-time algorithm for 3-SAT, which would contradict the ETH.

Note that an algorithm solving the k-DCP with running time O(kn · (n + m)) (n the
number of vertices, m the number of arcs) is simple: We can test all kn colorings of
the vertices of D, and then check if each color class is an acyclic digraph in linear time
O(m + n) by computing a topological ordering.

10.3 Parametrization by Modular Width
In this section, we present a polynomial time-algorithm to compute an optimal acyclic
coloring of a given directed graph, provided that its directed modular width is bounded by
a constant. In the following we prepare the proof of Theorem 10.4 by introducing some
notation and mentioning simple but important properties of directed modular width.

While the directed modular width can increase when taking subdigraphs, it is mono-
tone with respect to taking induced subdigraphs. More precisely, we have the following.

Fact 10.1. Let D be a digraph, and let D′ be an induced subdigraph of D. Then

dmw(D′) ≤ dmw(D).

Proof. We prove the statement by induction on the number of vertices of D. The statement
clearly holds true when v(D) = 1, so suppose for the inductive step that v(D) = n ≥ 2,
and that the statement is true for all digraphs on less than n vertices (and for all their
induced subdigraphs).

Let D′ = D[X] with X ⊆ V (D) be an induced subdigraph of D, and let ω := dmw(D),
ω′ := dmw(D′). If v(D) ≤ ω, then clearly, we also have ω′ ≤ v(D′) ≤ v(D) ≤ ω,
proving the claim. Otherwise, let M1, . . . , Mℓ denote a partition of V (D) into modules
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such that 2 ≤ ℓ ≤ ω and such that dmw(D[Mi]) ≤ ω for all i ∈ [ℓ]. For every i ∈ [ℓ],
D′[X ∩Mi] = D[X ∩Mi] is an induced subdigraph of D[Mi], and since v(D[Mi]) < v(D),
the induction hypothesis tells us that dmw(D′[X ∩Mi]) ≤ dmw(D[Mi]) ≤ ω for all i ∈ [ℓ].
Clearly, X ∩Mi defines a module in D′ for each i ∈ [ℓ]. Because ℓ ≤ ω, the definition of
directed modular width now implies

ω′ = dmw(D′) ≤ max
{︁
ℓ, dmw(D′[X ∩M1]), . . . , dmw(D′[X ∩Mℓ])

}︁
≤ ω,

which yields the claim also in this case.

Given a digraph D and a partition M1, . . . , Mℓ of V (D) into modules, we will use DM to
denote the module-digraph of D corresponding to the module-decomposition {M1, . . . , Mℓ}:
DM is obtained from D by identifying Mi, i ∈ [ℓ] each into a single vertex vi ∈ V (DM ) and
deleting parallel directed edges afterwards. Equivalently, an edge (vi, vj) lies in E(DM )
if and only if in D, there is at least one directed edge starting in Mi and ending in Mj .
Due to the modular property, this is equivalent to the fact that (u, w) ∈ A(D) for all
u ∈Mi, w ∈Mj . For an example of a module-digraph see Figure 10.2.

Throughout this section, given a module-decomposition M1, . . . , Mℓ of a directed graph
D, we will denote by η : V (D)→ V (DM ) the mapping defined by η(z) := vk for all z ∈Mk.

The most important tool involved in the algorithm of Theorem 10.4 is a subroutine
to find a non-trivial decomposition of the vertex set of a given digraph into modules, in
polynomial time. In fact, this task can be executed in a much stronger form. In [MdM05],
it was shown that a so-called canonical module-decomposition of a given digraph can be
obtained in linear time. For us, the following weaker form of their result will be sufficient.

Theorem 10.8 ([MdM05]). There is an algorithm that, given a digraph D on at least two
vertices as input, returns a decomposition of V (D) into ℓ ∈ {2, . . . , dmw(D)} modules.
This algorithm runs in time O(n + m), where n := v(D) and m := a(D).

To do the runtime-analysis of our algorithm, we will use a rooted model-tree T which
resembles the structure of recursive calls. Every vertex q ∈ V (T ) has either no children
or at least two. It furthermore admits a labelling of its vertices of the following kind:

The root of the tree is labelled with a finite ground set Ω (in our case the vertex
set of the considered digraph). Every other vertex q ∈ V (T ) is labelled with a subset
∅ ̸= Ω(q) ⊆ Ω, and for every branching vertex, the associated subset is the disjoint union
of the subsets associated to its children. Finally, the leafs of the tree are labelled with
the singletons {v}, v ∈ Ω. A tree which admits a labelling of this type will be called a
decomposition tree.

Fact 10.2. If T is a decomposition tree with ground-set Ω, then v(T ) ≤ 2|Ω| − 1.

Proof. First note that we can reduce to the case where T is a rooted binary tree: If there
is a branching vertex q ∈ V (T ) with b ≥ 3 children q1, . . . , qb, we can locally replace
this branching by a binary tree with b leafs, where instead of directly splitting Ω(q) into
Ω(q1), . . . , Ω(qb), we first split-off Ω(q1), then Ω(q2), and so on. Clearly, successive appli-
cation of this operation to every branching with more than two children yields a binary
decomposition-tree T ′ with ground set Ω and v(T ′) ≥ v(T ).

Now if T is a binary-tree, because the leafs of T are labelled by the singletons of Ω, T
has |Ω| leafs and therefore 2|Ω| − 1 vertices.
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In our algorithm, we reduce the computation of the dichromatic number to the same
problem on an input digraph with a bounded number of vertices, but equipped with
additional information (such as weightings) of polynomial-size in the original input. We
will then make use of an integer program reformulation of the problem, in which we have
a bounded number of constraints and variables, but possibly entries in the input matrices
and vectors of polynomial size. To solve this ILP efficiently we make use of the following
powerful result from the theory of Integer Programming, which shows that the feasibility
of a given ILP can be decided in polynomial time for a fixed number of variables.

Theorem 10.9 (cf. [FLM+08], Theorem 1). There exists an algorithm that, given as input
a matrix A ∈ Zn×p and a vector b ∈ Zn, decides whether there is a feasible solution to

Ax ≥ b, x ∈ Zp

(and returns a solution if applicable) in time O(p2.5p+o(p)L) where L denotes the coding
length of the input (A, b).

Solving an ILP can be easily reduced to checking the feasibility of several ILP-s using
binary search.

Corollary 10.10 (cf. [FLM+08], Theorem 12). There exists an algorithm that, given as
input a matrix A ∈ Zn×p, vectors c ∈ Zp, b ∈ Zn, and some U1, U2 ∈ Z+, tests feasibility
and if applicable outputs an optimal solution of the ILP

min cT x (10.1)
subj. to Ax ≥ b, x ∈ Zp (10.2)

in time O(p2.5p+o(p)L log(U1U2)) where L denotes the coding length of the input (A, b, c).
Here we assume that the optimal value of the program lies within [−U1, U1] and that U2
upper-bounds the largest absolute value any entry in an optimal solution vector can take.

Our algorithm for computing the dichromatic number parametrized by modular width
will work recursively. In order to enable the kind of recursion we aim for, it will be useful
to solve a more general problem, in which we want to find an acyclic coloring of a given
digraph where vertices have to be assigned lists of colors5.

Definition 10.4. Let D be a digraph equipped with an assignment N : V (D) → N of
positive integers to the vertices. An N -coloring with k ∈ N colors of D is an assignment
of lists c(v) ⊆ [k] of colors to every vertex v ∈ V (D) such that |c(v)| = N (v) for all
v ∈ V (D), and moreover for every i ∈ [k] there is no directed cycle C in D such that
i ∈ c(v) for every v ∈ V (C).

For a fixed number-assignment N , we define the N -dichromatic number χ⃗N (D) of a
digraph D to be the minimum k such that an N -coloring with k colors of D exists.

As an additional input for our generalized coloring problem, we also have a threshold
τ ∈ N, which bounds the total size of the color lists which have to be assigned. For bounded
directed modular width, the algorithm runs in polynomial time in τ and n := v(D).

Problem 10.2 (Weighted Digraph Coloring (wDCP)). Given as input digraph D, a nat-
ural number τ ∈ N, and an assignment N : V (D) → N such that

∑︁
v∈V (D)N (v) ≤ τ ,

determine the value of χ⃗N (D) and an optimal N -coloring of D.
5Note however that this generalization of the dichromatic number is fundamentally different from the

list dichromatic number, in which we need to pick only one color per vertex from a given list of colors.
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In the remainder of this section, let us prove the following result. Theorem 10.4 will
then follow directly from this result by putting N (v) := 1 for all v ∈ V (D) and τ := n.

Theorem 10.11. There is an algorithm that, given a digraph D on n vertices and an
assignment N : V (D) → N of numbers to the vertices such that

∑︁
v∈V (D)N (v) ≤ τ ,

outputs the value of χ⃗N (D) together with a certifying assignment of color lists to the
vertices. The running time of the algorithm is O(n3 +f(ω)n log2 τ +nτ), where n := v(D),
ω := dmw(D), and f(ω) = 2O(ω2ω).

We prepare the proof of Theorem 10.11 with some auxiliary statements.

Lemma 10.12. Let D be a digraph equipped with a module-decomposition {M1, . . . , Mℓ}
of the vertex set. If C is an induced directed cycle in D, then either there is some i ∈ [ℓ]
such that C is contained in D[Mi], or D uses at most one vertex from each module.

Proof. Assume towards a contradiction that there was a directed cycle C, such that for
some i ∈ [ℓ] we have |V (C) ∩ Mi| ≥ 2, and V (C) \ Mi ̸= ∅. Let x ∈ V (C) \ Mi be
some vertex, and let y1 be the closest vertex after x in the cyclic directed order along C
which is contained in Mi, and let y2 be the closest vertex before x contained in Mi in the
cyclic order. Because of |V (C) ∩Mi| ≥ 2, we know that y1 ̸= y2. Let x1 ∈ V (C) \Mi

be the predecessor of y1 on C, and let x2 ∈ V (C) \ Mi be the successor of y2 on C.
This means that (x1, y1), (y2, x2) ∈ E(C). By the modular property, this implies that
also (x1, y2), (y1, x2) ∈ A(D). Because C was assumed to be induced, this implies that
A(C) ⊇ {(x1, y1), (y1, x2), (y2, x2), (x1, y2)}, contradicting that C is a directed cycle.

Lemma 10.13. Let D be a digraph, let M1, . . . , Mℓ be a partition of V (D) into modules,
and let DM denote the corresponding module-digraph.

Let N : V (D)→ N be an assignment of numbers to the vertices.
Denote by vi ∈ V (DM ) for every i ∈ [ℓ] the vertex of the module-digraph representing

Mi, and define an assignment NM : V (DM ) → N according to NM (vi) := χ⃗N |Mi
(D[Mi])

for each i ∈ [ℓ]. Then we have

χ⃗N (D) = χ⃗NM
(DM ).

Moreover, given an optimal NM -coloring of DM (i.e., with a minimal total number of
colors), we can construct an optimal N -coloring of D in time O(ℓv(D)).

Proof. Let k := χ⃗N (D), kM := χ⃗NM
(DM ). We prove k ≤ kM and kM ≤ k separately.

To prove the first inequality, consider an assignment cM : V (DM )→ 2[kM ] of color lists
that define an optimal NM -coloring of DM . We therefore have |cM (vi)| = χ⃗N |Mi

(D[Mi])
for all i ∈ [ℓ]. Hence, for every i ∈ [ℓ], the digraph D[Mi] admits an N|Mi-coloring
ci using |cM (vi)| colors in total. By relabeling, we may assume that the set of colors
used by ci is exactly cM (vi). Consider now c : V (D) → 2[kM ] defined by c(v) := ci(v)
whenever v ∈Mi. This assignment has the property that |c(v)| = N|Mi(v) = N (v) for all
v ∈Mi ⊆ V (D), i ∈ [ℓ]. We claim that it defines a valid N -coloring of D. Assume towards
a contradiction that there exists a directed cycle C in D such that

⋂︁
v∈V (C) c(v) ̸= ∅.

W.l.o.g. we may assume that C is chosen with V (C) inclusion-wise minimal, i.e., C is
induced (otherwise we could find a directed cycle using a proper subset of the vertices).
By Lemma 10.12 C either is contained in D[Mi] for some i ∈ [ℓ], or it uses at most one
vertex from each module. In the first case, we obtain that C is a directed cycle in D[Mi]
with

⋂︁
v∈V (C) ci(v) ̸= ∅, which contradicts the choice of ci as a proper N|Mi-coloring of

D[Mi]. In the second case, C in a natural way yields a directed cycle CM in the module-
digraph DM such that for every vertex vi ∈ V (CM ), there is a unique corresponding
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vertex wi ∈ V (C) ∩Mi from the module. By the choice of the colorings ci, we find that
c(wi) = ci(wi) ⊆

⋃︁
z∈Mi

ci(z) = cM (vi) for all i ∈ [ℓ], and therefore we have⋂︂
vi∈V (CM )

cM (vi) ⊇
⋂︂

wi∈V (C)
c(wi) ̸= ∅,

contradicting the choice of cM as a valid NM -coloring of DM . As all cases led to a
contradiction, we conclude that indeed c is a proper N -coloring of D whose color sets are
contained in [kM ], and therefore k ≤ kM as claimed.

To prove the second inequality, consider an optimal N -coloring c : V (D)→ 2[k] of D.
Clearly, for any i, the restriction c|Mi defines a valid N|Mi-coloring of D[Mi], and therefore
has to fulfil ⃓⃓⃓⃓

⃓⃓ ⋃︂
z∈Mi

c(z)

⃓⃓⃓⃓
⃓⃓ ≥ χ⃗N |Mi

(D[Mi]) = NM (vi).

Now for each i ∈ [ℓ], choose some subset Li ⊆
⋃︁

z∈Mi
c(z) with |Li| = NM (vi) and define

an assignment cM : V (DM ) → 2[k] of color lists to the vertices of DM according to
cM (vi) := Li. We claim that this defines a proper NM -coloring of DM . Assume towards
a contradiction that there exists a directed cycle C in DM and a color c̃ ∈ [k] such that
c̃ ∈ Li for every vi ∈ V (C). By the definition of Li, this implies that for every i such
that vi ∈ V (C), we can find a vertex wi ∈ Mi such that c̃ ∈ c(wi). By the properties of
the modules, we now immediately conclude that {wi | i ∈ [ℓ], vi ∈ V (C)} forms the vertex
set of a directed cycle in D such that c̃ is contained in all color sets of its vertices. This
contradicts the fact that c was chosen as a valid N -coloring of D. Finally, since cM uses at
most k colors in total, this shows kM ≤ k and concludes the proof of the claimed equality.

Concerning the (algorithmic) construction of an optimal N -coloring of D given an
optimal NM -coloring of DM (using kM colors in total), we can compute the N -coloring of
D as defined in the proof of k ≤ kM . This requires at most O(v(D)) operations for each
module, and so at most O(ℓv(D)) in total.

Lemma 10.14. Given a digraph D on at most ω vertices, an assignment N : V (D)→ N
and some τ ∈ N such that

∑︁
v∈V (D)N (v) ≤ τ , we can compute χ⃗N (D) and a corresponding

optimal N -coloring in time O(f(ω) log2 τ), where f(ω) = 2O(ω2ω).

Proof. We reformulate the problem of determining the N -dichromatic number as a linear
integer program to enable an application of 10.10. For this purpose, note that we can
alternatively represent a color-list assignment c : V (D) → 2[k] by the collection of “color
classes” Ai := {v ∈ V (D)|i ∈ c(v)} for all colors i ∈ [k], each of which (by the definition
of an N -coloring) induces an acyclic subdigraph of D.

We can therefore associate an N -coloring with a set of variables xA, A ∈ A(D), where
A(D) is the collection of acyclic vertex sets in D, and xA counts the number of i ∈ [k] such
that A = Ai. The condition that the assigned color lists are of the sizes required by N
can be formulated as a linear equation for each vertex. This shows that we can compute
χ⃗N (D) as the optimal value of the following ILP:

min
∑︂

A∈A(D)
xA (10.3)

subj. to
∑︂
A∋v

xA = N (v) for all v ∈ V (D)

xA ≥ 0 for all xA ∈ Z
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This ILP in canonical form has p = O(|A(D)|) = O(2ω) variables. The coding length L
of the matrix and the vectors describing this ILP is clearly bounded by (ω + 1)2ω log τ .
Setting up the ILP requires enumerating the subsets A ⊆ V (D) for which D[A] is acyclic.
As we can test whether D[A] is acyclic in time O(a(D)) ≤ O(ω2), the ILP can be set up
in time O(ω22ω + ω2ω log τ) ≤ O(ω22ω log τ).

It is readily verified that the optimal value χ⃗N (D) of the program is bounded from
above by U1 := τ , more generally, it holds that χ⃗N (D) ≤

∑︁
v∈V (D)N (v) (assign disjoint

color sets to the different vertices). In an optimal solution to program 10.3, we certainly
have xA ≤ τ for all A ∈ A(D). Therefore we can put U2 := τ . Application of 10.10 now
yields that there is an algorithm for determining χ⃗N (D) in time O(f(ω) log τ log τ2) =
O(f(ω) log2 τ) for some function f . In fact, we may take f(ω) = pO(p) + ω22ω ≤ 2O(ω2ω).
This proves the claim.

Proof of Theorem 10.11. We follow a recursive approach which makes use of Theorem 10.8,
Lemma 10.13 and Lemma 10.14.

Assume we are given a digraph D, the assignment N : V (D) → N and a natural
number τ ∈ N such that

∑︁
v∈V (D)N (v) ≤ τ as input. Let ω := dmw(D) be the directed

modular width of D.
If v(D) = 1, say V (D) = {v}, we return χ⃗N (D) = N (v) and a color-list of N (v)

different colors.
If v(D) ≥ 2, we first apply the algorithm from [MdM05] to D, in order to obtain a

partition of V (D) into modules M1, . . . , Mℓ, where 2 ≤ ℓ ≤ ω. We compute the digraphs
D[M1], . . . , D[Mℓ] as well as the module-digraph DM .

We now recursively apply the algorithm to (D[M1],N|M1 , τ) , . . . , (D[Mℓ],N|Mℓ
, τ).

Each of the digraphs D[Mi] (according to Fact 10.1) has directed modular width at most
ω and less vertices than D.

Now given the outputs χ⃗N |Mi
(D), i = 1, . . . , ℓ of these recursive calls (and the corre-

sponding optimal color-list assignments), as in Lemma 10.13, we define NM : V (DM )→ N
according to NM (vi) := χ⃗N |Mi

(D) for all i ∈ [ℓ]. Because of v(DM ) = ℓ ≤ ω we can now
apply the algorithm from Lemma 10.14 to the instance (DM ,NM , τ) in order to obtain
the value of χ⃗NM

(DM ) and a corresponding optimal NM -coloring of DM . Note that the
instance (DM ,NM , τ) is feasible, as we have the estimate

∑︂
v∈V (DM )

NM (v) =
ℓ∑︂

i=1
χ⃗N |Mi

(D[Mi]) ≤
ℓ∑︂

i=1

∑︂
v∈Mi

N (v) =
∑︂

v∈V (D)
N (v) ≤ τ.

By the procedure explained in (the proof of) Lemma 10.13, from an optimal color-list
assignment for DM with respect to NM we obtain an optimal color-list assignment for D,
and furthermore can calculate the N -dichromatic number of D via χ⃗N (D) = χ⃗NM

(DM ).
It remains to argue for the correctness of the algorithm. First of all, the algorithm

returns an optimal N -coloring of D in finite time: In each of the recursive calls, the
number of vertices of the digraphs in the instances is strictly smaller than the number of
vertices in the current digraph. At some point, we therefore have reduced the task to such
instances where the digraphs consist of a single vertex. In this case, the algorithm outputs
a solution without further recursion.

For the runtime-analysis, we again consider a rooted tree T corresponding to the execu-
tion of the algorithm, where the root vertex is identified with the digraph D in the instance,
and the remaining vertices are each identified with a different induced subdigraph D′ which
appears in a recursive call during the execution. The children of a vertex corresponding
to such a digraph D′ are associated with the induced subdigraphs D′[M ′

1], . . . , D′[M ′
s] for
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the corresponding module-decomposition {M ′
1, . . . , M ′

s}. The leafs of this tree correspond
to single-vertex digraphs.

The runtime consumed by a vertex in T corresponding to a call with instance (D′,N ′, τ)
(disregarding the time needed to execute the recursive calls corresponding to its successors)
involves

• Computing a directed modular decomposition {M ′
1, . . . , M ′

s} of D′ with the algo-
rithm from [MdM05], which takes time O(v(D′) + a(D′)) ≤ O(|V (D′)|2).

• Computing the digraphs D′[M ′
1], . . . , D′[M ′

s] and the module-digraph D′
M . This

certainly can be executed in time ≤ O(v(D′)2).

• Applying the algorithm from Lemma 10.14 to the instance (D′
M ,N ′

M , τ), which can
be executed (D′

M has s ≤ ω vertices) in time O(f(ω) log2 τ).

• Constructing an optimal N ′-coloring of D′ given an optimal N ′
M -coloring of D′

M and
optimal N ′|M ′i -colorings of D′[M ′

i ] for all i ∈ [s]. By Lemma 10.13, we get O(ωv(D′))
as an upper bound for the required runtime.

This yields an upper bound of O(v(D′)2 + f(ω) log2 τ) ≤ O(n2 + f(ω) log2 τ) for the
runtime needed for the computations corresponding to the non-leaf vertex D′ of the tree.
For a leaf vertex corresponding to a digraph with unique vertex v, we only need to output
N (v) ≤ τ different colors, which requires linear time in τ . The number of leafs of T clearly
is the number of vertices of D, which is n. Therefore, summing over all vertices of T , we
conclude that the runtime of our algorithm is at most

O(v(T )(n2 + f(ω) log2 τ)⏞ ⏟⏟ ⏞
branchings

+ nτ⏞⏟⏟⏞
leafs

).

By Fact 10.2, we have v(T ) ≤ 2n − 1. This finally yields the desired upper bound of
O(n3 + f(ω)n log2 τ + nτ) for the total run-time.

As in Lemma 10.14, we can upper-bound f by f(ω) = 2O(ω2ω).
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Chapter 11

Complete Colorings

Graphs and digraphs in this chapter are allowed to have multiple parallel edges as well as
(anti-)parallel arcs, but are loopless. A parallel pair of edges in an undirected multi-graph
will be called a bigon and treated as an undirected cycle of length 2. The character of our
problems often depends on the existence of digons in digraphs and bigons in undirected
multi-graphs, respectively. We will emphasize this distinction at the respective points.

11.1 Introduction

A complete coloring of a graph is a proper vertex coloring such that the identification
of any two colors produces a monochromatic edge. The achromatic number Ψ(G) is the
maximum number of colors in a complete coloring. There has been a substantial amount of
research on the achromatic number since its introduction in [HHP67], we refer to [HM97]
and [Edw97] for survey articles on this topic.

In the same spirit, for most coloring parameters an associated notion of complete
coloring and an “a-parameter” may be defined. The dichromatic number studied in Part II
is the smallest size of a partition of the vertex set of a directed graph into acyclic subsets.
Similarly, for an undirected graph G, the vertex arboricity va(G) is defined to be the
minimal number of induced forests which cover all the vertices. This is another well-
studied graph parameter, see e.g. [GKW68, GK69, Škr02, RW08, HM12a, RW12]. Note
that the dichromatic number of a digraph is at most the vertex-arboricity of its underlying
undirected graph, while the dichromatic number of a bioriented digraph coincides with the
chromatic number of the underlying undirected graph.

In this chapter, we investigate complete colorings corresponding to the above two
coloring parameters, resulting in the adichromatic number of directed graphs and the a-
vertex arboricity of undirected graphs. More precisely, the adichromatic number adi(D)
of a directed graph D is the largest number of colors its vertices can be colored with such
that every color induces an acyclic subdigraph but in the merge of any two color classes
there is a directed cycle. We refer to such a coloring as a complete (acyclic) coloring of D.
Similarly, the a-vertex arboricity ava(G) of an undirected graph G is the largest number
of colors that can be used such that every color class induces a forest but in the merge
of any two color classes there is a cycle. Such a coloring will be referred to as a complete
(arboreal) coloring of G.

Similar parameters have been introduced in [Edw13, Sop14]. In particular, the di-
achromatic number of digraphs was introduced in [APMBORM18] and sparked the inves-
tigations presented in this chapter. While it is closest to our parameter, the adichromatic
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number, it still behaves quite differently, as we will note in Proposition 11.9 that transitive
tournaments have arbitrarily large diachromatic number but adichromatic number one.

