Theory of Computing Systems (2021) 65:1243-1282
https://doi.org/10.1007/500224-021-10045-w

®

Check for
updates

A Parameterized Complexity View
on Collapsing k-Cores

Junjie Luo'?3 . Hendrik Molter’ . Ondrej Suchy*

Accepted: 17 April 2021 / Published online: 19 June 2021
© The Author(s) 2021

Abstract

We study the NP-hard graph problem COLLAPSED k-CORE where, given an undi-
rected graph G and integers b, x, and k, we are asked to remove b vertices such
that the k-core of remaining graph, that is, the (uniquely determined) largest induced
subgraph with minimum degree k, has size at most x. COLLAPSED k-CORE was
introduced by Zhang et al. (2017) and it is motivated by the study of engagement
behavior of users in a social network and measuring the resilience of a network
against user drop outs. COLLAPSED k-CORE is a generalization of »-DEGENERATE
VERTEX DELETION (which is known to be NP-hard for all » > 0) where, given an
undirected graph G and integers b and r, we are asked to remove b vertices such
that the remaining graph is r-degenerate, that is, every its subgraph has minimum
degree at most r. We investigate the parameterized complexity of COLLAPSED k-
CORE with respect to the parameters b, x, and k, and several structural parameters
of the input graph. We reveal a dichotomy in the computational complexity of COL-
LAPSED k-CORE for k < 2 and k > 3. For the latter case it is known that for all
x > 0 COLLAPSED k-CORE is W[P]-hard when parameterized by b. For k < 2 we
show that COLLAPSED k-CORE is W[1]-hard when parameterized by b and in FPT
when parameterized by (b + x). Furthermore, we outline that COLLAPSED k-CORE
is in FPT when parameterized by the treewidth of the input graph and presumably
does not admit a polynomial kernel when parameterized by the vertex cover number
of the input graph.

Junjie Luo was partially supported by CAS-DAAD Joint Fellowship Program for Doctoral Students
of UCAS and partially supported by the DFG, project AFFA (NI 369/15 and BR 5207/1).

Hendrik Molter was supported by the DFG, project MATE (NI 369/17). Ondfej Suchy was supported
by grant 17-20065S of the Czech Science Foundation.

An extended abstract of this work appears in the proceedings of the 13th International Symposium
on Parameterized and Exact Computation (IPEC 2018) [36].

P4 Junjie Luo
junjie.luo@campus.tu-berlin.de; luojunjie @amss.ac.cn

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-021-10045-w&domain=pdf
mailto: junjie.luo@campus.tu-berlin.de
mailto: luojunjie@amss.ac.cn

1244 Theory of Computing Systems (2021) 65:1243-1282

Keywords r-Degenerate vertex deletion - Feedback vertex set -
Fixed-parameter tractability - Kernelization lower bounds - Graph algorithms -
Social network analysis

1 Introduction

In recent years, modelling user engagement in social networks has received substan-
tial interest [44, 45]. A popular assumption is that a user engages in a social network
platform if she has at least a certain number of contacts, say k, on the platform. Fur-
ther, she is inclined to abandon the social network if she has less than k contacts [0,
15, 16, 25, 37, 46]. In compliance with this assumption, a suitable graph-theoretic
model for the “stable” part of a social network is the so-called k-core of the social
network graph, that is, the largest induced subgraph with minimum degree k [42].!

Now, given a stable social network, that is, a graph with minimum degree k, the
departure of a user decreases the degree of her neighbors in the graph by one which
then might be smaller than k for some of them. Following our assumption these users
now will abandon the network, too. This causes a cascading effect of users dropping
out (collapse) of the network until a new stable state is reached. From an adversarial
perspective a natural question is how to maximally destabilize a competing social
network platform by compelling b users to abandon the network. This problem was
introduced as COLLAPSED k-CORE by Zhang et al. [46] and the decision version is
formally defined as follows.

COLLAPSED k-CORE

Input: An undirected graph G = (V, E), and integers b, x, and k.

Question: Is there a set S C V with |S| < b such that the k-core of G — S has
size at most x?

In the mentioned motivation, one would aim to minimize x for a given b and k.
Alternatively, we can also interpret this problem as a measure for resilience agains
user drop outs of a social network by determining the smallest b for a given k and x.

Related Work In 2017 Zhang et al. [46] showed that COLLAPSED k-CORE is NP-
hard for any k > 1 and gave a greedy algorithm to compute suboptimal solutions
for the problem. However, for x = 0 and any fixed &k > 1, solving COLLAPSED k-
CORE is equivalent to finding b vertices such that after removing said vertices, the
remaining graph is (k — 1)-degenerate?. This problem is known as r-DEGENERATE
VERTEX DELETION and it is defined as follows.

r-DEGENERATE VERTEX DELETION

Input: An undirected graph G = (V, E), and integers b and r.

Question: Is there a set S € V with |S| < b such that G — S is r-degenerate?

It is easy to see that COLLAPSED k-CORE is a generalization of r-DEGENERATE
VERTEX DELETION. In 2010 Mathieson [38] showed that r-DEGENERATE VERTEX

Note that the k-core of a graph is uniquely determined.
2A graph G is r-degenerate if every subgraph of G has a vertex with degree at most r [21].

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1245

DELETION is NP-complete and W[P]-complete when parameterized by the budget
b for all r > 2 even if the input graph is already (r + 1)-degenerate and has
maximum degree 2r + 1. In the mid-90s Abrahamson et al. [1] already claimed
WI[P]-completeness for »~-DEGENERATE VERTEX DELETION with » = 2 when
parameterized by b under the name DEGREE 3 SUBGRAPH ANNIHILATOR.

For r = 1, the problem is equivalent to FEEDBACK VERTEX SET and for r = 0
it is equivalent to VERTEX COVER, both of which are known to be NP-complete
and fixed-parameter tractable when parameterized by the solution size [20, 26]. For
VERTEX COVER already the first known FPT algorithm is deterministic single expo-
nential linear time and the currently fastest algorithm runs in O (1.2738” + bn) time
[11]. For FEEDBACK VERTEX SET randomized algorithms with running time of such
kind were known [19], whereas the running time of single exponential linear time
deterministic algorithms was unsatisfactory [27, 35]. This changed with the linear
time computable polynomial kernel of Iwata [29] which, combined with some previ-
ously known single exponential algorithms such as the 0(3.619” - n9(D) algorithm
of [33], produces efficient algorithms of such kind. Very recently native determinis-
tic single exponential linear time algorithms appeared [9], achieving O (3.460" - n)
running time [30]. The aforementioned results concerning r-DEGENERATE VER-
TEX DELETION in fact imply the hardness results shown by Zhang et al. [46] for
COLLAPSED k-CORE.

Chitnis and Talmon [14] recently studied the EDGE k-CORE problem: given a
graph G, a budget b, and a goal p, can at most b edges be added to G to obtain a k-
core containing at least p vertices? They showed the problem to be polynomial time
solvable for k < 2, while NP-complete for k > 3. Furthermore, they showed that the
problem is W[1]-hard with respect to (b + k + p) and designed an algorithm with
running time (k+tw) 9+ . poly(n), where tw is the treewidth of the input graph G.

COLLAPSED k-CORE with x = 0 (or »~-DEGENERATE VERTEX DELETION) can
be also viewed as a special case of the TARGET SET SELECTION problem introduced
by Kempe et al. [31]. Here one is given a graph G, a budget b, and a threshold
function f : V(G) — N. A vertex v gets activated once at least f (v) of its neighbors
are activated. The question is whether there is an initial set (target set) of at most b
vertices such that, if we initially activate this set, then eventually all vertices of the
graph get activated. COLLAPSED k-CORE with x = 0 corresponds to the case that
the threshold function f(v) equals deg(v) — k + 1 for every vertex v.

TARGET SET SELECTION is known to be NP-hard even for split graphs of diam-
eter 2 [40] and the minimum size of a target set is APX-hard to approximate [12]
and also resistant to parameterized approximation [4]. It is W[1]-hard with respect to
feedback vertex set (and treewidth) [5], W[2]-hard with respect to budget b on split
graphs [40], and FPT with respect to cluster editing number, vertex cover number,
and feedback edge set number [40]. More tractability results can be obtained if the
thresholds are bounded by a constant [5, 17, 28] or equal to half the degree of the ver-
tex (majority constraint) [23]. We refer the reader to some of the papers [17, 40] for
a more detailed survey of the results. A concept similar to TARGET SET SELECTION

9% <

with the majority constraint is studied under the names “local influence”, “majority

EEINT3

consensus”, “opinion forming”, etc. [41].

@ Springer

1246 Theory of Computing Systems (2021) 65:1243-1282

A somewhat dual problem to TARGET SET SELECTION is HARMLESS SET, where
given the same input, the question is to find a set of at least b vertices in which each
vertex has less than f(v) neighbors [3].

Our Contribution We complete the parameterized complexity landscape of COL-
LAPSED k-CORE with respect to the parameters b, k, and x. Specifically, we correct
errors in the literature [1, 38] concerning the W[P]-completeness of r-DEGENERATE
VERTEX DELETION when parameterized by b for r = 2. We clarify the parameter-
ized complexity of COLLAPSED k-CORE for k& < 2 by showing W[1]-hardness for
parameter b and fixed-parameter tractability for the combination of b and x. Together
with previously known results, this reveals a dichotomy in the computational
complexity of COLLAPSED k-CORE for k < 2 and k > 3.

We present two single exponential linear time FPT algorithms, one for COL-
LAPSED k-CORE with k = 1 and one for kX = 2. In both cases the parameter is (b+x).
In particular, the algorithm for k = 2 runs in O (1.755*%*". n) time which means that
it solves FEEDBACK VERTEX SET in O(9.487” - n) time (here, b is the solution size
of FEEDBACK VERTEX SET). Cao [9] independently developed a very similar algo-
rithm for FEEDBACK VERTEX SET. In comparison, we additionally generalize the
algorithm for COLLAPSED k-CORE and give a more thorough running time analysis.
A recent, even more thorough, analysis of an algorithm similar to Cao’s algorithm
proves it to be the fastest known deterministic algorithm for FEEDBACK VERTEX
SET [30].

Furthermore, we conduct a thorough parameterized complexity analysis with
respect to structural parameters of the input graph. On the positive side, we show
that COLLAPSED k-CORE is fixed-parameter tractable when parameterized by the
treewidth of the input graph and show that it presumably does not admit a polynomial
kernel when parameterized by either the vertex cover number or the bandwidth of the
input graph. We also show that the problem is fixed-parameter tractable when param-
eterized by the combination of the cliquewidth of the input graph and b or x. Further
results include W[1]-hardness when parameterized by the clique cover number of the
input graph and para-NP-hardness for the domination number of the input graph.

2 Hardness Results from the Literature

In this section, we gather and discuss known hardness results for COLLAPSED
k-CORE. Recall that COLLAPSED k-CORE with x = 0 is the same problem as
r-DEGENERATE VERTEX DELETION with r = k — 1. Hence, the hardness of
COLLAPSED k-CORE was first established by Mathieson [38] who showed that
r-DEGENERATE VERTEX DELETION is NP-complete and W[P]-complete when
parameterized by the budget b for all » > 2 even if the input graph is already
(r + 1)-degenerate and has maximum degree 2r + 1. However, in the proof of Math-
ieson [38] the reduction is incorrect for the case r = 2. Abrahamson et al. [1]
claim W[P]-completeness for r = 2 but their reduction is also flawed. We provide

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1247

counterexamples for both cases and show how to adjust the reduction of Math-
ieson [38].

2.1 Counterexamples

Counterexample for Mathieson’s Reduction [38]. We refer to the original paper by
Mathieson [38] for definitions, notation, and description of the gadgets and the
reduction itself. Mathieson provides a reduction from CYCLIC MONOTONE CIRCUIT
ACTIVATION to r-DEGENERATE VERTEX DELETION [38, Theorem 4.4] showing
that »-DEGENERATE VERTEX DELETION is W[P]-complete when parameterized by
the budget b for all » > 2 even if the input graph is already (r + 1)-degenerate and
has maximum degree 2r 4 1. However, for the case of r = 2 it is easy to see that the
OR gadget is already 2-degenerate. We illustrate the flawed OR gadget for »r = 2 in
Fig. 1.

This means that whenever a CYCLIC MONOTONE CIRCUIT ACTIVATION instance
is activated by the set of all its binary OR gates, the graph produced by the reduction
(for r = 2) is already 2-degenerate, which clearly makes the reduction incorrect. We
give an example in Fig. 2.

We describe how to repair the reduction (for r = 2) in the proof of Theorem 1.

Counterexample for the Reduction of Abrahamson et al. [1] We refer to the origi-
nal paper by Abrahamson et al. [1] for definitions, notation, and description of the
gadgets and the reduction itself. The same reduction (using the same notation) can

Fig. 1 TIllustration of the OR N L7
gadget in the reduction of N ’
Mathieson [38, Theorem 4.4] AN d
for r = 2. Note that the red N

orr ote that the re: v ‘

colored vertex has degree 2 and
the whole gadget is 2-degenerate

@ Springer

1248 Theory of Computing Systems (2021) 65:1243-1282

also be found in the book “Fundamentals of Parameterized Complexity” by Downey
and Fellows [22]. Abrahamson et al. provide a reduction from WEIGHTED MONO-
TONE CIRCUIT SATISFIABILITY to DEGREE 3 SUBGRAPH ANNIHILATOR, which
is equivalent to r-DEGENERATE VERTEX DELETION with r = 2. With this reduc-
tion they claim to show that »-DEGENERATE VERTEX DELETION with r = 2 is
WI[P]-complete when parameterized by the budget b [1, Theorem 3.7 (ii)].

