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Abstract

This work considers two major challenges of modern wireless communication. The first
challenge is the analysis and management of interference in multi-user wireless channels.
The other challenge is to provide information-theoretic security for future wireless networks.
The second chapter considers the first challenge, in particular, the Gaussian interfering
multiple access channel (G-IMAC). This channel model is an example of a multi-user
interference-affected network. However, even for more simple models, such as the Gaussian
interference channel, it is hard to derive good upper bounds and develop achievable schemes
to show information-theoretic capacity results. In fact, a complete solution of that channel
model is an open problem for over 40 years. However, recent developments have shown
that deterministic models can approximate these Gaussian models within a constant-bit
gap. These deterministic models view input signals as binary expansion and cut-off the bits
which are corrupted by noise. They, therefore, yield insights into the high signal-to-noise
regime, where the noise effected signal part has just a minor contribution to the overall
capacity and emphasizes the contribution of interference. We, therefore, use the same
strategy and look into deterministic approximations of the G-IMAC. We find achievable
schemes and converse bounds for arbitrary interference strength and some channel-gain
symmetry assumptions. Moreover, we transfer those approximate results to the G-IMAC
and show a constant-gap capacity result for this channel model. The most interesting
outcome of this work is, that the G-IMAC has multi-user gain. This means that for two
users in each cell, half of the interference strength can be used for communication. This is in
contrast to the classical Gaussian interference channel (G-IC), where for example treating
interference as noise (TIN) is optimal under certain conditions. The G-IMAC, therefore,
has an increase in degrees-of-freedom, compared to the G-IC. Chapter 3 considers the
second challenge, where we look into the Gaussian multiple access wiretap channel. Here
we use similar techniques, namely deterministic approximations, to develop achievable
schemes which hold for asymmetric channel gain configurations. Moreover, we develop
novel upper bounds, again based on previous insights from the G-IMAC, which are within
a constant-gap for certain interference regimes. We then transfer those results to the
Gaussian multiple access wiretap channel. For the upper bound of the Gaussian model, we

use an in-between approximation and some recent results to provide a bridge between the
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techniques for the Gaussian model and the linear deterministic model. In Chapter 4 we also
consider wireless security, but this time we look into key generation scenarios. We develop
a novel deterministic model for key generation with is based on the linear deterministic
and the lower triangular deterministic model. It incorporates the key generation viewpoint,
i.e. the channel gain is used as a source of randomness for key generation and recovers
known results without the tedious state-of-the-art methods. We show that this model gives
insights into the previously challenging task of analysing new key generation techniques.
Moreover, it can help to communicate the results of information theoretic secrecy analysis

with cryptography experts.
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Zusammenfassung

Diese Arbeit behandelt zwei wichtige Herausforderungen der modernen drahtlosen Kom-
munikation. Die erste Herausforderung ist die Analyse und Handhabung von Interferenz
in drahtlosen Mehrnutzerkanélen. Die andere Herausforderung ist informationstheoretische
Sicherheit fiir moderne drahtlose Netzwerke zu schaffen. Das zweite Kapitel behandelt die
erste Herausforderung und im speziellen den Gaussschen Interferenz Mehrfachzugriffska-
nal (Gaussian interfering multiple access channel - G-IMAC). Dieses Kanalmodell ist ein
Beispiel fiir Interferenz behaftete Mehrnutzerkanéle. Jedoch stellt schon die Analyse der
Kanalkapazitdt und damit der Beweis von oberen Schranken und die Entwicklung von Er-
reichbarkeitsresultaten fiir einfachere Modelle wie den Interferenzkanal ein Problem dar.
Tatséchlich ist die allumfassende Kapazitdtsanalyse des Interferenzkanals seit iiber 40 Jah-
ren ungelost. Jedoch haben aktuelle Entwicklungen gezeigt, dass deterministische Modelle
Néherungslosungen fiir diese Gaussian Modelle generieren kénnen. Die deterministischen
Modelle betrachtet dabei die Eingangssignale in ihrer Bindrentwicklung und schneiden die
Bits, oder Stellen, welche rauschbehaftet sind, ab. Diese Methode gibt damit Einsicht in
den Signalbereich welcher durch ein hohes Signal-zu-Rausch Verhéltnis gekennzeichnet ist.
In diesen Bereich spielt der Signalteil, welcher rauschbehaftet ist, nur eine untergeordnete
Rolle in Bezug auf die Kapazitdt und die Wirkung der Interferenz wird in den Vorder-
grund geriickt. Demzufolge ist es naheliegend die gleichen deterministischen Naherungen
fiir den G-IMAC zu verwenden. Darauf aufbauend konnen in dieser Arbeit Erreichbarkeits-
resultate und obere Schranken fiir beliebige Interferenzstiarken und spezielle Symmetrie-
annahmen gezeigt werden. Aufserdem werden diese Naherungsresultate auf den Gausschen
IMAC iibertragen was zu einer Kapagitéitsniaherung fiithrt, welche innerhalb einer Konstan-
te zu der tatséchlichen Kapazitéit liegt. Das interessante Resultat dieser Arbeit ist, dass
der G-IMAC von den Mehrfachzugriff profitiert. Im Speziellen, fiir zwei Nutzer in jeder
Zelle, kann die Halfte der Interferenzstarke fiir Kommunikation benutzt werden. Im Ge-
gensatz dazu steht der klassische Gausssche Interferenz Kanal (G-IC), bei dem treating
interference as noise unter gewissen Voraussetzungen optimal ist und somit der Interfe-
renzbereich nicht genutzt werden kann beziehungsweise wie Rauschen betrachtet wird. Der
G-IMAC hat somit mehr Freiheitsgrade als der G-IC. Das dritte Kapitel behandelt die zwei-

te Herausforderung der Sicherheit fiir drahtlose Kanéle und im speziellen den Gausschen



Mehrfachzugriffsabhorkanal (Gaussian multiple access wiretap channel - G-MAC-WT).
Hier werden @hnliche Techniken benutzt, das heifst deterministische Néaherungsverfahren,
um Erreichbarkeitsresultate fiir asymmetrische Kanalstirken zu zeigen. Weiterhin werden
neue obere Schranken entwickelt, basierend auf den vorherigen Resultaten, welche inner-
halb einer Konstante zu den Erreichbarkeitsresultaten liegen. Diese Resultate werden dann
wieder auf den Gausschen Fall {ibertragen und schaffen eine Kapazitdtsndherung inner-
halb einer Konstante. Dafiir wird ein Zwischennéherungsmodell eingefiihrt und aktuelle
Techniken aus der Literatur verwendet, um eine Briicke zwischen den Techniken fiir das
lineare deterministische Modell und den Gausschen Modell zu schaffen. Das vierten Kapi-
tel behandelt die sichere Schliisselgenerierung in drahtlosen Netzwerken. Es wird ein neues
deterministisches Modell fiir die Schliisselgenerierung entwickelt, welches auf den linearen
deterministischen und den unteren dreieckigen deterministischen Modell basiert. Es in-
kludiert die Schliisselgenerierungssichtweise, i.e. der Kanalfaktor wird als Quelle fiir den
Zufall fiir die Schliisselgenerierung benutzt. Das Modell liefert bekannte Resultate ohne
die langwierigen State-of-the-Art Techniken benutzen zu miissen. Weiterhin ist es in der
Lage Erkenntnisse zu generieren, welche mit Standardmethoden eine Herausforderung dar-
stellten. Somit ist es damit moglich, Schliisseltausch Szenarien zu analysieren welche mit

Standardmethoden nicht bearbeitet werden konnten.
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1. Introduction

1.1. Motivation

The information age is the prevalent period of human history. It is arguably characterized
by advances in storing, processing and transmission of data and therefore information. The
transmission of information is growing, and the global IP traffic is projected to increase
nearly threefold between 2016 and 2021 [Cis17]. The transmission of information is mainly
divided between wireless and optical transport media. However, due to the smartphone
revolution, wireless and smartphone traffic is expected to exceed PC traffic by 2021 |Cis17].
This motivates ongoing research and development to advance information transmission ca-
pabilities of wireless networks. Currently, economic driven research is focusing on the next
wireless systems standard 5G (5-th Generation), which has a target goal of a 1000x in-
crease in total data, which the network can serve, from 4G (LTE-A) to 5G [ABC*14].
The two fundamental key challenges of wireless networks are fading and interference. Fad-
ing is a variation of the channel gain strengths due to multipath signal propagation, dis-
tance attenuation and shadowing by obstacles. While the traditional point of view was
that fading is a harmful phenomenon, it has been shifted and nowadays its been seen as
opportunity [TV05]. An example for this, is its use in physical layer security, which plays
a key role in Chapter 4. The other key challenge is interference. This phenomenon is due
to the inherent nature of wireless communication channels being a shared communication
medium.

Interference networks. Throughout the last decades, extensive research was conducted
to illuminate the impact of interference on the capacity of wireless networks. However,
even for the simplest inference channel model, the two-user interference channel (IC), a
complete capacity characterisation remains an unsolved problem for over 40 years. One
of the major breakthroughs in recent time was an one bit capacity approximation of the
Gaussian IC in [ETWO08|. As a by-product, they defined the notion of generalized degrees
of freedom (GDoF), which can be thought as interference dependent degrees-of-freedom
(DoF). This notion will play a key role in Chapter 2 and Chapter 3. The result motivated
a series of investigations towards constant-gap approximations of more complex models,
e.g. [ASTO08|, [BPT10], [NCL10], [ST11]|, [OEN14]. However, even constant-gap capacity
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approximations seemed to be out-of-sight for most other Gaussian channel models, due
to the noise properties. Those networks can be substantially simplified by removing the
noise, in an appropriate way, which results in deterministic models. Those deterministic
models can provide insights into the nature of the channel model, which in turn can lead to
achievable schemes and upper bounds for the Gaussian equivalents. Two recent examples
are the linear deterministic model (LDM), which emerged with the work of Avestimehr,
Diggavi and Tse in [ADTO07,ADT11| and the lower triangular deterministic model (LTDM),
from [NMA13]. This thesis makes extensive use of those models, and a short introduction
is therefore provided in Section 1.4. Another key technique for interference networks is
the so-called interference alignment (IA), introduced in [MAMKOS§|, [CJO8] and [JSO8|.
It was subsequently used for example in [MOGMAK14]|, which introduced real TA, using
scaled integer lattices. Moreover, it was used in [STO08| for cellular models, introducing the
Gaussian interfering multiple access channel and for example in [MAT10] and [AGK13| for
different assumptions on the channel state information. The goal of TA is to align interfer-
ing signal parts in some dimension to maximize the interference-free signalling dimensions.
These methods can be broadly categorized into two classes: vector-space alignment and
signal-space alignment [NMA13|. Vector-space alignment refers to alignment in classical
signalling dimensions such as time, frequency or multiple antennas. There, channel coeffi-
cients need to show enough variation in the specified dimension to enable those techniques.
If the channel has only a single antenna on both ends and is time-invariant and frequency-
flat, classical IA schemes do not work anymore. In those cases, signal-scale alignment
methods need to be used. These techniques use for example lattice coding to split the
channel in several power levels, which allow for an alignment on those levels. This thesis
makes use of signal-scale alignment in Chapter 2 and Chapter 3.

Security. The technological advances in the information age also gave rise to the emerg-
ing challenge of security. Furthermore, new application scenarios such as the internet of
things and others reinforce the need for security methods. Advances in processing speed
and quantum computation research emphasize the need for security methods which are
unconditional on the capabilities of an potential attacker!. This requirement is fulfilled by
information theoretic security, pioneered by Claude Shannon in [Sha49|, with the defini-
tion of perfect security. The simplest method is to use a one-time pad along with a key
to encrypt and decrypt the message. However, this result had the practical disadvantage,
that it needs long keys. The next breakthrough was made by Wyner in [Wyn75|, in which
he defined the wiretap channel and showed secrecy results under a new weaker asymptotic
definition of secrecy. The used methods utilize inherent channel properties such as noise to

secure communication and are therefore independent of key length. Recent studies defined

Lunlike standard encryption methods, which build on computational complexity



1.2. Contributions and Outline of the Thesis

a multi-user case of the wiretap channel, coined multiple-access wiretap channel (MAC-
WT) in [TYO08a|, which will be analysed in Chapter 3. Moreover, Ahlswede and Csiszar
introduced an alternate view of information theoretic security by defining a source model
for secret key agreement in [AC93]. Wiretap type models and key-agreement models have
a strong relationship since the capacity of the former is generally bigger or equal than
the latter. These key-agreement models assume that both communication ends share a
source of common randomness. Recent results in [YRS06| and [WTS07| have shown that
the wireless channel can be exploited to generate a source of common randomness. The
idea revolves around the phenomenon of reciprocity, which states that the varying channel

2

gains®, are the same in both communication directions. Chapter 4 analysis those scenarios

by introducing a novel deterministic model.

1.2. Contributions and Outline of the Thesis

This thesis analyses and builds on the aforementioned points under the umbrella of using
deterministic approximations of Gaussian networks to establish intuition and new results.
The linear deterministic model, as well as the lower triangular deterministic model, will be
for example used on the interfering multiple-access channel, which is the topic of Chapter 2.
This channel can be thought of as two multiple-access channels which are interfering each
other. Surprisingly, similar techniques can be used to analyse the multiple-access wiretap
channel, which is part of Chapter 3. There, we also use the linear deterministic model as
a first approximation. Moreover, we present a novel deterministic model, which builds on
the LDM and LDTM to analyse key-generation models in Chapter 4.

In Chapter 2 we analyse the Gaussian interfering multiple access channel (G-IMAC).
We start by looking into the deterministic approximation of the model, denoted by LD-
IMAC. We show achievable schemes and provide converse proofs for upper bounds in
the weak interference regime. The achievable schemes can be seen as a form of signal-
scale alignment which acts on the bit-levels of the approximation model and aligns them
orthogonally. We will see that these methods do not lead to constant-gap results. There
is a power dependent gap at certain channel gain parameters, due to the structure of
the scheme. Transferring the achievable schemes to the Gaussian case via layered lattice
codes also transfers this gap, which shows that the mentioned orthogonal bit-level coding
strategies are not strong enough. The lower triangular deterministic model provides an
alternative approximation model, where the fine channel gain is included. This yields an
approximation where the bit-levels are mutually dependent, depending on the resulting

lower triangular channel gain matrices. We will see, that this improved model (LTD-

2which is due to fading
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IMAC) will lead to achievable schemes which reach the converse bound from the previous
LD-IMAC considerations. Moreover, the achievable schemes lead to achievable schemes in
the Gaussian case and we can show a constant-gap capacity result for the whole interference
regime within a certain computable non-outage channel gain set. To limit the number of
cases, all results were proved for the symmetrical case. Moreover, we will shed some light
on the connection between the two approximation models.

The work presented in Chapter 2 has been published in [FW14a, FW14b, FW15a, FW15b,
FW16b] and should be published in [FW17c|.

In Chapter 3 we study the Gaussian two-user multiple access wiretap channel (G-
MAC-WT) and the Gaussian wiretap channel with a helper (G-WT-H). Previous results
on both models were limited to secure DoF (SDoF) results, which were obtained by IA
methods, in particular, real interference alignment. However, real IA is limited to asymp-
totic results and has the disadvantage of being limited to certain non-computable channel
gain parameters and symmetry of the channel gains. We start again by approximating the
models, with the LDM and use bit-level alignment methods, similar to the ones used for the
LD-IMAC. These methods yield achievable schemes which are independent of the channel
gains and give insights into the scaling of the secure rate for asymmetrical channel gains.
One could view the results as generalized SDoF. We can show that the resulting achievable
secrecy rates tend to the s.d.o.f. for vanishing channel gain differences. We present these
achievable schemes for both models and show that they can be transferred to the Gaussian
model with layered lattice codes. Here, the security property stems from an application of
the crypto-lemma to lattices and so-called cooperative jamming. In cooperative jamming,
signals are specifically designed and transmitted such that they minimally overlap at the
legitimate receiver, while aligning at the attacker. Moreover, we will present new converse
bounds for both models. We also present a framework within which we can transfer the
converse bounds of the deterministic model to the Gaussian model.

The work presented in Chapter 3 has been published in [FW16a] and should be published
in [FW17d].

In Chapter 4 we analyse the problem of generating a common secret key between
two legitimate communication partners. It is well-known that wireless channel reciprocity
together with fading can be exploited, by sending known pilot signals back and forth
between the partners to estimate the channel gain. However, the resulting channel gain
can lack sufficient entropy due to insufficient randomness of the fading gains. The idea of
product signalling [WFK16| could provide a remedy, where local sources of randomness are
utilized. However, capacity calculations could not be obtained for the Gaussian channels.
We, therefore, provide a novel deterministic key generation model, which is closely related

to the LTDM. This new model can incorporate pilot and product signalling and recovers
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known capacity results for the high-SNR regime. We derive analytical results for product
signalling with certain channel gain scenarios for the half- and full-duplex case. We see
that the full-duplex case directly connects to previous two-way wiretap results for specific
channel gain scenarios.

The work presented in Chapter 4 has been published in [FW17a] and [FW17b].

Further Results which are not Part of this Thesis:

e The publication [FW14a| also includes results on the linear deterministic interfering
broadcast channel (LD-IBC), which consists of two broadcast channels with mutual
interference. There, we presented an achievable scheme and converse bounds for the
LD-IBC. Moreover, we have shown results for the K-user LD-IMAC, which shows
that for some channel gain configurations, the harmful interference gets divided by
the number of users. The results for the 2-user LD-IBC channel were later transferred
to the Gaussian case in [FW14b]. There we also used layered lattice codes to prove
that the same achievable rates, within a bit-gap, can be achieved in the Gaussian
IBC.

e In a co-authored work with Gerhard Wunder and Reaz Kahn [WFK16] we looked into
secure key generation. In particular, we presented a key generation scheme, which
utilizes the local randomness between two transceivers, coined product signalling.
This is in contrast to state-of-the art techniques, which utilize pilot signalling, i.e.
sending pre-defined pilot signals to measure the channel gain in both directions and
estimate the channel gain between both transceivers for key generation. We present
a short information-theoretical analysis and a practical implementation of a new
algorithm for key exchange. Unfortunately, a thorough information-theoretical anal-
ysis, i.e closed form solutions for the rate-terms, was out-of-reach within the Gaussian
model, which motivated the subsequent works for Chapter 3 in [FW17a] and [FW17b].

e In a co-authored work with Gerhard Wunder, Ingo Roth and Jens Eisert [WRFE17],
the recently proposed Hierarchical Hard Thresholding Pursuit (HiHTP) algorithm
|[RKWE16| was analysed under noise constraints for user activity detection in wireless
systems. Moreover, a performance analysis compares the method with the classical
block correlation detector. The work provides an upper bound for the missed detec-
tion probability and compares the asymptotic behaviour between the new and the
classical method. Moreover, simulations for the probability of identification failure

were performed.
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1.3. Notation, Abbreviations and Definitions

We denote scalars, vectors, matrices and sets by lower case letters, lower case bold letters,
upper case bold letters and calligraphic letters, i.e., x, x, X, X, respectively. For two
vectors a and b, we denote by [a;b] the vector that is obtained by stacking a over b. To
specify a particular range of elements in a vector, we use the notation aj;.; to indicate

that a is restricted to the elements ¢ to j. If ¢ = 1, it will be omitted a;, the same for

ik
J=mn aj). We use upper case letters X, Y, ... to denote random variables which take
values from finite sets X',),... or from infinite sets, e.g. R. We denote the probability
mass function as p(z) = Pr(X = ), for z in (element of) X’ (discrete) and the probability

density function as fx(z) (continuous). Moreover, we use:

Notation

N(p,0) Gaussian (normal) distribution with mean p and variance o

Unif{a, b] Continues uniform distribution between a and b

var(X) Variance of the real-valued random variable X

reX x is an element of X

X xY Cartesian product of the sets X and Y

X" n-th Cartesian product of X

E[X] The expected value of X: >\ xp(x)

min A, The smallest and the largest number of the set

max A

() max{0, -}

[ The absolute value or the cardinality, distinction is made clear in context
|7] Greatest integer not exceeding r, max{m € Z|m < r}

[7] The smallest integer greater than or equal to 7, min{m € Z|m > r}
log(+) The base 2 logarithm log,(-)

@ Binary addition (addition in Fy)

[x]; The i-th binary digit of the binary expansion of x, z = 3% _[2];27"

(a,b), [a,b]  An open and a closed interval, respectively

(a,b], [a,b)  Half-open intervals, which do not contain a or b, respectively
iff if and only if

w.l.o.g. without loss of generality

= equal by definition
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Abbreviations

SNR signal to noise ratio

LDM linear deterministic model

LTDM lower triangular deterministic model

IMAC interfering multiple access channel

G-IC Gaussian interference channel

G-IMAC Gaussian IMAC

LD-IMAC linear deterministic IMAC

LTD-IMAC lower triangular deterministic IMAC

MAC-WT multiple access wiretap channel

G-MAC-WT Gaussian MAC-WT

LD-MAC-WT linear deterministic MAC-W'T

G-WT-H Gaussian wiretap channel with a helper
LD-WT-H linear deterministic wiretap channel with a helper
DoF degrees of freedom

GDoF generalized DoF

SDoF secure DoF

GSDof generalized SDoF

1C interference channel

MAC-P2P multiple access channel interfering with a point-to-point link

Definition 1.1. The entropy H(X) of a discrete random variable X is defined by

H(X)=-_p(z)logp(x).

reX

Some properties of the entropy H(X) are:

e Entropy is non-negative and bounded from above: 0 < H(X) < log | X|

e Conditioning reduces entropy: H(X|Y) < H(X)

o H(Xy,...X,) <> 2, H(X;) with equality iff the random variables X; are indepen-
dent

Definition 1.2. The joint entropy H(X,Y) of a pair of discrete random variables (X,Y),
with a joint distribution p(z,y) is defined by

HX,Y)==> "> plz,y)logp(z,y).

reX yey



1.3. Notation, Abbreviations and Definitions

Definition 1.3. The conditional entropy H(X|Y) of a pair of discrete random variables
(X,Y), with a joint distribution p(z,y) is defined by

HX|Y) =Y p)HY|X =2) ==Y py) > plaly)logp(x|y).

yey yey TEX

Theorem 1.4 (Chain rule).
H(X,Y) = H(X) + HY|X).

Definition 1.5. The mutual information between two discrete random variables X and

Y, with a joint distribution p(z,y), and marginal distributions p(z) and p(y), is defined by

2.
=2 2 plelos ity

reX yey

Some properties of the mutual information 1(X) are:

e Mutual information is non-negative
e [(X;Y)=HX)-HX|Y)=HY)-HY|X)=H(X)+H(Y)—-H(X,Y)
o I(Xy,....,Xn) =1 I(X;;Y|X;—1,..., X1) (Chain rule for mutual information)

Definition 1.6. The conditional mutual information between two discrete random vari-
ables X and Y, given Z, is defined by

I(X;Y|Z) = H(X|Z) — H(X|Y, Z).

Definition 1.7. The differential entropy h(X) of a continuous random variable X with a

density f(z) is defined by
- [ rta)tog f(a)as

where S is the support set of the random variable.

Definition 1.8. The mutual information /(X;Y") between two random variables with joint
density f(z,y) is defined by

fz,y)
I(X;Y) /fxylogf()f()dxdy



1. Introduction

Theorem 1.9 (Data processing inequality). If W — X — Y — Z forms a Markov chain,
then
I(W;Z) <I(X;Y).

Theorem 1.10 (Fano’s inequality). Let P, = Pr{g(Y") # X}, where g is any function on
Y. Then
H(P.)+ P.log(|X —1|) > H(X|Y).

All of the proofs for the theorems and results above, along with further details on (multi-
user) information theory can be found in standard text books, for example by Cover and
Thomas [CT91|, El Gamal and Kim [EGK11|, Csiszar and Koérner [CK11] or Gallager
|Gal68]. The text books [LPS09| and [BB11| cover the topic of information-theoretic

security.

1.4. Approximation Models

In this section we want to examine the approximation models, which we use in this thesis,
in closer detail. In particular we will introduce the linear deterministic model and the

lower triangular deterministic model.

1.4.1. The linear deterministic model

To introduce the linear deterministic model (LDM) [ADT11], let us consider a single-user

Gaussian point-to-point channel for a fixed time-slot
Y = Xh' + Z,

where Z ~ N(0,1) is additive Gaussian noise. Moreover, the average signal input power is
normalized to one E[|X|?] < 1, and we therefore have that the channel gain represents the
signal-to-noise ratio, A’ = v/SNR. If we now assume that the input power and the noise

power have a peak power of one, we can represents them in the following way

X = Z;[X]ﬂ_i = 0.[X]1[X]2[X]3. ..

7= 12,27 = 0.2} [Z:(Zs.. ..,

i=1

10
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as binary expansion, where [X];, [Z]; € {0, 1}. Plugging these into our system model yields
1 e o= .
Y =221 8NN X0 1Y [ z27
i=1 i=1

Note that we can write i’ = h2", where n € N and h € [1,2). We can therefore write any
channel gain (and in this case SNR) greater than one as the product of a fine channel gain
h and coarse channel gain 2. For the linear deterministic model we now approximate the
channel gain by b’ =~ 2" with the equivalence n = L% log SNR |, and therefore approximate

the fine channel gain by one. This yields

(o.9] o0
Y 2" (X2 ) [Z):27
i=1 i=1
n ) o )
=D [XL2" 7 4+ Y (Xivn + [2]0)27"
i=1 i=1
Observe that the channel gain 2™ shifts the bits of a scalar x = 0.b1b2bs . .. for n-position
over the decimal point, such that we have 2"z = b1bs ... by.by 11042 ... . The noise only
affects the bits on the right side of the decimal point 2"z 4+ z = b1bs. .. bn.5n+15n+2 .
denoted as l~)n+i. We can now approximate the model by cutting of the noise effected bits

after the shift, which results in y = b1bs ... b, or equivalently
n .
Y &Y [X2v,
i=1

setting > ([X]i4n + [Z]:)27% = 0 and ignoring the 1-bit carry over. We therefore ap-
proximated the noise-effected Gaussian point-to-point channel by a deterministic channel
model. Note that we now have an input vector of bits. We will refer to those bits as
bit-levels, and count those bit-levels from the top, i.e. most-significant bit, downwards.

Superposition in multi-user scenarios is modelled by addition in Fo (modulo two)
y =S7"x; & ST x,

where addition is therefore limited to the bit-levels, enhancing the tractability of the model.

Moreover, we see that the model can be written in an algebraic fashion where x € F is an

11



1. Introduction

input bit vector and S97" is a ¢ X ¢ shift matrix

00 -+ 00
10 0
s=|o0 1 0],
00 -+ 10

which shifts an incoming bit vector for ¢ —n positions, where g := max{ni,n2}. The model

can be extended to an arbitrary number of users.

1.4.2. The lower triangular deterministic model

The lower triangular deterministic model, introduced by [NMA13|, incorporates the fine
channel gain h € [1,2) into the model. Note that in the previous, linear deterministic
model, the fine channel gain was approximated by one and had no influence in the channel.

Here, instead, the fine channel gain is represented by a binary expansion

h="[h];27 = [Blo.[W)i[A[ls ...

J=0

where hg = 1 due to h € [1,2). Plugging this in the system model yields
(o) e} ) e}
(z ) (zmiz—z) iz
i=0 i=1 j=1
n J o) j+n '

= 1
n J
=1 \i=1l

where we used the Cauchy product in the second line, and eliminated the noise effected
part by setting 3777, <Z]+n[ Jilh]jen—i + [Zb) 277 = 0 in the last line. We see that the

received bits are the result of a discrete convolution between the bits of X and h. We can

therefore write the received bit vector as Hx, where x € F3 and H is a lower triangular

12



1.4. Approximation Models

matrix defined as

1 0 0 0
[h]1 1 0
H=| [hl2 [p:1 1 ,
[h]qfl [h]qu T [h]l 1

with [h]; representing the j-th bit in the binary expansion of h. Multi-user channels can

be represented by modelling the superposition as binary addition & on the bit-levels:
y =S89 Hx; © ST " Haxo,

where x1, xo € F, S9=™ the ¢ x ¢ shift matrices. Thus, we keep the level-wise superposition

of the LDM channel and the algebraic notation.

13






2. The Gaussian Interfering Multiple

Access Channel

2.1. Introduction

One of the main limiting factors of cellular networks is interference. Throughout the
last decades, research was conducted to investigate the role of interference in information
theory. Several channel models were proposed, in which interference is one of the main
limiting factors. But even for the simplest one, the two-user inference channel (IC), the
capacity characterisation is an unsolved problem for more than 40 years. However, Etkin,
Tse and Wang [ETWO08| have achieved a major breakthrough, a capacity result to within
one bit. They used a fundamental principle: if something is too hard to solve as one,
you need to divide it into smaller simpler parts. And in the course of their investigation,
defined the concept of generalized degrees of freedom (GDoF)

Csym (INR,SNR)

deym(@) = W, CosnBNR)
SNR,INR*)OO; logw =

which can be viewed as an interference dependent notion of degrees of freedom (DoF).
This achievement motivated a series of investigations of more complex channel models
(e.g. [BPT10]), towards constant-gap capacity approximations. However, even constant-
gap capacity results were hard to obtain, due to noise properties of the Gaussian channel
models. A branch of research, therefore, investigated deterministic models. In particular,
the so-called linear deterministic model (LDM) emerged with the work of Avestimehr, Dig-
gavi and Tse [ADT07,ADT11]. The LDM approximates the channel by the binary expan-
sion of the real signals. The coefficients of this binary expansion are viewed as bit-vectors
and positions within these vectors are called levels. These bit-vectors are truncated at the
noise level, such that the noise-corrupted bits are removed from the channel model, result-
ing in a deterministic approximation. Moreover, channel gain is approximated by a power
of two 2", n = L% log SNRJ7 which results in a downshift of the bit-vector. Superposition
is modelled as level-wise binary addition. Surprisingly, this rather simple model results in

capacity approximations to within a constant bit-gap of the corresponding Gaussian chan-

15



2. The Gaussian Interfering Multiple Access Channel

nel models, e.g. a 42-bit gap for the deterministic two-user IC [BT08|. Another research
branch investigated the concept of interference alignment, introduced in [MAMKO0S]|, [CJO§]
and [JS08|. Interference alignment methods align interfering signal parts in some dimen-
sion and therefore make more interference-free dimensions available. These methods can
be broadly categorized into two classes: vector-space alignment and Signal-space align-
ment [NMA13]. In vector-space alignment methods, the dimensions of multiple antennas,
time and frequency are used to align interfering signal parts into some sub-spaces. However,
in single-antenna, time-invariant, frequency-flat channel models, these methods fail and the
class of signal-scale alignment methods needs to be used. In these methods, techniques
such as lattice coding, split the channel into several power layers, allowing for alignment
of interference. It was shown in recent investigations, that LDM solutions are the basis for
the corresponding signal-scale alignment methods and therefore provide a stepping-stone
for constant bit-gap capacity results, see for example [SJVT08|, [BPT10], [SB11], [ST11].
An interesting application of interference alignment is its use for the interfering multiple
access channel (IMAC) in [ST08|. In this investigation, the interfering MAC (IMAC) serves
as a general simple model for cellular networks. It was shown that multiuser gain, in form
of additional DoF, can be enabled by vector-space alignment using frequency and delay
properties of the channel. The question is now, if a multiuser gain is still present in the
single-antenna, time-invariant, frequency-flat cellular networks, especially the IMAC as the

simplest model.