In this chapter, we initiate the study of adi and ava, their relation to other graph
parameters, and their behavior with respect to graph and digraph operations.

For other notions of complete colorings, so-called interpolation theorems have been
shown. See [APMBORM18, Theorem 22] and [HHP67] for the diachromatic and achro-
matic versions, respectively. As our first main result of this chapter we extend these results
to the adichromatic number and a-vertex arboricity as follows.

Theorem 11.1.

1. Let D be a digraph and let ℓ ∈ N. Then there exists a complete acyclic coloring of
D using exactly ℓ colors if and only if χ⃗(D) ≤ ℓ ≤ adi(D).

2. Let G be a graph and let ℓ ∈ N. Then there exists a complete arboreal coloring of G
using exactly ℓ colors if and only if va(G) ≤ ℓ ≤ ava(G).

The main focus of this chapter is on the relation of adi and ava to important graph
and digraph parameters such as the degeneracy and more importantly the size τ of a
smallest feedback vertex set. It is not hard to see that both adi and ava are bounded from
above by τ + 1, as we will show in Proposition 11.5. An interesting and natural question
to ask then is whether also an inverse relationship between adi, ava and the respective
feedback-vertex-set parameters exists.

In Proposition 11.18 we answer this question negatively by providing a construction of
digraphs showing that there is no function f such that τ ≤ f(adi) in the directed setting,
not even for digraphs of large digirth.

In contrast to this, our second main result in this chapter gives a positive answer to
this question for simple undirected graphs, showing that the parameters τ and ava are
qualitatively tied to each other.

Theorem 11.2. There is a function f : N→ N such that for every simple graph G

τ(G) ≤ f(ava(G)).

While the best asymptotic lower bound on the function f we know of is f(k) = Ω(k2),
the upper bound on f we could obtain from our proof of Theorem 11.2 is far from poly-
nomial. It is therefore desirable to find improved (polynomial) upper bounds on τ(G)
in terms of ava(G). Interestingly, if we restrict our attention to graphs contained in any
fixed non-trivial minor-closed class such as the planar graphs, we can actually give an
asymptotically almost tight upper bound on τ in terms of ava. Moreover, we can show
that in contrast to general digraphs, the parameters adi and τ are tied to one another for
digraphs whose underlying graphs are contained in such a minor-closed class of graphs.

These results are summarized in the following Theorem, which is our third and last
main result of this chapter.

Theorem 11.3. Let G be a minor-closed class of simple graphs which is non-trivial (that
is, it does not contain all graphs).

1. There is a function f : N→ N (depending on G), such that for any digraph D whose
simple underlying graph (obtained from ignoring parallel edges) is contained in G,
we have

τ(D) ≤ f(adi(D)).



11.2. FIRST OBSERVATIONS AND RESULTS 231

2. There is a constant C > 0 (depending on G) such that for every graph G whose
simplification (identifying parallel edges) lies in G, we have

τ(G) ≤ C · ava(G)2 log(ava(G)).

An interesting consequence of Theorem 11.2 is that there exists a function f such that
adi(D) ≤ f(ava(G)) for every orientation D of a simple graph G (Corollary 11.23). Con-
versely, we show that any graph with sufficiently high a-vertex arboricity has an orientation
with large adichromatic number (Proposition 11.24).

We further investigate the relationship between the parameters adi, ava and the degen-
eracy of the corresponding (di)graphs. Again, we exhibit a difference between directed and
undirected graphs: While there are arbitrarily dense digraphs with bounded adichromatic
number (Proposition 11.18), the degeneracy of a simple graph is bounded from above by
a function of ava (Theorem 11.20).

From a more general point of view, we discuss the relations of our findings to the Erdős-
Pósa property and introduce a strengthening of the latter that we call τ -boundedness.

Structure of the chapter. Section 11.2 contains first observations and results. It
consists of Subsection 11.2.1, which studies some relations between the parameters and
contains the proof of Theorem 11.1, and of Subsection 11.2.2, which contains results on
the behavior of our parameters with respect to graph and digraph operations. Section 11.3
contains the proofs of Theorem 11.2 and Theorem 11.3, and the above mentioned relations
of ava and adi with τ and the degeneracy are given. Finally, Section 11.4 contains the
discussion of τ -boundedness and the Erdős-Pósa property.

11.2 First Observations and Results
In this section, we present some basic properties of the adichromatic number and the a-
vertex arboricity, discuss the relation of the adichromatic number and some other notions
of complete coloring and make observations which will be used in the rest of the chapter.

11.2.1 Relations between Parameters

A fundamental property of an optimal acyclic coloring of a digraph (i.e., without monochro-
matic directed cycles) is that we cannot improve the coloring by any merge of two colors.
Therefore, any acyclic coloring of a digraph D with χ⃗(D) colors must be complete. With
the analogous argument for the a-vertex arboricity, we get the following basic relations.
Observation 11.4.
• χ⃗(D) ≤ adi(D) for any digraph D.

• va(G) ≤ ava(G) for any graph G.
Clearly, the only digraphs with adichromatic number 1 are acyclic digraphs, and sim-

ilarly the only graphs with a-vertex arboricity 1 are forests. The same is true for the
dichromatic number and the vertex arboricity, and so in these very special cases, the con-
cepts of coloring and complete coloring coincide. The examples from Proposition 11.7
below show that in general, no such relation exists, as there are digraphs with dichromatic
number 2 and arbitrarily large adichromatic number and graphs with vertex arboricity 2
but arbitrarily large a-vertex arboricity. Before turning to these examples, let us note the
following fundamental relation of the treated coloring parameters to feedback vertex sets.
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Proposition 11.5.

• For any digraph D, we have adi(D) ≤ τ(D) + 1.

• For any graph G, we have ava(G) ≤ τ(G) + 1.

Proof. We give the proof for the directed case, the undirected case is completely analogous.
Denote by F ⊆ V (D) a directed feedback vertex set of D with minimal size. Assume
towards a contradiction that adi(D) ≥ |F |+ 2. Then there is a complete acyclic partition
(V1, . . . , Vk) of D with k ≥ |F | + 2 colors. Consequently, there are at least two colors
i, j ∈ {1, . . . , k} which do not appear on any vertex of F . However, this implies that
Vi ∪ Vj ⊆ V (D) \ F induces an acyclic subdigraph of D, contradicting the definition of a
complete acyclic coloring.

The given upper bounds are easily seen to be tight for acyclic digraphs, directed cycles
of arbitrary length, and complete digraphs in the directed case; respectively for forests,
cycles and multi-graphs obtained from complete graphs by replacing each simple edge by
a bigon in the undirected case. As mentioned in the introduction, it is a natural question
whether there is also an inverse relationship between the parameters adi(D) and τ(D)
(respectively ava(G) and τ(G)). This question is the center of the investigations in this
chapter and will be dealt with in Section 11.3.

Since digons and bigons are counted as (directed) cycles of length two, it is easily seen
that both the adichromatic number and the a-vertex arboricity form a proper generaliza-
tion of the achromatic numbers of graphs when allowing multiple edges.

Observation 11.6. For a simple graph G, let 2G be the multi-graph obtained from G
by replacing every edge with a bigon connecting the same endpoints. Then we have the
following equalities involving the achromatic number of G:

Ψ(G) = adi(
↔
G) = ava(2G).

Proof. The three parameters are defined as the maximal size of a partition into indepen-
dent (or acyclic) vertex sets of maximal size such that the union of any two partition
classes is not independent (or acyclic, respectively) any more. The claim therefore follows
from observing that a vertex set in

↔
G induces an acyclic subdigraph if and only if it induces

a forest in 2G and if and only if it is independent in G.

As independent sets form a special case of acyclic vertex sets in graphs, which again
define acyclic vertex sets in any orientation of that graph, it is easily seen that for any
digraph D with underlying graph G, we have χ⃗(D) ≤ va(G) ≤ χ(G). It is therefore
natural to ask whether similar relationships between the adichromatic number, a-vertex
arboricity and achromatic number exist. The following presents a set of canonical graphs
and digraphs with their a-coloring parameters, which show that in general, both adi(D)
and ava(G) are not bounded from above in terms of Ψ(G), where G is the underlying
graph of D. Note that vice-versa, Ψ(G) cannot be bounded from above in terms of adi(D)
or ava(G), as it is easily seen to be unbounded already for matchings.

Proposition 11.7. For any m, n ∈ N, m, n ≥ 1 we have

1. ava(Km,n) = min{m, n}, while Ψ(Km,n) = 2.

2. ava(Kn) = ⌈n
2 ⌉.



11.2. FIRST OBSERVATIONS AND RESULTS 233

3. Let Dn be the orientation of Kn,n in which a perfect matching is directed from the
first to the second class of the bipartition, while all non-matching edges emanate
from the second class. Then adi(Dn) = n.

4. Let G (respectively D) be the vertex-disjoint union of
(︁n

2
)︁

cycles (respectively directed
cycles), n ≥ 2. Then ava(G) = adi(D) = n.

Proof.

1. Assume that m ≤ n. We first observe that ava(Km,m) ≥ m: Consider a perfect
matching and assign m different colors to the pairs of matched vertices. Now the
union of any two color classes produces a cycle of length 4. Because Km,m is an
induced subgraph of Km,n, we have ava(Km,n) ≥ ava(Km,m) ≥ m = min{m, n}
(this will be noted later in Corollary 11.12). On the other hand, removing all but 1
vertex from the smaller partite class of Km,n shows that τ(Km,n) ≤ min{m, n} − 1.
The claim follows from Proposition 11.5. The fact that Ψ(Km,n) = 2 is well-known
and follows by observing that no two distinct colors can appear on the same partition
class in any complete proper coloring.

2. In any complete arboreal coloring of Kn, each color class has size at most 2 and
there is at most one singleton-color class (otherwise two singleton-colors could be
merged). We therefore have ava(Kn) ≤ ⌈n

2 ⌉.
If n is even, Kn contains Kn/2,n/2 as an induced subgraph and we therefore have
ava(Kn) ≥ ava(Kn/2,n/2) = n

2 . If n is odd, we can use n−1
2 colors to color paired

vertices of Kn−1 and then add an extra color for the remaining vertex. This yields
a complete arboreal coloring with n

2 + 1 colors. This verifies the claim in both the
even and the odd case.

3. To verify adi(Dn) ≥ n, we observe that by taking the two vertices of each matching
edge as a color class we define a partition into n acyclic subdigraphs such that the
union of any two creates a directed cycle of length 4. Deleting all vertices of one
partite class except one shows that τ(Dn) ≤ n − 1. Again, the claim follows using
Proposition 11.5.

4. In any complete arboreal (respectively acyclic) coloring of G (respectively D), we
must have a cycle (respectively directed cycle) in the union of any two color classes,
and so if we use k colors, we need at least

(︁k
2
)︁

distinct cycles. This proves the inequali-
ties ava(G), adi(D) ≤ n. On the other hand, assigning to each pair {i, j} ∈

(︁[n]
2
)︁

a dif-
ferent cycle and coloring this cycle using only i and j defines a complete arboreal (re-
spectively acyclic) coloring of G (respectively D) and proves that ava(G), adi(D) ≥ n.

Recently, the concept of the diachromatic number was introduced in [APMBORM18].
Given a digraph D, the diachromatic number dac(D) of D is defined as the maximum
number k of colors that can be used in an acyclic coloring of D with color classes V1, . . . , Vk,
such that for every ordered pair (i, j) ∈ [k]2, i ̸= j, there exists at least one arc of D with
head in Vi and tail in Vj .

In a complete acyclic coloring of a digraph, the union of any two color classes contains
the vertex set of a directed cycle, and therefore arcs in both directions between the two
acyclic color classes must exist. Hence, any complete acyclic coloring in our sense also
defines a complete coloring as defined in [APMBORM18]. We therefore have
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Observation 11.8. For any digraph D, it holds that adi(D) ≤ dac(D).

In general however, the above estimate is far from being tight. For example, the
diachromatic number is not bounded for directed acyclic digraphs, which always have
adichromatic number equal to 1. Together with [APMBORM18, Corollary 12] we get:

Proposition 11.9. For the transitive tournament K⃗n on n vertices it holds that

adi(K⃗n) = 1, dac(K⃗n) =
⌈︃

n

2

⌉︃
.

Our next goal is to prove the interpolation Theorem 11.1.
In order to do so, we consider generalizations of the dichromatic number and the vertex

arboricity, where we want to minimize the number of colors in an acyclic coloring with the
additional restriction that certain vertices must be colored the same.

Definition 11.1.

1. Let D be a digraph, and let P = {P1, . . . , Pt} be a partition of the vertex set such
that D[Pi] is acyclic for all i ∈ [t]. Then we define the P-dichromatic number of
D, denoted by χ⃗P(D), to be the least number of colors required in an acyclic digraph
coloring of D such that for any i, the vertices in Pi receive the same color.

2. Let G be a graph, and let P = {P1, . . . , Pt} be a partition of the vertex set such that
G[Pi] is a forest for all i ∈ [t]. Then we define the P-vertex arboricity of G, denoted
by vaP(G), to be the least number of colors required in an arboreal coloring of G such
that for any i, the vertices in Pi receive the same color.

We prepare the proof of Theorem 11.1 with the following simple lemma.

Lemma 11.10.

1. Let D be a digraph with a partition P = {P1, . . . , Pt} into acyclic vertex sets. Assume
that also D[P1 ∪ P2] is acyclic, and let Q := {P1 ∪ P2, P3, . . . , Pt}. Then we have

χ⃗P(D) ≤ χ⃗Q(D) ≤ χ⃗P(D) + 1.

2. Let G be a graph with a partition P = {P1, . . . , Pt} into vertex sets inducing forests.
Assume that also G[P1 ∪ P2] is a forest, and let Q := {P1 ∪ P2, P3, . . . , Pt}. Then

vaP(G) ≤ vaQ(G) ≤ vaP(G) + 1.

Proof. We give a proof for the directed case, the undirected case is analogous. Clearly,
any acyclic coloring of D which is compatible with Q is also compatible with P. This
directly yields χ⃗P(D) ≤ χ⃗Q(D).

On the other hand, let c : V (D) → [ℓ] be an acyclic coloring of D using ℓ = χ⃗P(D)
colors such that the vertices in Pi are colored the same, for all i ∈ [t]. It is now easily seen
that coloring all vertices in P3 ∪ P4 ∪ · · · ∪ Pt as in c and giving color ℓ + 1 to all vertices
in P1 ∪ P2 defines a proper digraph coloring of D which is compatible with Q and uses at
most ℓ + 1 colors. This proves the inequality χ⃗Q(D) ≤ χ⃗P(D) + 1.

Proof of Theorem 11.1. We prove the first part of the Theorem, the proof of the second
part is completely analogous.
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First of all, the conditions on ℓ are necessary: Any complete acyclic coloring also is an
acyclic digraph coloring, so it uses at least χ⃗(D) colors, and by definition, it cannot use
more than adi(D) colors.

So let now ℓ ∈ {χ⃗(D), . . . , adi(D)} be given. Define P0 := {{v}|v ∈ V (D)} to be the
partition of V (D) into singletons, and let P denote the partition of V (D) into the adi(D)
color classes corresponding to a complete acyclic coloring of D with the maximum num-
ber of colors. Looking at Definition 11.1, it is readily verified that χ⃗P0(D) = χ⃗(D) and
χ⃗P(D) = adi(D) (for the latter note that different partition classes must be colored differ-
ently, as their union is cyclic). Now consider a sequence P0,P1,P2, . . . ,Pr = P consisting
of partitions of V (D) into acyclic vertex sets such that for any i = 0, 1, . . . , r − 1, Pi+1 is
obtained from Pi by merging a pair of partition classes. The existence is easily seen by
successively splitting partition classes, starting from the back with P. Applying Lemma
11.10 we get that χ⃗Pi(D) ≤ χ⃗Pi+1(D) ≤ χ⃗Pi(D) + 1 for all 0 ≤ i < r. It follows from
this and from χ⃗P0(D) ≤ ℓ ≤ χ⃗Pr (D) that there exists some i ∈ [r] such that ℓ = χ⃗Pi(D).
Let now c : V (D) → [ℓ] denote an optimal digraph coloring compatible with Pi which
uses the fewest number ℓ of colors. This coloring must be a complete acyclic coloring: If
the union of two color classes was acyclic, we could improve the number of colors used
by merging these color classes, still keeping it compatible with Pi. As we have found a
complete acyclic coloring using exactly ℓ colors, this verifies the claim.

11.2.2 Behavior with Respect to Graph Operations

Most standard coloring parameters such as the chromatic number are monotone under
subgraphs. While this is not the case for the adichromatic number and a-vertex arboricity
in general (consider a bidirected C4 in the directed case and the multi-graph obtained from
C4 by replacing all edges with bigons for small examples, or alternatively the digraphs
described in Proposition 11.18 in the next section), we can establish a monotonicity under
taking induced subgraphs.

Lemma 11.11. Let D be a digraph and G a graph.

• For any v ∈ V (D), we have adi(D)− 1 ≤ adi(D − v) ≤ adi(D).

• For any v ∈ V (G), we have ava(G)− 1 ≤ ava(G− v) ≤ ava(G).

Proof. We prove the claim for the directed case, the undirected case is analogous. To prove
that adi(D−v) ≤ adi(D), consider an optimal complete acyclic coloring of D−v with color
classes V1, . . . , Vl, ℓ := adi(D − v). If there is a color i ∈ [ℓ] such that Vi ∪ {v} induces an
acyclic subdigraph, we can join v to this color class in order to obtain a complete acyclic
coloring of D with ℓ colors. If on the other hand Vi ∪ {v} contains a directed cycle for
every i ∈ [ℓ], we can give v the new color ℓ + 1 and see that this defines a complete acyclic
coloring of D using ℓ + 1 colors. This implies that adi(D) ≥ ℓ = adi(D− v) in every case.

For the second inequality, we have to prove that adi(D)− 1 ≤ adi(D− v). To see this,
consider a complete acyclic coloring of D using r := adi(D) colors. There are at least
r − 1 color classes in this coloring which were not affected by the deletion of v from D,
and therefore, the union of any two of these color classes still contains a directed cycle.
Clearly, each of the r−1 color classes still induces an acyclic subdigraph. Now simply give
a unique new color to each vertex in V (D − v) which is in none of the r − 1 color classes.
Perform a greedy merging process in which, as long as there exists a pair of color classes
whose union is acyclic, we merge them. In the end, we obtain a complete coloring of D−v,
in which no two of the r − 1 color classes considered above was merged. Therefore, we
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have found a complete acyclic coloring of D using at least r− 1 = adi(D)− 1 colors. This
concludes the proof.

Corollary 11.12. Let D1, D2 be digraphs and G1, G2 graphs.

• If D1 is an induced subdigraph of D2, then adi(D1) ≤ adi(D2).

• If G1 is and induced subgraph of G2, then ava(G1) ≤ ava(G2).

A special role in the theory of acyclic digraph colorings is played by directed separations.
If S = ∂+(X) forms a directed cut for some partition X, X := V (D) \ X of the vertex-
set, no directed cycle in D can use an edge from S and therefore either stays in D[X] or
in D[X], which implies that χ⃗(D) = max{χ⃗(D[X]), χ⃗(D[X])}. Iterating this argument,
one can see that the dichromatic number of a digraph can be computed as the maximum
over the dichromatic numbers of its strongly connected components. For the adichromatic
number, such a simple relation does not hold true, as even for the disjoint union of two
digraphs, there is no explicit way of computing the adichromatic number in terms of the
adichromatic numbers of the two components (cf. Proposition 11.7, 4.). However, we can
bring it down to exactly this case, by noting that the adichromatic number of a digraph
equals the adichromatic number of the disjoint union of its strong components.

Observation 11.13. Let D be a digraph, and let S ⊆ A(D) be a directed cut. Then
adi(D) = adi(D − S).

Proof. This follows directly from the fact that the complete acyclic colorings of D are the
same as those of D − S, because a vertex subset X ⊆ V (D) is acyclic in D if and only if
it is acyclic in D − S.

We can go one step further and consider cuts which are almost directed, i.e., they
have only a single arc in forward-direction. In this case, we can contract this forward-arc
without increasing the adichromatic number.

Lemma 11.14. Let D be a digraph with a non-trivial partition (X, X) of the vertex set
such that ∂+(X) = {e} for some arc e ∈ A(D) which does not form part of a digon in D.
Then we have adi(D/e) ≤ adi(D).

Proof. Let c : V (D/e) → [ℓ] be a complete acyclic coloring of D/e using ℓ = adi(D/e)
colors. Let c′ be the vertex-coloring of D in which every vertex not incident to e is
colored as by c, and where the endpoints of e both receive the color which is given to the
contraction vertex of e under c. It is clear that this still defines an acyclic coloring, as any
directed cycle in D, after contracting e, still yields a directed cycle in D/e using exactly
the same colors. On the other hand, if i ̸= j ∈ [ℓ] is a pair of colors, then there exists a
directed cycle in D/e which uses only colors i and j. Possibly after re-inserting the arc e
in case the cycle uses the contraction vertex of e now defines a directed cycle in D which
also only uses colors i and j (the fact that the cycle remains directed after reinserting e
follows since there is no directed path in D − e starting in tail(e) and ending in head(e),
since ∂+(X) = {e}). We therefore have found a complete acyclic coloring of D which uses
ℓ colors. This yields that adi(D) ≥ ℓ = adi(D/e), as required.

This operation from Lemma 11.14 resembles the generalized butterfly-contractions
from Chapter 5. In particular, if e ∈ A(D) is a butterfly-contractible arc with tail u
and head v, then we have ∂+({u}) = {e} if e is the only arc emanating from u, and
∂+(V (D) \ {v}) = {e} if e is the only arc entering v. Therefore, the following is a direct
consequence of Corollary 11.12 and Lemma 11.14:
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Corollary 11.15. Let D1 be an induced butterfly-minor of D2, i.e., D1 is obtained from
an induced subdigraph of D2 by repeatedly contracting butterfly-contractible arcs not con-
tained in digons. Then

adi(D1) ≤ adi(D2).

The following statements, which yield lower bounds on the a-vertex arboricity of a
graph in terms of the a-vertex arboricities of induced minors, will form a central tool in
the proof of our second main result, Theorem 11.2.

Lemma 11.16. Let G be a (multi-)graph and let T = G[X] be an induced subtree of G.
Let G/T denote the (multi-)graph obtained from G by deleting all edges of T from G and
identifying X into a single vertex vX . Then

ava(G/T ) ≤ ava(G).

Proof. Let ℓ := ava(G/T ) and let c : V (G/T ) → [ℓ] be a complete arboreal coloring of
G/T using all ℓ colors. We claim that the coloring c′ : V (G)→ [ℓ],

c′(v) :=
{︄

c(v), if v ̸∈ X,

c(vX), if v ∈ X,

is also a complete arboreal coloring of G that uses ℓ colors. For this purpose, we must
verify that there are no monochromatic cycles in G with respect to c and that in the union
of any two color classes, there is a cycle. For the first part, suppose there was a cycle C
in G all whose vertices are colored i in c′. Because T is an induced tree, C must contain
a vertex outside X. Consequently, after the contraction of X, the cycle C yields a closed
walk of positive length in G/T , which by definition of c′ must still be monochromatic, a
contradiction. On the other hand, given any pair i ̸= j ∈ [ℓ] of colors, there is a cycle
in G/T which uses only colors i and j according to c. If the cycle does not use vX , this
yields also a cycle in G which only uses colors i and j according to c′, as desired. In the
case that the cycle traverses vX , let e, f be the two incident edges of vX on the cycle. By
connecting the endpoints of e and f in T by the unique monochromatic connection path
in T if necessary, we find that also in this case there is a cycle in G which uses only colors
i, j according to c′. Hence, c′ defines a complete arboreal coloring of G with ℓ colors, and
ava(G) ≥ ℓ = ava(G/T ).

Corollary 11.17. Let G and H be simple graphs such that G contains a subdivision of
H as an induced subgraph. Then ava(G) ≥ ava(H).

Proof. Repeated application of Lemma 11.16 to contractions of subdivision edges yields
that the a-vertex arboricity of any subdivision of a graph is lower bounded by the a-vertex
arboricity of the graph itself. The claim now follows from Corollary 11.12.

11.3 Upper Bounds for Minimum Feedback Vertex Sets

The main goal of this section is to complement the lower bounds on τ via ava and adi from
Proposition 11.5 with upper bounds, and in particular, to give the proofs of Theorem 11.2
and Theorem 11.3.