The main idea of their reduction is that once a satisfying assignment is found, all
variable gadgets corresponding to variables that are set to false are also removed.
However, since in a variable gadget for a variable x[i], the vertex v(Z, 4) has high
degree, it is only removed if sufficiently many of the gate gadgets that it is con-
nected to are also removed. However, an AND gadget combined with a fan-out
gadget is only removed if both inputs are removed. This follows from fan-out gad-
get not being removable from below. This allows us to create a counterexample
with b = 1, which we illustrate in Fig. 3. It is easy to check that x[1] = x[2] =
false, x[3] = true is the only satisfying assignment that has at most one variable
set to true. Furthermore, the AND gates in the red area have two outgoing connec-
tions each, hence the corresponding AND gadgets have fan-out gadgets attached to
them. Initially, the output of these gates is false for the satisfying assignment so the
fan-out gadgets attached to them are only removed if the AND gadgets themselves
are removed. An AND gadget is removed if both of its inputs are removed. How-
ever, note that the variable gadget for x[1] is not completely removed after v(3, 4)
is removed from the graph. In particular, the vertex v(1, 4) has still degree m(b +
1) > 3 (where m is the maximum fan-out of all variables) after all vertices are
removed since the AND gadgets it connects to are not removed. It follows that
the graph is not 2-degenerate after removing v(3, 4) and hence the reduction is not
correct.

We believe that the reduction can be corrected by replacing the high degree ver-
tices v(i, 4) by fan-out gadgets that connect to the gate gadgets. However, we omit a
proof of this claim.

Fig.2 An example instance of
CYCLIC MONOTONE CIRCUIT
ACTIVATION. The sets {a}, {b},
{e}, {c, d}, and their supersets
activate the entire circuit,
whereas the sets {c} and {d} do
not. In particular, the set

{a, d, e} of all OR gates
activates the entire circuit

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1249

Fig.3 A WEIGHTED (1] z[2] z[3]
MONOTONE CIRUIT
SATISFIABILITY instance with
k = 1 (max. number of variables
set to true). It is easy to check
that x[1] = x[2] = false, x[3] =
true is the only satisfying
assignment that has at most one
variable set to true. The AND
gates in the red area have two
outgoing connections each,
hence the corresponding AND
gadgets have fan-out gadgets
attached to them

output

2.2 Corrected Proof and Corollaries

Theorem 1 (Corrected from [38]) For any r > 2 r-DEGENERATE VERTEX DELE-
TION is NP-hard and W[P]-complete when parameterized by b, even if the degeneracy
of the input graph is r + 1 and the maximum degree of the input graph is 2r + 1.

Proof Mathieson provides a reduction from CYCLIC MONOTONE CIRCUIT ACTI-
VATION to r-DEGENERATE VERTEX DELETION [38, Theorem 4.4] showing that
r-DEGENERATE VERTEX DELETION is W[P]-complete when parameterized by the
budget b for all » > 2 even if the input graph is already (» + 1)-degenerate and has
maximum degree 2r + 1.

While the reduction is incorrect for r = 2 as shown above, there is a way to
correct it: We refer to the original paper by Mathieson [38] for definitions, notation,
and description of the gadgets and the reduction itself. The only problem is that his
OR gadget is 2-degenerate, so the graph sometimes collapses without even deleting a
single vertex. Before we introduce the correct gadget, note that the gadget is always
used with exactly two inputs (predecessor gates). We can replace the OR gadget for
case r = 2 with the graph illustrated in Fig. 4.

To collapse this gadget one can simply delete v°. The correctness now follows
from an analogous argument as given by Mathieson [38]. O

The following observation shows that the hardness result by Mathieson [38]
(Theorem 1) easily transfers to COLLAPSED k-CORE (also in the cases where x # 0).

Observation 1 Ler x' > 0 be a positive integer. There is a linear time reduction
which transforms instances (G, b, x, k) of COLLAPSED k-CORE with x = 0 into
equivalent instances (G, b, x', k) of COLLAPSED k-CORE. Moreover, the degener-
acy of G is at most max{d, x' —1} if x’ > kand d if x' < k, where d is the degeneracy
of G.

Proof We distinguish two cases, depending on the relation of x’ to k.

@ Springer

1250 Theory of Computing Systems (2021) 65:1243-1282

N ’
’

N
input from predecessor 1 < .7 input from predecessor 2
N .

Fig. 4 Tlustration of the corrected OR gadget for r = 2 in the proof of Theorem 1. The two vertices
surrounded by the red dotted line play the role of v’ in the original version of the gadget

If x' < k, then we let G’ = G. Obviously, if S is a solution for (G, b, x, k),
then it is also a solution for (G’, b, x’, k). On the other hand, if S’ is a solution for
(G',b,x', k), then G’ \ §’ = G \ S’ has a k-core with at most k vertices. However,
any vertex of a graph with at most k vertices has degree at most k — 1 and, thus, the
k-core is empty. Therefore S’ is a solution for (G, b, x, k). As G’ = G, the bound on
degeneracy follows for this case.

If x > k + 1, then we obtain G’ as a disjoint union of G and a clique C on x’
vertices. As the degeneracy of C is x” — 1, the bound on degeneracy of G’ follows for
this case. Again obviously, if S is a solution for (G, b, x, k), then it is also a solution
for (G’, b, x', k), since the k-core of G’ \ § is exactly C.

Now let S’ be a solution for (G, b, x', k). Note that if one vertex of C \ S’ is part
of the k-core of G’ \ §’, then all vertices of C \ " are. If indeed C \ §’ is a part of the
k-core of G’ \ §’, then the k-core contains at most |C N §’| other vertices. If X is the
set of vertices in the k-core of G’ \ (S'UC) = G\ &/, then X U (8" \ C) is a solution
for (G, b, x, k).

Now if C \ § is not a part of the k-core of G \ §’, then we know that |C N §’|
vertices are sufficient to collapse a clique of size x’. Since the k-core of G’\ §’, which
is the same as the k-core of G \ S’ is of size at most x’, there is a set B of at most
|C N §’| vertices such that the k-core of G \ (S’ U B) is empty. Hence ((S’ \ C) U B)
is a solution for (G, b, x, k).]

With that, we arrive at the following corollary.
Corollary 1 COLLAPSED k-CORE is NP-hard and W[P]-hard when parameterized

bybforallx > 0andk > 3, even if the degeneracy of the input graph is max{k, x—1}
and the maximum degree of the input graph is max{2k — 1, x — 1}.

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1251

Note that -DEGENERATE VERTEX DELETION is known to be NP-hard for all » >
03 Hence, we also know that COLLAPSED k-CORE is NP-hard for £k < 2 and all
x > 0. However, the parameterized complexity with respect to b is open in this case.
We settle this in the next section.

3 Algorithms and Complexity fork = 1and k = 2

In this section we investigate the parameterized complexity of COLLAPSED k-CORE
for the case that k < 2. Since Corollary 1 only applies for k > 3 we first show
in the following that the problem is W[1]-hard with respect to the combination of b
and (n — x) for all k > 1. Furthermore, we present two algorithms; one that solves
COLLAPSED k-CORE with k = 1 and one for the kK = 2 case. Both algorithms run in
single exponential linear FPT-time with respect to the parameter combination (b+x).

3.1 W[1]-hardness with Respectto b and n — x

We first give a parameterized reduction from CLIQUE to COLLAPSED k-CORE. Note
that since this hardness result holds for the combination of b and the dual parameter
of x, it is incomparable to Corollary 1 even for k > 3.

Proposition 1 COLLAPSED k-CORE is W[1]-hard when parameterized by the com-
bination of b and (n — x) for all k > 1, even if the input graph is bipartite and
max{2, k}-degenerate.

Proof We reduce from W[1]-hard problem CLIQUE [20], where given a graph G =
(V, E) and an integer p, the task is to decide whether G contains a clique of size at
least p. Let (G, p) be an instance of CLIQUE and k be a given constant. We build
an instance (G', b, x, k) of COLLAPSED k-CORE as follows. We can assume that
p < |V(G)], as otherwise we can output a trivial no-instance. We further assume that
each vertex of G has degree at least p 4 1. A vertex of degree less than p — 1 is not
part of a clique of size at least p, while for all vertices of degree p — 1 or p we can
check in O(|V(G)] - p3) time whether there is a clique of size at least p containing
any of them. Similarly, we assume that p > 4, so that p < (‘;) as otherwise we can
find the answer in O (|V (G)]?) time.

Welet V(G') = VUU UW, where V = V(G) are the vertices of G, U = {ui
eec E,i e {l,...,k}},and W = {wﬁ, | ee E,i € {1,...,k— 1}}. We also let
E(G') = Ey U Ey, where Ey = {{v,ué} | ee E,i € {l,...,k},v € e}, and
Ewy = {{ué, wg} |ee€ E,i € {l,...,k},i’ € {1,...,k — 1}}. We actually only
introduce the sets W and Ew if k > 2.

3Theorem 1 states NP-hardness of ~-DEGENERATE VERTEX DELETION for r > 2. Recall that for r = 1 -
DEGENERATE VERTEX DELETION is equivalent to FEEDBACK VERTEX SET and for r = 0 itis equivalent
to VERTEX COVER, both of which are known to be NP-hard [26].

@ Springer

1252 Theory of Computing Systems (2021) 65:1243-1282

Finally we set b = p and x = n’ — (p + (2k — 1)(5)), where n’ = |V (G')| is the
number of vertices of graph G’.

We claim that (G', b, x, k) is a yes-instance of COLLAPSED k-CORE if and only
if (G, p) is a yes-instance of CLIQUE.

=: If S is a clique of size at least p in G, then we claim that deleting S from G’
results in a k-core of size at most x. Let e be an edge between two vertices of S in G.
Then for any i € {1, ..., k} vertex “i has only vertices wé, . wlg_l as neighbors in
G’ \ S. Hence, it has degree k — 1 in this graph and it is not part of the k-core of the
graph. Since this holds for each i, vertices wg, e w’e‘_1 do not have any neighbors
in the k-core of G’ \ S and, hence, they are also not in the k-core of the graph. This
makes 2k — 1 vertices per each edge of the clique which are not deleted and not in
the k-core, showing that the size of the k-core is at most x.

<: Now let S be a set of vertices of V(G’) of size at most b such that G’ \ S has
k-core of size at most x. Fore € E let UW, = {ué [iefl,...,k}}U {wé | i €
{1,...,k—1}}.Let S ={e € E | SNUW, # (J}. Note thatif e = {x, y}, e ¢ SE,
and |S N {x, y}| < 1, then the whole set UW, U {x, y} \ S is in the k-core of G’ \ §
as each vertex in U W, U {x, y}\ S has at least k neighbors in UW, U {x, y} \ S. This
means that each vertex in V \ S is in the k-core of G’ \ S. Indeed, for an arbitrary
vertex v in V \ S the degree of v in G is at least p + 1 and, thus, there is at least
one edge e incident to v which is not in Sg. Hence v is in the k-core of G’ \ S by the
above argument.

For e € Sg possibly no vertex of UW, is in the k-core of G’ \ S, effectively
shrinking it by 2k — 1 vertices. However, this does not influence the other vertices
in V, U, or W,since V \ § is in the k-core, as we already observed. If e = {x, y} and
{x, y} C S, then also the whole set U W, is not in the k-core as observed in the first
implication. Thus, if [SNV| = a and |Sg| = ¢, then there are at most (2k — 1)((;)4-0)
vertices of G’ which are neither in S nor in the k-core of G’ \ S. As S is a solution,
this number has to be at least (2k — 1)(5), while a +¢ < b = p. It follows thata = p
and S is a clique of size p in G.

Note that graph G’ is bipartite and for k > 2 it is also k-degenerate, as all vertices
in W have degree k, after removing them the vertices of U have degree 2, and, finally,
V forms an independent set in G'. O

3.2 Algorithm for k = 1

Now we proceed with the algorithm for COLLAPSED k-CORE with k = 1. While
there is a simple algorithm with 0GB (m + n)) running time* for this case, we
consider an algorithm with the slightly worse running time as stated, since we then
generalize this algorithm to the case kK = 2 with some modifications.

4 An informal description of the algorithm: We use an initially empty set X that should contain vertices of
the remaining 1-core. We branch over edges where both endpoints are not in X and either remove one of
the endpoints or put both endpoint into X. Then we branch over all edges that have exactly one endpoint
in X and either remove the other endpoint or put the other endpoint into X as well.

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1253

Proposition 2 COLLAPSED k-CORE with k = 1 can be solved in O(2*t?*(m +
n)) time and in O(ZO(I’J”/E) - n) time. Assuming the Exponential Time Hypothesis,
there is no 2°Pnf ™) time algorithm for COLLAPSED k-CORE with k = 1, for any
function f.

Algorithm 1 Algorithm for COLLAPSED k-CORE with k = 1.