2.2. Contributions and Outline of the Results

We investigate the single-antenna, time-invariant, frequency-flat Gaussian IMAC (G-IMAC).
To make progress on this front, we start by investigating the linear deterministic approxi-
mation of the G-IMAC named LD-IMAC. We show that basic achievability schemes from
the linear deterministic MAC-P2P [BW12| can be extended towards the LD-IMAC. In
those schemes, the orthogonality of bit-levels in the LDM bit-vectors is used to exploit the
signal-scale shift between two cells. This results in the alignment of the interference in half
of its bit-levels, effectively reducing the interference by half in the weak interference regime.
Due to a coupling of both cells, the achievable schemes are limited to the weak interference
regime. Moreover, due to dependence on the ratio of interference-to-direct signal strength
«, the achievable sum-rate has a step-like curve. However, converse proofs cannot assume
orthogonality of bit-levels, which would mean a uniform distribution of the real signals and
therefore results in a loose upper bound for certain values of . This yields a sum-capacity
for just certain discrete points depending on «. Using signal-scale alignment methods, i.e.

layered lattice codes, we transfer the achievable scheme and the result to the Gaussian
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2.3. System Model

IMAC. Extending techniques of [BT08|, one can show that the LD-IMAC bounds are ac-
tually within a constant bit-gap of the Gaussian IMAC bounds. This yields a constant
bit-gap sum-capacity result for the G-IMAC at discrete points, again depending on the
channel gains. This shows that the schemes stemming from the LD-IMAC and the LDM
itself is a sub-optimal approximation, which is also sub-optimal as an approximation of the
sum-rate of the G-IMAC. As we later show, this sub-optimality stems from the LD models
property of just allowing orthogonal bit-level assignment schemes. Interestingly, a new
deterministic model was introduced in [NMA13]|, coined the lower triangular deterministic
model (LTDM). In this model, the channel gain is not approximated by 2™ anymore, but
the remainder incorporated as binary expansion. This results in a discrete convolution
between the bits of the channel gain and the bits of the real signal and therefore yields a
dependence between the bit-levels. This means that the model allows a broader form of
achievable schemes, where the bit-levels do not need to be orthogonal. Since the problems
with the LDM stem exactly from this necessity, an LTDM scheme could improve upon
prior results. We show LTD-IMAC schemes for the whole interference range, which (com-
pletely) reach the LDM upper bounds in the weak interference case and hence improve
upon prior results. Moreover, we transform the bounds towards the LTDM channel and
develop new upper bounds for the remaining interference ranges. We, therefore, show the
deterministic approximation of the sum-capacity of the LTD-IMAC to within a constant
bit-gap. Extending the proof methods of [NMA13] towards the structure of our achievable
scheme, we can use them to transfer the constant-gap results from the LTD-IMAC to the
G-IMAC. This yields a constant-gap capacity approximation of the symmetric G-IMAC in

the whole interference range.

2.3. System Model

2.3.1. The Gaussian Interfering Multiple Access Channel

We consider the Gaussian interfering multiple access channel (IMAC), in which there are
two Gaussian multiple access channels (MACs) interfering with each other. Therefore, the
system consists of 4 transmitters and 2 receivers. Transmitters X771 and X2 together with
the receiver Y and Xo1, Xoo with Y2 each form a MAC and both are interfering with
each other (see Fig. 2.1). We use the notation of hgk, where the superscript j represents

the receiver cell, and the subscripts ¢ and k the transmitter cell and user, respectively.

The channel equations for a fixed time slot are given by

Y1 =Rl 2 Xy + AL, 2" Xy + b 270 Xy + 11,2722 Xog + 27 (2.1)
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2. The Gaussian Interfering Multiple Access Channel

Figure 2.1.: Tllustration of the Gaussian IMAC, we denote izik = hgk2"§k. Direct links are
represented as normal arrows, whereas interference links are represented as
dashed arrows.

Y2 = 13,2751 X1 + h3y2" Xgg + h2, 2" X1q + h2y2"2 X1y + 22, (2.2)

where Z7 ~ N(0,1) is assumed to be zero mean and unit variance Gaussian noise. Also,
each transmitted signal has an associated unit average power constraint E[X2] < 1. The
channel gains are composed of two parts. A coarse channel gain, 2" with n € N and a
fine channel gain h € [1,2). However, both parts can model any real channel gain greater
than 1, which is sufficient for a constant-gap analysis. We choose this channel notation
following the notation of [NMA13] to get a clear integration of linear deterministic and lower
triangular deterministic ideas in the following investigation of the model. It is assumed that
nd, = nd, =1 nl, n?, = n?, = n3, stating that the total interference strength caused by
Xi; at the receivers is the same'. Note that the restriction for the coarse gain is justified
in the case when the distance between the two cells is significantly larger than the cell
dimension itself. However, for the fine channel gains of the interfering signals, we consider
a simple modulation scheme. We take a similar approach as in [NMA13], to form the
channel input such that the fine channel gains of the interfering signals coincide.

Each transmitter has one message to communicate to his receiver. As in the X-channel,
we have 4 independent messages w;i. Assume that each message w;, is modulated into the

signal Uj. The transmitters can now form the channel input such that

X1 = h3,Un (2.2a)

!This assumption is not necessary for the techniques to work. In fact, we just need a difference in the
ratios of both direct links and both interference links, which we call shift-property. However, it simplifies
the investigation, since the shift-property gets simpler.
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2.3. System Model

X192 == hUrs (2.2b)
Xo1 = h3yUn (2.2¢)
X22 = h%lUQQ. (22d)

We, therefore, see the following signals at the receiver side

V1 = Bl h2,2"1 U + R h2, 2" Uy + B 11,272 (Usy + Uss) + 21 (2.3)
V2 = b2, hd,2"51 Uy + h2yh3e2"%2Usy + K2, 02,27 (U + Uss) + Z2. (2.4)

Notice that we have modulated the signals in a way, such that the interference parts align

at the unintended receiver, reproducing a similar structure as in the X-channel?. Now we

can define
1 .31 32 2 .22 31
g11:=h11 17, g51:="h31hay
1 .31 32 2 .12 1
gi2:=h12hi1, 959:=hi3ohoy
1._31 31 2,12 12
g2 :=ha1hag, g1 :=hi1hia,

where ggk € (1,4] and we can rewrite (2.3)-(2.4) as

Yl = ghthUH + 9%2271%2(]12 + g%?n%(Um + U22) + Z1 (25)
Y2 = 931271%1 Usi + 952271%2(]22 + g%Qn%(UH + U12) + Z2. (26)

Moreover, we assume w.l.o.g. that n%l > n%z, ”%1 > n%z. The difference between the

. A, =l 1 2 2
two coarse channel gains is denoted as A; :=nj; —njy and Ay := n5; — ni,.

2.3.2. Linear Deterministic IMAC

To simplify the Gaussian IMAC model and get some intuition for achievable schemes and
upper bounds, we chose the LDM? as a first approximation, see [ADT11] for a thorough
exposition. This enables schemes where certain bits, also called bit-levels, can be used
independently. This property enables a form of bit-level alignment, which is used by our
schemes. The channel gain is represented by nf -Pit levels which correspond to L% log SNR |

of the original channel. We, therefore, approximate the fine channel gain by one. With

2Note that the difference lies in the coarse channel gains, in particular those of the aligning parts. The
only case, where both structures are equal, is when all coarse channel gains are equal. In that case,
both channel models reach % DoF.

3see section 1.4.1
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2. The Gaussian Interfering Multiple Access Channel

a2

Figure 2.2.: Illustration of the LD-IMAC. Direct links are represented as normal arrows,
whereas interference links are represented as dashed arrows.

this definitions the model can be written as

yl = Sq_”%lxn D SQ-”leZ D Sq—n% (X21 D ng) (27)

y? = SI "ixy; @ ST Maxyy &SI (x21 @ x22). (2.8)

2.3.3. Lower Triangular Deterministic IMAC

We use the LTDM?* as a second approximation, which enables a broader view on schemes
fro achievable rates. In contrast to the LDM, the fine channel gain h is also written as a
binary expansion, and not approximated by one, resulting in a discrete convolution between
the bits of h and x, see [NMA13| for a thorough exposition.

Thus, the LTD-IMAC channel model is governed by the following equations

y! =S H! xq; & ST HL, x5 & ST HL (x01 @ X22) (2.9)
y2 = S9 1 H2, x01 ® S¢ "2 HZ x99 & STTH2(x11 @ X12). (2.10)

Note that we used the specific modulation of (2.3), to group the interference signal parts.
The bits of the channel matrices correspond to the real values of gzjk, defined above. More-
over, we will use the notation that X, := Sq*”gkxn and X = Sqfngkxik for i # j for a

simple distinction between direct and interference signals.

4see section 1.4.2
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24 N ———- LD-IMAC Upper Bound
SN LD-IMAC Achievable Rate
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+

LD-IC Constant—gaf)'.Sum—Capacity

«
1
2
Figure 2.3.: GDoF of the LD-IMAC and LD-IBC in the weak interference regime in com-
parison to the LD-IC channel. The first part of the w-curve is depicted. Multi-
user gain be seen, as a second user in each cell provides a DoF-wise gain of
one-half of the interference strength in each cell.

2.4. Main Results for the IMAC

In the following section, we give an overview of the main results of this section. We start by
presenting the results for the linear deterministic approximation of the IMAC. We will see
that the LDM approximation is insufficient in a sense, that the achievable sum rate of any
orthogonal bit-alignment scheme cannot achieve the upper bound at all points. note, that
this excludes bit-copy schemes, which can be seen as an intermediate form between LDM
and LTDM schemes. Moreover, we show that a transfer from orthogonal bit-alignment
strategies to the Gaussian IMAC also inherit the problems. We will therefore turn to the
lower triangular deterministic model and show that it captures schemes which can achieve
the upper bound and therefore establish the possibility of a constant-gap capacity result.
In the last part we present the constant-gap capacity result for the G-IMAC.

2.4.1. Approximate Capacity for the LD-IMAC

In section 2.5, we will show the achievable sum rate in the weak interference regime. We

define the weak interference regime as
z+ J < mi { 1 2 }
nj +n; < min{nyy, not.

This means that the sum of both interference link strength values is smaller than the

weakest direct link strength of both cells. In this regime, the LD system model can be de-
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2. The Gaussian Interfering Multiple Access Channel

composed into two sub channels (see section 2.5) which simplifies the analysis. We provide
a narrow analysis of the LD-IMAC, since we only want to demonstrate its shortcomings.
Later analysis of the LTD model will treat the general interference case. Note, that we
will identify a larger weak interference regime for the LTD-IMAC and the Gaussian IMAC
with nz + nf < min{ni;,n3,}. The achievable sum-rate depends on the strength, or coarse
channel gain, of the weaker user, which results in three sub-cases per cell i. If the coarse
channel gain n!, of the weaker link signal x, is smaller than the coarse interference channel
gain n; in cell 4, the IMAC sum-rate falls back to the IC sum-rate. Above this threshold,
multiuser gain will increase along with n}, until it reaches the maximum multiuser gain. In
the following we will briefly introduce the results for the last case, where the full multi-user

gain can be achieved simultaneously in both cells.

Theorem 2.1. An achievable sum-rate for the linear deterministic interfering multiple

access channel (LD-IMAC) in the weak interference regime, is
Ry < njy+n3y —ny —nf + ¢(ng, A1) + d(nf, As)
with the function ¢ for p,q € Ny, following the notation of [BW11], defined as
g+ Up.9)q

= if l(p, q) is even,

o(p,q) =
p— WD=0a ir1( q) is odd,

where I(p,q) := ng for g >0 and I(p,0) = 0.

¢ is essentially composed of the multiuser gain and the difference of the coarse channel
gain of both users in the corresponding cell. The proof of the theorem can be found in
section 2.5.1. We note, that the achievable scheme would have a singularity point for the
case that all coarse channel gains are equal, which is outside the weak interference regime.
This collapse of d.o.f. is a known phenomenon, which also occurs in other channel models.
It was shown in [CJW10], that asymmetric complex signalling can overcome this collapse
of d.o.f. The LTDM includes this point as outage, and we therefore do not consider it
further. To provide a result about the optimality of this sum-rate, the next lemma will

give an upper bound for the aforementioned model.

Theorem 2.2. The sum rate for the linear deterministic interfering multiple access chan-

nel (LD-IMAC) in the weak interference regime can be bounded from above by

2 1
1 2 _np N
fosmutnn =5~ 5
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We remark, that the LD model can be regarded as a special case of the LTD model,
where the lower triangular matrix is the identity matrix. The upper bound for the weak
interference part of the LTD-IMAC therefore also provides an upper bound for the LD-
model. The proof can be found in section 2.6.2. A graphical comparison by means of GDoF
shows, that the achievable sum-rate of Theorem 2.1 reaches the upper bound at the « values
at which the scheme has an even number of layers (see Fig. 2.3). However, in between those
points, the upper bound cannot be reached. The reason for this behaviour is the structure
of the scheme which originates from the approximation model. Later, we will show that the
lower triangular deterministic model eliminates this problem. By utilizing layered lattice
coding schemes as in e.g. [SJVT08|, [NCL10], [SB11], [BPT10] and [NCNC16|, we can
transfer the LD achievable sum-rate to the Gaussian channel, which yields the following

theorem.

Theorem 2.3. An achievable sum-rate for the Gaussian interfering multiple access channel

(G-IMAC) in the weak interference regime, is

Rs; > Llog SNR} — Llog SNRS! + Llog SNRy? — Llog SNRY?
+ ¢(Llog SNRS2, Llog SNR{)
+6(% log SNRY, Llog SNR™)) =3 — 2.5(| Lo + | L1])

with ¢ defined as in (2.1). Note that 1(p,q) is equivalent to | L;]|, which basically counts
the layers of lattice codes. The proof for the theorem is provided in section 2.5.2. Observe
that the sum-rate has the same structure as in Theorem 2.1 with the correspondence
nzk = |3 log ]h{kPPJ. We, therefore, need to prove an equivalent version of the bound in
Theorem 2.2 for the Gaussian case. By extending proof methods of [BT08] we can show

the following result.

Theorem 2.4. The sum-rate for the Gaussian IMAC can be upper bounded by the corre-
sponding LD-IMAC upper bound, within a constant number of bits. The G-IMAC in the

weak interference regime is therefore bounded from above by

2 1
1 2 n
R2§n11+n21—?—?+01,

where c¢; is a constant. Therefore the two theorems 2.3 and 2.4 show, that the transfer of
the results from the linear deterministic scheme to the Gaussian IMAC is possible. How-
ever, the achievable scheme inherits the same structure as in the LD model and therefore

also the problems with the step-like achievability curve. These problems are related to the
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fact, that the LD schemes are constrained to an orthogonal usage of bit-levels. Assuming
independence of bit-levels would yield a tight upper bound. But we would therefore need
to proof the optimality of a uniform input distribution. However, a result along these lines
would be restricted to the linear deterministic model and does not extend to the general
Gaussian case. Instead, one can use a more complex model, which enables schemes beyond
an orthogonal usage of bit-levels. The lower triangular deterministic model is such a model

and we will now describe the results for this model.

2.4.2. Approximate Constant-Gap Sum Capacity for the LTD-IMAC

We start with a theorem about the constant-gap sum capacity for the deterministic LTD-
IMAC in a weak interference regime, defined by n} + n} < min{ni;,n3}, with arbitrary

channel gains.

Theorem 2.5. For every 6 € (0,1], n],jl, ”22; nf € N such that nil > nﬁQ > nf and
ni +n? < min{nl,,n3;} with k,1 € {1,2}, k # I, there exists a set B C (1,2]**3 of
Lebesgue measure at most 6 such that for all channel gains gfk € (1,2]**3\ B, the sum
capacity Crrp-muac of the lower triangular deterministic interfering multiple access channel
satisfies

D —2log(c/d) < Crrp-tvac < D

with D := min{D1, Do, D3, D4} and

— 1 2y 1 2 1\ 2
Dy :=max{(ny; — n1),nip} + max{(n3; — ny),nj}
— 1 2y 1 2 1.1
Dy :=max{(ny; —ny),nia} +nz — 50y
1 1,2 2 1y ,.2
D3 :=ny; — gni + max{(n3; — ny),na,}
1 1,2 2 1,1
D4 = nll — 5711 + ngl - §n27
for some constant c, independent of the channel gain.

The proof is provided in section 2.6. Recall that ni is the coarse interference strength
of both users from cell 2 to cell 1, and equally, n? from cell 2 to cell 1. This means that
the assumption n% + n% < min{nh, n%l}, states that the sum of the interference strengths
is smaller than the minimum of ni; and n%,, which are the two coarse channel gains of the
stronger users in each cell. For a symmetric setting, the assumption becomes o = Z—; < %
and corresponds to the first part of the weak interference regime of the IC-channel. The
d in the gap 2log(c/d) can be seen as a fixed trade-off factor. If ¢ is chosen to be large,
the gap would become small. The achievable sum-rate would get closer to the bound. But

0 is also the bound for the measure of the outage set B and a large bound would mean,
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2.4. Main Results for the IMAC

that the result would hold for a smaller set of channel gain configurations. On the other
hand, a small § would mean, that the result holds for a large set of channel gains but at
the same time induce a bigger gap towards the upper bound. Due to a large number of
cases for arbitrary channel gains and arbitrary interference regimes, we have limited the
investigation of arbitrary regimes to symmetric channel gain configurations. The following
theorem shows the result for the deterministic IMAC.

Theorem 2.6. For every § € (0,1], n1, na, n; € N such that ny > ng, there ezists a
set B C (1,2)2%3 of Lebesque measure at most & such that for all channel gains gfk €
(1,2]2%3\ B, the sum capacity Crrp-muac of the lower triangular deterministic symmetric

interfering multiple access channel satisfies
D —2log(c/6) < Crrpimac < D
with D = min{Dl, DQ, Dg, D4, D5} and

Dy = 2max((n1 — ny) ", m;) + min((ny — ng) ", ),
Dy = %(2 max(nl,m) + (nl - nz)+)
D3 :=2nq,

Dy := max(2ns,2(n1 —n;) ", 2n;),

9

Ds := max(ny,n;) + max(na, (n1 — ny) ™).
for some constant c, independent of the channel gain

This result shows the constant-gap result for the symmetrical LTD-IMAC for the whole
interference regime. One can see that the symmetrical weak interference cases D and
D, are reflected in Dy and D1, respectively. The cases Do, D3, D5 and parts of Dy and
Dy represent additional bounds for the cases with interference o > % As in the weak
interference case, one can see that the gap is constant and can be seen as a fixed trade-off
factor between rate-gap and quantity of supported channel gains. In the next sub section

we will show, that this result can be extended to the Gaussian IMAC.

2.4.3. Constant-Gap Sum Capacity for the Gaussian IMAC

For the Gaussian case, extensions of the methods developed in [NMA13] show that the
achievable schemes can be transferred to the Gaussian IMAC. In this process, the constant-
gap gets larger buts stays constant in relation to the channel gain. Moreover, previously
used techniques can show that the LTD-IMAC bounds can be used as a bound for the
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2. The Gaussian Interfering Multiple Access Channel

G-IMAC by introducing another constant-gap. This yields the following constant-gap
capacity approximation of the G-IMAC.

Theorem 2.7. For every 6 € (0,1], n1, na, n; € N such that ny > na, there exists a
set B C (1,2]%** of Lebesque measure at most & such that for all channel gains h{k €
(1,2]2%4\ B, the sum capacity Cg.mpuac of the Gaussian symmetric interfering multiple

access channel satisfies
D —2log(c2/6) < Ca.pmac < D +cs,
with D := min{ Dy, Da, D3, Dy, D5} and

Dy = 2max((ng — ng) ", ni) + min((ng — n;) ", ny),
Dy = %(2 max(ny,n;) + (ng —ny)™H),
D3 :=2nq,

Dy :=max(2n2,2(n1 —n;) ", 2n,),

Ds := max(n1,n;) + max(ng, (ny —n;)™).

and co,c3 are constants.

The proof for the achievability can be found in Section 2.7. It makes use of the scheme
for the lower triangular deterministic model and uses a result from number theory, the
Khintchine-Groshev Theorem, as well as techniques developed in [NMA13]| and new tech-
niques tailored towards the G-IMAC model. The proof of the upper bound is in the
Appendix 2.10.1 and utilizes the upper bound of Theorem 2.5. Note that, as in the two
theorems for the LTD channel model, we have a constant-gap result. This is because ¢y
and cg are constants which are independent of the channel gain and § is a trade-of factor in
the same fashion as those in the previous results. This means that a bigger § corresponds
to a smaller gap but increases the outage set of channel gains for which the method does
not work. In the following section, we will go into the details of the analysis and provide

the proofs for the stated theorems.

2.5. Analysis of the LD-IMAC

2.5.1. Achievable Scheme for Theorem 2.1

The achievability scheme for the IMAC is basically an extended version of the scheme
already used for the MAC-P2P in [BW11]. Like in the MAC-P2P we split the system
(2.8) into two sub systems, RW and R, see Figure 2.4. Unlike in [BW11], both of our

ach ach’
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ﬁl n2
21
”%2 7
| /] ”32
“ Y
)
“
“ 2
1 N 44 V4 PR N—
ng
- +- 7 _ 22 _
%
“
y' y?
1 A
Rachl Rach2
STy al} 7;-y%z>
N 2 //
xg;)( ng) //////
IR (2) ‘

'
A 7
O —
Loo .y(l) [E§22) #—».’yé)

Figure 2.4.: Illustration of the split into two subsystems. The two models at the bottom
show that letting the weaker user be silent (illustrated as crossed out arrows
in each sub-system) results in a one-sided interference MAC-P2P model. The
direct links are shown as normal arrows, whereas the interference links as

shown as dashed arrows. We can therefore utilize the achievable scheme of the
MAC-P2P for both sub-systems which leads to our overall achievable sum-rate.

sub-systems are identical. The sum of the achievable rates of these two sub systems will

constitute the overall sum rate. The sub systems are given by the equations

y§1) — gV —(ni—nd) (1) 4 Sq(l)_(”b_”%)xglz)

11
ys! = s ix{) o 1 k) @ s1 k() o g9 i)

for RS:)h and for R(2) we have:

ach
y§2) _ Sq<2>,(nglfn§)X§21) o Sq<2>,(ngrnf)xé22)
y§2) _ Sq(Q)fn%xﬁ) ® Sq(z)fnéxg) ) Sq(Q)fnéxgzl) @ Sq(Q)fnéxg).

Examining the resulting sub-systems, one can see that leaving one private part, at the

side of the interference silent, results in a sub-system equal to R((fc)h in [BW11]. In particular
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2. The Gaussian Interfering Multiple Access Channel
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Figure 2.5.: Hlustration of the y-functions.

we choose XSQ) =0 and xg) := 0 resulting in

0 ga =k =nb) (D) g gat—(nd,=nd) o (D

0 = 5 rtdl 5 80 (Y 500 el

for R((zlc)h and for R((z2c)h we have:

yéZ) _ Sq<2>,(nglfn§)xg2l) o Sq@),(ngrnf)xg)

y? = §19 k) g 1% iy o 51 i)
The achievable sum rates for the systems are defined as
R < nd + ¢ + g3, A

RZ) < b+ ¢ 4 g(n?, Ay).

Where ¢V :=nl, —nd —n?, ¢® :=n3, —nd —n? and the function ¢ as in 2.1. Tt suffices
to show the achievability of one sub-system, the results for the other sub-systems follows
by symmetry. Consider the sum rate R(E1 ), let a € F;f specify the levels used for encoding
the interference affected part of x91, where a; = 1 if level 7 is used and a; = 0 otherwise.
Define y(a) := 1,2 — a, 71(a) := (y(a); 14,) and 12(a) := [0a,;7(a)], see Fig. 2.5. Then
we can achieve

Ry < ()] + ra(a)| = plal) + fal

where
)T

plz) == min  y(a) y2(a)
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2.5. Analysis of the LD-IMAC

is indicating how many used bit-levels between the common signal parts of x1; and x5 are
overlapping. Minimizing p(z), with a per-definition non-overlapping 7(a) gives a solution
with maximal direct rate and minimal interference. A solution for the assignment vector
a with a given x can be shown to be of the following form. As in [BW11] we denote
I = n?div Ay and Q = n? mod Ay, ie., n? = [A; + Q. We also subdivide a into 1A
blocks of length Ay, with one remainder block of length ). Now, we distribute ones over
all even-numbered blocks of a, which means that those blocks are used for communication.
Moreover, we distribute ones over the remainder block. The exact solution for the case

that [ is even, was given in [BW11] as

and

(1-1)/2
Acven = [(le(lzl); ek> k=1

(1-1)/2
Aodd = Myp, <[(ek’§ 01XM> ;em} & IA)
2 2

;01X1—21:| ®IAU

k=1

for odd I. Here, ® denotes the Kronecker product, e, the unit row vector of appropriate

size with 1 at position k and My = (ey_k+1)h_; is the flip matrix. Then the matrix
P = [Aeven|0lA><Q‘Aodd] )

gives an optimal assignment vector a by setting a = P[1,; On%_x].

Now, the overall sum rate for the LD-IMAC system can be obtained by adding the rates
of the sub systems: R(E1 ) + Rg ) = Ry,

Ry < n?+¢W 4 g(nd, Ay) +nd + ¢ 4+ p(n?, Ay)
= n1g + nga — Ny — nt + d(nd, A1) + ¢(n3, Ag). (2.11)

2.5.2. Transfer from LD-IMAC to G-IMAC

In this section we prove Theorem 2.3, and therefore show the achievable sum-rate for
the G-IMAC based on lattice coding schemes with an inherited structure of the linear

deterministic schemes.
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2. The Gaussian Interfering Multiple Access Channel
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Figure 2.6.: An example for a scheme which achieves the upper bound is presented in the
figure. The MAC-cell 1 has n}, and ni, bit levels in the direct paths and
generates interference, at the other cell, of n% bit levels. Whereas the MAC
cell 2 has n3, and n3, bit levels in the direct path and generates ni bit levels
interference. It can be seen that the scheme utilizes the full bit-level range of

the receivers except for half of the incoming interference effected bit-levels and

therefore reaches the upper bound Ry, < nl; 4+ n3, — 3n? — nd.

Weak Interference Regime

For this part, we assume w.l.o.g. that h{l > hgg for ¢ = j. This means that the first direct
path is stronger or equal than the second direct path in each cell. Also, remember that
we have equal (coarse) interference strength at the receivers. With the specific modulation

from (2.5), we can assume that
hl, = hl, for i # j. (2.12)

Furthermore we define two expressions, the signal-to-noise ratio and the interference-to-
noise ratio as:
SNR;r, ifi=j

|th|2P = j - .
INR; if¢# 5.

We also introduce two parameters «;, 5; which combine these ratios with SNR;5 = SNRZ-'Bf
and INR;- = SNR;}. These parameters correspond to «, which are used in the LDM
channel model [FW14a| and in GDoF considerations. Now we can restrict the investigation

to the weak interference regime defined through

INR? 4 INR} < min{SNR;2, SNRos}. (2.13)
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2.5. Analysis of the LD-IMAC

We assume that SNR;z > 1, otherwise the user can be left silent which results in a 1 bit
penalty of the sum-rate. For convenience we use the standard terms: common and private
signal, for the part which is seen at both cells and the part which is only received in the
intended cell, respectively. Also note that the following techniques work for all channel
parameters in the defined regime, except for a singularity at 5; = 1 in which the additional
gain for that corresponding cell will be zero. These techniques are therefore not limited to
any kind of rational numbers set, as alignment comes naturally due to the LDM schemes

and the assumption (2.12).

Power Partitioning

The power as observed at each receiver is partitioned into intervals. The number of par-
titions is depended on the channel structure, in particular the 3;, a;-parameters. These

partitions play the role of intervals of bit levels in the LDM. The common signal part of

log SNR{
log SNR{ %)

intervals. Moreover, there is an additional reminder block. The private signal part consists

cell ¢ is partitioned into

of an interference effected part, which is partitioned into | L;] intervals with an additional
reminder part, as well as an interference free part. We, therefore, have a total of ljax <
|Li] +|Lj] +3 power partitions, depending on the number of non-zero reminder parts and

if there is an additional interference free private signal part. Signal power is defined as

SNRI; (DA _ gNRl =6 for 1 <1< L]
SNRj, W00 R (DA gor = 1] 41
SNR)(LEdHDE=8) _ gNRas for I = |L;| +2
0 = SNR% SNR% (2.14)
L e =5 — o=y [ Li|+2<]
SNR% [L;1-2)(1-8;) SNR;ll [L;]-1)(1-85) or { J
< | Li) + [Lj] +2
SNRESNR;,F10 ) g for | = Ly

with [ indicating the specific partition (Fig. 2.7). Note that this is for the cases where
|L;] = odd. The additional remainder term at [ = |L;| + 1 vanishes for |L;| = even,
because it can be merged with the subsequent partition. In that case, all following pow-
erlevels need to be changed accordingly. Each user k of cell i decomposes its signal into a

sum of independent sub-signals

lmax

Xik = 3 Xik(l).
=1
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2. The Gaussian Interfering Multiple Access Channel

This decomposition can be seen as a message split, where every message is separately
encoded by a lattice code. Note that user 2 can only send at power levels [ > 1, due to its

power constrains.

Layered Nested Lattice Codes

Instead of the Loeliger-type [Loe97| lattice codes, used in [FW14b], we will use the nested
lattice codes introduced in [UZ04| which can achieve capacity in the AWGN single-user
channel. This results in a slightly lower gap in the overall rate terms. A lattice A is
a discrete subgroup of R™ which is closed under real addition and reflection. Moreover,

denote the nearest neighbour quantizer by
= i —t|.
Qa(x) := argmin [|x — t||

The fundamental Voronoi region V(A) of a lattice A consists of all points which get mapped

or quantized to the zero vector. The modulo operation is defined as
[x] mod A :=x— Qa(x).

A nested lattice code is composed of a pair of lattices (Afine, Acoarse) , Where V(Acoarse) s
the fundamental Voronoi region of the coarse lattice and operates as a shaping region for
the corresponding fine lattice Agpe. It is therefore required that Acoarse C Afine- Such a
code has a corresponding rate R equal to the log of the nesting ratio. A part of the split
message is now mapped to the corresponding codeword u;;(I) € Afine;—1 N V(Acoarse,i),
which is a point of the fine lattice inside the fundamental Voronoi region of the coarse
lattice. Note that A; . C --- C Ay. The code is chosen such that it has a power of ;.

The codeword x;;(l) is now given as
Xit(I) = [wj, — dix] mod Ay,

where we dither (shift) with d;; ~ Unif(V(A;)) and reduce the result modulo-A;. Trans-
mitter ¢k now sends a scaled x;; over the channel, such that the power per sub-signal
xix (1) is | hg:IQ and receivers see a power of 6;. Due to the partitioning construction, the
x; satisfy the power restriction of P for user 1,

I
o 0, SNR;
Z iZl2 < 03 ;1 =P
= | | | |
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2.5. Analysis of the LD-IMAC

and user 2

lmi:* _ SNRiz _
|2 N
in each cell i.
Moreover, aligning sub-signals use the same code (with independent shifts).

In [UZ04] it was shown that nested lattice codes can achieve the capacity of the AWGN
single-user channel with vanishing error probability. Viewing each of our power intervals

as a channel, we therefore have that

R(l) < Llog <1 + Ne(ll)> , (2.15)

where NV;() denotes the noise variance per dimension of the subsequent levels. If a sum of
K lattice points gets aligned at a power level 6; and we want to decode the lattice point

corresponding to this sum, then the achievable rate is given by

R(l) < Llog <}< + Ni"(ll)> : (2.16)

which is obtained through minimization of the denominator in [NG11, Theorem 1| and
MMSE scaled decoding.

Lattice Code Alignment

Due to the construction, shifted codewords x;1(l) and x;2(l + 1) are received on separate
power levels at the intended receiver and align on the same power level at the unintended

receiver. As an example we look at the codewords x11(2) and x12(3). They are transmitted

from the first and second transmitter of cell 1, with a scaled power of |2 and

|h1 |h1 |27

respectively. This means that receiver 1 sees them with power

0 hl 2
(|l xn (2)P) = #515- = 61,

assuming that level 2 and 3 are within the common signal part we have that 615 =
(114 2P) =105 — (|nd, [2P)I=20-5) an

0 hl 2
E(|[hlylx1a(3)) = 203 = 015,

with 613 = (|hd;[2P)'=2(1=81) — (|pd,|2P)1=3(1=B1)  Clearly both codewords are received

on different levels as long as 81 # 1. For the unintended receiver 2, these codewords are
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2. The Gaussian Interfering Multiple Access Channel

received with power
_ 012|hq,|?

(|1 %11 (2)[*) = 2. (2.17)
and
2] hZ 2
B[ [x12(2)) = H5-. (2.18)

Now we need to show that (2.17) and (2.18) are the same. For (2.17) we have that

Ul (SNRIIO) _ sNRE 200 ) I

Ak IRt P
:< SNR,, _ _ SNRy, > INR?
SNR{,™™  SNR{!'"W ) SNRu
INR; INR?

~ SNR{7? T SNRITA

For (2.18) we have that

013113, 2 (SNRL—2(1—/31) = SNR};?’U—/&I)) 13, 1

[hi, 7 [hial?

SNR,, _ _SNR,, INR?
SNR?(ll_ﬁl) SNR%I_M) SNR.»

<SNR§311+(1—[31) SNR/flﬁ-(l—Bl)) INR?

SNRT ™" SNR;™™ ) SNRu

SNR/! SNR/! INR?
SNR..

SNR{ W SNR;T-™
__INR} INR?
~ SNRGTY O SNRpTY

where we used that SNR% = SNR12 as defined.