By Observation 11.6, the adichromatic number of the biorientation
↔
Kn,n of the com-

plete bipartite graph is given by the achromatic number of Kn,n, which is 2. However,
the size of a smallest feedback vertex set equals n. Similarly, the multi-graph 2Kn,n has
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a-vertex arboricity 2 but τ(2Kn,n) = n for any n ≥ 1. These observations show that there
is no qualitative upper bound on the size of a smallest feedback vertex set in terms of ava
or adi for simple digraphs or multi-graphs.

In the rest of this section, we therefore focus on oriented digraphs and simple graphs
and demonstrate that while there are simple digraphs D with bounded adichromatic num-
ber and unbounded τ(D) (Proposition 11.18), τ(G) is bounded above in terms of ava(G)
for simple graphs (by proving Theorem 11.2). On the way to this result we achieve an
upper bound for the degeneracy by a function of ava in the form of Corollary 11.20. We
also give the proof of Theorem 11.3 and thereby establish a relationship of adi and τ within
minor-closed classes. As consequences of the results mentioned above we show non-trivial
relations between ava and adi in Subsection 11.3.1.

The following construction gives a family of oriented digraphs with an unbounded size
of the feedback vertex set but bounded adichromatic number. Additionally, these digraphs
can have arbitrarily large directed girth.

Let D(n, k) with n ≥ 1, k ≥ 3 denote the n-fold blow-up of C⃗k, that is, the k-partite
digraph whose vertex set consists of k disjoint partition classes V1, . . . , Vk of size n each
and where A(D) =

⋃︁k
i=1 (Vi × Vi+1) (k + 1 := 1). Hence D(n, k) is obtained from C⃗k by

replacing each vertex by n independent copies.

Proposition 11.18. For n ≥ 1, k ≥ 3, we have adi(D(n, k)) ≤ k while τ(D(n, k)) = n.

Proof. Clearly, we can find a packing of n vertex-disjoint directed cycles in D(n, k), and
so τ(D(n, k)) ≥ n. On the other hand, V1 forms a feedback vertex set, and we conclude
that τ(D(n, k)) = n. To see that adi(D(n, k)) ≤ k, let c : V (D(n, k))→ [ℓ] be a complete
acyclic coloring using ℓ colors, and assume towards a contradiction that ℓ ≥ k + 1. For
each i ∈ [ℓ], there is at least one partition class in which i does not appear, otherwise
there would be a directed cycle colored i. By the pigeon-hole principle, we therefore find
a pair i ̸= j ∈ [ℓ] of colors such that both do not appear in a certain partition class.
However, there must be a directed cycle in D(n, k) using only vertices with color i or j.
This contradiction shows adi(D(n, k)) ≤ k.

Our next goal will be to prove Theorem 11.2. The proof needs to be prepared with
some auxiliary statements. For our next result we will combine Corollary 11.17 with the
following strong result from the literature obtained by Kühn and Osthus [KO04]:

Theorem 11.19 ([KO04]). For every s ∈ N and any simple graph K there is some
d = d(s, K) ∈ N such that every simple graph G with minimum degree greater than d
contains Ks,s as a subgraph or a subdivision of K as an induced subgraph.

For a simple graph G, the degeneracy of G is defined as dgn(G) := maxH⊆G δ(H),
where the maximum is taken over all subgraphs (or, equivalently, all induced subgraphs)
of G. We call G d-degenerate for d ∈ N, if dgn(G) ≤ d. The following shows that simple
graphs of bounded a-vertex-arboricity have bounded degeneracy.

Corollary 11.20. There exists a function g : N → N such that dgn(G) ≤ g(ava(G)) for
every simple graph G.

Proof. For any k ∈ N, define g(k) as the integer d(s, K) from Theorem 11.19 where
s = k + 1 and K = Kk+1,k+1.

Now let G be an arbitrary simple graph and let k := ava(G). We have to prove
that dgn(G) ≤ g(k). Assume towards a contradiction that dgn(G) > g(k), i.e., there
exists an induced subgraph H of G such that the minimum degree of H is greater than
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g(k) = d(k + 1, Kk+1,k+1). By Corollary 11.12, we have k = ava(G) ≥ ava(H). By
Theorem 11.19, H either contains Kk+1,k+1 as a subgraph or as an induced subdivision.
In the first case, let X ⊆ V (H) be the set of vertices of the subgraph. On the one hand,
we know that k ≥ ava(H) ≥ ava(H[X]). On the other hand, H[X] is a simple graph which
contains Kk+1,k+1 as a spanning subgraph. Consider a perfect matching of Kk+1,k+1 and
color the vertices in X with k + 1 different colors, such that end vertices of the same
matching edge have the same color, and all matching edges are colored differently. It is
now easily seen that this defines a complete arboreal coloring of H[X] with more than k
colors, which yields the desired contradiction in this case. In the second case we directly
apply Corollary 11.17 to obtain the contradiction k ≥ ava(H) ≥ ava(Kk+1,k+1) = k+1.

The last ingredient of our proof is the following well-known theorem of Erdős and
Pósa, which relates the maximum size of a vertex-disjoint cycle packing in a graph to the
minimum size of a feedback vertex set. For a graph G let ν(G) denote the maximal size
of a collection of pairwise vertex-disjoint cycles in G.

Theorem 11.21 ([EP65]). There is an absolute constant c > 0 such that for every k ∈ N,
every graph G with τ(G) > ck log(k) fulfills ν(G) ≥ k.

We are now prepared for the proof of Theorem 11.2.

Proof of Theorem 11.2. For a clearer presentation, we prove the theorem by contradiction.
From a finer analysis of the proof, one could derive an explicit expression for f(k), the
bound would be rather bad however. So assume for the rest of the proof that such a
function f as claimed does not exist. This means that there is a fixed A ∈ N and an
infinite sequence (Gs)∞

s=1 of simple graphs such that ava(Gs) < A for all s ∈ N but
τ(Gs)→∞. From Theorem 11.21 we directly conclude that also ν(Gs)→∞.

From Corollary 11.20 we get that there exists a constant d := maxl=1,...,A−1 g(l) > 0
such that all the graphs Gs are d-degenerate.

For each s ≥ 1, we fix a packing Cs of induced (that is, chordless) and pairwise vertex-
disjoint cycles in Gs of size ν(Gs).

For each s ≥ 1, we associate with Cs a model graph Ms which has |Cs| vertices, one
for each cycle in Cs, and an edge between two vertices for every edge spanned between
the corresponding cycles in Gs (so this might be a multi-graph). Because the cycles were
assumed to be induced, we know that Ms is loopless.

Claim 1. α(Ms) <
(︁A

2
)︁

for all s ≥ 1.

Proof. Assume towards a contradiction the statement was false. Consequently, we can
find some s ≥ 1 such that Ms contains an independent set I of size

(︁A
2
)︁
. Let H be the

subgraph of Gs induced by the union of the vertex sets of cycles in Cs corresponding to
the vertices in I. Consider some bijection which maps each pair {i, j} ∈

(︁[A]
2
)︁

to one of the(︁A
2
)︁

cycles corresponding to I.
Since H is the disjoint union of

(︁A
2
)︁

cycles, it follows directly from item 4 of Proposi-
tion 11.7 that ava(H) ≥ A. Applying Lemma 11.11 to the induced subgraph H of G now
yields A > ava(Gs) ≥ ava(H) ≥ A, which is the desired contradiction. �

Applying Ramsey’s Theorem to each of the graphs Ms, s ≥ 1, we find that

R

(︄
ω(Ms) + 1,

(︄
A

2

)︄)︄
> v(Ms) = ν(Gs)→∞,
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where for any r, b ∈ N, r, b ≥ 1, R(r, b) denotes the well-known Ramsey number. Therefore,
the size ω(Ms) of a maximum clique in Ms tends to infinity for s → ∞. For each s ≥ 1,
consider a clique Ws in Ms of maximum size and let G′

s be the subgraph of Gs induced by
the vertices contained in the cycles corresponding to the vertices in Ws. Clearly, the sub-
collection C′

s of Cs corresponding to Ws defines a decomposition of G′
s in induced vertex-

disjoint cycles of size |C′
s| = ω(Ws)→∞ in G′

s. Moreover, we have ava(G′
s) ≤ ava(Gs) < A

and dgn(G′
s) ≤ dgn(Gs) ≤ d for all s ∈ N. In the following, we will continue working with

the sequence (G′
s)∞

s=1 of simple graphs.
For a fixed s ≥ 1 consider the graph G′

s with the cycle-decomposition C′
s = {C1, . . . , Ck}.

By the definition of C′
s, for every pair Cj , Cl of cycles, there is an edge in G′

s with endpoints
in V (Cj) and V (Cl). Let us select and fix one such edge ejl ∈ E(G′

s) for every {j, l} ∈
(︁[k]

2
)︁
.

Claim 2. There are less than R := 2A cycles C ∈ C′
s with |C| ≥ R.

Proof. Assume towards a contradiction that there were at least R cycles in C′
s with at

least R vertices each, say C1, . . . , CR. For each i ∈ [R], we can find a vertex vi ∈ V (Ci)
which is not incident to any of the edges {ejl|j, l ∈ [R]}. Let X :=

⋃︁R
i=1 (V (Ci) \ {vi}) and

consider the induced subgraph G′
s[X]. For every i, let Pi := Ci − vi. P1, . . . , PR defines

a vertex-partition of G′
s[X] into induced paths. Let MX be the model (multi-)graph on

R vertices obtained from G′
s[X] by identifying each of P1, . . . , PR into a single vertex. By

Corollary 11.12 and Lemma 11.16, we know that ava(MX) ≤ ava(G′
s[X]) ≤ ava(G′

s) < A.
Because all the edges ejl, 1 ≤ j < l ≤ R still exist in G′

s[X], we know that the vertices of
MX are mutually adjacent. It now follows directly from the monotonicity of the vertex-
arboricity va under taking subgraphs that ava(MX) ≥ va(MX) ≥ va(KR) = ⌈R

2 ⌉ = A.
This contradiction shows that our assumption was wrong, concluding the proof. �

For each s ≥ 1, consider the subset CR
s ⊆ C′

s of cycles of length less than R, and
consider the induced subgraph Hs of G′

s with vertex set
⋃︁

C∈CR
s

V (C). For each s ≥ 1,
define ks := |CR

s |, then ks > |C′
s| −R. By the above, we have ks →∞ for s→∞. Because

G′
s is d-degenerate, so is Hs, and therefore we have e(Hs) ≤ dns, where ns is the number

of vertices of Hs. By definition, we have ns =
∑︁

C∈CR
s
|C| ≤ Rks. On the other hand, all

the distinct edges ejl with Cj , Cl ∈ CR
s are contained in E(Hs), and so we get the estimate(︄

ks

2

)︄
≤ e(Hs) ≤ dRks

for all s ≥ 1. This clearly contradicts the fact that ks can grow arbitrarily large. This
concludes the proof of the theorem.

The given examples for digraphs and multi-graphs with small complete coloring param-
eters but without small feedback vertex sets are based on very dense (di)graphs. However,
for many investigations, minor-closed classes of graphs such as planar graphs, which are
rather sparse, are also important. In the following we give the proof of Theorem 11.3 and
thereby show that for orientations of graphs in a fixed non-trivial minor-closed class, also
for digraphs it is possible to establish an upper bound on the feedback vertex set in terms
of the adichromatic number. Moreover, we give more explicit bounds for undirected graphs
within such a class. To prove the first part of Theorem 11.3, we need a directed version
of Theorem 11.21. This result is not trivial at all. Before its resolution in [RRST96], it
was known as Younger’s Conjecture. No good (polynomial) upper bounds on the function
g are known as of today. In this case, ν(D) denotes the maximal size of a collection of
pairwise vertex-disjoint directed cycles in D.



11.3. UPPER BOUNDS FOR MINIMUM FEEDBACK VERTEX SETS 241

Theorem 11.22 ([RRST96]). There exists a function g : N→ N such that for any digraph
D, we have

τ(D) ≤ g(ν(D)).

Proof of Theorem 11.3. We start by noting that the graphs in G have bounded chromatic
number: Since G is non-trivial, there is a graph H /∈ G which is a forbidden minor for all
members of G. Therefore, all graphs in G are Kv(H)-minor free. By a classical result of
Mader ([Mad67]), these graphs have bounded degeneracy and therefore bounded chromatic
number. In the following, let d > 0 denote a constant such that χ(G) ≤ d for all G ∈ G.
It follows from the estimate v(G)

α(G) ≤ χ(G) that α(G) ≥ 1
dn for all G ∈ G on n vertices.

1. Let g : N → N be the function from Theorem 11.22, and let D be a given digraph
whose simplified underlying graph is in G. Let ν(D) = k and let {C1, . . . , Ck} be
a largest collection of vertex-disjoint and w.l.o.g induced directed cycles. Consider
the simple model-graph M which has k vertices, one for each cycle Ci, and an edge
between two vertices if the corresponding cycles are connected by an edge. Because
the cycles Ci are all induced, M is obtained from the simplified underlying graph
of D by first deleting all the vertices not on any of the cycles and then contracting
the cycles into vertices. These are graph minor operations, and therefore we have
M ∈ G. We conclude that α(M) ≥ 1

dk. Let I ⊆ V (M) be an independent set of
size |I| ≥ 1

dk in M and consider the subdigraph D′ of D induced by the union of
the vertex sets of cycles Ci ∈ C corresponding to vertices in I. We know that D′ is
the disjoint union of at least 1

dk directed cycles. Therefore, if 1
dk ≥

(︁adi(D′)+1
2

)︁
, then

D′ contains an induced subdigraph which is the disjoint union of
(︁adi(D′)+1

2
)︁

directed
cycles, and then part 4 of Proposition 11.7 and Corollary 11.12 would imply that
adi(D′) ≥ adi(D′) + 1, a contradiction. Hence, 1

dk <
(︁adi(D′)+1

2
)︁
≤
(︁adi(D)+1

2
)︁
. We

finally conclude that (w.l.o.g. assuming g to be monotone)

τ(D) ≤ g(ν(D)) ≤ g

(︄
d

(︄
adi(D) + 1

2

)︄)︄
=: f(adi(D)),

which proves the claim.

2. The proof works completely analogous to the directed case, and we obtain the esti-
mate

ν(G) < d

(︄
ava(G) + 1

2

)︄
≤ d · ava(G)2.

Finally, this implies using Theorem 11.21 that

τ(G) ≤ c · (ν(G) + 1) log(ν(G) + 1) ≤ C · ava(G)2 log(ava(G)),

where C > 0 is a constant which only depends on G.

11.3.1 Interplay of ava and adi

A consequence of Theorem 11.2 is the following one-sided relationship between the adichro-
matic number of an oriented digraph and the a-vertex arboricity of its underlying graph.
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Corollary 11.23. There exists a function h1 : N→ N such that for any oriented digraph
D with underlying graph G, we have

adi(D) ≤ h1(ava(G)).

Proof. This follows directly from Proposition 11.5 (applied to D) and Theorem 11.2, as
we have

adi(D) ≤ τ(D) + 1 ≤ τ(G) + 1 ≤ f(ava(G)) + 1.

The above estimate cannot be reversed when looking at a fixed digraph (consider
transitive tournaments). However, if a graph has large a-vertex arboricity, then it is
possible to find an orientation of G with large adichromatic number.

Proposition 11.24. There is a function h2 : N→ N such that

ava(G) ≤ h2

(︄
max

D∈O(G)
adi(D)

)︄

for every graph G, where O(G) denotes the set of digraphs whose underlying graph is G.

Proof. Because ava(G) is bounded from above in terms of τ(G), which again (by Theo-
rem 11.21) is bounded from above by a function of ν(G), it suffices to prove that graphs
with a sufficiently large cycle packing have an orientation with large adichromatic number.
So let k ∈ N be arbitrary and let G be a graph with ν(G) ≥

(︁k
2
)︁
. Let us consider a cycle

packing C = C1, . . . , C(k
2) of induced cycles. Let D be an orientation of G such that:

• all cycles in C are made directed,

• all edges with endpoints in V (Ci) and V (Cj) are oriented towards Cj if i < j,

• all edges in G with one endpoint on a cycle Ci and the other outside the cycle-packing
are directed outwards, and

• D −
⋃︁

C∈C V (C) is oriented acyclically.

Then every edge of G not contained in one of the cycles Ci is contained in a directed cut
in D, and we may conclude from Observation 11.13 that adi(D) = adi(D′), where D′ is
obtained from D by deleting all arcs not contained in any of the cycles in C. As D′ is
the disjoint union of

(︁k
2
)︁

directed cycles and possibly some isolated vertices (which do not
affect the adichromatic number), we conclude from Proposition 11.7 that adi(D′) ≥ k. As
k was arbitrary, this proves the claim.

11.4 Conclusion
In this final section we generalize some of the results established in the previous sections for
ava and adi to a more general class of complete coloring parameters defined by forbidden
monochromatic patterns. Moreover, we take a more general point of view by relating our
investigations to the Erdős-Pósa property and introducing a novel notion which we call
τ -boundedness.

Many of the results obtained in this chapter fit into the following more general setting.
Let H be a class of guest (di)graphs, then for a host (di)graph define τH(G) to be the size
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of a minimum F ⊆ V such that G−F is H-free, that is, it contains no element of H as an
induced sub(di)graph. Moreover, denote by νH(G) the size of a largest packing of elements
of H as induced sub(di)graphs in G. While clearly νH(G) ≤ τH(G) for all (di)graphs G,
recall from Chapter 2 that a guest class H has the Erdős-Pósa property within a class of
host (di)graphs G if there is a function f such that τH(G) ≤ f(νH(G)) for all G ∈ G. Define
an H-coloring of G to be a partition of V (G) into sets that induce H-free (di)graphs. Call
an H-coloring complete if the union of any two color classes contains a member of H as
induced sub(di)graph. The H-chromatic number χH(G) and the H-achromatic number
ΨH(G) are the smallest (the largest, respectively) number of colors that can be used in
a complete H-coloring of G. With a completely analogous proof to Theorem 11.1 we get
the following more general interpolation theorem.

Theorem 11.25. Let G be a (di)graph, H a class of (di)graphs and let ℓ ∈ N. Then there
exists a complete H-coloring of G using exactly ℓ colors if and only if χH(G) ≤ ℓ ≤ ΨH(G).

More importantly, the arguments of Proposition 11.5 go through to show:

Proposition 11.26. For any (di)graph G and any class H of (di)graphs, we have

ΨH(G) ≤ τH(G) + 1.

Conversely, we say that a host class G is τH-bounded if there is a function f such that
τH(G) ≤ f(ΨH(G)) for all G ∈ G. By pairing the parts of a maximum complete H-coloring
one obtains a set of ⌊ΨH(G)

2 ⌋ disjoint members of H in G. Thus, ΨH(G) ≤ 2νH(G) + 1 and
we get that τH-boundedness is a strengthening of the Erdős-Pósa property:

Proposition 11.27. Let G and H be classes of (di)graphs. If G is τH-bounded, then H
has the Erdős-Pósa property within G.

A classical result for the achromatic number states that the size of a minimum vertex
cover is bounded in terms of the achromatic number of a graph ([FHHM86]), i.e, the class
G of all graphs is τK2-bounded. Theorem 11.2 shows that the class of simple graphs is
also τC-bounded with respect to the class C of cycles, thus in a sense strengthening the
classical Erdős-Pósa result [EP65]. Furthermore, Theorem 11.3 can be generalized in a
straight-forward way to yield:

Theorem 11.28. Let G be (the orientations of) a non-trivial minor-closed class of simple
undirected graphs, and let H be a class of weakly connected (di)graphs. If H has the
Erdős-Pósa property within G, then G is τH-bounded.

On the other hand, while the class C of all directed cycles has the Erdős-Pósa property
within the class G⃗ of all digraphs, see [RRST96], our construction in Proposition 11.18
shows that Cg, the class of digraphs with directed girth at least g, is not τC⃗ -bounded,
for any fixed g ≥ 2. Hence, the strengthening of the Erdős-Pósa property claimed in
Proposition 11.27 is strict and leaves open finding good lower bounds for the adichromatic
number. In general, we believe that τ -boundedness deserves further investigation in par-
ticular with respect to the numerous Erdős-Pósa properties that have been studied, see
e.g. [Ray] for a dynamic listing of Erdős-Pósa-type results from the literature.
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Chapter 12

Majority Colorings

12.1 Introduction

The graphs and digraphs considered in this chapter are simple.

A majority coloring of a digraph D with k colors is an assignment c : V (D) →
{1, . . . , k} such that for every v ∈ V (D), we have c(w) = c(v) for at most half of all the
out-neighbors w ∈ N+(v). This notion of coloring was first introduced and investigated by
Kreutzer, Oum, Seymour, van der Zypen, and Wood [KOS+17] and was inspired by a the-
oretical problem related to neural networks raised in 2016 by van der Zypen [vdZ19]. Sim-
ilar questions concerning splittings of digraphs with degree restrictions have been widely
studied in the literature, see for instance [Alo96, Alo06, NBJB20].

The main result obtained by Kreutzer et al. shows that every digraph has a majority
4-coloring. Their elegant argument is based on the observation that every acyclic digraph
can be majority 2-colored. The relevant property of an acyclic digraph is that there is an
ordering of its vertices, in which every vertex is preceded by its complete out-neighborhood.
Then coloring vertices along this ordering with two colors such that each vertex is assigned
the color that appears least frequently in the (already colored) out-neighborhood will
produce a majority 2-coloring.

It is easy to construct digraphs which require three colors for a majority coloring.
The canonical examples are the odd directed cycles C⃗2k+1, k ≥ 1, which are not majority
2-colorable since for digraphs with maximum out-degree 1 majority-coloring and proper
graph coloring of the underlying graph are equivalent. As of today, however, no digraphs
are known that require the use of four colors. Kreutzer et al. claimed that there are none.

Conjecture 12.1 ([KOS+17]). Every digraph is majority 3-colorable.

Kreutzer et al. [KOS+17] also provide ample evidence for their conjecture by estab-
lishing that it holds for “most” digraphs. They show, using the Lovász Local Lemma, that
the uniform random 3-coloring is a majority 3-coloring with non-zero probability if certain
local density conditions hold, namely if

• δ+(D) > 72 log(3v(D)), or

• δ+(D) ≥ 1200 and ∆−(D) ≤ exp(δ+(D)/72)
12δ+(D) .

In [KOS+17] it is also mentioned at the end that a more careful analysis of the Local
Lemma approach works for r-regular digraphs provided r ≥ 144. Subsequently, Girão,
Kittipassorn, and Popielarz [GKP17] studied tournaments in particular, and showed, also
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using the probabilistic method, that every tournament with minimum out-degree at least
55 is majority 3-colorable.

These are all the results I am aware of about Conjecture 12.1. All the proofs use the
Local Lemma for a random coloring and hence require some upper bound on the maximum
in-degree in terms of the minimum out-degree (in order to control the number of “bad”
events that are adjacent to any fixed bad event in some dependency graph of the events).
As it is the case in many related open problems on splitting/coloring digraphs with large
minimum out-degree [Alo06, YBWW18, AL89, BHL+17], large maximum in-degrees seem
to be outside the realm of any such probabilistic approach and it looks like it constitutes
the main difficulty of the problem. This is also illustrated by the fact that it was not even
known whether planar digraphs are majority 3-colorable.

In this chapter our main motivation is to complement the existing results on digraphs
with balanced in- and out-degrees, and provide approaches for natural, broad families of
digraphs, without any restrictions of balancedness or on the maximum in-degree.

12.1.1 Our Results

Majority 3-Colorability

Since a proper coloring of the undirected graph underlying a digraph is also a majority
coloring, Conjecture 12.1 is immediately true for digraphs with chromatic number at most
three. For 4-chromatic digraphs this is already not obvious. Our first result resolves the
conjecture for digraphs with bounded chromatic number, including planar digraphs (in
the following we denote χ(D) := χ(U(D)) for every digraph D).

Theorem 12.1. Let D be a digraph such that χ(D) ≤ 6. Then D is majority 3-colorable.

The most commonly used digraph coloring concept capturing the orientations of arcs
is the dichromatic number, which we have investigated thoroughly in Part II of this thesis.

In the introduction above we mentioned how to give a majority 2-coloring of acyclic
digraphs, i.e., digraphs with dichromatic number 1. In our second main result we prove
Conjecture 12.1 for digraphs with dichromatic number at most three.

Theorem 12.2. Let D be a digraph such that χ⃗(D) ≤ 3. Then D is majority 3-colorable.

The Proofs and Majority List Coloring

For our proofs it will be crucial to work in a more general framework, involving the list
coloring version of majority coloring. This allows us to formulate appropriately loaded
inductive statements from which our theorems follow.