SOLVEREC(G, S, Q, b, x)

if |S| > b or |Q| > b + x then return No solution;

Let G’ be the 1-core of G \ S.

if [V(G')| < x then return S;

if |S| = b then return No solution;

if V(G’) € Q then return No solution;

Let v be a vertex with the highest degree in G’ which is not in Q
T < SOLVEREC(G, S U {v}, O, b, x)

if T # No solution then return 7 ;

else return SOLVEREC(G, S, Q U {v}, b, x);

o 0 NN A N R W N =

—
=]

Algorithm We present a recursive algorithm (see Algorithm 1 for pseudocode) that
maintains two sets S and Q. Initially, Algorithm 1 is called with S = Q = @ and we
call all pairs of sets S and Q on which a recursive call is made during an execution
starting from empty sets as realizable. In particular, in such a case, there is an order
in which the vertices were added to SU Q. From now on, we only consider realizable
sets S and Q.

For realizable sets S and Q the recursive function is supposed to return a solution
to the instance, whenever there is a solution B containing all of S and there is no
solution containing S and anything of Q. If some of the conditions is not met, then the
function should return “No solution”. In other words, S is the set of deleted vertices
and Q is the set of vertices the algorithm has decided not to delete in the previous
steps but may be collapsed in the future. Hence, the solution to the instance, or the
information that there is none, is indeed obtained by calling the recursive function
with both sets § and O empty.

We start by showing that Algorithm 1 has the claimed running time.

Lemma 1 Algorithm 1 runs in O (2*T2(m +n)) time and in 0 Q0G+VY)) time,

Proof We first show by induction on the size of S U Q starting with the largest size
achieved that a call with S and Q results in at most 2(2b+x J’l;l__lgls HQ') — 1 calls to the
function in total. Indeed, the size of | Q| never exceeds b + x + 1 and the size of |S]|
never exceeds b since the sizes grow by one at a time and if they achieve the bound,
then line 2 or line 5 applies. Hence, if any of the lines 2—6 apglies, then we have only
one call and | Q| < b+x + 1 and |S| < b implies 2(2l’+x;1_*|§| =12 —1 > 1, making
the basic cases. If the call makes recursive calls, then in one of them S is one larger

than in the current one, and if the second one is made, then Q is one larger in it. Hence

@ Springer

1254 Theory of Computing Systems (2021) 65:1243-1282

the number of calls is at most 1+2(2b+x;1_7‘59|_71|Q|71)_1+2(2b+x+lf|S|f\Q\—l)_1 <

b—|S|
2(”’”21:';'5 =10 ‘) — 1, finishing the induction.

Since we call the algorithm with sets S and Q empty, it follows that the total
number of calls is at most 2(2b+,f +1) < 22b+xtl — 0 (220+%) In particular, if b = 0,
then the algorithm makes only one call and if x = 0 then 2b = 2b+x = 2(b+/bx).

Hence, in both these cases the algorithm makes at most O (22 4“/H)) recursive calls.
Otherwise, by a lemma of Fomin et al. [24, Lemma 9] we have that (2b+lj‘ +1) <
22VbBFHD which is at most 220+VPY) as h(h +x + 1) = b2+ xb+ b < b> +
xb+2by/bx = (b + +/bx)%. So we have that the number of recursive calls is at most
0 (22h+%) and at most 20 +vbx),

Now we analyze the time complexity of a single call. Lines 2, 4, 5, 6, 7, and 9
can be done in O(n) time. In line 3 the 1-core G’ can be found in O (n + m) time
by first removing vertices in S and edges incident with them to get G \ S, and then
removing isolated vertices in G \ S. Thus except for line 8 and 10, all steps can be
done in O(m + n) time. Therefore, the algorithm runs in 0 (2% (m + n)) time.
Since there are at most O (bn + x2) edges or we are facing a no-instance, we have
that the time complexity of the algorithm is also O (2°® +vbx) . b0 xO9My), which
is 0 (20b+VED)). O

Next we show the claimed conditional lower bound on the running time for any
algorithm for COLLAPSED k-CORE with k = 1.

Lemma 2 Assuming the Exponential Time Hypothesis, there is no 2°®nf® time
algorithm for COLLAPSED k-CORE with k = 1, for any function f.

Proof Since COLLAPSED k-CORE with k = 1 and x = 0 is equivalent to VERTEX
COVER, and assuming the Exponential Time Hypothesis, there is no 2°®n M time
algorithm for VERTEX COVER [34], we have that assuming the Exponential Time
Hypothesis, there is no 2°® 1/ time algorithm for COLLAPSED k-CORE with k =
1, where f can be an arbitrary function. O

Before showing the correctness of Algorithm 1, we first show in the following
lemma why in line 2 set Q should be bounded by b + x.

Lemma 3 If S and Q are realizable and Q is of size more than b + x, then there is
no solution containing the complete set S and no vertex from Q.

Proof Let S and Q be realizable with |Q| > b + x + 1. Suppose for contradiction
that B is a solution such that |[B| < b, S C Band BN Q = @. Let vy, va, ..., v, be
the vertices of the set S U Q in the order as they were added to the set by successive
recursive calls. If v, € S, then line 2 would have applied in the parent call and the

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1255

current call would never have been executed contradicting realizability of S and Q.
Hence v,y € Q.If B\ S was empty, then S would be a solution and line 4 would have
applied in the parent call, again contradicting realizability of S and Q. Therefore
B\ S is non-empty and we let B\ S = {v/41, ..., v), 1.8, {v1,..., v} = BU Q.
Hence, it always holds that v, € B.Let G’ be the 1-core of G\ B and let X = V(G).
Since B is a solution, we know that | X| < x. Our aim is to show that there exists a
vertex vj, € Q such that after deleting all vertices in {v; € B | i < jo}, deleting
vertices in {v; € B | i > jo} is not enough to make all verticesin {v; € Q\ X | j >
Jjo} collapse, which would be a contradiction.

To this end, we construct an injective function f that maps the vertices in B to
vertices of Q \ X. Considering the subsequence containing the vertices of Q \ X in
the order in which they were added to Q, we assign the last vertex in this sequence
to the last vertex of B, the second-to-last to the second-to-last of B, and so on. More
formally, for v,, the last vertex in B, let f(r) be max{j | v; € Q \ X}. Now let
v; be the vertex from B with the largest i such that f(i) was not set yet and v;; be
the vertex from B with the least i’ such that i’ > i. We set f(i) = max{j | j <
f@") Av; € @\ X}. Since the set Q \ X contains at least b + 1 vertices, while B
contains at most b, this way we find a mapping for every vertex in B. Moreover, there
remains at least one vertex in Q \ X not being in the image of f. Denote the one with
the largest index vy, .

Fort € {1,...,r} let G, be the 1-core of the graph G \ (B N {vy, ..., v;_1}),
i.e., for t < r’, graph G’ obtained on line 3 in the call where v; was added to
SU Q. Forv € V(G;) let deg,(v) be the degree of the vertex v in G;. By the
way we selected v, we know that deg,(v;,) > deg,(vy) > deg,(vy) for every
t < t' with ¢t < r’. Note also that since G, is a 1-core, we have deg,(v;) > 1 for
all ¢.

Now we select the special vertex vj, € Q. If for every vertex v; € B we have
f(@@) < i,thenletip = 0 and jy = gqo. Otherwise, let i be the largest i such that
f@) > iand jo= f(ip). We consider the graph G j,. Let V(G j,) = BoW QoWY WX,
where By = {v; € B |i > jo}, Qo ={v; € O\ X | j > jo}, Yo = V(G \ (Bo U
QoUX) is the set of vertices in V (G j,) that will eventually collapse after the deletion
of By and not contained in Qp, and X is the 1-core of G \ B. Note that in G j, vertex
v}, in the only vertex of Q¢ which is not contained in the image set of f restricted to
Bo. Thus, we have

Qo ={vj,} U U {vri) (D

v;€By

According to our selection of jp, for every v; € By we have ip < jo < f(i) < i.
Thus, for each vertex v; € By we have that

deg; (v) < deg) (V£(1)- 2)

@ Springer

1256 Theory of Computing Systems (2021) 65:1243-1282

Let us count the number, denoted as Ny, of edges of the form {v;, v;} in G}, such
that v; € Bp and v; € Qy. Since each edge of G j; incident on a vertex of Q¢ must
have the other endpoint in By, we have that

No=) deg;(vj) = > deg;()). ?3)

v;€Q0 v;€Qo

On the other hand, since edges towards Qg are always counted in deg, (v), we have
that
No <) deg;(vi). “)

v;€By

Combining (3) and (4), we have that
0 < Z deg; (v;) — Z deg;(v;)

v;€By vi€Qo

1
Q_ deg;, (vj,) + Z (deg; (vi) — degr;y(Vr(i))

v;€By

@
< —deg; (vj,) + Z 0 <0,

v;€By

which is a contradiction. O
Now we have all necessary pieces to prove Proposition 2.

Proof of Proposition 2 To show the correctness of the Algorithm 1, we first show that
whenever the algorithm outputs a solution, then this solution is indeed correct. Then
we show that whenever there exists a solution, the algorithm also finds a solution.

We show correctness of a returned solution by a leaf-to-root induction on the recur-
sion tree. If Algorithm 1 returns S as a solution in line 4, then it is of size at most b
since line 2 does not apply and the 1-core of G\ S is of size at most x. This constitutes
the base case of the induction.

If the solution is obtained from recursive calls on lines 8-10, then we know that it
is correct by induction hypothesis.

Next, we show by a leaf-to-root induction on the recursion tree that if there is a
solution then Algorithm 1 returns a solution. In particular, we show that if there is a
recursive call of Algorithm 1 with realizable sets S and Q such that there is a solution
containing all of S and there is no solution containing the whole set S and any vertex
from Q, then the algorithm either directly outputs a solution or it invokes a recursive
call with sets S” and Q' such that there is a solution containing all of S” and there is
no solution containing the whole set §” and any vertex from Q’.

Let S and Q be two realizable input sets of a recursive call of Algorithm 1 and
let B be a solution such that S € B and B N Q = {. First we show that none of
lines 2, 5, and 6 applies. Line 2 will not apply since we have |S| < |B| < b and by

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1257

Lemma 3 we also know that we have |Q| < b + x. If G/, the 1-core of G \ S, is of
size more than x, which is the case when line 4 does not apply, then S # B and line 5
does not apply. If, in this case, line 6 applies, then G’ is also the 1-core of G[Q] and
no set B with B’ N Q = @ can make the 1-core of G \ B’ of size at most x, which
is a contradiction to B being a solution with B N Q = @. It follows that the current
recursive call of Algorithm 1 does not output “No Solution”.

If B = S, then line 4 applies and the algorithm outputs B. Otherwise, we know that
any vertex v is either in B and hence SU{v} C B, or we have that BN{QU{v}} = #.In
particular, if the recursive call on line 8 does not return a solution, then, by induction
hypothesis, there is no solution containing SU{v}, i.e., there is no solution containing
S and anything of Q U {v} and the call on line 10 must return a solution by induction
hypothesis. It follows that the algorithm invokes a recursive call with the desired
properties in line 8 or in line 10.

Since Algorithm 1 starts with § = Q = ¢ we have that for any solution B the
conditions § € B and B N Q = {J are initially fulfilled. Furthermore, it follows from
the complexity analysis in Lemma 1 that the algorithm always terminates. Therefore
the algorithm outputs a solution if one exists and hence it is correct.

The running time bound for Algorithm 1 follows from Lemma 1 and the condi-
tional running time lower bound for COLLAPSED k-CORE with k = 1 follows from
Lemma 2. O

3.3 Algorithmfor k = 2

Now we show how to adapt the algorithm for k = 1 to an algorithm for COLLAPSED
k-CORE with k = 2.

Theorem 2 COLLAPSED k-CORE with k = 2 can be solved in O(1.755*T% . n) time
and in 0(29® +Vbx) -n) time. Assuming the Exponential Time Hypothesis, there is no
200 F) time algorithm for COLLAPSED k-CORE with k = 2, for any function f.

The above theorem in particular yields an 0 (9.487 - n) algorithm for FEEDBACK
VERTEX SET.

Algorithm Our algorithm for k = 2 is similar to Algorithm 1 with two main differ-
ences (see Algorithm 2 for pseudocode). First |Q| > b + x is replaced by |Q] >
3b + x. Second when selecting the maximum degree vertex from V(G') \ Q, we
need to make sure that this vertex has degree greater than 2. Otherwise, either we can
directly select vertices from V(G’) \ Q to break cycles in G’ and get a 2-core of size
at most x, or the algorithm rejects this branch. We again assume through the section
that the function is called with realizable sets S and Q, that is, this call is part of an
execution of Algorithm 2 initially called with S = Q = #.

@ Springer

1258 Theory of Computing Systems (2021) 65:1243-1282

Algorithm 2 Algorithm for COLLAPSED k-CORE with k = 2.