Decoding Procedure

Decoding occurs per level, treating subsequent levels as noise. Due to the use of nested
lattice codes, a sub-signal u;; mod A; gets decoded, from which the original sub-signal
x;r can be reconstructed. The reconstructed signal then gets subtracted from the total
received signal, leaving the noise part. The noise part constitutes the next level and the
process continues. In case of an interference-affected level, only the sum of both sub-
signals gets decoded [u;, (1) + w;x (I + 1)] mod A;. From the sum, the original sum can be
reconstructed and subtracted from the received signal. It is therefore a successive decoding
scheme, which was proven to work for nested lattice codes in [Naz12| and recently applied
in [CS16]. Therefore, each level is treated as a Gaussian point-to-point channel, and
decodability is assured providing that the lattice rate is chosen appropriately according to

(2.15) or (2.16), depending on the specific case. With a signal power of 6;;, it only remains
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Figure 2.7.: Example of the symmetric restricted IMAC: Illustration of power partitioning,
with the resulting 4 signal power levels and level use for coding

to specify the total noise of each level, consisting of the Gaussian noise at the receiver and
the signal power of all subsequent levels, including the interference. The total achievable

sum-rate is then given as the sum of all R;; (1) of the used direct levels.

Example of the symmetric restricted IMAC

In this example we consider the fairly restricted symmetric IMAC channel, where a =
0.5 and 8 = 0.75. Note that this example is technically not in the weak interference
regime (2.13) any more. However, the alignment strategies of this section can be applied
to channels with the relaxed condition INR? + INR) < min{SNR;;,SNRy;} by careful
handling of certain cases. This condition becomes a < 0.5 in our symmetrical example.
The symmetry assumption yields that SNRj; = SNRg; = P, SNRjs = SNRos = P8 and
INR? = INR} = P®. Therefore we have that L; = |L;] = [125) = 2. The scheme (2.14)
yields lax = 4 levels with 6, = P—PB 0y =PP— P> 93 = P*— PO25 and 9, = PO —1.
Moreover, we have the following noise powers per level, N(1) = 1 + (P%™ — 1) + 65,
N(2) =1+ (P —1)+63, N(3) =1+ (P"? —1) and N(4) = 1. We, therefore, have the
following decoding bounds for both cells:

{Xu(l),X21(1)} : R(l) S min{rl,rg}
{x12(2),%x22(2)} : R(2) < min{re, 73}
{x11(4),xa1(4)} - R(4) <14

with

P — P0.75 >

_1
r1 = 5 log (1 + PO 1 4
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2. The Gaussian Interfering Multiple Access Channel

P0.75 _ P0.5
72 = glog (“po-ueg)’
0.5 0.25\ T
2 2 P0.25 ’
Po25 _q
r4:;log<1+1 )

where the minima are necessary, because x11(1),x12(2) and x21(1), x22(2) need to be de-
codable at both receivers. Moreover, neither cell can send on level 3, since all interference

is aligned at that level. The total achievable rate is the summation over all levels
Ry, = 2R(1) + 2R(2) + 2R(4).

Moreover, we can show that

L P_P0.75
P+93
1
> glog <P0~75+93>
P
1
>210g(P075+93>
P
1
> 5 log <2po75>
:%logPO‘Q‘r’ %,

where the last inequality follows from the fact that P%7 > 63 because of P > 1. Similarly,

we can show that

ro > %log po2 %,
2

ry > %logPO 51,

ry = 3 log PO,

The total achievable rate is therefore
Ry = 2R(1) 4+ 2R(2) + 2R(4) = 81 log P**° — 21 1og P"* — 4 = 211og P — 11og P*° — 4

With the definition of o = 0.5, ny = |3 log P| and n; = |3 log P*®| one can see, that the

proposed scheme can achieve the upper bound within a constant gap of 4 Bits.
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2.5. Analysis of the LD-IMAC

Achievable Rate: The general (weak) interference case

Henceforth, we define ¢ # j for i,5 € {1,2} in all equations. In the general case, 3; and «;
can be any value in the defined regime and therefore any number of levels can be needed.
The power splitting is done as in the example where signal power is given by (2.14). The
choice of codeword decomposition and level usage is dependent on the underlying LDM
scheme. We use the power partitions of §;; in the same way as the A; blocks in the LDM.
However, instead of filling the [—th A;-block with bits, we use the specific power partition
interval #;; to transmit a sub-signal lattice codeword. As in the previous example, the
sub-signal codewords can be decoded providing a rate of (2.15) and (2.16), depending on
the number of aligning signals. It remains to specify the effective noise per level. The

general noise structure is

Nz(l) =1+ Z 91+1,

used levels

we the levels of aligned interference are counted twice. We have to distinguish three
different rate-term structures for cell i, see Fig. 2.8. The first one is the common signal
part Rjc,. Here we need decoding bounds Ric;(l) per power-partition, which are also
received as interference and therefore need to obey two decoding conditions. One decoding
bound stems from the direct path utilizing bound (2.15). The other decoding bound
stems from the fact that our successive decoding scheme needs to decode the sum of two
interfering bit-levels at every odd bit-level and therefore needs to obey (2.16). We show in
the Appendix 2.10.2, that we can achieve

Ric, (1) > Llog SNRY ™) — 1

which is the minimum of both bounds for the common part per power partition. The
second term is the private part Rp, which is not interference affected, therefore outside the
alignment structures. We need to distinguish the two cases | L;| = odd and |L;| = even.

For |L;| = odd, we have a remainder term with power

1—| L | (1—B; 1—(|Li|+1)(1—B;
SNRilL I 5)—SNR“ (LL: J+1)( 5)7

and the regular private term with power

1— Li +1 I_Bi l—Oci l—ﬂi
SNR; (LLi]+1)( )—SNRH (1=5i)
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Figure 2.8.: Illustration of the three rate term structures. Rjc, is the alignment structure
of the common part. Note that the common part of x;5 is down shifted by
exactly one power partition. Moreover, we illustrate the private signal parts,
with and without interference.

RIPi

For | L;| = even, we have a remainder term of power SNR;{ L] (1=F0) _ SNRill_L"(l_Bi) and
a private term of power SNR;{Li(l*ﬁi) - SNRZ-lfai(lf’Bi), which is depicted in Fig. 2.8. Note
that for |L;| = L; = even, the remainder term is zero. Let us choose the case |L;| = odd
as an example. Here we have the remainder term and the private part term. The remainder
term has the same analysis as the terms of Rjc, in Appendix 2.10.2. Considering the new

power partition, we get a rate of
Rp,, > 3log SNRY; (=80 _ 1 1og gNRI (L4 D=8)

For the private part, we only have to consider the direct rate, and do not need the min-

imisation over both decoding bounds which results in a smaller bit-gap
Rp,, > log SNR} (FHDU=0) _ 1150 gNRO — 1
The total rate of the private part is therefore
Rp, > Llog SNR; 0P _ 1100 SNRE — 2.

Note that this is also achievable for the cases with |L;] = odd. The only difference is the
location of the power split. Note that in our weak interference regime (2.13), we have that
1—|L;|(1 = ;) > e, since 1 — L;(1 — 3;) > «; which can be shown in the following way.
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Plugging in the definition of L;, we get
log SNR/
log SNR{; 7
- log SNR7} -
log SNR;1 — !
& log SNRi1 — log SNRY{ > a;log SNRi

& log SNR;1 > log SNR}} + log SNR?{
& log SNR;; > log INR} + log SNR?

(1—75) > a

=

which is true, since min{SNRj2, SNRos} < SNR;;.

The third rate term structure is the private rate part, which is affected by the interfer-

ence. For every power partition, we can achieve a rate

Rpp, (1) > 3 log SNRéll_Bﬂ') ~ 3,

which is shown in the Appendix 2.10.2.

Furthermore, if L; # |L;] = even, the private part rate Ryp, has a remainder term
allocated at the lowest power level. The lowest level has a noise term of 1 and a power of
SNRio‘fSNRJ-_ltLj 10=63) _ 1. We only need to decode the direct rate term and therefore get
a decoding bound of

Rip, . < §log SNRSNR;, 1077,

%, rem

The total achievable sum rate is the summation over all three rate term structures Rjc;,
RIPZ,, and Rp, including the remainder parts. Moreover, we need to sum over all individual

partitions. This means that

[Li]
RICi > Z % log SNRZ(;iﬁi) —1,
l

and
LL;]
RIPZ- > Z %log SNR;ll_ﬁj) — %
Voda
We show the proof exemplary for the case that L; = |L;] = even. Here we have an

achievable sum-rate of:

2
Ry, = Z Ric, + Rp, + Rip,
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| L2] [L2]
>3 (310gSNRY ™ — 1) + 37 (J1og SNRY; ™) — 1) + Llog SNRy; 12107
l =1

l even
L) L)
+ 3 " (AlogSNRT™ — 1) + 3 (Llog SNRY;™™) — 1) + Llog SNRy; /=)
l =1
l even

— L1og SNRS! — Llog SNRS? — 3

- L _ _ _
— |Ly| L log SNRY) 4 122 ;J 11og SNRY, ™ + Llog SNR); 21072

+ [L1]3 log SNR{) + LL;J; log SNR{; ™ 4 L log SNR;; HH0=71)
— 2.5(|L1] + [L2]) — 31og SNR{} — 1 log SNRS? — 3
= Llog SNRy; + LL;J; log SNRY, ™ + L log SNRy; + LLQ% log SNR{; ™
— 21og SNR{} — $1og SNRS? — 3 — 2.5(| Lo] + [L1])
= L1og SNR! — Llog SNRY} + 1 log SNRS? — 1 log SNRS?
+ ¢(3 log SNRS2, L log SNR!| ™))
+ ¢(%1og SNRYE, Llog SNRY ™)) — 3 — 2.5(| Lo | + [ L4)),

where the last step follows from the definition of ¢(p,q) in (2.1). We have that ¢(p,q) =
q+ % for I(p,q) = even. Plugging in p = %log SNRy} and ¢ = %log SNRﬁ_ﬁj), shows
that (4 log SNR, 1 log SNR\, ™)) = | ;| and the result follows. n

One can see that the achievable rate of the Gaussian channel is within a constant-gap of
3+ 2.5(| L] + | L1])bits of the LDM rate using the correspondence ngk = |1log \hngPj.

2.6. Analysis of the LTD-IMAC

In this section we prove the two theorems, Theorem 2.5 and Theorem 2.6. In particular,
we will first show the achievability in Section 2.6.1 and then in Section 2.6.2 the upper

bound, for the theorems.

2.6.1. Achievable Schemes

We start with two lemmas, which provide the bases for the achievable rate in the LTD model
in the general symmetric setting and in a weak interference general setting, respectively.
Afterwards we discuss two lemmas which are necessary to prove that the codewords in the

schemes can be decoded.

Lemma 2.8 (general interference, symmetry). For every § € (0,1] and ni, na, n; € N
such that ny > no there exists a set B C (1,2]2*3 of Lebesque measure u(B) < & such that
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for all channel gains gfk € (1,2]23\ B an achievable sum rate for the IMAC system model
18:
Ry > min{Rach,la Rach,27 Rach,37 Rach,47 Rach,5} -2 log(c/é)

with
Raen = 2max((n1 — n;) ", n;) + min((ng —n) ™, nyg), (2.18a)
Racha = 5(2max(ny, n;) + (n1 —ni) ™), (2.18b)
Racn,3 = 2nq, (2.18c)
Racha := max(2ng, 2(n1 —ny) ", 2n;), (2.18d)
Raens = max(nq,n;) + max(na, (n1 —n;)"). (2.18¢)

Lemma 2.9 (weak interference). For every 6 € (0,1] and nk,, nk,, nF € N such that
nk, > nk, > nF and n +n? < min{ni,, nk}, there exists a set B C (1,2]?*3 of Lebesgue
measure p(B) < 6 such that for all channel gains gfk € (1,2]>*3\ B an achievable sum rate
for the IMAC system model is:

Ry; > min{Rch1, Rach,2, Rach,3: Racha} — 2log(c/0)

with
Rocny = max{(ni; — n?),niy} + max{(n3 — ni),ni} (2.18f)
Raeno = max{(nj; —ni),nip} +n3 — anj (2.18g)
Rocn3 = nh — %n% + max{(n%l — n%), n%Q} (2.18h)
Rgena = niy — 3ni +n3, — ang, (2.18i)

Proof. To prove the lemmas we first need to show under which conditions a rate allocation
scheme yields linear independence of the used H columns and therefore allows successful
decoding. For the interference range o > %, we can use the lemma 11 of [NMA13], with a

re-labelling such that it fits our case. The following lemma shows the modified version.

Lemma 2.10 ( [NMA13, Lemma 11 (modified)]). Let § € (0,1] and n1, n2, n; € N such
that ny > ng > n;, and 2n; > ny, and let Ry, Rﬁ, Rﬁ, Rf, € N with k,l € {1,2} and
l # k satisfy,

R§y + RSy + max{R{;, Ry} + Ry <y — log (22)
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Figure 2.9.: Illustration of the achievable scheme and rate allocations in the range o <

%. The figure shows an asymmetric coarse channel gain example, where the

received signal y! has %nz < A < n; (case 1.2) and the received signal y? has
A < 3n; (case L.3) .

ko + max{R}}, Rj5} + Rﬁ < ng —log (%)

max{R{,, RS} + Ry <,

Then, the bit allocation [...] for the (modulated) deterministic X-channel allows successful
decoding at both receivers for all channel gains (gfk € (1,2]*3) except for a set B C
(1,2]2%3 of Lebesque measure p(B) < 6.

For the range of a < %, our achievable scheme gets a second private signal part between
the common and the private signal of the stronger user (see for example Fig. 2.9, RII’%).
Therefore, Lemma 2.10 is not applicable anymore. However, due to the special structure

of the achievable scheme, we can modify the proof to show a similar result.

Lemma 2.11. Let § € (0,1] and n¥,, nk,, nF € N such that n¥, > n¥, > nF and
ny +n? < min{n},n}}, and let RS, RV}, RY2, RS,, Ry € N, with k,l € {1,2},k # 1
satisfy,

G R+ R 4 RYy + max{Rpy, B} < nfy — log (3)

Rﬁ + Rﬁ + Rf, + max{Rf}, R} < nj,
2 1 k l
RZl + Ril +max{R}}, Rjp} < (ng; — ng)
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1 k
RZl +max{ R}, Rjp} <ny

Then, a bit allocation, chosen such that the conditions are satisfied, allows successful
decoding at both receivers for all channel gains except for an outage set B C (1,2]**3 of

Lebesgue measure p(B) < 6.

Proof: The proof for Lemma 2.10 can be found in [NMA13] and the proof for Lemma
2.11 is in the same fashion but exploits the non-overlapping coding structure between
Rﬁ, max{Rj,, Rj,} and R]ﬁ in the weak interference case, see Appendix 2.10.3. A similar
method is used in Section 2.7, where the Gaussian equivalent of this modification is used.

The last two lemmas tell us that for all rates which obey the stated conditions, the
spanned subspaces are independent except for a small set of measure p(B) < §. This
means that there exists a unique solution and the signals can be decoded. Hence, any
proposed scheme needs to be checked if it obeys these conditions and therefore allows for
successful decoding. The conditions of the following schemes are checked in the appendix.

It then remains to show that the proposed schemes achieve the rates in the theorem.

We have to choose different schemes for the cases

We indicated the common and private signal parts with the superscript ¢ and p respec-
tively. We therefore have that x = [X%; XP].

The private parts of the signal can be used to communicate solely to the intended receiver,
without affecting the other cell. We dedicate the RS, most significant bits, and the R
least significant bits of X;; to carry information. For the weak interference cases a < %,
the private part of X has another bit-level allocation. There we dedicate the RY} most
significant bits of the private part XP to carry information, see Figure 2.9. We now have
to choose the scheme, and therefore how many bit-levels we give to each of the allocation
rates, which we just introduced. We start with the weak interference case.

CaseI: (0<a< %) We use the fact, that the model can be split into two sub-models,
similar to the LD-Model (see Figure 2.4). This means that scheme differences for the bit-
levels above the interference-level of one cell, do not influence the other cell. Hence, we
can consider them separately and without loss of generality restrict the case analysis to
symmetric cases. However, this is only possible for the weak interference model, which is

why we consider the symmetrical model for higher interference regimes. For k,l € {1,2}
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2. The Gaussian Interfering Multiple Access Channel

and k # [ we set

l . l k k l
k1 i= BnkJ , Rjg := min{ {%nk—‘ , (g — (g1 — ”k))+}

pl . |1k p2 . _ ok l k
Rkl = LinlJ ’Rkl =Ny — Ny — Ny

Multiuser gain in the IMAC model is dependent of the strength of the second user in each
cell. This is also true in the weak interference case, where we differentiate between three
sub-cases (of nine in total), dependent on nf,.

Case I.1: The first sub-case is when ”22 < nﬁl - nﬁc In this case, the second user is useless
for the channel, since the private rate R} of user 1 can serve the same purpose. There is

no multi-user gain in this regime and the achievable rate is limited to the IC sum rate.

Rs = RS, + RY) + RV} + RSy + RS, + Ry + Rb; + RS,
=2 |3n1] +2[5ma] +niy + 2y — 201 - 2ny
> (n1y —nf) + (n3; —ny) — 4.

We remark that the achievable rate for one cell and this scheme is (nf, — %”2 — %nf ). This

might be against the intuition from the IC model, where it is ((nf; — nF) resulting from a
scheme similar to treating interference as noise. However, considering the sum rate of both
cells in our scheme, we get back to the IC-rate. The following cases, where the second user
of one or both cells is stronger, results in an additional rate part on top of the IC sum-rate.
In the symmetrical case, we see that the conditions lead to a minimum of Rach 4 in Lemma
2.8, which can be reached by the allocation.

Case 1.2: The second sub-case is when nﬁl — nﬁc < nﬁQ < nil — %nﬁc In this range, the
upper part of the second user becomes useful as the top bit-level reaches above the part
RP? . and makes bit-level alignment possible. This part has a rising multiuser gain and is

no longer limited to the IC sum rate.

Ry = R, + Rﬁ + Rﬁ + Riy + R3; + R}ﬁ + Rg% + R5,
=2 L%nﬂ + 2 L%n%J + nh + n%l — 2n% — Qn%
+ (niy — (ng; — n})) + (n3y — (n3; — ny))

Zn§2+n%2—4

The nﬁQ — (ni1 — nﬁc) terms represent the additional rate of the second user and thus the
multiuser gain. We achieve the active bound Rg.p, 4 in the symmetrical setting.
Case 1.3: The last sub-case is for nﬁl — %n% < nﬁQ < nﬁl, here the second user can be fully

utilized to provide one half of the interference strength at the opposite cell. The multiuser
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gain becomes half of the interference and the achievable sum rate reaches the main upper
bound.

Ry = Ry, + RYy + RI} + Rf, + RS, + Rh, + Ry} + RS,

=2 [Ind] +2|ind| +ni; +n3; — 20T — 203 + 3([nd] + [n3])

= n11 +n31 — [gnf] — [3n3]

> (ndy — o) + (ny — bmd) — 2.
Here we see that the multiuser gain is %nfﬂ for cell k. Intuitively this means, that we can
use the aligned part as additional rate. The combination of the cell rates (I.1:) ni; —n?,
(1.2:) nf,, (1.3:) ni; — 3n? leads to nine different cases. If a cell satisfies condition (I.1:)
nk, <nk —nk, the n¥, —nl terms in the max of (2.19)-(2.18h) are active. Furthermore
the max terms are smaller than nf, —n} and the bound is reached. For condition (I.2:)
nil — ”2 < ”22 < n,’jl — %ni yields activation of niz inside the max terms, and on the
other hand, n’gQ is weaker than nﬁl — %ni proving the remaining bounds. The decoding
conditions of lemma 2.11 are checked in the appendix. Considering a bit-gap of at most
21og(16/9) from the decoding conditions and at most 4-bit from the use of fractional terms,

results in a total gap of at most 2log(c/d) with ¢ = 64. This proves lemma 2.9. [

We continue with the proof for lemma 2.8. From now on we confine the analysis to the
symmetrical case, meaning that nl; = n3; := ny, nl, = n3, = ng, n? = nd = n;. Sum
rates for the weak interference case of the symmetric model are already shown as part of

lemma 2.9, we therefore go on with the remaining regimes.

Case II (3 < a < 2): For k € {1,2} we set

f= g(m —ni)], Rip o= min{[5(m —ni)], (n2 —n)}

Rﬁ =n; — [3(m — )] .

One can see the reason for this rate allocation scheme intuitively considering the interfer-
ence at both cells. First of all, at o > %, the interference is strong enough to “reach” into
the common part of the signal X in cell & (see Fig. 2.10). Therefore, the additional private
part bit allocation Rﬁ of the weak interference case is zero and we can use the decoding
lemma 2.10 from now on. Note that lemma 2.10, and therefore a bigger gap, is needed
because of overlapping signal parts. Moreover, as a result of this new regime, the signal Xgo
in each cell k£ can support multiuser gain as long as ny > n;. The previous rate allocation
scheme (L%MJ for common parts) fails to satisfy the first equation of lemma 2.10, since
there are less than n; interference unaffected bit-levels for both users in a cell. The new

allocation needs to fit into (n; —n;) bit-levels and an obvious choice is %(nl —n;). This way
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Figure 2.10.: Hlustration of the scheme and rate allocations for the range % <a< % with

a = % on the right hand side. The left hand side shows an illustration of

the scheme in the previous regime. Both figures show the problem with the
overlapping common part on the stronger signal.

we can use the whole bit-levels available and at the same time maximize the alignment at
the other cell. The private part allocates the available rest, satisfying the third equation
of lemma 2.10. See Figure 2.10 for an illustration. As in the weak interference case, we
need to differentiate between sub-cases, depending on the strength of the signals Xpo.
Case II.1: The first sub-case is when ny > n; + L%(nl — nZ)J Therefore L%(nl — nZ)J <
(n2 — n;) and R§, := |[3(n1 —n;)|. The second direct signal has enough bit-levels to

support the full multiuser gain. The sum-rate becomes
Rz =4 L%(nl — nz)J + 2(7%‘ — L%(nl — TLZ)J) >n1+ n; — 2.

Regarding Lemma 2.8, the sub-case implies that ny > n; and it therefore follows from
n; > (n1 — n;), that ng > (n; — n;). Moreover, one can see from ny > n; + L%(nl — nl)J
and a < %, that Raen,1 gets activated and is the minimum of all bounds.

Case 11.2: On the contrary, for no < n; + |3(n1 —n;)], Rfy := (n2 — n;) because the
second direct signal cannot support the full previous rate allocation without violating the

second decoding condition of lemma 2.10. The sum-rate is
Ryxy, = 2(?12 — TLZ) + 2n; = 2n9.

And for ne < n; the IMAC collapses to the IC-model and yields the known 2n; as sum
rate. Note that R,., 4 gets activated, and is also achieved, in the last two cases.
Case III (% < a < 1): For case 3, we have the special situation, that the a-range needs

to be subdivided to account for different sub-ranges. Still, due to the full multi-user gain
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Figure 2.11.: Illustration of the achievable scheme and rate allocations in the range % <

a <1 with o = % The left hand side shows the rate allocation for the case
ng > nig — %ni, while the right hand side shows the case ny < ny — %nz

sum-rate being the same over the whole range % < «a < 1 justifies analysing those as part

of one case, see fig. 2.12.
Case IILLA (2 < o < 2): For k € {1,2} we set
21 = L%nlJ )
22 = min{ L%an s L((TLQ — ni)+ + %nz — nl)J },

pl
Rkl =N —n;.

The change of the previous rate allocation is necessary because the common part drops
in the range where we allocated the private part in the previous case. Therefore, the
allocation of the private part needs to be changed accordingly. Due to this change, we
have n; bit-levels to allocate two common part allocations plus the aligned interference of
the other cell. Due to the symmetry, an obvious choice is to use %nl for every common
part allocation to maximise bit-level usage without violating the constraints. This scheme
ensures that condition 1 from lemma 2.10 holds. We need to make sure, that also condition
2 and 3 hold. Condition 3 holds independently of ns due to the scheme design. For
condition 2 the user of Xys needs to be strong enough to support the allocation of %nl
bit-levels and therefore ny > ny — %ni, which is the condition for the sub-case III.A.1. For
ny — %nl > ng > n; we reach the sub-case III.A.2, where the signal X3s can support an
allocation of (ny — ng)t + %nz — ny bit-levels. For ns < n; the scheme cannot support
multi-user gain any more, the LTD-IMAC falls back to the LTD-IC and one strategy is to

leave the weak user of signal Xis silent and use IC techniques. We, therefore, have two
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Figure 2.12.: Illustration of the full multi-user gain sum-rate (green) and the IC sum-rate
(red) in the three a sub-ranges of case III. For varying strength of the weaker
users signal X0 in each cell k, the achieved sum-rate can lie in between both
curves.

sub-cases, where only for no > n; — %nl (ITI.A.1) full multi-user gain can be achieved and
at no = np — %nz is a transition to case III.A.2, which still yields multi-user gain as long
as ng > n;. We remark that as long as no is larger than the private part nqy — n;, it can be
used to achieve the same sum-rate as [C-techniques. For achieving n; in the range no < n;,

Rf, would need a larger allocation, which will be used in case II1.B.

Sum Rate: The sum rate for the case II1I.A.1 is
Ry =4 L%mJ +2(ny —ny) >2ng — %nl —4,
where R,cp, 2 is active and for the case IIILA.2 (ng > n;) it is
Ry =2(3n; + (n1 —n) + (2 — i)™ + 5ny —ny) —2 > 2ngy — 2,

where the rate term Rgcp, 4 is active.

Case IILB (3 < a < 3): For k € {1,2} we set

Ry = |3ni] + min{[(3n; —n2)* |, [(n1 — %ni)+ +3(2n; —ng —ny) "t |},
Rf5 = min{ L%mJ , L((ng —ni) T+ (%m - n1)+)J ,(ng — (n1 —ny)) "},

pl
Rkl =nNni1 —n;.
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Figure 2.13.: Illustration of the scheme for case II1.B.4. The goal is to allocate as many as
possible bits of X1, to fill the free (allocatable) space %nz — ng between the

interference and Rf,, Rﬁ. The obvious action is to allocate more bit-levels
at Xp1, however, there are just n; — %ni freely allocatable (i.e. which do not
overlap with other signals) bits. The remaining 2n; — ny — nq bits overlap
with the aligned interference and one can allocate only half of the available
bit-levels in order to stay within decoding conditions.

As in case IIL.A, only for no > nq — %nl (ITI.B.1) full multi-user gain can be achieved and
at ng =nj — %nz is a transition to case II11.B.2. However, due to the fact that n; gets bigger
than ny — %nl for av > % (see fig. 2.12), the scheme still yields multi-user gain as long as
ng > nq1 —n;. This means that we still have multi-user gain as long as the signal bit vector
X9 is larger than the private part of X1. We, therefore, have two additional sub-cases for
n1 —n; < ng < n;. The first sub-case I11.B.3 is for %nl < ng < n;, where we use the same
strategy as in I11.B.2, but can only support a free allocation below n; at Xpo. This means
that the part (no — n;)™ will be zero, resulting in a sum-rate of 2n; instead of 2ns. The
second sub-case II1.B.4 is in the range n; — n; < no < %nz For this sub-case, the signal
X9 cannot support the %nl —ny bit-level allocation anymore. The allocation ng — (nq —n;)
gets active, which uses a maximum of bit-levels without overlapping with the private part
of Xi1. The low number of bit levels of X results in a gap of (%nz —ng) ™t bits between the
interference signal allocation and the bit allocations of Rf, and Rﬁ. One therefore needs
to allocate more bit levels at X1 to compensate. However, due to % >a> % we have that
ny—mn; <2n; —ny < % Therefore, ng can fall into a range (n2 < 2n; — ny), where the
missing bit-levels (%nl — n9)T are more than the freely allocatable space above n;, which
isng — %ni bit-levels. Therefore, only n; — %ni bit-levels can be allocated without penalty,
and another (2n; — ng — ny)™ for half of the remaining space (see fig. 2.13). Note that
case 111.B.3 and I1.B.4 is in the range no < m;. One therefore needs to switch the signal
Xro with the interfering signal in the decoding lemma, which yields the third condition

that R, + Rﬁ < n9 and in condition 2, ny gets replaced with n;.
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Sum Rate: The sum rate for the case III.B.1 is
Ry =4 L%nlJ +2(ny —ny) >2ng — %nl —4,
where R,y 2 is active. For the case II1.B.2 and ng > n; the sum rate is
Ry = 2(%711 + (n1 —ng) + ((ng —ny) ™ + %nl —ny)—22>2ny — 2,
and for %nz < ng < n; (case II1.B.3) it is
Ry = 2(%71, +(ny —n;) + (%nz —ny))—2>2n; —2,

where the term R, 4 is active in the last two cases.
For case II1.B.4 (ny —n;) < ny < 2n;,

as long as ma > 2n; — n; we have that Rf, = L%an + L(%n, —ng)ﬂ, while Rf, =
(ng — (n1 — n;))* and the sum rate is 2n; — 2. If ny < 2n; — ng, the allocation of Rf,

changes and the sum rate becomes

Ry, = 2(%774 + L(nl — %nz) + %(27% — N9 — nl)J
+ (n1—n) 4+ (ng — (n1 — )" — 2> ng +my — 2,

where the rate term R,.p 5 gets active.

Case III.C (2 < a <1): For k € {1,2} we set

o= L)+ [3 = = 0 =m0
Rfy = min{|in;]|, (n2 — (n1 —ny)) "},
Rﬁ =ni; —n;.

For a > % we have ny — %nl < n; which means that Rj, drops below interference
level and therefore overlaps with Rj; and Rf,, the aligned interference signals of the other
cell. Additionally, more than %nz free bit-levels are available between the private part Rﬁ
and the aligned interference (Rj; and Rf,). This means, that full multi-user gain can be
supported even if ny < nq— %nl for as long as ny > nq — %nl (ITI.C.1). If ng < ny — %ni, X2
is not strong enough to support full multi-user gain, and the allocation Rf,, := na—(ni—n;)
gets active, resulting in case II1.C.2. As in the previous sub-case II1.B, X;1 gets active and
can allocate half of the available difference of (ny — n;) + %nl — ng bit-levels. Note that
one cannot use all of the bit-levels between ng and n; — %nl which are %nl — ng, because

3

it would violate decoding condition 1 for o > 4. As in the previous case, the decoding
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Figure 2.14.: Illustration of the scheme for the case II1.C.2. In this case, ns is too weak to
support the full 5 bit-levels. It can support a maximum of ny — (n1 — n;)

bit-levels. The remaining free nq — % — n9 bit-levels can be added at Xj;.

However, since every additional bit generates additional interference (both
green parts), we can only allocate half of the remaining bits to stay within
decoding conditions.

lemma needs to be adjusted for ny < n;. There is multi-user gain in this case, as long as
ng > nq1 — n;, below the LTD-IMAC falls back to the LTD-IC.

Sum Rate: The sum rate for the case II1.C.1 is
Ry, =4 L%TLZJ + 2(711 — nl) > 2ny — %nz — 4,
where R,cp 2 is active. For the case II1.C.2

Ry, = 2(%’/11 + (n1 — ’I’Lz) + (nz — (n1 — nz))+ + %(%nl — (TLQ — (n1 — nz))+) -2

>ng+ny— 2,

the scheme reaches Rycp 5.

Case IV (1< a< %) For the range o > 1 the decoding lemma needs to be adjusted.

A simple reassignment of the corresponding rates solves this problem. We can set
|1 11 + i S| 1
o= [3ni] + [3(3n —n2)T |, Ry := min{| 3n;] ,na}.

Since the interfering signal is stronger than both users, the private part of X, vanishes
completely. We have to analyse two sub-cases: Case IV.1: This sub-case is in the range
ng > L%MJ Here, R}, := L%mJ, and the multi-user gain can be completely supported by
the weaker users signal Xio. Case IV.2: For ny < L%nlJ, the multi-user gain cannot be fully

supported. We have Rf, := no and for ny = 0, the channel falls back to the IC sum-rate.
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2. The Gaussian Interfering Multiple Access Channel

Sum Rate: The sum rate for the cases IV.1 and IV.2 is Ry > %n,; — 4 and Ry, >

n; +ng — 2, respectively. In case IV.1, R, 2 is active, and for case IV.2, Ry 5 is active.

Case V (2 < a <o) At a = 3,

maximum allocatable rate point which satisfies all decoding conditions with the previous

we have that n; = %nz and therefore reached the

rate allocation. Since n; keeps growing, the strategy is to use half of n; as allocation and

we set

Rj, := max{ L%nlJ , L%nl — %ngj ,n1 — na}t,

Ry == min{|ini ], no}.