The notion of majority choosability of digraphs was first proposed in [KOS+17]. For
an assignment L(·) of finite sets L(v) of colors to each vertex v ∈ V (D), we call a mapping
f : V (D) →

⋃︁
v∈v(D) L(v) an L-coloring if f(v) ∈ L(v) for every v ∈ V (D). When

L(v) = [k] for every v ∈ V (D), then L-coloring and k-coloring coincide. We call a digraph
majority k-choosable if for every k-list assignment (i.e., assignment L with |L(v)| = k
for every v ∈ V (D)) there is a majority L-coloring. Hence, majority k-choosability is a
stronger property than majority k-colorability.

It was noted in [KOS+17] that all the results about dense digraphs using the Local
Lemma remain valid for majority 3-choosability (instead of majority 3-colorability). More-
over, Anholcer, Bosek, and Grytczuk [ABG17] gave a beautiful proof to show that every
digraph is majority 4-choosable (not only majority 4-colorable).

The following theorem is at the heart of our proofs and is interesting in its own right.
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Theorem 12.3. If there is a 2-list assignment L(·) of D such that there is no odd directed
cycle in D all whose vertices are assigned the same list, then D has a majority L-coloring.

This statement has several nice consequences, some immediate, some less so. We collect
these in the next subsection.

Consequences for majority 3- and 2-colorings

We start by stating choosability analogues of our first two theorems. The analogue of
Theorem 12.1 connects the choosability of the underlying graph to majority choosability.

Theorem 12.4. Let D be a digraph whose underlying undirected graph is 6-choosable.
Then D is majority 3-choosable. In particular any digraph with a 5-degenerate underlying
graph is majority 3-choosable.

Recall from Chapter 8 that the list dichromatic number χ⃗ℓ(D) of a digraph D is defined
as the minimum integer k ≥ 1 such that for any k-list assignment, we can choose colors
from the respective lists without producing monochromatic directed cycles. We have the
following analogue of Theorem 12.2 involving this parameter.

Theorem 12.5. Let D be a digraph with χ⃗ℓ(D) ≤ 3. Then D is majority 3-choosable.

The results of [KOS+17] and [GKP17] cited in the introduction indicate that the case
of r-regular digraphs for constant r constitute an important benchmark in the study of
Conjecture 12.1. Recall in particular that the Local Lemma approach works for r-regular
digraphs provided r ≥ 144. Next we obtain conditions at the other end of the local density
spectrum, which imply that r-regular digraphs are majority 3-colorable for r ≤ 4.

Note first the crucial non-monotonicity in the problem: even though we do not know
whether Conjecture 12.1 is true for r = 143, it does hold (quite easily) for r = 1 and
2. Indeed, a 1-regular digraph is the disjoint union of directed cycles, and hence we can
3-color it properly to obtain a majority-coloring. Then Conjecture 12.1 also follows for 2-
regular digraphs. Even more generally, the validity of the conjecture for any odd regularity
r − 1 implies it for the next even regularity r. This is the consequence of the fact1 that
for even r any r-regular digraph D contains a 1-regular spanning subdigraph F and any
majority 3-coloring of the (r − 1)-regular digraph D −A(F ) is also a majority coloring of
D. Most generally, if a digraph D′ is obtained from a digraph D by adding an arc (u, v)
whose tail has odd out-degree d+

D(u), then any majority coloring of D is also a majority
coloring of D′.

From our next result it follows that 3- and 4-regular digraphs are majority 3-choosable
and hence Conjecture 12.1 holds for them as well. We use the following notation: Given a
digraph D, we denote by ∆s(D) the maximum degree of the simple graph obtained from
U(D) by ignoring parallel edges.

Theorem 12.6. Each of the following conditions implies that D is majority 3-choosable:

• ∆+(D) ≤ 4,

• ∆s(D) ≤ 6,

• ∆(D) ≤ 7.
1To see this, consider the undirected bipartite graph obtained from D by splitting every vertex v into

two vertices v+, v− and adding an edge u+v− for every arc (u, v) ∈ A(D). Then this bipartite graph is
r-regular and hence has a perfect matching, which yields a 1-regular spanning subdigraph of D.
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An open question posed in [KOS+17] asked whether there is a characterization of
digraphs that have a majority 2-coloring (or a polynomial time algorithm to recognize
such digraphs). This was answered (most likely) in the negative by Bang-Jensen, Bessy,
Havet, and Yeo [BJBHY18] who showed that deciding whether a 3-out-regular digraph
is majority 2-colorable is NP-complete. With no hope for an efficient characterization of
majority 2-colorability, any simple sufficient condition comes in handy.

For a condition, it is natural to exclude odd directed cycles, as they are canonical
examples of graphs with no majority 2-coloring. It turns out that excluding them already
implies majority 2-choosability.

Theorem 12.7. Any digraph without odd directed cycles is majority 2-choosable.

Fractional Majority Colorings

The concept of fractional majority coloring emerges as the natural LP-relaxation of the
problem of majority coloring, much in the same way as the usual fractional colorings
of graphs. This notion was first introduced in [KOS+17]. The definition is somewhat
technical and we postpone it to Section 12.4. To appreciate our results here, it is sufficient
to keep in mind that the minimum total weight of a fractional majority coloring is at most
the majority chromatic number.

Kreutzer et al. [KOS+17] ask what is the smallest constant K such that every digraph
admits a fractional majority coloring with total weight at most K. This is yet another
direction to approach Conjecture 12.1 from. Proving that there is a fractional majority
coloring with total weight 3 for every digraph would certainly be an easier task. Here we
take the first step in this direction and show that the upper bound of 4, which follows
from the fact that every digraph is majority 4-colorable, can be slightly improved.

Theorem 12.8. Every digraph D admits a fractional majority coloring with total weight
at most 3.9602.

Our proof is the combination of an intricate probabilistic coloring with some deter-
ministic alteration.

In the second theorem of the section we show that digraphs with sufficiently large min-
imum out-degree have fractional majority colorings with total weight arbitrarily close to
2. This improves the corresponding result in [KOS+17] obtained using the Local Lemma,
as the upper bound on the maximum in-degree is not necessary here.

Theorem 12.9. There exists a constant C > 0 such that for every 0 < ε < 1 and every
digraph D with δ+(D) ≥ C(1/ε)2 ln(2/ε), there exists a fractional majority coloring of D
with total weight at most 2 + ε.

Structure of the chapter. In Section 12.2 we obtain Theorem 12.7 as a consequence of
a more general result (Theorem 12.3). This result is crucial for the proofs of Theorems 12.1,
12.2, 12.6, 12.4, 12.5, which are presented in Section 12.3. In Section 12.4 we treat
fractional majority colorings and prove Theorems 12.8 and 12.9. We conclude with final
remarks and some open problems in Section 12.5.
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12.2 Digraphs without Odd Directed Cycles
We have seen that acyclic digraphs as well as bipartite digraphs are majority 2-colorable.
We have also seen that odd directed cycles are canonical examples of digraphs having no
majority 2-coloring. It is therefore natural to try unifying these results and ask whether
every digraph without an odd directed cycle is majority 2-colorable. In this section, we
answer this question positively. We start with a simple observation:

Lemma 12.10. A digraph D contains no odd directed cycles if and only if all its strong
components are bipartite.

Proof. The sufficiency of this condition is obvious, as a directed cycle is always contained
in a single strong component. For the reverse direction, it suffices to observe that if D
is strongly connected and all directed cycles have even length, then D is bipartite. By
Lemma 5.10 from Chapter 5 applied to the totally cyclic2 oriented matroid M⃗(D), the
arc-set of every oriented cycle in D can be written as the symmetric difference of arc-sets
of directed cycles in D, all of which must have even size by assumption. Hence, every cycle
in D has even length and therefore D must indeed be bipartite, concluding the proof.

Proposition 12.11. Let D be a digraph which contains no odd directed cycles. Then D is
majority 2-colorable. Moreover, any given pre-coloring of the sinks of D can be extended
to a majority 2-coloring of D.

Proof. We prove the statement by induction on the number s ≥ 1 of strong components
of D. Suppose first that s = 1, i.e., D is strongly connected. Then by Lemma 12.10 D is
bipartite and therefore majority 2-colorable. Since D is either a single vertex or contains
no sinks, the claim follows.

Now let s ≥ 2 and suppose that the statement holds true for all digraphs with at most
s− 1 strong components. We now distinguish two cases: Either, D is an independent set
of s vertices, and therefore, the claim holds trivially true. If there exists at least one arc
in D, there has to be a strong component of D containing no sinks such that there are no
arcs entering the component. Let X be the vertex set of this component.

Now let a pre-coloring of the sinks of D with 1, 2 be given. By the choice of X, D−X
has the same set of sinks as D and s−1 strong components. By the inductive assumption,
there exists a majority 2-coloring c : V (D) \ X → {1, 2} of D − X which extends the
pre-coloring of the sinks. By Lemma 12.10, there exists a bipartition {A, B} of D[X].

For any subset W ⊆ X equipped with a vertex-coloring cW : V (D) \ W → {1, 2}
of D −W , any vertex x ∈ W , and any i ∈ {1, 2}, denote by d(cW , i, x) the number of
out-neighbors of x which lie in V (D) \W and have color i under cW .

We now claim that there exists a subset U ⊆ X and a {1, 2}-coloring cU of D − U
which extends c, such that

• Every vertex x ∈ V (D) \ U has at least 1
2d+(x) out-neighbors in V (D) \ U with a

color different from cU (x).

• Every vertex x ∈ U fulfills max{d(cU , 1, x), d(cU , 2, x)} < 1
2d+(x).

In order to find such a set, we apply the following procedure:
We keep track of a pair (W, cW ), consisting of a subset W ⊆ X and a vertex-coloring

cW : V (D) \W → {1, 2} extending c. As an invariant, we will keep the first of the two
2Since D is strongly connected, every arc of D is contained in a directed cycle. Hence, M⃗(D) is totally

cyclic.
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above properties, i.e. we ensure that every vertex x ∈ V (D) \ W has at least 1
2d+(x)

out-neighbors with a different color according to cW .
We initialize W := X, cW := c. It is clear that this assignment satifies the invariant

(since c is a majority coloring of D −X and since there are no arcs entering X).
As long as a vertex x0 ∈ W with max{d(cW , 1, x0), d(cW , 2, x0)} ≥ 1

2d+(x0) exists,
we choose such a vertex. We put W ′ := W \ {x0}, and define a coloring cW ′ of D −W ′

according to

cW ′(x) :=

⎧⎪⎪⎨⎪⎪⎩
cW (x), if x ̸= x0,

1, if x = x0, d(cW , 1, x0) < d(cW , 2, x0),
2, if x = x0, d(cW , 1, x0) ≥ d(cW , 2, x0).

It is easily verified that the coloring cW ′ also fulfils the invariant, since by definition x0
has at least max{d(cW , 1, x0), d(cW , 2, x0)} ≥ 1

2d+(x0) out-neighbors in D−W ′ of different
color. Furthermore, for every vertex x ∈W ′, the number of out-neighbors of different color
does not decrease by coloring x0.

Finally we update according to (W, cW ) := (W ′, cW ′).
In the moment the procedure terminates, we have found a subset U := W ⊆ X and a

{1, 2}-coloring cU of D−U extending c with the property that every vertex x ∈ V (D) \U

has at least d+(x)
2 out-neighbors with different color according to cU . Since the procedure

terminated, we furthermore have max{d(cU , 1, x), d(cU , 2, x)} < 1
2d+(x) for every vertex

x ∈ U . This shows that U satisfies both of the conditions stated above.
We now finally extend the coloring cU of V (D) \U to a {1, 2}-coloring of D by giving

color 1 to each vertex in A∩U and color 2 to every vertex in B∩U . This coloring extends
c and therefore the initial pre-coloring of the sinks, and is a majority coloring: By the
first of the two conditions, every vertex x ∈ V (D) \ U has at least d+(x)

2 out-neighbors
with a different color. For each vertex x ∈ U , since {A, B} is a bipartition of D[X], all
out-neighbors in U have a different color, and among the out-neighbors in D−X, at most
max{d(cU , 1, x), d(cU , 2, x)} < 1

2d+(x) can share its color. Therefore every vertex satifies
the condition for a majority-coloring, and this concludes the proof of the claim.

We are now ready for the proof of Theorem 12.3.

Proof of Theorem 12.3. We may assume w.l.o.g. that color lists of adjacent vertices always
intersect: Otherwise, we remove all edges between vertices with disjoint color lists to obtain
a digraph D′. Any majority-coloring of D′ with colors chosen from the lists will also be a
majority-coloring of D.

For a pair {a, b} of colors let us denote X{a,b} := {x ∈ V (D)|L(x) = {a, b}}. By
assumption D[X{a,b}] contains no odd directed cycles. Let D′

{a,b} be the digraph obtained
from D[X{a,b}] by adding all arcs (x, y) ∈ A(D) with x ∈ X{a,b} and y /∈ X{a,b} and their
endpoints. Since we only add sinks to D[X{a,b}], also D′

{a,b} contains no odd directed
cycles. For each vertex y ∈ N+(X{a,b}), there is a unique color p{a,b}(y) in L(y) ∩ {a, b}.
Pre-color the sinks of D′

{a,b} in such a way that every vertex y ∈ N+(X{a,b}) receives
color p{a,b}(y). By Proposition 12.11 we can now find a majority-coloring c{a,b} of D′

{a,b}
extending this pre-coloring with colors a and b.

Now define a coloring c of all vertices in D by setting c(x) := c{a,b}(x) if L(x) = {a, b}.
Clearly, we have c(x) ∈ L(x) for all x ∈ V (D). We claim that c is a majority-coloring of
D. Indeed, for any vertex x ∈ V (D), if L(x) = {a, b}, then we have N+(x) = N+

D′{a,b}
(x),

and {y ∈ N+(x) | c(y) = c(x)} ⊆ {y ∈ N+
D′{a,b}

(x) | c{a,b}(x) = c{a,b}(y)}. Hence, at most
half of the out-neighbors of x share its color, and the claim follows.
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Theorem 12.7 is now obtained from Theorem 12.3 as a direct consequence.

12.3 Majority 3-Colorings of Sparse Digraphs
As a consequence of Theorem 12.3, we obtain our main result:

Theorem 12.12. Let D be a digraph. Suppose there is a partition {X1, X2, X3} of the
vertex set such that for every i ∈ {1, 2, 3}, D[Xi] contains no odd directed cycles. Then D
is majority 3-colorable.

Proof. We assign lists of size two to the vertices of D, namely, we assign the list {2, 3} to
all vertices in X1, the list {1, 3} to all vertices in X2, and the list {1, 2} to all vertices in
X3. Because D[Xi], i = 1, 2, 3 contains no odd directed cycle, we can apply Theorem 12.3
to conclude that there exists a majority-coloring of D which only uses the colors 1, 2 and 3.
This proves the claim.

From this we now directly derive Theorems 12.1 and 12.2.

Proof of Theorem 12.1. If χ(D) ≤ 6, then D admits a partition Y1, . . . , Y6 into inde-
pendent sets. Using the partition {Y1 ∪ Y2, Y3 ∪ Y4, Y5 ∪ Y6} of the vertex set to apply
Theorem 12.12 now shows that D is indeed majority 3-colorable.

Proof of Theorem 12.2. If χ⃗(D) ≤ 3, then there exists a partition {X1, X2, X3} of the
vertex set such that D[Xi] contains no directed cycles, for i = 1, 2, 3. The claim now
follows by Theorem 12.12.

The fact that Theorem 12.3 deals with an assignment of lists can be further exploited
to show analogues of Theorem 12.12, Theorems 12.1 and 12.2 for list colorings.

For this purpose we need the following notion: Call a digraph D OD-3-choosable if for
any assignment of color lists L(x), x ∈ V (D) of size 3 to the vertices, there exists a choice
function c (i.e. c(x) ∈ L(x) for all x ∈ V (D)) such that no odd directed cycle in (D, c) is
monochromatic.

Theorem 12.13. If a digraph is OD-3-choosable, then it is also majority 3-choosable.

Proof. Let L(v) for all v ∈ V (D) be a given color list of size three. We have to show
that there is a majority-coloring c of D such that c(v) ∈ L(v) for all v ∈ V (D). For
every v ∈ V (D), we let L∗(v) := {{C1, C2}|C1 ̸= C2 ∈ L(v)} contain all three unordered
color-pairs in L(v). Since D is OD-3-choosable, there exists a choice function c∗ on V (D)
such that c∗(v) ∈ L∗(v) for each vertex v ∈ V (D) is a subset of L(v) of size two and such
that there exists no odd directed cycle in D which is monochromatic with respect to c∗. If
we now consider c∗(v), v ∈ V (D) as a 2-list assignment of D, we can apply Theorem 12.3
to conclude that there is a majority-coloring c of D such that c(v) ∈ c∗(v) ⊆ L(v) for every
vertex v ∈ V (D). As L(·) was arbitrary, we conclude that D is majority 3-choosable.

We are now ready to prove Theorems 12.4 and 12.5.

Proof of Theorem 12.4. We show that D is OD-3-choosable, the claim then follows by
Theorem 12.13. Let L(v) for each vertex v ∈ V (D) be an assigned list of three colors.
For each color C used in one of the lists, let C ′ be a distinct copy of this color. We now
consider the assignment L6(·) of lists of size 6 to the vertices of D, where for each vertex
v ∈ V (D), L6(v) := {C1, C ′

1, C2, C ′
2, C3, C ′

3} if C1, C2, C3 denote the colors contained in
L(v). Because the underlying graph of D is 6-choosable, there is a proper coloring c6 of D
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such that c6(v) ∈ L6(v) for all v ∈ V (D). Now consider the coloring c of D obtained from c6
by identifying each copy C ′ of an original color C with C again. We then have c(v) ∈ L(v)
for every v ∈ V (D). Since c6 was a proper coloring of the undirected underlying graph of
D, each color class with respect to c induces a bipartite subdigraph of D, and hence there
are no monochromatic odd directed cycles in (D, c). Hence, D is OD-3-choosable.

Proof of Theorem 12.5. This follows directly since any digraph with χ⃗ℓ(D) ≤ 3 is clearly
OD-3-choosable.

The rest of this section is devoted to proving Theorem 12.6. The proof uses the
following Lemma, which in turn uses Theorems 12.4 and 12.5.

Lemma 12.14. Let D be a digraph such that min{d+(x), d−(x)+1} ≤ 3 for all x ∈ V (D).
Then D is OD-3-choosable.

Proof. Suppose the claim was false. Let us consider a counterexample D minimizing
v(D)+a(D). We have v(D) ≥ 4, D is connected and we know that every proper subdigraph
of D must be OD-3-choosable.

We first consider the case that there is a vertex v with d−(v) ≤ 2. Since D − v is
OD-3-choosable, given any assignment L(v), v ∈ V (D) of lists of size at least 3 to the
vertices, we can choose colors c(w) ∈ L(w) from the lists for every w ∈ V (D) \ {v} such
that in D − v, there exists no monochromatic odd directed cycle. Now assign to v a
color c(v) ∈ L(v) \ {c(w) | w ∈ N−(v)}. We claim that c is a coloring of D without
monochromatic odd directed cycles. In fact, such a cycle would have to pass v, however
no edge entering v is monochromatic. Therefore D is OD-3-choosable, a contradiction.

Hence we know for every x ∈ V (D) that d−(x) ≥ 3. Since min{d+(x), d−(x) + 1} ≤ 3,
we also must have d+(x) ≤ 3. We conclude

3v(D) ≤
∑︂

v∈V (D)
d−(x) = a(D) =

∑︂
v∈V (D)

d+(x) ≤ 3v(D)

and thus we have d+(x) = d−(x) = 3 for all x ∈ V (D). Consequently, the underlying
simple graph U(D) has maximum degree ∆(U(D)) ≤ 6. If U(D) is 6-choosable, then it
follows as in the proof of Theorem 12.4 that D is OD-3-choosable, a contradiction.

Therefore, by the list coloring version of Brooks’ Theorem [Viz76], we must have
U(D) = K7. Since D is 3-out- and 3-in-regular, it follows that D is a tournament on 7
vertices. However, every tournament on 7 vertices has list dichromatic number at most 3
and is therefore OD-3-choosable according to Theorem 12.5. This can be seen using two
results from [BHL18]. Clearly, we have χ⃗(D) ≤ 3. If χ⃗(D) = 3, then we have v(D) =
7 ≤ 2χ⃗(D) + 1, and by Theorem 2.2 in [BHL18] we conclude that χ⃗ℓ(D) = χ⃗(D) = 3.
Otherwise, we have χ⃗(D) ≤ 2. In this case, we can apply Theorem 3.3 in [BHL18] to
conclude χ⃗ℓ(D) ≤ 2 log(7) < 4. Therefore we have χ⃗ℓ(D) ≤ 3 in each case.

Finally, since we obtained that D is OD-3-choosable in each case, the initial assumption
was wrong, which concludes the proof by contradiction.

Corollary 12.15. Let D be a digraph with min{d+(x), d−(x)+2} ≤ 4 for every x ∈ V (D).
Then D is majority 3-choosable.

Proof. For a proof by contradiction, suppose the claim was false and consider a counterex-
ample D minimizing the number of edges.

Consider first the case that there is a v ∈ V (D) with d+(v) = 4. Let e be an arc leaving
v and put D′ := D−e. By the minimality of D, D′ is majority 3-choosable. We now claim
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that any majority-coloring of D′ also defines a majority-coloring of D. Clearly, such a
coloring satisfies the condition for a majority-coloring at any vertex distinct from v. Since
v has out-degree 3 in D′, it has at most one out-neighbor in D′ of the same color. Thus
there are at most two out-neighbors of v in D which share its color, and so the majority
condition is fulfilled at v. We conclude that also D must be majority 3-choosable, which
gives the desired contradiction.

Now for the second case, assume that no vertex has out-degree 4. This means that
for every x ∈ V (D), we either have d+(x) ≤ 3 or d+(x) ≥ 5 and therefore d−(x) ≤ 2.
We can therefore apply Lemma 12.14 to D, which shows that D is OD-3-choosable. From
Theorem 12.13 we get that D is majority 3-choosable. This again is a contradiction to D
being a counterexample to the claim.

Therefore the initial assumption was wrong, and this concludes the proof.

Proof of Theorem 12.6. If ∆+(D) ≤ 4 or ∆(D) ≤ 7, then the claim follows by applying
Corollary 12.15. If ∆(U(D)) ≤ 6, then by the list coloring version of Brook’s Theorem
either U(D) is 6-choosable, and then the claim follows from Theorem 12.4, or U(D) = K7.

Now let L(v1), . . . , L(v7) be lists of size three assigned to the vertices {v1, . . . , v7} of D.
We first consider the case that all lists are equal, i.e., show that D is majority 3-colorable.

If there exists a vertex v ∈ V (D) which is contained in at most 3 digons, then there
are vertices u1 ̸= u2 ∈ V (D) \ {v} such that u1, u2, v do not form a directed triangle.
Therefore, any partition {X1, X2, X3} of V (D) where X1 = {v, u1, u2} and |X2| = |X3|
shows, by Theorem 12.12, that D is majority 3-colorable. Otherwise, every vertex in D is
contained in at least 4 digons and thus has out-degree at least 4. Now any 3-coloring of
D with color classes of sizes 2, 2, 3 defines a majority-coloring of D.

Now suppose that not all lists are equal. In this case we can choose for each vertex
vi a sublist L2(vi) ⊆ L(vi) of size two such that no three vertices are assigned the same
sublist (minimize the number of edges whose ends are assigned the same sublist). By
Theorem 12.3 we obtain a majority-coloring c of D where c(vi) ∈ L2(vi) ⊆ L(vi) for every
i ∈ [7]. Hence, D is majority 3-choosable in each case, which concludes the proof.

12.4 Fractional Majority Colorings

Another concept introduced in [KOS+17] is that of a fractional majority coloring. Frac-
tional majority colorings represent a linear relaxation of majority colorings, in the same
way that the well-known fractional chromatic number (which we well discuss in detail in
the next chapter) forms a linear relaxation of the chromatic number.

Given a subset S ⊆ V (D), a vertex v is popular in S if v ∈ S and more than half of its
out-neighbors are in S. A subset S ⊆ V (D) is stable if it contains no popular vertices. Let
S(D) be the set of all stable sets of D, and S(D, v) the set of all stable sets containing v.

A fractional majority coloring is a function that assigns a weight wT ≥ 0 to every
set T ∈ S(D), satisfying

∑︁
T ∈S(D,v) wT ≥ 1 for every v ∈ V (D). The total weight of a

fractional majority coloring is simply
∑︁

T ∈S(D) wT .
Kreutzer et al. asked for the minimum constant K such that every digraph admits a

fractional majority coloring with total weight at most K.
We will show two results related to this question, namely Theorem 12.8 and Theo-

rem 12.9. The proof of these two theorems will be based on the dual of the linear program
defined by the restrictions on a fractional majority coloring:
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Observation 12.16. For a digraph D, the minimum possible total weight of a fractional
majority coloring equals the maximum total weight

∑︁
v∈V (D) wv in a non-negative weight

assignment of V (D) in which every stable set T satisfies
∑︁

v∈T wv ≤ 1.