SOLVEREC2(G, S, Q, b, x)

if |S| > b or |Q] > 3b + x then return No solution;

Let G’ be the 2-core of G \ S.

if [V(G')| < x then return S;

if |S| = b then return No solution;

if V(G’) € Q then return No solution;

Let v be a vertex with the highest degree in G’ which is not in Q

if deg;/(v) <2 then

Let Cy, ..., C, be the connected components (cycles) of G’ not containing
any vertex of Q, ordered such that |V (Cy)| > |V(Cy)| = ... > |[V(C))[;
10 Let ¥’ < min{r, b — |S|};

u | if|V(G)| — Y, IV(C)| < x then

NI B Y N 7 S

12 fori = 1,...,r do Select an arbitrary vertex from C; and add it to S;
13 return S
14 else return No solution;

15 T < SOLVEREC2(G, SU {v}, Q, b, x);
16 if T # No solution then return T
17 else return SOLVEREC2(G, S, Q U {v}, b, x) ;

We start by claiming that Algorithm 2 has the following running time.

Lemma 4 Algorithm 2 runs in 0(1.755x+4b -n) time and in 0(20(1’4“/1;) - n) time.

Proof We again first show by induction on the size of S U Q starting with the largest
size achieved that a call with S and Q results in at most 2(4}’“;1__‘;“‘9'_@') — 1 calls to
the function in total. Indeed, the size of | Q| never exceeds 3b+x+-1 and the size of | S|
never exceeds b since the sizes grow by one at a time and if they achieve the bound,
then line 2 or line 5 applies. Hence, if any of the lines 2—14 applies, then we have only
one call and |Q| < 3b+x+1and |S| < b implies 2(41’”;‘_—';'5‘—‘9') —1 > 1, making
the basic cases. If the call makes recursive calls, then in one of them S is one larger
than in the current one, and if the second one is made, then Q is one larger in it. Hence
the number of calls is at most 1 +2(4b+x21:‘_|wsl:llQ|71)— 1 +2(4b+x+lbf_|‘sslf‘Q‘fl) —-1<

2(4b+“1;1__|;f|_‘Q‘) — 1, finishing the induction.

Since we again call the algorithm with sets S and Q empty, it follows that the total
number of calls is at most 2(4h+lf 'H). Using, e.g., the lemma of Fomin et al. [24,

Lemma 10] (or Stirling’s approximation) one can show that (1,) = O(1.7549%).
4b+x+1 Ab+x+1 \ _ 4btx+1
Hence, (") < (}(4b+x+l)) = O(1.7549%+x+1y,
If b = 0, then the algorithm makes only one call and if x = O then 4b + 1 =
4b 4+ x + 1 = O(b + +/bx). Hence, in both these cases the algorithm makes at most

20<b+m> recursive calls. Otherwise, again by the other lemma of Fomin et al. [24,
Lemma 9] we have that (4b+lf +1) < 22VBGhH3+D) which is at most 22V3 (b+Vbx) 4

&l

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1259

b(3b+x+1) = 3b>+xb+b < 3b*>+xb+6b+/bx+2xb = 3(b-++/bx)%. So we have
that the number of recursive calls is at most 0(1.75494"“) and at most 2O(b+‘/IE).

Now we analyze the time complexity of a single call. In line 3, the 2-core G’
can again be found in O(m) time by recursively removing vertices with degree
less than 2 in G \ S [2]. In line 9, sorting these cycles according to their sizes
can be done in O(n) time using counting sort. Thus except for line 15 and 17, all
steps can again be done in O(m + n) time. Since there are at most O (bn + x2)
edges or we are facing a no-instance, we have that the time complexity of the algo-
rithm is O(1.7549%+% . pOx0Wyy and O (20G+VEx) . pOM) O y) which is
0(1.755%%* . n) and O(ZO(Z’*‘/E) - n) as claimed. O

Next we claim the following conditional lower bound on the running time for any
algorithm for COLLAPSED k-CORE with k = 2.

Lemma 5 Assuming the Exponential Time Hypothesis, there is no 2°®nf® time
algorithm for COLLAPSED k-CORE with k = 2, for any function f.

Proof Since COLLAPSED k-CORE with k£ = 2 and x = 0 is equivalent to FEEDBACK
VERTEX SET, and assuming the Exponential Time Hypothesis, there is no 2°®), 01
time algorithm for FEEDBACK VERTEX SET [34], we have that assuming the Expo-
nential Time Hypothesis, there is no 2°®n/®) time algorithm for COLLAPSED
k-CORE with k = 2, where f is an arbitrary function. O

Before showing the correctness of Algorithm 2, we give the following lemmata
which will be helpful in the correctness proof. The following lemma claims that,
except for some specific connected components, we can limit the solution to contain
vertices of degree at least three.

Lemma 6 For any instance (G, b, x,2) of COLLAPSED k-CORE with k = 2, where
G is a 2-core and does not contain a cycle as a connected component, if there is
a solution B for (G, b, x, 2), then there is also a solution B’ for (G, b, x, 2) which
contains only vertices with degree larger than 2.

Proof Let v be any vertex with degree 2 in B. Let v’ be a vertex of degree at least 3
in G such that there is a path P between v and v with all internal vertices of degree
exactly 2 in G. Since no component of G is a cycle, such a vertex must exist. Let
By = BU{v'} and B, = (B U {¥'}) \ {v}. We have that the 2-core of G \ B, is the
same as the 2-core of G \ Bp and the 2-core of G \ Bj is a subset of the 2-core of
G \ B. So the 2-core of G \ B3 is a subset of the 2-core of G \ B, and hence no larger
than x. Therefore Bj; is also a solution for (G, b, x, 2). Following the same way, we
can replace all degree 2 vertices in B with vertices which have degree larger than 2,
and get a new solution B’ for (G, b, x, 2). O

The next lemma helps to show that line 14 is correct.

@ Springer

1260 Theory of Computing Systems (2021) 65:1243-1282

Lemma 7 If S and Q are realizable and line 14 of Algorithm 2 applies, and for
every g € Q there is no solution containing the complete set S U {q}, then there is no
solution completely containing S.

Proof Suppose for contradiction that B is a solution containing S. Note that in this
case B’ = B\ S is a solution for (G’, b — |§|, x, 2). Let D be the graph formed by
the union of connected components of G’ containing at least one vertex of degree
at least 3 and Co be the graph formed by the union of connected components of
G’ which are cycles and contain vertices of Q, that is, V(D) U V(Cy) = V(G') \
U;=1 V(C;), where C; is as stated in the algorithm.

If B = BNV (D) is nonempty and x’ is the size of the 2-core of D\ B?, then B?
is a solution to the instance (D, |BD |, x’, 2). Hence, by Lemma 6, there is another
solution B3D to the instance (D, |BP|, x’, 2) which contains only vertices of degree
at least 3. However, according to line 8 of Algorithm 2, all vertices of degree at least
3 are in Q, and hence (B \ BD) U B3D is a solution to (G, b, x, 2) containing the
complete set S and vertices of Q, contradicting our assumption. Hence B is empty.

If B¢ = B N V(Cp) is nonempty, then let y be any vertex in B¢ and C, the
connected component of Co containing y By the definition of Co component C,
contains a vertex of Q, let us denote it y'. Let B = (B l{ vy} U {y’}. The 2-cores of
G\ Band G\ B are the same, since Cy is a cycle. Thus B is a solution to (G, b, x, 2)
containing the complete set S and vertices of Q, contradicting our assumption. Hence
also BC is empty.

The components of G’ neither in Co nor in D are cycles since G’ is a 2-core, they
contain no vertices of Q, and there are no other vertices of degree at least 3. Since B
contains at most ' = min{r, b — | S|} vertices out of these components, it can destroy
at most r’ of these cycles. Since |V (Cy)| > |V(Cy)| > ... > |V(C,)|, this decreases
the size of the 2-core by at most Y/, |V (Ci)|. Thus, if [V (G')| =Y, [V(C)| > x,
then there is no solution containing the complete set S. [

Next, we show that the second part of line 2 of Algorithm 2 is correct.

Lemma 8 If S and Q are realizable and Q is of size more than 3b + x, then there is
no solution containing the complete set S and no vertex from Q.

Proof Let S and Q be realizable with |Q| > 3b + x + 1. Suppose for contradiction
that B is a solution such that |B| < b, S C Band BN Q = @. Let vy, va, ..., v, be
the vertices of the set S U Q in the order as they were added to the set by successive
recursive calls. Similarly to the situation when k = 1, it always holds that B \ § is
non-empty. Welet B\ S = {v/41, ..., v}, 1.e,, {v1,..., v} = BU Q. In particular
v, € B. Without loss of generality, we can assume that for every vertex v; € B,
v; is contained in the 2-core of G \ (B N {vy, va,...,v;_1}). For i < r’, this is
clear since v; is selected from G’ in line 7. For i > r’, v; € B\ S, and if v; is
not contained in the 2-core of G \ (B N {vy, v2,...,vi—1}), then B = B\ {v;} is
also a solution such that |[B’| < b, S € B’ and B'N Q = . Let G’ be the 2-core
of G\ B and let X = V(G’). Since B is a solution, we know that |X| < x. Our

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1261

aim is to show that there exists a vertex v;, € Q such that after deleting all vertices
in {v; € B | i < jo}, deleting vertices in {v; € B | i > jp} is not enough to make all
vertices in {v; € Q \ X | j > jo} collapse, which would be a contradiction.

To this end, we construct a function f that maps every vertex of B to a set of
three consecutive vertices of O \ X (see also Fig. 5). Considering the subsequence
containing the vertices of O \ X in the order in which they were added to Q, we
split the last 3b vertices of this sequence into consecutive triples, and assign the last
triple to the last vertex of B, the second-to-last to the second-to-last of B, and so
on. More formally, for v,, the last vertex in B, let f(r) be the set {ji, j2, j3}, where
Ji=max{j | v; € Q\ X}, p =max{j < ji |v; € O\ X}, and j3 = max{j <
J2 | vj € O\ X}. Now let v; be the vertex from B with the largest i such that
f (i) was not set yet and v;s be the vertex from B with the least i” such that i’ > i.
We set f(i) = {j1, j2, j3}, where ji = max{j < min{k € f(i")} | v; € 0\ X},
Jo=max{j < ji |v; € O\ X},and j3 =max{j < j» | v; € O\ X}. Since the set
0O\ X contains at least 3b + 1 vertices, while B contains at most b, this way we find
a mapping for every vertex in B, keeping the images of different vertices disjoint.
Moreover, denote p = |Q \ X| — 3|B| > 1. There remain p vertices in Q \ X not
being in the union of images of f, let us denote them vy, ..., vg,.

Fort € {1, ..., r} let G, be the 2-core of the graph G \ (B N{vy, ..., v,_1}), 1i.e,
for r < r/, graph G’ obtained on line 3 in the call where v; was added to S U Q. For
v € V(G,) let deg,(v) be the degree of the vertex v in G,. By the way we selected
v; we again know that deg, (v;) > deg, (vy) > deg, (vy) forevery t < t’ witht < r'.
Note also that deg, (v;) > 3 for all v; € Q.

Now we select the special vertex v;, € Q. If for every vertex v; € B we have
i > max{j | j € f(i)}, thenletip = 0 and jo = gp. Otherwise, let ip be the
largest i such that i < max{j | j € f(i)} and jo = max{j | j € f(io)}. We
consider the graph G j, (see also Fig. 5). Let V(Gj)) = BoW Qo W Yo W X, where
Bo={vi€Bli>jo}Qo=1{vj € Q\X|j = jo}Yo=V(Gj)\(BoUQoUX)
is the set of vertices in V(G j,) that will eventually collapse after the deletion of By
and not contained in Qo, and X is the 2-core of G \ B. Note thatin G j, vertex v, is
the only vertex of Q¢ which is not contained in any image set of f restricted to By.
Thus, we have

Q=wptu J U))

vi€By jef (i)

Fig.5 Illustration of function f. Vertices in Q are separated into two parts: gray vertices from X and blue
vertices from Q \ X. Every vertex in B is mapped to a set of three consecutive blue vertices in Q \ X from
the right to the left. Graph G j, with the property that i > max{j | j € f(i)} for every i withi > jp is
contained in the green box

Q O0O

@ Springer

1262 Theory of Computing Systems (2021) 65:1243-1282

According to our selection of jo, for every i with v; € By we have i > max{j |
J € f(i)}. Hence, deg; (v;) < deg;(v;) for every vertex v; € Bg and every j € f(i).
Together with deg, (v,) > 3 for all v; € Q, we have

deg; (v;) — Z deg;(vj) +6 <0 (6)
jef

for all v; € By.

Now we transform graph G j, into a partial directed graph by considering the col-
lapsing process (see also Fig. 6). More precisely, for every edge in G j,, except for
edges which have both endpoints in X, we will assign it a direction. To this end, we
just need to give an order of vertices in V (G j,)\ X. Then we direct each edge from the
vertex appearing earlier in the order to the one that appears later. We define this order
based on the time vertices are being deleted (i.e., respecting the order vy, va, ..., v,
on By) or collapsed. It may happen that several vertices in Q¢ or Yy collapse at the
same time. For this situation, we just order these vertices according to an arbitrary but
fixed order. Since k = 2, every collapsed vertex in Qg U Yy has at most one outgoing
edge.