Once again, multi-user gain is dependent on the strength of ns. For ng > L%nlJ (case V.I),
the second user can fully support the gain but for no < L%nlJ just R, := mg. For this
case, we have R, := n1 —ng as long as 2n; < n; +ng and get the full sum-rate. Otherwise,
full multi-user gain cannot be supported and we have Rf, := L%nz — %ngj and reach the
case V.2.

Sum Rate: The sum rate for the cases V.1 and V.2is Ry, > 2n;—4 and Ry, > n;+ns—2,
respectively.

As in [NMA13|, we have ignored the log(32/d) terms from the decoding lemma, and add
a reduction in the overall sum-rate of 2log(32/0). Together with a bit-gap of at most 4,
we get the overall gap 21og(128/9). O

2.6.2. Upper Bounds

Theorem 2.12. The sum rate for the symmetric LTD-IMAC system model can be bounded
from above by
Ry, <min{D1, Da, D3, D4, D5}

with
D1 :=2max((ny —n;)",n;) + min((ng — ng)*,n), (2.18j)
Dy := 2(2max(ny,n;) + (n1 —n;) "), (2.18k)
D3 :=2n4, (2.181)
Dy = max(2ng,2(n1 — n;) ", 2n;), (2.18m)
Ds := max(ny,n;) + max(ng, (ng —n;) ). (2.18n)
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2.6. Analysis of the LTD-IMAC

Proof. Considering Fano’s inequality and the Data Processing inequality one can establish

the following bounds:

n(Ri; + Ry + R3; + R3,)
< I(xTy, X3 (v)") + 1(x31, X595 (¥°)") + 1(en12 + €n,34)
= H((y")") — H((y")"Ix11,x12) + H((y*)")

— H((y?)"|x51,%35) + n(en12 + €n,34).

We denote (y/)™T :=
and show that

(yj)’[;ﬂmﬂ and (y/)™t = (yj)’[ll:n] with 7 := max((n; — n;)*,n;)

2n(Ry — €px)
< 2H((y")") = 2H((y")" |11, x1a) + 2H (yi) — 2H((y?)"|x31, x55)
< 2H((y")™) + 2H((y")™") — 2H (H3((%5,)" @ (X52)"))
+2H((y*)™) + 2H((y*)™") = 2H(HI((X{)" @ (X7)"))
< dmmax((m — eyt m) + H((y)™) + H((y?)™)

< dnmax((ny — ny)*,n;) + 2nmin((ny —ny) ", ny)

where (a) follows from H((y’)™+) < nn and

< H((y")™") — H(
= H((y")"") — H((®)") ~ H((%52)")
0.

Here we used in the second last step, that the H matrices are lower uni-triangular matrices.
This means that they are invertible, hence are bijective mappings. By symmetry is also
holds that

H((y*)™") — 2H(H}((X5;)" @ (%52)")) < 0.

Dividing both sides by 2n and taking n — oo yields the upper bound (2.18j).
We now establish the bound (2.18k). Therefore we show that
3n(Riy + Ry + R3, + R3, — )

< BI(xy, xTy; (v1)") + 31 (s, X33 (v°)")
< 2H((y")") = 2H((y")"|x{1, 1) + 2H((y*)")
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2. The Gaussian Interfering Multiple Access Channel

— 2H((y*)"|x5,,X5y) + H (X} © X7y) + H (X5, @ X5,).
<2H((y")") +2H((y*)") + 2n(ng —n;)*

with

H(X)y @ xfy) — 2H(H] (%) © (X)"))

< H(X}h ©X) — HH] ((%57)" @ (X)")[(%)") — HH] (Rf)" @ (%2)")|(X5)")
= H(xj1 © x5) — H((X71)") — H((X)")

< H((X © X)) [1:(ny—ni)+)

S n(m — ni)Jr

for i € {1,2} in all® X% and X%, and therefore

TL(RZ — 6)

< 2%(2 max(nl, TLZ) + (n1 — ni)+),

which shows the upper bound (2.18k) for n — oo. We now establish the bound (2.18l).
We can show that

n(Ry;, + Ry + R3, + R3y — €

< T(x, XT; (v, X531, X5s) + (51, X505 (y°)", X1y, Xi)
= I(xy, XTo; (v)"|x51, XBa) + 1(x51, X505 (y*)"|x{1, XT2)
= H((y")"[x51,x52) + H((y*)"[x71, X{2)

< 2nn;.

Dividing by n shows the upper bound (2.181) for n — co. Now, we show the upper bound
(2.18m). One can show that:

n(Riy + Ry + B3y + Ry — €5)
< H((yY)") — H((y")"xt xt2) + H((y*)") — H((y*)" %31, X52)
= H((y")") — HH((x5)" @ (x5)")) + H((y*)") —

< H((y")") — HH3(5,)") + H((y*)") — HH}(X{)")

< 2nmax(ng, (n1 —n;) ", n;)

5Note that the index ¢ at the signals identifies the MAC-cell and has nothing to do with the 4 at n; which
stands for interference.
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2.7. Transfer from LTD-IMAC to G-IMAC

Dividing by n and letting n — oo shows the bound (2.18m).
We now establish the bound (2.18n). We can show that

n(Ry — €nx)

SH((Yl)n) H((yl) %11, x1) + H((y 2) ) —H((y ) |31, X35)

< H((y")") = H((y")"[x11, X2, x5) + H((y*)") — H((y*)" |51, x55)
< H((y")") — H(X) + H((y*)") — H(X}, © ()

< H((y")") +nmax(na, (n1 —n;)")

< nmax(ni,n;) + nmax(ng, (ng —ny)™H).

Dividing both sides by n and taking n — oo yields the desired upper bound.
O

Corollary 2.13. If the weaker user is strong enough to support full multi-user gain, the

sum rate for the symmetric LTD-IMAC system model can be bounded from above by

2(nq %nl) for0<a< %
2(3m +iny) fori<a< %
Ry < q2(ny — ;) for%ﬁagl
%ni forl1<a< %
2nq for % <a<oo

Proof. Follows immediately from Theorem 2.6.2 by investigation of the active bounds in

the corresponding regimes. O

Remark 2.14. The upper bounds for the weak interference asymmetric cases can be found
in [FW15a]. Upper bounds for weak symmetric cases correspond to the specific achievable
schemes. Since the model can be split in the weak interference regime, the symmetric

upper bounds can be split and mixed as well and show the asymmetric bounds as well.

2.7. Transfer from LTD-IMAC to G-IMAC

2.7.1. Achievability for the G-IMAC

In this part, we prove the achievability for the Gaussian IMAC. We will show, that
the lower-triangular scheme directly guides the constant-gap capacity achieving Gaussian

scheme. The analysis is done in the same fashion as in [NMA13]. We assume perfect
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2. The Gaussian Interfering Multiple Access Channel

knowledge of the channel gains hzk However, the same techniques as in [NMA13| can be
applied to show, that a max ngk—bit quantisation of hgk is sufficient for the achievability.

Remember that the input signals are constructed such that

11 = h%QUH (2.180)
12 := hijun (2.18p)
o1 := hjuz (2.18q)

)

€99 — h%ﬂtgg. (2181"

Observe, that this results in (2.5), where the new channel gains are gzk € (1,4]. Due to

this modulation, the first two bits of u; are set to zero i.e.,

N1

Ul i= Z[Uik]ﬂ_j,

J=3

where [u;;]; € {0,1} represents the bits of the binary expansion of u;;. This ensures that
luge] < % and therefore ]gfkuzk] < 1. Moreover, the wu;;-inputs are chosen such that the
corresponding [u;x];-bits obey the design criteria of the LTD scheme in 2.6.1. In particular,
the places where the binary vectors of the LTD model are forced to be zero, need to be
zero in the Gaussian scheme as well. Therefore, the wu;1-inputs will be also decomposed

into common and private signal parts i.e.,

P C

Where the private part uq = ﬁl + ui]? is decomposed again into two parts for the weak

(2
interference regime i.e., % < % In the following, we analyse the receiver one exemplary.
By symmetry, all results for receiver one apply for receiver two as well. The channel

equation for receiver one is

y' = 9%1271%%11 + 9%22@2”12 + 952@ (u$) +uS) + (9%271%@62131 +2'). (2.19)

Observe that the private part ud; of transmitter two is grouped with the Gaussian noise.
The purpose of the private part is, that it is received below the noise floor of the unintended

receiver. By the specific structure of the LTD scheme, the private part is given by

N1

ug = Z [uﬁ]j2_j,

j:n%+3
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2.7. Transfer from LTD-IMAC to G-IMAC

where the two first bits are set to zero. Therefore we have ]2"%51\ < i and | g%2”3u§1\ <1
It follows, that the last parts of the received signal (952”%51 + 2%) can be treated as
noise. Moreover, one can see that the two interfering signals from receiver two u$; and u$,
are received with the same channel gain and therefore align at receiver one. Once again

following the notation of [NMA13|, we can write the received signal parts above noise as

s11 1= 2"y (2.19a)
S12 1= 2”’%22“2 (219b)
55 = 2" (uS) + uSy). (2.19¢)

The decoder at receiver one tries to find estimates S11, $12, §% for the received signal parts.
Therefore, it is only interested in the sum of both interfering signals. The goal is to find

the specific 511, $19, §% which minimize the distance to the received signal, i.e.
1 4 1 4 141
ly1 — 911511 — 912812 — 9252|.

An error can occur, if the distance between y; and any other triple (811, $12, S%) has a
smaller distance than the noise. Therefore we need to investigate the minimum distance

between the received signal parts and any other triple, which is

d:= min 911 (811 — $11) — gia(s12 — $12) — ga (53 — 83)|.
(511,512,83)#(811,812,83)

Observe that the structure of the problem is exactly the same as in [NMA13, p. 4869,
although the network model is different®. For the interference regime where o > %, we can

use a Lemma which was proved in [NMA13].
Lemma 2.15 ( [NMA13, Lemma 9, (modified for the G-IMAC)]|). Let 6 € (0,1] and nq,

ng, n; € N, ny > ng and % > % Assume Rﬁ, R%, Ri2, Ro1, R52, R% € Z4 satisfy,

R} + RS, + RS, + R, < nq —log (§)
R$, + RS, + R < na —log ()

RS + R <n;—6
and

RS) + RS, + Ry + R, < nq —1log (§)
RS, + RS + R, < ny —log ()

In particular the coarse channel gain of the aligning signals, and therefore the form of s3
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2. The Gaussian Interfering Multiple Access Channel

R 4+ RE, <n;i—6

where ¢ := 13104 and R; is the rate of the signal u;i. Then, the bit allocation of the LTD-
IMAC applied to the Gaussian IMAC results in a minimum constellation distance d > 32
at each receiver for all channel gains (hpi € (1,2]2*2) except for a set B C (1,2]**? of
Lebesgue measure u(B) < 6.

Since the structure of the conditions is the same as in the LTD-IMAC case (Lemma 2.10),
we see that the G-IMAC can achieve the sum rate of Lemma 2.8 (with appropriate ad-
justment of the constants) with small probability of error. However, note that we cannot
apply this Lemma to our weak interference case. This is due to the private part, which is
composed of the two private signals uﬁl , uff. We provide the proof for an adjusted Lemma,
in Appendix 2.10.4. Moreover, Lemma 2.15 only provides conditions for the decoding er-
ror to be small. As in [NMA13], it can be shown that an outer code over the modulated
channel results in a vanishing error probability. Due to the structural similarities between
the X-channel and the IMAC, all results in [NMA13| regarding vanishing error probability
also apply for the IMAC. In particular, for an outer code with rate R}, and a modulation
rate of R;; it holds that

Rl = I(u; $11, $12, §3)
= I(sik; 311, 312, 33)
> Ry, — 1.5, (2.20)
which uses the bound
H(s11, 512, 53/811, 812, 83) < 1.5,

proven in [NMA13|, under usage of the conclusions of Lemma 2.15. This can be shown for
each signal. The sum of the lower bounds then shows, that an outer code can achieve the

previous sum rate with a vanishing error probability within a constant gap of six bits.

2.8. On The Difference between the LD Model and the LTD
Model

Let us look at a specific example for both models. Assume we have a symmetrical channel,
such that

ni, =n3 =mn; =11 x A bits

niy = n3y = ng = 10 x A bits
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ny; =nly =n3; =nly =n; =5 x A bits.

The parameters are a; = ap = % and f1 = (B = %. Figure 2.15 shows the achievable
strategy for the LD model. We partition the common part of the signal in A-bit partitions
such that we have maximal direct bit-rate while minimizing the aligning interference. This
results in an achievable bit-rate of 8A (sum rate of 16A) bits using an orthogonal align-
ment scheme, where bit-levels are used independently. Let’s assume the optimal input
distribution in the IMAC setting is uniform. If X ~ Unif[0,1] we have that the binary
expansion X = Y °° | 2,27 yields i.i.d. Bern(}) z,. Which would mean that the bits of
the binary received vector y are also i.i.d. Bern(%). Hence, we could show the following

converse bound

ZR_E I(x71,x72; y1) + (%51, X525 ¥5)
< H(yy) — H(y?|xT1,xT9) + H(yy) — H(y3|x31,X35)
< H(yl™) + H(y{"™) — H(y?|xly, x%) + H(yy"™) + H(ys™) — H(y% x5, x5,).

Now we can upper bound H (y%”) and H (y%”) by n6A bits. Moreover, we can split
H(y[™) — H(y} x5, x5) = ZH YN = H(yaalx5 A, x5 2)

in A partitions, which is possible due to the bits of y being independent as assumed. Now
one can condition the term H(YAQ’X%,A’XSZA) alternately on x¥; A and xj, A, starting

with the latter, which results in
H(y]™) — H(yb x5, x5) < n2A.
The same can be done with H (yg’n) — H(y?|x%y,xYy) resulting in an overall bound of
Rs; < 16A bits.

However, without any y distribution assumption we can get the bound of theorem 2.2

2 1
1 2 ny Ny
Rzgnll‘Fan—?—?

and therefore Ry < 17A bits. Those 17A bits are achievable by using the LTD model
and an achieving strategy for our example is given in Fig. 2.16. The difference in the LTD
model is, that a dependence of the bit-levels at the receiver is introduced by taking the

binary expansion of the channel gain into account.
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5 OHR
HE m|=
THl = Bl 4o
u u
u u
N _Yl - _Y2

Figure 2.15.: Achievable strategy for the LDM in the exemplary setting. We have illus-

trated the parts of y;™", yg’" and y7", y%’n with blue arrows. Every grey box

corresponds to a A—Dbit allocation.

Y1 Yo

Figure 2.16.: Achievable strategy for the LTDM in the exemplary setting. We have illus-
trated the parts of y;", yg’” and y7", y%’n with blue arrows. The aligning
blocks have 2.5A bits. The block in the middle, under the blue split, has A

bits.
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2.9. Conclusions

In this paper we have investigated the Gaussian interfering multiple access channel (G-
IMAC). We used the linear deterministic model (LDM) of the IMAC (coined LD-IMAC)
as a first approximation to gain new insights. These insights show that with the help
of interference alignment techniques in the signal-scale, up to half of the interference can
be aligned and the other half can be therefore made available for communication. More-
over, we have shown upper bounds which coincide with the achievable rates for certain
interference-to-signal ratios (see Fig. 2.3) and are within a certain gap of all other points.
We conjectured that the gap is due to the over simplification of the LDM. Subsequently,
lattice codes were used to convert the bit-level alignment schemes from the LD-IMAC to
the G-IMAC. However, the gap towards the upper bounds consisted due to the fact that the
lattice codes schemes were modelled after the bit-alignment strategies of the LD-IMAC,
therefore inheriting the suboptimal structure. To overcome this gap, an approximation
was needed which lies between the standard G-IMAC and the LD-IMAC. The new ap-
proximation model of [NMA13], the lower triangular deterministic model (LTDM), was
a promising approach. Instead of setting the fine channel gain to one (as in the LDM
case), this new model integrated the channel gain by another binary expansion. Taking
the fine channel gain into account enables a new class of achievable schemes which are not
limited to orthogonal bit alignment. It turned out, that this was also the limiting factor in
the previous LDM achievable schemes. We have shown that the IMAC approximated by
the LTDM (LTD-IMAC) can achieve the previous upper bounds in the whole interference
regime, within a constant gap. Moreover, techniques from [NMA13] could be modified in a
way to show a constant gap capacity approximation of the G-IMAC, thereby porting the
LTDM schemes to the Gaussian model. As a by-product this shows, that the GDoF of
the IMAC is indeed as pictured in Fig. 2.17. This shows that in the IMAC considerable
gains can be achieved via signal scale alignment methods. Above % interference-to-signal
ratio, the harmful effects of interference can be completely cancelled. Note that we only
treated the case of equal interference strength at the receivers. This assumption is only for
simplification of the analysis. However, one needs a difference in the ratio of both direct
link gains in comparison to the interference link gains in order to enable the signal scale

alignment and get multi-user gain. We call this difference the shift-property.
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—— IMAC Capacity, 8 = 0.5
—8— IMAC Capacity, f = 0.25

=== 1C Capacity
53 .
2 53 ! ’ :
_ log INR
QO = 15g SNR

Figure 2.17.: The GDoF “W” curve for the Gaussian IMAC, for various (3, which are the
defined as the channel strength ratio between the two direct links SNR;o =
SNRfl, or equivalently 8 = % if fine gains are neglected. All curves are based
on a symmetric channel. One can see that § controls the multi-user gain
dependent on «. Moreover, one can see that for certain parameter ranges,
the capacity is independent of differences in «, which results in horizontal

lines. The first two (from the left) show 23, the third shows 1 + S.
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Figure 2.18.: The GDoF “W” curve for the symmetric Gaussian IC and the symmetric
Gaussian IMAC. In the case of the IMAC, the SNR is the signal-noise-ratio
of the strong direct links (associated with the coarse channel gain 2"1). More-
over, the curve shows the case that the weaker direct links (associated with
coarse channel gain 2"2) are strong enough to support full multi-user gain.
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2.10. Proofs

2.10.1. Proof of Theorem 2.4 and 2.7

Proof. A part of this proof follows closely the method of [BT08| for the Gaussian 2-user IC
and applies it to the IMAC setting. The mutual information terms of the Gaussian channel
will be transformed into a deterministic form in two steps. Each step will introduce a bit
penalty which contributes to the overall gap between both bounds. Step 1 will transform
the average power constraint to a peak power constraint. Step 2 truncates the signals at

the noise level and removes the noise.

Step 1: average power constraint to peak power constraint. The channel equation for
the Gaussian IMAC is

1 1 1 1
yl = th”nxll + h%22n12x12 + h%12n21x21 + h%22n221‘22 + 2t

2 2 2 2
y2 = h%12n113j11 + h%22n12$12 + h§12"21x21 + h§22n221‘22 + 2’2,

Recall that we assume without loss of generality that the Gaussian IMAC inputs have a
unit average power constraint. We have to split the input signals into two parts, where one
part is not exceeding the unit peak power constraint. We can write the binary expansion

of the input signals as
[e.e]

T = Z [zi]s2 7"

b=—o0

Now we can write the part which exceeds the peak power constraint as

0
Tk = sign(zik) Z [zik]p27°
b=—00
and let the remaining part be
oo
Tik = Tik, — Bip = sign(zig) Y [wals2 "
b=1

Therefore, we can rewrite the channel equations such that all signals have a peak power

constraint.

_ 1 1 1 1
yl = h%12n11$11 + h%22n12$12 + h%12"21x21 + h%22n22$22 + 21

~ 2 2 2 2 _
7 = h11 2B + h1p2M2F 10 + h5 270 Ty + h5y2 229y + 27,
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and let
zjl _ yl _ gl
7=y -7

be the receiver-side which exceeds the constraints. Each transmitter encodes a codeword
m?k(wzk.) based on the message w;; with message rate R;; for cell ¢ and user k. We can

therefore write the mutual information term for cell ¢ in the following way

I(’U)Zl, W;2; ( ‘)n

S I(wila Wi2; (gz)n7 (gl
I(wila Wi2; ( z)n) +
)+

I(wila Wi2; ( ’L)n

~—

—
N

)")
I(wir, wizs ()" 1(5)")

(())

I(wzlvwﬂ’( +ZH L1 +H( )
=1

IN

—
INS

Cc

< I(wllvwl2a( ) )+8TL

—
~

where (a) follows with the data processing inequality (y*)" = (7°)"+(3°)" = f((z")", (§°)"),
(b) follows since (§°)" = 2% + 2% and (c) is a consequence of Lemma 6 in [BTOS].

Step 2: truncate at the noise level and remove the noise Recall that the input is
purely made of peak-power constraint signals due to step 1. Moreover, the channel gain is

represented as h2", where h € (1,2], n € N.
o0
Tk = SZgn Tik Z xzk
b=1

We will now split the terms hik2”zkxik in parts above the noise level and below the noise

level. The part above the noise level can be written as

Jj . _
hik2"w sign(zin) > [wils2 .
b=1
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The part below the noise level can be bounded from above by

‘h2k2nzk Z [.’I)ik]bQ_b’ < 2"?k+12_ngk < 2.
b:n?kJrl

Therefore, we can write the truncated output equations without noise as

’I’L]
=22 | Syl
b=1

where i, k € {1,2}. Following the proof method, we define

oo

. o j _
R Y (L S ES
ik b=n, +1
4 3 j _
+ (bl = 1)) [zan]s2 " + frac | 27w Y w27
b=1 b=1

+ 27

= E :Zx:k+zja
ik

where the first part in the sum accounts for the terms below the noise level, the second
part includes the fractional channel gain h and the last part is for the fractional terms due
to the floor function. Now we can transform the mutual information terms into the final

linear deterministic mutual information terms

< I(win, wig; (77)", (¢)")

= I(wir, wiz; (7)) + I (wir, wiz; (/)| (5°)")

= I(wi, wzs (7)) + h((¢)"|(5)") = R((€)" (7)) wir, wiz)
< I(wir, wig; (7)) + h((¢)") = h(7)

= I(wir, wig; (7)) + 1(w]1, €72, 51, T30 (€)")

(Z) I(wir, wg; (7)) + 3.1n,

where (a) is due to the fact that (x3;,z},, 25;,75,) — € forms a 4-user MAC chan-
nel. With (2.10.1) and |(hzk — D] < 1, one can see that |z},| < 4 and therefore
LI(x3), 2%y, 31, 2595 (7)) < Slog(1 +4(16)) + €, < 3.1n for n — <.
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2.10. Proofs

Therefore, we have shown that we can bound the Gaussian IMAC mutual information
terms from above with deterministic mutual information terms within a constant gap of
11.1 bits.

. Step 1 .
Iwir, wio; (y")") < Iwin, wio; (¥°)") + 8n
Step 2 )
< I(wir, wio; (§7)") + 11.1n.

Note that the LD-IMAC and the LTD-IMAC models are restricted to positive inputs.
However, capacity is only a function of the magnitude of the channel gains, and additional
negative inputs would only result in an additional constant number of bits. Moreover,
addition over Fy also costs only a constant number of bits (the missing carry over) and
can be neglected for high SNR regimes as well. We can therefore upper bound the mutual
information of the Gaussian model, with the terms of the deterministic model plus a
constant number of bits. Furthermore, we can upper bound the deterministic model terms

with Theorem 2.6.2, which yields an upper bound for the Gaussian model. O

Remark 2.16. An alternative way to prove those bounds is to directly bound the Gaussian
mutual information terms by using smart genies and the fact that conditional differential
entropy is maximised by Gaussian random variables. In particular, the genie must be
chosen such that it mimics the cuts in the proof of Theorem 2.6.2. The main challenges
here are the first two bounds, D1 and D,. Both bounds rely on a cut of the received sum of
signals y. We remark that a simple genie which provides for example the interference of the
users in cell 1 at receiver 2 plus noise (i.e. s; = h%IZ”%xll + h%22”%29512 + 22), to receiver
1 is not sufficient for a good bound. Instead, one needs to provide a genie, where the sum
of both signals has the same relative shift as the received signals. Lets say we provide
the following genie information to receiver 1: s; = ax11 + bxris + 22, then a and b need
to obey hh2”hb = h%22"%2a. This property allows an elimination of an additional term
inside the log variance term resulting from the Gaussian conditional entropy minus noise.
in the following way: Let the received signal be given as Y = a X1 +bXo+cX3+dX4+ Z;.
Moreover, we define a genie signal as S = a’X; + ' X5 + Z5. We now want to bound the
term h(Y|S) — h(Z;) from above. Using the fact that conditional differential entropy is

maximised by Gaussian random variables, we have that
h(Y|S) — h(Z1) < h(Yg|Sa) — h(Z1) = h(Yg, Sa) — h(Sc) — h(Z7).
We know that

Var(Ye, Sq) = E[YZE[S] — (E[YaSa))?
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and we therefore get

2 21 9
h(Ya, Sa) — h(Sa) — h(Zy) = Llog |:E[YG]EE[§§]%]E([§1£}]/G’SGD 7

where we used that for a Gaussian random variable X, h(X) = % log 2meVar(X). Notice,

that in our model, the noise is limited to one. We can therefore write the term as

g [PIEIEISE)— (o5l
? E[SZ|E(Z?
e [y (EGSa)

r N2 / / /\2
= Llog _a2 S S S G za,;zfcébé;i(lbb ) }
(a® +b%) — (ab’ — a'b)?

(a)?+ (V)> +1 ]
a? +v? }
(a)?+ (V)* +

= %log C2+d2+1+

%log A 4+d+ 1+

G//

where we used in (b), that the genie provides the side-information with ¢ = .

Now one can scale a and b appropriately as in the proof of Theorem 2.6.2. Since the genie
information is now a shifted version of the interference terms, one needs to use the same
trick as in the deterministic case to handle the remaining parts h(S1) — h(Y|Sa, w11, wi2)
and h(S2) — h(Y?2|S1,ws1,wsz) to show the bound.

2.10.2. Bound on Alignment Structure Rate Term

We look into the lattice decoding bounds and develop lower bounds on the maximum
achievable rates Rj, for the possible rate expressions inside the alignment structure for
cell ¢ and bit-level [. The achievable rate for the alignment structure is divided into three
parts. We have two common signal parts, which are also received at cell 7 and one private
signal part which is just received in cell ¢. The common signal parts need to obey two
different decoding bounds, where one bound is for the decodability in cell ¢ and one is for

the decodability in cell j.

Common Signal Parts

For the direct path we have the decoding bound (2.15) with an equivalent noise

N =14+ > O

used levels
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[L;] , .
B 11-8:) INR’ INR'
- SNR‘%I + Z SNRngnfl)J(lfﬁj) - SNR;nl(lj*Bj)’
m odd

because every partition, starting at level 1, is used atleast once, the middle terms of the

sum vanish and we have SNR]L 11=6:)

— 1 left. Moreover, due to the overlapping of the
interference, we have a sum over the odd bit-levels of the interference affected part. To-
gether with the general noise of 1, we get the expression above. The decoding bound is

therefore given as

Ric, (1) < %log (1 +

= Rlc;(l)a

SNR;—(Z—I)(I—@') B SNRlll_l(l—ﬁz)
SNRL ) 4y

) INR! INR!

where we denote v = — prev G P
Zm ~h SNR( 1)(1 Bj) SNle(l Bj)

. Now we can lower bound Ry, (1)

and show that

_ SNRL(-D=6) _ gNRI-H1-F:)
Ry () = 5log [ 1+ = 1—I(1—8;) .
i SNRL=A) 1y

1 log SNR;I—(l—l)(l—ﬁi) +u
2 SNRill—l(l—/D’z‘) +u

GNRL-(-D(-8)
% log il_l(l_,g.)
SNR;, Y+
GNRL-(-D(-8)
2l0g T
2SNR;

= LlogSNR;; 7 — 1,

V

V

where we used that SNRZ-lf {A=5) 5 1. The decoding bound is different in the interference
path, because we need to decode the sum of two bit-levels. A sum of K signals needs to

obey the decoding bound (2.16) with an equivalent noise of

Ny =1+ > O

used levels

__INR] Z INR,  _ INR!
~ SNRIT SNR{" V=% SNRjj¢—

m=l+1
m odd
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; [Li]
VR 1+ 3 sNR{™OA) _gNRm(-4)

- [(1-5;
SNR —
m odd
INR?
= ooy (1 + ).
SNRi 0 (T r2)

Note that an signal directed to level [ with an received power of 8; at cell ¢ gets received

at cell j with power

W2 INR/ _INRI _ _INR/
[R52  SNRUDOZFT — SNRITA) — SNRIT

0, S(SNRG ) — 1),

We, therefore, have the second decoding bound with

1-5;
1 SNRU™)

1
Rer, (1) < g log (2 + M) = By ().

We can now lower bound the rate RIC;/ (1) and show that

> Llog (SNRG™) — 0.5108(2) - §
= 1log SNRS_&) -1

-2
where we used the fact that v, < 1 since SNR;; > 1 and the weak interference regime.
Note that we need to obey both decoding bounds such that our common signal parts are
decodable at the legitimate receiver, and also as part of the lattice sum at the unintended
receiver. The latter is important for the successive decoding scheme in which we need to
subtract the interference sum to be able to decode the following bit-levels. We, therefore,

use the minimum of both and the achievable rate is therefore

RICi (l) = min{RIC; (l), RIC;I (l)} > %log SNREi_Bz) —1.
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Private Signal Parts

Here we just need to look into the direct path where we have the decoding bound (2.15)

with an equivalent noise

INR;
N =1+ > Opi= W(l +v3),
J

used levels

where
[L;]
vy= > SNRy U _gNR ),

m=1
m odd

Note that this is the equivalent of N;(l) in the bound for R,.~. Moreover, the bound is

similar, except that we now just need to decode one codeword and therefore get the bound

Rip.(1) < Llog | 1 SNR; ™~ 1 Rip. (1
p; (1) < 5log +T = Rip,(1).

Now we can lower bound Ry, (l) by
Rip, (1) > %log SNRg.ll_’Bj) _ %’

using the same steps as for Rjc,. This rate depends on the ratio of the direct signals of
cell j, since this ratio gives the size of the interference alignment blocks and therefore the

size of the interference-free slots which cell 7 can use for communication.

Remark 2.17. We did not discuss the case where |Li| # Li, which results in remainder
terms for certain cases in the alignment structures. The transmission power is not affected,
but the noise term would be slightly different. However, the noise term would only change
in the v-terms but still obey our conditions. This means that all results above apply to

these cases as well.

2.10.3. Proof of Lemma 4

We have three bit vectors 1_1/1 = 1) @ Uy P U5, U2 and U3, which are multiplied by the
matrices G1, Gy and G3, respectively. Here, 1_1,1 corresponds to the wanted received signal
Ti1, o to z;2 and U3 to the sum of both interference bit vectors. One can view the signals
iy and U3 as the private parts of 1_1,1. We use the same framework as in [NMA13] to analyse

this setting, i.e we use the notation

Un ,nT)={aec{0,1}":a;=0Vic{l,....n1 —n YU{n —nt +1,...,n1}}
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ol

na
i

iy ="

ns
Uo

u, duy D us

Figure 2.19.: Illustration of the received bit-vectors at one receiver. A blank region cor-
responds to bits which are set to zero, i.e. unused bits. And grey regions
correspond to used bit-levels. Observe that there are 5 used regions, which
correspond to the weak interference case and our proposed scheme.

where n~ and n* are nonnegative integers such that n= > n™. Such that we can consider

bit vectors (1_11, U, Uy, U3, 1_15) in
U .= Z/{(nl,nl — Rl) X U(ng,HQ — RQ) X Z/{(n4,n4 — R4) X U(ng,TZ3 — Rg) X U(RE,,O),

with n1 > ns > ng > ng, see Fig 2.19. Note that due to our scheme, we have a few
assumptions on R/, k' € {1,...,5}, namely that G4, @iz and G5 do not overlap, and @

and iz do not overlap with those three signals, too. This yields the following equations

Ri+Ry+R3+Rs <my
Ro+ Ry + R3+ Ry < ny
Ry+ R34+ Rs <ny
R34+ Rs < ngs.

We introduce the rate Rpix := R3 + R4 + R5 to denote the sum of the bit-level rates which

are fixed by the scheme, i.e. do not overlap. Therefore, we have that

R1 < ni — Rpix

Ry +mn1 —n2 <n; — Rrix
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and it follows that n(ag) < n1 — Rpix, for k € {1,2}, @ # 0 and n(@) which gives the

smallest index i, such that @; = 1, and n(0) = co. This means we have that
min{n(4),n(0s),n(a3)} > n1 — Rpix.