The main idea of the proof of both theorems is that, given any choice of weights on
V (D), we can construct a stable set in which the weight is at least a given fraction of the
total weight, using the probabilistic method.

Lemma 12.17. Let D be a digraph and let 0 < p < 1. Suppose that one can take a
random subset X ⊆ V (D) with the property that, for every v ∈ V (D), the probability that
v is in X but not popular in X is at least p. Then D admits a fractional majority coloring
with total weight at most 1

p .

Proof. Suppose that D is a counterexample to our statement, and we will reach a contra-
diction. By Observation 12.16, we can assign weights to V (D) so that the total weight is
w > 1

p , and every stable set in D has a sum of weights at most one. Let Y be the set of
popular vertices in X. By linearity of expectation, the expected total weight of X \ Y is
at least pw > 1.

Take an instance of X\Y with weight greater than 1. Every vertex in X\Y has at least
half of its out-neighbors outside of X, which implies that it is not popular in X \Y . Hence
X \ Y is stable in D and has total weight greater than 1, producing a contradiction.

The proof of Theorem 12.9 is a straightforward application of this lemma:

Proof of Theorem 12.9. Let N be a large enough positive integer. Let D be a digraph
with δ+(D) ≥ N . Set p = 1

2 −
√︂

log N
N . Let X be a random subset of V (D) in which every

element is included independently with probability p. By Hoeffding’s inequality, for any
vertex v the probability that at least half of its out-neighbors are in X is at most

Pr
(︃
|X ∩N+(v)| ≥ 1

2d+(v)
)︃
≤ e−2( 1

2 −p)2
d+(v) ≤ e−2 log N = N−2

Setting q = N−2, from Lemma 12.17 we find a fractional majority coloring of total
weight at most 1

p−q = 2 + O

(︃√︂
log N

N

)︃
. For a large enough absolute constant C > 0, this

implies that 1
p−q < 2 + ε whenever N > C

(︂
1
ε

)︂2
ln
(︂

2
ε

)︂
.

For Theorem 12.8, we need to be more careful. Consider again the set X containing
each vertex independently with probability p, where p is slightly lower than 1

2 . If the
out-degree of v is not 1, one can show that the probability that v is popular in X is
upper-bounded by a constant, strictly smaller than p − 1

4 . However, if v has out-degree
1, the probability that v is popular in X is p2 > p− 1

4 . For this reason, the vertices with
out-degree 1 deserve extra consideration.

Observe that, in the graph induced by the vertices of out-degree 1, all cycles are
directed, pairwise disjoint and act as sink components. Consequently, removing one vertex
from each directed cycle produces an acyclic digraph, where the vertices can be given a
topological ordering in which every arc goes from a larger vertex to a smaller one.

Proof of Theorem 12.8. Set p1 = 0.4594 and p2 = 0.4503. Assign independently to each
vertex v a random indicating variable Xv, which takes the value 1 with probability p1 if
d+(v) = 1 and with probability p2 otherwise. Now construct a random set X as follows:

• Add to X all vertices v with d+(v) ̸= 1 and Xv = 1.
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• For every cycle C formed by vertices with d+(v) = 1 and Xv = 1, select a vertex
v ∈ C uniformly at random and set Xv = 0.

• Take an ordering of the vertices v with d+(v) = 1 and Xv = 1, in which if we have
an arc (v, w) then v comes after w (this is possible because these vertices form an
acyclic digraph). Following this order, add v to X if its out-neighbor is not in X.

We will show that, for every vertex v, the probability that v is in X but not popular
in X is at least 1

4 + ε, for a fixed value of ε > 0. Suppose first that d+(v) = 1. Note that
if v ∈ X, then the unique out-neighbor of v is not in X and hence v is not popular in X.
If we draw the vertices with out-degree 1 as red boxes and those with other out-degrees
as blue circles, then the successive out-neighborhoods of v must have one of these forms:

v v

v

v

v

v

Case 1 Case 2 Case 3

Case 4 Case 5

Case 6

Figure 12.1: The six possible out-neighborhoods of a red vertex. The black vertex at the end of
the path in Case 4 can be either red or blue.

We denote v = v0, and vi+1 as the out-neighbor of vi, if it is unique. We go through
each case and give a lower bound on the probability that v ∈ X and v is not popular.

• If v is in Case 1, then whenever Xv = 1 and Xv1 = 0 we have v ∈ X. This happens
with probability p1(1− p2).

• If v is in Case 2, then whenever Xv = 1 and Xv1 = 0, or whenever Xv, Xv1 and Xv2

all equal 1, we have v ∈ X. This happens with probability p1(1− p1) + p2
1p2.

• If v is in Case 3, then whenever Xv = 1 and Xv1 = 0, or if Xv and Xv1 initially equal
1 and Xv1 is selected to be modified (with respect to the cycle v, v1), then we have
v ∈ X. This happens with probability at least p1(1− p1) + 1

2p2
1.

• If v is in Case 4, then whenever Xv = 1 and Xv1 = 0, or whenever Xv = 1, Xv1 = 1,
Xv2 = 1 and Xv3 = 0 we have v ∈ X. This happens with probability at least
p1(1− p1) + p3

1(1− p1).

• If v is in Case 5, if Xv = 1 and Xv1 = 0, or if Xv, Xv1 and Xv2 all initially equal 1
and Xv1 is selected to be modified (with respect to the cycle v1, v2), then we have
v ∈ X. This happens with probability at least p1(1− p1) + 1

2p3
1.

• If v is in Case 6, if Xv = 1 and Xv1 = 0, or if Xv, Xv1 and Xv2 all initially equal 1
and Xv1 is selected to be modified (with respect to the cycle v, v1, v2), then we have
v ∈ X. This happens with probability p1(1− p1) + 1

3p3
1.
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Suppose now that d+(v) ̸= 1. The probability that v ∈ X is p2. If v is popular in
X, then over half of its out-neighbors w have Xw = 1 (this is necessary for w ∈ X).
Since the Xw are independent, and each of them takes the value 1 with probability at
most p1, the probability that v is popular on X, conditioned on v ∈ X, is at most
Pr
(︂
B(d+(v), p1) > d+(v)

2

)︂
. For d+(v) = 3, this probability is 3p2

1 − 2p3
1. We claim that

this is the worst case:

Proposition 12.18. For every k ̸= 1,

Pr
(︃

B(k, p1) >
k

2

)︃
≤ Pr(B(3, p1) ≥ 2).

Proof. Consider an infinite sequence X1, X2, . . . of indicating random variables, each tak-
ing value 1 independently with probability p1. Let Ii be the event “among the first i vari-
ables more than half take value 1”. Then Pr(Ik) = Pr

(︂
B(k, p1) > k

2

)︂
. Clearly Pr(I0) = 0.

Moreover, if k is even then Ik implies Ik+1, so we can restrict ourselves to odd k.
We will prove our statement by induction, by showing that Pr(I2k+1) < Pr(I2k−1) for

k ≥ 2. Indeed, the event I2k−1 \ I2k+1 is precisely the case in which exactly k of the first
2k − 1 variables take value 1, and X2k = X2k+1 = 0. Thus

Pr(I2k−1 \ I2k+1) =
(︄

2k − 1
k

)︄
pk

1(1− p1)k+1.

Similarly, the event I2k+1 \ I2k−1 is precisely the case in which exactly k − 1 of the first
2k − 1 variables take value 1, and X2k = X2k+1 = 1. Thus

Pr(I2k+1 \ I2k−1) =
(︄

2k − 1
k − 1

)︄
pk+1

1 (1− p1)k.

Using that the equality P(A \B)− P(B \A) = P(A)− P(B) holds for any two probability
events A, B, we finally conclude that

P (I2k−1)− P (I2k+1) =
(︄

2k − 1
k

)︄
pk

1(1− p1)k(1− 2p1) > 0,

as required.

With this, we know that for every vertex v the probability that v is in X and not
popular in X is at least

min{p1(1− p2), p1(1− p1) + p2
1p2, (p1 + p3

1)(1− p1), p1(1− p1) + 1
3p3

1, p2(1− 3p2
1 + 2p3

1)}

= p2(1− 3p2
1 + 2p3

1) = 0.252513 =: p.

Applying Lemma 12.17, there is a fractional majority coloring of D with total weight
at most 1

p < 3.9602.

12.5 Conclusion
Girão et al. [GKP17] and independently Knox and Šámal [KS18] investigated a natural
generalization of majority colorings: For any α ∈ [0, 1], define an α-majority coloring of a
digraph D to be a vertex-coloring in which for every vertex v, at most α ·d+(v) vertices in
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N+(v) have the same color as v. If such a coloring can be found for any ℓ-list-assignment,
we call the digraph α-majority ℓ-choosable.

Generalizing the result by Anholcer et al. [ABG17] it was proved both in [GKP17] and
[KS18] that for every integer k ≥ 1, every digraph is 1

k -majority 2k-choosable. Girão et
al. proposed the following generalization of Conjecture 12.1:

Conjecture 12.2. For every integer k ≥ 1, every digraph D has a 1
k -majority (2k − 1)-

coloring. In fact, every digraph is 1
k -majority (2k − 1)-choosable.

It is natural to try and generalize the results presented in this chapter for majority
colorings with α = 1

2 to arbitrary values α ∈ [0, 1]. Among our results, we can only
generalize a special case of Theorem 12.2, namely for digraphs of dichromatic number 2,
we verify the first part of Conjecture 12.2 for all k ≥ 1.

Proposition 12.19. Let D be a digraph with χ⃗(D) ≤ 2. Then for every k ∈ N, k ≥ 2, D
admits a 1

k -majority coloring using 2k − 1 colors.

Proof. We use a similar idea as in the proof of Theorem 12.3. Consider first an acyclic
digraph F with a pre-coloring of its sinks using colors from {1, . . . , k}. We claim that
such a coloring can always be extended to a 1

k -majority coloring of F also using colors
from {1, . . . , k}. To find such a coloring, we take a topological ordering x1, . . . , xn of the
vertices (i.e. (xi, xj) /∈ A(D) for all i ≤ j) such that {x1, . . . , xt} are the pre-colored sinks.
Now we color the vertices one by one, starting with xt+1, then xt+2 etc. When coloring
the vertex xi with i > t, we assign to it a color from {1, . . . , k} appearing least frequently
among its (already colored) out-neighbors. This procedure eventually yields a k-coloring
of F where any vertex has at most a 1

k -fraction of its out-neighbors with the same color.
Now let {X1, X2} be a partition of V (D) such that D[X1], D[X2] are acyclic. For

i = 1, 2 let D′
i be the digraph obtained from D[Xi] by adding all arcs in D leaving

Xi together with their endpoints. Clearly, also D′
1 and D′

2 are acyclic. By the above
observation, D′

i for i = 1, 2 has a majority 1
k -coloring ci with k colors in which all sinks

receive color 1. After renaming we may suppose that c1 uses colors from {1, 2, . . . , k},
while c2 uses colors from {1, k + 1, k + 2, . . . , 2k− 1}. We now define a (2k− 1)-coloring of
all vertices in D by putting c(x) := ci(x) for x ∈ Xi. For any vertex x ∈ Xi, we have that
N+(x) = N+

D′i
(x), and, since all vertices in V (D′

i) \Xi received color 1 under ci, it follows
that {y ∈ N+(x)|c(y) = c(x)} ⊆ {y ∈ N+

D′i
(x)|ci(y) = ci(x)}. Therefore, and since ci is a

majority 1
k -coloring of D′

i, at most a 1
k -fraction of vertices in N+(x) have the same color

as x. This shows that c is a coloring as requested and concludes the proof.

It is worth noting that the above bound is tight. Consider for example the circulant
digraph3 C⃗(2k−1, k) which has as vertex set Z2k−1, and where we have an edge (i, j) if and
only if j− i ∈ {1, 2, 3 . . . , k−1}. It is easy to see that in any majority 1

k -coloring of D, the
2k − 1 vertices must receive pairwise distinct colors, however, partitioning the vertex-set
into X1 = {0, 1, . . . , k−1} and X2 = {k, k +1, . . . , 2k−2} shows that χ⃗(C⃗(2k−1, k)) = 2.

The methods used in this chapter are unlikely to resolve Conjecture 12.1 for the next
open cases of 5- and 6-regular digraphs. One possible approach could be via an extension
to hypergraphs: Given a 5-regular digraph D, consider the hypergraph H(D) with vertex
set V (D) and whose edges are {v} ∪ N+(v), v ∈ V (D). This hypergraph is 6-regular
and 6-uniform4. If we could now find a vertex-3-coloring of H(D) such that no hyperedge

3We will revisit the circulant digraphs in the next Chapter.
4That is, every vertex is included in exactly 6 hyperedges and every hyperedge is of size 6.
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contains four vertices of the same color, this coloring would certainly be a majority coloring
of D. We are therefore interested in deciding the following question.

Problem 12.1. Let H be a 6-regular 6-uniform hypergraph. Is there a 3-coloring of V (H)
such that no hyperedge contains four vertices of the same color?

The setting of k-regular k-uniform hypergraphs could be fruitful, as it is known that
these hypergraphs have property B for all k ≥ 4 (as noted in [Vis03])5. We conclude with
a small selection of open questions.

• Is every 5-regular digraph 1
3 -majority 5-colorable? There exists an argument showing

that it is possible to color with 5 colors such that in each connected component, at
most one vertex violates the majority condition.

• Does every digraph with χ(D) ≤ 6 have a 1
3 -majority 5-coloring?

• Does every digraph D with χ⃗(D) ≤ 3 have a 1
k -majority (2k − 1)-coloring?

5A hypergraph is said to have property B if its vertex-set can be 2-colored such that every hyperedge
includes at least one vertex of each color.



Chapter 13

Complexity of Fractional and
Circular Colorings

13.1 Introduction
Graphs and digraphs considered in this chapter are loopless, but may have parallel edges
and (anti-)parallel arcs, respectively.

Throughout this chapter, whenever we write a + b or a− b for elements a, b ∈ Zk, this
is meant as in the group (Zk, +). For elements x of Zk or Z we will use x mod k to denote
the unique element within {0, . . . , k − 1} ⊆ Z equivalent to x modulo k.

In addition, for every k ∈ N and elements x, y ∈ {0, . . . , k − 1} ≃ Zk, let us denote by
distk(x, y) := |(x− y)mod k|k, where |a|k := min{|a|, |k − a|} for all a = 0, . . . , k − 1, the
circular k-distance between x and y.

In this chapter, we are concerned with several notions of acyclic colorings of directed
and undirected graphs which, in contrast to the integer coloring parameters treated in pre-
vious chapters of this thesis, may take on fractional values. We will be mainly concerned
with two different (but related) such coloring concepts, called circular and fractional col-
orings. Before we state the main results of this chapter, which establish hardness results
for the computation of these parameters, let us give a short introduction of the coloring
concepts for (di)graphs considered in this chapter.

Circular colorings of undirected graphs were introduced by Vince [Vin88], where the
concept of the star chromatic number, nowadays also known as the circular chromatic
number of a graph, made its first appearance. The original definition of the star chromatic
number by Vince is based on so-called (k, d)-colorings, where colors at adjacent vertices
are not only required to be distinct as usual but moreover “far apart” in the following
sense:

Definition 13.1 (Vince, [Vin88]). Let G be a graph and (k, d) ∈ N2, k ≥ d. A (k, d)-
coloring of G is an assignment c : V (G)→ {0, . . . , k− 1} ≃ Zk of colors to the vertices so
that distk(c(u), c(w)) ≥ d whenever u, w are adjacent.

The circular chromatic number χc(G) ≥ 1 of the graph G is defined as the infimum
over all values of k

d for which (k, d)-colorings exist.

The most important properties of χc(G) proved in [Vin88] are that χc(G) is always a
rational number and that ⌈χc(G)⌉ = χ(G) for every graph G. Intuitively, one may think
that the closer the value of χc(G) is to its lower bound χ(G)− 1, the “closer” the graph G
is to being colorable with χ(G)−1 colors. A good illustrating example are the odd cycles:
For every k ≥ 1, we have χ(C2k+1) = 3, but C2k+1 can be 3-colored such that only one
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vertex out of the 2k + 1 receives the third color. In that sense one might feel that C2k+1 is
“almost” 2-colorable for large k. This is reflected in the value χc(C2k+1) = 2 + 1

k as well.
The following canonical construction related to the circular chromatic number will be

used in Section 13.4.

Definition 13.2. For any given natural numbers (k, d) ∈ N2 with k ≥ 2d, we denote by
C(k, d) the circulant graph with vertex set Zk where vertices i ̸= j ∈ Zk are adjacent if
and only if distk(i, j) ≥ d.

As was shown in Theorem 6 of [Vin88], for any k, d it holds that χc(C(k, d)) = k
d and

therefore χ(C(k, d)) = ⌈k
d⌉.

In this chapter, we focus on fractional colorings related to (directed) cycles in graphs
and digraphs. For further background on circular colorings of undirected graphs we refer
to the survey article of Zhu [Zhu01].

Circular Chromatic Number of Digraphs. The circular chromatic number of di-
graphs was introduced by Bokal, Fijavz, Juvan, Kayll, and Mohar [BFJ+04] as a refine-
ment of the dichromatic number, which is capable of distinguishing between digraphs with
the same dichromatic number by taking on (arbitrary) rational values. Instead of integer
pairs as in the definition of the circular chromatic number by Vince, Bokal et al. use real
numbers as colors in their definition:

Given a real number p ≥ 1, consider a plane-circle Sp of perimeter p and define a
weak circular p-coloring as a color-map c : V (D) → Sp, such that equal colors at both
ends of an arc, i.e., c(u) = c(w) where e = (u, w) ∈ A(D), are allowed, but at the same
time, the clockwise distance1 from c(u) to c(w) on Sp is at least 1 whenever c(u) ̸= c(w).
Additionally, each so-called color class, i.e., a set c−1(t), t ∈ Sp, has to be an acyclic set.

The circular dichromatic number χ⃗c(D) now is defined as the infimum over all values
p ≥ 1 providing weak circular p-colorings of D. This infimum was shown in [BFJ+04] to
be always attained as a minimum.

For any natural numbers k ≥ d ≥ 1, denote by C⃗(k, d) the digraph with vertex set Zk

in which there is an arc (i, j) for i, j ∈ Zk if and only if j − i ∈ {d, d + 1, . . . , k − 1}. As
these digraphs will play an important role in this chapter, in the following let us sum up
properties of the circular dichromatic number and of these special circulant digraphs.

Theorem 13.1 (Bokal et al., [BFJ+04]). Let D be a digraph. Then the following holds:

(i) χ⃗c(D) ≥ 1 is a rational number with numerator at most v(D).

(ii) ⌈χ⃗c(D)⌉ = χ⃗(D), i.e., χ⃗c(D) ∈ (χ⃗(D)− 1, χ⃗(D)].

(iii) C⃗(k, d) has circular dichromatic number exactly k
d for any k ≥ d ∈ N.

(iv) D is weakly circularly p-colorable for p ≥ 1 if and only if for every (k, d) ∈ N2 with
k
d ≥ p, D admits a coloring ck,d : V (D)→ Zk with the following properties:

For any arc (u, w) ∈ A(D), either ck,d(u) = ck,d(w) or (ck,d(w)−ck,d(u)) mod k ≥ d,
and c−1

k,d(i) is acyclic for every i ∈ Zk.
1By the clockwise distance of an element x ∈ Sp to an element y ∈ Sp we mean the length of the unique

subarc of Sp connecting x to y in clockwise direction.
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Graph Homomorphisms and Acyclic Homomorphisms. Given a pair of undi-
rected graphs G, H, a graph homomorphism from G to H is a mapping φ : V (G)→ V (H)
which preserves adjacency, i.e., for every pair of adjacent vertices u, v of G, the vertices
φ(u) and φ(G) are adjacent in H. It is well-known that graph homomorphisms gener-
alize graph colorings in the following way: Given a fixed graph H, for any graph G, an
H-coloring is defined to be a graph homomorphism φ : V (G) → V (H). The H-coloring
problem then asks for a given graph G whether it is H-colorable. If we take H to be the
complete graph on k vertices, this is just the k-coloring problem for graphs which is known
to be polynomially solvable for k = 2 and NP-complete for k ≥ 3. It was a long-standing
open problem to determine the complexity of H-colorability for arbitrary graphs H. This
was finally resolved by Hell and Nešetřil [HN90] who proved the following:

Theorem 13.2 (Hell and Nešetřil, [HN90]). The H-coloring problem is polynomially
solvable if H is bipartite, and it is NP-complete if H is non-bipartite.

It is natural to ask for a definition of homomorphisms acting on digraphs which re-
sembles acyclic colorings of digraphs in a similar way. One such notion, which has re-
ceived quite some attention in past years, are acyclic homomorphisms. Given a pair
D1, D2 of digraphs, an acyclic homomorphism from D1 to D2 is defined to be a mapping
φ : V (D1)→ V (D2) with the property that for any arc (u, w) in D, either φ(u) = φ(w) or
(φ(u), φ(w)) is an arc in D2, and additionally, for every vertex v ∈ V (D2), the vertex set
φ−1(v) is an acyclic set of D1. The following statement describes the relation of (circular)
digraph colorings and acyclic homomorphisms and shows that for digraph colorings, the
circulant digraphs C⃗(k, d) as defined above take the role of the complete graphs for usual
graph colorings.

Proposition 13.3 (Bokal et al., [BFJ+04]). Let p = k
d ≥ 1 with k, d ∈ N be a rational

number. Then for any digraph D, we have χ⃗c(D) ≤ p if and only if there is an acyclic
homomorphism mapping D to the digraph C⃗(k, d).

The question of determining the complexity of the decision problem whether or not
χ⃗c(D) ≤ p for a fixed rational number p ≥ 1 was raised by Bokal et al. [BFJ+04] and
answered by Feder, Hell and Mohar [FHM03] in form of a much more general statement
which can be seen as a variant of Theorem 13.2 for acyclic homomorphisms:

Theorem 13.4 (Feder, Hell and Mohar, [FHM03]). Let F be a digraph. Then the acyclic
F -coloring problem, i.e., deciding whether a given digraph D admits an acyclic homomor-
phism to F , is polynomially solvable if F is acyclic and NP-complete otherwise.

Applying Theorem 13.4 with F = C⃗(k, d) directly yields the following hardness result.

Corollary 13.5 (Feder, Hell and Mohar, [FHM03]). Given a rational number p > 1,
deciding whether a digraph satisfies χ⃗c(D) ≤ p is NP-complete.

Star Dichromatic Number. Another related concept of circular colorings of digraphs
was proposed by Hochstättler and the author [HS19] under the name of the star dichro-
matic number χ⃗∗(D) of a digraph. Again, for a coloring, real numbers associated with a
plane circle are used, but instead of looking at circular distances between adjacent ver-
tices, an acyclic p-coloring of a digraph D for any p ≥ 1 requires pre-images of cyclic open
subintervals of length 1 to be acyclic. Alternatively, one may use pairs of integers to define
the star dichromatic number:
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Definition 13.3 ([HS19]). Let D be a digraph, (k, d) ∈ N2, k ≥ d. An acyclic (k, d)-
coloring of D is an assignment c : V (D)→ Zk of colors to the vertices such that for every
i ∈ Zk, the pre-image of the cyclic interval Ai := {i, i + 1, . . . , i + d − 1} ⊆ Zk of colors,
c−1(Ai) ⊆ V (D), is an acyclic set in D. The infimum of the values k

d for which an acylic
(k, d)-coloring exists is defined to be the star dichromatic number χ⃗∗(D) ≥ 1 of D.

Similar to the circular dichromatic number, the star dichromatic number fulfils the
following series of interesting properties.

Theorem 13.6 ([HS19]). Let D be a digraph. Then the following holds:

(i) χ⃗∗(D) ≥ 1 is a rational number with numerator at most v(D).

(ii) ⌈χ⃗∗(D)⌉ = χ⃗(D), i.e., χ⃗∗(D) ∈ (χ⃗(D)− 1, χ⃗(D)].

(iii) C⃗(k, d) admits star dichromatic number exactly k
d for any k ≥ d ∈ N.

(iv) For all k ≥ d ∈ N, D admits an acyclic (k, d)-coloring if and only if χ⃗∗(D) ≤ k
d .