Then we consider the number, denoted by Ny, of edges of G, of the form Tvl
such that the head v; is in Qg. Since every vertex in Q¢ has at most one outgoing
edge and degjo(vj) > degj(vj) forall v; € Qg, we have

No>= Y (deg;(vj) — 1) = > deg;(v;) — |Qol- (7
vi€Qo v;€Qo
Now for any two sets M1, M, € V(Gj), letN be the number of edges going

from M to M. Denote deg™ (v) and deg™ (v) the number of incoming and outgoing
edges of vertex v in G j,, respectively. We first claim that

N o N + N (8)
To show that, note that every vertex in Y has at least one incoming edge but at most
one outgoing edge, implying that) v, deg” (v) = Y ve Yo deg™ (v). This means that

N +N +N -I—N N—>—|—N +NY
0Yo"

Fig. 6 Illustration of the partial directed graph when considering the collapsing process. The set By con-
tains the deleted vertices and X is the set of vertices remaining in the 2-core of G \ B. The set Q(contains
vertices the algorithm has decided not to delete but eventually collapse and Yj is the set of other eventually
collapsed vertices

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1263

Therefore, Nm < N + Nﬁ’ as claimed.
Now we give an upper bound for Ny. Since the edges which have their heads in
Qo have their tails from By U Yo U Qg, we have
No = N + NYOQO + NQoQo
N » + Nygr + (1Qol = Ng)

IA

N@’) + (NBO_Y()) +Nm) + (1Qol — Nm)
= Nm +Nm + |Q0|

<) deg”(w)+1Qol
v; €By

<) deg;(vi) +1Qol- ©)
v; €EBy

The last inequality holds since for every vertex v; € By, v; is contained in the 2-core
of Gj, \ (BoN{vi, v2,...,v;_1}), which means all outgoing edges of v; are counted
in deg; (v;). Thus we have that Zviego deg”(v;)) < ZvieBO deg; (v;). Therefore,
putting (7), (9), and finally (6) together we have

0 = No—Ny

<) degi(w)+1Qol— | Y deg;(v;) — Qo

v;€By v;€Qo

=) deg(v;)— Y deg;(v))+2|Qol
v; €By v;€Q0

=) degi(v)— Y (deg;(vj)—2)
v;€By vj€Qo

2N dem@— | 3 3 (deg;(v) ~2) + deg;, (v7) 2

v By vi€By jef(i)
i)|=3
\f(z:)l Z deg; (v;) — Z degj(vj) +6]— degjo(vjo) +2
v;€By Jjef@
(6)
< 0—deg; (vj) +2
< 0,

which is a contradiction. The last inequality holds since deg,(v;) > 3 for all v, €

0. O

Proof of Theorem 2 To show the correctness of the algorithm, it is again enough to
show that for any realizable pair of S and Q appearing in the recursive process, the
set returned by the recursive function is a solution and if there is a solution contain-
ing the complete set S and there is no solution containing the whole set S and any

@ Springer

1264 Theory of Computing Systems (2021) 65:1243-1282

vertex from Q, then the function returns a solution. We do this again by induction
starting from the leaves of the recursion tree. For simplicity we assume without loss
of generality that the input graph is a 2-core.

«: If the function returns S as a solution on line 4, then it is of size at most b since
line 2 does not apply and the 2-core of G \ S is of size at most x. Hence it is obviously
a solution and it is fulfilling the constraints. If the solution is obtained from recursive
calls on lines 15-17, then it is a solution by induction hypothesis.

If the function returns set S’ as a solution on line 13, then for each i € {1, ..., r'}
set S’ contains a vertex of the cycle C;. Hence the 2-core of G\ S’ does not contain the
cycle C;. Since the 2-core G” of G \ §’ differs from the 2-core G’ of G \ S exactly in
these missing cycle components, we have V(G”) = |V(G')| — er/:l |V (C;)|. Since
this is at most x by line 11 and line 2 does not apply, S is a solution. Hence, if the
function returns a solution, then the answer is correct.

=>: Now we show by induction on |Q U S| for every realizable pair of S and Q,
starting from the largest |Q U S| achieved, that if there is a solution containing the
complete set S and there is no solution containing the whole set S and any vertex
from Q, then the algorithm returns a solution.

If B is a solution such that S € B and B N Q = {, then line 2 will not apply
since |B| < b and because of Lemma 8, whereas line 14 does not apply according to
Lemma 7.

Let G’ be the 2-core of G\ S. If B is a solution, then SU ((B \) N V(G")) is also
a solution, so we can assume that B\ (SUV(G’)) = @. If B = §, then line 4 applies.
Otherwise, line 5 does not apply. If there are no vertices of degree at least 3 which
are not in Q, then B contains no vertices of the components containing vertices of Q,
as we have shown in the proof of Lemma 7 that B? is empty. Hence B can decrease
the size of the 2-core compared to G’ by at most er;l |V (C;)|, where ’ is as in
the algorithm. As B is a solution, this implies |V (G")| — er,:l [V(C;)| < xand a
solution containing S is returned on line 13. This finishes the proof for the base cases
of the induction.

Now suppose that the claim already holds for all calls with larger |Q U S| and v is
the vertex selected by the algorithm on line 7. If there is a solution containing S U {v}
(in particular if v € B), then the call SOLVEREC2(G, S U {v}, Q) must return a
solution by induction hypothesis and otherwise there is no solution containing S and
anything of Q U {v} and the call SOLVEREC2(G, S, Q U {v}) must return a solution
by induction hypothesis. Thus the algorithm works correctly.

The running time bound for Algorithm 2 follows from Lemma 4 and the condi-
tional running time lower bound for COLLAPSED k-CORE with k = 2 follows from
Lemma 5. O

3.4 Complexity on Cubic Graphs

FEEDBACK VERTEX SET is polynomial time solvable on graphs of maximum
degree 3 [10, 43]. In fact, this is true even if some vertices of the graph cannot be
taken into a solution and the bound on the maximum degree only holds for vertices
that can take part in the solution [10]. This allows Cao [9] to improve his algo-
rithm, which is very similar to Algorithm 2, by directly solving the instance already

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1265

if the degree of all vertices of G’ not in Q is at most 3, achieving a running time
of 0(8” - n®M)3 If also COLLAPSED k-CORE with k = 2 could be solved in
polynomial time on graphs, where all vertices (that can be taken into solution) have
degree at most 3, then this would improve also the running time of our algorithm for
COLLAPSED k-CORE with k = 2 on general graphs.

In this subsection we show that the result of Cao et al. [10] probably does not
generalize to COLLAPSED k-CORE with k& = 2, at least not in its full generality. To
this end, we need the following generalization of our problem:

COLLAPSED 2-CORE WITH FORBIDDEN VERTICES

Input: An undirected graph G = (V, E), a partition of V into V; and V,, and
integers b and x.

Question: Is there a set S C V; with |S| < b such that the 2-core of G — S has
size at most x?

Theorem 3 COLLAPSED 2-CORE WITH FORBIDDEN VERTICES is NP-hard, even
on graphs of maximum degree 3, even if the degree of all vertices in V1 is 2.

An attentive reader might notice that Algorithm 2 actually deals with instances
similar to those produced by Theorem 3 in polynomial time. We postpone the
discussion of how this is possible after the proof of the theorem.

Proof of Theorem 3 We provide a polynomial time reduction from CLIQUE in regu-
lar graphs, which is NP-hard [39]. Let (G, s) be an instance of CLIQUE such that G
is r-regular for some r. We assume that s > 1 and, hence, n —s 4+ 1 < n, as otherwise
the instance is trivial. We construct an instance (G’, Vi, Va, b, x) of COLLAPSED 2-
CORE WITH FORBIDDEN VERTICES as follows. Assume without loss of generality
that V(G) = {vy, ..., vy} and E(G) = {e1, €2, ..., em}.

We start with G’ being a simple cycle on vertices C = {cy, ..., ¢y}. Then we
introduce to G’, for every j € {1,...m}, a vertex d; and connect it by an edge to
cj.Welet D = {d,...,dy}. Forevery j € {1, ...m} let us denote the endpoints of
edge e; as v, and vy. We introduce two vertices fy , and f) ; and let both of them be
adjacenttod;.Foreveryi € {1,...,n}weletF; = {fiy |y €{l,...,n}, {vi,v,} €
E(G)}. We introduce a rooted binary tree 7; with leaves in F;, root in a new vertex
h;, and all internal vertices (except for /;) having degree 3. All the internal vertices
are newly introduced to G’. Finally, we introduce a simple cycle on vertices A =
{ai, ..., a,} and connect for each i € {1, ..., n} the vertices h; and a; by a path P;
with L — r + 1 internal vertices, where L = 5m. The construction is illustrated on
Fig. 7. Let us denote F = | J;_, F;.

To finish the construction, we let Vi = F, Vo, = V(G)\ F, b = rs, and x =
N —b—x/,where x’ = sL + (), and N = V(G’) is the total number of vertices in
the newly constructed graph.

Before we show the correctness of the reduction, let us count the number of ver-
tices in each of the sets. There are m vertices in C and m vertices in D. For each i

3 Actually, using an analysis similar to that of Lemma 4, one can show that the improved algorithm of Cao
runs in 0(6.75% - n°W) time.

@ Springer

1266 Theory of Computing Systems (2021) 65:1243-1282

v2
€1
€2 v1
€3
v3
G G’

Fig. 7 Illustration of the construction in the proof of Theorem 3 for a 2-regular graph G depicted on the
left. The paths P; in G’ (depicted on the right) have 5m —r + 1 = 15 — 2 + 1 = 14 internal vertices each.
Fors =3 wewouldhave b =2-3=6andx = N —x’ = 12, as N = 60 and x’ = 48. Yellow vertices
of G’ are contained in Vi, all other vertices of G’ are contained in V»

there are r vertices in F; (as each vertex of G is incident with r edges) and, hence,
there are exactly n - r = 2m vertices in F in total, by the Handshaking Lemma. As
T; is a rooted binary tree with r leaves, it has » — 1 internal vertices (including the
root). There are L — r + 1 internal vertices on each P;. Therefore, for each i, there
arer — 1+ (L —r + 1) = L internal vertices together in 7; and P;. Finally, there
are n vertices in A. Hence, N =m +m +2m +nL +n = 4m + n + nL and, thus,
x=4m+n—b—(5)+(n—s)L.

We next show that (G’, V1, V2, b, x) is a yes-instance of COLLAPSED 2-CORE
WITH FORBIDDEN VERTICES if and only if (G, s) is a yes-instance of CLIQUE.

=: We start with the “if” direction. Suppose that (G, s) is a yes-instance of
CLIQUE and let S be a clique of size s in G. We let B = Uv,-eS F;. As each F; is of
size exactly r, set B is of size exactly rs. Now let G” be the 2-core of G’ \ B and let
us count the number of vertices which are neither in B nor in V (G”). For any i such
that v; € S, as the leaves of T; are in B and all the internal vertices (except for the
root) only have neighbors inside the tree, none of them remains in G”. Thus, also the
vertex h; would only have one neighbor in G” and, hence, neither it, nor the internal
vertices on path P; are a part of G”. This makes (r —2) + 1+ (L —r +1) = L
vertices which are neither in B nor in V (G”) for each i such that v; € S.

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1267

Furthermore, for each j such that e; € E(G[S]) the vertex d; would have at most
one neighbor in G” and thus it is not part of G”. As § is a clique in G, there are (5)
edges in E(G[S]) and, thus, the total number of vertices from D which are not in
G is (;) Therefore, in total, there are at least s - L + (;) = x’ vertices which are
neither in B, nor in G”. Hence, |V(G”)] < N — b — x’ = x and B is a solution to
(G', V1, Vo, b, x).

<: Now for the “only if” direction let us assume that there is a solution B
to (G', V1, Va, b, x) and let G” be the 2-core of G’ \ B. First notice that the cycles A
and C are always contained in G” as B C F. Let us now take some i € {1, ..., n}
such that F; \ B # ¥ and let f; , € F; \ B. Moreover, let ¢; = {v;, vy}. The edge
between c¢; and d;, the edge connecting d; and f; y, the path in T; from f; , to h;,
and the path P; form together a path connecting the cycles A and C in G’ \ B and,
hence, also in G”. Note that the part of this path between f; , and a;, including f; ,
and h;, but not including a;, has at least (L —r + 1) +2 = L — r 4 3 vertices and
cannot be shared between different indices i. Let S = {v; | F; \ B = #}. If | S| < s,
then there are at least n — s + 1 indices i such that F; \ B # (. That is,

V(G >m4+n+m—s+1)(L—-r+3)
>m+n+m—s)L+L—-—n—s+ Dr
Z4m+n—b—(;>+(n—s)L

=X

since

2

Hence, |S| > s, and, as rs > |B| > r|S| by the definition of S, we have |S| = s.
That is, B = UvieS F;.

For every i such that v; ¢ S, G” contains F;, T;, and P; by the above argument.
This makesr +r — 1 4+ (L —r + 1) = L + r vertices for each such i (not counting
ai)and (n —s)(L+r) =nr—rs+m—s)L =2m — b+ (n — s) L vertices together.
Moreover, the cycles on A and C are always contained in G”. If there are more than
m — (5) indices j such that d; is in G, then

L—(n—s+1)rZL—nr:Sm—2m>3m—b—<s>.

V(G| > m+n+2m—b+(n—s)L+<m— (;))

s
2

4m+n—b—<

= X.

)+(n—s)L

This would contradict B being a solution.