We can now remove the dependence of the outage set on the signals 6y, t5, Gi3. Note
that we have n(Gii) = n(ii), since the matrices G are unit lower triangular and therefore

down-shift (to bigger indices) the signal @’. We therefore have that
Gi(U; @ Uy ® T5) ® Gaoiip ® Gaiy =0
only if

n (611_11 @ Gzﬁz) =n (Gl(ﬁ4 @us) + G:sl_ls)
> min{n(G1 (T @ 05)),n(Gs13)}
= min{n(liy & Us),n(3)}
— min{min{n(is), n(ts)}, n(ds)}
= min{n(t4), n(s), n(ts)}

> ny1 — Rpix.
Also, we have for (4, @i, U5) # (0,0,0) that
G1(t ® Uy @ T5) ® Gotig ® Gglig = 0

can hold only if (@, @i2) # (0, 0), again due to the non-overlapping property of the signals

iy, g and 1. Define the sets

B/(ﬁo,ﬁl7ﬁ2) = {(90791792) S (172]3 :
n (Gotig @ Gy ® Galig) > ny — Rpix}

and

U :=U(ng,no — Ro) x U(n1,n1 — R1) x U(ng,n2 — Ra).

"We have = instead of <, due to the unit diagonal.
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with the outage set

Bc B = U B/(l_lo,l_ll,l_lg).
(To,a1,02)e/\{(0,0,0)}

Observe that this corresponds to our case for ip = 0 and Ry = 0. It was shown in [NMA13,

Proof of Lemma 11], that the measure of the set

BcCcB = U B/(ﬁo, ui, ﬁg)
(tp,u1,a2)eU\{(0,0,0)}

can be bounded by
u(B) <6

if

Ry + Ry + Ro+ Rpix <nq — log(16/5)

Ry + Ro + Rpix < ng — log(16/5)

Ry + Rpix < na.

If we plug-in g = 0 and go through the proof, one can see that this reduces the number

of cases from four to one, which results in a lower gap and just two conditions, namely

R1 + Ry + Rpix < nj —log(4/90)
Ry + Rpix < na.

Together with our conditions for the fixed, non-overlapping parts, we have that

Ri+ Ry + Ry + R3 + Rs < ny —log(4/9)
Ro+ R4+ Rs + Ry < no
R4+ R3+ Rs < ny

R3 + R5 < ns.
Now we can set
Kk
Rl = Ril ny = Ngq
k
R2 = Riﬂ n2 1= Ngo
o R k k
Rs := max{Rj,, R}, ng := (g, —ny)
o 2 R
R4 = RZI n3 = ng
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1
Rs5 = RZI.

and replace ¢ with §/2 to account for the measure of the overall outage set (over both

receivers) which concludes the proof of Lemma 2.11.

2.10.4. Proof of the Decoding Lemma for the Weak Interference Case

In order to get a similar result as in Lemma 2.15 for the weak interference case, we need

to prove a modified version of [NMA13, Lemma 12|, which is

Lemma 2.18. Let n3, ni, na € Zy such that ny > no > ng and Z—i’ < %, and let
Ri, Ro, R3, Ry, R5 € Z. Define the event

B(u17u27u3yu47u5) = {(91a92793) € (174]3 : ’92U2 +91(U1 + uq4 + ’LL5) + Q3U3’ < 25_n1}
and set

B = U B(uq, u2, us, us, us).
(u1,u2,u3,u4,u5)€UN{(0,0,0,0)}

For any ¢ € (0,1] satisfying

Ri+ Ra+ Rs + Ry + R3 < nj — 6 —1og(1008/9)
Ry +Rs+Ryi+R3<np—6
Rs + Ry + R3 < (n1 —n3)
Ry + R3 <n3

we have u(B) < 4.

Where the set U is defined as
Un ,nT) ={uec[-1,1]:[u; =0Vic {l,....,n1 —n }U{n; —nt +1,...}}
and

U .= Z/I(nl,nl — Rl) X Z/{(TLQ,’I’LQ — Rz) X L{((nl — ng), (n1 — ’I’Lg) — R5)X
X U(ng,ng—Rg) XU(R4,0).

This means that U represents the set of possible inputs, if constrained to the specific
bit-structure of the LTDM scheme.
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2. The Gaussian Interfering Multiple Access Channel

Proof. The proof follows closely the one from [NMA13|. We will therefore just point out the
main differences and refer the reader to the original proof for a more detailed exposition.

First of all, note that due to the specific scheme in the LTD model we have the equations

Rs + Ry + R3 < (n1 —ny)
R4+ R3 < n;.

This is because the parts Rs, R4, R3 are constructed such that they do not overlap (except

the aligning interference signals), see Fig. 2.9. We now represent the outage event as

B(Ul,UQ,U3,U4,U5) = {(91792793) € (174]3 :
922" ug + ¢12" (u1 + ug + us) + 2™ gsug| < 2°}

and decomposes the shifted signals as

2Muy = Asgo (2.20a)
2Mu) = Ajqq (2.20b)
9Mys = Asgs (2.20¢)
My = g (2.20d)
M ys = Asgs (2.20e)

with a bit-offset at the receiver of Ay := 2™ F* for k € 1,2, 3,5 and a used number of bits

e €{-Qr, —Qr+1,...,Qr—1,Q}

for k € {1,2,3,4,5} and Qy := 2%, Observe that our set B has the same structure as the
one in [NMA13], but with an additional variable attached to the aligning part g;. To solve
it in the same fashion, we would need to proof a generalization of [NMA13, Lemma 14].
However, we can circumvent this by exploiting the structure of the weak interference case.
We can use that the private allocations of the stronger user are not overlapping with
the aligned interference parts. This enables a bound on those parts, which simplifies the
analysis and lets us apply [NMA13, Lemma 14| as it is. The following Lemma introduces
this idea.

Lemma 2.19. For g1, g2 € (1,4], Ap and q as defined above, it holds that

|91 ((I4 + A5q5) + 93143(]3‘ < gR3+Ra+R5+2
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Proof. Observe that due to the specific structure of the parts ug, u4, us in U which is

Us = blg—(m—(m—na))—l 4o bR52—(n1—((n1—n3)—R5))
us = b12—(n1—n3)—1 R bR32—(n1—(n3—R3))
Ug = b12—(n1—R4)—1 4t bR42_n1

with b; € {0,1} and the LTD scheme constraints such that Rs < (n3 —2n3), R3 < % and

R4 <% we can rewrite the sum
Asqd +af + Asad = qf (2.21)

where R := R3+ R4+ Rs and ¢ € {0,...,Qx —1,Qx} for k € {3,4,5,6} and Qj, := 2%,

In particular this means that

Rs+ Ry + Rs < (m — 77,3) (2.22)
Ry + R3 < na, (2.23)

establishing two of the inequalities. We can now show that

|91(qa + Asqs) + g3A3q3] < |g1q4] + |91 4565] + |93 A3q3]
< |g1llaa] + |91l|Asq5] + 93|/ A343]

< 2%(qf + Asqd + Asqq)
— 2R3+R4+R5+2

where we used (2.21). O

We can further rewrite B using the triangle inequality and in addition use Lemma 2.19
such that

B(uy, ug, uz, ug, us)

= {l9242¢2 + g1 (A1 + a4 + Asq5) + g3Asqs| < 2°}

C {lg242q2 + g1A1q1| < 2° + |g1(q4 + Asgs) + g3Aszas|}
C {lg2A2q2 + g1 A1qr| < 2° 4 2Rt Hatlat2)

C {lg24202 + g1 A1q1| < B} := B (g2, 1)

where 8 := 23 +Ra+R5+46 Now we can apply Groshev’s theorem. In particular, we need

a generalisation of the theorem for an asymmetric and non-asymptotic setting, which was
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proven in [NMA13, Lemma 14| and builds on a technique from [Dod07]|. In particular we

need just the special case of two parameters of the Lemma:

Lemma 2.20. Let B € (0,1], A2 € N, and Q1,Q2 € N. Define the event

B(q1, ) = {(g1,92) € (1,4 : |11 + A29292| < B}

and set
B := U B(q1,q2)-
q1,92€7Z
q1,927#0,
lgx | <QrVE
Then

w(B) < 100843 (min {QQ, Ql}) .
A
Now we can continue with the proof of Lemma 2.18. We need to normalize
92422 + g1A1q1] < B

in order to fit Lemma 2.20. We first assume that 4; < Ay. Define

/ Pp—
1:=1
A/2 — % — 9—nmi+n2—Ra+Ry
1

ﬁ/ .— B _ 9Ri+Rs+Ra+Rs+6-m
==

Now, observe that we need 5’ € (0,1] and we therefore have the inequality
Ri+R3+ Ry + Rs <ni —6. (2.24)
Since we know that ny; > ns, we also know
Q1 =2 > 2ftmam = A)Q,.

We therefore have
1(B') < 10088'Qs.

Substituting the definitions yields

M(B/) < 1008 - 2R1+R2+R2+R3+R4+R5+6—n1 )
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Combined with (2.25), this shows that if

Ri+ Ry + Rs + Ry + R3 < nj — 6 —log(1008/6),
R+ Rs+ R4+ R3 <njy —6,

we have p(B’) < §. The case for Ay < Aj is done in the same fashion with appropriate

index switching. For 3’ it gives the condition
Ro+ R3+ R4+ Rs < ng — 6, (2.25)

which is stronger than (2.24). Furthermore, it yields the bound

) Q2

1(B') < 10088' ==,
Ay

which gives again
(B') < 1008 - 2B+ Aot Ret Rat Rat6-n1

We therefore have that the above equations, together with (2.22) yields

Ri+ Ra+ Rs + Ry + R3 < mnj — 6 —log(1008/9),
Ry + Rs + Ru + Ry < ns — 6,
Rs + Ry + R3 < (n1 — ng3),
R4+ Rz < ng,

which results in p(B’) < 4. This completes the proof of Lemma 2.18 and it can be used to

show the following result:

Lemma 2.21. Let § € (0,1] and ny, na, n; € N, ng > ng > n; and 7% < % Assume RI,
RY), Ri2, Ro1, RE, RS, € 7, satisfy,

c c c P P
RYy + Ri + Ry + Ry} 4+ Ry <ni —log ()
RS, + RS + R+ R <ny—6

RS, + R} + R{? < (n1 —ny)

RS, + R <,
and

RS) + RS, + R, + RY) + R332 < nq —log (&)
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RS + RS + R+ RE2 <ny— 6
RG + R+ RE2 < (ny —ny)

where ¢ := 2016 and R;j is the rate of the signal u;,. Then, the bit allocation of the LTD-
IMAC applied to the Gaussian IMAC results in a minimum constellation distance d > 32
at each receiver for all channel gains (gfk € (1,2]>*?) except for a set B C (1,2]>*? of
Lebesgue measure p(B) < 4.

2.10.5. Verification of Decoding Conditions on LTDM Schemes

We check the cases

separately. We restrict the following section on cell 1. The corresponding cases for cell 2
can be checked accordingly with adjusted indices.

Case 1.1 (nf’éZ < A;): In this case, Rf, = min{[in}], (nl, — (n}; — n?))T} = (ni, —
(ni; —n2))* = 0. This is in accordance with the discussion above. We note that this
case is outside of the conditions of the decoding lemma. Here, the bound of the second
condition needs to be switched with the bound of the third condition. This means that the
second condition is bounded by nﬁl — nﬁc, for this particular case. For the first restriction

we have:

.+ Rl + RY 4 RS, + max{RS,, RS, }
= [5ni] + [3n2]| + [3n2] + iy —ni —nj
=N — %nﬂ <nn

The second one gives:

R]ﬁ + Rﬁ + Riy + max{R5,, R5,}

= [gna] + [3na] + 1y —nf —n
= nh - ”%
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Case 1.2 ( %nz# <A< n{#) Here, R$, = min{[in}],(ni, — (n}; —n3)*} =

niy — (n; —n?) > 0. R¢ becomes valuable, and multi-user gain starts increasing.

R§y + R} + RY: + RS, + max{RS,, RS, }
=niy — (n1; —ni) + [3nf] + [§na] + [3na] + niy — nf —ny

1 1.2 1 1
=njy+ [3n7] <njp+ A1 =ng;.
The next conditions result in:

1 2
Ry} + RYy + RYy + max{R5,, R5,}
1 1 2 1 1 1 2 1 _ 1
= n1y — (n1y —ni) + [gng]| + [gnz] +niy —ni —ny =ni,,
which obeys the restriction since ni; —n? < ni; — Ay =nl,.
Case 1.3 (A; < in!™"): In this case, RS, = min{[in?], (nly — (nd, —n2))t} = [In?].

R¢ is fully valuable, and multi-user gain is at maximum.

11+ Rlﬁ + Rﬁ + Riy + max{R5y, i3, }
2 1

= L%nﬂ + [%nﬂ + %nﬂ + L%néj + nh —nj —ng = nh.
The second condition results in

Ry + R} + Rf, + max{ Ry, RSy} = [gnf] + [3n3] + [§n3] + iy —nf - n

=y = [3ni)

which obeys the restriction since we need to re-index ni; — L%nﬂ <nl — Ay =nl,. For

the last two conditions we have

1 2
RY) + Ry 4 max{R3,, RS, } = %”ﬂ + L%”%J +ni; —ni —ny

Furthermore,
1
RY) 4+ max{RS,, RS} = [§n5] + | 3n5] = na.

which is applicable to the cases 1.1-3.

Case II.1 : The first sub-case is when ng > n; + |5(ny — n;)|. Therefore |3(ny —n;)| <

(ng —n;) and Ry, == L%(nl — nl)J The second direct signal has enough power to provide
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the full multi-user gain.
1
f1 + RYy + RSy + max{RS,, RS} = 3 [5(n1 — ni)| +ns — [5(m1 — i)
<ni+2(3(n1 —ng)) = na.

R¥Y + Ry + max{RSy, R, } = 2 |$(n1 — na)| +ni — | $(n1 — ng)| < no.

RY} + max{R5y, RS} = [L(n1 —n) | +n5 — [3(n1 — ni) | = ma.

Case I1.2 : The second sub-case is when ng < n;+ L%(nl - nz)J Therefore L%(m — nz)J >
(n2 —n;) and Rf, := (n2 —n;). The weaker user has not enough power to provide the full

multi-user gain.
{1 + R + RYy + max{RS,, RS, } = 2 | 3(n1 — na)| +ni — [$(n1 — i) | + (ng —ny)
< %nl +ng — %nl < %nl +n; + L%(nl — nz)J — %nz < ni.
RV} + RSy + max{RSy, RS, } = n; — | 3(n1 —n) | + (n2 — ny) + |3 (n1 —ny)| = na.

The last condition follows from case II.1.
Case III.A.1 (B.1) : The cases are active for ng > nj — %nz Therefore, we have

[(n2 + 2n; —nq)| > |4n;| and RS, := | 4n;]. Full multi-user gain can be achieved.
1+ Rlﬁ + R{, + max{ RSy, R5;} = 3 L%nzj + (n1 —ny) < ny.
Rlﬁ + Riy + max{R5y, 5, } = 2 L%T%J +(n1 —n;) <ny — %nz < na.
(=)
szi + max{RS,, R} = | 31| + (n1 —n;) <ny — %nz < n.

Note that case II1.C.1 follows on the same lines for nyo > nq — %nz by careful evaluation of
the decoding bounds, and re-indexing for ny < n;.

Case II1.B.2 : The second sub-case of B is when n; < no < ny — %nz Therefore
Rfy = [3na] and By := [((n2 = ni)™ + §ns — ma)* .

1
{1 + Ry, + Riy + max{RS,, RS, } < %nl + (n1 —ny) +ng —n; + %nl —ny
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< gni+ng < g0+ N1 — N = na.

Rlﬁ + Rfy + max{RS,y, RS} < in; + (n1 — n3) +ng — n; + 3n; — ny = no.

The last case follows from III.B.1.
Case II1.B.3 : The third sub-case is for n; > ny > %nl and % < o < 3. Therefore
Rf, = L%an and Rf, = L(gnz — n1)+J. We have that

<
. <
€1+ R+ R{y + max{R5y, R5;} < 2n; + (ny — m;) + 3ny —ny = 3n; < ny.

1
Ry} + Ry + max{RS,, R, } < gni + (n1 — i) + §ni —n1 = .

The last condition follows from B.1 by re-indexing (switching ny with n;).

Case II1.B.4 : The last sub-case of III.B is for %nl > ng > n1 —n; and again % <a< %
Therefore R§, := L%nd + min{ L(%nz — m)ﬂ , L(nl — %niﬁ + %(2711 —ng — n1)+J} and
R¢, := (ng — (1 —ny))*. For ny > 2n; — ny we have R, := L%an + L(%nz —n2) ™| which

results in

n+ Rﬁ + Riy + max{ RSy, R3; }

< %nl + (%nZ —2n9)" + (ny — ng) + (ng — (n1 — )T = 2n; —na < ny.

1
RY + RYy + max{RS,, RS, }

< %nl + (%nl — n2)+ + (?21 — nl) —+ (ng — (n1 — nl))+ =n,;.

For ny < 2n;—n; we have Rf, := L%nlJ + L(nl — %ni)+ + %(an —ng — n1)+J which results
n

{1 + R} + Riy + max{R5y, RS}
< %nz —+ 2(711 — %nz)+ + (2”1' — N9 — n1)+ + (n1 — nz) + (112 — (m — n,))+ =nj.

1
RY} + Ry + max{R5, k5, }
< Ini+ (nn— 3m) T+ 320 —ng — )T+ (n — ) + (n2 — (n —ny)) T

—n2 ;m .
=5 +t35 <n.
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The last condition follows from III.B.1.
Case III.A.2 : The second sub-case is when n; < ng < ni; — %n, and o < % Therefore

L(ng + %nz — nl)J < L%nZJ and Rf, := L(ng + %nz — nl)J The weaker user has not enough
power to provide the full multi-user gain.
1+ Rﬁ + Riy + max{R5,, RS, }
=2 [3ni] + (n1 — ) + [(n2 + 31 — na)|

< %ni—i—(nl—ni)—i—(ng—i—%m—m) = %ni—i—ng <ni.

RE} + RS, + max{ RSy, RS, }
= [§n] + (n1 — i) + [(n2 + §ni — n1)| < na.
The last condition follows from case III.A.1.

Case III.C.2 : This sub-case is when ny — n; < ng < nj — %nl and o > %. Therefore

(n2 — (1 —my))*t < |3n;] and RY, := ny — (ny — n;). The weaker user has not enough
power to provide the full multi-user gain.

1+ R‘ﬁ + Riy + max{R5y, 3, }

=2 L%”ZJ + (n1 —n;) +n2 — (n1 — ;) + [n1 —ng — %m] <nj.

R} + R, + max{RS,, RS, }
= [3n] + (n1 —ni) +na — (n1 — na) + 5[n1 — na — 1]

§%+%<%(n1—%ni)+%§ni.

The last condition follows from case III1.C.1.
Case IV.1 : The first sub-case is when ng > %nz Therefore R, := L%nd Since we are

in the range a > 1, the private part vanishes. Furthermore, full multi-user gain can be
achieved.

11 + Riy + max{R3y, R, } =3 L%an < n;.

REQ + max{R%Q, R§1} =2 L%?’LZJ < %nz < ni.
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Case IV.2 : The second sub-case is when ng < %nz Therefore Ry, := n2, and the second
term in Ry, := L%nlJ + L%(%nz — n2)+J gets activated. The weaker user has not enough
power to provide the full multi-user gain.

Rfy 4 Ry + max{RS,, RS} = 2(| 50| + [5(30 —n2)™|) + 12 < n.

R{y + max{R$,, RS, } = L%mJ + L%(%n, — n2)+J + n9

(o<2)

< %n@ — %nz < %nl — %TLQ <ni.
Case V.1.1 : The first sub-case is when ng > %nl. Therefore Rj, := L%nlj Full

multi-user gain can be achieved.

[\GI[eV]

a>
R§) + Rfy + max{RSy, RS} =3 [3m1]| < ny.

fo + max{R3y, RS} = 2 [3n1] < na.

Case V.1.2 : The second sub-case is when ny < %nl but 2n; < n; + nye. Therefore

Rf, :=no and Rf, := ny — ng. Full multi-user gain can be achieved.

R{; + R{y + max{ RSy, RS, } = na + 2(n1 — n2) = 2n; — ng < n;.

R{y + max{R3, RS, } =n1.

Case V.2 : The third sub-case is when ny < %nl and 2ny > n; +ng. Therefore Rj, := no

and Rf, := L%nz — %ngJ The weaker user has not enough power to provide the full

multi-user gain.

Rfl + R§2 + maX{REQ, R%l} = N9 + 2( L%n, — %ngJ) <n,.

Ry + max{R5y, R3; }

1 1 1 1 1 1
=m2 + [37 = gna) < gni+ gme < gni+ (2 —ni) =1
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3. The Multiple Access Wiretap Channel

3.1. Introduction

The wiretap channel was first proposed by Wyner in [Wyn75|, and solved in its degraded
version. This result was later extended to the general wiretap channel by Csiszar and
Koérner in [CK78|. Moreover, the Gaussian equivalent was studied by Leung-Yan-Cheon
and Hellman in [LYCH78|. The wiretap channel and its modified version served as an
archetypical channel for physical-layer security investigations. However, in recent years,
the network nature of communication, i.e. support of multiple users, became increasingly
important. A straightforward extension of the wiretap channel to multiple users was done
in [TY08a|, where the Gaussian multiple access wiretap channel (G-MAC-WT) was intro-
duced. A general solution for the secure capacity of this multi-user wiretap set-up was
out of reach and investigations focused on the secure degrees of freedom (s.d.of.) of these
networks. Degrees of freedom are used to gain insights into the scaling behaviour of multi-
user channels. They measure the capacity of the network, normalized by the single-link
capacity, as power goes to infinity. This also means that the d.o.f. provide an asymptotic
view on the problem at hand. This simplifies the analysis and enables asymptotic solutions
of channel models where no finite power capacity results could be found. An example of a
technique, which yields d.o.f. results, is real interference alignment. It uses integer lattice
transmit constellations which are scaled such that alignment can be achieved. The in-
tended messages are recovered by minimum-distance decoding and the error probability is
bounded by usage of the Khintchine-Groshev theorem of Diophantine approximation the-
ory. The disadvantage of the method is that these results only hold for almost all channel
gains. This is unsatisfying for secrecy purposes since it leaves an infinite amount of cases
where the schemes do not work, e.g. rational channel gains. Moreover, secrecy should
not depend on the accuracy of channel measurements. Real interference alignment is part
of a broader class of interference alignment strategies. Interference alignment (IA) was
introduced in [CJO8] and [MAMKOS|, among others, and its main idea is to design signals
such that the caused interference overlaps(aligns) and therefore uses fewer signal dimen-
sions. The resulting interference-free signal dimensions can be used for communication. IA

methods can be divided into two categories, namely the vector-space alignment approach
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and the signal-scale alignment approach [NMA13|. The former uses the classical signalling
dimensions time, frequency and multiple-antennas for the alignment, while the latter uses
the signal strength for alignment. Real interference alignment and signal-strength de-
terministic models are examples for signal-scale alignment. Signal-strength deterministic
models are based on an approximation of the Gaussian channel. An example for such an
approximation is the linear deterministic model (LDM), introduced by Avestimehr et al.
in [ADTO7]. It is based on a binary expansion of the transmit signal, and an approximation
of the channel gain to powers of two. The resulting binary expansion gets truncated at the
noise level which yields a noise-free binary signal vector and makes the model deterministic.
It has been shown that various Gaussian channels (i.e. [BT08|, [BPT10], [SB11], [FW17c])
can be approximated by the LDM such that the deterministic capacity is within a constant
bit-gap of the Gaussian channel. Moreover, layered lattice coding schemes can be used to
transfer the achievable scheme or rather the level structure to the Gaussian model, see for

example [SJVT08|, [INCL10], [SB11], [BPT10] and [NCNC16].

Previous work and Contributions: Previous work on the wiretap channel in multi-
user settings mainly utilized the real TA approach in addition to cooperative jamming,
introduced in [TYO08b]. The idea of using TA in a secrecy context is to cooperatively jam
the eavesdropper, while aligning the jamming signal in a small subspace at the legitimate
receiver. This resulted in a sum s.d.o.f characterization of %
in [XU14]. The idea is that the users can allocate a small part of the signalling dimensions

for the K-user case

with uniformly distributed random bits. Those random bits are sent such that they occupy
a small space at the legitimate receiver, while overlapping with the signals at the eaves-
dropper. A specialized model is the wiretap channel with a helper. This model consists of
the standard wiretap channel model, with a second independent user, whose only purpose
is to jam the eavesdropper. The authors in [HY14| showed that using structured codes
provides strictly positive s.d.o.f for this model. In [XU12| and [XU13]|, the real IA approach
was used on the wiretap channel with a helper (with and without CSIT, respectively) to in-
vestigate the s.d.o.f, therefore achieve results for the infinite SNR regime. Another branch
of recent work [BSP15] approached the problem, using a compute-and-forward decoding
strategy, which leads to results for the finite regime that are optimal in a s.d.o.f sense. The
next step is to transition from the s.d.o.f. results, to a secure constant-gap capacity result.
We take a different approach and study the linear deterministic approximations of both
models to gain insights leading to constant-gap capacity approximations. This approach
has been used for example for wiretap channels in [EHLGS12|, [CVS14], for relay net-
works [PDT09] and for IC channels [MM13], [VAS16]. It was also recently used in [LZK17]
for an s.d.o.f. analysis of the Gaussian diamond-wiretap channel, which is a multi-hop ver-
sion of the G-MAC-WT. We show that the previously known % d.o.f. result of the wiretap
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Figure 3.1.: Gaussian wiretap channel with one helper.
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Figure 3.2.: The Gaussian multiple access Wiretap channel.

channel with a helper [XU14] can be extended to a general (asymmetric) and finite but
high-SNR regime. Moreover, we develop a converse proof which shows a constant-gap for
certain channel gain values. The converse proof converges to the d.o.f bound for vanishing
channel gain differences. Furthermore, we use the same alignment methods to present an
achievable scheme for the linear deterministic MAC-WT (LD-MAC-WT) and show that
here, a rate can be achieved, which converges to % d.o.f., for vanishing receive signal power
differences. We also extend the converse proof of [XU14|, which is partly based on [Khill],
for the MAC-W'T towards general receive signal powers, to match our achievable scheme
for certain channel parameters. Moreover, we show that both achievable schemes can be
translated to the Gaussian channel models, by using layered lattice codes to imitate bit-
levels. We also combine previous techniques with new novel techniques to translate the

results of both converse proofs to the Gaussian channel.

3.2. System Model

The Gaussian multiple access wiretap channel (G-MAC-WT) and the Gaussian wiretap
channel with one helper (G-WT-H) are defined as a system consisting of 2 transmitters
and 2 receivers, as shown in Fig. 3.1 and Fig. 3.2, where X;, X2 € R are the channel
inputs of both users, communicating with the legitimate receiver with channel output Y;

or jamming the eavesdropper, with channel output Ys. The channel itself is modelled with
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additive white Gaussian noise, Z1, Zo ~ N(0,1). Therefore, the system equations can be

written as

Y1 = h11 X1+ ha1 Xo + 21, (3.0a)
Yo = hoa Xo + h12 X1 + 2, (3.0b)

where the channel inputs satisfy an average transmit power constraint E{X?} < P; for
each 7. The channel gains from user 7 to receiver k are denoted by h;p. Let |h11|2P1 =
SNR; and |ho1|?P> = SNRy represent the received average power at Y of both direct
signals. We assume that both signals are received at Ys with the same average power and
therefore hig = hoy = hg and Py = P, = P which gives |hg|?P = SNRg.! We introduce
the two parameters $; and P2, which connect the SNR ratios with SNRo = SNR’f1 and
SNRg = SNR?Q. The difference between the G-MAC-WT and G-WT-H is, that in case
of the G-W'T-H, user 2 is just helping user 1 by independently jamming both receivers to
achieve a secure communication. In the case of the G-MAC-WT model, both users want

to transmit information to Y7 and are able to use jamming.

G-WT-H

A (2"% n) code will consist of an encoding and a decoding function. The encoder assigns a
codeword z7 (w) to each message w, where W is uniformly distributed over the set [1 : 2],
and the associated decoder assigns an estimate @ € [1 : 2"7] to each observation of Y.
A secure rate R is said to be achievable if there exist a sequence of (2", n) codes which

satisfy a probability of error constraint Pén) = P(W #W) < e as well as a secrecy constraint
H(W) —e, (3.1)

which gives I(W;Y3") < en where € — 0 for n — oco. A message W is therefore information-
theoretically secure if the eavesdropper cannot reconstruct it from the channel observation
Y5'. This means that the uncertainty of the message is almost equal to its entropy, given

the channel observation.

G-MAC-WT

A (27F1 2nF2 ) code for the multiple access wiretap channel will consist of a message
pair (Wi, Ws) uniformly distributed over the message set [1 : 2"f1] x [1 : 2"%2] with a

decoding and two randomized encoding functions. Encoder 1 assigns a codeword X7 (w1)

1This will reduce the number of cases and therefore simplify the analysis. However, the following tech-
niques also work without this assumption. See also remark 3.
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to each message wy € [1 : 2"%1], while the encoder 2 assigns a codeword X5 (ws) to each
message wy € [1: 27%2]. The decoder assigns an estimate (i, ) € [1: 270 x [1 : 27
to each observation of Y". A secure rate pair (R;, R2) is said to be achievable if there exist
a sequence of (2771 272 n) codes, which satisfy a reliability constraint, i.e. probability
of error such that: Pe(n) =P [(Wl, WQ) # (W1, Ws)] < e and a security constraint for both
messages Wy, Wy:

LHWy, Wa|Y5!) > LH(W, Wa) — e,

which gives I(W1, Wa;Y5") < en, where € — 0 for n — oco. In particular, for the G-MAC-

WT model, we are interested in the secure sum-rate Ry, := R1 + Ro.

3.3. The Linear Deterministic Model System

3.3.1. LD Wiretap with a Helper and LD-MAC-WT

As simplification, we will investigate the corresponding linear deterministic model (LDM)
of the system models as an intermediate step. The LDM models the signals of the channel
as bit-vectors x, which is achieved by a binary expansion of the input signal X. We refer

the reader to Section 1.4.1, for an introduction to this model. The model can be written

as
Y, = SemiX) g ST X, (3.1a)
Y, = S22 XY g ST X) (3.1b)
where ¢ := max{ni1,ni2,n21,n2}. For ease of notation, we denote X; = SI "X

and Xp = S?7"21X/. Furthermore, we denote S97"22X/, and S9~™2X/ by X, and X,
respectively. We also include the assumption on the symmetry in the channel gains at the
eavesdropper, which leads to naa = n1a =: ng, and denote |n; — na| =: na with nj; =:ng

and ng9; =: ny. We can therefore rewrite the deterministic channel model as

Y = Sqinlxll P Sqin2X/2 =X @ Xo, (3.10)
Y,y = SqinEXIQ D Sq*”EX'l = XQ P Xl. (3.1d)

The resulting received bit-vectors of the channel model can be illustrated as shown in
Fig. 3.3. There, one can see that for example the two bit-vectors X; and X are received
at Y1 with n; and no bit-levels, respectively. The highest bit is at the top of the boxes,
while the lowest bit is just above the noise level. All schemes rely on a partition of the

received signal of the legitimate receiver into a common (Y1) and a private (Y1) part.
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ny
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Figure 3.3.: The Gaussian wiretap channel with a helper in the linear deterministic model.
The helper utilizes jamming, such that all used signal parts align with the
jamming at the attacker (Y3).

The common bits are the top
ne := min{ng + na, max{ny,na}} (3.2)

bits of Y1. And the private part consists of the bottom

ny = (max{ny,na} —ne)"

bits of Yi. We note that due to the bit-level shift, the last na bits of Xy in Y. are
actually private, see Remark 3.5 and Fig. 3.3. To specify a particular range of elements in
a bit-level vector we use the notation aj;.; to indicate that a is restricted to the bit-levels
1 to j. Bit-levels are counted from top, most significant bit in the expansion, to bottom.
If i =1, it will be omitted aj, the same for j=n aj;;. We define the modulo operation

as amod n :=a — []n.

Remark 3.1. The assumption that nes = nio = ng, i.e. the eavesdropper receives the
signals with equal strength, does not influence the achievable secrecy sum-rate. Consider
a channel with ngg # nja, for example nga > n12. The part of x), which is received above
n12 at the eavesdropper, X [.n,,—n,,], cannot be utilized since it cannot be jammed. One
can therefore achieve the same rate by ignoring the top naa — ni2 bits of x5. The same

argument holds for nio > nos.