Although the star dichromatic number and the circular dichromatic number share
many similar properties, in some cases they may behave very differently. While the star
dichromatic number is immune to the addition of sinks and sources (as directed cycles may
never pass them), this may have a significant effect on the circular dichromatic number,
see Figure 13.1 for an illustration.

As a by-product of Section 13.2 we introduce a notion of homomorphisms for digraphs,
so-called circular homomorphisms, which appropriately generalize the star dichromatic
number in the same way that acyclic homomorphisms generalize circular digraph colorings.

Fractional Dichromatic Number. The last fractional coloring notion for digraphs we
want to discuss in this (as well as the next) chapter is the fractional dichromatic number of
a digraph D, denoted by χ⃗f (D) ≥ 1. As its analogue for graphs, the well-known fractional
chromatic number χf (G) of a graph G, it may be defined as the optimal value of a linear
program. Here, acyclic vertex sets in digraphs play the role of independent vertex sets in
undirected graphs.

Figure 13.1: Left: The directed cycle C⃗4, which has fractional, star and circular dichromatic
number 4

3 . While the addition of a dominating source does not change the fractional and the star
dichromatic number, the circular dichromatic number jumps to 2 (Right).

Definition 13.4 (cf. Severino, [Sev]). Let D be a digraph. Denote by A(D) the collec-
tion of vertex subsets of D inducing an acyclic subdigraph, and for each v ∈ V (D), let
A(D, v) ⊆ A(D) be the subset containing only those sets including v. The fractional
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dichromatic number χ⃗f (D) of D is now defined as the value of

min
∑︂

A∈A(D)
xA (13.1)

subj. to
∑︂

A∈A(D,v)
xA ≥ 1, for all v ∈ V (D)

x ≥ 0.

The fractional dichromatic number has received some attention in recent years, it
has e.g. proved to be useful for proving a fractional version of the Erdős-Neumann-Lara-
conjecture mentioned in the introduction, see Mohar and Wu [Moh16], and has been related
to acyclic homomorphisms by Severino [Sev].

By applying duality to the linear program defining χ⃗f (D), we obtain the following
alternative definition:

Proposition 13.7. The fractional dichromatic number of a digraph D can be computed
as the optimal value of

max
∑︂
v∈V

yv (13.2)

subj. to
∑︂
v∈A

yv ≤ 1, for all A ∈ A(D)

y ≥ 0.

Since the linear programs are bounded, they attain their optimal value χ⃗f (D), and in
fact there always exists a rational optimal solution (since the same holds true for every
vertex of the underlying polyhedron using Cramer’s rule). Therefore χ⃗f (D) is always
a rational number. It also follows directly by definition that χ⃗f (·) is monotonous with
respect to taking subdigraphs. Further properties of the fractional dichromatic number,
in particular of planar digraphs, will be investigated in Chapter 14. The following puts the
three presented fractional digraph coloring parameters in relation and establishes direct
relations to corresponding notions for graphs.

Proposition 13.8 (cf. [HS19]).

(i) Let D be a digraph. Then χ⃗f (D) ≤ χ⃗∗(D) ≤ χ⃗c(D).

(ii) For any graph G, we have χ⃗∗(
↔
G) = χ⃗c(

↔
G) = χc(G) and χ⃗f (

↔
G) = χf (G).

Circular Vertex Arboricity. The counterpart of digraph colorings for undirected
graphs is known as the vertex arboricity, which we alrady encountered in Chapter 11.
Given some k ∈ N, let us define an arboreal k-coloring of a (multi-)graph G as a coloring
of the vertices of G using colors {0, . . . , k − 1} such that there are no monochromatic
cycles, i.e., G[c−1(i)] is a forest for any i ∈ {0, ..., k − 1}. The vertex arboricity va(G) is
then the minimal number k for which G admits an arboreal k-coloring. Similar to the
notions of circular colorings of graphs and digraphs, it is also possible to investigate a
circular version of the vertex arboricity, which was introduced by Wang, Zhou, Liu and
Wu [WZLW11] under the name circular vertex arboricity. For this purpose, the notion of
an arboreal (k, d)-coloring of a graph G is defined. Similarly to acyclic (k, d)-colorings of
digraphs, this is a mapping c : V (G)→ Zk with the property that for any cyclic subinter-
val Ai := {i, i + 1, . . . , i + d− 1} of Zk, the subgraph of G induced by c−1(Ai) is a forest.
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The circular vertex arboricity vac(G) of the graph G is now defined as the infimum of the
values k

d for which an arboreal (k, d)-coloring of G exists. The circular vertex arboricity
has the following basic properties.

Theorem 13.9 (Wang et al. [WZLW11]). Let G be a (multi-)graph. Then

(i) vac(G) ≥ 1 is a rational number with numerator at most v(G).

(ii) ⌈vac(G)⌉ = va(G), i.e., vac(G) ∈ (va(G)− 1, va(G)].

(iii) For all k ≥ d ∈ N, D admits an arboreal (k, d)-coloring if and only if vac(G) ≤ k
d .

This chapter is divided into three sections, studying the complexity of decision prob-
lems for the Star Dichromatic Number, the Fractional Dichromatic Number respectively
the Circular Vertex Arboricity as defined above.

The following main results are proved:

Theorem 13.10.

• For any fixed rational number p > 1, deciding whether a given (multi-)digraph D
fulfills χ⃗∗(D) ≤ p is NP-complete.

• For any fixed real number p > 1, p ̸= 2, deciding whether a given (multi-)digraph D
fulfills χ⃗f (D) ≤ p is NP-complete.

• For any fixed rational number p > 1, deciding whether a given (multi-)graph G fulfills
vac(G) ≤ p is NP-complete.

This theorem answers an open question from [HS19] as well as questions in the context
of the work by Wang et al. [WZLW11]. It further resembles the hardness result achieved by
Feder, Hell, and Mohar [FHM03] for the circular dichromatic number (cf. Corollary 13.5).

The proof of the NP-hardness requires different techniques for each case. As a tool
to prove Theorem 13.10, in Section 13.2 the notion of circular homomorphisms acting
between digraphs is introduced and might be of independent interest.

13.2 Complexity of the Star Dichromatic Number
In this section, we deal with decision problems for the star dichromatic number analogous
to those considered by Feder, Hell and Mohar [FHM03] for the circular dichromatic num-
ber. The problem of determining the computational complexity of the following decision
problem was posed by Hochstättler and the author in [HS19]:

Problem 13.1. Let p ≥ 1 be a fixed rational number.
Instance: A (multi-)digraph D.
Decide whether χ⃗∗(D) ≤ p.

For p = 1, the problem is to decide whether χ⃗∗(D) = 1, which is equivalent to D being
acyclic, and hence this can be solved in time linear in v(D) + a(D).

We now introduce circular homomorphisms as an extension of the well-known acyclic
homomorphisms defined in the previous section.

Definition 13.5. Let D1, D2 be digraphs. A mapping φ : V (D1) → V (D2) is called
a circular homomorphism, if for all A ⊆ V (D2) such that D2[A] is acyclic, φ−1(A) is
acyclic in D1. Equivalently, for any directed cycle C in D1, D2[φ(V (C))] contains a
directed cycle.
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It is obvious that D1 admits the injection id|V (D1) as a circular homomorphism to D2
whenever D1 is a subdigraph of D2 and that the composition of two circular homomor-
phisms remains a circular homomorphism.

Note that this definition is one natural way to generalize graph homomorphisms to di-
graphs, as the former may be characterized by the property that pre-images of independent
sets remain independent. This similarity is made precise by the following.

Proposition 13.11. Let G1, G2 be graphs. Then a mapping φ : V (G1) → V (G2) is a
graph homomorphism if and only if it is a circular homomorphism from

↔
G1 to

↔
G2.

Proof. This follows immediately from the characterizations of graph resp. circular homo-
morphisms in terms of independent resp. acyclic vertex sets and the fact that for any
graph G, the acyclic vertex sets of

↔
G are exactly the independent vertex sets of G.

The following, which is similar to Proposition 13.3, reformulates acyclic (k, d)-colorings
in terms of circular homomorphisms.

Proposition 13.12. Let p = k
d ≥ 1, k, d ∈ N. Then χ⃗∗(D) ≤ p, i.e., there is an acyclic

(k, d)-coloring of D, if and only if there is a circular homomorphism from D to C⃗(k, d).

Proof. Recall that C⃗(k, d) was defined to be the digraph with vertex set Zk ≃ {0, . . . , k−1}
where there is an arc (i, j) between two elements if and only if j−i ∈ {d, . . . , k−1} ⊆ Zk. To
prove the claim, we need the following property: A vertex set A ⊆ C⃗(k, d) is acyclic if and
only if it is contained in a set of d consecutive vertices, i.e., A ⊆ {i, i+1, . . . , i+d−1} ⊆ Zk

with some i ∈ Zk.
For the first implication, assume that A is acyclic. Then C⃗(k, d)[A] must contain a

sink i ∈ A (i.e., i has no out-neighbors in A), which means that none of the vertices
i + d, . . . , i + k − 1 ∈ Zk can be contained in A, and so A ⊆ {i, . . . , i + d − 1}. For
the reverse, since C⃗(k, d) is circulant, it is enough to show that {0, . . . , d − 1} ⊆ Zk is
acyclic. However, by definition, this interval can only contain backward arcs, and so the
subdigraph of C⃗(k, d) induced by {0, . . . , d− 1} admits a topological ordering.

Consequently, the circular homomorphisms φ : V (D) → Zk = V (C⃗(k, d)) from any
digraph D to C⃗(k, d) are exactly those mappings for which φ−1({i, . . . , i + d − 1}) is
acyclic for all i ∈ Zk, and this is just the same as an acyclic (k, d)-coloring of D.

This proves the claim of the proposition.

Furthermore, the well-studied acyclic homomorphisms between digraphs appear as a
special case of circular homomorphisms:

Proposition 13.13. Let D1, D2 be two digraphs. Then every acyclic homomorphism
φ : V (D1)→ V (D2) is a circular homomorphism.

Proof. Let C be any directed cycle in D1. We need to show that φ(V (C)) contains the
vertex set of a directed cycle. Since pre-images of single vertices under φ are acyclic in D1,
φ(V (C)) needs to contain at least two vertices. Any arc (x, y) on C is either mapped to a
single vertex φ(x) = φ(y) or to an arc (φ(x), φ(y)) of D2, which implies that D2[φ(V (C))]
contains a closed directed walk visiting at least two vertices and thus also a directed cycle.
This proves the claim.

However, the converse of this statement is not true. This follows from the fact that
there are digraphs with χ⃗c(D) > χ⃗∗(D), Proposition 13.3, and Proposition 13.12. Ex-
amples of such digraphs are e.g. directed cycles with an additional dominating source
(cf. [HS19]), see also Figure 13.1.
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We conclude the discussion of circular homomorphisms with the following observation,
which identifies them as interlacing structures between digraphs in terms of their star and
fractional dichromatic numbers:

Proposition 13.14. Let D1, D2 be digraphs such that there is a circular homomorphism
φ : V (D1)→ V (D2). Then χ⃗∗(D1) ≤ χ⃗∗(D2) and χ⃗f (D1) ≤ χ⃗f (D2).

Proof. The inequality for the star dichromatic number follows from Proposition 13.12
and the fact that the composition of two circular homomorphisms remains a circular
homomorphism. The inequality for the fractional dichromatic number can be seen from
the definition in terms of the linear program (13.1) as follows: Given any optimal solution
x′ ≥ 0 of the program with respect to D2, define a corresponding instance x ≥ 0 of the
program for D1 by assigning the value2

xA :=
∑︂

A′∈A(D2):
φ−1(A′)=A

x′
A′

for every acyclic vertex set A ∈ A(D1). It is now easily verified using the fact that
φ−1(A′) ∈ A(D1) for any A′ ∈ A(D2), that x is a legal instance of (13.1) for D1 with

χ⃗f (D1) ≤
∑︂

A∈A(D1)
xA =

∑︂
A′∈A(D2)

x′
A′ = χ⃗f (D2).

Given a fixed digraph F , any other digraph D will be called circularly F -colorable if
there exists a circular homomorphism mapping D to F . The following decision problem,
which can be seen as a directed analogue of the H-coloring problem for graphs then
generalizes Problem 13.1.

Problem 13.2. Let F be a fixed (multi-)digraph.
Instance: A (multi-)digraph D.
Decide whether D is circularly F -colorable.

As in the graph coloring problem, there is a trivial case: Only acyclic digraphs map
circularly to acyclic digraphs:

Observation 13.15. The circular F -coloring problem is polynomially solvable for any
acyclic digraph F .

We conjecture that this simple observation covers already all polynomially solvable
cases under the assumption P ̸=NP. In other words,

Conjecture 13.1. Let F be a digraph which contains a directed cycle. Then the circular
F -coloring problem is NP-complete.

Our main result of this section is the following theorem, which shows that this conjec-
ture holds true in almost all the cases. Given a (multi-)digraph, the symmetric part of D
is defined to be the simple graph on the same vertex set as D which contains an edge xy
if and only if there is an arc from x to y and from y to x in D.

Theorem 13.16. Let F be a digraph containing a directed cycle such that at least one of
the following holds:

2Throughout this thesis we define the value of an empty sum to be 0.
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(i) The symmetric part of F is edgeless, i.e., F is digon-free, or

(ii) The symmetric part of F contains an odd cycle, or

(iii) χ⃗(F ) = 2.

Then the circular F -coloring problem is NP-complete.

Proof. We start by observing that the problem is contained in the complexity class NP:
Given a digraph D, any circular homomorphism from D to F can be used as a certificate
that D is circularly F -colorable. Note that the digraph F itself defines the coloring
problem and is not considered as an instance, and so for checking whether a given mapping
φ : V (D) → V (F ) defines a circular homomorphism, it suffices to compute at most
constantly many inverse images under φ and verify that the corresponding subdigraphs of
D are indeed acyclic, which can be done in polynomial time in v(D).

(i), (ii) Assume that the symmetric part of F is either edgeless or non-bipartite. Let us
denote k := g⃗(F ). We will define a graph HF with vertex set V (F ) and in which
two vertices u ̸= v are adjacent if and only if there is a directed cycle of length
k containing both u and v in F . We now give a polynomial reduction of the HF -
coloring problem to the circular F -coloring problem. For a given instance G of
the HF -coloring problem, we will construct a polynomial-sized instance DG for the
circular F -coloring problem and prove that G is HF -colorable if and only if the
digraph DG is circularly F -colorable.

If the symmetric part of F is empty, then there is a directed cycle of length k ≥ 3
in F which forms a clique of size k in HF , and therefore HF contains a triangle.
Otherwise, the symmetric part of F is non-empty but non-bipartite. In this case, we
have k = 2 and the vertices of any odd cycle in the symmetric part of F will form an
odd cycle in HF . In any case, HF is non-bipartite, and thus, the decision problem
of HF -colorability is NP-hard according to Theorem 13.2.

Let now G be an instance of the HF -coloring problem. We construct the digraph
DG by first choosing some acyclic orientation G⃗ of G and then attaching to every arc
(x, y) of G⃗ a directed path of length k − 1 in reverse direction whose only common
vertices with G⃗ are x and y, so that each arc e = (x, y) in G⃗ is contained in a directed
cycle C(e) of length k in DG. The set of the k − 2 extra vertices that are added is
pairwise disjoint for distinct arcs. Clearly, this construction is polynomial in a(G).

We now show that there is a graph homomorphism from G to HF if and only if
there is a circular homomorphism from DG to F . Since the HF -coloring problem is
NP-hard, this will prove NP-hardness of the circular F -coloring problem, as desired.

For the first implication let φ : V (G)→ V (HF ) be a graph homomorphism mapping
G to HF . Then for any arc e = (x, y) in G⃗, φ(x)φ(y) is an edge in HF , i.e., there
is a directed cycle C ′(e) of length k containing {φ(x), φ(y)} in F . Moreover, since
|V (C(e))\{x, y}| = |V (C ′(e))\{φ(x), φ(y)}| = k−2, we find that there are bijections
fe : V (C(e))\{x, y} → V (C ′(e))\{φ(x), φ(y)} for every edge e of G.

Let now φ′ : V (DG) → V (F ) be the mapping defined by φ′(u) := φ(u) for any
u ∈ V (G) ⊆ V (DG) and φ′(u) := fe(u) for any u ∈ V (C(e))\{x, y} and any edge
e = xy ∈ E(G). We claim that this defines a circular homomorphism from DG to
F : If C is any directed cycle in DG, since G⃗ is an acyclic orientation, C needs to
contain a full attachment path and thus the vertex set of C(e) for at least one edge
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e ∈ E(G). This implies φ′(V (C)) ⊇ φ′(V (C(e)) = V (C ′(e)) by definition of φ′, and
thus C ′(e) is a directed cycle contained in the image of V (C), as required.
Conversely, assume there is a circular homomorphism φ′ mapping DG to F . We claim
that the restriction φ := φ′|V (G) is a graph homomorphism from G to HF . For this
purpose, let e = xy be any edge of G. Then, since φ′ is a circular homomorphism,
φ′(V (C(e))) contains the vertex set of a directed cycle in F , which must have length
at least k. However, |φ′(V (C(e)))| ≤ |V (C(e))| = k by definition of C(e), so this
directed cycle has exactly φ′(V (C(e))) as vertex set, which contains φ′(x) and φ′(y).
Hence, φ′ restricted to V (C(e)) must be injective, and so φ′(x) ̸= φ′(y). According
to the definition of HF , this finally implies that φ(x)φ(y) = φ′(x)φ′(y) is an edge of
HF , and so φ is indeed a graph homomorphism as required. This settles the proof
in the case where the symmetric part of F is empty or non-bipartite.

(iii) Now, let F be acyclically 2-colorable. Referring to (i) and (ii), we may assume that
the symmetric part of F is non-empty and bipartite. Since F is 2-colorable, by
Proposition 13.12 there is a circular homomorphism from F to C⃗2. On the other
hand, since the symmetric part of F is non-empty, F contains a digon, and thus,
there also is a circular homomorphism from C⃗2 to F . Hence, in this case the circular
F -coloring and the circular C⃗2-coloring problem are equivalent. However, as we have
discussed in Chapter 10, deciding 2-colorability of a digraph is NP-hard.

Applying this result to the star dichromatic number, we finally obtain the desired
hardness result:

Theorem 13.17. Let p > 1 be a rational number. Deciding whether D admits an acyclic
p− coloring, i.e., whether χ⃗∗(D) ≤ p, is NP-complete.

Proof. Let p = k
d with k, d ∈ N. By Proposition 13.12, the decision problem is equivalent

to the circular C⃗(k, d)-coloring problem.
To prove NP-completeness, we distinguish between p ≤ 2 and p > 2. In the first case,

C⃗(k, d) is not acyclic and 2-colorable, and thus the claim follows from Theorem 13.16 (iii).
In the case p > 2, the symmetric part of C⃗(k, d) is given by the circulant graph C(k, d)

(cf. Definition 13.2). C(k, d) has chromatic number ⌈p⌉ ≥ 3 and thus is not bipartite.
Consequently, another application of Theorem 13.16 yields the claimed result.

13.3 Complexity of the Fractional Dichromatic Number
Continuing in the spirit of the previous section, we now want to deal with decision problems
for the fractional dichromatic number as follows.

Problem 13.3. Let p ≥ 1 be a fixed real number.
Instance: A (multi-)digraph D.
Decide whether χ⃗f (D) ≤ p.

Again, it is clear that for p = 1, χ⃗f (D) ≤ p if and only if the digraph D is acyclic, and
this can be decided in linear time in v(D) + a(D). Conversely, we want to show in the
following that for all real numbers p > 1, p ̸= 2, this problem is NP-complete. It is indeed
always contained in NP:

Observation 13.18. For any p ≥ 1, the Problem 13.3 is in NP.



13.3. COMPLEXITY OF THE FRACTIONAL DICHROMATIC NUMBER 269

Proof. Let D be a digraph given as an instance of the problem. Let again A(D) denote the
set of acyclic vertex sets in D. We have to prove the existence of a certificate polynomially-
sized in v(D) which is verifiable in polynomial time. For this purpose, we repeat some
standard arguments from linear programming for (13.1). Clearly, any optimal solution of
(13.1) satisfies3 x ≤ 1. Thus, adding the constraints xA ≤ 2 for all A ∈ A(D) yields an
equivalent bounded feasible program. As the optimal solution is attained by a vertex x
of the corresponding polytope there is a subset of |A(D)| inequality-constraints which are
satisfied by x with equality, and the corresponding linear system uniquely determines x.
Since any optimal solution x satisfies x ≤ 1, none of the additional constraints is tight,
implying that the size of the support of x (the set of A ∈ A(D) such that xA > 0) is
m := |supp(x)| ≤ v(D). Denote by x′ ∈ Rm the subvector of x restricted to the support.
As x′ is the unique solution of a regular linear system, according to Cramer’s rule, there
are matrices B1, . . . , Bm, B ∈ {0, 1}m×m such that xi = det(Bi)

det(B) , i = 1, . . . , m. According
to Hadamard’s inequality, we have |det(Bi)|, |det(B)| ≤ mm/2 ≤ v(D)v(D)/2, i = 1, . . . , m.
This finally implies that there exists an optimal solution to the linear program (13.1)
whose support is of size at most v(D) and where the non-zero values in the solution are
rational numbers, each of which can be stored using at most v(D) log v(D) bits. Such
a solution can thus be described using O(v(D)2 log v(D)) bits. As we can verify all the
constraints and the inequality

∑︁m
i=1 xi ≤ p, certifying that χ⃗f (D) ≤ p, in polynomial

time in m ≤ v(D), this finally proves that we can use optimal solutions of this form as
polynomial-time verifiable NP-certificates. This concludes the proof.

We start our proof of the hardness with the following simple observation derived from
the relation of the fractional chromatic and the fractional dichromatic number:

Observation 13.19. Let p ∈ R, p > 2. Then Problem 13.3 is NP-complete.

Proof. It is well-known (see e.g. [SU97], Theorem 3.9.2) that the problem of deciding
whether χf (G) ≤ p for a given graph G is NP-hard for any real number p > 2. However,
this problem admits a polynomial reduction to Problem 13.3 for p: For any graph G, the
biorientation

↔
G fulfils χf (G) ≤ p⇔ χ⃗f (

↔
G) = χf (G) ≤ p. This proves the claim.

It thus suffices to prove the hardness in the case p ∈ (1, 2). For any given p, we will
reduce one of the decision problems proved to be hard in Observation 13.19 to Problem
13.3 with p. For this purpose, we introduce a certain operation on digraphs reducing its
fractional dichromatic number:

Definition 13.6. Let D be a digraph. For every ℓ ≥ 1, we denote by Dℓ a digraph called
ℓ-split of D obtained from D by replacing each vertex by a directed path of length ℓ − 1
as follows: Each vertex x ∈ V (D) is assigned a directed path P (x) = x1, . . . , xℓ in Dℓ.
The remaining adjacencies within Dℓ are given as follows: For each arc e = (u, w) in
D, we have a corresponding arc (uℓ, w1) in Dℓ. Thus, in a path P (x), x1, . . . , xℓ−1 have
out-degree 1 while x2, . . . , xℓ have each exactly one incoming arc.

It follows by definition that each directed cycle in Dℓ contains the whole path P (x) or
none of its vertices, for all x ∈ V (D). This means that there is a bijection between the
directed cycles in D and those in Dℓ by replacing each vertex x ∈ V (D) contained in a
directed cycle by P (x) in Dℓ and vice versa. The following makes the relation between
the fractional dichromatic numbers of D and Dℓ precise.

3By 1 we denote vectors all whose entries equal 1.
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Proposition 13.20. For each digraph D and every integer ℓ ≥ 1, the following holds:

χ⃗f (Dℓ) = ℓχ⃗f (D)
(ℓ− 1)χ⃗f (D) + 1 .

Proof. Assume ℓ ≥ 2 (for ℓ = 1 we have D1 = D and the claim holds trivially). For the
proof we use the alternative representation of χ⃗f (D) as the maximal value of the dual
program (13.2) in Proposition 13.7.

Throughout the rest of the proof, the following relation between acyclic sets of D
and its ℓ-split will be crucial: Define a mapping f : A(Dℓ) → A(D) such that for all
B ∈ A(Dℓ), f(B) := {x ∈ V (D)|V (P (x)) ⊆ B}. Furthermore, define g : A(D) → A(Dℓ)
by g(A) :=

⋃︁
x∈A V (P (x)). These mappings are well-defined due to the bijection between

directed cycles in D resp. Dℓ described above. We clearly have f ◦ g = idA(D) and thus, g
is injective while f is surjective.