Hence, there are at least (;) indices j such that d; is not in G”. For each such j,
letting e; = {uvx, vy}, we must have f , € B and also f, . € B, as otherwise d;
would have at least 2 neighbors in G” — ¢ and at least one of f, and fy ,. Hence,
both v, € Sand vy € S, i.e., ¢j € E(G[S]). It follows that |E(G[S])| > (3), that is
S is a clique of size s in G and (G, s) is a yes-instance of CLIQUE.

@ Springer

1268 Theory of Computing Systems (2021) 65:1243-1282

Since the reduction can be performed in polynomial time, all vertices have degree
at most 3 in G’, vertices in V] = F have degree 2, and the instances are equivalent,
this finishes the proof. O

An instance similar to the one constructed in Theorem 3 might actually occur
during the run of Algorithm 2, i.e., G’ might be the 2-core of G \ § produced in step 3
of the algorithm with Q = V, = V(G’) \ F. In particular, Algorithm 2 imposes
no relation between | Q| and b, as the relation is actually between |Q| and |S| + b.
The reason Algorithm 2 is able to deal with the instance in polynomial time is that
we require it to solve the instance only if there is no solution containing any of the
vertices of Q = V;. Hence, it does not solve the instance, but merely rejects it, or,
more precisely, does not search for vertices of the solution in this component (see
Lemma 6).

The current algorithm deals with instances where all vertices of degree more than
2 in the 2-core belong to Q, in polynomial time. To generalize this in the most direct
way, allowing the algorithm to deal in polynomial time with cases where all vertices of
degree more than 3 in the 2-core belong to Q, we would need at least two ingredients:

(i) If there is a solution to the component and there are vertices of degree at least 4
in the component, then there is a solution containing some vertex of degree at
least 4 (an analogue of Lemma 6).

(i) A solution for each component of maximum degree at most 3, not containing
any vertices of @, can be found in polynomial time (an analogue of steps 8—14
of Algorithm 2).

Concerning (i), consider graph obtained from a disjoint union of a cycle C,, and
K4 by adding an edge between an arbitrary vertex of the cycle and an arbitrary vertex
of the K4. The resulting graph has exactly one vertex of degree 4 (or more). However,
forn > 5,b = 1, and x = 4 this vertex is not part of any solution. Indeed, each
solution is formed by a vertex of the cycle Cj,.

Concerning (ii), note specifically that it is not enough to find a minimum feedback
vertex set of the component, as it may contain too many vertices. In particular, con-
sidering graph G’ constructed in Theorem 3 (without forbidden vertices), removing n
vertices of A is sufficient to reduce the 2-core of the graph from 2 (nm) to O (m) ver-
tices, whereas the minimum feedback vertex set is of size ® (m). The budget spared
on this component might help reduce the 2-core more significantly on some other
component, which might have similar properties. This was never an issue with com-
ponents of maximum degree 2, as the minimum feedback vertex set was always of
size 1. Nevertheless, we leave open whether (ii) is true.

Hence, significantly new ideas will be needed to improve the running time of
Algorithm 2.

4 Structural Graph Parameters

In this section, we investigate the parameterized complexity of COLLAPSED k-CORE
with respect to several structural parameters of the input graph. Corollary 1 already

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1269

implies hardness for constant values of several structural graph parameters. We
expand this picture by observing that the problem remains NP-hard on graphs with a
dominating set of size one and by showing that the problem is W[1]-hard when param-
eterized by the combination of b and the clique cover number of the input graph.
On the positive side, we show that the problem is in FPT when parameterized by the
treewidth of the input graph or the clique-width of the input graph and k combined
with either b, x, n — x, or n — b. Lastly, we show that the problem presumably does
not admit a polynomial kernel for any & > 2 when parameterized by the combination
of b and the vertex cover number of the input graph, or when parameterized by the
combination of b, n — x, k, and the bandwidth of the input graph.

We start with an easy observation that we will make use of in most of the hardness
results in this section.

Observation 2 If (G, b, x, k) is an instance of COLLAPSED k-CORE and vertex v is
a part of the (k + b)-core of G, and S C V is of size at most b, then either v € S or
v is part of the k-core of G \ S.

Proof Let C be the (k + b)-core of G. In C \ S the degree of each vertex is at least
k 4+ b — b, hence C \ S is a subgraph of the k-core of G \ S. O

The following observation yields that we can reduce the size of a dominating set
of any instance of COLLAPSED k-CORE to one by introducing a universal vertex.
Note that, for example, this only increases the degeneracy by one.

Observation 3 Let (G, b, x, k) be an instance of COLLAPSED k-CORE and G’ be
the graph obtained from G by adding a universal vertex, then (G',b + 1, x, k) is an
equivalent instance of COLLAPSED k-CORE.

Proof Let (G, b, x, k) be an instance of COLLAPSED k-CORE and let (G', b', x, k) be
the instance formed by a graph G’ which is obtained from G by adding an universal
vertex u, b’ = b + 1, and x and k from the original instance. We claim that the
instances are equivalent.

First if S is a solution for (G, b, x, k), then S U {u} is a solution for (G’, ¥’, x, k),
as G\ S = G'\ §'. Second, let S’ be a solution for (G', b’, x, k). If " contains u,
then S” \ {u} is a solution for G. Now suppose that §" does not contain u and let v
be an arbitrary vertex of §’. We claim that S” = (S’ \ {v}) U {u} is also a solution to
(G, b, x, k), since G' \ §” is isomorphic to a subgraph of G’ \ §’. Indeed, consider
the bijection ¢, which maps each vertex of V(G)\ S’ to itself and v to u. To show that
it is an isomorphism, it is enough to consider edges incident on v, however, as there
is an edge between u and every vertex of V(G) \ §’, these definitely map to edges.
Hence the k-core of G’ \ S” is at most as large as the k-core of G’ \ S’ and indeed S”
is a solution to (G’, V', x, k). Now the equivalence of the instance follows from the
case where u is in S’. O

@ Springer

1270 Theory of Computing Systems (2021) 65:1243-1282

4.1 W[1]-hard Cases

Considering a larger parameter than, e.g., the size of the dominating set, namely
the clique cover number®, we can show WI[1]-hardness, even in combination with b.
This can be done with a parameterized reduction from MULTICOLORED CLIQUE
parameterized by the solution size.

Proposition 3 COLLAPSED k-CORE is W[1]-hard when parameterized by the com-
bination of b and the clique cover number of the input graph.

Proof We present a parameterized reduction from the W[1]-hard problem MULTI-
COLORED CLIQUE parameterized by the solution size [20]. In MULTICOLORED
CLIQUE, we are given an integer s and a s-colored graph with color classes
Vi, Va, ..., Vi, and the task is to find a clique of size s containing one vertex from
each color class. Let (G = (V, E), s, Vi, V,, ..., V) be an instance of MULTICOL-
ORED CLIQUE. The edge set E can be partitioned into (3) subsets: E; ; = {v,vy|v; €
Vi,uy € V;},1 <i < j < s. We create an instance (G’ = (V', E'), b, x, k) of
COLLAPSED k-CORE as follows (see Fig. 8 for an illustration).

— Denote k = 2max|<j<j<s |Ej jl,n = |V]andset b = 5, x = N — N’ where
N=2n*+k+s+n+ k(;) is the number of vertices in G’ we will construct
and N = s + k(3).

— Forevery V;,i =1,2,...,s, create a clique C; in G’, which contains all vertices
in V;.

— Forevery E; j,1 <i < j < s, create a clique C; ; of size k in G’, which
contains 2 vertices vy, vé’y for every edge v,vy in E; j and k — 2|E; ;| more
dummy vertices.

~ Forevery edge v.vy € E; j, add 4 edges v yv;, vz yvy, V] vz and v} vy to G

z,y
— Create a clique C of size 2n* 4+ k +s. Pick k +s arbitrary vertices in C, and make
all these k + s vertices adjacent to all vertices in [J;_; C;. For every dummy
vertex in (_J]_, Uj:i +1 Ci.j» we add edges between this vertex and two distinct
vertices in C. The size of C is large enough such that no pair of edges between

E; j and C share the same endpoint in C.

Notice that the clique cover number of G’ is s + G) + 1. We claim that there is a
multicolored clique of size s in G if and only if (G, b, x, k) is a yes-instance.

= If there is a multicolored clique S of size s in G, we show in the following that
the k-core of G’ — S has size at most x. Since » = s and N’ = s + k(;), it suffices
to show that all edge cliques C; ; collapse. For any clique C; j, every vertex in this
clique has degree k + 1, since it has k — 1 neighbors in C; ; and 2 neighbors in C; and
C; (or in C for dummy vertices). For any C; ;, suppose vz, vy € S, where v, € V;
and vy, € V;. Since § is a clique, there is an edge v,vy in G, and there are v, , and

%The clique cover number of a graph G is the minimum number of cliques in G such that their union
contains all vertices of G.

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1271

Vs

Fig. 8 Illustration of the reduction from MULTICOLORED CLIQUE to COLLAPSED k-CORE with E| >
highlighted. Every gray edge in this figure means that all vertices in one endpoint of this edge are con-
nected to all vertices in the other endpoint. The big clique C is separated into two parts, and the upper part
is connected to all V; with 1 < i < s. Two yellow vertices in E , represent an edge, and they are con-
nected to the two endpoints of this edge, the red vertex in V; and the blue vertex in V5. Vertices below the
line in Ej > are dummy vertices, and each of them is connected to two private vertices in the lower part
of C

v; y» both connected to v, and vy in G'. After deleting v, and vy, both v, y and v}
collapse, which then causes all remaining vertices in C; ; to collapse. Therefore all
edge cliques C; ; will collapse after deleting S.

«: Suppose (G', b, x, k) is a yes-instance, we need to show that there is a mul-
ticolored clique of size s in G. Let S be the deleted vertex set of size at most b and
let 8" be the set of all collapsed vertices. Since N’ = s + k(3), we have |S'| > k(3).
Notice that in the subgraph of G’ induced by C U | Ji_, C; all vertices in C; have
degree at least k + s and all vertices in C have degree at least 2n* + k + s — 1.
Therefore, by Observation 2, these vertices will never collapse and only vertices in
Ui=1 Uj=i+1 Ci.j can collapse. Since the number of vertices in (Ji_; Uj—;11 Cij
is exactly k(3), we have that all vertices in [J{_, Uj=i11 Ci,j will collapse, S only
contains vertices from C and | J;_, C;, and contains exactly s of them.

Suppose S contains 7 vertices from C and s — ¢ vertices from | J;_, C;. On one
hand, for every clique C; ;, the first vertex to collapse must connect to two vertices
from S, so overall there must be 2(;) edges between all such vertices and S. On the
other hand, each vertex in S N C can provide at most one such edge and each vertex
in S from | J;_, C; can provide at most s — 1 such edges, so overall the number is
strictly less than 2(;) if + > 0. Since all cliques C; j, 1 < i < j < s will collapse,
we have t = 0 and S only contains vertices from | J;_, C;

@ Springer

1272 Theory of Computing Systems (2021) 65:1243-1282

So the firstly collapsed vertex v, y in C; ; must connect to two vertices from §,
one v; from C; and another vy, from C;. This means § contains exactly one vertex
v; from each C; and each pair of vertices v; and v; connect to at least one common
vertex v; j in C; ;, which means v; and v; are connected in G. Therefore, S forms a
clique of size s in G. O

4.2 Fixed-Parameter Tractable Cases

On the positive side, we sketch a dynamic program on the tree decomposition of the
input graph G which implies that COLLAPSED k-CORE is in FPT when parameterized
by the treewidth of the input graph.

Proposition 4 COLLAPSED k-CORE is in FPT when parameterized by the treewidth
of the input graph.

Sketch Let (G, b, x, k) be an instance of COLLAPSED k-CORE. As every graph G is
tw(G)-degenerate (see [20, Exercise 7.14]) either k < tw(G) or the k-core of G is
(already) empty and we can answer Yes. Hence, for the rest of the proof we assume
that k < tw(G). We assume that we are given a nice tree decomposition of G [8, 32]
and use dynamic programming on the nice tree decomposition of G. The indices of
the table are formed for each bag of the decomposition by the number of vertices of
the solution already forgotten, the number of vertices in the core already forgotten, a
partition of the bag into three sets B, X, and Q, an (elimination) order for the vertices
in Q, and for each vertex in Q the number of its neighbors in X or higher in the
order (including those already forgotten). This number is always in 0, ...,k — 1, as
otherwise it would not be possible to eliminate the vertex.

The set B represents the partial solution (or rather its intersection with the bag),
i.e., the vertices to be deleted. The set X represents the vertices which (are free to)
remain in the core. The vertices in Q should collapse after removing the vertices of
the solution and the collapse of the vertices preceding them in the order.

Morex formally, let V; be a bag of the decomposition and G, be the subgraph of
the input graph induced by the union of all bags that are descendants of V; (including
V; itself). Let tuple »’, x’, B, X, Q, < and f represent an index of the associated
table, thatis, b’ € {0, ..., b}, x" € {0,...,x}, BW X W Q is a partition of V;, < is a
total order on Q, and f : Q — {0, ...,k — 1}. Then we set the corresponding table
entry to true if and only if there is a partition B’ W X' & Q' of V(G,) and a total order
<on Q’ satisfying the following conditions: B'NV, = B, 0'NV, = 0, X'NV, = X,
< is the restriction of < to Q, |B"\ B| =¥, |X’ \ X| = x’ and for every g € Q' we
have k > |{r | {g,.r} € EA(r € X' v (r € Q' A q <))}, and, in particular, for
g€ Qwehave f(@) ={r|{g,r} e EA(reX v (re Q AqgIr)}.