3.3.2. Achievable Scheme for the Wiretap Channel with a Helper

We partition the received signal of the legitimate receiver into a common (yi.) and a
private (y1,) part. Note that we need to differentiate between the cases that n; > ny and

n1 < Mo, since the user and the helper have different roles and those cases therefore lead
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to different schemes. The main idea is to deploy a jamming scheme such that the jamming
signal parts of the helper overlap (align) with the used signal parts of the user at yo, while

minimizing the overlap at the legitimate receiver y;. This leads to the following result:

Theorem 3.2. An achievable secrecy rate of the linear deterministic wiretap channel with a

helper is
n
Roch = np + \‘2CJ na +Q
nA
where
nQ for ng <na,ni > ng
na forng > na,n1 > no
Q= (3.3)
0 for ng < na,ni < ng
ng —na  forng > na,ni < ng

with ng = n. mod 2na.

Proof. Case 1 (n1 > na)

We denote the part of x; and X in yi. by x1,. and xa., respectively. Moreover, we
partition these common parts of the signals into 2na-bits partitions. We now utilize the
first na bits of every full partition in x; . for messages and leave the remainder free. And
for xo . we utilize the first na-bits of every partition for jamming, while the rest is free.

After partitioning, y1 . has a remainder part with
ng = ne mod 2na bits. (3.4)

bit-levels. The user signal in this remainder part follows the same rules as before, while
the helper lets the first na bits free and only utilizes the bits afterwards for jamming, until
we have filled all ng bits. The private part yi, can be used completely by the user, and
all of x; in this part can be used for messaging. The total achievable rate is the private

rate r, = n, plus the common rate

=5 (|os | 20a) 4o,

where () is defined as in the theorem. The common rate follows from the fact, that we utilize

half of the bits of all 2na partitions, along with a remainder part ). In the remainder, we
utilize every bit, as long as ng is smaller than na. If ng is larger than na, we only utilize
the first na bits.
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Case 2 (n1 < n2)

We use the same strategy as before, except for the remainder part ng (3.4) of y1,.. In the
remainder part, the first na bits of the user are left free, and all bits afterwards are used
for messaging, while the helper only jams the first na bits. The strategy is, therefore, the
opposite as before. This yields a different Q-term, where for ng < na no rate is achieved,
and for ng > na one can use ng — na bits for messaging.

We note that the secrecy is provided by the (Crypto-) lemma 3.3 and the fact that we
use binary addition on each level as well as jamming signals chosen such that each bit is
Bern(1) distributed. And we therefore have that I(x};y%) = 0. O

Lemma 3.3 (Crypto-Lemma, [FJ04]). Let G be a compact abelian group with group oper-
ation +, and let Y = X + N , where X and N are random variables over G and N is

independent of X and uniform over G. Then 'Y is independent of X and uniform over G.

3.3.3. Achievable Scheme for the LD-MAC-WT

We use the same common and private part definitions as in the LD-WT with a helper case.
However, there are some important differences. Note that the channel is symmetrical, i.e.
both users can send messages and jam and we can therefore assume w.l.o.g that ny > nao.

We can show the following result:

Theorem 3.4. An achievable secrecy sum-rate Ry of the linear deterministic multiple access

wiretap channel with symmetric channel gains at the eavesdropper is

Ry, = L3ZCAJ271A +n, + Q.
where n, = min{ng + na,n1}, np =n1 —ne and
q forng < mna

Q=14 na for 2na > ng > na

na +q forng > 2na,
with ng = n. mod 3na and g = ng mod na.

Proof. First of all, we look at the case that ny > np. Our strategy is the same as before,
i.e. to deploy a cooperative jamming scheme such that minimal jamming is done to y1 .,
while maximal jamming is received at y2. We partition the common signals, x1 . and x2 .,

into 3na-bit parts and partition these parts again into na-bit parts. For xi., in every
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3na-bit part we use the first na bits for the message and the next na bits for jamming,
while the last na bits will not be used. For x2., in every 3na-bit part, the first na bits
will be used for jamming. The next na bits will be used for the message and the last na

bits left free. There will be a remainder part with
ng = n. mod 3na bits.

The remainder part follows the same design rules as the 3na parts, except that xo . leaves
the first na bits free, then uses jamming on the next na bits and utilizes the last na bits
for messaging, until ng bits are allocated. The scheme is designed such that the jamming
parts of x1 . and X . overlap at yi ., while the message parts of one signal overlap with
the non-used part of the other signal. However, due to the signal strength difference na,
the jamming parts overlap with the messages at yo, see Fig. 3.4. Secure communication
is, therefore, provided by the Crypto-lemma, as long as we use a Bern(%) distribution for
the jamming bits. The whole private part can be used for messaging and its sum-rate is
therefore r, = n,. The achievable secure rate for the common part consists of the rate
for the 3na partitions and the remainder part. It can be seen that every 3na-part of yi .

allocates 2na bits for the messages. This results in the common secrecy rate

re = (|52 ]3na)2 + Q.

where @) specifies the rate part of the remainder term. In the remainder part we allocate
all remaining bits as message bits, as long as ng < na. For 2na > ng > na, we allocate
the first na bits of ng for the message. And for ng > 2na, we allocate the first na bits

as well as the last ¢ bits, where ¢ is defined as
q = ng mod na.

This results in
q for ng < na

Q=14 na for 2na > ng > na
na +q for ng > 2na.

Together with the private rate term, we achieve

R=2([£=|3na) + np+ Q.

3na
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Figure 3.4.: Illustration of the achievable scheme. The private part yi, can be used freely
and is, in this case, allocated by User 1. The common part y . uses our align-
ment strategy. The strategy exploits the channel gain difference between both
signals, to minimize the effect of jamming at the receiver y;, while jamming
all signal parts at the eavesdropper ys.

For ny > ng the achievable scheme is the same, except that we do not have a private part.

We therefore have an achievable rate of

R=2(|32]3na) + Q,

3na

which completes the proof. O

Remark 3.5. The bit level shift between y; and y2 of na bits makes it impossible to divide
y1 in exclusively private and common parts. In our division, the bottom na bits of x; . are
only received at y; and therefore private. Hence, the common rate r. is not purely made
of common signal parts. Nevertheless, our choice of division reaches the upper bound and

fits into the scheme.

Remark 3.6. Our scheme relies on the signal strength difference between both users. Our
scheme would not work, if n; = no, while having equal channel gains at the eavesdropper.
In that case we would not have any signal strength diversity to exploit which results in a

singularity point where the secrecy rate is zero.

96



3.4. The Gaussian wiretap channel with a helper

3.3.4. Converse for the LD-WT with a Helper

Theorem 3.7. The secrecy rate R of the linear deterministic wiretap channel with one helper

and symmetric channel gains at the wiretapper is bounded from above by
R < min{rubb Tub2, TubS}
with
Tubl = Np + %nc + %(nl — n2)+
Tub2 = N1
ras =2 + (n1 —ng —np)* + [np —ng — (np —ny +ng) T

Proof. The proof is in the same fashion as in the truncated deterministic model which is

shown later and therefore deferred to the Appendix 3.7. O

3.3.5. Converse for the LD-MAC-WT

Theorem 3.8. The secrecy sum-rate Ry, of the linear deterministic multiple access wiretap

channel with symmetric channel gains at the eavesdropper is bounded from above by

Re < %nc+np+%7m forng >ng
5

2 1
Sne + 3na for ng > no.

Proof. The proof is in the same fashion as in the truncated deterministic model which is

shown later and therefore deferred to the Appendix 3.8. [

3.4. The Gaussian wiretap channel with a helper

In this section, we analyse the Gaussian wiretap channel with a helper. To get results we
stick to the previously developed scheme in section 3.3.2, and we will transfer the alignment
and jamming structure to its Gaussian equivalent with layered lattice codes. This will lead
to an achievable rate which is directly based on the deterministic rate. Moreover, we will
make use of results in [MXU17| to show that the mutual information of the Gaussian case
can be upper bounded by an appropriate deterministic model. As a result, the deterministic
bound in section 3.3.4 is a bound for the Gaussian model as well, with a constant bit-gap
attached.
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3. The Multiple Access Wiretap Channel

3.4.1. Achievable Scheme

Theorem 3.9. An achievable secrecy rate of the Gaussian wiretap channel with a helper is
Rach =P +r¢ 4+ rf
where r¢:=1,(% log SNRgl_’BI) —1), with

L {min{l + By — 1, 1}J
v 2(1 — B1) ’

rP = %log(max{l, SNR?1762}); and

B for rfr < B2 SNR; > SNRy

T for rf > 2 GNR) > SNRs
0 for rf < 2 GNRy > SNR;
Rs for rfin > T‘R2, SNRy > SNR;

T
Rs

r

with

rfi = Llog SNRy U0 _ Liog Ny A=A200 _ 1

rf2 = llog SNR&I_’&) -3

R1 Ro

r =t —r

Proof. In the following, we look into the case that SNR; > SNRy. For the achievable
scheme, we need to partition the available power into intervals. Each of these intervals
plays the role of an na—Interval of bit-levels in the linear deterministic scheme. Remember
that we have E{X?} < P and Z;,Z> ~ N(0,1), which means that |h1;|?P = SNR;
and \h21|2P = SNRj, represent the power of both direct signals. As in the deterministic
model, we assume that both signals at Y5 are received with the same power and therefore
h1s = hoo = hg which gives |hE|2P = SNRg. We also use the two parameters 51 and s,

which connects the SNR ratios with SNRy = SNR/f1 and SNRg = SNR?Q. Now we can
(1-p1)

partition the received power at Y7 into intervals of SNR; . Each of the intervals has
therefore signal power 6; which is defined as
0 =aq-1—a
— SNR}_(Z_I)(l—ﬁl) _ SNR}_Z(l_Bl) (35)
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3.4. The Gaussian wiretap channel with a helper

with [ indicating the specific level, similar to the technique in [BPT10]. The users decom-
pose the signals X; into a sum of independent sub-signals X; = > ;™" X;;. We will use
n-dimensional nested lattice codes introduced in [UZ04] which can achieve capacity in the
AWGN single-user channel. A lattice A is a discrete subgroup of R™ which is closed under

real addition and reflection. Moreover, denote the nearest neighbour quantizer by
X) := argmin ||x — t||.
Qa(x) := argmin|x — t|

The fundamental Voronoi region V(A) of a lattice A consists of all points which get mapped

or quantized to the zero vector. The modulo operation for lattices defined as
[x] mod A :=x — QA(X).

Nested Lattice Codes

A nested lattice code is composed of a pair of lattices (Afine, Acoarse) ; Where V(Acoarse)
is the fundamental Voronoi region of the coarse lattice and operates as a shaping region
for the corresponding fine lattice Agpe. It is therefore required that Acoarse C Afine- Such
a code has a corresponding rate R equal to the log of the nesting ratio. A part of the
split message is now mapped to the corresponding codeword w;(I) € Afine1—1 NV (Acoarse,i),
which is a point of the fine lattice inside the fundamental Voronoi region of the coarse
lattice. Note that A;, . C --- C A;. The code is chosen such that it has a power of 6;.

The codeword x;(l) is now given as
Xz(l) = [u,- — dz] mod Al,

where we dither (shift) with d; ~ Unif(V(A;)) and reduce the result modulo-A;. Transmit-
ter ¢ now sends a scaled x; over the channel, such that the power per sub-signal x;(l) is
|h€7f\2 and receivers see a power of #;. Due to the partitioning construction, the x; satisfy

the power restriction of P for user 1,

l

o= SNR

Z 2 = ; =P
|h11| \h11|

and user 2

Moreover, aligning sub-signals use the same code (with independent shifts). In [UZ04]

it was shown that nested lattice codes can achieve the capacity of the AWGN single-user
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3. The Multiple Access Wiretap Channel

channel with vanishing error probability. Viewing each of our power intervals as a channel,

we therefore have that 0
R() < 11 14+ i 3.6
(1) < 5log < N(l)) ) (3.6)

where N (I) denotes the noise variance per dimension of the subsequent levels. Now, X is
used for signal transmission, while X5 is solely used for jamming. As in the deterministic
case, the objective is to align the signal parts of X; with the jamming of X5 at Y5, while
allowing decoding of the signal parts at Y7. Due to the signal scale based coding strategy
and the equal receive power at Y2, an alignment is achieved with the proposed scheme. We
use a jamming strategy, where the jamming sub-codeword is uniformly distributed on V,
therefore X9 jam(l) ~ Unif(V(A;)). Now, application of lemma 3.3 shows, that the received
codeword y = [x1(l)+X2jam ()] mod A; is independent of x; (1), therefore providing secrecy.
We therefore just need to prove, that the signal can be decoded at Y;. The decoding is
done level-wise, treating subsequent levels as noise. Every level is treated as a Gaussian

point-to-point channel with power 6; and noise 1 —i—SNR}_l(l_B 1)

, which consists of the base
noise N7 at Y7 and the power of all subsequent levels of both signals. Successful decoding

can be assured with a rate limitation (see (3.6)) of

7
< ilog |1+ . (3.7)
: 14 SNRIO)

Achievable rate

As in the deterministic case, we have a private and common part. Common and private
parts are defined as in the deterministic model. The common part depends on the strength
of the received power at Eve (remember n. := min{ng + na,ni} for ny > ny). The part

(1-p1)

ng + na corresponds to SNR’f2Jr in the Gaussian model. The opposing remainder is

therefore SNR? 1772 and we get the common power as
P := SNR; — max{1, SNR” 72},
while the private part has a power of
PP := max{1, SNR?*BZ} -1

The private part will not be partitioned further, since it can be used completely and

without penalty. Moreover, it has only the base noise and a rate of r? = %log(l + PP)

can be achieved. For the common part, we also use the deterministic achievable scheme

and need to partition the available power. All odd levels [ of X; will be used for signal
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3.4. The Gaussian wiretap channel with a helper

transmission. Every level [ can handle a rate of r;. We can simplify the rate of (3.7) with

a—2> a+1 a
log (14272} =log (272 ) > log (2
Og( +1+b) 0g<1+b>_ Og(zb)

where we used that b > 1 to get r; > %log SNRgl_’Bl) — % Since we use the same scheme

2 we have a total of

o

as in the deterministic case

used levels in X7, where the remainder term is not yet included. The alignment section of

the common part has a total rate of
r¢ = lu(% log SNR?*BI) — %),

which corresponds to 222 |na in the deterministic case. Moreover, we need to consider

the remainder term, which is allocated between the alignment structure and the noise floor
or the private part. Once again we use the deterministic scheme as a basis. We see in
(3.3), that we have two cases for n; > ng, which corresponds to SNR; > SNRy. If the

remainder has an available power of

pR _ SNR}—zlu(l—ﬂl) B SNRinin{ﬁl—ﬁQ,O} < SNR}—Qlu(l—ﬁl) - SNR}—(Qlu-‘rl)(l—ﬁl)

it can use the whole power and achieve a rate of

7,,R > %lOg SNRi_Qlu(l_Bl) _ %10g SNRllnin{Bl—ﬂLU} _ %

Otherwise, it can only use a full partition, which leads to

rf > %log SNRglf'Bl) - %

We therefore get a total rate of
Rach = 17 + 1€ + r®.

The case of SNRy > SNR; can be shown similarly. Note that we are therefore within

a constant gap of the rates of the deterministic model (Theorem 3.2), by comparing via
n = [3log SNR]. O

2I.e. use the odd partitions for messaging
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3.4.2. Developing a Converse from LD-Bounds

For the converse of the Gaussian model, we want to make use of the converse for the linear
deterministic model. The goal is to bound the Gaussian mutual information terms by the
ones of the deterministic model. Since we have a bound for the deterministic model, we
immediately have a bound for the Gaussian model. Due to the G-WT-H consisting of MAC
channels with security constraint, one could try to use the constant-gap bound of [BT08|.
Unfortunately, the result of [BT08, Thm.1| for the complex Gaussian IC, which shows that
the capacity is within 42 bits of the deterministic IC capacity, depends on an assumption
on the uniformity of the optimal input distribution to show that I(W/7, W2;y§,LDM) <
I(Wy, Wo; Yg}G) + cn, where G stands for Gaussian model. We therefore need to introduce
another approximation model first. It was shown in [MXU17| that the integer-input integer-
output model of the MAC-WT and WT-H, is within a constant-gap of the G-MAC-WT
and G-WT-H. The system equations for the integer-input integer-output model can be

written as

Yip = |h1X1p) + [ha1 X2 p] (3.7a)
Yap = |hoeXop] + [h2X1 D], (3.7b)

where the X € {0,1,...,[vSNR|}. One can construct these codewords easily from
a set of given codewords for the Gaussian case by |Xg] mod [vP]. It was now shown
in [MXU17|, that the mutual information terms for the integer-input integer-output channel
(3.8) are within a constant-gap® of the corresponding Gaussian model (3.1), which means
that

I(Wy, Wa; Y{'g) < I(Wh, Wa; Y{'p) + ne (3.7¢)
I(Wl, Wa; YVQT,ZD) < I(Wl, Wa; }/2777'(;) + nc, (37d)

where ¢ is a constant. We remark that these equations are for the MAC-WT models, the
ones for the WT-H models can be shown similarly. The first equation follows from a proof
in [BT08| and a more detailed version of the same ideas in [DJ16]. The second equation
builds on lemmata and ideas from [BTO08|, [DJ16] and [ADT11]. For the G-WT-H, we

therefore have that

nR = I(W;Y{'q) — I(W; Y'g) + ne (3.8)
< I(W; V') — I(W; Vi) + nlc+ ), (3.9)

31t was actually stated, that both terms are within o(log P). However, the proof results also satisfy the
stronger notion of a constant-gap.
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3.4. The Gaussian wiretap channel with a helper

which shows that any bound for the integer-input integer-output model, can be used as an
outer bound for the corresponding Gaussian model. Now, to bring the LDM ideas to the

truncated model, we modify the form such that X P is represented? as

n
Xi1p= QnZXLbQ*b €{0,1,...,2" — 1},
b=1

where n = |log|v/SNR||. Note that the floor function around the logarithm, i.e. the quan-
tization from integers to powers of two, reduces the cardinality of the input constellation
by at most half plus one-half, which results in a maximum bit-gap of 2 bits in the capacity
results for high-SNR. We can therefore work with the model

Yip = [h1X1p] + [h21XoD] (3.9a)
Yop = |hooXop] + [h12X1 D], (3.9b)

where h;; X; p = h;;2"™9 ZZfl X1,b2_b, hi; € [1,2) and the n;; correspond to the bit-levels
in the LD model. We therefore change the notation to include the assumption on equal

received power at the wiretapper and write the model as

Yip=mXip|+ [h2X2p] (3.9¢)
Yop = |heXop]| + |hEX1D]. (3.9d)

We will call this model the truncated deterministic model (TDM). For the converse proofs
we will also need the following lemmata. Note that the intuitive ideas were already used
for results for example in the converse proof in [GSJ15], but without a proof. Moreover,

the first lemma uses ideas from a proof in [BT08|.

Lemma 3.10. For an arbitrary signal Xp € {0,1,...,2" — 1}, with n € N and channel gain
h € [1,2) we have that

H(|hXp|) = H(X1,...,Xn),
where X; € Fy are such that Xp = 2" Yoy X;27¢.
Proof. We denote the tuple (X'l,...,Xn) € F3 by x. There is a bijection f; : Fy —
{0,1,...,2" — 1} which can be constructed as fi(x) =2">"" X;27%. Now, the resulting

integers are distance one apart. Therefore multiplying by h € [1,2) does not lower the

distance. Quantizing those scaled values to the integer part only introduces gaps in the

4For the time being, we use n as the index of the bit-level as well as the sequence index. This will be
distinguishable later on, since the bit-level index will always have a subscript indicating the specific
channel gain.
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3. The Multiple Access Wiretap Channel

support, but does not reduce the cardinality. We therefore have that fo(Xp) = |hXp] is
again a bijection. Therefore, the composition of both functions f3 = f3 o fi is a bijection

and we have that
H(f3(x)) = H(x)

which shows the result. O

Lemma 3.11. For an arbitrary signal Xp € {0,1,...,2" — 1}, with n,m € N, m < n,
Xp=2"3",X:27%, X € Fy and channel gain h € [1,2) we have that

n m n
H([h2"Y X;27'|) = H(|h2" Y X;27'| + [h2" > X;27'])

i=1 i=1 i=m+1
Proof. The first entropy term contains 2" 37", X;27% € {0,1,...,2" —1}. As argued
previously, the support has distance one, and multiplying by the channel gain and taking
the integer part only introduces gaps in the support and scales the values up, but the
cardinality stays the same. Therefore, |supp(Xp)| = |supp(|hXp])| = 2". Now, the same
is true for .

Xp=2" > X27€{01,. .. 21},

i=m+1

It also holds for

m
XD .— on Z X127z e {0’ 2n7m7 2nfm+1’ on—m 2n7m+1’ o 72n_2n7m}’
i=1

where the distance is 2"~ > 1, since n > m. Moreover, we have that Xp = Xp + X .

The cardinality of the support of Xp is

B on _ gn—m
supp(Xp) = ———— + 1 =2".

anm

Now, due to the structure®, the sum between X, and Xp yields a Cartesian product

between the support sets, and we therefore have that
| supp(Xp + Xp)| = 2" = 2"7"2™ = | supp(X p || supp(Xp)|,

for the support of the sum-set. The same holds for the scaled integer parts, since they

have the same scaling and therefore

[ supp([(Xp + Xp)])| = [supp(Xp + X))

°In particular because the biggest element of X , is still smaller than the smallest distance in Xp.
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3.4. The Gaussian wiretap channel with a helper

= |supp(X p)|| supp(Xp)|
= |supp([hX p )|l supp(|hXp])|
= |supp([hXp] + [hXD])l,

which proves the result. O

Moreover, we introduce the function

b
f[a:b}(LhXDJ) = (LhXDJ)[a:b} = Lhij2nij ZXk2ikJ7
k=a

which restricts the exponents of the binary expansion inside the term to lie in the set of

integers {a,a + 1,...,b}. The result of lemma 3.11 can then be written as

H(|hXp])=H(([hXD])p:m) + ([PXD])pnt1:n))-

If the term is a sum of two signals, then both get restricted relative to the stronger part.

Therefore, a signal
n ~ . m ~ .
Yp = |_h12n Z X171'2_2J + ULQQm Z X27i2_lJ,
i=1 i=1

where n > m, can be restricted to

a—(n—m)

(YD)[lza} = Lh12n ZXl,iZ_iJ + Lh22m Z X2’Z‘2_iJ.
i=1 i=1

Moreover, we use the notation also on the bit-tuples to indicate that (X' 1,---,Xn) € F} by
X is restricted to the bits a to b, such that (X,,..., Xp) is denoted as (X)[a:)- The notation

is, therefore, the same as for the bit-vectors in the linear deterministic model.

We can now show Theorem 3.7 for the TD model which yields the following Theorem

for the Gaussian equivalent.

Theorem 3.12. The secrecy rate R of the Gaussian wiretap channel with one helper and

symmetric channel gains at the wiretapper is bounded from above by

R< min{rubla Tub2, rubB} +c
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with

1 1
Tubl = Np + 3nc + 5(ny —ng) ™

Tub2 = N1

Tups =no + (n1 —na —ng)" + [ng —na — (ng —n1 +n2) |,

where ¢ is a constant independent of the power P.

Proof. We start with equation (3.8) and convert the steps of the proof for the linear

deterministic case to the truncated deterministic model.

n(R—e) —I(W Yq) —I(W;Yag)
< I(W;Yi'p) — I(W;Yy'p) + ne
< I(W;Y('p) — I(W; (Y2 p)f1.y,)) + nc
- H(ler,LD) - H(Yl D’W) ((YZT,LD)[:nz]) + H((}/{,LD)[:nz] ‘W) + ne
= H(Y{'p) = H((Y5!p) [inz) + H((LhEX3 p])ins]) — H([h2 X5 p]) + nc,
where Fanos inequality and the secrecy constraint was used. Moreover, we used the fact
that I(W;Yy'p) > I(W; f(Yg'p)) for arbitrary functions f, due to the data processing
inequality. Note that for no > ng, we have that (Y3 D)[m] = Y3'p. In the last line we
used that X p is a function of W, and X» p is independent of W, due to the helper model
assumptions. We remark that the first property does not hold in general, since jamming
through the first user would result in a stochastic function. Now, for ng > ns, both terms
[he X3 p| and ([he X3 p)[m,) have the same bits, and we can use lemma 3.10 to show that

H(([heX2p])ing) — H([h2 X3 p]) =0

and for ng < no the second term contains more bits, and we can therefore use the chain

rule and lemma 3.10 and show that

H(([heX3p])ina)) — H([h2 X3 p]) = —H((X3)ng+14 | (X2) fng))- (3.10)

We now split the received signals in common and private parts. Also, remember that n.

is defined in equation (3.2). We start by adding two of the terms and split them apart

2(H(Y{'p) = H((Y2p)[na)))
< 2H((Y )[n +1: }) + 2H((}/17?D)[nc]) - 2H((Y'27,LD)[:7L2])'
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Note that the private part H((Y{"p)i.+1q) is zero for n1 < np. Now, counting from
top to bottom, for ny > ng, Xl,D has n. bit-levels in (Y1 p)(.p,), while X3 p has n =
min{ng, min{ni,n2}} = n. — na bit-levels. Therefore, n represents the amount of bit-
levels of the weaker signal in the common received signal part. Hence, for ny > n1, Xi'p
and X%" p have 7 and n, bit-levels in that term, respectively. We need to account for this
switch of indexing in the next part, where we analyse the entropy difference. We will use

a method inspired by [FW14a] to show the following (for n; > ns)

2(H(Y{"p) = H((Y2)p)ns))

< 2H((Y{'p)ne+19) + 2H((Y1'D)ine)) = H((Y2!D) (o) K1) = H((Y2)D) ins)[X3)

= 2H((Y{ p)pn.+19) + 2H((Y D)) — H((X2) o)) — H((X]) )

= 2H((Y{p)ne+19) + H((Y{ D) ne)) + H((F([MmXTp ], [h2aX3p]))ne)
—H((X3) ) = H((X7)ns))

< 2H((Y{'p)ine+19) + H((Y1'D)ne) + H([h2X2p i) + H([21 XD ) in))
—H (X)) = H((X7)ng))

= 2H((Y{'D)pne+1) + H((Y1D) ) + H((X2) ) + H (X)) i)

—H((X3)[:ny]) — H((X1)[na))
We now have for ni; > ng that
H((XD)n,) — H(XD) o)) < n(ne — min{na,np})™ < nna,

and
H((%5) ) = H((R3)ins)) < (0 — min{ns, ng})* = 0.

And for ny > ny we get
H((XD) ) — H((XD)ny)) < n(n — min{na, np})™ =0,
and

H((Z5)n,) — H((X3)[iny) < n(ne — min{ng,np}) ™

We remark that the last term gets (ng — nE)Jr for n1 < ng < ng, in which case we can
use (3.10), which has a length of (ng —npg) bit-levels. Also for ng < n1 < ng we have that

n(n. — min{ng,ng})™ = nna, by using (3.10) again, we see that for ns > ny

H((ig)[nc}) - H((ig)[nz}) < n(nc - min{”% nE})+ =0.
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We therefore have an additional term of nna for ny > ny. Now one can divide all terms

by two, resulting in
H(Y}') = H(VEp)inal) < H(T)ne19) + 3 H (T p)n) + 5 01 = m2)
Plugging all the results into the first equation yields
n(R —€) < n(ny+ 3n.+ 5(n1 —n2)* +¢).

dividing by n and letting n — oo shows the result. For the case that no > 2n; we have
that

n(R—e) <HY{p) - H(Yz)p) + H([heX3p]) — H([ha X3 p]) + nc
< H([mX{p)) + H(|[h2X3 p]) — H(Y3'p|XT)

— H([ha X3 p)) + H(|heX3 p)) + ne
— (X} p)) < nm

and for the case that 3ny < 2n7 we have that

nR < I(W;Y{"p) — I(W;Y3'p) + n(e+c)
< I(W;Y{'p) = I(W; (Y3!p) g —ng)) + 1(€+€)
< HY'p) = H((Y2!D) sy —na)) + H((heX3 D)) iny—na)) — H([h2 X3 p]) + nle+c)
< H((Y"D)tm1—na)) + H (YD) {1 =na)+1| (YD) s —n))) — H((Y3'D) s —na] I X5)
+ H(([hEX2 D)) ny—na)) — H([h2 X3 p]) + n(e+ ).

One can show that

H((}/VITD)[:(nl—n2)}) - H((YQ?D)[:nl—nz} |Xg) < n(nl —n2— nE)+
and

H ((lheX3p|)imi—n)) — H([R2 X5 p])

< n(min{ny —na,ng} —n2) =nlng —ny — (ng —n1 +n9) "

and H((er,LD)[(mfnz)Jrl:]|(1/17D)[:(n1*n2)}) < nngy which yields

nR < nng +n(ny —ng —n9)" +nng —ng — (ng —n1 +n2)7|T +ne+c)
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dividing by n and letting n — oo shows the result. O

3.5. The Gaussian Multiple-Access Wiretap Channel

In this section we analyse the Gaussian MAC-WT channel. As in the case of the WT
channel with a Helper, we want to stick to the ideas of the corresponding linear determin-
istic model. This means we want to transfer the alignment and jamming structure to its
Gaussian equivalent with layered lattice codes. This will lead to an achievable rate which
is directly based on the deterministic rate. Moreover, we will make use of the previously
developed ideas to convert the converse proof of the linear deterministic model, to the

truncated model and therefore to the Gaussian model.

3.5.1. Achievable Scheme

Theorem 3.13. An achievable secrecy sum-rate of the Gaussian multiple-access wiretap
channel is
Ry = 1P 4+ 1° 48

where r¢:=1,(5 log SNRgl_’Bl)—%), with

.9 {min{l + By — 51,1}J
v 3(1—p1) ’

P := 1 log(max{1, SNRfl_BQ}), and

rf for rf < pf2
rft = ph for 2rfiz > pBu > pBo

rfiv 4 ple o for pfie > opfz,

with
3

1—31,(1— mind B1 —
B = Liog SNR, 207 _ L1og oNRPIMA—520) _
rft2 = 1log SNR&I_B” -

1

2

1

5.

Proof. We use the same framework as for the wiretap channel with a helper in section
3.4.1. We therefore partition the available power into intervals with power 6;, see eq. (3.5),
where [ indicates the level. Each of these intervals plays the role of an na-Interval of bit-

levels in the linear deterministic scheme. We have that |h1|2P = SNRy, |ha|?P = SNRa,
as well as hio = hos = hg which gives ]hE\QP = SNRg. We also use the two parameters
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51 and B2, which connects the SNR ratios with SNRy = SNR?1 and SNRg = SNR?. We

therefore partition the received power at Y7 into intervals SNRglfﬁ ). The users decompose

max

the signals X; into a sum of independent sub-signals X; = E%:l - And each signal uses

the layered lattice codes as defined in section 3.4.1.

Achievable rate

Note that, w.l.o.g we look at the case SNR; > SNRg, which is £; < 1. Due to the symmetry
of the users the case 81 > 1 follows immediately by interchanging both signals. As in the
deterministic case, we have a private and common part. The common part is defined as

the bit-levels n. := min{ng + na,n1}. The part ng + na corresponds to SNszJr(l_Bl)

—B2

in the Gaussian model. The opposing remainder is, therefore, SNR’?1 and we get the

common power as

P := SNR; — max{1, SNR?' 72},
while the private part has a power of
PP := max{1, SNR?*BQ} -1,

exactly as in the case of the wiretap channel with a helper. However, due to the modified
scheme where both users jam and align their jamming signals at the legitimate receiver

(see section 3.3.3) we have a different number of used levels for messaging. We have

P {min{l + f2 — B171}J
v 3(1 — )

used levels for messaging, where each one supports a rate of r; > %log SNRgl_B ) % And

we therefore have a sum rate of
¢ = lu(% log SNRgl_BI) — %),

for the whole common alignment part. Moreover, we need to consider the remainder term,
which is allocated between the alignment structure and the noise floor or the private part.