We start by showing that χ⃗f (Dℓ) ≥
ℓχ⃗f (D)

(ℓ−1)χ⃗f (D)+1 . For this purpose, let yv, v ∈ V (D)
be an optimal instance for the dual program (13.2) for D, i.e.,

∑︁
v∈V (D) yv = χ⃗f (D). We

define an instance of the dual problem for Dℓ as follows: For every w ∈ V (Dℓ), v ∈ V (D)
with w ∈ V (P (v)), let y′

w := yv

(ℓ−1)χ⃗f (D)+1 ≥ 0. Obviously,

∑︂
w∈V (Dℓ)

y′
w =

∑︁
y∈V (D) ℓyv

(ℓ− 1)χ⃗f (D) + 1 = ℓχ⃗f (D)
(ℓ− 1)χ⃗f (D) + 1 .

Furthermore, for each B ∈ A(Dℓ), we have

∑︂
w∈B

y′
w ≤

∑︂
v∈f(B)

ℓ
yv

(ℓ− 1)χ⃗f (D) + 1 +
∑︂

v∈V (D)\f(B)
(ℓ− 1) yv

(ℓ− 1)χ⃗f (D) + 1

= 1
(ℓ− 1)χ⃗f (D) + 1

⎛⎜⎜⎜⎜⎜⎜⎝(ℓ− 1)
∑︂

v∈V (D)
yv⏞ ⏟⏟ ⏞

=χ⃗f (D)

+
∑︂

v∈f(B)
yv⏞ ⏟⏟ ⏞

≤1

⎞⎟⎟⎟⎟⎟⎟⎠ ≤ 1.

Thus, the y′
w are admissible for the program, which proves the first inequality.

For the reverse inequality, we want to show

χ⃗f (Dℓ) ≤
ℓχ⃗f (D)

(ℓ− 1)χ⃗f (D) + 1 or equivalently

χ⃗f (D) ≥ χ⃗f (Dℓ)
ℓ− (ℓ− 1)χ⃗f (Dℓ)

.

Notice that always χ⃗f (Dℓ) < ℓ
ℓ−1 and thus ℓ−(ℓ−1)χ⃗f (Dℓ) > 0. To see this, note that for

every vertex v ∈ V (D) and any selection of vertices r(w) ∈ V (P (w)) for w ∈ V (D) \ {v},
the set V (P (v))∪

⋃︁
w∈V (D)\{v} (V (P (w)) \ {r(w)}) is acyclic in D. There are v(D)ℓv(D)−1

such acyclic sets, and every vertex in V (Dℓ) is contained in all but (v(D) − 1)ℓv(D)−2 of
these sets. Hence assigning weight 1

v(D)ℓv(D)−1−(v(D)−1)ℓv(D)−2 to every such acyclic set (and
0 to any other acyclic set) gives a legal instance of the program 13.1, showing that indeed

χ⃗f (D) ≤ v(D)ℓv(D)−1

v(D)ℓv(D)−1 − (v(D)− 1)ℓv(D)−2 <
ℓ

ℓ− 1 .
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Assume now that y′
w, w ∈ V (Dℓ) is an optimal solution of the dual program (13.2) for

Dℓ, which means
∑︁

w∈V (Dℓ) y′
w = χ⃗f (Dℓ). We define an instance of the dual program for

D according to

yv :=
∑︁

w∈V (P (v)) y′
w

ℓ− (ℓ− 1)χ⃗f (Dℓ)
≥ 0

for each v ∈ V (D). First of all, with this definition, we have

∑︂
v∈V (D)

yv =
∑︁

w∈V (Dℓ) y′
w

ℓ− (ℓ− 1)χ⃗f (Dℓ)
= χ⃗f (Dℓ)

ℓ− (ℓ− 1)χ⃗f (Dℓ)
.

For the above inequality, it thus suffices to verify that the yv define a legal instance for
the dual program: Let A ∈ A(D) be arbitrary. Then

∑︂
v∈A

yv =
∑︁

v∈A

∑︁
w∈V (P (v)) y′

w

ℓ− (ℓ− 1)χ⃗f (Dℓ)
=

∑︁
w∈g(A) y′

w

ℓ− (ℓ− 1)χ⃗f (Dℓ)
.

For each v ∈ V (D)\A, we choose exactly one vertex wv ∈ V (P (v)) with minimal value
within P (v) and consider the acyclic vertex subset X := V (Dℓ)\

⋃︁
v∈V (D)\A {wv} which

contains g(A). According to our choice of the wv, we know that

1 ≥
∑︂

w∈X

y′
w =

∑︂
w∈g(A)

y′
w +

∑︂
v∈V (D)\A

⎛⎝ ∑︂
w∈V (P (v)),w ̸=wv

y′
w

⎞⎠
≥

∑︂
w∈g(A)

y′
w +

∑︂
v∈V (D)\A

ℓ− 1
ℓ

∑︂
w∈V (P (v))

y′
w =

(︃
ℓ− 1

ℓ
+ 1

ℓ

)︃ ∑︂
w∈g(A)

y′
w + ℓ− 1

ℓ

∑︂
w∈V (Dℓ)\g(A)

y′
w

= ℓ− 1
ℓ

χ⃗f (Dℓ) + 1
ℓ

∑︂
w∈g(A)

y′
w.

Multiplying the inequality with ℓ and subtracting (ℓ− 1)χ⃗f (Dℓ) now yields that indeed

∑︂
v∈A

yv =
∑︁

w∈g(A) y′
w

ℓ− (ℓ− 1)χ⃗f (Dℓ)
≤ 1,

and thus χ⃗f (D) ≥ χ⃗f (Dℓ)
ℓ−(ℓ−1)χ⃗f (Dℓ) as claimed.

Finally, this proves χ⃗f (Dℓ) = ℓχ⃗f (D)
(ℓ−1)χ⃗f (D)+1 .

The following is now an immediate consequence of the above:

Theorem 13.21. Problem 13.3 is NP-complete for every real number p > 1, p ̸= 2.

Proof. The case p > 2 was proved in Observation 13.19, so let now p ∈ (1, 2) be arbitrary.
Then there is an ℓ ∈ N, ℓ ≥ 2 only dependent on p such that p ∈ ( 2ℓ

2ℓ−1 , ℓ
ℓ−1). Choose

such an ℓ and define p′ := p
ℓ−(ℓ−1)p . Then p′ > 2 and thus, Problem 13.3 is NP-hard

for p′. However, since the function x→ ℓx
(ℓ−1)x+1 is strongly increasing for positive values

of x, we have for any digraph D that χ⃗f (D) ≤ p′ if and only if χ⃗f (Dℓ) = ℓχ⃗f (D)
(ℓ−1)χ⃗f (D)+1 ≤

ℓp′

(ℓ−1)p′+1 = p. This thus provides a polynomial reduction of Problem 13.3 with p′ to the
one with p, proving the NP-hardness (and thus -completeness) of the latter.
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13.4 Complexity of the Circular Vertex Arboricity
In this section, we treat the analogue of the decision Problems 13.1 and 13.3 for the circular
vertex arboricity vac(G) of graphs.

Problem 13.4. Let p ≥ 1 be a fixed rational number.
Instance: A (multi-)graph G.
Decide whether vac(G) ≤ p.

As acyclicity of a graph can be tested in polynomial time, it is easy to see that in
the case that p = k

d ≥ 1 is a rational number, any arboreal (k, d)-coloring of a graph can
be used as a polynomially verifiable certificate for vac(G) ≤ p, and so the above decision
problem for p is contained in NP.

In order to prove complexity results, as in the case of the star dichromatic number, we
could introduce a notion of circular homomorphisms between graphs analogous to Defini-
tion 13.5 and consider corresponding homomorphism-coloring problems. However, unlike
in the case of digraphs, no easy interpretation of the arboreal (k, d)-coloring problem of a
graph as such a homomorphism problem seems possible in general. This goes along with
the fact that no simple canonical constructions of graphs with circular vertex arboricity k

d

for every pair (k, d) similar to the circulant (di)graphs C⃗(k, d), C(k, d) are known so far.
It is again easily observed that vac(G) = 1 for any graph G if and only if it is a forest,

so the above decision problem is polynomially solvable for p = 1.
In the following we prove that similar to the cases of the circular and star dichromatic

numbers, Problem 13.4 is NP-complete for all rational numbers p > 1. We prepare the
proof with the following observation.

Lemma 13.22. Let (k, d) ∈ N2, k > d. Let I(k, d) denote the minimal size of a subset of
Zk which is not contained in a cyclic subinterval of size d. Then

I(k, d) := min
{︁
|A|
⃓⃓
A ⊆ Zk, ∀i ∈ Zk : A ̸⊆ {i, i + 1, ..., i + d− 1}

}︁
=
⌈︃

k

k − d

⌉︃
.

Proof. The complements of the cyclic subintervals of Zk of size d are the cyclic subintervals
of size k − d. Thus, a set A ⊆ Zk is not contained in a cyclic subinterval of size d if and
only if any two consecutive points in A according to the cyclic ordering of Zk have cyclic
distance at most k − d. Consequently, (k − d)|A| ≥ k implying |A| ≥

⌈︂
k

k−d

⌉︂
, and thus

I(k, d) ≥
⌈︂

k
k−d

⌉︂
. On the other hand, we may define

⌈︂
k

k−d

⌉︂
points in Zk according to

ai := ((k − d)i) mod k, for each i ∈ {0, . . . ,
⌈︂

k
k−d

⌉︂
− 1} ⊆ Zk, and it is easily seen that{︃

a0, . . . , a⌈ k
k−d⌉−1

}︃
defines a set as required, proving I(k, d) ≤

⌈︂
k

k−d

⌉︂
.

For any pair (k, d) ∈ N2, k > d we now define a simple auxiliary graph H(k, d) which
has vertex set Zk and in which a pair i ̸= j ∈ Zk of vertices is adjacent if and only if there
is a subset A ⊆ Zk not contained in any cyclic subinterval of size d such that {i, j} ⊆ A
and |A| = I(k, d). It is easy to see that whenever k

d ≥ 2, H(k, d) is just the circulant
graph C(k, d) introduced in Definition 13.2. More generally, it follows from the definition
that adjacency in H(k, d) only depends on the circular distance of the respective vertices.
Hence, H(k, d) is always a circulant graph. For instance, H(5, 3) is the complete graph
K5, H(6, 4) is the disjoint union of two triangles, and H(8, 5) admits an edge between
vertices i, j ∈ Z8 if and only if |i− j|8 ∈ {2, 3}.

We are now prepared to prove the following NP-hardness result.
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Theorem 13.23. For any rational number p > 1, Problem 13.4 is NP-complete.

Proof. The NP-membership of the problem was verified above. So let now 1 < p = k
d be

arbitrary but fixed. We distinguish between the cases p = 2 and p ̸= 2.
Assume first that p ̸= 2. We prove the claimed NP-hardness by describing a polynomial

reduction of the H(k, d)-coloring problem (in terms of graph homomorphisms) to Problem
13.4 with p = k

d . To do so, given any graph G as an instance of the H(k, d)-coloring
problem, we construct (in polynomial time) a graph Gk,d of size polynomial in v(G) and
prove that G maps to H(k, d) if and only if vac(Gk,d) ≤ k

d , which is equivalent to Gk,d

admitting an arboreal (k, d)-coloring.
The graph Gk,d is obtained from G by replacing any edge e ∈ E(G) by a bunch of 2k

parallel paths of length I(k, d)− 1 each connecting the end vertices of e. The vertex sets
of different replacement-paths are disjoint except for common end vertices.

To prove the first direction of the claimed equivalence, assume there is a graph homo-
morphism φ : V (G) → Zk = V (H(k, d)). This means that for any edge e = xy ∈ E(G),
φ(x) ̸= φ(y) are contained in a subset A(e) ⊆ Zk of size I(k, d) which is not contained
in a cyclic subinterval of Zk of size d. We now define a coloring c : V (Gk,d) → Zk of
Gk,d as follows: Any vertex v ∈ V (Gk,d) originally contained in G gets color c(v) := φ(v).
For any replacement-path P of an edge e ∈ E(G), we assign all the I(k, d) − 2 elements
of A(e) \ {φ(x), φ(y)} to the I(k, d) − 2 internal vertices of P (in arbitrary order). We
claim that this defines an arboreal (k, d)-coloring of Gk,d: For any cycle C in Gk,d, V (C)
contains the vertex set of a whole replacement-path of an edge e ∈ E(G), and thus
c(V (C)) ⊇ A(e). As A(e) is not contained in any cyclic subinterval of Zk of size d, the
same is true for c(V (C)). This proves the validity of c as an arboreal (k, d)-coloring and
we conclude vac(Gk,d) ≤ k

d .
To prove the reverse implication, assume vac(Gk,d) ≤ p = k

d , i.e., Gk,d admits an
arboreal (k, d)-coloring c. We define φ : V (G) → Zk = V (H(k, d)) by restriction of c
to the vertices originally contained in G. We claim that this defines a graph homomor-
phism. To prove this, let e = xy ∈ E(G) be an edge. Any of the 2k replacement-
paths of e in Gk,d receives a non-empty subset of Zk of colors according to c. Ap-
plying the pigeon-hole principle we find a pair P1(e) ̸= P2(e) of replacement-paths of
e such that c(V (P1(e))) = c(V (P2(e))). As the union of P1(e) and P2(e) forms a cy-
cle in Gk,d, according to the definition of an arboreal (k, d)-coloring, it follows that
c(V (P1(e))) ∪ c(V (P2(e))) = c(V (P1(e))) is not contained in a cyclic subinterval of Zk

of size d and is of size at most |c(V (P1(e)))| ≤ |V (P1(e))| = I(k, d). By definition of
I(k, d), this implies |c(V (P1(e)))| = I(k, d). Consequently, all the I(k, d) colors assigned
to the vertices of P1(e) are pairwise distinct, and thus, φ(x), φ(y) ∈ c(V (P1(e))) are dis-
tinct. According to the definition of H(k, d), this implies that φ(x)φ(y) forms an edge in
H(k, d), i.e., φ indeed is a graph homomorphism mapping G to H(k, d).

We finally conclude the correctness of the reduction. For the NP-hardness, it remains
to verify that the H(k, d)-coloring problem is NP-hard. According to Theorem 13.2, it
suffices to prove that H(k, d) is non-bipartite. As p = k

d ̸= 2, we either have k
d < 2, which

implies I(k, d) =
⌈︂

k
k−d

⌉︂
≥ 3, and thus, H(k, d) contains a clique of size at least 3 and is thus

not bipartite. Otherwise, we have k
d > 2 and thus, χ(H(k, d)) = χ(C(k, d)) = ⌈p⌉ ≥ 3.

This finally yields the claimed NP-hardness (and thus -completeness) in the case p ̸= 2.
In the remaining case of p = 2, deciding Problem 13.4 is the same as deciding whether

a given graph G fulfills va(G) ≤ 2. However, it is not hard to see that a planar cubic
3-connected graph G admits a Hamiltonian cycle if and only if its planar dual graph
G∗ admits vertex arboricity at most 2 (cf. [HS89]). Consequently, the NP-hardness of



274 CHAPTER 13. FRACTIONAL AND CIRCULAR COLORINGS

the decision problem 13.4 in this case follows from the NP-hardness of the Hamiltonicity
problem restricted to planar cubic 3-connected graphs [GJ90].

13.5 Conclusion
The complexity results achieved in this chapter together with the results by Feder, Hell,
and Mohar [FHM03], clarify our view on fractional and circular coloring parameters related
to acyclic vertex sets in digraphs and graphs in terms of computational complexity. Maybe
surprisingly, for all of the considered coloring notions, deciding p-colorability remains NP-
complete even for values of p arbitrarily close to 1. Looking at related notions such as the
fractional and circular arboricity of graphs, which can be computed in polynomial time
using the Matroid Partitioning Algorithm (cf. [SU97], Chapter 5), those results show that
circular and fractional arboricities behave differently with respect to complexity depending
on whether they are based on vertices or edges.

Theorem 13.21 unfortunately does not treat the case p = 2. Thus, we cannot rule
out the possibility that there is some clever way to algorithmically decide whether a given
digraph has fractional dichromatic number at most 2. Still, the author strongly believes
that it is possible to prove NP-completeness for this case as well.

A natural question left open in this chapter concerns restrictions of the treated decision
problems to specialized inputs. An interesting special case consists of planar (di)graphs.
It is clear that deciding the problems 13.1, 13.3 and 13.4 will now be trivially polynomial-
time solvable for large values of p, as for instance, the 2-Color-Conjecture (Conjecture 8.1)
states that oriented planar digraphs are 2-dichromatic, while an upper bound of 2.5 for
each of the three notions studied in this chapter is known for oriented planar (di)graphs
(cf. [WZLW11],[HS19]).

It appears to be hard to use the reductions provided in this chapter to achieve hard-
ness results for planar inputs. This is mostly due to the fact that the complexity of
H-coloring planar graphs is very poorly understood. While the K4-coloring problem is
trivially contained in P (output true), only for few graphs H such as odd cycles (cf. [MS09])
hardness results are known, while for many non-trivial graphs such as the Clebsch graph,
the H-coloring problem becomes solvable in polynomial time. Another problem is that the
l-split-operation used in Section 13.3 for fractional colorings does not preserve planarity.

Nevertheless, we may deduce the following special cases:

Theorem 13.24.

• Deciding whether a given oriented planar digraph D fulfils χ⃗∗(D) ≤ 3
2 is NP-complete.

• Deciding whether a given simple planar graph G fulfils vac(G) ≤ 3
2 is NP-complete.

Proof. Both problems are clearly in NP(using acyclic/arboreal (3, 2)-colorings as certifi-
cates). Note that HC⃗(3,2) = K3 for the graph defined in the proof of Theorem 13.16 and
H(3, 2) = K3 for the auxiliary graph defined in Section 13.4. It is easy to see that the
digraph DG defined in the proof of Theorem 13.16 as well as the graph G3,2 as defined in
the proof of Theorem 13.23 are both planar and simple for any planar and simple graph G.
Deciding K3-colorability of planar graphs can thus be polynomially reduced to each of the
above decision problems. The NP-hardness of 3-colorability of planar graphs (cf. [GJ90])
now yields the claim.

It would be furthermore interesting to study the notion of circular homomorphisms
in more detail. Natural questions consider for instance descriptions of the cores of such
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homomorphisms, which enable the study of a corresponding homomorphism order. For
graphs, this is a wide and active field of research, we refer to the book by [HN04] for a
comprehensive survey of the topic.

In this context, a graph G is called a core if it does not admit a graph homomorphism
to a proper subgraph. Equivalently, one may define a core to be a graph G such that every
homomorphism φ : V (G)→ V (G) is a bijection. The interest in cores comes from their role
as minimal representatives of homomorphic equivalence classes of graphs. Harutyunyan,
Kayll, Mohar, and Rafferty [HKMR12] considered the following corresponding definition
of digraph cores: A digraph D is called an acyclic core, if every acyclic homomorphism
φ : V (D) → V (D) of D to itself is a bijection. Similarly, we here define a digraph D to
be a circular core if any circular homomorphism φ : V (D)→ V (D) is bijective. We want
to conclude with some first observations concerning this notion.

Proposition 13.25.

• A graph G is a core if and only if
↔
G is a circular core.

• If D is a circular core, then D is an acyclic core.

• For any integers k ≥ d ≥ 1, the circulant digraph C⃗(k, d) is a circular core if and
only if k and d are coprime.

Proof.

• This is a direct consequence of Proposition 13.11.

• This follows from Proposition 13.13.

• Assume for the first direction that gcd(k, d) = l > 1, let k′ := k
l , d′ := d

l and consider
the mapping φ : Zk → Zk′ defined by φ(i) := ⌊ i mod k

l ⌋ for all i ∈ Zk. We claim that
this defines a circular homomorphism from C⃗(k, d) to C⃗(k′, d′). However, φ is easily
seen to be an acylic (k′, d′)-coloring of C⃗(k, d), and according to Proposition 13.12,
this already means that φ is a circular homomorphism. As C⃗(k′, d′) is isomorphic
to the proper subdigraph of C⃗(k, d) induced by the vertices il, i = 0, . . . , k′ − 1, this
proves that C⃗(k, d) is circularly homomorphic to a proper induced subdigraph and
thus no circular core.
To prove the converse, let gcd(k, d) = 1 and assume that, contrary to the asser-
tion, C⃗(k, d) admits a circular homomorphism φ : C⃗(k, d) → C⃗(k, d) which is not
bijective. Let D be the subdigraph of C⃗(k, d) induced by Im(φ). Then according to
Proposition 13.14, we have k

d = χ⃗∗(C⃗(k, d)) ≤ χ⃗∗(D) ≤ χ⃗∗(C⃗(k, d)) = k
d . However,

referring to Theorem 13.6 (i), we also know that k
d = χ⃗∗(D) can be represented as

a fraction with numerator at most v(D) < v(C⃗(k, d)) = k. This finally contradicts
the assumption that k and d are coprime, and we deduce the claimed equivalence.
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Chapter 14

Fractional Colorings of Planar
Digraphs

14.1 Introduction
Graphs and digraphs considered in this chapter are simple.

In this last (and relatively short) chapter, we continue the topic of fractional colorings of
digraphs which we introduced in Chapter 13. In this chapter, however, we are particularly
concerned with bounds on the fractional dichromatic number of planar digraphs.

For undirected planar graphs, the 4-Color-Theorem yields a tight upper bound of 4 on
the (circular, fractional) chromatic number. A classical example achieving tightness is the
K4. One reason why the K4 achieves the maximum (circular, fractional) chromatic number
among all planar graphs might be that it is very compact in the sense that many edges
and triangles are concentrated on a small set of vertices. In contrast, sparse graphs such as
forests, which do not contain cycles at all, can be easily 2-colored. In general, when trying
to color small graphs by hand, one might get the impression that in most cases the only real
problem restraining us from properly coloring that graph with few colors is the existence of
many short cycles and local forcing patterns which eventually yield a conflict. Conversely,
one may think that the chromatic number of a graph should be small given its girth (i.e.,
the length of its shortest cycle) is sufficiently large. Maybe surprisingly, this intuition is
well-known to be completely misleading for general graphs: Erdős [Erd59] proved in 1959
that for every pair k, g of natural numbers there exists a graph G of chromatic number at
least k and girth at least g. However, the intuition might still apply to the setting of planar
graphs. Namely, a well-known result of Grötzsch [Grö59] asserts that every planar graph
of girth at least four (i.e., without triangles) is properly 3-colorable. Even with larger girth
requirements, one clearly cannot hope to improve this bound on the chromatic number, as
shown by long odd cycles. However, we have seen in Chapter 13 that the fractional and
circular chromatic number of very long odd cycles approaches 2. It is therefore reasonable
to expect that there is a (smallest) function g : N→ N such that for every k ∈ N, a planar
graph of girth at least g(k) satisfies χc(G) ≤ 2 + 1

k . In that sense, Grötzsch’s Theorem
asserts that g(1) = 4. A challenging and quite famous open problem raised in 1984 by
Jaeger states a generalization of Grötzsch’s result as follows.

Conjecture 14.1 (cf. Jaeger [Jae84]). Let k ∈ N. Then g(k) ≤ 4k, i.e., every planar
graph G of girth at least 4k satisfies χc(G) ≤ 2 + 1

k .

The existence of g(k) can be quite easily observed. It is not difficult to show that every
2-connected planar graph G of sufficiently large girth contains a long subpath all whose
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vertices are of degree 2, and repeatedly removing such paths one can easily construct a
circular coloring inductively. The best known upper bound on g(k) for general k currently
is g(k) ≤ 6k and follows from the paper of Lóvasz, Thomassen, Wu and Zhang [LTWZ13]
on modulo k-orientations.

Also for the dichromatic number, the only “conflicts” that can occur in a vertex-
coloring are directed cycles all in one color. Following the arguments from the above
discussion, it is natural to expect that acyclic colorings would require fewer colors provided
we exclude the existence of very short directed cycles. An extension of the negative result
by Erdős [Erd59] to directed graphs was proved first by Harutyunyan and Mohar [HM12b]
and later strengthened by Harutyunyan, Kayll, Mohar and Rafferty [HKMR12]: For every
k, g ∈ N there exists a digraph D whose underlying graph U(D) has girth at least g but
still its dichromatic number exceeds k.

Again, the situation for planar digraphs is different. That the exclusion of short di-
rected cycles may help to bound the dichromatic number was demonstrated by Li and
Mohar [LM17], who proved that every planar digraph with digirth at least 4 is acyclically
2-colorable (cf. Theorem 8.1 in Chapter 8). As the star dichromatic number of the directed
k-cycle C⃗k is k

k−1 , it again seems reasonable to expect that planar digraphs of sufficiently
large digirth should admit acyclic (1 + ε)-colorings for any ε > 0. The following very
explicit bound was conjectured in [HS19].