It is straightforward to compute the content of the table for a particular bag based
on the tables for the children bags.

There are 3V . tw(G)OW(O) . kWG — tw(G)9MWEO) possible indices for
each bag. Hence the slightly superexponential running time of tw(G)? (G ., 0()
follows. O

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1273

Using monadic second order (MSO) logic formulas, it can be shown that for a
smaller structural parameter, namely the cliquewidth of the input graph, there are also
positive results. Here however, we can only show fixed-parameter tractability for the
combination of the cliquewidth of the input graph with k and either b, x, n — x, or
n—b.

Proposition 5 COLLAPSED k-CORE is in FPT when parameterized by the
cliquewidth of the input graph combined with k and either b, x, n — x, orn — b.

Proof We first develop, for a fixed k a formula
core(B, X),

which should express that the set X contains the whole vertex set of the k-core of the
graph G — B. The formula thus says that no graph induced by a set larger than X,
but not containing anything from B is a core. In other words, each such graph con-
tains a vertex of degree at most k — 1, i.e., not having k distinct neighbors in the set
considered. For that purpose we use the following subformula:

k
smalldegi(v,A) = VxjeVVx eV ... VxeV (/\(x,- € AAadj (v,x,-)))
i=1
— \/ Xi = Xj.
I<i<j<k

Now the sought formula is
core(B,X) = VACVMANB=UAXCAAX #A)
= Jv eV (ve A Asmalldegi(v, A).

This formula is of length O (k?). Combined with some of the following formulae
it gives the result for all parameter combinations promised. The following formula
bounds a set S passed to be of size at most s:

s+1
sizeatmost (S) = VrxjeVVrneV .. VxeVV¥ryeV(Nxes)
i=1
——1 \/ Xi =xj'.
I<i<j<s+1

The next formula bounds the size to at most n — s:

sizeatmost, (S) =

N
I eVaneV.. eV (/\xl-géS)/\ N xi#x

i=1 I<i<j<s

Both these formulae have length O (s?).

Now the result follows from the theorem of Courcelle et al. [18] as it allows
for optimization over the size of one free set variable. Hence, the result for param-
eterization by the cliquewidth, k, and b is obtained by minimizing the size of X

@ Springer

1274 Theory of Computing Systems (2021) 65:1243-1282

satisfying 3B C V core(B, X) A sizeatmost,(B) in the input graph, where the
formula is of size O (k> + b?). The result for parameterization by the cliquewidth,
k, and x is obtained by minimizing the size of B satisfying 3X C V core(B, X) A
sizeatmost,(X), where the formula is of size O (k% + x2). The result for param-
eterization by the cliquewidth, k, and n — x is obtained by minimizing the size
of B satisfying 3X C V core(B, X) A sizeatmost,_—x)(X), where the for-
mula is of size O(k*> + (n — x)?). Finally, the result for parameterization by the
cliquewidth, k, and n — b is obtained by minimizing the size of X satisfying 3B C
V core(B, X) A sizeatmost,_(,—p) (B) in the input graph, where the formula is
of size O(k* + (n — b)?). O

4.3 Kernelization Lower Bounds

In the final subsection of this section, we show that COLLAPSED k-CORE does
not admit a polynomial kernel when parameterized by rather large parameter
combinations.

We employ the OR-cross-composition framework by [7] to refute the existence
of a polynomial kernel for a parameterized problem under the assumption that
NP & coNP/ poly, the negation of which would cause a collapse of the polynomial-
time hierarchy to the third level. Informally, in an OR-cross-composition, we have to
compose many problem instances of an NP-hard problem into one big instance of the
problem we want to investigate. This composition should then have the property that
the big instance is a YES-instance if and only if at least one of the input instances is
a YES-instance. This then refutes polynomial kernels for the problem under investi-
gation when parameterized by any parameter that only depend on the maximum size
of the input instances and only logarithmically on the number of input instances. In
order to formally describe the framework, we need some definitions first.

An equivalence relation R on the instances of some problem L is a polynomial
equivalence relation if

1. one can decide for each two instances in time polynomial in their sizes whether
they belong to the same equivalence class, and

2. for each finite set S of instances, R partitions the set into at most
(maxyes |x|) D) equivalence classes.

Using this, we can now define OR-cross-compositions.

An OR-cross-composition of a problem L € X* into a parameterized problem P
(with respect to a polynomial equivalence relation R on the instances of L) is an
algorithm that takes 7 R-equivalent instances x1, ..., x7 of L and constructs in time
polynomial in ZiT=l |x;| an instance (x, k) of P such that

1. kis polynomially upper-bounded in max;<;<r |x;| + log(7T) and
2. (x,k) is a YES-instance of P if and only if there is an i € [T] such that x; is a
YES-instance of L.

If an NP-hard problem L OR-cross-composes into a parameterized problem P,
then P does not admit a polynomial kernel, unless NP C coNP/poly [7].
We first show an OR-cross composition from CUBIC VERTEX COVER.

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1275

Theorem 4 For all k > 2 COLLAPSED k-CORE does not admit a polynomial kernel
when parameterized by the combination of b and the vertex cover number of the input
graph unless NP C coNP/poly.

Proof We apply an OR-cross composition from the NP-hard problem CUBIC VER-
TEX COVER [26]. In CUBIC VERTEX COVER, we are given a 3-regular graph G and
an integer s, and the task is to find a vertex subset of size at most s which contains at
least one endpoint of each edge of G.

We say an instance of CUBIC VERTEX COVER is malformed if the string does not
represent a pair (G, s), where G is a 3-regular graph and s is a positive integer. It is
trivial,if s > |V (G)|. We define the equivalence relation R as follows: all malformed
instances are equivalent, all trivial instances are equivalent and two well-formed non-
trivial instances (G, s) and (G’, s) are R-equivalent if |V (G)| = |V(G')| and s = s’.
Observe that R is a polynomial equivalence relation.

Let the input consist of T R-equivalent instances of CUBIC VERTEX COVER.
If the instances are malformed or trivial, we return a constant size no- or yes-
instance of COLLAPSED k-CORE, respectively. Let (G;, s)o<i<r—1 be well-formed
non-trivial R-equivalent instances of CUBIC VERTEX COVER. Since all instances
have the same size of the vertex set, we can assume they share the same vertex
set V.= {v1,v2,...,v,} . We assume T to be a power of 2, as otherwise we can
duplicate some instances. Now we create an instance (G, b, x, k) of COLLAPSED
k-CORE for some arbitrary but fixed k > 2 as follows.

— Sethb =s+2kslogT andx = N — N/, where N = n + %nT + 4kslog T +
k+s+ %n(k — 2) is the number of all vertices in graph G we will construct and
N = s+ 2kslogT + %n (Note that %n is integer since each G; is a 3-regular
graph and this is the number of its edges.)

— First for every vertex v, in V, create a vertex v, in G.

— Forall0 <i < T —1 and for every edge set E(G;), create a vertex set VZ.E in G,
in which a vertex v, , represents an edge v,v, in E(G;). Then we have T of
these vertex sets and each set has %n vertices.

— For every edge v,v, in E(G;), add 2 edges vy 4v, and vy 4v, in G.

— Now create the selection gadget in G. It contains log T pairs of cliques C}l 0 <
Jj <logT —1,d € {0, 1}), and all of them have the same size of 2ks. For every
vertex set VZE yleti = (dogr—1d10g T2 - - .do)2 be the binary representation of
the index i, where d; € {0, 1} for 0 < j < logT — 1 and we add leading zeros
so that the length of the representation is exactly log 7. We add edges between
all vertices in V£ and all vertices in UI;EOT ! C?j .

— Finally we create a clique C with |C| =k + b + %n(k — 2), which contains two
parts of vertices. The first part contains k + b vertices and each of them connects

to all vertices in V U UljoiOT ! U 511:0 C;.j. The second part of %n(k — 2) vertices

is connected to vertices in VlE forall0 <i < T — 1 in the following way. For
every vertex v, 4 in V£, add edges between v, 4 and k — 2 vertices in C. We
make sure that all vertices in the same Vl.E connect to different vertices in C. In

@ Springer

1276 Theory of Computing Systems (2021) 65:1243-1282

other words, every vertex in the second part of C connects to exactly one vertex
in every VZE .

Notice that the vertex cover number of G is at most n+4ks log T+k+b+ %n(k—Z)

as VU UIJ.OEOT - U;z=0 C ;1 U C forms a vertex cover of the graph. The construction is

illustrated in Fig. 9. We now show that at least one instance (G;, s) is a yes-instance
if and only if the instance (G, b, x, k) of COLLAPSED k-CORE constructed above is
a yes-instance.

=:If (G;, s) is a yes-instance, which means that there is a vertex subset V* of size
s that covers all edges in G;, then we delete the corresponding s vertices in G and
all vertices in UIJOEOT - ij where i = (diog7-1 - . .dp), is the binary representation
of i. So far, we deleted s + 2kslog T vertices, and all vertices in VlE will collapse,
since they just have at most k — 1 edges remaining, k — 2 of which connect to vertices
in C and at most one to vertices in V. Therefore, the number of remaining vertices is
x and instance (G, b, x, k) is a yes-instance.

«<: If (G, b, x, k) is a yes-instance, we need to show that there is at least one
instance which has a vertex cover of size at most s. Let S be the set of deleted vertices
of size at most b and let S” be the set of all collapsed vertices. Since N’ = s +
2kslog T + %n we have |S'| > %n In the subgraph of G induced by V, C and

selection gadget

Fig. 9 Illustration of the OR-cross composition from CUBIC VERTEX COVER to COLLAPSED k-CORE
with & = 5. The selection gadget consists of all the circles contained in the green box. Every gray edge
in this figure means that all vertices in one endpoint of this edge are connected to all vertices in the other
endpoint. Every vertex in VIE connects to two endpoints of its corresponding edge in G;. For example, the
yellow vertex in VZE is connected to the blue and the red vertex in V, which represents the two endpoints
of the corresponding edge in G». The big clique C is separated into two parts. Every vertex in VlE is
connected to k — 2 vertices in the upper part of C. Since k = 5, the yellow vertex in VZE is connected to
three vertices in C. Vertices contained in thick outlined vertex sets form a vertex cover. To keep the picture
simple, edges that contain vertices from ViE with i # 2 are not depicted

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1277

Ulog =y) 40 Cd all vertices in V U Ulog I Ul C;’ UC have degree larger than
k —|— b. Hence, by Observatlon 2 they w111 not collapse and all collapsed vertices come
from | J/} V£

We show that all collapsed vertices can only come from one single ViE for some i.
Suppose two vertices v and v’ from different sets of VlE (0 <i <T—1)collapse
after deleting S, then there is at least one pair of cliques C?O and C 11‘0 such that v

is connected to all vertices in Cdo for some dy € {0, 1} and v’ is connected to all

vertices in C % To make v collapse at least 2ks log T — (k — 1) vertices from the
correspondmg cliques in the selection gadget need to be deleted. Then to make v’
collapse, at least 2ks — (k — 1) vertices from C % need to be deleted. Therefore,
at least 2kslog T + 2ks — 2(k — 1) vertices need to be deleted, which is strictly
more than b. This means that the collapsed vertices come from one single VIE . Since
|S'| > n and |VE| 2n we have S’ = VZ.E and SN VZE =) for some i.

We cons1der the vertex set S. We know that after deleting S, all vertices in Vl.E

d.
collapse. Denote V; the vertex set of all vertices in UlogT lC J

i where i =
(diogT—1---do), is the binary representation of i. Since every vertex in V; is con-
nected to all vertices in VlE , to make VlE collapse, it is always better to choose vertices
from V; than any other vertex. If S does not contain all vertices from V;, we can
update S by replacing any |V} \ S| vertices in § with vertices in V; \ S. Then V; C S.

Suppose there is a vertex v, 4 in ViE such that both v, and v, are notin SNV,
then § contains at least one vertex v in C connected to v, 4, as otherwise v, 4 has
degree at least k and will not collapse. We update S by replacing v, with v,. This will
not influence the size of S and more importantly, this will not influence the collapsed
set ' = VE, since v in C is connected to only one vertex v, 4 in V£, and v, 4
will still collapse under the new S. By updating S in the same way for other vertices
in Vl.E not covered by vertices in S N V, we get a vertex set S N V which covers all
vertices in V[E at least once. And |S N V| < s, since Vi C S and |V;| = 2kslogT.
This corresponds to a vertex cover of size s in G;. U

Lastly, we show that there is a simple OR-cross composition [7, 20] from COL-
LAPSED k-CORE onto itself. Note that the parameter combination of the following
result is incomparable to that of Theorem 4.

Proposition 6 For all k > 1 COLLAPSED k-CORE does not admit a polynomial
kernel when parameterized by the combination of b, n — x, and the bandwidth of the
input graph unless NP C coNP/poly.

Proof We apply an OR-cross composition from COLLAPSED k-CORE to COL-
LAPSED k-CORE.