We see from the deterministic scheme that for
1— (31, +1)(1 = B1) < min{B; — 2,0}

we can achieve a rate of

3
1-5lu(1- min -
PP > Llog SNR; 2077 _ 1igg gNRIA 5200 _ 1
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3.5. The Gaussian Multiple-Access Wiretap Channel

Moreover, for

1— (30, +2)(1 = p1) <min{B1 — B2,0} < 1— (3l +1)(1 - B1)

we have
rf > Liog SNR{'™7) - 1
and for
min{3; — 2,0} <1— (31u +2)(1 — 1)
we have
rR > L1og SNR{™) 4 Liog SNRT%’““‘B” ~ Llog SNRIMA0} _

We therefore get a total rate of
Fach = 1P 4+ ¢ + rft.

The case of SNRo > SNR; can be shown similarly. Note that we are therefore within a
gap of 1 4+ %‘1 bits at maximum, of the rates of the deterministic model, by comparing via
n; = |3 log SNR;]. O

3.5.2. Converse Bound for the G-MAC-WT

We use a similar approach as for the Gaussian W'T with a helper, with the same framework

developed in section 3.4.2. This means we also use the truncated deterministic model

Yip = mXip|+ [h2X2p] (3.10a)
Yop = [heXop] + [heX1p], (3.10b)

which can be shown to be within a constant gap to the Gaussian channel, see (3.8).

Theorem 3.14. The secrecy sum-rate Ry, of the Gaussian multiple access wiretap channel

with symmetric channel gains at the eavesdropper is bounded from above by

B < %nc—knp—k%rm—kc forno > ng
» <

Ine+ sna+c for np > na,

where ¢ is a constant independent of the signal power P.
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3. The Multiple Access Wiretap Channel

Proof. We begin with the following derivations

n(Ry — €) (3.11)
= I(W1, Wa; Y{g) — I(W1, Wa; Y3'g)
< I(Wh, Wa; Yi'p) — I(W1, Wa; Ya'p) + nc
< I(Wh, Wa; Yi'p) — I(W1, Wa; Yo'p) + nc
< I(Wh, Was Y1, Yo'n) — I(Wh, Wa; Yalp) + nc
< I(Wq,Wa; Yip|Yap) + ne
< I(X1'p, X3p; Y{'p|Yap) + nc
= H(Y|'p|Yap) — H(Y|'p|Y2'p, Xi'p, X3 p) + nc
2 H(Y[p|Yg) +ne
< HO i Yap) + HY T, Yo, Vi) +ne (5.12)

where we used basic techniques such as Fano’s inequality and the chain rule. Step (a)
introduces the secrecy constraint (3.1), while we used the chain rule, non-negativity of
mutual information and the data processing inequality in the following lines. Step (b)
follows from the fact that Y7 is a function of (X', X3'p). Note that due to the definition
of the common and the private part® of Y]'p, it follows that H(Y17}D’p\Y27D, Yip,.e) =0 for
ng > ng. For step (¢), we used lemma 3.11, the data-processing inequality and the
chain-rule. We now extend the strategy of [XU14|, of bounding a single signal part, to

asymmetrical channel gains

nRy = H(W))
< I(Wi;Yp) — nes
< I(X{p; Y{'p) — nes
< I(XTp; Yi'pe) + 1(XTps Yi'p | Yi'p o) — 13
=H(Y{"p.) — H(Y{"p | XTp) + I(X{p; Y'p ,|Yi'D,c) — 1€3
= H(Y{"p.) — H(([P2X3p])[ine) + L(XTD; YD p|Yi'D,c) — 163 (3.13)

and it therefore holds that

H(([h2X3pine) < HY{p o) + I(X{p; YipplYipe) — (B +e3).  (3.14)

®The common part is defined as Y7"p . = (Y"p)[n.], and the private part as Y75 , = (Yi"p)net11-

112



3.5. The Gaussian Multiple-Access Wiretap Channel

The same can be shown for H(([h1X{'p|)[n,)); Where it holds that
H(([mXTping) < HY{p o) + I(X3p; Yipp[Yip ) —n(la +e3).  (3.19)
Moreover, we have that

I(XTp: Yi'p plYi'pe) + (X3 p: Yi'p YD o)

= 2H(Y{p ,[¥V'p.c) = H(Y{p ,|¥'pe» XT'p) = H(Y'p | Y1'D s X20)

= 2H(Y\'p ,|Y'pc) = H(([h2X3ppne+11¥i D) = H(([MXTpDne+11Yi D )

= HY{"ppIY{'pc)- (3.16)

The key idea for the various cases is now to bound the term H (YfD’ Y2 p), or equivalently
H(Y{"5|Ysp) for ng > no, in an appropriate way, to be able to use (3.14) and (3.15) on
(3.12). We start with the first case:

Case 1 (n2 > ng)

Here we have a none vanishing private part, due to the definition of Yi'p . and therefore
need to bound the term H (Y], C\Yg p). Note that due to the definition of Y|, . and the
specific case, we have that H(([ho X3 |)in,)) = H(|heX5 p|). We look into the first term
of equation (3.12) and show that

H(Y\’p .|Y2p)
= H(Y{'p Yop) — H(Y2p)
< H(Y'p lheXep], [heX1p]) — H(Y2p)
= H(|lhgXop], [heX1p]) — H(Y2p) + H(Y{"p c||hEX2 D], [hEX1D])
< H(|hgXip])+ H(lheX2p]) — H(Y2p|Xop) + H(Y{"p o||[hEX2 D], [hEX1D])
= H(|hgXop|) + HY{"p | [heX2D], [hEX1 D)) (3.17)

Observe that the second term of equation (3.17) is dependent on the specific regime. We

can bound this term by
H(Y{'p o|[heX2p], |heX1p]) < n(ne —np) = nna.

Note that the choice of |hg X2 p] in (3.17) as remaining signal part was arbitrary due to
our assumption that both signals |hgXip| and |hgXsp| have the same signal strength.
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3. The Multiple Access Wiretap Channel

Moreover, it follows on the same lines that
H(Y{'p [Yop) < H([hpX1p]) + nna.
Looking at this result, its intuitive that one can also show the stronger result
H(Y{'p [Y2p) < H(([71X1,0])n.])
for the case that ng > ng. This can be shown by considering a similar strategy as in (3.17)

H(Yp |Y20)
=H(Y{"p. Y2 p) — H(Y2p)
< H(Y2p, ([P1X1,0])(n,) ([R2X2D])ng)) — H(Y2D)
= H(([71X10])(n,) ((h2X2p ) np)) + H (Y20l (L1 X1, D)) e ([P2X2,D]) i)

_H(YQ’D)
< H(([M1X10)me) + H(([P2X2D ) mp)) + H (Y2 pl([P1 X1 D) ([P2X2D])ng))
—H(Y>p|X1p)
= H(([MX1,0])n.) + HY2p|([h1X1D])nes ([R2X2D ) ng)))s (3.18)
where
H(Y2p|([hX1.0])ins ([P2X20])ing)) < n(ng —n2)™ = 0. (3.19)

We combine one sum-rate inequality (3.12) with (3.17) and one with (3.18). Moreover, we
plug (3.14) and (3.15) into the corresponding bound, which yields

n(2R1 + Ry — ) < H(Y{'p o) + 1(X3p; Yi'p ol Yi'p o) + H(Y{'p p[Y2p, YiD )
and
n(Ry + 2Ry —e7) < H(Y{'p o) + 1(X7p: Y{'p ,[¥i'p ) + H(Yp ,|Y2,p, Y1pc) + nna.
A summation of these results gives

3n(Ry + Ra) — neg
<2H(Y'p.) + I(X{'p; YD p|Yi'D,e) + 1( X35 Vi p|Y1'D,c) + A
+2H(Y{'p ,|Y2p, Y1 D)
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3.5. The Gaussian Multiple-Access Wiretap Channel

=2H(Y'p.) + HY{'p ,|Yi"p o) + 2H(Y{'p ,|Yop, Y1 D) + nnA,

where we used (3.16). Now, because H(Y{'p ,|Y2p,Y1p,c) < nnp and H(Y]'p |Y]"p ) <

nnp, this results in
3n(Ry + Ra) —nes < 2H(Y'p ) + 3nny, + nna < 2nne + 3nny, + nna.

Dividing by 3n and letting n — co shows the result.

Case 2 (ng > ng)

First, we assume that ng > ni, and include a short proof for n; > ng > nsy at the end
of this subsection. For Case 2, the private part Y, p 1S zero, due to the definition of the

private part and ng > ng. It follows that (3.12) is
n(Ry + Ra) < H(Yp V). (3.20)
Moreover, we have that
H([hoXop]) = H(([h2X2p])ng) < H([heX2p)),

which is why we need to bound (3.20) by H(|h1 X1 p]|) and H(|h2X2p]). We therefore
modify (3.18) to fit our purpose in the following way

H(Y{"p|Y2p)
= H(YfDa Y2,D) - H(Y2,D)
< H(Y2p,|[mXip], [heX2p]) — H(Y2p)
= H(|h1X1p], [heXop]) — H(Y2p) + H(Y2p|[M X1 D], [h2X2p])
= H(|mXip], [heX2p]) + H(Y3p o[[MX1p], [h2X2p])
+ H(Y3p,l[hXipl, [heXop], Yol ) — H(Yolp ) — H(Ya)p ,|Yop )
< H([mX1p], [heXop]) + H(YS'p o[ [l X1p ], [heXop]) — H(Yo' ),

where Y3, . = (Y3'p)ny) and Yo', = (Y3'n)[ny +17- Now, we can show that

H(Y{'p|Yap)
< H([mXip], [h2Xop]) + H(Yy)p o[ [l1X1p], [h2X2p]) — H(Y3)p o),
= H([lX1p], [heXop]) — H(Y3p o) + H((heX2,0])n,| [h2X2p])
< H([mXip])+ H([h2X2p]) = HY3'p [ Xop) + H(([hEX2D]) 0|2 X2p])
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3. The Multiple Access Wiretap Channel

= H([hoXop)|) + H(([heX2D]) )| [h2X2D])
< H(Lh2X2,DJ) + nna, (3.21)

where the last inequality follows because we have that

H(([hEX2D])imylheX2p]) = H(([heX2D]) ot 1:n1] P2 X2 D ), (3.22)

due to lemma 3.10 and the chain-rule. Bounding H(Y]"y|Y2,p) by H(|h1X1p]) requires
more work. We have a redundancy in the negative entropy terms, with which we can cancel
the H(([hgX2,p])imy)|[P2X2,p]) term in the following way

H(Y{'p|Y2p)
< H([mXip], [h2Xop]) + H(Yy)p o[ [l1X1p], [h2X2p]) — H(Y3)p o),
< H([mXip]) + H([h2X2p]) = H((Y3)p,e):na]| X1,D)
+ H(([heX2p]) ) [h2X2p]) = H((Yo'p o) jno+1: X105 (YaiD ) [ma)])
= H([hX1p]) = H(Y2p ) a1/ X1,05 (Y2p ) 20))
+ H(([heX2p]) ) [h2X2p])
< H([MmXip])+ H(([heX2p])nllP2X2p])
— H((Ys'p ) ina+1:91 X105 (Ya'p ) ina)» [P2X2 D)
= H([mX1p]) = H(Y2'D o) not11X1,0, [h2 X2 p]) + H(([heX2D]) 0yl h2X2 D))
= H([mX1p]) = H{([heX2p)mnyt1my P2 X2 p]) + H(([heX2p]) iyl heX2D])
= H(|mXip)), (3.23)

where the last step follows due to equation (3.22). Now we can bound one (3.20) with
(3.21) and one with (3.23). Moreover, we use (3.14) and (3.15) on the result. Note that

due to our regime, (3.14) becomes
H([h2Xap|) < H(Y{'p) — n(F1 + €3),

while (3.15) becomes
H(|hiX1p]) < H(Y"p) — n(R2 + e4).

Putting everything together results in

3n(Ry + Ra) —nes < 2H(Y]'p) + nna < 2nne + nna.
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Dividing by 3n and letting n — oo shows the result. We need to modify a bound on
H(Y{"p|Y2p), if the signal strength ng lies in between n; and ng. In (3.21), we see that

H(|hX1p]) — H(Y3p | Xop) < n(ni —ng)*.
Moreover, we have that

H((|heX2p])pmllheXap]) < n(np —n2) ™.

Both changes cancel and we get the same result as (3.21). The result follows on the same

lines as in the previous derivation. O

3.6. Conclusions

We have shown an achievable scheme for both, the Gaussian multiple-access wiretap chan-
nel and the Gaussian wiretap channel with a helper. We used the linear deterministic ap-
proximation of both models, to gain insights into the structure and devised novel achievable
schemes based on orthogonal bit-level alignment to achieve secrecy. These techniques can
be summarized as signal-scale alignment methods, where we used jamming alignment at
the eavesdropper in the signal-scale, while minimizing the negative effect at the legitimate
receiver. Both results were then transferred to the Gaussian model, by utilizing layered
lattice coding. Moreover, we developed converse proofs for both models, which achieve a
constant-gap bound for certain signal power regimes. Those converse techniques were de-
veloped for the LD model and then transferred to a truncated deterministic model, which
in turn is within a constant-gap of the integer-input integer-output model. The integer-
input integer-output model yields converse proofs for the Gaussian models, by invoking a
result of [MXU17|. Since our results hold for asymmetrical channel gains and are depen-
dent on those ratios, they can be seen as generalized s.d.o.f. and converge to the known
s.d.o.f. results for the channel gain ratio approaching one. Looking into the figure 3.6, one
can see the achievable rate normalized by the single-link channel, with varying parameter
B1, i.e. channel gain configurations. One can see that the figure shows the s.d.o.f of %
for the G-WT-H, and % for the G-MAC-WT for 51 — 1, which agrees with the results
of [XU12]. We can also see, that the achievable rate of both models fluctuates between
the upper bound and a lower bound, for the part where the bit-level alignment scheme is
dominant. We believe that this is a result of the orthogonal bit-level alignment techniques
which get transferred to the Gaussian model. A deterministic model with inter-dependent
bit-levels, like the one used in [NMA13], could help to completely reach the upper bound.

This would give a constant-gap sum-capacity result for the whole range.
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Figure 3.5.: Illustration of the achievable secrecy rate for the LD-WTH in relation to the
single-link scenario, and variation in the o parameter, while 5is fixed at 0.75.
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Figure 3.6.: Illustration of the achievable secrecy rates and upper bounds for the Gaussian
WT-H and the Gaussian MAC-WT in relation to the single-link scenario, i.e.
normalized by 1 5 log SNR1, and variation in the 81 parameter, while S5 is fixed

at 1, i.e. vanishing private part.
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3.7. Proof of Theorem 3.7

3.7. Proof of Theorem 3.7

Proof. We start as in [XU12] with the following procedure

nR=HWl|yy)+I(W;y7)
< I(WiyT) + ne
< I(WiyT) —1(Wsy3) + ne
< I(WiyT) = I(W5y5,,) + nes
=H(y!) = HYTIW) = H(Y5 ) + H(Y3 [y W) + 12
=H(yT?) = H(y5 ) + H(XS ) — H(X5) + ne2

where Fanos inequality and the secrecy constraint was used. Moreover, we used the fact
that I(W;y5) > I(W; f(y%)) for arbitrary functions f, due to the data processing inequal-
ity. Note that for no > ng, we have that y;[m] =y4. In the last line we used that X; is
a function of W, and X5 is independent of W. We remark that the first property does not
hold in general, since jamming through the first user would result in a stochastic function.

Now, for ng > ng, X [ = = x4 we have

H((ig)[nz}) - H(XS) =0

and for ng < ng we have x§ [ns] = X3 18 a part of x4 and we can therefore show that

H(xy) — H(x3) < —H((x2)ng+1:|(%2) np))- (3.24)

We now split the received signals in common and private parts. We start by adding two

of the terms and show

Q(H(X? @ Xg) - H((i? ® ig)[nﬂ))
< 21{((X71Z D Xg)[nﬁ—l:]) + QH((X? @ Xg)[:nc]) - 2H((>_(7f @ ig)[ng])

Note that the private part H((x} @ X3)[n.+1) i zero for ny < ng. Now, counting from
top to bottom, for n; > na, x{ has n bit-levels in (x} © x3)(.,,,), While x3 has n :=
min{ng, min{ny,ne}} = n. — na bit-levels. Therefore, n represents the amount of bit-
levels of the weaker signal in the common received signal part. Hence, for no > ny, x!
and x4 have 1 and n. bit-levels in that term, respectively. We need to account for this

switch of indexing in the next part, where we analyse the entropy difference. We will use
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3. The Multiple Access Wiretap Channel

a method inspired by [FW14a| to show the following (for n; > ng)

(
X5 ) ine+1:]) + 2H (X @ %3)in) = H(X2)[mg) = H (X)) [mg))

+ H((X? D XEL)[?%]) + H(Xg,[:n]) + H(X?,[:nc})

We now have for nq; > nsy that
H(XTIL,[lan]) - H((i?)[nz]) = n(nc - min{n?? nE})Jr < nna,

and
H(x} ) — H((R3)ony)) = 0l — min{na, ng})* = 0.

And for no > nq, we get

H(X?,[lzn]) - H((i?)[nz]) = ”(77 - min{nQv ’I’LE})+ =0,
and
H (x5 .,1) — H((X3)[:n,]) = n(ne — min{no, ng})t. (3.25)

We remark that the last term (3.25) gets (ny — ng)™ for n; < ng < ng, in which case we
can use (3.24), which has a length of (ne — npg) bit-levels. Also for ngy < n; < ny we have

that n(n. — min{ng,ng})* = nna, by using (3.24) again, we see that for ny > ny
H (x5 ) = H((X3)ing)) = n(ne — min{ng, ng})™ = 0.

We therefore have an additional term of nna for ny > ny. Now one can divide all terms

by two, resulting in

H(yy) — H(ys)
1 n
< H((Xrll D Xg)[nc+l:]) + iH((X? S5 Xg)[:nc}) + 5(”1 - n2)+-
Plugging all the results into the first equation yields
nRkR < H(yt) — H(yy) + H(X3) — H(x3) + ney

< n(np,+ %nc + %(nl —n2)T 4 e2).
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3.8. Proof of Theorem 3.8

dividing by n and letting n — oo shows the result. For the case that ny > 2n; we have
that

n(R—e) < H(yy) — H(yz) + H(x3) — H(x3)
< H(xy) + H(xg) — H(y3|x7) + H(x3) — H(x3)
= H(x!) <nnm

and for the case that 3ns < 2n; we have that

nR <I(W;yt) — I(W;y3) + ne
< IW3y7) = IW5 Y5 1y ) T €2
S H(YT) = H(Y3 [y —no)) T HXy [, ny)) — H(X5) + nea
< HWY ny—na)) T HOT 1 —no)+11Y 1 g —na])
= H(Y5 ) —ng)|%X2) + H (X5 [y, ) — H(X3) + 162

One can show that

H(YY iy —ng) = H (Y3 oy —np)|X3) < (01 =12 — )™

and
H (X3 .y —ny)) — H(x3)
< n(min{n; —ng,np} —n2) =nlng —na — (ng —n1 +ng) |t
and H (Y7 1,11 —non) 4191V T (a1 —na)) < 72 which yields
nR < nng +n(ny —ng —no)" + +nfng —no — (ng —ny +n2)T]" + neo
dividing by n and letting n — oo shows the result. O

3.8. Proof of Theorem 3.8

Proof. We start with some general observations and derivations before handling the differ-

ent cases explicitly. We begin with the following derivations

n(R1 +R2) = H(Wl,WQ)
= H(Wy, Waly?) + I(W1, Wa; y7)
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IN

I(Wq, Wa; y1) + ne

—
INS

(
I(Wy, Wasyt) — I(Wh, Was y3) + nez
(W1, Was yT, y3) — I(W1, Waiyy) + ne
(

(

IN
~

IN
~

Wi, Wa; yilyy) + nez

n o N, NN
X1, X5;y1]yy) + ne

IN
~

n

(yTlys) — H(yTly3,x1,X3) + ney
H(ylly3) + neo
H(yT ly3) + H(yTplys, y1.) + ne (3.26)

)

H

||@ I

where we used basic techniques such as Fano’s inequality and the chain rule. Step (a)
introduces the secrecy constraint (3.1), while we used the chain rule, non-negativity of
mutual information and the data processing inequality in the following lines. Step (b)
follows from the fact that y7 is a function of (x7,x%). Note that due to the definition of
the common and the private part” of y7, it follows that H (¥ ,ly3,y1.) =0 for ng > na.
We now extend the strategy of [XU14|, of bounding a single signal part, to asymmetrical

channel gains

nRy = H(W)
< I(WhsyT) — nes
< I(x1;y7) — nes
= I(x7;y71c) + 1(X13¥7,¥1,c) — nes
= H(yT.) — H(yT |x1) + I(xT;¥1plyTc) — nes
= H(yT.) — H(x3.) + I(X1;yTplyT.) — nes

and it therefore holds that
H(x3,.) < H(yT o) + 1(XT; 57 ,l¥T ) — n(Bi + €3). (3.27)
The same can be shown for H(x7 ), where it holds that
H(xT,) < H(yT ) + 1(x3;¥7,¥T ) — n(R2 + €4). (3.28)

Moreover, we have that

I(x15 57 ply1e) + 1(x25 57 ply1e)

"The common part is defined as Vie = y{"[:nc], and the private part as y1, = Y?,[nc-uzy
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= 2H(y?,p|y?,c) - H(y?,p‘y?,cv X?) - H(y?,p’y?,m Xg)
= 2H(y7l’b,p|y’f,c> - H(Xg,p|y7f,c) - H(X?,p‘yic)
= H(yTplyie)- (3.29)

The key idea for the various cases is now to bound the term H (y{‘,c|y§‘), or equivalently
H(yl|y%) for ng > no, in an appropriate way, to be able to use (3.27) and (3.28) on (3.26).
We start with the first case:

Case 1 (n2 > ng)

Here we have a none vanishing private part, due to the definition of y7 . and therefore
need to bound the term H(y7.|y%). Note that due to the definition of yT, we have that
H(xy,.) = H(x3). We look into the first term of equation (3.26) and show that

H(y? |y3) = H(y{cys) — H(y3)
< H(y7.x{,%x3) — H(y3)
= H(x71,%3) + H(y7 %7, %X3) — H(y3)
< H(xXV) + H(xy) — H(y3|x3) + H(yT |X7, %3)
= H(x3) + H(y? X7, %3). (3.30)

Observe that the second term of equation (3.30) is depended on the specific regime. We

can bound this term by
H(Y?,c!i’f,ig) < n(n.—ng) = nna.

Note that the choice of X in (3.30) as remaining signal part was arbitrary due to our
assumption that both signals X}' and x5 have the same signal strength. Moreover, it follows
on the same lines that

H(yT lyy) < H(XY) + nna.

Looking at this result, its intuitive that one can also show the stronger result
H(yT lyz) < H(xT,)

for the case that ne > npg. This can be shown by considering a similar strategy as in (3.30)

H(y! lys) = H(y!.y3) — H(y3)
H(y7217 X’T,c? Xg,c) - H(}’S)

IN
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= H(X?,m Xg,c) + H(yglx?,m Xg,c) - H(yg)
< H(X’,:ﬁ(,‘) + H(Xg,c) - H(y721|x711,c) + H(yg|x?,c7 Xg,c)
= H(x{,) + H(y3 /X710 X5.), (3.31)

where

H(yy|x{ .. x5.) < n(ng —n2)" =0.

We combine one sum-rate inequality (3.26) with (3.30) and one with (3.31). Moreover,
we plug (3.27) and (3.28) into the corresponding bound, which yields

n(2R1 + Ry —e6) < H(yT.) + 1(x3;:¥7,|¥1) + H(Y1plys, ¥1c)
and
n(Ry + 2Ry — e7) < H(y7.) + I(x1;¥7,ly1e) + H(YT,ly2, ¥1e) + nna.
A summation of these results gives

371(R1 + RQ) —neg < 2H(y711,c) + I(X?; y?,p|y711,c) + 2H(y?,p|yga y?,c)
+ I(Xg; y?,p’y711,c) + nna.

Using (3.29), and the fact that H(y?,|y5,y7.) < nnp and H(y7,|yT.) < nn, results in
3n(Ry + R2) —neg < 2H (y7 ) + 3nn, +nna < 2nne + 3nn, + nna.

Dividing by 3n and letting n — oo shows the result.

Case 2 (ng > n2)

First, we assume that ng > ni, and include a short proof for n; > ng > ng at the end
of this subsection. For Case 2, the private part yi, is zero, due to the definition of the

private part and ng > ng. It follows that (3.26) is

n(R1+ Rp) < H(yy'lyz)- (3.32)
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Moreover, H(xy) = H(x5.) < H(Xy), which is why we need to bound (3.32) by H(x3)
and H (x7}). We therefore modify (3.31) to fit our purpose in the following way

H{(yy)
+ H(ys[x1{,x3) — H(yz)

) =

)+ H(

)+ H(ys |x1,x3) + H(yy X1, X3, ¥5.)
)

)

_H(yg, Y2 c)
+ H(ys|x1,x3) — H(ys,),

)

where yy . = ygy[:m] and yy , = yg,[nl IR Now, we can show that

(vilys) < H(x{,x3) + H(ys |x},x3) — H(y3,)
= H(x7,x3) + H(X3|x3) — H(y3,.)
< H(x7) + H(xy) — H(y3[x3) + H(x3(x3)
= H(xy) + H(x3[x3)
< H(x5) + nna. (3.33)

Bounding H(y7|y%) by H(x) requires more work. We have a redundancy in the negative

entropy terms, with which we can cancel the H (x5 |x45) term in the following way

H(yTlyy) < H(x{,x3) + H(X3[x3) — H(y3,)
< H(x7) + H(xy) — H(Y2c n2]|X1)
+ H(ig‘xg) - H(yQ,c,[ng—&—l:} |X1 ’ y2,c,[:n2])

= H(XP) — HY3 o 1 X0 Vo)) + H (K3 [5)
< HOG) ~ HY o oy s19 X0 Y o s X5) + H(X3]x5)

= HO) — Y} g g1y X5 58) + H (R[5

= H(x}) — H(R3 y41/X3) + H(%3|xE)

= H(x}). (3.34)

Now we can bound one (3.32) with (3.33) and one with (3.34). Moreover, we use (3.27)
and (3.28) on the result. Note that due to our regime, (3.27) becomes

H(xy) < H(yT) = n(B1 + €3),
while (3.28) becomes

H(x7) < H(y7) — n(Ra + €4).
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3. The Multiple Access Wiretap Channel

Putting everything together results in
3n(Ry + R2) —neg < 2H(y7) + nna < 2nn. + nna.

Dividing by 3n and letting n — oo shows the result.
We need to modify a bound on H(yT|y%), if the signal strength ng lies in between ny
and ny. In (3.33), we see that

H(x}) — H(yj[x3) < n(n —np) ™

Moreover, we have that H(X45|x%) < n(ng — n2)*. Both changes cancel and we get the

same result as (3.33). The result follows on the same lines as in the previous derivation. [J
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4. Key Generation using the Wireless
Channel

4.1. Introduction

With the advance of technology, new application scenarios such as the Internet of Things
and others reinforce the need for new security paradigms which are unconditional on
the eavesdropper such as information-theoretic security, also called physical layer secu-
rity [Muk15]. Resulting techniques can be used, for example, for secure key agreement
over the wireless channel, assuming that both parties are already authenticated. Key-
agreement between two parties is a well-investigated topic, dating back to first works on
the subject by [AC93] and [Mau93]. Those works focused on upper and lower bounds for
various models of key-agreement and laid out the foundations for a systematic analysis.
In [AC93], the key-agreement problem was split into two general models, source-type model
and the channel-type model. In the source-type model, both parties, in the following called
Alice and Bob, have access to a source of common randomness. In the channel model, Alice
can communicate over a discrete memoryless channel to Bob. In both cases, both parties
have access to a public insecure communication channel, which can be used to generate
a common Kkey from their observations. It has been shown, that the wireless channel can
be exploited to generate a source of common randomness for Alice and Bob. The first
rigorous works in this direction were [YRS06| and [WTS07]. The idea evolves around the
reciprocity of the wireless channel, which states that the varying (due to fading) wireless
channel is nearly the same in both directions. Now, pilot signals can be send by both termi-
nals, such that the receivers can estimate the channel gain. Due to reciprocity, the channel
gain becomes a source of common randomness and both Alice and Bob can estimate it.
Furthermore, the estimates do not need to be perfect. By invoking Slepian-Wolf coding
schemes with side-information, a single transmission, via the public channel, from Alice to
Bob is sufficient to generate a common key at both terminals (see [AC93|). The drawback
for practical purposes is that the entropy and length of the key depends on the randomness
of the channel gain, which is dependent on the coherence time. A slowly varying channel

provides less key-rate, which can become zero in worst case scenarios. Some works there-
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fore focused on relay assisted key generation, mixed source-channel type key generation
in [LLPD13|, [LLP12| and local randomness aided scenarios in [WFK16], to overcome this
problem. The latter work utilizes local randomness with a novel product signalling scheme
to enhance the key generation for periods of static channel gain. However, the resulting
rate expressions are non-trivial and closed-form solutions could not be obtained. This mo-
tivates the development of an approximate key generation model, which can incorporate
those special cases. Another line of research focused on the inclusion of full-duplex channel
modes into the security models. Recent advances, e.g. [Khal3], [DDS12|, [BMK13], have
shown that full-duplex wireless is a viable and practical technique for future communica-
tion systems. This opens up an interesting possibility to use full-duplex aided methods
in security scenarios. A general model for the full-duplex secret messaging scenario is the
two-way wiretap channel, where the users communicate over a noisy bidirectional chan-
nel, while the eavesdropper observes interfering signals. This model was first investigated
in [TYO08c|, and subsequently studied in [PB11| and [GKYG13|. Recently, the trade-off
between half-duplex and full-duplex key generation for pilot signalling was investigated
in [VS15], where also results on the trade-off between channel probing and reconciliation

were shown.

Contributions: The following chapter will describe work, which was originally motived
by the fact that we could not show closed-form results for product signalling in [WFK16].
So we developed a model, closely related to the linear deterministic model [ADT11] and the
lower triangular deterministic model [NMA13|, which abstracts from the Gaussian channel
by looking at the binary expansion of the signals and truncating the resulting bit-sequence
such that they are noise-free. Moreover, as in the LTDM, the channel gain bits, the fine
channel gain, is included in the model, since those bits will provide the common randomness
in the channel and are used for standard key generation. However, unlike in the LTDM, we
view this fine channel gain as random and try to extract the randomness for key generation.
We can show several results for special cases and also recover pilot-signalling results of
high SNR regimes. Moreover, we view those systems in half and full-duplex scenarios. We
analyse the trade-of between half and full-duplex in the deterministic setting and derive
results for the high SNR scenario. The model also provides a look into a secret messaging
scheme for long coherence block lengths which utilizes cooperative jamming on bit-levels.
It therefore bridges the gap between the linear deterministic secret messaging scenarios,
e.g. [FW17¢|, and key generation. We show that this new model provides a simple and
intuitive way to analyse these problems. The new model has several advantages due to
its properties, e.g. public communication being obsolete and build-in quantization. We

believe that the model can be useful in other scenarios too, e.g multi-user key generation.
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4.2. Gaussian System Model

4.2. Gaussian System Model

We denote the channel gain from Alice to Bob with Ay, and from Bob to Alice with hy,. We
assume reciprocity, meaning that within one channel use i, both hq, and hy, are the same!.
Moreover, we assume that the channel gain is a fading parameter, changing randomly with
a Gaussian distribution hg, ~ N (0, 0,2%) after an coherence block of 7" channel uses. Alice
and Bob have an additional local source of randomness, w, and wy, respectively, which can
be used for the inputs. Both communication channels are in presence of a wire-tapper Eve,
which can receive Alice’s input through a channel h,. and Bob’s input through a channel

Rpe.-

Half-Duplex System: Alice communicates with Bob in a two-way non-duplex fashion.
Looking at n total channel uses, both alternate in receive and transmit mode such that
Alice sends signals to Bob at the odd channel uses while, Bob utilizes the even channel

uses. We can therefore write the channel equations in the following way

}/}7 = HabXa + Zl
Yo = Hpa Xp + 22

and

H,. X, fornodd
Y, =
Hy. X, for n even.

The system model is illustrated in Fig. 4.1. The figure also depicts the public noiseless
channels ® and W, which are available for both Alice and Bob. We have ¢ time instances
in which we use the wireless channels n times and the public noiseless channels k =t —n

times, where n < t.