Conjecture 14.2. Every planar digraph D of directed girth at least g ≥ 3 satisfies

χ⃗∗(D) ≤ g − 1
g − 2 = 1 + 1

g − 2 .

Note that the statement of this conjecture means that D admits an acyclic (g−1, g−2)-
coloring, which in turn is equivalent to the following statement.

Conjecture 14.3. The vertices of every planar digraph D of directed girth at least g ≥ 3
can be (g− 1)-colored such that every directed cycle in D contains a vertex of every color.

The case g = 3 of the conjecture amounts exactly to the 2-Color-Conjecture.
Conjecture 14.3 should be expected to be quite difficult in general, even qualitatively.

The reason for that is the following planar version of a well-known open problem in digraph
theory known as Woodall’s conjecture.

Conjecture 14.4 (cf. [Egr17]). There exists a function f : N → N such that the arcs of
every planar digraph D of directed girth at least f(k) ≥ 3 can be k-colored such that every
directed cycle in D contains an arc of every color.

While it is easy to partition the arc-set of any digraph into two directed cycle-free
subsets1 (and hence, f(2) = 2), Conjecture 14.4, to the best of the author’s knowledge,
remains open already when k = 3, and is therefore expected to be quite difficult.

On the other hand, if Conjecture 14.3 holds true, then for k ≥ 2 every planar digraph
of digirth at least k + 1 admits a vertex-coloring with k colors such that every directed
cycle contains vertices of all k colors. Hence, coloring every arc of the digraph with the
color of its tail would give rise to a k-coloring of the arcs of D such that every directed
cycle contains all colors. Hence, Conjecture 14.3 would imply Conjecture 14.4 and show
that f(k) ≤ k + 1 for every k ≥ 3.

Unfortunately, in this chapter we do not provide new results towards the resolution
of Conjecture 14.4. However, we make progress towards a weakening of Conjecture 14.2,
where we replace the star dichromatic number by the fractional dichromatic number.

1Consider a linear order of the vertices of the digraph. Then the sets of forward-arcs and backward-arcs
are both directed cycle-free.
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Conjecture 14.5. Every planar digraph D of directed girth at least g ≥ 3 satisfies

χ⃗f (D) ≤ g − 1
g − 2 = 1 + 1

g − 2 .

If true, then the bound claimed in Conjecture 14.2 would be optimal, as observed
in [HS19]: For every ε > 0, g ≥ 3 there exists a planar digraph D of directed girth g such
that χ⃗f (D) > g−1

g−2 − ε.
As the main contributions of this chapter, we (1) show a qualitative version of Con-

jecture 14.5 and (2) verify it in a stronger form for strongly planar digraphs. Recall from
Chapter 8 that a digraph D is called strongly planar if it can be embedded into the plane
without crossings such that the incident out- and in-arcs of any vertex in D form intervals
in the rotational order around this vertex.

Theorem 14.1. Let g ≥ 6 and let D be a planar digraph of directed girth at least g. Then

χ⃗f (D) ≤ g

g − 5 .

Theorem 14.2. Let D be a strongly planar digraph of directed girth exactly g ≥ 2. Then

χ⃗f (D) = g

g − 1 .

Interestingly, Theorem 14.2 implies that the fractional dichromatic number can be
computed in polynomial time for strongly planar digraphs2, which stands in contrast to
the negative complexity result (Theorem 13.10) from Chapter 13.

For the proofs of Theorems 14.1 and 14.2, which are given in Section 14.2 below,
we combine results from the theory of so-called clutters with a classical min-max-result
obtained by Lucchesi and Younger.

14.2 Proofs

Let us prepare the proofs of Theorems 14.1 and 14.2 by describing some necessary back-
ground from Clutter Theory.

A clutter is defined to be a collection C of subsets of a finite ground set S such that
C1 * C2 for any C1 ̸= C2 ∈ C. We refer to the first chapter of [Cor01] for a short and
comprehensible introduction to the topic.

Associated with any clutter C over the ground set S we have a clutter matrix MC whose
columns are indexed by the elements of S and whose rows correspond to the characteristic
vectors of the members of C with respect to S. The following primal-dual pair (14.1), (14.2)
of linear optimization programs resembles natural covering and packing problems related
to clutters. Here, w ≥ 0 denotes a fixed row vector whose entries are non-negative real
numbers or possibly +∞, and 1 denotes the vector with all entries equal to 1.

min {wx | x ≥ 0, MCx ≥ 1} (14.1)
= max {y1 | y ≥ 0, yMC ≤ w} . (14.2)

2This is because the directed girth of a given digraph D can be computed in polynomial time as follows:
For every arc e = (u, v) ∈ A(D), apply one of the standard polynomial-time algorithms to determine the
length of a shortest directed v-u-dipath in D. This number plus 1 is then the length of a shortest directed
cycle through e. Taking the minimum of these values over all arcs e ∈ A(D), we obtain the digirth of D.
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In the following, we introduce a number of important notions for clutters related to
integral solutions of the linear programs (14.1) and (14.2).

Given a clutter C, we will say that it admits the Max-Flow-Min-Cut-Property (MFMC
for short) if, for any non-negative w with integral entries, there exists a primal-dual pair
of integral optimal solutions to the linear programs (14.1) and (14.2).

We say that C packs if the same holds true at least for w = 1, and we call C packing
if an integral primal-dual solution exists for all vectors w with entries 0, 1 or +∞.

It is not hard to see that if a clutter has the MFMC-property, it is packing, and, clearly,
any packing clutter also packs. While there are examples of clutters that pack but do not
have the packing property, it is a famous open problem due to Conforti and Cornuejols to
show that, in fact, the packing property and the MFMC-property are equivalent.

Conjecture 14.6 (Conforti and Cornuejols, cf. [Cor01]). A clutter has the packing prop-
erty if and only if it has the MFMC property.

For the following, we will furthermore need the notion of idealness for clutters. A
clutter is said to be ideal if, for any real-valued vector w ≥ 0, the primal linear program
(13.1) has an integral optimal solution vector x. It is not hard to show that the MFMC-
property implies idealness of a clutter.

A famous example of a clutter related to digraphs is the clutter of all directed bonds
of a fixed directed graph D. This clutter is actually MFMC for every digraph D, as stated
by the following classical min-max-relation proved by Lucchesi and Younger.

Theorem 14.3 (Lucchesi and Younger [LY78]). Let D be a digraph and w : A(D) → N0
a non-negative integral arc-weighting. Then the minimum weight of a dijoin in D equals
the maximum size of a collection3 of directed bonds in D so that any arc e ∈ A(D) is
contained in at most w(e) of them.

Using planar duality of directed graphs as described e.g. in Chapter 4, Theorem 14.3
restricted to planar digraphs reformulates as follows.

Corollary 14.4. Let D be a planar digraph and w : E(D) → N0 a non-negative integral
arc-weighting. Then the minimum weight of a feedback arc-set in D equals the maximal
size of a collection of directed cycles containing any arc e ∈ A(D) at most w(e) times.

Corollary 14.4 in other words states that for any planar digraph D, the clutter of all
arc-sets of directed cycles in D is MFMC (and thus ideal).

Corollary 14.4 can also be used to prove the following packing result.

Proposition 14.5. Let D be strongly planar. Then for any non-negative integral vertex-
weighting w : V (D) → N0, the minimal weight of a feedback vertex set in D equals the
maximal size of a collection of (induced) directed cycles in D together containing any
vertex x ∈ V (D) at most w(x) times.

Proof. We construct an auxiliary splitting-digraph4 D′ by replacing each vertex x ∈ V (D)
by a directed arc ex ∈ A(D′) in such a way that all the incoming arcs originally incident to
x in D are now incident to tail(ex) while all the outgoing arcs of x in D are now emanating
from head(ex). By contracting the (butterfly-contractible) arcs ex for each x ∈ V (D), it
is clear that the directed cycles in D′ are in one-to-one correspondence with the directed
cycles of D. Moreover, the vertex-intersection of a pair of directed cycles in D yields a

3A collection is a multi-set, i.e., we may take the same elements multiple times into the collection.
4This digraph is the same as the 2-split of D as introduced in Definition 13.6
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subset of the arc-intersection of the corresponding directed cycles in D′. It is furthermore
easy to see from the fact that the outgoing and incoming arcs incident to any vertex in D
are separated in the cyclic ordering in any strongly planar embedding, that D′ indeed is
a planar digraph. We now define a corresponding weighting of the arcs of D′ by setting
w′(ex) := w(x) for any x ∈ V (D) and w′(e) := M for a large natural number M ∈ N for
any other arc of D′. If we choose M large enough, we find that the minimal arc-weight of
a feedback arc set in D′ is exactly the minimal vertex-weight of a feedback vertex set in D.
Corollary 14.4 now tells us that the latter is the same as the maximal size of a collection
of directed cycles in D′ in which any ex is contained at most w(x) times while any other
arc is contained at most M times. As the latter condition becomes redundant for M large
enough, this again is the same as the maximal size of a collection of directed cycles in D
in which any vertex x ∈ V (D) is contained at most w(x) times. As we may assume all the
directed cycles in an optimal collection to be induced, this implies the claim.

As a consequence, the clutter of vertex sets of induced directed cycles of a strongly
planar digraph D is also MFMC and ideal.

Given any clutter (S, C), we may define a corresponding dual clutter (called blocking
clutter and denoted by (S, C∗)) which contains all the inclusion-wise minimal subsets
X ⊆ S with the property that X ∩ C ̸= ∅ for all C ∈ C. It is clear that the blocking
clutter of the clutter of arc sets of directed cycles (vertex sets of induced directed cycles)
of a digraph is just the clutter of inclusion-wise minimal feedback arc (vertex) sets. To
proceed, we will need the following theorem of Lehman.

Theorem 14.6 (Lehman, [Leh79], and [Cor01], Theorem 1.17). A clutter is ideal if and
only if its blocking clutter is.

Applying Lehman’s theorem to the clutter of arc-sets of directed cycles in a planar
digraph and to the clutter of vertex-sets of induced directed cycles in a strongly planar
digraph, this implies that the corresponding linear optimization problems (14.1) admit
integer optimal solutions x ≥ 0 for any real-valued vector w ≥ 0. By setting w := 1T in
both cases, we obtain the following two results.

Corollary 14.7. Let D be a planar digraph and let g be the digirth of D. Then there is
a collection F1, . . . , Fm of feedback arc sets of D and a weighting y1, . . . , ym ∈ R≥0 such
that y1 + · · ·+ ym = g and for any arc e ∈ A(D), we have

∑︁
{j|e∈Fj} yj ≤ 1.

Corollary 14.8. Let D be a strongly planar digraph and let g be the digirth of D. Then
there is a collection F1, . . . , Fm of feedback vertex sets of D and a weighting y1, . . . , ym ∈
R≥0 such that y1 + · · ·+ ym = g and for any vertex v ∈ V (D), we have

∑︁
{j|v∈Fj} yj ≤ 1.

In the following, let us only show how to derive Corollary 14.8, as the proof of Corol-
lary 14.7 is completely analogous.

Proof of Corollary 14.8. Let x ≥ 0 be an integer-valued optimal solution of the linear
program (14.1) corresponding to the clutter of inclusion-wise minimal feedback vertex
sets of D and w = 1T . It is easy to see from the definition of the linear program (14.1)
that, in any optimal solution, we have x ≤ 1 (component-wise), as otherwise one could
replace x with min {x, 1} and obtain a better solution to the linear program, contradicting
the optimality. Consequently, we know that x has only 0 and 1 as entries and is thus
determined by its support X := supp(x) ⊆ V (D).

From the conditions in the program (14.1) we derive that X has a common intersection
with any feedback vertex set of D and thus must contain a directed cycle (as V (D) \X
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cannot be a feedback vertex set). Hence wx = |X| ≥ g. On the other hand, the {0, 1}-
vector whose support is given by the vertex set of some directed cycle of length g clearly
has value g and also satisfies the conditions of the program, which makes it an optimal
solution. Consequently, also the optimal value of the dual program (14.2) is g and thus
there is an optimal solution vector y ≥ 0 with y1 = g. This implies the claim.

We now conclude this section by giving the proofs of the Theorems 14.1 and 14.2.

Proof of Theorem 14.1. As g ≥ 3, D is an oriented digraph. Let F1, . . . , Fm, y1, . . . , ym

be as given by Corollary 14.7. Use the 5-degeneracy of the underlying simple planar
graph U(D) to derive an ordering v1, . . . , vn, n := v(D) of the vertices so that for each
i ∈ {1, . . . , n}, vi has degree at most 5 in Di := D[v1, . . . , vi]. For each vi, let c(vi) denote
the set of j ∈ {1, ..., m} so that vi has an incident arc in Fj ∩A(Di). Then clearly∑︂

j∈c(vi)
yj ≤

∑︂
e∈EDi

(v)

∑︂
j:e∈Fj

yj ≤ dDi(vi) ≤ 5

for each vi. Furthermore, the vertex set Xj := {x ∈ V (D)|j /∈ c(x)} is acyclic in D for all
j = 1, . . . , m: In any directed cycle C in D we find an arc contained in Fj , and thus, j is
contained in at least one of the c-sets of its end-vertices.

We now define an instance of the linear optimization program (13.1) defining χ⃗f (D)
according to xA = iA

g−5 , where iA =
∑︁

j∈{1,...,m}:A=Xj
yj for each A ∈ A(D). Then those

variables are non-negative and for each vertex v, we have∑︂
A∈A(D,v)

iA =
∑︂

j∈{1,...,m}:v∈Xj

yj =
∑︂

j /∈c(v)
yj =

m∑︂
j=1

yj −
∑︂

j∈c(v)
yj ≥ g − 5.

Hence, this is a legal instance proving χ⃗f (D) ≤
∑︁

A∈A
iA

g−5 =
∑︁m

j=1 yj

g−5 = g
g−5 .

Proof of Theorem 14.2. Let D be strongly planar and let g ≥ 2 denote the directed girth
of D. We show that χ⃗f (D) = g

g−1 . First of all, the fractional dichromatic number clearly
cannot increase by taking subdigraphs, and so we have χ⃗f (D) ≥ χ⃗f

(︂
C⃗g

)︂
= g

g−1 . It
remains to prove χ⃗f (D) ≤ g

g−1 . For this purpose we construct a feasible instance of the
linear optimization program (13.1) with value at most g

g−1 . To do so, let F1, . . . , Fm be a
collection of feedback vertex sets as given by Corollary 14.8 with a corresponding weighting
y1, . . . , ym ≥ 0. The complements V (D) \ Fj are clearly acyclic for any j ∈ {1, . . . , m}.
For any acyclic set A ∈ A(D), we now define the value of the corresponding variable to be

xA := 1
g − 1

∑︂
{j|A=V (D)\Fj}

yj ≥ 0.

We then have for any vertex v ∈ V (D):

∑︂
A∈A(D,v)

xA = 1
g − 1

∑︂
{j|v /∈Fj}

yj = 1
g − 1

⎛⎜⎜⎜⎜⎜⎜⎝
m∑︂

j=1
yj⏞ ⏟⏟ ⏞

=g

−
∑︂

{j|v∈Fj}
yj

⏞ ⏟⏟ ⏞
≤1

⎞⎟⎟⎟⎟⎟⎟⎠ ≥
g − 1
g − 1 = 1.

So this is indeed a feasible instance of the program (13.1) and we obtain the desired bound

χ⃗f (D) ≤
∑︂

A∈A(D)
xA = 1

g − 1

m∑︂
j=1

yj = g

g − 1 .



Appendix A

Open Problems Collection

“In mathematics the art of proposing a question must be held of higher value than solving it”

David Hilbert

In this conclusive part of the thesis I would like to list some of the conjectures and
open problems raised in this thesis, which I personally consider specially intriguing and
interesting, and to explicitly restate them here once again.

With this problem list I hope that it will be easier for the readers to get an impression
of the current state of the research on the problems discussed in this thesis without having
to go through many details in the respective chapters. I would be very delighted to see
progress being made on the resolution of any of the problems.

Open Problems from Chapter 2: A subdivision of a digraph is any digraph obtained
from it by replacing its arcs with internally vertex-disjoint directed paths connecting the
endpoints in the same directions.

Problem A.1. Does there exist α > 0 such that for every integer ℓ ≥ 3 every digraph
with minimum out-degree at least αℓ contains a subdivision of any orientation of Cℓ?

Conjecture A.1. There exists a function f : N → N such that the following holds for
every k ∈ N. If D is a digraph with minimum out-degree f(k), then there exists a digraph
D′ of minimum out-degree k such that D contains a subdivision of D′ in which every
subdivision-path has length at least two.

Conjecture A.2. There exists a function f : N → N such that the following holds for
every integer k ∈ N. If a digraph has minimum out-degree f(k), then we can partition its
vertex set into two non-empty parts A and B such that every vertex in A has at least k
out-neighbors in A and at least one out-neighbor in B.

Problem A.2. Does there exist K ∈ N such that every digraph with minimum out-degree
K contains 3 distinct directed cycles C1, C2, C3 such that C1 and C3 are disjoint, C1 and
C2 share exactly one vertex u, C2 and C3 share exactly one vertex v, and u ̸= v?

Problem A.3. Does there exist K ∈ N such that every strongly K-arc-connected digraph
contains 3 distinct directed cycles such that they pairwise share exactly one vertex and
such that the shared vertices are pairwise distinct?

Problem A.4. Does there exist K ∈ N such that every strongly K-vertex connected
digraph contains two vertices x ̸= y and four pairwise internally vertex-disjoint dipaths,
two from x to y and two from y to x?
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Open Problems from Chapter 3:

Conjecture A.3. For every k ∈ N there exists s(k) ∈ N such that every strongly s(k)-
vertex-connected digraph contains k vertex-disjoint directed cycles of even lengths.

Open Problems from Chapter 4:

Problem A.5. What is the computational complexity of partitioning the arc-set of a
planar Eulerian digraph into the smallest number of directed cycles?

Problem A.6. What is the computational complexity of the following problem: Given a
planar graph G with an Eulerian subgraph H, determine the smallest number of cycles of
G such that their symmetric difference is H.

Open Problems from Chapter 5: An oriented regular matroid M⃗ is called non-
even if it admits a set of elements intersecting every directed circuit an odd number of
times. A GB-minor of an oriented matroid is any oriented matroid obtained from it
by repeatedly deleting arbitrary elements or contracting elements e which are contained
in signed cocircuits of the form (S \ {e}, {e}), i.e., in which e is the only element with a
negative sign. M∗(K⃗m,n) denotes the oriented bond matroid of the digraph K⃗m,n obtained
from the complete bipartite graph Km,n by directing all arcs from one to the other partite
set.

Conjecture A.4. A regular oriented matroid M is non-even if and only if none of its
GB-minors is isomorphic to M∗(K⃗m,n) for some m, n ≥ 2 such that m + n is odd.

Problem A.7. Is there a polynomial-time algorithm that, given as input a digraph D,
decides whether or not D contains an inclusion-wise minimal directed cut of even size?

The dichromatic number χ⃗(D) of a digraph D is the smallest number of colors required
in an acyclic coloring, i.e., a vertex-coloring avoiding monochromatic directed cycles.

Open Problems from Chapter 6: We say that a digraph D contains another digraph
H as a strong minor if H can be obtained from G by repeatedly deleting vertices, arcs or
contracting directed cycles into single vertices.

Conjecture A.5. Every digraph D excluding
↔
Kt as a strong minor satisfies χ⃗(D) ≤ t.

A digraph is said to be k-choosable if for every assignment of color-lists of size k to its
vertices their is a choice of colors from the lists resulting in an acyclic coloring.

Problem A.8. Does there exist f : N → N such that every digraph D excluding
↔
Kt as a

strong minor is f(t)-choosable?

Open Problems from Chapter 7: Given a digraph F , maderχ⃗(F ) denotes the smallest
integer k such that every digraph D satisfying χ⃗(D) ≥ k contains a subdivision of F .

Conjecture A.6. There exists an absolute constant c > 0 such that maderχ⃗(
↔
Kn) ≤ cn2

for every positive integer n.

We say that a digraph F is Mader-perfect if maderχ⃗(F ′) equals the number of vertices
of F ′ for every subdigraph F ′ ⊆ F .

Problem A.9. Give a structural characterization of Mader-perfect digraphs.
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Conjecture A.7. The maximum number m(k) of arcs in a Mader-perfect digraph on k
vertices satisfies m(k) = Θ(k).

Conjecture A.8. Every digraph D with χ⃗(D) ≥ 4 contains three distinct directed cycles
sharing pairwise exactly one vertex such that the shared vertices are pairwise distinct.

Conjecture A.9. Let D be a digraph with χ⃗(D) ≥ 3. Then there is ℓ ≥ 3 such that D
contains a cyclic chain of ℓ directed cycles as follows: There are directed cycles C1, . . . , Cℓ

and pairwise distinct vertices v1, . . . , vℓ such that V (Ci) ∩ V (Ci+1) = {vi}, i = 1, . . . , ℓ
(where ℓ + 1 is identified with 1) and such that V (Ci) ∩ V (Cj) = ∅ whenever i and j are
non-consecutive in the cyclical ordering 1, 2, . . . , ℓ, 1.

Open Problems from Chapter 8: An arc in a digraph is called contractible if it is the
only arc leaving its tail or the only arc entering its head. We say that a digraph D contains
another digraph H as a butterfly-minor if H can be obtained from D by a sequence of
vertex-deletions, arc-deletions and contractions of contractible arcs.

Conjecture A.10. Every digraph D excluding
↔
Kt as a butterfly-minor satisfies χ⃗(D) ≤ t.

Problem A.10. Is there a function f : N → N such that every digraph D excluding
↔
Kt

as a butterfly-minor is f(t)-choosable?

Let G be a graph and H ⊆ G. We say that H is a conformal subgraph of G if both
G − V (H) and H have perfect matchings. A matching minor of a graph G is any graph
obtainable from a conformal subgraph of G by repeatedly picking a vertex of degree two
and simultaneously contracting its two incident edges.

Given a graph G equipped with a perfect matching M , a proper M -coloring of G is
a coloring of the edges of M such that no M -alternating cycle in G uses only matching
edges of the same color. By χ(G, M) we denote the minimum number of colors that can
be used for a proper M -coloring.

Conjecture A.11. Let t ∈ N, let G be a bipartite graph and M an arbitrary perfect
matching of G such that χ(G, M) ≥ t. Then G contains Kt,t as a matching minor.

Let k ∈ N. A graph G is called k-extendable if for every matching S in G with |S| ≤ k
there exists a perfect matching M of G such that S ⊆M .

Problem A.11. Is there a function f : N → N such that every f(t)-extendable bipartite
graph G contains Kt,t as a matching minor?

Open Problems from Chapter 9: A tournament H is called a hero if every tourna-
ment with sufficiently large dichromatic number contains H as a subdigraph. Heroes were
characterized in [BCC+13]. A digraph is called locally out-complete if the out-neighbors
of any vertex are pairwise adjacent.

Conjecture A.12. If H is a hero, then every locally-out-complete oriented graph of suf-
ficiently large dichromatic number contains H as a subdigraph.

Conjecture A.13. Every locally-out-complete oriented graph of dichromatic number 4
contains K⃗s

4, the unique strongly connected tournament on four vertices, as a subdigraph.
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Open Problems from Chapter 11: A complete arboreal coloring of an undirected
graph G is a vertex-coloring without monochromatic cycles such that for every pair of
colors i, j used in the coloring, there is a cycle in G using only colors i and j. The a-vertex
arboricity ava(G) is the largest number of colors that can be used in a complete arboreal
coloring of G. In Chapter 11 we prove that for every k ∈ N there exists a smallest integer
f(k) such that every simple graph G with ava(G) ≤ k admits a set of at most f(k) vertices
whose deletion turns G into a forest. Our best lower bound on f(k) is quadratic and the
best upper-bound non-polynomial.

Problem A.12. Determine the asymptotic growth of f(k).

Open Problems from Chapter 12:

Problem A.13. Let H be a 6-regular 6-uniform hypergraph (that is, every hyperedge
contains 6 vertices and every vertex is contained in 6 hyperedges). Is there a 3-coloring of
the vertices of H such that no hyperedge contains four vertices of the same color?

Problem A.14. Let D be a 5-regular digraph, that is, every vertex has in- and out-degree
exactly 5. Is there a 5-coloring of the vertices of D such that every vertex in D sees at
most one vertex of his own color?

Open Problems from Chapter 14:

Conjecture A.14. Let D be a planar digraph in which every directed cycle has length at
least g ∈ N. Then D admits a (g − 1)-vertex-coloring such that every directed cycle in D
contains a vertex of every color.
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