We say an instance of COLLAPSED k-CORE is malformed if the string does not
represent a quadruple (G, b, x, k), where G is a graph and b, x are non-negative
integers. It is trivial, if b > |V(G)|, x > |V(G)|, or k > |V (G)|. We define the
equivalence relation R as follows: all malformed instances are equivalent, all trivial
instances are equivalent, and two well-formed non-trivial instances (G1, b1, x1, k)

@ Springer

1278 Theory of Computing Systems (2021) 65:1243-1282

and (G2, by, x2, k) are R-equivalent if |V(G1)| = |V(G2)|, b1 = by and x1 = x».
Observe that R is a polynomial equivalence relation.

Let the input consist of T R-equivalent instances of COLLAPSED k-CORE. If the
instances are malformed or trivial, we return a constant size no- or yes- instance
of COLLAPSED k-CORE, respectively. Let (G;, b;, x;, k)1<i<7T be well-formed non-
trivial R-equivalent instances of COLLAPSED k-CORE. Since all instances have the
same b;, x; and all G; with 1 < i < T have the same size of vertex set, we denote
b="b;,x =x;andn = |V(G;)|. If n < 3, then we solve all the instances in O (T)
time and output a constant-size instance with the appropriate answer.

Now we create an instance (G, b’, x’, k) of COLLAPSED k-CORE. We start by
making G a disjoint union of all G;. For eachi € {1,...,T}, we add to G two
cliques C; and Ci/ , each of size n2, and add all edges between G; and C; and between
C; and C;. Note that G contains T'(n + 2n?) vertices in total. Set b’ = b + n? and
x' = +20(T = 1) +n? +x.

Notice that the bandwidth [13] of G is upper bounded by 2n% and |V(G)| — x' =
T(n+2n%) — (T — 1)(n + 2n%) — n*> — x < n® + n. We now show that at least
one instance (G;, b, x, k) is a yes-instance if and only if the instance (G, b, x’, k) of
COLLAPSED k-CORE constructed above is a yes-instance.

=: If (G;, b, x, k) is a yes-instance, then there is a subset S € V(G;) such that
the k-core of G; — S has size at most x. If we delete all vertices from S and the whole
clique C; in G, then at most x vertices remain in the k-core of G; — S. Therefore the
k-core of G — S — V(C;) has size at most x’.

&: If (G, b, x', k) is a yes-instance, then let S be the set of deleted vertices of
size at most b’ and let S’ be the set of all collapsed vertices. Since the degree of
vertices in C; and Cl.’ is at least 272 — 1 which is more than n2 +2n > b’ + k
for n > 3, these vertices will never collapse by Observation 2. So S’ only contains
vertices from UiT:l V(G;). Furthermore, it is impossible for two vertices v; and v;
from different sets V(G;) and V(G}) to collapse after deleting S. Indeed, suppose
they do collapse, then |[S N C;| > n? — k and ISNCj| > n? — k, which means
IS| > 2n? — 2k > 2n* —2n > n®> +n > n*> + b = b’, where the middle inequality
follows from n > 3. Therefore S’ only contains vertices from a single graph, say G;.

Since G contains T (n +2n?) vertices in total, x’ = (n+2n2)(T —1)+n2+x, and
b’ = b+ n?, we have |S’| > n — b — x. To make vertices in G; collapse, it is always
better to choose vertices from C; into S, as vertices from C; connect to all vertices in
G;. Thus we can assume C; € S. Then [SNV(G;)| <b.If |[V(G;) \ (SU S| > x,
which can only happen if |S N V(G;)| < b, then we can remove vertices from S \
(C; UV (G;)) and add vertices from G; \ (SUS’) to S until [SNV (G;)| = b. This will
not influence the collapsed vertices in S’. Then we get a vertex set S; = S N V(G;),
and the k-core of G; — §; has size at most x. O]

5 Conclusion
Our results highlight a dichotomy in the computational complexity of COLLAPSED

k-CORE for k < 2 and k > 3. Along the way, we correct some inaccuracies in the lit-
erature concerning the parameterized complexity of COLLAPSED k-CORE with k = 3

@ Springer

Theory of Computing Systems (2021) 65:1243-1282 1279

and x = 0 and give a simple single exponential linear time parameterized algorithm
for COLLAPSED k-CORE with k = 2, which almost matches the simplest known,
independently found, single exponential linear time algorithm for FEEDBACK VER-
TEX SET. We leave as an open question whether COLLAPSED k-CORE with k = 2 on
graphs of maximum degree 3 is solvable in polynomial time if there are no forbidden
vertices. We further investigate the parameterized complexity with respect to several
structural parameters of the input graph. As a highlight we show that COLLAPSED
k-CORE does not admit polynomial kernels for rather large parameter combinations.
We leave the complexity of COLLAPSED k-CORE when parameterized solely by the
cliquewidth of the input graph open.

Acknowledgements This research was initiated at the annual research retreat of the Algorithmics and
Computational Complexity (AKT) group of TU Berlin, held in Darlingerode, Germany, from March 19
till March 23, 2018. The authors would like to thank Anne-Sophie Himmel for initial discussions leading
to the results in this paper and to the anonymous referees of IPEC and this journal for detailed comments
that helped to significantly improve the presentation of the paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness IV:
on completeness for w[P] and PSPACE analogues. Annals Pure Appl. Logic 73(3), 235-276 (1995)

2. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core groups in social
networks. Adv. Data Anal. Classif. 5(2), 129-145 (2011)

3. Bazgan, C., Chopin, M.: The complexity of finding harmless individuals in social networks. Discret.
Optim. 14, 170-182 (2014)

4. Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized inapproximability of target set
selection and generalizations. Computability 3(2), 135-145 (2014)

5. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target
set selection. Discret. Optim. 8(1), 87-96 (2011)

6. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing unraveling in social
networks: the anchored k-core problem. SIAM J. Discret. Math. 29(3), 1452-1475 (2015)

7. Bodlaender, H.L., Jansen, B.M., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM
J. Discret. Math. 28(1), 277-305 (2014)

8. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, E.V., Lokshtanov, D., Pilipczuk, M.: A ckn
S-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317-378 (2016)

9. Cao, Y.: A naive algorithm for feedback vertex set. In: Proceedings of the 1st symposium on simplicity
in algorithms, (SOSA ’18), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, OASICS, vol. 61,
pp. 1:1-1:9 (2018)

10. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and new structures. Algorithmica
73(1), 63-86 (2015)

@ Springer

http://creativecommons.org/licenses/by/4.0/

1280 Theory of Computing Systems (2021) 65:1243-1282

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Chen, J., Kanj, .A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-
42), 3736-3756 (2010)

Chen, N.: On the approximability of influence in social networks. SIAM J. Discret. Math. 23(3),
1400-1415 (2009)

Chinn, PZ., Chvatalov4, J., Dewdney, A.K., Gibbs, N.E.: The bandwidth problem for graphs and
matrices—a survey. J. Graph Theor. 6(3), 223-254 (1982)

Chitnis, R., Talmon, N.: Can we create large k-cores by adding few edges? In: Computer Science -
Theory and Applications - Proceedings of the 13th International Computer Science Symposium in
Russia (CSR 2018), Springer, Lecture Notes in Computer Science, vol. 10846, pp. 78-89 (2018)
Chitnis, R., Fomin, E.V., Golovach, P.A.: Parameterized complexity of the anchored k-core problem
for directed graphs. Inf. Comput. 247, 11-22 (2016)

Chitnis, R.H., Fomin, F.V., Golovach, P.A.: Preventing unraveling in social networks gets harder. In:
Proceedings of the 27th AAAI conference on artificial intelligence (AAAI’13), pp. 1085-1091. AAAI
Press (2013)

. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set

selection tractable. Theor. Comput. Syst. 55(1), 61-83 (2014)

Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theor. Comput. Syst. 33(2), 125-150 (2000)

Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J., Wojtaszczyk, J.O.: Solving con-
nectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the
IEEE 52nd annual symposium on foundations of computer science (FOCS ’11), pp. 150-159. IEEE
Computer Society (2011)

Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, New York (2015)

Diestel, R.: Graph Theory, 5th edn, Graduate Texts in Mathematics, vol. 173. Springer, New York
(2016)

Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, New York
(2013)

. Dvorék, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. In: Proceedings of

the 29th international symposium on algorithms and computation (ISAAC ’18), Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, LIPIcs, vol. 123, pp. 18:1-18:13 (2018)

Fomin, EV., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized
complexity of cluster editing with a small number of clusters. J. Comput. Syst. Sci. 80(7), 1430-1447
(2014)

Garcia, D., Mavrodiev, P., Schweitzer, F.: Social resilience in online communities: The autopsy of
friendster. In: Proceedings of the 1st ACM conference on online social networks (COSN *13), pp. 39—
50. ACM (2013)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman (1979)

Guo, J., Gramm, J., Hiiffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter
algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386-1396
(2006)

Hartmann, T.A.: Target set selection parameterized by clique-width and maximum threshold. In: Pro-
ceedings of the 44th International Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM 2018), Springer, Lecture Notes in Computer Science, vol. 10706, pp. 137-149
(2018)

Iwata, Y.: Linear-time kernelization for feedback vertex set. In: 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 68:1-68:14 (2017)
Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set.
In: Proceedings of the 14th International Symposium on Parameterized and Exact Computation
(IPEC ’19), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in
Informatics (LIPIcs), vol. 148, pp. 22:1-22:11 (2019)

Kempe, D., Kleinberg, J.M., Tardos, E.: Maximizing the spread of influence through a social network.
Theor. Comput. 11, 105-147 (2015)

Kloks, T.: Treewidth, Computations and Approximations, Lecture Notes in Computer Science,
vol. 842. Springer, New York (1994)

Springer

Theory of Computing Systems (2021) 65:1243-1282 1281

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10),
556-560 (2014)

Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull.
EATCS 3(105) (2013)

Lokshtanov, D., Ramanujan, M., Saurabh, S.: Linear time parameterized algorithms for subset
feedback vertex set. ACM Trans. Algo. (TALG) 14(1), 7 (2018)

Luo, J., Molter, H., Suchy, O.: A parameterized complexity view on collapsing k-Cores. In: 13th
International Symposium on Parameterized and Exact Computation (IPEC 2018), Schloss Dagstuhl—-
Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 115,
pp. 7:1-7:14 (2019)

Malliaros, E.D., Vazirgiannis, M.: To stay or not to stay: modeling engagement dynamics in social
graphs. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge
Management (CIKM °13), pp. 469-478. ACM (2013)

Mathieson, L.: The parameterized complexity of editing graphs for bounded degeneracy. Theor.
Comput. Sci. 411(34-36), 3181-3187 (2010)

Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph problems and gener-
alizations. In: Proceedings of the 14th Computing: the Australasian theory symposium (CATS ’08),
pp 79-86 (2008)

Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection.
Soc. Netw. Anal. Min. 3(2), 233-256 (2013)

Peleg, D.: Immunity against Local Influence. In: Language, Culture, Computation. Computing - The-
ory and Technology - Essays Dedicated to Yaacov Choueka on the Occasion of His 75Th Birthday,
Part I, Springer, Lecture Notes in Computer Science, vol. 8001, pp. 168-179 (2014)

Seidman, S.B.: Network structure and minimum degree. Soc. Networks 5(3), 269-287 (1983)

Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set
problem for graphs with no vertex degree exceeding three. Discret. Math. 72(1-3), 355-360 (1988)
Wang, X., Donaldson, R., Nell, C., Gorniak, P., Ester, M., Bu, J.: Recommending groups to users using
user-group engagement and time-dependent matrix factorization. In: Proceedins of the 30th AAAI
conference on artificial intelligence (AAAI "16), pp. 1331-1337. AAAI Press (2016)

Wu, S., Das Sarma, A., Fabrikant, A., Lattanzi, S., Tomkins, A.: Arrival and departure dynamics in
social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data
Mining (WSDM °13), pp. 233-242. ACM (2013)

Zhang, F.,, Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engage-
ment: The collapsed k-core problem. In: Proceedins of the 31st AAAI conference on artificial
intelligence (AAAI ’17), pp. 245-251. AAAI Press (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

@ Springer

1282 Theory of Computing Systems (2021) 65:1243-1282

Affiliations
Junjie Luo’?3 . Hendrik Molter' - Ondrej Suchy*

Hendrik Molter

h.molter @tu-berlin.de

Ondiej Suchy

ondrej.suchy @fit.cvut.cz

Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Berlin, Germany
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China

Department of Theoretical Computer Science, Faculty of Information Technology, Czech Technical
University in Prague, Prague, Czech Republic

@ Springer

mailto: h.molter@tu-berlin.de
mailto: ondrej.suchy@fit.cvut.cz

	A Parameterized Complexity View on Collapsing k-Cores
	Abstract
	Introduction
	Related Work
	Our Contribution

	Hardness Results from the Literature
	Counterexamples
	Counterexample for Mathieson's Reduction mathieson2010parameterized.
	Counterexample for the Reduction of Abrahamson et al. AbrahamsonDF95

	Corrected Proof and Corollaries

	Algorithms and Complexity for k=1 and k=2
	W[1]-hardness with Respect to b and n-x
	Algorithm for k=1
	Algorithm

	Algorithm for k=2
	Algorithm

	Complexity on Cubic Graphs

	Structural Graph Parameters
	W[1]-hard Cases
	Fixed-Parameter Tractable Cases
	Kernelization Lower Bounds

	Conclusion
	References
	Affiliations