Full-Duplex System: Alice communicates with Bob in a two-way duplex fashion. We can

therefore write the channel equations in the following way

Y, = HyoXp + HioXo + 7,
Yy = HypXo + Hp Xy + Zy
Y'e - Hana + HbeXb + Z37

In the fine scale, which will be explained later
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Figure 4.1.: Illustration of the half-duplex system model with (dashed communication) and
without side information at Eve
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Figure 4.2.: Tllustration of the full-duplex system model with (dashed communication) and
without side information at Eve

where Z; ~ N(0,1) is Gaussian noise and Hj,, H, are the channel gains for the self-
interference. Note that both nodes know their own codewords and can therefore cancel the

self-interference [TY08c|. This leads to the following simplified model

Yo = Hpo Xp + 21
)/}7 = HabXa + Z2
Ye = Hana + HbeXb + Z37

with the Gaussian noise Z; ~ N (0,1). The system model is illustrated in Fig. 4.2.

Key Generation and Secrecy Definitions There are n rounds of wireless communication,
where in each round i Alice (Bob) sends a codeword X,(wa, ) (Xp(wp,)) over the channel.
We denote X' = (X4(1), -+, Xq(n)) and X' = (Xp(1), -+, Xp(n)). We note that in the
most general setting, there is also a public channel ®* and ¥* which can be used k times.
This public channel can be used for key reconciliation, i.e. forging a shared key from
two correlated random observations. Let f, and f; denote the key generation functions
at Alice and Bob, respectively. We therefore have that the keys for Alice and Bob, are
Sa = fo( X2, Y, ®F) and S, = fo( X7, Y, UF), respectively.
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4.2. Gaussian System Model

We define an achievable key rate Ry, if for every e > 0 and sufficiently large n there
exists a strategy such that S, and Sy satisfy

Pr{S, # Sp} <,
LI(@% o* Y™ S,) <,

%H(Sa) > Rkey — €,

Llog|S,| < LH(S,) + e,

where |S,| denotes the alphabet size of the discrete key random variable S, see also [AC93)].
It was shown in [AC93] that if both terminals observe correlated source outputs X" and
Y™ from a discrete memoryless multiple source with generic sources (X,Y), a secrecy
key rate of I(X;Y) can be achieved. The proof uses only a single forward or backward
transmission of the public channel along with an extended Slepian-Wolf coding scheme.
Originally proved for discrete sources, this result can be extended to continuous sources
as well [YRS06, Nit08]. Moreover, the result can be extended to the case of a pair of
sources, for example (X, Yo, Xp, Yp). To see this, one can use the same idea as in [AC93],

in conjunction with the Slepian-Wolf theorem for multiple sources.

Introducing Product Signalling: The idea in [WFK16| was to utilize the local random-
ness w4 and wp such that Alice and Bob send random signals over the channel. Therefore,
instead of measuring the channel gain H with pilot signalling alone, one gets a channel
output Y, and Y, at Alice and Bob, respectively. Both of these are correlated via channel
gain. To get some gain out of the local randomness, one also considers the local source
of the sender. This means that Alice and Bob wirtually receive (Y, X,) and (Y3, X3), re-
spectively. Now both sources are correlated in H, X, and X;. The main challenge was
a practical way to reconcile observations of both Alice and Bob. A simple solution to
this problem, also presented in [WFK16|, was to multiply the observations to produce
correlated observations of a source (X,Yg, XpYp). This would yield a secure key rate of
I(YaXa; Y3 Xp). However, exact calculation of the mutual information term (Y, X,; Y, Xp)
is involved, even for Gaussian signals. This is due to the multiplication operations which
yield Bessel functions and to the best of our knowledge there is no known closed form so-
lution for this term. However, we will approximate the term with the linear deterministic

model to gain insights into its nature.
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4.3. A Deterministic Model for Key Generation

We introduce a novel deterministic model for key generation, which is closely inspired by
the linear deterministic [ADT11] and the lower triangular model [NMA13]|. We refer the
reader to section 1.4.1 and 1.4.2 for a short introduction to these approximation models.
We assume that the input signals and the noise have a peak power constraint of one. That
means, that the channel gains represent the signal-to-noise values and we therefore have
the correspondence that H = v/SNR. In the new model, all operations are over Fy and
Xq,Xp € Fd are the input bit vectors of Alice and Bob, which represent the first g bits of the
binary expansion of the transmit signals X, and Xj, where ¢ = max{Nup, Nia, Nae, Nea }-
These bit vectors have a finite number of entries, since the noise effected bits are cut-off.
Moreover, the channel gain is split into a coarse and a fine channel gain part, such that
we have H = 2Vh, where N € N and h € (1,2], which can model any channel gain greater
than one. Note, that we model reciprocity such that the channel gain is the same in the
fine channel gain h, but differs in the coarse gain N. This allows us to model different
signal scales for transmission, since signal transmit power induces the specific coarse gain.
We use the function Tj;(x) = X which maps a bit-vector x to its square lower triangular

Toeplitz matrix X:

i, 0 0 0
[x]2 [x]1 0 0
Tn(x) =X = : g
[@]g—1 [2]g—2 [z]p 0
[zl [z]g— [z]2 [z}
where [z];, for i € {1,---,q}, denotes the i-th bit of the binary expansion of X and

therefore the i-th element of the bit-vector x. Moreover, 7}, (X) = Xe; = x maps a lower

triangular Toeplitz matrix back to its vector

[]1 O 0 0 []1 0 0 0 1 [x]1
1|kl 00 0 el feli 00 0] 10 ]z
" Alals [2)2 [zl 0 [z]s [z]l2 [z]i O | |O [z]3
[2]la [z]z [z]2 [zh [l [z]s [z]2 [z]1] |O 2]

Here we used e; to indicate the first column vector of the identity matrix with dimen-
sion ¢. The bits of h can then be represented in a lower uni-triangular? Toeplitz matrix

Ti:(h). Whereas the multiplication with the coarse gain 2V is modelled algebraically by

2The resulting matrix is uni-triangular, i.e. all 1’s on the diagonal, since h € (1,2]
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the multiplication with an ¢ x ¢ down-shift matrix S7=V

0 0 0 0
10 00
s—|o0 1 00,
00 -+ 10

which shifts a vector for ¢ — N position downwards. Note that we neglect channel gains
smaller than one, which is sufficient for high SNR regimes. Our approximation model also
aims for an analysis of the high SNR behaviour. Note that the correspondence towards
the SNR for the deterministic models is N = |3 log SNR.

The full-duplex model can be written as

— N,

Yo = S baHbaxb
—N,

Yo = S *HgpX,

Ye = Sq_Nae Haexa @ Sq_Nbe Hbexba
while the half-duplex model can be written as

_N,
Yo = S "HapXq

Ya = ST M Hy,x,

Note that for the half-duplex system we assume a time division in which a transceiver can
either receive or transmit. Both Alice and Bob alternate in receive and transmit mode.
Alice uses the odd n channel uses for transmission, while Bob uses the even n channel uses

for transmission. Therefore Eve observes

S?NaeH, %, for n odd

S?—NeeH,,x;  for n even.

Secrecy Constraints: Due to the deterministic nature of the model for key exchange
we can make simplifications on the security constraints. We define an achievable deter-
ministic key rate Ry if for every € > 0 and sufficiently large n there exists a strategy such

that both generated keys at Alice and Bob, denoted by s4 and sp, respectively, satisfy

Pr{sa #sp} =0,

133



4. Key Generation using the Wireless Channel

%H(SA) > Ry — e,

1 1
Log fsa| < LH(sa) +c.

where |s4| counts the bits in the binary random vector s4. Moreover, we define a secure

deterministic key rate Rgq as the key rate Ry with the following security constaint
LI(yhisa) = 0. (4.1)

Note that we put a stricter notion on the difference between both keys. Moreover, we do
not need a public communication channel. At last, Eq. (4.1) evokes a so-called perfect
security condition in contrast to weaker standard notions. All of these changes can be
achieved with no further struggles due to the lack of noise in the model, which explains

the modified security condition.

Remark 4.1. The coherence block length T is a rather coarse measure of the randomness
and dynamics of the channel gain. The deterministic channel model can support a finer
notion, where one can look at the correlation of each bit-level, instead of only the whole
bit-vector. This would yield a smooth characterization of the transition from completely

static channel gain, to a completely random channel gain.

Remark 4.2. Total independence of Eve’s channel gain and the channel gain between Alice
and Bob is an idealistic scenario. Realistic channel gain scenarios might be different,
in the sense that both channel gains share some characteristics. This opens up attack
scenarios, for example in case of insufficient quantization. Our model, which has the built-
in quantization i.e. bit-levels, can help to analyse these scenarios. A possible constraint
could be that the top m bit-levels have some correlation with Eve and should therefore be

avoided for key generation.

4.4. Achievable Key Rates

In this section, we will analyse some secure key generation schemes for the full-duplex and
the half-duplex channel settings within the deterministic channel model. Moreover we will
see, that the most prominent advantage of full duplex is that we only need one channel

use or time instance for a complete key exchange.

4.4.1. Pilot Signalling

The classical approach for key exchange within a wireless medium is to use pilot signalling.

With this scheme, both users send a pre-defined pilot signal over the wireless channel to

134



4.4. Achievable Key Rates

each other. The idea is now, that the pilot signal measures the channel gain, which is a
random variable in a fading environment that changes after a coherence block of T channel
uses. Therefore, both users, Alice and Bob, receive the measured channel gain H and H’,
respectively. Note that we assume reciprocity, this means that both channel gains noisy
versions of each other with high correlation. It was shown in [AC93|, that these correlated
random variables can be used to produce a common key with a rate of I(H; H'), by using
a single reconciliation transmission over an insecure public channel. We can model pilot
signalling by transmitting a basis vector e; over the channel with power N. We therefore
have that

Vo = ST M H, x, = S9Ne Hy e

Notice that Hy,e; = Tl;l(Hba) = hy, is a g-bit-vector containing the bits of h,, which
gets downshifted by ¢ — Ny, bit-levels, resulting in NV, received channel gain bits. Note
that due to our assumptions on reciprocity, we have that hy,, = hpq, = h. Therefore, both
users receive the same bit-vector, which is just differing in the number of bits N, and Np,.
Since both users have perfect channel gain knowledge of the coarse gains, they can extract

the minimum mutually received channel gain bits. This yields a secure key rate of
.
Ryq = T mln{me Nab}a

in the full-duplex deterministic case. For the real Gaussian case, this would correspond to
a rate of
Reg = % min{log SNRy,, log SNR}.

For the half-duplex model we have a secure key rate of
Rsq = % min{me Nab}v

which introduces a factor of two since two channel uses are needed for the key exchange.
If the general noise power does not increase, due to self-interference cancellation, than
the full-duplex key rate is two times higher than the half-duplex secret key rate, which is
expected. Note that we did not need to check the secrecy property 4.1, since the channel
gain between Alice and Bob is assumed to be independent of Eves channel gain. This
means that Eves received signal is also independent of the key. We see that using the
deterministic model has two advantages. The first one is that due to the deterministic
nature, no public communication is needed to reconcile the keys. The second advantage

is that the binary expansion introduces a natural quantization which is fine enough to
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combat the noise. As a result, the observations at Alice and Bob can be used as a key

without further post-processing.

4.4.2. Key Exchange by Product Signalling

Assume that we do not send pilot signals over the channel, but generate a random number
which is send over the channel. In that case both Alice and Bob receive a y which is the
discrete convolution between the bits of a signal x and the bits of the channel gain Tlt_l(K)
Generating a signal x4 and xp and sending it over the respective channel produces two
different observations y 4 and yg. However, since the receivers Alice and Bob, know their
own signal, they can multiply the observation from the left with Tj;(x4) and Tj(xp),

respectively. This yields the following two observations

Tit(Xa)Ya = Tit(xa)ST Nea Hy,xy,
Tie(xp)ys = Tt (x5)ST N H .

The following lemma will show, that both modified observations are the same.

Lemma 4.3. For arbitrary binary vectors xa,ya € Fy and xp,yp € F5', and truncated

vectors XA,y 4,XB,¥B € Fgﬂn{n’m} we have that

Tu(xp)yB = T (Xa)ya-

Proof. First of all we note that the product of a lower triangular Toeplitz matrix with
a vector is commutative. The operation mimics the product of two polynomials, where
the result follows from the commutativity of the product of polynomials. Alternatively,
one can think about this product as a discrete convolution, which is also commutative.
Truncating the matrix such that it has the same dimension as the vector squared does not

change this fact. This means that for arbitrary binary vectors x,y € F4 we have that

T (x)y = Ty (y)x. (4.2)

We know that Tj;(x)y = Ti(x)T3(y)e1 and that Ty (y)x = Ti(y) Tt (x)e1 and we therefore
have that
Ty (x)Ti(y)er = Ty (y) T (x)e1,

which shows that
Tit(x)Tie(y) = Tu(y)Tie(x) (4.3)
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and therefore the commutativity of the squared lower triangular matrices. Now we can

proceed to show the lemma. We have that

where (a) is due to eq. (4.2), (b) is due to eq. (4.3) and (c) is due to reciprocity of the fine
channel gain. Note that the coarse channel gains match as well, since we are looking at a

truncated channel gain matrix. O

This lemma shows that cutting-off bits as needed for rescaling, results in a common
bit-sequence which can be used as a key. We therefore have a key y = DI NT};(x,)Hxy,
while Eve observes z = D% NeeH,.x, @ DI~ MeHy.x;,, where N := min{ Ny, Npe} and
H := H,;, = Hp,. An exact analysis of the scheme remains elusive, and we only see a
possible gain in a mixed regime, where some channel gain bits are random and some are
fixed. The following special case shows, that Eve can gain some information about the key

in a purely fixed channel gain scenario:

Security for static channel gain scenarios

An intriguing scenario is the case that all channel gains are fixed, and the channel gain
matrices can be represented by the identity matrix. Note that modelling the channel gain
by the identity matrix does not change the entropy of the observations in comparison to a
fixed (constant) one, since fixed lower triangular toeplitz matrices are bijective mappings.

Full Duplex: The model for the full duplex scenario is then

— N a

Ya =897 Ty xp
-N,

yp =S¢ "TapXq

Ye = Sq_NaeIana %) Sq_NbereXb-

If the channel to Eve is symmetric,i.e Nye = Npe, she would observe the modulo two sum-

mation of both input signal vectors x, and x;. Moreover, Alice and Bob can use product
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signalling and get the discrete convolution of both signals Tj;(x4)Xp. One might think to
design two Bern(1/2) bit-strings, such that they jam each other, and use the product sig-
nalling approach to recover them. The question is now, is this key secure? We need to look
into the mutual information between the key and Eves observation: I(7(xq)Xp;Xq @ Xp).
The first bit of the key is xp,124,1 =: Yo, while the observation of Eve, about those bits, is
Zp1 D Za,1 =: Yp. One can now calculate I(yqg;ye) ~ 0.31 > 0 and see that it is strictly
greater than zero. We will show later, that in case of fixed channel gains, it is sufficient to
utilize jamming on bit-levels together with secure messaging.

Half Duplex: The model for the half duplex scenario with identity matrix channel gain

matrices is

Yo = SqiNba Iabxa

Yo = Sq_Nab Ibaxb

and
S?Nae],.x, for n odd
Ye =
S7Nee], x;  for n even.
We use product signalling, and Alice and Bob generate the keys Ty (xp)ys and Ty (Xx4)Ya,
respectively. Both keys are the same due to Lemma (4.3). It can be easily seen that the

deterministic key generation rate is
Rd = % min{Nba, Nab}‘

However, Eve can also observe both signals. The secure key rate is therefore dependent
on the channel gain to Eve and resembles a wiretap scenario. The secure rate is therefore
only for the cases with min{ Ny, Npg} — min{Nye, Npe} > 0 positive. Both signal sources
are needed to construct the key, and the difference is inherently included in the bit-levels.

It is therefore easy to see that the secure key rate is
Ryq = 57 (min{Ngp, Nyo} — min{Noe, Npe }).
Linking the key rate to the Gaussian model gives
Ry = =(min{log SNR,log SNRy, } — min{log SNRge, log SNRye }),

where SNR,. and SNRy. denotes the channel gain to Eve at odd and even time slots, re-
spectively. Note, that the asymmetrical full duplex channel, which full-fills the assumption

on the channel gains, achieves twice the key rate.
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Static Channel Gain at Eve

A natural extension to the previous case is to look into a model where we have a random
varying channel gain in the legitimate channel and a constant gain for Eve. This is the
worst case scenario from a physical layer security perspective, since Eve can receive all
communication in plain, while Alice and Bob need to handle the channel gain as well.
Half Duplex: The model is the following

_N,
Yo = S1 "HapXa

Ya = ST M Hy,x,

and

S?Nae], . x, for n odd

Ye =

S?Neel, x;,  for n even.
It is easy to see that we cannot achieve a higher rate R; than the previous cases with pilot
signalling or static channel gain, since the maximum number of bits in the key vector is
upper bounded by the mutual coarse channel gain min{Ny;, Ny, }. However, calculating
the secure key generation rate is more involved, and one needs to look into the term
I(y%;8q) = (ST Naex,, ST Neexy - Tiy(x3)yp). If we assume that Ny = Nyg = Nae = Npe,

we can show that

I(ST Naexy, 8T Moexy: Xpyy) = h(Xoys) — h(Xpys|Xp, Xa)
< (Xys) — WX X Ty, () 6. %)
= h(Xpys) — M(T}, (Hap))
= h(XpXo Ty, ' (Hap)) = (T}, (Hap))
< W(XpXa, Ty (Hap)) — M(Ty; ' (Hap))
= h(XpXq),

where we denote Ty (xp) = Xp, Tip(xq) = X,. Note that (a) is due to (4.2) and the
assumptions on the coarse gains. The multiplication by XX, is a bijection in the case of
fixed x; and x,. In that case we would have that I(S9Naex,, SI=Neexy: Ty (x3)y3) = 0,
fulfilling the secrecy constraint if no local key bits are send to eve. This suggest a secrecy
protocol which only uses local bit-levels as additional source of randomness, if those bit-
levels are not received at Eve. For this purpose we can divide the local randomness vectors
X, and X; in common and private parts, where the common part can be received by the
legitimate receiver, as well as by Eve. The private part on the other hand is only received

by the legitimate receiver. Both signals can then be partitioned into two parts x, = xh +x¢
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and x; = xg + x3, where xg,xi > 0 if and only if Ny > Nge and Ny, > Npe. We can
design the send signal such that we only use the private part of the signal to send random

bits, and the common part for pilot signalling, for example

Xa

Xo =100+ 0biby - by.,_N,. .
Ngp bits

Due to the lower triangular structure of the channel gain operation, the private bits only get
down-shifted in the observations. One can then split 1(S? Naex,, SI~Neexy: Ty (x3)ys) into
a common [ (S9 Neex, 89~ Noex;- H®) and a private part 1(S9Naex,, S9=Noexy: X gy g|HC)
= [(S9 Naex, S89=Neex;: (X gyp)P) and show that both are zero. In this way we have
exploited the structure of the deterministic model to design a scheme which uses a form
of mixed signalling, where the common parts utilize pilot signalling and the private parts
utilize product signalling. Due to the assumption that Eve has a static channel gain and
can therefore see the local contribution in plain, we have obtained a worst-case scenario

with a minimal achievable secure key rate.

Achievable Secure Key Generation Rate for a Symmetric Eve Scenario for Full Duplex

In this example we assume that Eve gets the same number of bit-levels N, from both

signals. Therefore Eve observes

Ye = Sq_Ne Hana ¥ Sq_NeHbeXb
= ST Ne (Hyox, @ Hyexp)

— 8§ Ne (ry ®ry),

where we denote r, := H,.x, and r, := Hy.x; as the received bit vectors.

Large Coherence Block Length T For this case, pilot signalling returns a diminishing
key rate with growing T. As long as the channel gain is fixed, we can use the two-way
channel for message exchange and use a jamming scheme to utilize the full-duplex ability of
the channel. Our scheme is the following: Alice and Bob design the first N, bit-levels such
that one transmitter sends jamming bits, while the other transmitter sends a key message,
see Fig. 4.3. In this way, the common message, i.e. the top N, bit-levels which are also seen
by Eve, get jammed and the other message kept secret. Note that the jammed receiver
(Bob, in Fig. 4.3) can recover the messages of the bit-levels below because (i) of the lower
uni-triangular channel gain structure and (ii) the channel gain being fixed, so he can learn
the channel gain. Bob can therefore successively decode the jamming and subtract it from

the received signal to recover the lower message bit-levels. Moreover, this method does not
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depend on the channel gain characteristics of Eve, which can be non-fixed. This can be

seen by looking at the i-th bit of the bit-vector r,
Tai = xa,lhae,i—l b...8 xa,i—lhae,l D Zq,i- (44)
We know that the bits of x, are i.i.d. Bern(1/2) since they are jamming bits and can

therefore invoke the following lemma:

Lemma 4.4 (Crypto-Lemma, [FJ04]). Let G be a compact abelian group with group oper-
ation +, and let Y = X + N , where X and N are random wvariables over G and N is
independent of X and uniform over G. Then Y is independent of X and uniform over G.

Identifying x,; as independent of the other bits in (4.4) and Bern(1/2) shows that rg;
is independent of all previous bits r, ; for 1 < j < i and Bern(1/2) distributed. But this
means, that every bit of y. is independent of the message bits in rp, again by virtue of
Lemma 4.4. Due to r, and rp occupying the same bit-levels at Eve, we see that one signal

can jam the other and therefore provide secrecy. The achievable key rate is therefore
Rsq = (Npg — Ne)™ + (Nap — Ne)™ + N,
with (-)* := min{0, -}. Interestingly, this simple scheme corresponds to
Rsy = 3(log SNRy, + log SNR,;, — log SNR,)

in the high-SNR Gaussian case for min{SNRy,, SNR,;} > SNR, and therefore recovers the
sum rate of [TY08¢| in the high SNR regime:

Ry = L(log(1+ SNRy,) + log(1 + SNR)
—log(1 + 2SNR,))

SNR—oo I

A look into the proof of [HY13, Theorem 3] reveals, that the same techniques can be used,

to show a sum-rate bound for the deterministic channel which leads to

Ry < min{I(x4; yp|ye,xs) + I(Xp; Ye, YalXa),
I(Xb§ Ya‘Yea Xa) + I(Xa§ Ye, Yb|Xb)}7

and shows, that the sum rate R4 is in fact optimal. We note that the asymmetric channel

gain configurations follow by carefully jamming exactly all overlapping bit-levels at Eve.
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Nba S
Jamming

O Messaging &

Figure 4.3.: A jamming scheme for the deterministic two-way channel (large T") with sym-
metric Eve observations. Since the channel gain hy, is fixed, due to the long
coherence block length T', the scheme uses secure messaging with cooperative
jamming to establish a common secure key.

This scheme is therefore novel in the regard, that a user is not either messaging or jamming,
but utilizing both methods.

Short Coherence Block Length T A short coherence block length means, that the
channel gain is changing fast and we can use more channel-uses for pilot signalling. We

can therefore achieve a key rate of

1
de = T min{Nba, Nab}‘

4.4.3. Discussion

We have analysed both, the state-of-the-art pilot signalling scheme and the new product
signalling with a deterministic model. We have shown that the general key generation
rate is the same for both schemes for a perfect channel gain behaviour, i.e. uniformly
distributed with short coherence time. This is due to the fact that the overall size of
the bit-vectors stays the same. Therefore, product signalling would have no advantage
compared to pilot signalling. Moreover, the secure key rate for product signalling can be
even worse because Eve can listen to both Alice and Bob, and therefore gets parts of the
local randomness sources. This means that there is a trade-off which closely resembles

that of a wiretap scenario and we have proposed a scheme to exploit the created algebraic
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structure. Product signalling begins to shine in cases with long coherence time. Here, one
can compensate the lack of randomness in the channel gain, by feeding in the local sources.

Product signalling would therefore yield a more robust key generation technique.

4.5. Conclusions

Motivated by an open problem in [WFK16|, we have developed a deterministic model for
secure key rate analysis of Gaussian models. The approximation is used to show secure
key generation rate results on a product signalling scheme, developed in [WFK16|. The
proposed approximate model provides insights which were out-of-reach within the classical
Gaussian model. An advantage of the new model is that the key rate can be achieved
without a public communication channel, due to its deterministic nature, i.e. absence
of noise. Moreover, the model has an inherent quantization, which makes it possible to
directly derive key rates from the equations. An interesting part is the additional algebraic
structure. It was shown in the past, that algebraic structures can be exploited in several
ways to gain unexpected results, especially for multi-user networks. Future research could
therefore look into application of our model to analyse multi-user key generation scenarios.
Furthermore, there is a need to investigate the exact gap between the approximate rate
and the corresponding Gaussian model. We expect that this gap is within a few bits, due
to similar results in several works on the linear deterministic model, e.g. [BT08|. Moreover,
rate leakage in the noise effected part of the signal could lead to an adjustment of the secure
key rate of the corresponding Gaussian model. Nonetheless, we believe that the proposed
model can unlock some previously out-of-reach results and therefore act as a powerful tool

for the analysis of secure key generation problems.
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A. Diophantine Approximation &

Constellation Distance

The field of Diophantine approximation studies the approximation of real numbers by
rational numbers. It is a fact that the rational numbers are dense in the real numbers,

which means that between any two real numbers is a rational one:

Theorem A.l. If t e R, y € R, and x < y, then there exists a p € Q such that x < p < y.
Proof. See |[Rud64]. O

Now it follows that for any real number z, and any positive €, there exists a rational
number £ such that
p

o2 <e
q

Moreover, it is clear that |gr — p| < 1, since an arbitrary real number gz is always in

proximity of 1 to an integer. This leads to the bound

A better approximation was shown by Dirichlet:

Theorem A.2 (Dirichlet’s Approximation Theorem). If x is any real number, and n a
positive integer, then there is an irreducible fraction %’ satisfying 0 < g < n such that
P 1

-
q an

Proof. Dirichlet’s Box Principle: Let || be the integer part and {z} := x — |z] the

fractional part of x. Now divide the interval [0,1) in n sub-intervals, by setting each

sub-interval [%, %

[0 1) , [l 2) Lo ["—_1 1) of length % If we now distribute n + 1 numbers {rz}, for

n’n n’n n ’

) for k = 0,...,n — 1. We therefore have constructed n intervals

r=20,1,...,n into those bins, we see that two fall in the same bin. We therefore have that

frz} — 'z}l = lre — Lra] — 'z + el =gz —pl < -,
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where ¢ =7 — 71/, p=[rz| — |7'z] and |¢| < n. O
Note that the equation |gx — p| < % from above, suggest the convenient notation

116]] := min{|0 — k| : k € Z} = min{{6},1 — {0}} (A.1)

and we can therefore present the result of Theorem A.2 as ||gz|| < L. One can now
consider a general approximation function ¢ (¢) : N — (0, 00) with limg,~ 9(¢) = 0 and
look into the solutions of ||gz|| < 1(q) and say that a point x is i-approximable if that
equation holds for infinitely many ¢ € N. Notice that (A.1) is invariant under translation
by integers and we can w.l.o.g constraint  to a unit interval such that x € [0, 1]. The set
of all = € [0, 1] satisfying the equation ||gz|| < B for some fixed 9 (q) = 8 and ¢ can be

written as!

q

Ba,8) = J (2-2.2+2)nfpo.1)

p=0
We can now ask the question, how large is |B(q,3)|? Note that the set B(q,[) is a

B-neighbourhood of the resonant set

jen)
Q[

Figure A.1.: The set B(q, ) in the line [0, 1].

There, one can see that the set has ¢ — 1 parts of length % and the two end parts of
length g. Therefore, B(q, $) has a length of

—1)28 4 28 _
(- D)% +5 =28
Now, what can we say about the set of all (z1,22) € [0,1]? satisfying the equation
121 + gawa|| < B (A.2)

for some tuple (q1,q2) € Z?? One can use the idea of identifying the solution set with
Torus geometry in the plane. Figure A.2 shows the solution set of equation (A.2). One

can now imagine that one glues the left hand side of the square, to the right hand side,

!See [Dod07].
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forming a cylinder. Now, gluing the top of the cylinder to its bottom forms a torus. All
stripes which we see in the picture can be counted in this torus and we see that we have
|g1| stripes in the z; direction, going from bottom to top. The red stripe, for example,
starts at? (0,0) and goes to (1, %), where it leaves the square and re-enters at (0, |7—23|)
and continues to the top, reaching its end (in the z; direction) at (0.5,1). One might also
count the (same) stripes in the xg9 direction, counting |go| full stripes, which go from the

left to the right of the square.

Set with strips in red (p=0), light grey (p+) and dark grey (p-)
1.0
/

0.8 1

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure A.2.: Solutions of the equation A.2 for ¢ = —2 and g2 = 3. The stripes intersect

with the xzs-axis at 0, ﬁ and 2. They intersect with the xq-axis at 0 and
1

[q2]
a1l

28
lail
the area of all stripes in the figure. We know that the area of a parallelogram (a stripe) is
28
la:]
a total of |g;| stripes and therefore get a total area of 23, independent of the direction in

Those stripes have a width of

in the x; direction for ¢ € {1,2}. Now we can calculate
base width times height and therefore get

if seen in the z; direction. Moreover, we have

which we count. We therefore know, that the solution set of equation A.2 has a measure
of 2f. Further details can be found in [Dod07] and [Dod93].

2And a bit at (1,0)
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Figure A.3.: A scatter plot for equation (A.3), with the values @; = {4/8,5/8,6/8}, which
corresponds to the stripes from left to right, moreover we chose 1y = —2/3
and n = 8. The plot uses 40000 channel gain tuples.

Connection to Constellation Distance

To decode signals, we want the minimum distance between two points of the signal con-
stellation to be atleast twice as large as the radius of the noise spheres around them. This
enables successful decoding of the signal points with high probability. For example, look
at the Gaussian multiple-access channel with input constellations u; € {0,1/8,...,7/8}
for transmitter one and ug € {0,1/3,2/3} for transmitter 2, which has additive Gaussian
noise of unit variance. To have a received constellation distance of atleast twice the noise

variance means that

2"]h1u1 + houg — hlull — h2u/2\ = 2“|h1(u1 — u/l) + h2(u2 — ’U,IQ)|
= 2"|h1t1 + hotia| > 2,

for all uy,u; € {0,1/8,...,7/8}, uz,uy € {0,1/3,2/3}, and (uy, u2) # (u2,uy). Or equiv-
alently for all u; € {-7/8,...,—-1/8,1/8,...,7/8} and ue € {—2/3,-1/3,1/3,2/3}. We
can now ask the question, how big is the outage set, i.e. for which channel gains h1, ho do

we have that
2n|h1ﬂ1 + hgﬁg‘ < 2. (A3)

We show the set of all solutions for hy, he € [1,2], u1 = {4/8,5/8,6/8}, ig = —2/3 and n =
8 in Figure A.3. By identifying 2"u; = ¢;, h; = x;, and § = 2, we see that this outage set,
or rather one stripe (a fixed value of (¢q1, g2)) corresponds to the solutions of equation (A.2)

for p = 0. Now, lets suppose we have three input constellation differences (g1, q2, q3) € Z3,
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and each is bounded by a number @; € N such that ¢; € {-Q;,—Q; +1,...,Q; — 1,Q;}.

One can define the event

B(q1,q2,q3) := {(h1,ha, h3) € [1,2]* : |hiq1 + hago + h3gs| < B}

and ask about the measure of B(q1, ¢2,¢3) depending on ¢; and . One can transform this
question into the form of equation (A.2) by identifying one ¢ variable as p and fixing the

corresponding channel gain value h such that

Bu, (g2, 43) = {(h2,h3) € [1,2]% : (h1, ha, h3) € ||haga + hags|| < B}

for all ¢1 € Z : |q1] < Q1. Now the set By, (g2, q3) looks the same as that of equation(A.2)
in Figure A.2, except that the p value is bounded [p| = |¢1] < @1. We now have a
maximum of 2Q; + 1 < 3Q; stripes® for every tuple (hg, h3), and we therefore have at
most min{3Q1, |g2|} stripes in (hg, h3) € [1,2]? in the (exemplary) ho direction with a

width of %. We therefore get a measure of

28 . . [
(B i, 0) < 2o min (31 el < 69min { 2111,
|42 g’
for all cases with |g1]| < |g2|, the other cases can be shown similarly. The total outage set,

over all values of ¢1, g2 and g3 can then be shown to be

w(Bq1,q2,43)) < Y Z/ 1(Bh, (g2, 43))dha.

Q2€ZL: q1E€ZL: hi=
la2|<Q2 |g3|<Qs3
The result is dependent on the maximum constellation size ()1, Q2 and QX3 and we therefore
have a quantity for the trade-of between achievable rate and size of the outage-set for which
decoding is not possible. The previous ideas were first used in the proof of [NMA13, Lemma

14|, which is a generalisation of the example above.

3one for every value of ¢, including ¢1 = 0
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